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Abstract

The main focus of this thesis is the use of high-throughput sequencing technologies in functional

genomics (in particular in the form of ChIP-seq, chromatin immunoprecipitation coupled with se-

quencing, and RNA-seq) and the study of the structure and regulation of transcriptomes. Some parts

of it are of a more methodological nature while others describe the application of these functional

genomic tools to address various biological problems. A significant part of the research presented

here was conducted as part of the ENCODE (ENCyclopedia Of DNA Elements) Project.

The first part of the thesis focuses on the structure and diversity of the human transcriptome.

Chapter 1 contains an analysis of the diversity of the human polyadenylated transcriptome based

on RNA-seq data generated for the ENCODE Project. Chapter 2 presents a simulation-based

examination of the performance of some of the most popular computational tools used to assemble

and quantify transcriptomes. Chapter 3 includes a study of variation in gene expression, alternative

splicing and allelic expression bias on the single-cell level and on a genome-wide scale in human

lymphoblastoid cells; it also brings forward a number of critical to the practice of single-cell RNA-

seq measurements methodological considerations.

The second part presents several studies applying functional genomic tools to the study of the

regulatory biology of organellar genomes, primarily in mammals but also in plants. Chapter 5 con-

tains an analysis of the occupancy of the human mitochondrial genome by TFAM, an important

structural and regulatory protein in mitochondria, using ChIP-seq. In Chapter 6, the mitochondrial

DNA occupancy of the TFB2M transcriptional regulator, the MTERF termination factor, and the

mitochondrial RNA and DNA polymerases is characterized. Chapter 7 consists of an investigation

into the curious phenomenon of the physical association of nuclear transcription factors with mito-

chondrial DNA, based on the diverse collections of transcription factor ChIP-seq datasets generated

by the ENCODE, mouseENCODE and modENCODE consortia. In Chapter 8 this line of research
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is further extended to existing publicly available ChIP-seq datasets in plants and their mitochondrial

and plastid genomes.

The third part is dedicated to the analytical and experimental practice of ChIP-seq. As part

of the ENCODE Project, a set of metrics for assessing the quality of ChIP-seq experiments was

developed, and the results of this activity are presented in Chapter 9. These metrics were later

used to carry out a global analysis of ChIP-seq quality in the published literature (Chapter 10). In

Chapter 11, the development and initial application of an automated robotic ChIP-seq (in which

these metrics also played a major role) is presented.

The fourth part presents the results of some additional projects the author has been involved

in, including the study of the role of the Piwi protein in the transcriptional regulation of transpo-

son expression in Drosophila (Chapter 12), and the use of single-cell RNA-seq to characterize the

heterogeneity of gene expression during cellular reprogramming (Chapter 13).

The last part of the thesis provides a review of the results of the ENCODE Project and the

interpretation of the complexity of the biochemical activity exhibited by mammalian genomes that

they have revealed (Chapters 15 and 16), an overview of the expected in the near future technical

developments and their impact on the field of functional genomics (Chapter 14), and a discussion of

some so far insufficiently explored research areas, the future study of which will, in the opinion of

the author, provide deep insights into many fundamental but not yet completely answered questions

about the transcriptional biology of eukaryotes and its regulation.
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Preface

The path my graduate career took was somewhat unusual. I had the fortune to be able to work on a

large number of diverse projects (especially as a result of being part of the ENCODE project). This

means I have a correspondingly large number of at least somewhat interesting scientific stories to tell

in my thesis. However, the flip side of this is that the common thread between all of them is not nec-

essarily obvious and the “lack of focus” type of criticism towards it would not be entirely misplaced.

For a long time, what that common thread was going to be was not obvious for me either, except for

the rather trivial common denominator “High-throughput sequencing-based functional genomics”

and the so-broad-as-to-be-almost-meaningless in the context of a graduate thesis “Understanding

the mechanism of gene regulation and the structure and dynamics of transcriptomes eukaryotes”.

Yet, after some reflection, and especially after the response of the general scientific community to

the presentation of ENCODE results and the subsequent activities I got involved in, I have come to

think that the latter is not only not that useless after all, but I in fact have quite a lot to say on the

subject and from a unique perspective and position shared by not many other people. Thus even if

all I can offer is numerous very small compared to the magnitude of the general and very big task

of understanding gene regulation contributions, they can nevertheless be brought under a common

theme and put in their proper place in the bigger picture of where the field is circa 2013/2014 and

what directions, in my humble opinion, it might not be a bad idea for at least a portion of it to

move into in the near- and medium-term future.

My thoughts on the latter subject are presented in the chapters comprising the last part of this

thesis, which also contain most of what would normally go into an introductory section. The rest

of it is organized in four parts, each containing separate chapters. The first part is dedicated to the

analysis of eukaryotic transcriptomes, using a variety of experimental techniques and data types,

from bulk samples and on the single-cell level. The second grew in a completely unexpected way
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from a collaboration with Yun Elisabeth Wang in the Chan lab that initially focused on character-

izing the binding of TFAM to the human mitochondrial genome but eventually grew into multiple

studies applying functional genomic tools and data to organelles in both animals and plants. The

third part concerns a number of technical issues having to do with the practice of carrying out chro-

matin immunoprecipitation (ChIP) experiments and their coupling with high-throughput sequencing

(ChIP-seq), in particular the application of ChIP-seq quality control metrics to real-life data. It also

includes a chapter on the development of a robotic ChIP assay in the Wold lab, something that will

be a vital part of the future practice in the field. The fourth part includes chapters on some of the

various other projects I have been involved in. The last part, as already mentioned, summarizes my

work in the broader context of the current state of the field and defines what in my opinion would be

fruitful directions for future research, both from the perspective of the current and expected near-

future state of technology, and from the point of view of the general questions about the evolution of

regulatory and genomic complexity arising from ENCODE results and their interpretation. Most of

the individual chapters contained in each part were initially written as standalone papers, to which

I later made (mostly slight) modifications in order to better fit the format of a thesis. Some of them

have already been published, and a few of the ones that have not been will hopefully some day

join them. The chapters can still be read independently of each other (this is especially true about

those in the “Other Projects” part), although I hope an overarching team would become apparent

to anyone reading the thesis from cover to cover, in its entirety.
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Part I

The Structure of Eukaryotic

Transcriptomes
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This part contains four chapters dedicated to several functional genomic studies of the structure

of eukaryotic transcriptomes that I have carried out. The first one describes the results of an early

project aimed at characterizing the human polyadenylated transcriptome using some of the very first

paired-end RNA-seq on multiple cell lines in existence (generated as part of the ENCODE Project).

That work made it very clear that isoform assembly and isoform-level quantification are critical

and potentially very weak points in the analysis of short-read RNA-seq data. To clarify the extent,

impact and nature of these problems, I carried out an extensive simulation study on some of the

most popular existing computational algorithms for carrying out these tasks, the results of which

are described in the second chapter of this part. The third chapter contains a study of cell-to-cell

variation in gene expression in human lymphoblastoid cell lines using single-cell RNA-seq, which also

discusses in detail multiple key experimental and analytical issues with the practice of single-cell

transcriptomics. Finally, I include a short chapter describing a proof-of-principle demonstration of

a simple but elegant and robust approach to the analysis of mixed-species RNA-seq data.
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1

The polyadenylated transcriptome of ENCODE cell

lines

The material in this chapter (which consists of work done between 2010 and early 2012) was intended

to form the core of an ENCODE companion paper to complement the main ENCODE transriptome

paper (Djebali et al. 2012), and also present a somewhat different perspective of what the data is

telling us:

Marinov GK*, Williams BA*, Trout D, Balasubramanian S, Fauli F, Reddy T, Gertz J, Murad R,

Mortazavi A, Myers RM, Wold BJ. The polyadenylated transcriptome of ENCODE cell lines. 2012

This unfortunately never happened for various reasons I will not go into here. It is based on

data generated primarily by Brian Williams in the Wold lab. The RNA Polymerase II and TAF1

ChIP-seq data from the Myers lab at the HudsonAlpha Institute for Biotechnology; the Nanostring

miRNA data is courtesy of Rabi Murad in the Mortazavi lab at the University of California, Irvine.

Abstract

Multiple lines of evidence have previously suggest that the complexity of the tran-

script products generated by mammalian genomes is high. However, until the advent

of RNA sequencing technology, it has not been possible to directly study this diver-
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sity at the resolution and depth provided by RNA-seq. In this study, we performed

the first large-scale characterization of the human polyadenylated transcriptome using

RNA-seq data from ENCODE cell lines and from a diverse collection of human tissues,

as well as CAGE (Capped Analysis of Gene Expression) and ChIP-seq data for the

TAF1 subunit of the transcription initiation complex. State-of-the-art analysis tools

were then used to generate and quantify a conservative set of annotated and novel tran-

scriptome elements, including splice junctions, exons, intergenic transcripts, isoforms

of protein coding genes and alternative transcription initiation sites. The results reveal

the high complexity of the transcriptome, but they also emphasize the interpretative

challenges presented by the fact that much of the observed diversity is present at low

absolute levels, meaning it is difficult to distinguish it from biochemical noise gener-

ated by the transcription and splicing machinery. Finally, I highlight the areas where

future technical advances that should help resolve some of these issues are needed and

expected.

1.1 Introduction

Contemporary polyA transcriptome measurements, made by deep sequencing of cDNA (RNA-seq),

are remarkably information rich (Mortazavi and Williams et al. 2008; Nagalakshmi et al. 2008; Wang

et al. 2008; Wilhelm et al. 2008; Pan et al. 2008; Sultan et al. 2008; Cloonan et al. 2008; Guttman et

al. 2010; Cabili et al. 2011; Li et al. 2011). High-quality reference datasets can be mined, quantified,

and analyzed in different ways, using different software and significance thresholds, to serve a wide

range of biological investigations. For example, the majority of currently known mammalian genes

were mapped by working backwards from knowledge of cloned RNA product(s) (Adams et al. 1991;

Adams et al. 1995; Curwen et al. 2004). In principle, a deeply sequenced transcriptome can

be used similarly to construct a more complete catalog of genes and their alternately processed

RNA products, including both protein coding and long non-coding RNAs (lncRNAs; Guttman et

al. 2009; Guttman et al. 2010; Cabili et al. 2011). This discovery mapping function has been a

major motivation for ENCODE RNA-seq measurements (Myers et al. 2011; Djebali et al. 2012;

this work), although both computational and biological complexities addressed below make this a

challenging enterprise, especially for genes and isoforms expressed at relatively low levels. Reference

RNA-seq data can also be used to quantify differential gene expression among cell types and tissues

(Trapnell et al. 2012; Wang et al. 2010; Adams & Huber 2010); to quantify RNA splice use (Wang
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et al. 2008; Bradley et al. 2012); RNA editing (Li et al. 2011; Park et al. 2012), and other post-

transcriptional processing (Jan et al. 2011; Kodzius et al. 2006; Hoskins et al. 2011; Affymetrix

ENCODE Transcriptome Project 2009). Finally, since these transcriptome measurements reflect

the steady state balance of RNA biogenesis and decay, RNA-seq data can be integrated with other

genome-wide data-types such as RNA Polymerase II (RNA Pol2) occupancy and microRNA levels

to gain insight into the specifics transcription initiation, and RNA processing, and turnover.

These diverse uses of mRNA-seq data are best and most efficiently served by sequencing to

high depth, because greater depth increases sensitivity; by using longer sequence reads, typically

in the paired-end format, because this increases the specificity of mapping reads to the correct

gene and transcript isoform; and by using source RNA that is highly enriched for being in the

polyA fraction, which reduces background from other RNA types and improves interpretability.

As part of the ENCODE Porject, we therefore developed a community resource of human polyA

RNA-seq transcriptomes (100–200 million sequence reads in each biological replicate) by applying

a widely used polyA RNA-seq method (updated from Mortazavi et al. 2008), to diverse human

cell lines (ENCODE tier 1 and Tier 2). The analysis of these cell-line and primary cell culture

RNAs was substantially augmented by including and comparing RNA-seq data from 16 adult human

tissues sequenced as part of the Human Body Map (HBM) project (primary data available from

GEO, accession code GSE30611). The resulting data resource was analyzed using a computational

Cufflinks-based pipeline (updated from Trapnell et al. 2010 and Roberts et al. 2011) to examine the

structure and diversity of the human transcriptome, in particular focusing on: 1) known and novel

splice junctions, protein coding transcripts and lncRNAs, and other elements of the transcriptome

were analyzed as a function of expression level, confidence value and locus complexity; 2) global

Figure 1.1 (preceding page): Overview of data generation protocols and computational
analysis. (A) PolyA-selected RNA-seq library generation. Libraries are built from PolyA-selected
RNA from ENCODE cell lines using fragmentation and random hexamer priming. Libraries are size-
selected so that the average fragment length is around 200bp and paired-end reads are generated
on the Illumina GAIIx or HiSeq 2000. (B) Data analysis workflow. RNA-seq reads from ENCODE
cell lines and from HBM tissues are individually mapped with TopHat in de novo splice junction
discovery mode. Next, all newly discovered splice junctions are combined with splice junctions
from the GENCODE annotation to create a consolidated set of junctions, which is supplied to
TopHat for remapping of all reads. The TopHat alignments are used to run Cufflinks in de novo
transcript discovery mode. The Cufflinks models for all cell lines and tissues are then merged with the
GENCODE annotation to create a final consolidated set of transcripts. Final Cufflinks quantification
is performed on the final merged annotation for each cell lines and downstream analysis of expression
values and transcript characteristics is carried out. (C) Distinction between transcript expression
estimation metrics used. In addition to the FPKM score corresponding to the most likely actual
transcript abundance, for stringency purposes we use extensively the FPKMconf–lo lower limit of
the 95% FPKM confidence interval provided by Cufflinks.
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Figure 1.2: Number of isoforms per gene for protein coding genes in refSeq, GENCODE
V7 and the final merged assembly based on ENCODE+HBM data. Number of isoforms
per gene for protein coding genes in refSeq, GENCODE V7 and the final merged assembly based
on ENCODE + HBM data. (A) Distribution of isoforms number (Y-axis is plotted on a log2 scale)
(B) Average number of isoforms per gene.

integrative mining was illustrated by using ChIP-seq data for TAF1 and RNA Polymerase II to

determine the number and cell type specific usage of alternative promoters; 3) specific loci, including

the protocadherin gene clusters and the transcription factor BHLHE40, were used to illustrate how

the transcriptome data and models can be used, alone and in conjunction with other data-types to

generate explicit new hypotheses.

A particular computational challenge presented by short-read RNA-seq data is accurately build-

ing and quantifying new gene models and new isoform models of existing genes. The sequence

read lengths used in this study were 2x75 (ENCODE) and 2x50 or 1x100 bp (HBM) coming from

on average ∼200bp-long RNA fragments, while essentially all mRNAs are much longer, with the

median GENCODE V7 protein coding transcript being ∼1600bp long. This prevents the direct

measurement of long-range contiguity, which is instead inferred, and this inference process becomes

extremely challenging for genes with many exons and large number of coexpressed alternative iso-

forms. Another great challenge in analyzing and mining transcriptomic and other high-throughput

data comes from our limited understanding of the levels and sources of biological noise in the un-

derlying processes, including transcription initiation, splicing, and polyadenylation. Computational

tools, such as Cufflinks (Trapnell et al. 2010; Roberts et al. 2011; used here) or Scripture (Guttman

et al. 2010), address these issues with algorithms designed to balance sensitivity of detection with

robustness and parsimony of transcript identification. It is expected that quantification on the final

transcript model set will be significantly affected by uniformity of coverage over any given transcript,
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Figure 1.3: Number of genes for which isofor-level quantification is unidentifiable or
faces other numerical issues. Cufflinks assigns a FAIL or LOWDATA status to genes where
the algorithm can not confidently assign FPKMs to individual transcripts. (A) For the refSeq
annotation, containing few isoforms, a very small percentage of genes are flagged in this manner (B)
For GENCODE V7, 10-15% of protein coding genes are flagged. (C) For an unfiltered Cuffmerge
assembly performed only on novel intergenic transcripts and novel isoforms with the GENCODE V7
annotation as a reference, more than half of protein coding genes are flagged. (D) A filtered assembly
of all novel intergenic transcripts and novel isoforms still has ∼5% more failed quantifications of
protein coding genes than GENCODE V7 (E) A filtered assembly of all novel intergenic transcripts
and novel isoforms with the added requirement that they should be present at >= 1 FPKMconf lo

in the individual assemblies approaches the numbers observed for GENCODE v7 (the minimal
annotation complexity we could work with). Total number of protein coding genes: ∼20,500.

by its true level of expression, and by the number of models offered for each gene. Therefore the

datasets were also used to explore how transcript models are affected by characteristics such as

gene size, locus complexity, overall expression level, and strength of evidence for alternative splice

junction use.

This analysis revealed, first, that the high sensitivity and resolution of RNA-seq provides evi-

dence for the very high complexity of the human transcriptome, with large numbers of novel splice

junctions, coding and noncoding transcripts, alternative splicing and alternative initiation events

detectable in the data. Second, the majority of this diversity is rare in abundance, thus most of it

likely represents biological noise rather than biologically functional transcriptional products. How-

ever, as there is no simple relationship between expression levels and functionality, it is at present not
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Figure 1.4: Relationship between “failure” of transcript-level quantification and locus
complexity and expression levels. (A) Successfully quantified GENCODE v7 transcripts in
adipose and testes tissue (two samples shown for brevity, results are similar for all cell lines) have a
median of 4 isoforms per gene. Genes for which quantification fails in these samples have a median
of 8 isoforms per gene. Finally, genes that are confidently quantified in all cell lines and tissues have
a median of only 2 isoforms per gene. 5-95 percentile whiskers. (B) With increased locus complexity,
an increasing number of genes become too complex to confidently quantify on the transcript level.
Shown is the fraction of GENCODE v7 genes for which quantification fails as a function of the number
of annotated isoforms for that gene. Box plots represent the distribution of that fraction across all
samples used in this study. 5-95 percentile whiskers. (C) Weak correlation between expression levels
and quantification failure. Plotted is the distribution of refSeq FPKMs for protein coding genes
(here we used FPKMs calculated on the refSeq annotation to avoid the uncertainty arising from
summing the FPKM estimates for individual transcripts in a genes in a complex annotation when
transcript-level quantification is not reliable) as a function of their quantification status and isoform
number in adipose tissue. 10-90 percentile whiskers.

possible to determine in a straightforward way which of these transcriptional elements are functional

and which are not. Third, a confounding factor that has becoming apparent during the course of

the analysis, and one that has to feature prominently in the interpretation of all data of this kind,

originates from the fact that the computational challenges posed by short-read RNA-seq are very

difficult to solve thus making any results that solely depend on the performance of the tools used

to carry out the analysis provisional at best in the absence of deeper investigation using orthogonal
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Figure 1.5: Isoform-level quantification, fragment support for known and novel junc-
tion, and TAF1 binding sites for the TCF3 locus. The arrows point to the novel splice
junctions incorporated in the novel isoforms annotated in the merged assembly.

means. This topic is explored in more detail in the following chapter.

1.2 Results

We generated 2x75 bp paired-end RNA-seq data on polyadenylated RNA from a diverse set of 10

human cell lines (Figure 1.1A) that include primary cultures, immortalized lines, tumor-derived lines,

and a pluripotent embryonic stem line. Derivatives of all three germ layers were included, although

these lines represent only a small fraction of the hundreds of human cell types. Two biological

replicates were sequenced for every cell line, to an average depth of 100–120×106 mapped reads
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Figure 1.6: Isoform-level quantification, fragment support for known and novel junc-
tion, and TAF1 binding sites for the protocadherin-α cluster (Pcdhα).

each (Table 1.1). These sequencing depths are sufficient to reach saturation of gene and transcript

detection. The data was of high quality as evidenced by the absence of 3’ bias and robust coverage

of all of the length of genes. In addition to these data, we added to our analysis polyadenylated

RNA-seq data for 16 human tissue samples generated as part of the Human Body Map 2 project

(HBM), sequenced to an average depth of 200–250×106 reads. In contrast to the ENCODE lines,

each human tissue is composed of multiple cell types and none have experienced effects or artifacts of

ex-vivo culture or growth transformation. For a subset of the ENCODE cell lines, we also generated

ChIP-seq data for RNA Polymerase 2 and for the transcription initiation complex component TAF1,

sequenced to a depth of at least 12×106 uniquely mappable reads per replicate (Table 1.2).
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1.2.1 Computational pipeline for uniform analysis of the transcriptome

across multiple cell lines and tissues

To take advantage of the potential of RNA-seq to characterize both annotated and unannotated

portions of the transcriptome, it is first necessary to define a full set of elements (exons, splice

junctions and transcripts) that could then be compared and quantified between samples. A number

of tools exist for de novo reconstruction of all transcript models from RNA-seq data (Trapnell et

al. 2010; Guttman et al.; 2010). However, these strategies, as previously applied, produce results

that are not directly comparable between individual samples. This problem is compounded by the

fact that the resulting transcript models can be, and often are incomplete and imperfect, due to

sequence read mapping errors, insufficient coverage of lowly expressed genes, and highly variable

read coverage over some other genes. In order to address these issues, I devised a computational

pipeline that combines de novo–generated transcript models from individual samples with existing

annotated models while exerting a number of filters to reduce the number of artifactual and poorly

supported transcripts. This single set of transcript models was then re-quantified across all samples.

I aimed for a relatively stringent set of novel isoform models of known genes plus transcripts

of novel genes. This approach is expected to miss large numbers of “real” transcripts present in

the data and to therefore underestimate transcriptome diversity. This is a necessary compromise

between including all models for which there is some evidence and the ability of software and

sequencing technology to reconstruct and resolve transcript abundance for complex loci. I note that

as a result of Cufflinks’ abundance filters during de novo assembly and the additional stringency

criteria imposed, final transcript level annotation does not incorporate all splice junctions for which

there is sequence evidence; splice junctions are therefore examined separately from transcripts in

later analysis.

Reads from individual samples were first aligned against the hg19 version of the human genome

using TopHat (version 1.0.14; Trapnell et al. 2009) in de novo mode. The splice junctions identified

this way were combined with the splice junctions in the GENCODE v4 annotation (Harrow et al.

2006) to create a final set of candidate junctions. This unified junctions set was then supplied to

TopHat and all samples were remapped in order to include all reads mapping to annotated and

candidate novel splices, that, due to low transcript abundance, low coverage or exons being too

short, TopHat had not been able to map in de novo mode.

Next, the resulting alignments were assembled into transcripts using Cufflinks (version 1.0.1;

Trapnell et al. 2010) and the individual Cufflinks assemblies merged using the Cuffmerge program
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in the Cufflinks suite (Trapnell et al. 2012) with the GENCODE v7 annotation as a reference.

The GENCODE annotation was chosen because it was adopted as the ENCODE analysis standard,

selected as the most comprehensive set of curated transcript models for the human genome. De novo

transcript assembly with Cufflinks can be done in a fully de novo mode or in a reference annotation

based transcript (RABT) assembly mode (Roberts et al. 2011). The latter delivers more complete

transcript models because incomplete assemblies typically arise in de novo mode due to stretches of

low coverage or unmappable regions. In my experience, this class of artifacts is significant, even with

very deeply sequenced datasets. However, the RABT mode produces a large number of artifactual

transcript models when run on very complex annotations such as GENCODE v7, which contains 4 to

6 alternate isoforms on average for each gene (Figure 1.2). Ideally, these artifactual transcripts would

be irrelevant to downstream analysis, because they would be assigned zero or very low expression

values after requantification, but in practice reads are often dissipated across many models, due to

uneven read coverage or the absence of reads allowing for unambiguously distinguishing between

transcripts. Indeed, in the course of establishing the pipeline, it was found that a major challenge

for downstream analysis arises from the rapid growth in the number of isoform models per gene,

even after stringent filtering of anticipated artifacts. As more and more cell lines and tissues are

analyzed, the number of isoforms becomes very large and the ability to confidently assign the still

relatively short 75bp reads to individual isoforms is compromised (even using the GENCODE V7

annotation alone, it was not possible to confidently quantify the individual isoforms of about 2000

protein coding genes or about 10% of all; see Figure 1.3 and 1.4 for more detail, as well as the

Discussion section for further treatment of the subject).

I therefore assembled transcripts for each sample individually in fully de novo mode, then applied

a number of filters before and after the Cuffmerge step with the goal of deriving an as conservative

a set of transcript models as possible. First, the individual assemblies were compared against the

GENCODE annotation using Cuffcompare (Trapnell et al. 2010) in order to filter out intronic

fragments and polymerase run-on fragments; only transcripts classified as intergenic or as novel

isoforms of known genes were retained. I included all novel intergenic transcripts in the merge,

but for novel isoforms of protein coding genes I required the lower 95% confidence Fragments Per

Kilobase per Million reads (FPKM) estimate (FPKMconf lo, Figure 1.1) to be greater than 1. After

merging transcripts with Cuffmerge, transcripts present in GENCODE V7 but missing from the

resulting set of models were added back and major artifact classes such as retained introns and

overtly long 3’UTRs were removed.

I illustrate the results of the pipeline in Figure 1.5 using the TCF3 gene as an example. The
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TCF3 gene encodes the E2A transcription factor, which plays important roles in myogenesis (Berkes

& Tapscott 2005), lymphocyte development (Quong et al. 2002; Murre 2005), and in other systems.

The TCF3 /E2A locus is well known for producing two different proteins, E12 and E47, as a result of

mutually exclusive alternative splicing of exons 17 and 18 (Murre et al. 1989a; Murre et al. 1989b;

Figure 1.5). Two TCF3 isoforms (one for E12 and one for E47) are annotated in the RefSeq set

of transcript models, while 5 exist in GENCODE V7, with 2 and 3 alternative TSSs, respectively.

A large number of unannotated splice junctions in the locus were detected, most of which turn

out to be of low abundance when examined in detail. The final merged set of models contained

additional 24 isoforms not present in GENCODE, with a new alternative TSS upstream of the 5’-

most GENCODE TSS for the gene, thus greatly expanding the set of known TCF3 isoforms. These

newly assembled isoforms are of lower estimated abundance relative to the expression levels of the

known ones. Finally, for two of the TSSs, one annotated and the one identified from RNA-seq data,

we observed TAF1 binding overlapping the 5’ exon.

Another example of the utility of the integrated use of these datasets was the protocadherin-α

(Pcdhα) cluster (Figure 1.6). Protocadherins are cell surface single-pass transmembrane proteins,

particularly highly expressed in the nervous system and enriched in synaptic junctions, which have

been proposed to play a major role in the precise specification of neuronal connectivity under the

“chemoaffinity hypothesis” model of establishing neural circuits (Zipursky & Janes, 2010). The

Pcdhα, Pcdhβ and Pcdhγ genes exhibit a striking pattern of organization and clustering in the

genome. All Pcdhα and all Pcdhγ protocadherins share three constant 3’ exons which code for a

portion of the intracellular domain of the protein, to which numerous unique alternative 5’ exons,

each with its own promoter, are alternatively spliced (Wu & Manitatis, 1999; Tasic et al. 2002; Wang

et al. 2002); these 5’ exons code for the extracellular, transmembrane, and parts of the intracelllar

portions of the protein. The Pcdhβ cluster is similarly organized but there are no constant exons

and each gene is transcribed individually. Protocadherins are transcribed monoallelically, i.e. only a

single variable exon is used on each cluster allele, with which one exactly being determined stochas-

tically, meaning that each cell produces one of a large number of combinations of protocadherins,

potentially generating unique molecular identities for each neuron (Esumi et al. 2005). I examined

Pcdhα expression in our datasets and observed the expected highest expression levels in brain tissue,

with PCDHA6, PCDHA10 and PCDHAC2 being most highly expressed, and lower-level expression

levels in several other tissues such as thyroid and kidney. Strikingly, I also found high (comparable

to those in brain) expression levels of Pcdhα in human embryonic stem cells (which to the best of

my knowledge has not been reported previously), and lower levels in a few other cell lines such as
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the breast cancer MCF7 cell line and the lung fibroblast NHLF cell line (Figure 1.6). TAF1 binding

to the promoters of several of the more highly expressed Pcdhα genes was observed in H1-hESC.

In addition, three TAF1 binding sites in the 3’ intron of the Pcdhα cluster were detected, as well

as a number of low-abundance novel splice junctions connecting the variable exons with each other

(Figure 1.6); their significance is at present not clear and remains to be tested in future studies.

1.2.2 Catalog of splice junctions in the human genome

I compared the full set of splice junctions present in the TopHat mappings to the GENCODE V7

human genome annotation. Of the 318,693 splice junctions in the annotation, 266,311 were covered

by at least one and 253,063 by at least two unique sequence fragments (to avoid counting PCR

duplicates, a unique sequence fragment is defined as the number of non-identical read pairs crossing

a junction and I refer to that number everywhere except where explicitly specified otherwise) (Figure

1.7C). This represents an approximate measurement of the breadth of coverage of the transcriptome

in the data, with the junctions not detected consisting of a combination of junctions from rarely

expressed genes not present in the cell lines and tissues examined, junctions from non-polyadenylated

transcripts and possibly artifacts in the annotation. In addition to the annotated junctions, I also

observed 687,638 candidate novel junctions supported by at least one, and 462,274 supported by

at least two unique fragments. I note that the TopHat algorithm relies on first finding putative

exons based on read coverage and then on identifying splice junctions nearby (Trapnell et al. 2009),

i.e. it employs an “exon-first” approach to junction discovery. This junction set is therefore more

Figure 1.7 (preceding page): Catalogue of splice junctions in the human genome. (A)
and (B) Cumulative detection of annotated (A) and novel (B) splice junctions in ENCODE cell
lines and HBM tissues. Unique fragment counts were summed where replicates were available, the
order of the cell lines/tissues was permuted 10,000 times and the number of junctions detected with
the addition of every cell lines/tissue was counted for each permutation. A threshold of 2 unique
fragment counts was used. Note that the Y axis does not begin at 0. (C) and (D) Annotated
splice junctions are much more abundant and widely used than novel ones. Plotted is the number
of junctions detected at a given threshold with the color codes corresponding to the number of cell
lines in which this threshold is passed. Most known junctions are detected at high fragment counts
in multiple cell lines while the majority of novel junctions are supported by few reads and only in
a small number of cell lines. Shaded area corresponds to support levels that we are least confident
in. (A) Canonical and non-canonical splice-sites and total read support for annotated and known
junctions. The sum of unique fragment counts across all samples for each junction is shown, and for
each abundance category the fraction of canonical, major non-canonical (as reported by TopHat)
and other splice sites was plotted. The total number of junctions in each category is shown in
the blue bars below. (F) and (G) Tissue/cell type-specificity of splice junctions measured using
the JS Specificity Score. High score indicates high tissue-specificity, low score indicates widespread
abundance
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Figure 1.8: Number of splice junctions detected in each cell line and tissue. (A) Anno-
tated (B) Novel

conservative than those from some other de novo splice mapping algorithms relying on “seed-extend”

strategies (Garber et al. 2011) to find splices (Dobin et al. 2013; De Bona et al. 2008; Wu et al.

2010), which are likely to find more junctions in the same dataset. I also note that I ran TopHat

with default settings with respect to the genomic range over which new junctions can be discovered

so the maximum distance between two splice sites is 500 kb. Only 81 annotated junction span

genomic distances longer than 500kb so it is unlikely that many novel ones were missed due to this

constraint. On average, around 150,000 annotated junctions were detected in each cell line or tissue

(Figure 1.8A). Of the novel junctions, between 150,000 and 250,000 were found in each cell line,

and 50-120,000 in each tissue (Figure 1.8B). The lower number in tissues likely reflects the fact that

HBM data is a mixture of 2x50bp and 1x100bp reads, while the cell lines were sequenced as 2x75bp.

This difference in read length is expected to make de novo junction discovery more difficult.

I next asked how exhaustively we had sampled the diversity of splicing events in the human

transcriptome by looking at the saturation of junction detection as a function of the number of cell

lines/tissues examined (Figure 1.7A and B). These cumulative plots show that annotated junctions

exhibit a clear saturation trend, with more than 90% detected with less than half of the cell lines
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Figure 1.9: EST support for annotated and novel junctions. (A) EST support different
junction connection categories (see Fig. 3) (B) EST support for annotated canonical and non-
canonical junctions (C) EST support for novel canonical and non-canonical junctions.

considered. In contrast, the trend for novel junction discovery indicates that further sequencing of

additional cell lines and tissues of different origin is likely to substantially increase the number of

new candidate junctions.

An open question regarding alternative splicing events and unannotated transcripts in mam-

malian systems is to what extent they represent biologically functional events as opposed to well-

tolerated transcriptional and splicing machinery noise (Wang et al. 2008; Pan et al. 2008; Melamud

& Moult 2009; Sorek et al. 2004). I therefore sought to characterize the properties of novel junctions

and compare them to those of annotated ones as a function of their expression levels. When the effect

of different fragment support thresholds on junction discovery was examined (Figure 1.7C and D), a

clear trend was observed: annotated junctions have high fragment count support (the splice-specific

empirical surrogate for expression level) in multiple cell lines, while novel splices are mostly detected
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in one or a small number of cell lines. The majority of novel junctions were supported by only a

few fragments, with their corresponding transcript isoforms being at levels of uncertain significance,

assuming expression in most cells in the population. This is entirely consistent with a large fraction

of them being noise. However, due to the very large total number of candidate novel junctions,

significant numbers of highly supported novel junctions were still discovered: for example, 79,667

junctions were supported by more than 5 unique fragments in more than 3 cell lines/tissues, and

8,898 junctions supported by more than 20 fragments in more than 5 cell lines/tissues, thresholds

that can be considered stringent and suggestive of biological functionality.

1.2.3 Splice junction motif preferences

Next, I asked how canonical (GT|AG) (Mount 1982) and non-canonical splice sites distribute in

the junctions set (Figure 1.7E). A number of non-canonical splice site junctions are present in the

GENCODE v7 annotation and I observed that they are most often found among those junctions that

were not detected in any of our samples. The fraction of such junctions decreased with increased

fragment support thresholds. These may represent artifacts in the annotation or transcripts which

are depleted in polyA-selected RNA. Novel junctions were mostly of the canonical GT|AG type,

but in addition, GC|AG and AT|AC, substrates of the minor U12 spliceosome (Burge et al. 1998;

Patel & Steitz 2005; Will & Luhrmann 2005; Jackson 1991; Hall & Padgett 1994; Sharp & Burge

1997; Hall & Padgett 1996; Tarn & Steitz 1996a; Tarn & Steitz 1996b) were also very abundant

irrespective of the level of fragment support. It is possible that this reflects a TopHat preference

for such junctions rather than actual biological reality. About 10% of the novel canonical junctions,

but a much smaller fraction of all non-canonical ones are supported by EST sequences (Figure 1.9).

Finally, I explicitly examined the tissue specificity of junctions by calculating tissue specificity score

for each junction (JS score; see the Methods seciton for details). Annotated junctions mostly had

low JS scores reflecting widespread abundance in multiple cell lines while novel junctions clustered

in two groups - either with a JS score of 1 and perfect tissue specificity (due to detection in only

a single cell line) or with a medium JS score and expression in a limited number of cell lines. In

addition, canonical junctions had lower JS scores than non-canonical ones, suggesting detection of

the latter in limited number of samples.
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1.2.4 Classifying novel splice junctions relative to existing annotation

To better understand where novel junctions arise relative to existing gene structures, I classified all

RNA-seq junctions into the classes depicted in Figure 1.10. I note that splice junctions connecting

positions within a gene, for which no splice site is annotated (novel intragenic exons), need not

originate from transcripts that belong to the gene in which they are embedded; they can instead

result from nested, previously unannotated transcripts. Of all novel junctions, the most numerous

category were junctions connecting an annotated exon to a novel exon within the same gene (class

E, 264,121), followed by junctions connecting two novel intragenic exons (class C, 186,668) junctions

connecting two annotated exons (class A, 75,147) and intergenic junctions outside of annotated genes

(class H, 54,555) (Figure 1.10B).

Among all novel splice categories, the strongest in read support were the relatively small group

of class B junctions that connect exons of two different annotated genes. Of these almost half arise

from loci in which paralogs are adjacent and both are highly expressed in one or more of our samples

(Figure 1.11A). One explanation is that they may represent computational artifacts, i.e. cases in

which de novo junctions discovery incorrectly placed reads across two exons of different genes due to

their high sequence similarity. A higher fraction of tandem paralog pairs had multiple such junctions

connecting their exons (Figure 1.110B and C), and a high fraction of them had very similar donor or

acceptor sites in both genes compared to the rest of class B junctions (Figure 1.11E), consistent with

a purely computational explanation. However, such junctions had higher fragment count support

(Figure 1.11F) and the number of fragments in an individual sample correlated well with both genes

being expressed in that sample (Figure 1.11G), which argues for their biochemical presence. Of the

other class B junctions, about a third connect non-coding transcripts or protein coding transcripts

to non-coding transcripts (Figure 1.11D) and on average, they originated from gene pairs with even

higher expression than junctions connecting tandem paralogs (Figure 1.11G).

The next most abundant class of junctions were class A and class H junctions (Figure 1.10C),

connecting known exons of a known gene and intragenic exons, respectively.

Because annotated splice sites are overwhelmingly canonical, we expect novel junctions connect-

ing to an annotated exon to also be predominantly canonical, which is what is observed. Most

non-canonical junctions belong to the E, F and G classes, which connect intragenic genomic po-

sitions. I note that completely intergenic, class H junctions exhibit a much higher proportion of

canonical junctions than these three groups (Figure 1.10D). The most plausible interpretation of

this observation is that a higher fraction of class H intergenic junctions represent functional tran-
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scripts while the other classes are mainly the result of biological and computational noise.

Previous studies have reported the existence of large numbers of alternative canonical splice ac-

ceptor sites separated by 3 bp from the main annotated acceptor site (”NAGNAG” splice acceptors)

(Hiller et al. 2004; Akerman et al. 2006; Bradley et al. 2012). I found 1193 class C junctions of

this kind, but this did not constitute the majority of such junctions – in addition to the classical

NAGNAG events, I also observed large numbers of splice junctions representing other small shifts

relative to the annotated splice donor sites and at both donor and acceptor ends. For a significant

fraction of the junctions the shift was not divisible by 3 and therefore frame-preserving (Figure

1.12A and B) and there was not a large difference in the fraction of junctions that are canonical,

in their fragment support or expression specificity (Figure 1.12C and D) between frame-preserving

and non-frame preserving junctions.

The A and C classes of novel junctions connect known exons which have annotated junctions

connecting to them. This allows us to ask what the abundance of these novel junctions relative to the

associated annotated ones is, which I quantified as the fraction of major annotated junction counts

(FMJ), where the major junction is the one with the highest fragment support in a given sample.

For the majority of A and C novel junctions, this ratio was less than 0.1 (Figure 1.10F) arguing

against their biological functionality. A small, (less than 10%) fraction had FMJ scores greater than

1 corresponding to preferential utilization of the novel junction over the annotated ones. However,

around 80% of such cases have total read support of less than 5 fragments, i.e. these events mostly

happen at junctions/genes that are lowly expressed, and biologically relevant preferential use of

novel junctions is limited to the remaining few thousand junctions with high read coverage. Finally,

I examined the cell type specificity of such events (Figure 1.13) and found that they mostly occur

in a small number of cell lines/tissues, with testes, K562, H1-hESC and GM12878 exhibiting the

highest number.

Figure 1.10 (preceding page): Relation of novel junctions to existing annotations. (A)
Different categories of junction connections relative to an annotation. (B) Number of junctions in
each category (all annotated and novel ones included irrespective of read support). (C) Distribution
of read support (across all samples) for each category in unique fragment counts. (D) JS specificity
scores. (E) Canonical and non-canonical splice junctions. (F) Correlation between the number of
novel junctions detected and the number of annotated exons for a given gene (only protein coding
genes shown). (G) Correlation between the number of novel junctions detected and expression levels
of genes (RefSeq FPKM values for protein coding genes shown). (H) Novel splice junctions at least
one end of which is the same as that of an annotated splice junction are typically detected at a small
fraction of the fragment counts of the major annotated junction (FMJ) sharing that splice site. For
about 10% of them, the FMJ is greater than 1 but the majority are junctions with low fragment
support
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Figure 1.11: Splice junctions connecting known exons of different genes. (A) Number
of junctions originating from pairs of tandem duplicate genes, and number of junctions originating
from other genes. (B,C) Number junctions per gene pair. (D) Junctions connecting non-tandem
duplicate genes according to whether they connect protein coding or non-coding genes (E) Minimal
number mismatches between the donor or acceptor exon for gene A or gene B in a pair, respectively,
and other downstream exons in gene A or upstream exons in gene B, respectively. TopHat requires
at least 8bp on each side of a splice junction in order to map reads across it so lengths of 8, 10 and
12bp on each side of splice junctions were used. Note that 32 “tandem” junctions and 232 “others”
junctions connected genes located on opposite genomic strands, and those are not included in the
plot. (F) Total unique supporting fragment counts (G) Maximum expression level (in all cell lines
and tissues) of the connected genes (H) Correlation between the minimum expression of genes in a
pair and the distinct fragment counts mapping to the junctions in different samples.
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Figure 1.12: Distance of novel junction 5’ and 3’ ends to the nearest annotated splice.
(A) 5’ donor sites. (B) 3’ acceptor sites (C) Distribution of canonical and non-canonical splice sites,
5’ donor sites. (D) Distribution of canonical and non-canonical splice sites, 3’ acceptor sites. (E)
Total fragment support, 5’ donor sites. (F) Total fragment support, 3’ acceptor sites. (G) JS scores,
5’ donor sites. (H) JS scores, 3’ acceptor sites.

1.2.5 Correlation between presence of novel junctions and gene

expression and loci complexity

Following the hypothesis that most novel junctions detected in RNA-seq data are the result of

a combination of biological and experimental noise, I tested the correlation between detection of

novel junctions for each gene and the expression levels and the number of exons for a given gene.
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Figure 1.13: FMJ>=1 events. (A,B) FMJ>= 1 events per cell lines. (C) Number of cell lines
in which each individual FMJ event is observed.

The expectation is that highly expressed genes and genes with a large number of exons are likely to

generate more novel junctions than genes with low expression levels and few exons. Our observations

are indeed consistent with such an expectation as shown in Figure 1.10G and H.

1.2.6 Identification of novel intergenic transcripts

In recent years, long intergenic non-coding RNAs (lincRNA) have become a hot topic of research,

with thousands of such transcripts identified using microarrays and RNA sequencing (Guttman et
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al. 2009; Khalil et al. 2009; Cabili et al. 2011). Individual lincRNAs have been implicated in a

number of important biological processes (Guttman et al. 2011; Borsani et al, 1991; Brown et al.

1991; Lee et al. 1999; Azzalin et al. 2007; Huarte et al. 2010; Meller et al. 1997). To identify novel

lincRNAs and characterize lincRNA expression patterns across cell types and tissues, I adapted

previously published computational approaches for classifying intergenic transcripts (Guttman et

al. 2010; Cabili et al. 2011). Briefly, for all intergenic multiexonic transcript models in the final

merged assembly, I first calculated the phylogenetic codon substitution frequency (PhyloCSF) score

(Lin et al. 2011) and filtered out all transcripts with significantly constrained putative ORFs. I

then scanned transcripts in all reading frames for the presence of protein domains annotated in the

PFAM database (Punta et al. 2012) and removed all transcripts which contained such domains. The

discarded transcripts were grouped together as transcripts of uncertain coding potential (TUCP)

and analyzed separately. I identified 3591 candidate novel lincRNAs and 2592 TUCPs, numbers

similar to those reported previously (Cabili et al. 2011; Guttman et al. 2009; Khalil et al. 2010). In

addition, the GENCODE v7 annotation contains 1368 annotated lincRNA genes which I analyzed

in parallel. Most (67%) putative lincRNAs consisted of two exons and for 20% of them, more than

one isoform was assembled (Figure 1.14A and B); for comparison, 68% of GENCODE v7 lincRNAs

have 3 or more exons and 40% have multiple isoforms. I note that I also identified the longest ORF

for each candidate lincRNA and TUCP and found ORFs of substantial length for significant fraction

of both groups of transcripts (Figure 1.14J).

The majority of candidate lincRNAs were expressed at very low levels with only 695 (19%)

expressed at FPKMconf lo greater than 5, and most only in one cell line/tissue (Figure 1.14C). The

Figure 1.14 (preceding page): Identification of novel intergenic transcribed loci (lincR-
NAs and TUCPs). (A) Number of exons for candidate lncRNA genes. (B) Number of isoforms for
candidate lncRNA genes (C), (D), (E) Expression of candidate lncRNA genes, annotated lncRNA
genes and protein coding genes for comparison. While protein coding genes are widely expressed at
high levels, annotated lncRNA are mostly expressed at low levels, and candidate novel lncRNAs are
expressed at even lower levels and in few cell lines/tissues. FPKMconf lo thresholds were used for
stringency purposes. (F), (G), (H) Transcripts of Uncertain Coding Potential (TUCP) are broadly
similar in their characteristics and expression patterns to candidate lncRNAs. (I) Candidate lncR-
NAs are slightly more tissue-specific than TUCPs. (J) Substantial numbers of both lncRNAs and
TUCPs contain ORFs of considerable length, with slightly more such ORFs observed in TUCPs (K)
Large numbers of monoexonic intergenic transcripts are detected, mostly below 400bp of length (see
text for detailed discussion). (L) Expression patterns of monoexonic intergenic transcripts. While
mostly of low abundance and observed only in individual cell lines/tissues, there are still thousands of
such transcripts expressed at significant levels, typically only in one cell lines (though again, usually
in a single cell line or tissue). (N) Cumulative detection of novel intergenic transcripts. Threshold
of FPKMconf lo ≥ 1 was used. Note the inflection of saturation caused by the testes sample in the
lncRNA and TUCP plots.
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Figure 1.15: Expression of candidate lncRNA across cell lines. (A) At 0.1 FPKMconf lo.
(B) At 1 FPKMconf lo threshold.

majority of protein coding genes pass that threshold (Figure 1.14E), and a higher proportion (26%)

of GENCODE lincRNAs (Figure 1.14D). TUCP loci exhibited very similar characteristics in terms

of number of exons and isoforms and expression patterns (Figure 1.14E,F and G).

In addition to the set of spliced intergenic transcripts discussed above, the final merged assembly

Figure 1.16: Expression of TUCP transcripts across cell lines. (A) At 0.1 FPKMconf lo.
(B) At 1 FPKMconf lo threshold.
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contained a very large number (≥130,000) of monoexonic transcripts, mostly shorter than 400 bp

(Figure 1.14K). Due to the specifics of the merge procedure which fuses short overlapping fragments

from multiple samples into a single larger one, and the short length of current RNA-seq reads, it

is not possible to precisely define the start and end positions of these transcripts. A large number

of them probably represent short spurious intergenic fragments yet there are still more than 20,000

expressed at a high-confidence threshold of more than 10 FPKM, strikingly almost always only in a

single cell line (Figure 1.14M).

We are at present not certain how to interpret the nature of monoexonic loci as well as of

candidate lincRNA and TUCP transcripts. There seems to be a large number of these transcripts

expressed in highly cell type specific manner, therefore more are expected to be found if additional

cell lines are sampled (Figure 1.14N). However they are mostly expressed at very low levels. Both

candidate lincRNAs and TUCPs have high tissue specificity scores with lincRNAs being a little

more tissue specific on average (Figure 1.14I). Each cell line and tissue expressed between 50 and

150 candidate lncRNAs at more than 1 FPKMconf lo, with the notable exception of testes, where

vastly more (more than 750) were detected (Figure 1.15, Figure 1.14N), and similar patterns were

observed for TUCPs (Figure 1.16, Figure 1.14N). What the functional role and biological significance

of all these transcripts is remains to be determined (See Discussion section for further discussion)

Combining all transcripts annotated in GENCODE v7 with novel isoforms of known genes,

candidate lncRNAs, TUCPs, and monoexonic, I estimate that between 4 and 5 % of the human

genome is expressed as exonic elements at ≥1 FPKM in at least one cell line or tissue in our dataset,

and about 45% when introns are included (Figure 1.17).

Figure 1.17: Fraction of genome expressed at a given FPKM threshold in at least one
cell line or tissue, with (A) or without (B) the inclusion of introns.
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1.2.7 Novel exons of annotated genes

After performing transcript-level quantification on the final merged assembly, I examined the nature

and abundance of novel exons of known protein coding genes in the assembly. To this end, I assigned

FPKM scores on exons derived from the sum of FPKMs of all individual transcripts containing them

and classified exons according to their relation to the existing annotation (Figure 1.18A and B). The

largest classes of novel exons were extensions of 5’ and 3’UTRs. We expected this trend because of

actual variation in the biology of transcription starts and processing (biology sources) and because

of annotation imperfections at transcript ends (Hoskins et al. 2011; Carninci et al. 2006; Rach et al.

2011). The next most frequently observed novelties arise from extensions or shortenings of internal

exons, consistent with our previous observation of a large number of novel splice sites located in

introns and previously annotated exons. Completely novel exons are rare, with evidence for 583

internal exons, 1279 novel 5 exons and 999 novel 3 exons at an FPKM cut-off of 5, for a total of

17,197 novel exons (Figure 1.18A).

1.2.8 Splicing isoform expression of protein coding genes

The final transcript set contained 42,775 novel isoforms of protein coding in addition to those already

present in GENCODE. I examined the expression patterns of annotated and novel isoforms and found

that novel isoforms are on average expressed at lower levels than annotated ones (Figure 1.18C and

D), yet they are similarly widely expressed (Figure 1.18I). Previous studies have suggested that

almost all human genes undergo alternative splicing (Wang et al. 2008; Pan et al. 2008); however,

alternative splicing is a noisy process and a large number of low-abundance isoforms might be

generated without much biological relevance, so I aimed to understand isoform expression as a

function of abundance estimates. At a conservative threshold of 5 FPKMconf lo, 28,638 annotated

isoforms and 3,374 novel ones were detected; this is an underestimate since where quantification was

unreliable due to identifiability and other numerical issues, I assigned FPKM of 0 to all transcripts

of a gene. Large numbers of isoforms were detected at lower thresholds and isoform detection did

not clearly saturate at the level of 5 FPKM neither for annotated not for novel isoforms (Figure

1.185E and F). Using the same 5 FPKMconf lo threshold, I detect multiple annotated isoforms for

7,742 protein coding genes, and a novel isoform for 2,717 protein coding genes (Figure 1.18G and

H), numbers that increase or decrease as thresholds are correspondingly relaxed or tightened.

Because transcription and splicing of very highly abundant genes can generate aberrant noise

products that are still highly abundant when compared to rarely transcribed genes in the same cell
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lines/tissue, a more informative metric for evaluating alternative splicing isoform abundance is the

ratio of a given isoform’s abudance to that of the major isoform for the gene (fraction of major

isoform, FMI). Across all cell lines and tissues, the median FMI value for the second most abundant

isoform was stably between 0.4 and 0.5, between 0.1 and 0.2 for the third most abundant isoforms,

and below 0.1 for lower-ranked isoforms (Figure 1.18J). FMI values of novel isoforms tend to be

lower. For example, when ranked second, their FMI was below 0.2 rather than 0.4.

A different splicing isoform may be the major isoform in different cell lines, which is here referred

to as major isoform switch. To determine how widespread this phenomenon is, I counted the different

major isoforms for each gene in all cell lines and tissues at different detection cut-offs. Using the 5

FPKMconf lo threshold, I estimate that 7,541 genes express only a single major isoforms while 5,749

express multiple major isoforms, with 2308 expressing 3 or more (Figure 1.18K). For every pair of

Figure 1.18 (preceding page): Expression of annotated and novel isoforms of protein
coding genes. Genes and transcripts for which isoform-level quantification failed were excluded
in all cases except for exons in (A) and (B). (A) New exons identified classified according to their
relation to the existing annotation. Shortened 3’ and 5’UTRs are shaded because the majority of
these are likely to be the result of incomplete transcript assembly due to low read coverage. Exon
FPKMs were defined as the sum of FPKMs for all individual transcripts containing the exon. The
maximum such estimate for all samples is shown. (B) Cumulative detection of novel exons. C)
and (D) Expression patterns of annotated and novel isoforms of protein coding genes. Annotated
isoforms are on average more highly expressed than novel ones, however, novel ones are mostly as
widely expressed as annotated ones. (E), (F) Cumulative detection of annotated and novel isoforms.
(G), (H) Number of expressed annotated and novel isoforms per genes as a function of abundance
levels. The plot shows the number of genes with a number of isoforms indicated by the color code
expressed at level above the FPKMconf lo thresholds shown. (I). JS specificity scores for annotated
and novel isoforms. (J) Isoform abundance as a fraction of the major isoform (FMI) for a gene.
For each gene and each cell line/tissue, individual transcripts are ranked by their FPKM expression
estimates. The isoform with the highest FPKM is the major one, the distribution of the ratio
between the lower ranked isoforms and the major one for all genes and conditions is shown. (K)
Number of major isoforms per gene. Genes may express different major isoforms in different cell
lines; such events are more confidently identified when the expression level of the genes is high.
Shown is the number of major isoforms per gene as indicated by the color code at the indicated
FPKMconf lo thresholds for the major isoform. L) Coding potential of annotated and novel isoforms.
The ”other“ category contains transcripts classified as NMD products, retained intron transcripts
and other non-coding isoforms of coding genes. (M) Impact of isoforms on protein sequence. For
each gene, the number of expressed isoforms, expressed protein coding isoforms (not all isoforms
are protein coding), expressed protein sequences (some isoforms may only differ in their non-coding
regions), and expressed domain sets was calculated. Domain sets were defined by scanning all
transcripts for PFAM protein domains and counting as distinct only isoforms that differ in the
identity and sequence of their protein domains. A threshold of 5 FPKMconf lo was used for this
plot. (N) Number of expressed protein sequences as function of expression levels. The color code
indicates the number of genes with 1, 2 or 3 and more protein sequences detected at the indicated
FPKMconf lo threshold. (O) Fraction of expressed transcripts detected coding for proteins as a
function of expression levels. (P) Expression specificity (JS score) of individual transcripts and the
expression of the corresponding genes (protein coding genes only).
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Figure 1.19: Major isoform switch events. Major isoform switch events between cell lines
at an FPKMconf–lo threshold of 5. Shown is the number of genes for which the major isoform is
different in each pair of cell line/tissues.

cell lines/tissues, between 600 and 2,800 genes switched their major isoform (Figure 1.1917).

The observations outlined above suggest a larger expression diversity on the level of individual

transcripts than on the gene level. Indeed, when expression specificity was measured using the JS

tissue specificity metric, it was usually higher for of individual transcripts than for the genes they

belong to (Figure 1.18P).

1.2.9 Impact of splicing isoforms on protein sequence

The impact of alternative isoform expression on protein function depends on the difference in ORFs

from alternative isoforms. Some isoforms with premature stop codons will likely be subject to

nonsense-mediated decay (NMD) (Chang et al. 2007) and while regulatory roles for NMD alternative

splicing events has been proposed (Cuccurese et al. 2005; Green et al. 2003; McGlincy & Smith

2008) many will likely have little biological impact. Similar expectations apply to transcripts with

very large retained introns. More than a quarter of protein coding gene isoforms in the GENCODE

V7 annotation are designated as non-coding for such reasons. I assigned novel isoforms into coding
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and non-coding following a similar requirement that protein coding isoforms contain an ORF and

the ORF does not finish more than 50 bp downstream of the 3’ exon splice junction. A similar but

slightly higher (likely because stringent filters on retained intron transcripts were applied) fraction of

novel isoforms was classified as coding in this manner (Figure 1.18L). Next, I examined the impact of

expressed isoforms on the coding sequence of each gene (Figure 1.18M). I calculated four quantities

for each gene at a given FPKM threshold: 1) the total number of isoforms expressed, 2) the number

of protein coding isoforms expressed (excluding non-coding ones), 3) the number of different protein

sequences expressed (if two isoforms only differ in such a way that there protein translation are the

same, they were counted as one), and 4) the number of protein domain sets expressed (I scanned each

transcript for the presence of domains annotated in the PFAM database; if two isoforms produced the

number, type, order and sequence of PFAM domains, they were counted as one). At a conservative

5 FPKMconf lo threshold, 2,106 genes express multiple protein sequences, and PFAM domains are

affected by alternative isoform expression for 1,674 (Figure 1.18M). Relaxing the FPKM threshold

results in higher estimates for the number of such genes (Figure 1.18N).

While performing this analysis, I noticed that approximately half of all expressed RNA isoforms,

irrespective of detection threshold, are non-coding, a higher fraction than expected based on the

fraction of such transcripts in the annotation (Figure 1.18O). This is a somewhat puzzling observation

since the naive expectation would be that non-coding isoforms are mostly the result of transcriptional

noise and that NMD isoforms are degraded relatively quickly, therefore they would be more frequently

seen at low detection thresholds. Examples of such transcripts with regulatory function are known

(Le Guiner et al. 2003; Sureau et al. 2001; Wollerton et al. 2004) so there may be biological

functionality behind this observation. Further investigation will be needed to better understand this

phenomenon.

1.2.10 Reconstruction of primary miRNA transcripts

We investigated whether any of the novel transcripts not in GENCODE V7 could correspond to

miRNA primary transcripts. We compared the 2,104 miRNAs in miRBase V18 (Kozomara A &

Griffiths-Jones 2011) to the GENCODE annotation and found that 57% were in the exons (9%) and

introns (48%) of sense transcripts longer than 125 bp (Figure 1.20A). The inclusion of merged and

filtered GENCODE+Cufflinks transcripts increases the percentage of overlapping known miRNAs to

59%, with an increase of microRNAs in exons to 15% (Figure 1.20A). However, it is likely that only

a subset of miRBase microRNAs are expressed in our cell types and tissues. We therefore measured
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the expression of microRNAs in six ENCODE cell lines using Nanostring (Wyman et al. 2011) as

described in the methods. We found 93 miRNAs expressed highly (≥200 counts) in one or more

of the six cell lines. Whereas 57% of these miRNAs (9% exonic) overlapped a sense GENCODE

transcript, we found that 62% (23% exonic) overlapped a merged and filtered GENCODE+Cufflinks

sense transcript (Figure 1.20A). Given that a single Nanostring probe can map to more than one

genomic location when only a subset may be transcribed even though we count all locations, our

numbers are likely be an underestimate of the fraction of miRNAs that have evidence of primary

transcripts in our RNA-seq data.

Figure 1.20: Reconstruction of primary miRNA transcripts. (A) Comparison of GENCODE
and RNA-seq augmented annotations (merged assembly) to 1523 known miRNAs for evidence of
primary miRNA transcripts (left) and to 69 highly expressed miRNAs (in at least one of GM12878,
K562, human ES and HepG2, assayed with nanoString). Mature miRNAs were intersected with
exonic and intronic regions of sense and antisense transcripts. The fraction of miRNAs for which a
putative primary transcript was present increases in the merged assembly compared to GENCODE
v7, which is even more pronounced when only the highly expressed miRNAs are considered. (B)
Putative intronic promoter for mir-619, which is located within an intron of the SSH1 gene. A TAF1
site is situated upstream of the miRNA, suggesting the miRNA may be transcribed independently
from the gene from its own promoter.
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Figure 1.21: TAF1 binding sites. (A) Number of peak calls for individual replicates. (B)
Number of peak calls for GM12891 and GM12892 cells, not used for subsequent analysis. (C)
Distribution of TAF1 binding sites (combined set) relative to GENCODE V7 TSSs.

1.2.11 Complexity of TAF1 binding patterns in the human genome

Initiation of transcription at gene promoters is a primary point of regulation of transcriptional

activity in eukaryotic cells, with many genes known to initiate transcription from multiple promoters

(Landry et al. 2003; Wu et al. 1999; Tasic et al. 2002). For this reason, the characterization of

the identity and activity of novel intergenic, novel alternative as well as annotated promoters is of

great interest. To this end, we generated genome-wide ChIP-seq profiles for the TAF1 subunit of

the TFIID general transcription factor, a component of the RNA Pol2 pre-initiation complex (PIC)

(Buratowski et al. 1989; Näär et al. 2001), in GM12878, H1-hESC, HeLa, HepG2 and K562 cells.

TAF1 binding is expected to mark all active promoters transcribed by RNA Pol2 and therefore be

a good marker for discovery of new promoters.

I called TAF1 binding sites with ERANGE 4.0 (Johnson et al. 2007, http://woldlab.caltech.

edu/wiki/) using relatively relaxed thresholds (see Methods) and calculated expression values in

http://woldlab.caltech.edu/wiki/
http://woldlab.caltech.edu/wiki/
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FPKM for all TSSs in GENCODE and the final merged set of transcripts models by summing

the FPKM values for all transcripts sharing a given TSSs. I called between 9,000 and 20,000

TAF1 binding sites in individual replicates, with K562 and H1-hESC having the highest number

(Figure 1.21A). The distribution of individual TAF1 binding site summits centered right on top

of GENCODE TSS (Figure 1.21C) and TAF1 loading correlated positively with gene expression.

However, I noticed that not all expressed TSSs are marked by TAF1 loading, with up to 25 % of

TSSs expressed at more than 100 FPKM in H1-hESC not having a TAF1 binding sites, a proportion

that grows with the decrease of expression levels (Figure 1.22A). In most cases this is not due to

these TSSs containing repetitive sequences and sequencing reads failing to align as a result (Figure

1.22B). In the other cell lines we assayed, fewer TAF1 binding sites were called (Figure 1.21A) and

an even higher number of highly expressed TSSs did not have a TAF1 binding site (Figure 1.22C).

This could be due to technical variability in ChIP strength; however, the highest number of binding

sites we identified in a single GM12878 TAF1 ChIP-seq replicate was less than 10,000, even though

12 different biological and technical replicates were generated, and similar results were obtained

with two other lymphoblastoid cell lines, GM12891 and GM12892 (Figure 1.21B), which makes this

explanation unlikely. It has been suggested that in certain cell lines and tissues, the composition

of the PIC components varies (Deato & Tjian 2007; Goodrich & Tjian 2010; D’Alessio et al. 2011)

which could explain the consistent differences between TAF1 binding observed in different cell lines,

yet there was no negative correlation between TAF1 expression and the number of TAF1 binding

sites. The other explanation is that there exists a class of promoters in the initiation of which TAF1

does not play a role. This is in agreement with previous tiling array-based studies profiling TAF1

distribution genome-wide (Kim et al. 2005).

In order to compare TAF1 binding across cell lines, I merged TAF1 binding sites summits that

were close to each other from individual replicates across all cell lines (see Methods for details) and

examined the binding patterns of the resulting set of 44,702 sites. 12,585 summits were within 100

bp of a GENCODE V7 TSS, additional 7,811 and 6,907 within 1 kb of a TSS, 8,538 were more

than 1 kb upstream of the closest TSS and 7,864 downstream of it. Thus the majority of sites

were associated with or close to known TSSs yet a sizeable fraction was located away from any

known TSS. The strength of TAF1 binding as measured in RPM decreased with distance away from

annotated TSSs with the majority of intergenic and intragenic sites being weaker than those close

to TSSs (Figure 1.22D).

Using the merged set of TAF1 binding sites, I sought to determine whether the lack or presence of

TAF1 binding was consistent between cell lines. To this end I compiled the set of all TSSs expressed
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at more than 1 FPKMconf lo in each of the five cell lines for which we have TAF1 binding data and

compared the presence or absence of TAF1 binding by clustering the resulting data matrix. A large

cluster of TSSs without TAF1 binding in all cell lines emerged from this analysis, and strikingly, it

was also the group of TSSs without CpG island in their vicinity (Figure 1.22C)

We then asked how many of the intergenic or intragenic TAF1 sites we could explain with gene

models derived from RNA-seq data. For this purpose we used a merged set of gene models generated

without applying expression level filtering on the input data sets. About 20 % of TAF1 sites located

more than 1 kb away from a TSS in each direction had a candidate novel TSS located within 1 kb

of the peak summit, and close to 40 % of TAF1 sites between 100 bp and 1 kb upstream of known

TSSs had candidate novel TSS within 100 bp (Figure 1.22D). Very few TAF1 sites downstream

of TSS had a corresponding candidate TSS models, however, I note that the merge procedure is

heavily biased against shortening of 5’ exons and this might be the explanation. The other 80 %

of intergenic and intragenic TAF1 sites may either be the result of RNA-seq assemblies bypassing

the promoter region or falling short of it, or they may represent “shadows” of promoter looping to

enhancer regions and not real promoters. The latter possibility is consistent with the lower strength

of ChIP signal characteristic of these sites.

I grouped the sites into 9 groups depending on their position relative to the GENCODE V7

reference and the set of RNA-seq-derived transcript models, and clustered them according to their

presence or absence in each cell type. (Figure Fig.4.23E). Among the largest group (group 1), the

GENCODE V7 TSS-associated sites, a large core of sites present and TSSs utilized in all cell lines is

observed. In contrast, the sites located away from annotated TSS tend to be more highly cell type

specific and present only in one cell line (groups 2-9).

1.2.12 Identification of novel 5’ Transcription Start Sites

RNA-seq measurements have the potential to identify novel transcription start sites, however, there

are several issue with the approach that need to be considered and that highlight the need for

orthogonal information to increase confidence in predictions. There can be two different kinds of

novel TSSs as illustrated in Figure 1.23 – novel 5’ exons derived from alternative 5’ end splicing

events, and extensions of annotated 5’ exons. As already, discussed, de novo transcript assemblies

can, for a number of reasons, be incomplete and thus miss the actual TSS; in the same time, in cases

in which internal exons serve as alternative promoters, a separate transcript may not be assembled

due to the simultaneous expression of the longer isoform or the subsequent merge of the transcript
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into a longer model. Extensions of annotated 5’ exons are particularly difficult to assess, as the

phenomenon of imprecise transcriptional initiation occurring over a neighborhood of nucleotides

is well established; while very long extensions are more likely to represent real new promoters,

the interpretations of shorter ones is difficult. Promoters can in principle be both extended and

shortened; however, the latter is particularly challenging for assembly as RNA-seq library building

is typically performed using random hexamer priming, which inherently results in lower coverage of

the very end of transcripts.

For these reasons, I aimed at utilizing orthogonal evidence to assess the assembly of 5’ transcript

ends in our data. In addition to the TAF1 and RNA Polymerase II ChIP-seq data we generated,

I also took advantage of genome-wide Capped Analysis of Gene Expression (CAGE) (Kodzius et

al. 2006; Carninci et al. 2006) generated as part of the ENCODE consortium (ENCODE Project

Consortium 2011) (See Methods for details on the use of CAGE data). I first examined the relation

of TAF1 binding, RNA Polymerase II loading and the presence of CAGE clusters to the expression

of the TSSs of GENCODE V7 protein coding genes (Figure 1.24A). As discussed above, not all

highly expressed TSSs have associated TAF1 binding (Figure 1.24D), however, the sensitivity of

CAGE clusters was much higher, with more than 90% of TSSs expressed at more than 10 FPKM

being CAGE-positive (Figure 1.24E).

Figure 1.22 (preceding page): Complexity of genome-wide TAF1 binding patterns. (A)
TAF1 binds to most but not all expressed transcription start sites (TSSs). (B) Absence of TAF1
is due in some but not the majority of cases to poor read mappability around the TSS. (C) TSSs
without TAF1 binding sites tend to lack TAF1 binding in all cell lines and to also lack CpG islands
in their vicinity. Shown are all TSSs expressed at more than 1 FPKMconf lo in all 5 cell lines
examined; according to the presence or absence of TAF1 binding or CpG island, a score of 1 (blue)
or 0 (light yellow) was assigned to it, and the resulting matrix was clustered hierarchically. (D,E)
Distribution of TAF1 binding sites relative to the GENCODE V7 annotation. The total number of
sites is indicated to the left of the plot in (E). (D) Binding sites found away from annotated TSSs
tend to be weaker. The maximum RPM for a TAF1 binding sites across all datasets is plotted. (E)
Orthogonal RNA-seq evidence from Cufflinks and Cuffmerge-derived transcript models for TAF1
binding sites not associated with annotated TSSs. For binding sites more than 1 kb away from a
TSS, a transcript model TSS within 1 kb of the TAF1 binding site was required. For binding sites
between 100 bp and 1 kb away from a TSS, a transcript model TSS within 100 bp of the TAF1
binding site was required. (F). TAF1 bindings sites not associated with GENCODE V7 TSS are
mostly seen in one cell line. According to the presence or absence of a TAF1 binding site in a cell
line, a score of 1 (red) or 0 (light yellow) was assigned to it, and the resulting matrix was clustered
hierarchically for each of 9 groups of TAF1 binding sites. 1) TAF1 sites within 100 bp of a TSS, 2)
TAF1 sites > 1 kb upstream of a TSS with RNA-seq evidence, 3) TAF1 sites > 1 kb downstream
of a TSS with RNA-seq evidence, 4) TAF1 sites 100 bp to 1 kb upstream of a TSS with RNA-seq
evidence, 5) TAF1 sites 100 bp to 1 kb downstream of a TSS with RNA-seq evidence, 6) other TAF1
sites > 1 kb upstream of a TSS, 7) other TAF1 sites > 1 kb downstream of a TSS, 8) other TAF1
sites 100 bp to 1 kb upstream, 9) other TAF1 sites 100 bp to 1 kb downstream of a TSS.
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Figure 1.23: Different types of novel 5’ transcirpt ends.

The set of merged transcript models contains 9,787 instances of novel 5’ exons and 5,690 exten-

sions of annotated 5’ exons, in addition to the intergenic candidate lincRNAs and TUCP. Since 5’

exon extensions are difficult to interpret we initially focused our attention on novel 5’ exons. The

expressions patterns of these 5’ exons (where the expression of the exons is defined as the sum of the

FPKMs of all transcripts containing it) (Figure 1.24K) were similar to those of novel isoforms of pro-

tein coding genes (Figure 1.18D). A lower fraction of these exons was supported by orthogonal TAF1

and CAGE evidence compared to annotated TSSs at similar expressions levels (Figure 1.24B,F and

G). Strikingly, almost none of the intergenic spliced transcripts (lincRNA and TUCP) had TAF1

binding to its 5’ end and a smaller fraction were positive CAGE clusters (Figure 1.24C,H and I).

This indicates that de novo assembly of intergenic spliced transcripts may not be as complete as

desired and/or some of them may utilize different mechanisms of their transcription initiation. The

resolution of TAF1 ChIP-seq data is not high enough to be useful for assessing 5’ exon extensions,

but this can be done by asking for precise base pair matching of aligned CAGE read. A strikingly

high proportion of 5’ exon extensions, including the relatively few examples of 5’ exon shortening,

had orthogonal support in such manner. I use the BHLHE40 transcription factor as a representative

example of a gene with well supported novel TSSs in Figure 1.25.

1.2.13 Alternative promoter usage

Initiation of transcription from alternative promoters is a well-established mechanism for generation

of transcript diversity with a number of examples known (Landry et al. 2003; Wu et al. 1999;

Tasic et al. 2002). To estimate how prevalent overall this phenomenon is in the human genome

we examined the number of alternative TSSs utilized by each gene as a function of their expression

levels. Of 9,939 genes with individual GENCODE v7 TSSs expressed at more than a conservative

threshold of 5 FPKMconf lo, 5,553 (∼56%) expressed only a single TSS passing that threshold,

2,398 (24%) expressed two TSSs, and 1,988 (20%) expressed more than two TSSs. (Figure 1.24L).



43



44

In addition, 1,494 genes had novel 5’ exons expressed at more than 5 FPKMconf lo (Figure 1.18P),

and for both annotated TSSs and novel 5’ exons, relaxing this threshold results in the detection of

a larger number of alternative promoter usage events (Figure 1.24M).

1.3 Discussion

A primary analysis of the human polyadenylated transcriptome was presented. The results reveal

both the information richness of datasets generated with RNA-seq technology and the complexity

of transcription in human cells. In the same time, they also highlight a number of challenges to

data interpretation presented by the very same transcriptome complexity and the imperfections of

current experimental and analytical tools. Below, I discuss the impact of this kind of RNA-seq

measurements on the current status of our knowledge about the transcriptome, the major remaining

areas of uncertainty and the expected further advances that will be needed to resolve them.

1.3.1 The growing complexity of the human transcriptome

As shown here and by others (Djebali et al. 2012), contemporary RNA-seq measurement have the

potential to greatly increase both the number of isoforms of known genes and the number of tran-

scripts belonging to various classes of intergenic, anti-sense and other more or less exotic types of

transcription events (Gingeras 2009). However, this same sensitivity also presents a great challenge in

distinguishing the products of transcriptional noise from functional transcripts. This is a problem to

which in my opinion a satisfactory solution has not yet been found and I do not claim to have solved

it here either1. Reasoning that erring towards a more conservative set of transcripts is more desir-

able for the purpose of generating interesting hypothesis with direct biological relevance for further

investigation, a number of filters designed to remove as much of noise products and computational

Figure 1.24 (preceding page): Identification and orthogonal support for novel 5’ tran-
script ends. (A-C) TAF1, RNA Polymerase II and CAGE cluster profiles around the TSS of
GENCODE V7 protein coding genes (A), candidate novel 5’ exon TSS of protein coding genes (B)
and candidate lncRNAs and TUCPs (C). TSSs are sorted by decreasing expression level. (D), (F),
(H) TAF1 coverage of expressed GENCODE V7 protein coding gene TSSs (C), candidate novel 5’
exon TSSs (F) and candidate lncRNAs and TUCPs (H) in 5 ENCODE cell lines. (E), (G), (I)
CAGE cluster coverage of expressed GENCODE V7 protein coding gene TSSs (E), candidate novel
5’ exon TSSs (G) and candidate lncRNAs and TUCPs (I) in 5 ENCODE cell lines. (J). Support by
CAGE reads for extended and shortened 5’ exons. (K) Abundance levels and cell type specificity of
novel TSSs. (L-M) Number of expressed annotated (L) and novel (M) TSS per gene as a function
of expression levels.

1This is just as true in 2014 as it was when these words were originally written in 2011
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Figure 1.25: Isoform-level quantification, fragment support for known and novel junc-
tion, and TAF1 binding sites for the BHLHE40 locus..

artifacts as possible were applied. Thus, the final set of transcripts expands on the GENCODE v7

annotation with less than 40,000 novel isoforms of protein coding genes, ∼3,500 candidate lncRNAs

and ∼2,500 TUCPs. The increase in the number of splice junctions was proportionally significantly

larger and even though the majority of them are poorly supported, large numbers of well-supported

novel splice junctions were left out of the final set of transcript models at various steps in the

computational analysis pipeline. For each set of novel or annotated elements of the transcriptome

(splice junctions, exons, known isoforms of protein coding genes, novel isoforms of protein coding

genes, intergenic non-coding RNAs) the same pattern is observed - very large numbers of poorly

supported/abundant and a small number of highly abundant and well supported elements, with a

continuum between them. Which elements are included and which are not is currently determined

by setting thresholds that are somewhat biologically informed but still arbitrary. Finding the right

balance in the necessary trade-off between sensitivity and specificity is an open challenge for the

field; however, finding such a balance may be in principle impossible since functional transcripts can
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be expressed at relatively low levels while the noise products from highly expressed loci are expected

to be also relatively highly abundant. For example, the important regulator of neuronal fate NRSF

is usually observed to be expressed in single-digit FPKMs, and few lncRNAs are detected at high

levels in each individual cell line even though large numbers of them were found to be of functional

importance when knocked down in mouse embryonic stem cells by a recent study (Guttman et al.

2011) (although our data is for human cells, it is reasonable to expect that the general patterns of

lncRNA expression are not drastically different between the two species).

The answers to several open questions in the field as well as the interpretation of observations

for individual loci by researchers looking to more deeply investigate their gene of interest are highly

dependent on the approach towards this problem. Both the extent of transcriptional activity in the

Figure 1.26: Isoform-level quantification, fragment support for known and novel junc-
tion, and TAF1 binding sites for the FOSL1 locus.
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human genome and the prevalence of functional alternative splicing events have been widely debated

(Kapranov et al. 2002; Kapranov et al. 2007; Sorek et al. 2004; Wang et al. 2008; Dinger et al.

2009; van Bakel et al. 2010; Clark et al. 2011; Mercer et al. 2011); how abundance levels relate to

distinguishing noise products from functional transcripts is at the heart of this debate.

Nevertheless, the number of annotated transcripts in the human genome is expected to grow

considerably as more and more information derived from RNA-seq measurements is incorporated

into annotations. This is a reasonable expectation given that we have surveyed a wide and diverse

collection of cell lines and tissues and the discovery of most novel elements did not reach saturation

(Figures 1.7B, 1.14N, 1.18B,E and F).

1.3.2 Reliability of transcript-level quantification

This growth in complexity, however, has the potential to even further complicate data analysis and

results interpretation.

The accurate quantification of individual transcripts of a gene is of critical importance for the

analysis of the prevalence and tissue-specificity of alternative splicing and alternative transcription

initiation and termination events. However, accurately and confidently assigning the still short reads

generated in RNA-seq experiment to transcripts in a complex locus is still not a trivial computational

tas ; while current tools employ highly sophisticated algorithms for deconvolving the expression levels

of individual isoforms, this becomes essentially impossible when locus complexity grows beyond a

certain threshold as the statistical models employed often become unidentifiable. Yet, as more and

more new transcripts are uncovered by the sequencing of wider panels of cell lines and tissues, the

complexity of annotations is expected to grow further and further and make this an ever more

intractable problem.

The current output of these program suggest the existence of a number of potentially interesting

biological phenomena in the data, including the widespread occurrence of major isoform switch events

with high tissue specificity (Figure 1.18K), the utilization of multiple alternative promoters, and the

surprisingly high abundance of what appear to be NMD transcripts (Figure 1.18O), phenomena

suggested to play significant role in the generation of proteome diversity and in gene regulation.

However, their reality is to a large extent contingent on how accurately the underlying biological

reality is reflected in this output. Thus, conclusive confirmation or refutation of these phenomena

will have to await the arrival of data or computational tools that allow more confident deconvolution

of transcript levels.
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This is also relevant to downstream applications of RNA-seq quantification feeding into other

areas of transcriptional biology. For example, complete understanding of the mechanisms of tran-

scriptional regulation is not possible without complete understanding of the relationship between

the interaction of sequence-specific transcription factors, general transcription factors, RNA poly-

merase and chromatin state at promoters, on one side, and transcript levels, on the other. Working

with simpler annotations of the genome allows for mostly ignoring the issue; however, if alternative

promoter use is indeed as ubiquitous as suggested by the data, the relative use of these TSSs will

have to be very finely and accurately parsed and integrated with orthogonal ChIP-seq data for such

understanding to be achieved.

Anecdotal evidence suggests that numerous suspicious quantification results can be found. For

example, Figure 1.26 shows the case of the FOSL2 gene, for which 5 isoforms are annotated in GEN-

CODE, and additional 6 were presented in the merged assembly generated here. Requantification

on the merged assembly suggested that two of the novel isoforms (originating from novel alternative

promoters) are presented at FPKM levels comparable to those of the annotated isoforms; however,

these isoforms are supported by just 1 spliced RNA-seq fragments spanning their unique splice junc-

tions, while the corresponding unique splice junction of the annotated isoforms had coverage of 45

fragments, thus it is morel likely that the abundance of the novel isoforms is in fact significantly

lower, even though these alternative promoters had orthogonal TAF1 occupancy support.

1.3.3 Transcript reconstruction and resolving transcript ends

Both alternative transcript initiation and alternative polyadenylation (Di Giammartino et al. 2011;

Sandberg et al. 2008) have been suggested to play important role in gene expression regulation.

Due to the nature of RNA-seq library-building protocols employing random hexamer priming, the

extreme ends of transcripts are usually underrepresented in the final libraries, which, combined with

the lower coverage naturally expected for lower-abundance transcripts, makes it difficult to precisely

determine the exact beginning of a transcript or its polyadenylation site (reads containing portions of

the polyA tail are also not expected to map to the genome). CAGE data provides information about

capping events, and to the extent that capping events correspond to transcriptional initiation events

(which is not always the case; Affymetrix ENCODE Transcriptome Project 2009), about promoters.

In addition, several approaches have been devised to map polyadenylation sites (Ozsolak et al.

2010; Jan et al. 2011). However, building such libraries for large numbers of samples is a practical

challenge, and their interpretation, as demonstrated by the discovery that CAGE tags do not always
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correspond to transcription initiation events and the fact that they still only provide information

about the extremes of transcripts but not about the connectivity between, is not straightforward.

Here it has been possible to identify novel alternative 5’ exons and to leverage CAGE data to

confirm the extent of 5’ extensions of known 5’ exons. In addition, in many cases what seems

to represent either 3’UTRs extending long past the annotated polyA site or unspliced transcripts

originating in the 3’UTR vicinity was observed. Such cases are of great interest if shown to be

continuous with the annotated transcript as they can change the set of miRNAs targeting it or play

other, so far unappreciated, regulatory roles. However, we are at present unable to examine the

nature of these transcriptional events as current short reads can be effectively used for transcript

reconstruction when splice junctions are present but precisely defining transcripts for long stretches

of continuously overlapping reads is challenging.

The same issue was confronted when analyzing intergenic transcripts. A very large number of

monoexonic intergenic transcripts are observed (Figure 1.14K and L). A majority of these consist of

single fragments mapping to intergenic space but large numbers of regions with high read coverage

are also seen. Determining where these transcripts begin, and if they have biologically precisely

defined ends, is of crucial importance for assessing their functional significance, and elucidating the

mechanisms of regulation of their expression.

It was also observed that the 5’ ends of intergenic spliced transcripts (candidate lncRNAs and

TUCPs) as currently defined using reconstruction from RNA-seq are poorly supported by TAF1

binding and CAGE tags (Figure 1.24H, K, M and N). This suggests that due to the generally

low expression levels of these transcripts, they have not been fully reconstructed and either large

stretches of their first exons or whole first exons are missing. Alternatively, TAF1 loading and

message capping may not play a role in the transcription initiation and biology of these transcripts.

Either way, establishing that one of these options is the case by completing their transcript models

is of great importance for understanding the biology of these RNAs.

1.3.4 Absolute numbers of transcripts per cell

FPKM values reflect the proportional abundance of transcripts in a sequencing library normalized

for transcript length. Ideally, however, the actual numbers of copies of a transcript per individual

cell should be obtained. This information is important both for evaluating the functional significance

of transcriptional events (i.e. if a transcript is found at what amounts to one copy per ten cells,

then it is more likely to be a product of transcriptional noise than if it is found at multiple copies
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per cell) and for deriving mechanistic insights into transcript functions. For example, in addition

to other biological roles, both textitcis- and trans- action mechanisms have been suggested for how

lncRNAs may participate in the regulation of transcription in the nucleus (Koziol & Rinn 2010).

Naturally, this leads to the expectation that cis-acting transcripts that function at the genomic

location which they are transcribed from, of which there are only two copies, should be present at

very limited number of transcript copies per cell while trans-acting transcripts should be on average

more abundant. For this issue to be resolved, measurements of the absolute transcript counts per

cell are needed. At present, it is difficult to obtain that information from RNA-seq data, as RNA

sequencing libraries are prepared from bulk RNA isolated from millions of cells. It is possible to

calculate rough estimates of these numbers (Mortazavi et al. 2008); however, this requires precise

tracking of cell numbers and the amount of RNA going into libraries. This is something that’s not

easily tractable for tissues, and even when it is available for cell lines, it is only a rough guess with

major uncertainties associated with it.

1.3.5 Looking towards the future

I expect this issue and a number of the other challenges outlined so far to be resolved with the further

advancement of sequencing technology. Very long read lengths, ideally covering the full length of

transcripts, will be needed in order to enable the precise demarcation of transcript structure and

transcript ends, particularly around polyadenylation sites and for intergenic non-coding transcripts.

For truly accurate transcript-level quantification, an additional requirement for large numbers of

such reads exists, in order to fully cover the dynamic range of transcript expression levels in bulk

RNA preps. Single-cell transcriptomics (Islam et al. 2011; Tang et al. 2009; Tang et al. 2010; Tang

et al. 2011) combined with single-molecule sequencing and single-molecule RNA FISH measurements

should allow the determination of absolute transcript numbers on the level of individual cells, and

resolve several of the outstanding questions in the field.

1.4 Methods

All data processing and analysis for which no software packages are referenced was performed using

custom-written Python scripts.
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1.4.1 Cell growth and RNA harvesting

Cells were grown according to established ENCODE protocols (http://genome.ucsc.edu/ENCODE/

protocols/cell/) and RNA prepared following the protocol described in Mortazavi et al. 2008.

1.4.2 RNA-seq data generation

Total RNA was subjected to two rounds of polyA selection and libraries built following the protocol

described in Mortazavi et al. 2008. Libraries were sequenced as 2x76bp reads on the Illumina

Genome Analyzer. Human Body Map data was kindly provided by Dr. Gary Schroth and the

Expression Applications group at Illumina.

1.4.3 Read mapping

The last base pair of each read was removed. The resulting 2x75bp reads were mapped using

TopHat (Trapnell et al. 2009, version 1.0.14) in de novo mode against the hg19 verion of the human

genome. The same procedure was applied to polyadenylated RNA-seq data from 16 tissues generated

using Illumina HiSeq 2000 as part of the Human Body Map 2 project. The de novo discovered

splice junctions from all cell lines and tissues were combined with the set of splice junctions in the

GENCODE v4 annotation to derive an extended set of junctions. Reads were mapped again using

TopHat (version 1.0.14) against the male or female version of the hg19 version of the human genome

with the extended set of junctions supplied while keeping the de novo junction discovery option

turned on. All subsequent analysis was done on the resulting alignments. Read mapping statistics

are provided in Table 1.1.

1.4.4 Transcript models discovery, merging and quantification

Cufflinks (Trapnell et al. 2010; Trapnell et al. 2012; version 1.0.1) was used to assemble tran-

scripts in de novo mode from the TopHat alignments. Each sample was processed individually. The

assemblies from all the samples were merged together with Cuffmerge (version 1.1.0) into a large

transcript super-set using GENCODE v7 as a reference annotation. Assembly was done in fully

de novo mode rather than in reference annotation based transcript (RABT; Roberts et al. 2011)

because RABT assemblies contain a large number of clearly artifactual transcripts (especially when

a complex annotation with a large number of isoforms is used such GENCODE). Such false positives

are often unique to each sample and when merged result in a very large number of isoforms per gene

http://genome.ucsc.edu/ENCODE/protocols/cell/
http://genome.ucsc.edu/ENCODE/protocols/cell/
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most of which do not correspond to real transcript molecules and which make accurate quantification

impossible. I also found that merging transcripts using the unfiltered de novo Cufflinks assemblies

also resulted in an unacceptably high number of likely artifactual transcript models (although sig-

nificantly fewer than with RABT assemblies), particularly transcripts with extremely large retained

introns. Therefore I aimed to minimize the number of artifacts in the final assemblies by applying

multiple filters before and after the merge step.

As an initial step, I classified new transcripts according to their relation to the annotation using

Cuffcompare. Only transcripts classified as unknown intergenic and novel isoforms of known genes

(Cuffcompare class codes “j” and “u”) were retained. In addition, I required that novel isoforms of

known genes had FPKMconf lo ≥ 1. The resulting set of transcript models for each cell line was

used to run Cuffmerge.

The Cuffmerge output was filtered as follows. First, all retained introns relative to the Cuffmerge

output itself were filtered out, i.e. if an exon had the same start and end positions as the left exon

and the right exon respectively in any pair of exons in the annotation, the transcript containing it

was removed from annotation. Next, all GENCODE v7 transcripts that were not present in the

merge were added to the assembly according to the following criteria: for multiexonic transcripts,

if the exact chain of splice junctions of a GENCODE v7 transcript was not present in the merged

assembly, the transcript was added to it; there is no good criteria to define presence of absence

for monoexonic transcripts so those were considered present if there was a monoexonic transcript

overlapping them. After that step retained introns were filtered out again, this time against the

GENCODE v7 annotation. Finally, because multiple occasions of extremely long 3’ UTRs being

assembled (usually due to the presence of overlapping transcript models in multiple cell lines) were

observed, which would artificially drive down FPKM estimates by increasing the length of transcripts,

all 3’UTRs were trimmed down to a maximum length of 5kb.

1.4.5 Genome and transcript models, annotations, and classification

Two transcript and gene model annotation sets for the human genome were used - version 7 of

the GENCODE annotation (Harrow et al. 2006; Harrow et al. 2012), downloaded from http://

hgdownload-test.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeGencodeV7/beta/ and the

refSeq annotation, downloaded from http://genome.ucsc.edu/. Transcripts and genes were clas-

sified into protein coding and various non-coding classes according to the biotype classification in

GENCODE V7, and the same classification was used where necessary for refSeq genes. CpG island

http://hgdownload-test.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeGencodeV7/beta/
http://hgdownload-test.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeGencodeV7/beta/
http://genome.ucsc.edu/
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Figure 1.27: PhyloCSF score distribution for annotated in GENCODE V7 protein
coding and lincRNA transcripts.

annotations were downloaded from http://genome.ucsc.edu/ and TSSs were classified as CpG or

non-CpG according to whether a CpG island was present within 1kb of the TSS. For novel tran-

script models, ORFs were annotated using the longest ORF found in the transcript; transcripts were

classified as putative NMD substrates if the ORF ended more than 50bp before the position of the

last splice junction.

1.4.6 Non-coding RNA annotation and classification

Novel non-coding RNA were classified following an approach similar to the computational pipeline for

lncRNA annotation described in Cabili et al 2011. I only considered spliced intergenic unannotated

transcripts as classified by Cuffcompare. For each transcript, the codon substitution frequency

(CSF) score was calculated using PhyloCSF (Lin et al. 2011) and the 45 vertebrate multiple genome

alignment for the hg19 version of human genome, downloaded from http://hgdownload.cse.ucsc.

edu/goldenPath/hg19/multiz46way/maf/. PhyloCSF was also run on annotated lncRNA and

protein coding transcript from GENCODE V7 to establish thresholds for determining whether a

transcript is likely to be coding or not (Figure 1.27). In addition to that, each spliced intergenic

http://genome.ucsc.edu/
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/multiz46way/maf/
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/multiz46way/maf/
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transcript was translated in all reading frames in both orientations, and scanned for the presence

of protein domain annotated in the PFAM database (Punta et al. 2012; http://pfam.sanger.ac.

uk/search). Transcripts with positive CSF scores and transcripts containing PFAM domains were

classified as TUCPs.

1.4.7 Tissue specificity score calculation

The JS tissue specificity score was calculated as follows (Cabili et al. 2011), with the modification

that for splice junctions, due to the highly quantized nature of the fragment counts at the low end

and the difficulty to properly normalize fragment counts for sequencing depth in such cases, a cap

of 10 distinct fragment was applied to all numbers before calculating the JS score:

The Jensen-Shannon divergence of two discrete probability distributions D1 and D2 is defined

as:

JSD(D1, D2) = H

D1 +D2

2

+
H(D1) +H(D2)

2
(1.1)

where H(P ) is the Shannon entropy for a discrete distribution P defined as:

H(P ) = −
n∑
i=1

pi ∗ log(pi) (1.2)

The JS distance JSdist is then defined as follows:

JSdist(D1, D2) =
√
JS(D1, D2) (1.3)

For a vector with expression values E = {e1, e2, ..., en}, a JS specificity score is then defined with

respect to sample/tissue i as follows:

JSsp(E|i) = 1− JSdist(E,Ei) (1.4)

where Ei is the vector with maximum expression specificity, i.e. a positive FPKM value in

sample/tissue i and FPKM = 0 everywhere else:

Ei := {δi1e1, δi2e2, ..., δinen} (1.5)

where δij is the Kronecker delta function.

http://pfam.sanger.ac.uk/search
http://pfam.sanger.ac.uk/search
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Finally, the JS specificity score JSsp is the maximal specificity score across all samples/tissues,

i.e.:

JSsp(E) = argmax
i={1,..,|E|}

(JSsp(E|i)) (1.6)

1.4.8 Nanostring miRNA expression measurements

Measurements of miRNA expression using the miRNA Nanostring assay were performed on biological

replicates following the manufacturer’s instructions. Briefly, total RNA was extracted with the

mirVana miRNA isolation kit and the remaining genomic DNA was removed by TURBO DNA-free

kit (both kits are from Ambion, Life Technologies, NY). 100ng of total RNA, together with “spike-

in” positive and negative control miRNAs, was annealed and ligated to the miRNAtags. After the

unused miRNAtags were cleaned up, the chimeric miRNA:miRNAtag molecules were hybridized to

the reporter codeset and capture probeset overnight. The hybridization mixture was purified on

the nCounter Prep Station and the target molecules were immobilized and aligned on the nCounter

cartridge. The nCounter cartridge was then scanned on the nCounter Digital Analyzer at maximum

resolution. The collected data was further processed with nSolver analysis software to calculate the

normalized miRNA expression level of each sample.

1.4.9 ChIP-seq data alignment and processing

ChIP-seq experiments were performed as described previously (Johnson et al. 2007), with the

modification that a single round of PCR amplification was used instead of the majority of datasets

(HeLa TAF1 being the only exception). The following antibodies were used: mouse monoclonal

against TAF1 from Santa Cruz (sc-735), mouse monoclonal against RNA Polymerase II, clone 4H8

from Abcam (ab5408), mouse monoclonal against RNA Polymerase II, clone 8WG16 from (MMS-

126R). Libraries were sequenced on the Illumina Genome Analyzer and reads of 36 bp size were

generated. Each replicate contained at least 12 million uniquely aligned reads. Precise read mapping

statistics are provided in Table 1.2.

Reads were aligned according to ENCODE standards against the male or female version of human

genome (with random chromosomes and haplotypes excluded) depending on the sex of the cell line

(male for H1-hESC and HepG2, female for HeLa, GM12878 and K562) using Bowtie (Langmead

et al. 2009), version 0.12.7, with the following options: -v 2 -t --best --strata. TAF1 peak

calling was done against appropriate input datasets using ERANGE 4.0 (Johnson et al. 2007), with
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the following settings: ‘‘--minimum 2 --ratio 3 --shift learn --revbackground --listPeak.

TAF1 peaks were merged according to the following procedure: if two peak summits were closer

than 200 bp to each other, they were merged, with the new summit becoming the summit from the

dataset whose reads per million (RPM) for the whole peak region were higher; this procedure was

iterated across all datasets.

CAGE data processing

Tracks containing CAGE clusters and BAM files with individual read alignments were downloaded

from the ENCODE portal at the UCSC Genome Browser (http://genome.ucsc.edu/ENCODE/.

CAGE reads from all subcellular fractions were considered. In order for a TSS to be considered

covered by a CAGE cluster, a CAGE cluster on the same strand as the direction of transcription

was required. For the analysis of 5’ extensions, precise matching of 5’ ends of at least one CAGE

read on the same strand as the direction of transcription was required.

http://genome.ucsc.edu/ENCODE/
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Table 1.1: Read mapping statistics for the RNA-seq datasets

Cell Line Read
Length

Description Insert
Size

Rep Unique Unique
Splices

Multi Multi
Splices

H1-hESC 2x75 ES cells ∼200 Rep4 45,317,222 8,618,025 1,933,958 92,172
H1-hESC 2x75 ES cells ∼200 Rep1 63,216,759 12,781,989 1,799,576 94,991
H1-hESC 2x75 ES cells ∼200 Rep2 64,849,492 12,937,223 1,996,326 106,373
H1-hESC 2x75 ES cells ∼200 Rep3 62,721,190 12,417,189 2,061,864 107,319
GM12878 2x75 lymphoblastoid ∼200 Rep2 152,774,148 23,930,558 6,259,715 420,288
GM12878 2x75 lymphoblastoid ∼200 Rep1 91,217,874 15,146,110 3,502,071 202,872
K562 2x75 myelogenous

leukemia
∼200 Rep1 133,776,448 27,150,397 4,809,472 349,097

K562 2x75 myelogenous
leukemia

∼200 Rep2 121,520,650 22,256,714 4,333,136 261,089

HSMM 2x75 myoblasts ∼200 Rep1 97,833,543 23,352,403 1,997,844 199,498
HSMM 2x75 myoblasts ∼200 Rep2 98,203,018 23,229,216 2,234,108 199,772
HUVEC 2x75 umbilical vein

endothelial
∼200 Rep1 74,294,272 17,207,804 2,053,278 167,529

HUVEC 2x75 umbilical vein
endothelial

∼200 Rep2 54,420,816 12,607,003 1,699,903 113,729

HeLa 2x75 HeLa ∼200 Rep1 49,453,158 9,301,487 2,060,411 125,644
HeLa 2x75 HeLa ∼200 Rep2 75,223,386 14,527,666 2,603,614 170,225
HepG2 2x75 liver carcinoma ∼200 Rep1 80,554,751 17,831,315 2,762,367 206,825
HepG2 2x75 liver carcinoma ∼200 Rep2 94,588,954 21,423,792 3,300,392 324,730
MCF7 2x75 breast cancer ∼200 Rep1 109,216,869 16,770,366 3,191,573 143,875
MCF7 2x75 breast cancer ∼200 Rep2 87,203,914 21,226,373 2,032,830 251,913
NHEK 2x75 keratinocytes ∼200 Rep1 79,396,401 12,110,678 2,642,317 292,371
NHEK 2x75 keratinocytes ∼200 Rep2 89,043,589 21,805,036 1,967,691 254,190
NHLF 2x75 lung fibroblasts ∼200 Rep1 87,308,499 20,557,003 1,786,840 149,586
NHLF 2x75 lung fibroblasts ∼200 Rep2 81,888,840 19,744,610 1,344,427 150,557
adipose 2x50+1x75 ∼200 Rep1 184,034,305 18,186,787 9,474,379 317,902
adrenal 2x50+1x75 v200 Rep1 182,891,875 15,312,732 8,797,765 376,596
brain 2x50+1x75 ∼200 Rep1 174,392,333 14,623,420 7,236,006 196,026
breast 2x50+1x75 ∼200 Rep1 183,725,194 16,979,055 8,734,757 346,215
colon 2x50+1x75 ∼200 Rep1 201,909,819 17,009,282 11,690,564 297,609
heart 2x50+1x75 ∼200 Rep1 197,439,159 18,189,625 14,170,195 416,843
kidney 2x50+1x75 ∼200 Rep1 192,378,197 15,596,359 11,063,331 281,585
liver 2x50+1x75 ∼200 Rep1 187,757,362 25,697,250 10,039,834 1,193,880
lung 2x50+1x75 ∼200 Rep1 194,249,068 19,991,574 9,938,722 702,441
lymph
node

2x50+1x75 ∼200 Rep1 193,396,478 18,473,375 12,780,186 1,271,624

ovary 2x50+1x75 ∼200 Rep1 198,207,292 20,096,511 10,231,268 317,030
prostate 2x50+1x75 ∼200 Rep1 205,065,901 21,109,090 10,372,722 302,181
muscle 2x50+1x75 ∼200 Rep1 197,504,306 23,329,011 9,776,756 340,782
testes 2x50+1x75 ∼200 Rep1 197,739,813 23,635,613 8,468,114 349,225
thyroid 2x50+1x75 ∼200 Rep1 194,749,061 23,851,093 7,835,229 319,566
WBC 2x50+1x75 ∼200 Rep1 199,299,458 24,007,769 10,147,780 366,024
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Table 1.2: Read mapping statistics and library characteristics for ChIP-seq datasets

Cell Line Factor/Antibody Replicate Uniquely aligned reads Library Complexity

GM12878 Pol2-CTD-4H8 Rep1 28,110,098 0.78
GM12878 Pol2-CTD-4H8 Rep2 24,404,299 0.88
GM12878 Pol2-CTD-8WG16 Rep1 27,121,649 0.82
GM12878 Pol2-CTD-8WG16 Rep2 27,783,933 0.82
GM12878 TAF1 Rep1 18,374,847 0.55
GM12878 TAF1 Rep2 22,148,439 0.59
H1-hESC Pol2-CTD-4H8 Rep1 17,359,575 0.89
H1-hESC Pol2-CTD-4H8 Rep2 19,062,392 0.77
H1-hESC Pol2-CTD-8WG16 Rep1 20,587,873 0.76
H1-hESC Pol2-CTD-8WG16 Rep2 18,325,024 0.81
H1-hESC TAF1 Rep1 14,023,010 0.87
H1-hESC TAF1 Rep2 13,217,524 0.85
HeLa Pol2-CTD-8WG16 Rep1 21,848,831 0.87
HeLa Pol2-CTD-8WG16 Rep2 25,528,202 0.83
HeLa TAF1 Rep1 28,472,126 0.53
HeLa TAF1 Rep2 11,429,207 0.9
HepG2 Pol2-CTD-4H8 Rep1 18,242,505 0.91
HepG2 Pol2-CTD-4H8 Rep2 33,930,680 0.88
HepG2 Pol2-CTD-8WG16 Rep1 14,722,736 0.71
HepG2 Pol2-CTD-8WG16 Rep2 22,030,475 0.83
HepG2 TAF1 Rep1 18,580,720 0.84
HepG2 TAF1 Rep2 16,568,099 0.79
K562 Pol2-CTD-4H8 Rep1 9,798,768 0.85
K562 Pol2-CTD-4H8 Rep2 23,095,649 0.73
K562 Pol2-CTD-8WG16 Rep1 29,190,954 0.84
K562 Pol2-CTD-8WG16 Rep2 26,469,081 0.78
K562 TAF1 Rep1 17,018,556 0.89
K562 TAF1 Rep2 19,987,210 0.78
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2

Simulation-based characterization of transcript as-

sembly and quantification from short-read RNA-seq

data

This chapter contains the results of a simulation aimed at understanding the performance of software

performing transcript-level quantification and/or assembly. It was carried out after the work pre-

sented in the previous chapter was completed and as a result did not inform it; however, it does shed

light on the interpretation of the results from it, which I discuss here.

Abstract

The reliability of the analysis of transcriptome diversity using short-read RNA-seq

data is inherently limited by the performance of the software used to carry it out.

Anecdotal evidence has presented numerous examples of computational artifacts sig-

nificantly affecting biological conclusions. To clarify some of these issues, a simulation

study of some of the most often used RNA-seq quantification and transcript recon-

struction tools was carried out. Its results place minimum bounds on the fraction of

false positives and false negatives in the real-data analysis presented in the previous

chapter. I also examine the effect of several characteristics of RNA-seq datasets that

are suspected to influence quantification and/or assembly but simulations published in

the past have so far not modeled.
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2.1 Introduction

Figure 2.1: Strategies for carrying out isoform-level quantification and assembly for
RNA-seq data. There are three approaches adopted in the literature for carrying out transcript-
level quantification of RNA-seq data: alignment and quantification in genomic space (A), alignment
and quantification in transcriptome space (B), and the alignment-free k-mer-based quantification ap-
proach adopted by Sailfish (C). See text for more details. Here, genomic alignment and quantification
were carried out using TopHat or STAR and Cufflinks, transcriptome alignment and quantification
using Bowtie and RSEM or eXpress. There are two main approaches for de novo transcript recon-
struction: alignment-based reconstruction (D), and alignment-free de novo assembly from reads (E).
Here, STAR and TopHat mappings plus Cufflinks assembly were used for the former, while Trinity
and SOPAdenovo-trans were used for the latter

The currently existing high-throughput sequencing technologies that are capable of delivering

the needed for RNA-seq sequencing depth all produce short reads, much shorter than the length of

mRNA molecules. Read lengths have increased significantly with the development of the technology,

from 25bp around 2007 to up to 2x250bp and even longer now. However, the longer reads are not

necessarily optimal for RNA-seq applications (unless they cover full-length mRNAs, which at present

they do not), for reasons outlined in the Methods section of this chapter, thus the analysis of RNA-
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seq data faces the following common challenges:

1. Aligning of short reads to the genome, in a splice-aware manner that allows the discovery of

previously unannotated splice junctions that are present in the data

2. The quantification of gene expression levels, at the gene and at the transcript level. The latter

is important on its own as it would ideally provide reliable information on any differential

regulation of splicing, transcriptional initiation or polyadenylation between samples, but it is

also vital for the accurate quantification on the gene level (again, see discussion below in the

Methods section).

3. The de novo reconstruction of expressed transcripts from short reads. This is needed for the

discovery of novel transcripts in sequenced and annotated genomes, for the annotation of newly

sequenced genomes and often for the sequencing and analysis of the transcriptomes of species

for which a genome assembly does not exist.

A wide variety of computational tools have been developed to carry out these tasks. Dozens

of RNA-seq mappers, which carry out read mapping and de novo splice junction detection, have

been published. These include TopHat (Trapnell et al. 2009; Trapnell et al. 2012), STAR (Dobin

Figure 2.2: Distribution of the fraction of intronic reads in ENCODE datasets. Shown
is the fraction of intronic reads in different ENCODE datasets (downloaded from the USCS Genome
Browser) as well as the Human Body Map dataset (HBM).
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et al. 2013), RUM (Grant et al. 2013), SplitSeek (Ameur et al. 2011), SpliceMap (Au et al.

2010), Map-Next (Bao et al. 2009), Supersplat (Bryant et al. 2010), QPALMA (De Bona et al.

2008), HMMSplicer (Dimon et al. 2010), OSA (Hu et al. 2012), SOAPsplice (Huang et al. 2011),

PALMapper (Jean et al. 2010), SeqMap (Jiang & Wong 2008), MapAl (Labaj et al. 2012), TrueSight

(Li et al. 2013), Subread (Liao et al. 2013), GEM (Marco-Sola et al. 2012), PASTA (Tang & Riva

2013), MapSplice (Wang et al. 2010), X-MATE (Wood et al. 2011) , GSNAP (Wu & Nacu 2010),

OLego (Wu et al. 2013), and others. The ENCODE Project used both TopHat and STAR. TopHat

was used for most of the analyses presented in this thesis.

A similarly diverse set of transcript-level quantification algorithms is available, including Cufflinks

(Trapnell et al. 2010; Trapnell et al. 2012; Trapnell et al. 2013; Roberts et al. 2011a; Roberts

2011b), eXpress (Roberts & Pachter 2013), RSEM (Li et al. 2010; Li et al. 2011), Sailfish (Patro et

al. 2014), CEM/IsoLasso (Li et al. 2011; Li & Jiang 2012), Flux-Capacitor, IQSeq (Du et al. 2012),

iReckon (Mezlini et al. 2013), IsoEM (Nicolae et al. 2011), MMSeq (Turro et al. 2011), PennSeq

(Hu et al. 2014), RNAExpress (Forster et al. 2013), SLIDE (Li et al. 2011), and Traph (Jo et al.

2014), Oqtans (Sreedharan et al. 2014), rQuant (Bohnert & Rätsch 2010), RNASEQR (Chen et al.

2012), RDiff (Drewe et al. 2013), Montebello (Hiller & Wong 2013), IsoformEx (Kim et al. 2011),

NEUMA (Lee et al. 2011), EBSeq (Leng et al. 2013), SASeq (Nguyen et al. 2013), NSMAP (Xia et

al. 2011), MITIE (Behr et al. 2013), iQuant (iQuant et al. 2011), and others (Jiang & Wong 2009;

Bohnert et al. 2009, Feng et al. 2010; Feng et al. 2011).

In addition to transcript-level quantification software, a number of packages focusing on quan-

tifying splicing inclusion at the level of individual alternative splicing events (rather than the more

complicated problem of analyzing full transcripts) have been developed, including MISO (Katz et

al. 2010), KISSPLICE (Sacomoto et al. 2012), MATS (Shen et al. 2012), DiffSplice (Hu et al.

2013), MMES (Wang et al. 2010), SpliceTrap (Wu et al. 2011), DEXSeq (Anders et al. 2012),

SplicingCompass (Aschoff et al. 2013), PSGInfer (LeGault & Dewey 2013), and others.

Finally, the assembly problem has been addressed by multiple approaches too. Those based

on aligning reads to a reference genome include Cufflinks, mGene (Behr et al. 2010), RNASEQR

(Chen et al. 2012), G-Mo.R-Se (Denoeud et al. 2008), Montebello (Hiller & Wong 2013), Rnnotator

(Martin et al. 2010), DRUT (Mangul et al. 2012), GRIST (Boley et al. 2014), CRAC (Philippe

et al. 2013), MITIE (Behr et al. 2013), and others (Jackson et al. 2009; Bao et al. 2013; Seok

et al. 2012). Alignment-free de novo reconstruction programs include Oases (Schulz et al. 2012),

Trinity (Grabherr et al. 2011; Haas et al. 2013), SOAPdenovo-Trans (Xie et al. 2014), Trans-ABySS

(Robertson et al. 2010) and EBARDenovo (Chu et al. 2013).
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Most transcript-level quantification programs adopt a variation of a common likelihood-based

approach to the problem (first discussed in Xing et al. 2006):

L(Θ) = P (O|Θ) (2.1)

Where Θ refers to the unknown parameters of the model (for example, the relative abundances

of individual isoforms) and O is the set of observations (for example, the set of alignments to the

genome or the transcriptome).

Perhaps the most general version of this likelihood function, which incorporates the majority of

complexities that are modeled by various quantification algorithms, is the following (Pachter 2011):

L(Θ) =
∏

(tG)∈(G,T )

∏
f∈F(G,T )

∑
(t,i)∈(tG)

1

l̃tG
ΘtG

DFL(ltG(f))

i−1∑
k=1

DFL(i− k)

w3’
(t,i)w

5’
(t,i−lt(f)+1)w

pos
i

ltG

etG,f (2.2)

where:

– tG refers to a transcript t belonging to gene G.

– (G,T ) refers to the set of genes G and their transcripts T between which reads are to be

allocated.

– Θ refers to the isoform abundance assignments. For a given gene G,
∑
t∈G ΘtG = 1.

– f is a sequencing fragment; both ends of a fragment are sequenced in paired-end format.

– F(G,T ) refers to the set of fragments aligning to transcripts T in a gene G, or a set of genes

{G1, ..., Gn} such that a subset of fragments Fs ⊆ F align ambiguously to transcripts of more

than one gene.

– (t, i) refers to position i in transcript t.

– DFL is the fragment length distribution.

– w3’
(t,i) is a term accounting for coverage bias at the 3’ end of fragments (Li et al. 2010).

– w5’
(t,j) is a term accounting for coverage bias at the 5’ end of fragments.

– wposi
lt

is a positional bias term, accounting for systematic coverage biases along the length of

the transcript.
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– etG,f is the probability that the alignment is correct; it accounts for mapping errors.

– l̃tG is the effective length of each transcript, calculated as follows:

l̃tG =
∑
i∈tG


i−1∑
j=1

DFL(i− j)
i−1∑
k=1

DFL(i− k)

w3’
(t,i)w

5’
(t,i−lt(f)+1)w

pos
i

ltG

 (2.3)

In most cases the parameters are inferred using some variation of the expectation-maximization

(EM) algorithm (Dempster et al. 1977). This is done in three general ways (Figure 2.1A-C): from

splice-aware alignments to the genome (for example, by Cufflinks), from alignments to the tran-

scriptome (examples include eXpress and RSEM), and without any alignments (the k-mer counting

approach adopted by Sailfish). Unfortunately, the likelihood model is not always identifiable (see

discussion in Hiller et al. 2009 and the supplement of Trapnell et al. 2010). Identifiability becomes

increasingly difficult to achieve with the increase of isoform complexity (as shown empirically in the

previous chapter), which in plain terms is the result of the fact that the more isoforms there are in

the annotation, the more likely it is that no fragments that can unambiguously distinguish all of

them are present in the data.

The approaches to the de novo assembly are somewhat more varied. For example, the most

popular alignment-based approach (Cufflinks; Trapnell et al. 2010) aims to return the minimal set of

transcripts that can explain the observed data (subject to some constraints on absolute abundance),

while the approach adopted by GRIT (Boley et al. 2014) is to identify all possible expressed isoforms

and then rank them by their estimated abundance. Alignment-free assembly algorithms usually

employ de Bruijn graphs (de Bruijn 1946) to tackle the problem, which have been extensively used

for assembling genomes from short reads (Pevzner & Tang 2001; Pevzner et al. 2011; Zebrino &

Birney 2008; Butler et al. 2008; Gnerre et al. 2011; Luo et al. 2012; Bankevich et al. 2012; Simpson

et al. 2009; Zimin et al. 2013).

All the results presented in the previous chapter depend critically on the ability of the software

used to faithfully carry out the tasks of read mapping and transcript quantification and reconstruc-

tion, thus which programs return the most reliable output and to what extent it can be trusted is

of utmost importance for their interpretation. However, an interesting phenomenon is observed in

the literature: each publication of a new package concludes that it outperforms all other existing

tools, usually by carrying out simulations that demonstrate this is the case against known ground

truth. This is problematic, first, because of its clear logical impossibility, and second, because the
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simulations are usually not very realistic as they do not model some data properties that working

with data has lead me to suspect are actually having a significant negative effect on results – for ex-

ample, it is usually the case that isoforms from the refSeq annotation (which does not contain many

alternative splicing products) are simulated, with no reads coming from the intronic or intergenic

space, making the problem much easier to solve than the challenge presented by real data.

There are multiple known or suspected variables that affect both how difficult the problems of

isoform abundance estimation and transcript reconstruction are and how well they can be solved.

These include:

1. Annotation complexity. As already mentioned, more complex annotations present a greater

challenge to quantification software even if only a single isoform is actually expressed as reads

have to be properly allocated between more and more transcripts. Annotations range from

simple (i.e. refSeq, mostly one or two isoforms per gene) to intermediately complex (i.e. UCSC)

to very complex (i.e. GENCODE, with up to 10 isoforms per gene on average).

2. Isoform expression complexity. The more isoforms are expressed in the sample, the more

different splice junctions there are to be parsed between them, which would be expected to be

more difficult to do than if only a single isoform is expressed. This affects both quantification

and assembly.

3. Data quality. PolyA-selected RNA-seq can suffer from several kinds of data deficiencies.

First, suboptimal PolyA selection can result in larger amounts of intronic reads (although

this can also be a purely biological phenomenon). At high sequencing depths, this could pose

problems for both transcript assembly and quantification as shorter introns can get completely

filled-in with reads leading to incorrect inference of retained intron isoforms. Wide variation

of the fraction of intronic reads is observed between different protocols, production centers

and biological sources (especially subcellular fractions), as shown in Figure 2.2. Second, RNA

degradation can result in coverage being skewed towards the 3’ end, which makes parsing

alternative splicing events around the 5’ end more difficult (even if algorithms try to normalize

for such biases; i.e. through the wposi
lt

term above)

4. Library construction protocol. Both stranded and unstranded protocols are in wide use

for RNA-seq. Stranded libraries are expected to provide more power for accurate transcript re-

construction and quantification as they allow the resolution of overlapping sense and anti-sense

transcripts. However, it has to be noted that some stranded protocols (dUTP in particular)
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Figure 2.3: Number of “novel” splice junctions detected by STAR and TopHat. Shown
is the number of junctions not annotated in GENCODE V16 detected at different levels of coverage
(measured in collapsed, unique fragments) by the two mappers. Note that only annotated transcripts
were used in the simulation, i.e. no novel junctions are expected to be detected, and the ones that
are represent false positives.

are not absolutely strand-specific.

5. Fragment length distribution. During library construction, RNA is fragmented, usually

to pieces of 200 to 300 nucleotides length. The exact fragment length can have a significant
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Figure 2.4: Sequence type of “novel” splice junctions detected by STAR and TopHat.
Shown is the number of junctions not annotated in GENCODE V16 detected at different levels of
coverage by the two mappers split by the sequence of their splicing motifs. Canonical junctions
recognized by the major spliceosome are of the GT|AG type, the two major classes of non-canonical
junctions are GC|AG and AT—AC.

effect on transcript assembly and quantification. Longer fragment lengths provide greater

connectivity of distant sequences, but they lead to stronger coverage and representation biases.

6. Read length. For obvious reasons, it is intuitive to think that longer reads will always result



68

Figure 2.5: Classification of “novel” splice junctions detected by STAR and TopHat
relative to the annotation. Shown is the number of junctions not annotated in GENCODE
V16 divided according to how they relate to the annotation (GENCODE V16). The categories are
introduced and detailed in the previous chapter.

in better assembly and quantification. However, long reads only make sense if the fragment

size distribution is correspondingly long, and as mentioned above, longer fragment distribution

leads to poorer quantification results.
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7. Sequencing depth. Again, for obvious reasons, deeper sequencing provides more quantifica-

tion and assembly power.

It is not practically possible to examine all these variables due to the high dimensionality of the

parameter space, much less against the very large number of software tools (new versions of which,

as well as new algorithms, are continuously being published). I chose to focus on a limited set of the

most popular analysis packages that still represents the range of existing approaches to the problems

and on the data characteristics that are in my opinion most relevant to ENCODE results and least

studied, while picking optimal parameter values for the others. These parameters were the isoform

expression complexity and the impact of data quality, in particular the prevalence of intronic reads

(due to the presence of numerous retained introns in Cufflinks assemblies discussed in the previous

chapter).

2.2 Methods

2.2.1 Simulation parameters

For the purposes of this comparison, it is irrelevant what gene-level expression values are used

for the simulation although matching real-life data is in no way a negative. Therefore, Cufflinks-

derived gene-level quantification estimates for actual samples were used as a starting point from

which isoform expression levels were assigned to individual transcripts. These estimates are in

FPKM (Fragments Per Kilobase per Million fragments), where we define FPKM for a transcript

as follows:

FPKMT =
Number fragments mapping to a transcript

Total number of mapped fragments

1,000,000
∗

Length of transcript

1,000

(2.4)

Here a fragment is defined as a pair of reads when both ends of a paired-end read are mapped

or as the read itself when it is a singleton or the sequencing data is single-end.

For a gene G which contains N individual transcripts TG0,....,N
, there are two ways to define

FPKMs on the gene level:

FPKMG =
|fragmentsb∈BG

|

Total number of mapped fragments

1,000,000
∗
|BG|
1,000

(2.5)
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Here we count all fragments fragmentsb mapping to a base pair b belonging to all base pairs

BG annotated as part of the gene G and normalize against the total number of base pairs |BG|.

The alternative option is to calculate FPKM as follows:

FPKMG =
∑
T∈G

FPKMTG
(2.6)

Which is the sum of the FPKMs estimated for each individual transcript.

The latter is the more biologically correct way of calculating FPKMs as it normalizes better for

cases in which an isoform that is very large or very short relative to the total gene length is expressed

(Trapnell et al. 2010; Pachter 2011), and is therefore the one adopted here.

For each transcript of a gene, we can define the FMI (Fraction of Major Isoform) quantity as

follows:

FMITG
=

FPKMTG

max
T∈G

(FPKMTG
)

(2.7)

The FMI values can be used to determine isoform expression complexity. Examination of the

distribution of FMI values on real data (with the caveat that real-life isoform-level quantification

is unreliable, although this is not relevant for simulation purposes) using Cufflinks showed that the

median FMI of the second major isoform is around 0.5, of the third major isoform between 0.25 and

0.3, of the fourth major isoform between 0.10 and 0.15, etc. (see previous chapter). However, the

distribution of the FMI for the second major isoform is not normal but actually roughly uniform with

some bias towards 0. Uniform distribution is not well suited for the goals of this simulation exercise

because a way to vary the isoform complexity is needed and this would be better manipulated through

shifting the means (see below). Therefore the FMI distribution was modeled with a Gaussian, with

mean µ and variance σ2, which is dispersed and truncated by requiring that µ = σ, i.e. for any FMI

µ that is picked, the left 1− σ position in the distribution is 0. For each gene G with N individual

isoform, TG0,...,N
ranked by expression such that FMI(TG)i > FMI(TG)i+1

, the FMI for each isoform

is chosen as follows:

FMI(TG)i =


1 if i = 0;

max(0, FMI(TG)i+1
∼

1∫ FMIi−1

−∞
NFMIi

{NFMIi : FMIi < FMIi−1}) if i > 0
(2.8)



71

Where:

NFMIi = N (µiα1 , σ
2
i = µiα1

2
) (2.9)

N refers to a Gaussian, and they key parameters are the mean FMI for the second ranked isoform

(µ1) and α, which are used to scale the global isoform complexity (higher α will lead to much quicker

decay of the mean FMI). Note that the Gaussian is rescaled to take into account the fact that only

the parts of it between −∞ and the FMI of the next more highly expressed isoform of the gene are

considered, so that if the randomly chosen FMI value was less than zero, it was set to 0, at which

point all subsequent isoforms were set to zero too. The isoform ranking was also picked at random

for each gene.

2.2.2 Read simulation

A reasonable very deeply sequenced RNA-seq dataset contains ∼200× 106 reads, or about one lane

of HiSeq worth of reads. It is also what ENCODE produced for most of its samples (Djebali et al.

2012). For this reason, the total sequencing depth was fixed at R = 200× 106 read pairs (or double

the ENCODE number, i.e. a very deeply sequenced sample). It is known that long fragment sizes

actually degrade the performance of RNA-seq. This is because:

1. Short transcripts are underrepresented by reducing their effective length (there are only 200

positions in which a 400bp-long fragment can originate from a 600bp-long trancsript, but 1600

such positions for a 2kb-long transcript). Quantification programs perform an effective length

normalization, which takes some of these biases into account. However, another issue still

remains unresolved, and it is experimental in nature:

2. Short transcripts are underrepresented in the sequencing libraries. Suppose fragments were

size-selected so that they are distributed as a Gaussian, i.e. DFL ∼ N (µ, σ2), with µ = 500 and

σ = 100, and consider the same case of the 600bp-long transcript and the 2kb-long transcript

described above. Fragments are generated by random fragmentation of either RNA molecules

or cDNA, depending on the protocol used. Assuming this fragmentations is random, on average

only 1/3 of fragments will be within 100bp of the mean of the size-selection range for the 600bp-

long transcripts, i.e. each transcript or full-length cDNA molecule will be represented in the

library 1/3 of the time, while the 2kb-long one will usually contribute 3 fragments to it.

3. A significant contributor to uneven sequencing coverage in RNA-seq seem to be RNA sec-
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ondary structures and more and more complex such structures are formed in longer RNA

molecules. Depending on the protocol used, this may have a more or less severe negative effect

on transcript representation and coverage in the final libraries.

For these reasons, reads were sampled from a fragment size distribution centered around 250bp

with standard deviation of 50 (i.e. DFL ∼ N (250, 502)), and the length of the reads was limited

to 2x100bp. The mason read simulator (Holtgrewe 2010) was used for simulating the reads. The
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Figure 2.6: Number of transcripts in each assembly according to the Cuffcompare
classification. The number of transcripts in each Cuffcompare category is shown for Cufflinks
assemblies on STAR (A) and TopHat (B) mapping and for de novo Trinity (C) and SOAPdenovo-
trans (D) assemblies. The Cuffcompare codes are defined (and prioritized during classification in
the same order) as follows (Trapnell et al. 2010; Trapnell et al. 2012): “=”: Complete match of
intron chain; “c”: Contained; “j”: Potentially novel isoform (fragment): at least one splice junction
is shared with a reference transcript; “e”: Single exon transfrag overlapping a reference exon and
at least 10 bp of a reference intron, indicating a possible pre-mRNA fragment; “i”: A transfrag
falling entirely within a reference intron; “o”: Generic exonic overlap with a reference transcript;
“p”: Possible polymerase run-on fragment (within 2Kbases of a reference transcript); “r”: Repeat.
Currently determined by looking at the soft-masked reference sequence and applied to transcripts
where at least 50% of the bases are lower case; “u”: Unknown, intergenic transcript; “x”: Exonic
overlap with reference on the opposite strand; “s”: An intron of the transfrag overlaps a reference
intron on the opposite strand (likely due to read mapping errors)
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simulation was carried out as follows:

1. Separate “chromosomes” were generated for each transcript using the GENCODE V16 anno-

tation and the human genome reference sequence.

2. Separate “chromosomes” were also generated for the unspliced, pre-mRNA form of each GEN-

CODE V16 transcript. This is not entirely realistic as in reality splicing is predominantly

cotranscriptional (Dujardin et al. 2013), and pre-mRNAs exist in a partially spliced state but

rarely in a completely unspliced one. But this process is generally poorly understood so for

simplicity here it is assumed that transcription and splicing are completely uncoupled.

3. An ENCODE K562 sample RNA-seq sampled was used to obtain real-life gene-level FPKM

estimates using Cufflinks (version 2.0.2). Note that only protein coding genes were included,

which was done deliberately, with the goal of examining the performance of quantification soft-

ware with respect to pseudogenes and lincRNAs, for which mapping artifacts might confound

output (due to close sequence homology with protein coding genes in the case of pseudogenes,

and due to the presence of repetitive elements in many lincRNAs).

4. Isoform-level FPKMs were simulated from the gene-level FPKMs as described above, using all

9 combinations of µ = 0.25, 0.5 or 0.75 and α = 0.5, 1, or 4. A value of α = 4 means almost

no alternative isoform expression), while when α = 0.5, the 10th highest isoform will still have

on average Θ = 0.03 (see below for definition of Θ).

5. For each such combination, 3 datasets with a different intronic fraction of reads were simulated

(IF = 0.05, 0.15 or 0.25). IF = 0.05% corresponds to some of the best polyA-selection cases

we have observed in practice, IF = 0.15 can be considered intermediate level of intronic reads,

and IF = 0.25 is what is often observed in some nuclear subcellular fractions in ENCODE data

(though much higher values have also been seen; Figure 2.2).

6. Using the IF and transcript-level FPKM values, the number of reads that should be simulated

for each transcript containing introns and its corresponding pre-mRNA was calculated. The

intronic fraction was constant for all transcripts.

7. Stranded RNA-seq reads were generated for each mRNA and pre-mRNA using mason, with

the following settings: illumina --read-length 100 --library-length-mean 250 -le 50

--include-read-information

--forward-only --simulate-qualities --mate-pairs --prob-insert 0 --prob-delete 0
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--haplotype-snp-rate 0

--haplotype-indel-rate 0. Reads were subsequently renamed to records their origin and

proper mapping.

8. FPKMs were rescaled according to the IF value so that intronic reads are excluded from the

denominator in the calculation of the true FPKM value. The true FPKM values were recorded

and saved.

The resulting simulated set of reads represents a somewhat easier to solve problem than real-life

data does, as it does not model transcript coverage non-uniformity (the sources of which are not

entirely understood). However, it does provide a measure of the relative performance of programs, as

well as minimum bounds on the fraction of incorrectly quantified and assembled transcripts, which

is still informative with respect to the interpretation of the results in the previous chapter.

2.2.3 Read Mapping

Reads were mapped to the hg19 assembly of the human genome using both the STAR (version 2.3.0e;

Dobin et al. 2013) and TopHat (Version 2.0.8; Trapnell et al. 2009; Trapnell et al. 2012b) aligners,

using the GENCODE V16 as a source of annotated transcripts and junctions to aid mapping. The

following settings were used for STAR; default settings were used for TopHat. --outFilterType

BySJout --outFilterMultimapNmax 20 --alignSJoverhangMin 8

--alignSJDBoverhangMin 1

--outFilterMismatchNmax 999

--outFilterMismatchNoverLmax 0.04 --alignIntronMin 20 --alignIntronMax 1000000 --alignMatesGapMax

1000000.

For RSEM and eXpress quantifications, reads were mapped against a GENCODE V16 tran-

scriptome index, using Bowtie (version 0.12.7; Langmead et al. 2009), with the following settings:

-e 200 -a --offrate 1 -t -X 1000.

2.2.4 Transcript assembly and reconstruction

Cufflinks (version 2.0.2; Trapnell et al. 2010; Trapnell et al. 2012a) was used for assembly on STAR

and TopHat alignemtns, with default settings except for specifying that the libraries are stranded.

Scripture (Guttman et al. 2010) was also tested; however, its computational requirements were too

large and made running it on all simulated datasets practically impossible.
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For alignment-free assembly, Trinity (Grabherr et al. 2011; Haas et al. 2013) was used with the

following settings: --SS_lib_type FR --min_kmer_cov 2, and SOAPdenovo-Trans (Xie et al. 2014)

was run, with the following settings: SOAPdenovo-Trans-31mer max_rd_len=100 avg_ins=250

reverse_seq=0. BLAT (Kent 2002) was used to map the resulting contigs back to the genome,

with only contigs longer than 200bp considered. Custom-written python scripts were used to con-

vert the resulting PSL-format output to GTF format, while retaining only the best alignment(s) for

each contig.

2.2.5 Isoform-level quantification

Cufflinks (version 2.0.2; Trapnell et al. 2010; Trapnell et al. 2012a) was run on both STAR and

TopHat alignemtns, with default settings except for specifying that the libraries are stranded.

RSEM (version 1.2.7; Li et al. 2010; Li et al. 2011): was run as follows: --calc-ci --forward-prob 1.

eXpress (version 1.5.0; Roberts & Pachter 2013) was run with default settings. Both were run on

Bowtie alignments.

Sailfish (version 0.5.0; Patro et al. 2014) was run with default settings and k = 20.

A number of other packages were also tested: CEM/IsoLasso (Li et al. 2011), Flux-Capacitor,

IQSeq (Du et al. 2012), iReckon (Mezlini et al. 2013), IsoEM (Nicolae et al. 2011), MMSeq (Turro

et al. 2011), PennSeq (Hu et al. 2014), RNAExpress (Forster et al. 2013), SLIDE (Li et al. 2011),

and Traph (Jo et al. 2014), However, all of them turned out to be practically impossible to run due

to dependency issues with software no longer being maintained and/or computational requirements

(for example, Penn-Seq took more than a week running on 8CPUs and 40GB of memory without

showing any signs of convergence).

Figure 2.7 (preceding page): Assembly statistics for spliced transcripts. (A,C,E,G) The
distribution of true positives (“Expressed and Assembled”), partial true positives (“Partials”), par-
tial false positives (“Not Expressed and Assembled”) and false positives (“False Positives”) among
de novo assembled transcripts is shown. The categories are defined as follows: “Expressed and
Assembled” refers to transcripts that were expressed at > 0 FPKM in simulation and we assembled
completely, i.e. have a complete intron chain match in the annotation; “Partials” refers to assembled
transcripts the intron chain of which is a subset of the intron chain of an annotated transcript; “Not
Expressed and Assembled” refers to transcripts with FPKM= 0 in the simulation, which were nev-
ertheless assembled with a complete intron chain (this is not impossible in complex loci even if rare);
the “false positives” are transcripts with intron chains that are not found in the annotation, neither
as complete chains nor as subsets of annotated intron chains. (B,D,F,H) The distribution of true
positives (“Expressed and Assembled”) and false negatives (“False Negatives”) among annotated
transcripts expressed at > 1 FPKM in the simulation. A false negative is a transcript the complete
intron chain of which was not found among the de novo assembled transcripts. (A,B) Cufflinks on
STAR alignments; (C,D) Cufflinks on TopHat alignments; (E,F) Trinity; (G,H) SOAPdenovo-trans
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2.2.6 Metrics for evaluation of quantification performance

The following metrics were used to evaluate quantification performance:

1. The Pearson correlation r between the true FPKMs and the estimated FPKMs on the gene

level

2. The Pearson correlation r between the true FPKMs and the estimated FPKMs on the tran-

script level

3. The mean total Θ difference between the true relative isoform abundances in each gene and

the estimated isoform abundances:

MTΘdiff =

∑
G

∑
T∈G
|ΘE(TG) −ΘT (TG)|

NG
(2.10)

Where NG is the total number of annotated genes considered, ΘE is the estimated Θ and ΘT

is the true Θ for each isoform of a gene, and Θ is defined as:

ΘTG
=

FPKMTG∑
T∈G

(FPKMTG
)

(2.11)

Note that the possible values of MTΘdiff are limited to MTΘdiff ∈ [0, 2], with MTΘdiff = 0

corresponding to perfectly accurate parsing of reads between isoforms and MTΘdiff = 2 to

complete misallocation (for example, if only one isoform is expressed but it received 0 FPKM

and the reads were instead allocated to other isoforms).

4. The fraction of genes with an incorrectly assigned major isoform, i.e.:

argmax
TG

(max
T∈G

(ΘE(TG)))

6=

argmax
TG

(max
T∈G

(ΘT (TG)))

5. The fraction of genes with false positive isoforms
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6. The fraction of false positive isoforms

7. The fraction of genes with false negative isoforms

8. The fraction of false negative isoforms

Here, a false positive isoform was defined as one with ΘT (TG) = 0 and ΘE(TG) ≥ 0.05, and a false

negative isoform as one with ΘT (TG) ≥ 0.05 and ΘE(TG) ≤ 0.001.

2.2.7 Metrics for evaluation of assembly performance

The following metrics were used to evaluate assemblies relative to the GENCODE V16 annotation

that was used to generate the data.

1. The number of transcripts in the various Cuffcompare classes (Cuffcompare is a program in

the Cufflinks suite used to compare annotations). See the legend of Figure 2.6 for detailed

explanation.

2. The number of perfectly matching intron chains for expressed spliced transcripts, where an in-

tron chain is defined as follows. Every transcript TG in gene G is defined according to its exonic

coordinates as the ordered set of exon left and right positions: TG := {(l1, r1), ...., (ln, rn)}.

An intron chain IC is defined as the ordered set of left and right intronic positions, i.e.:

ICTG
:= {(r1, l2), ...., (rn−1, ln)}. Comparing the intron chains allows the 5’ and 3’ ends,

which are very difficult to assemble precisely (and are often not precisely defined biologically

to begin with) to differ. An annotated transcript TG was defined as expressed if FPKMTG
> 0.

3. The number of assembled but not expressed genes, i.e. transcripts with FPKMTG
= 0, which

were nevertheless expressed. This may sound counterintuitive, but is not impossible, and does

in fact happen occasionally.

4. The number of partially assembled spliced transcripts, i.e. transcripts, the intron chain ICA of

which is a strict subset of the intron chain of some annotated transcript TG, i.e. ICA ⊂ ICTG
.

5. The number of false positive spliced transcripts, i.e. transcripts with an intron chain that is

inconsistent with the intron chains found in the annotation.

6. The number of false negative spliced transcripts, transcripts that were expressed but not

assembled. A threshold of 1 FPKM was set to define a transcript as assembled.
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2.3 Results

2.3.1 Splice junction discovery

The main goals of this simulation were to assess transcript quantification and reconstruction. For this

purpose, reads were simulated from the protein coding portion of the GENCODE V16 transcriptome,

and then it was again GENCODE V16 that was used when mapping the reads, i.e. there are no novel

junctions to discover and the mapping process is maximally aided by the annotation, which in this

case completely matches the source of the reads. Nevertheless the simulation is useful with respect

to the minimum number of false positive junctions observed in real-life data, and their nature.
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Reads were mapped with both TopHat and STAR, and the junctions detected extracted. The

strand of the junctions was annotated based on the directionality of the reads. Figure 2.3 shows

the number of “novel” splice junctions detected by each algorithm in each of the 27 simulated

libraries and their fragment support (I use “novel” in quotation marks to indicate that they are false

positives). TopHat detected between 2000 and 3000 false positive junctions, while STAR found on

average slightly fewer ones, but in a few cases it produced substantially more of them for unknown

at present reasons. In both cases there was a positive correlation between the IF parameter and

the number of false positive junctions. Figure 2.4 shows the intronic motifs of these junctions, and

Figure 2.5 shows how they relate to the annotation, following the convention adopted in the previous

chapter. Remarkably, most of the “novel” junctions turned out to be anti-sense to known transcripts

and connecting known exons, as indicated by the fact that the dominant intronic motif was CT|AC

(which is the antisense to GT|AG, the canonical splice motif). This was not the case only in the

anomalous STAR mappings where a substantial number of CT|AC junctions were still present. Both

STAR and TopHat found junctions with a CT|GC motif but only TopHat returned GC|AG, GT|AT,

AT|AC and splices with other sequence motifs. A large number of CT|AC junctions was not observed

in TopHat alignments of real RNA-seq data suggesting that the majority of “novel” junctions seen

in the simulation were the result of strand assignment issues in this particular set of alignments,

possibly due to the version of the software used. However, antisense junctions can be easily spotted

and filtered, thus bringing down the real number of false positives to just a few hundreds, meaning

that the majority of splicing complexity observed in real RNA-seq data is not due to computational

artifacts.

2.3.2 Accuracy of de novo transcript assembly

Transcript reconstruction of STAR and TopHat alignments was carried out using Cufflinks. In

parallel alignment-free assemblies were generated using Trinity and SOAPdenovo-Trans, then the

resulting contigs were mapped back to the genome using BLAT, and converted to GTF file format.

As a first assembly evaluation step, all four sets of GTF files were run through Cuffcompare, the

GTF comparison module in the Cufflinks suite of programs, against the GENCODE V16 reference,

and the fraction of transcripts classified under the different Cuffcompare classes counted. The results

are shown in Figure 2.6. Cufflinks produced very similar results on STAR and TopHat alignments,

generating between 11,000 and 15,000 fully matched transcripts (Cuffcompare class “=”) depending

on the expressed isoform complexity (Figure 2.6A and B). A few notable trends emerged when the
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Figure 2.10: Distribution of estimated FPKMs for lincRNA genes. The number of lin-
cRNAs “detected” at different FPKM cutoffs in the output of RNA-seq quantification programs is
shown. Note that lincRNAs were not included in the original simulation therefore the true expression
values should be zero for all of them.

fraction of partial assemblies (Cuffcompare class “c”) and “new isoforms” (Cuffcompare class “j”)

assembled were considered – higher values of the α parameter (α = 4), i.e. lower isoform complexity,

resulted in a relatively small fraction of “new isoforms” (as only annotated transcripts were simulated

and the same GENCODE V16 annotation was used as a reference, no “new isoforms” were expected;

all such transcripts are therefore false positives), but in the simulations with α = 0.5 and α = 1

more than 10,000 such isoforms were assembled. Increasing the intronic fraction also had a negative

effect on assembly though not as pronounced as the effect of isoform complexity, with the fraction of

true positives decreasing slightly and the fraction of partial assemblies and false positives increasing.

Trinity and SOAPdenovo-Trans results were striking in comparison (Figure 2.6 C and D). Trinity

actually generated a few hundred more true positive transcripts than Cufflinks, although this is not

clearly visible in the figure, which in turn is because of the extremely large number of partial

assemblies and false positives it produced – in the hundreds of thousands. The number of such

contigs was strongly correlated with the intronic fraction of reads. These results are a combination

of assembling each true transcripts into multiple short fragmentary assemblies and of the assembly of

many isoforms with retained introns. In contrast, SOAPdenovo-Trans did not assemble almost any



87



88



89

Figure 2.11: Distribution of estimated FPKMs for pseudogenes. The number of pseu-
dogenes “detected” at different FPKM cutoffs in the output of RNA-seq quantification programs
is shown. Note that pseudogenes were not included in the original simulation therefore the true
expression values should be zero for all of them.

“new isoforms”, instead generating a large number of transcripts classified as “intronic”, suggesting

it might be dealing better with intronic reads. However, it also assembled very few true transcripts

(only ∼3,000 on average) and it also generated many partial assemblies, the number of which also

correlated strongly with the intronic fraction of reads.

To better understand the assemblies, I carried out a more direct comparison using only the assem-

bled spliced transcripts/contigs using the additional true/false positive and false negative metrics

listed in the Methods section (Figure 2.7). This was done in two ways: from the perspective of

the assemblies (Figure 2.7A,C,E,G), and from the point of view of the set of expressed transcripts

(Figure 2.7B,D,F,H). In the former case, we define a true positive as a transcript that is both ex-

pressed in the simulation and assembled (at the level of its intron chain), a partial true positive

is a partially assembled expressed transcripts, and a false positive is a transcript, the intron chain

of which is incompatible with the annotation. In the annotation-centered comparison, true posi-

tives (expressed at ≥1 FPKM and assembled) and false negatives (expressed at ≥1 FPKM but not

assembled) transcripts are counted.

STAR+Cufflinks and TopHat+Cufflinks results were again comparable, with a slight advantage

to the TopHat+Cufflinks combination. Once again, the negative effect on the accuracy of the



90

results of isoform complexity was highlighted. At IF = 0.05, µ = 0.25, and α = 4, i.e high-purity

polyA-selection on samples in which almost always only one isoform is expressed, nearly 80% of

assembled transcripts were true positives, with ≤10% being false positives (Figure 2.7C), and >80%

of expressed transcripts were assembled, with <20% being false negatives (Figure 2.7D). However,

when µ = 0.75, and α = 0.5, only ∼50% of assembled transcripts were true positives, nearly 40%

were false positives, and only ∼35% of expressed transcripts were successfully assembled (with ∼65%

remaining as false negatives).

Trinity and SOAPdenovo-Trans results followed the same trend across the parameter space, but

were worse in terms of absolute performance. Trinity successfully assembled a higher fraction of the

expressed transcripts than Cufflinks did (Figure 2.7F); however, this was at the cost of a much larger

fraction of false positives (Figure 2.7E). Notably, this fraction was highly sensitive to the value of

the IF parameter. SOAPdenovo-trans was again less sensitive to intronic reads but its performance

was very poor in absolute terms (Figure 2.7G and H)).
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2.3.3 Accuracy of isoform-level quantification

The accuracy of gene and transcript expression quantification was assessed using the multiple met-

rics listed in the Methods section. Figure 2.8 shows the Pearson correlation between the estimated

FPKMs on the gene level and the true simulated locus-level FPKMs. The correlation was mostly

very high – 0.97 for most settings of the isoform complexity and IF parameters and for most pro-

grams – except for Sailfish FPKMs, which exhibited a consistently poorer correlation with the true

values. Sailfish also displayed the highest sensitivity to the increased presence of intronic reads,

with correlation dropping by between 0.03 and 0.06 from IF = 0.05 to IF == 0.25. For the other

programs, however, this effect was much more modest, usually less than 0.01 decrease in correlation.

Figure 2.9 shows the Pearson correlation between the estimated and true FPKMs for individual

transcripts. Sailfish was once again the worst performing program, and it was once again most

sensitive to the intronic fraction parameter; this was also true for all other comparison metrics,

thus for the rest of this exposition I will focus on the other four options, without mentioning Sailfish

specifically. Overall, the correlation between the estimated and true values on the transcript level was

significantly worse than that for locus-level quantification, usually being between 0.8 and 0.9. It was

also significantly more sensitive to the intronic fraction of reads, dropping by as much as 0.10 in some

cases when going from IF = 0.05 to IF = 0.25. Some difference between the different programs were

apparent. Cufflinks on STAR alignments performed consistently better than Cufflinks on TopHat

alignments, in curious contrast to the slight advantage the latter had in assembly; however, these are

not mutually exclusive possibilities. But in both cases, Cufflinks was outperformed by both eXpress

and RSEM, with RSEM producing slightly better results than eXpress. For example, at α = 0.5, µ =

0.25 and IF = 0.05, the correlation was 0.92 for RSEM, 0.9 for eXpress, 0.85 for TopHat+Cufflinks,

and 0.87 for STAR+Cufflinks. A counterintuitive observation was that the correlation decreased

when the α parameter was increased, i.e. when the isoform complexity decreased. This is most

likely explained by false positive FPKM values being generated for transcripts that are in fact either

not expressed or expressed at relatively low levels.

I next examined how many lincRNAs and pseudogenes received positive FPKM values (Figures

2.10 and 2.11, respectively). As previously mentioned, only protein coding genes were included in

the simulation; therefore, all lincRNAs and pseudogenes should have received 0 FPKMs, and the

extent to which this is not the case provides useful insight into the performance of the different

programs (it is also of interest with respect to the reliability of results concerning lincRNAs and

pseudogenes that are based on the output of these programs). Sailfish was a clear outlier in this
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comparison, quantifying many lincRNAs and even more pseudogenes (up to half) as “expressed”,

sometimes at quite high levels. Smaller in magnitude, but still substantial in some cases differences

were observed between the other programs too. Cufflinks quantified fewer lincRNAs and pseudogenes

as expressed when run on STAR alignments than it did when TopHat alignments was used as input.

STAR+Cufflinks was the best performing combination with respect to lincRNAs, while RSEM and

eXpress had the fewest false positives when pseudogenes were considered. The significance of these

differences is elaborated on in the Discussion section.

The distribution of the mean total Θ difference was examined next, for all transcripts, and

across the range of FPKM values (Figure 2.12) and annotation complexity (Figure 2.13). Once

again, overall, RSEM and eXpress outperformed Cufflinks, RSEM produced slightly better results

than eXpress, as did Cufflinks on STAR alignments compared to Cufflinks on TopHat alignments.

However, some interesting patterns were observed. Quantification was quite reliable when the isoform

expression complexity was low – for example, at α = 4, µ = 0.25 and IF = 0.05, the MTΘdiff values

for RSEM and eXpress were 0.13 and 0.14, respectively – but with increased isoform expression

complexity, performance deteriorated significantly – the RSEM and eXpress MTΘdiff values at

α = 0.5, µ = 0.75 and IF = 0.05, they were 0.50 and 0.49. A striking pattern was observed when the

relationship between gene expression levels and the ability to accurately parse reads between isoforms

was examined: the higher the gene-level FPKMs, the worse Cufflinks’s performance was, while in

contrastMTΘdiff values for RSEM and eXpress either remained constant or decreased (Figure 2.12).

This is not entirely surprising given the way Cufflinks’s likelihood optimization proceeds (Trapnell et

al. 2010; and C. Trapnell, personal communication), but was nevertheless an intriguing observation.

Cufflinks’s performance also deteriorated consistently with the increase in isoform complexity in the

annotation (Figure 2.12), but the pattern observed for RSEM and eXpress was more complicated.

In the case of α = 4, µ = 0.25 and IF = 0.05, i.e. the lowest isoform expression complexity, the

MTΘdiff actually went down for both, from 0.18 for eXpress and 0.16 for RSEM for genes with 2

annotated isoforms, to 0.12 for eXpress and 0.11 for RSEM for genes with >20 annotated isoforms.

However, in the simulated libraries with high isoform expression complexity, the MTΘdiff values

increased for genes with more annotated isoforms.

The fraction of genes with an incorrectly assigned major isoform is shown in Figures 2.14 (as a

function of gene expression levels) and 2.15 (as a function of annotation complexity). It was highly

dependent on the isoform expression complexity of the simulated libraries: for example, RSEM

assigned the wrong isoform 7% of the time when α = 4, µ = 0.25 and IF = 0.05, but it did so for 35%

of genes when α = 0.5, µ = 0.75 and IF = 0.05. The relative performance of the programs according
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to this metric was very similar to that revealed by theMTΘdiff . RSEM and eXpress produced better

results than Cufflinks, and STAR+Cufflinks was more reliable than TopHat+Cufflinks. Cufflinks

was once again performing worse on more highly expressed genes (though in this case, this was the

group of genes expressed in the (100, 500] FPKM range and not the highest expressed genes, the

≥500 FPKM ones, where the worst values were observed). Annotation complexity had a significant

negative effect in the samples expressing a complex mixture of isoforms (but, notably, not so much

in the ones where α = 4): 24–26% of genes with 2 annotated isoforms had an incorrectly assigned

major isoform by RSEM in α = 4 libraries, but this number rose to 44-48% for genes with ≥20

annotated isoforms.

Figures 2.16 and 2.17 show the fraction of genes with false negative isoforms in the various quan-

tification sets as a function of gene expression levels and annotation complexity, Figures 2.18 and

2.19 show the fraction of false negative isoforms among all transcripts, while Figures 2.20, 2.21, 2.22,

and 2.23 show the corresponding values for false positive isoforms (how false positive and false nega-

tive isoforms are defined is described in the Methods section). False positive isoforms were generally

rare, except for genes expressed at very low levels, while false negatives were a considerably more

common occurrence. The relative performance of the programs followed the patterns established by

the previous metrics, with one notable difference. RSEM returned consistently fewer false negatives

than eXpress did, but it also generated more false positives than observed in eXpress quantifications.

2.4 Discussion

The results of this simulation highlight the deficiencies of current transcriptomic measurement and

analysis practices and also inform the interpretation of the results presented in the previous chapter.

On a most general level, the conclusion is that splice junction detection and discovery work relatively

well, as is the case for gene-level quantification. However, isoform assembly and isoform-level quan-

tification not only remain unresolved problems, but are in fact likely unsolvable computationally

as long as the nature of the underlying data remains the same. Of note, similar in their nature

conclusions were reached by the RGASP (RNA-seq Genome Annotation Assessment Project; Stei-

jger et al. 2013; Engström et al. 2013) initiative, which also used simulations in addition to real

RNA-seq datasets to evaluate the performance of RNA-seq mapping and transcript assembly and

genome annotation software.

While the simulation was simplistic and did not present much of a challenge with respect to

splice junction discovery, the fact that so few false positive junctions were returned is encouraging.
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However, the problem of assembling transcripts de novo was not solved in satisfactory way by any

of the programs tested. Except for the simples cases, in which only one isoform was expressed for

most genes, up to 40% of assembled transcripts were false positives and up to 60% of the expressed

transcripts were false negatives. Given that the simulation did not model real-life complicating

factors such as the nonuniformity of sequence coverage, it is likely that results on real RNA-seq data

are in fact even worse. Another important insight gained from the simulation was that genome-

free assembly approaches are extremely sensitive to the fraction of intronic reads present in the

sample, producing many more false positive and/or partially assembled transcripts when the IF

parameter was increased from 0.05 to 0.25, something of significant importance for the practice of

transcriptomic analysis in the absence of a corresponding genomic assembly – to the best knowledge

of the author, little attention has been paid to the issue so far in such cases, but even if that was not

the case, the intronic fraction is almost impossible to measure without an assembled and annotated

genome, presenting a difficult to resolve conundrum. In any case, assembling the genome and then

carrying out transcript reconstruction is clearly the better option (if, of course, such a choice is

available) by a significant margin.

Isoform-level quantification is also not quite up to the desired level. As with assembly, it is

highly likely that performance on real-life datasets is worse than what was observed on simulated

data. But even in the simplified simulation, in all of the complex samples (µ = 0.5 or µ = 0.75, and

α = 0.5 or α = 1), 1/3 of genes had an incorrectly assigned major isoform, and this rose to ∼50%

for genes with a large number of annotated isoforms. Some clear difference between the programs

emerged. Sailfish, which uses k-mer frequencies instead of alignments provided the most unreliable

sets of FPKMs; this is not surprising as the naive expectation is that the problem of parsing k-mers

between genes and transcripts would be considerably more difficult to solve than the problem of

doing the same with alignments. In this context, it is also not surprising that Sailfish generated

so many false positives in pseudogenes and lincRNAs. It is possible that different values of k than

the default value used here will generate better results, but it is unlikely that they will ever reach

the performance of the alignment-based approaches. A bit more surprising was the fact that the

transcriptome-space programs performed better than Cufflinks, but this in fact makes sense given

the nature of the alignments each such programs is presented with and how they affect their output.

Cufflinks works with alignments in genomic coordinates and does not really “see” all alignments a

read might have to other genes, even though such reads are recognized as multireads and treated

accordingly. In contrast, programs like eXpress stream reads and directly weigh alignments between

all places in the transcriptome they map to; this leads to better parsing of reads between paralogous
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genes and fewer false positives due to mapping issues, though their performance with respect only

to the isoforms of protein coding genes also seems to be superior. Based on the simulation results,

working in transcriptome space should be the preferred approach if reliability of output is the top

priority of the analysis. However, it has to remembered that even eXpress and RSEM do not

completely solve the problem and only provide a marginal in comparison to the deviation from the

truth improvement over Cufflinks.

These results are not surprising given the background of a wide variety of accumulated anecdotal

examples of questionable quantification output, but they do present an explicit illustration of the

magnitude of the problem. They also provide some context for the interpretation of real-life results

if we are willing to engage in some Bayesian reasoning: simulated samples with low complexity of

expressed isoforms consistently returned results closest to the ground truth, while samples with high

isoform complexity fared the worst. This means that if a major isoform is observed with minor

isoforms with very low FMI values, then it is significantly more likely that the quantification output

represents the underlying biochemical reality well. Conversely, if multiple isoforms are scored as

expressed at high level, it is much more difficult to tell whether their ranking is correct, which

one is the major isoform, and by how much. These considerations are of major importance to the

question of how much regulated alternative isoform switching happens between different cell types;

unfortunately, a major fraction of putative such events belong to the second category, making any

definitive conclusions about the phenomenon difficult to defend.

The simulation also once again confirmed the theoretical expectation that the complexity of the

annotation being quantified has a significant negative effect on the output of the quantification: the

more isoforms there are in the annotation, the more likely it is that the maximum likelihood model

becomes unidentifiable. The unfolding of a quite unsettling scenario is thus entirely possible in the

near future: as RNA-seq probes ever deeper into the complexity of the transcriptome, and genome

annotations become updated to reflect that newly acquired knowledge, an ever higher fraction of

genes in these annotations will become impossible to confidently quantify as they will contain too

many isoforms that cannot be unambiguously distinguished from one another based on short reads.

In the same time, while the length of reads keeps increasing, the length of the fragments they originate

from cannot increase without introducing deeply problematic on their own biases in libraries (see

discussion in the Methods section), meaning that the short-read sequencing format of RNA-seq

cannot really go beyond 2x150bp. The only meaningful solution to these issues will be the advent

of sequencing technologies that can produce full transcript-length reads at a sufficient sequencing

depth (meaning tens of millions of reads). Such a technology will have to also achieve that without
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the limitations imposed by size selection that exist for current long-read platform such as PacBio

(Sharon et al. 2013; Au et al. 2013) so that both short and very long transcripts are sequenced

equally efficiently. It would be also highly desirable for it to perform direct RNA-sequencing, i.e.

without the need to convert RNA into cDNA, as reverse transcription might be a significant source

of biases (for example, due to the presence of secondary structures in RNA molecules, internal

polyA priming sites if oilgo-dT priming is used, etc.). A technology that has the potential to deliver

such a radical paradigm shift in the field is nanopore sequencing (Branton et al. 2008), even if

the development of functional direct RNA sequencing based on it is still at least a few years into

the future. Until then the analysis of alternative splicing and processing using RNA-seq at the

level of whole transcripts and the whole transcriptome (as opposed to the targeted sequencing of

individual genes and the analysis of localized splicing events) will remain a complicated and fraught

with epistemological difficulties enterprise.
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3

Single-cell RNA-seq in human lymphoblastoid cells:

stochasticity in gene expression and RNA splicing

The majority of the material in this chapter was published as:

Marinov GK*, Williams BA*, McCue K, Schroth GP, Gertz J, Myers RM, Wold BJ. 2014. From

single-cell to cell-pool transcriptomes: stochasticity in gene expression and RNA splicing. Genome

Res 24:496–510. doi: 10.1101/gr.161034

The paper is reprinted in Appendix J. The single-cell RNA-seq data on which it is based was

generated by Brian Williams in the Wold lab. My contribution is the computational analytical

framework for analysis and the analysis itself as well as some input into the experimental design.

Abstract

In this work, we applied the SMART-seq low-input RNA-seq protocol to study cell-

to-cell variation in gene expression, alternative splicing and allelic bias in the reference

lymphoblastoid cell line GM12878. We also identified and addressed the technical noise

issues intrinsic to single-cell RNA-seq, by devising experimental and computational

approaches to distinguish between biological and technical variation in measurements.

By using spike-in quantification standards we estimated the absolute number of RNA

molecules per cell for each gene and found significant variation in total mRNA con-

tent, between 50,000 to 300,000 transcripts per cell. We directly measured technical
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stochasticity by a pool/split design, and found that there are significant differences in

expression between individual cells, over and above technical variation. We identified

specific gene coexpression modules that were preferentially expressed in subsets of in-

dividual cells, including one enriched for mRNA processing and splicing factors. We

assessed cell-to-cell variation in alternative splicing and allelic bias, and found evidence

for significant differences in splice site usage between individual cells that exceed the

observed variation in the pool/split comparison. We also found similar cell-to-cell dif-

ferences in allelic bias suggesting widespread random monallelic expression, however,

such differences were also observed (although at lower levels) in pool/splits and have

to be considered a provisional result until further improvements in experimental proto-

cols. Finally, we showed that transcriptomes from small pools of 30-100 cells approach

the information content and reproducibility of RNA-seq from large amounts of input

material.

3.1 Introduction

Gene expression levels can differ widely between superficially similar cells. One source of variation

is stochastic transcriptional “bursting” Elowitz et al. 2002; Ozbudak et al. 2002; Blake et al. 2003;

Raser & O’Shea 2005; Kaufmann & van Oudenaarden 2007). Those studies mainly used fluorescent

protein fusion genes to monitor the expression of one or a few genes. They revealed dynamic

fluctuations through time that are seen as “salt-and-pepper” variation across a cell population at

any given time. In addition to this bursting behavior, individual cells are expected to display

controlled and coordinated differences in the expression of genes engaged in dynamic physiologic

processes, such as cell cycle phase progression, paracrine or autocrine signaling response, or stress

response.
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Figure 3.1: Detection of expressed genes in simulated datasets as a function of the single
molecule capture efficiency, the number of cells and the average number of transcripts
per cell. (A) Average of 50,000 mRNAs per cell. (B) Average of 100,000 mRNAs per cell. (C)
Average of 200,000 mRNAs per cell. (D) Average of 500,000 mRNAs per cell. (E) Average of
1,000,000 mRNAs per cell. See the Methods section for full details on how the simulation was
carried out.
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Figure 3.2 (preceding page): Accuracy of estimation of population-level gene abundance
as a function of the number of cells pooled and the single molecule capture probability.
Average of 50,000 mRNAs per cell. Shown is the fraction of genes at the indicated expression levels in
FPKM in a bulk RNA-seq dataset, whose estimated expression level in FPKM in simulated libraries
was within 20% of their true value after stochasticity due to the probability of capture of cells that
express them and the single-molecule capture efficiency of the library-building protocol have been
modeled. See the Methods section for full details on how the simulation was carried out.

Figure 3.3: (following page) Accuracy of estimation of population-level gene abundance
as a function of the number of cells pooled and the single molecule capture probability.
Average of 100,000 mRNAs per cell. Shown is the fraction of genes at the indicated expression
levels in FPKM in a bulk RNA-seq dataset, whose estimated expression level in FPKM in simulated
libraries was within 20% of their true value after stochasticity due to the probability of capture of
cells that express them and the single-molecule capture efficiency of the library-building protocol
have been modeled. See the Methods section for full details on how the simulation was carried out.
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Figure 3.4 (preceding page): Accuracy of estimation of population-level gene abundance
as a function of the number of cells pooled and the single molecule capture probability.
Average of 200,000 mRNAs per cell. Shown is the fraction of genes at the indicated expression
levels in FPKM in a bulk RNA-seq dataset, whose estimated expression level in FPKM in simulated
libraries was within 20% of their true value after stochasticity due to the probability of capture of
cells that express them and the single-molecule capture efficiency of the library-building protocol
have been modeled. See the Methods section for full details on how the simulation was carried out.

Figure 3.5: (following page) Accuracy of estimation of population-level gene abundance
as a function of the number of cells pooled and the single molecule capture probability.
Average of 500,000 mRNAs per cell. Shown is the fraction of genes at the indicated expression
levels in FPKM in a bulk RNA-seq dataset, whose estimated expression level in FPKM in simulated
libraries was within 20% of their true value after stochasticity due to the probability of capture of
cells that express them and the single-molecule capture efficiency of the library-building protocol
have been modeled. See the Methods section for full details on how the simulation was carried out.



130



131



132

Figure 3.6 (preceding page): Accuracy of estimation of population-level gene abundance
as a function of the number of cells pooled and the single molecule capture probability.
Average of 1,000,000 mRNAs per cell. Shown is the fraction of genes at the indicated expression
levels in FPKM in a bulk RNA-seq dataset, whose estimated expression level in FPKM in simulated
libraries was within 20% of their true value after stochasticity due to the probability of capture of
cells that express them and the single-molecule capture efficiency of the library-building protocol
have been modeled. See the Methods section for full details on how the simulation was carried out.

Figure 3.7: (following page) Accuracy of estimation of gene abundance within a cell pool
as a function of the number of cells pooled and the single molecule capture probability.
Average of 50,000 mRNAs per cell. Shown is the fraction of genes at the indicated expression levels in
FPKM in a bulk RNA-seq dataset, whose estimated expression level in FPKM in simulated libraries
was within 20% of their true value after stochasticity due to the probability of capture of cells that
express them and the single-molecule capture efficiency of the library-building protocol have been
modeled. See the Methods section for full details on how the simulation was carried out.
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Figure 3.8 (preceding page): Accuracy of estimation of gene abundance within a cell
pool as a function of the number of cells pooled and the single molecule capture prob-
ability. Average of 100,000 mRNAs per cell. Shown is the fraction of genes at the indicated
expression levels in FPKM in a bulk RNA-seq dataset, whose estimated expression level in FPKM
in simulated libraries was within 20% of their true value after stochasticity due to the probability of
capture of cells that express them and the single-molecule capture efficiency of the library-building
protocol have been modeled. See the Methods section for full details on how the simulation was
carried out.

Figure 3.9: (following page) Accuracy of estimation of gene abundance within a cell pool
as a function of the number of cells pooled and the single molecule capture probability.
Average of 200,000 mRNAs per cell. Shown is the fraction of genes at the indicated expression
levels in FPKM in a bulk RNA-seq dataset, whose estimated expression level in FPKM in simulated
libraries was within 20% of their true value after stochasticity due to the probability of capture of
cells that express them and the single-molecule capture efficiency of the library-building protocol
have been modeled. See the Methods section for full details on how the simulation was carried out.
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Figure 3.10 (preceding page): Accuracy of estimation of gene abundance within a
cell pool as a function of the number of cells pooled and the single molecule capture
probability. Average of 500,000 mRNAs per cell. Shown is the fraction of genes at the indicated
expression levels in FPKM in a bulk RNA-seq dataset, whose estimated expression level in FPKM
in simulated libraries was within 20% of their true value after stochasticity due to the probability of
capture of cells that express them and the single-molecule capture efficiency of the library-building
protocol have been modeled. See the Methods section for full details on how the simulation was
carried out.

Figure 3.11: (following page) Accuracy of estimation of gene abundance within a cell
pool as a function of the number of cells pooled and the single molecule capture prob-
ability. Average of 1,000,000 mRNAs per cell. Shown is the fraction of genes at the indicated
expression levels in FPKM in a bulk RNA-seq dataset, whose estimated expression level in FPKM
in simulated libraries was within 20% of their true value after stochasticity due to the probability of
capture of cells that express them and the single-molecule capture efficiency of the library-building
protocol have been modeled. See the Methods section for full details on how the simulation was
carried out.
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Figure 3.12 (preceding page): Accuracy of estimation of the ratio between the
expression values of two genes in bulk RNA-seq as a function of the single molecule
capture probability and the size of the cell pool in simulated transcriptomes. A single
cell, average of 100,000 mRNAs per cell. Genes were split into groups according to their expression
levels (step size of 1 on a log2 scale, shown on each axis) and the fraction of gene pairs {A,B} for
which RAB < 0.5 was calculated, where

RAB =

FPKMpool
A

FPKMpool
A + FPKMpool

B

FPKMbulk
A

FPKMbulk
A + FPKMbulk

B

and FPKMbulk
A < FPKMbulk

B . Empty cells contain no gene pairs with the indicated expres-
sion values.

Figure 3.13: (following page) Accuracy of estimation of the ratio between the expres-
sion values of two genes in bulk RNA-seq as a function of the single molecule capture
probability and the size of the cell pool in simulated transcriptomes. A pool of 5 cells,
average of 100,000 mRNAs per cell. Genes were split into groups according to their expression
levels (step size of 1 on a log2 scale, shown on each axis) and the fraction of gene pairs {A,B} for
which RAB < 0.5 was calculated, where

RAB =

FPKMpool
A

FPKMpool
A + FPKMpool

B

FPKMbulk
A

FPKMbulk
A + FPKMbulk

B

and FPKMbulk
A < FPKMbulk

B . Empty cells contain no gene pairs with the indicated expres-
sion values.
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Figure 3.14 (preceding page): Accuracy of estimation of the ratio between the
expression values of two genes in bulk RNA-seq as a function of the single molecule
capture probability and the size of the cell pool in simulated transcriptomes. A pool
of 10 cells, average of 100,000 mRNAs per cell. Genes were split into groups according to their
expression levels (step size of 1 on a log2 scale, shown on each axis) and the fraction of gene pairs
{A,B} for which RAB < 0.5 was calculated, where

RAB =

FPKMpool
A

FPKMpool
A + FPKMpool

B

FPKMbulk
A

FPKMbulk
A + FPKMbulk

B

and FPKMbulk
A < FPKMbulk

B . Empty cells contain no gene pairs with the indicated expres-
sion values.

Figure 3.15: (following page) Accuracy of estimation of the ratio between the expres-
sion values of two genes in bulk RNA-seq as a function of the single molecule capture
probability and the size of the cell pool in simulated transcriptomes. A pool of 30 cells,
average of 100,000 mRNAs per cell. Genes were split into groups according to their expression
levels (step size of 1 on a log2 scale, shown on each axis) and the fraction of gene pairs {A,B} for
which RAB < 0.5 was calculated, where

RAB =

FPKMpool
A

FPKMpool
A + FPKMpool

B

FPKMbulk
A

FPKMbulk
A + FPKMbulk

B

and FPKMbulk
A < FPKMbulk

B . Empty cells contain no gene pairs with the indicated expres-
sion values.
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Figure 3.16 (preceding page): Accuracy of estimation of the ratio between the
expression values of two genes in bulk RNA-seq as a function of the single molecule
capture probability and the size of the cell pool in simulated transcriptomes. A pool
of 50 cells, average of 100,000 mRNAs per cell. Genes were split into groups according to their
expression levels (step size of 1 on a log2 scale, shown on each axis) and the fraction of gene pairs
{A,B} for which RAB < 0.5 was calculated, where

RAB =

FPKMpool
A

FPKMpool
A + FPKMpool

B

FPKMbulk
A

FPKMbulk
A + FPKMbulk

B

and FPKMbulk
A < FPKMbulk

B . Empty cells contain no gene pairs with the indicated expres-
sion values.

Figure 3.17: (following page) Accuracy of estimation of the ratio between the expres-
sion values of two genes in bulk RNA-seq as a function of the single molecule capture
probability and the size of the cell pool in simulated transcriptomes. A pool of 100 cells,
average of 100,000 mRNAs per cell. Genes were split into groups according to their expression
levels (step size of 1 on a log2 scale, shown on each axis) and the fraction of gene pairs {A,B} for
which RAB < 0.5 was calculated, where

RAB =

FPKMpool
A

FPKMpool
A + FPKMpool

B

FPKMbulk
A

FPKMbulk
A + FPKMbulk

B

and FPKMbulk
A < FPKMbulk

B . Empty cells contain no gene pairs with the indicated expres-
sion values.
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Figure 3.18 (preceding page): Accuracy of estimation of the ratio between the
expression values of two genes in bulk RNA-seq as a function of the single molecule
capture probability and the size of the cell pool in simulated transcriptomes. A pool
of 1000 cells, average of 100,000 mRNAs per cell. Genes were split into groups according to their
expression levels (step size of 1 on a log2 scale, shown on each axis) and the fraction of gene pairs
{A,B} for which RAB < 0.5 was calculated, where

RAB =

FPKMpool
A

FPKMpool
A + FPKMpool

B

FPKMbulk
A

FPKMbulk
A + FPKMbulk

B

and FPKMbulk
A < FPKMbulk

B . Empty cells contain no gene pairs with the indicated expres-
sion values.

Figure 3.19: (following page) Accuracy of estimation of the ratio between the expres-
sion values of two genes in a cell pool as a function of the single molecule capture
probability. A single cell, average of 100,000 mRNAs per cell. Genes were split into groups
according to their expression levels (step size of 1 on a log2 scale, shown on each axis) and the
fraction of gene pairs {A,B} for which RAB < 0.5 was calculated, where

RAB =

FPKMpool
A

FPKMpool
A + FPKMpool

B

FPKMbulk
A

FPKMbulk
A + FPKMbulk

B

and FPKMbulk
A < FPKMbulk

B . Empty cells contain no gene pairs with the indicated expres-
sion values.
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Figure 3.20 (preceding page): Accuracy of estimation of the ratio between the expres-
sion values of two genes in a cell pool as a function of the single molecule capture
probability. A pool of 5 cells, average of 100,000 mRNAs per cell. Genes were split into groups
according to their expression levels (step size of 1 on a log2 scale, shown on each axis) and the
fraction of gene pairs {A,B} for which RAB < 0.5 was calculated, where

RAB =

FPKMpool
A

FPKMpool
A + FPKMpool

B

FPKMbulk
A

FPKMbulk
A + FPKMbulk

B

and FPKMbulk
A < FPKMbulk

B . Empty cells contain no gene pairs with the indicated expres-
sion values.

Figure 3.21: (following page) Accuracy of estimation of the ratio between the expres-
sion values of two genes in a cell pool as a function of the single molecule capture
probability. A pool of 10 cells, average of 100,000 mRNAs per cell. Genes were split into groups
according to their expression levels (step size of 1 on a log2 scale, shown on each axis) and the
fraction of gene pairs {A,B} for which RAB < 0.5 was calculated, where

RAB =

FPKMpool
A

FPKMpool
A + FPKMpool

B

FPKMbulk
A

FPKMbulk
A + FPKMbulk

B

and FPKMbulk
A < FPKMbulk

B . Empty cells contain no gene pairs with the indicated expres-
sion values.
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Figure 3.22 (preceding page): Accuracy of estimation of the ratio between the expres-
sion values of two genes in a cell pool as a function of the single molecule capture
probability. A pool of 30 cells, average of 100,000 mRNAs per cell. Genes were split into groups
according to their expression levels (step size of 1 on a log2 scale, shown on each axis) and the
fraction of gene pairs {A,B} for which RAB < 0.5 was calculated, where

RAB =

FPKMpool
A

FPKMpool
A + FPKMpool

B

FPKMbulk
A

FPKMbulk
A + FPKMbulk

B

and FPKMbulk
A < FPKMbulk

B . Empty cells contain no gene pairs with the indicated expres-
sion values.

Figure 3.23: (following page) Accuracy of estimation of the ratio between the expres-
sion values of two genes in a cell pool as a function of the single molecule capture
probability. A pool of 50 cells, average of 100,000 mRNAs per cell. Genes were split into groups
according to their expression levels (step size of 1 on a log2 scale, shown on each axis) and the
fraction of gene pairs {A,B} for which RAB < 0.5 was calculated, where

RAB =

FPKMpool
A

FPKMpool
A + FPKMpool

B

FPKMbulk
A

FPKMbulk
A + FPKMbulk

B

and FPKMbulk
A < FPKMbulk

B . Empty cells contain no gene pairs with the indicated expres-
sion values.
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Figure 3.24 (preceding page): Accuracy of estimation of the ratio between the expres-
sion values of two genes in a cell pool as a function of the single molecule capture
probability. A pool of 100 cells, average of 100,000 mRNAs per cell. Genes were split into groups
according to their expression levels (step size of 1 on a log2 scale, shown on each axis) and the
fraction of gene pairs {A,B} for which RAB < 0.5 was calculated, where

RAB =

FPKMpool
A

FPKMpool
A + FPKMpool

B

FPKMbulk
A

FPKMbulk
A + FPKMbulk

B

and FPKMbulk
A < FPKMbulk

B . Empty cells contain no gene pairs with the indicated expres-
sion values.

Figure 3.25: (following page) Accuracy of estimation of the ratio between the expres-
sion values of two genes in a cell pool as a function of the single molecule capture
probability. A pool of 1000 cells, average of 100,000 mRNAs per cell. Genes were split into groups
according to their expression levels (step size of 1 on a log2 scale, shown on each axis) and the
fraction of gene pairs {A,B} for which RAB < 0.5 was calculated, where

RAB =

FPKMpool
A

FPKMpool
A + FPKMpool

B

FPKMbulk
A

FPKMbulk
A + FPKMbulk

B

and FPKMbulk
A < FPKMbulk

B . Empty cells contain no gene pairs with the indicated expres-
sion values.
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Figure 3.26: Simulated and measured transcriptome profiles from individual cells and
small cell pools. (A) Number of detected genes in simulated datasets as a function of the number
of cells pooled and the single molecule capture efficiency (psmc) (assuming 100,000 mRNA molecules
per cell). See Supplementary Figure 1 for full details. (B and C) Accuracy of gene expression
estimation as a function of the number of cells pooled and the single molecule capture efficiency;
psmc = 0.1 in (B) and psmc = 0.8 in (C), 100,000 mRNA molecules per cell assumed. Shown is the
fraction of genes at the indicated expression levels in FPKM, whose estimated expression level in
FPKM in simulated libraries was within 20% of their true value, after modeling the stochasticity due
to the single-molecule capture efficiency of the library-building protocol. See the Methods section
and Supplementary Figures 2-11 for full details. Note that the simulation is intended to illuminate
the relative effects of the various parameters studied, and the absolute numbers of genes should not
be directly compared to the real-life data shown in (G). (D) Experimental design. Single cells are
combined with spike-in quantification standards and SMART-seq libraries are generated. In parallel,
multiple single cells are pooled together and combined with spikes, then lysed and split into the same
number of reactions and converted into SMART-seq libraries. Libraries are then sequenced, data
processed computationally and estimates for the absolute number of copies per cell are derived based
on the spikes. Variation in pool/split experiments is due to technical stochasticity, while variation
in single-cell libraries is a combination of biological variation and technical noise. (E) Uniformity of
transcript coverage. Shown is the average coverage along the length of an mRNA for single cells and
pool/split experiments. Only mRNAs longer than 1kb from genes with a single annotated isoform in
the refSeq annotation set were included. See Supplementary Figure 29 for more details. (F) Number
of detected protein coding genes for libraries built from 10ng and 100pg of polyA RNA, pools of 100,
30 and 10 cells, representative pool/split experiments (individually and summed across all libraries)
and representative single cells (individually and summed across all libraries). (G) Fraction of genes
from 100 ng bulk polyA+ RNA libraries that were detected in pools of 100, 30 or 10 cells, 100pg of
polyA+ RNA, pools/split experiments and single-cells. FPKM is shown on the X-axis.
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Table 3.1: Initial amounts of spiked-in sequences in absolute number of RNA copies.
Note that two more spikes, “Lambda 9786 clone F” (9786bp) and “Lambda 11300 clone G” (11290bp)
were included in libraries, however, they exhibit highly non-uniform read coverage leading to unre-
liable quantification estimates and were thus excluded.

Spike-in Libraries 12515-12543 Libraries 12818-13303

AGP23 100 5

AP2 5 50

EPR1 20 10

OBF5 10 500

PDF1 40 20

VATG3 5000 5000

Figure 3.27: Outline of the single-cell SMART-seq RNA-seq library generation work-
flow.

Beyond such already appreciated heterogeneity lie currently unknown cell-to-cell differences with

biological implications for defining cell states, metabolic function, and in complex tissues, cell iden-

tity.

Measuring RNA transcripts in single cells is now done in multiple ways, and similar conclusions

about variability are emerging from the higher sensitivity methods. For individual genes, Single
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Molecule RNA Fluorescence In Situ Hybridization (SM-RNA FISH) is highly informative (Femino

et al. 1998; Raj et al. 2008), and multiplexed versions now enable multiple genes to be measured in

parallel (Lubeck & Cai 2012). A major advantage of SM-RNA FISH is the ability to accurately count

the absolute number of transcripts in a cell. A second and older approach is multiplexed single-cell

RT-qPCR (Cornelison & Wold 1997), which has now been advanced to increasingly high throughput

formats (White et al. 2011; Sanchez-Freire et al. 2012, Livak et al. 2013). It produces semi-

quantitative relative comparisons between individual cells. However, neither SM-RNA-FISH nor the

Figure 3.28: Uniformity of transcript coverage as a function of transcript length. Shown
is the average coverage along the length of an mRNA for single cells and pool/split experiments.
Only mRNAs with a single annotated isoform in the refSeq annotation set and within the indicated
length limits were included.
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current forms of multiplex RT-qPCR cover the entire transcriptome or have the single-nucleotide

resolution needed to study fine-structure features of gene expression such as allele specificity, RNA

editing and alternative splicing.

To address these and other limitations, elegant methods have recently been developed for per-

forming RNA-seq with very small amounts of RNA, down to the level of individual cells. These

are broadly referred to as “single-cell RNA-seq” (Tang et al. 2009; Tang et al. 2010; Tang et al.

2011; Ozsolak et al. 2010; Islam et al. 2011; Hashimshony et al. 2012; Qiu et al. 2012; Ramsköld

& Luo et al. 2012; Brouilette et al. 2012; Pan et al. 2012, Cann et al. 2012). Despite these

significant advances, there are substantial shortcomings in these methods, and a robust method for

comprehensive and accurate measurement of the transcriptome of a single cell is not yet available.

A particular challenge for single-cell methods is the efficiency and uniformity with which each

mRNA in copied into cDNA, and ultimately represented in the library. This challenge intersects

in crucial ways with transcriptome structure. Specifically, thousands of genes are expressed in

the range of 1 to 30 mRNA copies per cell, including many essential mRNAs (for example, key

transcription factors, Zenklusen et al. 2008). Even lower transcript levels, averaging < 1 mRNA

per cell on the population level, are now being reliably detected by RNA-seq. This raises questions

whether very rare RNAs represent background biological noise, or alternatively, are functional in

only a small fraction of cells. Single-cell RNA-seq has the potential to address these issues, but

their resolution depends on how faithfully and efficiently RNAs are captured and represented in

sequencing libraries (referred to throughout as the “single-molecule capture efficiency”, psmc). In

addition, the uniformity of transcript coverage in early single-cell RNA-seq protocols has typically

been heavily biased towards the 3’ end, which affects both gene expression estimates and the ability

to analyze alternative splicing, RNA editing and allelic bias.

A second major use for single-cell RNA-seq is the transcriptomic characterization of rare cells.

The human body consists of hundreds of distinct cell types, plus large numbers of neuronal and

transient developmental cell types. Many of these are numerically minor components of complex

tissues, making them inaccessible to standard methods relying on large RNA inputs. Isolation of

single cells based on the cell surface markers or using microdissection coupled with single-cell RNA-

seq could fill this gap in our understanding of gene expression patterns in complex multicellular

organisms. However, the feasibility of this approach also depends on the experimental robustness of

single-cell RNA-seq protocols. Alternatively, single-cell resolution may not be absolutely required for

this purpose and small pools of cells may be sufficient to characterize rare cell type transcriptomes;

an open unresolved question is how small such pools can be to adequately meet that goal.
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We addressed the issues highlighted above using the SMART-seq protocol (Ramsköld & Luo et

al. 2012) to measure the transcriptome of single cells and small cell pools from the GM12878 lym-

phoblastoid cell line. This line is derived from the NA12878 individual, for which a fully sequenced

genome with completely phased heterozygous single nucleotide polymorphisms (SNPs) and indels is

available (1000 Genomes Project Consortium 2012). GM12878 cells have also been the subject of

an extensive functional genomic characterization by the ENCODE Consortium (ENCODE Project

Consortium 2011; ENCODE Project Consortium 2012) and have been used in prior studies aiming

at characterizing allele-biased gene expression and transcription factor occupancy (Rozowsky et al.

2011; Reddy et al, 2012).

Using spike-in quantification standards of known abundance (Mortazavi & Williams et al. 2008)

we derived estimates for the absolute number of transcript copies for each gene in each cell, and

directly measured the average value of psmc. “Pool/split” experiments (consisting of pooling RNA

from multiple single cells, splitting the pool into the same number of separate reactions and building

libraries from them) allowed us to measure the extent and impact of and control for technical

variation. We found that the psmc value is quite low (∼0.1). An analysis framework accounting

for technical stochasticity was developed, which we used to assess variability in gene expression,

allelic bias, and alternative splicing at the single cell level. Distinct from prior studies, our approach

allowed us to parse findings into those that are just as likely to be of technical origins and those

that are more likely to be of biological interest.

We found evidence of significant variability in the total number of mRNA molecules per cell,

which underscores the importance of working with absolute copies-per-cell estimates when analyzing

single cells as opposed to the widely used R/FPKM (Reads/Fragments Per Kilobase per Million

mapped reads/fragments) metric that only measures the relative abundance of genes in a library

(FPKMs are still the better metric to use for larger cell pools). We identified biologically coherent

modules of coexpressed genes specifically expressed in individual cells or groups of cells. These

include expected variation associated with cell cycle phases, and an unexpected module enriched

mRNA processing and splicing genes. We observed evidence of higher levels of autosomal allelic

exclusion on the single-cell level, potentially associated with transcription bursts, however it is at

present difficult to confidently distinguish from technical variability. In contrast, we found much

stronger evidence for widespread major splice site usage switches between individual cells. Finally,

our analysis of similarly constructed small cell pools (30 to 100 cells) revealed a high robustness and

reproducibility, approaching that of bulk RNA measurements. This presents a reliable path forward

towards the future comprehensive transcriptomic characterization of rare cell types.
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3.2 Results

3.2.1 In silico examination of major variables affecting informativeness

of single-cell and small cell-pool RNA-seq

We began this study with two goals: first, to study gene expression heterogeneity in GM12878

cells on the single-cell level, and second, to determine the minimal optimal size of cell pools that

is informative of the characteristics of the larger cell population, with the goal of applying that

approach to rare cell types in future studies. How well these goals are achieved depends on several

parameters affecting biological and technical stochasticity and detection sensitivity, the values of

which were unknown. To understand their influence, we carried out a simulation of single-cell and

cell-pool transcriptomes (see the Methods section for details) by varying the following parameters:

1. Single-molecule capture efficiency (psmc). In contrast to bulk RNA-seq libraries, an

individual cell contains a very limited total number of mRNA molecules. Individual genes can

be present in single-digit transcript numbers. If only a fraction of mRNAs are successfully

represented in a library, a technical stochasticity component is introduced. Depending on

its magnitude, data interpretability can be significantly affected due to false negatives and a

distortion of relative gene abundance estimates. The psmc parameter is the probability that

any given original RNA molecule is captured in the final library. We examined the effect on

expression quantification of psmc ranging from 0.01 to 1.

2. Total number of mRNA molecules per cell. The impact of low psmc on expression

measurements will be more severe if fewer mRNA molecules are present in a cell. The average

total number of mRNA molecules in a single cell is not known for most cell types, but it is

Figure 3.29 (preceding page): Technical and biological variation in single-cell RNA-
seq measurements of gene expression. (A) Correlation between expression levels (in FPKM)
between two pools of 100 cells. (B) Correlation between expression levels (in FPKM) between two
pools of 10 cells. (C) Correlation between expression levels (in FPKM) between two representative
pool/split libraries. A pseudocount of 0.001 was added to each data point in the scatter plots
for visualization purposes. (D and E) Hierarchical clustering of estimated copies-per-cell values
for protein coding genes in single-cell (D) and pool/split (E) libraries. Pearson correlation was
used as a distance metric and only genes expressed at a level of at least one estimated copy in at
least one library were included. (F and G) Correlation between estimated copies-per-cell values for
protein coding genes in single-cell libraries (F) and pool/split libraries (G). Two sets of pool/split
experiments (1 and 2) are shown and “1-2” in the box-plot refers to correlations between the two
sets while “1” and “2” refer to correlation within each experiment. Similar plots but using Spearman
correlation are shown in Supplementary Figure 32.
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Figure 3.30: Efficiency of enrichment for polydenylated messages. Shown is the fraction
of reads mapping to exons, introns or integenic space (GENCODE V13 annotation).

expected to vary with cell size, metabolic status, and even cell cycle phase. This means that

single-cell expression measurements in some cell types are likely to be more robust to technical

noise than in others. We varied the total number of mRNAs from 50,000 to 1,000,000 (while

keeping the number of genes expressed constant).

3. Frequency of expression of individual genes in single cells. From prior studies we

expect that some genes will be expressed in all or most cells, while others will be expressed in

only a subset of cells. Genes detected at lower levels in bulk RNA-seq are the most obvious

candidates to be expressed in a subset of cells in a population, although we do not know what

fraction of low-abundance RNAs behave in such a way. This is particularly relevant to cell

pools: a gene expressed at 50 copies per cell but only in 10% of cells would still be stochastically

represented in a pool of 10 cells even if psmc is high. In the absence of reliable data on this, we

modeled the probability of expression in a given single cell with a distribution centered around

very high values for genes highly expressed in bulk RNA-seq measurements, and progressively

lower values with decreasing expression levels (details in the Methods section).

The simulation results are summarized in Figure 3.1 and Figures 3.2-3.25. As expected, low psmc

has a profoundly negative impact on gene expression quantification accuracy and reliability, leading

to frequent false negatives Figure 3.1, and to poor estimates of expression levels. For example, in a
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single cell with 100,000 mRNAs, psmc = 0.1 results in only 40% of genes expressed at 100 FPKM

receiving FPKMs within 20% of the true value (Supplementary Figure 1C), but this fraction rises

to nearly 100% if psmc = 0.8 Figure 3.1G. The quantification of relative expression levels is similarly

affected, with only the most highly expressed genes being consistently well quantified relative to

each other at low psmc (Figure 3.12-3.25.

In contrast, our simulation results indicate that cell pools are much more robust to technical

noise, with 90% of genes expressed at 10 FPKM receiving FPKM estimates within 20% of their true

value Figure 3.1C at psmc = 0.1 in a pool of 100 cells. They also represent the expression profiles of

the general population reasonably well Figure 3.1, even at low psmc, starting from a size of ∼30 cells

(10-cell pools seem not to be sufficient to achieve this). Finally, as expected, the larger the number

of total mRNA molecules per cell, the greater is the buffer against technical noise, resulting in more

Figure 3.31: Correlation between expression estimates based on different cell pools
sizes and different amounts of input bulk RNA. Correlation coefficients were calculated on
the log2(FPKM+1) transform of the FPKM estimates for the refSeq annotation, with only protein
coding genes present at ≥ 1 FPKM in at least one library included.
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robust quantification Figures 3.2-3.11.

3.2.2 Transcriptome measurements of individual single cells and

companion pool/splits

The simulation results informed our experimental design, which aimed to gain a firm grasp on

technical stochasticity in two ways Figure 3.26A. First, we generated single-cell RNA-seq libraries

and in parallel carried out “pool/split” experiments. In a pool/split, multiple cells are pooled and

lysed together, then split into the same number of reactions, from which libraries are built. Variation

between these libraries should be purely technical (with stochastic splitting possibly playing a role

at the low end). Variation observed at similar levels in both single cells and pool/splits cannot

be confidently considered real, even if this leads to some true biological variation being obscured.

However, variation above the pool-split level can be identified and ascribed to biological sources.

Figure 3.32: Relation between FPKMs and copies-per-cell estimates in representative
single-cell libraries.
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Figure 3.33: Correspondence between initial spike-in amounts and spike abundance in
sequenced libraries as measured in FPKMs. Error bars represent the standard error of the
mean.

We generated single-cell RNA-seq libraries from 15 single GM12878 cells and from two pairs of

Figure 3.34: Stability of copies per cell estimation. Spike-in sequences of known abundance
(Supplementary Table 2) were added to each reaction prior to library building. A linear regression
calibration was derived based on RPKM/FPKM values calculated for each. Shown is the average
ratio of estimated copies per cell and the actual spiked in copies per cell for these spike sequences.
Error bars represent the standard error of the mean.
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10-cell pool/split experiments. We also sequenced replicates of pools of multiple cells (10, 30 and

100 cells) as well as 100pg and 10ng samples of bulk RNA (corresponding to ∼10 and ∼1000 cells),

to assess the stability of measurements as a function of the amount of starting material.

We used the SMART-seq protocol (Ramsköld & Luo et al. 2012) (Figure 3.27) to generate our

libraries. A detailed description of the protocol, as we implemented it, is presented in the Methods

section. We obtained nearly uniform full-length transcript coverage (Figure 3.26B, Figure 3.28).

Uniformity of coverage, which depends on the intactness of RNAs and the successful copying of

full-length molecules, is highly desirable for several reasons. First, RNA-seq data quantification

using the RPKM/FPKM metric (Mortazavi & Williams et al. 2008; Trapnell et al. 2010), makes

an implicit assumption of full coverage. Second, it enables the analysis of alternative splicing and

allelic bias as read coverage of 5’-proximal splice sites and heterozygous positions is ensured.

We added spike-in quantification standards of known abundance (in absolute number of RNA

copies, Table 3.1) at the very beginning of cDNA synthesis. This allows us to, first, estimate psmc,

and second, derive gene expression estimates in absolute numbers of copies per cell. The latter is

important because while FPKM is useful for comparing expression levels within a library, it can only

be used to compare directly across different libraries when the total amount of RNA in each starting

sample is roughly the same (Anders & Huber 2010). This assumption is usually only mildly violated

when working with bulk samples, but when single cells are compared, it becomes significantly more

problematic as the variation in the total amount of RNA in each cell is expected to be much larger.

The extent of variation in the total amount of RNA between single cells is not known a priori, but

it will often be larger than that between the averages of large populations of cells. For this reason,

the ideal single-cell RNA-seq protocol would directly measure the absolute number of transcripts per

cell. This is not possible with the protocols existing at the time of this work, including SMART-seq.

Each original cDNA molecule is amplified to a large number of copies which are then subjected to

tagmentation and a second round of PCR; this erases any relation between original molecules and

the fragments in the final sequencing library as each founder molecule results in multiple overlapping

smaller fragments in the final library.

Figures 3.26 and 3.29 summarize the technical characterization of the SMART-seq protocol

applied to GM12878 cells. In addition to the mostly complete coverage along transcript length,

sequencing libraries were also highly enriched for exonic sequences (Figure 3.30), indicating a high

efficiency of enrichment for polyadenylated molecules.
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3.2.3 Gene detection in single cells versus pools of varied sizes

We compared single cell and pool/split libraries, as well as cell pools, with bulk RNA samples from

GM12878 cells (Figure 3.26C). In bulk RNA libraries, we detect about 12,000 genes expressed at

more than 0.1FPKM. A similar number of genes, between 4,000 and 5,000, is detected in both single

cell and pool/split libraries. These differences between single cells and bulk libraries are due mostly

to genes expressed at low levels. Genes expressed at more than 100 FPKM in 10ng bulk RNA samples

are detected in almost all libraries, while only ∼30% of genes expressed at ∼10 FPKM and 10%

of genes expressed at ∼1FPKM were detected in any given single cell (Figure 3.26D). Notably, the

number of genes detected in both 100-cell and 30-cell pools was similar to that detected in the 10ng

libraries (∼11,000). In contrast, in the 10-cell pools and 100pg libraries lower numbers of genes were

detected, between 6,000 and 7,000. This is consistent with simulation results suggesting that 30 cells

is the lower limit of cell number at which the transcriptome library complexity begins to approach

that of the larger cell population. This is corroborated by the correlation between the expression

levels of replicate measurements (Figure 3.29A, Figure 3.31). In contrast, a sizable population of

genes present at high levels in one replicate and at very low levels or completely absent in the other

appears in 10-cell pools (Figure 3.29B) and especially, in pool/split libraries (Figure 3.29C). Finally,

union sets of genes detected in all individual cell libraries and in all pool-split libraries was ∼10,000,

which was in the range seen for 30-100-cell pools.

3.2.4 Pool/splits measure technical variation and reveal biological

variation among single cells

The observed variations in gene expression levels and detection can be explained as a combination

of some genes not being expressed in each and every cell and low psmc resulting in large numbers of

false negatives. We calculated the average psmc across all libraries based on the detection of spike-ins

(details in Methods). This number is in our estimates ∼0.1. We also estimated that for GM12878

single cells one transcript copy corresponds to on average to ∼10 FPKM 3.32. This agrees well

with the observation that detection of genes becomes unstable below ∼100FPKM (Figure 3.29B and

3.29C), which in turn is consistent with previous observations (Ramsköld & Luo et al. 2012).

We compared expression measurements in single-cell and pool/split libraries. Hierarchical clus-

tering of each group is shown in Figures 3.29D and 3.29E (with two independent biological repli-

cate pool/spit experiments shown in Figure 3.29E). The distances between the expression profiles

within the same pool/split experiment were significantly smaller than those for individual single
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cells (branch lengths in Figures 3.29D and 3.29E) and average correlations between single cells were

accordingly lower than those between libraries from the same pool/split (Figures 3.29F and 3.29G).

A notable feature of the data are small clusters of genes present at high levels in only one library.

These are more prominent in single cells than in pool/splits, yet they are clearly present in all sam-

ples. In single cells, this is due to a mixture of stochastic capture effects and real biological variation.

In pool/splits, stochastic capture is the predominant source. It is important to note that given the

low psmc, it is difficult to determine the cause of variation for any given gene. Nevertheless, the

major conclusion at the transcriptome level is that there are biological differences between single

cells because the technical stochasticity in pool/splits is significantly less than variation across single

cells.

3.2.5 Estimating absolute transcript levels in single cells

Absolute transcript counts are the biologically relevant values ideally obtained from a single-cell gene

expression profiling experiment because, as discussed above, FPKM is a poor metric for comparing

gene expression levels in individual cells if the total amount of RNA varies a lot. We derived

transcript number estimates for each gene based on the FPKM values of spike-ins. We observed

good agreement between the input number of spike-in RNA copies and the corresponding FPKM

values in the final libraries (Figures 3.33 and 3.34).

We used the transcripts-per-cell estimates for all subsequent analyses. Previous studies have

reported that genes can be separated into two distinct groups based on their expression levels - one

group expressed at high (> 1FPKM) levels and one at very low (<< 1 FPKM) (Hebenstreit et

al. 2011). We examined the distribution of estimated copies per cell in single cells in pool/splits

(Figure 3.35A). We found that in individual cells, most protein coding genes are expressed at levels

between 1 and ∼50 copies per cell. The distribution suggests a roughly equal number of genes at each

level except for a larger group of transcripts with fractional transcript-per-cell values. Obviously,

single-cell determinations are constrained in a way that population level measurements cannot be:

one transcript per cell is the minimum non-zero value possible. The lower values likely represent

a combination of mapping artifacts (due to high sequence homology of paralogs) and RNAs that

were both present at low levels and poorly represented (due, for example, to the fragmentation of a

single original RNA molecule resulting in artificially low FPKMs as a result to coverage only at the

3’ end). The distribution of estimated copies in pool/split libraries exhibited a more linear decrease

in the number of more highly expressed genes, consistent with averaging of variation between cells.
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Figure 3.35 (preceding page): Absolute expression levels at the single cell level. FPKM
values converted to estimated copies per cell using the spike-in quantification standards are shown.
(A) Distribution of expression levels of refSeq protein coding genes in estimated copies per cell in
single-cells and pool/split experiments. (B) Distribution of expression levels of GENCODE V13
lncRNA protein coding genes in estimated copies per cell in single-cells (red) and pool/split ex-
periments (blue). (C) Total number of mRNA copies per cell in single cells. (D) Total number
of mRNA copies in pool/split experiments; (E) Expression levels of house-keeping and highly ex-
pressed genes (GAPDH, CD74, left panel) and general (CTCF, REST, YY1 ) and B-cell regulatory
(PAX5, EBF1, BCL11A, ETS1, IRF4, IKZF1, PBX3, POU2F2, RUNX3, TCF3, TCF12 ) transcrip-
tion factors (right panel). Upper and middle panels show the estimated copies-per-cell numbers for
single-cells and pool/splits respectively. The lower panel shows FPKM values for cell pools and bulk
RNA libraries. (F, G and H) Distribution of absolute expression levels in copies per cell in single
cells for translation initiation, elongation and termination proteins (F), splicing regulators (G) and
transcription factors (H). The list of translation proteins was retrieved from the corresponding GO
category annotations downloaded from FuncAssociate 2.0 (Berriz et al. 2009). The list of splicing
regulators was obtained from the SpliceAid-F database of human splicing factors (Giulietti et al.
2013). The list of transcription factors used was the one from Vaquerizas et al. 2009. Note that
only values ≥0.1 estimated copies per cell were included in these plots, i.e. libraries in which the
genes was not detected were excluded.

Figure 3.36: Ratio of the variance of single cell and pool/split libraries vs. average
estimated number of mRNA molecules. The vertical line corresponds to a variance ratio of
1.5. Genes with a variance ratio higher than 1.5 were retained for network construction. Most genes
with a lower ratio (and correspondingly high variance in pool/split libraries) have a relatively low
average estimated number of mRNA molecules per cell.
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Figure 3.37: Optimization of the soft threshold parameter for constructing weighted
correlation gene expression network. (A) Scale independence (B) Mean connectivity. A value
of β = 6 was used for network construction.

Figure 3.38: Cluster dendrogram of gene coexpression modules derived from single
GM12878 cells..
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Figure 3.39: Average correlation within and between coexpression modules in single
cells and pool/splits. Modules are sorted by decreasing size. (A) Single cells. (B) Pool/splits
.

We also examined the distribution of the expression levels of long non-coding RNAs (lncRNAs,

Guttman et al. 2009). Consistent with previous observations (Ramsköld et al. 2009; Guttman et al.

2010; Djebali & Davis et al. 2012), lncRNAs have generally much lower expression levels compared

to protein coding genes (Figure 3.35B). We note that accurate quantification of the absolute number

of copies is of great relevance to understanding lncRNA biology as both cis and trans models for the

function of lncRNAs have been proposed (Koziol & Rinn, 2010; Rinn & Chang, 2012) and lncRNAs

functioning in cis are expected to be expressed at lower levels (possibly only one or two copies per

cell) compared to lncRNAs acting in trans. At present, copies-per-cell estimates are not sufficiently

reliable for this issue to be conclusively resolved (in addition, the SMART-seq protocol is specific

for polyA+ RNAs while it cannot be assumed that lncRNAs, especially the cis-acting ones, are

polyadenylated); nevertheless, we expect future improvements in single-cell RNA-seq methodology

to be highly informative in understanding lncRNA biology.

We were also able to directly assess the total number of mRNAs present in each cell (Figures 3.35C

and 3.35D). Based on the average mass of RNA in each cell (derived from bulk RNA samples from

know number of cells) and the average length of mRNAs in the human genome, we estimated that

each GM12878 cell contains on average 80,000 mRNAs. However, we observed striking cell-to-cell

differences in the total transcript number of single cells, with some cells expressing <50,000 mRNAs

and others almost 300,000. In contrast, pool/split experiments exhibited remarkable uniformity
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Figure 3.40: Gene coexpression modules derived from single GM12878 cells. Weighted
gene correlation networks were constructed using the WCGNA R package (Langfelder & Horvath
2008). (A). Expression levels and hierarchical clustering of genes within modules (modules are sorted
by number, which corresponds to their size) in single cells and pool/split experiments. Only genes
are clustered (dendrograms on the left) and the identity of the cells and pool/split experiments is the
same in each column (two right panels). The absolute expression values of genes belonging to repre-
sentative GO categories associated with cell cycle phases (modules 1 and 6) and mRNA processing
and splicing (module 2) are also shown. (B) Distribution of cell cycle states in a representative
GM12878 cell population, in growth media (GM) and picking media (PM). The fraction of cells in
M phase is consistent with 1 such cell being picked in a sample of 15.

(between 50,000 and 100,000 transcripts), and agree well with prior expectations. It is therefore

unlikely that the observed cell-to-cell variability is due to technical noise.

Because transcriptional regulators play a crucial role in defining the gene expression state of

cells, we examined the expression of several well-known general transcription factors as well as major

regulators of B-cell differentiation (Figure 3.35E). Remarkably, except for IRF4, which was usually

expressed at several dozen copies, most factors were detected at <10 copies per cell, and were often

not detected at all. We stress that this does not mean that they are not expressed. Given the 10%

psmc of the protocol, these observations are consistent with simple technical failure to detect them.
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It is also possible that there are no mRNA copies in some cells at the moment of harvest, especially

if they are infrequently transcribed. Extending these observations to other functional groups, we

assessed proteins involved in translation (as a major group of genes with housekeeping functions,

Figure 3.35F), splicing regulators (Figure 3.35G) and all transcription factors (Figure 3.35H). The

median number of copies per cell was ∼100 for translation proteins, ∼10 for splicing regulators,

and strikingly, only ∼3 for transcription factors. This highlights the differences that exist between

certain functional categories of genes in the robustness of their quantification in single-cell RNA-seq

analysis, depending on their expression levels.

3.2.6 Identification of modules of coexpressed genes

Cell-to-cell gene expression variability may occur on the level of individual genes, but it can also

occur in a coordinated fashion. A well-studied example is cell cycle phase-specific gene expression.

In an asynchronous culture of cell, groups of genes expressed at specific times during the cell cycle

will be present in a fraction of cells proportional to the time cells spend in each such phase.

To test whether we are able to identify the expected cell cycle-associated variation, and to search

for any novel functional modules, we carried out Weighted Gene Coexpression Network Analysis

(WCGNA, Zhang & Horvath 2005) using the copies per cell estimates for single cells and removing

genes that were highly variant in pool/split libraries in order to minimize technical noise (see Methods

and Figures 3.36 and 3.37). We identified 19 coexpression modules containing ≥10 genes each (Figure

3.38). The expression patterns of these modules were mostly well differentiated among single cells

and were absent from pool/split libraries (Figure 3.40A and Figure 3.39).

We then determined the Gene Ontology (GO) category enrichment of each module. The largest

module (module 1) was highly enriched for GO categories relating to housekeeping gene functions

(Table 3.2 and 3.3) and also for the G1 and S phases of the cell cycle, and contained most genes that

are generally highly expressed (Figure 3.40A). Module 6 was enriched for genes involved in the M

phase of the cell cycle, likely corresponding to a single cell which was in that phase. We tested the

plausibility of this explanation by measuring the fraction of unsynchronized GM12878 cells in the

G0+G1, S, and M phases of the cell cycle using flow cytometry. About 14% of cells were in M phase,

and the probability of capturing exactly one such cell out of 15 is 0.25; that is, these observations

are consistent with this cell alone being in the M phase of the cell cycle (Figure 3.40B).

A more surprising observation was that the second largest module (module 2) was enriched for

genes involved in splicing and mRNA processing. It is driven by an individual cell and two additional
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cells with a somewhat similar expression profile. This cell, however, was not an outlier when splice

site usage patterns were compared between individual cells (data not shown). One interpretation of

these observations is that there is a general upregulation of splicing and mRNA processing factors

in this cell that does not necessarily result in a distinctive alternative splicing program.

Module 3 was enriched for metabolic cofactor and iron-sulfur cluster binding proteins, including

proteins involved in mitochondrial respiratory chains. This is an intriguing observation as module

3 was mostly driven by the two cells exhibiting the highest total number of mRNA molecules per

cell (Figure 3.35C, 4th and 5th columns in clustergram in Figure 3.40A), consistent with a generally

elevated metabolic state.

We also carried out a mirrored analysis WCGNA where pool/splits were treated as single cells

and vice versa. We did not observe significant GO enrichment beyond trivial terms in the largest

modules (Figure 3.41 and Table 3.4).

In addition to the coexpression analysis, we also examined the relationship between the expression

variability of genes and various genomic data about their promoters, including long-range chromatin

interactions, DNA methylation status, histone marks, transcription start site sequence elements,

and CpG islands. No robust explanatory correlation was evident (Figures 3.42-3.46), and we expect

that data with less technical stochasticity will be needed to illuminate relationships of this kind.

3.2.7 Allele-biased expression at the single-cell level

Table 3.2: Representative Gene Ontology categories enriched in coexpressed gene mod-
ules. Gene Ontology enrichment in modules was assessed using FuncAssociate2.0 (Berriz et al.
2009). The full list of enriched categories is available in Table 3.3.

Adjusted

p-value
GO attrib ID attrib name

Module 1

<0.001 GO:0006415 translational termination

<0.001 GO:0006414 translational elongation

<0.001 GO:0070469 respiratory chain

<0.001 GO:0071845 cellular component disassembly at cellular level

<0.001 GO:0004129 cytochrome-c oxidase activity

<0.001 GO:0022904 respiratory electron transport chain

Continued on next page
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Table 3.2 – Continued from previous page

Adjusted

p-value
GO attrib ID attrib name

<0.001 GO:0030964 NADH dehydrogenase complex

<0.001 GO:0072413 signal transduction involved in mitotic cell cycle checkpoint

0.019 GO:0006626 protein targeting to mitochondrion

<0.001 GO:0048002 antigen processing and presentation of peptide antigen

<0.001 GO:0010467 gene expression

<0.001 GO:0006839 mitochondrial transport

0.007 GO:0006458 de novo’ protein folding

<0.001 GO:0016071 mRNA metabolic process

<0.001 GO:0000216 M/G1 transition of mitotic cell cycle

0.014 GO:0000502 proteasome complex

0.005 GO:0060333 interferon-gamma-mediated signaling pathway

<0.001 GO:0000084 S phase of mitotic cell cycle

<0.001 GO:0000082 G1/S transition of mitotic cell cycle

0.005 GO:0000209 protein polyubiquitination

<0.001 GO:0008380 RNA splicing

Module 2

<0.001 GO:0000398 nuclear mRNA splicing, via spliceosome

0.017 GO:0005681 spliceosomal complex

<0.001 GO:0006397 mRNA processing

Module 3

<0.001 GO:0051186 cofactor metabolic process

0.002 GO:0051539 4 iron, 4 sulfur cluster binding

0.021 GO:0051536 iron-sulfur cluster binding

Module 6

0.027 GO:0005680 anaphase-promoting complex

0.001 GO:0007094 mitotic cell cycle spindle assembly checkpoint

Continued on next page
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Table 3.2 – Continued from previous page

Adjusted

p-value
GO attrib ID attrib name

Allele-specific gene expression has been previously reported to be widespread (Gimelbrant et

al. 2007; Pickrell et al. 2010; Rozowsky et al. 2011; Reddy et al. 2012; Zhang & Borevitz

2009; McManus et al. 2010). An intriguing phenomenon observed for hundreds of genes in clonal

lymphoblastoid cell lines (Gimelbrant et al. 2007; Chess 2012) is the random monoallelic expression

of autosomal genes. However, those studies were conducted on large pools of cells, producing a

snapshot of average allelic bias in the population, and leaving open the possibility that monoallelic

expression is even more widespread on the single-cell level.

GM12878 cells are a good system for addressing this issue, as its fully phased heterozygous

genome sequence is available (1000 Genomes Project Consortium 2012). We aligned RNA-seq reads

in an allele-specific manner to the heterozygous GM12878 transcriptome and calculated allelic bias

for each gene as the fraction of reads mapping to the maternal allele. We applied very stringent

criteria for determining statistically significant allele-biased expression events based on the absolute

transcript number estimates and taking into account the challenges presented by the nature of

single-cell RNA-seq data (see Methods for details). Previous studies have evaluated allele-biased

expression examining the ratio of reads mapping to each allele; this approach, however, is not

directly applicable to single-cell data generated with the SMART-seq protocol because of the large

number of heterozygous reads that may be sequenced from a very small number of original founder

molecules in the cell. For this reason, we used the estimated absolute number of mRNA molecules

in the cell to derive estimates for the absolute number of mRNA molecules from each allele, and

required that the allelic ratio for both reads and estimated mRNA copies passes a binomial test for

significance. Finally, we also tested for the possibility that apparent allelic biases are in fact due to

differential stochastic capture of the two alleles (the details are described in the Methods section).

This analysis was carried out on both single-cell and pool/split libraries, and also on 10ng bulk RNA

libraries (for which only allelic bias on the level of reads was evaluated).

GM12878 are derived from a female donor and it is well-documented that in mammalian females,

the X chromosome undergoes random inactivation early in embryonic development (Lyon, 1961). As
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Figure 3.41: Mirrored coexpression analysis of pool/split and single cell datasets. The
same analysis presented in Figure 4 was carried out treating pool/splits as single cells and vice versa.

a validation of our pipeline, we first examined the allelic bias of genes located on the X chromosome,

and found that in all single cells, expression was exclusively from the maternal X chromosome. We

performed all subsequent analysis excluding X-chromosome genes.

We observed good reproducibility of allelic bias profiles in 10ng bulk RNA libraries (Figure

3.47A), with most genes being expressed from both alleles (Figure 3.47D). Allelic bias was also

highly reproducible in 30-cell and 100-cell pools (Figure 3.48). In contrast, allelic bias profiles of

single cells correlated poorly with each other and a large fraction of genes were apparently monoal-

lelically expressed from different alleles in different cells (Figure 3.47B). The majority of highly

expressed genes (≥100 copies per cell) exhibited biallelic expression while most genes at low ex-

pression levels were measured as monoallelically expressed (Figure 3.47F). We then compared allelic

bias variability for individual genes across individual single cells, focusing only on cells in which

statistically significant allelic bias was observed, and observed frequent switching between the two
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alleles (Figure 3.47G, Figure 3.49A)

These observations can be explained as a combination of three factors. First, it has been previ-

ously reported that allelic bias is more common among genes expressed at low levels (Gimelbrant et

al. 2007, Reddy et al. 2012). A second explanation is the phenomenon of “transcriptional bursting”

(Raj & van Oudenaarden 2008; Dar et al. 2012). A single transcription burst produces several

mRNA molecules from a single allele. If all mRNAs from a gene in a given cell at a given moment

are the product of one or a small number of such bursts, all copies would originate from only that

allele. Finally, stochastic effects due to the low single-molecule capture efficiency of the protocol

undoubtedly play a role. The fewer founder molecules are captured, the more likely it is that they

belong to only one allele. We therefore performed the same analyses in pool/split libraries and

observed a broadly similar (although always lower) fraction of genes passing all significance tests

for allelic bias (Figures 3.47C, 3.47E and 3.49). Thus, it is at present difficult to draw confident

conclusions about the prevalence of random monoallelic expression at the single cell level. Lowering

the level of technical stochasticity will be necessary for this issue to be resolved.

3.2.8 Alternative splicing at the single-cell level

Previous studies have suggested that most genes in mammalian genomes undergo some alternative

splicing (Mortazavi & Williams et al. 2008; Wang et al. 2008; Djebali & Davis et al. 2012). At

present, however, the biological relevance of the majority of these alternative isoforms is still uncer-

tain and stochastic noise in the splicing machinery is one explanation (Sorek et al. 2004; Melamud

& Moult 2009). Characterizing alternative splicing at the single-cell level is highly relevant to eluci-

dating the importance of alternative splicing events, as it in principle provides detailed information

about their frequency both within single cells and populations of cells that is otherwise masked in

bulk RNA-seq measurements. A second important question is how consistent the alternative splicing

patterns observed on the population level are when examined at the level of individual cells.

We quantified alternative splicing using the intron-centric splice inclusion ψ score approach (Per-

vouchine et al. 2013). Details of our mapping and analysis pipeline are described in the Methods

section. For reasons given there, we adopted a conservative approach and only analyzed novel

splice junctions for which at least one of the donor or acceptor sites has already been annotated in

GENCODE V13 (Harrow et al. 2012), thus avoiding library-building artifacts.

We detected between 200 and 2000 novel splice junctions satisfying these criteria in each individ-

ual cell (Figure 3.50). This number is certainly an underestimate given the low psmc. About 35% of
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novel junctions connected two annotated exons (Figure 3.51A, Figure 3.52A); most of these represent

novel exon skipping events. In another 60% the unannotated donor or acceptor site was internal to

the gene. These were concentrated close to already annotated splice sites (Figure 3.52B and C). In

particular, novel acceptor sites peaked at the +3 and −3 position downstream of annotated sites

representing mostly instances of NAGNAG tandem acceptor sites (Hiller et al. 2004; Bradley et

al. 2012). Novel 5’ donor sites were fewer in number and peaked at +4 and −4 positions relative

to annotated donor sites thus shifting the coding frame of the transcript. This is a phenomenon

we previously also observed in bulk RNA-seq data (See Chapter 1), the significance of which is at

present not clear. The proportions observed were independent of the read coverage and estimated

number of copies per cell thresholds applied (Figure 3.54A).

We also examined the distribution of novel splices across individual single cells and found that

the majority of them were found in only a single cell, with <10% found in two cells, and very few

in three or more cells (Figure 3.51B, 3.53B). While this result could be greatly affected by psmc

issues, it was independent of the read and estimated transcript copies threshold used (Figure 3.54),

suggesting that most novel splices are indeed only present in a small fraction of cells.

We asked how often multiple splice sites are used at the single-cell level. In bulk RNA-seq at a

threshold of 15 distinct read fragments, a numeric minority of ψ scores were equal to 1 (i.e. exclusive

use of only one donor-acceptor pair). The presence of alternative splice sites is thus widespread.

Nevertheless, in most cases, ψ was close to 1. The vast majority of novel splices received very low

inclusion scores (Figure 3.51C) and would generally be considered to be the result of biological noise

in the splicing system). In contrast, in single cells, one dominant splice site was the norm except for

very highly expressed genes (≥ 100 copies per cell), for which a wide diversity of splice site usage

was seen (Figure 3.51D, Figure 3.55). As this observation was true even for genes expressed at ≥ 50

copies per cell, we believe it is not a psmc artifact. It is an interesting and open question why very

highly expressed genes (enriched for genes with housekeeping function) exhibit very high levels of

alternative splicing in single cells. These results differ significantly from the same analysis carried

Figure 3.42 (preceding page): Relation between the long-range chromosomal element
connectivity of TSSs and gene expression stochasticity. Shown is the number of genes not
detected in 0-5, 6-10 and 11-15 cells as a function of the number of ENCODE ChIA-PET connections
to TSSs in K562 cells (replicates 1 and 2). K562 was used as the closest cell line to GM12878 for
which such data is currently available; ChIA-PET connections were downloaded from the UCSC
Genome Browser. Within each group of genes defined by the number of ChIA-PET connections,
genes were further split by their average number of estimated copies per cell (where the average
was calculated excluding libraries in which the genes were not detected) in order to define directly
comparable groups of genes. Subgroups with less than 20 genes were not plotted.
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Figure 3.43: Relation between the presence of TSS-associated sequence elements and
expression stochasticity. Shown is the number of genes not detected in 0-5, 6-10 and 11-15 cells
as a function of the presence or absence of sequence motifs at TSSs (defined by FIMO using position
weight matrices obtained from Jin et al., 2006). Within each such group, genes were further split
by their average number of estimated copies per cell (where the average was calculated excluding
libraries in which the genes were not detected) in order to define directly comparable groups of
genes. Subgroups with less than 20 genes were not plotted.

out on novel splice junctions (Figure 3.51E, Figure 3.56). Somewhat surprisingly, we found that a

significant proportion of novel splices had ψ scores of 1 in single cells; this was true, however, only

for genes expressed at lower levels (≤ 50 copies) and it is therefore possible that it is mostly a psmc

artifact. In contrast, in highly expressed genes, no novel junctions received a dominant (≥ 0.5) ψ

score. However, the scores were still consistently higher than what is observed for novel splices in

bulk RNA samples.

Finally, we evaluated the consistency of splice site usage between individual cells. We applied a

statistical framework similar to the one used to analyze allelic bias and derived a list of dominant

splice junctions in each cell, taking into account the estimated absolute number of copies and the

stochastic capture effects. We asked how often the dominant splice site changes between different
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Figure 3.44: Relation between the presence of CpG islands near TSSs and expression
stochasticity. Shown is the number of genes not detected in 0-5, 6-10 and 11-15 cells as a function
of the presence or absence of CpG islands within 1kb of the TSS. Within each such group, genes were
further split by their average number of estimated copies per cell (where the average was calculated
excluding libraries in which the genes were not detected) in order to define directly comparable
groups of genes. Subgroups with less than 20 genes were not plotted.

cells. We found 282 such genes in single cells, suggesting the phenomenon may be widespread.

The genes involved were enriched for ribosomal and translation proteins, and also, intriguingly, for

proteins involved in RNA splicing and processing (Table 3.6). We tested this single-cell variation

against pool/split experiments, in which we found very few genes with different dominant splice

sites across libraries. (Figure 3.51F and 3.51G, Figure 3.57). This argues that much of the observed

alternative splicing variation is in fact due to biological differences between cells, and is in agreement

with the bimodality of splicing in individual mouse immune cells observed previously (Shalek et al.

2013).

3.3 Discussion

The two major goals for single-cell RNA-seq are to obtain high-resolution transcriptomes for rare cell

types or states and to measure the differences in RNA expression and processing between individual

cells. We showed that the first goal can be achieved by studying 30-100 cell pool samples even in the

absence of perfect capture of each and every individual RNA molecule. Our conclusion is consistent
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Figure 3.45: Relation between the methylation status of promoters and expression
stochasticity. Shown is the number of genes not detected in 0-5, 6-10 and 11-15 cells as a function
of the methylation status of their promoters as defined using ENCODE reduced-representation
bisulfite sequencing data (RRBS) for the GM12878 cell line from Varley et al., 2013, downloaded
from the UCSC Genome Browser. Within each such group, genes were further split by their average
number of estimated copies per cell (where the average was calculated excluding libraries in which
the genes were not detected) in order to define directly comparable groups of genes. Subgroups with
less than 20 genes were not plotted.

with independent 80-cell measurements (Ramsköld & Luo et al. 2012). The pools reproduce the

expression profiles (Figure 3.31) and allelic-bias patterns (Figure 3.48) of the larger population, and

similar numbers of genes and splice junctions are detected in them (Figure 3.58, Figure 3.31). The

approach is applicable to cells collected by laser-capture, micro-manipulation, or cell sorting based

on molecular markers or reporter-gene expression. This defines a path forward for the transcriptomic

characterization of many previously inaccessible rare cell types and states, including transient cell

types in embryonic development, diverse neuronal types in the brain, and cells in tumors.

To understand single-cell variation in the GM18278 reference cell line, we generated and analyzed

high-quality, state-of-the-art single-cell RNA-seq data individual GM12878 cells. Nevertheless, like

prior studies, our data display significant stochasticity. We present experimental and analytical

approaches for measuring and accounting for technical stochasticity. We introduced and measured

single-molecule capture efficiency, the key parameter influencing technical stochasticity and find

that its value is around 0.1 with the current SMART-seq protocol. We controlled for technical
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Figure 3.46: Relation between the histone modification status of promoters and expres-
sion stochasticity. Shown is the number of genes not detected in 0-5, 6-10 and 11-15 cells as a
function of the presence or absence of the various histone marks, the bivalent H3K4me3 + H3K27me3
combination of marks, CTCF and Ezh2 as defined from ENCODE data for the GM12878 cell line
using the peak calls available from the UCSC Genome Browser. Within each such group, genes were
further split by their average number of estimated copies per cell (where the average was calculated
excluding libraries in which the genes were not detected) in order to define directly comparable
groups of genes. Subgroups with less than 20 genes were not plotted.

stochasticity experimentally by carrying out pool/split experiments, which allowed us to identify

significant biological variation over and above technical variation.

In line with previous observations, we find great cell-to-cell variability in gene expression levels.

We demonstrate that at least some of this variation is due to coordinated differences in the expression

of biologically coherent sets of genes, for example, genes associated with different phases of the cell

cycle, as well as the surprising observation of a coexpression module enriched for genes involved in

mRNA processing and splicing.

We also observed unexpected levels of cell-to-cell variation in autosomal allelic expression bias

and alternative splicing. The observation of allele switching between single cells could be explained
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as a technical artifact given that a similar, although always lower, level of switching was observed in

pool/split libraries. We therefore consider this a provisional result in need of further investigation

with improved experimental protocols. The observed frequency of major splice switching in single

cells is a stronger effect, and based on comparison with pool/split experiments, it is unlikely to be

the sole result of technical stochasticity.

Transcriptional bursting is a main candidate for a biological explanation for these observations.

If a gene is expressed in a series of infrequent relative to the half life of its mRNAs such bursts,

at any given time the population of mRNAs in the cell is likely to originate from only one allele.

This can also explain the observed variation in alternative splicing. It is possible that the same

set of factors influencing splice site choice maintain physical association with the gene during a

transcriptional burst leading to a particular splicing pattern being highly favored locally. Future

studies should shed light on these intriguing questions. In-depth investigation of individual cases by

other methods will naturally be needed to validate the initial global observations. The limitations

of the current single-cell RNA-seq assay make it possible to capture the general pattern, and the

data are a source of candidates for detailed validation and study, but no single candidate event is

assured of reproducing.

Much biology involves genes whose transcript levels are in the range highly affected by technical

variation. Considerable improvement in the single-molecule capture efficiency is therefore needed.

Based on our simulations and results from pool/split experiments, we estimate that an increase

in psmc from 0.1 to 0.5 would be a major leap forward, while psmc ≥ 0.8 would provide sufficient

measurement reliability for virtually any biological use. The experimental framework provided here

would be highly useful for evaluating future improvements in protocols.

We also found that the amount of mRNA per cell is highly variable between individual cells.

This is both biologically interesting and important for analysis pipelines as RPKM-type metrics are

not reliable given such large difference in total RNA per cell (Lovén et al. 2012; Lin et al. 2012). At

present, the direct relationship between the absolute number of mRNA copies per cell and the number

of sequencing reads in a library is lost due to the fragmentation of amplified cDNA molecules that

is a common feature of available protocols resulting in multiple distinct but overlapping sequencing

fragments for each founder RNA molecule. mRNA copy number therefore has to be estimated back

from FPKMs with the help of spike-in sequences. This is far from a flawless method for doing so,

as first, it depends on the accuracy of quantification of the spike-ins, and second, it assumes the

absence of systemic differences between spike-in RNAs and endogenous RNAs. The ideal single-cell

RNA-seq assay would combine a very high single-molecule capture efficiency with an amplification-
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free, and preferably, also reverse transcription-free, direct RNA sequencing that allows the direct

counting of transcript copies. Emerging sequencing technologies (Branton et al. 2008; Schadt et al.

2010) already hold promise for such radical improvements.

3.4 Addendum: More Recent Developments in the Field

Between the completion of this work and the writing of this chapter, a number of studies appeared,

which addressed some of the issues adressed in it.

The observation that certain genes exhibit dramatic variation in splice site usage between individ-

ual cells in a population was confirmed independently (Shalek et al. 2013), including an orthogonal

validation by SM-FISH.

Two groups reported widespread random monoallelic expression between individual cells (Xue et

al. 2013; Deng et al. 2014), however they paid significantly less attention to the problem of technical

noise than we did (this was especially true in the case of Xue et al. 2013), thus the question whether

there indeed is widespread such variation cannot be considered fully resolved yet.

In this work, we generated our libraries generated manually, however over the course of 2013,

automated microfluidics-based methods for carrying out RNA-seq became very popular, in particular

the Fluidigm C1 system. This has allowed very large numbers of individual cells to be profiled, and

there are reasons to think that the psmc is higher for libraries generated on the Fluidigm (Wu et al.

2014; Islam et al. 2014) though still not nearly as high as desired.

A new version of SMART-seq protocol, SMART-seq2, was described (Picelli et al. 2013; Picelli

et al. 2014), which supposedly also improves the psmc, maybe up to 0.4-0.5, although this was not

measured in a way comparable to the way we did it, giving hopes that the combination of SMART-

seq2 and Fluidigm may achieve even higher efficiencies. As I write these words, this has not yet

been tested.

None of these improvements, however, address the issue of directly counting individual tran-

scripts. A new approach towards accomplishing this was described recently (Islam et al. 2014),

however it suffers from the problem of being a 5’-tagging confounding analyses requiring capture of

the whole transcript. Full-length single-molecule RNA sequencing remains the goal for the future.
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3.5 Methods

3.5.1 Single cell collection

Single cell harvesting from live cultures requires a micropipet with a polished glass tip with an

approximate diameter of 40µm. Borosilicate glass microfiber pipettes (FHC omega dot fiber 30-30-

0) were pulled on a Sutter Instruments P80/PC microcapillary puller with the following parameters:

750 heat, 150 pull, 100 velocity, 5 time. After pulling, the microcapillary tips were mounted on

a glass microscope slide using modeling clay, and broken by closing a pair of #5 Dumont forceps

around the glass. We used a scaled eyepiece reticle to judge the width of the break at about 40µm.

After breaking, the tips were smoothed using a microforge. To prevent sticking of cells to the interior

of the capillary, we treated the pipettes with Sigmacote by attaching Tygon tubing and a syringe

to the blunt end of the microcapillary, and drawing the Sigmacote solution into the tip. This also

provided assurance that the forged tips had not closed. The capillaries were then rinsed with distilled

water twice using the same technique, and allowed to dry at room temperature overnight.

An aliquot (5×106 cells) of GM12878 cells were thawed rapidly and cultured in 10mL of medium

(RPMI 1640, 15% FBS, 2mM L-glutamine, 1% penicillin-streptomycin). The cells were grown at

density of 2 × 105 − 2 × 106 cells/mL of medium for 11 days until harvest. On the day prior to

harvest, the culture volume was increased to 100mL by the addition of fresh medium, bringing the

density to 2 × 105 cells/mL. At harvest time (23 hours later), cells were triturated using a 10mL

pipette, and a small aliquot (∼100µLs) of the culture was removed. A few µLs of the cell suspension

was added to a 250µL volume of “cell picking medium” (RPMI1640 with 15% Superblock (Pierce

catalog #37515) and 2mM glutamine). This diluted cell suspension was then placed in a 3cm culture

dish and returned to the 37 ◦C incubator for 10 minutes prior to single cell harvesting.

The microcapillary pipet was mounted on a micromanipulator and attached to a 100µL glass

syringe via Tygon tubing. A dish of picking medium was brought to the illuminated stage on the

phase contrast scope, and the tip was submerged using the micromanipulator. Picking medium

Figure 3.47 (preceding page): Allele-biased expression at the single-cell level. (A,B and
C) Correlation between allele bias between 10ng bulk RNA replicates (A), between two individual
single cells (B) and between two pool/split libraries (C). Shown is the maternal fraction of reads for
genes with at least 15 reads covering heterozygous positions for 10ng libraries and for genes with
at least 10 reads covering heterozygous positions and expressed at more than 10 copies per cell for
single cells and pool/splits. (D). Distribution of allele bias in bulk RNA samples (≥15 reads covering
positions). (E and F). Distribution of allele bias as a function of the read and copies threshold in
single cell (E) and pool/split (F) libraries.
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Figure 3.48: Correlation between allelic bias in cell pools of different sizes.

was drawn up into the microcapillary to a height of about 75mm. The tip was removed from the

picking medium, re-submerged into a dish from the incubator containing the dilute cell suspension,

and lowered gently to the floor of the dish. Individual cells were aspirated into the pipet by gentle

vacuum applied via the glass syringe. When a single cell had been aspirated, the tip was rapidly

lifted out of the picking medium, and the picking dish was removed from the illuminated area of

the stage. A small sliver of silanated cover glass (Molecular Dimensions, catalog #MD406) was

then placed on a glass slide on the stage, and a 4.5µL drop of cell lysis solution was placed on the

sliver with a Rainin P10 micropipette. The lysis solution contains 2.5µL of reaction buffer (Clontech

SMARTer Ultra Low RNA kit), 1µL of 3 SMART CDS Primer IIA (Clontech) and 1µL of spike-in

quantification standards. The drop of lysis solution was visualized on the illuminated area of the

stage, and the pipette tip containing the picked cell was lowered into it. Gentle pressure was applied

to the syringe to expel the cell from the pipette, and the tip was then lifted from the lysis solution.

Visual confirmation was made at high power, while the cell dissolved in the lysis solution. The glass
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Figure 3.49: Changes in allele expression bias between individual cells and between
individual libraries in pool/split experiment 1. Shown is the maximum difference between
the maternal fraction of reads in single-cells (A) and the pool/split (B). Only gene/library pairs
for which the ψ score passed all three tests for statistical significance of bias towards one splice
(described in Methods) were included

sliver was lifted from the stage using forceps, and placed in the bottom of a 200µL PCR tube. The

tube was spun for 15 seconds at 10,000g, the sliver was removed, and the lysed cell was immediately

frozen on dry ice. Twenty individual cells were collected in this way. We also collected two samples

of ten cell pools into the same volume of lysis buffer, using the pipette picking method.

For ∼100 cell pools, cells were first diluted in picking buffer to a concentration of 10 cells/µL.
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Figure 3.50: Number of novel splice junctions (connecting to annotated donor and/or
acceptor sites) detected in individual cells.

10µL of the dilute cell suspension were added to 90µL of picking buffer in a 200µL PCR tube, and

spun at 2500g for 90 seconds to pellet the cells. The tube was then mounted sideways in modeling

clay on a glass slide, and the pellet was visualized under the phase contrast scope. A drawn glass

pipette tip attached to the micromanipulator was advanced into the picking medium and the excess

picking medium was withdrawn using the syringe. A 4.5µL aliquot of lysis buffer was then added to

the cell pellet, and the lysate was spun and frozen as for the above samples.

After picking the individual and pooled cell samples, the remainder of the culture (∼2 × 107

cells) was spun down in two aliquots for 5 minutes at 1000g at 4 ◦C. The culture medium was

removed, the pellet was rinsed with PBS, and re-spun as above. After the removal of PBS, both

pellets were lysed with 1.2mL lysis buffer from the Ambion mirVana kit (catalog #AM1560). The

lysates were then processed according to the manufacturer’s protocol. After eluting total RNA from

the columns, we performed a DNA digestion step to remove residual contaminating genomic DNA,

using the DNA-free kit from Ambion (catalog #AM1907). After quality control with Qubit and
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the Agilent BioAnalyzer, the bulk prep total RNA was diluted to both 10ng/µL and 100pg/µL

concentrations. We then added single microliter aliquots to the lysis buffer described above, and

froze the samples for processing using the single cell protocol.

3.5.2 First strand cDNA synthesis and amplification

The frozen samples were brought to the lab bench on dry ice. Lysis and denaturation were accom-

plished by heating the samples for 3 minutes at 72 ◦C. The samples were spun down and placed

in a cooling rack at 4 ◦C. 5.5µL of first strand reaction buffer (Clontech) was then added (2µL of

buffer, 1µl of RNAse inhibitor, 1µl of dNTPs, 0.25µl of DTT, 1µL of SMARTer IIa oligos, and 1µl of

SMARTScribe reverse transcriptase). The samples were reverse transcribed at 42 ◦C for 90 minutes

and denatured at 70 ◦C for 10 minutes. After denaturation, the samples were spun down and 25µL

of Ampure XP SPRI beads (Beckman Coulter genomics) were added. The samples were incubated

for 8 minutes at room temperature, then the beads were separated on a magnet for 5 minutes. The

supernatant solution was removed with a pipette, and the beads were spun at 1000g for 1 minute to

pellet. The sample was then placed back on the magnet, and excess supernatant was removed with

a 10µL Rainin pipet tip. 50µL of amplification solution were then used to resuspend the beads (5µL

of PCR buffer, 2µL of dNTPs, 2µL of amplification primers and 2µL of Advantage2 polymerase

mix), and the samples were amplified under the following conditions: 1 minute at 95 ◦C, followed

by cycles of 15 seconds at 95 ◦C, 30 seconds at 65 ◦C, 6 minutes at 68 ◦C, and final elongation for 10

minutes at 72 ◦C. Single cell and pool/split samples were amplified for 26 cycles, the 10 cell pools

were amplified for 22 cycles, the 100 cell pools were amplified for 18 cycles, and the bulk prep RNA

samples were amplified for 15 cycles. The amplified cDNA was spun down, and 90µL of Ampure

XP beads were added. The beads were incubated with the amplified product for 8 minutes, then

separated on a magnet for 5 minutes. The reaction solution was removed and the beads were washed

twice with 200µL of freshly prepared 80% ethanol for 30 seconds. After the second ethanol wash,

the beads were pelleted at 1000g for 1 minute, the residual ethanol was removed with a P10 Rainin

pipette tip, and the beads were allowed to dry until the pellet showed signs of cracking. The beads

were then resuspended in 20µL of 10mM Tris-HCl pH 8.5 for 10 minutes, and then separated on the

magnet for 5 minutes. The supernatant containing the amplified cDNA was then withdrawn and

1µL was used for quantification with Qubit HS DNA reagents (Lifetech). An additional 1µL aliquot

of the amplified sample was diluted to 3ng/µL, and then used for fragment length estimation on the

Agilent BioAnalyzer using the HS cDNA kit.
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Ten of the single cell samples were reverse transcribed and amplified as single cell aliquots. Ten

were lysed and denatured, then pooled together and re-split to homogenize the mRNA populations

in each (pool/split samples). The 10 and 100 cell pools were processed as the single cell aliquots,

except they were amplified for 22 and 18 cycles each.

3.5.3 Tagmentation

Tagmentation (Illumina/Nextera) uses a transposase mixture to simultaneously fragment and tag

the ends of fragmented cDNA with amplification primers. 50ng aliquots of the SMART amplified

cDNA were combined with tagmentation reagents according to the manufacturers protocol. After

tagmentation, the reaction was cleaned up using 1.5 volumes of QG buffer (Qiagen) and 1.8 volumes

of Ampure XP SPRI beads, according to the protocol of Gertz et al. 2012. The tagmented cDNA

was eluted from the beads in 20µL of Tris-HCL pH 8.5, and subjected to an additional 5 rounds of

amplification, according to the manufacturers protocol. The amplified and tagmented cDNA was

cleaned up using 0.8 volumes of SPRI beads, washed twice with 200µL of 80% ethanol, dried and

eluted with 30µL of Tris-HCl pH 8.5.

The tagmented libraries were quantified with Qubit HS DNA reagents, and 3ng from each sample

were assayed on the Agilent BioAnalyzer using the HS cDNA kit. Libraries were judged to be

acceptable if they showed a peak in the 300-400bp range. Library sequencing was performed on the

HiSeq 2000 Illumina instrument, using the single read, 100 bp format.

Figure 3.51 (preceding page): Alternative splicing at the single-cell level. (A) Classifi-
cation of new junctions connecting known splice sites. (B) Frequency of detection of novel splice
junctions. Novel junctions for which neither the donor nor acceptor site has been annotated were
excluded for reasons described in the main text in both (A) and (B). A threshold of 10 estimated
copies and a coverage of 10 reads was applied, but results are essentially the same independent of
the thresholds used (Supplementary Figure 40A). (C). Distribution of ψ scores in bulk RNA samples
for annotated and novel splice junctions. A threshold of 15 reads combined for all splice junctions
in which a donor or acceptor site participates was applied. Note that for each ψ1 score there is at
least one matching ψ2 ≤ 1−ψ1 score corresponding to the other alternative junction; in some cases,
more than two alternative donor or acceptor sites exist, thus the relative height of the 0 ≤ ψ ≤ 0.1
bar. (D - upper and lower) Distribution of 5’ ψ scores for annotated splice junctions at two different
detection thresholds in single-cell libraries (see Supplementary Figure 41 for more detail). (E - upper
and lower) Distribution of 5’ ψ scores for novel splice junctions at two different detection thresholds
in single-cell libraries (see Supplementary Figure 42 for more detail). (F) and (G) Frequency of
major splice site usage switches between individual cells (F) and individual libraries in a pool/split
experiment (G). Note the strong support for major splice site use switching across the collection of
single cells.
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Figure 3.52: Relationship of novel splice junctions to annotation. (A) Relation to anno-
tated exons. The detection threshold (in both estimated number of copies and reads mapping to
heterozygous positions) was varied as shown and the fraction of junctions belonging to each class
was calculated. (B) Distance of the donor site to the nearest annotated 5’ splice site. (C) Distance
of the acceptor site to the nearest annotated 3’ splice sites. All detected junctions were included in
(B) and (C).

3.5.4 Preparation of quantitation standards

The quantification spike-in standards are designed to test a range of copy number concentrations

over 3 factors of 10. We chose two size ranges (∼ 300nt and ∼ 1400nt) to test the effect of
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Figure 3.53: Splice junctions detection. The total number of annotated or novel junctions in
all libraries is included in each plot and junctions that are not detected in each group of experiments
are represented by a white bar. (A, B and C) Annotated junctions in bulk and pool libraries (A),
pool/split experiments (B) and single cells (C). (D, E and F) Novel junctions in bulk and pool
libraries (D), pool/split experiments (E) and single cells (F). Shown are all junctions detected in
pools, pool/splits or single cells; when a junction is detected in 0 libraries, only the libraries in the
indicated group are referred to.

transcript length on counting accuracy. The following transcripts were amplified from Arabidopsis

total RNA for use as quantitation standards: VATG (376nt), OBF5 (1444nt), Apetala2 (1405nt),

PDF (348nt), EPR (1451nt), AGP (323nt). These amplified cDNAs were cloned into a modified

cloning vector containing the pBluescript II promoters and multiple cloning site, flanking an elon-

gated polyA sequence. The resulting clones were linearized downstream of the polyA sequence, so
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Figure 3.54: Number of
cells in which a novel
junctions is detected.
The detection threshold (in
both estimated number of
copies and reads mapping
to heterozygous positions)
was varied as shown and the
fraction of splices detected
in a give number of cells
plotted.

that in vitro transcription would result in the automatic inclusion of a polyA tail, without the need

for polyA polymerase. In vitro transcription was performed using the EpiCentre Ampliscribe T3
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Figure 3.55: Distribution of 5’ and 3’ ψ scores as a function of the expression and splice
junction spanning reads threshold.
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Figure 3.56: Distribution of 5’ and 3’ ψ scores as a function of the expression and splice
junction spanning reads threshold for novel splice junctions. Only novel splice junctions
connecting at least one of the donor or acceptor site for which is annotated are included.
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Figure 3.57: Major splice site switches between individual cells. Shown is the maximum
difference between ψ scores in single-cells (A) and individual libraries in pool/split experiment 1
(B). Only gene/library pairs for which the ψ score passed all three tests for statistical significance
of bias towards one splice (described in Methods) were included

in vitro transcription kit (catalog #AS3103). The reactions were cleaned up using a Qiagen RNA

cleanup column (Qiagen catalog #74124). The transcribed products were quantified using Qubit

RNA reagents (3 repeated measures) and then size verified on the Agilent BioAnalyzer using RNA

Nano reagents. The transcripts were then diluted in diluent containing yeast tRNA as a carrier
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Figure 3.58: Detection of annotated splice junctions in cell pools of different sizes.

(Ambion Catalog #AM7119) and RNAse inhibitor (Clontech catalog #2313A), and then combined

into a cocktail for use as 1µL aliquots. The final concentrations for tRNA was 100pg/µL. The final

concentrations of the spike-in standards are listed in Table 3.1.

3.5.5 In silico simulation of single-cell and cell pool transcriptomes

We aimed primarily to examine the effects of the levels of technical stochasticity and the amount

of input, but also tried to approximate what a real population of cells might look like, with all

the variation of gene expression on the single-cell level that exists in it. To this end, we used the

following model.

Let |S| be the number of cells pooled, and pEg
be the probability that a gene g belonging to the

set of polyadenylated genes G is expressed in any given cell Si ∈ S. There likely exist a group of

housekeeping genes for which pEg ≈ 1, and then there is a continuum of genes for which pEg < 1.

Finally, there likely exist genes that are present only in a small fraction of cells for which pEg
� 1.

We denote with T the total number of mRNA molecules expressed in each cell Si, with CCg
the

true number of transcript copies per cell for each gene g ∈ G, where G is the set of all genes. By

definition, T =
∑
g∈G CCg

. For simplicity, we assume it is constant for each cell.

We derive FPKM estimates FPKMg for each gene based on bulk RNA-seq measurements. For

simplicity, and since this does not in any way affect the conclusions of the simulations, we assume

that the ratios of FPKM values between genes are equal to the ratios between the their absolute

number of transcript molecules in the very large cell pool from which the library was built. We then
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derive an estimate for the average value of CCg when a gene is expressed in a given cell as follows:

CCg
=

Eg ∗ FPKMg∑
g∈G

Eg ∗ FPKMg

∗ T (3.1)

where we account for the fact that only a portion of cells express the gene by setting Eg = 1

when a gene is expressed in a given cell, and Eg = 0 when it is not (Eg is set based on the probability

pEg , as described further below).

Finally, we define the single-molecule capture efficiency psmc as the probability that any given

RNA molecule in a cell will be converted into cDNA, amplified and eventually present in the se-

quencing library.

We use the following algorithm for generating in silico cell pool transcriptomes and then the

FPKM values in the corresponding libraries. We denote the number of original transcript copies

present in the final library (after the effects of technical stochasticity have been modeled) with CLg

Algorithm 1 Cell pool RNA-seq simulation

for g ∈ G do

CLg
← 0

end for

for i = 1→ |S| do

for g ∈ G do

p← random number ∈ [0, 1]

if p ≤ pEg
then

Eg ← 1

else

Eg ← 0

end if

end for

for g ∈ G do

CCg
←

Eg ∗ FPKMg∑
g∈G

Eg ∗ FPKMg

∗ T

for i = 1→ CCg do

p← random number ∈ [0, 1]

if p ≤ psmc then
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CLg = CLg + 1

end if

end for

end for

end for

for g ∈ G do

1. FPKMLg ←
CLg∑

g∈G
CLg

∑
g∈G

FPKMg

2. FPKMCg
←

CCg∑
g∈G

CCg

∑
g∈G

FPKMg

3. compare FPKMLg
with FPKMCg

end for

In practice, we have no reliable estimates of what the distribution of pEg might be across the

whole transcriptome (this in itself is a major open research question). We assigned pEg
values to

genes by first splitting all genes expressed at FPKM ≥ 1 in 10 percentile groups in order of increased

expression: PG ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}. For each expression percentile group PG

we modeled the distribution of the pEg
values with the normalized Gaussian density N (µ, σ) over

the interval [F, 1] where µ = PG and σ = |0.9− PG|, and F is the minimal fraction of cells a gene

can be expressed in (which we set to 0.01).

3.5.6 Sequence alignment and gene expression quantification

Reads were aligned against a combined Bowtie (Langmead et al. 2009) index of the NCBI GRCh37

(hg19) version of the human genome (downloaded from UCSC) excluding the Y chromosome (as

GM12878 cells are of female origin) and random chromosomes and the spike-in sequences using

TopHat version 1.4.1 (Trapnell et al. 2009; Trapnell et al. 2012) and the GENCODE V13 annotation

(Harrow et al. 2012) with the "--GTF" option. Read mapping statistics are available in Table 3.7.

Gene expression was quantified using Cufflinks version 2.0.2 (Trapnell et al. 2010; Trapnell et al.

2012) for both the GENCODE V13 and refSeq annotations. FPKMs were converted to estimates

for copies-per-cell numbers using spike-in sequences of known abundance (Supplementary Table 2);

FPKMs were calculated for the spike-ins and used to create a calibration curve for each library

(forcing the regression through 0 to avoid the assignment of positive copies per cell to genes with 0

FPKMs) on the basis of which and the Cufflinks FPKMs copies-per-cell estimates were derived for
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each gene.

3.5.7 Single-molecule capture efficiency estimation

We estimated the average single-molecule capture efficiency based on the number of libraries with

0 FPKM for each spike and the number of input molecules at which that spike was present in

the reaction. The actual single-molecule capture efficiency need not be exactly the same for all

libraries. It is a binomial process, but it is not possible to estimate it precisely by directly modeling

the outcome with a binomial distribution as only the number of complete failures (libraries with 0

FPKM for a given spike, in which all Cs trials where Cs is the number of input copies for spike s)

is known. The number of successes (and the corresponding exact number of failures) is not known

because multiple copies of each spike are used as input, and as a result, in a library with a non-zero

FPKM it is only known that some copies were successfully captured but not how many exactly. We

derived an approximate estimate for the single-molecule capture efficiency by treating individual

libraries as single trials in a binomial process, then dividing the estimated single-molecule capture

efficiency by the number of input copies:

psmc =
1

Cs
arg max

p
L(p|L0 + L1, L1) (3.2)

Where L0 is the number of libraries with 0 FPKM and L1 is the number of libraries with non-zero

FPKM for the spike. This is a relatively crude way to estimate psmc and it works well only when

its value is small but in practice the psmc value is indeed small.

For the AGP23 spike (spiked-in at 5 copies), the estimated single-molecule capture efficiency was

0.138 (95% confidence interval 0.106 to 0.164); for the EPR1 spike (10 copies), the estimated single-

molecule capture efficiency was 0.053 (95% confidence interval 0.037 to 0.068), and for the PDF1 spike

(20 copies), it was 0.045 (95% confidence interval 0.038 to 0.048). As these are approximate estimates,

for simplicity we used an average single-molecule capture efficiency psmc = 0.10 in subsequent

calculations.

3.5.8 Analysis of allele-biased expression

The diploid (May 2011 release) NA12878 genome containing phased SNPs and indels based on the

NCBI build 36 (hg18) version of the human genome was downloaded from http://sv.gersteinlab.

org/NA12878_diploid/. Coordinates for the refSeq annotation for hg18 (downloaded from the

http://sv.gersteinlab.org/NA12878_diploid/
http://sv.gersteinlab.org/NA12878_diploid/


212

UCSC genome browser) were converted into paternal and maternal coordinates. Heterozygous tran-

scriptomes containing two copies of each transcript were built and reads were aligned using Bowtie

(Langmead et al. 2009) (version 0.12.7) with the following settings: "-v 0 -a --best --strata",

i.e. with no mismatches allowed. Reads were assigned to an allele if they mapped only to one of the

alleles of a gene. All identical reads were collapsed into a single count in order to eliminate PCR

amplification artifacts. Allele-biased expression was assessed as follows. First, for each gene using

the total number of allele-specific reads for each allele (over all heterozygous positions), a binomial

test with a uniform read distribution expectation, a 0.05 p-value cutoff, and a Bonferroni multiple-

hypothesis testing correction where the correction factor is the number of genes with sufficiently

many allele-specific reads for the binomial test to pass the specified p-value in the case of complete

dominance of one of the alleles. Second, the number of copies for each gene was used to derive an

estimate for the absolute number of copies per cell for each allele, i.e., for alleles A and a and a

per-cell copies estimate for the gene CE :

CEA
=

Nreads(A)

Nreads(A) +Nreads(a)
CE (3.3)

Another binomial test similar to the one described above was then run using the CEA
and CEa

estimates. As it is possible that only a small number of reads map differentially to the two alleles

of a gene (due, for example, to heterozygous positions being located in a region of poor sequencing

coverage) while the gene itself is expressed highly, thus resulting in a significant binomial test using

the copies-per-cell estimates that is, however, poorly supported on the read level, both tests were

required to pass statistical significance for an allele bias call to be made.

Finally, due to the imperfect single-molecule capture efficiency of the single-cell RNA-seq library

building process, it is possible that apparent allele biases are the result of purely stochastic differences

between the capture efficiency for the two alleles in a given library. For this reason, we applied a third

filter for allele-biased expression calls, which required that the probability of obtaining apparently

statistically significant differences in the estimated copies per cell for the two alleles CEA
and CEa by

chance from two independent binomial process with the estimated single-molecule capture efficiency

psmc is low (p ≤ 0.05 after applying Bonferroni multiple hypothesis testing correction):

p =

CC∑
CE

NB(CC − CE , psmc)
CC∑
CE

NB(CC − CE , psmc)

CEa∑
0

B(CCa , psmc)

CA∑
CEA

B(CCA
, psmc) (3.4)
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Where CC = 2 ∗ CCa = 2 ∗ CCA
refer to the actual number of copies per cell (as opposed to the

estimated number of copies CE = CEa
+CEA

), NB(CC −CE , psmc) refers to the negative binomial

probability that the actual number of copies is CC given the estimated number of copies CE :

NB(CC − CE , psmc) =

(
CE + (CC − CE)− 1

CE − 1

)
pCE
c (1− psmc)CC−CE

and the binomial probabilities B(CCA
, psmc) and B(CCa

, pc) are defined as:

B(CCA
, psmc) =

(
CCA

CEA

)
psmc

CEA (1− psmc)CCA
−CEA

and

B(CCa
, psmc) =

(
CCa

CEa

)
psmc

CEa (1− psmc)CCa−CEa

The probability was evaluated for possible values of the actual number of copies per cell up to

CC = min(5000, 100 ∗ CE).

Genes on the X chromosome were excluded from all analysis as the GM18278 cell line is female.

The inactivation of the X chromosome leading to a corresponding allelic exclusion was observed as

expected (data not shown).

3.5.9 Alternative splicing analysis

We mapped reads using TopHat with de novo junction discovery turned on; such alignments are in

principle suited for the discovery and analysis of novel splice junctions, a large number of which has

been recently reported by the ENCODE consortium (Djebali & Davis et al. 2012). An important

step in such analysis is distinguishing between true novel splice junctions on one hand and mapping

and library-building artifacts on the other. Such artifacts certainly exist as we observe “novel

junctions” in our spike-in quantification standards, which are not spliced (Table ). Confidence in

the reality of newly discovered splice junctions in traditional RNA-seq is boosted by the number of

distinct sequencing fragments supporting them, and by replication in other libraries. However, the

former line of evidence is not applicable to single-cell RNA-seq due to the one-to-many relationship

between original founder RNA molecules and sequencing fragments in the final library, while the

latter is difficult to apply in all cases given the uniqueness of each individual single cell. For these

reasons, we restricted alternative splicing analysis to known splice junctions and novel junctions, at

least one end of which was annotated as splice site in GENCODE V13.
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We calculated 5’ and 3’ splicing inclusion ψ scores as follows (Pervouchine et al. 2013):

ψ5(D,A) =
Nreads(D,A)∑

Ai∈A
Nreads(D,Ai)

(3.5)

ψ3(D,A) =
Nreads(D,A)∑

Di∈D
Nreads(Di, A)

(3.6)

Where D and A refer to the donor and acceptor splice sites, respectively, and the number of

reads Nreads refers to the number of spliced reads crossing a splice or donor sites after apparent PCR

duplicates have been collapsed into a single count. We note that any given donor or acceptor splice

site need not be included in all transcripts expressed from the gene it belongs to. Since isoform-level

quantification is not a completely solved problem and it is even less clear what its relative stability

is for single-cell RNA-seq compared to the bulk RNA datasets for which algorithms have been

designed, we only included alternative splice sites for which the donor or acceptor site was found

in all annotated transcripts for the gene (GENCODE V13 annotation) as well as novel junctions

(compared to the GENCODE V13 annotation) derived from the TopHat mappings involving such

splice sites. This allows us to use gene-level FPKM estimates, which are in general more reliable than

isoform-level ones, and the mRNA copies-per-cell estimates based on those to derive the approximate

absolute number of transcripts containing a given splice junction in each. The statistical significance

of bias towards one of the sites was assessed analogously to the approach described for allele-biased

expression above, with one significant modification: in cases of more than two possible Ai acceptor

sites, for a donor site D or Di sites for an acceptor site A, the major pair (the one with the most

reads) was compared to the sum of reads for all other pairs as if those pairs constituted as single pair.

This approach was adopted so that a maximum number of alternative splicing events are included

in the analysis and with a focus on identifying cases of robust and statistically significant splice site

use switches between individual single cells. When the major (D,A) pair did not have more than

half of all reads, the site was excluded from further analysis.

3.5.10 Gene expression clustering and weighted correlation network

analysis

Weighted correlation networks (Zhang & Horvath 2005) were constructed from the single-cell vectors

of estimated mRNA copies using the WGCNA R package (Langfelder & Horvath 2008) using the



215

blockwiseModules function with β = 6 (Supplementary Figure 34) and a minimum module size of

10 genes. Input genes were filtered as follows: first, we required that genes be expressed at more

than one estimated copy per cell CE in at least one cell; second, we required that the ratio between

the CE variance in single cells and the CE variance in pool/split libraries be more than 1.5. The

latter requirement was imposed in order to minimize the identification of apparently coexpressed

gene modules due to purely stochastic differences in transcript capture (see Supplementary Figure

33 for more detail).

Gene Ontology enrichment in modules was assessed using FuncAssociate2.0 (Berriz et al. 2009).

Gene expression clustering was carried out using Cluster 3.0 (de Hoon et al. 2004) and visualized

using TreeView (Saldanha 2004).
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Table 3.3: Full list of Gene Ontology categories enriched in coexpressed gene modules.
Gene Ontology enrichment in modules was assessed using FuncAssociate2.0 (Berriz et al., 2009).

N X LOD P P adj attrib ID attrib name

Module 1

80 85 2.22750847233495 2.4288542157057e-80 <0.001 GO:0019083 viral transcription

35 38 2.0543096800611 9.94569501487657e-35 <0.001 GO:0022625 cytosolic large ribosomal subunit

79 88 1.98429369667081 3.81815501340532e-75 <0.001 GO:0006415 translational termination

82 92 1.95783499865395 2.25183855262354e-77 <0.001 GO:0019058 viral infectious cycle

33 37 1.91934326185776 1.0606448232178e-31 <0.001 GO:0022627 cytosolic small ribosomal subunit

84 99 1.79959130536831 2.83136121010728e-75 <0.001 GO:0006414 translational elongation

79 98 1.67170885189082 2.54715717317477e-67 <0.001 GO:0043624 cellular protein complex disassembly

79 99 1.64996220882795 1.16143543924047e-66 <0.001 GO:0043241 protein complex disassembly

5 6 1.60339903304627 2.31518111579124e-05 0.042 GO:0042719
mitochondrial intermembrane space pro-

tein transporter complex

12 16 1.48484395467934 1.55655372018477e-10 <0.001 GO:0005753
mitochondrial proton-transporting ATP

synthase complex

12 16 1.48484395467934 1.55655372018477e-10 <0.001 GO:0045259
proton-transporting ATP synthase com-

plex

8 11 1.42532291837978 3.17730434970578e-07 <0.001 GO:0042274 ribosomal small subunit biogenesis

42 60 1.41110133078985 7.7723344218279e-32 <0.001 GO:0015935 small ribosomal subunit

10 14 1.40852193295129 1.23601718399618e-08 <0.001 GO:0042776
mitochondrial ATP synthesis coupled

proton transport

82 119 1.40425322218248 2.90687191098935e-60 <0.001 GO:0034623
cellular macromolecular complex disas-

sembly

43 62 1.39861873942686 2.70656133560673e-32 <0.001 GO:0015934 large ribosomal subunit

82 120 1.39279633589538 8.45636479922126e-60 <0.001 GO:0032984 macromolecular complex disassembly

14 20 1.39014850585389 1.95202402281072e-11 <0.001 GO:0015985
energy coupled proton transport, down

electrochemical gradient

14 20 1.39014850585389 1.95202402281072e-11 <0.001 GO:0015986 ATP synthesis coupled proton transport

9 13 1.36475589719287 1.06059816949165e-07 <0.001 GO:0045263
proton-transporting ATP synthase com-

plex, coupling factor F(o)

102 154 1.35835395745315 3.83509033779718e-72 <0.001 GO:0003735 structural constituent of ribosome

80 121 1.34883668562943 1.30325679955416e-56 <0.001 GO:0031018 endocrine pancreas development

6 9 1.3082177020168 2.3318724760727e-05 0.049 GO:0042273 ribosomal large subunit biogenesis

92 156 1.22084501073779 1.79769896957827e-58 <0.001 GO:0022415 viral reproductive process

9 15 1.20500031764798 6.35922215735707e-07 <0.001 GO:0042613 MHC class II protein complex

90 159 1.17815283094918 4.63835969773452e-55 <0.001 GO:0005840 ribosome

11 20 1.12368307791708 1.16201671228436e-07 <0.001 GO:0002504

antigen processing and presentation of

peptide or polysaccharide antigen via

MHC class II

126 243 1.1058240710311 8.64889403866865e-71 <0.001 GO:0006412 translation

33 66 1.04671661076047 1.04054778845837e-18 <0.001 GO:0070469 respiratory chain

88 180 1.04302248261017 8.36713797967258e-47 <0.001 GO:0071845
cellular component disassembly at cellu-

lar level

13 26 1.04120105244121 3.59500355461033e-08 <0.001 GO:0004129 cytochrome-c oxidase activity

Continued on next page
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13 26 1.04120105244121 3.59500355461033e-08 <0.001 GO:0015002 heme-copper terminal oxidase activity

13 26 1.04120105244121 3.59500355461033e-08 <0.001 GO:0016676
oxidoreductase activity, acting on a heme

group of donors, oxygen as acceptor

88 181 1.03832508439038 1.50023036663094e-46 <0.001 GO:0022411 cellular component disassembly

50 105 1.01033284389759 2.12881566827084e-26 <0.001 GO:0022904 respiratory electron transport chain

13 27 1.01013943569481 6.3992281019869e-08 <0.001 GO:0016675
oxidoreductase activity, acting on a heme

group of donors

13 27 1.01013943569481 6.3992281019869e-08 <0.001 GO:0019843 rRNA binding

22 46 1.00663430266062 2.01941178786577e-12 <0.001 GO:0005747
mitochondrial respiratory chain complex

I

22 46 1.00663430266062 2.01941178786577e-12 <0.001 GO:0030964 NADH dehydrogenase complex

22 46 1.00663430266062 2.01941178786577e-12 <0.001 GO:0045271 respiratory chain complex I

13 28 0.981148355026407 1.10254306563049e-07 <0.001 GO:0016469
proton-transporting two-sector ATPase

complex

20 44 0.965600146054987 6.60764042765157e-11 <0.001 GO:0003954 NADH dehydrogenase activity

20 44 0.965600146054987 6.60764042765157e-11 <0.001 GO:0008137
NADH dehydrogenase (ubiquinone) ac-

tivity

20 44 0.965600146054987 6.60764042765157e-11 <0.001 GO:0050136 NADH dehydrogenase (quinone) activity

10 22 0.964605445604187 4.26260478570593e-06 0.009 GO:0033177
proton-transporting two-sector ATPase

complex, proton-transporting domain

19 43 0.94357846286631 3.63592920641863e-10 <0.001 GO:0006120
mitochondrial electron transport, NADH

to ubiquinone

56 140 0.877587213657932 1.12610252541087e-24 <0.001 GO:0022900 electron transport chain

20 50 0.870301953062918 1.08177287181172e-09 <0.001 GO:0016655

oxidoreductase activity, acting on NADH

or NADPH, quinone or similar compound

as acceptor

126 329 0.864920624044305 7.76265565058296e-52 <0.001 GO:0016032 viral reproduction

19 48 0.862785503901917 3.4843140169824e-09 <0.001 GO:0022613 ribonucleoprotein complex biogenesis

51 133 0.846254921603025 1.32115278867509e-21 <0.001 GO:0044455 mitochondrial membrane part

13 36 0.80019305087457 3.59382041803685e-06 0.008 GO:0042611 MHC protein complex

22 62 0.787906724016196 2.35759581410622e-09 <0.001 GO:0006977

DNA damage response, signal transduc-

tion by p53 class mediator resulting in

cell cycle arrest

22 62 0.787906724016196 2.35759581410622e-09 <0.001 GO:0072401
signal transduction involved in DNA in-

tegrity checkpoint

22 62 0.787906724016196 2.35759581410622e-09 <0.001 GO:0072413
signal transduction involved in mitotic

cell cycle checkpoint

22 62 0.787906724016196 2.35759581410622e-09 <0.001 GO:0072422
signal transduction involved in DNA

damage checkpoint

22 62 0.787906724016196 2.35759581410622e-09 <0.001 GO:0072431

signal transduction involved in mitotic

cell cycle G1/S transition DNA damage

checkpoint

22 62 0.787906724016196 2.35759581410622e-09 <0.001 GO:0072474
signal transduction involved in mitotic

cell cycle G1/S checkpoint

12 34 0.785381071713187 1.12064061460209e-05 0.019 GO:0006626 protein targeting to mitochondrion

Continued on next page
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31 88 0.784090641205952 1.6208634459227e-12 <0.001 GO:0048002
antigen processing and presentation of

peptide antigen

138 408 0.782753905363391 3.18149793786453e-49 <0.001 GO:0010467 gene expression

22 63 0.777286220816123 3.33709849401727e-09 <0.001 GO:0072395
signal transduction involved in cell cycle

checkpoint

22 63 0.777286220816123 3.33709849401727e-09 <0.001 GO:0072404
signal transduction involved in G1/S

transition checkpoint

19 55 0.770122744469575 4.78383728527817e-08 <0.001 GO:0071843
cellular component biogenesis at cellular

level

173 530 0.768759824961379 2.97828415371199e-59 <0.001 GO:0030529 ribonucleoprotein complex

28 82 0.763064993637299 4.54473457242155e-11 <0.001 GO:0002474
antigen processing and presentation of

peptide antigen via MHC class I

25 75 0.747063491558582 8.85423589248866e-10 <0.001 GO:0006839 mitochondrial transport

23 69 0.746932600935863 4.15847287902749e-09 <0.001 GO:0044085 cellular component biogenesis

32 97 0.741175253071487 5.45910901839781e-12 <0.001 GO:0015078
hydrogen ion transmembrane transporter

activity

16 49 0.73399635379054 1.30379324163326e-06 0.003 GO:0051258 protein polymerization

15 47 0.719731376252704 3.8551671841249e-06 0.008 GO:0051084
’de novo’ posttranslational protein fold-

ing

40 126 0.71784240561212 5.25251868522275e-14 <0.001 GO:0019882 antigen processing and presentation

23 73 0.710984404898217 1.41497713185833e-08 <0.001 GO:0071158 positive regulation of cell cycle arrest

21 67 0.707697276637143 6.62504934644734e-08 <0.001 GO:0051436

negative regulation of ubiquitin-protein

ligase activity involved in mitotic cell cy-

cle

95 311 0.705569345151931 4.85030590692832e-30 <0.001 GO:0048610 cellular process involved in reproduction

16 52 0.696666038434829 3.16984759196741e-06 0.007 GO:0006458 ’de novo’ protein folding

22 72 0.691795994094768 5.42170060581127e-08 <0.001 GO:0051352 negative regulation of ligase activity

22 72 0.691795994094768 5.42170060581127e-08 <0.001 GO:0051444
negative regulation of ubiquitin-protein

ligase activity

150 525 0.677439350068986 3.32539653823493e-43 <0.001 GO:0034621
cellular macromolecular complex subunit

organization

164 584 0.670332348124673 3.54836301881911e-46 <0.001 GO:0016071 mRNA metabolic process

23 78 0.669845547354692 5.69629303883152e-08 <0.001 GO:0000216 M/G1 transition of mitotic cell cycle

21 72 0.663205782638981 2.6219034657749e-07 <0.001 GO:0051437

positive regulation of ubiquitin-protein

ligase activity involved in mitotic cell cy-

cle

16 55 0.662279533745671 7.14593997684204e-06 0.014 GO:0000502 proteasome complex

16 55 0.662279533745671 7.14593997684204e-06 0.014 GO:0006521
regulation of cellular amino acid

metabolic process

25 86 0.66117774103715 2.09408969093921e-08 <0.001 GO:0030330
DNA damage response, signal transduc-

tion by p53 class mediator

19 67 0.64634468268949 1.55090946941351e-06 0.003 GO:0033238
regulation of cellular amine metabolic

process

26 92 0.644103259424952 2.09762058586999e-08 <0.001 GO:0072331 signal transduction by p53 class mediator

Continued on next page
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22 78 0.642874216140607 2.62393000307691e-07 <0.001 GO:0051439
regulation of ubiquitin-protein ligase ac-

tivity involved in mitotic cell cycle

19 68 0.637453778789019 1.9842690458222e-06 0.005 GO:0060333
interferon-gamma-mediated signaling

pathway

22 79 0.635227361820706 3.35087879773373e-07 <0.001 GO:0051443
positive regulation of ubiquitin-protein

ligase activity

23 83 0.63224585989498 2.00949230376557e-07 <0.001 GO:0051351 positive regulation of ligase activity

27 98 0.62887220631022 2.04834672373096e-08 <0.001 GO:0006364 rRNA processing

22 80 0.627711881242392 4.25874069739404e-07 <0.001 GO:0031145

anaphase-promoting complex-dependent

proteasomal ubiquitin-dependent protein

catabolic process

81 300 0.62621754092227 6.64252358742553e-22 <0.001 GO:0005743 mitochondrial inner membrane

17 63 0.617087551763504 1.13566498370941e-05 0.021 GO:0006200 ATP catabolic process

24 89 0.616024095582501 1.924740199118e-07 <0.001 GO:0031397
negative regulation of protein ubiquitina-

tion

23 86 0.61114511085871 4.04971652012907e-07 <0.001 GO:0016651
oxidoreductase activity, acting on NADH

or NADPH

27 103 0.599379377993909 6.42976552229558e-08 <0.001 GO:0016072 rRNA metabolic process

84 327 0.597134802233134 3.86637763010753e-21 <0.001 GO:0019866 organelle inner membrane

24 93 0.590170688226641 4.68334780721795e-07 <0.001 GO:0051438
regulation of ubiquitin-protein ligase ac-

tivity

25 97 0.589412627207871 2.79036812385036e-07 <0.001 GO:0051340 regulation of ligase activity

28 109 0.587562019917053 5.91212587104247e-08 <0.001 GO:0000084 S phase of mitotic cell cycle

20 79 0.579289164068354 5.71262604161276e-06 0.012 GO:0071346 cellular response to interferon-gamma

141 582 0.575501427143487 5.37209201940123e-32 <0.001 GO:0071822 protein complex subunit organization

35 140 0.572325037803156 2.96216165946153e-09 <0.001 GO:0000082 G1/S transition of mitotic cell cycle

27 110 0.561161855618649 2.76881959100789e-07 <0.001 GO:0042770
signal transduction in response to DNA

damage

28 116 0.551583814959451 2.4384223848345e-07 <0.001 GO:0051320 S phase

19 79 0.550001609297223 2.1441603106869e-05 0.031 GO:0009206
purine ribonucleoside triphosphate

biosynthetic process

100 434 0.537107458537325 3.65671802133964e-21 <0.001 GO:0031966 mitochondrial membrane

31 132 0.536082594042894 1.10062427133423e-07 <0.001 GO:0090068 positive regulation of cell cycle process

22 95 0.528168311977894 9.49580519250266e-06 0.019 GO:0034341 response to interferon-gamma

84 371 0.523771651861378 1.85277099409276e-17 <0.001 GO:0006091
generation of precursor metabolites and

energy

130 595 0.513071456988699 5.70494731538591e-25 <0.001 GO:0005198 structural molecule activity

26 116 0.50961644963599 2.91400334562788e-06 0.007 GO:0031398
positive regulation of protein ubiquitina-

tion

148 687 0.508962926945213 1.09821996775926e-27 <0.001 GO:0044429 mitochondrial part

37 168 0.500349876744172 4.12597162657402e-08 <0.001 GO:0000377

RNA splicing, via transesterification re-

actions with bulged adenosine as nucle-

ophile

37 168 0.500349876744172 4.12597162657402e-08 <0.001 GO:0000398 nuclear mRNA splicing, via spliceosome

Continued on next page
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36 164 0.498410796185536 6.84854979223404e-08 <0.001 GO:0043623 cellular protein complex assembly

38 175 0.492543109861863 4.05723893001672e-08 <0.001 GO:0000375
RNA splicing, via transesterification re-

actions

27 126 0.484584970787029 4.69193568014889e-06 0.009 GO:0046034 ATP metabolic process

175 867 0.477792444174725 4.31717391375335e-29 <0.001 GO:0043933
macromolecular complex subunit organi-

zation

32 157 0.457121358455519 2.03558979738233e-06 0.005 GO:0000209 protein polyubiquitination

57 282 0.455331541986413 3.35174043037384e-10 <0.001 GO:0008380 RNA splicing

87 437 0.45206487497538 1.75634248577746e-14 <0.001 GO:0055114 oxidation-reduction process

31 154 0.450275487651611 3.84142188009438e-06 0.008 GO:0031396 regulation of protein ubiquitination

32 159 0.450199742241769 2.70953251758628e-06 0.006 GO:0043161
proteasomal ubiquitin-dependent protein

catabolic process

155 803 0.44828162002615 1.17127238506759e-23 <0.001 GO:0003723 RNA binding

32 160 0.446779218086837 3.11868915151585e-06 0.007 GO:0010498 proteasomal protein catabolic process

27 135 0.44673045980076 1.79130278352513e-05 0.028 GO:0005774 vacuolar membrane

239 1315 0.43236771896813 1.93513347789966e-32 <0.001 GO:0005739 mitochondrion

39 201 0.43074480120704 6.14144121470793e-07 <0.001 GO:0000075 cell cycle checkpoint

43 226 0.420501515091121 2.92681541907647e-07 <0.001 GO:0071156 regulation of cell cycle arrest

30 158 0.418585946292244 1.82741185723924e-05 0.028 GO:0044437 vacuolar part

57 304 0.414291886997772 6.22443660977404e-09 <0.001 GO:0000278 mitotic cell cycle

73 401 0.400691520310638 1.88837546257743e-10 <0.001 GO:0034622
cellular macromolecular complex assem-

bly

222 1296 0.39523148469997 2.51837746792813e-26 <0.001 GO:0034645
cellular macromolecule biosynthetic pro-

cess

226 1327 0.392809170439032 1.86450696466837e-26 <0.001 GO:0009059 macromolecule biosynthetic process

334 2084 0.38137706335828 1.33257319443321e-34 <0.001 GO:0044267 cellular protein metabolic process

334 2111 0.373898530461539 1.84879744335921e-33 <0.001 GO:0005829 cytosol

161 961 0.370923240921755 4.01275183856543e-18 <0.001 GO:0032774 RNA biosynthetic process

504 3431 0.370107849871159 4.0461986238786e-44 <0.001 GO:0032991 macromolecular complex

101 602 0.361160597240294 9.47442144063175e-12 <0.001 GO:0006396 RNA processing

766 6058 0.346864258263512 2.31238377684638e-47 <0.001 GO:0044444 cytoplasmic part

58 357 0.337821335867861 7.933880428251e-07 0.001 GO:0010564 regulation of cell cycle process

59 364 0.336711582120088 6.91212093849837e-07 0.001 GO:0006397 mRNA processing

144 911 0.336185023040326 3.85435400725073e-14 <0.001 GO:0005654 nucleoplasm

251 1662 0.330293674534452 1.10940941066799e-21 <0.001 GO:0016070 RNA metabolic process

313 2121 0.329217998390912 1.18114081249402e-25 <0.001 GO:0044249 cellular biosynthetic process

316 2160 0.324822918675263 2.91009865940903e-25 <0.001 GO:0090304 nucleic acid metabolic process

320 2232 0.313971532133542 4.41002855691382e-24 <0.001 GO:0009058 biosynthetic process

1145 11330 0.313948898323752 4.59005189412599e-31 <0.001 GO:0044424 intracellular part

75 485 0.313905177878569 1.5748417548981e-07 <0.001 GO:0022403 cell cycle phase

377 2686 0.312982629840953 4.90694955531477e-27 <0.001 GO:0006139
nucleobase, nucleoside, nucleotide and

nucleic acid metabolic process

686 5522 0.308771441881537 4.1087928647367e-37 <0.001 GO:0044446 intracellular organelle part

367 2644 0.304397651421782 2.77819227696323e-25 <0.001 GO:0019538 protein metabolic process
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529 4046 0.302681908190103 8.82320727696583e-32 <0.001 GO:0044260 cellular macromolecule metabolic process

689 5601 0.302589536132723 8.22904448857063e-36 <0.001 GO:0044422 organelle part

712 5867 0.299367116917043 1.88823085526176e-35 <0.001 GO:0044237 cellular metabolic process

135 945 0.280373762273502 3.82813590337554e-10 <0.001 GO:0022414 reproductive process

74 511 0.279376163393885 2.44628059184637e-06 0.006 GO:0006974 response to DNA damage stimulus

969 9102 0.277956512781225 5.11225805494553e-30 <0.001 GO:0043229 intracellular organelle

969 9117 0.276313895789093 1.11162671743124e-29 <0.001 GO:0043226 organelle

403 3093 0.273819161695768 1.68049396494688e-22 <0.001 GO:0034641
cellular nitrogen compound metabolic

process

108 765 0.270319977503456 4.55991397471596e-08 <0.001 GO:0022402 cell cycle process

99 701 0.269327927902864 1.66323414881123e-07 <0.001 GO:0007049 cell cycle

410 3199 0.265219890086891 1.5194034851802e-21 <0.001 GO:0006807 nitrogen compound metabolic process

556 4601 0.25742146969207 1.8068455687858e-24 <0.001 GO:0043170 macromolecule metabolic process

285 2171 0.257317984548616 7.98160838856529e-16 <0.001 GO:0043228 non-membrane-bounded organelle

285 2171 0.257317984548616 7.98160838856529e-16 <0.001 GO:0043232
intracellular non-membrane-bounded or-

ganelle

69 497 0.256916076214485 2.21805085904211e-05 0.031 GO:0005730 nucleolus

85 622 0.2504348652183 4.78113517987455e-06 0.01 GO:0006259 DNA metabolic process

744 6632 0.249054934285073 1.58723972093304e-25 <0.001 GO:0008152 metabolic process

293 2272 0.248502561040477 3.01319156248601e-15 <0.001 GO:0071842
cellular component organization at cellu-

lar level

295 2299 0.245967084736522 4.57315463821616e-15 <0.001 GO:0071841
cellular component organization or bio-

genesis at cellular level

98 729 0.243379241039335 1.87437352876668e-06 0.004 GO:0065003 macromolecular complex assembly

93 694 0.241149602052021 3.93342779914606e-06 0.008 GO:0016491 oxidoreductase activity

274 2153 0.238023679234234 1.58478501985632e-13 <0.001 GO:0044428 nuclear part

871 8242 0.235473646680484 5.82916610504252e-23 <0.001 GO:0043227 membrane-bounded organelle

870 8238 0.234562637103022 8.38290144947865e-23 <0.001 GO:0043231
intracellular membrane-bounded or-

ganelle

99 751 0.233280218653404 3.94595885765465e-06 0.008 GO:0046907 intracellular transport

665 5992 0.221831084147262 3.46559295245285e-20 <0.001 GO:0044238 primary metabolic process

102 803 0.214295076083374 1.41199427931906e-05 0.022 GO:0033554 cellular response to stress

99 783 0.211573308398039 2.28182618638875e-05 0.031 GO:0071844
cellular component assembly at cellular

level

344 2896 0.208867137566652 8.16942218480433e-13 <0.001 GO:0016043 cellular component organization

346 2923 0.20711459632924 1.09506306063704e-12 <0.001 GO:0071840
cellular component organization or bio-

genesis

329 2821 0.195993854311548 3.24914520945555e-11 <0.001 GO:0043234 protein complex

237 2006 0.191345208630818 1.2625912051491e-08 <0.001 GO:0031090 organelle membrane

1026 10840 0.168964395995212 1.74282758664301e-11 <0.001 GO:0009987 cellular process

485 4933 0.108855314264424 1.27790612421947e-05 0.021 GO:0005737 cytoplasm

Module 2

5 9 1.4353697859032 1.61126889116162e-05 0.024 GO:0008139 nuclear localization sequence binding

7 20 1.09388232798139 1.28535977541801e-05 0.018 GO:0051983 regulation of chromosome segregation
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29 168 0.684180963922458 1.54004341495467e-10 <0.001 GO:0000377

RNA splicing, via transesterification re-

actions with bulged adenosine as nucle-

ophile

29 168 0.684180963922458 1.54004341495467e-10 <0.001 GO:0000398 nuclear mRNA splicing, via spliceosome

30 175 0.680816140112517 8.87046264555359e-11 <0.001 GO:0000375
RNA splicing, via transesterification re-

actions

38 282 0.558803234506848 4.52064927189642e-10 <0.001 GO:0008380 RNA splicing

19 141 0.555278310629005 1.0380427172764e-05 0.017 GO:0005681 spliceosomal complex

44 364 0.505813785001266 6.61426439925337e-10 <0.001 GO:0006397 mRNA processing

66 602 0.464516339086547 2.77728663822659e-12 <0.001 GO:0006396 RNA processing

32 288 0.460440562314741 9.75520192342185e-07 0.002 GO:0051301 cell division

62 584 0.446895852037615 5.12932632405468e-11 <0.001 GO:0016071 mRNA metabolic process

52 497 0.436204344115675 3.27009886602057e-09 <0.001 GO:0005730 nucleolus

33 351 0.378532533073338 2.40744755831632e-05 0.041 GO:0044419
interspecies interaction between organ-

isms

172 2153 0.343432744866356 1.75600448691817e-16 <0.001 GO:0044428 nuclear part

42 485 0.340242072283576 1.48503818757099e-05 0.022 GO:0022403 cell cycle phase

40 462 0.339711208044223 2.3766092104457e-05 0.04 GO:0044265 cellular macromolecule catabolic process

60 701 0.339160869975101 3.23571054989503e-07 0.001 GO:0007049 cell cycle

41 475 0.338432406345785 2.02295400933921e-05 0.034 GO:0044427 chromosomal part

68 803 0.336220984744933 7.65671927087538e-08 <0.001 GO:0003723 RNA binding

76 911 0.331218188924209 2.33893486630229e-08 <0.001 GO:0005654 nucleoplasm

43 511 0.326468203963555 2.35721317636639e-05 0.04 GO:0006974 response to DNA damage stimulus

44 530 0.320096499039325 2.63517822318679e-05 0.043 GO:0030529 ribonucleoprotein complex

590 11330 0.307725883035438 1.0960786202461e-16 <0.001 GO:0044424 intracellular part

128 1662 0.307694952226285 4.08803837662614e-11 <0.001 GO:0016070 RNA metabolic process

51 644 0.298647909108822 2.19483688586676e-05 0.035 GO:0051726 regulation of cell cycle

58 765 0.278965516407217 2.16486041316539e-05 0.035 GO:0022402 cell cycle process

152 2160 0.26839415907082 3.64000656801177e-10 <0.001 GO:0090304 nucleic acid metabolic process

151 2171 0.261862930845385 9.73365119250831e-10 <0.001 GO:0043228 non-membrane-bounded organelle

151 2171 0.261862930845385 9.73365119250831e-10 <0.001 GO:0043232
intracellular non-membrane-bounded or-

ganelle

340 5601 0.253862278441637 1.31291950589379e-14 <0.001 GO:0044422 organelle part

492 9102 0.250272137858337 4.30276700995675e-14 <0.001 GO:0043229 intracellular organelle

492 9117 0.248695876930274 6.1868252491176e-14 <0.001 GO:0043226 organelle

178 2686 0.244422165955063 9.13870908091538e-10 <0.001 GO:0006139
nucleobase, nucleoside, nucleotide and

nucleic acid metabolic process

332 5522 0.243714592261868 1.60539211670902e-13 <0.001 GO:0044446 intracellular organelle part

200 3093 0.237932293242852 4.47608150862857e-10 <0.001 GO:0034641
cellular nitrogen compound metabolic

process

204 3199 0.231396211719754 9.30860336734763e-10 <0.001 GO:0006807 nitrogen compound metabolic process

251 4046 0.231319523511239 5.73866479299139e-11 <0.001 GO:0044260 cellular macromolecule metabolic process

449 8238 0.229250611380594 1.64011741005672e-12 <0.001 GO:0043231
intracellular membrane-bounded or-

ganelle

Continued on next page



223

Table 3.3 – Continued from previous page

N X LOD P P adj attrib ID attrib name

449 8242 0.228829514942579 1.79770699314044e-12 <0.001 GO:0043227 membrane-bounded organelle

338 5867 0.217174729554922 3.40468652787424e-11 <0.001 GO:0044237 cellular metabolic process

290 4933 0.212021859434929 3.43579358808612e-10 <0.001 GO:0005737 cytoplasm

302 5211 0.207147691965801 5.67529432661151e-10 <0.001 GO:0005634 nucleus

111 1743 0.20458125474222 1.63777858635897e-05 0.024 GO:0043412 macromolecule modification

266 4601 0.19325730820235 1.836736540134e-08 <0.001 GO:0043170 macromolecule metabolic process

363 6632 0.19076943584687 3.42220660572212e-09 <0.001 GO:0008152 metabolic process

328 5992 0.177849130815706 4.97783632875206e-08 <0.001 GO:0044238 primary metabolic process

174 3011 0.167727728807245 1.68644378475076e-05 0.031 GO:0010468 regulation of gene expression

315 6058 0.137883228026376 2.01099934629971e-05 0.034 GO:0044444 cytoplasmic part

Module 3

8 25 1.12174413109538 1.6195735819603e-06 0.002 GO:0051539 4 iron, 4 sulfur cluster binding

10 50 0.84991907137197 9.0161990136549e-06 0.021 GO:0051536 iron-sulfur cluster binding

10 50 0.84991907137197 9.0161990136549e-06 0.021 GO:0051540 metal cluster binding

25 229 0.538541159788376 7.47720629054225e-07 <0.001 GO:0051186 cofactor metabolic process

271 6058 0.166074173009115 2.78569620584793e-06 0.005 GO:0044444 cytoplasmic part

453 11330 0.161739187745443 1.86883086496289e-05 0.037 GO:0044424 intracellular part

Module 4

13 97 0.672080308928874 2.01477245308462e-05 0.047 GO:0005741 mitochondrial outer membrane

32 434 0.38218093135728 2.59169277455588e-05 0.05 GO:0031966 mitochondrial membrane

267 6058 0.209635231286387 1.1954907403548e-08 <0.001 GO:0044444 cytoplasmic part

430 11330 0.189685955412112 1.81000117796974e-06 0.003 GO:0044424 intracellular part

266 6401 0.167667578490431 3.97412665691163e-06 0.008 GO:0005515 protein binding

211 4933 0.164971820301435 1.42128334658729e-05 0.024 GO:0005737 cytoplasm

Module 5

7 33 1.07143232855034 1.02220662682094e-05 0.013 GO:0006695 cholesterol biosynthetic process

34 602 0.418505790853493 2.98488408837491e-06 0.005 GO:0006396 RNA processing

42 803 0.386267510008865 1.45554203385518e-06 0.003 GO:0003723 RNA binding

35 678 0.376246720272173 1.50758252204483e-05 0.044 GO:0044451 nucleoplasm part

74 1662 0.32717492580596 8.08519738698485e-08 <0.001 GO:0016070 RNA metabolic process

92 2160 0.316438423646489 1.22530842680858e-08 <0.001 GO:0090304 nucleic acid metabolic process

109 2686 0.302719794834586 5.16088110052742e-09 <0.001 GO:0006139
nucleobase, nucleoside, nucleotide and

nucleic acid metabolic process

204 5867 0.290215289462742 2.42264491073003e-11 <0.001 GO:0044237 cellular metabolic process

86 2153 0.279472007299701 7.06167821789315e-07 0.001 GO:0044428 nuclear part

258 8238 0.273394775085421 3.30641000342457e-10 <0.001 GO:0043231
intracellular membrane-bounded or-

ganelle

258 8242 0.272981776660256 3.51091215759553e-10 <0.001 GO:0043227 membrane-bounded organelle

320 11330 0.270756828023873 2.59329735790549e-08 <0.001 GO:0044424 intracellular part

117 3093 0.27018336330746 6.56451317805923e-08 <0.001 GO:0034641
cellular nitrogen compound metabolic

process

120 3199 0.267574242908932 6.5838967556536e-08 <0.001 GO:0006807 nitrogen compound metabolic process

274 9102 0.259905768442695 3.97303688891244e-09 <0.001 GO:0043229 intracellular organelle

Continued on next page
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N X LOD P P adj attrib ID attrib name

145 4046 0.258957848074746 2.58310912976049e-08 <0.001 GO:0044260 cellular macromolecule metabolic process

274 9117 0.258358056899225 4.89474559380795e-09 <0.001 GO:0043226 organelle

186 5522 0.252387490202399 8.07568575286686e-09 <0.001 GO:0044446 intracellular organelle part

198 5992 0.249866826361352 8.08174185764168e-09 <0.001 GO:0044238 primary metabolic process

187 5601 0.24739223761693 1.47932676168125e-08 <0.001 GO:0044422 organelle part

212 6632 0.239108907629557 2.58709518947142e-08 <0.001 GO:0008152 metabolic process

155 4601 0.229008499074375 4.23085771940228e-07 <0.001 GO:0043170 macromolecule metabolic process

169 5211 0.214851860778109 1.14557794256476e-06 0.002 GO:0005634 nucleus

188 6058 0.198889582472837 3.92901841156595e-06 0.007 GO:0044444 cytoplasmic part

Module 6

5 17 1.35877762485371 1.27620339057008e-05 0.027 GO:0005680 anaphase-promoting complex

7 27 1.28109582819072 5.64148602718057e-07 0.001 GO:0007094
mitotic cell cycle spindle assembly check-

point

7 28 1.26038559665177 7.3990905561597e-07 0.004 GO:0045841
negative regulation of mitotic

metaphase/anaphase transition

7 28 1.26038559665177 7.3990905561597e-07 0.004 GO:0071173 spindle assembly checkpoint

7 28 1.26038559665177 7.3990905561597e-07 0.004 GO:0071174 mitotic cell cycle spindle checkpoint

7 30 1.22170492439836 1.23095671972835e-06 0.005 GO:0031577 spindle checkpoint

7 33 1.16944999653699 2.45864548304647e-06 0.007 GO:0030071
regulation of mitotic

metaphase/anaphase transition

7 33 1.16944999653699 2.45864548304647e-06 0.007 GO:0045839 negative regulation of mitosis

7 33 1.16944999653699 2.45864548304647e-06 0.007 GO:0051784 negative regulation of nuclear division

18 288 0.561314315261963 1.18040781186384e-05 0.026 GO:0051301 cell division

204 8238 0.251051414092351 1.67494198073935e-07 <0.001 GO:0043231
intracellular membrane-bounded or-

ganelle

204 8242 0.250640665799907 1.75182061275321e-07 <0.001 GO:0043227 membrane-bounded organelle

216 9102 0.231422137926905 1.80780431583472e-06 0.006 GO:0043229 intracellular organelle

216 9117 0.229882447927919 2.1050968158218e-06 0.007 GO:0043226 organelle

135 5211 0.208102879924293 2.05983907876377e-05 0.037 GO:0005634 nucleus

Module 8

3 4 2.15674334421143 1.64587987532083e-05 0.032 GO:0048280 vesicle fusion with Golgi apparatus

5 21 1.31441473215979 1.74263922633301e-05 0.037 GO:0032201
telomere maintenance via semi-

conservative replication

8 35 1.28611338854416 6.73739625327887e-08 0.001 GO:0006261 DNA-dependent DNA replication

5 23 1.26467580787443 2.80631885844604e-05 0.047 GO:0000722 telomere maintenance via recombination

6 34 1.15088257068433 1.54366414227154e-05 0.024 GO:0010833
telomere maintenance via telomere

lengthening

8 69 0.935700200428791 1.48897081315905e-05 0.024 GO:0009411 response to UV

15 170 0.802685314737047 1.12157969185014e-07 0.001 GO:0006260 DNA replication

23 511 0.490955055548057 9.92989139304257e-06 0.019 GO:0006974 response to DNA damage stimulus

42 1327 0.340009071984013 1.98581541366046e-05 0.04 GO:0009059 macromolecule biosynthetic process

41 1296 0.338927033802861 2.55286781292076e-05 0.043 GO:0034645
cellular macromolecule biosynthetic pro-

cess

63 2160 0.318931266474648 1.75657887022238e-06 0.002 GO:0090304 nucleic acid metabolic process

Continued on next page
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N X LOD P P adj attrib ID attrib name

128 5211 0.298549267749992 1.8238869432011e-08 <0.001 GO:0005634 nucleus

60 2153 0.292881834504383 1.38556689832231e-05 0.023 GO:0044428 nuclear part

100 4046 0.267683010803659 1.63739514172819e-06 0.002 GO:0044260 cellular macromolecule metabolic process

174 8238 0.263181580222692 4.66457450693039e-07 0.002 GO:0043231
intracellular membrane-bounded or-

ganelle

174 8242 0.262771810066496 4.85332067450148e-07 0.002 GO:0043227 membrane-bounded organelle

107 4601 0.239108491634204 1.07913454880254e-05 0.02 GO:0043170 macromolecule metabolic process

182 9102 0.22936103280645 1.25445382233209e-05 0.02 GO:0043229 intracellular organelle

182 9117 0.227824532081016 1.42589555343329e-05 0.023 GO:0043226 organelle

Module 10

190 11330 0.26726174432135 1.71596077751879e-05 0.032 GO:0044424 intracellular part

Module 14

20 1065 0.528808096440223 1.73407898205248e-05 0.032 GO:0044248 cellular catabolic process

33 2111 0.479914638806195 1.06712795272747e-06 <0.001 GO:0005829 cytosol

39 3093 0.388858388574349 1.71524549827148e-05 0.032 GO:0034641
cellular nitrogen compound metabolic

process

42 3431 0.382865420385352 1.42566606441697e-05 0.023 GO:0032991 macromolecular complex

60 5867 0.34446562764228 2.14508227397237e-05 0.032 GO:0044237 cellular metabolic process

61 6058 0.338468119322826 2.84679848054408e-05 0.041 GO:0044444 cytoplasmic part
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Table 3.4: Full list of Gene Ontology categories enriched in coexpressed gene modules
derived from a mirrored analysis of pool/split datasets. Gene Ontology enrichment in
modules was assessed using FuncAssociate2.0 (Berriz et al., 2009). A total of 16 modules were
detected

N X LOD P P adj attrib ID attrib name

Module 1

13 272 0.693095067094612 1.02007791233691e-05 0.011 GO:0006511
ubiquitin-dependent protein catabolic

process

13 279 0.68135455023532 1.33744095433394e-05 0.018 GO:0019941
modification-dependent protein catabolic

process

13 282 0.676415542913035 1.49811431033085e-05 0.019 GO:0043632
modification-dependent macromolecule

catabolic process

13 289 0.665098403683509 1.94061972015811e-05 0.024 GO:0051603
proteolysis involved in cellular protein

catabolic process

17 462 0.57616161468926 1.43352606692572e-05 0.018 GO:0044265 cellular macromolecule catabolic process

19 545 0.553524223505169 9.47597917000467e-06 0.009 GO:0009057 macromolecule catabolic process

29 1065 0.451649915259144 5.44374777913331e-06 0.007 GO:0044248 cellular catabolic process

50 2153 0.408372755551646 1.54662372619939e-07 ¡0.001 GO:0044428 nuclear part

38 1647 0.385284888523943 8.15733567738168e-06 0.007 GO:0006464 protein modification process

39 1743 0.371699071795165 1.23788499774497e-05 0.013 GO:0043412 macromolecule modification

75 4046 0.33429458014633 5.14482381026089e-07 ¡0.001 GO:0044260 cellular macromolecule metabolic process

93 5522 0.313764330996431 7.30843785397851e-07 ¡0.001 GO:0044446 intracellular organelle part

93 5601 0.304538452915935 1.46302793919708e-06 0.002 GO:0044422 organelle part

79 4601 0.296962579640552 5.07939215329675e-06 0.005 GO:0043170 macromolecule metabolic process

95 5867 0.292386561578076 3.34586773855207e-06 0.003 GO:0044237 cellular metabolic process

104 6632 0.29101237790736 3.17018865849522e-06 0.003 GO:0008152 metabolic process

96 5992 0.287467105557634 4.64261918086881e-06 0.005 GO:0044238 primary metabolic process

Module 3

5 16 2.01970458115929 9.51160735183834e-09 ¡0.001 GO:0016254
preassembly of GPI anchor in ER mem-

brane

6 30 1.76902612001682 5.55484070660725e-09 ¡0.001 GO:0018410
C-terminal protein amino acid modifica-

tion

5 25 1.76842092954302 1.11841352190966e-07 0.001 GO:0006501 C-terminal protein lipidation

5 49 1.43120717990547 3.66720733305651e-06 0.006 GO:0006497 protein lipidation

7 131 1.12827314119116 3.16442237797319e-06 0.005 GO:0043687 post-translational protein modification

22 1743 0.516764340612836 1.71498823237458e-05 0.023 GO:0043412 macromolecule modification

Module 9

19 2084 0.56988964370998 2.20527274140205e-05 0.031 GO:0044267 cellular protein metabolic process
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Table 3.6: Gene Ontology categories enriched in genes displaying splice site switching
between individual cells. Gene Ontology enrichment was assessed using FuncAssociate2.0 (Berriz
et al., 2009).

N X LOD P P adj attrib ID attrib name

7 18 1.60434572330591 7.81336494766272e-09 <0.001 GO:0030530
heterogeneous nuclear ribonucleoprotein

complex

6 22 1.38371032623861 1.0731443930779e-06 <0.001 GO:0000313 organellar ribosome

6 22 1.38371032623861 1.0731443930779e-06 <0.001 GO:0005761 mitochondrial ribosome

9 62 1.04144125075565 6.88184640563181e-07 <0.001 GO:0015934 large ribosomal subunit

10 79 0.972456465728994 6.10664091150019e-07 <0.001 GO:0071013 catalytic step 2 spliceosome

19 154 0.964236659283489 7.8714230213414e-12 <0.001 GO:0003735 structural constituent of ribosome

20 175 0.927300715975638 9.17354662099906e-12 <0.001 GO:0000375
RNA splicing, via transesterification re-

actions

19 168 0.92117404141009 3.70476457645963e-11 <0.001 GO:0000377

RNA splicing, via transesterification re-

actions with bulged adenosine as nucle-

ophile

19 168 0.92117404141009 3.70476457645963e-11 <0.001 GO:0000398 nuclear mRNA splicing, via spliceosome

15 141 0.888071082569232 1.03966880671155e-08 <0.001 GO:0005681 spliceosomal complex

16 159 0.861650703193511 7.48121263599197e-09 <0.001 GO:0005840 ribosome

23 243 0.838249153771732 1.25842265057125e-11 <0.001 GO:0006412 translation

46 530 0.826167157208287 9.02684713922854e-21 <0.001 GO:0030529 ribonucleoprotein complex

23 282 0.766509674540248 2.54718803100937e-10 <0.001 GO:0008380 RNA splicing

26 364 0.706261794294909 3.04918522987691e-10 <0.001 GO:0006397 mRNA processing

28 408 0.689368099675319 1.53848128981224e-10 <0.001 GO:0010467 gene expression

38 584 0.67579720156425 3.18781787872945e-13 <0.001 GO:0016071 mRNA metabolic process

47 803 0.636519902260068 1.87953754853827e-14 <0.001 GO:0003723 RNA binding

36 602 0.632953237795702 1.62794718956973e-11 <0.001 GO:0006396 RNA processing

16 277 0.597979679500433 1.35166171675457e-05 0.022 GO:0034660 ncRNA metabolic process

22 462 0.511423641446678 7.66202769258217e-06 0.015 GO:0044265 cellular macromolecule catabolic process

39 911 0.476845884038679 3.34218894462279e-08 <0.001 GO:0005654 nucleoplasm

24 545 0.47631618686561 1.09283168115262e-05 0.018 GO:0009057 macromolecule catabolic process

118 3431 0.473494407052489 1.56368496887015e-17 <0.001 GO:0032991 macromolecular complex

29 687 0.460527035699242 2.93531833594463e-06 0.005 GO:0044429 mitochondrial part

80 2160 0.454899179204351 5.73798891785767e-13 <0.001 GO:0090304 nucleic acid metabolic process

64 1662 0.453902252858483 4.77393199090586e-11 <0.001 GO:0016070 RNA metabolic process

51 1296 0.449261990101858 3.27437399406931e-09 <0.001 GO:0034645
cellular macromolecule biosynthetic pro-

cess

79 2153 0.448759965851525 1.38228172140963e-12 <0.001 GO:0044428 nuclear part

52 1327 0.448329514135066 2.57197941829179e-09 <0.001 GO:0009059 macromolecule biosynthetic process

94 2686 0.444930025696524 6.62602821448192e-14 <0.001 GO:0006139
nucleobase, nucleoside, nucleotide and

nucleic acid metabolic process

77 2111 0.443065370078769 4.00922406264811e-12 <0.001 GO:0005829 cytosol

127 4046 0.437107059343321 7.36675726742068e-16 <0.001 GO:0044260 cellular macromolecule metabolic process

102 3093 0.424687277579968 1.53499538750493e-13 <0.001 GO:0034641
cellular nitrogen compound metabolic

process

Continued on next page
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N X LOD P P adj attrib ID attrib name

234 11330 0.410177502418009 4.26279474281887e-11 <0.001 GO:0044424 intracellular part

73 2121 0.408294011011211 2.6476698540441e-10 <0.001 GO:0044249 cellular biosynthetic process

102 3199 0.40626576617879 1.33115703600882e-12 <0.001 GO:0006807 nitrogen compound metabolic process

47 1315 0.398127144349952 2.71558632079032e-07 <0.001 GO:0005739 mitochondrion

157 5867 0.394560459760076 4.17387500074186e-14 <0.001 GO:0044237 cellular metabolic process

150 5522 0.390555837986407 8.85159181992679e-14 <0.001 GO:0044446 intracellular organelle part

74 2232 0.390317428579321 1.04923257025558e-09 <0.001 GO:0009058 biosynthetic process

131 4601 0.386021432185656 5.00037984912871e-13 <0.001 GO:0043170 macromolecule metabolic process

150 5601 0.381254965130809 3.18071089534335e-13 <0.001 GO:0044422 organelle part

157 6058 0.372860438339392 8.46004601459964e-13 <0.001 GO:0044444 cytoplasmic part

151 5992 0.342490468755501 4.80405598147904e-11 <0.001 GO:0044238 primary metabolic process

161 6632 0.334875288021427 1.12251899150943e-10 <0.001 GO:0008152 metabolic process

63 2084 0.331075785878351 7.59282101998268e-07 <0.001 GO:0044267 cellular protein metabolic process

184 8242 0.317619158465355 1.64375270407462e-09 <0.001 GO:0043227 membrane-bounded organelle

183 8238 0.311179434676407 3.27953523717327e-09 <0.001 GO:0043231
intracellular membrane-bounded or-

ganelle

194 9102 0.300093429975042 2.09541238702377e-08 <0.001 GO:0043229 intracellular organelle

194 9117 0.298556745854624 2.46813702747217e-08 <0.001 GO:0043226 organelle

70 2644 0.269207945316679 1.84621206416052e-05 0.04 GO:0019538 protein metabolic process

74 2821 0.267942614823057 1.34448891236763e-05 0.021 GO:0043234 protein complex

213 10840 0.265155481178129 2.70868933554443e-06 0.005 GO:0009987 cellular process

Table 3.7: Read mapping statistics. Note that libraries with numbers lower than 12543 used
a different spike-in cocktail than other libraries and the correspondence between initial spike-in
amounts and final FPKM scores in the sequenced libraries was poor. For this reason, they were
excluded from analyses based on estimating absolute transcript abundances in copies per cell.

Library
Read

Length
Unique UniqueSplices Multi MultiSplices

12515 100-cell pool A 1x100 17,687,845 3,209,817 2,324,217 87,366

12516 100-cell pool B 1x100 19,196,833 3,613,603 2,472,612 116,124

12517 30-cell pool A 1x100 19,656,269 3,836,281 2,747,606 112,715

12518 30-cell pool B 1x100 15,906,819 3,105,647 2,209,219 107,243

12519 10-cell pool A 1x100 25,589,985 7,716,359 3,942,315 264,713

12520 10-cell pool B 1x100 14,033,035 3,831,207 2,172,320 92,664

12522 cell 183 1x100 13,444,432 4,123,615 1,991,506 151,473

Continued on next page
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Library
Read

Length
Unique UniqueSplices Multi MultiSplices

12523 cell 184 1x100 18,553,787 6,282,207 2,753,213 162,393

12524 cell 185 1x100 15,306,477 4,973,962 2,375,825 123,920

12534 cell 186 1x100 9,412,759 1,792,734 1,104,103 92,146

12535 cell 187 1x100 12,021,473 2,593,517 1,762,078 122,152

12536 cell 188 1x100 6,173,793 1,609,714 751,818 35,935

12537 cell 189 1x100 8,900,605 2,552,063 1,195,651 71,165

12538 cell 190 1x100 11,976,901 3,061,070 1,578,373 114,265

12539 cell 191 1x100 4,894,790 990,183 687,469 55,952

12540 cell 192 1x100 8,586,601 2,191,767 1,312,434 70,208

12541 cell 193 1x100 11,615,819 2,810,842 1,636,014 75,938

12542 cell 194 1x100 9,299,741 2,543,984 1,388,630 61,370

12543 cell 195 1x100 9,051,228 1,583,943 1,172,717 52,683

12818 cell 200 1x100 9,465,272 2,903,793 1,338,444 87,282

12819 cell 205 1x100 11,895,334 3,486,064 1,184,543 59,413

12820 cell 208 1x100 13,034,342 2,346,996 1,418,030 120,778

12821 pool/split 5 1x100 9,152,130 2,394,362 1,520,080 76,965

12822 pool/split 6 1x100 13,938,165 3,517,926 2,286,058 113,187

12823 pool/split 7 1x100 11,217,362 1,872,905 1,154,032 73,843

12824 pool/split 8 1x100 11,822,904 2,135,005 1,364,032 70,389

13270 pool/split 3 219 1x100 7,416,424 4,799,669 1,463,631 457,029

13271 pool/split 4 220 1x100 8,421,706 5,262,489 1,644,668 496,781

13272 pool/split 9 225 1x100 12,782,172 4,509,292 1,480,617 427,615

13273 pool/split 10 226 1x100 10,325,385 6,582,179 2,100,134 641,196

13274 10ng RNA rep1 1x100 33,234,882 4,315,401 1,629,950 267,868

13275 10ng RNA rep2 1x100 36,981,036 5,266,981 1,704,651 301,449

13276 100pg RNA rep1 1x100 11,363,854 4,904,470 1,008,244 258,637

Continued on next page
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Library
Read

Length
Unique UniqueSplices Multi MultiSplices

13277 100pg RNA rep2 1x100 34,939,583 6,750,980 2,212,161 442,062

13278 cell 204 1x100 20,631,514 11,290,949 3,418,238 921,764

13279 cell 207 1x100 10,926,463 4,949,640 1,664,688 490,150

13280 pool/split 232 1x100 21,240,282 9,537,592 2,722,244 726,943

13281 pool/split 233 1x100 25,425,429 9,576,495 2,510,136 703,065

13282 cell 235 1x100 10,167,950 3,677,729 966,782 191,523

13283 cell 236 1x100 18,782,295 7,784,497 2,210,674 572,837

13284 cell 237 1x100 25,766,827 8,914,958 2,235,457 594,889

13285 cell 238 1x100 16,334,009 6,842,776 2,351,813 602,952

13286 cell 239 1x100 19,717,157 5,801,008 2,473,230 595,738

13287 cell 240 1x100 21,881,195 8,373,245 2,386,125 645,571

13288 cell 242 1x100 19,165,078 6,146,306 1,338,990 330,167

13289 cell 243 1x100 24,802,270 9,575,191 2,885,175 744,245

13290 cell 244 1x100 7,400,266 3,086,583 741,408 223,657

13291 cell 245 1x100 21,024,295 7,093,623 2,111,549 519,415

13292 pool/split 246 1x100 17,296,143 8,394,643 2,223,819 572,943

13294 pool/split 248 1x100 14,399,162 6,272,094 1,784,982 459,195

13295 pool/split 249 1x100 22,428,103 10,454,916 2,898,266 815,093

13296 pool/split 250 1x100 19,745,007 8,825,294 2,468,779 697,549

13297 pool/split 251 1x100 21,239,455 9,833,749 2,936,743 724,006

13298 pool/split 252 1x100 4,674,393 2,237,759 591,303 145,488

13299 pool/split 253 1x100 20,948,852 9,729,505 2,726,042 709,672

13300 10-cell pool 254 1x100 29,113,485 8,790,470 2,600,560 702,142

13301 11-cell pool 255 1x100 34,836,093 11,643,761 3,802,039 1,080,518

13302 100-cell pool 256 1x100 18,477,603 4,084,659 1,618,554 329,602

13303 100-cell pool 257 1x100 43,640,710 11,315,061 4,819,940 1,036,363

Continued on next page
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4

Analysis of RNA-seq data from samples containing

a mixture of cells from multiple species

This chapter includes material that was previously published in:

“Raskatov JA, Nickols NG, Hargrove AE, Marinov GK, Wold B, Dervan PB. 2012. Gene expres-

sion changes in a tumor xenograft by a pyrrole-imidazole polyamide. Proc Natl Acad Sci U S A.

109(4):16041-16045. doi: 10.1073/pnas.1214267109

The experimental data in it was generated by Jevgeni Raskatov in the Dervan lab. I contributed

the computational approach to xenograft RNA-seq analysis. The paper is reprinted in Appendix D.

4.1 Introduction, Results and Discussion

Multicellular organisms do not exist in isolation but live in association with a very large number of

microorganisms (NIH HMP Working Group et al. 2009; Human Microbiome Project Consortium

2012), and they also encounter various pathogens. A consequence of this is that the transcriptome

of many organs and tissues is not purely the transcriptome of the host species but a complex

mixture of the transcriptomes of the host and all other organisms living in association with it.

Understanding the dynamics and interplay of the combined transcriptome is of great interest, and

this is especially true about host-pathogen interactions (Westermann et al. 2012). Fortunately,

the phylogenetic distance between most pathogens and their multicellular hosts is great, and it is
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Figure 4.1: Strategy for the simultaneous quantification of dual-species (in this case,
mouse and human) RNA-seq data. The sequences of mouse and human transcripts are extracted
from the corresponding genomes and annotation files, and a combined Bowtie (Langmead et al. 2009)
index for the two transcriptomes is built. In this case, the refSeq annotations were used (Pruitt et
al. 2009), downloaded from the UCSC Genome Browser. Sequencing reads from xenograft RNA-seq
experiments are then aligned against this combined index, allowing reads to map to an unlimited
number of locations. The resulting alignments are used for simultaneous quantification of both
transcriptomes using eXpress. The quantification values are then used for downstream analysis,
either as FPKMs, or for assessment of differential expression using DESeq (Anders & Huber 2010);
in the latter case the “effective counts” values are used.
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Table 4.1: Percentage of reads mapping to hg19 or mm9 in the A549-luc-C8 xenograft-
derived RNA-seq samples as well as pure mouse and human samples. Read were mapped
separately to the mouse (mm9) and human (hg19) genomes using TopHat. The nearly equal number
of reads mapping to each genome in the xenograft samples compared to the lower fraction of reads
mapping to the other genome in A549 cells and in the mouse spleen sample indicated the presence
of a significant fraction of mouse cells in the xenografts.

Sample/Condtion Number of reads % mapping
to hg19

% mapping
to mm9

XenoVehicle 1 35,478,968 59.5 42.9
Xeno Vehicle 2 50,839,514 36.5 27.5
Xeno Vehicle 3 50,150,429 59.2 46.3
Xeno Treated 1 54,437,744 59.5 43.3
Xeno Treated 2 49,087,273 39.7 28.9
Xeno Treated 3 34,553,534 60.4 44.4
A549 in vitro 35,187,689 83.0 11.9
SCID-bg spleen 34,932,537 11.9 95.8

relatively straightforward to analyze their transcriptomes from the same pool of RNA using RNA-

seq, as the high level of sequence divergence means no or very few reads map ambiguously to both

genomes.

Xenografts, on the other hand, represent a system, which presents much more significant compu-

tational challenges to the characterization of its transcriptome. A typical xenograft model involves

the grafting of human tumor cells into immunosuppressed mice. Such systems are widely used as

models of human cancers in drug development (Sano & Myers 2009; van Weerden et al. 2009; Tentler

et al. 2012; Luconi & Mannelli 2012), and accurately assessing transcriptional changes in response

to drug treatments is therefore of high importance. The challenge is that host cells often invade the

xenograft (although the degree to which this is happening varies depending on the specifics of the

tumor and the host tissue) and thus even careful isolation of xenograft tissue from the host results

Table 4.2: Comparison of qRT-PCR and RNA-seq of A549-luc-C8 tumor xenograft
gene expression levels. qRT-PCR measurements are normalized to GUSB as the housekeeping
gene, with three independent experiments with N = 5 animals per treatment condition averaged.
Arrows indicated the direction of expression change between the untreated and treated condition (⇓
indicates downregulation upon treatment while ⇑) corresponds to upregulation

Gene Fold change (qPCR) Fold change (RNA-seq)

ATM ⇓1.5 ± 0.2 ⇓1.5 (p > 0.05)
NPTX1 ⇓3.3 ± 0.6 ⇓2.9 (p < 0.001)
ROBO1 ⇓1.5 ± 0.2 ⇓1.7 (p > 0.05)
MMP28 ⇑1.5 ± 0.3 ⇑2.0 (p < 0.05)
EGFR ⇓1.2 ± 0.2 ⇓1.3 (p > 0.05)
CCL2 ⇓2.3 ± 0.4 ⇓1.7 (p < 0.001)
SERPINE1 ⇓2.0 ± 0.2 ⇓1.8 (p < 0.001)
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in a mixture of mouse and human cells. Despite some 70 million years of divergence, mouse and

human genes retain significant sequence homology (Mouse Genome Sequencing Consortium 2002)

and assignment of short reads is not always unambiguous, potentially confounding quantification of

gene expression changes in the xenograft (Conway et al. 2012; Valdes et al. 2013; Rossello et al.

2013). On the other hand, the presence of mouse cells is also a potential benefit, as in a xenograft

containing a large proportion of normal host cells, RNA-seq allows in principle the simultaneous

measurements of gene expression changes in both tumor and normal cells. This can be illuminating

about the differences between the effects of the drug tested on normal (host) and tumor (xenograft)

cells.

Another system where the same problem is encountered are heterokaryons derived from the

fusion of cells from two species (for example, mouse emryonic stem cells and human fibroblasts,

leading to reprogramming of the latter into a pluripotent stem cell state; Blau et al. 1983; Blau

& Blakely 1999), where it is even more pronounced as the proportion of the transcriptome in the

sample deriving from each species is approximately equal. Such a system was studied by Brady et

al. 2013, whose solution to dealing with reads mapping to both species was to simply discard them.

Several other studies in recent years have also addressed the problem. Bradford et al. 2013

studied tumor and host changes in gene expression after treatment of xenografts the VEGFR tyrosine

kinase inhibitor cediranib. Their solution was also to map reads to each species separately and

discard the ambiguous ones. This was also the essence of the approach adopted by Rossello et al.

2013, who studies small cell lung cancer xenografts, and by Kawahara et al. 2012, who studied the

mixed transcriptome of rice (Oryza sativa) and the fungal pathogen Magnaporthe oryzae.

A tool specifically designed to classify reads from xenograft samples called Xenome has been

developed (Conway et al. 2012). It is based on decomposing the transcriptomes of the two species

into k-mers (the set of all k-mers in a larger sequence or set of sequences consists the set of all subse-

quences of length k found in it) and classifying the reads into originating from the host, originating

from the xenograft, ambiguous or originating from neither. Once assigned, the reads can then be

used for subsequent species-specific mappings and analysis. However, this approach only classifies

reads as ambiguous rather than actually attempting to assign them to a given species.

I developed what is in my opinion a much simpler and more elegant solution to the problem,

one that uses all reads, assigns them to species, performs proper FPKM normalizations, and does

not involve a complex read processing pipeline, by adopting the eXpress tool for isoform-level quan-

tification of RNA-seq data (Roberts & Pachter 2013). I discussed eXpress in a prior chapter so I

will not revisit how it works; for the purposes of this chapter it is necessary to note that eXpress
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was specifically designed to deconvolve the expression levels of transcripts that are highly similar

to each other (such as the individual isoforms of a gene and even allelic variants), and to do so in

transcriptomic (i.e. only the sequences of spliced transcripts) rather than genomic space. Thus it

is ideally suited for the analysis of samples containing a mixture of the transcriptomes of multi-

ple species such as xenografts, and also potentially metagenomes and metatranscriptomes. At the

time of writing this text, I am not aware of any study that has actually used it for the analysis of

metagenomic/metatranscriptomic samples, thus our results constituted the first proof-of-principle

study confirming the utility of the approach to this kind of problems.

We studied the effect of a DNA-binding pyrrole-imidazole polyamides (designed to target 5-

WGGWWW-3 sequence motifs) on a xenograft of the A549 cancer cell line onto immunocompro-

mised SCID mice (Raskatov et al., 2012). Such polyamides are of potential therapeutic interest as

they can bind to DNA sequences occupied by transcription factors driving the proliferation of cancer

cells, outcompete them and antagonize their action (Dervan & Edelson 2003; Chenoweth & Dervan

PB 2009; Nickols & Dervan 2007; Muzikar et al. 2009). The goal of the study was to examine the

transcriptional changes in the xenograft upon polyamide treatment. However, we faced the problem

of the xenograft tissue containing a significant number of host cells, which can potentially confound

the quantification of gene expression in human cells (see Table 4.1). To resolve that problem I

devised the pipeline outlined in Figure 4.1. It consists of extracting the transcriptome sequences

for both the human and mouse genome, merging them together, creating a Bowtie index for the

merged set of sequences, then mapping RNA-seq reads to it and quantifying expression levels based

on the resulting alignments using eXpress. Subsequently, we used the “effective counts” generated

by eXpress and DESeq (Anders & Huber 2010) to assess changes in gene expression in both species.

We identified 615 differentially expressed human genes. Notably, we also found 1338 mouse genes

that were differentially expressed between the two conditions. We selected several human genes for

orthogonal testing of expression changes using qPCR and species-specific human primers and found

excellent agreement between the fold changes estimated from RNA-seq data and those calculated us-

ing qPCR (Table 4.2), underscoring the usefulness of the eXpress-centered computational approach

for analyzing dual- and multi-species RNA-seq data.
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4.2 Methods

4.2.1 RNA-seq Sample Preparation

Double polyA-selection was used in order to enrich for mRNA. RNA-seq libraries were prepared using

standard Illumina reagents and protocols (Mortazavi & Williams et al. 2008). All experiments were

carried out in triplicates and 35-50 ×106 single-end sequences of 50 bp were generated for each

library.

4.2.2 RNA-seq Data Processing

Sequencing data were mapped to a combined human and mouse transcriptome index (using the hg19

and mm9 refSeq annotations) using Bowtie version 0.12.7 (Langmead et al. 2009) with the following

settings: -v 2 -a, i.e. allowing for two mismatches and an unlimited number of locations a read can

map to. Alignments were quantified on the transcript level using eXpress, version 1.0.0 (Roberts &

Pachter 2013). For each gene the quantification values of all its transcripts were summed and the

eXpress-determined “effective counts” were used as input for differential expression analysis using

DESeq (Anders & Huber 2010).
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Part II

Functional Genomics of Organelles
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This part contains four chapters describing the functional genomic studies of proteins associated

with organellar DNA. It grew out of a collaboration with the Chan lab at Caltech, in which the goal

was to map the occupancy of the TFAM protein over the mitochondrial nucleoid in human cells.

The results of it are described in the first chapter here. While working on this problem we noticed

that many nuclear transcription factors assayed by ENCODE exhibited strong enrichment over some

areas of the mitochondrial genomes. We investigated the phenomenon in depth, which resulted in

a study of the binding of nuclear transcription factors to mitochondrial DNA in animal genomes,

described in the third chapter in this part. I then carried out a similar analysis on published ChIP-

seq data in plants, which contain both a mitochondrial and a plastid genome. The results from it

are presented in the fourth chapter. In parallel, we extended our TFAM study to other proteins

involved in mitochondrial transcription and replication, the occupancy of which we mapped in a

couple of ENCODE cell lines in collaboration with the Myers lab at the HudsonAlpha Institute of

Biotechnology, with the results detailed in the second chapter.
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5

Genome-Wide Analysis Reveals Coating of the Mi-

tochondrial Genome by TFAM

Most of the material in this chapter was published as:

Wang YE, Marinov GK, Wold BJ, Chan DC. 2013. Genome-wide analysis reveals coating of

the mitochondrial genome by TFAM. PLoS ONE 8(8):e74513. doi: 10.1371/journal.pone.0074513

The experimental data in it was generated by Yun Elisabeth Wang in the Chan lab. I contributed the

computational analysis. The paper is reprinted in Appendix H.

Abstract

Human mitochondria contain a 16.6 kb circular-mapping genome encoding 13 pro-

teins as well as mitochondrial tRNAs and rRNAs. Copies of the genome are organized

into nucleoids containing both DNA and proteins, including the machinery required for

mtDNA replication and transcription. The transcription factor TFAM is critical for

initiation of transcription and replication of the genome, and is also thought to perform

a packaging function. Although specific binding sites required for initiation of tran-

scription have been identified in the D-loop, little is known about the characteristics

of TFAM binding in its nonspecific packaging state. In addition, it is unclear whether

TFAM also plays a role in the regulation of nuclear gene expression. We investigated

these questions by using ChIP-seq to directly localize TFAM binding to DNA in human
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cells. Our results demonstrated that TFAM uniformly coats the whole mitochondrial

genome, with no evidence of robust TFAM binding to the nuclear genome and represent

the first direct assessment of TFAM binding on a genome-wide scale.

5.1 Introduction

Mitochondria are essential eukaryotic organelles, serving as the epicenter of ATP production in

the cell through oxidative phosphorylation. To perform this bioenergetic function, mitochondria

utilize gene products encoded by the mitochondrial genome, a circular DNA that is 16.6 kb long.

This genome is organized into DNA/protein structures termed nucleoids (Bogenhagen et al., 2008).

Mitochondrial DNA (mtDNA) encodes thirteen components of the electron transport chain, as well

as 22 tRNAs and two ribosomal RNA genes. These gene products are essential for the proper function

of the respiratory chain, and therefore maintenance of mtDNA levels and sequence fidelity is essential

for cellular bioenergetics. In a human cell, there are hundreds to thousands of copies of the mtDNA

genome (Bogenhagen & Clayton, 1974; Satoh & Kuroiwa, 1991). Damage or depletion of mtDNA

causes numerous inherited disorders, including Alpers Disease, ataxia neuropathy spectrum, and

progressive external ophthalmoplegia (Suomalainen et al., 2010; Stumpf et al., 2013). Furthermore,

loss and damage to mtDNA has been implicated in cardiovascular disease (Sugiyama et al., 1991;

Ide et al., 2001; Karamanlidis et al., 2010; Karamanlidis et al., 2011), diabetes (Maassen et al.,

2004; Simmons et al., 2005; Gauthier et al., 2009), neurodegenerative disorders such as Alzheimers

(Coskun et al., 2004; Coskun et al., 2012), and aging (Corral-Debrinski et al., 1992; Trifuvonic &

Larsson, 2008). Strikingly, increasing mtDNA copy number promotes cell survival or function in

many models of disease associated with decreased mtDNA abundance, such as diabetes (Gauthier

et al., 2009; Suarez et al., 2008), aging (Hayashi et al., 2008), Alzheimer’s (Xu et al., 2009), and

Parkinson’s (Keeney et al., 2009; Piao et al., 2012). Thus, it is critical to understand how mtDNA

copy number and integrity are maintained.

Mitochondrial transcription factor A (TFAM) is a DNA binding protein that plays multiple

roles in regulating mtDNA function. As a sequence-specific transcription factor, it binds upstream

of the light strand promoter (LSP) and heavy strand promoter 1 (HSP1) to activate initiation of

transcription. At these sites, the footprint of TFAM binding is ∼22 bp long (Fisher & Clayton,

1998; Ngo et al., 2011). As a result, TFAM is essential for production of gene products from the

mitochondrial genome. In addition, TFAM is required for normal mtDNA copy number, because

RNA primers generated from LSP are used to prime mtDNA replication (Chang & Clayton, 1984;
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Figure 5.1: Characterization of TFAM monoclonal antibodies. (A) Immunoprecipitation
of TFAM from cell lysates. HeLa cell lysate was applied to sheep anti-mouse Dynabeads conjugated
to anti-Myc, 20G2C12 TFAM antibody, 20F8A9 TFAM antibody, or a 50/50 mixture of 20G2C12
and 20F8A9 TFAM antibodies The labeled bands are: 1) Antibody heavy chain; 2) antibody light
chain; 3) TFAM. (B) Western blot using the 20G2C12 antibody detects a ∼23kDa band. (C and D)
Immunocytochemistry showing TFAM localization. Mitochondria were identified by PPIF staining;
mtDNA was identified by anti-DNA staining. There was no evidence for nuclear localization of
TFAM using either antibody.
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Figure 5.2: ChIP-seq analysis of genome-wide TFAM binding (A) Overview of compu-
tational processing of data. Reads were trimmed to 36 bp and then either mapped against the
mitochondrial genome (chrM), or the complete hg19 version of the genome. After removing multi-
reads and alignments to the mitochondrial genome, peaks in the nuclear genome were called using
MACS2. (B) The proportion of sequencing reads mapping to chrM in ChIP and input datasets. All
replicates of the ChIP-seq resulted in at least 30% of reads mapping to the mitochondrial genome,
much greater than the 0.4-1.9% of reads mapping to mtDNA in the input datasets. Replicates 1-3
were performed using the 20G2C12 antibody, while Replicate 4 was performed using the 20F8A9
antibody.

Chang & Clayton, 1985). Mice heterozygous for a knockout of TFAM exhibit not only an expected

reduction (22%) in mitochondrial transcript levels in the heart and kidney, but also a universal 34%

reduction in mtDNA copy number across all assayed tissues. Furthermore, homozygous knockout

mice have no detectable levels of mtDNA and die during embryogenesis (Larsson et al., 1998),

highlighting the importance of TFAM in maintenance of mtDNA levels and in cellular and organismal
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viability.

Apart from its sequence-specific functions, TFAM is thought to organize the mtDNA genome by

coating it in a nonspecific manner. Although how TFAM packages mtDNA is not well-understood,

it is known to bind nonspecifically to DNA (Fisher et al., 1989) and is estimated to be sufficiently

abundant to coat the genome completely (Alam et al., 2003; Ekstrand et al., 2004; Kaufman et al.,

2007). One model suggests that nonspecific binding radiates from the TFAM LSP binding site, which

acts as a nucleation site for subsequent cooperative binding in a phased pattern to yield an inter-

genome homogeneous pattern of binding (Fisher et al., 1992; Ghivizzani et al., 1994). The packaging

function of TFAM appears to have important consequences for maintenance of the mtDNA genome.

A TFAM variant that is deficient in transcriptional activation but competent in DNA binding is

capable of preventing mtDNA depletion (Kanki et al., 2004). Therefore, as a prominent component

of mtDNA nucleoids, TFAM appears to coat the mitochondrial genome, perhaps protecting it from

turnover or deleterious damage.

Despite the importance of the associations of TFAM with mtDNA in the maintenance of mtDNA

integrity and in cellular viability, these interactions have not been characterized in vivo. Therefore,

to capture a high-resolution profile of TFAM-mtDNA interactions across the entire mitochondrial

genome, we performed chromatin immunoprecipitation followed by massively parallel sequencing

(ChIP-seq) (Johnson et al., 2007) for TFAM in human HeLa cells.

5.2 Results

5.2.1 Detection of TFAM-DNA interactions using ChIP-seq

To characterize TFAM binding to both the mitochondrial and nuclear genomes in an unbiased

manner, we performed ChIP-seq targeting TFAM in HeLa cells. Because ChIP-seq data is highly

dependent on the use of high-quality antibodies, generated two new TFAM monoclonal antibodies

(20G2C12 and 20F8A9) that efficiently immunoprecipitated TFAM were generated and character-

ized (Figure 5.1A). Both of these antibodies gave clean mitochondrial and nucleoid signals in im-

munofluoresecence experiments with cultured HeLa cells (Figure 5.1C,D). The 20G2C12 antibody

also performed well in Western blots of whole-cell lysates, recognizing a single protein band of ∼23

kD (Figure 5.1B).

Given the high efficiency of 20G2C12 in immunoprecipitating TFAM, as well as its high specificity,

we used it to capture TFAM-associated DNA fragments for ChIP-seq analysis. DNA was sonicated
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Figure 5.3: Coating of the mitochondrial genome by TFAM in HeLa cells. Circos plot
of plus strand and minus strand TFAM ChIP-seq and input read density signal over chrM. (A, E)
Annotation of protein coding (green on forward/heavy strand, red on reverse/light strand), ribosomal
RNAs (yellow) and tRNAs (blue on forward/heavy strand, grey on reverse/light strand) transcripts.
(B) D-loop (black), LSP promoter (large red tile), known LSP TFAM binding site (small red tile),
HSP promoter (large blue tile), known HSP TFAM binding site (small blue tile), and origins of heavy
strand replication (Ori-b, orange tile; OH , yellow tile). (C) TFAM ChIP-seq signal on forward (red)
and reverse (blue) strands. (D) Input signal on forward (red) and reverse (blue) strands. (F) Origin
of light strand replication (yellow tile). Note that the input signal is exaggerated 60-fold relative to
the ChIP-seq signal in order to visualize coverage irregularities. The signal from the TFAM ChIP-seq
largely follows that of the input, indicating generalized binding across the mitochondrial genome.
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prior to immunoenrichment and size-selected prior to library building so that the average fragment

length of the final library was centered around 200 bp, a fragment distribution allowing for high-

resolution deconvolution of binding events. We generated 3 replicates and matching controls. The

sequencing depth of all samples was between 18 million and 48 million mappable reads, which is

generally sufficient for comprehensive identification of transcription factor binding sites as shown

before (Landt, Marinov & Kundaje, 2012).

Figure 5.4: Comparison of profiles of TFAM binding to mitochondrial genome. Circos
plots (A) of TFAM ChIP-seq experiments: (1) 20F8A9 antibody ChIP-Seq; (2) 20G2C12 replicate
1; (3) 20G2C12 replicate 2; (4) 20G2C12 replicate 3. Read profiles are very similar across replicates
and antibodies.
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Figure 5.5: Absence of TFAM binding to the nuclear genome. (A) Cross-correlation plot
of input DNA computed over the nuclear genome. (B) Cross-correlation plot of TFAM ChIP-seq
computed over the nuclear genome. (C) Distribution of ChIP-seq reads mapping to the plus and
minus strand around called binding sites in a ChIP-seq dataset for the NRSF transcription factor
(Schoenherr & Anderson, 1995) in HeLa cells, generated by the ENCODE consortium (ENCODE
Project Consortium, 2011, ENCODE Project Consortium, 2012). (D) Distribution of TFAM ChIP-
seq reads mapping to the plus and minus strand around called binding sites indicates lack of real
binding sites. (E) No ChIP-seq enrichment around the promoter of the SERCA2/ATP2A2 gene,
previously suggested to be a TFAM target.

A common concern with ChIP-seq datasets is the variability of enrichment for true binding

events as compared to background. In a typical ChIP-seq experiment, a minority of sequencing

reads originates from binding events, with the majority representing random genomic DNA. Even



250

for the same DNA binding factor, large variations in the strength of enrichment can be observed,

and therefore it is critical to assess the degree of enrichment before downstream analysis. A number

of ChIP-seq quality control metrics have been developed (Landt, Marinov & Kundaje, 2012) for

nuclear transcription factors. However, TFAM is expected to bind to the mitochondrial genome,

which has very different characteristics from the nuclear genome. In addition, it is predicted to

bind both in the classical localized manner (Kharchenko et al, 2008) as well as broadly across the

mitochondrial genome. As a result, metrics for evaluating nuclear transcription factors are not well-

suited for analysis of TFAM binding data. We therefore examined the fraction of sequencing reads

in our libraries mapping to the mitochondria as a proxy for the enrichment of TFAM binding events.

Strikingly, between 30% and 75% of TFAM ChIP-seq reads mapped to the mitochondrial genome,

while less than 2% of reads mapped to the mitochondrial genome in the input samples, indicating

that our TFAM ChIP-seq datasets are indeed highly enriched for TFAM binding events (Figure

5.1B). We note that 75% ChIP enrichment is extremely high (in fact, practically unprecedented)

for any transcription factor dataset (Landt, Marinov & Kundaje, 2012), thus underscoring the high

experimental quality of our datasets.

Because partial copies of the mitochondrial genome are also present in the nuclear genome,

not all reads originating from mtDNA can be mapped uniquely. Therefore, we characterized TFAM

binding to mtDNA and to the nuclear genome separately. We analyzed mitochondrial binding events

by aligning sequencing reads to the mitochondrial genome alone (restricting our analysis to reads

mapping perfectly without any mismatches to further increase mapping accuracy), and analyzed

binding to the nuclear genome by aligning only the reads which did not map to the mitochondrial

genome, as outlined in Figure 5.2A. For a standard nuclear transcription factor, this approach

may cause some reads originating from the nuclear genome to artificially map to the mitochondrial

genome. However, given that TFAM is known to bind to the mitochondrial genome and the extremely

high enrichment for TFAM binding to mtDNA in our TFAM ChIP-seq libraries, this should not be

a significant confounding factor.

5.2.2 TFAM coats the mitochondrial genome

As discussed above, TFAM has not only been proposed to bind specifically to well-defined binding

sites in the D-loop, but has also been suggested to play a nonspecific packaging role in the nucleoid

that is essential for mtDNA integrity. However, little is known about the pattern of non-specific

binding of TFAM to the mitochondrial genome. Localized binding at the D-loop and diffuse binding
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across the rest of the genome are expected to result in distinct ChIP-seq signal profiles. Localized,

“point-source” binding to DNA results in an asymmetric distribution of reads mapping to the forward

and reverse strand around the binding site of the protein (Kharchenko et al, 2008, Pepke et al, 2009),

while diffuse binding does not produce such strand asymmetry.

To characterize TFAM binding to mtDNA, we examined the forward and reverse strand read

distribution after mapping TFAM ChIP-seq and input library reads to the mitochondrial genome.

Strikingly, we did not observe regions of obvious enrichment and strand asymmetry in the D-loop;

in particular, we did not see specific binding at the predicted HSP1 and LSP sites. On the whole,

the TFAM ChIP-seq signal was broadly distributed over the whole mitochondrial chromosome, and

while coverage was not perfectly uniform, the amplitude of the non-uniformity was not significant

and the signal profile closely tracked that of the input sample (Figure 5.3). The low level of non-

uniformity likely results from sequencing biases, which has been documented to skew coverage (Dohm

et al., 2008; Ross et al., 2013). Because our libraries were carefully size-selected for fragments in the

200 bp range, discrete TFAM binding sites would be expected to yield discrete signal localizations.

Therefore, we interpret these results as evidence for the uniform coating of the whole mitochon-

drial genome by TFAM. We observed one region of apparent localized enrichment exhibiting strand

asymmetry in the ND2 ORF near the origin of light strand replication (OL) (Figure 5.2F), which

we discuss in the Discussion section.

To further verify our results, we carried out ChIP-seq against TFAM with a second TFAM mon-

oclonal antibody, 20F8A9. We obtained similar results (Figure 5.4) and found significant correlation

between the 20F8A9 dataset and the three datasets obtained from the 20G2C12 antibody datasets

(p < 0.0001).

Figure 5.6 (preceding page): Cells treated with 50ng/ml EtBr experience rapid de-
pletion of TFAM levels, as assayed by anti-TFAM Western blot (A). This coincides with
a depletion of mtDNA levels to 17% that of wildtype after 4 days of treatment, as determined by
relative qPCR quantification (B). Removal of EtBr leads to a rapid increase in TFAM levels and to
an increase in mtDNA copy number per cell within 30 to 48 hours. Immunohistochemistry of HeLa
cells for TFAM, mitochondrial matrix protein PPIF, and DAPI show that TFAM is mitochondrial
under wildtype conditions (C). Treatment with EtBr leads to a remarkable consolidation of both
TFAM and mtDNA puncta (C, D), leading to larger, fewer nucleoids (E-G). By 24 to 36 hours
post-recovery, nucleoids redistribute uniformly throughout the mitochondrial network, with partial
recovery of nucleoid size, intensity, and number per cell.
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Figure 5.7: Discrete localization of TFAM on the mitochondrial genomes following
mtDNA depletion after EtBr treatment in HeLa cells. Circos plot of plus strand and minus
strand TFAM ChIP-seq and input read density signal over chrM. (A, F) Annotation of protein coding
(green on forward/heavy strand, red on reverse/light strand), ribosomal RNAs (yellow) and tRNAs
(blue on forward/heavy strand, grey on reverse/light strand) transcripts. (B) D-loop (black), LSP
promoters (large red tile), known LSP TFAM binding site (small red tile), HSP promoter (large
blue tile) and known HSP TFAM binding site (large blue tile). (C) TFAM ChIP-seq signal on
forward (red) and reverse (blue) strands. (D) Manually determined localized TFAM binding sites
(black tiles). (E) Input signal on forward (red) and reverse (blue) strands. Note that the input
signal is greatly exaggerated relative to the ChIP-seq signal (Fig. 1B) in order to visualize coverage
irregularities.

5.2.3 No evidence for binding to the nuclear genome

Previous studies have suggested that TFAM can be found in the nucleus and that it modulates

the transcription of nuclear genes. In rat neonatal cardiac myocytes, TFAM was found to bind to
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Figure 5.8: MEME-derived motif for TFAM enriched sites. (A) Sequence logo. (B) Fraction
of sites the motif is found in.

the promoter of SERCA2, the homolog of human sarco(endo)plasmic reticulum calcium-ATPase 2

(ATP2A2 ), and was implicated in regulating its transcription (Watanabe et al, 2011). Given the

extremely high degree of TFAM binding enrichment in our datasets, any robust nuclear TFAM

binding events should be readily detectable. To analyze nuclear binding, we excluded all sequencing

reads mapping to the mitochondrial genome and used the resulting set of reads to identify putative

TFAM binding sites. We first looked for significant global read clustering using cross-correlation

between reads mapping to the forward and the reverse DNA strands (Kharchenko et al, 2008,

Landt, Marinov & Kundaje, 2012). Cross-correlation plots for input samples and for TFAM ChIP-

seq datasets were indistinguishable from each other (Figure 5.5A,B). Next, we called putative TFAM

binding sites using MACS2 (Zhang et al, 2008). Using default settings (corresponding to a q-value

cut-off of 10−2), we identified 72, 137 and 153 sites respectively for the three replicates generated

with antibody 20G2C12, and a single site for the 20F8A9 antibody. However, manual inspection of

each of the identified sites revealed that all were likely to represent artifacts, mostly associated with

repetitive DNA sequences, as none had the expected strand asymmetry of read distribution around

a binding site. Instead, the two strand profiles at each site were identical (summarized in Figure

5.5D, with the classic nuclear transcription factor NRSF shown for comparison in Figure 5.5C), and

numerous unmappable regions and repetitive elements were present in the immediate vicinity of

many of the called sites. Inspection of the ATP2A2 gene revealed no TFAM enrichment neither in

the promoter region nor anywhere else in the neighborhood of the gene (Figure 5.5E). Furthermore,

we did not detect nuclear localization of TFAM in our cells (Figure 5.1C). Therefore, in HeLa cells

under normal growth conditions, we find no evidence for specific binding of TFAM to nuclear target

genes.
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Figure 5.9: The few nuclear genome locations with TFAM ChIP-seq signal character-
istics similar to those of robust ChIP-seq peaks. (A) SLC39A10 (B) DDX17 (C) GPR137
(D) GABARAP (E) DDIT4 (F) SEPT17.

5.3 Discussion

Previous in vitro studies have suggested that TFAM binds specifically to LSP and HSP1, and that

it may also bind nonspecifically in a phased manner. Furthermore, evidence has been presented for
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its nuclear localization and action as a canonical nuclear transcription factor in rat neonatal cardiac

myocytes. However, no direct genome-wide measurements of TFAM binding have been previously

reported. Our TFAM ChIP-seq data reveal very high enrichment for reads mapping to the mito-

chondrial genome, but a binding pattern that largely mirrors the read distribution observed in the

input DNA, suggesting broad, non-specific binding to mitochondrial genome. This pattern is highly

reproducible, indicating that the average population-wide state of TFAM-mtDNA interactions is

stable. We found no correlation between irregularities in TFAM signal distribution and characteris-

tics of the mitochondrial genome such as GC content (data not shown). Thus, our conclusion is that

TFAM binds to the mitochondrial genome nonspecifically and without bias when cells are grown

under typical culture conditions. Although we did not observe the synchronized phased binding seen

in in-vitro studies, we cannot rule out a model where individual mtDNAs have such a pattern of

binding initiating from a non-universal nucleation site.

Strikingly, we did not observe localized enrichment of binding at the known LSP and HSP1

TFAM binding sites. The ChIP-seq signal pattern mirrored that of the input in these regions, and

no ChIP-seq peaks displaying the canonical strand asymmetry in read distribution were observed.

This finding can be explained by a model in which the interaction of TFAM with the LSP and HSP1

binding sites is relatively transient and infrequent compared to a more stable non-specific association

with the genome in its packaging state.

We did detect one site in the genome exhibiting the characteristics of a specific, localized ChIP-

seq peak, centered at 5175 bp in the ND2 ORF. The localized nature of the ChIP signal at this site

suggests higher occupancy of TFAM. This peak localizes to 546 bp upstream of the OL. Strikingly,

TFAM has previously been localized 520 bp upstream of the OL of rat mtDNA (Gadaleta et al.,

1996; Cingolani et al., 1997; Pierro et al., 1999). We found no sequence similarity between the rat

and human sites, and in general this region of the mtDNA genome shows low homology between the

two species. Further work will be required to understand the significance of this putative TFAM

binding site.

Finally, analysis of all datasets for TFAM binding to the nuclear genome yielded no hits dis-

tinguishable from common ChIP-seq artifacts. Although Watanabe et al. observed regulation of

the SERCA2 gene in rat myocytes, we did not detect TFAM binding at the promoter of its or-

tholog in humans. Previous studies have shown nuclear localization of TFAM in rat hepatoma cells

(Dong et al., 2002), as well as an alternate isoform of TFAM in mouse testis nuclei (Larsson et

al., 1996). We have thus far been unable to detect nuclear TFAM localization in HeLa cells (Figure

5.1C), suggesting that nuclear localization and transcriptional regulation may be cell type or perhaps
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species-dependent. ChIP-seq in different cell lines may be able to detect such nuclear interactions.

In this study, we presented the first in vivo ChIP-seq analysis of TFAM binding to the mitochon-

drial genome. Aside from generalized, largely non-specific binding across the mitochondrial genome,

we detected a putative specific binding site upstream of the origin of light strand replication. We

did not observe the expected binding at the known HSP1 and LSP sites, nor did we identify any

nuclear binding sites. An area that remains to be explored is the dynamic nature of TFAM-DNA

interactions with respect to both the nuclear and mitochondrial genomes. ChIP-chip on the yeast

mitochondrial genome has shown that metabolic changes can lead to differential binding of the yeast

TFAM homolog, Abf2p (Kucej et al., 2008). It is possible that such remodeling also occurs in the

mammalian system, and further studies will provide insight into the dynamic nature of the mtDNA-

protein interactions within the nucleoid that serve to protect its integrity. Some speculative results

we obtained from experiments addressing these issues that are also relevant to later chapters are

presented as an additional section at the end of this chapter.

5.4 Materials and Methods

5.4.1 Cell growth and treatment

HeLaS3 cells were cultured in Dulbeco’s modified Eagle’s medium (DMEM, Invitrogen #11995)

containing 10% bovine serum (Invitrogen #16170), penicillin and streptomycin, and additional L-

glutamine (2mM). Cells were fed 24 hours before harvest for ChIP-seq, which was performed at

80-90% confluency.

5.4.2 Antibody Production and characterization

Antibodies were produced by the Caltech Monoclonal Antibody Facility and raised against the full-

length TFAM protein in mouse. Immunoprecipitation with 20G2C12 and 20F8A9 TFAM antibodies

and Myc antibody (Santa Cruz #sc-40) was performed according to established protocols using M-

280 sheep anti-mouse Dynabeads (Invitrogen #11201D). Immunoblotting of IP products was per-

formed using a monoclonal TFAM 18G102B2E11 antibody, also custom generated, at 1:2000, with

goat anti-mouse HRP antibody (1:10,000, Jackson ImmunoResearch #115-056-003). Immunoblot-

ting of HeLa whole cell lysate with 20G2C12 was performed at a 1:200 dilution and with goat

anti-mouse HRP antibody.
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5.4.3 Immunocytochemistry

HeLa cells cultured as described above were plated onto poly-lysine coated glass coverslips 48 hours

prior to fixation in formaldehyde and permeabilization with 0.1% Triton X-100. For colocaliza-

tion of TFAM to mitochondria, 20G2C12 or 20F8A9 antibodies were used at 1:10 in conjunction

with PPIF at 1:200 (ProteinTech #18466-1-AP). Secondary antibodies were goat anti-mouse AF488

(1:500, Invitrogen #A11001) and donkey anti-rabbit AF546 (1:500, Invitrogen #A10040). Cells

were also stained with DAPI to visualize nuclei. Immunocytochemistry to visualize colocalization of

mitochondrial nucleoids and TFAM was performed sequentially due to both antibodies being raised

in mouse. Sequential immunostaining yielded no background fluorescence due to cross-antibody

reactivity (data not shown). Order was as follows: anti-TFAM antibody (1:10); goat anti-mouse

AF488 (1:500, Invitrogen #A11001); anti-DNA antibody (1:25, Millipore #CBL186); goat anti-

mouse AF555 (1:500, Invitrogen #A21426), DAPI. Images were acquired with a Zeiss LSM 710

confocal microscope with PlanApochromat 63X/1.4 oil objective. Z-stack acquisitions were con-

verted to maximum z-projections using ImageJ software.

5.4.4 Chromatin immunoprecipitation and sequencing

ChIP experiments and preparation of DNA for sequencing were performed following standard pro-

cedures (Johnson & Mortazavi et al, 2007) with some modifications. Cells were fixed for 10min

at RT in 1% formaldehyde, harvested using a cell scraper, washed once in ice-cold PBS, and re-

suspended in RIPA buffer with protease inhibitor. The sample was then sonicated using a 3.2mm

microtip (QSonica Sonicator 4000) at 30s on/30s off intervals and 40% amplitude for 180min while

in a −30 ◦C 3:1 isopropanol and water bath containing dry ice. Subsequent steps were performed

as per the standard protocol. DNA was size-selected during library building to an average fragment

size of 200bp. Libraries were sequenced using Illumina GAIIx and Illumina HiSeq 2000. Sequencing

data is available under GEO accession record GSE48176.

5.4.5 Sequencing data processing and analysis

Sequencing reads were trimmed down to 36 bp and then mapped against either the female set

of human chromosomes (excluding the Y chromosome and all random chromosomes and haplo-

types) or the mitochondrial genome alone, using the hg19 version of the human genome as a

reference. Bowtie 0.12.7 (Langmead et al. 2009) was used for aligning reads, not allowing for

any mismatches between the reads and the reference. ChIP-seq peaks were called using MACS2
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(Zhang et al. 2008) with default settings except for the mfold parameter which was lowered

to (2,30). Circos plots were generated using Circos version 0.60 (Krzywinski et al 2009). Ad-

ditional data processing was carried out using custom-written python scripts. ENCODE data

was downloaded from the UCSC browser (http://hgdownload-test.cse.ucsc.edu/goldenPath/

hg19/encodeDCC/wgEncodeHaibTfbs) and its use here complies with its terms of usage. Pearson

correlation coefficient, t-test, and p values were calculated using embedded and custom Microsoft

Excel functions.

5.5 Possible discrete localization of TFAM to the

mitochondrial genome following mtDNA depletion and

recovery after EtBr treatment

Previous studies have demonstrated that treatment of cells with ethidium bromide (EtBr) selectively

causes depletion of mtDNA (Zylber et al. 1969; Desjardins et al. 1985; King & Attardi 1989; Micol

et al. 1997; Herzberg et al. 1993). Furthermore, we found that EtBr also results in marked depletion

of TFAM at the protein level as measured by Western blot (Figure 5.6A,B). We investigated this

phenomenon further by examining the dynamics of mitochondrial nucleoid morphology during an

EtBr treatment time course. We observed a remarkable consolidation of both mtDNA and TFAM

localization within the first 24 hours, resulting in the formation of large, bright nucleoids (Figure

5.6C-G). These changes were concomitant with depletion of TFAM and mtDNA and stabilized by

the 4th day of treatment. Upon withdrawal of EtBr, nucleoid morphology and TFAM and mtDNA

levels were partially restored. At 36 hours after withdrawal, mtDNA and TFAM levels are still

significantly lower than in untreated cells but mitochondrial replication is observed again.

To elucidate the dynamics of TFAM binding to mtDNA concomittant with these changes, we

performed TFAM ChIP-seq at 36 hours upon withdrawal of EtBr after 4 days of treatment. In

contrast with the uniform TFAM distribution over the mitochondrial genome in untreated cells, we

observed clear foci of TFAM localization, with the strand asymmetry characteristic of robust ChIP-

seq transcription-factor binding peaks (Figure 5.7C,D). Due to the extremely high coverage of the

mitochondrial genome by sequencing reads, peak calling using standard publicly available packages

such as MACS, ERANGE (Johnson & Mortazavi et al. 2007), and SPP (Kharchenko et al, 2008) was

not successful in resolving individual peaks, so we curated TFAM binding foci manually following

the criteria that forward and reversed strand signal peaks should be separated by a distance related

http://hgdownload-test.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeHaibTfbs
http://hgdownload-test.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeHaibTfbs
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to the input fragment distribution (determined using cross-correlation analysis and the BioAnalyzer

profiles for the libraries). We identified 66 high confidence enrichment foci in this manner (Figure

5.7D).

These observations raise the question of why and how TFAM would localize to narrowly defined

loci after mtDNA depletion. The changes in TFAM binding could be due to a combination of

sequence specificity of binding, the local structure of DNA, the global state of the mitochondrial

nucleoid, and possible TFAM protein interactors with other protein with DNA binding affinity on

their own. We attempted to derive enriched DNA sequence motifs from the 100bp regions flanking

the summit of TFAM binding sites using MEME (Bailey et al, 2009). A loosely constrained, long

(26bp), almost symmetric, C- and A-rich motif emerged from this analysis (Figure 5.8), and was

found in the majority (57 of 66) of sites. However, we were not able to detect differential affinity of

TFAM for the best and worst matches for this motif among the sites using fluorescence anisotropy

(data not shown).

We also reexamined the question of whether high-confidence TFAM ChIP-seq peaks can be

identified in the nuclear genome, this time using the EtBr-treated cell dataset. Several peaks much

stronger than those seen in untreated cells were identified (Figure 5.9) and were associated with the

promoters of the SLC39A10, DDX17, GPR137, GABARAP, DDIT4 and SEPT17 genes. As these

genes are not obviously related to mitochondrial function and because these peaks are not extremely

strong compared to conventional transcription factor ChIP-seq peaks, they cannot be confidently

considered instances of functional binding before more studies are performed.

The observation of highly localized TFAM binding to mtDNA following EtBr treatment is highly

intriguing, and potentially of great significance, but it was based on a single ChIP-seq experiment,

not the multiple replicates one would like to have. Naturally, we invested a lot of effort in replicating

the result, repeating the experiment three times, but in all three cases the resulting TFAM ChIP-

seq pattern was much closer to the one observed in resting cells than to the initial EtBr replicate

(Figure 5.10), even though the extent of TFAM localization to discrete loci varied between different

replicates (compare Figure 5.10B with Figure 5.10C).

It is unlikely that the original EtBr observation was an artifact given the quality characteristics

of that dataset. TFAM in those cells indeed localized to discrete loci after EtBr treatment and this

was measured by the assay. Our explanation for the failure to replicate the result is that the discrete

localization happens only at particular times during the EtBr time course and the dynamics of the

time course varies between experiments, i.e. the same sequence of events happens each time the

experiment is done but at different times. As a result the point in time at which TFAM is highly
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localized shifts in time relative to the cell harvesting time point. We were unfortunate not to capture

that moment when we repeated the experiments, and to eventually run out of time and resources

before we could succeed. However, more recent completely orthogonal observations that we made

quite strongly suggest that TFAM localization to those sites of the mitochondrial genome is indeed

real. They are discussed in more detail in a later chapter.
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Figure 5.10: Replication of TFAM EtBr ChIP-seq results. (A,B,C) Three independent
biological replicate TFAM ChIP-seq datasets generated after treatment of HeLa cells with EtBr.
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6

Genome-Wide Analysis of the Human Mitochon-

drial Transcription and Replication Machineries

The material in this chapter is based on data generated in the Myers lab at the HudsonAlpha Insti-

tute of Biotechnology, and is a preliminary version of what is intended for publication in the future as:

Marinov GK, Wang YE, Pauli-Behn F, Newberry K, Chan DC, Myers RN, Wold BJ. Genome-Wide

Analysis of the Human Mitochondrial Transcription and Replication Machineries

Abstract

Mitochondria are vital to eukaryote biology organelles of endosymbiotic origin con-

taining their own (albeit highly reduced) genome. Mitochondrial transcription and

replication are regulated and carried out by a dedicated set of proteins. These pro-

cesses have been studied in most detail in mammalian mitochondria; however, the

genome-wide occupancy of most of the factors involved has so far not been character-

ized. Here, we report global maps of the distribution of the transcriptional regulators

TFB2M and TFAM, the transcription termination factor MTERF, and the mitochon-

drial RNA and DNA polymerases POLRMT and POLG. These data allow us to evaluate
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the mechanistic models of replication and transcriptional regulation in mitochondria.

6.1 Introduction

Figure 6.1: TFAM occupancy over the human mitochondrial genome. ChIP-seq against
TFAM was carried out in HepG2 cells. Shown is the plus and minus strand distribution of mapped
reads in ChIP (outer tracks, red and green) and control input datasets (inner track, blue and yellow).
Also shown are the rRNA (blue tiles), tRNA (purple tiles), and heavy and light strand protein coding
genes (green and red tiles) as well as the LSP promoter (yellow tile), HSP promoter (black tile),
and the origins of heavy strand (Ori-b, orange square, and OH, yellow square) and light strand (OL,
gray square) replication. Plots were generated using Circos version 0.60 (Krzywinski et al. 2009).

Mitochondria are the primary site of oxidative phosphorylation in most eukaryotic cells, and
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in addition to that play a vital role in a long list of other important cellular processes (Williams

et al. 2013; Andersen & Kornbluth 2013; Miller 2011; Lill et al. 2012). They possess their own

genome (Nass et al. 1965; Schatz 1963), which in mammals is circular mapping and ∼16 kilobases

long (16,571 bp in humans) (Anderson et al. 1981; Bibb et al. 1981; Satoh & Kuroiwa 1991).

Mitochondria originated very early in eukaryote evolution, when their most likely α-proteobacterial

ancestor became an endosymbiont to the ancestor of modern eukaryotes (Yang et al. 1985). The

mitochondrial genome is the remnant of the genome of that prokaryotic endosymbiont, which, as

a result of the loss of genes and the transfer of genes from the organellar to the nuclear genome

(Kleine et al. 2009), has been greatly reduced in size and gene content. In humans, it encodes 13

proteins (components of the electron transport chains), 2 rRNAs and 22 tRNAs. It has only one

significant stretch of non-coding DNA – the so called control, or D-loop (Arnberg et al. 1971; ter

Schegget et al. 1971) regulatory region (or non-coding region, NCR), which is approximately 1kb

long and plays an important role in the processes of transcription and replication.

The mitochondrial genome is expressed and replicated by dedicated transcription and replication

machineries separate from those acting in the nucleus. Transcription initiates from three different

promoters located in the D-loop – two promoters transcribing the “heavy” or H-strand (HSP1 and

HSP2) and one “light”-strand promoter (LSP). Mitochondrial transcripts are polycistronic and the

mature mRNAs are produced by posttranscriptional processing mediated by the excision of the

tRNAs that are found between all genes (Ojala et al. 1981). It is carried out by POLRMT, an

RNA polymerase of apparent phage origin (Masters et al. 1987; Shutt & Gray 2002). Initiation of

transcription requires the activities of the TFAM (mitochondrial transcription factor A) and TFB2M

(mitochondrial transcription factor B2; Falkenberg et al. 2002; Metodiev et al. 2009; Sologub et

al. 2009) proteins. TFAM also plays a structural and packaging role in the mitochondrial nucleoid

and is necessary for mtDNA replication and maintenance (Alam et al. 2003; Ekstrand et al. 2004;

Kaufman).

Transcription from the HSP1 promoter is thought to generate a transcript that includes the

two ribosomal RNAs and terminates shortly after. The same site is also where termination of

transcription in the other direction, originating from the LSP promoter and containing the ND6

gene, occurs. Both termination events are triggered by the presence of the DNA binding protein

MTERF, which acts as a termination factor (Christianson & Clayton 1988; Kruse et al. 1989;

Fernandez-Silva et al. 1997; Shang & Clayton 1994). The polycistronic transcript originating from

the HSP2 promoter includes all other protein coding genes and reaches all the way to the other end

of the D-loop (Montoya et al. 1983; Asin-Cayuela & Gustafsson 2007).
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Replication of mitochondrial DNA is carried out by DNA Polymerase γ, which consists of two

subunits, the catalytic POLG and the accessory POLG2 (Ropp & Copeland 1996; Yakubovskaya

et al. 2006; Chan & Copeland 2009; Wanrooij & Falkenberg 2010); in addition, the mitochondrial

single-strand binding protein (mtSSB) and the helicase TWINKLE also play an important role.

Multiple models for how the process of replication occurs have been proposed (Holt & Reyes 2012).

The classic asynchronous strand displacement model (SDM) of replication involves the initiation of

replication of the heavy strand from replication origins within the D-loop. Leading strand replication

then proceeds for about two thirds of the length of the mitochondrial genome until the origin of

light strand replication is encountered (OL; Martens & Clayton 1979), upon which replication of

the light strand begins (Kasamatsu & Vinograd 1973; Robberson & Clayton 1972; Clayton 1982).

Two origins of heavy strand replication have been mapped: OH and Ori-b (Kang et al. 1997;

Pham et al. 2006; Crews et al. 1979; Fish et al. 2004). DNA replication is primed by POLRMT

transcription initiating from the LSP promoter (Chang et al. 1985; Chang & Clayton 1985; Kang et

al. 1997; Pham et al. 2006); some 600bp downstream of the OH, near the end of the D-loop region,

replication often arrests, and a triple-stranded D-loop structure forms in the NCR (Arnberg et al.

1971; Kasamatsu et al. 1971; ter Schegget et al. 1971).

In the last decade, evidence for different models of replication has been accumulating. These

include the RITOLS (Ribonucleotide Incorporation ThroughOut the Lagging Strand) model (Ya-

sukawa et al. 2005; Yasukawa et al. 2006; Pohjoismäki et al. 2010; Holt & Reyes 2012) and the

strand-coupled model (Holt et al. 2000). The RITOLS model is somewhat similar in its mechanism

to the SDM model in that both the D-loop and the OL replication origins play a role; however,

in contrast to SDM, it features the incorporation of RNA on the lagging strand while the leading

strand is being synthesized. Under the strand-coupled model, replication is bidirectional and can

initiate from regions outside of the NCR (Bowmaker et al. 2003).

These models have been developed using traditional molecular biology approaches, which have

proven highly useful in understanding the biology of mitochondria. However, the global distribution

of these proteins over the mitochondrial genome has so far not been systematically characterized.

Here, we used ChIP-seq (Chromatin Immunoprecipitation coupled with high-throughput sequencing;

Johnson et al. 2007) to generate such maps for TFAM, TFB2M, MTERF, POLRMT and POLG

and to further elucidate the role of these proteins in the processes of mitochondrial transcription

and replication.



269

Figure 6.2: TFB2M binding over the human mitochondrial genome. ChIP-seq against
TFB2M was carried out in HepG2 cells. Shown is the plus and minus strand distribution of mapped
reads in ChIP (outer tracks, red and green) and control input datasets (inner track, blue and yellow).
Also shown are the rRNA (blue tiles), tRNA (purple tiles), and heavy and light strand protein coding
genes (green and red tiles) as well as the LSP promoter (yellow tile), HSP promoter (black tile),
and the origins of heavy strand (Ori-b, orange square, and OH, yellow square) and light strand (OL,
gray square) replication. The black rectangles indicate the putative TFB2M binding sites within
the LSP and the HSP. Plots were generated using Circos version 0.60 (Krzywinski et al. 2009).

6.2 Results

6.2.1 Measuring the genome-wide occupancy of mitochondrial proteins

using ChIP-seq

In order to characterize the genome-wide occupancy of mitochondrial proteins, we applied ChIP-seq

using standard, previously described, protocols (Johnson et al. 2007) in two ENCODE cell lines:
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Figure 6.3: MTERF occupancy over the human mitochondrial genome. ChIP-seq against
MTERF was carried out in HepG2 cells. Shown is the plus and minus strand distribution of mapped
reads in ChIP (outer tracks, red and green) and control input datasets (inner track, blue and yellow).
Also shown are the rRNA (blue tiles), tRNA (purple tiles), and heavy and light strand protein coding
genes (green and red tiles) as well as the LSP promoter (yellow tile), HSP promoter (black tile),
and the origins of heavy strand (Ori-b, orange square, and OH, yellow square) and light strand (OL,
gray square) replication. Plots were generated using Circos version 0.60 (Krzywinski et al. 2009).
Two sites of putative MTERF occupancy of lower intensity are also shown separately as insets.

the lymphoblastoid GM12878 and the liver carcinoma HepG2 cells. The results were generally very

similar between the two lines, and for this reason only a single dataset is used for the visualization
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Figure 6.4: POLRMT occupancy over the human mitochondrial genome. ChIP-seq
against POLRMT was carried out in HepG2 cells. Shown is the plus and minus strand distribution
of mapped reads in ChIP (outer tracks, red and green) and control input datasets (inner track, blue
and yellow). Also shown are the rRNA (blue tiles), tRNA (purple tiles), and heavy and light strand
protein coding genes (green and red tiles) as well as the LSP promoter (yellow tile), HSP promoter
(black tile), and the origins of heavy strand (Ori-b, orange square, and OH, yellow square) and light
strand (OL, gray square) replication. Plots were generated using Circos version 0.60 (Krzywinski et
al. 2009).

of the occupancy of each protein throughout the manuscript. We generated 50bp long sequencing

reads and aligned them against the mitochondrial genome (version hg19 of the human genome, see

the Methods section for more details). As the size of the mitochondrial genome is small and makes

this approach feasible (in contrast to the ≥3Gb nuclear genome), manual inspection of the resulting
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Figure 6.5: Examples of nuclear loci displaying evidence for physical association with
either POLRMT or its short nuclear isoform spRNAP-IV.
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Figure 6.6: Occupancy of the DNA polymerase γ catalytic subunit POLG over the
human mitochondrial genome. ChIP-seq against POLG was carried out in HepG2 cells. Shown
is the plus and minus strand distribution of mapped reads in ChIP (outer tracks, red and green)
and control input datasets (inner track, blue and yellow). Also shown are the rRNA (blue tiles),
tRNA (purple tiles), and heavy and light strand protein coding genes (green and red tiles) as well as
the LSP promoter (yellow tile), HSP promoter (black tile), and the origins of heavy strand (Ori-b,
orange square, and OH, yellow square) and light strand (OL, gray square) replication. Plots were
generated using Circos version 0.60 (Krzywinski et al. 2009). A site of putative POLG occupancy
of near the OriL is shown separately as an inset.

ChIP and control dataset read profiles was used to identify regions of enrichment. In addition,

we also mapped reads against the nuclear genome in order to examine the possible association of
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Figure 6.7: Distribution of the 5’ ends of forward and minus strand ChIP-seq reads
around the known origins of mitochondrial replication. Shown are UCSC Genome Browser
snapshots of POLG ChIP-seq tracks created by assigning non-zero scores only to the positions to
which the 5’ ends of reads map to. (A) Positions 1 to 300, containing the OH replication origin.
(B) Positions 15,900 to 16,571, containing the Ori-b replication origin. (C) Positions 5,751 to 5,913
around the OL replication origin.
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mitochondrial proteins such as POLRMT with the nuclear genome.

6.2.2 TFAM

We previously characterized the occupancy of the mitochondrial genome by TFAM using ChIP-seq

in HeLa cells (Wang et al. 2013). TFAM was found to fully coat mtDNA with little evidence for

strong site-specific occupancy over the promoter regions in the D-loop (although such occupancy is

by no means incompatible with the data – TFAM plays a well-characterized role in transcriptional

initiation, but its association with DNA might be transient compared to the steady-state packaging

role it also plays, and as a result generates ChIP-seq signal that is too weak in comparison to

stand out). Here we also carried out TFAM ChIP-seq in HepG2 cells and obtained very similar

results. The fraction of all mapped reads (to the nuclear chromosomes or to chrM) mapping to the

mitochondrial genome was 68%. In the same time the TFAM ChIP-seq signal profile was highly

similar to that of the control sonicated input sample (Figure 6.1). As discussed before (Wang et

al. 2013), these observations argue for the uniform coating of the mitochondrial genome by TFAM,

with the non-uniformities in coverage being due to a combination of sonication, library preparation

and sequencing biases.

6.2.3 TFB2M

We next characterized the genome-wide occupancy of TFB2M. TFB2M is required for transcription

of mitochondrial genes and is known to directly interact with DNA as part of the POLRMT tran-

scription initiation complex (Sologub et al. 2009; Litonin 2010). As such it is expected to physically

localize to the HSP and LSP promoters. ChIP-seq data confirms this expectation but also reveals

a potentially more complicated picture (Figure 6.2). Within the HSP promoter region, we observed

a single large occupancy site, which displayed the characteristic for ChIP-seq peaks asymmetry be-

tween the read distribution on the plus and minus strands (Kharchenko et al. 2008; Landt et al.

2012). We were not able to distinguish separate binding sites for the HSP1 and HSP2 promoters;

however, this is likely due to the fact that they are too closely spaced relative to the resolution of the

ChIP-seq assay. The ChIP profile in the LSP region was more complex, with at least two putative

occupancy sites observed – a stronger one exhibiting very strong read asymmetry and located in the

general region of LSP transcription initiation, and a weaker one located close to it downstream in

the direction of LSP transcription. The significance of the second site is at present unknown. Even

more surprising is the observation of a region of elevated TFB2M occupancy (but with difficult to
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identify specific binding sites) at the very end of the D-loop downstream of the LSP and the origins

of replication. To the best of the authors’ knowledge, association of TFB2M with this region has

previously not been reported and it is not clear what role it might be playing there; future studies

will be needed to elucidate it.

6.2.4 MTERF

We then profiled the genome-wide occupancy of the MTERF protein. As expected, we observed a

single extremely strong occupancy site, exhibiting very notable strand asymmetry at the LSP and

HSP1 termination site (Figure 6.3). These results are also in agreement with recently published data

in HeLaS3 cells (Terzioglu et al. 2013). However, detailed examination of the read profiles identified

two more putative occupancy sites for MTERF, which, although much weaker in terms of ChIP-seq

signal strength, are nevertheless above background and display a read asymmetry suggesting they

correspond to real biochemical events. The first one (site “1” in Figure 6.3) is located immediately

downstream of the HSP1/2 promoter, and is of interest as it has been reported that MTERF interacts

with this region of mtDNA and a loops is formed between the two MTERF binding sites, with this

interaction being important for the activation of transcription (Martin et al. 2005). The second one

is located in the vicinity (but not within) the OL region and its functional significance is at present

unclear.

6.2.5 Mitochondrial RNA Polymerase (POLRMT)

Next we studied the association of the mitochondrial RNA Polymerase POLRMT with the mitochon-

drial genome (Figure 6.4). We found one site of strong POLRMT localization in the mitochondrial

genome, and it coincided with the MTERF termination sites between the 16S rRNA and the ND1

genes. This suggests that termination of transcription is associated with pausing and/or an appre-

ciable increase in the residence time of the polymerase around this site. In addition, we observed

generally elevated read coverage over the D-loop but without obvious distinct sites of localized

enrichment.

In addition to its well characterized role in mitochondrial transcription, the POLRMT gene has

been suggested to also participate in nuclear transcription, through the production of an alternative

isoform called spRNAP-IV that lacks the N-terminal 262 amino acids (Kravchenko et al. 2005; Lee

et al. 2011). The antibody we used to carry out ChIP-seq against POLRMT has been raised against

amino acids 841-1140 located near its C-terminus, and should therefore also react with spRNAP-
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IV. We examined the possible nuclear role of spRNAP-IV by calling ChIP-seq peaks in the nuclear

genome using MACS2 (Feng et al. 2012). After manual curation of the resulting peaks (in order

to filter out obvious artifacts), we identified 47 loci with significant enrichment in POLRMT ChIP-

seq in HepG2 cells. Notably, only a small minority of these peaks were also called in GM12878

cells suggesting that if spRNAP-IV indeed transcribes through these regions, it may do so in cell-

type specific manner. Sites of POLRMT enrichment displayed a preferential localization in the

immediate upstream and downstream regions of protein coding genes, and were often associated

with transposable elements (representative examples are shown in Figure 6.5).

6.2.6 Mitochondrial DNA Polymerase (Pol γ)

Finally, we analyzed the mitochondrial genome occupancy of the catalytic subunit (POLG2) of

the mitochondrial DNA polymerase (Pol γ). We observed several regions of significant enrichment

(Figure 6.6). First, a site of very strong and localized read density is observed at the end of the D-

loop in the direction of LSP replication and about a 100bp downstream of the OH replication origin.

Second, a similar but lower-intensity region of occupancy is found about a 100bp downstream of the

Ori-b replication origin. Third, a weaker but detectable occupancy site is seen at the OL replicaiton

origin. Of note, only the the OL site exhibited the typical for a ChIP-seq peak strand asymmetry; in

contrast, the two strong signal peaks in the D-loop displayed forward and reverse strand profiles that

were similar to each other, with little shift between the peaks on the two strand, and with a markedly

higher signal on the forward strand than on the reverse one. The features of the site at the end of

the D-loop would indicate these sites to be a possible experimental artifact in other settings, and

indeed this is how they were interpreted previously when they were observed in the ChIP-seq read

profiles around the D-loop of nuclear transcription factors (Marinov et al. 2014). However, given

that the DNA polymerase is known to pause at this site, that the strength of the signal compared

to the background level is much stronger than it is for nuclear transcription factors, and that the

DNA-polymerase is also observed at other sites where its occupancy is expected, in this case it is

more likely that a significant portion of the observed signal corresponds to true physical association

events of POLG with mtDNA. Also, the properties of DNA polymerase are expected to be somewhat

different from those of ChIP-seq against conventional double-stranded DNA binding proteins. The

typical asymmetric, strand-shifted ChIP-seq profile arises in the context of long double-stranded

DNA molecules within which transcription factor binding sites are embedded and occupied, but

the replicating DNA polymerase is associated with free 3’ ends, and also with free 5’ ends near
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the initiation sites. In the latter case, the structure also contains an RNA-DNA hybrid; depending

on whether the RNA portion of it survives the process of fixation and immunoprecipitation, it

is expected that if the DNA polymerase spends significant time around the region of initiation,

the process of end repair and ChIP-seq library construction will produce highly phased 5’ ends

corresponding most likely to the RNA-to-DNA transition positions, and possibly to the initiation of

transcription. To examine this in depth, we generated forward and reverse strand coverage tracks

showing only the 5’ ends of ChIP-seq reads (Figure 6.7). Remarkably, we indeed observed highly

phased clustering of 5’ ends on the reverse strand (and not on the forward strand) in the region

of the D-loop around the OH replication origin (Figure 6.7A), located around position 110. This

position is somewhat different from the locations suggested by previous efforts to map the heavy

strand origin of replication (position 191 according to Crews et al. 1979, position 57 according to

Fish et al. 2004, position 300 according to Pham et al. 2006; Holt & Reyes 2012), but is in the same

region; of note, it is also considerably downstream of the LSP promoter suggesting it corresponds to

the site of initiation of replication from the RNA primer. A region of phasing of reverse strand reads

was also observed around position 16,280 near the Ori-b replication origin (Figure 6.7B), although

it has been previously suggested to be precisely located at nucleotide 16,197 (Yasukawa et al. 2005).

Finally, in the region around the OL replication origin, we observed several positions with phased 5’

ends, all on the forward strand (in contrast to the D-loop origins, where phasing is on the reverse

strand).

These observations support several features of the existing models of mitochondrial DNA repli-

cation. First, the OL origin is definitely used, as suggested by both the increased occupancy of

POLG there, and the detection of phased 5’ ends of ChIP-seq reads only on the forward strand

(likely corresponding to the 5’ end of newly synthesized DNA strands). Second, the OH origin is

also used, as evidenced by the strong phasing of reads on the reverse strand nearby, and the Ori-b

is likely used too, for similar reasons (although it does not exhibit the same strong phasing of 5’

ends). Third, as suggested previously, replication pauses at the end of the D-loop. The significant

asymmetry in the number of reads on the forward strand (corresponding to the template strand

for replication originating from OH or Ori-b in the direction of this end of the NCR) and reverse

strand, with the forward strand displaying larger number of reads compared to the reverse strand,

and with little shift between the two profiles, remains puzzling. It is at present not clear what the

reason for this pattern is, as it might be due to a complex combination of multiple poorly understood

factors having to do with crosslinking, sonication, size selection and library generation. However,

one attractive possibility is that it is related to the direction of replication; of note, lower in mag-
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nitude but detectable peaks which display the opposite pattern of asymmetry between read density

on the forward and reverse strands are observed in the opposite direction of both the OH and Ori-b

origins, which is intriguing as there have reports that replication initiation from these promoters is

bidirectional (Holt & Reyes 2012).

6.3 Conclusions

In this work, we generated comprehensive genome-wide maps of the physical occupancy over the

mitochondrial genome of the main proteins involved in mitochondrial transcription (TFAM, TFB2M,

MTERF and POLRMT) and replication (POLG). Consistent with previous work (Wang et al. 2013),

we found TFAM to fully coat the mitochondrial genome, with no outstanding localized sites of

enrichment in the cells studied here. We found TFB2M to occupy the HSP and LSP promoters, in

line with previous observations. However, its occupancy seems to be more complex than previously

thought, with at least three occupancy cites in the region; in addition to this, we also observed

it localizing to the opposite end of the D-loop, where its role is at present unclear. We observed

very strong MTERF localization at the known transcription termination site. In addition, we also

found that MTERF can be crosslinked (though weakly and likely due to an indirect interaction

with mtDNA) to the region immediately downstream of the HSP1/2 promoter, consistent with the

previously suggested model in which MTERF mediates looping between the termination sites and

the promoter region to activate transcription (Martin et al. 2005). The termination site was also

the most notable region of strongly localized read enrichment for POLRMT, suggesting it pauses

there while termination takes place. We also examined the previously proposed nuclear role of the

POLRMT genes, through its alternative isoform, spRNAP-IV, and found it to indeed associate with

a limited number of nuclear loci, but its binding patterns do not clearly reveal its possible functional

roles.

The POLG ChIP-seq datasets presented strong evidence in support of existing models in which

all three known origins of replication feature prominently (although the data is consistent with more

frequent usage of the OH than of the Ori-b) origin. We did not find direct evidence for replication

initiation elsewhere in the mitochondrial genome, as suggested by some versions of the strand-

coupled replication model (Bowmaker et al. 2003); however, that such modes of replication are

used cannot be ruled out by the data as it is possible that they do not generate strongly localized

POLG occupancy. The data is consistent with both the SDM and the RITOLS models, as the

behavior of the DNA polymerase is very similar under both, but the SDM and RITOLS models can
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be distinguished using functional genomics tools: under RITOLS, the lagging strand is covered by

RNA, while in the SDM model, the lagging strand is associated with the mtSSB protein. It will

therefore be highly informative to apply strand-specific ChIP-seq protocols (Zhou et al. 2013) to

mtSSB (and also, to the polymerase itself).

In addition, occupancy maps of other proteins involved in the biology of mtDNA (for example,

the other three members of the MTERF family) should prove highly valuable for understanding

their functional role, as in contrast to the well-known proteins studied here, much less is known

about them at present.

6.4 Methods

6.4.1 Cell growth, chromatin immunoprecipitation and sequencing

Cells were grown under standard ENCODE protocols, which can be found at http://genome.

ucsc.edu/ENCODE/protocols/cell/human/. ChIP experiments and preparation of DNA for se-

quencing were performed following standard procedures (Johnson & Mortazavi et al. 2007; Gasper

et al., in press). The following antibodies were used: mouse polyclonal α-TFAM (Sigma-Aldrich,

SAB1401382), mouse monoclonal α-TFB2M (Novus Biologicals, H00064216-M01), goat polyclonal

α-MTERF (Santa Cruz, sc-160543), goat polyclonal α-POLG (Santa Cruz, sc-5930) and mouse mon-

oclonal α-POLRMT (Santa Cruz, sc-365082). Libraries were sequenced using the Illumina HiSeq

2000.

6.4.2 Data processing and analysis

Reads were aligned as described previously (Wang et al. 2010) using Bowtie (Langmead et al.

2009), version 0.12.7. Two sets of alignments were generated. Firs, reads were mapped against

either the female or male hg19 version of the human genome (excluding all random chromosomes

and haplotypes; assembly downloaded from the UCSC genome browser) depending on the sex of

the cell line (male for HepG2, female for GM12878) with the following settings: ‘‘-v 2 -t -k 2

-m 1 --best --strata’’, which allow for two mismatches relative to the reference and only retain

unique alignments. These alignments exclude all reads mapping ambiguously to both the nuclear and

mitochondrial genomes, and were used for calling peaks in the nuclear genome with MACS2 (Feng et

al. 2012), version 2.0.9. Second, reads were mapped against chrM alone, with the following settings:

‘‘-v 0 -t -k 2 -m 1 --best --strata’’, i.e. allowing for zero mismatches to the reference. These

http://genome.ucsc.edu/ENCODE/protocols/cell/human/
http://genome.ucsc.edu/ENCODE/protocols/cell/human/
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alignments were used for visualization and evaluation of ChIP enrichment over the mitochondrial

genome. Circos plots were generated using Circos version 0.60 (Krzywinski et al 2009). Additional

data processing was carried out using custom-written python scripts.
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7

Evidence for Site-Specific Occupancy of the Mito-

chondrial Genome by Nuclear Transcription Factors

The material in this chapter was published as:

Marinov GK*, Wang YE*, Chan DC, Wold BJ. 2014. Evidence for site-specific occupancy of the

mitochondrial genome by nuclear transcription factors. PLoS ONE 9(1):e84713. doi: 10.1371/jour-

nal.pone.0084713

The experimental data in it was generated by Yun Elisabeth Wang in the Chan lab. The paper is

reprinted in Appendix L

Abstract

Mitochondria contain their own circular genome, with mitochondria-specific tran-

scription and replication systems and corresponding regulatory proteins. All of these

proteins are encoded in the nuclear genome and are post-translationally imported into

mitochondria. In addition, several nuclear transcription factors have been reported to

act in mitochondria, but there has been no comprehensive mapping of their occupancy

patterns and it is not clear how many other factors may also be found in mitochon-

dria. We addressed these questions by analyzing ChIP-seq data from the ENCODE,

mouseENCODE and modENCODE consortia for 151 human, 31 mouse and 35 C. el-

egans factors. We identified 8 human and 3 mouse transcription factors with strong

localized enrichment over the mitochondrial genome that was usually associated with

the corresponding recognition sequence motif. Notably, these sites of occupancy are

often the sites with highest ChIP-seq signal intensity within both the nuclear and mito-

chondrial genomes and are thus best explained as true binding events to mitochondrial

DNA, which exists in high copy numbers in each cell. We corroborated these findings
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by immunocytochemical staining evidence for mitochondrial localization. However, we

were unable to find clear evidence for mitochondrial binding in ENCODE and other

publicly available ChIP-seq data for most factors previously reported to localize there.

As the first global analysis of nuclear transcription factors binding in mitochondria,

this work opens the door to future studies that probe the functional significance of the

phenomenon.

Figure 7.1: Representative USCS Genome Browser snapshots of nuclear transcription
factor ChIP-seq datasets exhibiting strong enrichment in the mitochondrial genome.
(A) GM12878 GCN5 shows high signal intensity in the D-loop (the region between coordinates 16030
and 580, i.e. the non-coding regions on the left and right ends of the snapshot) representative of
the D-loop enrichment observed for a large number of transcription factors (B) In contrast, a large
MafK peak is observed in a coding region outside of the D-loop in HepG2 cells. Upper track (black)
shows reads aligning to the forward strand, lower track (gray) shows read aligning to the reverse
strand

In the course of our study of the association of TFAM with the mitochondrial nucleoid, we

made the accidental but very intriguing observation that a number of transcription factors for which

ChIP-seq data was available from the ENCODE Consortium exhibited high levels of localized signal

enrichment over the mitochondrial genome. We followed these observations and investigated the

phenomenon in depth. It turned out this was not an entirely new observations and the physical

localization of nuclear trancsription factors to the mitochondria had been reported in the past.

However, the power of the resolution and comprehensiveness of coverage of ChIP-seq had not been

utilized in none of those studies, in fact there was very little direct biochemical evidence for the

binding of those factors to mtDNA. Our study, the results of which I present in this chapter, was

the first global survey of these events, both in terms of covering the whole mitochondrial genome in

multiple species, and the number of transcription factors included in it.
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Figure 7.2: Unique mappability of the mitochondrial genome (chrM) in ENCODE and
modENCODE species. (A) human; (B) mouse; (C) C. elegans; (D) D. melanogaster. The 36bp
mappability track (see Methods for details) is shown. The annotated protein coding and rRNA and
tRNA genes are shown in the inner circles as follows: forward-strand genes are shown as green lines,
while reverse-strand genes are shown as red lines, with the exception of mouse and human rRNA
and tRNAs (blue). The D-loop region in human is shown in black. Gene annotations were obtained
from ENSEMBL (version 66). Plots were generated using Circos version 0.60 (Krzywinski et al.
2009).

7.1 Introduction

In addition to the well-characterized regulators of mitochondrial transcription, multiple reports have

suggested that transcription factors that typically act in the nucleus might also have regulatory
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functions in mitochondrial transcription (Leigh-Brown et al. 2010; Szczepanek et al. 2012b). The

glucocorticoid receptor (GR) was the first such factor reported to localize to mitochondria and to

interact with mtDNA (Demonacos et al. 1993; Demonacos et al. 1995; Koufali et al. 2003; Psarra

et al. 2006). A 43kDa isoform of the thyroid hormone T3 receptor T3Rα1 called p43 has been

found to directly control mitochondrial transcription (Casas et al. 1999; Enŕıquez et al. 1999a;

Enŕıquez et al. 1999b; Wrutniak et al. 1995). Cyclic-AMP Response element Binding protein

(CREB) has been shown to localize to mitochondria and suggested to bind to the D-loop (Lee et

al. 2005; Ryu et al. 2005; Cammarota et al. 1999; De Rasmo et al. 2009). The tumor suppressor

transcription factor p53 has been implicated in mtDNA repair and regulation of gene expression

through interactions with TFAM (Marchenko et al. 2000; Marchenko et al. 2007; Achanta et al.

2005; Heyne et al. 2004; Yoshida et al. 2003). It has also been proposed to play a proapoptotic

role through association with the outer mitochondrial membrane (Vaseva & Moll 2009). A similar

role has been also ascribed to the IRF3 transcription factor (Liu et al. 2010; Chattopadhyay et al.

2010). The mitochondrial localization of the estrogen receptor (ER) is also well established, for both

its ERα and ERβ isoforms, and it too has been suggested to bind to the D-loop (Chen et al. 2004;

Monje & Boland 2001). NFκB and IκBα have been found in mitochondria and have been proposed

to regulate mitochondrial gene expression (Cogswell et al. 2003; Johnson et al. 2011). The AP-1

and PPARγ2 transcription factors have been proposed to localize to mitochondria and bind to the

genome. (Casas et al. 2000; Ogita et al. 2003; Ogita et al. 2002) and the MEF2D transcription

factor was found to regulate the expression of the ND6 gene by binding to a consensus sequence

recognition motif within it (She et al. 2011). Finally, the presence of STAT3 in mitochondria has

been found to be important for the function of the electron transport chains and also to be necessary

for TNF-induced necroptosis (Szczepanek et al. 2011; Szczepanek et al. 2012a; Szczepanek et al.

2012b; Wegrzyn et al. 2009; Shulga & Pastorino 2012), although direct mtDNA binding has not been

established. Mitochondrial localization has also been reported for STAT1 and STAT5 (Boengler et

al. 2010; Chueh et al. 2010).

However, direct in vivo chromatin immunoprecipitation evidence for the binding of these factors

to mtDNA exists only for CREB (Lee et al. 2005), p53 (Achanta et al. 2005) and MEF2D (She et

al. 2011), and with the exception of MEF2D characterization is limited to the D-loop region. No

prior studies have assayed transcription factor occupancy across the entire mitochondrial genome

in vivo with modern high resolution techniques such as ChIP-seq (Chromatin Immunoprecipitation

coupled with deep sequencing, (Johnson & Mortazavi et al. 2007). As a result, the precise nature,

and in many instances the existence, of the proposed binding events remains unknown. The limited
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sampling of transcription factors in previous studies also leaves uncertain how common or rare

localization to mitochondria and binding to mtDNA is for nuclear transcription factors in general.

To address these questions, I surveyed the large compendium of ChIP-seq and other functional

genomic data made publicly available by the ENCODE, mouseENCODE and modENCODE Con-

sortia (ENCODE Project Consortium 2011; ENCODE Project Consortium 2012; Gerstein et al.

2010; modENCODE Consortium 2010; Mouse ENCODE Consortium 2012) to identify transcription

factors that associate directly with mtDNA and to characterize the nature of these interactions.

This resulted in the identification of eight human and three mouse transcription factors for which

robust evidence of site-specific occupancy in the mitochondrial genome exists. These sites exhibit

the strand asymmetry typical of nuclear transcription factor binding sites, usually contain the recog-

nition motifs for the factors in question, and are typically the strongest (as measured by ChIP-seq

signal strength) binding sites found in both the nuclear and mitochondrial genome by a wide margin.

Notably, these interactions are all found outside of the non-coding D-loop region. The D-loop region

itself exhibits widespread sequencing read enrichment for dozens of transcription factors. However,

it does not show the aforementioned feature characteristics of true binding events. Though not

observed in control datasets generated from sonicated input DNA, the high ChIP-seq signal over the

D-loop is frequently seen in control datasets generated using mock immunoprecipitation, suggesting

that it is likely to represent an experimental artifact. Examination of available ChIP-seq data for the

transcription factors previously proposed to play a role in mitochondria (GR, ERα, CREB, STAT3,

p53) revealed no robust binding sites except for enrichment in the D-loop. Resolving the functional

significance of the identified occupancy sites in future studies should provide exciting insights into

the biology of both mitochondrial and nuclear transcriptional regulation.

Figure 7.3 (preceding page): Variation in mitochondrial DNA copy number in cell lines
and tissues. The fraction of reads mapping to the mitochondrial genome (chrM) is shown. (A,B)
UW human (A) and mouse (B) UW ENCODE digital genomic footprinting (DGF) data; (C) UW
human ChIP input datasets; (D) LICR mouse ChIP input datasets. “UW” and “LICR” refers to the
ENCODE production groups that generated the data. Inputs from the UW and LICR groups were
chosen because they are the largest ENCODE sets in terms of number of cell lines/tissues assayed
by the same production groups, thus avoiding possible variation between different laboratories. A
general positive correlation between the expected metabolic demand of the tissue type and the
relative amount of reads mapping to chrM is observed.
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Figure 7.4: Signal distribution over the mitochondrial genome in human ChIP-seq
datasets. The maximum z-score for each individual TF ChIP-seq replicate in each cell line is
shown on the left (factors are sorted by average z-score, with control datasets always shown on
the bottom in red, below the red horizontal line). The z-score profile along the mitochondrial
chromosome for the replicate with the highest z-score is shown on the right. “SYDH” and “HA”
refer to the ENCODE production groups which generated the data. Z-scores ≥100 are shown as
equal to 100. (A) GM12878 cells; (B) K562 cells; (C) HepG2 cells; (D) HeLa cells; (E) A549 cells;
(F) H1-hESC cells; (G) IMR90.

7.2 Results

In the course of a study of TFAM occupancy in the mitochondrial and nuclear genomes (Wang et

al. 2013), we noticed that a number of nuclear transcription factors exhibit localized enrichment

in certain areas of the mitochondrial genome in ChIP-seq data (Figure 7.1). These events could be

divided in two classes: high ChIP-seq signal over the NCR, and localized high read density over

regions outside of it. Given prior reports suggesting that nuclear transcription factors might act

in mitochondria, this prompted me to determine the general prevalence of the phenomenon among

transcription factors and investigate evidence of occupancy in detail, as the power and resolution of

ChIP-seq have not previously been brought to bear on this somewhat mysterious phenomenon. We
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took advantage of the wide compendium of human, mouse, fly and worm functional genomics data

generated by the ENCODE (ENCODE Project Consortium 2011; ENCODE Project Consortium

2012), mouseENCODE (Mouse ENCODE Consortium 2012) and modENCODE (Gerstein et al.

2010; modENCODE Consortium 2010) consortia.

7.2.1 Identifying transcription factor binding events in the

mitochondrial genome

I downloaded publicly available (as of February 2012) ENCODE and mouseENCODE ChIP-seq and

control data from the UCSC Genome Browser and modENCODE data from ftp://ftp.modencode.

org, including ChIP-seq data for 151 transcription factors in human cell lines (Wang et al. 2012), 31

in mouse and 35 in C.elegans (see discussion on D. melanogaster below). I also downloaded DNase

hypersensitvity (both DNase-seq (Thurman et al. 2012) and DGF (Neph et al. 2012)), FAIRE-seq

(Song et al. 2012) and MNase-seq data as these datasets provide valuable orthogonal information

about potentially artifactual patterns of read enrichment over the mitochondrial genome.

It is well known that the nuclear genome contains partial copies of the mitochondrial genome

(NUMTs) (du Buy & Riley 1967; Hazkani-Covo E et al. 2010). Depending on their levels of diver-

gence from the mitochondrial sequence, they can present an informatics challenge for distinguishing

binding events to the true mitochondrial genome from binding events to NUMTs. For this reason,

I aligned reads simultaneously against the nuclear and mitochondrial genomes. I then retained only

reads that map uniquely, and with no mismatches, relative to the reference for further analysis (see

Methods for details). As a consequence this stringent mapping strategy, regions of the mitochondrial

genome that are also present as perfectly identical copies in the nuclear genome are “invisible” to

analysis; this was a necessary compromise in order to focus only on a maximally stringent set of

putative mitochondrial binding events. However, before proceeding, I examined how widely affected

the mitochondrial genome is by this treatment in the four relevant species by generating mappability

tracks (shown in Figure 7.2). The human mitochondrial genome contains numerous small islands of

unmappable sequence, particularly concentrated between the ND1 and CO3 genes, but it displays

no large completely unmappable segments (Figure 7.2A). The mouse genome contains a large un-

mappable stretch between the CO1 and ND4 genes (Figure 7.2B). The C. elegans mitochondrial

genome is almost completely uniquely mappable (Figure 7.2C). In contrast, the D. melanogaster

genome is almost completely unmappable, indicating the presence of very recent insertions into the

nuclear genome with high sequence similarity. Fly datasets were therefore excluded from further

ftp://ftp.modencode.org
ftp://ftp.modencode.org
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Figure 7.5: Signal distribution over the mitochondrial genome in human FAIRE-seq,
DNAse-seq and MNAse-seq datasets. Shown is the maximum z-score for each individual
replicate for each cell line (left) and the z-score profile along the mitochondrial chromosome for the
replicate with the highest z-score (right). (A) FAIRE data; (B) DNAse data; (C) MNAse data.
“UNC”, “UW” and “SYDH” refer to the ENCODE production groups which generated the data. Z-
scores larger than 100 are shown as 100. No read enrichment over the D-loop is observed, suggesting
that the D-loop signal found in TF ChIP-seq datasets is not due to sequencing biases but is a result
of the immunoprecipitation process.
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Figure 7.6: Combined
signal distribution pro-
file for the forward and
reverse strand in the D-
loop region. Shown is the
average signal (in RPM) for
each strand in human ChIP-
seq datasets with z-scores
≥ 20 (A) and human IgG
controls (B). Also shown for
comparison is the plus and
minus strand read distribu-
tion around nuclear CTCF
binding sites in H1-hESC
cells (C)

analysis and I focused on human, mouse and worm data.

Mammalian cells typically contain hundreds to thousands of copies of mtDNA, with the precise
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number varying depending on the metabolic needs of the particular cell type (Bogenhagen & Clay-

ton 1974; Williams 1986; Satoh & Kuroiwa 1991). This variation is relevant to analysis because the

relative read density over the mitochondrial genome is expected to scale with the mtDNA:nuclear

DNA ratio for a given cell. Thus, cell types with very high mtDNA copy number are expected to

display correspondingly elevated background read density over the mitochondrial genome. Several

types of ENCODE data provide a rough proxy for the relative mitochondrial genome copy number

per cell. In particular, the fraction of reads originating from the mitochondrial genome in DNase

hypersensitivity and ChIP control datasets is expected to scale accordingly. I examined the dis-
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Figure 7.7: Human transcription factors with canonical ChIP-seq peaks (displaying the
typical strand asymmetry in read distribution around the putative binding site) outside
of the D-loop. Reads mapping to the forward strand are represented in black, reads mapping to
the reverse strand are represented in yellow. The unique mappability track for the mitochondrial
genome is shown in red in the outside track (see Methods for details). Protein-coding, rRNA and
tRNA genes are shown as colored bars. The innermost circle shows the motif occurrences in the
mitochondrial genome for each factor as black vertical bars. (A) CEBPβ; (B) c-Jun; (C) MafF; (D)
MafK (note that MafK has been assayed using two different antibodies in HepG2, both of which
are shown); (E) NFE2; (F) Rfx5. The reads per million (RPM) tracks are shown, scaled to the
maximum signal level (for both strands) for each dataset. Plots were generated using Circos version
0.60 (Krzywinski et al. 2009).

tribution of this fraction in ENCODE and mouseENCODE DGF datasets and observed very large

differences between different cell lines and tissues (Figure 7.3). For example, about half of reads
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Figure 7.8: Signal distribution over the mitochondrial genome in mouse ChIP-seq
datasets. Shown is the maximum z-score for each individual replicate for each cell line (left) and
the z-score profile along the mitochondrial chromosome for the replicate with the highest z-score
(right). Control datasets are shown in red on the bottom, below the red horizontal line. (A) CH12
cells; (B) MEL cells.

in K562 DGF data originated from mitochondria, while the fraction was less than 2% in CD20+

B-cells (Figure 7.3A). Notably, these differences are in many cases (though not always) consistent

with what is known about the cell lines, with certain cancer cell lines (such as K562 and A549) and

muscle cells (LHCN) showing the largest number of mitochondrial reads, while primary cells with

small volumes of cytoplasm such as B-cells showed the least.

Mouse DGF data was available mostly for tissues, and the fraction of mitochondrial reads in

these was much smaller compared to both the human cell lines and the few mouse cell lines assayed

(Figure 7.3B). This is consistent with a significant proportion of cells in tissues being in a less

active metabolic state than cell lines in culture. Still, some expected differences between tissues

were observed. For example, one of the tissues that was most enriched for reads mapping to the
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mitochondrial genome was the heart. Similarly large differences were observed in ChIP control

datasets (Figure 7.3CD), although the absolute number of reads was much lower than it was in

Figure 7.9: Mouse transcription factors with canonical ChIP-seq peaks (displaying the
typical strand asymmetry in read distribution around the putative binding site) outside
of the D-loop. Reads mapping to the forward strand are represented in black, reads mapping to
the reverse strand are represented in yellow. The unique mappability track for the mitochondrial
genome is shown in red in the outside track (see Methods for details). Protein-coding, rRNA and
tRNA genes are shown as colored bars. The innermost circle shows the motif occurrences in the
mitochondrial genome for each factor as black vertical bars. (A) MafK (note that the putative
binding site is found in a region that is not completely mappable, thus the read profiles loses the
canonical shape but the strand asymmetry is nevertheless apparent and a motif is present); (B)
Max; (C) USF2. The reads per million (RPM) tracks are shown, scaled to the maximum signal level
(for both strands) for each dataset. Plots were generated using Circos version 0.60 (Krzywinski et
al. 2009).
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DGF data. Again, the mouse tissues with the highest number of mitochondrial reads were the more

metabolically active ones, such as brown adipose tissue, cortex, and heart.

These large differences in background read coverage between different cells lines/tissues have two

consequences for the analysis of putative transcription factor binding to the mitochondrial genome.

First, peak calling algorithms usually used to identify transcription factor binding sites from ChIP-

seq data may not work equally well in different cell lines due to the highly variable background read

density. Second, these differences render comparing the strength of binding across cell lines difficult.

I therefore devised a normalization procedure (described in Methods) to convert read coverage

to signal intensity z-scores reflecting how strongly regions of enrichment stand out compared to the

average background read density along the mitochondrial genome for each dataset. I then used the

maximum z-scores for each dataset to identify datasets with very strong such enrichment, which I

then examined manually in detail.

7.2.2 Nuclear transcription factor binding to the mitochondrial genome

in human cell lines

The distribution of read density z-scores for transcription factor ChIP-seq and control datasets in

seven ENCODE human cell lines (GM1278, K562, HepG2, HeLa, H1-hESC, IMR90 and A549) is

shown in Figure 7.4. A wide range in the values of the maximum z-score is observed, from less than

5, to more than 100. Strikingly, most factors exhibit high read density in the NCR. One obvious

explanation for this observation is that it represents an experimental artifact. This is likely, as

the NCR contains the D-loop (Shadel & Clayton 1997), the unique triple-strand structure of which

could conceivably either cause overrepresentation of DNA fragments originating from it in sequencing

libraries or it could be non-specifically bound by antibodies during the immunoprecipitation process.

To distinguish between these possibilities, I carried out the same analysis on DNase, FAIRE and

MNase data. As these assays do not involve an immunoprecipitation step, they are a proper control

for sequencing artifacts. I did not observe significant localized read enrichment in these datasets

(Figure 7.5), suggesting that the observed read enrichment over the D-loop is not due to sequencing

biases or overrepresentation of D-loop fragments in ChIP libraries. Similarly, I did not observe

enrichment in the matched sonicated input ChIP-seq control datasets. However, a number of mock-

immunoprecipitation (IgG) control datasets did exhibit high z-scores (up to >50 in K562 cells)

and closely matched the signal profile over the D-loop of ChIP-seq datasets (Figure 7.6B). We also

examined the forward and reverse strand read distribution in the NCR (Figure 7.6). Site-specific
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transcription factor binding events display a characteristic asymmetry in the distribution of reads

mapping to the forward and reverse strands, with reads on the forward strand showing a peak to the

left of the binding site and reads on the reverse strand showing a peak to the right of it (Kharchenko

et al. 2008) (Figure 7.6C). Such read asymmetry was not observed in the D-loop region (average

profile shown in Figure 7.6A, individual dataset profile shown in Figure 7.1, and also in Figures 7.7

and 7.13).

These results suggest that while immunoprecipitation is necessary for high enrichment over the

D-loop, the enrichment might not be mediated by the proteins targeted by the primary antibody.

This does not explain why a large number of factors show little enrichment over the D-loop (Figure

7.4) and why some factors show enrichment that is much higher than that observed in K562 IgG

controls, with z-scores of up to 300 (compared to a maximum of 50 for the most highly enriched

IgG controls). Still, given the lack of clear hallmarks of site-specific occupancy, and the IgG control

results, enrichment over the D-loop has to be provisionally considered to be primarily the result of

an experimental artifact, even if it cannot be ruled that at least in some cases it is the result of real

biochemical association with nuclear transcriptional regulators.

In contrast to the widespread, but likely artifactual, read enrichment over the D-loop, I ob-

served strong enrichment, exhibiting the canonical characteristics of a ChIP-seq peak over a true

transcription factor binding site, in other regions of the human mitochondrial genome for eight of

the examined transcription factors using a minimum z-score threshold of 20: CEBPβ, c-Jun, JunD,

MafF, MafK, Max, NFE2 and Rfx5. Figure 7.7 shows the forward and reverse strand read distribu-

tion for representative replicates of each factor in each assayed cell line, as well as the occurrences

of the corresponding explanatory motifs (identified from the top 500 ChIP-seq peaks in the nuclear

genome, see Methods for details). The putative binding sites outside of the D-loop are characterized

by an asymmetric forward and reverse strand read distribution, and in most cases, the presence

of the explanatory motif in a position consistent with binding by the factor. I identified multiple

binding sites for CEBPβ: a strong site of enrichment around the 5’ end of the CYB gene, what

seems to be two closely clustered sites in the ND4 gene, a weaker site in the ND4L gene, and two

other regions of enrichment over CO2 and CO1 (Figure 7.7D). A single very strong binding site

over the ND3 gene was observed for c-Jun, as well as two weaker sites, one coinciding with the ND4

CEBPβ sites and one near the 5’ end of ATP6 (Figure 7.7B); the strong ND3 site was also observed

for JunD in HepG2 cells. Max exhibited two putative binding sites: one in the middle of the 16S

rRNA gene, containing a cluster of Max motifs, and another one around the 5’ end of CO3, which

also contains a cluster of Max motifs but is in a region of poor mappability. A common and very
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strong MafK and MafF binding site is present near the 3’ end of ND5, though it does not contain

the common explanatory motif for both factors (Figure 7.7CD). Several putative binding sites were

identified for NFE2: one close to the CEBPβ site in the 5’end of CYB, one over the tRNA cluster

between ND4 and ND5, one in the 5’ end of ATP6 and one in the 16S rRNA gene (Figure 7.7D).

Finally, two putative binding sites ar observed for Rfx5, at the 5’ end of ND5 and in the middle of

CO2 (Figure 7.7E). Intriguingly, these binding events are not always present in all cell lines. For

example, CEBPβ binding around CYB was absent in K562, A549 and H1-hESC cells, while the

MafK ND5 binding site was absent in GM18278 and H1-hESC cells, but present in the other cell

lines for which data is available.

7.2.3 Nuclear transcription factor occupancy to the mitochondrial

genome in model organisms

I carried out the same analysis as described above on mouse and C. elegans ChIP-seq datasets.

Figure 7.8 shows the distribution of read density z-scores in mouse CH12 and MEL cells. Similarly

to the human data, I observed widespread but probably artifactual read enrichment over the D-

loop. In addition to that, we saw that three transcription factors (Max, MafK, and USF2) also

exhibit strong enrichment elsewhere in the mitochondrial genome (Figure 7.9). I observed a single

MafK binding site, containing the explanatory motif and situated over the tRNA cluster between

the ND2 and CO1 genes (Figure 7.9A). Max displayed a strong binding site (possibly a cluster of

closely spaced binding sites) in the ND4 gene, and a weaker binding site near the 5’ end of ND5;

both sites contained the explanatory motif (Figure 7.9B). Finally, a single site, also containing the

explanatory motif for the factor and situated near the ND5 Max site, was present in CH12 USF2

datasets (but not in MEL cells) (Figure 7.9C). MafK and Max were also assayed in human cells,

and, as discussed above, putative mitochondrial sites were identified there for both, though not at

obviously orthologous to those found in the mouse data positions in the genome. I also analyzed

Figure 7.10 (preceding page): Signal distribution over the mitochondrial genome in
C.elegans ChIP-seq datasets. (A) Shown is the maximum z-score for each individual replicate
for each cell line (left) and the z-score profile along the mitochondrial chromosome for the replicate
with the highest z-score (right). Control datasets are shown in red on the bottom, below the red
horizontal line; (B) Forward and reverse strand read distribution over the C.elegans mitochondrial
genome for W03F9.2 (“Young Adult” stage). Reads mapping to the forward strand are represented
in black, reads mapping to the reverse strand are represented in yellow. The unique mappability
track for the mitochondrial genome is shown in red in the outside track (see Methods for details).
Plots generated using Circos version 0.60 (Krzywinski et al. 2009).
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Figure 7.11: Mitochondrial ChIP-seq peaks are generally significantly stronger than
nuclear peaks. Shown is the maximum signal (in RPM) for the top 10 nuclear peaks (“N”, smaller
black dots), and the maximum signal intensity (also in RPM) in the mitochondrial genome (“M”,
larger red dot) for representative ChIP-seq datasets for each factor. (A) Mouse datasets (B) Human
datasets.

available ChIP-seq data for the mouse orthologs of c-Jun and JunD, which in human cells exhibited

putative mitochondrial binding sites. In contrast to observation in human, I did not detect strong

sites for either protein in mouse.

Unlike the mouse and human datasets, most C. elegans ChIP-seq datasets did not show very

strong enrichment over the mitochondrial genome (Figure 7.10A), with the exception of DPY-27

and W03F9.2. Of these, only W03F9.2 exhibited regions of enrichment with the characteristics of

transcription factor binding sites (Figure 7.10B); however, very little is known about this protein

and the significance of its binding to the mitochondrial genome is unclear.

7.2.4 ChIP-seq signal is significantly stronger over mitochondrial

occupancy sites than it is over nucleus sites

The occupancy observations reported above for human and mouse mitochondria do not formally

rule out the possibility that there are unannotated NUMTs in the genomes of the cell lines in which

binding is detected in our analysis and the observed binding is in fact nuclear. Such an explanation

is superficially likely, given that binding to the mitochondrial genome was observed in some cell lines

and not in others. However, closer examination reveals that this hypothesis would require different

NUMTs in different cell lines as the cell lines that lack binding are not the same for all factors.

For example, MafF and MafK binding is very prominent in K562 cells but CEBPβ and c-Jun seem

not to bind to mtDNA in those cells. While still possible, we consider the independent insertion of
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multiple partial NUMTs in different cell lines to be an unlikely explanation for the observed binding

patterns.

Each chromosome in the nuclear genome exists as only two copies in diploid cells, as compared

to the hundreds of mitochondria, each of which may contain multiple copies of the mitochondrial

genome (Satoh & Kuroiwa 1991; Bogenhagen & Clayton 1974), and although cancer cells may exhibit

various aneuploidies and copy number variants, the number of mtDNA copies is still expected to be

much higher. Thus, higher read density over mitochondrial transcription factor binding sites than

over nuclear ones is expected, assuming similar occupancy rates. I therefore used the strength of

ChIP-seq signal over mitochondrial occupancy sites in order to test the hypothesis that they are in

fact nuclear, and not mitochondrial in origin. I compared the peak height (in RPM) of the top 10

nuclear peaks (peak calls generated by the ENCODE consortium were downloaded from the UCSC

Genome Browser) with that of the putatively mitochondrial binding sites (Figure 7.11). I found

that the mitochondrial binding sites are usually the strongest binding sites by a wide margin, or

at least within the top three of all peaks. For example, while the strongest nuclear MafK peak in

mouse CH12 cells has a peak height of 14.5 RPM, the mitochondrial binding site has a peak height

of 290 RPM. These observations are difficult to explain as being the result of binding to unannotated

NUMTs in the nuclear genome, but are entirely consistent with the hypothesis that these factors

indeed bind to the large number of copies of the mitochondrial genome present in each cell.

7.2.5 Evidence for localization of transcription factors to mitochondria

If the observed binding sites in ChIP-seq data are the result of actual association of nuclear transcrip-

tion factors with mtDNA, then these transcription factors should exhibit mitochondrial localization.

We directly tested this by performing immunocytochemistry (ICC) for MafK in HepG2 cells (Figure

7.12). It is important to note that such an assay for localization to mitochondria is potentially

difficult to interpret if binding is the result of only a few protein molecules entering mitochondria,

which would not yield sufficient signal for interpretation via ICC. However, strikingly, we observe

clear colocalization of MafK to mitochondira in 60% of cells (n = 124). These observations provide

independent corroboration for the mtDNA binding events identified through ChIP-seq.
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7.2.6 No robust mitochondrial occupancy in ChIP-seq data for most

previously reported mitochondrially targeted nuclear factors

I note that none of the factors previously reported to be localized to mitochondria and to bind to

mtDNA was retrieved by our analysis, even though CREB, GR, ERα, IRF3, NFκB, STAT1, STAT5A

and STAT3 were assayed by the ENCODE Consortium. This failure could be attributed to the use

of too stringent a z-score threshold when selecting datasets with significant enrichment. I therefore

examined available ChIP-seq data against these factors more carefully (Figure 7.13, Figure 7.14). I

also performed the same analysis on published mouse and human p53 ChIP-seq data (Kenzelmann

Broz et al. 2013; Li et al. 2012; Aksoy et al. 2012) (Figure 7.15). Again, I did not observe any major

sites of enrichment outside of the D-loop. For these factors, the D-loop region exhibits the same

putatively artifactual pattern discussed previously. And for STAT3 and p53, even the enrichment

over the D-loop was low. The one factor for which binding to mtDNA is confirmed by ChIP-seq is

MEF2D, data for two of the isoforms of which in mouse C2C12 myoblasts was recently published

(Sebastian et al. 2013) (Figure 7.16). It exhibits a very complex binding pattern over large portions

of the mouse mitochondrial genome, which is not straightforward to interpet, but nevertheless a

number of locations exhibit strand asymmetry and contain the MEF2 sequence recognition motif.

Notably, most of these are outside the ND6 gene.

It is at present not clear how to interpret these discrepancies. It is not surprising that some of

these factors do not exhibit binding to mtDNA, as they were reported to play a role in mitochondrial

biology through mechanisms other than regulating gene expression (for example, IRF3 and STAT3).

However, this is not the case for all of them. One possibility is that many prior studies reporting

physical association of transcription factors with the D-loop suffered from the same artifactual read

enrichment over that region that we observe, but this would not have been noticeable using the

methods of the time. This would not be surprising, as it is only apparent that D-loop enrichment

is likely to be artifactual when the high spatial resolution of ChIP-seq is combined with the joint

analysis of input and mock immunoprecipitation controls. However, the mitochondrial localization

of these factors has been carefully documented in a number of cases (Cammarota et al. 1999; Casas

Figure 7.12 (preceding page): Localization of MafK to the mitochondria (A) Immuno-
cytochemistry showing MafK localization in HepG2 cells. Mitochondria were identified by HSP60
staining. Shown are two representative images of cells showing that MAFK localizes strongly to the
nucleus and mitochondria, and exhibits diffuse staining in the cytoplasm. In 60% of cells (C), there
is colocalization of HSP60 with MAFK staining at an intensity higher than that of the surrounding
cytoplasm. (B) An example of a cell exhibiting only nuclear and cytoplasmic MAFK localization.
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et al. 1999; De Rasmo et al. 2009). Another possiblity is that binding to mtDNA only occurs under

certain physiological conditions and the factors were assayed using ChIP-seq only in cellular states

not matching those. Further analysis of ChIP-seq data collected over a wide range of conditions

should help resolve these issues.

7.3 Discussion

I present here the first large-scale characterization of the association of nuclear transcription factors

along the entire mitochondrial genome by utilizing the vast ChIP-seq data resource made publicly

available by the ENCODE and modENCODE consortia. I find two classes of signal enrichment

events, neither of which is detected in high-throughput sequencing datasets that do not involve

immunoprecipitation and therefore they are not due to sequencing biases. First, the majority of

factors for which we detect strong read enrichment over the mitochondrial genome display high ChIP-

seq signal only over the D-loop non-coding region in both human and mouse datasets. However, these

signals do not have the characteristics of sequence specific occupancy and are present in a number of

mock-immunoprecipitation control datasets. They are thus best explained as experimental artifacts,

although it remains possible that they represent real non-canonical association with the D-loop for

some factors. Second, for a subset of factors, specific ChIP-seq peaks are observed outside of the

D-loop, and these display the additional hallmark characteristics of sequence specific occupancy.

Nuclear transcription factors previously reported to localize to mitochondria either did not exhibit

significant enrichment in the available ChIP-seq datasets or, when they did, it was over the D-loop

region with similar non-specific read distribution shape as other factors. In contrast, applying

conservative thresholds I found eight human and three mouse transcription factors (two in common

between the two species) that strongly occupy sites outside of the D-loop. They display the strand

asymmetry pattern around the putative binding site that typifies true nuclear ChIP-seq peaks.

Even more convincing is the fact that the explanatory motif for the factor is usually found under

the observed enrichment peaks, further suggesting that they correspond to true in vivo biochemical

events.

There are three main explanations for these observations. First, it is possible that despite our

considerable bioinformatic precautions the observed binding events are in fact nuclear, originating

from NUMTs present in the genomes of the cell lines assayed, but absent from the reference genome

sequence. I believe that this is very unlikely. An experimental argument against unknown NUMTs

comes from the strength of the ChIP-seq signal that is seen in the mitochondrial genome. These
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signals are much higher than even the strongest peaks in the nuclear genome for the same factor in

the same dataset. This is expected for true mitochondrial genome binding because of the presence

of many copies of the mitochondrial genome per cell, in contrast to the presence of only two copies

of the nuclear genome. Second, it is possible that mitochondria are sometimes lysed in vivo, with

mitochondrial DNA spilling into the cytoplasm where transcription factors could then bind. This

cannot be ruled out based on the ChIP data alone but we consider it unlikely, as this would need to

happen with a sufficient frequency to explain the remarkable strength of mitochondrial occupancy

sites. The third and most plausible interpretation is that these nuclear transcription factors indeed

translocate to the mitochondria and interact with the genome, as has been observed for the D-loop

in some previous studies for other factors. Indeed, immunocytochemistry experiments in our study

confirm the presence of MafK in mitochondria in a majority of HepG2 cells.

Several major questions are raised by these results. First, it is not clear how these nuclear

transcription factors are targeted to the mitochondria. Mitochondrial proteins are typically imported

into the mitochondrial matrix through the TIM/TOM protein translocator complex, and are targeted

to the organelle by a mitochondrial localization sequence, which is cleaved upon import. We scanned

both human and mouse versions of our factors for mitochondrial target sequences (MTS) with both

Mitoprot (Claros & Vincens 1996) and TargetP (Emanuelsson et al. 2007) (using default settings),

but we were unable to identify significant matches using either. This seems to be a common feature

of nuclear transcription factors previously found to localize to mitochondria, most of which lack

import sequences and are instead imported through other means (Casas et al. 1999; Szczepanek et

al. 2012b). Posttranslational modifications may be important for import, as has been demonstrated

for STAT3 in TNF-induced necroptosis (Shulga et al. 2012).

Second, it is unclear why the same factor binds detectably to the mitochondrial genome in

Figure 7.13 (preceding page): Distribution of reads over the human mitochondrial
genome for factors previously reported to bind to mitochondria in ENCODE ChIP-seq
data. Reads mapping to the forward strand are represented in black, reads mapping to the reverse
strand are represented in yellow. The unique mappability track for the mitochondrial genome is
shown in red in the outside track (see Methods for details). Protein-coding, rRNA and tRNA genes
are shown as colored bars. The innermost circle shows the motif occurrences in the mitochondrial
genome for each factor as black vertical bars. (A) CREB; (B) STAT3; (C) GR in A549 cells treated
with different concentrations of dexamethasone (Dex) (Reddy et al. 2009; Reddy et al. 2012); (D)
ERα in untreated (DMSO) ECC1 cells and ECC1 cells treated with bisphenol A (BPA), genistein
(Gen) or 17β-estradiol (E2) (Gertz et al. 2012); (E) IRF3; (F) NFκB in GM12878 cells treated
with TNFα (Kasowski et al. 2010). The reads per million (RPM) tracks are shown, scaled to the
maximum signal level (for both strands) for each dataset. Plots were generated using Circos version
0.60 (Krzywinski et al. 2009).



309

Figure 7.14: Distribution of reads over the human mitochondrial genome for STAT1 and
STAT5A in ENCODE ChIP-seq data. Reads mapping to the forward strand are represented
in black, reads mapping to the reverse strand are represented in yellow. The unique mappability
track for the mitochondrial genome is shown in red in the outside track (see Methods for details).
Protein-coding, rRNA and tRNA genes are shown as colored bars. The innermost circle shows the
motif occurrences in the mitochondrial genome for each factor as black vertical bars. (A) STAT1;
(B) STAT5A; The reads per million (RPM) tracks are shown, scaled to the maximum signal level
(for both strands) for each dataset. Plots were generated using Circos version 0.60 (Krzywinski et
al. 2009).

some cell types but not in others. It is certainly possible that different splice isoforms or post-

translationally modified proteins are present in different cell types, with only some capable of being

imported into mitochondria, or that import into mitochondria only happens under certain physio-

logical conditions only met in some cell lines.

Third, the question of the biochemical reality of transcription factor binding at the D-loop

remains open. Previous studies understandably focused on the D-loop, given its well-appreciated

importance in regulating mitochondrial transcription. As a consequence, the literature supporting

a role for some nuclear factors in mitochondria suggests that they do so through binding to the

D-loop. Our analysis of ChIP-seq data, which was carried out in an agnostic manner, revealed that

dozens of transcription factors – many more than had been studied locally at the D-loop alone – also

show high level of enrichment over the D-loop. However, the observed enrichment has characteristics

suggesting that these signals are mainly due to experimental artifacts. In support of this judgment,

the explanatory motifs for most of these factors were generally not found under the area of strongest

enrichment in the D-loop. Therefore a conservative interpretation is that enrichment over the D-loop
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is an artifact in most cases.

Finally, and most importantly, the functional significance of factor occupancy observed by ChIP-

Figure 7.15: Distribution of reads over the human and mouse mitochondrial genome
for p53 in publicly available ChIP-seq datasets. Reads mapping to the forward strand are
represented in black, reads mapping to the reverse strand are represented in yellow. The unique
mappability track for the mitochondrial genome is shown in red in the outside track (see Methods
for details). Protein-coding, rRNA and tRNA genes are shown as colored bars. The innermost circle
shows the motif occurrences in the mitochondrial genome for each factor as black vertical bars. (A)
p53 in mouse embryionic fibroblasts (MEFs), data from (Kenzelmann Broz et al. 2013), GSE46240.
(B) p53 in mouse embryonic stem cells (mESC), data from (Li et al. 2012), GSE26361; (C) p53
in human IMR90 cells, data from (Aksoy et al. 2012), GSE42728. The reads per million (RPM)
tracks are shown, scaled to the maximum signal level (for both strands) for each dataset. Plots were
generated using Circos version 0.60 (Krzywinski et al. 2009).
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Figure 7.16: Distribution of reads over the mouse mitochondrial genome for MEF2D
isoforms MEF2Da1 and MEF2Da2 in C2C12 myoblasts. Reads mapping to the forward
strand are represented in black, reads mapping to the reverse strand are represented in yellow.
The unique mappability track for the mitochondrial genome is shown in red in the outside track
(see Methods for details). Protein-coding, rRNA and tRNA genes are shown as colored bars. The
innermost circle shows the MEF2D motif occurrences in the mitochondrial genome as black vertical
bars. Data was obtained from (Sebastian et al. 2013), GSE43223. Plots were generated using Circos
version 0.60 (Krzywinski et al. 2009).

seq remains unknown. It is entirely possible that it represents biochemical noise, with transcription

factors entering the mitochondria because they have the right biochemical properties necessary

to be imported, then binding to mtDNA but with little functional consequence. Alternatively,

nuclear transcription factors may in fact be playing a regulatory role in mtDNA. It is difficult to
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imagine the exact mechanisms through which they might be acting, aside from interactions with the

regulatory D-loop. While I do observe pairs of related factor such as c-Jun and JunD, and MafK and

MafF binding to the same sites, binding events are overall widely dispersed over the mitochondrial

genome and are found outside of the known regulatory regions. Plausible regulatory relationships

are therefore not obvious and our results suggest that biological noise should be the working null

hypothesis explaining the data. The functional regulatory role of these nuclear transcription factors

in mitochondria is a very exciting possibility but it will have to be demonstrated in subsequent

studies. Direct functional tests are the golden standard for establishing regulatory relationships,

using gain and loss of function experiments and genetic manipulation of putative regulatory sites.

The latter is at present not possible for mitochondria while the former are difficult to interpret in

the case of the role of nuclear transcription factors in mitochondrial gene regulation, as it is not

easy to separate the direct effects of binding to mtDNA from the indirect effects of transcriptional

changes in the nucleus. Thus, it may be some time before definitive answers to these questions are

obtained. In the meantime, larger compendia of transcription factor ChIP-seq data such as those

expected to be generated by the next phase of the ENCODE project will be a primary source of

further insight by providing binding data for additional nuclear transcription factors that will clarify

allowed or preferred occupancy patterns across the mitochondrial genome.

7.4 Materials and Methods

7.4.1 Sequencing read alignment

Raw sequencing reads were downloaded from the UCSC genome browser for ENCODE and mouseEN-

CODE (Mouse ENCODE Consortium 2012) data, and from ftp://ftp.modencode.org for mod-

ENCODE data (Gerstein et al. 2010; modENCODE Consortium 2010) (data current as of Febru-

ary 2012). ChIP-seq data for p53 was obtained rom GEO series GSE26361 (Li et al. 2012),

GSE46240 (Kenzelmann Broz et al. 2013) and GSE42728 (Aksoy et al. 2012). Reads were

aligned using Bowtie (Langmead et al. 2009), version 0.12.7. Human data was mapped against

either the female or the male set of human chromosomes (excluding the Y chromosome and/or

all random chromosomes and haplotypes) depending on the sex of the cell line (where the sex

was known, otherwise the Y chromosome was included), genome version hg19. Mouse data was

mapped against the mm9 version of the mouse genome. modENCODE D. melanogaster data was

mapped against the dm3 version of the fly genome. modENCODE data for C. elegans was mapped

ftp://ftp.modencode.org
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against the ce10 version of the worm genome. Reads were mapped with the following settings:

‘‘-v 2 -k 2 -m 1 -t --best --strata’’, which allow for two mismatches relative to the refer-

ence, however for all downstream analysis only reads mapping uniquely and with zero mismatches

were considered, to eliminate any possible mapping artifacts.

7.4.2 Mappability track generation

Mappability was assessed as follows. Sequences of length N bases were generated starting at each

position in the mitochondrial genome. The resulting set of “reads” was then mapped against the

same bowtie index used for mapping real data. Positions covered by N reads were considered fully

mappable. In this case, N = 36 as this is the read length for most of the sequencing data analyzed

in this study.

7.4.3 Signal normalization of ChIP-seq data over the mitochondrial

genome

Because the number of mitochondria per cell varies from one cell line/tissue to another, direct

comparisons between datasets based on the absolute magnitude of the signal in RPM are not entirely

valid. For this reason, we normalized the signal as follows. For each dataset, we fit a Gamma

distribution over the RPM coverage scores for the bottom Fb percentile of fully mappable position

on the mitochondrial chromosome. The estimated parameters were then used to rescale the raw

signal over all position to a z-score. This results in datasets with strong peaks receiving low z-scores

over most of the mappable mitochondrial genome, and very high z-scores over the regions with

highly localized enrichment. We used Fb = 0.8 for our analysis. As this procedure is sensitive to

datasets with very low total read coverage over the mitochondrial genome, we restricted our analysis

to datasets with at least 5000 uniquely mappable reads (and with no mismatches to the reference),

i.e. ≥ 10x coverage. We used a z-score cutoff of 20 to select datasets with high enrichment over the

mitochondrial genome, as it was the highest z-score observed in sonicated input samples

7.4.4 Motif analysis

The peak calls for human and mouse ENCODE data available from the USCS Genome Browser were

used to find de novo motifs for transcription factors from ChIP-seq data. The sequence around the

peak summit (using a 50bp radius) was retrieved for the top 500 called peaks for each factor in each

cell line and motifs were called using the MEME program in the MEME SUITE, version 4.6.1 (Bailey
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et al. 2009). The MEME-defined position weight matrix was then used to scan the mitochondrial

genome for motif matches following the approach described in (Mortazavi et al. 2006).

7.4.5 Cell growth and immunocytochemistry

HepG2 cells were grown following the standard ENCODE protocol (DMEM media, 4mM L-glutamine,

4.5g/L glucose, without sodium pyruvate, with 10% FBS (Invitrogen 10091-148) and penicillin-

streptomycin). Cells were fixed in 10% formalin (Sigma-Aldrich HT501128-4L) for 10 min, per-

meabilized with 0.1% Triton X-100, and blocked in 5% FBS. Primary antibodies used were MafK

(1:100, Abcam, ab50322) and Hsp60 (1:125, Santa Cruz, sc-1052). Secondary antibodies used were

donkey anti-goat AF488 (Invitrogen A11055) and donkey anti-rabbit AF546 (Invitrogen A10040).

Imaging on a Zeiss LSM 710 confocal microscope with PlanApochromat 63X/1.4 oil objective, and

0.7µm optical sections were acquired.
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8

Physical association of nuclear trancription factors

with organellar DNA in plants

This chapter generalizes the observation that nuclear transcription factors associate with mitochon-

drial DNA to plants, and also suggest this might also be happening in chloroplasts. It is based on a

still very limited set of ChIP-seq datasets, thus the results are still preliminary; it will be extended in

the future when more data become available.

Abstract

Plants contain two organelles of endosymbiotic origin, mitochondria and plastids,

each of them containing their own genome of bacterial origin. These genomes are

greatly reduced in terms of their gene content due to the transfer of genes to the

nucleus. However, the organellar proteomes are not straightforward derivatives of

the ancestral bacterial genome but are in fact a complex mixture of the products of

genes that also originate from the nuclear genome, from the other organelle and from

additional sources. Nuclear transcription factors have been detected in mammalian

mitochondria for many years. Recently, the compendium of ChIP-seq (Chromatin

Immunoprecipitation coupled with sequencing) data for a wide diversity of metazoan

transcription factors generated by the ENCODE and modENCODE consortia was used
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to test their association with mitochondrial DNA (mtDNA), which was observed for

between 5 and 10% of them. Here, publicly available ChIP-seq datasets for nuclear

transcription factors in Arabidopsis thaliana and Zea mays were examined to determine

whether the same phenomenon is also observed in plant genomes. Evidence for physical

association with the mitochondrial genome was found for 2 of 21 transcription factors

in Arabidopsis, and putative such association with the plastid genome was detected for

1 of the 3 maize factors for which ChIP-seq data was available. While the sampling

of plant transcription factors assayed by ChIP-seq is still very limited, these results

suggest that the phenomenon of nuclear transcription factors localizing to organelles

and physically interacting with their genomes may be widespread across eukaryotes.

8.1 Introduction

The evolution of eukaryotes is marked by two profoundly significant primary endosymbiotic events.

All known extant eukaryotes share ancestrally a mitochondrion, an organelle vitally important for

oxidative phosphorylation (as well as numerous other functions it has acquired during its evolution),

which arose as a result of the endosymbiosis of the common ancestor of modern eukaryotes and

a member of the α-proteobacteria clade (Yang et al. 1985). A hallmark of mitochondria is the

presence of their own genome (Nass et al. 1965), derived from their bacterial ancestor, although

in some lineages mitochondria have been subsequently reduced to hydrogenosomes (Lindmark &

Müller 1973) and mitosomes (Tovar et al. 1999; Tovar et al. 2003; Williams et al. 2002), in which

the genome has been lost.

A second endosymbiotic event occurred in the lineage to which modern green plants and red algae

belong, and involved the acquisition of a photosynthetic cyanobacterial prokaryote, which eventu-

ally became the chloroplast. Subsequently, on multiple occasions, nonphotosynthetic eukaryotes

established secondary endosymbiosis with photosynthetic eukaryotes (Archibald & Keeling 2002;

Keeling 2004; Keeling 2010; Keeling 2013). Plastids also contain their own genome derived from

their prokaryotic ancestor.

Both mitochondrial and plastid genomes are greatly reduced in terms of their gene content,

as a result of the transfer of genes from the organellar genome to the nucleus. DNA fragments

from degraded organelles can enter the nucleus and integrate into the nuclear genome (a constantly

ongoing process, which can be observed even today; Ayliffe et al. 1998; Huang et al. 2003; Hazkani-

Covo et al. 2010), the genes they contain can then evolve the ability to be targeted back to the
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Figure 8.1: Mappability of the A. thaliana mitochondrial (chrM) genome (36bp reads).
The outer track (red) shows mappability evaluated against the whole genome allowing only for
unique reads (colored regions are uniquely mappable). The middle track (black) shows mappability
evaluated against the two organellar genomes (chrM and chrP) allowing for up to 2 locations to
which a read can map to. The inner track (yellow) shows mappability evaluated against the whole
genome allowing for up to 2 locations to which a read can map to (note that the regions where
the track is at half of its full height denote regions for which there is a single integration copy in
the nuclear genome). The innermost tracks show the mitochondrial genome annotation as follows:
forward-strand protein coding genes (green), reverse-strand protein coding genes (orange), repeats
(red), rRNAs (blue), forward-strand tRNAs (purple), and forward-strand tRNAs (grey). Genome
annotation was obtained from ENSEMBL plants (version 19). Plots were generated using Circos
version 0.60 (Krzywinski et al. 2009).

organelle, at which point the organellar copy is not under selective pressure anymore and can be lost.

However, the present-day organellar proteomes are not simply a subset of the ancestral prokaryotic
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Figure 8.2: Mappability of the A. thaliana plastid (chrP) genome (36bp reads). The
outer track (red) shows mappability evaluated against the whole genome allowing only for unique
reads (colored regions are uniquely mappable). The inner track (black) shows mappability evalu-
ated against the two organellar genomes (chrM and chrP) allowing for up to 2 locations to which a
read can map to. The inner track (yellow) shows mappability evaluated against the whole genome
allowing for up to 2 locations to which a read can map to. The innermost tracks show the plastid
genome annotation as follows: forward-strand protein coding genes (green), reverse-strand protein
coding genes (orange), repeats (red), reverse-strand rRNAs (blue), forward-strand rRNAs (light
blue), forward-strand tRNAs (purple), and forward-strand tRNAs (grey). Genome annotation was
obtained from ENSEMBL plants (version 19). Plots were generated using Circos version 0.60 (Krzy-
winski et al. 2009).

proteomes, but instead contain the products of numerous genes originally from the nucleus, the other

organelle (in the case of plants), or even external sources (Suzuki & Miyagishima 2010).
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Figure 8.3: Mappability of the Zea mays mitochondrial (chrM) genome (36bp reads).
The outer track (red) shows mappability evaluated against the whole genome allowing only for
unique reads (colored regions are uniquely mappable). The middle track (black) shows mappability
evaluated against the two organellar genomes (chrM and chrP) allowing for up to 2 locations to which
a read can map to. The inner track (yellow) shows mappability evaluated against the whole genome
allowing for up to 2 locations to which a read can map to (note that the regions where the track
is at half of its full height denote regions for which there is a single integration copy in the nuclear
genome). The innermost tracks show the mitochondrial genome annotation as follows: forward-
strand protein coding genes (green), reverse-strand protein coding genes (orange), repeats (red),
forward-strand pseudogenes (blue), and reverse-strand pseudogenes (purple). Genome annotation
was obtained from ENSEMBL plants (version 19). Plots were generated using Circos version 0.60
(Krzywinski et al. 2009).

A representative example of the latter are the polymerases that transcribe organellar DNA.

Organellar genomes possess dedicated machineries that regulate and carry out the process of tran-
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Figure 8.4: Mappability of the Zea mays plastid (chrP) genome (36bp reads). The
outer track (red) shows mappability evaluated against the whole genome allowing only for unique
reads (colored regions are uniquely mappable). The inner track (black) shows mappability evalu-
ated against the two organellar genomes (chrM and chrP) allowing for up to 2 locations to which a
read can map to. The inner track (yellow) shows mappability evaluated against the whole genome
allowing for up to 2 locations to which a read can map to. The innermost tracks show the plastid
genome annotation as follows: forward-strand protein coding genes (green), reverse-strand protein
coding genes (orange), repeats (red), forward-strand pseudogenes (blue), and reverse-strand pseudo-
genes (purple). Genome annotation was obtained from ENSEMBL plants (version 19). Plots were
generated using Circos version 0.60 (Krzywinski et al. 2009).

scription of their genomes, even though, with one notable exception, their components are encoded

in the nucleus. The mitochondrial RNA polymerase of most eukaryotes is of bacteriophage origin

(Shutt & Gray 2006; Barbrook et al. 2010), while two separate polymerases operate in plastids, one
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Figure 8.5: Read mapping strategy. The IR regions of the plastid genome are not uniquely
mappable within it, but are generally uniquely mappable compared to the nuclear genome (see Figure
8.2). The question of whether detected read enrichment within them is specific to the plastid can
therefore be answered conclusively even if it is not possible to distinguish between the two IR copies.
For these reasons, a two-step alignment procedure was implemented. First, reads were mapped to
the union of the two organellar genomes allowing for up to 2 locations a read can map to. Second,
reads were mapped against the union of all three genomes retaining uniquely mappable reads only.
Read aligning to the nuclear genomes from the second step were combined with the reads from the
first step and subsequent analysis was carried out on the resulting set of alignments while weighing
all multireads by the number of locations they map to (i.e. a read that maps to two locations is
counted as half a read at each).

of them also of phage origin and encoded in then nucleus (NEP), and another one of cyanobacterial

origin, encoded in the plastid genome (PEP) (Hess & Börner 1999).

The organization of plastid genomes is relatively consistent between different lineages, with some

notable exceptions (Zhang et al. 1999). They are typically circular mapping, between 100 and

200kb long, contain between ∼100 and ∼250 genes, and usually feature two large inverted repeats

(Barbrook et al. 2010). The Arabidopsis thaliana plastid genome is 154,478bp long and contains 88

protein coding genes (Sato et al. 1999); the Zea mays plastid genome is 140,387 bp in size (Maier

et al. 1995). The genes are transcribed as polycistronic units from multiple promoters by the NEP

or the PEP.

In contrast a wide diversity of topology, organization, and sizes is observed in mitochondrial

genomes. The best known mitochondrial genomes are those of mammals. The human mitochondrial

genome is highly reduced, only 16,571bp long, and contains 13 protein coding genes, 22 tRNAs and

2 rRNAs (Anderson et al. 1981; Bibb et al. 1981). It features only one significant noncoding region,

the so-called D-loop, from which transcription originates bidirectionally generating long polycistronic

messages, which are then processed to generate the mature mRNAs, tRNAs and rRNAs (Montoya
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Figure 8.6: Association of APETALA3 with the Arabidopsis thaliana mitochondrial
genome. ChIP and control datasets are drawn to the same scale, set to be the maximum signal
level within all four tracks (forward and reverse strand, ChIP and control). IGB browser plots of
the putative occupancy sites are shown zoomed in below. Plots were generated using Circos version
0.60 (Krzywinski et al. 2009) and the Integrated Genome Browser (Nicol et al. 2009).
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Figure 8.7: Association of PISTILLATA with the Arabidopsis thaliana mitochondrial
genome. ChIP and control datasets are drawn to the same scale, set to be the maximum signal
level within all four tracks (forward and reverse strand, ChIP and control). IGB browser plots of
the putative occupancy sites are shown zoomed in below. Plots were generated using Circos version
0.60 (Krzywinski et al. 2009) and the Integrated Genome Browser (Nicol et al. 2009).
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et al. 1982; Shutt et al. 2011). Plant mitochondrial genomes are strikingly different (Lynch et

al. 2006), being hundreds of kilobases (and sometimes megabases; Alverson et al. 2011; Ward et

al. 1981; Sloan et al. 2012) long, which is primarily due to the presence of introns and of very

large amounts of repetitive DNA. The Arabidopsis thaliana mitochondrial genome is 366,924bp long

(Unseld et al. 1997); the Zea mays plastid genome is 569,630bp long (Clifton et al. 1995). Not

much is known about the details of transcription and its regulation in these genomes, but given how

widely dispersed genes are within them they are most likely transcribed into multiple independent

units.

These processes are best understood in mammalian systems, where a curious phenomenon has

also been observed: the presence of nuclear transcription factors in mitochondria (Leigh-Brown et

al. 2010). The functional significance of this localization has been conclusively demonstrated only

in a few cases (Casas et al. 1999; Enŕıquez et al. 1999a; Enŕıquez et al. 1999b; Wrutniak et al.

1995); the direct physical association of these factors with mtDNA had similarly not been directly

shown. Recently, these issues were addressed by utilizing the vast ChIP-seq (Johnson et al. 2007)

resource generated by the ENCODE and modENCODE consortia (Celniker et al. 2009; ENCODE

Project Consortium 2012); occupancy of mtDNA by nuclear transcription factors was conclusively

demonstrated by the direct biochemical evidence for it provided by ChIP-seq (Marinov et al. 2014).

However, all reliably observed occupancy events were located in regions of mammalian mitochondrial

genomes distant of the regulatory D-loop, making their functional significance difficult to interpret.

To gain further insight into the phenomenon, publicly available ChIP-seq datasets for Arabidopsis

thaliana and Zea mays transcription factors were examined. As plants possess two organelles with

proteomes of complex history, the genomes of which are not compact but instead contain dispersed

genes organized into multiple transcriptional units, it is of great interest whether nuclear transcrip-

tion factors localize to these organelles, and where their occupancy sites are in their genomes. Two

such factors (out of 21 tested) were found to associate with mtDNA Arabidopsis thaliana and one

(out of 3) factor might be associating with plastid DNA (ptDNA) in Zea mays, though the evidence

is not entirely conclusive in the latter case. Similarly to nuclear transcription factors in human

and mouse mitochondria, these occupancy sites were mostly not located in immediately obvious

regulatory regions (with the caveat that transcriptional units and regulatory elements are still to be

precisely defined in plant organelles).
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8.2 Results

8.2.1 ChIP-seq datasets and data processing

Publicly available in the Gene Expression Omnibus (GEO) as of April 1st 2014 ChIP-seq data

for Arabidopsis thaliana and Zea mays transcription factors was downloaded and processed as de-

scribed below and in the Methods section. Data for the following transcription factors was included

in the final collection: FLM, AGAMOUS, SHORT VEGETATIVE PHASE, SOC1, PIF, APETALA1

and SEPALLATA3, JAGGED, FLOWERING LOCUS C (FLC), PIF4, APETALA3 and PISTIL-

LATA, REVOLUTA, PIF5, TOC1, FAR-RED ELONGATED HYPOCOTYL3 (FHY3), LEAFY,

ABORTED MICROSPORES (AMS), APETALA2, APETALA1, SEPALLATA3, and KANADI1

(in Arabidopsis thaliana) and RAMOSA1, Pericarp Color 1 (P1), and KNOTTED1 in Zea mays. In

addition, Arabidopsis ChIP-seq datasets against histone marks, the H3 and H3.3 histones, AGO4,

RNA polymerase IV and RNA polymerase V (NRPE1), the DNA methyltransferase CMT3, the

polyadenylation factor PCFS4, as well as MNAse-seq and DNAse-seq datasets, and Zea mays ChIP-

seq data for centromere histone variants were also examined, as potential negative controls.

As already mentioned, DNA from mitochondrial and plastid genomes is continuously transferred

to the nucleus, which means that fragments of organellar DNA can be present in the nuclear genome.

This poses a challenge when distinguishing true physical occupancy of organellar DNA from occu-

pancy of organellar-derived DNA in the nucleus (Marinov et al. 2014). Therefore, the mappability

of the organellar genomes in Arabidopsis thaliana and Zea mays was first examined before a data

processing strategy was designed accordingly.

Unlike the mitochondrial genomes of mammals, plant organellar genomes are large and contain

repetitive elements. Thus two different mappings are relevant to the question of how uniquely

mappable they are and how that affects data analysis and interpretation: mapping reads against

the union of the two organellar genomes, and mapping reads to all three genomes (including the

nuclear one). In addition, the plastid genome contains two large inverted repeats, which may or may

not be unique to it but are highly similar to each other, and would not be “visible” to downstream

analysis if only uniquely mappable reads are considered, even if only the plastid genome is used as

a reference during the mapping step. For these reasons, mappability was evaluated as follows:

1. Full genome unique mappability, using all three genomes as a reference and considering

only unique alignments (Bowtie 0.12.7 was used; Langmead et al. 2009)



326

2. Combined organellar mappability with maximum read multiplicity of 2, using both

chrP and chrM as referenc and considering reads mapping to up to 2 locations.

3. Full genome mappability with maximum read multiplicity of 2, using all three genomes

as a reference and considering reads mapping to up to 2 locations.

Figures 8.1 and 8.2 show the mappability of the Arabidopsis thaliana mitochondrial (chrM) and

plastid (chrP) genomes, respectively. There are large portions of the mitochondrial genome that

are not uniquely mappable in the full-genome unique mappability track, while the plastid genome is

largely uniquely mappable with the exception of the two inverted repeat regions. In contrast, both

organellar genomes are almost completely fully mappable in the track representing the combined

organellar mappability with maximum read multiplicity of 2. When reads are mapped with the same

settings (maximum read multiplicity of 2) but including the nuclear genome, the plastid genome is

still mostly fully mappable. Interestingly, the mitochondrial genome is not fully mappable but the

shape of the track indicates that only a single copy of it is present in the nuclear genome (Figure

8.1). This means that it is in principle possible to distinguish organellar from nuclear occupancy

of organellar-derived DNA as the ChIP-seq signal strength in the organellar genomes should be

significantly higher than what is observed in nuclear genomes due to the larger number of copies of

these organelles relative to the two copies of the nuclear genome that exist in each cell. This criterion

was successfully used to confirm the reality of mitochondrial occupancy by nuclear transcription in

mammalian cells (Marinov et al. 2014).

Taking these considerations into account, the data processing strategy outlined in Figure 8.5

was adopted. Reads were mapped independently against the nuclear genome, retaining only unique

alignments, and against the combined organellar genomes, allowing for reads to map to up to two

locations (in order to make inverted repeats “visible” to subsequent analysis). The two sets of

alignments were then combined for each sample, and read coverage was calculated as described in

the Methods section, normalizing for both total sequencing depth across all three genomes and for

read multiplicity.

This strategy works well for Arabidopsis thaliana and its compact genome with relatively low

repetitive element content. However, the maize genome is much larger and composed largely of

repeats (∼85%; Schnable et al. 2009). The same analysis of mappability was carried out for the Zea

mays nuclear, mitochondrial and plastid genome assemblies, and it revealed that the large repetitive

portions of the maize genome apparently also contain multiple copies of both organellar genomes.

The majority of both chrM and chrP is not mappable in mappings including the nuclear genome, even
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when the maximum read multiplicity is relaxed to 2, and significant portions of the plastid genome

are not fully mappable even in organelle-only mappings (Figures 8.3 and 8.4). For consistency,

the same analysis pipeline was adopted for maize as for Arabidopsis; results were subsequently

interpreted with caution.

Figure 8.8: APETALA3 ChIP-seq profile over the Arabidopsis thaliana plastid genome.
ChIP and control datasets are drawn to the same scale, set to be the maximum signal level within
all four tracks (forward and reverse strand, ChIP and control). Plots were generated using Circos
version 0.60 (Krzywinski et al. 2009).
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Figure 8.9: PISTILLATA ChIP-seq profile over the Arabidopsis thaliana plastid
genome. ChIP and control datasets are drawn to the same scale, set to be the maximum sig-
nal level within all four tracks (forward and reverse strand, ChIP and control). Plots were generated
using Circos version 0.60 (Krzywinski et al. 2009).

8.2.2 Physical association of nuclear transcription factors with

organellar genomes in Arabidopsis thaliana

After examining the organellar genomes signal profiles of the 21 transcription factors included in this

survey (see the Methods section for details), two of them were found to display evidence of physical

association with organellar DNA. Figures 8.6 and 8.7 show the forward and reverse strand ChIP-

seq read distribution over chrM for APETALA3 and PISTILLATA, respectively. The two datasets
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Figure 8.10: ChIP-seq profile over the Zea mays plastid genome for RAMOSA1 in ear
primordia. ChIP and control datasets are drawn to the same scale, set to be the maximum signal
level within all four tracks (forward and reverse strand, ChIP and control). Plots were generated
using Circos version 0.60 (Krzywinski et al. 2009). Note that the putative occupancy sites were
only observed in RAMOSA1 ChIP-seq data from ear primordia, but not in tassel primordia (data
not shown).
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were generated as part of the same study and from the same source material, and the two profiles

are very similar to each other. Four major putative occupancy sites were observed. They were

characterized by the typical asymmetry of read distribution on the two strands around the binding

site (Kharchenko et al. 2008; Landt et al. 2012; Marinov et al. 2014), suggesting that they are not

sequencing artifacts. They are located outside of the uniquely mappable portions of the Arabidopsis

thaliana mitochondrial genome, however, their signal strength suggests they are unlikely to be

instances of occupancy over the mitochondrial-derived sequence in the nuclear genome. The three

strongest nuclear peaks (out of 12,440 identified using MACS2; Feng et al. 2012) for APETALA3

have maximum peak heights of 123, 109 and 54 RPM (Reads Per Million), while the strongest

mitochondrial peak has a height of ∼100 RPM. The three strongest PISTILLATA nuclear peaks

(out of 8414) have maximum peak heights of 56, 25 and 24 RPM, while the mitochondrial peaks

have a peak height of ∼230 RPM. It is not impossible that the nuclear copies of the mitochondrial

genome contain the strongest binding sites for these factors in the whole genome, but the more

parsimonious explanation is that these factors indeed bind to the mitochondrial genome.

The location of the four peaks identified did not suggest immediately obvious regulatory roles

they might be playing. The first of them is located just downstream of and partially overlaps the

short uncharacterized ORF196B putative protein coding gene. The second one is located in the 3’

portion of CCB452. The third one is within the 5’ end of the ATP6 gene, and the fourth one (which

is also the strongest) is located a few hundred base pairs upstream of ORF275. The last two might

be playing a role in regulating the transcription of their proximal genes as they are in the vicinity

(but right on top) of their 5’ ends, but it is less clear how the first two might have a regulatory

influence on gene expression. However, as precise delineation of the transcriptional units, the sites of

transcriptional initiation and its regulation in the organellar genomes of plants is at present lacking,

it is not yet possible to draw conclusions regarding these questions.

The APETALA3 and PISTILLATA transcription factors do not display strong evidence for

binding to the plastid genome. Peaks exhibiting a asymmetric read distribution profile were observed

(Figures 8.8 and 8.9) but these were of relatively small absolute magnitude, both within the plastid

genome and compared to the input, thus they cannot be confidently concluded to be true instances

of physical association.

No peaks displaying the characteristics of true ChIP-seq occupancy peaks were observed in

DNAse-seq, MNAse-seq, Polymerase IV and V, histone and histone mark datasets in Arabidopsis.
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8.2.3 Putative physical association of nuclear transcription factors with

organellar genomes in Zea mays

The same analysis was also carried out on the available maize ChIP-seq datasets. Their number is

at present very limited (only 3) but one of them, RAMOSA1, did exhibit what might be physical

association with the plastid genome. Figure 8.10) shows the RAMOSA1 signal profile over chrP in ear

primordia, displaying one relatively strong putative occupancy site with very clear read distribution

asymmetry, and multiple other smaller peaks. Interestingly, the same profile was observed in both

RAMOSA1 ChIP-seq replicates available from ear primordia but the putative occupancy sites were

completely absent in the two replicates from tassel primordia (data not shown). However, some read

asymmetry around the same site was also observed in the read profiles of the input control datasets

(Figure 8.10)), thus it cannot be ruled out that these observations are due to an experimental

artifact.

8.3 Discussion

The results presented here extend the observation that nuclear transcription factors localize to

mitochondria and associate with mtDNA to plants, and also suggest that the same phenomenon

might also occur in plastids. As is the case with mammalian mitochondria, the functional significance

of the physical association of these transcription factors with mtDNA is at present unknown; as

previously discussed (Marinov et al. 2014), it is entirely possible that it represents biochemical noise,

with transcription factors being transported to mitochondria without their presence there having

regulatory influence on mitochondrial gene expression. Such understanding is not inconsistent with

what we know about the proteome content of organelles in plants. The main theme in the evolution

of organellar genomes has been the transfer of genes to the nucleus, with the products of those

essential to the organelle’s function acquiring the capacity to be targeted to it. However, their

modern proteomes are not exclusively derived from the ancestral prokaryotes genome – for example,

less than half of the plastid proteins in Arabidopsis are of direct cyanobacterial ancestry (Bogorad

2008; Abdallah et al. 2000; Martin et al. 2002), with the rest originating from the host genome

or from other external sources. It is possible that the translocation of nuclear transcription factors

to organelles represents intermediate steps in such transitions, with at present neutral adaptive and

functional significance – these proteins have biochemical properties that make it possible for them

to be imported into organelles but they have not yet acquired specific regulatory roles there.
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The more exciting possibility is that they do in fact regulate gene expression there, but it is

currently difficult to say how and in what capacity they might be doing that. This is at least in

part because the organellar genomes of plants are very poorly functionally annotated complicating

the interpretation of protein occupancy measured by ChIP-seq. First steps towards filling these

gaps in our knowledge have been made in the form of mapping the transcriptome and the genome-

wide localization of PEP in plastids (Fujii et al. 2011; Finster et al. 2013), however, these efforts

have been mostly array-based and not coordinated with each other to derive a unified picture clearly

delineating transcriptional units. Much additional work remains to be done in this area. In addition,

whether these occupancy events are functionally important or not, the question why these factors

bind to only a limited set of sites within genomes that are hundreds of bases long and contain

numerous instances of their recognition motifs will remain open.

Another gap in our knowledge that has to be mentioned is the still very small number of existing

ChIP-seq datasets in plants. Here, all publicly available transcription factor ChIP-seq datasets were

surveyed, yet this only amounted to 21 factors in Arabidopsis thaliana and 3 in Zea mays, and

these datasets were generated in a wide diversity of labs using different protocols making direct

comparisons between datasets and the exclusion of experimental artifacts as explanation for certain

observations less than straightforward (for example, the APETALA3 and PISTILLATA datasets

that do display strong evidence for association with mtDNA were obtained from the same study;

the two factors are functionally related so it is not entirely surprising both of them would localize

to the same sites in mtDNA, but the observation of the same phenomenon for the same and for

other factors in datasets generated from other labs would definitely be encouraging). This situation

is in marked contrast with the vast resources that are at this point available in mammalian, fly and

worm systems through the efforts of the ENCODE, mouse ENCODE and modENCODE projects,

and many other individual labs.

The future should bring a significant expansion in the number of available plant transcription fac-

tor ChIP-seq datasets, which should enable the much broader generalization of the findings present

here. Even more exciting would be the generation of ChIP-seq datasets in systems, in which mi-

tochondrial and plastid genomes display unusual organizations. There are such numerous such

examples, especially in protists (Burger et al. 2003; Gray et al. 2004; Gray MW. 2012), and include

mitochondrial genomes organized into multiple small and large circles, mitochondrial genomes ex-

isting in the form of multiple linear chromosomes, plastid genomes organized into minicircles, genes

existing in split from on multiple separate minichromosomes and many other variations of these

themes. Importantly, in system where large numbers of minicircles or small linear chromosomes
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exist in mitochondria, transcriptional units are by necessity numerous and relatively well defined;

it would be therefore illuminative to know whether and where nuclear transcription factors bind to

mtDNA in such systems. The generation of large numbers of transcription factor ChIP-seq datasets

in a large number of diverse systems in the future should provide answers to many of these questions.

8.4 Methods

8.4.1 Data processing and analysis

Data was downloaded from the following GEO series or SRA accession numbers and their associated

publications: GSE48082 (Posé et al. 2013), GSE45939 and GSE45938 (ÓMaoiléidighet al. 2013),

GSE45368 (Law et al. 2013), GSE33120 (Gregis et al. 2013), GSE45846 (Immink et al. 2012),

GSE39215 (Zhang et al. 2013), GSE39097 (Du et al. 2012), GSE35381 (Zheng et al. 2012),

GSE39247 (Zhong et al. 2012), GSE35315, GSE38358 (Wuest et al. 2012), GSE26722 (Brandt et al.

2012), GSE36629 (Wollmann et al. 2012), GSE35059, GSE35952 (Huang et al. 2012), GSE34840

(Stroud et al. 2012), GSE30711 (Ouyang et al. 2011), GSE24568 (Moyroud et al. 2011), GSE22276

(Ha et al. 2011), GSE16940 (Wang et al. 2010), GSE21301 (Yant et al. 2010), GSE20176 (Kaufmann

et al. 2010), GSE14600 (Kaufmann et al. 2009), GSE48081 (Merelo et al. 2013), GSE51048 and

GSE51050 (Eveland et al. 2014), GSE47342 (Wang et al. 2014), GSE38587 (Morohashi et al. 2012),

GSE39161 (Bolduc et al. 2012), GSE48793 (Heyman et al. 2013), GSE46894 and GSE46986 (Pajoro

et al. 2014), GSE51537 (Schiessl et al. 2014), SRP005412 (Deng et al. 2011), SRA060798 (Xing et

al. 2013).

Reads were trimmed to 36bp and aligned using Bowtie (Langmead et al. 2009), version 0.12.7, in

two stages. First, an alignment against the combined mitochondrial and plastid organellar genomes

was carried out with the following settings: ‘‘-v 2 -t -k 3 -m 2 --best --strata’’, i.e. al-

lowing for two mismatches relative to the reference and for up to 2 locations to which a read

could map to. This was done in order to retain reads aligning to the inverted repeats in the plas-

tid genomes. Second, reads were aligned against all three genomes with the following settings:

‘‘-v 2 -t -k 2 -m 1 --best --strata’’, retaining unique alignments only. The TAIR10 ver-

sion of the Arabidopsis thaliana genome and the AGPv3 assembly of the Zea mays genome were

used, downloaded from ENSEMBL. Reads mapping to the nuclear genome from the second mapping

were combined with the reads mapping to the organellar genomes into a single BAM file and subse-

quent analysis was carried out on this set of alignments. Read coverage was calculated by weighing
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reads according to the following rule:

Sc,i =

∑
R∈Rc,i

1

NHR

|R|
106

(8.1)

Where Sc,i is the signal score for position i on chromosome c, |R| is the total number of aligned

reads, |Rc,i| is the number of reads covering position i on chromosome c, and NHR is the number of

locations in the genome a given read maps to. This has the effect of counting multireads that align

to each inverted repeat as “half-reads”, thus making read coverage across those regions comparable

with that of the rest of the genome. Only reads aligning with zero mismatches were considered for

the organellar genomes.

Nuclear peaks were called using MACS, version 2.0.9 (Feng et al. 2012). Regions of enrichment

over the organellar genomes were determined by manual curation. This was feasible thanks to the

small size of these genomes and necessary as several peak callers were tried – MACS version 2.0.9.,

GEM (Guo et al. 2012), and SPP (Kharchenko et al. 2008) – but each produced significant numbers

of obvious false negatives and/or false positives.
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Part III

Quality Assessment and Analysis

of Chromatin Immunoprecipitation

Data
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The three chapters in this part contain the work on developing and applying metrics for assessing

the success and quality of ChIP-seq experiments that I have been involved in, with an eye towards

automating this critically important step in working with data of this type by reducing it to a

simple set of numbers that can be rapidly scanned by humans or machines. This goal has not quite

been achieved as reality has turned out to be a little bit too complex for such an approach to be

always applicable without any human input, but in the process we have learned a tremendous amount

about the ChIP-seq itself. I should perhaps also note that intellectual honesty requires to admit that

initially the motivation behind this work was a bit different - a large number of datasets of obviously

poor quality were apparent within the ENCODE project and elsewhere and the frustration with

that state of affairs is what prompted the development of standardized ways of measuring quality, in

which I played some role. This should be particularly noticeable in the second chapter in this part.

I have also included a chapter on the development of a robotic ChIP protocol, in which the quality-

control metrics described in prior chapters played a major role, and I carried out the computational

analysis. This was not a project in which I had the leading role, but it is important for my vision

for the future laid out in the last chapter of the thesis, thus its inclusion was important for the

self-consistency of the text as a whole.

The three chapters as originally written as individual papers contain a lot of redundant material

as they focus on different aspects of the same issue. I have retained the redundant material for the

sake of each chapter being as much a self-contained entry as possible.
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9

ChIP-seq Quality Evaluation Metrics of the EN-

CODE Consortium

The major part of the material contain in this chapter was published as part of the ENCODE Project

Consortium paper on ChiP-seq quality evaluation and standardization:

Landt SG*, Marinov GK*, Kundaje A*, Kheradpour P, Pauli F, Batzoglou S, Bernstein BE, Bickel

P, Brown JB, Cayting P, Chen Y, Desalvo G, Epstein C, Fisher-Aylor KI, Euskirchen G, Gerstein

M, Gertz J, Hartemink AJ, Hoffman MM, Iyer VR, Jung YL, Karmakar S, Kellis M, Kharchenko

PV, Li Q, Liu T, Liu XS, Ma L, Milosavljevic A, Myers RM, Park PJ, Pazin MJ, Perry MD, Raha

D, Reddy TE, Rozowsky J, Shoresh N, Sidow A, Slattery M, Stamatoyannopoulos JA, Tolstorukov

MY, White KP, Xi S, Farnham PJ, Lieb JD, Wold BJ, Snyder M. 2012. ChIP-seq guidelines

and practices of the ENCODE and modENCODE consortia. Genome Res. 22(9):1813–1831. doi:

10.1101/gr.136184.111.

The paper is reprinted in Appendix C. I have omitted some portions of the part of it that concerns

the characterization and validation of antibodies (which was contributed by Steven Landt and the

Snyder lab at Stanford). I have also omitted the several sets of specific guidelines for doing certain

things that were provided in the paper while including some material that was part of its earlier

version but did not make the final cut.

The NRF and FRiP metrics described here were developed based on work from Ali Mortazavi

(Johnson & Mortazavi et al. 2008. Cross-correlation metrics were developed by Anshul Kundaje

(A. Kundaje et al. 2014, unpublished) based on Kharchenko et al. 2008. IDR was developed and

described by Li et al. 2011. The IDR pipeline was developed by Anshul Kundaje and others.)
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Figure 9.1: Overview of ChIP-seq workflow and antibody characterization procedures.
Steps for which specific ENCODE guidelines were established are indicated in red. (*) indicates a
commonly used but optional step.

Abstract

Chromatin immunoprecipitation (ChIP) followed by high-throughput DNA sequenc-

ing (ChIP-seq) has become a valuable and widely used approach for mapping the ge-

nomic location of transcription-factor binding and histone modifications in living cells.

Despite its widespread use, there are considerable differences in how these experiments
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are conducted, how the results are scored and evaluated for quality, and how the data

and metadata are archived for public use. These practices affect the quality and utility

of any global ChIP experiment. Based on the extensive experience the ENCODE and

modENCODE consortia have accumulated working with ChIP-seq, a set of working

standards and metrics for the quality evaluation of ChIP experiments were developed.

The standards and metrics, as well as how ChIP quality, assessed in these ways, affects

different uses of ChIP-seq data, are discussed here.

9.1 Introduction

Methods for mapping transcription factor occupancy across the genome by chromatin immunopre-

cipitation (ChIP) were developed more than a decade ago (Ren et al. 2000; Lieb et al. 2001; Iyer et

al. 2001; Horak and Snyder 2002; Weinmann et al. 2002). In ChIP assays, a transcription factor,

co-factor, or other chromatin protein of interest is enriched by immunoprecipitation from crosslinked

cells (Gilmour & Lis 1984; Gilmour & Lis 1985; Hecht et al. 1996; Solomon et al. 1988), along with

its associated DNA. Genomic DNA sites enriched in this manner were initially identified by qPCR,

later by DNA hybridization to a microarray (ChIP-chip) (Ren et al. 2000; Iyer et al. 2001; Lieb et

al. 2001; Horak and Snyder 2002, Weinmann et al. 2002), and more recently by DNA sequencing

(ChIP-seq) (Barski et al. 2007; Johnson et al. 2007; Robertson et al. 2007). ChIP-seq has now been

widely used for many transcription factors, histone modifications, chromatin modifying complexes,

and other chromatin-associated proteins in a wide variety of organisms. There is, however, much

diversity in the way ChIP-seq experiments are designed, executed, scored and reported. The result-

ing variability and data quality issues affect not only primary measurements, but also the ability to

compare data from multiple studies or to perform integrative analyses across multiple data-types.

The ENCODE and modENCODE Consortia performed more than a thousand individual ChIP-

seq experiments for more than 140 different factors and histone modifications in more than 100

cell types in four different organisms (Drosophila melanogaster, Caenorhabditis elegans, mouse and

human), using multiple independent data production and processing pipelines (ENCODE Project

Consortium 2004; Celniker et al. 2009, ENCODE Project Consortium 2011). During this work,

guidelines, practices, and quality metrics for ensuring the high quality of datasets used for analysis

were developed and applied to all ChIP-seq work done by the Consortium (Park 2009). Here they are

described, together with supporting data and illustrative examples. Issues common to all ChIP-seq

studies are emphasized: immunoprecipitation quality, impact of DNA sequencing depth, scoring and
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evaluation of datasets, appropriate control experiments, biological replication, and data reporting.

9.2 ChIP Overview

The goals of a genome-wide ChIP experiment are to map the binding sites of a target protein with

maximal signal-to-noise ratio and completeness across the genome. The basic ChIP-seq procedure

is outlined in Figure 9.1. Cells or tissues are treated with a chemical agent, usually formaldehyde,

to crosslink proteins covalently to DNA. This is followed by cell disruption and sonication, or, in

some cases, enzymatic digestion, to shear the chromatin to a target size of 100-300 base pairs (bp)

(Iyer et al. 2001; Ren et al. 2000). The protein of interest (transcription factor, modified histone,

RNA polymerase, etc.) with its bound DNA is then enriched relative to the starting chromatin by

purification with an antibody specific for the factor. Alternatively, cell lines expressing an epitope-

tagged factor can be generated and the fusion protein immunoprecipitated via the epitope tag.

After immuno-enrichment, crosslinks are reversed, and the enriched DNA is purified and prepared

for analysis. In ChIP-chip, the DNA is fluorescently labeled and hybridized to a DNA microarray,

along with differentially labeled reference DNA (Ren et al. 2000; Iyer et al. 2001). In ChIP-seq, the

DNA is analyzed by high-throughput DNA sequencing. The ENCODE Consortium chose ChIP-seq

for human and mouse experiments because it permits comprehensive coverage of large genomes and

increases site resolution (Johnson et al., 2007; Robertson et al. 2007). For organisms with small

genomes, the modENCODE Consortium has used both ChIP-chip and ChIP-seq, as the arrays

available at the time provided high-resolution coverage of small genomes (Gerstein et al. 2010;

Roy et al. 2010). In all formats, putatively enriched genomic regions are identified by comparing

ChIP signals in the experimental sample with a similarly processed reference sample prepared from

appropriate control chromatin or a control immunoprecipitation.

Different protein classes have distinct modes of interaction with the genome that necessitate

Figure 9.2 (preceding page): Peak counts depend on sequencing depth. (A) Number of
peaks called with Peak-seq (0.01% FDR cut-off) for 11 ENCODE ChIP-seq data sets. (B) Called
peak numbers for 11 ChIP-seq data sets as a function of the number of uniquely mapped reads used
for peak calling. (Inset) Called peak data for the MAFK data set from HepG2 cells, currently the
most deeply sequenced ENCODE ChIP-seq data set (displayed separately due to the significantly
larger number of reads relative to the other data sets). Data sets are indicated by cell line and
transcription factor (e.g., cell line HepG2, transcription factor MAFK). (C) Fold-enrichment for
newly called peaks as a function of sequencing depth. For each incremental addition of 2.5 million
uniquely mapped reads, the median fold-enrichment for newly called peaks as compared with an
IgG control data set sequenced to identical depth is plotted.
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different analytical approaches (Pepke et al. 2009):

1. Point-source factors and certain chromatin modifications are localized at specific positions that

generate highly localized ChIP-seq signals. This class includes most sequence specific tran-

scription factors, their co-factors, and, with some caveats, transcription start site or enhancer-

associated histone marks. These comprise the majority of ENCODE and modENCODE de-

terminations and are therefore the primary focus of this paper.

2. Broad-source factors are associated with large genomic domains. Examples include certain

chromatin marks (H3K9me3, H3K36me3, etc.) and chromatin proteins associated with tran-

scriptional elongation or repression (e.g. ZNF217) (Krig et al. 2007).

3. Mixed-source factors can bind in point-source fashion to some locations of the genome but

form broader domains of binding in others. RNA polymerase II, as well as some chromatin

modifying proteins (e.g. SUZ12) behave in this way (Squazzo et al. 2006).

9.3 ChIP-seq Experimental Design Considerations

9.3.1 Antibody and immunoprecipitation specificity

The quality of any ChIP experiment is governed by the specificity of the antibody and the degree of

enrichment achieved in the affinity precipitation step. The majority of ENCODE ChIP experiments

in human cells and in Drosophila embryos have been performed with antibodies directed against

individual factors and histone modifications. 145 polyclonal and 43 monoclonal antibodies were used

to successfully generate ChIP-seq data as of October 2011. As also discussed below, the majority of

antibodies tested for ChIP performance either did not perform well in ChIP or presented concerns

about specificity. In the case of polyclonal reagents, lot-to-lot variation can also be significant

and confounding. For these reasons, it is necessary that the specificity of antibodies be assessed

experimentally separately from the ChIP reaction, through immunoblotting, immunofluorescene, IP

coupled with mass-spectrometry, or other means. A detailed description of the ENCODE procedures

for carrying out this assessment can be found in Appendix C.

9.3.2 Immunoprecipitation using epitope tagged constructs

Given the challenges in obtaining antibodies for suitable ChIP, an attractive alternative is to epitope

tag the factor followed by immuno-purification with a well-characterized monoclonal reagent specific
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for the tag. Epitope-tagging addresses the problems of antibody variation and cross-reaction with

different members of multigene families by using a highly specific reagent that can be used for many

different factors. However, this introduces new issues relating to how the tagged factor is introduced

into cells, whether expression levels are near-physiological, and whether tagging alters the activity

of the factor. The level of expression is currently addressed by using large clones carrying as much

regulatory information as possible to make the level of expression nearly physiological (Hua et al.

2009; Poser et al. 2008). Higher expression is known to result in occupancy of sites not necessarily

occupied at physiological levels (DeKoter and Singh 2000; Fernandez et al. 2003). Within ENCODE,

tagged factors have been used most extensively thus far for C. elegans studies, where factors have

been tagged with GFP and shown to complement null mutants (Zhong et al. 2010). In some cases,

information regarding expression is not available and expression from an exogenous promoter has

been used. More recently, endogenous knock-in of GFP using CRISP-mediated genome editing

(Jinek et al. 2012) has been reported in various systems (Dickinson et al. 2013; Chen et al. 2013;

Auer et al. 2014); such approached hold a lot of promise for alleviating some of these issues.

9.3.3 Sequencing depth, library complexity and site discovery

For ChIP-seq performed for a typical point-source DNA binding factor, the number of target sites

identified by any contemporary peak calling algorithm typically increases as the number of sequenced

reads increases (ENCODE Project Consortium 2011) until the curve ultimately becomes shallower

and begins to plateau. This pattern is now generally expected, partly because studies of numerous

factors by ENCODE and by other groups have repeatedly found a continuum of ChIP signal strength,

rather than a sharply bounded and discrete set of positive sites (ENCODE Project Consortium 2011;

Rozowsky et al. 2009). In addition, sites with lower ChIP signal strength are now detected more

readily and with greater confidence because of increases in statistical power afforded by more reads.

Figure 9.2 shows an analysis of peak calls for eleven human ENCODE ChIP-seq datasets for which

deep sequence data (50-100 × 106 mapped reads) were obtained. Clear saturation of peak counts

was observed for one factor with few binding sites, but counts continued to increase at varying

rates for all other factors, including a case in which >150,000 peaks were called using 100 × 106

mapped reads. Examination of peak signals reveals that the signal enrichments plateau at greater

sequencing depths. At 20 × 106 mapped reads, 5-13 fold enrichments are still attainable. The

strongest peaks have been identified at this read depth, with new peaks identified after 20 × 106

reads giving enrichments that are, on average, ∼20% of the maximum enrichments identified (Figure
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9.2). Interestingly, many additional significant peaks, with enrichment values of 3-7-fold, can still

be found by sequencing to much greater depths, indicating that many regions of the genome are

enriched in a ChIP-experiment. It is likely that many of these regions correspond to low affinity

sites and/or regions of open chromatin that bind factors of interest less specifically.

The relationship of ChIP signal strength to biological regulatory activity is a current area of active

investigation. A pertinent observation is that biological activity of enhancers, defined in the literature

independently of ChIP data, is distributed quite broadly relative to ChIP-seq signal strength. Some

highly active transcriptional enhancers reproducibly display modest ChIP signals. This means that

one cannot a priori set a specific target threshold for ChIP site number or ChIP signal strength

that will assure inclusion of all functional sites (see Discussion section of this chapter). Therefore,

a practical goal is to maximize site discovery by optimizing immunoprecipitation and sequencing

deeply, within expense constraints. For point-source factors in mammalian cells, a minimum of

10×106 uniquely mapped reads are recommended for each biological replicate (providing a minimum

of 20× 106 uniquely mapped reads per factor); for worms and flies a minimum of 4× 106 uniquely

mapped reads per replicate is recommended. For broad areas of enrichment, the appropriate number

of uniquely mapped reads is currently under investigation, but at least 20 × 106 uniquely mapped

reads per replicate for mammalian cells and 5× 106 uniquely mapped reads per replicate for worms

and flies was produced for most experiments in ENCODE and modENCODE. 1

Figure 9.3 (preceding page): Criteria for assessing the quality of a ChIP-seq experi-
ment. (A) Library complexity. Individual reads mapping to the plus (red) or minus strand (blue)
are represented. (B) Distribution of functional regulatory elements with respect to the strength
of the ChIP-seq signal. ChIP-seq was performed against myogenin, a major regulator of muscle
differentiation, in differentiated mouse myocytes. While many extensively characterized muscle reg-
ulatory elements exhibit strong myogenin binding, a large number of known functional sites are at
the low end of the binding strength continuum. (C) Number of called peaks vs. ChIP enrichment.
Except in special cases, successful experiments identify thousands to tens of thousands of peaks
for most TFs and, depending on the peak finder used, numbers in the hundreds or low thousands
indicate a failure. Peaks were called using MACS with default thresholds. (D) Generation of a
cross-correlation plot. Reads are shifted in the direction of the strand they map to by an increasing
number of base pairs and the Pearson correlation between the per-position read count vectors for
each strand is calculated. Read coverage as wigglegram is represented, not to the same scale in the
top and bottom panels.) (E) Two cross-correlation peaks are usually observed in a ChIP exper-
iment, one corresponding to the read length (“phantom” peak) and one to the average fragment
length of the library. (F) Correlation between the fraction of reads within called regions and the
relative cross-correlation coefficient for 1052 human ChIP-seq experiments. (G) The absolute and
relative height of the two peaks are useful determinants of the success of a ChIP-seq experiment.
A high-quality IP is characterized by a ChIP peak that is much higher than the “phantom” peak,
while often very small or no such peak is seen in failed experiments.

1More recently, the optimal sequencing depth for histone mark ChIP-seq datasets was examined in detail (Jung
et al. 2014), and it was found that < 20× 106 reads is sufficient for fly, and 40-50× 106 reads is a practical minimum
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Another factor affecting site discovery and reproducibility is the complexity of a ChIP-seq se-

quencing library. Library complexity is defined as the number of non-redundant DNA fragments.

With increasing sequencing of a library, a point is eventually reached where the complexity will be

exhausted and the same PCR-amplified DNA fragments will be sequenced repeatedly (Figure 9.3A).

Library complexity can vary dramatically, depending on the number of starting nuclei, the efficiency

of DNA shearing and size selection range, the efficiency of the immunoprecipitation, and genome

size. The objective is to create a library that is sufficiently complex that it does not interfere with

the ability of modern peak callers to identify legitimate signals or become the limiting variable in

discovering additional sites. Low complexity of libraries is indicative of very low amounts of DNA

isolated during the IP or library construction failure. In most cases, the complete repertoire of

binding sites for a factor cannot be identified using such datasets.

A useful working metric for complexity is calculated as the fraction of non-redundant mapped

reads in a ChIP-seq dataset (non-redundant fraction or NRF), which is similar to a redundancy

metric in Heinz et al. 20102. NRF decreases with sequencing depth, and for point source TFs, a

reasonable target in mammalian genomes is NRF > 0.8 for 10 × 106 uniquely mapped reads. As

sequencing technology improves and read numbers in the hundreds of millions per lane become fea-

sible, it is expected that even complex libraries from point-source factor can be sequenced at depths

greater than necessary. To maximize information that can be obtained for each DNA sequencing

run and to prevent oversequencing, barcoding and pooling strategies can be used 3.

9.3.4 Control sample

An appropriate control dataset is critical for analysis of any ChIP-seq experiment because DNA

breakage during sonication is not uniform. In particular, some regions of open chromatin are pref-

erentially represented in the sonicated sample, creating a non-uniform background (Auerbach et al.

2009). There are also platform-specific sequencing efficiency biases that contribute to non-uniformity

(Dohm et al. 2008). There are two basic methods to produce control DNA samples:

1. DNA is isolated from cells that have been crosslinked and fragmented under the same conditions

as the immunoprecipitated DNA and is referred to as “Input” DNA,

for the human genome.
2More recently, computational approaches for the estimation of the total number of unique fragments in a library,

which is of course, the quantity one would most like to measure, have been developed (for example the Pre-Seq
package, Daley & Smith 2013). NRF is still a highly useful metric for mammalian-sized genomes though, because of
the extensive experience in working with them that has accumulated, and the corresponding calibration curve for the
metric that exists

3This has indeed become a common practice since the writing of this text
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Figure 9.4: Quality control of ChIP-seq data sets in practice. EGR1 ChIP-seq was per-
formed in K562 cells in two replicates. ChIP enriched regions were identified using MACS. However,
the cross-correlation plot profiles (A) indicated that both IPs were suboptimal, with one being un-
acceptable. In agreement with this judgment, ChIP enrichment (C) and peak number (D) also
indicated failure. The ChIP-seq assays were repeated (B), with all quality control metrics improving
significantly (B,D), and many additional EGR1 peaks were identified as a result. (E) Representa-
tive browser snapshot of the four EGR1 ChIP-seq experiments, showing the much stronger peaks
obtained with the second set of replicates.
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2. A “mock” ChIP reaction is performed using a control antibody that reacts with an irrelevant,

non-nuclear antigen (often called an IgG control).

For both types of controls, sequencing is performed to a depth at least equal to, and preferably

larger than, that of the ChIP sample. For the IgG control, care must be taken that sufficient DNA

is recovered to build a high complexity library 4

Regardless of the type of control used, a separate control is required for each cell line, develop-

mental stage and different condition/treatment because of known and unknown differences in ploidy,

genotype and epigenetic features that affect chromatin preparation. To serve as a valid control, the

protocol used to build ChIP and control sequencing libraries must be identical (i.e. the number of

PCR amplification cycles, fragment size, etc.).

Although rare in our experience, control libraries with a particularly strong sonication biases

have been observed and they can adversely affect peak calling (see the following chapter for an

extensive discussion of the phenomenon). Although it not always feasible, the optimal study design

is to produce a matching control chromatin library for each cell growth, fixation and sonication

condition used to prepare chromatin for a ChIP-seq experiment.

9.3.5 Peak Calling

After mapping reads to the genome, software is used to identify regions of enriched by the ChIP

experiment. To identify point-source binding regions from ChIP-seq data, a very large number of

peak calling algorithms and corresponding software packages have been developed (MACS/MACS2,

Zhang et al. 2008; Feng et al. 2012; ZINBA, Rashid et al. 2011; SISSRs, Jothi et al. 2008;

cisGenome, Ji et al. 2008; SICER, Zang et al. 2009; HPeak, Qin et al. 2010; GPS, Guo et al. 2010;

USeq, Nix et al. 2008; QUEST, Valouev et al. 2008; PeakSeq, Rozowsky et al. 2009; GLITR, Tuteja

et al. 2009; F-Seq, Boyle et al. 2008; FindPeaks, Fejes et al. 2008; CSDeconv, Lun et al. 2009;

PeakRanger, Feng et al. 2011; Sole-Search, Blahnik et al. 2010; CHANCE, Diaz et al. 2012a, Diaz

et al. 2012b; NCIS, Liang & Keleş 2012; MAnorm, Shao et al. 2012; CSAR, Muiño et al. 2011;

Taslim et al. 2009; PICS, Zhang et al. 2011; and others). The output of these algorithms generally

ranks called regions by absolute signal (read counts) or by computed significance of enrichment (e.g.

p-values and false discovery rates). Because ChIP signal strength is a continuum with more weak

sites than strong ones (Figure 9.3B), the composition of the final peak list depends on specifics of

parameter settings and the algorithm used, as well as the quality of the experiment itself. Relaxed

4See the following chapter for more on this issue
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thresholds lead to overcalling and a high proportion of false positives. However, moderate overcalling

can be useful when there are biological replicates, which can help determine which of the peaks are

reproducibly identified (see IDR analysis below). When using standard peak calling thresholds,

successful experiments generally identify thousands to tens of thousands of peaks for most TFs

(although some exceptions are known; Frietze et al. 2010; Raha et al. 2010) and, depending on the

peak finder used, numbers in the hundreds or low thousands indicate an experimental failure. In

all study designs, an appropriate control experiment should be performed and should be accounted

for in the peak calling, either within the peak calling algorithm employed or by means of direct

comparison to the experimental sample. It should be noted that results from different algorithms

use different approaches to calculate p-values and false discovery rates (FDR), which means that

these values will not be directly comparable between packages.

Calling discrete regions of enrichment for Broad-source factors or Mixed-source factors is more

challenging. Methods to identify such regions are emerging (for example ZINBA; Rashid et al. 2011),

and MACS2, an updated version of MACS that is specifically designed to process mixed signal types.

However, these methods are not as mature as point-source signal processing algorithms. Therefore,

statistical and biological metrics for evaluating their performance remain under development, and

standards for identifying broad regions of enrichment are not yet in place. 5

9.3.6 Number of replicates

To ensure that ChIP experiments are reproducible, biological replicate experiments using indepen-

dent cell cultures, embryo pools, or tissue samples are prepared for ChIP analysis. Initial experiments

for RNA Polymerase II indicated that more than two replicates did not significantly improve site

discovery (Rozowsky et al. 2009). Initially, either of the following two criteria were applied in order

to ensure that a high level of reproducibility is maintained:

1. 80% of the top 40% of the targets identified from one replicate using an acceptable scoring

method should overlap the list of targets from the other replicate. This standard was chosen

based on the experiences of the ENCODE production groups to allow an achievable threshold

of reproducibility for most validated antibodies while generally producing high-quality target

lists.

2. Target lists scored using all available reads from each replicate should share more than 75% of

targets in common. Reads from replicate experiments that meet either of the above criteria

5This statement is still true two years later.
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are usually pooled for final peak calling.

However, these were ad hoc criteria with not much statistical justification, and were later replaced

by the Irreproducible Discovery Rate (IDR) analysis methodology (Li et al. 2011), which has

been employed to assess replicate agreement and set thresholds; IDR is discussed in detail below.

Examples of replicate experiments that pass IDR are shown in Figure 9.5. It should be noted that

the analysis of replicates is generally sensitive to the presence of a weak replicate, and if this is

Figure 9.5: The irreproducible discovery rate (IDR) framework for assessing repro-
ducibility of ChIP-seq data sets. (AC) Reproducibility analysis for a pair of high-quality
RAD21 ChIP-seq replicates. (D,E) The same analysis for a pair of low quality SPT20 ChIP-seq
replicates. (A,D) Scatter plots of signal scores of peaks that overlap in each pair of replicates. (B,E)
Scatter plots of ranks of peaks that overlap in each pair of replicates. Note that low ranks correspond
to high signal and vice versa. (C,F) The estimated IDR as a function of different rank thresholds.
(A,B,D,E) Black data points represent pairs of peaks that pass an IDR threshold of 1%, whereas
the red data points represent pairs of peaks that do not pass the IDR threshold of 1%. The RAD21
replicates show high reproducibility with ∼30,000 peaks passing an IDR threshold of 1%, whereas
the SPT20 replicates show poor reproducibility with only six peaks passing the 1% IDR threshold.
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the case, it is desirable that a third replicate be performed to ensure that a comprehensive and

reproducible set the binding regions is identified.

9.4 Evaluation of ChIP-seq data

The quality of individual ChIP-seq experiments varies considerably and can be difficult to evaluate,

especially when new antibodies are being tested and when little is known about the factor and

its binding motif. The first question most experimenters want to answer is: How well did this

immunoprecipitation “work”? The ENCODE consortium developed metrics for assessing ChIP-seq

quality that are described and applied below, together with traditional inspection-based evaluation.

It is worth noting that for each metric, there are some datasets for which it is not ideally suited.

However, when they are applied in totality and interpreted as a group, they provide a useful overall

assessment of experimental success and data quality.

9.4.1 Browser inspection and previously known sites

A first impression about ChIP-seq quality can be obtained by local inspection of mapped sequence

reads on a genome browser, and this remains invaluable. When there is prior biological knowledge

of binding at a given genomic location, this site can be examined manually by using the shape

and signal strength relative to control reads to gain a sense of ChIP quality. The number and

pattern of read tags can give confidence that the known true site has been detected within the

large-scale experiment. A true signal is expected to show a clear asymmetrical distribution of reads

mapping to the forward and reverse strand around the midpoint (peak) of accumulated reads. This

signal should be large compared to the same region for the control library. An example of a set of

experiments displaying these characteristics is shown in Figure 9.3C. Of course it is not feasible to

inspect the whole genome in this manner, and evaluating a limited number of the strongest sites can

misleadingly overestimate the quality of the entire dataset. In addition, it is not possible to compare

many different datasets to each other by visual inspection. For these reasons the genome-wide

metrics discussed below were developed.

9.4.2 Measuring global ChIP enrichment (FRiP)

For point-source datasets, a first global metric is calculated as the fraction of all mapped reads that

fall into peak regions identified by a peak calling algorithm. Typically, only a minority of reads
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in ChIP-seq experiments come from the read-enriched regions caused by factor occupancy. The

remainder is background. Because of this, the fraction of reads falling within peak regions is a useful

first-cut metric for the success of the immunoprecipitation, and is called FRiP (Fraction of Reads

in Peaks). In general, FRiP values correlates positively with the number of called regions, although

there are exceptions, such as NRSF and GABP, which always yield a more limited number of called

regions but very high enrichment (Figure 9.3C). In practice, most (787 out of 1052) ENCODE

datasets had a FRiP enrichment of 1% or more when peaks were called using MACS with default

parameters. When FRiP falls below 1%, the experiment should be further scrutinized.

The FRiP guideline works well when there are thousands to tens of thousands of called occupancy

sites in a large mammalian genome. However, passing this threshold does not automatically mean

that an experiment is successful and a FRiP below the threshold does not automatically mean failure.

For example, in cases such as human RNA Polymerase III where there are very few true binding

sites (Frietze et al. 2010; Raha et al. 2010), a FRiP value of less than 1% is obtained. At the

other extreme, lesser-quality ChIP experiments using combinations of antibodies and factors that

usually have very high enrichment and/or numbers of binding sites can still result in FRiP scores

that exceed those generally obtained for most factors (Figure 9.3C). Thus, FRiP is very useful as a

quality control measure for comparing results for broadly expressed factors using the same antibody

across cell lines or using different antibodies. A caveat is that FRiP is sensitive to the specifics of

peak calling, including the way the algorithm defines regions of enrichment and the parameters and

thresholds used. This means that all FRiP values that are compared should be derived from peaks

uniformly called by one algorithm and parameter set.

9.4.3 Cross-correlation analysis

A very useful ChIP-seq quality metric that is independent of peak calling is cross-correlation. It is

based on the fact that a high-quality ChIP-seq experiment produces significant clustering of enriched

DNA sequence tags at locations bound by the protein of interest, and that the sequence tag density

accumulates on forward and reverse strands centered around the binding site. As illustrated in Figure

9.3D, these “true signal” sequence tags are positioned at a distance from the binding site center that

depends on the fragment size distribution (Kharchenko et al. 2008). A control experiment, such as

sequenced input DNA, lacks this pattern of shifted stranded tag densities. This made it possible to

develop a metric that quantifies fragment clustering (IP enrichment) based on the correlation between

genome-wide stranded tag densities. It is computed as the correlation of the Crick strand to the
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Figure 9.6: Analysis of ENCODE data sets using the quality control guidelines. (AC)
Thresholds and distribution of quality control metric values in human ENCODE transcription-factor
ChIP-seq data sets. (A) NSC, (B) RSC, (C) NRF. (D) IDR pipeline for assessing ChIP-seq quality
using replicate data sets. (E,F) Thresholds and distribution of IDR pipeline quality control metrics
in human ENCODE transcription factor ChIP-seq data sets. (Dashed lines) Current ENCODE
thresholds for the given metric, which are NSC > 1.05 (A); RSC > 0.8 (B); NRF > 0.8, N1/N2 ≥ 2
(where N1 refers to the replicate with higher N) (E); Np/Nt ≥ 2 (F).
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Watson strand, after shifting Watson by k base pairs (Figure 9.3D). This typically produces two

peaks when cross-correlation is plotted against the shift value: A peak of enrichment corresponding

to the fragment length and a peak of short fragments corresponding to the read length (Figure 9.3E).

The normalized ratio between the enrichment peaks and the background correlation (NSC):

NSC =
cross-correlation(fragment length)

min(cross-correlation)
(9.1)

and the ratio between the read length peak and the enrichment peak, called RSC:

RSC =
cross-correlation(fragment length)−min(cross-correlation)

cross-correlation(read length)−min(cross-correlation)
(9.2)

are useful metrics for assessing ChIP-enrichment. High-quality ChIP-seq datasets have larger

enrichment peaks compared to the read-length peak, whereas failed ones and inputs have little or

no such peak (Figure 9.3G). Most (797 of 1052) ENCODE datasets had an NSC ratio greater than

1.1 An example of a result from a failed experiment is shown in Figure 9.4. In general, a continuum

between the two extremes is observed, and broad-source datasets are expected to have flatter cross-

correlation profiles than point-source ones, even when they are of very high quality. As expected,

the NSC/RSC and FRiP metrics are strongly and positively correlated for the vast majority of

experiments (Figure 9.3F). As with the other quality metrics, even high quality datasets generated

for factors with few genuine binding sites tend to produce relatively low NSCs.

9.4.4 Consistency of replicates: Analysis using IDR

To identify high-confidence data and to eliminate biologically unstable measurements, the ENCODE

Consortium made its goal a minimum of two successful independent biological replicates, with each

experiment passing the basic quality control filters described above. To take advantage of the

reproducibility information provided by replicates, the IDR (irreproducible discovery rate) statistic

was developed for ChIP-seq (Li et al. 2011).

Given a set of peak calls for a pair of replicate datasets, the peaks can be ranked based on a

criterion of significance, such as the p-value, the q-value, the ChIP to input enrichment, or the read

coverage for each peak (Figure 9.5A, 9.5B, 9.5D, and 9.5E). If two replicates measure the same

underlying biology, the most significant peaks, which are likely to be genuine signals, are expected

to have high consistency between replicates, whereas peaks with low significance, which are more

likely to be noise, are expected to have low consistency. The latter peaks exhibit higher variability in
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their ranks and begin to appear at the noise level. If the consistency between a pair of rank lists that

contains both significant and insignificant findings is plotted, a change (discontinuity) in consistency

is expected [Figures 9.5C and 9.5F]. This self-consistency discontinuity provides an internal indicator

of the transition from signal-to-noise and suggests how many peaks have been reliably detected.

The IDR statistic quantifies the above expectations of consistent and inconsistent groups by mod-

eling all pairs of peaks present in both replicates as belonging to one of two groups: a reproducible

group and an irreproducible group (Li et al. 2011). In general, the signals in the reproducible

group are more consistent (i.e., have a larger correlation coefficient) and are ranked higher than

the irreproducible group. The proportion of identifications that belong to the noise component and

the correlation of the significant component are estimated adaptively from the data. The IDR pro-

vides a score for each peak, which reflects the posterior probability that the peak belongs to the

irreproducible group.

A major advantage of IDR is that it can be used to establish a stable threshold for called peaks

that is more consistent across laboratories, antibodies, and analysis protocols (e.g., peak callers)

than are FDR measures (Li, et al. 2011). Increased consistency comes from the fact that IDR uses

information from replicates, whereas the FDR is computed on each replicate independently. The

application of IDR to real-life data is shown in Figure 9.5. A pair of high quality Rad21 ChIP-

seq replicates display good consistency between IDR ranks for a large number (∼28,000) of highly

reproducible peaks (Figures 9.5AB), with a clear inflection between the signal and noise populations

near the 1% IDR value (Figure 9.5C). In contrast, a pair of Spt20 replicates, which had already

been flagged as low-quality based on the individual FRiP and NSC/RSC metrics, display very low

reproducibility as shown by IDR, with very few significant peaks, and they show no visible inflection

in the IDR curve (Figure 9.5F). It is important that the peak-calling threshold used as input to IDR

analysis not be so stringent that the noise component is entirely unrepresented in the data, because

the algorithm requires sampling of both signal and noise distributions to separate them. A caution

in applying IDR is that it is dominated by the weakest replicate. That is, the IDR is a conservative

statistical approach, and hence if one replicate is quite poor, many “good” peaks from the higher

quality replicate will be rejected by IDR analysis.

9.4.5 Metrics Applied In Practice

The application of the ChIP-seq quality metrics to a failed experiment is shown in Figure 9.4.

Initially, two EGR1 ChIP-seq replicates were generated in the K562 cell line. Based on the cross-



356

Figure 9.7: Distribution of EGR1 motifs relative to the bioinformatically defined peak
position of EGR1-occupied regions derived from ChIP-seq data in K562 cells. Regions
are ranked by their confidence scores as called by SPP. Motifs were called using MEME (Bailey et
al., 2009; version 4.6.1), based on the top 500 regions. The top motif was used and its instances in
all called peaks identified using the approach described in Mortazavi et al. 2006. The position of
each motif instance relative to the peak summit is plotted.

correlation profiles, the number of called regions, and the FRiP score, these initial replicates were

flagged as marginal in quality. The experiments were then repeated, with all quality control metrics

improving considerably. On this basis, the superior measurements replaced the initial ones in the

ENCODE database. A summary of the distribution of the values of the different metrics and of the

IDR pipeline used for the joint assessment of replicates is shown in Figure 9.6.

9.5 Discussion

As part of the ENCODE Project, we and others developed a set of working best practices and

guidelines for ChIP-seq experiments based on more than 1,000 experiments as of October 2011

(and many more since then). They addressed the central issues of immune reagent specificity and

performance by establishing a menu of primary and secondary methods for antibody characterization,

and the development and application of global metrics to assess the quality of several aspects of an

individual ChIP-seq experiment: library complexity (which can be measured by the non-redundant

fraction (NRF)), immunoenrichment (which can be measured by the fraction of reads in called peaks,

FRiP, and by cross-correlation analysis). How different aspects of data quality interact with specific

uses of ChIP-seq data is discussed below.



357

9.5.1 Challenges in obtaining high quality affinity reagents

Certainly one of the major challenges in ChIP is the availability of high quality affinity reagents.

There are approximately 1500 transcription factors in humans (Vaquerizas et al. 2009), but fewer

than 200 antibodies against different transcription factors have passed ENCODE characterization

criteria. Because only 25% of antibodies, on average, pass quality controls, it is likely that over 6000

antibodies will need to be examined to complete the analysis of all human transcription factors. The

use of epitope-tagged constructs (especially knock-ins into the enodgenous loci that are expressed at

correspondingly endogenous levels) will help generate data for many factors, but they will still not

be suitable for introduction into human tissues and may not work well for all cell lines of relevance.

Thus, significant effort is needed to expand our antibody repertoire. The use of renewable reagents

(such as monoclonal antibodies) will be particularly valuable so that well-characterized and plentiful

reagents can be distributed to and used by the entire scientific community.

9.5.2 How good can a ChIP-seq experiment be?

Thus far, the most successful point-source factor experiments for ENCODE have FRiP values of 0.2

to 0.5 (factors such as NRSF, GABP, and CTCF; Figure 9.3C) and NSC/RSC values of 5 to 12. This

implies very high biochemical enrichment. These experiments produced different site numbers: the

peak caller SPP reported 50,000 for CTCF but only a few thousand for NRSF, arguing that different

point-source factors vary considerably in the number of occupied regions, even when technical quality

issues are minimal. Although these quality scores and characteristics can be routinely obtained for

the best-performing factor/antibody combinations, they are not the rule. For most transcription

factors, the ChIP quality metrics obtained are substantially lower and more variable. There are

likely multiple determinants of successful enrichment, and they are not all controllable or easy to

measure. The quality of antibody (affinity and specificity) is certainly very important, but epitope

availability within fixed chromatin, sensitivity of the antibody to post-translational modification

of the antigen, the nuclear levels of protein, and other physical characteristics of the protein-DNA

interaction can also contribute.

It is common for a lower-quality replicate, by the criteria of FRiP, NSC/RSC and track inspection,

to identify thousands fewer sites than the best available replicate. Are sites detected in only the best

ChIP replicate “real” in the sense of reflecting in vivo occupancy? Motif analysis suggests that many

are. A representative example is shown in Figure 9.7, where the position of Egr1 motifs relative to

Egr1 ChIP-seq peaks is shown. The known binding motif is prominent and concentrated centrally
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under the ChIP peaks, as expected if the motif mediates occupancy; importantly, the central location

of the motif is observed even in the low ranking peaks and this trend seems to continue below the

peak calling cut-off, suggesting the existence of additional true sites. This means that the true

number of binding sites and how exhaustively a ChIP-seq experiment identifies them is rarely clear,

especially when a factor is assayed for the first time.

9.5.3 How good does a ChIP-seq experiment need to be?

It would be ideal if every ChIP experiment mapped all occupancy sites in the genome that are

biologically meaningful with minimal false positives. The main impediment to this result is that

the field has not learned to determine, a priori, the level of ChIP signal above which all biologically

functional sites have been identified, or even if this is a valid concept. We have observed that

some biologically important sites can have modest ChIP-seq signals while some sites with very high

enrichment fail to give positive functional readouts (Figure 9.3B). Until more biologically-informed

thresholds are established, the best practical guidance for thresholds of sensitivity, specificity and

replicability will depend on how the data is used. Below, four different common uses for ChIP-seq

data are outline, ranging from relaxed to stringent in quality requirements.

Figure 9.8: Cross-correlation profiles and number of TAF1 ChIP-seq peaks in different
ENCODE cell lines. Regions are called from ChIP-seq data using MACS (version 1.4). The best
replicates for each cell line are shown, i.e. the low number of peaks in GM12878 cells was consistently
observed in multiple replicates (n > 5 for GM12878).

1. Motif analysis. Deriving DNA sequence motifs for a ChIP-assayed factor is relatively sim-

ple and can be performed successfully with most ENCODE ChIP-seq datasets. Experiments

that pass suggested thresholds for NRF, FRiP, and NSC/RSC typically produce thousands of

regions, a sub-sample of which can be readily used to deduce the recognition motif, assuming

that the protein bound is a sequence-specific factor. Causal motifs are typically centrally po-
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sitioned and this can be used as a confirming diagnostic. Motif finding can also be successful

from marginal quality data that fall below recommended quality metric thresholds (especially

if only the top-ranked peaks are analyzed). However, the risk of artifacts increases if lower

quality data is used and results from such analyses should be interpreted and validated with

special care.

2. Discovering regions to test for biological function (such as transcriptional enhancement,

silencing, or insulation). Biologists often use ChIP-seq data to identify candidate regulatory

regions at loci of interest. When the goal is to find a set of representative regulatory domains,

data of modest quality can be effective. In general, inspection of ChIP signals is strongly

advised before investing deeply in functional and/or mutagenesis studies, especially if the

criteria for selecting regions of interest are computational. However, when the aspiration is to

identify and sample all regulatory regions bound by a factor, weaker datasets are not adequate.

3. Deducing and mapping combinatoric occupancy. Typical cis-acting regulatory modules

(CRM) are occupied by multiple factors (Ghisletti et al. 2010; He et al. 2011a; He et al.

Figure 9.9: Number of expressed transcription start sites in four ENCODE cell lines.
Show is the number of expressed transcription start sites (TSSs) at the indicated FPKM levels,
based on RNA-seq data for each cell line. The FPKM for each TSS was calculated as the sum of
the FPKMs of all transcripts containing that TSS: FPKMTSS =

∑
T3TSS FPKMT . Transcript-level

quantification was carried out on GENCODE version 7 (Harrow et al. 2012) using Cufflinks version
0.9.3 (Trapnell et al. 2010)
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2011b; Lin et al. 2010; Tijssen et al. 2011; Wilson et al. 2010) and histones present at these

elements are modified with multiple marks (Barski et al. 2007; Mikkelsen et al. 2007; Wang

et al. 2008). A frequent goal of ChIP-seq studies is to deduce a combination of factors that

mediate a common regulatory action at multiple sites in the genome. The presence of one or

more weak datasets that fail to identify significant fractions of the true occupancy sites can

seriously confound such an analysis. Therefore, only high quality datasets should be used for

such studies.

4. Integrative analysis. A new frontier of whole genome analysis is the integration of data from

many (hundreds or thousands) experiments with the goal of uncovering complex relationships.

These endeavours typically use sophisticated machine learning methods (Ernst & Kellis 2010;

Ernst et al. 2011; Mortazavi et al. 2013) with complex and varying sensitivity to ChIP

strength; such efforts can be significantly affected by data quality. Again, only high quality

datasets are recommended to be used for such studies.

9.5.4 Uncertainties in distinguishing high quality from low quality

datasets

Evaluating ChIP-seq data quality includes the challenge of distinguishing technical versus biological

sources of noise or error. I use the TAF1 subunit of the TFIID complex, part of the transcription

initiation machinery, as an example. Given the known biological functions of TAF1, one might

expect that the set of genomic locations occupied by TAF1 would reflect the number and identity of

active promoters in each cell type. Based on RNA-seq measurements of gene expression, it can be

concluded that the number of active transcriptional start sites is similar in most cell types (Figure

9.9). Yet we have observed substantial differences in the number of identified TAF1-bound regions

that appear to depend on cell type (Figure 9.8). One explanation is that this is entirely due to

technical variability in the quality of the TAF1 ChIP experiments. However, it has been suggested

that TAF1 does not play a role in transcription initiation in certain cell types (Deato & Tjian 2007);

ChIP-seq experiments against TAF1 in such cell lines would appear very similar to technical failures.

Additional experiments will be required to discriminate between these possibilities.
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9.6 Conclusion

ChIP experiments that map the genomic distribution of transcription factor and modified histone

binding sites have proven to be an important tool across a wide range of organisms and in different

tissues and cell types. The quality control metrics described above should provide assistance to the

scientific community with the goal of ensuring that high quality data are produced and reported,

which will not only enable the mapping of regulatory information and networks, but will also be

critical in elucidating the effects of genomic variation in mediating human traits and diseases.
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10

Large-scale quality analysis of published ChIP-seq

data

This chapter contains material that was published as:

Marinov GK, Kundaje A, Park PJ, Wold B. 2014. Large-scale quality analysis of published ChIP-seq

data. G3 4(2):209-23. doi: 10.1534/g3.113.008680.

The paper is reprinted in Appendix K

Abstract

ChIP-seq has become the primary method for identifying in vivo protein-DNA in-

teractions on a genome-wide scale, with nearly 800 publications involving the tech-

nique in PubMed as of December 2012. Individually and in aggregate these data are

an important and information-rich resource. However, uncertainties about data qual-

ity confound their use by the wider research community. In the previous chapter, I

described the metrics developed and applied by the ENCODE Project Consortium to

objectively measure ChIP-seq data quality (which are also reviewed here, in some cases

more extensively). The ENCODE quality analysis was useful for flagging datasets for

closer inspection, eliminating or replacing poor data, and for driving changes in exper-

imental pipelines. However, there had been no similarly systematic quality analysis of

the large and disparate body of published ChIP-seq profiles. To address this question,

I carried a uniform analysis of vertebrate transcription factor ChIP-seq datasets in



363

the Gene Expression Omnibus (GEO) repository as of April 1st 2012. The majority

(55%) of datasets scored as highly successful, but a substantial minority (20%) were

of apparently poor quality, and another ∼25% were of intermediate quality. I discuss

how different uses of ChIP-Seq data are affected by specific aspects of data quality,

and highlight exceptional instances for which the metric values should not be taken

at face value. Unexpectedly, I discovered that a significant subset of control datasets

(i.e. no-immunoprecipitation and mock-immunoprecipitation samples) display an en-

richment structure similar to successful ChIP-seq data. This can, in turn, affect peak

calling and data interpretation. In the future, ChIP-seq quality assessment similar to

that used here could guide experimentalists at early stages in a study, provide useful

input in the publication process, and be used to stratify ChIP-seq data for different

community-wide uses.

10.1 Introduction

Chromatin immunoprecipitation (ChIP) (Gilmour and Lis 1984; Gilmour and Lis 1985; Solomon et

al. 1988) experiments identify sites of occupancy by specific transcription factors, cofactors, and

other chromatin-associated proteins as well as histone modifications. Such proteins are concentrated

at specific loci via direct binding to DNA or by indirect binding mediated by other proteins or

RNA molecules. In most ChIP protocols, proteins are first crosslinked to DNA, most often using

formaldehyde. The fixed chromatin is sheared, and an antibody specific for the protein or histone

modification of interest is used to retrieve protein:DNA complexes from which the DNA segments are

released and then assayed. The assay was first applied to individual transcription factor/promoter

complexes by using qPCR to detect enrichment over specific DNA segments (Hecht et al. 1996).

Subsequent adaptations extended it to large sets of promoters or other genomic regions by using

microarrays (ChIP-on-Chip/ChIP-Chip) (Ren et al. 2000; Iyer et al. 2001; Lieb et al. 2001; Horak

and Snyder 2002; Weinmann et al. 2002). Ultimately, the entire genome became accessible with

the advent of high-throughput sequencing and the development of ChIP-seq (Johnson et al. 2007;

Barski et al. 2007; Mikkelsen et al. 2007; Robertson et al. 2007).

In all cases, preferential enrichment of a given immunoprecipitated DNA segment is detected

and quantified by comparing it with a control experiment, in which there is no specific antibody

enrichment step. These controls can be generated from sonicated DNA prior to immunoprecipitation

(Input) or a mock immunoprecipitation with an unrelated antibody (IgG). Sequencing-based ChIP
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has become the method of choice because it enables genome-wide coverage, even for large genomes,

and because of its superior signal-to-noise characteristics compared to alternative methods. Since

its initial development, ChIP-seq has been used in hundreds of publications (778 in PubMed as of

December 18th, 2012), including by the ENCODE consortium (ENCODE Project Consortium 2011;

ENCODE Project Consortium 2012), to map occupancy over a hundred human transcription factors

and cofactors in a diverse collection of cell lines. (Gerstein et al. 2012; Wang et al. 2012).

A basic question for any ChIP-seq experiment is how successful it has been. It has taken several

years for the field to develop objective ways to quantify key aspects of success in immunoprecipitation

enrichment, library building and final sequencing. Poor datasets that have high false negative rates

in peak calling are a predictable pitfall that has significant downstream consequences for some kinds

of biological and computational analyses. For example, when lower quality data-sets are used for

integrative analyses that are sensitive to false negatives, incorrect inferences and conclusions become

likely (see Discussion). In estimating data quality, the traditional approach of visual inspection at

a limited number of sites (often previously well-characterized using low-throughput approaches) is

inefficient, subjective and can ultimately be deceptive. It is possible (and commonly observed in

practice) that sites, the biological importance of which has been defined by independent functional

assays, can fall below the sensitivity threshold of a poor or mediocre ChIP-seq experiment. Moreover,

there is no current way to predict, a priori, the number of sites in the genome that should be detected

for a given factor and cell type. Most transcription factors studied thus far reproducibly occupy

thousands to tens of thousands of sites (ENCODE Project Consortium 2012; Landt et al. 2012); Thus

a dataset, for which several thousand sites have been called, might in fact be capturing a minority

of true positive interactions, or it might encompass virtually all biologically pertinent sites. To help

address the problem of data assessment, as part of the ENCODE project, we and others developed

a comprehensive set of ChIP-seq quality control metrics and guidelines (Landt et al. 2012), which

were adopted by the Consortium and applied to all of its datasets. Substandard datasets were

consequently replaced, flagged as substandard, and/or removed from analysis (ENCODE Project

Figure 10.1 (preceding page): Sequencing library characteristics. (A) Joint distribution
of library complexity and sequencing depth for all datasets examined. Vertical lines are drawn at 1
million, 5 million and 12 million reads. Horizontal and vertical lines indicate quality classes discussed
in the text. The upper right domain (number of uniquely mappable reads ≥12 million and library
complexity ≥0.8) passes current quality thresholds. (B) Distribution of library complexity for ChIP-
seq datasets, IgG controls and Inputs; (C) Distribution of sequencing depth for ChIP-seq datasets,
IgG controls and sonicated inputs; (D) Fraction of ChIP-seq, IgG and Input datasets exhibiting
high, medium and low complexity; (E) Fraction of studies containing libraries of high, medium and
low complexity (the distribution of the minimum library complexity observed is shown)
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Figure 10.2: Examples
of cross-correlation plots
and QC score assignments
for both ChIP-seq and
control datasets. Suc-
cessful ChIP-seq is expected
to show a very high cross-
correlation peak relative to
the read length ”phantom
peak”. Failed ChIP-seq ex-
periments lack such a peak.
Control libraries (sonicated
inputs or IgG input) are also
expected to lack this peak;
the presence of a high cross-
correlation peak is most likely
due to a very strong Sono-seq
effect (Auerbach et al. 2009).
(A). Example of a ChIP-seq
dataset with QC score of -2
(from Visel et al. 2009; Gotea
et al. 2010; Blow et al. 2010).
(B). Example of a ChIP-seq
dataset with QC score of -
1 (from Ho et al. 2009).
(C). Example of a ChIP-seq
dataset with QC score of 0
(from Yuan et al. 2009). (D).
Example of a dataset with
QC score of 1 (from He et
al. 2011). (E). Example of
a ChIP-seq dataset with QC
score of 2 (from Handoko et al.
2011). (F). Example of a con-
trol dataset with QC score of
-2 (from Lee et al. 2010). (G).
Example of a control dataset
with QC score of -1 (from
GSE15844). (H). Example
of a control dataset with QC
score of 0 (from GSE23581).
(I). Example of a dataset with
QC score of 1 (from Ver-
meulen et al. 2010). (J).
Example of a control dataset
with QC score of 2 (from He
et al. 2011).
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Consortium 2012; Landt et al. 2012).

Incorporating published datasets into an on-going study can bring new biological insights and

avoid unnecessary duplication of work. Variable quality of published data can be a significant

barrier to these uses of existing data. They are the product of work from many different labs,

with invaluable expertise is specific biological systems, but also using many variations in ChIP-seq

experimental protocols and bioinformatics treatments. The extent and nature of the variations

has not been assessed globally and systematically. In this work, I examined the GEO submission

series containing vertebrate transcription factor ChIP-seq datasets and found that ∼20% of datasets

score as being of low-quality with additional ∼25% exhibiting intermediate ChIP enrichment. I also

noticed that roughly a third of studies have control datasets with a high degree of read clustering

that is normally expected only in ChIP-seq datasets. This was observed more often for the IgG

control design than for input DNA controls. These and related observations suggest that routine

characterization and reporting of the quality of ChIP-seq data be applied.

Figure 10.3: Sequencing
depth distribution for ChIP-
seq and IgG and Input control
datasets.
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10.2 Results

10.2.1 Dataset collection, data processing and quality metrics

I downloaded all GEO series containing ChIP-seq datasets for vertebrate transcription factors or

chromatin modifying and remodeling proteins, along with their corresponding control libraries, sub-

mitted prior to April 1st 2012. I excluded ENCODE datasets as they have previously been subjected

to this quality assessment (ENCODE Project Consortium 2012) and the results were summarized

in (Landt et al. 2012), although I also provide here a summary of ENCODE transcription factor

(TF) ChIP-seq data from the two main production groups in Figures 10.13 and 10.14.

A different logic led to the exclusion of histone modification and RNA Polymerase II datasets.

First, in our experience, ChIP-seq against these targets is robust to experimental variation and the

success rate is reliably high (provided the antibody reagents used are of high quality). Second,

an especially large proportion of published data are for histone marks. The effect of including

all of these in the survey would have been to obscure or skew the trends for transcription factors

and cofactors. Finally, the currently available quality control metrics were designed and are best

suited for transcription factor data that produce highly localized “point-source” occupancy (as they

quantify the extent of read clustering in the genome). This means that the metrics themselves

need to be interpreted differently if they are applied to, for example, repressive histone marks such

as H3K9me3 and H3K27me3, which form large “broad-source” regions of enrichment (Pepke et al.

2009). Arguably, these data will need their own metrics and this will be a challenge for the future.

The final collection of datasets contained 191 GEO series containing a total of 917 ChIP-seq and

292 control libraries. Except for a limited number of cases in which a GEO series was associated

with multiple publications, two or three GEO series were associated with the same publication, or a

GEO series has not yet been used in a publication, there is a one-to-one relationship between GEO

series and published articles in the literature (An et al. 2011; Ang et al. 2011; Avvakumov et al.

2012; Barish et al. 2010; Barish et al. 2012; Bergsland et al. 2011; Bernt et al. 2011; Bilodeau et

al. 2009; Blow et al. 2010; Boergesen et al. 2012; Botcheva et al. 2011; Brown et al. 2011; Bugge

et al. 2012; Canella et al. 2012; Cao et al. 2010; Cardamone et al. 2012; Ceol et al. 2011; Ceschin

et al. 2011; Chen et al. 2008; Cheng et al. 2009; Cheng et al. 2012; Chi et al. 2010; Chia et al.

2010; Chicas et al. 2010; Chlon et al. 2012; Cho et al. 2012; Corbo et al. 2010; Costessi et al. 2011;

Cuddapah et al. 2009; De Santa et al. 2009; Doré et al. 2012; Durant et al. 2010; Ebert et al. 2011;

Fan et al. 2012; Fang et al. 2011; Feng et al. 2012; Fong et al. 2012; Fortschegger et al. 2010; Gao
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Figure 10.4: ChIP QC assessment summary. The numbers in each box indicate the total
number of datasets/studies belonging to it. SPP QC scores of +1 and +2 indicate a high degree of
read clustering in a dataset. (A) Distribution of SPP QC scores for all ChIP-seq datasets examined;
(B) Distribution of SPP QC scores for the best replicates for a factor/condition combination in each
study; (C) Distribution of the maximum SPP QC scores for all ChIP-seq datasets in a study.

et al. 2012; Gotea et al. 2010; Gowher et al. 2012; Gu et al. 2010; Han et al. 2010; Handoko et al.

2011; He et al. 2011; Heikkinen et al. 2011; Heinz et al. 2010; Heng et al. 2010; Ho et al. 2010;

Hollenhorst et al. 2010; Holmstrom et al. 2011; Horiuchi et al. 2011; Hu et al. 2010; Hu et al. 2011;

Hunkapiller et al. 2012; Hutchins et al. 2012; Johannes et al. 2010; Joseph et al. 2011; Jung et al.

2010; Kagey et al. 2010; Kassouf et al. 2010; Kim et al. 2010; Kim et al. 2011; Klisch et al. 2011;

Koeppel et al. 2011; Kong et al. 2011; Kouwenhoven et al. 2010; Krebs et al. 2010; Kunarso et al.

2010; Kwon et al. 2010; Law et al. 2010; Lee et al. 2010; Lefterova et al. 2010; Li et al. 2010; Li

et al. 2012; Lin et al. 2010; Lister et al. 2009; Little et al. 2011; Liu et al. 2010; Liu et al. 2011;

Lo et al. 2011; Lu et al. 2012; Ma et al. 2010; MacIsaac et al. 2010; Mahony et al. 2010; Marban

et al. 2011; Marson et al. 2008; Martinez et al. 2010; Mazzoni et al. 2011; McManus et al. 2011;

Mendoza-Parra et al. 2011; Meyer et al. 2012; Miller et al. 2012; Miyazaki et al. 2011; Mullen et al.

2011; Mullican et al. 2011; Nakayamada et al. 2011; Nishiyama et al. 2009; Nitzsche et al. 2011;

Norton et al. 2011; Novershtern et al. 2011; Ntziachristos et al. 2012; Palii et al. 2010; Pehkonen
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et al. 2012; Ptasinska et al. 2012; Qi et al. 2010; Quenneville et al. 2011; Rada-Iglesias et al. 2010;

Rahl et al. 2010; Ramagopalan et al. 2010; Ramos et al. 2010; Rao et al. 2011; Remeseiro et al.

2012; Rey et al. 2011; Robertson et al. 2007; Sadasivam et al. 2012; Sahu et al. 2011; Sakabe et al.

2012; Schödel et al. 2012; Schlesinger et al. 2010; Schmitz et al. 2011; Schnetz et al. 2010; Sehat

et al. 2010; Seitz et al. 2011; Shen et al. 2011; Shukla et al. 2011; Siersbæk et al. 2011; Smeenk

et al. 2011; Smith et al. 2011; Soccio et al. 2011; Stadler et al. 2011; Steger et al. 2010; Sun et al.

2011; Tallack et al. 2010; Tan et al. 2011a; Tan et al. 2011b; Tang et al. 2010; Teo et al. 2011;

Tijssen et al. 2011; Tiwari et al. 2011a; Tiwari et al. 2011b; Trompouki et al. 2011; Trowbridge

et al. 2012; van Heeringen et al. 2011; Vermeulen et al. 2010; Verzi et al. 2010; Verzi et al. 2011;

Vilagos et al. 2012; Visel et al. 2009; Vivar et al. 2010; Wang et al. 2011a; Wang et al. 2011b; Wei

et al. 2010; Wei et al. 2011; Welboren et al. 2009; Whyte et al. 2011; Wilson et al. 2009; Woodfield

et al. 2010; Wu et al. 2011a; Wu et al. 2011b; Wu et al. 2012; Xiao et al. 2012; Xu et al. 2011;

Yang et al. 2010; Yang et al. 2011; Yao et al. 2010; Yildirim et al. 2011; Yoon et al. 2011; Yu et

al. 2009; Yu et al. 2010; Yu et al. 2012;; Yuan et al. 2009; Zhang et al. 2011; Zhao et al. 2011a;

Zhao et al. 2011b; unpublished at the time of completion of the manuscript GEO accession num-

bers: GSE33346, GSE33850, GSE36561, GSE30919, GSE33128, GSE35109, GSE25426, GSE31951,

GSE26711, GSE23581, GSE26136, GSE26680, GSE15844, GSE21916, GSE22303 and GSE29180;

direct links to all GEO series can be found in Supplementary Table 1).

I discuss IgG and Input controls separately as, to the best of my knowledge, any potential general

differences between the two types of controls have not been investigated systematically in the context

of ChIP-seq (Peng et al. 2007 addressed these questions for ChIP-Chip data, however, the nature

of the background is substantially different for microarrays)

I mapped all reads with uniform settings (see the Methods section for details) and examined

library and ChIP quality control metrics for each dataset. These criteria have already been discussed

in Landt et al. 2012, and a detailed treatment of cross-correlation is presented elsewhere (Kundaje

et al., submitted). Here we provide a brief overview of each.

1. Sequencing depth. If a ChIP-Seq experiment achieves successful immune-enrichment and

the resulting llibrary adequately represents the sample, greater sequencing depth will produce

a more complete map of transcription factor occupancy (Landt et al. 2012). At greater depth,

the measurement will identify a larger number of reproducible sites containing the correspond-

ing DNA binding sequence motif. Undersequencing of an otherwise successful library will lead

to false negatives. It has been difficult to establish a universal minimal sequencing depth due
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Figure 10.5: Distribution of the maximum
SPP QC scores for studies in which only a
single transcription factor was assayed.

to differences between factors. Any threshold is going to be somewhat arbitrary, but in general,

the major cost/benefit trade-off is between sequencing one sample more deeply and generating

additional replicates: for most contemporary purposes, an independent duplicate measurement

of 12 million reads arguably adds greater overall value than a single determination with 24

million reads, even though the higher number of reads will increase sensitivity. Numbers of

mapped reads below 1-2 million for a typical transcription factor, will usually be inadequate

for capturing the complexity of an interactome for a mammalian-sized genome. Many datasets

now in the public domain were generated when sequencing throughput was lower than it is

now and costs were higher (between 2007 and 2013, sequencing throughput has increased by

about two orders of magnitude). As a consequence, many early ChIP-seq libraries were se-

quenced to a depth of only a few million reads. I therefore divided datasets into sequencing

bins by using thresholds of 1,5,12 and 24 million uniquely mapped reads (taking into account

sequencing depths recommended in the past by the ENCODE consortium for transcription

factors). Libraries having less than a million reads are considered severely undersequenced,
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and those with above 12 million reasonably deeply sequenced.

2. Library complexity. A second characteristic that influences the quality of a ChIP-seq mea-

surement is the sequence fragment diversity of the sequencing library. This is generally referred

to as library complexity and low complexity is undesirable with current technology, though I

note that much better IP enrichment than what is now obtained could in the future lead to

high-quality datasets with low library complexity. Currently, low-complexity libraries mainly

result from experimental deficiencies: either too few starting molecules at the end of the im-

munoprecipitation step or inefficient steps in subsequent library building. As a result, the

same starting molecules are sequenced repeatedly. Very low-complexity libraries will not con-

tain enough information to effectively sample the true positive binding sites and they distort

the signal position and intensity. This can confuse peak callers (especially if the algorithm

does not collapse presumptive PCR duplicates), leading to peak calling artifacts (Landt et al.

2012). We use the following metric as an indicator of library complexity (Landt et al. 2012):

Library complexity =
Number positions in the genome that uniquely mappable reads map to

Number uniquely mappable reads

(10.1)

• Estimated in this way, library complexity is expected to decrease eventually with increased

sequencing depth because even highly complex libraries become exhausted by very deep se-

quencing. Reduced apparent complexity would also be observed with extremely successful

ChIP-seq experiments for transcription factors that bind to the genome in a highly discrimi-

native fashion and to a limited number of locations. In such libraries, the majority of reads

would originate from the limited genomic subspace around binding sites resulting in low ap-

parent library complexity. With current methods, this is, a largely theoretical consideration;

in practice, in most ChIP-seq libraries only a minority of reads originate from factor-bound

sites, with the rest (the majority) representing genomic background. As the vast majority

of libraries examined fell in the sequencing depth range over which these values represent li-

brary complexity reasonably well (Figure 10.1A, Table 10.1), I split datasets in the following

complexity groups: high complexity (apparent library complexity ≥ 0.8), medium to low com-

plexity (apparent library complexity between 0.5 and 0.8), and very low complexity (apparent

library complexity ≤ 0.5). Finally, I note that in substantially smaller genomes the apparent

library complexity is expected to be lower as the number of positions from which sequencing
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library fragments can originate is smaller.

3. Cross-correlation analysis of read clustering and ChIP enrichment. Since the ma-

jority of sequencing reads in a ChIP-seq library represents non-specific genomic background,

these reads are expected to be randomly distributed over the genome. In contrast, reads orig-

inating from specific occupancy events cluster around the sites of protein-DNA interactions,

where they are distributed in characteristic asymmetric pattern on the plus and minus strand

(Kharchenko et al. 2008). Cross-correlation analysis is an effective way of measuring the

extent of this clustering. It also captures additional global features of the data such as the

average fragment length and fragment length distribution (Kharchenko et al. 2008; Landt et

al. 2012). Specifically, the read coverage profiles on the two strands are shifted relative to the

other over a range of shift values and the correlation between the profiles is calculated at each

shift (Kharchenko et al. 2008). The resulting plot has one (“phantom”) peak corresponding

to the read length and another peak corresponding to the average fragment length; the height

of the fragment-length peak is highly informative of the extent of read clustering in the library

and in turn of the success of a ChIP-seq experiment. This feature is best captured by the

normalized and relative strand correlation (NSC and RSC) metrics discussed in (Landt et al.

2012). I applied SPP (Kharchenko et al. 2008) to carry out cross-correlation analysis for all

libraries in this survey. I then used the RSC cross-correlation metric to assign integer quality

control tag values in the {−2, 2} range to datasets, with QC values of 2 corresponding to very

highly clustered (and mosty likely, also successful) datasets and QC values of -2 to datasets

exhibiting no to minimal read clustering; negative values are expected for input datasets. The

RSC metric captures well the extent of read enrichment in vertebrate genomes similar in size

to humans, which this study focuses on. I provide representative examples of cross-correlation

plots for each of the five QC categories in Figure 10.2A) and use these tags as convenient gen-

eral proxies for ChIP quality throughout the following analysis. I note that the discretization

thresholds are not meant to be absolute determinants of quality, but they enable one to rapidly

scan very large numbers of datasets. In practice, examining the cross-correlation plots and the

continuously-distributed NSC and RSC values is always more informative and provides more

nuance in understanding specific datasets.

An additional major component of the ChIP-seq quality control pipeline developed by the EN-

CODE consortium is reproducibility analysis of replicates, based on the irreproducible discovery

rate (IDR) statistic (Li et al. 2011). However, since many of the studies surveyed did not have repli-
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Figure 10.6: Assessment of read clustering in control datasets. The numbers in each box
indicate the total number of datasets/studies belonging to it. SPP QC scores of 1 and 2 indicate
a high degree of read clustering in a dataset. (A) Distribution of SPP QC scores for all control
datasets (IgG+Input), IgG/mock IP controls (IgG) and sonicated inputs (Inputs); (B) Fraction of
studies containing highly clustered inputs. The distribution of the maximum SPP QC score for all
inputs in a dataset is shown. (C) Examples of a highly clustered input (mouse liver, upper two
tracks, from MacIsaac et al. 2010, QC score of 2) and an input that does not show high extent of
read clustering (also mouse liver, lower two tracks, from Soccio et al. 2011, QC score of -1). The
promoter of the MASTL gene is shown. All tracks are shown to the same scale and reads mapping to
the plus and minus strands and displayed separately for better visualization of the cross-correlation
between the two.
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Figure 10.7: Distribution of library complexity values and sequencing depth for Input
and IgG control datasets divided by QC scores. (A,B) Library complexity. (C,D) Sequencing
depth.
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cates, I only evaluated datasets on the level of individual experiments. Single dataset evaluation is

also almost always a valuable precursor to evaluation of replicates, as typically a second replicate is

generated following a successful first one.

The full list of datasets, mapping and quality control statistics is provided in Table 10.1.

10.2.2 Sequencing depth and library complexity

Figure 10.1A shows the distribution of sequencing depth and library complexity for ChIP-seq and

control datasets. The upper right domain, bounded by 12 million reads per sample and a complexity

value of 0.8 is an arbitrary but useful definition of high quality according to these measures. A

majority of datasets had reasonably good complexity and severely undersequenced libraries were rare

(Figure 10.1C). A minority (38.8%) of datasets had more than 12 million mapped reads; however,

as discussed above, this is not unexpected, as a large fraction of the datasets we surveyed were

generated in times of significantly higher sequencing cost and lower throughput. Strikingly, the

median complexity of IgG control datasets was below 0.8 and considerably lower than that of either

ChIP-seq or sonicated Input libraries (Figure 10.1B). This is not a result of IgG datasets having been

sequenced much more deeply than the other two groups; in fact the median sequencing depth of IgG

controls is lower (Figure 10.3). The concern that individual IgG inputs might provide insufficient

DNA mass to build highly complex libraries has been raised before (Landt et al. 2012) and our

observations are consistent with this concern, although it is not a uniform problem for all IgG

controls.

Slightly more than half (54.3%) of ChIP-seq datasets had library complexity higher than 0.8

while very low-complexity (< 0.5) libraries comprised 12.9% of datasets; the fraction of very low-

complexity libraries was higher and lower for IgG and Input datasets, respectively (Figure 10.1D).

As most GEO series contained multiple libraries, I also asked how common is the presence of low-

complexity libraries in individual studies. Figure 10.3E shows the distribution of the minimum

library complexity in each such series (for all types of datasets). A quarter (25.4%) of all studies

contained very low-complexity libraries.

10.2.3 Cross-correlation quality assessment of ChIP-seq datasets

Next, I examined the distribution of SPP QC scores for ChIP-seq datasets. Before doing this, I

excluded a minority of datasets for which there was a good reason to think high ChIP enrichment

should not be expected. For example, experiments executed in knock-outs, knock-downs, or settings,
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in which the factor is not expressed, are not expected to produce a high-scoring measurement. And

in a few cases, the factor in question might be known to bind to only a small number of sites in

the genome; this has been proposed, for example, for some ZNF transcription factors and Pol3 and

its associated factors (Landt et al., 2012). The detailed criteria for inclusion are described in the

Methods section.

Figure 10.4A shows the QC score distribution for all ChIP-seq datasets we retained. Strikingly,

only 55% (482 out of 876) of datasets had QC scores of 1 or 2, i.e. they are likely to be highly

successful. Additional 24.5% (215 out of 876) had a score of 0, marking them as of intermediate

quality, and 20.4% (179 out of 876) had low-quality scores of -1 and -2. Sometimes multiple replicates

for a factor were submitted but only one fails, so I also compiled a second set of ChIP-seq experiments

that only included the best available replicate for each factor and condition (Figure 10.4B). This

set includes 322 datasets (59%) with QC scores of 2 or 1. The fraction of intermediate-quality and

failing datasets in this set decreased as expected; however the decrease was relatively small - 18%

(97 out of 541) of the best available replicates still had scores of -1 or -2, and 22.5% (122 out of 541)

had a score of 0.

I then examined the distribution of the maximum QC score for each study, regardless of which

target it was for (Figure 10.4C). The fraction of failing scores decreased further, yet still only 70.4%

of studies (131 out of 186) had a score of 1 or 2 for their best experiment. I also compiled a list of

the best datasets from all studies that only assayed a single transcription factor; 19.7% (19 out of

96) such studies had scores of -1 or -2, 25% (24 of 96) had a score of 0, and 55.2% (53 of 96) were

marked as likely to be successful with scores of 1 and 2 (Figure 10.5).

10.2.4 Read clustering in control datasets

Control datasets serve the important purpose of helping to distinguish read enrichment due to

the immunoprecipitation step from artifactual read clustering due to other experimental factors,

both known and unknown. It is, for example, well appreciated that differential chromatin shear-

ing efficiency can lead to the overrepresentation of areas of open chromatin (usually immediately

surrounding transcribed promoters) in sequencing libraries. This is termed “Sono-seq” effect when

attributed to sonication (Auerbach et al. 2009). In addition, unknown copy number variants and

sequence composition biases may give false positive putative occupancy. In particular, specifics of

the amplification step in most sequencing platforms can introduce significant bias for GC content

(Ho et al. 2011).
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In general, control datasets are not expected to exhibit a pattern of significant read clustering

similar in strength to that of successful ChIP-seq datasets. In our own practice, under standard

crosslinking protocols, most do not. However, we have noticed that a minority of control datasets

show positive ChIP QC scores along with prominent cross-correlation peaks. Figure 10.2B shows

examples of cross-correlation plots for individual control datasets with all possible QC scores, from

-2 to 2 and Figure 10.6C shows a browser snapshot of a region with strong read enrichment in a

highly clustered (QC score of 2) input library and no such enrichment in a library from a similar

biological source with a QC score of -1.

I asked how general this phenomenon is by examining the distribution of QC scores of both

IgG and Input control datasets (Figure 10.6A). Surprisingly, only 53.6% (156 out of 291) of control

datasets had QC scores of -2 or -1 and 25% (73 of 291) had a score of 0, while 21.3% (62 of 291)

exhibited very high degree of read clustering and received scores of 1 or 2. The highly clustered

inputs were notably more common among IgG controls than among Input chromatin controls (Figure

10.6A). Moreover, high read clustering was more often found in low-complexity libraries (which are

themselves more common among IgG controls) (Figure 10.7A and 10.7B).

I also examined how widespread input clustering is on the level of GEO series/studies to see if

the phenomenon is restricted to a few larger studies. Figure 10.6B shows the distribution of the

maximal QC score for all control datasets in a study. Of the studies for which control datasets were

available, 32.8% (45 of 123) contained at least one highly clustered control with a score of 1 or 2

Figure 10.8 (preceding page): Relation between a well defined set of promoter-proximal
and promoter-distal transcription factor binding sites and input datasets with minimal
and significant read clustering. The high-quality C2C12 myogenin dataset shown in Figure 4 was
used, ERANGE3.2 binding sites were separated into promoter promoter-proximal (sites for which
the peak position, defined by the peak caller was within 1kb of a TSS present in the ENSEMBL63
annotation of the mm9 version of the mouse genome) and promoter-distal (sites for which the peak
position was more than 1kb away from TSSs) groups, each group was ranked by decreasing myogenin
signal and the distribution of input signal was plotted for the 1kb region around the peak position.
(A) A C2C12 input dataset generated from cells fixed with the usually used 1% concentration of
formaldehyde (FA) for 15 minutes, and showing little read clustering genome-wide (QC score of
-1). (B) A C2C12 input dataset generated from cells fixed with a combination of 1% formaldehyde
(for 10 minutes) and subsequent additional fixation with the long-arm crosslinker ethylene glycol-
bis(succinimidylsuccinate) (EGS) (Abdella et al. 1979) in order to enhance crosslinking between
proteins and capture the interactions of factors more loosely associated with chromatin (Zeng et al.
2006). There are reason to expect that such more aggressive crosslinking conditions will results in a
stronger Sono-seq effect and indeed this dataset exhibits significant amount of read clustering (QC
score of 2). The 1%FA+EGS input signal around myogenin binding sites is considerably higher than
the 1% FA input signal. Notably, the 1%FA+EGS signal signal is stronger for promoter-distal sites
than it is for promoter-proximal sites even though promoter-proximal sites are generally stronger
(C).
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and 29.2% (40 of 123) contained a control with a score of 0. Thus control datasets surprisingly

often exhibit a high extent of read clustering similar to that of ChIP-seq datasets. This is even more

striking considering that FAIRE-seq (Formaldehyde-Assisted Isolation of Regulatory Elements) data

(an assay that is based on the preferential enrichment of open chromatin in sonicated DNA and aims

at achieving high read clustering) from ENCODE usually has QC scores between -2 and 0, and that

the Sono-seq datasets published by Auerbach et al. all have scores of -2.

I note that unless this effect is very strong and is associated with notable genomic features such

as promoters of genes, it can be difficult to detect by the usual methods of visual inspection of signal

tracks on a genome browser. It is, however, readily apparent in cross-correlation analysis and these

results raise awareness of its existence. As mentioned above, one candidate explanation for this

phenomenon is the previously described “Sono-seq” effect. Using standard experimental protocols

this effect has been rare in our experience, but under more aggressive crosslinking conditions, we

have observed increased read clustering (Figure 10.8). Notably, the original “Sono-seq” description

focused on promoter regions, but we have also observed it over distal regulatory elements, where its

strength was even higher than at promoters (Figure 10.8). Thus variation in the extent of fixation,

as well as sonication, might be a substantial contributor to variation in read clustering across the

broader data collection. Another potential contributing factor is sequencing depth – “Sono-seq”

effect of the same magnitude can result in a more prominent cross-correlation profile with increasing

sequencing depth as more and more reads can be found in proximity to each other (the same

correlation is observed in ChIP-seq datasets). The average sequencing depth for highly clustered

IgG and Input controls is higher than that of controls with negative QC scores (Figure 10.7C and

10.7D); however, this by no means explains all the clustering observed in controls as there are plenty

of examples of deeply sequenced Input and IgG libraries with no significant cross-correlation peaks.

Finally, “Sono-seq” need not be the only explanation. Other, not yet identified, causes may be

behind the phenomenon, and the cause might not be the same in all cases. Indeed, while a number

of control datasets with QC scores of 2 exhibited higher read coverage around promoters, others

did not (Figure 10.9), suggesting at least one other source of read enrichment over regions located

elsewhere in the genome. As rich annotation of functional genomic elements outside of promoter

regions is not available for many cell types in our study, this phenomenon is a subject for future

studies.
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10.3 Discussion

In this study I carried out a systematic survey of ChIP quality for publicly available vertebrate

ChIP-seq datasets. Over half of these datasets were found by our measures to be of high quality.

This group comprises a set that can be used with confidence for integrative analyses. This conclusion

carries the important caveat that I did not assess the specificity of the immune reagents used to

carry out the experiments, which is obviously a critical concern of a different kind.

A substantial minority of published datasets (between 20% and 45% of those examined) were

of low or intermediate quality by our metrics. This was true not only for individual libraries, but

was also true when only the best replicate from each study was examined. In addition, I observed a

substantial number of low-complexity datasets and an unexpected group of highly clustered control

datasets. These observations underscore the widespread variability in ChIP-seq data. They also

raised questions about which kinds of conclusions in primary publications are more or less sensitive

to data quality. Global quality analysis is especially useful to guide subsequent re-uses of published

data that require higher quality than was needed or achieved in the source study.

Dataset quality issues appeared in publications across impact levels. I separated datasets into

groups according to the 2011 Thomson Reuters Impact Factor for the journal in which the corre-

sponding article was published, and examined the distribution of QC scores in each group (Figure

10.11). The group with highest impact factor (≥ 25) contained the largest fraction of datasets with

a QC score of -2 or -1. I also examined the distribution of QC scores with respect to the year of

publication (Figure 10.10). A higher proportion of low-quality datasets were seen in earlier publica-

tions (2008-2009), although this might be due to the smaller number of datasets from early years. It

is encouraging that the fraction has stabilized in the last three years at around 20% (Figure 10.10).

It is important to recognize that datasets scoring as poor quality by the metrics used here can,

nevertheless, make important biological discoveries. For this reason, it would be an error to set a

fixed “standard” that every published dataset of the future would have to meet. Instead, routine

Figure 10.9 (preceding page): Distribution of signal around TSSs in control datasets.
Each group of three blue, red and yellow boxplots represents to one dataset, with blue corresponding
to a region 2kb upstream of TSSs, red to the region immediately surrounding the TSS, and yellow
to a region 2kb downstream of TSS. Datasets in which signal over TSSs is considerably higher than
the signal over flanking regions imply a possible “Sono-seq” overrepresentation effect; this, however,
is not evident (at least over TSSs) in all highly clustered datasets. (A) Human control datasets with
a QC score of +2. (B) Human control datasets with a QC score of -2. (C) Mouse control datasets
with a QC score of +2. (D) Mouse control datasets with a QC score of -2.
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Figure 10.10: Distribution of dataset quality relative to year of publication.

QC analysis would make it easy to see when there is reason for concern about a given dataset. It

would also provide a first tier of uniform guidance about what uses are likely to be appropriate for

a given dataset. As discussed previously, the appropriate level of quality control stringency depends

on the specific goals of the experiment and methods of analysis (Landt et al. 2012). In particular,

some analyses that are sensitive to false negatives are particularly vulnerable to inclusion of low-

scoring datasets. For example, trying to derive combinatorial transcription factor occupancy rules

is seriously compromised and even misleading, if a subset of the datasets included are suboptimal.

I illustrate this with a simple example from our own practice in Figure 10.12. The MyoD and

myogenin transcription factors are well known regulators of muscle differentiation (Yun & Wold 1996)

and C2C12 cells (Yaffe & Saxel 1977) have been widely used to study the process as they can be

propagated in an undifferentiated myoblast state and easily induced to differentiate into myocytes

and myotubes. We have done several ChIP-seq experiments with these factors in differentiated

and undifferentiated C2C12 cells (G. DeSalvo et al., in prep.; A. Kirilusha et al., in prep., K.
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Figure 10.11: Distribution of dataset quality relative to the impact factor of the journal
where an article was published. Shown are the 2011 Thompson-Reuters impact factor scores
for the journals in which ChIP-seq datasets were published in. (A) All datasets. (B). Breakdown
by year of publication.
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Fisher-Aylor et al., in prep.), some of which have been highly successful, while others were of poor

or intermediate quality. Here, I examined the effect of weaker ChIP-seq datasets on combinatorial

occupancy analysis, using a MyoD ChIP-seq dataset with very high QC metrics, and three myogenin

datasets with very high, moderately good, and very low such metrics (Figure 10.12A). Using the

best myogenin dataset, we find a high degree of overlap between the binding sites of the two factors

(Figure 10.12B). When the medium-quality myogenin dataset is used instead, a sizable group of

MyoD-only sites emerges (Figure 10.12C) and the erroneous conclusion that a substantial number

of MyoD sites lack myogenin binding could be reached if this was the only dataset available for

analysis. Finally, the poor-quality myogenin dataset contains very few called peaks and as a result

almost all MyoD sites show no myogenin binding when it is used for analysis (Figure 10.12D).

Recently, IDR analysis of replicate datasets (Li et al 2011; ENCODE Project Consortium 2012;

Landt et al. 2012) emerged as a robust method for deriving lists of reproducible occupancy sites

from ChIP-seq datasets. IDR is based on differences in the consistency of ranking (usually by signal

strength as measured by read enrichment or by statistical significance) for all identified peaks in a

pair of ChIP-seq replicates. A virtue of this approach is that it allows a statistically robust and

reproducible set of binding sites to be derived largely independent of thresholds and settings specific

to a particular peak-calling algorithm. Ideally, IDR would be used in conjunction with the quality

metrics used here (ENCODE Project Consortium 2012; Landt et al. 2012). However, replicate

measurements do not exist for many of the datasets in this survey, so it was not part of the pipeline

in this study. IDR will likely become common practice, as sequencing costs drop. Even when that

happens, measuring of the quality of individual datasets will remain important because IDR analysis

is sensitive to the presence of poor-quality replicates. An asymmetric pair, consisting of one high-

quality and one poor-quality dataset, is dominated in IDR by the weaker replicate, resulting in a

shorter list of sites and a high false-negative rate. Care should be exercised in such cases. The best

approach is to obtain a second high-quality replicate but if this is not possible, special strategies for

treating asymmetric replicates have been devised (Landt et al. 2012).

The most perplexing observation made in this survey was that a subset of control datasets

have extensive read clustering in the same range as successful ChIP-seq experiments. In our own

practice, we have rarely encountered such libraries, and, to the best of my knowledge, there has

been no extensive treatment of this issue or its influence on data analysis in the literature. The

phenomenon occurred more frequently in IgG controls than in Input chromatin controls, although it

is by no means limited to the former. In theory, an IgG control should be a superior representation

of the true background noise in a ChIP-seq sample, as it incorporates biases introduced by the
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entire immunoprecipitation process, in addition to any enrichments or biases created by chromatin

shearing. Following this logic, a simple interpretation is that high read clustering in these controls

correctly identifies background that depends on something other than the factor-specificity of the

antibody. However, I also observed a large number of IgG controls (Figure 10.6A) that show no

such clustering, meaning that this is not a general feature. In addition, the overall lower complexity

of IgG libraries introduces higher signal stochasticity, and that may offset the benefit of providing a

better approximation of the immunoprecipitation process.

A crucial issue is the extent to which clustering in controls is also present as experimental noise

in ChIP libraries from the same material. For example, a very strong Sono-seq effect in a control

sample is expected to give ChIP-seq libraries with high read clustering in a combination of true

ChIP (antibody-specific) signal, plus non-specific promoter and enhancer Sono-seq noise. While

most contemporary peak callers normalize for enrichment in controls, very strong background noise

will diminish the signal-to-noise ratio and ultimately affect sensitivity. How much this affects the

results will depend on the overlap between true factor occupancy sites assayed and the regions of

artifactual read enrichment (for some factors this overlap may be negligible as they do not bind

to such regions), on the magnitude of the Sono-seq effect, and on the strength of the ChIP itself

(sufficiently strong determinations will not be affected greatly by this issue). Conversely, if a ChIP-

seq library contains a strong Sono-seq enrichment component, but peak calling is done against a

control sample in which the Sono-seq effect is of significantly lower magnitude, the rate of false

positive peak calls is expected to increase. Unfortunately, in practice such cases can be difficult to

detect especially when little is already known about the expected true positives. Similar reasoning

applies if the noise source is something other than Sono-seq, and the same increased caution about

reproducibility, sensitivity and attribution to the factor of interest will apply.

Uniform retrospective quality assessment is resource-intensive and will not be practically feasible

as the number of ChIP-seq datasets is growing exponentially. Retrospective analysis also comes too

late to influence the experiments themselves or to contribute to the review process. A reasonable

path forward would be to incorporate routine quality assessment into experimental analysis, review

for publication and submission to public repositories, as a matter of community practice. However,

the results presented here also strongly caution against the blind application of our metrics or

others, in the absence of experimental and biological context. We have seen that it is possible for

good datasets to receive low QC scores in certain special situations. It is also possible for some

poor or mediocre datasets to receive high QC scores. For example, this can happen in the presence

in the IP of very strongly clustered background of the kind we found in some control datasets. It
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Figure 10.12: Effect of suboptimal datasets on combinatorial occupancy analysis. The
muscle regulatory factors MyoD and myogenin were assayed in C2C12 myocytes at 60h after differen-
tiation. Shown are a single, highly successful, MyoD ChIP-seq dataset and three myogenin ChIP-seq
datasets, one of which is similarly highly successful (“myogenin 1”), a second, weaker one (“myo-
genin 2”), and a third, one which is an experimental failure (“myogenin 3”). (A) Quality control
metrics. (B,C,D) The extent of overlap of MyoD and myogenin binding sites as determined using
each of the three myogenin datasets (See Methods for data processing details). MyoD and myogenin
are mostly found to bind to the same sites when interactome determinations of comparable strength
are used (B). A sizable group of apparently MyoD-only sites emerges when the medium-strength
myogenin dataset is used due to a large number of false negative myogenin calls (C). Finally, the
unsuccessful myogenin ChIP reveals most MyoD sites to not be shared by myogenin (D). Numbers
listed in the red blocks corresponding to the each set of peak calls indicates its size.
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can also happen for factors that ChIP so well, and receive such high scores, that even data that

are substantially suboptimal score highly (for example, CTCF ChIP-seq datasets routinely identify

35-40,000 reproducible binding sites and have QC scores of 2; a dataset that identifies only 15,000

sites is clearly suboptimal given that knowledge, yet it can still contain enough read clustering to

receive a positive QC score and to match the maximum extent of read clustering observed for many

other transcription factors). For these reasons, the quality metrics should be applied and interpreted

in the context of what is known about the factor, the system, and the questions under study. Despite

the important nuances of interpretation, using metrics and making the results readily accessible for

every dataset would facilitate better informed data use by the wider community. An important

adjunct to public QC annotation would be the ability, in major public data repositories, to flag

and explain the exceptional cases for which QC scores should not be taken at face value. Finally,

quality metrics themselves will continue to improve as the field’s understanding of data structure,

experimental artifacts, and the underlying biology all become more sophisticated. Provisions will

be needed for incorporating such advances into routine dataset annotation, while still achieving

comparability through time.

10.4 Methods

10.4.1 Sequencing read alignment

Raw sequencing reads for all non-ENCODE GEO series containing ChIP-seq datasets against tran-

scription factors and chromatin modifying proteins (submitted prior to April 1st 2012) were down-

loaded from GEO in SRA format and converted to FASTQ format using the fastq-dump program

in the sratoolkit, version 2.1.9. Reads were aligned using Bowtie (Langmead et al. 2009), ver-

sion 0.12.7, with the following settings: ‘‘-v 2 -t -k 2 -m 1 --best --strata’’, which allow for

two mismatches relative to the reference and only retain unique alignments. Human datasets were

mapped against the male set of chromosomes (excluding all random chromosomes and haplotypes)

for version hg19 of the human genome; the mm9 version of the mouse genome was used for mouse

data, rn5 for rat, danRer7 for zebrafish, susScr2 for pig, and xenTro3 for the clawed frog Xaenopus

tropicalis; all assemblies were downloaded from the UCSC genome browser (Kent at al. 2002).
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10.4.2 ChIP quality assessment

ChIP quality assessment was carried out on both ChIP and input datasets using the general strat-

egy described in (Landt et al. 2012). Because a library may not score as a successful ChIP for

reasons other than the IP itself failing (such as it being carried out in a knockout background, in

si/shRNA-treated cells or in conditions under which the factor is not expressed or not bound to

DNA), the following additional criteria were used to determine whether each library is expected to

score positively in the QC assessment:

1. All experiments claimed to be successful by authors are expected to exhibit high level of read

clustering

2. All inputs (sonicated DNA and IgG mock IPs) are expected to exhibit minimal read clustering

(QC tag of -2 or -1)

3. All ChIP-seq experiments carried out in a knock-out background for the factor are expected

to exhibit minimal read clustering (QC tag of -2 or -1)

4. As knock-down efficiency varies and it is unknown what protein levels would be sufficiently high

for the factor to be successfully ChIP-ed, ChIP-seq experiments carried out in cells treated with

si/shRNAs targeting the factor are set aside as “unknown” and assessed for library complexity

and sequencing depth but not for ChIP quality.

5. Experiments against factors known to bind to DNA upon some stimulus carried out in unstim-

ulated cells are also tagged as “unknown” as lower level binding in unstimulated cells cannot

be ruled out (and is in fact often observed).

6. Experiments carried out in conditions which may result in the factor not binding to DNA (time

courses, knock-downs or knock-outs for other factors that may affect binding of the targeted

factor, etc.) are also tagged as “unknown”

7. Other experiments not matching any of these categories are expected to exhibit high level of

read clustering

Cross-correlation analysis was performed using version 1.10.1 of SPP (Kharchenko et al. 2008)

and the following parameters: ‘-s=0:2:400’. QC scores were assigned based on the RSC values

(integers ranging from -2 to -2, RSC ∈ {0, 0.25} ⇒ QC ← −2, RSC ∈ {0.25, 0.50} ⇒ QC ← −1,

RSC ∈ {0.50, 1.00} ⇒ QC ← 0, RSC ∈ {1, 1.50} ⇒ QC ← +1, RSC ≥ 1.5 ⇒ QC ← +2, with -2
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corresponding to minimal read clustering and 2 to a highly clustered library; ) and used as a measure

of ChIP quality. These scores capture the extent of read clustering in a ChIP-seq experiment in

organisms whose genomes have similar size and structure to those of mammals. We point out

that these scores may not be appropriate in genomes with very different size and/or structure.

This motivated us to discard data from non-vertebrate model organisms for this analysis). Different

values of RSC or NSC coefficients may be more informative for such genomes and is a topic for future

investigation. Cross-correlation plots were manually examined in order to ensure no artifactual QC

scores were included due to size selection issues (such as, for example, a library being fragmented to

an average size close to the read length and confusing the automated fragment peak assignment).

The code for running SPP and assigning QC scores is available at https://code.google.com/p/

phantompeakqualtools/

10.4.3 MyoD and myogenin ChIP-seq peak calling

MyoD and myogenin datasets were generated by the Wold lab and are available under GEO accession

number GSE44824. We note that the apparent weakness of the “myogenin 2” ChIP dataset is most

likely due to undersequencing and would be elevated to high quality status if sequenced deeper;

undersequencing is one possible reason for suboptimal quality metrics (Kundaje et al, submitted).

Reads were mapped as described above and peaks called using ERANGE3.2 (Johnson et al. 2007)

with the following settings: ’-minimum 2 -ratio 3 -shift learn -revbackground -listPeak’.

ChIP-seq peak calls were counted as overlapping if their summits were within 200bp of each other.

Read mapping statistics and QC metrics for these datasets can be found in Supplementary Table 2.

https://code.google.com/p/phantompeakqualtools/
https://code.google.com/p/phantompeakqualtools/
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Figure 10.13: Distribution of the number of mapped reads and library complexity for
data from the main two TF ChIP-seq production groups in ENCODE. (A,B,C) Number
mapped reads. (D,E,F). Library complexity. Note that the same filters on the dataset inclusions
that were used on publicly available data (see Methods section) were also applied to ENCODE
datasets.
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Figure 10.14: Distribution of the discretized RSC QC scores for data from the main
two TF ChIP-seq production groups in ENCODE. (A,B,C) Transcription factor ChIP-seq
data. (D,E,F). Control datasets (Input and IgG).
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Table 10.1: Dataset QC evaluation and mapping statistics. A direct link to the GEO entry is provided in
the “Source” field
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Marson et al. 2008 mouse Nanog-mES-rep1 0.94 4.37 1.67 2 26 26 26 4,305,381 ChIP yes

Marson et al. 2008 mouse Nanog-mES-rep2 0.94 4.32 1.67 2 26 26 26 4,396,374 ChIP yes

Marson et al. 2008 mouse oct4-mES-rep1 0.95 6.54 0.34 -1 26 26 26 4,341,147 ChIP yes

Marson et al. 2008 mouse sox2-mES-rep1 0.96 4.03 1.21 1 26 26 26 4,033,101 ChIP yes

Marson et al. 2008 mouse sox2-mES-rep2 0.97 4.07 1.19 1 26 26 26 3,287,130 ChIP yes

Marson et al. 2008 mouse suz12-mES-repl 0.97 1.63 0.15 -2 26 26 26 3,624,473 ChIP yes

Marson et al. 2008 mouse suz12-rep2-1 0.98 1.24 0.41 -1 26 26 26 207,308 ChIP yes

Marson et al. 2008 mouse Tcf3-mES-rep1 0.96 3 0.72 0 26 26 26 5,247,274 ChIP yes

Marson et al. 2008 mouse Tcf3-mES-rep2 0.96 2.96 0.66 0 26 26 26 5,388,916 ChIP yes

Marson et al. 2008 mouse WCE-mES-rep1 0.94 1.37 0.2 -2 26 26 26 1,507,157 Input no

Marson et al. 2008 mouse WCE-mES-rep2 0.9 1.35 0.21 -2 26 26 26 3,770,502 Input no

Chen et al. 2008 mouse ES-c-Myc 0.86 1.51 0.48 -1 26 26 26 11,714,595 ChIP yes

Chen et al. 2008 mouse ES-E2f1 0.84 1.43 0.92 0 26 26 26 13,374,901 ChIP yes

Chen et al. 2008 mouse ES-Esrrb 0.88 4.5 1.69 2 26 26 26 7,982,162 ChIP yes

Chen et al. 2008 mouse ES-GFP 0.82 1.26 0.15 -2 26 26 26 7,520,858 IgG no

Chen et al. 2008 mouse ES-Klf4 0.41 1.96 0.62 0 36 36 36 368,908 ChIP yes

Chen et al. 2008 mouse ES-Nanog 0.81 3158 356 2 26 26 26 9,166,834 ChIP yes

Chen et al. 2008 mouse ES-n-Myc 0.79 1.74 0.41 -1 26 26 26 10,099,160 ChIP yes

Chen et al. 2008 mouse ES-Oct4 0.59 1.61 0.46 -1 36 36 36 139,512 ChIP yes

Chen et al. 2008 mouse ES-p300 0.77 1.26 0.23 -2 26 26 26 9,396,456 ChIP yes

Chen et al. 2008 mouse ES-Smad1 0.96 3074 298 2 26 26 26 9,681,328 ChIP yes

Chen et al. 2008 mouse ES-Sox2 0.86 1.94 0.62 0 26 26 26 12,489,175 ChIP yes

Chen et al. 2008 mouse ES-STAT3 0.77 1.68 0.38 -1 26 26 26 8,384,452 ChIP yes

Chen et al. 2008 mouse ES-Suz12 0.87 1.21 0.27 -1 26 26 26 12,378,715 ChIP yes

Chen et al. 2008 mouse ES-Tcfcp2I1 0.81 13.53 2.42 2 26 26 26 8,800,970 ChIP yes

Chen et al. 2008 mouse ES-Zfx 0.92 1.9 0.71 0 31 31 31 9,543,774 ChIP yes

Kwon et al. 2009 mouse GIgG-post-IL21-in-B-cells 0.84 1.4 0.47 -1 25 25 25 2,915,090 IgG no

Kwon et al. 2009 mouse GIgG-post-IL6 0.88 1.49 0.36 -1 25 25 25 2,129,448 IgG no

Kwon et al. 2009 mouse IgG-post-IL21-dup 0.89 1.26 0.34 -1 25 25 25 4,286,349 IgG no

Kwon et al. 2009 mouse IgG-post-IL21-in-B-cells 0.91 1.33 0.52 0 25 25 25 2,993,063 IgG no

Kwon et al. 2009 mouse IgG-post-IL21-in-WT-quar 0.74 1.89 0.7 0 25 25 25 7,228,784 IgG no

Kwon et al. 2009 mouse IgG-post-IL21-ter 0.92 1.35 0.11 -2 25 25 25 3,080,974 IgG no

Kwon et al. 2009 mouse IgG-post-IL2-dup 0.86 1.31 0.4 -1 25 25 25 3,406,531 IgG no

Kwon et al. 2009 mouse IgG-post-IL6 0.84 1.31 0.35 -1 25 25 25 4,247,181 IgG no

Kwon et al. 2009 mouse IRF4-post-IL21-dup-seq-1 0.86 2.08 0.89 0 25 25 25 3,295,774 ChIP yes

Kwon et al. 2009 mouse IRF4-post-IL21-dup-seq-2 0.66 2.21 0.92 0 25 25 25 5,496,827 ChIP yes

Kwon et al. 2009 mouse
IRF4-post-IL21-in-IRF4-KO-

mice
0.94 1.9 0.66 0 25 25 25 3,613,839 ChIP no

Kwon et al. 2009 mouse IRF4-post-IL21-seq-1 0.9 1.88 0.72 0 25 25 25 3,560,575 ChIP yes

Continued on next page
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Kwon et al. 2009 mouse IRF4-post-IL21-seq-2 0.93 2.14 0.73 0 25 25 25 1,273,441 ChIP yes

Kwon et al. 2009 mouse IRF4-pre-IL21-dup-seq-1 0.89 1.76 0.7 0 25 25 25 3,996,341 ChIP yes

Kwon et al. 2009 mouse IRF4-pre-IL21-dup-seq-2 0.9 1.83 0.72 0 25 25 25 3,308,064 ChIP yes

Kwon et al. 2009 mouse IRF4-pre-IL21-in-IRF4-KO-mice 0.81 1.5 0.42 -1 25 25 25 5,741,089 ChIP no

Kwon et al. 2009 mouse IRF4-pre-IL21-seq-1 0.89 2.19 0.9 0 25 25 25 2,882,656 ChIP yes

Kwon et al. 2009 mouse IRF4-pre-IL21-seq-2 0.73 2.44 0.84 0 25 25 25 4,304,206 ChIP yes

Kwon et al. 2009 mouse STAT3-post-IL21-dup-seq-1 0.93 1.47 0.44 -1 25 25 25 266,685 ChIP yes

Kwon et al. 2009 mouse STAT3-post-IL21-dup-seq-2 0.89 1.47 0.46 -1 25 25 25 1,818,900 ChIP yes

Kwon et al. 2009 mouse
STAT3-post-IL21-in-IRF4-KO-

mice
0.79 1.42 0.28 -1 25 25 25 5,334,084 ChIP unknown

Kwon et al. 2009 mouse
STAT3-post-IL21-in-IRF4-KO-

mice-second-exp
0.81 1.52 0.52 0 25 25 25 5,744,414 ChIP unknown

Kwon et al. 2009 mouse
STAT3-post-IL21-in-IRF4-KO-

mice-third-exp
0.82 1.5 0.48 -1 25 25 25 4,041,874 ChIP unknown

Kwon et al. 2009 mouse STAT3-post-IL21-in-WT-cinq 0.77 1.87 0.58 0 25 25 25 5,281,605 ChIP yes

Kwon et al. 2009 mouse STAT3-post-IL21-in-WT-quar 0.76 1.88 0.63 0 25 25 25 5,450,390 ChIP yes

Kwon et al. 2009 mouse STAT3-post-IL21-in-WT-ter 0.85 1.46 0.43 -1 25 25 25 3,416,726 ChIP yes

Kwon et al. 2009 mouse STAT3-post-IL21-seq-1 0.88 2.75 0.86 0 25 25 25 3,446,457 ChIP yes

Kwon et al. 2009 mouse STAT3-post-IL21-seq-2 0.84 2.89 0.81 0 25 25 25 3,340,925 ChIP yes

Kwon et al. 2009 mouse STAT3-pre-IL21-dup-seq-1 0.82 1.37 0.41 -1 25 25 25 3,736,863 ChIP unknown

Kwon et al. 2009 mouse STAT3-pre-IL21-dup-seq-2 0.86 1.42 0.4 -1 25 25 25 2,709,584 ChIP unknown

Kwon et al. 2009 mouse
STAT3-pre-IL21-in-IRF4-KO-

mice-first-exp
0.85 1.56 0.45 -1 25 25 25 3,709,343 ChIP unknown

Kwon et al. 2009 mouse
STAT3-pre-IL21-in-IRF4-KO-

mice-second-exp
0.79 1.83 0.71 0 25 25 25 6,924,787 ChIP unknown

Kwon et al. 2009 mouse
STAT3-pre-IL21-in-WT-4th-

experiment
0.82 1.51 0.37 -1 25 25 25 4,257,111 ChIP unknown

Kwon et al. 2009 mouse STAT3-pre-IL21-in-WT-ter 0.81 1.41 0.14 -2 25 25 25 3,395,506 ChIP unknown

Kwon et al. 2009 mouse STAT3-pre-IL21-seq-1 0.78 3.1 0.76 0 25 25 25 3,700,560 ChIP unknown

Kwon et al. 2009 mouse STAT3-pre-IL21-seq-2 0.76 3.1 0.67 0 25 25 25 3,667,278 ChIP unknown

Hollenhorst et al.

2009
human Jurkat-CBP-1 0.86 2.22 1.38 1 36 36 36 9,275,556 ChIP yes

Hollenhorst et al.

2009
human Jurkat-ETS1-1 0.85 2.41 2.58 2 26 26 26 7,562,377 ChIP yes

Hollenhorst et al.

2009
human Jurkat-Input-1 0.93 1.16 0.15 -2 26 26 26 15,389,799 Input no

Hollenhorst et al.

2009
human Jurkat-RUNX-1 0.63 2.55 0.61 0 36 36 36 10,337,694 ChIP yes

Han et al. 2010 mouse mESC-Input 0.96 1.17 0.18 -2 37 37 37 9,567,449 ChIP no

Han et al. 2010 mouse mESC-Tbx3 0.92 1.46 0.29 -1 35 35 35 7,526,549 ChIP yes

Yu et al. 2009 mouse MEL86-GATA1 0.94 1.34 0.28 -1 33.87 36 28 5,866,520 ChIP yes

De et al. 2009 mouse Macrophages-JMJD3 0.95 1.32 0.36 -1 36 36 36 8,731,417 ChIP yes
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Yuan et al. 2009 mouse mESC-ESET 0.92 1.93 0.65 0 36 36 36 11,607,868 ChIP yes

Bilodeau et al. 2009 mouse mESC-SetDB1-rep-1 0.92 1.68 0.54 0 36 36 36 3,620,404 ChIP yes

Bilodeau et al. 2009 mouse mESC-SetDB1-rep-2 0.93 1.64 0.42 -1 36 36 36 3,301,043 ChIP yes

Bilodeau et al. 2009 mouse mESC-SetDB1-rep-3 0.92 1.65 0.51 0 36 36 36 4,251,421 ChIP yes

Bilodeau et al. 2009 mouse mESC-WCE-mES-rep-1 0.94 1.38 0.31 -1 36 36 36 3,966,359 Input no

Lister et al. 2009 human hESC-NANOG-1a 0.65 18.86 4.47 2 36 36 36 3,701,686 ChIP yes

Lister et al. 2009 human hESC-NANOG-1b 0.61 17.44 4.43 2 36 36 36 4,523,040 ChIP yes

Lister et al. 2009 human hESC-SOX2-1a 0.82 9.01 4.94 2 36 36 36 4,591,769 ChIP yes

Lister et al. 2009 human hESC-KLF4-1a 0.32 46.06 24.39 2 36 36 36 810,796 ChIP yes

Lister et al. 2009 human hESC-MYC-1a 0.58 4.15 2.02 2 36 36 36 2,391,782 ChIP yes

Lister et al. 2009 human hESC-Oct4-1a 0.98 2.46 1.04 1 36 36 36 574,662 ChIP yes

Lister et al. 2009 human hESC-Oct4-2a 0.98 4.37 1.81 2 36 36 36 151,346 ChIP yes

Lister et al. 2009 human hESC-P300-1a 0.57 7.51 2.52 2 36 36 36 3,490,165 ChIP yes

Lister et al. 2009 human hESC-TAFII-1a 0.64 2.93 1.96 2 36 36 36 4,031,316 ChIP yes

Lister et al. 2009 human hESC-TAFII-1b 0.67 2.9 1.72 2 36 36 36 3,507,401 ChIP yes

Nishiyama et al.

2009
mouse mESC-Cdx2 0.94 1.14 0.32 -1 36 36 36 7,347,351 ChIP yes

Cheng et al. 2009 mouse G1E-ER4-GATA1 0.96 1.75 1.2 1 36 36 36 24,281,091 ChIP yes

Cheng et al. 2009 mouse G1E-ER4-Input 0.97 1.28 0.58 0 36 36 36 15,990,494 Input no

Wilson et al. 2009 mouse HPC-7-Scl-1 0.95 1.86 0.88 0 45 45 45 5,563,933 ChIP yes

Wilson et al. 2009 mouse HPC-7-Scl-2 0.96 1.83 0.47 -1 36 36 36 3,637,766 ChIP yes

Robertson et al.

2007
human HeLaS3-IFNgamma-1-STAT1 0.86 4.41 1.1 1 27 27 27 693,473 ChIP yes

Robertson et al.

2007
human HeLaS3-IFNgamma-2-STAT1 0.85 3.67 1.04 1 27 27 27 663,874 ChIP yes

Robertson et al.

2007
human HeLaS3-IFNgamma-3-STAT1 0.94 4.07 1.58 2 36 36 36 3,079,284 ChIP yes

Robertson et al.

2007
human HeLaS3-IFNgamma-4-STAT1 0.94 3.97 1.59 2 27 27 27 2,176,985 ChIP yes

Robertson et al.

2007
human HeLaS3-IFNgamma-5-STAT1 0.95 4 1.96 2 27 27 27 2,808,038 ChIP yes

Robertson et al.

2007
human HeLaS3-IFNgamma-6-STAT1 0.95 4.17 1.95 2 27 27 27 2,718,185 ChIP yes

Robertson et al.

2007
human HeLaS3-unstimulated-1-STAT1 0.86 1.98 0.33 -1 27 27 27 478,619 ChIP unknown

Robertson et al.

2007
human HeLaS3-unstimulated-2-STAT1 0.84 2.6 0.34 -1 27 27 27 500,638 ChIP unknown

Robertson et al.

2007
human HeLaS3-unstimulated-3-STAT1 0.82 2.2 0.29 -1 27 27 27 496,979 ChIP unknown

Robertson et al.

2007
human HeLaS3-unstimulated-4-STAT1 0.92 1.45 0.23 -2 36 36 36 2,746,723 ChIP unknown

Robertson et al.

2007
human HeLaS3-unstimulated-5-STAT1 0.93 2.17 0.3 -1 27 27 27 1,447,320 ChIP unknown
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Robertson et al.

2007
human HeLaS3-unstimulated-6-STAT1 0.93 2.05 0.28 -1 27 27 27 1,425,741 ChIP unknown

Robertson et al.

2007
human HeLaS3-unstimulated-7-STAT1 0.95 1.47 0.34 -1 27 27 27 2,452,058 ChIP unknown

Welboren et al. 2009 human MCF7-E2-ERa 0.7 12.72 1.74 2 32 32 32 9,428,987 ChIP yes

Welboren et al. 2009 human MCF7-Fulvestrant-ERa 0.83 5.17 1.22 1 32 32 32 6,243,484 ChIP yes

Welboren et al. 2009 human MCF7-mock-treated-ERa 0.67 6.52 2.9 2 32 32 32 1,722,599 ChIP unknown

Welboren et al. 2009 human MCF7-Tamoxifen-ERa 0.82 8.86 1.55 2 32 32 32 5,836,314 ChIP yes

Visel et al. 2009;

Gotea et al. 2010;

Blow et al. 2010

mouse Forebrain-p300 0.57 1.72 0.15 -2 36.32 38 36 4,842,793 ChIP yes

Visel et al. 2009;

Gotea et al. 2010;

Blow et al. 2010

mouse Limb-p300 0.73 2.16 0.15 -2 36 36 35 2,209,017 ChIP yes

Visel et al. 2009;

Gotea et al. 2010;

Blow et al. 2010

mouse Midbrain-p300 0.49 1.97 0.18 -2 36.25 38 36 5,942,773 ChIP yes

Ho et al. 2009 mouse mESC-Brg-J1 0.86 1.25 0.49 -1 25 25 25 12,146,582 ChIP yes

Ho et al. 2009 mouse mESC-IgG 0.91 1.17 0.51 0 25 25 25 14,118,667 IgG no

Cuddapah et al.

2009
human CD4+-CTCF 0.88 31.05 2.29 2 24 24 24 2,942,119 ChIP yes

Cuddapah et al.

2009
human HeLa-CTCF 0.93 5.22 1.29 1 24 24 24 3,294,793 ChIP yes

Cuddapah et al.

2009
human Jurkat-CTCF 0.91 4.22 1.01 1 25 25 25 4,367,791 ChIP yes

Krebs et al. 2010 mouse mESC-LUZP1 0.62 16.78 4.02 2 36 36 36 7,021,192 ChIP yes

Krebs et al. 2010 mouse mESC-mock 0.37 16.17 3.94 2 36 36 36 7,446,009 IgG no

Corbo et al. 2010 mouse NRL-KO-Crx-Rep1 0.69 1.81 1.18 1 36 36 36 12,527,332 ChIP yes

Corbo et al. 2010 mouse NRL-KO-Crx-Rep2 0.8 1.8 1.24 1 36 36 36 10,488,445 ChIP yes

Corbo et al. 2010 mouse NRL-KO-IgG-Rep1 0.75 1.58 0.9 0 36 36 36 12,160,830 IgG no

Corbo et al. 2010 mouse NRL-KO-IgG-Rep2 0.69 2.43 1.51 2 36 36 36 11,005,528 IgG no

Corbo et al. 2010 mouse WT-Crx-Rep1 0.89 3.69 0.63 0 36 36 36 4,302,798 ChIP yes

Corbo et al. 2010 mouse WT-Crx-Rep2 0.9 4.07 0.89 0 36 36 36 4,308,655 ChIP yes

Corbo et al. 2010 mouse WT-IgG-Rep1 0.92 2.53 0.42 -1 36 36 36 3,707,696 IgG no

Ramagopalan et al.

2010
human GM10855-Input 0.94 1.16 0.27 -1 36 36 36 11,412,903 Input no

Ramagopalan et al.

2010
human GM10855-unstimulated-rep1 0.87 1.41 0.56 0 36 36 36 13,520,376 ChIP unknown

Ramagopalan et al.

2010
human GM10855-unstimulated-rep2 0.88 1.47 0.55 0 36 36 36 10,791,763 ChIP unknown

Ramagopalan et al.

2010
human GM10855-vitaminD-rep1 0.89 1.76 0.83 0 36 36 36 13,970,589 ChIP yes
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Ramagopalan et al.

2010
human GM10855-vitaminD-rep2 0.89 1.67 0.82 0 36 36 36 14,642,572 ChIP yes

Ramagopalan et al.

2010
human GM10861-Input 0.95 1.19 0.35 -1 36 36 36 11,404,257 Input no

Ramagopalan et al.

2010
human GM10861-unstimulated-rep1 0.93 1.39 0.56 0 36 36 36 10,157,583 ChIP unknown

Ramagopalan et al.

2010
human GM10861-unstimulated-rep2 0.93 1.52 0.67 0 36 36 36 7,922,208 ChIP unknown

Ramagopalan et al.

2010
human GM10861-vitaminD-rep1 0.92 1.88 0.95 0 36 36 36 10,649,722 ChIP yes

Ramagopalan et al.

2010
human GM10861-vitaminD-rep2 0.93 1.88 0.95 0 36 36 36 11,754,302 ChIP yes

Wei et al. 2010 mouse Th1-STAT4-KO-STAT4 0.84 2.05 1.25 1 36 36 36 9,339,036 ChIP no

Wei et al. 2010 mouse Th1-WT-STAT4 0.88 7.69 2.19 2 36 36 36 10,525,607 ChIP yes

Wei et al. 2010 mouse Th2-Normal-Rabbit-Serum 0.75 2.42 1.31 1 36 36 36 7,610,146 IgG no

Wei et al. 2010 mouse Th2-STAT6-KO-STAT6 0.89 2.38 1.37 1 36 36 36 9,734,600 ChIP no

Wei et al. 2010 mouse Th2-WT-STAT6 0.83 6.45 1.62 2 36 36 36 9,139,067 ChIP yes

Schnetz et al. 2010 mouse mES-CHD7 0.91 1.56 0.55 0 37 37 37 8,269,486 ChIP yes

Schnetz et al. 2010 mouse mES-p300 0.96 1.35 0.73 0 37 37 37 17,677,307 ChIP yes

GSE22303 mouse mES-B2-TBP 0.92 2.43 1.21 1 36 36 36 18,683,322 ChIP yes

GSE22303 mouse mES-B6-TBP 0.91 1.94 0.73 0 26 26 26 3,617,586 ChIP yes

Lin et al. 2010 mouse A12-E2A-6h-E47ER 0.93 3.41 0.61 0 36 36 36 2,776,323 ChIP yes

Lin et al. 2010 mouse E2AKO-E2A-1h-E47ER 0.68 9.12 1.13 1 36 36 36 5,948,823 ChIP yes

Lin et al. 2010 mouse E2AKO-E2A-6h-E47ER 0.96 4.34 0.59 0 36 36 36 2,196,108 ChIP yes

Lin et al. 2010 mouse EBFKO-E2A 0.92 1.72 0.53 0 36 36 36 9,159,853 ChIP yes

Lin et al. 2010 mouse Input2 0.93 1.15 0.11 -2 36 36 36 10,675,120 Input no

Lin et al. 2010 mouse RAG1KO-CTCF 0.91 15.22 2.31 2 36 36 36 4,804,275 ChIP yes

Lin et al. 2010 mouse RAG1KO-E2A 0.85 4.13 1.39 1 30 36 25 7,601,861 ChIP yes

Lin et al. 2010 mouse RAG1KO-EBF 0.81 10.08 1.23 1 36 36 36 2,935,481 ChIP yes

Lin et al. 2010 mouse RAG1KO-FOXO1-1 0.91 6.82 1.06 1 36 36 36 15,561,578 ChIP yes

Durant et al. 2010 mouse
Th17-Stat3fl-fl-FoxP3-GFP-

STAT3
0.81 2.61 1.36 1 36 36 36 12,871,479 ChIP yes

Heinz et al. 2010 mouse Bcell-input-ChIP-Seq 0.68 1.75 0.12 -2 36 36 36 11,410,688 Input no

Heinz et al. 2010 mouse Bcell-Oct2-ChIP-Seq 0.95 2.16 0.17 -2 36 36 36 2,296,228 ChIP yes

Heinz et al. 2010 mouse Bcell-PU.1-ChIP-Seq 0.92 5.56 4.62 2 36 36 36 8,207,220 ChIP yes

Heinz et al. 2010 mouse BirA-input-GW-ChIP-Seq 0.96 1.24 0.54 0 23 23 23 2,263,641 Input no

Heinz et al. 2010 mouse BLRP-LXRb-GW-ChIP-Seq 0.8 2.02 0.68 0 22.45 25 22 9,426,604 ChIP yes

Heinz et al. 2010 mouse
BMDM.LXRDKO-PU.1-ChIP-

Seq
0.97 9.26 2.72 2 23 23 23 2,410,527 ChIP yes

Heinz et al. 2010 mouse BMDM-PU.1-ChIP-Seq 0.93 10.78 1.97 2 36 36 36 9,617,221 ChIP yes

Heinz et al. 2010 mouse
E2AKO-PU.1-bHLH-ER-ChIP-

Seq
0.91 7.77 2.76 2 23 23 23 5,093,144 ChIP yes

Continued on next page

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE22484
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE22484
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE22484
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE22484
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE22484
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE22484
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE22484
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE22484
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE22484
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE22484
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE22484
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE22484
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE22104
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE22104
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE22104
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE22104
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE22104
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE22341
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE22341
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE22303
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE22303
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE21978
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE21978
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE21978
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE21978
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE21978
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE21978
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE21978
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE21978
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE21978
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE21669
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE21512
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE21512
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE21512
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE21512
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE21512
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE21512
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE21512
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE21512


398

Table 10.1 – Continued from previous page

Source

S
p

e
c
ie

s

Library

C
o
m

p
le

x
it

y

NSC RSC QC

A
v
e
.

R
e
a
d

L
e
n
g
th

M
a
x
.

R
e
a
d

L
e
n
g
th

M
in

.
R

e
a
d

L
e
n
g
th

Mapped

reads
Type

Should

exhibit

read

clustering

Heinz et al. 2010 mouse E2AKO-PU.1-ChIP-Seq 0.89 10.21 2.94 2 23 23 23 3,615,197 ChIP yes

Heinz et al. 2010 mouse
E2AKO-PU.1-E2A-ER-ChIP-

Seq
0.88 8.28 2.67 2 23 23 23 4,724,664 ChIP yes

Heinz et al. 2010 mouse EBFKO-PU.1-ChIP-Seq 0.94 11.94 2.4 2 23 23 23 3,058,714 ChIP yes

Heinz et al. 2010 mouse PU.1KO-CEBPb-ChIP-Seq 0.89 4.52 1.42 1 23 23 23 4,179,430 ChIP yes

Heinz et al. 2010 mouse PU.1KO-PU.1-ChIP-Seq 0.88 2.79 0.53 0 23 23 23 4,615,899 ChIP no

Heinz et al. 2010 mouse PUER-CEBPb-0h-ChIP-Seq 0.92 8.61 2.14 2 23 23 23 4,672,159 ChIP yes

Heinz et al. 2010 mouse PUER-CEBPb-1h-ChIP-Seq 0.92 9.02 2.1 2 23 23 23 3,790,612 ChIP yes

Heinz et al. 2010 mouse PUER-CEBPb-24h-ChIP-Seq 0.89 10.77 2.54 2 23 23 23 4,625,986 ChIP yes

Heinz et al. 2010 mouse PUER-CEBPb-48h-ChIP-Seq 0.9 8.09 1.95 2 23 23 23 5,022,074 ChIP yes

Heinz et al. 2010 mouse PUER-CEBPb-6h-ChIP-Seq 0.89 9.43 2.06 2 23 23 23 4,417,004 ChIP yes

Heinz et al. 2010 mouse PUER-PU.1-0h-ChIP-Seq 0.94 4.68 0.57 0 23 23 23 2,053,953 ChIP yes

Heinz et al. 2010 mouse PUER-PU.1-1h-ChIP-Seq 0.92 12.06 2.58 2 23 23 23 2,541,096 ChIP yes

Heinz et al. 2010 mouse PUER-PU.1-24h-ChIP-Seq 0.9 18.69 2.85 2 23 23 23 3,403,839 ChIP yes

Heinz et al. 2010 mouse PUER-PU.1-48h-ChIP-Seq 0.9 14.68 3.42 2 23 23 23 4,138,465 ChIP yes

Heinz et al. 2010 mouse PUER-PU.1-6h-ChIP-Seq 0.9 16.62 2.83 2 23 23 23 3,477,600 ChIP yes

Heinz et al. 2010 mouse RAG1KO-PU.1-ChIP-Seq 0.86 12.16 2.26 2 23 23 23 6,302,473 ChIP yes

Heinz et al. 2010 mouse ThioMac-CEBPa-ChIP-Seq 0.92 5.55 2.96 2 23 23 23 7,067,160 ChIP yes

Heinz et al. 2010 mouse ThioMac-input-ChIP-Seq 0.93 1.25 0.11 -2 23.67 25 22 5,491,097 Input no

Heinz et al. 2010 mouse ThioMac-PU.1-ChIP-Seq 0.97 5.1 3.4 2 23 23 23 5,289,667 ChIP yes

Steger et al. 2010 mouse 3T3-L1-0hr-CEBPb 0.51 5.34 1.6 2 36 36 36 11,295,935 ChIP yes

Steger et al. 2010 mouse 3T3-L1-0hr-Input 0.94 3.23 0.46 -1 36 36 36 5,129,801 Input no

Steger et al. 2010 mouse 3T3-L1-240hr-Input 0.95 3.48 0.55 0 36 36 36 5,019,654 Input no

Steger et al. 2010 mouse 3T3-L1-24hr-Input 0.81 6.84 1.26 1 36 36 36 4,731,402 Input no

Steger et al. 2010 mouse 3T3-L1-6hr-CEBPb 0.87 3.05 1.09 1 36 36 36 10,746,117 ChIP yes

Steger et al. 2010 mouse 3T3-L1-6hr-GR 0.86 1.79 0.75 0 36 36 36 10,761,593 ChIP yes

Steger et al. 2010 mouse 3T3-L1-6hr-Input 0.9 1.4 0.56 0 36 36 36 11,352,790 Input no

GSE21916 human H9-IgG 0.93 1.53 0.33 -1 26 26 26 4,499,095 IgG no

GSE21916 human H9-Oct4-replicate-2 0.97 1.97 0.83 0 36 36 36 4,556,649 ChIP yes

GSE21916 human H9-Oct4-technical-replicate-1 0.92 1.81 0.48 -1 26 26 26 4,187,685 ChIP yes

GSE21916 human H9-Oct4-technical-replicate-2 0.95 1.85 0.6 0 36 36 36 4,119,980 ChIP yes

Kassouf et al. 2010 mouse RER-SCL 0.72 1.94 0.91 0 36 36 36 5,208,895 ChIP no

Kassouf et al. 2010 mouse RER-SCL-no-AB 0.51 9.5 1.38 1 36 36 36 4,571,728 IgG no

Kassouf et al. 2010 mouse WT-no-AB 0.81 5.94 1.05 1 36 36 36 5,312,397 IgG no

Kassouf et al. 2010 mouse WT-SCL 0.68 2.77 1.4 1 36 36 36 4,154,252 ChIP yes

MacIsaac et al. 2010 mouse CEBPa-3T3-L1 0.93 2.43 0.75 0 35 35 35 4,326,509 ChIP yes

MacIsaac et al. 2010 mouse CEBPa-liver 0.9 14.08 2.03 2 35 35 35 4,595,713 ChIP yes

MacIsaac et al. 2010 mouse E2F4-liver 0.92 16.44 2.26 2 35 35 35 2,214,727 ChIP yes

MacIsaac et al. 2010 mouse FOXA1-liver 0.54 12.93 3.19 2 35 35 35 3,968,403 ChIP yes

MacIsaac et al. 2010 mouse FOXA2-liver 0.95 6.49 1.99 2 35 35 35 6,593,622 ChIP yes

MacIsaac et al. 2010 mouse p300-3T3-L1 0.96 1.74 0.77 0 35 35 35 3,575,940 ChIP yes
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MacIsaac et al. 2010 mouse p300-liver 0.95 6.6 2.79 2 35 35 35 4,718,264 ChIP yes

MacIsaac et al. 2010 mouse Sample-control-reads-3T3-L1 0.29 1.46 0.47 -1 35 35 35 2,767,084 Input no

MacIsaac et al. 2010 mouse Sample-control-reads-cerebellum 0.93 1.9 0.52 0 35 35 35 5,139,906 Input no

MacIsaac et al. 2010 mouse Sample-control-reads-liver 0.64 23.8 2.7 2 35 35 35 5,270,015 Input no

Vivar et al. 2010 human
U2OS-ERb-Doxy-

nonspecificAntibodyIgG-rep1
0.96 1.33 0.26 -1 26 26 26 2,576,564 IgG no

Vivar et al. 2010 human
U2OS-ERb-Doxy-

specificAntibody-rep1
0.95 2.8 0.7 0 26 26 26 2,749,749 ChIP yes

Vivar et al. 2010 human
U2OS-ERb-DoxyE2-

nonspecificAntibodyIgG-rep1
0.95 1.43 0.31 -1 26 26 26 2,880,960 IgG no

Vivar et al. 2010 human
U2OS-ERb-DoxyE2-

specificAntibody-rep1
0.95 6.1 1.13 1 26 26 26 2,638,244 ChIP yes

Fortschegger et al.

2010
human Input-DNA-Hs68+FBS 0.97 1.32 0.27 -1 40 40 40 8,279,525 Input no

Fortschegger et al.

2010
human Input-DNA-Hs68-FBS 0.97 1.34 0.3 -1 40 40 40 7,059,465 Input no

Fortschegger et al.

2010
human Normal-IgG-293T 0.94 1.21 0.22 -2 50 50 50 7,860,447 IgG no

Fortschegger et al.

2010
human Normal-IgG-HeLa 0.92 1.76 0.55 0 50 50 50 7,000,514 IgG no

Fortschegger et al.

2010
human PHF8-293T 0.96 1.71 0.71 0 50 50 50 7,015,757 ChIP yes

Fortschegger et al.

2010
human PHF8-HeLa 0.95 2.74 1.13 1 50 50 50 6,982,792 ChIP yes

Fortschegger et al.

2010
human PHF8-Hs68+FBS 0.94 1.89 0.69 0 40 40 40 7,339,329 ChIP yes

Fortschegger et al.

2010
human PHF8-Hs68-FBS 0.9 1.75 0.51 0 35 35 35 11,313,461 ChIP yes

GSE15844 mouse MEF-NFIC-KO-NFI 0.29 7.55 1.85 2 35 35 35 10,794,407 ChIP no

GSE15844 mouse MEF-WT-Input 0.74 1.42 0.28 -1 36 36 36 5,483,670 Input no

GSE15844 mouse MEF-WT-NFI 0.34 5.81 1.72 2 35 35 35 9,746,594 ChIP yes

Kim et al. 2010 mouse ChIP-CBP-ab2832-KCl-b1 0.88 2.46 0.88 0 33 33 33 1,742,367 ChIP yes

Kim et al. 2010 mouse ChIP-CBP-ab2832-KCl-b2 0.9 1.9 0.31 -1 33 33 33 1,350,494 ChIP yes

Kim et al. 2010 mouse ChIP-CBP-ab2832-un-b1 0.11 2.19 0.23 -2 33 33 33 13,062,901 ChIP yes

Kim et al. 2010 mouse ChIP-CBP-Millipore-KCl-b1 0.14 2.55 0.19 -2 33 33 33 21,475,816 ChIP yes

Kim et al. 2010 mouse ChIP-CBP-Millipore-un-b1 0.14 3.57 0.22 -2 33 33 33 12,767,854 ChIP yes

Kim et al. 2010 mouse ChIP-CREB-SC-KCl-b1 0.25 1.6 0.2 -2 33 33 33 12,606,497 ChIP yes

Kim et al. 2010 mouse ChIP-CREB-SC-KCl-b2 0.11 2.71 0.25 -1 33 33 33 14,186,880 ChIP yes

Kim et al. 2010 mouse ChIP-CREB-SC-un-b1 0.47 1.39 0.25 -2 33 33 33 11,723,416 ChIP yes

Kim et al. 2010 mouse ChIP-CREB-SC-un-b2 0.11 3.54 0.43 -1 33 33 33 11,668,187 ChIP yes

Kim et al. 2010 mouse ChIP-input-KCl-b1 0.22 2.19 0.19 -2 33 33 33 29,829,497 Input no

Kim et al. 2010 mouse ChIP-input-KCl-b2 0.55 1.29 0.3 -1 33 33 33 11,407,302 Input no

Kim et al. 2010 mouse ChIP-input-un-b1 0.57 1.86 0.16 -2 33 33 33 4,413,802 Input no
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Kim et al. 2010 mouse ChIP-input-un-b2 0.59 1.28 0.39 -1 33 33 33 2,034,854 Input no

Kim et al. 2010 mouse ChIP-Npas4-KCl-b1 0.3 3.33 1.38 1 33 33 33 6,262,184 ChIP yes

Kim et al. 2010 mouse ChIP-Npas4-KCl-b2 0.7 2.39 0.92 0 33 33 33 3,474,756 ChIP yes

Kim et al. 2010 mouse ChIP-Npas4-un-b1 0.39 1.84 0.21 -2 33 33 33 12,918,805 ChIP yes

Kim et al. 2010 mouse ChIP-SRF-SC-KCl-b1 0.88 3.77 0.28 -1 33 33 33 1,953,844 ChIP yes

Kim et al. 2010 mouse ChIP-SRF-SC-KCl-b2 0.86 2.72 0.46 -1 33 33 33 7,001,063 ChIP yes

Kim et al. 2010 mouse ChIP-SRF-SC-un-b1 0.89 2.58 0.47 -1 33 33 33 2,076,216 ChIP yes

Kim et al. 2010 mouse ChIP-SRF-SC-un-b2 0.87 2.2 0.98 0 33 33 33 8,797,223 ChIP yes

Lefterova et al. 2010 mouse Lefterova-ad-PPARg 0.85 2.18 0.73 0 36 36 36 5,258,157 ChIP yes

Lefterova et al. 2010 mouse Lefterova-mac-CEBPb 0.67 11.03 1.5 2 36 36 36 5,717,739 ChIP yes

Lefterova et al. 2010 mouse Lefterova-mac-PPARg-1 0.87 1.59 0.69 0 36 36 36 10,646,239 ChIP yes

Lefterova et al. 2010 mouse Lefterova-mac-PU.1 0.86 13.27 1.64 2 36 36 36 6,261,063 ChIP yes

Tallack et al. 2010 mouse KLF1-Input-2 0.96 9.63 0.58 0 48 48 48 10,405,126 Input no

Tallack et al. 2010 mouse KLF1-2 0.68 1.28 0.18 -2 33 33 33 10,757,339 ChIP yes

Tallack et al. 2010 mouse KLF1-3 0.55 1.39 0.47 -1 48 48 48 17,728,355 ChIP yes

Tallack et al. 2010 mouse KLF1-Input-3 0.65 1.23 0.4 -1 33 33 33 548,382 Input no

Rahl et al. 2010 mouse mES-Ctr9 0.96 1.37 0.97 0 26 26 26 5,468,214 ChIP yes

Rahl et al. 2010 mouse mES-NelfA 0.7 2.42 1.42 1 36 36 36 3,643,555 ChIP yes

Rahl et al. 2010 mouse mES-Spt5 0.95 1.59 0.94 0 26 26 26 5,595,215 ChIP yes

Ramos et al. 2010 human T98G-CBP-T0 0.94 1.55 0.31 -1 32 32 32 4,047,183 ChIP yes

Ramos et al. 2010 human T98G-CBP-T30-1 0.94 1.63 0.4 -1 32 32 32 4,885,700 ChIP yes

Ramos et al. 2010 human T98G-CBP-T30-2 0.84 1.75 2.14 2 32 32 32 5,034,834 ChIP yes

Ramos et al. 2010 human T98G-p300-T0 0.96 1.79 0.85 0 32 32 32 5,119,057 ChIP yes

Ramos et al. 2010 human T98G-p300-T30-1 0.97 2.22 1.19 1 32 32 32 5,191,684 ChIP yes

Ramos et al. 2010 human T98G-p300-T30-2 0.87 1.95 3.44 2 32 32 32 5,159,200 ChIP yes

Kunarso et al. 2010 human hESC-CTCF 0.92 15.2 1.62 2 37 37 37 10,828,759 ChIP yes

Kunarso et al. 2010 human hESC-NANOG 0.94 3.91 1.42 1 36.18 37 36 10,240,400 ChIP yes

Kunarso et al. 2010 human hESC-Nanog-and-CTCF-control 0.96 1.25 0.19 -2 37 37 37 8,641,430 Input no

Kunarso et al. 2010 human hESC-OCT4 0.98 1.94 0.42 -1 30.07 36 26 11,288,800 ChIP yes

Kunarso et al. 2010 human hESC-Oct4-control 0.95 1.26 0.4 -1 36 36 36 8,560,581 Input no

Johannes et al. 2010 human HeLa-BTAF 0.79 13.25 2.7 2 33 33 33 2,654,681 ChIP yes

Johannes et al. 2010 human HeLa-GAPDH 0.84 2.51 0.02 -2 33 33 33 953,719 IgG no

Hu et al. 2010 human MCF7-E2-ER 0.8 10.66 1.28 1 36 36 36 1,656,740 ChIP yes

Hu et al. 2010 human MCF7-ethl-ER 0.81 3.76 0.87 0 36 36 36 2,857,720 ChIP unknown

Heng et al. 2010 mouse mESC-HA-1 0.97 1.25 0.83 0 35 35 35 14,266,600 IgG no

Heng et al. 2010 mouse mESC-HA-Nr5a2-1 0.85 1.54 0.36 -1 35 35 35 9,395,231 ChIP yes

Chicas et al. 2010 human
IMR90-Growing-cells-pRb-

experiment-1-1
0.78 2.94 0.41 -1 36 36 36 6,181,869 ChIP yes

Chicas et al. 2010 human IMR90-Mock-1 0.85 2.18 0.13 -2 36 36 36 3,317,485 IgG no

Chicas et al. 2010 human IMR90-Quiescent-cells-p130 0.92 4.12 0.95 0 36 36 36 3,753,591 ChIP yes
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Chicas et al. 2010 human
IMR90-Quiescent-cells-pRb-

experiment-1-1
0.92 3.3 0.38 -1 36 36 36 1,441,212 ChIP yes

Chicas et al. 2010 human
IMR90-Quiescent-cells-pRb-

experiment-2
0.93 2.43 0.05 -2 36 36 36 4,608,677 ChIP yes

Chicas et al. 2010 human
IMR90-Quiescent-cells-Rb-

shRNA-p130
0.78 2.2 0.24 -2 36 36 36 5,348,557 ChIP yes

Chicas et al. 2010 human
IMR90-Quiescent-cells-Rb-

shRNA-Rb
0.85 2.42 0.38 -1 36 36 36 1,114,921 ChIP no

Chicas et al. 2010 human IMR90-Senescent-cells-p130 0.94 4.21 1.21 1 36 36 36 4,388,261 ChIP yes

Chicas et al. 2010 human
IMR90-Senescent-cells-pRb-

experiment-1-1
0.93 3.63 0.39 -1 36 36 36 3,867,162 ChIP yes

Chicas et al. 2010 human
IMR90-Senescent-cells-pRb-

experiment-2
0.91 2.29 0.22 -2 36 36 36 4,109,281 ChIP yes

Chicas et al. 2010 human
IMR90-Senescent-cells-Rb-

shRNA-p130
0.78 3.98 1.26 1 36 36 36 4,232,255 ChIP yes

Chicas et al. 2010 human
IMR90-Senescent-cells-Rb-

shRNA-pRb
0.89 2.02 0.23 -2 36 36 36 2,813,407 ChIP no

Martinez et al. 2010 mouse Input 0.51 2.26 2.59 2 36 36 36 14,617,059 Input no

Martinez et al. 2010 mouse RAP1-ko1-RAP1 0.09 20.55 2.72 2 36 36 36 11,542,127 ChIP no

Martinez et al. 2010 mouse RAP1-ko2-RAP1 0.18 21.54 3.88 2 36 36 36 7,585,528 ChIP no

Martinez et al. 2010 mouse WT-1-RAP1 0.26 11.02 2.45 2 36 36 36 11,249,746 ChIP yes

Martinez et al. 2010 mouse WT-2-RAP1 0.19 11.05 2.88 2 36 36 36 11,856,303 ChIP yes

Qi et al. 2010 human HeLa-PHF8 0.9 1.66 0.78 0 25 25 25 9,252,893 ChIP yes

Woodfield et al.

2010
human MCF7-IgG-control 0.97 1.38 0.63 0 40 40 40 8,158,903 IgG no

Woodfield et al.

2010
human MCF7-TFAP2C 0.93 7.1 1.74 2 40 40 40 8,188,674 ChIP yes

Kagey et al. 2010 mouse MEF-Med12-Rep1 0.85 1.58 0.46 -1 36 36 36 8,167,440 ChIP yes

Kagey et al. 2010 mouse MEF-Med1-Rep1 0.94 2.03 0.82 0 36 36 36 7,326,311 ChIP yes

Kagey et al. 2010 mouse MEF-Smc1-Rep1 0.62 6.04 2.96 2 36 36 36 9,601,525 ChIP yes

Kagey et al. 2010 mouse MEF-Smc1-Rep2 0.94 1.34 0.9 0 36 36 36 22,977,719 ChIP yes

Kagey et al. 2010 mouse mESC-CTCF-Rep1 0.94 7.28 1.29 1 36 36 36 3,966,359 ChIP yes

Kagey et al. 2010 mouse mESC-CTCF-Rep2 0.85 1.73 1.4 1 36 36 36 4,953,685 ChIP yes

Kagey et al. 2010 mouse mESC-Med12-051809-ChipSeq 0.84 7.16 1.9 2 36 36 36 22,763,608 ChIP yes

Kagey et al. 2010 mouse mESC-Med12-Rep2 0.63 1.8 1.12 1 36 36 36 12,861,074 ChIP yes

Kagey et al. 2010 mouse mESC-Med1-Rep1 0.92 2.27 1.68 2 36 36 36 18,346,720 ChIP yes

Kagey et al. 2010 mouse mESC-Med1-Rep2 0.94 1.73 1.04 1 36 36 36 18,725,724 ChIP yes

Kagey et al. 2010 mouse mESC-Nipbl-Rep1 0.26 1.33 0.54 0 36 36 36 6,241,538 ChIP yes

Kagey et al. 2010 mouse mESC-Nipbl-Rep2 0.96 1.54 0.99 0 36 36 36 12,668,428 ChIP yes

Kagey et al. 2010 mouse mESC-Smc1-Rep1 0.96 3.37 1.88 2 36 36 36 21,733,223 ChIP yes

Kagey et al. 2010 mouse mESC-Smc1-Rep2 0.95 3.29 1.57 2 36 36 36 4,936,893 ChIP yes

Kagey et al. 2010 mouse mESC-Smc3-Rep3 0.89 3.86 1.81 2 36 36 36 21,491,459 ChIP yes
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Kagey et al. 2010 mouse mESC-Smc3-Rep4 0.89 4.34 2.26 2 36 36 36 21,522,393 ChIP yes

Kagey et al. 2010 mouse mES-WCE 0.93 1.38 0.31 -1 36 36 36 3,669,758 Input no

Kouwenhoven et al.

2010
human Keratinocytes-p63-1 0.96 19.62 2.46 2 32 32 32 2,722,489 ChIP yes

Kouwenhoven et al.

2010
human Keratinocytes-p63-2 0.96 4.51 2.51 2 32 32 32 5,588,217 ChIP yes

Kouwenhoven et al.

2010
human Keratinocytes-p63-3 0.81 9.05 5.19 2 35 35 35 20,435,516 ChIP yes

Cao et al. 2010 human RD-Input 0.82 1.34 0.33 -1 40 40 40 6,587,573 Input no

Cao et al. 2010 human RD-pFM2-1 0.76 1.9 0.63 0 40 40 40 8,593,218 ChIP yes

Cao et al. 2010 human Rh4-Input-1 0.82 1.35 0.36 -1 38.7 40 36 20,270,400 Input no

Cao et al. 2010 human Rh4-pFM2-1 0.74 2.33 0.9 0 38.83 40 36 20,920,563 ChIP yes

Blow et al. 2010 mouse Heart-p300 0.85 1.77 0.16 -2 36 36 36 1,531,274 ChIP yes

Blow et al. 2010 mouse Midbrain-p300 0.87 1.34 0.21 -2 36 36 36 6,406,542 ChIP yes

Sehat et al. 2010 human DFB-IGF1R 0.9 1.56 0.13 -2 36 36 36 3,664,071 ChIP yes

Liu et al. 2010 human E2F1-HeLa 0.96 1.91 0.81 0 36 36 36 8,595,301 ChIP yes

Liu et al. 2010 human PHF8-HeLa-unsyn 0.97 2.21 0.84 0 36 36 36 3,841,047 ChIP yes

Liu et al. 2010 human SMC4-HeLa-M 0.62 2.43 0.65 0 36 36 36 9,809,944 ChIP yes

Tang et al. 2010 human K562-PMA-Egr1 0.84 1.62 0.21 -2 33 33 33 3,581,558 ChIP yes

Jung et al. 2010 mouse iHoxc9-Day5 0.97 1.35 0.79 0 36 36 36 10,149,860 ChIP yes

Jung et al. 2010 mouse WCE-Day5 0.94 1.37 0.82 0 36 36 36 15,043,390 Input no

Vermeulen et al.

2010
human BAP18-GFP-HeLa-rep1 0.8 2.1 1.6 2 35 35 35 11,153,198 ChIP yes

Vermeulen et al.

2010
human BAP18-GFP-HeLa-rep2 0.83 1.91 2.1 2 35 35 35 28,580,771 ChIP yes

Vermeulen et al.

2010
human GATAD1-GFP-HeLa-rep1 0.9 1.71 2.69 2 35 35 35 5,413,596 ChIP yes

Vermeulen et al.

2010
human GATAD1-GFP-HeLa-rep2 0.81 2.4 1.83 2 35 35 35 12,596,319 ChIP yes

Vermeulen et al.

2010
human LRWD1-GFP-HeLa 0.88 2.29 0.98 0 35 35 35 11,634,470 ChIP yes

Vermeulen et al.

2010
human N-PAC-GFP-HeLa-rep1 0.85 2.01 2.46 2 35 35 35 5,436,726 ChIP yes

Vermeulen et al.

2010
human N-PAC-GFP-HeLa-rep2 0.77 2.78 2.81 2 35 35 35 12,669,139 ChIP yes

Vermeulen et al.

2010
human PHF8-GFP-HeLa-rep1 0.88 1.7 2.13 2 35 35 35 4,896,779 ChIP yes

Vermeulen et al.

2010
human PHF8-GFP-HeLa-rep2 0.83 1.79 2.2 2 35 35 35 29,180,126 ChIP yes

Vermeulen et al.

2010
human Sgf29-GFP-HeLa-rep1 0.87 2.36 1.45 1 35 35 35 12,636,931 ChIP yes

Vermeulen et al.

2010
human Sgf29-GFP-HeLa-rep2 0.87 1.84 1.98 2 35 35 35 29,275,648 ChIP yes
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Vermeulen et al.

2010
human TRRAP-GFP-HeLa-rep1 0.74 3.43 3.94 2 35 35 35 7,851,229 ChIP yes

Vermeulen et al.

2010
human TRRAP-GFP-HeLa-rep2 0.87 1.71 1.76 2 35 35 35 29,410,330 ChIP yes

Vermeulen et al.

2010
human wt-negative-control-HeLa 0.87 1.88 1.09 1 35 35 35 10,851,096 Input no

Chi et al. 2010 human GIST48-ETV1 0.95 2.79 0.97 0 36 36 36 10,740,357 ChIP yes

Chi et al. 2010 human GIST48-Input 0.98 1.12 0.27 -1 36 36 36 15,177,140 Input no

Chia et al. 2010 human hESC-Input 0.98 1.48 0.82 0 35 35 35 17,097,337 Input no

Chia et al. 2010 human hESC-PRDM14 0.95 1.87 0.67 0 35 35 35 14,268,098 ChIP no

Palii et al. 2010 human Erythroid-TAL1 0.94 6.12 0.9 0 37 37 37 6,882,358 ChIP yes

Palii et al. 2010 human Jurkat-IgG 0.97 1.48 0.16 -2 37 37 37 4,760,148 IgG no

Palii et al. 2010 human Jurkat-TAL1 0.94 2.58 0.45 -1 37 37 37 6,151,678 ChIP yes

Lee et al. 2010 human GM06990-E2F4 0.95 1.99 0.5 0 36 36 36 2,845,819 ChIP yes

Lee et al. 2010 human GM06990-Input 0.98 1.09 0.1 -2 36 36 36 7,164,483 Input no

Law et al. 2010 human ATRX-Human-Erythroid 0.98 1.83 0.31 -1 36 36 36 1,481,778 ChIP yes

Law et al. 2010 human ATRX-Human-Erythroid-Input 0.86 1.69 0.44 -1 36 36 36 2,815,016 Input no

Law et al. 2010 mouse ATRX-Mouse-ES 0.86 1.52 0.39 -1 51 51 51 47,903,467 ChIP yes

Law et al. 2010 mouse ATRX-Mouse-ES-Input 0.46 1.61 2.14 2 51 51 51 24,366,842 Input no

Yao et al. 2010 human HeLa-Input 0.97 1.17 0.51 0 36 36 36 44,239,692 Input no

Yao et al. 2010 human HeLa-p68 0.88 1.39 0.53 0 36 36 36 29,417,892 ChIP yes

Verzi et al. 2010 human Caco2-differentiated-CDX2 0.86 3.41 1.53 2 40 40 40 12,916,083 ChIP yes

Verzi et al. 2010 human Caco2-differentiated-GATA6 0.86 2.75 0.73 0 40 40 40 14,079,635 ChIP unknown

Verzi et al. 2010 human Caco2-differentiated-HNF4A 0.9 6.15 1.42 1 40 40 40 5,599,576 ChIP yes

Verzi et al. 2010 human Caco2-Input 0.79 2.68 1.27 1 40 40 40 10,777,726 Input no

Verzi et al. 2010 human Caco2-proliferating-CDX2 0.87 3.04 1.24 1 40 40 40 11,527,010 ChIP unknown

Verzi et al. 2010 human Caco2-proliferating-GATA6 0.77 12.01 1.6 2 40 40 40 7,337,182 ChIP yes

Verzi et al. 2010 human Caco2-proliferating-HNF4A 0.76 6.64 1.55 2 40 40 40 9,186,141 ChIP yes

Barish et al. 2010 mouse macrophage-BCL6 0.73 3.1 1.36 1 42 42 42 14,741,775 ChIP yes

Barish et al. 2010 mouse macrophage-BCL6-LPS-1 0.59 2.47 1.38 1 36 36 36 12,161,935 ChIP unknown

Barish et al. 2010 mouse macrophage-BCL6-LPS-2 0.52 1.99 1.02 1 42 42 42 19,613,630 ChIP unknown

Barish et al. 2010 mouse macrophage-Bcl6-REP2 0.43 8.05 3.11 2 36 36 36 10,772,781 ChIP yes

Barish et al. 2010 mouse macrophage-IgG 0.59 3.32 1.14 1 36 36 36 11,046,455 IgG no

Barish et al. 2010 mouse macrophage-Input 0.96 1.33 0.5 -1 36 36 36 14,265,664 Input no

Barish et al. 2010 mouse macrophage-p65 0.85 3.3 2.23 2 42 42 42 13,878,454 ChIP no

Barish et al. 2010 mouse macrophage-p65-LPS-1 0.71 2.6 1.23 1 43 43 43 12,731,143 ChIP yes

Barish et al. 2010 mouse macrophage-p65-LPS-2 0.75 1.95 1.2 1 42 42 42 10,819,755 ChIP yes

Mahony et al. 2010 mouse HBG3-RAR-Day2+8hrsRA-1 0.67 1.6 0.6 0 26 26 26 16,947,890 ChIP yes

Mahony et al. 2010 mouse HBG3-RAR-Day2-1 0.7 1.87 0.76 0 26 26 26 19,693,750 ChIP yes

Mahony et al. 2010 mouse HBG3-WCE-Day2 0.92 1.52 0.15 -2 26 26 26 2,570,671 Input no

Mahony et al. 2010 mouse HBG3-WCE-Day3 0.94 1.44 0.2 -2 26 26 26 3,038,741 Input no
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Yu et al. 2010 human HPC-GABPa 0.73 7 1.7 2 24 24 24 3,036,253 ChIP yes

Yu et al. 2010 human HPC-IgG 0.45 15.8 2.15 2 25 25 25 2,762,252 IgG no

Rada-Iglesias et al.

2010
human ESC-BRG1 0.95 1.66 1.37 1 36 36 36 16,085,353 ChIP yes

Rada-Iglesias et al.

2010
human ESC-input 0.95 1.33 0.98 0 36 36 36 14,508,164 Input no

Rada-Iglesias et al.

2010
human ESC-p300 0.92 2.01 2.76 2 36 36 36 12,822,655 ChIP yes

Rada-Iglesias et al.

2010
human NEC-input 0.97 1.34 0.65 0 36 36 36 21,774,646 Input no

Rada-Iglesias et al.

2010
human NEC-p300 0.94 1.71 0.58 0 36 36 36 13,264,013 ChIP yes

Gu et al. 2010 human MCF7-control-ERa 0.79 1.57 0.24 -2 36 36 36 4,385,795 ChIP no

Gu et al. 2010 human MCF7-E2-ERa 0.8 1.81 0.28 -1 36 36 36 5,785,635 ChIP yes

Ma et al. 2010 mouse mESC-FLAG-HA 0.93 1.59 0.59 0 36 36 36 6,257,485 IgG no

Ma et al. 2010 mouse mESC-Input 0.9 1.36 1.23 1 36 36 36 8,480,128 Input no

Ma et al. 2010 mouse mESC-Prdm14 0.84 5.1 2.59 2 36 36 36 10,899,040 ChIP yes

Schlesinger et al.

2010
mouse HL1-SRF 0.93 1.53 1.12 1 36 36 36 5,086,170 ChIP yes

Li et al. 2010 mouse Lin–Gata2 0.85 1.89 0.88 0 25 25 25 7,512,398 ChIP yes

Li et al. 2010 mouse Lin–IgG 0.75 1.87 0.2 -2 25 25 25 3,211,969 IgG no

Li et al. 2010 mouse Lin–Ldb1 0.71 5.7 1.95 2 25 25 25 4,251,705 ChIP yes

Li et al. 2010 mouse Lin–Tal1 0.81 4.15 1.77 2 36 36 36 11,482,776 ChIP yes

Kong et al. 2010 human ECC1-E2-ERa 0.95 1.65 0.37 -1 31.26 36 26 7,178,094 ChIP yes

Kong et al. 2010 human ECC1-EtOH-ERa 0.94 1.35 0.21 -2 26 26 26 11,049,926 ChIP no

Kong et al. 2010 human ECC1-Input 0.98 1.19 0.19 -2 30.16 36 26 7,631,501 Input no

Kong et al. 2010 human Ishikawa-E2-ERa 0.97 1.42 0.41 -1 30.73 36 26 10,438,320 ChIP yes

Kong et al. 2010 human Ishikawa-EtOH-ERa 0.97 1.38 0.36 -1 30.55 36 26 10,175,702 ChIP no

Kong et al. 2010 human Ishikawa-Input 0.98 1.19 0.37 -1 26 26 26 21,437,974 Input no

Kong et al. 2010 human MCF7-E2-ERa 0.95 5.96 1.63 2 26 26 26 9,652,711 ChIP yes

Kong et al. 2010 human MCF7-EtOH-ERa 0.97 1.23 0.4 -1 33.21 36 26 14,488,769 ChIP no

Kong et al. 2010 human MCF7-Input 0.97 1.17 0.18 -2 26 26 26 8,379,328 Input no

Kong et al. 2010 human T47D-E2-ERa 0.97 2.84 1.13 1 26 26 26 10,608,916 ChIP yes

Kong et al. 2010 human T47D-EtOH-ERa 0.97 1.21 0.29 -1 33.66 36 26 13,430,557 ChIP no

Kong et al. 2010 human T47D-Input 0.96 1.18 0.19 -2 26 26 26 12,933,672 Input no

Yang et al. 2010 human MCF7-IgG 0.1 14.93 1.71 2 36 36 36 5,500,498 IgG no

Yang et al. 2010 human MCF7-TDRD3 0.34 3.12 1.25 1 36 36 36 27,147,620 ChIP yes

Fang et al. 2011 human LN229-IgG 0.6 2.01 1.53 2 40 40 40 455,630 IgG no

Fang et al. 2011 human LN229-Sox2 0.65 1.8 1.04 1 40 40 40 932,166 ChIP yes

van Heeringen et al.

2011
xaenopus TBP-ChIPSeq 0.83 N/A N/A N/A 32 32 32 6,569,902 ChIP yes

GSE26680 mouse mES-MCAF1 0.86 1.63 1.04 1 36 36 36 13,907,040 ChIP yes
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GSE26680 mouse mES-REST 0.86 2.61 1.01 1 26 26 26 4,159,486 ChIP yes

GSE26680 mouse mES-Ring1b 0.92 1.23 0.43 -1 26 26 26 3,785,138 ChIP yes

Teo et al. 2011 human
hESC-48h-endodiff-EOMES-XL-

eps1and2
0.74 4.08 1.67 2 36 36 36 33,687,700 ChIP yes

Teo et al. 2011 human hESC-Input-XL 0.98 1.37 0.44 -1 36 36 36 7,422,963 Input no

Joseph et al. 2011;

Kong et al. 2010
human MCF7-DMSO-cFos-1 0.93 1.31 0.43 -1 36 36 36 18,781,755 ChIP yes

Joseph et al. 2011;

Kong et al. 2010
human MCF7-DMSO-cJun-1 0.96 1.31 0.37 -1 36 36 36 14,827,454 ChIP yes

Joseph et al. 2011;

Kong et al. 2010
human MCF7-DMSO-FOXA1-1 0.95 1.51 0.63 0 36 36 36 14,414,733 ChIP yes

Joseph et al. 2011;

Kong et al. 2010
human MCF7-E2-cFos-1 0.95 1.48 0.68 0 31 31 31 12,684,762 ChIP yes

Joseph et al. 2011;

Kong et al. 2010
human MCF7-E2-cJun-1 0.95 1.31 0.4 -1 36 36 36 18,012,142 ChIP yes

Joseph et al. 2011;

Kong et al. 2010
human MCF7-E2-FOXA1-1 0.93 2.52 1.07 1 36 36 36 15,884,461 ChIP yes

Joseph et al. 2011;

Kong et al. 2010
human T47D-DMSO-FOXA1 0.94 5.13 1.78 2 36 36 36 14,981,282 ChIP yes

Joseph et al. 2011;

Kong et al. 2010
human T47D-E2-FOXA1-1 0.94 2.27 0.92 0 36 36 36 11,819,434 ChIP yes

Novershtern et al.

2011
human HSPC-Ikaros-rep1 0.74 2.04 0.36 -1 36 36 36 3,228,102 ChIP yes

Novershtern et al.

2011
human HSPC-Ikaros-rep2 0.78 1.98 0.31 -1 36 36 36 2,635,528 ChIP yes

Novershtern et al.

2011
human HSPC-MEIS1-rep1 0.46 1.85 0.34 -1 36 36 36 9,565,937 ChIP yes

Novershtern et al.

2011
human HSPC-MEIS1-rep2 0.29 1.84 0.36 -1 36 36 36 12,342,658 ChIP yes

Novershtern et al.

2011
human HSPC-MEIS1-rep3 0.46 1.78 0.34 -1 36 36 36 10,465,042 ChIP yes

Novershtern et al.

2011
human HSPC-Pu.1-rep1 0.6 3.44 1.05 1 36 36 36 4,940,474 ChIP yes

Novershtern et al.

2011
human HSPC-Pu.1-rep2 0.61 3.19 1.03 1 36 36 36 4,617,421 ChIP yes

Novershtern et al.

2011
human HSPC-TAL1-rep1 0.69 1.31 0.18 -2 36 36 36 8,788,837 ChIP yes

Novershtern et al.

2011
human HSPC-TAL1-rep2 0.72 1.36 0.19 -2 36 36 36 7,439,145 ChIP yes

Novershtern et al.

2011
human HSPC-WCE 0.95 1.23 0.24 -2 36 36 36 6,321,189 Input no

GSE23581 mouse mES-Acitvin-Input 0.93 1.44 0.56 0 35 35 35 9,674,331 Input no

GSE23581 mouse mES-Acitvin-pSmad2 0.81 1.98 1.31 1 35 35 35 11,730,560 ChIP yes
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GSE23581 mouse mES-DMSO-Input 0.93 1.51 0.69 0 35 35 35 10,750,428 Input no

GSE23581 mouse mES-DMSO-pSmad2 0.77 2.26 1.47 1 35 35 35 11,288,314 ChIP no

GSE23581 mouse mES-SP-Input 0.92 1.65 0.73 0 35 35 35 9,325,370 Input no

GSE23581 mouse mES-SP-pSmad2 0.8 2.16 1.08 1 35 35 35 9,079,108 ChIP no

GSE26136 mouse mES-Dpy-30 0.69 1.69 1.54 2 36 36 36 24,620,668 ChIP yes

Klisch et al. 2011 mouse Cerebella-Atoh1.control 0.95 2.28 0.97 0 35 35 35 10,310,101 Input no

Klisch et al. 2011 mouse Cerebella-Atoh1.rep1 0.89 7.47 1.86 2 35 35 35 2,649,698 ChIP yes

Klisch et al. 2011 mouse Cerebella-Atoh1.rep2 0.92 3.36 0.96 0 35 35 35 7,166,233 ChIP yes

Klisch et al. 2011 mouse Cerebella-IgG.s-5 0.69 2.33 1.44 1 36 36 36 8,514,915 IgG no

Yang et al. 2011 mouse WTTh17STAT3 0.73 4.58 1.63 2 25 25 25 28,501,100 ChIP yes

Yang et al. 2011 mouse WTTh17STAT5 0.58 6.08 1.65 2 25 25 25 30,799,471 ChIP yes

Ebert et al. 2011;

McManus et al.

2011

mouse DP-Tcell-CTCF 0.35 5.94 5.08 2 36 36 36 13,326,337 ChIP yes

Ebert et al. 2011;

McManus et al.

2011

mouse Mature-Bcell-CTCF 0.66 4.24 6.97 2 36 36 36 14,505,107 ChIP yes

Ebert et al. 2011;

McManus et al.

2011

mouse Pro-Bcell-Rad21 0.84 6.82 3.35 2 36 36 36 25,074,201 ChIP yes

Ebert et al. 2011;

McManus et al.

2011

mouse Pro-Bcell-Rag2KO-CTCF 0.62 4.52 3.98 2 36 36 36 15,641,228 ChIP yes

Zhao et al. 2011 mouse Myb-activated-B1T1 0.81 3.23 0.98 0 36 36 36 7,467,313 ChIP yes

Zhao et al. 2011 mouse Myb-activated-B1T2 0.83 3.33 0.88 0 36 36 36 5,454,019 ChIP yes

Zhao et al. 2011 mouse Myb-activated-B2 0.86 3.03 1.07 1 36 36 36 7,331,382 ChIP yes

Zhao et al. 2011 mouse Myb-activated-IgG 0.73 1.98 0.58 0 36 36 36 6,724,529 IgG no

Zhao et al. 2011 mouse Myb-inactivated-B1 0.83 1.79 0.5 -1 36 36 36 5,729,128 ChIP no

Zhao et al. 2011 mouse Myb-inactivated-B2 0.87 1.79 0.51 0 36 36 36 5,734,826 ChIP no

Zhao et al. 2011 mouse Myb-inactivated-IgG 0.94 4.16 0.34 -1 36 36 36 766,809 IgG no

Rey et al. 2011 mouse BMAL1-ZT02-rep1 0.8 2.4 1.15 1 37 37 37 9,023,818 ChIP unknown

Rey et al. 2011 mouse BMAL1-ZT02-rep2 0.74 1.76 1.5 1 37 37 37 24,294,126 ChIP unknown

Rey et al. 2011 mouse BMAL1-ZT06-rep1 0.66 2.1 1.71 2 37 37 37 20,808,528 ChIP unknown

Rey et al. 2011 mouse BMAL1-ZT06-rep2 0.25 5.49 1.89 2 37 37 37 20,234,777 ChIP unknown

Rey et al. 2011 mouse BMAL1-ZT10-rep1 0.9 1.75 0.92 0 37 37 37 9,220,495 ChIP unknown

Rey et al. 2011 mouse BMAL1-ZT10-rep2 0.84 1.74 1.53 2 37 37 37 22,892,744 ChIP unknown

Rey et al. 2011 mouse BMAL1-ZT14-rep1 0.88 1.61 0.84 0 37 37 37 12,447,404 ChIP unknown

Rey et al. 2011 mouse BMAL1-ZT14-rep2 0.64 2.91 2.58 2 37 37 37 20,961,930 ChIP unknown

Rey et al. 2011 mouse BMAL1-ZT18-rep1 0.7 2.03 1.77 2 37 37 37 22,079,073 ChIP unknown

Rey et al. 2011 mouse BMAL1-ZT18-rep2 0.21 4.51 1.94 2 37 37 37 30,803,372 ChIP unknown

Rey et al. 2011 mouse BMAL1-ZT22-rep1 0.67 2.77 1.33 1 37 37 37 10,194,650 ChIP unknown

Rey et al. 2011 mouse BMAL1-ZT22-rep2 0.88 1.4 0.85 0 37 37 37 21,473,568 ChIP unknown
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Rey et al. 2011 mouse Input-DNA 0.84 1.76 1.44 1 37 37 37 21,940,254 Input no

Koeppel et al. 2011 human Saos-2-ChIP-Input-control 0.96 1.2 0.44 -1 35 35 35 15,967,510 Input no

Koeppel et al. 2011 human Saos-2-p53-replicate1-1 0.86 2.41 1 1 35 35 35 14,932,313 ChIP yes

Koeppel et al. 2011 human Saos-2-p53-replicate2 0.95 2.26 1.68 2 35 35 35 14,969,104 ChIP yes

Koeppel et al. 2011 human Saos-2-TAp73alpha-replicate1 0.84 2.57 2.6 2 35 35 35 14,905,593 ChIP yes

Koeppel et al. 2011 human Saos-2-TAp73alpha-replicate2 0.93 2.05 1.34 1 35 35 35 14,626,232 ChIP yes

Koeppel et al. 2011 human Saos-2-TAp73beta-replicate1 0.96 5.1 4.12 2 32 32 32 4,927,558 ChIP yes

Koeppel et al. 2011 human Saos-2-TAp73beta-replicate2 0.94 6.37 2.61 2 35 35 35 16,272,496 ChIP yes

He et al. 2011 mouse HL1-BirA-control-1 0.3 8.52 9.14 2 40 40 40 15,388,943 IgG no

He et al. 2011 mouse HL1-Gata4-1 0.57 2.11 2.92 2 37.77 40 35 21,352,298 ChIP yes

He et al. 2011 mouse HL1-Input-control 0.92 1.94 1.84 2 36 36 36 13,770,246 Input no

He et al. 2011 mouse HL1-Mef2a-1 0.92 1.34 1 1 38.18 40 35 20,160,274 ChIP yes

He et al. 2011 mouse HL1-Nkx2-5-1 0.91 1.69 3.09 2 38.59 40 36 24,181,076 ChIP yes

He et al. 2011 mouse HL1-P300 0.9 1.83 1.28 1 36 36 36 15,446,431 ChIP yes

He et al. 2011 mouse HL1-Srf-1 0.8 1.81 2.37 2 38.29 40 36 25,881,877 ChIP yes

He et al. 2011 mouse HL1-Tbx5-1 0.9 2.1 2.13 2 37.91 40 36 11,074,980 ChIP yes

Bugge et al. 2011 mouse Liver-HDAC3-ZT10 0.49 2.56 1.67 2 36.93 38 36 38,211,882 ChIP unknown

Bugge et al. 2011 mouse Liver-HDAC3-ZT22 0.76 1.34 1.09 1 39.03 40 38 38,822,996 ChIP unknown

Bugge et al. 2011 mouse Liver-input-Mnase-ZT10 0.81 4.86 1.96 2 38 38 38 20,627,184 Input no

Bugge et al. 2011 mouse Liver-input-Mnase-ZT22 0.8 4.49 1.52 2 38 38 38 18,828,586 Input no

Bugge et al. 2011 mouse Liver-input-ZT10 0.58 1.35 1.13 1 40 40 40 18,254,032 Input no

Bugge et al. 2011 mouse Liver-input-ZT22 0.64 2.1 2.06 2 40 40 40 14,072,057 Input no

Bugge et al. 2011 mouse Liver-NCoR-ZT10 0.72 2.5 1.24 1 38 38 38 10,955,647 ChIP unknown

Bugge et al. 2011 mouse Liver-NCoR-ZT22 0.8 1.4 0.86 0 38 38 38 18,218,400 ChIP unknown

Bugge et al. 2011 mouse Liver-Rev-erba-ZT10 0.54 3.5 1.52 2 36 36 36 23,266,910 ChIP unknown

Bugge et al. 2011 mouse Liver-Rev-erba-ZT22 0.38 1.8 0.87 0 36 36 36 26,701,376 ChIP unknown

Siersbæk et al. 2011 mouse CEBPbeta-2-hours 0.86 4.2 4.51 2 36 36 36 13,391,765 ChIP yes

Siersbæk et al. 2011 mouse CEBPbeta-4-hours 0.82 3.94 5.44 2 36 36 36 14,184,719 ChIP yes

Siersbæk et al. 2011 mouse CEBPbeta-day-0 0.69 4.74 5.95 2 36 36 36 13,823,228 ChIP yes

Siersbæk et al. 2011 mouse CEBPbeta-day-2 0.77 3.59 2.97 2 36 36 36 11,535,365 ChIP yes

Siersbæk et al. 2011 mouse CEBPdelta-4-hours 0.63 6.24 3.44 2 40 40 40 11,803,122 ChIP yes

Siersbæk et al. 2011 mouse CEBPdelta-day-0 0.59 5.05 4.73 2 40 40 40 12,036,027 ChIP yes

Siersbæk et al. 2011 mouse GR-4-hours 0.41 3.12 1.97 2 24 24 24 9,694,597 ChIP yes

Siersbæk et al. 2011 mouse Input 0.92 1.27 0.71 0 36 36 36 12,904,842 Input no

Siersbæk et al. 2011 mouse PPARgamma-day-2 0.29 2.31 0.96 0 40 40 40 13,429,961 ChIP yes

Siersbæk et al. 2011 mouse PPARgamma-day-6 0.3 2.28 1.64 2 40 40 40 14,620,856 ChIP yes

Siersbæk et al. 2011 mouse RXR-4-hours 0.7 3.12 2.85 2 40 40 40 12,219,467 ChIP yes

Siersbæk et al. 2011 mouse Stat5a-4-hours 0.62 4.33 5.62 2 36 36 36 13,644,334 ChIP yes

Smeenk et al. 2011 human U2OS-p53-ActD 0.97 5.72 1.81 2 32 32 32 6,940,755 ChIP yes

Smeenk et al. 2011 human U2OS-p53-Eto 0.97 4.28 1.27 1 32 32 32 7,272,634 ChIP yes

Smeenk et al. 2011 human U2OS-p53-pS15-ActD 0.96 1.74 0.54 0 32 32 32 4,742,221 ChIP yes
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Smeenk et al. 2011 human U2OS-p53-pS15-Eto 0.94 1.8 0.66 0 32 32 32 6,590,995 ChIP yes

Smeenk et al. 2011 human U2OS-p53-pS46-ActD 0.92 1.63 0.29 -1 32 32 32 5,408,031 ChIP yes

Smeenk et al. 2011 human U2OS-p53-pS46-Eto 0.94 1.84 0.47 -1 32 32 32 5,748,594 ChIP yes

Ceol et al. 2011 human WM262-MCAF1 0.45 3.9 1.5 1 36 36 36 13,346,938 ChIP yes

Ceol et al. 2011 human WM262-SetDB1 0.54 1.49 0.62 0 36 36 36 5,307,748 ChIP yes

Ceol et al. 2011 human Wm451-lu-SetDB1 0.39 1.39 0.67 0 36 36 36 6,295,121 ChIP yes

Wu et al. 2011a; Wu

et al. 2011b
mouse mES-IgG-exp1-no-KD 0.67 1.62 1.07 1 25 25 25 23,036,303 IgG no

Wu et al. 2011a; Wu

et al. 2011b
mouse mES-IgG-exp2-mock-KD 0.52 2.04 1.4 1 36 36 36 8,283,677 IgG no

Wu et al. 2011a; Wu

et al. 2011b
mouse mES-Tet1-exp1-no-KD 0.91 1.33 1.25 1 25 25 25 28,536,436 ChIP yes

Wu et al. 2011a; Wu

et al. 2011b
mouse mES-Tet1-exp2-mock-KD 0.89 1.54 1 0 36 36 36 9,521,384 ChIP yes

Wu et al. 2011a; Wu

et al. 2011b
mouse mES-Tet1-exp3-Tet1-KD 0.9 1.33 1.06 1 25 25 25 28,297,858 ChIP no

Wu et al. 2011a; Wu

et al. 2011b
mouse mES-Tet1-exp4-Tet1-KD 0.56 1.71 0.5 0 25 25 25 4,286,921 ChIP no

Horiuchi et al. 2011 mouse Th1-1-Input 0.84 1.4 0.36 -1 36 36 36 5,981,126 Input no

Horiuchi et al. 2011 mouse Th1-2-Input 0.88 2.25 1.22 1 36 36 36 4,609,331 Input no

Horiuchi et al. 2011 mouse Th1-GATA3 0.94 1.81 0.62 0 36 36 36 7,219,267 ChIP no

Horiuchi et al. 2011 mouse Th1-IgG 0.78 2.37 1.02 1 36 36 36 11,136,690 IgG no

Horiuchi et al. 2011 mouse Th2-1-Input 0.81 1.58 0.42 -1 36 36 36 5,428,949 Input no

Horiuchi et al. 2011 mouse Th2-2-Input 0.88 2.28 1.33 1 36 36 36 4,095,787 Input no

Horiuchi et al. 2011 mouse Th2-GATA3 0.91 1.49 0.41 -1 36 36 36 6,332,390 ChIP yes

Horiuchi et al. 2011 mouse Th2-IgG 0.77 1.26 0.25 -2 36 36 36 11,532,524 IgG no

Soccio et al. 2011 human
Human-Adipocytes-Input-rep1-

GAII
0.38 1.43 0.56 0 38 38 38 23,331,240 Input no

Soccio et al. 2011 human
Human-Adipocytes-PPARg-

rep1-GAII
0.21 2.69 0.65 0 38 38 38 17,934,158 ChIP yes

Soccio et al. 2011 human
Human-Adipocytes-PPARg-

rep2-GAII
0.71 1.95 0.56 0 40 40 40 19,418,441 ChIP yes

Soccio et al. 2011 human
Human-Liver-FOXA2-rep1-GAI-

1
0.89 2.46 0.26 -1 32 32 32 3,597,158 ChIP yes

Soccio et al. 2011 human Human-Liver-FOXA2-rep1-GAII 0.87 1.84 0.29 -1 36 36 36 6,591,761 ChIP yes

Soccio et al. 2011 human
Human-Liver-FOXA2-rep2-GAI-

1
0.89 2.41 0.26 -1 32 32 32 3,559,308 ChIP yes

Soccio et al. 2011 human Human-Liver-FOXA2-rep2-GAII 0.8 2.73 0.44 -1 36 36 36 6,415,023 ChIP yes

Soccio et al. 2011 human Human-Liver-Input-rep1-GAI 0.98 1.57 0.13 -2 36 36 36 4,853,927 Input no

Soccio et al. 2011 human Human-Liver-Input-rep1-GAII 0.96 1.27 0.11 -2 32 32 32 2,775,576 Input no

Soccio et al. 2011 human Human-Liver-Input-rep2-GAI 0.96 1.49 0.11 -2 32 32 32 2,636,496 Input no

Soccio et al. 2011 mouse
Mouse-Adipocytes-PPARg-rep2-

GAII
0.68 1.69 0.91 0 36 36 36 16,907,011 ChIP yes
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Soccio et al. 2011 mouse Mouse-Liver-FOXA2-rep1-GAI 0.87 3.47 0.35 -1 36 36 36 2,288,906 ChIP yes

Soccio et al. 2011 mouse Mouse-Liver-FOXA2-rep2-GAI 0.77 4.67 0.6 0 36 36 36 2,986,172 ChIP yes

Soccio et al. 2011 mouse Mouse-Liver-FOXA2-rep3-GAI 0.56 3.79 0.46 -1 36 36 36 7,770,167 ChIP yes

Soccio et al. 2011 mouse Mouse-Liver-FOXA2-rep3-GAII 0.81 3.35 0.83 0 36 36 36 2,686,815 ChIP yes

Soccio et al. 2011 mouse Mouse-Liver-FOXA2-rep4-GAI 0.46 3.39 0.32 -1 36 36 36 7,311,631 ChIP yes

Soccio et al. 2011 mouse Mouse-Liver-FOXA2-rep4-GAII 0.84 5.04 1.06 1 36 36 36 1,701,117 ChIP yes

Soccio et al. 2011 mouse Mouse-Liver-Input-rep1-GAI 0.91 2.15 0.32 -1 36 36 36 3,658,469 Input no

Soccio et al. 2011 mouse Mouse-Liver-Input-rep2-GAI 0.91 2.34 0.4 -1 36 36 36 3,808,896 Input no

Soccio et al. 2011 mouse Mouse-Liver-Input-rep3-GAI 0.89 2.36 0.4 -1 36 36 36 3,849,533 Input no

Ang et al. 2011 mouse CCE-mES-Input 0.94 1.18 0.37 -1 36 36 36 20,085,978 Input no

Ang et al. 2011 mouse CCE-mES-Negative 0.78 4.01 1.06 1 36 36 36 5,894,488 Input no

Ang et al. 2011 mouse CCE-mES-Oct4 0.97 1.58 0.55 0 36 36 36 4,368,039 ChIP yes

Ang et al. 2011 mouse CCE-mES-Rbbp5 0.85 1.1 0.14 -2 36 36 36 20,687,485 ChIP yes

Ang et al. 2011 mouse CCE-mES-Wdr5 0.39 2.95 1.05 1 36 36 36 18,192,088 ChIP yes

Ang et al. 2011 mouse CCE-mES-WDR5-FL 0.93 2.09 0.89 0 36 36 36 9,435,450 ChIP yes

Verzi et al. 2011 mouse Jejunum-villus-cells-Cdx2 0.87 3.18 1.4 1 40 40 40 5,335,016 ChIP yes

Verzi et al. 2011 mouse Jejunum-villus-cells-Input 0.91 1.92 0.76 0 40 40 40 5,579,736 Input no

Wang et al. 2011 human LNCaP-AR-dht-siCTRL 0.94 1.31 0.3 -1 25 25 25 12,537,593 ChIP yes

Wang et al. 2011 human LNCaP-AR-dht-siFoxA1 0.96 2.25 1.64 2 25 25 25 7,690,074 ChIP unknown

Wang et al. 2011 human LNCaP-FoxA1-dht-siCTRL 0.95 5.46 5.19 2 22 22 22 7,796,027 ChIP yes

Wang et al. 2011 human LNCaP-FoxA1-vehicle-siCTRL 0.95 3.88 3 2 22 22 22 7,780,805 ChIP yes

Wang et al. 2011 human LNCaP-input-dht-1 0.98 1.48 0.58 0 36 36 36 4,211,736 Input no

Wang et al. 2011 human LNCaP-MED12-dht-siCTRL 0.98 1.53 0.45 -1 36 36 36 4,305,257 ChIP yes

Wang et al. 2011 human LNCaP-MED12-dht-siFoxA1 0.96 1.55 0.46 -1 28 28 28 17,506,375 ChIP yes

Wang et al. 2011 human LNCaP-p300-dht-siCTRL 0.98 1.59 0.51 0 36 36 36 3,133,925 ChIP yes

Wang et al. 2011 human LNCaP-p300-dht-siFoxA1 0.98 1.62 0.53 0 36 36 36 3,120,380 ChIP yes

Nitzsche et al. 2011 mouse mESC-CTCF-GFP 0.95 2.74 2.78 2 35 35 35 9,433,929 ChIP yes

Nitzsche et al. 2011 mouse mESC-IgG 0.94 1.92 0.8 0 35 35 35 9,008,251 IgG no

Nitzsche et al. 2011 mouse EB-Rad21-GFP 0.93 2.51 1.93 2 35 35 35 9,039,705 ChIP yes

Nitzsche et al. 2011 mouse EB-Rad21-GFP-IgG 0.91 2.25 1.19 1 35 35 35 8,488,336 IgG no

Nitzsche et al. 2011 mouse mESC-Rad21-GFP 0.92 2.38 2.86 2 35 35 35 20,118,696 ChIP yes

Nitzsche et al. 2011 mouse mESC-Rad21-GFP-IgG 0.91 2.12 1.86 2 35 35 35 18,171,398 IgG no

Kim et al. 2011 human Endoderm-FOXH1-pool 0.95 6.88 1.72 2 36 36 36 11,630,871 ChIP yes

Kim et al. 2011 human Endoderm-Input 0.97 1.45 0.69 0 36 36 36 16,775,681 Input no

Kim et al. 2011 human Endoderm-SMAD2-3-A-pool 0.98 1.69 0.71 0 36 36 36 10,591,855 ChIP yes

Kim et al. 2011 human Endoderm-SMAD2-3-B-rep1 0.98 2.65 1.02 1 36 36 36 6,467,438 ChIP yes

Kim et al. 2011 human Endoderm-SMAD3-rep1 0.98 1.86 0.63 0 36 36 36 6,664,422 ChIP yes

Kim et al. 2011 human Endoderm-SMAD4-rep1 0.98 2.4 0.98 0 36 36 36 6,664,039 ChIP yes

Kim et al. 2011 human hESC-FOXH1-pool-1 0.97 3.21 1.37 1 36 36 36 11,570,426 ChIP yes

Kim et al. 2011 human hESC-Input-1 0.65 1.53 0.51 0 36 36 36 30,699,298 Input no

Kim et al. 2011 human hESC-SMAD2-3-A-pool 0.98 1.88 0.9 0 36 36 36 11,364,210 ChIP yes

Continued on next page

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE25836
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE25836
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE25836
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE25836
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE25836
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE25836
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE25836
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE25836
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE25836
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE22934
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE22934
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE22934
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE22934
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE22934
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE22934
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE24633
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE24633
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE27823
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE27823
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE27823
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE27823
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE27823
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE27823
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE27823
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE27823
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE27823
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE25777
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE25777
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE24029
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE24029
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE24029
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE24029
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE29422
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE29422
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE29422
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE29422
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE29422
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE29422
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE29422
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE29422
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE29422


410

Table 10.1 – Continued from previous page

Source

S
p

e
c
ie

s

Library

C
o
m

p
le

x
it

y

NSC RSC QC

A
v
e
.

R
e
a
d

L
e
n
g
th

M
a
x
.

R
e
a
d

L
e
n
g
th

M
in

.
R

e
a
d

L
e
n
g
th

Mapped

reads
Type

Should

exhibit

read

clustering

Kim et al. 2011 human hESC-SMAD2-3-B-rep1 0.97 2.3 0.93 0 36 36 36 9,667,298 ChIP yes

Kim et al. 2011 human hESC-SMAD3-rep1 0.98 1.78 0.81 0 36 36 36 7,743,314 ChIP yes

Kim et al. 2011 human hESC-SMAD4-rep1 0.96 1.89 0.75 0 36 36 36 10,007,703 ChIP yes

Lo et al. 2011 human Adipocytes-CEBPa 0.4 15.56 0.55 0 35 35 35 1,285,131 ChIP yes

Lo et al. 2011 human Adipocytes-E2F4 0.89 13.68 0.2 -2 35 35 35 64,667 ChIP yes

Lo et al. 2011 human Adipocytes-HSF1 0.74 6.03 0.05 -2 35 35 35 177,695 ChIP yes

Lo et al. 2011 human Adipocytes-IgG 0.71 21.81 0.12 -2 35 35 35 282,753 IgG no

Tijssen et al. 2011 human Megakaryocytes-FLI1 0.95 2.17 0.9 0 54 54 54 12,154,848 ChIP yes

Tijssen et al. 2011 human Megakaryocytes-GATA1 0.92 2.75 1.05 1 37 37 37 12,848,211 ChIP yes

Tijssen et al. 2011 human Megakaryocytes-GATA2 0.95 2.3 0.83 0 54 54 54 8,984,141 ChIP yes

Tijssen et al. 2011 human Megakaryocytes-rIgG 0.68 2.11 0.89 0 37 37 37 13,241,658 IgG no

Tijssen et al. 2011 human Megakaryocytes-RUNX1 0.97 8.42 2.6 2 54 54 54 10,822,021 ChIP yes

Tijssen et al. 2011 human Megakaryocytes-SCL 0.96 1.34 0.26 -1 54 54 54 11,782,604 ChIP yes

Tan et al. 2011 human MCF7-E2-AP2g 0.94 3.36 1.94 2 36 36 36 13,328,869 ChIP yes

Tan et al. 2011 human MCF7-E2-FoxA1 0.93 6.24 2.32 2 36 36 36 14,308,936 ChIP yes

Tan et al. 2011 human MCF7-EtOH-AP2g 0.95 3.31 2.03 2 36 36 36 13,306,339 ChIP yes

Tan et al. 2011 human MCF7-EtOH-FoxA1 0.92 6.76 2.13 2 36 36 36 17,586,631 ChIP yes

Handoko et al. 2011 mouse E14-mES-CTCF 0.8 26.13 2.04 2 37 37 37 14,006,006 ChIP yes

Handoko et al. 2011 mouse E14-mES-Input 0.96 1.17 0.18 -2 37 37 37 9,567,449 Input no

Handoko et al. 2011 mouse E14-mES-LaminB 0.89 1.45 0.8 0 36 36 36 15,336,482 ChIP yes

Handoko et al. 2011 mouse E14-mES-p300 0.96 1.35 0.73 0 37 37 37 17,677,307 ChIP yes

Hu et al. 2011 human CD34-WT-Brg1-1 0.9 2 0.77 0 25 25 25 6,821,309 ChIP yes

Hu et al. 2011 human CD34-WT-CTCF 0.93 2.76 0.96 0 25 25 25 6,413,538 ChIP yes

Hu et al. 2011 human CD34-WT-input 0.94 1.85 0.44 -1 25 25 25 3,838,343 Input no

Hu et al. 2011 human CD34-WT-TAL1 0.87 1.69 0.23 -2 25 25 25 3,089,084 ChIP yes

Hu et al. 2011 human CD36-shBrg1-CTCF 0.9 12.03 2.57 2 24.63 25 24 10,427,559 ChIP yes

Hu et al. 2011 human CD36-shbrg1-GATA1 0.92 7.21 1.78 2 32.67 35 25 10,380,913 ChIP yes

Hu et al. 2011 human CD36-shBrg1-input 0.8 1.34 0.46 -1 25 25 25 8,880,654 Input no

Hu et al. 2011 human CD36-shbrg1-TAL1 0.97 10.44 1.8 2 25 25 25 10,119,729 ChIP yes

Hu et al. 2011 human CD36-shLuc-CTCF 0.81 12.76 2.53 2 25 25 25 9,434,898 ChIP yes

Hu et al. 2011 human CD36-shLuc-GATA1 0.89 6.8 1.84 2 25 25 25 13,602,919 ChIP yes

Hu et al. 2011 human CD36-shLuc-input 0.62 1.36 0.46 -1 25 25 25 10,984,175 Input no

Hu et al. 2011 human CD36-shLuc-TAL1 0.97 12.67 2 2 25 25 25 10,455,880 ChIP yes

Hu et al. 2011 human CD36-WT-Brg1-1 0.85 1.66 0.56 0 25 25 25 13,673,639 ChIP yes

Hu et al. 2011 human CD36-WT-input-1 0.8 2.53 1.05 1 25 25 25 10,309,351 Input no

Zhao et al. 2011 human IB4-EBNA2-rep1 0.94 1.91 0.3 -1 36 36 36 5,803,658 ChIP yes

Zhao et al. 2011 human IB4-EBNA2-rep2 0.95 2.87 1.03 1 40 40 40 5,536,068 ChIP yes

Zhao et al. 2011 human IB4-Input-rep1 0.98 1.38 0.3 -1 40 40 40 4,144,311 Input no

Zhao et al. 2011 human IB4-Input-rep2 0.96 1.27 0.3 -1 40 40 40 10,404,527 Input no

Zhao et al. 2011 human IB4-RBPJ-rep1 0.98 2.48 0.6 0 36 36 36 2,919,539 ChIP yes

Zhao et al. 2011 human IB4-RBPJ-rep2 0.93 3.03 1.26 1 40 40 40 7,475,552 ChIP yes
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Rao et al. 2011 human HeLaB2-GR-DMSO-GRKD 0.39 8.06 6.32 2 35 35 35 25,313,813 ChIP no

Rao et al. 2011 human HeLaB2-GR-DMSO-p65KD 0.96 4.84 4.97 2 35 35 35 12,286,932 ChIP unknown

Rao et al. 2011 human HeLaB2-GR-DMSO-WT 0.6 1.35 0.51 0 35 35 35 26,883,356 ChIP unknown

Rao et al. 2011 human HeLaB2-GR-TA-WT 0.95 1.82 1.14 1 35 35 35 13,061,670 ChIP unknown

Rao et al. 2011 human HeLaB2-GR-TA+TNFa-GRKD 0.55 3.84 3.05 2 35 35 35 23,851,932 ChIP unknown

Rao et al. 2011 human HeLaB2-GR-TA+TNFa-p65KD 0.96 5.27 2.96 2 35 35 35 13,570,984 ChIP unknown

Rao et al. 2011 human HeLaB2-GR-TA+TNFa-WT 0.66 1.63 0.99 0 35 35 35 27,313,718 ChIP unknown

Rao et al. 2011 human HeLaB2-GR-TNFa-WT 0.96 1.29 0.47 -1 35 35 35 13,022,367 ChIP unknown

Rao et al. 2011 human HeLaB2-p65-DMSO-GRKD 0.4 7.86 7.04 2 35 35 35 25,556,594 ChIP no

Rao et al. 2011 human HeLaB2-p65-DMSO-p65KD 0.92 5.12 3.33 2 35 35 35 15,380,858 ChIP no

Rao et al. 2011 human HeLaB2-p65-DMSO-WT 0.52 1.73 0.99 0 35 35 35 17,693,337 ChIP no

Rao et al. 2011 human HeLaB2-p65-TA-WT 0.93 1.66 1.03 1 35 35 35 16,120,222 ChIP yes

Rao et al. 2011 human HeLaB2-p65-TA+TNFa-GRKD 0.58 4.86 4.49 2 35 35 35 25,972,505 ChIP yes

Rao et al. 2011 human HeLaB2-p65-TA+TNFa-p65KD 0.93 3.97 4.16 2 35 35 35 16,624,445 ChIP no

Rao et al. 2011 human HeLaB2-p65-TA+TNFa-WT 0.67 2.29 1.67 2 35 35 35 26,290,176 ChIP yes

Rao et al. 2011 human HeLaB2-p65-TNFa-WT 0.93 2.31 1.83 2 35 35 35 16,380,803 ChIP yes

Wang et al. 2011 human CUTLL-Input-1 0.98 1.24 0.42 -1 40 40 40 19,896,199 Input no

Wang et al. 2011 human CUTLL-Input-2 0.98 1.29 0.51 0 40 40 40 20,712,816 Input no

Wang et al. 2011 human CUTLL-Notch1-1 0.97 2.44 1.03 1 40 40 40 19,820,660 ChIP yes

Wang et al. 2011 human CUTLL-Notch1-2 0.93 4.98 1.27 1 40 40 40 15,252,998 ChIP yes

Wang et al. 2011 human CUTLL-RBPJ-1 0.97 1.57 0.69 0 40 40 40 20,226,038 ChIP yes

Wang et al. 2011 human CUTLL-RBPJ-2 0.9 3.1 1.06 1 40 40 40 17,569,147 ChIP yes

Wang et al. 2011 human CUTLL-ZNF143 0.8 7.23 1.9 2 40 40 40 25,444,869 ChIP yes

Wang et al. 2011 mouse G4A2-Input 0.6 1.99 1.14 1 39 39 39 21,212,246 Input no

Wang et al. 2011 mouse G4A2-Notch1 0.73 2.24 1.62 2 39 39 39 27,613,376 ChIP yes

Wang et al. 2011 mouse G4A2-RBPJ 0.89 1.53 1.03 1 40 40 40 12,929,417 ChIP yes

Wang et al. 2011 mouse T6E-Input 0.96 1.24 0.76 0 38 38 38 24,179,307 Input no

Wang et al. 2011 mouse T6E-Notch1 0.92 2.22 1.15 1 38 38 38 21,336,323 ChIP yes

Wang et al. 2011 mouse T6E-RBPJ 0.93 1.74 0.87 0 38 38 38 16,046,706 ChIP yes

Costessi et al. 2011 human K562-NFYA 0.78 4.8 6.12 2 35 35 35 11,661,523 ChIP yes

Costessi et al. 2011 human K562-NFYB 0.58 5.4 6.13 2 35 35 35 15,460,623 ChIP yes

Costessi et al. 2011 human K562-PRAME 0.87 1.76 1.32 1 35 35 35 6,685,161 ChIP yes

Costessi et al. 2011 human K562-Preimmune 0.9 1.67 0.84 0 35 35 35 6,366,475 IgG no

Miyazaki et al. 2011 mouse E2A-Day0 0.94 1.39 0.26 -1 36 36 36 9,650,009 ChIP yes

Miyazaki et al. 2011 mouse E2A-Day2 0.94 1.34 0.19 -2 36 36 36 8,529,512 ChIP unknown

Miyazaki et al. 2011 mouse Input 0.89 1.4 0.24 -2 36 36 36 11,673,268 Input no

GSE26711 mouse C2C12-FLAG 0.95 1.76 0.19 -2 26 26 26 2,144,135 IgG no

GSE26711 mouse C2C12-FLAG-Msx1 0.74 2.6 1.35 1 32.58 26 36 4,769,291 ChIP yes

Sun et al. 2011 mouse MEF-Input 0.85 1.37 0.8 0 36 36 36 17,709,015 Input no

Sun et al. 2011 mouse MEF-NelfB 0.75 1.99 1.52 2 36 36 36 16,971,968 ChIP yes
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Heikkinen et al.

2011
human THP1-calcitriol-VDR 0.41 1.63 0.58 0 36 36 36 26,125,837 ChIP yes

Heikkinen et al.

2011
human THP1-IgG 0.46 1.4 0.28 -1 36 36 36 26,578,895 IgG no

Heikkinen et al.

2011
human THP1-unstimulated-VDR 0.4 1.37 0.32 -1 36 36 36 22,822,851 ChIP no

Yoon et al. 2011 xaenopus Input 0.59 N/A N/A N/A 36 36 36 3,219,500 Input no

Yoon et al. 2011 xaenopus Smad2-3 0.93 N/A N/A N/A 36 36 36 8,168,342 ChIP yes

Mullen et al. 2011 human BGO3-Oct4 0.94 2.13 1.51 2 36 36 36 7,835,807 ChIP yes

Mullen et al. 2011 human BGO3-Smad3 0.9 2.21 0.73 0 36 36 36 10,206,400 ChIP yes

Mullen et al. 2011 human BGO3-WCE 0.99 1.41 0.55 0 36 36 36 8,589,186 Input no

Mullen et al. 2011 mouse ESC-Activin-Smad3 0.85 1.98 0.36 -1 36 36 36 3,469,014 ChIP yes

Mullen et al. 2011 mouse ESC-Smad2-3-Activin 0.85 1.97 0.35 -1 36 36 36 3,521,351 ChIP yes

Mullen et al. 2011 mouse ESC-Smad3 0.92 1.86 0.3 -1 26 26 26 3,650,000 ChIP unknown

Mullen et al. 2011 mouse mESC-NoMyod1-Day2-Smad3 0.84 1.67 1.74 2 36 36 36 8,780,818 ChIP yes

Mullen et al. 2011 mouse mESC-NoMyod1-Day5-Smad3 0.64 2.84 1.43 1 36 36 36 7,935,259 ChIP yes

Mullen et al. 2011 mouse mESC-PlusMyod1-Day2-Smad3 0.71 1.89 1.48 1 36 36 36 13,783,301 ChIP yes

Mullen et al. 2011 mouse
mESC-PlusMyod1-Day5-MyoD-

H2Flag
0.67 2.13 1.19 1 36 36 36 12,790,865 ChIP yes

Mullen et al. 2011 mouse mESC-PlusMyod1-Day5-Smad3 0.75 1.73 1 0 36 36 36 8,585,103 ChIP yes

Mullen et al. 2011 mouse Myotubes-IgG 0.65 1.98 0.75 0 36 36 36 5,056,829 IgG no

Mullen et al. 2011 mouse Myotubes-MyoD1-Rep1 0.78 6.25 2.23 2 36 36 36 4,485,416 ChIP yes

Mullen et al. 2011 mouse Myotubes-MyoD1-Rep2 0.54 3.75 1.62 2 36 36 36 14,493,250 ChIP yes

Mullen et al. 2011 mouse Myotubes-Smad3-Rep1 0.68 3.39 2.15 2 36 36 36 14,630,938 ChIP yes

Mullen et al. 2011 mouse Myotubes-Smad3-Rep2 0.19 2.5 2.03 2 36 36 36 11,953,645 ChIP yes

Mullen et al. 2011 mouse Pro-Bcells-IgG 0.76 3.51 1.09 1 36 36 36 22,066,974 IgG no

Mullen et al. 2011 mouse Pro-Bcells-PU.1-Rep1 0.61 4 1.75 2 36 36 36 11,557,346 ChIP yes

Mullen et al. 2011 mouse Pro-Bcells-PU.1-Rep2 0.76 6.98 1.47 1 36 36 36 21,066,565 ChIP yes

Mullen et al. 2011 mouse Pro-Bcells-Smad3-Rep1 0.68 1.84 1.26 1 36 36 36 13,801,014 ChIP yes

Mullen et al. 2011 mouse Pro-Bcells-Smad3-Rep2 0.74 4.61 2.45 2 36 36 36 13,745,867 ChIP yes

Wei et al. 2011 mouse CD4-Gata3 0.5 3.55 1.68 2 25 26 25 5,311,260 ChIP yes

Wei et al. 2011 mouse CD8-Fli1 0.64 1.78 0.91 0 25 25 25 4,267,162 ChIP unknown

Wei et al. 2011 mouse CD8-Gata3 0.8 1.9 1.08 1 25 25 25 4,827,087 ChIP yes

Wei et al. 2011 mouse CD8-Gata3-KO-Fli1 0.95 1.49 0.69 0 25 25 25 3,152,001 ChIP unknown

Wei et al. 2011 mouse CD8-Gata3-KO-Gata3 0.92 1.32 0.4 -1 25 25 25 1,997,286 ChIP yes

Wei et al. 2011 mouse DN-Gata3 0.66 2.87 1.68 2 25 25 25 6,301,966 ChIP yes

Wei et al. 2011 mouse DP-Gata3 0.76 1.86 1.14 1 25 25 25 6,402,211 ChIP yes

Wei et al. 2011 mouse DP-Gata3-replicate 0.08 14.33 7.09 2 25 25 25 20,563,880 ChIP yes

Wei et al. 2011 mouse iTreg-Gata3 0.26 2.42 1.28 1 25 25 25 7,299,209 ChIP yes

Wei et al. 2011 mouse NKT-Gata3 0.21 16.16 2.81 2 25 25 25 4,716,486 ChIP yes

Wei et al. 2011 mouse nTreg-Gata3 0.69 5.83 2.01 2 25 25 25 4,163,536 ChIP yes

Wei et al. 2011 mouse Th17-Gata3 0.32 1.64 0.68 0 25 25 25 5,051,835 ChIP unknown
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Wei et al. 2011 mouse Th1-Gata3 0.67 2.79 1.53 2 25 25 25 6,296,541 ChIP yes

Wei et al. 2011 mouse Th2-Ets1 0.37 3.54 1.87 2 25 25 25 1,620,989 ChIP yes

Wei et al. 2011 mouse Th2-Fli1 0.81 4.76 0.02 -2 24 24 24 444,327 ChIP yes

Wei et al. 2011 mouse Th2-Gata3 0.86 2.86 2.47 2 25 25 25 7,514,211 ChIP yes

Wei et al. 2011 mouse Th2-Gata3-replicate 0.86 2.86 2.47 2 25 25 25 7,514,211 ChIP yes

Liu et al. 2011 mouse mES-TAF1 0.7 1.04 0.11 -2 36 36 36 42,959,794 ChIP yes

Liu et al. 2011 mouse mES-TAF1-IgG 0.66 1.1 0.27 -1 36 36 36 38,486,238 IgG no

Liu et al. 2011 mouse mES-TAF3 0.48 1.76 0.94 0 36 36 36 37,109,895 ChIP yes

Liu et al. 2011 mouse mES-TAF3-IgG 0.38 1.11 0.2 -2 36 36 36 41,265,618 IgG no

Liu et al. 2011 mouse mES-TBP 0.64 2.1 0.93 0 36 36 36 34,110,153 ChIP yes

Liu et al. 2011 mouse mES-TBP-IgG 0.31 1.21 0.17 -2 36 36 36 33,960,211 IgG no

Kong et al. 2011 human MCF7-DMSO-GATA3 0.92 2.27 1.02 1 36 36 36 16,110,797 ChIP yes

Kong et al. 2011 human MCF7-DMSO-p300 0.94 1.49 0.53 0 36 36 36 16,598,044 ChIP yes

Kong et al. 2011 human MCF7-E2-GATA3 0.94 3.42 1.43 1 36 36 36 22,771,157 ChIP yes

Kong et al. 2011 human MCF7-E2-p300 0.92 1.54 0.46 -1 36 36 36 12,820,747 ChIP yes

GSE31951 mouse 0hrKCl-Input-sampleB1 0.87 2.26 0.91 0 33 33 33 21,405,879 Input no

GSE31951 mouse 0hrKCl-Input-sampleB2 0.61 1.21 0.17 -2 33 33 33 11,303,008 Input no

GSE31951 mouse 0hrKCl-MeCP2IP-sampleB1 0.84 3.88 2.11 2 33 33 33 34,260,253 ChIP yes

GSE31951 mouse 0hrKCl-MeCP2IP-sampleB2 0.8 1.97 1.68 2 33 33 33 14,827,886 ChIP yes

GSE31951 mouse 2hrKcl-Input-sampleB1 0.88 1.97 0.32 -1 33 33 33 8,725,472 Input no

GSE31951 mouse 2hrKCl-Input-sampleB2 0.77 1.15 0.16 -2 33 33 33 45,501,766 Input no

GSE31951 mouse 2hrKCl-MeCP2IP-sampleB1 0.8 4.79 2.65 2 33 33 33 13,050,973 ChIP yes

GSE31951 mouse 2hrKCl-MeCP2IP-sampleB2 0.47 1.9 1.33 1 33 33 33 9,573,633 ChIP yes

GSE31951 mouse
2hrKCl-pS421MeCP2IP-

sampleB2
0.89 1.86 0.67 0 33 33 33 3,733,245 ChIP yes

Norton et al. 2011 rat H4IIE-input 0.75 3.28 1.41 1 40 40 40 22,889,534 Input no

Norton et al. 2011 rat H4IIE-TCF7L2 0.81 3.08 1.14 1 40 40 40 21,999,570 ChIP yes

Bernt et al. 2011 mouse MLL-AF9 0.76 2.2 2.05 2 36 36 36 20,979,495 ChIP yes

Sahu et al. 2011 human LNCaP-AR-rep1 0.96 2.15 0.84 0 30 30 30 13,178,048 ChIP yes

Sahu et al. 2011 human LNCaP-AR-rep2 0.97 1.71 0.69 0 30 30 30 13,295,369 ChIP yes

Sahu et al. 2011 human LNCaP-AR-siFoxA1-rep1 0.97 2.45 1.13 1 30 30 30 16,070,383 ChIP yes

Sahu et al. 2011 human LNCaP-AR-siFoxA1-rep2 0.96 2.64 1.18 1 30 30 30 16,077,043 ChIP yes

Sahu et al. 2011 human LNCaP-FoxA1-rep1 0.98 3.05 1.14 1 30 30 30 7,592,193 ChIP yes

Sahu et al. 2011 human LNCaP-FoxA1-rep2 0.98 3.56 1.38 1 30 30 30 8,058,879 ChIP yes

Sahu et al. 2011 human LNCaP-FoxA1-siFoxA1-rep1 0.97 1.77 0.44 -1 30 30 30 5,946,745 ChIP no

Sahu et al. 2011 human LNCaP-FoxA1-siFoxA1-rep2 0.97 1.76 0.42 -1 30 30 30 5,835,884 ChIP no

Sahu et al. 2011 human LNCaP-GR 0.97 1.78 0.83 0 36 36 36 22,124,446 ChIP yes

Sahu et al. 2011 human LNCaP-GR-siFoxA1 0.93 1.68 0.91 0 36 36 36 17,943,158 ChIP yes

Sahu et al. 2011 human LNCaP-rIgG 0.95 1.16 0.21 -2 30 30 30 16,327,209 IgG no

An et al. 2011 mouse C2C12-Input-rep1 0.95 1.13 0.48 -1 37 37 37 17,130,843 Input no

An et al. 2011 mouse C2C12-Input-rep2 0.94 1.1 0.5 -1 40 40 40 24,457,563 Input no
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An et al. 2011 mouse C2C12-Sox6-rep1 0.92 2.16 0.39 -1 40 40 40 2,989,595 ChIP yes

An et al. 2011 mouse C2C12-Sox6-rep2 0.96 2.37 0.26 -1 40 40 40 1,470,144 ChIP yes

Shukla et al. 2011 human BJAB-CTCF 0.85 3.53 1.88 2 35 35 35 20,488,614 ChIP yes

Shukla et al. 2011 human BJAB-Rabbit-IgG 0.82 3.24 2.1 2 35 35 35 17,746,364 IgG no

Shukla et al. 2011 human BL41-CTCF 0.81 3.63 2.27 2 35 35 35 27,623,415 ChIP yes

Shukla et al. 2011 human BL41-Rabbit-IgG 0.68 4.44 3.71 2 35 35 35 29,655,822 IgG no

Trompouki et al.

2011∗
mouse Gata1-G1ERbmp-r1-100914-4 0.97 1.5 0.99 0 36 36 36 18,435,160 ChIP yes

Trompouki et al.

2011∗
mouse Gata2-G1Ebmp-r1-101201-3 0.82 12.68 1.59 2 36 36 36 8,484,282 ChIP yes

Trompouki et al.

2011∗
mouse Smad1-G1Ebmp-r1-100914-6 0.8 4.78 1.52 2 36 36 36 14,561,496 ChIP yes

Trompouki et al.

2011∗
mouse Smad1-G1ERbmp-r1-100914-5 0.85 4.16 1.38 1 36 36 36 16,186,687 ChIP yes

Trompouki et al.

2011∗
mouse WCE-G1Ebmp-r1-101201-2 0.97 1.43 0.92 0 36 36 36 14,429,966 Input no

Trompouki et al.

2011∗
mouse WCE-G1ERbio-r1-100914-1 0.97 1.53 0.98 0 36 36 36 17,835,267 Input no

Trompouki et al.

2011∗
human

GATA1-CD34eryth-bio-r1-

101103-6
0.73 4.25 0.05 -2 36 36 36 94,232 ChIP yes

Trompouki et al.

2011∗
human

GATA1-CD34eryth-bio-r2-

101103-7
0.22 21.87 0.14 -2 36 36 36 744,924 ChIP yes

Trompouki et al.

2011∗
human

GATA1-CD34eryth-bmp-r1-

100922-4
0.57 10.86 0.14 -2 36 36 36 667,864 ChIP yes

Trompouki et al.

2011∗
human

GATA1-CD34eryth-bmp-r2-

101105-1
0.49 10.81 0.15 -2 36 36 36 900,792 ChIP yes

Trompouki et al.

2011∗
human

GATA2-CD34prog-bmp-r1-

101201-1
0.59 2.91 0.05 -2 36 36 36 479,725 ChIP yes

Trompouki et al.

2011∗
human

SMAD1-CD34eryth-bmp-r1-

100922-5
0.65 6.9 0.07 -2 36 36 36 634,638 ChIP yes

Trompouki et al.

2011∗
human

SMAD1-CD34eryth-bmp-r2-

101103-7
0.62 9.05 0.07 -2 36 36 36 730,479 ChIP yes

Trompouki et al.

2011∗
human

SMAD1-CD34prog-bmp-r1-

100901-1
0.68 4.26 0.06 -2 36 36 36 322,324 ChIP yes

Trompouki et al.

2011∗
human

SMAD1-CD34prog-bmp-r2-

101105-3
0.68 3.35 0.06 -2 36 36 36 620,959 ChIP yes

Trompouki et al.

2011∗
human

TCF7L2-CD34prog-bio-r1-

100826-7
0.72 3.01 0.06 -2 36 36 36 339,258 ChIP yes

Trompouki et al.

2011∗
human

TCF7L2-CD34prog-bio-r2-

101105-4
0.64 2.96 0.07 -2 36 36 36 529,093 ChIP yes

Trompouki et al.

2011∗
human

WCE-CD34eryth-bio-r1-101103-

4
0.59 19.41 0.28 -1 36 36 36 79,783 Input no
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Trompouki et al.

2011∗
human

WCE-CD34eryth-bio-r1-101201-

4
0.54 3.54 0.05 -2 36 36 36 502,346 Input no

Trompouki et al.

2011∗
human

WCE-CD34eryth-bio-r2-101103-

5
0.69 8.49 0.04 -2 36 36 36 340,786 Input no

Trompouki et al.

2011∗
human

WCE-CD34eryth-bmp-r1-

100922-3
0.69 11.24 0.05 -2 36 36 36 246,281 Input no

Trompouki et al.

2011∗
human

WCE-CD34eryth-bmp-r2-

101105-2
0.68 10.7 0.05 -2 36 36 36 300,293 Input no

Trompouki et al.

2011∗
human WCE-CD34prog-bio-r1-100826-6 0.65 2.88 0.04 -2 36 36 36 356,819 Input no

Trompouki et al.

2011∗
human WCE-CD34prog-bio-r1-101201-1 0.59 2.91 0.05 -2 36 36 36 479,725 Input no

Trompouki et al.

2011∗
human WCE-CD34prog-bio-r2-101105-5 0.65 2.75 0.04 -2 36 36 36 283,167 Input no

Trompouki et al.

2011∗
human

WCE-CD34prog-bmp-r1-

101201-7
0.6 3.13 0.05 -2 36 36 36 430,773 Input no

Trompouki et al.

2011∗
human CEBPA-U937bio-r1-100709-5 0.58 26.28 0.3 -1 35 35 35 4,430,334 ChIP yes

Trompouki et al.

2011∗
human CEBPA-U937dmso-r1-100505-5 0.41 23.29 0.18 -2 36 36 36 151,538 ChIP yes

Trompouki et al.

2011∗
human CEBPA-K562-CEBPA-bmp4 0.46 10.99 0.34 -1 35 35 35 2,662,588 ChIP yes

Trompouki et al.

2011∗
human CEBPA-U937-bmp4 0.64 3.16 0.44 -1 36 36 36 228,810 ChIP yes

Trompouki et al.

2011∗
human GATA1-K562bio-r1-110325-6 0.49 11.55 0.09 -2 39 39 39 245,220 ChIP yes

Trompouki et al.

2011∗
human GATA1-K562bmp-r1-110325-4 0.67 11.66 0.16 -2 36 36 36 335,062 ChIP yes

Trompouki et al.

2011∗
human GATA1-K562 0.57 3.41 0.11 -2 36 36 36 371,785 ChIP yes

Trompouki et al.

2011∗
human GATA2-K562bio-r1-110325-5 0.51 5.76 0.13 -2 39 39 39 190,367 ChIP yes

Trompouki et al.

2011∗
human GATA2-K562bmp-r1-110325-3 0.27 5.97 0.14 -2 36 36 36 405,703 ChIP yes

Trompouki et al.

2011∗
human GATA2-K562 0.47 10.43 0.02 -2 36 36 36 451,795 ChIP yes

Trompouki et al.

2011∗
human Input-K562-CEBPA-bmp4 0.08 27.04 0.2 -2 39 39 39 248,035 Input no

Trompouki et al.

2011∗
human SMAD1-K562bmp4-r1-100608-2 0.75 8 0.09 -2 35 35 35 834,331 ChIP yes

Trompouki et al.

2011∗
human

SMAD1-K562campk-r1-110323-

2
0.71 2.48 0.14 -2 36 36 36 645,936 ChIP yes

Trompouki et al.

2011∗
human SMAD1-U937bmp4-r1-100608-1 0.69 12.93 0.24 -2 36 36 36 1,184,890 ChIP yes
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Trompouki et al.

2011∗
human SMAD1-K562-CEBPA-bmp4 0.83 16.08 0.21 -2 36 36 36 3,126,161 ChIP yes

Trompouki et al.

2011∗
human TCF7L2-K562bio-r1-100106-7 0.75 10.1 0.05 -2 36 36 36 88,763 ChIP yes

Trompouki et al.

2011∗
human TCF7L2-K562bio-r2-Childrens 0.73 5.78 0.07 -2 40 40 40 116,187 ChIP yes

Trompouki et al.

2011∗
human TCF7L2-U937bio-r1-100505-7 0.39 11.03 0.18 -2 36 36 36 145,311 ChIP yes

Trompouki et al.

2011∗
human WCE-K562bio-r1-100106-5 0.72 8.07 0.02 -2 36 36 36 163,001 Input no

Trompouki et al.

2011∗
human WCE-K562bio-r1-100608-2 0.67 5.23 0.02 -2 36 36 36 314,395 Input no

Trompouki et al.

2011∗
human WCE-K562bmp4-r1-100608-1 0.67 8.04 0.05 -2 36 36 36 340,757 Input no

Trompouki et al.

2011∗
human WCE-U937bio-r1-100505-6 0.61 4.26 0.07 -2 36 36 36 294,327 Input no

Trompouki et al.

2011∗
human WCE-U937bio-r1-100608-5 0.64 3.52 0.06 -2 36 36 36 326,001 Input no

Trompouki et al.

2011∗
human WCE-U937bio-r1-100709-4 0.62 3.02 0.06 -2 36 36 36 308,988 Input no

Trompouki et al.

2011∗
human WCE-U937bio-r1-100709-6 0.62 2.64 0.06 -2 36 36 36 299,190 Input no

Trompouki et al.

2011∗
human WCE-U937bmp4-r1-100608-3 0.65 3.73 0.04 -2 36 36 36 314,568 Input no

Trompouki et al.

2011∗
human WCE-U937dmso-r1-100505-3 0.63 4.64 0.07 -2 36 36 36 272,327 Input no

Ceschin et al. 2011 human H3396-CARM1-E2 0.88 2.05 0.19 -2 49 49 49 99,711 ChIP yes

Ceschin et al. 2011 human H3396-CARM1-EtOH 0.88 2.15 0.2 -2 49 49 49 105,031 ChIP yes

Ceschin et al. 2011 human H3396-CBP-E2 0.51 4.35 0.02 -2 36 36 36 152,170 ChIP yes

Ceschin et al. 2011 human H3396-CBP-EtOH-1 0.33 8.51 0.06 -2 36 36 36 289,897 ChIP yes

Ceschin et al. 2011 human H3396-CBPR2151m-E2 0.44 7.62 0.03 -2 36 36 36 168,286 ChIP yes

Ceschin et al. 2011 human H3396-CBPR2151m-EtOH 0.46 8.58 0.03 -2 36 36 36 149,173 ChIP yes

Ceschin et al. 2011 human H3396-CBPR742m-E2-1 0.39 1.93 0.07 -2 36 36 36 383,127 ChIP yes

Ceschin et al. 2011 human H3396-CBPR768m-E2 0.41 10.17 0.04 -2 40 40 40 168,599 ChIP yes

Ceschin et al. 2011 human H3396-CBPR768m-EtOH 0.4 3.59 0.12 -2 40 40 40 157,261 ChIP yes

Ceschin et al. 2011 human H3396-ERa-E2 0.47 8.8 0.01 -2 36 36 36 105,766 ChIP yes

Ceschin et al. 2011 human H3396-ERa-EtOH 0.51 10.95 0.02 -2 36 36 36 73,181 ChIP no

Ceschin et al. 2011 human H3396-Input-E2-rep1-1 0.71 9.46 0.03 -2 36 36 36 92,932 Input no

Ceschin et al. 2011 human H3396-RAC3-E2 0.52 6.03 0.02 -2 36 36 36 110,731 ChIP yes

Mendoza-Parra et

al. 2011
mouse mouse-F9-WCE 0.87 8.28 2.79 2 36 36 36 6,377,439 Input no

Mendoza-Parra et

al. 2011
mouse RARg-24h-ATRA 0.87 4.27 1.95 2 36 36 36 5,864,836 ChIP yes
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Mendoza-Parra et

al. 2011
mouse RARg-2h-ATRA 0.87 4.27 1.92 2 36 36 36 6,545,542 ChIP yes

Mendoza-Parra et

al. 2011
mouse RARg-48h-ATRA 0.91 3.46 1.82 2 36 36 36 3,543,638 ChIP yes

Mendoza-Parra et

al. 2011
mouse RARg-48h-EtOH 0.8 4.55 0.93 0 36 36 36 6,281,297 ChIP unknown

Mendoza-Parra et

al. 2011
mouse RARg-6h-ATRA 0.65 5.31 1.93 2 36 36 36 6,353,453 ChIP yes

Mendoza-Parra et

al. 2011
mouse RXRa-24h-ATRA 0.67 4.42 1.29 1 36 36 36 6,444,150 ChIP yes

Mendoza-Parra et

al. 2011
mouse RXRa-2h-ATRA 0.56 9.77 3.79 2 36 36 36 6,676,769 ChIP yes

Mendoza-Parra et

al. 2011
mouse RXRa-48h-ATRA 0.6 11.1 3.89 2 36 36 36 5,869,783 ChIP yes

Mendoza-Parra et

al. 2011
mouse RXRa-48h-EtOH 0.7 5.14 1.32 1 36 36 36 6,631,973 ChIP unknown

Mendoza-Parra et

al. 2011
mouse RXRa-6h-ATRA 0.54 7.61 3.08 2 36 36 36 5,834,436 ChIP yes

Mendoza-Parra et

al. 2011
mouse rxra-ko-RXRa-48h-ATRA 0.89 2.86 0.88 0 36 36 36 4,573,205 ChIP yes

Schmitz et al. 2011 mouse mESC-Jarid1b-1 0.87 1.25 0.34 -1 34 34 34 3,996,359 ChIP yes

Schmitz et al. 2011 mouse mESC-Jarid1b-2 0.88 1.24 0.36 -1 26 26 26 3,488,817 ChIP yes

Bergsland et al.

2011
mouse C2C12-Sox3-transfected-Sox3 0.77 1.44 0.85 0 53 53 53 29,894,751 ChIP yes

Bergsland et al.

2011
mouse Early-formed-neurons-IgG 0.93 2.05 0.2 -2 33 33 33 2,107,025 IgG no

Bergsland et al.

2011
mouse

Early-formed-neurons-Sox11-

rep1
0.94 2.15 0.27 -1 33 33 33 2,103,532 ChIP yes

Bergsland et al.

2011
mouse

Early-formed-neurons-Sox11-

rep2
0.95 1.99 0.27 -1 33 33 33 2,328,712 ChIP yes

Bergsland et al.

2011
mouse

Early-formed-neurons-Sox11-

rep3
0.96 1.67 0.34 -1 33 33 33 2,668,012 ChIP yes

Bergsland et al.

2011
mouse NPC-Sox2-rep1 0.9 1.38 0.29 -1 38 38 38 6,840,926 ChIP yes

Bergsland et al.

2011
mouse NPC-Sox2-rep2 0.74 1.62 0.69 0 38 38 38 12,391,326 ChIP yes

Bergsland et al.

2011
mouse NPC-Sox2-rep3 0.79 1.9 1.49 1 38 38 38 15,894,900 ChIP yes

Bergsland et al.

2011
mouse NPC-Sox3-rep1 0.88 2.68 1.34 1 34 34 34 3,339,224 ChIP yes

Bergsland et al.

2011
mouse NPC-Sox3-rep2 0.93 2.47 0.5 0 34 34 34 1,464,673 ChIP yes

Bergsland et al.

2011
mouse NPC-Sox3-rep3 0.87 2.87 2.24 2 34 34 34 3,496,087 ChIP yes
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http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE33059
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE33059
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE33059
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE33059
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http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE33059
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE33059
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE33059
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE33059
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http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE33059
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE33059
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Marban et al. 2011 human Jurkat-Input 0.96 3.11 0.77 0 76 76 76 15,973,065 Input no

Marban et al. 2011 human Jurkat-Tat 0.94 4.07 1.04 1 76 76 76 18,900,158 ChIP yes

Quenneville et al.

2011
mouse mESC-HA 0.67 7.09 10.49 2 37.45 38 37 47,077,818 IgG no

Quenneville et al.

2011
mouse mESC-HAZFP57-HA 0.76 4.65 6.75 2 37.35 38 37 40,511,425 ChIP yes

Quenneville et al.

2011
mouse mESC-KAP1 0.63 4.31 7.86 2 49.63 76 38 58,793,249 ChIP yes

Mullican et al. 2011 mouse Macrophage-BSA-HDAC3 0.84 1.7 1.31 1 38 38 38 18,260,410 ChIP yes

Mullican et al. 2011 mouse Macrophage-IL4-HDAC3 0.89 1.64 1.18 1 38 38 38 17,042,856 ChIP yes

Mullican et al. 2011 mouse Macrophage-Input 0.95 1.09 0.36 -1 36 36 36 19,136,736 Input no

Brown et al. 2011 human hESC-D0-Smad-XL-rep1 0.95 1.67 0.42 -1 38 38 38 5,323,799 ChIP yes

Brown et al. 2011 human hESC-D0-Smad-XL-rep2 0.72 1.44 0.51 0 36 36 36 30,063,231 ChIP yes

Brown et al. 2011 human hESC-D3-Smad-XL-rep1 0.97 1.62 0.36 -1 38 38 38 6,844,734 ChIP yes

Brown et al. 2011 human hESC-D3-Smad-XL-rep2 0.75 1.44 0.42 -1 36 36 36 29,936,111 ChIP yes

Brown et al. 2011 human hESC-Input-XL 0.98 1.37 0.44 -1 36 36 36 7,422,963 Input no

Mazzoni et al. 2011 mouse
Progenitor-Motor-Neurons-

Day4-iOlig2-V5
0.92 3.13 1.85 2 36 36 36 3,330,651 ChIP yes

Mazzoni et al. 2011 mouse
Progenitor-Motor-Neurons-

Day4-Olig2
0.9 5 1.52 2 36 36 36 8,348,180 ChIP yes

Mazzoni et al. 2011 mouse
Progenitor-Motor-Neurons-

Day4-V5-control
0.93 1.48 0.48 -1 36 36 36 13,581,601 Input no

Mazzoni et al. 2011 mouse
Progenitor-Motor-Neurons-

Day5-iFlag-Hoxc9
0.87 3.68 2.59 2 36 36 36 29,775,081 ChIP yes

Mazzoni et al. 2011 mouse
Progenitor-Motor-Neurons-

Day5-iHoxc9-V5
0.71 2.48 2.42 2 69.05 76 36 28,150,488 ChIP yes

Tan et al. 2011 human LNCap-DHT-AR-1 0.83 11.17 1.68 2 36 36 36 13,158,813 ChIP yes

Tan et al. 2011 human LNCap-DHT-FoxA1-1 0.89 9.94 2.58 2 36 36 36 18,910,797 ChIP yes

Tan et al. 2011 human LNCap-DHT-NKX3-1 0.93 1.98 0.62 0 36 36 36 11,840,488 ChIP yes

Tan et al. 2011 human LNCap-EtOH-AR-1 0.92 2.71 0.92 0 36 36 36 10,786,161 ChIP unknown

Tan et al. 2011 human LNCap-EtOH-FoxA1 0.96 9.35 2.52 2 36 36 36 5,367,267 ChIP yes

Tan et al. 2011 human LNCap-EtOH-NKX3-1 0.91 1.59 0.51 0 36 36 36 16,850,974 ChIP yes

Tan et al. 2011 human LNCaP-Genomic-Input-1 0.95 1.54 0.51 0 36 36 36 10,550,285 Input no

Shen et al. 2011 mouse Heart-input1 0.87 1.86 0.47 -1 36 36 36 5,928,909 Input no

Shen et al. 2011 mouse Heart-input2 0.95 1.38 0.41 -1 36 36 36 6,264,090 Input no

Shen et al. 2011 mouse Heart-input3 0.94 1.21 0.48 -1 36 36 36 10,837,874 Input no

Shen et al. 2011 mouse Heart-Tbx20-GFP 0.95 1.9 0.63 0 36 36 36 23,754,878 ChIP yes

Seitz et al. 2011 human BL41-Input 0.98 1.19 0.1 -2 31 31 31 1,972,404 Input no

Seitz et al. 2011 human BL41-Myc 0.86 3.51 1.22 1 33 33 33 2,719,977 ChIP yes

Seitz et al. 2011 human Blue1-Input 0.99 1.27 0.12 -2 31 31 31 1,765,339 Input no

Seitz et al. 2011 human Blue1-Myc 0.98 2.46 0.66 0 31 31 31 1,884,244 ChIP yes

Seitz et al. 2011 human CA46-Input 0.98 1.2 0.13 -2 31 31 31 1,492,644 Input no
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Seitz et al. 2011 human CA46-Myc 0.93 1.4 0.14 -2 71 71 71 1,734,564 ChIP yes

Seitz et al. 2011 human Raji-Input 0.95 1.26 0.16 -2 34 34 34 3,027,850 Input no

Seitz et al. 2011 human Raji-Myc 0.82 1.22 0.25 -2 34 34 34 2,186,015 ChIP yes

Seitz et al. 2011 human Ramos-Input 0.98 1.2 0.14 -2 31 31 31 1,880,856 Input no

Seitz et al. 2011 human Ramos-Myc 0.94 2.09 0.61 0 33 33 33 3,293,975 ChIP yes

Little et al. 2011 human C4-2B-Input 0.93 1.05 0.33 -1 50 50 50 85,985,363 Input no

Little et al. 2011 human C4-2B-Runx2 0.18 2.9 3.54 2 50 50 50 63,645,646 ChIP yes

Whyte et al. 2011 mouse mES-CoREST 0.94 1.37 0.39 -1 36 36 36 9,515,699 ChIP yes

Whyte et al. 2011 mouse mES-HDAC1 0.33 4.48 2.65 2 36 36 36 17,775,205 ChIP yes

Whyte et al. 2011 mouse mES-HDAC1-rep2 0.13 2.33 1.22 1 36 36 36 27,399,530 ChIP yes

Whyte et al. 2011 mouse mES-HDAC2 0.69 2.49 1.65 2 36 36 36 14,740,848 ChIP yes

Whyte et al. 2011 mouse mES-HDAC2-rep2 0.16 2.29 1.74 2 36 36 36 25,056,680 ChIP yes

Whyte et al. 2011 mouse mES-LSD1 0.94 1.54 0.79 0 36 36 36 3,907,159 ChIP yes

Whyte et al. 2011 mouse mES-LSD1-rep2 0.93 2.25 1.23 1 36 36 36 24,506,916 ChIP yes

Whyte et al. 2011 mouse mES-Mi-2 0.42 1.54 0.56 0 36 36 36 24,712,531 ChIP yes

Whyte et al. 2011 mouse mES-Mi-2b 0.95 1.27 0.45 -1 36 36 36 10,665,386 ChIP yes

Whyte et al. 2011 mouse mES-REST 0.73 3.31 1.57 2 36 36 36 24,569,235 ChIP yes

Whyte et al. 2011 mouse WCE-DMSO-t0 0.71 2.01 0.9 0 36 36 36 11,409,350 Input no

Whyte et al. 2011 mouse WCE-DMSO-t48 0.77 2.31 1.4 1 36 36 36 13,324,722 Input no

Whyte et al. 2011 mouse WCE-TCP-48 0.76 2.37 1.41 1 36 36 36 12,021,728 Input no

GSE25426 human THP-1-Control 0.94 1.29 0.36 -1 36 36 36 21,074,660 Input no

GSE25426 human THP-1-PPARg 0.96 1.82 0.63 0 36 36 36 14,473,006 ChIP yes

GSE25426 human THP-1-PU.1 0.95 4.78 2.12 2 35 35 35 13,571,315 ChIP yes

GSE25426 human THP-1-RXR 0.98 1.46 0.29 -1 35 35 35 6,999,922 ChIP yes

Yildirim et al. 2011 mouse mESC-Brg1-KD-Mbd3 0.96 2.73 0.15 -2 36 36 36 1,656,511 ChIP unknown

Yildirim et al. 2011 mouse mESC-Mbd3-rep1 0.94 2.21 0.33 -1 36 36 36 2,189,692 ChIP yes

Yildirim et al. 2011 mouse mESC-Mbd3-rep2 0.85 1.23 0.61 0 36 36 36 15,055,944 ChIP yes

Yildirim et al. 2011 mouse mESC-Tet1-KD-Mbd3 0.97 1.56 0.25 -1 36 36 36 3,626,622 ChIP unknown

Botcheva et al. 2011 human IMR90-Input 0.87 1.27 0.21 -2 36 36 36 9,286,134 Input no

Botcheva et al. 2011 human IMR90-p53 0.7 2.66 0.61 0 36 36 36 5,285,892 ChIP yes

Stadler et al. 2011 mouse ES-CTCF-rep1 0.64 28.28 1.67 2 37 37 37 10,466,451 ChIP yes

Stadler et al. 2011 mouse ES-CTCF-rep2 0.44 26.16 2.87 2 38 38 38 13,296,384 ChIP yes

Stadler et al. 2011 mouse ES-CTCF-rep3 0.49 9.15 8.28 2 38 38 38 9,587,128 ChIP yes

Stadler et al. 2011 mouse ES-Input-rep1 0.82 1.77 1.05 1 38 38 38 11,095,374 Input no

Stadler et al. 2011 mouse ES-Input-rep2 0.83 1.94 2.94 2 38 38 38 29,650,665 Input no

Stadler et al. 2011 mouse TKO-CTCF-rep1 0.63 10.83 3.72 2 36 36 36 34,828,958 ChIP yes

Stadler et al. 2011 mouse TKO-CTCF-rep2 0.91 5.48 3.61 2 36 36 36 2,836,169 ChIP yes

Holmstrom et al.

2011
mouse Pancreas-Input 0.97 1.46 0.88 0 36 36 36 11,479,285 Input no

Holmstrom et al.

2011
mouse Pancreas-Lrh1 0.84 4.4 1.89 2 36 36 36 13,587,564 ChIP yes
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Xu et al. 2011 zebrafish Mxtx2-4.5hpf 0.77 1.7 1.39 1 36 36 36 11,341,093 ChIP yes

Xu et al. 2011 zebrafish Nanog-like-3.5hpf 0.63 1.89 1.44 1 36 36 36 7,535,238 ChIP yes

Xu et al. 2011 zebrafish Nanog-like-4.5hpf 0.84 3.94 1.22 1 36 36 36 10,103,194 ChIP yes

Xu et al. 2011 zebrafish WCE-Mxtx2-4.5hpf 0.97 1.24 0.59 0 36 36 36 18,309,687 Input no

Xu et al. 2011 zebrafish WCE-Nanog-like-3.5hpf 0.91 1.63 0.9 0 36 36 36 11,252,453 Input no

Xu et al. 2011 zebrafish WCE-Nanog-like-4.5hpf 0.98 1.36 0.67 0 36 36 36 15,831,173 Input no

Tiwari et al. 2011a;

Tiwari et al. 2011b
mouse ES-JNK13-biological-replicate-a 0.82 4.27 2.79 2 38 38 38 8,462,462 ChIP yes

Tiwari et al. 2011a;

Tiwari et al. 2011b
mouse ES-JNK13-biological-replicate-b 0.51 10.19 3.89 2 38 38 38 8,175,875 ChIP yes

Tiwari et al. 2011a;

Tiwari et al. 2011b
mouse ES-NFYA-biological-replicate-a 0.79 2.98 5.24 2 38 38 38 19,929,924 ChIP yes

Tiwari et al. 2011a;

Tiwari et al. 2011b
mouse ES-NFYA-biological-replicate-b 0.66 3.93 7.62 2 38 38 38 24,051,713 ChIP yes

Tiwari et al. 2011a;

Tiwari et al. 2011b
mouse Input 0.82 1.77 1.05 1 38 38 38 11,095,374 Input no

Tiwari et al. 2011a;

Tiwari et al. 2011b
mouse NP-JNK13-biological-replicate-a 0.69 8.11 5.07 2 38 38 38 8,802,240 ChIP yes

Tiwari et al. 2011a;

Tiwari et al. 2011b
mouse NP-JNK13-biological-replicate-b 0.92 2.07 1.37 1 38 38 38 9,691,977 ChIP yes

Tiwari et al. 2011a;

Tiwari et al. 2011b
mouse NP-NFYA-biological-replicate-a 0.85 2.18 3.96 2 38 38 38 23,674,653 ChIP yes

Tiwari et al. 2011a;

Tiwari et al. 2011b
mouse NP-NFYA-biological-replicate-b 0.86 1.97 3.33 2 38 38 38 21,717,487 ChIP yes

Tiwari et al. 2011a;

Tiwari et al. 2011b
mouse TN-DMSO-JNK1-3 0.17 11.6 12.92 2 36 36 36 38,425,945 ChIP yes

Tiwari et al. 2011a;

Tiwari et al. 2011b
mouse

TN-JNK1-3-biological-replicate-

a
0.35 17.31 5.6 2 38 38 38 8,678,605 ChIP yes

Tiwari et al. 2011a;

Tiwari et al. 2011b
mouse

TN-JNK1-3-biological-replicate-

b
0.29 20.52 7.67 2 38 38 38 6,897,900 ChIP yes

Tiwari et al. 2011a;

Tiwari et al. 2011b
mouse TN-JNKi-JNK1-3 0.35 5.86 12.97 2 36 36 36 42,637,275 ChIP yes

Tiwari et al. 2011a;

Tiwari et al. 2011b
mouse TN-NFYA-biological-replicate-a 0.68 3.06 5.64 2 38 38 38 27,386,709 ChIP yes

Tiwari et al. 2011a;

Tiwari et al. 2011b
mouse TN-NFYA-biological-replicate-b 0.84 2.15 3.33 2 38 38 38 25,748,779 ChIP yes

Zhang et al. 2011 mouse F-Bcl6-rep1-G51 0.91 2.05 1.74 2 36 36 36 7,810,319 ChIP yes

Zhang et al. 2011 mouse F-Bcl6-rep2-G65-M1 0.9 6.17 0.58 0 36 36 36 6,073,003 ChIP yes

Zhang et al. 2011 mouse F-Bcl6-rep3-G65-M2 0.75 2.83 1.16 1 36 36 36 6,266,286 ChIP yes

Zhang et al. 2011 mouse F-Bcl6-rep4-G65-M3 0.93 3.23 0.42 -1 36 36 36 12,764,985 ChIP yes

Zhang et al. 2011 mouse FH-STAT5-rep1-G66-M1 0.83 6.19 3.78 2 36 36 36 6,691,463 ChIP yes

Zhang et al. 2011 mouse FH-STAT5-rep2-G66-M2 0.69 5.59 2.97 2 36 36 36 6,110,031 ChIP yes

Zhang et al. 2011 mouse FH-STAT5-rep3-G66-M3 0.65 9.48 4.33 2 36 36 36 13,444,170 ChIP yes
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Zhang et al. 2011 mouse FL-STAT5-rep1-G52 0.19 2.48 1.94 2 36 36 36 5,389,553 ChIP yes

Zhang et al. 2011 mouse FL-STAT5-rep2-G70-M3 0.52 3.27 1.47 1 36 36 36 5,884,969 ChIP yes

Zhang et al. 2011 mouse FL-STAT5-rep3-G72-M1 0.63 2.55 0.92 0 36 36 36 2,627,103 ChIP yes

Zhang et al. 2011 mouse IgG-control 0.62 1.66 0.81 0 35 35 35 11,562,651 IgG no

Zhang et al. 2011 mouse M-Bcl6-rep1-G49 0.49 3.13 1.72 2 35 35 35 18,985,967 ChIP yes

Zhang et al. 2011 mouse M-Bcl6-rep2-G50 0.8 2.86 2.36 2 35 35 35 14,452,480 ChIP yes

Zhang et al. 2011 mouse M-Bcl6-rep3-G71-M2 0.76 2.33 0.74 0 35 35 35 14,149,114 ChIP yes

Zhang et al. 2011 mouse MH-STAT5-rep1-G36 0.62 4.29 2.69 2 35 35 35 15,997,841 ChIP yes

Zhang et al. 2011 mouse MH-STAT5-rep2-G41 0.76 3.64 2.47 2 35 35 35 12,841,332 ChIP yes

Zhang et al. 2011 mouse MH-STAT5-rep3-G42 0.64 3.39 2.67 2 36 36 36 9,528,779 ChIP yes

Zhang et al. 2011 mouse ML-STAT5-rep1-G35 0.71 2.18 2.17 2 36 36 36 16,024,096 ChIP yes

Zhang et al. 2011 mouse ML-STAT5-rep2-G40 0.84 1.69 1.42 1 36 36 36 5,688,929 ChIP yes

Smith et al. 2011 mouse mES-ELL 0.79 1.71 0.79 0 40 40 40 16,754,758 ChIP yes

Smith et al. 2011 mouse mES-Input 0.96 1.38 0.76 0 40 40 40 19,454,353 Input no

Nakayamada et al.

2011
mouse CD4+-Tbet 0.56 3.09 1.78 2 36 36 36 23,421,318 ChIP yes

Lu et al. 2012 human IgG-1-BCBL1 0.94 2.23 1.07 1 36 36 36 19,209,840 IgG no

Lu et al. 2012 human IgG-2-BCBL1 0.81 1.44 0.3 -1 36 36 36 12,604,075 IgG no

Lu et al. 2012 human LANA-1-BCBL1 0.46 1.6 0.53 0 36 36 36 19,777,228 ChIP yes

Lu et al. 2012 human LANA-2-BCBL1 0.86 1.44 0.27 -1 36 36 36 11,880,205 ChIP yes

Meyer et al. 2012 human LS180-bCat-125-1 0.43 13.11 1.87 2 35.43 36 35 39,712,224 ChIP yes

Meyer et al. 2012 human LS180-bCat-Veh-1 0.43 6.85 2.83 2 35.1 36 35 25,024,509 ChIP yes

Meyer et al. 2012 human LS180-CDX2-125-1 0.57 4.36 1.81 2 35.59 36 35 38,267,118 ChIP yes

Meyer et al. 2012 human LS180-CDX2-Veh-1 0.56 4.57 1.71 2 35.6 36 35 34,581,066 ChIP yes

Meyer et al. 2012 human LS180-CEBPb-125-1 0.81 8.48 1.8 2 35 35 35 24,978,947 ChIP yes

Meyer et al. 2012 human LS180-CEBPb-Veh-1 0.05 8.15 1.82 2 35.75 36 35 78,542,681 ChIP yes

Meyer et al. 2012 human LS180-Input-1 0.15 1.83 1.02 1 35.66 36 35 54,134,263 Input no

Meyer et al. 2012 human LS180-RXR-125-1 0.09 7.72 1.64 2 36 36 36 29,948,896 ChIP yes

Meyer et al. 2012 human LS180-RXR-Veh-1 0.1 7.3 1.79 2 36 36 36 26,448,441 ChIP yes

Meyer et al. 2012 human LS180-TCF4-125-2 0.28 10.15 1.78 2 45.01 50 35 49,453,419 ChIP yes

Meyer et al. 2012 human LS180-TCF4-Veh-2 0.36 10.26 1.9 2 42.43 50 35 20,780,670 ChIP yes

Meyer et al. 2012 human LS180-VDR-125-1 0.23 5.74 3.37 2 36 36 36 4,734,750 ChIP yes

Meyer et al. 2012 human LS180-VDR-Veh-1 0.18 11.61 5.58 2 35.79 36 35 72,061,937 ChIP unknown

Ntziachristos et al.

2012
mouse DP-mnase-input-replicate-1 0.92 2.74 1.13 1 34 34 34 15,457,880 Input no

Ntziachristos et al.

2012
mouse DP-mnase-input-replicate-2 0.9 6.08 3.06 2 34 34 34 12,676,911 Input no

Ntziachristos et al.

2012
mouse T-ALL-mnase-input-replicate-1 0.58 1.7 0.18 -2 34 34 34 9,970,383 Input no

Ntziachristos et al.

2012
mouse T-ALL-mnase-input-replicate-2 0.86 2.17 0.68 0 34 34 34 12,351,316 Input no
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Ntziachristos et al.

2012
mouse T-ALL-Notch1 0.75 2.23 1.97 2 34 34 34 15,248,670 ChIP yes

Ntziachristos et al.

2012
mouse T-ALL-sonicated-input 0.7 1.28 0.17 -2 34 34 34 12,479,110 Input no

Cheng et al. 2012 human Gdown1-Control 0.97 1.69 0.66 0 36 36 36 3,798,010 ChIP yes

Cheng et al. 2012 human Gdown1-Flavo 0.93 1.77 0.74 0 36 36 36 7,869,560 ChIP yes

GSE33128 human Gdown1-IMR90 0.67 2.83 1.46 1 36 36 36 13,781,340 ChIP yes

GSE33128 human IgG-IMR90 0.67 7.4 2.05 2 36 36 36 7,308,478 IgG no

GSE33128 human Input-IMR90 0.96 1.47 0.69 0 36 36 36 14,239,395 Input no

GSE35109 human ERa-ChIP-seq-1 0.86 1.46 1.99 2 51 51 51 48,891,564 ChIP yes

GSE35109 human ERa-ChIP-seq-2 0.7 2.02 3.17 2 51 51 51 52,808,583 ChIP yes

GSE35109 human ERa-ChIP-seq-3 0.3 5.75 5.72 2 51 51 51 46,155,863 ChIP yes

GSE35109 human ERa-ChIP-seq-4 0.8 1.64 2.76 2 51 51 51 57,965,746 ChIP yes

Canella et al. 2012 mouse INPUT-Rep1 0.8 1.37 1.93 2 75 75 75 31,537,710 Input no

Canella et al. 2012 mouse INPUT-Rep2 0.8 1.38 1.96 2 75 75 75 33,328,402 Input no

Canella et al. 2012 mouse RPB2-Rep1 0.8 1.55 1.74 2 75 75 75 35,847,372 ChIP yes

Canella et al. 2012 mouse RPB2-Rep2 0.83 1.94 1.75 2 75 75 75 30,551,646 ChIP yes

Canella et al. 2012 mouse RPC1-Rep1 0.9 1.9 1.48 1 75 75 75 23,033,105 ChIP yes

Canella et al. 2012 mouse RPC1-Rep2 0.91 1.72 1.31 1 75 75 75 22,145,329 ChIP yes

Canella et al. 2012 mouse RPC4-Rep1 0.87 1.9 1.49 1 75 75 75 25,973,018 ChIP yes

Canella et al. 2012 mouse RPC4-Rep2 0.86 1.83 1.6 2 75 75 75 31,517,301 ChIP yes

Sadasivam et al.

2012
human BMyb-HeLa-Rep1 0.88 1.36 0.32 -1 36 36 36 15,389,344 ChIP yes

Sadasivam et al.

2012
human BMyb-HeLa-Rep2 0.77 1.81 0.07 -2 36 36 36 1,052,761 ChIP yes

Sadasivam et al.

2012
human Input-HeLa-Rep1 0.71 1.79 0.69 0 36 36 36 17,569,472 Input no

Sadasivam et al.

2012
human Input-HeLa-Rep2 0.64 1.56 0.08 -2 36 36 36 1,586,928 Input no

Sadasivam et al.

2012
human LIN9-HeLa-Rep1 0.92 1.39 0.49 -1 36 36 36 17,000,309 ChIP yes

Sadasivam et al.

2012
human LIN9-HeLa-Rep2 0.88 1.41 0.05 -2 36 36 36 1,798,161 ChIP yes

Boergesen et al.

2012
mouse LXR-WT-Bexarotene 0.93 1.94 2.05 2 35 35 35 6,469,307 ChIP yes

Boergesen et al.

2012
mouse LXR-WT-Control 0.9 1.91 1.45 1 35 35 35 6,086,575 ChIP unknown

Boergesen et al.

2012
mouse LXR-WT-T0901317 0.93 2.21 3.81 2 35 35 35 6,773,502 ChIP unknown

Boergesen et al.

2012
mouse PPARalpha-LXRdKO-Control 0.69 4.14 4.68 2 35 35 35 12,603,632 ChIP yes

Boergesen et al.

2012
mouse PPARalpha-WT-Control 0.66 4.02 10.05 2 35 35 35 13,493,293 ChIP yes
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Boergesen et al.

2012
mouse RXR-LXRdKO-Bexarotene 0.96 2.71 2 2 34 34 34 4,499,835 ChIP yes

Boergesen et al.

2012
mouse RXR-LXRdKO-Control 0.92 2.7 1.99 2 32 32 32 5,011,146 ChIP yes

Boergesen et al.

2012
mouse RXR-LXRdKO-T0901317 0.94 2.14 1.9 2 32 32 32 5,048,268 ChIP unknown

Boergesen et al.

2012
mouse RXR-WT-Bexarotene 0.94 2.57 1.82 2 34 34 34 4,819,549 ChIP yes

Boergesen et al.

2012
mouse RXR-WT-Control 0.95 1.96 1.33 1 32 32 32 5,847,078 ChIP yes

Boergesen et al.

2012
mouse RXR-WT-T0901317 0.93 3.08 2.13 2 32 32 32 5,510,973 ChIP unknown

Schödel et al. 2012 human HIF-1beta 0.37 3.41 1.44 1 51 51 51 7,729,167 ChIP yes

Schödel et al. 2012 human HIF-2alpha 0.64 3.11 1.21 1 51 51 51 1,885,345 ChIP yes

Schödel et al. 2012 human Pre-immune-control 0.29 4.94 1.87 2 51 51 51 5,806,061 IgG no

Pehkonen et al.

2012
human IgG-control 0.72 1.41 0.24 -2 36 36 36 15,281,888 IgG no

Pehkonen et al.

2012
human LXR-T09 0.87 1.47 0.29 -1 36 36 36 14,265,491 ChIP yes

Pehkonen et al.

2012
human LXR-vehicle 0.9 1.42 0.27 -1 36 36 36 14,289,777 ChIP unknown

GSE30919 mouse
CapH2-Ab1-DMSO-NOT-

NORMALIZED-mES-MM8
0.69 1.61 0.91 0 36 36 36 16,534,945 ChIP yes

GSE30919 mouse
CapH2-Ab1-FLAVO-NOT-

NORMALIZED-mES-MM8
0.71 1.61 0.83 0 36 36 36 15,830,789 ChIP yes

GSE30919 mouse CapH2-Ab1-WT-mES-MM8 0.66 1.73 0.92 0 36 36 36 16,607,056 ChIP yes

GSE30919 mouse CapH2-Ab2-WT-mES-MM8 0.9 1.41 0.78 0 36 36 36 17,717,075 ChIP yes

GSE30919 mouse
Smc1-DMSO-NOT-

NORMALIZED-mES-MM8
0.84 5.22 1.99 2 36 36 36 19,206,320 ChIP yes

GSE30919 mouse
Smc1-FLAVO-NOT-

NORMALIZED-mES-MM8
0.78 4.43 1.88 2 36 36 36 19,650,774 ChIP yes

Gao et al. 2012 human CBX2 0.83 1.51 0.52 0 46 46 46 11,796,622 ChIP yes

Gao et al. 2012 human FH-CBX2.HA 0.89 1.22 0.37 -1 36 36 36 20,303,587 ChIP yes

Gao et al. 2012 human FH-PCGF1.HA 0.82 1.35 0.35 -1 36 36 36 18,667,442 ChIP yes

Gao et al. 2012 human FH-PCGF2.HA 0.66 1.9 0.67 0 36 36 36 18,549,373 ChIP yes

Gao et al. 2012 human FH-PCGF4.HA 0.31 2.44 0.81 0 36 36 36 18,274,491 ChIP yes

Gao et al. 2012 human FH-PCGF5.HA 0.66 1.78 0.65 0 36 36 36 18,930,930 ChIP yes

Gao et al. 2012 human FH-PCGF6.HA 0.8 1.48 0.43 -1 36 36 36 19,548,786 ChIP yes

Gao et al. 2012 human FH-RING1B.HA 0.43 1.94 1.58 2 36 36 36 19,398,688 ChIP yes

Gao et al. 2012 human FH-RYBP.HA 0.83 1.32 0.36 -1 36 36 36 16,950,286 ChIP yes

Gao et al. 2012 human input 0.78 1.23 0.22 -2 36 36 36 19,426,459 Input no

Gao et al. 2012 human PCGF4 0.93 1.16 0.19 -2 46 46 46 14,654,954 ChIP yes

Gao et al. 2012 human RING1B 0.9 1.18 0.24 -2 46 46 46 19,431,342 ChIP yes
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Gao et al. 2012 human RYBP 0.91 1.36 0.44 -1 46 46 46 15,442,467 ChIP yes

Yu et al. 2012 mouse CBFb-induced-1 0.62 1.62 2.88 2 39.24 40 36 58,627,013 ChIP yes

Yu et al. 2012 mouse CBFb-thymocyte-control 0.25 1.63 0.62 0 40 40 40 8,637,405 ChIP yes

Yu et al. 2012 mouse CBFb-thymocyte-Runx1KO 0.35 1.4 0.54 0 40 40 40 7,518,656 ChIP yes

Yu et al. 2012 mouse CBFb-uninduced-1 0.73 1.58 2.28 2 36 36 36 26,748,905 ChIP yes

Yu et al. 2012 mouse IgG-induced-1 0.13 4.73 3.85 2 39.39 40 36 60,744,963 IgG no

Yu et al. 2012 mouse IgG-thymocyte-control 0.11 7.03 0.93 0 40 40 40 10,387,710 IgG no

Yu et al. 2012 mouse IgG-thymocyte-Runx1KO 0.04 9.33 0.8 0 40 40 40 11,696,369 IgG no

Yu et al. 2012 mouse IgG-uninduced-1 0.14 3.57 1.51 2 36 36 36 30,535,688 IgG no

Yu et al. 2012 mouse Ring1b-alt-ab 0.11 8.57 1.74 2 40 40 40 17,104,492 ChIP yes

Yu et al. 2012 mouse Ring1b-induced-1 0.67 1.5 2.59 2 39.31 40 36 65,911,236 ChIP yes

Yu et al. 2012 mouse Ring1b-thymocyte-control 0.21 3.38 0.58 0 40 40 40 7,476,406 ChIP yes

Yu et al. 2012 mouse Ring1b-thymocyte-Runx1KO 0.1 8.31 1.1 1 40 40 40 11,067,615 ChIP yes

Yu et al. 2012 mouse Ring1b-uninduced-1 0.38 2.1 3.58 2 36 36 36 31,481,625 ChIP yes

Yu et al. 2012 mouse Runx1-for-Ring1b-alt-ab 0.2 6.16 2.13 2 40 40 40 14,979,699 ChIP yes

Yu et al. 2012 mouse Runx1-induced-1 0.45 1.72 3.1 2 39.26 40 36 65,873,746 ChIP yes

Yu et al. 2012 mouse Runx1-thymocyte-control 0.24 5.51 1.23 1 40 40 40 8,075,699 ChIP yes

Yu et al. 2012 mouse Runx1-thymocyte-Runx1KO 0.17 4.65 0.84 0 40 40 40 9,234,112 ChIP no

Yu et al. 2012 mouse Runx1-uninduced-1 0.65 1.55 1.73 2 36 36 36 23,915,032 ChIP yes

GSE29180 human Jurkat-GATA3 0.75 4.85 0.85 0 36 36 36 4,308,315 ChIP yes

GSE29180 human Jurkat-Input-Rep1 0.97 1.19 0.42 -1 36 36 36 12,308,677 Input no

GSE29180 human Jurkat-RUNX1-Rep1 0.61 2.83 0.82 0 36 36 36 5,791,954 ChIP yes

GSE29180 human Jurkat-RUNX1-Rep2 0.53 2.44 0.53 0 36 36 36 5,800,696 ChIP yes

GSE29180 human Jurkat-RUNX1-Rep3 0.44 4.33 0.89 0 36 36 36 3,795,121 ChIP yes

GSE29180 human Jurkat-TAL1-Rep1 0.92 1.62 0.38 -1 36 36 36 5,485,444 ChIP yes

GSE29180 human Jurkat-TAL1-Rep2 0.86 2.59 0.68 0 36 36 36 6,350,195 ChIP yes

GSE29180 human Jurkat-TCF12 0.81 1.53 0.38 -1 36 36 36 8,594,457 ChIP yes

GSE29180 human Jurkat-TCF3 0.84 1.51 0.24 -2 36 36 36 5,398,758 ChIP yes

Sakabe et al. 2012 mouse input-1 0.95 1.86 0.47 -1 36 36 36 6,264,090 Input no

Sakabe et al. 2012 mouse input-2 0.94 1.38 0.41 -1 36 36 36 10,837,874 Input no

Sakabe et al. 2012 mouse input-3 0.95 1.21 0.48 -1 36 36 36 23,754,878 Input no

Sakabe et al. 2012 mouse Tbx20-GFP 0.87 1.9 0.63 0 36 36 36 5,928,909 ChIP yes

Miller et al. 2012 human HCC-1428-LTED-ER 0.92 1.2 0.36 -1 43 43 43 23,589,680 ChIP yes

Miller et al. 2012 human MCF-7-LTED-ER 0.93 1.15 0.55 0 43 43 43 27,118,853 ChIP yes

Hutchins et al. 2012 mouse PEC-IL10-treated-Input 0.97 1.39 0.25 -1 49 49 49 4,244,316 Input no

Hutchins et al. 2012 mouse PEC-IL10-treated-STAT3 0.71 5.06 1.09 1 49 49 49 3,841,121 ChIP yes

Hutchins et al. 2012 mouse PEC-Untreated-Input 0.97 1.39 0.17 -2 49 49 49 4,321,159 Input no

Hutchins et al. 2012 mouse PEC-Untreated-STAT3 0.83 3.12 0.73 0 49 49 49 4,189,247 ChIP unknown

Trowbridge et al.

2012
mouse MLL1 0.96 1.44 0.35 -1 36 36 36 4,933,023 ChIP yes

Xiao et al. 2012 mouse E14-IgG 0.58 2.13 0.42 -1 100 100 100 3,823,799 IgG no
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Xiao et al. 2012 mouse E14-TAF1 0.95 1.07 0.37 -1 75 75 75 22,675,646 ChIP yes

Xiao et al. 2012 pig piPSC-IgG 0.62 2.33 0.45 -1 75 75 75 3,237,532 IgG no

Xiao et al. 2012 pig piPSC-NANOG 0.79 1.06 0.2 -2 75 75 75 15,130,135 ChIP yes

Xiao et al. 2012 pig piPSC-OCT4 0.84 1.58 0.63 0 75 75 75 4,150,813 ChIP yes

Xiao et al. 2012 pig piPSC-p300 0.86 1.07 0.16 -2 75 75 75 27,328,401 ChIP yes

Xiao et al. 2012 pig piPSC-TAF1 0.76 1.06 0.23 -2 75 75 75 8,822,964 ChIP yes

Doré et al. 2012;

Chlon et al. 2012
mouse G1ME-ETS1 0.91 1.37 1.33 1 36 36 36 31,187,821 ChIP yes

Doré et al. 2012;

Chlon et al. 2012
mouse G1ME-GATA1 0.52 1.77 2.14 2 36 36 36 35,032,324 ChIP yes

Doré et al. 2012;

Chlon et al. 2012
mouse G1ME-GATA2 0.96 1.8 1.22 1 36 36 36 10,496,766 ChIP yes

Doré et al. 2012;

Chlon et al. 2012
mouse G1ME-INPUT-GAII 0.93 1.23 0.19 -2 36 36 36 10,209,628 Input no

Doré et al. 2012;

Chlon et al. 2012
mouse G1ME-INPUT-GAIIx 0.63 1.42 1.59 2 36 36 36 20,517,340 Input no

Li et al. 2012 mouse Input-seq-Adr8h 0.86 1.98 1.75 2 35 35 35 22,456,496 Input no

Li et al. 2012 mouse Input-seq-untreated 0.68 3.73 4.81 2 35 35 35 24,631,682 Input no

Li et al. 2012 mouse p53-Adr8h 0.74 8.66 2.17 2 35 35 35 22,316,127 ChIP yes

Li et al. 2012 mouse p53-untreated 0.95 5.29 1.57 2 35 35 35 9,544,532 ChIP unknown

Li et al. 2012 mouse p53S18P-Adr8h 0.92 14.22 1.65 2 35 35 35 9,487,356 ChIP yes

Li et al. 2012 mouse p53S18P-untreated 0.91 2.65 1.59 2 35 35 35 15,417,989 ChIP unknown

Bugge et al. 2012;

Feng et al. 2012
mouse Reverb-alpha-null-5pm 0.63 1.91 1.73 2 50 50 50 82,551,235 ChIP yes

Bugge et al. 2012;

Feng et al. 2012
mouse Reverb-beta-5am 0.83 1.7 0.73 0 36 36 36 7,098,042 ChIP unknown

Bugge et al. 2012;

Feng et al. 2012
mouse Reverb-beta-5pm 0.18 2.08 1.77 2 36 36 36 39,165,327 ChIP unknown

Gowher et al. 2012 human HA-flag-Vezf1-Rep1 0.91 1.22 0.5 0 36 36 36 41,807,364 ChIP yes

Gowher et al. 2012 human HA-flag-Vezf1-Rep2 0.94 1.22 0.38 -1 36 36 36 10,730,653 ChIP yes

Gowher et al. 2012 human Input-HELA-Rep1 0.91 1.34 0.96 0 36 36 36 39,886,595 Input no

Gowher et al. 2012 human Input-HELA-Rep2 0.96 1.32 0.58 0 36 36 36 10,704,869 Input no

Gowher et al. 2012 mouse Input-mm9ES-wt 0.96 1.31 0.86 0 36 36 36 14,112,421 Input no

Gowher et al. 2012 mouse Input-Vezf1-ko 0.96 1.35 0.83 0 36 36 36 13,596,489 Input no

GSE33346 mouse CapD3-Nocodazole-mES 0.66 1.78 0.96 0 36 36 36 23,506,234 ChIP unknown

GSE33346 mouse CapD3-WT-mES 0.77 2.75 1.33 1 36 36 36 20,944,575 ChIP yes

GSE33346 mouse CapG-Nocodazole-mES 0.72 1.45 0.63 0 36 36 36 22,267,698 ChIP unknown

GSE33346 mouse CapG-WT-mES 0.73 1.62 1.11 1 36 36 36 23,314,867 ChIP yes

GSE33346 mouse CapH2-Nocodazole-mES 0.42 2.65 1.94 2 36 36 36 19,469,725 ChIP unknown

GSE33346 mouse CapH2-shGFP-mES 0.81 1.57 1.18 1 36 36 36 22,027,077 ChIP yes

GSE33346 mouse CapH2-shNipbl-mES 0.49 2.23 1.31 1 36 36 36 21,121,437 ChIP unknown

GSE33346 mouse Rad21-rep1-WT-mES 0.93 12.57 1.37 1 36 36 36 14,695,398 ChIP yes
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GSE33346 mouse Rad21-rep2-WT-mES 0.85 13.29 2.19 2 36 36 36 20,290,096 ChIP yes

GSE33346 mouse WCE-Nocodazole-mES 0.61 1.54 0.97 0 36 36 36 22,934,718 Input no

GSE33346 mouse WCE-shGFP-mES 0.9 1.32 0.93 0 36 36 36 20,882,926 Input no

GSE33346 mouse WCE-shNipbl-mES 0.81 1.47 0.68 0 36 36 36 8,493,397 Input no

GSE33850 human E2A-CCRF-CEM 0.2 3.3 0.46 -1 40 40 40 9,580,539 ChIP yes

GSE33850 human GATA3-CCRF-CEM 0.14 4.27 0.54 0 40 40 40 8,433,815 ChIP yes

GSE33850 human HEB-CCRF-CEM-Rep1 0.11 5.07 0.79 0 39 39 39 11,256,332 ChIP yes

GSE33850 human HEB-CCRF-CEM-Rep2 0.15 4.66 0.66 0 40 40 40 13,394,868 ChIP yes

GSE33850 human Input-WCE-CCRF-CEM-Rep1 0.21 3.28 0.24 -2 39 39 39 3,524,267 Input no

GSE33850 human Input-WCE-CCRF-CEM-Rep2 0.81 1.33 0.08 -2 40 40 40 4,060,683 Input no

GSE33850 human
Input-WCE-Prima2-T-ALL-

Rep1
0.08 2.97 1.63 2 39 39 39 11,209,256 Input no

GSE33850 human
Input-WCE-Prima2-T-ALL-

Rep2
0.22 1.72 0.53 0 40 40 40 11,519,126 Input no

GSE33850 human
Input-WCE-Prima5-T-ALL-

Rep1
0.21 2.32 0.69 0 39 39 39 9,218,972 Input no

GSE33850 human
Input-WCE-Prima5-T-ALL-

Rep2
0.46 1.54 0.46 -1 40 40 40 10,635,018 Input no

GSE33850 human LMO1-Jurkat-Rep1 0.27 1.67 0.12 -2 40 40 40 6,940,746 ChIP yes

GSE33850 human LMO1-Jurkat-Rep2 0.57 1.79 0.27 -1 36 36 36 5,951,620 ChIP yes

GSE33850 human LMO2-CCRF-CEM-Rep1 0.11 2.74 0.28 -1 39 39 39 10,129,558 ChIP yes

GSE33850 human LMO2-CCRF-CEM-Rep2 0.15 2.72 0.25 -1 40 40 40 6,136,649 ChIP yes

GSE33850 human RUNX1-CCRF-CEM-Rep1 0.03 82.73 4.18 2 39 39 39 8,181,063 ChIP yes

GSE33850 human RUNX1-CCRF-CEM-Rep2 0.38 2.56 0.46 -1 40 40 40 12,118,147 ChIP yes

GSE33850 human TAL1-CCRF-CEM-Rep1 0.14 5.99 1.07 1 39 39 39 8,072,878 ChIP yes

GSE33850 human TAL1-CCRF-CEM-Rep2 0.17 3.12 0.68 0 40 40 40 17,651,204 ChIP yes

GSE33850 human TAL1-Prima2-T-ALL-Rep1 0.08 10.81 1.54 2 40 40 40 4,774,060 ChIP yes

GSE33850 human TAL1-Prima2-T-ALL-Rep2 0.05 10.97 1.65 2 39 39 39 7,554,079 ChIP yes

GSE33850 human TAL1-Prima5-T-ALL-Rep1 0.07 6.54 1.44 1 40 40 40 6,603,228 ChIP yes

GSE33850 human TAL1-Prima5-T-ALL-Rep2 0.05 7.04 1.56 2 39 39 39 9,252,579 ChIP yes

Avvakumov et al.

2012
human HBO1 0.96 1.24 1 0 36 36 36 31,901,032 ChIP yes

Avvakumov et al.

2012
human input 0.98 1.19 0.55 0 36 36 36 31,414,277 Input no

Hunkapiller et al.

2012
mouse InputDNA-Pcl3-shRNA 0.64 4.68 1.18 1 30 30 30 14,811,561 Input no

Hunkapiller et al.

2012
mouse InputDNA-Pcl3-shRNA6 0.95 1.2 0.4 -1 36 36 36 15,249,656 Input no

Hunkapiller et al.

2012
mouse InputDNA-Pcl3-shRNA7 0.95 1.22 0.55 0 36 36 36 19,965,283 Input no

Hunkapiller et al.

2012
mouse InputDNA-scramble 0.58 5.36 1.45 1 30 30 30 11,650,029 Input no
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Hunkapiller et al.

2012
mouse Pcl3-shRNA6 0.88 1.28 1.38 1 36 36 36 14,295,321 ChIP no

Hunkapiller et al.

2012
mouse Pcl3-shRNA7 0.86 1.41 0.8 0 36 36 36 10,534,049 ChIP no

Hunkapiller et al.

2012
mouse Suz12-Pcl3-shRNA 0.78 1.41 1.43 1 30 30 30 13,893,316 ChIP unknown

Hunkapiller et al.

2012
mouse Suz12-scramble 0.78 1.77 1.38 1 30 30 30 11,020,925 ChIP yes

Remeseiro et al.

2012
mouse Input 0.89 1.22 0.56 0 40 40 40 25,401,900 Input no

Remeseiro et al.

2012
mouse InputMEFs 0.93 1.14 0.44 -1 40 40 40 27,631,354 Input no

Remeseiro et al.

2012
mouse KO-SA1 0.86 1.35 0.64 0 40 40 40 20,865,198 ChIP no

Remeseiro et al.

2012
mouse KO-SA2 0.79 1.49 0.95 0 40 40 40 26,737,423 ChIP unknown

Remeseiro et al.

2012
mouse SMC1-KO.R1 0.78 4.13 1.66 2 40 40 40 9,276,356 ChIP unknown

Remeseiro et al.

2012
mouse SMC1-KO.R2 0.82 3.98 1.93 2 40 40 40 12,183,058 ChIP unknown

Remeseiro et al.

2012
mouse SMC1-WT 0.91 1.91 1.38 1 40 40 40 22,390,032 ChIP yes

Remeseiro et al.

2012
mouse SMC3-KO 0.88 2.54 2.01 2 40 40 40 27,111,387 ChIP unknown

Remeseiro et al.

2012
mouse SMC3-WT 0.9 1.48 1.03 1 40 40 40 25,310,295 ChIP yes

Remeseiro et al.

2012
mouse WT-SA1 0.78 4.43 2.46 2 40 40 40 26,143,843 ChIP yes

Remeseiro et al.

2012
mouse WT-SA2 0.65 2.12 1.59 2 40 40 40 25,387,005 ChIP yes

GSE36561 mouse Brd4-mES 0.94 1.47 1.14 1 36 36 36 18,715,973 ChIP yes

GSE36561 mouse Brg1-mES 0.92 1.62 0.42 -1 36 36 36 4,204,507 ChIP yes

GSE36561 mouse SA1-mES-Rep1 0.95 13.34 2.23 2 36 36 36 6,935,496 ChIP yes

GSE36561 mouse SA1-mES-Rep2 0.84 21.27 2.29 2 36 36 36 18,853,613 ChIP yes

GSE36561 mouse SA2-mES-Rep1 0.94 16.15 2.13 2 36 36 36 7,883,128 ChIP yes

GSE36561 mouse SA2-mES-Rep2 0.84 15.88 2.29 2 36 36 36 18,512,023 ChIP yes

Vilagos et al. 2012 mouse EBF1-8246.2 0.96 3.03 1.04 1 36 36 36 5,435,592 ChIP yes

Vilagos et al. 2012 mouse EBF1-8246.6 0.96 3.1 1.13 1 36 36 36 7,748,856 ChIP yes

Vilagos et al. 2012 mouse EBF1-mature-B-8271 0.94 1.89 0.41 -1 36 36 36 5,327,224 ChIP yes

Vilagos et al. 2012 mouse EBF1-mature-B-9842 0.51 2.34 1.05 1 36 36 36 16,361,104 ChIP yes

Vilagos et al. 2012 mouse Rag2.Pro-B.input-8091.5 0.72 2.43 0.08 -2 36 36 36 2,188,795 Input no

Vilagos et al. 2012 mouse Rag2.Pro-B.input-8091.6 0.73 2.22 0.08 -2 36 36 36 2,267,935 Input no

Vilagos et al. 2012 mouse Rag2.Pro-B.input-8112.1 0.97 1.39 0.17 -2 36 36 36 4,627,018 Input no

Continued on next page
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Vilagos et al. 2012 mouse Rag2.Pro-B.input-8112.6 0.96 1.28 0.19 -2 36 36 36 6,424,234 Input no

Vilagos et al. 2012 mouse Rag2.Pro-B.input-8123.2 0.51 2.4 0.08 -2 36 36 36 2,220,931 Input no

Vilagos et al. 2012 mouse
Rag2.Pro-B.input-

8149.8.301DTAAXX
0.81 3.37 0.19 -2 36 36 36 1,534,780 Input no

Vilagos et al. 2012 mouse
Rag2.Pro-B.input-

8149.8.30222AAXX
0.86 2.37 0.57 0 36 36 36 5,533,095 Input no

Vilagos et al. 2012 mouse
WT.Mature-B.Input-

8042.5.208KBAAXX
0.87 1.32 0.1 -2 34 34 34 4,297,854 Input no

Vilagos et al. 2012 mouse
WT.Mature-B.Input-

8042.7.207JYAAXX
0.89 1.57 0.12 -2 36 36 36 3,133,666 Input no

Vilagos et al. 2012 mouse
WT.Mature-B.Input-

8042.7.20CUYAAXX
0.88 1.66 0.13 -2 36 36 36 3,220,120 Input no

Vilagos et al. 2012 mouse
WT.Mature-B.Input-

8042.8.208KDAAXX
0.87 3.9 0.2 -2 36 36 36 1,082,634 Input no

Vilagos et al. 2012 mouse WT.Mature-B.Input-8087 0.97 1.6 0.18 -2 32 32 32 4,201,759 Input no

Vilagos et al. 2012 mouse WT.Mature-B.Input-8089 0.96 1.59 0.22 -2 36 36 36 4,101,017 Input no

Vilagos et al. 2012 mouse WT.Mature-B.Input-8094 0.96 1.53 0.16 -2 36 36 36 3,717,876 Input no

Vilagos et al. 2012 mouse WT.Mature-B.Input-8096 0.95 1.33 0.17 -2 36 36 36 5,480,836 Input no

Cardamone et al.

2012
human GPS2 0.89 1.77 1.2 1 76 76 76 8,251,524 ChIP yes

Cardamone et al.

2012
human NCOR-siCTL 0.67 3 2.11 2 36.01 44 36 6,572,892 ChIP yes

Cardamone et al.

2012
human NCOR-siGPS2 0.72 2.5 0.78 0 36.01 44 36 5,121,903 ChIP unknown

Cardamone et al.

2012
human TBL1 0.87 1.87 1.93 2 36 36 36 9,798,221 ChIP yes

Fan et al. 2012 mouse HoxB4-day-16 0.95 2.1 1.08 1 41 41 41 8,877,542 ChIP yes

Fan et al. 2012 mouse HoxB4-day-26 0.94 4.72 1.79 2 41 41 41 10,871,546 ChIP yes

Fan et al. 2012 mouse HoxB4-day-6 0.92 2.36 1.63 2 36 36 36 6,336,688 ChIP yes

Fan et al. 2012 mouse Input-day-16 0.97 1.41 0.72 0 41 41 41 12,098,959 Input no

Fan et al. 2012 mouse Input-day-26 0.97 1.45 0.79 0 41 41 41 11,607,750 Input no

Fan et al. 2012 mouse Input-day-6 0.97 1.22 0.3 -1 36 36 36 8,817,894 Input no

Fong et al. 2012 mouse MM-MyoD 0.84 8.25 1.83 2 39 39 39 21,182,386 ChIP yes

Fong et al. 2012 mouse MM-NeuroD2 0.92 5.14 1.67 2 39 39 39 13,996,908 ChIP yes

Fong et al. 2012 mouse P19-control 0.97 1.42 0.56 0 38 39 37 8,903,023 IgG no

Fong et al. 2012 mouse P19-MyoD 0.92 12.89 1.94 2 39 39 39 12,117,729 ChIP yes

Fong et al. 2012 mouse P19-NeuroD2 0.94 7.18 1.67 2 39 39 39 14,558,083 ChIP yes

Ptasinska et al.

2012
human Input 0.88 1.35 0.2 -2 40 40 40 5,280,044 Input no

Ptasinska et al.

2012
human RUNX1-Kasumi-1 0.97 1.37 0.83 0 43.34 80 36 17,904,797 ChIP yes

Ptasinska et al.

2012
human RUNX1-non-t-8-21 0.91 3.67 1.81 2 36 36 36 30,747,325 ChIP yes

Continued on next page
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Ptasinska et al.

2012
human RUNX1ETO-control 0.95 1.79 0.97 0 75.95 80 40 7,462,090 ChIP yes

Ptasinska et al.

2012
human RUNX1ETO-siMM 0.94 1.65 0.97 0 73.57 80 40 12,843,591 ChIP yes

Ptasinska et al.

2012
human RUNX1ETO-siRE 0.82 2.82 1.2 1 67.36 80 40 5,525,324 ChIP no

Cho et al. 2012 mouse liver-input 0.78 1.54 1.25 1 42 42 42 29,085,894 Input no

Cho et al. 2012 mouse REV-ERBalpha 0.89 2.05 1.69 2 42 42 42 32,677,790 ChIP yes

Cho et al. 2012 mouse REV-ERBbeta 0.65 2.15 2.84 2 42 42 42 28,812,418 ChIP yes

Wu et al. 2012 mouse input-RUNX1 0.97 1.26 0.58 0 34 34 34 11,771,941 Input no

Wu et al. 2012 mouse input-TCF7 0.96 1.2 0.82 0 36 36 36 22,172,123 Input no

Wu et al. 2012 mouse RUNX1-Rep1 0.71 3.8 2.2 2 34 34 34 9,285,076 ChIP yes

Wu et al. 2012 mouse RUNX1-Rep2 0.68 4.01 2.32 2 34 34 34 10,064,029 ChIP yes

Wu et al. 2012 mouse TCF7 0.83 1.85 1 1 36 36 36 13,877,190 ChIP yes

Barish et al. 2012 mouse Bcl6-KO-macrophage-NCoR 0.66 1.75 1.37 1 42 42 42 25,491,046 ChIP yes

Barish et al. 2012 mouse Bcl6-KO-macrophage-SMRT 0.81 1.51 1.14 1 42 42 42 25,610,348 ChIP yes

Barish et al. 2012 mouse WT-macrophage-NCoR 0.84 1.81 1.79 2 43 43 43 24,281,787 ChIP yes

Barish et al. 2012 mouse WT-macrophage-SMRT 0.62 2.05 2.21 2 43 43 43 27,456,911 ChIP yes

∗ Note: datasets from Trompouki et al. 2011 were excluded from figures as the vast majority of them had a
very low number of mapped reads.
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http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE27033
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE27033
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE27033
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Table 10.2: Dataset QC evaluation and mapping statistics for MyoD and myogenin datasets
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Wold Lab mouse C2C12 60h MyoD 0.90 12.39 1.65 2 36 36 36 6,771,837 ChIP yes

Wold Lab mouse C2C12 60h myogenin 1 0.88 9.21 1.93 2 36 36 36 10,385,089 ChIP yes

Wold Lab mouse C2C12 60h myogenin 2 0.97 6.95 1.32 1 36 36 36 1,198,656 ChIP yes

Wold Lab mouse C2C12 60h myogenin 3 0.93 1.20 0.40 -1 36 36 36 19,600,577 ChIP yes

Wold Lab mouse C2C12 60h 1%FA Input 3 0.94 1.22 0.46 -1 36 36 36 17,856,564 ChIP no

Wold Lab mouse C2C12 60h 1%FA+EGS Input 3 0.87 4.88 1.52 2 36 36 36 9,092,000 ChIP no
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11

High-throughput robotic chromatin immunoprecip-

itation for ChIP-seq (R-ChIP)

The material in this chapter has, at the time of writing this, prepared for publication as:

Gasper WG, Marinov GK, Pauli-Behn F, Scott MT, Newberry K, deSalvo G, Ou S, Myers RM, Viel-

metter J, Wold BJ. Fully automated high-throughput chromatin immunoprecipitation for ChIP-seq:

Identifying ChIP-quality p300 monoclonal antibodies.

The R-ChIP protocol was developed by Clarke Gasper and Jost Vielmetter. My contribution was in

analyzing the data and writing the manuscript.

Abstract

Chromatin immunoprecipitation coupled with DNA sequencing (ChIP-seq) is the

major contemporary method for mapping in vivo protein-DNA interactions in the

genome. It identifies sites of transcription factor, cofactor and polymerase occupancy,

as well as the distribution of histone marks. Consortia such as the ENCyclopedia Of

DNA Elements (ENCODE) and the NIH Roadmap Epigenomics Mapping Consortium

have produced large datasets over a period of several years using manual protocols.
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However, future measurements of hundreds of additional factors in many cell types

and physiological states call for the higher throughput and uniformity afforded by

automation. The immunoprecipitation process has become rate-limiting, and is, in

addition, a source of substantial variability when performed manually. Here we report

a fully automated robotic ChIP (R-ChIP) pipeline that allows up to 96 reactions, with

high consistency and limited human involvement. A second bottleneck is the dearth of

renewable ChIP-competent immune reagents, which do not yet exist for the majority

of known mouse and human transcription factors and co-factors. We used R-ChIP

to screen new mouse monoclonal antibodies raised against p300, a histone acetylase

protein well-known as a marker of active transcriptional enhancer elements. Despite

its importance, ChIP-competent monoclonal reagents for p300 have been lacking. We

identified and validated for ChIP-seq a monoclonal reagent called ENCITp300-1.

11.1 Introduction

Contemporary studies of gene regulation are often based, at least in part, on learning the patterns

of chromatin mark distribution and the locations of specific transcription factor occupancy in the

genome. The chromatin Immunoprecipitation (ChIP) assay, in several variations, provides this infor-

mation (Gilmour & Lis 1984; Gilmour & Lis 1985; Solomon et al. 1988). ChIP protocols typically

begin by cross-linking proteins to DNA (usually using formaldehyde); then selectively retrieving

DNA fragments associated with a protein of interest by immunoprecipitation; and finally analyzing

the enriched DNA. Originally, ChIP-enrichment was analyzed using qPCR at predefined genomic

regions (Hecht et al. 1996). Later, it was coupled with microarray readouts (ChIP-Chip/ChIP-on-

Chip) which allowed many selected regions to be assayed in parallel (e.g. all promoters) or even

whole genomes, especially in organisms with small genomes. (Ren et al. 2000; Iyer et al. 2001; Lieb

et al. 2001; Horak & Snyder 2002; Weinmann et al. 2002). Eventually, high-throughput sequencing

enabled truly genome-wide mapping of protein-DNA interactions, with high resolution, in the form

of ChIP-seq (Barski et al. 2007; Johnson et al. 2007; Mikkelsen et al. 2007; Robertson et al. 2007;

Wold & Myers 2008).

ChIP-seq has become the workhorse for mapping the whole-genome occupancy of hundreds of

transcription factors in human, mouse, fly and worm by the ENCODE (ENCODE Project Consor-

tium 2011; ENCODE Project Consortium 2012; Gerstein et al. 2012; Wang et al. 2012), mouse

ENCODE (Mouse ENCODE Consortium 2012) and modENCODE consortia (Gerstein et al. 2010;
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modENCODE Consortium 2010) and to profile the genomic distribution of numerous histone modifi-

cations in a wide variety of human cell lines and tissues by the NIH Roadmap Epigenomics Mapping

Consortium (Bernstein et al. 2010). Despite the large number of datasets generated thus far, they

are a small fraction of the expected future ChIP-seq experiments from individual laboratories as

well as consortia. For example transcription factors assayed by ENCODE through 2013 represent

only about 10% of the total number of transcription factors in the genome (Vaquerizas et al. 2009),

and this has been done in a very limited number of cell types. Initially, DNA sequencing capacity

and cost were major barriers to very large scale ChIP-seq, but sequencing capacity has increased by

several orders of magnitude and costs per ChIP have dropped significantly. Notably, the ChIP step

has emerged as rate-limiting. It is tedious and, in practice it is often variable from one practitioner to

another, from experiment to experiment and even among replicates in a single experiment. This sug-

gested that a robust robotic ChIP protocol could stabilize and improve data quality, reproducibility,

manpower use, and overall costs and efficiency per experiment.

A second independent challenge for ChIP-seq experiments is that the supply of high-quality sus-

tainable immune reagents experimentally validated for ChIP remains very limited. Many antibodies,

including some marketed as “ChIP-grade” have failed in the ENCODE pipeline, and many that suc-

ceed are polyclonal, which means that different lots can vary radically in how well they perform in

ChIP. At present, monoclonal antibodies are the most reliable renewable ChIP reagents, although

they do not account for the majority of characterized reagents, and there are no ChIP-competent

reagents for the majority of human and mouse transcription factors. Validated polyclonal reagents

have been shown to vary substantially from one lot to another (Egelhofer et al. 2010). The field

therefore faces the twin challenges of generating large quantities of ChIP-seq data in reliable high-

throughput manner for factors with extant affinity reagents, and screening and characterizing new

sustainable immune reagents.

In this work we developed a fully automated robotic pipeline for the chromatin immunoprecip-

itation reaction (R-ChIP). High-throughput 96-well plate methods for performing ChIP have been

Figure 11.1 (preceding page): Illustration of individual automated ChIP protocol steps. A
Tecan Freedom EVO 200 robot equipped with a Liquid Handling arm (LiHa), a Multi Channel Arm
(MCA) and Robotic Manipulator arm (RoMa) is used for all steps. Additional devices integrated
into the robot are standard size plate carriers, magnet plate, orbital plate shaker and PCR machine.
The cartoons in the left column illustrate each protocol step, described in the flow diagram in the
second column. The cartoon sequences on the right illustrate the robotic process step sequences
used for each protocol step. The white arrows pointing to the protocol steps indicate which robot
sequences apply to each protocol step.
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described before (Garber et al. 2012; Blecher-Gonen et al. 2013). However, those methods require

substantial hands-on time and are subject to variability inherent in experiments done by humans.

The R-ChIP reported here employs a widely used, multipurpose programmable liquid handling

robotic platform (Tecan EVO 200), which can be used for a multitude of other purposes, such as

robotic plasmid cloning or automated ELISA screenings when it is not being used for automated

ChIP. We tested our protocol on factors that had previously been characterized in multiple ENCODE

cell lines and show that it performs comparably to manual ChIP-seq in enrichment and in producing

high quality ChIP-seq libraries that are consistent within and between experiments. We then applied

R-ChIP to screen candidate monoclonal antibodies against the transcriptional co-activator p300, a

protein for which monoclonal ChIP-competent reagents have until now not been available, and for

which polyclonal reagent lots have been highly variable.

11.2 Results

11.2.1 Automated ChIP protocol adaptations

The primary goal of this work was to fully automate ChIP without compromising yield and quality.

Our design approach was to develop automation that mimics as closely as possible the established

manual process, using the ENCODE ChIP protocol as the starting point (the current manual EN-

CODE ChIP protocol is provided in supplementary appendix). Where process changes were made

to accommodate automation, we benchmarked the new process against results from the established

protocol.

We configured a Tecan EVO Freedom 200 robot as detailed in Figure 11.1, and programmed it

for running a 96-well format of automated chromatin immunoprecipitation reactions (the program

Figure 11.2 (preceding page): Reproducibility of R-ChIP experiments. Multiple ChIP-
seq experiments on multiple plates were generated for the NRSF/REST repressor in GM12878
lymphoblastoid cells (n = 4 plates) and Jurkat T-cells (n = 4 plates) cell lines. The numbers (1
through 5) refer to the number of the plate a library came from, “M” refers to manually generated
datasets. The first two manual GM12878 datasets were previously published as part of the ENCODE
project, the next four were generated in parallel with the R-ChIP ones. (A) Number of called regions
for each dataset (using ERANGE 4.0, Johnson & Mortazavi et al. 2007) (B) Assessment of ChIP
enrichment using RSC (Relative Strand Correlation) cross-correlation scores (Landt et al. 2012);
(C) Assessment of ChIP enrichment using FRiP (Fraction of Reads in Peaks) scores (Landt et al.
2012); (D) Overlap between called peaks in robotic and manual ChIP libraries in GM12878 cells;
(E) Overlap between called peaks in robotic and manual ChIP libraries in Jurkat cells. The overlap
score (OXY ) shown in each box indicates the fraction of peaks in the dataset on the y-axis that are
also found in the dataset on the x-axis, i.e. OXY = |X ∩ Y |/|Y |.
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itself is supplied as supplementary file). Major considerations for automating ChIP revolved around

magnetic bead-handling to achieve successful incubation, washing, and recovery of immunoprecip-

itated material, while effectively eliminating unbound chromatin. In the manual version of ChIP,

bead agitation is achieved by tumbling the reaction mix in standard Eppendorf 1.5-mL micro tubes

on a tumbler wheel. The agitation device available on the robot is an orbital shaker with a 2-mm

shake radius and adjustable speeds ranging from 100 rpm to 1600 rpm. An alternate method for

automated bead agitation mixes by repeated pipetting (trituration). We reasoned that pipetting

would have inevitable bead losses to the pipette surface, especially as multiple tip changes would be

required. We therefore focused on the orbital shaker. The second automation constraint comes from

the 96-well plate format compared with individual microtubes in the manual protocol. This change

requires effective robotic washing without cross-contamination between wells or sample spillage. Fi-

nally, the 96-well format requires a plate magnet strong enough to efficiently pull down all beads.

Several vendors offer plate magnet compatible with the robot platform, but most are designed for

standard low profile micro plates, while our automated ChIP protocol requires deep well plates for ef-

fective bead washing. A magnet designed specifically for deep well plates (SPRIPlate Super Magnet

Plate from Agencourt, Beckman Coulter) proved effective. Its success in our hands was optimal with

a round well deep well plate with U-bottom wells (catalog # 278752, Nunc). A summary of major

differences for the robotic protocol is below and both protocols are given in detail in Supplemental

Methods:

1. Bead agitation was changed from a tumbling motion in the manual protocol to rapid orbital

shaking. The shake speed was optimized to keep beads fully suspended without spillage (1400

rpm).

2. The sample volume was reduced from 1000 µL to 500 µL to prevent spillage.

3. Wash steps after antibody and chromatin binding where increased in number from 3 to 4 to

compensate for the smaller wash volume.

4. Bead recovery time on the magnet was extended to 7 min on the robot, a condition determined

empirically using the criterion that no detectable beads were left behind in the supernatant

upon microscopic inspection.

The R-ChIP protocol incubates the ChIP antibody with the magnetic beads in the conjugation

step for 1 hour at room temperature, and incubates chromatin with the antibody-conjugated mag-

netic beads for 1 hour at room temperature plus 1 hour on a 4 ◦C cooling plate carrier, but with
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interruptions to resuspend the beads.

The step that dissociates bound chromatin from antibody-magnetic beads is done in the robot’s

PCR module, thus eliminating bead agitation during the 65 ◦C 1 hour incubation.

11.2.2 Consistency of robotic ChIP results

We first tested the robustness and reproducibility of our robotic ChIP protocol by carrying out

multiple manual and R-ChIP experiments for the NRSF/REST transcription factor. NRSF/REST

(Schoenherr & Anderson 1995; Chong et al. 1995) is a negative transcriptional regulator of neuronal

genes in non-neuronal cell types. It was the first transcription factor to which ChIP-seq was applied

(Johnson et al. 2007), its binding has been extensively mapped in multiple cell lines, and its

recognition site (and its binding variants) is well studied. The monoclonal antibody used for NRSF

ChIP has been well characterized for specificity and for efficacy in the ChIP-seq format. It is thus

an ideal system to characterize our method.

We performed ChIP-seq experiments in two cell lines, GM12878 and Jurkat, producing at least

three libraries from four separate plates for GM12878 and from four separate plates for Jurkat. We

compared the resulting data to existing manually generated NRSF ChIP-seq datasets for GM18278

cells (ENCODE Project Consortium 2012) and to additional four manual ChIP-seq datasets gener-

ated in parallel with the R-ChIP ones. These data are summarized in Figure 2.

To assess ChIP quality, we used library and ChIP QC metrics that were developed previously by

us and others as part of the ENCODE Consortium (Landt et al. 2012; Kundaje et al. unpublished;

Marinov et al. 2014). The first question regarding ChIP quality is how well the immunoprecipitation

step has enriched for DNA fragments attached to the antigen of interest. This can be assessed by

calculating the fraction of reads falling within called peaks (FRiP, Landt et al. 2012) or by using

cross-correlation (Kharchenko et al. 2008; Landt et al. 2012). Both measures have limitations in

some special cases (Marinov et al. 2014), but when both are applied and concur, confidence in

the results is high. Figure 11.2A shows the number of called peaks and Figures 11.2B and 11.2C

show the RSC (Relative Strand Correlation, Landt et al. 2012; Kundaje et al., unpublished) and

FRiP values for manual and robotic NRSF ChIP-seq datasets. R-ChIP data consistently exhibited

good RSC values (RSC ≥ 1) and FRiP and peak number values comparable to those of manually

generated libraries, with the exception of three Jurkat libraries (the first ChIP on plates 2, 3, and

4, Figure 11.2A, 11.2B and 11.2C) that scored as less successful. We do not presently know the

cause of these lower-quality libraries, but their frequency is well within the range of variability of
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Figure 11.3: Comparison between manual and robotic ChIP-seq resullts and between ChIP-

seq results on GM12878 chromatin fixed under standard fixation conditions and chromatin

fixed at 37 ◦C for additional targets. (A,B,C) ChIP-seq against H3K27ac in GM12878 cells. (A)
FRiP score, (B) number of peaks called, (C) overlap between the sets of peaks; (D,E,F) ChIP-seq
against GABP in GM12878 cells. (D) FRiP score, (E) number of peaks called, (F) overlap between
the sets of peaks; (G,H,I) ChIP-seq against ZBTB33 in GM12878 cells. (G) FRiP score, (H) number
of peaks called, (I) overlap between the sets of peaks; (J,K,L) ChIP-seq against PU.1 in GM12878
cells. (J) FRiP score, (K) number of peaks called, (L) overlap between the sets of peaks. The overlap
score (OXY ) shown in each box indicates the fraction of peaks in the dataset on the y-axis that are
also found in the dataset on the x-axis, i.e. OXY = |X ∩ Y |/|Y |
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manually generated libraries we have observed over several years, during which sporadic unsuccessful

experiments for factor/antibody pairs that are otherwise routinely successful have occurred. Finally,

we asked how similar the final sets of called peaks are for the robotic protocol and how they compare

with reference manual datasets for the same factor and cell type, by evaluating peaks called after

sequencing. Figures 11.2D and 11.2E show the similarity of peak call sets for all libraries measured

by calculating the size of the overlap between each pair of libraries. We observed consistently high

overlap scores and thus high reproducibility between all libraries. These observations applied both

within and between plates, underscoring the consistency and robustness of the R-ChIP protocol.

To further characterize the consistency between the results R-ChIP and manual ChIP experi-

ments, we generated paired manual and robotic ChIP-seq datasets using matched chromatin samples

for several additional targets (Figure 11.3). These included the H3K27ac histone modification (Fig-

ure 11.3A, 11.3B and 11.3C), the GABP transcription factor (Watanabe et al. 1990; Thompson et

al. 1991; Collins et al. 2007; Figure 11.3D, 11.3E and 11.3F), the ZBTB33/Kaiso zing-finger protein

known for its preferential binding to methylated DNA (Prokhortchouk et al. 2001; Figure 11.3G,

11.3H and 11.3I), and the important regulator of hematopoiesis SPI1/PU.1 (Klemsz et al. 1990;

Burda et al. 2010; Figure 11.3J, 11.3K and 11.3L). We observed comparable results between the

manual and robotic datasets (with the exception of one not very successful robotic PU.1 libraries,

although it should be noted that PU.1 does not perform consistently well in ChIP-seq even though

it often produced very strong datasets), further confirming the applicability of R-ChIP to large-scale

ChIP-seq production.

11.2.3 Using R-ChIP to characterize new monoclonal p300 antibodies

Having established the R-ChIP protocol, we next applied it to characterize a set of monoclonal

antibodies raised against the p300 transcriptional coactivator in the Beckman Institute Protein

Expression Center at Caltech. The p300 protein is a histone acetyltransferase (Eckner et al. 1994;

Arany et al. 1994; Lundblad et al. 1995; Ogryzko et al. 1996), best known for its role in the

acetylation of histones. It is used as a marker of active transcriptional enhancers in mammalian

genomes (Visel at al. 2009; Blow et al. 2010; May et al. 2011; Visel et al. 2013). Commercially

available antibodies used to generate published p300 data are from a series of polyclonal reagents

and are neither identical from lot to lot, historically, nor are they renewable.

We generated 11 α-p300 mouse monoclonal antibodies which were initially screened, cloned and

then rescreened using a plate based ELISA assay. We tested hundreds of individual hybridoma
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Figure 11.4: Characterization of novel monoclonal p300 antibodies using robotic ChIP. ChIP-
seq against p300 was carried out in GM12878 cells and prior ENCODE data for it in that cell line
(from the “SYDH” production group) was used as a reference. ENCODE data was generated using
two different rabbit polyclonal antibodies from Santa Cruz (sc-584 and sc-585). We carried out
robotic ChIP testing of two different lots of the sc-585 antibody and 11 different monoclonals we
raised. The 1F4-E10P clone scored best and additional replicate were generated in subsequent
experiments. (A) Number of called regions; (B) ChIP enrichment as measured by FRiP scores
(Landt et al. 2012); (C) Overlap between called peaks with different antibodies. The overlap score
(OXY ) shown in each box indicates the fraction of peaks in the dataset on the y-axis that are also
found in the dataset on the x-axis, i.e. OXY = |X ∩ Y |/|Y |; (D) Representative browser snapshot
of p300 ChIP enrichment in polyclonal and monoclonal datasets around the IL13 and IL4 locus
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Figure 11.5: Overlap of called p300 peaks with regions of histone mark enrichment in EN-

CODE data from GM12878 cells. The overlap score (OXY ) shown in each box indicates the
fraction of peaks in the dataset on the y-axis that are also found in the dataset on the x-axis, i.e.
OXY = |X ∩ Y |/|Y |. The ENCODE histone mark region calls were downloaded from the UCSC
Genome Browser.

B-cells isolated from spleens of mice injected with a GST-tagged p300 protein fragment (aa 152-213)

or a synthetic KLH-coupled peptide (aa 1526-1545). The GST-tagged preparations were subjected

to formaldehyde “fix” conditions (1% FA for 10 min) with the goal of increasing the likelihood
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of reactivity in ChIP. The resulting 11 p300 monoclonal antibodies were tested for ChIP together

with two lots of rabbit polyclonal p300 antibodies (Santa Cruz sc-585, lot numbers F2711 and

E3113,) on chromatin from GM12878 cells. The resulting datasets were compared to each other

and to publicly available ENCODE p300 data from the same cells (using two commercially available

rabbit polyclonal antibodies, Santa Cruz sc-585 and sc-584) (Figure 11.4). Three of the mouse

monoclonal antibodies raised against and N-terminal p300 synthetic peptide scored positive by ChIP-

seq, identifying between 1,524 and 4,870 peaks (Figure 11.4A and 11.4B). We sequenced multiple

additional replicates for the best-scoring one, 1F4-E10P and identified and even higher number of

peaks in some of the datasets, up to 8,430, with the typical number being ∼6,000. The peaks called

in the monoclonal antibody dataset are a subset of those found in the polyclonal data (Figure 11.4C)

confirming the specificity of the antibodies towards p300. While the monoclonal numbers are lower

than the two most successful polyclonal datasets, they are within the range of what was previously

Figure 11.6: Comparison between p300 ChIP-seq resullts on GM12878 chromatin fixed under

standard fixation conditions and chromatin fixed at 37 ◦C. The 1F4-E10P monoclonal antibody
was used for all datasets. (A) Number of called peaks; (B) ChIP-enrichment measured by FRiP.



444

Figure 11.7: Comparison between NRSF ChIP-seq resullts on GM12878 chromatin fixed

under standard fixation conditions and chromatin fixed at 37 ◦C. (A) Number of called regions;
(B) ChIP enrichment as measured by FRiP; (C) Overlap between called peaks. The overlap score
(OXY ) shown in each box indicates the fraction of peaks in the dataset on the y-axis that are also
found in the dataset on the x-axis, i.e. OXY = |X ∩ Y |/|Y |;
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observed in ENCODE data, and also within the range of published p300 datasets.

It was not our purpose in this study to characterize new polyclonal reagent lots, but the ones used

previously by ENCODE were no longer available. We therefore used two additional rabbit polyclonal

antibodies in R-ChIP (Santa Cruz sc-585, lot numbers E3113 and F2711), and they identified up to

∼30,000 peaks. This number greatly exceeds previously published p300 datasets, including currently

available ENCODE data for the same GM12878 B-cell line (for which between 2,610 and 12,924

peaks were called previously) (Figure 11.4A and 11.4B). This increase has two likely causes, and

they are not mutually exclusive. The first well-appreciated variable is different performance by

polyclonal antibody lots. In principle, individual lots can vary in the number and identity of epitopes

recognized, in effective antibody concentration and in non-specific reactivity. A second difference

from the prior ENCODE data is the fixation condition. For p300, we fixed cells at 37 ◦C versus

room temperature for the historic ENCODE data. This condition was suggested to us, specifically

for p300, by Dr. Bing Ren, and is based on the idea that a longer time and elevated temperature

would increase p300 cross-linking via indirect links to DNA-bound transcription factors or histones.

This condition significantly improves p300 ChIP in our hands - we generated four datasets using the

1F4-E10P antibody on chromatin fixed under standard conditions and they were all unsuccessful

(Figure 11.6). Of the 30,000 p300 peaks called the majority (between 76% and 88%) overlap with

one or more chromatin marks associated with enhancer and promoter activity in ENCODE data

(H3K27ac; H3K4me1) or with regions of DNAse Hypersensitivity (Figure 11.5), consistent with them

being active enhancers and promoters. For multiple cell types, the numbers of DNAse hypersensitive

regions (Neph et al. 2012; Thurman et al. 2012), H3K27ac and H3K4me1 positive regions, reported

previously are typically in the tens of thousands (ENCODE Project Consortium 2012), and the

number of expressed genes per cell type is between 5 and 10,000. Thus the expected number of

enhancers (and p300-positive regions) is larger than the single-digit thousands of p300 peaks called

in most previously available data. Therefore while reagent-specific background, including possible

polyclonal cross-reactivity, could explain the thousands of p300 peaks that lack additional enhancer

or promoter marks, the most parsimonious explanation for the overall very large number of p300

peaks is that prior ChIP measurements have under-estimated p300 occupancy. Our best-performing

monoclonal antibody did not produce comparably high peak numbers using the same chromatin

substrate, but 99% of its peaks overlap those called in the polyclonal datasets. We tested additional

factors with the 37 ◦C fixation condition. Results were very similar to the standard condition for

NRSF, H3K27ac and GABP (Figure 11.7, 11.3A-F) suggesting the more aggressive fixation condition

does not result in general nonspecific background. Surprisingly, the individual 37 ◦C ZBTB33 and
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PU.1 were worse than the standard-fixation ones (Figure 11.3G-L), however, at present these datasets

constitute a very small sample size and it is still not possible to draw comprehensive conclusions

about the 37 ◦C fixation condition. A much wider survey of different factors will be necessary for

that purpose.

11.3 Discussion

The robotic ChIP (R-ChIP) reported here was developed on a widely used commercial liquid-

handling platform (Tecan) whose configuration and running program for ChIP are provided. Our

initial goal was to increase ChIP-seq throughput, uniformity, and quality, while reducing investigator

tedium and error in the context of a large consortium project, but this platform could also be put

to work for widespread small projects through core or contract facilities. Our R-ChIP results were

comparable in quality to those from the manual pipeline history by all metrics. However, this is

a new protocol, and the platform’s performance is not perfect. We expect that we and others will

continue to make improvements. Specifically, we have observed some sporadic single reaction failures

for duplicate samples on a single plate. It is our standard practice to include on each R-ChIP plate

a minimum of triplicate control samples deployed across the plate geometry. We use a monoclonal

reagent and a large batch of control chromatin to allow comparisons over plates through time. This

allows us to evaluate each plate run and to compare it with other runs. This evaluation can be done

as a QC step before committing to building the other libraries and sequencing them, which has clear

economic implications.

Troubleshooting is aided by R-ChIP compared to standard manual practices. If a group of failed

samples are embedded in a large R-ChIP run where the controls and other samples are successful,

it becomes unlikely that the ChIP process is the source of failure, and a user can turn attention

to the input sample and immune reagent (or any post-ChIP variation) as more likely problem. Of

course, the overall success of ChIP-seq includes the local DNA sequencing process, which can be

differentially sensitive to the mass of sample, fragment size, and other characteristics of a ChIP

output.

We used R-ChIP to screen for monoclonal p300 ChIP-seq antibodies as a further test of R-ChIP.

The p300 protein is a “high value” target for ChIP-seq because a map of active transcriptional en-

hancer candidates is often wanted. Many antibodies made against transcription factors fail in ChIP

reactions, even though they work well in one or more conventional uses (e.g. standard immuno-

precipitation, western blots or immunocytochemical stains). Moreover, polyclonal reagents that are
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ChIP-seq compatible typically vary, sometimes greatly, in their specificity and performance from lot

to lot (Egelhofer et al. 2011). The upshot has been that the only way to identify a ChIP-quality

antibody is to test it directly for ChIP, and the most general way to ensure reliability and unlimited

supply is with a monoclonal antibody. Whether the final readout for ChIP competence is DNA

sequencing or qPCR (the latter requiring known targets for the factor), the capacity to test many

ChIP reactions is critical for screening. Here we used R-ChIP to identify a ChIP-grade monoclonal

for p300.. The interactomes identified with this hybridoma clone, ENCITp300-1, overlap highly

with prior measurements from ENCODE for the same cell line and with concurrent polyclonal de-

terminations, confirming its specificity for p300 and the utility of R-ChIP for screening new immune

reagents for ChIP. We note, however, that the data obtained with it are not as inclusive as the best

ones produced using polyclonal rabbit reagents.

For p300 R-ChIP, we used chromatin from cells fixed with a modified condition (37 C, 1%

formaldehyde, 30 min) which was recommended to us by Dr. Bing Ren (UC San Diego), whose

laboratory has extensive experience with p300 ChIP. This improved p300 ChIP significantly in our

hands compared with our standard fixation condition (see Results and Methods), while it had no

detectable effect on NRSF, GABP and H3K27ac ChIP. However, we emphasize that we do not know

if, or how frequently, this more stringent fixation condition will affect other factor-antibody pairs.

Epitope destruction or occlusion, or elevated signals from lower affinity interactions, are among the

plausible negative effects. The most positive impact is expected for proteins that interact indirectly

with DNA, as p300 does.

By increasing the reliability and throughput of ChIP-seq and by liberating investigator time from

a tedious and nontrivial experimental protocol, we anticipate that R-ChIP, and variations on it, will

break a current bottleneck and help to advance a wide range of transcription investigations.

11.4 Methods

11.4.1 Cell growth and harvesting

Cells were grown and harvested following established ENCODE protocols (available at http://

genome.ucsc.edu/ENCODE/cellTypes.html) with the exception of GM12878 p300 experiments for

which chromatin was fixed at 37◦C.

http://genome.ucsc.edu/ENCODE/cellTypes.html
http://genome.ucsc.edu/ENCODE/cellTypes.html
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11.4.2 Chromatin Preparation

Chromatin was cross-linked by adding formaldehyde directly to the cell culture media at a final

concentration of 1% and gently mixed for 10 minutes. The exception was (where indicated) fixation

at 37 ◦C for 30 minutes, which was used for p300 experiments. In all cases, the formaldehyde

reaction was quenched by adding glycine to a final concentration of 0.125M for 10 minutes. Cells

were then pelleted, rinsed once in cold phosphate-buffered saline (PBS) with 1mM PMSF and once

in cold MC lysis buffer (10mM Tris pH 7.5, 10mM NaCl, 3mM MgCl2, 0.5% NP-40, and Roche

Complete Protease Inhibitor Cocktail) to obtain nuclear pellets. Nuclei were sonicated in RIPA

buffer (PBS, 1% NP-40 Substitute, 0.5% Sodium Deoxycholate, 0.1% SDS, and Roche Complete

Protease Inhibitor Cocktail) at a concentration of at least 5 × 107 nuclei/mL using a probe sonic

dismembrator from Fisher Scientific (Model 550). To check for fragment size distribution after

sonication, a small fraction of the sample was reverse cross-linked for two hours at 65 ◦C, purified

using DNA purification columns from Qiagen, then loaded onto a 2% agarose EtBr E-Gel from

Invitrogen.

11.4.3 Antibodies used

The following antibodies were used: an α-NRSF mouse monoclonal (12C11) from the Anderson

Lab at Caltech (Mortazavi et al. 2006; Johnson et al. 2007), an α-p300 rabbit polyclonal (sc-

585) from Santa Cruz Biotechnology, a mouse monoclonal α-GABP (sc-28312) from Santa Cruz

Biotechnology, a mouse monoclonal α-Kaiso/ZBTB33 (sc-23871) from Santa Cruz Biotechnology, a

rabbit polyclonal α-SPI1/PU.1 (sc-22805) from Santa Cruz Biotechnology, and a mouse monoclonal

α-H3K27ac (306-34849) from Wako. In addition 11 α-p300 mouse monoclonals were generated

in the Caltech Mouse Monoclonal Facility. Four of the α-p300 mouse monoclonals were raised

against a bacterially expressed GST fusion protein containing N-terminal residues 152-213. The

remaining seven antibodies were raised against a synthetic peptide from GenScript containing C-

terminal residues 1526-1545.

11.4.4 Robotic-ChIP (R-ChIP) Workflow

ChIP experiments were adapted from methods previously described and optimized for performance

in a 96-well plate format using a Tecan Freedom EVO 200 liquid handling robot. Reagents and

labware are placed on deck of the robot.

After setup the R-ChIP workflow is completely hands-off and consists of a series of modules with
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a run time of ∼24 hours to run, including the 12-hour reverse cross-linking step. All aspects of the

setup are checked thoroughly to ensure a smooth run.

1. Blocking and Washing of Magnetic Beads. The Tecan begins by resuspending magnetic

beads (Invitrogen M-280 Dynabeads) from the source tube with the liquid-handling arm (LiHa)

and dispenses the magnetic beads into a Fisher 96-Well DeepWell TM Polypropylene known

as the ChIP plate. 100 µL of beads is used for a monoclonal IP antibody and 200 µL for a

polyclonal. The LiHa tips are evacuated and rinsed with ddH2O between subsequent dispenses

to prevent cross-contamination. 500 µL of PBS containing 5% bovine serum albumin (BSA)

is then dispensed by the LiHa from a buffer reservoir (Te-Fill) to block and wash the magnetic

beads. The plate containing the beads is transferred to an orbital mixer (Te-Shake) with the

robotic manipulator arm (RoMa) and mixed several times for 20 seconds with a 20 second pause

between each mix. The RoMa moves the bead plate to a magnetic plate for seven minutes

where the beads are then pelleted in a ring allowing the multi-channel arm (MCA96) fitted with

natural 200 µL tips from TipOne to aspirate liquid. These steps are repeated three more times

and include an ethanol rinse of the MCA96 tips as needed to prevent cross-contamination.

2. Binding of Antibody to Magnetic Beads. The LiHa adds 400 µL of PBS-BSA to the

antibody plate bringing the final volume to 500 µL. The antibody is then added to the beads

using the MCA 96 which transfers the diluted antibody from the a 2.0-mL 96-well PlateOne

V-bottom plate to the ChIP plate. For monoclonal antibodies, 5 µg of antibody were diluted

in 500 µL (10 µg for polyclonals). The beads and antibody are incubated together for one hour

with mixing using the Te-Shake. Any unbound antibody is then aspirated with the MCA96

and deposited into a fresh 2.0-mL 96-well PlateOne V-bottom plate for further analysis if

needed.

3. Incubation of Chromatin and Antibody-Bead Complex The MCA96 transfers 500 µL

of chromatin containing 2.5 × 107 cells from the Matrix tube rack to the ChIP plate. The

chromatin and antibody bead complex are then incubated together for 2 hours during which

the ChIP plate alternates between the Te-Shake and a 4 ◦C cool plate using the RoMa. The

chromatin is stored in 1.2 mL screw-top Matrix tubes that can be arrayed on the chromatin

plate as needed. Any unbound chromatin is then aspirated with the MCA96 and deposited

into a fresh 2.0-mL 96-well PlateOne V-bottom plate for further analysis if needed.

4. Washing of IP Complex. The LiHa dispenses 500 µL of LiCl wash buffer (100mM Tris pH
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7.5, 500mM Lithium Chloride, 1% NP-40, 1% sodium deoxycholate) from the Te-Fill onto the

beads, which are then mixed for 20 seconds with 20 second pauses between each mix. The

beads are then pelleted and the wash with LiCl buffer is repeated four more times. The LiHa

then adds 500 µL of TE buffer (10mM Tris pH 7.5 and 1mM EDTA) and resuspends the beads

with the Te-Shake for 20 seconds. Beads are then pelleted with the magnetic plate and any

remaining buffer is aspirated and discarded by the MCA96.

5. Elution from Beads. The LiHa dispenses 100 µL of IP elution buffer (1% SDS and 0.1M

NaHCO3) from the Te-Fill and the beads are resuspended by mixing for 20 seconds with the

Te-Shake. The MCA96 then aspirates the beads and transfers them from the ChIP plate to a

Hard-Shell Semi-Skirted PCR Plate from Bio-Rad. The RoMa transfers a PCR lid from the

storage hotel and places it on top of the PCR plate then transfers the lidded PCR plate to

a DNA Engine Peltier Thermal Cycler with Remote Alpha Dock System from Bio-Rad. The

top of the thermal cycler closes and places force on the PCR plate lid creating a seal. The

beads are then heated for one hour at 65 ◦C to disassociate the IP complex from the magnetic

beads.

6. Reversal of Cross-links. The RoMa takes the PCR plate from the thermal cycler and

transfers it to the Te-Shake to resuspend the beads. The PCR plate is then transferred to the

magnetic plate for pelleting of the beads. The MCA96 mounts 50 µL Tecan Pure Disposable

tips from Tecan, slowly aspirates the supernatant, and transfers it to a fresh PCR plate. 10µL

of proteinase K from Epicentre diluted 1:5 in proteinase K buffer (50% glycerol, 50 mM Tris-

HCl pH 7.5, 0.1 M NaCl, 0.1 mM EDTA, 1 mM DTT, 10 mM CaCl2, 0.1% Triton R© X-100) is

then added to the supernatants with the LiHa. The RoMa places a lid on the fresh PCR plate

and transfers both back to the thermal cycler for a 12 hour incubation at 65 ◦C to reverse the

cross-links. Once the incubation is finished the plate is transferred to the deck with the RoMa

and the R-ChIP is complete.

11.4.5 DNA Cleanup

Samples from the R-ChIP ChIP experiments presented here were then cleaned up manually using

the protocol described by Qiagen in their Qiaquick PCR purification kit with the addition that the

EB buffer is heated to 55 ◦C prior to elution and eluted in a 50 µL volume using DNA lo-bind 1.5

mL tubes from Eppendorf. We anticipate automating this step.
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11.4.6 Library building and sequencing

Library building for sequencing on the Illumina HiSeq platform was performed conventionally with

barcoding to allow multiple ChIP libraries to be sequenced in a single flow cell lane, according to

the Hudson Alpha ENCODE ChIP protocol.

Standard methods were used for end repair and dA addition of DNA fragments recovered from

ChIPs or chromatin controls. The fragments were then ligated to Illumina Paired-End adaptor

sequences and PCR-amplified to complete the adaptor sequences and introduce a 7-base DNA bar-

code in the i7 position. The barcode allowed mixing of multiple samples per flowcell lane. Control

libraries were prepared from 500 ng of DNA from reverse crosslinked sonicated chromatin. ChIP

library starting amounts varied by ChIP, with a median of 7.5 ng. Fragment size selection was

achieved at the lower threshold with solid phase reversible immobilization (SPRI) technology to

recover dsDNA greater than 100 bp after adaptor ligation (thereby excluding unligated adaptors)

and at the upper threshold with an extension time of 30 seconds during PCR amplification. This

size selection method consistently produced final DNA library fragments that ranged from ∼100 to

400 bp, as determined by BioAnalysis. Final library amounts varied by ChIP, with a median of 546

ng.

Libraries were pooled in equimolar amounts and sequenced on the Illumina HiSeq2000 or HiSeq2500

with 50 bp single-end reads following the manufacturer’s recommendations. Raw sequencing reads

are available from GEO accession number GSE53366.

11.4.7 Data processing and analysis

Reads were aligned using Bowtie (Langmead et al. 2009), version 0.12.7, with the following set-

tings: ‘‘-v 2 -t -k 2 -m 1 --best --strata’’, which allow for two mismatches relative to the

reference and only retain unique alignments, against the hg19 version of the human genome (as-

sembly downloaded from the UCSC genome browser) with the Y chromosome retained or removed

depending on the sex of the cell line. Peak calling was carried out using ERANGE (Johnson et

al. 2007), version 4.0, with the following settings: --minimum 2 --ratio 3 --listPeak --shift

learn --revbackground, against matching control samples. Library complexity was estimated as

described in Landt et al., 2012. Cross-correlation analysis was carried out using version 1.10.1

of SPP (Kharchenko et al. 2008; A. Kundaje et al., submitted) and the following parameters:

‘-s=0:2:400’.

All additional analysis was carried out using custom-written Python scripts.
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Read mapping statistics for all datasets are provided in Tables 11.1, 11.2 and 11.3.

Table 11.1: Read mapping and dataset quality statistics for robotic NRSF ChIP
datasets. Quality control scores were determined using SPP as described in Landt et al. 2012
and Marinov et al. 2014

Cell

Line
Factor Plate Well Library Complexity NSC RSC QC

Number

Peaks
FRiP

Uniquely

Mapped

reads

GM12878 NRSF 3365 A2 SL26735 0.84 6.165 1.215 1 3,821 0.127 12,246,881

GM12878 NRSF 3365 E6 SL26736 0.86 5.675 1.235 1 4,030 0.144 12,166,760

GM12878 NRSF 3365 F12 SL26737 0.85 3.747 1.143 1 3,349 0.103 16,531,315

GM12878 NRSF 3405 B1 SL28743 0.91 3.808 1.044 1 2,143 0.037 16,286,924

GM12878 NRSF 3405 E6 SL28744 0.89 4.343 1.107 1 2,413 0.048 19,731,464

GM12878 NRSF 3405 F12 SL28745 0.9 3.67 1.092 1 2,295 0.044 19,898,394

GM12878 NRSF 3646 B1 SL34357 0.97 2.541 0.824 0 1,569 0.015 7,567,674

GM12878 NRSF 3646 E6 SL34381 0.97 2.816 0.906 0 1,642 0.017 8,035,350

GM12878 NRSF 3646 F5 SL34380 0.88 3.915 0.811 0 2,087 0.029 4,774,294

GM12878 NRSF 3646 F6 SL34382 0.93 6.315 1.198 1 3,502 0.095 6,378,277

GM12878 NRSF 3646 F7 SL34383 0.93 8.092 1.197 1 3,547 0.095 6,404,751

GM12878 NRSF 3646 G12 SL34384 0.97 1.235 0.815 0 1,656 0.016 6,231,497

GM18278 NRSF 4028 D3 SL46179 0.87 2.729 1.411 1 3,000 0.072 8,672,020

GM18278 NRSF 4028 E3 SL46180 0.66 2.709 1.718 2 3,726 0.096 17,661,548

GM18278 NRSF 4028 A12 SL46217 0.61 4.030 1.262 1 3,979 0.132 15,999,430

GM18278 NRSF 4028 A12 SL46171 0.67 1.444 1.410 1 4,565 0.204 24,180,628

GM18278 NRSF 4028 B11 SL46211 0.51 2.510 1.356 1 5,019 0.200 20,187,765

GM18278 NRSF 4028 B2 SL46173 0.87 2.813 1.128 1 4,028 0.131 10,454,082

GM18278 NRSF 4028 F3 SL46181 0.74 1.461 1.623 2 4,317 0.187 25,430,927

GM18278 NRSF 4028 G11 SL46216 0.89 3.999 1.170 1 2,222 0.040 13,250,634

GM18278 NRSF 4028 G2 SL46176 0.67 1.455 1.907 2 5,160 0.233 21,980,053

GM18278 NRSF 4028 G3 SL46182 0.71 1.479 1.443 1 4,538 0.201 23,259,881

GM18278 NRSF 4028 H12 SL46218 0.85 3.855 1.226 1 2,430 0.052 20,550,794

GM18278 NRSF 4028 H1 SL46172 0.92 2.018 0.975 0 1,445 0.013 24,630,268

GM12878 NRSF Manual Manual ENCODE 0.78 2.121 1.089 1 3,085 0.019 11,945,180

Continued on next page
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Table 11.1 – Continued from previous page

Cell

Line
Factor Plate Well Library Complexity NSC RSC QC

Number

Peaks
FRiP

Uniquely

Mapped

reads

GM12878 NRSF Manual Manual ENCODE 0.89 6.594 2.081 2 3,363 0.070 16,286,742

GM18278 NRSF Manual Manual SL45074 0.89 3.012 1.266 1 3,232 0.105 30,326,354

GM18278 NRSF Manual Manual SL45075 0.94 3.237 1.162 1 2,105 0.039 24,260,996

GM18278 NRSF Manual Manual SL45072 0.90 2.409 1.629 2 3,381 0.068 28,464,754

GM18278 NRSF Manual Manual SL45073 0.87 2.286 1.843 2 3,681 0.078 37,706,507

GM18278

37 ◦C
NRSF 4028 B10 SL46206 0.88 1.759 1.033 1 2,846 0.076 24,978,799

Jurkat NRSF 3365 A1 SL26729 0.94 4.948 1.017 1 1,792 0.025 14,447,433

Jurkat NRSF 3365 B1 SL26732 0.93 4.99 1.061 1 1,899 0.029 17,281,495

Jurkat NRSF 3365 C1 SL26733 0.78 8.33 1.225 1 3,833 0.144 12,742,979

Jurkat NRSF 3365 D1 SL26734 0.73 12.4681.218 1 3,995 0.144 7,551,313

Jurkat NRSF 3365 D6 SL26730 0.92 8.756 1.141 1 2,430 0.057 13,738,597

Jurkat NRSF 3365 H12 SL26731 0.92 5.374 1.083 1 1,906 0.029 16,829,422

Jurkat NRSF 3405 A1 SL28740 0.97 1.075 0.516 0 277 0.001 18,013,669

Jurkat NRSF 3405 D6 SL28741 0.85 8.854 1.144 1 2,785 0.072 13,132,743

Jurkat NRSF 3405 H12 SL28742 0.73 8.507 1.141 1 2,937 0.078 14,966,401

Jurkat NRSF 3435 A1 SL29213 0.96 1.125 0.739 0 1,020 0.006 17,997,043

Jurkat NRSF 3435 D6 SL29214 0.84 6.077 1.183 1 2,852 0.084 19,801,560

Jurkat NRSF 3435 H12 SL29215 0.84 6.727 1.189 1 3,062 0.098 18,127,638

Jurkat NRSF 3549 A1 SL31830 0.7 6.928 1.1 1 2,233 0.045 18,458,174

Jurkat NRSF 3549 D6 SL31851 0.91 3.993 0.957 0 1,702 0.020 16,754,683

Jurkat NRSF 3549 H12 SL31882 0.89 1.182 0.852 0 1,331 0.010 19,956,019
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Table 11.2: Read mapping and dataset quality statistics for p300 datasets. Quality
control scores were determined using SPP as described in Landt et al. 2012 and Marinov et al. 2014

Cell Line Antibody Library Complexity NSC RSC QC
Number

Peaks
FRiP

Uniquely

Mapped

reads

GM12878 37 ◦C 1A3-F8p SL31840 0.85 1.244 0.293 -1 3 0 18,894,243

GM12878 37 ◦C 1F4-E10 SL31838 0.90 1.645 0.422 -1 4,870 0.019 13,446,233

GM12878 37 ◦C 2E10-D10 SL31839 0.87 1.364 0.269 -1 6 0 13,916,005

GM12878 37 ◦C 2F4-A8 SL31832 0.85 1.217 0.292 -1 40 0 17,928,468

GM12878 37 ◦C 2F6-F7 SL31831 0.72 1.541 0.366 -1 9 0 15,450,180

GM12878 37 ◦C 3B4-G6 SL31835 0.95 1.463 0.266 -1 45 0.001 13,546,541

GM12878 37 ◦C 3H6-B6 SL31834 0.92 1.242 0.242 -2 5 0 15,393,775

GM12878 37 ◦C 4C5-A1 SL31833 0.83 1.439 0.287 -1 15 0 12,550,517

GM12878 37 ◦C 5D2-A1 SL31836 0.89 1.422 0.270 -1 2 0 11,297,381

GM12878 37 ◦C 5F7-C9 SL31841 0.86 1.365 0.392 -1 2,868 0.010 14,992,412

GM12878 37 ◦C 7H5-F2 SL31842 0.83 1.447 0.421 -1 1,524 0.051 14,582,010

GM12878 37 ◦C 1F4-E10 SL34359 0.96 1.836 0.509 0 6,374 0.031 4,802,800

GM12878 37 ◦C sc585 lot# E3113 SL34362 0.95 3.467 1.281 1 34,333 0.317 5,811,746

GM12878 37 ◦C sc585 lot# F2711 SL34358 0.94 3.659 1.239 1 36,868 0.342 6,688,765

GM12878 37 ◦C 1F4-E10 SL46203 0.88 1.673 0.852 0 6,333 0.030 20,062,190

GM12878 37 ◦C 1F4-E10 SL46209 0.87 2.027 0.874 0 6,725 0.030 16,221,052

GM12878 37 ◦C sc585 lot# E3113 SL46202 0.88 2.867 1.628 2 28,447 0.257 26,343,063

GM12878 37 ◦C sc585 lot# E3113 SL46205 0.92 2.585 1.431 1 11,369 0.066 27,085,241

GM12878 37 ◦C sc585 lot# F2711 SL46204 0.93 2.907 1.381 1 15,093 0.091 15,854,599

GM12878 37 ◦C 1F4-E10 SL45094 0.96 1.798 0.993 0 8,430 0.042 31,243,370

GM12878 37 ◦C 1F4-E10 SL45095 0.96 1.663 0.978 0 6,181 0.031 33,548,275

GM12878 1F4-E10 SL45092 0.97 1.224 0.580 0 108 0.0004 26,071,005

GM12878 1F4-E10 SL45093 0.97 1.237 0.588 0 252 0.0009 26,022,658

GM12878 1F4-E10 SL46207 0.91 1.146 0.217 -2 37 0.0001 18,794,116

GM12878 1F4-E10 SL46208 0.91 1.152 0.236 -2 17 0.0000 20,417,157

GM12878 sc584 ENCODE 0.92 1.549 0.759 0 12,924 0.063 15,906,721

GM12878 sc584 ENCODE 0.91 1.639 0.765 0 4,510 0.018 16,950,416

Continued on next page
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Table 11.2 – Continued from previous page

Cell Line Antibody Library Complexity NSC RSC QC
Number

Peaks
FRiP

Uniquely

Mapped

reads

GM12878 sc585 ENCODE 0.86 2.088 1.258 1 8,267 0.043 23,366,821

GM12878 sc585 ENCODE 0.88 1.292 0.698 0 2,610 0.011 20,403,419

Table 11.3: Read mapping and dataset quality statistics for H3K27ac, GABP, ZBTB33,
PU.1 and input datasets. Quality control scores were determined using SPP as described in Landt
et al. 2012 and Marinov et al. 2014

Cell Line Factor Rep R/M Library Complexity NSC RSC QC
Number

Peaks
FRiP

Uniquely

Mapped

reads

GM12878 37 ◦C Input Rep1 SL45100 0.96 1.308 0.748 0 25,588,571

GM12878 37 ◦C Input Rep2 SL45101 0.96 1.242 0.613 0 28,422,425

GM12878 Input Rep3 SL45098 0.96 1.475 0.763 0 21,218,915

GM12878 Input Rep4 SL45099 0.96 1.381 0.820 0 26,213,457

GM12878 GABP Rep1 M SL45068 0.86 2.456 2.343 2 5,694 0.144 28,778,500

GM12878 GABP Rep2 M SL45069 0.90 2.615 2.296 2 4,675 0.096 29,626,523

GM12878 H3K27ac Rep3 M SL45090 0.89 1.629 1.945 2 35,570 0.502 31,263,444

GM12878 H3K27ac Rep4 M SL45090 0.87 1.699 1.811 2 34,619 0.497 36,587,615

GM12878 H3K27ac Rep1 M SL45090 0.92 1.463 1.593 2 28,580 0.384 30,476,218

GM12878 H3K27ac Rep2 M SL45090 0.93 1.444 1.541 2 32,345 0.386 25,852,868

GM12878 Input Rep1 SL45096 0.98 1.210 0.683 0 33,254,931

GM12878 Input Rep2 SL45097 0.98 1.090 0.272 -1 32,985,584

GM12878 PU.1 Rep1 M SL45076 0.88 6.960 2.143 2 19,779 0.182 27,166,940

GM12878 PU.1 Rep2 M SL45077 0.89 6.197 2.166 2 17,346 0.143 31,549,754

GM12878 ZBTB33 Rep1 M SL45080 0.94 1.992 1.250 1 2,066 0.030 22,662,929

GM12878 ZBTB33 Rep2 M SL45081 0.95 1.614 1.159 1 1,242 0.016 27,577,513

GM12878 37 ◦C GABP Rep1 R SL46201 0.85 4.153 1.538 2 4,630 0.111 18,416,079

GM12878 37 ◦C H3K27ac Rep1 R SL46215 0.87 1.542 3.067 2 36,216 0.509 21,994,873

Continued on next page
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Table 11.3 – Continued from previous page

Cell Line Antibody Rep R/M Library Complexity NSC RSC QC
Number

Peaks
FRiP

Uniquely

Mapped

reads

GM12878 37 ◦C PU.1 Rep1 R SL46212 0.89 1.513 0.656 1,961 0.007 22,811,938

GM12878 37 ◦C ZBTB33 Rep1 R SL46213 0.95 1.373 0.376 475 0.004 10,385,335

GM12878 GABP Rep1 R SL46174 0.73 3.779 2.651 5,158 0.151 10,708,570

GM12878 GABP Rep2 R SL46175 0.63 3.524 3.101 6,170 0.198 13,707,692

GM12878 H3K27ac Rep3 R SL46199 0.88 1.590 2.402 40,102 0.511 21,229,446

GM12878 H3K27ac Rep4 R SL46200 0.88 1.553 2.801 37,038 0.520 24,739,874

GM12878 H3K27ac Rep1 R SL46197 0.92 1.379 1.974 29,449 0.337 20,680,756

GM12878 H3K27ac Rep2 R SL46198 0.93 1.358 1.861 32,267 0.343 21,320,237

GM12878 PU.1 Rep1 R SL46183 0.79 9.692 2.561 2 22,376 0.246 21,431,025

GM12878 PU.1 Rep2 R SL46184 0.91 2.242 1.561 2 7,383 0.040 23,919,950

GM12878 ZBTB33 Rep1 R SL46187 0.92 1.891 1.203 1 1,343 0.016 17,536,255

GM12878 ZBTB33 Rep2 R SL46188 0.92 1.796 1.032 1 1,157 0.013 19,265,589
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12

The role of Piwi in piRNA-guided transcriptional

silencing and establishment of repressive chromatin

The data in this chapter was generated by the Fejes-Tóth and Aravin labs; my contribution was

in carrying out the analysis for it. Most of the material in it consists of what was previously published

as:

Le Thomas A*, Rogers AK*, Webster A*, Marinov GK*, Liao SE, Perkins EM, Hur JK, Ar-

avin AA, and Fejes-Tóth K. 2013. Piwi induces piRNA-guided transcriptional silencing and estab-

lishment of a repressive chromatin state. Genes Dev 27:390–399. doi: 10.1101/gad.209841.112.

The paper is reprinted in Appendix F.

I have also added some further analysis that I did that refutes certain claims about the way Piwi

functions in the nucleus that appeared in the literature after our paper was published.

Abstract

In the metazoan germline, piwi proteins and associated piwi-interacting RNAs (piR-

NAs) provide a defense system against the expression of transposable elements. In the

cytoplasm, piRNA sequences guide piwi complexes to destroy complementary trans-

poson transcripts by endonucleolytic cleavage. However, some piwi family members

are nuclear, raising the possibility of alternative pathways for piRNA-mediated regu-

lation of gene expression. We found that Drosophila Piwi is recruited to chromatin,

colocalizing with RNA polymerase II (Pol II) on polytene chromosomes. Knockdown

of Piwi in the germline increases expression of transposable elements that are targeted

by piRNAs, whereas protein-coding genes remain largely unaffected. Derepression of
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transposons upon Piwi depletion correlates with increased occupancy of Pol II on their

promoters. Expression of piRNAs that target a reporter construct results in a decrease

in Pol II occupancy and an increase in repressive H3K9me3 marks and heterochromatin

protein 1 (HP1) on the reporter locus. Our results indicate that Piwi identifies targets

complementary to the associated piRNA and induces transcriptional repression by es-

tablishing a repressive chromatin state when correct targets are found. More recently,

a different model for Piwi’s action has been proposed, which features Piwi binding

strongly and very specifically to repetitive elements in the genome (even those that are

not expressed). I show why that model is wrong and based on flawed data.

Figure 12.1: Piwi associates with chromatin and nuclear transcripts. (A) Polytene chro-
mosomes from Drosophila nurse cells expressing GFP-Piwi on the otu[7]/otu[11] background. Piwi
pattern on chromosomes correlates with Pol II staining. (B) Mass spectrometry analysis of Piwi
interaction partners. Piwi complexes were precipitated in the presence and absence of RNase A.
The outer circle represents classification of Piwi-associated proteins based on GO term analysis.
The inner pies represent the fraction of each group whose association with Piwi depends on RNA
(percentage indicated). Note that chromatin, splice, and mRNA export factors are virtually absent
after RNase A treatment.

12.1 Introduction

Diverse small RNA pathways function in all kingdoms of life, from bacteria to higher eukaryotes. In

eukaryotes, several classes of small RNA associate with members of the Argonaute protein family,
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forming effector complexes in which the RNA provides target recognition by sequence complemen-

tarity, and the Argonaute provides the repressive function. Argonautesmall RNA complexes have

been shown to regulate gene expression both transcriptionally and post-transcriptionally. Post-

transcriptional repression involves cleavage of target RNA through either the endonucleolytic activity

of Argonautes or sequestering targets into cytoplasmic ribonucleoprotein (RNP) granules (Hutvagner

& Simard 2008).

The mechanism of transcriptional repression by small RNAs has been extensively studied in

fission yeast and plants. Several studies showed that Argonautesmall RNA complexes induce tran-

scriptional repression by tethering chromatin modifiers to target loci. In fission yeast, the effec-

tor complex containing the Argonaute and the bound siRNA associates with the histone H3 Lys 9

(H3K9) methyltransferase Clr4 to install repressive H3K9-dimethyl marks at target sites (Nakayama

et al. 2001; Maison & Almouzni 2004; Sugiyama et al. 2005; Grewal & Jia 2007). Methylation of

histone H3K9 leads to recruitment of the heterochromatin protein 1 (HP1) homolog Swi6, enhancing

silencing and further promoting interaction with the Argonaute complex. The initial association of

Ago with chromatin, however, requires active transcription (Ameyar-Zazoua et al. 2012; Keller et al.

2012). Plants also use siRNAs to establish repressive chromatin at repetitive regions. Contrary to

yeast, heterochromatin in plants is marked by DNA methylation, although repression also depends

on histone methylation by a Clr4 homolog (Soppe et al. 2002; Onodera et al. 2005). Although

siRNA-mediated gene silencing is predominant on repetitive sequences, it is not limited to these

sites. Constitutive expression of dsRNA mapping to promoter regions results in production of cor-

responding siRNAs, de novo DNA methylation, and gene silencing (Mette et al. 2000; Matzke et al.

2004).

In metazoans, small RNA pathways are predominantly associated with post-transcriptional si-

lencing. One class of small RNA, microRNA, regulates expression of a large fraction of protein-coding

genes (Friedman et al. 2009). In Drosophila, siRNAs silence expression of transposable elements

(TEs) in somatic cells (Chung et al. 2008; Ghildiyal et al. 2008) and target viral genes upon infec-

tion (Galiana-Arnoux et al. 2006; Wang et al. 2006; Zambon et al. 2006). Another class of small

RNAs, Piwi-interacting RNAs (piRNAs), associates with the Piwi clade of Argonautes and acts

to repress mobile genetic elements in the germline of both Drosophila and mammals (Siomi et al.

2011). Analysis of piRNA sequences in Drosophila revealed a very diverse population of small RNAs

that primarily maps to transposon sequences and is derived from a number of heterochromatic loci

called piRNA clusters, which serve as master regulators of transposon repression (Brennecke et al.

2007). Additionally, a small fraction of piRNAs seems to be processed from the mRNA of several
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host protein-coding genes (Robine et al. 2009; Saito et al. 2009). The Drosophila genome encodes

three piwi proteins: Piwi, Aubergine (AUB), and Argonaute3 (AGO3). In the cytoplasm, AUB and

AGO3 work together to repress transposons through cleavage of transposon transcripts, which are

recognized through sequence complementarity by the associated piRNAs (Vagin et al. 2006; Agger

et al. 2007; Brennecke et al. 2007; Gunawardane et al. 2007).

In both Drosophila and mammals, one member of the Piwi clade proteins localizes to the nucleus.

Analogously to small RNA pathways in plants, the mouse piRNA pathway is required for de novo

DNA methylation and silencing of TEs (Carmell et al. 2007; Aravin et al. 2008; Kuramochi-

Miyagawa et al. 2008); however, the exact mechanism of this process is unknown. In Drosophila,

DNA methylation is absent; however, several studies indicate that elimination of Piwi from the

nucleus causes changes in histone marks on TEs (Klenov et al. 2011; Pöyhönen et al. 2012), yet a

genome-wide analysis of Piwi’s effect on chromatin marks and transcription is lacking.

We showed that Piwi interacts with chromatin on polytene chromosomes in nurse cell nuclei.

We found that Piwi exclusively represses loci that are targeted by piRNAs. We showed that Piwi-

mediated silencing occurs through repression of transcription and correlates with installment of

repressive chromatin marks at targeted loci.

12.2 Results

To analyze the role of Piwi in the nucleus, we generated transgenic flies expressing a GFP-tagged

Piwi protein (GFP-Piwi) under the control of its native regulatory region. GFP-Piwi was expressed

in the ovary and testis in a pattern indistinguishable from the localization of native Piwi and was

able to rescue the piwi-null phenotype as indicated by ovarian morphology, fertility, transposon

expression, and piRNA levels. GFP-Piwi was deposited into the mature egg and localized to the

pole plasm; however, contrary to a previous observation (Brower-Toland et al. 2007), we did not

Figure 12.2 (preceding page): Piwi function, but not its nuclear localization, requires
piRNA association. (A) The Piwi-YK mutant does not associate with piRNA. Immunoprecipi-
tation of PiwipiRNA complexes was performed with GFP antibody on ovaries from GFP-Piwi and
GFP-Piwi-YK transgenic flies and a control strain. Small RNAs were isolated, 5’-labeled, and re-
solved on a denaturing gel. The same amount of 42-nucleotide RNA oligonucleotides was spiked
into all samples prior to RNA isolation to control for loss of RNA during isolation and labeling.
piRNAs (red arrow) are absent in the Piwi-YK complex. (B) GFP-Piwi-YK is present in the nuclei
of nurse cells and colocalizes with chromatin (DAPI-stained areas). (C) The Piwi-YK mutant does
not rescue the morphological changes caused by the piwi-null mutation. Dark-field images of ovaries
where either the wild-type piwi or the piwi-YK transgene has been backcrossed onto the piwi-null
background.
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Figure 12.3: Fluorescence Loss in Photobleaching (FLIP) experiments indicate fast
redistribution of most of nuclear Piwi and slower movement of the Piwi-YK mutant.
Amount of fluorescence decrease after 110 bleaching iterations for H2A-RFP, GFP-Piwi and GFP-
Piwi-YK mutant and GFP in a nurse cell nucleus is shown. In each case significant fluorescence
loss (red pixels) is observed along the bleach axis. Both GFP and WT GFP-Piwi has extensive
loss of fluorescence (≥75%) across much of the nucleus, except for specific loci. GFP-Piwi-YK
mutant exhibits far less change (≤40%) in regions far from the site of bleaching. H2A-RFP control
undergoes very little change in intensity away from the bleach region. Note that the apparent
slower redistribution of free GFP is likely due to simultaneous nuclear import from the unbleached
cytoplasmic pool. Bars = 5µm. Arrowheads indicate position of bleach stripe across the nucleus.

detect Piwi expression outside of the ovary and testis in third instar larvae or adult flies. We also did

not observe the association of Piwi with polytene chromosomes in salivary gland cells of third instar

larvae. In both follicular and germline cells of the Drosophila ovary, GFP-Piwi localized exclusively

in the nucleus, with slightly higher concentrations apparent in regions enriched for DAPI, indicating

a possible interaction with chromatin. To gain further insight into Piwi localization in the nucleus, we

took advantage of the fact that nurse cell chromosomes are polytenized and can be visualized on the
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otu mutant background (Mal’ceva et al. 1997). Analysis of polytene chromosomes from nurse cells

demonstrated that GFP-Piwi associates with chromatin in a specific banding pattern. Interestingly,

coimmunostaining showed that a GFP-Piwi signal on polytene chromosomes generally overlaps with

the RNA polymerase II (Pol II) signal, which marks sites of active transcription (Figure 12.1A).

In order to identify factors that might be responsible for targeting Piwi to chromatin, we im-

munoprecipitated Piwi complexes from the Drosophila ovary and analyzed Piwi interaction partners

by mass spectrometry. We purified Piwi complexes from ovaries of three different transgenic lines

expressing GFP-Piwi, myc-Piwi, or Flag-Piwi using antibodies against each respective tag. As a

control, we used flies expressing free GFP in the ovary. We identified ¿50 factors that showed signif-

icant enrichment in all three Piwi purifications but were absent in the control. We were unable to

identify chromatin-associated factors that directly associate with Piwi but identified several RNA-

binding proteins that associate with nascent transcripts, such as splicing (Rm62, Pep, Ref1, Yps,

CG9684, CG31368, CG5728, and Mago) and nuclear export (Tho2 and Hpr1) factors (Figure 12.1B).

Upon RNase A treatment prior to immunoprecipitation, the presence of most of these RNA-binding

proteins in purified Piwi complexes was eliminated.

Piwi proteins are believed to find their targets through sequence complementarity of the associ-

ated piRNA. In fact, it has been proposed that lack of the associated piRNA leads to destabilization

of piwi proteins and to Piwi’s inability to localize to the nucleus (Saito et al. 2009; Haase et al.

2010; Olivieri et al. 2010; Handler et al. 2011; Ishizu et al. 2011). On the other hand, Piwi has

been proposed to have functions that are independent of its role in transposon control by regulating

Figure 12.4 (preceding page): Piwi transcriptionally represses TEs. (A) Piwi knockdown
is efficient and specific to ovarian germ cells as indicated by GFP-Piwi localization. GFP-Piwi;
Nanos-Gal4-VP16 flies were crossed to control shRNA (shWhite) or shPiwi lines. Piwi is specifically
depleted in germ cells and not in follicular cells, consistent with expression of the Nanos-Gal4-VP16
driver. (B) Piwi expression as measured by RNA-seq in the Piwi knockdown and control lines. Note
that Piwi expression is unaffected in follicular cells, leading to relatively weak apparent knockdown in
RNA-seq libraries from whole ovaries. (C) Effect of Piwi knockdown on the expression of TEs. Two
biological replicate RNA-seq experiments were carried out, and differential expression was assessed
using DESeq. Transposons that show significant change (p < 0.05) are indicated by dark-red circles.
Out of 217 individual RepeatMasker-annotated TEs, 15 show a significant increase in expression
upon Piwi knockdown. (D) The change in the levels of TE transcripts and Pol II occupancy on
their promoters upon Piwi knockdown. Twenty up-regulated and 10 down-regulated transposons
with the most significant changes in expression level are shown. Note the low statistical significance
for down-regulated transposons. For a complete list of transposons, see Supplemental Figure S2.
(E) Pol II signal over the Het-A retrotransposon in control flies (shWhite; red) and upon Piwi
knockdown (shPiwi; blue). (F) Increased abundance of transposon transcripts upon Piwi depletion
correlates with increased Pol II occupancy over their promoters (r2 = 0.21). Note that the majority
of elements do not show significant change in either RNA abundance or Pol II occupancy.
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stem cell niche development (Cox et al. 1998; Klenov et al. 2011). To address the role of piRNA

in translocation of Piwi into the nucleus and its function, we generated transgenic flies expressing a

point mutant Piwireferenced as Piwi-YKthat is deficient in piRNA binding due to a substitution of

two conserved amino acid residues (Y551L and K555E) in the 5 phosphate-binding pocket (Kiriaki-

dou et al. 2007; Djuranovic et al. 2010). The Piwi-YK mutant was expressed in Drosophila follicular

and germ cells at levels similar to that of wild-type Piwi but was completely devoid of associated

piRNA (Figure 12.2A). In contrast to wild-type Piwi, Piwi-YK could be found in the cytoplasm,

supporting the existence of a quality control mechanism that prevents entrance of unloaded Piwi

into the nucleus (Ishizu et al. 2011). Nevertheless, a significant amount of piRNA-deficient Piwi

localized to the nucleus (Figure 12.2B). Similar to wild-type Piwi, Piwi-YK seemed to associate with

chromatin, as indicated by its localization in DAPI-stained regions of the nuclei, and this is consis-

tent with fluorescence loss in photobleaching (FLIP) experiments that demonstrated reduced nuclear

mobility compared with free diffusion (Figure 12.3). Based on sterility and ovarian morphology, the

piwi-YK transgene was unable to rescue the piwi-null phenotype despite its nuclear localization

(Figure 12.2C), indicating that while piRNA binding is not absolutely essential for stability and

nuclear localization of Piwi, it is required for Piwi function.

To directly test the function of Piwi in the nucleus, we analyzed the effect of Piwi deficiency on

gene expression and chromatin state on a genome-wide scale. Piwi mutant females have atrophic

ovaries caused by Piwi deficiency in somatic follicular cells (Lin and Spradling 1997; Cox et al. 1998),

which precludes analysis of Piwi function in null mutants. Instead, we used RNAi knockdown to

deplete Piwi in germ cells while leaving it functionally intact in somatic follicular cells. The Piwi

knockdown flies did not exhibit gross morphological defects in the ovary; however, they showed

drastic reduction in GFP-Piwi expression in germ cells and were sterile (Figure 12.4A and B). To

analyze the effect of Piwi deficiency on the steady-state transcriptome as well as the transcription

machinery, we performed RNA sequencing (RNA-seq) and Pol II chromatin immunoprecipitation

(ChIP) combined with deep sequencing (ChIP-seq) experiments from Piwi knockdown and control

Figure 12.5 (preceding page): Piwi regulates transposon levels through transcriptional
repression. The change in the levels of transposable element transcripts and RNA Polymerase II
occupancy upon Piwi knockdown is shown. RNA-seq and ChIP-seq experiments were carried out in
shWhite and shPiwi ovaries in two replicates. Differential expression was assessed using DESeq (see
methods). The first column shows the statistical significance of the observed expression change (in
log10(p-value)); upregulated and downregulated genes are sorted separately in order of decreasing
significance. The second column shows the average change in RNA levels as defined by DESeq. The
third column shows the average change in Pol II occupancy between the two replicate experiments.
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Figure 12.6: Piwi depletion increases RNA Pol II association with promoters of trans-
posable elements. RNA Polymerase II ChIP-seq signal over the consensus sequences of selected
transposable elements in the control (shWhite) and Piwi-depleted (shPiwi) ovaries. Pol II occu-
pancy increases in the promoter regions (LTRs) of transposons upon germline knockdown of Piwi.
Transposons expressed in somatic follicular cells such as ZAM are not affected.

flies.

In agreement with previous observations that implicated Piwi in transposon repression (Saito et

al. 2006; Aravin et al. 2007; Brennecke et al. 2007), we found that steady-state transcript levels

of several TEs were increased upon Piwi knockdown in germ cells (Figure 12.4C and D; Figure

12.5). We found little to no change of RNA levels for transposons whose activity is restricted to

follicular cells of the ovary, indicating that the observed changes are indeed due to loss of Piwi in the

germline (Figure 12.5). The analysis of Pol II ChIP-seq showed that Pol II occupancy increased over

promoters of multiple TEs (Figure 12.4DF; Figure 12.6). Indeed, the change in steady-state levels

of transposon transcripts upon Piwi depletion correlated with changes of Pol II occupancy (Figure

12.4F). This result demonstrates that Piwi ensures low levels of transposon transcripts through a

repressive effect on the transcription machinery.

To test whether Piwi-mediated transcriptional repression is accompanied by a corresponding

change in chromatin state, we used ChIP-seq to analyze the genome-wide distribution of the repres-

sive H3K9me3 mark in the ovary upon Piwi knockdown. We identified 705 genomic loci at which
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the level of H3K9me3 significantly decreased. More than 90% of the regions that show a decrease

in the H3K9me3 mark upon Piwi depletion overlapped TE sequences, compared with the 33% that

is expected from random genome sampling (Figure 12.7A). Furthermore, these regions tend to be

located in the heterochromatic portions of the genome that are not assembled on the main chro-

mosomes (Figure 12.7B). Only 20 of the identified regions localized to the euchromatic parts of the

genome. Of these, 15 (75%) contained potentially active annotated copies of transposons. Taken

together, our results indicate that Piwi is required for installment of repressive H3K9me3 chromatin

marks on TE sequences of the genome.

While the vast majority of protein-coding host genes did not show significant changes in transcript

level or Pol II occupancy upon Piwi knockdown, the expression of a small set of protein-coding genes

Figure 12.7: Piwi-induced transcriptional repression correlates with establishment of a
repressive chromatin state. (A) Overlap between genomic regions of H3K9me3 depletion upon
Piwi knockdown and TEs. Two replicates of H3K9me3 ChIP-seq experiments were carried out on
control and Piwi-depleted ovaries, and enriched regions were identified using DESeq (see the Ma-
terials and Methods for details). A total of 705 regions show significant (p < 0.05) decrease in
H3K9me3 occupancy upon Piwi knockdown, while only 30 regions showed a similarly significant
increase. Out of the 705 regions that show a decrease in H3K9me3 marks upon Piwi knockdown,
91% (646) overlap with TE sequences compared with the 33% expected from random genome sam-
pling. (B) Genomic positions of H3K9me3-depleted regions upon Piwi depletion (outer circle) and
RepeatMasker-annotated transposons (inner circle). Note that almost all regions are localized in
heterochromatic and repeat-rich portions of the genome (Het, chrU, and chrUExtra chromosomes).
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Figure 12.8: Piwi does
not directly repress
protein-coding genes (A)
Effect of Piwi knockdown on
the expression of genes. Two
replicate RNA-seq experi-
ments were carried out, and
differential expression was
assessed using DESeq. Genes
that show significant change
(p < 0.05) are indicated
by black circles. The vast
majority of genes does not
change significantly upon
germline Piwi knockdown
(shPiwi) compared with con-
trol (shWhite). (B) H3K9me3
mark density does not change
over genes that show a sig-
nificant change in expression
upon Piwi knockdown (see
Figure 12.4C). Up-regulated
and down-regulated genes are
plotted separately. Signal
indicated is after background
subtraction. (C) Functional
analysis of up-regulated
genes by the Database for
Annotation, Visualization,
and Integrated Discovery
(DAVID) reveals activation
of the protein degradation
and DNA damage response
pathways. Percentages of
all up-regulated genes are
indicated.

(150 genes with a p-value < 0.05) was significantly increased (Figure 12.8A; Table Figure 12.4.14).

There are several possible explanations for Piwi’s effect on host gene expression. First, failure in

the piRNA pathway might cause up-regulation of several genes that generate piRNAs in wild-type

ovaries (Robine et al. 2009; Saito et al. 2009). However, the genes up-regulated in Piwi-deficient

ovaries were not enriched in piRNAs compared with other genes. Second, H3K9me3 marks installed

on TE sequences in a Piwi-dependent manner might spread into neighboring host genes and repress

their transcription, as was recently demonstrated in a follicular cell culture model (Sienski et al.

2012). To address this possibility, we analyzed genomic positions of the genes whose expression was
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Figure 12.9: Piwi depletion does not alter H3K9me3 occupancy over differentially
expressed genes. Scatter plot indicating average H3K9me3 mark levels upon Piwi depletion (sh-
Piwi) and control (shWhite) over genes that were previously identified in the RNA-seq experiments
to be differentially expressed upon Piwi knockdown. (red: upregulated genes, green: downregu-
lated genes). The average signal of two biological replicates was taken after subtraction of the
corresponding input signals.

increased upon Piwi knockdown relative to genomic regions that showed a decrease in H3K9me3

marks. We found that up-regulated genes did not show a significant change in the H3K9me3 mark

(Figure 12.8B; Figure 12.9). Furthermore, the few genes located close to the regions that show

a decrease in H3K9me3 signal had unaltered expression levels upon Piwi knockdown. Next, we

analyzed the functions of up-regulated genes using gene ontology (GO) term classifications and found

significant enrichment for proteins involved in protein turnover and stress and DNA damage response

pathways (Figure 12.8C). Particularly, we found that 31 subunits of the proteasome complex were

overexpressed. Therefore, our analysis indicates that up-regulation of specific host genes is likely a

secondary response to elevated transposon levels and genomic damage.

In contrast to host genes, transcripts of TEs are targeted by piRNA. To directly address the

role of piRNA in Piwi-mediated transcriptional silencing, we took advantage of a fly strain that

expresses artificial piRNAs against the lacZ gene, which are loaded into Piwi complexes and are
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able to repress lacZ reporter expression in germ cells (Figure 12.10A; Josse et al. 2007; Muerdter

et al. 2012). Expression of piRNAs that are antisense to the reporter gene caused transcriptional

silencing of the lacZ gene as measured by Pol II occupancy (Figure 12.10B). Furthermore, we found

that piRNA-induced silencing of the reporter gene was associated with an increase in the repressive

H3K9me3 mark and HP1 occupancy and a decrease in the abundance of the active H3K4me2/3

Figure 12.10: piRNA-dependent targeting of Piwi to a reporter locus leads to establish-
ment of a repressive chromatin state and transcriptional silencing. (A) The mechanism
of trans-silencing mediated by artificial piRNA and a schematic representation of the repressor and
reporter lacZ constructs. The repressor construct is inserted in a subtelomeric piRNA cluster, lead-
ing to generation of piRNA from its sequence. Primers mapping to both constructs used for the
Pol II and H3K4me2/3 ChIP-quantitative PCR (qPCR) are shown by light-gray arrows; primers
specific to the reporter locus used for the H3K9me3, H3K9me2, and HP1 ChIP-qPCR are indicated
by dark-gray arrows. (B) piRNAs induce transcriptional repression of the lacZ reporter. Pol II
and H3K4me2/3 signals decreased on the lacZ promoter in the presence of artificial piRNAs as
measured by ChIP-qPCR. Shown is the fold depletion of signal in flies that carry both repressor
and reporter constructs compared with control flies that have only the reporter construct. The
signal was normalized to RP49. (C) piRNAs induce an increase in H3K9me3 and H3K9me2 marks
and HP1 binding as measured by ChIP-qPCR. Shown is the fold increase of corresponding ChIP
signals downstream from the lacZ reporter in flies that carry both repressor and reporter constructs
compared with control flies that have only reporter construct. The signal was normalized to RP49.
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marks at the reporter locus (Figure 12.10C). This result is in good agreement with the genome-wide

effect of Piwi depletion on distribution of the H3K9me3 mark and suggests that transcriptional

silencing correlates with the establishment of a repressive chromatin structure and is mediated by

piRNAs that match the target locus.

12.3 Discussion

Little is known about the function of nuclear piwi proteins. The nuclear piwi in mice (Miwi2) affects

DNA methylation of TEs (Carmell et al. 2007; Aravin et al. 2008; Kuramochi-Miyagawa et al. 2008).

Several recent reports implicate Drosophila Piwi in regulation of chromatin marks on transposon

sequences (Lin and Yin 2008; Klenov et al. 2011; Wang and Elgin 2011; Sienski et al. 2012). The

mechanism of these processes is unknown in both organisms. Previously, Piwi was shown to associate

with polytene chromosomes in salivary gland cells and colocalize with HP1, a chromodomain protein

that binds to heterochromatin and a few loci in euchromatin, suggesting that HP1 mediates Piwi’s

interaction with chromatin (Brower-Toland et al. 2007). However, recent results showed that the

putative HP1-binding site on Piwi is dispensable for Piwi-mediated transposon silencing (Wang and

Elgin 2011).

We did not detect Piwi expression outside of the ovary and testis, including in salivary gland cells,

using a GFP-Piwi transgene expressed under native regulatory elements. We detected GFP-Piwi

on polytene chromosomes in ovarian nurse cells that have a germline origin; however, it localizes

in a pattern that largely does not overlap with HP1. FLIP experiments with GFP-Piwi indicated

a relatively fast rate of fluorescence redistribution as compared with histone H2A (Figure 12.3),

implying a transient interaction of Piwi with chromatin. Our proteomic analysis of Piwi complexes

isolated from Drosophila ovaries did not identify chromatin-associated factors but revealed several

RNA-binding proteins, such as splicing and nuclear export factors that bind nascent RNA transcripts

(Fig. 1B). Importantly, the interaction of most of these RNA-binding proteins with Piwi was depen-

dent on RNA, indicating that Piwi associates with nascent transcripts. As Piwi itself lacks DNA-

and RNA-binding domains (beyond the piRNA-binding domain), it is likely that the recruitment

of Piwi to chromatin is through interactions with other RNA-binding proteins or sequence-specific

interactions between Piwi-bound piRNA and nascent transcripts.

Using specific Piwi knockdown in germ cells of the Drosophila ovary, we analyzed the effect of

Piwi depletion on gene expression, the transcription machinery, and H3K9me3 chromatin marks

genome-wide. In agreement with previous results (Klenov et al. 2011), we found up-regulation of
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several TEs upon Piwi knockdown (Figure 12.4C). The TEs that did not change their expression

upon germline knockdown of Piwi might be expressed exclusively in somatic follicular cells of the

ovary, such as the gypsy retrotransposon. Alternatively, some elements present in the genome might

not have transcriptionally active copies, or the cytoplasmic AUB/AGO3 proteins may efficiently

silence them at the post-transcriptional level.

The increase in steady-state levels of RNA upon Piwi depletion strongly correlates with an

increase in Pol II occupancy on the promoters of transposons (Figure 12.4D,F; Figure 12.5). This

result suggests that Piwi represses transposon expression at the transcriptional level, although we

cannot completely exclude the possibility of an additional post-transcriptional effect. It was shown

previously that depletion or mutation of Piwi leads to depletion of the repressive H3K9me3 mark and

an increase in the active H3K4me2/3 marks on several transposon sequences (Klenov et al. 2011;

Wang and Elgin 2011). Our ChIP-seq data extend these results to a genome-wide scale, proving

that transposons are indeed the sole targets of Piwi, and demonstrate that changes in histone marks

directly correlate with transcriptional repression.

Piwi depletion in the germline does not affect expression of the majority of host genes, although a

small fraction of genes changes expression (Figure 12.8A). One possible mechanism of the effect Piwi

has on host genes is the spreading of repressive chromatin structure from transposon sequences to

adjacent host genes. Indeed, such a spreading and the resulting repression of host gene transcription

were observed in an ovarian somatic cell (OSC) culture model (Sienski et al. 2012). However, we

did not find significant changes in the H3K9me3 mark for genes that are up-regulated upon germline

depletion of Piwi, arguing against this mechanism playing a major role in host gene regulation.

Instead, we found that the majority of host genes whose expression is increased as a result of

Piwi depletion participate in protein turnover (e.g., proteasome subunits) and stress and DNA

damage response pathways, indicating that they might be activated as a secondary response to

cellular damage induced by transposon activation. The different effect of Piwi depletion on host

gene expression in ovary and cultured cells might be explained by the fact that silencing of host

genes due to transposon insertion would likely have a strong negative effect on the fitness of the

organism but could be tolerated in cultured cells. Accordingly, new transposon insertions that cause

repression of adjacent host genes should be eliminated from the fly population but can be detected

in cultured cells. In agreement with this explanation, the majority of cases of repressive chromatin

spreading in OSCs were observed for new transposon insertions that are absent in the sequenced

Drosophila genome. Indeed, it was shown that the vast majority of new transposon insertions is

present at a low frequency in the Drosophila population, likely due to strong negative selection
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(Petrov et al. 2003). Such selection was primarily attributed to the ability of TE sequences to

cause recombination and genomic rearrangements. We proposed that in addition to the effects on

recombination, the selection against transposons can be driven by their negative impact on host

gene expression in the germline linked to Piwi-mediated chromatin silencing.

How does Piwi discriminate its proper targetstransposonsfrom host genes? In the case of cy-

toplasmic Piwi proteins AUB and AGO3, recognition and post-transcriptional destruction of TE

transcripts is guided by associated piRNAs. Our results indicated that piRNAs provide guidance

for transcriptional silencing by the nuclear Piwi protein as well. First, in contrast to host genes

that are not targeted by piRNAs, TE transcripts, which are regulated by Piwi, are recognized by

antisense Piwi-bound piRNA (Brennecke et al. 2007). Second, a Piwi mutant that is unable to

bind piRNA failed to rescue the piwi-null mutation despite its ability to enter the nucleus. Finally,

expression of artificial piRNAs that target a reporter locus induced transcriptional silencing asso-

ciated with an increase in repressive H3K9me3 and HP1 chromatin marks and a decrease in the

active H3K4me2/3 marks (Figure 12.10B and C). In contrast, the tethering of Piwi to chromatin

in a piRNA-independent fashion by fusing Piwi with the lacI DNA-binding domain that recognizes

lacO sequences inserted upstream of a reporter gene did not lead to silencing of the reporter (data

not shown). Together, our results demonstrated that piRNAs are the essential guides of Piwi to

recognize its targets for transcriptional repression.

It is tempting to propose that, similar to Argonautes in fission yeast, Drosophila Piwi directly

recruits the enzymatic machinery that establishes the repressive H3K9me3 mark on its targets.

Establishment of repressive marks can lead to stable chromatin-based transcriptional silencing that

does not require further association of Piwi with target loci. This model explains why we found that

Piwi is relatively mobile in the nucleus, indicative of only a transient interaction with chromatin.

The Piwi-mediated transcriptional silencing has an interesting parallel in Caenorhabditis elegans,

where the Piwi protein PRG-1 and associated 21U RNAs are able to induce stable transgenerational

repression that correlates with formation of silencing chromatin marks on target loci. Interestingly,

PRG-1 and 21U RNAs are necessary only for initial establishment of silencing, while continuing

repression depends on siRNA and the WAGO group of Argonautes (Ashe et al. 2012; Bagijn et al.

2012; Buckley et al. 2012; Shirayama et al. 2012). Future studies should reveal the pathway that

leads to transcriptional repression downstream from Piwi in Drosophila and the differences from and

similarities to other species.
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12.4 Materials and methods

12.4.1 Drosophila stocks

Nanos-Gal4-VP16 (BL4937), UASp-shWhite (BL33623), UASp-shPiwi (BL 33724), and Chr. I and

II Balancer (BL7197) were purchased from the Bloomington Stock Center. GFP-Piwi-expressing

flies (see below) were backcrossed onto the piwi1/piwi2 (available from Bloomington Stock Center)

background or the otu7/otu11 (available from Bloomington Stock Center) background, respectively.

LacZ reporter lines were a generous gift from S. Ronsseray.

12.4.2 Generation of transgenic fly lines

The GFP-Piwi, 3xFlag-HA-Piwi, and myc-Piwi constructs were generated using bacterial recombi-

neering (Gene Bridges Counter Selection kit) to insert the respective tag after the start codon of

the Piwi genomic region cloned in BAC clone BACN04M10. The KpnIXbaI genomic fragment that

contains the Piwi gene and flanking sequences was transferred to corresponding sites of the pCasper4

vector to create pCasper4/tagged Piwi.

The pCasper4/GFP-Piwi construct was used to generate pCasper4/GFP-Piwi-YK with two point

mutations, Y551I and K555E. Mutations were introduced by PCR, amplifying products correspond-

ing to a 3.1-kb upstream fragment and a 2.58-kb downstream fragment. The upstream fragment

included a unique XbaI site at the 5 end of the amplicon and overlapped 39 base pairs (bp) with

the downstream fragment, which included a unique BamHI site at its 3 end. The single XbaIBamHI

fragment was generated by overlap PCR with outside primers and cloned into corresponding sites

of pCasper4/GFP-Piwi to replace the wild-type fragment. Transgenic flies were generated by P-

element-mediated transformation (BestGene).

12.4.3 Immunoprecipitation of Piwi proteins and RNA gel of piRNA

Dissected ovaries were lysed in lysis buffer (20 mM HEPES at pH 7.0, 150 mM KCl, 2.5 mM

MgCl, 0.5% Triton X-100, 0.5% Igepal, 100 U/mL RNasin [Promega], EDTA-free Complete Protease

Inhibitor Cocktail [Roche]) and supernatant clarified by centrifugation. Supernatant was incubated

with anti-eGFP polyclonal antibody (Covance) conjugated to Protein-G Dynabeads at 4 ◦C. Beads

were spiked with 5 pmol of synthesized 42-nucleotide RNA oligomer to assess purification efficiency,

proteinase K-digested, and phenol-extracted. Isolated RNA was CIP-treated, radiolabeled using

PNK and γ-32P-labeled ATP, and run on a 15% urea-PAGE gel. Western blots of ovary lysate and



477

anti-eGFP immunoprecipitates were obtained from 8% SDS-PAGE gels and probed with polyclonal

rabbit anti-eGFP antibody to confirm expression of the full-length transgene.

12.4.4 Mass spectrometric analysis of Piwi interaction partners

Lysis and clarification of ovary samples were performed as described above using lysis buffer with

reduced detergent (0.1% Triton X-100, 0.1% Igepal). Piwi proteins with Flag, Myc, or GFP tag

were purified from Drosophila ovaries using corresponding antibodies covalently coupled to M-270

epoxy Dynabeads (Invitrogen) (Cristea et al. 2005). Immunoprecipitation of free GFP from GFP-

expressing ovaries was used as a negative control. Immunoprecipitations were performed in the

presence or absence of RNase A (100 µg/mL; 30 min at 25 ◦C). Piwi and copurified interacting

proteins were resolved on NuPAGE Novex 4%12% Bis-Tris gels and stained with colloidal Coomassie

blue. Gel fragments that contained protein bands were excised and in-gel-trypsinized, and the

peptides were extracted following the standard protocol of the Proteome Exploration Laboratory at

California Institute of Technology. Peptide analyses were performed on an LTQ-FT Ultra (Thermo

Fisher Scientific) equipped with a nanoelectrospray ion source (Thermo Fisher Scientific) connected

to an EASY-nLC. Fractionation of peptides was performed on a 15-cm reversed-phase analytical

column (75-µm internal diameter) in-house-packed with 3-µm C18 beads (ReproSil-Pur C18-AQ

medium; Dr. Maisch GmbH). Acquired spectra were searched against the Drosophila melanogaster

proteome using the search engine Mascot (Matrix Science, version 2.2.06), and protein inferences

were performed using Scaffold (Proteome Software, version 3).

12.4.5 Antibodies

eGFP antibody (rabbit polyclonal serum; Covance) was affinity-purified in the Aravin/Tóth labo-

ratories. Anti-myc (Millipore), anti-Flag (Sigma), Pol II (ab5408), and Pol II pSer5 (ab5131) are

commercially available.

12.4.6 Imaging of ovaries

Ovaries were fixed in 4% PFA in PBS for 20 min, permeabilized in 1% Triton X-100 in PBS, DAPI-

stained (Sigma-Aldrich), washed, and mounted in 50% glycerol/PBS. Images were captured using

an AxioImager microscope; an Apotome structured illumination system was used for optical sections

(Carl Zeiss).
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12.4.7 FLIP

FLIP time series were captured on an LSM510 confocal microscope equipped with a 40×/0.9 NA

Imm Corr multi-immersion objective. Ovaries were dissected into halocarbon 700 oil (Sigma) and

mounted under a 0.17-mm coverslip (Carl Zeiss) immediately before imaging. Two initial baseline

images were captured, followed by 80100 iterations consisting of two bleach iterations at 100% laser

power (488 nm or 543 nm for GFP- and RFP-tagged proteins, respectively), followed by two images

with reduced illumination intensity. FLIP series were cropped and median-filtered with a 2-pixel

radius to reduce noise using FIJI (Schindelin et al. 2012) and the “Rigid Body” function of the

StackReg plugin (Thévenaz et al. 1998) to correct drift when needed. Using Matlab software (The

Mathworks), images were background-subtracted and corrected for acquisition bleaching. A value

representing the true loss of intensity relative to the initial prebleach images, where 0 indicates no

change in intensity and 1 represents complete photobleaching, was calculated for each pixel and

each bleach/capture cycle and plotted with a color lookup table and calibration bar. Scale bars and

annotations were made in Inkscape (http://inkscape.org).

12.4.8 Preparation of polytene squashes for immunofluorescence

Flies carrying the GFP-Piwi BAC construct were backcrossed onto the otu[7] and otu[11] back-

ground. Progeny from the cross of the two lines were grown at 18 ◦C. Stage 712 egg chambers

were separated and transferred to a polylysine-coated microscopic slide into PBST. From here, the

“smush” protocol was followed (Johansen et al. 2009), but PFA cross-linking was reduced to 10

min. Slides were imaged using an AxioImager microscope and a 63× oil immersion objective (Carl

Zeiss).

12.4.9 ChIP, ChIP-seq, and RNA-seq

ChIP was carried out using standard protocols (Moshkovich and Lei 2010). ChIP-seq and RNA-

seq library construction and sequencing were carried out using standard protocols following the

general principles described by Johnson et al. (2007) and Mortazavi et al. (2008), respectively.

For quantitative PCR (qPCR) primers, see 12.2. GO term analysis of genes up-regulated upon

Piwi knockdown was performed using the Database for Annotation, Visualization, and Integrated

Discovery (DAVID) (Huang et al. 2009a,b) and FlyBase for additional assignment of GO terms.

http://inkscape.org
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12.4.10 High throughput data analysis

Except for where specifically specified otherwise, all data processing was carried out using custom-

written python scripts. The dm3/BDGP assembly, release 5 version of the Drosophila melanogaster

genome was used.

12.4.11 ChIP-seq and ChIP-seq data processing

Sequencing libraries were sequenced on the Illumina HiSeq 2000 (50bp reads). The resulting se-

quencing reads were trimmed down to 36bp and mapped against the genome using Bowtie 0.12.7

(Langemad et al. 2009) with the following settings: ’’-v 2 --best --strata’’ retaining only

uniquely mappable reads with up to two mismatches. Read mapping statistics for ChIP-seq datasets

processed this way are presented in 12.3.

12.4.12 Gene expression quantification using RNA-seq

RNA-seq libraries were built from polyA-selected RNA from fly ovaries following standard protocols

(Mortazavi & Williams et al. 2008) and sequenced on the HiSeq 2000 (50bp reads). For the

purposes of expression quantification, reads were mapped as 50mers, using TopHat 1.4.1 (Trapnell

et al. 2009) and splice junctions from the ENSEMBL62 dm3 annotation with otherwise default

settings. Gene expression was quantified in RPKMs/FPKMs (Reads/Fragments Per Kilobase per

Million mapped reads/fragments) for the refSeq annotation (downloaded from the UCSC browser)

with Cufflinks 2.0.2 (Trapnell et al. 2010; Trapnell et al. 2012). Read mapping statistics for these

libraries are presented in 12.4.

12.4.13 Repeat analysis

The usual practice when mapping ChIP-seq data is to retain only unique alignments as the ambiguity

of the allocation of multimapper seriously confounds most analyses. In this study it was necessary to

examine repeats but not absolutely necessary to properly allocate multimappers to each individual

repeat. I therefore adopted the following two strategies for processing our ChIP-seq and RNA-seq

data and examining ChIP enrichment over the expression of repeat elements:
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12.4.13.1 Analysis on RepeatMasker-annotated repeat elements

Both ChIP-seq and RNA-seq reads were trimmed down to the same length (36bp) and again

aligned with Bowtie 0.12.7 against the dm3 genome but this time with the following options:

“-v 0 -a --best --strata -q”, i.e. no mismatches and an unlimited number of locations to

which a read can map to. Read mapping statistics for these alignments are presented in 12.5. For

each read r, an integer multiplicity score NHr was defined (corresponding to the number of posi-

tions in the genome the read maps to) and for each individual instance of a repeated element RE

(as defined in the RepeatMasker repeat element annotation downloaded from UCSC) an RPM score

was calculated as follows:

RPMRE =
∑
r∈RE

1

NHr
(12.1)

A combined repeat RPM score was calculated as the sum of the RPMs for each individual

instance of that repeat:

TotalRPMRE =
∑
RE

RPMRE (12.2)

For RNA-seq data, repeat expression change was assessed as the RPM ratio between the shPiwi

and shWhite libraries. For Pol II ChIP-seq data, an additional confounding factor exists as the

differences in signal between two regions is the result of the combination of the actual change in

occupancy and the difference in ChIP strength between the two experiments. I therefore used the

total Pol II RPMs over transcription start sites in order to assess the difference in ChIP strength

and derive a normalization factor to be used for rescaling of the repeat RPMs of one libraries so

that they are comparable to those in the other (here, this factor turned out to be very close to 1).

12.4.13.2 Analysis on consensus repeat sequences

An orthogonal strategy for the analysis of repeat occupancy and expression change that we employed

was to map reads against consensus repeat sequences (obtained from FlyBase version FB2012 05

(McQuilton et al. 2012)). Reads were mapped with the following settings: “-v 3 -a --best --strata -q”

(allowing for up to 3 mismatches and unlimited number of multimappers). Read mapping statistics

for these alignments can be found in 12.6. Read counts for each repeat were calculated (normalizing

for multimapper multiplicity as described above) and normalized for sequencing depth against the

total number of reads mappable to the genome (derived from the alignment without limits to read
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multiplicity discussed in the previous section) and finally, normalized for the length of the consensus

sequences (RPKMs).

Results from both analyses were very similar and so only plots for RepeatMasker repetitive

elements are shown.

12.4.14 Differential expression and occupancy analysis

In order to identify differentially expressed genes and transposons we used a combination of eX-

press quantification (Roberts & Pachter 2013) and DESeq (Anders & Huber 2010) differential read

count analysis. For each replicate, RNA-seq reads were aligned against the transcriptome and the

quantification values for all transcripts belonging to the same gene were summed to derive gene-level

quantifications. The “effective counts” values were used for downstream analysis. As only a minority

of reads align to transposons, differential expression analysis only on transposons is not reliable. For

this reason, I combined raw read counts for transposons (derived for the RepeatMakser annotation

as described above or for the consensus sequences) with the eXpress quantifications on genes and

ran DESeq to evaluate the statistical significance of the observed expression changes over the two

shWhite and shPiwi replicates.

Differential occupancy of H3K9me3 was estimated as follows. First, the genome was divided into

1000bp bins and the H3K9me3 read count was estimated for each using the alignments generated

with unlimited number of locations a read can map (dividing each alignment by the read multiplicity

as discussed above). Next, DESeq was run on the H3K9me3 replicates to identify regions enriched

or depleted upon Piwi knock down (p-value of 0.05 threshold was applied). Neighboring depleted

regions were merged into contiguous clusters.

Pol II occupancy change over transposons was estimated from the combined RPM values for

RepeatMasker transposons and from RPKM values for consensus transposons after taking into

account that the difference in ChIP signal between two regions is the result of the combination of

the actual change in occupancy and the difference in ChIP strength between the two experiments.

I therefore used the total Pol II RPMs over TSSs in order to assess the difference in ChIP strength

and derive a normalization factor to be used for rescaling of the repeat RPMs of libraries so that

they are comparable to those in the other (this factor turned out to be close to 1 for both sets of

replicates).



482

Table 12.1: List of genes significantly upregulated upon Piwi knockdown. Shown are the
DESeq log2(FoldChange) and p-values as calculated from two biological replica

.

Gene log2(foldchange) p-value

CG14628 Inf 6.77E-10

CG15056 Inf 8.05E-03

CG18823 Inf 2.77E-02

CG31054 Inf 3.28E-12

CG4984 Inf 2.59E-02

Sdic1 Inf 3.80E-02

yellow-c Inf 9.49E-03

blanks 9.97 7.11E-04

Rpt6R 9.5 3.17E-05

CG32259 7.65 3.91E-02

Rpt3R 6.42 1.73E-07

Oseg5 6.32 8.24E-07

Shawl 6.1 2.02E-09

CG18193 5.63 1.56E-02

CG15201 5.37 4.01E-02

CG12493 5.24 1.87E-02

TrxT 5.19 5.90E-03

Salt 5.14 4.61E-02

CG4650 4.74 2.73E-02

CR18854 4.59 3.91E-11

Rbp4 4.48 1.69E-03

PebIII 4.42 5.82E-03

CG5791 4.33 1.52E-02

CG13321 4.26 2.81E-09

CG3884 3.79 1.47E-02

CG12655 3.68 3.73E-03

Continued on next page
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Table 12.1 – Continued from previous page

Gene log2(FoldChange) p-value

CG10151 3.45 6.51E-05

CG5281 3.32 9.62E-05

GstD2 3.32 3.00E-02

CG30108 3.3 3.83E-06

IM1 3.3 1.59E-02

CG10440 3.23 2.18E-02

CG34291 3.2 3.13E-02

CG16758 3.14 1.34E-02

CG6776 3.1 3.14E-05

Cyp12d1-p 3.03 1.37E-03

CG18186 2.94 1.18E-05

Obp99b 2.86 5.56E-04

CG1600 2.82 2.48E-04

CG13936 2.79 4.55E-02

Hsp70Ab 2.77 7.62E-03

CG7470 2.7 2.51E-04

Gfat1 2.65 4.23E-03

CG9960 2.6 2.87E-03

Ptp52F 2.58 1.58E-03

GstD10 2.58 4.32E-02

GstD5 2.57 2.29E-02

Mdr49 2.57 1.13E-02

Lsd-1 2.48 7.31E-04

scpr-A 2.47 3.65E-03

GstE5 2.45 3.60E-02

Cyp28d1 2.34 1.05E-02

CG7408 2.34 4.42E-02

Continued on next page
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Table 12.1 – Continued from previous page

Gene log2(FoldChange) p-value

CG9380 2.3 1.04E-02

CG15347 2.28 2.26E-02

CG14629 2.27 1.03E-02

CG32572 2.26 7.74E-03

CG5399 2.24 4.98E-03

Jheh3 2.2 8.99E-03

CG5171 2.19 3.17E-02

CG9743 2.17 4.68E-02

Hsp23 2.13 8.02E-04

RpS19b 2.1 4.61E-02

Lip4 2.07 6.69E-03

Hsp70Aa 2.06 8.74E-05

IM2 2.05 3.62E-02

Pomp 2 8.31E-04

pncr008 1.99 4.42E-03

CG5853 1.96 1.08E-02

CG9360 1.93 2.94E-02

CG30104 1.93 5.42E-03

CG12290 1.92 2.58E-02

ref(2)P 1.92 1.26E-03

Prosalpha5 1.92 1.56E-03

CR42871 1.91 3.78E-02

Pros28.1 1.86 1.72E-03

Pros35 1.86 5.95E-03

CG6299 1.85 5.75E-03

Prosbeta7 1.8 3.75E-03

CG15445 1.79 5.28E-03

Continued on next page
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Table 12.1 – Continued from previous page

Gene log2(FoldChange) p-value

qsm 1.78 1.13E-02

CG11378 1.78 2.50E-02

DnaJ-H 1.76 2.53E-03

CG17331 1.74 4.46E-03

Jheh1 1.73 8.66E-03

dgo 1.7 2.67E-02

IM3 1.69 3.05E-02

CG3348 1.69 4.28E-02

Prosbeta5 1.68 8.07E-03

CG5958 1.67 1.50E-02

Prosbeta1 1.65 6.22E-03

Hmu 1.65 1.08E-02

msd1 1.64 7.74E-03

CG4199 1.64 1.08E-02

cathD 1.63 9.09E-03

CG10208 1.62 1.45E-02

Gel 1.61 1.41E-02

GstE3 1.61 1.75E-02

Prosbeta2 1.6 6.70E-03

sev 1.58 2.74E-02

Prosalpha7 1.58 7.14E-03

CG5167 1.57 2.87E-02

Lsm10 1.57 1.72E-02

Rpn9 1.57 9.83E-03

Rpn6 1.56 1.13E-02

Rpt1 1.55 8.58E-03

CG2046 1.55 6.56E-03

Continued on next page
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Table 12.1 – Continued from previous page

Gene log2(FoldChange) p-value

CG5384 1.55 1.59E-02

CG12795 1.54 7.79E-03

Pros29 1.53 1.19E-02

Roc1a 1.53 1.11E-02

Rpn12 1.52 2.12E-02

CG13779 1.51 8.89E-03

Cyp9f2 1.51 7.47E-03

Pros54 1.51 3.31E-02

Pros26 1.49 1.46E-02

Tsf1 1.49 3.31E-03

Pros25 1.47 1.99E-02

CG33099 1.46 3.51E-02

Pros45 1.46 1.90E-02

Cyp12d1-d 1.41 3.26E-02

CG11885 1.41 3.85E-02

p47 1.4 1.86E-02

Rpt4 1.39 4.25E-02

Uch-L3 1.39 2.20E-02

CG6218 1.36 2.05E-02

Sirt4 1.36 3.52E-02

PHGPx 1.36 1.86E-02

Rpn11 1.36 2.56E-02

Mov34 1.36 2.08E-02

CG12398 1.36 3.46E-02

CalpB 1.35 3.57E-02

Jheh2 1.32 3.59E-02

Clc 1.31 2.97E-02

Continued on next page
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Table 12.1 – Continued from previous page

Gene log2(FoldChange) p-value

Ube3a 1.31 3.51E-02

borr 1.28 4.07E-02

Irc 1.28 3.78E-02

Txl 1.27 2.78E-02

Rpn3 1.27 2.72E-02

CG42488 1.23 2.32E-02

TER94 1.21 3.78E-02

Ice 1.19 4.30E-02

CG4572 1.18 3.84E-02

Cyt-b5 1.17 3.81E-02

Prosbeta3 1.16 4.38E-02

CG4673 1.16 4.35E-02

CG13349 1.15 4.32E-02

CG9436 1.12 4.70E-02

SelG 1.11 4.04E-02
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Table 12.2: PCR primers

Name sequence

RP49-f(14) CCGCTTCAAGGGACAGTATCTG
RP49-r(14) ATCTCGCCGCAGTAAACGC
lacZpromoter-f ATCGCCCTTCCCAACAGTTGC
lacZpromoter-r TTCTGGTGCCGGAAACCAGG
lacZreporter-f TGCACATTTTGCAGGAGTACGGC
lacZreporter-r GATTTCGGCGCGACTGCTACC

Table 12.3: ChIP-seq datasets read mapping statistics

Library Read
Length

Uniquely mapped reads

Ovary shPiwi Rep1 H3K9me3 36 11,093,401
Ovary shPiwi Rep1 Input 36 23,783,156
Ovary shPiwi Rep1 Pol II 36 21,233,655
Ovary shWhite Rep1 H3K9me3 36 17,745,203
Ovary shWhite Rep1 Input 36 22,091,234
Ovary shWhite Rep1 Pol II 36 18,377,757
Ovary shPiwi Rep2 H3K9me3 36 22,467,219
Ovary shPiwi Rep2 H3K9me3 Input 36 14,843,946
Ovary shPiwi Rep2 Pol II 36 9,627,221
Ovary shPiwi Rep2 Pol II Input 36 2,985,999
Ovary shWhite Rep2 H3K9me3 36 21,135,950
Ovary shWhite Rep2 H3K9me3 Input 36 16,619,035
Ovary shWhite Rep2 Pol II 36 5,731,448
Ovary shWhite Rep2 Pol II Input 36 1,629,660

Table 12.4: RNA-seq datasets read mapping statistics (TopHat 1.4.1 mappings)

Library Read
Length

Unique Multi Unique
splices

Multi
splices

Ovary 50 19,868,793 3,249,894 2,021,378 31,552
Ovary shWhite Rep1 50 4,266,297 868,256 389,035 5,895
Ovary shPiwi Rep1 50 5,886,236 906,534 606,030 8,962
Ovary shWhite Rep2 50 10,345,357 1,186,659 607,786 18,881
Ovary shPiwi Rep2 50 12,764,829 1,393,823 1,177,886 25,302
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Table 12.5: Repeat analysis mapping statistics (whole genome with unlimited multimappers,
zero mismatches)

Library Read Length Unique Multi

Ovary shPiwi Rep1 H3K9me3 36 9,469,110 4,511,259
Ovary shPiwi Rep1 Input 36 20,029,978 2,042,023
Ovary shPiwi Rep1 Pol II 36 17,994,285 1,994,455
Ovary shWhite Rep1 H3K9me3 36 15,101,194 5,076,952
Ovary shWhite Rep1 Input 36 18,568,175 1,435,948
Ovary shWhite Rep1 Pol II 36 15,589,380 1,675,468
Ovary shWhite Rep1 RNA-seq 36 3,682,085 6,376,989
Ovary shPiwi Rep1 RNA-seq 36 5,119,512 5,808,312
Ovary shWhite Rep2 RNA-seq 36 8,658,005 4,005,709
Ovary shPiwi Rep2 RNA-seq 36 10,573,906 3,641,282
Ovary shPiwi Rep2 H3K9me3 36 13,315,195 3,808,164
Ovary shPiwi Rep2 H3K9me3 In-
put

36 13,489,170 3,501,374

Ovary shPiwi Rep2 Pol2 36 8,137,867 1,183,428
Ovary shPiwi Rep2 Pol2 Input 36 2,424,728 698,521
Ovary shWhite Rep2 H3K9me3 36 19,021,830 9,010,645
Ovary shWhite Rep2 H3K9me3 In-
put

36 12,018,516 5,698,668

Ovary shWhite Rep2 Pol2 36 4,858,338 824,157
Ovary shWhite Rep2 Pol2 Input 36 1,303,208 873,869

Table 12.6: Repeat analysis mapping statistics (consensus repeats)

Library Read Length Unique Multi

Ovary shWhite Rep1 RNA-seq 36 14,016 4,615
Ovary shPiwi Rep1 RNA-seq 36 39,413 9,692
Ovary shWhite Rep2 RNA-seq 36 15,309 7,910
Ovary shPiwi Rep2 RNA-seq 36 27,691 10,559
Ovary shPiwi Rep1 H3K9me3 36 2,720,971 283,437
Ovary shPiwi Rep1 Input 36 1,123,614 133,470
Ovary shPiwi Rep1 Pol II 36 515,368 109,711
Ovary shWhite Rep1 H3K9me3 36 3,208,049 318,559
Ovary shWhite Rep1 Input 36 739,854 83,425
Ovary shWhite Rep1 Pol II 36 346,044 74,633
Ovary shPiwi Rep2 H3K9me3 36 5,487,961 469,778
Ovary shPiwi Rep2 H3K9me3 In-
put

36 2,819,017 340,768

Ovary shPiwi Rep2 Pol II 36 380,988 79,937
Ovary shPiwi Rep2 Pol II Input 36 318,557 38,475
Ovary shWhite Rep2 H3K9me3 36 5,556,191 463,857
Ovary shWhite Rep2 H3K9me3 In-
put

36 1,718,729 205,205

Ovary shWhite Rep2 Pol II 36 220,634 52,925
Ovary shWhite Rep2 Pol II Input 36 174,554 25,171
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12.5 No evidence that Piwi binds to the majority of

transposons in the Drosophila genome

The model suggested by the findings described above, as well as in other recent studies (Sienski et

al. 2012; Rozhkov et al. 2013; Ge & Zamore 2013), is one of Piwi scanning the transcriptome for

piRNA-matching sequences and initiating transcriptional silencing when such matches are found.

An expectation based on this model is that Piwi would be found to physically associate with tran-

scribed genes and with more highly expressed transposable elements but not necessarily with most

transposons, which are silenced and expressed only at very low levels.

We tried to test this prediction using Piwi ChIP-seq. Initial experiments using traditional fix-

ation conditions were unsuccessful (data not shown) likely due to the transient and indirect na-

ture of association of Piwi with chromatin (Piwi is likely associating with transcribed RNAs and

maybe in some way with the RNA Polymerase machinery but is not necessarily directly interacting

with DNA). We reasoned that fixation with a long-arm crosslinking agent such as ethylene glycol-

bis(succinimidylsuccinate) (EGS) (Abdella et al. 1979; Zeng et al. 2006), which we had previously

employed successfully to stabilize protein-DNA and protein-protein interactions (see Li et al. 2012),

could result in a successful Piwi ChIP.

We obtained a pattern seemingly consistent with Piwi binding to active genes, as the Piwi ChIP-

seq signal was concentrated around transcription start sites and its strength correlated strongly with

gene expression levels in datasets generated using a Piwi antibody, a FLAG-tagged version of Piwi,

and a GFP-tagged version of Piwi (Figure 12.11A-C). This pattern was very similar to the one

observed for RNA Polymerase II (Figure 12.11D) although Piwi enrichment over background was

considerably lower. However, an unsettling feature of this pattern was the fact that Piwi was greatly

concentrated to TSSs, more similar to the Ser5-phosphorylated form of the RNA Polymerase II CTD

Figure 12.11F), which is associated with transcriptional initiation, than the profiles seen in ChIP-seq

against RNA Polymerase II CTD pSer2 (Figure 12.11E), which is associated with transcriptional

elongation (Buratowski, 2009). Such an observation is not consistent with the scanning model

as piRNAs are not concentrated close to the TSS and Piwi would presumably need to scan the

whole transcript to find regions complementary to them. This, the findings described in the second

chapter of Part III (in particular, the observation that strong read clustering is more often seen in

IgG controls than in sonicated inputs, which we used initially for normalization in our analysis),

and the suspicion that EGS cross-linking might exacerbate the known sonication biases towards
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open chromatin (as it may tightly crosslink nucleosomes to each other, making them refractory to

sonication in the way heterochromatin is; Auerbach et al. 2009; Teytelman et al. 2009; Gaulton et

al. 2010) suggested that the apparent Piwi enrichment might be an artifact of fixation. This was

confirmed when we carried out ChIP-seq against GFP in EGS-fixed cells not expressing any GFP

or GFP-fusion protein and observed the same pattern as what we saw in Piwi datasets.

Soon after the publication of our work (which excluded all Piwi ChIP-seq data), a study appeared

claiming to present the first genome-wide analysis of Piwi binding to the fly genome (Hwang et

al. 2013). Its results were very surprising as the authors found that Piwi localizes extensively

and highly specifically to transposon sequences, with 87% of reads originating from transposable

elements. Transposable elements comprise only about a quarter of the D. melanogaster genome

based on the repeatMasker repeat element annotation, which would make this Piwi dataset one

of the most highly enriched ChIP-seq datasets in existence. Enrichment levels approaching a FRiP

value of 0.5 are only seen with proteins associating constitutively and/or very tightly with DNA such

as histones, CTCF, RNA Polymerase II (Landt et al. 2012; Marinov et al. 2014) and TFAM (Wang

et al. 2013). That a protein that has been so notoriously difficult to ChIP due to the transient

nature of its association with chromatin could exhibit even higher ChIP enrichment than what is

only sometimes observed with the best performing in ChIP factors seemed inconceivable.

This prompted us to carry out a close examination of the Piwi ChIP-seq data from Hwang

et al., which revealed that their Piwi ChIP failed completely and the claimed enrichment over

repetitive elements is entirely the result of improper handling of the data. Hwang et al. employed

a highly unusual data processing pipeline that involved non-standard read mapping settings and a

normalization procedure that amplifies small differences between ChIP and input, but most crucially,

they included both unique alignments and multiread alignments (reads mapping to multiple locations

in the genome) without normalizing in any way for the number of locations a read can map to,

effectively treating all such alignments as separate unique reads. As transposable elements are the

Figure 12.11 (preceding page): Relationship between ChIP-signal and gene expression
in Piwi, RNA Polymerase Two and GFP IgG control datasets. Shown are metagenes
profiles of the ChIP signal (in RPM) over genes (with the background subtracted), with the 2kb
(±1kb) regions around the transcription start site (TSS) and transcription termination site (TTS)
shown to scale and the rest of the gene body rescaled to 2kb length (genes shorter than 4kb were
excluded). Gene were additionally split into 5 quantiles according to their expression levels as
measured by RNA-seq. (A) ChIP-seq on FLAG-tagged Piwi ; (B) ChIP-seq on Piwi using a Piwi
antibody; (C) ChIP-seq on GFP-tagged Piwi; (D) ChIP-seq pon RNA Polymerase II; (E) ChIP-seq
against RNA Polymerase II pSer2; (F) ChIP-seq against RNA Polymerase II pSer5; (G) ChIP-seq
against GFP.
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Figure 12.12: Effect of data processing on apparent Piwi occupancy over repetitive
elements. Shown is the region from Fig.2B of Huang et al. 2013. (A) Piwi ChIP-seq and background
(input) data from Huang et al. 2013 (B) H3K9me3 ChIP-seq and background data from Muerdter
et al. 2013. For each dataset, four tracks are shown: 1) unique alignments; 2) all alignments,
with multireads normalized for read multiplicity (as described in Methods); 3) all alignments, with
all reads treated as unique (analogous but not identical to the processing procedure of Huang et
al.); 4) data processed as in Huang et al. 2013. The striking enrichment of Piwi over repetitive
elements is only observed when no multiread normalization is applied. Note than in this case a
similar enrichment is observed in the background as well. Strong H3K9me3 enrichment is observed
only over a short stretch corresponding to a LINE element if multiplicity is taken into consideration.
If all reads are treated as unique then H3K9me3 shows a similar profile as Piwi.

primary cause for the presence of repetitive regions in genomes, it is no surprise that such a large

fraction of “reads” originated from them.

I illustrate this in several ways here, using an H3K9me3 dataset (a classic heterochromatin his-

tone modification) from Muerdter et al. 2013 and modENCODE transcription factor ChIP-seq data

for comparison. Figures 12.12, 12.13 and 12.14 show the effect of data processing (see the following

Methods section for details) on the appearance of the Piwi profile over transposable elements (using

the three genomic region featured in genome browser snapshots in Hwang et al. 2013). When only

unique reads are examined and when multireads are normalized for their multiplicity, no Piwi en-

richment is apparent over transposons. The highly localized to repeats distribution of Piwi becomes

apparent only when multiread alignments are treated as individual uniquely aligned reads and even

then it is also present to a very similar extent in the input dataset.

The same conclusions were drawn from an analysis of the global distribution of Piwi and input

signal over transposable elements (Figures 12.15, 12.16A and 12.17). Piwi ChIP-seq was indistin-
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Figure 12.13: Effect of data processing on analysis of Piwi occupancy of repetitive
elements. As described in Figure 1 for the genomic region shown in Fig. 2D of Huang et al.
2013. Piwi enrichment is only observed if multiplicity is not taken into consideration. Note that the
enrichment over the repetitive ank sequences is stronger in the H3K9me3 background than in the
ChIP, indicating the lack of enrichment even if multiplicity is not taken into consideration.

guishable from background and also from modENCODE transcription factor ChIP-seq datasets, for

which there is no expectation of high levels of localization to transposons (Figure 12.17). In contrast,

H3K9me3 exhibited strong and significant enrichment over background (Figures 12.15 and 12.16B)

over transposable elements. Thus the published by Hwang et al. Piwi ChIP-seq is of extremely poor

quality and does not demonstrate high levels of localization of Piwi to transposons.

In conclusion, the question what exactly Piwi’s distribution over the genome is remains to be

directly answered experimentally.

12.6 Reanalysis of Hwang et al. 2013; Methods

Except for where specifically specified otherwise, all data processing was carried out using custom-

written python scripts. The dm3/BDGP assembly, release 5 version of the Drosophila melanogaster

genome was used.



495

Figure 12.14: Effect of data processing on analysis of Piwi occupancy of repetitive
elements. As described in Figure 1 for the genomic region shown in Fig. 2C of Huang et al. 2013.
Piwi enrichment is only observed if multiplicity is not taken into consideration. In Contrast to Fig.
1 and Fig S3 in this snapshot at least some of the repeats identified by Huang et al to show Piwi
enrichment do show H3K9me3 enrichment even if multiplicity is taken into consideration indicating
that these regions are targeted for heterochromatinization.

12.6.1 ChIP-seq data processing

Sequencing reads (36bp in data from Huang et al. 2013, paired 75bp reads in data from Muerdter et

al. 2013; mixed read lengths trimmed down to 36bp in modENCODE data) were mapped against the

genome using Bowtie 0.12.7 (Langmead et al., 2009) with the following settings: ’’-v 2 -k 2 -m 1

--best --strata’’ for unique 36bp alignments, ’’-v 3 -k 2 -m 1 --best --strata’’ for unique

2x75bp alignments, and ’’-v 0 -a --best --strata’’ for alignments in which multireads were

retained. The -X 1000 option was applied and only concordant read pairs were retained for 2x75bp

H3K9me3 data. Read mapping statistics for ChIP-seq datasets processed this way are presented in

Supplementary Table 3. Read mapping statistics for all alignments are presented in Supplementary

Tables 1 and 2.

Three different types of signal tracks were then generated.

1. Unique tracks retaining uniquely mapping reads only, normalized to RPMs (Reads Per Million

mapped reads) according to the following formula:
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Figure 12.15: Enrichment of Piwi and H3K9me3 over consensus repetitive elements.
Shown are the Input and ChIP RPMs for H3K9me3 (red, from Muerdter et al. 2013) and for Piwi
(yellow, from Huang et al) over transposon consensus sequences (flybase (Marygold et al. 2013)).
All reads were trimmed down to 36bp (the read length of the Piwi ChIP-seq data from Huang et al.
2013) and aligned against the consensus sequences allowing up to 3 mismatches. Read counts were
calculated for each repetitive element and normalized to RPM against the total number of reads
aligning to the whole genome (with unlimited number of locations a read can map to). A clear
overall enrichment over repeats is observed for H3K9me3. In contrast, the Piwi-ChIP dataset from
Huang et al. is very similar to the background.

Sc,i =
|Rc,i|

|R|
106

(12.3)

Where Sc,i is the signal score for position i on chromosome c, |R| is the total number of mapped

reads, and |Rc,i| is the number of reads covering position i on chromosome c.

2. Tracks normalized for read multiplicity based on all alignable reads, where the normalization

to RPMs is carried out as follows:
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Figure 12.16: Genome-wide enrichment of Piwi and H3K9me3 over repetitive elements.
Shown is the average signal distribution over LINE repetitive elements for ChIP (red) and back-
ground (yellow) datasets for Piwi from Huang et al. 2013 (A) and for H3K9me3 from Muerdter et
al. 2013 (B). The background-normalized enrichment is indicated in black. The 100bp around the
beginning and the end of individual elements are shown to scale, the rest of each LINE elements
is rescaled to 100 units. The repeatMasker repetitive element annotation available from the UCSC
Genome Browser was used. A clear enrichment over background is observed in H3K9me3 datasets,
even when only uniquely aligning reads are considered. In contrast, the Piwi dataset from Huang et
al. 2013 is indistinguishable from background.

Sc,i =

∑
R∈Rc,i

1

NHR

|R|
106

(12.4)
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Where NHR is the number of locations in the genome a read maps to.

3. Tracks generated using all alignments without normalization for multiplicity, i.e. treating each

individual alignment A as if it is a uniquely mappable read:

Sc,i =
|Ac,i|

|A|
106

(12.5)

12.6.2 Analysis of RepeatMasker-annotated repeat element coverage

The RepeatMasker repeat element annotation downloaded from UCSC (Kent et al. 2002) was used

for all repeat analysis. An RPM score was calculated for each repeat using the following formula:

RPMRE =

∑
R∈RE

1

NHR

|R|
106

(12.6)

12.6.3 Analysis of consensus-sequence repeat element coverage

Consensus repetitive elements for Drosophila melanogaster were downloaded from FlyBase (Mary-

gold et al. 2013). Reads were trimmed down to 36bp as this was the read length of the Piwi ChIP-seq

data from Huang et al. 2013. Reads were then aligned against the Flybase repetitive element con-

sensus sequences using Bowtie 0.12.7 (Langmead et al., 2009) with the following settings: ’’-v 3

-a --best --strata’’, i.e. allowing for up to 3 mismatches, and unlimited number of locations a

read can map to. Read counts were calculated for each repetitive element and normalized to RPM

against the total number of reads aligning to the whole genome (with unlimited number of locations

a read can map to) as follows:

RPMREc =
|R ∈ REc|

|R|
106

(12.7)

where REc refers to the consensus repetitive element.
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Figure 12.17: Distribution of
ChIP-over-control enrichment
for individual repetitive ele-
ments. Shown is the cumulative
distribution function (cdf) of the ratio
between the total ChIP RPM and
control/background RPM for each
DNA, LINE or LTR repetitive element.
Piwi ChIP-seq data from Huang et al.
2013 (red) and H3K9me3 data from
Muerdter et al. 2013 (blue) are plotted
alongside the cumulative distribution
for 10 transcription factor ChIP- seq
datasets from modENCODE (gray), for
which there is no expectation of high en-
richment over repetitive elements. Only
repeat instances with at least 10 RPM
in at least one of the ChIP and control
datasets for each ChIP/background
pairing were included. H3K9me3 shows
very high average enrichment over
background over most of the elements
in all 3 classes. In contrast the Piwi
ChIP-seq data falls in the middle
of the distribution of cdf curves for
modENCODE transcription factors.
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Table 12.7: ChIP-seq datasets read mapping statistics; Huang et al. 2013 Piwi and
Muerdter et al. 2013 H3K9me3

Library Read
Length

Alignment policy Unique
reads

Multi-reads

Piwi ChIP (Huang et al) 36 -v 2 -k 2 -m 1 1,252,047
Piwi ChIP (Huang et al) 36 -v 0 -a 571,778 173,696
background (Huang et al) 36 -v 2 -k 2 -m 1 1,803,636 0
background (Huang et al) 36 -v 0 -a 960,165 268,324
H3K9me3 ChIP 2x75 -v 0 -a 47,243,150 50,690,870
H3K9me3 ChIP 2x75 -v 3 -k 2 -m 1 53,692,762 0
input 2x75 -v 0 -a 75,933,354 13,978,550
input 2x75 -v 3 -k 2 -m 1 121,920,616 0

Table 12.8: ChIP-seq datasets read mapping statistics; modENCODE

Library Read
Length

Alignment policy Unique
reads

Multi-reads

Caudal-Embryos-0-4h-ChIP-Rep1 36 -v 0 -a 6,634,927 1,449,839
Caudal-Embryos-0-4h-Input-Rep1 36 -v 0 -a 7,758,011 2,263,029
KNI-Embryos-8-16h-ChIP-Rep1 36 -v 0 -a 1,739,675 527,196
KNI-Embryos-8-16h-Input-Rep1 36 -v 0 -a 1,424,498 471,903
cnc-Adult-Female-ChIP-Rep1 36 -v 0 -a 13,427,663 1,438,195
cnc-Adult-Female-Input-Rep1 36 -v 0 -a 16,303,018 1,770,286
fru-Embryos-0-8h-ChIP-Rep1 36 -v 0 -a 1,165,616 352,686
fru-Embryos-0-8h-Input-Rep1 36 -v 0 -a 1,371,922 381,865
hairy-Embryos-0-8h-ChIP-Rep1 36 -v 0 -a 1,073,716 245,579
hairy-Embryos-0-8h-Input-Rep1 36 -v 0 -a 1,368,786 271,948
hth-Embryos-0-8h-ChIP-Rep1 36 -v 0 -a 1,147,405 292,100
hth-Embryos-0-8h-Input-Rep1 36 -v 0 -a 1,391,304 376,075
lola-Embryos-0-12h-ChIP-Rep1 36 -v 0 -a 666,154 322,079
lola-Embryos-0-12h-Input-Rep1 36 -v 0 -a 1,179,350 312,687
pangolin-Embryos-0-8h-ChIP-
Rep1

36 -v 0 -a 1,354,532 240,999

pangolin-Embryos-0-8h-Input-
Rep1

36 -v 0 -a 1,252,479 547,165

prd-Embryos-0-12h-ChIP-Rep1 36 -v 0 -a 1,349,189 464,935
prd-Embryos-0-12h-Input-Rep1 36 -v 0 -a 1,391,042 447273
scute-Embryos-0-12h-ChIP-Rep1 36 -v 0 -a 12,440,506 2,471,660
scute-Embryos-0-12h-Input-Rep1 36 -v 0 -a 1,391,042 447,273
usp-Embryos-0-12h-ChIP-Rep1 36 -v 0 -a 830,111 252,276
usp-Embryos-0-12h-Input-Rep1 36 -v 0 -a 1,270,822 246,580
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13

Single-cell heterogeneity in the noncoding transcrip-

tome during iPS cell reprogramming

This chapter contains a study on transcriptomic changes on the single-cell level during iPS repogram-

ming that was intended to be published (but at the time of writing this thesis has not yet been ac-

cepted for publication) as:

Kim DH, Marinov GK, Singer ZS, Pepke S, Williams BA, Schroth GP, Elowitz MB, Wold BJ. Single-

cell heterogeneity in the noncoding transcriptome during iPS cell reprogramming.

My role was in carrying out most of the computational analysis for it (except the Self-Organizing

Map part). I note that it features single-cell RNA-seq that was generated before we established

our approaches for correcting for technical noise with a pool/split design and before we made it our

standard to include spike-in quantification standards and work with absolute copy-per-cell estimates

of gene expression. This is the reason why the manuscript ignored the question of technical noise and

the data was analyzed as if there is no noise. Nevertheless we were able to derive useful biological

insights from the data.

Abstract

Somatic cell reprogramming into induced pluripotent stem (iPS) cells (Takahashi &

Yamanaka 2006; Takahashi et al. 2007; Wernig et al. 2007) involves widespread changes

in the protein-coding transcriptome, which have been extensively characterized at the

population level (Buganim et al. 2013; Loh et al. 2011). Recent studies have shown

that acquisition of pluripotency occurs in a stepwise manner, where functionally related
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Figure 13.1: Flow cytometry analysis of SSEA-1 in reprogramming TTFs. SSEA-1 ex-
pression on reprogramming TTFs after doxycycline exposure for 2-3 weeks in culture, as determined
by flow cytometry.

protein-coding genes are activated in distinct waves (Buganim et al. 2012; O’Malley

et al. 2013; Polo et al. 2012; Hansson et al. 2012). However, the dynamic changes

in the noncoding transcriptome during reprogramming are poorly understood. Here

we characterize the transcriptomes of individual reprogramming iPS cells and show

that numerous long noncoding RNAs (lncRNAs) are heterogeneously expressed us-

ing single-cell RNA sequencing (RNA-seq) and single-molecule RNA FISH (smFISH).

At a systems level, activation of the endogenous pluripotency network led to an un-

expected global decrease in protein-coding transcriptome variation. Notably though,

Figure 13.2: Experimental outline. Live-cell imaging, FACS isolation, micromanipulation, and
single-cell RNA-seq library generation from tail-tip fibroblasts, SSEA-1(-) and SSEA-1(+) repro-
gramming iPS cells, and embryonic stem cells. DOX, doxycyline. FACS, fluorescence-activated cell
sorting.
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Figure 13.3: Protein-coding and lncRNA genes in single-cell libraries. Number of genes
detected in single-cell RNA-seq libraries, according to abundance class. RPKM, Reads Per Kilobase
per Million mapped reads.

reprogramming iPS cells failed to fully recapitulate a lncRNA expression repertoire

that is more prominent and stably expressed in the pluripotent state. Resetting of the

noncoding transcriptome therefore appears incomplete in most iPS cells, even at late

stages of reprogramming. Loss-of-function experiments showed that lncRNAs activated

during reprogramming (LADR), many of which associate with chromatin regulatory

proteins (Guttman et al. 2011; Zhao et al. 2010), are required for generating iPS cells

and silencing lineage-specific genes. Transcriptome analysis of iPS LADR knockdowns
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Figure 13.4: Global decrease in transcriptome variation during reprogramming. a,
Hierarchical clustering of protein-coding genes detected in single-cell RNA-seq libraries. RPKM,
Reads Per Kilobase per Million mapped reads. b, Correlation matrix for single-cell RNA-seq libraries
using protein-coding genes. c, Visualization of individual cell transcriptomes using the self-organizing
map (SOM). Colorbar indicates normalized expression values of clustered genes, as determined by
single-cell RNA-seq.

showed that two specific lncRNAs, LADR1 and LADR2, co-repress a common gene

set, indicating combinatorial control of lineage-specific genes by these lncRNAs. Taken

together, our findings reveal that functionally important lncRNAs are stochastically

active and rate-limiting, with the capacity to directly affect downstream differentiation

genes during reprogramming

13.1 Introduction, Results and Discussion

Epigenetic reprogramming is understood to be clonal in nature (Tchieu et al. 2010), wherein indi-

vidual cells ultimately convert to the pluripotent state. An ectopic pulse of Oct4, Sox2 Klf4, and
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Figure 13.5: The self-organizing map (SOM). A gene is clustered according to the minimum
distance of its expression vector from prototype vectors assigned to units in a 2D grid. Initial
vectors can be chosen in a variety of ways. In this work, they are initialized by mapping the first two
principal components of the data onto the grid. Training proceeds by incrementally moving each
prototype toward input vectors that map near it, using a weighting that decreases with map distance
from the best matching unit (BMU). The trained SOM consists of prototypes adapted to input data
and exhibits spatial organization of units in larger-scale clusters across the grid. Colorbar represents
log transformation of normalized data vectors, where normalization is performed on a gene-by-gene
basis by subtracting the vector mean and dividing by its standard deviation.

Myc (OSKM) expression can initiate a lengthy reprogramming process that requires weeks in culture

to produce iPS cells (Yamanaka 2009). This process has both stochastic and deterministic elements

(Yamanaka 2009; Buganim et al. 2012), and only a small fraction of cells become pluripotent.

Conventional protein-coding transcriptome studies of reprogramming, performed at the population

level, have identified key transcriptional regulators and chromatin remodeling proteins (Buganim et

al. 2013; Loh et al. 2011). Some of those remodeling factors have been shown to associate with

lncRNAs (Guttman et al. 2011; Zhao et al. 2010; Lee 2012; Rinn & Chang 2012), but previous stud-

ies have not examined the entire coding and noncoding transcriptomes during reprogramming. For

both coding and noncoding RNAs, population level measurements obscure individual cell differences

by mixing and mutual dilution, blurring both known and new RNA signatures of cell states and

phenotypes. Recent studies have begun to address the limitation of population-based approaches

by using single-cell techniques to examine small and specific subsets of known, protein-coding genes

(Polo et al. 2012; Buganim et al. 2012), but noncoding genes have yet to be characterized sys-

tematically during reprogramming, and full transcriptomes have not been measured in single cells.

Here we performed RNA-seq and smFISH on individual cells drawn from a reprogramming stimulus

timecourse, extending the single-cell view to the entire coding and noncoding transcriptomes.

We characterized the single-cell transcriptomes of reprogramming cells by capturing full-length
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poly(A)+ RNA from individual cells (Ramsköld et al. 2012). We isolated tail-tip fibroblasts (TTFs)

from the “reprogrammable mouse” (Carey et al. 2010), which express OSKM in a doxycycline

(dox)-dependent manner. TTFs exposed to dox for 2 weeks remained negative for the SSEA-1

reprogramming marker (Buganim et al. 2013), and SSEA-1 positive (+) cells first appeared after

3 weeks of dox induction (Figure 13.1). After 4 weeks of culturing in dox, we obtained SSEA-

1(+) iPS colonies that proliferated in the absence of OSKM (Figure 13.2). We sorted SSEA-1(+)

Figure 13.6: Single-cell components of the self-organizing map (SOM). Each single-cell
SOM component represents one single-cell RNA-seq library at a defined time-point during OKSM-
induced reprogramming, as indicated. Colorbar represents log transformation of normalized data
vectors, where normalization is performed on a gene-bygene basis by subtracting the vector mean
and dividing by its standard deviation.
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Figure 13.7: Late activation kinetics of germ cell-related genes during reprogramming.
a, Hierarchical clustering of a subset of pluripotency- and germ cell-related genes in single-cell
RNAseq libraries. Italicized genes in bold indicate genes examined using smFISH. RPKM, Reads
Per Kilobase per Million mapped reads. b, Single-cell smFISH of reprogramming iPS cells at week
6 (Wk6) in culture. Scale bar, 10 um. c, Histograms showing the distributions of mRNA molecules
per cell as determined by smFISH. d, Reprogramming efficiencies of tail-tip fibroblasts treated with
indicated cytokines or expression vectors, as determined by the number of SSEA-1(+) colonies using
live-cell imaging. Error bars indicate S.D. (n = 3).
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Figure 13.8: Genes involved in Buganim et al. reprogramming hierarchy. Hierarchical
clustering of genes involved in a previously reported hierarchical phase of reprogramming. RPKM,
Reads Per Kilobase per Million mapped reads.

cells at 3-9 weeks from the time of OSKM initiation, isolated cells using micromanipulation, and

generated single-cell RNA-seq libraries (Figure 13.2 and Table 13.1). Additionally, we constructed

RNA-seq libraries from single embryonic stem cells (ESCs) to characterize the transcriptomes of the

pluripotent state.

We detected ∼5,000-8,000 protein-coding genes in each single-cell library out of 12,482 protein-

coding genes detected at >1 RPKM (Mortazavi & Williams et al. 2008) in the union set of all

libraries (Figure 13.3). Additionally, we found that ∼100-200 lncRNA genes were expressed in

individual cells, out of the set of 525 lncRNAs detected at >1 RPKM (Figure 13.3). To examine

global differences between single cell transcriptomes, we performed hierarchical clustering of all

protein-coding genes (>1 RPKM) (Figure 13.4A). The single-cell transcriptomes of week 2 (Wk2)

cells remained most similar to TTFs, but starting at week 3 (Wk3), the transcriptomes of SSEA-1(+)

cells began to more closely resemble the ESC transcriptome (Figure 13.4A). Unexpectedly, SSEA-
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1(+) cells also exhibited a large global decrease in transcriptome variation during reprogramming

(Figure 13.4B). The overall systems level picture thus suggests that the reprogramming process

entrains participating cells and quashes a level of cell-tocell variability that typifies the TTFs.

In order to cluster, visualize, and search for functional relationships in the single-cell transcrip-

tome data, we generated a self-organizing map (SOM, Kohonen 2013) (Figure 13.4C, Figure 13.5

and Figure 13.6). The SOM integrated data from all cells and projected the resulting clustering

onto a two-dimensional topological map, in which proximity on the map reflected similarity of gene

expression vectors to each other across all cells. As expected, pluripotency factors (e.g. Nanog,

Figure 13.9: Heterogeneity in germ cell-related gene expression. Hierarchical clustering of
a subset of germ cell-related genes in single-cell RNA-seq libraries. Dotted line box highlights germ
cell-related gene expression signatures prominent in pluripotent ESCs. RPKM, Reads Per Kilobase
per Million mapped reads.
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Figure 13.10: smFISH of
reprogramming iPS cells.
Single-cell 4-channel smFISH
of reprogramming iPS cells
at week 6 (Wk6) in culture.
Scale bar, 10µm.

Rex1, Esrrb, Sall4, Oct4) and chromatin remodeling proteins (e.g. Suz12, Jarid1b, Tet1, Tet2,

Dpy30) clustered together (cluster A) (Figure 13.6C), and this cluster showed enrichment for the

gene ontology (GO) terms “stem cell development” (Bonferroni-corrected p = 4.88 × 10−3) and

“chromatin organization” (Bonferroni-corrected p = 8.61 × 10−6). Cluster B was expressed most

highly in ESCs and included several key regulators of germ cell development (e.g. Prdm14, Stella)

involved in the GO term “nucleic acid metabolic process” (Bonferroni-corrected p = 5.41 × 10−8).
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Figure 13.11: Single-cell heterogeneity in lncRNA expression during reprogramming.
a, b, Hierarchical clustering of lncRNA genes detected in single-cell RNA-seq libraries (a) and a sub-
set of ESC-enriched lncRNAs (asterisk, b) and their known associations with chromatin regulators
(plus). RPKM, Reads Per Kilobase per Million mapped reads. c, Single-cell smFISH of reprogram-
ming iPS cells at week 6 (Wk6) and week 9 (Wk9) in culture. Scale bar, 10 um. d, e, f, Cumulative
distribution function plots of lncRNA molecules per cell, as determined by smFISH.



512

Figure 13.12: Silencing of lineage-specific genes by lncRNAs during reprogramming.
a, Reprogramming efficiencies of tail-tip fibroblasts treated with indicated siRNAs, as determined
by the number of SSEA-1(+) colonies using live-cell imaging. Error bars indicate S.D. (n = 3). b,
c, qRT-PCR and RNA-seq quantification of lncRNA expression levels upon transfection of siRNAs
targeting LADR1 or LADR2. d, e, f, Differential expression analysis of significantly upregulated (red
dots) or downregulated genes (blue dots) in iPS cells deficient for LADR1 or LADR2, as determined
by RNA-seq.
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Figure 13.13: lncRNA expression in individual primodial germ cells. Hierarchical clus-
tering of ESC-enriched lncRNAs expressed in at least one primordial germ cell from previously
published single-cell RNA-seq . RPKM, Reads Per Kilobase per Million mapped reads.

Notably, the adjacent cluster (cluster C) (Figure 13.4C) contained several lncRNAs that associate

with the chromatin regulatory proteins from cluster A (Guttman et al. 2011; Zhao et al. 2010), in-

cluding the Polycomb protein Suz12 and Jarid1b. While these lncRNA genes had similar activation

kinetics to the pluripotency and germ cell factors, they were coordinately regulated with a different

module of genes, including those involved in the GO term “RNA binding” (Bonferroni-corrected

p = 1.33×10−6). These initial observations from the SOM clustering focused attention on germ cell

genes and lncRNAs, together with RNA-associated proteins.

Coinciding with the global reduction in cell-to-cell variation, numerous pluripotency factors were

activated by Wk3, including Esrrb, Dppa2, Utf1, and Lin28 (Figure 13.7A), which are predictor

genes for successful reprogramming (Buganim et al. 2012). Other pluripotency genes activated by

Wk3 included Tcfcp2l1, Fbxo15, Klf2, Fgf4, Dppa4, and Nr0b1, as well as the epigenetic regulators
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Wdr5, Dnmt3b, and Dnmt3l (Figure 13.7A). Many of these genes are thought to be activated in a

deterministic manner, based on single-cell measurements from a pluripotency gene panel (Buganim et

al. 2012). While our results are generally consistent with these observations (Figure 13.8), we found

that a group of germ cell genes were expressed more heterogeneously during reprogramming (Figure

13.2A and Figure 13.9). Three key germ cell genes in particular, Blimp1, Stella, and Prdm1418, were

coordinately expressed at week 6 (Wk6) (Figure 13.7A), following pluripotency factor activation at

Wk3 (e.g. Rex1, Nanog).

To validate our single-cell RNA-seq results, we used 4-channel smFISH (Raj et al. 2008) as an or-

thogonal, amplification-independent method to count Blimp1, Stella, Prdm14, and Rex1 transcripts

(Figure 13.7B and Figure 13.10), as well as Oct4 and Sox2 (Figure 13.10), in hundreds of cells at

Wk6 (n = 303). Consistent with the single-cell RNA-seq data, Blimp1, Stella, and Prdm14 were

almost always detected only in cells that expressed Rex1 (Figure 13.7B,C). Blimp1 and Prdm14 were

mainly expressed in cells with high levels of Rex1, while Stella was expressed in cells with low Rex1

(Figure 13.7C). These results suggest that activation of key germ cell genes may be part of a later

and hitherto unappreciated set of limiting molecular events in the reprogramming progression, which

predicts that early gain-of-function experiments would increase efficiency. Overexpression of Blimp1

or Prdm14 enhanced reprogramming efficiency by 50% and 26%, respectively (Figure 13.7D), though

Stella alone had negligible effect. Seeking independent evidence for a germ-cell network role in repro-

gramming, we also found that culture conditions (bFGF/SCF/LIF) that induce dedifferentiation of

primordial germ cells into pluripotent embryonic germ cells also enhanced reprogramming efficiency

by 72% (Figure 13.7D). These results suggest that a set of regulators of epigenetic reprogramming

in the germline (Magnúsdóttir et al. 2012) are also engaged during somatic cell reprogramming.

We next tested the functional significance of lncRNAs during reprogramming. Of the 525 lncR-

NAs expressed at >1RPKM in our single-cell RNA-seq libraries (Figure 13.11A), 240 lncRNAs

have previously been reported to physically interact with Polycomb repressive complex 2 in ESCs

(Zhao et al. 2010), suggesting that they could be needed to silence lineage-specific genes dur-

ing reprogramming. We also identified 27 lncRNAs within our single-cell data that associate with

additional chromatin-modifying enzymes in ESCs (Guttman et al. 2011), many of which were pre-

viously reported to act as inhibitors (e.g. Suv39h1, Yy1) or enhancers (e.g. Ring1b, Eset, Suz12,

Jarid1b, Jarid1c) of reprogramming (Onder et al. 2012). A group of robustly expressed lncRNAs

in ESCs (asterisk, Figure 13.11A) was notably more variable during the reprogramming time-series

at Wk3-Wk9 when compared to ESCs (p < 0.05, Kolmogorov-Smirnov test), with no individual cell

attaining the high fractional activation observed consistently in ESCs (Figure 13.11B). Interestingly,
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the majority of these lncRNAs associate with chromatin-modifying proteins in ESCs (Guttman et

al. 2011; Zhao et al. 2010) (Figure 13.11B) and are also heterogeneously expressed during epigenetic

reprogramming in individual primordial germ cells (PGC) (Magnúsdóttir et al. 2013) (13.13).

To further explore lncRNA heterogeneity during reprogramming, we used smFISH to deter-

mine the expression of three LADRs in hundreds of cells (n = 351) (13.11C). These Polycomb-

associated lncRNAs were expressed at low/undetectable levels in TTFs and were first detected by

Wk2 (LADR1, LADR3) or Wk3 (LADR2), as determined by single-cell RNA-seq (13.11B). In single-

molecule measurements, LADR3 expression was aberrantly low at Wk6 when compared to ESCs,

which might explain their stochastic detectability using single-cell RNA-seq. By Wk9, LADR3 levels

became comparable to ESCs (13.11D). In contrast, the LADR2 expression profile showed substantial

stochastic variation, with a subset of cells resembling ES, and another group expressing aberrantly

high levels at Wk6 that were even more prominent at Wk9, when compared to the more uniform

distribution in ESCs (13.11E). Lastly, the distributions of LADR1 expression at both Wk6 and

Wk9 were relatively uniform and indistinguishable from ESCs, with a subset of cells lacking LADR1

expression (13.11F). Taken together with LADR2 and LADR3, these results highlight a spectrum

of cell-to-cell variability for individual lncRNA activation during reprogramming.

Given that individual lncRNAs can modulate the expression of hundreds of protein-coding genes

(Guttman et al. 2011), heterogeneity in the noncoding transcriptome may exert broad effects on the

protein-coding transcriptome during reprogramming. To test whether Polycomb-associated lncRNAs

were functionally important for reprogramming, we performed loss-of-function studies using small

interfering RNAs (siRNAs) to attenuate the levels of LADR1 and LADR2, at the time when they

were first detected by single-cell RNA-seq at Wk2 and Wk3, respectively. LADR1 knockdown at Wk2

led to a ∼50% reduction in the number of SSEA-1(+) colonies by Wk4, and LADR1 or LADR2

knockdown at Wk3 led to a ∼30% reduction in SSEA-1(+) colony formation by Wk5 (13.12A).

Given the known functions of Polycomb in silencing lineage-specific genes, we used RNA-seq to

examine iPS cells deficient for LADR1 or LADR2, to determine whether they were required for

gene silencing. Both qRT-PCR and RNA-seq confirmed that siRNAs against LADR1 (siLADR1)

and LADR2 (siLADR2) reduced the levels of their respective target lncRNAs, while RNA-seq also

showed that siLADR1 and siLADR2 were sequence-specific and did not affect the levels of LADR2

and LADR1, respectively (13.12B,C). LADR1 knockdown led to up-regulation of numerous muscle-

related genes, including Pax3, Acta1, Acta2, Tpm2, Tagln, Myl9, and Tnnc1 (13.12D), indicating

that LADR1 normally plays a role in silencing these lineage-specific genes during reprogramming.

When all differentially expressed genes (p < 0.05) were examined, the most enriched annotated GO
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term was “locomotion” (Bonferroni-corrected p = 6.34× 10−7), consistent with a functional role for

LADR1 in silencing muscle lineage genes.

To examine whether any genes were persistently up-regulated upon loss of LADR1, we performed

RNA-seq on iPS cells at day 6 post-transfection of siLADR1. Only 4 genes that were upregulated at

day 1 post-transfection remained up-regulated at day 6: Acta1, a skeletal muscle actin, Cxcr6, Lce1g,

and Zscan4f (13.12E), which is heterogeneously expressed in a small fraction of ESCs that transit

through a two-cell (2C) embryo-like state (Zalzman et al. 2010). For all differentially expressed genes

(p < 0.05), the most enriched annotated GO term was “MRF (myogenic regulatory factor) binding”

(Bonferroni-corrected p = 3.33×10−3). Unexpectedly, when we also examined iPS cells deficient for

LADR2 by RNA-seq, we found that 7 genes were up-regulated in both the LADR1- and LADR2-

deficient iPS cells, including Acta1 and the homeodomain transcription factor Alx4 (13.12F). These

findings suggest combinatorial control of a common set of genes by LADR1 and LADR2, indicating

that lncRNAs can act together to silencing lineage-specific genes during reprogramming.

This initial study of transcriptome-wide single-cell expression patterns focused attention on

lncRNA heterogeneity at both early and late stages of reprogramming, by comparison with fully

pluripotent cells. Experimentally perturbing the levels of some of these lncRNAs affected the effi-

ciency of iPS cell derivation. Additionally, numerous lncRNAs that appear stochastic during repro-

gramming associate with one or more chromatin regulatory proteins (Guttman et al. 2011; Zhao et

al. 2010), and our results demonstrated that perturbing these lncRNAs can alter the normal course

of expression for lineage-specific genes. Notably, even some late-stage iPS cells exhibited lncRNA

heterogeneity and quantitative dysregulation (e.g. LADR2) relative to pluripotent ES cells. We

suggest that incomplete and incorrect expression of such lncRNAs could explain the intriguing and

therapeutically relevant phenomenon of epigenetic memory in iPS cells (Kim et al. 2010; Polo et al.

2010).

13.2 Methods

13.2.1 iPS cell reprogramming.

Tail-tip fibroblast (TTF) cultures were established from 3-8 day old reprogrammable mice homozy-

gous for both the tet-inducible OSKM polycistronic cassette and the ROSA26-M2rtTA allele (Carey

et al. 2010). TTFs were cultured in ES medium (DMEM, 15% FBS, sodium bicarbonate, HEPES,

nonessential amino acids, penicillin-streptomycin, L-glutamine, β-mercaptoethanol, 1000 U/mL LIF)
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with doxycycline and grown on 6-well plates coated with 0.1% gelatin and irradiated MEF feeder

cells. For gain-of-function, reprogramming cells were transiently transfected 1 or more times with

Blimp1, Prdm14, or Stella TrueORF cDNA plasmids (Origene) using Lipofectamine LTX with Plus

Reagent (Life) between weeks 3-4 after OSKM induction. For loss-of-function, reprogramming cells

were transiently transfected 1 or more times with lncRNA-targeting siRNAs (IDT) using Lipofec-

tamine RNAiMAX (Life) at early (between weeks 1-4 after OSKM induction) and late (week 6+

after OSKM induction) stages of iPS cell reprogramming. Reprogramming efficiencies were deter-

mined by plating equal numbers of cells in triplicate and counting the number of SSEA-1 positive

iPS cell colonies using StainAlive SSEA-1 DyLight 488 antibody (Stemgent) and live-cell imaging,

where cells were incubated with antibody (1:100) for 2 hours and washed 3 times with PBS. SSEA-1

DyLight 488 positive cells at specified time-points during reprogramming were isolated using flow cy-

tometry on an iCyt Mission Technology Reflection Cell Sorter inside a Baker Bioguard III biosafety

cabinet. Single-cell and bulk sample cDNA synthesis and amplification. cDNA synthesis was per-

formed using the Smart-Seq protocol as previously described (Ramsköld et al. 2012). Briefly, the

SMARTer Ultra Low RNA kit for Illumina sequencing (Clontech) was used to generate and amplify

cDNA from single cells isolated using a micromanipulator or from bulk samples. Intact single cells

were deposited directly into hypotonic lysis buffer. Poly(A)+ RNA was reverse transcribed through

oligo dT priming to generate full-length cDNA, which was then amplified using 20-22 cycles. cDNA

length distribution was assessed using High Sensitivity DNA kits on a Bioanalyzer (Agilent).

13.2.2 Single-cell and bulk sample RNA-seq library generation and

sequencing

Single-cell and bulk sample RNA-seq libraries were constructed using the Nextera DNA Sample Prep

kit (Illumina). Briefly, cDNA was “tagmentated” at 55 ◦C with Nextera transposase, and tagmented

DNA was purified using Agencourt AMPure XP beads (Beckman Coulter). Purified DNA was

amplified using 5 cycles of Nextera PCR, and library quality was assessed using High Sensitivity

DNA kits on a Bioanalyzer (Agilent). Libraries were sequenced on the Illumina HiSeq2000. Single-

end reads of 50bp or 100bp length were obtained.

13.2.3 Read mapping and expression quantification

All reads were trimmed down to 50bp (if necessary) and mapped to the mouse genome (version mm9)

with TopHat (Trapnell et al. 2009) (version 1.2.1) while supplying splice junctions annotated in the
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ENSEMBL63 set of transcript models. RPKMs for the ENSEMBL63 annotation were obtained

using Cufflinks (Trapnell et al. 2010, version 1.0.3) with otherwise default settings. Single-cell

libraries (n = 3) displaying very low numbers of detected genes were excluded from analysis, as

while it is possible that they represent accurate measurements of so far unappreciated biological

variability, technical failure of library building is at present the more likely explanation for such

observations. For downstream analysis, the biotype classification of genes and transcripts in the

ENSEMBL annotation was used to identify noncoding genes. Hierarchical clustering (Spearman

rank correlation, unless otherwise indicated) was carried out using Cluster 3.02 (de Hoon et al.

2004) and visualized using Java Treeview (Saldanha 2004). For differential expression analysis, we

aligned reads against the refSeq mouse transcriptome using Bowtie 0.12.72 (Langmead et al. 2004).

Expression levels were then estimated using eXpress version 1.3.0 (Roberts & Pachter 2013), with

gene-level effective counts and RPKM values derived from the sum of the corresponding values for

all isoforms of a gene. The effective count values were then used as input to DESeq (Anders &

Huber 2010) to assess differential expression.

13.2.4 qRT-PCR

Total RNA was isolated using Direct-zol (Zymo Research) and reverse transcribed using random

hexamers or lncRNA-specific primers (IDT, sequences available upon request) and Superscript III

reverse transcriptase (Invitrogen) per manufacturers instructions. Real-time PCR was performed on

a LightCycler (Roche) using SYBR Green Supermix (Bio-Rad) and normalized to Actin.

13.2.5 Single-molecule fluorescence in situ hybridization

smFISH was performed as previously described (Raj et al. 2008). Up to 48 DNA probes per target

mRNA or lncRNA were synthesized and conjugated to Alexa fluorophore 488, 555, 594, or 647

(Life Technologies) and then purified by HPLC. Cells were trypsinized, fixed in 4% Formaldehyde,

and permeabilized in 70% ethanol overnight. Cells were then hybridized with probe overnight at

30 ◦C, in 20% Formamide, 2X SSC, 0.1g/mL Dextran Sulfate, 1mg/mL E. coli tRNA, 2mM Vanadyl

ribonucleoside complex, 0.1% Tween 20 in nuclease free water. Samples were washed twice in 20%

Formamide, 2X SSC, and Tween 20 at 30 ◦C, and then twice in 2X SSC + 0.1% Tween at RT. 1µL of

hybridized cells was placed between #1 coverslips and flattened. Automated grid-based acquisition

was performed on a Nikon Ti-E with Perfect Focus System, Semrock FISH filtersets, Lambda LS

Xenona Arc Lamp, 60× 1.4NA oil objective, and Coolsnap HQ2 camera. Semi-automated dot
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detection and segmentation was performed using custom-built MATLAB software with a Laplacian-

of-Gaussian Kernel, using Otsu’s method to determine “dotness” threshold across all cells in the

dataset.

13.2.6 Self-organizing maps

The 5000 genes with the greatest variance among the libraries were used for training a self-organizing

map (SOM) (Kohonen 1982; Kohonen 2013). Prior to SOM training, the data vectors were normal-

ized on a gene-by-gene basis by subtracting each vector mean and dividing by its standard deviation.

The SOM was constructed using the R package kohonen. The total number of map units was set to

the heuristic value 5
√
N , where N is the number of data vectors. The map grid was initialized with

the first two principal components of the data multiplied by a sinusoidal function to yield smooth

toroidal boundary conditions. Training lasted 200 epochs (presentations of the data) during which

the radius within which units were adapted toward the winning unit decreased linearly from h/8

to 2 units, where h is the map height (always chosen as the direction of largest length). Further

analysis, including clustering and visualization, was performed with custom python code. Clusters

were seeded by the local minima of the U-matrix, with a value for each unit defined as the average

of the vector difference between that unit’s prototype and its six neighbors on the hexagonal grid.

All other unit prototypes were then assigned to clusters according to the minimum vector distance

to a seed unit. The lists of clustered genes were submitted to the Princeton GO TermFinder (Boyle

et al. 2004) server (http://go.princeton.edu) in order to determine enriched terms.

http://go.princeton.edu
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Table 13.1: Read mapping statistics for single-cell RNA-seq libraries.

Single cells Unique reads Unique splices Multi reads Multi splices

TTF-A 4,754,379 1,793,789 1,016,116 17,993
TTF-B 3,186,598 1,330,084 705,038 25,690
TTF-C 5,882,879 1,802,289 1,364,458 14,894
TTF-D 4,150,724 1,651,656 799,307 12,882
Wk2-A 6,796,932 2,388,019 1,320,707 28,850
Wk2-B 6,695,477 2,128,141 1,687,672 29,942
Wk2-C 7,321,838 2,460,231 1,319,304 23,164
Wk2-D 3,766,443 1,565,189 1,006,975 27,793
Wk3-A 10,817,581 1,468,929 7,879,702 13,590
Wk3-B 10,544,532 1,005,115 4,389,066 9,234
Wk3-C 15,297,126 1,725,119 5,606,955 17,313
Wk6-A 6,649,903 812,609 3,487,925 7,031
Wk6-B 16,445,945 1,629,904 8,522,770 19,809
Wk7-A 20,598,921 2,543,587 11,733,247 27,259
Wk7-B 13,242,715 1,516,497 7,271,470 15,986
Wk8-A 12,817,740 1,535,044 6,579,353 17,672
Wk8-B 14,308,754 1,453,584 7,336,354 13,362
Wk9-A 13,643,846 1,753,756 7,938,751 16,795
ESC-A 8,280,645 2,934,602 2,123,766 26,275
ESC-B 7,072,853 2,610,021 2,225,725 24,739
ESC-C 6,227,982 2,182,842 1,853,443 17,492
ESC-D 5,048,404 1,767,981 1,550,137 15,637
ESC-E 9,095,244 3,412,551 2,766,101 32,967
ESC-F 3,061,161 1,177,880 889,317 10,666
ESC-G 6,711,997 2,475,645 2,177,537 20,003
ESC-H 4,115,001 1,578,915 1,268,654 13,544
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Part V

Conclusions and Towards the

Future
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14

Third-Generation Sequencing Technologies and Func-

tional Genomics Studies

High-throughput sequencing technologies, in particular the Illumina platform, form the basis of most

of the work described in this thesis. The short nature of the reads they generate, however, has also

presented numerous challenges to data analysis and as repeatedly mentioned so far. Platforms that

produce long reads have now emerged, and here I present my perspective on the implications of these

technologies, their strength and their expected limitations, on the future of functional genomics re-

search.

Abstract

In recent years, “second generation” sequencing technologies have revolutionized

multiple aspects of biomedical research, in particular genome sequencing and func-

tional genomic studies. However, the short-read nature of the data produced by second

generation sequencing instruments has presented numerous challenges to data analysis

and interpretation in both areas due to the specifics of library generation, read align-

ment, assembly and a number of other issues. So called “Third-generation” sequencing

technologies promise to alleviate a lot of these difficulties by providing a combination

of single-molecule sequencing and/or much longer read lengths. This is expected to

greatly benefit de novo genome sequencing and genome resequencing efforts, but it also

has the potential to transform functional genomics studies by resolving existing issues

that second-generation technologies have so far not been able to conclusively address,

and by opening completely novel research directions. In the same time, certain func-
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tional genomic applications are very well suited to the short-read format and have at

this point reached maturity, and are therefore less likely to change significantly in the

future. Here, the anticipated impact of further developments in sequencing technology

is reviewed, together with the still unmet challenges to data quality that will have to

be resolved in order to answer the major unresolved questions in the field.

14.1 Introduction

The completion of the sequence of the human genome in the early 2000s (Lander et al. 2001; Venter

et al. 2001; International Human Genome Sequencing Consortium 2004) was the culmination of

many years development of genomic science and provided the foundation for an explosion in the

further advancement of our understanding of the structure and function of genomes during the next

decade. While a lot can be learned from the sequence of the genome and the annotation of the genes

in it, full understanding of the relationship between the genomic sequence on one side, and cellular

and organismic phenotypes on the other, requires deep and comprehensive understanding of the

mechanisms of regulation of gene expression, the genomic regulatory elements through which it is

carried out, and their dynamics (Hood & Galas 2003; ENCODE Project Consortium 2004). For this

reason, a key component of the advances in genomics following the completion the human genome

sequences has been the development of functional genomic tools for measuring gene expression,

interactions between proteins and DNA, the activity of regulatory elements, and many others.

For about a decade, between the late 1990s and the late 2000s, functional genomics was dominated

by DNA microarray technology, which is based on the hybridization of DNA molecules in a sample

against a known set of complementary sequences situated on an array. Initially, the availability of

genome (or transcriptome) sequences allowed the development of microarrays designed to measure

gene expression levels (Schena et al. 1995; Lashkari et al. 1997). Later, the combination of chromatin

immunoprecipitation and microarrays (ChIP-on-Chip) enabled the mapping of the occupancy of

transcription factors in promoter regions or over the whole genome (Iyer et al. 2001; Ren et al.

2000). Microarray-based techniques delivered numerous insights into genome biology (ENCODE

Project Consortium 2007); however, they were still a less-than-ideal solution to the major challenges

in the field, as they suffered from issues with hybridization artifacts, the lack of single base pair

resolution, and the limitation of measurements to only sequences included on the array. The latter,

especially, made difficult not only the assaying of the whole human genomes, but imposed a major

limitation in terms of which organisms were available to be studied: a new microarray had to
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be manufactured for each species, and the process of designing and producing arrays was slow,

cumbersome and expensive.

The sequencing of the human genome relied entirely on assembly of the genome from reads of

several hundred base pairs (bp) length generated using the Sanger sequencing method (Sanger et

al. 1977), which requires extensive sample preparation and has low throughput. As a result, it cost

several billion dollars. Later sequencing projects for organisms with similarly sized genomes were

less costly, but still carried a price tag in the millions of dollars. This stimulated the development

of so called “second-” or “next-generation” (NGS) high-throughput sequencing technologies in the

mid-2000s, which promised to make genome sequencing much cheaper and faster. The first such

technology was 454 pyrosequencing (Margulies et al. 2005), followed shortly by Polonator sequencing

(Shendure et al. 2005), Solexa (later Illumina) (Bentley etal. 2008), ABI SOLiD (McKernan et al.

2009), Helicos (Harris et al. 2008), and more recently, Ion Torrent (Rothberg et al. 2011). Initially,

these technologies delivered much shorter reads than Sanger sequencing did: a few tens to hundreds

of thousands reads, with a read distribution in the low hundreds of bp (454), or a few hundreds

of thousands to a few million reads that were just 20-25 bp long (Solexa/Illumina). Very short

read lengths pose severe challenges to de novo genome assembly (Whiteford et al. 2005; Alkan et

al. 2011), but they are much better suited for functional genomic applications, and this is where

they were first applied and made their mark, helping them become well-established (Wold & Myers

2008). Small RNA species such as miRNAs and piRNAs (Bartel 2004; Aravin et al. 2007) are mostly

less than 30bp long which enabled the direct sequencing of the whole cellular repertoire of small

RNAs very early in the development of NGS technologies and greatly stimulated the development

of the field (Ruby et al. 2006; Brennecke et al. 2007). The coupling of the ChIP assay with

high-throughput sequencing (ChIP-seq) allowed the truly genome-wide identification of protein-

DNA interactions (Barski et al. 2007; Johnson et al. 2007; Robertson et al. 2007; Mikkelsen et

al. 2007), while the direct sequencing of reverse-transcribed RNA fragments provided single base

pair-resolution view of the transcriptome (Nagalakshmi et al. 2008; Mortazavi et al. 2008; Cloonan

et al. 2008; Sultan et al. 2008; Wilhelm et al. 2008; Wang et al. 2008). By obviating the need

for the design and manufacturing of arrays for each genome, sequencing-based assays allowed the

application of functional genomics approaches to any species with a sequenced genome (discussed

in depth in the last chapter of the thesis). A wide array of “seq-assays” has been developed in the

last few years (Table 14.1) targeting almost every imaginable aspect of chromatin, transcriptional

and RNA biology, and as a result sequencing has gradually replaced arrays as the method of choice

for assaying of nucleic acids in functional genomics (ENCODE Project Consortium 2011).
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Table 14.1: Seq-based functional genomic assays.

Group of as-

says
Assay Detection of / Description References

G
en

o
m

ic
O

cc
u
p
a
n
cy

ChIP-seq Protein-DNA interactions

Johnson et al. 2007; Barski et

al. 2007; Mikkelsen et al. 2007;

Robertson et al. 2007

ChIP-exo-seq
High-resolution protein-DNA inter-

actions

Rhee & Pugh 2011; Rhee & Pugh

2012

ChIRP-seq RNA-DNA interactions Chu et al. 2011

CHART-seq RNA-DNA interactions Simon et al. 2011

Chem-seq
Genome-wide localization of small-

molecules
Anders et al. 2014

Chromatin

interactions

4C
Targeted physical interactions be-

tween distant genomic regions
Dostie et al. 2007

5C
Targeted physical interactions be-

tween distant genomic regions

Bau et al. 2011; Umbarger et al.

2011;

Hi-C
Physical interactions between dis-

tant genomic regions

Lieberman-Aiden et al. 2009; Um-

barger et al. 2011

ChIA-PET
Protein-mediated interactions be-

tween distant genomic regions

Fullwood et al. 2009; Li et al. 2010;

Handoko et al. 2011; Li et al. 2012

Open

chromatin

DNAse-seq DNAse accessible regions
Hesselberth et al. 2009; Song et al.

2011; Boyle et al. 2011

FAIRE-seq
Shearing-susceptible open chro-

matin

Gaulton et al. 2010; Song et al.

2011

Sono-seq
Shearing-susceptible open chro-

matin
Auerbach et al. 2010

ATAC-seq
Transposition-mediated mapping of

accessible chromatin
Buenrostro et al. 2013

DGF Digital Genomic Footprinting Neph et al. 2012

DNAse-

FLASH

Fragment-length analysis of DNAse

hypersensitivity
Vierstra et al. 2014

Replication

timing
Repli-seq Newly replicated DNA Hansen et al. 2010

Continued on next page
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Table 14.1 – Continued from previous page

Group of as-

says
Assay Detection of / Description References

D
N

A
m

et
h
y
la

ti
o
n

RRBS
Reduced representation bisulfite se-

quencing
Meissner et al. 2008

BS-seq Whole-genome bisulfite sequencing Lister et al. 2008; Lister et al. 2009

PBAT Whole-genome bisulfite sequencing Miura et al. 2013

MeDIP-seq Methylation-enriched regions Down et al. 2008

MethylCap-

Seq
Methylation-enriched regions Brinkman et al. 2010

oxBS-seq

Mapping of sites of 5-

hydroxymethylcytosine methy-

lation

Booth et al. 2012

TAB-seq

Mapping of sites of 5-

hydroxymethylcytosine methy-

lation

Yu et al. 2012

T
ra

n
sc

ri
p
to

m
ic

s

RNA-seq Various long transcripts

Mortazavi et al. 2008; Nagalakshmi

et al. 2008; Sultan et al. 2008;

Wilhelm et al. 2008; Marioni et al.

2008

Small RNA

sequencing
Small RNA species

Ruby et al. 2006; Brennecke et al.

2007

CAGE Capped 5’ ends of transcripts
Kodzius et al. 2006; Balwierz etal.

2009; Plessy et al. 2010

T
ra

n
sc

ri
p
to

m
ic

s

3P-seq, PAS-

seq, MAPS,

PolyA-seq

Polyadenylation sites

Jan et al. 2011; Yoon et al. 2010;

Derti et al. 2012; Fox-Walsh et al.

2011; Shepard et al. 2011

RNA-PET Paired 5’ and 3’ transcript ends
Fullwood et al. 2009; Ruan & Ruan

2012

PARE
Endonuclease Degradation prod-

ucts
German et al. 2009

GRO-seq Global Nuclear Run-On products Core et al. 2008

NET-seq Nascent RNA molecules Churchman et al. 2011

Continued on next page
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Table 14.1 – Continued from previous page

Group of as-

says
Assay Detection of / Description References

RAMPAGE Promoter mapping Batut et al. 2013

PARE-seq Mapping of RNA ends German et al. 2008

TIF-seq Mapping of transcript ends Pelechano et al. 2013

PEAT Transcription initiation Ni et al. 2012

Single–cell

transcrip-

tomics

CEL-seq Single-cell RNA-seq Hashimshony et al. 2012

SMART-seq Single-cell RNA-seq Ramsköld et al. 2012

SMART-seq2 Single-cell RNA-seq Picelli et al. 2013

STRT Single-cell RNA-seq Islam et al. 2011

Quartz-seq Single-cell RNA-seq Sasagawa et al. 2013

RNA-protein

interactions

HITS-CLIP
UV cross-linked protein-RNA inter-

actions

Licatalosi et al. 2008; Chi et al.

2009

PAR-CLIP
UV cross-linked protein-RNA inter-

actions
Hafner et al. 2010

iCLIP
UV cross-linked protein-RNA inter-

actions
König et al. 2010

RIP-seq
RNA coimmunoprecipitated with

proteins
Zhao et al. 2010

RNA-RNA

interactions
CLASH Mapping RNA-RNA interactions Kudla et al. 2011

RNA modifi-

cations

MeRIP-seq Mapping of RNA methylation sites Meyer et al. 2012

ICE Mapping A-to-I RNA editing sites Sakurai et al. 2010

R
N

A
st

ru
ct

u
re

PARS
Genome-wide RNA structure deter-

mination
Kertesz et al. 2010

FRAG-seq
Genome-wide RNA structure deter-

mination
Underwood et al. 2010

SHAPE-seq
Targeted RNA structure determi-

nations
Lucks et al. 2011

HRF-seq Determination of RNA accessibility Kielpinski & Vinther 2014

Ribosome

profiling
Ribo-seq

Genome-wide mapping of ribosome

occupancy
Ingolia et al. 2009

Continued on next page
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Table 14.1 – Continued from previous page

Group of as-

says
Assay Detection of / Description References

High-

throughput

functional

assays

Massively

parallel func-

tional assays

Simultaneous measurements of the

enhancer activity of very large num-

ber of constructs

Patwardhan et al. 2012; Melnikov

et al. 2012

STARR-seq
Genome-wide measurement of en-

hancer activity
Arnold et al. 2013

As technology has improved, the number of reads and their length have increased significantly

and the cost of sequencing has dropped; in the same time improved analytical tools tailored to the

now well-understood specifics of the data coming from the major platforms have been developed. As

a result, human genome resequencing and the study of human genetic variation, cancer genomics, the

de novo assembly of newly sequenced genomes and metagenomics are now also thriving fields cur-

rently mostly based on NGS technologies (1000 Genomes Project Consortium 2010; 1000 Genomes

Project Consortium 2012; Mardis et al. 2010; Gnerre et al. 2011; Human Microbiome Project Con-

sortium 2012; Garraway & Lander 2013; Bradnam et al. 2013; Gilbert & Dupont 2011; Lappalainen

et al. 2013; Khurana et al. 2013; i5K Consortium 2013). However, the reads generated by these

platforms are still short enough to present considerable difficulties in the analysis and interpretation

of data, genomes assembled de novo from short-read data are still highly fragmented and incomplete

(Alkan et al. 2011; Koboldt et al. 2010; Earl et al. 2011; Bradnam et al. 2013), and the cost of

sample preparation and the computational infrastructure investments needed to generate and han-

dle the data are still substantial. This has provided an incentive for further sequencing technology

development that is both even cheaper and in the same time improves on the current inadequacies

of NGS data. As a result “third-generation” sequencing (TGS) technologies are currently emerging.

There is some debate whether the term “TGS” should even be used at this point given that there is

much less of a sharp divide between these technologies and the NGS technologies compared to the

paradigm shift relative to Sanger sequencing that NGS platforms triggered. I will nevertheless still

use it here for simplicity, but I will define what exactly I mean by it first. TGS sequencing delivers

much longer reads that, in contrast with most NGS technologies, originate from single founder nu-

cleic acid molecules and not from amplified clones (i.e. single-molecule sequencing). The long read
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lengths promise to greatly simplify and improve de novo genome assembly, the study of genomic

structural variation and metagenomics, but they also have the potential to once again transform the

practices of some areas of functional genomic research. In the same time their single-molecule nature

comes at the cost of lowered accuracy. Here, I discuss the functional genomic areas in which TGS

technologies are expected to have the greatest impact, as well as the areas, which are at this point

mature and for which TGS will not provide much benefit over NGS. NGS can therefore be expected

to remain dominant for the foreseeable future in these applications. In particular, transcriptomics

and the study of DNA methylation are highlighted, and the anticipated requirements towards the

characteristics and quality of data necessary for the promised impact to materialize are examined.

14.2 Overview of second generation sequencing technologies

A common feature of most NGS sequencing technologies is the use of clonally amplified clusters

of DNA sequences, the sequence of which is read one or several bases at a time using a variety of

sequencing-by-synthesis readout strategies that rely on the signal boost due to the presence of large

numbers of identical source molecules. This enables the generation of high-quality sequence reads

but it has also limited the read lengths that can be achieved as errors accumulate during each syn-

thesis step in different pieces of DNA in a cluster and eventually proper phasing between individual

sequences in a cluster is lost. The most successful NGS technology has been the Solexa/Illumina

reverse terminator chemistry, and it and 454 will be used to illustrate the common characteristics

of NGS platforms. Illumina sequencing is based on the attachment of DNA sequences to comple-

mentary primers immobilized on a glass surface, followed by clonal bridge amplification of each

sequence in order to form a cluster of identical sequences. Then, these sequences are read one base

at a time using sequencing-by-synthesis relying on reversible fluorescent dye-terminator nucleotides

differently colored for each base that can be scanned by a high-resolution microscope after addition,

then cleaved off and another based added. This provides high-quality sequencing reads with very

low error rates, with errors mostly consisting of base-pair substitutions. The HiSeq incarnation of

the technology was initially capable of generating more than three billion individual reads of lengths

longer than 100bp, but with subsequent improvements this has now increased to up to 2x250, and

2x500 reads have been generated on the MiSeq platform. The 454 technology was1 based on the

clonal amplification of individual DNA sequences within emulsion droplets containing beads with

primers attached to them. Single beads are placed inside the wells of an optic chip and sequencing

1As of the time the last edits of this text were put in place, 454 was scheduled to be phased out within a year
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relies on adding one of the four nucleotides, one at a time; when a nucleotide is incorporated by DNA

polymerase to a complementary position in the template, an inorganic pyrophosphate is released

which is used to determine the identity of the base. Polymerase will proceed adding nucleotides over

stretches of multiple instances of the same base pair; the resulting signal scales linearly with the

length of such homopolymers only up to a point, and as a result indels are the major source of errors

with this technology (and other technologies where multiple bases are read at a time). The reads

generated by 454 are longer than those generated by most other NGS platforms, even approaching

the length of Sanger reads, however their number was always limited (to around a million at most),

which limited its applications. In addition indel errors are more difficult to deal with during read

alignment and assembly than base substitutions.

14.3 Third-generation sequencing technologies

Newer sequencing technologies continue to be constantly developed, and some of them are very

similar to the NGS strategies outlined above in their characteristics (such as the most recent new-

comer to become established on the market, Ion Torrent). The defining features of TGS technologies

can be summarized as much longer read lengths combined with the ability to sequence single DNA

molecules rather than multiple clones in clusters (Schadt et al. 2010). The first single-molecule

sequencing platform was Helicos; however reads generated by Helicos were very short (Harris et al.

2008; Ozsolak et al. 2010; Orlando et al. 2011) and had high error rates; as a result (together with

some other undesirable properties of the instrument) Helicos is, at the time of the writing of this

text, largely a footnote in the history of sequencing. Single-molecule sequencing has the benefit of

much simplified library preparation, which eliminates a lot of the representation biases and artifacts

introduced into current sequencing libraries; however it comes at the cost of much increased error

rates as reading the sequence of single molecules accurately is considerably more challenging than

reading out massively amplified clonal populations.

Two companies have so far presented commercially available TGS technologies: Pacific Bio-

sciences (PacBio) and Oxford Nanopores (although data from the latter has yet to be published2).

PacBio’s SMRT (Single-Molecule Real Time) sequencing technology is based on anchoring individual

DNA polymerase molecules and DNA templates into Zero-Mode Waveguide (ZMW) nanowells, and

then observing the incorporation of fluorescently labeled nucleotides in real time (Eid et al. 2009).

It is possible to do so with single molecules because ZMW wells are smaller than the wavelength of

2As of late April 2014
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visible light which cannot enter the bottom of the well; by illuminating the well from the bottom,

only the bottom volume of the well is visible. Fluorescently labeled nucleotides diffuse very fast

in and out of the well but when incorporated by DNA polymerase (an orders-of-magnitude slower

process than diffusion), they are held in the well for much longer, which enables the identification

of the DNA sequence. The technology allows for the generation of read lengths greater than Sanger

sequencing (up to several and even tens of kilobases; read length is limited by the lifetime of the

polymerase molecule which is degraded by the laser light used to read fluorescent nucleotides). Its

limitations include the high error rate (up to 15%) and the at present low number of sequencing

reads generated (a single SMRT cell only generates several tens of thousands of reads). Error rates

Figure 14.1 (preceding page): Functional genomic assays for measuring chromatin occu-
pancy, openness and interactions. (A) In ChIP-seq, proteins are crosslinked to DNA, chromatin
is sonicated down to fragments of at most 300-400bp in size, and immunoprecipitated with an anti-
body against the protein of interest. The resulting set of DNA sequence fragments is then converted
into a sequencing library and sequenced. (B) A characteristic asymmetric distribution of reads on
the forward and reverse strand around the occupancy site is observed, with the distance between
the peaks on each strand corresponding to the average fragment length. (C) In ChIP-exo-seq, the
high-resolution modification of ChIP-seq, crosslinked fragments are subjected to 5’-to’-3’ λ exonu-
clease treatment; the exonuclease is processive but is blocked by the site of crosslinking. As a result,
the 5’ ends of sequencing fragments in the final library are very highly enriched immediately around
the site where the protein of interest is crosslinked to DNA. (D) DNAse-seq and its variations are
based on the high sensitivity of DNA that is not protected by nucleosomes to DNAse cleavage. The
resulting DNA fragments are then converted into libraries and sequenced. (E) Assays measuring
chromatin interactions rely on the fact that such interactions are mediated by proteins; crosslinking
of DNA to proteins and of proteins to proteins leads to the formation of complexes in which the
ends of DNA fragments originating from distant genomic locations are brought in close physically
proximity and can be ligated to each other (of course, so can be the ends of each fragment on its own,
and this is a major source of noise in the final libraries). The ligation products are then subjected to
further processing (with the details varying on the protocol) with the end result being the generation
of chimeric DNA fragments each end of which originates from one of the interacting genomic loci.
These fragments are then sequenced in a paired-end format. Note that in all these assays the size of
the fragments being sequenced is small (a few hundred base pairs at most), and their short length
is actually important to the resolution of the assay. (F) The fraction of the human and Drosophila
melanogaster genomes that is uniquely mappable at different read lengths. Mappability was evalu-
ated as follows: for each read length r, a set of “sequencing reads” was generated by creating one
such read starting at each position in the genome. The reads were then mapped to the genome
using Bowtie (version 0.12.7; Langmead et al. 2009) while retaining only unique alignments, and
read coverage C (in raw read counts) was calculated for each position in the genome. The mappable
fraction of the genome MFG was then calculated as follows:

MFG =

∑
c∈G
|c|

∑
c∈G

|c|∑
p=1

I(Cc,p ≥ r)

(14.1)

where I is the indicator function, c is a chromosomes in the genome, |c| is the length of a chromosome,
and p are the individual positions in each chromosome.
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can be improved by generating circularized single-stranded templates which can be sequenced several

times to derive a consensus (Travers et al. 2010); this, however, comes at the cost of decreasing the

effective read lengths.

Nanopore sequencing is a very promising approach towards sequencing nucleic acids (and, poten-

tially, other biological heteropolymers too), based on the characteristic changes in electric current

through a nanopore situated in an impermeable membrane that are induced by different nucleotides

passing through it; as each base passes through the pore, the current changes in a way that is unique

to that base allowing its identification (Branton et al. 2008; Manrao et al. 2010; Cherf et al. 2012;

Manrao et al. 2012). The method was first proposed about two decades ago (Kasianowicz et al.

1996; Deamer et al. 2000); however, building a working sequencer has been a major challenge as

simple electrophoresis of DNA through a nanopore occurs too fast for the sequence to be read, which

has necessitated the development of methods to slow down the rate of translocation through the

pore. The commercial launch of such an instrument has finally been announced by Oxford Nanopores

Technologies in the last two years. However, actual sequence data generated by nanopores is still not

publicly available, and therefore key details regarding error rates (which, due to the single-molecule

nature of the method, are certain to be significantly higher than Illumina sequencing, but possibly

lower than those of SMRT sequencing) and the cost of generating a given number of reads remain

unknown. Still, nanopore sequencing holds the long-term promise of delivering reads that are tens

or even hundreds of kilobases long, with minimal to no sample prep, little to no sensitivity to the

fragment length distribution of the input library (a limitation of both Illumina and PacBio instru-

ments, which do not sequence short and long fragments with the same efficiency), and further in its

development, the direct identification of modified nucleotides and eventually direct RNA and even

protein sequencing. Its characteristics make it a particularly attractive candidate for being the next

transformative technology in the sequencing world, if it delivers on its promises.

Below, the expected impact of these TGS technologies on the different subfields of functional

genomic research is reviewed in the context of the experimental and analytical challenges that the

field at present faces
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Figure 14.2: General strategies for contemporary RNA-seq measurements of the tran-
scriptome. A hypothetical gene expressing six different alternative transcripts (T1 to T6) in the
relative ratios indicated in the pie chart is shown. The input RNA may first be polyA-selected or
rRNA-depleted; the transcribed mRNAs are then either subjected to random fragmentation (as in
the original protocol described in Mortazavi et al. 2008), and then converted to cDNA (using, for
example, random priming). Alternatively, the mRNAs can be converted to full-length (to the extent
the input mRNA is full-length and the reverse transcription reaction proceeds to completion) cDNA
molecules (such as in the SMART-seq protocol; Ramsköld et al. 2012) and then fragmented. In
either case, a final library of fragment size usually in the 150–350bp range is generated, much shorter
than the length of the original transcripts. The transcripts have to be then assembled and/or quan-
tified using probabilistic methods, which does not always return results true to the original biological
reality. In this case, this is illustrated by following the approach adopted by Cufflinks (Trapnell et
al. 2010) and assembling the minimum number of transcripts that can explain the data (assembled
transcripts AT1 to AT5), which, however, results in the loss of one transcript and not fully accurate
isoform-level quantification.
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14.4 Functional genomics assays and third-generation

sequencing

14.4.1 ChIP-seq and derivatives for the measurement of genomic

occupancy

Our current understanding of gene regulatory mechanisms revolves around the extremely complex

interplay between the binding of sequence specific transcription factor to regulatory elements in the

genome (in the immediate vicinity of promoters of genes or to enhancer sequences located very far

upstream or downstream of promoters), which affects transcription by the recruitment or inhibition of

the transcriptional machinery and the induction of changes in the chromatin state, mainly covalent

modifications on histone tails nearby (Kouzarides 2007). In the same time, chromatin state also

influences transcription factor binding, with, for example, many transcription factors being unable

to bind to chromatin in closed inactive conformation (Zaret & Carroll 2011). Thus measuring the

genomic location of binding events of transcription factors and chromatin modifying enzymes, and

the distribution of histone modifications, in diverse cell types and conditions, is of critical importance

for full understanding of the process of gene regulation.

ChIP-seq is at present the standard tool for accomplishing this task. As shown in Figure 14.1,

a ChIP-seq experiment begins with the chemical cross-linking of proteins bound to DNA, shearing

the cross-linked chromatin to size of a few hundred bp at most (typically below 200), immunopre-

cipitating the DNA fragments bound to the protein of interest, reversing cross-links, and building a

sequencing library by ligating sequence adapters and PCR amplification; a parallel library is built

from crosslinked chromatin without immunoprecipitation for comparison and normalization pur-

poses when calling binding sites. Usually, a short tag (initially 36bp, later 50bp, with longer read

lengths of 1x100 or even 2x100 increasingly common now) from only one end of the DNA fragment is

sequenced and aligned to the genome. Crucially, because adapters are ligated only in one direction

relative to the original genomic strands of the fragment and the length of fragments is variable, reads

mapping to the forward and reverse strands distribute in a characteristic asymmetric way around

the position where the target protein binds to DNA (if the protein binds to specific locations in the

genome in a sequence specific manner; elongating RNA polymerase and histone marks spread along

large genomic domains do not exhibit that behavior), and this information is used to more precisely

define transcription factor binding sites Figure 14.1A and B) (Kharchenko et al. 2008). Derivatives
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of the ChIP assay have been developed that aim at identifying the binding sites of RNA molecules

– ChIRP-seq (Chu et al. 2011) and CHART-seq (Simon et al. 2011) – as well as the chromatin

occupancy of small molecules (Chem-seq; Anders et al. 2014).

So far, a significant limitation in the practice of ChIP-seq has been the bottleneck created by

the process of performing the ChIP reaction, which has traditionally been slow, tedious and low-

throughput. Automated robotic protocols for carrying it out have now been developed (Aldridge et

al. 2013; Gasper et al., in press), and coupled with the automation of library generation promise to

enable a major increase in throughput, allowing up to 96 samples to be efficiently processed in the

same time (although it should be noted that even then there will still be a bottleneck in the workflow,

one that will remain for the foreseeable future: the crosslinking and sonication steps; unless very

large amounts of chromatin from the same source are analyzed, large numbers of samples will still

have to be crosslinked and fragmented manually).

The other area where improvements are needed in the ChIP-seq assay is achieving truly single

base-pair resolution. Recently, the ChIP-exo-seq variation of ChIP-seq has been developed, which

addresses this issue by combining ChIP with 5’-to-3 λ exonuclease digestion of the crosslinked frag-

ments. Exonuclease processivity is blocked by the site of the crosslink thus providing precisely

phased sequencing ends right around the protein-DNA interaction site, with higher resolution than

traditional ChIP-seq, especially in regions where closely spaced binding of multiple transcription

factor molecules occurs (Rhee & Pugh 2011; Rhee & Pugh 2012; Figure 14.1C). Because improving

resolution is the key area of further development of the assay, the longer reads generated by TGS

platforms will not be of much advantage in ChIP-seq. Sequencing longer reads can improve the

ability to detect binding events over a larger fraction of the genome as it will make a more of the

genome uniquely mappable (Figure 14.1F shows the uniquely mappable fraction of the human and

fly genomes as a function of read length). However, first, the length of reads can only be as long as

that of the input fragments, and shorter fragments usually lead to better resolution (Figure 14.1B),

and second, Illumina read lengths, especially in the paired end format, are already covering the

range of fragment sizes observed in a typical ChIP-seq library. In addition, large numbers of reads

are necessary for the comprehensive identification of transcription factor binding sites (in the tens

of millions of reads for mammalian-sized genomes; Landt et al. 2012), and even larger numbers are

optimal for broad-source histone marks (Jung et al. 2012); at present, second-generation sequencing

technologies are comfortably delivering that many reads, and of very high quality too. However, if

true single molecule sequencing with no library preparation that can generate a very large number

of reads of comparable quality becomes available at acceptable cost, it would eliminate the need for
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PCR amplification together with the various biases introduced by it and it would enable working

with very small amounts of samples. This is currently challenging (Shankaranarayanan et al. 2011;

Adli et al. 2011), but has great potential importance to provide insight into the working of rare cell

types in the body.

14.4.2 DNAse hypersensitivity and other open chromatin assays

Active regulatory elements in the genome (enhancers and promoters) are characterized by increased

chromatin accessibility. This property can be used in order to identify them: increased chromatin

accessibility manifests itself as elevated susceptibility to DNAse cleavage. DNAse I hypersensitivity

mapping has been used for decades to study individual loci (Maniatis & Ptashne 1973), and paired

with NGS technologies has allowed the genome-wide detection of DNAse hypersensitive sites by se-

quencing the resulting DNA ends (Hesselberth et al. 2009; Song et al. 2011; Boyle et al. 2011; Figure

14.1D). Other methods for identifying open chromatin regions rely on the preferential segregation

of open chromatin regions into the aqueous phase when cross-linked chromatin is phenol-chloroform

extracted (FAIRE-seq and Sono-seq; Gaulton et al. 2010; Song et al. 2011; Auerbach et al. 2010).

For all of these methods, resolution and depth of sequencing is a key consideration. Indeed, se-

quencing DNAse I digested chromatin to a depth of nearly half a billion reads yields high-resolution

maps of individual transcription factor footprints (and is even labeled separately as Digital Genomic

Footprinting, or DGF; Neph et al. 2012a; Neph et al. 2012b), and more recently, analysis of the

different fragment lengths produced by DNAse digestion (DNAse-FLASH; Vierstra et al. 2014) has

proved very useful for understanding nucleosome architecture and transcription factor binding in

detail. For these reasons, similar reasoning to the one outlined above for ChIP-seq applies regarding

the utility of third generation sequencing technologies.

14.4.3 Mapping long-range chromatin interaction

Key components of eukaryotic gene regulatory networks are enhancer elements, regulatory sequences

located far away from the promoters of the genes they regulate. ChIP-seq can identify potential

enhancers but as these elements can be located very far away from their target genes, even “skipping”

over one or multiple genes (Lettice et al. 2003), it is usually not possible to assign an enhancer

to its corresponding promoter (or promoters) with absolute certainty. The relationship between

enhancers and promoters is far from the only known type of long-range physical interactions between

genomic elements; in recent years, appreciation for the dynamic 3D structure of the nucleus has
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been steadily growing, and structures as transcriptional factories that bring multiple genes in close

genomic proximity have been proposed. Identification of these long-range interactions is of major

importance for understanding the biology of the nucleus and the logic of gene regulation.

The chromosome conformation capture (3C) technique was the first one developed to tackle

this issue and to test the interaction between two candidate genomic loci (Dekker et al. 2002).

The advent of NGS technology has allowed to develop derivatives of 3C that measure interactions

between large sets of candidate loci (4C and 5C; Bau et al. 2011; Umbarger et al. 2011), or on

a fully genome-wide scale (Hi-C; Lieberman-Aiden et al. 2009; Umbarger et al. 2011), while the

ChIA-PET assay measures long-range interactions mediated by a particular protein (Fullwood et

al. 2009; Li et al. 2010; Handoko et al. 2011; Li et al. 2012). These assays rely on the chemical

crosslinking of protein-mediated interactions between distant genomic loci, the subsequent shearing

of chromatin and the ligation of the ends held together by the proteins under dilute conditions

so that ligation between DNA ends in different complexes floating in solution is prevented (Figure

14.1E). After library building, short reads are generated from both ends of the resulting chimeric

fragments and aligned to the genome. These fragments are once again short, sometimes extremely

short (in the case of the original ChIA-PET protocol, only very short stretches of sequences on each

end are informative due to the use of Type IIS restriction enzymes during library building), it is not

expected that TGS technologies will initially have a great impact in this field.

14.4.4 Mapping DNA methylation genome-wide

Numerous modifications of DNA bases playing a biological role have been described, especially in

prokaryotes and single-cell eukaryotes (Mruk & Kobayashi 2014; Gommers-Ampt et al. 1993; van

Luenen et al. 2012).The one that has attracted the most attention in multicellular eukaryotes,

due to its role in epigenetic regulation, is the methylation of the 5 position of cythosine (5mC),

particularly in the context of CpG dinucleotides (Bird 1986; Fuks 2005; Miranda & Jones 2007).

While it was first identified many decades ago (Wyatt & Cohen 1952), in the last few years 5-

hydroxymethylcytosine (5hmC) has also begun to emerge as a biologically important modification

(Kriaucionis et al. 2009; Tahiliani et al. 2009; Guo et al. 2011). The classical role of 5mC in

mammalian systems is in the CpG context in promoter-associated CpG islands. The methylation of

a CpG island is associated with the repression of gene expression from the associated promoter (Fuks

2005; Miranda & Jones 2007)), which is of vital importance during embryonic development, for the

establishment of imprinted loci and cancer progression, among many other processes. In addition
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Figure 14.3: Future long-read RNA-seq format. The same gene shown in Figure 14.2 is
depicted here too. If the appropriate sequencing technology is available, RNA can be converted
into cDNA and the cDNA directly sequenced (preferably without amplification, if possible). An
even better option would be to sequence RNA directly, which is in principle possible with nanopore
sequencing but still some way from becoming a commercially available reality. Note that the se-
quencing has to be carried out to a sufficiently high depth for results to be representative for all
genes in the dynamic range of the transcriptome (meaning tens of millions of reads should be gen-
erated). The problems of transcript assembly and transcript-level quantification become greatly
simplified and likely actually solvable in the great majority of cases with data of this kind, unlike
the insurmountable computational and epistemological challenges presented by current datasets.
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to this classical view, genome-wide profiling of the modification in both mammalian systems and in

other clades of the tree of life has revealed a much more complex picture involving methylation over

gene bodies and in non-CpG contexts (Lister et al. 2008; Lister et al. 2009; Zemach et al. 2010;

Huff & Zilberman 2014; see also an extensive discussion on the topic in the final chapter).

Two general strategies exist and have been in wide use for profiling DNA methylation: enrichment

for methylated DNA and bisulfite sequencing. Enrichment methods rely on immunoprecipitation

with antibodies specific for 5mC (MeDIP; Weber et al. 2005) or on enrichment using the methyl

binding domains (MBD) of naturally occurring proteins (MethylCap; Cross et al. 1994). Both

methods can be coupled with NGS sequencing and the nature of the data generated is similar to

that of ChIP-seq (Down et al. 2008; Brinkman et al. 2010). The drawback is that they do not

provide single base-pair resolution of methylation events but only enrich for regions with elevated

methylation levels. Base-pair resolution is provided by bisulfite sequencing (BS; Frommer et al.

1992; Clark et al. 1994). Treatment of DNA with bisulfite converts unmethylated cytosine to uracil

but leaves 5mC unaffected; as a result 5mC is sequenced as cytosine while unmethylated cytosine as

Figure 14.4: Robustness of long-read RNA-seq to sequencing depth. Gene-level FPKMs
for the H1-hESC cell line (2x75bp ENCODE data from the Wold lab) were used a starting point.
Assuming the relative FPKM abundances correspond to real relative abundances, a long-read tran-
scriptome was simulated as follows. First, the FPKM for each gene was multiplied by 10×104. Then
the resulting transcriptome was sampled at different sequencing depths, assuming that 1 long read
corresponds to 1 transcript. Gene-level expression values were calculated in TPM (Transcripts Per
Million transcripts sequenced), and the fraction of genes expressed at different FPKM levels (upper
right) that were quantified within 5% of their original relative abundance was calculated.
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thymine. The resulting libraries can be sequenced and aligned against the genome and methylation

levels assessed at the level of individual base pairs. As the cost of sequencing whole genomes has been

until recently prohibitively high for routine whole-genome BS sequencing, reduced-representation

bisulfite sequencing approaches (RRBS) have been developed; in RRBS, restriction enzymes are used

to cleave specific positions in the genome and the methylation status of the surrounding nucleotides

is assessed after bisulfite conversion and sequencing (Meissner et al. 2008). With decreasing costs,

whole-genome BS-seq is becoming more widely used even in mammalian systems (Lister et al. 2009;

Lister et al. 2011).

BS-seq assays present considerable analytical challenges due to the nature of methylation events

and bisulfite conversion. Alignment of BS-seq sequencing reads is a non-trivial informatics problem

with numerous trade-offs between sensitivity and specificity that have to be made as a result of the

conversion of cytosines to thymine, the potential for heterogeneity of methylation events between

CpGs in close proximity to each other, and a number of other issues (Krueger et al. 2012). In

addition, bisulfite treatment does not differentiate between 5mC and 5hmC and as a result additional

assays have had to be developed to measure its levels. Finally, it is at present difficult to examine

the phasing of methylation events between maternal and paternal chromosomes due to the short

nature of NGS sequencing reads.

TGS technologies promise to deliver a solution to many of these issues by avoiding bisulfite

conversion and reading methylation events directly over long stretches of DNA. The ability of the

PacBio platform to directly detect 5mC has been demonstrated based on the characteristic delay

in nucleotide incorporation by the polymerase at 5mC positions (Flusberg et al. 2010; Clark et

al. 2012). Both 5mC and 5hmC have also been shown to induce characteristic changes in the

current through nanopores (Clarke et al. 2009; Wallace et al. 2010), thus potentially providing a

way to directly read methylation events over very long DNA sequences with very minimal sample

preparation (and correspondingly lower cost), potentially even from single cells. The long reads

are advantageous because they will allow the reliable allelic phasing of methylation status, which

is at present very difficult with short reads. If error rates can be sufficiently minimized, these

technologies could enable us to dive much deeper into the detailed workings of the epigenome than

currently possible.
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14.4.5 Transcriptomics

The area of functional genomics where TGS technologies can be expected to have the greatest impact

is transcriptomics. The interaction between the immense complexity of the transcriptome, the short

length of current sequencing reads and the limitations of library building protocols and sequencing

platforms has presented some very difficult analytical challenges to the field, which longer reads

should be able to address if generated in sufficient numbers.

14.4.5.1 Long RNA molecules and RNA-seq

The primary tool for characterizing transcriptomes today is RNA-seq. A typical RNA-seq experi-

ment aims at measuring mRNA molecules and involves the selection of polyadenylated RNAs, their

fragmentation to a size usually below 200-300bp, conversion of the fragments to cDNA, PCR amplifi-

cation and sequencing of the resulting fragments, either from one end or from both ends as paired-end

reads. Other protocols may feature alternative sequence of steps (Figure 14.3) but the general prin-

ciple remains the same: long RNA molecules are converted into much shorter DNA fragments in

the final library and then sequenced. Several varieties of the library-building protocol that preserve

information about which strand reads originate from (”stranded” RNA-seq; Levin et al. 2010) ex-

ist. In addition, while what is most often measured is polyA-selected mRNAs, non-polyadenylated

transcripts can also be specifically targeted using various strategies for depleting ribosomal RNA;

Chen et al. 2011). Finally, specific very rare transcripts can be specifically captured and subjected

to RNA-seq (Mercer et al. 2011).

The resulting datasets contain an enormous amount of information about the transcriptome at

a single base-pair resolution (Djebali et al. 2012; Chapter 2 of this thesis). Splicing events can be

directly quantified using sequencing reads that cross splice junctions and new splice isoforms can be

identified (Katz et al. 2010). Chimeric transcripts resulting from chromosome translocations playing

a role in cancer biology can be identified (Levin et al. 2009; Zhang et al. 2010; Kinsella et al. 2011;

Kim et al. 2011; Sakarya et al. 20102; Li et al. 2011; McPherson et al. 2011; Levin et al. 2009).

RNA-editing events can be cataloged (Li et al. 2011; Peng et al. 2012; Bahn et al. 2012; Park

et al. 2012) and expression bias towards the maternal or paternal chromosome can be measured

(Rozowsky et al. 2011; Reddy et al. 2012; Chapter 3 of this thesis). New classes of transcripts,

such as long intergenic non-coding RNAs (lincRNAs), can be discovered, annotated and quantified

(Cabili et al. 2011; Guttman et al. 2010). Finally, newly-sequenced genomes can in principle be

annotated de novo using RNA-seq data.
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While RNA-seq datasets have already provided highly useful insights into all of the above areas,

as extensively discussed in Chapters 2 and 3, two very important classes of problems have remained

unsolved at a satisfactory level for all biological applications: isoform-level quantification and de novo

transcript assembly. The ability to faithfully carry out these tasks is of critical importance for the

study of alternative splicing, alternative initiation and termination (Lenhard et al. 2012; Sandberg et

al. 2008; Jan et al. 2011), and for the accurate annotation of genomes. These are unsolved problems

not because of lack of sufficient computational sophistication, but simply because the information

needed to solve them in all cases is often simply not present in the data. The median length of

annotated mRNAs in the human genome is in the 2-3kb range while the length of sequence reads

has only recently approached 150-250b, still far shorter than a full-length mRNA, necessitating the

use of probabilistic methods to parse them between all available isoforms, a non-trivial computational

problem for which a unique solution not always exists. Not only that, but the situation is posed to

worsen as annotations get more and more comprehensive by including more and more alternative

isoforms for each gene – the ability of isoform-level quantification algorithms to accurately parse reads

between the transcripts of a gene is inversely proportional to the number of isoforms annotated for it.

Even if longer (but still shorter than the longest transcripts in the genome) reads were available, it

would not be advisable to use them for purposes other than assembly because this would introduce

a number of undesirable biases in datasets (see discussion in Chapter 3 for details). Long RNA

Figure 14.5 (preceding page): The single-cell RNA-seq of the future. In addition to
the less-then-ideal aspects common to all current RNA-seq protocols, single-cell RNA-seq faces the
challenge of maximizing capture efficiency (the probability that each original RNA molecule will
be captured and represented in the final library, i.e. single molecule capture probability or psmc).
Single cells contain a finite and limited number of founder RNA molecules, and it is vitally important
that each and every one of them is counted, and counted just once, if one is to obtain accurate
measurements of the transcriptome of each individual cell. Unfortunately, psmc is at present nowhere
near 1, and is a source of significant technical stochasticity between individual cells. Sequencing
very large numbers of cells (Shalek et al. 2013; Jaitin et al. 2014) can recover common patterns
in cell-to-cell diversity in large populations of cells, but it is still highly desirable to overcome the
technical stochasticity by generating truly accurate measurements. The best way to achieve that
is to eliminate as many of the enzymatic steps between founder RNA molecules and sequencing as
possible. Ultimately, this means direct RNA sequencing, which is in principle possible with nanopore
sequencing though it still lies quite some time into future. Ideally, it would be incorporated into
a microfluidic system, which channels single cells into individual microfluidic chambers, in which
they are first lysed, and then their RNA content is passed through nanopores embedded into the
wall of the chamber. This would provide digital counts of isoform-level transcript abundances in
absolute copies per cell numbers (depicted as CG,T,K , where C stands for absolute transcript copy
numbers, G for the gene a transcript belongs to, T for the transcript itself, and K for the index of
each individual cell), potentially also including the non-polyadenylated portion of the transcriptome
(which has received virtually no attention in single-cell transcriptomics so far as all currently available
protocols feature a polyA-selection step).
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fragments present more opportunities for the formation of secondary structures, which affect reverse

transcription in unpredictable ways and increase coverage non-uniformity, and even if this was not

the case, long fragments create representation biases against shorter transcripts.

It has now become abundantly clear that the only viable solution to these problems is to sequence

full-length RNAs using long-read TGS technologies, as this will provide the long-range connectivity

information that is missing in current RNA-seq datasets and which will allow the accurate assembly

and transcript-level quantification of even the most complex loci. This will be possible even with

relatively high error rates, as, first, in many cases a reference genome of high quality will be available,

and second, hybrid strategies, which combine TGS reads with high-quality Illumina reads, using the

latter for error correction (Au et al. 2012; Au et al. 2014) can be used. However, it is still not clear

whether all requirements that need to be met for short-read RNA-seq to be displaced by long-read

RNA-seq will in fact be satisfied by TGS technologies. The primary ones are sequencing depth

and library preparation. First, tens of millions of reads are still going to be needed for accurate

quantification even with long reads (Figure 14.4). This is far beyond what is economically feasible

with current PacBio output. It is not clear what the throughput of nanopore sequencers is going

to be, but it has the theoretical potential to be much higher as the speed of translocation through

pores is very fast (indeed the main challenge impeding their development has been how to slow

it down). Second, sequencing RNA on the PacBio platform has so far required the partitioning

of samples into different length classes, preparing separate libraries for each and then sequencing

them separately. Such approach makes quantification of the whole sample pretty much impossible.

Therefore, practical RNA long-read sequencing will have to be done on a platform that is not biased

towards or against fragment of certain sizes. Once again, this is in theory a characteristic of nanopore

sequencing, but it remains to be seen how real-life instruments will operate. Nanopores have one more

potential feature, perhaps the most desirable of all, and it is the ability to sequence RNA directly

(Ayub & Bayley 2012; Ayub et al. 2013; Cracknell et al. 2013). Working instruments capable of

direct RNA sequencing are still some time from being commercially available. However, they are

the most promising candidate for delivering what would be perhaps the end point of development of

RNA-seq technology: protocols based on direct RNA sequencing would remove all of the enzymatic

steps that are sources of various biases in current protocols (such as reverse transcription and PCR),

in addition to providing long reads (Figure 14.3).
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14.4.5.2 Small RNA sequencing

The sequencing of small RNAs was one of the very first applications of NGS sequencing but ever

since most NGS-based small RNA sequencing studies have primarily aimed at identification and

annotation of small RNAs rather than quantification and comparison between samples. The reason

is that while multiple protocols for building small RNA libraries exist, relying either on ligation or

oligonucleotide-tailing, they all introduce very serious representation biases into the final libraries,

making it difficult to compare the levels of individual small RNA species (Linsen et al, 2009; Hafner

et al. 2011; Toedling et al. 2012). A technology allowing for direct RNA-sequencing would be

ideally suited for this problem, and again, nanopore-based platforms could in principle accomplish

this, though whether the quality of the data will be sufficiently high to displace current sequencing

platforms remains to be seen. Initial steps in this direction have already been reported (Wang et al.

2011; Gu & Wang 2013; Gu et al. 2013).

14.4.5.3 Single-cell transcriptomics and epigenomics

The vast majority of functional genomic measurements are performed on large populations of cells.

This is largely due to the limitations of many of the experimental protocols (for example, it is most

likely not possible to perform ChIP-seq on single cells due to the inefficiency of cross-linking) but it

has the end result of masking cell-to-cell variation and noise, the presence of distinct subpopulations

within the larger population and other very interesting biological phenomena that only manifest

themselves when examined on the level of single cells. Ideally, single cell functional genomic mea-

surements would be routinely available, and this has prompted the development of protocols for

sequencing both the genomes (Xu et al. 2012; Hou et al. 2012) and the transcriptomes of single

cells (Tang et al. 2009; Tang et al. 2010; Tang et al. 2011; Islam et al. 2011; Ramsköld et al. 2012;

Marinov et al. 2014). Here is also the place to note that the RPKM normalization widely used for

RNA-seq quantification is only a relative measurement of gene expression levels (and so is RNA-seq

itself in general in its current form) as it measures the allocation of a given number of reads between

genes/transcripts but not the absolute levels of transcript copies per cell. It is in principle possible

to obtain estimates of the average number of copies per cell by precisely tracking down the number

of cells and amounts of purified RNA that went into a library (Mortazavi et al. 2008) but this in-

formation is typically not available and even when it exists, it is no match for actually knowing the

number of copies for individual single cells. However, because enormously larger amounts of DNA

are needed for sequencing on NGS platforms relative to the amount of RNA present in a single cell,
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current single-cell transcriptomics protocols all involve massive amplification of fragmented RNA,

typically in two rounds of amplification separated by a fragmentation step. As a result, information

about the number of transcript copies in a cell is lost, in addition to biases introduced by PCR

amplification, reverse transcription, and the stochastically variable capture rate of the original tran-

scripts (psmc, single-molecule capture probability), most of which are present at low copy number

per cell to begin with. There are two partial solutions to this problem: first, the use of spike-in

standards of know abundance and the subsequent recalibration of FPKMs to estimated copies per

cell (Marinov et al. 2014; Islam et al. 2011), and second, the use of unique molecular identifiers that

track the number of founder molecules (Shalek et al. 2013; Islam et al. 2014). Both approaches are

far from ideal. The first one is not entirely quantitative, as spike-ins are not necessarily present in

exactly the fixed number of copies that are on average inputted in each reaction, while all current

variations of the second involve the tagging of one end of transcripts and result in the loss of the rest

of it, with the corresponding consequences for the ability to analyze alternative splicing and allelic

biases on the single cell level. Neither of them resolves the technical stochasticity problem either,

which can only be eliminated by eliminating the enzymatic steps in protocols that are its source.

The most viable way, in which such an advance can be achieved, is the direct sequencing of RNA

from single cells, using nanopores. Whether and when this will be practically possible remains an

open question, but it is the only technology that has the potential to be the basis of a single-cell

RNA-seq assay of the kind shown in Figure 14.5. Microfluidics-based single-cell genomics devices

are already in widespread use (such as the Fluidigm C1 system; Shalek et al. 2013; Wu et al.

2014) and proven their usefulness. It is in principle possible to design a microfluidics platform that

integrates the sorting of individual cells into microfluidic chambers with nanopores in each of them,

capable of direct RNA sequencing of the RNA content of each cell after lysis. This would provide a

direct readout of the absolute abundances of all RNA species in a cell, hopefully with minimal bias,

resolving most of the technical issues with current protocols and platforms.

Similarly promising are the prospects for the application of TGS platforms to single-cell epige-

nomics. While assays measuring genomic occupancy and chromatin structure are ill-suited for single-

cell measurements, DNA methylation could be well measured on the level of single cells with a very

long-read single-molecule sequencing platform. The examination of large numbers of allelically

phased single-cell DNA methylation profiles should reveal a great deal about the dynamics and

regulation of epigenetic DNA modifications.

There are numerous formidable technical challenges to be overcome for these prospects to become

reality. The concept of nanopore sequencing has been applied in practice in ways that are not directly
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compatible with the vision outlined above, due to the numerous difficult technical issues that have

had to be tackled to even get this far. These include: the need to slow down the rate of DNA

translocation through the pore, the need to ensure that nanopores are loaded with DNA, (these two

have meant that some library prep has always had to be applied depending on the specifics of the

approach adopted, in order to bring DNA in contact with the pore and the surface it is embedded in),

the use of designs that feature protein nanopores embedded in a lipid membrane (which means that

at any given moment multiple bases are present in the pore and the sequence is reconstructed from

the reading of several bases at a time instead of just one; this basically precludes the application

of the method to methylated DNA), and others. Thus further advances in miniaturization and

manufacturing will have to be made to enable true direct single-base pair readout, to ensure that all

nucleic acid molecules in a single cell are read efficiently by the pore, and in the case of direct RNA

sequencing on single cells, to further minimize library preparation. Nevertheless, the fundamental

features of nanopore sequencing make it the only candidate technology that has the potential to

deliver all the information that is at present impossible to obtain using existing tools and protocols,

provided that, of course, solutions are found to the challenges that still remain unresolved.

14.5 Concluding Remarks

Advances in sequencing technology have been the primary driver of development in genomics for

most of the existence of the field. New sequencing technologies have repeatedly enabled us to ask

questions that were not accessible prior to that. The refinement of sequencing technology is not

complete – we still do not have the sequencing capabilities we would like to have, both in the area of

genome sequencing (where large and highly repetitive genomes are at present practically impossible

to assemble) and in several areas of functional genomics, in particular transcriptomics (where we

need to be able to sequence full-length transcripts, at very high sequencing depth, preferably without

having to use PCR and reverse transcription). However, we can be reasonably certain that these

problems will be eventually resolved and we will be able to carry out the measurements we want,

whether it is thanks to currently emerging third generation sequencing technologies, or through

further developments beyond that.

In the same time, many functional genomic assays, in particular those centered on chromatin

biology, are either not expected to derive large benefits from these anticipated developments, or the

changes in the nature of the data generated will not be radical. We can therefore consider methods

such as ChIP-seq to be at this point mature. This means that, first, the analytical tools developed
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for working with them, such as the ones described in Part 3 of this thesis, will remain relevant for

quite some time into the future, and second, that it is time to shift the emphasize of functional

genomic research efforts from developing and improving assays and methods to using the data we

can generate and analyze with them to address biological questions (a common criticism of the field,

which I personally cannot disagree with, has been its overt focus on technological development).

Once the needed advances in the area of transcriptomics outlined above are achieved, the same

reasoning will apply for it too. The biological questions, the exploration of which is of particular

interest to me, are discussed in the last chapter of the thesis.
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15

The extent of functionality in the human genome

In this chapter, I present my personal view on the question of how much of human genome is func-

tional. This is a subject that generated much attention after the publication of the main ENCODE

papers in late 2012. As a result, a perspective on the issue was put together by members of the

ENCODE Consortium, which I had a hand in putting together, and which has been published as:

Kellis M*, Wold BJ*, Snyder MP*, Bernstein BE*, Kundaje A‡, Marinov GK‡, Ward LD‡, Birney

E, Crawford GE, Dekker J, Dunham I, Elnitski L, Farnham PJ, Feingold EA, Gerstein M, Giddings

MC, Gilbert DM, Gingeras TR, Green ED, Guigo R, Hubbard TJP, Kent WJ, Lieb JD, Myers

RM, Pazin MJ, Ren B, Stamatoyannopoulos J, Weng Z, White KP, Hardison RC. 2014. Defining

functional DNA elements in the human genome. Proc Natl Acad Sci U S A 111:6131-6138. doi:

10.1073/pnas.1318948111.

The original text of the paper is reprinted in Appendix M. I contributed to it the coverage anal-

ysis, using the set of publicly available ENCODE element files as input as well as newly gener-

ated histone mark ChIP-seq region calls provided by Anshul Kundaje (Stanford University). The

conservation analysis was added by Luke Ward (Broad Institute and CSAIL, Massachusetts In-

stitute of Technology). I will not reiterate all of the points made in that manuscript here, but

will instead emphasize the ones that were either not made or did not feature prominently in it.

Also, it should be noted that here I focus almost exclusively on ENCODE results; a more ex-

tensive treatment of all the issues associated with this topic can be found in the next chapter.

Abstract
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The completion of the sequence of the human genome gave us a rich source of in-

formation about certain features of it such as genes and repetitive elements. However,

a complete understanding of how the human genome functions requires also the com-

prehensive identification and characterization of all other functional elements in the

genome, especially those involved in the regulation of gene expression. In addition,

the annotation of the gene content of the human genome carried out as part of the

initial sequencing effort was far from complete, in particular with respect to noncoding

RNA species. To fill these gaps in our knowledge, the ENCODE Consortium was set

up with the goal of generating an exhaustive genome-wide map of functional elements

in the human genome. The main approach that the ENCODE project adopted to-

wards achieving that goal was the use of functional genomic assays to produce maps

of biochemical activity across the genome. Its efforts resulted in a collection of such

maps that covered the majority (≥80%) of the genome with reproducibly detectable

biochemical activity, in stark contrast with prior studies using evolutionary conserva-

tion, which usually estimate no more than 10% of the genome to be functional. Here, a

discussion of the sources of this discrepancy, the various lines of evidence for function,

the nature of “function”, and what the most likely true value is (much lower than 80%),

is presented.

15.1 Introduction

The sequencing of the human genome (Lander et al. 2011; Venter et al. 2001; International Human

Genome Sequencing Consortium 2004) was a monumental achievement in our quest to understand

the genetic basis of human biology. However, on its own it was not sufficient, as, while it provided

a list of genes, the identity of the regulatory elements that control them were largely unknown.

These elements reside mostly in the noncoding portions of the genome, and their importance is

illustrated by the fact that the majority of known trait-associated sequence variants reside outside

of protein coding exons (Kleinjan & Lettice 2008; Hindorff et al. 2009; Nicolae et al. 2010; Zhong

et al. 2010). In addition, the complexity of the transcriptome had by no means been exhaustively

explored, with the corresponding absence of understanding of what roles the RNA species not im-

mediately apparent in the human genome sequence and its initial annotation might be playing. It

is with the goal of addressing these gaps in knowledge that the ENCODE Project was set up in

the early 2000s (ENCODE Project Consortium 2004). Initially, in its pilot phase, it used tiling mi-
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croarrays to comprehensively assay transcript abundance and diversity, regions of open chromatin,

transcription factor occupancy and histone modifications over 1% of the human genome (ENCODE

Project Consortium 2007). It revealed the significant complexity of biochemical activity over the

genome (for example, in the form of the pervasive transcription of the targeted regions). However,

microarrays are not the ideal technology for the detailed functional genomic characterization of the

genome, especially with respect to the transcriptome, as they do not provide a truly single base-pair

resolution, and suffer from limitations to their dynamic range, relatively high noise levels and a num-

ber of other issues (Royce et al. 2005). In this context, it was fortunate that the beginning of the

second, genome-wide production phase of ENCODE coincided with the advent of high-throughput

sequencing technology, which quickly displaced microarrays as the primary platform for functional

genomics research. Sequencing-based assays are characterized by greatly diminished noise levels and

very high resolution (single-base pair in the case RNA-seq and whole-genome bisulphite sequencing),

and confidence in the results they deliver is correspondingly higher. The second phase of ENCODE

detected reproducible biochemical activity over 80% of the genome, which lead to a heated discus-

sion over whether this is evidence that 80% of human genome is functional or not, ranging from

rejection of that idea (Eddy 2012; Eddy 2013; Doolittle 2013; Graur 2013; Niu & Jiang 2012) to its

acceptance (Germain et al. 2014; Tragante et al. 2014; Mattick & Dinger 2013). The reason such a

position is controversial is that decades of research in population genetics and evolutionary biology

have converged onto a coherent view of the human genome as one that consists of a tiny fraction

of functional DNA and a majority of nonfunctional DNA, often referred to as “junk” (Ohno 1973).

This “junk” DNA exists primarily because the power of natural selection in mammalian lineages is

insufficient to efficiently eliminate it, while the balance of mutational biases (in particular, trans-

posable element insertions as well as small insertion and deletions) is on average directed towards

expansion, with the strength of natural selection being limited by the low effective population size

(Ne) of these species (Lynch 2007a; Lynch 2007b). This subject is elaborated on in depth in the

next chapter.

15.2 The three types of evidence for genomic function

A main driving factor behind this debate is the varying weight that is given to the different types

of evidence for the functionality of a given region of the genome according to each view. There are

three approaches (complementary to each other) for evaluating functionality: biochemical, genetic,

and evolutionary, with biochemical evidence being the primary type that ENCODE collected. These
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are briefly reviewed below, and are also summarized in Table 15.1

Table 15.1: Approaches for evaluating the functionality (F ) of segments of the genome.
Note that the table is presented as if each criterion produces binary results and functionality is also
a binary characteristic, however, the biological reality is, of course, different and all of these are in
fact continuously distributed. A means a positive score according to each criterion.

Approach (A) F
?⇒ A ¬F ?⇒ ¬A A

?⇒ F ¬A ?⇒ ¬F
Biochemical yes no not always yes

Genetic yes yes yes not always
Evolutionary not always mostly yes yes not always

15.2.1 Biochemical evidence

Functional elements in the genome exhibit certain biochemical activities when their function is ex-

pressed and exercised. These activities include the production of mRNA in the case of protein coding

genes and of functional non-coding RNAs from non-coding genes, the binding of transcription fac-

tors, chromatin modifying and remodeling complexes, and other proteins to enhancers, promoters,

insulators and other regulatory elements, the establishment of characteristic combinations of his-

tone marks over regulatory regions and certain portions of genes, the open chromatin structure of

enhancers and promoters, and others. Biochemical activities can be measured genome-wide using

functional genomic assays: RNA-seq for transcripts (Mortazavi et al. 2008), ChIP-seq for the oc-

cupancy of DNA by proteins and the distribution of histone marks along the genome (Johnson et

al. 2007; Barski et al. 2007; Mikkelsen et al. 2007), DNAseq-seq (and its high-resolution version

DGF, or Digital Genomic Footprinting; Hesselberth et al. 2009; Neph et al. 2012a), and FAIRE-seq

(Formaldehyde-Assisted Identification of Regulatory Elements; Song et al. 2010). This is the main

approach that the ENCODE Consortium adopted in order to identify candidate functional elements

in the genome, and has also been successfully used to identify them in other systems, in particular

to find candidate enhancers regions in mammalian genomes (Visel et al. 2009; Rada-Iglesias et al.

2011; Creyghton et al. 2010).

The main advantage of the biochemical approach is that it provides a direct readout of the bio-

chemical activities in which a functional element is involved. However, the presence of biochemical

activity it on its own not sufficient evidence that a given region of DNA is functional – functional ele-

ments are biochemically active, but the opposite is not necessarily true (Table 15.1), and biochemical

activity can occur over regions of DNA with little to no functional significance.
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15.2.2 Genetic evidence

The genetic dissection of the biological role that candidate functional elements may play, in loss-

and gain-of-function settings, is the classic, gold-standard approach for defining functionality. This

can be accomplished through the study of naturally occurring mutants, the targeted generation of

loss-of-function mutants or of RNAi knock-downs (Berns et al. 2004), through the use of transfection

assays to measure the activity of candidate enhancer regions, and others. Genetic evidence provides

very strong indication for functionality, however, traditionally most genetic approaches have been

low-throughput and labor-intensive, in particular in human systems. This has begun to change

recently, with the appearance of high-throughput functional assays (Patwardhan et al. 2012; Mel-

nikov et al. 2012; Kheradpour et al. 2013), and of simplified and widely accessible genome editing

protocols (Jinek et al. 2012). One problem still remains, however, and it is that not all functional

elements display a phenotype upon genetic manipulation. Famously, deletion of ultraconserved el-

ements in mice is known to sometimes lead to viable animals (Ahituv et al. 2007); this might be

the result of redundancy with other functional elements or, alternatively, phenotypes may not be

visible in laboratory conditions with fitness costs being incurred only in the diverse environmental

conditions encountered in the wild. Thus while positive results using genetic tests for functionality

Figure 15.1 (preceding page): Summary of coverage of the human genome by ENCODE
data. Shown is the fraction of the human genome covered by ENCODE elements in at least one cell
line/tissue for each assay as well as genomic coverage by annotated genes and repetitive elements.
Version 16 of the GENCODE annotation (Harrow et al. 2012) was used to calculate coverage
by annotated genes. Detailed breakdown of the coverage of the genome by the exons of protein
coding genes and various non-coding transcripts and pseudogenes is shown separately. The Repeat
Masker annotation downloaded from the USCS Genome Browser was used to calculate coverage of
the genome by repetitive elements. For transcripts, coverage was calculated from RNA-seq derived
contigs (Djebali et al. 2012) separated into abundance classes by FPKM values. Note that FPKMs
are not directly comparable between different subcellular fractions as they reflect relative abundances
within a fraction rather than average absolute transcript copy numbers per cell. Depending on the
total amount of RNA in a cell, 1 transcript copy per cell corresponds to between 0.5 and 5 FPKM
in PolyA+ whole cell samples according to current estimates (with the upper end of that range
corresponding to small cells with little RNA and vice versa). “All RNA” refers to all RNA-seq
experiments, including all subcellular fractions. DNAse hypersensitivity and transcription factor
(TFBS) and histone mark ChIP-seq coverage was calculated similarly but divided according to
signal strength. “Motifs+footprints” refers to the union of occupied sequence recognition motifs for
transcription factors as determined by ChIP-seq and as measured by digital genomic footprinting,
with the purple portion of the bar representing the genomic space covered by bound motifs in ChIP-
seq. Signal strength for ChIP-seq data for histone marks was determined based on the p-value of
each enriched region (the −log10 of the p-value is shown), using peak calling procedures tailored to
the broadness of occupancy of each modification (Supplementary Methods). “E+P and “E+P+T”
refer to the union of coverage by histone marks associated with enhancers and promoters (“E+P”)
or enhancers, promoters and transcriptional activity (“E+P+T”).
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can be straightforwardly interpreted as strong evidence for it, negative results do not constitute

correspondingly strong evidence for its absence (Table 15.1).

15.2.3 Evolutionary evidence

While experimental tests for functionality suffer from the issue of phenotypes not always being visible

under laboratory conditions, throughout the process of evolution functionality is constantly being

tested all the time without this constraint. Regions of the genome, the sequence of which is of major

functional significance, are subjected to strong purifying selection, and can be detected in multiple

genome alignments as conserved, in contrast to the rest of the genome, which tends to evolve largely

neutrally and as a result its sequence diverges to a much greater extent between different lineages.

This method has been widely used to find conserved noncoding elements in mammalian and other

genomes (Nobrega et al. 2003; Cliften et al. 2003; Boffelli et al. 2003; Siepel et al. 2003). It

is also the source of the most conservative minimal estimates for the fraction of the genome that

is functional – between 5 and 10% (Lindblad-Toh et al. 2011). However, while strong sequence

conservation implies functionality, the opposite is not always true – there is extensive evidence that

regulatory elements can and often do turnover relatively rapidly on an evolutionary timescale, and

as a consequence are not always detectable in multiple genome alignments (McGaughey et al. 2008;

Meader et al. 2010; Lohmueller et al. 2011). Thus absence of conservation does not necessarily

imply lack of function (Table 15.1).

15.3 What fraction of the human genome is functional?

The question of how much of the human genome is functional has fascinated researchers for a long

time, ever since it was recognized that genome size does not correlate with perceived organismal

complexity (the so called C-value paradox, Thomas et al. 1971), and even more so after more recently

it was realized that the number of genes in a genome also does not correlate with it, with the human

genome containing barely more genes (20,000) than the genome of the nematode Caenorhabditis

elegans (19,000) and only half the number of genes that many plants have (≥40,000 in some cases).

A well-established within the field of molecular evolution explanation for the C-value paradox has

been that, aside from cases of polyploidy, the observed differences in genome size are largely the

result of the different amount of “junk” DNA that different lineages have accumulated in their

genomes. This idea has been consistently supported by the results of comparative genomics, which

have repeatedly estimated the fraction of the human genome that is conserved within mammals to
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Figure 15.2: Relationship between ENCODE signal and conservation.. Signal strength
of ENCODE functional annotations were defined as follows: log10 of signal intensity for DNase and
TFBS, log10 of RPKM for RNA, and log10 of −log10 P value for histone modifications. Annotated
regions were binned by 0.1 units of signal strength. (A) The number of nucleotides in each signal
bin was plotted. (B) The fraction of the genome in each signal bin covered by conserved elements
(by genomic evolutionary rate profiling) was plotted.

be below 10% (Mouse Genome Sequencing Consortium 2002; Lindblad-Toh et al. 2011), and by the

fact that half of the human genome consists of decayed copies of transposable elements. However,

proposals that most of the human genome is in fact functionally important, even though it is not

conserved on the sequence level, and that the regulatory complexity hidden in the noncoding and

nonconserved portions of the genome is what is responsible for the organizational complexity of

the human body and even our cognitive abilities have been repeatedly made (see discussion in the

following chapter).
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15.3.1 The “biochemically active” 80% fraction

It is in this context that ENCODE’s result that ≥80% of the human genome is biochemically active

appeared in the scientific literature. However, while the number became widely popular, its origin

was not explained properly, so where exactly does the 80% figure come from?

It should first be noted that given the nature of the functional genomic assays used to generate

the data, which cover 80% of the genome with significant and reproducible signal, 80% is really

largely equivalent to 100%. The high-throughput sequencing platforms used during this phase of

the ENCODE Project generate reads of between 25 and 100bp in length, however, the human genome

contains many repetitive and highly similar to each other sequences, meaning that a fraction of it

is not uniquely mappable with reads of such length. As only unique reads were considered during

analysis, the effectively “visible” portion of the human genome was only slightly larger than 80%

of it (Figure 14.1), i.e. ENCODE elements in fact cover nearly 100% of the accessible part of the

genome.

Second, ENCODE invested great effort into ensuring the quality of the data produced and the

reproducibility of the candidate elements detected (Landt et al. 2012; Li et al. 2011); thus the

detected coverage is generally unlikely to be the result of experimental artifacts. However, detailed

investigation of where the coverage of the whole genome originates from is needed before conclusions

about its significance are made. To this end I generated the summary shown in Figure 15.1, where

the coverage of the human genome by different types of data is shown, as a function of signal strength,

together with the coverage of the genome by exons and introns of annotated genes, and by repetitive

elements. Several types of relevant data were generated by ENCODE, and their properties need to

also be understood:

1. Transcription factor ChIP-seq. Maps of the genomic occupancy of over 120 human tran-

scription factors were generated using ChIP-seq. However, transcription factors bind to short

stretches of DNA sequence, usually 6-8bp long, more rarely up to ∼20bp, while ChIP-seq li-

braries consist of fragments of average length ∼200bp. As a result, binding regions called from

ChIP-seq data are several hundred bases long even though the causative sequence is typically

only less than 10bp in length.

2. Maps of DNAse hypersensitivity regions. Similarly to ChIP-seq, the identified regions

of DNAse hypersensitivity can be several hundred bases long but are caused by the binding of

transcription factors and other proteins to DNA sequences of considerably shorter length.
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3. DNAse footprinting. Very deeply sequenced DNAse libraries provide digital genomic foot-

prints of DBA occupancy and while they are still somewhat longer than actual transcrip-

tion factor binding sites, they provide a more refined mapping of the contacts between non-

nucleosomal proteins and DNA in the genome.

4. Histone mark ChIP-seq. The following histone modifications were mapped across a wide

variety of cell types: H3K4me3 (a mark associated with active promoters), H3K4me2 (pro-

moters), H3K4me1 (enhancers), H3K9ac (promoters), H3K27ac (ehnancers and promoters),

H3K36me3 (transcriptional elongation), H3K79me2 (transcriptional elongation), H3K27me3

(transcriptional repression, in particular when mediated by Polycomb complexes), H3K9me3

(repressed heterochromatin), H3K9me1 and H4K20me1 (of less clear function), and the histone

variant H2A.Z (associated with promoter regions). However, a histone state can be induced by

sequence elements much shorter than the genomic space occupied by the nucleosome carrying

the corresponding marks. For example, an enhancer region might induce histone modifications

over several nucleosomes on each side (or just one side; Kundaje et al. 2012).

5. RNA-seq. RNA-seq was carried out on polyadenylated RNA from whole cells (the most

commonly targeted portion of the transcriptome as these are the characteristics of messenger

RNAs and most lincRNAs), but also separately on polyadenylated and nonpolyadenylated

RNA from whole cells and from subcellular fractions (primarily nucleus and cytosol, and in

a few cell lines, nucleolus, nucleoplasm and chromatin). While the resolution of RNA-seq is

single base-pair and its dynamic range is vast, it still has an imperfection and it is that it

only measures the relative abundance of transcripts but not their absolute abundances (Löven

et al. 2012). This is best illustrated by the following thought experiment. Imagine two

different cellular conditions A and B; all genes are upregulated by a factor of 2 in B relative

to A, however, when RNA-seq libraries from each are sequenced, the FPKM metric used to

calculate gene expression will be the same for each gene. Naturally, one would want to know

how many copies of each transcript are present in each cell but this information is generally not

available in RNA-seq datasets without significant modifications to experimental design. It is

generally understood that 1 FPKM unit corresponds to between 0.5 and 5 FPKMs (depending

on how much total RNA there is in each cell on average: small cells with little RNA per cell

would be expected to have higher FPKM-per-copy values) in polyadenylated samples from

whole cells, but not even a rough such estimate is available for subcellular fractions. It is

likely, however, that the abundance of transcripts in them is significantly lower than that in



560

whole-cell polyA+ samples.

Coverage by annotated elements. According to version 13 of the GENCODE annotation,

50% of the human genome is covered by the exons and introns of annotated genes. Of this, <4%

consists of exons, of which ∼2.9% is exons of protein coding genes (including the open reading frames

and the untranslated regions), ∼0.2% is exons of lincRNAs, and ∼0.7% is pseudogenes; the rest is

introns (Figure 15.1). Also, according to the RepeatMasker annotation, 45% of the genome is covered

by repetitive elements. These numbers are relevant, because introns are, of course, transcribed and

can be expected to be detected, in particular in the form of not yet spliced pre-mRNAs, in the

nuclear and nucleoplasmic subcellular fractions.

Coverage by RNA-seq data. A total of 75% of the genome is covered by RNA-seq elements

across all datasets. It is worth first going over the generation of these elements. The ENCODE

transcriptome analysis effort (Djebali et al. 2012) eventually settled on generating RNA contigs

from the data instead of relying on de novo transcript reconstruction (as it is a difficult and still

not fully solved problem). RNA contigs were generated based on the overlap of mapped reads on

the same strand, FPKMs were calculated for each of them, and they were then subjected to a non-

parametric irreproducible discovery rate (npIDR) filtering to narrow down the final list of elements

to those that are reproducible. Thus regions for which functionality is not a priori expected such as

intronic fragments within subcellular fractions were definitely included in the final list of elements.

Even more importantly, much of the observed coverage was derived from elements with very low

FPKM values and from subcellular fractions. The fraction of the genome covered by ≥1 FPKM

elements is 30% across all fractions, slightly above 10% if only whole cell PolyA+ samples are

considered, and ∼5% in Cytosol PolyA+ samples. It is nearly 20% and 15% in nuclear PolyA– and

PolyA+ samples, respectively (Figure 15.1).

Coverage by transcription factors occupancy sites and DNAse. Around 15% of the

genome is covered by DNAse hypersensitivity and transcription factor occupancy regions (Figure

15.1). In each case, there is a smaller fraction of the genome covered by high signal levels, and

a larger fraction covered by signals of lower intensity. This relationship has been noted numerous

times in the past (Landt et al. 2012) and it is an open research question to what extent there is

a correlation between signal strength and functionality – there are certainly good reasons to think

that low-level occupancy may not on average be as functionally important as strongly occupied sites

are; some empirical evidence in support of this view has been published in Drosophila melanogaster

(Fisher et al. 2012).
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In addition, up to 10% of the genome is occupied by DGF footprints and by motifs of known

transcription factors located within called transcription factor ChIP-seq occupancy regions (Figure

2 in Appendix M).

Coverage by histone marks. As mentioned above, coverage by histone marks is not necessarily

a good measure of the extent of the functionality of the genome, as its resolution is not high enough

due to the fact that the sequences inducing a specific chromatin state are often much smaller than

the region of the genome occupied by that space. It should also be noted that the numbers shown

in Figure 15.1 were generated using a broader set of histone marks in terms of the number of cell

lines included, further extending total coverage, but also that a more conservative region calling

pipeline was used that resulted in regions of significantly shorter length than those used in the main

ENCODE publication (ENCODE Project Consortium 2012). Thus they are not necessarily directly

relevant to the origin of the 80% number but they are informative on their own. Using this more

conservative set, a total of ≥35% of the human genome is covered by regions of enrichment for

marks associated with active enhancers and promoters, and ≥55% by marks associated with active

enhancers, promoters and transcribed regions, and the same trend of a small fraction of the genome

with high signal and a larger portion with lower signal is observed.

15.3.2 The level of biochemical signal correlates with evolutionary

conservation

It is clear from the considerations presented above that assuming that biochemical activity measured

in these ways is equivalent to functionality is not a viable strategy, as first, the resolution of many

of the assays is not sufficiently high, and second, it is not possible to distinguish biochemical noise

from functionally significant activity. As discussed at length in the next chapter, it is not reasonable

to expect that all transcription in the human genome is functional and that all trascription factor

binding events are of major regulatory importance, even when they are reproducibly detected. This

means that integrative use of all three criteria for functionality should be used to assess the functional

significance of the candidate functional elements identified using functional genomic tools.

We took a first step in this direction by examining the relationship between the strength of the

biochemical signal measured by the various assays and level of sequence conservation (Figure 15.2).

Strikingly, positive correlation between signal intensity and evolutionary conservation was observed

for all types of data, with two exceptions: the H3K4me1 curve was mostly flat and dipped slightly

downwards at the high end of the signal distribution, and H3K9me3 exhibited a strong negative
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correlation with conservation. The former is not straightforward to interpret at present, but the

latter is very clearly related to the fact that H3K9me3-modified nucleosomes are a core component

of repressed heterochromatin, and repressed heterochromatin is a classic location for “junk” DNA as

heterochromatinization is used by cells to silence transposable elements. It is therefore no surprise

that regions with more H3K9me3 are less conserved than the genomic average.

That there is strong correlation between conservation and signal levels in RNA-seq, DNAse

and transcription factor ChIP-seq datasets also makes sense, and this has clear implications for

the interpretation of the majority low-signal coverage of the genome – it is more likely that much

(though by no means all) of it is nonfunctional and represents biochemical noise.

Table 15.2: An example of a position weight matrix (PWM) describing the binding
preferences of a transcription factor. The PWM score is defined as the fraction of binding sites
for the factor in which each base is found in the indicated positions.

Position\Nucleotide A T C G

1 1 0 0 0
2 0 1 0 0
3 0.5 0 0 0.5
4 0.25 0.25 0.25 0.25
5 0.25 0.25 0.25 0.25
6 0 0.5 1.5 0
7 1 0 0 0
8 0 1 0 0

15.3.3 The most likely estimate for the fraction of the human genome

that is functional

At present we cannot provide a definitive answer to the question how much of the human genome

is functional. This is in part because we do not have all the data we would like to have and which

we need to tackle it, but also, in even larger part, because it is a question the answer to which is

highly dependent on definitions. There is as of now no universally agreed upon definition of what

function is, what should be called a functional element (Doolittle 2013; Graur et al. 2013), and at

what resolution.

We are naturally inclined to think of function as a binary characteristic that a region of DNA

either does or does not have. However, this is not how biology works – the functional significance

of individual base pairs, regulatory elements, portions of genes, and even whole genes is distributed

on a continuum. The lower end of this continuum, where what is pure biochemical noise meets the

currently marginally functional elements, is perhaps where a lot of evolutionary innovation takes
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place, and it will never be straightforward to place a dividing line and declare that all nucleotides

on one side of it are functional while everything else is not. And it might have to be individual

nucleotides and not larger regions of DNA as even within well-established functional elements not

all nucleotides are of equal significance. One of the most fundamental components of our biology,

the genetic code provides a very good example for that, with its often degenerate third positions

in codons, and this is even more so for other functional elements. Table 15.2 shows a fictional

but typical in its structure position weight matrix (PWM) representing the binding preference of a

hypothetical eukaryotic factor. Some positions are very strongly constrained, some can tolerate more

than one nucleotide, yet others are not constrained at all and a binding site could be fully functional

with each of the four nucleotides in that position. Individual transcription factor binding sites can

therefore exhibit significant tolerance to substitutions (though significantly less to deletions and

insertions). An example of even less constraint is provided by the 3’UTR of genes, which contain

sequences, recognized by miRNAs and by RNA binding proteins, but these are often embedded

within sequence that is largely unconstrained. Similarly low constrains are likely operating with

respect to the sequence of long non-coding RNAs. Finally, there are transcriptional phenomena

where the act of transcription is important but the sequence of the transcripts produced is not, for

example transcription interference, in which the production of noncoding RNAs upstream of and

through the promoter of a gene inhibits its expression, and numerous other variations of the same

theme (Martens 2004; Petruk et al. 2006; Shearwin et al. 2005; Hirota et al. 2008; Uhler et al. 2007;

Kuehner & Brow 2008; Thiebaut et al. 2008; Palmer et al. 2009). It is far from clear how to classify

the regions that produce such transcripts with respect to whether their sequence is functional or

not.

Perhaps the most natural measure of functionality would be the selective coefficient s associated

with the presence of the fixed allele in the genome with respect to its hypothetical alternatives and

especially compared to the total absence of the element. This is, of course, continuously distributed

over many (technically an infinite number) orders of magnitude, thus it cannot provide a hard

estimate for how much of the genome is functional. It is also very difficult to measure accurately

(near impossible in humans) and is to a great extent dependent on environmental conditions therefore

not constant in time. But even if we had a way to measure it with absolute accuracy, we would still

be left with the problem of defining what an allele is and what its alternatives are. For example, the

fitness effect of substitutions of individual positions in a transcription factor binding site will differ

according to their importance for occupancy by that factor, which will relate in some way to the

factor’s PWM, but even the most severe of these effects will be much smaller than deletion of the
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whole site. The same reasoning applies on multiple progressively higher levels. Within an individual

enhancer there might be several binding sites for the same transcription factor and inactivation of

one of them can be compensated but deletion of the whole enhancer will have more serious fitness

consequences. A gene might be regulated by multiple enhancers, which are completely or partially

redundant, and deletion of some of them can be tolerated, but not of multiple ones, and so on. It

matters greatly what resolution we use when we define functional elements and the most appropriate

choices of resolution may not be the same for different kinds of elements.

These are all difficult issues, and the prospects of ever achieving conclusive resolution of all of

them are slim. But we do not necessarily have to solve them, as obtaining an accurate estimate

of how much of the genome is functional is really of very little practical significance and is in the

opinion of the author primarily driven by our collective inability to have an objective understanding

of our genome and of ourselves as a biological species. The important questions are first, whether

most of the genome consists of “junk DNA” and second, what regions of the genome (as opposed to

how much of it) are functional and in what ways. Even though a lot of it is biochemically active,

the conclusion reached decades ago that most of the genome is “junk” is in no way overturned by

ENCODE data, as shown here and in the next chapter, and the answers to the second question will

be derived from detailed functional analysis of individual candidate elements, an endeavor that will

be greatly facilitated by the advent of genome editing tools and massively parallel functional assays,

but will nevertheless still require an immense amount of effort.

Still, if we are to place a rough estimate of how much of the human genome, in my opinion we

should use a definition of function that includes the presence of selected effect on the sequence of

a given region of DNA (Doolittle 2013; Graur et al. 2013). The most comprehensive comparative

genomics effort across mammals (Lindblad-Toh et al. 2011) estimated that at least 5.5% of the

human genome is under purifying selection. This is certainly an underestimate as mammalian

lineages seem to be subject to particularly massive turnover of distal regulatory elements (Villar

et al. 2014). Lineage-specific constraint might be therefore the more relevant metric, one that

will certainly produce higher estimates (Lohmueller et al. 2011). Although the large numbers of

sequenced human genomes needed to conclusively answer this question are not yet available, initial

studies have produced estimates in the neighborhood of 10% of the genome (Ward & Kellis 2012).

This is consistent with the limits on the fraction of the human genome that might be under sequence

constraint imposed by the mutation rate (as was understood back in the 1960s, if all of our genome

was functional and constrained on the sequence level, given the empirically measured mutation rate,

each new generation would suffer from debilitating mutations, which is not the case, therefore the
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fraction of the genome that is sequence-constrained has to be low), and is the most useful in terms

of how we think about the genome rough estimate.
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16

The origins of genomic complexity and the Tree-of-

Life ENCODE

I

n this chapter, I summarize my view of the results of the ENCODE Project from an

evolutionary perspective, especially in the context of the controversy it generated regarding

the extent of functionality of the human genome. It consists in large part my vision for

the future, but it was also written because a proper response to the controversy coming

from within the consortium was, at the time of writing not available. The opinions presented here

are, of course, solely mine and not those of the Consortium as a whole.

Abstract

The publications of the results of the first genome-wide phase of the ENCyclopedia

Of DNA Elements (ENCODE) project as well as its sister modENCODE projects in

Drosophila melanogaster and Caenorhabditis elegans were landmark moments in our

progress towards understanding the biology of eukaryotic genomes as functional ge-

nomic characterization of eukaryote species was carried out for the first time at such

depth. However, discussion of the actual results of the human ENCODE project was

overshadowed by the portrayal of its conclusions as debunking the well-established con-

cept of “junk DNA”, and while questioning this interpretation is fully justified, some
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of it extended into questioning the utility of the field of functional genomics as a whole.

I have two goals here. First, I discuss how ENCODE results are entirely consistent

with existing nonadaptive frameworks for understanding the origins of genome com-

plexity. Second, I describe the usefulness of and highlight the need for ENCODE-style

characterization of a wide diversity of genomes across the tree of life, in particular

in the protozoan groups that account for most of the diversity of eukaryotes. Such

projects are becoming feasible with recent technical advances and can be expected to

resolve a number of important open questions. They would help more rigorously test

the different hypotheses about the origins of genome architecture as wide variations

of genome sizes and structures exist and intersect with similarly wide variations in

organismal complexity. They would also clarify what the truly fundamental princi-

ples of eukaryotic gene regulation are, as radical departures from the familiar from

opisthokonts and flowering plants genome organization and mechanisms of gene regu-

lation have been found in other eukaryotic lineages, but in general very little is known

in detail about these groups. The comprehensive functional genomic characterization

approaches pioneered by ENCODE are ideally suited for addressing these gaps in our

knowledge.

16.1 Introduction, or a historic overview of what is in our

genome

Perhaps the most fundamental question in all of biology concerns the relationship between genotype

and phenotype. Understanding that relationship is the ultimate goal of genome biology, both for

purely intellectual reasons and for very practical ones as it is what figuring out the genetic basis

of diseases reduces to in the end. Knowing how genomes function is crucial for accomplishing this,

and involves understanding both the set of molecules that the genome encodes and the mecha-

nisms of gene expression regulation during development and in response to changing environmental

conditions.

There are two approaches, complementary to each other, towards achieving these goals. The first

one is the very detailed functional genomic characterization of the genomes of certain species, in

particular that of humans, and involves the exhaustive identification of functional (i.e. relevant to the

organism’s phenotype) genomic elements (genes, transcript, regions with regulatory and structural
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roles). The second one recalls the old saying that nothing in biology makes sense except in the light

of evolution (Dobzhansky 1973) and aims at identifying the general principles driving the evolution

of genomes, the establishment of certain features in them, and ultimately, understanding the human

genome as a product of these principles in action. The former is the approach taken first by the

Human Genome Project (Lander et al. 2001; Venter at al. 2001; International Human Genome

Sequencing Consortium 2004) and later by the ENCODE consortium, the latter has been pursued

by researchers in the fields of molecular evolution and evolutionary genomics. However, a narrative

that the main result of the ENCODE Project has been the debunking of the existence of “junk

DNA” (DNA, the sequence of which is of little, or even negative, consequence for organismal fitness)

emerged. This prompted an at times quite vigorous debate for and against this proposition (Mattick

& Dinger 2013; Graur et al. 2013; Eddy 2012; Eddy 2013; Doolittle 2013), and took attention away

from the real scientific results of the ENCODE Consortium and other large-scale functional genomic

initiatives.

The intellectual roots of the “controversy” go back deep in history, and perhaps can even ulti-

mately be traced back all the way to the 19th century and Charles Darwin’s works that laid the

foundation of evolutionary theory (Darwin 1859). The history of evolutionary biology since that

time is long and complex, but if there is a major discontinuity in it, that is the period when a

quantitative explanatory framework for understanding how the frequency of genotypes changes in

population was developed in the form of population genetics in the first half of the 20th century

(Fisher 1930; Haldane 1932), a framework that incorporated the Mendelian principles of inheritance

and is still the foundational basis for all work in the field. Mendel’s work was published in Darwin’s

time (Mendel 1866), however, it was not widely noticed and the proper integration of evolutionary

theory with genetics did not happen until the principles of the latter were rediscovered at the turn

of the century (de Vries 1900; Correns 1900) and the discipline was further developed. As a result,

while the modern theory of evolution recognizes multiple evolutionary forces - mutation, genetic

drift, migration and natural selection - only the last one featured prominently in Darwin’s writings

and to this day, due to the cultural importance of Darwin and the attention his work has deservedly

received, thinking about evolution has been excessively skewed towards viewing all of its outcomes

as the result of adaptation (Gould & Lewontin 1979; Brenner 1998; Lynch 2007b; Lynch 2007c). The

“hardening” of the Modern Synthesis (Huxley 1942) in the mid-20th century also greatly contributed

to this state of affairs, which later developments in the opposite direction have only partially altered.

How we think about evolution greatly affects how we think about genome biology, and vice

versa. Advances in our knowledge of genome function have been critical for the development of
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evolutionary theory. Throughout the 20th century, new discoveries of the molecular features of

genomes, the biology of RNA and the mechanisms for regulating gene expression have gone hand

in hand with placing them in an evolutionary context, with improved understanding in both areas

being the end result. The concept of the “gene” as an individual unit of inheritance was developed

around the turn of the 20th century (de Vries 1989; Johannsen 1909), and around the same time it

was understood that genetic material is physically organized into chromosomes (Sutton 1902; Sutton

1903; Boveri 1904; Morgan et al. 1915). However, even though DNA was discovered long before

that (Miescher 1871), it was not until the 1940s that it was confirmed that it is the carrier of genetic

information (Avery et al. 1944; Hershey & Chase 1952). In retrospect it is remarkable that much of

the mathematical foundations of population genetics, still standing strong today, was worked out in

the absence of understanding of the molecular biology of heredity. The subsequent discovery of the

structure of DNA (Watson & Crick 1953a; Watson & Crick 1953b), the elucidation of the genetic

code and the basic mechanisms of gene expression (Crick 1958; Crick et al. 1961; Lengyel et al.

1961; Nirenberg & Matthaei 1961; Yanofsky et al. 1964; Sarabhai et al. 1964; Nirenberg & Leder

1964; Marcker & Sanger et al. 1964; Holley et al. 1965a; Holley et al. 1965; Weigert & Garen 1965;

Brenner et al. 1965; Crick 1966; Khorana et al. 1966) and the formulation of the Central Dogma

of molecular biology (that genetic information cannot flow back from protein to nucleic acids or

between proteins; Crick 1970) filled that gap in knowledge, and facilitated the development of the

neutral and nearly neutral theories of molecular evolution in the late 1960s and the 1970s (Kimura

1968; King & Jukes 1969; Ohta 1973; discussed in more detail below).

The main question in the study of genome biology since then has been how the expression of genes

is regulated, as differential gene regulation is the process that is ultimately behind the establishment

of different cell states during development and in response to environmental stimuli. Much of our

progress has consisted of a growing appreciation of the complexity of the roles that noncoding DNA

(ncDNA) and noncoding RNAs (ncRNAs) play in these processes. The foundations of the study

of gene regulation were laid by studies of the bacterial lac operon (Jacob & Monod 1961) and the

λ phage (Ptashne 1967), but it took quite a bit longer for a rudimentary understanding of it in

eukaryotes to emerge. An early and important observations from studies of DNA reassociation

kinetics (C0t curves) was that the amount of repetitive DNA in multicellular organisms is much

higher in the more organizationally “complex” species than it is in the “lower” ones, explaining most

of the large variation in genome size seen between them (Britten & Kohne 1968). As a consequence,

an early theory of gene regulation featured a prominent role for repetitive DNA in the regulation of

gene expression in multicellular organisms (Britten & Davidson 1968; Britten & Davidson 1969).
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However, repetitive DNA was later understood to be the product of transposable element in-

sertions, which were discovered through genetic means years earlier (McClintock 1950; McClintock

1953) and even suggested to control genes (McClintock 1951; McClintock 1956). When placed in

the context of the nearly neutral theory of molecular evolution, developed in the 1970s, it eventually

came to be seen as parasitic “junk” (Orgel & Crick 1980; Doolittle & Sapienza 1980), the result of

transposable elements reproducing themselves within the genome with the sole purposes of making

more copies of themselves.

Around the same time, the first pseudogenes were identified (Jacq et al. 1997; Hardison et al.

1979; Fritsch et al. 1980; Vanin et al. 1980; Nishioka et al. 1980; Lauer et al. 1980). Pseudogenes

are portions of the genome that are clearly derived from inactivated copies of formerly functional

protein coding genes. They have also been long understood to constitute “junk” DNA in their

majority.

In the early 1980s, the first transcriptional enhancers were found (Banerji et al. 1981; Banerji et

al. 1983; Gillies et al. 1983), sequence elements capable of stimulating the expression of genes from

a long distance and irrespective of their orientation relative to genes and their promoters. Later,

insulator (elements blocking the action of an enhancer when situated between it and its target

promoter) and other regulatory elements were also identified, primarily from studies of β-globin

and a limited number of other loci (Emerson et al. 1985; Forrester et al. 1986; Grosveld et al.

1987; Udvardy et al. 1985; Chung et al. 1993). Eventually it became clear that gene expression

in multicellular eukaryotes is in large part controlled not just by transcription factor binding sites

in their promoter proximal region but also by regulatory elements residing away from genes in

noncoding space that can act at large distance (with extreme examples of enhancers residing nearly

1Mb away from their target known; Lettice et al. 2003).

While histone proteins have been known since the late 19th century, it was in the early 1970s that

it was found that unlike prokaryotes eukaryotic chromatin is organized into nucleosomes (Kornberg

1974; Olins & Olins 1974). It was later shown that such a chromatin organization has a repressive

effect on transcription (Grunstein 1990), a consequence of which is that overcoming this barrier is

key component of both the regulation and execution of gene expression. That histones carry various

chemical modification, in particular in their N-terminal tails, was also known for a long time, but

only in the mid- and late 1990s that was it understood that these marks are deposited and removed in

a dynamic and regulated manner (Brownell et al. 1996). We now know that chromatin modifications

and chromatin remodeling play key role in all aspects of chromatin biology, as histone modifications

constitute a form of code that is specifically written and read by various proteins and is critical
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for the orderly execution of biochemical processes operating on chromatin (Jenuwein & Allis 2001;

Kouzarides 2007; Li et al. 2007). They, together with the methylation of position 5 of cytosine

residues in DNA (Johnson & Coghill 1925; Hotchkiss 1948) also play a vital role in the epigenetic

specification of cell states (Holliday & Pugh 1975; Riggs 1975; Goldberg et al. 2007; Bernstein et

al. 2007).

In the late 1970s and early 1980s it was realized that genes in eukaryotes are interrupted by

introns (Berget et al. 1977; Chow et al. 1977), which are spliced out before the mature mRNA is

translated, with the process sometimes generating alternative splicing products (King & Piatigorsky

1983; Schwarzbauer et al. 1983). The evolutionary origins of splicing have been much debated and

the outcome of their study has had major implications for how we understand the evolution of life

(see discussion below).

In the 1980s, another interesting phenomenon was observed, the editing of the sequence of RNAs

through the modification, or even the insertion or replacement, of individual bases, initially in the

mitochondria of the kinetoplastid protozoans (Benne et al. 1986; Feagin et al. 1987; Feagin et al.

1988; Shaw et al. 1988) but later also in the nuclear genomes of animals and many other eukaryotes.

Since the 1970s, an ever expanding universe of ncRNA species carrying out a wide variety of

cellular functions has been identified, in eukaryotes and in other organisms. These include among

others:

1. snRNAs, or U-RNAs, small nuclear RNAs that are core components of the spliceosomal

machinery necessary for excising introns during splicing.

2. snoRNAs, small nucleolar RNAs that guide the chemical modifications of other RNAs, such

as the ribosomal and transport RNAs.

3. The SRP RNA (Walter & Blobel 1982), component of the signal recognition particle used to

target proteins to the endoplasmic reticulum.

4. Antisense transcripts, first discovered in bacteria where antisense transcription can be used

to inhibit translation by base pairing with the sense transcript (Mizuno et al. 1984).

5. the phenomenon of RNA interference (Fire et al. 1998), induced by double stranded RNA,

and by siRNAs (small interfering RNAs; Hamilton & Baulcombe 1999; Elbashir et al. 2001)),

in which the expression of genes is inhibited post-transcriptionally through the degradation of

mRNAs complementary to these small RNAs.



572

6. miRNAs, 21-23nt small RNAs (Lee et al. 1983; Reinhart et al. 2000; Pasquinelli et al. 2000)

that can inhibit the translation of genes and/or target them for cleavage, in particular through

binding to their 3’UTRs.

7. lncRNAs/lincRNAs, long (intergenic) noncoding RNAs that do not code for proteins but

function as RNAs, such as the Xist and Tsix (Borsani et al. 1991; Brown et al. 1991;

Lee et al. 1999), and roX (Meller et al. 1997) RNAs, involved in the establishment of

dosage compensation of sex chromosomes in mammals and Drosophila, respectively, as well as

numerous others (Ji et al. 2003; Wang et al. 2002; DeChiara & Brosius 1987).

8. The telomerase RNA, a core component of the machinery responsible for the maintenance

of chromosome ends in eukaryotes (Greider & Blackburn 1987; Greider & Blackburn 1989;

Shippen-Lentz & Blackburn 1990).

9. 7SK RNA (Reddy et al. 1984), which regulates the activity of the transcription elongation

factor P-TEFb (Diribarne G, Bensaude 2009), Y RNAs (Lerner et al. 1981; Christov et al.

2006), Vault RNAs (Kedersha & Rome 1986), and numerous others, the precise functions of

which are less clear.

Remarkably, all of these regulatory mechanisms and ncRNAs were discovered in the absence of

complete genome sequences, in the course of biochemical and cell and molecular biology studies.

One of the very relevant to the ENCODE debate discoveries, that the genome is pervasively tran-

scribed was also made in the pregenomic era. The C0t curve methodology used to find that much

of the genomes of multicellular organisms consists of repetitive sequence, was also applied to the

transcriptome in the late 1970s. A large fraction of the genome was found to be transcribed (Hough

et al. 1975; Holland et al. 1980), but also to be present at very low copy number, significantly less

than one RNA molecule per cell.

Successive major technical advances have enabled both the generalization of these findings and

the discovery of many additional layers of complexity. These include the development of DNA

sequencing technology (Sanger et al. 1997; Maxam & Gilbert 1977), which made possible the

sequencing of the human genome (Lander et al. 2001; Venter et al. 2001; International Human

Genome Sequencing Consortium 2004) and the genomes of the main model organisms (Goffeau 1996;

C. elegans Sequencing Consortium.; Adams et al. 2000; Mouse Genome Sequencing Consortium

2002); the development of microarray technology for measuring RNA expression levels (Schena et

al. 1995; Lashkari et al. 1997) and the genomic occupancy of proteins (Iyer et al. 2001; Ren et
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al. 2000), and the more recent advent of high-throughput sequencing technologies (Shendure et al.

2005; Margulies et al. 2005; Bentley et al. 2008; McKernan et al. 2009; Harris et al. 2008; Rothberg

et al. 2011) and the myriad of applications it has found in the form of various functional genomic

*-seq assays for (Wold & Myers 2008): RNA-seq for the study of the transcriptome, at the level of

large cell populations (Mortazavi et al. 2008; Nagalakshmi et al. 2008; Pan et al. 2008; Sultan et

al. 2008; Wang et al. 2008; Wilhelm et al. 2008) and individual cells (Tang et al. 2009; Tang et al.

2010; Islam et al. 2011; Hashimshony et al. 2012; Ramsköld et al. 2012; Picelli et al. 2013; Islam

et al. 2014; Wu et al. 2014), CAGE for the mapping of the 5’ ends of capped transcripts (Kodzius

et al. 2006; Balwierz et al. 2009), GRO-seq (Core et al. 2008) for measuring the instantaneous rate

of transcription, ribosome profiling for the measuring translational activity (Ingolia et al. 2009),

ChIP-seq for the high-resolution genome-wide profiling of protein-DNA interactions (Johnson &

Mortazavi et al. 2007; Barski et al. 2007; Mikkelsen et al. 2007; Robertson et al. 2007), DNAse-seq

(Hesselberth et al. 2009; Song et al. 2011), FAIRE-seq (Gaulton et al. 2010; Song et al. 2011)

and DGF (Neph et al. 2012a; Neph et al. 2012b) for the mapping of regions of open chromatin in

the genome, BS-Seq for assessing levels of DNA methylation (Lister et al. 2008; Lister et al. 2009;

Meissner et al. 2008), ChIA-PET (Fullwood et al. 2009; Handoko et al. 2010; Li et al. 2010; Li

et al. 2012), and Hi-C (Lieberman-Aiden et al. 2009; Umbarger et al. 2011; Zhang et al. 2012;

Dixon et al. 2012) for studying the three-dimensional physical organization of genomes, as well as

numerous others.

The genomic era has delivered the, exhaustive identification of previously known functional

components of the genome as well as the discovery of a number of novel RNA species and new

phenomena in transcriptional and regulatory biology. These advances include:

1. The comprehensive cataloging of gene content. Initially, >30,000 protein coding genes were

reported in the human genome (Lander et al. 2001). This number has gone down after

subsequent refinement of annotations and has stabilized around 20,000 (Harrow et al. 2012).

2. The genome-wide identification of conserved noncoding sequences from multiple genome align-

ments,. Such sequences are strong candidates for functional regulatory elements (Hardison et

al. 1997; Hardison 2000; Siepel et al. 2005; Bejerano et al. 2004; Woolfe et al. 2004; Margulies

et al. 2003; Cooper et al. 2004). In total, while <2% of the human genome consists of protein

coding sequence, the sequence-constrained fraction of it is at least 5.5% (Lindblad-Toh et al.

2011).

3. The genome-wide identification of miRNAs using both computational and experimental meth-



574

ods (Lagos-Quintana et al. 2001; Lau et al. 2003; Grad et al. 2003; Lai et al. 2003; Lagos-

Quintana et al. 2003; Aravin et al. 2003; Houbaviy et al. 2003; Lim et al. 2003a; Lim et al.

2003b; Bartel 2004), of which several hundred are now known in vertebrate genomes.

4. The discovery of multiple additional classes of small RNAs in various organisms, with piRNAs,

24-29nt RNAs playing a crucial role in the defense of the genome against transposable element

proliferation being perhaps the most significant (Aravin et al. 2006; Girard et al. 2006; Grivna

et al. 2006; Lau et al. 2006; Ruby et al. 2006; Aravin et al. 2007a; Aravin et al. 2007b;

Batista et al. 2008; Brennecke et al. 2007; Lin 2007; Aravin et al. 2007a; Brennecke et al.

2007; Gunawardane et al. 2007; Houwing et al., 2007; Bagijn et al. 2012; Ashe et al. 2012;

Shirayama et al. 2012; Lee et al. 2012; Vazquez et al. 2004; Peragine et al. 2004).

5. The significant expansion of the list of lincRNA genes, of which several thousands are now

known in vertebrate genomes (Guttman et al. 2009; Khalil et al. 2009; Guttman et al. 2011;

Dinger et al. 2008; Mercer et al. 2008; Pauli et al. 2012), the functional role of a number

of which have been investigated in detail (Sleutels et al. 2002; Sunwoo et al. 2009; Tian et

al. 2010; Loewer et al. 2010; Gupta et al. 2010; Huarte et al. 2010; Grote et al. 2013;

Hacisuleyman et al. 2013; Sun et al. 2013; Kretz et al. 2012).

6. The identification of alternative splicing events in the genome, initially through the sequencing

of expressed sequence tags (EST; Adams et al. 1991; Adams et al. 1995), and later using

microarrays and RNA-seq, which has shown that the vast majority of mammalian genes can

be transcribed into more than one isoform.

7. The growing appreciation of the molecular and functional complexity of the transcriptome

driven by the discoveries of numerous novel RNA species and transcriptional phenomena (Gin-

geras 2009), a functional role for some of which has been shown:

7.1 The discovery of eRNAs (enhancer RNAs). These RNAs are transcribed bidirectionally

from active enhancers and there is evidence that their transcription is necessary for the

positive regulation of the genes targeted by the enhancer from which they originate (Koch

et al. 2008; Kim et al. 2010; Ørom et al. 2010; Melo et al. 2013; Li et al. 2013; Lam et

al. 2013; Hah et al. 2013; Mousavi et al. 2013).

7.2 The discovery of circular RNAs. Numerous examples of circularized RNA molecules,

arising from the nonlinear splicing of introns, have been reported over the decades (Hsu

& Coca-Prados 1979; Cocquerelle et al. 1992; Capel et al. 1993; Cocquerelle et al. 1993;
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Surono et al. 1999; Zaphiropoulos 1996; Zaphiropoulos 1997; Li & Lytton 1999; Dixon

et al. 2005; Burd et al. 2010). However, it was the advent of RNA-seq that allowed

for the identification of a large number of them on a genome-wide scale (Salzman et al.

2012; Salzman et al. 2013; Memczak et al. 2013; Hansen et al. 2013; Wang et al. 2014).

Functional characterization of individual cases has suggested that they play a regulatory

role by acting as miRNA “sponges” sequestering miRNAs and making them unavailable

for repression of their target genes.

7.3 The ceRNA hypothesis, which proposes that mRNAs, and in particular transcribed

pseudogenes and lincRNAs compete for the binding of miRNAs, and therefore ceRNA

molecules can be used to modulate the efficiency of miRNA-mediated repression (Salmena

et al. 2011; Karreth & Pandolfi 2013; Ala et al. 2013; Karreth et al. 2011; Tay et al.

2014a; Tay et al. 2014b).

7.4 Widespread antisense transcription, in particular in the form of cis-NATs (Natural An-

tisense Transcripts), which have been proposed to play a role in the regulation of the

expression of their cognate genes (Vanhée-Brossollet & Vaquero C 1998; Lehner et al.

2002; Wang et al. 2005; Yelin et al. 2003; Cheng et al. 2005; Katayama et al. 2005;

Korneev & O’Shea 2005; Kiyosawa et al. 2003).

7.5 The pervasively transcribed genome. As mentioned already, it had been known that the

genome is pervasively transcribed at a low level for decades, but microarray-based studies

in the early 2000s in mammals (Cheng et al. 2005; Manak et al. 2006; Johnson et al.

2005; Kapranov et al. 2002; Kapranov et al. 2005; Clark et al. 2011; Bertone et al. 2004;

Kampa et al. 2004; Kapranov et al. 2007; Carninci et al. 2005), fly (Stolc et al. 2004),

rice (Li et al. 2006), and yeast (David et al. 2006; Dutrow et al. 2008) presented further

direct evidence for it and attracted a lot of attention to this phenomenon (Van Bakel

2010; Clark et al. 2011).

7.6 Promoters are bidirectionally transcribed. GRO-seq studies and the deep sequencing of

the small RNA fraction of the transcriptome have shown that promoters are bidirection-

ally transcribed (Core et al. 2008; Seila et al. 2008; Xu et al. 2009), although generally

only the sense transcript produces a stable mRNA (Almada et al. 2013).

7.7 CUTs (Cryptic Unstable Transcripts), SUTs (Stable Uncharacterized Transcripts) and

PROMPTS (PROMoter associated Pervasive Transcripts), RNA species originating from

intergenic and intragenic regions, which are normally present at low levels (higher for
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SUTs) and become robustly detectable upon inactivation of RNA degradation pathways

such as the exosome (Wyers 2005; Thiebaut 2006; Thompson & Parker 2006; Davis &

Ares 2006; Neil et al. 2009; Preker et al. 2008).

7.8 RNA species of unknown functional significance associated with transcription starts sites

(TSSs) and transcription terminations sites (TTSs), such as TSS-RNAs (20-90bp bidi-

rectionally transcribed, TSS-associated RNAs; Seila et al. 2008), tiRNAs (∼18bp RNAs

bidirectionally associated with transcription initiation sites; Taft et al. 2009a; Taft et

al. 2009b; Taft et al. 2010), Promoter-Associated Short RNAs (PASRs) and Promoter-

Associated Long RNAs (PALRs) (Kapranov et al. 2007; Fejes-Toth et al. 2009), and

Termination Associated Short RNAs (TASRs (Kapranov et al. 2007).

It is in the context of these developments that the ENCODE Project was set up in the early

2000s (The ENCODE Project Consortium 2004) and later carried out, as a follow up to the Human

Genome Project, and with the goal of comprehensively identifying the functional elements in the

human genome. The first, pilot phase of the ENCODE Project concluded in 2007 (The ENCODE

Project Consortium 2007); it focused on assaying a selected 1% of the genome using high-density

tiling arrays. It demonstrated the utility of the large-scale functional genomic characterization of

genomes, but also generated some controversy as it delivered a message of pervasive transcription

and biochemical activity throughout the genome, which was portrayed as debunking of the con-

cept of junk DNA (Weiss 2007; Sample 2007). The pilot phase of ENCODE was followed by a

genome-wide production phase, which was also accompanied by companion modENCODE projects

in fly and worm (Celniker et al. 2009) and later by a mouse ENCODE project (Mouse ENCODE

Consortium 2012). The beginning of the second phase of ENCODE coincided with the adoption of

high-throughput sequencing, which allowed a truly genome-wide coverage of the genome, at much

higher resolution and with less noise than microarrays did, significantly increasing the confidence

in the signals observed. The publication of the results of these projects (Gerstein et al. 2010;

modENCODE Consortium 2010; Kharchenko et al. 2011; Négre et al. 2011; ENCODE Project

Consortium 2011; ENCODE Project Consortium 2012; Djebali & Davis et al. 2012; Gerstein et

al. 2012; Thurman et al. 2013; Neph et al. 2012; Wang et al. 2012) also emphasized the extent

to which the genome is biochemically active and was strongly represented as a proof against the

existence of large amounts of nonfunctional DNA in the human genome. This has resulted in even

more heated arguments than the pilot phase generated, a debate which has at times moved beyond

attacking the conclusions of the project and into doubting the basic premises of functional genomic
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studies. A major factor behind this course of events has been the tendency to view ENCODE data

primarily through the prism of a panadaptationist understanding of genome evolution, while ignor-

ing alternative theories, in which nonadaptive evolutionary forces have been a main driver of the

evolution of genome organization, and which have enjoyed wide acceptance within the molecular

evolution community for some time. Below I overview these competing perspectives on the subject

before interpreting ENCODE results in what is in my opinion the proper context.

16.2 The adaptive view of the evolution of genome

complexity

There is a long tradition in biology of providing adaptive explanations for most observations. This

goes back to the fact that natural selection was the main theme of Darwin’s foundational work

on the subject (Darwin 1859) but is also because panadaptationist views have dominated popular

presentations of evolution (Dawkins 1986; Dawkins 1996), and because of the explanatory utility of

adaptation (Mayr 1983). It is in the spirit of this tradition that the growing appreciation of the

complexity of metazoan transcriptional regulation and RNA biology has been interpreted, and in

turn the results of the ENCODE project have been widely viewed through the lens of an ultra-

adaptationist explanatory framework (for example, Mattick & Dinger 2013). Specific propositions

that are often argued for include the following:

16.2.1 The absence of sequence conservation does not mean that

nonconserved sequences are not functional

A traditionally widely used criterion for assessing the functional significance of genomic segments is

the phylogenetic conservation of their sequence. Strong sequence conservation is the result of the

action of purifying selection, which means such sequences are subject to significant evolutionarily

constraint and highly likely to be functional. However, while conservation is very strong evidence for

functionality, the absence of conservation does not necessarily imply lack of function, and numerous

examples of both conserved and nonconserved functionalities conferred by rapidly turning over at

the sequence level functional elements are known (Smith et al. 2004; Meader et al. 2010; Ponting

& Hardison 2011; see also discussion below). The existence of nonconserved functional elements

is often extrapolated to a proposition that most or even the whole genome has a function in the

absence of sequence conservation (Pang et al. 2006; Pheasant & Mattick 2007; Oldmeadow et al.
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2010; Mattick & Dinger 2013). It is also sometimes argued that the conservation criterion is based on

the circular reasoning of assuming that repetitive elements evolve neutrally and then using their rate

of evolution as a reference to identify the constrained portion of the genome (Pheasant & Mattick

2007; Mattick & Dinger 2013).

16.2.2 Biochemical activity implies functionality

Functional DNA elements exhibit biochemical activity in the form of transcription and occupancy by

transcription factors, and other regulatory or architectural chromatin-associated and RNA-binding

proteins. thus detection of such biochemical activity does suggests possible functionality for a given

region of the genome. However, this is often taken further to argue that the detection of biochemical

activity always means a given region of the genome is functional, and such interpretations are a

primary reason why the results of the ENCODE Project and of earlier efforts reporting pervasive

transcription in mammalian genomes have been perceived as debunking the concept of “junk” DNA.

16.2.3 Repetitive DNA of transposable-element origin is functional

Transposons are traditionally understood to be “selfish” DNA sequences existing solely in order to

propagate themselves, and thus an archetypal example of “junk DNA” (Orgel & Crick 1980; Doolittle

& Sapienza 1980). However, transposons have been a rich source of material for evolutionary inno-

vation and have been exapted into functional roles on numerous occasions, at the level of individual

transposable element insertions (Norris et al. 1995; Vansant & Reynolds 1999; Rebollo et al. 2012;

Chen et al. 2009; Krull et al. 2007; Lynch et al. 2011; Medstrand et al. 2001; Naito et al. 2009;

Peaston et al. 2004; Schmidt et al. 2012; Santangelo et al. 2007; Bejerano et al. 2006; Faulkner

et al. 2009; Kunarso et al. 2010) and even globally (Singh et al. 1985; Espinoza et al. 2004; Allen

et al. 2004; Fornace & Mitchell 1986; Li et al. 1999; Mariner et al. 2008; Liu et al. 1995). These

and other observations (for example, the somatic retrotransposition observed in the human brain

and in cancer cells; Peaston et al. 2004; Muotri et al. 2005; Coufal et al. 2009; Baillie et al. 2011;

Lee et al. 2012; Evrony et al. 2012) have been extrapolated into interpreting transposable elements

as a vital functional regulatory component of the human genome (Makalowski 2003; Shapiro 1999;

Shapiro 2005; Shapiro JA & von Sternberg).



579

16.2.4 Pseudogenes have functions

Pseudogenes are another classic example of “junk DNA”, for which examples of possible exaptation

have accumulated in recent years. From such observations a function for the majority or even all

of them is generalized (Balakirev & Ayala 2003; Pink et al. 2011; Muro et al. 2011; Li et al.

2013). There are several known mechanisms though which a pseudogene could play a functional

role. First, antisense pseudogene transcripts could regulate the expression of sense transcripts from

the parental gene (McCarrey & Riggs 1986), some possible examples of which have been reported

(Korneev et al. 1999; Hawkins & Morris 2010). Second, pseudogene-derived small RNAs can have

a regulatory effect on the parent genes (Tam et al. 2008; Watanabe 2008). A role for pseudogenes

in regulating mRNA stability has also been proposed (Hirotsune et al. 2003; Piehler et al. 2008).

Finally, pseudogene-derived ceRNAs can act as miRNA sponges (Tay et al. 2014b), affecting the

expression of the parent gene.

16.2.5 Functionally important alternative splicing is widespread

Numerous examples of alternative splicing generating different protein products with distinct func-

tions have accumulated since the discovery of splicing (for example, Lynch & Maniatis 1996; Korn-

blihtt et al. 1996; Graveley 2002; Liao et al. 2005; Izquierdo 2005; Venables 2012), and the number

of human genes for which multiple splice products have been detected has been constantly increas-

ing as technology moved from EST sequencing to splicing microarrays and eventually to RNA-seq

(Mironov et al. 1999; Croft et al. 2000; Xu et al. 2002; Johnson et al. 2003; Kwan et al. 2008;

Wang et al. 2008; Harrow et al. 2012). It now includes the great majority of multiexonic genes in

the human genome. Much of this splicing has been reported to be tissue-specific (Pan et al. 2004;

Xing & Lee 2005; Wang et al. 2008), and these observations have been interpreted as evidence for

the widespread prevalence of adaptively important functional alternative splicing in complex mul-

ticellular animals (Kim et al. 2007; Romero et al. 2007; Stamm et al. 2005). The vast universe

of alternative splicing products could play a crucial role in expanding the protein coding repertoire

of the genome and are proposed to explain the perceived contradiction between the high level of

organismal complexity of humans and the fact that we do not have a larger number of genes than

other species. Early theories for the evolution of splicing also viewed it from an adaptive angle, by

suggesting that genes existed in pieces containing separate functional domains very early in evolu-

tion and splicing allows for the shuffling of these domains and the generation of increased protein

diversity, which was selectively beneficial (Gilbert et al. 1997; de Souza et al. 1996; Kriventseva
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2003). While these theories are now largely rejected (see a more detailed discussion of this subject in

the next section), the idea that the presence of introns and splicing is a major causal factor driving

increased organismal complexity (Mattick 1994) is still very much alive (Chen et al. 2014).

Additional functions of alternative splicing products have also been proposed. For examples, it

is commonly observed that a significant fraction of alternative splicing products contain truncated

ORFs and are expected to be subject to nonsense mediated decay (NMD). It has been suggested that

the regulated production of such isoforms may serve as an additional mechanism for the regulation

of protein expression (Lewis et al. 2003; McGlincy & Smith 2008; Cuccurese et al. 2008).

16.2.6 The central importance of ncRNA and of “exotic” transcripts for

the emergence of organismal complexity

Examples of previously unknown functional role of ncRNAs and the complexity of metazoan RNA

biology have repeatedly been interpreted as providing an explanation for the high sophistication

of organismal organization in complex multicellular animals, and even for the evolution of human

intelligence (Mattick & Gagen 2001; Frith et al. 2005; Mattick 2004; Amaral et al. 2008; Mattick et

al. 2010; Mattick 2007; Taft et al. 2007; Mattick 2009; Mattick 2011; Liu et al. 2013; Slack 2006).

The latter is often based on examples of the expression and activity of such ncRNA species in brain

tissue (Mercer et al. 2008; Mehler & Mattick 2006).

These and other proposals of similar nature paint a picture of the genome and organismal evo-

lution in which practically every detail of genome and organismal biology is the product of selective

evolutionary forces and is of major adaptive importance for organismal fitness. Within this frame-

work, a high level of complexity of transcriptional and RNA biology is needed in order for organismal

complexity to emerge, which in turn is understood to be vastly higher in humans than in other ani-

mals, with a correspondingly intricate, largely RNA-mediated regulatory mechanisms.

16.3 The nonadaptive view of genome evolution

In contrast to the understanding of the human genome as lacking “junk” DNA and consisting almost

entirely of functional sequence, a diverse set of empirical observations and theoretical considerations,

starting in the middle of the 20th century, and significantly enhanced more recently with the advent

of comparative genomics, strongly suggest that a large portion of it is indeed junk. The key concept

here is the idea of the selection-drift barrier. A foundational result in population genetics states that
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the power of natural selection to influence allele frequencies is constrained by the magnitude of the

selective coefficient s of a given mutation and the effective population size Ne. Specifically, when:

|s| <
1

4Ne
(16.1)

in a diploid sexually reproducing species, mutations evolve effectively neutrally and are “invisible”

to natural selection. This has the important consequences that first, mutations with negative effects

on fitness will not be weeded out by selection, and second, beneficial mutations are not guaranteed

fixation, provided the magnitude of the selective disadvantage they confer is sufficiently low. The

value of s for which this is true is increasingly higher the lower the effective population size Ne is.

The general nature of this relationship has been known since early on in the development of

population genetics (Wright 1931) but never featured prominently in the Modern Synthesis, and

especially in the “hardened” panselectionist version of it that eventually became widely popular.

The development of the neutral and nearly neutral theories of molecular evolution in the 1960s

and 1970s (Kimura 1968; Kimura 1983; King & Jukes, 1983; Ohta 1973) posed a challenge to

panadaptationism, and combined with early data on knowable at the time, even if imprecisely,

parameters such as mutation rates and genome sizes, to the proposal that large portions of the

human genome are nonfunctional, “junk DNA” (Ohno 1972). An enormous variety in genome sizes,

spanning orders of magnitude, was observed between organisms with similar level of organismal

complexity and even between closely related species (Mirsky & Ris 1951; Rothfels et al. 1966;

Ohno & Atkin 1966), a discrepancy eventually termed the “C-value paradox” (Thomas 1971). It

was best explained by proposing that only a small fraction of the genome consists of genes and

other functional sequences. In mammals, it was estimated that the rate of deleterious mutations

is ∼ 10−5 per locus, and that the size of the human genome is ∼ 3 × 109 base pairs. Given these

numbers the maximum number of human genes was evaluated to be ∼ 30, 000 and the fraction

of the human genome occupied by genes and their regulatory elements to be ∼6% (Ohno 1972).

Notably, these numbers are remarkably close to what was found when the whole human and mouse

genomes were sequenced, annotated and compared (Lander et al. 2001; Venter et al. 2001; Mouse

Genome Sequencing Consortium 2002; Harrow et al. 2012), and by more recent efforts to identify

the sequence-constrained elements in a much wider collection of sequenced mammalian genomes

(Lindblad-Toh et al. 2011). Also, contemporary studies on the mutation rate in the human genome

using more sophisticated measurement tools have largely corroborated the old estimates for the

values of the key population genetic parameters of our lineage (Lynch 2010b; Keightley 2012).
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The concept of “junk” DNA was further strengthened by the improved understanding of the

nature of selfish transposable DNA elements (Doolittle & Sapienza 1980; Orgel & Crick 1980),

introns and pseudogenes and, eventually, by the fraction of the fully sequenced genomes they occupy.

A total of at minimum 45% of the human genome consists of transposable elements (mostly decayed

copies), and close to half of it is introns (according to the most comprehensive currently available

annotation, GENCODE, Harrow et al. 2012; note that introns, of course, contain many transposons

so these are overlapping sets).

As genome sequencing costs went down with continuous improvements in technology and an ever

increasing number of sequenced genomes became available, it has in recent years become possible to

place our knowledge about the genomes of humans and the few key model organisms in the context

of a much wider phylogenetic sampling. This has enabled the comprehensive assessment of the

driving forces of genome evolution across the tree of life. A pluralistic view of evolution, in which

the nonadaptive evolutionary forces play a major role, has emerged from this research program

(Lynch 2007c; Koonin 2011). Nonadaptive explanations for the evolution of a large number features

of genomic organization and gene expression regulation that are fundamental to eukaryotic biology

have been proposed based on the integrative analysis of the selective and mutational pressures

influencing their evolution and the population genetic environments of different lineages (Lynch

2002; Lynch & Conery 2003; Lynch 2005; Lynch 2006a; Lynch 2006b; Lynch 2007a; Lynch 2007b;

Lynch 2007c; Koonin 2011). The following are most relevant to the debate about the evolutionary

forces that have shaped mammalian genomes.

16.3.1 Transposable element content

Transposable elements have had a major influence over the evolution of eukaryotic genomes. Their

role has sometimes been “constructive”, in cases when individual transposable element insertions

have been later exapted into novel regulatory and other functional elements, of which a number of

examples have been documented in various species (Rebollo et al. 2012; Chen et al. 2009; Krull et

al. 2007; Lynch et al. 2011; Medstrand et al. 2001; Naito et al. 2009; Peaston et al. 2004; Schmidt

et al. 2012; Santangelo et al. 2007; Bejerano et al. 2006; Kunarso et al. 2010; and many others).

Global roles of transposable elements in cellular processes have also been described, for example the

upregulation of B2 SINE repeats in mouse and of Alu elements in humans upon cellular stress and

their role in the subsequent global repression of transcription (Singh et al. 1985; Espinoza et al.

2004; Allen et al. 2004; Fornace & Mitchell 1986; Li et al. 1999; Mariner et al. 2008; Liu et al.
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1995). Nevertheless, the overall effects of transposable elements on organismal fitness are negative,

which is evident by the existence of vitally important, dedicated to their silencing and the prevention

of their expansion systems, such as piRNAs (Aravin et al. 2006; Aravin et al. 2007a; Aravin et al.

2007b; Guzzardo et al. 2013). The detrimental effects of actively transposing repetitive elements are

obvious, as they can insert into and disrupt the function of genes, but even decayed copies confer a

slight selective disadvantage as they increase the size of the mutational target in the genome (Lynch

2007c). The same mechanisms that lead to the exaptation of transposons into novel regulatory

elements can also lead to the misregulation of the expression of important genes.

From the point of view that all of the content of genomes is adaptive, it would therefore be

expected that either genomes should contain no transposons (as they would be weeded out by

natural selection) or that all transposon insertions would have functional roles. However, genomes

display a wide variation in their transposable element content, which is not straightforward to explain

under that model. As a rule, very few transposable elements are found in prokaryote genomes. In

contrast, on average a much larger fraction of eukaryote genomes is occupied by transposons, and a

clear trend is observed from unicellular to large multicellular eukaryotes, with transposable elements

comprising a small portion of the genomes of the former (and in some rare cases being completely

absent; Gardner et al. 2002) and a significant part of the genomes of the latter, sometimes even the

majority. The maize genome, for example, consists of 85% transposons (Schnable et al. 2009), and

the extremely large genomes in the tens and hundreds of Gbs range, which have until very recently

been almost impossible to completely sequence, likely contain even more transposable elements

(for example, Nystedt et al. 2013). These variations in transposable element content are readily

explainable by taking into account the population genetic environment of different lineages. The

long-term effective population size Ne is typically ≥109 for prokaryotes, ∼107–108 for most single-

celled eukaryotes, in the neighborhood of 106 for small invertebrates and annual plants, and in

the 104–105 range for large multicellular organisms such as mammals and trees (Lynch 2006b;

Lynch 2007c). Across the tree of life, an inverse correlation is observed between the abundance of

transposons and Ne, which makes sense considering that the selective coefficient for each individual

insertion is negative but small in absolute value, thus they are visible to selection only in lineages

with large Ne, in which natural selection is highly efficient, such as prokaryotes, while they are free

to proliferate in lineages with a low Ne, such as humans and other mammals (Lynch 2007c).
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16.3.2 The number and length of introns

The presence of introns is one of the most remarkable features of eukaryotic gene expression but

their existence also presents us with the puzzle of why eukaryotic genes have them in the first place.

The presence of introns poses numerous challenges to the proper expression of genes as they have

to be properly spliced out, which, as is the case with all biochemical processes, cannot be relied on

to occur with absolute efficiency, and in addition, depends on the presence of additional functional

sequence elements to direct it. These elements can be and often are a subject to mutations that

disrupt proper splicing with detrimental effects to fitness, as demonstrated by the large number

of human genetic diseases that are due to mutations affecting splicing (Cooper & Mattox 1997;

Douglas & Wood 2011; Lynch 2006b). In this context, it is not clear why introns exist at all, as gene

expression would be carried out with significantly less trouble and more faithfully without them.

A commonly cited reason for this is the expansion of the protein repertoire afforded by alternative

splicing, however, while there certainly is a lot of complexity in the splicing products generated in

mammals, it is far from clear how much of it represents actual functionally important alternative

splicing events (to be discussed in more detail later). This explanation also fails to account for

the observed differences in the distribution of the number of introns and their length across the

tree of life. Spliceosomal introns are restricted to eukaryotes and absent from prokaryotes. The

latter instead contain self-splicing introns but those are few in number in each prokaryotic genome,

and even they seem to be absent from archaea with a few exceptions that might be the result

of horizontal gene transfer (Dai & Zimmerly 2003). Within eukaryotes, there are extremely large

differences in intron content, from the nearly intron-free genomes of single-celled organisms such as

Encephalitozoon cuniculi (Katinka et al. 2001) to the long and numerous introns of mammals and

many green plants. A popular in the past explanation for the existence of introns was that they

appeared very early in the evolution of life and that genes were pieced together from individual exons,

each of which might have carried a separate protein domain or some other functional unit. This has

been known as the “introns-early” hypothesis (Gilbert 1978; Gilbert 1987; Doolittle 1978; Darnell

1978; Blake 1979; Gilbert et al. 1997; de Souza et al. 1996) and is somewhat corroborated by the

observation that protein domains are indeed sometimes encoded by separate exons (Roy et al. 1999;

Fedorov et al. 2003) but this is far from true for all exons, and it is, once again, difficult to reconcile

with the complete absence of spliceosomal introns in prokaryotes. A more likely and consistent

with data scenario for their evolution has finally emerged in recent years (Koonin 2006; Martin &

Koonin 2006). Numerous studies have shown that the last common ancestor of eukaryotes (LECA)



585

was very intron-rich as many intron positions are shared between deeply diverging branches of the

eukaryote tree such as plants and animals (Figure 16.1), suggesting a common origin. Subsequent

intron gains have been largely limited to individual lineages while many other clades have primarily

experienced intron losses (Carmel et al. 2007a; Carmel et al. 2007b; Collins & Penny 2005; Csuros

et al. 2011; Fedorov et al. 2002; Rogozin et al. 2003; Rogozin et al. 2005; Roy 2006; Roy &

Gilbert 2005). In the same time, it has long been known that structural similarities exist between

the self-splicing Group II introns found in prokaryotes and sometimes in eukaryotic organelles (Cech

1986; Lambowitz & Zimmerly 2004) one one side, and spliceosomal RNAs on the other, strongly

suggesting that the current spliceosomal splicing system of eukaryotic evolved from ancestrally self-

splicing introns, which eventually lost the ability to self-splice leading to the evolution of mechanisms

to ensure their proper splicing in trans. The intron-rich nature of the LECA might have been due

to a wave of Group II intron insertions associated with the ancient endosymbiosis event between

an archaeal or archaea-like prokaryote with the α-proteobacterial ancestor of mitochondria (Koonin

2006; Martin & Koonin 2006).

Whatever the mechanisms of their initial establishment in eukaryotes, the subsequent evolution

and current distribution of introns within them, and their minimal presence in prokaryotes are well

explained by the interplay between mutations, selection and the population genetic environment of

different lineages (Lynch 2002; Lynch 2006b; Lynch 2007c). The negative effect on fitness of introns

is dependent on the number of base pairs n that are critical for their proper splicing and on the

mutation rate µ, which accounts for the probability of their inactivation (Lynch 2002). This implies

that introns are only going to be “visible” to and removed by natural selection when 1/n < Neµ

(Lynch 2006b). Organisms with low values of Ne often have elevated mutation rates (Lynch 2010a;

Sung et al. 2012) but the values of Neµ in these lineages are still comfortably below this threshold,

while prokaryotes and some eukaryotes with enormous effective population sizes are well above it

(Lynch 2006b; Lynch 2007c).

16.3.3 Variation in genome size

.

Another parameter that varies widely across the tree of life is the total size of the genome.

Prokaryote genomes are very compact, with the largest ones known barely exceeding 10Mb (Dagan

et al. 2013; Chang et al. 2011). This is still smaller than even the smallest genomes of free-living

eukaryotes (Derelle et al. 2006), with typical genome sizes for unicellular eukaryotes in the range
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of tens of Mbs. Invertebrate genomes are on average hundreds of Mbs while vertebrate genomes

are typically a few Gb in size with extreme examples of tens or even hundreds of Gb also known

(Gregory et al. 2007). Similar extent of variation in genome size is observed in land plants.

There are several different ways in which genomes can expand. This can happen through the

expansion of transposable elements, through the proliferation and lengthening of introns, through

the expansion of other non-coding DNA, and through the duplication of genes (these are, of course,

not mutually exclusive - introns, for example, often contain numerous transposon insertions). Of

these, the duplication of genes seems to have been a relatively minor component as the number of

genes only varies over one to two orders of magnitude and the average mRNA length does not vary

much between species. Most of the variation in genome size across the tree of life is accounted for by

differences in transposon content, intron numbers and length and the amount of other non-coding

DNA, with transposons being the most significant contributor. How mutation and genetic drift

have shaped the distribution of transposons and introns in eukaryotes was discussed above but it

should be noted that expansion of other non-coding DNA is also thought to carry a slight negative

fitness cost due to the increase in the size of the mutational target it represents (Lynch 2006b;

Lynch 2007c). The increase in genome size in some eukaryote lineages can then be thought of as a

direct consequence of their low effective population size (indeed, as with transposons and introns,

a negative correlation between Ne and genome size is observed). In the absence of strong selection

acting on mutations with small selective effects, genomes are free to expand provided the balance of

mutational forces (the rate of small insertions and transposable elements insertions versus the rate

of deletions) is in that direction (Petrov 2002). It has to be noted that it is possible that the story

is more complex - eukaryotes have not been able to rid themselves of transposons through natural

selection on the level of individual transposable element insertions, but they have developed systems

for repressing their expression and proliferation (Aravin et al. 2007b), leading to a decrease in the

selective disadvantage of individual insertions, greater tolerance to their presence, and, somewhat

paradoxically, likely opening the door for their further proliferation (Fedoroff 2012).

16.3.4 The expansion in regulatory and organismal complexity

.

Gene regulation in multicellular eukaryotes is very complex on multiple levels, in contrast to

the situation in prokaryotes and the yeast species studied so far (the only unicellular eukaryotes

for which detailed understanding of gene regulation has been worked out so far). In the latter
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organisms, the expression of genes is typically controlled by short regulatory regions proximal to

the transcription start site. In marked contrast, in addition to promoters, multiple other regulatory

elements control the expression of genes in eukaryotes, many of them situated at great genomic

distance from promoters. These regulatory elements serve as binding sites for and integrate the

input of multiple transcription factors. Transcription factors in turn, form highly complex gene

regulatory networks (GRNs), especially during development (Davidson 2006; Carroll 2008). Notably,

different regulatory elements can be responsible for the expression of the same gene in different cell

types/tissues and rewiring of GRNs has been a major mechanism behind the diversification of

metazoans in the past (that being a major result of many years of evo-devo research).

This is the basic picture that has been known for some time; how our understanding of it has been

altered by genomics data will be discussed later. Here, it should be noted that a major question from

an evolutionary perspective is how this level of complexity came to be. It has often been by default

assumed that it is adaptive but solid arguments have been proposed for why this might not be the

case (Lynch 2007a; Lynch 2007b). It is indisputable that increases in regulatory complexity have led

to adaptations of organisms to their environment. However, first, it is far from clear that the same

result could not be achieved with significantly less convoluted in their workings systems, and second,

the genomic changes that lead to this complexification are not themselves adaptive (Lynch 2007a;

Lynch 2007b). There are several mechanisms through which regulatory complexity can increase.

First, as previously mentioned, transposable element insertions can lead to the generation of new

regulatory elements. Second, novel such elements can arise de novo. Third, duplication of existing

regulatory elements followed by functional divergence can lead to the evolution of new regulatory

functions. The latter is in a way similar to what happens during the evolution of paralogous genes,

one possible fate of which is described by the divergence and subfunctionalization model (Force

et al. 1999; Force et al. 2005), in which following duplication of a gene carrying out multiple

functions in the cell, each duplicate copy is free to lose some of them as long as the other retains

that functionality, leading to the system being locked in a state in which both copies are essential

(it is, of course, also possible for paralogs to become neofunctionalized, acquiring new functionalities

not present in the ancestral gene). Something similar might be happening with regulatory elements:

following duplication of an initial enhancer responsible for the expression of a gene in multiple tissues,

the new copies diverge or acquire new functions, by losing and/or accumulating new transcription

factor binding sites, with the end result being that the expression of the gene is driven by different

enhancers in different cell types, or that the gene is expressed in cell types, in which it previously was

not. This might in the end be adaptive, but importantly, the series of genomic changes in all three
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types of events that lead to increase of regulatory complexity are not - they in fact have slightly

negative effects on fitness due to the increase in the size of the mutational target they represent

(Lynch 2007a) and would therefore be expected to be weeded out if the power of natural selection is

sufficiently strong. Indeed, this seems to be the case in lineages with large Ne, in which this condition

is met - prokaryotes and many unicellular eukaryotes have streamlined genomes in which genes are

regulated by promoter-proximal elements occupying limited amounts of genomic real estate, in stark

contrast to the situation in mammals.

This insight fundamentally changes the way we view the evolution of complexity in biological

systems given the close relationship between increases in regulatory complexity and corresponding

increases in organismal complexity. Traditionally, complexity is seen as adaptive, but it seems that

in fact the main reason it has evolved is that because it could, in conditions of sufficiently low

effective population sizes to allow it, through constructive neutral evolution mechanisms (Stoltzfus

1999; Stoltzfus 2012; Speijer 2011; Lukes et al. 2011; Gray et al. 2010), rather than as the direct

result of adaption. Of course, there is a positive feedback loop operating here – the population ge-

netic environment most conductive to this kind of evolution is typical for large-bodied multicellular

lineages, for basic ecological reasons having to do with their physical size and the resource require-

ments it imposes. But large-bodied multicellular lineages are also the ones that would be expected

to be most “complex” in their organization, and in turn complex body plans are often conductive

to increases in body size and lowering of the effective population size. This likely also explains why

no prokaryotes ever evolved multicellularity – their large effective population and the resulting very

strong purifying selection to which they are subjected made impossible the complexification of gene

regulation (and possibly gene content too) necessary for it. In contrast, the lowered compared to

prokaryotes Ne of unicellular eukaryotes allowed in some lineages an evolutionary ratchet of paired

increases in size and complexity and further lowering of Ne to take place, leading to the eventual

evolution of complex multicellular organisms such as humans.

From these lines of observations and thinking, a very different view of genome evolution and

complexity has emerged (Lynch 2007c; Koonin 2004; Koonin 2009; Koonin 2011), in which the

interplay between selection, mutation and drift is central, and the major role that nonadaptive

processes seem to have played in the evolution of complexity is prominently featured. Lineages with

large effective population sizes tend to be small in size and with streamlined genome and this is

the dominant mode of evolution (Wolf & Koonin 2013) as it is these lineages that comprise the

majority of the diversity of life on the planet (Figure 16.1). In contrast, complex large-bodied

organisms have large genomes, with lots of non-coding DNA, large transposable element content,
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and complex gene regulation, i.e. the have genomes existing in what has been referred to as a

“highly entropic” state (Koonin 2011), in which the informational content per unit of DNA is low.

The appearance of these traits is linked to the emergence of organismal complexity, but is not a

primary causative agent for it. In fact, it would of course, be quite remarkable that were thus proven

to be otherwise, natural selection has been unable to drive the accumulation of such embellishments

in the lineages, in which it is strongest, as is well known from firmly established population genetics

principles. Many other adaptive explanations for the expansion of ncDNA within multicellular (such

as buffering against mutations, role in chromosome structure, selection for nuclear and cell size, and

numerous others; Vinogradov 1998; Yunis & Yasmineh 1971; Zuckerkandl 1976; Zuckerkandl 1977;

Comings 1972; Cavalier-Smith 1978; Cavalier-Smith 2005; Patrushev & Minkevich 2006; Beaton

& Cavalier-Smith 1999; Gall 1981) are also usually similarly inconsistent with this reasoning. The

nonadaptive understanding of how the human genome evolved to its present state places the results of

the ENCODE project and functional genomic data in general in a dramatically different perspective.

16.4 The cultural context of the debate

As an important side note, the larger cultural context of the debate has to also be mentioned, as

the panadaptationist point of view of the human genome (as well as any claim that a radically new

theory of evolution overturning the old “dogma” has been developed, whether it is because of the

impact of epigenetics, ncRNAs, evo-devo, lateral gene transfer, mechanisms for directed adaptive

mutations of an almost Lamarckian kind (Koonin & Wolf 2009), or something else (examples in

Shapiro 2002; Shapiro 2009; Shapiro 2013) has unfortunately been coopted by various creationist

groups, especially Intelligent Design proponents (see Dembski 1998; Behe 2003; Wells 2011 for

examples). The idea that large portions of the human genome consist of nonfunctional and even

selfishly propagated and slightly detrimental to an organism’s fitness DNA does not sit well with

the belief that it was the product of a benevolent intelligent designer, both because it implies and

provides more evidence for evolution, and because of the theological implications of such a genome

if it was in fact designed in that form. For such reasons, creationists have vehemently attacked

the concept of “junk DNA” (Walkup 2000; Wieland 1994; Woodmorappe 2000; Bergman 2001;

Jerlström 2000) and thus any portrayal of all of the genome as being functional (see for example

von Sternberg 2002 and von Sternberg & Shapiro 2005; Grossmann 2013), and more recently the

public portrayal of ENCODE results, both of the pilot phase (ENCODE Project Consortium 2007)

and especially the first genome-wide production phase (ENCODE Project Consortium 2012), have
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been warmly welcomed by them (Wells 2013). This outcome serves to emphasize the importance of

the precise and clear communication to the public of the most rigorous scientific understanding of

genome function, otherwise there is a real danger that great harm may be done to science education

and the public understanding of science, areas the current state of which is already constantly decried

(for example, it has remained the case for many decades that nearly half of the population of the

United States completely rejects both the theory and the fact of evolution; Miller et al. 2006), with

the corresponding long-term consequences for society.

16.5 ENCODE results and their interpretation

It is not easy to summarize the results of the ENCODE project in a few sentences as its greatest

contribution to date is probably the large number of individual interesting stories rather than the

emergence of overarching previously unrecognized themes. Still, the sheer scale and comprehensive-

ness of the data helped shed light on a number of issues previously debated but not fully resolved

(which does not mean all of them have in fact been conclusively resolved). I list some of the most

contentious issues below and discuss the proper (and improper) interpretations of ENCODE data

with respect to them.

Before I do this, I have to point out that the controversy around ENCODE and junk DNA seems

to have arisen mainly due to the large amount of writings and commentaries about ENCODE and a

few misinterpreted passages within the main integration paper most of them have been based on, not

on the actual content of the numerous ENCODE papers. The integrative paper (ENCODE Project

Consortium 2012) states (emphasize mine):

These data enabled us to assign biochemical functions for 80% of the genome, in partic-

ular outside of the well-studied protein-coding regions

. . .

Operationally, we define a functional element as a discrete genome segment

that encodes a defined product (for example, protein or non-coding RNA) or

displays a reproducible biochemical signature (for example, protein binding,

or a specific chromatin structure)

. . .

The vast majority (80.4%) of the human genome participates in at least one biochemical

RNA– and/or chromatin-associated event in at least one cell type
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Keeping this definition in mind, there can be little controversy about the claim that >80% of the

genome has been assigned a “function”, as clearly the word “function” was used in a way different

from how biologists have traditionally understood it (Doolittle 2013). Regrettably, the definition was

separated from the 80% figure in the writings, press releases and commentaries about the project

and the story communicated to the public and the scientific community was that ENCODE has

debunked the concept of “junk DNA” (Pennisi 2012; Hurtley 2012; Kolata 2012; Jha 2012; Hall

2012a; Hall 2012b; Harmon 2012; Brown & Boytchev 2012). However, the findings of ENCODE are

in no way in contradiction with the concept of “junk DNA”, they can be comfortably interpreted

within the nonadaptive framework of understanding genome complexity described above, and in

certain ways, they actually corroborate many of its components.

16.5.1 Pervasive transcription

The reports of pervasive transcription in mammalian genomes in the early 2000s were all based on

microarray technology, which is well known to suffer from a number of issues regarding its resolution,

dynamic range and noise levels (Royce et al. 2005; see discussion in Van Bakel et al. 2010 and

Clark et al. 2011). The advent of high-throughput sequencing and the development of RNA-seq

eliminated a lot of these issues, providing base pair-resolution digital readout of transcriptional

products spanning nearly as many orders of magnitude of expression levels as the sequencing depth

of the dataset.

The pilot phase of the ENCODE project was also microarray-based, as this was the only tech-

nology available at the time, and focused on only 1% of the human genome. (ENCODE Project

Consortium 2004; ENCODE Project Consortium 2007). It delivered a message of pervasive tran-

scription, however, because of the aforementioned issues with arrays and also because only 1% of

the genome was visible to it, what the results of an in-depth sequencing-based transcriptomic study

of the whole genome would be was of great interest. The genome-wide production-phase of the

project involved both the sequencing of polyA-selected RNAs (which has traditionally been the

most widely used approach for studying the transcriptome as the presence of a polyA tail is a com-

mon feature of mRNAs and many lincRNAs), as well as the sequencing of the polyadenylated and

non-polyadenylated RNAs from various subcellular fractions (primarily the nucleus and the cytosol,

plus the chromatin, the nucleolus and the nucleoplasm in some cells) representing the less studied

portion of the transcriptome. This was done across a wide variety of cell types and it confirmed

beyond any doubt that the genome is indeed pervasively transcribed (Djebali et al. 2012; ENCODE
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Project Consortium 2012), with around 75% of the genome being covered by reproducibly detectable

transcripts (Kellis et al. 2014).

The reality and functionality of pervasive transcription has generated a lot of controversy over the

years (Struhl 2007; van Bakel et al. 2010; Mercer et al. 2011; Dinger et al. 2009; Clark et al. 2011)

but there is a clean resolution of it, one that is well supported by the more recent RNA-seq data,

and recognized going back to the time of the early C0t curve studies of the transcriptome: pervasive

transcription is indeed real but it happens infrequently, the transcripts it produces are present at

quite low levels and in all likelihood the vast majority of transcripts in this expression range have

no functional significance. In addition to great sensitivity and base-pair resolution, among the many

advantages of RNA-seq over microarrays is also its superior dynamic range (Mortazavi et al. 2008).

When the abundance of non-exonic transcript coverage in ENCODE data is examined, it turns out

that the majority of it is indeed due to transcripts present in very low amounts, often likely to

be significantly less than one transcript copy per cell, and in subcellular fractions other than total

cellular polyadenylated RNA. The fraction of the human genome covered by substantially abundant

transcripts is between 10 and 30%. This is well above the ∼ 3% of the genome occupied by exons

(according to GENCODE), but a good portion of it is due to instances of coverage in intronic regions

(which were already known to be transcribed) and of transcription extending beyond the known 3’

boundaries of annotated genes, i.e. not examples of dramatically new phenomena. In addition,

strong positive correlation between read coverage in RNA-seq data and sequence conservation is

observed (Kellis et al. 2014), further corroborating this interpretation.

It is not at all surprising that large portions of a large, “entropic” genome, such as ours, are

pervasively transcribed at some point in the life of cells (Struhl 2007). Eukaryotic genomes have to

solve the complicated task of properly identifying and regulating promoter regions and transcription

start sites within a vast genomic space. To assume that only the annotated, highly expressed,

protein coding and non-coding genes, would ever be transcribed, is equivalent to assuming that

these organisms have achieved perfection in the area of gene regulation. This goes directly against

what we know about the population genetic environment of these lineages. One of the deep insights

derived from the non-adaptive, population genetics-centric view of genome evolution and complexity

described above has been that organisms can only increase the precision and specificity of biochemical

processes to the extent that the power of natural selection allows it. The power of natural selection

is inversely correlated with the effective population size Ne and vertebrates have existed in a state

of very low Ne for hundreds of millions of years. They are therefore among the organisms for which

the least amount of “perfection” in the workings of their biochemical systems can be expected. This
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has been best studied with respect to the per-generation mutation rate, which is indeed highest

in lineages with low Ne (Lynch 2010a; Sung et al. 2012), and there have also been initial studies

on the rate of misincorporation of bases during transcription though general conclusions cannot

yet be drawn (Gout et al. 2013). Still, the theoretical expectation is that large-bodied eukaryotes

with large genomes will turn out to have the lowest transcriptional fidelity per unit of transcribed

sequence, including with respect to the specification of sites of transcription initiation. The sequence

elements specifying eukaryotic promoters (the TATA box, Inr, DPE, BRE, etc.; Lifton et al. 1978;

Buratowski et al. 1989; Deng & Roberts 2005; Lagrange et al. 1998; Burke & Kadonaga) are short

and degenerate and are far from restricted to annotated promoters. Given this fact, pervasive low-

level transcriptional initiation from cryptic promoters, and possibly even the existence of relatively

stronger ones producing transcripts with little functional consequence, is something to be expected.

This seems to be corroborated by a recent study (Venters & Pugh 2013) which used ChIP-exo-seq

(Rhee & Pugh 2011; Rhee & Pugh 2012) to generate high resolution genome-wide binding maps

of the TATA-binding protein (TBP), a core general transcription factor involved in transcription

initiation, in multiple cell lines also studied by the ENCODE project. It found tens of thousands of

TBP binding sites in non-coding regions, many of them containing the promoter-associated sequence

elements, producing RNAs, and with chromatin structure similar to that of protein coding promoters.

This was interpreted as evidence for widespread functionality of these promoters; however, the

TBP occupancy of these sites was markedly lower than that over the promoters of protein coding

genes. This explains why they are not readily identifiable with the lower resolution provided by

conventional ChIP-seq, and means that such observations are entirely consistent with the majority

of them being non-functional. Such understanding is not contradicted by the observation that the

low-abundance pervasively transcribed RNAs often exhibit cell-type specificity, as transcription is

in general repressed by the presence of nucleosomes. Some chromatin states are more conductive to

cryptic transcription than others, and chromatin states do differ between different cell types.

16.5.2 “Exotic” transcription

The pervasiveness of “Exotic” transcripts is also by no means an argument against most of the

genome being junk. Some of these (such as the ones normally degraded by the exosome) likely fall

in the category discussed in the preceding section. But various RNAs associated with the promoters

and termination sites of genes (tiRNAs, TSS-RNAs, PASRs, PALRs, TASRs, etc.) could very well

be well-defined RNA species and this still does not serve as a valid argument against “junk” DNA.
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First, they are associated with the exons and promoters of genes and are therefore mostly conserved

at the sequence level. Second they could well be, and in fact likely are, a normal part of the

transcriptional cycle, where they may play functional roles or may be an inevitable side product of

it (future research will have to establish what, if any, these roles may be).

In addition, transcription can have functions on its own, without the RNA molecules produced

being sequence-constrained. Numerous examples of phenomena such as transcriptional interference,

where the transcription of other genes, or of noncoding intergenic RNAs, either interferes or aids

the expression of downstream genes (through the prevention of initiation or by opening chromatin

and enabling it) have been presented in the past (Martens 2004; Petruk et al. 2006; Shearwin et al.

2005; Hirota et al. 2008; Uhler et al. 2007; Kuehner & Brow 2008; Thiebaut et al. 2008; Palmer et

al. 2009). The act of transcription in such cases is functional, but the sequence of the transcripts

produced may be of little significance.

It is in similar light that RNA species like eRNAs can be interpreted. There is indeed evidence

that the transcription of enhancers is important for their function (Ørom et al. 2010; Melo et al.

2013; Li et al. 2013; Lam et al. 2013), but in the absence of detailed mechanistic understanding why

(something, which future research will hopefully elucidate) and of sequence conservation beyond the

transcription factor binding sites within the enhancer, such observations are entirely consistent with

the production of such RNAs being the functionally important component in the process rather than

the RNAs themselves.

16.5.3 lincRNAs

In recent years, long non-coding RNAs have received a great deal of attention, both in the scien-

tific community and outside of it. In popular communications, they have often been portrayed as

overturning the foundations of our understanding of how RNA functions in cells. Even though this

was most definitely not a main message of it, the subject has often been lumped together with the

debate about the ENCODE project thus it is proper to discuss it here too. We are at the beginning

of exploring the diversity and functional importance of these molecules, with new examples of the

vital biological roles they play in various systems being described constantly and many more are

certain to come in the future. However, their existence does not represent such a radical paradigm

shift as is often claimed.

First, the novel discovery has been how many of them there are out there, not that they exist.

Long noncoding RNAs such as Xist and Tsix (Borsani et al. 1991; Brown et al. 1991; Lee et al.
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1999, roX in Drosophila (Meller et al. 1997) and multiple others have been known for nearly more

than two decades.

Second, at this point there have been multiple studies identifying lincRNAs from RNA-seq data

in several mammals (Cabili et al. 2011; Guttman et al. 2010; Derrien et al. 2012; Pauli et al. 2012;

Washietl et al. 2014; Necsulea et al. 2014) and they all identify at most around 10,000 putative

lincRNA genes. Further sampling of rare cell types will likely yield some more, especially given the

generally higher tissue specificity of lincRNAs compared to protein coding genes (Cabili et al. 2011).

However, the total of all lincRNA exons still occupies a minor fraction of the human genome (many

of them are shorter than mRNAs; the average lincRNA transcript in GENCODE V16 is ∼950bp

long, while the average GENCODE V16 transcript of a protein coding gene is ∼1.7kb long), and it

is far from clear that all of them will turn out to be functionally important. The expression levels of

the typical lincRNA are much lower than those of protein coding genes (with the well-characterized

in the past ones being among the most highly expressed). Of course, low expression levels do not

necessarily imply absence of function on their own – RNA molecules can certainly play vital functions

even at low abundance levels. This is especially true if they act in cis. In many such cases only a

few copies would be expected to be present at any time, and indeed cis mechanisms for their action

have been proposed (Koziol & Rinn 2010).

Third, the first comparative studies of lincRNAs within vertebrates have been recently published

(Washietl et al. 2014; Necsulea et al. 2014). They found significant evolutionary malleability of

the precise splicing patterns of lincRNAs, which together with their generally low levels of sequence

conservations suggests that sequence constraint may exist for only some portions of these transcripts,

and they also observed that significant fraction of human lincRNAs that are specific to our species,

with these human-specific lincRNAs exhibiting significantly higher repeat content. There is evidence

that on average these lincRNAs are subject to positive selection in the human lineage (Washietl et

al. 2014), and some of them undoubtedly are, but overall these patterns are also consistent with an

explanation for the existence of many of them as the result of a normal process of birth and death of

noncoding genes within intergenic space (especially mediated by transposable element insertions),

or from previously protein coding genes (famously, the Xist lincRNA seems to have evolved as a

result of the pseudogenization of a protein-coding gene, Duret et al. 2006), with some being exapted

and conserved throughout evolution and many others eventually decaying.

The detailed functional analysis of each individual lincRNA using classical genetic tools will be

need to adequately answer the question of how many of them have function, and what it is. Recently,

studies taking the first steps in that direction have appeared; for example Sauvageau et al. knocked
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out 18 lincRNAs in mouse and found detectable phenotypes for 5 of them (Sauvageau et al. 2013).

These numbers, however, cannot be extrapolated for all lincRNAs, first, because the sample size

is still small, and second, because lack of phenotype upon knockout in laboratory conditions does

not necessarily imply lack of functions (for example, deletion of ultraconserved sequence elements

sometimes still results in viable mice; Ahituv et al. 2007). Nevertheless, as whole the reports

portraying lincRNAs as completely overturning our understanding of RNA and genome biology are

definitely exaggerated.

16.5.4 Alternative splicing and initiation

That the vast majority of human genes has the capacity to and do sometimes produce more than one

isoform is at this point beyond dispute. The GENCODE annotation contains nearly 150,000 isoforms

of the 20,000 protein coding genes, and more will likely be discovered when a deeper sampling of rare

cell types becomes available. However, the functional significance of all this splicing complexity is still

unclear as the compendium of actively regulated alternative splicing events of validated functionally

is still tiny in comparison with the total number of isoforms. The available data is entirely consistent

with the vast majority of isoforms detected in RNA-seq being the result of errors of the splicing

machinery, the fidelity of which cannot be expected to be perfect for the same reasons outlined

above with respect to pervasive transcription and the transcriptional initiation machinery. One line

of possible evidence that functional alternative splicing is indeed a highly prevalent phenomenon

would be the detection of widespread regulated switching of isoforms between cell lines, and some

evidence in that direction has been presented (Wang et al. 2008).

The ENCODE transcriptome characterization effort (Djebali et al. 2012) found multiple tran-

scripts to be expressed for each gene, with the complexity of expressed splicing products increasing

with the complexity of its set of annotated transcript models (i.e. how many isoforms for the gene

are present in the annotation), but the question of isoform switching between cell lines was not

prominently addressed. Further analysis of some of the same data (Gonzàlez-Porta et al. 2013)

concluded that for most genes, one major isoform is dominant and it is consistently most highly

expressed across many cell types and tissues. Such results are fully compatible with the interpreta-

tion of most of the minor isoforms as noise (Melamud & Moult 2009; Sorek et al. 2004). It should

be noted that even if the minor isoforms are highly variable between cell types, this is not strong

evidence for their functionality, as this could be the result of the different sets of splicing regulators

that these cells express, which could have influence on the splicing of genes other than their primary
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functional targets.

Thus at present, the question of how many functionally important alternative splicing events

there are in the human genome is not fully resolved, and based on all the information we have there

are no grounds for claiming that it is so widespread and functionally important that it makes the

difference between the human species and “lower” life forms. For it to be adequately addressed, both

large-scale experimental advances and detailed study of individual cases will be needed. It should

be heavily stressed that all results from transcript-level quantification and assembly efforts based on

short-read RNA-seq data are highly contingent upon the ability of the software used in such studies to

accurately carry out these tasks. Unfortunately, this is an extremely difficult computational problem

and still a major challenge (Steijger et al. 2013; Engström et al. 2013), the only satisfying solution

to which will be the advent of long-read sequencing technologies capable of delivering the needed for

the analysis of the transcriptome sequencing depths. This will eliminate the need to computationally

assemble transcripts from reads much shorter than the length of mRNAs and parse reads between

isoforms using statistical methods based on incomplete and sometimes even misleading data due

to various read coverage biases in the data. Pioneering efforts in that direction have recently been

published (Sharon et al. 2013; Au et al. 2013), but much further progress is needed to fully resolve

the issue. Even when this happens though, only a list of candidate events to be further studied

will be available, which will then have to be subjected to detailed functional testing to assess their

functional importance.

16.5.5 The very large number of putative regulatory elements

Regulatory elements in eukaryote genomes are marked by occupancy by transcription factors or

insulator proteins, and are typically exhibit increased DNAse hypersensitivity due to the occlusion

of nucleosomes caused by the binding of these proteins to DNA. Global ChIP-seq and DNAse-seq

maps of transcription factor occupancy and of DNAse hypersensitive sites in the genome are a highly

informative way of mapping putative regulatory elements. The ENCODE Project produced many

such maps across a wide variety of cell types (Gerstein et al. 2012; Wang et al. 2012; Thurman et al.

2012; Neph et al. 2012a; Neph et al. 2012b), and they suggest the existence of a very large number

of potential distal regulatory elements. The reproducible sites of enriched signal in these assays

occupy up to 20% of the genome; however, the resolution of ChIP-seq and DNAse-seq is lower than

the footprints of transcription factor binding sites, inflating this number somewhat. Still, ∼5.7% of

the genome was occupied by footprints as directly measured by digital genomic footprinting (DGF),
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the high-resolution version of the DNAse assay, which allows more precise identification of DNAse-

protected DNA (ENCODE Project Consortium 2012). As with other ENCODE measurements,

these results by no mean invalidate the concept that most of the genome is nonfunctional.

First, such observations in fact corroborate the idea that extensive regulatory complexification

is facilitated by population genetic environments characterized by very low Ne (Lynch 2007a). As

discussed above, the genomic changes leading to expansion of regulatory complexity are not directly

adaptive but they can be tolerated if they are not too deleterious relative to the power of drift in a

population. This allows regulatory elements to be duplicated or arise de novo, then subfunctionalize

and/or be coopted in the regulation of nearby genes. Subfunctionalization eventually leads to the

gene needing an increased number of regulatory elements for its proper expression in different cell

types. Something very similar was observed by a recent study (Kieffer-Kwon et al. 2013), in

which distal regulatory elements in mouse ES and B cells were identified. Functional dissection

of individual such elements was then carried out by knocking them out using genome editing, and

different enhancers were found to be responsible for the expression of the same gene in the two

different cell types.

Second, it is far from clear whether all transcription factor occupancy sites identified by high-

throughput studies are in fact functional. There are multiple lines of evidence casting doubt on such

an interpretation. A broad observation of all ChIP-seq studies has been that transcription factors

bind to many sites near genes that are of apparently little relevance to the previously well-established

functional roles of the factor (Cao et al. 2010). It is entirely possible that transcription factors bind

to regions of chromatin that are in state conductive to their binding, but without having specified

selectively important effect on all of them; in fact, this is quite likely given the degenerate nature

of the sequence recognition motifs of eukaryotic transcription factors. In addition, a very wide

dynamic range of occupancy strength is seen in ChIP-seq assays (Landt et al. 2012), which follows a

power-law like distribution with a small number of sites showing very strong occupancy and a very

long tail of low-occupancy sites. There is no simple relationship between the strength of occupancy

signal and functionality, as both high- and low-signal functional sites are observed, but ChIP-seq

and DNAse-seq signal is generally correlated with sequence conservation (Kellis et al. 2014), and

studies suggesting that low-occupancy sites in D. melanogaster mostly lack enhancer activity have

been published (Fisher et al. 2012). It is thus premature to conclude that each and every ChIP-seq

or DNAse-seq peak is functionally important without subjecting it to tests for enhancer activity and

other functional assays.

That the evolution of regulatory elements in vertebrates is driven in large part by nonadaptive
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processes seems to be corroborated by recent studies assessing the conservation and divergence of

transcription factor binding between species (Villar et al. 2014). Such studies have so far been

carried out only in flies (Bradley et al. 2010; He et al. 2011; Ni et al. 2012) and in vertebrates

(Loh et al. 2006; Odom et al. 2007; Conboy et al. 2007; Kunarso et al. 2010; Schmidt et al. 2010;

Stefflova et al. 2013; Schmidt et al. 2012; Martin et al. 2011; The mouse ENCODE Consortium

2014), which is admittedly a limited sample. Some patterns have nevertheless already emerged: a

significantly higher conservation of transcription factor occupancy sites is observed in flies than in

vertebrates, with very high rates of turnover found in the latter (Villar et al. 2014), although it

should be stressed that in many cases the turnover of binding sites does not translate into turnover

of the regulation of their target genes, i.e. often regulatory elements controlling a given gene are

lost and replaced by different regulatory elements putatively playing the same role. These changes

in occupancy can be mediated by sequence alterations in the recognition sequences targeted by each

factor but even more often they are the result in changes in the recognition sequence of other factors

occupying the same loci in a combinatorial fashion. The differences between flies and vertebrates

can be interpreted as the result of the differences in the population genetic environment of the two

groups (Villar et al. 2014). Flies have two orders of magnitude higher Ne than most vertebrate

species, the result of which is an order of magnitude smaller genome, a much higher fraction of

which is under selective constraint (potentially more than 50% (Siepel et al. 2005; Andolfatto 2005;

Drosophila 12 Genomes Consortium 2007), compared to <10% in mammals (Lindblad-Toh et al.

2011). The lowered strength of selective constraint as a result of the low Ne of vertebrates allows

for a more rapid evolution of regulatory elements in these lineages. Of note, similar evolutionary

factors might be behind the rapid evolution of the lincRNA repertoire in our lineage, as discussed

above (Nesculea et al. 2014; Washietl et al. 2014).

It should be explicitly pointed out that the reasoning outlined above concerns the origin of

regulatory complexity, not necessarily the current functions of its individual components. States of

irreducible complexity, in which all parts of the system are indeed vital for organism fitness, can

be achieved via the mechanisms of constructive neutral evolution. It is also true that increases in

complexity through nonadaptive means likely facilitate the emergence of organismal complexity as

increases in the number of regulatory elements regulating genes allow for their expression in new

cells/tissues or the emergence of new cell types. However, it remains true that regulatory complexity

itself may not be strictly necessary for increases in organismal complexity – it could very well be the

case that a fully functional human organism could be “built” with a much more streamlined and

efficient system of regulatory relationships between transcription factors and their targets than the
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one we observe in our genome.

16.5.6 The fraction of the human genome that is functional

Much scientific and rhetorical effort has been invested into trying to pin down a specific number

for the fraction of the human genome that is functional. There are good reasons to think that the

obsessive fixation on obtaining a precise number is misguided:

1. Any such number will ultimately depend on the definition of what a “functional element” is.

However, it has been in practice impossible to reach universal agreement on such a definition.

2. Among others, one reason for this state of affairs is that “functionality” is not a binary char-

acteristic that a given DNA base pair in the genome either does or does not have. Changes

in DNA sequence in different regions of the genome can differ vastly in the magnitude of their

effect on phenotypes and fitness. Thus “functionality” is best understood as being continu-

ously distributed, and consequently any estimate for the total amount of “functional” DNA

in the genome will be highly contingent upon an arbitrary threshold-dependent definition of

what function is.

3. On a most fundamental level, the important question with major implications for how we

think about our genome is whether most of it consists of “junk” DNA or not. Most of the

human genome indeed does seem to be “junk” DNA and this is true irrespective of whether

we estimate the amount of functional DNA to be 5%, 15% or some other number constituting

a minority fraction of it.

4. The unfinished (and monumental in its magnitude) task, which does have real importance, is to

understand the role of all candidate functional elements in the genome in shaping phenotypes,

largely through the classical (though greatly aided and sped up by technological advances such

as genome editing and high-throughput functional assays) approaches that have produced the

extensive amount of knowledge we have about a handful of loci in humans and some of the

major model systems. Agreeing on a precise number for how much of the human genome

is functional has little relevance to these efforts as it does not necessarily change the null

hypotheses and the priors with which the study of individual regulatory elements and ncRNAs

will be approached.
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16.5.7 The contributions of ENCODE

The excessive focus on the “junk” DNA debate has overshadowed the real scientific advances that

the ENCODE Project has contributed to and it is therefore useful to summarize the major ones

here. While doing this, it should be remembered that the ENCODE Consortium was set up with the

goal of identifying the functional elements in the human genomes, and not with the goal of finding

radically new principles of gene regulation as there was no a priori reason to think such mechanisms

would be discovered. That no such discovery was made was therefore no surprise and no reason for

disappointment; significant progress towards the main goal of the project was made though it has

become apparent that reaching it is going to be significantly more complicated and laborious than

perhaps hoped for in the beginning. Specifically, ENCODE delivered:

1. Lists of candidate functional elements. The complexity of the transcriptome and of the

transcription factor binding landscape in the genome, especially when interpreted in the light

of the nonadaptive view of genome evolution, means that no candidate functional element

identified through a high-throughput functional genomic assays, whether it is an enhancer,

a noncoding RNA or an alternatively spliced isoform of a gene, can be considered functional

without subsequent confirmation of its significance and dissection of its functional components.

This is a necessary activity, without the completion of which a complete understanding of gene

regulation in the human genome will be difficult to achieve. Fortunately, while such testing

has previously been very labor-intensive, highly parallel reporter assays (Melnikov et al. 2012;

Patwardhan et al. 2012; Smith et al. 2013; Kheradpour et al. 2013; Arnold et al. 2013) and

readily applicable genome editing tools (Jinek et al. 2012) have recently become available,

promising to greatly speed up the process of validation.

2. Annotation of noncoding variants associated with human phenotypic variation.

Genome-wide association studies (GWAS) of phenotypic variation in the human population

have revealed that the majority of trait-associated sequence variants reside in the noncoding

portions of the genome and are preferentially associated with regulatory regions (Hindorff et

al. 2009; Nicolae et al. 2010; Zhong et al. 2010). The intersection between the GWAS

annotations of such variants and ENCODE maps of candidate functional elements, especially

those of transcription factor occupancy, has been (Maurano et al. 2012; Ward & Kellis 2012a;

Ward & Kellis 2012b; Boyle et al. 2012; Vernot et al. 2012; Schaub et al. 2012; Hardison 2012)

and will be a highly informative source of understanding of the mechanisms through which
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sequence variation impacts phenotype (examples in Bauer et al. 2013; Hardison & Blobel

2013).

3. The development of the functional genomics toolkit. The development of many of the

functional genomics assays that have become the workhorses of research in the field was driven

by researchers within the ENCODE Consortium (Mortazavi et al. 2008; Nagalakshmi et al.

2008; Kodzius et al. 2006; Fullwood et al. 2009; Johnson & Mortazavi et al. 2007; Mikkelsen

et al. 2007; Robertson et al. 2007; Hesselberth et al. 2009; Song et al. 2011; Gaulton et al.

2010; Neph et al. 2012a). The experience it has had working with a large number of such

datasets and the need to analyze them jointly have led to the development of standardized

best practices for their execution (Kharchenko et al. 2008; Landt et al. 2012; Marinov et al.

2014; Jung et al. 2014; Ernst & Kellis 2010; Ernst et al. 2011; Ernst & Kellis 2012; Mortazavi

et al. 2013; Hoffman et al. 2013). The Consortium has also pioneered many of the existing

tools for integrative analysis of functional genomic datasets (Ernst & Kellis 2010; Buske et al.

2011; Ernst et al. 2011; Ernst & Kellis 2012; Hoffman et al. 2012; Mortazavi et al. 2013;

Hoffman et al. 2013; Xie et al. 2013). These methods will serve as a foundation for large scale

functional genomics study of many systems in the future as I extensively discuss below.

16.6 The Tree-of-Life ENCODE

The question in the heart of the debate surrounding the results of the ENCODE Project is the

relationship between the complexity of genome architecture and the complexity of organismal or-

ganization. Through the lens of panadaptationism, the experimentally demonstrated biochemical

complexity of transcriptional regulation, the products of transcription, and of RNA biology, is viewed

as an integral causative component agent behind the organismal complexity of humans. This is es-

pecially true if the common view of the human species as the highest achievement of evolution is

adopted. As already discussed, one way of looking at the relationship of genomic and organismal

complexity sees the two as forming a positive feedback loop, in which increased organismal complex-

ity leads to larger organismal size, lowered Ne, and increased tolerance towards further increases

in genomic complexity. This in turn may facilitate more regulatory innovations leading to further

complexification of organismal organization. However, this is at present only a general trend ob-

served largely based on the comparison of the very general features of sequenced genomes. Even

at this level, it remains to be generalized across the whole tree of life – the sampling of completely

sequenced genomes is nowhere near complete in terms of coverage of the major eukaryote lineages
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and the multicellular groups that independently evolved within them – but more importantly, it

has not yet been tested by direct biochemical measurements of functional genomic complexity. The

integration of the results of the ENCODE and modENCODE and mouse ENCODE projects will

provide many insights into these questions. However, all of these species are metazoans and animals

are only one of a very large number of deeply diverging lineages of eukaryote (Figure 16.1). In

addition to these four major model organisms, the yeast Saccharomyces cerevisiae has been subject

of extensive functional genomic characterization (Lee et al. 2002), and significant amount of work

has been done on the plant model organism Arabidopsis thaliana, but even in the latter case a large

scale dissection of regulatory complexity has not been embarked on. Thus we have a significant (yet

still far from complete) functional genomic knowledge of only a handful of species belonging to only

three major lineages (out of many dozens) within two of the five to eight major subdivisions of the

eukaryotes (Parfrey et al. 2005; Adl et al. 2012). A major expansion of this list is highly desirable

for a number of overlapping reasons discussed below. Fortunately, the work done by the ENCODE

Project combined with current technological developments has now enabled such studies. Based on

the history of biology in recent decades, there are reasons to believe that they will provide deep

insights into these questions, and potentially open up many new research directions.

16.6.1 The any-organism-ENCODE

One of the less appreciated consequences of the advent of next-generation sequencing and the phasing

out of microarray technology has been that now any organism is in principle accessible for functional

genomic dissection as all that is needed is a sequenced genome, without the need to go through the

slow, complex and expensive procedure of generating microarrays for each species. The availability

of sequenced genomes is not exactly a solved problems for eukaryotes, especially for those with

larger and repeat-rich genomes, where the nature of short-read sequencing has made obtaining

anything significantly better than highly fragmented assemblies extremely difficult (Alkan et al.

2011). However, this situation is set to improve considerably with increased throughput from existing

long-read sequencing technologies (Eid et al. 2009; Schadt et al. 2010; Kuleshov et al. 2014) and

the long-awaited arrival of functioning nanopore sequencing (Kasianowicz et al. 1996; Deamer &

Akeson 2000; Branton et al. 2008; Clarke et al. 2009; Cherf et al. 2012; Manrao et al. 2012). It is

reasonable to assume that in the coming years it will become possible to assemble at high quality

and contiguity all genomes, even the very large ones that are now outside of the realm of the possible

and the current gaps in our sampling of the phylogenetic diversity will be filled.
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Once a genome is sequenced, the various *seq assays (Wold & Myers 2008) can be carried out

on it, and most of them are at this point mature. By their very nature most techniques assaying

the occupancy of proteins on nucleic acids are tailored to short-read technologies as the DNA or

RNA fragments subjected to sequencing are at most a few hundred base pairs in size. For these

reasons long-read sequencing is of little utility to ChIP-seq, DNAse-seq, CLIP-seq and other such

assays, and of even less utility to high-resolution versions of them such as ChIP-exo-seq (Rhee &

Pugh 2011; Rhee & Pugh 2012). The approaches and methodologies developed so far for processing,

quality evaluation, analysis and integration of these kinds of data developed as part of the ENCODE

Project will therefore continue to be relevant long into the future.

While DNAse, Hi-C and RNA-seq assays are generic in nature in the sense that no special

reagents are needed, ChIP, ChIA-PET and CLIP assays require antibodies specific to the targeted

protein. Many histone modifications are highly phylogenetically conserved and the same antibodies

can be used in deeply divergent species, but working ChIP-validated antibodies are generally only

available for a small fraction of human transcription factors and other chromatin-associated proteins

and for even fewer such targets in the major model systems. The advent of genome editing will

hopefully alleviate this problem. CRISPR-mediated genome editing (Jinek et al. 2012) has recently

emerged as a powerful tool for manipulating genomes and has been successfully used in a very wide

variety of systems (Dickinson et al. 2013; Chen et al. 2013; Auer et al. 2014; Jiang et al. 2013a;

Jiang et al. 2013b; Mali et al. 2013; DiCarlo et al. 2013; Friedland et al. 2013; Gratz et al. 2013;

Hwang et al. 2013; Chang et al. 2013; Jao et al. 2013; Cong et al. 2013; Li et al. 2013a; Li et al.

2013b; Li et al. 2013c; Nekrasov et al. 2013; Shan et al. 2013; Tzur et al. 2013; Waaijers et al.

2013; Wang et al. 2013; Chiu et al. 2013; Lo et al. 2013; Katic & Großlhans 2013; Kondo & Ueda

Figure 16.1 (preceding page): Major eukaryotic clades, their established and putative
relationships with each other, and the place of the human lineage within them. The
tree is derived from Keeling 2013. A variety of other topologies differing in both minor and major
ways have been proposed by other authors and it is likely that the true phylogenetic relationships
differ from the ones shown here; continued revisions are therefore to be expected for the foreseeable
future, especially with the continued discovery of previously unknown deeply diverging lineages
and whole-genome sequencing of representatives of lineages for which genome sequences are not
available at present. The clades to which the major model organisms that have been the workhorses
of functional genomic research belong are highlighted: Metazoans (Homo sapiens, Mus musculus,
Drosophila melanogaster, Caenorhabditis elegans; Fungi (Saccharomyces cerevisiae), and land plants
(Arabidopsis thaliana). These lineages comprise a fairly small portion of the known eukaryotic
diversity. Note that not all major clades are shown and that almost certainly not all major clades
are even known as new lineages continue to be identified, the discovery of Chromera velia as a sister
lineage of apicomplexans and its importance to understanding the evolution of parasitism in the
latter being a very good example (Moore et al. 2008; Oborńık et al. 2009; Dorrell et al. 2014;
Weatherby & Carter 2013).
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2013), including for the knock-in of tags such as GFP into endogenous loci (Dickinson et al. 2013;

Chen et al. 2013; Auer et al. 2014). Such approaches, when combined with recently developed high-

throughput chromatin immunoprecipitation methods (Aldridge et al. 2014; the R-ChIP protocol

described earlier here) open the door to potentially assaying the whole set of transcription factors

of a species, especially in unicellular eukaryotes.

The major area in which significant changes are both expected and needed is transcriptomics.

Most RNA molecules are far too long to be sequenced from end to end with current short-read

sequencers (with the various small RNA species being the major exception). This has posed immense

difficulties for the assembly of full-length transcripts from RNA-seq data, a problem the accurate

solution of which is of crucial importance for annotating genomes and for the study of alternative

transcription initiation, splicing and other RNA processing events. The ability to generate large

numbers of very long reads covering full-length transcripts should solve many of these problems.

Still, many of the tools are already in place to enable the generation of ENCODE-level in their

size and scope functional genomic compendiums for pretty much any species of interest, and this

can be quite rapid and inexpensive compared to the scale of the effort and investment it took to

carry out the first genome-wide phase of the ENCODE and modENCODE projects. Thanks to

the continued advances in technology and automation in the near future it will be feasible (both

in terms of manpower and in terms of cost) for the comprehensive large-scale functional genomic

characterization of a whole organism to be carried out by individual laboratories, especially in the

cases of unicellular eukaryotes. It should be noted though, that for the integration of such efforts

between laboratories to be possible, standardized protocols and stringent control of data quality

will be needed, of the kind that large consortia such as ENCODE have invested significant effort in

developing (Landt et al. 2012; Marinov et al. 2014).

The major promise this holds is the ability to learn a lot about the genome biology of previously

non-model organisms orders of magnitude faster and cheaper than the decades of effort that had to

be invested into accumulating the knowledge we have about the human genome and the genomes

of the major model systems. The ENCODE Project did not reveal fundamentally new paradigms

of gene regulation and the functional organization of the human genome, however, first, given the

depth in which our genome has been studied in the past, it would have been a major, and not

entirely pleasant surprise if it had in fact done so; and second, it did recover a lot of what was

previously known about it. For example, the integrative analysis of multiple histone marks did return

the known, in some cases from detailed mechanistic studies, correlations between these marks and

between the marks and various genic and intergenic features in the genome, in addition to finding
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some new chromatin states that were not recognized before. Of course, not everything about how a

genome functions can be learned from high-throughput functional genomics, as evident by the above-

mentioned interpretative difficulties we face when trying to assess the functional importance of all

observed biochemical activity. Still, it remains true that first, obtaining the list of potential parts is

always a major step forward, and second, that the general principles of functional organization can

be inferred without the detailed annotation of each and every candidate functional element.

16.6.2 Understanding the biology of crops and pathogens

While the focus of this text is on the origins, evolution and significance of genome complexity,

questions the answers to which may necessitate the study of obscure organisms the main claim to

fame of which lies in the amazing evolutionary innovations their lineages have come up with, the

genomic approaches described in the previous section will be of even greater practical relevance

for figuring out the biology of plant crops, eukaryotic pathogens (protists such as Plasmodium,

Toxoplasma, Leishmania, Trichomonas, Trypanosoma, Entamoeba, and Giardia, various parasitic

worms, and numerous others) and any species of importance to humans, the genome of which

contains significant amounts of at present poorly annotated noncoding DNA (although it should be

noted that the genome biology of many such species is deeply intriguing on its own).

One of the major contribution to understanding human biology that the ENCODE Project has

made has been the annotation of some noncoding GWAS variants, as discussed above. This work is

by no means finished – the next round of the project should bring us closer to the final goal – but

it does represent a pioneering effort in this direction.

To the extent that the same genomic architecture is shared between mammals and plants, it is

quite likely that the same problem of a lot of explanatory variants residing in noncoding regions of

the genome will be faced by large-scale sequencing studies aiming at understanding the genetic basis

of variation between different plant cultivars and between different strains of other economically

important species, in proportion with the amount of functional noncoding DNA they possess. Based

on ENCODE’s experience with the human genome, it can be expected that comprehensive mapping

of transcription factor binding sites and other regulatory elements will be needed to understand

the trait-associated variants in these genomes, with the approaches developed for tackling these

questions in humans providing invaluable help.

Similarly, functional genomic approaches will be of tremendous benefit for dissecting the regu-

latory biology of pathogen species. This is not only of practical, but also of fundamental biological
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importance, given that as a rule, pathogens have the most complicated life cycles of all organisms,

and the same genome is capable of encoding the development of morphologically very different life

forms. While multiple such genomes have already been sequenced, at present knowledge of how their

gene regulation intersects with developmental mechanisms remains very limited.

16.6.3 Mapping the rewiring of gene regulatory networks in evolution

A major results of extensive studies in the field of evolution of development (evo-devo) over the last

few decades has been that the evolution of body plans seems to be in larger extent the result of

changes in the regulation of genes, especially developmental regulators, rather than being primarily

due to changes in the gene repertoire of different lineages. Often the same molecules are repeatedly

utilized in the development of very different structures, both across the metazoan phylogeny and

within the same organism. The rewiring of gene regulatory networks has been at the core of these

changes (Davidson 2006; Peter & Davidson 2011). While the detailed functional characterization of

individual loci using classical genetic approaches (Davidson et al. 2002a; Davidson et al. 2002b) will

remain indispensable, the path towards a complete understanding of the evolution of development

will be significantly more easily traveled if the targets of the major developmental regulators are

comprehensively mapped and their conservation and divergence during the evolution of different

groups studied in detail. Given that regulatory elements are often not conserved on the sequence

level (Romano & Wray 2003; Balhoff & Wray 2005; Ludwig et al. 2005; Hare et al. 2008; see

also discussion above on transcription factor binding site turnover), functional genomics methods

for mapping transcription factor binding sites and other regulatory elements of the kind that the

ENCODE Project Consortium has extensively used will be required to accomplish this task. At

present such studies face major hurdles due to the lack of suitable immune reagents and the difficulty

of obtaining material of sufficient quantities and purity from specific developmental stages and

tissues/cell types in many lineages of key interest for understanding metazoan evolution. In some

systems, these challenges may remain unsolved for a very long time, yet technological advances in

genome editing and in the isolation of specific subsets of cells/nuclei from embryos/tissues (Deal &

Henikoff 2010; Steiner et al. 2012; Henryet al. 2012; Southall et al. 2013; Schauer et al. 2013)

should make such studies feasible in many others.
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16.6.4 Understanding the evolutionary origins and the diversity of

eukaryotic regulatory biology

As their answers are what is needed to enable the manipulation of biological systems, the questions

asked in biochemical and molecular biology research tend to be of the “what” and “how” kind, i.e.

we pick apart the individual components of these systems and identify the relationships between

them. From an evolutionary perspective the “why” questions are just as important. Behind a lot

of the arguments about the ENCODE Project and what its results mean about our view of our

genome stands the question “Why is mammalian regulatory biology the way it is?”. A perfectly

valid possible answer to this question might be that “this is the only way it could be” and if we

did not have any examples of significant deviations from the regulatory principles we observe in our

genome, there would be no way to reject that explanation. On the other hand, if such deviations

do in fact exist, then we know that there are other ways the system might operate and we are

forced to find an explanation for why it has diverged between different lineages. The classic model

systems already give us plenty of examples of such deviations from the organization of the human

genome. As mentioned above, all known prokaryotes have compact streamlined genomes with little

intergenic DNA, no spliceosomal introns, few repetitive elements, genes organized in operons, and

in general, very little that could be potentially classified as “junk” DNA and far less of the baroque

regulatory complexity of vertebrates. Within eukaryotes, the model yeast species also have small

compact genomes, with little intergenic DNA, their introns are fewer in number and short in length,

and gene regulation seems to be operating mostly through promoter-proximal regulatory elements.

The genomes of D. melanogaster and of C. elegans are more similar in organization to ours but

are still and order of magnitude more compact, and in C. elegans many genes are transcribed as

polycistronic units and then trans-spliced to splicing leader sequences to generate mRNAs.

We do have a general theory that explains many of these differences as a result of the interplay

between natural selection, mutational biases and genetic drift (Lynch 2007c). But not all aspects of

regulatory biology have been examined through an evolutionary lens, and far from all of eukaryotic

diversity has been studied from such perspective. It could well be, and is in fact, highly likely that

novel insights into the origins and functions of the core features of eukaryotic transcription regulation

and RNA biology will be derived from the comparative study of regulatory mechanisms across the

tree-of-life, including all deeply diverging eukaryote lineages that have received little attention so

far.

This approach has already proven invaluable in understanding the deep evolutionary origins and
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functional significance of some core features of mammalian genome biology. A prime example is

DNA methylation. The primary role of 5-methylcytosine DNA methylation has been traditionally

understood to be repression (Fuks 2005; Miranda & Jones 2007), based on extensive research on the

scale of individual genes and the whole genome in mammals and in flowering plants (Lister et al.

2008; Lister et al. 2009). Significant differences in the patterns of methylation have been uncovered

between the two lineages (Law & Jacobsen 2010). In mammals, cytosines are methylated in the

context of CG dinucleotides, by the de novo DNA methylases DNMT3a and DNMT3b (Okano et al.

1998; Okano et al. 1999), and by the maintenance DNA methylase DNMT1 (Bestor et al. 1988). All

CG dinucleotides in mammalian genomes are methylated, including gene bodies, except for the so

called CpG islands, clusters of elevated density of CG nucleotides associated with the promoters of

genes (Bird 1986; Gardiner-Garden & Frommer 1987), in contrast with the rest of genome where CG

nucleotides tend to be eliminated as methylated cytosines can undergo spontaneous deamination an

turn into thymines. CpG islands are differentially methylated in the context of the developmental

repression of lineage-specific genes and methylation is also important for the silencing of transposons

but the methylation of gene bodies of less understood significance (Kulis et al. 2013). In addition,

whole-genome profiling of 5mC in embryonic stem cells has also revealed that cytosines in the

CHG and CHH sequence contexts (where H stands for A, T or G) can also be methylated (Lister

et al. 2009). In contrast, in flowering plants, methylation is restricted to transposons and other

repetitive elements, where it serves repressive function and occurs in all three sequences contexts. It

is deposited de novo by the DRM2 enzyme and maintained by DMT1 in the CG context, CMT3 in

the CHG context, and by persistent de novo methylation in the CHH context, with all these proteins

belonging to the same family of enzymes (Law & Jacobsen 2010).

Even though 5mC methylation has been lost on more than one occasion (for example, yeast such

as Saccharomyces cerevisiae and the nematode C. elegans), the presence of methylation and DNA

methylation enzymes of the same family in very deeply diverging lineages suggests deep evolutionary

conservation of the methylation pathway going back to the LECA, where it likely played a role in

silencing transposons. However, whether different methylation patterns and functions exist in other

organisms had not been clear until several studies in the last few years used genome-wide bisulphite

sequencing to profile the genome-wide distribution of 5mC in multiple species, both in the major

eukaryotic groups that model organisms belong to and in more deeply diverging lineages (Zemach et

al. 2010; Feng et al. 2010; Huff & Zilberman 2014). These studies found some examples of unusual

methylation patterns (for example, in the green alga Chlamydomonas, non-CpG methylation is highly

enriched within the exons of genes) and concluded that both gene-body and non-CpG methylation
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were ancestral to eukaryotes, with this pattern then undergoing modification in diverging lineages,

likely due to differential constraints on TE proliferation experience by them (Zemach et al. 2010).

A more recent study of DNA methylation (Huff & Zilberman 2014) extended the taxon sampling

to diatoms (Phaeodactylum tricornutum, Fragilariopsis cylindrus, Thalassiosira pseudonana), the

pelagophyte stramenopile Aureococcus anophagefferens, the haptophyte Emiliania huxleyi, and the

prasinophyte chlorophytes Bathycoccus prasinos, Ostreococcus lucimarinus, and Micromonas pusilla.

Remarkably, it found a completely novel methylation pattern in some of these species (A. anophagef-

ferens, E. huxleyi, B. prasinos, O. lucimarinus, and M. pusilla) characterized by DNA methylation

of CpG dinucleotides situated in linker histone regions, with a periodicity corresponding to the

length of nucleosome spacing in each species. CpG methylation was coupled to and directly influ-

enced a correspondingly tight nucleosome positioning pattern, as the methylated cytosines disfavor

the formation of nucleosomes. Even more remarkably, CG dinucleotides were actually enriched in

nucleosome linker regions and overall in the genomes of these organisms, contrary to what is ob-

served in the genomes of most other lineages (where CG nucleotides are typically depleted due to the

spontaneous deamination of methylcytosine) indicating that they are subject of active maintenance

by selective forces. Another important surprise was that these novel DNA methylation patterns

were generated by a different DNA methylase, DNMT5, which is of the same family as the DNMT3

and DNMT1 enzymes (Ponger & Li 2005), while DNMT1, and often DNMT3 too, is not present

in their genomes. Given that DNMT5 is found in very deeply diverging groups of eukaryotes, it is

likely that the last common ancestor eukaryotes contained both DNMT1 and DNMT5. Apparently,

DNMT5’s enzymatic activity is highly biased against methylating nucleosomal DNA, which explains

its preference for nucleosome linker DNA. It has been known for quite some time that nucleosomes

disfavor methylation (Robertson et al. 2004; Gowher et al. 2005; Takeshima et al. 2006; Takeshima

et al. 2008; Felle et al. 2011; Jiang et al. 2011; Kelly et al. 2012), and specific amino acids changes

in Dnmt3b have been identified that confer enhanced nucleosome methylation ability in mammals

(Shen et al. 2010). In contrast, Dnmt5 seems to have evolved in the opposite direction, disfavoring

nucleosomes to an much greater extent, and candidate amino acid residues responsible for this shift

in preferences were identified (Huff & Zilberman 2014).

This linker histone methylation pattern observed in these organisms has been interpreted as

arising due to selective pressure towards compactness of the nucleus. All of these species are marine

algae, the lifestyle of which favors small cell sizes and compact nuclei (as this might confer enhanced

light absorption and quicker growth). Using DNA methylation to position nucleosomes was suggested

to eliminate the need for bulky chromatin remodeling complexes (Huff & Zilberman 2014). Whether
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this is the case remains to be confirmed by future studies (and is, of course, a hypothesis that is

well suited for testing by identifying the components of the chromatin remodeling complexes in the

genomes of these organisms and globally mapping their genomic occupancy). Nevertheless, these

results are highly intriguing for a few reasons:

1. A completely novel DNA methylation pattern was found, one that has apparently evolved

independently and convergently in deeply diverging eukaryote lineages

2. This pattern is governed by a previously poorly characterized member of the DNMT family.

3. It provided further insight into the relationship between DNA methylation and nucleosome

positioning, including in mammalian systems .

4. A potential connection between evolutionary constraints on cell and nuclear size and genome

architecture was identified.

5. A plausible explanation for the high genomic GC content in these species was found, in contrast

to most eukaryotic genomes, which tend to be AT-rich.

We can be reasonably certain that many other such surprises await discovery in the genomes of

unicellular eukaryotes, and they will have significant impact on our thinking about the core features

of mammalian regulatory biology. Several instances of the evolution of radical departures from the

standard model of eukaryotic genomic organization and gene regulation are already known, although

they have rarely been studied in detail.

The genome biology of ciliates provides one such example. Ciliates are unicellular eukaryotes

belonging to the alveolates clade, together with two other major groups, the dinoflagellates and the

apicomplexans (Figure 16.1). The ciliate Tetrahymena thermophila has been a model system for

many decades, the study of which has resulted in a number of fundamental biological discoveries,

such as the discovery of self-splicing RNAs (Kruger et al. 1982), the relationship between histone

acetylation and gene activation (Brownell et al. 1996), telomerase (Greider & Blackburn 1985), and

others. One of the defining features of ciliates is the presence of a macronucleus and a micronucleus.

The micronucleus is diploid and transcriptionally inert while the macronucleus is highly polyploid

and is where gene expression takes places. The micronucleus can divide mitotically and meiotically

and in effect constitutes the “germline”, while the “somatic” macronucleus divides amitotically

(Wolfe 1967; Ammermann 1971), with no known mechanisms of guaranteeing equal separation

of genetic material; instead its high polyploidy is what ensures that each daughter macronucleus
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receives the full set of genes. The most striking feature of this system is that the macronucleus is

derived from the micronucleus through a complex process involving the excision of large portions of

the micronuclear genome, from 20-30% in some ciliate groups, such as Tetrahymena and Paramecium,

to more than 95% in others such as Euplotes, Stylonychia and Oxytricha (Jahn & Klobutcher

2002). The excised fragments (called internal eliminated sequences or IESs) are both often similar

to transposons in structure and generally enriched for transposable elements (Baird et al. 1989;

Wuitschick et al. 2002; Fillingham et al. 2004). The process of IES elimination is dependent on

transposase enzymes (Baudry et al. 2009; Cheng et al. 2010; Nowacki et al. 2009) and is carried

out through complex small RNA- (Mochizuki et al. 20012; Mochizuki & Gorowsky 2004; Mochizuki

& Gorowsky 2005; Aronica et al. 2008; Lepere et al. 2008; Lepere et al. 2009; Schoeberl et al. 2012;

Fang et al. 2012; Zahler et al. 2012) and long RNA-mediated (Prescott et al. 2003; Nowacki et al.

2008) epigenetic mechanisms that guide their excision.

The macronuclear genomes of several ciliates have been sequenced: Tetrahymena thermophila

(Eisen et al. 2006), Paramecium tetraurelia (Aury et al. 2006), Ichthyophthirius multifiliis (Coyne

et al. 2011), and most recently, Oxytricha trifallax (Swart et al. 2013). From these and prior

studies, multiple differences in the genome reduction patterns and mechanisms between the different

ciliates lineages have emerged. In all species, the elimination of IESs results in the fragmentation

of the micronuclear chromosomes into smaller micronuclear chromosomes, a process that involves

the addition of new telomeric sequences to the ends of the new chromosomes (Nowacki et al. 2009).

However, while macronuclear chromosomes are still a relatively small number in Tetrahymena (225),

Ichthyophthirius (71) and Paramecium (∼200), each of them contains many genes and is generally

organized like a typical eukaryotic chromosomes.

In contrast, in Oxytricha and in related ciliates such as Stylonychia and Euplotes, the macronu-

clear genome exists in the form of thousands of nanochromosomes (Lawn et al. 1978; Swanton et al.

1980; Swart et al. 2013), which in the Oxytricha macronuclear genome contain just a single gene,

rarely 2 or more (Swart et al. 2013). Not only that, but in Oxytricha IESs are not just excised, but

the genes exist in a scrambled nonlinear form in the micronucleus and have to be “unscrambled” and

put back together in the correct order when the macronucleus is formed (Prescott 1999; Fuhrmann

et al. 2013). This processes can lead to the formation of alternative nanochromosome isoforms

for the same gene, some of which are incomplete and likely nonfunctional (Herrick et al. 1987a;

Herrick et al. 1987b; Klobutcher et al. 1988), and even allows for the possibility of “alternative

DNA splicing” (Fass et al. 2011). The organization of single-gene nanochromosomes is most curious,

as they consist of a 20bp-long telomere sequence on each end, a 5’ untranscribed sequence (UTS)
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that is on average 73bp long, the gene, and a 3’UTS that is on average 25bp long. UTRs are also

very short (on average 34bp for the 5’UTR and 25bp for the 3’UTR). Very little research has been

done on the mechanisms of gene regulation in these organisms, however such extremely small non-

coding regions pose obvious questions regarding the way transcriptional regulation is mediated by

transcription factors and histone modification patterns in these systems. The regulatory noncoding

regions surrounding transcription start sites in other eukaryotes are usually significantly longer, and

transcription initiation stats and regions of transcriptional elongation are marked by nucleosomes

(each of which occupies between 150 and 200bp of DNA) containing specific histone marks (these

modifications are present in the macronuclei of Tetrahymena and Paramecium but little work has

been done on Oxytricha and not much is known about its macronuclear chromatin). One possibility

is that some part of gene expression regulation may be accomplished at the level of the control of

DNA copy number. Substantial variation in copy number is observed between different nanochro-

mosomes, nanochromosome copy number is somewhat correlated with the expression of their genes

(Xu et al. 2012) and mechanisms for the RNA-mediated epigenetic regulation of DNA copy number

have been proposed (Nowacki et al. 2010; Heyse et al. 2010). However, regulation of copy number

would be expected to be slower than the direct regulation of transcription, and to be somatically

heritable, thus it would not be well suited to situations in which fast response to quickly changing

environmental conditions is needed, and transcriptional and/or post-transcriptional regulation has

to be playing a significant role in the biology of these organisms. In the future, it will of great

interest to explore it in more detail as well as the evolution of the nanochromosome format and all

the associated changes in nuclear and regulatory biology it necessitates within the ciliate clade. Per-

haps even more intriguing are the possibilities such systems offer for understanding gene regulation

in general – the holy grail of the field has always been the ability to build detailed computational

models of the regulation of gene expression that are fully predictive of its outcome, but this has

turned out to be very difficult in practice, one of the main reasons for which has been our absence

of good understanding of the roles of transcription factor binding cooperativity, the integration of

long-range interactions between distal enhancers and promoters, and the effect of preexisting chro-

matin states on transcription factor binding. It is certainly possible that all these phenomena are

also important in the biology of nanochromosomes but if this is not the case and gene regulation in

these organisms is governed by the binding of just a few TFs to few and mostly promoter-proximal

sites, as suggested by the limited sequence space around nanochromosome promoters, many of the

currently confounding variables would be absent, providing us with a simplified system allowing

us to better understand the interplay between the remaining ones (in particular, the interactions
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between transcription factors and between histone states), knowledge that can later be used in more

conventional eukaryotic systems.

While ciliates engage in complex rearrangements of their genomes, on more than one occasion

the even more unusual direction of dispensing with most gene regulation at the transcriptional

level has been followed. One relatively well-studied lineage, in which this has happened, is the

trypanosomatid kinetoplastids. Kinetoplastids as a whole are a group of excavates (Figure 16.1)

that contains both free-living and parasitic lineages (with parasitism apparently having evolved

multiple times in their evolutionary history; Simpson et al. 2006), but only the trypanosomatids

have been extensively studied as they include several major human pathogens (Trypanosoma and

Leishmania). Several Trypanosoma and Leishmania genomes have been sequenced Ivens et al.

2005; Downing et al. 2011; Berriman et al. 2005; El-Sayed et al. 2005; Peacock et al. 2007), as

well as the genome of the Phytomonas spp. trypanosomatid, which parasites on plants (Porcel et

al. 2013). These genomes display an unusual genome organization – they are compact, containing

very few introns, and most strikingly, genes are grouped in long units of several dozens to more

than a hundred, which are transcribed as single polycistronic transcripts. These transcripts are then

subject to trans-splicing through the addition of splicing leader (SL) sequences to the 5’ ends of

the individual genes. Trans-splicing on its own is found in a few other eukaryotic groups (most

notably, in nematodes; Krause & Hirsh 1987; Huang & Hirsh 1989), but in trypanosomes the whole

genome is transcribed as polycistronic units, the units contain exceptionally large number of genes,

the genes within individual units have no discernible functional relationship with each other, and

most importantly, there seems to be no regulation of gene expression at the level of transcription

(reviewed in Campbell et al. 2003; Mart́ınez-Calvillo et al. 2010; Kramer 2012). This is in marked

contrast with the complex life cycles of these organisms, which certainly requires a lot of regulation

of gene expression, meaning that it has to happen at the post-transcriptional level. One mechanism

might be differential trans-splicing (Gupta et al. 2013), in which the addition of SL sequences

to different positions leads to functionally distinct proteins, and indeed differential trans-splicing

seems to be widespread (Siegel et al. 2010; Nilsson et al. 2010; Kolev et al. 2010) though whether

it has functional significance in all cases is not known. Another mechanism is the regulation of

mRNA stability, evidenced by the fact that changes in mRNA levels are observed for a portion of

trypanosomatid genes in different stages of the life cycle (Leifso et al. 2007; Saxena et al. 2007;

Minning et al. 2009; Queiroz et al. 2009; Kabani et al. 2009; Jensen et al. 2009; Veitch et al. 2010;

Lahav et al. 2011; Depledge et al. 2009; Rochette et al. 2009; Srividya et al. 2007; Alcolea et al.

2010;). Such regulation might be mediated by RNA binding proteins (Estévez 2008; Dallagiovanna
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et al. 2008), riboswitches, or other mechanisms. Finally, regulation at the translational and possibly

the post-translational level seems to be widespread (Bente et al. 2003; Nugent et al. 2004; McNicoll

et al. 2006; Leifso et al. 2007; Rosenzweig et al. 2008; Vasquez et al. 2014).

While we know enough to conclude that the regulatory biology in trypanosomatids seems to

be happening almost entirely at the RNA level, overall we know very little about the inner work-

ings of these systems, the nature of the cis-acting regulatory elements and the logic of regulatory

circuits that operate in them, and the evolutionary pressures the drove/allowed their evolution.

The independent evolution of trans-splicing in nematodes and in other groups is often explained

as a consequence of their compact genomes and fast generation times, and the parasitic lifestyle of

trypanosomatids might have something to do with their unusual genomic organization. The study

of free-living kinetoplastids and the related diplonemid and euglenid lineages should shed light on

some of these issues. Limited published genomic data on the free-living kinetoplastid Bodo saltans

(Santana et al. 2001; Jackson et al. 2008), belonging to the eubodonids, the closest to trypanoso-

matids lineage (Deschamps et al. 2011), suggests that trans-splicing is an ancestral feature of all

kinetoplastids, however, whether the lack of transcriptional regulation is also ancestral remains to

be seen. The tools for studying the functional genomics of RNA-protein interactions are approach-

ing maturity (Rinn & Ule 2014; Mittal & Zavolan 2014; McHugh et al. 2014), and although they

remain more difficult to carry out than ChIP and other chromatin assays, they will be crucial for the

untangling of the regulatory networks in these organisms. Of note, the next round of the ENCODE

Project features as one of its goals the large-scale identification of the binding sites of a large number

of human proteins; the insights from this effort will be informative for the study of kinetoplastid

biology and vice versa.

The dinoflagellates are another group that has evolved in a similar direction (in fact, there are

many convergent features common to kinetoplastids and dinoflagellates; Lukes et al. 2009); however

while they share certain features with other groups, dinoflagellates go beyond anything observed

elsewhere and reach wholly new levels of “oddness”, exhibiting the most radical known departures

from our conventional view of the way an eukaryotic cells operates in numerous aspects of their

biology (Hackett et al. 2004; see discussion of organellar genome biology below for more examples), to

an extent that they used to be thought as intermediates between prokaryotes and eukaryotes (Dodge

1965). The dinoflagellates are a highly successful and diverse lineage of alveolates, containing both

heterotrophic and autotrophic groups, with photosynthetic capacity being the result of secondary

and even serial secondary endosymbiosis (Keeling 2009; Keeling 2010). They are unique among

all eukaryotes in that their nuclei seem to contain little or no histones (Rizzo & Nooden 1972;
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Rizzo 2003), chromatin is permanently condensed (Dodge & Greuet 1987), chromosomes exist in

a liquid crystalline state (Rill et al. 1989), and up to 70% of thymine bases in DNA are replaced

by 5-hydroxymethylcytosine (Rizzo et al. 1987). The negative charge of DNA has been suggested

to be neutralized by divalent cations instead of histone proteins (Levi-Setti et al. 2008). For a

long time it was thought the histones are completely absent from their genomes, but EST and

transcriptome sequencing efforts have conclusively shown that dinoflagellates in fact do possess

histone genes (Hackett 2005; Jaeckisch et al. 2012; Roy & Morse 2012; Bayer et al. 2012). These

results, however, by no means resolve the mystery of dinoflagellates genome biology as the reason

histones were believed to be absent is that they were not detectable biochemically and that the

protein-to-DNA ration in dinoflagellate chromatin is about 1:10, compared to the typical 1:1 ratio in

all other eukaryotes, i.e. even though histones are present, they are either expressed only at certain

stages of the life cycle or they are only bound to a tiny fraction of the genome. More recently, an

abundant nuclear protein that might be playing a histone-like role of apparent Phycodnaviridae viral

origin was found (Gornik et al. 2012).

Unfortunately, knowledge of dinoflagellate genome organization and gene regulation is very lim-

ited owing to their extremely large genomes, which have so far precluded whole genome sequencing.

The smallest genomes in the group are ∼1.5Gb (for example, Symbiodinium; LaJeunesse et al. 2005),

with most other species possessing larger genomes, up to more than 100Gb (for example, Prorocen-

trum micans; Veldhuis et al. 1997). What little is known is derived from transcriptome sequencing

(Hackett 2005; Jaeckisch et al. 2012; Roy & Morse 2012; Bayer et al. 2012) and the sequencing of

small portions of the genome (McEwan et al. 2008). The available information suggests that these

genomes contain large numbers of genes (larger than the 20,000 protein coding genes in the human

genomes, potentially up to 40,000 or more); however, due to its very large total size, the genome has

low gene density. Genes are often organized in tandem arrays (Bachvaroff & Place 2008); however,

unlike those found in kinetoplastids, dinoflagellate genes arrays usually consist of the same gene

repeated many times. Trans-splicing of SL sequences is widespread (Lidie & van Dolah 2007; Zhang

et al. 2007; McEwan et al. 2008; Lin et al. 2010) and it seems that transcriptional regulation is

limited, similarly to kinetoplastids, though much further work will be needed to understand to what

extent.

These peculiarities pose numerous questions regarding the nature of gene regulation, whether and

what role histones, other chromatin-associated proteins, and transcription factors (which seem to be

limited in number and diversity in dinoflagellates) play in it, the three-dimensional organization of

dinoflagellate genomes, how it compares to that of other eukaryotes and what influence it has on gene
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expression, and most importantly, what evolutionary forces shaped these genomes in such a strange

from our perspective way. The transcriptome of Perkinsus marinus, the representative species of the

closest to the dinoflagellates lineage, the perkinsids, has been sequenced and it too uses splice leader

trans-spicing. Perkinsids, however, have a full set of histones and use them as all other eukaryotes

do (Gornik et al. 2012). Fortunately, the whole-genome sequencing of dinoflagellates genomes

is expected to become feasible in the near future thanks to the advent of long-read sequencing

technologies. This will in turn enable the application of functional genomics tools to the study of

these fascinating organisms and their closest relatives, which should shed light on the evolution of

this outstanding section of the eukaryote tree.

16.6.5 The evolution of the histone code

In the last nearly two decades, much progress has been made in deciphering the histone code

(Kouzarides 2007). The association of a number of histone modifications with certain transcrip-

tional states and chromatin processes is now well known. For examples, methylation of lysine 4 on

histone 3 (H3K4me3) is a signature mark of active promoters (Bernstein et al. 2002; Santos-Rosa

et al. 2002; Guenther et al. 2007), enhancers are marked by H3K4me1 and H3K27ac (Heintzman

et al. 2007; Heintzman et la. 2009; Creyghton et al. 2010; Rada-Iglesias et al. 2009), H3K27me3 is

associated with repression mediated by Polycomb proteins (Simon & Kingston 2013; Zheng & Chen

2013), H3K9me3 is found in repressed heterochromatin and has a positive feedback loop relationship

with DNA methylation (Hashimoto et al. 2010), etc. In some cases, we have a quite detailed mech-

anistic understanding of the role histone modifications play in these processes; a classic example is

H3K36me3, which is associated with transcribed genes, where it is deposited in the process of tran-

scriptional elongation and functions to recruit histone deacetylases. The deacetylases in turn remove

the acetylation marks also deposited during elongation in order to prevent intragenic transcription

from cryptic promoters, as acetylated histones exist in a more open and conductive to transcription

conformation (Lee & Shilatifard 2007). However, in addition to the few well studied examples, a

large number of poorly understood histone modifications have been detected through mass spectrom-

etry (Freitas et al. 2004), thus the deciphering of the code is very far from complete, especially at

the level of understanding the mechanistic biochemical roles individual modifications play. Notably,

histone marks are consistently found in particular combinations (though not necessarily physically

on the same histone tails and at the same time) constituting specific chromatin “states” associated

with certain parts of genes and with intergenic features such as regulatory elements (Ernst & Kellis
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2010; Ernst et al. 2011; Ernst & Kellis 2012; Mortazavi et al. 2013).

The sequence of histone proteins is very deeply conserved and most of the well-known histone

modifications are accordingly shared by deeply diverging lineages, suggesting they were ancestral to

all eukaryotes. However, it is far less clear whether the less known modifications are also similarly

conserved, and more importantly, whether the chromatin states observed in metazoans are also

ancestral to all eukaryotes. Based on what we know from the available data, the answer seems

to be that they can be evolutionarily malleable, even within animals. For example, comparison of

modENCODE ChIP data on a number of histone modifications revealed that while H3K27me3 and

H3K9me3 colocalize in the fly genome, they are found in distinct domains in C. elegans. Studies

in other organisms have discovered a number of other deviations from the well-known patterns of

mammalian chromatin structure.

H2A.Z is a variant of H2A well-known for its association with promoter regions in animals,

yeast and plants (Henikoff 2008; Jin et al. 2009). But in Plasmodium falciparum H2A.Z instead

demarcates all intergenic regions (Bártfai et al. 2010; Hoeijmakers et al. 2012), and in Trypanosoma

brucei H2A.Z together with the unique to kinetoplastids variants H2BV, H3V, and H4V marks the

boundaries of the polycistronic units (Janzen et al. 2006; Mandava et al. 2008). As is the case with

H3K9me3, H3K9me2 is generally a repressive mark, but in diatom genomes, it has been found to be

associated with actively transcribed genes (Lin et al. 2012). A region either free of nucleosomes or

containing labile nucleosomes (Jin et al. 2009) is found around promoters in most model systems,

but in Dictyostelium discoideum it has been reported that extended such regions are found both

around the 5’ and the 3’ end of genes, where they are precisely demarcated by Poly-A tracts and

Poly-T tracts, respectively (Chang et al. 2012).

From the perspective of understanding the origins of the histone code and the reasons for its

current form in mammalian genomes, it will be of great interest to carry out a systematic epige-

nomic analysis of chromatin modifications and chromatin states across the tree of life, identify the

major deviations from the familiar patterns, and, if possible, the evolutionary forces behind their

appearance. Integrative methods for analyzing histone mark ChIP-seq data will be of invaluable

help in this endeavor (Ernst & Kellis 2010; Ernst et al. 2011; Ernst & Kellis 2012; Mortazavi et al.

2013).
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16.6.6 Testing the competing theories for the origin of genomic

complexity

At this point in time we have a very general, well supported by multiple lines of evidence theory of

the evolution of genome complexity, in which the concept of “junk DNA” and the role of nonadaptive

processes in shaping genome architecture have a prominent place (Lynch M. 2007c; Koonin 2011),

organismal complexity is not understood to be the direct result of adaptive increases in genomic

complexity, and humans are not perceived to be the pinnacle of evolutionary progress (Koonin

2004). These lines of evidence include:

1. Population genetics theory and what is known about the population genetic environment of

different lineages. Population genetics predicts that lineages with lower long-term effective

population size Ne will accumulate larger numbers of neutral and slightly disadvantageous

genomic changes as the efficiency of natural selection is reduced when Ne is low.

2. The C-value paradox, the observation that there is no relationship between organismal com-

plexity and genome size (Thomas 1971), that orders of magnitude of differences in genome size

between species of comparable morphological complexity are observed, and that many species

with genomes vastly larger than the human genome, including unicellular ones, exist.

3. The g-value paradox, the observation that the number of protein coding genes that organisms

have does not correlate with organismal complexity (Hahn & Wray 2002). Many plants and

even unicellular eukaryotes have more genes that mammals do.

4. The general inverse correlation between genome size and Ne in different lineages across the

tree of life.

5. The closely related general inverse correlation between Ne and genomic features such as trans-

posable element content, intron length and size.

This view is not shared by all researchers, with vocal opinions in support of the position that

“junk DNA” does not exist having been repeatedly raised (for example, Mattick & Dinger 2013).

However, there are numerous reasons why such a position is untenable. First, the null hypothesis

should always be neutral evolution and neutral adaptive significance for any trait examined, as is

the standard practice in molecular evolution research. Functionality has to be demonstrated in a

positive way by rejecting this null hypothesis. This is despite suggestions that the null hypothesis

should be reversed and lack of function is what should be demonstrated explicitly (see discussion in
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Bhattacharjee 2014). Second, all adaptive explanations for the evolution of certain genomic features

will have to be supported by population genetics arguments (because “nothing in evolution makes

sense except in the light of population genetics”; Lynch M. 2007b). This has so far typically not

been done – all such arguments have been verbal rather than quantitative and that is when evolution

was even considered, which has not always been the case. In contrast, population genetics-oriented

analysis has mostly returned results pointing in the completely opposite direction. Third, to argue

that there is no junk DNA in the human genome is equivalent to arguing that there is no junk DNA

anywhere in the tree of life, otherwise one would have to elevate the human genome to a very special

position compared to other organisms, directly contradicting one of the most fundamental insights of

evolutionary biology, that humans (or, in a more relaxed version of the same statement, vertebrates

in general) are part of a continuum with all other life forms (as a curious side note, it should be noted

that the “junk” DNA debate pops up primarily when the human genome is discussed but significantly

less often when the genomes of other organisms are concerned – for example, the publication of the

modENCODE papers generated no such controversy – suggesting that our view of ourselves as a

species has a lot to do with the persistent resurfacing of this discussion every time we probe deeper

into our genome). Thus in order to reject the existence of junk DNA, it will have to be shown to not

exist not only in humans but in all other lineages, and there are numerous cases in which it is much

more difficult to even suggest possible functions for certain DNA sequences than it is for the vast

noncoding portions of mammalian genomes. A good example of such an objection is the “onion test”

(Gregory 2007) requiring that proposals that all eukaryotic DNA is the result of adaptive evolution

should be able to explain why onion species in the Allium genus need more DNA than humans,

and why the DNA content of different Allium species varies more than five-fold; many other such

examples are also known, from the giant genomes of lingfish and salamanders (40 times bigger than

the human genome) to the equally gigantic genomes of the unicellular dinoflagellates mentioned

previously. It is not clear why these species would need orders of magnitude more noncoding DNA,

with all the proposed adaptive roles it might be playing than mammals. And then there is what

can be considered the ultimate example of junk DNA – DNA that is deleted in somatic genomes,

an example of which are the transposon-rich IESs of ciliates (as well as what happens in some other

species, reviewed in Kloc & Zagrodzinska 2001), which are present in the inert and transcriptionally

silent “germline” micronuclear genome of these organisms and are excised and absent from the

“somatic” macronuclear genome. While genes are scrambled and alternative DNA splicing might

be happening in some ciliates, in others the excision of IESs results in a reliably colinear splicing of

the functional DNA segments, thus arguments that larger protein diversity is produced in this way
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(which have also been used to support the adaptive significance of RNA splicing) do not apply. Even

if we adopt the biochemical criterion for assessing the functionality of DNA sequences (i.e. that if

a DNA sequenced is transcribed or bound by transcription factors) as our sole guide, IESs largely

fail to qualify as being functional as the micronucleus is generally transcriptionally silent (though it

should be noted that high-resolution functional genomic analysis of micronuclear gene expression in

species like Oxytricha has not been carried out). Numerous other examples can be presented (see

discussion below on organellar genomes).

Yet while the general nonadaptive theory is sound, there are still numerous incompletely resolved

issues both regarding the details of genome evolution in particular groups and the general forces

behind the evolution of genomic and organismal complexity across the tree of life. Also, it has not

been comprehensively tested with respect to many aspects of functional genomic complexity and

other features of genome biology. Despite the controversy surrounding the project, thanks in no

small part to the efforts of the ENCODE Project Consortium, we are now in a position, in which

the experimental and analytical tools to obtain conclusive answers to many of these questions are in

existence, by unleashing this functional genomics machinery on the large known eukaryotic diversity.

Below I list and discuss some of them.

16.6.6.1 The relationship between genome size, genome complexity and organismal

complexity

From the limited genomic sampling of organisms we have at our disposal, we know that there is a

general pattern of correlation between organismal size and organismal complexity on one side, and

genomic size and functional genomic complexity, on the other. This is understood to be the result

of the lowered Ne associated with larger physical size, as already outlined. However, setting aside

all other considerations, the adaptive view of genome complexity is also consistent with this general

pattern, and indeed the vast amount of non-coding RNA and the generally increased complexity of

genomic architecture in large multicellular organisms has often been interpreted as evidence for the

existence of a relationship between the two that is both causal and adaptive (Liu et al. 2013).

It is possible to conclusively distinguish between these two competing explanations thanks to

the existence of natural control groups. One of them are the metazoans with extremely large (much

larger than ours) genomes. Few would consider these species to be more “complex” than humans,

and so if all the hallmarks of genomic complexity listed below scale up in correlation with genome

size, then this would be solid evidence for the absence of absolute functional and causal relationship

between the complexity of organismal organization and that of gene regulation and gene expression
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(Doolittle 2013). So far it has been technically and economically infeasible to generate high-quality

assemblies for any genome much larger than the mammalian genome size, but steps forwards toward

making this a real possibility have already been made (Nystedt et al. 2013; Neale et al. 2014; Zimin

et al. 2014; Wegrzyn et al. 2014), and advances in sequencing technology promise to eventually

solve the problem. Of note, for such a comparison to be valid, the large genome size should not

be the result of extensive polyploidy, which might be the case with some of the known species with

huge genomes, but this is unlikely to be the case for all of them.

Even better, we have multiple natural controls for testing our theories explaining the association

of genomic complexity with the complexity of multicellular organisms, as multicellularity arose in

more than one lineage, and the extent of variation of parameters of the population genetic environ-

ment such as Ne is comparable between some of them. Within these large clades, we observe large

variations in genome size between different species of lineages at comparable levels of organismal

complexity (Gregory et al. 2007).

Multicellularity evolved on at least six occasions, in metazoans, the land plants lineage, in red

algae, in brown algae and on multiple separate occasions in fungi (Knoll 2011). In two of these

groups, the land plants and the animals, a remarkable convergence of the genome characteristics

correlated in very similar ways with values of Ne is seen. The Ne of invertebrates is on the order

of 106 while it goes down to 104 in large-bodied vertebrates (Lynch 2007c), and the genomes of

the former are on average an order of magnitude smaller (few hundred megabases) and contain

much less noncoding DNA that those of the latter (which are gigabase-sized). Similar differences

in the average Ne are observed between trees and annual plants. Groups like the gymnosperms

have some of the biggest on average genomes of all eukaryotes (between 2 and 36Gb; Murray et

al. 2012), while many annual plants have small genomes. However, a number of small annual

flowering plants also have giant genomes, complicating the picture (even after accounting for the

rampant polyploidy in plants) suggesting much remains to be learned about the balance between

their effective populations size, the direction of mutational biases, and the tolerance of the biology

of these organisms towards genomic expansion. Still, it remains true that many similarities between

the extremes of genomic size in plants and animals exist and it will be very informative to study

and compare the functional complexity of these lineages. The smallest known land plant genomes

are just 63Mb in size (Genlisea margaretae; Greilhuber et al. 2006) and the size of the model

organism Arabidopsis thaliana genome is also quite small, at 120−150Mb (Arabidopsis Genome

Initiative 2000). More recently, an even more highly compressed plant genome was sequenced, that

of Utricularia gibba at 82Mb (Ibarra-Laclette et al. 2013) and it revealed marked reduction of
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noncoding DNA and little transposable element activity. At the other extreme, plant genomes as

big as 152Gb are known (Paris japonica; Pellicer et al. 2010) and many species with genomes in

the tens of Gb range are known (Zonneveld 2009; Zonneveld 2010). In animals, genomes as small as

20Mb are known (in some parasitic nematodes; Leroy et al. 2007) and as big as 130Gb (the lungfish

Protopterus aethiopicus; Pedersen 1971), and large variation is seen even within the major animal

phyla. For example, the smallest arthropod genomes are on the order of 100Mb (the Strepsiptera

insects, Johnston et al. 2007; the mite Tetranychus urticae at 90Mb; Grbic et al. 2011), but species

with truly massive genomes are also known (the amphipod Ampelisca macrocephala at 63.2Gb; Rees

et al. 2007). Within vertebrates, amphibians range from 0.95Gb for some frogs (Limnodynastes

ornatus; Olmo & Morescalchi 1978) to more than 120Gb in some salamanders (Necturus lewisi ;

Olmo 1973). The smallest fish genomes are on the order of 360Mb, such as the sequenced genomes

of Tetraodon nigroviridis (Jaillon et al. 2004) and Fugu rubripes (Aparicio et al. 2002) and the

even smaller genome of Tetraodon fluviatilis (Brainerd et al. 2001), while the >130Gb genomes

of lungfish were already mentioned. Significant variation is observed even within mammals: bat

genomes tend to be smaller that the typical for mammal ∼3Gb (the smallest known bat genome is

that of Miniopterus schreibersi at 1.7Gb; Capanna & Manfredi Romanini 1971), while the genome

of vizcacha rat Tympanoctomys barrerae is 8.4Gb, although it, unusually for a mammal, seems to

be tetraploid (Gallardo et al. 1999), and thus the title of largest mammalian genome belongs to the

6.3Gb genome of the cape golden mole Chrysochloris asiatica (Redi et al. 2007). Remarkably, the

genome size of birds is typically significantly smaller than that of mammals, in convergence with

what is seen in bats, with the largest bird genome being that of the flightless and large-sized ostrich

Struthio camelus at 2.16Gb (Eden et al. 1978) suggesting that flying may be a common reason for

this reduction (Tiersch & Wachtel 1991; Hughes & Hughes 1995; Smith & Gregory 2009). It will

be highly intriguing to know what the functional complexity of genomes across these extremes of

genome size occurring at otherwise similar levels of organismal organization is. Of note, the other

lineages that have evolved multicellularity also display wide variation in genome size but not to

the same extent: the known genome sizes of red algae are between 100Mb and 2.8Gb (Kapraun

& Freshwater 2012), those of brown algae are between 200Mb and 3.6Gb (though at the high end,

polyploidy may play a role; Phillips et al. 2011), and the largest fungal genomes reach 800Mb

(Kullman et al. 2005).

Perhaps even more intriguing though are the giant genomes of unicellular organisms. The Ne

of unicellular eukaryotes is larger than that of invertebrates and correspondingly on average they

have smaller genomes (usually <100Mb), fewer and shorter introns and fewer transposons (Lynch
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2007c). However, examples of very big genomes are known among them. An estimate of more than

700Gb is often quoted for some free-living amoebas (Friz 1968) but it is quite likely that this is due

to high levels of polyploidy. Yet plenty of other, more reliable examples of giant genomes exist. The

enormous dinoflagellates genomes were already discussed, but large genomes have been reported for

other algae too: for example, while the two sequenced diatom genomes, those of Phaeodactylum

tricornutum and Thalassiosira pseudonana stand at 27Mb and 34Mb respectively, ((Bowler et al.

2008; Armbrust et al. 2004), a value of >25Gb has been reported for Coscinodiscus asteromphalus

(Shuter et al. 1983). The existence of such large genomes in organisms with algal lifestyle is a bit

puzzling; dinoflagellates are a highly successful and diverse group presumably subjected to some

of the same evolutionary pressures as other algal lineages, which have generally lead to genome

streamlining and reduction (for example, the smallest genome of a free-living eukaryotes is the

12.6Mb genome of Ostreococcus tauri, Derelle et al. 2006; the smallest known eukaryotic genome

in general belongs to the parasite Encephalitozoon intestinalis at 2.3Mb (Vivarès & Méténier 2000).

Thus it is not far from clear what drove the evolution of such large genomes, although it has been

suggested that dinoflagellate effective population size may in fact be very low (Watts et al. 2013).

Even more intriguing is the question of what the content of these genomes is. As mentioned above,

because organismal complexity typically correlates both with low Ne and with increased genome

size, it is still possible to claim adaptive significance of all the extra noncoding DNA. However,

this argument is much more difficult to make in the case of a unicellular species with a very large

genome, as while such organisms may have far from simple lifestyles, they do not have to execute

an incredibly complicated developmental program and specify hundreds of different cell types, each

with its own gene expression program, the reasons usually cited as a reason for the functionality

of all noncoding DNA and RNAs in humans. The functional genomic study of dinoflagellates and

especially of other more “normal” in their biology protists, should be highly illuminative with respect

to these questions.

16.6.6.2 The number and complexity of regulatory elements

The large number of putative regulatory elements has been a major result of the ENCODE Project

(Neph et al. 2012; Thurman et al. 2012). As discussed above, whether all of them are in fact

functional is an open question, but their existence can be interpreted both as the result of the

need for them for the specification of the complex vertebrate body plan with all its numerous cell

types (Levine & Tjian 2003), and as a nonadaptive consequence of the greater tolerance towards

genomic changes conferred by the low Ne of vertebrates. The two explanations are far from mutually
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exclusive, and in fact both are likely to be correct to an extent, but in order to parse their relative

contribution, natural control groups within vertebrates with larger and smaller genomes will have to

be studied using ENCODE-like approaches for mapping putative regulatory regions. Examples of

such groups include the salamander and lungfish species with huge genomes, the larger mammalian

genomes, the fish species with small genomes such as fugu, and birds and bats with their on average

two-fold reduced compared to the mammalian mean genomes, as well as the giant and compressed

genomes within the different invertebrate groups. If the number of putative regulatory elements

scales up with genome size then this would be convincing evidence in support of the nonadaptive

origin of regulatory complexity in large multicellular species.

The other key control group would be plants. Historically, the study of enhancers has been

a metazoan-centric enterprise, with little work having been done in plants, and it would be of

great biological interest and practical relevance to learn more about them, especially if any major

differences in the general architecture of long-range gene regulation exist in the larger plant genomes

compared to what is seen in mammals. With respect to functional complexity, as plants present

a similarly wide range of genome sizes to animals, if a similar scaling of the number of regulatory

elements with genome size and Ne is observed in them (as is seen for the number of introns and

transposons), this would further corroborate their nonadaptive origin. The nonadaptive hypothesis

would be strengthened even further if the same is seen in unicellular species.

16.6.6.3 The genomic changes associated with the evolution of multicellularity

A defining feature of multicellularity is the differentiation of cells into distinct cell types, which is

traditionally understood to require increases in regulatory complexity. At present we do not have a

detailed genomic understanding of how multicellularity evolved but from the genomes of represen-

tatives of the closest to metazoans lineages, the choanoflagellates Monosiga brevicollis (King et al.

2008) and Salpingoeca rosetta (Fairclough et al. 2013), and the filasterean Capsaspora owczarzaki,

we do know that these lineages already possessed members of a number of common metazoan tran-

scription factor families. Understanding what regulatory networks look like in these organisms and

how they were rewired later in metazoan evolution, as well as similar studies in the other lineages

where multicellularity arose should be highly informative regarding its origins.
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16.6.6.4 The prevalence of functional regulated alternative splicing and the general

level of splicing complexity

The inverse-correlation relationship between Ne and intron number and size is well understood

(Lynch 2002; Lynch 2006b; Lynch 2007c). However, how many introns there are in a gene is a

different question from how many alternative splice products are generated and what their functional

significance is. Whether a similar inverse-correlation relationship between the complexity of splicing

and population genetic parameters exists is highly relevant to the debate about the functional

significance of most of the observed alternative splicing events in mammalian genomes. Under

the nonadaptive model of the evolution of splicing complexity, improvements in the fidelity of the

splicing machinery would be limited by the minimum value of the level of negative effect on fitness

such errors have that is visible to selection (which in turn is constrained by Ne). Comparison of

RNA-seq datasets across the eukaryotic tree of life should shed light on these questions. It should be

noted that because of issues with the variable complexity of cell type composition in the samples that

can be practically obtained from different species, such questions are best answered by single-cell

sequencing. For example, a population of unicellular organisms can exist in a reasonably uniform

cell state but for a multicellular organism, only samples from whole organs containing many cell

types with presumably different splicing patterns could be available, making the direct comparison

of splicing complexity problematic as it would be artificially elevated in the latter case. At present,

single-cell RNA-seq is not yet up to this task due to the large stochastic noise levels of current

protocols (Marinov et al. 2014) but future improvements in experimental techniques should resolve

these issues and enable such studies.

Notable curious cases are already known. The genome of the chlorarachniophyte Bigelowiella

natans was recently sequenced and its transcriptome analyzed using RNA-seq (Curtis et al. 2012).

Remarkably, while the genome as a whole is highly streamlined, it contains numerous introns and

exhibits very high levels of alternative splicing, similar to what is seen in human brains (it also

contains more protein-coding genes than the human genome, more than 21, 000). Why a single-

celled organism would need so much alternative splicing is not clear, and indeed most of it has been

interpreted as the result of errors in the splicing machinery (Curtis et al. 2012), but why this is

tolerated in Bigelowiella natans and not in other algae is not clear. It is also curious that as a chlo-

rarachniophyte, Bigelowiella natans possesses another eukaryotic genome, that of the nucleomorph

remnant of the nucleus of its photosynthetic secondary endosymbiont (see discussion below). While

nucleomorph genomes provide the most extreme example of the reduction of an eukaryotic genome
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(Archibald & Lane 2009), the Bigelowiella natans nucleomorph genome is intron-rich even though

the introns are extremely short, 18-21bp on average (Gilson et al. 2006).

16.6.6.5 The number of lncRNAs

As discussed above, one explanation for the number and fast evolution of lncRNAs in vertebrate

genomes is that many of them are the product of an evolutionary treadmill of gene birth and

death, which is allowed to generate much larger numbers of lncRNAs in big genomes due to looser

constraints on this process. Therefore whether the number of lncRNAs scales up with genome size

and whether this is true across all eukaryotic groups is of major importance for the way we think

of these RNAs. The work on lncRNAs outside of vertebrates has been limited so far. An RNA-seq

study revealed 164 novel lncRNAs in the streamlined genome of Plasmodium falciparum (Liao et al.

2014), and 60 lncRNA candidates were identified in a prior tiling array-based work (Broadbent et

al. 2011), numbers that vastly smaller than the up to 10,000 lincRNAs found in humans. Another

recent study (Li et al. 2014) found 1,704 high-confidence lncRNAs in the 2.3Gb maize genome (Zea

mays; Schnable et al. 2009) but much more data points are needed to draw general conclusions.

16.6.6.6 The prevalence, nature and conservation of “exotic” RNA species

Work on “exotic” RNAs such as the various promoter and transcription termination-associated

RNAs and on eRNAs has been limited to mammals and other traditional model systems. and

even in these organisms, the functional significance of these molecules has not been investigated,

with some exceptions (Melo et al. 2013; Li et al. 2013; Lam et al. 2013; Mousavi et al. 2013;

Memczak et al. 2013; Hansen et al. 2013). Major unresolved questions remain regarding whether

these RNAs are universal features of eukaryotic gene expression and if not, what the patterns of

their evolution across different lineages are. For example, large genomes with low gene density,

in which genes are regulated by distantly located enhancers, seem to have evolved multiple times

from an ancestral state characterized by a much more compact genomic architecture. Whether

features such as eRNAs are present in all such lineages, and if yes, whether they were ancestral

or evolved convergently and why, is of significant interest. As with other aspects of eukaryote

biology, some notable deviations from what is observed in traditional model systems are already

known, one of them being promoter-associated bidirectional transcription. It is a common features

of mammalian promoters (Core et al. 2008; Seila et al. 2008; Xu et al. 2009), however, antisense

transcripts are unstable and preferentially degraded, perhaps due to the differences in the frequency

of polyadenylation and splice sites in the sense and antisense direction, which help the transcriptional
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machinery determine the proper orientation (Almada et al. 2013). But in the diplomonad Giardia

lamblia sterile, noncoding bidirectional antisense transcripts have been reported to be abundant

and polyadenylated, representing up to 20% of total cDNA (Elmendorf et al. 2001; Teodorovic et

al. 2007). Diplomonads are a very deeply diverging lineage (Figure 16.1) and the Giardia genome

is highly compressed (Morrison et al. 2007), with its transcriptional apparatus being simplified

compared to other eukaryotic and missing a number of components. The details of this unusual

transcriptional biology and the reasons for its evolution are at present unknown.

16.7 Organellar genomes and the principles of genome

evolution

Finally, a few words need to be said about organellar genomes and what they tell us about the

relative contribution of the different evolutionary forces shaping genomes. While organelles were

not a focus of the ENCODE and modENCODE projects, there is little reason to think the answers

to the questions whether the existence of “junk DNA” in large amounts is permissible by evolution,

and whether the picture of genome organization derived from metazoans and other opisthokonts is

representative of all eukaryotes, would be different with respect to their genomes. Just as it is true

that if there is no junk DNA is the human genome then no junk DNA should be expected in the

genomes of all other organisms, it is also true that if there is no junk DNA in the human genome

then there should be no junk DNA in organellar genomes. It so happens that both very difficult

to refute examples of “junk DNA” and a large diversity of genome organizations and complicated

embellishments in gene expression and RNA processing are found in the organellar genomes of

various organisms (Barbrook et al. 2010). Organelles are also one of the systems the evolution of

which provides a textbook example supporting the mutation burden hypothesis for the evolution of

genomic organization and complexity (Lynch 2006). The study of the diversity of organellar genomes

should therefore provide some very helpful insights into these issues.

We should first briefly review our knowledge of organellar genomes and their structure across the

tree of life. Organelles evolved as a result of endosymbiosis (Altmann 1890; Mereschkowsky 1905;

Sagan 1967), and their genomes are a remnant of their free-living past. There were two primary

endosymbiotic events in the history of eukaryotes. First, mitochondria evolved as a result of the

endosymbiosis of a α-proteobacterial prokaryote (John & Whatley 1975; Yang et al. 1985) and the

ancestor of modern eukaryotes, which was most likely either an archaeon or an archaeon-like lineage
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(Lake et al. 1984; Ribeiro & Golding 1998; Cox et el. 2008; Williams et al. 2013; Embley & Martin

2006; Gribaldo et al. 2010). This event may have in fact even provided the primary evolutionary

driving force behind the origin of modern eukaryotes and their features (Martin & Koonin 2006;

Koonin 2006). All modern eukaryotes possess either mitochondria, which with very few exceptions

(Abrahamsen et al. 2004; Henriquez et al. 2005) contain their own genome (Nass et al. 1965), or the

remnants of mitochondria in the form of hydrogenosomes (Lindmark & Müller 1973) and mitosomes

(Tovar et al. 1999; Tovar et al. 2003; Williams et al. 2002) that, with few exceptions (Boxma et

al. 2005), have lost it (Embley & Martin 2006; Embley et al. 2003; van der Giezen 2009). Later in

eukaryote evolution, one lineage acquired a second endosymbiont of cyanobacterial origin (Keeling

2004), which evolved into the modern chloroplast. Chloroplasts were later lost in multiple lineages

and acquired again several times through secondary endosymbiosis (the engulfment of a plastid-

containing eukaryotes by another eukaryote) and even tertiary endosymbiosis (Cavalier-Smith 2002;

Stoebe & Maier 2002; Archibald & Keeling 2002; Keeling 2009; Keeling 2010).

The main theme in the evolution of organellar genomes has been the transfer of genes from

them to the nucleus. There seems to be a constant, ongoing process of integration of parts of

the mitochondrial genome into the nuclear genome, evidenced by the presence of multiple partial

copies of the mitochondrial DNA in mammalian genomes (NUMTs, Hazkani-Covo et al. 2010).

A similar process acts on the plastid genome (Ayliffe et al. 1998; Huang et al. 2003). Some of

these nuclear insertions of organellar genes subsequently evolve regulatory elements enabling their

expression in the nucleus and sequences ensuring their targeting and importing into organelles.

The organellar copy of the gene can then be lost without fitness consequences. It has to be noted

that this process is not unidirectional - organellar proteomes also contain many genes that did not

originate from the genome of the original endosymbiont but are instead either of nuclear origin or

come from other organelles (for example, a significant fraction of the plastid proteome is of non-

cyanobacterial ancestry; Suzuki & Miyagishima 2010). The end result has been the great reduction

of gene content in organellar genomes in all lineages studied. The most gene-rich mitochondrial

genomes are those of Reclinomonas americana, which contains 62 protein coding genes (including

its own apparently ancestral bacterial-type RNA polymerase), and of other jacobid species(Lang et

al. 1997; Burger et al. 2103). At the other extreme, the mitochondrial genomes of Plasmodium and

other apicomplexans, and those of dinoflagellates are extremely reduced in terms of gene content,

containing as little as 3 genes (Vaidya & Mather 2009; Nash et al. 2007). Plastid genomes have

generally retained a larger number of genes, between 90 and 250 genes (Green 2011), with a few

exception associated with the loss of photosynthetic capacity (for example, the apicomplexans; Sato
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2011).

These differences in gene content are confined within a relatively narrow band of variability

compared to the extreme differences in organellar genome size and organization observed within

the known eukaryotic diversity. The best studied and most familiar organellar genomes are those

of mammalian mitochondria. The human mitochondrial genome is 16,571bp long and contains

13 protein coding genes, 22 tRNAs and 2 rRNAs (Anderson et al. 1981; Bibb et al. 1981). It

is circular mapping (meaning that it can be represented as a circle but it does not necessarily

adopt a single-circle conformation in vivo; Bendich 1993) and extremely densely packed with genes,

with no introns and only one non-coding region, referred to as the D-loop, which plays a central

role in the initiation of transcription and replication. Transcription is carried out by a dedicated

polymerase (POLRMT), which is encoded in the nucleus and is of apparent phage origin (Masters et

al. 1987), and three polycistronic transcripts are produced from both strands, which are subsequently

posttranscriptionally processed to produce the mature message molecules. This economy of DNA

content is a common feature of all animal mitochondrial genomes: the size of the smallest ones is

∼11kbp (for example, the chaetognath Sagitta decipens; Miyamoto et al. 2010), while the largest

ones are ∼43kbp long (in Trichoplax ; Dellaporta et al. 2006). More significant variations in structure

exist within animals (see discussion below) but they are dwarfed by the extraordinary diversity in the

size and organization of mitochondrial genomes within other eukaryotes. The best known contrast is

that between the mitochondrial genomes of animals and green plants. The latter have large genome

(typically several hundred kb) but comparable gene content, with the difference being largely due

to the presence of large amounts of repeats and intronic sequences. Plant mitochondrial genomes

can in some cases reach truly extreme sizes, sometimes considerably larger than the genomes of

free-living bacteria. For example, Cucurbitaceae mitochondrial genomes, of which that of Cucumis

sativus was recently fully sequenced (Alverson et al. 2011), can reach up to 3Mbp (Ward et al.

1981). The Cucumis sativus mitochondrial genome was found to be 1685kb long, yet it still has

only 37 genes, with the rest of the genome consisting of repeats, expanded introns and apparently

inactive sequences of nuclear, plastid and viral origin. An even more extreme example is provided

by the mitochondrial genomes of angiosperms in the Silene genus, two of which, Silene conica and

Silene noctiflora were recently sequenced and found to be 6.7 and 11.3Mb long, respectively, which

is again due primarily to extreme expansion of repetitive sequences (Sloan et al. 2012).

The differences in mitochondrial genome size between plants and animals are theoretically ex-

plained as a non-adaptive consequence of the differences in the mutation rate in mitochondria be-

tween the two lineages (Lynch et al. 2006). The mitochondrial mutation rate µ in plants and
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mammals have evolved in opposite directions, and is orders of magnitude lower in the former than

it is in the latter. Recall from the discussion of introns above that the removal of noncoding DNA

such as introns by selection is facilitated by large values of Neµ; the values of Ne are similar be-

tween multicellular animals and multicellular plants but the large differences in µ explain well the

observed disparities in noncoding DNA content. Of note, there are animal lineages in which µ is low

compared to other metazoans (for example, cnidarians) and they happen to also be an exception of

the general rule that animal mitochondria do not contain introns (Shearer et al. 2002; van Oppen

et al. 2002). The true picture is likely to be more complex: for example, the aforementioned giant

Silene mitochondrial genomes seem to have very high mutation rates combined with extreme bloat-

ing with noncoding DNA but it is not clear whether these measurements represent the long-term

population-genetic environment of the lineage, and whether the repeat expansion in them is not

driven by other factors.

Nevertheless, organellar genomes provide some of the at present most difficult to explain from an

adaptive perspective cases of “junk” DNA. The smallest mitochondrial genomes are only 6-7kb long

(Plasmodium yoelii, Vaidya et al. 1989; Theileria parva, Kairo et al. 1994), the largest are as big

as the largest known genomes of free-living prokaryote, yet they never possess more than 60 protein

coding genes and around 100 genes in total after taking tRNAs and rRNAs into account. Very large

differences in non-coding DNA content are observed between closely related species. For example, the

sizes of the mitochondrial genomes of different Schizosaccharomyces yeast species differ by as much

as 4-fold, with little difference in gene content (Bullerwell et al. 2003). Even more strikingly, the two

Silene species mentioned above differ by 4.5Mb in terms of mitochondrial genome size, while other

species in the same genus (Silene vulgaris and Silene latifolia) have an order of magnitude smaller

mitochondrial genomes than either of them (427kb and 253kb respectively). It is hard to imagine

what functional role all this additional, mostly repetitive-element sequence, might be playing. Most

adaptive hypotheses for the role of transposable repetitive elements, introns, and pseudogenes have

been specifically tailored to large nuclear genomes packaged by histones. But organellar genomes

evolved from prokaryote genomes, in which long-range regulatory interactions are not the norm,

and subsequently underwent drastic reduction, as a result of which today they only contain a few

dozen genes. It is far from clear how hundreds of kilobases and even megabases of non-coding

DNA could all conceivably function, let alone be necessary, for their regulation, expression and

processing. They also do not score highly according to the biochemical criterion for functionality.

A great illustration of this was recently provided by the sequencing of the genome of Amborella

trichopoda, the sister lineage of all other flowering plants (Amborella Genome Project 2013). The
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Amborella mitochondrial genome (Rice et al. 2013) consists of five circular-mapping chromosomes,

is 3.9Mb in size, and apparently got so big by acquiring large regions (even full-length copies) of

mtDNA from other plant species (totaling about six genome-equivalents), as well as plastid DNA.

Many of these foreign mitochondrial genes have been pseudogenized. Notably, the expression of

the endogenous and foreign genes was assayed (by targeted RT-PCR on total RNA) and only the

endogenous ones were found to be expressed. These foreign mtDNA insertions therefore exhibit all

the classic features of “junk DNA”.

There is, however, a lot to be learned about organelle genomes, their organization and mechanisms

of gene expression. This is in many ways even more so regarding mitochondria and plastids than it is

about the diversity of nuclear genomes discussed above, because of the stunning diversity of organelle

genome structure and organization observed within eukaryotes. As stark as the differences between

eukaryotes and prokaryotes are, the nuclear eukaryotic genomes are still most likely derivatives of

an ancestral genome similar in its general features to the typical blueprint a modern prokaryotic

genome. Organelle genomes represent another diversification of such an ancestral state, albeit one

that developed under very different evolutionary pressures. Understanding the many ways in which

these genomes have been dramatically reorganized in different lineages would greatly improve our

knowledge of the driving forces, and the possibilities and limitations of genome evolution.

As is the case with nuclear genomes, the best studied systems are confined to the classical model

systems representing just a few of the major eukaryotic lineages. However, the textbook-example,

highly compacted metazoan mitochondrial genome consisting of a single circular-mapping molecule

of mtDNA generating a few long polycistronic messages is far from representative. A single circular-

mapping molecule is, of course, a very common configuration, as this was the most likely ancestral

state, but within it there are large variations in terms of noncoding DNA content, as discussed

above. It is highly unlikely that polycistronic messages are generated in genomes in which individual

genes are separated by large stretches on non-coding DNA; instead they are likely transcribed and

regulated individually, but much less is known about the detailed workings of such systems than it

is for mammalian mitochondria. And even within metazoans, very different topologies are observed.

For example, the mitochondrial genome in Hydra consist of two linear pieces of mtDNA (Warrior &

Gall 1985; Voigt et al. 2008), in the human louse Pediculus humanus it is composed of 18 individual

circular molecules (Shao et al. 2009) and in the mesozoan Dicyema shimantoense, the initially

circular mtDNA is fragmented in somatic cells into minicircles containing single genes (Watanabe

et al. 1999). Other examples of fragmented and/or linear mitochondrial genomes in metazoans are

also known (Smith et al. 2012; Shao et al. 2012;)



634

Figure 16.2: Towards a general understanding of genome function.

The most famous example of “weird” mitochondrial genomes are the kinetoplasts of kinetoplas-

tids, which are composed of multiple identical maxicircles, on which the genes reside, plus hundreds

of minicircles containing guide RNAs (gRNAs), with these circles being physically intertwined (Simp-

son 1997; Simpson et al. 1989; Lukes et al. 1998). The gRNAs are necessary for the massive amounts
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of RNA editing that the genes need to undergo in order to be properly expressed (Benne et al. 1986;

Simpson & Thiemann 1995; Blum et al. 1990). Kinetoplastid RNA editing has been usually inter-

preted as a classic example of constructive neutral evolution. The most widely accepted model for

its origins involves the initial acquiring of the capacity for RNA editing, which allows the mutation

of coding nucleotides, which in turn leads to the eventual locking of the system into a state in which

editing is essential (Covello & Gray 1993), although adaptive explanations for its origin have also

been proposed (Speijer 2006).

Even more unusual is the mtDNA organization of diplonemids, a closely related to kinetoplas-

tids lineage (see Figure 16.1). The mitochondrial genome of Diplonema papillatum is very large

(>600kbp), consisting of about 100 circular 6-7kb molecules (Marande et al. 2005), and the orga-

nization is similar in other diplonemids (Roy et al. 2007; Kiethega et al. 2011). Most remarkably,

the protein coding genes in these mitochondria are broken into small individual pieces (up to a

dozen per gene) each residing on a separate minichromosome (Vlcek et al. 2011), with the rest of

the minichromosome containing a highly regular and similar between different minicircles pattern

of repeat motifs. The pieces are subsequently joined to produce the full-length message (Kiethega

et al. 2011; Marande & Burger 2007). Another interesting case are the mitochondrial genomes

of ichthyosporeans, of which the Amoebidium parasiticum one has been sequenced. It is >200kb

long consisting of hundreds of numerous linear minichromosomes and contains both full-length and

fragmented copies of genes (Burger et al. 2003).

As is often the case, dinoflagellates present the farthest deviation from the norm. Their mito-

chondrial genomes have presented a huge challenge to sequencing because they apparently exist as

multiple circles of varying size and composition, with the same genes occurring in different sequence

contexts, likely due to very high levels of recombination (Norman and Gray 2001; Jackson et al.

2007; Nash et al. 2008; Waller and Jackson 2009; Slamovits et al. 2007; Kamikawa et al. 2009).

The three protein-coding genes they contain occur in both full-length copies as well as in multiple

varying in length and composition fragments. Remarkably, this results in the production of partial

transcript fragments that are not only transcribed and polyadenylated separately, but are likely

not trans-spliced as in diplonemids, with the exception of the cox3 gene, as well as polycistronic

transcripts and transcripts without stop codons (Jackson et al. 2007).

Dinoflagellates also display an amazing configuration of their plastid genome. The typical plastid

genome is circular-mapping, between 100 and 200kb long, containing between 100 and 200 genes

(depending on the lineage) and is organized into a large and small single-copy regions separated by

two inverted repeats (Kolodner & Tewari 1979). Polycistronic transcripts are generated from multi-
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ple promoters, by two different RNA polymerases, one plastid-encoded and of cyanobacterial origin

(PEP), and another one of phage origin and nucleus-encoded (NEP) (Yagi & Shiina 2014). Plastid

genomes display less variation in their structure compared to mitochondria, yet in dinoflagellates

the chloroplast genome is of most unusual nature: it is split into multiple minicircles, which are

transcribed into polycistronic messages by a rolling circle mechanism (Zhang et al. 1999; Barbrook

& Howe 2000; Nisbet et al. 2008; Barbrook et al. 2012).

In general, little is known about the detailed mechanisms of transcriptional and posttranscrip-

tional regulation of organellar genomes and, in turn, what evolutionary forces have shaped them,

except for some of the well-studied model organisms (though even in those latter cases much still re-

mains to be learned). Functional genomic tools for characterizing the transcriptome and the protein-

DNA and protein-RNA interaction landscapes in organelles should greatly facilitate advances in that

area (Smith 2013), and initial studies have already shown the power of these approaches (Sanchez

et al. 2011; Mercer et al. 2011; Liu et al. 2013; Wang et al. 2013; Marinov & Wang et al. 2014;

Tanifuji et al. 2014; Hotto et al. 2013).

This is even more so the case for nucleomorph genomes. Nucleomorphs are the result of sec-

ondary endosymbiosis between two eukaryotes (Gibbs 1978; Hibberd & Norris 1984; Cavalier-Smith

2002). In most lineages with a history of such events, the nucleus and the nuclear genome of the en-

dosymbiont have been lost following massive gene transfer to the host nucleus (Martin et al. 1998),

but in two modern groups, the chlorarachniophytes and the cryptophytes, the endosymbiotic nucleus

persists in the form of a nucleomorph. The chlorarachniophyte nucleomorph is of green algal origin,

while the cryptophyte one is of independent red algal origin, yet these genomes display remarkable

convergence in their characteristics (Moore & Archibald 2009). They are highly reduced, <1Mb in

size, (Douglas et al. 2001; Gilson et al. 2006; Lane et al. 2007; Tanifuji et al. 2011; Curtis et al.

2012), and contain only a few hundred genes. All sequenced nucleomorph genomes consist of three

chromosomes, each of which contains (typically subtelomeric) rRNA genes (Silver et al. 2007), with

very short intergenic spaces and often overlapping genes (Williams et al. 2005) that are themselves

compacted (Lane et al. 2007), though introns are also present in most cases, sometimes in substan-

tial numbers such as in Bigelowiella natans. These features represent the most extreme known case

of eukaryotic genome reduction and pose very intriguing questions about the transcriptional and

regulatory biology of nucleomorphs. The transcriptomes of several nucleomorphs have been recently

characterized on a global scale (Tanifuji et al. 2014; Hirakawa et al. 2014), but given the extremely

limited intergenic and noncoding space in these genomes, it will be also of great interest to know

their chromatin structure, the histone code operating in them and its states (Müller et al. 1994;
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Löffelhardt 2011; Hirakawa et al. 2011), their transcription factor binding patterns, and as men-

tioned above, the biology of introns and splicing in them. This should shed light on the evolutionary

limits on the process of gene regulation imposed by extreme genome compaction.

16.8 Conclusions

While we are still a long way from having a complete understanding of genome function and evolution,

we do at this point have a quite robust explanatory framework accounting for the driving forces

behind the appearance of many of the major features of eukaryote biology, and for many of the

differences in genome organization, content and structure observed within the known organismal

diversity. The concept of “junk” DNA features prominently in this framework, and it is by no

means debunked by the results of the ENCODE Project. ENCODE data is entirely consistent with

our previous understanding of mammalian genome biology, which it does not overturn but instead

adds to and enriches. Indeed, it would have been quite distressing if major rethinking was necessary,

given the immense amount of research on and knowledge about the subject that has accumulated

over many decades. The real contribution of the ENCODE Project to understanding human biology

has been the identification of the candidate functional elements in the genome, each of which will,

however, have to be subsequently functionally dissected to fully understand its role in the normal

functioning of the cell, development and disease.

Another major, and so far overlooked, contribution of the ENCODE has been the role it has

played in the development of the tools and techniques to carry out large-scale functional genomic

characterization of genomes. This is critical for achieving the goal of complete understanding of the

fundamental principles driving the evolution of eukaryote genomes and the mechanisms of carrying

out and regulating gene expression that they use. From this perspective, the study of the compar-

atively well-characterized human genome served as a proof of principle: the ENCODE Project did

not necessarily find completely new principles of gene regulation and RNA biology, but it recovered

a lot of what was previously known about the functional organization of our genome, and added

further pieces to the puzzle opening new research directions to be pursued in the future. While

the detailed study of the individual components of gene expression and gene regulatory systems

using classical genetic and biochemical tools will always remain essential, it is now possible to use

functional genomic tools to advance the understanding of how a genome works by decades compared

to the trajectory this process followed for the traditional model systems.

This would be of little significance if all genomes were the same in their organization, but for-
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tunately, this is very far from being the case. The last two decades have revealed a breathtaking

diversity of approaches that different lineages have adopted to solving the problem of being an

eukaryote cell, some of them representing truly drastic deviations from the classical textbook depic-

tion of these processes. This diversity provides a great opportunity to understand the evolutionary

forces and limitations shaping genome architecture. Thanks to the rapid advances in sequencing

and functional genomic methods (to which researchers working on ENCODE Project have made

major contributions), all genomes are now either accessible to study (or poised to soon become

so) using the powerful tools available to us, allowing the tackling of these major questions, at the

deepest level. Such an endeavor should feature the close integration of the disciplines of comparative

genomics, population genetics and functional genomics (Lawrie & Petrov 2014), and a fully fleshed,

universally agreed upon, theory of genome evolution should eventually emerge from it, together with

the detailed understanding of the function of individual genomes (Figure 16.2).
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A complex interplay between transcription factors (TFs) and the genome regulates transcription. However, connecting
variation in genome sequence with variation in TF binding and gene expression is challenging due to environmental
differences between individuals and cell types. To address this problem, we measured genome-wide differential allelic
occupancy of 24 TFs and EP300 in a human lymphoblastoid cell line GM12878. Overall, 5% of human TF binding sites have
an allelic imbalance in occupancy. At many sites, TFs clustered in TF-binding hubs on the same homolog in especially open
chromatin. While genetic variation in core TF binding motifs generally resulted in large allelic differences in TF occupancy,
most allelic differences in occupancy were subtle and associated with disruption of weak or noncanonical motifs. We also
measured genome-wide differential allelic expression of genes with and without heterozygous exonic variants in the same
cells. We found that genes with differential allelic expression were overall less expressed both in GM12878 cells and in
unrelated human cell lines. Comparing TF occupancy with expression, we found strong association between allelic oc-
cupancy and expression within 100 bp of transcription start sites (TSSs), and weak association up to 100 kb from TSSs. Sites
of differential allelic occupancy were significantly enriched for variants associated with disease, particularly autoimmune
disease, suggesting that allelic differences in TF occupancy give functional insights into intergenic variants associated with
disease. Our results have the potential to increase the power and interpretability of association studies by targeting
functional intergenic variants in addition to protein coding sequences.

[Supplemental material is available for this article.]

Variation in protein coding sequence is interpretable, owing to our

knowledge of gene models and the triplet code. Recent studies that

utilize exome sequencing take advantage of this knowledge to

predict loss-of-function and nonsense mutations (Meyerson et al.

2010; Teer and Mullikin 2010). However, predicting the effects of

DNA sequence variation in the large noncoding parts of the ge-

nome remains a largely unsolved problem. While transcription

factors (TFs) preferentially bind DNA at definable sequence motifs,

the motifs are often degenerate and are rarely predictive of binding

(Tompa et al. 2005). Recent advances in DNA sequencing tech-

nologies allow genome-wide empirical measures of TF occupancy

(i.e., chromatin immunoprecipitation followed by sequencing, or

ChIP-seq; Johnson et al. 2007; Robertson et al. 2007), revealing

that differences in TF occupancy between individuals are common

(Kasowski et al. 2010; McDaniell et al. 2010). Furthermore, com-

bining ChIP-seq with personal human genome sequencing has

identified instances in which a TF preferentially binds one allele

over the other in the same cell type (McDaniell et al. 2010), which

we call differential allelic occupancy. Because differential allelic

occupancy compares TF binding between alleles in the same nu-

cleus, it is controlled for environmental differences between in-

dividuals and cell types and therefore provides a more direct con-

nection between genome sequence and regulatory function than

do population-based studies.

To understand the functional consequences of allelic differ-

ences in TF occupancy, it is important to measure allelic differences

in expression in the same cells. Numerous approaches have been

developed to measure differential allelic expression in select genes

(e.g., Yan et al. 2002; Gimelbrant et al. 2007; Serre et al. 2008; Main

et al. 2009; Zhang and Borevitz 2009; Zhang et al. 2009), with

current estimates that 10% of human genes have allele-specific

expression (Gimelbrant et al. 2007; Zhang et al. 2009). High-

throughput sequencing can identify allelic imbalances in expres-

sion when complete genome sequences for both the parents are

available, for example in F1 fly hybrids (McManus et al. 2010).

When a complete genome sequence is available for a trio of related

humans, RNA-seq (Mortazavi et al. 2008) can be used to measure

genome-wide allelic imbalances in human gene expression

(Degner et al. 2009; Pickrell et al. 2010). However, measurement of

differential allelic expression with RNA-seq is limited to genes with

heterozygous exonic sequences, which represents less than half of

human transcripts.

In this work, we sought to better understand the functional

consequences of genomic variation, both on TF occupancy and on

gene expression. To do so, we first characterized differential allelic

4Present address: Developmental & Cell Biology, University of Cal-
ifornia, Irvine CA 92697, USA.
5Corresponding author.
E-mail rmyers@hudsonalpha.org.
Article published online before print. Article, supplemental material, and pub-
lication date are at http://www.genome.org/cgi/doi/10.1101/gr.131201.111.

860 Genome Research
www.genome.org

22:860–869 � 2012, Published by Cold Spring Harbor Laboratory Press; ISSN 1088-9051/12; www.genome.org

641



occupancy for 24 TFs and the cofactor

EP300, as well as heritability of TF occu-

pancy for a subset of those factors. In ad-

dition, we measured differential allelic

expression using both RNA-seq as well as

ChIP-seq of RNA polymerase II (RNA

Pol2). The latter enabled prediction of

differential allelic expression of genes

with homozygous exons but heterozy-

gous introns (Knight et al. 2003), re-

vealing many additional otherwise un-

detectable instances of differential allelic

expression. Together, the results provide

many insights into how genome se-

quence impacts TF occupancy, and the

extent to which that occupancy impacts

downstream gene expression. The results

may also have the potential to improve our

understanding of disease, as we found nu-

merous intergenic variants associated with

autoimmune diseases to also be differen-

tially bound by TFs. Ultimately, targeting

intergenic regions shown to have func-

tional consequence may improve future

microarray- and sequencing-based associa-

tion studies by increasing coverage with

only a modest effect on statistical power.

Results

Transcription factors often cluster
together on the same alleles in regions
of open chromatin

To survey the allelic cis-regulatory

landscape, we performed ChIP-seq on

24 sequence-specific human TFs and

the transcriptional co-activator EP300

in a lymphoblastoid cell line (LCL),

GM12878, generated by EBV immortaliza-

tion of cells from a female (Supplemental

Table 1). Whole genome sequencing has been performed on this cell

line and on LCLs derived from both of her parents (The 1000 Ge-

nomes Project Consortium 2010), and we aligned sequence reads to

both the maternal and paternal versions of the genome (see Methods;

Figure 1A). We identified 157,586 high-confidence TF occupied re-

gions, of which 20,013 (13%) overlap at least one heterozygous single

nucleotide polymorphism (SNP). We found 1094 (5.5%) of hetero-

zygous sites with a significant difference in occupancy between pa-

rental chromosomes for at least one TF (false discovery rate, or FDR,

<5%) (Supplemental Table 2). When a single binding site covered

multiple variants, we observed a consistent allelic imbalance across

all variants in the binding site (Supplemental Fig. 1). Differential

allelic occupancy was also reproducible between biological replicates

(Supplemental Fig. 2), evenly distributed across autosomes (Supple-

mental Fig. 3), and not substantially biased in favor of the reference

allele (Supplemental Table 3). On the X chromosome, TFs pre-

dominantly bound the maternal homolog (Supplemental Fig. 4),

consistent with reports of a strong bias toward paternal X in-

activation in the GM12878 cell line (McDaniell et al. 2010).

We found evidence that TFs commonly interact with each

other on the genome, especially at regions with differential allelic

occupancy. Overall, 30% of autosomal TF binding sites with sig-

nificant differential allelic occupancy overlapped another such site

(Supplemental Table 4), and the overlaps appeared to follow a

power-law distribution (Supplemental Fig. 5). In comparison, we

found on average 15% of binding sites overlapping one another

among an equal number of sites for which we did not detect sig-

nificant differential allelic occupancy. The greater overlap in sites

of differential allelic occupancy was unlikely to occur by random

(P = 8 3 10�6) according to permutation tests that take into ac-

count potential biases resulting from antibody-specific variation in

ChIP-seq signal strength and the average size of binding sites be-

tween different factors and between binding sites with and without

differential allelic occupancy (see Supplemental Methods). When

multiple TFs bound the same heterozygous SNP, they frequently

resided on the same allele, as indicated by positive correlations be-

tween allelic occupancy at co-bound SNPs (Fig. 1B; Supplemental

Figs. 6, 7). On the contrary, in no case did we observe pairs of TFs that

regularly bound the same position on alternate autosomes. In some

cases, the factors may bind together in heteromeric complexes. For

example, occupancy of the transcriptional co-activator EP300 cor-

related with that of many TFs. However, overall, we did not find

Figure 1. (A) Diagram of method used to measure differential allelic TF occupancy. First, chromatin
was formaldehyde-fixed and sonicated. Cross-linked TF-binding complexes were then immunopre-
cipitated with an antibody specific for the TF of interest. The co-precipitated DNA was recovered and
subjected to high-throughput single-end sequencing. Reads were aligned to maternal and paternal
versions of the GM12878 genome according to data from the 1000 Genomes Project (The 1000 Ge-
nomes Project Consortium 2010). For each binding site, differential allelic occupancy was called when
reads aligned to a single allele significantly more often than would be expected by random. (B)
Spearman correlation of allelic imbalance at sites of TF co-occupancy throughout the genome. The color
of the boxes indicates the correlation coefficient, with white indicating nonsignificant correlation (P >
0.05). The tree shows complete linkage hierarchical clustering. (C ) We classified heterozygous variants
by the number of TFs binding at that variant. Shown is the cumulative distribution of DNase I hyper-
sensitivity signal at all occupied heterozygous variants in each class, as indicated in the legend. (D) For
each class of heterozygous variants (as defined in C ), the fractions of variants with phastCons score >0.5.
Asterisks ([**] P < 0.01; [*] P < 0.05) indicate statistical significance compared to the uniquely bound
variants as described in Methods.
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evidence of known protein–protein interactions supporting our

observed correlated occupancy (Persico et al. 2005). Instead, the TF

hubs may either include novel TF–TF associations or may be a more

general feature of the genomic landscape (MacArthur et al. 2009).

Chromatin state may also play a role either in increasing TF occu-

pancy at variants bound by multiple TFs, or in maintaining a state

established by pioneer factors. In support of this hypothesis, the

DNA near TF hubs had increased sensitivity to DNase I when

compared with regions bound by a single factor (Fig. 1C). The result

indicates either that these regions of open chromatin were more

accessible to TFs before binding, or that the recruitment of many TFs

to these regions resulted in more extensive and stable chromatin

remodeling. The co-occupied variants may also have particular

functional significance, as they were more likely to be evolutionarily

conserved than variants bound by a single factor (Fig. 1D). Together,

the results reveal the existence of hubs of coordinated differential

allelic gene regulation involving multiple TFs throughout the hu-

man genome.

Most differential allelic occupancy results from variation
outside the DNA binding motif

To better understand the mechanisms underlying differential al-

lelic occupancy, we investigated the genetic contributions to allelic

occupancy. Kasowski and colleagues previously found that varia-

tion of NFKB binding between different individuals significantly

associated with disruption of the NFKB binding motif (Kasowski

et al. 2010), and others have suggested a similar relationship may

be found for differential allelic occupancy (McDaniell et al. 2010).

We therefore sought to determine generally across many TFs how

often differences in the primary TF binding site correspond to

differential allelic occupancy. We first evaluated the location of

heterozygous SNPs in autosomal TF binding sites. We found that,

after controlling for biases in read coverage and variant density,

differentially occupied sites were strongly enriched for heterozy-

gous SNPs within 50 bp of the position of maximal ChIP signal

(Fig. 2A), indicating that they may be the most functionally im-

portant nucleotides. We then compared the rate at which hetero-

zygous SNPs occurred at motif versus non-motif intergenic posi-

tions (Supplemental Table 5), a ratio we designate dM/dI. Generally

across all factors and limited to autosomes, we found that hetero-

zygous variants in motifs were nearly three times more likely to

occur in differentially bound sites (dM=d1 = 2.47) than in equally

bound sites (dM=d1 = 0.80) (Fig. 2B). Compared with an estimated

background rate calculated from randomly chosen 5-kb promoter

regions (dM=d1 = 0.98), we found motif-disrupting mutations were

significantly enriched in differentially bound regions and signifi-

cantly depleted in equally bound regions (P < 1 3 10�100 for both

cases; see Methods). As expected and consistent with reports of in-

ter-individual variation of NFKB binding (Kasowski et al. 2010), the

bound alleles were overall more similar to the consensus motif than

the unbound alleles (Supplemental Fig. 8). Differential allelic oc-

cupancy ranged from subtle to absolute. Binding sites with the

greatest allelic difference in occupancy corresponded to the presence

of a canonical binding motif and to mutation of that motif (Fig. 2C,D).

However, variants in known binding motifs explained only ;12% of

instances of differential allelic occupancy. While the exact per-

centage is dependent on many factors, it appears that the minority

of differential allelic occupancy can be attributed to mutation of

a canonical TF binding motif. Instead, our results suggest that there

are different regimes of variation in TF binding. At the minority of

differentially occupied binding sites, mutation of a canonical bind-

ing motif drives strong allelic differences in TF occupancy. Mean-

while, at the majority of differentially occupied sites, TFs bind DNA

at weak or noncanonical binding motifs. In such cases, smaller dif-

ferences in occupancy occur, perhaps via genetic disruption of a co-

factor binding site or differences in chromatin structure (McDaniell

et al. 2010; Gertz et al. 2011)

RNA Pol2 occupancy predicts differential allelic expression
of genes with homozygous exons

To evaluate the effects of differential allelic occupancy on expres-

sion, we used ultrahigh-throughput mRNA sequencing (RNA-seq)

(Mortazavi et al. 2008) to measure differential allelic gene expres-

sion across the human genome (Pant et al. 2006; Gimelbrant et al.

2007; Zhang et al. 2009). To avoid biases from mapping to the

reference genome (Degner et al. 2009; Pickrell et al. 2010), we as-

sembled complete paternal and maternal GM12878-specific ver-

sions of all RefSeq transcripts. We then sequenced the transcriptome

and aligned the reads to the parental transcripts (Fig. 3A; Supple-

mental Table 6). We identified significant (FDR < 5%) differential

allelic expression for 381 (9%) of the 4194 expressed RefSeq tran-

Figure 2. (A) Histogram of the distance of heterozygous SNPs from the
location of maximal ChIP-seq signal for sites with (orange) and without
(blue) differential allelic TF occupancy. To control for potential observa-
tion biases resulting from high read coverage at variants near the center of
binding sites, the sites of equal allelic occupancy were chosen to match the
differential allelic occupancy in two ways. First, for each site of differential
allelic occupancy, we required the total number of aligned reads covering
heterozygous variants in the matched site to be equivalent. Second, we
required that the total number of variants in each binding site was also
equivalent. If a suitably matched site did not exist, the site was excluded
from the sites of differential allelic occupancy for this analysis. Using this
strategy, the distribution of aligned reads at heterozygous variants was not
significantly different between the sites of differential allelic occupancy
and the matched set of equal allelic occupancy (P = 0.15, two-sided
Wilcoxon rank-sum test). (B) The ratio of the rate of motif-disrupting to
non-motif-disrupting intergenic mutations (dM/dI) across all sited of dif-
ferential allelic TF occupancy (orange), and at TF binding sites that lack
significant differential allelic occupancy (blue). To allow comparison with
cis-regulatory DNA, the distribution of dM/dI is also shown for regions 5
kbp upstream of 10,000 randomly chosen TSSs (white). Whiskers show
95% confidence intervals. We excluded TFs for which we only observed
a single motif-disrupting variant across all binding sites. (C ) For the bound
(black) or unbound (gray) allele at all sites of differential allelic occupancy,
the similarity to TF binding motif (as a fraction of the optimal match) at
sites of heterozygosity (y-axis) plotted against relative binding (the ratio
of reads aligning to the bound vs. unbound allele; x-axis). Data were
smoothed over a 32-data-point sliding window. The shaded region la-
beled D indicates the amount of difference in motif similarity between
bound and unbound alleles, and is plotted in panel D.
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scripts with heterozygous variants in exonic regions (Fig. 3B). The

results were reproducible between biological replicates (r2 = 0.88,

P < 2 3 10�27) (Supplemental Fig. 9), and validation with Sanger

sequencing reproduced results from six of six tested genes (Supple-

mental Fig. 10; Gertz et al. 2011). Differences in allelic expression

were often subtle: 166 (52%) of the 322 autosomal genes identified

had less than a twofold difference in expression between alleles.

Known imprinted genes (Morison et al. 2005; Pollard et al. 2008)

and X-linked genes were the exception, nearly all of which had

a greater than twofold allelic expression difference. Most X-chro-

mosomal genes were transcribed from the maternal copy (Supple-

mental Figs. 11, 12), as expected, given the paternal X inactivation

bias in GM12878 cells (McDaniell et al. 2010; Kucera et al. 2011). We

also identified differential allelic expression of seven long non-

coding RNAs (Supplemental Fig. 13). Monoallelic expression of XIST

(Brown et al. 1991) and KCNQ1OT1 (Weksberg et al. 2003; Nagano

and Fraser 2009) is necessary for silencing gene expression on the

opposite alleles, and it remains to be seen if any of the additional

five that we identified have a similar function (Mohammad et al.

2009; Malecova and Morris 2010).

Allelically imbalanced gene regulation likely results from reg-

ulatory sequences that are not in exons, and therefore both het-

erozygous and homozygous genes may have differential allelic ex-

pression. However, measurement of differential allelic expression

with RNA-seq is limited to genes with heterozygous exonic se-

quences, which represents only 39% of the transcripts in GM12878.

Chromatin immunoprecipitation of RNA Pol2 isolates DNA from

both exons and introns, enabling genome-wide prediction of dif-

ferential allelic expression of genes with homozygous exons but

heterozygous introns (Knight et al. 2003). Aggregating allelic RNA

Pol2 ChIP-seq signals across gene bodies, we predicted differential

allelic expression for 654 (6.3%) of the 10,353 genes with suffi-

cient coverage of RNA Pol2 at heterozygous variants. The genes

included 456 autosomal that lacked exonic heterozygous variants

and could not be evaluated with RNA-seq. When we found signifi-

cant differential allelic expression of X-linked genes, we predicted

expression from the expected allele giving us perfect specificity (Fig.

3C). However, not all X-linked genes reached our significance

threshold, some of which may escape inactivation. Comparing to

a chromosome-wide study of genes subject to or escaping from X

inactivation (Carrel and Willard 2005), we estimated that our

analysis of RNA Pol2 occupancy achieves 66% sensitivity in pre-

dicting X inactivation or escape. Given the perfect specificity,

relaxing our significance criteria combined with deeper sequencing

may improve the sensitivity. However, for the purposes of this study,

we were more concerned with ensuring a high true positive rate. As

a further positive control, we measured differential allelic expres-

sion and RNA Pol2 occupancy in complementary clonal isolates of

GM12878 with paternal or maternal X

chromosomes inactivated. For both RNA-

seq and RNA Pol2 occupancy, we pre-

dicted that >80% of genes with differen-

tial allelic expression were transcribed

from the expected X chromosome in

these clonal cell populations (Supple-

mental Figs. 14–16). On the autosomes,

however, we see strong concordance in

allelic expression among clonal isolates as

well as with the original cell population

(Supplemental Fig. 17). Searching for ev-

idence of random monoallelic expression

that could explain the observed differen-

tial allelic expression (Gimelbrant et al.

2007), we found that 13.5% of genes with

differential allelic expression in one clone

were either bi-allelic or expressed from

the homologous chromosome in a differ-

ent clone (Supplemental Table 7). While

only a limited number of clones were

studied, the result suggests that the mi-

nority of differential allelic expression

results from random monoallelic expres-

sion. Across the autosomes, allelic differ-

ences in RNA Pol2 across the gene body

positively predicted allelic differences in

expression for 135 (92%) of the 146

genes that were also detected in RNA-seq

(P = 1 3 10�27, Fisher’s exact test). That

variation in differential allelic RNA Pol2

occupancy significantly but imperfectly

explains variation in gene expression (r2 =

0.48, P < 1 3 10�16) (Supplemental Fig.

18) may result both from technical noise

in genome-wide measurements of allelic

RNA Pol2 occupancy as well as from bi-

ological sources such as differential rates

Figure 3. (A) Diagram of our method for using RNA-seq to measure differential allelic expression.
First, poly(A)+ RNA was isolated using magnetic beads conjugated to oligo(dT) nucleotides. After RNA
fragmentation, dsDNA was synthesized and subjected to paired-end sequencing on an Illumina Ge-
nome Analyzer. Reads were then aligned to GM12878-specific maternal and paternal versions of all
RefSeq transcripts. Differential allelic expression was called when significantly more reads aligned to
a single allele than would be expected by random. (B) Distribution of the fraction of maternal expression
for all heterozygous genes (black), autosomal genes with differential allelic expression (orange), and
X-chromosomal genes with differential allelic expression (white). (C ) Prediction of differential allelic
expression (y-axis) along the X chromosome (x-axis) using allelic occupancy of RNA Pol2. (Black lines)
Significant differential allelic RNA Pol2 occupancy; (gray lines) nonsignificant binding. The shaded
region on the left indicates the pseudoautosomal region that is not inactivated. All significant differ-
ential allelic occupancy predicted expression as expected. Genes that do not achieve statistical sig-
nificance in the inactivated region of the X were a mix of genes that are known to escape inactivation
as well as false negatives.
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of transcriptional initiation or elongation, or by allelic differences

in RNA stability. Combining evidence of differential allelic ex-

pression from RNA-seq and from RNA Pol2 ChIP-seq, we thus

identified 910 genes with differential allelic expression in

GM12878. The list of all genes with differential allelic expression is

provided in Supplemental Materials.

Transcription factor occupancy is more directly inherited
than gene expression

While differential allelic occupancy and expression are prevalent

in an individual, understanding the extent to which these traits are

inherited is critical to understanding how they contribute to her-

itable disease risk. To investigate, we measured genome-wide both

the occupancy of five TFs (GABPA, POU2F2 a.k.a. OCT2, PAX5,

SPI.1 a.k.a. PU.1, and YY1) and also gene expression in LCLs de-

rived from both the mother and the father of the GM12878 donor.

When a TF had differential allelic occupancy at a heterozygous

autosomal variant in GM12878, and each parent was homozygous

for one of the alleles, the allele with stronger binding in GM12878

had greater ChIP-seq signal in the corresponding parent in 81% of

cases, significantly more often than previously reported for CTCF

(McDaniell et al. 2010) (P = 1.5 3 10�5, binomial test). We also

found that the extent of differential allelic occupancy in GM12878

strongly correlated with differential occupancy between the pa-

rental LCLs (Spearman’s r = 0.75) (Fig. 4A). On the contrary, dif-

ferential allelic expression of autosomal genes was less directly

heritable than differential allelic occupancy (r = 0.24, P = 2.1 3

10�6) (Fig. 4B), with the more highly expressed allele in GM12878

having greater expression in the corresponding parental cell line

for 60% of genes (P = 3 3 10�4; Fisher’s exact test). The reduced

heritability of expression likely reflects the integration of a com-

plex mixture of regulatory contributions from both parents, acting

both in cis and in trans, as well as epigenetic contributions. In

comparison, individual TF binding sites appear to be more strongly

determined by local sequence signals and less affected by the sur-

rounding genomic milieu.

Genes with differential allelic expression are expressed at lower
levels in many human cell lines

To investigate the comparatively weak inheritance of gene ex-

pression, we first looked for evidence of mechanisms that com-

pensate for allelic differences in the expression of autosomal genes.

To do so, we used RNA Pol2 occupancy to identified genes with and

without evidence of differential allelic expression, and used RNA-

seq to compare expression between the two sets of genes. To control

for potential biases due to sample size and RNA Pol2 coverage, for

each gene with differential allelic expression we selected a matched

gene with a similar amount of RNA Pol2 coverage at heterozygous

positions (see Supplemental Methods). If allelic imbalances in au-

tosomal gene expression were compensated, we would expect an

overall similar level of expression between the two sets of genes.

Contrary to this hypothesis, we found that genes with differ-

ential allelic expression have substantially and significantly

lower expression than genes expressed equally from both alleles

(Fig. 4C). The result is independent of the read coverage threshold,

as we have reproduced the result at the RNA Pol2 ChIP-seq cov-

erage threshold ranging from 253 to 1203 (Supplemental Table 8).

To see if the increased allelic variability of lowly expressed genes

was specific to GM12878 cells, we measured gene expression of eight

additional cell lines and found that the same genes were significantly

less expressed in those cell lines as well (Supplemental Fig. 19).

Therefore, it appears that genes with differential allelic occupancy

generally have lower expression, perhaps due to fundamental dif-

ferences in the cis-regulatory landscape surrounding these genes.

With the exception of immunoglobulin genes and the proto-

Figure 4. (A) Inheritance of allelic TF occupancy. The log-ratio of oc-
cupancy of the indicated TFs in the maternally versus paternally derived
LCLs (y-axis) is plotted against the allelic occupancy of the same factors in
GM12878 (x-axis). For each site plotted (N = 85), we required that both
parents were homozygous for alternate alleles. Combining all points to-
gether, the overall correlation is r = 0.75, and for 88% of sites, the more
bound allele in GM12878 was also more bound in the corresponding
parent. (B) Similar to A, the log-ratio of expression from the parental LCLs
plotted as a function of the allelic expression in GM12878. (C ) Genes with
differential allelic expression have overall lower expression in GM12878.
For each gene with expression >0.25 RPKM, the gene expression (y-axis)
is shown as a function of differential allelic RNA Pol2 occupancy (x-axis).
(Darker shading) Greater density of values; (magenta line) less smoothing
over the data.
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cadherin-gamma cluster, both known to

exhibit monoallelic expression patterns

(Kaneko et al. 2006), we did not find

evidence that genes with differential al-

lelic expression were enriched for par-

ticular classes or functions of proteins.

Transcription factor occupancy
explains expression up to 100 kb
from transcription start sites

One of the major advantages of studying

differential allelic occupancy and expres-

sion is the potential to link intergenic

variants implicated in diseases with func-

tional changes in TF occupancy and gene

expression. It is therefore important to

know the extent to which allelic TF occu-

pancy correlates with allelic gene expres-

sion, especially considering our finding

that gene expression was weakly heritable.

Overall, we found more TF and cofactor

occupancy at variants associated with reg-

ulation of gene expression (Montgomery

et al. 2010) than would be expected by

random (see Supplemental Methods),

strongly suggesting that the occupancy we

measured does indeed impact gene ex-

pression. To investigate further, we evalu-

ated the local cis-regulatory landscape of

autosomal genes to determine if differen-

tial allelic TF occupancy occurred near

genes with differential allelic expression.

We found that differential allelic occu-

pancy was significantly closer to genes

with differential allelic expression than without (P = 5.0 3 10�15,

Wilcoxon test comparing the distance to the nearest TSS of a gene

with differential vs. equal allelic expression) (Fig. 5A). In contrast,

binding sites with equal allelic occupancy were on average no closer

to genes with imbalanced or balanced allelic expression (P = 0.21,

two-sided Wilcoxon test) (Fig. 5B). The fact that differential allelic

occupancy occurred closer to genes with differential allelic expres-

sion did not result from differences in the total number of observed

binding sites, but instead from a greater fraction of the TF binding

sites around genes with differential allelic expression having differ-

ential allelic occupancy. Specifically, 6.8% of sites within 100 kb of

a TSS with differential allelic expression had differential allelic oc-

cupancy, compared to 3.9% of sites within 100 kb of a TSS without

differential allelic expression (P < 1 3 10�20, Fisher’s exact test). Fi-

nally, we did not observe a significant difference in the total number

of binding sites in the same regions. The association between dif-

ferential allelic occupancy and expression suggests we may be able to

observe a functional relationship between the two.

Limited to autosomal cases in which we found allelic imbal-

ance both in occupancy and in expression, the ability of allelic

occupancy to explain allelic expression depended on the proxim-

ity of binding to the transcription start site (TSS). In the few cases

where we observed allelic occupancy within 100 bp of the TSS, we

found strong positive correlation between allelic occupancy and

expression from the same allele (r = 0.91, N = 13). Meanwhile, al-

lelic occupancy at intervals between 1 and 100 kb from the TSS

weakly explained expression (r = 0.45, N = 290). More than 100 kb

from the TSS, differential allelic occupancy did not significantly

explain expression (r = 0.06, N = 760) (Fig. 5B). The results show

that differential allelic occupancy does indeed correspond to dif-

ferential allelic expression, and may therefore give functional hy-

potheses to intergenic disease-associated variants. Notably, while

the analysis included binding from all TFs and did not attempt to

distinguish activating from repressive binding sites or factors, we

observed an overall positive correlation. The result suggests either

that the TFs chosen in the study are more commonly activating

than repressing, or alternatively that activating sites are more

amenable to detection by ChIP-seq.

Allelic variation in TF occupancy in GM12878 provides insights
into autoimmune disease

The majority of genomic variants associated with disease using

genome-wide association studies (GWAS) are intergenic and have

unclear regulatory consequences. TF binding sites may give func-

tional insights into the variants identified. Using our observations

of TF binding and differential allelic occupancy, we investigated

a compilation of disease-associated variants (Hindorff et al. 2009)

for potential overlaps that suggest function. Overlap with differen-

tial allelic occupancy is particularly interesting because the variant

may also explain the difference in TF occupancy between the two

alleles. We found 155 unique autosomal variants that were either

directly associated with disease, or that were in perfect linkage dis-

equilibrium (R2 = 1) with a disease-associated variant, that also oc-

Figure 5. (A) Cumulative distribution of the distance from the TSS (x-axis) to the nearest site of dif-
ferential allelic occupancy for all autosomal genes with differential allelic (orange) or equal allelic (blue)
expression. (Left) All genes with differential allelic expression, where the difference between the two
distributions is highly significant. (Right) Genes with equal allelic expression, and there is no significant
difference between the two distributions. (B) Spearman’s correlation (y-axis) of allelic occupancy with
allelic expression within the distance from autosomal TSSs indicated on the x-axis. For each point, we
aggregated all allelic occupancy (both for sites with and without a significant allelic imbalance) at the
indicated distance around all genes with significant differential allelic expression. Then, for every gene
with at least a single site with a significant differential allelic occupancy, we calculate Spearman’s cor-
relation coefficient and plot. Detailed scatter plots are included in Supplemental Figure 20. (C ) Differ-
ential allelic occupancy of multiple factors at variants either directly or through perfect linkage
disequilibrium (R2 = 1; red dash) with celiac disease. Nearby, RMI2 (also known as C16orf75) is pre-
dominantly expressed from the maternal allele, and the regulatory interaction is supported by ex-
pression quantitative trait loci (eQTL) mapping. (D) Similar to C, allelic occupancy of EBF1 at a variant
associated (via linkage disequilibrium) with psoriasis corresponds with differential allelic expression of
COG6. Again, the regulatory interaction is supported by eQTL analysis.
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curred in a heterozygous TF binding site. The overlap was unlikely to

occur by random when compared to a set of variants matched on

distance relative to a TSS and on minor allele frequency (Supple-

mental Table 9). Of those variants, we found 21 instances of disease-

associated variants that occurred in a site of differential allelic oc-

cupancy. More than 75% of the disease-associated variants are as-

sociated with autoimmune diseases, including variants associated

with multiple sclerosis, celiac disease, Type 1 diabetes, systemic

lupus erythematosus, and psoriasis (Supplemental Table 10). The

result is especially compelling considering that the functional

differences are identified in a cell type relevant for immune

modulation (B-cells), and is in agreement with recent findings of

a study evaluating genome-wide chromatin states in the same

cells (Ernst et al. 2011). As an example, we found a cluster of TFs

including EBF1 and PAX5—two key factors in B-cell devel-

opment—binding with a more than twofold preference to the

maternal (protective) allele at variants in complete linkage dis-

equilibrium with the celiac disease-associated variant rs12928822

(Dubois et al. 2010). The variants are found near isoforms of

RMI2, a gene important for genomic stability. In our study, RMI2

also shows differential allelic expression, but from the opposite

homolog. Furthermore, evidence from expression quantitative

trait loci (eQTL) mapping (Dubois et al. 2010) substantiates the

presence of a regulatory interaction between the variant and the

RMI2 (Fig. 5C). In another example, we found differential allelic

occupancy of EBF1 at the psoriasis-associated variant rs9603612

and expression of the nearby gene COG6, a gene involved in the

structure of the Golgi apparatus, again from the opposite homolog

(Fig. 5D; Liu et al. 2008). Again, eQTL linkage between the variant

and COG6 supports the presence of a regulatory interaction (Zeller

et al. 2010).

Discussion
Understanding the impact of genetic variation on gene regulation

remains a major challenge in deciphering the human transcrip-

tional regulatory code. To uncover functional noncoding variants

we used ultra-high throughput sequencing to measure genome-

wide gene expression and occupancy of RNA Pol2, of the tran-

scriptional co-activator EP300, and of 24 sequence-specific TFs in

the female LCL GM12878. By aligning sequence reads to versions

of the reference human genome modified to include homozygous

and heterozygous variants identified by the 1000 Genomes Project

(The 1000 Genomes Project Consortium 2010), we measured al-

lelic differences both in gene expression and in TF occupancy. In

doing so, we have produced an extensive and detailed map of

transcripts that show allelic bias in expression and alleles that

impact TF binding.

Comparing genomic occupancy between multiple TFs, we

found that hubs of TF occupancy occur frequently in the human

genome: ;15% of the TF binding sites in our study overlapping

a binding site for another factor. An abundance of TF-binding hubs

have also been found in fly (MacArthur et al. 2009) and may be

a common feature of the cis-regulatory landscape in complex ge-

nomes. The hubs often exhibited a coordinated reaction to func-

tional variants. In such cases, the co-occupying factors bound

similarly to the same allele, suggesting a cooperative behavior at

such sites. The overabundance of allelically imbalanced hubs also

suggests that TF hubs are particularly sensitive to genetic variation,

and that genetic polymorphism can destabilize occupancy across

the entire hub as opposed to that of a single factor. We also found

that the DNA in the most populated hubs had greater evolutionary

conservation, suggesting they may play an important role as en-

hancers of distal gene regulation.

To link allelic TF occupancy to gene expression outcomes, we

also characterized differential allelic gene expression across the

genome. We used a combination of techniques to measure allelic

gene expression. While RNA sequencing gives a direct measurement

of allelic gene expression, we found that the majority of protein-

coding genes have no heterozygous variants in their exons.

Leveraging the ability of ChIP-seq to detect elongating RNA Pol2

at heterozygous variants in introns and to serve as a proxy for

gene expression, we developed a complementary approach to

measure genome-wide allelic expression of exonically homozy-

gous genes. Our findings suggest that differential allelic expres-

sion is as common in genes with genetically identical transcripts

as in genes with genetically different transcripts, and that the

majority of differential allelic expression is therefore not detect-

able by comparing mRNA abundance. Comprehensively charac-

terizing such cases of cryptic differential allelic expression may be

important in better understanding haploinsufficiency-based disease

by revealing many more instances of monoallelic gene expression

than are currently known.

Looking across all genes with differential allelic expression,

we found that such genes are more likely to be lowly expressed,

even in unrelated cell lines. The finding may indicate a closer link

between gene expression and evolutionary conservation than has

previously been shown. The protein-coding sequences of highly

expressed genes are in general more conserved than that of lowly

expressed genes (Pal et al. 2001; Subramanian and Kumar 2004;

Wall et al. 2005), and our findings suggest that the transcriptional

regulation of highly expressed genes is also more conserved. Sim-

ilarly, it has also been shown that genes with expression limited

to specific tissues have less constrained protein coding sequence

(Duret and Mouchiroud 2000), and we found evidence that genes

with differential allelic expression are expressed in fewer tissues

(Supplemental Fig. 21). It may be that the evolutionary pressures or

other mechanisms of constraint introduced by increased and or-

ganism-wide expression act more broadly than protein coding

sequence and also limit allelic variation in the regulation of the

same genes.

With a more complete characterization of differential allelic

expression, we were able to link allelic TF occupancy to these genes,

showing that differential allelic occupancy is more prevalent near

differential allelic expression. Ultimately, we found allelic occu-

pancy within 100 bp of the TSS to be highly predictive of ex-

pression. However, while we detected significant associations

between occupancy and expression up to 100 kb away from a TSS,

the associations were comparatively very weak. The finding high-

lights the ongoing challenge of understanding the extent to which

distal cis-regulatory elements contribute to expression, and may

underlie the weak penetrance that genetic variation at many inter-

genic variants has in genome-wide association studies. It is also

important to note that, while many factors are known to act both as

an activator and a repressor, we did not observe any systematic in-

verse relationships between allelic TF occupancy and expression.

The result may be explained by studies in inducible systems that

have found the repressive activity of TFs to be predominantly as-

sociated with occupancy distal to the TSS (e.g., Cheng et al. 2009;

Reddy et al. 2009).

Targeted exon sequencing is becoming a common tool for

identifying rare coding variants that may be associated with dis-

ease. From genome wide association studies it is clear that many

regulatory variants are also associated with disease, but due to their
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predominantly intronic or intergenic location (Hindorff et al. 2009)

as well as the complex nature of cis-regulation, such variants are

more difficult to functionally interpret. The compendium of func-

tional noncoding variants we have identified provide a resource for

identifying noncoding polymorphisms that are likely to have an

effect on genomic function, suggesting a compromise between

GWAS and exon sequencing. By using a capture approach that

includes functional intergenic regions in addition to exons, tar-

geted sequencing can explore a greater fraction of the potentially

functional genome while limiting the number of hypotheses being

tested. By expanding exon sequencing to include targeted regulatory

regions, it may therefore be possible to identify rare intergenic variants

that are significantly associated with disease. Meanwhile, the prior

knowledge of particular TFs bound in each region provides a mecha-

nistic hypothesis to investigate in more detail, overcoming another of

the major challenges in existing association studies (Freedman et al.

2011). That many of the functional variants identified in this study

overlap with previously identified disease associated SNPs provides

hope that augmenting disease studies with targeted sequencing of

functional regulatory variation will ultimately be a successful strategy.

Methods

Cell growth
Biological replicates of GM12878, GM12891, and GM12892 cells
were grown in RPMI 1640 media with 2 mM L-glutamine, 15%
fetal bovine serum, and 1% penicillin-streptomycin at 37°C under
5% carbon dioxide.

ChIP-seq

We performed ChIP experiments and prepared the immunopre-
cipitated DNA for sequencing on an Illumina Genome Analyzer
as described (Johnson et al. 2007). We selected factors to include
both ubiquitous TFs and cofactors (e.g., SP1 and EP300), and fac-
tors specific to the development of B-cells (e.g., POU2F2, SPI1,
PBX3, BCL3, and EBF1). Antibodies used are listed in Supple-
mental Table 1. For each factor, we produced $12 million 36
nucleotide reads per biological replicate. We aligned reads to the
GM12878-specific reference genome using Bowtie (Langmead
et al. 2009) with options ‘‘-n 2 -l 36 -k 1–best’’, and removed align-
ments mismatching at any heterozygous SNP. To avoid potential
biases resulting from amplification artifacts, we collapse all sequences
identified multiple times to a single instance. To define binding re-
gions, we used QuEST (Valouev et al. 2008) with ‘‘stringent peak
calling parameters’’. For each binding region, we estimated the frac-
tion of maternal (paternal) occupancy as the fraction of mini-contig
alignments that mapped to the maternal (paternal) chromosome.

For RNA Pol2, we produced 64 million additional paired-end
100-bp reads by using a similar protocol and the Illumina HiSeq
2000 sequencer. We aligned each end independently against the
GM12878-specific reference genome using Bowtie (Langmead et al.
2009) with options ‘‘–best–strata -n 2 -m 10 -k 1’’, and excluded
alignments that mismatched at any heterozygous SNP. We predicted
the fraction of maternal expression as the fraction of mini-contig
alignments across each RefSeq gene that mapped to the maternal
allele. To ensure stringency, we only considered genes with reads
aligning to at least three heterozygous SNPs.

RNA-seq

Paired-end RNA-seq experiments were performed in biological
replicate as described previously (Trapnell et al. 2010). Replicate

one and two were sequenced to a depth of 44 and 25 million
paired-end 75-bp reads, respectively. We aligned reads to the ref-
erence transcriptome using Bowtie (Langmead et al. 2009) with
parameters ‘‘-a–best–strata’’ and default paired-end settings. The
parameters were chosen to allow alignment to multiple isoforms.
We then removed any alignments that resulted in mismatches at
heterozygous SNPs. Finally, we aligned RNA-seq reads to the ref-
erence transcriptome, and estimated the fraction of expression from
the maternal (paternal) chromosome as the fraction of reads map-
ping to a heterozygous SNP that contain the maternal (paternal)
allele.

Sequence alignment and determination of differential allelic
occupancy and expression

To measure differential allelic occupancy, we constructed a GM12878-
specific reference genome that allowed concurrent alignment to both
the maternal and paternal genome as suggested by Degner et al.
(2009). Maternal and paternal genome sequences were de-
termined using variants in the March 2010 data release by the
1000 Genomes Project (The 1000 Genomes Project Consortium
2010). To construct the maternal and paternal genomes, we first
altered homozygous SNPs in the hg18 reference genome to match
the GM12878 genotype. Then, for each heterozygous SNP with
discernable parent-of-origin, we replaced the SNP and the flank-
ing 35 bp (for a 36-bp read length) with a paternal and a maternal
version of the sequence. We then combined overlapping se-
quences such that any read aligning to a parental sequence will
overlap a heterozygous SNP and vice versa. For RNA Pol2, we used
RefSeq genes instead of peak calls, and only considered genes with
reads aligning to at least three heterozygous SNPs.

To measure differential allelic expression, we aligned RNA-
seq reads to a GM12878-specific reference transcriptome that
included both maternal and paternal versions of all transcripts
with a heterozygous variant in an exon. To do so, we first assembled
sequences for all RefSeq transcripts from the hg18 reference human
genome. We then corrected all homozygous SNPs to match the se-
quence of GM12878. Then, we created a paternal and maternal
version of each transcript with a heterozygous exon by changing
heterozygous nucleotides to match the parental chromosome, if
known.

We performed a number of additional filtering steps to remove
false positives. First, to remove artifacts due to incorrect genome
sequence and copy number variation, we removed from analysis
variants with a substantial allelic bias in sequencing of input
control DNA (i.e., DNA from chromatin that was cross-linked and
sonicated, but not immunoprecipitated). We also removed vari-
ant calls that were discordant with sequencing of the GM12878
genome as performed by Complete Genomics (Drmanac et al.
2010). Next, we filtered reads that aligned to positions in the
genome for which either the maternal or paternal sequence were
not unique and could have therefore arisen from a different lo-
cation, as sequences aligning to such positions are inherently
biased to a single allele (Degner et al. 2009). To do so, we simu-
lated every possible 36-bp read that would overlap a heterozygous
variant. We then aligned all such reads to the maternal and pa-
ternal genomes, and noted every genomic position that did not
have a unique 36-bp alignment for either the maternal or paternal
version (i.e., reads for which the maternal or paternal variant
could also align elsewhere in the genome, or could originate from
elsewhere in the genome). The additional screening step reduced
the number of sites of differential allelic occupancy by 1.5%. Lastly,
we removed 10 (<0.05% of total) SNPs that overlapped regions of
aneuploidy as measured by microarray experiments (Supplemental
Table 11).
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To determine statistical significance of differential allelic ex-
pression or occupancy, we used a binomial test against the null
hypothesis that an equal number of reads maps to each chromo-
some. For all statistical testing, we require a 73 coverage threshold
because it is the minimum number of reads required to achieve
significance with a binomial test. We corrected for multiple hy-
potheses using the method of Benjamini and Hochberg (Benjamini
and Hochberg 1995) implemented in the R statistical package.

Identification of differential allelic occupancy
at disease-associated variants

Disease-associated variants were obtained from the National Hu-
man Genome Research Institute’s Catalog of Published Genome-
Wide Association Studies on April 19, 2011. We then expanded the
list to include all variants known to be in perfect linkage disequi-
librium (R2 = 1) in individuals of central European ancestry accord-
ing to the HapMap project. Comparing the list with resequencing of
the GM12878 genome, we identified all disease-associated variants
that are heterozygous in GM12878. Finally, we identified all such
variants that also had significant differential allelic occupancy by
one or more TFs at the same SNP.

To determine if the overlap with TF occupancy was greater
than expected by random, we used a permutation approach. To do
so, we randomly assigned disease association among the phased
(i.e., where the inheritance of each allele is unambiguous) het-
erozygous variants in GM12878, controlling for observation biases
in GWAS studies in three ways: (i) maintaining a matched distri-
bution of minor allele frequencies (with 5% absolute value differ-
ence), (ii) maintaining a matched distance to the TSS of the nearest
RefSeq gene (with 1 kb), and (iii) maintaining both similar minor
allele frequency (within 10% absolute value difference) and similar
distance to the nearest RefSeq TSSs (within 2 kb). For the third
group, we used relaxed stringency in order to assure that we could
find enough matched sets. For (i) and (ii), we performed 1000
random sets and for (iii) we used 150 random sets. We then count
the number of unique variants that overlap TF binding from our
study, and describe the resulting distribution in Supplemental
Table 9.

Data access
All ChIP-seq and RNA-seq data are publicly available from the
ENCODE repository on the UCSC Genome Browser. Details of ac-
cession numbers can be found in Supplemental Tables 12 and 13. In
addition, processed data specific to our study including allele-specific
alignments, aggregation over variants, binding site calls, and aggre-
gation of allelic alignments over those called binding sites are avail-
able online at http://hudsonalpha.org/sites/default/files/DataSets/
Myerslab/Differential_allelic_occupancy_and_expression.

Acknowledgments
We thank Chris Gunter, Greg Cooper, and the members of the
Myers lab for contributions and suggestions. This work was funded
by NHGRI ENCODE Grant 5U54HG004576 to R.M.M. and B.W.
Support for T.E.R. was from NIH/NIAMS fellowship 5T32AR007450.

Authors’ contributions: T.E.R., J.G., K.E.V., H.F.W., and R.M.M.
conceived and designed the study, T.E.R. performed and inter-
preted the analysis, and wrote the manuscript. J.G. carried out the
cloning-based validation of the RNA-seq experiments. F.P. and
K.M.N. carried out the ChIP-seq experiments and RNA-seq exper-
iments for the clonal isolates of GM12878. L.S. and G.E.C. per-
formed and contributed to the interpretation of the DNase I hy-
persensitivity experiments. K.S.K. and H.F.W. designed and created

the clonal GM12878 isolates, including determining the X in-
activation state. G.K.M., A.M., B.A.W., and B.W. designed and per-
formed the RNA-seq experiments. All authors contributed to the
editing of the manuscript.

References

The 1000 Genomes Project Consortium. 2010. A map of human genome
variation from population-scale sequencing. Nature 467: 1061–1073.

Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate:
a practical and powerful approach to multiple testing. J R Stat Soc Ser B
Methodol 57: 289–300.

Brown CJ, Ballabio A, Rupert JL, Lafreniere RG, Grompe M, Tonlorenzi R,
Willard HF. 1991. A gene from the region of the human X inactivation
centre is expressed exclusively from the inactive X chromosome. Nature
349: 38–44.

Carrel L, Willard HF. 2005. X-inactivation profile reveals extensive
variability in X-linked gene expression in females. Nature 434: 400–
404.

Cheng Y, Wu W, Kumar SA, Yu D, Deng W, Tripic T, King DC, Chen KB,
Zhang Y, Drautz D, et al. 2009. Erythroid GATA1 function revealed by
genome-wide analysis of transcription factor occupancy, histone
modifications, and mRNA expression. Genome Res 19: 2172–2184.

Degner JF, Marioni JC, Pai AA, Pickrell JK, Nkadori E, Gilad Y, Pritchard JK.
2009. Effect of read-mapping biases on detecting allele-specific
expression from RNA-sequencing data. Bioinformatics 25: 3207–3212.

Drmanac R, Sparks AB, Callow MJ, Halpern AL, Burns NL, Kermani BG,
Carnevali P, Nazarenko I, Nilsen GB, Yeung G, et al. 2010. Human
genome sequencing using unchained base reads on self-assembling
DNA nanoarrays. Science 327: 78–81.

Dubois PC, Trynka G, Franke L, Hunt KA, Romanos J, Curtotti A,
Zhernakova A, Heap GA, Adany R, Aromaa A, et al. 2010. Multiple
common variants for celiac disease influencing immune gene
expression. Nat Genet 42: 295–302.

Duret L, Mouchiroud D. 2000. Determinants of substitution rates in
mammalian genes: expression pattern affects selection intensity but not
mutation rate. Mol Biol Evol 17: 68–74.

Ernst J, Kheradpour P, Mikkelsen TS, Shoresh N, Ward LD, Epstein CB,
Zhang X, Wang L, Issner R, Coyne M, et al. 2011. Mapping and analysis
of chromatin state dynamics in nine human cell types. Nature 473: 43–
49.

Freedman ML, Monteiro AN, Gayther SA, Coetzee GA, Risch A, Plass C,
Casey G, De Biasi M, Carlson C, Duggan D, et al. 2011. Principles for the
post-GWAS functional characterization of cancer risk loci. Nat Genet 43:
513–518.

Gertz J, Varley KE, Reddy TE, Bowling KM, Pauli F, Parker SL, Kucera KS,
Willard HF, Myers RM. 2011. Analysis of DNA methylation in a three-
generation family reveals widespread genetic influence on epigenetic
regulation. PLoS Genet 7: e1002228. doi: 10.1371/
journal.pgen.1002228.

Gimelbrant A, Hutchinson JN, Thompson BR, Chess A. 2007. Widespread
monoallelic expression on human autosomes. Science 318: 1136–1140.

Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, Collins FS,
Manolio TA. 2009. Potential etiologic and functional implications of
genome-wide association loci for human diseases and traits. Proc Natl
Acad Sci 106: 9362–9367.

Johnson DS, Mortazavi A, Myers RM, Wold B. 2007. Genome-wide mapping
of in vivo protein-DNA interactions. Science 316: 1497–1502.

Kaneko R, Kato H, Kawamura Y, Esumi S, Hirayama T, Hirabayashi T, Yagi T.
2006. Allelic gene regulation of Pcdh-a and Pcdh-g clusters involving
both monoallelic and biallelic expression in single Purkinje cells. J Biol
Chem 281: 30551–30560.

Kasowski M, Grubert F, Heffelfinger C, Hariharan M, Asabere A, Waszak SM,
Habegger L, Rozowsky J, Shi M, Urban AE, et al. 2010. Variation in
transcription factor binding among humans. Science 328: 232–235.

Knight JC, Keating BJ, Rockett KA, Kwiatkowski DP. 2003. In vivo
characterization of regulatory polymorphisms by allele-specific
quantification of RNA polymerase loading. Nat Genet 33: 469–475.

Kucera KS, Reddy TE, Pauli F, Gertz J, Logan JE, Myers RM, Willard HF. 2011.
Allele-specific distribution of RNA polymerase II on female X
chromosomes. Hum Mol Genet 20: 3964–3973.

Langmead B, Trapnell C, Pop M, Salzberg SL. 2009. Ultrafast and memory-
efficient alignment of short DNA sequences to the human genome.
Genome Biol 10: R25. doi: 10.1186/gb-2009-10-3-r25.

Liu Y, Helms C, Liao W, Zaba LC, Duan S, Gardner J, Wise C, Miner A, Malloy
MJ, Pullinger CR, et al. 2008. A genome-wide association study of
psoriasis and psoriatic arthritis identifies new disease loci. PLoS Genet 4:
e1000041. doi: 10.1371/journal.pgen.1000041.

Reddy et al.

868 Genome Research
www.genome.org

649



MacArthur S, Li XY, Li J, Brown JB, Chu HC, Zeng L, Grondona BP, Hechmer
A, Simirenko L, Keranen SV, et al. 2009. Developmental roles of 21
Drosophila transcription factors are determined by quantitative
differences in binding to an overlapping set of thousands of genomic
regions. Genome Biol 10: R80. doi: 10.1186/gb-2009-10-7-r80.

Main BJ, Bickel RD, McIntyre LM, Graze RM, Calabrese PP, Nuzhdin SV.
2009. Allele-specific expression assays using Solexa. BMC Genomics 10:
422. doi: 10.1186/1471-2164-10-422.

Malecova B, Morris KV. 2010. Transcriptional gene silencing through
epigenetic changes mediated by non-coding RNAs. Curr Opin Mol Ther
12: 214–222.

McDaniell R, Lee BK, Song L, Liu Z, Boyle AP, Erdos MR, Scott LJ, Morken MA,
Kucera KS, Battenhouse A, et al. 2010. Heritable individual-specific and
allele-specific chromatin signatures in humans. Science 328: 235–239.

McManus CJ, Coolon JD, Duff MO, Eipper-Mains J, Graveley BR, Wittkopp
PJ. 2010. Regulatory divergence in Drosophila revealed by mRNA-seq.
Genome Res 20: 816–825.

Meyerson M, Gabriel S, Getz G. 2010. Advances in understanding cancer
genomes through second-generation sequencing. Nat Rev Genet 11:
685–696.

Mohammad F, Mondal T, Kanduri C. 2009. Epigenetics of imprinted long
noncoding RNAs. Epigenetics 4: 277–286.

Montgomery SB, Sammeth M, Gutierrez-Arcelus M, Lach RP, Ingle C, Nisbett
J, Guigo R, Dermitzakis ET. 2010. Transcriptome genetics using second
generation sequencing in a Caucasian population. Nature 464: 773–777.

Morison IM, Ramsay JP, Spencer HG. 2005. A census of mammalian
imprinting. Trends Genet 21: 457–465.

Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. 2008. Mapping
and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods
5: 621–628.

Nagano T, Fraser P. 2009. Emerging similarities in epigenetic gene silencing
by long noncoding RNAs. Mamm Genome 20: 557–562.

Pal C, Papp B, Hurst LD. 2001. Highly expressed genes in yeast evolve slowly.
Genetics 158: 927–931.

Pant PV, Tao H, Beilharz EJ, Ballinger DG, Cox DR, Frazer KA. 2006. Analysis
of allelic differential expression in human white blood cells. Genome Res
16: 331–339.

Persico M, Ceol A, Gavrila C, Hoffmann R, Florio A, Cesareni G. 2005.
HomoMINT: an inferred human network based on orthology mapping
of protein interactions discovered in model organisms. BMC
Bioinformatics (Suppl 4) 6: S21. doi: 10.1186/1471-2105-6-S4-S21.

Pickrell JK, Marioni JC, Pai AA, Degner JF, Engelhardt BE, Nkadori E,
Veyrieras JB, Stephens M, Gilad Y, Pritchard JK. 2010. Understanding
mechanisms underlying human gene expression variation with RNA
sequencing. Nature 464: 768–772.

Pollard KS, Serre D, Wang X, Tao H, Grundberg E, Hudson TJ, Clark AG,
Frazer K. 2008. A genome-wide approach to identifying novel-imprinted
genes. Hum Genet 122: 625–634.

Reddy TE, Pauli F, Sprouse RO, Neff NF, Newberry KM, Garabedian MJ, Myers
RM. 2009. Genomic determination of the glucocorticoid response

reveals unexpected mechanisms of gene regulation. Genome Res 19:
2163–2171.

Robertson G, Hirst M, Bainbridge M, Bilenky M, Zhao Y, Zeng T, Euskirchen
G, Bernier B, Varhol R, Delaney A, et al. 2007. Genome-wide profiles of
STAT1 DNA association using chromatin immunoprecipitation and
massively parallel sequencing. Nat Methods 4: 651–657.

Serre D, Gurd S, Ge B, Sladek R, Sinnett D, Harmsen E, Bibikova M, Chudin E,
Barker DL, Dickinson T, et al. 2008. Differential allelic expression in the
human genome: a robust approach to identify genetic and epigenetic
cis-acting mechanisms regulating gene expression. PLoS Genet 4:
e1000006. doi: 10.1371/journal.pgen.1000006.

Subramanian S, Kumar S. 2004. Gene expression intensity shapes
evolutionary rates of the proteins encoded by the vertebrate genome.
Genetics 168: 373–381.

Teer JK, Mullikin JC. 2010. Exome sequencing: the sweet spot before whole
genomes. Hum Mol Genet 19: R145–R151.

Tompa M, Li N, Bailey TL, Church GM, De Moor B, Eskin E, Favorov AV, Frith
MC, Fu Y, Kent WJ, et al. 2005. Assessing computational tools for the
discovery of transcription factor binding sites. Nat Biotechnol 23: 137–
144.

Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ,
Salzberg SL, Wold BJ, Pachter L. 2010. Transcript assembly and
quantification by RNA-Seq reveals unannotated transcripts and
isoform switching during cell differentiation. Nat Biotechnol 28: 511–
515.

Valouev A, Johnson DS, Sundquist A, Medina C, Anton E, Batzoglou S,
Myers RM, Sidow A. 2008. Genome-wide analysis of transcription factor
binding sites based on ChIP-Seq data. Nat Methods 5: 829–834.

Wall DP, Hirsh AE, Fraser HB, Kumm J, Giaever G, Eisen MB, Feldman MW.
2005. Functional genomic analysis of the rates of protein evolution. Proc
Natl Acad Sci 102: 5483–5488.

Weksberg R, Smith AC, Squire J, Sadowski P. 2003. Beckwith-Wiedemann
syndrome demonstrates a role for epigenetic control of normal
development. Hum Mol Genet 12: R61–R68.

Yan H, Yuan W, Velculescu VE, Vogelstein B, Kinzler KW. 2002. Allelic
variation in human gene expression. Science 297: 1143.

Zeller T, Wild P, Szymczak S, Rotival M, Schillert A, Castagne R, Maouche S,
Germain M, Lackner K, Rossmann H, et al. 2010. Genetics and
beyond—the transcriptome of human monocytes and disease
susceptibility. PLoS ONE 5: e10693. doi: 10.1371/
journal.pone.0010693.

Zhang X, Borevitz JO. 2009. Global analysis of allele-specific expression in
Arabidopsis thaliana. Genetics 182: 943–954.

Zhang K, Li JB, Gao Y, Egli D, Xie B, Deng J, Li Z, Lee JH, Aach J, Leproust EM,
et al. 2009. Digital RNA allelotyping reveals tissue-specific and allele-
specific gene expression in human. Nat Methods 6: 613–618.

Received August 26, 2011; accepted in revised form February 1, 2012.

Differential allel ic TF occupancy and expression

Genome Research 869
www.genome.org

650



651

B

The ENCODE Project Consortium - An integrated

encyclopedia of DNA elements in the human genome

Originally published as:

The ENCODE Project Consortium. 2012. An integrated encyclopedia of DNA elements in the

human genome. Nature. 2012. 489(7414):57–74. doi: 10.1038/nature11247.



ARTICLE
doi:10.1038/nature11247

An integrated encyclopedia of DNA
elements in the human genome
The ENCODE Project Consortium*

The human genome encodes the blueprint of life, but the function of the vast majority of its nearly three billion bases is
unknown. The Encyclopedia of DNA Elements (ENCODE) project has systematically mapped regions of transcription,
transcription factor association, chromatin structure and histone modification. These data enabled us to assign
biochemical functions for 80% of the genome, in particular outside of the well-studied protein-coding regions. Many
discovered candidate regulatory elements are physically associated with one another and with expressed genes,
providing new insights into the mechanisms of gene regulation. The newly identified elements also show a statistical
correspondence to sequence variants linked to human disease, and can thereby guide interpretation of this variation.
Overall, the project provides new insights into the organization and regulation of our genes and genome, and is an
expansive resource of functional annotations for biomedical research.

The human genome sequence provides the
underlying code for human biology. Despite
intensive study, especially in identifying
protein-coding genes, our understanding of the
genome is far from complete, particularly with
regard to non-coding RNAs, alternatively spliced transcripts and reg-
ulatory sequences. Systematic analyses of transcripts and regulatory
information are essential for the identification of genes and regulatory
regions, and are an important resource for the study of human biology
and disease. Such analyses can also provide comprehensive views of the
organization and variability of genes and regulatory information across
cellular contexts, species and individuals.

The Encyclopedia of DNA Elements (ENCODE) project aims to
delineate all functional elements encoded in the human genome1–3.
Operationally, we define a functional element as a discrete genome
segment that encodes a defined product (for example, protein or
non-coding RNA) or displays a reproducible biochemical signature
(for example, protein binding, or a specific chromatin structure).
Comparative genomic studies suggest that 3–8% of bases are under
purifying (negative) selection4–8 and therefore may be functional,
although other analyses have suggested much higher estimates9–11.
In a pilot phase covering 1% of the genome, the ENCODE project
annotated 60% of mammalian evolutionarily constrained bases, but
also identified many additional putative functional elements without
evidence of constraint2. The advent of more powerful DNA sequencing
technologies now enables whole-genome and more precise analyses
with a broad repertoire of functional assays.

Here we describe the production and initial analysis of 1,640 data
sets designed to annotate functional elements in the entire human
genome. We integrate results from diverse experiments within cell types,
related experiments involving 147 different cell types, and all ENCODE
data with other resources, such as candidate regions from genome-wide
association studies (GWAS) and evolutionarily constrained regions.
Together, these efforts reveal important features about the organization
and function of the human genome, summarized below.
. The vast majority (80.4%) of the human genome participates in at
least one biochemical RNA- and/or chromatin-associated event in at
least one cell type. Much of the genome lies close to a regulatory event:

95% of the genome lies within 8 kilobases (kb)
of a DNA–protein interaction (as assayed by
bound ChIP-seq motifs or DNase I footprints),
and 99% is within 1.7 kb of at least one of the
biochemical events measured by ENCODE.

. Primate-specific elements as well as elements without detectable
mammalian constraint show, in aggregate, evidence of negative selec-
tion; thus, some of them are expected to be functional.
. Classifying the genome into seven chromatin states indicates an initial
set of 399,124 regions with enhancer-like features and 70,292 regions
with promoter-like features, as well as hundreds of thousands of qui-
escent regions. High-resolution analyses further subdivide the genome
into thousands of narrow states with distinct functional properties.
. It is possible to correlate quantitatively RNA sequence production
and processing with both chromatin marks and transcription factor
binding at promoters, indicating that promoter functionality can
explain most of the variation in RNA expression.
. Many non-coding variants in individual genome sequences lie in
ENCODE-annotated functional regions; this number is at least as
large as those that lie in protein-coding genes.
. Single nucleotide polymorphisms (SNPs) associated with disease by
GWAS are enriched within non-coding functional elements, with a
majority residing in or near ENCODE-defined regions that are out-
side of protein-coding genes. In many cases, the disease phenotypes
can be associated with a specific cell type or transcription factor.

ENCODE data production and initial analyses
Since 2007, ENCODE has developed methods and performed a large
number of sequence-based studies to map functional elements across
the human genome3. The elements mapped (and approaches used)
include RNA transcribed regions (RNA-seq, CAGE, RNA-PET and
manual annotation), protein-coding regions (mass spectrometry),
transcription-factor-binding sites (ChIP-seq and DNase-seq),
chromatin structure (DNase-seq, FAIRE-seq, histone ChIP-seq and
MNase-seq), and DNA methylation sites (RRBS assay) (Box 1 lists
methods and abbreviations; Supplementary Table 1, section P, details
production statistics)3. To compare and integrate results across the
different laboratories, data production efforts focused on two selected

*Lists of participants and their affiliations appear at the end of the paper.
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sets of cell lines, designated ‘tier 1’ and ‘tier 2’ (Box 1). To capture a
broader spectrum of biological diversity, selected assays were also
executed on a third tier comprising more than 100 cell types including
primary cells. All data and protocol descriptions are available at
http://www.encodeproject.org/, and a User’s Guide including details
of cell-type choice and limitations was published recently3.

Integration methodology
For consistency, data were generated and processed using standardized
guidelines, and for some assays, new quality-control measures were
designed (see refs 3, 12 and http://encodeproject.org/ENCODE/

dataStandards.html; A. Kundaje, personal communication). Uniform
data-processing methods were developed for each assay (see
Supplementary Information; A. Kundaje, personal communication),
and most assay results can be represented both as signal information
(a per-base estimate across the genome) and as discrete elements
(regions computationally identified as enriched for signal). Extensive
processing pipelines were developed to generate each representation
(M. M. Hoffman et al., manuscript in preparation and A. Kundaje,
personal communication). In addition, we developed the irreproducible
discovery rate (IDR)13 measure to provide a robust and conservative
estimate of the threshold where two ranked lists of results from bio-
logical replicates no longer agree (that is, are irreproducible), and we
applied this to defining sets of discrete elements. We identified, and
excluded from most analyses, regions yielding untrustworthy signals
likely to be artefactual (for example, multicopy regions). Together, these
regions comprise 0.39% of the genome (see Supplementary
Information). The poster accompanying this issue represents different
ENCODE-identified elements and their genome coverage.

Transcribed and protein-coding regions
We used manual and automated annotation to produce a compre-
hensive catalogue of human protein-coding and non-coding RNAs as
well as pseudogenes, referred to as the GENCODE reference gene
set14,15 (Supplementary Table 1, section U). This includes 20,687
protein-coding genes (GENCODE annotation, v7) with, on average,
6.3 alternatively spliced transcripts (3.9 different protein-coding tran-
scripts) per locus. In total, GENCODE-annotated exons of protein-
coding genes cover 2.94% of the genome or 1.22% for protein-coding
exons. Protein-coding genes span 33.45% from the outermost start to
stop codons, or 39.54% from promoter to poly(A) site. Analysis of
mass spectrometry data from K562 and GM12878 cell lines yielded 57
confidently identified unique peptide sequences in intergenic regions
relative to GENCODE annotation. Taken together with evidence of
pervasive genome transcription16, these data indicate that additional
protein-coding genes remain to be found.

In addition, we annotated 8,801 automatically derived small RNAs
and 9,640 manually curated long non-coding RNA (lncRNA) loci17.
Comparing lncRNAs to other ENCODE data indicates that lncRNAs
are generated through a pathway similar to that for protein-coding
genes17. The GENCODE project also annotated 11,224 pseudogenes,
of which 863 were transcribed and associated with active chromatin18.

RNA
We sequenced RNA16 from different cell lines and multiple subcellular
fractions to develop an extensive RNA expression catalogue. Using a
conservative threshold to identify regions of RNA activity, 62% of
genomic bases are reproducibly represented in sequenced long (.200
nucleotides) RNA molecules or GENCODE exons. Of these bases, only
5.5% are explained by GENCODE exons. Most transcribed bases are
within or overlapping annotated gene boundaries (that is, intronic), and
only 31% of bases in sequenced transcripts were intergenic16.

We used CAGE-seq (59 cap-targeted RNA isolation and sequencing)
to identify 62,403 transcription start sites (TSSs) at high confidence
(IDR of 0.01) in tier 1 and 2 cell types. Of these, 27,362 (44%) are within
100 base pairs (bp) of the 59 end of a GENCODE-annotated transcript
or previously reported full-length messenger RNA. The remaining
regions predominantly lie across exons and 39 untranslated regions
(UTRs), and some exhibit cell-type-restricted expression; these may
represent the start sites of novel, cell-type-specific transcripts.

Finally, we saw a significant proportion of coding and non-coding
transcripts processed into steady-state stable RNAs shorter than 200
nucleotides. These precursors include transfer RNA, microRNA,
small nuclear RNA and small nucleolar RNA (tRNA, miRNA,
snRNA and snoRNA, respectively) and the 59 termini of these pro-
cessed products align with the capped 59 end tags16.

BOX 1

ENCODE abbreviations
RNA-seq. Isolation of RNA sequences, often with different purification
techniques to isolate different fractions of RNA followed by high-
throughput sequencing.
CAGE. Captureof themethylated cap at the 59 end of RNA, followed by
high-throughput sequencing of a small tag adjacent to the
59 methylated caps. 59 methylated caps are formed at the initiation of
transcription, although other mechanisms also methylate 59 ends of
RNA.
RNA-PET. Simultaneous capture of RNAs with both a 59 methyl cap
and a poly(A) tail, which is indicative of a full-length RNA. This is then
followed by sequencing a short tag from each end by high-throughput
sequencing.
ChIP-seq. Chromatin immunoprecipitation followed by sequencing.
Specific regions of crosslinked chromatin, which is genomic DNA in
complexwith itsboundproteins,are selectedbyusinganantibody toa
specific epitope. The enriched sample is then subjected to high-
throughput sequencing to determine the regions in the genome most
often bound by the protein to which the antibody was directed. Most
often used are antibodies to any chromatin-associated epitope,
including transcription factors, chromatin binding proteins and
specific chemical modifications on histone proteins.
DNase-seq. Adaption of established regulatory sequence assay to
modern techniques. The DNase I enzyme will preferentially cut live
chromatin preparations at sites where nearby there are specific (non-
histone) proteins. The resulting cut points are then sequenced using
high-throughput sequencing to determine those sites ‘hypersensitive’
to DNase I, corresponding to open chromatin.
FAIRE-seq. Formaldehyde assisted isolation of regulatory elements.
FAIRE isolates nucleosome-depleted genomic regions by exploiting
the difference in crosslinking efficiency between nucleosomes (high)
and sequence-specific regulatory factors (low). FAIRE consists of
crosslinking, phenol extraction, and sequencing the DNA fragments in
the aqueous phase.
RRBS. Reduced representation bisulphite sequencing. Bisulphite
treatment of DNA sequence converts unmethylated cytosines to
uracil. To focus the assay and save costs, specific restriction enzymes
that cutaroundCpGdinucleotidescan reduce thegenome toaportion
specifically enriched in CpGs.This enrichedsample is thensequenced
to determine the methylation status of individual cytosines
quantitatively.
Tier 1. Tier 1 cell types were the highest-priority set and comprised
three widely studied cell lines: K562 erythroleukaemia cells;
GM12878, a B-lymphoblastoid cell line that is also part of the 1000
Genomesproject (http://1000genomes.org)55; and theH1embryonic
stem cell (H1 hESC) line.
Tier 2. The second-priority set of cell types in the ENCODE project
which included HeLa-S3 cervical carcinoma cells, HepG2
hepatoblastoma cells and primary (non-transformed) human
umbilical vein endothelial cells (HUVECs).
Tier 3. Any other ENCODE cell types not in tier 1 or tier 2.
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Protein bound regions
To identify regulatory regions directly, we mapped the binding loca-
tions of 119 different DNA-binding proteins and a number of RNA
polymerase components in 72 cell types using ChIP-seq (Table 1,
Supplementary Table 1, section N, and ref. 19); 87 (73%) were
sequence-specific transcription factors. Overall, 636,336 binding
regions covering 231 megabases (Mb; 8.1%) of the genome are
enriched for regions bound by DNA-binding proteins across all cell
types. We assessed each protein-binding site for enrichment of known
DNA-binding motifs and the presence of novel motifs. Overall, 86%
of the DNA segments occupied by sequence-specific transcription
factors contained a strong DNA-binding motif, and in most (55%)
cases the known motif was most enriched (P. Kheradpour and
M. Kellis, manuscript in preparation).

Protein-binding regions lacking high or moderate affinity cognate
recognition sites have 21% lower median scores by rank than regions
with recognition sequences (Wilcoxon rank sum P value ,10216).
Eighty-two per cent of the low-signal regions have high-affinity recog-
nition sequences for other factors. In addition, when ChIP-seq peaks
are ranked by their concordance with their known recognition
sequence, the median DNase I accessibility is twofold higher in the
bottom 20% of peaks than in the upper 80% (genome structure
correction (GSC)20 P value ,10216), consistent with previous
observations21–24. We speculate that low signal regions are either
lower-affinity sites21 or indirect transcription-factor target regions
associated through interactions with other factors (see also refs 25, 26).

We organized all the information associated with each transcrip-
tion factor—including the ChIP-seq peaks, discovered motifs and
associated histone modification patterns—in FactorBook (http://www.
factorbook.org; ref. 26), a public resource that will be updated as the
project proceeds.

DNase I hypersensitive sites and footprints
Chromatin accessibility characterized by DNase I hypersensitivity is
the hallmark of regulatory DNA regions27,28. We mapped 2.89 million
unique, non-overlapping DNase I hypersensitive sites (DHSs) by
DNase-seq in 125 cell types, the overwhelming majority of which lie
distal to TSSs29. We also mapped 4.8 million sites across 25 cell types

that displayed reduced nucleosomal crosslinking by FAIRE, many of
which coincide with DHSs. In addition, we used micrococcal nuclease
to map nucleosome occupancy in GM12878 and K562 cells30.

In tier 1 and tier 2 cell types, we identified a mean of 205,109 DHSs
per cell type (at false discovery rate (FDR) 1%), encompassing an
average of 1.0% of the genomic sequence in each cell type, and 3.9%
in aggregate. On average, 98.5% of the occupancy sites of transcription
factors mapped by ENCODE ChIP-seq (and, collectively, 94.4% of all
1.1 million transcription factor ChIP-seq peaks in K562 cells) lie within
accessible chromatin defined by DNase I hotspots29. However, a
small number of factors, most prominently heterochromatin-bound
repressive complexes (for example, the TRIM28–SETDB1–ZNF274
complex31,32 encoded by the TRIM28, SETDB1 and ZNF274 genes),
seem to occupy a significant fraction of nucleosomal sites.

Using genomic DNase I footprinting33,34 on 41 cell types we iden-
tified 8.4 million distinct DNase I footprints (FDR 1%)25. Our de novo
motif discovery on DNase I footprints recovered ,90% of known
transcription factor motifs, together with hundreds of novel evolutio-
narily conserved motifs, many displaying highly cell-selective occu-
pancy patterns similar to major developmental and tissue-specific
regulators.

Regions of histone modification
We assayed chromosomal locations for up to 12 histone modifications
and variants in 46 cell types, including a complete matrix of eight
modifications across tier 1 and tier 2. Because modification states
may span multiple nucleosomes, which themselves can vary in position
across cell populations, we used a continuous signal measure of histone
modifications in downstream analysis, rather than calling regions
(M. M. Hoffman et al., manuscript in preparation; see http://code.
google.com/p/align2rawsignal/). For the strongest, ‘peak-like’ histone
modifications, we used MACS35 to characterize enriched sites. Table 2
describes the different histone modifications, their peak characteristics,
and a summary of their known roles (reviewed in refs 36–39).

Our data show that global patterns of modification are highly vari-
able across cell types, in accordance with changes in transcriptional
activity. Consistent with previous studies40,41, we find that integration
of the different histone modification information can be used system-
atically to assign functional attributes to genomic regions (see below).

DNA methylation
Methylation of cytosine, usually at CpG dinucleotides, is involved in
epigenetic regulation of gene expression. Promoter methylation is
typically associated with repression, whereas genic methylation cor-
relates with transcriptional activity42. We used reduced representation
bisulphite sequencing (RRBS) to profile DNA methylation quantita-
tively for an average of 1.2 million CpGs in each of 82 cell lines and
tissues (8.6% of non-repetitive genomic CpGs), including CpGs in
intergenic regions, proximal promoters and intragenic regions (gene
bodies)43, although it should be noted that the RRBS method pref-
erentially targets CpG-rich islands. We found that 96% of CpGs
exhibited differential methylation in at least one cell type or tissue

Table 1 | Summary of transcription factor classes analysed in
ENCODE

Acronym Description Factors
analysed

ChromRem ATP-dependent chromatin complexes 5
DNARep DNA repair 3
HISase Histone acetylation, deacetylation or methylation

complexes
8

Other Cyclin kinase associated with transcription 1
Pol2 Pol II subunit 1 (2 forms)
Pol3 Pol III-associated 6
TFNS General Pol II-associated factor, not site-specific 8
TFSS Pol II transcription factor with sequence-specific DNA

binding
87

Table 2 | Summary of ENCODE histone modifications and variants
Histone modification

or variant
Signal

characteristics
Putative functions

H2A.Z Peak Histone protein variant (H2A.Z) associated with regulatory elements with dynamic chromatin
H3K4me1 Peak/region Mark of regulatory elements associatedwithenhancersand otherdistal elements,but alsoenricheddownstreamof transcription starts
H3K4me2 Peak Mark of regulatory elements associated with promoters and enhancers
H3K4me3 Peak Mark of regulatory elements primarily associated with promoters/transcription starts
H3K9ac Peak Mark of active regulatory elements with preference for promoters

H3K9me1 Region Preference for the 59 end of genes
H3K9me3 Peak/region Repressive mark associated with constitutive heterochromatin and repetitive elements
H3K27ac Peak Mark of active regulatory elements; may distinguish active enhancers and promoters from their inactive counterparts

H3K27me3 Region Repressive mark established by polycomb complex activity associated with repressive domains and silent developmental genes
H3K36me3 Region Elongation mark associated with transcribed portions of genes, with preference for 39 regions after intron 1
H3K79me2 Region Transcription-associated mark, with preference for 59 end of genes
H4K20me1 Region Preference for 59 end of genes
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assayed (K. Varley et al., personal communication), and levels of
DNA methylation correlated with chromatin accessibility. The most
variably methylated CpGs are found more often in gene bodies and
intergenic regions, rather than in promoters and upstream regulatory
regions. In addition, we identified an unexpected correspondence
between unmethylated genic CpG islands and binding by P300, a
histone acetyltransferase linked to enhancer activity44.

Because RRBS is a sequence-based assay with single-base resolu-
tion, we were able to identify CpGs with allele-specific methylation
consistent with genomic imprinting, and determined that these loci
exhibit aberrant methylation in cancer cell lines (K. Varley et al.,
personal communication). Furthermore, we detected reproducible
cytosine methylation outside CpG dinucleotides in adult tissues45,
providing further support that this non-canonical methylation event
may have important roles in human biology (K. Varley et al., personal
communication).

Chromosome-interacting regions
Physical interaction between distinct chromosome regions that can be
separated by hundreds of kilobases is thought to be important in the
regulation of gene expression46. We used two complementary chro-
mosome conformation capture (3C)-based technologies to probe
these long-range physical interactions.

A 3C-carbon copy (5C) approach47,48 provided unbiased detection
of long-range interactions with TSSs in a targeted 1% of the genome
(the 44 ENCODE pilot regions) in four cell types (GM12878, K562,
HeLa-S3 and H1 hESC)49. We discovered hundreds of statistically
significant long-range interactions in each cell type after accounting
for chromatin polymer behaviour and experimental variation. Pairs
of interacting loci showed strong correlation between the gene
expression level of the TSS and the presence of specific functional
element classes such as enhancers. The average number of distal ele-
ments interacting with a TSS was 3.9, and the average number of TSSs
interacting with a distal element was 2.5, indicating a complex net-
work of interconnected chromatin. Such interwoven long-range
architecture was also uncovered genome-wide using chromatin inter-
action analysis with paired-end tag sequencing (ChIA-PET)50 applied
to identify interactions in chromatin enriched by RNA polymerase II
(Pol II) ChIP from five cell types51. In K562 cells, we identified 127,417
promoter-centred chromatin interactions using ChIA-PET, 98% of
which were intra-chromosomal. Whereas promoter regions of 2,324
genes were involved in ‘single-gene’ enhancer–promoter interactions,
those of 19,813 genes were involved in ‘multi-gene’ interaction com-
plexes spanning up to several megabases, including promoter–
promoter and enhancer–promoter interactions51.

These analyses portray a complex landscape of long-range gene–
element connectivity across ranges of hundreds of kilobases to several
megabases, including interactions among unrelated genes (Supplemen-
tary Fig. 1, section Y). Furthermore, in the 5C results, 50–60% of long-
range interactions occurred in only one of the four cell lines, indicative
of a high degree of tissue specificity for gene–element connectivity49.

Summary of ENCODE-identified elements
Accounting for all these elements, a surprisingly large amount of the
human genome, 80.4%, is covered by at least one ENCODE-identified
element (detailed in Supplementary Table 1, section Q). The broadest
element class represents the different RNA types, covering 62% of the
genome (although the majority is inside of introns or near genes).
Regions highly enriched for histone modifications form the next
largest class (56.1%). Excluding RNA elements and broad histone
elements, 44.2% of the genome is covered. Smaller proportions of
the genome are occupied by regions of open chromatin (15.2%) or
sites of transcription factor binding (8.1%), with 19.4% covered by at
least one DHS or transcription factor ChIP-seq peak across all cell
lines. Using our most conservative assessment, 8.5% of bases are
covered by either a transcription-factor-binding-site motif (4.6%)

or a DHS footprint (5.7%). This, however, is still about 4.5-fold higher
than the amount of protein-coding exons, and about twofold higher
than the estimated amount of pan-mammalian constraint.

Given that the ENCODE project did not assay all cell types, or all
transcription factors, and in particular has sampled few specialized or
developmentally restricted cell lineages, these proportions must be
underestimates of the total amount of functional bases. However,
many assays were performed on more than one cell type, allowing
assessment of the rate of discovery of new elements. For both DHSs
and CTCF-bound sites, the number of new elements initially increases
rapidly with a steep gradient for the saturation curve and then slows
with increasing number of cell types (Supplementary Figs 1 and 2,
section R). With the current data, at the flattest part of the saturation
curve each new cell type adds, on average, 9,500 DHS elements (across
106 cell types) and 500 CTCF-binding elements (across 49 cell types),
representing 0.45% of the total element number. We modelled
saturation for the DHSs and CTCF-binding sites using a Weibull
distribution (r2 . 0.999) and predict saturation at approximately
4.1 million (standard error (s.e.) 5 108,000) and 185,100 (s.e. 5 18,020)
sites, respectively, indicating that we have discovered around half of the
estimated total DHSs. These estimates represent a lower bound, but
reinforce the observation that there is more non-coding functional
DNA than either coding sequence or mammalian evolutionarily con-
strained bases.

The impact of selection on functional elements
From comparative genomic studies, at least 3–8% of bases are under
purifying (negative) selection4–11, indicating that these bases may
potentially be functional. We previously found that 60% of mammalian
evolutionarily constrained bases were annotated in the ENCODE pilot
project, but also observed that many functional elements lacked
evidence of constraint2, a conclusion substantiated by others52–54. The
diversity and genome-wide occurrence of functional elements now
identified provides an unprecedented opportunity to examine further
the forces of negative selection on human functional sequences.

We examined negative selection using two measures that highlight
different periods of selection in the human genome. The first measure,
inter-species, pan-mammalian constraint (GERP-based scores;
24 mammals8), addresses selection during mammalian evolution.
The second measure is intra-species constraint estimated from the
numbers of variants discovered in human populations using data from
the 1000 Genomes project55, and covers selection over human evolu-
tion. In Fig. 1, we plot both these measures of constraint for different
classes of identified functional elements, excluding features overlapping
exons and promoters that are known to be constrained. Each graph also
shows genomic background levels and measures of coding-gene con-
straint for comparison. Because we plot human population diversity on
an inverted scale, elements that are more constrained by negative selec-
tion will tend to lie in the upper and right-hand regions of the plot.

For DNase I elements (Fig. 1b) and bound motifs (Fig. 1c), most
sets of elements show enrichment in pan-mammalian constraint and
decreased human population diversity, although for some cell types
the DNase I sites do not seem overall to be subject to pan-mammalian
constraint. Bound transcription factor motifs have a natural control
from the set of transcription factor motifs with equal sequence poten-
tial for binding but without binding evidence from ChIP-seq experi-
ments—in all cases, the bound motifs show both more mammalian
constraint and higher suppression of human diversity.

Consistent with previous findings, we do not observe genome-wide
evidence for pan-mammalian selection of novel RNA sequences
(Fig. 1d). There are also a large number of elements without mammalian
constraint, between 17% and 90% for transcription-factor-binding
regions as well as DHSs and FAIRE regions. Previous studies could
not determine whether these sequences are either biochemically active,
but with little overall impact on the organism, or under lineage-
specific selection. By isolating sequences preferentially inserted into
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the primate lineage, which is only feasible given the genome-wide scale
of this data, we are able to examine this issue specifically. Most primate-
specific sequence is due to retrotransposon activity, but an appreciable
proportion is non-repetitive primate-specific sequence. Of 104,343,413
primate-specific bases (excluding repetitive elements), 67,769,372
(65%) are found within ENCODE-identified elements. Examination
of 227,688 variants segregating in these primate-specific regions
revealed that all classes of elements (RNA and regulatory) show
depressed derived allele frequencies, consistent with recent negative
selection occurring in at least some of these regions (Fig. 1e). An alterna-
tive approach examining sequences that are not clearly under pan-
mammalian constraint showed a similar result (L. Ward and
M. Kellis, manuscript submitted). This indicates that an appreciable
proportion of the unconstrained elements are lineage-specific elements
required for organismal function, consistent with long-standing views
of recent evolution56, and the remainder are probably ‘neutral’ elements2

that are not currently under selection but may still affect cellular or
larger scale phenotypes without an effect on fitness.

The binding patterns of transcription factors are not uniform, and
we can correlate both inter- and intra-species measures of negative
selection with the overall information content of motif positions. The
selection on some motif positions is as high as protein-coding exons
(Fig. 1f; L. Ward and M. Kellis, manuscript submitted). These
aggregate measures across motifs show that the binding preferences
found in the population of sites are also relevant to the per-site beha-
viour. By developing a per-site metric of population effect on bound
motifs, we found that highly constrained bound instances across
mammals are able to buffer the impact of individual variation57.

ENCODE data integration with known genomic features
Promoter-anchored integration
Many of the ENCODE assays directly or indirectly provide informa-
tion about the action of promoters. Focusing on the TSSs of protein-
coding transcripts, we investigated the relationships between different
ENCODE assays, in particular testing the hypothesis that RNA
expression (output) can be effectively predicted from patterns of
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Figure 1 | Impact of selection on ENCODE functional elements in
mammals and human populations. a, Levels of pan-mammalian constraint
(mean GERP score; 24 mammals8, x axis) compared to diversity, a measure of
negative selection in the human population (mean expected heterozygosity,
inverted scale, y axis) for ENCODE data sets. Each point is an average for a
single data set. The top-right corners have the strongest evolutionary constraint
and lowest diversity. Coding (C), UTR (U), genomic (G), intergenic (IG) and
intronic (IN) averages are shown as filled squares. In each case the vertical and
horizontal cross hairs show representative levels for the neutral expectation for
mammalian conservation and human population diversity, respectively. The
spread over all non-exonic ENCODE elements greater than 2.5 kb from TSSs is
shown. The inner dashed box indicates that parts of the plot have been
magnified for the surrounding outer panels, although the scales in the outer
plots provide the exact regions and dimensions magnified. The spread for DHS
sites (b) and RNA elements (d) is shown in the plots on the left. RNA elements

are either long novel intronic (dark green) or long intergenic (light green)
RNAs. The horizontal cross hairs are colour-coded to the relevant data set in
d. c, Spread of transcription factor motif instances either in regions bound by
the transcription factor (orange points) or in the corresponding unbound motif
matches in grey, with bound and unbound points connected with an arrow in
each case showing that bound sites are generally more constrained and less
diverse. e, Derived allele frequency spectrum for primate-specific elements,
with variations outside ENCODE elements in black and variations covered by
ENCODE elements in red. The increase in low-frequency alleles compared to
background is indicative of negative selection occurring in the set of variants
annotated by the ENCODE data. f, Aggregation of mammalian constraint
scores over the glucocorticoid receptor (GR) transcription factor motif in
bound sites, showing the expected correlation with the information content of
bases in the motif. An interactive version of this figure is available in the online
version of the paper.
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chromatin modification or transcription factor binding (input).
Consistent with previous reports58, we observe two relatively distinct
types of promoter: (1) broad, mainly (C1G)-rich, TATA-less promoters;
and (2) narrow, TATA-box-containing promoters. These promoters
have distinct patterns of histone modifications, and transcription-fac-
tor-binding sites are selectively enriched in each class (Supplementary
Fig. 1, section Z).

We developed predictive models to explore the interaction between
histone modifications and measures of transcription at promoters,
distinguishing between modifications known to be added as a con-
sequence of transcription (such as H3K36me3 and H3K79me2) and
other categories of histone marks59. In our analyses, the best models
had two components: an initial classification component (on/off) and a
second quantitative model component. Our models showed that
activating acetylation marks (H3K27ac and H3K9ac) are roughly
as informative as activating methylation marks (H3K4me3 and
H3K4me2) (Fig. 2a). Although repressive marks, such as H3K27me3

or H3K9me3, show negative correlation both individually and in the
model, removing these marks produces only a small reduction in
model performance. However, for a subset of promoters in each cell
line, repressive histone marks (H3K27me3 or H3K9me3) must be used
to predict their expression accurately. We also examined the interplay
between the H3K79me2 and H3K36me3 marks, both of which mark
gene bodies, probably reflecting recruitment of modification enzymes
by polymerase isoforms. As described previously, H3K79me2 occurs
preferentially at the 59 ends of gene bodies and H3K36me3 occurs
more 39, and our analyses support the previous model in which the
H3K79me2 to H3K36me3 transition occurs at the first 39 splice site60.

Few previous studies have attempted to build qualitative or quant-
itative models of transcription genome-wide from transcription
factor levels because of the paucity of documented transcription-
factor-binding regions and the lack of coordination around a single
cell line. We thus examined the predictive capacity of transcription-
factor-binding signals for the expression levels of promoters (Fig. 2b).
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Figure 2 | Modelling transcription levels from histone modification and
transcription-factor-binding patterns. a, b, Correlative models between
either histone modifications or transcription factors, respectively, and RNA
production as measured by CAGE tag density at TSSs in K562 cells. In each case
the scatter plot shows the output of the correlation models (x axis) compared to
observed values (y axis). The bar graphs show the most important histone

modifications (a) or transcription factors (b) in both the initial classification
phase (top bar graph) or the quantitative regression phase (bottom bar graph),
with larger values indicating increasing importance of the variable in the model.
Further analysis of other cell lines and RNA measurement types is reported
elsewhere59,79. AUC, area under curve; Gini, Gini coefficient; RMSE, root mean
square error.
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In contrast to the profiles of histone modifications, most transcription
factors show enriched binding signals in a narrow DNA region near
the TSS, with relatively higher binding signals in promoters with
higher CpG content. Most of this correlation could be recapitulated
by looking at the aggregate binding of transcription factors without
specific transcription factor terms. Together, these correlation models
indicate both that a limited set of chromatin marks are sufficient to
‘explain’ transcription and that a variety of transcription factors might
have broad roles in general transcription levels across many genes. It is
important to note that this is an inherently observational study of
correlation patterns, and is consistent with a variety of mechanistic
models with different causal links between the chromatin, transcrip-
tion factor and RNA assays. However, it does indicate that there is
enough information present at the promoter regions of genes to
explain most of the variation in RNA expression.

We developed predictive models similar to those used to model
transcriptional activity to explore the relationship between levels of
histone modification and inclusion of exons in alternately spliced
transcripts. Even accounting for expression level, H3K36me3 has a
positive contribution to exon inclusion, whereas H3K79me2 has a
negative contribution (H. Tilgner et al., manuscript in preparation).
By monitoring the RNA populations in the subcellular fractions of
K562 cells, we found that essentially all splicing is co-transcriptional61,
further supporting a link between chromatin structure and splicing.

Transcription-factor-binding site-anchored integration
Transcription-factor-binding sites provide a natural focus around
which to explore chromatin properties. Transcription factors are often
multifunctional and can bind a variety of genomic loci with different
combinations and patterns of chromatin marks and nucleosome organ-
ization. Hence, rather than averaging chromatin mark profiles across all
binding sites of a transcription factor, we developed a clustering pro-
cedure, termed the Clustered Aggregation Tool (CAGT), to identify
subsets of binding sites sharing similar but distinct patterns of chro-
matin mark signal magnitude, shape and hidden directionality30. For
example, the average profile of the repressive histone mark H3K27me3
over all 55,782 CTCF-binding sites in H1 hESCs shows poor signal
enrichment (Fig. 3a). However, after grouping profiles by signal
magnitude we found a subset of 9,840 (17.6%) CTCF-binding sites
that exhibit significant flanking H3K27me3 signal. Shape and orienta-
tion analysis further revealed that the predominant signal profile for
H3K27me3 around CTCF peak summits is asymmetric, consistent
with a boundary role for some CTCF sites between active and
polycomb-silenced domains. Further examples are provided in
Supplementary Figs 5 and 6 of section E. For TAF1, predominantly
found near TSSs, the asymmetric sites are orientated with the direction
of transcription. However, for distal sites, such as those bound by
GATA1 and CTCF, we also observed a high proportion of asymmetric
histone patterns, although independent of motif directionality. In fact,
all transcription-factor-binding data sets in all cell lines show
predominantly asymmetric patterns (asymmetry ratio .0.6) for all
chromatin marks but not for DNase I signal (Fig. 3b). This indicates
that most transcription-factor-bound chromatin events correlate with
structured, directional patterns of histone modifications, and that pro-
moter directionality is not the only source of orientation at these sites.

We also examined nucleosome occupancy relative to the symmetry
properties of chromatin marks around transcription-factor-binding
sites. Around TSSs, there is usually strong asymmetric nucleosome
occupancy, often accounting for most of the histone modification
signal (for instance, see Supplementary Fig. 4, section E). However,
away from TSSs, there is far less concordance. For example, CTCF-
binding sites typically show arrays of well-positioned nucleosomes on
either side of the peak summit (Supplementary Fig. 1, section E)62.
Where the flanking chromatin mark signal is high, the signals are
often asymmetric, indicating differential marking with histone
modifications (Supplementary Figs 2 and 3, section E). Thus, we

confirm on a genome-wide scale that transcription factors can form
barriers around which nucleosomes and histone modifications are
arranged in a variety of configurations62–65. This is explored in further
detail in refs 25, 26 and 30.

Transcription factor co-associations
Transcription-factor-binding regions are nonrandomly distributed
across the genome, with respect to both other features (for example,
promoters) and other transcription-factor-binding regions. Within the
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Figure 3 | Patterns and asymmetry of chromatin modification at
transcription-factor-binding sites. a, Results of clustered aggregation of
H3K27me3 modification signal around CTCF-binding sites (a multifunctional
protein involved with chromatin structure). The first three plots (left column)
show the signal behaviour of the histone modification over all sites (top) and
then split into the high and low signal components. The solid lines show the
mean signal distribution by relative position with the blue shaded area
delimiting the tenth and ninetieth percentile range. The high signal component
is then decomposed further into six different shape classes on the right (see ref.
30 for details). The shape decomposition process is strand aware. b, Summary
of shape asymmetry for DNase I, nucleosome and histone modification signals
by plotting an asymmetry ratio for each signal over all transcription-factor-
binding sites. All histone modifications measured in this study show
predominantly asymmetric patterns at transcription-factor-binding sites. An
interactive version of this figure is available in the online version of the paper.
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tier 1 and 2 cell lines, we found 3,307 pairs of statistically co-associated
factors (P ,1 3 10216, GSC) involving 114 out of a possible 117 factors
(97%) (Fig. 4a). These include expected associations, such as Jun and

Fos, and some less expected novel associations, such as TCF7L2 with
HNF4-a and FOXA2 (ref. 66; a full listing is given in Supplementary
Table 1, section F). When one considers promoter and intergenic
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Figure 4 | Co-association between transcription factors. a, Significant co-
associations of transcription factor pairs using the GSC statistic across the entire
genome in K562 cells. The colour strength represents the extent of association
(from red (strongest), orange, to yellow (weakest)), whereas the depth of colour
represents the fit to the GSC20 model (where white indicates that the statistical
model is not appropriate) as indicated by the key. Most transcription factors have
a nonrandom association to other transcription factors, and these associations are
dependent on the genomic context, meaning that once the genome is separated
into promoter proximal and distal regions, the overall levels of co-association

decrease, but more specific relationships are uncovered. b, Three classes of
behaviour are shown. The first column shows a set of associations for which
strength is independent of location in promoter and distal regions, whereas the
second column shows a set of transcription factors that have stronger associations
in promoter-proximal regions. Both of these examples are from data in K562 cells
and are highlighted on the genome-wide co-association matrix (a) by the labelled
boxes A and B, respectively. The third column shows a set of transcription factors
that show stronger association in distal regions (in the H1 hESC line). An
interactive version of this figure is available in the online version of the paper.

Table 3 | Summary of the combined state types
Label Description Details* Colour

CTCF CTCF-enriched element Sites of CTCF signal lacking histone modifications, often associated with open chromatin. Many
probably have a function in insulator assays, but because of the multifunctional nature of CTCF, we
are conservative in our description. Also enriched for the cohesin components RAD21 and SMC3;

CTCF is known to recruit the cohesin complex.

Turquoise

E Predicted enhancer Regions of open chromatin associated with H3K4me1 signal. Enriched for other enhancer-
associated marks, including transcription factors known to act at enhancers. In enhancer assays,

many of these (.50%) function as enhancers. A more conservative alternative would be cis-
regulatory regions. Enriched for sites for the proteins encoded by EP300, FOS, FOSL1, GATA2,
HDAC8, JUNB, JUND, NFE2, SMARCA4, SMARCB1, SIRT6 and TAL1 genes in K562 cells. Have

nuclear and whole-cell RNA signal, particularly poly(A)2 fraction.

Orange

PF Predicted promoter flanking region Regions that generally surround TSS segments (see below). Light red
R Predicted repressed or low-activity region This is a merged state that includes H3K27me3 polycomb-enriched regions, along with regions that

are silent in terms of observed signal for the input assays to the segmentations (low or no signal).
They may have other signals (for example, RNA, not in the segmentation input data). Enriched for
sites for the proteins encoded by REST and some other factors (for example, proteins encoded by

BRF2, CEBPB, MAFK, TRIM28, ZNF274 and SETDB1 genes in K562 cells).

Grey

TSS Predicted promoter region including TSS Found close to or overlapping GENCODE TSS sites. High precision/recall for TSSs. Enriched for
H3K4me3. Sites of open chromatin. Enriched for transcription factors known to act close to promoters

and polymerases Pol II and Pol III. Short RNAs are most enriched in these segments.

Bright red

T Predicted transcribed region Overlap gene bodies with H3K36me3 transcriptional elongation signal. Enriched for phosphorylated
form of Pol II signal (elongating polymerase) and poly(A)1 RNA, especially cytoplasmic.

Dark green

WE Predicted weak enhancer or open
chromatin cis-regulatory element

Similar to the E state, but weaker signals and weaker enrichments. Yellow

*Where specific enrichmentsor overlaps are identified, these are derived from analysis in GM12878and/or K562 cells where the data for comparison is richest. The colours indicated are used in Figs5 and7 and in
display of these tracks from the ENCODE data hub.
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Figure 5 | Integration of ENCODE data by genome-wide segmentation.
a, Illustrative region with the two segmentation methods (ChromHMM and
Segway) in a dense view and the combined segmentation expanded to show
each state in GM12878 cells, beneath a compressed view of the GENCODE
gene annotations. Note that at this level of zoom and genome browser
resolution, some segments appear to overlap although they do not.
Segmentation classes are named and coloured according to the scheme in
Table 3. Beneath the segmentations are shown each of the normalized signals
that were used as the input data for the segmentations. Open chromatin signals
from DNase-seq from the University of Washington group (UW DNase) or the
ENCODE open chromatin group (Openchrom DNase) and FAIRE assays are
shown in blue; signal from histone modification ChIP-seq in red; and
transcription factor ChIP-seq signal for Pol II and CTCF in green. The mauve

ChIP-seq control signal (input control) at the bottom was also included as an
input to the segmentation. b, Association of selected transcription factor (left)
and RNA (right) elements in the combined segmentation states (x axis)
expressed as an observed/expected ratio (obs./exp.) for each combination of
transcription factor or RNA element and segmentation class using the heat-
map scale shown in the key besides each heat map. c, Variability of states
between cell lines, showing the distribution of occurrences of the state in the six
cell lines at specific genome locations: from unique to one cell line to ubiquitous
in all six cell lines for five states (CTCF, E, T, TSS and R). d, Distribution of
methylation level at individual sites from RRBS analysis in GM12878 cells
across the different states, showing the expected hypomethylation at TSSs and
hypermethylation of genes bodies (T state) and repressed (R) regions.
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regions separately, this changes to 3,201 pairs (116 factors, 99%) for
promoters and 1,564 pairs (108 factors, 92%) for intergenic regions,
with some associations more specific to these genomic contexts (for
example, the cluster of HDAC2, GABPA, CHD2, GTF2F1, MXI1 and
MYC in promoter regions and SP1, EP300, HDAC2 and NANOG in
intergenic regions (Fig. 4b)). These general and context-dependent
associations lead to a network representation of the co-binding with
many interesting properties, explored in refs 19, 25 and 26. In addition,
we also identified a set of regions bound by multiple factors represent-
ing high occupancy of transcription factor (HOT) regions67.

Genome-wide integration
To identify functional regions genome-wide, we next integrated ele-
ments independent of genomic landmarks using either discriminative
training methods, where a subset of known elements of a particular class
were used to train a model that was then used to discover more instances
of this class, or using methods in which only data from ENCODE assays
were used without explicit knowledge of any annotation.

For discriminative training, we used a three-step process to predict
potential enhancers, described in Supplementary Information and
ref. 67. Two alternative discriminative models converged on a set of
,13,000 putative enhancers in K562 cells67. In the second approach,
two methodologically distinct unbiased approaches (see refs 40, 68
and M. M. Hoffman et al., manuscript in preparation) converged on a
concordant set of histone modification and chromatin-accessibility
patterns that can be used to segment the genome in each of the tier 1
and tier 2 cell lines, although the individual loci in each state in each
cell line are different. With the exception of RNA polymerase II and
CTCF, the addition of transcription factor data did not substantially
alter these patterns. At this stage, we deliberately excluded RNA and
methylation assays, reserving these data as a means to validate the
segmentations.

Our integration of the two segmentation methods (M. M. Hoffman
et al., manuscript in preparation) established a consensus set of seven
major classes of genome states, described in Table 3. The standard
view of active promoters, with a distinct core promoter region (TSS
and PF states), leading to active gene bodies (T, transcribed state), is
rediscovered in this model (Fig. 5a, b). There are three ‘active’ distal
states. We tentatively labelled two as enhancers (predicted enhancers,
E, and predicted weak enhancers, WE) due to their occurrence in
regions of open chromatin with high H3K4me1, although they differ
in the levels of marks such as H3K27ac, currently thought to
distinguish active from inactive enhancers. The other active state
(CTCF) has high CTCF binding and includes sequences that function
as insulators in a transfection assay. The remaining repressed state (R)
summarizes sequences split between different classes of actively
repressed or inactive, quiescent chromatin. We found that the
CTCF-binding-associated state is relatively invariant across cell types,
with individual regions frequently occupying the CTCF state across all
six cell types (Fig. 5c). Conversely, the E and T states have substantial
cell-specific behaviour, whereas the TSS state has a bimodal behaviour
with similar numbers of cell-invariant and cell-specific occurrences.
It is important to note that the consensus summary classes do not
capture all the detail discovered in the individual segmentations con-
taining more states.

The distribution of RNA species across segments is quite distinct,
indicating that underlying biological activities are captured in the
segmentation. Polyadenylated RNA is heavily enriched in gene
bodies. Around promoters, there are short RNA species previously
identified as promoter-associated short RNAs (Fig. 5b)16,69. Similarly,
DNA methylation shows marked distinctions between segments,
recapitulating the known biology of predominantly unmethylated
active promoters (TSS states) followed by methylated gene bodies42

(T state, Fig. 5d). The two enhancer-enriched states show distinct
patterns of DNA methylation, with the less active enhancer state
(by H3K27ac/H3K4me1 levels) showing higher methylation. These

states also have an excess of RNA elements without poly(A) tails and
methyl-cap RNA, as assayed by CAGE sequences, compared to
matched intergenic controls, indicating a specific transcriptional
mode associated with active enhancers70. Transcription factors also
showed distinct distributions across the segments (Fig. 5b). A striking
pattern is the concentration of transcription factors in the TSS-
associated state. The enhancers contain a different set of transcription
factors. For example, in K562 cells, the E state is enriched for binding
by the proteins encoded by the EP300, FOS, FOSL1, GATA2, HDAC8,
JUNB, JUND, NFE2, SMARCA4, SMARCB1, SIRT6 and TAL1 genes.
We tested a subset of these predicted enhancers in both mouse and
fish transgenic models (examples in Fig. 6), with over half of the
elements showing activity, often in the corresponding tissue type.

The segmentation provides a linear determination of functional
state across the genome, but not an association of particular distal
regions with genes. By using the variation of DNase I signal across cell
lines, 39% of E (enhancer associated) states could be linked to a
proposed regulated gene29 concordant with physical proximity
patterns determined by 5C49 or ChIA-PET.

To provide a fine-grained regional classification, we turned to a self
organizing map (SOM) to cluster genome segmentation regions based
on their assay signal characteristics (Fig. 7). The segmentation regions
were initially randomly assigned to a 1,350-state map in a two-
dimensional toroidal space (Fig. 7a). This map can be visualized as
a two-dimensional rectangular plane onto which the various signal
distributions can be plotted. For instance, the rectangle at the bottom
left of Fig. 7a shows the distribution of the genome in the initial
randomized map. The SOM was then trained using the twelve differ-
ent ChIP-seq and DNase-seq assays in the six cell types previously
analysed in the large-scale segmentations (that is, over 72-dimensional
space). After training, the SOM clustering was again visualized in two
dimensions, now showing the organized distribution of genome seg-
ments (lower right of panel, Fig. 7a). Individual data sets associated
with the genome segments in each SOM map unit (hexagonal cells)
can then be visualized in the same framework to learn how each
additional kind of data is distributed on the chromatin state map.
Figure 7b shows CAGE/TSS expression data overlaid on the randomly
initialized (left) and trained map (right) panels. In this way the trained
SOM highlighted cell-type-specific TSS clusters (bottom panels of
Fig. 7b), indicating that there are sets of tissue-specific TSSs that are
distinguished from each other by subtle combinations of ENCODE

ba

Figure 6 | Experimental characterization of segmentations. Randomly
sampled E state segments (see Table 3) from the K562 segmentation were
cloned for mouse- and fish-based transgenic enhancer assays. a, Representative
LacZ-stained transgenic embryonic day (E)11.5 mouse embryo obtained with
construct hs2065 (EN167, chr10: 46052882–46055670, GRCh37). Highly
reproducible staining in the blood vessels was observed in 9 out of 9 embryos
resulting from independent transgenic integration events. b, Representative
green fluorescent protein reporter transgenic medaka fish obtained from a
construct with a basal hsp70 promoter on meganuclease-based transfection.
Reproducible transgenic expression in the circulating nucleated blood cells and
the endothelial cell walls was seen in 81 out of 100 transgenic tests of this
construct.
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chromatin data. Many of the ultra-fine-grained state classifications
revealed in the SOM are associated with specific gene ontology (GO)
terms (right panel of Fig. 7c). For instance, the left panel of Fig. 7c
identifies ten SOM map units enriched with genomic regions
associated with genes associated with the GO term ‘immune response’.
The central panel identifies a different set of map units enriched for the
GO term ‘sequence-specific transcription factor activity’. The two
map units most enriched for this GO term, indicated by the darkest
green colouring, contain genes with segments that are high in

H3K27me3 in H1 hESCs, but that differ in H3K27me3 levels in
HUVECs. Gene function analysis with the GO ontology tool
(GREAT71) reveals that the map unit with high H3K27me3 levels in
both cell types is enriched in transcription factor genes with known
neuronal functions, whereas the neighbouring map unit is enriched in
genes involved in body patterning. The genome browser shots at the
bottom of Fig. 7c pick out an example region for each of the two SOM
map units illustrating the difference in H3K27me3 signal. Overall, we
have 228 distinct GO terms associated with specific segments across
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Figure 7 | High-resolution segmentation of
ENCODE data by self-organizing maps (SOM).
a–c, The training of the SOM (a) and analysis of the
results (b, c) are shown. Initially we arbitrarily placed
genomic segments from the ChromHMM
segmentation on to the toroidal map surface,
although the SOM does not use the ChromHMM
state assignments (a). We then trained the map
using the signal of the 12 different ChIP-seq and
DNase-seq assays in the six cell types analysed. Each
unit of the SOM is represented here by a hexagonal
cell in a planar two-dimensional view of the toroidal
map. Curved arrows indicate that traversing the
edges of two dimensional view leads back to the
opposite edge. The resulting map can be overlaid
with any class of ENCODE or other data to view the
distribution of that data within this high-resolution
segmentation. In panel a the distributions of genome
bases across the untrained and trained map (left and
right, respectively) are shown using heat-map
colours for log10 values. b, The distribution of TSSs
from CAGE experiments of GENCODE annotation
on the planar representations of either the initial
random organization (left) or the final trained SOM
(right) using heat maps coloured according to the
accompanying scales. The bottom half of b expands
the different distributions in the SOM for all
expressed TSSs (left) or TSSs specifically expressed
in two example cell lines, H1 hESC (centre) and
HepG2 (right). c, The association of Gene Ontology
(GO) terms on the same representation of the same
trained SOM. We assigned genes that are within
20 kb of a genomic segment in a SOM unit to that
unit, and then associated this set of genes with GO
terms using a hypergeometric distribution after
correcting for multiple testing. Map units that are
significantly associated to GO terms are coloured
green, with increasing strength of colour reflecting
increasing numbers of genes significantly associated
with the GO terms for either immune response (left)
or sequence-specific transcription factor activity
(centre). In each case, specific SOM units show
association with these terms. The right-hand panel
shows the distribution on the same SOM of all
significantly associated GO terms, now colouring by
GO term count per SOM unit. For sequence-specific
transcription factor activity, two example genomic
regions are extracted at the bottom of panel c from
neighbouring SOM units. These are regions around
the DBX1 (from SOM unit 26,31, left panel) and
IRX6 (SOM unit 27,30, right panel) genes,
respectively, along with their H3K27me3 ChIP-seq
signal for each of the tier 1 and 2 cell types. For
DBX1, representative of a set of primarily neuronal
transcription factors associated with unit 26,31,
there is a repressive H3K27me3 signal in both H1
hESCs and HUVECs; for IRX6, representative of a
set of body patterning transcription factors
associated with SOM unit 27,30, the repressive mark
is restricted largely to the embryonic stem (ES) cell.
An interactive version of this figure is available in the
online version of the paper.
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one or more states (A. Mortazavi, personal communication), and can
assign over one-third of genes to a GO annotation solely on the basis of
its multicellular histone patterns. Thus, the SOM analysis provides a
fine-grained map of chromatin data across multiple cell types, which
can then be used to relate chromatin structure to other data types at
differing levels of resolution (for instance, the large cluster of units
containing any active TSS, its subclusters composed of units enriched
in TSSs active in only one cell type, or individual map units signifi-
cantly enriched for specific GO terms).

The classifications presented here are necessarily limited by the
assays and cell lines studied, and probably contain a number of
heterogeneous classes of elements. Nonetheless, robust classifications
can be made, allowing a systematic view of the human genome.

Insights into human genomic variation
We next explored the potential impact of sequence variation on
ENCODE functional elements. We examined allele-specific variation
using results from the GM12878 cells that are derived from an indi-
vidual (NA12878) sequenced in the 1000 Genomes project, along with
her parents. Because ENCODE assays are predominantly sequence-
based, the trio design allows each GM12878 data set to be divided by
the specific parental contributions at heterozygous sites, producing
aggregate haplotypic signals from multiple genomic sites. We
examined 193 ENCODE assays for allele-specific biases using
1,409,992 phased, heterozygous SNPs and 167,096 insertions/dele-
tions (indels) (Fig. 8). Alignment biases towards alleles present in
the reference genome sequence were avoided using a sequence
specifically tailored to the variants and haplotypes present in
NA12878 (a ‘personalized genome’)72. We found instances of pref-
erential binding towards each parental allele. For example, com-
parison of the results from the POLR2A, H3K79me2 and H3K27me3
assays in the region of NACC2 (Fig. 8a) shows a strong paternal bias for
H3K79me2 and POL2RA and a strong maternal bias for H3K27me3,
indicating differential activity for the maternal and paternal alleles.

Figure 8b shows the correlation of selected allele-specific signals
across the whole genome. For instance, we found a strong allelic
correlation between POL2RA and BCLAF1 binding, as well as nega-
tive correlation between H3K79me2 and H3K27me3, both at genes
(Fig. 8b, below the diagonal, bottom left) and chromosomal segments
(top right). Overall, we found that positive allelic correlations among
the 193 ENCODE assays are stronger and more frequent than nega-
tive correlations. This may be due to preferential capture of accessible
alleles and/or the specific histone modification and transcription
factor, assays used in the project.

Rare variants, individual genomes and somatic variants
We further investigated the potential functional effects of individual
variation in the context of ENCODE annotations. We divided
NA12878 variants into common and rare classes, and partitioned
these into those overlapping ENCODE annotation (Fig. 9a and
Supplementary Tables 1 and 2, section K). We also predicted potential
functional effects: for protein-coding genes, these are either non-
synonymous SNPs or variants likely to induce loss of function by
frame-shift, premature stop, or splice-site disruption; for other
regions, these are variants that overlap a transcription-factor-
binding site. We found similar numbers of potentially functional
variants affecting protein-coding genes or affecting other ENCODE
annotations, indicating that many functional variants within
individual genomes lie outside exons of protein-coding genes. A more
detailed analysis of regulatory variant annotation is described in
ref. 73.

To study further the potential effects of NA12878 genome variants
on transcription-factor-binding regions, we performed peak calling
using a constructed personal diploid genome sequence for NA12878
(ref. 72). We aligned ChIP-seq sequences from GM12878 separately
against the maternal and paternal haplotypes. As expected, a greater

fraction of reads were aligned than to the reference genome (see
Supplementary Information, Supplementary Fig. 1, section K). On
average, approximately 1% of transcription-factor-binding sites in
GM12878 cells are detected in a haplotype-specific fashion. For
instance, Fig. 9b shows a CTCF-binding site not detected using the

a

b

0.383
r2

0

0.020

H3K4me1
H3K4me2
H3K4me3

H2AFZ
H3K9ac

H3K27ac
H3K79me2
H3K36me3

H3K9me3
H3K27me3

DNase
POLR2A

POLR2A elongating
CTCF
BATF

BCLAF1
ETS1

MEF2A
MTA3
EP300

POU2F2
RAD21

RFX5
RUNX3
SMC3

STAT5A
TAF1
TBP
YY1

ZNF143

H
3

K
4

m
e
1

H
3

K
4

m
e
2

H
3

K
4

m
e
3

H
2

A
F

Z
H

3
K

9
a
c

H
3

K
2

7
a
c

H
3

K
7

9
m

e
2

H
3

K
3

6
m

e
3

H
3

K
9

m
e
3

H
3

K
2

7
m

e
3

D
N

a
s
e

P
O

L
R

2
A

P
O

L
R

2
A

 e
lo

n
g

a
ti
n

g
C

T
C

F
B

A
T

F
B

C
L

A
F

1
E

T
S

1
M

E
F

2
A

M
T

A
3

E
P

3
0

0
P

O
U

2
F

2
R

A
D

2
1

R
F

X
5

R
U

N
X

3
S

M
C

3
S

TA
T

5
A

T
A

F
1

T
B

P
Y

Y
1

Z
N

F
1

4
3

5

0

5

5

0

5

Paternal
only

Maternal
only

All reads

5

0

5

Paternal
only

Maternal
only

All reads

Paternal
only

Maternal
only

All reads

Common SNPs

138960000 138970000 138980000 138990000

NACC2

Transcription

P
O

L
R

2
A

H
3

K
7

9
m

e
2

H
3

K
2

7
m

e
3

Figure 8 | Allele-specific ENCODE elements. a, Representative allele-specific
information from GM12878 cells for selected assays around the first exon of the
NACC2 gene (genomic region Chr9: 138950000–138995000, GRCh37).
Transcription signal is shown in green, and the three sections show allele-
specific data for three data sets (POLR2A, H3K79me2 and H3K27me3 ChIP-
seq). In each case the purple signal is the processed signal for all sequence reads
for the assay, whereas the blue and red signals show sequence reads specifically
assigned to either the paternal or maternal copies of the genome, respectively.
The set of common SNPs from dbSNP, including the phased, heterozygous
SNPs used to provide the assignment, are shown at the bottom of the panel.
NACC2 has a statistically significant paternal bias for POLR2A and the
transcription-associated mark H3K79me2, and has a significant maternal bias
for the repressive mark H3K27me3. b, Pair-wise correlations of allele-specific
signal within single genes (below the diagonal) or within individual
ChromHMM segments across the whole genome for selected DNase-seq and
histone modification and transcription factor ChIP-seq assays. The extent of
correlation is coloured according to the heat-map scale indicated from positive
correlation (red) through to anti-correlation (blue). An interactive version of
this figure is available in the online version of the paper.
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reference sequence that is only present on the paternal haplotype
due to a 1-bp deletion (see also Supplementary Fig. 2, section K).
As costs of DNA sequencing decrease further, optimized analysis of
ENCODE-type data should use the genome sequence of the indi-
vidual or cell being analysed when possible.

Most analyses of cancer genomes so far have focused on character-
izing somatic variants in protein-coding regions. We intersected four
available whole-genome cancer data sets with ENCODE annotations
(Fig. 9c and Supplementary Fig. 2, section L). Overall, somatic variation
is relatively depleted from ENCODE annotated regions, particularly for
elements specific to a cell type matching the putative tumour source (for
example, skin melanocytes for melanoma). Examining the mutational
spectrum of elements in introns for cases where a strand-specific
mutation assignment could be made reveals that there are mutational
spectrum differences between DHSs and unannotated regions (0.06
Fisher’s exact test, Supplementary Fig. 3, section L). The suppression
of somatic mutation is consistent with important functional roles of
these elements within tumour cells, highlighting a potential alternative
set of targets for examination in cancer.

Common variants associated with disease
In recent years, GWAS have greatly extended our knowledge of
genetic loci associated with human disease risk and other phenotypes.

The output of these studies is a series of SNPs (GWAS SNPs) corre-
lated with a phenotype, although not necessarily the functional
variants. Notably, 88% of associated SNPs are either intronic or
intergenic74. We examined 4,860 SNP–phenotype associations for
4,492 SNPs curated in the National Human Genome Research
Institute (NHGRI) GWAS catalogue74. We found that 12% of these
SNPs overlap transcription-factor-occupied regions whereas 34% over-
lap DHSs (Fig. 10a). Both figures reflect significant enrichments relative
to the overall proportions of 1000 Genomes project SNPs (about 6% and
23%, respectively). Even after accounting for biases introduced by selec-
tion of SNPs for the standard genotyping arrays, GWAS SNPs show
consistently higher overlap with ENCODE annotations (Fig. 10a, see
Supplementary Information). Furthermore, after partitioning the
genome by density of different classes of functional elements, GWAS
SNPs were consistently enriched beyond all the genotyping SNPs in
function-rich partitions, and depleted in function-poor partitions (see
Supplementary Fig. 1, section M). GWAS SNPs are particularly
enriched in the segmentation classes associated with enhancers and
TSSs across several cell types (see Supplementary Fig. 2, section M).

Examining the SOM of integrated ENCODE annotations (see
above), we found 19 SOM map units showing significant enrichment
for GWAS SNPs, including many SOM units previously associated
with specific gene functions, such as the immune response regions.
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Figure 9 | Examining ENCODE elements on a per individual basis in the
normal and cancer genome. a, Breakdown of variants in a single genome
(NA12878) by both frequency (common or rare (that is, variants not present in
the low-coverage sequencing of 179 individuals in the pilot 1 European panel of
the 1000 Genomes project55)) and by ENCODE annotation, including protein-
coding gene and non-coding elements (GENCODE annotations for protein-
coding genes, pseudogenes and other ncRNAs, as well as transcription-factor-
binding sites from ChIP-seq data sets, excluding broad annotations such as
histone modifications, segmentations and RNA-seq). Annotation status is
further subdivided by predicted functional effect, being non-synonymous and
missense mutations for protein-coding regions and variants overlapping bound

transcription factor motifs for non-coding element annotations. A substantial
proportion of variants are annotated as having predicted functional effects in
the non-coding category. b, One of several relatively rare occurrences, where
alignment to an individual genome sequence (paternal and maternal panels)
shows a different readout from the reference genome. In this case, a paternal-
haplotype-specific CTCF peak is identified. c, Relative level of somatic variants
from a whole-genome melanoma sample that occur in DHSs unique to
different cell lines. The coloured bars show cases that are significantly enriched
or suppressed in somatic mutations. Details of ENCODE cell types can be
found at http://encodeproject.org/ENCODE/cellTypes.html. An interactive
version of this figure is available in the online version of the paper.

ARTICLE RESEARCH

6 S E P T E M B E R 2 0 1 2 | V O L 4 8 9 | N A T U R E | 6 9

Macmillan Publishers Limited. All rights reserved©2012

664



Thus, an appreciable proportion of SNPs identified in initial GWAS
scans are either functional or lie within the length of an ENCODE
annotation (,500 bp on average) and represent plausible candidates
for the functional variant. Expanding the set of feasible functional
SNPs to those in reasonable linkage disequilibrium, up to 71% of
GWAS SNPs have a potential causative SNP overlapping a DNase I
site, and 31% of loci have a candidate SNP that overlaps a binding site
occupied by a transcription factor (see also refs 73, 75).

The GWAS catalogue provides a rich functional categorization
from the precise phenotypes being studied. These phenotypic cate-
gorizations are nonrandomly associated with ENCODE annotations
and there is marked correspondence between the phenotype and the
identity of the cell type or transcription factor used in the ENCODE
assay (Fig. 10b). For example, five SNPs associated with Crohn’s
disease overlap GATA2-binding sites (P value 0.003 by random
permutation or 0.001 by an empirical approach comparing to
the GWAS-matched SNPs; see Supplementary Information), and
fourteen are located in DHSs found in immunologically relevant cell

types. A notable example is a gene desert on chromosome 5p13.1
containing eight SNPs associated with inflammatory diseases.
Several are close to or within DHSs in T-helper type 1 (TH1) and
TH2 cells as well as peaks of binding by transcription factors in
HUVECs (Fig. 10c). The latter cell line is not immunological, but
factor occupancy detected there could be a proxy for binding of a
more relevant factor, such as GATA3, in T cells. Genetic variants in
this region also affect expression levels of PTGER4 (ref. 76), encoding
the prostaglandin receptor EP4. Thus, the ENCODE data reinforce
the hypothesis that genetic variants in 5p13.1 modulate the expression
of flanking genes, and furthermore provide the specific hypothesis
that the variants affect occupancy of a GATA factor in an allele-
specific manner, thereby influencing susceptibility to Crohn’s disease.

Nonrandom association of phenotypes with ENCODE cell types
strengthens the argument that at least some of the GWAS lead SNPs
are functional or extremely close to functional variants. Each of the
associations between a lead SNP and an ENCODE annotation
remains a credible hypothesis of a particular functional element
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Figure 10 | Comparison of genome-wide-association-study-identified loci
with ENCODE data. a, Overlap of lead SNPs in the NHGRI GWAS SNP
catalogue (June 2011) with DHSs (left) or transcription-factor-binding sites
(right) as red bars compared with various control SNP sets in blue. The control
SNP sets are (from left to right): SNPs on the Illumina 2.5M chip as an example
of a widely used GWAS SNP typing panel; SNPs from the 1000 Genomes
project; SNPs extracted from 24 personal genomes (see personal genome
variants track at http://main.genome-browser.bx.psu.edu (ref. 80)), all shown
as blue bars. In addition, a further control used 1,000 randomizations from the
genotyping SNP panel, matching the SNPs with each NHGRI catalogue SNP
for allele frequency and distance to the nearest TSS (light blue bars with bounds
at 1.5 times the interquartile range). For both DHSs and transcription-factor-
binding regions, a larger proportion of overlaps with GWAS-implicated SNPs
is found compared to any of the controls sets. b, Aggregate overlap of

phenotypes to selected transcription-factor-binding sites (left matrix) or DHSs
in selected cell lines (right matrix), with a count of overlaps between the
phenotype and the cell line/factor. Values in blue squares pass an empirical
P-value threshold #0.01 (based on the same analysis of overlaps between
randomly chosen, GWAS-matched SNPs and these epigenetic features) and
have at least a count of three overlaps. The P value for the total number of
phenotype–transcription factor associations is ,0.001. c, Several SNPs
associated with Crohn’s disease and other inflammatory diseases that reside in a
large gene desert on chromosome 5, along with some epigenetic features
indicative of function. The SNP (rs11742570) strongly associated to Crohn’s
disease overlaps a GATA2 transcription-factor-binding signal determined in
HUVECs. This region is also DNase I hypersensitive in HUVECs and T-helper
TH1 and TH2 cells. An interactive version of this figure is available in the online
version of the paper.
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class or cell type to explore with future experiments. Supplementary
Tables 1–3, section M, list all 14,885 pairwise associations across the
ENCODE annotations. The accompanying papers have a more
detailed examination of common variants with other regulatory
information19,25,29,73,75,77.

Concluding remarks
The unprecedented number of functional elements identified in this
study provides a valuable resource to the scientific community as well
as significantly enhances our understanding of the human genome.
Our analyses have revealed many novel aspects of gene expression and
regulation as well as the organization of such information, as illu-
strated by the accompanying papers (see http://www.encodeproject.
org/ENCODE/pubs.html for collected ENCODE publications).
However, there are still many specific details, particularly about the
mechanistic processes that generate these elements and how and
where they function, that require additional experiments to elucidate.

The large spread of coverage—from our highest resolution, most
conservative set of bases implicated in GENCODE protein-coding
gene exons (2.9%) or specific protein DNA binding (8.5%) to the
broadest, most general set of marks covering the genome (approxi-
mately 80%), with many gradations in between—presents a spectrum
of elements with different functional properties discovered by
ENCODE. A total of 99% of the known bases in the genome are within
1.7 kb of any ENCODE element, whereas 95% of bases are within 8 kb
of a bound transcription factor motif or DNase I footprint.
Interestingly, even using the most conservative estimates, the fraction
of bases likely to be involved in direct gene regulation, even though
incomplete, is significantly higher than that ascribed to protein-
coding exons (1.2%), raising the possibility that more information
in the human genome may be important for gene regulation than
for biochemical function. Many of the regulatory elements are not
constrained across mammalian evolution, which so far has been one
of the most reliable indications of an important biochemical event
for the organism. Thus, our data provide orthologous indicators for
suggesting possible functional elements.

Importantly, for the first time we have sufficient statistical power to
assess the impact of negative selection on primate-specific elements,
and all ENCODE classes display evidence of negative selection in these
unique-to-primate elements. Furthermore, even with our most conser-
vative estimate of functional elements (8.5% of putative DNA/protein
binding regions) and assuming that we have already sampled half of the
elements from our transcription factor and cell-type diversity, one
would estimate that at a minimum 20% (17% from protein binding
and 2.9% protein coding gene exons) of the genome participates in these
specific functions, with the likely figure significantly higher.

The broad coverage of ENCODE annotations enhances our under-
standing of common diseases with a genetic component, rare genetic
diseases, and cancer, as shown by our ability to link otherwise
anonymous associations to a functional element. ENCODE and
similar studies provide a first step towards interpreting the rest of
the genome—beyond protein-coding genes—thereby augmenting
common disease genetic studies with testable hypotheses. Such
information justifies performing whole-genome sequencing (rather
than exome only, 1.2% of the genome) on rare diseases and investi-
gating somatic variants in non-coding functional elements, for
instance, in cancer. Furthermore, as GWAS analyses typically asso-
ciate disease to SNPs in large regions, comparison to ENCODE non-
coding functional elements can help pinpoint putative causal variants
in addition to refinement of location by fine-mapping techniques78.
Combining ENCODE data with allele-specific information derived
from individual genome sequences provides specific insight on the
impact of a genetic variant. Indeed, we believe that a significant goal
would be to use functional data such as that derived from this project
to assign every genomic variant to its possible impact on human
phenotypes.

So far, ENCODE has sampled 119 of 1,800 known transcription fac-
tors and general components of the transcriptional machinery on a
limited number of cell types, and 13 of more than 60 currently known
histone or DNA modifications across 147 cell types. DNase I, FAIRE and
extensive RNA assays across subcellular fractionations have been under-
taken on many cell types, but overall these data reflect a minor fraction of
the potential functional information encoded in the human genome. An
important future goal will be to enlarge this data set to additional factors,
modifications and cell types, complementing the other related projects
in this area (for example, Roadmap Epigenomics Project, http://
www.roadmapepigenomics.org/, and International Human Epigenome
Consortium, http://www.ihec-epigenomes.org/). These projects will
constitute foundational resources for human genomics, allowing a
deeper interpretation of the organization of gene and regulatory
information and the mechanisms of regulation, and thereby provide
important insights into human health and disease. Co-published
ENCODE-related papers can be explored online via the Nature
ENCODE explorer (http://www.nature.com/ENCODE), a specially
designed visualization tool that allows users to access the linked papers
and investigate topics that are discussed in multiple papers via them-
atically organized threads.

METHODS SUMMARY
For full details of Methods, see Supplementary Information.
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Landscape of transcription in human cells
Sarah Djebali1*, Carrie A. Davis2*, Angelika Merkel1, Alex Dobin2, Timo Lassmann3, Ali Mortazavi4,5, Andrea Tanzer1,
Julien Lagarde1, Wei Lin2, Felix Schlesinger2, Chenghai Xue2, Georgi K. Marinov4, Jainab Khatun6, Brian A. Williams4,
Chris Zaleski2, Joel Rozowsky7,8, Maik Röder1, Felix Kokocinski9, Rehab F. Abdelhamid3, Tyler Alioto1,10, Igor Antoshechkin4,
Michael T. Baer2, Nadav S. Bar11, Philippe Batut2, Kimberly Bell2, Ian Bell12, Sudipto Chakrabortty2, Xian Chen13,
Jacqueline Chrast14, Joao Curado1, Thomas Derrien1, Jorg Drenkow2, Erica Dumais12, Jacqueline Dumais12, Radha Duttagupta12,
Emilie Falconnet15, Meagan Fastuca2, Kata Fejes-Toth2, Pedro Ferreira1, Sylvain Foissac12, Melissa J. Fullwood16, Hui Gao12,
David Gonzalez1, Assaf Gordon2, Harsha Gunawardena13, Cedric Howald14, Sonali Jha2, Rory Johnson1, Philipp Kapranov12,17,
Brandon King4, Colin Kingswood1,10, Oscar J. Luo16, Eddie Park5, Kimberly Persaud2, Jonathan B. Preall2, Paolo Ribeca1,10,
Brian Risk6, Daniel Robyr15, Michael Sammeth1,10, Lorian Schaffer4, Lei-Hoon See2, Atif Shahab16, Jorgen Skancke1,11,
Ana Maria Suzuki3, Hazuki Takahashi3, Hagen Tilgner1{, Diane Trout4, Nathalie Walters14, Huaien Wang2, John Wrobel6,
Yanbao Yu13, Xiaoan Ruan16, Yoshihide Hayashizaki3, Jennifer Harrow9, Mark Gerstein7,8,18, Tim Hubbard9,
Alexandre Reymond14, Stylianos E. Antonarakis15, Gregory Hannon2, Morgan C. Giddings6,13, Yijun Ruan16, Barbara Wold4,
Piero Carninci3, Roderic Guigó1,19 & Thomas R. Gingeras2,12

Eukaryotic cells make many types of primary and processed RNAs that are found either in specific subcellular
compartments or throughout the cells. A complete catalogue of these RNAs is not yet available and their
characteristic subcellular localizations are also poorly understood. Because RNA represents the direct output of the
genetic information encoded by genomes and a significant proportion of a cell’s regulatory capabilities are focused on
its synthesis, processing, transport, modification and translation, the generation of such a catalogue is crucial for
understanding genome function. Here we report evidence that three-quarters of the human genome is capable of
being transcribed, as well as observations about the range and levels of expression, localization, processing fates,
regulatory regions and modifications of almost all currently annotated and thousands of previously unannotated
RNAs. These observations, taken together, prompt a redefinition of the concept of a gene.

As the technologies for RNA profiling and for
cell-type isolation and culture continue to
improve, the catalogue of RNA types has grown
and led to an increased appreciation for the
numerous biological functions carried out by
RNA, arguably putting them on par with the functional importance
of proteins1. The Encyclopedia of DNA Elements (ENCODE) project
has sought to catalogue the repertoire of RNAs produced by human
cells as part of the intended goal of identifying and characterizing the
functional elements present in the human genome sequence2. The
five-year pilot phase of the ENCODE project3 examined approxi-
mately 1% of the human genome and observed that the gene-rich
and gene-poor regions were pervasively transcribed, confirming
results of previous studies4,5. During the second phase of the
ENCODE project, lasting 5 years, the scope of examination was broa-
dened to interrogate the complete human genome. Thus, we have
sought to both provide a genome-wide catalogue of human transcripts
and to identify the subcellular localization for the RNAs produced.
Here we report identification and characterization of annotated and
novel RNAs that are enriched in either of the two major cellular

subcompartments (nucleus and cytosol) for
all 15 cell lines studied, and in three additional
subnuclear compartments in one cell line. In
addition, we have sought to determine whether
identified transcripts are modified at their 59

and 39 termini by the presence of a 7-methyl guanosine cap or
polyadenylation, respectively. We further studied primary transcript
and processed product relationships for a large proportion of
the previously annotated long and small RNAs. These results con-
siderably extend the current genome-wide annotated catalogue of
long polyadenylated and small RNAs collected by the GENCODE
annotation group6–8. Taken together, our genome-wide compilation
of subcellular localized and product-precursor-related RNAs serves as
a public resource and reveals new and detailed facets of the RNA
landscape.
. Cumulatively, we observed a total of 62.1% and 74.7% of the human
genome to be covered by either processed or primary transcripts,
respectively, with no cell line showing more than 56.7% of the union
of the expressed transcriptomes across all cell lines. The consequent
reduction in the length of ‘intergenic regions’ leads to a significant
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overlapping of neighbouring gene regions and prompts a redefinition
of a gene.
. Isoform expression by a gene does not follow a minimalistic
expression strategy, resulting in a tendency for genes to express many
isoforms simultaneously, with a plateau at about 10–12 expressed
isoforms per gene per cell line.
. Cell-type-specific enhancers are promoters that are differentiable
from other regulatory regions by the presence of novel RNA tran-
scripts, chromatin marks and DNase I hypersensitive sites.
. Coding and non-coding transcripts are predominantly localized in
the cytosol and nucleus, respectively, with a range of expression span-
ning six orders of magnitude for polyadenylated RNAs, and five
orders of magnitude for non-polyadenylated RNAs.
. Approximately 6% of all annotated coding and non-coding tran-
scripts overlap with small RNAs and are probably precursors to these
small RNAs. The subcellular localization of both annotated and
unannotated short RNAs is highly specific.

RNA data set generation
We performed subcellular compartment fractionation (whole cell,
nucleus and cytosol) before RNA isolation in 15 cell lines (Supplemen-
tary Table 1) to interrogate deeply the human transcriptome. For the
K562 cell line, we also performed additional nuclear subfractionation
into chromatin, nucleoplasm and nucleoli. The RNAs from each of
these subcompartments were prepared in replica and were separated
based on length into .200 nucleotides (long) and ,200 nucleotides
(short). Long RNAs were further fractionated into polyadenylated and
non-polyadenylated transcripts. A number of complementary tech-
nologies were used to characterize these RNA fractions as to their
sequence (RNA-seq), sites of initiation of transcription (cap-analysis
of gene expression (CAGE)9) and sites of 59 and 39 transcript termini
(paired end tags (PET)10; Supplementary Fig. 1). Sequence reads were
mapped and post-processed using a variety of software tools (Sup-
plementary Table 2 and Supplementary Fig. 2). We used the mapped
data to assemble and quantify de novo elements (exons, transcripts,
genes, contigs, splice junctions and transcription start sites (TSSs)) as
well as to quantify annotated GENCODE (v7) elements. Elements
and quantifications were further assessed for reproducibility between
replicates using a non-parametric version (npIDR, Supplementary
Information) of the irreproducible detection rate (IDR) statistical
test11. Only elements deemed to be reproducible with at least 90%
likelihood were used in most analyses. The raw data, mapped data
and elements were then made available by the ENCODE Data
Coordination Center (DCC, http://genome.ucsc.edu/ENCODE/
dataSummary.html) (Supplementary Fig. 2). These data, as well as
additional data on all intermediate processing steps, are available on
the RNA Dashboard (http://genome.crg.cat/encode_RNA_dashboard/).

Long RNA expression landscape
Detection of annotated and novel transcripts
The GENCODE gene (Supplementary Fig. 3a) and transcript
(Supplementary Fig. 3b) reference annotation8 captures our current
understanding of the polyadenylated human transcriptome. In the
samples interrogated here, we cumulatively detected 70% of anno-
tated splice junctions, transcripts and genes (Fig. 1 and Table 1a). We
also detected approximately 85% of annotated exons with an average
coverage by RNA-seq contigs of 96%. The variation in the proportion
of detected elements among cell lines was small (Fig. 1, width of box
plots). Consistent with earlier studies, most annotated elements are
present in both polyadenylated (Supplementary Table 3a) and non-
polyadenylated (Supplementary Table 3b) samples12–15. Only a small
proportion of GENCODE elements (0.4% of exons, 2.8% of splice
sites, 3.3% of transcripts and 4.7% of genes) are detected exclusively
in the non-polyadenylated RNA fraction.

Beyond the GENCODE annotated elements, we observed a
substantial number of novel elements represented by reproducible

RNA-seq contigs. These novel elements covered 78% of the intronic
nucleotides and 34% of the intergenic sequences (Supplementary Fig. 4).
Overall, the unique contribution of each cell line to the coverage of the
genome tends to be small and similar for each cell line (Supplementary
Fig. 5). We used the Cufflinks algorithm (see Supplementary Informa-
tion), and predicted over all long RNA-seq samples 94,800 exons, 69,052
splice junctions, 73,325 transcripts and 41,204 genes in intergenic and
antisense regions (Table 1b). These novel elements increase the
GENCODE collection of exons, splice sites, transcripts and genes by
19%, 22%, 45% and 80%, respectively. The increase in the number of
genes and the relatively low contribution of novel splice sites is primarily
caused by the detection of both polyadenylated and non-polyadenylated
mono-exonic transcripts (Supplementary Table 3). Detection of
unspliced transcripts could partially be an artefact caused by low levels
of DNA contamination or by incomplete determination of transcript
structures.

Independent validation of multi-exonic transcript models and the
associated predicted coding products were carried out using overlapping
targeted 454 Life Sciences (Roche) paired-end reads and mass spectro-
metry. Of approximately 3,000 intergenic and antisense transcript
models tested, validation rates from 70% to 90% were observed, depend-
ing on the number of reads and IDR score. In addition, these experi-
ments led to the identification of more than 22,000 novel splice sites not
previously detected, meaning an almost eightfold increase in detection
compared to the sites originally detected with RNA-seq (Supplementary
Fig. 6). Using mass spectrometric analyses, we investigated what fraction
of the novel Cufflinks transcript models show evidence consistent with
protein expression. We produced 998,570 spectra from two cell lines
(K562 and GM12878; J. Khatun et al., manuscript in preparation), and
mapped them to a three-frame translation of the novel Cufflinks models
(Supplementary Material). At a 1% false discovery rate (FDR), we iden-
tified 419 novel models with 5 or more spectral and/or 2 or more peptide
hits, of which only 56 were intergenic or antisense to GENCODE genes
(Supplementary Table 4 and Supplementary Fig. 7). Thus, most novel
transcripts seem to lack protein-coding capacity.

The transcriptome of nuclear subcompartments
For the K562 cell line, we also analysed RNA isolated from three
subnuclear compartments (chromatin, nucleolus and nucleoplasm;
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Figure 1 | A large majority of GENCODE elements are detected by RNA-seq
data. Shown are GENCODE-detected elements in the polyadenylated and
non-polyadenylated fractions of cellular compartments (cumulative counts for
both RNA fractions and compartments refer to elements present in any of the
fractions or compartments). Each box plot is generated from values across all
cell lines, thus capturing the dispersion across cell lines. The largest point shows
the cumulative value over all cell lines.
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Supplementary 5). Almost half (18,330) of the GENCODE (v7) anno-
tated genes detected for all 15 cell lines (35,494) were identified in the
analysis of just these three nuclear subcompartments. In addition,
there were as many novel unannotated genes found in K562 subcom-
partments as there were in all other data sets combined (Supplemen-
tary Table 5 and Table 1b). For all annotated (Supplementary
Table 5.1) or novel (Supplementary Table 5.2) elements, only a small
fraction in each subcompartment was unique to that compartment
(Supplementary Table 6).

The interrogation of different subcellular RNA fractions provides
snapshots of the status of the RNA population along the RNA proces-
sing pathway. Thus, by analysing short and long RNAs in the different
subcellular compartments, we confirm that splicing predominantly
occurs during transcription. By using RNA-seq to measure the degree
of completion of splicing (Fig. 2a), we observed that around most
exons, introns are already being spliced in chromatin-associated
RNA—the fraction that includes RNAs in the process of being
transcribed (Fig. 2b). Concomitantly, we found strong enrichment
specifically of spliceosomal small nuclear RNAs (snRNAs) in this
RNA fraction (see ‘Short RNA expression landscape’ later). Co-
transcriptional splicing provides an explanation for the increasing
evidence connecting chromatin structure to splicing regulation, and
we have observed that exons in the process of being spliced are
enriched in a number of chromatin marks16,17.

Gene expression across cell lines
The analyses of RNAs isolated from different subcellular compart-
ments also provide information concerning compartment-specific
relative steady-state abundance and the post transcriptional proces-
sing state (spliced/unspliced, polyadenylated/non-polyadenylated,
59 capped/uncapped) for each of the detected transcripts. The
observed range of gene expression spans six orders of magnitude
for polyadenylated RNAs (from 1022 to 104 reads per kilobase per
million reads (r.p.k.m.)), and five orders of magnitude (from 1022 to
103 r.p.k.m.) for non-polyadenylated RNAs (Fig. 3 and Supplemen-
tary Fig. 8a). The distribution of gene expression is very similar across
cell lines, with protein-coding genes, as a class, having on average
higher expression levels than long non-coding RNAs (lncRNAs).
Assuming that 1–4 r.p.k.m. approximates to 1 copy per cell18, we find
that almost one-quarter of expressed protein-coding genes and 80% of
the detected lncRNAs are present in our samples in 1 or fewer copies
per cell. The general lower level of gene expression measured in
lncRNAs may not necessarily be the result of consistent low RNA
copy number in all cells within the population interrogated, but
may also result from restricted expression in only a subpopulation
of cells. In some cell lines, individual lncRNAs can exhibit steady-state
expression levels as high as those of protein-coding genes. This is, for
example, seen in the expression of the protein-coding gene actin,
gamma 1 (ACTG1), and the non-coding gene, H19 (Fig. 3). ACTG1
transcripts are part of all non-muscle cytoskeleton systems within
cells and show a steady-state expression level at the population level
that is at least 1–2 logs greater than H19, a cytosolic non-coding RNA
(ncRNA). However, when measured at the individual transcript level,
expression of lncRNA transcripts is comparable to that of individual
protein-coding transcripts (Supplementary Fig. 8b).

Novel antisense and intergenic genes predicted in this study com-
prise a third clustering of RNAs with levels of expression ranging from
1024 to 1021 r.p.k.m. As a class, only protein-coding genes seem to be
enriched in the cytosol, making the nucleus a centre for the accumula-
tion of ncRNAs (Fig. 3). Other gene classes, such as pseudogenes and
small annotated ncRNAs, also show subcellular compartmental
enrichment (Supplementary Fig. 9).

Higher variability and lower pairwise correlation of expression
across all cell lines is consistent with lncRNAs contributing more to
cell-line specificity than protein-coding genes. Indeed, a considerable
fraction (29%) of all expressed lncRNAs are detected in only one of the

cell lines studied when considering the whole cell polyadenylated
RNAs, whereas only 10% were expressed in all cell lines. Con-
versely, whereas a large fraction (53%) of expressed protein-coding
genes were constitutive (expressed in all cell lines), only ,7% were
cell-line specific (Supplementary Table 7 and Supplementary Fig. 10).

Patterns of splicing
The analysis of the expression of alternative isoforms resulted in
several observations. First, isoform expression does not seem to follow
a minimalistic strategy. Genes tend to express many isoforms simul-
taneously, and as the number of annotated isoforms per gene grows,
so does the number of expressed isoforms (Fig. 4a). The increase,
however, is not linear and seems to plateau at about 10–12 expressed
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has not yet been initiated. b, Distribution of coSI scores computed on GENCODE
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isoforms per gene. However, we cannot obviously distinguish whether
this is the result of multiple isoforms expressed in the same cell or of
different isoforms expressed in different cells within the interrogated
population. Second, alternative isoforms within a gene are not
expressed at similar levels, and one isoform dominates in a given
condition—usually capturing a large fraction of the total gene
expression (at least 30%, even for genes with many isoforms;
Fig. 4b). Third, about three-quarters of protein-coding genes have
at least two different dominant/major isoforms depending on the cell
line (Supplementary Fig. 11a). Fourth, the number of major isoforms
per gene grows with the number of annotated isoforms; indeed, the
proportion of genes with n isoforms that express only one major
isoform is strikingly proportional to 1/n (Supplementary Fig. 11b).
Fifth, variability of gene expression contributes more than variability
of splicing ratios to the variability of transcript abundances across cell
lines (Supplementary Information).

Alternative transcription initiation and termination
On the basis of RNA-seq analysis of polyadenylated RNAs, a total of
128,021 TSSs were detected across all cell lines, of which 97,778 were

previously annotated and 30,243 were novel intergenic/antisense
TSSs (Supplementary Table 3a). CAGE tags, filtered by a hidden
Markov model (HMM)-based algorithm to differentiate between 59

capped termini of polymerase II transcripts and recapping events19

(Supplementary Information), identified a total of 82,783 non-
redundant TSSs (Supplementary Table 8). Approximately 48% of
the CAGE-identified TSSs are located within 500 base pairs (bp) of
an annotated RNA-seq-detected GENCODE TSS, whereas an addi-
tional 3% are within 500 bp of a novel TSS (Supplementary Fig. 12).
Notably, only ,72% of all CAGE sequencing reads map to TSSs,
indicating that the remaining 30% may originate from recapping
events or from a new class of TSS.

Using data collected within the ENCODE consortium20, we carried
out a comparison of the GENCODE/RNA-seq and CAGE-determined
TSSs and correlated them to chromatin and DNA features characteristic
of initiation of transcription, such as DNase hypersensitivity21, chro-
matin modification and DNA binding elements22,23. All GENCODE/
RNA-seq-determined TSSs were examined in each of the cell lines
(Supplementary Fig. 13, column 1). Of these redundant positions,
44.7% (199,146) of the RNA-seq-supported TSSs also displayed
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evidence of CAGE. Approximately half of these TSS positions are assoc-
iated with at least one of the other characteristic features of transcription
initiation (DNase I, H3K27ac and H3K4me3 chromatin modifications).
Thus, only a small minority of the TSSs identified by either CAGE or
RNA-seq/GENCODE displayed all of the characteristics of the start of
transcription (presence of DNase I, H3K4me3, H3K27ac sites and either
TAF1 or TBP binding). This is consistent with the possibility that reg-
ulatory regions proximal to TSSs are of more than one type.

At the 39 end, a total of 128,824 sites mapping within annotated
GENCODE transcripts were identified as potential sites of polyade-
nylation after trimming unmapped RNA-seq reads with long terminal
polyadenine stretches24. About 20% of these mapped proximal to
annotated polyadenylation sites (PAS) whereas the remaining 80%
correspond to novel PAS of annotated genes, raising the average
number of PAS per gene from 1.1 to 2.5. Generally, we observed a
cell-type preference for proximal PAS (closest to the annotated stop
codon) in the cytosol compared to the nucleus (Supplementary
Information).

Short RNA expression landscape
Annotated small RNAs
Currently, a total of 7,053 small RNAs are annotated by GENCODE,
85% of which correspond to four major classes: small nuclear
(sn)RNAs, small nucleolar (sno)RNAs, micro (mi)RNAs and transfer
(t)RNAs (Table 2a). Overall we find 28% of all annotated small RNAs
to be expressed in at least one cell line (Table 2a). The distribution of
annotated small RNAs differs markedly between cytosolic and
nuclear compartments (Supplementary Fig. 14a). We found that the
small RNA classes were enriched in those compartments where they
are known to perform their functions: miRNAs and tRNAs in the
cytosol, and snoRNAs in the nucleus. Interestingly, snRNAs were
equally abundant in both the nucleus and the cytosol. When specif-
ically interrogating the subnuclear compartments of the K562 cell
line, however, snRNAs seem to be present in very high abundance
in the chromatin-associated RNA fraction (Supplementary Fig. 14b, c).
This striking enrichment is consistent with splicing being predomi-
nantly co-transcriptional16,25.

Unannotated short RNAs
We detected two types of unannotated short RNAs. The first type
corresponds to subfragments of annotated small RNAs. Because we
performed 36-nucleotide end-sequencing of the small RNA fraction,
we expected RNA-seq reads to map to the 59 end of the small RNAs.
Supplementary Figure 15 shows the mapping profile of reads along
small RNA genes. In both the nuclear and cytosolic compartments, we
indeed detected accumulation of reads at the start of snoRNAs and at
the guide and passenger sequences of annotated miRNAs. For
snRNAs, however, we observed three prominent peaks: the expected
one at the 59 end and two smaller ones at the middle and at the 39 end of
the gene, indicating fragmentation of some snRNAs. Finally, tRNAs
seem not to have any prominent sets of 59 end fragments present at
levels greater than what is seen at the annotated 59 termini. Whereas
subfragments of mature tRNAs have been reported previously, these
reports were confined to distinct alleles of only a few tRNA genes26–28.

The second and largest source of unannotated short RNAs corre-
sponds to novel short RNAs (Table 2b) that map outside of annotated
ones. Almost 90% of these are only observed in one cell line and are
present at low copy numbers. Nearly 40% of these unannotated
short RNAs are associated with promoter and terminator regions of
annotated genes (promoter-associated short RNAs (PASRs) and
termini-associated short RNAs (TASRs)), and their position relative
to TSSs and transcription termination sites is similar to previous results4.

Genealogy of short RNAs
Genome wide, 27% of annotated small RNAs reside within 8% of
protein-coding and 5% within 3% of lncRNA genes (Supplementary

Fig. 16). Overall, about 6% of all annotated long transcripts overlap with
small RNAs and are probably precursors to these small RNAs. Although
most of these small RNAs reside in introns, when controlling for relative
exon/intron length, we found that exons from lncRNAs are compara-
tively enriched as hosts for snoRNAs (Supplementary Fig. 17a).
Additionally, 8.4% of GENCODE annotated small RNAs map within
novel intergenic transcripts, with most overlapping annotated tRNAs.
The enrichment for tRNAs was mostly in novel intergenic transcripts
derived from non-polyadenylated RNAs (Supplementary Fig. 17b).
Many long RNAs, both novel and annotated, thus seem to have dual
roles, as functional (protein coding) RNAs, and as precursors for many
important classes of small RNAs. Using RNA-seq data from the K562
cell line, we investigated the preferential cellular localization of these
RNA precursors (Supplementary Fig. 18). For mature miRNAs and
tRNAs (cytosolic enrichment), the potential RNA precursors, iden-
tified as RNA-seq contigs overlapping the small RNAs, were detected
to be predominantly nuclear (Supplementary Fig. 18a, d). Notably,
whereas mature snRNAs were both nuclear and cytosolic, the overlap-
ping long RNAs were observed to be primarily nuclear (Supplementary
Fig. 18c). Finally, for snoRNAs (nuclear enrichment), potential long
RNA precursors were decidedly observed to be both nuclear and
cytosolic (Supplementary Fig. 18b). Unannotated short RNAs were
found overall not to be enriched in either the nuclear or cytosolic
compartment (Supplementary Fig. 18e).

RNA editing and allele-specific expression
The sequence of transcripts can differ from the underlying genomic
sequence as the result of post-transcriptional editing. We developed a
pipeline to filter sequencing artefacts and identify genes that are RNA
edited29. Focusing first on GM12878, a cell line that has been deeply
re-sequenced, we find a total 51,557 RNA consistent single nucleotide
variants (SNVs) within genic boundaries, 65% of which are present in
dbSNP. Of the remainder, 1,186 SNVs in 430 genes (Supplementary
Fig. 19a) survive our most stringent filters and 88% of these are
candidate adenosine to inosine A.G(I) changes. Notably, the next
highest frequency of SNVs is for T.C (5%) and these occur primarily
in regions with detectable antisense transcription29. We find similar
A.G(I) frequencies of 75–84% in seven additional cell lines
(Supplementary Fig. 19b). The remaining non-canonical edits amount
to very few events in each cell line and are relatively evenly distributed
(G.A is the third highest). These results do not support a recent report
of a substantial number of non-canonical SNV edits in the RNA of
human lymphoblastoid cells30.

Using the AlleleSeq pipeline31 on the SNPs in the GM12878 genome,
we found that approximately 18% of both GENCODE annotated
protein-coding and long non-coding genes exhibit allele-specific
expression. The proportion of genes with allele-specific expression
was similar in the three investigated RNA fractions (whole-cell,
cytoplasm and nucleus; Supplementary Table 9 and Supplementary
Information).

Repeat region transcription
About 18% (14,828) of CAGE-defined TSS regions overlap repetitive
elements. More precisely, we find 322, 315, 507 and 1,262 intergenic
CAGE clusters overlapping long interspersed element (LINE), short
interspersed element (SINE), long terminal repeat (LTR) and other
repeat elements, respectively (see Supplementary Information).
Measuring Shannon entropy across cell lines, we found that CAGE
clusters mapping to repeat regions were noticeably more narrowly
expressed than CAGE clusters mapping within genic regions
(Supplementary Fig. 20a). We represented the correlation of levels
of expression compared to cell types as heat maps drawn separately
for each of the three repeat element families (LINE, SINE and LTR)
(Supplementary Fig. 20b–d). Although a large proportion of the tran-
scripts in the human genome is thought to be initiated from repetitive
elements (especially retrotransposon elements32), these data clearly
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point to cell-line specificity as the main characteristic of transcripts
emanating from repeat regions.

Characterization of enhancer RNA
It has recently been reported that RNA polymerase II binds some
distal enhancer regions and can produce enhancer-associated tran-
scripts named eRNA33–35. We used our RNA assays to detect and
characterize transcriptional activity at enhancer loci predicted
genome-wide from ENCODE chromatin immunoprecipitation and
high-throughput sequencing (ChIP-seq) data20,36.

Figure 5a shows the aggregate pattern of RNA-seq and CAGE
signal in a strand-specific manner around the subset of predicted
gene-distal enhancers containing DNase I hypersensitive sites and
centred on those sites. In these plots, as denoted by the accumulation
of CAGE tags signifying TSSs, transcription initiation within the
enhancer region is observed, and continues outwards for several

kilobases (kb). This behaviour can be observed for the polyadenylated
and non-polyadenylated RNA fractions mapping in both intronic
and intergenic regions. As previously reported33, we observe a large
diversity of expression levels at each of the transcribed enhancers.
Polyadenylated to non-polyadenylated RNA ratios, as well as nuclear
to cytoplasmic ratios, vary at individual enhancers (Supplementary Fig.
21a, b). However, contrary to some previous reports, although most
eRNAs are prevalent in the nuclear non-polyadenylated RNA fraction,
some eRNAs seemed to be polyadenylated in the nucleus. This pattern
was significantly different compared to transcripts from GENCODE
annotated and novel predicted20 promoters (Fig. 5b).

Transcribed enhancers on average show a significantly different
pattern of chromatin modification than non-transcribed ones37–40.
The enhancer regions displayed stronger signals for H3K4 methyla-
tion, H3K27 acetylation and H3K79 dimethylation along with
higher levels of RNA polymerase II binding, all associated with
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Figure 5 | Transcription at enhancers. a, The pattern of RNA elements
around enhancer predictions20,36 containing DNase I hypersensitive sites. The
lines represent the average frequency of RNA elements (top, polyadenylated
long RNA contigs; middle, CAGE tag clusters; bottom, non-polyadenylated
long RNA contigs) in a genomic window around the centre of the enhancer
prediction as determined by DNase I hypersensitive sites. Elements on the plus
strand are shown in red, and on the minus strand in blue. b, Enhancer
transcripts differ from promoter transcripts. The box plots compare the
features of transcripts at predicted enhancer loci compared to predicted novel
intergenic promoters20 and annotated promoters8. H3K4me3, poly(A)1 and
nucleus denote the three following ratios: H3K4me3/(H3K4me3 1 H3K4me1),
polyadenylated/(polyadenylated 1 non-polyadenylated), nuclear/(nuclear 1

cytosolic). Enhancers are marked by higher levels of H3K4me1 compared to

H3K4me3 than novel or annotated promoters (left). Enhancer transcripts show
higher levels of non-polyadenylated (middle) and nuclear (right) RNA relative
to promoters. c, Chromatin state at transcribed enhancers. Enhancer
predictions with evidence of transcription (in blue; Cage tags present at
predicted locus) show a different pattern of histone modification and higher
levels of RNA polymerase II binding than non-transcribed predictions (red).
They are enriched for H3K27 acetylation, H3K4 methylation, H3K79
dimethylation and depleted for H3K27 trimethylation. d, Enhancer activity and
transcription is cell-type specific. Loci predicted to be active transcribed
enhancers in GM12878 cells show low signal for CAGE tags (top) and for
H3K27 acetylation (bottom) in other cell lines. The whiskers are defined as Q1
21.5 3 IQR to Q3 11.5 3 IQR, where IQR is the interquartile range, and Q1
and Q3 the first and third quartile, respectively.
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transcriptional initiation and elongation (Fig. 5c). Both the transcripts
and the chromatin states are cell-type specific (Fig. 5d). Taking the
GM12878 cell line as an example, the enhancer loci producing eRNA
demonstrate enrichment of CAGE tag detection (Fig. 5d, top) and the

presence of H3K27ac histone modification (Fig. 5d, bottom) in this
cell line compared to five other analysed cell lines. This strongly
suggests that the regulatory regions governing the expression of
enhancer transcripts are distinguished from regulatory regions
located at the beginning of genic regions.

Concluding remarks
The cumulative coverage of transcribed regions in the 15 cell lines
across the human genome is 62.1% and 74.7% for processed and
primary transcripts, respectively (Supplementary Table 10 and
Supplementary Fig. 22). On average, for each cell line, 39% of the
genome is covered by primary transcripts and 22% by processed
RNAs. No cell line showed transcription of more than 56.7% of the
union of the expressed transcriptomes across all cell lines. When
mapping the current RNA-seq data to the ENCODE pilot regions
(Supplementary Table 10), we observed a similar, albeit higher, extent
of transcriptional coverage of 73.3% for processed RNAs and 84.5%
for primary transcripts. Previously reported estimates in these regions
for processed and primary transcripts were 24% and 93%, respectively
(Supplementary Table 2.4.3 and ref. 3). The increased genome
coverage by processed RNAs stems largely from the inclusion of
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Table 1 | Long polyadenylated and non-polyadenylated RNAs
Expression of GENCODE (v7) annotated elements (a)

Gene type Detected exons{
(annotation no.)

Detected splice
junctions{ (annotation

no.)

Detected transcripts{
(annotation no.)

Detected genes{
(annotation no.)

Exon
nucleotide
coverage{

(%)

Number of
genes

expressed
in at least

one cell line

Number of
genes

expressed
in only one

cell line

Proportion
over genes
expressed1

(%)

Number of
genes

expressed
in 14 cell

lines

Proportion
over genes
expressedI

(%)

Long non-coding 22,381 (41,467) 8,017 (26,872) 6,521 (14,880) 5,906 (9,277) 87.5 5,906 1,386 23.5 631 10.7
Protein coding 288,322 (318,514) 194,752 (244,158) 59,822 (76,006) 18,939 (20,679) 98.1 18,939 1,082 5.7 10,571 55.8
Other* 102,000 (133,937) 19,277 (47,663) 45,410 (71,113) 10,649 (21,750) 95.2 10,649 2,453 23.0 1,896 17.8
Total annotated 412,703 (493,918) 222,046 (318,693) 111,753 (161,999) 35,494 (51,706) 96.7 35,394 4,921 13.9 13,098 37.0

Expression of GENCODE (v7) intergenic and antisense elements (b)

Category Detected exons{ Detected splice
junction{

Detected transcripts{ Detected genes{

Mono-exonic 55,683 NA 55,682 33,686
Multi-exonic 39,117 69,052 17,643 7,518
Total 94,800 69,052 73,325 41,204

NA, not applicable.
* Includes pseudogenes, miRNAs, etc.
{All elements that passed npIDR (0.1).
{Cumulative detected nucleotide in detected exons/total nucleotides in detected exons.
1 Proportion for genes expressed in only one cell line.
I Proportion for genes expressed in 14 cell lines.

Table 2 | Short RNAs
Expression of GENCODE (v7) annotated small RNA genes (a)

Gene type* GENCODE total Detected genes
(% detected)

No. genes expressed in
only one cell line (%

detected)

No. genes expressed in
12 cell lines (% detected)

miRNA guide
fragment{

miRNA passenger
fragment1

Internal fragmentsI of
annotated small RNA

(average per detected gene)

miRNA 1,756 497 (28) 59 (12) 147 (30) 454 (454) 175 (175) 18
snoRNA 1,521 458 (30) 73 (16) 223 (49) NA NA 60
snRNA 1,944 378 (19) 123 (33) 41 (11) NA NA 36
tRNA 624 465 (75) 29 (6) 197 (42) NA NA 52
Other{ 1,209 191 (16) 69 (36) 24 (13) NA NA 32
Total GENCODE 7,054 1,989 (28) 353 (18) 632 (32) NA NA 40

Expression of unannotated short RNAs (b)

Cell compartment Unannotated
short RNAs

Exonic Intronic Exon–intron boundaries Genic Gene–intergene
boundaries

Intergenic

Cell 57,393 14,116 13,773 1,818 29,707 13,048 25,906
Nucleus 82,297 19,334 40,136 5,248 64,718 7,417 16,289
Cytosol 25,455 6,183 5,605 665 12,453 6,631 12,447
Three compartments 150,165 38,969 55,061 7,552 101,582 23,185 45,081

NA, not applicable.
* Includes all other GENCODE small transcript biotypes except for pseudogenes.
{All elements that have passed npIDR (0.1).
{Number of detected miRNAs with an expressed annotated guide (with an annotated guide in mirbase).
1 Number of detected miRNAs with an expressed annotated passenger (with an annotated passenger in mirbase).
IShort RNA-seq mapping for which the 59 end starts 5 bp after the start and ends 5 bp before the end of a detected gene.
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non-polyadenylated RNAs in the current study. Other than that,
given the differences in the samples studied, the selection of pilot
regions with high genic content, the increase of annotated genomic
regions over time, and the different technologies used to interrogate
transcription, both estimates are in reasonable agreement.

As a consequence of both the expansion of genic regions by the
discovery of new isoforms and the identification of novel intergenic
transcripts, there has been a marked increase in the number of inter-
genic regions (from 32,481 to 60,250) due to their fragmentation and a
decrease in their lengths (from 14,170 bp to 3,949 bp median length;
Fig. 6). Concordantly, we observed an increased overlap of genic
regions. As the determination of genic regions is currently defined
by the cumulative lengths of the isoforms and their genetic association
to phenotypic characteristics, the likely continued reduction in the
lengths of intergenic regions will steadily lead to the overlap of most
genes previously assumed to be distinct genetic loci. This supports
and is consistent with earlier observations of a highly interleaved
transcribed genome12, but more importantly, prompts the reconsid-
eration of the definition of a gene. As this is a consistent characteristic
of annotated genomes, we would propose that the transcript be con-
sidered as the basic atomic unit of inheritance. Concomitantly, the
term gene would then denote a higher-order concept intended to
capture all those transcripts (eventually divorced from their genomic
locations) that contribute to a given phenotypic trait. Co-published
ENCODE-related papers can be explored online via the Nature
ENCODE explorer (http://www.nature.com/ENCODE), a specially
designed visualization tool that allows users to access the linked
papers and investigate topics that are discussed in multiple papers
via thematically organized threads.

METHODS SUMMARY
For full details of Methods, see Supplementary Information.
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Chromatin immunoprecipitation (ChIP) followed by high-throughput DNA sequencing (ChIP-seq) has become a valuable
and widely used approach for mapping the genomic location of transcription-factor binding and histone modifications
in living cells. Despite its widespread use, there are considerable differences in how these experiments are conducted, how
the results are scored and evaluated for quality, and how the data and metadata are archived for public use. These
practices affect the quality and utility of any global ChIP experiment. Through our experience in performing ChIP-seq
experiments, the ENCODE and modENCODE consortia have developed a set of working standards and guidelines for ChIP
experiments that are updated routinely. The current guidelines address antibody validation, experimental replication,
sequencing depth, data and metadata reporting, and data quality assessment. We discuss how ChIP quality, assessed in
these ways, affects different uses of ChIP-seq data. All data sets used in the analysis have been deposited for public viewing
and downloading at the ENCODE (http://encodeproject.org/ENCODE/) and modENCODE (http://www.modencode.
org/) portals.

[Supplemental material is available for this article.]

Methods for mapping transcription-factor occupancy across the

genome by chromatin immunoprecipitation (ChIP) were devel-

oped more than a decade ago (Ren et al. 2000; Iyer et al. 2001; Lieb

et al. 2001; Horak and Snyder 2002; Weinmann et al. 2002). In

ChIP assays, a transcription factor, cofactor, or other chromatin

protein of interest is enriched by immunoprecipitation from cross-

linked cells, along with its associated DNA. Genomic DNA sites

enriched in this manner were initially identified by DNA hybrid-

ization to a microarray (ChIP-chip) (Ren et al. 2000; Iyer et al. 2001;

Lieb et al. 2001; Horak and Snyder 2002; Weinmann et al. 2002),

and more recently by DNA sequencing (ChIP-seq) (Barski et al.

2007; Johnson et al. 2007; Robertson et al. 2007). ChIP-seq has

now been widely used for many transcription factors, histone

modifications, chromatin modifying complexes, and other chro-

matin-associated proteins in a wide variety of organisms. There is,

however, much diversity in the way ChIP-seq experiments are

designed, executed, scored, and reported. The resulting variability

and data quality issues affect not only primary measurements,

but also the ability to compare data from multiple studies or to

perform integrative analyses across multiple data-types.

The ENCODE and modENCODE consortia have performed

more than a thousand individual ChIP-seq experiments for more

than 140 different factors and histone modifications in more

than 100 cell types in four different organisms (D. melanogaster,

C. elegans, mouse, and human), using multiple independent

data production and processing pipelines (The ENCODE Project

Consortium 2004, 2011; Celniker et al. 2009). During this work, we

developed guidelines, practices, and quality metrics that are ap-

plied to all ChIP-seq work done by the Consortium (Park 2009).

Here we describe these, together with supporting data and illus-
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trative examples. We emphasize issues common to all ChIP-seq

studies: immunoprecipitation specificity and quality, impact of

DNA sequencing depth, scoring and evaluation of data sets, ap-

propriate control experiments, biological replication, and data

reporting.

ChIP overview
The goals of a genome-wide ChIP experiment are to map the bind-

ing sites of a target protein with maximal signal-to-noise ratio and

completeness across the genome. The basic ChIP-seq procedure is

outlined in Figure 1A, and detailed protocols (and data) from our two

consortia can be obtained from the ENCODE and modENCODE

production groups listed at the UCSC Genome Browser: http://

encodeproject.org/ENCODE/ and http://www.modencode.org/,

respectively. Cells or tissues are treated with a chemical agent,

usually formaldehyde, to cross-link proteins covalently to DNA.

This is followed by cell disruption and sonication, or in some cases,

enzymatic digestion, to shear the chromatin to a target size of

100–300 bp (Ren et al. 2000; Iyer et al. 2001). The protein of interest

(transcription factor, modified histone, RNA polymerase, etc.) with

its bound DNA is then enriched relative to the starting chromatin

by purification with an antibody specific for the factor. Alterna-

tively, cell lines expressing an epitope-tagged factor can be gener-

ated and the fusion protein immunoprecipitated via the epitope tag.

After immuno-enrichment, cross-links are reversed, and the

enriched DNA is purified and prepared for analysis. In ChIP-chip,

the DNA is fluorescently labeled and hybridized to a DNA

microarray, along with differentially la-

beled reference DNA (Ren et al. 2000;

Iyer et al. 2001). In ChIP-seq, the DNA is

analyzed by high-throughput DNA se-

quencing. The ENCODE Consortium

chose ChIP-seq for human and mouse

experiments because it permits compre-

hensive coverage of large genomes and

increases site resolution ( Johnson et al.

2007; Robertson et al. 2007). For organisms

with small genomes, the modENCODE

Consortium has used both ChIP-chip

and ChIP-seq, as modern arrays can pro-

vide high-resolution coverage of small

genomes (Gerstein et al. 2010; Roy et al.

2010). In all formats, we identified pu-

tatively enriched genomic regions by

comparing ChIP signals in the experi-

mental sample with a similarly processed

reference sample prepared from appro-

priate control chromatin or a control

immunoprecipitation.

Different protein classes have dis-

tinct modes of interaction with the ge-

nome that necessitate different analytical

approaches (Pepke et al. 2009):

1. Point-source factors and certain chro-

matin modifications are localized at

specific positions that generate highly

localized ChIP-seq signals. This class

includes most sequence-specific tran-

scription factors, their cofactors, and,

with some caveats, transcription

start site or enhancer-associated his-

tone marks. These comprise the ma-

jority of ENCODE and modENCODE

determinations and are therefore the

primary focus of this work.

2. Broad-source factors are associated

with large genomic domains. Exam-

ples include certain chromatin marks

(H3K9me3, H3K36me3, etc.) and chro-

matin proteins associated with tran-

scriptional elongation or repression

(e.g., ZNF217) (Krig et al. 2007).

3. Mixed-source factors can bind in point-

source fashion to some locations of

Figure 1. Overview of ChIP-seq workflow and antibody characterization procedures. (A) Steps for
which specific ENCODE guidelines are presented in this document are indicated in red. For other steps,
standard ENCODE protocols exist that should be validated and optimized for each new cell line/tissue
type or sonicator. (*) A commonly used but optional step. (B) Flowchart for characterization of new
antibodies or antibody lots. (C ) Flowchart for use of antibody characterization assays.
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the genome, but form broader domains of binding in others.

RNA polymerase II, as well as some chromatin modifying pro-

teins (e.g., SUZ12) behave in this way (Squazzo et al. 2006).

Below, we report our experience with ChIP-seq experimental

design, execution, and quality assessment. We offer specific rec-

ommendations, based on current experience, as summaries in

boxes.

ChIP-seq experimental design considerations

Antibody and immunoprecipitation specificity

The quality of a ChIP experiment is governed by the specificity

of the antibody and the degree of enrichment achieved in the af-

finity precipitation step. The majority of ENCODE/modENCODE

ChIP experiments in human cells and in Drosophila embryos were

performed with antibodies directed against individual factors and

histone modifications. A total of 145 polyclonal and 43 mono-

clonal antibodies had been used to successfully generate ChIP-seq

data as of October 2011.

Antibody deficiencies are of two main types: poor reactivity

against the intended target and/or cross-reactivity with other

DNA-associated proteins. For these reasons, we have developed

a set of working standards and reporting guidelines designed to

provide measures of confidence that the reagent recognizes the

antigen of interest with minimal cross-reactivity toward other

chromosomal proteins. Widely accessible methods for measuring

antibody specificity and sensitivity range from semiquantitative

to qualitative, and each can have noise and interpretation issues.

We therefore emphasize reporting of antibody characterization

data so that users of the ChIP data, or the reagent itself, can

make informed judgments. We also recognize that a successful

experiment can be performed with reagents that fail to strictly

comply with these guidelines. For example, cross-reacting pro-

teins detected in an immunoblot assay might not interfere in

ChIP, because the protein is not attached to chromatin. Sec-

ondary tests of diverse types can help to provide confidence

concerning the acceptability of an antibody that fails an initial

assessment.

Two tests, a primary and a secondary test, are used to char-

acterize each monoclonal antibody or different lots of the same

polyclonal antibody. The ordering of the primary and secondary

tests are influenced by the effort required to execute each, with the

primary assay being easier to perform on large numbers of anti-

bodies. The tests differ for antibodies against transcription factors

vs. those against histone modifications. A detailed description of

the tests is provided in Box 1, and a typical workflow is presented in

Figure 2, B and C. For transcription-factor antigens, we adopted the

immunoblot as our primary assay, with immunostaining as the

alternative. The former can give more information about cross-

reacting material or multiple isoforms; the latter is typically less

sensitive, but provides information about nuclear location. Ex-

amples of antibodies that pass and fail these tests are shown in

Figure 2A.

Our consortia also include one of five criteria as a secondary

characterization: (1) factor ‘‘knockdown’’ by mutation or RNAi, (2)

independent ChIP experiments using antibodies against more

than one epitope on a protein or against different members of the

same complex, (3) immunoprecipitation using epitope-tagged

constructs, (4) affinity enrichment followed by mass spectrometry,

or (5) binding-site motif analysis. Motif enrichment is the easiest

assay to perform, but requires pre-existing information about the

sequences to which a protein binds and assumes that the motif is

uniquely recognized in a given cell source by the factor of interest.

ChIP with a second antibody or against an epitope-tagged con-

struct and siRNA experiments coupled with ChIP provide in-

dependent evidence that the target sites are bound by the factor

of interest. We found that mass spectrometry is particularly useful

for cases where multiple or unexpected bands are observed on

an immunoblot and the presence of spliced isoforms, post-trans-

lational modification, or degradation is suspected. Additionally, it

can precisely identify potential alternate sources of ChIP signal,

often with novel biological implications, which can be tested by

additional ChIP experiments. Due to the significant effort and

expense required to perform these assays, our standard for the

consortia requires only one secondary assay. We found that ;20%

(44 of 227) of the tested commercially available antibodies against

transcription factors meet these characterization guidelines and

also function in ChIP-seq assays.

To date, 55% of consortia antibodies have been submitted

with mass spectrometry data, 28% with ChIP data using a second

antibody, epitope tag, or alternate member of a known complex,

10% with data from motif analysis (this standard has only been

used by ENCODE for 1 yr), and 7% with siRNA knockdown data.

A summary of motif detection for all data sets is in preparation

(P Kheradpour and M Kellis, in prep.).

Validating histone modification antibodies involves multiple

issues (Egelhofer et al. 2011): (1) specificity with respect to other

nuclear/chromatin proteins, (2) specificity with respect to un-

modified histones and off-target modified histone residues (e.g.,

H3K9me vs. H3K27me), (3) specificity with respect to mono-, di-,

and trimethylation at the same residue (e.g., H3K9me1, H3K9me2,

and H3K9me3), and (4) lot-to-lot variation. For all consortia his-

tone measurements, we set the standard that immunoblot analysis

and one of the following secondary criteria are applied: Peptide-

binding tests (dot blots), mass spectrometry, immunoreactivity

analysis in cell lines containing knockdowns of a relevant histone

modification enzyme or mutants histones, or genome annotation

enrichment. The details of these standards are in Box 1.

Immunoprecipitation using epitope tagged constructs

Given the challenges in obtaining antibodies for suitable ChIP,

an attractive alternative is to tag the factor with an exogenous

epitope and immunoprecipitate with a well-characterized mono-

clonal reagent specific for the tag. Epitope-tagging addresses the

problems of antibody variation and cross-reaction with different

members of multigene families by using a highly specific reagent

that can be used for many different factors. However, this in-

troduces concerns about expression levels and whether tagging

alters the activity of the factor. The level of expression is typically

addressed by using large clones (usually fosmids and BACs) car-

rying as much regulatory information as possible to make the level

of expression nearly physiological (Poser et al. 2008; Hua et al.

2009). Higher expression is known to result in occupancy of sites

not necessarily occupied at physiological levels (DeKoter and

Singh 2000; Fernandez et al. 2003). In ENCODE/modENCODE,

tagged factors have been used most extensively thus far for C.

elegans studies, where factors have been tagged with GFP and

shown to complement null mutants; six of six tested to date have

been found to complement (Zhong et al. 2010; V Reinke, unpubl.).

In some cases, information regarding expression is not available

and expression from an exogenous promoter has been used

(P Farnham, unpubl.)

ChIP-seq guidelines used by ENCODE and modENCODE
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Box 1: ENCODE guidelines for antibody and immunoprecipitation characterization

Characterization of antibodies directed against transcription factors

Antibodies directed against transcription factors must be characterized using both a primary and secondary characterization; characterizations must
be repeated for each new antibody or antibody lot number that is used for ChIP-seq (Fig. 1B,C).

Primary mode of characterization

Antibodies are characterized by one of two primary methods, immunoblot analysis, or immunofluorescence.

Immunoblot analyses

Immunoblot analyses are performed on protein lysates from either whole-cell extracts, nuclear extracts, chromatin preparations, or
immunoprecipitated material (before proceeding to ChIP assays, it is helpful to demonstrate that the protein of interest can be efficiently
immunoprecipitated from a nuclear extract, see Fig. 2B). We use the guideline that the primary reactive band should contain at least 50% of the signal
observed on the blot. Ideally, this band should correspond to the size expected for the protein of interest (Fig. 2A). However, the electrophoretic
mobility of many factors can deviate significantly from the expected size due to modifications, isoform differences, or intrinsic properties of the factor.
Therefore, antibodies for which the main band differs from the expected size by >20% or for which multiple bands are seen (such that no band
represents >50% of the signal) can be used under certain circumstances. In these cases, further criteria must be met, such as (1) the unexpected
mobility must have been properly documented in published studies using the same antibody lot, (2) the signal in the band(s) is reduced by siRNA
knockdown or mutation, or (3) the factor can be identified in all band(s) by mass spectrometry.

Immunofluorescence

Some antibodies that work well for ChIP do not work well in immunoblots. If immunoblot analysis is not successful, immunofluorescence can be used
as an alternative method. Staining should be of the expected pattern (e.g., nuclear and only in cell types or under specific growth conditions that
express the factor) (Fig. 2C). Because immunofluorescence does not provide evidence that the antibody detects only one protein, this validation
method should be combined with a method that reduces the level of the protein, such as siRNA- or shRNA-mediated knockdown, or used with
a knockout cell line or organism (see below).

Secondary mode of characterization

In addition to the primary mode of characterization, the consortia performs at least one of the following five assays as an additional secondary test:

Knockdown or knockout of the target protein

Immunoblots or immunoprecipitations are performed in duplicate using extracts from siRNA or shRNA knockdowns or from knockout mutant cell
lines or organisms. We use the guideline that the primary immunoblot (or immunofluorescence) signal, along with additional immunoreactive bands,
should be reduced to no more than 30% of the original signal and any signal remaining after genetic mutation, RNAi, or siRNA is noted. As an
alternative, knockdown can also be measured with ChIP experiments. ENCODE data can be submitted if reduction of ChIP-chip or ChIP-seq signals by
>50% relative to control is observed. A suitable control knockdown (e.g. using ‘‘scrambled’’ siRNA sequences) should also be performed and the data
should be submitted; reduction of signal should not be observed in the control knockdown data set. The methodology used for binding-region signal
normalization (for instance, normalization against total read counts or using values from reference peaks quantified by qPCR under all experimental
conditions) should also be reported.

Immunoprecipitation followed by mass spectrometry

All immunoreactive bands identified by immunoblot analysis are analyzed (Fig. 2D). ENCODE passes such analyses if the protein of interest is identified
in such bands; if additional chromosomal proteins are identified in an immunoreactive band, the Consortium accepts the experiment as long as they
are present at lower prevalence than the desired protein (as measured by peptide counts or other methods) or can be demonstrated to arise from
nonspecific immunoprecipitation (e.g., also present in a control immunoprecipitation). All proteins identified by mass spectrometry and the number
of peptide counts for each are reported.

Immunoprecipitation with multiple antibodies against different parts of the target protein or members of the same complex

Different antibodies against different parts of the same protein or other members of a known protein complex can be used in analyzing the specificity
of antibodies. In the ENCODE Consortium, results of the different ChIP experiments are compared and significant overlap of enriched loci is expected
(ChIP-seq experiments are compared using the IDR-based standards in Box 3). Note that for different proteins that are members of a complex, there
may be some functions that are independent of one another. Thus, the targets lists for two different proteins may not entirely overlap. In this case,
specific evidence about limited overlap of binding specificity in the literature is presented to justify the significance of the overlap observed between
data sets for the factors in question.

Immunoprecipitation with an epitope-tagged version of the protein

An epitope-tagged version of the target protein may be used, preferably expressed from the endogenous gene promoter. ENCODE conducts and
analyzes such experiments as described above for the use of multiple antibodies.

Motif enrichment

For transcription factors, if a factor has a well-characterized motif derived from in vitro binding studies or another justifiable method, and if either no
paralogs are expressed in the cell lines being analyzed or if the antibody is raised to a unique region of the factor, motif enrichment can be used for
validation. Motif analysis can be performed using a defined set of high-quality peaks (a 0.01 IDR threshold is used), and for ENCODE data to be
submitted, motifs should be enriched at least fourfold compared with all accessible regions (e.g., DNase hypersensitive regions) and present in >10%
of analyzed peaks. Analysis of data sets deposited as of January 2011 identified data sets that meet these standards for 49 of 85 factors (Fig. 2E). We
note that due to differences in transcription-factor recruitment mechanisms, failure of a data set to meet the motif enrichment threshold does not
necessarily indicate poor quality data.

(continued)
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Other considerations

1. For antibodies directed against members of a multigene family, the best practice is to prepare or obtain antibodies that recognize protein regions
unique to individual family members. For an ENCODE validated antibody, any potential cross-reaction is noted when reporting data collected using
that antibody.

2. For antibodies that have been previously characterized for one cell type, ENCODE has used only one validation method (such as immunoblot
analysis) when the antibody is used to perform ChIP in a new cell type or organism. If an antibody has been validated in at least three different
cell types, we do not require further validation for ChIP-seq experiments with additional cell types for ENCODE submission. Similarly, for whole
organisms, if the antibody has been characterized in three growth stages, no further characterization is required.

3. If antibodies derived from the same lot are used by different groups in ENCODE, they only need to be characterized once. However, antibodies from
different lots of the same catalog number are characterized as if they were new antibodies.

Epitope-tagged proteins

Epitope-tagged factors are introduced into cells by transfection of an expression construct. To help ensure that ChIP-seq results obtained using the
tagged factor are comparable to those expected for the endogenous factor, ENCODE uses the criteria that tagged factors are expressed at
a comparable amount to the endogenous factor. This is usually achieved by cloning into a low-copy number vector and using the natural promoter to
drive expression. If the tagged protein is expressed from a heterologous promoter, data comparing expression levels of the tagged and endogenous
proteins (i.e., immunoblots to measure protein levels or qPCR to measure RNA levels) are needed. There are special cases in which ChIP cannot be
obtained at endogenous protein levels, and here, elevated expression can provide useful information. ENCODE’s recommended control for epitope-
tagged measurements is an immunoprecipitation using the same antibody against the epitope tag in otherwise identical cells that do not express the
tagged factor.

Histone modifications

For ENCODE data to be submitted, all commercial histone antibodies are validated by at least two independent methods, as described below, and
new lots of antibody are analyzed independently. These validations are performed by the ENCODE laboratory performing the ChIP-seq or by the
antibody supplier, but only if the supplier provides data for the specific lot of antibody. The tests need only be performed once for each antibody
lot.

Primary test

All antibodies used in ENCODE ChIP experiments are checked for reactivity with nonhistone proteins and with unmodified histones by performing
immunoblot analysis on total nuclear extract and recombinant histones. To enable visual quantification of reactivity, a concentration series of
both extract and recombinant histones are analyzed using recombinant histone levels that are comparable to those of the target histone in
nuclear extract. Since cross-reactivity may vary between species, this test is performed using nuclear extracts from each species to be studied by
ChIP. To pass the criteria for submission in ENCODE, the specific histone band should constitute at least 50% of the signal in western blots of
nuclear extract, show at least 10-fold enrichment relative to any other single band, and show at least 10-fold enriched signal relative to
unmodified histone.

Secondary test

In addition to the primary test, antibody specificity is verified by at least one additional test. The pros and cons of each test are described. The first two
are the most commonly used.

Peptide binding tests

Peptide binding and peptide competition assays provide a fast method to initially evaluate the specificity and relative binding strength of antibodies
to histone tails with different modifications (e.g., H3K9 or H3K27 and me1, me2, and me3 levels of methylation). A potential drawback is that
antibodies may differ in their binding specificity toward histone tail peptides in vitro versus toward full-length histones in the context of chromatin in
IP experiments. Nevertheless, observing at least a 10-fold enriched binding signal for the modification of interest relative to other modifications
provides confidence in the antibody specificity. For these assays, histone tail peptides with particular modifications can be purchased commercially.
Alternatively, peptide binding and/or competition assays using the same lot of antibody can be performed by the company from which the antibody
is purchased.

Mass spectrometry

For antibodies generated against related and historically problematic modifications, the ability of the antibody to effectively distinguish between
similar histone marks (e.g., H3K9me and H3K27me) and between different levels of methylation (e.g., H3K9me1, H3K9me2, and H3K9me3)
can be tested by mass spectrometry analysis of material immunoprecipitated from histone preparations. For ENCODE data, the target
modification constitutes at least 80% of the immunoprecipitated histone signal. This test may often not be successful because IP for one
modification can simultaneously isolate coassociated histones with other modifications. Thus, only a positive result (i.e., a specific modification)
is interpretable.

Mutants defective in modifying histones

Strains or cell lines harboring knockouts or catalytically inactive mutants of enzymes responsible for particular histone modifications offer the
opportunity to test antibody specificity. Such mutants exist for S. cerevisiae, S. pombe, Drosophila, C. elegans and can, in cases where the modifying
enzymes are nonredundant, be created for mammalian cells. For submitted ENCODE/modENCODE data, antibody signal is reduced to below 10%
of wild-type signal in mutant samples, compared with wild type. RNAi or siRNA depletion of histone modifying activity may be substituted for
mutants. Mutant or RNAi or siRNA reduction of signal can be assayed by immunoblot analysis or by immunofluorescence staining. Mutant/RNAi/
siRNA tests usually do not allow testing antibodies for the ability to discriminate between mono-, di-, and trimethylation. In cases where more than
one enzyme modifies the same residue (e.g., H3K9 methylation in Drosophila), double mutants or RNAi may be required. Replicates of this test are
encouraged but not required for ENCODE/modENCODE data to be submitted. However, positive controls showing that the antibody works on

Box 1: Continued
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Replication, sequencing depth, library complexity,
and site discovery

Biological replicate experiments from independent cell cultures,

embryo pools, or tissue samples are used to assess reproducibility.

Initial RNA polymerase II ChIP-seq experiments showed that more

than two replicates did not significantly improve site discovery

(Rozowsky et al. 2009). Thus, the ENCODE Consortium set as our

standard that all ChIP measurements would be performed on two

independent biological replicates. The irreproducible discovery

rate (IDR) analysis methodology (Li et al. 2011) is now used to

assess replicate agreement and set thresholds (discussed further

below). For experiments with poor values for quality metrics de-

scribed in Section III, additional replicate(s) have been generated.

For a typical point-source DNA-binding factor, the number

of ChIP-seq positive sites identified typically increases with the

number of sequenced reads (Myers et al. 2011). This result is

expected, as studies of numerous factors by ENCODE and by other

groups have repeatedly found a continuum of ChIP signal strength,

rather than a sharply bounded and discrete set of positive sites

(Rozowsky et al. 2009; Myers et al. 2011). Weaker sites can be

detected with greater confidence in larger data sets because of the

increased statistical power afforded by more reads. Figure 3 shows

an analysis of peak calls for 11 human ENCODE ChIP-seq data

sets for which deep-sequence data (30–100 million mapped reads)

were obtained. Clear saturation of peak counts was observed for

one factor with few binding sites, but counts continued to increase

at varying rates for all other factors, including a case in which

>150,000 peaks were called using 100 million mapped reads. Ex-

amination of peak signals reveals that the signal enrichments

consistently plateau at greater sequencing depths. At 20 million

mapped reads, which we currently use as a minimum for all

ENCODE ChIP experiments for point-source transcription factors

(Box 2), five- to 13-fold median enrichments are the norm; new

peaks identified after 20 million reads give enrichments that are

;20% of the enrichment of the strongest peaks (Fig. 3C). In-

terestingly, many additional peaks, with enrichment values of

three- to sevenfold, can still be found by sequencing to much

greater depths. It is likely that many of these regions correspond

to low-affinity sites and/or regions of open chromatin that bind

TFs less specifically.

The relationship of ChIP signal strength to biological regula-

tory activity is a current area of active investigation. The biological

activity of known enhancers, defined in the literature independently

of ChIP data, is distributed quite broadly relative to ChIP-seq signal

strength (Ozdemir et al. 2011; G DeSalvo, G Marinov, K Fisher,

A Kirilusha, A Mortazavi, B Williams, and B Wold, in prep.). Some

highly active transcriptional enhancers reproducibly display modest

ChIP signals (Fig. 4B). This means that one cannot a priori set a

specific target threshold for ChIP peak number or ChIP signal

strength that will assure inclusion of all functional sites (see Dis-

cussion). Therefore, a practical goal is to maximize site discovery by

optimizing immunoprecipitation and sequencing deeply, within

reasonable expense constraints. For point-source factors in mam-

malian cells, a minimum of 10 million uniquely mapped reads are

used by ENCODE for each biological replicate (providing a mini-

mum of 20 million uniquely mapped reads per factor); for worms

and flies a minimum of 2 million uniquely mapped reads per rep-

licate is used. For broad areas of enrichment, the appropriate num-

ber of uniquely mapped reads is currently under investigation, but at

least 20 million uniquely mapped reads per replicate for mammalian

cells and 5 million uniquely mapped reads per replicate for worms

and flies is currently being produced for most experiments.

Site discovery and reproducibility are also affected by the

complexity of a ChIP-seq sequencing library (Fig. 4A). We define

library complexity operationally as the fraction of DNA fragments

that are nonredundant. With increased depth of sequencing of a

library, a point is eventually reached where the complexity will be

exhausted and the same PCR-amplified DNA fragments will be

sequenced repeatedly. Low library complexity can occur when

very low amounts of DNA are isolated during the IP or due to

problems with library construction.

A useful complexity metric is the fraction of nonredundant

mapped reads in a data set (nonredundant fraction or NRF), which

we define as the ratio between the number of positions in the ge-

nome that uniquely mappable reads map to and the total number

of uniquely mappable reads; it is similar to a recently published

redundancy metric (Heinz et al. 2010). NRF decreases with se-

wild-type samples processed in parallel, and positive controls showing that the mutant extract is amenable to the assay employed are included for
data to be submitted.

Mutant histones

Mutant histones (e.g., histone H3 with Lys4 mutated to Arg or Ala) expressed in yeast provide another avenue to test specificity by immunoblot
analysis or even by ChIP. When analyzing a strain containing a mutated histone that cannot be modified, we expect at least a 10-fold reduction in
immunoblot or IP signal relative to wild-type histone preparations. Mutant histone tests cannot distinguish whether antibodies discriminate between
mono, di, and trimethylation.

Annotation enrichment

Enrichment at annotated features (e.g., transcription start sites) can be used as a validation criterion for certain chromatin-associated modifications
and proteins. If a well-characterized modification (e.g. H3K4me3) is analyzed, the observed localization to annotations are expected to be similar to
that of known overlap standards derived from the literature or existing ChIP-seq data sets (for point source peaks, overlap with known annotations can
be assessed using the IDR guidelines in Box 3).

Use of two different antibodies

Even if antibodies pass the specificity tests described above, observing similar ChIP results with two independent antibodies provides added
confidence. We therefore aspire to obtain ChIP-seq data from two independent antibodies whenever possible, providing statistical comparisons of the
results and presenting the intersection of the peak sets obtained with the two antibodies. The reasons for a significant discordance can be either
biological or technical, and merit further dissection.

Box 1: Continued
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Figure 2. Representative results from antibody characterization assays. (A) Immunoblot analyses of antibodies against SIN3B that (left) pass quality
control (Santa Cruz sc13145) and (right) fail quality control (Santa Cruz sc996). Lanes contain nuclear extract from GM12878 cells (G) and K562 cells (K).
Arrows indicate band of expected size of 133 kDa. Molecular weights (MW) are in kilodaltons. (B) Immunoblot analysis of an antibody against TBLR1
(Abcam ab24550) that passes quality control and can be used for immunoprecipitation. Immunoprecipitations (IPs) were performed from nuclear lysates
of K562 cells. Arrow indicates band of expected size (56 kDa) that is detected in the input lysate (lane 1) and is efficiently (cf. lanes 3 and 2) and specifically
(absent in lane 4) immunoprecipitated. (*) IgG light and heavy chains. (C ) Immunofluorescence analyses of antibodies that pass (left) and fail (right) quality
control. (D) Immunoprecipitation/mass spectrometry analysis of an antibody against SP1 (Santa Cruz sc-17824). Whole-cell lysates (WCL) of K562,
GM12878, and HepG2 were immunoprecipitated, and a band of expected size (;106 kDa) was detected on a Western blot with SP1 primary antibody.
The immunoprecipitation was repeated in K562 WCL, separated on a gel, stained with Coomassie Blue, and the band previously detected on the Western
blot was excised and analyzed by mass spectrometry. Peptides were identified using MASCOT (Matrix Science) with probability-based matching at
P < 0.05. Subsequent analysis was performed in Scaffold (Proteome Software, Inc.) at 0.0% protein FDR and 0.0% peptide FDR. SP1 protein was detected
(along with common contaminants that are often obtained in control experiments) (data not shown) and is highlighted in bold and light blue. (E)
Histogram depicting motif fold-enrichment (blue) for all transcription factors for which ENCODE ChIP-seq data is available (85 factors). Enrichments are
relative to all DNase-accessible sites and were corrected for sequence bias using shuffle motifs. Motif searches were conducted with a matching stringency
of 4–6. Where multiple data sets are available for a factor, the data set with the highest enrichment was counted. Data sets that meet the ENCODE standard
of fourfold enrichment (indicated by blue line) were found for 60% of factors. Motif representation, as a percentage of all analyzed peaks, is shown in red
for all factors for which a data set exists that exceeds the enrichment standard. A total of 96% of these data sets meet the ENCODE standard of >10% motif
representation (red line). All calculations were carried out on peaks identified by IDR analysis (0.01 cut-off ).
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quencing depth, and for point source TFs,

our current target is NRF $0.8 for 10

million (M) uniquely mapped reads (Box

2). We expect that, as sequencing tech-

nology improves and read numbers in the

hundreds of millions per lane become fea-

sible, even complex libraries from point-

source factor libraries may be sequenced at

depths greater than necessary. To maxi-

mize information that can be obtained for

each DNA-sequencing run and to prevent

oversequencing, barcoding and pooling

strategies can be used (Lefebvre et al.

2010).

Control sample

An appropriate control data set is critical

for analysis of any ChIP-seq experiment

because DNA breakage during sonication

is not uniform. In particular, some re-

gions of open chromatin are preferen-

tially represented in the sonicated sam-

ple (Auerbach et al. 2009). There are also

platform-specific sequencing efficiency

biases that contribute to nonuniformity

(Dohm et al. 2008). There are two basic

methods to produce control DNA sam-

ples, each of which mitigates the effects

of these issues on binding-site identifica-

tion: (1) DNA is isolated from cells that

have been cross-linked and fragmented

under the same conditions as the immu-

noprecipitated DNA (‘‘Input’’ DNA); and

(2) a ‘‘mock’’ ChIP reaction is performed

using a control antibody that reacts

with an irrelevant, non-nuclear antigen

(‘‘IgG’’ control). For both types of con-

trols, ENCODE groups sequence to a

depth at least equal to, and preferably

larger than, that of the ChIP sample.

While the IgG control mimics a ChIP

experiment more closely than does an

‘‘input’’ control, it is important that IgG

control immunoprecipitations recover

enough DNA to build a library of suffi-

ciently high complexity to that of the ex-

perimental samples; otherwise, binding-

site identifications made using this control

can be significantly biased.

Regardless of the type of control

used, ENCODE and modENCODE groups

perform a separate control experiment

for each cell line, developmental stage,

and different culture condition/treatment

because of known and unknown differ-

ences in ploidy, genotype, and epigenetic

features that affect chromatin prepara-

tion. To serve as a valid control, we use

identical protocols to build ChIP and

control sequencing libraries (i.e., the same

as the number of PCR amplification cycles,

Figure 3. Peak counts depend on sequencing depth. (A) Number of peaks called with Peak-seq
(0.01% FDR cut-off) for 11 ENCODE ChIP-seq data sets. (B) Called peak numbers for 11 ChIP-seq data
sets as a function of the number of uniquely mapped reads used for peak calling. (Inset) Called peak
data for the MAFK data set from HepG2 cells, currently the most deeply sequenced ENCODE ChIP-
seq data set (displayed separately due to the significantly larger number of reads relative to the other
data sets). Data sets are indicated by cell line and transcription factor (e.g., cell line HepG2, tran-
scription factor MAFK). (C ) Fold-enrichment for newly called peaks as a function of sequencing
depth. For each incremental addition of 2.5 million uniquely mapped reads, the median fold-en-
richment for newly called peaks as compared with an IgG control data set sequenced to identical
depth is plotted.
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fragment size, etc.). Although rare in our experience, control li-

braries with particularly strong sonication biases have been ob-

served and they can adversely affect peak calling (Supplemental

Fig. S1). As much as possible, ENCODE/modENCODE groups also

generate a separate control for each batch of sonicated samples to

control for possible sonication variation.

Peak calling

After mapping reads to the genome, peak calling software is used

to identify regions of ChIP enrichment. We have used several

peak calling algorithms and corresponding software packages, in-

cluding SPP, PeakSeq, and MACs (Ji et al. 2008; Valouev et al. 2008;

Zhang et al. 2008; Rozowsky et al. 2009). The resulting output of

these algorithms generally ranks called regions by absolute signal

(read number) or by computed significance of enrichment (e.g.,

P-values and false discovery rates). Because ChIP signal strength is

a continuum with many more weak sites than strong ones (Fig.

4B), the composition of the final peak list depends heavily on the

specific parameter settings and the algorithm used as well as the

quality of the experiment itself. Thresholds that are too relaxed

lead to a high proportion of false positives for each replicate, but as

discussed below, subsequent analysis can strip false positives from

a final joint peak determination. Different peak-calling algorithms

rely on different statistical models to calculate P-values and false

discovery rates (FDR), meaning that significance values from dif-

ferent software packages are not directly comparable. When using

standard peak-calling thresholds, successful experiments generally

identify thousands to tens of thousands of peaks for most TFs in

mammalian genomes, although some exceptions are known

(Frietze et al. 2010; Raha et al. 2010). In all cases, it is important to

use an appropriate control experiment in peak calling.

Calling discrete regions of enrichment for Broad-source factors

or Mixed-source factors is more challenging and is at an earlier stage

of development. Methods to identify such regions are emerging

(e.g., ZINBA [Rashid et al. 2011] [installation package at http://

code.google.com/p/zinba/], Scripture [Guttman et al. 2010], and

MACS2, an updated version of MACS that is specifically designed

to process mixed signal types [https://github.com/taoliu/MACS]).

Standards for the identification of broad enrichment regions are

currently in development.

Evaluating ChIP-seq data
The quality of individual ChIP-seq experiments varies considerably

and can be especially difficult to evaluate when new antibodies are

being tested or when little is known about the factor and its binding

motif. The ENCODE Consortium has developed and uses metrics

for several aspects of ChIP-seq quality, together with traditional

site-inspection-based evaluation. When applied and interpreted as

a group, these metrics and approaches provide a valuable overall

assessment of experimental success and data quality.

Browser inspection and previously known sites

A first impression about ChIP-seq quality can be obtained by local

inspection of mapped sequence reads using a genome browser.

Although not quantitative, this approach is very useful, especially

when a known binding location can be examined; read distribu-

tion shape and signal strength relative to a control sample can

provide a sense of ChIP quality. A true signal is expected to show

a clear asymmetrical distribution of reads mapping to the forward

and reverse strands around the midpoint (peak) of accumulated

reads. This signal should be large compared with the signal of

the same region from the control library. Of course it is not feasible to

inspect the whole genome in this manner, and evaluating a limited

number of the strongest sites may overestimate the quality of the

entire data set (Supplemental Fig. S2). The genome-wide metrics

discussed below provide more objective and global assessments.

Measuring global ChIP enrichment (FRiP)

For point-source data sets, we calculate the fraction of all mapped

reads that fall into peak regions identified by a peak-calling algo-

rithm (Ji et al. 2008). Typically, a minority of reads in ChIP-seq

experiments occur in significantly enriched genomic regions (i.e.,

peaks); the remainder of the read represents background. The

fraction of reads falling within peak regions is therefore a useful

and simple first-cut metric for the success of the immunoprecipi-

tation, and is called FRiP (fraction of reads in peaks). In general,

FRiP values correlate positively and linearly with the number of

called regions, although there are exceptions, such as REST (also

known as NRSF) and GABP, which yield a more limited number of

Box 2: ChIP experimental design guidelines

Sequencing and library complexity

For each ChIP-seq point-source library, ENCODE’s goal is to obtain $10 million uniquely mapping reads per replicate experiment for mammalian
genomes, with a target NRF (nonredundancy fraction) $0.8 for 10 million reads. The corresponding objective for modENCODE point-source factors
is to obtain $2 M uniquely mapped reads per replicate, $0.8 NRF. The modENCODE target for broad-source ChIP-seq in Drosophila is $5 million
reads, and the ENCODE provisional target for mammalian broad-source histone marks is $20 million uniquely mapping reads at NRF $0.8. The
distribution of NRF values for all ENCODE data sets is shown in Figure 7.

Control libraries

ENCODE generates and sequences a control ChIP library for each cell type, tissue, or embryo collection and sequences the library to the appropriate
depth (i.e., at least equal to, and preferably greater than, the most deeply sequenced experimental library). If cost constraints allow, a control library
should be prepared from every chromatin preparation and sonication batch, although some circumstances can justify fewer control libraries.
Importantly, a new control is always performed if the culture conditions, treatments, chromatin shearing protocol, or instrumentation is significantly
modified.

Reproducibility

Experiments are performed at least twice to ensure reproducibility. For ENCODE data to pass criteria for submission, concordance is determined from
analysis using the IDR methodology (current ENCODE criteria are in Box 3), and a third replicate is performed if the standard is not reached. Cut-offs
for identifying highly reproducible peaks for use in subsequent analyses can be determined by IDR (typically using a 1% threshold).
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called regions but display very high enrichment (Fig. 4C). Most (787

of 1052) ENCODE data sets have a FRiP enrichment of 1% or more

when peaks are called using MACS with default parameters. The

ENCODE Consortium scrutinizes experiments in which the FRiP

falls below 1%.

The 1% FRiP guideline works well when there are thousands

to tens of thousands of called occupancy sites in a large mammalian

genome. However, passing this threshold does not automatically

mean that an experiment is successful and a FRiP below the threshold

does not automatically mean failure. For example, ZNF274 and hu-

man RNA polymerase III have very few true binding sites (Frietze et al.

2010; Raha et al. 2010), and a FRiP of <1% is obtained. At the other

extreme, ChIP experiments using antibody/factor pairs capable of

generating very high enrichment (such as REST and GABP men-

tioned above) and/or binding-site numbers (CTCF, RAD21, and

others) can result in FRiP scores that exceed those obtained for most

factors (Fig. 5C), even for experiments that are suboptimal. Thus,

FRiP is very useful for comparing results obtained with the same

antibody across cell lines or with different antibodies against the

same factor. FRiP is sensitive to the specifics of peak calling, in-

cluding the way the algorithm delineates regions of enrichment

and the parameters and thresholds used. Thus, all FRiP values that

are compared should be derived from peaks uniformly called by

a single algorithm and parameter set.

Cross-correlation analysis

A very useful ChIP-seq quality metric that is independent of peak

calling is strand cross-correlation. It is based on the fact that a high-

quality ChIP-seq experiment produces significant clustering of

enriched DNA sequence tags at locations bound by the protein of

interest, and that the sequence tag density accumulates on forward

and reverse strands centered around the binding site. As illustrated

in Figure 5D, these ‘‘true signal’’ sequence tags are positioned at a

distance from the binding site center that depends on the fragment

size distribution (Kharchenko et al. 2008). A control experiment,

such as sequenced input DNA, lacks this pattern of shifted stranded

tag densities (Supplemental Fig. S1). This has made it possible to

develop a metric that quantifies fragment clustering (IP enrich-

ment) based on the correlation between genome-wide stranded

tag densities (A Kundaje, Y Jung, P Kharchenko, B Wold, A Sidow,

S Batzoglou, and P Park, in prep.). It is computed as the Pearson

linear correlation between the Crick strand and the Watson strand,

after shifting Watson by k base pairs (Fig. 5E). This typically pro-

duces two peaks when cross-correlation is plotted against the shift

value: a peak of enrichment corresponding to the predominant

fragment length and a peak corresponding to the read length

(‘‘phantom’’ peak) (Fig. 4E; Heinz et al. 2010; A Kundaje, Y Jung,

P Kharchenko, B Wold, A Sidow, S Batzoglou, and P Park, in prep.).

The normalized ratio between the fragment-length cross-

correlation peak and the background cross-correlation (normalized

strand coefficient, NSC) and the ratio between the fragment-

length peak and the read-length peak (relative strand correlation,

RSC) (Fig. 4G), are strong metrics for assessing signal-to-noise ra-

tios in a ChIP-seq experiment. High-quality ChIP-seq data sets

tend to have a larger fragment-length peak compared with the

read-length peak, whereas failed ones and inputs have little or no

such peak (Figs. 4G, 5A,B; Fig. 7, below). In general, we observe

a continuum between the two extremes, and broad-source data sets

are expected to have flatter cross-correlation profiles than point-

sources, even when they are of very high quality. As expected, the

NSC/RSC and FRiP metrics are strongly and positively correlated for

the majority of experiments (Fig. 4F). As with the other quality

metrics, even high-quality data sets generated for factors with few

genuine binding sites tend to produce relatively low NSCs.

These measures form the basis for one of the current quality

standards for ENCODE data sets. We repeat replicates with NSC

values <1.05 and RSC values <0.8 and, if additional replicates

produce low values, we include a note with the reported data

set (Box 3). We illustrate the application of our ChIP-seq quality

metrics to a failed pair of replicates in Figure 5, A–E. Initially, two

EGR1 ChIP-seq replicates were generated in the K562 cell line.

Based on the cross-correlation profiles, FRiP score, and number of

called regions, these replicates were flagged as marginal in quality.

The experiments were repeated, with all quality control metrics

improving considerably. On this basis, the superior measurements

replaced the initial ones in the ENCODE database.

Consistency of replicates: Analysis using IDR

As noted above, the modENCODE and ENCODE consortia gener-

ate two independent biological replicates, with each experiment

passing the basic quality control filters. As another measure of

experiment quality, we take advantage of the reproducibility in-

formation provided by the duplicates using the IDR (irreproducible

discovery rate) statistic that has been developed for ChIP-seq

(Li et al. 2011; discussed in detail in A Kundaje, Q Li, B Brown,

J Rozowsky, A Harmanci, S Wilder, S Batzoglou, I Dunham,

M Gerstein, E Birney, et al., in prep.).

Given a set of peak calls for a pair of replicate data sets, the

peaks can be ranked based on a criterion of significance, such as the

P-value, the q-value, the ChIP-to-input enrichment, or the read

coverage for each peak (Fig. 6A–E). If two replicates measure the

same underlying biology, the most significant peaks, which are

likely to be genuine signals, are expected to have high consistency

between replicates, whereas peaks with low significance, which are

more likely to be noise, are expected to have low consistency. If the

consistency between a pair of rank lists that contains both signif-

Figure 4. Criteria for assessing the quality of a ChIP-seq experiment. (A) Library complexity. Individual reads mapping to the plus (red) or minus strand
(blue) are represented. (B) Distribution of functional regulatory elements with respect to the strength of the ChIP-seq signal. ChIP-seq was performed
against myogenin, a major regulator of muscle differentiation, in differentiated mouse myocytes. While many extensively characterized muscle regulatory
elements exhibit strong myogenin binding, a large number of known functional sites are at the low end of the binding strength continuum. (C ) Number
of called peaks vs. ChIP enrichment. Except in special cases, successful experiments identify thousands to tens of thousands of peaks for most TFs and,
depending on the peak finder used, numbers in the hundreds or low thousands indicate a failure. Peaks were called using MACS with default thresholds.
(D) Generation of a cross-correlation plot. Reads are shifted in the direction of the strand they map to by an increasing number of base pairs and the
Pearson correlation between the per-position read count vectors for each strand is calculated. Read coverage as wigglegram is represented, not to the
same scale in the top and bottom panels.) (E ) Two cross-correlation peaks are usually observed in a ChIP experiment, one corresponding to the read length
(‘‘phantom’’ peak) and one to the average fragment length of the library. (F ) Correlation between the fraction of reads within called regions and the
relative cross-correlation coefficient for 1052 human ChIP-seq experiments. (G ) The absolute and relative height of the two peaks are useful determinants
of the success of a ChIP-seq experiment. A high-quality IP is characterized by a ChIP peak that is much higher than the ‘‘phantom’’ peak, while often very
small or no such peak is seen in failed experiments.
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Figure 5. Quality control of ChIP-seq data sets in practice. EGR1 ChIP-seq was performed in K562 cells in two replicates. ChIP enriched regions were
identified using MACS. However, the cross-correlation plot profiles (A) indicated that both IPs were suboptimal, with one being unacceptable. In
agreement with this judgment, ChIP enrichment (C ) and peak number (D) also indicated failure. The ChIP-seq assays were repeated (B), with all quality
control metrics improving significantly (B,D), and many additional EGR1 peaks were identified as a result. (E ) Representative browser snapshot of the four
EGR1 ChIP-seq experiments, showing the much stronger peaks obtained with the second set of replicates. (F ) Distribution of EGR1 motifs relative to the
bioinformatically defined peak position of EGR1-occupied regions derived from ChIP-seq data in K562 cells. Regions are ranked by their confidence scores
as called by SPP.
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icant and insignificant findings is plotted, a transition in consis-

tency is expected (Fig. 6C,F). This consistency transition provides an

internal indicator of the change from signal to noise and suggests

how many peaks have been reliably detected.

The IDR statistic quantifies the above expectations of con-

sistent and inconsistent groups by modeling all pairs of peaks

present in both replicates as belonging to one of two groups: a re-

producible group, and an irreproducible group (Li et al. 2011). In

general, the signals in the reproducible group are more consistent

(i.e., have a larger correlation coefficient) and are ranked higher

than the irreproducible group. The proportion of identifications

that belong to the ‘‘noise’’ component and the correlation of the

significant component are estimated adaptively from the data. The

IDR provides a score for each peak, which reflects the posterior

probability that the peak belongs to the irreproducible group.

A major advantage of IDR is that it can be used to establish

a stable threshold for called peaks that is more consistent across

laboratories, antibodies, and analysis protocols (e.g., peak callers)

than are FDR measures (A Kundaje, Q Li, B Brown, J Rozowsky,

A Harmanci, S Wilder, S Batzoglou, I Dunham, M Gerstein, E Birney,

et al., in prep.). Increased consistency comes from the fact that IDR

uses information from replicates, whereas the FDR is computed on

each replicate independently. The application of IDR to real-life data

is shown in Figure 6. A pair of high-quality RAD21 ChIP-seq repli-

cates display good consistency between IDR ranks for a large number

(;28,000) of highly reproducible peaks (Figs. 6A,B), with a clear in-

flection between the signal and noise populations near the 1% IDR

value (Fig. 6C). In contrast, a pair of SPT20 replicates, which had

already been flagged as low-quality based on the individual FRiP and

NSC/RSC metrics, display very low IDR reproducibility, with very few

significant peaks, and no visible inflection in the IDR curve (Fig. 6F).

It is important that the peak-calling threshold used prior to

IDR analysis not be so stringent that the noise component is entirely

unrepresented in the data, because the algorithm requires sampling

of both signal and noise distributions to separate the peaks into two

groups; thus relaxing the default stringency settings when running

a given peak caller is advised if IDR analysis will follow.

A caution in applying IDR is that it is dominated by the weakest

replicate (A Kundaje, Q Li, B Brown, J Rozowsky, A Harmanci,

S Wilder, S Batzoglou, I Dunham, M Gerstein, E Birney, et al., in

prep.). That is, if one replicate is quite poor, many ‘‘good’’ peaks

from the higher quality replicate will be rejected by IDR analysis,

because they are not reproducible in the weak replicate. To ensure

similar weighting of individual replicates, the number of significant

binding regions identified using IDR on each individual replicate

(obtained by partitioning reads into two equal groups to allow the

IDR analysis) is recommended to be within a factor of 2 for data sets

to be submitted to UCSC by ENCODE (Box 3).

ENCODE has begun applying IDR analysis to all ChIP ex-

periments. For all submitted ENCODE ChIP-seq data sets, the

number of bound regions identified in an IDR comparison be-

tween replicates is at least 50% of the number of regions identified

in an IDR comparison between two ‘‘pseudoreplicates’’ generated

by randomly partitioning available reads from all replicates (Box 3).

Guidelines for reporting ChIP-seq data
To facilitate data sharing among laboratories, both within and

outside the Consortium, and to ensure that results can be repro-

duced, ENCODE has established guidelines for data sharing in

public repositories. Raw data can be submitted to the Short Read

Archive (SRA) and ChIP results are submitted to GEO. Through

Box 3: ChIP-seq quality assessment guidelines

Within ENCODE, a set of data quality thresholds has been established for submission of ChIP-seq data sets. These have been constructed based on the
historical experiences of ENCODE ChIP-seq data production groups with the purpose of balancing data quality with practical attainability and are
routinely revised. The current standards are below and the performance of ENCODE data sets against these thresholds is shown in Figure 7.

Cross-correlation analysis

The current ENCODE practice is to calculate and report NSC and RSC for each experiment. For experiments with NSC values below 1.05 and RSC
values below 0.8, we currently recommend that an additional replicate be attempted or the experiment explained in the data submission as adequate
based on additional considerations.

Irreproducible discovery rate (IDR)

The following guidelines have been established for mammalian cells (optimal parameter may differ for other organisms). Biological replicates are
performed for each ChIP-seq data set and subjected to peak calling. IDR analysis is then performed with a 1% threshold. For submission to ENCODE,
we currently require that the number of bound regions identified in an IDR comparison between replicates to be at least 50% of the number of
regions identified in an IDR comparison between two ‘‘pseudoreplicates’’ generated by pooling and then randomly partitioning all available reads
from all replicates (Np/Nt < 2) (Fig. 7). To ensure similar weighting of individual replicates for identifying binding regions, we further recommend that
the number of significant peaks identified using IDR on each individual replicate (obtained by partitioning reads into two equal groups for the IDR
analysis) be within a factor of 2 of one another (N1/N2 < 2) (Fig. 7). Data sets which fail to meet these criteria may still be deposited by ENCODE
experimenters, provided that at least three experimental replicates have been attempted and a note accompanies these data sets explaining which
parameters fail to meet the standards and providing any technical information that may explain this failure. This guideline is for point source features;
metrics are still being determined for broad peak analyses.

Updated information about the performance of ENCODE data sets against these quality metrics and tools for determining these metrics will be
forthcoming through the ENCODE portal (http://encodeproject.org/ENCODE/).

Historical note

A simpler heuristic for establishing reproducibility was previously used as a standard for depositing ENCODE data and was in effect when much of the
currently available data was submitted. According to this standard, either 80% of the top 40% of the targets identified from one replicate using an
acceptable scoring method should overlap the list of targets from the other replicate, or target lists scored using all available reads from each replicate
should share more than 75% of targets in common. As with the current standards, this was developed based on experience with accumulated
ENCODE ChIP-seq data, albeit with a much smaller sample size.
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April 2012, 478 ChIP-seq data sets had been submitted to GEO

at accession ID PRJNA63441, with submission of all current

ENCODE data to be completed by June 2012. UCSC houses the

ENCODE data (Rosenbloom et al. 2011) and modMine houses

the modENCODE data (Contrino et al. 2011).

Box 4 provides a detailed description of the data and experi-

mental and analytical details to be shared so that others can re-

produce both experiments and analyses. Shared information includes

the experimental procedures for performing the ChIP, antibody in-

formation and validation data, as well as relevant DNA sequencing,

peak calling, and analysis details. For ENCODE experiments that do

not meet the guidelines described above, data and results may be

reported, with a note indicating that the criteria have not been met

and explaining why the data are nevertheless released.

Discussion
The ENCODE and ModENCODE standards and practices presented

here will be further revised as the protocols, technologies, and our

understanding of the assays change. Updated versions will be re-

leased and made available at http://encodeproject.org/ENCODE/

experiment_guidelines.html. We have begun to address the central

but vexing issue of immune reagent specificity and performance

by establishing a menu of primary and secondary methods for

antibody characterization, including performance-reporting prac-

tices. We also developed and applied global metrics to assess the

quality of several aspects of an individual ChIP-seq experiment:

Library complexity can be measured by the nonredundant fraction

(NRF); immunoenrichment can be measured by the fraction of reads

in called peaks (FRiP) and by cross-correlation analysis (NSC/RSC);

and replicate significance can be measured by IDR. We related these

global quality measures to more traditional inspection of ChIP-seq

browser tracks (Fig. 5) and discuss below how different aspects of

data quality interact with specific uses of ChIP-seq data.

How good can a ChIP-seq experiment be?

Thus far, the most successful point-source factor experiments

for ENCODE have FRiP values of 0.2–0.5 (factors such as REST,

GABP, and CTCF) (Fig. 4C) and NSC/RSC values of 5–12. Al-

though these quality scores and characteristics were routinely

obtained for the best-performing factor/antibody combinations,

they are not the rule; for most transcription factors, the ChIP

quality metrics were substantially lower and more variable (Fig. 7).

We believe that multiple issues contribute to the variability; the

quality of antibody (affinity and specificity) is surely important, but

epitope availability within fixed chromatin, sensitivity of the anti-

body to post-translational modifications of the antigen, how long and

how often the protein is bound to DNA, and other physical charac-

teristics of the protein–DNA interaction likely also contribute. Further

work with epitope-tagged factors, for which the antibody is not

a variable, should begin to sort among the possibilities.

Figure 6. The irreproducible discovery rate (IDR) framework for assessing reproducibility of ChIP-seq data sets. (A–C ) Reproducibility analysis for a pair
of high-quality RAD21 ChIP-seq replicates. (D,E ) The same analysis for a pair of low quality SPT20 ChIP-seq replicates. (A,D) Scatter plots of signal scores
of peaks that overlap in each pair of replicates. (B,E ) Scatter plots of ranks of peaks that overlap in each pair of replicates. Note that low ranks correspond
to high signal and vice versa. (C,F ) The estimated IDR as a function of different rank thresholds. (A,B,D,E ) Black data points represent pairs of peaks that pass
an IDR threshold of 1%, whereas the red data points represent pairs of peaks that do not pass the IDR threshold of 1%. The RAD21 replicates show high
reproducibility with ;30,000 peaks passing an IDR threshold of 1%, whereas the SPT20 replicates show poor reproducibility with only six peaks passing
the 1% IDR threshold.
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When measurements differ in quality, the higher-quality

replicate often identifies thousands more sites than the lower. Do

sites present only in the superior ChIP experiment reflect true

occupancy? Motif analysis suggests that many do. In Figure 5F, the

position of EGR1 motifs relative to EGR1 ChIP-seq peaks is shown.

The known binding motif is prominent and concentrated centrally

under the ChIP peaks, as expected if the motif mediates occu-

pancy; importantly, the central location of the motif is observed,

even in the low-ranking peaks. The trend continues below the

peak-calling cut-offs, suggesting additional true occupancy sites.

Depending on the goals of an analysis, users may want to be more

or less conservative in defining the threshold for inclusion. Motif

presence could be used as one criterion for ‘‘rescuing’’ candidate

sites identified in only one experiment.

Box 4. Data reporting guidelines

Data should be submitted to public repositories. The following information is currently used by ENCODE/modENCODE to submit data to public
repositories.

Metadata
For submission of basic experimental data by ENCODE, the following information is minimally included:

• Investigator, organism, or cell line, experimental protocol (or reference to a known protocol).

• Indication as to whether an experiment is a technical or biological replicate.

• Catalog and lot number for any antibody used. If not a commercial antibody, indicate the precise source of the antibody.

• Information used to characterize the antibody, including summary of results (images of immunoblots, immunofluorescence, list of proteins

identified by mass spec, etc.).

• Peak calling algorithm29 and parameters used, including threshold and reference genome used to map peaks.

• A summary of the number of reads and number of targets for each replicate and for the merged data set.

• Criteria that were used to validate the quality of the resultant ChIP-seq data (i.e., overlap results or IDR29).

• Experimental validation results (e.g., qPCR).

• Link to the control track that was used.

• An explanation if the experiment fails to meet any of the standards.

High-throughput sequencing data

• Image files from sequencing experiments do not need to be stored.

• Raw data (FASTQ files) should be submitted to both GEO and SRA.

• Each replicate should be submitted independently.

• Target region and peak calling results.

Point source peaks
For point source peaks (e.g. experiments with antibodies to sequence-specific transcription factors), common features that are reported by ENCODE
researchers include:

• Peak position, defined as a single base pair.

• Start and end positions, defined as specific base pairs.

• Signal value (e.g., fold enrichment) using an algorithm chosen by the submitter.

• Significance/accuracy measures:

u P-value determined using a method chosen by the submitter.

u Q-value (false discovery rate correction) determined using a method chosen by the submitter.

• Metadata, including peak caller approach and genome reference used, plus methods for determining signal values, P-values,

and Q-values, as applicable.

Broad regions

• Start and end positions, defined as specific base pairs.

• Signal value (e.g., fold enrichment) using an algorithm chosen by the submitter.

• Significance/accuracy measures:

u P-value determined using a method chosen by the submitter.

u Q-value (false discovery rate correction) determined using a method chosen by the submitter.

• Metadata, including peak caller approach and genome reference used, plus methods for determining signal values, P-values,

and Q-values, as applicable.

• Point-source peaks can be called in addition to broad regions (i.e., one can have ‘‘peaks’’ and potentially ‘‘valleys’’ within ‘‘regions’’).

The investigator should determine whether their data best fits the broad region/point source peak data or both.

29For uniform peak calling within ENCODE, the MACS peak caller, version 1.4.2
was used. Scripts used for IDR analysis are at https://sites.google.com/site/
anshulkundaje/projects/idr.
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How good does a ChIP-seq experiment need to be?

We have observed that some biologically important sites can have

modest ChIP-seq signals (Fig. 4B), while some sites with very high

enrichment fail to give positive functional readouts in follow-up

experiments. Given this, the best practical guidance for setting

thresholds of sensitivity, specificity, and reproducibility will depend

on how the data are to be used. Below, we outline four different

common ChIP uses, ranging from more relaxed to stringent in

their requirements toward data quality and site-calling sensitivity.

Figure 7. Analysis of ENCODE data sets using the quality control guidelines. (A–C) Thresholds and distribution of quality control metric values in human
ENCODE transcription-factor ChIP-seq data sets. (A) NSC, (B) RSC, (C ) NRF. (D) IDR pipeline for assessing ChIP-seq quality using replicate data sets. (E,F ) Thresholds
and distribution of IDR pipeline quality control metrics in human ENCODE transcription factor ChIP-seq data sets. (Dashed lines) Current ENCODE thresholds
for the given metric, which are NSC > 1.05 (A); RSC > 0.8 (B); NRF > 0.8, N1/N2 $ 2 (where N1 refers to the replicate with higher N) (E ); Np/Nt $ 2 (F ).
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Motif analysis

Deriving DNA sequence motifs for a ChIP-assayed factor is rel-

atively simple and has been performed successfully for most

ENCODE ChIP-seq data sets (Fig. 2E). Experiments that pass the

thresholds we use for NRF, FRiP, and NSC/RSC typically produce

thousands to tens of thousands of regions, a sub-sample of which

can be readily used to deduce the recognition motif, although

more than one motif subfamily is sometimes found by additional

analysis (Johnson et al. 2007). Causal motifs are typically cen-

trally positioned and this can be used as a confirming diagnostic

(Fig. 6F). Notably, motif derivation can also be successful from

marginal quality data that fall below recommended quality

metric thresholds (especially if only the top-ranked peaks are used).

However, the risk of artifacts increases, and results from such anal-

yses should be cautiously interpreted and stringently validated.

Discovering regions to test for biological function such as transcriptional
enhancement, silencing, or insulation

Biologists often use ChIP-seq data to identify candidate regulatory

regions at loci of interest. When the goal is to find a few examples

of regulatory domains bound by a factor, data of modest quality

can still be useful if combined with close inspection of ChIP signals

and the corresponding controls before investing in functional

and/or mutagenesis studies. However, if the aspiration is to iden-

tify a comprehensive collection of all candidate regulatory regions

bound by a factor, very high-quality and deeply sequenced data

sets are required.

Deducing and mapping combinatoric occupancy

Typical cis-acting regulatory modules (CRM) are occupied by

multiple factors (Ghisletti et al. 2010; Lin et al. 2010; Wilson et al.

2010; A He et al. 2011; Q He et al. 2011; Tijssen et al. 2011) and

associated with multiple histone modifications (Barski et al. 2007;

Mikkelsen et al. 2007; Wang et al. 2008). A frequent goal of ChIP-

seq studies is to deduce a combination of factors that mediate

a common regulatory action at multiple sites in the genome. This

is a very quality-sensitive use of ChIP data since the presence of

one or more weak data sets that fail to identify significant frac-

tions of the true occupancy sites can seriously confound the

analysis; therefore we recommend only the highest quality data

sets be used for such analyses.

Integrative analysis

A new frontier of whole-genome analysis is the integration of

data from many (hundreds or thousands) experiments with the

goal of uncovering complex relationships. These endeavors typi-

cally use sophisticated machine learning methods (Ernst and Kellis

2010; Ernst et al. 2011; A Mortazavi, S Pepke, G Marinov, and

B Wold, in prep.) with complex and varying sensitivity to ChIP

strength; and such efforts can be very sensitive to data quality.

Conclusion
Our goal in developing these current working guidelines for

ChIP-seq experiments, now applied over a large number of factors,

was to provide information about experimental quality for users of

modENCODE and ENCODE data. The strongest ChIP-seq data-sets

that readily meet all quality specifications should be especially

useful for regulatory network inference and for diverse integrative

analyses, including the effects of genetic variation on human traits

and disease. The metrics, methods, and thresholds might also be

useful to the wider community, although our intention in out-

lining our approaches was not to imply that ENCODE criteria must

be applied rigidly to all studies. As discussed above, some ChIP data

and antibodies can and do fall outside these guidelines for varied

reasons, yet are highly valuable. In such cases it is critical to try

to understand why a data set looks unusual, and to assess the

implications for specific uses of those data or reagents. Similar

guidelines exist in ENCODE for RNA-seq, DNase-seq, FAIRE-seq,

ChIA-PET, and other related assays; the working standards and

protocols for these techniques can be found at the ENCODE

and modENCODE websites (http://encodeproject.org/ENCODE/

experiment_guidelines.html).

Data access
All data sets used in the analysis have been deposited for public

viewing and download at the ENCODE (http://encodeproject.org/

ENCODE/) and modENCODE (http://www.modencode.org/)

portals.
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Gene regulation by DNA binding small molecules could have impor-
tant therapeutic applications. This study reports the investigation
of a DNA-binding pyrrole-imidazole polyamide targeted to bind
the DNA sequence 5′-WGGWWW-3′ with reference to its potency
in a subcutaneous xenograft tumor model. The molecule is capable
of trafficking to the tumor site following subcutaneous injection
and modulates transcription of select genes in vivo. An FITC-la-
beled analogue of this polyamide can be detected in tumor-derived
cells by confocal microscopy. RNA deep sequencing (RNA-seq) of
tumor tissue allowed the identification of further affected genes,
a representative panel of which was interrogated by quantitative
reverse transcription-PCR and correlated with cell culture expres-
sion levels.

tumor RNA-sequencing ∣ eXpress ∣ in vivo circulation ∣ efficacy

Pyrrole-imidazole (Py-Im) polyamides represent a class of
modular DNA minor groove binders with affinity and speci-

ficity comparable to the values observed with typical DNA bind-
ing proteins (1, 2). Our previous investigations have established a
framework for molecular recognition of the minor groove of
DNA by polyamides that can target predetermined DNA binding
sites (3–5). Cell culture experiments have shown that cellular up-
take of Py-Im polyamides targeting six-base pair sequences can be
observed (6). Subsequent studies demonstrated that Py-Im poly-
amides could antagonize DNA binding of transcription factors in
live cells. Interrogated transcription factors include the androgen
receptor (AR) (7), hypoxia inducible factor 1 alpha (HIF-1α) (8),
the glucocorticoid receptor (GR) (9), and nuclear factor kappa B
(NF-κB) (10).

Although there is more knowledge to be gained from deeper
genome-wide cell culture studies, the next frontier for Py-Im
polyamides as medicinally relevant small molecules lies in in vivo
applications. Our recent studies demonstrated that the pharma-
cokinetics and toxicity of Py-Im polyamides in mice depend on
architecture (11). Micromolar levels of compounds were observed
in mouse plasma for up to 48 h following either intraperitoneal
(i.p.) or subcutaneous (s.c.) injection. Efforts of Nagashima et al.
established that Py-Im polyamides of different architecture were
detectable in rat serum several hours after intravenous (i.v.)
administration (12). Matsuda et al. further showed that a Py-Im
polyamide targeted to the TGF-β1 promoter affected target gene
expression in vivo (rat renal cortex) without evidence of systemic
toxicity (13, 14). The present study focuses on the question of
whether Py-Im polyamides affect gene expression in vivo, speci-
fically in a xenograft model environment, employing a luciferase-
expressing derivative of the commonly used lung nonsmall cell
carcinoma line A549.

Results
Acetylated Py-Im Polyamide 1 is More Potent in Cell Culture Than the
Analog 2. The first set of experiments compared the in vitro gene
regulation activity of Py-Im polyamides 1 and 2, both targeted to
bind to the sequence 5′-WGGWWW-3′ (Fig. 1A). Our previous

efforts established that the polyamide 2 was capable of modulat-
ing a subset of TNF-inducible genes (10). Among the strongly
affected genes we had identified CCL2 and SERPINE1 as highly
repressed targets of 2.

The basal expression levels of CCL2 and SERPINE1 were suf-
ficiently high to enable the study of polyamide effects in the un-
induced state. We found that both 1 and 2 reduced the levels of
the two transcripts, but the effects exerted by 1 were substantially
more pronounced (Fig. 1B). In line with the previous study, pro-
longed incubation times resulted in stronger down-regulation of
the target genes—up to fivefold withCCL2 and 14-fold with SER-
PINE1. Furthermore, 1 was significantly more cytotoxic in vitro
than 2 against the chosen cell line with IC50 values of 13� 5 μM
and 33� 2 μM, respectively (SI Text, Fig. S1A). The more potent
Py-Im polyamide 1 was, therefore, chosen for in vivo gene reg-
ulation experiments. Cellular uptake measurements clearly
showed that the FITC-labeled analogue 3 was readily taken up
by A549-luc-C8 cells, resulting in characteristic nuclear fluores-
cence (SI Text, Fig. S1B).

Py-Im Polyamides 1 and 2 Reach Comparable Plasma Levels with Simi-
lar Circulation Times Following S.C. Injection. Prior to conducting in
vivo tumor xenograft experiments the pharmacokinetic profiles
of 1 and 2 were compared. Our previous investigations showed
that 2 could circulate in wild-type mice for several hours at mi-
cromolar plasma concentrations but dropped below the limit of
detection after 24 h (11). The compound was administered by
either the s.c. or the i.p. route and blood collected retro-orbitally.
The circulation experiment was conducted for the Py-Im polya-
mide 1 using subcutaneous administration conditions analogous
to those previously reported for 2. The observed plasma levels
compared well with those reported for 2 (Fig. 2 and Fig. S2).
Maximum plasma concentrations of 10 μM were attained for
both compounds 3 h post injection. The plasma elimination phase
appeared slightly shallower for the acetylated Py-Im polyamide 1
than for its close analog 2, but neither was detectable 24 h post
injection.

FITC-Labeled Py-Im Polyamide 3 Can Be Detected in Xenograft-Derived
Cell Nuclei. We proceeded to synthesize the fluorescent tagged
derivative of 1, Py-Im polyamide 3 (see SI Text, Fig. S1 for struc-
ture). Previous experiments had shown that a closely related
compound was stable in vivo and circulated in mice for several
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hours (15). The resultant mouse plasma was found to contain
the compound at micromolar concentrations and could be used
to produce characteristic nuclear staining of A549 cells in cul-
ture (15).

Immunocompromised mice (SCID-beige) were grafted subcu-
taneously (in the flank) with the commercially available A549-de-
rived luciferase expressing cell line A549-luc-C8 (see Materials
and Methods for details). In order to ensure that the Py-Im poly-

amide 3 was entering the tumors through the vascular system, the
animals were injected with the polyamide from a site distal to the
site of implantation. A representative experiment is depicted in
Fig. 3A. The tumor-derived cells from the treated animals were
found to display strong and characteristic nuclear staining, closely
resembling those in the cell culture experiments. Tumors from
vehicle-treated mice were prepared and found to be devoid of
nuclear fluorescence. This finding provided the impetus to per-
form treatment of xenografted animals with 1 and investigate
whether polyamide treatment could result in gene expression
changes of CCL2 and SERPINE1 in vivo.

Py-Im Polyamide 1 Represses CCL2 and SERPINE1 Transcription in Vivo.
We followed up by testing the potency of 1 to repress CCL2 and
SERPINE1 in the tumor xenograft setting. To ensure primer
selectivity towards human target genes, we isolated total RNA
from mouse spleens obtained from the SCID-beige strain and
conducted control quantitative reverse transcription-PCR (qRT-
PCR) experiments. None of the primers employed in this study
exhibited any substantial amplification of mouse RNA.

All experiments were performed in accord with the treatment
schedule displayed in Table S1 (SI Text) and following the general
humane endpoints criteria (see Materials and Methods). Mild an-
imal toxicity was observed with an overall weight loss not exceed-
ing 10% as a result of treatment. The transcript levels of CCL2
and SERPINE1 were reduced by a factor of 2.3 and 2.0, respec-
tively, by 1 (Fig. 3B). Gene expression changes were the same
whether normalized toGUSB or PPIA as the housekeeping gene.
Because the IC50 of Py-Im polyamide 1 against growth of A549-
luc-C8 was 13� 5 μM and plasma levels of the compound up to

Fig. 1. (A) Hairpin Py-Im polyamides 1 and 2. (B) In vitro qRT-PCR (A549-luc-
C8 cell culture). Cells were incubated with 10 μM final 1 or 2 for 48 h or 72 h,
where indicated. All treatments were conducted with 0.1% DMSO as vehicle.

Fig. 2. Plasma values of 1 and 2 as obtained from analytical HPLC traces
(C57Bl/6 wild-type mice, four animals per data point, all injections were done
subcutaneously at 120 nmol∕animal). The levels were normalized to the in-
ternal reference 4 (Fig. S2). Datapoints shown for Py-Im polyamide 2 have
been previously reported (11).

Fig. 3. (A) FITC-labeled Py-Im polyamide 3 localizes to engrafted A549-luc-
C8 cells (SCID-beige mice). (B) qRT-PCR of tumor samples showing repression
of CCL2 and SERPINE1. Three independent experiments with N ¼ 5 animals
per treatment condition (vehicle vs 1) were averaged.
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10 μM were attainable for several hours post injection, it was
conceivable that 1 could affect tumor growth. Tumor size was
therefore assessed by luciferase imaging as outlined in Materials
and Methods. A linear correlation between tumor size and photon
number over several orders of magnitude has been previously
demonstrated for the cell line used (www.caliperls.com/assets/
018/7635.pdf). The luciferase output remained within experimen-
tal error between the two groups, suggesting that the gene expres-
sion changes did not stem from cytotoxicity (SI Text, Fig. S3).

Genome-Wide Effects of the Py-Im Polyamide 1. In order to establish
the global effects of 1 in a xenograft setting, we measured changes
in gene expression using RNA-seq in tumors from treated and
untreated mice (see Materials and Methods for details). As our
RNA-seq libraries contained a mixture of human and mouse
RNA derived from the xenograft as well as the host cells infiltrat-
ing it, we faced the challenge of accurately determining the tran-
scripts and genes fromwhich sequencing reads originate (Table S2
and discussion in the SI Text). We therefore designed an analysis
pipeline based upon mapping reads to a combined human and
mouse transcriptome and using the recently developed eXpress
software package (bio.math.berkeley.edu/eXpress/index.html) to
quantify probabilistically transcript abundance for both species
simultaneously (Fig. 4). The eXpress output was used as input
for differential expression analysis using DESeq (16).

Out of 22,092 genes, 618 (2.8%) experienced a statistically sig-
nificant change in expression at a confidence level of p < 0.05.
Within this subpopulation, 115 (0.52%) genes were repressed
at least twofold, whereas 53 genes (0.24%) showed at least a two-
fold up-regulation. For quality control purposes, one replicate was
resequenced using paired-end read sequencing with the read
length set at 100 nt. High correlation coefficients were determined
between the effective counts obtained by single- and paired-end
read sequencing, withR2 values of 0.97 and 0.94 for vehicle and 1,
respectively (see SI Text, Fig. S4 for correlation plots).

Comparison of RNA-seq and qRT-PCR for a Panel of Selected Genes in
Vivo. A representative panel of genes studied by RNA-seq was
further interrogated by qRT-PCR (Fig. 5, Upper and Table 1).
In addition to CCL2 and SERPINE1 that were discussed above,
we investigated the effects of 1 on transcription of NPTX1,
ROBO1, ATM, EGFR, and MMP28. The genes were selected
so as to range from strongly repressed (NPTX1) through weakly
down-regulated (ATM and EGFR) to up-regulated upon polya-
mide treatment (MMP28). NPTX1 experienced a 3.3-fold repres-
sion upon treatment with 1, whereas the expression of ATM was
reduced only 1.5-fold. The expression changes in EGFR detected
by qPCR lie close to the error of the experiment (1.2-fold down).
The expression of MMP28 on the other hand was up-regulated
1.5-fold upon treatment with the Py-Im polyamide 1. The genes
CCL2, NPTX1, SERPINE1, and MMP28 were categorized as dif-
ferentially expressed by both techniques (Table 1). Changes in ex-
pression of ATM and ROBO1 were only statistically significant
assessed by qRT-PCR, not by RNA-seq (p-values over 0.05)

Comparison of in Vivo and in Vitro Effects of 1 by qRT-PCR on a Panel
of Selected Genes. The gene expression changes in the in vivo
xenograft setting were compared to those observed in cell culture
(Fig. 5, Lower and Table S3). Prolonged incubation with Py-Im
polyamide 1 in cell culture generally led to more pronounced ef-
fects (48 h vs 72 h), the only exception being MMP28, for which
no effect was observed in cell culture regardless of the incubation
time. The correspondence between the in vivo experiment and
the cell culture control was found to depend strongly on the tran-
script interrogated. The in vitro effect of 1 on NPTX1 expression
at 72 h incubation was very close to that observed in vivo (3.5-fold
vs 3.3-fold), whereas for CCL2 the gene repression in xenografts
resembled more closely the 48 h incubation time point from cell
culture experiments (2.3-fold vs 2.2-fold). While MMP28 expres-
sion was unchanged in cell culture, all other interrogated genes
were affected more strongly than in the xenograft setting. The
largest difference was noted for SERPINE1, which was repressed
2.0-fold in vivo but experienced a down-regulation in cell culture
amounting to as much as 15.7-fold.

Discussion
The present study shows that the polyamide 1 is capable of traf-
ficking to a xenografted tumor and yielding measurable gene
expression changes. Following the establishment of pharmacoki-
netic properties of Py-Im polyamides targeted to the sequence 5′-
WGGWWW-3′ (11), this is the next important step towards the
application of Py-Im polyamides in a setting relevant to disease.

Comparison Between Xenografts and Cell Culture. Quantitative
correlation between the two settings is of high interest, but dif-
ferences in exposure times and concentrations of the Py-Im poly-
amide 1 between cell culture and at the tumor site need to be kept
in mind. Typical exposure times in cell culture range from 48 h to
72 h whereas final treatment concentrations do not exceed 10 μM
(10). Most of the polyamide remains in the medium so that the
concentration is effectively invariant over the experimental time-
course. One fundamental difference in the in vivo experiment is
that the serum concentration of 1 does change as a function of
postinjection time. Whereas a concentration maximum of ap-
proximately 10 μM is typically attained under chosen administra-
tion conditions, the circulating levels of 1 drop below the level of
detection (high nanomolar) 24 h postinjection. This results in os-
cillatory compound levels over the course of the 10 d experiment
(Fig. 2 and Table S1). Another difference is the inherent hetero-
geneity of cancerous tissue. Some subpopulations of xenografted
cells lie in closer proximity to newly formed blood vessels and
hence may be more readily accessible to the drug than others
(17, 18). Interactions with the host may also lead to additional
complexity (19).

Comparison of the three genes that were most strongly af-
fected in the in vivo experiment to their behavior in cell culture
is of interest. Among the genes that were examined by qRT-PCR,
NPTX1 experienced the strongest in vivo repression (3.3-fold
down). This was similar to the effects observed in cell culture,
namely 2.6-fold and 3.5-fold repression at 48 h and 72 h, respec-
tively. The effect of the Py-Im polyamide 1 against cells in culture
was rather similar for both exposure times tested. By contrast,
SERPINE1 was less strongly affected in vivo compared to in vitro.
While the in vivo repression amounted to 2.0-fold, the down-reg-
ulation was substantially more pronounced in cell culture. Tran-
scription was reduced 8.3-fold after 48 h incubation and 15.7-fold
after 72 h. Expression of CCL2 was down-regulated 2.3-fold in
the xenograft experiment whereas the cell culture repression was
2.2-fold (48 h) and 4.4-fold (72 h). This comparative analysis
prompts a note of caution, for it is evident that there can be sig-
nificant variability between gene expression changes observed in
vitro and in vivo. We conclude, however, that cell culture data can
be used to support in vivo findings in most cases.

Fig. 4. Schematic representation of the pipeline for RNA-seq analysis of tu-
mor-derived RNA. Three independent experiments for each of which N ¼ 5

animals per treatment condition (vehicle vs 1) were averaged, were jointly
analyzed.
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Tumor RNA-seq.Because of tumor heterogeneity, stemming mostly
from host-derived tumor infiltrating cells, the fraction of sequen-
cing reads unambiguously originating from the human transcrip-
tome was at most only 60%, the rest being mouse-derived (see
SI Text, Table S2). The computational pipeline described here
solves this problem by applying simultaneous probabilistic map-
ping to both the human and the mouse transcriptome. Moreover,
we have confirmed the viability of this approach by conducting
qRT-PCR on a representative panel of genes, showing good
correlation between the two methods (Table 1) and we expect
it to be widely useful to researchers conducting similar types of
experiments in different settings. Genome-wide analysis showed a
total of 168 genes to be affected by the Py-Im polyamide 1 in
xenografts, which corresponds to 0.76% of the NCBI reference
sequence (refSeq) annotation (p < 0.05, at least twofold change).
For comparison, Matsuda et al. reported gene expression changes
in rat kidney cortex for 3% of genes interrogated by microar-
ray (14).

Effects on Tumor Size.The tumor sizes were the same (within error)
between the animal groups that received repeated injections of
Py-Im polyamide 1 and vehicle (Fig. S3). The absence of any
significant effect on tumor size could be due to a variety of fac-

tors. The compound might not reach sufficient average levels in
the tumor. The IC50 value of 1 is 13� 5 μM (Sulforhodamine B
assay, 72 h incubation, 24 h recovery; see also SI Text, Fig. S1A).
Although micromolar levels of 1 can be maintained for several
hours postinjection, the overall exposure to the compound may
still be too low to produce any measurable effect on size. Treat-
ment efficiency could be enhanced by using more potent Py-Im
polyamides or changing the route of administration, e.g., by em-
ploying osmotic pumps to maintain steady compound levels over
the course of the experiment (20). Alternatively, Py-Im polya-
mide 1may not penetrate the tumor to a sufficient depth because
of tissue inhomogeneity. Tissue penetration rates can depend on
compound lipophilicity and flexibility. Py-Im polyamide substitu-
ent variation affords a means to alter binding site preference,
affinity, specificity, lipophilicity, and cellular uptake rates (21).
Finally, the treatment schedule may be too short. Initial tumor
growth is rather slow, the A549-luc-C8 tumors typically entering
the exponential growth phase only several weeks after grafting
(www.caliperls.com/assets/018/7635.pdf).

Conclusions
This study reports the ability of Py-Im polyamide 1 and its fluor-
escent labeled analogue 3 to traffic to the subcutaneously grafted
A549-luc-C8 tumor. Unambiguous nuclear staining of tumor-
derived cells with the FITC-analogue 3 evidenced the ability of
the compound to remain at the site several days after injection.
The nonfluorescent parent Py-Im polyamide 1 was capable of
affecting gene expression in the tumor, and most trends corre-
lated satisfactorily with cell culture data. From the panel of genes
examined by qRT-PCR, the strongest effect was measured for
NPTX1, which was repressed 3.3-fold. MMP28 on the other hand
experienced a small but significant induction of 1.5-fold upon
treatment. It is of the highest importance to increase the potency
of a compound at the tumor site, while minimizing its toxic effects
to the host. Strategies to that end include testing of Py-Im poly-
amides targeted to different sequences, incorporating further
modifications, development of formulations that would enhance
selectivity of delivery and testing of alternative treatment
schedules.

Fig. 5. A panel of genes affected by 1 in an A549-luc-C8 xenograft in SCID-bg animals (Upper) and cell culture (Lower). Xenograft: three independent
experiments with N ¼ 5 animals per treatment condition (vehicle vs 1) were averaged. Cell culture: where indicated, the cells were incubated with Py-Im
polyamide 1 at 10 μM final concentration in 0.1% DMSO as vehicle.

Table 1. Comparison of qRT-PCR and RNA-seq of A549-luc-C8
tumor xenograft gene expression levels normalized to GUSB
as the housekeeping gene (qRT-PCR). Brackets indicate gene
upregulation upon treatment. Three independent
experiments with N ¼ 5 animals per treatment condition
(vehicle vs 1) were averaged. RNA-seq was performed with
single-end reads of 50 nt length. See SI Text for annotation of
these gene products

Gene Fold change (qPCR) Fold change (RNA-seq)

ATM 1.5 ± 0.2 1.5 (p > 0.05)
NPTX1 3.3 ± 0.6 2.9 (p < 0.001)
ROBO1 1.5 ± 0.2 1.7 (p > 0.05)
MMP28 [1.5 ± 0.3] [2.0] (p < 0.05)
EGFR 1.2 ± 0.2 1.3 (p > 0.05)
CCL2 2.3 ± 0.4 1.7 (p < 0.001)
SERPINE1 2.0 ± 0.2 1.8 (p < 0.001)

16044 ∣ www.pnas.org/cgi/doi/10.1073/pnas.1214267109 Raskatov et al.

703



Materials and Methods
Polyamide Synthesis and Characterization. The polyamides 1–3 were synthe-
sized following modified solid phase synthesis protocols (22). Typically, yields
between 25 and 40% were observed. Compound purities were confirmed
by analytical HPLC. Compounds 1 and 3 were characterized by MALDI-TOF
MS as singly protonated species. Following masses were determined: 1 cal-
culated for C67H79N22O13 ½Mþ H�þ 1,399.6, found 1,399.5; 3 calculated for
C80H86N23O15S ½Mþ H�þ 1,640.6, found 1,642.3. Analytical data for 2 were
in agreement with what has been previously reported (10).

In Vitro Cell Culture Experiments. All experiments were conducted with A549-
luc-C8 cells, unless specifically mentioned otherwise. Cells were grown in
RPMI medium 1640, which was supplemented with 10% FBS and 1% peni-
cillin/streptomycin, and did not exceed 25 passages. Confocal imaging, cellu-
lar proliferation and viability experiments as well as gene expression analyses
by quantitative RT-PCR were performed following our previously published
protocols (7, 10, 21, 23). Gene expression was normalized against GUSB as
housekeeping gene. All primers yielded single amplicons as determined by
both melting denaturation analysis and agarose gel electrophoresis. The fol-
lowing primer pairs were used. CCL2: fwd 5′-AGT GTC CCA AAG AAG CTG
TGA-3′ rev. 5′-AAT CCT GAA CCC ACT TCT GCT-3′; SERPINE1: fwd. 5′-AGA
ACA GGA GGA GAA ACC CA-3′ rev. 5′-AGC TCC TTG TAC AGA TGC CG-3′
GUSB: fwd. 5′-CTC ATT TGG AAT TTT GCC GAT T-3′ rev. 5′-CCC AGT GAA
GAT CCC CTT TTT A-3′. ATM: fwd. 5′-GCT GTG AGA AAA CCA TGG AA-3′
rev. 5′-TTC AAA GGA TTC ATG GTC CAG-3′; EGFR: fwd. 5′-GGG CTC TGG
AGG AAA AGA AA-3′ rev. 5′-TCC TCT GGA GGC TGA GAA AA-3′; MMP28:
fwd. 5′-CCT GCA GCT GCT ACT GTG G-3′ rev. 5′-CTT TGG GGA CCT GTT
CAT TG-3′; NPTX1: fwd. 5′-ACC GAG GAG AGG GTC AAG AT-3′ rev. 5′-GTG
GGA ATG TGA GCT GGA AC-3′; ROBO1: fwd. 5′-CAA TGC ATC GCT GGA
AGT AG-3′ rev. 5′-TTC TTC CAT GAA ATG GTG GG-3′.

Mouse Experiments. Pharmacokinetics. Analyses for Py-Im polyamide 1 were
conducted following our recently established protocols (11). Briefly, the
compound was injected subcutaneously into C57/Bl6 mice as a PBS∕DMSO
solution (4∶1, 200 μL per injection, four animals per group). Blood was col-
lected retro-orbitally at the indicated time points. Plasma was obtained by
centrifugation, precleared from protein by methanol precipitation and com-
pound levels determined by analytical HPLC. The plasma levels obtainedwere
compared with those previously reported for 2. Xenografts. Grafting with
A549-luc-C8. Experiments were performed in female SCID-beige mice
(Charles River) between 8 and 12 wk of age. Cells were injected into the left
flank area of the animals as suspensions of 25 × 106 mL−1 in RPMI, 200 μL per
injection. Treatment and tumor proliferation monitoring. Mice were treated

following the schedule delineated in SI Text (Table S1). Tumor proliferation
was monitored using the XENOGEN imaging device. The animals were
anesthetized with 2–5% isoflurane and subsequently transferred to the ima-
ging chamber, whereupon the isoflurane levels were reduced to 1–2.5%. The
floor of the imager was heated to þ37 °C to avoid hypothermia. Breathing
frequency was monitored and not allowed to drop below 1 s−1, adjusting the
isoflurane levels accordingly at all times. Endpoint criteria and euthanasia.
Animal endpoint criteria encompassed weight loss of over 15%, restriction
of motor function by the engrafted tumor, dehydration of over 10%, and
moribund behavior. Where appropriate, the animals were euthanized by
asphyxiation in a CO2 chamber. Tumor tissue harvest. Animals were resected
and tumors excised using standard forceps, scissors, and surgical blades. The
tumors were combined into one sample per condition and mechanically
sheared in TRIzol, employing a specialized device (tissue tearer, model
985370). Total RNA workup was performed following the standard TRIzol
procedure, followed by a DNAse digest.

RNA-seq Sample Preparation and Data Processing. Double polyA-selection was
used in order to enrich for mRNA. RNA-seq libraries were prepared using
standard Illumina reagents and protocols (24) All experiments were carried
out in triplicate and 35 million–50 million single-end sequences of 50 bp were
generated for each library. One replicate was additionally sequenced as
100 bp paired-end reads for quality control purposes. Sequencing data were
mapped to a combined human and mouse transcriptome index (using the
hg19 and mm9 refSeq annotations) using Bowtie version 0.12.7 (25) with
two mismatches and an unlimited number of locations a read can map
to. Alignments were quantified on the transcript level using eXpress 1.0.0
(bio.math.berkeley.edu/eXpress/index.html); for each gene the quantifica-
tion values of all its transcripts were summed and the eXpress-determined
“effective counts” were used as input for differential expression analysis
using DESeq (16).
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Many cancer therapeutics target DNA and exert cytotoxicity
through the induction of DNA damage and inhibition of transcrip-
tion. We report that a DNA minor groove binding hairpin pyrrole-
imidazole (Py-Im) polyamide interferes with RNA polymerase II
(RNAP2) activity in cell culture. Polyamide treatment activates p53
signaling in LNCaP prostate cancer cells without detectable DNA
damage. Genome-wide mapping of RNAP2 binding shows re-
duction of occupancy, preferentially at transcription start sites,
but occupancy at enhancer sites is unchanged. Polyamide treat-
ment results in a time- and dose-dependent depletion of the
RNAP2 large subunit RPB1 that is preventable with proteasome
inhibition. This polyamide demonstrates antitumor activity in
a prostate tumor xenograft model with limited host toxicity.

minor groove binder | small molecule transcription inhibitor | ChIP-Seq

Several chemotherapeutics, including the anthracyclines and
cisplatin, exert part of their cytotoxicity through the in-

hibition of transcription (1). Transformed cells often require
constant expression of antiapoptotic genes for survival, making
transcription inhibition a relevant therapeutic strategy in oncol-
ogy (1, 2). Many radio- and chemotherapy treatments that target
DNA, including UV irradiation, cisplatin, and the topoisomerase
inhibitors, introduce obstacles to RNA polymerase II (RNAP2)
elongation by generating bulky or helix-distorting lesions (3–5).
In cell culture experiments, transcription blockade has been
shown to induce degradation of the RNAP2 large subunit
(RPB1), and function as a signal for p53-mediated apoptosis (6,
7). Although many DNA-targeted therapeutics effectively inhibit
transcription and induce apoptosis, clinical treatment with gen-
otoxic agents can also damage DNA in normal cells, increasing
symptomatic toxicity and potentially leading to secondary can-
cers (8). The question arises whether high-affinity, noncovalent
DNA-binding ligands offer an approach to transcription in-
hibition without DNA damage.
Hairpin pyrrole-imidazole (Py-Im) polyamides are synthetic

oligomers with programmable sequence recognition that bind
the minor groove of DNA with high affinity (9). Py-Im poly-
amide-DNA binding induces allosteric changes in the DNA helix
that can interfere with protein–DNA interactions (10, 11). Py-Im
polyamides have been used as molecular probes in cell culture to
modulate inducible gene-expression pathways (12–15). In
rodents, eight-ring hairpin Py-Im polyamides circulate in blood
for several hours after administration and affect changes in gene
expression in tissues (16–18).
We have previously reported that polyamide 1 (Fig. 1), which

targets the sequence 5′-WGWWCW-3′ found in the androgen
response element, inhibited a subset of dihydrotestosterone
(DHT)-induced genes in LNCaP cells (12). In this article we
explore the effects of this polyamide on the RNAP2 transcription
machinery. We find that RNAP2 is preferentially reduced from
transcription start sites genome-wide without significant pertur-
bation at enhancer loci. This reduction is accompanied by pro-
teasome-dependent degradation of RPB1. Polyamide treatment
induces p53 accumulation that is consistent with what is observed
for other transcription inhibitors that interact with DNA (4, 5), but
without evidence of DNA damage. This polyamide demonstrates

efficacy in vivo against prostate cancer xenografts in mice with
limited host toxicity.

Results
Effects of Polyamide 1 on Global Occupancy of RNAP2. Polyamide 1
was previously shown to inhibit the induction of a subset of
DHT-driven genes in LNCaP cell culture (12). We interrogated
the effects of 1 on the RNAP2 transcription machinery by
mapping the global occupancy of RNAP2 using ChIP-seq. Under
DHT induction, select androgen receptor (AR)-driven genes,
such as KLK3, showed increased RNAP2 occupancy over genic
regions, but this was decreased in the presence of 1 (Fig. 2A).
Although RNAP2 occupancy across constitutively expressed
genes, such as GAPDH, did not change with DHT induction,
cotreatment with 1 reduced RNAP2 occupancy across these
genes (Fig. 2B). This reduction in RNAP2 occupancy by 1 was in
the context of a global decrease of RNAP2 occupancy across
genic regions (Fig. S1), particularly at transcription start sites
(Fig. 2C). However, 1 did not significantly change RNAP2 oc-
cupancy at enhancer loci (Fig. 2D), suggesting 1 may affect the
active elongation of RNAP2 without disturbing the transcription
apparatus anchored at enhancers, and that the observed differ-
ences in RNAP2 occupancy are not a result of technical variation
in ChIP success between experiments. Reduction in DNA oc-
cupancy of RNAP2 has also been reported in cells treated with
α-amanitin, a cyclic octapeptide inhibitor of RPB1 (19).
Inhibition of RNAP2 elongation can be caused by a multitude

of genotoxic agents and often results in the degradation of the
RPB1 subunit (3, 20, 21). Indeed, in addition to reduced RNAP2
DNA occupancy, immunoblot analysis of LNCaP cells treated
with 1 shows depletion of RPB1 in a time- and concentration-
dependent manner (Fig. 2E). To examine if the effect on RPB1
protein were a result of decreased transcription of this gene, we
measured levels of RPB1 mRNA (Fig. 2F). The expression of
RPB1 modestly increased with polyamide treatment, suggesting
this depletion is posttranscriptional.

Polyamide Cytotoxicity Is Reduced by Proteasomal Inhibition and
Serum Starvation. Inhibition of RNAP2 has been reported to in-
duce apoptosis (4, 6, 22), and may contribute to polyamide cy-
totoxicity observed in LNCaP cells cultured with 1 (Fig. 3A). A
previous study with trabectidin, a DNA minor groove alkylator
that causes RPB1 degradation, showed the toxicity induced by
the molecule can be reduced by cotreatment with the protea-
some inhibitor MG132 (22). To evaluate if polyamide-induced
toxicity was also reducible by proteasomal inhibition we treated
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LNCaP cells with 2 in the presence and absence of MG132. We
developed analog 2 specifically for this application because
prolonged incubation with MG132 alone is cytotoxic, and con-
jugation of an aryl group to the γ-aminobutyric acid turn have
been shown to improve cellular uptake and cytotoxicity of pol-
yamides. Cell-viability experiments showed that 2 induced cell
death more rapidly than 1 without significant change to DNA
binding (Fig. S2 A and B). Cell culture experiments revealed
coincubation with MG132 reduced cytotoxicity induced by 2
(Fig. 3B) and prevented degradation of RPB1 (Fig. 3C). Poly-
amide nuclear uptake was not affected by MG132 (Fig. S2 C and
D). In addition, cytotoxicity studies of cells treated with UV
radiation and α-amanitin have shown increased cellular sensi-
tivity to transcription inhibition upon S-phase entry (6, 23).
Similarly, 2 was less toxic to LNCaP cells arrested in G1/G0 by

serum starvation compared with cells grown in normal media
(Fig. 3D and Fig. S2E).

Accumulation of p53 and Expression of p53 Targets in the Absence of
DNA Damage. Previously published microarray data of LNCaP
cells cotreated with DHT and 1 revealed the induction of several
p53 target genes (12). Despite depletion of RPB1, treatment of
LNCaP cells with 1 alone induced expression of p53 genes that
are characteristic of genotoxic stress (Fig. 4A) (24). Many of
these genes were previously observed to be induced in A549 cells
treated with polyamide as well as polyamide-alkylator conjugates
(14, 25). To examine if direct DNA damage was contributing to
p53 activity, we looked for evidence of DNA damage in LNCaP
cells after extended treatment with 1. Alkaline comet assay
showed no evidence of DNA fragmentation (Fig. 4B). Addi-
tionally, treatment with 1 did not induce cellular markers of
DNA damage, including phosphorylation of γH2A.X, ATM,
DNA-PKcs, p53, or Chk2 (Fig. 4C). However, modest accu-
mulation of p53 and poly(ADP-ribose) polymerase (PARP)
cleavage were observed. These data suggest that 1 activates
p53 through transcriptional inhibition without DNA damage,
a mechanism that has been observed for non-DNA targeting
agents that exert transcriptional stress such as the protein ki-
nase inhibitor 5,6-dichlorobenzimidazole (DRB) and α-amani-
tin (5, 6, 26).

Effects of Polyamide Treatment on Prostate Cancer Xenografts. We
recently reported the toxicity and pharmacokinetic (PK) profile
of 1 in mice (17). Subcutaneous injection of 1 also results in
detectable circulation (Fig. S3). We thus selected this molecule
for further testing against xenografts in vivo. Male NOD scid-γ
(NSG) mice bearing LNCaP xenografts were treated with either
vehicle or 20 nmol (∼1 mg/kg) 1 by subcutaneous injection once
every 3 d for a cycle of three injections. At the experimental end
point, mice treated with 1 had smaller tumors and lower serum
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prostate-specific antigen (PSA) compared with vehicle controls
(Fig. 5 A and B). Immunohistological analysis of selected tumors
showed evidence of cell death by TUNEL stain (Fig. 5C). Al-
though tumor-free NSG mice treated with 1 under this regimen
showed no signs of distress or weight loss, LNCaP tumor-bearing
NSG mice exhibited weight loss by the experimental end point
(Fig. S4). This weight loss was accompanied by an elevation in
serum uric acid that was not observed in either control group
(Fig. 5D).

Discussion
DNA targeting agents, including cisplatin, the anthracyclines,
minor groove binders, and UV radiation have been demon-
strated to affect a multitude of DNA-dependent enzymes, such
as the RNA polymerases, DNA polymerase, topoisomerases, and
helicases (21, 27). Our research group and others have used
polyamides as molecular tools to modulate gene-expression
programs (12–15). The programmable sequence specificity of Py-
Im polyamides offers a unique mechanism to target specific
transcription factor–DNA interfaces and thereby modulate par-
ticular gene-expression pathways. In previous studies we have
focused our analysis on specific changes to inducible pathways of
gene expression. For example, we have shown polyamide 1
affects ∼30% of the DHT-induced transcripts in LNCaP cells,
which may result from inhibition of the transcription factor AR-
DNA interface (12). However, the cellular cytotoxicity of this
polyamide may not only be a result of inhibition of DHT-induced
gene expression because analogs of 1 exhibit toxicity in a variety
of cancer cells (28). It is more likely that polyamides perturb
multiple DNA-dependent cellular processes (transcription, rep-
lication) that contribute to cytotoxicity. In this study we show
that 1 interferes with RNAP2 elongation resulting in the

degradation of RPB1, activation of p53, and triggering of apo-
ptosis, without detectable genomic damage.
Our previous study has shown polyamide 1 decreased the ex-

pression of a large number of genes in LNCaP cells (12). To
examine the effect of 1 on the transcription machinery, we per-
formed genome-wide mapping of RNAP2 occupancy by ChIP-
seq. We found that although DHT induction increased RNAP2
occupancy at select AR-driven genes, cotreatment with 1 caused
a genome-wide decrease of RNAP2 occupancy across genic
regions. The effect was most pronounced at transcription start
sites. Interestingly, RNAP2 occupancy at enhancer loci, where
the transcription assemblies may be attached via contacts
through other proteins, was not significantly affected by poly-
amide treatment. This finding suggests polyamide 1 may pref-
erentially affect RNAP2 loading at regions where RNAP2 is
actively engaged, a mechanism that has been previously pro-
posed for the gene regulatory activity of polyamides (29).
The displacement of RNAP2 from DNA is caused by many

DNA damaging agents that pose an impediment to RNAP2
elongation. This effect is normally coupled with the degradation
of the large RNAP2 subunit RPB1. Indeed, the cellular level of
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RPB1 in LNCaP cells was found to decrease in both a time- and
concentration-dependent manner when treated with polyamide
1. Polyamide 2, a more cytotoxic analog of 1, also reduced cel-
lular RPB1 in LNCaP cells and induced cell death. Cotreatment
of 2 with a proteasomal inhibitor MG132 was able to prevent the
degradation of RPB1 and reduce the toxicity of 2 in cell culture.
In addition, the cytotoxic effects of other RNAP2 inhibitors are
reported to be attenuated by preventing S-phase entry. LNCaP
cells arrested in G0/G1 by serum starvation also exhibited re-
duced sensitivity to 2 compared with cells grown in normal me-
dia. The finding that cytotoxicity is partially rescued by MG132
treatment and G0/G1 arrest suggests RPB1 degradation con-
tributes to cytotoxicity; however, contributions from other DNA-
dependent processes are not ruled out.
Although transcription inhibition can activate p53 signaling,

both events can be caused by DNA damage. Analysis of pre-
viously published microarray data revealed the induction of
several p53 target genes in LNCaP cells cotreated with DHT and
1 (12). Further validation of transcript levels of the genes in this
study also showed a time-dependent increase in the expression of
GADD45A, MDM2, IGFBP3, P21, BAX, and DDIT3 (Fig. 4A).
Because these genes are also markers of genotoxic stress (24)
and were found to be induced in A549 cells treated with alky-
lating polyamide derivatives (25), we searched for signs of DNA
damage to determine if it was causing transcription inhibition
and p53 activation. Interestingly, both comet assay and immun-
blot analysis of cellular DNA damage markers showed no sig-
nificant signs of DNA damage. Although faint phosphorylation
of γH2A.X was visible, it is likely caused by cellular apoptosis as
indicated by the concurrent PARP cleavage. These data are
consistent with studies in yeast mutants that are hypersensitive to
DNA damage, which showed no increased sensitivity to poly-
amide treatment, suggesting these reversible DNA binders do
not compromise genomic integrity (30).
The activation of p53 by transcription inhibition in the absence

of DNA damage has been observed for DNA-independent
inhibitors of RNAP2, such as DRB, α-amanitin, and various
RNAP2-targeted antibodies (5, 6, 26). Distamycin A, the natural
product that provided the structural inspiration for Py-Im poly-
amides, inhibits the initiation of RNA synthesis in cell-free assays
(27). In cell culture, distamycin also induces degradation of
RPB1 and activates p53 (31, 32). However, low antitumor po-
tency and poor stability limit its utility.

To assess the therapeutic potential of polyamide 1 as an an-
titumor agent, LNCaP xenografts in a murine model were trea-
ted with 1 or PBS vehicle. After three rounds of treatment,
tumor growth was reduced by 64% in the treated group. Al-
though treatment with 1 alone did not cause changes in animal
body weight or obvious signs of toxicity in tumor-free animals,
treatment in tumor-bearing animals resulted in weight loss after
three treatments. The accompanied elevation in serum uric acid
may be an indication of tumor lysis syndrome (33), which is as-
sociated with rapid tumor cell turnover upon polyamide treat-
ment. We anticipate that Py-Im polyamides could also demonstrate
efficacy in additional xenograft models.

Methods
Compounds and Reagents. Py-Im polyamides 1, 2, and 3 were synthesized on
oxime resin, as described previously (28, 34, 35). (R)-MG132 (MG132) was
from Santa Cruz Biotechnology.

Cell Viability Assays. LNCaP cells were plated in clear bottom 96-well plates at
5,000–7,500 cells per well. The cells were allowed to adhere for 24–36 h
before compounds were added in fresh media. Cell viability was determined
by the WST-1 assay (Roche) for 1 and 2 after 24- or 72-h incubation with cells.
Cells in cytotoxicity rescue experiments were treated with 2 alone or with 3
μM MG132 for 24 h. For cell-cycle arrest experiments, LNCaP cells were
seeded at 2,500–5,000 cells per well in normal media and allowed to adhere
for 24–36 h. The media was replaced with normal media or media supple-
mented with 0.5% (vol/vol) FBS and incubated for 48 h before treatment
with compound.

In Vivo Xenograft Experiments. All mice experiments were conducted under
an approved protocol by the Institutional Animal Care and Use Committee of
the California Institute of Technology. Male NSG mice were purchased from
The Jackson Laboratory. The animals were individually caged andmaintained
on a standard light-dark cycle. NSGmice were engrafted with LNCaP cells (2.5
million cells) in a mixture of 1:1 media and matrigel in the left flank. Tumors
were grown to ∼100 mm3 (L × W2) before beginning treatment with com-
pound or vehicle. Py-Im polyamide 1 was administered once every 3 d at 20
nmol per animal (∼1 mg/kg) in a 5% (vol/vol) DMSO:PBS vehicle solution
until the experiment endpoint.

Serum Measurements. To investigate if polyamide 1 could be detected in
peripheral blood after subcutaneous injections, 120 nmol of 1 [in 5% (vol/
vol) DMSO/PBS] was injected into the right flank of four C57BL/6J mice.
Blood was collected from anesthetized mice via retroorbital collection at 5
min, 4 h, and 12 h after injection, then processed by methods previously
described and analyzed by HPLC (36). For measurement of serum PSA (KLK3)
and uric acid, blood was collected from anesthetized mice via retroorbital
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collection at experimental endpoint and serum was separated from blood by
centrifugation. Serum PSA (KLK3) was measured by ELISA (R&D Systems)
according to the manufacturer’s instructions. Uric acid was measured as
previously described (37).

Chromatin Immunoprecipitation. Genomic occupancy of RNAP2 was de-
termined by ChIP with the 4H8 antibody (Abcam). LNCaP cells were plated at
35 million cells per plate in RPMI supplemented with 10% (vol/vol) CTFBS and
allowed to adhere for 24–36 h. The cells were treated with compound 1 in
fresh media (10% CTFBS) for 48 h. Cells treated and untreated with 1 were
incubated with 1 nM DHT for 6 h. Two-step cross-linking was performed as
previously described (38). After DSG removal, chromatin was immunopre-
ciated by previously published methods (39). DNA was harvested by phenol
chloroform extraction and purified with the QIAquick purification kit (Qia-
gen). Quantitative PCR was used to validate enrichment at the GAPDH
transcription start site (Primers: F-GGTTTCTCTCCGCCCGTCTT, R-TGTTCGA-
CAGTCAGCCGCAT) compared with an internal negative locus (Primers: F-
TAGAAGGGGGATAGGGGAAC, R-CCAGAAAACTGGCTCCTTCTT). Each sam-
ple was immunoprecipated as five technical replicates. The three most
consistent samples were combined and submitted for sequencing on an
Illumina genome analyzer. Biological replicates were acquired.

Data Processing and Analysis. Sequencing reads were trimmed down to 36 bp
and then mapped against the male set of human chromosomes (excluding all
random chromosomes and haplotypes) using the hg19 version of the human
genome as a reference. Bowtie 0.12.7 was used for aligning reads (40), with
the following settings: “-v 2 -t–best–strata”. Signal profiles over genomic
locations were generated using custom written python scripts; the refSeq
annotation was used for gene coordinates. Enhancers and promoters were
defined using previously published histone marker data (41). ChIP-seq peaks
were called using MACS2 with default settings (42). Enhancers were defined
as H3K4me1+ regions that did not intersect with H3K4me3+ regions and
promoters as H3K4me3+ regions that did not intersect with H3K4me1+

regions. Clustering was performed with Cluster 3.0 (43) and visualized with
Java TreeView (44).

Comet Assay. LNCaP cells were plated at 1 million cells per 10-cm plate and
allowed to adhere for 24–36 h. Cells were then incubated with either 10 μM 1
for 48 h or 5 μM doxorubicin for 4 h. DNA damage was assayed using the
Trevigen CometAssay system and samples were prepared from harvested
cells according to the manufacture protocol. Comets were imaged on
a confocal microscope (Exciter, Zeiss) at 10× magnification. Percentage of
DNA in the tail was determined using Comet Assay Lite IV (Perceptive
Instruments). More than 100 comets were scored for each condition.

Immunoblot Assay. Samples for immunoblot analysis were prepared by
plating LNCaP or DU145 cells at 1 million cells per 10-cm plate. Cells were
allowed to adhere for 24–36 h before incubation with compound. After the
appropriate incubation time, cells were washed once with ice-cold PBS and
harvested in ice-cold 125 μL lysis buffer (50 mM Tris•HCl pH 7.4, 150 mM
NaCl, 1 mM EDTA, 1% Triton X 100) containing protease inhibitor mixture
(Roche), 1 mM PMSF (Sigma), and phosphatase inhibitors (Sigma). Samples
were incubated on ice for 10 min with vortexing once every 3 min. Cellular
debris was pelleted by spinning at 21,000 × g for 15 min to collect the su-
pernatant. Samples were then quantified for protein content with the
Bradford assay (Bio-Rad) and boiled with 4× sample buffer (Li-Cor) for 5 min.
Protein electrophoresis was performed in 4–20% precast Tris•glycine SDS
gels (Bio-Rad) and transferred to PVDF membranes. Membrane blocking was

done with Odyssey Blocking Buffer (Li-Cor). The following antibodies used to
probe changes in protein levels or phosphorylation states: RBP1 (Santa Cruz
Biotechnology; N20), p53 (Santa Cruz Biotechnology; DO1), phospho-Chk2-
Thr68 (Cell Signaling Technology), Phospho-p53-Ser15 (Cell Signaling Tech-
nology), phospho-H2A.X-Ser139 (Cell Signaling Technology), phosphor-
ATM-Ser1981 (Abcam), phospho-DNA-PKcs-Ser2056 (Abcam), and β-actin
(Abcam). Near-IR secondary antibodies (Li-Cor) were used for imaging.
Experiments were performed in biological triplicate except for DNA-
PKcs (replicate).

Flow Cytometry. To determine cell cycle distribution of LNCaP cells grown in
normal media or under serum-starved conditions, 1 million cells were seeded
to each 10-cm plate and allowed to adhere for 24–36 h. Media was then
replaced with fresh normal media [10% (vol/vol) FBS] or serum-starved
media [0.5% (vol/vol) FBS] and incubated for an additional 48 h. Cells were
then trypsinized and prepared for analysis as previously described (45).
Samples were analyzed in biological triplicate on a FACSCalibur (Becton-
Dickinson) instrument. Data analysis was performed using FlowJo 7.6.5.

Quantitative RT-PCR. RNA was extracted using RNEasy columns (Qiagen)
according to the manufacturer’s protocols. cDNA was generated from RNA
by reverse transcriptase (Transcriptor First Strand cDNA kit; Roche). Quan-
titative real-time RT-PCR was performed using SYBR Green PCR Master Mix
(Applied Biosystems) on an ABI 7300 instrument. mRNA was measured rel-
ative to β-glucuronidase as an endogenous control. Experiments were per-
formed in biological quadruplicates. For primer sequences see Table S1.

Confocal Microscopy. Cells were plated in 35-mm optical dishes (MatTek) and
dosed with polyamide 3 at 2 μM for 24 h with or without 3μM MG132. Cells
were then washed with PBS and imaged on a confocal microscope (Exciter;
Zeiss) using a 63× oil immersion lens. Confocal imaging was performed
following established protocols (34).

Histology and Immunohistochemistry. Tumors were resected immediately
after euthanasia and fixed in neutral buffered formalin. Selected samples
were embedded in paraffin, sectioned and stained with H&E. Selected sec-
tions were assessed by TUNEL, as previously described (46).

Thermal Denaturation Assays. Polyamides 1 and 2 were incubated with du-
plex DNA 5′-CGATGTTCAAGC-3′, which contains the predicted target site for
these compounds (underlined). Melting temperature analyses were per-
formed on a Varian Cary 100 spectrophotometer as described (47). Melting
temperatures were defined as a maximum of the first derivative of absor-
bance at 260 nm over the range of temperatures.

Statistical Analysis. Statistical significance was calculated using the Student t
test with two tailed variance. Results were considered significant when
P < 0.05.
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Piwi induces piRNA-guided transcriptional
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chromatin state
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In the metazoan germline, piwi proteins and associated piwi-interacting RNAs (piRNAs) provide a defense system
against the expression of transposable elements. In the cytoplasm, piRNA sequences guide piwi complexes
to destroy complementary transposon transcripts by endonucleolytic cleavage. However, some piwi family
members are nuclear, raising the possibility of alternative pathways for piRNA-mediated regulation of gene
expression. We found that Drosophila Piwi is recruited to chromatin, colocalizing with RNA polymerase II (Pol II)
on polytene chromosomes. Knockdown of Piwi in the germline increases expression of transposable elements that
are targeted by piRNAs, whereas protein-coding genes remain largely unaffected. Derepression of transposons
upon Piwi depletion correlates with increased occupancy of Pol II on their promoters. Expression of piRNAs that
target a reporter construct results in a decrease in Pol II occupancy and an increase in repressive H3K9me3 marks
and heterochromatin protein 1 (HP1) on the reporter locus. Our results indicate that Piwi identifies targets
complementary to the associated piRNA and induces transcriptional repression by establishing a repressive
chromatin state when correct targets are found.
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Diverse small RNA pathways function in all kingdoms of
life, from bacteria to higher eukaryotes. In eukaryotes,
several classes of small RNA associate with members of
the Argonaute protein family, forming effector complexes
in which the RNA provides target recognition by se-
quence complementarity, and the Argonaute provides the
repressive function. Argonaute–small RNA complexes
have been shown to regulate gene expression both transcrip-
tionally and post-transcriptionally. Post-transcriptional re-
pression involves cleavage of target RNA through either
the endonucleolytic activity of Argonautes or sequester-
ing targets into cytoplasmic ribonucleoprotein (RNP)
granules (Hutvagner and Simard 2008).

The mechanism of transcriptional repression by small
RNAs has been extensively studied in fission yeast and
plants. Several studies showed that Argonaute–small RNA
complexes induce transcriptional repression by tether-
ing chromatin modifiers to target loci. In fission yeast,

the effector complex containing the Argonaute and the
bound siRNA associates with the histone H3 Lys 9 (H3K9)
methyltransferase Clr4 to install repressive H3K9-dimethyl
marks at target sites (Nakayama et al. 2001; Maison and
Almouzni 2004; Sugiyama et al. 2005; Grewal and Jia 2007).
Methylation of histone H3K9 leads to recruitment of the
heterochromatin protein 1 (HP1) homolog Swi6, enhanc-
ing silencing and further promoting interaction with the
Argonaute complex. The initial association of Ago with
chromatin, however, requires active transcription (Ameyar-
Zazoua et al. 2012; Keller et al. 2012). Plants also use
siRNAs to establish repressive chromatin at repetitive
regions. Contrary to yeast, heterochromatin in plants is
marked by DNA methylation, although repression also
depends on histone methylation by a Clr4 homolog
(Soppe et al. 2002; Onodera et al. 2005). Although siRNA-
mediated gene silencing is predominant on repetitive
sequences, it is not limited to these sites. Constitutive
expression of dsRNA mapping to promoter regions re-
sults in production of corresponding siRNAs, de novo
DNA methylation, and gene silencing (Mette et al. 2000;
Matzke et al. 2004).

In metazoans, small RNA pathways are predominantly
associated with post-transcriptional silencing. One class
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of small RNA, microRNA, regulates expression of a large
fraction of protein-coding genes (Friedman et al. 2009). In
Drosophila, siRNAs silence expression of transposable
elements (TEs) in somatic cells (Chung et al. 2008;
Ghildiyal et al. 2008) and target viral genes upon infection
(Galiana-Arnoux et al. 2006; Wang et al. 2006; Zambon
et al. 2006). Another class of small RNAs, Piwi-interact-
ing RNAs (piRNAs), associates with the Piwi clade of
Argonautes and acts to repress mobile genetic elements
in the germline of both Drosophila and mammals (Siomi
et al. 2011). Analysis of piRNA sequences in Drosophila
revealed a very diverse population of small RNAs that
primarily maps to transposon sequences and is derived
from a number of heterochromatic loci called piRNA
clusters, which serve as master regulators of transposon
repression (Brennecke et al. 2007). Additionally, a small
fraction of piRNAs seems to be processed from the mRNA
of several host protein-coding genes (Robine et al. 2009;
Saito et al. 2009). The Drosophila genome encodes three
piwi proteins: Piwi, Aubergine (AUB), and Argonaute3
(AGO3). In the cytoplasm, AUB and AGO3 work together
to repress transposons through cleavage of transposon
transcripts, which are recognized through sequence com-
plementarity by the associated piRNAs (Vagin et al. 2006;
Agger et al. 2007; Brennecke et al. 2007; Gunawardane
et al. 2007).

In both Drosophila and mammals, one member of the
Piwi clade proteins localizes to the nucleus. Analogously
to small RNA pathways in plants, the mouse piRNA
pathway is required for de novo DNA methylation and
silencing of TEs (Carmell et al. 2007; Aravin et al. 2008;
Kuramochi-Miyagawa et al. 2008); however, the exact
mechanism of this process is unknown. In Drosophila,
DNA methylation is absent; however, several studies in-
dicate that elimination of Piwi from the nucleus causes
changes in histone marks on TEs (Klenov et al. 2011;
Pöyhönen et al. 2012), yet a genome-wide analysis of
Piwi’s effect on chromatin marks and transcription is
lacking.

Here we show that Piwi interacts with chromatin on
polytene chromosomes in nurse cell nuclei. We found
that Piwi exclusively represses loci that are targeted by
piRNAs. We show that Piwi-mediated silencing occurs

through repression of transcription and correlates with
installment of repressive chromatin marks at targeted
loci.

Results

To analyze the role of Piwi in the nucleus, we generated
transgenic flies expressing a GFP-tagged Piwi protein
(GFP-Piwi) under the control of its native regulatory re-
gion. GFP-Piwi was expressed in the ovary and testis in
a pattern indistinguishable from the localization of native
Piwi and was able to rescue the piwi-null phenotype as
indicated by ovarian morphology, fertility, transposon
expression, and piRNA levels. GFP-Piwi was deposited
into the mature egg and localized to the pole plasm; how-
ever, contrary to a previous observation (Brower-Toland
et al. 2007), we did not detect Piwi expression outside of
the ovary and testis in third instar larvae or adult flies. We
also did not observe the association of Piwi with polytene
chromosomes in salivary gland cells of third instar larvae.
In both follicular and germline cells of the Drosophila
ovary, GFP-Piwi localized exclusively in the nucleus,
with slightly higher concentrations apparent in regions
enriched for DAPI, indicating a possible interaction with
chromatin. To gain further insight into Piwi localization
in the nucleus, we took advantage of the fact that nurse
cell chromosomes are polytenized and can be visualized
on the otu mutant background (Mal’ceva et al. 1997).
Analysis of polytene chromosomes from nurse cells
demonstrated that GFP-Piwi associates with chromatin
in a specific banding pattern. Interestingly, coimmuno-
staining showed that a GFP-Piwi signal on polytene
chromosomes generally overlaps with the RNA poly-
merase II (Pol II) signal, which marks sites of active
transcription (Fig. 1A).

In order to identify factors that might be responsible
for targeting Piwi to chromatin, we immunoprecipitated
Piwi complexes from the Drosophila ovary and analyzed
Piwi interaction partners by mass spectrometry. We
purified Piwi complexes from ovaries of three different
transgenic lines expressing GFP-Piwi, myc-Piwi, or Flag-
Piwi using antibodies against each respective tag. As a
control, we used flies expressing free GFP in the ovary.

Figure 1. Piwi associates with chromatin and nuclear
transcripts. (A) Polytene chromosomes from Drosophila

nurse cells expressing GFP-Piwi on the otu[7]/otu[11]
background. Piwi pattern on chromosomes correlates
with Pol II staining. (B) Mass spectrometry analysis of
Piwi interaction partners. Piwi complexes were pre-
cipitated in the presence and absence of RNase A. The
outer circle represents classification of Piwi-associated
proteins based on GO term analysis. The inner pies
represent the fraction of each group whose association
with Piwi depends on RNA (percentage indicated). Note
that chromatin, splice, and mRNA export factors are
virtually absent after RNase A treatment.
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We identified >50 factors that showed significant enrich-
ment in all three Piwi purifications but were absent in the
control. We were unable to identify chromatin-associated
factors that directly associate with Piwi but identified
several RNA-binding proteins that associate with na-
scent transcripts, such as splicing (Rm62, Pep, Ref1, Yps,
CG9684, CG31368, CG5728, and Mago) and nuclear ex-
port (Tho2 and Hpr1) factors (Fig. 1B). Upon RNase A
treatment prior to immunoprecipitation, the presence
of most of these RNA-binding proteins in purified Piwi
complexes was eliminated.

Piwi proteins are believed to find their targets through
sequence complementarity of the associated piRNA. In
fact, it has been proposed that lack of the associated
piRNA leads to destabilization of piwi proteins and to
Piwi’s inability to localize to the nucleus (Saito et al.
2009; Haase et al. 2010; Olivieri et al. 2010; Handler et al.
2011; Ishizu et al. 2011). On the other hand, Piwi has been
proposed to have functions that are independent of its
role in transposon control by regulating stem cell niche
development (Cox et al. 1998; Klenov et al. 2011). To ad-
dress the role of piRNA in translocation of Piwi into the
nucleus and its function, we generated transgenic flies
expressing a point mutant Piwi—referenced as Piwi-YK—
that is deficient in piRNA binding due to a substitution
of two conserved amino acid residues (Y551L and K555E)
in the 59 phosphate-binding pocket (Kiriakidou et al.
2007; Djuranovic et al. 2010). The Piwi-YK mutant was
expressed in Drosophila follicular and germ cells at levels
similar to that of wild-type Piwi but was completely
devoid of associated piRNA (Fig. 2A). In contrast to wild-
type Piwi, Piwi-YK could be found in the cytoplasm,
supporting the existence of a quality control mechanism
that prevents entrance of unloaded Piwi into the nucleus
(Ishizu et al. 2011). Nevertheless, a significant amount of
piRNA-deficient Piwi localized to the nucleus (Fig. 2B).
Similar to wild-type Piwi, Piwi-YK seemed to associate
with chromatin, as indicated by its localization in DAPI-
stained regions of the nuclei, and this is consistent with
fluorescence loss in photobleaching (FLIP) experiments
that demonstrated reduced nuclear mobility compared
with free diffusion (Supplemental Fig. S1). Based on ster-
ility and ovarian morphology, the piwi-YK transgene was
unable to rescue the piwi-null phenotype despite its
nuclear localization (Fig. 2C), indicating that while
piRNA binding is not absolutely essential for stability
and nuclear localization of Piwi, it is required for Piwi
function.

To directly test the function of Piwi in the nucleus, we
analyzed the effect of Piwi deficiency on gene expression
and chromatin state on a genome-wide scale. Piwi mu-
tant females have atrophic ovaries caused by Piwi defi-
ciency in somatic follicular cells (Lin and Spradling 1997;
Cox et al. 1998), which precludes analysis of Piwi func-
tion in null mutants. Instead, we used RNAi knockdown
to deplete Piwi in germ cells while leaving it functionally
intact in somatic follicular cells. The Piwi knockdown
flies did not exhibit gross morphological defects in the
ovary; however, they showed drastic reduction in GFP-
Piwi expression in germ cells and were sterile (Fig. 3A,B).

To analyze the effect of Piwi deficiency on the steady-
state transcriptome as well as the transcription machin-
ery, we performed RNA sequencing (RNA-seq) and Pol II
chromatin immunoprecipitation (ChIP) combined with
deep sequencing (ChIP-seq) experiments from Piwi knock-
down and control flies.

In agreement with previous observations that impli-
cated Piwi in transposon repression (Saito et al. 2006;
Aravin et al. 2007; Brennecke et al. 2007), we found that
steady-state transcript levels of several TEs were increased

Figure 2. Piwi function, but not its nuclear localization, re-
quires piRNA association. (A) The Piwi-YK mutant does not
associate with piRNA. Immunoprecipitation of Piwi–piRNA
complexes was performed with GFP antibody on ovaries from
GFP-Piwi and GFP-Piwi-YK transgenic flies and a control strain.
Small RNAs were isolated, 59-labeled, and resolved on a de-
naturing gel. The same amount of 42-nucleotide RNA oligonu-
cleotides was spiked into all samples prior to RNA isolation to
control for loss of RNA during isolation and labeling. piRNAs
(red arrow) are absent in the Piwi-YK complex. (B) GFP-Piwi-YK
is present in the nuclei of nurse cells and colocalizes with
chromatin (DAPI-stained areas). (C) The Piwi-YK mutant does
not rescue the morphological changes caused by the piwi-null
mutation. Dark-field images of ovaries where either the wild-
type piwi or the piwi-YK transgene has been backcrossed onto
the piwi-null background.
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upon Piwi knockdown in germ cells (Fig. 3C,D; Supple-
mental Fig. S2). We found little to no change of RNA
levels for transposons whose activity is restricted to
follicular cells of the ovary, indicating that the observed

changes are indeed due to loss of Piwi in the germline
(Supplemental Fig. S2). The analysis of Pol II ChIP-seq
showed that Pol II occupancy increased over promoters of
multiple TEs (Fig. 3D–F; Supplemental Fig. S3). Indeed,

Figure 3. Piwi transcriptionally represses TEs. (A) Piwi knockdown is efficient and specific to ovarian germ cells as indicated by GFP-
Piwi localization. GFP-Piwi; Nanos-Gal4-VP16 flies were crossed to control shRNA (shWhite) or shPiwi lines. Piwi is specifically
depleted in germ cells and not in follicular cells, consistent with expression of the Nanos-Gal4-VP16 driver. (B) Piwi expression as
measured by RNA-seq in the Piwi knockdown and control lines. Note that Piwi expression is unaffected in follicular cells, leading to
relatively weak apparent knockdown in RNA-seq libraries from whole ovaries. (C) Effect of Piwi knockdown on the expression of TEs.
Two biological replicate RNA-seq experiments were carried out, and differential expression was assessed using DESeq. Transposons
that show significant change (P < 0.05) are indicated by dark-red circles. Out of 217 individual RepeatMasker-annotated TEs, 15 show
a significant increase in expression upon Piwi knockdown. (D) The change in the levels of TE transcripts and Pol II occupancy on their
promoters upon Piwi knockdown. Twenty up-regulated and 10 down-regulated transposons with the most significant changes in
expression level are shown. Note the low statistical significance for down-regulated transposons. For a complete list of transposons, see
Supplemental Figure S2. (E) Pol II signal over the Het-A retrotransposon in control flies (shWhite; red) and upon Piwi knockdown
(shPiwi; blue). (F) Increased abundance of transposon transcripts upon Piwi depletion correlates with increased Pol II occupancy over
their promoters (r2 = 0.21). Note that the majority of elements do not show significant change in either RNA abundance or Pol II
occupancy.
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the change in steady-state levels of transposon transcripts
upon Piwi depletion correlated with changes of Pol II
occupancy (Fig. 3F). This result demonstrates that Piwi
ensures low levels of transposon transcripts through a
repressive effect on the transcription machinery.

To test whether Piwi-mediated transcriptional repres-
sion is accompanied by a corresponding change in chroma-
tin state, we used ChIP-seq to analyze the genome-wide
distribution of the repressive H3K9me3 mark in the ovary
upon Piwi knockdown. We identified 705 genomic loci
at which the level of H3K9me3 significantly decreased.
More than 90% of the regions that show a decrease in the
H3K9me3 mark upon Piwi depletion overlapped TE se-
quences, compared with the 33% that is expected from
random genome sampling (Fig. 4A). Furthermore, these
regions tend to be located in the heterochromatic por-
tions of the genome that are not assembled on the main
chromosomes (Fig. 4B). Only 20 of the identified regions
localized to the euchromatic parts of the genome. Of these,
15 (75%) contained potentially active annotated copies
of transposons. Taken together, our results indicate that
Piwi is required for installment of repressive H3K9me3
chromatin marks on TE sequences of the genome.

While the vast majority of protein-coding host genes
did not show significant changes in transcript level or
Pol II occupancy upon Piwi knockdown, the expression
of a small set of protein-coding genes (150 genes with a

P-value <0.05) was significantly increased (Fig. 5A; Sup-
plemental Table 1). There are several possible explanations
for Piwi’s effect on host gene expression. First, failure in
the piRNA pathway might cause up-regulation of several
genes that generate piRNAs in wild-type ovaries (Robine
et al. 2009; Saito et al. 2009). However, the genes up-
regulated in Piwi-deficient ovaries were not enriched in
piRNAs compared with other genes. Second, H3K9me3
marks installed on TE sequences in a Piwi-dependent
manner might spread into neighboring host genes and
repress their transcription, as was recently demonstrated
in a follicular cell culture model (Sienski et al. 2012). To
address this possibility, we analyzed genomic positions
of the genes whose expression was increased upon Piwi
knockdown relative to genomic regions that showed a
decrease in H3K9me3 marks. We found that up-regulated
genes did not show a significant change in the H3K9me3
mark (Fig. 5B; Supplemental Fig. S4). Furthermore, the
few genes located close to the regions that show a de-
crease in H3K9me3 signal had unaltered expression levels
upon Piwi knockdown. Next, we analyzed the functions
of up-regulated genes using gene ontology (GO) term
classifications and found significant enrichment for pro-
teins involved in protein turnover and stress and DNA
damage response pathways (Fig. 5C). Particularly, we
found that 31 subunits of the proteasome complex were
overexpressed. Therefore, our analysis indicates that up-
regulation of specific host genes is likely a secondary re-
sponse to elevated transposon levels and genomic damage.

In contrast to host genes, transcripts of TEs are targeted
by piRNA. To directly address the role of piRNA in Piwi-
mediated transcriptional silencing, we took advantage
of a fly strain that expresses artificial piRNAs against
the lacZ gene, which are loaded into Piwi complexes and
are able to repress lacZ reporter expression in germ cells
(Fig. 6A; Josse et al. 2007; Muerdter et al. 2012). Expres-
sion of piRNAs that are antisense to the reporter gene
caused transcriptional silencing of the lacZ gene as
measured by Pol II occupancy (Fig. 6B). Furthermore,
we found that piRNA-induced silencing of the reporter
gene was associated with an increase in the repressive
H3K9me3 mark and HP1 occupancy and a decrease in the
abundance of the active H3K4me2/3 marks at the re-
porter locus (Fig. 6C). This result is in good agreement
with the genome-wide effect of Piwi depletion on distri-
bution of the H3K9me3 mark and suggests that tran-
scriptional silencing correlates with the establishment
of a repressive chromatin structure and is mediated by
piRNAs that match the target locus.

Discussion

Little is known about the function of nuclear piwi pro-
teins. The nuclear piwi in mice (Miwi2) affects DNA
methylation of TEs (Carmell et al. 2007; Aravin et al.
2008; Kuramochi-Miyagawa et al. 2008). Several recent
reports implicate Drosophila Piwi in regulation of chro-
matin marks on transposon sequences (Lin and Yin 2008;
Klenov et al. 2011; Wang and Elgin 2011; Sienski et al.
2012). The mechanism of these processes is unknown in

Figure 4. Piwi-induced transcriptional repression correlates
with establishment of a repressive chromatin state. (A) Overlap
between genomic regions of H3K9me3 depletion upon Piwi
knockdown and TEs. Two replicates of H3K9me3 ChIP-seq ex-
periments were carried out on control and Piwi-depleted ova-
ries, and enriched regions were identified using DESeq (see the
Materials and Methods for details). A total of 705 regions show
significant (P < 0.05) decrease in H3K9me3 occupancy upon Piwi
knockdown, while only 30 regions showed a similarly signi-
ficant increase. Out of the 705 regions that show a decrease in
H3K9me3 marks upon Piwi knockdown, 91% (646) overlap with
TE sequences compared with the 33% expected from random
genome sampling. (B) Genomic positions of H3K9me3-depleted
regions upon Piwi depletion (outer circle) and RepeatMasker-
annotated transposons (inner circle). Note that almost all re-
gions are localized in heterochromatic and repeat-rich portions
of the genome (Het, chrU, and chrUExtra chromosomes).
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both organisms. Previously, Piwi was shown to associate
with polytene chromosomes in salivary gland cells and
colocalize with HP1, a chromodomain protein that binds
to heterochromatin and a few loci in euchromatin, sug-
gesting that HP1 mediates Piwi’s interaction with chro-
matin (Brower-Toland et al. 2007). However, recent results
showed that the putative HP1-binding site on Piwi is
dispensable for Piwi-mediated transposon silencing (Wang
and Elgin 2011).

We did not detect Piwi expression outside of the ovary
and testis, including in salivary gland cells, using a GFP-

Piwi transgene expressed under native regulatory ele-
ments. We detected GFP-Piwi on polytene chromosomes
in ovarian nurse cells that have a germline origin; how-
ever, it localizes in a pattern that largely does not overlap
with HP1. FLIP experiments with GFP-Piwi indicated
a relatively fast rate of fluorescence redistribution as
compared with histone H2A (Supplemental Fig. S1), im-
plying a transient interaction of Piwi with chromatin.
Our proteomic analysis of Piwi complexes isolated from
Drosophila ovaries did not identify chromatin-associated
factors but revealed several RNA-binding proteins, such
as splicing and nuclear export factors that bind nascent
RNA transcripts (Fig. 1B). Importantly, the interaction of
most of these RNA-binding proteins with Piwi was
dependent on RNA, indicating that Piwi associates with
nascent transcripts. As Piwi itself lacks DNA- and RNA-
binding domains (beyond the piRNA-binding domain),

Figure 5. Piwi does not directly repress protein-coding genes.
(A) Effect of Piwi knockdown on the expression of genes. Two
replicate RNA-seq experiments were carried out, and differen-
tial expression was assessed using DESeq. Genes that show
significant change (P < 0.05) are indicated by black circles. The
vast majority of genes does not change significantly upon germ-
line Piwi knockdown (shPiwi) compared with control (shWhite).
(B) H3K9me3 mark density does not change over genes that
show a significant change in expression upon Piwi knockdown
(see Fig. 3C). Up-regulated and down-regulated genes are plotted
separately. Signal indicated is after background subtraction. (C)
Functional analysis of up-regulated genes by the Database for
Annotation, Visualization, and Integrated Discovery (DAVID)
reveals activation of the protein degradation and DNA damage
response pathways. Percentages of all up-regulated genes are
indicated.

Figure 6. piRNA-dependent targeting of Piwi to a reporter
locus leads to establishment of a repressive chromatin state
and transcriptional silencing. (A) The mechanism of trans-
silencing mediated by artificial piRNA and a schematic repre-
sentation of the repressor and reporter lacZ constructs. The
repressor construct is inserted in a subtelomeric piRNA cluster,
leading to generation of piRNA from its sequence. Primers
mapping to both constructs used for the Pol II and H3K4me2/3
ChIP-quantitative PCR (qPCR) are shown by light-gray arrows;
primers specific to the reporter locus used for the H3K9me3,
H3K9me2, and HP1 ChIP-qPCR are indicated by dark-gray
arrows. (B) piRNAs induce transcriptional repression of the lacZ

reporter. Pol II and H3K4me2/3 signals decreased on the lacZ
promoter in the presence of artificial piRNAs as measured by
ChIP-qPCR. Shown is the fold depletion of signal in flies that
carry both repressor and reporter constructs compared with
control flies that have only the reporter construct. The signal
was normalized to RP49. (C) piRNAs induce an increase in
H3K9me3 and H3K9me2 marks and HP1 binding as measured
by ChIP-qPCR. Shown is the fold increase of corresponding
ChIP signals downstream from the lacZ reporter in flies that
carry both repressor and reporter constructs compared with
control flies that have only reporter construct. The signal was
normalized to RP49.
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it is likely that the recruitment of Piwi to chromatin is
through interactions with other RNA-binding proteins
or sequence-specific interactions between Piwi-bound
piRNA and nascent transcripts.

Using specific Piwi knockdown in germ cells of the
Drosophila ovary, we analyzed the effect of Piwi deple-
tion on gene expression, the transcription machinery,
and H3K9me3 chromatin marks genome-wide. In agree-
ment with previous results (Klenov et al. 2011), we
found up-regulation of several TEs upon Piwi knock-
down (Fig. 3C). The TEs that did not change their ex-
pression upon germline knockdown of Piwi might be
expressed exclusively in somatic follicular cells of the
ovary, such as the gypsy retrotransposon. Alternatively,
some elements present in the genome might not have
transcriptionally active copies, or the cytoplasmic AUB/
AGO3 proteins may efficiently silence them at the post-
transcriptional level.

The increase in steady-state levels of RNA upon Piwi
depletion strongly correlates with an increase in Pol II
occupancy on the promoters of transposons (Fig. 3D,F;
Supplemental Fig S2). This result suggests that Piwi re-
presses transposon expression at the transcriptional level,
although we cannot completely exclude the possibility
of an additional post-transcriptional effect. It was shown
previously that depletion or mutation of Piwi leads to
depletion of the repressive H3K9me3 mark and an in-
crease in the active H3K4me2/3 marks on several trans-
poson sequences (Klenov et al. 2011; Wang and Elgin
2011). Our ChIP-seq data extend these results to a genome-
wide scale, proving that transposons are indeed the
sole targets of Piwi, and demonstrate that changes in
histone marks directly correlate with transcriptional
repression.

Piwi depletion in the germline does not affect expres-
sion of the majority of host genes, although a small frac-
tion of genes changes expression (Fig. 5A). One possible
mechanism of the effect Piwi has on host genes is the
spreading of repressive chromatin structure from trans-
poson sequences to adjacent host genes. Indeed, such a
spreading and the resulting repression of host gene tran-
scription were observed in an ovarian somatic cell (OSC)
culture model (Sienski et al. 2012). However, we did not
find significant changes in the H3K9me3 mark for genes
that are up-regulated upon germline depletion of Piwi,
arguing against this mechanism playing a major role in
host gene regulation. Instead, we found that the majority
of host genes whose expression is increased as a result of
Piwi depletion participate in protein turnover (e.g., pro-
teasome subunits) and stress and DNA damage response
pathways, indicating that they might be activated as a
secondary response to cellular damage induced by trans-
poson activation. The different effect of Piwi depletion on
host gene expression in ovary and cultured cells might be
explained by the fact that silencing of host genes due to
transposon insertion would likely have a strong negative
effect on the fitness of the organism but could be tolerated
in cultured cells. Accordingly, new transposon insertions
that cause repression of adjacent host genes should be
eliminated from the fly population but can be detected

in cultured cells. In agreement with this explanation, the
majority of cases of repressive chromatin spreading in
OSCs were observed for new transposon insertions that
are absent in the sequenced Drosophila genome. Indeed,
it was shown that the vast majority of new transposon
insertions is present at a low frequency in the Drosophila
population, likely due to strong negative selection (Petrov
et al. 2003). Such selection was primarily attributed to the
ability of TE sequences to cause recombination and ge-
nomic rearrangements. We propose that in addition to the
effects on recombination, the selection against transpo-
sons can be driven by their negative impact on host gene
expression in the germline linked to Piwi-mediated chro-
matin silencing.

How does Piwi discriminate its proper targets—
transposons—from host genes? In the case of cytoplas-
mic Piwi proteins AUB and AGO3, recognition and post-
transcriptional destruction of TE transcripts is guided
by associated piRNAs. Our results indicate that piRNAs
provide guidance for transcriptional silencing by the nu-
clear Piwi protein as well. First, in contrast to host genes
that are not targeted by piRNAs, TE transcripts, which
are regulated by Piwi, are recognized by antisense Piwi-
bound piRNA (Brennecke et al. 2007). Second, a Piwi
mutant that is unable to bind piRNA failed to rescue the
piwi-null mutation despite its ability to enter the nu-
cleus. Finally, expression of artificial piRNAs that target
a reporter locus induced transcriptional silencing associ-
ated with an increase in repressive H3K9me3 and HP1
chromatin marks and a decrease in the active H3K4me2/3
marks (Fig. 6B,C). In contrast, the tethering of Piwi to
chromatin in a piRNA-independent fashion by fusing
Piwi with the lacI DNA-binding domain that recognizes
lacO sequences inserted upstream of a reporter gene did
not lead to silencing of the reporter (data not shown).
Together, our results demonstrate that piRNAs are the
essential guides of Piwi to recognize its targets for tran-
scriptional repression.

It is tempting to propose that, similar to Argonautes in
fission yeast, Drosophila Piwi directly recruits the enzy-
matic machinery that establishes the repressive H3K9me3
mark on its targets. Establishment of repressive marks
can lead to stable chromatin-based transcriptional silenc-
ing that does not require further association of Piwi with
target loci. This model explains why we found that Piwi
is relatively mobile in the nucleus, indicative of only a
transient interaction with chromatin. The Piwi-mediated
transcriptional silencing has an interesting parallel in
Caenorhabditis elegans, where the Piwi protein PRG-1
and associated 21U RNAs are able to induce stable trans-
generational repression that correlates with formation of
silencing chromatin marks on target loci. Interestingly,
PRG-1 and 21U RNAs are necessary only for initial es-
tablishment of silencing, while continuing repression
depends on siRNA and the WAGO group of Argonautes
(Ashe et al. 2012; Bagijn et al. 2012; Buckley et al. 2012;
Shirayama et al. 2012). Future studies should reveal the
pathway that leads to transcriptional repression down-
stream from Piwi in Drosophila and the differences from
and similarities to other species.
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Materials and methods

Drosophila stocks

Nanos-Gal4-VP16 (BL4937), UASp-shWhite (BL33623), UASp-

shPiwi (BL 33724), and Chr. I and II Balancer (BL7197) were
purchased from the Bloomington Stock Center. GFP-Piwi-
expressing flies (see below) were backcrossed onto the piwi1/

piwi2 (available from Bloomington Stock Center) background
or the otu7/otu11 (available from Bloomington Stock Center)
background, respectively. LacZ reporter lines were a generous
gift from S. Ronsseray.

Generation of transgenic fly lines

The GFP-Piwi, 3xFlag-HA-Piwi, and myc-Piwi constructs were
generated using bacterial recombineering (Gene Bridges Counter
Selection kit) to insert the respective tag after the start codon of
the Piwi genomic region cloned in BAC clone BACN04M10. The
KpnI–XbaI genomic fragment that contains the Piwi gene and
flanking sequences was transferred to corresponding sites of the
pCasper4 vector to create pCasper4/tagged Piwi.

The pCasper4/GFP-Piwi construct was used to generate
pCasper4/GFP-Piwi-YK with two point mutations, Y551I and
K555E. Mutations were introduced by PCR, amplifying products
corresponding to a 3.1-kb upstream fragment and a 2.58-kb down-
stream fragment. The upstream fragment included a unique XbaI
site at the 59 end of the amplicon and overlapped 39 base pairs
(bp) with the downstream fragment, which included a unique
BamHI site at its 39 end. The single XbaI–BamHI fragment was
generated by overlap PCR with outside primers and cloned
into corresponding sites of pCasper4/GFP-Piwi to replace the
wild-type fragment. Transgenic flies were generated by P-element-
mediated transformation (BestGene).

Immunoprecipitation of Piwi proteins and RNA gel of piRNA

Dissected ovaries were lysed in lysis buffer (20 mM HEPES at pH
7.0, 150 mM KCl, 2.5 mM MgCl, 0.5% Triton X-100, 0.5%
Igepal, 100 U/mL RNasin [Promega], EDTA-free Complete Pro-
tease Inhibitor Cocktail [Roche]) and supernatant clarified by
centrifugation. Supernatant was incubated with anti-eGFP poly-
clonal antibody (Covance) conjugated to Protein-G Dynabeads at
4°C. Beads were spiked with 5 pmol of synthesized 42-nucleotide
RNA oligomer to assess purification efficiency, proteinase
K-digested, and phenol-extracted. Isolated RNA was CIP-treated,
radiolabeled using PNK and g-P32-labeled ATP, and run on a
15% urea-PAGE gel. Western blots of ovary lysate and anti-eGFP
immunoprecipitates were obtained from 8% SDS-PAGE gels and
probed with polyclonal rabbit anti-eGFP antibody to confirm
expression of the full-length transgene.

Mass spectrometric analysis of Piwi interaction partners

Lysis and clarification of ovary samples were performed as de-
scribed above using lysis buffer with reduced detergent (0.1%
Triton X-100, 0.1% Igepal). Piwi proteins with Flag, Myc, or GFP
tag were purified from Drosophila ovaries using correspond-
ing antibodies covalently coupled to M-270 epoxy Dynabeads
(Invitrogen) (Cristea et al. 2005). Immunoprecipitation of free
GFP from GFP-expressing ovaries was used as a negative control.
Immunoprecipitations were performed in the presence or ab-
sence of RNase A (100 mg/mL; 30 min at 25C). Piwi and copurified
interacting proteins were resolved on NuPAGE Novex 4%–12%
Bis-Tris gels and stained with colloidal Coomassie blue. Gel
fragments that contained protein bands were excised and in-gel-

trypsinized, and the peptides were extracted following the
standard protocol of the Proteome Exploration Laboratory at
California Institute of Technology. Peptide analyses were per-
formed on an LTQ-FT Ultra (Thermo Fisher Scientific) equipped
with a nanoelectrospray ion source (Thermo Fisher Scientific)
connected to an EASY-nLC. Fractionation of peptides was per-
formed on a 15-cm reversed-phase analytical column (75-mm
internal diameter) in-house-packed with 3-mm C18 beads
(ReproSil-Pur C18-AQ medium; Dr. Maisch GmbH). Acquired
spectra were searched against the Drosophila melanogaster

proteome using the search engine Mascot (Matrix Science,
version 2.2.06), and protein inferences were performed using
Scaffold (Proteome Software, version 3). For an Excel file of Piwi
interaction partners, see the Supplemental Material.

ChIP, ChIP-seq, and RNA-seq

ChIP was carried out using standard protocols (Moshkovich and
Lei 2010). ChIP-seq and RNA-seq library construction and se-
quencing were carried out using standard protocols following
the general principles described by Johnson et al. (2007) and
Mortazavi et al. (2008), respectively. Data analysis was carried
out using a combination of publicly available software tools and
custom-written python scripts. Additional details regarding
high-throughput data analysis are described in the Supplemental
Material. For quantitative PCR (qPCR) primers, see Supplemen-
tal Table 2. GO term analysis of genes up-regulated upon Piwi
knockdown was performed using the Database for Annotation,
Visualization, and Integrated Discovery (DAVID) (Huang et al.
2009a,b) and FlyBase for additional assignment of GO terms.
Sequencing data is available through Gene Expression Omnibus
(accession no. GSE43829).

Antibodies

eGFP antibody (rabbit polyclonal serum; Covance) was affinity-
purified in our laboratory. Anti-myc (Millipore), anti-Flag
(Sigma), Pol II (ab5408), and Pol II pSer5 (ab5131) are commer-
cially available.

Imaging of ovaries

Ovaries were fixed in 4% PFA in PBS for 20 min, permeabilized
in 1% Triton X-100 in PBS, DAPI-stained (Sigma-Aldrich),
washed, and mounted in 50% glycerol/PBS. Images were captured
using an AxioImager microscope; an Apotome structured illumi-
nation system was used for optical sections (Carl Zeiss).

FLIP

FLIP time series were captured on an LSM510 confocal micro-
scope equipped with a 403/0.9 NA Imm Corr multi-immersion
objective. Ovaries were dissected into halocarbon 700 oil (Sigma)
and mounted under a 0.17-mm coverslip (Carl Zeiss) immedi-
ately before imaging. Two initial baseline images were captured,
followed by 80–100 iterations consisting of two bleach iterations
at 100% laser power (488 nm or 543 nm for GFP- and RFP-tagged
proteins, respectively), followed by two images with reduced
illumination intensity. FLIP series were cropped and median-
filtered with a 2-pixel radius to reduce noise using FIJI
(Schindelin et al. 2012) and the ‘‘Rigid Body’’ function of the
StackReg plugin (Thévenaz et al. 1998) to correct drift when
needed. Using Matlab software (The Mathworks), images were
background-subtracted and corrected for acquisition bleach-
ing. A value representing the true loss of intensity relative to
the initial prebleach images, where 0 indicates no change in
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intensity and 1 represents complete photobleaching, was calcu-
lated for each pixel and each bleach/capture cycle and plotted
with a color lookup table and calibration bar. Scale bars and
annotations were made in Inkscape (http://inkscape.org).

Preparation of polytene squashes for immunofluorescence

Flies carrying the GFP-Piwi BAC construct were backcrossed
onto the otu[7] and otu[11] background. Progeny from the cross
of the two lines were grown at 18°C. Stage 7–12 egg chambers
were separated and transferred to a polylysine-coated micro-
scopic slide into PBST. From here, the ‘‘smush’’ protocol was
followed (Johansen et al. 2009), but PFA cross-linking was re-
duced to 10 min. Slides were imaged using an AxioImager mi-
croscope and a 633 oil immersion objective (Carl Zeiss).

Acknowledgments

We are grateful to Evelyn Stuwe from the Aravin laboratory for
purifying the GFP antibody; I. Antoshechkin of the Millard and
Muriel Jacobs Genetics and Genomics Laboratory for sequenc-
ing; D. Trout, H. Amrhein, and S. Upchurch for computational
assistance; the Bloomington Stock Center for fly stocks; and
S. Hess, B. Graham, and M Sweredoski from the Proteome Ex-
ploration Laboratory at the Beckmann Institute, California In-
stitute of Technology, for assistance with the mass spectrometry
experiments. We thank members of the Aravin laboratory for
critical comments on the manuscript. We thank Barbara Wold
and members of the Wold laboratory for helpful discussions on
ChIP protocols and analysis. A.K.R. and E.M.P. are supported by
the Institutional Training Grant NIH/NRSA 5T32 GM07616,
and E.M.P. is additionally supported by the Gordon Ross Medical
Foundation. G.K.M. is supported by The Beckman Foundation,
the Donald Bren Endowment, and NIH grant U54 HG004576.
This work was supported by grants from the National In-
stitutes of Health (R01 GM097363, R00 HD057233, and DP2
OD007371A to A.A.A.), the Searle Scholar Award (to A.A.A.),
and the Ellison Medical Foundation New Scholar in Aging
Award (to K.F.T.).

References

Agger K, Cloos P, Christensen J, Pasini D, Rose S, Rappsilber J,
Issaeva I, Canaani E, Salcini A, Helin K. 2007. UTX and
JMJD3 are histone H3K27 demethylases involved in HOX
gene regulation and development. Nature 449: 731–734.

Ameyar-Zazoua M, Rachez C, Souidi M, Robin P, Fritsch L,
Young R, Morozova N, Fenouil R, Descostes N, Andrau J-C
et al. 2012. Argonaute proteins couple chromatin silencing to
alternative splicing. Nat Struct Mol Biol 19: 998–1004.

Aravin A, Hannon G, Brennecke J. 2007. The Piwi–piRNA path-
way provides an adaptive defense in the transposon arms
race. Science 318: 761–764.

Aravin AA, Sachidanandam R, Bourc’his D, Schaefer C, Pezic D,
Toth KF, Bestor T, Hannon GJ. 2008. A piRNA pathway
primed by individual transposons is linked to de novo DNA
methylation in mice. Mol Cell 31: 785–799.

Ashe A, Sapetschnig A, Weick E-M, Mitchell J, Bagijn M,
Cording A, Doebley A-L, Goldstein L, Lehrbach N, Le Pen J
et al. 2012. piRNAs can trigger a multigenerational epige-
netic memory in the germline of C. elegans. Cell 150: 88–99.

Bagijn M, Goldstein L, Sapetschnig A, Weick E-M, Bouasker S,
Lehrbach N, Simard M, Miska E. 2012. Function, targets, and
evolution of Caenorhabditis elegans piRNAs. Science 337:
574–578.

Brennecke J, Aravin A, Stark A, Dus M, Kellis M, Sachidanandam R,
Hannon G. 2007. Discrete small RNA-generating loci as
master regulators of transposon activity in Drosophila.
Cell 128: 1089–1103.

Brower-Toland B, Findley S, Jiang L, Liu L, Yin H, Dus M, Zhou
P, Elgin S, Lin H. 2007. Drosophila PIWI associates with
chromatin and interacts directly with HP1a. Genes Dev 21:
2300–2311.

Buckley B, Burkhart K, Gu S, Spracklin G, Kershner A, Fritz H,
Kimble J, Fire A, Kennedy S. 2012. A nuclear Argonaute
promotes multigenerational epigenetic inheritance and
germline immortality. Nature 489: 447–451.

Carmell M, Girard A, van de Kant H, Bourc’his D, Bestor T, de
Rooij D, Hannon G. 2007. MIWI2 is essential for spermato-
genesis and repression of transposons in the mouse male
germline. Dev Cell 12: 503–514.

Chung W-J, Okamura K, Martin R, Lai E. 2008. Endogenous
RNA interference provides a somatic defense against Dro-

sophila transposons. Curr Biol 18: 795–802.
Cox D, Chao A, Baker J, Chang L, Qiao D, Lin H. 1998. A novel

class of evolutionarily conserved genes defined by piwi are
essential for stem cell self-renewal. Genes Dev 12: 3715–3727.

Cristea IM, Williams R, Chait BT, Rout MP. 2005. Fluorescent
proteins as proteomic probes. Mol Cell Proteomics 4: 1933–
1941.

Djuranovic S, Zinchenko M, Hur J, Nahvi A, Brunelle J, Rogers
E, Green R. 2010. Allosteric regulation of Argonaute proteins
by miRNAs. Nat Struct Mol Biol 17: 144–150.

Friedman R, Farh K, Burge C, Bartel D. 2009. Most mammalian
mRNAs are conserved targets of microRNAs. Genome Res

19: 92–105.
Galiana-Arnoux D, Dostert C, Schneemann A, Hoffmann J,

Imler J-L. 2006. Essential function in vivo for Dicer-2
in host defense against RNA viruses in Drosophila. Nat

Immunol 7: 590–597.
Ghildiyal M, Seitz H, Horwich M, Li C, Du T, Lee S, Xu J, Kittler

E, Zapp M, Weng Z et al. 2008. Endogenous siRNAs derived
from transposons and mRNAs in Drosophila somatic cells.
Science 320: 1077–1081.

Grewal S, Jia S. 2007. Heterochromatin revisited. Nat Rev Genet

8: 35–46.
Gunawardane L, Saito K, Nishida K, Miyoshi K, Kawamura Y,

Nagami T, Siomi H, Siomi M. 2007. A slicer-mediated
mechanism for repeat-associated siRNA 59 end formation
in Drosophila. Science 315: 1587–1590.

Haase A, Fenoglio S, Muerdter F, Guzzardo P, Czech B, Pappin
D, Chen C, Gordon A, Hannon G. 2010. Probing the ini-
tiation and effector phases of the somatic piRNA pathway in
Drosophila. Genes Dev 24: 2499–2504.

Handler D, Olivieri D, Novatchkova M, Gruber F, Meixner K,
Mechtler K, Stark A, Sachidanandam R, Brennecke J. 2011. A
systematic analysis of Drosophila TUDOR domain-containing
proteins identifies Vreteno and the Tdrd12 family as essential
primary piRNA pathway factors. EMBO J 30: 3977–3993.

Huang DW, Sherman B, Lempicki R. 2009a. Bioinformatics
enrichment tools: Paths toward the comprehensive func-
tional analysis of large gene lists. Nucleic Acids Res 37:
1–13.

Huang DW, Sherman B, Lempicki R. 2009b. Systematic and
integrative analysis of large gene lists using DAVID bioin-
formatics resources. Nat Protoc 4: 44–57.

Hutvagner G, Simard M. 2008. Argonaute proteins: Key players
in RNA silencing. Nat Rev Mol Cell Biol 9: 22–32.

Ishizu H, Nagao A, Siomi H. 2011. Gatekeepers for Piwi–piRNA
complexes to enter the nucleus. Curr Opin Genetic Dev 21:
484–490.

Le Thomas et al.

398 GENES & DEVELOPMENT

 Cold Spring Harbor Laboratory Press on February 21, 2013 - Published by genesdev.cshlp.orgDownloaded from 

721



Johansen K, Cai W, Deng H, Bao X, Zhang W, Girton J, Johansen
J. 2009. Polytene chromosome squash methods for studying
transcription and epigenetic chromatin modification in Dro-

sophila using antibodies. Methods 48: 387–397.
Johnson D, Mortazavi A, Myers R, Wold B. 2007. Genome-wide

mapping of in vivo protein-DNA interactions. Science 316:
1497–1502.

Josse T, Teysset L, Todeschini A-L, Sidor C, Anxolabéhère D,
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Abstract

Mitochondria contain a 16.6 kb circular genome encoding 13 proteins as well as mitochondrial tRNAs and rRNAs.
Copies of the genome are organized into nucleoids containing both DNA and proteins, including the machinery
required for mtDNA replication and transcription. The transcription factor TFAM is critical for initiation of transcription
and replication of the genome, and is also thought to perform a packaging function. Although specific binding sites
required for initiation of transcription have been identified in the D-loop, little is known about the characteristics of
TFAM binding in its nonspecific packaging state. In addition, it is unclear whether TFAM also plays a role in the
regulation of nuclear gene expression. Here we investigate these questions by using ChIP-seq to directly localize
TFAM binding to DNA in human cells. Our results demonstrate that TFAM uniformly coats the whole mitochondrial
genome, with no evidence of robust TFAM binding to the nuclear genome. Our study represents the first high-
resolution assessment of TFAM binding on a genome-wide scale in human cells.
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Introduction

Mitochondria are essential eukaryotic organelles, serving as
the epicenter of ATP production in the cell through oxidative
phosphorylation. To perform this bioenergetic function,
mitochondria utilize gene products encoded by the
mitochondrial genome, a circular DNA that is 16.6 kb long. This
genome is organized into DNA/protein structures termed
nucleoids [1]. Mitochondrial DNA (mtDNA) encodes thirteen
components of the electron transport chain, as well as 22
tRNAs and two ribosomal RNA genes. These gene products
are essential for the proper function of the respiratory chain,
and therefore maintenance of mtDNA levels and sequence
fidelity is essential for cellular bioenergetics. In a human cell,
there are hundreds to thousands of copies of the mtDNA
genome [2,3]. Damage or depletion of mtDNA causes
numerous inherited disorders, including Alpers’ Disease, ataxia
neuropathy spectrum, and progressive external
ophthalmoplegia [4,5]. Furthermore, loss and damage to
mtDNA has been implicated in cardiovascular disease [6–9],
diabetes [10–12], neurodegenerative disorders such as
Alzheimer’s [13,14], and aging [15,16]. Strikingly, increasing
mtDNA copy number promotes cell survival or function in many
models of disease associated with decreased mtDNA

abundance, such as diabetes [12,17], aging [18], Alzheimer’s
[19], and Parkinson’s [20,21]. Thus, it is critical to understand
how mtDNA copy number and integrity are maintained.

Mitochondrial transcription factor A (TFAM) is a DNA binding
protein that plays multiple roles in regulating mtDNA function.
As a sequence-specific transcription factor, it binds upstream of
the light strand promoter (LSP) and heavy strand promoter 1
(HSP1) to activate initiation of transcription. At these sites, the
footprint of TFAM binding is ~22 bp long [22,23]. As a result,
TFAM is essential for production of gene products from the
mitochondrial genome. In addition, TFAM is required for normal
mtDNA copy number, because RNA primers generated from
LSP are used to prime mtDNA replication [24,25]. Mice
heterozygous for a knockout of TFAM exhibit not only an
expected reduction (22%) in mitochondrial transcript levels in
the heart and kidney, but also a universal 34% reduction in
mtDNA copy number across all assayed tissues. Furthermore,
homozygous knockout mice have no detectable levels of
mtDNA and die during embryogenesis [26], highlighting the
importance of TFAM in maintenance of mtDNA levels and in
cellular and organismal viability.

Apart from its sequence-specific functions, TFAM is thought
to organize the mtDNA genome by coating it in a nonspecific
manner. Although how TFAM packages mtDNA is not well-
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understood, it is known to bind nonspecifically to DNA [27] and
is estimated to be sufficiently abundant to coat the genome
completely [28–30]. One model suggests that nonspecific
binding radiates from the TFAM LSP binding site, which acts as
a nucleation site for subsequent cooperative binding in a
phased pattern to yield an inter-genome homogeneous pattern
of binding [31,32]. The packaging function of TFAM appears to
have important consequences for maintenance of the mtDNA
genome. A TFAM variant that is deficient in transcriptional
activation but competent in DNA binding is capable of
preventing mtDNA depletion [33]. Therefore, as a prominent
component of mtDNA nucleoids, TFAM appears to coat the
mitochondrial genome, perhaps protecting it from turnover or
deleterious damage.

Despite the importance of the associations of TFAM with
mtDNA in the maintenance of mtDNA integrity and in cellular
viability, these interactions have only been visualized in vivo at
low resolution [34]. Therefore, to capture a high-resolution
profile of TFAM-mtDNA interactions across the entire
mitochondrial genome, we performed chromatin
immunoprecipitation followed by massively parallel sequencing
(ChIP-seq) for TFAM in human HeLa cells.

Results

Detection of TFAM-DNA interactions using ChIP-seq
To characterize TFAM binding to both the mitochondrial and

nuclear genomes in an unbiased manner, we performed ChIP-
seq targeting TFAM in HeLa cells. Because ChIP-seq data is
highly dependent on the use of high-quality antibodies, we
generated two new TFAM monoclonal antibodies (20G2C12
and 20F8A9) that efficiently immunoprecipitated TFAM (Figure
1A). Both of these antibodies gave clean mitochondrial and
nucleoid signals in immunofluorescence experiments with
cultured HeLa cells (Figure 1C,D). The 20G2C12 antibody also
performed well in Western blots of whole-cell lysates,
recognizing a single protein band of ~23 kDa (Figure 1B).

Given the high efficiency of 20G2C12 in immunoprecipitating
TFAM, as well as its high specificity, we used it to capture
TFAM-associated DNA fragments for ChIP-seq analysis. DNA
was sonicated prior to immunoenrichment and size-selected
prior to library building so that the average fragment length of
the final library was centered around 200 bp, a fragment
distribution allowing for high-resolution deconvolution of binding
events. We generated 3 replicates and matching controls. The
sequencing depth of all samples was between 18 million and
48 million mappable reads, which is generally sufficient for
comprehensive identification of transcription factor binding sites
[35].

A common concern with ChIP-seq datasets is the variability
of enrichment for true binding events as compared to
background. In a typical ChIP-seq experiment, a minority of
sequencing reads originates from binding events, with the
majority representing random genomic DNA. Even for the
same DNA binding factor, large variations in the strength of
enrichment can be observed, and therefore it is critical to
assess the degree of enrichment before downstream analysis.
A number of ChIP-seq quality control metrics have been

developed [35] for nuclear transcription factors. However,
TFAM is expected to bind to the mitochondrial genome, which
has very different characteristics from the nuclear genome. In
addition, it is predicted to bind both in the classical localized
manner [36] as well as broadly across the mitochondrial
genome. As a result, metrics for evaluating nuclear
transcription factors are not well-suited for analysis of TFAM
binding data. We therefore examined the fraction of
sequencing reads in our libraries mapping to the mitochondria
as a proxy for the enrichment of TFAM binding events.
Strikingly, between 30% and 75% of TFAM ChIP-seq reads
mapped to the mitochondrial genome, while less than 2% of
reads mapped to the mitochondrial genome in the input
samples, indicating that our TFAM ChIP-seq datasets are
indeed highly enriched for TFAM binding events (Figure 1B).
We note that 75% ChIP enrichment is extremely high (in fact,
practically unprecedented) for any transcription factor dataset
[35], thus underscoring the high experimental quality of our
datasets.

Because partial copies of the mitochondrial genome are also
present in the nuclear genome, not all reads originating from
mtDNA can be mapped uniquely. Therefore, we characterized
TFAM binding to mtDNA and to the nuclear genome
separately. We analyzed mitochondrial binding events by
aligning sequencing reads to the mitochondrial genome alone
(restricting our analysis to reads mapping perfectly without any
mismatches to further increase mapping accuracy), and
analyzed binding to the nuclear genome by aligning only the
reads which did not map to the mitochondrial genome, as
outlined in Figure 2A. For a standard nuclear transcription
factor, this approach may cause some reads originating from
the nuclear genome to artificially map to the mitochondrial
genome. However, given that TFAM is known to bind to the
mitochondrial genome and the extremely high enrichment for
TFAM binding to mtDNA in our TFAM ChIP-seq libraries, this
should not be a significant confounding factor.

TFAM coats the mitochondrial genome
As discussed above, TFAM has not only been proposed to

bind specifically to well-defined binding sites in the D-loop, but
has also been suggested to play a nonspecific packaging role
in the nucleoid that is essential for mtDNA integrity. However,
little is known about the pattern of non-specific binding of
TFAM to the mitochondrial genome. Localized binding at the D-
loop and diffuse binding across the rest of the genome are
expected to result in distinct ChIP-seq signal profiles.
Localized, “point-source” binding to DNA results in an
asymmetric distribution of reads mapping to the forward and
reverse strand around the binding site of the protein [36,37],
while diffuse binding does not produce such strand asymmetry.

To characterize TFAM binding to mtDNA, we examined the
forward and reverse strand read distribution after mapping
TFAM ChIP-seq and input library reads to the mitochondrial
genome. Strikingly, we did not observe regions of obvious
enrichment and strand asymmetry in the D-loop; in particular,
we did not see specific binding at the predicted HSP1 and LSP
sites. On the whole, the TFAM ChIP-seq signal was broadly
distributed over the whole mitochondrial chromosome, and

TFAM Coating of the Mitochondrial Genome
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Figure 1.  Characterization of TFAM monoclonal antibodies.  (A) Immunoprecipitation of TFAM from cell lysates. HeLa cell
lysate was applied to sheep anti-mouse Dynabeads conjugated to anti-Myc, 20G2C12 TFAM antibody, 20F8A9 TFAM antibody, or
a 50/50 mixture of 20G2C12 and 20F8A9 TFAM antibodies. The labeled bands are: 1) Antibody heavy chain; 2) antibody light chain;
3) TFAM. (B) Western blot using the 20G2C12 antibody detects a ~23kDa band. (C and D) Immunocytochemistry showing TFAM
localization. Mitochondria were identified by PPIF staining; mtDNA was identified by anti-DNA staining. There was no evidence for
nuclear localization of TFAM using either antibody.
doi: 10.1371/journal.pone.0074513.g001
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while coverage was not perfectly uniform, the amplitude of the
non-uniformity was not significant, and the signal profile closely
tracked that of the input sample (Figure 3). The low level of
non-uniformity likely results from sequencing biases, which has
been documented to skew coverage [38,39]. Because our
libraries were carefully size-selected for fragments in the 200
bp range, discrete TFAM binding sites would be expected to
yield discrete signal localizations. Therefore, we interpret these

results as evidence for the uniform coating of the whole
mitochondrial genome by TFAM. We observed one region of
apparent localized enrichment exhibiting strand asymmetry in
the ND2 ORF near the origin of light strand replication (OL)
(Figure 3F), which we discuss in the Discussion section.

To further verify our results, we carried out ChIP-seq against
TFAM with a second TFAM monoclonal antibody, 20F8A9. We
obtained similar results (Figure S1) and found significant

Figure 2.  ChIP-seq analysis of genome-wide TFAM binding.  (A) Overview of computational processing of data. Reads were
trimmed to 36 bp and then either mapped against the mitochondrial genome (ChrM), or the complete hg19 version of the genome.
After removing multireads and alignments to the mitochondrial genome, peaks in the nuclear genome were called using MACS2. (B)
The proportion of sequencing reads mapping to chrM in ChIP and input datasets. All replicates of the ChIP-seq resulted in at least
30% of reads mapping to the mitochondrial genome, much greater than the 0.4-1.9% of reads mapping to mtDNA in the input
datasets. Replicates 1-3 were performed using the 20G2C12 antibody, while Replicate 4 was performed using the 20F8A9 antibody.
doi: 10.1371/journal.pone.0074513.g002

TFAM Coating of the Mitochondrial Genome

PLOS ONE | www.plosone.org 4 August 2013 | Volume 8 | Issue 8 | e74513

727



Figure 3.  Coating of the mitochondrial genome by TFAM in HeLa cells.  Circos plot of plus strand and minus strand TFAM
ChIP-seq and input read density signal over chrM. (A, E) Annotation of protein coding (green on forward/heavy strand, red on
reverse/light strand), ribosomal RNA (blue) and tRNA (blue on forward/heavy strand, grey on reverse/light strand) transcripts. (B) D-
loop (black), LSP promoter (large red tile), known LSP TFAM binding site (small red tile), HSP promoter (large blue tile), known
HSP1 TFAM binding site (small blue tile), and origins of heavy strand replication (Ori-b, orange tile; OH, yellow tile). (C) TFAM ChIP-
seq signal on forward (red) and reverse (blue) strands. (D) Input signal on forward (red) and reverse (blue) strands. (F) Origin of
light strand replication (yellow tile). Note that the input signal is exaggerated 60-fold relative to the ChIP-seq signal in order to
visualize coverage irregularities. The signal from the TFAM ChIP-seq largely follows that of the input, indicating generalized binding
across the mitochondrial genome.
doi: 10.1371/journal.pone.0074513.g003
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correlation between the 20F8A9 dataset and the three datasets
obtained from the 20G2C12 antibody datasets (p < 0.0001).

No evidence for binding to the nuclear genome
Previous studies have suggested that TFAM can be found in

the nucleus and that it modulates the transcription of nuclear
genes. In rat neonatal cardiac myocytes, TFAM was found to
bind to the promoter of SERCA2, the homolog of human
sarco(endo) plasmic reticulum calcium-ATPase 2 (ATP2A2),
and was implicated in regulating its transcription [40]. Given the
extremely high degree of TFAM binding enrichment in our
datasets, any robust nuclear TFAM binding events should be
readily detectable. To analyze nuclear binding, we excluded all
sequencing reads mapping to the mitochondrial genome and
used the resulting set of reads to identify putative TFAM
binding sites. We first looked for significant global read
clustering using cross-correlation between reads mapping to
the forward and the reverse DNA strands [35,36]. Cross-
correlation plots for input samples and for TFAM ChIP-seq
datasets were indistinguishable from each other (Figure 4A,B).
Next, we called putative TFAM binding sites using MACS2 [41].
Using default settings (corresponding to a q-value cut-off of
10-2), we identified 72, 137 and 153 sites respectively for the
three replicates generated with antibody 20G2C12, and a
single site for the 20F8A9 antibody. However, manual
inspection of each of the identified sites revealed that all were
likely to represent artifacts, mostly associated with repetitive
DNA sequences, as none had the expected strand asymmetry
of read distribution around a binding site. Instead, the two
strand profiles at each site were identical (summarized in
Figure 4D, with the classic nuclear transcription factor NRSF
shown for comparison in Figure 4C), and numerous
unmappable regions and repetitive elements were present in
the immediate vicinity of many of the called sites. Inspection of
the ATP2A2 gene revealed no TFAM enrichment neither in the
promoter region nor anywhere else in the neighborhood of the
gene (Figure 4E). Furthermore, we do not detect nuclear
localization of TFAM in our cells (Figure 1C). Therefore, in
HeLa cells under normal growth conditions, we find no
evidence for specific binding of TFAM to nuclear target genes.

Discussion

Previous in vitro studies have suggested that TFAM binds
specifically to LSP and HSP1, and that it may also bind
nonspecifically in a phased manner. Furthermore, evidence
has been presented for its nuclear localization and action as a
canonical nuclear transcription factor in rat neonatal cardiac
myocytes. However, no direct genome-wide measurements of
TFAM binding have been previously reported. Our TFAM ChIP-
seq data reveal very high enrichment for reads mapping to the
mitochondrial genome, but a binding pattern that largely mirrors
the read distribution observed in the input DNA, suggesting
broad, non-specific binding to mitochondrial genome. This
pattern is highly reproducible, indicating that the average
population-wide state of TFAM-mtDNA interactions is stable.
We found no correlation between irregularities in TFAM signal
distribution and characteristics of the mitochondrial genome

such as GC content (data not shown). Thus, we conclude that
TFAM binds to the mitochondrial genome nonspecifically and
without bias when cells are grown under typical culture
conditions. Although we do not observe the synchronized
phased binding seen in in vitro studies, we cannot rule out a
model where individual mtDNAs have such a pattern of binding
initiating from a non-universal nucleation site.

Strikingly, we did not observe localized enrichment of binding
at the known LSP and HSP1 TFAM binding sites. Peak
patterns mirrored that of the input in these regions, and no
ChIP-seq peaks displaying the canonical strand asymmetry in
read distribution were observed. This finding can be explained
by a model in which the interaction of TFAM with the LSP and
HSP1 binding sites is relatively transient and infrequent
compared to a more stable non-specific association with the
genome in its packaging state.

We did detect one site in the genome exhibiting the
characteristics of a specific, localized ChIP-seq peak, centered
at 5175 bp in the ND2 ORF. The localized nature of the ChIP
signal at this site suggests higher occupancy of TFAM. This
peak localizes to 546 bp upstream of the OL. Strikingly, TFAM
has previously been localized 520 bp upstream of the OL of rat
mtDNA [42–44]. We found no sequence similarity between the
rat and human sites, and in general this region of the mtDNA
genome shows low homology between the two species.
Further work will be required to understand the significance of
this putative TFAM binding site.

Finally, analysis of all datasets for TFAM binding to the
nuclear genome yielded no hits distinguishable from common
ChIP-seq artifacts. Although Watanabe et al. observed
regulation of the SERCA2 gene in rat myocytes, we did not
detect TFAM binding at the promoter of its ortholog in humans.
Previous studies have shown nuclear localization of TFAM in
rat hepatoma cells [45], as well as an alternate isoform of
TFAM in mouse testis nuclei [46]. We have thus far been
unable to detect nuclear TFAM localization in HeLa cells
(Figure 1C), suggesting that nuclear localization and
transcriptional regulation may be cell type or perhaps species-
dependent. ChIP-seq in different cell lines may be able to
detect such nuclear interactions.

We demonstrate here the first high-resolution ChIP-seq
analysis of TFAM binding to the mitochondrial genome. Aside
from generalized, largely non-specific binding across the
mitochondrial genome, we detected a putative specific binding
site upstream of the origin of light strand replication. We do not
observe the expected binding at the known HSP1 and LSP
sites, nor did we identify any nuclear binding sites. An area that
remains to be explored is the dynamic nature of TFAM-DNA
interactions with respect to both the nuclear and mitochondrial
genomes. ChIP-chip on the yeast mitochondrial genome has
shown that metabolic changes can lead to differential binding
of the yeast TFAM homolog, Abf2p [47]. It is possible that such
remodeling also occurs in the mammalian system, and further
studies will provide insight into the dynamic nature of the
mtDNA-protein interactions within the nucleoid that serve to
protect its integrity.

TFAM Coating of the Mitochondrial Genome
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Figure 4.  Absence of TFAM binding to the nuclear genome.  (A) Cross-correlation plot of input DNA computed over the nuclear
genome. (B) Cross-correlation plot of TFAM ChIP-seq computed over the nuclear genome. (C) Distribution of ChIP-seq reads
mapping to the plus and minus strand around called binding sites in a ChIP-seq dataset for the NRSF transcription factor [51] in
HeLa cells, generated by the ENCODE consortium [52]. (D) Distribution of TFAM ChIP-seq reads mapping to the plus and minus
strand around called binding sites indicates lack of real binding sites. (E) No ChIP-seq enrichment around the promoter of the
SERCA2/ATP2A2 gene, previously suggested to be a TFAM target.
doi: 10.1371/journal.pone.0074513.g004
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Materials and Methods

Cell growth and treatment
HeLaS3 cells were cultured in Dulbecco’s modified Eagle’s

medium (DMEM, Invitrogen #11995) containing 10% bovine
serum (Invitrogen #16170), penicillin and streptomycin, and
additional L-glutamine (2mM). Cells were fed 24 hours before
harvest for ChIP-seq, which was performed at 80-90%
confluency.

Antibody Production and characterization
Antibodies were produced by the Caltech Monoclonal

Antibody Facility and raised against the full-length TFAM
protein in mouse. Immunoprecipitation with 20G2C12 and
20F8A9 TFAM antibodies and Myc antibody (Santa Cruz
#sc-40) was performed according to established protocols
using M-280 sheep anti-mouse Dynabeads (Invitrogen
#11201D). Immunoblotting of IP products was performed using
a monoclonal TFAM 18G102B2E11 antibody, also custom
generated, at 1:2000, with goat anti-mouse HRP antibody
(1:10,000, Jackson ImmunoResearch #115-056-003).
Immunoblotting of HeLa whole cell lysate with 20G2C12 was
performed at a 1:200 dilution and with goat anti-mouse HRP
antibody.

Immunocytochemistry
HeLa cells cultured as described above were plated onto

poly-lysine coated glass coverslips 48 hours prior to fixation in
formaldehyde and permeabilization with 0.1% Triton X-100. For
colocalization of TFAM to mitochondria, 20G2C12 or 20F8A9
antibodies were used at 1:10 in conjunction with PPIF at 1:200
(ProteinTech #18466-1-AP). Secondary antibodies were goat
anti-mouse AF488 (1:500, Invitrogen #A11001) and donkey
anti-rabbit AF546 (1:500, Invitrogen #A10040). Cells were also
stained with DAPI to visualize nuclei. Immunocytochemistry to
visualize colocalization of mitochondrial nucleoids and TFAM
was performed sequentially due to both antibodies being raised
in mouse. Sequential immunostaining yielded no background
fluorescence due to cross-antibody reactivity (data not shown).
Order was as follows: anti-TFAM antibody (1:10); goat anti-
mouse AF488 (1:500, Invitrogen #A11001); anti-DNA antibody
(1:25, Millipore #CBL186); goat anti-mouse AF555 (1:500,
Invitrogen #A21426), DAPI. Images were acquired with a Zeiss
LSM 710 confocal microscope with PlanApochromat 63X/1.4
oil objective. Z-stack acquisitions were converted to maximum
z-projections using ImageJ software.

Chromatin immunoprecipitation and sequencing
ChIP experiments and preparation of DNA for sequencing

were performed following standard procedures [48] with some
modifications. Cells were fixed for 10min at RT in 1%
formaldehyde, harvested using a cell scraper, washed once in
ice-cold PBS, and resuspended in RIPA buffer with protease

inhibitor. The sample was then sonicated using a 3.2mm
microtip (QSonica Sonicator 4000) at 30s on/30s off intervals
and 40% amplitude for 180min while in a -30°C 3:1 isopropanol
and water bath containing dry ice. Subsequent steps were
performed as per the standard protocol. DNA was size-
selected during library building to an average fragment size of
200bp. Libraries were sequenced using Illumina GAIIx and
Illumina HiSeq 2000. Sequencing data is available under GEO
accession record GSE48176.

Sequencing data processing and analysis
Sequencing reads were trimmed down to 36 bp and then

mapped against either the female set of human chromosomes
(excluding the Y chromosome and all random chromosomes
and haplotypes) or the mitochondrial genome alone, using the
hg19 version of the human genome as a reference. Bow tie
0.12.7 [49] was used for aligning reads, not allowing for any
mismatches between the reads and the reference. ChIP-seq
peaks were called using MACS2 [41] with default settings
except for the mfold parameter, which was lowered to (2,30).
Circos plots were generated using Circos version 0.60 [50].
Additional data processing was carried out using custom-
written python scripts. ENCODE data was downloaded from
the UCSC browser (http://hgdownload-test.cse.ucsc.edu/
goldenPath/hg19/encodeDCC/wgEncodeHaibTfbs) and its use
here complies with its terms of usage. Pearson correlation
coefficient, t-test, and p values were calculated using
embedded and custom Microsoft Excel functions.

Supporting Information

Figure S1.  Comparison of profiles of TFAM binding to
mitochondrial genome.
Circos plots of TFAM ChIP-seq experiments: (1) 20F8A9
antibody ChIP-Seq; (2) 20G2C12 replicate 1; (3) 20G2C12
replicate 2; (4) 20G2C12 replicate 3. Read profiles are very
similar across replicates and antibodies.
(TIF)
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We tested whether self-organizing maps (SOMs) could be used to effectively integrate, visualize, and mine diverse ge-
nomics data types, including complex chromatin signatures. A fine-grained SOM was trained on 72 ChIP-seq histone
modifications and DNase-seq data sets from six biologically diverse cell lines studied by The ENCODE Project Consortium.
We mined the resulting SOM to identify chromatin signatures related to sequence-specific transcription factor occu-
pancy, sequence motif enrichment, and biological functions. To highlight clusters enriched for specific functions such as
transcriptional promoters or enhancers, we overlaid onto the map additional data sets not used during training, such as
ChIP-seq, RNA-seq, CAGE, and information on cis-acting regulatory modules from the literature. We used the SOM to
parse known transcriptional enhancers according to the cell-type-specific chromatin signature, and we further corrobo-
rated this pattern on the map by EP300 (also known as p300) occupancy. New candidate cell-type-specific enhancers were
identified for multiple ENCODE cell types in this way, along with new candidates for ubiquitous enhancer activity. An
interactive web interface was developed to allow users to visualize and custom-mine the ENCODE SOM. We conclude that
large SOMs trained on chromatin data from multiple cell types provide a powerful way to identify complex relationships
in genomic data at user-selected levels of granularity.

[Supplemental material is available for this article.]

Sequence-based functional genomics assays are generating vast

amounts of data that map the occupancy of specific transcription

factors, the chemical status (such as acetylation and methylation),

and positions of chromatin components such as core histones, the

loading of RNA polymerases, and domains of DNase I hypersen-

sitivity across the human genome at high resolution (Barski et al.

2007; Johnson et al. 2007; Mortazavi et al. 2008; Hesselberth et al.

2009; for review, see Pepke et al. 2009). Such measurements are

now being made for a myriad of cell types, states, and tissues by

individual laboratories and by large consortia such as ENCODE

and the Epigenome Roadmap (Bernstein et al. 2010; The ENCODE

Project Consortium 2012). This wealth of data contains rich, com-

plex, combinatoric information about the inputs and outputs of

gene regulatory networks (GRNs) that define each cell type and state.

However, it is not yet easy to extract and distill biologically mean-

ingful relationships, especially not on the multiple scales that range

from broad global relationships to fine-grained ones that affect small

groups of similarly behaving genes or subgenic regulatory elements.

Numerous prior studies have focused on understanding the

relationship between an increasingly complex histone modifica-

tion ‘‘code’’ and the activity state of DNA elements, such as tran-

scriptional enhancers, insulators, promoters, and more or less

vigorously transcribed regions for a given cell type or tissue (for

review, see Hon et al. 2009). Furthermore, apparent cross talk be-

tween context-dependent histone modifications suggests a com-

plex grammar (for review, see Lee et al. 2010). Pioneering analyses

focused on specific ad hoc combinations of modifications found in

the proximity of transcription start sites (TSS) or in selected distal

intergenic regions (Barski et al. 2007; Wang et al. 2008).

More recent approaches have been more general and agnos-

tic, dividing the entire genome systematically, either at regular

intervals or based on the data (i.e., ‘‘segmenting’’ the genome) and

then classifying the resulting genome segments (regions) into five

to 100 states of chromatin mark combinations (classes) by apply-

ing statistical or machine learning methods such as Hidden Markov
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Models (HMMs) or Dynamic Bayesian Networks (e.g., Ernst and

Kellis 2010; Hoffman et al. 2012). The resulting machine-derived

‘‘states’’ are then semi-manually annotated to relate them to func-

tions such as gene activation or repression. However, it is not clear

a priori if the limited numbers of states used in these analyses, partly

for ease of interpretation, fully or optimally capture the biological

richness in the data, especially for the much larger and more diverse

collections of data sets now being generated by projects such as the

ENCODE and NIH Roadmap Epigenomics Projects.

The self-organizing map (SOM) is an unsupervised machine-

learning method that was developed to cluster and visualize high-

dimensional data (for review, see Kohonen 2001). It projects high-

dimensional data onto a two-dimensional map composed of many

units, each of which can be regarded as a mini-cluster, defined by its

associated prototype vector of component weights. SOMs capture

similarity relationships present in the training data as map topology,

such that individual neighboring hex-units can subsequently be

clustered after training into ‘‘metaclusters’’ as appropriate. This is

analogous to the way biologists typically interact with RNA expres-

sion patterns and subpatterns in a classic two-way hierarchical clus-

tering (Eisen et al. 1998). Indeed, SOMs with modest map sizes of

less than 100 units have been used for more than a decade for clus-

tering gene expression data (Golub et al. 1999; Milone et al. 2010;

Newman and Cooper 2010; Spencer et al. 2011) or modest numbers

of other genomic data sets (Moorman et al. 2006; Suzuki et al. 2011).

While SOMs with small map sizes produce results that are generally

equivalent to K-means, SOMs with thousands of units on boundary-

less maps can show emergent behavior (Ultsch 1999). We reasoned

that large SOMs should be able to capture a greater variety of com-

bined chromatin mark patterns compared with methods that find

a relatively small number of chromatin states, and that the resulting

organization could be more readily visualized and ultimately mined

in an intuitive way. Specifically, we anticipated that a large SOM,

constructed from multiple genome-wide data types, collected across

biologically distinct ENCODE cell types, would begin to reveal pat-

terns of active, cell-type-specific transcriptional control elements

based on their associated chromatin signatures.

As a first test of these possibilities, the trained ENCODE

chromatin SOM presented here displayed distinct spatial organi-

zation that reveals how combinations of histone marks, DNase I

hypersensitivity, and RNA polymerase occupancy correlate with

gene features and activity, such as a relatively large supercluster of

transcription start sites (TSS) that are active in one or more cell

types, or a cluster of genes repressed in another cell type or types.

We show how additional ChIP-seq, RNA-seq, transcription factor

binding motifs, and other functional data can be placed on the

chromatin map to identify and interpret cell-type-specific regula-

tory elements and transcription start sites. We then hierarchically

cluster the SOM hex-units to explore global relationships of the

different data sets on the SOM. Gene Ontology (GO) analysis re-

veals distinct enrichments in individual, often neighboring, units

on the map related to cell-type-specific gene regulation. Finally, we

introduce an interactive web interface to facilitate further mining

of the ENCODE SOM and apply it to the analysis of cell-type-

specific EP300 (also known as p300)–enriched units.

Results

Chromatin SOM construction and overall organization

The workflow for building a chromatin-based SOM begins with

primary data mapping and genome segmentation and ends with

visualization and data mining (Fig. 1). Briefly, the first step is to

computationally break the genome into ‘‘segments’’ based on the

data. The goal of segmentation is to define, across the entire ge-

nome, DNA segments that share the presence and absence of

marks in the input data. To coordinate our results with other ENCODE

Project Consortium work (The ENCODE Project Consortium

2012), we used a specific genome segmentation generated on 84

preselected data sets of eight histone modifications, RNA poly-

merase II, and CTCF from ChIP-seq, ChIP input control, and three

open chromatin assays across six cell types using a ‘‘stacked’’ seg-

mentation generated with ChromHMM (Ernst and Kellis 2010).

We then constructed a training matrix consisting of the signal

density for 72 of these data sets for each of the 1.5 million indi-

vidual genome segments using only one of the DNase-seq assays

to represent open chromatin. The Methods and Supplemental

Figure S1 describe how the stacked segmentation differs from other

segmentations of the same data.

We used the resulting matrix of 1.5 million 72-dimensional

data vectors to train a SOM with map size of 30 rows of 45 columns

(1350 units), and selected the best out of 10 maps based on the

lowest quantization error (Methods) (Supplemental Fig. S2). The

size of the map was selected to allow us to recover at least a thou-

sand distinct states, if they were present in the data. In a uniformly

distributed untrained map, we would expect 1170 segments/unit

and 2.2 Mb/unit, on average. This map is a toroid, meaning that

the top units on the map are seamlessly connected to the bottom

units, and that the same applies to the leftmost and rightmost

units (Supplemental Fig. S3). We chose the toroid form because it

has no boundaries, which should prevent it from compressing

clusters into map corners. To display a toroid map in two dimen-

sions, we ‘‘slice it open,’’ and some clusters are therefore visually

split; that is, they ‘‘wrap around’’ the top edge to the bottom and

from the left edge to the right, as indicated by the arrows (Sup-

plemental Fig. S3). All assignments of segments to SOM hex-

units are available for this SOM as a single bed file (Supplemental

Table S1).

The distribution of DNA segments and nucleotides on the

untrained map was without pattern and relatively even, while the

trained map was much more uneven (Figs. 1, 2). This is expected

because the segments on the trained map have been organized into

clusters that contain differing segment numbers and nucleotide

densities. For example, many of the larger DNA segments had little

to no signal for any data set, and they were sequestered into a rel-

atively small fraction of the SOM; on this 30-by-45 map, 48 con-

tiguous units (3.5% of all units) captured 38% of the entire genome

sequence, and is shown as high nucleotide density and segment

count in Figure 2, A and B. The remainder of this map is dedicated

to more finely parsing segments that have some signal in at least

one of the training data sets. These overall organizational proper-

ties were not specific to this particular instance of the SOM nor to

the ENCODE chromatin data. The top-scoring ENCODE SOM was

very similar to the next nine best-scoring SOMs, each trained in-

dependently on the same input data, but from different random

initializations. Specifically, we found that, for all of the units and

regions of the SOM discussed below, segments within the same

unit were clustered on the other nine maps within the same unit or

adjoining units >80% of the time (Fig. 2C). We further analyzed the

effect of leaving individual data sets out by retraining SOMs with

72 combinations of 71 data sets each and repeating the repro-

ducibility analysis. We found that map reproducibility was robust

to the removal of any one of 29 data sets (listed in Supplemental

Table S2). While no single group of data sets was completely re-
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Figure 1. Training the self-organizing map and general overview of data analysis. The genome is first segmented based on the signal density of input
data sets. Any segmentation approach can be applied; in this case, the ChromHMM-derived segmentation in the primary publications by The ENCODE
Project Consortium was used. The signal density is calculated for each segment and each data set, resulting in an input matrix of M 3 N dimensions,
where M is the number of segments and N the number of data sets. The SOM is then initialized randomly from the input matrix, and trained. Additional
data sets, not used for training, can then be mapped to the SOM, and these mappings and the distribution of segments on the trained SOM can be mined
for interesting biological relationships.
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dundant, we found that three groups of data sets (H3K9ac,

H3K36me3, and Control) were redundant in four out of six cell

types, whereas another group of data sets (RNA Pol II, DNase I, and

H3K4me3) was redundant in only one of six cell lines. Inter-

estingly, the removal of these apparently redundant data sets still

affected the reproducibility of a distinct subset of units, suggesting

that they still contributed to the organization of the SOM in re-

stricted regions of the map. These results argue that our SOM is

robust and stable, and that segments with similar signatures are

stably located near each other on the map, even though such

segments do not always fall into a single hex-unit on indepen-

dently trained SOMs. Local differences of the latter kind are ex-

pected for a nondeterministic method and can be discriminated

from major differences, as shown below.

The SOM displayed several distinctive, very-low-segment-

count ‘‘boundaries,’’ usually just one unit wide and with as few as

30 segments/unit (Fig. 2A,B). These are, in effect, boundary units

that separate clusters located on either side and that are charac-

terized by distinct mark profiles. For example, H3K4me3-enriched

segments are segregated from CTCF-associated ones in an adjacent

map region (Supplemental Fig. S4).

We next explored where transcription start sites (TSS) map

on the ENCODE SOM. No explicit information on annotated TSSs

was used in building this SOM. Our expectations were that active

TSSs would share a set of features present in the training data, in-

cluding high DNase I hypersensitivity, RNA polymerase II occu-

pancy (in varying intensities), H3K9ac, and H3K4me3 marks. This

predicts that active TSSs would generally cluster together some-

Figure 2. Map organization. (A) The segment count distribution over the map is uneven. While the average number of segments per unit is 1170,
individual units range from 30 to 9334 segments. Note the distinct 1-unit-wide boundaries that contain very few segments separating denser regions.
(B) The nucleotide distribution reflects the segment count, with the units with the most segments also containing the most nucleotides. These segments
are also larger, thus accounting for the large portion of the genome that has little to no signal. (C ) Reproducibility of clustering of two segments in the same
unit or adjoining units as described in the text. (D) TSS-centric organization of active proximal promoters. The unit densities of points �2 kb,�1 kb, 0 bp,
+1 kb, and +2 kb of GENCODE 7 TSS show the distinct organization of active promoters driven primarily by a common set of genes expressed in more than
one cell type.
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where on the SOM. In contrast, inactive TSSs were expected to lack

these marks and, additionally, they might or might not show

a repressive mark signature. We therefore expected inactive TSSs to

occur elsewhere on the map, sequestered into one or a few clusters,

depending on whether they have no other data from the training

set or contain repressive mark data. A further expectation was that

the SOM would detect and subcluster segments according to the

intensity of their active-TSS signatures, since we had not reduced

the data to simple present–absent calls for signal, but had retained

all the quantitative information in the primary data. Finally, we

expected that the SOM would subcluster active TSSs according to

the cell type or combinations of types in which they were active.

All of the above expectations were met. A prominent region

of the map, having relatively low segment and nucleotide den-

sity, showed the highest fractional enrichment in the number

of GENCODE 7 (Harrow et al. 2012) TSS, with 27 units passing

a threshold of 0.8 TSS/segment (Fig. 2D). Note that each TSS in this

analysis was mapped as a single nucleotide, and was therefore

assigned to only one DNA segment, even if there were several

neighboring segments with very similar histone mark data. For this

reason, we do not expect every DNA segment with an active TSS

histone mark signature to score positive in this tally. As expected,

the prominent TSS domain in the lower-right quadrant of the SOM

corresponded with a domain of maximal DNase I hypersensitivity,

as illustrated by comparing this with H1-hESC DNase-seq data

(cf. Fig. 1 DNase I panels with Fig. 2D).

We next asked how DNA sequences located at varying dis-

tances from the nearest active TSS are organized on the map and

found that 35 units are enriched in segments within 2 kb of these

TSSs. We expected that near an active TSS, the chromatin signature

would be very similar to the TSS point nucleotide for many seg-

ments, but that some segments would now display ‘‘mixed’’ chro-

matin signatures that retain some qualities of a pure TSS and add

some characteristics of nearby chromatin. Such a ‘‘neighborhood’’

effect reflects properties of the original ChromHMM segmentation

process as well as the biology of the histone mark pattern in each

input cell type. As the distance from the TSS increases into the gene

body or into the upstream promoter region, the histone signatures

changed. On average, the distinct enrichments of single nucleo-

tides that are located at �2 kb, �1 kb, +1 kb, and +2 kb from the

TSSs in neighboring units demonstrates that the map has spatially

clustered active promoters and their immediate upstream and

downstream regions (Fig. 2D).

The prototype vectors for the units in the active-TSSs region

revealed that most DNA segments at the center of this region possess

signatures of expression in more than one cell type, although some

adjacent clusters are cell-type-specific. When examined for RNA

expression pattern and GO terms, the shared ones were house-

keeping and other genes common to the cell types in this study,

as expected. Investigating even more closely, we observed that in-

dividual units parse the levels of associated chromatin marks (e.g.,

high vs. medium vs. low H3K4me3) and the magnitude of the RNA

polymerase signal, in different data sets and cell types. As discussed

below, a user can drill even further down to select and extract DNA

segments from hex-units with particular signature characteristics

by using the SOM viewer and its associated DNA segment database.

Inspection of the SOM also reveals that multiple histone

modification marks, previously shown to be associated with active

transcription or active repression, drove the organization of the

majority of the map (e.g., H3K4 mono-, di-, and tri-methylation,

and H3K27me3 for activation and repression, respectively). This

emphasis was expected, as several histone marks associated with

active transcription tend to produce strong ChIP signals that are

localized over relatively short DNA regions. The information-rich

map regions typically show distinctive quantitative and qualita-

tive combinations of marks. Most component planes, such as the

ones shown for RNA polymerase II or H3K4me3 occupancy in the

cell line GM12878 (Supplemental Fig. S4), form a single, internally

connected cluster for their respective signal densities on the toroid.

However, several other marks such as H3K4me2 and H3K27me3

have more than one distinct cluster on the map. This pattern

suggests that they are found together with at least one other

different additional chromatin profiles(s), or that regions rich in

these marks are distinctive for individual cell types, or both (all

component weights are displayed in Supplemental Figs. S5–S10). We

return to dissecting the more complex patterns below.

Interactive SOM viewer for visualization and mining

We created an interactive JavaScript web-based SOM viewer with

an associated map segment database to facilitate these explora-

tions (http://woldlab.caltech.edu/ENCODESOM). It allows users

to visualize and compare units on the map with respect to any

input data set or to additional data types (see below), to find

properties of different regions of the map, such as Gene Ontology

enrichments, and to mine the segments in a given hex-unit or

cluster. The interface for version 1.0 consists of five tabs: Training

Data, TSS, GO, Other Data, and Clusters, which correspond to the

results in this manuscript. A tool for highlighting groups of hex-

units in one view and then seeing that outline on any subsequent

view aids in evaluating the relatedness of one distribution (RNA

polymerase II, for example) with another (TSS annotation or CAGE

tags). Users can click on individual units and find the associated

segments, genes, and GO-enriched genes. They can also select their

own set of units and flag them across the different views of the

data. This allows users, for example, to highlight a cluster of in-

terest in the Cluster tab and see the clustering reproducibility of

those highlighted units in the Other tab.

By using the viewer to ask how data from the input data sets

are clustered and how those clusters relate to each other, one im-

mediately sees the overlaps of units high in DNase I hypersensi-

tivity, H3K9ac, H3K27ac, H3K4me2, and H3K4me3. Had we not

known prior to this study that these chromatin signatures are af-

filiated with active promoters, the SOM would have allowed us to

readily discover these relationships. Even knowing these general

relationships, the SOM allows us to mine for fine structure that

includes more complicated profiles of cell type specificity.

In contrast, we detected little overall change in H4K20me1

across the cell types and little affiliation of this mark with other

signals, which leads segments high in those marks to cluster in

a single location (upper-left quadrant of the map, Supplemental

Fig. S11). Finally, we saw that the RNA Pol II component plane

enrichments showed a gradient of RNA Pol II signal centered on

a single unit that has the highest signal, which emphasizes that the

SOM is clustering on the presence of the signal and also on its

intensity. Units immediately around it have lower RNA Pol II in-

tensity, and a user could then mine these, asking what additional

information (possibly other marks and/or cell-type patterns) are

distinguishing them from the single peak RNA Pol II unit.

Overlaying other ChIP-seq and functional data to find
additional relationships

The SOM can also be used to test predictions, mine associations,

and map relationships for data sets that were not used to train the
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SOM. We began by exploring evidence for cell-type-specific cis-

regulatory modules (CRMs) in the erythroid/monocyte lineage

(K562) and in embryonic stem cells (H1-hESC) (Fig. 3). The tran-

scription factors GATA2 and SPI1 (also known as PU.1) are im-

portant in erythroid differentiation, while POU5F1 (also known as

OCT4) and NANOG are critical for defining embryonic stem cells.

ENCODE ChIP-seq occupancy data for each factor was mapped

onto the SOM (Fig. 3E–J). Occupancy for each factor was con-

centrated in two cell-type-specific clusters, one in the upper-left

quadrant, and the other in the lower right (wrapping around to the

top right, due to the continuous structure of the map). We then

asked how these clusters relate to each other within each cell type,

across cell types, and with underlying histone-mark signatures.

In K562 and H1-hESC cells, the upper-left quadrant of the

SOM was prominent for the concentration of histone marks

H3K27ac and H3K4me1, which have been affiliated with active

enhancers and some promoters in previous studies. When H3K4me1

domains are outlined for K562 and H1-hESC (hexagon and tri-

angle, respectively), prominent cell-type specificity is shown by

the fact that they are largely separated (Fig. 3C,D). However, there

is also a small domain of overlap, reflecting a few units in which

similar chromatin signatures exist in both cell types.

We next asked how SOM domains of enhancer-associated

histone marks are related to transcription factor occupancy data.

We used well-studied factors that regulate hematopoetic target

genes (GATA2 and SPI1) in K562 cells, and factors that regulate

pluripotence target genes (NANOG and OCT4) in H1-hESC cells.

When we overlaid the H3K4me1 chromatin outlines onto these

individual factor ChIP-seq data views (Fig. 3E–H), the factors

clearly coclustered with the enhancer histone marks in a cell-type-

appropriate manner.

These transcription factors, plus PAX5 and SPI1 in the cell line

GM12878 (Supplemental Fig. S12), also display some concentra-

tion of ChIP-seq signal in the lower-right portion of the map,

where active TSS and their adjacent promoters are concentrated

(Fig. 2D) and where H3K4me3, a mark of active and poised pro-

moters, is strongly concentrated (Fig. 3A,B). This active TSS and

peri-TSS domain of the SOM had especially prominent signals for

SPI1 and NANOG, suggesting that these factors are associated by

direct binding at or near promoters, or that they are otherwise

physically engaged with promoter/TSS bound proteins (i.e., through

protein:protein interactions that are recovered in ChIP). It is no-

table that there is a much weaker concentration of GATA2 in this

SOM region. Taken at face value, this suggests that GATA2 is

mainly associated with nonpromoter CRMs rather than with

the peri-TSS domains, and that SPI1 has the opposite preference

in K562.

Another expectation is that functionally active transcrip-

tion factor occupancy will be marked with enhancer signatures

(H3K4me1, H3K4me2, H3K27AC, and DNase I hypersensitivity).

Active transcription factor occupancy is expected to be a subset

of all sites of occupancy that should overlap with independently

validated cis-regulatory modules (CRMs). We therefore asked where

known CRMs are located on the SOM by taking advantage of a

manually curated set of 118 erythroid CRMs. This set contains

both distant enhancers and promoters. The CRMs localized prom-

inently to the enhancer- and TSS-proximate zones of the map in

K562 cells (Fig. 3K), with those in the enhancer area showing clear

preference for the GATA2-enriched cluster of units (Fig. 3E). As

would be predicted, the erythroid CRM map units are also enriched

for K562-specific active enhancer histone marks and EP300 occu-

pancy (Fig. 3C,I) that do not overlap with H1-hESC-specific en-

hancer marks and EP300 (Fig. 3D,J). A single hex-unit containing

979 genomic segments was most prominent for known erythroid

CRMs, and we investigated it further (Fig. 3M,N). Remarkably, this

single unit contained 11% of all high-confidence EP300 ChIP-seq

peaks in the genome for K562 (P-value < 10�100), and these

overlapped strongly with segments also occupied by GATA2. The

contents of this unit can now be further mined and tested to learn

whether features lacking EP300 occupancy nevertheless contain

active enhancers.

Functional CRMs are also expected to contain conserved se-

quence motifs that are targets for direct DNA binding. We used

motifs curated from the literature for PAX5 and GATA2, along with

closely related ones derived from ChIP-seq data, as defined by The

ENCODE Project Consortium (The ENCODE Project Consortium

2012). We used phastCons conservation scores (Siepel et al. 2005)

to compile a set of conserved motifs for each factor. We then

mapped the locations of conserved instances of these motifs onto

the SOM. As many transcription factor motifs in eukaryotes are

short, they can occur within conserved domains for reasons other

than being part of CRMs (i.e., being located with the coding por-

tion of genes). Other instances of the motif are expected to be

conserved on account of functioning in cell types or states other

than this one. For these reasons, a dispersed map is expected.

Nevertheless, NANOG motifs (Fig. 3L) and GATA motifs exhibited

clear clustering, concentrated around the stem-cell-specific and

erythroid-specific enhancer clusters of units.

Although we are herein primarily concerned with analyzing

the ChromHMM-derived segmentation, we have also tested the

behavior of the SOM using a naı̈ve, 200-bp segmentation, as de-

scribed in the Methods. We found that the map shows anisotropy,

with enhancer-like and repressed regions more likely to cocluster,

but with significant differences in some of the promoter regions.

We conclude that the details of the segmentation do matter to

a certain extent and that the particulars of each segmentation will

interact differently in a way that depends on the data itself.

Taken together, these observations demonstrate the ability of

a multi-cell chromatin SOM to concentrate and reveal cell-type-

specific regulatory regions, and to allow users to visualize impor-

tant patterns and relationships between transcription factor

occupancy, candidate binding sites, chromatin signatures, and

curated functional elements. Other relationships not shown in

this set, but strongly visible in the data, include DNase I hyper-

sensitivity and RNA Pol II occupancy. The ENCODE SOM-viewer

allows users to explore these relationships by selecting views and

marking the boundaries of one or more areas of interest based on

more than 96 data sets.

SOM metaclusters capture regional and global properties
of histone mark combinations

In addition to fine-grained unit-level clustering of relatively small

numbers of segments into each unit done by the SOM itself, we can

further cluster the unit prototype vectors across the entire map

into metaclusters. We expect this level of analysis to be useful for

further probing global genome-scale organization captured by the

structure of the SOM. This clustering emphasizes more complex

combinatoric chromatin signatures and thus augments the way we

have already observed groups of units that cluster together based

on the component plane of one training set (e.g., H3K4me1).

The full phylogenetic ordering of all units (Fig. 4A) is fine-

grained, and it can be interpreted by a user visually in much the

same manner as a phylogenetic ordering of genes. We also per-
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Figure 3. (Legend on next page)
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formed an automated clustering to produce a nonsupervised set of

boundaries for metaclusters of SOM units that are more similar to

each other (based on their unit vector) than they are to other SOM

units (see Methods). As with phylogenetic clustering of a single

measurement, such as gene expression, we expect the phyloge-

netic ordering to be composed of graded similarity groups, rather

than homogeneous and starkly bounded clusters. This is what we

observed when we surveyed a stepped series of similarity thresh-

olds versus metacluster number. The internal data structure iden-

tified several natural discontinuities as a function of clustering

threshold, and we then selected three of these for full clusterings

(Supplemental Fig. S13) to provide users with choices. Prominent

driving relationships for the 126 cluster set that we found to be the

most useful in our mining are shown in Figure 4B. Finally, we show

the specific composition of each cluster for the 126-cluster in-

stance (Supplemental Fig. S14).

The metaclusters showed enrichment patterns that are either

cell-type-specific or common across multiple cell types. For ex-

ample, cluster 1 contains 12 units that have high H3K36me3, RNA

Pol II, and H4K20me1 in HUVEC cells (Fig. 4C,D). Different units

within cluster 1 differ from each other based on which additional

data sets are enriched in that unit. For example, two of the 12 units

also show an additional enrichment for H3K36me3 and RNA Pol II

in H1-hESC cells. The metaclustering captured features described

in earlier sections, such as the active TSS region, and the K562-

specific TSS with SPI1 region that corresponds to specific

metaclusters, respectively.

Overall, the marks generally associated with active transcrip-

tion, either at promoters or distant transcriptional enhancers, such

as H4K4me1/2/3, H3K9ac, H3K27ac, and DNase I hypersensitivity,

clustered in a cell-type-specific manner, whereas H3K36me3 and

H4K20me1 clustered together by data type (Fig. 4E). The repressive

mark H3K27me3 component planes also clustered together to

form an outgroup. The SOM shows that while there is a strong

common core of units shared by all six CTCF component planes,

they each have more specific enriched units at the periphery.

Whether these reflect cell-type-specific CTCF binding or have an

alternative explanation such as changed chromatin marks near

consistently CTCF-occupied sites is uncertain, and both could be

at work. Interestingly, CTCF and RNA Pol II both displayed some

clustering by cell type, and some that joined with other active

marks from the same cell type.

Some Gene Ontology terms have distinctive chromatin mark
signatures

We asked if any Gene Ontology (GO) functional terms are enriched

in individual SOM units. Two hundred and twenty-eight GO terms

displayed statistically significant enrichment following a Bonferroni

correction (P-value < 10�10) at the unit level (Supplemental Table

S3). As might be expected, these included enrichments in GO

terms that correspond to actively transcribed genes, or to actively

repressed genes (for example, neuron-specific genes in non-

neuronal cells). Most GO terms (164) were enriched in <1% of the

map (13 units or less), and some of these are very specific. For

example, ‘‘extracellular matrix’’ is enriched in five neighboring

units (Fig. 5), and further inspection suggested that this enrich-

ment is driven by genes that are much more highly expressed in

HUVEC than in other cells. The regional GO enrichments typically

correlated with metacluster boundaries of the SOM. In the case

of ‘‘extracellular matrix’’ (Fig. 5A), four of the five units are part of

cluster 1 (Fig. 4C). Another 30 GO terms were enriched in >5% of

the map units, and these were typified by broad categories relating

to the housekeeping functions of the cell such as ‘‘cell cycle.’’ These

GO terms are particularly associated with units that are high in

H3K36me3 in one or more cell lines. Thirty-four GO terms were

enriched in 1%–5% of the map, and these were typically much

more specific, developmental terms in units with particular his-

tone mark combinations. The enrichment in specific units for

‘‘GTPase activator activity,’’ for example, is driven by gene families

that show similar signal profiles across cell lines; the top two hex-

units correspond to segments that have a high ratio of H3K4me1

over H3K4me2 in HUVECs that are candidate HUVEC-specific

regulatory elements. Similarly, ‘‘sequence-specific transcription

factor activity’’ (Fig. 5B) is enriched primarily in units that have

cell-type-specific H3K27me3, whether in all cell types or in only

some, such as H1-hESC cells and HUVEC. The two units with the

most enrichment in Figure 5B have many additional associated

developmental GO terms (Fig. 5C) and differ based on the presence

of H3K27me3 signal in embryonic stem (ES) cells for segments in

both units, but only H3K27me3 signal in HUVEC cells for one unit.

This fine parsing by the SOM is nicely illustrated within the HOXD

cluster, where the anterior and posterior parts of the cluster are

split between these two units (Fig. 5D).

EP300 ChIP-seq overlay and cell-type-specific candidate
enhancer segments

We extended our analysis of ENCODE EP300 data sets from K562

by including GM12878, H1-hESC, and HepG2 cells to identify 45

cell-type-specific and common EP300-high units, accounting for

1.4% of the genome and 1.9% of the segments. We found that

each cell type had its own specific set of units with high EP300

occupancy, whereas only a few units showed EP300 signal in more

than two cell types (Fig. 6). These common EP300 units correspond

to the common TSS region, whereas the cell-type-specific clusters

are primarily more than 2 kb from the TSSs (Fig. 2D). We showed

earlier (Fig. 3) that we found K562 EP300 ChIP-seq signal in

Figure 3. Organization of genomic functional elements on the SOM. A triangle, hexagon, and ellipse are superimposed to allow comparison between
maps. (A,B) H3K4me3 signal density in K562 and H1-hESC. (C ) The hexagon encompasses the K562 units high in H3K4me1. (D) The triangle and hexagon
capture the two disjoint regions that are high in H3K4me1 in H1-hESC. (E) GATA2 signal, which was not used in the training, is high in a subset of the
H3K4me10high units in C. (F) Similarly, POU5F1 is primarily found overlapping the H3K4me1 high units. (G,H) In contrast to GATA2 and POU5F1, SPI1
and NANOG are found primarily in units that are high in H3K4me3 (to the lower right of the ellipse) with less signal found at H3K4me1 high units. (I,J)
EP300 signal (also not used in the training) is found either primarily at enhancers in K562, but promoters in H1-hESC. (K) More than one-third of known
erythroid CRMs cluster into a single unit with coordinates (8, 6). (L) Conserved NANOG motifs (motif derived from NANOG ChIP-seq data). ChIP-seq
occupancy and motif occurrences were defined by the uniform ENCODE ChIP-seq binding site and motif calling pipelines. Conservation was assessed
using the 46-way vertebrate phastCons scores for hg19 downloaded from the UCSC Genome Browser. The scores for each unit in the motif maps were
normalized for the total number of base pairs in the unit to avoid the map being dominated by units with very high number of base pairs in them. (M) Ten
percent of EP300 ChIP-seq calls and 3.2% of GATA2 calls in K562 fall within the top erythroid-CRM enriched unit (8, 6). (N) Sixty-six percent of the EP300
peaks in unit (8, 6) overlap a GATA2 peak.

ENCODE SOM

Genome Research 2143
www.genome.org

742



Figure 4. Metaclustering of the SOM. (A) Hierarchical clustering of the ranked unit weights (rows) and components (columns) shows both the large-
scale and fine structure of the SOM unit ranked weights (yellow, high enrichment rank; blue, low enrichment rank). (B) Metaclustering of the SOM into
;120 clusters based on a consistency threshold of 2.6. (C ) Twelve units make up metacluster 1. (D) Ranked component weights of metacluster 1. All
12 units share enrichment in HUVEC RNA Pol II, H3K36me3, and H4K20me1. Individual units show additional distinct enrichments, which distinguish
them from one another. (E) Clustering of the component columns of Figure 5A, showing the relationships of the data sets to one another.
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a cluster of units in the upper-left quadrant of the map that did not

correspond to TSSs, but that did overlap with validated erythroid

CRMs. These units are high in H3K4me1 and H3K27ac that are

specific to each cell type. We then asked whether the segments

within these units show functional enrichment. For example,

three of the GM12878-specific units are enriched with the GO

term ‘‘immune response.’’ We can easily extend the analysis of the

SOM by pooling segments from multiple units and analyzing them

using tools such as GREAT (McLean et al. 2010) that associate cis-

regulatory regions with genes for enrichment in many functional

annotations besides GO. Applying GREAT to pooled segments

from the cell-specific enriched EP300 units returned a wealth of

enriched functional annotations that are predictably associated

with the cell-type tissue of origin (Fig. 6). We illustrate this by

showing enrichments in Pathway annotations for each cell type.

Whereas the units with EP300 signal in more than two cell types

are enriched in housekeeping pathways, the GM12878 units show

the most enrichment in ‘‘immune system’’ and ‘‘interferon sig-

naling,’’ which nicely captures the biology of the cells. This func-

tional enrichment of neighboring units on the map suggests

richness of the SOM.

Discussion
Rapidly growing bodies of functional genomics data require

methods to integrate and mine large numbers of data sets of mul-

tiple kinds. We constructed a self-organized map (SOM) of ENCODE

chromatin data from 72 ChIP-seq and DNase-seq data sets from six

ENCODE cell lines. Subsequent analyses and mining were facili-

tated by an interactive web-based SOM-viewer (http://woldlab.

caltech.edu/ENCODESOM), which allows users to extend the

analysis and extract groups of DNA segments that have charac-

teristics of interest for further computational or wet-bench analy-

sis. While most prior studies of global chromatin data have focused

on a specific cell type or tissue, the ENCODE collection allowed us

to explore relationships among multiple cell types in a single co-

herent analysis. By projecting high-dimensional chromatin data

onto the two-dimensional SOM, we identified clusters of units

Figure 5. Specific patterns of GO enrichment over the SOM. (A) Specific GO terms such as ‘‘extracellular matrix’’ are highly enriched in portions of the
map because of activity in one or more cell types. (B) Other GO terms are enriched because of their pattern of repression over the map. (C ) The map has
overall highly uneven distribution of GO enrichments away from the regions with the highest nucleotide density. (D) An example of the different patterns
of H3K27me3 distribution across cell lines captured by neighboring units in the map in the HOXD cluster.
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with chromatin mark combinations corresponding to promoter

activity and transcriptional enhancer activity. These were further

parsed into smaller clusters that were either cell-type-specific or

more ubiquitous. By overlaying data for specific transcription

factor binding, enhancer activity, and transcription start sites onto

the SOM, we show that the user can discover relationships and

mine corresponding genome segments of interest. This was dem-

onstrated for known and candidate erythroid CRMs (Fig. 3). To our

knowledge, this is the first use of self-organizing maps for multi-

cell data integration and mining. Although we used a specific,

‘‘stacked’’ genome segmentation generated by ChromHMM, the

overall approach can be applied to any segmentation. As discussed

below, we expect that the choice of segmentation strategy and the

mixture and quality of data sets used in training will affect the

resulting SOM.

We mined the SOM to address specific classes of questions.

First, individual training data sets revealed clusters that are cell-

type-specific or shared for individual marks. The same was true for

certain shared sets of marks. Second, units of the SOM were hier-

archically clustered based on their prototype vectors, to investigate

how multiple mark densities interact with each other. Third, ad-

ditional data not used in training were projected onto the SOM to

map their enrichment in one or more areas, and to relate the un-

derlying chromatin characteristics to map units and clusters where

other specific data features are concentrated. In this way, we

investigated how individual sequence-specific regulatory factor

occupancy for GATA2, SPI1, OCT4, and NANOG, their DNA

binding motifs, and the EP300 coactivator are related to each other

and to underlying chromatin signatures. Fourth, we mined the

SOM for specific functional classes using transcription start sites

(TSSs) as the best-defined test case, followed by a curated set of

CRMs. The SOM segregated TSSs that are commonly expressed in

multiple cell types from the TSSs with cell-type-specific activity

into subclusters. Finally, we found that some individual GO terms

are preferentially affiliated with different chromatin signatures.

To facilitate exploration of the ENCODE SOM by users, we pro-

vide a web interface SOM viewer that allows users to explore all

the data sets mapped here and to mine out the DNA segment

coordinates in any hex-cell or group of cells. We expect this web

interface to be the primary means by which users interact with

the SOM results.

At the highest level, most observations agreed with conclu-

sions of previous studies using other methods to integrate chro-

matin data such as hidden Markov models, which were applied to

these ENCODE data (The ENCODE Project Consortium 2012). The

SOM, however, provided an additional level of granularity that

is not accommodated by a relatively small number of states. The

SOM also lent itself well to visualizing relationships between the

chromatin data and additional data of any type that can be mapped

to specific points or intervals on the genome (and hence to the

DNA segments in the map). The fine structure of the SOM allowed

us to identify distinct combinations of marks and mark intensities

shared by only a small number of genomic regions, and did so

without any a priori decision about the number of states. For ex-

ample, the SOM easily separated the variety of different types of

TSS into a major cluster of active TSSs versus inactive ones. The

active TSSs were internally more finely parsed, based on levels of

H3K4me3, as well as distinct cell-type-specific units.

A summary analysis of new candidate transcriptional en-

hancers is shown in Figure 6. This aggregate analysis is the same

one performed for K562 cells (Fig. 3) and uses EP300 signal from

each cell type to further concentrate and focus on units active in

individual cell types, as well as units that correspond to activity in

multiple cell types. Just two units displayed activity in all partici-

pating cell types, while a surrounding set of units is variously

multitype. Analysis of these units by GREAT showed that those

active in all cell types are enriched for well-known housekeeping

functions such as protein synthesis. The cell-type-specific units

were enriched according to cell type (B lymphocyte, hepatocyte,

embryonic stem cell), just as K562 showed erythroid and mono-

cyte categories.

While much of the map organization was driven by histone

marks associated with active promoters and enhancers, we point

out that this is partly the result of the histone marks used in the

ENCODE study for genome segmentation and SOM training. Our

input histone marks to the ENCODE SOM clearly favored a fine

parsing of active regions over passive ones, and important re-

pressive marks such as H3K9me3 were not included. This makes

the ability of this SOM to parse differences in H3K27me3 in differ-

ent cell lines quite remarkable. Overall, the ENCODE integration

efforts showed that a relatively small number of HMM-derived

states can capture the broad landscape of active and repressed re-

gions in the ENCODE cell lines (The ENCODE Project Consortium

2012), while the SOM detailed here does this and also gives the

biologist access to a wealth of increased resolution and specificity

that we coupled with visualization and mining tools. We antici-

Figure 6. EP300 enrichment highlights cell-type-specific enrichments.
ChIP-seq signals of the transcriptional coactivator EP300 in four ENCODE
cell types were overlaid on the SOM. While some of the signal is common
to multiple/all cell types (orange/brown), each EP300 ChIP-seq data set
highlights a different set of adjoining units on the map that is specifically
enriched based on the cell type. These cell-type-specific units are also high
in H3K4me1 and H3K27ac, which suggest that they hold cell-type-spe-
cific enhancers. Segments from each of the colored clusters were pooled
and analyzed for functional enrichment with GREAT such as pathways
(top three terms per cluster shown). While the units common to multiple
cell types are enriched in genes involved in housekeeping pathways, those
in the cell-type-specific regions are enriched in pathways that are known
to be relevant to the biology of those cells.
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pate that this kind of analysis will be even more useful as the

number of cell types and diversity of chromatin marks increase in

future studies, making the challenge of combinatoric signatures

and their functional correlates greater. In a similar way, as tran-

scription factor location data for many more factors accumulates,

the SOM approach and tools developed here will enable end users

to better identify and stratify the functionally important and in-

teresting minority of occupied sites that are active in various sub-

sets of cell types.

Methods

Rationale for training matrix design
The joint analysis of multiple cell types presents additional chal-
lenges beyond the analysis of multiple data sets in a single cell line.
If each cell line is analyzed separately, one is left with the difficult
task of trying to reconcile the states found for each with different
definitions, before proceeding to analyze state changes between
cell lines. Alternatively, one can ‘‘concatenate’’ the data from
multiple cell lines (Ernst et al. 2011). Concatenation has the great
advantage that the states defined will be consistent across cell
lines, but this approach still requires intensive post-processing to
extract the segments that change states across cell lines; assuming
that a concatenated HMM had seven states in six cell lines, any
given genomic segment could be in one of 76 = 117,649 combi-
nations of states. Another solution, which we implement here, is
to train on all data jointly as a ‘‘stack’’ to learn a single set of states
with a single set of genomic boundaries. In this case, one is then
left only with the problem of how to interpret the states, whose
definitions are virtually certain to involve nonintuitive, complex
combinations of marks in one or more cell types and requires
additional methods to mine the results in a systematic and in-
tuitive way.

‘‘Stacked’’ training matrix implementation

To train the SOM, we first built a training matrix composed of
signal densities of all 72 data sets (columns) over all segments
(rows). The segments were taken from a ChromHMM segmenta-
tion of a ‘‘stacked’’ training set of 84 data sets (ChIP-seq for eight
histone modifications, RNA Pol II, and CTCF; and three open
chromatin data sets for each of six cell lines) using 25 states. We set
aside two of the open chromatin data sets to avoid overtraining on
open chromatin, and only used the UW DNase-seq data to repre-
sent open chromatin as the three experiments are effectively re-
dundant. We converted uniformly processed signal densities of the
remaining 72 data sets used for the SOM training into RPKM (reads
per kilobase per million reads) for every segment on each training
data set using the ERANGE 3.3 getDensity.py script. The training
matrix was built using the ERANGE 3.3 buildMatrix.sh script, with
a maximum threshold of 100 RPKM and the rescale option.

Training the SOM

The self-organizing maps were trained and analyzed using ERANGE
v3.3. For every SOM instance, we shuffled the training set, ran-
domly initialized the toroid map of hexagonal units from the
training set, and incrementally trained a SOM with map size 30 by
45 using 5 million iterations, which is equivalent to going through
the entire data set 3.3 times, starting with an update bubble radius
of 15 and a learning rate of 0.2, both of which decreased expo-
nentially over the course of training. Each segment was assigned to
its best matching unit based on the Euclidean distance. We selected
for analysis the best of 10 trials based on the lowest quantization

error, which is defined as the average Euclidean distance of all
segments to the prototype vector of their assigned unit. The other
nine instances were used to evaluate the reproducibility of the map
by analyzing the fraction of segments from each unit of our best
map that resided in the same unit or adjoining units in the other
nine map instances.

While we decided to use the entire training matrix for training
for the SOM discussed in the main text, the software supports
training on the training set and scoring on a distinct test set. In
particular, we trained 10 SOMs with half of the segments from the
200-bp naı̈ve segmentation (i.e., half of 1.5 million segments) for
25 million iterations, selected the best one based on the scoring of
the other half of the segments, and rescored the best SOM with the
ChromHMM segmentation to provide directly comparable geno-
mic coordinates.

There are no theoretical limits to the number of data sets,
segments, or map size that could be analyzed with the SOM.
However, the ERANGE implementation of the SOM was designed
for compatibility with the rest of the package rather than for
scalability or performance and will be significantly slower on
much larger data sets or number of training iterations. The final
training run for the main ENCODE SOM above took a couple of
hours, while the naı̈ve segmentation run took 1 d. The per-unit
gene-level analysis took significantly longer.

Gene-level analysis

We recovered the identity of the nearest gene within 20 kb of each
segment within a unit using the NCBI gene annotation, which is
conservative and means that in lower gene-density areas of the
genome, many segments were not affiliated with any gene. We
then analyzed every unit for Gene Ontology (GO) enrichment as
previously described (Mortazavi et al. 2006), adjusting for mul-
tiple-hypotheses testing by applying a Bonferroni correction
for both the number of tested Gene Ontology terms and the
map size.

Metaclustering methods

The unit prototype vectors were automatically aggregated into the
larger clusters using standard hierarchical clustering, subject to
the constraint that only adjacent clusters on the SOM could be
aggregated. A centered correlation distance and centroid linkage
were used. Prior to the hierarchical clustering, the prototype vector
values along each dimension were replaced with rank values nor-
malized to range between�1 and 1. Heat map visualizations of the
hierarchical clustering were rendered using Java Treeview (Saldanha
2004). The clustering itself and the SOM visualizations of it were
done using custom C++ and Python code (available at http://
woldlab.caltech.edu/;spepke/somclustering/).

Partitionings of the hierarchical clustering at varying levels
of detail were generated using the branch length inconsistency
criterion implemented in SciPy (depth = 6). The inconsistency of
a branch is the ratio of its length to the average length of branches
to clusters less then a specified depth below it. For a specified
threshold value t, the hierarchical clustering is cut at branches that
exhibit an inconsistency coefficient greater than t. Partitioning of
the unit vectors was performed over a broad range of values of t
up to that for which no branch’s inconsistency criterion exceeded
t, i.e., only one cluster resulted. Sharp drops in the number of
clusters as a function of the threshold value occur and are typ-
ically followed by plateaus that show little or no change in
cluster number. Such behavior suggests partitionings that are
relatively robust with respect to the threshold value (see Sup-
plemental Fig. S13).
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Single-cell RNA-seq mammalian transcriptome studies are at an early stage in uncovering cell-to-cell variation in gene
expression, transcript processing and editing, and regulatory module activity. Despite great progress recently, substantial
challenges remain, including discriminating biological variation from technical noise. Here we apply the SMART-seq
single-cell RNA-seq protocol to study the reference lymphoblastoid cell line GM12878. By using spike-in quantification
standards, we estimate the absolute number of RNA molecules per cell for each gene and find significant variation in total
mRNA content: between 50,000 and 300,000 transcripts per cell. We directly measure technical stochasticity by a pool/
split design and find that there are significant differences in expression between individual cells, over and above technical
variation. Specific gene coexpression modules were preferentially expressed in subsets of individual cells, including one
enriched for mRNA processing and splicing factors. We assess cell-to-cell variation in alternative splicing and allelic bias
and report evidence of significant differences in splice site usage that exceed splice variation in the pool/split comparison.
Finally, we show that transcriptomes from small pools of 30–100 cells approach the information content and reproducibility
of contemporary RNA-seq from large amounts of input material. Together, our results define an experimental and com-
putational path forward for analyzing gene expression in rare cell types and cell states.

[Supplemental material is available for this article.]

Gene expression levels can differ widely between superficially

similar cells. One source of variation is stochastic transcriptional

‘‘bursting’’ (Elowitz et al. 2002; Ozbudak et al. 2002; Blake et al.

2003; Raser and O’Shea 2005; Kaufmann and van Oudenaarden

2007). Those studies mainly used fluorescent protein fusion genes

to monitor the expression of one or a few genes. They revealed

dynamic fluctuations through time that are seen as ‘‘salt-and-

pepper’’ variation across a cell population at any given time. In

addition to this bursting behavior, individual cells are expected

to display controlled and coordinated differences in the expres-

sion of genes engaged in dynamic physiologic processes, such

as cell cycle phase progression, paracrine or autocrine signaling

response, or stress response. Beyond such already appreciated

heterogeneity lie currently unknown cell-to-cell differences with

biological implications for defining cell states, metabolic func-

tion, and, in complex tissues, cell identity.

Measuring RNA transcripts in single cells is now done in

multiple ways, and similar conclusions about variability are emerg-

ing from the higher sensitivity methods. For individual genes,

single molecule RNA fluorescence in situ hybridization (SM-RNA

FISH) is highly informative (Femino et al. 1998; Raj et al. 2008),

and multiplexed versions now enable multiple genes to be mea-

sured in parallel (Lubeck and Cai 2012). In principle, an advan-

tage of SM-RNA FISH is the ability to accurately count the abso-

lute number of transcripts in a cell. A second and older approach

is multiplexed single-cell RT-qPCR (Cornelison and Wold 1997),

which has now been advanced to increasingly high-throughput

formats (White et al. 2011; Sanchez-Freire et al. 2012, Livak et al.

2013). It produces semiquantitative relative comparisons be-

tween individual cells. However, neither SM-RNA FISH nor the

current forms of multiplex RT-qPCR cover the entire transcriptome

or have the single-nucleotide resolution needed to study fine-

structure features of gene expression such as allele specificity,

RNA editing, and alternative splicing.

To address these and other limitations, elegant methods have

recently been developed for performing RNA-seq with very small

amounts of RNA, down to the level of individual cells. These are

broadly referred to as ‘‘single-cell RNA-seq’’ (Tang et al. 2009, 2010,

2011; Ozsolak et al. 2010; Islam et al. 2011; Brouilette et al. 2012;

Cann et al. 2012; Hashimshony et al. 2012; Pan et al. 2012; Qiu

et al. 2012; Ramsköld et al. 2012). Despite these significant ad-

vances, there are substantial shortcomings in these methods,

and a robust method for comprehensive and accurate measure-

ment of the transcriptome of a single cell is not yet available.

A particular challenge for single-cell methods is the efficiency

and uniformity with which each mRNA is copied into cDNA and

ultimately represented in the library. This challenge intersects in

crucial ways with transcriptome structure. Specifically, thou-

sands of genes are expressed in the range of 1 to 30 mRNA copies

per cell, including many essential mRNAs (for example, key

transcription factors) (Zenklusen et al. 2008). Even lower tran-

script levels, averaging <1 mRNA per cell on the population

level, are now being reliably detected by RNA-seq. This raises

questions whether very rare RNAs represent background biological

noise, or alternatively, are functional in only a small fraction of

cells. Single-cell RNA-seq has the potential to address these issues,
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but their resolution depends on how faithfully and efficiently

RNAs are captured and represented in sequencing libraries (re-

ferred to throughout as the ‘‘single-molecule capture efficiency,’’

psmc). In addition, the uniformity of transcript coverage in early

single-cell RNA-seq protocols has typically been heavily biased

toward the 39 end, which affects both gene expression estimates

and the ability to analyze alternative splicing, RNA editing, and

allelic bias.

A second major use for single-cell RNA-seq is the tran-

scriptomic characterization of rare cells. The human body consists

of hundreds of distinct cell types, plus large numbers of neuronal

and transient developmental cell types. Many of these are nu-

merically minor components of complex tissues, making them

inaccessible to standard methods relying on large RNA inputs.

Isolation of single cells based on the cell surface markers or using

microdissection coupled with single-cell RNA-seq could fill this

gap in complex multicellular organisms. However, the feasibility

of this approach also depends on the experimental robustness of

single-cell RNA-seq protocols. Alternatively, single-cell resolution

may not be absolutely required for this purpose, and small pools of

cells may be sufficient to characterize rare cell-type transcriptomes.

An open unresolved question is how small such pools can be to

adequately meet that goal.

In this study, we address the issues highlighted above. We

used the SMART-seq protocol (Ramsköld et al. 2012) to measure

the transcriptome of single cells and small cell pools from the

GM12878 lymphoblastoid cell line. This line is derived from the

NA12878 individual, for which a fully sequenced genome with

completely phased heterozygous single nucleotide polymorphisms

(SNPs) and indels is available (The 1000 Genomes Project Con-

sortium 2012). GM12878 cells have also been the subject of an

extensive functional genomic characterization by the ENCODE

Consortium (The ENCODE Project Consortium 2011, 2012) and

have been used in prior population-level studies of allele-biased

gene expression and transcription factor occupancy (Rozowsky

et al. 2011; Reddy et al. 2012).

Using spike-in quantification standards of known abun-

dance (Mortazavi et al. 2008), we derive estimates for the absolute

number of transcript copies for each gene in each cell and directly

measure the average value of psmc. ‘‘Pool/split’’ experiments (con-

sisting of pooling RNA from multiple single cells, splitting the pool

into the same number of separate reactions and building libraries

from them) allowed us to measure the extent of and control for

technical variation. We find that the psmc value is quite low: ;0.1.

An analysis framework accounting for technical stochasticity is

described and used to assess variability in gene expression, allelic

bias, and alternative splicing between single cells. Distinct from

prior studies, our approach allowed us to parse findings into

those that are just as likely to be of technical origins and those

that are more likely to be of biological interest.

We report evidence of significant variability in the total

number of mRNA molecules per cell, and identify biologically

coherent modules of coexpressed genes specifically expressed in

individual cells or groups of cells. These include expected varia-

tion associated with cell cycle phases, and an unexpected module

enriched for mRNA processing and splicing genes. We observe

evidence of higher levels of autosomal allelic exclusion on the

single-cell level, potentially associated with transcription bursts;

however, it is at present difficult to confidently distinguish from

technical variability. In contrast, we find much stronger evidence

for widespread major splice site usage switches between individ-

ual cells. Finally, our analysis of similarly constructed small cell

pools (30–100 cells) reveals a high robustness and reproducibility,

approaching that of bulk RNA measurements. This presents a reli-

able path forward toward the future comprehensive transcriptomic

characterization of rare cell types.

Results

In silico examination of major variables affecting
informativeness of single-cell and small cell-pool RNA-seq

We began this study with two goals: first, to study gene expression

heterogeneity in GM12878 cells on the single-cell level, and sec-

ond, to determine the minimal optimal size of a cell pool that

is informative of the characteristics of the larger cell population,

with the goal of applying that approach to rare cell types in future

studies. How well these goals are achieved depends on several

parameters affecting biological and technical stochasticity and

detection sensitivity, the values of which were unknown. To un-

derstand their influence, we carried out a simulation of single-cell

and cell-pool transcriptomes (see Supplemental Methods for de-

tails) by varying the following parameters:

1. Single-molecule capture efficiency psmc. In contrast to bulk

RNA-seq libraries, an individual cell contains a very limited total

number of mRNA molecules. Individual genes can be present

in single-digit transcript numbers. If only a fraction of mRNAs

are successfully represented in a library, a technical stochasticity

component is introduced. Depending on its magnitude, data

interpretability can be significantly affected due to false nega-

tives and a distortion of relative gene abundance estimates. The

psmc parameter is the probability that any given original RNA

molecule is captured in the final library. We examined the effect

on expression quantification of psmc ranging from 0.01 to 1.

2. Total number of mRNA molecules per cell. The impact of low

psmc on expression measurements will be more severe if fewer

mRNA molecules are present in a cell. The average total number

of mRNA molecules in a single cell is not known for most cell

types, but it is expected to vary with cell size, metabolic status,

and even cell cycle phase. This means that single-cell expression

measurements in some cell types are likely to be more robust to

technical noise than in others. We varied the total number of

mRNAs from 50,000 to 1,000,000 (while keeping the number of

genes expressed constant).

3. Frequency of expression of individual genes in single cells. From

prior studies we expect that some genes will be expressed in

all or most cells, while others will be expressed in only a subset

of cells. Genes detected at lower levels in bulk RNA-seq are the

most obvious candidates to be expressed in a subset of cells in

a population, although we do not know what fraction of low-

abundance RNAs behave in such a way. This is particularly rel-

evant to cell pools: a gene expressed at 50 copies per cell but

only in 10% of cells would still be stochastically represented

in a pool of 10 cells even if psmc is high. In the absence of reliable

data on this, we modeled the probability of expression in a

given single cell with a distribution centered around very high

values for genes highly expressed in bulk RNA-seq measure-

ments, and progressively lower values with decreasing expres-

sion levels (details in Supplemental Methods).

The simulation results are summarized in Figure 1, A–C and

Supplemental Figures 1–25. As expected, low psmc has a profoundly

negative impact on gene expression quantification accuracy and

reliability, leading to frequent false negatives (Fig. 1A; Supplemental
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Fig. 1), and to poor estimates of expression levels. For example, in

a single cell with 100,000 mRNAs, psmc = 0.1 results in only 40% of

genes expressed at 100 FPKM receiving FPKMs within 20% of the

true value (Supplemental Fig. 1C), but this fraction rises to nearly

100% if psmc = 0.8 (Supplemental Fig. 1G). The quantification of

relative expression levels is similarly affected, with only the most

highly expressed genes being consistently well-quantified relative

to each other at low psmc (Supplemental Figs. 12–25).

In contrast, our simulation results indicate that cell pools are

much more robust to technical noise, with 90% of genes expressed

at 10 FPKM receiving FPKM estimates within 20% of their true

value (Supplemental Fig. 1C) at psmc = 0.1 in a pool of 100 cells.

They also represent the expression profiles of the general pop-

ulation reasonably well (Supplemental Fig. 1), even at low psmc,

starting from a size of ;30 cells (10-cell pools seem not to be suf-

ficient to achieve this). Finally, as expected, the larger the number

of total mRNA molecules per cell, the greater is the buffer against

technical noise, resulting in more robust quantification (Sup-

plemental Figs. 2–11).

Transcriptome measurements of individual single cells
and companion pool/splits

The simulation results informed our experimental design, which

aimed to gain a firm grasp on technical stochasticity in two ways

(Fig. 1D). First, we generated single-cell RNA-seq libraries and in

parallel carried out ‘‘pool/split’’ experiments. In a pool/split, mul-

tiple cells are pooled and lysed together, then split into the same

number of reactions, from which libraries are built. Variation be-

tween these libraries should be purely technical (with stochastic

splitting possibly playing a role at the low end). Variation observed

at similar levels in both single cells and pool/splits cannot be

confidently attributed to biological differences, although the

stringency of this criterion may cause some true biological vari-

ation to be obscured. However, variation above the pool/split

level can be identified and ascribed to biological sources with

high confidence.

We generated single-cell RNA-seq libraries from 15 single

GM12878 cells and from two pairs of 10-cell pool/split experi-

ments. We also sequenced replicates of pools of multiple cells (10,

30, and 100 cells), as well as 100-pg and 10-ng samples of bulk

RNA (corresponding to ;10 and ;1000 cells), to assess the stability

of measurements as a function of the amount of starting material.

We used the SMART-seq protocol (Supplemental Fig. 12;

Ramsköld et al. 2012) to generate our libraries. A detailed de-

scription of the protocol, as we implemented it, is presented in

Supplemental Methods. We obtained nearly uniform full-length

transcript coverage (Fig. 1E; Supplemental Fig. 29). Uniformity of

coverage, which depends on the intactness of RNAs and the suc-

cessful copying of full-length molecules, is highly desirable for

several reasons. First, RNA-seq data quantification using the

RPKM/FPKM metric (Mortazavi et al. 2008; Trapnell et al. 2010)

makes an implicit assumption of full coverage. Second, it enables

the analysis of alternative splicing and allelic bias, as read cov-

erage of 59-proximal splice sites and heterozygous positions is

ensured.

We added spike-in quantification standards of known abun-

dance (in absolute number of RNA copies) (Supplemental Table 2)

at the very beginning of cDNA synthesis. This allows us to, first,

estimate psmc, and second, derive gene expression estimates in

absolute numbers of copies per cell. The latter is important because

while FPKM is useful for comparing expression levels within a li-

brary, it can only be used to compare directly across different li-

braries when the total amount of RNA in each starting sample is

roughly the same (Anders and Huber 2010). This assumption is

usually only mildly violated when working with bulk samples, but

when single cells are compared, it becomes significantly more

problematic as the variation in the total amount of RNA in each

cell is expected to be much larger.

Figures 1 and 2 summarize the technical characterization of

the SMART-seq protocol applied to GM12878 cells. In addition to

the mostly complete coverage along transcript length, sequencing

libraries were also highly enriched for exonic sequences (Supple-

mental Fig. 28), indicating a high efficiency of enrichment for

polyadenylated molecules.

Gene detection in single cells versus pools of varied sizes

We compared single-cell and pool/split libraries, as well as cell

pools, with bulk RNA samples from GM12878 cells (Fig. 1F). In

bulk RNA libraries, we detect about 12,000 genes expressed at

more than 0.1 FPKM. A lower number of genes, between 4000 and

5000, is detected in both single-cell and pool/split libraries. These

differences between single cells and bulk libraries are due mostly

to genes expressed at low levels. Genes expressed at more than

100 FPKM in 10-ng bulk RNA samples are detected in almost all

libraries, while only ;30% of genes expressed at ;10 FPKM and

10% of genes expressed at ;1 FPKM were detected in any given

single-cell library (Fig. 1G). Notably, the number of genes detected

in both 100-cell and 30-cell pools was similar to that detected in

the 10-ng libraries (;11,000). In contrast, in the 10-cell pools and

100-pg libraries, lower numbers of genes were detected, between

Figure 1. Simulated and measured transcriptome profiles from individual cells and small cell pools. (A) Number of detected genes in simulated data sets
as a function of the number of cells pooled and the single molecule capture efficiency (psmc) (assuming 100,000 mRNA molecules per cell). See Sup-
plemental Figure 1 for full details. (B,C) Accuracy of gene expression estimation as a function of the number of cells pooled and the single molecule capture
efficiency; psmc = 0.1 in B and psmc = 0.8 in C, 100,000 mRNA molecules per cell assumed. Shown is the fraction of genes at the indicated expression levels
in FPKM, whose estimated expression level in FPKM in simulated libraries was within 20% of their true value, after modeling the stochasticity due to the
single-molecule capture efficiency of the library-building protocol. See the Methods section and Supplemental Figures 2–11 for full details. Note that the
simulation is intended to illuminate the relative effects of the various parameters studied, and the absolute numbers of genes should not be directly
compared to the real-life data shown in G. (D) Experimental design. Single cells are combined with spike-in quantification standards and SMART-seq
libraries are generated. In parallel, multiple single cells are pooled together and combined with spikes, then lysed and split into the same number of
reactions and converted into SMART-seq libraries. Libraries are then sequenced, data processed computationally, and estimates for the absolute number of
copies per cell are derived based on the spikes. Variation in pool/split experiments is due to technical stochasticity, while variation in single-cell libraries is
a combination of biological variation and technical noise. (E) Uniformity of transcript coverage. Shown is the average coverage along the length of an
mRNA for single cells and pool/split experiments. Only mRNAs longer than 1 kb from genes with a single annotated isoform in the RefSeq annotation
set were included. See Supplemental Figure 29 for more details. (F) Number of detected protein-coding genes for libraries built from 10 ng and 100 pg
of poly(A) RNA, pools of 100, 30, and 10 cells, representative pool/split experiments (individually and summed across all libraries), and representative
single cells (individually and summed across all libraries). (G) Fraction of genes from 100-ng bulk poly(A)+ RNA libraries that were detected in pools of 100,
30, or 10 cells, 100 pg of poly(A)+ RNA, pools/split experiments, and single cells. FPKM is shown on the x-axis.
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6000 and 7000. This is consistent with simulation results sug-

gesting that 30 cells is the lower limit of cell number at which the

transcriptome library complexity begins to approach that of the

larger cell population. This is corroborated by the correlation be-

tween the expression levels of replicate measurements (Fig. 2A;

Supplemental Fig. 50). In contrast, a sizable population of genes

present at high levels in one replicate and at very low levels or

completely absent in the other appears in 10-cell pools (Fig. 2B)

and especially in pool/split libraries (Fig. 2C). Finally, union sets

of genes detected in all individual cell libraries and in all pool/

split libraries was ;10,000, which was in the range seen for 30- to

100-cell pools.

Pool/splits measure technical variation and reveal biological
variation among single cells

The observed variations in gene expression levels and detection

can be explained as a combination of some genes not being

expressed in each and every cell and low psmc resulting in large

numbers of false negatives. We calculated the average psmc across

all libraries based on the detection of spike-ins (details in Methods).

This number is in our estimates: ;0.1. We also estimate that for

GM12878 single cells, one transcript copy corresponds to ;10

FPKM on average. This agrees well with the observation that de-

tection of genes becomes unstable below ;100 FPKM (Fig. 2B,C),

which is also consistent with previous observations (Ramsköld

et al. 2012).

We next compared expression measurements in single-cell

and pool/split libraries. Hierarchical clustering of each group is

shown in Figure 2, D and E (with two independent biological

replicate pool/split experiments shown in Fig. 2E). The distances

between the expression profiles within the same pool/split ex-

periment were significantly smaller than those for individual sin-

gle cells (branch lengths in Fig. 2D,E), and average correlations

between single cells were, accordingly, lower than those between

libraries from the same pool/split (Fig. 2F,G; Supplemental Fig. 32).

A notable feature of the data is small clusters of genes present at

high levels in only one library. These are more prominent in

single cells than in pool/splits, yet they are clearly present in all

samples. In single cells, this is due to a mixture of stochastic

capture effects and real biological variation. In pool/splits, sto-

chastic capture is the predominant source. It is important to note

that given the low psmc, it is difficult to determine the cause of

variation for any given gene. Nevertheless, the major conclusion

at the transcriptome level is that there are biological differences

between single cells because the technical stochasticity in pool/

splits is significantly less than variation across single cells.

Estimating absolute transcript levels in single cells

Absolute transcript counts are the biologically relevant values

ideally obtained from a single-cell gene expression profiling ex-

periment because, as discussed above, FPKM is a poor metric for

comparing gene expression levels between individual cells if the

total amount of RNA varies substantially. We derive transcript

number estimates for each gene based on the FPKM values of spike-

ins. We observed good agreement between the input number of

spike-in RNA copies and the corresponding FPKM values in the

final libraries (Supplemental Figs. 30, 31).

We use the transcripts-per-cell estimates for all subsequent

analyses. Previous studies have reported that genes can be sepa-

rated into two distinct groups based on their expression levels—

one group expressed at high (>1 FPKM) levels and one at very low

(<<1 FPKM) levels (Hebenstreit et al. 2011). We examined the

distribution of estimated copies per cell in single cells and in

pool/splits (Fig. 3A). We find that in individual cells, most protein-

coding genes are expressed at levels between 1 and ;50 copies

per cell. The distribution suggests a roughly equal number of

genes at each level except for a larger group of transcripts with

fractional transcript-per-cell values. Obviously, single-cell determi-

nations are constrained in a way that population level measure-

ments cannot be: One transcript per cell is the minimum nonzero

value possible. The lower values likely represent a combination of

mapping artifacts (due to high sequence homology of paralogs)

and RNAs that were present at low levels to begin with and then

poorly represented in the final library (due, for example, to the

fragmentation of a single original RNA molecule resulting in

artificially low FPKMs as a result of coverage only at the 39 end).

The distribution of estimated copies in pool/split libraries exhibited

a more linear decrease in the number of more highly expressed

genes, consistent with averaging of variation between cells.

We also examined the distribution of the expression levels

of long noncoding RNAs (lncRNAs) (Guttman et al. 2009). Con-

sistent with previous observations (Ramsköld et al. 2009; Guttman

et al. 2010; Djebali et al. 2012), lncRNAs have generally much lower

expression levels compared to protein-coding genes (Fig. 3B).

We were also able to directly assess the total number of

mRNAs present in each cell (Fig. 3C,D). Based on the average

mass of RNA in each cell (derived from bulk RNA samples from

a known number of cells) and the average length of mRNAs in

the human genome, we estimated that each GM12878 cell con-

tains, on average, ;80,000 mRNAs. However, we observed strik-

ing cell-to-cell differences in the total transcript number of single

cells, with some cells expressing <50,000 mRNAs and others al-

most 300,000. In contrast, pool/split experiments exhibited re-

markable uniformity (between 50,000 and 100,000 transcripts)

and agree well with prior expectations. It is therefore unlikely

that the observed cell-to-cell variability is due to technical noise.

Because transcriptional regulators play a crucial role in de-

fining the gene expression state of cells, we examined the expres-

sion of several well-known general transcription factors as well as

major regulators of B-cell differentiation (Fig. 3E). Remarkably,

except for IRF4, which was usually expressed at several dozen

copies, most factors were detected at <10 copies per cell, and were

often not detected at all. We stress that this does not mean that

they are not expressed. Given the 10% psmc of the protocol, these

Figure 2. Technical and biological variation in single-cell RNA-seq measurements of gene expression. (A) Correlation between expression levels (in
FPKM) between two pools of 100 cells. (B) Correlation between expression levels (in FPKM) between two pools of 10 cells. (C ) Correlation between
expression levels (in FPKM) between two representative pool/split libraries. A pseudocount of 0.001 was added to each data point in the scatter plots
for visualization purposes. (D,E) Hierarchical clustering of estimated copies-per-cell values for protein-coding genes in single-cell (D) and pool/split
(E) libraries. Pearson correlation was used as a distance metric, and only genes expressed at a level of at least one estimated copy in at least one library were
included. (F,G) Correlation between estimated copies-per-cell values for protein-coding genes in single-cell libraries (F) and pool/split libraries (G). Two
sets of pool/split experiments (1 and 2) are shown and ‘‘1-2’’ in the boxplot refers to correlations between the two sets, while ‘‘1’’ and ‘‘2’’ refer to
correlation within each experiment. Similar plots, but using the Spearman correlation, are shown in Supplemental Figure 32.
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observations are consistent with simple technical failure to detect

them. It is also possible that there are no mRNA copies in some

cells at the moment of harvest, especially if they are infrequently

transcribed. Extending these observations to other functional

groups, we assessed proteins involved in translation (as a major

group of genes with housekeeping functions) (Fig. 3F), splicing

regulators (Fig. 3G), and all transcription factors (Fig. 3H). The

median number of copies per cell was ;100 for translation pro-

teins, ;10 for splicing regulators, and strikingly, only ;3 for

transcription factors. Beyond their biological interest, these large

expression differences between functional gene categories mean

that quantification is inherently less robust and less informative

for some biological functions than it is for others.

Identification of modules of coexpressed genes

Cell-to-cell gene expression variability may occur on the level of

individual genes, but it can also occur in a coordinated fashion.

A well-studied example is cell cycle phase-specific gene expres-

sion. In an asynchronous culture, groups of genes expressed

highly at specific times during the cell cycle should be present in

a fraction of cells that is roughly proportional to the time cells

spend in each identified phase. Population data do not, however,

predict that most cells will be in a ‘‘pure’’ phase state nor that they

will express phase-class genes at peak levels.

To test whether we are able to identify cell cycle-associated

variation, and to search for any novel functional modules, we

carried out weighted gene coexpression network analysis (WCGNA)

(Zhang and Horvath 2005) using the copies per cell estimates for

single cells and removing genes that were highly variant in pool/

split libraries in order to minimize technical noise (see Methods;

Supplemental Figs. 33, 34). We identified 19 coexpression modules

containing $10 genes each (Supplemental Fig. 35). The expression

patterns of these modules were mostly well-differentiated among

single cells and were absent from pool/split libraries (Fig. 4B; Sup-

plemental Fig. 34).

We then determined the Gene Ontology (GO) category en-

richment of each module. The largest module (module 1) was

highly enriched for GO categories relating to housekeeping and

anabolic gene functions (Table 1; Supplemental Table 3). This in-

cluded some enrichment for the G1- and S-phase GO terms, and

also contained most genes that are generally highly expressed

(Fig. 4A). Module 6 was enriched for genes involved in the M phase

of the cell cycle. A single cell from the sample of 15 showed strong

coordinated expression of genes from the M-phase GO categories

enriched in this module. Transcripts from these M-phase genes

were not similarly coordinated in other individual cells or in

pool/split samples. We measured the fraction of unsynchronized

GM12878 cells in the G0 + G1, S, and M phases of the cell cycle

using flow cytometry (Fig. 4B). About 14% of cells were in M phase,

and the probability of capturing exactly one such cell out of 15 is

0.25; that is, these observations are consistent with this cell being

in the peak of M phase.

A more surprising observation was that the second largest

module (module 2) was enriched for genes involved in splicing

and mRNA processing. It is driven by an individual cell and two

additional cells with a somewhat similar expression profile. The

signature cell, however, was not an outlier when splice site usage

patterns were compared between individual cells (data not shown).

A simple interpretation of these observations is a general up-

regulation of splicing and mRNA processing factors in that cell

that does not result in a distinctive alternative splicing program.

Module 3 was enriched for metabolic cofactor and iron-sulfur

cluster binding proteins, including proteins involved in mito-

chondrial respiratory chains. This is an intriguing observation,

as module 3 was mostly driven by the two cells exhibiting the

highest total number of mRNA molecules per cell (Fig. 3C; fourth

and fifth columns in clustergram in Fig. 4A), consistent with a

generally elevated metabolic state.

We also carried out a mirrored WCGNA analysis in which the

pool/splits were treated as single cells and vice versa. We did not

observe significant GO enrichment beyond a few trivial terms in

the largest modules (Supplemental Fig. 54; Supplemental Table 4).

This is in contrast to the much more specific GO enrichment seen

in single cells.

In addition to the coexpression analysis, we also examined

the relationship between the expression variability of genes and

various genomic data about their promoters, including long-range

chromatin interactions, DNA methylation status, histone marks,

transcription start site sequence elements, and CpG islands. No

robust explanatory correlation was evident (Supplemental Figs.

46–-50), and we expect that data with less technical stochasticity

will be needed to illuminate relationships of this kind.

Allele-biased expression at the single-cell level

Allele-specific gene expression (either monoallelic or highly biased

toward one autosomal allele) has been previously reported to be

widespread (Gimelbrant et al. 2007; Zhang and Borevitz 2009;

McManus et al. 2010; Pickrell et al. 2010; Rozowsky et al. 2011;

Reddy et al. 2012). An intriguing phenomenon observed for hun-

dreds of genes in clonal lymphoblastoid cell lines (Gimelbrant

et al. 2007; Chess 2012) is the random monoallelic expression

of autosomal genes. However, those studies were conducted on

large pools of cells, producing a snapshot of average allelic bias in

the population, and leaving open the possibility that monoallelic

expression is even more widespread on the single-cell level.

GM12878 cells are a good system for addressing this issue,

as the fully phased heterozygous NA12878 genome sequence is

available (The 1000 Genomes Project Consortium 2012). We aligned

Figure 3. Absolute expression levels at the single-cell level. FPKM values converted to estimated copies per cell using the spike-in quantification
standards are shown. (A) Distribution of expression levels of RefSeq protein-coding genes in estimated copies per cell in single cells and pool/split
experiments. (B) Distribution of expression levels of GENCODE v13 lncRNA protein-coding genes in estimated copies per cell in single cells and pool/split
experiments. (C ) Total number of mRNA copies per cell in single cells. (D) Total number of mRNA copies in pool/split experiments. (E) Expression levels of
housekeeping and highly expressed genes (GAPDH, CD74, left panel), and general (CTCF, REST, YY1) and B-cell regulatory (PAX5, EBF1, BCL11A, ETS1, IRF4,
IKZF1, PBX3, POU2F2, RUNX3, TCF3, TCF12) transcription factors (right panel). Upper and middle panels show the estimated copies-per-cell numbers for
single cells and pool/splits, respectively. The lower panel shows FPKM values for cell pools and bulk RNA libraries. (F–H) Distribution of absolute expression
levels in copies per cell in single cells for translation initiation, elongation, and termination proteins (F), splicing regulators (G), and transcription factors (H).
The list of translation proteins was retrieved from the corresponding GO category annotations downloaded from FuncAssociate 2.0 (Berriz et al. 2009). The
list of splicing regulators was obtained from the SpliceAid-F database of human splicing factors (Giulietti et al. 2013). The list of transcription factors used
was the one from Vaquerizas et al. (2009). Note that only values $0.1 estimated copies per cell were included in these plots, i.e., libraries in which the
genes were not detected were excluded.
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RNA-seq reads in an allele-specific manner to the heterozygous

GM12878 transcriptome and calculated allelic bias for each gene

as the fraction of reads mapping to the maternal allele. As detailed

in the Methods and Supplemental Methods, we applied very

stringent criteria for determining statistically significant allele-

biased expression events based on the absolute transcript number

estimates and taking into account the challenges presented by the

nature of single-cell RNA-seq data. We observed good reproducibility

of allelic bias profiles in 10-ng bulk RNA libraries (Supplemental

Fig. 37A), with most genes being expressed from both alleles

(Supplemental Fig. 37D). Allelic bias was also highly reproduc-

ible in 30-cell and 100-cell pools (Supplemental Fig. 51). In

contrast, allelic bias profiles of single cells correlated poorly

with each other, and a large fraction of genes were apparently

monoallelically expressed from different alleles in different cells

(Supplemental Fig. 37B). The majority of highly expressed genes

($100 copies per cell) exhibited biallelic expression, while most

genes at low expression levels were measured as monoallelically

expressed (Supplemental Fig. 37F). We then compared allelic

bias variability for individual genes across individual single cells,

focusing only on cells in which statistically significant allelic

bias was observed, and observed frequent ‘‘switching’’ between the

two alleles (Supplemental Figs. 37G, 38A).

These observations can be explained as a combination of bi-

ological and technical factors. First, it has been previously reported

that allelic bias at the population level is more common among

genes expressed at low levels (Gimelbrant et al. 2007, Reddy et al.

2012). A second explanation is the phenomenon of ‘‘transcrip-

tional bursting’’ (Raj and van Oudenaarden 2008; Dar et al. 2012).

A single transcription burst produces several mRNA molecules

from a single allele. If all mRNAs from a gene in a given cell at a given

moment are the product of one or a linked series of such bursts, all

Figure 4. Gene coexpression modules derived from single GM12878 cells. Weighted gene correlation networks were constructed using the WCGNA R
package (Langfelder and Horvath 2008). (A) Expression levels and hierarchical clustering of genes within modules (modules are sorted by number, which
corresponds to their size) in single cells and pool/split experiments. Only genes are clustered (dendrograms on the left), and the identity of the cells and
pool/split experiments is the same in each column (two right panels). The absolute expression values of genes belonging to representative GO categories
associated with cell cycle phases (modules 1 and 6) and mRNA processing and splicing (module 2) are also shown. (B) Distribution of cell cycle states in
a representative GM12878 cell population, in growth media (GM), and picking media (PM). The fraction of cells in M phase is consistent with one such cell
being picked in a sample of 15.
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copies would originate from one allele. Finally, stochastic effects due

to the low single-molecule capture efficiency of the protocol un-

doubtedly play a role. The fewer founder molecules are captured, the

more likely it is that they come from only one allele. To help parse

these sources of variation, we performed the same analyses on pool/

split libraries and observed a broadly similar (although always lower)

fraction of genes passing all significance tests for allelic bias (Sup-

plemental Figs. 37C,E, 38). The quantitative trend within the pool/

split comparison suggests there is a component of allelic RNA bias

between cells that is biological in origin but that there is also a large

technical variation component. The widespread occurrence of ran-

dom monoallelic expression at the single-cell level should therefore

be viewed as a provisional conclusion.

Alternative splicing at the single-cell level

Previous studies have suggested that most genes in mammalian

genomes undergo some alternative splicing (Mortazavi et al. 2008;

Wang et al. 2008; Djebali et al. 2012). At present, however, the

biological relevance of the majority of these alternative isoforms is

still uncertain, and stochastic noise in the splicing machinery is

one explanation (Sorek et al. 2004; Melamud and Moult 2009).

Characterizing alternative splicing at the single-cell level should

bring clarity to the population-based observations, and perhaps

offer clues about the mechanistic origin of the multiple isoforms

observed within cell types.

We quantified alternative splicing using the intron-centric

splice inclusion c score approach (Pervouchine et al. 2013). Details

of our mapping and analysis pipeline are described in the Sup-

plemental Methods. For reasons given there, we adopted a con-

servative approach and only analyzed novel splice junctions for

which at least one of the donor or acceptor sites has already been

annotated in GENCODE v13 (Harrow et al. 2012), thus avoiding

library-building artifacts.

We detected between 200 and 2000 novel splice junctions

satisfying these criteria in each individual cell (Supplemental

Fig. 43). This number is certainly an underestimate, given the low

psmc. About 35% of novel junctions connected two annotated

exons (Fig. 5A); most of these represent novel exon skipping

events. In another 60%, the unannotated donor or acceptor site

was internal to the gene. These were concentrated close to al-

ready annotated splice sites (Supplemental Fig. 40B,C). In par-

ticular, novel acceptor sites peaked at the +3 and �3 position

downstream from annotated sites representing mostly instances

of NAGNAG tandem acceptor sites (Hiller et al. 2004; Bradley

et al. 2012). Novel 59 donor sites were fewer in number and

peaked at +4 and �4 positions relative to annotated donor sites,

thus shifting the coding frame of the transcript. This is a phe-

nomenon we have previously also observed in bulk RNA-seq data

(observations of the present study’s authors), the significance of

which is at present not clear. The proportions observed were in-

dependent of the read coverage and estimated number of copies

per cell thresholds applied (Supplemental Fig. 40A).

We also examined the distribution of unannotated splices

across individual single cells and found that the majority were

detected in only a single cell, with <10% found in two cells, and

very few in three or more cells (Fig. 5B). While this result could be

greatly affected by psmc issues, it was independent of the read and

estimated transcript copies threshold used (Supplemental Fig. 40),

suggesting that most novel splices are indeed only present in a

small fraction of cells.

We asked how often multiple alternative splice sites are used

at individual single cells. In bulk RNA-seq at a threshold of 15

distinct read fragments, a numeric minority of c scores was equal

to 1 (i.e., exclusive use of only one donor-acceptor pair). The

presence of alternative splice sites is thus widespread in the cell

population. Nevertheless, in most cases, c was close to 1, suggesting

quantitative dominance of one isoform. The vast majority of novel

splices received very low inclusion scores (Fig. 5C) and would

generally be considered to be the result of biological noise in the

splicing system. In contrast, in single cells, one dominant splice

site was the norm for annotated junctions, except for very highly

expressed genes ($100 copies per cell), for which a wide diversity

of splice site usage was seen (Fig. 5D; details in Supplemental Fig.

42). As this observation was true even for genes expressed at $50

copies per cell, we believe it is not a psmc artifact. It is an interesting

and open question why very highly expressed genes (enriched for

genes with housekeeping function) exhibit very high levels of al-

ternative splicing in single cells. These results differ significantly

from the same analysis carried out on novel splice junctions (Fig.

5E; Supplemental Fig. 43). Somewhat surprisingly, we found that

Table 1. Representative Gene Ontology categories enriched in
coexpressed gene modules

Adjusted
P-value GO attrib ID Attrib name

Module 1
<0.001 GO:0006415 Translational termination
<0.001 GO:0006414 Translational elongation
<0.001 GO:0070469 Respiratory chain
<0.001 GO:0071845 Cellular component disassembly

at cellular level
<0.001 GO:0004129 Cytochrome-c oxidase activity
<0.001 GO:0022904 Respiratory electron transport chain
<0.001 GO:0030964 NADH dehydrogenase complex
<0.001 GO:0072413 Signal transduction involved in mitotic cell

cycle checkpoint
0.019 GO:0006626 Protein targeting to mitochondrion

<0.001 GO:0048002 Antigen processing and presentation
of peptide antigen

<0.001 GO:0010467 Gene expression
<0.001 GO:0006839 Mitochondrial transport
0.007 GO:0006458 De novo protein folding

<0.001 GO:0016071 mRNA metabolic process
<0.001 GO:0000216 M/G1 transition of mitotic cell cycle
0.014 GO:0000502 Proteasome complex
0.005 GO:0060333 Interferon-gamma-mediated signaling

pathway
<0.001 GO:0000084 S phase of mitotic cell cycle
<0.001 GO:0000082 G1/S transition of mitotic cell cycle
0.005 GO:0000209 Protein polyubiquitination

<0.001 GO:0008380 RNA splicing

Module 2
<0.001 GO:0000398 Nuclear mRNA splicing, via spliceosome
0.017 GO:0005681 Spliceosomal complex

<0.001 GO:0006397 mRNA processing

Module 3
<0.001 GO:0051186 Cofactor metabolic process
0.002 GO:0051539 Four iron, four sulfur cluster binding
0.021 GO:0051536 Iron-sulfur cluster binding

Module 6
0.027 GO:0005680 Anaphase-promoting complex
0.001 GO:0007094 Mitotic cell cycle spindle assembly

checkpoint

Gene Ontology enrichment in modules was assessed using FuncAsso-
ciate2.0 (Berriz et al. 2009). The full list of enriched categories is available
in Supplemental Table 3.
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a significant proportion of novel splices had c scores of 1 in single

cells. This was true, however, only for genes expressed at lower

levels (#50 copies), where psmc artifacts are a likely cause. In con-

trast, in highly expressed genes, no novel junctions received

a dominant ($0.5) c score. However, the scores were still consis-

tently higher than what is observed for novel splices in bulk RNA

samples.

Finally, we evaluated the consistency of splice site usage be-

tween individual cells. We applied a statistical framework similar

to the one used to analyze allelic bias and derived a list of dom-

inant splice junctions in each cell, taking into account the esti-

mated absolute number of copies and the stochastic capture effects.

We asked how often the dominant splice site changes between dif-

ferent cells. We found 282 such genes in single cells, suggesting

the phenomenon may be widespread. The genes involved were

enriched for ribosomal and translation proteins, and also, in-

triguingly, for proteins involved in RNA splicing and processing

(Supplemental Table 6). We tested this single-cell variation against

pool/split experiments, in which we found very few genes with

different dominant splice sites across libraries. (Fig. 5F,G; Supple-

mental Fig. 44). This argues that much alternative splicing vari-

ation is in fact due to biological differences between cells, and is

in agreement with the bimodality of splicing in individual mouse

immune cells reported recently (Shalek et al. 2013).

Discussion
Two major goals for single-cell RNA-seq are to obtain high-reso-

lution transcriptomes for rare cell types or states and to measure

the differences in RNA expression and processing between in-

dividual cells. Here, we showed that the first goal can be achieved

by studying 30- to 100-cell pool samples even in the absence of

perfect capture of each and every individual RNA molecule. Our

conclusion is consistent with independent 80-cell measurements

(Ramsköld et al. 2012). The pools reproduce the expression pro-

files (Supplemental Fig. 53) and allelic-bias patterns (Supplemental

Fig. 51) of the larger population, and similar numbers of genes and

splice junctions are detected in them (Supplemental Figs. 52, 53).

The approach is applicable to cells collected by laser-capture (to be

presented elsewhere), micromanipulation (used here), or cell sorting

based on molecular markers or reporter-gene expression. This de-

fines a general and relatively economical path forward for the

transcriptomic characterization of many previously inaccessible

rare cell types and states, including transient cell types in em-

bryonic development, diverse neuronal types in the brain, and

cells in tumors.

In agreement with previous single-cell RNA-seq studies, we

observed high cell-to-cell variability in gene expression levels in

GM12878 B-cells. We found that some of this variation was attrib-

utable to coordinated differences in the expression of biologically

coherent sets of genes: for example, genes associated with the

M phase of the cell cycle or with mRNA processing and splicing.

Despite good data quality, evidenced by complete and rela-

tively uniform coverage across the mRNA length spectrum, our

results were similar to other published data in displaying sig-

nificant stochasticity. Stochasticity is expected to arise from a

combination of biological variation and technical measurement

variation. We present experimental and analytical approaches for

measuring and accounting for technical stochasticity. We intro-

duced and measured single-molecule capture efficiency, the key

parameter influencing technical stochasticity, and found that

its value was around 0.1 with the current SMART-seq protocol.

This low capture efficiency provides a parsimonious explanation

for the level of variation between single-cell measurements that

is technical in origin. We also measured technical variation by

carrying out pool/split experiments. This empirical test for non-

biological variation in the system is a stringent one, which includes

capture efficiency, PCR effects, and any other unspecified sources.

We then used the pool/split results to help parse biological vari-

ation between cells that is detectable over and above variation in

pool/split measurements.

We observed unexpected levels of cell-to-cell variation in

autosomal allelic expression bias and alternative splicing. The

observation of allele switching between single cells could be

explained as a technical artifact, given that a similar, although al-

ways lower, level of switching was observed in pool/split libraries.

We therefore consider this a provisional result in need of further

investigation with improved experimental protocols. The ob-

served frequency of major splice switching in single cells is a

stronger effect, and based on comparison with pool/split exper-

iments, it is unlikely to be the sole result of technical stochas-

ticity. It has also been independently reported in a different system

(Shalek et al. 2013).

Transcriptional bursting suggests an attractive biological ex-

planation for these observations. If a gene is expressed in a series

of infrequent (relative to the half life of its mRNAs) such bursts, at

any given time the population of mRNAs in the cell is likely to

originate from only one allele. Such bursting could also be the

source of cell-to-cell variation in alternative splicing. It is possible

that the same set of factors influencing splice-site choice maintain

physical association with the gene during a transcriptional burst,

leading to a particular splicing pattern being highly favored locally

in space and time, even if factors supporting a different splice

choice are present within the same nucleus. Alternatively, isoform

choice could be driven by temporal switching of factors and would

operate regardless of bursting behavior. These are testable alter-

natives for future studies.

Many specific biological processes, especially regulatory ones,

involve genes whose transcript levels are in the range highly af-

fected by technical variation, as shown by our survey of tran-

scription factors. While measurements with current methods can

give some important clues about coherent biological variation,

especially when large numbers of individual cells are assayed,

our results argue that considerable improvement in the single-

Figure 5. Alternative splicing at the single-cell level. (A) Classification of new junctions connecting known splice sites. (B) Frequency of detection of
novel splice junctions. Novel junctions for which neither the donor nor acceptor site has been annotated were excluded for reasons described in the main
text in both A and B. A threshold of 10 estimated copies and a coverage of 10 reads was applied, but results are essentially the same, independent of the
thresholds used (Supplemental Fig. 40A). (C ) Distribution of c scores in bulk RNA samples for annotated and novel splice junctions. A threshold of 15 reads
combined for all splice junctions in which a donor or acceptor site participates was applied. Note that for each c1 score there is at least one matching c2 # 1
� c1 score corresponding to the other alternative junction; in some cases, more than two alternative donor or acceptor sites exist; thus the relative height
of the 0 # c # 0.1 bar. (D, upper and lower). Distribution of 59 c scores for annotated splice junctions at two different detection thresholds in single-cell
libraries (see Supplemental Fig. 41 for more detail). (E, upper and lower) Distribution of 59 c scores for novel splice junctions at two different detection
thresholds in single-cell libraries (see Supplemental Fig. 42 for more detail). (F,G) Frequency of major splice site usage switches between individual cells (F)
and individual libraries in a pool/split experiment (G). Note the strong support for major splice site use switching across the collection of single cells.
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molecule capture efficiency would profoundly advance the field.

Based on our simulations and results from pool/split experiments,

we estimate that an increase in psmc from 0.1 to 0.5 would be a

major leap forward, while psmc $ 0.8 would provide sufficient re-

liability for virtually any biological use. We anticipate that this

empirical and analytical framework will be useful for evaluating

future improvements in protocols, such as the recently described

SMART-seq2 protocol (Picelli et al. 2013).

Finally, we found that the amount of mRNA per cell is highly

variable between individual cells. Beyond biological interest, these

differences in mRNA number are important for analysis pipelines.

RPKM-type metrics are not reliable when there are large differences

in total RNA per cell (Lin et al. 2012; Lovén et al. 2012). At present,

the direct relationship between the absolute number of mRNA

copies per cell and the number of sequencing reads in a library is

lost due to the fragmentation of amplified cDNA molecules that is

a common feature of available protocols, resulting in multiple

distinct but overlapping sequencing fragments for each founder

RNA molecule. mRNA copy number can be estimated back from

FPKMs with the help of spike-in sequences. However, this is far

from ideal, as it depends on the accuracy of quantification of the

spike-ins and assumes the absence of systemic differences between

spike-in RNAs and endogenous RNAs. If these assumptions are

wrong, we expect a systematic error in the calculated number of

mRNAs per cell, although the more interesting and important

differences between individual cells versus pool/splits would re-

main. The above considerations make it very clear that a future

ideal single-cell RNA-seq assay would combine a very high single-

molecule capture efficiency with an amplification-free, and pref-

erably also reverse transcription-free, direct RNA sequencing method

to achieve direct counting of intact transcripts. Emerging sequenc-

ing technologies (Branton et al. 2008; Schadt et al. 2010) already

hold promise for such radical improvements.

Methods

Cell growth and single-cell RNA-seq library construction
Individual GM12878 cells grown according to standard ENCODE
protocols were picked with a glass micropipette, deposited into
lysis buffer, and frozen. Cells were later lysed in reaction buffer, and
single-cell SMART cDNA was generated following the SMART-seq
protocol (Ramsköld et al. 2012) with the following modifications:
(1) Carrier yeast tRNA was added in the lysis buffer to reduce
handling losses and help maintain the integrity of the mRNA; (2)
spikes of known copy number were introduced; and (3) the PCR
cycle number was empirically titrated to accommodate the rela-
tively small GM12878 cells. The SMART cDNA was tagmented
using Illumina/Nextera reagents as described in Gertz et al. (2012).
A detailed description of experimental protocols is provided in
the Supplemental Methods.

Sequence alignment and gene expression quantification

Reads were aligned against a combined Bowtie index of the human
genome and spike-in sequences using TopHat (Trapnell et al. 2009,
2012). Gene expression was quantified using Cufflinks (Trapnell
et al. 2010, 2012). FPKMs were converted to copies-per-cell esti-
mates using the input and measured spike-in abundances.

Single-molecule capture efficiency estimation

We estimated the average psmc based on the number of libraries
with 0 FPKM for each spike and the number of input molecules

(accounting for the fact that the number of successful captures is
not known but only the number of complete failures; a detailed
description of the procedure is provided in the Supplemental
Methods). The average psmc for all spikes for which libraries with
0 FPKMs were observed was used, which is ;0.01.

Analysis of allele-biased expression

We used the diploid (May 2011 release) NA12878 genome con-
taining phased SNPs and indels based on the NCBI build 36
(hg18) version of the human genome (downloaded from http://sv.
gersteinlab.org/NA12878_diploid/). Heterozygous transcriptomes
containing two copies of each transcript were built, and reads were
aligned using Bowtie (Langmead et al. 2009) (version 0.12.7) with
zero mismatches allowed. Identical reads were collapsed, and reads
were assigned to an allele if they mapped only to one of the alleles
of a gene. Allele-biased expression was assessed by accounting for
all of the following: (1) significance of allelic bias on the level of
reads; (2) significance of allelic bias on the level of estimated
copies per cell for each allele (derived from the total number of
estimated copies for the gene); this is necessary, as a common
feature of all current single-cell protocols is the production of mul-
tiple overlapping fragments from each original molecule; and (3)
the possibility that the observed allelic bias is due to differential
stochastic capture of the two alleles. A detailed description of the
procedure is provided in the Supplemental Methods.

Alternative splicing analysis

We carried out alternative splicing analysis using the 59 and 39

splicing inclusion c scores described by Pervouchine et al. (2013),
and applying the same statistical procedure we used to assess allelic
expression bias to determine statistically significant splice variant
exclusion. A detailed description of the splicing analysis procedure
is provided in the Supplemental Methods.

Gene expression clustering and weighted correlation
network analysis

We used the WGCNA R package (Langfelder and Horvath 2008) to
carry out the weighted correlation network analysis. Gene Ontol-
ogy enrichment in modules was assessed using FuncAssociate2.0
(Berriz et al. 2009). Gene expression clustering was carried out using
Cluster 3.0 (de Hoon et al. 2004) and visualized using TreeView
(Saldanha 2004).

Data access
BAM files containing aligned and unaligned sequencing reads
have been submitted to the NCBI Gene Expression Omnibus
(GEO; http://www.ncbi.nlm.nih.gov/geo/) under accession num-
ber GSE44618.
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ABSTRACT ChIP-seq has become the primary method for identifying in vivo protein–DNA interactions on
a genome-wide scale, with nearly 800 publications involving the technique appearing in PubMed as of
December 2012. Individually and in aggregate, these data are an important and information-rich resource.
However, uncertainties about data quality confound their use by the wider research community. Recently,
the Encyclopedia of DNA Elements (ENCODE) project developed and applied metrics to objectively mea-
sure ChIP-seq data quality. The ENCODE quality analysis was useful for flagging datasets for closer in-
spection, eliminating or replacing poor data, and for driving changes in experimental pipelines. There had
been no similarly systematic quality analysis of the large and disparate body of published ChIP-seq profiles.
Here, we report a uniform analysis of vertebrate transcription factor ChIP-seq datasets in the Gene Expression
Omnibus (GEO) repository as of April 1, 2012. The majority (55%) of datasets scored as being highly successful,
but a substantial minority (20%) were of apparently poor quality, and another �25% were of intermediate
quality. We discuss how different uses of ChIP-seq data are affected by specific aspects of data quality, and we
highlight exceptional instances for which the metric values should not be taken at face value. Unexpectedly, we
discovered that a significant subset of control datasets (i.e., no immunoprecipitation and mock immunopre-
cipitation samples) display an enrichment structure similar to successful ChIP-seq data. This can, in turn, affect
peak calling and data interpretation. Published datasets identified here as high-quality comprise a large group
that users can draw on for large-scale integrated analysis. In the future, ChIP-seq quality assessment similar to
that used here could guide experimentalists at early stages in a study, provide useful input in the publication
process, and be used to stratify ChIP-seq data for different community-wide uses.
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Chromatin immunoprecipitation (ChIP) (Gilmour and Lis 1984;
Gilmour and Lis 1985; Solomon et al. 1988) experiments identify
sites of occupancy by specific transcription factors (TFs), cofactors, and
other chromatin-associated proteins as well as histone modifications.
Such proteins are concentrated at specific loci via direct binding to
DNA or by indirect binding mediated by other proteins or RNA
molecules. In most ChIP protocols, proteins are first cross-linked to
DNA, most often using formaldehyde. The fixed chromatin is sheared,
and an antibody specific for the protein or histone modification of
interest is used to retrieve protein:DNA complexes from which the
DNA segments are released and then assayed. The assay was first
applied to individual TF/promoter complexes by using qPCR to detect
enrichment over specific DNA segments (Hecht et al. 1996). Subsequent
adaptations extended it to large sets of promoters or other genomic
regions by using microarrays (ChIP-on-Chip/ChIP-Chip) (Ren et al.
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2000; Iyer et al. 2001; Lieb et al. 2001; Horak and Snyder 2002;
Weinmann et al. 2002). Ultimately, the entire genome became acces-
sible with the advent of high-throughput sequencing and the devel-
opment of ChIP-seq (Johnson et al. 2007; Barski et al. 2007;
Mikkelsen et al. 2007; Robertson et al. 2007).

In all cases, preferential enrichment of a given immunoprecipitated
DNA segment is detected and quantified by comparing it with a control
experiment in which there is no specific antibody enrichment step.
These controls can be generated from sonicated DNA before immuno-
precipitation (input) or a mock immunoprecipitation with an unrelated
antibody (IgG). Sequencing-based ChIP has become the method of
choice because it enables genome-wide coverage, even for large
genomes, and because of its superior signal-to-noise characteristics
compared to alternative methods. Since its initial development,
ChIP-seq has been used in hundreds of publications (778 in PubMed
as of December 18, 2012), including by the ENCODE consortium
(ENCODE Project Consortium 2011; ENCODE Project Consortium
2012), to map occupancy over 100 human TFs and cofactors in a di-
verse collection of cell lines (Gerstein et al. 2012; Wang et al. 2012).

A basic question for any ChIP-seq experiment is, how successful
was it? It has taken several years for the field to develop objective ways
to quantify key aspects of success in immunoprecipitation enrichment,
library building, and final sequencing. Poor datasets that have high
false-negative rates in peak calling are a predictable pitfall that has
significant downstream consequences for some kinds of biological and
computational analyses. For example, when lower-quality datasets are
used for integrative analyses that are sensitive to false-negative rates,
incorrect inferences and conclusions become likely (see Discussion). In
estimating data quality, the traditional approach of visual inspection at
a limited number of sites (often previously well-characterized using
low-throughput approaches) is inefficient, subjective, and ultimately
can be deceptive. It is also possible (and commonly observed in prac-
tice) that sites, the biological importance of which has been defined by
independent functional assays, can decrease to below the sensitivity
threshold of a poor or mediocre ChIP-seq experiment. Moreover, there
is no current way to predict, a priori, the number of sites in the genome
that should be detectable for a given factor and cell type. Most TFs
studied thus far reproducibly occupy thousands to tens of thousands of
sites (ENCODE Project Consortium 2012; Landt et al. 2012). Thus,
a dataset for which several thousand sites have been called might in fact
be capturing a minority of true positive interactions, or it might en-
compass virtually all biologically pertinent sites. To help address the
problem of data assessment as part of the ENCODE project, we and
others developed a set of ChIP-seq quality control (QC) metrics and
guidelines (Landt et al. 2012) that were adopted and applied to all of its
datasets. Substandard datasets were consequently replaced, flagged as
substandard, and/or removed from analysis (ENCODE Project Con-
sortium 2012; Landt et al. 2012).

Incorporating published datasets into an ongoing study can bring
new biological insights and avoid unnecessary duplication of work.
Variable quality of published data can be a significant barrier to these
uses of existing data. They are the products of work from many
different laboratories with invaluable expertise in specific biological
systems, but they also use many variations of ChIP-seq experimental
protocols and bioinformatics treatments. The extent and nature of the
variations have not been assessed globally and systematically. In this
work, we examined the GEO submission series containing vertebrate
TF ChIP-seq datasets and found that �20% of datasets scored as
being of low quality, with an additional �25% exhibiting intermediate
ChIP enrichment. We also noticed that approximately one-third of
studies have control datasets with a high degree of read clustering that

is normally expected only in ChIP-seq datasets. This was observed
more often for the IgG control design than for input DNA controls.
These and related observations argue for data quality measures rou-
tine characterization and reporting of ChIP-seq data quality measures.

MATERIALS AND METHODS

Sequencing read alignment
Raw sequencing reads for all non-ENCODE GEO series containing
ChIP-seq datasets against TFs and chromatin-modifying proteins
(submitted before April 1, 2012) were downloaded from GEO in SRA
format and converted to FASTQ format using the fastq-dump
program in the sratoolkit (version 2.1.9). Reads were aligned using
Bowtie (Langmead et al. 2009) version 0.12.7 with the following set-
ting: “-v 2 -t -k 2 -m 1 –best–strata,” which– allows for two mis-
matches relative to the reference and only retains unique alignments.
Human datasets were mapped against the male set of chromosomes
(excluding all random chromosomes and haplotypes) for version hg19
of the human genome; the mm9 version of the mouse genome was
used for mouse data, rn5 was used for rat data, danRer7 was used for
zebrafish data, susScr2 was used for pig data, and xenTro3 was used
for the clawed frog Xaenopus tropicalis data, and all assemblies were
downloaded from the UCSC genome browser (Kent at al. 2002).

ChIP quality assessment
ChIP quality assessment was performed on both ChIP and input
datasets using the general strategy described by Landt et al. (2012).
Because a library may score as an “unsuccessful ChIP” for reasons
other than IP failure (e.g. being performed in a knockout background,
in si/shRNA-treated cells, or in conditions under which the factor is
not expressed or not bound to DNA), the following additional criteria
were used to determine whether each library is expected to score
positively in the QC assessment:

1. All experiments claimed to be successful by authors are expected
to exhibit high level of read clustering.

2. All inputs (sonicated DNA and IgG mock IPs) are expected to
exhibit minimal read clustering (QC tag of 22 or 21).

3. All ChIP-seq experiments performed in a knockout background
for the factor are expected to exhibit minimal read clustering (QC
tag of 22 or 21).

4. Because knockdown efficiency varies and because it is unknown
what protein levels would be sufficiently high for the factor to be
successfully ChIP-ed, ChIP-seq experiments performed in cells
treated with si/shRNAs targeting the factor are set aside as
“unknown” and assessed for library complexity and sequencing
depth but not for ChIP quality.

5. Experiments against factors known to bind to DNA on some
stimulus performed in unstimulated cells are also tagged as
“unknown” because lower-level binding in unstimulated cells
cannot be ruled out (and is, in fact, often observed).

6. Experiments performed in conditions that may result in the fac-
tor not binding to DNA (time courses, knockdowns, or knock-
outs for other factors that may affect binding of the targeted
factor) are also tagged as “unknown.”

7. Other experiments not matching any of these categories are
expected to exhibit high levels of read clustering.

Cross-correlation analysis was performed using version 1.10.1 of
SPP (Kharchenko et al. 2008) and the following parameter: “2s =
0:2:400.” QC scores were assigned based on the relative strand
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correlation (RSC) values (integers ranging from 22 to 22, RSC 2 {0,
0.25} ⇒ QC ) 22, RSC 2 {0.25, 0.50} ⇒ QC ) 21, RSC 2 {0.50,
1.00} ⇒ QC ) 0, RSC 2 {1, 1.50} ⇒ QC ) +1, RSC $ 1.5 ⇒ QC )
+2, with 22 corresponding to minimal read clustering and 2 corre-
sponding to a highly clustered library) and used as a measure of ChIP
quality. These scores capture the extent of read clustering in a ChIP-seq
experiment in organisms whose genomes have similar size and structure
to those of mammals. We point out that these scores may not be
appropriate in genomes with very different size and/or structure. This
motivated us to discard data from nonvertebrate model organisms for
this analysis. Different values than those used here for RSC or normal-
ized strand correlation (NSC) coefficients may be needed for such
genomes, and this is a topic for future investigation. Cross-correlation
plots were manually examined to ensure no artifactual QC scores were
included because of size selection issues (such as, for example, a library
being fragmented to an average size close to the read length and con-
fusing the automated fragment peak assignment). In general, we rec-
ommend manual examination of cross-correlation plots in all cases.
This presents a deeper and more detailed view of the characteristics
of the dataset because the cross-correlation profile provides not only
information regarding ChIP enrichment but also regarding the frag-
ment length distribution in the datasets. For example, a dataset might
exhibit periodicity in the distribution of fragment size lengths, present-
ing itself as numerous smaller peaks along the curve (often seen when
chromatin is enzymatically digested rather than sonicated), or it can
deviate from the standard unimodal pattern (aside from the phantom
peak) indicating issues with size selection. The code for running
SPP and assigning QC scores is available at https://code.google.com/p/
phantompeakqualtools/.

MyoD and myogenin ChIP-seq peak calling
MyoD and myogenin datasets were generated by the Wold laboratory
and are available under GEO accession number GSE44824. We note
that the apparent weakness of the “myogenin 2” ChIP dataset is most
likely attributable to undersequencing and would be elevated to high-
quality status if sequenced deeper; undersequencing is one possible
reason for suboptimal quality metrics (A. Kundaje et al., unpublished
data). Reads were mapped as described above and peaks were called
using ERANGE3.2 (Johnson et al. 2007) with the following settings:
“2minimum 2 2ratio 3 2shift learn 2revbackground 2listPeak.”
ChIP-seq peak calls were counted as overlapping if their summits were
within 200 bp of each other. Read mapping statistics and QC metrics
for these datasets can be found in Supporting Information, Table S2.

RESULTS

Dataset collection, data processing, and quality metrics
We downloaded all GEO series containing ChIP-seq datasets for
vertebrate TFs or chromatin-modifying and remodeling proteins,
along with their corresponding control libraries, submitted before
April 1, 2012. We excluded ENCODE datasets because they have
previously been subjected to this quality assessment (ENCODE Pro-
ject Consortium 2012). We provide here a summary of ENCODE TF
ChIP-seq data quality from the two main production groups in Figure
S9 and Figure S10 (Landt et al. 2012).

For several reasons, we also excluded histone modifications and RNA
Polymerase II datasets. First, in our experience, ChIP-seq against these
targets is very robust to experimental variation and the success rate is
reliably high (provided the antibody reagents used are of high quality).
Second, an especially large proportion of published data are for histone
marks. The effect of including all of these in the survey is to obscure or

skew what is happening in the information-rich sample set that includes
diverse TFs and cofactors. Finally, the currently available QCmetrics were
designed and are best suited for TF data that produce highly localized
“point-source” occupancy (as they quantify the extent of read clustering
in the genome). This means that the metrics themselves need to be
interpreted differently if they are applied to, for example, repressive his-
tone marks such as H3K9me3 and H3K27me3, which form large “broad-
source” regions of enrichment (Pepke et al. 2009). Arguably, these data
will need their own metrics and this will be a challenge for the future.

The final collection of datasets contained 191 GEO series
containing a total of 917 ChIP-seq and 292 control libraries. Except
for a limited number of cases in which a GEO series was associated
with multiple publications, two or three GEO series were associated
with the same publication, or a GEO series has not yet been used in
a publication, and there is a one-to-one relationship between GEO
series and published articles in the literature (Robertson et al. 2007;
Chen et al. 2008; Marson et al. 2008; Bilodeau et al. 2009; Cheng et al.
2009; De Santa et al. 2009; Lister et al. 2009; Nishiyama et al. 2009;
Visel et al. 2009; Welboren et al. 2009; Wilson et al. 2009; Yu et al.
2009; Yuan et al. 2009; Barish et al. 2010; Blow et al. 2010; Blow et al.
2010; Cao et al. 2010; Chi et al. 2010; Chia et al. 2010; Chicas
et al. 2010; Corbo et al. 2010; Cuddapah et al. 2009; Durant et al.
2010; Fortschegger et al. 2010; Gotea et al. 2010; Gu et al. 2010; Han
et al. 2010; Heinz et al. 2010; Heng et al. 2010; Ho et al. 2009;
Hollenhorst et al. 2009; Hu et al. 2010; Johannes et al. 2010; Jung
et al. 2010; Kagey et al. 2010; Kassouf et al. 2010; Kim et al. 2010;
Kong et al. 2010; Kouwenhoven et al. 2010; Krebs et al. 2010; Kunarso
et al. 2010; Kwon et al. 2009; Law et al. 2010; Lee et al. 2010; Lefterova
et al. 2010; Li et al. 2010; Lin et al. 2010; Liu et al. 2010; Ma et al. 2010;
MacIsaac et al. 2010; Mahony et al. 2010; Martinez et al. 2010; Palii
et al. 2010; Qi et al. 2010; Rada-Iglesias et al. 2010; Rahl et al. 2010;
Ramagopalan et al. 2010; Ramos et al. 2010; Schlesinger et al. 2010;
Schnetz et al. 2010; Sehat et al. 2010; Steger et al. 2010; Tallack et al.
2010; Tang et al. 2010; Vermeulen et al. 2010; Verzi et al. 2010; Vivar
et al. 2010; Wei et al. 2010; Woodfield et al. 2010; Yang et al. 2010;
Yao et al. 2010; Yu et al. 2010; An et al. 2011; Ang et al. 2011;
Bergsland et al. 2011; Bernt et al. 2011; Botcheva et al. 2011; Brown
et al. 2011; Bugge et al. 2011; Ceol et al. 2011; Ceschin et al. 2011;
Costessi et al. 2011; Ebert et al. 2011; Fang et al. 2011; Handoko et al.
2011; He et al. 2011; Heikkinen et al. 2011; Holmstrom et al. 2011;
Horiuchi et al. 2011; Hu et al. 2011; Joseph et al. 2010; Kim et al. 2011;
Klisch et al. 2011; Koeppel et al. 2011; Kong et al. 2011; Little et al.
2011; Liu et al. 2011; Lo et al. 2011; Marban et al. 2011; Mazzoni
et al. 2011; McManus et al. 2011; Mendoza-Parra et al. 2011; Meyer
et al. 2012; Miyazaki et al. 2011; Mullen et al. 2011; Mullican et al. 2011;
Nakayamada et al. 2011; Nitzsche et al. 2011; Norton et al. 2011;
Novershtern et al. 2011; Quenneville et al. 2011; Rao et al. 2011; Rey
et al. 2011; Sahu et al. 2011; Schmitz et al. 2011; Seitz et al. 2011;
Shen et al. 2011; Shukla et al. 2011; Siersbæk et al. 2011; Smeenk
et al. 2011; Smith et al. 2011; Soccio et al. 2011; Stadler et al. 2011;
Sun et al. 2011; Tan et al. 2011a; Tan et al. 2011b; Teo et al. 2011;
Tijssen et al. 2011; Tiwari et al. 2011a; Tiwari et al. 2011b; Trompouki
et al. 2011; van Heeringen et al. 2011; Verzi et al. 2011; Wang et al.
2011a; Wang et al. 2011b; Wei et al. 2011; Whyte et al. 2011; Wu et al.
2011a; Wu et al. 2011b; Xu et al. 2011; Yang et al. 2011; Yildirim
et al. 2011; Yoon et al. 2011; Zhang et al. 2011; Zhao et al. 2011a; Zhao
et al. 2011b; Avvakumov et al. 2012; Barish et al. 2012; Boergesen et al.
2012; Bugge et al. 2012; Canella et al. 2012; Cardamone et al.
2012; Cheng et al. 2012; Chlon et al. 2012; Cho et al. 2012; Doré
et al. 2012; Fan et al. 2012; Feng et al. 2011; Fong et al. 2012; Gao et al.
2012; Gowher et al. 2012; Hunkapiller et al. 2012; Hutchins et al. 2012; Li
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et al. 2012; Lu et al. 2012; Miller et al. 2011; Ntziachristos et al. 2012;
Pehkonen et al. 2012; Ptasinska et al. 2012; Remeseiro et al. 2012;
Sadasivam et al. 2012; Sakabe et al. 2012; Schödel et al. 2012; Trowbridge
et al. 2012; Vilagos et al. 2012; Wu et al. 2012; Xiao et al. 2012; Yu

et al. 2012; unpublished at the time of completion of this manuscript
are the following GEO accession numbers: GSE33346, GSE33850,
GSE36561, GSE30919, GSE33128, GSE35109, GSE25426, GSE31951,
GSE26711, GSE23581, GSE26136, GSE26680, GSE15844, GSE21916,

Figure 1 Sequencing library characteristics. (A) Joint distribution of library complexity and sequencing depth for all datasets examined. Vertical
lines are drawn at 1 million, 5 million, and 12 million reads. Horizontal and vertical lines indicate quality classes discussed in the text. The upper
right domain (number of uniquely mappable reads $12 million and library complexity $0.8) passes current quality thresholds. (B) Distribution of
library complexity for ChIP-seq datasets, IgG controls, and inputs. (C) Distribution of sequencing depth for ChIP-seq datasets, IgG controls, and
sonicated inputs. (D) Fraction of ChIP-seq, IgG, and input datasets exhibiting high, medium, and low complexity. (E) Fraction of studies containing
libraries of high, medium, and low complexity (the distribution of the minimum library complexity observed is shown)
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GSE22303, and GSE29180; direct links to all GEO series can be found
in Table S1).

We discuss IgG and input controls separately because, to the best
of our knowledge, any potential general differences between the two
types of controls have not been investigated systematically in the
context of ChIP-seq (Peng et al. 2007 addressed these questions for
ChIP-Chip data; however, the nature of the background is substan-
tially different for microarrays).

We mapped all reads with uniform settings (see Materials and
Methods for details) and examined library and ChIP QC metrics for
each dataset. These criteria have already been discussed by Landt et al.
(2012), and a detailed treatment of cross-correlation is presented else-
where (Kundaje et al., unpublished data). Here, we provide a brief
overview of each.

Sequencing depth: If a ChIP-seq experiment achieves successful
immune enrichment and the resulting library adequately represents
the sample, then greater sequencing depth will produce a more
complete map of TF occupancy (Landt et al. 2012). At a greater depth,
the measurement will identify a larger number of reproducible sites
containing the corresponding DNA-binding sequence motif. Under-
sequencing of an otherwise successful library will lead to false-negative
results. It has been difficult to establish a universal minimal sequenc-
ing depth because of differences between factors. Any threshold is
going to be somewhat arbitrary but, in general, the major cost/benefit
trade-off is between sequencing individual samples more deeply and
generating more replicates; for most contemporary purposes, an in-
dependent duplicate measurement of 12 million reads arguably adds
greater overall value than a single determination with 24 million reads,
even though the higher number of reads will increase sensitivity. The
number of mapped reads less than 1–2 million for a typical TF will

usually be inadequate for capturing the complexity of an interactome
for a mammalian-size genome. Many datasets now in the public
domain were generated when sequencing throughput was lower than
it is now and costs were higher (between 2007 and 2013, sequencing
throughput has increased by approximately two orders of magnitude).
As a consequence, many early ChIP-seq libraries were sequenced to
a depth of only a few million reads. We therefore divided datasets into
sequencing bins by using thresholds of 1 million, 5 million, 12 million,
and 24 million uniquely mapped reads (taking into account sequenc-
ing depths recommended in the past by the ENCODE consortium for
TFs). Libraries having less than 1 million reads are considered severely
undersequenced, and those with more than 12 million are considered
reasonably deeply sequenced.

Library complexity: A second characteristic that influences the quality
of a ChIP-seq measurement is the sequence fragment diversity of the
sequencing library. This is often referred to as library complexity,
and low complexity is undesirable, although we note that much
better IP enrichment than what is now obtained could, in the future,
lead to very high-quality datasets with low library complexity.
Currently, low-complexity libraries mainly result from experimental
deficiencies: either too few starting molecules at the end of the
immunoprecipitation step or inefficient steps in subsequent library
building. As a result, the same starting molecules are sequenced
repeatedly. Very-low-complexity libraries will not contain enough
information to effectively sample the true positive occupancy sites
and they distort the signal position and intensity. This can confuse
peak callers (especially if the algorithm does not collapse pre-
sumptive PCR duplicates), leading to peak calling artifacts (Landt
et al. 2012). We calculate the following metric as an indicator of
library complexity (Landt et al. 2012):

Library  complexity ¼ Number  positions  in  the  genome  with  uniquely mappable  reads  in  dataset
Number  uniquely mappable  reads  in  dataset

(1)

Estimated in this simple way, library complexity is expected to
decrease eventually with increased sequencing depth because even
highly complex libraries become exhausted by very deep sequencing.
Reduced apparent complexity would also be observed with extremely
successful ChIP-seq experiments for TFs that bind to the genome in
a highly discriminative fashion to a limited number of locations. In
such libraries, the majority of reads would originate from the limited
genomic subspace around binding sites, resulting in low library com-
plexity. With current methods, this is a largely theoretical consider-
ation; in practice, in most ChIP-seq libraries only a minority of reads
originates from factor-bound sites, with the rest (the majority) rep-
resenting genomic background. Because the majority of libraries we
examined were in the sequencing depth range over which these values
represent library complexity reasonably well (Figure 1A and Figure
S2), we separated datasets into the following complexity groups: high
complexity (apparent library complexity $.8); medium to low com-
plexity (apparent library complexity between 0.5 and 0.8); and very
low complexity (apparent library complexity #.5). We also note that
in substantially smaller genomes, the apparent library complexity is
expected to be lower because the number of positions from which
sequencing library fragments can originate is smaller.

Cross-correlation analysis of read clustering and ChIP enrichment:
Because the majority of sequencing reads in a ChIP-seq library

represent nonspecific genomic backgrounds, these reads are expected
to be distributed randomly over the genome, to a first approximation.
In contrast, reads originating from specific occupancy events cluster
around the sites of protein–DNA interactions, where they are distrib-
uted in a characteristic asymmetric pattern on the plus and minus
strands (Kharchenko et al. 2008). Cross-correlation analysis is an ef-
fective way of measuring the extent of this clustering. It also captures
additional global features of the data, such as the average fragment
length and fragment length distribution (Kharchenko et al. 2008;
Landt et al. 2012). Specifically, the read coverage profiles on the two
strands are shifted relative to the other over a range of shift values
and the correlation between the profiles is calculated at each shift
(Kharchenko et al. 2008). The resulting plot has one (“phantom”) peak
corresponding to the read length and another peak corresponding to
the average fragment length; the height of the fragment-length peak is
highly informative of the extent of read clustering in the library and, in
turn, of the success of a ChIP-seq experiment. This feature is best
captured by the NSC and RSC metrics discussed by Landt et al. (2012).

We applied SPP (Kharchenko et al. 2008) to perform cross-correlation
analysis for all libraries in our survey. We then used the RSC cross-
correlation metric to assign integer QC tag values in the {22, 2} range
to datasets, with QC values of 2 corresponding to very highly clustered
(and most likely, also successful) datasets and QC values of 22 to
datasets exhibiting no to minimal read clustering; negative values are
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expected for input datasets. The RSC metric captures well the extent of
read enrichment in vertebrate genomes similar in size and structure to
humans, which this study focuses on. We provide representative
examples of cross-correlation plots for each of the five QC categories
in Figure S1A, and we use these tags as convenient general proxies for
ChIP quality throughout the following analysis. We note that the
discretization thresholds are not intended to be absolute determinants
of quality, but they do enable one to rapidly scan very large numbers
of datasets. In practice, examining the cross-correlation plots and the
continuously distributed NSC and RSC values and using those to-
gether with information about sequencing depth and library complex-
ity are always more informative and can provide valuable nuances for
understanding specific datasets. Direct examination of plots allows
one to detect datasets with odd cross-correlation profiles (we show
a few representative examples in Figure S11). It is possible in theory
for low-complexity libraries to produce artificially high cross-correla-
tion scores if stacks of reads on opposite strands are located close to
each other in regions of enrichment; however, the Pearson correlation
between library complexity scores and RSC values in the collection of
ChIP datasets surveyed here was 0.0084, indicating that such cases do
not feature significantly in this analysis.

An additional major component of the ChIP-seq QC pipeline
developed by the ENCODE consortium is reproducibility analysis of
replicates, based on the irreproducible discovery rate (IDR) statistic (Li
et al. 2011). However, because many of the studies we surveyed did
not have replicates, we only evaluated datasets on the level of indi-
vidual experiments. Single dataset evaluation is almost always a valu-
able precursor to evaluation of replicates because, typically, a second
replicate is generated after a successful first one. The full list of data-
sets, mapping, and QC statistics is provided in Table S1.

Sequencing depth and library complexity
Figure 1A shows the distribution of sequencing depth and library
complexity for ChIP-seq and control datasets. The upper right do-
main, bounded by 12 million reads per sample and a complexity value
of 0.8, is an arbitrary but useful definition of high quality according to
these measures. A majority of datasets had reasonably good complex-
ity and severely undersequenced libraries were rare (Figure 1C).
A minority (38.8%) of datasets had more than 12 million mapped
reads; however, as discussed, this is not unexpected, because a large
fraction of the datasets we surveyed were generated in times of sig-

nificantly higher sequencing cost and lower throughput. Strikingly, the
median complexity of IgG control datasets was less than 0.8 and
considerably lower than that of either ChIP-seq or sonicated input
libraries (Figure 1B). This is not a result of IgG datasets having been
sequenced much more deeply than the other two groups; in fact, the
median sequencing depth of IgG controls is lower (Figure S2). The
concern that some individual IgG inputs might provide insufficient
DNA mass to build highly complex libraries has been raised before
(Landt et al. 2012), and our observations are consistent with this,
although it is not a characteristic of all IgG controls.

Slightly more than half (54.3%) of ChIP-seq datasets had library
complexity more than 0.8, whereas very-low-complexity (, 0.5) librar-
ies comprised 12.9% of datasets; the fraction of very-low-complexity
libraries was higher and lower for IgG and input datasets, respectively
(Figure 1D). Because most GEO series contained multiple libraries, we
also asked, how common is the presence of low-complexity libraries in
individual studies? Figure 1E shows the distribution of the minimum
library complexity in each such series (for all types of datasets). One-
quarter (25.4%) of all studies contained very-low-complexity libraries.

Cross-correlation quality assessment of
ChIP-seq datasets
Next, we examined the distribution of SPP QC scores for ChIP-seq
datasets. Before doing this, we excluded a minority of datasets for
which there was a good reason to think high ChIP enrichment should
not be expected. For example, experiments executed in knockouts,
knockdowns, or settings in which the factor is not expressed are not
expected to produce a high-scoring measurement. And in a few cases,
the factor in question might be known to bind to only a small number
of sites in the genome; this has been proposed, for example, for some
ZNF TFs and Pol3 and its associated factors (Landt et al. 2012). Our
detailed criteria for inclusion are described in Materials and Methods.

Figure 2A shows the QC score distribution for all ChIP-seq data-
sets we retained. Strikingly, only 55% (482 out of 876) of datasets had
QC scores of 1 or 2, i.e., they were likely to be highly successful. An
additional 24.5% (215 out of 876) had a score of 0, indicating that they
were of intermediate quality, and 20.4% (179 out of 876) had low-
quality scores of21 and22. Sometimes multiple replicates for a factor
were submitted but only one scored poorly, so we also compiled
a second set of ChIP-seq experiments that only included the best
available replicate for each factor and condition (Figure 2B). This

Figure 2 ChIP QC assessment summary. The numbers
in each box indicate the total number of datasets/
studies belonging to it. SPP QC scores of +1 and +2
indicate a high degree of read clustering in a dataset.
(A) Distribution of SPP QC scores for all ChIP-seq
datasets examined. (B) Distribution of SPP QC scores
for the best replicates for a factor/condition combina-
tion in each study. (C) Distribution of the maximum SPP
QC scores for all ChIP-seq datasets in a study.
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set included 322 datasets (59%) with QC scores of 2 or 1. The fraction
of intermediate-quality or low-scoring datasets in this group decreased
as expected. However, the decrease was modest with 18% (97 out of
541) of the best available replicates scoring21 or22, and 22.5% (122
out of 541) scoring 0.

We then examined the distribution of the maximum QC score for
each study, regardless of the target identity (Figure 3C). The fraction
of low scores decreased further, though only 70.4% of studies (131 out
of 186) had a score of 1 or 2 for their best experiment. Finally, we
compiled a list of the top-scoring datasets from all studies that assayed
only a single TF; 19.7% (19 out of 96) of these studies had scores of
21 or22, 25% (24 of 96) had a score of 0, and 55.2% (53 of 96) were
marked as likely to be successful, with scores of 1 and 2 (Figure S3C).

Read clustering in control datasets
Control datasets serve the important purpose of helping to distinguish
read enrichment attributable to the immunoprecipitation step from

artifactual read clustering attributable to other experimental factors, both
known and unknown. It is, for example, well-appreciated that differential
chromatin shearing efficiency can lead to the overrepresentation of
areas of open chromatin (usually immediately surrounding transcribed
promoters) in sequencing libraries. This has been termed the “Sono-
seq” effect when attributed to sonication (Auerbach et al. 2009). In
addition, unknown copy number variants relative to the reference ge-
nome or sequence composition biases can give false-positive occupancy
calls. In particular, specifics of the amplification step in sequencing plat-
forms can introduce bias due to GC content (Ho et al. 2011).

In general, control datasets are not expected to exhibit a pattern
of significant read clustering similar in strength to that of successful
ChIP-seq datasets. In our own practice, under standard cross-linking
protocols, most do not. However, we noticed that a minority of control
datasets produce positive ChIP QCmetric scores along with prominent
cross-correlation peaks. Figure S1B shows examples of cross-correlation
plots for individual control datasets with all possible QC scores, from

Figure 3 Assessment of read cluster-
ing in control datasets. The numbers in
each box indicate the total number of
datasets/studies belonging to it. SPP
QC scores of 1 and 2 indicate a high
degree of read clustering in a dataset.
(A) Distribution of SPP QC scores for all
control datasets (IgG + input), IgG/
mock IP controls (IgG), and sonicated
inputs (inputs). (B) Fraction of studies
containing highly clustered inputs. The
distribution of the maximum SPP QC
score for all inputs in a dataset is
shown. (C) Examples of a highly clus-
tered input [mouse liver, upper two
tracks, (MacIsaac et al. 2010), QC
score of 2] and an input that does
not show high extent of read clustering
[mouse liver, lower two tracks (Soccio
et al. 2011), QC score of 21). The pro-
moter of theMASTL gene is shown. All
tracks are shown to the same scale and
reads mapping to the plus and minus
strands are displayed separately for bet-
ter visualization of the cross-correlation
between the two.
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22 to 2, and Figure 3C shows a browser snapshot of a region with
strong read enrichment in a highly clustered (QC score of 2) input
library. No such enrichment was observed in a different control library
from a similar biological source having a QC score of 21.

We asked how general this phenomenon is by examining the
distribution of QC scores of both IgG and input control datasets
(Figure 3A). Surprisingly, only 53.6% (156 out of 291) of control
datasets had QC scores of 22 or 21 and 25% (73 of 291) had a score
of 0, whereas 21.3% (62 of 291) exhibited a very high degree of read
clustering and received scores of 1 or 2. The highly clustered inputs
were notably more common among IgG controls than among input
chromatin controls (Figure 3A). Moreover, high read clustering was
more often found in low-complexity libraries (which are themselves
more common among IgG controls) (Figure S4, A and B).

We also examined how widespread control sample clustering is on
the level of individual GEO series/studies to see if the phenomenon is
restricted to a few larger studies. Figure 3B shows the distribution of the
maximal control sample QC score for all studies. Of the studies for
which control datasets were available, 32.8% (45 of 123) contained at
least one highly clustered control with a score of 1 or 2, and 29.2% (40
of 123) contained a control with a score of 0. Thus, control datasets
surprisingly often exhibit a high extent of read clustering similar to
that of ChIP-seq datasets. This is even more striking considering that
formaldehyde-assisted isolation of regulatory elements (FAIRE-seq) data
(an assay that is based on the preferential enrichment of open chromatin in
sonicated DNA and aims to achieve high read clustering) from ENCODE
usually have QC scores between 22 and 0, Moreover, the Sono-seq
datasets published by Auerbach et al. (2009) all have scores of 22.

We note that unless this effect is very strong and is associated with
notable genomic features such as promoters of genes, it can be difficult
to detect by the usual methods of visual inspection of signal tracks on
a genome browser. It is, however, readily apparent in cross-correlation
analysis and our results raise awareness of its existence. As mentioned,
one candidate explanation for this phenomenon is the previously
described “Sono-seq” effect. Using standard experimental protocols, this
effect has been rare in our experience; however, under more aggressive
cross-linking conditions, we have observed increased read clustering in
control samples (Figure S5). Notably, the original “Sono-seq” descrip-
tion focused on promoter regions, but we have also observed it over
distal regulatory elements, where its strength was even higher than at
promoters (Figure S5). Thus, variation in the extent of fixation, as well
as sonication, might be a substantial contributor to variation in read
clustering across the broader data collection. Another potential contrib-
uting factor is sequencing depth. Although the average sequencing
depth for highly clustered IgG and input controls is higher than that
of controls with negative QC scores (Figure S4, C and D) this by no
means explains all the clustering observed in controls. There are many
examples of more deeply sequenced input and IgG libraries with no
significant cross-correlation peaks and very few of them were sequenced
especially deeply (only eight control libraries had .4 · 107 reads not
desirable. Finally, “Sono-seq” need not be the only explanation. Whereas
a number of control datasets with QC scores of 2 exhibited higher read
coverage around promoters, others did not (Figure S6), suggesting at
least one additional source of unexplained read enrichment in control
samples. Because rich annotation of functional genomic elements out-
side promoter regions was not available for many cell types in our
survey, this phenomenon is a subject for future analyses.

DISCUSSION
We performed a systematic survey of ChIP quality for publicly
available vertebrate ChIP-seq datasets and found that more than half

score as high quality by our measures. This group comprises a set that
we believe can be used with confidence for integrative analyses. This
conclusion carries the important caveat that we could not assess the
specificity of the immune reagents used to perform the experiments.
which powerfully affects the biological meaning of the data.

A substantial minority of published datasets (between 20% and
45% of those examined) were of low or intermediate quality by our
metrics. This was true not only for individual libraries but also for the
best replicates from each study. In addition, we observed a substantial
number of low-complexity datasets and an unexpected group of highly
clustered control datasets. These observations underscore the wide-
spread variation in published ChIP-seq data. They also raised questions
about which kinds of conclusions in primary publications are more or
less sensitive to these aspects of data quality. In particular, global quality
analysis is useful for guiding subsequent re-use of published data that
require higher quality than was needed or achieved in the source study.

Data quality varied widely across “impact” levels. We separated
datasets into groups according to the 2011 Thomson Reuters Impact
Factor for the journal in which the corresponding article was pub-
lished and examined the distribution of QC scores in each group
(Figure S8). The group with highest impact factor ($25) contained
the largest fraction of datasets with a low QC score of 22 or 21. We
also examined the distribution of QC scores with respect to the year of
publication and found that the fraction of datasets with low scores has
stabilized in the past 3 yr at approximately 20% (Figure S7).

We emphasize that datasets scoring as low quality by the metrics
used here can, nevertheless, produce important biological discoveries.
For this reason, it would be an error to set a rigid “standard” that
every published dataset must meet. Instead, routine QC analysis can
make it easy to see when there is reason for concern about a given
dataset. It can also provide a first tier of guidance about what uses are
likely to be appropriate for a given dataset. As discussed previously,
the appropriate level of QC stringency depends on the specific goals of
the experiment and methods of analysis (Landt et al. 2012). In particular,
some analyses that are sensitive to false-negative results are particularly
vulnerable to inclusion of low-scoring datasets. For example, trying to
derive combinatorial TF occupancy rules is seriously compromised and
even misleading if a subset of the datasets included is suboptimal.

We illustrate this with a simple example from our own experience
(Figure 4). The MyoD and myogenin TFs are well-known regulators
of muscle differentiation (Yun andWold 1996) and C2C12 cells (Yaffe
and Saxel 1977) have been widely used to study the process because
they can be propagated in an undifferentiated myoblast state and
easily induced to differentiate into myocytes and myotubes. We have
performed several ChIP-seq experiments with these factors in differ-
entiated and undifferentiated C2C12 cells (G. DeSalvo et al., unpub-
lished data; A. Kirilusha et al., unpublished data; K. Fisher-Aylor et al.,
unpublished data), some of which have been highly successful,
whereas others were of poor or intermediate quality. Here, we exam-
ined the effect of weaker ChIP-seq datasets on combinatorial occu-
pancy analysis using a MyoD ChIP-seq dataset with very high QC
metrics and three myogenin datasets with very high, moderately good,
and very low metrics (Figure 4A). Using the best myogenin dataset,
we found a high degree of overlap between the binding sites of the two
factors (Figure 4B). When the medium-quality myogenin dataset was
used instead, a sizable group of MyoD-only sites emerged (Figure 4C)
and the erroneous conclusion that a substantial number of MyoD sites
lack myogenin binding could be reached if this was the only dataset
available for analysis. Finally, the poor-quality myogenin dataset con-
tains very few called peaks and, as a result, almost all MyoD sites show
no myogenin binding when it is used for analysis (Figure 4D).

216 | G. K. Marinov et al.

772



Recently, IDR analysis of replicate datasets (Li et al. 2011;
ENCODE Project Consortium 2012; Landt et al. 2012) emerged as a ro-
bust method for deriving lists of reproducible occupancy sites from
ChIP-seq datasets. IDR is based on differences in the consistency of
ranking (usually by signal strength as measured by read enrichment or
by statistical significance) for all identified peaks in a pair of ChIP-seq
replicates. A virtue of this approach is that it allows a statistically
robust set of binding sites to be derived largely independent of thresh-
olds and settings specific to a particular peak-calling algorithm. Ide-
ally, IDR would be used in conjunction with the quality metrics used
here (ENCODE Project Consortium 2012; Landt et al. 2012). How-
ever, replicate measurements do not exist for many of the datasets in
our survey of the historic. We expect that IDR will become common
practice as sequencing costs decline. Even when that happens, mea-
surements of the quality of individual datasets will remain important
because they capture specific information in addition to reproducibil-
ity and because IDR analysis is sensitive to the presence of poor-

quality replicates. An asymmetric pair consisting of one high-quality
and one poorer-quality dataset is dominated in IDR by the weaker
replicate, resulting in a shorter list of sites and a high false-negative
rate. Care should be exercised in such cases. Although the best ap-
proach is to obtain a second high-quality replicate, but if this is not
possible, special strategies for treating asymmetric replicates have been
devised (Landt et al. 2012).

The most perplexing observation was that a subset of control
datasets have extensive read clustering in the same range as successful
ChIP-seq experiments. In our own practice, we have rarely encoun-
tered such libraries and, to the best of our knowledge, there has been
no extensive treatment of this issue or its influence on data analysis
in the literature. The phenomenon occurred more frequently in
IgG controls than in input chromatin controls, although it is by no
means limited to the former. In theory, an IgG control should be
a superior representation of the true background noise in a ChIP-seq
sample because it incorporates biases introduced by the entire

Figure 4 Effect of suboptimal datasets
on combinatorial occupancy analysis.
The muscle-regulatory factors MyoD
and myogenin were assayed in
C2C12 myocytes at 60 hr after differ-
entiation. Shown are a single, highly
successful MyoD ChIP-seq dataset and
three myogenin ChIP-seq datasets,
one of which is similarly highly success-
ful (“myogenin 1”), a second weaker
one (“myogenin 2”), and a third one
that is an experimental failure (“myo-
genin 3”). (A) Quality control metrics.
(B, C, D) The extent of overlap of
MyoD and myogenin-binding sites as
determined using each of the three
myogenin datasets (see Materials and
Methods for data processing details).
MyoD and myogenin are mostly found
to bind to the same sites when inter-
actome determinations of comparable
strength are used. (B) A sizable group
of apparently MyoD-only sites emerges
when the medium-strength myogenin
dataset is used because of a large
number of false-negative myogenin
calls. (C) Finally, the unsuccessful myo-
genin ChIP reveals that most MyoD are
not shared by myogenin. (D) Numbers
listed in the red blocks corresponding
to each set of peak calls indicate size.
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immunoprecipitation process, in addition to any enrichments or
biases created by chromatin shearing. Using this logic, a simple
interpretation is that high read clustering in these controls correctly
identifies artifacts in the IP process. When high background sample
clustering is observed in control sample, we suggest that it merits
immediate investigation of its replicability and its impact on peak-
calling for the corresponding ChIP. samples. The fact that we also
observed a large number of IgG controls (Figure 3A) that showed no
such clustering, argues that this is not a general feature.

A crucial issue is the extent to which clustering in controls is also
present as experimental noise in ChIP libraries from the same
material. In other words, how well-matched are the control samples
with the corrresponding experimental samples, and how robust are
the controls? For example, a very strong Sono-seq effect in a control
sample is expected to give ChIP-seq libraries with high read clustering
that is a combination of true ChIP (antibody-specific) signal plus
Sono-seq-derived noise that covers promotors and enhancers in a non-
specific manner. Whereas most contemporary peak callers normalize
for enrichment in controls, very strong background noise will dimin-
ish the signal-to-noise ratio and adversely affect sensitivity. How se-
verely this affects the results will depend on the overlap between true
factor occupancy sites and regions of artifactual read enrichment (for
some factors this overlap may be negligible because they do not bind
to Sono-seq regions); on the magnitude of the Sono-seq effect; and on
the strength of the ChIP itself (sufficiently strong determinations are
not greatly affected). Conversely, if a ChIP-seq library has a strong
Sono-seq component and peak calling is performed against an imper-
fectly matched “control” sample in which the Sono-seq effect is of
significantly lower magnitude, false-positive peak calls will increase.
Unfortunately, in practice such cases are difficult to detect. They are
not flagged directly by current quality metrics and are best detected by
analyses specific to each study and factor, including specific motif
enrichment. especially when little is known about the expected true-
positive rates. Similar reasoning applies if the noise source is some-
thing other than Sono-seq.

Uniform retrospective quality assessment is resource-intensive and
will not be practically feasible because the number of ChIP-seq
datasets is growing exponentially. Retrospective analysis also comes
too late to influence the experiments themselves or to contribute to
the review process. A reasonable path forward would be to incorporate
routine data quality assessment into experimental analysis, review
for publication, and submission to public repositories, as a matter of
community practice. However, our results also strongly caution
against the blind and arbitrary application of our metrics (or others)
in the absence of experimental and biological context. The character of
the metrics used here reflects contemporary technology and the
quality scale has been calibrated based on factors and co-factors most
studied to date. We have seen that it is possible for good datasets to
receive low QC scores in certain special situations (e.g., very few sites
of occupancy in the genome). It is also possible for some poor or
mediocre datasets to receive high QC scores. For example, this can
happen as a side-product of strongly clustered backgrounds of the
kind discussed above. Some examples of datasets in which this might
be the case are shown in Figure S11. For factors that ChIP extremely
well, even datasets that are substantially suboptimal score highly. For
example, CTCF ChIP-seq datasets routinely identify 35,000–40,000
reproducible binding sites and have QC scores of 2; a dataset that
identifies only 15,000 sites is suboptimal given that knowledge; yet it
will still receive a positive QC score. For these reasons, the current
quality metrics are best used in the context of what is known about the
factor, the biological system, and the questions being asked.

Despite important nuances of interpretation, we suggest that using
ChIP quality metrics and making the results readily accessible will
facilitate better-informed data use by the wider community. An
important adjunct to routine QC annotation would be the ability, in
major public data repositories, to flag and explain the exceptional
cases for which QC scores should not be taken at face value. Finally,
quality metrics themselves will continue to improve as the field’s un-
derstanding of data structure, experimental artifacts, and the under-
lying biology all become more sophisticated. Provisions will be needed
for incorporating such advances into routine dataset annotation while
still achieving comparability through time.
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Abstract

Mitochondria contain their own circular genome, with mitochondria-specific transcription and replication systems and
corresponding regulatory proteins. All of these proteins are encoded in the nuclear genome and are post-translationally
imported into mitochondria. In addition, several nuclear transcription factors have been reported to act in mitochondria,
but there has been no comprehensive mapping of their occupancy patterns and it is not clear how many other factors may
also be found in mitochondria. Here we address these questions by using ChIP-seq data from the ENCODE, mouseENCODE
and modENCODE consortia for 151 human, 31 mouse and 35 C. elegans factors. We identified 8 human and 3 mouse
transcription factors with strong localized enrichment over the mitochondrial genome that was usually associated with the
corresponding recognition sequence motif. Notably, these sites of occupancy are often the sites with highest ChIP-seq
signal intensity within both the nuclear and mitochondrial genomes and are thus best explained as true binding events to
mitochondrial DNA, which exist in high copy number in each cell. We corroborated these findings by immunocytochemical
staining evidence for mitochondrial localization. However, we were unable to find clear evidence for mitochondrial binding
in ENCODE and other publicly available ChIP-seq data for most factors previously reported to localize there. As the first
global analysis of nuclear transcription factors binding in mitochondria, this work opens the door to future studies that
probe the functional significance of the phenomenon.

Citation: Marinov GK, Wang YE, Chan D, Wold BJ (2014) Evidence for Site-Specific Occupancy of the Mitochondrial Genome by Nuclear Transcription Factors. PLoS
ONE 9(1): e84713. doi:10.1371/journal.pone.0084713

Editor: Frances M. Sladek, Univeristy of California Riverside, United States of America

Received August 20, 2013; Accepted November 18, 2013; Published January 20, 2014

Copyright: � 2014 Marinov et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This study has been supported by the Beckman Institute Functional Genomics Center, the Donald Bren Endowment, and NIH grants U54 HG004576,
U54 HG006998, and GM062967. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: georgi@caltech.edu

. These authors contributed equally to this work.

Introduction

Mitochondria are the primary site of ATP production through

oxidative phosphorylation and are therefore critical to eukaryotic

cells. It is widely accepted that they arose as the result of an

endosymbiotic event [63] between the ancestor of modern

eukaryotes and a member of the a-proteobacteria clade [82].

Reflective of the organelle’s prokaryotic ancestry, mitochondria

retain their own reduced circular genome [55], although its size

has been greatly reduced in many eukaryotes through transfer of

genes to the eukaryotic nucleus. After transcription and translation

of nuclear components of the separate mitochondrial transcrip-

tion, replication and regulatory machineries, a number of which

retain evidence of their prokaryotic origin [74], the protein

products are then imported back into the mitochondria to

modulate organellar function.

The mitochondrial genome in mammals encodes 13 proteins,

all of which are components of the electron transport chain, as well

as 22 tRNAs and two rRNAs [3,5]. Mitochondrial DNA (mtDNA)

is organized in cells as macromolecular DNA-protein complexes

called nucleoids. Mitochondrial genes are densely packed along

the genome with the notable exception of the non-coding

displacement loop (D-loop) regulatory region [66], which is

located within the non-coding region (NCR). Transcription

initiates in the D-loop, is carried out by the mitochondrial-specific

RNA polymerase POLRMT, and results in long polycistronic

transcripts from each strand (called the Heavy- or H-strand and

the Light- or L-strand), from the light strand promoter (LSP) and

two Heavy strand promoters (HSP1 and HSP2) [9,52]. In

addition, the transcription factors mtTFA/TFAM [27,28] and

mtTFB2/TFB2M as well as the methyltransferase mtTFB1/

TFB1M [26,29,49] are required for initiation and regulation of

transcription [69]. Unlike many of the proteins involved in

regulation of the mitochondrial genome, these transcription factors

are generally accepted as not being of prokaryotic origin. Instead,

they are genes of eukaryotic ancestry, appropriated for their

function through co-evolution of the organellar and cellular

genomes and imported into mitochondria to regulate mtDNA

transcription.

In addition to these well-characterized regulators of mitochon-

drial transcription, multiple reports have suggested that transcrip-

tion factors that typically act in the nucleus might also have

regulatory functions in mitochondrial transcription [44,73]. The

glucocorticoid receptor (GR) was the first such factor reported to

localize to mitochondria and to interact with mtDNA

[18,19,40,59]. A 43 kDa isoform of the thyroid hormone T3

receptor T3Ra1 called p43 has been found to directly control

mitochondrial transcription [11,24,25,81]. Cyclic-AMP Response

element Binding protein (CREB) has been shown to localize to
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mitochondria and suggested to bind to the D-loop [8,17,43,62].

The tumor suppressor transcription factor p53 has been implicat-

ed in mtDNA repair and regulation of gene expression through

interactions with TFAM [1,34,47,48,83]. It has also been

proposed to play a proapoptotic role through association with

the outer mitochondrial membrane [76]. A similar role has been

also ascribed to the IRF3 transcription factor [12,46]. The

mitochondrial localization of the estrogen receptor (ER) is also well

established, for both its ERa and ERb isoforms, and it too has

been suggested to bind to the D-loop [13,51]. NFkB and IkBa
have been found in mitochondria and have been proposed to

regulate mitochondrial gene expression [16,36]. The AP-1 and

PPARc2 transcription factors have been proposed to localize to

mitochondria and bind to the genome. [10,57,58] and the

MEF2D transcription factor was found to regulate the expression

of the ND6 gene by binding to a consensus sequence recognition

motif within it [67]. Finally, the presence of STAT3 in

mitochondria has been found to be important for the function of

the electron transport chains and also to be necessary for TNF-

induced necroptosis [32,68,71,72,79], although direct mtDNA

binding has not been established. Mitochondrial localization has

also been reported for STAT1 and STAT5 [6,14].

However, direct in vivo chromatin immunoprecipitation evi-

dence for the binding of these factors to mtDNA exists only for

CREB [43], p53 [1] and MEF2D [67], and with the exception of

MEF2D characterization is limited to the D-loop region. No prior

studies have assayed transcription factor occupancy across the

entire mitochondrial genome in vivo with modern high resolution

techniques such as ChIP-seq (Chromatin Immunoprecipitation

coupled with deep sequencing, [35]). As a result, the precise

nature, and in many instances the existence, of the proposed

binding events remains unknown. The limited sampling of

transcription factors in previous studies also leaves uncertain

how common or rare localization to mitochondria and binding to

mtDNA is for nuclear transcription factors in general.

Here we survey the large compendium of ChIP-seq and other

functional genomic data made publicly available by the

ENCODE, mouseENCODE and modENCODE Consortia

[22,23,30,50,54] to identify transcription factors that associate

directly with mtDNA and to characterize the nature of these

interactions. We identify eight human and three mouse transcrip-

tion factors for which robust evidence of site-specific occupancy in

the mitochondrial genome exists. These sites exhibit the strand

asymmetry typical of nuclear transcription factor binding sites,

usually contain the recognition motifs for the factors in question,

and are typically the strongest (as measured by ChIP-seq signal

strength) binding sites found in both the nuclear and mitochon-

drial genome by a wide margin. Notably, these interactions are all

found outside of the non-coding D-loop region. The D-loop region

itself exhibits widespread sequencing read enrichment for dozens

of transcription factors. However, it does not show the aforemen-

tioned feature characteristics of true binding events. Though not

observed in control datasets generated from sonicated input DNA,

the high ChIP-seq signal over the D-loop is frequently seen in

control datasets generated using mock immunoprecipitation,

suggesting that it is likely to represent an experimental artifact.

Examination of available ChIP-seq data for the transcription

factors previously proposed to play a role in mitochondria (GR,

ERa, CREB, STAT3, p53) revealed no robust binding sites except

for enrichment in the D-loop. Resolving the functional significance

of the identified occupancy sites in future studies should provide

exciting insights into the biology of both mitochondrial and

nuclear transcriptional regulation.

Results

In the course of a study of TFAM occupancy in the

mitochondrial and nuclear genomes [78], we noticed that a

number of nuclear transcription factors exhibit localized enrich-

ment in certain areas of the mitochondrial genome in ChIP-seq

data (Figure 1). These events could be divided in two classes: high

ChIP-seq signal over the NCR, and localized high read density

over regions outside of it. Given prior reports suggesting that

nuclear transcription factors might act in mitochondria, this

Figure 1. Representative USCS Genome Browser snapshots of nuclear transcription factor ChIP-seq datasets exhibiting strong
enrichment in the mitochondrial genome. (A) GM12878 GCN5 shows high signal intensity in the D-loop (the region between coordinates 16030
and 580, i.e. the non-coding regions on the left and right ends of the snapshot) representative of the D-loop enrichment observed for a large number
of transcription factors (B) In contrast, a large MafK peak is observed in a coding region outside of the D-loop in HepG2 cells. Upper track (black)
shows reads aligning to the forward strand, lower track (gray) shows read aligning to the reverse strand.
doi:10.1371/journal.pone.0084713.g001
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prompted us to determine the general prevalence of the

phenomenon among transcription factors and investigate evidence

of occupancy in detail, as the power and resolution of ChIP-seq

have not previously been brought to bear on this somewhat

mysterious phenomenon. We took advantage of the wide

compendium of human, mouse, fly and worm functional genomics

data generated by the ENCODE [22,23], mouseENCODE [54]

and modENCODE [30,50] consortia.

Identifying transcription factor binding events in the
mitochondrial genome

We downloaded publicly available (as of February 2012)

ENCODE and mouseENCODE ChIP-seq and control data from

the UCSC Genome Browser and modENCODE data from ftp://

ftp.modencode.org, including ChIP-seq data for 151 transcription

factors in human cell lines [77], 31 in mouse and 35 in C.elegans

(see discussion on D. melanogaster below). We also downloaded

DNase hypersensitvity (both DNase-seq [75] and Digital Genomic

Figure 2. Unique mappability of the mitochondrial genome (chrM) in ENCODE and modENCODE species. (A) human; (B) mouse; (C) C.
elegans; (D) D. melanogaster. The 36 bp mappability track (see Methods for details) is shown. The annotated protein coding and rRNA and tRNA genes
are shown in the inner circles as follows: forward-strand genes are shown as green lines, while reverse-strand genes are shown as red lines, with the
exception of mouse and human rRNA and tRNAs (blue). The D-loop region in human is shown in black. Gene annotations were obtained from
ENSEMBL (version 66). Plots were generated using Circos version 0.60 [41].
doi:10.1371/journal.pone.0084713.g002
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Figure 3. Variation in mitochondrial DNA copy number in cell lines and tissues. The fraction of reads mapping to the mitochondrial
genome (chrM) is shown. (A,B) UW human (A) and mouse (B) UW ENCODE digital genomic footprinting (DGF) data; (C) UW human ChIP input
datasets; (D) LICR mouse ChIP input datasets. ‘‘UW’’ and ‘‘LICR’’ refers to the ENCODE production groups that generated the data. Inputs from the UW
and LICR groups were chosen because they are the largest ENCODE sets in terms of number of cell lines/tissues assayed by the same production
groups, thus avoiding possible variation between different laboratories. A general positive correlation between the expected metabolic demand of
the tissue type and the relative amount of reads mapping to chrM is observed.
doi:10.1371/journal.pone.0084713.g003

Nuclear Transcription Factors in Mitochondria

PLOS ONE | www.plosone.org 4 January 2014 | Volume 9 | Issue 1 | e84713

784



Nuclear Transcription Factors in Mitochondria

PLOS ONE | www.plosone.org 5 January 2014 | Volume 9 | Issue 1 | e84713

785



Footprinting (DGF) [56]), FAIRE-seq (Formaldehyde Assisted

Isolation of Regulatory Elements) [70] and MNase-seq data as

these datasets provide valuable orthogonal information about

potentially artifactual patterns of read enrichment over the

mitochondrial genome.

It is well known that the nuclear genome contains partial copies

of the mitochondrial genome (NUclear MiTochondrial sequences

or NUMTs) [20,33]. Depending on their levels of divergence from

the mitochondrial sequence, they can present an informatics

challenge for distinguishing binding events to the true mitochon-

drial genome from binding events to NUMTs. For this reason, we

aligned reads simultaneously against the nuclear and mitochon-

drial genomes. We then retained only reads that map uniquely,

and with no mismatches, relative to the reference for further

analysis (see Methods for details). As a consequence this stringent

mapping strategy, regions of the mitochondrial genome that are

also present as perfectly identical copies in the nuclear genome are

‘‘invisible’’ to our analysis; this was a necessary compromise in

order to focus only on a maximally stringent set of putative

mitochondrial binding events. However, before proceeding, we

examined how widely affected the mitochondrial genome is by this

treatment in the four relevant species by generating mappability

tracks (shown in Figure 2). The human mitochondrial genome

contains numerous small islands of unmappable sequence,

particularly concentrated between the ND1 and CO3 genes, but

it displays no large completely unmappable segments (Figure 2A).

The mouse genome contains a large unmappable stretch between

the CO1 and ND4 genes (Figure 2B). The C. elegans mitochondrial

genome is almost completely uniquely mappable (Figure 2C). In

contrast, the D. melanogaster genome is almost completely

unmappable, indicating the presence of very recent insertions into

the nuclear genome with high sequence similarity. We therefore

excluded fly datasets from further analysis and focused on human,

mouse and worm data.

Mammalian cells typically contain hundreds to thousands of

copies of mtDNA, with the precise number varying depending on

the metabolic needs of the particular cell type [7,64,80]. This

variation is relevant to our analysis because the relative read

density over the mitochondrial genome is expected to scale with

the mtDNA:nuclear DNA ratio for a given cell. Thus, cell types

with very high mtDNA copy number are expected to display

correspondingly elevated background read density over the

mitochondrial genome. Several types of ENCODE data provide

a rough proxy for the relative mitochondrial genome copy number

per cell. In particular, the fraction of reads originating from the

mitochondrial genome in DNase hypersensitivity and ChIP

control datasets is expected to scale accordingly. We examined

the distribution of this fraction in ENCODE and mouseENCODE

DGF datasets and observed very large differences between

different cell lines and tissues (Figure 3). For example, about half

of reads in K562 DGF data originated from mitochondria, while

the fraction was less than 2% in CD20+ B-cells (Figure 3A).

Notably, these differences are in many cases (though not always)

consistent with what is known about the cell lines, with certain

cancer cell lines (such as K562 and A549) and muscle cells

(LHCN) showing the largest number of mitochondrial reads, while

primary cells with small volumes of cytoplasm such as B-cells

showed the least.

Mouse DGF data was available mostly for tissues, and the

fraction of mitochondrial reads in these was much smaller

compared to both the human cell lines and the few mouse cell

lines assayed (Figure 3B). This is consistent with a significant

proportion of cells in tissues being in a less active metabolic state

than cell lines in culture. Still, we observed expected differences

between tissues. For example, one of the tissues that was most

enriched for reads mapping to the mitochondrial genome was the

heart. We observed similarly large differences in ChIP control

datasets (Figure 3CD), although the absolute number of reads was

much lower than it was in DGF data. Again, the mouse tissues

with the highest number of mitochondrial reads were the more

metabolically active ones, such as brown adipose tissue, cortex,

and heart.

These large differences in background read coverage between

different cells lines/tissues have two consequences for the analysis

of putative transcription factor binding to the mitochondrial

genome. First, peak calling algorithms usually used to identify

transcription factor binding sites from ChIP-seq data may not

work equally well in different cell lines due to the highly variable

background read density. Second, these differences render

comparing the strength of binding across cell lines difficult.

We therefore devised a normalization procedure (described in

Methods) to convert read coverage to signal intensity z-scores

reflecting how strongly regions of enrichment stand out compared

to the average background read density along the mitochondrial

genome for each dataset. We then used the maximum z-scores for

each dataset to identify datasets with very strong such enrichment,

which we then examined manually in detail.

Nuclear transcription factor binding to the mitochondrial
genome in human cell lines

The distribution of read density z-scores for transcription factor

ChIP-seq and control datasets in seven ENCODE human cell lines

(GM1278, K562, HepG2, HeLa, H1-hESC, IMR90 and A549) is

shown in Figures 4, 5 and 6. A wide range in the values of the

maximum z-score is observed, from less than 5, to more than 100.

Strikingly, most factors exhibit high read density in the NCR. One

obvious explanation for this observation is that it represents an

experimental artifact. This is likely, as the NCR contains the D-

loop [66], the unique triple-strand structure of which could

conceivably either cause overrepresentation of DNA fragments

originating from it in sequencing libraries or it could be non-

specifically bound by antibodies during the immunoprecipitation

process. To distinguish between these possibilities, we carried out

the same analysis on DNase, FAIRE and MNase data. As these

assays do not involve an immunoprecipitation step, they are a

proper control for sequencing artifacts. We did not observe

significant localized read enrichment in these datasets (Figure 7),

suggesting that the observed read enrichment over the D-loop is

not due to sequencing biases or overrepresentation of D-loop

fragments in ChIP libraries. Similarly, we did not observe

enrichment in the matched sonicated input ChIP-seq control

datasets. However, a number of mock-immunoprecipitation (IgG)

control datasets did exhibit high z-scores (up to .50 in K562 cells)

Figure 4. Signal distribution over the mitochondrial genome in human ChIP-seq datasets. The maximum z-score for each individual TF
ChIP-seq replicate in each cell line is shown on the left (factors are sorted by average z-score, with control datasets always shown on the bottom in
red, below the red horizontal line). The z-score profile along the mitochondrial chromosome for the replicate with the highest z-score is shown on the
right. ‘‘SYDH’’ and ‘‘HA’’ refer to the ENCODE production groups which generated the data. Z-scores $100 are shown as equal to 100. (A) GM12878
cells; (B) K562 cells.
doi:10.1371/journal.pone.0084713.g004
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and closely matched the signal profile over the D-loop of ChIP-seq

datasets (Figure 8B). We also examined the forward and reverse

strand read distribution in the NCR (Figure 8). Site-specific

transcription factor binding events display a characteristic

asymmetry in the distribution of reads mapping to the forward

and reverse strands, with reads on the forward strand showing a

peak to the left of the binding site and reads on the reverse strand

showing a peak to the right of it [39] (Figure 8C). Such read

asymmetry was not observed in the D-loop region (average profile

shown in Figure 8A, individual dataset profile shown in Figure 1).

These results suggest that while immunoprecipitation is

necessary for high enrichment over the D-loop, the enrichment

might not be mediated by the proteins targeted by the primary

antibody. This does not explain why a large number of factors

show little enrichment over the D-loop (Figures 4, 5 and 6) and

why some factors show enrichment that is much higher than that

observed in K562 IgG controls, with z-scores of up to 300

(compared to a maximum of 50 for the most highly enriched IgG

controls). Still, given the lack of clear hallmarks of site-specific

occupancy, and the IgG control results, enrichment over the D-

loop has to be provisionally considered to be primarily the result of

an experimental artifact, even if it cannot be ruled that at least in

some cases it is the result of real biochemical association with

nuclear transcriptional regulators.

In contrast to the widespread, but likely artifactual, read

enrichment over the D-loop, we observed strong enrichment,

exhibiting the canonical characteristics of a ChIP-seq peak over a

true transcription factor binding site, in other regions of the

Figure 5. Signal distribution over the mitochondrial genome in human ChIP-seq datasets. The maximum z-score for each individual TF
ChIP-seq replicate in each cell line is shown on the left (factors are sorted by average z-score, with control datasets always shown on the bottom in
red, below the red horizontal line). The z-score profile along the mitochondrial chromosome for the replicate with the highest z-score is shown on the
right. ‘‘SYDH’’ and ‘‘HA’’ refer to the ENCODE production groups which generated the data. Z-scores $100 are shown as equal to 100. (A) HepG2 cells;
(B) HeLa cells; (C) A549 cells.
doi:10.1371/journal.pone.0084713.g005

Figure 6. Signal distribution over the mitochondrial genome in human ChIP-seq datasets. The maximum z-score for each individual TF
ChIP-seq replicate in each cell line is shown on the left (factors are sorted by average z-score, with control datasets always shown on the bottom in
red, below the red horizontal line). The z-score profile along the mitochondrial chromosome for the replicate with the highest z-score is shown on the
right. ‘‘SYDH’’ and ‘‘HA’’ refer to the ENCODE production groups which generated the data. Z-scores $100 are shown as equal to 100. (A) H1-hESC
cells; (B) IMR90.
doi:10.1371/journal.pone.0084713.g006
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human mitochondrial genome for eight of the examined

transcription factors using a minimum z-score threshold of 20:

CEBPb, c-Jun, JunD, MafF, MafK, Max, NFE2 and Rfx5.

Figures 9 and 10 show the forward and reverse strand read

distribution for representative replicates of each factor in each

assayed cell line, as well as the occurrences of the corresponding

explanatory motifs (identified from the top 500 ChIP-seq peaks in

the nuclear genome, see Methods for details). The putative

binding sites outside of the D-loop are characterized by an

asymmetric forward and reverse strand read distribution, and in

most cases, the presence of the explanatory motif in a position

consistent with binding by the factor. We identified multiple

binding sites for CEBPb: a strong site of enrichment around the 59

end of the CYB gene, what seems to be two closely clustered sites

in the ND4 gene, a weaker site in the ND4L gene, and two other

regions of enrichment over CO2 and CO1 (Figure 9D). A single

very strong binding site over the ND3 gene was observed for c-Jun,

as well as two weaker sites, one coinciding with the ND4 CEBPb
sites and one near the 59 end of ATP6 (Figure 9B); the strong ND3

site was also observed for JunD in HepG2 cells. Max exhibited two

putative binding sites: one in the middle of the 16S rRNA gene,

containing a cluster of Max motifs, and another one around the 59

end of CO3, which also contains a cluster of Max motifs but is in a

region of poor mappability. A common and very strong MafK and

MafF binding site is present near the 39 end of ND5, though it

does not contain the common explanatory motif for both factors

(Figure 10AB). Several putative binding sites were identified for

NFE2: one close to the CEBPb site in the 59end of CYB, one over

the tRNA cluster between ND4 and ND5, one in the 59 end of

ATP6 and one in the 16S rRNA gene (Figure 10C). Finally, two

putative binding sites ar observed for Rfx5, at the 59 end of ND5

and in the middle of CO2 (Figure 10D). Intriguingly, these binding

events are not always present in all cell lines. For example, CEBPb
binding around CYB was absent in K562, A549 and H1-hESC

cells, while the MafK ND5 binding site was absent in GM18278

and H1-hESC cells, but present in the other cell lines for which

data is available.

Nuclear transcription factor occupancy to the
mitochondrial genome in model organisms

We carried out the same analysis as described above on mouse

and C. elegans ChIP-seq datasets. Figure 11 shows the distribution

of read density z-scores in mouse CH12 and MEL cells. Similarly

to the human data, we observe widespread but probably

artifactual read enrichment over the D-loop. In addition to that,

we saw that three transcription factors (Max, MafK, and USF2)

also exhibit strong enrichment elsewhere in the mitochondrial

genome (Figure 12). We observe a single MafK binding site,

containing the explanatory motif and situated over the tRNA

cluster between the ND2 and CO1 genes (Figure 12A). Max

displayed a strong binding site (possibly a cluster of closely spaced

binding sites) in the ND4 gene, and a weaker binding site near the

59 end of ND5; both sites contained the explanatory motif

(Figure 12B). Finally, a single site, also containing the explanatory

motif for the factor and situated near the ND5 Max site, was

present in CH12 USF2 datasets (but not in MEL cells)

(Figure 12C). MafK and Max were also assayed in human cells,

and, as discussed above, putative mitochondrial sites were

identified there for both, though not at obviously orthologous to

those found in the mouse data positions in the genome. We also

analyzed available ChIP-seq data for the mouse orthologs of c-Jun

and JunD, which in human cells exhibited putative mitochondrial

binding sites. In contrast to observation in human, we did not

detect strong sites for either protein in mouse.

Unlike the mouse and human datasets, most C. elegans ChIP-seq

datasets did not show very strong enrichment over the mitochon-

drial genome (Figure 13A), with the exception of DPY-27 and

W03F9.2. Of these, only W03F9.2 exhibited regions of enrich-

ment with the characteristics of transcription factor binding sites

(Figure 13B); however, very little is known about this protein and

the significance of its binding to the mitochondrial genome is

unclear.

ChIP-seq signal is significantly stronger over
mitochondrial occupancy sites than it is over nucleus
sites

The occupancy observations reported above for human and

mouse mitochondria do not formally rule out the possibility that

there are unannotated NUMTs in the genomes of the cell lines in

which binding is detected in our analysis and the observed binding

is in fact nuclear. Such an explanation is superficially likely, given

that binding to the mitochondrial genome was observed in some

cell lines and not in others. However, closer examination reveals

that this hypothesis would require different NUMTs in different

cell lines as the cell lines that lack binding are not the same for all

factors. For example, MafF and MafK binding is very prominent

in K562 cells but CEBPb and c-Jun seem not to bind to mtDNA in

those cells. While still possible, we consider the independent

insertion of multiple partial NUMTs in different cell lines to be an

unlikely explanation for the observed binding patterns.

Each chromosome in the nuclear genome exists as only two

copies in diploid cells, as compared to the hundreds of

mitochondria, each of which may contain multiple copies of the

mitochondrial genome [7,64], and although cancer cells may

exhibit various aneuploidies and copy number variants, the

number of mtDNA copies is still expected to be much higher.

Thus, higher read density over mitochondrial transcription factor

binding sites than over nuclear ones is expected, assuming similar

occupancy rates. We therefore used the strength of ChIP-seq

signal over mitochondrial occupancy sites in order to test the

hypothesis that they are in fact nuclear, and not mitochondrial in

origin. We compared the peak height (in Reads Per Million,

RPM) of the top 10 nuclear peaks (peak calls generated by the

ENCODE consortium were downloaded from the UCSC

Genome Browser) with that of the putatively mitochondrial

binding sites (Figure 14). We found that the mitochondrial binding

sites are usually the strongest binding sites by a wide margin, or at

least within the top three of all peaks. For example, while the

strongest nuclear MafK peak in mouse CH12 cells has a peak

height of 14.5 RPM, the mitochondrial binding site has a peak

height of 290 RPM. These observations are difficult to explain as

being the result of binding to unannotated NUMTs in the nuclear

genome, but are entirely consistent with the hypothesis that these

Figure 7. Signal distribution over the mitochondrial genome in human FAIRE-seq, DNAse-seq and MNAse-seq datasets. Shown is the
maximum z-score for each individual replicate for each cell line (left) and the z-score profile along the mitochondrial chromosome for the replicate
with the highest z-score (right). (A) FAIRE data; (B) DNAse data; (C) MNAse data. ‘‘UNC’’, ‘‘UW’’ and ‘‘SYDH’’ refer to the ENCODE production groups
which generated the data. Z-scores larger than 100 are shown as 100. No read enrichment over the D-loop is observed, suggesting that the D-loop
signal found in TF ChIP-seq datasets is not due to sequencing biases but is a result of the immunoprecipitation process.
doi:10.1371/journal.pone.0084713.g007
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Figure 8. Combined signal distribution profile for the forward and reverse strand in the D-loop region. Shown is the average signal (in
RPM) for each strand in human ChIP-seq datasets with z-scores $20 (A) and human IgG controls (B). Also shown for comparison is the plus and minus
strand read distribution around nuclear CTCF binding sites in H1-hESC cells (C).
doi:10.1371/journal.pone.0084713.g008
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factors indeed bind to the large number of copies of the

mitochondrial genome present in each cell.

Evidence for localization of transcription factors to
mitochondria

If the observed binding sites in ChIP-seq data are the result of

actual association of nuclear transcription factors with mtDNA,

then these transcription factors should exhibit mitochondrial

localization. We directly tested this by performing immunocyto-

chemistry (ICC) for MafK in HepG2 cells (Figure 15). It is

important to note that such an assay for localization to

mitochondria is potentially difficult to interpret if binding is the

result of only a few protein molecules entering mitochondria,

which would not yield sufficient signal for interpretation via ICC.

Figure 9. Human transcription factors with canonical ChIP-seq peaks (displaying the typical strand asymmetry in read distribution
around the putative binding site) outside of the D-loop. Reads mapping to the forward strand are represented in black, reads mapping to the
reverse strand are represented in yellow. The unique mappability track for the mitochondrial genome is shown in red in the outside track (see
Methods for details). Protein-coding, rRNA and tRNA genes are shown as colored bars. The innermost circle shows the motif occurrences in the
mitochondrial genome for each factor as black vertical bars. (A) JunD (B) c-Jun; (C) Max; (D) CEBPb. The reads per million (RPM) tracks are shown,
scaled to the maximum signal level (for both strands) for each dataset. Plots were generated using Circos version 0.60 [41].
doi:10.1371/journal.pone.0084713.g009
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However, strikingly, we observe clear colocalization of MafK to

mitochondira in 60% of cells (n = 124). These observations provide

independent corroboration for the mtDNA binding events

identified through ChIP-seq.

No robust mitochondrial occupancy in ChIP-seq data for
most previously reported mitochondrially targeted
nuclear factors

We note that none of the factors previously reported to be

localized to mitochondria and to bind to mtDNA was retrieved by

our analysis, even though CREB, GR, ERa, IRF3, NFkB,

Figure 10. Human transcription factors with canonical ChIP-seq peaks (displaying the typical strand asymmetry in read distribution
around the putative binding site) outside of the D-loop. Reads mapping to the forward strand are represented in black, reads mapping to the
reverse strand are represented in yellow. The unique mappability track for the mitochondrial genome is shown in red in the outside track (see
Methods for details). Protein-coding, rRNA and tRNA genes are shown as colored bars. The innermost circle shows the motif occurrences in the
mitochondrial genome for each factor as black vertical bars. (A) MafF; (B) MafK (note that MafK has been assayed using two different antibodies in
HepG2, both of which are shown); (C) NFE2; (D) Rfx5. The reads per million (RPM) tracks are shown, scaled to the maximum signal level (for both
strands) for each dataset. Plots were generated using Circos version 0.60 [41].
doi:10.1371/journal.pone.0084713.g010
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STAT1, STAT5A and STAT3 were assayed by the ENCODE

Consortium. This failure could be attributed to the use of too

stringent a z-score threshold when selecting datasets with

significant enrichment. We therefore examined available ChIP-

seq data against these factors more carefully (Figure 16, Figure S1).

We also performed the same analysis on published mouse and

human p53 ChIP-seq data [2,38,45] (Figure 17). Again, we did not

observe any major sites of enrichment outside of the D-loop. For

these factors, the D-loop region exhibits the same putatively

artifactual pattern discussed previously. And for STAT3 and p53,

even the enrichment over the D-loop was low. The one factor for

which binding to mtDNA is confirmed by ChIP-seq is MEF2D,

data for two of the isoforms of which in mouse C2C12 myoblasts

was recently published [65] (Figure 18). It exhibits a very complex

binding pattern over large portions of the mouse mitochondrial

genome, which is not straightforward to interpet, but nevertheless

a number of locations exhibit strand asymmetry and contain the

MEF2 sequence recognition motif. Notably, most of these are

outside the ND6 gene.

It is at present not clear how to interpret these discrepancies. It

is not surprising that some of these factors do not exhibit binding

to mtDNA, as they were reported to play a role in mitochondrial

biology through mechanisms other than regulating gene expres-

sion (for example, IRF3 and STAT3). However, this is not the case

for all of them. One possibility is that many prior studies reporting

physical association of transcription factors with the D-loop

suffered from the same artifactual read enrichment over that

region that we observe, but this would not have been noticeable

using the methods of the time. This would not be surprising, as it is

only apparent that D-loop enrichment is likely to be artifactual

when the high spatial resolution of ChIP-seq is combined with the

joint analysis of input and mock immunoprecipitation controls.

However, the mitochondrial localization of these factors has been

carefully documented in a number of cases [8,11,17]. Another

Figure 11. Signal distribution over the mitochondrial genome in mouse ChIP-seq datasets. Shown is the maximum z-score for each
individual replicate for each cell line (left) and the z-score profile along the mitochondrial chromosome for the replicate with the highest z-score
(right). Control datasets are shown in red on the bottom, below the red horizontal line. (A) CH12 cells; (B) MEL cells.
doi:10.1371/journal.pone.0084713.g011
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possiblity is that binding to mtDNA only occurs under certain

physiological conditions and the factors were assayed using ChIP-

seq only in cellular states not matching those. Further analysis of

ChIP-seq data collected over a wide range of conditions should

help resolve these issues.

Discussion

We report here the first large-scale characterization of the

association of nuclear transcription factors along the entire

mitochondrial genome by utilizing the vast ChIP-seq data resource

made publicly available by the ENCODE and modENCODE

consortia. We find two classes of signal enrichment events, neither

Figure 12. Mouse transcription factors with canonical ChIP-seq peaks (displaying the typical strand asymmetry in read distribution
around the putative binding site) outside of the D-loop. Reads mapping to the forward strand are represented in black, reads mapping to the
reverse strand are represented in yellow. The unique mappability track for the mitochondrial genome is shown in red in the outside track (see
Methods for details). Protein-coding, rRNA and tRNA genes are shown as colored bars. The innermost circle shows the motif occurrences in the
mitochondrial genome for each factor as black vertical bars. (A) MafK (note that the putative binding site is found in a region that is not completely
mappable, thus the read profiles loses the canonical shape but the strand asymmetry is nevertheless apparent and a motif is present); (B) Max; (C)
USF2. The reads per million (RPM) tracks are shown, scaled to the maximum signal level (for both strands) for each dataset. Plots were generated
using Circos version 0.60 [41].
doi:10.1371/journal.pone.0084713.g012
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of which is detected in high-throughput sequencing datasets that

do not involve immunoprecipitation and therefore they are not

due to sequencing biases. First, the majority of factors for which we

detect strong read enrichment over the mitochondrial genome

display high ChIP-seq signal only over the D-loop non-coding

region in both human and mouse datasets. However, these signals

do not have the characteristics of sequence specific occupancy and

are present in a number of mock-immunoprecipitation control

datasets. They are thus best explained as experimental artifacts,

although it remains possible that they represent real non-canonical

association with the D-loop for some factors. Second, for a subset

of factors, specific ChIP-seq peaks are observed outside of the D-

loop, and these display the additional hallmark characteristics of

sequence specific occupancy.

Nuclear transcription factors previously reported to localize to

mitochondria either did not exhibit significant enrichment in the

available ChIP-seq datasets or, when they did, it was over the D-

loop region with similar non-specific read distribution shape as

other factors. In contrast, applying conservative thresholds we

found eight human and three mouse transcription factors (two in

common between the two species) that strongly occupy sites

outside of the D-loop. They display the strand asymmetry pattern

around the putative binding site that typifies true nuclear ChIP-seq

peaks. Even more convincing is the fact that the explanatory motif

for the factor is usually found under the observed enrichment

peaks, further suggesting that they correspond to true in vivo

biochemical events.

There are three main explanations for our observations. First, it

is possible that despite our considerable bioinformatic precautions

the observed binding events are in fact nuclear, originating from

NUMTs present in the genomes of the cell lines assayed, but

absent from the reference genome sequence. We believe that this is

very unlikely. An experimental argument against unknown

NUMTs comes from the strength of the ChIP-seq signal we see

in the mitochondrial genome. These signals are much higher than

even the strongest peaks in the nuclear genome for the same factor

in the same dataset. This is expected for true mitochondrial

genome binding because of the presence of many copies of the

mitochondrial genome per cell, in contrast to the presence of only

two copies of the nuclear genome. Second, it is possible that

mitochondria are sometimes lysed in vivo, with mitochondrial

DNA spilling into the cytoplasm where transcription factors could

then bind. This cannot be ruled out based on the ChIP data alone

but we consider it unlikely, as this would need to happen with a

sufficient frequency to explain the remarkable strength of

mitochondrial occupancy sites. The third and most plausible

interpretation is that these nuclear transcription factors indeed

translocate to the mitochondria and interact with the genome, as

has been observed for the D-loop in some previous studies for

other factors. Indeed, immunocytochemistry experiments in our

study confirm the presence of MafK in mitochondria in a majority

of HepG2 cells.

Several major questions are raised by our results. First, it is not

clear how these nuclear transcription factors are targeted to the

mitochondria. Mitochondrial proteins are typically imported into

the mitochondrial matrix through the TIM/TOM protein

translocator complex, and are targeted to the organelle by a

mitochondrial localization sequence, which is cleaved upon

import. We scanned both human and mouse versions of our

factors for mitochondrial target sequences (MTS) with both

Mitoprot [15] and TargetP [21] (using default settings), but we

were unable to identify significant matches using either. This

seems to be a common feature of nuclear transcription factors

previously found to localize to mitochondria, most of which lack

import sequences and are instead imported through other means

[11,73]. Posttranslational modifications may be important for

Figure 13. Signal distribution over the mitochondrial genome in C.elegans ChIP-seq datasets. (A) Shown is the maximum z-score for each
individual replicate for each cell line (left) and the z-score profile along the mitochondrial chromosome for the replicate with the highest z-score
(right). Control datasets are shown in red on the bottom, below the red horizontal line; (B) Forward and reverse strand read distribution over the
C.elegans mitochondrial genome for W03F9.2 (‘‘Young Adult’’ stage). Reads mapping to the forward strand are represented in black, reads mapping
to the reverse strand are represented in yellow. The unique mappability track for the mitochondrial genome is shown in red in the outside track (see
Methods for details). Plots generated using Circos version 0.60 [41].
doi:10.1371/journal.pone.0084713.g013

Figure 14. Mitochondrial ChIP-seq peaks are generally significantly stronger than nuclear peaks. Shown is the maximum signal (in RPM)
for the top 10 nuclear peaks (‘‘N’’, smaller black dots), and the maximum signal intensity (also in RPM) in the mitochondrial genome (‘‘M’’, larger red
dot) for representative ChIP-seq datasets for each factor. (A) Mouse datasets (B) Human datasets.
doi:10.1371/journal.pone.0084713.g014
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import, as has been demonstrated for STAT3 in TNF-induced

necroptosis [68].

Second, it is unclear why the same factor binds detectably to the

mitochondrial genome in some cell types but not in others. It is

certainly possible that different splice isoforms or post-translation-

ally modified proteins are present in different cell types, with only

some capable of being imported into mitochondria, or that import

into mitochondria only happens under certain physiological

conditions only met in some cell lines.

Third, the question of the biochemical reality of transcription

factor binding at the D-loop remains open. Previous studies

understandably focused on the D-loop, given its well-appreciated

importance in regulating mitochondrial transcription. As a

consequence, the literature supporting a role for some nuclear

factors in mitochondria suggests that they do so through binding to

the D-loop. Our analysis of ChIP-seq data, which was carried out

in an agnostic manner, revealed that dozens of transcription

factors – many more than had been studied locally at the D-loop

alone – also show high level of enrichment over the D-loop.

However, the observed enrichment has characteristics suggesting

that these signals are mainly due to experimental artifacts. In

support of this judgment, the explanatory motifs for most of these

factors were generally not found under the area of strongest

enrichment in the D-loop. Therefore a conservative interpretation

is that enrichment over the D-loop is an artifact in most cases.

Finally, and most importantly, the functional significance of

factor occupancy observed by ChIP-seq remains unknown. It is

entirely possible that it represents biochemical noise, with

transcription factors entering the mitochondria because they have

the right biochemical properties necessary to be imported, then

Figure 15. Localization of MafK to the mitochondria (A) Immunocytochemistry showing MafK localization in HepG2 cells. Mitochondria were
identified by HSP60 staining. Shown are two representative images of cells showing that MAFK localizes strongly to the nucleus and mitochondria,
and exhibits diffuse staining in the cytoplasm. In 60% of cells (C), there is colocalization of HSP60 with MAFK staining at an intensity higher than that
of the surrounding cytoplasm. (B) An example of a cell exhibiting only nuclear and cytoplasmic MAFK localization.
doi:10.1371/journal.pone.0084713.g015
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Figure 16. Distribution of reads over the human mitochondrial genome for factors previously reported to bind to mitochondria in
ENCODE ChIP-seq data. Reads mapping to the forward strand are represented in black, reads mapping to the reverse strand are represented in
yellow. The unique mappability track for the mitochondrial genome is shown in red in the outside track (see Methods for details). Protein-coding,
rRNA and tRNA genes are shown as colored bars. The innermost circle shows the motif occurrences in the mitochondrial genome for each factor as
black vertical bars. (A) CREB; (B) STAT3; (C) GR in A549 cells treated with different concentrations of dexamethasone (Dex) [60,61]; (D) ERa in untreated
(DMSO) ECC1 cells and ECC1 cells treated with bisphenol A (BPA), genistein (Gen) or 17b-estradiol (E2) [31]; (E) IRF3; (F) NFkB in GM12878 cells treated
with TNFa [37]. The reads per million (RPM) tracks are shown, scaled to the maximum signal level (for both strands) for each dataset. Plots were
generated using Circos version 0.60 [41].
doi:10.1371/journal.pone.0084713.g016

Figure 17. Distribution of reads over the human and mouse mitochondrial genome for p53 in publicly available ChIP-seq datasets.
Reads mapping to the forward strand are represented in black, reads mapping to the reverse strand are represented in yellow. The unique
mappability track for the mitochondrial genome is shown in red in the outside track (see Methods for details). Protein-coding, rRNA and tRNA genes
are shown as colored bars. The innermost circle shows the motif occurrences in the mitochondrial genome for each factor as black vertical bars. (A)
p53 in mouse embryionic fibroblasts (MEFs), data from [38], GSE46240. (B) p53 in mouse embryonic stem cells (mESC), data from [45], GSE26361; (C)
p53 in human IMR90 cells, data from [2], GSE42728. The reads per million (RPM) tracks are shown, scaled to the maximum signal level (for both
strands) for each dataset. Plots were generated using Circos version 0.60 [41].
doi:10.1371/journal.pone.0084713.g017
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binding to mtDNA but with little functional consequence.

Alternatively, nuclear transcription factors may in fact be playing

a regulatory role in mtDNA. It is difficult to imagine the exact

mechanisms through which they might be acting, aside from

interactions with the regulatory D-loop. While we do observe pairs

of related factor such as c-Jun and JunD, and MafK and MafF

binding to the same sites, binding events are overall widely

dispersed over the mitochondrial genome and are found outside of

the known regulatory regions. Plausible regulatory relationships

are therefore not obvious and our results suggest that biological

noise should be the working null hypothesis explaining the data.

The functional regulatory role of these nuclear transcription

factors in mitochondria is a very exciting possibility but it will have

to be demonstrated in subsequent studies. Direct functional tests

are the golden standard for establishing regulatory relationships,

using gain and loss of function experiments and genetic

manipulation of putative regulatory sites. The latter is at present

not possible for mitochondria while the former are difficult to

interpret in the case of the role of nuclear transcription factors in

mitochondrial gene regulation, as it is not easy to separate the

direct effects of binding to mtDNA from the indirect effects of

transcriptional changes in the nucleus. Thus, it may be some time

before definitive answers to these questions are obtained. In the

meantime, larger compendia of transcription factor ChIP-seq data

such as those expected to be generated by the next phase of the

ENCODE project will be a primary source of further insight by

providing binding data for additional nuclear transcription factors

that will clarify allowed or preferred occupancy patterns across the

mitochondrial genome.

Figure 18. Distribution of reads over the mouse mitochondrial genome for MEF2D isoforms MEF2Da1 and MEF2Da2 in C2C12
myoblasts. Reads mapping to the forward strand are represented in black, reads mapping to the reverse strand are represented in yellow. The
unique mappability track for the mitochondrial genome is shown in red in the outside track (see Methods for details). Protein-coding, rRNA and tRNA
genes are shown as colored bars. The innermost circle shows the MEF2D motif occurrences in the mitochondrial genome as black vertical bars. Data
was obtained from [65], GSE43223. Plots were generated using Circos version 0.60 [41].
doi:10.1371/journal.pone.0084713.g018
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Materials and Methods

Except for where indicated otherwise, all analysis was carried

out using custom-written python scripts.

Sequencing read alignment
Raw sequencing reads were downloaded from the UCSC

genome browser for ENCODE and mouseENCODE [54] data,

and from ftp://ftp.modencode.org for modENCODE data

[30,50] (data current as of February 2012). ChIP-seq data for

p53 was obtained rom GEO series GSE26361 [45], GSE46240

[38] and GSE42728 [2]. Reads were aligned using Bowtie [42],

version 0.12.7. Human data was mapped against either the female

or the male set of human chromosomes (excluding the Y

chromosome and/or all random chromosomes and haplotypes)

depending on the sex of the cell line (where the sex was known,

otherwise the Y chromosome was included), genome version hg19.

Mouse data was mapped against the mm9 version of the mouse

genome. modENCODE D. melanogaster data was mapped against

the dm3 version of the fly genome. modENCODE data for C.

elegans was mapped against the ce10 version of the worm genome.

Reads were mapped with the following settings: ‘‘-v 2 -k 2 -m 1 -t –

best –strata’’, which allow for two mismatches relative to the

reference, however for all downstream analysis only reads

mapping uniquely and with zero mismatches were considered, to

eliminate any possible mapping artifacts.

Mappability track generation
Mappability was assessed as follows. Sequences of length N

bases were generated starting at each position in the mitochondrial

genome. The resulting set of ‘‘reads’’ was then mapped against the

same bowtie index used for mapping real data. Positions covered

by N reads were considered fully mappable. In this case, N = 36 as

this is the read length for most of the sequencing data analyzed in

this study.

Signal normalization of ChIP-seq data over the
mitochondrial genome

Because the number of mitochondria per cell varies from one

cell line/tissue to another, direct comparisons between datasets

based on the absolute magnitude of the signal in RPM are not

entirely valid. For this reason, we normalized the signal as follows.

For each dataset, we fit a Gamma distribution over the RPM

coverage scores for the bottom Fb percentile of fully mappable

position on the mitochondrial chromosome. The estimated

parameters were then used to rescale the raw signal over all

position to a z-score. This results in datasets with strong peaks

receiving low z-scores over most of the mappable mitochondrial

genome, and very high z-scores over the regions with highly

localized enrichment. We used F = 0.8 for our analysis. As this

procedure is sensitive to datasets with very low total read coverage

over the mitochondrial genome, we restricted our analysis to

datasets with at least 5000 uniquely mappable reads (and with no

mismatches to the reference), i.e. $10x coverage. We used a z-

score cutoff of 20 to select datasets with high enrichment over the

mitochondrial genome, as it was the highest z-score observed in

sonicated input samples

Motif analysis
The peak calls for human and mouse ENCODE data available

from the USCS Genome Browser were used to find de novo motifs

for transcription factors from ChIP-seq data. The sequence

around the peak summit (using a 50 bp radius) was retrieved for

the top 500 called peaks for each factor in each cell line and motifs

were called using the MEME program in the MEME SUITE,

version 4.6.1 [4]. The MEME-defined position weight matrix was

then used to scan the mitochondrial genome for motif matches

following the approach described in [53].

Cell growth and immunocytochemistry
HepG2 cells were grown following the standard ENCODE

protocol (DMEM media, 4 mM L-glutamine, 4.5 g/L glucose,

without sodium pyruvate, with 10% FBS (Invitrogen 10091-148)

and penicillin-streptomycin). Cells were fixed in 10% formalin

(Sigma-Aldrich HT501128-4L) for 10 min, permeabilized with

0.1% Triton X-100, and blocked in 5% FBS. Primary antibodies

used were MafK (1:100, Abcam, ab50322) and Hsp60 (1:125,

Santa Cruz, sc-1052). Secondary antibodies used were donkey

anti-goat AF488 (Invitrogen A11055) and donkey anti-rabbit

AF546 (Invitrogen A10040). Imaging on a Zeiss LSM 710

confocal microscope with PlanApochromat 63X/1.4 oil objective,

and 0.7 mm optical sections were acquired.

Supporting Information

Figure S1 Distribution of reads over the human mito-
chondrial genome for STAT1 and STAT5A in ENCODE
ChIP-seq data. Reads mapping to the forward strand are

represented in black, reads mapping to the reverse strand are

represented in yellow. The unique mappability track for the

mitochondrial genome is shown in red in the outside track (see

Methods for details). Protein-coding, rRNA and tRNA genes are

shown as colored bars. The innermost circle shows the motif

occurrences in the mitochondrial genome for each factor as black

vertical bars. (A) STAT1; (B) STAT5A; The reads per million

(RPM) tracks are shown, scaled to the maximum signal level (for

both strands) for each dataset. Plots were generated using Circos

version 0.60 [41].

(PDF)
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With the completion of the human genome sequence, attention turned to identifying and annotating its functional DNA elements. As a complement
to genetic and comparative genomics approaches, the Encyclopedia of DNA Elements Project was launched to contribute maps of RNA transcripts,
transcriptional regulator binding sites, and chromatin states in many cell types. The resulting genome-wide data reveal sites of biochemical activity
with high positional resolution and cell type specificity that facilitate studies of gene regulation and interpretation of noncoding variants associated
with human disease. However, the biochemically active regions cover a much larger fraction of the genome than do evolutionarily conserved regions,
raising the question of whether nonconserved but biochemically active regions are truly functional. Here, we review the strengths and limitations of
biochemical, evolutionary, and genetic approaches for defining functional DNA segments, potential sources for the observed differences in estimated
genomic coverage, and the biological implications of these discrepancies. We also analyze the relationship between signal intensity, genomic
coverage, and evolutionary conservation. Our results reinforce the principle that each approach provides complementary information and that we
need to use combinations of all three to elucidate genome function in human biology and disease.

Quest to Identify Functional Elements in
the Human Genome
Completing the human genome reference
sequence was a milestone in modern biology.
The considerable challenge that remained
was to identify and delineate the structures of
all genes and other functional elements. It
was quickly recognized that nearly 99% of the
∼3.3 billion nucleotides that constitute the
human genome do not code for proteins (1).
Comparative genomics studies revealed that
the majority of mammalian-conserved and
recently adapted regions consist of non-
coding elements (2–10). More recently, ge-
nome-wide association studies have indicated
that a majority of trait-associated loci, including
ones that contribute to human diseases and
susceptibility, also lie outside protein-coding
regions (11–16). These findings suggest that the

noncoding regions of the human genome
harbor a rich array of functionally significant
elements with diverse gene regulatory and
other functions.
Despite the pressing need to identify and

characterize all functional elements in the
human genome, it is important to recognize
that there is no universal definition of what
constitutes function, nor is there agreement
on what sets the boundaries of an element.
Both scientists and nonscientists have an
intuitive definition of function, but each
scientific discipline relies primarily on dif-
ferent lines of evidence indicative of func-
tion. Geneticists, evolutionary biologists,
and molecular biologists apply distinct ap-
proaches, evaluating different and com-
plementary lines of evidence. The genetic
approach evaluates the phenotypic conse-
quences of perturbations, the evolutionary
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approach quantifies selective constraint, and
the biochemical approach measures evidence
of molecular activity. All three approaches
can be highly informative of the biological
relevance of a genomic segment and
groups of elements identified by each
approach are often quantitatively enriched
for each other. However, the methods vary
considerably with respect to the specific
elements they predict and the extent of the
human genome annotated by each (Fig. 1).
Some of these differences stem from the

fact that function in biochemical and genetic
contexts is highly particular to cell type and
condition, whereas for evolutionary mea-
sures, function is ascertained independently
of cellular state but is dependent on envi-
ronment and evolutionary niche. The meth-
ods also differ widely in their false-positive
and false-negative rates, the resolution with
which elements are defined, and the through-
put with which they can be surveyed. More-
over, each approach remains incomplete,
requiring continued method development
(both experimental and analytical) and in-
creasingly large datasets (additional species,
assays, cell types, variants, and phenotypes).
It is thus not surprising that the methods
vary considerably with respect to the specific
elements they identify. However, the extent
of the difference is much larger than simply

technical limitations would suggest, chal-
lenging current views and definitions of
genome function.
Many examples of elements that appear

to have conflicting lines of functional evi-
dence were described before the Encyclo-
pedia of DNA Elements (ENCODE) Project,
including elements with conserved pheno-
types but lacking sequence-level conserva-
tion (17–20), conserved elements with no
phenotype on deletion (21, 22), and ele-
ments able to drive tissue-specific expression
but lacking evolutionary conservation (23,
24). However, the scale of the ENCODE
Project survey of biochemical activity (across
many more cell types and assays) led to a
significant increase in genome coverage and
thus accentuated the discrepancy between
biochemical and evolutionary estimates. This
discrepancy led to much debate both in the
scientific literature (25–31) and in online
forums, resulting in a renewed need to clarify
the challenges of defining function in the
human genome and to understand the
sources of the discrepancy.
To address this need and provide a per-

spective by ENCODE scientists, we review
genetic, evolutionary, and biochemical lines
of evidence, discuss their strengths and lim-
itations, and examine apparent discrepancies
between the conclusions emanating from the
different approaches.

Genetic Approach. Genetic approaches,
which rely on sequence alterations to estab-
lish the biological relevance of a DNA seg-
ment, are often considered a gold standard
for defining function. Mutations can be
naturally occurring and identified by screen-
ing for phenotypes generated by sequence
variants (13, 32) or produced experimen-
tally by targeted genetic methods (33) or
nongenetic interference (34). Transfection
studies that use reporter assays in cell lines
(35, 36) or embryos (37) can also be used to
identify regulatory elements and measure
their activities. Genetic approaches tend to
be limited by modest throughput, although
speed and efficiency is now increasing for
some methods (36, 38–40). The approach
may also miss elements whose phenotypes
occur only in rare cells or specific envi-
ronmental contexts, or whose effects are
too subtle to detect with current assays.
Loss-of-function tests can also be buffered
by functional redundancy, such that double
or triple disruptions are required for a
phenotypic consequence. Consistent with
redundant, contextual, or subtle functions,
the deletion of large and highly conserved
genomic segments sometimes has no dis-
cernible organismal phenotype (21, 22),

and seemingly debilitating mutations in
genes thought to be indispensible have been
found in the human population (41).

Evolutionary Approach. Comparative ge-
nomics provides a powerful approach for
detecting noncoding functional elements
that show preferential conservation across
evolutionary time. A high level of sequence
conservation between related species is
indicative of purifying selection, whereby
disruptive mutations are rejected, with the
corresponding sequence deemed to be
likely functional. Evidence of function can
also come from accelerated evolution across
species or within a particular lineage, re-
vealing elements under positive selection for
recently acquired changes that increase fit-
ness; such an approach gains power by in-
corporating multiple closely related genomes
because each species provides information
about sequence constraint. Multispecies
comparisons have been used in studies
of diverse clades, ranging from yeast to
mammals. Methods that detect sequences
likely under selection have had success
in recognizing protein-coding regions,
structural RNAs, gene regulatory regions,
regulatory motifs, and specific regulatory
elements (3, 42–48). The comparative ge-
nomics approach can also incorporate in-
formation about mutational patterns that
may be characteristic of different types
of elements.
Although powerful, the evolutionary ap-

proach also has limitations. Identification
of conserved regions depends on accurate
multispecies sequence alignments, which re-
main a substantial challenge. Alignments are
generally less effective for distal-acting regu-
latory regions, where they may be impeded
by regulatory motif turnover, varying spacing
constraints, and sequence composition biases
(17, 49). Analyzing aligned regions for con-
servation can be similarly challenging. First,
most transcription factor-binding sequences
are short and highly degenerate, making
them difficult to identify. Second, because
detection of neutrally evolving elements
requires sufficient phylogenetic distance, the
approach is well suited for detecting mam-
malian-conserved elements, but it is less
effective for primate-specific elements and
essentially blind to human-specific elements.
Third, certain types of functional elements
such as immunity genes may be prone to
rapid evolutionary turnover even among
closely related species. More generally, align-
ment methods are not well suited to capture
substitutions that preserve function, such
as compensatory changes preserving RNA
structure, affinity-preserving substitutions

low medium
(ENCODE, by level of activity)

high

Whole genome

Genetic evidence?
(generates phenotype)

Evolutionary evidence
(mammalian conservation)

Protein-coding

Biochemical evidence

Fig. 1. The complementary nature of evolutionary, bio-
chemical, and genetic evidence. The outer circle represents
the human genome. Blue discs represent DNA sequences
acted upon biochemically and partitioned by their levels of
signal [combined 10th percentiles of different ENCODE data
types for high, combined 50th percentiles for medium, and
all significant signals for low (see Reconciling Genetic, Evo-
lutionary, and Biochemical Estimates and Fig. 2)]. The red
circle represents, at the same scale, DNA with signatures of
evolutionary constraint (GERP++ elements derived from
34mammal alignments). Overlaps among the sequences
having biochemical and evolutionarily evidence were com-
puted in this work (Fig. 3 and SI Methods). The small purple
circle represents protein-coding nucleotides (Gencode). The
green shaded domain conceptually represents DNA that
produces a phenotype upon alteration, although we lack
well-developed summary estimates for the amount of ge-
netic evidence and its relationship with the other types. This
summary of our understanding in early 2014 will likely evolve
substantially with more data and more refined experimental
and analytical methods.
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within regulatory motifs, or mutations whose
effect is buffered by redundancy or epistatic
effects. Thus, absence of conservation cannot
be interpreted as evidence for the lack
of function.
Finally, although the evolutionary ap-

proach has the advantage that it does not
require a priori knowledge of what a DNA
element does or when it is used, it is un-
likely to reveal the molecular mechanisms
under selection or the relevant cell types or
physiological processes. Thus, comparative
genomics requires complementary studies.

Biochemical Approach. The biochemical
approach for identifying candidate func-
tional genomic elements complements the
other approaches, as it is specific for cell
type, condition, and molecular process.
Decades of detailed studies of gene reg-
ulation and RNA metabolism have defined
major classes of functional noncoding
elements, including promoters, enhancers,
silencers, insulators, and noncoding RNA
genes such as microRNAs, piRNAs, struc-
tural RNAs, and regulatory RNAs (50–53).
These noncoding functional elements are
associated with distinctive chromatin struc-
tures that display signature patterns of
histone modifications, DNA methylation,
DNase accessibility, and transcription
factor occupancy (37, 54–66). For exam-
ple, active enhancers are marked by specific
histone modifications and DNase-accessible
chromatin and are occupied by sequence-
specific transcription factors, coactivators
such as EP300, and, often, RNA poly-
merase II. Although the extent to which
individual features contribute to function
remains to be determined, they provide
a useful surrogate for annotating candidate
enhancers and other types of functional
elements.
The ENCODE Project was established with

the goal of systematically mapping functional
elements in the human genome at high res-
olution and providing this information as an
open resource for the research community
(67, 68). Most data acquisition in the project
thus far has taken the biochemical ap-
proach, using evidence of cellular or enzy-
matic processes acting on a DNA segment to
help predict different classes of functional
elements. The recently completed phase
of ENCODE applied a wide range of bio-
chemical assays at a genome-wide scale to
study multiple human cell types (69). These
assays identified genomic sequences (i)
from which short and long RNAs, both
nuclear and cytoplasmic, are transcribed;
(ii) occupied by sequence-specific tran-
scription factors, cofactors, or chromatin

regulatory proteins; (iii) organized in ac-
cessible chromatin; (iv) marked by DNA
methylation or specific histone modifications;
and (v) physically brought together by long-
range chromosomal interactions.
An advantage of such functional genomics

evidence is that it reveals the biochemical
processes involved at each site in a given
cell type and activity state. However,
biochemical signatures are often a conse-
quence of function, rather than causal. They
are also not always deterministic evidence of
function, but can occur stochastically. For
example, GATA1, whose binding at some
erythroid-specific enhancers is critical for
function, occupies many other genomic sites
that lack detectable enhancer activity or
other evidence of biological function (70).
Likewise, although enhancers are strongly
associated with characteristic histone mod-
ifications, the functional significance of such
modifications remains unclear, and the
mere presence of an enhancer-like sig-
nature does not necessarily indicate that

a sequence serves a specific function (71, 72).
In short, although biochemical signatures
are valuable for identifying candidate reg-
ulatory elements in the biological context
of the cell type examined, they cannot be
interpreted as definitive proof of function
on their own.

What Fraction of the Human Genome Is
Functional?
Limitations of the genetic, evolutionary, and
biochemical approaches conspire to make
this seemingly simple question difficult to
answer. In general, each approach can be
used to lend support to candidate elements
identified by other methods, although focus-
ing exclusively on the simple intersection set
would be much too restrictive to capture all
functional elements. However, by probing
quantitative relationships in data from the
different approaches, we can begin to gain
a more sophisticated picture of the nature,
identity, and extent of functional elements
in the human genome.
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Fig. 2. Summary of the coverage of the human genome by ENCODE data.The fraction of the human genome covered by
ENCODE-detected elements in at least one cell line or tissue for each assay is shown as a bar graph. All percentages are
calculated against the whole genome, including the portion that is not uniquely mappable with short reads and thus is
invisible to the analysis presented here (see Fig. S1). A more detailed summary can be found in Fig. S2. For transcripts,
coverage was calculated from RNA-seq–derived contigs (104) using the count of read fragments per kilobase of exon per
million reads (FPKM) and separated into abundance classes by FPKM values. Note that FPKMs are not directly comparable
among different subcellular fractions, as they reflect relative abundances within a fraction rather than average absolute
transcript copy numbers per cell. Depending on the total amount of RNA in a cell, one transcript copy per cell corresponds to
between 0.5 and 5 FPKM in PolyA+ whole-cell samples according to current estimates (with the upper end of that range
corresponding to small cells with little RNA and vice versa). “All RNA” refers to all RNA-seq experiments, including all
subcellular fractions (Fig. S2). DNAse hypersensitivity and transcription-factor (TFBS) and histone-mark ChIP-seq coverage was
calculated similarly but divided according to signal strength. “Motifs+footprints” refers to the union of occupied sequence
recognition motifs for transcription factors as determined by ChIP-seq and as measured by digital genomic footprinting,
with the fuscia portion of the bar representing the genomic space covered by bound motifs in ChIP-seq. Signal strength for
ChIP-seq data for histone marks was determined based on the P value of each enriched region (the –log10 of the P value is
shown), using peak-calling procedures tailored to the broadness of occupancy of each modification (SI Methods).
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Case for Abundant Junk DNA. The pos-
sibility that much of a complex genome
could be nonfunctional was raised decades
ago. The C-value paradox (27, 73, 74) refers
to the observation that genome size does not
correlate with perceived organismal com-
plexity and that even closely related species
can have vastly different genome sizes. The
estimated mutation rate in protein-coding
genes suggested that only up to ∼20% of
the nucleotides in the human genome can
be selectively maintained, as the mutational
burden would be otherwise too large (75).
The term “junk DNA” was coined to refer
to the majority of the rest of the genome,
which represent segments of neutrally
evolving DNA (76, 77). More recent work
in population genetics has further de-
veloped this idea by emphasizing how
the low effective population size of large-
bodied eukaryotes leads to less efficient
natural selection, permitting proliferation of
transposable elements and other neutrally
evolving DNA (78). If repetitive DNA ele-
ments could be equated with nonfunctional
DNA, then one would surmise that the hu-
man genome contains vast nonfunctional
regions because nearly 50% of nucleotides in
the human genome are readily recognizable
as repeat elements, often of high degeneracy.
Moreover, comparative genomics studies
have found that only 5% of mammalian
genomes are under strong evolutionary con-
straint across multiple species (e.g., human,
mouse, and dog) (2, 3).

Case for Abundant Functional Genomic
Elements. Genome-wide biochemical stud-
ies, including recent reports from ENCODE,
have revealed pervasive activity over an
unexpectedly large fraction of the genome,
including noncoding and nonconserved
regions and repeat elements (58–60). Such
results greatly increase upper bound esti-
mates of candidate functional sequences (Fig.
2 and Fig. S2). Many human genomic regions
previously assumed to be nonfunctional have
recently been found to be teeming with bio-
chemical activity, including portions of repeat
elements, which can be bound by transcrip-
tion factors and transcribed (79, 80), and are
thought to sometimes be exapted into novel
regulatory regions (81–84). Outside the 1.5%
of the genome covered by protein-coding
sequence, 11% of the genome is associated
with motifs in transcription factor-bound
regions or high-resolution DNase footprints
in one or more cell types (Fig. 2), indicative of
direct contact by regulatory proteins. Tran-
scription factor occupancy and nucleosome-
resolution DNase hypersensitivity maps
overlap greatly and each cover approximately

15% of the genome. In aggregate, histone
modifications associated with promoters or
enhancers mark ∼20% of the genome,
whereas a third of the genome is marked by
modifications associated with transcriptional
elongation. Over half of the genome has
at least one repressive histone mark. In
agreement with prior findings of pervasive
transcription (85, 86), ENCODE maps of
polyadenylated and total RNA cover in total
more than 75% of the genome. These already
large fractions may be underestimates, as
only a subset of cell states have been assayed.
However, for multiple reasons discussed
below, it remains unclear what proportion of
these biochemically annotated regions serve
specific functions.
The lower bound estimate that 5% of the

human genome has been under evolutionary
constraint was based on the excess conser-
vation observed in mammalian alignments
(2, 3, 87) relative to a neutral reference
(typically ancestral repeats, small introns,
or fourfold degenerate codon positions).
However, estimates that incorporate alternate
references, shape-based constraint (88), evo-
lutionary turnover (89), or lineage-specific
constraint (90) each suggests roughly two
to three times more constraint than pre-

viously (12–15%), and their union might be
even larger as they each correct different
aspects of alignment-based excess constraint.
Moreover, the mutation rate estimates of the
human genome are still uncertain and sur-
prisingly low (91) and not inconsistent with
a larger fraction of the genome under rela-
tively weaker constraint (92). Although still
weakly powered, human population studies
suggest that an additional 4–11% of the ge-
nome may be under lineage-specific con-
straint after specifically excluding protein-
coding regions (90, 92, 93), and these num-
bers may also increase as our ability to detect
human constraint increases with additional
human genomes. Thus, revised models,
lineage-specific constraint, and additional
datasets may further increase evolution-
based estimates.
Results of genome-wide association studies

might also be interpreted as support for more
pervasive genome function. At present, sig-
nificantly associated loci explain only a small
fraction of the estimated trait heritability,
suggesting that a vast number of additional
loci with smaller effects remain to be dis-
covered. Furthermore, quantitative trait locus
(QTL) studies have revealed thousands
of genetic variants that influence gene
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expression and regulatory activity (94–98).
These observations raise the possibility that
functional sequences encompass a larger
proportion of the human genome than
previously thought.

Reconciling Genetic, Evolutionary, and
Biochemical Estimates
The proportion of the human genome
assigned to candidate functions varies
markedly among the different approaches,
with estimates from biochemical approaches
being considerably larger than those of ge-
netic and evolutionary approaches (Fig. 1).
These differences have stimulated scientific
debate regarding the interpretation and
relative merits of the various approaches
(26–29). We highlight below caveats of each
approach and emphasize the importance
of integration and new high-throughput
technologies for refining estimates and
better understanding the functional seg-
ments in the human genome.

Although ENCODE has expended con-
siderable effort to ensure the reproducibility
of detecting biochemical activity (99), it is not
at all simple to establish what fraction of the
biochemically annotated genome should be
regarded as functional. The dynamic range of
biochemical signals differs by one or more
orders of magnitude for many assays, and the
significance of the differing levels is not yet
clear, particularly for lower levels. For ex-
ample, RNA transcripts of some kind can be
detected from ∼75% of the genome, but
a significant portion of these are of low
abundance (Fig. 2 and Fig. S2). For poly-
adenylated RNA, where it is possible to
estimate abundance levels, 70% of the docu-
mented coverage is below approximately one
transcript per cell (100–103). The abundance
of complex nonpolyadenylated RNAs and
RNAs from subcellular fractions, which
account for half of the total RNA coverage
of the genome, is likely to be even lower, al-
though their absolute quantification is not

yet achieved. Some RNAs, such as lncRNAs,
might be active at very low levels. Others
might be expressed stochastically at higher
levels in a small fraction of the cell popu-
lation (104), have hitherto unappreciated
architectural or regulatory functions, or
simply be biological noise of various kinds.
At present, we cannot distinguish which
low-abundance transcripts are functional,
especially for RNAs that lack the defining
characteristics of known protein coding,
structural, or regulatory RNAs. A priori, we
should not expect the transcriptome to
consist exclusively of functional RNAs. Zero
tolerance for errant transcripts would come
at high cost in the proofreading machinery
needed to perfectly gate RNA polymerase
and splicing activities, or to instantly eliminate
spurious transcripts. In general, sequences
encoding RNAs transcribed by noisy tran-
scriptional machinery are expected to be
less constrained, which is consistent with
data shown here for very low abundance
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RNA (Fig. 3). Similarly, a majority of the
genome shows reproducible evidence of
one or more chromatin marks, but some
marks are in much lower abundance, are
preferentially associated with nonconserved
heterochromatin regions (e.g., H3K9me3;
Fig. 3B), or are known to act at a distance by
spreading (105). Indeed, for any given bio-
chemical assay, the proportion of the ge-
nome covered is highly dependent on the
signal threshold set for the analysis (Fig. 2
and Fig. S2). Regions with higher signals
generally exhibit higher levels of evolution-
arily conservation (Fig. 3 and Fig. S3). Thus,
one should have high confidence that the
subset of the genome with large signals for
RNA or chromatin signatures coupled with
strong conservation is functional and will be
supported by appropriate genetic tests. In
contrast, the larger proportion of genome
with reproducible but low biochemical sig-
nal strength and less evolutionary conser-
vation is challenging to parse between
specific functions and biological noise.
Another major variable underlying the dif-

ferences in genome coverage is assay resolu-
tion. Biochemical methods, such as ChIP or
DNase hypersensitivity assays, capture ex-
tended regions of several hundred bases,
whereas the underlying transcription factor-
binding elements are typically only 6–15 bp
in length. Regulatory motifs and DNase foot-
prints within bound regions show much
stronger evidence of constraint than sur-
rounding nucleotides that nevertheless fall
within the region. Functional elements pre-
dicted from chromatin-state annotations tend
to span even larger regions (e.g., the median
length of enhancer states is ∼600 bp), al-
though the driver nucleotides can be simi-
larly few. Biochemical activity may also spread
from neighboring regions, in genomic coor-
dinates or 3D genome organization, making
it even more difficult to establish the poten-
tial nucleotide drivers. Nonetheless, imme-
diately consigning a biochemically marked
region to the nonfunctional bin for lack of
a driver motif would be premature. Genetic
tests by deletion or sequence substitution are
needed to resolve the question of their func-
tional significance.
Thus, unanswered questions related to

biological noise, along with differences in the
resolution, sensitivity, and activity level of the
corresponding assays, help to explain di-
vergent estimates of the portion of the human
genome encoding functional elements. Nev-
ertheless, they do not account for the entire
gulf between constrained regions and bio-
chemical activity. Our analysis revealed
a vast portion of the genome that appears
to be evolving neutrally according to our

metrics, even though it shows reproducible
biochemical activity, which we previously
referred to as “biochemically active but se-
lectively neutral” (68). It could be argued that
some of these regions are unlikely to serve
critical functions, especially those with lower-
level biochemical signal. However, we also
acknowledge substantial limitations in our
current detection of constraint, given that
some human-specific functions are essential
but not conserved and that disease-relevant
regions need not be selectively constrained to
be functional. Despite these limitations, all
three approaches are needed to complete the
unfinished process of inferring functional
DNA elements, specifying their boundaries,
and defining what functions they serve at
molecular, cellular, and organismal levels.

Functional Genomic Elements and
Human Disease
Presently, ∼4,000 genes have been associated
with human disease, a likely underestimate
given that the majority of disease-associated
mutations have yet to be mapped. There
is overwhelming evidence that variants in
the regulatory sequences associated with
such genes can lead to disease-relevant
phenotypes. Biochemical approaches provide
a rich resource for understanding disease-
relevant functional elements, but they are
most powerful as part of a multifaceted
body of evidence for establishing function.
Three specific examples from the β-globin
locus illustrate how biochemical data can
be integrated with evolutionary constraint
and genetic assays of function (Fig. 4). The
expression of globin genes at progressive
stages of development is controlled by
transcription factors binding at multiple
cis-regulatory modules (CRMs) (106), but
these CRMs differ dramatically in epige-
netic signals and evolutionary history. For
example, the independently acting enhancer
LCR hypersensitive site 2 (HS2) (107) shows
strong constraint on the motifs bound
by transcription factors and strong DNase
footprints. A second CRM, HBG1 3′ en-
hancer (108), is also bound in vivo by
GATA1 (and other proteins) and is active
as an enhancer, but shows almost no con-
straint over mammalian evolution. Last,
a third location, HBG1-D (109, 110),
shows DNase hypersensitivity but lacks

biological activity in enhancer assays.
Rather, binding of this and other CRMs in
the locus by BCL11A leads to a reorga-
nization of the chromatin interactions and
repression of genes encoding the fetally
expressed γ-globins in adult erythroid
cells. This CRM is virtually devoid of ev-
idence of mammalian constraint, at least
in part because the adult-stage silencing
of γ-globin genes is specific to primates.
These vignettes illustrate the comple-
mentary nature of genetic, evolutionary,
and biochemical approaches for under-
standing disease-relevant genomic ele-
ments and also the importance of data
integration, as no single assay identifies all
functional elements.

Conclusion
In contrast to evolutionary and genetic evi-
dence, biochemical data offer clues about
both the molecular function served by un-
derlying DNA elements and the cell types
in which they act, thus providing a launch-
ing point to study differentiation and de-
velopment, cellular circuitry, and human
disease (14, 35, 69, 111, 112). The major
contribution of ENCODE to date has been
high-resolution, highly-reproducible maps of
DNA segments with biochemical signatures
associated with diverse molecular functions.
We believe that this public resource is far
more important than any interim estimate
of the fraction of the human genome that
is functional.
By identifying candidate genomic elements

and placing them into classes with shared
molecular characteristics, the biochemical
maps provide a starting point for testing
how these signatures relate to molecular,
cellular, and organismal function. The data
identify very large numbers of sequence ele-
ments of differing sizes and signal strengths.
Emerging genome-editing methods (113,
114) should considerably increase the
throughput and resolution with which
these candidate elements can be evaluated
by genetic criteria. Given the limitations of
our current understanding of genome func-
tion, future work should seek to better define
genome elements by integrating all three
methods to gain insight into the roles they
play in human biology and disease.
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Bellan A. 2012. Argonaute proteins couple chromatin silencing to alternative splicing. Nat Struct

Mol Biol 19(10):998–1004.

Ammermann D. 1971. Morphology and development of the macronuclei of the ciliates Stylonychia

mytilus and Euplotes aediculatus. Chromosoma 33(2):209–238.

Ameur A, Wetterbom A, Feuk L, Gyllensten U. 2010. Global and unbiased detection of splice

junctions from RNA-seq data. Genome Biol 11(3):R34.

An CI, Dong Y, Hagiwara N. 2011. Genome-wide mapping of Sox6 binding sites in skeletal muscle

reveals both direct and indirect regulation of muscle terminal differentiation by Sox6. BMC Dev

Biol 11:59.

Anders L, Guenther MG, Qi J, Fan ZP, Marineau JJ, Rahl PB, Lovén J, Sigova AA, Smith WB, Lee

TI, Bradner JE, Young RA. 2014. Genome-wide localization of small molecules. Nat Biotechnol

32(1):92–96.

Anders S, Huber W. 2010. Differential expression analysis for sequence count data. Genome Biol

11(10):R106.

Anders S, Reyes A, Huber W. 2012. Detecting differential usage of exons from RNA-seq data.

Genome Res 22(10):2008–2017.

Andersen JL, Kornbluth S. 2013. The tangled circuitry of metabolism and apoptosis. Mol Cell

49(3):399-410.

Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J, Eperon IC, Nierlich DP,

Roe BA, Sanger F, Schreier PH, Smith AJ, Staden R, Young IG. 1981. Sequence and organization

of the human mitochondrial genome. Nature 290(5806):457–465.

Andolfatto P. 2005. Adaptive evolution of non-coding DNA in Drosophila. Nature 437(7062):1149–

1152.

Ang YS, Tsai SY, Lee DF, Monk J, Su J, Ratnakumar K, Ding J, Ge Y, Darr H, Chang B, Wang

J, Rendl M, Bernstein E, Schaniel C, Lemischka IR. 2011. Wdr5 mediates self-renewal and

reprogramming via the embryonic stem cell core transcriptional network. Cell 145(2):183–197.

Aparicio S, Chapman J, Stupka E, Putnam N, Chia JM, Dehal P, Christoffels A, Rash S, Hoon S,

Smit A, Gelpke MD, Roach J, Oh T, Ho IY, Wong M, Detter C, Verhoef F, Predki P, Tay A,



820

Lucas S, Richardson P, Smith SF, Clark MS, Edwards YJ, Doggett N, Zharkikh A, Tavtigian

SV, Pruss D, Barnstead M, Evans C, Baden H, Powell J, Glusman G, Rowen L, Hood L, Tan

YH, Elgar G, Hawkins T, Venkatesh B, Rokhsar D, Brenner S. 2002. Whole-genome shotgun

assembly and analysis of the genome of Fugu rubripes. Science 297(5585):1301–1310.

Arabidopsis Genome Initiative. 2000. Analysis of the genome sequence of the flowering plant

Arabidopsis thaliana. Nature 408(6814):796–815.

Arany Z, Sellers WR, Livingston DM, Eckner R. 1994. E1A-associated p300 and CREB-associated

CBP belong to a conserved family of coactivators. Cell 77(6):799–800.

Aravin A, Gaidatzis D, Pfeffer S, Lagos-Quintana M, Landgraf P, Iovino N, Morris P, Brownstein

MJ, Kuramochi-Miyagawa S, Nakano T, Chien M, Russo JJ, Ju J, Sheridan R, Sander C, Zavolan

M, Tuschl T. 2006. A novel class of small RNAs bind to MILI protein in mouse testes. Nature

442(7099):203–207.

Aravin AA, Hannon GJ, Brennecke J. 2007a. The Piwi–piRNA pathway provides an adaptive

defense in the transposon arms race. Science 318(5851):761–764.

Aravin AA, Lagos-Quintana M, Yalcin A, Zavolan M, Marks D, Snyder B, Gaasterland T, Meyer J,

Tuschl T. 2003. The small RNA profile during Drosophila melanogaster development. Dev Cell

5:337-350.

Aravin AA, Sachidanandam R, Girard A, Fejes-Toth K, Hannon GJ. 2007b. Developmentally reg-

ulated piRNA clusters implicate MILI in transposon control. Science 316(5825):744–747.

Aravin AA, Sachidanandam R, Bourchis D, Schaefer C, Pezic D, Toth KF, Bestor T, Hannon GJ.

2008. A piRNA pathway primed by individual transposons is linked to de novo DNA methylation

in mice. Mol Cell 31:785-799.

Archibald JM, Keeling PJ. 2002. Recycled plastids: a ’green movement’ in eukaryotic evolution.

Trends Genet 18(11):577–584.

Archibald JM, Lane CE. 2009. Going, going, not quite gone: nucleomorphs as a case study in

nuclear genome reduction. J Hered 100(5):582–590.

Armbrust EV, Berges JA, Bowler C, Green BR, Martinez D, Putnam NH, Zhou S, Allen AE, Apt

KE, Bechner M, Brzezinski MA, Chaal BK, Chiovitti A, Davis AK, Demarest MS, Detter JC,

Glavina T, Goodstein D, Hadi MZ, Hellsten U, Hildebrand M, Jenkins BD, Jurka J, Kapitonov

VV, Krger N, Lau WW, Lane TW, Larimer FW, Lippmeier JC, Lucas S, Medina M, Montsant

A, Obornik M, Parker MS, Palenik B, Pazour GJ, Richardson PM, Rynearson TA, Saito MA,

Schwartz DC, Thamatrakoln K, Valentin K, Vardi A, Wilkerson FP, Rokhsar DS. 2004. The

genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science



821

306(5693):79–86.

Arnberg A, van Bruggen EF, Borst P. 1971. The presence of DNA molecules with a displacement

loop in standard mitochondrial DNA preparations. Biochim Biophys Acta 246(2):353–357.

Arnold CD, Gerlach D, Stelzer C, Boryn LM, Rath M, Stark A. 2013. Genome-wide quantitative

enhancer activity maps identified by STARR-seq. Science 339(6123):1074–1077.

Aronica L, Bednenko J, Noto T, DeSouza LV, Siu KW, Loidl J, Pearlman RE, Gorovsky MA,

Mochizuki K. 2008. Study of an RNA helicase implicates small RNA-noncoding RNA interactions

in programmed DNA elimination in Tetrahymena. Genes Dev 22:2228-2241

Aschoff M, Hotz-Wagenblatt A, Glatting KH, Fischer M, Eils R, König R. 2013. SplicingCompass:

differential splicing detection using RNA-seq data. Bioinformatics 29(9):1141–1148.

Ashe A, Sapetschnig A, Weick EM, Mitchell J, Bagijn MP, Cording AC, Doebley AL, Goldstein

LD, Lehrbach NJ, Le Pen J, Pintacuda G, Sakaguchi A, Sarkies P, Ahmed S, Miska EA. 2012.

piRNAs can trigger a multigenerational epigenetic memory in the germline of C. elegans. Cell

150(1):88–99.

Asin-Cayuela J, Gustafsson CM. 2007. Mitochondrial transcription and its regulation in mammalian

cells. Trends Biochem Sci 32(3):111–117.

Au KF, Jiang H, Lin L, Xing Y, Wong WH. 2010. Detection of splice junctions from paired-end

RNA-seq data by SpliceMap. Nucleic Acids Res 38(14):4570–4578.

Au KF, Sebastiano V, Afshar PT, Durruthy JD, Lee L, Williams BA, van Bakel H, Schadt EE,

Reijo-Pera RA, Underwood JG, Wong WH. Characterization of the human ESC transcriptome

by hybrid sequencing. Proc Natl Acad Sci U S A 110(50):E4821–4830.

Au KF, Underwood JG, Lee L, Wong WH. 2012. Improving PacBio long read accuracy by short

read alignment. PLoS One 7(10):e46679.

Auer TO, Duroure K, De Cian A, Concordet JP, Del Bene F. 2014. Highly efficient CRISPR/Cas9-

mediated knock-in in zebrafish by homology-independent DNA repair. Genome Res 24(1):142–

153.

Auerbach RK, Euskirchen G, Rozowsky J, Lamarre-Vincent N, Moqtaderi Z, Lefranois P, Struhl K,

Gerstein M, Snyder M. 2009. Mapping accessible chromatin regions using Sono-Seq. Proc Natl

Acad Sci U S A 106(35):14926–14931.

Aury JM, Jaillon O, Duret L, Noel B, Jubin C, Porcel BM, Ségurens B, Daubin V, Anthouard V,
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a domesticated piggyBac transposase involved in programmed genome rearrangements in the

ciliate Paramecium tetraurelia. Genes Dev 23(21):2478–2483.

Bauer DE, Kamran SC, Lessard S, Xu J, Fujiwara Y, Lin C, Shao Z, Canver MC, Smith EC, Pinello

L, Sabo PJ, Vierstra J, Voit RA, Yuan GC, Porteus MH, Stamatoyannopoulos JA, Lettre G,

Orkin SH. 2013. An erythroid enhancer of BCL11A subject to genetic variation determines fetal

hemoglobin level. Science 342(6155):253–257.

Bayer T, Aranda M, Sunagawa S, Yum LK, Desalvo MK, Lindquist E, Coffroth MA, Voolstra

CR, Medina M. 2012. Symbiodinium transcriptomes: genome insights into the dinoflagellate

symbionts of reef-building corals. PLoS One 7(4):e35269.

Beaton MJ, Cavalier-Smith T. 1999. Eukaryotic non-coding DNA is functional: evidence from the



825

differential scaling of cryptomonad genomes. Proc Biol Sci 266(1433):2053–2059.

Behe MJ. 2003 A functional pseudogene: an open letter to Nature. http://www.discovery.org/

a/1448

Behr J, Bohnert R, Zeller G, Schweikert G, Hartmann L, Rätsch G. 2010. Next generation genome
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Hollmann TJ, Ferré F, Bourque C, Burke CJ, Turner L, Uong A, Johnson LA, Beroukhim

R, Mermel CH, Loda M, Ait-Si-Ali S, Garraway LA, Young RA, Zon LI. 2011. The histone

methyltransferase SETDB1 is recurrently amplified in melanoma and accelerates its onset. Nature

471(7339):513–517.
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Deschamps P, Lara E, Marande W, López-Garćıa P, Ekelund F, Moreira D. 2011. Phylogenomic

analysis of kinetoplastids supports that trypanosomatids arose from within bodonids. Mol Biol

Evol 28(1):53–58.

Desjardins P, Frost E, Morais R. 1985. Ethidium bromide-induced loss of mitochondrial DNA from

primary chicken embryo fibroblasts. Mol Cell Biol 5(5):1163–1169.

Di Giammartino DC, Nishida K, Manley JL. 2011. Mechanisms and consequences of alternative

polyadenylation. Mol Cell 43(6):853–866.

Diaz A, Nellore A, Song JS. 2012. CHANCE: comprehensive software for quality control and vali-

dation of ChIP-seq data. Genome Biol 13(10):R98.

Diaz A, Park K, Lim DA, Song JS. 2012. Normalization, bias correction, and peak calling for

ChIP-seq. Stat Appl Genet Mol Biol 11(3):Article 9.

DiCarlo JE, Norville JE, Mali P, Rios X, Aach J, Church GM. 2013. Genome engineering in Sac-



848

charomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res 41(7):4336–4343.

Dickinson DJ, Ward JD, Reiner DJ, Goldstein B. 2013. Engineering the Caenorhabditis elegans

genome using Cas9-triggered homologous recombination. Nat Methods 10(10):1028–1034.

Dimon MT, Sorber K, DeRisi JL. 2010. HMMSplicer: a tool for efficient and sensitive discovery of

known and novel splice junctions in RNA-Seq data. PLoS One 5(11):e13875.

Dinger ME, Amaral PP, Mercer TR, Mattick JS. 2009. Pervasive transcription of the eukary-

otic genome: functional indices and conceptual implications. Brief Funct Genomic Proteomic

8(6):407–423.

Dinger ME, Amaral PP, Mercer TR, Pang KC, Bruce SJ, Gardiner BB, Askarian-Amiri ME, Ru
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R, Gingeras TR. 2012. Landscape of transcription in human cells. Nature 489(7414):101–108.

Djuranovic S, Zinchenko M, Hur J, Nahvi A, Brunelle J, Rogers E, Green R. 2010. Allosteric

regulation of Argonaute proteins by miRNAs. Nat Struct Mol Biol 17:144-150.

Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras



849

TR. 2013. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29(1):15–21.

Dobzhansky T. 1973. Nothing in Biology Makes Sense Except in the Light of Evolution. American

Biology Teacher 35:125-129

Dodge JD. 1965. Chromosome structure in the dinoflagellates and the problem of the mesokaryotic

cell. Expcerpta Med Int Congr Ser 91:339-345

Dodge JD, Greuet C. 1987. Dinoflagellate ultrastructure and complex organelles. In Taylor FJR

(Ed.) The Biology of Dinoflagellates. Blackwell, Oxford, pp. 93-142.

Dohm JC, Lottaz C, Borodina T, Himmelbauer H. 2008. Substantial biases in ultra-short read data

sets from high-throughput DNA sequencing. Nucleic Acids Res 36(16):e105.

Doolittle WF. 1978. Genes in pieces: Were they ever together? Nature 272:581–582

Doolittle WF. 2013. Is junk DNA bunk? A critique of ENCODE. Proc Natl Acad Sci U S A

110(14):5294–5300

Doolittle WF, Sapienza C. 1980. Selfish genes, the phenotype paradigm and genome evolution.

Nature 284(5757):601–603.
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LA, Wetterstrand KA, Good PJ, Feingold EA, Guyer MS, Cooper GM, Asimenos G, Dewey

CN, Hou M, Nikolaev S, Montoya-Burgos JI, Löytynoja A, Whelan S, Pardi F, Massingham T,
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B, Solovyev V, Steijger T, Valle G, Vitulo N, Wang K, Wu TD, Zeller G, Rätsch G, Goldman N,
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Gonzàlez-Porta M, Frankish A, Rung J, Harrow J, Brazma A. 2013. Transcriptome analysis of

human tissues and cell lines reveals one dominant transcript per gene. Genome Biol 14(7):R70.

Goodrich JA, Tjian R. 2010. Unexpected roles for core promoter recognition factors in cell-type-

specific transcription and gene regulation. Nat Rev Genet 11(8):549–558.

Gornik SG, Ford KL, Mulhern TD, Bacic A, McFadden GI, Waller RF. 2012. Loss of nucleosomal

DNA condensation coincides with appearance of a novel nuclear protein in dinoflagellates. Curr

Biol 22(24):2303–2312.

Gotea V, Visel A, Westlund JM, Nobrega MA, Pennacchio LA, Ovcharenko I. 2010. Homotypic clus-

ters of transcription factor binding sites are a key component of human promoters and enhancers.

Genome Res 20(5):565–577.

Gough DJ, Corlett A, Schlessinger K, Wegrzyn J, Larner AC, Levy DE. 2009. Mitochondrial STAT3



867

supports Ras-dependent oncogenic transformation. Science 324(5935):1713–1716.

Gould SJ, Lewontin RC. 1979. The spandrels of San Marco and the Panglossian paradigm: a critique

of the adaptationist program. Proc Royal Soc London B 205:581-598.

Gout JF, Thomas WK, Smith Z, Okamoto K, Lynch M. 2013. Large-scale detection of in vivo

transcription errors. Proc Natl Acad Sci U S A 110(46):18584–18589.

Gowher H, Stockdale CJ, Goyal R, Ferreira H, Owen-Hughes T, Jeltsch A. 2005. De novo methy-

lation of nucleosomal DNA by the mammalian Dnmt1 and Dnmt3A DNA methyltransferases.

Biochemistry 44(29):9899–9904.

Gowher H, Brick K, Camerini-Otero RD, Felsenfeld G. 2012. Vezf1 protein binding sites genome-

wide are associated with pausing of elongating RNA polymerase II. Proc Natl Acad Sci U S A

109(7):2370–2375.

Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowd-

hury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW,

Nusbaum C, Lindblad-Toh K, Friedman N, Regev A. 2011. Full-length transcriptome assembly

from RNA-Seq data without a reference genome. Nat Biotechnol 29(7):644–652.

Grabowski P. 2011. Alternative splicing takes shape during neuronal development. Curr Opin Genet

Dev 21(4):388–394.

Grad Y, Aach J, Hayes GD, Reinhart BJ, Church GM, Ruvkun G, Kim J. 2003. Computational

and experimental identification of C. elegans microRNAs. Mol Cell 11:1253-1263.

Grant GR, Farkas MH, Pizarro AD, Lahens NF, Schug J, Brunk BP, Stoeckert CJ, Hogenesch JB,

Pierce EA. 2011. Comparative analysis of RNA-Seq alignment algorithms and the RNA-Seq

unified mapper (RUM). Bioinformatics 27(18):2518–2528.

Graur D, Zheng Y, Price N, Azevedo RB, Zufall RA, Elhaik E. 2013. On the immortality of televi-

sion sets: “function” in the human genome according to the evolution-free gospel of ENCODE.

Genome Biol Evol 5(3):578–590

Graveley BR. 2002. Sex, AGility, and the regulation of alternative splicing. Cell 109(4):409–412.

Gratz SJ, Cummings AM, Nguyen JN, Hamm DC, Donohue LK, Harrison MM, Wildonger J,

O’Connor-Giles KM. 2013. Genome engineering of Drosophila with the CRISPR RNA-guided

Cas9 nuclease. Genetics 194(4):1029–1035.

Gray MW. 2012. Mitochondrial evolution. Cold Spring Harb Perspect Biol 4(9):a011403.

Gray MW, Lang BF, Burger G. 2004. Mitochondria of protists. Annu Rev Genet 38:477–524.

Gray MW, Lukes J, Archibald JM, Keeling PJ, Doolittle WF. 2010. Cell Biology. Irremediable

Complexity? Science 330:920-921.



868

Grbic M, Van Leeuwen T, Clark RM, Rombauts S, Rouzé P, Grbic V, Osborne EJ, Dermauw W,
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Heikkinen S, Väisänen S, Pehkonen P, Seuter S, Benes V, Carlberg C. 2011. Nuclear hormone 1α,25-

dihydroxyvitamin D3 elicits a genome-wide shift in the locations of VDR chromatin occupancy.

Nucleic Acids Res 39(21):9181–9193.

Heintzman ND, Hon GC, Hawkins RD, Kheradpour P, Stark A, Harp LF, Ye Z, Lee LK, Stuart

RK, Ching CW, Ching KA, Antosiewicz-Bourget JE, Liu H, Zhang X, Green RD, Lobanenkov

VV, Stewart R, Thomson JA, Crawford GE, Kellis M, Ren B. 2009. Histone modifications at

human enhancers reflect global cell-type-specific gene expression. Nature 459(7243):108–112.

Heintzman ND, Stuart RK, Hon G, Fu Y, Ching CW, Hawkins RD, Barrera LO, Van Calcar S, Qu

C, Ching KA, Wang W, Weng Z, Green RD, Crawford GE, Ren B. 2007. Distinct and predictive

chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat

Genet 39(3):311–318.

Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, Cheng JX, Murre C, Singh H, Glass

CK. 2010. Simple combinations of lineage-determining transcription factors prime cis-regulatory

elements required for macrophage and B cell identities. Mol Cell 38:576-589.

Heng JC, Feng B, Han J, Jiang J, Kraus P, Ng JH, Orlov YL, Huss M, Yang L, Lufkin T, Lim

B, Ng HH. 2010. The nuclear receptor Nr5a2 can replace Oct4 in the reprogramming of murine

somatic cells to pluripotent cells. Cell Stem Cell 6(2):167–174.

Henikoff S. 2008. Nucleosome destabilization in the epigenetic regulation of gene expression. Nat

Rev Genet 9(1):15–26.

Henriquez FL, Richards TA, Roberts F, McLeod R, Roberts CW. 2005. The unusual mitochondrial

compartment of Cryptosporidium parvum. Trends Parasitol 21(2):68–74.

Henry GL, Davis FP, Picard S, Eddy SR. 2012. Cell type-specific genomics of Drosophila neurons.

Nucleic Acids Res 40(19):9691–9704.

Herrick G, Cartinhour SW, Williams KR, Kotter KP. 1987a. Multiple sequence versions of the

Oxytricha fallax 81-MAC alternate processing family. J Protozool 34(4):429–434.

Herrick G, Hunter D, Williams K, Kotter K. 1987b. Alternative processing during development of



875

a macronuclear chromosome family in Oxytricha fallax. Genes Dev 1(10):1047–1058.

Hershey AD, Chase M. 1952. Independent functions of viral protein and nucleic acid in growth of

bacteriophage. J Gen Physiol 36(1):39–56.

Herzberg NH, Middelkoop E, Adorf M, Dekker HL, Van Galen MJ, Van den Berg M, Bolhuis PA,

Van den Bogert C. 1993. Mitochondria in cultured human muscle cells depleted of mitochondrial

DNA. Eur J Cell Biol 61(2):400–408.

Hess WR, Börner T. 1999. Organellar RNA polymerases of higher plants. Int Rev Cytol 190:1–59.

Hesselberth JR, Chen X, Zhang Z, Sabo PJ, Sandstrom R, Reynolds AP, Thurman RE, Neph SJ,

Kuehn MS, Noble WS, Fields S, Stamatoyannopoulos JA. 2009 Global mapping of protein-DNA

interactions in vivo by digital genomic footprinting. Nat Methods, 6:283–289.

Heyman J, Cools T, Vandenbussche F, Heyndrickx KS, Van Leene J, Vercauteren I, Vanderauwera

S, Vandepoele K, De Jaeger G, Van Der Straeten D, De Veylder L. 2013. ERF115 controls root

quiescent center cell division and stem cell replenishment. Science 342(6160):860–863.

Heyne K, Mannebach S, Wuertz E, Knaup KX, Mahyar-Roemer M, Roemer K. 2004. Identification

of a putative p53 binding sequence within the human mitochondrial genome. FEBS Lett 578(1-

2):198–202.

Heyse G, Jonsson F, Chang WJ, Lipps HJ. 2010. RNA-dependent control of gene amplification.

Proc Natl Acad Sci U S A 107:22134-22139

Hibberd DJ, Norris RE. 1984. Cytology and ultrastructure of Chlorarachnion reptans (Chlorarach-

niophyta divisio nova, Chlorarachniophyceae classis nova). J Phycol 20:310-30

Hiller M, Huse K, Szafranski K, Jahn N, Hampe J, Schreiber S, Backofen R, Platzer M. 2004.

Widespread occurrence of alternative splicing at NAGNAG acceptors contributes to proteome

plasticity. Nat Genet 36(12):1255–1257.

Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, Collins FS, Manolio TA. 2009.

Potential etiologic and functional implications of genome-wide association loci for human diseases

and traits. Proc Natl Acad Sci U S A 106(23):9362–9367.

Hirakawa Y, Burki F, Keeling PJ. 2011. Nucleus- and nucleomorph-targeted histone proteins in a

chlorarachniophyte alga. Mol Microbiol 80(6):1439–1449.

Hirakawa Y, Suzuki S, Archibald JM, Keeling PJ, Ishida KI. 2014. Overexpression of molecular

chaperone genes in nucleomorph genomes. Mol Biol Evol [Epub ahead of print]

Hirota K, Miyoshi T, Kugou K, Hoffman CS, Shibata T, Ohta K. 2008. Stepwise chromatin remod-

elling by a cascade of transcription initiation of non-coding RNAs. Nature 456(7218):130–134.

Hirotsune S, Yoshida N, Chen A, Garrett L, Sugiyama F, Takahashi S, Yagami K, Wynshaw-Boris



876

A, Yoshiki A. 2003. An expressed pseudogene regulates the messenger-RNA stability of its

homologous coding gene. Nature 423(6935):91–96.

Ho JW, Bishop E, Karchenko PV, Négre N, White KP, Park PJ. 2011. ChIP-chip versus ChIP-seq:

lessons for experimental design and data analysis. BMC Genomics 12:134.

Ho L, Jothi R, Ronan JL, Cui K, Zhao K, Crabtree GR. 2009. An embryonic stem cell chromatin

remodeling complex, esBAF, is an essential component of the core pluripotency transcriptional

network. Proc Natl Acad Sci U S A 106(13):5187–5191.
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Fedetz M, Blasco MA, Pereira PS, Ovcharenko I, Recillas-Targa F, Montoliu L, Manzanares M,
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