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Abstract

The main focus of this thesis is the use of high-throughput sequencing technologies in functional
genomics (in particular in the form of ChIP-seq, chromatin immunoprecipitation coupled with se-
quencing, and RNA-seq) and the study of the structure and regulation of transcriptomes. Some parts
of it are of a more methodological nature while others describe the application of these functional
genomic tools to address various biological problems. A significant part of the research presented
here was conducted as part of the ENCODE (ENCyclopedia Of DNA Elements) Project.

The first part of the thesis focuses on the structure and diversity of the human transcriptome.
Chapter 1 contains an analysis of the diversity of the human polyadenylated transcriptome based
on RNA-seq data generated for the ENCODE Project. Chapter 2 presents a simulation-based
examination of the performance of some of the most popular computational tools used to assemble
and quantify transcriptomes. Chapter 3 includes a study of variation in gene expression, alternative
splicing and allelic expression bias on the single-cell level and on a genome-wide scale in human
lymphoblastoid cells; it also brings forward a number of critical to the practice of single-cell RNA-
seq measurements methodological considerations.

The second part presents several studies applying functional genomic tools to the study of the
regulatory biology of organellar genomes, primarily in mammals but also in plants. Chapter 5 con-
tains an analysis of the occupancy of the human mitochondrial genome by TFAM, an important
structural and regulatory protein in mitochondria, using ChIP-seq. In Chapter 6, the mitochondrial
DNA occupancy of the TFB2M transcriptional regulator, the MTERF termination factor, and the
mitochondrial RNA and DNA polymerases is characterized. Chapter 7 consists of an investigation
into the curious phenomenon of the physical association of nuclear transcription factors with mito-
chondrial DNA, based on the diverse collections of transcription factor ChIP-seq datasets generated

by the ENCODE, mouseENCODE and modENCODE consortia. In Chapter 8 this line of research
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is further extended to existing publicly available ChIP-seq datasets in plants and their mitochondrial
and plastid genomes.

The third part is dedicated to the analytical and experimental practice of ChIP-seq. As part
of the ENCODE Project, a set of metrics for assessing the quality of ChIP-seq experiments was
developed, and the results of this activity are presented in Chapter 9. These metrics were later
used to carry out a global analysis of ChIP-seq quality in the published literature (Chapter 10). In
Chapter 11, the development and initial application of an automated robotic ChIP-seq (in which
these metrics also played a major role) is presented.

The fourth part presents the results of some additional projects the author has been involved
in, including the study of the role of the Piwi protein in the transcriptional regulation of transpo-
son expression in Drosophila (Chapter 12), and the use of single-cell RNA-seq to characterize the
heterogeneity of gene expression during cellular reprogramming (Chapter 13).

The last part of the thesis provides a review of the results of the ENCODE Project and the
interpretation of the complexity of the biochemical activity exhibited by mammalian genomes that
they have revealed (Chapters 15 and 16), an overview of the expected in the near future technical
developments and their impact on the field of functional genomics (Chapter 14), and a discussion of
some so far insufficiently explored research areas, the future study of which will, in the opinion of
the author, provide deep insights into many fundamental but not yet completely answered questions

about the transcriptional biology of eukaryotes and its regulation.
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Preface

The path my graduate career took was somewhat unusual. I had the fortune to be able to work on a
large number of diverse projects (especially as a result of being part of the ENCODE project). This
means I have a correspondingly large number of at least somewhat interesting scientific stories to tell
in my thesis. However, the flip side of this is that the common thread between all of them is not nec-
essarily obvious and the “lack of focus” type of criticism towards it would not be entirely misplaced.
For a long time, what that common thread was going to be was not obvious for me either, except for
the rather trivial common denominator “High-throughput sequencing-based functional genomics”
and the so-broad-as-to-be-almost-meaningless in the context of a graduate thesis “Understanding
the mechanism of gene regulation and the structure and dynamics of transcriptomes eukaryotes”.
Yet, after some reflection, and especially after the response of the general scientific community to
the presentation of ENCODE results and the subsequent activities I got involved in, I have come to
think that the latter is not only not that useless after all, but I in fact have quite a lot to say on the
subject and from a unique perspective and position shared by not many other people. Thus even if
all T can offer is numerous very small compared to the magnitude of the general and very big task
of understanding gene regulation contributions, they can nevertheless be brought under a common
theme and put in their proper place in the bigger picture of where the field is circa 2013/2014 and
what directions, in my humble opinion, it might not be a bad idea for at least a portion of it to
move into in the near- and medium-term future.

My thoughts on the latter subject are presented in the chapters comprising the last part of this
thesis, which also contain most of what would normally go into an introductory section. The rest
of it is organized in four parts, each containing separate chapters. The first part is dedicated to the
analysis of eukaryotic transcriptomes, using a variety of experimental techniques and data types,

from bulk samples and on the single-cell level. The second grew in a completely unexpected way



XXXVil

from a collaboration with Yun Elisabeth Wang in the Chan lab that initially focused on character-
izing the binding of TFAM to the human mitochondrial genome but eventually grew into multiple
studies applying functional genomic tools and data to organelles in both animals and plants. The
third part concerns a number of technical issues having to do with the practice of carrying out chro-
matin immunoprecipitation (ChIP) experiments and their coupling with high-throughput sequencing
(ChIP-seq), in particular the application of ChIP-seq quality control metrics to real-life data. It also
includes a chapter on the development of a robotic ChIP assay in the Wold lab, something that will
be a vital part of the future practice in the field. The fourth part includes chapters on some of the
various other projects I have been involved in. The last part, as already mentioned, summarizes my
work in the broader context of the current state of the field and defines what in my opinion would be
fruitful directions for future research, both from the perspective of the current and expected near-
future state of technology, and from the point of view of the general questions about the evolution of
regulatory and genomic complexity arising from ENCODE results and their interpretation. Most of
the individual chapters contained in each part were initially written as standalone papers, to which
I later made (mostly slight) modifications in order to better fit the format of a thesis. Some of them
have already been published, and a few of the ones that have not been will hopefully some day
join them. The chapters can still be read independently of each other (this is especially true about
those in the “Other Projects” part), although I hope an overarching team would become apparent

to anyone reading the thesis from cover to cover, in its entirety.
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Part 1

The Structure of Eukaryotic

Transcriptomes



This part contains four chapters dedicated to several functional genomic studies of the structure
of eukaryotic transcriptomes that I have carried out. The first one describes the results of an early
project aimed at characterizing the human polyadenylated transcriptome using some of the very first
paired-end RNA-seq on multiple cell lines in existence (generated as part of the ENCODE Project).
That work made it very clear that isoform assembly and isoform-level quantification are critical
and potentially very weak points in the analysis of short-read RNA-seq data. To clarify the extent,
impact and nature of these problems, I carried out an extensive simulation study on some of the
most popular existing computational algorithms for carrying out these tasks, the results of which
are described in the second chapter of this part. The third chapter contains a study of cell-to-cell
variation in gene expression in human lymphoblastoid cell lines using single-cell RN A-seq, which also
discusses in detail multiple key experimental and analytical issues with the practice of single-cell
transcriptomics. Finally, I include a short chapter describing a proof-of-principle demonstration of

a simple but elegant and robust approach to the analysis of mixed-species RNA-seq data.



The polyadenylated transcriptome of ENCODE cell

lines

The material in this chapter (which consists of work done between 2010 and early 2012) was intended
to form the core of an ENCODE companion paper to complement the main ENCODE transriptome
paper (Djebali et al. 2012), and also present a somewhat different perspective of what the data is

telling us:

Marinov GK*, Williams BA*, Trout D, Balasubramanian S, Fauli F, Reddy T, Gertz J, Murad R,
Mortazavi A, Myers RM, Wold BJ. The polyadenylated transcriptome of ENCODE cell lines. 2012

This unfortunately never happened for various reasons I will not go into here. It is based on
data generated primarily by Brian Williams in the Wold lab. The RNA Polymerase II and TAF1
ChIP-seq data from the Myers lab at the HudsonAlpha Institute for Biotechnology; the Nanostring

miRNA data is courtesy of Rabi Murad in the Mortazavi lab at the University of California, Irvine.

Abstract

Multiple lines of evidence have previously suggest that the complexity of the tran-
script products generated by mammalian genomes is high. However, until the advent

of RNA sequencing technology, it has not been possible to directly study this diver-



sity at the resolution and depth provided by RNA-seq. In this study, we performed
the first large-scale characterization of the human polyadenylated transcriptome using
RNA-seq data from ENCODE cell lines and from a diverse collection of human tissues,
as well as CAGE (Capped Analysis of Gene Expression) and ChIP-seq data for the
TAF1 subunit of the transcription initiation complex. State-of-the-art analysis tools
were then used to generate and quantify a conservative set of annotated and novel tran-
scriptome elements, including splice junctions, exons, intergenic transcripts, isoforms
of protein coding genes and alternative transcription initiation sites. The results reveal
the high complexity of the transcriptome, but they also emphasize the interpretative
challenges presented by the fact that much of the observed diversity is present at low
absolute levels, meaning it is difficult to distinguish it from biochemical noise gener-
ated by the transcription and splicing machinery. Finally, I highlight the areas where
future technical advances that should help resolve some of these issues are needed and

expected.

1.1 Introduction

Contemporary polyA transcriptome measurements, made by deep sequencing of cDNA (RNA-seq),
are remarkably information rich (Mortazavi and Williams et al. 2008; Nagalakshmi et al. 2008; Wang
et al. 2008; Wilhelm et al. 2008; Pan et al. 2008; Sultan et al. 2008; Cloonan et al. 2008; Guttman et
al. 2010; Cabili et al. 2011; Li et al. 2011). High-quality reference datasets can be mined, quantified,
and analyzed in different ways, using different software and significance thresholds, to serve a wide
range of biological investigations. For example, the majority of currently known mammalian genes
were mapped by working backwards from knowledge of cloned RNA product(s) (Adams et al. 1991;
Adams et al. 1995; Curwen et al. 2004). In principle, a deeply sequenced transcriptome can
be used similarly to construct a more complete catalog of genes and their alternately processed
RNA products, including both protein coding and long non-coding RNAs (IncRNAs; Guttman et
al. 2009; Guttman et al. 2010; Cabili et al. 2011). This discovery mapping function has been a
major motivation for ENCODE RNA-seq measurements (Myers et al. 2011; Djebali et al. 2012;
this work), although both computational and biological complexities addressed below make this a
challenging enterprise, especially for genes and isoforms expressed at relatively low levels. Reference
RNA-seq data can also be used to quantify differential gene expression among cell types and tissues

(Trapnell et al. 2012; Wang et al. 2010; Adams & Huber 2010); to quantify RNA splice use (Wang
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et al. 2008; Bradley et al. 2012); RNA editing (Li et al. 2011; Park et al. 2012), and other post-
transcriptional processing (Jan et al. 2011; Kodzius et al. 2006; Hoskins et al. 2011; Affymetrix
ENCODE Transcriptome Project 2009). Finally, since these transcriptome measurements reflect
the steady state balance of RNA biogenesis and decay, RNA-seq data can be integrated with other
genome-wide data-types such as RNA Polymerase IT (RNA Pol2) occupancy and microRNA levels
to gain insight into the specifics transcription initiation, and RNA processing, and turnover.

These diverse uses of mRNA-seq data are best and most efficiently served by sequencing to
high depth, because greater depth increases sensitivity; by using longer sequence reads, typically
in the paired-end format, because this increases the specificity of mapping reads to the correct
gene and transcript isoform; and by using source RNA that is highly enriched for being in the
polyA fraction, which reduces background from other RNA types and improves interpretability.
As part of the ENCODE Porject, we therefore developed a community resource of human polyA
RNA-seq transcriptomes (100-200 million sequence reads in each biological replicate) by applying
a widely used polyA RNA-seq method (updated from Mortazavi et al. 2008), to diverse human
cell lines (ENCODE tier 1 and Tier 2). The analysis of these cell-line and primary cell culture
RNAs was substantially augmented by including and comparing RN A-seq data from 16 adult human
tissues sequenced as part of the Human Body Map (HBM) project (primary data available from
GEO, accession code GSE30611). The resulting data resource was analyzed using a computational
Cufflinks-based pipeline (updated from Trapnell et al. 2010 and Roberts et al. 2011) to examine the
structure and diversity of the human transcriptome, in particular focusing on: 1) known and novel
splice junctions, protein coding transcripts and IncRNAs, and other elements of the transcriptome

were analyzed as a function of expression level, confidence value and locus complexity; 2) global

Figure 1.1 (preceding page): Overview of data generation protocols and computational
analysis. (A) PolyA-selected RNA-seq library generation. Libraries are built from PolyA-selected
RNA from ENCODE cell lines using fragmentation and random hexamer priming. Libraries are size-
selected so that the average fragment length is around 200bp and paired-end reads are generated
on the Hlumina GAIIx or HiSeq 2000. (B) Data analysis workflow. RNA-seq reads from ENCODE
cell lines and from HBM tissues are individually mapped with TopHat in de novo splice junction
discovery mode. Next, all newly discovered splice junctions are combined with splice junctions
from the GENCODE annotation to create a consolidated set of junctions, which is supplied to
TopHat for remapping of all reads. The TopHat alignments are used to run Cufflinks in de novo
transcript discovery mode. The Cufflinks models for all cell lines and tissues are then merged with the
GENCODE annotation to create a final consolidated set of transcripts. Final Cufflinks quantification
is performed on the final merged annotation for each cell lines and downstream analysis of expression
values and transcript characteristics is carried out. (C) Distinction between transcript expression
estimation metrics used. In addition to the FPKM score corresponding to the most likely actual
transcript abundance, for stringency purposes we use extensively the FPKMo, ¢ 1, lower limit of
the 95% FPKM confidence interval provided by Cufflinks.
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Figure 1.2: Number of isoforms per gene for protein coding genes in refSeq, GENCODE
V7 and the final merged assembly based on ENCODE+HBM data. Number of isoforms
per gene for protein coding genes in refSeq, GENCODE V7 and the final merged assembly based
on ENCODE + HBM data. (A) Distribution of isoforms number (Y-axis is plotted on a log2 scale)
(B) Average number of isoforms per gene.

integrative mining was illustrated by using ChIP-seq data for TAF1 and RNA Polymerase II to
determine the number and cell type specific usage of alternative promoters; 3) specific loci, including
the protocadherin gene clusters and the transcription factor BHLHE40, were used to illustrate how
the transcriptome data and models can be used, alone and in conjunction with other data-types to
generate explicit new hypotheses.

A particular computational challenge presented by short-read RNA-seq data is accurately build-
ing and quantifying new gene models and new isoform models of existing genes. The sequence
read lengths used in this study were 2x75 (ENCODE) and 2x50 or 1x100 bp (HBM) coming from
on average ~200bp-long RNA fragments, while essentially all mRNAs are much longer, with the
median GENCODE V7 protein coding transcript being ~1600bp long. This prevents the direct
measurement, of long-range contiguity, which is instead inferred, and this inference process becomes
extremely challenging for genes with many exons and large number of coexpressed alternative iso-
forms. Another great challenge in analyzing and mining transcriptomic and other high-throughput
data comes from our limited understanding of the levels and sources of biological noise in the un-
derlying processes, including transcription initiation, splicing, and polyadenylation. Computational
tools, such as Cufflinks (Trapnell et al. 2010; Roberts et al. 2011; used here) or Scripture (Guttman
et al. 2010), address these issues with algorithms designed to balance sensitivity of detection with
robustness and parsimony of transcript identification. It is expected that quantification on the final

transcript model set will be significantly affected by uniformity of coverage over any given transcript,
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Figure 1.3: Number of genes for which isofor-level quantification is unidentifiable or
faces other numerical issues. Cufflinks assigns a FAIL or LOWDATA status to genes where
the algorithm can not confidently assign FPKMs to individual transcripts. (A) For the refSeq
annotation, containing few isoforms, a very small percentage of genes are flagged in this manner (B)
For GENCODE V7, 10-15% of protein coding genes are flagged. (C) For an unfiltered Cuffmerge
assembly performed only on novel intergenic transcripts and novel isoforms with the GENCODE V7
annotation as a reference, more than half of protein coding genes are flagged. (D) A filtered assembly
of all novel intergenic transcripts and novel isoforms still has ~5% more failed quantifications of
protein coding genes than GENCODE V7 (E) A filtered assembly of all novel intergenic transcripts
and novel isoforms with the added requirement that they should be present at >=1 FPKMc¢on ¢ .10
in the individual assemblies approaches the numbers observed for GENCODE v7 (the minimal
annotation complexity we could work with). Total number of protein coding genes: ~20,500.

by its true level of expression, and by the number of models offered for each gene. Therefore the
datasets were also used to explore how transcript models are affected by characteristics such as
gene size, locus complexity, overall expression level, and strength of evidence for alternative splice
junction use.

This analysis revealed, first, that the high sensitivity and resolution of RNA-seq provides evi-
dence for the very high complexity of the human transcriptome, with large numbers of novel splice
junctions, coding and noncoding transcripts, alternative splicing and alternative initiation events
detectable in the data. Second, the majority of this diversity is rare in abundance, thus most of it
likely represents biological noise rather than biologically functional transcriptional products. How-

ever, as there is no simple relationship between expression levels and functionality, it is at present not
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Figure 1.4: Relationship between “failure” of transcript-level quantification and locus
complexity and expression levels. (A) Successfully quantified GENCODE v7 transcripts in
adipose and testes tissue (two samples shown for brevity, results are similar for all cell lines) have a
median of 4 isoforms per gene. Genes for which quantification fails in these samples have a median
of 8 isoforms per gene. Finally, genes that are confidently quantified in all cell lines and tissues have
a median of only 2 isoforms per gene. 5-95 percentile whiskers. (B) With increased locus complexity,
an increasing number of genes become too complex to confidently quantify on the transcript level.
Shown is the fraction of GENCODE v7 genes for which quantification fails as a function of the number
of annotated isoforms for that gene. Box plots represent the distribution of that fraction across all
samples used in this study. 5-95 percentile whiskers. (C) Weak correlation between expression levels
and quantification failure. Plotted is the distribution of refSeq FPKMs for protein coding genes
(here we used FPKMs calculated on the refSeq annotation to avoid the uncertainty arising from
summing the FPKM estimates for individual transcripts in a genes in a complex annotation when
transcript-level quantification is not reliable) as a function of their quantification status and isoform
number in adipose tissue. 10-90 percentile whiskers.

possible to determine in a straightforward way which of these transcriptional elements are functional
and which are not. Third, a confounding factor that has becoming apparent during the course of
the analysis, and one that has to feature prominently in the interpretation of all data of this kind,
originates from the fact that the computational challenges posed by short-read RNA-seq are very
difficult to solve thus making any results that solely depend on the performance of the tools used

to carry out the analysis provisional at best in the absence of deeper investigation using orthogonal
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Figure 1.5: Isoform-level quantification, fragment support for known and novel junc-
tion, and TAF1 binding sites for the TCF3 locus. The arrows point to the novel splice
junctions incorporated in the novel isoforms annotated in the merged assembly.

means. This topic is explored in more detail in the following chapter.

1.2 Results

We generated 2x75 bp paired-end RNA-seq data on polyadenylated RNA from a diverse set of 10

human cell lines (Figure ) that include primary cultures, immortalized lines, tumor-derived lines,

and a pluripotent embryonic stem line. Derivatives of all three germ layers were included, although

these lines represent only a small fraction of the hundreds of human cell types. Two biological

replicates were sequenced for every cell line, to an average depth of 100-120x10° mapped reads
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each (Table [1.1)). These sequencing depths are sufficient to reach saturation of gene and transcript

detection. The data was of high quality as evidenced by the absence of 3’ bias and robust coverage

of all of the length of genes. In addition to these data, we added to our analysis polyadenylated

RNA-seq data for 16 human tissue samples generated as part of the Human Body Map 2 project

HBM), sequenced to an average depth of 200-250x 108 reads. In contrast to the ENCODE lines
( , seq ge dep :

each human tissue is composed of multiple cell types and none have experienced effects or artifacts of

ex-vivo culture or growth transformation. For a subset of the ENCODE cell lines, we also generated

ChIP-seq data for RNA Polymerase 2 and for the transcription initiation complex component TAF1,

sequenced to a depth of at least 12x10% uniquely mappable reads per replicate (Table .
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1.2.1 Computational pipeline for uniform analysis of the transcriptome

across multiple cell lines and tissues

To take advantage of the potential of RNA-seq to characterize both annotated and unannotated
portions of the transcriptome, it is first necessary to define a full set of elements (exons, splice
junctions and transcripts) that could then be compared and quantified between samples. A number
of tools exist for de novo reconstruction of all transcript models from RNA-seq data (Trapnell et
al. 2010; Guttman et al.; 2010). However, these strategies, as previously applied, produce results
that are not directly comparable between individual samples. This problem is compounded by the
fact that the resulting transcript models can be, and often are incomplete and imperfect, due to
sequence read mapping errors, insufficient coverage of lowly expressed genes, and highly variable
read coverage over some other genes. In order to address these issues, I devised a computational
pipeline that combines de novo—generated transcript models from individual samples with existing
annotated models while exerting a number of filters to reduce the number of artifactual and poorly
supported transcripts. This single set of transcript models was then re-quantified across all samples.

I aimed for a relatively stringent set of novel isoform models of known genes plus transcripts
of novel genes. This approach is expected to miss large numbers of “real” transcripts present in
the data and to therefore underestimate transcriptome diversity. This is a necessary compromise
between including all models for which there is some evidence and the ability of software and
sequencing technology to reconstruct and resolve transcript abundance for complex loci. I note that
as a result of Cufflinks’ abundance filters during de novo assembly and the additional stringency
criteria imposed, final transcript level annotation does not incorporate all splice junctions for which
there is sequence evidence; splice junctions are therefore examined separately from transcripts in
later analysis.

Reads from individual samples were first aligned against the hgl9 version of the human genome
using TopHat (version 1.0.14; Trapnell et al. 2009) in de novo mode. The splice junctions identified
this way were combined with the splice junctions in the GENCODE v4 annotation (Harrow et al.
2006) to create a final set of candidate junctions. This unified junctions set was then supplied to
TopHat and all samples were remapped in order to include all reads mapping to annotated and
candidate novel splices, that, due to low transcript abundance, low coverage or exons being too
short, TopHat had not been able to map in de novo mode.

Next, the resulting alignments were assembled into transcripts using Cufflinks (version 1.0.1;

Trapnell et al. 2010) and the individual Cufflinks assemblies merged using the Cuffmerge program
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in the Cufflinks suite (Trapnell et al. 2012) with the GENCODE v7 annotation as a reference.
The GENCODE annotation was chosen because it was adopted as the ENCODE analysis standard,
selected as the most comprehensive set of curated transcript models for the human genome. De novo
transcript assembly with Cufflinks can be done in a fully de novo mode or in a reference annotation
based transcript (RABT) assembly mode (Roberts et al. 2011). The latter delivers more complete
transcript models because incomplete assemblies typically arise in de novo mode due to stretches of
low coverage or unmappable regions. In my experience, this class of artifacts is significant, even with
very deeply sequenced datasets. However, the RABT mode produces a large number of artifactual
transcript models when run on very complex annotations such as GENCODE v7, which contains 4 to
6 alternate isoforms on average for each gene (Figure. Ideally, these artifactual transcripts would
be irrelevant to downstream analysis, because they would be assigned zero or very low expression
values after requantification, but in practice reads are often dissipated across many models, due to
uneven read coverage or the absence of reads allowing for unambiguously distinguishing between
transcripts. Indeed, in the course of establishing the pipeline, it was found that a major challenge
for downstream analysis arises from the rapid growth in the number of isoform models per gene,
even after stringent filtering of anticipated artifacts. As more and more cell lines and tissues are
analyzed, the number of isoforms becomes very large and the ability to confidently assign the still
relatively short 75bp reads to individual isoforms is compromised (even using the GENCODE V7
annotation alone, it was not possible to confidently quantify the individual isoforms of about 2000
protein coding genes or about 10% of all; see Figure and for more detail, as well as the
Discussion section for further treatment of the subject).

I therefore assembled transcripts for each sample individually in fully de novo mode, then applied
a number of filters before and after the Cuffmerge step with the goal of deriving an as conservative
a set of transcript models as possible. First, the individual assemblies were compared against the
GENCODE annotation using Cuffcompare (Trapnell et al. 2010) in order to filter out intronic
fragments and polymerase run-on fragments; only transcripts classified as intergenic or as novel
isoforms of known genes were retained. I included all novel intergenic transcripts in the merge,
but for novel isoforms of protein coding genes I required the lower 95% confidence Fragments Per
Kilobase per Million reads (FPKM) estimate (FPKMcon £ 10, Figure to be greater than 1. After
merging transcripts with Cuffmerge, transcripts present in GENCODE V7 but missing from the
resulting set of models were added back and major artifact classes such as retained introns and
overtly long 3’'UTRs were removed.

I illustrate the results of the pipeline in Figure [I.5] using the TCF3 gene as an example. The
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TCF3 gene encodes the E2A transcription factor, which plays important roles in myogenesis (Berkes
& Tapscott 2005), lymphocyte development (Quong et al. 2002; Murre 2005), and in other systems.
The TCF3/E2A locus is well known for producing two different proteins, E12 and E47, as a result of
mutually exclusive alternative splicing of exons 17 and 18 (Murre et al. 1989a; Murre et al. 1989b;
Figure [L.5). Two TCFS3 isoforms (one for E12 and one for E47) are annotated in the RefSeq set
of transcript models, while 5 exist in GENCODE V7, with 2 and 3 alternative TSSs, respectively.
A large number of unannotated splice junctions in the locus were detected, most of which turn
out to be of low abundance when examined in detail. The final merged set of models contained
additional 24 isoforms not present in GENCODE, with a new alternative TSS upstream of the 5’-
most GENCODE TSS for the gene, thus greatly expanding the set of known T'CF3 isoforms. These
newly assembled isoforms are of lower estimated abundance relative to the expression levels of the
known ones. Finally, for two of the T'SSs, one annotated and the one identified from RNA-seq data,
we observed TAF1 binding overlapping the 5’ exon.

Another example of the utility of the integrated use of these datasets was the protocadherin-a
(Pcdha) cluster (Figure [1.6]). Protocadherins are cell surface single-pass transmembrane proteins,
particularly highly expressed in the nervous system and enriched in synaptic junctions, which have
been proposed to play a major role in the precise specification of neuronal connectivity under the
“chemoaffinity hypothesis” model of establishing neural circuits (Zipursky & Janes, 2010). The
Pcdha, Pcdhf8 and Pcdhy genes exhibit a striking pattern of organization and clustering in the
genome. All Pcdha and all Pcdhy protocadherins share three constant 3’ exons which code for a
portion of the intracellular domain of the protein, to which numerous unique alternative 5’ exons,
each with its own promoter, are alternatively spliced (Wu & Manitatis, 1999; Tasic et al. 2002; Wang
et al. 2002); these 5’ exons code for the extracellular, transmembrane, and parts of the intracelllar
portions of the protein. The Pcdhf cluster is similarly organized but there are no constant exons
and each gene is transcribed individually. Protocadherins are transcribed monoallelically, i.e. only a
single variable exon is used on each cluster allele, with which one exactly being determined stochas-
tically, meaning that each cell produces one of a large number of combinations of protocadherins,
potentially generating unique molecular identities for each neuron (Esumi et al. 2005). I examined
Pcdha expression in our datasets and observed the expected highest expression levels in brain tissue,
with PCDHA6, PCDHA10 and PCDHAC?2 being most highly expressed, and lower-level expression
levels in several other tissues such as thyroid and kidney. Strikingly, I also found high (comparable
to those in brain) expression levels of Pcdha in human embryonic stem cells (which to the best of

my knowledge has not been reported previously), and lower levels in a few other cell lines such as
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the breast cancer MCF7 cell line and the lung fibroblast NHLF cell line (Figure . TAF1 binding
to the promoters of several of the more highly expressed Pcdha genes was observed in H1-hESC.
In addition, three TAF1 binding sites in the 3’ intron of the Pcdha cluster were detected, as well
as a number of low-abundance novel splice junctions connecting the variable exons with each other

(Figure |1.6]); their significance is at present not clear and remains to be tested in future studies.

1.2.2 Catalog of splice junctions in the human genome

I compared the full set of splice junctions present in the TopHat mappings to the GENCODE V7
human genome annotation. Of the 318,693 splice junctions in the annotation, 266,311 were covered
by at least one and 253,063 by at least two unique sequence fragments (to avoid counting PCR
duplicates, a unique sequence fragment is defined as the number of non-identical read pairs crossing
a junction and I refer to that number everywhere except where explicitly specified otherwise) (Figure
m) This represents an approximate measurement of the breadth of coverage of the transcriptome
in the data, with the junctions not detected consisting of a combination of junctions from rarely
expressed genes not present in the cell lines and tissues examined, junctions from non-polyadenylated
transcripts and possibly artifacts in the annotation. In addition to the annotated junctions, I also
observed 687,638 candidate novel junctions supported by at least one, and 462,274 supported by
at least two unique fragments. I note that the TopHat algorithm relies on first finding putative
exons based on read coverage and then on identifying splice junctions nearby (Trapnell et al. 2009),

i.e. it employs an “exon-first” approach to junction discovery. This junction set is therefore more

Figure 1.7 (preceding page): Catalogue of splice junctions in the human genome. (A)
and (B) Cumulative detection of annotated (A) and novel (B) splice junctions in ENCODE cell
lines and HBM tissues. Unique fragment counts were summed where replicates were available, the
order of the cell lines/tissues was permuted 10,000 times and the number of junctions detected with
the addition of every cell lines/tissue was counted for each permutation. A threshold of 2 unique
fragment counts was used. Note that the Y axis does not begin at 0. (C) and (D) Annotated
splice junctions are much more abundant and widely used than novel ones. Plotted is the number
of junctions detected at a given threshold with the color codes corresponding to the number of cell
lines in which this threshold is passed. Most known junctions are detected at high fragment counts
in multiple cell lines while the majority of novel junctions are supported by few reads and only in
a small number of cell lines. Shaded area corresponds to support levels that we are least confident
in. (A) Canonical and non-canonical splice-sites and total read support for annotated and known
junctions. The sum of unique fragment counts across all samples for each junction is shown, and for
each abundance category the fraction of canonical, major non-canonical (as reported by TopHat)
and other splice sites was plotted. The total number of junctions in each category is shown in
the blue bars below. (F) and (G) Tissue/cell type-specificity of splice junctions measured using
the JS Specificity Score. High score indicates high tissue-specificity, low score indicates widespread
abundance
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Figure 1.8: Number of splice junctions detected in each cell line and tissue. (A) Anno-
tated (B) Novel

conservative than those from some other de novo splice mapping algorithms relying on “seed-extend”
strategies (Garber et al. 2011) to find splices (Dobin et al. 2013; De Bona et al. 2008; Wu et al.
2010), which are likely to find more junctions in the same dataset. I also note that I ran TopHat
with default settings with respect to the genomic range over which new junctions can be discovered
so the maximum distance between two splice sites is 500 kb. Only 81 annotated junction span
genomic distances longer than 500kb so it is unlikely that many novel ones were missed due to this
constraint. On average, around 150,000 annotated junctions were detected in each cell line or tissue
(Figure
and 50-120,000 in each tissue (Figure ) The lower number in tissues likely reflects the fact that

. Of the novel junctions, between 150,000 and 250,000 were found in each cell line,

~—

HBM data is a mixture of 2x50bp and 1x100bp reads, while the cell lines were sequenced as 2x75bp.
This difference in read length is expected to make de novo junction discovery more difficult.

I next asked how exhaustively we had sampled the diversity of splicing events in the human
transcriptome by looking at the saturation of junction detection as a function of the number of cell
lines/tissues examined (Figure and B). These cumulative plots show that annotated junctions

exhibit a clear saturation trend, with more than 90% detected with less than half of the cell lines



19

A EST support
1.0+ — —————
o 0.9
S 084
E 0.7+
3, 0.64 @ EST
‘s 0.5 3 noEST
g 0.44
= 0.34
[5]
© 0.24
L .14
0.0 EEmil_ =
A B A B C D E F G H
annotated novel
B ®m EsT EST support. C W EST EST support.
O noEST  Annotated junctions 0O noEST Novel junctions
1.04 1.04
v 0.94 wn 0.99
S o S 0.8
‘g 0.74 S 0.74
S 06 5 o
% 0.5 5 0.5/
g 0.44 g 0.44
= 0.31 = 0.39
[} [}
® 0.2 ® 0.21
L 0,14 L 0.14
0.04 ol R —
GTIAG GC|AG ATJAC other GTIAG GC|AG ATIAC other

Figure 1.9: EST support for annotated and novel junctions. (A) EST support different
junction connection categories (see Fig. 3) (B) EST support for annotated canonical and non-
canonical junctions (C) EST support for novel canonical and non-canonical junctions.

considered. In contrast, the trend for novel junction discovery indicates that further sequencing of
additional cell lines and tissues of different origin is likely to substantially increase the number of
new candidate junctions.

An open question regarding alternative splicing events and unannotated transcripts in mam-
malian systems is to what extent they represent biologically functional events as opposed to well-
tolerated transcriptional and splicing machinery noise (Wang et al. 2008; Pan et al. 2008; Melamud
& Moult 2009; Sorek et al. 2004). I therefore sought to characterize the properties of novel junctions
and compare them to those of annotated ones as a function of their expression levels. When the effect
of different fragment support thresholds on junction discovery was examined (Figure and D), a
clear trend was observed: annotated junctions have high fragment count support (the splice-specific

empirical surrogate for expression level) in multiple cell lines, while novel splices are mostly detected
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in one or a small number of cell lines. The majority of novel junctions were supported by only a
few fragments, with their corresponding transcript isoforms being at levels of uncertain significance,
assuming expression in most cells in the population. This is entirely consistent with a large fraction
of them being noise. However, due to the very large total number of candidate novel junctions,
significant numbers of highly supported novel junctions were still discovered: for example, 79,667
junctions were supported by more than 5 unique fragments in more than 3 cell lines/tissues, and
8,898 junctions supported by more than 20 fragments in more than 5 cell lines/tissues, thresholds

that can be considered stringent and suggestive of biological functionality.

1.2.3 Splice junction motif preferences

Next, I asked how canonical (GT|AG) (Mount 1982) and non-canonical splice sites distribute in
the junctions set (Figure ) A number of non-canonical splice site junctions are present in the
GENCODE v7 annotation and I observed that they are most often found among those junctions that
were not detected in any of our samples. The fraction of such junctions decreased with increased
fragment support thresholds. These may represent artifacts in the annotation or transcripts which
are depleted in polyA-selected RNA. Novel junctions were mostly of the canonical GT|AG type,
but in addition, GC|AG and AT|AC, substrates of the minor U12 spliceosome (Burge et al. 1998;
Patel & Steitz 2005; Will & Luhrmann 2005; Jackson 1991; Hall & Padgett 1994; Sharp & Burge
1997; Hall & Padgett 1996; Tarn & Steitz 1996a; Tarn & Steitz 1996b) were also very abundant
irrespective of the level of fragment support. It is possible that this reflects a TopHat preference
for such junctions rather than actual biological reality. About 10% of the novel canonical junctions,
but a much smaller fraction of all non-canonical ones are supported by EST sequences (Figure .
Finally, I explicitly examined the tissue specificity of junctions by calculating tissue specificity score
for each junction (JS score; see the Methods seciton for details). Annotated junctions mostly had
low JS scores reflecting widespread abundance in multiple cell lines while novel junctions clustered
in two groups - either with a JS score of 1 and perfect tissue specificity (due to detection in only
a single cell line) or with a medium JS score and expression in a limited number of cell lines. In
addition, canonical junctions had lower JS scores than non-canonical ones, suggesting detection of

the latter in limited number of samples.
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1.2.4 Classifying novel splice junctions relative to existing annotation

To better understand where novel junctions arise relative to existing gene structures, I classified all
RNA-seq junctions into the classes depicted in Figure I note that splice junctions connecting
positions within a gene, for which no splice site is annotated (novel intragenic exons), need not
originate from transcripts that belong to the gene in which they are embedded; they can instead
result from nested, previously unannotated transcripts. Of all novel junctions, the most numerous
category were junctions connecting an annotated exon to a novel exon within the same gene (class
E, 264,121), followed by junctions connecting two novel intragenic exons (class C, 186,668) junctions
connecting two annotated exons (class A, 75,147) and intergenic junctions outside of annotated genes
(class H, 54,555) (Figure [1.10B).

Among all novel splice categories, the strongest in read support were the relatively small group
of class B junctions that connect exons of two different annotated genes. Of these almost half arise
from loci in which paralogs are adjacent and both are highly expressed in one or more of our samples
(Figure [1.11JA). One explanation is that they may represent computational artifacts, i.e. cases in
which de novo junctions discovery incorrectly placed reads across two exons of different genes due to
their high sequence similarity. A higher fraction of tandem paralog pairs had multiple such junctions
connecting their exons (Figure[L.IIPB and C), and a high fraction of them had very similar donor or
acceptor sites in both genes compared to the rest of class B junctions (Figure )7 consistent with
a purely computational explanation. However, such junctions had higher fragment count support
(Figure ) and the number of fragments in an individual sample correlated well with both genes
being expressed in that sample (Figure m;), which argues for their biochemical presence. Of the
other class B junctions, about a third connect non-coding transcripts or protein coding transcripts
to non-coding transcripts (Figure ) and on average, they originated from gene pairs with even
higher expression than junctions connecting tandem paralogs (Figure m})

The next most abundant class of junctions were class A and class H junctions (Figure m),
connecting known exons of a known gene and intragenic exons, respectively.

Because annotated splice sites are overwhelmingly canonical, we expect novel junctions connect-
ing to an annotated exon to also be predominantly canonical, which is what is observed. Most
non-canonical junctions belong to the E, F and G classes, which connect intragenic genomic po-
sitions. I note that completely intergenic, class H junctions exhibit a much higher proportion of
canonical junctions than these three groups (Figure ) The most plausible interpretation of

this observation is that a higher fraction of class H intergenic junctions represent functional tran-
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scripts while the other classes are mainly the result of biological and computational noise.

Previous studies have reported the existence of large numbers of alternative canonical splice ac-
ceptor sites separated by 3 bp from the main annotated acceptor site ("NAGNAG” splice acceptors)
(Hiller et al. 2004; Akerman et al. 2006; Bradley et al. 2012). I found 1193 class C junctions of
this kind, but this did not constitute the majority of such junctions — in addition to the classical
NAGNAG events, I also observed large numbers of splice junctions representing other small shifts
relative to the annotated splice donor sites and at both donor and acceptor ends. For a significant
fraction of the junctions the shift was not divisible by 3 and therefore frame-preserving (Figure
and B) and there was not a large difference in the fraction of junctions that are canonical,
in their fragment support or expression specificity (Figure MJ and D) between frame-preserving
and non-frame preserving junctions.

The A and C classes of novel junctions connect known exons which have annotated junctions
connecting to them. This allows us to ask what the abundance of these novel junctions relative to the
associated annotated ones is, which I quantified as the fraction of major annotated junction counts
(FMJ), where the major junction is the one with the highest fragment support in a given sample.
For the majority of A and C novel junctions, this ratio was less than 0.1 (Figure [1.10F) arguing
against their biological functionality. A small, (less than 10%) fraction had FMJ scores greater than
1 corresponding to preferential utilization of the novel junction over the annotated ones. However,
around 80% of such cases have total read support of less than 5 fragments, i.e. these events mostly
happen at junctions/genes that are lowly expressed, and biologically relevant preferential use of
novel junctions is limited to the remaining few thousand junctions with high read coverage. Finally,
I examined the cell type specificity of such events (Figure and found that they mostly occur
in a small number of cell lines/tissues, with testes, K562, HI-hESC and GM12878 exhibiting the

highest number.

Figure 1.10 (preceding page): Relation of novel junctions to existing annotations. (A)
Different categories of junction connections relative to an annotation. (B) Number of junctions in
each category (all annotated and novel ones included irrespective of read support). (C) Distribution
of read support (across all samples) for each category in unique fragment counts. (D) JS specificity
scores. (E) Canonical and non-canonical splice junctions. (F) Correlation between the number of
novel junctions detected and the number of annotated exons for a given gene (only protein coding
genes shown). (G) Correlation between the number of novel junctions detected and expression levels
of genes (RefSeq FPKM values for protein coding genes shown). (H) Novel splice junctions at least
one end of which is the same as that of an annotated splice junction are typically detected at a small
fraction of the fragment counts of the major annotated junction (FMJ) sharing that splice site. For
about 10% of them, the FMJ is greater than 1 but the majority are junctions with low fragment
support
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Figure 1.11: Splice junctions connecting known exons of different genes. (A) Number
of junctions originating from pairs of tandem duplicate genes, and number of junctions originating
from other genes. (B,C) Number junctions per gene pair. (D) Junctions connecting non-tandem
duplicate genes according to whether they connect protein coding or non-coding genes (E) Minimal
number mismatches between the donor or acceptor exon for gene A or gene B in a pair, respectively,
and other downstream exons in gene A or upstream exons in gene B, respectively. TopHat requires
at least 8bp on each side of a splice junction in order to map reads across it so lengths of 8, 10 and
12bp on each side of splice junctions were used. Note that 32 “tandem” junctions and 232 “others”
junctions connected genes located on opposite genomic strands, and those are not included in the
plot. (F) Total unique supporting fragment counts (G) Maximum expression level (in all cell lines
and tissues) of the connected genes (H) Correlation between the minimum expression of genes in a
pair and the distinct fragment counts mapping to the junctions in different samples.
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and 3’ ends to the nearest annotated splice.

(A) 5’ donor sites. (B) 3’ acceptor sites (C) Distribution of canonical and non-canonical splice sites,

5” donor sites. (D) Distribution of canonical and non-canonical splice sites, 3’ acceptor sites.

(E)

Total fragment support, 5’ donor sites. (F) Total fragment support, 3’ acceptor sites. (G) JS scores,

5’ donor sites. (H) JS scores, 3’ acceptor sites.

1.2.5 Correlation between pre

sence of novel junctions and gene

expression and loci complexity

Following the hypothesis that most novel junc

tions detected in RNA-seq data are the result of

a combination of biological and experimental noise, I tested the correlation between detection of

novel junctions for each gene and the expression levels and the number of exons for a given gene.
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