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ABSTRACT

The Edge Function method formerly developed by Quinlan (25) is
applied to solve the problem of thin elastic plates resting on spring
supported foundations subjected to lateral loadé the method can be
applied to plates of any convex polygonal shapes, however, since most
plates are rectangular in shape, this specific class is investigated in
this thesis. The method discussed can also be applied easily to other
kinds of foundation models (e.g. springs connected to each other by a
membrane) as long as the resulting differential equation is linear.

In chapter VII, solution of a specific problem is compared with a known
solution from literature.. In chapter VIII, further comparisons are given.
The problems of concentrated load on an edge and later on a corner of a
plate as long as they are far away from other boundaries are also given

in the chapter and generalized to other loading intensities and/or plates

: !
springs constants for Poisson s ratio equal to 0.2 .
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CHAPTER I. HISTORICAL BACKGROUND

The problem of deﬂection.of an elastically supported elastic
plate has become important since the introduction of concrete paving
slabs for roads and aircraft runways, During World War II, consid-
erable activity took place in northern Canada and Alaska so that the
problem of transporting heavy equipment over frozen lakes became
important. The above problems, as well as the necessity to design
raft foundations for buildings, have resulted in a great deal of re-
search activity on the problem of a loaded elastic plate on various
kinds of suppori‘:ing medium.

Soils are in general nonlinear, nonhomogeneous and aniso-
tropic, but it is frequently assumed that a soil mass can be repre-
sented by a semi-infinite linearly elastic medium. However, even
this model renders the problem too hard to solve in most cases.

For the sake of mathematical expedience the simplest model, equiv-
alent to a bed of springs, was suggested by Winkler(l) and many
papers have been written on the plate problem using this model., The
following is a brief review of the literature dealing with the problem
of a loaded elastic plate on Winkler's model of a supporting medium.,
Later in this chapter a review will also be given concerning other
models,

The problem of deflection of an elastic plate resting on some

(3) He proposed the

kind of medium was first discussed by Winkler.
simplest relationship between the local reaction of the supporting
medium Pg and the local deflection, . He suggested that the pressure,

Pg» is proportional to the local plate deflection, This is exactly
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equivalent to the condition of a buoyant plate resting on a liquid, as
in the case, for example, of a floating ice sheet. The only reaction
of the subgrade is an upward force proportional to the deflection,
This description of a foundation reaction is frequently called a
"Winkler Foundation.'" Winkler used this model to study the behavior
of railroad rails resting on ties. It was also used by Hertz(40) in a
study of a floating ice sheet,

Westergaard(z’ 3) solved approximately the problem of an in-
finite or semi-infinite elastic thin plate resting on a Winkler Founda-
tion when the load is uniformly distributed first over a circle and
later an ellipse. He also gave some formulas for the maximum ten-
sile stresses developed in the plate. In the infinite platé problem,
the loading can be distributed uniformly over any area having both
axes of x and y as axes of symmetry. Westergaard's investigation
of tensile stresses had immediate application to the design of high-
ways and airfield pav‘ements.

Wyman(4) solved analytically the problem of a point load on
an infinite thin plate resting on Winkler Foundation, The solution

he obtained was expressed in terms of Bessel's functions. The point
load solution can be generalized, as shown by Wyman, to obtain solu-
tions for arbitrary loading condition. However, the solution is ex~-
pressed in integral form and,in most cases, the integral is too hard
to evaluate, Wyman, however, applied the idea to a uniform circular
loading condition and evaluated the deflections. .

R. K. Livesley(s) obtained solutions to the problem of arbi-

trary loading on an infinite, thin plate ona Winkler Foundation by using
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a double Fourier transform and expressed the solution as an integral.
When an edge or edges are simply supportea, the solution can be ex-
tended to semi-infinite plates or plates of the shape of an infinite
quadrant. He also obtained solutions for a semi-infinite plate on a
Winkler Foundation loaded by prescribed moments and shear stress
normally along the edge of the plate. Dynamical loading is also dis-
cussed in the paper.

Other than the above papers, Kerr(é)

solved the problem of

a simply supported wedge-shaped plate, not supported by any founda-
tion, subjected to uniform tension in the plane of the plate and loaded
transversely by concentrated forces, The behavior of a loaded corner
of the plate can be obtained from the results of the paper. In another

(7) he tackled the problem of simply supported

paper, written by Kerr,
plates on a Winkler Foundation subjected to concentrated loads and
obtained solutions for the following shapes of plates: (1) wedge-
shaped; (2) infinite strip; (3) semi-infinite strip; (4) rectangular
plate.

(8)

S. Timoshenko and Woinowsky-Krieger included a chapter
on the topic of plates on a Winkler Foundation. In that chapter, there
are solutions to several problems, a very interesting one being

that of a rectangular plate simply supported on all four edges and
loa.ded by any arbitrary lateral loads. The solution is expressed as
a double sine series, This is one of the very few exact solutions
obtained for a finite plate on a Winkler Foundation,

(16) has

Other than the above mentioned papers, Hetenyi

solved the problem of elastic beams resting on a Winkler Foundation,
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Many examples are given in the book. However, the book deals
mainly with beam rather than plate problems.

The problems of i)lates on a Winkler Foundation that have
been solved are mainly those of infinite, semi-infinite plates or
those plates with the shape of an infinite quadrant and are listed in
Table 1. 1.

The problem of a finite plate on a Winkler Foundation is very
complicated, There is only one solution in the literature (chapter 8).(8)
From it, the solution of any arbitrary lateral load on a simply sup-
ported (hinged) rectangular plate can be obtained,

In addition to plates on the Winkler Foundations, many workers
have proposed different kinds of models for the supporting medium.
(9

Hogg solved the problem of a thin infinite plate, symmetrically

loaded and resting on an elastic half-space. Then, in a later paper,

(10)

Hogg solved a similar problem in which the elastic foundation
was of finite depth.

However, to make the problem more manageable, most inves -
tigations on a better foundation model have been carried out in one-
dimension (a beam, instead of a plate). For example, most compar-
isons with experimental results have been made using a theoretical
solution of an elastic beam on a variety of foundation models, The
foundation pressure ps(x) is very often assumed to be proportional
to the displacement and/or various derivatives of displacements.
This model is popular because the Winkler's model of foundation is

completely discontinuous, If other derivatives are taken into con-

sideration, some of the continuous properties of the foundation are
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taken into consideration. As mentioned earlier, in the Winkler Model
Py (x) is assumed to be proportional to the displacement only. But

in the most general linear case, it can be assumed to be expressed
by the following equation:

N ,
() = T a w) (1.1)

n=0

in which w(n)(x) denotes the nth derivative of the deflection w(x) with

respect to the x-direction. An extensive review of the literature in

this area is given in refs. (1), (11), (12), (13), (14), (15) and (16),

For example: Pasternak(l3) suggested the model:
ps(x) = klw(x)-kzw”(x), whereas (1.2)
H s (1.2) :
etenyi proposed the following model:

py(x) = kywix) -k,w V) (x) (1.3)

The Winkler Foundation(l) assumes complete lateral discon-
tinuity in the elements in the foundation material, whereas the half-

space of Hogg(g’ ) (L7

assumes complete continuity. Hetenyi's
equation (l. 3) and chapter 10(16) used an arbitrary degree of con-
tinuity on the foundation and applied it successfully to the one-
dimensional beam problem. However, it is doubtful whether this
method could be applied to the two-dimensional plate equation, The
rea.soh for using this model, rather than the Winkler model, is that
it offers more parameters that one can choose to approximate the

actual elastic continuum model,

Most of the investigators who have proposed various models,
however, have not given a rational method for choosing the values of
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the parameters in their models, (for example, k. and k, in the

1 2
Pasternak and Hetenyi Model described in eq. (l.2) and (1. 3)).

(18)

Fletcher and Hermann gave a systematic way to determine what
values of the parameters (constants) in the model represented by
eq. (1.2) and (1. 3) should be used, if the elastic constants of the
(linearized isotropic) foundation material are known. Timoshenko
and Woinowsky-Krieger (p. 259)(8) give a table which gives engineers
the values of the Winkler constant that should be used for various
types of soil.

Other than the above-mentioned static models, Kerr(ls) has
suggested a time-dependent model in which a viscoelastic effect was
introduced. However, Kerr applied the model to a plate which can
only withstand transverse shear (a shear plate).

All of the solved problems involve a particular plate shape
and boundary conditions generally simply-supported at the edges.
For the general solufion of slab problems even of moderate com-
plexity, numerical procedures have to be adopted. So far in the
literature, two methods have been used: the finite difference and

the finite element techniques. Allen, and Severn(lg’ 0)

used the
finite difference method and reduced the solution to a system of
linear equation, However, in this formulation it is sometimes dif-

ficult to introduce the boundary conditions,

(21) (

Zienkiewicz and Cheung and Severn e have applied the
finite element technique to the plate problem. The finite element
method is a versatile method that can deal with any boundary condi-

tion and different shapes of plates, The finite element problem
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usually uses a continuum model for foundation material, so itcan
model any combination of materials, layers, etc., but may be ex-
pensive. ‘

Other investigators who have contributed to the problem are
Vlasov and Leont ’ev(23) and Holl.(24)

Among all the above-mentioned methods, only finite differ -
ence and finite element techniques can be used to handle the plate
>problem with some generality. However, they are not without fault.

Their advantages and disadvantages will be compared and discussed

in Chapter IX,
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CHAPTER II. FORMULATION OF THE PROBLEM

AND PARTICULAR SOLUTION ADOPTED

The foundation model that is adopted in this paper is the
Winkler Foundation. In view of all the uncertainty connected with
the soil property determination, it seems unjustifiable to use a more
Sophisticated model which would make the problem much more diffi-
cult, However, if other models for the soil reaction are used, as
long as the differential equation involved is linear, the Edge Function
technique can still be applied.

(a) Formulation

When the plate is thin compared to other dimensions (e. é. the
radii of curvature of the surface) of the plate and the deflection w of
the plate are small compared to the thickness of the plate, an approx-
imate theory of bending of the plate by lateral loads can be developed
by making the following assumptions:

1. There is no in-plane deformation in the middle surface

of the plate.

2. Points in the plate lying initially on a nofma.l to middle

plane of the plate remain on the normal after bending.

3. The normal strains in the direction transverse to the

plate are negligibly small,

Using these assumptions, all stress components can be ex-
pressed in terms of the deﬂectioh w of the plate, which is a function
of the two coordinates in the plane of the plate. This function has to
sati'sfy a linear partial differential equation, which, together with

the boundary conditions, completely and uniquely define w. The
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solution of this equation gives all the information necessary for cal-
culating stresses at any point of the plate. The equation of the plate

for any of the model foundation material is given by:

4 ps(x’ Y)
Vi y) + Sm— = ) (2. 1)
3
where D = —E~h—z
12(1-v°)

E and V are Young's modulus and Poisson's Ratio of the elastic plate,
h is the thickness of the plate,.

gq(x, y) is a function that describes the loading.

P is the foundation pressure

4 4 4
V4=—-—84 + 2 2 S 2

9x 8x23y2 8y4

Adopting the Winkler model for the foundation, P, is given by

the following equation
P, (% y) = Kwix y) (2. 2)

where K is a constant,

Substituting eq. (1.5) into (1. 4) the differential equation of

the deflected surface is obtained as follows:

viwin y) + B wiey) = AGY) (2. 3)

The above assumption and differential equations are basically adopted

from ref. 8.
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(b) Boundary Conditions

To make the solution unique, boundary conditions have to be
specified. In most engineering problems, the properties of interest
are among the following: displacement; slope; moment and shear.

The boundary conditions include specifying any two of the
above properties along each boundary. To express the above prop-
erties mathematically involving derivatives of displacement w, the
derivation in chapter 2 of ref. 8 is adopted and the results are listed

as follows:

3

a) displacement is given by w

b) slope in the n direction is given by %-—z

e

2 2
c) moment per unit length in the n direction is -D (_8_1:21 +Va—gv>
o] ot
33w 83w %
d) shear force per unit length in the n directionis -D 3 +(2-v)—2/
on on ot
A
(2.4)

where the coordinates are as given in Fig. 2.1.

To solve the problem, the equation is broken down into two
parts to obtain: (1) The non-homogeneous solution; (2) The homog-
enous solution.

(1) The non-homogeneous solution (particular solution).

From eq. (2.3) the particular solution is given by

V4wp+%w - 9t y) - (2. 5)

P D



w) B
(2) The homogeneous solution (complementary solution) has

to satisfy the following equation:
K 2
v W + ﬁ W = 0 (2. 6)

W is adjusted such that together with the particular solution it will
give a total solution, Wi that satisfies the loading and the boundary
conditions, Details of the solution methods are given in the following

chapters,

Then the total solution is given by

Wt = Wp 5 Wc (2. 7)
AN
Plate
/
t ___Boundary of
- the Plate
any T
plane
4 B g
NT W+ D G L D

R 'g

Fig. 2.1
in which n and t may refer to either a cartesian or a curvilinear co-

ordinate system.
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(¢) Particular solutions for a rectangular plate
To find a particular solution Wp to eq. (2.5), the Navier
solution 'method for Simply Supported Rectangular Plates (art. 28,
in ref, 8) is adopted.

y EDGE (3
o SR 2101 S el

EDGE@ 21, EDGE (2)

v
b

EDGE (O
Fig, 2.2

A double Fourier series can be used to describe the loading
function q(x, y) in eq. (2.5). Using the coordinate system in Fig. 2.2

the loading condition is described by the following equation:

X, V) E\ = mx nwy ;
lis = 3 1 si si
D m=] n=1 Q mn = El & Ez
0w
+3 T 02 mmx nmwy
R PR mn €©8 ‘0’1 cos 22
AR s
+2 X Q3 sin m;rx cos E}_"TZ
m=1n=0 s 1 3
3-3 = mmx nmy
+ 2 Q4 cos sin
m=0n=1 Caiaae El LZ )

The standard procedures to calculate the Fourier coefficients
le' QZmn, Qsmn and Q4rnn in eq. (2.8) can be used, In most
loading conditions (point loads and uniformly distributed rectangular

loads, like column loads) they can be calculated without resorting
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to numerical integration. However, for the most general loading

conditions, numerical integration is needed.

The particular solution Y also can be expressed in double

Fourier series,

w = 2 X Bl gin 20= gl 22X
p m=1 n=1 s %y 25
+22 2 B2 cogBTE cog 2
m=0n=0 mn % s
. mmx nmy

.+n§_1 ano B3rnn sin 21 cos 1,2
+2 2 B4 conHEE . g3 BV

g ey mn J )

m=0n=1 1 2

(2. 9)

Substituting eq. (2.9) and (2.8) in (2. 5), each of the Fourier

coefficients should be equated, The Fourier coefficients in eq. (2. 9)

can be calculai-:ed from the known Fourier coefficients in eq. (2. 8).

For the sake of clarity this is explicitly stated as follows:

BImn " m 4 mQ‘rrlngnnﬂ 2 nI 4
[(Tl) +2_zl) (Tz) +(T2) +

where I denotes 1, 2, 3 or 4 as in eq. (2.9).

(2.10)

Several examples of particular solutions have been worked

out in detail in Appendix D, They include:

(i) A point load inside the plate,

(ii) A point load on the corner of the plate

(iii) A point load on the edge of the plate.

(iv) A column load (uniformly distributed load over rectangular

area).
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In (ii) and (iii) some manipulation is employed to arrive at
the correct answer, .

Equation (2. 9) only expresses the displacement of the par -
ticular solution. Properties of engiﬁeering interest other than dis-
placement are: slope, moment and shear., Mathematical expres-
sions of these properties of the particular solution are given in
Appendix E, They are obtained by substituting wp (as expressed
in eq. (2.9)) for w in eq. (2.4).

Now, it is presumed that the particular solution has been
found satisfyiné the differential equation. However, this solution
generally does not meet the required boundary conditions and is
therefore not unique. (There are many solutions that will satisfy
eq. (2.5)). Thus, the complementary solution has to be evaluated
to give a tota.l‘solution (eq. (2.7)), which will satisfy the differential
equation and the required boundary conditions. To arrive at the
necessary complementary solution, the Edge-Function Method

developed by Qu.:lnlan(2 2

can be used. Chapter 3 introduces this
concept and describes its application to the plate problem. Chapter
4 deals with the specific use obtained by applying the Edge-Function
method to the rectangular plate problem,

This Fourier series representatio.n of loading function given
by eq. (2.8) can be used to describe any number of point loads, or

distributed pressure, or even a combination of both types of loads

any where on the plate.
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CHAPTER III. EDGE FUNCTION METHOD
After studying the Edge-Function idea developed by Quinlan(zs)
to solve some very general plane strain or plane stress problems,
R. F. Scott suggested the possibility of using this method to
tackle the case of a slab on a Winkler Foundation loaded perpen-
dicular to its plane. This has been examined and the following
discussion describes the application of this method of solving the
plate problem.

Quinlan's Edge Function idea is that, since the governing
differential equation is isotropic, (see Fig. 3.1), its expression
in terms of the x-y coordinate system is of the same form as that
in terms of the xj', yj‘ system or xq', yq' system. Therefore, a
solution of the homogeneous equation in any coordinate system
(e.g. xj', yJ.') is also a solution to the differential equation with

respect to other systems (e.g. x ', yq'), providing the appropriate

q
change of variable is performed. (In this case, xj', yj' A S

q q
Furthermore, since the equation is linear, the solutions with respect
to various coordinate systems can be superimposed and the final
solution will still satisfy the equation with respect to any coordinate

system. This superimposed solution can be chosen such that the

required boundary conditions are obtained.
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The above idea is applied to the elastic plate on Winkler's
Foundation problem as follows: Here, instead of two displacement
components, we have only one displacement w. For the sake of
generality, the following can be applied to plates of any polygonal

shape, as long as they are convex.

—y g

Fig., 3.1

Referrring to Fig. 3.1, in which displacement is now normal to the
plane and realizing now that the objective is to solve for the appro-
priate complementary solution as stated in eq. (2.6), let the jth edge
of>the polygon be (xj, yj) in the x-y coordinate system. Then, any

point having coordinates (x, y) with respect to the x-y system has
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coordinates (xj', yj') with respect to the xj', yj' system and the
coordinates are related to each other by the transformation shown

by eq. (3- 1)-

S — xj + xj' coscpj - yj' sinCPj
(3. I)

= . + x.! si . F oyt 5

y yJ xJ s1nCPJ yJ costJ

The differential equation with respéct to the (x, y) coordinate
system is given by eq. (2.6). If another coordinate system (x ',y ')
is used, the differential equation has to be changed accordingly. To
find out what the differential equation will look like in the new system,
a coordinate transformation is performed on eq. (2.6). From (3.1)

2 can be expressed in the xj', yj' system.

Ix
! 1
Ly MR e PR s
8. . 0w Bx dy.' ox
. i) J
= cos®; g sin®. -
x .t J dy. !
Y ; (3. 2)
Similarl = sin®j 2 + cosyj 2
imilarly oy = inyj 5? Jyy;r .

Equation (3. 2) is applied successively in eq. (2.6). Finally,
the transformed differential equation with respect to the new x ', y !

system is
2.3 N e 8 00 [T - P g
9 c (){J 2 YJ ) 0 wc(xj » Yj ) ) wc(xj 2 Y_] ) 5 _] - &
S AT DI PR b o T g L
- | < P %
== (3. 3)

+
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It can be observed that eq. (3. 3) is of the same form as
eq. (2.6) if xj' and yj' is substituted for x aﬁd y respectively, From
physical reasoning, since the plate and springs are isotropic and
homogeneous, the differential equation must be the same with respect
to any coordinate axes,

Furthermore, a solution wg(xj o yj '), after changing xJ. L yj’
into any cartesian coordinate system (e. g. xq‘, yq') using the appro-
priate form of equation (3. 1), will also satisfy the differential equa-
tion with respect to the xq', yq‘ system,

In other words, wg(xj', yj') will satisfy the following equation:

atw % ;") % otwiixst, y ) +a4wg(xj Dt
1 2 Z! b Ve v;Y)

1 ! ]
qu 8xq Byq ayq

=10 (3. 4)

| 3

if xj', Y; is changed into xq', yq' appropriately following equation
(3.1).

Because of the above property and since the equation (2. 6)
is linear, solutions with respect to different coordinate axes can be
superimposed and the total solution will still satisfy the differential
equation with respect to any particular set of axis, Thus, a very

general form of solution to the complementary equation (2.6) can be

obtained as follows:

N

w s y) = T

j - o )
J:1 WC(XJ:YJ ) (3. 5)

where (xj!, yJ!) are related to (x, y) through eq. (3. 3), and are called

th
the "Edge Functions' with respect to the j coordinate axis.
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So far, the form of the complementary solution is known from
ed. (3.5) and (3. 3). However, there are st:ill sets of constants in
the complementary solution which remain unestablished. Applying
the boundary conditions on each edge, these constants are deter-
mined, In Chapter 4, an example will be given and the complemen-
tary solution to 2 rectangular plate solved in detail,

Other research applying the Edge Function idea is given

from refs. (28) to (39).
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CHAPTER IV. EDGE EUNCTION METHOD FOR

A RECTANGULAR PLATE ON WINKLER FOUNDATION

The following chapter deals with finding the complementary
solution that will satisfy the proper boundary conditions to a problem
of a rectangular plate on a Winkler Foundation, The differential

equation for the homogeneous problem is, from Chapter II

M =9 ) 2
Ywmobmw = (2. 6)

For all rotated and translated coordinate systems, it will have the
same form, as discussed in Chapter 3. One has to obtain solutions
that satisfy the differential equation (3. 3). Using the particular
solution obtained in Chapter 2, the boundary conditions which arise
from the particular solution will be easily given as a Fourier series,
Thus, it is cox-wenient to use Fourier series (sine and cosine) in

the complementary solutions as well, First, let

4 0 muwx,' : 0
4 JRES e I 1 — .]_
wl —n:/_—il sin— £ (yJ. ) -!-rr?l:io cos (y ) (4. 1)

Substituting equation (4., 1) into equation (3. 3) two differential equa -

tions arise as follows:

(ﬂﬁ j z(m‘") fJ +fJ(1V)
5

(ﬁ)"‘ J.pmEf

zj g .

£

8.

(4. 2)

K

D

\ vy K
D

8.
I

B g ) g

There are four independent solutions for each of equations (4. 2):

grrjx and fﬁj1 can both be expressed as linear combinations of the

following functions:
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‘yj .t : ]
e ™ J sin g J oy
- m J
J 1
Tt V3 3 ‘
e LS SEETOR enJl yjl $
: Sl (4. 3)
2 g 4 3
L DN,
e : sin Gm yj’
Jzy
-y y. ’
e ™ cos g )
m”7j J
"where anfl and 7151 have to satisfy the following equation:
s 2 £ 2
) =00 = (-
Yok _K_J (4. 4)
J J 2 =
2(rJye )y = [E
j
7m Yj‘

One can neglect the part involving e in the solution

for each Edge Function with respect to a particular coordinate
Sl )

system (e.g. e '  (sin Brr'lyl' + cos Bn; yl') with respect to the

coordinate system (x;', y;'), as can be seen from the following
discussion, The Edge Function method is basically a method of
superposition, Each of the superimposed elements ‘has some property
which is governed by the boundary conditions, Their prese;nce in

the solution is to introduce the boundary conditions at each edge of

the plate., Each of these elements has a particular form and a par=~
ticular position, The different coordinate axes are set up in such

a way that the bases (yj' = 0) are located along the edges of the

plate. (e.g. for a rectangular plate, the coordinate axes are set

up as shown in Fig., 4.2.,) From Fig. 4.1, one can see that the Edge

Function wc'(x e yl') is introduced mainly to include the boundary
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conditions on edge @ When yl' = 0 is substituted into the solution,
wc'(x ! yl' = 0) should constitute that part of the solution that makes
the general solution behave according to the prescribed boundary
conditions on edge @ The function wc'(xl', yl') should become
smaller with distance from edge @ (yl' getting bigger). At a point
infinitely far away from the edge, the contribution from wc‘ (xl', yl')
to the general solution should be zero. In effect, one is looking at
a semi-infinite strip, When yl’ = 0 certain properti;? a;rr'e prescribed
and as yl' - , the solution = 0. So, obviously the e ™ j part of the

solution should be omitted from each Edge Function. The same con-

sideration holds for all the edges.

Y, Yll
INFINITE STRIP o

i
/ /‘
PLATE UNDER

— CONSIDERATION

24

yll=0

ASE OF EDGE @/

Q————-leh—%

Fig. 4.1. Solution of Edge Function
Associated with Edge @ = as yl' -
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The coordinate axes are set up as shown in Fig. 4.2. The
X1» ¥y; @xes are chosen such that they coincide with the %, y axes
respectively., The different coordinates follow the following

relationship:

By = ¥y W
i g R
x3 — ] Zﬂlﬂxl
P (4.5)
& Al e
x4 = ZEZ—y'l
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With the axes set up as shown in Fig, 4.2, the most general
form of the complementary solution in the rectangular plate resting

on a Winkler Foundation is as follows:

4 o y mmx. -yn{ V. 8 7
w (x,y) = Z AJgin—-Llg Jsinejy.
c o g m X m 7]
j=l m=1 j
4 o A mmx, -y J V. 1
+ 2 X2 BJsin‘—JcriechoseJy-.
j=lm=1 ™ j e
4 o . mmx, -yj v -
+2 T nglcos-—-z—-——-le szineJy. (4. 6)
j:l m=0 j m “]
4 o s mnx, =Y. Y. . }
+ 2 2 DI cos—gle ™) cos eJy.
e o m v IR Bt g
j=1m=0 J
32 ; By 2
where ('yHJl) —(Brgl) =(rr;__1-r_)
J
< ¥ K
20,y 0 ) = [E .

-

In equation (4. 6) the only unknowns are the A L B c?) and D J .
m m m

j.!
m
These coefficients are determined from the boundary conditions,
With these calculated, the exact complementary solution is known.
The particular solution is obtained from eq. (2.9) and the total
solution can be calculated from eq. (2.7)., Mathematical expres-
sions of the complementary solution for slope, moment, and
shear force are given in Appendix E.

The remaining part of Chapter 4 will be used mainly to illus -

trate how the A J, B J, C J and D ? are chosen so that the boundary
m m m m ;

conditions are satisfied on all edges.
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Recalling eq. (2,7), taking wp to the left-hand side of the
equation, the following is obtained:
3 Wi
w, (x, - w_(x, = W iy VB 4,
(6 ¥) = w5 y) AL (4. 7)
Changing coordinates of the above equation into any coordinate axes
(es go X1, yl) and introducing the coordinate of that edge @ 3
the equation is reduced to that involving only one independent variable
(xl, since ¥1 = 0 is the coordinate of edge @). The following equa -

tion is obtained:

4 p
wt(xl)-wp(xl) = _Z} wg (all coordinates changed to xl)
i (4. 8)

The function wt(xl) in the above equatiori is the prescribed boundary
condition on edge@. It can easily be represented by a Fourier
series. The displacement wp(xl) is represepted as a Fourier series
also, As a result the left-hand side is reduced to a single Fourier
series. (A sine and a cosine series involving Xy ) The right-hand
side of the equation, however, is more complicated. Referring to
eq. (4.6), after changing all the (Xj' Y ) to {xi, y;) and then after
substituting the coordinates of edge @ (y,= 0), the following equation

is obtained:

Equation (4. 9) on next page
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z 1 i i) PRl ey '
- w _(onedge) = 2 B sin—p—= + L D cos —y §=1
¥ m=1 1 m=0 1
y 224, -x)) R )
) - -x it o
+ 2 C Ze ol 1 "1 ging Z(ZLI-XIH 2 Dri ” o
m=0 ™ g m=1
2 15
cos em(zzl %) j=2
_y3(28) -y3(24,)
+ 27 Anl(-sin 7 )e sin@rr1(2L2)+E Bm(—sin 7 )e cosem(zzz)
m=1 % m=1 5 3 j=3
=8 mmx, 3 —‘}’n?;(z ) 3 3 Y (242)
+ 2 cos 7 = i sznerAZEZ)-kDm A cosem(ZEZ)
m=0 3
74:x © 74:x
0 - - 2
+ 2 C4 - 1sine‘}x1+2 D4 i lcosemxl j=s
ms= O e L m:o B =
(4. 9)

In equation (4. 9) the part where j=1andj= 3is a simple
Fourier series. However, when j = 2 and j = 4, the part involving
X, is not a Fourier series. In order to matchthe Fourier series,
on the left-hand side of eq. (4. 8), the part involving %) has to be

reduced to a Fourier series as well,

2
-y (24.,-x.) 00 nwTx 0 nmx
Letting e m* 171 sinb 2(2@ -x.)= 2 T_sin 1 + 2 B._ cos L
m* 1 ] . . 2 n )}
n=1 1 =0 1
> ‘
-y (2l =x, ) 0 nwx [ nmx
L vy cos92(21, -x,)= 22 A_sin 1 + 20 m_cos
o e P | n x4 n £
n=1 1 n=0 1
o 4x1 o0 nmwx, o0 n-n-xl'
e ™ T.gind x, = 2, p_ sin + 2 E_cos 7
o wak it DA N 1
-y4x1 ) nwx, 0 nwx,
e ™ "cosh X, = 2> O_ sin R 2, w_ cos 7 (4. 10)
X n=1 = 1 n=0 " 1

5 b ek 0 and w are Fourier coefficients
Where n: ﬁn: n: 'ﬂn; pno gn’ n n 3

and can be evaluated,



Substituting eq. (4,10) into eq. (4.9

i 12

), the following equation

; max, mmx
involving only sin 7 and cos 7 is obtained,
1 1
wc(on edge @ )e
o0 mmx c0 mmx
= 2 Bnisin 21+Z chos zl
m=1 1 m=0 ™ 1
) o) mmx w | o
> ‘ mmx
25 2 C. |7, sin— iy 2 T -Cz B__ cos 1
m=1{n=0 " | 1 m=0|n=0 *| ™ 4
=
00 o mmx o | oo m
e Z)DIZ1 A, sin——+2 (2 D?|n_ cos ;.
m=1{ n=0 * | 1 m=0|n=0 7| ™ ks
3
=y _ (2L,) mmx
+ § Mol G € sin 0 3(Z.ZZ) A 3 sin :
Sy m m J?,l
L TS G ,  mm
+ 2 - s cos 8 ~(2£,) B ~ sin 3
) m m 1»1
5 :
(2 L S < S f o -
+ 3 Yiud 2) sin em(zzz) C,, cos 7 g
e 1
m=0 Y
3
0 - 2% 3 ey
, B Yen (245) cos 8 3(24,) DH"; cos ——-
m=0 € 1
e L i m |
= 0 ) mmx
¥ A Z Ci P, 510 — IR C: €, €05 — 1
m=1|n=0 " 1 m=0{n=0 =] ™ 1
w [ o ) mmx 0 o ¥
4 1 4 s
+ 2 2 D c g g+ 2 PR 5] ) cos T-l
m=1|n=0 ® 1 m=0|n=0 ™ == 1 (£11)
— - =

Equation (4.11) is simply a Fourier series, in which the only

unknowns are the AJ, B J, cJ anaDJ1s, Equating this Fourier
m m m m

series with that from the left-hand side of eq. (4.8) (the coefficients

of the sine series with the sine series,

and the coefficients of the

cosine series with the cosine series) a simultaneous system of
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linear equations in the unknowns A J, B J, cJ and D J is
Tm T m
obtained.

For practical purposes, the index m in eqs. (4.9), (4.10),
and (4. 11) is truncated at m = N, Coefficients for m > N are
neglected. So there are 4 XN A J, 4 X NB J, and 4x (N+1)CJ ,

m m m

and 4 X (N+1)D J, As a result there are 16N+8 unknown A J, B J,

m m m
Cni and DrrJ1 and the size of the matrix that has to be solved is
(16N+8) by (16N+8). There are four edges and on each edge there
are two boundary conditions., For each boundary condition there
are N sine series and N+1 cosine series coefficients. Therefore,
there are 8 X (2N+1) equations that can be formed, Thus, there are
equal numbers of unknowns and equations and the matrix is well~
defined, For boundary conditions other than displacements, the
various derivative of egs. (2.9) and (4. 6) have to be used. (See
eq. (2.4)). After solving for the A J, B J, C J and D J from the

m m m m

matrix, they can be substituted back into eq. (4, 6) to be used in

eq. (2. 7) for the complete solution,



=30 -

CHAPTER V. CONVERGENCE

The convergence of the solution by the Edge-Function
method to the correct solution depends mainly on two conditions:
the smoothness of the prescribed boundary conditions and the
smoothness of the boundary condition contribution from the par-
ticular solution. The particular solution is given by a double sine,
cosine series (eq. 2.9). After inserting the coordinates of the
edges in the particular solution, the function that describes the
boundary contribution from the particular solution becomes simply
a single sum Fourier series., Therefore, to simplify the problem,
the Fourier transform of the prescribed boundary conditions from
the total solution (eq. 2.7) is represented by a Fourier series
(a sine and a cosine). Thus, the convergence of the solution depends
mainly on the humber of terms required to represent adequately the
particular solution as well as the prescribedAboundary conditions.

The displacement in the particular solution is represented
by eq. (2.9). On substituting the coordinates of the edges of the
plate into eq. (2. 9), wp(x*, y*), where (x*, y*) represents the co-
ordinates of an edge, the double sum series which originally has
two independent variables can be reduced to a single sum Fourier
series involving one independent variable if the coordinate system
with respect to that particular edge is used. To be more specific

the following example is given.
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Fig. 5.1 is a rectangular plate with coordinates set up as

shown., On the first edge, the X0 ¥y coordinate system coincides

with the x-y coordinate system.

Expressing the particular solution

in the Xy, y; system and letting Yy = 0 (coordinates of edge @)

the following expression for the displacement contribution from the

particular solution at the boundary edge @ is obtained: (derived

from eq. (2.9))

j
% % M N mmx
w(x,y)=2 2. B2 ]cos

P 1 1 m=0 n=0 mn f:l
M N mmx,

+2| Z B3 ]sin 7

m=1n=0 ™8 1

QI
where BI mn
mn

? (5.1)

i [(Ell)4+ 2= )2(21’._)2+ EE )2 £ 51
A 2y £, Ly D | /

The coefficients in the resulting Fourier series (eq.

are proportional to BIrn.n' which are proportional to

(5.1))

) ~ for certain loading conditions,

[(_"21)4 & Z(m__"-)z(_n_"_)+(9_"_". )4+ _IS:I
' 2,1 El JZ,Z ZZ D



32
Thus, the particular solution for displacement on the boundary
(Edge @ in the example) converges like — .
Similarly, using the slope equationl\}or the particular solution

in Appendix E the slope contribution of the particular solution on

Edge @ is given by the following:

: 3
dw_(x, y)
pa i on edge @
nmw | | nTer >
= 2 [2 Bl__ (5% ) |sin
mn' I, | 2
1
(5: 2)
mmx
: 1 g
+ E Z: B4 (I—l-T—r) sin —p—
m=0=n= 1 “62 ] 1
where the BI again behave like i .
mn N4

The (%’I-Z) factor which appears on differentiating the series
makes the coefficients in the Fourier series in eq. (5.2) converge
slower and the slope in the particular solution converges as % z

Similarly, (see eq. (1.7)), we can apply the same prljcedures
to the moment and shear expressions in the particular solution given
in Appendix E. Since the moment basically involves the second
derivatives and the shear involves the third derivafives, the moment

converges as —!-2- and the shear converges as }I\—I .

N
To summarize:

Displacement converges as JZ ; Slope converges as —;—_,-5 s
' : N

Moment converges as —1—2 ; Shear converges as Ni
N

in the particular solution.
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Thus, displacement converges very quickly, but convergence
is less rapid as higher derivatives are considered. In an actual
case, the double Fourier series have to be truncated at some term
N. Depending on the degree of accuracy desired and which combi-
nation of displacement slope, moment or shear is of interest, one
can decide on where the series should be truncated. If the behavior
of the plate in terms of lower derivatives is desired, a smaller
number of terms is needed in the series.

The convergence of the complete solution, other than depend-
ing on the convergence of the particular solution, also depends to a
certain degree on the complementary solution. Referring back to
Chapter IV, on trying to choose the correct coefficients to use in
eq. (4.6) such that the complemehtary solution wc(x, y) will have the
desired value on the boundaries of the plate, eq. (4. 9) was derived.
This equation has to be matched with the left-hand side of eq. (4. 8)
which is given as a single sum Fourier series. If eq. (4.9) is a
single sum Fourier series, the coefficients can simply b;a matched
term by term and the matrix is set up easily. However, eq. (4.9)
is not a simple Fourier series, but involves some other functions.
That is why,in eq. (4.9), the various functions have to be chénged
to a Fourier series. These functions vary as the GnJ;Land ‘yrgl which
depend on the shape and dimension of the plate, soil spr{ng constant
K and plate constant D (the last two equations of eq. (4.6)). All of
these considerations will affect the smoothness of the various
functions in eq. (4.9). Then, as these functions have to be repre-

sented by a Fourier series, eq. (4.10), the number ‘of terms in the
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solution has to be large enough such that these functions can be
represented adequately in eq. (4.10) by a Fourier series.

In general, it takes both a sine and a cosine series to expand
any general function. In solving the matrix, the Fourier coefficients
of all terms are coupled in each equation in the most general case.
Thus, if one wants to include terms as high as those involving
sin(E%—x) and cos(N—Ei) terms, there are (16N+8) unknowns and

a matrix of size (16N+8) by (16N+8) has to be solved,



=35
CHAPTER VI. SYMMETRICAL PROPERTIES

In the course of this research, a computer program has
been set up to solve the rectangular plate problem; the matrix
that is solved in the program is arranged as shown in Fig. 6. 1.

As discussed in Chapter 5, in general a matrix of size
(16N+8) by (16N+8) has to be solved, N being the term where the
indices m in the series given in eq. (4.6) are terminated.

Symmetry in the problem of a thin plate on a Winkler
Foundation as solved by the Edge Function method is basically of
two types: (a) symmetrical boundary conditions, (b) symmetrical
boundary and loading conditions. The remainder of this chapter
deals with the two types of symmetries and how they can be used
to reduce the computer time needed to solve the problems:

(a) Boundary condition symmetries:

The boundary conditions can be of four types: prescribed
displacement, slope, moment or shear. Any two of the above can
be prescribed on each edge. However, if the same type of proper-
ties is prescribed on each edge (e.g. displacement and moment are
prescribed on all edges) the matrix that has to be solved can be
reduced to one-fourth the size. This reduction can be made later
if different functions of the same property (e. g. displacement) are
Prescribed on each edge. If the same type of boundary conditions
are prescribed on all edges, the matrix as arranged in Fig. 6.2
will be cyclic. A cyclic matrix is one which haé submatrices [AT,
[B], [C] and [D] arranged cyclically in the original matrix [(M] as

shown in Fig. 6. 3.
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The Arrangements in the Matrix
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From Fig., 6.1 one can shift the equations and partition the matrix

into the form shown in Fig. 6.2.

| ]
1st EDGE 2nd EDGE 3rd EDGE 4th EDGE
: Analogous Analogous | Analogous
EDGE Bl m m m m to 1lst to lst to 1st
1st SIN
© Wi adi Ay ¥ it Ajq
1st COS
2nd cOS
1st SIN
2nd SIN
© 1st cos Az 55 Azg Azs
2nd COS
1st SIN
2nd SIN
©) 1st cos Az s Aza Aag
2nd coOSs
1st SIN
2nd SIN
@ 1st | cos Ay Agp Ay3 Ayq
2nd CcOS
Fig, 6,2

The big matrix can be partitioned into 16 submatrices. Each of the

submatrices is now (4N+2) by (4N+2) or one-fourth the size of the

original matrix,
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The original matrix that has been set up. If it is cyclic as shown

in the figure, computing time can be reduced.

Fig. 6.3

Therefore, the following equation with unknown vector x has

to be solved.
(M]{x} = (R} (6. 1)

Vector R is the right-hand vector and can be derived from the left-
hand side of eq. (4. 8) which is the known function describing the
reduced boundary condition which the complementary solution has
to satisfy on the boundaries.

If the matrix [M] in eq. (6.1) is not cyclic, the original
matrix [M] of size 16N + 8 by 16N + 8 has to be inverted., ‘However,
when [M] is cyclic, the following can be done.

Suppose f %)

{x} = < (6.2)

{R} 4 ) (6. 3)




-39-
and [M] in eq. (6.1) is cyclic as shown in Fig. 6.3, then the

following equation has to be solved.

[M] {x} {R}
_ i N
A B C D 3 R1
B & B Gy ) < R, > o
G D A B X3 R3
B C D A R
- L4 S

A transformation matrix [S] can be chosen to transform

eq. (6.4). Pre-multiplying and pro-multiplying the cyclic matrix
=] =

[M] in eq. (6.4) by [S] " [S] (as shown in eq. 6.4), the equation

should still be the same since [SJ—I [s] = [1],
s'sms™' s {x} = (R} (6.5)

S should be chosen such that Sl\/IS"1 in equation (6.5) is a
matrix where there are only non-zero elements along the diagonal

of the matrix, In other words

3 7
(E] o 0 0

o [F] O 0

[MDJ = SMS "= (6.6)
0 o [G] o

0 0 OEH]J

where [E], [F], [G] and [H] are submatrices. Letting [MD]=SM§1

in eq. (6.5) the following is obtained:

[s17! [mpJ0s] {x} = (R} (6. 7)

Thus z} = st m>'s (R] (6. 8)
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Since M, is a matrix which has non-zero submatrices only
along the diagonal and each sub—r:;1atrix is ohly one -fourth the size
of the original matrix, the problem is reduced to just inverting four
matrices each one-fourth the size of.the original matrix, The cost
of solving the matrix is proportional to N2 where N is the size of the
matrix, Thus, the computer time is only one-fourth of the original
in this case.

Now, the matrix S and S-l which diagonalizes [M] has to be

discovered,

Let S be divided into 16 submatrices

- -
Soo0 So1 S0z  Sos
S S S S
(5] = 10 Si1 12 13 5
S0 Sa1 Sz Sis
L 839 S33 S33 S33
The pidbrankitn (8 m [1] A g ST, (6.10)

where i is an imaginary number. N is the number of submatrices

to a cycle, in this case, 4,

Thus, smn'1 = [I]A/Lﬁ exp(i*;;—-rﬂ’-‘— ) (6.11)

As indicated by the equation, the matrix S related to our problem

is ,
(1] () [ (1]

ot s (1] il1] - [1]~il1] ) e
s]=1% ;
(2l - L33 B3 -4l

L (17 -1 - (1] ilz] _
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"l . -

o S X O o s R
-1 (11 -il1] -[1] il1]
i8] =3 (6.13)
4 ] 4 S R

L B Y <03 =g

After performing the operation shown on eq. (6.6) using (6.12)

and (6. 13), the following is obtained (i being the imaginary number):

-

[A+B+C+D] 0 0 0
0 [A-C+iB-iD] 0 0
Mp] = (6. 15)
0 0 [A-B+C-D] 0
0 0 0 [A-C-iB+iD]
I .4

From the notation used in eq, (6, 6)

5 i R (Al + [B] + [c] + [D]
[F] = [A] - [c]+4[B]-i[D]
(6. 14)
[G] = [A] + [c] - [B] - [D]
[(H] = (A] - [c]-i [B]+ [D]

Since [MD] is a complex matrix, [MD]-I is complex also.

To solve for the unknown {5}, from eq. (6.8), one has to

D
one has to invert [E], [F], [G] and [H]. From eq. (6.15) these

find M and since M.D is cyclic, using the notation used in eq. (6. 6),
submatrices are each one-fourth the size of the original matrix.
Consequently, four submatrices each one-fourth the size of the

original matrix have to be inverted., However, from eq. (6.15),
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since [F] and [H] are complex, some manipulation is needed to

evaluate the inverse. The operation in inverting a complex matrix

is well-known.

Suppose [a+ig]™* = [P+iQ] ,
Then [P] = [ +p ol ﬁ]—l

(6. 16)
and [Q] = - [a’_l g PJ]

Thus, if one has to invert a complex matrix, (say [e+ip]),
one has to evaluate [P] (the real part of the inverse) and then [Q],
the imaginary part of the inverse) by eq. (6.16). )

From equation (6. 15), [E]—l and [G]-l can be evaluated
easily since they are both real matrices. [F]-l and [H]wl can be

calculated using eq. (6.16). To be more explicit let

o

B

(Al+ [c]
(B]-[D]

LAY (B €1, D] being submatrices from the original matrix as

shown in Fig. 6. 3.
-1 | 5
So, [F] = [e +ip] = [P+iqQ]

and noting that from eq, (6.15) the real part of [H] and [F] are the

same and their imaginary part are of opposite sign.

1™ = [e-ipl™t = [P-iQ]
[P] and [Q] can be calculated from eq. (6.16).

el

[P] _[a+pa-l [31:
@] = -lalpp]
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- Thus, inversion of [F] and [H] is reduced (from above equation)
into calculating [a-lj and (o +PB a-lﬁ]-l, both matrices being
only one-fourth the size of the original matrix.

Since each inversion of matrix is only one-fourth of the
original size and there are four inversions, computer time in in-
-irerting the matrices is only one-fourth of that required to solve the
~original matrix,

After solving [MD]-I eq. (6.8) can be applied to solve for {x3.

(b) Symmetry in boundary conditions as well as loading condition:
Other than the above-mentioned symmetrical properties that
give rise to a cyclic matrix, another course of symmetry can arise
from boundary and loading conditions. If the prescribed boundary
conditions as well as loading conditions are symmetrical with respect
to all edges, then other than resulting in a cyclic matrix as dis-
cussed earlier in this chapter, the right-hand vectors El' 13_2, 113
and R, in eq. (6. 4) are identical to each other. So, obviously

X1 Xy X and Xy must also be equal to each other. Letting

%>

=X =X, TX; =Xy and R =1_31 :Ez = 53 =}__{_4, then the following

equation has to be solved

[(al+(Bl1+[c]+([DI] &=} (6.17)

Thus, all that needs to be done is to sclve a matrix
[[A] +[B]+[c]+ [D]], which is one-fourth the original size and

computing time is only one-sixteenth of the original case.
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CHAPTER VII. CONCLUSION AND EXAMPLES
a) Conclusion -

The previous chapters illustrate the application of the Edge
Function method on plate problems on a Winkler Foundation. A
computer program has been set up such that it can be used to solve
the problem of a thin rectangular plate on a Winkler Foundation. To
utilize the program, the following has to be done:

1) Using numerical process or otherwise, evaluate the
Fourier coefficients of the series expressing the loading conditions
as discussed in Chapter II (b).

2) On each of the edges, evaluate the Fourier coefficien:cs
of the series expressing the boundary conditions.,

3) The Fourier coefficients evaluated in steps (1) and (2)
are used as input data in the program already set up and the output
will be the coefficients of Edge Functions on each edge (see eq. 4.6).
Total solutions of displacements as well as slope, moment and shear
in both x and y directions at points shown in Fig. 7.1 are also calcu-

lated and presented as computer output,

The program can easily be modified for point loads and
column loads such that step (1) can be incorporated into the main
program, The program can also be modified easily so that solutions
on any points in the plate can be calculated instead of following the
pattern shown in Fig. 7.1l. A number of problems have been solved
as examples, An example which has been solved using the computer

program is presented in this chapter., The solution is'compared to
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that from the literature. Further examples solved by the same

programs are presented in the appendix,

At

NY Points
b
ke NX N e
Points 1

Solutions are Calculated on Each Nodal
Point

PFig. 7.1

b) Example

The problem of a simply supported square plate subjected
to central point load resting on a Winkler Foundation is solved,
The plate shown is 10 ft by 10 ft with a poiﬁt load of 100 1b on the
center point of the plate and hinged on all edges (Displacement and

moment equal to zero). (See Fig. 7.2.)



e
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. PLATE
HINGED ON
ALL EDGES
24,=10" 3 P S!
LOAD AT P = 100 LB.
Q! N
e O e,

Solutions are Calculated at the Nodal Points
Figy .2

Solutions are calculated at the nodal points as shown. In
Tables 7.5 and 7.7, only those values at the nodal points in the rec-
tangular area PQRS are presented.
The physical constants used in the problem are as follows:
spring constant of Winkler Foundation is 1 lb/ft;3
E Young's modulus for the elastic plate is 10% lb/f:'t2

pY Poisson's ratio of the plate is 0,2

h  thickness of the plate is 0,1 ft
Eh> 4
D the plate constant given by ————~ = 0. 86805 ft
12(1=v")
£ the characteristic length of the plate spring system is
D
' - 0. 965 ft

P the point load is 100 1b



¥ G
£ 1 length of the plate is 5 ft in the x~direction
> 7 length of the plate is 5 ft in the y-direction

Tables 7.1, 7.3, 7.5 and 7.7 contain solutions calculated
from Timoshenko's(s) solution (chapter 8). Tables 7.2, 7.4, 7.6
and 7, 8 contain solutions calculated by the Edge Function method.

For equilibrium consideration for the Edge Function method
as well as the Timoshenko solution, the total upward force is con-
tributed from the spring force as well as the shearing force on the
boundary. The following table gives the values of the upward force
calculated, They are supposed to be equal to 100 1b when the total
downward load is applied. The spring force was calculated from the
displacements of the plate at each point and the shearing force cal-

culated from the shearing force in the normal direction on each edge

obtained from the 3rd derivative of the displacement along the edge.

COMPARISON OF EQUILIBRIUM

Edge Function | T poshenkots
Force from springs 90.5 1b 87.5 1b
Shear force on the edges 2.31b 10,6 1b
Total upward force 92.8 1b 98.1 1b
\

From Tables 7.1 and 7,2 the values of displacement agree
very closely (the maximum deflection is 13, 368 in Timoshenko's
solution and 13, 384 in the Edge Function method; 3 significant
figure of accuracy is achieved with 20 terms), -The slope results

in Tables 7.3 and 7.4 also agree fairly closely. However, from
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Tables 7.5 to 7. 8, the moment from both solutions does not agree
so well and shearing forces differ even more. As higher degrees
of differentiation are considered, the results from the Edge Function
method diverge more from Timoshenko's solution. This is because
the convergence in the Edge Function method deteriorates. To get
a better solution more terms would have to be taken.

Solutions on axis SPS' (see Fig. 7.2), a line on the mid-~
plate, are given on Fig. 7.3 through Fig, 7.5. Shear on Q'PQ,
a line on the mid-plate parallel to Y axis, is plotted and given on
Fig. 7.6, asshear in the Y direction is calculated instead of shear

in the X-direction.
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Moment in X direction.

Shear in Y direction

(ft. Ib. /ft.)
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Fig. 7.5 Plotting of Moment along SPS (Fig. 7.2)
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7.6 Plotting of Shear along QPQ' (Fig. 7.2)
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CHAPTER VIII

ITERATIVE METHOD AND FURTHER USEFUL EXAMPLES

a) Iterative Method

To recapitulate, Chapter III discusses the general concepts
of the Edge Function method and Chapter IV applies the concepts
for the problem of a rectangular plate resting on a Winkler Founda-
tion subjected to lateral loads., As a result of the application, a
very big matrix is set up which leads to four sets of coefficients
for the Edge Functions (see eq. 4.6). Solving the matrix leads to
a solution for the coefficients simultaneously., This simultaneous
approach of solving the coefficients of the Edge Functions requires
a great deal of storage space in the computer for the matrix as
well as requiring a lot of computer time., This disadvantage is
further magnified when solutions of higher directives of displacement
are required as more terms are needed for a good answer.

Another approach is that an iterative process can also be
used which basically eliminates the necessity of solving a very large
matrix and which can easily be applied to plates of any convex polyg-

onal shapes, This iterative approach will be illustrated as follows:
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Fig, 8.1

Referr-ing to Fig., 8,1, firstly, approximate coefficients for
the Edge Function on edge (1) are evaluated such that the sum
(‘:’tl) of Edge Function @, (vaj) and the particular solution (wp)
will meet the necessary boundary conditions on edge @. (The
work involved in finding this approximate Edge Function on edge @
is very small and will be discussed later,) However, anywhere
else, such as along edges @ and @, this solution 'xuvtl does not
converge to the required boundary values. The boundary values
on other edges can be accounted for one by one as opposed to the
simultaﬁeous approach, From the prescribed boundary values on

edge @ (wt(xz)) and this approximate solution (;;’tl ) 2 new set of

boundary values (w,(x,) - 'v‘étl(xz)) can be calculated on edge (2)
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numerically or otherwise, Then an approximate Edge Func;tion on
edge @ is chosen according to these new boundary conditions,
Next, a new approximate solution ‘;tz can be evaluated as the sum
of the approximate Edge Function on edge @ (\;cz) and the original
The resulting solution is called \';tz .

This solution will satisfy the boundary conditions on edge @ ; how -

approximate solution '\Vvtl.
ever, it will not meet the required boundary conditions on the other
edges except on edge @ where the solution will almost converge

to the required boundary conditions, Similarly, a new set of bound-
ary conditions can be calculated from '\‘v"tz on other edges and Edge
Functions on other edges chosen accordingly. This will lead to an
approximate solution after going around the edges of the plate once,
If a better solution is needed it can be calculated by another sweep
around the plate.

The following paragraph discusses what is involved in cal-
culating each Edge Function using the iterative approach. Basically,
the coefficients of the Edge Functions (see eq. 4,6) have to be
calculated to satisfy some reduced boundary conditions. A numeri-
cal procedure or other method is used to reduce the boundary condi-
tion to a Fourier series, This series has to be equated with Ithe
Edge Function on that edge (say edge @). On substituting the co-
ordinates of edge @in the Edge Function @, the part in;rolving Y1
is reduced to a known coefficient (with vy = 0). So, the Edge
Function itself is reduced into a Fourier series with variables

1 1

%y in sine and cosine series only and unknown coefficients Am, B_»
1

Cm and Dr:l associated with them. For disp]acemént, for instance,
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it is given in the formm'é (al Am+ a, Bm) sin —I'l— +
) 1 1 mrx
IEI=0(C¥3 e Dm) cos *z—l— » Thus, all that is left is to equate

the coefficients of the sine and cosine series with the sine and cosine
series respectively of the reduced boundary conditions for each m,
In this way, the problem is reduced to solving a 2 X 2 matrix twice
for each m, Most of the computer time required in the iterative
process will be used only in calculating the new boundary conditions
on each edge and performing a Fourier analysis of the reduced
boundary conditions. The cost in calculating further terms is just
proportional to the terms rather than to N2 in the simultaneous.
method,

Another advantage of this iterative process is that engineering
judgement can be readily applied to reduce computing time. To
illustrate this the example in Fig, 8.1 is given. Suppose one is
interested in a rectangular plate problem with a load at a corner
B as shown in this figure,

If the plate is big enough, the contribution from the Edge
Functions (3) and (4) around B will be very small because the Edge
Functions decay exponentially with distance from the edges. Real-
izing this fact, one can simply calculate the Edge Functions on
edge @ and edge @ if one is only interested in the solution around
the load, This economizing technique can also be applied to the
simultaneous approach discussed earlier in previous chapters,

In sections b) and c) in the latter part of this chapter, the iterative
jdea is used to solve the problem of a point load on an edge and on

a corner respectively,
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The reactions of the plate to a concentrated load on a plate
on a Winkler Foundation are usuallly fairly well concentrated around
the load. So, a few very useful examples can be calculated and
applied to designs of slabs for airfield runways and paving slabs
for roads. These examples are: (1) the load is at a considerable
distance from the edges; (2) the load is at an edge but far away from
any corners and (3) the load is at a rectangular corner of a large
slab. For case (1) a fairly thorough investigation is done by
Westergaard(z) and the readers are referred to the reference for

more detailed information.

b) Further examples: Concentrated load on an edge far away from

any corner,

Originally, the intention was to use the Edge Function method

to calculate the solution of a concentrated load on an edge and at a
corner far away from any other boundaries. The example presented
in Appendices B and C are aimed at the above problems. However,
because of the high derivatives involved, the original attempt pre=~
sented in Appendices B and C is inadequate., Higher terms are
needed. Since there is only one edge in the edge problem and two
in the corner problem, the iterative idea can be applied easily,
Results of the iterative method applied t6 solve this problem are
presented in sections b and c in this chapter.

. Westergaard(z’ 3) calculated the problem of a semi=-infinite
plate resting on a Winkler Foundation with a load of uniform pres-
sure on an ellipse tangential to the plate boundary (see Fig. 8. 2).

He gave an approximate formula of displacement calculated along
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the line P Q shown in Fig. 8,2. He also gave an estimate of bending
stress at the edge of the plate on point P, This problem is an inter=-
esting problem with a lot of engineering applicétion. The exact same
problem is calculated using the iterative idea of the Edge Function
method, A point load of the same magnitude at the edge of the plate

is also calculated and éompared with Westergaard's approximating

formulas.B)

Q

Y

4\

B C
2

A k b D N, -

7
p
Fig. 8.2

The Edge Function method which usually applies to a finite
plate is used to compare the solution of a2 semi-infinite plate by the
following argument, If a plate ABCD (shown in Fig, 8,2) is big
enough the edge effects along other edges to solutions close to the
load must be very small and can be neglected. So, the behavior of

the solution of a large enough plate should be very close to the same
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problem for the semi-infinite plate around the load, Thus, the
Edge Function method can be applied to the same problem, Also,
noting that the Edge Function's contribution around the load is very
small from other edges (AB, BC and CD), only the edge function on
edge AD is needed,

Referring to Fig, 8.2 and Fig. 8. 5 the Edge Function method
gives a solution very close to that given by the approximating for -
maula given by Westergaard(?’) in the region close to the load., The.
point load gives the limit of the solution as the ellipse or distributed
load — 0 in dimension. The values given in the x and y axes are
dimensionless and the displacement is virtually equal to zero at a
distance larger than 3, 5 of characteristic length of the plate spring
system,

From Fig., 8.6, it can be seen that for points just a little
distance away from the load, the solution for the point load and the
elliptic for M_ is almost identical, The oscillating behavior of the
moment 1\/1y for the point load (given by curve A-2) may be due to
errors accumulated in the computer due to large numbers of itera-
tions, The tensile bending stress can be calculated from the formula

2
e _3___\%; at P (Fig., 8.2), where h is the thickness and E the Young's

2
modulx?: of the plate. Applying this formula (used by Westergaard(3)),
the tensile bending stress calculated for the same elliptic load prob-
lem is 20. 91 units compared to 23,57 units by Westergaard's approxi-
mate formula in the same paper,

In the graph, Fig, 8.7, the moment in the y-direction is

plotted against the moment in the x-direction, for the problem



i
of constant pressure over a small ellipse., The shape of the curve
remains constant for any loading intensity as the values along the
X-axis are magnified by the same factor as the values along the
Y-axis., Fig. 8.8 contains the plot of MY against Mx for a point
load.

In most engineering practice the plate is reinforced in the
X and Y direction and at the bottom and top of the plate in such a

way that the yield envelope has a shape shown below,

YIELD B = e e e e
ENVELOPE !

!
!
t
!
!

er_“ ____-_'

5

Fig. 8.3

From the M_ against My plot shown in Fig, 8.7 and Fig. 8.8, the

curve has the shape like the figure shown below,

M ,&
Ay Y PROPOSED YIELD
ENVELOPE
TP e e AR Y
' |
b : ;
. — M_, 0
1 Max.yl
b ! y — e
1
b, L el R, 2 o 5
a A
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If b in Fig, 8.3 is too small (because the positive Mx is
usually the basic concern, the mz.tximum négative My might exceed
the envelope and the plate will break along lines parallel to the
x-axis and cracking starts on the toﬁ of the plate. A more efficient
envelope, it would seem, is of the form shown in Fig. 8.4,

In Fig., 8.9 the displacement along PD of a point load prob-
lem is plotted and in Fig, 8, 10 the moment in the x-~direction along
PD of the same problem is plotted,

Because the problem is linear, the curves plotted in Figs,
8.5, 8,6 8.9 'and 8.10 can be generalized for concentrated force
of any magnitude, The dimensionless values of the graphs can be
read off the axis on the right-hand side for any point x from the P
in Fig. 8.2. Then, for displacement, the coefficient is multiplied
by a factor.of -—P—Z where P is the magnitude of the point load in
Force units, ]'::{Kfs the spring constant in Force/(unit 1ength)3 and
% is the characteristic length of the problem in length units, For

moment, the coefficient is simply multiplied by P.
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Fig. 8. 7 Plotting of moment in x direction against that in y direction

along P Q (Fig. 8.2 ) of uniformily distributed load over an ellipse.
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Fig. 8.8 Plotting of moment in x direction against that in y direction

along P Q (Fig. 8.2) of point load.
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c) Further Example: A point load at corner B

*
EDGE (3)
E C
D
EDGE (4 EDGE (2)
45°
(o]
3 45 o R
B &=
EDGE (O
Fig. 8. 11

From Fig. 8. 11 the plate is chosen large enough so that the
Edge Functions from @ and @ are small around the load P, In
Fig. 8.12, displacement away from the load along line PD is plotted.
In Fig, 8.13, the moment in the direction along the edge is plotted
at points along the edge away from the corner. In Fig. 8. 14 the
moment in the PD direction (see Fig. 8.11) is plotted along PD,

As in section b) the results can be generalized for concen-

trated loads of other magnitudes,
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CHAPTER IX, COMPARISON WITH OTHER AVAILABLE METHODS

So far,.there are only two methods which can be used to
solve the plate problem with any generality as ﬁentioned in Chapter 1:
the finite difference method and finite element method. Before the
finite element method was introduced, the finite difference method
was commonly used to solve the plate problem. There are advan-
tages and disadvantages to each of the above methods as well as to
the methods described here., The remainder of this chapter will
compare the two numerical methods with the Edge Function method.

The finite difference method”‘g’ 20, 26)

is one which uses the
finite difference approximation to the plate equation. To solve this
equation, the slab is imagined to be separated into a finite number
of elements (in most cases, thesé elements are taken to be quadri-
lateral). These elements are connected only at the corners or

'nodal points,' and solutions are calculated at these nodal points

(see Fig. 9.1

0T T T T A s e ey

' | | t 1

( | | { 1

| | I

Lo A - Ao

i , -=-=- Fictitious
: : Element
.2 0 Y

| 1

t 1

i 1

L---- i

‘ D, 4 i 4

| i : 1 14

: 1 . : :

QT s L iy, Pyt il e

The plate ABCD is divided into 4 elements(usually many more).
Fictitious elements are introduced to apply the boundary conditions.
' Fig. 9.1 '
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Applying the finite difference approximation to the governing
differential equation, solutions at each point (e.g. 0) is given an ex-
pression of solutions at neighboring points (in fhis case 1, 2, 3, 4),
The boundary condition consideration is brought into the system by
introducing fictitious points outside the boundaries (shown in dotted
line in Fig. 7. The same approximation relation holds for points
at the boundaries (relating solutions at these points to neighboring
connected points including those fictitious points outside the plate).
Thus, a linear system of equations is set up involving the solutions
at the nodal points as unknowns. Known solutions of boundary points
are also involved in this system of linear equations., When boundary
solutions are known they can be taken to the right-hand side of the
system of linear equations and apinear as the right-hand vector.
Solutions of points other than those on the boundary are unknowns
in the linear equafions. Solving the systems of equations will give
rise to the solutions on nodal points in the plate,

The finite element method is a very versatile method and has
some similarity to the finite difference method. The slab is also

partitioned into small elements. (21, 22)

Instead of using the finite
difference equation, it assumes a particular form for the solﬁtion
of displacement in each element. In most cases, a polynomial form
is assumed, Then equilibrium consideration for each elérnent is
establiéhed by calculating a stiffness matrix, Then the matrix for
the whole system is assembled by combining the stiffness matrix

according to the geometrical arrangement of the elements. Thus,

equilibrium of the whole plate is established with the coefficients
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in the element polynomial as unknowns., | There is the same number
of unknown polynomaials as the number of eiements. Compatibility
relation is also introduced to obtain continuity. To solve for the
unknowns, the composite stiffness matrix has to be inverted, the
loading being the right-hand vector in the system. The finite element
method is versatile because each element stiffness matrix can be
different from the others. So, it is easy to incorporate inhomoge-
neous and/or anisotropic problems. Also, any model for the
foundation matgrial can be used. Different foundation models give
rise to different element stiffness matrices, which are also affected
by different boundary conditions, The element stiffness matrix is
usually obtained by a variational technique. The composite matrix
can be arranged into a banded matrix and this property can be
applied to reduce computing time. The matrix is also symmetric
about the leading diagonal and is positive definite. Thus, further
reduction on computing time can be applied,

The previous two paragraphs give brief introduction to the
finite difference and finite element methods, The following para-
graphs briefly compare their advantages and disadvantages.

This paragraph discusses the economics of the three methods.
A major portion of computer time is used to solve the matrix in both
the finite difference and the finite element method. For N nodal
po'ints, the finite difference will have 2N unknowns and thus it is
required to solve a 2N by 2N matrix, ¥or the finite element method,
each finite element will introduce (for most forms of displacement

found in most literature) 12 unknowns in the functional form, Thus,
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for even a moderate number of finite elements, the matrix is very
large., However, a lot of manipulation can be applied to reduce
computer time,

For the Edge Function method, the simultaneous approach
on problems involving lower derivatives probably is not as econom-
ical as the finite difference method, but is comparable to the finite
element method with all the '"well ccnditioned! properties of the
finite elements matrix taken into account. However, since higher
derivatives reduce convergence considerably in the Edge Function
method and a much larger number of terms is required for similar
problems of prescribed shear and moment, the simultaneous ap-
proach probably is not even as economical as the finite element
method. However, as indicated by the iterative approach at the
beginning of this chapter, the finite element method is much more
expensive to use compared with the Edge Function method with this
approach,

The finite element method is, no doubt, the most versatile
method. It can be used to solve anisotropic and non-homogeneous
problems. It is also more readily applied to other foundation models,
Besides, it handles re-entrant corners and openings without difficulty.
The Edge Function method does have one advantage in that it handles
convex plates of any polygonal shapes readily, while in both the
finite difference and finite elements, difficulties might arise be-
cause elements of shapes (triangular) other than'recta;xgular have to

be used.,
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The accuracy in the finite element and finite differenlce
method is not as good as that of the Edge Function method generally.
Most investigations in the Finite Element method only have continuity
established across the nodal points in the x and y directions. Along
element boundaries between nodal points, continuity is usually not
established. Also, equilibrium is maintained only in the global

sense; it need not be observed everywhere in the Finite Element
method, Accuracy in the Edge Function method is enhanced by
taking further terms in the Edge Functions while in the two finite
methods smaller elements are required. So, if enough terms are
taken in the Edge Function method, its solution will be the limif of
the Finite method if the finite elements are infinitely small,

After obtaining the coefficients in the Edge Functions, solu-
tions at any point in the plate can be calculated easily. Also,
directional properties like slope, moment and shear in any direction
can be evaluated in the Edge Function method. The two finite
methods, however, give solutions at nodal points in x and y directions
only.

Another major advantage of the Edge Function method is that
after a relatively simple program is written, further problefns
can be solved with a minimum of preliminary work., All that is
required is to enter the computer with the loading and bc;undary con~-
ditions, the geometry of the plate and the points where the solution
is to be calculated, In the two finite methods, the slab has to be
partitioned into finite numbers of elements, the loading has to be

evaluated and portions of it assigned at certain nodal points.
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So, some of the work is involved in each application, and
experience is needed before one can use the finite method to its full
extent. By compariscn in the Edge Function method, the user does
not have to have much experience.
The major disadvantages of the Edge Function method is that
its versatility is no match for the finite element method and possibly

its slow convergence when higher derivatives have to be calculated.
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APPENDIX
The appendix contains solutions to several selected problems.
All problems deal with plates on a Winkler Fouﬁdation.
The following are data common to all the problems calculated

and presented in the Appendix.

K  spring constant used for Winkler Foundation is 1 1b/ft3

E Young's modulus for the plate is 104 lb/ft2
Y Poisson's ratio of the plate is 0, 2

h thickness of the plate is 0.1 ft
3
D the plate constant given by _}E_L_z_ = 0, 86805 ft
12(1-V°)

Therefore the characteristic length of the plate-spring system is

4
{7 .
5= 0.965 ft.

4
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APPENDIX A
The problem is a square plate with a point load in the middle
of the plate and the edges> are all free. The plate is resting on a

Winkler Foundation.

y
S
R Q
- Square plate with free
edges with a point load P,
1
I A £ {5 S
2
Ql
IR <
————— 2 " g &
£
Fig. -A-1

Solutions are calculated at the nodal points as shown. Table
A-1 contains solutions of displacements, A-2 and A-3 are slopes
in the 2 directions, A-4 and A-5, moments, and A-6 shear in the
x-direction. For equilibrium the force calculated from the spring
reaction is 72.6 1b, the shear force contribution being zero. The
total load is 100 1b. If a finer network is calculated the upward
force would approach 100, The disﬁlacement and slope calculated

is probably quite adequate. The shear and moment calculated,
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however, might need further improvement at the point directly
under the load. The solutions calculated at the middle portion
of the plate are very close to those of the hinged plate shown in
Chapter 7. This demonstrates that the edge function effect decreases

rapidly away from the edges.
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APPENDIX B
This problem is that of a free elastic plate resting on a
Winkler Foundation with four point loads at the mid-point of each
edge. Four point loads are chosen instead of one point load because
with the loading and boundary condition symmetry a lot of computing
time can be saved. Besides, some manipulation is required to
obtain a particular solution of a point load on only one edge (see

Appendix D).

A
S R: 50 1bi
= A
TP ! Q 50 1b.
19 50 |1b.
50 }1b.
N > X
1
~ 10
Fig, B~1

Solutions are calculated for the nodal points shown in Fig. B-1.
Only points in rectangle PQRS are calculated to save com-
puting time. Other points where solutions are needed can be

deduced from those calculated in PQRS. The total spring force
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calculated by direct integration of the Fourier coefficients of the
particular solution and the coefficients of the Edge Functions is
200 1b as compared to 200 1b downward force. Plots of solutions

on line PQ are given in the Figs. B-2 to B-5.



TABLE B - 1

Displacement of 4 point load on the edges of a square plate ( ft. )

0¢229572 UC "CL4ESTIE €O 0439592 €1 C.12047F (2 N.23813% 02
Tl 4E5TIE 00 —C.53090E 00 Ue29352E CC Ce35C845 €1 0.€116ZE a1
Ue3759¢E 01 0429S53E CO -CallCEEFE C1l -0,67CT2E €O -J.14818€ oC

Se L3047E V2 Co23CE4E 01 =J.67Gi25 €O -0,12729F (1 =N 129772 €1

Ce 258158 U2 Ce€II53E Ol —0.14E1TE 00 -0Ga12977TE C! -2.123043% C1

TABLE B- 2
Slope in x direction (tan © )
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T aDa 325508 01 =CeZ14T6E C1l ~Ce19TILE A0 0e6434TFE €O D0.3€1756-C5
UGG BT3TTE 01 -CeE582CE Ol -Gel4S5S6E 01 -0e1&413E-C2 De38246E-CE

=T, 15551 T2 =Ce E7425¢C U1 =02 22140z CI =0, I5201F T UG 4T835E=CF

TABLE B - 3

Moment in x direction ( ft.1b. /ft. )
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3% €0 0a15906E-72
TABLE B - 4
Shear inx direction ( 1b./ ft. )
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Fig. B - 2 Plotting of displacement along PQ (Fig. B-1)
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Fig. B-3 Plotting of slope in x direction along PQ
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Fig. B-4 Plotting of Moment in x direction along PQ ( Fig. B-1)

Distance away from point load ( ft. )
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Fig, B-5 Plotting of shear in xdirection along P Q.
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APPENDIX C
Solutions are calculated to the problem of a point load on
each corner of the plate on a Winkler Foundation (Fig. C-1). The

edges are free on all edges.

2 10’
S125 1b, R 25115,
3
]
10 $E Q
h g 5 Ib. }
25 1b. -
Fig. C-l

Solutions are calculated at the nodal point in the rectangle
PQRS, Other point solutions can be deduced from those calculated,

The upward spring force calculated from integratinz the total
solutions is 100 1b. Comparing to the downward load of 100 1b

Fig. C-2 to C-5 gives plottings of solutions calculated on line SR.
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TABLE C- 1
(in ft. )
Displacement of a point load on each corner on a square plate
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Distance away from the point load along SR (Fig. C-1) in fts.

Fig. C -2 Plotting of displacement on line SR for a corner load on each

corner of a rectangular plate.

)

Distance away from the point load along SR (Fig. C-1) in fts.

7 ¢ 1 i 3

ral
Al

o

Slope in x direction ( tan 8

-20°

Fig. C-3 Plotting of slope in x direction along SR (in Fig. C-1) for a

corner load on each corner of a rectangular plate.
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6 r’ xxx data points

Distance ( in ft.) away from corner along line SR (Fig. C-1)

1 2 3 4 5
0 ] 1 | |

-2

Moment in x direction (ft. 1b. /ft.)

-8 r ey

Fig. C-4 Plotting of moment in x direction along line SR (Fig.C-1)

of problem of a point load on each corner of a sq. plate.

10 j

Distance (in fd. ) away from corner on SR (Fig. C-1)

3

-10 4L

Shear in x direction (lb, /ft.)

Fig. C-5 Plotting of shear in x direction along SR (Fig. C-1)

of problem of a point load on each corner of a sq. plate.
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APPENDIX D

A few examples illustrating the method used to express the
loading conditions discussed in Chapter II are pfesented in Appen-
dix D, We include

(i) A point load inside the plate.

(ii) A column load (a distributed load).

(iii) A point load on the edge of the plate.
(iv) A point load on the corner of the plate.

These are the solutions used in the calculations relating to
the examples given throughout this thesis.

To describe a point load inside the plate, the properties of
the point load have to be defined first. The following is the definition
of a point load in this thesis: ‘

(1) The pressure caused by a point load P is zero

ex’reryv‘vhereian the plate except at the point under
the load.,

(2) The pressure caused by the point load P on that par -

ticular point is infinite. '

(3) The integral of the pressure times the infinitesimal

area under it over the whole plate fj' q(x; y)dxdy
whole plate
is equal to P, This is required from equilibrium con-
. siderations. .
All these propertiés are met by a delta function, For a point

load P units in wt at x = a, y = b, the load can be represented by

q(x, y) = Pb(x-a)(y-b) ' (D-1)

where P is the magnitude of the point load. This expression in
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a(x, y) satisfies all the above definitions of a point load.

(i) For a point load inside the plate:

Yy
N
D C
. p | Point load of magnitude P.
a
T h
21
2 :b
I
|
|
| B
A v -
7
21¢ 1 >
Fig, D-1

The following illustrates the way to express a point load
as discussed in Chapter II, eq. (2.1). A similar method of ex-
pressing a point load has been used by Timoshenko and Woinowsky -

(8)

Krieger in article 34.

Using eq. (2.1), and evaluating the Fourier coefficients in it

as in the standard Fourier series theory,



59T

24 .3
o1 = 1 [ ZJ’ " - 6(x-a)6(y-b) sino= sin = dxd
= T = = = Ve
mn i, Y D 5y G
=g ED sinrr},"a s.ti.n]"l‘grb m &n from 1l to o
12 1 2
02 3 P mma nrb %
R P‘ZD cos — cos when m and n are from 1 to o
1 1 Z2
sz = ZL_IP_D c:osin'(,‘ﬁ cosn‘z—'rrb when one of morn =0
12 1 2
ono = ‘—1—122—5 cos r—n—F cos nzrb
| 48 1 2
Q3mn = le? 7 sin rr}’-na cosn‘ELb- when n and m are ffom 1l to w
152 1 2
P . mma -
Q3 o, = 3pi1.5ing when m is from 1 to e
T2 1
Q4nm = Y cos rr?ra sin n;rb when n and m are from 1 to «
172 1 2
Q4°n = 2—’% sin nzib when n is from 1 to w (D-1)
i e 2

(ii) For a column load (A uniformly distributed load on a rectangular

area)

w// Intensity of load is
/ q unit/area
¥

u

2L

4

—0"
4
A

Fig. D-2
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For a column load as shown in Fig. D-2, the Fourier coef-

ficients in eq. (2.1) are as follows:

+ufl nmb nw(b+v)
Q1 R S (LTS cosmv(a ’] cos - cos __._____.]
mn D(mnn’) - N L s
Q2 = __9_7 sixi 1‘r§a+u) - m-rra.][ n‘rr(h+v) MW,
D(mnt ) 1 z Iz =1
_ qu l: . nmbtu) _. nub :]
onn = D(Zﬂl)n'rr sin ‘2‘2 sin ——-—-22 whenn = 1
Q20 = ZDSszr;‘_w [Sin —-(——)m"fm = sin————mfa] when m 2 1
2 2 2
i uv
on.. = D(42,4,)
- q mma rn'n-(a+u):|[. nm(b+u) . nmb
Q3 = [cos - cos sin " s1n—-]
o Drnn'n'2 1’1 "?'2 L
mén = 1
. av mma_ mm(a+u)
Q3mo = D——~——~—-—mw(zz j Lcos EI cos ‘"‘1 ] m =1
Q4rnn = ———9-——2— [sin Fwada) 2 sin——-———(rr}“a):][cosn-—zb - cos n_(__)'lrzb-i-v ]
Dmn 1 1 2 2
mé&n =1
T S nmwb _ n-rrgb+v!:]
Q4°n — ZDn'rrEl cos Ez cos ‘62 nz=1

(D-2)
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(iii) For a point load on the edge.

D C F
i o A R SRR (E e o e e B
{
l
24, ¢P(Point load) L Je! ¢R
{
!
A B L e I e 1E
VS 2!1 Sl 24 , —4
Fig, D-3

If eq. (D-1) is used to express a point load P on the edge,
because of the periodicity of the Fourier series, the calculated
loading function (a double sum Fourier series) will give rise to a
point load at Q also. Other than this, because of the discontinuity
of the delta function, the resultant Fourier series only has the
effect of half of the load inside the plate around point P. The other
half is on the other side of the plate. Thus, to obtain the solution
of required intensity inside the plate, the Fourier coefficients
calculated from eq. (D-1) have to be doubled. To obtain a true
effect of only one point load inside the plate, the following has to be
done. To obtain a solution of a single point load P in plate ABCD,
calculation has.to be carried out on an extendedlplate AEFD. Then,

the resultant Fourier series will have the effect of a point load P
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- and a point load R (see Fig. D-3), However, solutions of the par-

ticular solution in plate ABCD are used only.
(iv) For a point load on the corner.

s R

Point load

214

2
Fig. D-4

By the same reasoning as for a point on the edge, if the
Fourier series is used to express a point Aload on the corner of the
plate using eq. (D-1) the result is the effect of one-fourth of the
load on all four corners. To get around the above, an extended
plate AQRS is used. Fourier series approximated on a corner load
is calculated on this extended plate; however, only the area of the
plate inside ABCD is used in the particular calculation of the solution.

Also, four times the intensity of the load on the corner is needed.
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APPENDIX E

The displacement in the total solution Wt(x, y) given by the Edge
Function method is composed of components from a particular solution
and a complementary solution as shown in equation (2.7 ). If the ex-
pressions for slope, moment, and shear in the solution are wanted,
equation (.2,4 ) has to be evaluated using wt(x, y). The following are
equations obtained for these variables from the particular and comple-
mentary solutions. They are also needed in setting up the matrix to
evaluate the coefficients in the edge functions.

Particular solution for the rectangular plate given in Chapter II

After operating equation (2. 4) on equation (2.9), the following is ob-
tained. The coefficients BImn in the following are given by equation

(2. 3) (referring back to Chapter II, Fig. 2-1).
(i) Displacement is given by (1. 7).

ow
(ii) Slope in the Y direction (—%R)

o X nm ™ nm
S Blmn(——)sinmxcos &

m=1n=1 {'2 Ll LZ
- % nw mmx nry
+ 25 o e Bzmn(l—-—)cos—-z— sin ——=
m=0n=0 2 1 2

(E-1)

% %) nm mmx nTy
+ 2 =B3 ( =——)sin —— sin ( 5% )
m=l a=0 e LZ 4’1 LZ

+E— Z B4 (I—)C STCO Tx
m=0 n=1 2

: 3
(iii) Moment in the y direction (-D (—g + v ——VZV- )
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© @ 2 2
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(iv) Shearing force in the y direction ( D( -———E + (2 - V)T-%—)
yo
< g mﬂx nwy -
g =l n= l'D[ (1"’ -(Zv)-z--) ( '_")JBI mn® 4 i Ly
S % mmx nmy
IZI;L‘ 0 n:O'D[( )+(2 w( T_) (-—s)]B& cos g o sin %
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£z B[-(BT) zoy)(EBT) (27)]Bs cop M iy Y
m:O :1" 'L -( \))( "L ( ’L ) CcCOS {,l S.1n LZ

Analogous expressions for slope, moment, and shear in other

directions can be evaluated.

Complementary solution for the rectangular plate given in Chapter IV

After operating eq. (2.4) on eq. (4. 6), the following is ob-
tained. Bin and Y;]n satisfy the last two expressions in eq. (4.6). The
following is also based on reference to Fig. 4-3 and relations given by

q. (4.5).
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(i) Displacement WC(X, y) is given by eq. (4.6). For the sake of com-

pactness, the following notations are used:
Gm,y,) = e 3an stattd v )
G, (m = e- inyjcos(ej )

2 ’Yj = myj

J
Gylm,y,) = e o J[-y;]nsm(ei_nyj)-agnsin(egnyj)]
o . v .
Gylm,y;) = e o JE-yincqs(einyj)-Bfnsin(ainvj)]

Y. V. . 2 " : : i
Gglm,y;) = e et ) sin(einyj)uz(yin)(ein)cos(egnyj)
3 A
o 0N sm(emyj)]
j
—Y Y. . 2 . . . .
Gglm,y) = e ™ liy] ) cos(8] y)r2(y] )(8] Jsin(e] y.)
-(8) cos (8] )1
ST RIS j
Gv(m, yj) e [_'-(ym) s1n(8myj)+3(ym) (Bm)cos(emyj)
o et i .
+3(y) )6l ) sm(egnyjuegn) cos(egnyj)]
j
=¥ Y. - 3 . . 2 4 : &
Gglm,y;) = e ™ I[-(v] ) cos(8] y)-3ty] )°(8] )sin(8] y)
e : S
+3(y) )8l ) cos(sinyjmein) sm(af_nyj)]
(ii) Slope in the Y1 direction
ow mmx, mix,

c 2 1
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mmx mmx
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(iii) Moment in Y1 direction of WC: (-D( ; + v Bxc ))
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5  mmx s mmx, .
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(iv) Shear in Y1 direction of complementary solution:
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