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Abstract

The works presented in this thesis explore a variety of extensions of the standard model

of particle physics which are motivated by baryon number (B) and lepton number (L), or

some combination thereof. In the standard model, both baryon number and lepton number

are accidental global symmetries violated only by non-perturbative weak effects, though

the combination B − L is exactly conserved. Although there is currently no evidence for

considering these symmetries as fundamental, there are strong phenomenological bounds

restricting the existence of new physics violatingB or L. In particular, there are strict limits

on the lifetime of the proton whose decay would violate baryon number by one unit and

lepton number by an odd number of units.

The first paper in this thesis explores some of the simplest possible extensions of the

standard model in which baryon number is violated, but the proton does not decay as a

result. The second paper extends this analysis to explore models in which baryon number is

conserved, but lepton flavor violation is present. Special attention is given to the processes

of µ to e conversion and µ → eγ which are bound by existing experimental limits and

relevant to future experiments.

The final two papers explore extensions of the minimal supersymmetric standard model

(MSSM) in which both baryon number and lepton number, or the combination B − L, are

elevated to the status of being spontaneously broken local symmetries. These models have

a rich phenomenology including new collider signatures, stable dark matter candidates,

and alternatives to the discrete R-parity symmetry usually built into the MSSM in order to

protect against baryon and lepton number violating processes.
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Chapter 1

Introduction

This thesis details some of the research I have completed during my time as a graduate

student at Caltech. My focus has been on building models of particle physics for physics

beyond the standard model. The works presented here explore a variety of models which

give special attention to the symmetries associated with baryon number and lepton num-

ber – accidental global symmetries in the standard model which are violated only non-

perturbatively via the weak interactions. In Chapters 2 and 3, we explore the minimal

models which violate these symmetries without being in conflict with existing experimen-

tal bounds, especially bounds on proton decay. The models proposed in these chapters

can be described as simplified models. That is, rather than being led by a larger theoret-

ical motivation such as grand unification or the hierarchy problem, we build models with

a minimal number of new particles and interactions. Though it is not necessary, one can

think of a simplified model as being the low energy limit of more complex new physics

scenarios. In Chapters 4 and 5, we instead focus on extending the minimal supersymmetric

standard model to include baryon and lepton numbers as more fundamental symmetries of

nature. In these chapters, we take the hierarchy problem as motivation for the inclusion of

supersymmetry, and we explore the possibility that baryon number (B) and lepton number

(L), or the combination B−L, are spontaneously broken gauge symmetries. The resulting

models have rich phenomenological consequences as well as attractive theoretical features.

As stated above, both baryon number and lepton number are accidental symmetries of
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the standard model, and both are observed to be extremely good symmetries of nature. The

proton, for example, is known to have a lifetime of at least ∼ 1034 years. However, there

is no fundamental symmetry guaranteeing its absolute stability in the same way that, for

example, electromagnetic gauge invariance guarantees the stability of the electron. In fact,

it is known that both baryon and lepton numbers are violated by non-perturbative weak pro-

cesses. This is due to the fact that, in the standard model, each of these global symmetries is

anomalous. That is, they are classical symmetries of the standard model, but each is broken

by non-perturbative quantum effects. Although these effects are small enough to be negli-

gible in laboratory experiments, they can be important in studying the early universe when

temperatures were much higher. Indeed, the standard modern cosmological models rely

on a violation of baryon number to explain the matter asymmetry observed in the universe

– a violation of B is one of the three Sakharov conditions necessary for baryogenesis. A

violation of lepton number is another popular ingredient in early universe cosmology since

a lepton asymmetry can generate a baryon asymmetry via B- and L-violating sphalerons –

a mechanism known as leptogenesis. In any case, there is a tension between the apparent

necessity for baryon and lepton number violation in models of early universe cosmology

and the strict bounds placed on the violation of these symmetries generated by laboratory

experiments. It is this tension, in part, which has motivated the works included in this

thesis.

The first two chapters in this thesis were motivated by the first half of this tension.

Chapter 2 explores the simplest possible models in which the classical conservation of

baryon number in the standard model is violated by the addition of a minimal number

of additional scalar degrees of freedom. Motivated by the extremely long lifetime of the

proton, we focus on models in which the new sources of baryon number violation do not

lead to proton decay at tree-level. We find and enumerate a set of nine models which

satisfy this requirement with the addition of only two new scalar fields. Each model has

a unique phenomenology, though neutral meson mixing, neutron-antineutron oscillation,

and other baryon number violating processes are common among them. The models are
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strongly constrained by both flavor physics and limits on the electric dipole moment of the

neutron. We explore the parameter space of one model in particular to show that it can

be in agreement with current experimental bounds, but still have measurable effects in the

next generation of neutron oscillation experiments.

In Chapter 3, we use a very similar approach to model building, this time with the goal

of exploring simple extensions of the standard model which include lepton flavor violation.

In this case, models with (perturbative) baryon number violation in the Yukawa sector are

ignored, and only models with a single additional scalar field are considered. Only two such

models exist, one of which is characterized by an unusual enhancement to the lepton flavor

violating process µ → eγ proportional to the top quark mass. The phenomenology of this

model is investigated in detail, including a careful calculation of the µ → eγ decay rate,

the µ → e conversion rate, and the constraints coming from the electric dipole moment of

the electron. We find that the model could have measurable effects in the charged lepton

sector which would be observed at the MEG experiment (µ → eγ) and at the prospective

Mu2e experiment (µ→ e).

The last two chapters of this thesis were motivated by the second half of the tension

mentioned earlier – the strict limits on the structure of new physics coming from mea-

sured bounds on baryon and lepton number violating processes in laboratory experiments.

These works focus on the possibility that these symmetries are not simply accidental global

symmetries of the low energy theory, but rather relics of some more fundamental sponta-

neously broken symmetry related to these numbers. In addition, the models are built into

the minimal supersymmetric standard model (MSSM) in part because of the new gauge

symmetries’ ability to replace R-parity, usually included in the MSSM to avoid dangerous

B- and L-violating terms in the superpotential.

Chapter 4 develops an extension of the MSSM which includes a spontaneously broken

B−L symmetry. In the standard model and in the MSSM,B−L is not anomalous if right-

handed neutrinos are included, and so there is no additional particle content necessary to

avoid the usual problems associated with anomalies in gauge theories. One advantage of
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introducing B−L as a spontaneously broken gauge symmetry is that it eliminates the need

for an ad-hoc R-parity, usually introduced to explain away the existence of baryon and

lepton number violating terms in the MSSM superpotential. In the model we introduce in

Chapter 4, the MSSM is endowed with an extended gauge sector including U(1)B−L. The

gauge symmetry is broken by the vacuum expectation value of the right-handed sneutrino,

which then communicates this breaking via the D-term to a dark sector charged under

B−L. This process breaks supersymmetry in the dark sector and introduces a mass splitting

among the new fields. The lightest of these particles is a good dark matter candidate. One

interesting feature of this model is that, although R-parity is broken in the visible sector,

no discrete symmetry is needed to guarantee the stability of the dark matter candidate. We

show that the dark matter in this model is capable of reproducing the measured thermal

relic abundance while still escaping the experimental bounds set by Xenon100.

In Chapter 5, we take a similar approach to extending the MSSM, this time by intro-

ducing an extended gauge sector including U(1)B ⊗ U(1)L. This gauge group has the ad-

vantage of eliminating non-renormalizable terms in the superpotential like Q̂Q̂Q̂L̂/Λ and

ûcûcd̂cêc/Λ. These terms, which appear for example in SU(5) extensions of the MSSM, do

not violate either R-parity or B−L. However, bounds on proton decay limit the scale Λ to

be greater than 1027 GeV – an enormous suppression that warrants theoretical grounding.

Because these terms violate B and L separately, gauging these symmetries provides a sim-

ple possible mechanism for explaining this suppression. However, in the MSSM, U(1)B

and U(1)L are anomalous symmetries and so cannot be gauged without introducing new

particle content to cancel anomalies in this new gauge sector. In this chapter, we introduce

a set of superfields we call leptoquarks with both B and L quantum numbers that do just

that, as well as the minimal new field content necessary to spontaneously break these local

symmetries. We find that the breaking scale of U(1)B ⊗ U(1)L and supersymmetry are

related, so the B and L breaking scale must be relatively low if we expect supersymmetry

to provide a solution to the hierarchy problem. In addition, the model has a remnant Z2

which protects the lightest of these leptoquarks from decay. Thus the lightest of these new
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particles represents a possible dark matter candidate whose phenomenology we explore.

This collection of work studies a variety of extensions of the standard model motivated

by the apparent importance of baryon number violation (and possibly lepton number vio-

lation) in the early universe and the apparent lack of baryon and lepton number violation

measured in experiment. Future experiments testing baryon number violation via proton

decay and neutron oscillation, lepton number violation via double beta decay, and lepton

flavor violation via µ→ eγ and µ→ e conversion will help constrain or reveal new physics

related to these symmetries. Meanwhile, new cosmological measurements may help guide

theory to the correct model of baryogenesis to explain the matter asymmetry in the universe.
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Chapter 2

Simplified models with baryon number
violation but no proton decay

2.1 Introduction

The standard model has non-perturbative violation of baryon number (B). This source of

baryon number non-conservation also violates lepton number (L), however, it conserves

baryon number minus lepton number (B − L). The violation of baryon number by non-

perturbative weak interactions is important at high temperatures in the early universe, but

it has negligible impact on laboratory experiments that search for baryon number viola-

tion and we neglect it in this paper. If we add massive right-handed neutrinos that have a

Majorana mass term and Yukawa couple to the standard model left-handed neutrinos, then

lepton number is violated by two units, |∆L| = 2, at tree-level in the standard model.

Motivated by Grand Unified Theories (GUT) there has been an ongoing search for

proton decay (and bound neutron decay). The limits on possible decay modes are very

strong. For example, the lower limit on the partial mean lifetime for the mode p→ e+π0 is

8.2×1033 yrs [46]. All proton decays violate baryon number by one unit and lepton number

by an odd number of units. See Ref. [71] for a review of proton decay in extensions of the

standard model.

There are models where baryon number is violated, but proton (and bound neutron)

decay does not occur. This paper is devoted to finding the simplest models of this type
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and discussing some of their phenomenology. We include all renormalizable interactions

allowed by the SU(3) × SU(2) × U(1) gauge symmetry. In addition to standard model

fields these models have scalar fields X1,2 that couple to quark bilinear terms or lepton

bilinear terms. Baryon number violation either occurs through trilinear scalar interactions

of the type (i) X2X1X1 or quartic scalar terms of the type (ii) X2X1X1X1. The cubic

scalar interaction in (i) is similar in structure to renormalizable terms in the superpotential

that give rise to baryon number violation in supersymmetric extensions of the standard

model. However, in our case the operator is dimension three and is in the scalar potential.

Assuming no right-handed neutrinos there are four models of type (i) where each of the

X’s couples to quark bilinears and has baryon number −2/3. Hence in this case the X’s

are either color 3 or 6̄. There are also five models of type (ii) where X1 is a color 3 or 6̄

with baryon number −2/3 that couples to quark bilinears and X2 is a color singlet with

lepton number −2 that couples to lepton bilinears.

We analyze one of the models in more detail. In that model the SU(3)×SU(2)×U(1)

quantum numbers of the new colored scalars are X1 = (6̄, 1,−1/3) and X2 = (6̄, 1, 2/3).

The nn̄ oscillation frequency is calculated using the vacuum insertion approximation for

the required hadronic matrix element and lattice QCD results. For dimensionless coupling

constants equal to unity and all mass parameters equal, the present absence of observed n̄n

oscillations provides a lower limit on the scalar masses of around 500 TeV. If we consider

the limitM1 �M2 then forM1 = 5 TeV the next generation of nn̄ oscillation experiments

will be sensitive to M2 masses at the GUT scale.

There are three models that have nn̄ mixing at tree-level without proton decay. In these

models, constraints on flavor changing neutral currents and the electric dipole moment

(edm) of the neutron require some very small dimensionless couplings constants if we are

to have both observable nn̄ oscillations and one of the scalar masses approaching the GUT

scale.

In the next section we enumerate the models and discuss their basic features. The

phenomenology of one of the models is discussed in more detail in Section 2.3. Some
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Figure 2.1: ∆B = 1 and ∆L = 1 scalar exchange.
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Figure 2.2: Feynman diagram that contributes to tree-level p → K+e+e−ν̄ from
(3, 1,−4/3) scalar exchange.

concluding remarks are given in Section 2.4.

2.2 The models

We are looking for the simplest models which violate baryon number, but don’t induce pro-

ton decay. We don’t impose any global symmetries. Hence, all local renormalizable inter-

actions permitted by Lorentz and gauge invariance are assumed to be present. We begin by

considering renormalizable scalar couplings with all possible standard model fermion bi-

linears. A similar philosophy can be used to construct models involving proton decay [3] or

baryon number violating interactions in general [4, 5]. We first eliminate any scalars which

produce proton decay via tree-level scalar exchange as in Fig. 2.1. In particular, this elimi-

nates the scalars with SU(3)×SU(2)×U(1) quantum numbers (3, 1,−1/3), (3, 3,−1/3),

and (3, 1,−4/3). Note that in the case of (3, 1,−4/3) we need an additional W -boson ex-
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change to get proton decay (Fig. 2.2) since the Yukawa coupling to right-handed charge 2/3

quarks is antisymmetric (for a detailed discussion see [6]). The remaining possible scalar

representations and Yukawa couplings are listed in Table 2.1. We have assumed there are

no right-handed neutrinos (νR) in the theory.

operator SU(3)× SU(2)× U(1) rep. of X B L

XQQ,Xud (6̄, 1,−1/3) , (3, 1,−1/3)PD −2/3 0
XQQ (6̄, 3,−1/3) , (3, 3,−1/3)PD −2/3 0
Xdd (3, 1, 2/3), (6̄, 1, 2/3) −2/3 0
Xuu (6̄, 1,−4/3) , (3, 1,−4/3)PD −2/3 0
XQ̄L̄ (3, 1,−1/3)PD , (3, 3,−1/3)PD 1/3 1
Xūē (3, 1,−1/3)PD 1/3 1
Xd̄ē (3, 1,−4/3)PD 1/3 1

XQ̄e,XLū (3, 2, 7/6) 1/3 −1
XL̄d (3̄, 2,−1/6)PD −1/3 1
XLL (1, 1, 1), (1, 3, 1) 0 −2
Xee (1, 1, 2) 0 −2

Table 2.1: Possible interaction terms between the scalars and fermion bilinears along with the correspond-
ing quantum numbers and B and L charges of the X field. Representations labeled with the subscript “PD”
allow for proton decay via either tree-level scalar exchange (Fig. 2.1) or 3-scalar interactions involving the
Higgs vev (Fig. 2.4).

None of these scalars induces baryon number violation on their own, so we consider

minimal models with the requirement that only two unique sets of scalar quantum num-

bers from Table 2.1 are included, though a given set of quantum numbers may come with

multiple scalars.

Baryon number violation will arise from terms in the scalar potential, so we need to

take into account just the models whose scalar quantum numbers are compatible in the

sense that they allow scalar interactions that violate baryon number. For scalars cou-

pling to standard model fermion bilinears there are three types of scalar interactions which

may violate baryon number: 3-scalar X1X1X2, 4-scalar X1X1X1X2, and 3-scalar with a

Higgs X1X1X1H or X1X1X2H , where the Higgs gets a vacuum expectation value (vev)

(Fig. 2.3).

Actually, the simplest possible model violating baryon number through the interaction
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〈H〉
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Figure 2.3: Scalar interactions which may generate baryon number violation.
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X1
X1

d

e+

ν̄

d ν̄

d

〈H〉

Figure 2.4: Interaction which leads to proton decay, p → π+π+e−νν, for X1 =
(3̄, 2,−1/6).

X1X1X1H includes just one new scalar (3̄, 2,−1/6), but it gives proton decay via p →
π+π+e−νν (Fig. 2.4). Note that a similar diagram with 〈H〉 replaced by X2 allows us to

ignore scalars with the same electroweak quantum numbers as the Higgs and coupling to

Q̄u and Q̄d, X2 = (1, 2, 1/2) and (8, 2, 1/2), as these will produce tree level proton decay

as well. The other two baryon number violating models with an interaction termX1X1X2H

are: X∗1 = (3, 1,−1/3), X2 = (3̄, 2,−7/6) and X1 = (3, 1,−1/3), X∗2 = (3̄, 2,−1/6).

As argued earlier, such quantum numbers for X1 also induce tree-level proton decay, so we

disregard them.

We now consider models with a 3-scalar interaction X1X1X2. A straightforward anal-

ysis shows that there are only four models which generate baryon number violation via a

3-scalar interaction without proton decay. We enumerate them and give the corresponding

Lagrangians below. All of these models give rise to processes with ∆B = 2 and ∆L = 0,
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but only the first three models contribute to nn̄ oscillations at tree-level due to the sym-

metry properties of the Yukawas. Note that a choice of normalization for the sextet given

by,

(Xαβ) =


X̃11 X̃12/

√
2 X̃13/

√
2

X̃12/
√

2 X̃22 X̃23/
√

2

X̃13/
√

2 X̃23/
√

2 X̃33

 (2.1)

leads to canonically normalized kinetic terms for the elements X̃αβ and the usual form of

the scalar propagator with symmetrized color indices. Unless otherwise stated, we will

be using 2-component spinor notation. Parentheses indicate contraction of 2-component

spinor indices to form a Lorentz singlet.

Model 1. X1 = (6̄, 1,−1/3), X2 = (6̄, 1, 2/3)

L = − gab1 X
αβ
1

(
Qa
LαεQ

b
Lβ

)
− gab2 X

αβ
2 (daRαd

b
Rβ)

− g′ab1 Xαβ
1 (uaRαd

b
Rβ) + λXαα′

1 Xββ′

1 Xγγ′

2 εαβγεα′β′γ′ (2.2)

By virtue of the symmetric color structure of the 6̄ representation and the antisymmetric

weak structure of the QQ bilinear in the first term, g1 must be antisymmetric in flavor.

However, this antisymmetry is not retained upon rotation into the mass eigenstate basis.

Similarly, g2 must be symmetric because of the symmetric color structure in the second

term. In this case, the symmetry character of g2 will be retained upon rotation into the

mass eigenstate basis because it involves quarks of the same charge. Therefore, the inter-

action involving the Yukawa coupling g2 gives rise to (and is thus constrained by) K0-K̄0

mixing through tree-levelX2 exchange. The coupling g′1 has no particular flavor symmetry.
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Model 2. X1 = (6̄, 3,−1/3), X2 = (6̄, 1, 2/3)

L = − gab1 X
αβA
1 (Qa

Lαε τ
AQb

Lβ)− gab2 X
αβ
2 (daRαd

b
Rβ)

+ λXαα′A
1 Xββ′A

1 Xγγ′

2 εαβγεα′β′γ′ (2.3)

Here the matrix ε τA is symmetric. Because the first and second terms have symmetric

color structures, g1 and g2 must be symmetric in flavor. The weak triplet X1 has com-

ponents which introduce both K0-K̄0 and D0-D̄0 mixing. As in model 1, the interaction

involving g2 will introduce K0-K̄0 mixing via X2 exchange.

Model 3. X1 = (6̄, 1, 2/3), X2 = (6̄, 1,−4/3)

L = − gab1 X
αβ
1 (daRαd

b
Rβ)− gab2 X

αβ
2 (uaRαu

b
Rβ)

+ λXαα′

1 Xββ′

1 Xγγ′

2 εαβγεα′β′γ′ (2.4)

Both terms have symmetric color structures and no weak structure, so g1 and g2 must be

symmetric in flavor. In this model, the interactions involving g1 and g2 each have the po-

tential to introduce neutral meson-antimeson mixing. For example, the g1 interaction will

induce K0-K̄0 mixing while g2 will induce D0-D̄0 mixing.

Model 4. X1 = (3, 1, 2/3), X2 = (6̄, 1,−4/3)

L = − gab1 X1α

(
daRβ d

b
Rγ

)
εαβγ − gab2 X

αβ
2 (uaRαu

b
Rβ)

+ λX1αX1βX
αβ
2 (2.5)

Because of the antisymmetric color structure in the first term, g1 must be antisymmetric

in flavor which prevents it from introducing meson-antimeson mixing. The antisymmet-

ric structure of g1 also prevents the existence of six-quark operators involving all first-

generation quarks, and thus prevents nn̄ oscillations. As in previous models, g2 is symmet-
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ric and so we will get D0-D̄0 mixing as in model 3. Although this model does not have

nn̄ oscillations, there are still baryon number violating processes which would constrain

this model – for example, the process pp → K+K+. This has been searched using the

Super-Kamiokande detector looking for the nucleus decay 16O → 14CK+K+ [7]. Had we

included νR, model 4 would have been excluded by tree-level scalar exchange.

Now, a similar line of reasoning applies to the case where we have a quartic scalar inter-

action term X1X1X1X2. The only models violating baryon number which don’t generate

proton decay (or bound neutron decay) are discussed briefly below. These last five models

have dinucleon decay to leptons, but don’t contribute to tree-level nn̄ oscillations by virtue

of their coupling to leptons.

Model 5. X1 = (6̄, 1,−1/3), X2 = (1, 1, 1)

L = − gab1 X
αβ
1

(
Qa
LαεQ

b
Lβ

)
− gab2 X2(LaLεL

b
L)

− g′ab1 Xαβ
1 (uaRαd

b
Rβ)

+ λXαα′

1 Xββ′

1 Xγγ′

1 X2 εαβγεα′β′γ′ (2.6)

Similar arguments to those for the previous models tell us that g1 and g2 must be antisym-

metric in flavor.

Model 6. X1 = (6̄, 3,−1/3), X2 = (1, 1, 1)

L = − gab1 X
αβA
1 (Qa

Lαε τ
AQb

Lβ)− gab2 X2(LaLεL
b
L)

+ λXαα′A
1 Xββ′B

1 Xγγ′C
1 X2 ε

ABCεαβγεα′β′γ′ (2.7)

By comparison with model 2, we see that g1 is symmetric in flavor while g2 is antisymmet-

ric.
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Model 7. X1 = (6̄, 3,−1/3), X2 = (1, 3, 1)

L = − gab1 X
αβA
1 (Qa

Lαε τ
AQb

Lβ)− gab2 X
A
2 (LaLετ

ALbL)

+ λXαα′A
1 Xββ′B

1 Xγγ′C
1 XD

2 εαβγεα′β′γ′

× (δABδCD + δACδBD + δADδBC) (2.8)

Once again, as in model 2, we have a symmetric g1. The coupling g2 must be symmetric in

flavor as well.

Model 8. X1 = (6̄, 1, 2/3), X2 = (1, 1,−2)

L = − gab1 X
αβ
1 (daRαd

b
Rβ)− gab2 X2(eaRe

b
R)

+ λXαα′

1 Xββ′

1 Xγγ′

1 X2εαβγ εα′β′γ′ (2.9)

As in model 1, g1 must be symmetric. The coupling g2 must also be symmetric in flavor.

Model 9. X1 = (3, 1, 2/3), X2 = (1, 1,−2)

L = − gab1 X1α(daRβd
b
Rγ)ε

αβγ − gab2 X2(eaRe
b
R)

+ λX1αX1βX1γX2 ε
αβγ (2.10)

By comparison with model 4, we see that g1 must be antisymmetric in flavor. The coupling

g2 is symmetric. Note that the antisymmetric color structure of the scalar interaction re-

quires the existence of at least three different kinds of X1 scalars for this coupling to exist.

Including νR would eliminate model 9 for the same reason as model 4.
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2.3 Phenomenology of model 1

In this section we present a detailed analysis of model 1. The corresponding calculations for

the other models can be performed in a similar manner. Our work is partly motivated by the

recently proposed nn̄ oscillation experiment with increased sensitivity [8]. In addition to

nn̄ oscillations, we also analyze the cosmological baryon asymmetry generation in model

1 as well as flavor and electric dipole moment constraints. A brief comment on LHC

phenomenology is made.

2.3.1 Neutron-antineutron oscillations

The topic of nn̄ oscillations has been explored in the literature in various contexts. For some

of the early works on the subject see [9, 10, 11, 12]. Recently, a preliminary study of the

required hadronic matrix elements using lattice QCD has been carried out [13]. Reference

[14] claims that a signal of nn̄ oscillations has been observed.

The scalar content of model 1 we are considering is similar to the content of a unified

model explored in [15]. The transition matrix element,

∆m = 〈n̄|Heff |n〉 , (2.11)

leads to a transition probability for a neutron at rest to change into an antineutron after time

t equal to Pn→n̄(t) = sin2(|∆m| t).

Neglecting the coupling g1 in the Lagrangian (2.2) (for simplicity) the effective |∆B| =
2 Hamiltonian that causes nn̄ oscillations is,

Heff = −(g′11
1 )2g11

2 λ

4M4
1M

2
2

dα̇Rid
β̇
Ri′u

γ̇
Rjd

δ̇
Rj′u

λ̇
Rkd

χ̇
Rk′εα̇β̇εγ̇δ̇ελ̇χ̇

×
(
εijkεi′j′k′ + εi′jkεij′k′ + εij′kεi′jk′ + εijk′εi′j′k

)
+ h.c.

(2.12)
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X2

X1 X1
d

u

d

u

d d

Figure 2.5: Interaction which leads to neutron-antineutron oscillations.

where Latin indices are color and Greek indices are spinor. It arises from the tree-level

diagram in Fig. 2.5 (see, for example [16]). We have rotated the couplings g′1 and g2 to the

quark mass eigenstate basis and adopted a phase convention where λ is real and positive.

We estimate ∆m using the vacuum insertion approximation [17]. This relates the required

nn̄ six quark matrix element to a matrix element from the neutron to the vacuum of a

three quark operator. The later matrix element is relevant for proton decay and has been

determined using lattice QCD methods. The general form of the required hadronic matrix

elements is,

〈0|dα̇Ridβ̇Rjuγ̇Rk|n(p, s)〉 = − 1

18
β εijk

(
εα̇γ̇uβ̇R(p, s) + εβ̇γ̇uα̇R(p, s)

)
. (2.13)

Here uR is the right-handed neutron two-component spinor and the Dirac equation was

used to remove the term proportional to the left-handed neutron spinor. The constant β was

determined using lattice methods in Ref. [18] to have the value β ' 0.01 GeV3. In the

vacuum insertion approximation to Eq. (2.11) we find (see Appendix 2.A),

|∆m| = 2λβ2 |(g′11
1 )2g11

2 |
3M4

1M
2
2

. (2.14)

We note that an analogous calculation using the MIT bag model was performed in Ref. [19]
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and yields a similar result. The current experimental limit on ∆m is [20],

|∆m| < 2× 10−33 GeV . (2.15)

For scalars of equal mass, M1 = M2 ≡M , and the values of the couplings g′11
1 = g11

2 = 1,

λ = M , one obtains,

M & 500 TeV . (2.16)

If, instead, the masses form a hierarchy, the effect on nn̄ oscillations is maximized if we

choose M2 > M1. Assuming M1 = 5 TeV (above the current LHC reach) and λ = M2

this yields,

M2 & 5× 1013 GeV . (2.17)

Note that λ = M2 is a reasonable value for this coupling since integrating outM2 then gives

a quartic X1 interaction term with a coupling on the order of one. Of course, this model

does have a hierarchy problem so having the Higgs scalar and the X1 light compared with

X2 requires fine tuning.

Experiments in the future [8] may be able to probe nn̄ oscillations with increased sen-

sitivity of |∆m| ' 7×10−35 GeV. If no oscillations are observed, the new limit in the case

of equal masses will be,

M & 1000 TeV . (2.18)

On the other hand, having M1 = 5 TeV would push the mass of the heavier scalar up to the

GUT scale, leading to the following constraint on the second scalar mass,

M2 & 1.5× 1015 GeV . (2.19)
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dRdL X1

t

Figure 2.6: Diagram contributing to the electric dipole moment of the down quark.

We note, however, that in Section 2.3.2 we show that M1 on the order of a few TeV is

disfavored by the electric dipole moment constraints.

2.3.2 LHC, flavor and electric dipole moment constraints

If the mass of the scalar X1 is small enough, it can be produced at the LHC through both

single and pair production. Detailed analyses have been performed setting limits on the

mass of X1 from such processes [21, 22, 23]. A recent simulation [21] shows that 100 fb−1

of data from the LHC running at 14 TeV center of mass energy can be used to rule out or

claim a discovery of X1 scalars with masses only up to approximately 1 TeV, even when

the couplings to quarks are of order 1. Our earlier choice of M1 = 5 TeV used to estimate

the constraint on M2 from nn̄ oscillations lies well within the allowed mass region.

Some of the most stringent flavor constraints on new scalars come from neutral meson

mixing and electric dipole moments. The fact that in model 1, X1 couples directly to both

left- and right-handed quarks means that at one loop the top quark mass can induce the

chirality flip necessary to give a light quark edm, putting strong constraints on this model

even when X1 is at the 100 TeV scale. The diagram contributing to the edm of the down

quark is given in Fig. 2.6. We find (see Appendix 2.B),

|dd| '
mt

6π2M2
1

log

(
M2

1

m2
t

) ∣∣∣Im[g31
1 (g′

31
1 )∗]

∣∣∣ e cm . (2.20)

Here we have neglected pieces not logarithmically enhanced. This will give the largest
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contribution to the neutron edm because of the top quark mass factor. All Yukawa couplings

in this section are in the mass eigenstate basis.

Using SU(6) wavefunctions, this can be related to the neutron edm via dn = 4
3
dd −

1
3
du ' 4

3
dd. The present experimental limit is [24],

dexp
n < 2.9× 10−26 e cm . (2.21)

Assuming M1 = 500 TeV, neutron edm measurements imply the bound
∣∣Im[g31

1 (g′31
1 )∗]

∣∣ .
6 × 10−3. Furthermore, for observable nn̄ oscillation effects with M2 being close to

the GUT scale we need M1 ≈ 5 TeV. In such a scenario the edm constraint requires∣∣Im[g31
1 (g′31

1 )∗]
∣∣ . 10−6.

Another important constraint on the parameters of model 1 is provided by K0-K̄0 mix-

ing. Integrating out X2 generates an effective Hamiltonian,

Heff =
g22

2 (g11
2 )
∗

M2
2

(sRαsRβ)(d∗αR d
∗β
R )

→ g22
2 (g11

2 )
∗

2M2
2

(d̄αRγ
µsRα)(d̄βRγµsRβ), (2.22)

where in the second line we have gone from two- to four-component spinor notation (see

Appendix 2.C). This gives the following constraints on the couplings [25],

∣∣Re
[
g22

2

(
g11

2

)∗]∣∣ < 1.8× 10−6

(
M2

1 TeV

)2

, (2.23)

∣∣Im[g22
2

(
g11

2

)∗]∣∣ < 6.8× 10−9

(
M2

1 TeV

)2

. (2.24)

If we set M2 to 500 TeV, this corresponds to an upper bound on the real and imaginary

parts of g22
2 (g11

2 )
∗ of 0.45 and 1.7× 10−3, respectively.
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Figure 2.7: Diagrams corresponding to the decay of X2. The diagrams on top contribute to
the ∆B = 2 decays, while the diagrams on bottom contribute to ∆B = 0.

Decay Br Bf

X2 → X1X1 r 4/3
X2 → d̄Rd̄R 1− r −2/3

X2 → X1X1 r̄ −4/3

X2 → dRdR 1− r̄ 2/3

Table 2.2: Branching ratios and final state baryon numbers for the decays of X2 and X2

which contribute to the baryon asymmetry in the coupling hierarchy λ, λ̃� g2, g̃2.

2.3.3 Baryon asymmetry

We now investigate baryon number generation in model 1. B and L violating processes in

cosmology have been studied in the literature in great detail (for early works, see [26, 27]).

We treat X2 as much heavier than X1 and use two different X2’s to get a CP violating

phase in the one-loop diagrams that generate the baryon asymmetry. For this calculation

X1 is treated as stable with baryon number -2/3 as each will eventually decay via baryon

number conserving processes to two antiquarks. To simplify our discussion, let’s consider

the case in which the couplings satisfy the hierarchy λ, λ̃� g2, g̃2. The top line of Fig. 2.7

shows the dominant tree-level and one-loop diagrams contributing to the baryon number
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violating decays of X2. Rotating the X fields to make the couplings λ and λ̃ real we find

(see Appendix 2.D),

Γ(X2 → X1X1) =
3λ

8πM2

[
λ− λ̃ M2

2

4π(M2
2 − M̃2

2 )
Im(Tr(g†2 g̃2))

]
,

Γ(X2 → X1X1) =
3λ

8πM2

[
λ+ λ̃

M2
2

4π(M2
2 − M̃2

2 )
Im(Tr(g†2 g̃2))

]
. (2.25)

The net baryon number produced per X2X2 pair is (see, Table 2.2),

∆nB = 2(r − r̄)

=
6

πTr(g†2g2)

1

M̃2
2 −M2

2

Im
[
λ λ̃∗Tr(g†2 g̃2)

]
, (2.26)

where we have used the fact that CPT invariance guarantees the total width of X2 and X̄2

are the same. Given our choice of hierarchy for the couplings, we have approximated the

total width as coming from the tree-level decay of X2 to antiquarks. A similar result in the

context of SO(10) models was obtained in Ref. [15].

Even with just one generation of quarks, the CP violating phase cannot be removed

from the couplings λ, λ̃, g2, g̃2 and a baryon asymmetry can be generated at one loop. At

first glance this is surprising since there are four fields, X2, X̃2, X1 and dR whose phases

can be redefined and four relevant couplings. However, this can be understood by looking

at the relevant Lagrangian terms, g2X2dd, g̃2X̃2dd, λX1X1X2 and λ̃X1X1X̃2. The problem

reduces to finding solutions to the following matrix equation,
2 1 0 0

2 0 1 0

0 1 0 2

0 0 1 2




φX1

φX2

φX̃2

φd

 =


φλ

φλ̃

φg2

φg̃2

 , (2.27)

where the phases on the right-hand side are arbitrary. Let us take the difference of the first

two equations to remove phases for the couplings λ and λ̃, and the difference of the last
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two equations to remove phases for the coupling g2, g̃2. We therefore obtain φλ̃2 − φλ2 =

φX̃2
− φX2 and φg̃2 − φg2 = φX̃2

− φX2 . Those two equations cannot be simultaneously

fulfilled for arbitrary φλ, φλ̃, φg2 , φg̃2 .

The baryon number generated in the early universe can be calculated from Eq. (2.26)

by following the usual steps (see, for example, [28]). Out of equilibrium decay of X2 and

X̄2 is most plausible if they are very heavy (e.g.∼ 1012 GeV). However, to get measurable

nn̄ oscillation in this case, X1 would have to be light – a case that is disfavored by neutron

edm constraints, since it requires some very small dimensionless couplings.

2.4 Conclusions

We have investigated a set of minimal models which violate baryon number at tree-level

without inducing proton decay. We have looked in detail at the phenomenological aspects

of one of these models (model 1) which can have nn̄ oscillations within the reach of future

experiments. When all the mass parameters in model 1 have the same value, M , and

the magnitudes of the Yukawa couplings g′11
1 and g11

2 are unity, the present limit on nn̄

oscillations implies that M is greater than 500 TeV. For M = 500 TeV, the neutron

edm and flavor constraints give Im[g31
1 (g′31

1 )∗] < 6 × 10−6, Re[g22
2 (g11

2 )∗] < 0.45, and

Im[g22
2 (g11

2 )∗] < 1.7 × 10−3 which indicates that some of the Yukawa couplings and/or

their phases must be small if nn̄ oscillations are to be observed in the next generation of

experiments. Of course even in the standard model some of the Yukawa couplings are

small.

There are two other models (model 2 and model 3) that have nn̄ oscillations at tree-

level. Similar conclusions can be drawn for them, although the details are different. In

models 2 and 3, exchange of a single X1 does not give rise to a one-loop edm of the

neutron. However, K0-K̄0 mixing can occur from tree-level X1 exchange.

Observable nn̄ oscillations can occur for M2 � M1 with M2 at/near the GUT scale.
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This requires M1 ' 5 TeV, and flavor and electric dipole constraints require some very

small Yukawa couplings in that case.
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Appendix

2.A Vacuum insertion approximation

We are trying to evaluate

〈n̄(p, s)|Heff |n(p, s)〉 (2.28)

where

Heff = −(g′11
1 )2g11

2 λ

4M4
1M

2
2

dα̇Rid
β̇
Ri′u

γ̇
Rjd

δ̇
Rj′u

λ̇
Rkd

χ̇
Rk′εα̇β̇εγ̇δ̇ελ̇χ̇

×
(
εijkεi′j′k′ + εi′jkεij′k′ + εij′kεi′jk′ + εijk′εi′j′k

)
+ h.c. (2.29)

using lattice results relevant to the matrix element

〈0|dα̇Ridβ̇Rjuγ̇Rk|n(p, s)〉 = − 1

18
β εijk

(
εα̇γ̇uβ̇R(p, s) + εβ̇γ̇uα̇R(p, s)

)
. (2.30)

The coefficient in front of the right-hand side of this equation is chosen to make connection

with the lattice result in Ref. [18] which includes the contraction with εijkεα̇γ̇ .

To estimate the matrix element Eq. (2.28), we look for rearrangements of the operator

Heff which upon inserting the vaccum states |0〉〈0| would give matrix elements of the form

in Eq. (2.30). For example,Heff includes quark operators which can be rearranged as

dα̇Rid
β̇
Ri′u

γ̇
Rjd

δ̇
Rj′u

λ̇
Rkd

χ̇
Rk′ = −dα̇Ridβ̇Ri′uγ̇Rjdδ̇Rj′dχ̇Rk′uλ̇Rk . (2.31)
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Note that there are
(

4
2

)(
2
1

)
= 12 of these rearrangements possible. Inserting |0〉〈0| into this

choice gives a contribution

−〈n̄|dα̇Ridβ̇Ri′uγ̇Rj|0〉〈0|dδ̇Rj′dχ̇Rk′uλ̇Rk|n〉

=−
(

1

18

)2

|β|2εii′jεj′k′k(εα̇γ̇vβ̇ + εβ̇γ̇vα̇)(εδ̇λ̇uχ̇ + εχ̇λ̇uδ̇) . (2.32)

Finally, we contract this structure with the remaining color and weak epsilon tensors in

Eq. (2.29) using the identities

εijkεijk = 6 (2.33)

εimnεjmn = 2δij (2.34)

εijkεimn = 2δjmδkn − δjnδkm . (2.35)

It turns out this particular term contributes zero to the full matrix element because the

color structure in Heff is symmetric under(i ↔ i′), (j ↔ j′), and (k ↔ k′). In fact, this

reduces the number of non-zero contributions to just four of the twelve rearrangements.

After evaluating these, we find the total contribution to be the result quoted in Eq. (2.14),

〈n̄|Heff |〉 = |∆m| = 2λβ2 |(g′11
1 )2g11

2 |
3M4

1M
2
2

. (2.36)

2.B Down quark edm

In computing the down-quark edm, we are looking for the coefficient of the operator

−L = i
dd
2
d̄Lσ

µνFµνdR . (2.37)

Starting with the Lagrangian

L = −Xαβ
1

[
2gab1 (uaLαd

b
Lβ) + g′ab1 (uaRαd

b
Rβ)
]

(2.38)
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we generate an effective Hamiltonian (integrating out X1)

Heff = −g
ab
1 g1′cd∗

M2
X1

(uaLαd
b
Lβ)(ucα∗R ddβ∗R + ucβ∗R ddα∗R ) + h.c.

→ −g
13
1 g1′31∗

M2
X1

(tLαdLβ)(tα∗R d
β∗
R + tβ∗R d

α∗
R ) + h.c. (2.39)

where in the second line we’ve focused on the top quark contribution which will dominate

the dipole moment. Next, we write this using 4-component spinors by writing explicitly the

spinor index contractions and then identifying the corresponding 4-component structure.

That is,

(tLαdLβ) = tLαaε
abdLβb = (tTαCPLdβ) (2.40)

(tRαdRβ) = tȧLαεȧḃd
ḃ
Lβ = (tTαCPRdβ) . (2.41)

Taking the hermitian conjugate of the second line gives

dβ∗T (CPR)†tα∗ = d̄βγ0(CPR)†γ0t̄αT

= d̄βγ0P †RC
†γ0t̄αT

= d̄βγ0P †Rγ
0γ0C†γ0t̄αT

= d̄βPLCt̄
αT

= d̄βCPLt̄
αT (2.42)

giving us an effective Hamiltonian in 4-component notation

Heff = −g
ab
1 g1′cd∗

M2
X1

(tTαCPLdβ)(d̄βCPLt̄
αT + d̄αCPLt̄

βT ) . (2.43)

When evaluating the loop-diagram, we need to be careful with this effective Hamilto-

nian to make sure we get the correct sign associated the fermion loop in Fig. 2.6 generated

once X1 is integrated out as in Fig. 2.B.1. The time-ordered product associated with this
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Figure 2.B.1: One-loop diagram contributing to the down quark edm.

diagram using just the first term inHeff is

〈0|T{tα(x)a(CPL)abdβ(x)bbardβ(x)c(CPL)cdt̄α(x)d · t̄α(y)eγ
µ
ef tα(y)f}|0〉

= 3Stae(x− y)Stfd(y − x)γµef (CPL)ab(CPL)cddβ(x)bd̄β(x)c

= 3(CPL)TbaS
t
ae(x− y)γµefS

t
fd(y − x)(CPL)Tdcdβ(x)bd̄β(x)c (2.44)

where we’ve left off the photon and defined

Stab(x− y) = 〈0|T ta(x)t̄b(y)|0〉 . (2.45)

Note that the second term in Heff contributes in the same way, but without the color factor

of 3.

Next, we evaluate

4

∫
d̃q(CPL)T

i(/q +mt)

q2 −m2
t

γµ
i(/q + /k +mt)

(q + k)2 −m2
t

(CPL)T (2.46)

with q the incoming down quark momentum and k the outgoing photon momentum. The

simplification of this is straightforward. Using

γµγν = 1
2
{γµ, γν}+ 1

2
[γµ, γν ] = 1

2
{γµ, γν} − iσµν (2.47)
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we identify the piece coming from σµν

− 4mtPL

∫
d̃q

CγµγνkνC

[q2 −m2
t ][(q + k)2 −m2

t ]

→ 4imtPLCσ
µνkνC

∫
d̃q

1

[q2 −m2
t ][(q + k)2 −m2

t ]

=
4mtPLCσ

µνkνC

16π2
ln

(
M2

X1

m2
t

)
. (2.48)

Finally, to correct for the photon we left off, we need to multiply by the top quark charge,
2
3

and a factor of 1
2

since this amplitude is generated by both terms in F µν . This gives our

desired result,

i
dd
2

= i
mt

12π2M2
X1

ln

(
M2

X1

m2
t

)
Im(g13

1 g
′31∗
1 ) (2.49)

2.C K0-K̄0 mixing

Here, we show explicitly the transformation between 2-component and 4-component nota-

tion for the effective Hamiltonian in K0-K̄0 mixing. We start by writing the spinor indices,

Heff =
g22

2 (g11
2 )
∗

M2
2

(sRαsRβ)(d∗αR d
∗β
R )

=
g22

2 (g11
2 )
∗

M2
2

(sȧRαεȧḃs
ḃ
Rβ)(d∗αaR εabd

∗βb
R ) . (2.50)

Next, we use the identity 2εȧḃεab = σµaȧσµbḃ to write this as

=
g22

2 (g11
2 )
∗

2M2
2

(sȧRαs
ḃ
Rβd

∗αa
R d∗βbR )σµaȧσµbḃ

=
g22

2 (g11
2 )
∗

2M2
2

(d∗αaR σµaȧs
ȧ
Rα)(d∗βbR σµbḃs

ḃ
Rβ)

=
g22

2 (g11
2 )
∗

2M2
2

(d̄αRγ
µsRα)(d̄βRγµsRβ) (2.51)

where the last line is in 4-component notation.
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2.D Absoptive part of X2 decay

αβ αβ

µν

λσ

µν

λσ

γδ

Figure 2.D.1: Color structure of the relevant diagrams for X2 decay.

We start with the tree-level diagram in Fig. 2.D.1. The Feynman rule for this vertex

gives

iMtree = 2iεαµλεβνσ . (2.52)

Because the same color structure appears in the 1-loop diagram, it will be useful to compute

the decay amplitude for the tree-level process.

Γtree =
1

2

1

16πM2

1

6

∑
initial
colors

1

2

(
δαα′δ

β
β′ + δαβ′δ

β
α′

) ∑
final

colors

1

4

(
δµµ′δ

ν
ν′ + δνµ′δ

µ
ν′

) (
δλλ′δ

σ
σ′ + δσλ′δ

λ
σ′

)
× 4|λ|2εαµλεβνσεα

′µ′λ′εβ
′ν′σ′

=
3

8πM2

|λ|2 (2.53)

The factors involving δ’s are used to symmetrize the amplitude over symmetric color in-

dices, the factors of 1
2

is for identical final states, and the factors of 1
6

is for averaging over

initial colors.

Next, we include the amplitude coming from the loop-diagram. The amplitude is

iMloop = 2λ′Tr[g̃†2g2]εαµλεβνσ
1

M2
2 − M̃2

2

I(p2) (2.54)
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where the I(p2) is the loop factor

I(p2) = 2

∫
d4q

(2π)4
Tr

[
i/q

q2 + iε
PR

(−i)(/p+ /q)

(p+ q)2 + iε

]
= −2

∫
d4q

(2π)4

1

q2 + iε

1

(p+ q)2 + iε
Tr
[
(−/q)PR(/p+ /q)

]
= −2

∫
d4q

(2π)4

1

q2 + iε

1

(p+ q)2 + iε
2q1 · q2 (2.55)

where we’ve defined q1 = −q and q2 = p + q. Now, the difference in decay rates between

X2 and X̄2 will depends only on the imaginary part of this loop integral which we can

compute using the usual Cutkosky rules.

Disc
[
I(p2)

]
= −2

∫
d4q1

(2π)4

d4q2

(2π)4
(2π)4δ(4)(q1 + q2 − p)(−2πi)δ(q2

1)(−2πi)δ(q2
2)2q1 · q2

= 16π2

∫
d4q1

(2π)4
δ(q2

1)δ
[
(p− q1)2

]M2
2

2

=
16π2M2

2

2(2π)4

∫
d4q1

δ(q0
1 − |~q1|)
2q0

1

δ(M2

2
− q0

1)

2M2

=
16π2M2

2

2(2π)4

∫
d3~q1

δ(M2

2
− |~q1|)
M2

1

2M2

=
16π2

4(2π)4

∫
4π|~q1|2d|~q1|δ(M2

2
− |~q1|)

=
16π3

(2π)4

(
M2

2

)2

=
M2

2

4π
(2.56)

In the second line, we’ve integrated over q2 to eliminated the δ(4). In the third line, we’ve

used an identity to rewrite the composition of a Dirac delta and another function.

Now, we use the fact that Disc [I(p2)] = 2iIm [I(p2)] to get the relevant part of our

ampitude

iMloop = −2iλ′Tr[g̃†2g2]εαµλεβνσ
1

M2
2 − M̃2

2

M2
2

8π
. (2.57)
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Comparing this to our tree-level result tells us that

Γ =
3

8πM2

∣∣∣∣λ− iλ′Tr[g̃†2g2]
1

M2
2 − M̃2

2

M2
2

8π

∣∣∣∣2
' 3λ

8πM2

[
λ− λ′ M2

2

4π(M2
2 − M̃2

2 )
Im(Tr(g†2g̃2))

]
. (2.58)



32

Chapter 3

Phenomenology of scalar leptoquarks

3.1 Introduction

Currently, the standard model describes most aspects of nature with remarkable precision.

If there is new physics at the multi TeV scale (perhaps associated with the hierarchy puz-

zle), it is reasonable to expect measurable deviations from the predictions of the standard

model in the flavor sector. Amongst the experiments with very high reach in the mass scale

associated with beyond the standard model physics are those that look for flavor violation in

the charged lepton sector through measurements of the processes, µ→ eγ [29] and µ→ e

conversion [30, 31], and the search for electric dipole moments of the neutron, proton and

electron.

Models with scalar leptoquarks can modify the rates for these processes. Simple models

of this type have been studied previously in the literature, including their classification and

phenomenology [32, 33, 34, 35, 36, 37, 38, 39].

Our approach is to first identify the minimal renormalizable scalar leptoquark models

containing one single additional representation of SU(3) × SU(2) × U(1) and construct

the most general renormalizable model without any additional constraints on the couplings

apart from the usual ones, i.e., gauge invariance, Poincaré invariance, and locality. Given

the strong experimental constraints on baryon number violating processes like p → π0e+,

we concentrate only on those scalar leptoquark models which don’t have baryon number
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violation in perturbation theory via leptoquark exchange. Of course there is baryon number

violation through non-perturbative quantum effects since it is an anomalous symmetry. But

this is a very small effect at zero temperature. Only two models fulfill this requirement.

One of those two models gives a top mass enhanced µ → eγ decay rate. We perform an

analysis of the phenomenology of this specific model, including the µ → eγ decay rate,

µ → e conversion rate, as well as electric dipole moment constraints focussing mostly on

the regions of parameter space where the impact of the top quark mass enhancement is

most important. For lepton flavor violating processes at higher energies such as τ → µγ,

deep inelastic scattering e + p → µ(τ) + X , etc., the impact on the phenomenology of

the top quark mass enhancement of charged lepton chirality flip is less dramatic and that is

why we focus in this paper on low energy processes involving the lightest charged leptons.

We also consider the effects of dimension five operators that can cause baryon number

violation. We find that the two models without renormalizable baryon number violation

can have such operators and, even if the operators are suppressed by the Planck scale, they

may (depending on the values of coupling constants and masses) give rise to an unaccept-

able level of baryon number violation. We discuss a way to forbid these dimension five

operators.

3.2 Models

A general classification of renormalizable leptoquark models can be found in [32, 33].

However, in the spirit of our approach, in which we are interested in models with no proton

decay from leptoquark exchange, a more useful list of possible interaction terms between

the scalar leptoquarks and fermion bilinears is presented in [40], where those models that

have tree-level proton decay are highlighted. The relevant models are listed in Table 3.1

below.

The only two models fulfilling our requirement areX = (3, 2, 7/6) andX = (3, 2, 1/6)

.
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leptoquark diquark SU(3)× SU(2)× U(1)
couplings couplings representation of X

XQ̄e, XLū − (3, 2, 7/6)
XLd̄ − (3, 2, 1/6)

XQ̄L̄, Xūē XQQ, Xud (3, 1,−1/3)PD

XQ̄L̄ XQQ (3, 3,−1/3)PD

Xd̄ ē Xuu (3, 1,−4/3)PD

Table 3.1: Possible interaction terms between the scalar leptoquarks and fermion bilinears along with the
corresponding quantum numbers. Representations labeled with the subscript “PD” allow for proton decay
via tree-level scalar exchange.

Model I: X = (3, 2, 7/6).

The Lagrangian for the scalar leptoquark couplings to the fermion bilinears in this

model is,

L = −λiju ūiRXT εLjL − λije ēiRX†Qj
L + h.c. , (3.1)

where,

X =

 Vα

Yα

 , ε =

 0 1

−1 0

 , LL =

 νL

eL

 . (3.2)

After expanding the SU(2) indices it takes the form,

L = −λiju ūiαR(Vαe
j
L − YανjL)− λije ēiR(V †αu

j
αL + Y †αd

j
αL) + h.c. . (3.3)

Note that in this model the left-handed charged lepton fields couple to right-handed top

quarks, and the right-handed charged lepton fields couple to left-handed top quarks. So a

charged lepton chirality flip can be caused by the top mass at one loop.

Model II: X = (3, 2, 1/6).
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The corresponding Lagrangian is,

L = −λijd d̄iRXT εLjL + h.c. , (3.4)

where we have used the same notation as in the previous case. Expanding the SU(2)

indices yields,

L = −λijd d̄iαR(Vαe
j
L − YανjL) + h.c. . (3.5)

In model II the leptoquark cannot couple to the top quark, so there is no mt enhancement

in the µ → eγ decay rate. There is also no mb enhancement, and the one-loop effective

Hamiltonian for µ→ eγ (after integrating out the massive scalars and the heavy quarks) is

proportional to the muon mass. In addition, as mentioned in [40], this model does generate

tree-level proton decay from its interaction with the Higgs field. For this reason, in the

remainder of the paper we will focus entirely on model I.

3.3 Phenomenology

In this section we analyze some of the phenomenology of model I, i.e., X = (3, 2, 7/6).

We concentrate only on those constraints which are most restrictive for the model and po-

tentially most sensitive to the unusual top mass enhancement of the charged lepton chirality

change, i.e., the ones coming from the following processes – muon decay to an electron and

a photon, muon to electron conversion, and electric dipole moment of the electron.

3.3.1 Naturalness

Before elaborating on the phenomenology of the model, we first discuss the range of cou-

plings allowed by the naturalness criterion. The contribution to the charged lepton mass
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matrix induced at one loop is given by,

∆mij ' λ̃3i
u λ̃

j3
e

3mt

16π2
log

(
Λ2

m2
V

)
, (3.6)

where Λ is the cut-off scale. To avoid unnatural cancellations between this loop contribu-

tion to the lepton mass matrix and the tree-level lepton mass matrix we require,

|∆mij| .
√
mimj . (3.7)

For example, for a scalar of massmV = 50 TeV and a cut-off set at the GUT scale Eq. (3.6)

gives,

∆mij ' λ̃3i
u λ̃

j3
e × 170 GeV ,= (3.8)

which, combined with Eq. (3.7), yields the following constraint on the couplings,

|λ̃13
e λ̃

32
u |, |λ̃23

e λ̃
31
u | . 4.3× 10−5 . (3.9)

In the subsequent analysis we will include the constraint imposed by Eq. (3.7) by indicating

which region of the plots is not favored by the naturalness considerations.

3.3.2 µ→ eγ decay

The relevant Feynman diagrams for this process are presented in Fig. 3.1. The uniqueness

of model I is that, apart from the fact there is no tree-level proton decay, the µ → eγ rate

is enhanced by the top quark mass. To our knowledge, such an enhancement of µ → eγ

was observed previously only in [36] in the context of an SU(2) singlet scalar leptoquark

model. However, that model suffers from perturbative proton decay and the impact of the

mt enhancement was not focussed on.

Keeping only the piece enhanced by mt, the sum of amplitudes corresponding to the
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Figure 3.1: Feynman diagrams contributing to the process µ→ eγ.

diagrams in Fig. 3.1 (neglecting the terms proportional to me) is given by (see Appendix

3.A),

iM = − 3 emt

16 π2m2
V

f(m2
t/m

2
V ) kν εµ(k)

×
[
λ̃13
e λ̃

32
u ēR(p− k)σµνµL(p) + (λ̃31

u )∗(λ̃23
e )∗ ēL(p− k)σµνµR(p)

]
, (3.10)

where k is the photon four-momentum and ε is the photon polarization. The function

f(m2
t/m

2
V ) is given by,

f(x) =
1− x2 + 2x log x

2(1− x)3
+

2

3

(
1− x+ log x

(1− x)2

)
, (3.11)

and the tilde over the couplings denotes that they are related by transformations that take

the quarks and leptons to their mass eigenstate basis through the following 3 × 3 matrix

transformations,

λ̃u = U(u,R)†λuU(e, L) , λ̃e = U(e, R)†λeU(u, L) , (3.12)

where the right-handed up quarks in the Lagrangian are related to the right-handed mass
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eigenstate up-type quarks by the matrix U(u,R), the left-handed up quarks in the La-

grangian are related to the left-handed mass eigenstate up-type quarks by the matrixU(u, L),

etc.

The µ→ eγ decay rate is,

Γ(µ→ eγ) =
9 e2λ2m2

tm
3
µ

2048π5m4
V

f(m2
t/m

2
V )2 , (3.13)

where,

λ ≡
√

1

2

∣∣λ̃13
e λ̃

32
u

∣∣2 +
1

2

∣∣λ̃31
u λ̃

23
e

∣∣2 . (3.14)

Fig. 3.2 shows the relation between λ and the scalar leptoquark mass. This dependence

was plotted for the µ → eγ branching ratio equal to the current upper limit of Br(µ →
eγ) ' 2.4× 10−12 reported by the MEG experiment, and the prospective MEG sensitivity

of Br(µ → eγ) ' 5.0 × 10−13. It shows that the experiment will be sensitive to scalar

leptoquark masses at the hundred TeV scale for small values of the couplings.

For very small x, f(x) → f̃(x) = 2
3

log x. This is a reasonable approximation in the

range of x we are interested in. For example, f̃(10−8)/f(10−8) ' 1.1.

3.3.3 µ→ e conversion

The effective Hamiltonian for the µ→ e conversion arises from two sources,

Heff = H(a)
eff +H(b)

eff . (3.15)

The first is the dipole transition operator that comes from the loop diagrams which are

responsible for the µ→ eγ decay, given by,

H(a)
eff =

3 emt

32π2m2
V

f(m2
t/m

2
V )

×
[
λ̃13
e λ̃

32
u ēRσµνµLF

µν + (λ̃31
u )∗(λ̃23

e )∗ ēLσµνµRF
µν
]
. (3.16)
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Figure 3.2: The combination of couplings λ from Eq. (3.14) as a function of the scalar
leptoquark mass for two values of the µ→ eγ branching ratio relevant for the MEG exper-
iment. The shaded region consists of points which do not satisfy Eq. (3.7).

Using the following Fierz identities (for spinors),

(ū1Lu2R)(ū3Ru4L) =
1

2
(ū1Lγ

µu4L)(ū3Rγµu2R) ,

(ū1Lu2R)(ū3Lu4R) =
1

2
(ū1Lu4R)(ū3Lu2R) (3.17)

+
1

8
(ū1Lσ

µνu4R)(ū3Rσµνu2L) ,

we arrive, after integrating out the heavy scalar leptoquarks (at tree level), at the second

part of the effective Hamiltonian,

H(b)
eff =

1

2m2
V

{
λ̃12
u (λ̃11

u )∗(ēLγ
µµL)(ūαRγµuαR)

+λ̃11
e λ̃

12
u

[
CS(µ)(ēRµL)(ūαRuαL) +

1

4
CT (µ)(ēRσ

µνµL)(ūαRσµνuαL)
]

+ λ̃11
e (λ̃21

e )∗(ēRγ
µµR)(ūαLγµuαL)

+(λ̃21
e )∗(λ̃11

u )∗
[
CS(µ)(ēLµR)(ūαLuαR)+

1

4
CT (µ)(ēLσ

µνµR)(ūαLσµνuαR)
]}

+
1

2m2
Y

(λ̃eVCKM)11
(

(λ̃eVCKM)21
)∗

(ēRγ
µµR)(d̄αLγµdαL) + . . . (3.18)
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Figure 3.3: The combination of couplings λ from Eq. (3.14) as a function of the scalar
leptoquark mass for two values of the Br(µ → e conversion in Al) relevant for the Mu2e
experiment. The thin solid line, corresponding to Br(µ → eγ) = 10−14, is included for
reference. The shaded region consists of points which do not satisfy Eq. (3.7).

The CKM matrix arises whenever a coupling to the left-handed down-type quark appears.

In Eq. (3.18) the contribution of the heavy quarks, as well as the contribution of the strange

quark, are in the ellipses. Since the operators q̄q and q̄σµνq do require renormalization,

their matrix elements develop subtraction point dependence that is cancelled in the leading

logarithmic approximation by that of the coefficients CS,T . Including strong interaction

leading logarithms we get,

CS(µ) =

[
αs(mV )

αs(µ)

]−12/(33−2Nq)

(3.19)

and

CT (µ) =

[
αs(mV )

αs(µ)

]4/(33−2Nq)

, (3.20)

whereNq = 6 is the number of quarks with mass belowmV . In order to match the effective

Hamiltonian (3.18) to the Hamiltonian at the nucleon level and use this to compute the

conversion rate, we follow the steps outlined in [41, 42].

Our results, taking into account only the contribution from H(a)
eff , are shown in Fig. 3.3.
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The current experimental limit is Br(µ→ e conversion in Au) < 7.0× 10−13 [43]. How-

ever, here we focus on the prospective Mu2e experiment [30], which has a sensitivity goal

of 5× 10−17. The COMET experiment [31] aims for comparable sensitivity in later stages.

We use the total capture rate for 27
13Al of ωcapture = 0.7054 × 106 s−1 [44] to switch from

the µ→ e conversion rate to a branching ratio.

Apart from coupling constant factors, the contribution to the µ → e conversion ampli-

tude from H(a)
eff is enhanced over the contribution to the amplitude from H(b)

eff roughly by

(mt/mµ)(3e2/32π2) log(m2
V /m

2
t ) ∼ 10, for mV in the hundred TeV range.

Our results show that in some regions of parameter space the Mu2e experiment will be

able to constrain leptoquark couplings with similar precision to what can be done with an

experiment which is sensitive to a branching ratio for µ → eγ of around 10−14. In other

regions the Mu2e experiment is likely to give a more powerful constraint for such a µ→ eγ

branching ratio, for example, when the Yukawa couplings are strongly hierarchical and the

top quark loop is very suppressed.

To show graphically the contributions to the branching ratio originating from terms in

the effective Hamiltonian with different structures, we set all the couplings to zero apart

from λ̃13
e , λ̃

23
e , λ̃

31
u , λ̃

32
u , λ̃

11
u , λ̃

12
u for simplicity, i.e., we leave only the couplings relevant for

the µ→ eγ decay and one of the vector contributions toH(b)
eff .

Note that the heavy quark contributions are suppressed by ΛQCD/mQ, low energy phe-

nomenology suggests that the strange quark contribution is small, and furthermore the ten-

sor contributions are not enhanced by the atomic number of the target.

In addition, we consider only real couplings and define κ ≡ λ̃11
u λ̃

12
u . We also assume

λ̃13
e λ̃

32
u = λ̃31

u λ̃
23
e = λ, so that we can plot λ as a function of the scalar leptoquark mass mV

for a given value of the ratio,

r ≡ κ

λ
=

λ̃11
u λ̃

12
u√

1
2
(λ̃13

e λ̃
32
u )2 + 1

2
(λ̃31

u λ̃
23
e )2

. (3.21)

Figs. 3.4, 3.5, 3.6, and 3.7 show our results for a few values of r = ±1, ±10, ±100, ±200
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Figure 3.4: The combination of couplings λ from Eq. (3.14) as a function of the scalar
leptoquark mass for a branching ratio Br(µ → e conversion in Al) = 10−16 and four
different positive values of the ratio of the couplings r from Eq. (3.21). The shaded region
consists of points which do not satisfy Eq. (3.7).
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Figure 3.5: Same as Fig. 3.4, but for negative values of r.

and two values of the branching ratio Br(µ→ e conversion in Al) = 10−16, 10−17.

For r . 1 the branching ratio is dominated by the H(a)
eff contribution and in this param-

eter region all curves look like the ones in Fig. 3.3. For larger values of r, depending on

the relative sign between the contributions from H(a)
eff and H(b)

eff , there are two possibilities.
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Figure 3.6: Same as Fig. 3.4, but for a branching ratio Br(µ → e conversion in Al) =
10−17.

If the interference is constructive, the curve moves down with increasing r since a smaller

value of the coupling λ is required to achieve a given branching ratio (Figs. 3.5 and 3.7).

In the case of a destructive interference, the curves move up until a value of r is reached

for which the two contributions are the same (Figs. 3.4 and 3.6). As estimated before,

this occurs for r ≈ 10. Increasing r further brings the curves back down, since the H(b)
eff

contribution becomes dominant.

Large values of r are expected if the Yukawa couplings of X exhibit a hierarchical

pattern like what is observed in the quark sector; κ changes generations by one unit while

the product of couplings in λ involves changing generations by three units. Finally, we

note that for all the curves in the plots above the Yukawa couplings are well within the

perturbative regime.

3.3.4 Electron EDM

Another flavor constraint on the couplings of model I comes from the electric dipole mo-

ment (EDM) of the electron. As mentioned earlier, the fact that X couples directly to both

left- and right-handed quarks means that at one loop the top quark mass can induce the
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Figure 3.7: Same as Fig. 3.5, but for a branching ratio Br(µ → e conversion in Al) =
10−17.

chirality flip necessary to give an electron EDM. We find that,

|de| '
3 emt

16 π2m2
V

f(m2
t/m

2
V )
∣∣Im[λ̃13

e λ̃
31
u ]
∣∣ . (3.22)

The present electron EDM experimental limit [45] is,

|de| < 10.5× 10−28 e cm . (3.23)

We can write the dipole moment in terms of the branching ratio, Br(µ → eγ), giving the

constraint ∣∣Im[λ̃13
e λ̃

31
u ]
∣∣

λ

√
Br(µ→ eγ) < 2.0× 10−7 . (3.24)

For example, if model I gave a branching ratio equal to the current experimental bound of

Br(µ → eγ) < 2.4 × 10−12, this would correspond to the constraint on the couplings of∣∣Im[λ̃13
e λ̃

31
u ]
∣∣/λ < 0.13. Fig. 3.8 shows the relation between the parameters

∣∣Im[λ̃13
e λ̃

31
u ]
∣∣

and mV for the electron EDM equal to |de| = 10−27, 10−28, and 10−29 e cm.
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Figure 3.8: The combination of couplings
∣∣Im[λ̃13

e λ̃
31
u ]
∣∣ as a function of the scalar lepto-

quark mass for three different values of the electron EDM. The shaded region consists of
points which do not satisfy Eq. (3.7).

3.4 Baryon number violation and dimension five opera-

tors

Tree-level renormalizable interactions are not the only possible source of baryon number

violation. It might also occur through higher-dimensional nonrenormalizable operators.

In the standard model, proton decay is restricted to operators of mass dimension six or

higher. However, the scalar leptoquark models we consider exhibit proton decay through

dimension five operators.

Let’s first consider model I, in which X = (3, 2, 7/6). Although it doesn’t give proton

decay at tree level, one can construct the following dimension five operator,

OI =
1

Λ
gabdaRαd

b
Rβ(H†Xγ)ε

αβγ . (3.25)

The coupling constant matrix g is antisymmetric in flavor space. Because of the tree-level

leptoquark couplings (see, Table 3.1), baryon number violating decay occurs here through

the process shown in Fig. 3.9, resulting in n→ e−K+ and p→ K+ν. Setting the coupling
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〈H〉

X

Q, u
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Figure 3.9: Feynman diagram representing proton decay in model I.

constants to unity, we estimate the baryon number violating nucleon decay rate caused by

this operator to be,

Γp ≈ 2× 10−57

(
50 TeV

mV

)4(
MPL

Λ

)2

GeV . (3.26)

Since the current experimental limit is Γexp
p < 2.7 × 10−66 GeV [46], even if the scale of

new physics Λ is equal to the Planck mass MPL when the coupling constants are unity, this

operator causes too large a proton decay rate for mV . 10 000 TeV.

In the case of model II, where X = (3, 2, 1/6), there are two dimension five baryon

number violating operators,

O(1)
II =

1

Λ
gabuaRαd

b
Rβ(H†Xγ)ε

αβγ ,

O(2)
II =

1

Λ
gabuaRαe

b
R(XβεXγ)ε

αβγ . (3.27)

The operator O(1)
II permits a nucleon decay pattern similar to the previous case, e.g., n →

e−π+ and p→ π+ν. Proton decay through the operator O(2)
II is much more suppressed.

In order to prevent proton decay through dimension five operators, one could introduce

a discrete gauge symmetry that forbids the baryon number violating nonrenormalizable

couplings. SinceB−L is the only anomaly free global symmetry in the standard model, we

chose to impose a discrete subgroup ofB−L. In models I and II the leptoquark hasB−L =

4/3. The usual Z2, where the nontrivial transformation is (−1)B−L, doesn’t work, as the
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operatorsOI ,O(1)
II , andO(2)

II are invariant under this transformation. However, we find that

imposing a Z3 discrete symmetry, with elements that are powers of exp[2πi(B − L)/3],

forbids these dimension five operators and, thus, prevents the proton from decaying in this

class of models. Note that gauging B−L and spontaneously breaking the symmetry with a

charge three scalar (at some high scale) leaves this unbroken discrete Z3 gauge symmetry.

It is not possible to use any discrete subgroup of B − L to forbid proton decays in the

models from Table 3.1 which exhibit proton decay at tree level since all the interactions

conserve B − L.

Finally, we would like to comment on the relation between this work and that of [40],

where renormalizable models that have additional scalars and have baryon number viola-

tion at tree level but not proton decay were enumerated and discussed. In these models

none of the scalars were leptoquarks (they could rather be called diquarks or dileptons).

However, if we permit higher dimension operators, then models 4 and 9 containing the

scalar X = (3, 1, 2/3) (which has renormalizable diquark couplings), have dimension five

leptoquark-type couplings,

OIII =
1

Λ
gab(Q̄αa

L H)ebRXα . (3.28)

This operator, combined with the renormalizable couplings of X to two quarks, gives pro-

ton decay with the rate estimated in Eq. (3.26). This observation restricts the parameter

space of models 4 and 9 presented in [40] to the one in which either the color triplet scalar

X is very heavy or its Yukawa couplings are small.

3.5 Conclusions

We have investigated the minimal set of renormalizable models in which a single scalar

leptoquark is added to the standard model with the requirement that proton decay not be

induced by scalar exchange. We have looked in detail at one particular model which gives

an unusual top quark mass enhancement of the branching ratio of µ→ eγ.
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For this model, we have compared the µ→ eγ branching ratio to the µ→ e conversion

rate in light of current constraints and future experiments. We find that the most stringent

constraints on this model could come from the Mu2e experiment, and we have shown the

potential limits both the MEG and Mu2e experiments could place on some of the couplings

of the scalar leptoquark to the Q̄e and Lū bilinears.

We have also shown the constraints on this model coming from the most recent limits

on the electron EDM. Although the electron EDM also has the unusual enhancement from

the top quark mass, the constraints are not so strong when compared with lepton flavor

violating effects.

We have commented on the existence of nonrenormalizable operators in these minimal

models which can give an unacceptably large proton decay rate for mV . 10 000 TeV, as

well as provided a simple mechanism for avoiding them.
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Appendix

3.A Calculation of µ→ eγ

We will focus on the contribution to the µ→ eγ amplitude coming from terms proportional

to λuλe. The other contributions are easily computed in a similar manner. We begin with

the subdiagram,

p + q

q
eiL(p) ejR(p)

λ3i
u λj3

e

≡

The corresponding amplitude is

iM = mtλ
3i
u λ

j3
e

∫
d4q

(2π)4
PR

1

[(p+ q)2 −m2
t ] [q2 −M2

V ]

= mtλ
3i
u λ

j3
e PR A(p2) (3.29)

Expanding A(p2) for small p2, we find A(p2) ' A(0) + p2A′(0) where

A′(0) =
i

16π2M2
V

f

(
m2
t

M2
V

)
, f(x) =

x2 − 1− 2x lnx

2(x− 1)3
. (3.30)

This subdiagram appears in the relevant diagrams,
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µL(p) e(p− k)

k

e(p) µ(p− k)
µ(p)

k

eR(p− k)

We can write the amplitude coming from these two diagrams as

iM = mtλ
3i
u λ

j3
e ē(p− k)(−ieγµ) i

/p+me

m2
µ −m2

e

A(p2) PL µ(p)

+ ē(p− k) i
/p− /k +mµ

m2
e −m2

µ

A((p− k)2) PR (−ieγµ)µ(p)

= mtλ
3i
u λ

j3
e e mµ

i

16π2M2
V

f

(
m2
t

M2
V

)
[ē(p− k) PL γµ µ(p)] (3.31)

The third diagram contributing to the µ → eγ process involves a photon connected to the

top quark in the loop,

−p+ q
µL(p) eR(p− k)

q q − k

giving an amplitude

iM = −2

3
mtλ

3i
u λ

j3
e e

∫
d4q

(2π)4

ēR(p− k)
[
(/q − /k)γµ + γµ/q

]
µL(p)

[(q − k)2 −m2
t ] [q2 −m2

t ] [(q − p)2 −M2
V ]

=
2

3
mtλ

3i
u λ

j3
e e

i

16π2M2
V

ēR(p− k)

(
kµf1(x) + pµf2(x)− (kµ +

1

2
[/k, γµ])f3(x)

)
µL(p)

(3.32)

for x = m2
t/M

2
V where we’ve linearized the result with respect to external momenta and
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defined

f1(x) =
x2 − 4x+ 2 lnx+ 3

2(x− 1)3
(3.33)

f2(x) =
x2 − 2x lnx− 1

(x− 1)3
(3.34)

f3(x) =
x− lnx− 1

(x− 1)2
. (3.35)

The final diagram to consider is the one with photon connected to the internal scalar line,

q − p
µL(p) eR(p− k)

q

q − p+ k

giving a contribution to the amplitude

iM = ēR(p− k)(−iλ32
u )(−iλ13

e )

∫
d4q

(2π)4
i
/q +mt

q2 −m2
t

µL(p)

× i

(q − p)2 −M2
V

(
i5

3
e
)

(2qµ − 2pµ + kµ)
i

(q − p+ k)2 −M2
V

= −5

3
mtλ

32
u λ

13
e e ēR(p− k)µL(p)

×
∫

d4q

(2π)4

2qµ − 2pµ + kµ

[(q − p+ k)2 −M2
V ][(q − p)2 −M2

V ][q2 −m2
t ]

=
5

3
mtλ

32
u λ

13
e e

i

16π2M2
V

ēR(p− k)
(

(2pµ − kµ)f4(x) + (kµ − 2pµ)f5(x)
)
µL(p)

(3.36)

where again we have linearized with respect to external momenta and defined

f4(x) =
2x2 lnx+ (4− 3x)x− 1

2(x− 1)3
(3.37)

f5(x) =
x lnx− x+ 1

(x− 1)2
. (3.38)
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Finally, putting the amplitudes from all four of these diagrams together we find that all

terms proportional to either pµ or kµ cancel out and we are left with just the terms propor-

tional to kνσµν . The total amplitude is

iM =
mt e λ

32
u λ

13
e

16π2M2
V

ēR(p− k)σµνkνµL(p)

× 1

2(x− 1)3

(
x2 − 1− 2x lnx+

4

3
(x− 1)(x− lnx− 1)

)
. (3.39)

The only other combination of couplings that will lead to an amplitude enhanced by the top

quark mass is λ∗eλ
∗
u and the calculation is nearly identical to the case we have just done.
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Chapter 4

Supersymmetric Dark Matter Sectors

4.1 Introduction

The possibility to describe the properties of the cold dark matter in the universe using a

candidate in various particle physics scenarios has been studied for a long time. For a re-

view of different candidates see Ref. [47]. One of the most popular dark matter candidates

is the lightest supersymmetric particle in SUSY theories. In this type of scenario typi-

cally one considers the lightest neutralino [48, 49, 50] or the gravitino [51] as dark matter

candidates. Both candidates have been investigated in great detail by many experts in the

field. Unfortunately, in these models one has a large number of free parameters and it is

difficult to make unique predictions which can be tested in current or future dark matter

experiments.

It is well-known that in order to guarantee the stability of the lightest neutralino in

supersymmetric models the so-called R-parity symmetry is assumed. The case of the

gravitino is different because its lifetime can be large enough even if R-parity is bro-

ken [51]. The possibility to understand the origin of R-parity conservation has been in-

vestigated by many groups. However, the simplest way to study this issue is to consider

the B − L extensions of the Minimal Supersymmetric Standard Model (MSSM) where

after symmetry breaking one can obtain R-parity as a symmetry at the low-scale. See

Refs. [52, 53, 68, 69, 70, 57, 58] for the study of this problem in some supersymmetric
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scenarios and Refs. [59, 60, 61] for recent phenomenological studies of these models. Un-

fortunately, even if in these scenarios we can understand dynamically the origin of R-parity

conservation it is difficult to make interesting predictions for dark matter experiments since

we can have several dark matter candidates, the neutralinos or right-handed sneutrinos, and

as in the MSSM there are many free parameters.

In this Letter we investigate the properties of a dark matter sector where supersymmetry

is a good symmetry before the breaking of the gauge symmetry. In this context we do not

need to impose a discrete symmetry to guarantee the stability of the dark matter candidate

and even if R-parity is broken in the visible sector the dark matter candidate is stable. To

study this idea of having a supersymmetric sector we consider a simple scenario where in

the visible sector we have the minimal B − L extension of the MSSM [67] and in the dark

sector we have two chiral superfields with B−L quantum numbers. Here the link between

the visible and dark sector is defined by theB−L gauge force which is broken in the visible

sector by the vacuum expectation value (VEV) of the right-handed sneutrinos. We find that

after theB−L breaking a mass splitting is induced in the dark sector and the lightest field is

the only possible candidate for the cold dark matter in the universe. In this model the dark

matter candidate annihilates mainly into two sfermions when these channels are available.

We investigate the different scenarios where we can achieve the observed dark matter relic

density and the possible predictions for dark matter experiments. We find that the current

bounds from the Xenon100 experiment set strong constraints on this type of models where

the elastic dark matter nucleon cross section is through a neutral gauge boson.

This article is organized as follows: In Section 4.2, we define a simple scenario with a

supersymmetric dark matter sector. In Section 4.3, we show the possible scenarios where

one can achieve the relic density observed by the experiments. The constraints coming

from the direct detection experiments are investigated in Section 4.4, while we summarize

the main results in Section 4.5.
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4.2 Supersymmetric Dark Sector

In general we can consider a simple extension of the standard model which is composed

of a visible sector, a dark matter sector and the interactions between them. In this case the

Lagrangian can be written as

L = Lvisible + Ldark + Llink. (4.1)

The visible sector here could be the Standard Model (SM) or any well-known extension

of the SM. Since we are interested in the case where the dark sector is supersymmetric,

one can have a model with broken SUSY in the visible sector, but SUSY still is a good

symmetry in the dark matter sector. In order to achieve this type of scenario we can assume

that supersymmetry breaking is mediated as in “gauge mediation”, where the messenger

fields only have quantum numbers of the visible sector, and the soft terms induced by

gravity are very small. Then, the SM singlet fields in the dark sector do not get large

soft terms from gravity mediation. In this way, we can say that supersymmetry is a good

symmetry in the dark sector.

In order to illustrate this idea we will use as visible sector the simplest B−L extension

of the MSSM [67] where one can understand the origin of R-parity violating interactions.

The dark sector will be composed of the chiral superfields X̂ and ˆ̄X with B − L quantum

numbers ±nBL. Then, the Lagrangian reads as

LSDM = LB−L + LDM , (4.2)
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where

LDM =

∫
d2θd2θ̄ X̂†egBLnBLV̂BLX̂

+

∫
d2θd2θ̄ ˆ̄X†e−gBLnBLV̂BL ˆ̄X

+

(∫
d2θ µXX̂

ˆ̄X + h.c.

)
, (4.3)

and the superpotential of the minimal B − L model is given by

WB−L = YuQ̂Ĥuû
c + YdQ̂Ĥdd̂

c + YeL̂Ĥdê
c

+ YνL̂Ĥuν̂
c + µĤuĤd. (4.4)

See Refs. [67, 80] for the details of the minimal B − L extension of the MSSM. It is

important to mention that there is no need to add extra Higgses in the visible sector in

order to break the B − L gauge symmetry. In this case B − L is broken by the VEV of

the right-handed sneutrinos as studied in Refs. [67, 80]. We will show that once the right-

handed sneutrino gets a VEV R-parity is spontaneously broken, but still the dark matter

candidate is stable. Here we assume that the fields, X and X̄ , do not have interactions with

the right-handed neutrinos, i.e., the couplings (ν̂cν̂c)p ˆ̄Xn are not present. This means that

2p− n nBL 6= 0, where n and p are integer numbers.

One of the most interesting consequences of having “exact” supersymmetry in the dark

sector is that the scalar fields, X and X̄ , do not get a VEV in most of the cases. Using the

Lagrangian above we can compute the scalar potential for the X and X̄ fields,

V (X, X̄) = |µX |2
(
|X|2 + |X̄|2

)
+

g2
BL

8

(
v2
R

2
+ nBL

(
|X|2 − |X̄|2

))2

. (4.5)

Notice that here we have included the contribution to the B −L D-term due to the VEV of

right-handed sneutrinos, 〈ν̃c〉 = vR/
√

2, the field which breaks B −L in the visible sector.
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Then, one can see from the above equation that once B − L is broken we induce a mass

splitting between the scalar fields in the dark matter sector. The relevant scalar potential

for our discussion is given by

V (vX , vX̄) =
1

2
M2

Xv
2
X +

1

2
M2

X̄v
2
X̄ +

g2
BLn

2
BL

32

(
v2
X − v2

X̄

)2
, (4.6)

where

M2
X = |µX |2 +

g2
BL

8
nBLv

2
R, M2

X̄ = |µX |2 −
g2
BL

8
nBLv

2
R, (4.7)

and we find the following minimization conditions:

(
M2

X +
g2
BL

8
n2
BL

(
v2
X − v2

X̄

))
vX = 0, (4.8)(

M2
X̄ −

g2
BL

8
n2
BL

(
v2
X − v2

X̄

))
vX̄ = 0. (4.9)

Now, we can think about different scenarios:

• Case 1) We can have the trivial solutions, vX = vX̄ = 0, and the lightest field in the

dark sector is stable.

• Case 2) vX 6= 0 and vX̄ 6= 0: Using the Eq.(4.8), and Eq.(4.9) we can show that in

this case there is a solution only when µX = 0. However, in this case the fermion

partners X̃ and ˜̄X are massless.

• Case 3) vX = 0 and vX̄ 6= 0: In this case we can have the solution

v2
X̄ = − 8M2

X̄

g2
BLn

2
BL

. (4.10)

if M2
X̄
< 0.

• Case 4) vX 6= 0 and vX̄ = 0: There is no solution in this case.

Then, in general we can say that the scalar fields do not get a VEV even if they have a

mass splitting due to the B − L D-term and when M2
X̄
> 0. This is an important result
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which guarantees the stability of the lightest field in the dark sector and we do not need

to impose any extra discrete symmetry. Notice that in this analysis we have neglected the

contribution from the kinetic mixing between hypercharge and B-L, which does not change

our conclusion.

In order to understand the existence of a dark matter candidate let us study the spectrum

in the dark matter sector. In Eq. (4.7) we have the masses for the scalar fields, while the

mass of the fermionic candidates is

MX̃1
= MX̃2

= µX . (4.11)

Therefore, the lightest field in the dark sector is the scalar field X̄ . Here we are using the

convention where nBL is positive. Now, are these fields stable at cosmological scales?

The field X can decay into its superpartner X̃ and SM fermions because R-parity is

broken in the visible sector. In the case of ˜̄X and X̃ we have a similar situation, they can

decay to X̄ and SM fermions as well. Therefore, only the lightest field in the dark sector,

X̄ , can be stable even if R-parity is broken in the visible sector. This is an interesting result

which is a consequence of having “exact” supersymmetry in the dark matter sector before

B − L is broken in the visible sector. Before we finish this section we would like to stress

the existence of the relation between the masses of all fields in the dark sector:

M2
X = M2

X̃
+

1

2
nBLM

2
ZBL

= M2
X̄ + nBLM

2
ZBL

, (4.12)

where the mass of the B − L neutral gauge boson is given by MZBL
= gBLvR/2. Notice

that the supertrace mass formula, Str M2 = 0, is valid here since we have the same splitting

for the scalar components, but with different signs. Here we neglect possible Planck scale

suppressed operators due to gravity effects.
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4.3 Dark Matter Relic Density

The B − L D-term defines how the dark matter candidate annihilates into two sfermions

when these channels are available. Here we will focus on the scenarios where the dark

matter candidate is always heavier than a least one sfermion in the MSSM. In the case

when the mass of X̄ is below MZBL
/2 the main annihilation channels are in fact those with

two sfermions:

X̄X̄† → f̃i f̃
†
i , (4.13)

and the annihilation cross section in the non-relativistic limit is given by

σ
(
X̄X̄† → f̃i f̃

†
i

)
v =

1

64π

1

M2
X̄

√
1 −

M2
f̃i

M2
X̄

|λ|2
∣∣∣∣1 +

M2
ZBL

4M2
X̄
− M2

ν̃c

∣∣∣∣2 (4.14)

Here Mν̃c = MZBL
and λ = g2

BLnBL/4 for sleptons. Now, we can compute the approx-

imate freeze-out temperature xf = MX̄/Tf . Writing the thermally averaged annihilation

cross section as 〈σv〉 = σ0(T/MX)n, then the freeze-out temperature is given by

xf = ln

[
0.038(n+ 1)

(
g√
g∗

)
MPlMX̄σ0

]
− (n+

1

2
) ln

[
ln

[
0.038(n+ 1)

(
g√
g∗

)
MPl MX̄σ0

]]
,

(4.15)

where MPl is the Planck mass, g is the number of internal degrees of freedom and g∗

is the effective number of relativistic degrees of freedom evaluated around the freeze-out

temperature. As is well-known, the present day energy density of the relic dark matter

particles X̄ is given by

ΩXh
2 =

1.07× 109

GeV

(
(n+ 1)xn+1

f√
g∗σ0MPl

)
, (4.16)
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where we have used the fact that g∗,S(T ) = g∗(T ) in our case (all particle species have

a common temperature). We will use the present day dark matter energy density to be

ΩDMh
2 = 0.112± 0.006 [64] for our numerical study and in our case n = 0.

It is important to mention that in this model we have the following free parameters:

MZBL
, gBL, MX̄ , nBL, (4.17)

together with MSSM parameters Mf̃i
, and tan β. Our results are not very sensitive to the

values of tan β since the annihilation cross section in our study is basically independent of

this parameter. In order to illustrate our main idea we will show the numerical results in

simplified models where the dark matter candidate can annihilate into two MSSM sleptons

when these channels are available. When the dark matter mass is below the slepton mass

one can have the annihilation into two SM fermions at the one-loop level. In this Letter

we will focus on the simplest possibility which corresponds to the case when X̄ is always

heavier than the sleptons in the MSSM and the squarks are much heavier. Before we do the

numerical analysis it is important to understand the spectrum of sfermions in this theory.

This aspect of the theory has been studied in Ref. [80]. Here we will assume for simplicity

that the lightest sfermions are the sleptons, and their masses are given by

M2
ν̃i

= M2
L̃i

+
1

2
M2

Z cos 2β − 1

2
M2

ZBL
, (4.18)

M2
ẽi

= M2
L̃i

+ M2
ei
−
(

1

2
− sin θ2

W

)
M2

Z cos 2β − 1

2
M2

ZBL
. (4.19)

Notice that the rest of the fields with positive B − L are heavier due to the positive

contribution from the B − L D-term. In Fig. 4.1 we show the allowed values for the

gauge coupling gBL and DM mass MX̄ when tan β = 6, MZBL
/gBL = 4 TeV, Mẽ = 200

GeV and nBL = 1/3. Here we assume a simplified model where the annihilation is only

possible to one family of sleptons. Notice that for this type of scenario the gauge coupling

has to be changed between 10−1 and 10−0.4, in order to achieve the relic density consistent
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Figure 4.1: Allowed values for the gauge coupling gBL and MX̄ when tan β = 6,
MZBL

/gBL = 4 TeV, Mẽ = 200 GeV and nBL = 1/3. Here we assume the annihila-
tion to only one family of sleptons. The black lines produce Ωh2 = 0.112 while the blue
region represents Ωh2 ≤ 0.112.

with cosmological observations. As we will discuss later, this type of scenario is allowed

by the constraints coming from direct detection experiments, which we discuss in detail in

the next section.

In order to have a better idea of how to achieve the right relic density we show in

Fig. 4.2 the values for the relic density when changing the dark matter mass MX̄ , when

tan β = 6, nBL = 1/3, and MZBL
/gBL = 4 TeV. Here the blue dots correspond to the

solutions for gBL = 0.1÷ 0.2, the green dots are for gBL = 0.2÷ 0.3, the orange dots are

for gBL = 0.3÷0.4, and the red dots are for gBL = 0.4÷0.5. We also scan over the slepton

mass between 100 GeV and the dark matter mass. Notice that we find many solutions which

are consistent with relic density bounds when the gauge coupling is between 0.3 and 0.5.

It is easy to understand the results presented in Fig. 4.1 and Fig. 4.2. When the gauge

coupling is small or we increase the dark matter mass we suppress the annihilation cross

section, we can achieve the relic density allowed by the experiments. The only way to
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Figure 4.2: Values for the relic density vs the dark matter mass MX̄ , when tan β = 6,
nBL = 1/3, and MZBL

/gBL = 4 TeV. Here the blue dots correspond to the solutions
for gBL = 0.1 ÷ 0.2, the green dots are for gBL = 0.2 ÷ 0.3, the orange dots are for
gBL = 0.3 ÷ 0.4, and the red dots are for gBL = 0.4 ÷ 0.5. The slepton mass changes
between 100 GeV and the dark matter mass.

achieve solutions when the gauge coupling is close to one is to suppress the phase space

choosing a small splitting between the slepton mass and the dark matter mass. Notice that

the annihilation through the ZBL is suppressed in these scenarios because the B−L gauge

boson is very heavy and the cross section is p-wave suppressed. Also we can have other

annihilation channels into two quarks at one-loop level, but these are also suppressed by

the squark masses.

4.4 Predictions for DM Direct Detection

The couplings of the ZBL to quarks and the dark matter candidate, X̄ , can lead to a po-

tentially sizeable spin-independent elastic scattering cross section between dark matter and
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nuclei. The cross section in this case is given by

σSI =
M2

X̄
m2
N

π(MX̄ +mN)2

[
Z fp + (A− Z) fn

]2

, (4.20)

where A and Z are the atomic mass and atomic number of the target nucleus and f(p,n) are

the effective couplings to protons and neutrons:

fp =
gX̄X̄ZBL

(2 guuZBL
+ gddZBL

)

M2
ZBL

, (4.21)

fn =
gX̄X̄ZBL

(guuZBL
+ 2 gddZBL

)

M2
ZBL

. (4.22)

Here, we have used gX̄X̄ZBL
and gqqZBL

to denote the effective coupling strengths of the

respective vertices. For any quark we have gqqZBL
= gBL/6 and gX̄X̄ZBL

= nBL gBL/2.

Now, using the relations above we can write the dark matter nucleon cross section as

σSI
X̄n(cm2) = (1.2× 10−40 cm2)× g4

BLn2
BL ×

(
500 GeV

MZBL

)4

×
( µ

1 GeV

)2

, (4.23)

where µ = MX̄mn/(MX̄ +mn), and mn is the nucleon mass. It is well-known that the

dark matter spin-independent elastic cross sections are tightly constrained by the Xenon100

experimental results [65]. In Fig. 4.3 we show the numerical values for the elastic DM-

nucleon cross section as a function of the dark matter mass MX̄ . Here we use differ-

ent values for the ratio MZBL
/(gBL

√
nBL) and show the bounds from Xenon10 [66] and

Xenon100 [65] experiments. The best limits on our model come from Xenon100, which

for MX̄ & 30 GeV rules out most of the region MZBL
/(gBL

√
nBL) < 6 TeV. On the other

hand, ratios MZBL
/(gBL

√
nBL) as low as 1 TeV are allowed for light dark matter masses,

MX̄ . 8 GeV. It is important to mention that the collider bound on the B−L gauge boson

is about MZBL
/gBL > 3 TeV. Then, we can say that the dark matter experiment Xenon100

sets a strong bound on the gauge boson mass if nBL is not very small.

In Fig. 4.4 we show the correlation between the values for the spin-independent cross
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Figure 4.3: Values for the spin-independent elastic DM-nucleon cross section for a few
different ratios MZBL

/(gBL
√
nBL): 1 TeV (blue), 6 TeV (green), 10 TeV (orange), and

100 TeV (red). The black dashed line is the exclusion limit from Xenon100 and the brown
dashed line is the exclusion limit from Xenon10. Note that the 6 TeV line in this plot is
consistent with our earlier choice of MZBL

/gBL = 4 TeV when nBL = 1/3.

section and the dark matter relic density when Mẽ = 100 GeV, tan β = 6, nBL = 1/3,

0.1 TeV ≤ MZBL
≤ 10 TeV, and 0.1 ≤ gBL ≤ 1, for different values of the dark matter

mass. Then, in this way we can see that there are not many allowed solutions by the relic

density constraints assuming the mentioned values of the free parameters. Since the range

of the parameter space is quite representative we can say that it is not easy to find solutions

in agreement with the experiments. If we think about the testability of this model for

dark matter one can imagine a very optimistic scenario where we can know the parameters

MZBL
, gBL, Mẽ, and tan β from the Large Hadron Collider or future collider experiments.

Then, we could get the rest of the parameters nBL and the dark matter mass MX̄ using the

constraints from relic density and direct detection experiments. For example, suppose that

in a dark matter experiment such as Xenon100 you find a signal which corresponds to a

cross section of 10−45 cm2. If the collider experiments measure say, gBL = 0.3, tan β =

6,MZBL
= 2 TeV and Mẽ = 200 GeV and we require Ωh2 ≤ 0.112, this corresponds
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Figure 4.4: Values for the cross section allowed by the relic density constraints when the
slepton mass is 100 GeV, tan β = 6, nBL = 1/3, 0.1 TeV ≤ MZBL

≤ 10 TeV, and
0.1 ≤ gBL ≤ 1. Blue, green, orange, and red dots correspond to MX̄ = 120, 200, 300, and
400 GeV, respectively.

to nBL = 0.54 and 986 GeV ≤ MX̄ ≤ 1014 GeV. The bounds of this inequality achieve

Ωh2 = 0.112. In this way we could think about the testability of this scenario.

4.5 Conclusions

In this Letter we have investigated a simple scenario for the cold dark matter in the universe

where the sector responsible for dark matter has “exact” supersymmetry before symmetry

breaking. In order to achieve this type of scenario we assume that supersymmetry breaking

is mediated as in “gauge mediation”, where the messenger fields only have quantum num-

bers of the visible sector, and the soft terms induced by gravity are very small. The SM

singlet fields in the dark sector do not get large soft terms from gravity mediation and we

can say that supersymmetry is a good symmetry in the dark sector.

In order to illustrate our idea we consider the case where in the visible sector we have
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the simplest B − L extension of the minimal supersymmetric standard model while the

dark sector is composed of two chiral superfields with B − L quantum numbers. We have

found that in this case the dark matter candidate is the lightest scalar field in the dark sector

and the B − L D-term induces a mass splitting after the symmetry is broken.

We noticed that the dark matter candidate is stable even if R-parity is spontaneously

broken in the visible sector. Since the link between the visible and dark sectors is through

the B − L gauge force, the dark matter annihilates mainly into two sfermions when these

channels are available. We have shown the allowed parameter space by the relic density

and direct detection experiments in simplified scenarios where the annihilation is mainly

into two sleptons. In the case when the dark matter candidate is below 100 GeV, the DM

annihilation is mainly into two fermions at the one-loop level where inside the loops you

have the sfermions and gauginos. The details of the scenario for light dark matter and the

annihilation into photons will be investigated in a future publication.
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Chapter 5

B and L at the SUSY Scale, Dark Matter
and R-parity Violation

5.1 Introduction

The Minimal Supersymmetric Standard Model (MSSM) is considered one of the most ap-

pealing candidates for physics beyond the Standard Model. While the recent results from

the Large Hadron Collider (LHC) have set serious constraints on the masses of the super-

symmetric particles, if one suspects that new physics exists at an LHC accessible scale, an

MSSM-like theory still highly recommends itself as a candidate theory.

Despite its various appealing properties, the MSSM poses a challenge for proton sta-

bility. This is because it introduces two separate sets of operators which induce proton

decay: tree-level terms, which separately violate baryon and lepton number, and non-

renormalizable terms which individually violate both baryon and lepton number. The first

of these are

L̂Ĥu, L̂L̂ê
c, Q̂L̂d̂c, and ûcd̂cd̂c,

where the first three operators violate lepton number and the last baryon number. Any

combination of the first three operators with the last one leads to rapid proton decay. Their

absence is typically explained by invoking R-parity, an ad hoc discrete symmetry defined as

R = (−1)3(B−L)+2S , which forbids all of these terms. However, the fate of such operators
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is most simply divined from models of gauged B − L. The most minimal of such models

lead to lepton number violating R-parity violation (and therefore no tree-level proton de-

cay) [67], but R-parity conserving models are also possible [68, 69, 70]. Regardless of the

type of B − L model, the second type of proton decay inducing operators exist. These are

non-renormalizable operators which conserve B − L but violate B and L separately, e.g.,

Q̂Q̂Q̂L̂/Λ, and ûcûcd̂cêc/Λ.

Despite the suppression in these terms due to the scale of new physics, the bounds on

proton decay are strong enough to motivate a mechanism for suppressing them. See [71]

for a review of proton decay.

Recently, a simple theory for the spontaneous breaking of local baryon and lepton num-

bers has been proposed in Ref. [72]. In this context one can define an anomaly free theory

using fermionic leptoquarks which have both baryon and lepton number charges. Further-

more, even after symmetry breaking, the lightest leptoquark is stable due to a remnant Z2

symmetry and can therefore be a dark matter candidate. See also Refs. [73, 74, 75] for

similar studies. This idea can be applied in the context of supersymmetric theories to es-

tablish not only the origin of the R-parity violating terms, as in the B − L models, but also

determine the fate of the non-renormalizable terms which violate B and L separately.

In this paper we investigate an extension of the MSSM where the local baryonic and

leptonic symmetries are spontaneously broken at the supersymmetry scale. We find that the

minimal model predicts that R-parity must be spontaneously broken in the MSSM sector

(leading only to lepton number violation). Despite the breaking of R-parity, the remnant

Z2 symmetry from the breaking of the baryonic and leptonic symmetries ensures that the

lightest leptoquark is stable and may be a candidate for the cold dark matter of the universe.

We investigate the spectrum of the theory and the predictions for dark matter direct detec-

tion. This article is organized as follows: In Section 5.2 we discuss the model with local

B and L symmetries, in Section 5.3 we discuss the possible dark matter candidates and the

predictions for dark matter experiments. Finally, we summarize our results in Section 5.4.
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5.2 Spontaneous Breaking of B and L

In order to define a theory for local baryon and lepton numbers we use the gauge group,

SU(3)C ⊗ SU(2)L ⊗ U(1)Y ⊗ U(1)B ⊗ U(1)L .

An anomaly free theory can be achieved by adding the following new leptoquark fields

with B and L numbers [72]:

Ψ̂ ∼ (1, 2,−1/2, B1, L1) , Ψ̂c ∼ (1, 2, 1/2, B2, L2) ,

η̂c ∼ (1, 1, 1,−B1,−L1) , η̂ ∼ (1, 1,−1,−B2,−L2) ,

X̂c ∼ (1, 1, 0,−B1,−L1) , and X̂ ∼ (1, 1, 0,−B2,−L2) .

Notice that these fields are vector-like with respect to the SM transformations. The anoma-

lies can be cancelled for any values of Bi and Li (i = 1, 2) which satisfy the conditions

B1 +B2 = −3 , and L1 + L2 = −3 . (5.1)

In order to generate masses for the new fields and for symmetry breaking we need the chiral

superfields,

Ŝ1 ∼ (1, 1, 0, 3, 3) , and Ŝ2 ∼ (1, 1, 0,−3,−3) .

Therefore, the superpotential of this theory is given by

WBL = WRpC + WLB, (5.2)
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where

WRpC = YuQ̂Ĥuû
c + YdQ̂Ĥdd̂

c + YeL̂Ĥdê
c

+ YνL̂Ĥuν̂
c + µĤuĤd, (5.3)

contains the R-parity conserving terms present in the MSSM (plus a Yukawa coupling for

the neutrinos, Yν), and

WLB = Y1Ψ̂Ĥdη̂
c + Y2Ψ̂ĤuX̂

c + Y3Ψ̂cĤuη̂ + Y4Ψ̂cĤdX̂

+λ1Ψ̂Ψ̂cŜ1 + λ2η̂η̂
cŜ2 + λ3X̂X̂

cŜ2 + µBLŜ1Ŝ2, (5.4)

is the superpotential of the leptoquark sector needed for anomaly cancellation. Of course,

because of the conservation of B and L, both the R-parity violating terms and the non-

renormalizable terms leading to proton decay are forbidden. Notice that when B1 = B2

and L1 = L2 we can have Majorana masses for the X̂ and X̂c, but we stick to the general

case where the quantum numbers are different.

An interesting consequence of the leptoquark sector is the presence of a Z2 symmetry

once S1 and S2 acquire a VEV. Under this symmetry, all leptoquarks are odd: Ψ → −Ψ,

Ψc → −Ψc, η → −η, ηc → −ηc, X → −X and Xc → −Xc. The consequence of this is

that the lightest leptoquark is stable (must be neutral) and therefore a dark matter candidate.
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5.2.1 Symmetry Breaking and Gauge Boson Masses

Symmetry breaking in the baryon and lepton number sector proceeds through the following

scalar potential:

V =
(
M2

1 + |µBL|2
)
|S1|2 +

(
M2

2 + |µBL|2
)
|S2|2

+ M2
ν̃c|ν̃c|2 +

9

2
g2
B

(
|S1|2 − |S2|2

)2

+
1

2
g2
L

(
3|S1|2−3|S2|2−|ν̃c|2

)2

− (bBLS1S2+h.c.) , (5.5)

where M1, M2 and Mν̃c are the soft terms for the scalar fields S1, S2 and ν̃c, respectively.

Here bBL is the bilinear term between S1 and S2 and we define the vacuum expectation

values (VEVs) as

√
2S1 = v1 + h1 + ia1, (5.6)
√

2S2 = v2 + h2 + ia2, (5.7)
√

2ν̃c = vR + hR + iaR. (5.8)

The squared mass matrix for the new gauge bosons can be written as

M2
Z′ = 9

 g2
B(v2

1 + v2
2) gBgL(v2

1 + v2
2)

gBgL(v2
1 + v2

2) g2
L(v2

1 + v2
2) + 1

9
g2
Lv

2
R

 , (5.9)

which has a zero determinant if vR = 0; note that this cannot be modified even in the case

where 〈X〉 6= 0. This is a consequence of the fact that when S1 and S2 acquire VEVs the

symmetry group U(1)B ⊗ U(1)L is broken to U(1)B−L. The B − L symmetry can only be

broken by the VEV of the right-handed sneutrino as in Ref. [67]. Therefore, we conclude

that

R-parity must be spontaneously broken in this theory !
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However, it is only lepton number violating R-parity violation and therefore the proton

remains safe.

The minimization conditions read as

0 =
(
M2

1 + |µBL|2
)
− bBL

v2

v1

+
9

2
g2
B(v2

1 − v2
2)

+
3

2
g2
L(3v2

1 − 3v2
2 − v2

R) , (5.10)

0 =
(
M2

2 + |µBL|2
)
− bBL

v1

v2

− 9

2
g2
B(v2

1 − v2
2)

− 3

2
g2
L(3v2

1 − 3v2
2 − v2

R) , (5.11)

0 = M2
ν̃c −

1

2
g2
L

(
3v2

1 − 3v2
2 − v2

R

)
, (5.12)

and can be reformulated as,

v2
R =

2

g2
L

[
−M2

ν̃c +
3

2
g2
L

(
v2

1 − v2
2

)]
, (5.13)

sin(2γ) =
2bBL

M2
1 +M2

2 + 2|µBL|2
, (5.14)

where we have defined

tan γ =
v2

v1

. (5.15)

One can easily prove that there is no symmetry breaking in the SUSY limit. Therefore, the

B and L breaking scales are determined by the SUSY scale. In order to have a potential

bounded from below we must satisfy the condition,

2bBL < M2
1 +M2

2 + 2|µBL|2, (5.16)
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and in order to break the symmetry we need the condition

b2
BL >

(
M2

1 +|µBL|2−
3

2
g2
Lv

2
R

)(
M2

2 +|µBL|2+
3

2
g2
Lv

2
R

)
. (5.17)

The mixing angle between Z1 and Z2 is defined byZB
ZL

 =

 cos θBL sin θBL

− sin θBL cos θBL

Z1

Z2

 , (5.18)

where MZ1 < MZ2 . The eigenvalues for the new neutral gauge bosons are

M2
Z1,2

=
1

2

(
M2

ZL
+M2

ZB
±
√

∆2
BL

)
, (5.19)

where

∆2
BL =

(
M2

ZL
−M2

ZB

)2
+ 4g2

LM
4
ZB
/g2

B, (5.20)

M2
ZB
≡ 9g2

B(v2
1 + v2

2), (5.21)

M2
ZL
≡ 9g2

L

(
v2

1 + v2
2 +

1

9
v2
R

)
, (5.22)

and the mixing angle is given by

sin(2θBL) =
2gBgL(v2

1 + v2
2)

M2
Z2
−M2

Z1

. (5.23)

Note that this produces a Z1 lighter than Z2 only for MZB
< MZL

. For the opposite case

we take θBL → −θBL and Z1 ↔ Z2. In the limit v2
R � v2

1 + v2
2 the eigenvalues are

MZ1 ∼ 9g2
B

(
v2

1 + v2
2

)
(1− 9ε) , (5.24)

MZ2 ∼ g2
Lv

2
R (1 + 9ε) , (5.25)
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where ε ≡ (v2
1 + v2

2)/v2
R and the mass eigenstates are,

Z1 =

(
1− 81

2

g2
B

g2
L

ε2
)
ZB − 9

gB
gL

ε ZL , (5.26)

Z2 = 9
gB
gL

ε ZB +

(
1− 81

2

g2
B

g2
L

ε2
)
ZL . (5.27)

This is an interesting limit since the lighter Z1 eigenstate is predominately ZB-like and

therefore has lower collider bounds [77, 78] compared to a Z ′ that significantly couples to

leptons [79].

Finally, we note that when baryon and lepton numbers are broken at the SUSY scale,

one expects operators mediating proton decay. However, in this theory, the proton is stable

because baryon number is broken by three units. The least suppressed non-renormalizable

terms which generate baryon and lepton number violating interactions occur at dimension

14, e.g.,

W14 =
1

Λ10

[
c1Ŝ1(ûcûcd̂cêc)3 + c2Ŝ1(ûcd̂cd̂cν̂c)3 + c3Ŝ2(Q̂Q̂Q̂L̂)3

]
. (5.28)

Due to this large suppression, there is no need to assume a large scale to be in agreement

with experiments.

5.2.2 Spontaneous R-parity Violation

As we saw earlier, in order to avoid a long range B − L force, the sneutrino must acquire

a VEV. The consequences of this are very similar to those in the minimal supersymmetric

B − L model [67] and we briefly review them here.

The first and most obvious of these consequences is that R-parity is spontaneously bro-

ken. This induces a mixing between SUSY and non-SUSY fields with the same quantum

numbers: neutralinos with neutrinos, charginos with charged leptons, sneutrinos with neu-

tral Higgs and charged sleptons with charged Higgs. Typically, the most important of these

mixings proceeds through the neutrino Yukawa coupling in the superpotential once the
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right-handed sneutrino acquires a VEV, and one obtains

W ⊃ 1√
2
YνvR` H̃u, (5.29)

which is the so-called bilinear R-parity violating term usually referred to as µ′. This term

also induces a VEV for the left-handed sneutrino which leads to various mixing terms of

gauge coupling strength such as 1
2
g1B̃νvL and gLB̃LνvL, where B̃ and B̃L are the hyper-

charge and lepton number gauginos respectively. The size of R-parity violation is related

to the neutrino sector and is therefore small. Phenomenologically, this means that SUSY

processes proceed as if R-parity is conserved except for the decay of the LSP, which can

now decay into SM states. More specifically, SUSY particles are still pair produced. For

specific decay channels for a given LSP, see for example [80].

A further interesting consequence is that a sizable VEV can only be realized for one

generation of right-handed sneutrinos. This means that lepton number is broken by one

unit only in one generation and it is only the corresponding generation of right-handed

neutrinos which attains a TeV scale mass; the other two right-handed, or sterile neutrinos,

attain sub-eV masses [81, 82, 83]. This has important consequences for cosmology in the

form of dark radiation in the early universe and for neutrino oscillation anomalies.

5.3 Dark Matter Candidates

After symmetry breaking, the lightest leptoquark is stable due to the remnant Z2 symmetry

as discussed earlier. This particle must be neutral and could play the role of dark mat-

ter. Furthermore, unlike in R-parity conservation, the lightest leptoquark can be either a

fermion or a scalar. The best candidates are the X̂ and X̂c superfields since they do not

couple to the Z. In this study we assume the lightest leptoquark is the fermionic component

of X̂ and X̂c, whose Dirac spinor we refer to as X̃ , and focus on its properties. It is also

interesting to note that because the mass of X̃ is given by the VEV of S2, it is automatically

at the SUSY scale and therefore WIMP-like. This would not be true if its mass was simply
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a parameter in the superpotential whose magnitude would be arbitrary. Of course, there is

a trade off here with the µ-type problem associated with the µBL parameter.

The fermionic dark matter candidate can annihilate into two fermions through the neu-

tral gauge bosons present in the theory:

¯̃XX̃ → Zi → f̄f. (5.30)

The relevant interactions in this case are

−L = gB
¯̃Xγµ (−B2PL +B1PR)ZBµX̃

+ gL
¯̃Xγµ (−L2PL + L1PR)ZLµX̃, (5.31)

which in the physical basis reads as

−L = gB
¯̃Xγµ (C11PL + C12PR)Z1µX̃

+ gB
¯̃Xγµ (C21PL + C22PR)Z2µX̃, (5.32)

where

C11 = −B2 cos θBL +
gL
gB
L2 sin θBL, (5.33)

C12 = B1 cos θBL −
gL
gB
L1 sin θBL, (5.34)

C21 = −B2 sin θBL −
gL
gB
L2 cos θBL, (5.35)

C22 = B1 sin θBL +
gL
gB
L1 cos θBL. (5.36)

Assuming the contribution from Z1 dominates, we find an annihilation cross section

σv =
∑
q

g4
BC̃

36πs

√
1− 4m2

q/s

(s−M2
Z1

)2 + Γ2
Z1
M2

Z1

, (5.37)
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where

C̃ = [(C2
11 + C2

12)(s+ 2m2
q)(s−M2

X̃
)

+ 6C11C12M
2
X̃

(s+ 2m2
q)] cos2 θBL, (5.38)

This cross section is given by

(σv)NR =
∑
q

g4
B

24π

√
1−m2

q/M
2
X̃

(4M2
X̃
−M2

Z1
)2 + Γ2

Z1
M2

Z1

C2(2M2
X̃

+m2
q) , (5.39)

in the non-relativistic limit. Here we have defined

C = (C11 + C12) cos θBL . (5.40)

In the present epoch the energy density of the relic dark matter particles X̃ would be,

ΩX̃h
2 ' xf√

g∗ σ0MP

(1.07× 109)

GeV
. (5.41)

We adopt the value Ωobs
DMh

2 = 0.1199± 0.0027 [76].

The freeze-out temperature xf = MX̃/Tf is then given by,

xf = ln

(
0.038 gMPMX̃σ0√

g∗

)
− 1

2
ln

[
ln

(
0.038 gMPMX̃σ0√

g∗

)]
, (5.42)

where g is the number of internal degrees of freedom (in our case g = 4), g∗ is the effective

number of relativistic degrees of freedom evaluated around the freeze-out temperature, MP

is the Planck mass, and we use the expansion σv = σ0 + σ1v
2.

The direct detection also proceeds through the Zi:

X̃N → Zi → X̃N, (5.43)



78

XENON100

1000 1200 1400 1600 1800 2000
10- 47

10- 46

10- 45

10- 44

10- 43

M
X
� H GeV L

Σ
SI

Hc
m

2
L

0.11 < W
X
� h 2

< 0.13

Figure 5.1: Predictions for the elastic nucleon-dark matter cross section for different values
of the dark matter mass when 0.11 < ΩX̃h

2 < 0.13.

and the spin-independent nucleon-dark matter cross section is then given by

σSI =
1

4π

M2
X̃
M2

N

(MX̃ +MN)2

g4
B

M4
Z1

C2, (5.44)

assuming that the dominant contribution comes from the Z1 gauge boson. Because both

the dark matter annihilation and direct detection proceed through Z1, they are intimately

related to each other. Specifically, once one determines the parameters that yield the correct

relic density for a given dark matter mass, there are no free parameters left to hide it from

direct detection. Keeping this in mind we present the predictions for the direct detection

experiments.

In Fig. 5.1 we show the values for the spin independent cross section versus the dark

matter mass when C = 1, 0.1 ≤ gB ≤ 0.3, 2.5 TeV ≤ MZ1 ≤ 5 TeV, and assuming that

the relic density is in the range 0.11 < ΩX̃h
2 < 0.13. One can appreciate in Fig. 5.1 that

the allowed solutions are below the XENON100 bounds [84], but could be tested in future

dark matter experiments such as XENON1T or LUX.
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Figure 5.2: Allowed values for the gauge coupling and the dark matter mass when 0.11 <
ΩX̃h

2 < 0.13 and MZ1 = 2, 3, 4 TeV.

In Fig. 5.2 we show some solutions when the mass of new lightest neutral gauge boson

is 2, 3, or 4 TeV. One can see that there is no need to be very close to the resonance to

achieve the required cross section for the relic density.

5.4 Conclusions

In this article we have presented the simplest supersymmetric extension of the model pro-

posed in Ref. [72] where baryon and lepton number are local symmetries. In this context

the baryonic and leptonic gauge symmetries are broken at the SUSY scale and the proton

is stable.

One of the main predictions of this theory is that R-parity must be spontaneously bro-

ken in the MSSM sector because the right-handed sneutrino VEVs are needed to break the

remnant local U(1)B−L that results from the VEVs of S1 and S2. Even though R-parity
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is broken, the lightest leptoquark is stable and can be a cold dark matter candidate. The

dark matter candidate can be either the spin one-half or spin zero SM singlet leptoquark;

we have focused on the former in this paper. It furthermore has baryon and lepton number

and therefore couples to the two Z ′s in the model.

There are many interesting predictions for the Large Hadron Collider searches in this the-

ory. Since R-parity is broken in the MSSM sector we will have lepton number violating

signatures at the LHC. For example, one can have exotic channels with four leptons and

four jets where three of the leptons have the same electric charge [80, 85]. On the other

hand there is a stable dark matter candidate in the theory which can be produced through

the new neutral gauge bosons. Therefore, one can also expect signatures with missing en-

ergy at the LHC. This theory provides a simple example of very exotic supersymmetric

signatures at colliders since one can have the simultaneous presence of R-parity violating

and missing energy signatures at the LHC.
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