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Abstract 

The uptake of Cu, Zn, and Cd by fresh water plankton was studied 

by analyzing samples of water and plankton from six lakes in southern 

California. Co, Pb, Mn, Fe, Na, K, Mg, Ca, Sr, Ba, and Al were also 

determined in the plankton samples. Special precautions were taken 

during sampling and analysis to avoid metal contamination. 

The relation between aqueous metal concentrations and the 

concentrations of metals in plankton was studied by plotting aqueous 

and plankton metal concentrations ~ time and comparing the plots. 

No plankton metal plot showed the same changes as its corresponding 

aqueous metal plot, though long-term trends were similar. Thus, 

passive sorption did not completely explain plankton metal uptake. 

The fractions of Cu, Zn, and Cd in lake water which were 

associated with plankton were calculated and these fractions were 

less than 1% in every case. 

To see whether or not plankton metal uptake could deplete 

aqueous metal concentrations by measurable amounts (e.g. 20%) in 

short periods (e.g. less than six days), three integrated rate 

equations were used as models of plankton metal sorption. 

Parameters for the equations were taken from actual field measurements. 

Measurable reductions in concentration within short times were 

predicted by all three equations when the concentration factor was 

greater than lOs. All Cu concentration factors were less than lOs. 

The role of plankton was regulating metal concentrations 

considered in the context of a model of trace metal chemistry in lakes. 
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The model assumes that all particles can be represented by a single 

solid phase and that the solid phase controls aqueous metal 

concentrations. A term for the rate of ~ situ production of 

particulate matter is included and primary productivity was used 

for this parameter. In San Vicente Reservoir, the test case, the rate 

of~ situ production of particulate matter was of the same order of 

magnitude as the rate of introduction of particulate matter by the 

influent stream. 
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Chapter 

Introduction 

Metal ions are potential toxicants, nutrients, or nuisances in 

water. Mercury poisoning, or Minamata Bay disease, is an example of 

the toxic effects of a metal in a natural water system (1). Many 

metals are essential micronutrients for phytoplankton (2,3) but may 

be toxic at high concentrations . For example, Cu is essential at low 

concentrations (3), but is an effective algicide at high concentrations 

(4). Iron and manganese can impart a metallic taste to drinking 

water (4) and so are considered potential nuisances. Many industrial 

processes have unique water quality requirements (5), so metal ion 

concentrations in water supplies are of concern to industry. 

In summary, metal ion concentrations in natural water systems 

may be important for a variety of reasons . Thus, the processes 

controlling metal ion concentrations are also important. This 

thesis is concerned with the role offres~water plankton in the chemistry 

of Cu, Zn, and Cd. 

Phytoplankton are known to concentrate many metals from water 

including nutrient and toxic metals (2). That is, the concentration 

factor, the metal concentration in the algae divided by the aqueous 

metal concentration, is greater than one. Concentration factors are 

sometimes greater than 105 (This work) . Si nce phytoplankton are the 

primary producers in most aquatic environments and since they 

concentrate metals so effectively they have been suspected of 

participating in the concentration of metals to higher trophic levels 
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in aquatic food webs. However, even the classic example of the 

concentration of mercury in the marine pelagic food chain from 

phytoplankton to tuna has been questioned (6). 

Whether metals are concentrated in higher trophic levels or not, 

phytoplankton may serve as an intermediate step in metal cycling. 

Fowler and co-workers have shown that Cd (7) and Zn (8) are constantly 

turned over in the body of Meganictyphanes norvegica, a marine filter 

feeder whose prey includes phytoplankton. They found that the metals 

were taken up much more rapidly from food than from water. Thus, 

metals may be concentrated by phytoplankton, eaten by zooplankton, 

excreted in feces, and sink to the sediments. Small and Fowler state 

that 11!:!.:._ norvegi ca can effect a net transport of about 98% of its body 

zinc concentration below 500 m daily, assuming that no released 

products are eaten during descent." (8) (Note: This is 500 m deep 

in the ocean.) 

Metal uptake by planktonic algae has been studied in the field 

and in the laboratory. Laboratory studies have consisted of exposing 

algal cultures to varying concentrations of metal ions and measuring 

the uptake. Riley and Roth (9), for example, cultured 15 species of 

marine phytoplankton and analyzed them for 18 trace metals. They 

found 11 
••• no differences in [the distribution patterns of the metals] 

which could be correlated with the classification of the organisms. 11 

In another experiment they found that trace metal contents of algae 

generally increased with increasing metal concentrations in the growth 

media. 
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Button and Hostetter (10) cultured two freshwater planktonic 

algae, a diatom and a green alga, and measured Cu sorption and release. 

They also measured Cu sorption by cleaned cell walls of the two algae. 

Most of the Cu taken up by the diatom, Cyclotella, was adsorbed on 

the organic coating surrounding the cell wall or absorbed by the 

protoplasm. Most of the Cu sorbed by the green alga, Chlamxdomonas, 

was retained by the cell wall. When transferred to a Cu-free medium 

after Cu incubation,Cyclotella and Chlamydomonas released 46% and 59%, 

respectively, of the sorbed Cu. This implies that about half of the 

Cu taken up by these two algae was adsorbed. The Cu concentration 

in the growth media was not varied. 
2+ 3-Conway and Yaguchi (11) varied concentrations of Cd and As04 

in continuous cultures of Asterionella formosa, a fresh water diatom. 

Cadmium sorption" ... was found to be a complex function of ambient 

concentration and time... Desorption of Cd and As was observed in some 

experiments. 

Some field studies have tried to use algae as indicator organisms 

of metal pollution. For example, Ray and White (12) collected samples 

of two vascular plants and a blue-green algae, Oscillatoria, upstream 

and downstream from "base metal'' mines. Algae from polluted sites 

contained much more metal than algae from unpolluted sites. No 

quantitative conclusions about metal uptake were drawn. 

Other field studies have involved measurement of several metals 

in plankton samples and, occasionally, measurement of metals in both 

water and plankton. Martin and Knauer (13) determined 18 metals in 

phytoplankton, zooplankton, and microplankton, a mixture of 
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phytoplankton, zooplankton, and detritus. Their samples were 

collected in Monterey Bay and on a transect from Monterey, California 

to Hawaii. Phytoplankton samples were grouped chemically rather than 

taxonomically. The groups were Ti-containing, Ti-lacking, and 

Sr-concentrating phytoplankton. Metals in phytoplankton were 

operationally divided into "organic" and "siliceous" fractions by the 

dissolution scheme used. 

Knauer and Martin (14) measured concentrations of five metals 

in phytoplankton and sea water from Monterey Bay. They collected 

their samples at time intervals of three weeks or less over a period 

of one year. There was a general decrease in the concentrations of 

Cd, Cu, Zn, and Pb during August 6-13, the period of maximum 

productivity, but only the Cd decrease could reasonably be accounted 

for by phytoplankton uptake. All other variations in metal 

concentrations were attributed to hydrographic effects. 

Morris (15) measured dissolved and particulate Zn, Mn, and Cu 

in Liverpool Bay during a bloom of Phaeocystis, a colonial flagellated 

alga. A minimum in dissolved Mn occurred at the same time as maxima 

in particulate Mn and in total flagellate counts . Thus, the decrease 

in the dissolved Mn concentration was explained by algal uptake. 

Variations in Cu and Zn could not be explained by algal uptake. 

Chau, et !l· found that Zn, Zn + Cu, Zn + Fe, and Zn + Fe + Cu 

concentrations correlated with subsurface chlorophyll ~in Lake Erie, 

but that these correlations were not "highly significant . " (16) 

They did state, though, that "Generally, high chlorophyll ~in the 

western and eastern regions coincided with high concentrations of 

trace elements." 
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Holm-Hansen (17) found that small amounts of Cu added to large 

~situ cultures of marine phytoplankton allowed microflagellates 

to out-compete diatoms. Patrick, Batt, and Larson (18) found that 

green and blue-green algae were more tolerant of metallic 

contaminants and that the addition of V, Cr, Ni, Rb, orB to mixed 

cultures caused population shifts from diatoms to green or blue-green 

algae. They state that such population shifts ..... may greatly 

reduce the productivity of the system as a whole. If the shift is 

to species which have lower predator pressure, large standing crops 

which may be nuisances may develop. 11 

Mills and Oglesby (19) measured concentrations of Co, Pb, Cu, 

Zn, Cd, and vitamin B12 in Cayuga Lake, New York. They observed that 

the mean concentrations of all five metals in the euphotic zone 

decreased as the growing season progressed. They speculated that 

..... decreases in the readily available fraction of each trace metal 

in lake water may [have been] due to a translocation of nutrients in 

sinking particulate matter during the growing season ... or the result 

of their being incorporated into the metabolic activites of 

phytoplankton ... They also found that the mean concentration of each 

of the five metals they measured was 11 among the lowest reported in 

the literature ... 

Pita and Hine (20) analyzed Zn, Pb and Cd in reservoir sediments 

in Oklahoma. They found that Zn and Pb contents of the sediments 

.. closely correlated 11 with water depth, organic content, and fraction 

of clay-sized material in the sediments. Based on an assumed rate 

of sediment accumulation of one inch per year, Fort Gibson Reservoir, 



6 

Oklahoma, was predicted to remove 0.3 ppm Zn and 0.04 ppm Pb from 

waters passing through the impoundment. 

This thesis describes an experimental project in which plankton 

and water samples were collected from six southern California lakes 

while taking special precautions to avoid metal contamination. The 

water samples were analyzed for Cu, Zn, and Cd and the plankton samples 

were analyzed for Cu, Zn, Cd, Pb, Co, Fe, Mn, Na, K, Mg, Ca, Sr, Ba, 

and Al. Special precautions were also taken to avoid contamination 

during analyses. These precautions are described in Chapter 2. 

Copper, Zn, and Cd were chosen for analysis in water because 

they can be extracted simultaneously from water using APDC + DDDC. 

(See Chapter 2.) The method has been reported to be useful for Pb, 

Ag, Ni, and Co as well, but Pb recoveries proved to be unreliable 

and Ag, Ni, and Co concentrations were so low in the water samples 

that even after extraction they were not detected. Metal concentrations 

in the plankton digests were much higher than in water samples, so 

more metals could be determined. 

Other measurements were made to support the measurements of 

metals in plankton and water and to gain some insight into the role 

of plankton in metal cycling. Primary production was estimated by 

measuring oxygen production in light and dark bottles. The flux 

of sedimenting particulate matter was measured using sediment traps 

suspended above the lake bottom. The amount of suspended particulate 

matter in lake water was measured by filtering the lake water through 

tared filters, lyophilizing the filters, and weighing them. 
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The data from one of the lakes studied, San Vicente Reservoir, 

wereused in a model of trace metal chemistry in lakes. 

The lakes studied were Otay, Morris, Hodges, Castaic, San 

Vicente, and San Dieguito Reservoirs. All of the lakes are water 

supply reservoirs. Figure 1.1 shows the locations of the lakes. 

The main criteria for the choice of lakes were accessibility and 

distance from the laboratory. The public is not allowed on some of 

southern California's scarce lakes. Only lakes located within one 

half day's drive of the laboratory were considered for study. 

Otay Reservoir was chosen because it was productive in terms 

of algal growth and because frequent plankton counts were taken. 

Hodges and San Dieguito Reservoirs were studied briefly but were 

dropped because neither lake was particularly productive. 

Morris, San Vicente, and Castaic Reservoirs were studied because 

they were deep lakes with steep sides and relatively small littoral 

zones. Thus, almost all primary productivity occurred in the pelagic 

zone and was due to phytoplankton. Hydrologic data were available 

for San Vicente and Castai~and plankton counts were also available 

for San Vicente. 
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+ Castaic Reservoir 

+ MORRIS RESERVOIR 

0 LOS ANGELES 

+ Hodges Reservoir 
+ San Vicente Reservoir 

SAN DIEGO CALIFORNIA 
+ Otay 

eservoir 
MEXICO 

Figure 1.1 Locations of Lakes Sampled . 
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Chapter 2 

Experimental Methods 

This chapter describes experimental methods including cleaning, 

sampling, and analysis. Cleaning refers to eliminating, or reducing 

to tolerable levels, metal contamination from sampling gear and 

labware. Analysis includes sample preparation as well as 

instrumental analysis. 

2.2 Cleaning 

Dust from laboratory air, labware, and reagents used in sample 

preparation are all potential sources of contamination {1). The 

recommendations of Patterson and Settle (2) strongly influenced all 

laboratory procedures used in this research. 

2.2.1 Cleaning the Laboratory 

Access to the laboratory was restricted to those who worked 

there, usually only the author. Street shoes were left outside 

and lab shoes, which never left the lab, were worn inside. A 

lab coat was worn at all times . Non- talced polyethylene gloves were 

worn whenever labware or samples were handled . 

The doors were sealed with rubber gaskets. Polyethylene 

sheet covered the floor and holes and cracks in the walls. A false 

wall of polyethylene sheet was put up around the fume hood at one 

end of the laboratory because i t was hard to clean around and under 

the hood . Ventilation and exhaust ducts had filters which were 

changed monthly. Counters, shelves, and the floor were periodically 

wiped with moist tissue to prevent dust buildup. 
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Brass and galvanized steel fixtures were either removed from 

the room or, if removal was not feasible, were covered with poly­

ethylene sheet or painted with metal-free paint. 

Sample preparation and most cleaning operations were done in 

a polypropylene laminar flow "clean air bench" with a high-efficiency 

particulate air (HEPA) filter. The HEPA filter removed 99.97% of all 

particles larger than 0.3 llm in diameter (3) so that a "class 100" 

environment was maintained within the bench. Wet ashing was done in 

a pyrex "oven" which was flushed with filtered N2. The oven was 

furnished by Dr. Clair Patterson of the Division of Geological and 

Planetary Sciences. Heating was done on a hot plate in the fume hood, 

but the oven was allowed to cool and placed in the clean air bench 

before opening. 

2.2.2 Cleaning Reagents and Solvents 

Distilled demineralized water from a pyrex still was used in 

preliminary rinsing and acid soaking. Water for final rinsing and 

sample preparation was obtained from Dr. Patterson's laboratory. 

This water, which will be called Q-water, was distilled in a quartz 

and Teflon still equipped with an automatic pot dumper and a venturi 

scrubber to capture particles before they could enter the condenser. 

Isotope dilution mass spectrometric analysis shows that Q-water has 

less than 0.1 ng Pb/kg water (7). 

Aqueous NH3 was purified by isopiestic distillation (4). 

Sub-boiling distillation in an all-Teflon still (5) was used to 

purify HF, HCl, and HN03. Chloroform was washed four times with 
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HN03 to extract metals. Chelating agent solutions, including 

dithizone (Dz), ammonium pyrrolidinedithiocarbamate (APDC), and 

diethylammonium diethyldithiocarbamate (DDDC), were purified by 

exhaustive extraction using purified CHC1 3. Buffers were also 

purified by exhaustive extraction. Double-distilled HC104, obtained 

from G. Frederick Smith Chemical Company (GFS), was used without 

further purification. All purified chemicals except HC104 were 

stored in FEP Teflon bottles. The HClo4, which attacks FEP Teflon 

(4), was left in the borosilicate glass bottle i t came in. 

2. 2.3 Cleaning Labware and Sampling Apparatus 

New Teflon and quartz ware was washed with CHC1 3 to remove 

fingerprints and other greasy dirt. It was then dipped in 

concentrated HN03, rinsed, and soaked in 50% (v/v) HN03 for at least 

one day at 60°C. It was then soaked in warm (60°C) dilute (0.05%) 

HN03 for at least one day. Finally it was then soaked for at least 

three more days in fresh warm dilute HN03. (Dilute acid is very 

effective in leaching Pb from plastic surfaces (2), which are 

probably not smooth on the molecular scale, but porous {7). Dilute 

acid apparently penetrates the fissures in the plastic surface and 

dissolves residual pockets of Pb left by the concentrated acid. It 

was assumed that other -metals were leached similarly.) Polyethylene 

ware was soaked in hot 40% HCl for at least one day and was then 

treated in the same way as Teflon. Used labware which had been 

exposed to low metal concentrations was put through the dilute acid 

cycle before re-use. Otherwise it went through the entire cleaning 

procedure. Once the cleaning procedure started, equipment was handled 
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only with polyethylene gloved hands or stainless steel tongs held with 

gloved hands. Final rinsing, transferring, and wrapping were done 

in the clean air bench. 

Nuclepore filters were soaked in 50% HCl for at least one day, 

then in 0.05% HN03 for at least one day, and finally in another 0.05% 

HN03 bath for at least three days. As with all other dilute acid 

baths for soaking bottles, beakers, ... the 0.05% HN03 was made fresh 

from Q-water and GFS redistilled HN03. Between acid soaks the filters 

were thoroughly rinsed with Q-water while held in a plastic filter 

holder. When cleaning the filter holders they were treated in the 

same way as polyethylene ware. Polyethylene tubing for the water 

sampler (section 2.3.1) was cleaned by filling it with hot dilute 

HN03, letting it stand for at least one day, and rinsing with Q-water. 

This was repeated at least three times before re-use. 

Large bottles were stored filled with dilute acid and 

wrapped in polyethylene film. Teflon separatory funnels were stored 

in dilute HN03 baths. Before an analysis they were filled with a 

dilute APDC + DDDC solution and allowed to stand for one hour. Small 

items, such as quartz beakers and transfer pipettes, were either dried 

in a covered container in an oven and then wrapped with polyethylene 

film or were used wet from the final acid bath. 

Sampling gear was transported to and from sampling sites 

wrapped in acid-cleaned polyethylene bags. 

2.3 Sampling 

When sampling from a boat, paint chips and engine exhaust are 

potential sources of contamination (8). Sampling, therefore, was done 
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from a plastic inflatable raft on all lakes except Morris and Castaic 

Reservoirs. Private boats are not allowed on Morris Reservoir and 

inflatable boats are not allowed on Castaic Reservoir, so sampling 

was done from unpainted fiberglass boats. The boats could not be 

rowed, so outboard motor contamination was unavoidable. Sampling 

of water and plankton was done with the boat tied to a buoy with the 

motor off. 

2.3.1 Water Sampling 

Water samples from a depth of about three meters were collected 

using the vacuum apparatus shown in Figure 2.1. In-line filter holders 

contained Nuclepore filters of 8 ~m and 0.4 ~m pore size in series. 

The filter holders were wrapped and kept on ice to minimize microbial 

degradation of solids before analysis. Unfiltered samples were 

collected using the sampler without filters. 

2.3.2 Plankton Sampling 

Microplankton, or net plankton, refers to particulate matter 

caught by the #25 mesh (64 ~m aperture) Nylon plankton net and may, 

thus, include zooplankton and detritus as well as phytoplankton. 

Material collected by the plankton net will hereafter be referred to 

simply as "plankton". Not all plankton samples were examined 

microscopically due to fear of contamination. Those that were 

examined appeared to consist mainly of phytoplankton and zooplankton 

with little detritus. However, the San Diego plankton counts 

indicated that detritus was a significant component of Otay Reservoir 

plankton. Details of net construction to avoid metal contamination, 
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fishing, and sample handling can be found in reference 8. Plankton 

samples were kept on ice for transportation to the laboratory. 

2.3.3 Estimating Gross Photosynthesis 

Dark and light BOD bottles were filled with lake water pumped 

from the depth at which they were to be incubated using the water 

sampler fitted with a Tygon tube. _They were suspended in the lake 

from early morning until mid- day. Dissolved oxygen (DO) was fixed 

immediately after incubation by Mn(II) oxidation at high pH (9). The 

high pH also prevented further biological activity. The azide 

modification of the classic Winkler Test was used to measure DO (9). 

The delay between incubation and titration was not more than two 

days, which is a tolerable delay (10). 

2.3.4 Sampling Sedimenting Particles 

Figure 2.3.4 shows the design of sediment traps used to measure 

the flux of sedimenting particles in Morris and San Vicente Reservoirs. 

Another trap was placed in Castaic Reservoir, fastened to a log boom 

rather than to a buoy. The line from the log boom broke and the trap 

was lost. Watanabe and Hyashi (11) found that funnel-type sediment 

traps collected amounts of sediment in proportion to their areas in 

quiescent water and that when the areas were extrapolated to zero 

the collection was zero. Gardner (12) states that this is evidence 

for 100% trapping efficiency. 

2.4 Analysis 

Water samples were preserved by acidification to pH 1.6 with 

purified HN03 added to the sample bottle before departure for the 
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sampling site. The resulting pH was low enough to prevent growth of 

organisms and adsorptive losses of metal ions (13). Filters and 

plankton were kept on ice and in the dark for up to three days, 

depending on the number of lakes sampled and the distance from the 

laboratory. 

2.4.1 Water Analysis 

Filtered samples were heated at least one day at 60°C and 

unfiltered samples at least four days to insure complete dissolution 

of metals. 

Major cations, Na, K, Ca, and Mg, were determined by atomic 

absorption spectrophotometry (AAS), aspirating directly into the 

flame. La(III) was used as a spectroscopic buffer (14). 

Chelation by APOC + DDDC (15) and extraction into CHC1 3 
followed by back-extraction into HN03 were used to concentrate Cu, 

Zn, and Cd for analysis by AAS. Blanks were run in parallel by 

extracting Q-water. Yields, estimated by spiking samples and 

extracting in parallel, were greater than 90% for Cu and Cd and 

greater than 80% for Zn. The yield, which was calculated by comparison 

with standards, was not checked regularly because standards were 

extracted from previously extracted sample solutions. Extraction 

efficiencies were assumed to be constant because a large excess of 

chelating agent was used, pH was buffered, and identical CHC1 3 volumes 

were used for extraction. 

Intercalibration of the extraction procedure was done in 

cooperation with Or. Andrew Eaton of the Division of Geological 

and Planetary Sciences. The results of the intercalibration are 



20 

listed in Table 2.4.1. Sample numbers refer to sampling sites in 

San Francisco Bay. The samples were collected by Dr. Eaton. The 

number of replicates was dictated by the amount of sample available. 

Agreement was good except for Zn in the "FS" sample for which one 

replicate analyzed by the author was high. · 

2.4.2 Solid Sample Analysis: Plankton, Filters, and Sediment 

Metal concentrations in freeze-dried solid samples were deter­

mined by wet ashing less than one gram of the material in 3 ml of 

HN03 + 1 ml of HC104. The acids were refluxed at 120°C in quartz 

beakers covered with quartz watch glasses. When the solution was 

colorless the watch glasses were removed and the acids were 

evaporated to dryness. The beakers were then heated at 150°C to 

drive off HC104. Residual perchlorates were driven off by twice 

adding 1 ml of HN03, evaporating to dryness, and heating at 150°C 

to drive off HC104. Finally, 1 ml of HCl was added to redissolve the 

metal salts. The acid solutions were rinsed into Tefzel centrifuge 

tubes, and the solids were separated by centrifugation. The aqueous 

centrate was defined as the "organic fraction" and was weighed to measure 

its volume and analyzed by AAS. The solids were defined as the 

"silica fraction". 

The silica fraction was washed with Q-water, dried, weighed, 

and dissolved in HF. It was then transferred to an FEP Teflon beaker, 

evaporated to dryness, and heated to drive off HF. HN03 was added 

and evaporated twice to decompose and drive off residual flourides. 

The residue of metal salts was taken up in 25% HN03 and analyzed by AAS. 
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Table 2.4.1 

Results of Intercalibration of Extraction Preconcentration 
Procedure for Determination of Metals in Solution 

Eaton Holm 
9 17 FS 9 17 FS 

Cu 2.2 l. 37 .37 2.2 1.33 . 22 
2.3 1.4 2.2 1. 55 

1. 55 

Cd . 16 . 16 .088 . 15 . 12 . 081 
. 15 . 15 . 17 . 13 

. 18 

Zn .52 . 51 

1.02 

1. Concentrations are in ~g t-l. 

2. Results of replicates listed separately. 

3. 9, 17, FS refer to sampling sites. 

4. indicates data not available for comparison. 
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Metals in fresh samples were further fractionated by 

suspending the material in dilute HN03 for one hour and centrifuging . 

The centrate was defined as the 11 adsorbed fraction 11 and was weighed 

and analyzed by AAS. The solids were digested as described in the 

preceding paragraphs. 

The metal fractionation scheme for solid samples was based 

on the following assumptions: (i) adsorbed metals are held by weak 

acid adsorption sites on the surface of algal cells, detrital 

particles, and zooplankton and that dilute HN03 (pH 2) can remove 

these metals but not ~estray the organic matter, (ii) organic matter, 

including cellulose and chitin, is completely destroyed by 

HN03 + HC104 digestion and, therefore, that this digestion dissolves 

all metals in cell walls and cytoplasm, and (iii) HN03 + HC104 does 

not dissolve silica, but HF does. Aluminosilicate minerals, such 

as clays, would be included in the silica fraction if they were 

present in a plankton sample. Si:Al ratios in the plankton samples 

analyzed in this work suggest, though, that clays were not serious 

contaminants. All acids used in this fractionation scheme were 

purified by sub-boiling distillation. (See Section 2.2.2). 

Segar and Gilio (16) found that major cations interfered 

seriously with the determination of trace metals in marine organisms 

analyzed by wet ashing and flameless AAS . They extracted their 

di gests with APDC to remove the interfering ions. In plankton 

digests in this work major cations were sometimes a nuisance, but 

not a serious hindrance. That is, total Na + K + Mg + Ca 

concentrations were less than 0.05 M. Rather than extract the 
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digests, standard matrices containing Na, K, Mg, and Ca chlorides 

in the molar ratio of 1:1:1:5, which was a rough average of the 

first few plankton samples, and closely approximating the total major 

ion concentration were used to match sample matrices for Cd, Pb, Co, 

and Cu determinations by flameless AAS. Major ion interferences 

were apparently not serious in flame AAS. 

The method was tested by analyzing orchard leaves, NBS 

Standard Reference Material 1571. Results for Cd, Zn, Pb, and Cu, 

the only metals analyzed, were within the range of values reported 

by NBS. Blanks were determined in parallel digestions using empty 

beakers for plankton and sediment blanks and clean filters for 

filter blanks. 

One plankton sample, San Dieguito 6/23 , was analyzed by 

Michael Burnett of the Division of Geological and Planetary Sciences 

using isotope dilution-mass spectrometry. He determined that the 

Pb, Ca, Sr, and Ba contents were 0.24, 4.860, 62.5, and 405 g g-l 

dry weight, respectively. (Plan kton results appear in Table 3.3.1.) 
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Chapter 3 

Results 

Results of metal measurements in water and plankton are 

presented in this chapter. Concentration units are in ~g 1-l 

for water, rather than moles 1-l, in order to be consistent with 

plankton metal measurements. Plankton metal concentrations are 
-1 expressed in units of ~g g Some water concentrations have been 

translated to moles 1-l. 

3.2 Metals in Water 

Table 3.2.1 lists metal concentrations in the waters of the 

lakes sampled. For the Castaic samples Sl refers to a sampling 

site near the inlet while S2 is a site near the dam. The San 

Vicente samples are labeled I and L which stand for inlet and 

lake, respectively. The San Vicente lake sample was collected 

near the dam. A bar indicates an unacceptable result. For 

example, if a metal concentration in a filtered sample was signif-

icantly higher than in the unfiltered sample (relative average 

deviation or RAD > 20%), the former was assumed to be erroneous. 

Parentheses indicate suspect filtered concentrations. If 

a filtered concentration was higher than the unfiltered concen­

tration but the RAD was < 20%, the error may have been due to 

very low metal content in the suspended particles and variances 

in analytical results. 

Some metal concentrations in filtered samples were higher 

than in the corresponding unf i ltered samples and contamination 
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Table 3.2.1 

Metal Concentrations 1 in Filtered and Unfiltered Lake Waters 

Concentrations 
Lake date2 fi lt. f Cu Zn Cd 

-1 -I -1 sampled unf. u ~g t nM ~g t nM ~g t nM 

Otay 3/22 u 2.15 3 .063 .6 
6/4 u 1.07 .002 

6/23 u 1. 31 N04 .005 
f 1.30 .0093 

7/6 u 2.45 39. NO .0057 
f .79 

8/26 u 1.86 .36 .0055 
f 

12/1 u 1. 70 3.0 .0092 
f 1. 37 2.4 37. 

Morris 6/8 u .98 .0031 
6/28 u . 61 NO NO 

f 
8/20 u .53 8. . 15 .0075 

f (.57) 5 . 15 .0020 
11/17 u .60 . 54 .0049 

f .58 . 15 .0019 .02 

12/17 u .87 .66 .020 
f .60 .014 

Castaic 1/10 u 1.72 .37 .03 
S1 6 f 1. 59 .073 1. .03 

1/24 u 1. 02 .76 .0117 . 1 

f . 98 .40 .0074 

Castaic 1/10 1.45 7 .0226 u 

S26 1/24 u .74 .73 .0126 
f .64 NO NO 
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Table 3.2.1 (Continued) 
Metal Concentrations1 in Filtered and Unfiltered Lake Waters 

Lake data 2 fil t. f Cu Zn Cd 
~g 9..-1 

_, 
-1 sampled unf. u nM ~g 9.. nM ~g 9.. nM 

San 
Vicente 1/19 u 4.82 76. L43 .0033 

I f 4.78 . 61 .0017 . 02 

1/26 u .74 1.09 . 0126 
f .64 .87 NO 

San 
Vi cente 1/19 u 4.54 NO 

L f 4. 51 .69 NO 

1/26 u .49 8. 1.11 . 0030 
f .49 1.04 .0021 

Hodges 6/5 u 2.42 1.77 .031 
6/22 u 1.62 2.06 .026 . 2 

f ( l. 83) .0083 

7/7 u 2.96 .48 . 0011 

8/25 u 1.45 .74 .005 
f 
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Table 3.2.1 (Continued) 

Notes 

1. Most concentrations are in ~g t-l. Some are translated to nM. 

2. Sampling period was from March, 1976 to January, 1977. 

3. indicates unacceptable result. See text. 

4. NO indicates metal was not detected by AAS. 

5. ( ) indicates suspect result . See text. 

6. See text for explanations of Sl, 52, L, I. 

7. Blank indicates missing data . 
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during filtration was believed to be the explanation. The problem 

first appeared in the 7/7 and 8/25 samples. (The 7/7 samples were 

analyzed after the 8/25 sampling trip.) The filter holders were 

found to be the source of contamination, as was shown by filtering 

Q-water through the water sampling apparatus with and without filter 

holders. The filter holders were cleaned using the same procedure 

for sampling trips before 7/7 and there was no contamination problem 

then . Before 8/25 filters were discarded. After 8/25 the filters 

were digested like plankton except there was no silica fraction. 

That is, there was no visible residue after HN03 + HC104 digestion. 

The filtered concentration was then defined as unfiltered 

concentration minus filterable concentration. 

3.2.1 State of Metals in Suspended Particles 

Table 3.2.2 lists concentrations of metals in two states, 
11 adsorbed 11 and 11 organic 11

, and in two size classes of particles, 

those removed by an 8~ Nuclepore filter and those passing the 8~ 

filter but retained by a 0.4~ filter. The adsorbed fraction is 

operationally defined as metal removed by suspending the filter 

i n 0.05% HN03, pH 2, centrifuging, and decanting. The organic 

fraction is operationally defined as metal obtained by digesting 

the 11 desorbed 11 filter in HN03 + HC104. No visible solid remained 

after digestion and evaporation,so there was no refractory or 
11 Sil ica .. fraction. 

The Castaic Sl 1/24, San Vicente L 1/26, and San Vicente I 

1/26 filters were not desorbed, so the organic fraction and adsorbed 

fraction were combined. 
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Table 3.2.2 (Continued) 
Notes 

1. Concentrations are in ~g ~-l, i.e. ~g of particulate metal 
in a given size class and chemical fraction in one liter. 

2. See section 3.2 for explanation of the symbols Sl, S2, I, and L. 

3. Sampling period was 3/76 to 1/77. 

4. 8 indicates metals caught by 8~ Nuclepore filter .4 indicates 
metals passing 8~ filter and caught by 0.4~ filter. 

5. A stands for adsorbed fraction 
0 stands for organic fraction 
See text for explanation 

6. Castaic Sl 1/24, San Vicente I 1/26, and San Vicente L 1/26 
filters were not desorbed, so 0 is actually A + 0. 

7. Fe data are missing for San Vicente 1/26 L filters. 
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3.3 Metals in Plankton 

The concentrations of fourteen metals in plankton expressed 

in units of ~g g-l (dry weight) are listed in Table 3.3.1. Two 

fractions, organic and silica, were operationally defined for all 

but four plankton samples. The organic fraction was obtained by 

digesting freeze-dried plankton in HN03 + HC104, corresponding to 

adsorbed plus organic fractions. The silica fraction was obtained 

by dissolving in HF whatever solids survived the digestion. 

A bar indicates that the measurement was not made. This 

was usually because there was no sample left. (Flame AAS consumes 

sample solution.) Mn was not measured in the Otay 6/5 sample, though, 

because Mn absorbance was so high that it was off-scale and the sample 

was discarded before it could be diluted and measured. Blanks were 

unusually high (i.e. about 20% of signal) for Cu, Zn, and Fe in the 

San Vicente plankton. These metal values are in parentheses. 

3.4 Metals in Sedimenting Particles 

Table 3.4.1 lists the fluxes of sedimenting particles trapped 

by the particle interceptors placed in Morris and San Vicente 

Reservoirs. Table 3.4.2 lists the metal contents in the combined 

adsorbed and organic fractions of the particles. 1 The San Vicente 

sample was too small to spare part of it for moisture determination. 

1The silica fractions were accidentally discarded by someone who 
shared the author•s laboratory. 
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2. 
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Table 3.4.1 

Flux of Sedimenting Particles in Morris and 
San Vicente Reservoirs 

Date1 Collection Amount 
Area 2 Period Co 11 ected 
TciTiT (days) (g) 

7/15 206 30 2.4 (d)2 

11/17 206 43 22.5 (f)3 

1/26 366 7 1. 04 (f) 

Date collector was retrieved. 

Dry weight. 

Fresh weight. 

Flux 
(g cm-2 day·l) 

3.9 X 10-4 

2.5 X 10-3 

4. 1 X 1 0-4 
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Table 3.4.2 

Metal Concentrations in the Organic Fraction 
of Sedimenting Particles 1 

dry wt. 2 wet wt. 2 2 wet wt. 
Lake: Morris Morris San Vicente 
Date Co 11 ected: 7/15 11/17/76 1/26/77 
Metal 

Cd .617 .164 .0917 
Pb 7.66 .808 .242 

Co 7.12 1. 27 .903 

Cu 29.3 32.5 6.38 

Zn 165. 60.2 12.0 
Mn 1680. 1410. 1300. 
Fe 26200. 26200. 6350. 

Na 438. 56.5 41.7 

K 6430. 7640. 1240. 
Mg 1341 o. 11800. 2010. 
Ca 111000. 12800. 1790. 
Sr 1180. 263. 78.0 

Ba NO 1460. 264. 
Al 17100. 4460. 2970. 

Notes: 1. Concentrations are in ~ g g-l 

2. Only Morris 7/15 sediment was freeze dried. 
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Chapter 4 

Discussion 

4.1 Introduction 

This chapter discusses the data presented in Chapter 3. 

Plankton metal contents have been plotted as a function of time 

and the plots have been compared with one another and with similar 

plots of aqueous metal concentrations vs time. The fraction of total 

Cd, Zn, and Cu associated with plankton in unfiltered water was 

calculated from plankton counts and plankton metal contents. The 

rate of uptake of metals by plankton is discussed. A model of 

trace metal chemistry which includes a term for~ situ particle 

formation·is considered. 

4.2 Patterns of Plankton Metal Contents 

This section will attempt to relate aqueous metal 

concentrations to plankton metal contents. It is assumed that 

plankton sorb uncomplexed or "free" metal ions from solution. For 

example, equilibrium computations have shown that growth rate 

correlated strongly with free cu 2+ concentrations in cultures of 

marine phytoplankton (13). 

To see whether comparison of aqueous and plankton metal 

concentrations is meaningful, the speciation of Cu, Zn, and Cd in 

lake water was computed using the equilibrium program MINEQL (14). 

Since this was a "worst case" computation (i.e. the smallest fraction 

of free Cu, Zn, or Cd), the Cu, Zn, and Cd concentrations used were 

the highest measured. Alkalinity, pH, and Ca, Mg, Na, and K 

concentrations were measured while concentrations of ligands other 



39 

- 2-than OH and co3 that are representative of fresh waters were 

assumed (15). The humic and proteinaceous material of natural organic 

matter was modeled by salicylic acid, phthalic acid, and glycine. 

Details of the computation are in the appendix. 

Essentially all of the Cd and Zn was computed to be free or 

complexed with inorganic ligands, so variations in organic ligand 

concentrations would not have affected Cd or Zn speciation appreciably. 

Since pH varied by no more than 0.1 pH unit and alkalinity varied by 

less than 5% in any lake, Zn and Cd were always at least 96% and 

89% uncomplexed, respectively. Thus, comparing total aqueous Zn 

and Cd concentrations with plankton Zn and Cd concentrations is 

meaningful. 

Speciation of Cu was more complicated with only 3% of the 

total Cu computed to be uncomplexed. Some of the Cu was computed 

to be bound by salicylate and glycinate. Thus, variations in 

natural organic ligand concentrations could result in variations 

. f c 2+ . 1n ree u concentrat1ons. Thus, relating aqueous Cu concentrations 

to plankton Cu concentrations i s not stra i ghtforward if only free 

cu2+ is sorbed. 

Changes in metal concentrations in plankton and water were 

compared. Matching water and plankton patterns were expected to 

indicate passive sorption. Langmuir and Freundlich plots were also 

a ttempted with no apparent correlation. 

Figure 4.2.3 shows plots of Cu, Zn, and Cd concentrations in 

unfiltered water vs time for Otay Reservoir and Figure 4.2.4 is a 

similar plot for Morris Reservoir . Concentrations in unfiltered 
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Table 4.2.1 

Trends in Otay Plankton and Water Metal Concentrations 

Meta 1 s Trends 1 

6/5 6/24 7/6 8/26 12/1 

~lankton 

Zn, Fe, Al, Pb + + + 

Ca, K 0 0 0 + 

Cd, Na 0 0 + + 

Co + + 0 + 

Mg 0 + + 

Mn 0 + 

Cu + 0 + 

water 

Cu 0 + 0 

Zn *2 0 + + 

Cd + 0 0 + 

Notes: 1. + increase 

0 1 ittl e change 

- decrease 

2. no Zn i n water data 
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Table 4.2.2 

Trends in Morris Plankton and Water Metal Concentrations 

Metals Trends 

6/28 8/20 11/17 12/17 

e 1 ankton 

Cd, Co, Al, Na + + 0 

Zn, Fe, Mg + 0 0 

Pb, Ca + + 

Mn + 0 + 

K 0 + 0 

Cu + ..; 

water 

Cu 0 0 + 

Zn + + 0 

Cd + + + 

Notes: 1. + increase > x2 

0 1 ittl e change 

- decrease < .;. 2 
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water were used rather than in filtered water because some filtered 

water concentrations were unacceptable. Comparison of Figures 4.2.3 

and 4.2. 1 and of Figures 4.2.4 and 4.2.2 should show whether plankton 

metal concentrations reflected changes in aqueous metal concentrations. 

If the ability of plankton to concentrate metals remained constant 

despite species changes, metal contents in plankton should reflect 

trends in aqueous metal concentrations, if not the magnitude of such 

trends. 

The trends in Cd plankton and water concentrations in Otay 

Reservoir were similar and the magnitudes of the overall changes 

from 6/5 to 12/l were nearly equal. Thus Cd uptake by Otay plankton 

between June and December, 1976, may have been governed by aqueous 

Cd concentrations. The June to December trends in plankton and 

water Cu were similar, though short-term changes were different. 

Cu uptake by plankton may also have reflected aqueous concentrations. 

The Zn water and plankton plots were dissimilar between 6/5 and 

8/26 and similar in direction, if not magnitude, from 8/26 to 12/l. 

Plankton Zn uptake may have been independent of aqueous Zn 

concentration before 8/26 and dependent on aqueous Zn concentrations 

after 8/26. 

On comparing the concentration patterns of Cu, Zn, and Cd in 

water and plankton from Morris Reservoir (Table 4.2.2) it appears 

that Morris plankton Cu contents did not reflect aqueous concentrations. 

Changes were opposite in sign and plankton Cu content changes were 

greater in magnitude. Plankton and water patterns were somewhat 

similar for Zn in that there were large increases between 6/28 and 
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8/20 and little or no increase between ll/17 and 12/17, but the 

plankton Zn concentration remained practically constant from 8/20 to 

11/17 while the water concentration doubled. The water and plankton 

patterns for Cd were similar from 6/28 to 11/17. Then the plankton 

Cd concentration remained constant until 12/17 while the aqueous 

concentration doubled. Aqueous Cd and Zn concentrations may govern 

plankton Cd and Zn contents in Morris Reservoir. 

Cadmium uptake by both Otay and Morris plankton seemed to 

reflect trends in aqueous Cd concentrations. The uptake of Zn by 

Morris plankton may have been governed by aqueous Zn concentrations, 

but Cu uptake did not seem to reflect trends in the aqueous Cu 

concentrations. The opposite can be said about Otay plankton. Cu 

uptake may have been governed by aqueous Cu concentrations but Zn 

uptake probably was not governed by aqueous Zn concentrations. 

Plankton counts from Morris Reservoir were not available for the period 

sampled, so comparison with Otay counts to see if the species 

compositions were different was not possible. 

Metal contents of Otay plankton are plotted as a function of 

time in Figure 4.2. 1. Figure 4.2.2 is a similar plot for Morris 

plankton. The lines connecting the points in each graph are not 

meant to imply continuous changes in metal contents with time but 

merely to make any patterns easier to see. Dotted lines signify 

that an intermediate data point could not be plotted due to missing 

data (i.e. Al in Otay plankton collected 6/24) or concentratins which 

were too low to detect. Points representing samples whose 

concentrations were too low to detect are marked 11 ND 11
• 
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The metal contents in the series of plankton samples from 

either lake were compared with one another to see if there were 

similarities between plots or "patterns". Two or more patterns were 

considered similar if the series of changes in metal contents between 

sampling dates were identical. The criteria for changes were as 

follows: 

1. Increase: metal content increased by at 1 east a 
factor of two. 

2. Decrease: metal content decreased by at least a 
factor of two. 

3. Little Change: meta 1 content neither increased nor 
decreased according to criteria 1 and 2. 

The trends in metal contents of Otay plankton are listed in 

Table 4.2. 1 along with trends in Cu, Zn, and Cd concentrations in 

unfiltered water. Table 4.2.2 lists the corresponding trends in 

Morris plankton and water. 

Three patterns of changes in metal content in Otay plankton 

were common to two or more metals. Zn, Pb, Fe, and Al all followed 

the same content pattern. Ca and K followed another pattern and 

Cd and Na followed a third. The remaining four metal content 

patterns did not resemble other patterns. 

Morris plankton metal contents also had three patterns which 

were followed by two or more metals. One group included Cd, Co, Al, 

and Na. Another group included Zn, Fe, and Mg. The other group was 

Pb and Ca. The remaining three metals followed different patterns. 

These similarities of patterns suggest that plankton metal 

contents are due to chemical properties of plankton and not to random 

fluctuations. Twenty seven patterns can be formed by four points 
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that satisfy the criteria mentioned above. Thus, for Morris Reservoir 

there were 2.25 times as many possible patterns as metals, yet three 

patterns were followed by groups of two to four metals. The 

similarities between the Otay plots are even more striking because 

five points can form 81 possible patterns. 

4.3 The Fraction of Metal in Lake Water Associated with Plankton 

Some plankton may not have been captured by the plankton nets 

used in this study, since some of the species known to be present are 

small enough to fit through the 64 ~m apertures of the Nylon mesh. 

On the other hand, the net was not used as a strainer. It is 

generally assumed that the plankton organisms roll down the side of 

the net to the container in the cod end as the net moves through 

the water (1) . Whether or not all species were captured by the net, 

it was assumed in the following calculations that the metal contents 

of net plankton were the average contents of all plankton. 

Plankton counts for Otay Reservoir were obtained from the 

San Diego Water Utilities Department and appear in the Appendix. 

Plankton distributions in lakes may be non-uniform or patchy (16) 

so the San Diego plankton counts may not estimate plankton biomass 

with more than order of magnitude accuracy. However, the fractions 

of metals calculated to 0e associated with plankton were so small 

that accuracy in estimated plankton biomass was not important. 

The counts were expressed as standard units ml-l. Standard units 

ml-l can be converted to ~m2 ml-l by dividing by 4.25 (2). The 

areas were converted to volumes us ing the information on algal cell 

geometry shown in Table 4.3. 1 (3,4). Some information on cell 
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geometry was not in references 3 or 4. If so, the volumes of these 

species were assumed to be proportional to the other species in the 

same group (e.g., blue green algae). These plankton volumes in units 

of ]..III1
3 ml-l are listed in Table 4.·3.2 . 

. The plankton volumes were multiplied by a density of 1 g 

cm- 3 (11) and by plankton metal contents from Table 3.3.1 to give 

plankton metal concentrations. The plankton metal concentration 

(PMC) is the amount of metal in plankton per unit volume of lake water. 

These PMC's were divided by the appropriate unfiltered water metal 

concentrations to give the metal in plankton as a fraction of total 

in lake water. The fraction of metal in algae was calculated 

similarly, deleting zooplankton and amorphous counts from the 

plankton counts. The fractions of metals in plankton and algae in 

Otay Reservoir are listed in Table 4.3.3 along with concentration 

factors for each metal. If 1% is considered a significant fraction, 

then Otay plankton Cu, Zn, and Cd did not account for significant 

fractions of Cu, Zn, and Cd in lake water. 

The greatest plankton counts occurred on 6/15/76 and 

11/10/76 . If the aqueous and plankton metal concentrations on 

6/15 and 11/10 are assumed to be the same as on 6/5 and 12/1, 

respectively, then Cd, Zn, and Cu in plankton still accounted 

for less than 1% of the total metals in lake water. 

4.4 On the Rate of Metal Uptake by Plankton 

In this section three simple integrated rate expressions are 

used to predict metal uptake by plankton over periods of up to 6 days. 

The three models considered are progressively more conservative with 
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Table 4.3.2 

Metals in Plankton and Algae as Fractions of Total 
Metals in Lake Water, Concentration Factors 

Date Fraction of Tota 1 Metal 
Zn Cd 

6/5 p1 ankton 1 2.5xlo-4 2.8xl0 -4 

a1gae2 3.3xl0-5 3.7xl0 -5 

CF 2.3xlo4 2.7x104 

7/7 plankton 3.5xl0-3 3xl0-4 

algae 4.8xl0-4 4.lxl0 -5 

CF 1 . 5xl 0 5 1.3x10 4 

6/23 p1 ankton 1. Oxl 0 -3 1 . 1 xl 0 -4 

algae 1.7xl0-3 1. 9x1 0 -5 

CF 6.6xlo4 7.3xl03 

8/25 plankton 3.7x10 -4 7.5x10 -4 

algae 1 .8xl o- 5 3.7xl0 -5 

CF 1 . 5x 1 0 4 3.lx10 4 

12/1 plankton 3.2x10 -4 9.4xl0 -5 

CF 4.4xl04 1 . 3x 1 0 5 

8~4 1.8xl0-3 5 

Notes: 1. Mass of plankton estimated from plankton counts. 
2. Mass of algae estimated from plankton counts. 
3. Concentration factor (dimensionless) 

CF = concentration of metal in plankton 
concentration of metal in water 

Cu 

1. 5xl 0 -5 

2xl0-6 

1. 4x1 03 

2.2xl0 -4 

3.0xl0 -5 

9.4xl0 3 

2.4xl0 -4 

1 . 6x 1 0 4 

1. 5x 10 -4 

7xl0-6 

6.lx10 3 

1. 4xl 0 -5 

2.6xl0 4 

1 . 7x 1 0 -3 

4. Fraction of metal retained by 8~ filter in plankton. 
5. Unacceptable data. 
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respect to the rate of metal uptake by plankton. The intention is 

not to imply that actual uptake is described by any of the models. 

but rather, that it may fall in the range of uptake predictions. 

Gross primary productivity was estimated as described in Section 2.3.3 

and the results for Otay, Morris, and San Vicente Reservoirs are listed 

in the Appendix. For these calculations it was assumed that all 

primary production resulted in carbohydrate synthesis according to the 

equation nco2 + nH20 = (CH20)n + no2 and that the production rates 

remained constant. Plankton metal contents from section 3.3 were 

used in the calculations . Six days was chosen as typical of the 

log phase of a plankton bloom. 

Three simple models fo~ the distribution of metals between 

algae and solution were considered. The total amount of metal, 

metal in plankton plus dissolved metal, was assumed constant. 

It was assumed that metals were either dissolved or taken up by 

plankton. That is, the only particulate metal was that which was 

taken up by plankton. In each case it was assumed that metals 

taken up were not released. The simplest model was that total algal 

metal content was constant and independent of aqueous metal 

concentration. Next, total plankton metal content was assumed to 

be proportional to aqueous metal concentration. In the third case 

considered,the plankton metal was partioned between adsorbed and 

organic forms as defined in section 2.4 . 2. The organic metal was 

assumed to be proportional to adsorbed metal at the time of formation 

of the organic matter and constant thereafter while the adsorbed 

metal was assumed to be in continuous equilibrium with dissolved metal. 
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Each case is discussed in more detail below. 

4.4.1 Plankton Metal Content Constant 

There are at least two possible reasons for plankton metal 

content to be constant with time and independent of aqueous metal 

concentration. The metal may be essential for growth such that algae 

must contain X ppm or they will not grow, or will not grow at an 

optimal rate. Gerloff and Fishbeck ( 6) found 11 Criti cal concentrations" 

of K, Mg, and Ca in several species of green and blue green algae. 

The algae did not grow at optimal rates if the algal metal 

concentrations, in ~g g-l, were below the critical concentrations. 

If the algae grow at their optimal rate of growth during the period 

considered for these calculations the essential metals should be 

taken up at constant rates. Another possible explanation is that 

the algae may be saturated with the metal of interest, even at low 

ambient concentrations. 

The rate of decrease in aqueous concentration of metal M caused 

by algal uptake is 

d[M] 
dt = RC (4.4.1.1) 

where [M] is the aqueous concentration of M in ~g 1-l, R is production 

in g 1-l day-l, and C is the total plankton metal content in ~g g-l 

C is the total of adsorbed, organic, and silica metals from Table 2.3.2. 

If we let [M] 0 stand for metal concentration at time zero and t stand 

for time in days, then 

[M] = [M] - RCt 
0 

(4 . 4.1. 2) 

Sample calculations of equation 4.4.1 .2 and all of the other 
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models considered are listed in Table 4.4. l. Figure 4.4.1 shows the 

concentration-time behavior predicted by each model. The calculations 

are listed in the appendix. 

4.4.2 Total Plankton Metal Content Proportional to Aqueous Concentration 

If metal uptake depends on adsorption then the amount of metal 

taken up will be proportional to the aqueous metal concentration. 

For example, Riley and Roth (7) found that the metal contents of marine 

phytoplankton increased with increasing metal concentrations in culture 

media. If a Langmuir isotherm describes metal ion adsorption on 

algal surfaces and metal concentrations are low, then the steep 

quasi-linear part of the isotherm will be relevant and adsorption will 

be roughly proportional to solution concentration. Ion exchange 

equilibria may govern uptake of metal M when [M] «[CaJ, [MgJ, [Na], 

[KJ and pH is constant. Uptake would then be proportional to [M] (8). 

Using the same notation as the previous section we have 

C = k [M] (4.4.2.1) 

where k = C/ [M]
0 

(4.4.2.2) 

Then - ~iM] = Rk[M]. (4.4.2.3) 

Thus, [M] = [M] exp(-RCt/ [M] ) 
0 0 

(4.4.2.4) 

4.4.3 Plankton Metal Content Divided Between Adsorbed and 

Organic Fractions, Uptake Rate Proportional to Aqueous 

Metal Concentration. 

If organic metal is proportional to adsorbed metal when the 

organic matter is formed but stays constant afterward, and if adsorbed 

metal is continuously in equilibrium with aqueous metal, then 
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C = kl (M] org at time of formation where k1 = C0r
9

/[M]
0 

(4.4.3.1) 

(4.4.3.2) 

Corg and Cads are the organic and adsorbed fractions, respectively, 

from Table 2.3.2. If we consider only the effects of metal uptake 

into the cell interior, then 

- EJ.lli. = Rkl [M] dt 

and [M] = [M]
0 

exp (-Rk1t) org. uptake 

Solving forM we find that 

[M] = 
(M] 0 exp (-Rt C0r

9
/[M] 0 ) 

1 + Rt cad/ (M]0 

4.4.4 Discussion of Calculations 

Figure 4.4.1 shows that in some cases even the most 

(4.4.3.3) 

(4.4.3.4) 

(4.4.3.5) 

conservative uptake model, equation 4.4.3.5, predicted that metal 

uptake by plankton can reduce metal concentrations by more than 20% 

in four days. The concentration factor, also shown in Figure 4.4.1, 

had to be above about 105 to predict noticable reductions in aqueous 

concentrations. A 20% reduction in aqueous concentration would be 

easily detected by AAS if the concentrations were sufficiently higher 

than the detection limit. Thus the predicted reductions in Zn, Mn, 

and Fe concentrations in Morris and San Vicente Reservoirs would 

have been detectable. Only the San Vicente Cd reduction would have 

been unambiguously detectable. Even if a predicted reduction were 

1%, that would mean that the fraction of total metal in lake water 

associated with plankton would be more than ten times greater than 
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Table 4.4.1 

Sample Calculations of Cd Uptake in San Vicente Reservoir l/19/77 

[Cd] = 

R = 

ctot = 

cads = 

corg = 

.001 lJg £ -1 

3.7 X l0-4g £-l 

1. 03 lJg g -1 

.915 lJg g -1 

. 115 lJg g -1 

day-l 

initial aqueous concentration 

primary production 

total Cd content of plankton 

adsorbed Cd content of plankton 

organic+ silica content of 
plankton 

equation # egua ti on 6 day prediction 

4.4.1.2 

4.4.2.4 

4.4.3.5 

[M] = [M] - RCt 
0 

c 
[M] = (M] exp (-R ~ t) 

o [M] 
0 

(M] 
[M] exp(-RtC /(M] ) 

o org o 

1 + RtC d /(M] 
a s o 

[Cd] = .001- (3.7x10-
4) 

(1.03)(6) = -.0013 * 

[Cd] = . 001 exp 

-(3.7x10-4)(1.03)(6) 

• 001 

= .00010 

= .001 exp(-(3.7xl0-4)(6)(115)/(.001)) 

1 + (3.7xl0-4)(6)(.915)/(.00l) 

= .00026 

*A negative concentration at time t means that the concentration 
reached zero before timet. (See Figure 4.4.1). 
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OTAY 12/1 MORRIS 12/17 SAN VICENTE 
1/19 

.010 .001 

Cd .005 
.009 

0 0 0 
0 0 0 

1.5 5 .0 
1,2,3 0.5 1,2, 3 1,2,3 

Cu 0 .5 

0 0 0 
0 0 0 

2,3 
0 .2 

Zn 0.1 

0 0 0 
0 0 2 4 6 0 2 4 

5.5 5.3 

150 
1,2,3 

90 
Mn 

0 0 0 
0 0 0 

10.0 10.0 
200 1,2,3 I ,2 ~ 3 

Fe 
100 

5 .0 5.0 

0 0 0 
0 0 0 

Figure 4.4. 1 Predicted Reductions in Metal Concentrations due to 

Uptake by Plankton. (See Next Page for Notes.) 
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MORRIS 12/17 (I) 

.015 

Cd ( 2) ( 3) ( 8) 

.005 

0....__......_____.. _ _._ 
0 2 4 6 (4) 

5. 3 ( 5) 

Notes: ( 1 ) Lake from which parameters 
obtained (columns) 

were 

(2) Meta 1 (rows) 

(3) Metal Concentration (JJg Q, 
-1 

(4) Time (days) 

(5) Log of Concentration Factor 

(6) (Number 1 ) Equation 4.4. 1. 2 

(7) (Number 2) Equation 4.4.2.4 

(8) (Number 3) Equation 4.4.3.5 

Figure 4.4.1 (Continued) explanations of features of 

graphs. 
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that calculated in section 4.3. For example, Figure 4.4.1 shows the 

Cd concentration being reducted by 30% in one day. This suggests that 

there was a turnover of Cd in algae and that a significant fraction 

(i.e. 30%) of the Cd in the lake water was associated with algae some 

time during that day. Otay plankton did not concentrate Cu, Zn, Mn, 

or Fe enough to predict observable reductions in concentration of 

any of these metals. 

If Morris and San Vicente plankton contained similarly small 

fractions of total Cd, Cu, Zn, Mn, and Fe in lake water, then there 

may have been large turnovers in plankton Cd, Zn, and Mn in both lakes. 

Fe turnover may have been large in Morris Reservoir but moderate in 

San Vicente. Cu was not predicted to turn over in any of the lakes 

because plankton did not concentrate Cu as much as the other metals . 

The rate of decrease in concentration correlated with the 

concentration factor. Manganese is a case in point. Otay plankton, 

for which the Mn concentration factor (CF) was 4000, reduced the Mn 

concentration by less than 2% after six days. San Vicente plankton, 

with a Mn CF of 160,000 reduced the Mn concentration by 31 % in six 

days . Morris plankton, with a Mn CF of SOO,OOO,reduced dissolved Mn 

by 66% in six days. This is to be expected, of course, since 

sorption by algae was by definition the only sink for dissolved 

metals. 

Equation 4.4.3.5 predicted lower concentration reductions 

than equation 4.4.2.4 in only one case, Cd in San Vicente. This 

was the only case for which the concentration factor and the ratio 

Cads/Corg were high enough for this to happen. 
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4.5 A Model of Trace Metal Chemistry in Lakes: Comparing 

Predictions with Observations. 

Schindler (11) has proposed a model of regulation of trace 

metal concentrations in lakes and in the ocean. His model assumes 

that a11 particles can be treated as a single solid phase and that 

the distribution of metal ions between solid and solution phases can 

be described by a distribution coefficient 

D=~ 
[M]A 

(4.5.1) 

where [M] is the amount of metal M associated with particles per 
p 

liter, [M] is the concentration of dissolved M, and A is the amount 

of particulate matter per liter. In this work A was taken to be the 

mass of material retained by a 0.4 ~m Nuclepore filter when one liter 

of sample was filtered. 

Schindler derived his model for perfectly mixed lakes at 

steady state with respect to the flux of water. In the opinion of 

the author, very few large lakes, like San Vicente Reservoir, which 

is the test case in this work, are well mixed. Also, San Vicente 

is a water supply reservoir whose storage is constantly changing, so 

it is not at steady state with respect to the flux of water. The 

equations can easily be modified to cover the non-steady state case, 

though. The non-well-mixed condi tion will be ignored. 

In the following discussion parameters describing the lake's 

influent will have i subscripts. Effluent flux will have an e 

subscript. Lake parameters will not have subscripts. 

The sedimentation rate of particles, S, is given by 



S = ¢. A. - ¢ A+ B 
1 1 e 
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(4.5.2) 

where ¢ is the flux of water and B is the rate of~ situ production 

of particulate matter. In this work the primary production measurement 

was used for B. Equation 4.5.1 says that the difference between the 

rate of introduction of particulate matter into the lake, ¢i A; + B, 

and the rate of particulate matter flowing out of the lake, ¢eA, is 

due to sedimentation. Thus, since the distribution coefficient 

describes the distribution of metal ions between solid and solution 

phases, the rate of metal M sedimenting with the particulate matter is 

(4.5.3) 

SM can also be calculated from the mass balance on M if we 

first note that 

[M] a [M) + [M] 
t p 

(4.5.4) 

and that, from equation 4.4.1 

[M] '"' [M] (1 +AD). 
tot 

(4.5.5) 

Thus, 

SM = [M].¢. (1 +A.D.)- [M]¢ (1 +AD) 
1 1 1 1 

(4.5.6) 

In other words, the metal carried in by the influent stream is 

either removed by sedimentation or is carried out by the effluent stream. 

Equating the expressions for SM in equations 4.5.3 and 4.5.6 

and solving for [M) we obta i n a formula for the concentrati on of 

dissolved metal. 

[M]'"' [M]i 
¢

1
. (1 +A.D.) 

1 1 (4.5.7) 

By combining equations 4.5.5 and 4.5 . 7 we obtain a formula 
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for total metal concentration. 

¢i (1 + AD) 
[M] = [M] . t 

t 
1

' (¢.A.+ B) D + ¢ 
1 1 e 

(4.5.8) 

The parameters used in the calculations described in the following 

sections can be found in the appendix. 

4.5.1 Sedimentation Rates of Metals 

Table 4.5.1 lists sedimentation rates of metals in San Vicente 

Reservoir calculated from the observed flux of particles, metal 

content of the particles, and the surface area of the lake, assuming 

that sedimentation flux was uniform over the entire lake. 

Sedimentation rates were also calculated from equations 4.5.1 and 

4.5.2 and are also listed in table 4.5.1. 

There was agreement within a factor of two between observed 

and predicted Cd sedimentation rates in three cases. Two of the Cu 

and two of the Zn predictions were close to the observed values, 

while none of the Mn predictions were within a factor of two of the 

observed values. Section 4.5.4 shows why agreement within a 

factor of two can be considered good agreement. 

4.5.2 Dissolved Metals 

Predicted and observed dissolved metal concentrations are 

listed in Table 4.5.2. The Cu predictions for both sampling dates 

were within a factor of two of observed filtered Cu concentrations. 

For Cd, Zn, and Mn one prediction was close and the other was low 

by an order of magnitude. 
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Table 4.5. 1 

Calculated and Observed Sedimentation Rates of Metals 
in San Vicente Reservoir (~g day-1) 

Observed 
Calc. from 1 Calc. from 2 Part. Mass Bal. Met. Mass Bal. 

l/19 1/26 1/19 1/26 

Cd 1 . 61 <2.73 3.04 1. 93 -.55 

Cu 112. 164. 8.6 702. 115. 

Zn 211. 3040. 272. -13.7 126. 

Mn 22800. 4040. 2830. 5390. -560. 

Notes: 1. SM,P =(¢;A;- ¢e A+ B) 0 [M] 



Cd 

Cu 

Zn 

Mn 
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Table 4.5.2 
Calculated1 and Observed Dissolved Metal Concentrations 

(J.l9 .2,-1) 

Observed Calculated 
l/ l9 l/26 1/19 1 I 26 

<, 0002 . 0021 .00015 <. 00015 

4. 51 .49 6.23 .90 

.69 1.04 .068 .94 

2.24 3.35 1.23 .57 

Notes: l. (M] (M]. 
cp. (1 +A.D.) 

1 l 1 
l. 
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4 . 5. 3 To ta 7 Meta 1 s 

Schindler's ultimate prediction in his lake model is the 

relative residence time of metals. Since this was not directly 

measurable, equation 4.5.7 for total metal concentration was compared 

with observed unfiltered water metal concentrations. The results 

are shown in Table 4.5.3. The l/19 Cd prediction was high by an 

order of magnitude while the l/26 prediction was within a factor of 

2.5 of the observed value. Both Cu predictions were close to 

observed total Cu concentrations. Both Mn predictions and the single 

Zn prediction were very close to measured total concentrations. 

Overall, 60% of the model's predictions agreed with observations 

of Cu, Zn, Cd, and Mn concentrations and sedimentation rates. 

Manganese chemistry is probably controlled by redox processes as well 

as adsorption, so Schindler's model is not expected to predict Mn 

behavior adequately. If only Cu, Zn, and Cd are considered, then 

70% of the model's predictions agree with observations. 

4.5.4 Errors in Predictions 

For a function u = u (z,y,z, ... ) 

du = 00 ~ dx -+ ~ j dy + ~ ~ d z + ... (4.5.4.1) 

If the errors in x,y,z, ... are small enough, i.e. a "few percent" 

(12), the error in u, 6u, is 

A 1 I : ~ 6x + C ll 6y + lL 6z + 
u,... c X d y d Z ••• (4.5.4.2) 

The errors in the parameters measured for Schindler's model, 

particularly Band (Cd), are probably greater than a few percent, 

but the error bounds may be useful in distinguishing "good" predictions 
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Table 4.5.3 
Calculated1 and Observed Total Metal Concentrations2 

1. 

2. 

Observed 
l/19 1/26 

<.0002 

4.54 

13.8 

[M] "' 
t 

[M]. 
l.,t 

JJ9 Q.-1 

<P· 1 

( <P . 
1 

.003 

.49 

1.11 

6.26 

( 1 + AD) 

A. + B) 0 + <P 
1 e 

Calculated 
1/19 l/26 

.002 

7.0 

12.0 

.0068 

1.1 

1.1 

8.9 
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from 11 bad 11 ones. Listed below are the predictive equations from 

sections 4.5. 1 through 4.5.3 and the predicted errors obtained by 

applying equation 4.5.4.2 to them. 

SM ~ (~;A; - ~e A + B)D (M] 

~SM = (M]. ~·A. ~D.+~· (1 +A.D.)~ [M]i 
111 1 1 11 

+ (M] ~e ~D + ~e (i + AD) ~ (M] 

~SM = (M]i~iAi ~D; + ~i (1 + A;D;) ~ [M]i + 

(M] ~e ~D + ~e (1 + AD) ~ [M] 

D~B + (~.A. + B) ~D 
1 1 ) 

where (M] 1 is obtained from equation 4.5.4 . ca c 

9 . ( 1 + AD) 
[M]t = [MJi,t - 1 ------

(~ . A. + B) D + ~ 
1 1 e 

(4.5.2) 

(4.5.4.3) 

(4.5.3) 

(4.5.4.4) 

(4.5.4) 

(4.5.4.5) 

(4.5.7) 



6[M] 
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[M] 6 [M]i t 068 
t, calc ( [M]. ' + --~==------

~.t (¢;A; + B) 0 + ¢e 

60 
+ AD 

(¢. A. + B) 0 + ¢e 
1 1 

+ 

(4.5.4.6) 

Relative errors in¢, ¢i' A, and A; were assumed to be much smaller 

than the relative errors in [M];, 0, Oi, and B. The error expressions 

can be simplified by noting that with a consistent set of units 

the orders of magnitude of the various parameters 

A = 10-3 to 1 0- 2 g t -1 0=1 01 

6 8 = 10 g day-l ¢=1 o8 

The expressions for relative error become 
65

M o 68 + 60 + ~ s; s o [MJ 

6lM] 
[M] 

6 [M]t g 6(M] 
i,t 

0 + 68 + 60 
i 8 -o 

+ 68 + 60 
8 0 

to 103 

t day 

are 

t 
-1 g 

-1 

(4.5.4.7) 

(4.5.4.8) 

(4.5.4.9) 

The quantity with the greatest uncertainty is B for which the relative 

error may approach 1. This is why agreement within a factor of two 

was considered good in comparing theory with observation. 

4.6 Summary 

This thesis has discussed the influence of aqueous metal 

concentrations on plankton metal contents and how metal uptake by 

plankton may influence the concentrations and speciation of metals 
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in lakes. 

The relation of aqueous metal concentrations to plankton metal 

contents was studied by comparing plots of plankton metal contents 

vs time with plots of aqueous metal concentrations vs time. 

Alhtough none of the plankton plots were identical to their 

corresponding aqueous plots with respect to changes in metal 

concentrations, plankton and aqueous metal concentrations showed 

overall increases from June to December. The overall increases in 

plankton metal concentrations, however, were greater than the increases 

in aqueous metal concentrations. Thus, while passive sorption may be 

partly responsible for metal uptake by plankton, other mechanisms, such 

as active uptake, are probably also important. The surface properties 

of plankton may change with time as the species composition changes 

and this may also influence metal uptake. The fact that no plankton 

pattern was identical to its corresponding aqueous pattern with 

respect to short term changes in metal concentration indicates that the 

ability of plankton in a given lake to concentrate metals was not 

constant over periods as short as two weeks. 

There was similarity between plankton metal patterns. In 

Morris Reservoir three groups of metals containing four, three, and 

two metals, respectively, followed identical patterns of changes in 

plankton metal contents. In Otay Reservoir groups of four, two, and 

two metals followed identical patterns of changes in plankton metal 

content. Random fluctuations did not explain the variations in 

plankton metal concentrations because there would have been less 

grouping of patterns. The groupings cannot be explained by 
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similarities in aqueous chemistry of the metals, either. For example, 

one group of metals in Morris plankton consisted of Cd, Co, Al, and 

Na. In this group ionic charges range from +l to +3. Cd and Co are 

strong adsorbers while Na is not. Cd, Co, and Al hydrolize while 

Na does not. There may be physiological reasons for the groupings 

of metals. 

The amounts of Cu, Zn, and Cd associated with plankton per 

liter of water, [M]pl' were calculated for each Otay sample. It 

was found that [M]pl was less than 1% of [M]tot' the total metal 

concentration, for all three metals in all samples. Thus, plankton 

metals should make up only a small fraction of metals found in solid 

phases. In fact, Table 4.3.2 shows that plankton Zn and Cu comprised 

less than 0.2% of the Zn and Cu in particles caught by an 8 ~m filter. 

The rates of depletion of aqueous metal concentrations by 

plankton metal uptake were calculated using three integrated rate 

equations as models of plankton metal uptake. The object of the 

calculations was to see whether metal uptake by plankton could cause 

measurable reductions in aqueous metal concentrations. The 

parameters used in the model equations were obtained from analyses 

of field samples. It was found that when the concentration factor 

was greater than 105, plankton metal uptake was predicted by 

equation 4.4.3.5, the equation which is the most conservative with 

respect to the amount of metal sorbed, to reduce aqueous concentrations 

by more than 20%, a measurable amount, within four days. This would 

mean that at the end of four days at least 20% of the total metal 

would be associated with plankton. However, the fraction of total 
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metal in plankton was found to be less than 1% of [M]tot in all cases, 

so the rates of release of metals from plankton were roughly equal 

to the rates of uptake. 

The importance of plankton in trace metal chemistry in lakes was 

illustrated by a model proposed by Schindler. The model considers 

all solids to be a single phase and assumes that metal ions are 

distributed between solution and solid phases according to a 

distribution coefficient which is constant at a given solution 

composition including pH, concentrations of major cations, and 

concentrations of ligands. A term for the rate of~ situ production 

of particulate matter is included and primary production was used for 

this parameter. In San Vicente Reservoir, the test case considered 

in this thesis, the in situ rate of production of particulate matter ---
was of the same order of magnitude as the rate of introduction of 

particulate matter by the influent stream. Thus, since solids 

control aqueous metal concentrations and since the biota produce solids 

at a rate comparable to the rate of introduction of influent solids, 

the biota play a significant role in trace metal chemistry. The 

model•s predictions agreed with observations within error bounds 

based on measurement errors in about two thirds of the cases considere:. 
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Appendix A 

Otay Reservoir Plankton Counts1•2 

Date: 5/18 5/25 6/2 6/8 6/15 6/22 6/29 7/7 7/14 

Blue Green Algae 
Anabena 77 9 9 51 119 144 289 281 21 
Osci 11 a tori a 9 0 17 0 60 34 0 0 17 
Spiru1ina 0 0 0 0 0 17 0 26 38 

Diatoms 
Navicula 0 0 4 0 0 17 0 43 0 
Synedra 4 0 132 68 94 4 4 4 68 
Other3 0 0 0 0 0 0 0 21 0 

Dinoflagellates 
Peridinium 0 0 17 13 0 47 21 0 9 
Other3 0 0 0 13 0 0 0 4 0 

Green Algae 
Scenedesmus 0 0 9 0 4 0 0 4 9 
Other3 0 4 0 4 0 4 0 0 0 

Pigmented Flagellates4 
Trachelmonas 13 0 9 0 4 26 9 4 0 
Chlamydomonas 0 0 13 0 4 43 0 0 0 
Carteria 535 136 68 21 542 170 153 247 30 
Other3 17 17 47 38 77 47 220 77 77 

Crustacea 655 183 325 208 900 553 749 835 290 

Amorphous 361 510 595 574 563 404 446 680 574 
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Appendix A (Continued) 

Otay Reservoir 1 2 Plankton Counts • 

Date: 7/20 7/27 8/3 8/11 8/17 8/25 9/1 9/15 9/22 

Blue Green Algae 
Anabena 17 9 43 102 68 111 162 9 17 
Oscillatoria 26 0 26 0 9 17 55 4 9 
Spirulina 0 0 34 9 0 13 72 9 4 

Diatoms 
Navicula 0 9 9 17 9 0 9 0 4 
Synedra 127 13 0 0 4 94 21 38 0 
Other3 0 0 4 0 0 0 4 0 0 

Dinoflagellates 
Peridinium 0 0 0 4 0 0 9 0 0 
Other3 0 0 0 0 0 0 0 0 0 

Green Algae 
Scenedesmus 4 0 0 9 13 55 13 9 9 
Other3 0 0 9 0 4 13 9 4 0 

Pigmented Flagellates4 
Trachelmonas 0 0 0 0 0 0 0 0 0 
Chlamydomonas 47 4 17 9 9 0 4 38 9 
Carteria 0 13 4 26 0 38 0 0 9 
Other3 13 0 0 39 0 0 0 0 8 

Crustacea 234 48 193 215 120 341 349 128 73 

Amorphous 893 850 978 563 1148 978 765 925 701 
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Appendix A (Continued) 

Otay Reservoir Plankton Counts1 ' 2 

Date: 9/29 10/5 10/20 11/10 11/17 12/1 

Blue Green Algae 
Anabena 0 0 9 0 0 0 
Oscillatoria 0 60 9 0 0 0 
Spirulina 0 21 0 0 0 0 

Diatoms 
Navicula 0 0 0 0 0 0 
Syned3a 13 170 9 0 0 0 
Other 0 21 0 0 0 0 

Dinoflagellates 
Peridinium 0 0 0 0 0 0 
Other3 0 9 0 0 0 0 

Green Algae 
Scenedesmus 17 4 9 13 4 13 
Other3 61 0 9 30 0 4 

Pigmented F1age11ates4 
Trachelmonas 0 0 0 0 0 4 
Chlamydomonas 9 17 30 0 0 34 
Carteria 9 89 144 680 9 31 
Other3 4 64 17 30 123 9 

Crustacea 113 540 236 753 136 149 

Amorphous 893 893 1233 1105 723 680 
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Appendix A (Continued) 

Notes 

1. Counts taken by San Diego, California. Water Utilities 
Department. 

2. Units are Standard Units per Milliliter (S) 
S + 4.25 = ~m2 ml-l 

3. A genus was lumped with 11 0ther 11 if it occurred infrequently 
in the plankton counts. Included under this heading were: 
Diatoms - Stephanodiscus, Fragilaria 
Green Algae - Pediastrum, Staurastrum, Closterium 
Pigmented Flagellates - Halderia 

4. This category was ca 11 ed 11 protozoa 11 on the plankton 
count forms. 
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Appendix B 

H d l · D f s v· R · 1 y ro og1c ata or an 1cente eservo1r 

January, 1977 

Flow In: 3052.0 X 106 gallons 

Flow Out: 2072.0 X 106 gallons 

Capacity: 29401.7 X l o6 gallons 

Area: 1069 acres 

Note: Data furnished by San Diego, California Water Utilities 
Department. 
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Appendix C 

Raw Data From Solids Analyses 

Table C-1. Weight of Samples1 

Otay Reservoir Date: ill.. 6/23 7L6 

Sam~le 
Plankton Fresh2 4.1 8.69 2.2 

Plankton Dry2 3 0.56 0.2 
Digested Plank ton7 1.06 0.28 0.17 
Plankton SiO~ (d)

5 0.0228 0.0028 

Morris Reservoir Date: 6/28 8/20 11[17 
Sam~le 
Plankton Fresh 22 . 9 2.6 1. 64 
Plankton Dry 0.3 0.11 
Digested Plankton (d) 1.12 0.19 0.18 
Plankton Adsorbed8 (f) 

8/26 

2.6 

0.33 
0.0116 

12/17 

1.44 
0.12 
3.28 (f)5 

1.80 
Sedimenting Particles6 (f) 10/7 - 11/17 total 33.5 
Sedimenting Particles6 (f) 7/20 - 8/20 total 2.35 
Sedimenting Particles6 (f) Digest? 1 0/7-11 I 17 1 . 45 (f) 
Sedimenting Particles6 (f) Digest7 7/20- 8/20 . 07 (d) 

Plankton Si02 (d) 0.42 0.0068 0.0367 0.0193 

Hodges Reservoir Date: 7/7 8/25 
Samele 
Plankton Fresh 7.5 3.3 
Plankton Dry 1.0 0.5 
Digested Plankton (d) 0.69 0.36 
Plankton Si02 (d) 0.0062 0.0062 

Castaic Reservoir Date: 1/10 
Sam~le 

Suspended Solids (mg ~-1 )9 (d) 0.4 l:!m 8.0 um 
Sl 2.44 7.40 
S2 1. 89 6.73 

12/l 

1.06 
0.10 
0.17 
0.0231 
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Appendix C (Continued) 
Raw Data From Solids Analyses 

Table C-1. Weight of Samples1 (Continued) 

San Vicente Reservoir Date: l/19 1il.§. 

SamEle 
Plankton Fresh 0.56 
Plankton Dry 0.06 

Digested Plankton (d) 0. 43 
Plankton Adsorbed (f) 0.60 

Sedimenting Particles (f) l. 04 
Suspended Solids (mg £-1) (d) 

0.4 llm influent 0.36 1.80 

8.0 llm influent 1. 20 6.30 

0.4 llm lake 0.34 0.73 

8.0 lJill lake 0.43 0.88 

San Dieguito Reservoir Date: 6/23 

SamEle 
Total Plankton Sample (f) 17.9 
Digested Plankton Sample (f) 1.4 
Plankton Si02 0.0095 
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Appendix c 
Raw Data From Solids Analyses 

Table C-2. Volumes of Digests10 

Otay Reservoir Date: 6/5 6/23 ill 8/26 12/l 

Samele 
Plankton Organic Fraction 9.8 21.9 14.2 9.7 13. 1 

Plankton Si02 Fraction 5.0 5.0 5.0 2.0 

Plankton 1st Adsorbed Fraction 28.7 

Plankton 2nd Adsorbed Fraction 28.5 
Suspended Solids 0.4 l.lm adsl6 29.0 

Suspended Solids 8.0 ~ ads 29.1 
Suspended Solids 0.4 l-Im org17 8.5 

Suspended Solids 8.0 l-Im org 16.6 

Morris Reservoir Date: 6/28 8/20 11/17 12/17 

Samele 
Plankton 1st Adsorbed Fraction 21.1 25.3 
Plankton 2nd Adsorbed Fraction 25.3 25.6 
Plankton Organic Fraction 12.7 12.6 9.7 9.89 
Plankton Si02 Fraction 5.0 5.0 4.0 5.0 

Suspended Solids 0.4 l-Im ads 27.6 15.0 
Suspended Solids 8.0 l.lm ads 25.6 15.2 
Suspended Solids 0.4 l-Im org 7.4 6.7 
Suspended Solids 8.0 l-Im org 7.3 8. 1 
Sediment Organic Fraction 8/20 11.0 
Sediment Organic Franction 11/17 12.8 

Hodges Reservoir Date: 7/7 8/25 

Samele 
Plankton Organic Fraction 12.5 12.7 
Plankton Si02 Fraction 5.0 5.0 

Castaic Reservoir Date: .lL.lQ 1L24 1/24 

Samele Station: Sl Sl 52 
Suspended Solids 0.4 l-Im ads 9.5 13.9 15.3 
Suspended Solids 8.0 l-Im ads 10.6 11. 1 14.8 
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Appendix c 
Raw Data From Solids Analyses 

Table C-2. Volumes of 0. t 10 1ges s (Continued) 

Castaic Reservoir Date: 1/10 1/24 1/24 
Sample Station: S1 Sl S2 
Suspended Solids 0.4 ~m org 5.2 5.6 6.6 

Suspended Solids 8.0 ~m org 5. 7 5. 1 5. 3 

San Vicente Reservoir Date: 1/19 1/26 
Sample 

Plankton Adsorbed Fraction 15.0 
Plankton Organic Fraction 6.0 
Plankton Si02 Fraction 4.0 
Sediment Organic Fraction 1 o. 7 

Suspended Solids Station: I L I L 

0.4 ~m ads 17.0 14 . 0 
8.0 ~m ads 12.4 13 0 8 
0.4 ~m org 6.6 4.6 5.5 5.6 

8.0 11m org 5.2 5. 0 4.7 5. 4 
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Appendix C (Continued) 

Table C-4. Metal Concentrations in Filter Digests14 

Samele Cd Pb Cu Zn Fe ~1n Na K !:1.g_ Ca 

M, 11/17, 4, A NO 2.5 NO NO 22.0 40.0 rm NO .03 .29 
M, 11/17, 8, A NO 3.5 11.2 NO 44.0 93.0 NO NO .06 .89 
M, 11/17, 4, 0 . 13 8.4 24.6 14.0 1470 146 . 17 .25 .38 . 10 
M, 11/17, 8, 0 . 17 5.9 71.6 11.0 4230 259 .25 .86 1.48 .44 
M, 12/17. 4, A .054 2.3 2.59 NO 228 167 . 09 .04 .11 1. 40 
M, 12/1 7. 4, 0 . 19 13.0 4.30 8. 58 1073 1 01 
M, 12/17. 8, 0 .11 11 .3 3.58 19.7 3152 275 
0, 12/1 • 4. 0 NO 1. 50 NO NO NO 
0, 12/1, 8, 0 NO 1.10 NO NO 51.0 NO 
0, 12/1, 4, A .38 2.40 .89 10.2 1430 285 
0, 12/1 , 8, A .27 5.50 5.80 17.5 3900 892 
SL, 1/19, 4, A NO 1.80 .42 4.30 13.0 15.0 . 12 NO . 10 . 17 
SL, 1/19, 8, A NO .92 .85 3.33 20.3 54. 1 . 10 NO .11 .38 
SL, 1/19, 4, 0 .80 3.20 NO 3.33 941 54.1 . 12 .06 .20 NO 
SL, 1/19, 8, 0 . 54 2.30 NO 3.54 941 107 .05 . 10 .25 rm 
SI, 1/19, 4, A NO NO NO 2.28 NO 10.3 . 14 NO .11 .30 
sr, 1/19, 8, A NO NO NO 2.73 9. 70 17.9 . 16 !10 . 13 .34 
SI, 1/19, 4, 0 .40 4.60 .28 2.17 599 32.6 . l 0 . 10 . 1 g NO 
SI, 1/19, 8, 0 NO 2.80 . 56 2.27 37.1 .20 .06 .20 NO 
SI, 1/26, 4, T • 125 3.16 NO 19.5 3060 196 1. 24 . 81 1. 59 1. 51 
SI, 1/26, 8, T .333 2.76 NO 1. 25 1280 59.0 .62 .38 .87 1. 27 
SL, 1/26, 4, T .083 1. 78 NO .88 280 20.0 .57 .05 .43 . 51 
SL, 1/26. 8, T NO 2.96 NO 5.0 540 78.0 .64 . 1 7 .72 .42 
C1, 1/10, 4, A NO 1.15 3.40 1. 97 81.9 37.0 rm .11 1.12 
C I, 1/10, 8, A NO 1.10 2.38 3.19 123 55.6 . 12 .28 5.58 
CI, 1/10, 4, 0 NO 2. 71 1.43 10.2 1560 29.6 NO .56 t\0 
CI, l/10, 8, 0 .054 2.31 1.07 8.0 4220 37.0 NO 1. 21 NO 
CI, 1/24, 4, T NO 5.13 1. 99 18.3 4470 59.0 .29 1. 06 1. 09 .085 
CI, 1/24, 8, T NO 5.33 2.21 15.4 4540 59.0 .083 . 91 1.16 .085 
C2, 1/24, 4, A .333 1. 78 .89 9.50 60.0 59.0 . 07 ND NO .47 
C2, 1/24, 8, A .417 3.16 1. 55 8.50 60.0 78.0 . 16 NO ND .47 
C2, 1/24, 4, 0 NO 3.55 .89 9.40 2280 59.0 .11 .36 . 58 NO 
C2, 1/24, 8, 0 NO 3.95 .89 14.3 1890 59.0 .28 .72 NO 

M, 12/17, 8, A NO 4.2 2.41 NO 228 1C7 .09 .04 .11 1.40 
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Appendix C (Continued) 

Notes 

1. Weights in grams unless otherwise specified. 

2. Sub-sample to determine moisture content. 

3. -·indicates no data. 

4. Si02: the solids that survived the HN03 + HC104 digestion. 

5. (d): dry weight 
(f): fresh weight 

6. Weight of total sediment sample. 

7. Weight of sample digested. 

8. Weight of sub-sample treated with dilute HN03. 

9. Suspended solids were determined by filtering a known volume 
of lake water through tared filters, lyophilizing the filters, 
and weighing. 
Size fractions are explained in the text. 

10. Volumes in ml. 

11. Cd, Pb, and Co concentrations are in ~g ~-l. All other 
concentrations are in mg ~-1. 

12. The sample codes are in the following format: Lake, Date, 
Fraction. 
Lake: 0 Otay, M Morris, H Hodges, S San Vicente, D San Dieguito. 
Date: Month/day (i.e. 11/17 is November 17). 
Fraction: 0 organic, Al first adsorbed, A2 second adsorbed, 

A adsorbed, S silica. 

13. NO: Not detected. 

14. 

15. 

-1 In Table C-4 Na, K, Mg, and Ca concentrations are in mg ~ . 
All other concentrations are in ~g ~-1. 

The sample codes are similar to those in Table C-3 . The format 
is: Lake, Date, Size, Fraction. 
Lake: SL San Vicente "lake", SI San Vicente "influent", 

Cl Castaic Station 1, C2 Castaic Station 2. 
Size: 4 0. 4 - 8. 0 ~. 

8 larger than 8.0 ~. 
Fraction: T total, or A+O. 



91 

Appendix C (Continued) 

Notes 

16. ads stands for adsorbed fraction. 

17 . org stands for organic fraction. 
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Appendix D 

Metal Concentrations1 in Water Not Reported in Chapter 3 

Mn Fe Na K _Jig_ Ca 

Hodges 8/25 T2 52.6 
F2 54.3 

Otay . 8/26 T 42.8 
F 44.2 

Otay 12/1 T .24 . 14 126 . 43.2 37.2 66.2 
F .24 . 15 

Morris 11/17 T . 12 . 021 14.3 26.5 83.6 53.3 
F .02 .002 

Morris 12/17 T . 140 .036 15.8 7.1 72.6 18.6 
F .007 .003 

Castaic 51 1/10 T . 024 .24 52.9 4.8 48.1 18.9 
Sl F . 019 
52 T .014 . 16 47.5 4.4 53.7 17.2 

Sl l/24 T .018 .094 40.4 2.5 90.5 19.0 
Sl F . 011 .018 37.7 2.3 87.5 17.8 

52 1/24 T .008 .042 37.7 2.4 90.0 19.0 
52 F .007 .009 

San Vicente Influent 1/19 T . 012 . 021 99.6 5.8 29.4 32.3 
F .004 .005 102. 5.7 29.0 32.3 

Lake 1/19 T . 014 .002 105 . 5.8 29.6 32.3 
F . 012 . 021 99.6 5.6 29.0 32.3 

San Vicente Influent 1/26 T .013 .11 96.9 5.33 28.0 33.5 
F .001 .009 96.9 5.21 27.6 33.5 

Lake l/26 T .006 .076 105. 5.6 29.3 32.3 
F .003 .008 99.6 5.7 28.7 31.2 
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Appendix D (Continued) 

Notes 

1. All concentrrations are in mg ~-l. 

2. T total, unfiltered water 
F filtered water 
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Appendix E 

Primary Production Measurements 

Since some of the precautions listed by Vollenweider (Ref. 10, 

Chapter 2) for accurate productivity measurements were not feasible 

(i.e. incubating duplicate bottles, suspending bottles in a horizontal 

position, ... )the data are somewhat scattered. They, do however, 

resemble normal productivity profiles. Rather than integrating the 

raw data numerically a function of the form 

a+ a cos (Z-l) rr, where a= 1/2 of maximum productivity in 
zmax-1 

-3 -1 mg 02 m day , Z= depth in meters, and Zmax is the extrapolated depth 

of the compensation point, was fitted to the data and integrated 

analytically. The relevant parameters and calculated areal 

productivity rates are listed in this appendix. It was assumed that 

all primary production resulted in carbohydrate synthesis according 
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Appendix E (Continued) 

Tab 1 e El 

Productivity Measurements 

Lake Date Al zmax(m) 

Otay 12/1/76 370 7 

Morris 12/17/76 .450 8 

San Vicente 1/19/77 350 10 

Notes: 1. Units of A are mg o2 m- 3 (1/2 day)-1. 

2. Estimatd gross primary productivity 
mg C m- 2day-l. 

R2 
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1460 
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