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ABSTRACT

Natural waters may be chemically studied as mixed electrolyte
solutions. Some important equilibrium properties of natural waters are
intimately related to the activity-concentration ratios (i.e., activity
coefficients) of the ions in solution. An Ion Interaction Model, which
is based on Pitzer's (1973) thermodynamic model, is proposed in this
dissertation. The proposed model is capable of describing the activity
coefficient of ions in mixed electrolyte solutions. The effects of
temperature on the equilibrium conditions of natural waters and on the
activity coefficients of the ions in solution, may be predicted by means
of the Ton Interaction Model presented in this work.

The bicarbonate ion, HCO3~, is commonly found in natural waters.
This anion plays an important role in the chemical and thermodynamic
properties of water bodies. Such properties are usually directly rela-
ted to the activity coefficient of HCO3~ in solution. The Ion Inter-
action Model, as proposed in this dissertation, is used to describe
indirectly measured activity coefficients of HCO3~ in mixed electrolyte
solutions.

Experimental pH measurements of MC1-MHCO3 and MC1l-H5CO3 solu-
tions at 25°C (where M = Kt, Nat, NH4t, ca?t or Mg2t) are used in this
dissertation to evaluate indirectly the MHCO3 virial coefficients. Such
coefficients permit the prediction of the activity coefficient of HCO3~
in mixed electrolyte solutions. The Ton Interaction Model is found to

be an accurate method for predicting the activity coefficient of HCO3~
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within the experimental ionic strengths (0.2 to 3.0 m). The virial
coefficients of KHCO3 and NaHCO3 and their respective temperature vari-
ations are obtained from similar experimental measurements at 10° and
40°C. The temperature effects on the NH4HCO3, Ca(HCO3)2, and Mg(HCO3)2
virial coefficients are estimated based on these results and the tem-
perature variations of the virial coefficients of 40 other electrolytes.
Finally, the Ton Interaction Model is utilized to solve various

problems of water chemistry where bicarbonate is present in solution.



Chapter

1

TABLE OF CONTENTS

Title
INTRODUCTION
el The Bicarbonate Ion as a Main Component of
Natural Waters
122 Thermodynamic Models
143 Evaluation of the Thermodynamic Models
1.4 Thermodynamic Properties of M-HCO3 Salts
13 Effects of Temperature on Aqueous Solutions'

Equilibria

THE ION INTERACTION MODEL
2.1 Literature Review
22 General Equations

23 The Ion Interaction Theory for 2:2 Electrolyte
Solutions

2.4 Example

TEMPERATURE EFFECTS ON THE THERMODYNAMIC PROPERTIES
OF ELECTROLYTE SOLUTIONS

o P | Thermal Effects on Electrostatic Interactions
3.2 Thermal Effects on Short-Range Interactions
SR Example

THE ACTIVITY COEFFICIENTS OF ALKALI AND ALKALINE
EARTH BICARBONATES

el The Carbonate System in Aqueous Solutions

4.2 General Principles of the Bicarbonate Ion
Activity Coefficient

Page

11
11

12

18

22

29
29
31

51:

53

53

56



Chapter

Appendix
I

Il

4.4

4.5

4,6

4.9

vi

Title

Theoretical Approach to YMycp3 in MCL-MHCO3
Solutions

Theoretical Approach to Mygcp3 in MCL-MH2CO3
Solutions

Experimental Procedures

Experimental Determination of the MHCO3
Virial Coefficients

Temperature Effects on the MHCO3 Virial
Coefficients

Behavior of the Bicarbonate Ion in Mixed
Electrolyte Solutions

Comparison of Experimental and Literature Values

PRACTICAL APPLICATIONS

5.1 Objective

52 The Thermodynamic Solubility Product of Gypsum
5.3 The Solubility Product of Calcite

5.4 Heat Exchanger Problem

545 Reverse Osmosis Problem

CONCLUSIONS

Title

VIRIAL COEFFICIENTS DEPENDENCE ON TEMPERATURE

FORTRAN IV COMPUTER PROGRAMS

REFERENCES

Page

57

60

64

68

80

85

86

90
90
92
94
96

98

101

Page
104
114

127



4.4

4.5

4.6

4.7
4.8
4.9
4.10
4.11
4.12
4.13

4.14

vii

LIST OF TABLES

Title
o Values
d and e Values x 10%

Temperature Dependence on the Activity and Osmotic
Coefficients of NaCl Solutions

Dependence of 52 on Temperature

Chemical Reactions and Equilibrium Equations for
the Carbonate System in Water

Temperature Coefficients for the Carbonate System
in Water

Equipment and Instruments Used in the Experimental
Procedure

pH® Values in KHCO3-KCl Solutions
pH® Values in NaHCO3-NaCl Solutions

pH® Values in KC1-H2C03 and NaCl-H2CO3 Solutioms
at 25°C

ApH® Values for MC1-HpCO3 Solutions at 25°C

pH® Measurements in NH4C1-HpCO3 Solutions

pH® Values in CaClp-HpCO3 Solutions at 25°C

pH® Values in MgCl)-HpCO3 Solutions at 259C

Summary of the MHCO3 Virial Coefficients

Average AB/AT of MHCO3 Electrolytes

Measured pH® Values in the System Kt, Nat-HCO3~, Cl1-
Comparison of Experimental pH® Values

Thermodynamic Solubility Product of Gypsum at 25°C

Page
21

42

43

49

54

55

66
70

71

75
76
77
78
79
81
84
86
88

93



Table

5.3

5.4

5.5

A.la

A.1lb

A.3a
A.3b

A.3¢

viii

Title

Thermodynamic Solubility Product of Gypsum from
0.5 to 60°C

The Thermodynamic Solubility Product of Calcite

at 25°C

Solubility Properties of Calcite and Gypsum in a
Lake Water

Osmotic Properties of Seawater and Product Water

Y Values

Y Values

Y Values

Y Values

Y Values

Y Values

Y Values

Y/Xl Values

Y Values

of Some

of Some

of Some

of Some

of Some

of Some

of Some

1:1 Electrolyte Solutions

1z

310

1

1

1;

22

4

Electrolyte Solutions
and 1:2 Electrolyte Solutions
Electrolyte Solutions
Electrolyte Solutions
Electrolyte Solutions

Electrolyte Solutions

of Some 2:2 Electrolyte Solutions

of Some 2:2 Electrolyte Solutions

Page

94

96

98

100

102

103

104

105

106

107

108

109

110



Figure

3L

ix

LIST OF FIGURES

Title
Y vs. Xy Values for 1:1 Electrolytes
Y vs. Xy Values for 1:2 Electrolytes

Temperature Variation of the First and Second
Virial Coefficients of 1:1 Electrolytes

Temperature Variation of the First and Second
Virial Coefficients of 1:2 Electrolytes

Y/X1 vs. Xp/Xq for 2:2 Electrolytes
Y vs. X1 Values for MgSOg4

Temperature Variation of the Second Virial
Coefficient of 2:2 Electrolytes

Chemical Reactor

Temperature Variation of the First and Second
MHCO3 Virial Coefficients

Page
36

37

39

40
46

48

50

65

82



LIST OF SYMBOLS

Roman Capital Letters

A Debye-Huckel coefficient

B Interaction function

c Third virial coefficient

D Finite pH difference

E pH calibration error

GoE Excess Gibbs energy of mixing

I Ionic strength

I* Pseudo-ionic strength

J Apparent molal heat capacity

K Thermodynamic dissociation constant
Kip Thermodynamic ion product

Ksp Thermodynamic solubility product
L Relative partial molal enthalpy
M Specific cation

M1 Molecular weight of solvent

P Pressure

R Gas constant

S Solubility ratio

T Absolute temperature

W Power consumption/flow rate

X Specific anion

¥ Virial coefficient temperature function

Z Valence of an ion



xXi

Roman Lower-Case Letters

a; a Any anion in solution
a; Activity of water

b Coefficient

cy et Any cation in solution
d Coefficient

e Coefficient

i Debye-Hiickel function

g Ionic strength function
m Molal concentration

q, r, s Coefficients
t Temperature in ©C

vy Partial molal volume of water

Greek Letters

Coefficient
Virial coefficient

Activity coefficient

o ¢ W R

Incomplete dissociation factor

m

Dielectric constant of water
Like-charge virial coefficient
Number of moles

Osmotic pressure

T O T o

Alkalinity fraction



Operators

™™
o ed

xii

Standard deviation

Osmotic coefficient

Molal heat capacity

Apparent molal enthalpy

Triplets interaction coefficient

Osmotic membrane constant

Molal concentration

Molal activity

Summation

Difference

Difference, partial derivative

Absolute value



Chapter 1

INTRODUCTION

Toad The Bicarbonate Ion as a Main Component of Natural Waters

The bicarbonate ion is commonly found in natural waters, and its
intrinsic properties are of importance in the study of water chemistry
equilibrium. Some of the basic chemical and physical properties of
this anion are reviewed below.

In nature the bicarbonate ion leaves or enters a solution via
one or more of many mechanisms. Among these are the processes of
photosynthesis-respiration, contact with the atmosphere and
precipitation-dissolution of carbonate and bicarbonate minerals. Due
to the common occurrence of these processes the bicarbonate ion is a
ubiquitous component of natural waters.

The bicarbonate ion exhibits amphoteric properties in aqueous
solutions, being the intermediate state of protonation of the carbonate
system. These important properties are directly related to the acid
and base neutralizing capacities of aqueous solutions. Often in nature
the bicarbonate ion is the main acid-neutralizing agent of the water
(i.e., alkalinity). The pH of a water solution is therefore dependent
on the concentration of bicarbonate ion.

Several thermodynamic models have been proposed to evaluate the
intrinsic characteristics of mixed electrolyte solutions. The general

principles of the two most commonly used models are presented in the



following section. Natural waters may be considered as aqueous multi-
component electrolyte solutions and therefore may be studied as such.
Quantitatively, the concentration of the individual ions in natural
waters varies widely from place to place, but their main components are
usually the same. In natural waters the most commonly found cations
are HY, Nat, kt, ca?t and Mg2*, and in polluted waters NHz'. The
anions usually present in natural water are OH™, C17, HCO3~, NO3~,

2—, HPO42" and P043'. Therefore, the equilibrium

HoPO,™, F~, S0427, CO5
properties of bicarbonate in natural waters may be studied by consider-
ing HC03- as an individual component in a mixed electrolyte solution.

A method is proposed in this work to evaluate accurately some important

equilibrium characteristics of the bicarbonate ion in natural waters.

1.2 Thermodynamic Models

Several thermodynamic models have been proposed to predict the
activity coefficients of mixed electrolyte solutions. These models
give reasonable results for relatively simple multicomponent systems;
however, few of them may be utilized in the calculation of the activity
coefficients of electrolytes having more than four different ions in
solution. The two most common methods of evaluating activity coeffi-
cients of such complex electrolytes are the Ion Association Model and
the Ion Interaction Model. The general characteristics and basic
assumptions of these equilibrium models are presented below.

The more widely used equilibrium model is the Bjerrum Ion



Association Model, which assumes the formation of ion pairs by oppo-
sitely charged ions (i.e., counter-ions). The Brgnsted-Guggenheim Ion
Interaction Model is the altermate procedure employed in the evaluation
of several thermodynamic properties of aqueous solutions, including the
activity coefficients of the individual ions in solution. The latter
method approaches this problem by assuming interactions among the ions
in solution.

The activity coefficient of any solute is defined as the dimen-
sionless ratio between its activity and concentration in solution.
Under very dilute conditions this ratio approaches unity. Stumm and
Morgan (1970) report that the Debye-Hiickel theory, which considers only
long-range electrostatic interactions between the ions, is accurate in
most cases for ionic strengths below 0.0l M. Deviations from the ideal
Debye-Huckel theory at higher ionic strengths are attributed to short-
range interionic forces. Different assumptions are used by the two
basic models to account for deviations from ideality in concentrated
solutions.

The Ion Association Model assumes that deviations from the
Debye-Hiickel theory are caused by differences in the ion sizes and/or
by the relatively strong binding of counter-ions to form ion pairs.
According to this model, the concentration of a specific type of ion
pair is directly proportional to the activity of its free counter-ion
components. The ion association criterion implies, then, a distinction
between the thermodynamic properties of both free ions and ion pairs.

The introduction of more variables into the system, to take into con-



sideration the presence of ion pairs, complicates considerably the
equilibrium calculations of mixed electrolyte solutions. Furthermore,
tedious approximations have to be executed in order to satisfy the
electroneutrality and mass balance conditions.

Several alternate methods are used in the Ion Association Model
to compute the activity coefficients of free ions in solution. The
following methods are widely used in the computation of these param-
etels:

i) The extended Debye-Hickel equation, and

ii) The Mean Salt method (MacInnes convention).
The first method, which utilizes an adjustable parameter (ion size param-
eter), permits one to evaluate analytically the activities of the in-
dividual free ions. The accuracy of this method is dubious at ionic
strengths above 0.05m, and should be used cautiously in concentrated
solutions.

The Mean Salt method for obtaining the individual free ion
activity coefficients has lately come under strong criticism. By con-
vention, this method assumes that the activity coefficient of the
potassium ion is equal to that of the chloride ion at a given ionic
strength, regardless of the nature of the other ions in solution.
Whitfield (1974a), mentions, among others, the following disadvantage of
of this method:

"The widely employed MacInnes convention is ambiguous at

ionic strengths greater than 0.1 M and contradicts a num-

ber of conventional definitions of single ion properties

in implying that the activity coefficient of the chloride

ion is the same in all solutions of alkali and alkaline
earth metal chlorides at constant ion strengths."



A thermodynamic property of aqueous solutions, which is not well
understood, is the ion-pair activity coefficient. A great number of
techniques have been proposed to evaluate this parameter. The lack of
common grounds for the computation of the activity coefficients of ion
pairs is directly reflected on many other thermodynamic properties of
the solution as a whole.

Finally, in order to compute accurately the free ion activity
coefficients, it becomes necessary to know precisely the value of the
ionic strength of the solution. Some researchers who utilize the TIon
Association Model evaluate the ionic strength of a solution by adding
the individual contribution of free ions to the contribution of ion
pairs. Other investigators claim that this is incorrect and evaluate
this parameter from the contribution of the individual ions' total con-
centrations. This discrepancy may lead to wide differences in the pre-
dicted value of the activity coefficients of both free ions and ioms
pairs.

The osmotic and activity coefficients of single electrolyte
solutions may be accurately predicted by the use of the Ion Interaction
Model. These parameters are evaluated by the addition of an inter-
action term to the Debye-Huckel function. (This theory is studied in
more detail in the next chapters.) The interaction term is a semi-
linear relationship of the molality of the solution, which
rapidly tends to linearity as the concentration of the electrolyte
increcases. At a fixed temperature and pressure the slope of the inter-

action term depends only on the nature of the electrolyte, and its



absolute value (i.e., deviation from ideality) is usually higher for
multivalent electrolytes. Both the osmotic and activity coefficients
of mixed electrolytes may be accurately predicted by assuming that the
multiple interactions upon a specific ion are additive (Lewis and
Randall (1961)).

The simplest method to predict short-range interactions among
the ions is to assume linearity in the ion interaction term. This
approach has yielded reasonable results for the activity coefficients
of systems as complex and concentrated as sea water (Whitfield (1973)).
Recently Pitzer (1973) has proposed a more detailed, but at the same
time more complex, approach for the description of the osmotic and
activity coefficients of single electrolytes from infinite dilution to
6.0 m. The value of the interaction term in Pitzer's method is de-
scribed by three virial coefficients which multiply an equal number of
functions of the ionic strength of the solution. Pitzer and Mayorga
(1973) have evaluated and published the values of the virial coeffi-
cients of over 200 1:1, 1:2 and 1:3 electrolytes. The evaluation of
these coefficients was performed from measurements of the activity and
osmotic coefficients of single electrolyte solutions. In another pub-
lication Pitzer and Mayorga (1974) propose a mathematical approach to
the evaluation of these two thermodynamic properties in solutions con-
taining 2:2 electrolytes.

The activity and osmotic coefficients of mixed electrolytes are
accurately described by a method presented by Pitzer and Kim (1974).

The accuracy of this method is increased by considering interaction



between like-charged ions as well as triple-ion interaction. Higher
order electrostatic terms for multivalent electrolytes may be described
by the technique proposed by Pitzer (1975). Many ambiguities existing
in the theory of strong acids may be resolved by using Pitzer's method
in the analytical studies of these electrolytes (Pitzer and Silvester

€1976)):

1.3 Evaluation of the Thermodynamic Models

The main objection to the use of the Ion Interaction Model in
aquatic chemistry is the execution of lengthy mathematical manipula-
tions, but the accuracy of the model more than compensates this objec-
tion. 1In single electrolyte solutions the calculations involved in the
Ion Interaction Model are probably more complex than those required by
the Ion Association Model. However, for mixed electrolyte solutions,
the opposite condition is often observed. This condition is due to the
cumbersome approximations necessary to satisfy both the mass balance
and electroneutrality constraints in the Ion Association Model.

The superiority of the Ion Interaction Model is also revealed by
its reliability to predict the activity and osmotic coefficients of an
extensive variety of mixed electrolytes over a wide range of ionic
strengths. The evaluation in this chapter obviously leads to the selec-
tion of the Ion Interaction Model as a more effective means to describe

the thermodynamic properties of the main ions present in natural waters.



L Thermodynamic Properties of M-HCO3 Salts

In view of the chemical importance of the bicarbonate ion in
natural waters it becomes necessary to describe its thermodynamic be-
havior by means of a sound equilibrium model. The model chosen in this
work was the Ion Interaction Model utilizing the latest modifications
by Pitzer and co-workers.

Many investigations have dealt with the problem of predicting
the activity coefficient of the bicarbonate ion in the presence of
various cations. Nonetheless, most of these investigations have dealt
with the problem according to the Ion Association Model. The validity
of this approach is directly related to the prediction accuracy of the
free bicarbonate ion activity coefficient. This parameter is usually
evaluated by means of either one of two techniques: by the extended
Debye-Huckel equation or by interpolation of tabulated values. A pre-
vious discussion of the effectiveness of the first technique to describe
activity coefficients reveals that its validity is limited to very
dilute solutions. The tabular values of the free bicarbonate ion
activity coefficient are presented in an early work by Walker, Bray and
Johnston (1927). The reliability of these values is dubious for they
are computed from inexact titrametric alkalinity measurements in sodium
and potassium chloride solutions. Many discrepancies in the reported
thermodynamic properties of bicarbonate salts solutions are possibly

due to the incapability of the two above techniques to predict accu-

rately the activity coefficient of the free bicarbonate ion.



In lieu of the Ton Association Model, Butler and Huston (1970)
have studied the activity of HCO3~ in NaCl solutions according to
Harned's Rule. Harned's Rule reduces to the simplified Interaction
Model at high ionic strengths. Other than this study little is known
about the interaction properties of the bicarbonate ion in natural
waters.

This dissertation presents a theoretical approach to the deter-
mination of the virial coefficients of HCO3~ in natural waters at
various temperatures. Based on this approach the virial coefficients
of various bicarbonate salts are evaluated from experimental results.
These salts included the following bicarbonate compounds: NaHCO3,
KHCO3, NH4HCO3, Ca(HCO3)p, and Mg(HCO3)o. The cations of these salts
are the most important positively charged ions in natural and polluted
waters. Thus, the knowledge of their respective interaction character-
istics permits a more precise understanding of the equilibrium condi-

tions of most water bodies.

1:5 Effects of Temperature on Aqueous Solutions' Equilibria

Local, seasonal and diurnal temperature variations are often
observed in most natural phenomena. Temperature changes are of special
interest in natural waters because, in general, their thermodynamic
properties are temperature dependent. An example of these properties
is the ion activity coefficient, which has a strong temperature depen-

dence. In the activity coefficient equation both the long-range elec-
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trostatic function and the short-range interaction term are temperature
functions.

Included in this work is a detailed study of the thermodynamic
effects of temperature on the activity and osmotic coefficients of
aqueous solutions. Finally, a computer program which takes into con-
sideration temperature effects in the Ion Interaction Model is also
included. Some of the many common water chemistry problems which may be
solved with the aid of this computer program are studied in the chapter

on Practical Applications.
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Chapter 2

THE ION INTERACTION MODEL

2l Literature Review

The Ion Interaction Model was originally developed by Brgnsted
(1927) who proposed that the thermodynamic properties of aqueous solu-
tions could be evaluated from the interactive forces between the ions
in solution. He assumed that interactions between oppositely charged
ions would be dominant, thus neglecting like-charge ion interaction.
Guggenheim (1936) made a distinction between the two terms in the acti-
vity coefficient equation: the electrostatic interaction function and
the short-range interaction term. He described the first function by
the Debye-Hickel equation, which he assumed depended only on the ionic
strength and the temperature of the solution. He also assumed that the
second term might be described by a polynomial function in concentra-
tion with a linear leading term.

The emphasis of more recent publications has been the study of
the short-range interaction term. Many researchers, including Guggen-
heim and Turgeon (1955), and Lewis and Randall (1961), have used a sim-
ple approach to this problem. They have assumed that the interaction
term may be described by a linear function in concentration. Whitfield
(1973) has utilized this assumption, which yielded reasonable results
for the activity and osmotic coefficients of concentrated electrolytes.

Marked deviations from linearity in the short-range interaction term
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may be observed at low ionic strengths.

Pitzer (1973) has developed a mathematical model which takes
into consideration deviations from linearity. By considering like-
charge interactions Pitzer and Kim (1974) have obtained excellent
agreement between calculated and experimental measurements of the acti=-
vity and osmotic coefficients of mixed electrolytes. The theory devel-
oped by Pitzer (1973) for the Ion Association Model appears to be the
most accurate technique for predicting the equilibrium conditions of
mixed electrolytes. The basic principles of Pitzer's theory, along
with some temperature considerations, are presented in this disserta-
tion. For more detailed information the reader is referred to the

original publications.

2.2 General Equations

By convention, the ionic strength of a mixed electrolyte solu-

tion, I, is defined as follows:

I = %FPmy2f (2.1)

where m; represents the molal concentration of any ion i in
solution, and
Z; represents the valence of any ion i in solution.
The osmotic coefficient of a solution is intimately related to
various thermodynamic properties of its component solvent and solutes.

The activity coefficients of the solvent and the ions in solution are,

for example, related to the osmotic coefficient of the solution. Due
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to the importance and interdependence of these thermodynamic proper-

ties, a detailed study of the osmotic coefficient of mixed electrolyte

solutions is presented in this dissertation.

Based on the Ion Interaction Theory, Pitzer and Kim (1974) pro-

pose the following equation for the osmotic coefficient, ¢, of a mixed

electrolyte solution:

where

I

1 é ¢
¢ -1 g 21£° + 22 Fmem, [Bca 4.2 (}é:mczc) cca]
i

+ %mcéj, m, s [occ. +I6 ..+ )a:ma Vecra

+ %‘maz m, | Oy F 10,0 + %mc '/

al i 4 (2.2)

21 (Debye-Hiickel function) (2.3)

A represents the Debye-Hlickel coefficient. This coefficient
is a function of the temperature of the solution, T, and

is equal to 0.392 at 25°C,

—ay T
Btl = 2] + B’%‘e !

(2.4)

c, ¢' and M represent the names of the cations in solution,

a, a' and X represent the names of the anions in solution.
gmczc = ");maza represents the total molal charge of the

solution,

ﬁ?)and ﬁﬂ represent the first and second virial coefficients,
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C represents the third virial coefficient,

6 represents the interaction coefficient between like-

charge ions.

@' =06/01 (2.5)

Y represents the interaction coefficient for triplets.

&, equals 2.0 for 1:1, 1:2 and 1:3 electrolytes, or

@ equals 1.4 for 2:2 electrolytes.

The virial coefficients of 227 pure aqueous 1:1, 1:2 and 1:3
electrolytes at 25°C are evaluated and presented by Pitzer and Mayorga
(1973) . Numerical values for some like-charge and triplets inter-
action coefficients are listed by Pitzer and Kim (1974).

The long-range interaction effects on the osmotic coefficient
of a solution are mathematically simulated by the Debye-Huckel function,
which is represented by the first term in equation (2.2). The remaining
terms in this equation simulate the short-range interaction effects on
the osmotic properties of a solution.

Two important thermodynamic properties of aqueous mixed elec-
trolytes, the osmotic pressure of a solution and the activity coeffi-
cient of the solvent, may be computed from the osmotic coefficient of
the solution. Lewis and Randall (1961) propose the following two
equations for the osmotic pressure of mixed electrolytes, IT, and the

activity of water, a

1:
RT _ M1
Hw =25 iy #g~ (ies

- .M
ly! 1000 '”fmi (2.7)
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where R  represents the gas constant and equals 1.98726 cal/9K - mole,
T represents the absolute temperature in Kelvin degrees,

v, represents the partial volume of water. (v; = 18.0 cc/mol

for an infinite dilution at standard temperature and pressure.)

represents the molecular weight of the solvent (18.0 g/mol

for water).

An electrolyte composed of a cation M with valence Z, and an

anion X with valence Z, dissociates in water according to the reaction
Zay Z Z Z
MpMXPX ————> By MM + Y XX (2.8)

where V,, represents the number of cations of M per molecule of MX,
and
Vy represents the number of anions of X per molecule of MX.
To satisfy the electroneutrality condition of the electrolyte

MX it is necessary that

Ya Zy = ¥ |2, (2.9)

The activity coefficient of the electrolyte MX in solution,
Yux> is computed from the geometric mean of the activity coefficient

of the cation ¥, and the activity coefficient of the anion %, :

Y
e = (27 %) (2.10)

where ¥V = Y, + ¥y (2.11)
Based on the Ion Interaction Theory, Pitzer and Kim (1974) pro-

pose an equation for the computation of the activity coefficient of an
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electrolyte MX in a multicomponent solution. This equation may be
easily resolved by symmetry into its two individual components, the
activity coefficients of the cation and the anion. The two equations

obtained by this procedure are presented below:;

1 N,

2
Zy £+ nga [Bua + ( .(E::mczc ) Cua ]
ZZB' Z.G + Y
+ 2§mc9"c + %mcéma mBeg +Z2,C.. fica

-+ kzmazma. (llf“aa- -+ Zuz o;al)

a a
Z
il g.mc%mc; 6t (2.12)
and
In¥% = z2f+ 23m [B +(2mZ)C ]
A T c cx & cfe cx
2.1
F Zg,maaxa + ?:‘:'mc g“‘a (Z" Bca W 'le Cca * U,cax)
2
= %gmc CZ- Mo (wcc'x + Z, Occ. )
22
X '
o= }ma E- mar G, (2:13)
h - = J1 Z
where f A [ T3 1.2 /7 + 55 lmQ+ 1.2ﬁ)] (2.14)
- Rg° 1
Bux = Bux + Bux 8, (1) (2.15)

By = Bl gl (1) (2.16)
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g, (1) = 'Efff‘ [1 - (1 +61J1_)e'°'ﬁ] (2.17)

' 2 ) 2 -y T
gy (1) = =TT [-1+(1+ a,JI+ia I)e . }(2_18)

Seemingly, the equations to calculate the osmotic and acti-
vity coefficients of a solution are-very lengthy. Nevertheless, it
must be remembered that at the given ionic strength of the electrolyte
solution, f¢, s g1 and g& are constant. Therefore, the Ion
Interaction Model is a simple and accurate technique to calculate the
equilibrium properties of mixed electrolyte solutions.

The above equations are somewhat simplified in the case of the
dissolution of a single electrolyte. Since only one anion and one
cation are present in this type of solution, the contributions of 6,
@' and Y are non-existent. The equations which describe the thermo-
dynamic properties of pure salt solutions are given by Pitzer and
Mayorga (1973). It was previously mentioned that these authors re-
port the values of the first, second and third virial coefficients of
227 1:1, 1:2 and 1:3 electrolytes. These parameters were obtained by
least square analyses of various thermodynamic properties of single
electrolyte solutions.

Pitzer and Kim (1974) suggest that in most practical cases 0
may be assumed to be constant over the ionic strength. In other words,
they assume @' to be equal to 0. Based on the above assumption they
are able to predict accurately the activity and osmotic coefficients

of 69 multicomponent solutions. They also report the values of 6 and
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Y utilized in such predictions.

The effect of @' on the thermodynamic properties of most mixed
electrolytes is minor. However, if maximum accuracy is desired in the
prediction of these properties it becomes necessary to consider the
variation of 6 with the ionic strength. For complete information on
the dependence of the like-charge interaction coefficient with ionic

strength, the reader is referred to work of Pitzer (1975).

2.3 The Ion Interaction Theory for 2:2 Electrolyte Solutions

The capability of an electrolyte to completely dissociate in a
solvent is directly related to the electrostatic attraction between the
counterions in solution. Obviously, this electrostatic attraction in-
creases as the absolute value of the counterions' charges increase.

The model presented thus far may be used to describe the thermodynamic
properties of electrolyte solutions only in the case where the absolute
values of the valences of one or both counterions are equal to one.

The particular case of 2:2 electrolytes (which do not completely dis-
sociate in aqueous solutions) is considered in this section.

The osmotic coefficients of various single divalent cation
sulfates at 25°C, as experimentally determined by various researchers,
were summarized by Pitzer (1972). These coefficients were successfully
predicted by Pitzer and Mayorga (1974) by means of an interaction
model, which takes into consideration incomplete electrolyte dissoci-

ation. Their approach consisted in adding an extra interaction term to
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the B¢, B and B' equations. Even though this approach gave excellent
results for single divalent cation sulfates it failed to predict their
solubility product in seawater (Whitfield (1975a,b)). 1In these publi-
cations Whitfield utilizes a hybrid model (a combination between the
Ion Association Model and the Ion Interaction Model) which permits a
reasonable explanation of the difference between measured and calcu-
lated solubility products of sulfate salts in seawater. The hybrid
model proposed by Whitfield assumes simultaneously Pitzer and Mayorga's
compensation for ion association, as well as the existence of ion pairs
as individual entities.

Three conclusions may be drawn from the above works:

a) Pitzer and Mayorga's interaction model for incomplete dis-
sociation of divalent cation sulfates in aqueous solutions
works satisfactorily in the case of single salt solutions,
but fails to predict the thermodynamic properties of such
sulfate salts in mixed electrolyte solutions.

b) The inclusion of the extra interaction term in Whitfield's
hybrid model is redundant, for the purpose of this term is
to compensate for ion association.

c¢) The simplicity of the Ion Interaction Model is destroyed
when the particular problem of incomplete dissociation is
approached from the point of view of ion association. 1In
other words, if a hybrid model is utilized (by considering
ion pairs as individual components of the solution) tedious

iterations must be performed to satisfy both the mass
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balance and electroneutrality conditions of the solution.

A modification to Pitzer and Mayorga's work is proposed in
this dissertation. This modification permits one to compensate for
incomplete dissociation without implicitly considering ion pairing.
The thermodynamic solubility product of gypsum (i.e., CaS0Q, - ZHZO) in
a variety of mixed electrolyte solutions is studied in Chapter 5. The
prediction accuracy of this thermodynamic constant confirms the vali-
dity of the proposed modification. Following is presented the pro-
posed Ion Interaction Model for 2:2 electrolyte solutionms.

The activity of an individual ion is reduced by a factor 8 if
incomplete dissociation occurs. The value of this factor varies from
unity for complete dissociation, to zero for nil dissociation. It is
assumed in this dissertation that 2:2 electrolytes in solution asso-
ciate to some extent, while 1:1, 1:2 and 1:3 electrolytes do not ex-
perience this phenomenon. The following empirical equation is pro-

posed for &:

ﬂijm g, (1) (2.19)

where 3L represents the divalent cation M or the divalent anion X,
il represents the divalent anion X or the divalent cation M,
ﬂz represents the association virial coefficient, which must

be determined experimentally,

I* represents the pseudo-ionic strength of M and X. 1I.e.,

I* = % (m..zuz + mxzxz) (2.20)
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2
oy cI* -a T
and 89 (I*%) = % 21* [1 = (1 + dz\/I* - _,2__ ) e 2 ](2'21)

Thus, the individual ion activity coefficient, compensated for

e
incomplete electrolyte dissociation, 7}, may be computed as follows:

1n)’; = ln');. + lndi (2.22)

An extra term must be added to the B® equation to compensate
the osmotic coefficient for incomplete electrolyte dissociation. The

proposed equation is as follows:

B:x = BRx + B:xe_a'ﬁ + annxe’c'ﬁ: (2.23)
Values ofﬂ2 for various divalent cation sulfates are presented
in Pitzer and Mayorga's work. The values of &, which are also those

recommended in the aforementioned work are listed in Table 2.1.

TABLE 2.1
O VALUES
Elec-
[a o
trolyte 1 2
1zl 2.0 0
1:2 2.0 0
1:3 2.0 0
2.5 Lk 12.0

Examination of equations (2.19) through (2.23) reveals that
these equations reduce to thosce proposed by Pitzer and Mayorga for the

particular case of a pure salt solution. It is interesting to note
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that due to the large value of a,, the exponential terms in both equa-
tions (2.21) and (2.23) rapidly tend to zero as the ionic strength in-
creases. In relatively concentrated single electrolyte solutions

(I >0.1m) the equations proposed in this dissertation predict that the
effect of ﬂQ on the solution osmotic coefficient is nil, while this
effect reduces the ln);-_ by a constant equal to Zﬂij mj/ag I* Experi-

mental measurements of the osmotic and activity coefficient of divalent

cation sulfate solutions confirm these trends (Pitzer (1972)).

244 Example

The purpose of the numerical example in this section is to
apply the Ion Interaction Model in order to calculate the thermodynamic
properties of a mixed electrolyte solution.

Statement: Marshall and Slusher (1966) report that the solu-
bility of gypsum (CaSO, * 2H,0) in a 0.548m NaCl solution at 75°¢ s
0.0372m/1., Calculate the thermodynamic solubility product of gypsum.

Solution: The molal concentrations of the ions in solution

0.548

are: mNa = mcl

and me, = 0:0372.

I
B
I

The ionic and pseudo-ionic strengths of this solution are,

according to equations (2.1) and (2.20), respectively:

I* = % (m,,,z.,,.2 - m,z,2)= 0.1488m

where, for this particular case, i represents all the ions in solution
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(i.e., Na, Ca, Cl, SO,), M represents Ca and X represents SO.
The functions £(I), and f¢ may be computed from equations (2.14)

and (2.3) respectively (at 25°C A = 0.,392):

_ JI 2
£=-2A [ T2/ F In(l 4+ L2/T) | . .o 6169

o = =
£ 1+ 1.2 /& 0.1635

The functions g; (I), gf (I), and g, (I*) are then computed
from equations (2.17), (2.18) and (2.21) respectively. The values of
a, and a, (which are presented in Table 2.1) and the previously calcu-
lated magnitudes of I and I* are the input parameters for these

equations.

-y VI
gl(I)=-&—22-i-—-[1-(l+al,/I_)e° ]

1
= 0.3568 for @; = 2.0
= 0.4774 for a; = 1.4

81(1) - 3?2;2- [- 1+(1+ al,/f+ 350121) e'“‘”]

= =-0.2417 for o 2.0

1.4

I

= -0.2391 for oy

27%
_ o4l -a T
o= gt [1 (0 eal- 257).

= 0.0980 for a, = 12.0
The virial coefficients for the various sets of oppositely
charged ions in solution, as determined by Pitzer and Mayorga (1973),

are as follows:
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Na 1 0.0765 0.266 6.4 x10°4%

Na SOy 0.0196 1.113 2.0 x 10=-3%
Ca cl 0.3159 1.614 -1.2x10°%

Ca S0y, 0.2000 2.650 -55.7 0.0

*Improved value by Pitzer and Kim (1974)

The values of most like-charge and triplet interaction coeffi-
cients, which are required in this example, are given by Pitzer and

Kim (1974) and Downes and Pitzer (1976). These values are as follows:

ONa,ca = 0.000

9C1,304 = =-0.020

YNa,c1,50, = 0-004
wNa,Ca,Cl = 0.000
The B¢, B, B' and 8§ parameters are described by the next four

equations (equations (2.23), (2.15), (2.16) and (2.19) respectively):

B:, = BAx + ﬁ.],',e.'“'ﬁ + ﬂ.z.ge'azﬁ
Bux = ﬁgx * ﬁn]ix g, (I)

Bl = B8} (D

1n61 = ij mj 32(1*)

The results obtained by applying these equations to the mixed

electrolyte solution yield the following:
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M X B® B B

Na cl 0.127 0.172 -0.045
Na 50y 1.878 0.417 ~0.187
Ca cl 3.010 0.892 -0.272
Ca S0y, 1.021 1.465 -0.441

].nbca = 1n6804 = =-0,2031

In order to solve the stated problem it is not necessary to com-
pute the activities of the sodium and chloride ions. Therefore, only
the activities of the calcium and sulfate ions are calculated in this
exercise. The osmotic coefficient of the solution and the activity of
calcium and sulfate may be computed from equations (2.2), (2.12) and
(2.13) respectively. The net effect of @' on the calculated osmotic
and activity coefficients is usually minor, and for most practical ap-
plications may be ignored. Without much loss of accuracy one may
assume that @' and the unavailable ¥ values are equal to zero. There-
fore, the osmotic coefficient of the solution, and the uncompensated
activity coefficients of the calcium and sulfate ions are computed as

follows:



1 @
d-1-= o {Zlf + Zggmcma [Bga'*' 2 (gmczc) Cca]

i
0
o ‘gmcg' m. . [OCC' +/Ia£l + %ma lpCC'a

i o
+ Zm, ;L' m_, [oaa, +/I.0;/:= F )c:mc Yeaa' }

- 0.09961

Therefore, ¢ 0.90039

In% =2z2f+ 2§ma [B"a + ( gmczc ) Cosi ]

+ ngceuc + %mcgma (z,, B, chca + U;‘ca )

' 0
+ % Ema E,ma' ( Ysaa' +M

- 1,5063

2
In % 25+ 2(}:,‘,mc [ch + (Emczc ) ch]

o I
+ zzgmae,a+ ‘cjmcgma (z, By, F szlcca+wcax)

B 0
+!5§mc§'. M (wcc'x +M

= -2.0638
Where, for this particular case, the subscripts in the above equations

represent:



27

M = Ca
X = 80,
¢ = Na, Ca
¢' = Ca, Na

& = Cl, 504
a' = 504, Ccl

i = Nz, Ca, €1, 504

The compensated activity coefficients of the calcium and sul-

fate ions are computed by inserting the appropriate values into

equation (2.21):

-1.7094 for i = Ca
ln')’;-:' - ln'); + lndi _
-2.2669 for i = 504
Therefore, nf = 0,1810
a
c

The activity of the solvent, water, may be evaluated from the
knowledge of the solution osmotic coefficient and the molality of the

species in solution. From equation (2.7) one obtains:

1na = =- . d’{mi (where M, = 18.0)

| 1000
= - 0.0190
Therefore, a; = 0.9812

Finally, it is now possible to calculate the thermodynamic
solubility product of gypsum at 25°C from the above parameters. This

thermodynamic constant is evaluated as follows:



Sp

2] C 2
Mca Mso, ca ’so; 21

2.498 x 10™°

28

(2.24)
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Chapter 3
TEMPERATURE EFFECTS ON THE THERMODYNAMIC PROPERTIES

OF ELECTROLYTE SOLUTIONS

3.1 Thermal Effects on Electrostatic Interactions

The thermodynamic properties of aqueous solutions are usually
strongly dependent on temperature. The assumption that natural waters
may be treated as mixed electrolytes under ideal conditions of stand-
ard temperature and pressure is often incorrect. Although pressure
variations are of importance in chemical equilibrium, such variations
are of little importance in the study of surface waters, which are the
main concern of Environmental Engineering. The scope of this chapter
is the study of the temperature effects on the thermodynamic equili-
brium properties of aqueous solutions at one atmosphere total pressure.

Literature information on the temperature effects on electro-
lyte solutions equilibria is abundant. This information is usually
analyzed from the Ion Association Model point of view. Perhaps one of
the most complete works in this area is that of Helgeson (1967), who
calculates several thermodynamic properties of various electrolyte
solutions as a function of temperature. Among these properties he
includes the thermodynamic dissociation constants of Brgnsted acids

and ion pairs. Helgeson's work is an important reference when the Ion
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Interaction Model is utilized to estimate thermal effects on Brgnsted
acids' equilibria.

The Ion Interaction Model may be used to describe the thermo-
dynamic properties of aqueous solutions at variable temperatures.
Lewis and Randall (1961) conclude that both the long-range electrosta-
tic attraction and the short-range interaction between ions in solution
are temperature dependent. The electrostatic attraction terms for the
osmotic and activity coefficients may be computed from equations (2.3)
and (2.14) respectively. The only temperature dependent parameter in
these equations is the parameter A, which has a triple dependence on
temperature. This parameter is a direct function of temperature, the
solvent dielectric constant and the coefficient of thermal expansion of
the solvent (Lewis and Randall (1961)). The effect of temperature on
the volumetric expansion for water is unimportant when compared with
the two other dependences, and it is ignored in this dissertation.

The dielectric constant of water may be expressed as a poly-
nomial function of temperature. A least-square criterion for curvi-
linear regression may be utilized to evaluate the coefficients of this
polynomial. Utilizing the above criterion to fit a third-degree poly-
nomial to the tabulated values of the dielectric constant of water
(Weast (1975)), the following equation is obtained:

€ = 87.924 - 0.40873 t + 1.01465 x 1073 t2 - 1,9365 x 10°°¢°>

(3-1)
where € represents the dielectric constant of water, and

E represents the water temperature in centigrade degrees.
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t =T - 273.16 (3.2)

The coefficients in equation (3.1) are in close agreement with
the values reported earlier by Harned and Owen (1958). The equation
which describes the dependence of A with respect to temperature is

given below (Robinson and Stokes (1959)):

6
A = —1:400 x 10 (3.3)

(6T)3/2

The temperature effects on the long-range electrostatic inter-
action terms (in the osmotic and activity coefficients equations) may
be calculated by means of the three above relationships and equations
(2.3) and (2.14). These thermal effects are often of higher magnitude
than the ones observed for the short-range interaction terms. Follow-
ing is presented a thermodynamic analysis of these secondary tempera-
ture effects on the activity and osmotic coefficients of electrolyte

solutions.

gl Thermal Effects on Short-Range Interactions

Several thermodynamic parameters are intimately related to the
temperature effects on the interactive properties of ions in solution.
Direct or indirect measurements of these properties may be utilized to
compute the dependence of short-range interactions with respect to
temperature. A general summary of some temperature related thermody-
namic properties not listed in this dissertation is available in the

works by Fortier and Desnoyers (1976) and Lewis and Randall (1961).
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Pitzer and Mayorga (1973) propose the following relationship

for the excess Gibbs energy of mixing of single electrolyte solutions:

(i 4A1
@ ™ - = 1.2 /1)
2
+ 2m” Y Vy [ng + Bax g1 (I) + B (82 (I*)y - e-dzvll')]
+ 2m3 Z,, Y,
0 Zu Yu Coux (3.4)
where G®* represents the excess Gibbs energy of mixing,

m represents the molality of the solution, and

I* equals I for single electrolyte solutions.

The excess Gibbs energy of mixing is related to the relative
apparent molal enthalpy of an electrolyte in solution by the following

partial differential equation:

_ 1 _8(6X/T)
%= = 3i/m | 1,m 3.5

where ¢L represents the apparent molal enthalpy of an electrolyte
in solution relative to infinite dilution.
Combining equations (3.4) and (3.5) one may express the tem-

perature variation of the virial coefficients as a function of @ :

1 [ ‘il +3.333 L 1n(1 + 1.2VD) e ]
T

2m YV, 1’ o(1/T)

o 1
=__a£‘ﬂ.+_£a_§!.!.g(1)+§%_ g, (I¥) - %2V + m -ZM %l
oT oT oT 2 Vy oT !T
(3.6)
In general, calculations of activity and osmotic coefficients

show that the relative importance of the parameters C, § and W is

secondary. The variation of these parameters with temperature is prob-
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ably even of less importance. It is therefore assumed in this work
that OC/QT = 86/8T = W/ OT = 0. Assuming no variation of the C
virial coefficient with temperature, equation (3.6) may be represented
by a linear polynomial of the form:

Y =b, +b; Xy +DbyXy (3.7)
where ¥ represents the left side terms of equation (3.6),

X, and X, represent the respective functions of I and I* in

equation (3.6), and

b,, by and b, represent aB°/oT, aﬂl/aT and 6B2/6T respectively.

It is important to remember that 32 represents the ion pairing
virial coefficient. 1In this study this coefficient differs from zero
only in the case of 2:2 interaction. Thus, EﬂgszT is equal to zero
for 1:1, 1:2 and 1:3 electrolyte solutions. For such solutions, graphs
of Y with respect to X; should yield points lying on straight lines in

which the intercept, b representséﬂgoﬂaT and the slope of the line,

o>
by, represents 8ﬁﬂ/éﬂh This graphical technique permits one to evaluate
readily the variation of the first two virial coefficients with re-
spect to temperature. A more complete graphical method, which permits
the simultaneous evaluation of b, bl and b2 for 2:2 electrolyte solu-
tions, is discussed later in this section.

Another important thermodynamic property, the relative partial
molal enthalpy of an electrolyte in solution, is related to the activ-

ity coefficient of the electrolyte as follows:

L|1,m=-VRT? (8 1nX%,/dT) (3.8)
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where L represents the partial molal enthalpy of an electrolyte
in solution relative to infinite dilution.

In single electrolyte solutions, the rate of variation of the
virial coefficients with respect to temperature may be also computed
from experimental measurements of L. This is obtained by differen-
tiating the individual components of equation (2.10) with respect to
temperature. Then by rearranging the terms in equation (3.8), the

following expression is obtained:

v L 1 2
ZmVyV, | ~ Vrr T lzuz,| [ i+ 1.2y T 1.2 InQ + 1'2‘/-1_):'

< O, OBk (m() tenT)
oT OT

2
882 3 O Cux
+ go(1%) —HM- + S Wlu -7 (3.9)

If the last term in the previous expression is ignored, this
expression may be represented by a linear polynomial of the form of
equation (3.7). Obviously, the values of Y, X; and X, are those
of their corresponding functions in equation (3.9). As in the pre-
vious case, plots of Y against Xy values (for 1:1, 1:2 and 1:3 elec-
trolyte solutions) should yield points on straight lines. The signi-
ficance of the slope and intercept of the lines is the same as before.

Theoretically, the second derivative of the wvirial coefficients
with respect to temperature may be evaluated if either the relative
partial molal heat capacity or the relative apparent molal heat capa-
city are known. The respective equations for these two thermodynamic

properties are:
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o9,
e OT , m

T- 0L

and orT

(3.10)

m (3.11)

where ¢J represents the molal heat capacity relative to infinite

dilution, and

ol

represents the apparent molal heat capacity relative to
infinite dilution.

Literature information on the numerical values of the heat
capacity functions is rather limited. This information suggests that
the variations of d{ and L with respect to temperature are small in com=-
parison with their respective values, and for most electrolytess they
may be ignored. It is assumed throughout this dissertation that both
¢1 and L do not vary with temperature. In other words, it is assumed
that the second partial derivatives of the virial coefficients with
respect to temperature are equal to zero.

The functions Y, X1 and X2 in equation (3.7) may be evaluated
from their respective terms in equations (3.6) and (3.9). The numeri-
cal values of Y, X; and X, for some important electrolytes are presen-
ted in tabular forms in the Appendix. Experimental results of ¢K and L
at various ionic strengths are reported in several literature sources.
Y values (computed from the experimental results of the 1:1 and 1:2
electrolytes listed in the Appendix) are plotted in Figures 3.1 and 3.2
respectively. As expected, the data points follow a linear correlation,
especially for values of X; between 0.15 and 0.6. This domain corre-

sponds to values of I app roximately between 2.0 and 0.15m, Devia-
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tions in the dilute range may be explained by imprecisions in the Ton
Interaction Model or more probably to minor experimental errors. Re-
gardless of the actual source of error in the graphical estimation of
b, and b;, its effect on the computation of both activity coefficients
and osmotic coefficients of very dilute solutions is, for all practical
purposes, insignificant. Deviations from ideality for extremely con-
centrated 1:1 electrolyte solutions (X; less than 0.15) in Figure 3.1
suggest that the assumption that @C/gr is equal to zero is probably in-
correct. However, for less concentrated solutions linearity is pre-
served., Thus, the above assumption is sound for ionic strengths

below 3.0 m.

The values of b, and by (i.e., 8B°/@T and §B/@T) for 1:1 and
1:2 electrolytes were graphically calculated over the linear region in
Figures 3.1 and 3.2 respectively. These values were then plotted
against their respective virial coefficients at 25°C in Figures 3.3
and 3.4. The points in these figures were not labeled due to their
relative closeness.

Figures 3.3 and 3.4 illustrate that there exists a definite
correlation between a specific virial coefficient and its variation
with temperature. Further, this correlation appears to be linear
within the studied range. Assuming that the correlation is linear over
the whole plane, it is possible to express a virial coefficient varia-
tion with temperature as a linear function of its corresponding virial
coefficient. Such linear function is extremely adventageous to calcu-

late the temperature effects on the thermodynamic properties of a
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solution without implicitly knowing the rates of change of the indi-
vidual virial coefficients with temperature.
The following linear equation approximately describes the re-

lationship between the ith yirial coefficient, Bi, and aBilaT:

T mx T CmxPrx 259¢ (3.:12)

where i =0, 1.

In the previous equation, d and e correspond to the intercept
and the slope of the lines in Figures 3.3 and 3.4. Integration of
equation (3.13) with respect to temperature leads to the following

simple relationship:

i s
B & (duiix + eux Bliix

25°c) (t - 25) + BL | 25°%

(3.:13)

Equation (3.13) permits the evaluation of a virial coefficient
at any temperature as a function of its virial coefficient at 25°C and
the solution temperature. The values of d and e for 1:1 and 1:2 elec-
trolytes, as evaluated from a least-square analysis of the data points
in Figures 3.3 and 3.4, are presented in Table 3.1. The magnitudes of
d and e for 2:2 electrolytes are also presented in this Table. The
evaluation procedure for this last case is discussed later in this
section.

The linear correlation coefficients of the various sets of
data suggest that the assumptions which led to the derivation of
equations (3.12) and (3.13) are reasonable. The degree of accuracy of
the proposed model may be sensed in more practical terms by comparing

the calculated osmotic and activity coefficients of electrolyte solu-
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tions against the experimental ones. Publications on laboratory deter-
minations of the activity and osmotic coefficients of electrolyte
solutions at temperatures other than 25°C are rather scarce and often
incongruent. Literature information on the thermodynamic properties of
sodium chloride solutions at various temperatures is somewhat more
reliable for these properties have been thoroughly studied by several
investigators. The reported experimental activity and osmotic coeffi-
cients of sodium chloride solutions at temperatures between 0°C and
80°C and at concentrations as high as 1.0m are listed in Table 3.2.
These two coefficients are calculated in this dissertation by means of
the d and e parameters for 1:1 electrolytes in Table 3.1. The results

of these calculations are presented in Table 3.2.

TABLE 3.1

d AND e VALUES x 10%

Electrolyte
fai LCC* 1:2 LCCk 2:2 LCC*
a° 9.80} 10.89} 0.0
e? -70.92 0.76 -42.17 0.92 0.0
2 29.54 205.08 -232.0}
ol -61.92} 0.80 —77.76} 0.61 14.5 0.93

*Linear Correlation Coefficient
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TABLE 3.2

TEMPERATURE DEPENDENCE ON THE ACTIVITY AND OSMOTIC
COEFFICIENTS OF NaCl SOLUTIONS

ke I Ycale YExp Pcalc Pexp
0 0.1 0.781 0.7812 0.932 0.933b
0.2 0.735 0.731 0.923 0.921
0.5 0.680 0.673 0.921 0.911
1.0 0.650 0.635 0.935 0.915
25 0.1 0.776 0.778¢ 0.932 0.932¢
0.2 0.732 0.735 0.923 0.925
0.5 0.679 0.681 0.921 0.921
1.0 0.655 0.657 0.935 0.936
40 0.1 0.783 0.7744 0.934 0.9324
0.2 0.727 0.729 0.922 0.924
0.5 0.676 0.677 0.922 0.923
1.0 0.655 0.658 0.939 0.940
80 0.1 0.755 0.7584 0.926 0.9274
0.2 0.710 0.711 0.918 0.919
0.5 0.660 0.659 0.921 0.918
1.0 0. 644 0.640 0.964 0.939

dHarned and Owen (1958)
PGibbard et al (1974)
“Robinson and Stokes (1959)

dEnsor and Anderson (1973)

The calculated activity coefficients of NaCl in Table 3.2 are
in excellent agreement with the experimental ones over the studied tem-
perature domain. At 80°C a considerable discrepancy between experi-
mental and calculated osmotic coefficients is observed. This discrep-

ancy 1is probably a result of assuming that 62B/6T2 is unimportant.
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Nonetheless, for the range of temperature of most natural waters, the
above assumption yields reasonable results. One may conclude from the
results in Table 3.2 that the proposed simplified model may be used
with high degree of certainty to compute the thermodynamic properties
of aqueous solutions at temperatures between 0°C and 40°C. At higher
temperatures the usage of the model should be discreet.

Harned and Owen (1958) compiled the relative partial molal en-
thalpies of dilute divalent cation sulfate solutions at 25°C. These
values were used in this dissertation to calculate the Y variables,
which correspond to the left side of equation (3.9). The Y variables,
as well as their corresponding X1 and X2 values, were computed in the
Appendix. It was previously discussed in this section that for most
practical cases the last term in equation (3.9) can be ignored. This
assumption holds in the following mathematical derivations.

Equation (3.9) is represented by the linear polynomial equation
(3.7). 1t is initially assumed in this dissertation that the b  term
(i.e., 6B°/@T), in equation (3.7) is equal to zero. Ignoring bg,

the following relationship is obtained when one divides this equation

X
Y _ =L
o~ Wy bz(xl)

If the above assumptions are correct over the studied ionic

(3.14)

strength range, for a given electrolyte solution, a plot of Y/Xl
against X2/X1 should yield points lying along a straight line. Figure

3.5 graphically illustrates the results of this type of plots.
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In all cases linearity is preserved for X/X; between 0.04 and 0.27.
This domain of the abscissa corresponds to ionic strengths from 0.36
to 0.026m. Therefore, one may conclude that for this interval the
above assumptions are valid.

The intercept, by, and the slope of any straight line, by, in
Figure 3.5 correspond to §BL/AT and PB2/BT respectively. Only two
points are plotted for calcium sulfate in Figure 3.5 due to the limited
solubility of gypsum. It is unreasonable to attempt to evaluate by and
b, for CaSO, from this limited information. The b; and b, parameters
for CasO, were predicted according to a procedure described later in
this section.

Experimental enthalpy information of concentrated divalent
cation sulfate solutions is extremely limited. The only available
publication on this type of information seems to be the work by Snipes
et al (1975). These researchers have evaluated the relative apparent
molal enthalpies of MgSOy, at 40°C and up to 8.0m, The values of Y,

Xy and X, for these MgSO, solutions are evaluated in the Appendix.

2
An attempt is now made to determine the actual magnitude of b, for
MgSO,, solutions. The objective of such a determination is to demon-
strate that for most practical cases the net effect of by on the ther-
modynamic properties of aqueous solutions is negligible. Subtracting
bosXo from equation (3.7) yields:

Y - boXy = by + b1Xy (3.15)
Graphically calculating b, from Figure 3.5 one obtains that bj

equals - 0.2475/deg. The left side of the previous equation may be
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then computed from the available information. The results of this
computation are plotted as a function of X in Figure 3.6. The inter-
cept and slope of the best fit straight line in this figure correspond
to b, and by respectively. The effect of by on the wvalue of the depen-
dent variable in equation (3.15) may be visualized from the difference
between the continuoué and the dashed lines in Figure 3.6. The latter
line represents a plot of the left side of equation (3.15) ignoring the
contribution of b2 (i.e., bp = 0.). The following important conclu-
sions may be drawn from the graphical results in Figure 3.6:

a) The effects of byX, on the left side of equation (3.15) are
of importance, especially at low ionic strength. These
effects are reflected on the linearity of the full points
in Figure 3.6. The excellent linear correlation of such
points demonstrates the validity of the proposed magnitude
of bsy.

b) A least-square analysis of Y + byX2 as a function of X;
shows that by and by equal 0.0006/deg and 0.0272/deg. The
assumption that one may neglect the effects of b, in dilute
solutions is confirmed by the relatively small value of b,
in comparison with by. This assumption should yield
accurate results up to ionic strengths as high as 2.0 or
3.0 m;,

c) The value of b; calculated from the intercept of Figure 35
equals 0.0210/deg. This wvalue is slightly different than

the one calculated from the slope of Figure 3.6. However,
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considering that data from two literature sources were
utilized to compute these two values, the agreement between
both values is remarkable.
The values of by (i.e., aﬁlﬁST) for 2:2 electrolyte solutions,
as graphically calculated from Figures 3.5 and 3.6, are plotted as a
function of their corresponding [31 values in Figure 3.7. An excellent
linear correlation coefficient of 0.93 is obtained for these data. The
magnitudes of dy and e, which are listed in Table 3.2, are evaluated
from a least-square analysis of the points in Figure 3.7.
The value of Bl for CasOy was utilized to estimate, from
Figure 3.7, its corresponding magnitude of b,. The b, value of CaSO4
was then graphically evaluated from Figure 3.5 by assuming a best fit
line (dashed line) with an intercept equal to bj.
No apparent correlation was observed between the values of BZ
and b, for divalent cation sulfates. Table 3.3 shows the calculated

b2 values (i.e., EﬁgzhaT) for this type of electrolytes.

TABLE 3.3

DEPENDENCE OF 82 ON TEMPERATURE

2
Elect. B2 (aﬁg/_al’r)
Casoy, -55.70 -0.284
Cd304 -48.07 -0.515
Cusoy, ~47.35 -0.393
MgS0, -37.23 ~0.248

ZnS0, -32.81 -0.280
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3.3 Example

The purpose of this example is to illustrate the use of the
equations developed in the two previous sections as applied to the Ion
Interaction Model.

Statement: Calculate the osmotic coefficient of a 1.0 m NaCl
solution at t = 40°C.

Solution: According to equation (3.1) at t = 40°C the dielec-
tric constant of water equals:

€ = 87.924 - 0.40873 t + 1.01465 x 1073t - 1.9365 x 10~6¢3

I

73.074
The Debye-Hickel coefficient may be evaluated from equation
(3.3) as follows:

1.400 x 10%

= 0.4044

For a 1:1 electrolyte I is equal to the molality of the solu-
tion. Knowing that T = 1.0m and A = 0.4044, the following result is
obtained for the Debye-Hiickel function (equation (2.3)):

£ = -0.1838

The first and second virial coefficients of MX electrolyte
solutions at t°C may be calculated from their corresponding values at

259C. From equation (3.13) one obtains for sodium chloride solutions

at 40°C:
i -
Bix e 2 (d?ix + eax Buax | 25°C) (t - 25) + B&x 25°%¢
{0.0831 for i = 0
0.2856 for i =1
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the values of d and e for the above calculations were obtained from
Table 3.1 and the (3 values at 25°C from Pitzer and Mayorga (1973) .
One may proceed to calculate the interaction function for
osmotic coefficients. From equation (2.4) one obtains
B¢ = 0.1218
Finally, inserting the appropriate variables into equation (2.2), the

following result is obtained for the osmotic coefficient:

¢ = 0.939
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Chapter &4

THE ACTIVITY COEFFICIENTS OF ALKALT

AND ALKALINE EARTH BICARBONATES

4.1 The Carbonate System in Aqueous Solutions

The thermodynamic properties of the bicarbonate ion are of
major importance in the study of the chemical equilibrium of aqueous
solutions. However, the existing information on its behavior in such
solutions is confusing and often inconsistent. The purpose of this
section is to elucidate the chemical theory of the bicarbonate ion in
aqueous solutions.

The bicarbonate ion, HCO3, is the intermediate protonation
state of the carbonate system. The most protonated state of this
system being carbonic acid, H,CO3, and the least being carbonate
itself, 0032-. Carbonic acid is the direct result of the dissolution
and hydration of carbon dioxide, COp. Although carbon dioxide exists
as a dissolved component in aqueous solutions, its occurrence is often
ignored in most chemical models (the reason being that dissolved CO2
is readily hydrated and available as carbonic acid).

The chemical reactions which describe the wvarious protonation
states of the carbonate system in an aqueous medium, as well as their
corresponding mass action equilibrium equations, are listed in Table
4.1. (The adoption of the following convention greatly simplifies

the nomenclature of the equations in this dissertation: Variables
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enclosed in parentheses represent molal activities while those en-

closed in brackets (beginning on page 58) represent molal concentrations.)

TABLE 4.1

CHEMICAL REACTIONS AND EQUILIBRIUM EQUATIONS
FOR THE CARBONATE SYSTEM IN WATER

Hy0 = HT + OH~ (4.1)
Ky = (H") (0H™) (4.2)
Ky = (HyC04)/PCOy a; (4.4)

H,CO3 = HT + HCO3 (4.5)
Ky = (") (HCO3)/ (H,C04) (4.6)
HCO; = HY + C04%” D)
K, = (H")(C05327)/ (uco3) (4.8)

where PCO; represents the partial pressure of CO,p,

Ky represents the ionization constant of

water,

K, represents the thermodynamic Henry's
Law constant for CO5, and

K, and K2 represent the first and second

thermodynamic ionization constant of

the carbonate system.

The thermodynamic constants in Table 4.1 are temperature

dependent and may be calculated from semi-empirical relationships of
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the form:

logK = q + /T + s/T (4.9)
where q, r and s represent the temperature coefficients.

The values of the temperature coefficients, as presented in
the literature, are listed in Table 4.2. These coefficients may be
used with confidence within the recommended temperature limits,

0 to 50°C (Harned and Owen (1958)).

TABLE 4.2

TEMPERATURE COEFFICIENTS FOR THE
CARBONATE SYSTEM IN WATER

K q T s Reference

Kw 6.0875 -4470.99 0.01706 Harned and Owen (1958)

Ky -13.4170 2299.60 0.01422 Harned and Owen (1958)

K1 14.8435 -3404.71 -0.03279 Harned and Davis (1943)
Ko 6.4980 -2902.39 -0.02379 Harned and Scholes (1941)

One observes from equations (4.4) and (4.6) that the activity
of the bicarbonate ion may be expressed as a function of two variables:
the partial pressure of carbon dioxide and the activity of the hydrogen
ion. The latter property of a solution may be determined from experi-
mental measurements of the hydrogen potential (i.e., pH). The theory
of the bicarbonate ion activity coefficient in alkali and alkaline
earth chloride solutions, under a constant partial pressure of CO,, is

studied in the following section.
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42 General Principles of the Bicarbonate Ion Activity Coefficient

At a specific temperature the activity of a specific ion in a
mixed electrolyte solution is a function of the molality of the
various ions in solution and the virial coefficients of counter-ions,
like-charge ions and triplets. Obviously, in order to estimate the
bicarbonate ion activity coefficient in mixed electrolyte solutions,
one needs to know the virial coefficients for cation-bicarbonate salts.
For maximum accuracy it is also desirable to know the virial coeffi-
cients for anion-bicarbonate and cation-bicarbonate-cation virial
coefficients.

The effect of like-charge and triplet interactions on the
activity of an ion in solution is usually minor in comparison with
opposite charge interactions. For the above reason, the emphasis of
this chapter is the exclusive study of cation-bicarbonate interactioms.
The objective of this chapter is to experimentally obtain the virial
coefficients between bicarbonate and the most common cations present in
natural and contaminated waters. These cations are Na', K', NH, T, caZt
and Mg2+.

The virial coefficients of an electrolyte MX are usually
determined by one of the two following experimental methods (Pitzer
and Mayorga (1973)):

a) by measurements of the osmotic coefficients‘of single MX

solutions, or

b) by potentiometric measurements of the activity of M or X
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in single MX solutions.

The first experimental method requires the equilibration be-
tween the osmotic (or vapor) pressures of a sample MX solution and a
solution with known osmotic (or vapor) pressure. Due to the long
periods of equilibration (up to several days) and the presence of the
carbon dioxide gas phase, this experimental technique cannot be em-
ployed to evaluate the MHCO3 virial coefficients.

The activity of bicarbonate in an aqueous solution is inti-
mately related to the activity of the hydrogen ion. Theoretically, the
MHCOg virial coefficients can be determined from potentiometric mea-
surements of the hydrogen ion activity in MHCO3 solutions under a
constant partial pressure of carbon dioxide. Unfortunately, due to the
amphiprotic properties of HCO3~, the carbonate ion constitutes a con-
siderable proportion of the total negative charge of the solution at
pH values as low as 8.0. Therefore, the presence of this last anion in
concentrated MHCO3 solutions affects the electroneutrality condition of
the solution and hinders any attempt to evaluate the viral coefficients
of MHCO5. Two alternate experimental procedures to evaluate these

coefficients are proposed in.the following sections.

4.3 Theoretical Approach to ThHCOq in MC1-MHCO3 Solutions

At pH values below 7.0 the two anions of importance
in a MCl - MHCO3 solution are chloride and bicarbonate.

At a known temperature and partial pressure of COp, the pH of a MC1
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solution containing a fixed concentration of MHCO4 and a variable con-
centration of MCl is a function of the MCl and MHCO5 virial coeffi-
cients. The electroneutrality condition (ENC) for this type of solu-
tion is as follows:

zwlt) + [(mt] = [HCO3™] + [c17] (4.10)

Assuming that the hydrogen ion concentration is small (relative
to the bicarbonate ion concentration) and that the cation M is mono-
valent, one obtains the following relationships for the mass balance
conditions (MBC) of the particular problem:

[c17] = [mMc1] (4.11)

[at] = [MuCO3] + [Mc1] (4.12)

Simultaneously solving the three previous equations, the fol-
lowing simple equality is obtained:

[MHCO5] = [HCO3™] (4.13)

The bicarbonate ion concentration may be expressed as a func-
tion of its activity and activity coefficient:

[MHCO3] = (HCO3™)/¥co3 (4.14)

One observes from equations (4.4) and (4.6) that the activity of
bicarbonate ion equals PCOoK_ K; all(H+). In the ideal conditions of
infinite dilution the natural logarithm of a; is, according to equation
(2.7), equal to —0.036[M]. Due to the minor effects of a; on the
solution equilibrium conditions one may confidently assume that its
natural logarithm behaves ideally. Inserting the appropriate values
into equation (4.14) and taking the natural logarithms of the resulting

relationship one obtains:
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In [MHCO3] = 1ln ( PCOpK,KIE ) - 0.0361 + 2.303pH - 1n Yuco,

(4.15)

I [M] for 1:1 electrolytes, and
pH represents the negative logarithm (base 10) of the mea-
sured hydrogen ion activity,
pH = pH® - pE (4.16)
pH° represents the actual pH of the solution, and
pE = -log gE represents the pH calibration error.
Expressing the natural logarithm of the bicarbonate ion as a
n of the ionic concentrations and the appropriate virial coeffi-
(equation (2.13)), one obtains:
2.303pH - £ - 0.0361 - I(I-[MHCO3])(Byc181' + Cycy)
b+2IB°MHC%+21g131MCO3+212CMHC03 (4.17)
= 1n (PCO2K,K}E/[MHCO3]) (4.18)
Equation (4.17) is a polynomial of the form
Y= b+ B0, KL * 31MH003x2 * Qi 8 (4.19)
Y represents the left side of equation (4.17), and
Xl’ X, and X, represent their respective functions of I in
equation (4.17)
Equation (4.17) describes the behavior of a measured pH func-

one increases the ionic strength of a MHCO3-MCl solution by the

addition of MCl. (The temperature of the solution and partial pressure

of CO9y

must be constant.)

Experimental pH measurements with accuracies greater than

0.01 pH unit are difficult to obtain (Bates (1973)). However, the
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precision of most modern digital meters is 0.001 pH unit. 1In other
words, the accuracy of an individual pH reading is often below 0.01
unit, but the accuracy of pH variations (i.e., ApH) is as high as
0.001 unit. The method proposed in this work estimates the MHCOj
virial coefficients not based on absolute pH measurements, but on rel-
ative values. Any least-square analysis of Y as a function of Xy,
X, and X3 must yield, regardless of the magnitude of the calibration
error, constant calculated MHCO3 virial coefficients (i.e., the pE is
only reflected on the calculated b wvalue).

The described theoretical approach to the evaluation of the
MHCO3 virial coefficients was derived for solutions containing concen-
trations of bicarbonate ion much greater than the concentrations of
hydrogen ion (pH values between six and seven). Due to the limited
solubility of calcium, magnesium and ammonia under these alkaline con-
ditions, the virial coefficients for Ca(HCO3),, Mg(HCO3), and NH4HCO3
have to be determined by the alternate model described in the following
section. The applicability of the previously derived equations is
therefore limited to the evaluation of the virial coefficients of

sodium and potassium bicarbonate.

4.4 Theoretical Approach to 7hHC03 in MC1-H2CO3 Solutions

A second chemical model, which is able to predict the activity
of bicarbonate ion in the presence of any of the studied cations, is
presented below. This model relies on experimental pH measurements of

single cation chloride solutions under a constant partial pressure of
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CO,. Even though this method is more versatile, its accuracy is lower
due to the following reasons:

a) Most chloride salts contain trace amounts of alkalinity,
which may considerably affect the equilibrium conditions of
the system. Therefore, a salt alkalinity correction must
be included in the model.

b) Under the proposed conditions, the activity of the bicar-
bonate ion is strongly dependent on the activity coeffi-
cient of the hydrogen ion. The latter ion exhibits unusual
behavior in the presence of other cations. Thus, like-
charge interactions must be considered in the model to ex-
plain the behavior of the hydrogen ion.

The trace alkalinity of a single MCl solution may be expressed
as a fraction, P, of the ionic strength. The ENC for this type of
solution under a constant partial pressure of carbon dioxide is

z.[M] + ("] = [Hco3™) + [c17] (4.20)
and the MBC is

z,[M] = [c17] + p1 | (4.21)
Subtracting equation (4.21) from (4.20) one obtains

[ut] = [Hco3™] - pt (4. 22)

It is commonly accepted that the hydrogen ion exists hydrated
by one or more water molecules (Bates (1973)). 1In the following deri-
vation it is assumed that the hydrogen ion is present as hydronium ion,
H30+. Expressing concentrations as activities and rearranging terms in

the previous equations, the following relationship is obtained. (In
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order to simplify nomenclature in the derivations H30" is expressed as
Ht.)
(H") ay {1 + p1/[H] al}/); = (Hco3')/7’HCO3 (4.23)
Calculating the activity of the bicarbonate ion in equation
(4.23) as a function of PCOp, a; and (HY) (equations (4.4) and (4.6)),
and expressing the activity coefficients according to equations (2.12)
and (2.13) one obtains the following relationship:
1.151 2 ,(z,, + 1) pH - %’!(zn + 1) 1n {1 + p1/ [H]} + 160y
= .'%'J. (B 4 T3 Tns {PCOZKHKlEZ} * (BOMHCO3 - Z8%c1) I
+ Bincos - Bic1) 18 (1) + (Cymcos = ZuCycy) 212/ (2w + 1)
(4.24)
where I = Zy(Zy + 1) [M]/Z
The alkalinity fraction, p, may be determined from pH measure-

ments of aqueous MCl solutions under two different partial pressures of

carbon dioxide, PC021 and PCOZZ. It can be demonstrated that
1 w
pL = (w - 1)/( - ) (4.25)
(u+], [wt]y
2

PCO
where w = exp {4.605(pHy - pHp) (4.26)

20027 exp | > = pip)

For symmetric mixing (i.e., mixing of two or more electrolytes
whose anionic and cationic valences are equal) the like-charge wvirial
coefficients may be assumed to be constant over the ionic strength of
the solution (Pitzer and Kim (1974)). Pitzer (1975) has observed
marked deviations from this ideal behavior for unsymmetrical electro-
lyte mixing. The like-charge interaction coefficient, for cases of

unsymmetrical mixing, may be expressed as a function of the ionic
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strength of the solution. Therefore, for MC1-H,CO3 mixing the H-K,
H-Na and H-NH, interactions, 0, may be assumed to be constant. (Pitzer
and Kim report @ values for these types of interactions.) The
non-ideal dependence of @ with the ionic strength of the solution for
H'Ca and H+Mg interactions may be evaluated from pH measurements of
HC1~CaC12 and HCl—Mg012 solutions. Ignoring triple ion interactions
the following is true for a solution containing a fixed concentration
of HCI, [Clg], and a variable concentration of MCl;:

2[M]6,, (1) = 2.303 pH + £ + In|{[c1,]JE} + 0.036(1/2)

+ [e17] {2(yey1 + [e17]eye) + M) Byiey + Cue)
+ [1] By + Cyey) (4.27)

The ionic strength in the above equation may be assumed to be
equal to the value utilized in equation (4.24) for values of I much
larger than [Cla]. Equations (4.25) and (4.27) require the knowledge
of the hydrogen ion concentration. This parameter is computed by
dividing the hydrogen ion activity by its activity coefficient (calcu-
lated from equation (2.12)).

The MHCO3 virial coefficients may be estimated by the use of
the chemical model studied in this chapter. This estimation requires
the following information:

a) pH measurements of MCl solutions under two different carbon

dioxide partial pressures, and

b) in the case of M divalent, pH measurements of MCl,-HCl

solutions.

Due to the many mathematical manipulations and assumptions
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involved in the derivation of this model, it is expected that its
accuracy will be lower than the model studied in the previous section
(which can only be utilized to evaluate the virial coefficients of

NaHCO3 and KHCO3).

4c5 Experimental Procedures

The virial coefficients of MHCO3 salts may be evaluated from
pH measurements of MC1-MHCO3 and MC1-HpCO3 solutions, as discussed in
the two prior sections. The experimental procedures required for this
type of evaluation are considered in this section.

The experimental pH measurements of the aforementioned solu-
tions are performed in the chemical reactor shown in Figure 4.1. (A
complete listing of the equipment and instruments utilized in the ex-
perimental phase of this dissertation is given in Table 4.3.) This
figure illustrates the reactor in a disassembled form, so that its
individual parts may be clearly seen. By means of the access port,
250 grams of double distilled water are added into the previously
washed and assembled reactor. The access port is also used when a
known amount of salt needs to be added into the reactor. At any other
time, this port is kept closed. A constant solution temperature is
achieved by means of a constant temperature circulator which pumps
water through the double wall bath. The thermometer in Figure 4.1 is

used to confirm that the solution temperature is the desired one.



Scale 1:2

30° Projection

Figure 4.1 Chemical Reactor. A) Access Port, B) Constant
Temperature Bath (1 liter), C) Cover, D) Glass Diffuser,

G) Glass Electrode, R) Reference Electrode, S) Stirrer,

T) Thermometer
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TABLE 4.3

EQUIPMENT AND INSTRUMENTS USED
IN THE EXPERIMENTAL PROCEDURE

— Calomel reference electrode (Beckman 1170-5,
fiber type)

— Constant temperature baths (1 liter and 0.25
liter)

— Constant temperature circulator (Haake F K,
approximate precision: 0.05°C)

— Digital pH meter (Orion 801, precision: 0.001 pH
unit)

— Gas flow meter (Matheson R-2-15-B)

— Glass diffusers (Pyrex ASTM 40.60 12 C)

— Low éodium E2 glass (pH) electrode (Beckman 39099)
— Propeller stirrer (Talboys 0-5000 RPM 30W)

— Thermometer (ERTCO 84627 -20 to 110°C)

The propeller-like stirrer is used for the following purposes:

a) To guarantee constant temperature and homogeneity through-
out the solution,

b) To facilitate the dissolution of salts and carbon dioxide
in the reactor, and

c) To avoid false pH readings, especially in low buffer
capacity solutions.

A common misconception in the experimental determination of the

pH of a solution is that the solution should not be stirred while

readings are taken. This procedure is erroneous; in fact, the sample
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should be rapidly agitated around the electrodes. Bates (1973) men-
tions that '"the pH of water can perhaps best be measured in a flow cell
that permits a high rate of flow past the electrodes.'" For the
described reactor, estimates of flow velocities around the electrodes
yielded values of approximately 30 cm/sec.

In order to maintain a constant partial pressure of CO, within
the reactor, 300 cc/min of a C05-No9 mixture were bubbled into the solu-
tion by means of the glass diffuser shown in Figure 4.1. (The partial
pressure of carbon dioxide in the gas mixture was known.) Prior to its
introduction into the system, the gas mixture was bubbled in a dis-
tilled water constant temperature bath. The purpose of this pre-
treatment of the gas mixture was twofold: first, to saturate the gas
with respect to water, and second, to equalize the gas temperature with
the solution temperature.

The reference calomel electrode and glass (pH) electrode are
shown in Figure 4.1. These electrodes are connected to an 801 Orion
digital pH meter (not shown). The precision of this apparatus is 0.001
unit. The pH measurement procedure is as follows:

a) The temperature dial is set at the appropriate solution

temperature, and the slope set at 100 per cent.

b) The electrodes are immersed in a constant temperature bath

prior to the pH meter calibration.

¢) The pH meter is calibrated with a 6.84 standard pH buffer

solution. The slope of the electrodes is calibrated by

adjusting the temperature dial until the pH reading equals
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the pH of a second 4.01 standard pH buffer solution. (The
temperatures of the buffers and electrodes must be equal to
the solution temperature.) The measured slope in the par-
ticular set of electrodes utilized in this research was
never below 98.5 per cent.

d) The electrodes are inserted in their corresponding openings
located in the cover of the reactor. The concentration of
salt, MCl, in solution is increased by incremental addi-
tions of MCl. pH measurements are taken after the dis-
played pH readings have reached a constant value (i.e.,

equilibrium).

4.6 Experimental Determination of the MHCO3 Virial Coefficients

The theoretical approach to the evaluation of the MHCO3 virial
coefficients were studied in sections 4.3 and 4.4. 1t was found in
these two sections that, according to the Ion Interaction Model, the
MHCO3 virial coefficients could be evaluated by means of a least-square
analysis of a function Y(pH) against functions Xj(I) and X,(I). The
experimental procedures involved in the determination of the pH of
MC1-MHCO3 and MC1-H,CO3 solutions under constant temperature and PCO;
were discussed in the previous section. The purpose of this section
is to obtain the MHCO3 virial coefficients from experimental measure-
ments of the pH in these types of solutions. The cations (M) studied

in this resecarch include k1, Nat, NH4+, Cca2t and Mg2+.
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The virial coefficients of KHCO3 and NaHCO3 may be determined
from experimental pH measurements of MHCO3-MCl solutions (where M = K,
Na). The temperature and PCOs of such solutions are kept constant
throughout the experimentation period, which is approximately one hour.
Tables 4.4 and 4.5 contain the experimental pH® measurements of MHCOj
solutions as one increases the ionic strength by adding reagent grade
MCl. (The pH® of a solution is the actual pH value, which is obtained
by adding the calibration error to the pH reading. The calibra-
tion error is easily calculated from the first coefficient of the least-
square analysis.) The MHCO3 virial coefficients, as calculated from
least-square analyses of each set of data, are given in Tables 4.4 and
4.5,

The pH® of the solutions in Tables 4.4 and 4.5 may be calcu-
lated as a function of the ionic strength of the solution, once the
MHCO3 virial coefficients are known. Next to the measured pH® values
are also included the difference between the measured and calculated
pH® values.

Two different gas mixtures were utilized in this experimental
phase. The mixtures, as prepared by the manufacturer (Matheson Gas
Products) contained 100:0 and 50:50 CO5:N, aquarator grade. The actual
PCOy over the solution, was approximately three per cent lower than the
dry mixture due to its saturation with respect to water vapor in the
reactor.

The following important conclusions are obtained from the ex-

perimental results in Table 4.4 and 4.5:
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TABLE 4.4

pH® VALUES IN KHCO3-KC1 SOLUTIONS

PCO? 0.97 0.97 0.48 0.97

te 10° 259 259 40°

[kncos] 0.1 0.1 0.05 0.1
I(m) pHO® D pH® D¥* pH® D* pHO® D*
0.2 6.574 0 6.656 2 6.656 2 6.751 0
0.4 6.516 0 6.602 -1 6.602 0 6.703 1
0.6 6.479 -1 6.567 0 6.570 0 6.668 -2
0.8 6.456 2 6.545 0 6.547 1 6.646 -1
1.0 6.432 -2 6.527 0 6.528 0 6.630 1
1.3 6.417 -1 6.511 1 6.513 0 6.615 0
1.4 6.406 1 6.501 0 6.501 0 6.605 ik
1.6 6.394 0 6.491 1 6.490 -1 6.596 1
1.8 6.385 1 6.484 1 6.483 0 6.579 -1
2.0 6.376 -1 6.476 0 6.475 0 6.579 -1
) 6.369 -1 6.471 -1 6.469 0 6.573 -1
2.4 6.365 1 6.463 0 6.464 0 6.569 0
2.6 6.359 -1 6.461 0 6.460 1 6.564 0
2.8 6.356 1 6.457 0 6.455 0 6.560 0
3.0 6.352 0 6.453 0 6.451 -1 6557 i
B° 0.0336 0.0550 0.0252 0.0445
B! -0.1731 -0.1968 -0.0699 -0.0943

C -0.00130 -0.00658 -0.00168 -0.00480

% D = (pH® observed - pH® calculated) x 103
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TABLE 4.5

pH® VALUES IN NaHCO4-NaCl SOLUTIONS

PCO, 0.97 0.97 0.48 0.97

£9g 10° 259 25% 4:0°

[NvaHCO4)] 0.1 0.1 0.05 0.1
I(m) pH® D pH® D¥* pH® D* pHO D*
0.2 6.562 2 6.644 2 6.642 0O 6.730 1
0.4 6.49% 0 6.581 1 6.579 0 6.664 1
0.6 6.450 0 6.537 -1 6.538 0 6.621 -1
0.8 6.415 -1 6.505 0 6.506 0 6.590 0
1.0 6.389 1 6.479 0 6.480 -1 6.565 0
U 6.365 0 6.457 0 6.460 1 6.544 1
1.4 6.345 0 6.439 1 6.442 1 6.525 0
1.6 6.328 0 6.423 1 6.425 0 6.509 0
1.8 6.313 0 6.408 0 6.411 0 6.494 0
2.0 6.300 0 6.395 0 6.398 0 6.481 0
2.2 6.288 0 6.383 -1 6.386 0 6.470 0
2.4 6.317 0 6.373 0 6.376 0 6.458 -1
2.6 6.266 0 6.373 0 6.366 0 6.449 0
2.8 6.258 0 6.355 0 6.352 0 6.439 0
3.0 6.249 0 6.366 0 6.349 0 6.431 0
B° 0.00731 0.0064 0.0016 0.0059
B! -0.2559 -0.2169 -0.1592 -0.1486

c -0.00141 -0.00246 -0.00221 -0.00302

* D = (pH® observed - pH® calculated) x 103



b)

72

The addition of a neutral MCl salt to an MHCO3 buffer
causes a decrease of the solution pH. This decrease may
be accurately described by the proposed Ion Interaction
Model, whose precision in all cases was at least 0.002 pH
unit.

Two sets of experimental pH® measurements of MHCO3-MCl
solutions at 25°C were performed at PCO, values of 0.97 and
0.48. The ratios of both PCO, were approximately equal to
2.0. The ratios of the bicarbonate concentrations in both
solutions also equaled 2.0. Under these experimental con-
ditions the theoretical model predicts that, for all prac-
tical purposes, the measured pH® values in both cases
should be equal. The validity of the model is experimen-
tally demonstrated for the given conditions in that the
absolute differences between both sets of pH® values at
25°C never exceeded 0.002 pH units. The excellent repro-
ducibility of the measurements confirms the accuracy of the
experimental procedures.

The calculated MHCO5 virial coefficients at 25°C are some-
what different for the two given conditions. These dif-
ferences are due to minor pH® measurement errors in the
low ionic strength range. The effect of these errors on
the calculated virial coefficients is considerable on the
values of the ﬁﬂ'coefficients. Nonetheless, the pH®

of both sets of solutions may be accurately predicted by
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using either one of the sets of calculated MHCO3 virial
coefficients.

d) The temperature variation of the MHCO3 virial coefficients
is positive as predicted by equation (3.12). The experi-
mentally determined variations of Bl with temperature are
very similar to those predicted by equation (3.13). How-
ever, the experimental variations of B° with temperature
are slightly different than the ones calculated by equation
(3.13). Such differences may be due to HCO3~ - Cl- inter-
actions, whose effects are directly reflected on the value
Be.

The virial coefficients of MHCO4 salts may be evaluated from
pH measurements of MC1-H7CO3 solutions according to the model proposed
in Section 4.4. 1In order to apply this model it is necessary to con-
sider H'M interactions. For M monovalent, the H'M interaction coeffi-
cients may be assumed to be constant with the ionic strength and tem-
perature. The values of 0,*m for the studied monovalent cations, as
presented by Pitzer and Kim (1974), are 0.005, 0.036 and -0.016 for
H-K, H-Na and H-NH, interactions.

Due to the low buffering capacity of HyCO3 solutions, one needs
to consider the alkalinity effects of the salt MCl on the equilibrium
conditions of the system. According to Section 4.4, the MCl alkalinity
content may be estimated from pH measurements of HyCO3-MCl solutions
under two different partial pressures of COp. The effectiveness of

the method proposed in Section 4.4 may be evaluated by computing the
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virial coefficients of KHCO3 and NaHCO3 from pH measurements of KC1
and NaCl solutions under two different PCOp. The results for these
types of measurements are given in Table 4.6. The MCl and HCl virial
coefficients utilized for the calculation of the MHCO3 virial coeffi-
cients are taken from Pitzer and Mayorga (1973).

The values of p in Table 4.6 are mnot calculated for ionic
strengths below 1.0m due to imprecisions of the theoretical model and
pH® measurements in dilute solutions. The average value of the alka-
linity factor, p, is used to calculate the MHCO3 virial coefficients
according to the model derived in Section 4.4.

A comparison between the values of the MHCO3 virial coeffi-
cients calculated by the method in Section 4.3 and the one in Section
4.4 reveals that the latter method yields reasonable estimates for the
first two virial coefficients. The validity of the Ion Interaction
Model, as applied to bicarbonate solutions, may be sensed in practical
terms by comparing the calculated pH® of MC1-H9pCO3 solutions utilizing
the MHCO3 virial coefficients of each method. This comparison is
shown in Table 4.7, which contains the ApH® between both methods. The
accuracy of pH® prediction of the Ion Interaction Model is represented
by the ApH® values in Table 4.7. This accuracy is higher than0.01 pH
unit for ionic strengths below 3.0M.

The NH,HCO3 virial coefficients may be determined from pH©
measurements of NH4C1-HpCO3 solutions. Table 4.8 contains the results
of these measurements at 25° and 40°C. The alkalinity fraction of

NH4C1 is evaluated from the two sets of measurements at 25°C.
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TABLE 4.6

pH® VALUES IN KC1-HpCO3 AND NaCl-H,CO3 SOLUTIONS AT 25°C

M K Na
PCO, 0.48 0.97 px 10° 0.48 0.97 px 10°
I(m)
0.2 4.041  3.887 4.031  3.880
0.4 4.022  3.867 4.011  3.850
0.6 4.006  3.851 3.984  3.824
0.8 3.993  3.837 3.962  3.803
1.0 3.982  3.823 3.945  3.784
1.2 3.971  3.811  1.68 3.928  3.766  2.47
1.4 3.961  3.800  1.57 3.911  3.749  2.11
1.6 3.952  3.789  1.66 3.898  3.734  2.18
1.8 3.945  3.780  1.65 3.886  3.720  2.21
2.0 3,937  3.771  1.55 3.875  3.706  2.39
5.9 3.931  3.762  1.66 3.864  3.694  2.25
2.4 3.924  3.754  1.57 3.855  3.683  2.24
2.6 3.919  3.746  1.64 3.847  3.674  2.11
2.8 3.914  3.738  1.62 3.843  3.667  2.19
3.0 3.911  3.733  1.66 3.840  3.660  2.32
B°Muco4 0.0266 -0.0166
1
B MHCOS 0.0840 0.1414
c 0.00112 0.00159
P 1.63 x 1072 2.25 x 1072

Similarly, one may evaluate the virial coefficients of Ca(HCO3)2
and Mg(HCO3)2 salts from pH® measurements in MC1l-H2CO03 solutions. 1In

order to perform this evaluation it is necessary to know the inter-
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TABLE 4.7

ApH® VALUES FOR MC1-H,CO3
SOLUTIONS AT 250C%

M K Na
T (m)

0.2 -0.001 0.000
0.4 -0.002 0.000
0.6 -0.002 0.000
0.8 -0.003 -0.001
1516) -0.003 -0.001
1.2 -0.003 -0.002
1.4 -0.003 -0.003
L.6 -0.004 -0.003
1:8 -0.005 -0.003
2.0 -0.005 -0.003
2.2 -0.007 -0.004
2.4 -0.008 -0.004
2:6 -0.009 -0.004
2.8 -0.010 -0.004
3.0 -0.012 -0.004

*ApHO = pHO calculated
from MHCO3 virial coefficients
of the MC1-H2CO03 method minus
the pH® calculated from the
MHCO4 coefficients of the MCl-
MHCO4 method.

action characteristics between H'and M (where M = Caz+, Mg2+). These
characteristics are easily obtained from pH° measurements of HC1-MClj
solutions. The experimental pH® measurements in these types of solu-
tions and in MClp-H»CO3 solutions at 25°C are presented in Tables 4.9

and 4.10. Due to the uncertainty of both the theoretical model and
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TABLE 4.8

pH® MEASUREMENTS IN NH,Cl-H,CO3 SOLUTIONS

PCO, 0.48 0.97 0.97
P x 105
£2C 25 25 40
I(m)
e i i
0.2 4.044 3.884 3.934
0.4 4.014 3.861 3.901
0.6 3.993 3.841 3.977
0.8 3.974 3.822 3.856
1a0 3.957 3.806 3.836
1.2 3.941 3.790 3.820 -0.28
1.4 3.926 3.776 3.804 -0.39
1.6 3.911 3.761 3.788 -0.34
1.8 3.896 3.747 3.773 -0.41
2.0 3.881 3.732 3.759 -0.37
2.2 3.867 3.718 3.745 -0.33
2.4 3.854 3.706 3.78% -0.37
2.6 3.841 3.693 3.718 -0.33
2.8 3.829 3.681 3.705 -0.30
3.0 3.817 3.669 3.692 -0.27
o]
B MHCO3 -0.0011 0.0250
B viicos -0.0336 -0.1205 |p= -0.34 x 1079
CiCo- 0.00024 0.0002

experimental procedures involved in the evaluation of the M(HCO3) -
virial coefficients, one may assume, without much loss of accuracy,
that the third virial coefficient has a value of zero.

Pitzer and Mayorga (1973) mention that the degree of uncer-
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TABLE 4.9

pH® VALUES IN CaClp-H,CO3 SOLUTIONS AT 259¢

PCO, 0.48 0.97 pH* p x 10°
I(m)
0.2 4. 0Lk 3.886 1.338
0.4 4.042 3.869 1.323
0.6 4 .04k 3.858 1.303
0.8 4.047 3.851 1.281
1.0 4.052 3.845 1.257
1,2 4.056 3.843 1.234 20.1
Luts 4.061 3.840 1.211 21.1
1.6 4.065 3.838 1.187 21.3
1.8 4.069 3.836 1.164 21.8
2.0 4.072 3.834 1.141 22.0
5,9 4.074 3.832 1,397 21.8
2.4 4.077 3.831 1.093 21.8
2.6 4.079 3.830 1.070 21.4
2.8 4.080 3.829 1.047 20.5
3.0 4.080 3.827 1.024 19.8
BOCa(Hco_o,)z 0.0886
1 L
ﬁ3Ca(nco3)2 1.2670 p = 21.2
Cea(HCos) 0.0000

*pH of a solution containing —0.05mHCl and I/3m

CaCl2

tainty of the virial coefficients of electrolytes increases with the

valences of the counter-ion components.

It is therefore expected that

the virial coefficients of the bicarbonate salts will be more accurate

for M monovalent than for the divalent case.

As expected, the confi-
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TABLE 4.10

pH® VALUES 1IN MgClz-H2C03 SOLUTIONS AT 25°C

PCO, 0.48 0.97 pH* p x 10°
I (m)
0.2 4.022 3.870 1.248
0.4 3.976 3.823 1:.233
0.6 3.938 3.786 1.210
0.8 3.906 3.752 1.182
1.0 3.871 3.722 1.159
1.2 3.849 3.693 1.136 L.72
1.4 3.823 3.667 1.113 1.55
1.6 3.798 3.643 1.089 1.15
1.8 3.775 3.619 1.064 1.30
2.0 3.753 3.596 1.038 1.44
22 3.730 3.573 1.013 1.38
2.4 3.709 3,552 0.988 27
2.6 3.690 3.531 0.965 1.58
2.8 3.670 3.510 0.941 1.69
3.0 3.650 3.491 0.916 1.42

‘30 -0.0461

Mg (HCO3) 2 _
1 = _
B Mg (HCO4) 5 0.9159 P = 1.45
Cug (HCO3) 9 0.0000

*pH of a solution containing —0.05m HC1l and T1/3m
MgCl2
dence degree of the method described in Section 4.4 is low in the case
of M divalent. One concludes that this method is not accurate enough
to estimate the temperature variations of the virial coefficients of

divalent cation bicarbonate salts. It is assumed throughout this
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dissertation that the temperature effects on the values of these

coefficients may be described by equation (3.13).

4.7 Temperature Effects on the MHCO3 Virial Coefficients

The virial coefficients at 25°C of various MHCO3 electrolytes
were experimentally determined in the previous section. These coeffi-
cients were also determined at other temperatures for the case of M
monovalent. Two experimental methods were utilized to estimate the
KHCO3 and NaHCO3 virial coefficients. The first one, and more accurate,
was based on pH measurements of NaCl solutions under alkaline condi-
tions. The second one required pH measurements of NaCl solutions under
acidic conditions. Due to the higher reliability of the first method,
the KHCO3 and NaHCO3 virial coefficients summarized in this section are
those determined under alkaline conditions.

The experimentally determined MHCO3 virial coefficients are
compiled in Table 4.11 (in which the values at 25°C are averaged). It
is assumed in this dissertation that the third virial coefficient, C,
does not change with temperature. The C magnitudes reported in Table
4.11 are the average of the values at various temperatures. It is
also assumed in this work that the value of C for M divalent is equal
to zero.

The variations of the MHCO4 virial coefficients with tempera-
ture have been calculated from the data in Table 4.11 and are included

in this Table. These values have been plotted as a function of their
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TABLE 4.11

SUMMARY OF THE MHCO3 VIRIAL COEFFICIENTS

M 10°¢c (f%%) x 104 259¢ (f%%) x 10% 40°¢
BO
Kkt 0.0336 4.33 0.0401 2.93 0.0445
Nat 0.0073 -2.21 0.0040 I 0.0059
Nﬂéi -0.0011 7.43 0.0250
Ca 0.0886
Mg 2t -0.0461
Bl
Kt -0.1731 26.5 -0.1334 26.1 -0.0943
Nat -0.2559 45.2 -0.1881 26.% -0.1486
NH%+ -0.0336 -57.9 -0.1205
Calt 1.267
Mg2t 0.9159
¢
' -0.00359
Nat -0.00228
NHg+ 0.00022

respective virial coefficients in Figure 4.2.

The best-fit lines in Figure 4.2 were calculated in Chapter 3
from thermodynamic information of 20 1:1 electrolytes. The temperature
variation of the NaHCOq virial coefficients were estimated from the
respective points in Figure 3.3.

These points were obtained from the

literature values of dilution enthalpies of NaHCO3 (Leung and Millero
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(1975)). From Figure 3.3 onc obtained 1.75 x 10-4/9K for the tempera-
ture variation of the first virial coefficient of NaHCOj, ahd
41.5 % 10‘4/°K for the second one. These values were also plotted in
Figure 4.2 as a function of their corresponding virial coefficients.

It is important to remember that AB/AT equals @B/ET when B
is a linear function of temperature. It is assumed in this disserta-
tion that this linearity condition holds over the studied range of
temperature. (The operators A and @ are used interchangeably through-
out this dissertation.)

The following important conclusions are obtained from the

results in Figure 4.2:

a) The experimentally determined values of AB/AT of NaHCO,
solutions are in excellent agreement with those calculated
from the data by Leung and Millero. This agreement con-
firms the validity of the Ion Interaction Model as applied
to MHCO3 solutions.

b) The AB®/AT points for MHCO3 electrolytes are somewhat
lower than the expected values. The reason for this devia-
tion is not well understood. A possible explanation for
this deviation is that no HCO3-Cl interactions were con-
sidered in this work. 1If such like-charge interactions are
included in the models in Sections 4.3 and 4.4, one finds
that as Oc1-pco, decreases, BOMHCO3 increases. Therefore,
the MHCO3 points in Figure 4.2 move toward the right,

closer to the expected values. However, the consideration
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of an extra variable in the models does not increase its
accuracy and complicates the calculations. The HCO3-Cl
interactions are not implicitly considered but they are
absorbed by the value of the first virial coefficient.

c¢) The NHf4HCO3 wvirial coefficients are calculated by means of
the model described in Section 4.4. The reliability of
these coefficients is not very high due to the many assump-
tions involved in the model. The unreliability of the
model is greatly magnified on the calculated AB/AT of
NH4HCO3 electrolytes. For example, the calculated ABl/AT
is not plotted in Figure 4.2 because it falls off the
graph. For the same obvious reason one cannot calculate
the temperature effects on the virial céefficients of
calcium and magnesium bicarbonate, but one may assume that
these salts behave ideally according to equation (3.13).

The average temperature variations of the potassium and sodium

bicarbonate virial coefficients are listed in Table 4.12.

TABLE 4.12

AVERAGE Af3/AT OF MHCO3 ELECTROLYTES

KHCO4 NaHCO4

(AB°/AT) x 10% 3.63 0.27

(ABY/AT) x 104 26.3 37.7
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4.8 Behavior of the Bicarbonate Ton in Mixed Electrolyte Solutions

The objective of this section is to test the validity of the
proposed Ion Interaction Model in mixed electrolyte solutions. This is
done by measuring pH® values of Kt, Nat-HCO3~, C1~ solutions and then
comparing these results with the calculated ones. The experimental
procedures involved in the pH measurements have been previously de-
scribed in Section 4.2.

The measured pH® of two sets of kt, Na+-HC03', Cl~ solutions
at 25°C and under 0.97 PCOp are reported in Table 4.13. The first set
contains a constant concentration of NaHCO3 and a variable concentra-
tion of KCl. 1In the second one the molality of KHCO3 is kept constant
while the molality of NaCl is increased.

The pH®° may be calculated by means of the Ion Interaction
Model, the MBC and ENC of the solution. The virial coefficients used
in these calculations are those presented by Pitzer and Mayorga (1973)
and the MHCO3 virial coefficients determined in this dissertation. The
like-charge interaction coefficients used in the calculation of pH® are
listed by Pitzer and Kim (1974). The parameter D in Table 4.13 (in
thousandths of a pH unit) is computed by ignoring any triplets' inter-
action and subracting the calculated pH® value from the measured one.

One may conclude from the results in Table 4.13 that the Ion
Interaction Model accurately describes the equilibrium conditions of
the studied mixed electrolyte solutions. Further, the assumption that
triplet interactions of the form K-HCO3-Na are nil appears to be cor-

rect over the analyzed ionic strength range. This assumption is prob-
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ably a good one for all types of triplet interactions where bicarbonate

is one of the components.

TABLE 4.13

MEASURED pH® VALUES IN THE SYSTEM
Kkt, Nat-HCO3~, C1-

NaCl = 0.97m KCl = 0.97m

NaHCO3 = 0.1lm KHCO3 = 0.1lm
MC1 o o)
(m) pH D* pH D*
0.0 6.479 0 6.527 0
0.2 6.465 -1 6.502 -2
0.4 6.455 0 6.481 -2
0.6 6.446 0 6.463 =3
0.8 6.440 1 6.446 -4
1.0 6.434 1 6.432 =4
e 6.429 1 6.419 -5
1.4 6.427 3 6.408 -4
1.6 6.424 4 6.398 -4
1.8 6.421 4 6.388 -4
2.0 6.418 4 6.379 -4

PCO, = 0.97, t = 2590

*D = (pHC measured - pH® calculated) x 103

4.9 Comparison of Experimental and Literature Values

Literature information of the activity coefficient of the bicar-
bonate ion is very limited. Perhaps the most reliable work in this area
is the one by Butler and Huston (1970). These researchers have deter-
mined the mean activity coefficient of NaCl in NaHCO3 solutions by means

of sodium ion activity measurements. They claim that for their experi-
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mental results at 25°C "Harned's Rule is obeyed over the ionic strength
from 0.5 to 3.0 with a coefficient of ejp = 0.047 * 0.003." (Harned's
Rule is a simplified form of the Ion Interaction Model.) According to
Harned's Rule only one interaction coefficient,t!lz, is required to
predict the activity of an electrolyte in solution.

Equating the NaCl activity coefficient function proposed by
Butler and Huston and the one determined by the Ion Interaction Model

one obtains the following relationship:

o 1 -2v1
2.303 @13 = B°ac1 - BNancos * (Byac1 - ﬂlNaHCOg) ©

+ 21 (Cyac1 - CnaHCO3) (4.28)

The values of the NaCl and NaHCO3 virial coefficients are
respectively given by Pitzer and Mayorga (1973) and this dissertation.
With these values one is able to calculate the Harned's Rule inter-
action coefficient as a function of the ionic strength of the solution.
According to Butler and Huston's work, the value ofml2 is approxi-
mately constant over the ionic strength range of 0.5 to 3.0m. At
these extreme values the o, calculated by means of equation (4.28) is
0.081 and 0.051 respectively. The latter magnitude is comparable with
the constant 0.047 X 0.003 proposed by Butler and Huston. One observes
that due to the exponential nature of the second term on the right side
of the prior equation, the magnitude of this term rapidly decreases
with the ionic strength. In other words, the values ofc:lz calculated
from equation (4.28) quickly tends to the value computed at I = 3.0 as

ne increases the ionic strength from 0.5 to 3.0m,.
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The similarity between the &), value reported by Butler and
Huston and those calculated in this dissertation is a positive indica-
tion of the effectiveness of both the theoretical model and the experi-
mental results presented in this work.

The effectiveness of the experimental procedures may be also
determined by comparing the pH® measurements in NaCl-NaHCO3 solutions
at 259C presented in this dissertation with those by Garrels et al
(1961). These investigators have measured the pH of 0.1m NaHCO3 solu-
tions with variable concentrations of NaCl and constant 0.97 PCO,.
Table 4.14 contains a partial list of the pH® (i.e., pH + pE) presented
by Garrels et al. The last column in this table gives the interpolated

pH® values from Table 4.5.

TABLE 4.14
COMPARISON OF EXPERIMENTAL
pH® VALUES
1 (m) .pHO a pHO b
0.35 6.59 6:597
0.60 6.54 6.537
0.85 6.50 6.499
1.10 6.47 6.468
1.60 6.42 6.423
2.10 6.40 6.389
3.10 6.33 6.342%

* Extrapolated wvalue

a Garrels et al (1961),
pE = 0.044

b This dissertation
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The agreement between both sets of experimental pH® values in
Table 4.14 is remarkable. The minor discrepancy between values at high
ionic strength is probably caused by alkaline errors in the pH measure-
ments by Garrels et al. Bates (1973) describes the alkaline error as
the lowering of the measured pH due to high concentrations of cations
of the alkaline and alkaline earth series. These errors are minimized
by using a low sodium electrode, such as the Beckman "E-2" glass elec-

trode used in this dissertation.
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Chapter 5

PRACTICAL APPLICATIONS

Sl Objective

The scope of this chapter is to apply the proposed Ion Inter-
action Model to the solution of various chemical and engineering prob-
lems. These problems were partially solved with the aid of the
FORTRAN IV program SOL. This program calculates the osmotic and
activity coefficients of mixed electrolytes in aqueous solutions at
any given temperature. By using the program SOL, one may also estimate
the equilibrium conditions of solutions open to any atmosphere with
known PCOs. The theoretical approach of this program is based on the
Ion Interaction Model and the carbonate system equations described in
Chapters 2, 3 and 4 of this dissertation.

The program SOL may simultaneously handle up to 15 different
ions in solution. These ions include the following common cations and
anions:

a) Cations: H+, Kt, Nat, NH4+, ca?t and Mg2+

b) Anions: OH™, C17, NO3~, HCO3~, HpPO4~, 504%~, CO42-,

HPO, > and PO,3"
The 25°C like-charge and virial coefficients employed in the

program SOL are those reported by Pitzer and Mayorga (1973, 1974), Pitzer
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and Kim (1974), Pitzer and Silvester (1976) and this dissertation. The
effect of triple ion interactions on the equilibrium conditions of
mixed electrolytes is not considered in the program. Temperature
variations of the first and second virial coefficients of 1:1 and 1:2
electrolytes (except NaHCO3 and KHCO3) are assumed to behave ideally
according to equation (3.12) The rates of change with temperature of
the NaHCO3 and KHCO3 virial coefficients are taken from Table 4.12. A
copy of program SOL and its function, block data and subroutines (FG,
DATA, AC, AC2, CB, BB, FG) are presented in Appendix II.
The usage of SOL requires the following input parameters:
a) The partial pressure of COp and temperature of the solution.
(If the system is closed to the atmosphere, PCO, = 0.)
b) The names of the cations and anions in solution.
¢) The molal concentrations of cations (excluding H') and
anions (excluding OH~, HCO3~ and 0032“).
Once the computer calculates the equilibrium conditions of the
solution, the terminal types out the following thermodynamic properties:
a) The pH, osmotic coefficient, and ionic strength of the
solution,
b) The activity of the water in solution,
c) The concentrations and activity coefficients of the
individual ions, and

d) The mean electrolyte activity coefficients.
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B2 The Thermodynamic Solubility Product of Gypsum

The Ion Interaction Model was described in Chapter 2. 1In that
chapter some important assumptions were proposed in order to resolve
the inconsistencies of the Ion Interaction Model when calculating the
thermodynamic properties of 2:2 electrolytes in aqueous solutions. The
accuracy of the Ton Association Model, as proposed in this disserta-
tion, is tested by determining the thermodynamic solubility product of
gypsum (i.e., CaSO4 * 2H70) in seawater and NaCl solutioms.

Marshall and Slusher (1966) present experimental gypsum solu-
bilities in NaCl solutions at various temperatures. Their results at
25°C are presented in Table 5.1. One may obtain the thermodynamic
properties of the solutions in this table by means of the program SOL.
The experimental solubility products, Ksp» of gypsum reported in Table
5.1 are easily computed by inserting the appropriate variables into
equation (2.24). The thermodynamic solubility product of gypsum is
also calculated from experimental measurements of the solubility of
CaSQy * 2H90 in seawater (Briggs and Lilley (1973)).

Considering that there is a two-fold variation in the ionic
strength of the solutioms in Table 5.1 and the multiple components of
seawater, the agreement between the calculated Ksp values is excellent.
A statistical analysis of the calculated Kgp values in this table
yields 2.466 x 102 and 0.068 x 10”2 for the mean and standard devia-
tion respectively.

The thermodynamic solubility product of gypsum at temperatures

other than 25°C were calculated from Marshall and Slusher's data at



93

ionic strengths below 1.0m. Statistical analyses of the calculated

Kgp values yielded the results in Table 5.2.

TABLE 5.1

THERMODYNAMIC SOLUBILITY PRODUCT
OF GYPSUM AT 25°C

a a 5
Ngﬁ} 08$$4 Kgp x 10
0.0000 0.0151 2.499
0.0117 0.0162 2.461
0.0257 0.0175 2.459
0.0513 0.0194 2.442
0.1147 0.0231 2.430
0.1921 0.0266 2.435
0.2319 0.0281 2.435
0.5480 0.0372 2.482
0.6890 0.0388 2.350
0.8340 0.0430 2:527
1.005 0.0457 2.539
1.024 0.0452 2.466
2.024 0.0540 2.478
2.870 0.0560 2.466
4.125 0.0560 2.638

SeawaterSaturatedwithgyPSumb 2.356

IMarshall and Slusher (1966)

bpriggs and Lilley (1973)

The low variation coefficient (i.e., O/Ksp) of the results
in Table 5.2 is a good indicator of the accuracy of the proposed Ion
Association Model as applied to mixed electrolyte solutions at tempera-
tures from freezing point to 60°C.

Further, the K., of gypsum at 25°C, 2.466 x 1072, is in excel-

sp
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lent agreement with other literature values, which vary from 2.45 x 1072

(Moreno and Osborn (1963)) to 2.50 x 10-2 (Nakayama and Rasnik (1967)).

TABLE 5.2

THERMODYNAMIC SOLUBILITY PRODUCT OF
GYPSUM FROM 0.5 TO 60°C

Temp. Mean 5 No. of
e Kgp X 10° o =10 Points
0.5 2.270 0.064 14
5.0 2.374 0.050 7

10.0 2.470 0.055 7

15:0 2.492 0.024 6

20.0 2.475 0.042 6

25.0 2.466 0.068 18

30.0 2.404 0.041 9

40.0 2.290 0.055 8

60.0 1.887 0.096 8

5.3 The Solubility Product of Calcite

In nature the most common carbonate solid phase is calcite
(i.e., CaCO3). This mineral plays a special role in the study of
natural waters' equilibrium. Its dissolution in and precipitation
from an aquatic medium produces important repercussions on the equili-
brium conditions of water solutions. For example, these processes of
dissolution-precipitation of calcite are directly related to the pH
of the solutions and their bicarbonate content (i.e., alkalinity).

In order to understand the chemistry of calcite in water

solutions it is convenient to know its thermodynamic solubility pro-
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duct. Most literature determinations of this thermodynamic constant
arc based on Frear and Johnston's (1929) experimental measurements of
the solubility of calcite in water at 25°C. By using these and other
literature data, Jacobson and Langmuir (1974) attempted to evaluate
the KSp of calcite in water. Their theoretical approach was based on
the Ion Association Model. 1In this approach they considered the exis-
tence of CaHC03+ and CaC03° ion pairs. Interestingly, they found that
when these ion pairs are considered in their computations, the calcu-
lated Kgp at a given temperature is not constant; rather, it decreases
with the ionic strength of the solution. 1In fact, their results were
closer to a constant value when they ignored the presence of ion pairs.
The Kgp values, as calculated by assuming ion association, are presen-
ted in the third column of Table 5.3.

In this dissertation, the thermodynamic solubility product of
calcite is calculated according to the Ion Interaction Model. For
Frear and Johnston's data, the computer program SOL yields the Kgp
values listed in the fourth column of Table 5.3. This program utilizes
Ca(HCO5), virial coefficients, which are experimentally evaluated in
this dissertation.

It is observed from Table 5.3 that the standard deviation of
the calculated Kgp values is significantly lower for the results of
the Ion Interaction Model than for those of the Ion Association Model.
One may conclude that for the particular set of experimental data,

the former model is superior over the latter.



96

TABLE 5.3

THE THERMODYNAMIC SOLUBILITY PRODUCT
OF CALCITE AT 25°c?@

b 3b o d

PCO Ca x 10 K K
(atm)2 (m) Fe s
0.00031 0.52 3.89 4.07
0.00038 0.56 3.98 4.13
0.00093 0.76 3.98 b4.12
0.00334 Q.17 3.80 3.95
0.00690 1:51 3.80 3.93
0.01600 2.01 3.63 3.78
0.04320 2.87 3:55 3.7
0.11160 4.03 3439 3.65
0.96840 8.91 3.09 347
Mean 3.68 3.87
o 0.30 0.23

aValues of Kgp X 109
bFrear and Johnston (1929)

CJacobson and Langmuir (1974), con-
sidering ion association

dThis dissertation

5.4 Heat Exchanger Problem

Statement: A "once-through'" nuclear power plant utilizes water
from a nearby lake for cooling purposes. The annual average tempera-
ture of the lake, t, is 15°C. The lake water is pumped through the
heat exchanger of the power plant, and its temperature is increased by

At °C. Determine the maximum theoretical At allowable in the heat



97

exchanger before precipitation of calcite or gypsum occurs. Assume
that the lake water is in equilibrium with the atmosphere (PCO, =
0.00035). The molal concentrations of the main components in solution
are: [Nat] = 0.1520, [ca?t] = 0.00085, [c1-] = 0.0295 and [s0,%"] =
0.0620.

Solution: Assuming no ion association, Jacobson and Langmuir
(1974) have proposed the following temperature function for the thermo-

dynamic solubility product of calcite Kgp:

log kS, = 13.870 - (3059/T) - 0.04035 T {5.1)
sp

The ion product of a salt, Kip: is defined as the activity
product of the individual components of the salt. This thermodynamic
variable equals Kgp under saturated conditions. The ion products of
calcite, Kgp, and gypsum, Kgp, for the lake water are calculated at
various temperatures by means of the program SOL and are presented in
Table 5.4. This table also includes the Kgp values as calculated from
equation (5.1) and the thermodynamic solubility product of gypsum, Kgp,
which was evaluated in Section 5.2.

The solubility ratios of calcite, SC, and gypsum, SG, in Table
5.4 are calculated by dividing their respective Kj, by Kg,. One
notices from the values of SC that the lake water quickly saturates
with respect to calcite as the temperature increases. The solution
becomes saturated with calcite at approximately 399C. Therefore,

At = 39 - 15 = 24°C.

One observes from Table 5.4 that sG is less than 1.0 over the
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range of temperatures from 25 to 609C., Therefore, the solubility of

gypsum is not a dominant parameter in the design of the heat exchanger.

TABLE 5.4

SOLUBILITY PROPERTIES OF CALCITE AND GYPSUM
IN A LAKE WATER

eoc Kspx109 kS, x10° K§,x105 K§,x105 s¢ sC

25.0 2.09 3.80 2.09 2.47 0.55 0.85

30.0 237 3.41 1.99 2.40 0.70 0.83

40.0 2:97 2.90 1:83 2.29 1:.02 0.80

60.0 4.09 146 151 1.89 2:.32 0.80
5.¢5 Reverse Osmosis Problem

Statement: A reverse osmosis process is to be utilized to
desalinate seawater. The desired salt rejection through the process
is 99 per cent. At the operation condition of 102 Atm. and 25°C, the
membrane constant, ()}, equals 0.75 x 10~3 g/(cm2-atm-sec). Calculate
the energy consumption per unit volume of product and the water flux
through the membrane.

Solution: According to Garrels and Thompson's seawater model
(1962) the main components of ocean waters and their respective molal
concentrations are: Na' = 0.4752, Kt = 0.0100, Ca2+ = 0.0104, Mg2t =
0.0540, C1™ = 0.5543, HCO3™ = 0.00238 and SO42~ = 0.0284.

Let us assume that the membrane's salt rejection properties are

equal for all the above ions. Therefore, for the desired efficiency,



99

the ionic concentrations in the product water are reduced by a factor
of 0.01 from those in seawater.
Riley et al (1971) propose the following equation for the

water flux, J, across an osmotic membrane:
J = Qg +II; -~ (Po +ITL)} (5:2)

where Pg and P, represent the pressures on the seawater and product
water sides, and
Il and [I) represent the osmotic pressures of seawater and
product water.
According to equations (2.6) and (2.7) the osmotic pressure of

a solution is related to the activity coefficient of water as follows:
- RT
IT=- . In a; (5:3)

Without much loss of accuracy in the equation, one may assume
that v; equals 18.0 cc/mol. Then, RT/vy = 1359.23 Atm. One may easily
obtain the activities of water in both seawater and product water by
means of the computer program SOL. The input data for this program
are the PCO2 over the solution, which is assumed to be atmospheric,
the solution temperature and the molal concentration of the dissolved
species. The values of a; as calculated by SOL are presented in Table
5.5. The corresponding osmotic pressures are also included in this
table.

Assuming that the pressure on the product side is atmospheric,

one may calculate the water flux from equation (5.2):
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J =0.75 x 1072 (102 + 0.27 - 25.17)
= 5.78 x 107% g/cm2-sec
= 500 1/m?-day
The power consumption per unit of products, therefore, is as
follows:
W = 102 atm x 0.0199 kw/m3-day-atm

W = 2.03 kw/m3-day

TABLE 5.5

OSMOTIC PROPERTIES OF SEAWATER
AND PRODUCT WATER

Water aj 17(atm)

Seawater 0.98165 25.17
Product 0.99980 0727
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Chapter 6

CONCLUSIONS

The purpose of this chapter is to summarize the most important

conclusions of this dissertation, as follows:

a)

b)

The main objection to the use of the Ion Interaction Model
in aquatic chemistry is the execution of lengthy mathe-
matical manipulations, but the accuracy of the model more
than compensates this objection. 1In single electrolyte
solutions the calculations involved in the Ion Interaction
Model are probably more complex than those required by the
Ion Association Model. However, the opposite condition is
usually the case in mixed electrolyte solutions, where
cumbersome approximations are necessary to satisfy both
the ENC and MBC constraints in the Ion Association Model.
The superiority of the Ion Interaction Model is also re-
vealed by its reliability in predicting the activity and
osmotic coefficients of mixed electrolytes over a wide
range of ionic strengths

An empirical modification of the thermodynamic model at
25°C by Pitzer and Mayorga (1974) is proposed in this
dissertation. This modification permits one to calculate
the activity coefficients of an incompletely dissociated
electrolyte in mixed electrolyte solutions. The accuracy

of the proposed modification is tested by the computation
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e)
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of the thermodynamic solubility product of gypsum in a
variety of mixed electrolyte solutions.

The Ion Interaction Model proposed in this work may be used
to predict accurately the activity coefficient of any
individual ion in mixed electrolyte solutions at tempera-
tures ranging from 0° to 400C. Thermal effects on both
electrostatic and short-range interactions are studied in
this dissertation. Two simple temperature functions are
required to calculate the thermal effects on the Debye-
Hiickel functions (i.e., electrostatic interactions). The
dependence of a determinate virial coefficient (i.e.,
short-range interaction) on temperature is found to follow
approximately a linear function of the magnitude of the
virial coefficient and the solution temperature.

The virial coefficients at 25°C of MHCO3 electrolytes
(where M = K, Nat, NH4t, ca?t or Mg2t) were experimen-
tally determined from pH measurements of MC1-MHCO3 and/or
MC1-HpCO03 solutions. An excellent agreement was found
between the MHCO3 virial coefficients calculated from the
results of both experimental techniques.

The virial coefficients of KHCO3 and NaHCO3 at 100, 25°
and 40°C were determined from pH measurements of NaCl
solutions under alkaline conditions. The calculated tem-
perature variations of the KHCO3 and NaHCO3 were found in

good agreement with those determined experimentally. This
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agreement led to the conclusion that the temperature
variations of NH4HCO3, Ca(HCO3)2 and Mg(HCO3)2 behave
ideally according to the equations proposed for the tem-

perature variations of 1:1 and 1:2 virial coefficients.
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Appendix I

VIRIAL COEFFICIENTS DEPENDENCE ON TEMPERATURE

The temperature effects on the thermodynamic properties of
aqueous solutions were studied in Chapter 3. It was found in this
chapter that both the electrostatic and the short-range interaction
functions are temperature dependent. The temperature effects on the
former type of interactions is reflected only on the value of the
Debye-Hiickel coefficient. Therefore, at a given ionic strength, the
electrostatic interactions depend only on the solution temperature and
are independent of the nature of the electrolytes in solution. On the
other hand, the wvirial coefficients, which describe the short-range
interactions, are a function of both temperature and the nature of the
electrolyte. The purpose of this appendix is to present the Y and X
parameters for various 1:1 and 1:2 electrolytes. For a specific elec-
trolyte, the temperature variation of its first virial coefficient is
the intercept of the linear function of Y against X. The slope of
such function represents the temperature variation of the second

virial coefficient.
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TABLE A.la

NaCl
16.4
13.9
13.0
12
12.0
10.7
10.4
0.4 10.0

LiBr
6.8
4.6
3.4
2
251
0.9
0.7

Licl
1.2
0.5
0.3
0.1

HC1
-1.2
-1.4
=1.5
~1.7
-1.8
-1.9
-2.8
-3.1

o~ 0
M~ 0

~ O
- O

-2:2
-2.4

Y VALUES@ OF SOME 1:1 ELECTROLYTE SOLUTIONSP

X
0.356
0.334

0.5 0.413

.6 0.382
0.9 0.314
1.0 0.297
2.0 0,193
2.5 0,165

I (m)

0.086
0.078

n O

-2.5 -2.8 6.0 5.3 4.0 1.3 Biaid
9,5 12.0 1.5 18.0 11.0 8.0 18.5 20.0

0
5

-4
4
ay values x 10% calculated from ¢ at 25°C

byarned and Owen (1958)
Cyalues x 10%

(48°/4T)C
(aBl/aT)¢
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TABLE A.1lb
Y VALUESa OF SOME 1:1 ELECTROLYTE SOLUTIONSb
I(m) X RbF CsF CsBr KI RbI Csl
0.1 0.664 | 8.7 8.9 31.0 23.7 29.2 37.5
0.2 0.564 | 7.0 7.1 26.9 20.8 25.1 32.5
0.3 0.499 | 6.2 6.2 24.3 19.3 22.3 29.4
0.4 0.451 | 5.7 5.5 22.3 18.3 21.4 27.3
0.5 0.413] 5.3 5.1 20.8 17.5 20.2 25.7
0.6 0.382 | 4.9 4.7 19.7 16.8 19.3 24.5
0.7 0.356 | 4.7 4.4 18.8 16.3 18.5 23.5
0.8 0.334 | 4.4 4.2 18.2 15.8 17.8 22.8
0.9 0.314 | 4.2 4.0 16.8 15.4 17.0 22.2
1.0 0.297 | 4.0 3.8 17.6 15.0 16.3 21.8
(aB8°/aT)C¢ 0.8 =0.2 7.5 8.8 7.0 13.8
(aBl/amc |11.0 12.5 31.5 21.0 22.0 28.0

a8y yalues x 104

259¢
b

by Fortier and Desnoyers (1976)

calculated from ¢y

calculated from empirical equations

Cvalues x 104
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TABLE A.2

1:1 Electrolytes

I (m) X RbC1 csCl NaF Nal NaHCO03
0.2 0.230 9.3 10.6 5:2 9.9 10.8
03 0. 211 8.9 10.2 5.0 9.7 10.4
0.4 0.194 8.7 9.8 4.9 9.5 9.9
0.5 0.181 8.3 9.5 4.7 9.3 9.6
0.6 0.169 8.2 9.2 4.6 9.2 9.3
0.7 0.159 7.9 9.0 4.5 9.0 8.7
0.8 0.151 7.7 8.8 bob 8.9 8.4
0.9 0.142 7.6 8.6 4.2 8.7 7.0
AB°/AT) x 104 5.0 5.0 2.8 7.3 1.8
(ABL/AT) x 104 18.5 26.0 11.0 12.0 4.15
1:2 Electrolytes
I(m) X caCl, srCl, BaClg NayCO3
0.6 0.084 4.3 6.6 7.9 -0.6
0.9 0.070 3.6 5.7 73 -1.7
1.2 0.060 3.1 5.1 6.9 -2.4
1.5 0.053 2.8 4.7 6.5 -2.7
1.8 0.047 2.8 4.2 6.1 -2.8
| 0.042 2.0 3.6 5.8 -2.6
2.4 0.038 1.8 2.8 5.5 -2.8
2.7 0.034 X 21 2.6 -1.6
(A8°/AT) x 10% 0.0 1.0 5.0 Bl
4BL/AT) x 104 54.0 62.0 70.0 0.0

* Calculated from A¢i values at 30°C by Leung and Millero

(1975)
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TABLE A.3b

Y VALUES? OF SOME 1:2 ELECTROLYTE SOLUTIONS

1 X Gattll,P znI,P ZnCl,
(m)
0.1 0.597 37.4 18.3 19.3
0.2 0.486 20.8 17.5 1.1
0.3 0.417 21.5 15.5 -4.0
0.4 0.367 20.3 12.7 «7.0
0.5 0.328 18.7 10.9 -10.1
0.6 0.297 17.4 9.3 w3
0.7 0.272 16.1 8.2 -14.8
0.8 0.250 14.9 73 -22 &
0.9 0.232 13.9 6.1 -26.0
1.0 0.216 12.8 5.3 -27.8
1.2 0.190 11.1 3.8 -30.8
1.5 0.160 9.0 2.0 -34.2
2.0 0.126 6.9 -1.3 =32.8
2.5 0.104 5.7 -4 .4 -3,
3.0 0.087 4.8 -29.6
4.0 0.066 3.2
5.0 0.053 2.4

(4B°/AT) x 10% 0.0 -6.0 -35.0d
(aBL/aT) x 104 54.0 62.0 76.0

ay values x 10% calculated from I values

blewis and Randall (1961)

CHarned and Owen (1958)

dyot plotted or used in least-square analysis
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TABLE A.3c

Y VALUES? OF SOME 1:2 ELECTROLYTE SOLUTIONSP

j X CaClz SrClz BaC12 NapCO3
(m)
0.6 0.084 4.3 6.6 7.9 -0.6
0.9 0.070 3.6 5.7 - 1.7
1.2 0.060 3.1 5.1 6.9 R
1.5 0.053 2.8 4.7 6.5 ~2,7
1.8 0.047 2.8 4.2 6.1 -2.8
5. 0.042 2.0 3.6 5.8 -2.6
2.4 0.038 1.8 2.8 5.5 ~2.8
2.7 0.034 2.2 2.1 2.6 w15
(4B°/AT) x 10% 0.0 1.0 3.0 =2
@aBl/aT) x 104 54.0 62.0 70.0 0.0

ay values x 10% calculated from 4éy,

bieung and Millero (1975)
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TABLE A.3d

Y VALUES@ OF SOME 1:2 ELECTROLYTE SOLUTIONSP

I Xy MgCly NayS0y
(m)
0.3 0.499 26.8
0.4 0.451 22.4
0.6 0.382 18.3
0.8 0.334 14.9
1.0 0.297 12.8
1.2 0.268 11.0
1.5 0.234 9.1 30.2
2.0 0.193 6.8 27.3
2.5 0.165 4.7 25.2
3.4 0.143 3.0 23.5
4.0 0.114 I 18.8
5.0 0.094 0.6 18.8
(4B°/AT) x 10% -5.0 10.0
(aBl/aT) x 104 60.0 90.0

ay values x 10% calculated from ¢i

bsnipes et al (1975)
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TABLE A.4

Y/X, VALUES? OF SOME 2:2 ELECTROLYTE SOLUTIONSP

RE X2/X1 MgSO4 CaSOh ZnSOa CdSO4 CuSO4

(m)
0.0256 0.2749 -485 -700 -663 -1305 -1004
0.0400 0.2084 -301 -456 -390 -935 -684
0.0900 0.1145 -84 c -109 -440 -306
0.1600 0.0717 19 c -10 -229 -152
0.2500 0.0504 80 c 35 =126 -68
0.3600 0.0385 64 -70 -18
(aBl/aT) x 10% 210 1434 80 130 125
(882/aT) x 10% -2475 -2840d -2800 -5150 -3925

ay/X1 values x 10% calculated from L at 25°C
PHarned and Owen (1958)
CSaturated with respect to gypsum

dcalculated assuming intercept
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TABLE A.5

Y VALUES2 OF SOME 2:2 ELECTROLYTE SOLUTIONSP

I Xy Xy MgS0,° Mgs0,4
(m)

0.4 0.567 0.0346 37.7 123.3
1.5 0.348 0.0093 A 67.5
2.0 0.300 0.0069 31.8 49.0
4.0 0.1962 0.0035 25.8 34.4
5.0 0.1672 0.0028 23.5 30.4
(48°/AT) x 10% 6.0
(aBl/aT) x 104 272.0

ay values x 10%4 calculated from ¢,
bsnipes et al (1975)
CUncorrected for association virial coefficient

dcorrected for association virial coefficient
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Appendix II

FORTRAN IV COMPUTER PROGRAMS

Three sets of independent computer programs are presented in
this appendix. The first set is the group of programs required to run
the program SOL. The input-output parameters of this program are
described in Section 5.1.

The other two sets of programs, MHCO3 and MX, are used to cal-
culate the MHCO3 virial coefficients. These programs are based on pH
measurements of MHCO3-MCl solutions and H5C03-MCl solutions respec-
tively. Both require the subroutines AMR, CB and FG. Their input
parameters are: a) the solution temperature and PCO,, and b) the ionic

strength of the solutions and their respective pH values.
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MAIN PROGRAM SQOL

REAL I,NCH,IP,NCH2,KW
DIMENSION ACA(6), AAN( Y, NA2(
f CCA(6),CAN(Q),R(9,6),FP(Q,6
2 F(9,6),BMX(H 0,6

COMMON /IN/ZC(6).2
= BBR(4,0,6),TA(9,
NC=C

\.-‘

y 3
,ZA(9),
9,93 TC(6,6), TICE2,6),PT8(2,6)

€ AAN(J

o on o

62 ACA

26 NC=

IP=0

CALL READ(IC,IA,NCAT,NAN,CCA,CAN,PCO2,NS,NC,NT,T)

TK=27=.015+T

CKH=NO.%% (-1, UA7+2200,6/TK+0.CAU22%TK)

CKN=AC.%% (AL, 8U=5-=404,.70/TK-C.0=279%TK)

CK2=00.%%(6.498-2902.0/TK-0.02=79%TK)
KW=10.%%(€.C875-4470.99/TK-C.CNT706#%TK}
T=(T-25.)/0.Ed

DO 74 J=,NAN

DO 74 K=n,NCAT
IF(ZA(JA(J)).EQ.n..AND.ZC(IC(K)).EQ.®.)GO TO 70
JF(zn(gA(J)).EO.?..AND.ZC(IC(K)).EQ.?.)Go TO 72
A =010.&Q

BAz-42.17
B2z-77.757

GO TO 7=
70 AN=9.7979
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Bi=<70,01

A2=29.854C
B2==60.015%
JF(JA(J).NF.L4)GO TO
Al=n.C7

B =0

Aee3, 2757y
BR2=-nT7#, 8%

GO TO 7=

T2 A2=z=2=7.

B2=04.5

AZ==RT20,=

BZ=19,76

An=0

Bia=C

Tz EMX(H,IA(J),IC(K)):BBB(“,IA(J),IC(K)3+(Aﬂ+Bﬂ“BBB(ﬂ,IA(J),

f JC(K)))*DT
BMX(2,JA(J),IC(K))=BBR(2,JA(J)},IC(K))+(A2+B2%RBB(2,JIA(J),
f IC(K)))*DT

BMX(=,JA(J),IC(K))=BBB(=,JA(J),IC(K))

b |
)

IF(ZA(IA(J)).EQ.2..AND.ZC(IC(K)).EQ.2.)BMX(=,IA(J),IC(K))=

f BBR(=,JA(J), IC(K))+(A “+R=#BBR(Z,JA(J),IC(K)))¥*DT
74 BMX(4,IA(J),IC(K))=BRB(4,IA(J),IC(K))

DO €5 J=0, =
65 CAN(IA(J))=0C

CCA(IC(n))=C

DO f J=i,NAN

SM=SM+CAN(IA(J))

JF(ZA(IA(J)).EQ.R.)GC TC 4

LA=LA+1

NA2(LA)=TA(J)
NCH=NCH+CAN(JA(J))
NCH2=NCH2+CAN (JA(J'
DO 2 J=f,NCAT
SM=SM+CCA(IC(J))
IF(2C(IC(J)).EQ.n.)GO TO =
LC=LC+1
NC2(LC)=IC(J)
PCH=PCH+CCA(JC(J))*ZC(IC(J))
PCH2=PCH2+CCA(IC(J))*ZC(IC(J))*%2,
D=NCH-PCH
I=C.5%(NCH2+PCH2)
IF(PCO2.EQ.C.)GO TO S0
ACA(f1)=C.5%(D+(D*D+4 . #*PCO2*CKH¥CKn )*#%(0.5)
CCA(N)=ACA(R)/(2.TNE%%FG(I,T))
5 PCH=0

SM=0

NCH=0

= =

®ZA(IA(J))
YIRZA(TA(J) ) %2,

ASHLE
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NCH2=C
PCH2=C
DO 6 J=f,NAN
SM=SM+CAN(JA(J))
NCH=NCH+CAN (TA (J
6 NCH2=NCH2+CAN(IA
DO 7 J=f,NCAT
SM=SM4+CCA(IC(J))
PCH=PCH+CCA(IC(J))®*ZC(IC(J)})
PCHZ2=PCH2+CCA(IC(J))*ZC(IC(J) ) %2,
T=C.5%(NCH2+PCHZ)
IF(PHI.EQ.C.) AH20=1f.-.0nE*SM
AAN(n Y=KW/ACA(R)
H=ACA (1)
H2CO==PCO2%CKH#*AH20
AAN(L)=H2CO=%CKn/H
AAN(T7)=AAN(UL)®CK2/H
IF(DL.LE.C.COCR) GO TO 15
IF(DL.GE.ABS((IP-I)/1) )GO TO 15
nc Ip=1
5C DC An J=n,NAN
AN GX(IA(J))=2.7NE&X% (FG(I,T)*ZA(TA(J))*®%2, )
DC f2 J=1,NCAT
M2 GM(IC(J)‘:? TRE*® (FG(I,T)*ZC(IC(J) )%%2,
NS CAN(A)=AAN(R)/GX(n)
CAN(U4)Y=AAN(L)/GX (L)
CAN(T7)=AAN(T)/GX(7)
CCA(N)=ACA(Nn)/GM(nR)
DO 46 J=0,NAN
N6 AAN(IA(J))=CAN(JA(J))*GX(IA(J))
DO A7 J=d,NCAT
n7 AFA(IC(J);-CCA(IC(J))'GM(IC(J))
JF(PCO2.FQ.0. )GC TO 51
E=CCA(n)-(CAN(Rn)+CAN(Y4)+D+2.%CAN(7))
CHCO==CAN(U4)
CAN(LU)=CHCO=%(n.+E/(CHCO=4CCA(N)}+2.%CAN(T)))
ACA(A)=CKA®HE2CO=/(CAN(L)*GX (L))
IF (ABS ((CHCO==CAN(4))/CHCO=).GE.0.000) GO TO &
IF(DL.EQ.0.CCON)GO TO 20C
DL=0.000¢"
&1 CALL AC(I,ZC,ZA,IC,IA,NCAT,NAN,NC2,NA2,CAN,CCA,B,
i1 RP,AM,AX BMX GM Gx BBn LC, TA TC PCP LA LC,R)
ST=1%%0.5
FF=FG(I,-n.)
DO 44 K=n,NCAT
DO 44 J=n,6NAN
IF(ZA(IA(J)) EQ.A..OR.ZC(IC(K)).EQ.n,)GO TO 4u:
B(JA(J),IC(K))= BMX(n JA(J),IC(K))+(BMX(2, IA(J),IC(K))*

Y)*ZA(IA(J))
(J))*ZA(TA(J) ) %2,

=1
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N 2. 7RE=8%(_n U¥ST))+BMX(Z,JA(J),IC(K))*2. . TnE=*+
2 (~-N2.%R(IA(J),IC(K))*%0.5)
GO TO Ly
= B(IA(J),TC(K))=BMX(n,IA(J),TC(K))+BMX(2,TA(J),IC(K))*
i 2.7N8=%n(_p #37)
by B(IA(J),IC(K))=B(IA(J),IC(K))+2.*PCH*BMX(Y4,IA(J),IC(K))
DO 42 K=n,NCAT
DO 42 J=R,NAN
U2 PHI=PHI+CCA(IC(K))*CAN(IA(J))*R(IA(J),IC(K)}
PHI=((FF+2.%PHI+AM+AX )/SM)+1.
AH20=2.TAR=%% (- ONBO2*PHI*SM)
20 CAN(UL)=AAN(L)/GX (L)
IF(PCO2.NE.O. )GO TO 52
PH=T7.
E=D
GO TO 5%
IF(DL.LE.ARS((CHCO==CAN(L))/CHCO=)) GO TO 5
PH=-ALOGAO(ACA(R)})
- TYPE 27, PH,I,AH20,PHI,E
GK=CCA(S)*CAN(6)*¥AH20%AH20%BB/ (6,5 )*BBA(6,5)
TYPE dCn,GK,BBA(6,5),GM(5),GX(6)
GC=CCA(S)%CAN(7)*BBA(T,5)*BBA(7,5)
TYPE ACA,GC,GM(5),GX(7),GX(4)
100 FORMAT(5GA=.5)
IF(NT.EC.C)GO TO 28
TYPE ==
DO 29 K=1,NCAT
ACA(IC(K))=CCA(IC(K))*GM(IC(K))
TYPE =4,(TIC(L,JC(K)),L=1,2),CCA(IC(K)),GM(IC(K))},ACA(IC(K))
DO =C J=1,NAN
AAN(JA(J))=CAN(IA(J))*GX(IA(J))
TYPE =4, (TIA(L,IA(J)),L=1,2),CAN(IA(J)),GX(IA(J)),AAN(IA(J))
TYPE =% ,((TIC(L,JC(K)),L=0,2),K=0,NCAT)
DO =n J=f,NAN
TYPE =4, (TIA(L,IA(J)),L=n,2),(BEA(IA(J),IC(K)),K=0,NCAT)
FORMAT(/,5X, *ION',8X, 'CONC. ', 8%, *A.C."', 8%, 'ACT. ")
FORMAT (2A5,2X,5GN=.5)
FORMAT(/,* MEAN A C',nC(2A5, X))
FORMAT(5X, *PH',anX,'I*, n0X, *(H20)',9X, 'C.C.'A2¥,
n 'E',/,6GRA=.5)
28 JF(NC.LT.NS) GO TO 26
STOP
END

n
N

5]
1y

Ny
e

L
O

-JN i

N Eas tatfadt )
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SUBROUTINF CB(A,W,X,Y)

P-AXWX%(Q. 5

X=2.%(N.=(N.+P)¥2 TNERK_P)/PH&D,
Y=2.%(=N.4(N.+P+0.SXPX%D_)/D TAENRP )/ (AXW)¥¥D
RETURN

END
BLOCK DATA
REAL KW

DIMENSION ZC(6),ZA(Q),BMX(4,0,6),TA(9,0),TC(6,6),
TIC(2,6),TIA(2,9

COMMON /IN/ZC,ZA,EMX,TA,TC,TIC,TIA

DATA zc1n.,,.,n. 0., 2., 2./ TR0 0 0.0,
B P o B S (((BMX(M LK) K=f 63,1
=1.9).M=f,L4}/C.,.C86L, 208, =20, . 0775,.0765,

.CLez%, .0%22,.3159,.352%, .AnA0, . 006, . CENE,

-.CA54, . 2A0&,.=670,0.,.004,.0400,~.C0NN, . CEEG,
~.0464.0.,-.05%%,~.C678, 4%0,,.0N05E, . 05,.0L400,.2,
.220,4%C. . 0.00,2%0., .08, .0247 L4%C., . A7EN,.%729,%%C.,C.,
.28z, .22, 340, .20U5, 266U, 2022, 0008, 0.60L,
n.6&n,.=206,.0178=,.Cu0k _Ad2,n.809,n.584,0.,-.0&EN2,
-.Mzzh 2,.0=%6,01.267,.9159,0.,.0296,-.00L42,4%C,,
n.An=,.779%,.6585,2.65,=. 24,740, ,1 466,010,274,

yxc, =, &51,%.072,%0.,22%C.,C.0,AN*C, ,-55,7,-27.23,18%C,,C.,
.002?,.00205,3-0.,.ooou,.coceu -.00CL2,-.CON505,
~.00CA2,.CCA&%,.005,-.CC0C26,.C0%%,~.0CC02,-.0CTN2,

-.00729.0.,-.00%59,-.0040%, .00022,0.,0.,
0.,.CCZ0F E%C. .0C202,C.,~.000Ln,0.,.00625,7%0.,
.CACY,.CO58, L%0,, -, 0NUET, ~.C2506, 2%0./,
TA/C..-.05,7%C.,~.05,C.,.CN6,2%0.,-.02.4%0.,.006,
26%C.,-.02,=U%C./,
TC/0.,.0%6,.C05,~-.006,2%0.
.C05,-.012,2%C.,~.04,0.,~.
y%Q.,.01,C./,TIC/ACH

,.0%6,C.,-.0012,3%0.,
0n6,7%C.,=-.04,2%C,., .00,
H

’

10H NA ,fCH K .
10H NH ,NCH CA ,
f10H MG /,TIA/

1CH OH , NCH cL y
1 0H NO: ,AOH HCOz .
A OH H2POL , N OH Sou ,
fCH co: ,ACH HPOY y
fCH POl /

END



120

SUBROUTINE READ(IC,IA,NCAT,NAN,CCA,CAN,PCO2,NS,NC,NT,T)
DIMENSION IC(6),IA(9),CCA(6),CAN(Q)

IF(NC.GT.®)GO TO ©

PCO2=t.

TYPE 25

25 FORMAT(///,' COMPLETE INFORMATION? (YES=#, NO=C)',
fl /’I '|)

ACCEPT 2, NT
TYPE #

1 FORMAT(' NO. OF SOLS. W/ COMMON JONS',/,2X,'%%1)

ACCEPT 2,NS

2 FORMAT(nX,dCI2)

IYPE =

= FORMAT(' ENTER CATIONS',/,' NA=2 K== NHY4=4 CA=5 MG=6"',

fl

/,2X,5(" ¥1))
ACCEPT 2,(IC(L),L=2,6)

TYPE 4
L FORMAT(®' ENTFR ANIONS',/,' CL=2 NC=== H2PO4=5',
' SQU=6 HPOLU=8 POL=Q',/,2X,6(* %))
ACCFPT 2,(IA(L),L=k,9)
DO 5 I=d,6
5 IF(JC(I).EQ.C) GO TO 6
6 NCAT=T-1
DO 7 I=6;9
7 IF(JA(I).EQ.0) GO TO &
& NAN=I-1
0 JF(PCO2.EQ.C.)GC TO 20
TYPE n=
nE FORMAT(! PCO2 T|,/’| EREREEES ﬁ'**.’*.*")
ACCEPT a4, PCO2,T
f4 FORMAT(NEQ.=,nF9.3%)
20 TYPE n5
15 FORMAT(' MOLAL CONCENTRATIONS CF CATIONS',/,

f

g( ¥ _keuw¥))
ACCEPT a7, (CCA(IC(I)),I=2,6)

17 FORMAT(ROFAC.5)

TYPE n€

n& FORMAT(* MOLAL CONCENTRATIONS OF ANIONS',/,
1 6(" ¥ KaEEEL))

ACCEPT n7,(CAN(IA(T)),I=4,0)
RETURN
END
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SUBROUTINE AC(I,ZC,ZA,IC,IA,NCAT,NAN,IC2,IA2,CAN,CCA,
7" B,BRP,CH,CP,BMX,GM,GX,RB#,J2,TA,TC,PCH,LA,LC,R)

REAL I

DIMENSION GCA(6),GAN(9Q), BBH(,,é),BB?('
M P(z,9),0(z2), GX(9) GM(6) ZC(6),ZA(9)},7T
2 ICc2(6), IA2(9‘ CAN(O) E(9 6),BP(9,6),R
: TA(9,9),TC(6,6),DEP(9,6) R(2,6)

CALL CB(2.,1,Cd,CP)

CALL BR(IA,IC,R,RP,CH,CP,NAN,NCAT,BMX)
IF(J2.EQ0.C) GO TO U

CALL CB (f.4,I,Cn,CP)

CALL BB(IAZ2,IC2,B,BP,CH,CP,LA,LC,EMX)
DO 5 L=#, =

3(—)'
< ~10
~ N
v

AL= L
BRE2(L,JA(J),IC(K))
. +BMX(4,IA(J),IC(K
CONTINUE

DO 7 L=n,:=

DO 7 J=f,NAN

DO 6 K=i,NCAT

P(L, IA(J‘) P(L,JA(
O(L] Q{L }2P(L. IA (J
Cn=0

CP=C

DO © J=f,NAN

TAA=C

DO & K=n,NCAT
PBA(IA(J),IC(K))=B(IA(J),IC(K))+PCH*BMX (4, IA(J),IC(K))
DO 9C L=#,NAN
CP=CAN(JIA(J)})®*CAN(JA(L})*TA(IA(J),IA(L))+CP
TAA=TAA+TA(IA(J),JA(L)}*CAN(IA(L))

KZ(J)=ZA(JA(J))

GAN(JA(J))=Q(KZ(J))}+2.%TAA

DO #0 K=0,NCAT

TCLC=0

DO on L=n,NCAT
CA=CCA(IC(K))}®CCA(IC(L))®TC(IC(K),IC(L})+Cn
TCC=TCC+TC(IC(K),IC(L))*CCA(IC(L)?}

KZ(K)=ZC(JIC(K)}

GCA(IC(K))=0(KZ(K))+2.*TCC

DO n2 J=f,NAN

RC=C

DO nn K= ,NCAT

BC=2.%RPA(JA(J),IC(K))*CCA(IC(K))+RC

RP (IA(J) JC(K))®AL*AL
Y 1
J

s 1

J))+BR2(L,JA(J),IC(K))*CCA(IC(K))
}I¥CAN(TA(J))
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GAN(JA(J))=2.708%%x (GAN(IA(J))+RC)
M2 GX(IA(J))=GX(IA(J))®GAN(TA(J))
DO ns K=n,NCAT
BC=C
DO A4 J=n,NAN
Y BC=2.¥BBH(IA(J),IC(K))*CAN(IA(J))+EC
GCA(IC(K)):2."ﬂ9'*(GCA(IC(K))+BC)
5 GM(IC(K))=GM(IC(K))¥GCA(IC(K))
DR=C.

DO 28 J=f,NAN
DO 28 K=zd,NCAT
IF(ZA(TA(J)).EQ.7..OR.2C(IC(K)).EQ.%.)GO TO 28

24 IF(CAN(IA(J)).EQ.C..OR.CCA(IC(K)).EQ.C.)GC TO 28
25 CALL AC2(JA(J),IC(K),CAN,CCA,ZA,ZC,BMX(=,IA(J),IC(K)),

n GX,GM,R(TA(J),IC(K)})
2& CONTINUE

DC A= K=f,NCAT

DO A= J=f,NAN

Nz BERA(TA(JI),IC(K))=({(GM(IC(K))**¥ZA(TA(J)))*
N (GX(IA(J))**ZC(IC(K)) ) **(n./(ZC(IC(K))+ZA(IA(J))))
RETURN
END

SUBROUTINE AC2(J,K,CAN,CCA,ZA,Z2C,B,GX,GM,R)
DIMENSION CCA(6),CAN(Q),GM(6),GX(©),ZC(6),ZA(0)
Az=n2.
P=(CCA(K)*ZC(K)*ZC(K)+CAN(J)*¥ZA(J)*ZA(J))/2.
R=A*SQRT(P)

CALL CB(A,P,C,CP)

GX(J)=CGX(J)*2,TnE*% (RXCCA(K)*(C+2.TnEX¥_R))
GM(K)=GM(K )¥2, TnEX% (RECAN(J)*(C+2. TR E*2_R))
RETURN

END

SUBRROUTINE PB(IA,IC,B,BP,CA,CP,NAN,NCAT,BMX)
DIMENSION IA(9),IC(6),BMX(4,0,6),R(C,6),RP(9,6)
DO f J=#,NAN
DO A K=0,NCAT
B(IA(J),IC(K))=BMX(R,IA(J),IC(K))+

f BMX(2,IA(J),IC(K))*Cn

n BP(IA(J),IC(K)})=BMX(2,TA(J),IC(K))*CP
RETURN
END
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REAL FUNCTION FG(X,T)
IF(T.GE.C.) GO TO =0
FG==2 %ARSEX /P
GO TO 5C
JF(X.EQ.XP)GO TO 50
S=X#%0,.6
P=.+01.2%3
IF(T.EQ.TP)GO TO u4cC
F=€7.02U-C.UCBT=%*T4+(N.ONUESE=Z)"TRT
f -(R.O-FGSE-6)*THTHT
A=NUCOCCC/(E*(T+27=.05) ) %% 5
UO FG=-A¥((S/P)+n . 66666 T*ALOG(P))
8
XP=X
5C RETURN
END

My
o

MAIN PROGRAM MHCOC:
REAL I,M
DIMENSION PH(RCC),PHC(NCO),X(5,100),I(R0C),Y(NC0)
R ,B(5),CC(4),PP(ROC)
TYPE A6
16 FORMAT(LX, 'THO',/, "' *¥xkkxxxx 1)
ACCEPT #f,TH
JF(TH.NE.C. )GC TO 2
TYPE 18
ACCEPT #2,NS,Z,BAMX,CMX, T, HCO:=
N8 FORMAT(' NS',UX,'ZM',7X, 'BAMX ' T7X, 'CMX', 7X,'T",

fO7X,'HCOZY,/,' ®&) 5() Xeexaxax 1))

N2 FORMAT(nI=,5Fn0.5)
BAMX=(20.5U~6n.92%BAMX )* (T=-25, )% (A .E-U )+BAMX
TYFE 03

N2 FORMAT(SX,'I',8X,'PH',/,2(" **xkxxx& 1))
2Z=7%(Z+0.)
DO nC J=n,NS
AC ACCEPT An,I(J),PH(J)
2 DO A J=0n,NS
M=2.%1(J)/22
AX=M¥®Z-HCO:=

CALL CB(2.,3(J),G,GP)
PP(J)==FG(I(J),T)~C.ONE*I(J)/Z-M*¥AX* (BAMX*GP+CMX }
i +2.*AX®TH®(C.6:6%G-1.)

Y(J)=PP(J)+2.=C2%PH(J)

X(n,Jd)=2.%M
X(2,J)=2.%M*G
0 X(=,J)=2.%Z8MaM
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TYPF A5

CALL AMR(NS,4,¥,Y,B,CC)
DO 4 J=f,NS

(u,d)=Y(J)

Y(J)=

p—l B =

2 (L+0)*X(L,J
-PP(J))/2.
TYPE An,PH(J), (X(L.J). )

TYPE b, (B(L), L=n,L),( )
FORMAT(10GAC. 4 )

FORMAT(/, =X, 'K',QX, 'BO', &X, 'PA*,0X, 'C", 7X,
no'CCn*,T7X, CC2',TX'CC=",/,nCGN0. b, //)
FORMAT(//, X, "PH',EX, XA, 7X, 'X2' 8X, 'X=,
n ¥, 'Y', 0¥, 'YC',7X, 'PHC")

STOP

END

)
o of
(@]
~
[
s
"
~
-
~
el
\.—'l"\

)
i PHC(J)
C

On o
r\.‘.lln

,U),Y(J)
)’ =n’:-

SUBROUTINE AMR(
DIMENSION CC(L)
n SX(5),SXx2(5),R
SY=0

SY2=z0

AN =N

DO aC I=#,N
X(M,I)=n

DO 2C J=1,M

N

M, X
XX (5 5,400),YY(5),
5),A

ot AN

(se

J)+X(J,I)*X(K,T)
)

(J,1)
+X(J,1)*%(J, 1)
((J,T)%Y(T)

5w 54 [

=
o
n
N e
—
1
=
=

SY=SY+Y(T)
QY?-SY2+Y(I) Y(1)

.Jgo to 29
J)-SX(J)*SY)/((AN%SYX2(J)=-SX(J)*
Y2-SY&SY) )#%(C.5

s~
o>,
~Z
> e (D
Z =<0
e g v
n~o



29

1y
o

()
©

2C

125

# SX(J))X(AN®SY2-_SY*SY) &%, 5
continue

CALL MATINV(A,M,PX¥X, 0, D)
P(R)=RPX(M)

DO =C J=0,M=1

BE(J4+n)=RX(J)

RETURN

END

MAIN PROGRAM MX
REAL I

CIMENSION PH(ACC),PEC(ACO),X(5,nCC),I(nCC),Y(ncCC)
f B{5) . CCEH), F(FCC),FP(HCC) RO(FCC),A(G),PHS(HCC),
DATA A/C. FTT‘ C.2045, C. OCCN ;€. A0N9,0.%2C6,0.0005/
TYPE n2

L=0C

ACCEPT M€, NS,Z,82,F;7T

TYPE NE,NS,Z Af R, T

IPKZ. LT .0k JE=3

NC=NS

ZZ:Z'(Z+ﬂ.)

NP=

IF(Nq 6T .0)60 T0 =C

NS =NN

GC TO 20C

TYPE n=

NN=N&

DC f Jd=n,NS

RC(J)=C

ACCEPT ne,I(J),PH(J)},PE(J+NS),PHS(J)
JF(PE(N+NS).FQ.C. )NP=1

DO & J=n,NS

CY(J)=C
X(n,d)=1(J
¥{n,J+NS )=
CALL CR(2
IF (FHS(J)
i +.0CO¥%T(

' 2.-0=%ZZ%PHS(J)/4.
J +

Z ®CP%A2/(2Z
J

.5 PGLILI), /2.2 %T(d )

+n,)
T,

+2.8CL*(A(N+L)+A(2+L)%CH
LACL¥ C

P/Z7)

N TN
+ D~
C')f\N

\
L
pz¥

cY(nce)
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9 RC(JK)=ALOG(Mn.+R¥TI(J)/H(JK))/2.
IF(NP.FO.M)GO TO €
W=C.5%2 TAE*% (U, 6C5% (PH(J)-PH(J+NS)))
RO(J )= (W=l )/ (T(JI)N((N./H(JI))=W/H(J+NS}))

& CONTINUE
TYPE An, (RO(J),J=n,NS),PH(N),PH(A+NS)
ACCEPT Afd,DSC,DNCC
DO A7 J=@,NS
PH(J)=PH(J)+D50
CY(J+NS)=CY(J)

N7 PH(J+NS)=PH(J+NS)+D0C
IF (D5C.NF.C..OR.DICC.NE.C. }GO TO 20

6 TYPE 0%

DO 26 K=f,6NP
U=(K-2)%(NP-1)

2€& DO 26 J=f,NS

JK=J+NS* (K-n )

IF(NC.GE.C)GC TO 5

X(4,JK)=C

GO TO 26

S X(U,JK)=2.%T(J)*I(J)/(Z+0.)

26 Y(JK)=ZZ*(2.Z0=Z%PH(JK)=RC(JK)+0.=U66%U)/2.+CY(JK)
CALL AMR(NS*NP,5,X,Y,B,CC)
DO 4 K=A,NP
Uz (K=-2 )% (NP-11)
DO 4 J=zA,NS
JK=J+NS* (K-1)
X(5,JK)=Y(JK)
Y(JK)=P(H3

fay

DO 7 L=f,4
T Y(JK)=Y(JK)+B(L+0)*X(L,JK)

PHC (JK 3= (2. % (Y(JK}=CY(JK))/ZZ+RC(JK)=C.ZU66%U)/2. 70"
4 TYPE an,PH(JK), (X(L,JK),L=n,=),X(5,J K),Y(JK),PHC(J Y,
1€ TYPF Ak, (R(J),dJ= n L 53,(CC(J).a=1,2)

ne FORMAT(NI' 5Gre2 )
nn FORMAT(HCGHC.&}
A2 FORMAT(* NS*,5X,YZM' OX, YBAMX*,9X, YRO*,80X, "T*,/,

[\ *‘|,Ll(| KK KN KK |))
= FORMAT( I PHSC PHREO Y, TX,; YPH® ./,
n=( * oAEEkxx )

Ak FORMAT(/,=X, 'K',8X,'DBO',7X, 'DBA ', E€X, 'R2", EX, 'DC",
n o7¥,'CCAY,7X,'CC2',/,R0GNC.L,//)
A5 FORMAT(//,=X,'PH', 7Y, ‘I=X1"',7X, 'X2', 86X, 'X=",
i EX,'Y',Q¥, 'YC',7X, 'PHC',0X, 'RO")
STOP
END

RO(J)
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