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ABSTRACT 

Natural waters may be chemically studied as mixed electrolyte 

solutions. Some important equilibrium properties of natural waters are 

intimately related to the activity-concentration ratios (i.e., activity 

coefficients) of the ions in solution. An Ion Interaction Model, which 

is based on Pitzer's (1973) thermodynamic model, is proposed in this 

dissertation. The proposed model is capable of describing the activity 

coefficient of ions in mixed electrolyte solutions. The effects of 

temperature on the equilibrium conditions of natural waters and on the 

activity coefficients of the ions in solution, may be predicted by means 

of the Ion Interaction Model presented in this work. 

The bicarbonate ion, Hco3-, is commonly found in natural waters. 

This anion plays an important role in the chemical and thermodynamic 

properties of water bodies. Such properties are usually directly rela

ted to the activity coefficient of HC03- in solution. The Ion Inter

action Model, as proposed in this dissertation, is used to describe 

indirectly measured activity coefficients of HC03- in mixed electrolyte 

solutions. 

Experimental pH measurements of MCl-MHC03 and MCl-HzC03 solu

tions at 25°C (where M = ~, Na+, NH4+, ca2+ or Mg2+) are used in this 

dissertation to evaluate indirectly the MHC03 virial coefficients. Such 

coefficients permit the prediction of the activity coefficient of HCo3-

in mixed electrolyte solutions. The Ion Interaction Model is found to 

b e an accurate method for predicting the activity coefficient of HC03-
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within the experimental ionic strengths (0.2 to 3.0 m). The virial 

coefficients of KHC03 and NaHC03 and their respective temperature vari

ations are obtained from similar experimental measurements at 10° and 

40°C. The temperature effects on the NH4HC03, Ca(HC03)2, and Mg(HC03)2 

virial coefficients are estimated based on these results and the tem

perature variations of the virial coefficients of 40 other electrolytes. 

Finally, the Ion Interaction Model is utilized to solve various 

problems of water chemistry where bicarbonate is present in solution. 
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Chapter 1 

INTRODUCTION 

1 . 1 The Bicarbonate Ion as a Main Component of Natural Waters 

The bicarbonate ion is commonly found in natural water s, and its 

intrinsic properties are of importance in the study of water chemistry 

equilibrium. Some of the basic chemical and physical properties of 

this anion are reviewed below. 

In nature the bicarbonate ion leaves or enters a solution via 

one or more of many mechanisms. Among these are the processes of 

photosynthesis-respiration, contact with the atmosphere and 

precipitation-dissolution of carbonat e and bicarbonate minerals . Due 

to the common occurrence of these processes the bicarbonate ion is a 

ubiquitous component of natural waters. 

The bicarbonate ion exhibits amphoteric properties in aque ous 

solutions, being the intermediate state of protonation of the carbonate 

system. These important properties are directly related to the acid 

and base neutralizing capacities of aqueous solutions. Often in nature 

the bicarbonate ion is the main acid-neutralizing agent of the water 

(i.e . , alkalinity). The pH of a water solution is therefore dependent 

on the concentration of bicarbonate ion. 

Several thermodynamic models have been proposed to evaluate the 

intrinsic characteristics of mixed electrolyte solutions . The general 

principles of the two most commonly used models are presented in the 
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following section. Natural waters may be considered as aqueous multi

component electrolyte solutions and therefore may be studied as such. 

Quantitatively, the concentration of the individual ions in natural 

waters varies widely from place to place, but their main components are 

usually the same. In natural waters the most commonly found cations 

are H+, Na+, K+, ca2+ and Mg2+, and in polluted waters NH4+. The 

anions usually present in natural water are oH-, cl-, HCOJ-, No3-, 

H2P04-, F-, S04 2-, C03 2-, HP04 2- and P043-. Therefore, the equilibrium 

properties of bicarbonate in natural waters may be studied by consider

ing HC03 as an individual component in a mixed electrolyte solution. 

A method is proposed in this work to evaluate accurately some important 

equilibrium characteristics of the bicarbonate ion in natural waters. 

1.2 Thermodynamic Models 

Several thermodynamic models have been proposed to predict the 

activity coefficients of mixed electrolyte solutions. These models 

give reasonable results for relatively simple multicomponent systems; 

however, few of them may be utilized in the calculation of the activity 

coefficients of electrolytes having more than four different ions in 

solution. The two most common methods of evaluating activity coeffi

cients of such complex electrolytes are the Ion Association Model and 

the Ion Interaction Model. The general characteristics and basic 

assumptions of these equilibrium models are presented below. 

The more widely used equilibrium model is the Bjerrum Ion 
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Association Model, which assumes the formation of ion pairs by oppo

si t ely charged ions (i . e ., counter-ions). The Br~nsted-Guggenheim Ion 

Inte raction Mode l is the alternate procedure employed in the evaluation 

o f several thermodynamic prope rties of aqueous solutions, including the 

activity coefficients of the individual ions in solution. The latter 

method approaches this problem by assuming inte ractions among the ions 

in solution. 

The activity coefficient o f any solute is d efine d a s the dimen

sionless ratio b e twee n its ac tivity and conce ntration in solution. 

Und e r very dilute conditions this ratio approaches unity. Stumm and 

Morgan (19 70) report that the Debye-Huckel theory, which considers only 

long-range electrostatic interactions b e tween the ions, is accurate in 

mos t case s for ionic strengths below 0.01 M. Deviations from the ideal 

Debye-Huckel theory at higher ionic strengths a re attributed to short

r ange interionic forc es . Diffe r e nt assumptions are us e d by the two 

basic models to account for d eviations from ideality in conce ntrate d 

solutions . 

The Ion Association Model assumes that devia tions from the 

De bye -Huckel theory are caused by differences in the ion sizes and/or 

b y the relatively strong binding of counter-ions to form ion pairs. 

According to this model, the concentration of a spe cific type of ion 

pair is directly proportional to the activity of its free counter-ion 

components . The ion association criterion implies, then, a distinction 

betwee n the thermodynamic prope rties of both free ions and ion pairs. 

The introduction of more variables into the system, to take into con-
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sideration the presence of ion pairs, complicates considerably the 

equilibrium calculations of mixed electrolyte solutions. Furthermore, 

t e dious approximations have to be executed in order to satisfy the 

e lectroneutrality and mass balance conditions. 

Several a lte rnate methods are us ed in the Ion Association Model 

to compute the activity coefficients of free ions in solution. The 

following methods are widely used in the computation of the s e param-

e ters: 

i) The extended Debye-Huckel equation, and 

ii) The Mean Salt method (Macinnes convention) . 

The first method, which utilizes a n adjustable parameter (ion size param-

eter), permits one to evaluate analytically the activities of the in-

dividual free ions. The accuracy of this method is dubious at ionic 

strengths above O.OSm, and should be used cautiously in concentrated 

solutions. 

The Mean Salt method for obtaining the individual free ion 

activity coefficients has lately come under strong criticism. By con-

vention, this me thod assumes that the activity coefficient of the 

potassium ion is equal to that of the chloride ion at a given ionic 

strength, regardless of the nature of the other ions in solution. 

Whitfield (1974a),mentions,among others, the following disadvantage of 

of this method: 

"The widely employed Macinnes convention is ambiguous at 
ionic strengths greater than 0.1 M and contradicts anum
ber of conventional definitions of single ion properties 
in implying that the activity coefficient of the chloride 
ion is the same in all solutions of alkali and alkaline 
earth me tal chlorides at constant ion strengths." 
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A thermodynamic property of aqueous solutions, which is not well 

understood, is the ion-pair activity coefficient. A great number of 

techniques have been proposed to evaluate this parameter. The lack of 

common grounds for the computation of the activity coefficients of ion 

pairs is directly reflected on many other thermodynamic properties of 

the solution as a whole . 

Finally, in order to compute accur ately the free ion activity 

coefficients, it becomes necessary to know precisely the value of the 

ionic strength of the solution. Some researchers who utilize the Ion 

Association Model evaluate the ionic strength of a solution by adding 

the individual contribution of free ions to the contribution of ion 

pairs. Other investigators claim that this is incorrect and evaluate 

this parameter from the contribution of the individual ions' total con

centrations. This discrepancy may lead to wide differences in the pre

dicted value of the activity coefficients of both free ions and ion. 

pairs. 

The osmotic and activity coefficients of single electrolyte 

solutions may be accurately predicted by the use of the Ion Interaction 

Model. These parameters are evaluated by the addition of an inter

action term to the Debye-Huckel function. (This theory is studied in 

more detail in the next chapters.) The interaction term is a semi

linear relationship of the molality of the solution, which 

rapidly tends to linearity as the concentration of the electrolyte 

increases. At a fixed temperature and pressure the slope of the inter

action term depends only on the nature of the electrolyte, and its 



6 

absolute value (i. e ., deviation from idea lity) is usua lly higher for 

multivalent e l ectrolytes. Bo th the osmotic and activity coefficients 

of mixed electrolytes may b e accura tely predicte d by a ssuming that the 

multiple interactions upon a specific i on a r e additive (Lewis and 

Randall ( 1961)) . 

The simplest method to pre dict short-range interactions among 

the ions is t o a ssume linearity in the ion inte r action term. This 

approach has yielded reasonable results for the activity coefficients 

of systems as complex and c oncentrated as s ea wate r (Whitfield (1973)). 

Recently Pitze r (1973) has proposed a more deta iled , but at the same 

time more complex, approach f o r the description of the osmotic and 

activit y coefficients of single electrolytes from infinite dilution to 

6 .0 m. The value of the inte raction term in Pitzer's method is de

scribed b y three virial coefficients which multiply an equal numbe r of 

functions o f the ionic stre ngth of the solution. Pi t zer and Mayorga 

(19 73) have evaluated and published the v alu e s of the viria l coeffi

cients of over 200 1:1, 1: 2 and 1:3 electrolytes. The evaluation of 

the s e coefficients was performed from measurements of the activity and 

osmotic coefficients of single e lectrolyte solutions. In another pub

lication Pitzer and Mayorga (1974) propos e a mathema tica l approach to 

the evaluation of the se two thermodynamic prope rties in solutions con

taining 2:2 electrolytes. 

The activity and osmotic coe fficients of mixed elec trolytes a r e 

accura t e ly de scribe d by a me thod presente d by Pitzer and Kim (1974). 

The accuracy of this method i s increased by considering interaction 
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between like-charged ions as well as triple-ion interaction. Higher 

order electrostatic terms for multivalent electrolytes may be described 

by the technique proposed by Pitzer (1975). Many ambiguities existing 

in the theory of strong acids may be r e solved by using Pitzer 's method 

in the analytical studies of these electrolytes (Pitzer and Silvester 

(1976)). 

1.3 Evaluation of the Thermodynamic Models 

The main objection to the use of the Ion Interaction Model in 

aquatic chemistry is the execution of lengthy mathematical manipula

tions, but the accuracy of the model more than compensates this objec

tion. In single electrolyte solutions the calculations involved in the 

Ion Interaction Model are probably more complex than those required by 

the Ion Association Model. However, for mixed electrolyte solutions, 

the opposite condition is often observed . This condition is due to the 

cumbersome approximations necessary to satisfy both the mass balance 

and electroneutrality constraints in the Ion Association Model . 

The superiority of the Ion Interaction Model is also revealed by 

its reliability to predict the activity and osmotic coefficients of an 

extensive variety of mixed electrolytes over a wide range of ionic 

strengths. The evaluation in this chapter obviously leads to the selec

tion of the Ion Interaction Model as a more effective means to describe 

the thermodynamic propertie s of the main ions present in natural waters. 
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1.4 Thermodynamic Properties of M-HCOJ Salts 

In view of the chemical importance of the bicarbonate ion in 

natural waters it becomes necessary to describe its thermodynamic be

havior by means of a sound equilibrium model. The model chosen in this 

work was the Ion Interaction Model utilizing the latest modifications 

by Pitzer and co-workers. 

Many investigations have dealt with the problem of predicting 

the activity coefficient of the bicarbonate ion in the presence of 

various cations. Nonetheless, most of these investigations have dealt 

with the problem according to the Ion Association Model. The validity 

of this approach is directly related to the prediction accuracy of the 

free bicarbonate ion activity coefficient. This parameter is usually 

evaluated by means of either one of two techniques: by the extended 

Debye-Huckel equation or by interpolation of tabulated values. A pre

vious discussion of the effectiveness of the first technique to describe 

activity coefficients reveals that its validity is limited to very 

dilute solutions. The tabular values of the free bicarbonate ion 

activity coefficient are presented in an early work by Walker, Bray and 

Johnston (1927) . The reliability of these values is dubious for they 

are computed from inexact titrametric alkalinity measurements in sodium 

and potassium chloride solutions. Many discrepancies in the reported 

thermodynamic properties of bicarbonate salts solutions are possibly 

due to the incapability of the two above techniques to predict accu

rately the activity coefficient of the free bicarbonate ion. 
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In lieu of the Ion Association Model, Butler and Huston (1970) 

have studied the activity of HC03- in NaCl solutions according to 

Harned's Rule. Harned's Rule reduces to the simplified Interac tion 

Model at high ionic strengths. Other than this study little is known 

about the interaction properties of the bica rbonate ion in natural 

waters. 

This dissertation presents a theoretical appr oach to the deter

mination of the virial coefficients of HC03- in natural waters at 

various temperatures. Based on this approach the virial coefficients 

of various bicarbonate salts are evaluated from experimental results. 

These salts included the following bicarbonate compounds: NaHC03, 

KHC03, NH4HC03, Ca(HC03)2, and Mg(HC03)2. The cations of these salts 

are the most important positively charged ions in natural and polluted 

wa ters. Thus, the knowledge of their r espective interaction character

istics permits a more precise understanding of the equilibrium condi

tions of most water bodies. 

1.5 Effects of Temperature on Aqueous Solutions' Equilibria 

Local, seasonal and diurnal temperature variations are often 

observed in most natural phenomena. Temperature changes are of special 

interest in natural waters because, in general, their thermodynamic 

properties are temperature dependent. An example of these properties 

is the ion activity coefficient, which has a strong temperature depen

dence. In tlw activity coefficient equation both the long-range clcc-
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trostatic function and the short-range interaction term are temperature 

functions. 

Included in this work is a detailed study of the thermodynamic 

effects of temperature on the activity and osmotic coefficients of 

aqueous solutions. Finally, a computer program which takes into con

sideration temperature effects in the Ion Interaction Model is also 

included. Some of the many common water chemistry problems which may be 

solved with the aid of this computer program are studied in the chapter 

on Practical Applications. 
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Chapter 2 

THE ION INTERACTION MODEL 

2.1 Literature Review 

The Ion Interaction Model was originally developed by Br¢nsted 

(1927) who proposed that the thermodynamic properties of aqueous solu

tions could be evaluated from the interactive forces between the ions 

in solution. He assumed that interactions between oppositely charged 

ions would be dominant, thus neglecting like-charge ion interaction. 

Guggenheim (1936) made a distinction between the two terms in the acti

vity coefficient equation: the electrostatic interaction function and 

the short-range interaction term. He described the first function by 

the Debye-HUckel equation, which he assumed depended only on the ionic 

strength and the temperature of the solution . He also assumed that the 

second term might be described by a polynomial function in concentra

tion with a linear leading term. 

The emphasis of more recent publications has been the study of 

the short-range interaction term. Many researchers, including Guggen

heim and Turgeon (1955), and Lewis and Randall (1961), have used a sim

ple approach to this problem. They have assumed that the interaction 

term may be described by a linear function in concentration. Whitfield 

(1973) has utilized this assumption, which yielded reasonable results 

for the activity and osmotic coefficients of concentrated electrolytes. 

Marked deviations from linearity in the short- range interaction term 
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may be observed at low ionic strengths. 

Pitze r (1973) has develope d a mathematical mod e l which takes 

into considera tion d eviations from linearity . By considering like 

cha r ge interac tions Pitze r and Kim (1974) have obtained excellent 

agreement between calculated and experimental measurements of the acti

vity and osmotic coefficients of mixed electrolytes. The theory d evel

oped by Pitzer (1973) for the Ion Association Model appears to be the 

most accurate t e chnique for predicting the e quilibrium conditions of 

mixed electrolytes. The basic principles of Pitzer's theory, along 

with some temperature conside rations, are presented in this diss erta

tion. For more deta iled information the r eader is refe rre d to the 

original publications . 

2 . 2 General Equations 

By convention, the ionic str ength of a mixe d e l ectro lyte solu

tion, I, is d e fined as follows : 

where mi r epresents the molal concentration of any ion i in 

s o lution, and 

Zi represents the valence of any ion i in solution. 

(2.1) 

The osmotic coefficient of a solution is intimately related to 

various thermodynamic prope rties of its component solvent and solutes. 

The activity coefficients of the solvent and the ions in solution a r e , 

fo r exampl e , related to the osmotic coefficient of the solution. Due 
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to the importance and interdependence of these thermodynamic proper-

ties, a detailed study of the osmotic coefficient of mixed electrolyte 

solutions is presented in this dissertation. 

Based on the Ion Interaction Theory, Pitzer and Kim (1974) pro-

pose the following equation for the osmotic coefficient, ¢, of a mixed 

electrolyte solution: 

where 

¢- 1 

£~ = 

1 

LID· • l. 
J.. 

+ {"'a f. m •• [e ••. + 16~.· + f"'c lfrcaa' J l 
1 + L2jf (Debye-Hlickel function) 

(2.2) 

(2 .3) 

A represents the Debye-HUckel coefficient. This coefficient 

is a function of the temperature of the solution, T, and 

is equal to 0.392 at 25°C, 

~ o + {Jl -a1 1f 
B 111:x = /J111 :x MX e (2.4) 

c, c' and M represent the names of the cations in solution, 

a, a' and X represent the names of the anions in solution. 

represents the total molal charge of the 

solution, 

po and pl represent the first and second virial coefficients, 
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C represents the third virial coefficient, 

0 represents the interaction coefficient between like-

charge ions. 

8' "" 88/f)I (2.5) 

~ represents the interaction coefficient for triplets. 

a l equals 2 . 0 for 1:1, 1:2 and 1:3 electrolytes, or 

0I equals 1.4 for 2:2 electr olytes. 

The virial coefficients of 227 pure aqueous 1:1, 1:2 and 1:3 

electrolytes at 25°C are evaluated and presented by Pitzer and Mayorga 

(1973) . Numerical values for some like-charge and triplets inter-

action coefficients are listed by Pitzer and Kim (1974). 

The long-range interaction effects on the osmotic coefficient 

of a solution are mathematically simulated by the Debye-Huckel function, 

which is represented by the first term in equation (2 . 2) . The r emainin g 

terms in this e qua tion simulate the short-range interaction effects o n 

the osmotic properties of a solution. 

Two important thermodynamic properties of aqueous mixed elec-

trolytes, the osmotic pressure of a solution and the activity coeffi-

cient of the solvent, may be computed from the osmotic coefficient of 

the solution. Lewis and Randall (1961) propose the following two 

equations for the osmotic pressure of mixed electrolytes, 11, and the 

activity of water, a
1

: 

ll = 

= -

M1 
1000 

Ml 
1000 

(2.6) 

(2. 7) 
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R represents the gas constant and equals 1. 98726 cal/°K - mole, 

T represents the absolute temperature in Kelvin degrees , 

v
1 

represents the partial volume of water. (v1 = 18.0 cc/mol 

for an infinite dilution at standard temperature and pre ssure.) 

M
1 

represents the molecular weight of the solvent (18.0g/mol 

for water). 

An electrolyte composed of a cation M with valence ZM and an 

anion X with valence Zx dissociates in water according to the reaction 

(2.8) 

where VM represents the number of cations of M per molecule of MX, 

and 

Vx represents the number of anions of X per molecule of MX. 

To satisfy the electroneutrality condition of the electrolyte 

MX it is necessary that 

(2.9) 

The activity coefficient of the electrolyte MX in solution, 

YMX> is computed from the geometric mean of the activity coefficient 

of the cation YM and the activity coefficient of the anion Yx : 

(2.10) 

where (2 .11) 

Based on the Ion Interaction Theory, Pitzer and Kim (1974) pro-

pose an equation for the computation of the activity coefficient of an 
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e l e ctrolyte MX in a multicompone nt solution. This equa tion may be 

easi l y res o lved by symmetry into its two individual components, the 

activity coefficients of the cation and the anion. The two equ ations 

ob taine d by this procedure are pr esented b e l ow: 

+ 

and 
ln Yx 

+ \~me~ me' ( 1,/tee 'x e e' 

z2 
~· ma' ()~a' + X 

l:ma 
2 a 

where f 

B I pl ' 
MX "" 81 {1) 

+ z 2 ()' 
x ee' ) 

2 
1.2 

ln (1 + 1.2 ,fl>] 

(2 .1 2) 

(2 . 13) 

(2.14) 

(2.15) 

(2 . 16) 



17 

2 (2.17) 

= 

Seemingly, the equations to calculate the osmotic and acti-

vity coefficients of a solution are very lengthy. Nevertheless, it 

must be remembered that at the given ionic strength of the e lectrolyte 

solution, f~, f, g 1 and g~ are constant. Therefore, the Ion 

Interaction Model is a simple and accurate t echnique to calculate the 

equilibrium properties of mixed electrolyte solutions. 

The above equations are somewhat simplified in the case of the 

dissolution of a single e lectrolyte. Since only one anion and one 

cation are pre s ent in this type of solution, the contributions of 0, 

0' and ~ are non-existent. The equations which describe the thermo-

dynamic properties of pure salt solutions are given by Pitzer and 

Mayorga (1973). It was previously mentioned that these authors r e -

port the values of the first, second and third virial coefficients of 

227 1 :1 , 1:2 and 1:3 e l e ctrolytes. The s e parameters we re obtained by 

least square analyses of various thermodynamic properties of single 

e l ec trolyte solutions. 

Pitzer and Kim (1974) suggest tha t in most practical cases 8 

may b e assumed to be constant over the ionic strength. In other words, 

they assume 0' to b e equal t o 0. Based on the above assumption they 

a r e able to predict accurately the activity and osmotic coefficients 

of 69 multicomponent solutions. They also r eport the values of 0 and 
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~utilized in such predictions. 

The effect of 8' on the thermodynamic properties of most mixed 

electrolytes is minor. However, if maximum accuracy is desired in the 

prediction of these properties it becomes necessary to consider the 

variation of 8 with the ionic strength. For complete information on 

the dependence of the like-charge interaction coefficient with ionic 

strength, the reader is referred to work of Pitzer (1975). 

2 . 3 The Ion Interaction Theory for 2:2 Electrolyte Solutions 

The capability of an electrolyte to completely dissociate in a 

solvent is directly related to the electrostatic attraction between the 

counterions in solution. Obviously, this electrostatic attraction in

creases as the absolute value of the counterions' charges increase. 

The model presented thus far may be used to describe the thermodynamic 

properties of electrolyte solutions only in the case where the absolute 

values of the valences of one or both counterions are equal to one. 

The particular case of 2:2 electrolytes (which do not completely dis

sociate in aqueous solutions) is considered in this section. 

The osmotic coefficients of various single divalent cation 

sulfates at 25°C, as experimentally determined by various researchers, 

were summarized by Pitzer (1972). These coefficients were successfully 

predicted by Pitzer and Mayorga (1974) by means of an interaction 

model, which takes into consideration incomplete electrolyte dissoci

ation. Their approach consisted in adding an extra interaction term to 
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the B¢, B and B' equations. Even though this approach gave excellent 

results for single divalent cation sulfates it failed to predict their 

solubility product in seawater (Whitfield (1975a,b)). In these publi

cations Whitfield utilizes a hybrid model (a combination between the 

Ion Association Model and the Ion Interaction Model) which permits a 

reasonable explanation of the difference between measured and calcu

lated solubility products of sulfate salts in seawater. The hybrid 

model proposed by Whitfield assumes simultaneously Pitzer and Mayorga's 

compensation for ion association, as well as the existence of ion pairs 

as individual entities. 

Three conclusions may be drawn from the above works: 

a) Pitzer and Mayorga's interaction model for incomplete dis

sociation of divalent cation sulfates in aqueous solutions 

works satisfactorily in the case of single salt solutions, 

but fails to predict the thermodynamic properties of such 

sulfate salts in mixed electrolyte solutions. 

b) The inclusion of the extra interaction term in Whitfield's 

hybrid model is redundant, for the purpose of this term is 

to compensate for ion association. 

c) The simplicity of the Ion Interaction Model is destroyed 

when the particular problem of incomplete dissociation is 

approached from the point of view of ion association. In 

other words, if a hybrid model is utilized (by considering 

ion pairs as individual components of the solution) tedious 

iterations must be performed to satisfy both the mass 
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balance and e lectrone utrality conditions of the solution. 

A modification to Pi tze r and Mayorga's work is proposed in 

this dissertation. This modification permits one to compensate for 

incomplete dissociation without implicitly considering ion pairing. 

The thermodynamic solubility product of gypsum (i . e ., CaS04 · 2H
2
0) in 

a variety of mixed electrolyte solutions is studied in Chapter 5. The 

prediction accuracy of this the rmodynamic constant confirms the vali

dity of the proposed modification. Following is presented the pro

posed Ion Interaction Model for 2:2 electrolyte solutions. 

The activity of an individual ion is reduced by a factor 6 if 

incomplete dissociation occurs. The value of this factor varies from 

unity for complete dissociation, to zero for nil dissociation. It i s 

assumed in this diss e rtation that 2:2 e lectrolytes in solution asso

ciate t o some extent, while 1 : 1, 1:2 and 1:3 e lectrolytes do not ex

perience this phenomenon . The following empirical equation is pro

posed for 6: 

whe re 

(2 .19) 

i r e presents the divalent cation M or the divalent anion X, 

j r e presents the divale nt anion X or the divalent cation M, 

p2 r eprese nts the association virial coefficient, which must 

b e determined experimentally, 

I* r e pre s ents the pse udo-ionic strength of M and X. I . e ., 

(2.20) 
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and [ ( 
r;;: «z~I* ) e -o2«] 

1- 1 + a 2 vi* - 2 (2.21) 

Thus, the individual ion activity coefficient, compensated for 

incomplete electrolyte dissociation, Y!, may be computed as follows: 

(2.22) 

An extra term must be added to the B~ e quation to compensate 

the osmotic coefficient for incomplete electrolyte dissociation. The 

proposed equation is as follows: 

(2.23) 

Values of p2 for various divalent cation sulfates are presented 

in Pitzer and Mayorga's work . The values of a , which are also those 

recommended in the aforementioned work are listed in Table 2.1. 

Elec
trolyte 

1:1 
1:2 
1:3 
2:2 

TABLE 2.1 

a VALUES 

2 . 0 
2 . 0 
2.0 
1.4 

0 
0 
0 

12 . 0 

Examination of equations (2.19) through (2 . 23) reveals that 

these e quations reduce to ct1osc proposed by Pitzer and Mayorga for the 

particular case of a pure salt solution . It is interesting to note 
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that due to the large value of a 2, the exponential terms in both equa-

tions (2.21) and (2.23) rapidly tend to zero as the ionic strength in-

creases. In relatively concentrated single electrolyte solutions 

(I> O.lm) the equations proposed in this dissertation predict that the 

effect of P2 on the solution osmotic coefficient is nil, whil e this 

effect reduces the ln Yi by a constant equal to 2 P~j mj/Ct~ I* Experi

mental measurements of the osmotic and activity coefficient of dival ent 

cation sulfate solutions confirm these trends (Pitzer (1972)). 

2.4 Example 

The purpose of the numerical example in this section is to 

apply the Ion Interaction Model in order to calculate the thermodynamic 

properties of a mixed electrol yte solution. 

Statement: Marshall and Slusher (1966) report that the solu-

bility of gypsum (Caso4 • 2H2o) in a 0. 548 m NaCl solution at 25°C is 

0.0372m/l. Calculate the thermodynamic solubility product of gypsum. 

Solution: The molal concentrations of the ions in solution 

are: 0.548 

and mea = mS04 0.0372. 

The ionic and pseudo-ionic strengths of this solution are, 

according to equ ations (2.1) and (2.20), respectively: 

I = ~Xm..z? = 0.6968m 
1. - A.. l. 

I*-~ ( mMzM2 + mxz/) = 0.1488m 

where , for this particular case, i r e presents all the ions in solution 
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(i.e., Na, Ca, Cl, so4 ), M represents Ca and X represents S04. 

The functions f(I), and f~ may be computed f rom equations (2.14) 

and (2.3) r espectively (at 25°C A 0.392): 

f - A [ Ji + 2 
ln (1 + 1.2 ..jf) J 

1 + "1.2Jf 1.2 -0. 6169 

f~ ... - AJr 
1 + L2Ji -0.1635 

The functions g 1 (I), g1' (I), and g 2 (I>'<) are then computed 

from equations (2.17), (2.18) and (2.21) respectively . The values of 

~ and a 2 (which are presented in Table 2.1) and the previously calcu-

lated magnitudes of I and I* are the input parameters for these 

equations. 

gl (I) 

0.3568 for a 1 2 .0 

0.4774 for a 1 1.4 

a 1 ~I 2 [- 1 + ( 1 + a 1 .[I + ~ eel 2 I ) e - a,.ff J 
-0. 241 7 for a 1 2.0 

- 0. 2391 for a 1 1.4 

2 

0.0980 for a 2 = 12.0 

The virial coefficients for the various sets of oppositely 

charged ions in solution, as determined by Pitzer and Mayorga (1973), 

are as follows: 
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M X po pl p2 c 

Na Cl 0.0765 0.266 6.4 X lQ-4 
Na so4 0.0196 1.113 2.0 x lo-3>'< 
Ca Cl 0.3159 1.614 -1.2xlo-4 
Ca so4 0.2000 2.650 -55.7 0 . 0 

>'<Improved value by Pitzer and Kim (1974) 

The values of most like-charge and triplet interaction coeffi-

cients, which are required in this example, are given by Pitzer and 

Kim (1974) and Downes and Pitzer (1976). These values are as follows: 

8Na,Ca 0.000 

8c1, so4 
-0.020 

1/f, 
Na,Cl,S04 0.004 

1Jf, Na,Ca,Cl 0.000 

The B ~~>, B, B' and 6 parameters are described by the next four 

e quations (equations (2.23), (2.15), (2.16) and (2 .19) respective ly): 

1/> 
BMX P~. + pl -a1fX + MXe 

p2 - a 2 .{F 
Mxe 

BMx P~x + P~. gl (I) 

B:.x pl gi (I) 

lnc5i = /J~jm . g (I*) 
l. J 2 

The results obtained by applying these equations to the mixed 

e lectro lyte solution yie ld the following: 
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M X BcP B B' 

Na Cl 0.127 0.172 -0.045 
Na so4 1.878 0.417 -0.187 
Ca Cl 3.010 0.892 -0.272 
Ca so4 1.021 1.465 - 0.441 

ln6ca = ln680 -0.2031 
4 

In order to solve the stated problem it is not necessary to com-

pute the activities of the sodium and chloride ions . Therefore, only 

the activities of the calcium and sulfate ions are calculated in this 

exercise. The osmotic coefficient of the solution and the activity of 

c a lcium and sulfate may be computed from equations (2.2), (2.12) and 

(2.13) respectively. The net effect of 8' on the calculated osmotic 

and activity coefficients is usually minor, and for most practical ap-

plications may be ignored . Without much loss of accuracy one may 

assume that 8' and the unavailable ~ values are equal to zero. There-

fore, the osmotic coefficient of the solution, and the uncompensated 

activity coefficients of the calcium and sulfate ions are computed as 

follows: 



¢- 1 

Therefore, ¢ 

+ 

+ 

1 
Em. ~ 
~ 

EmcE, me' c c 

..Ema E ma' 
a a' 

-0.09961 

0.90039 

26 

[Bee' 
0 

+~,+ ~rna Wee' a] 

[e ••. +y(:·
0 
+ fmc 11tcaa' ] ) 

zM2 f + 2~ma [ BMa + ( fmcZc ) CMa J 
+ 2.,EmC6MC + .Erne ..Ema ( ZM

2 B~a + ZMCc + 1/JMca 
c c a a . 

l:i ..Ema ..Ema' ( ~0 + 1/JMaa' + Z a a' 
a a' 

1 . 5063 

= - 2 .0638 

) 

Where , for this particular case , the subscripts in the above equations 

r e present: 
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M Ca 

X so4 

c Na, Ca 

c' Ca, Na 

a = Cl, so4 

a' so
4

, Cl 

i Na, Ca, Cl, so4 

The compensated activity coefficients of the calcium and sul-

fate ions are computed by inserting the appropriate values into 

equation (2.21) : 

ln~ ln Y. + ln6. I 1.7094 for i Ca = 
]. l. 

2 .2669 for i so4 

Therefore, y c 
Ca 

0.1810 

"so4 0 .103 6 

The activity of the solvent, water, may be evaluated from the 

knowledge of the solution osmotic coefficient and the molality of the 

species in solution. From equation (2.7) one obtains: 

Therefore, 

Ml ¢J;'!llj_ 
1000 ]. 

- 0.0190 

0.9812 

(where M1 18.0) 

Finally, it is now possible to calculate the thermodynamic 

solubili ty product of gypsum at 25°C from the above parameters. This 

thermodynamic constant is evaluated as follows: 
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Ksp m m y c Y.sco4 a2l ca so4 ca (2.24) 

2 . 498 X 10- 5 
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Chapter 3 

TEMPERATURE EFFECTS ON THE THERMODYNAMIC PROPERTIES 

OF ELECTROLYTE SOLUTIONS 

3.1 Thermal Effects on Electrostatic Interactions 

The thermodynamic properties of aqueous solutions are usually 

strongly dependent on temperature. The assumption that natural waters 

may be treated as mixed electrolytes under ideal conditions of stand

ard temperature and pressure is often incorrect. Although pressure 

variations are of importance in chemical equilibrium, such variations 

are of little importance in the study of surface waters, which are the 

main concern of Environmental Engineering. The scope of this chapter 

is the study of the temperature effects on the thermodynamic equili

brium properties of aqueous solutions at one atmosphere total pressure. 

Literature information on the temperature effects on electro

lyte solutions equilibria is abundant. This information is usually 

analyzed from the Ion Association Model point of view. Perhaps one of 

the most complete works in this area is that of Helgeson (1967), who 

calculates several thermodynamic properties of various electrolyte 

solutions as a function of temperature. Among these properties he 

includes the thermodynamic dissociation constants of Br~nsted acids 

and ion pairs. Helgeson's work is an important refe rence when the Ion 
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Interaction Mode l is utilized to e stimate thermal effects o n Br~nsted 

acids' equilibria. 

The Ion Interaction Mode l may b e us e d to d escribe the thermo

dynamic properties of a queous solutions at variable temperatures. 

Lewis and Randall (1961) conclude that both the long-range electrosta

tic attraction and the short-range interaction betwee n i ons in solution 

are tempe rature dependent. The electrostatic a ttraction t e rms for the 

osmotic and activity coefficients may be computed from equations (2.3) 

and (2.14) respective l y . The only t empe rature dependent parame t e r in 

these e quations is the parameter A, which has a triple d e p e nde nce on 

temperature. This parameter is a direct function of tempe rature, the 

solvent dielectric constant and the coefficient of thermal expansi on of 

the solvent (Lewis and Randall (1 9 61)). The e ffe ct of t empe r a ture on 

the volumetric expansion for water is unimportant when compared with 

the two other dependences, and it is ignored in this diss erta tion. 

The dielectric constant of water may b e expressed as a poly

nomial function o f tempe r a ture . A l eas t-square criterion for curvi

linear r egr e ssion may b e utilized to evaluate the coefficients of this 

polynomial. Utilizing the above criterion to fit a third- d egr ee poly

nomial to the tabulated values of the dielec tric constant of wa t e r 

(Weast (1975)), the following equation is obtained: 

where 

E = 87.924- 0.40873t + 1.01465 X l0-3 t 2 - 1.9365 X l0- 6 t 3 

(3.1) 

E r e pre s ents the die l ec tric constant of wa t e r, and 

t r e pre s e nts the water temperature in centigrade degrees . 
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t = T - 273.16 (3. 2) 

The coefficients in e quation (3.1) are in close agr eeme nt with 

the values r e porte d earli e r by Harned a nd Owe n (1958). The e quation 

which describes the d epende nce of A with r espect to t empe ratur e is 

g ive n b e low (Robinson and Stokes (1959)): 

A 
1.400 X 106 

(ET)3/2 
(3 .3) 

The t empe rature effects on the long-range e lectrosta tic inte r-

action terms (in the osmotic and activity coefficients equations) may 

b e calculated by means of the three above relationships and equations 

(2.3) and (2.14). The se thermal effects are often of higher magnitude 

than the ones observed for the short-range interaction terms. Follow-

ing is presented a the rmodynamic analysis of the s e secondary t empe r a -

ture e ffects on the activ ity and osmotic coefficients of electroly t e 

solutions. 

3.2 Thermal Effects on Short-Range Interactions 

Several thermodynamic parameters are intimately r e l a ted to the 

temperature effects on the inte ractive properties of ions in solution. 

Dire ct or indirect measurements of these properties may be utilized to 

compute the dependence of short-range interactions with respect to 

t emperature. A general summary of some temperature related thermody-

namic propertie s not listed in this disse rtation is available in the 

works by Fortie r and De snoye rs (1976) and Lewis a nd Randall (1961). 
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Pitze r and Mayorga (1973) propos e the following relationship 

fo r the excess Gibbs en e rgy of mixing o f single electr olyte solutions: 

where 

4AI 
1.2 1n (1 + 1.2 /i) 

+ 2m
2 

V.,.llx [ P~x + P~x g1 (I) + P~x ( &2 (I*) 

3 + 2m Z11 1111 C11x 

Gex represents the excess Gibbs energy of mixing, 

m r e presents the molality of the solution, and 

I* equals I for single electrolyte solutions . 

(3.4) 

The excess Gibbs energy of mixing is r e lated to the relative 

apparent molal enthalpy of an e lectrolyte in solution by the f o llowin g 

partial diffe rential equation : 

1 8(Gex/T) 
m 8(1/T) T,m (3 . 5) 

where ¢L represents the appar e nt molal enthalpy of an electrolyte 

in solution r e l ative to infinite dilution. 

Combining e quations (3.4) and (3.5) one may expr ess the tern-

pe rature variation of the virial coefficie nts as a function of ¢L: 

1 
2 

2m v.,.vx T 

={ aP?.x + {)T 

{ ~ + 3.333....!.. ln(l + 1.2 ../i) m 

8/J~x g(I) + O~x ( g2 (I*) 
8T OT 

8A 
8(1/T) 

acMx l 
8T IT 

(3. ~) 

In general, calculations of activity and osmotic coe fficients 

show that the relative importance of the parameters C, 0 and ~is 

secondary. The variation of these paramete rs with t empe r a ture is p r ob-
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a bly even of less importance . It is the r efor e a ssume d in this work 

that 8 C/ 8T =89/8T =81/f/()T = 0. Assuming no vari a tion of the C 

virial coefficient with temperature, equation (3.6) may be r e pres ented 

b y a linear polynomial of the form: 

where 

y 

y 

bo + bl xl + b2 x2 

represents the left side terms of equation (3.6), 

(3. 7 ) 

x 1 and x 2 represent the respective functions of I and I* in 

equation (3.6), and 

b
0

, b1 and b2 repre senti:}(3°/CJT, 8f31 /()T and 8{32 /i}T respectively. 

It is important to remembe r that {32 r epresents the ion pairing 

virial coefficient. In this study this coefficient differs from zero 

only in the case of 2 :2 interaction. Thus, of32/8T is e qua l to zer o 

for 1:1, 1:2 and 1:3 electrolyte solutions. For such solutions, g r aphs 

of Y with r e spect to x 1 should yield points lying on straight lines i n 

which the intercept, b
0

, r e presents 8{3° /8T and the slope of the line, 

b 1 , repre sents 8{31 /i}T. This graphical technique permits one t o evaluate 

r eadily the variation of the first two viria l coefficients with r e -

spect to temperature . A more complete graphical method, which permits 

the simultaneous evaluation of b 0 , b 1 and b
2 

for 2:2 electrolyte s olu

tions, is discussed later in this section. 

Anothe r important thermodynamic property, the relative partial 

molal enthalpy of an electrolyte in solution, is r e l a t e d to the activ-

ity coefficient of the electrolyte as follows: 

(3 . 8) 
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where L represents the partial molal enthalpy of an electrolyte 

in solution relative to infinite dilution. 

In single electrolyte solutions, the rate of variation of the 

virial coefficients with respect to t emperature may be also computed 

from experimental measurements of L. This is obtained by differen-

tiating the individual components of equa tion (2 .10) with respect to 

temperature. Then by rearranging the terms in equation (3.8), the 

following expression is obtained: 

" l L 
z,.zxl [ Vf 2 

ln ( 1 + 1. 2 ,{f) J l T 4mV,.Vx VRT + 1+1.2Vf + 1.2 

= a8~1 + a~~! ( g, (I) + e-a,.rr ) aT 8T 2 

(3.9) 

If the last term in the previous expression is ignored, this 

expression may be represented by a linear polynomial of the form of 

equation (3.7). Obviously, the values of Y, x1 and x2 are those 

of their corresponding functions in equation (3.9). As in the pre-

vious case, plots of Y against x1 values (for 1:1, 1:2 and 1:3 elec-

trolyte solutions) should yield points on straight lines. The signi-

ficance of the slope and intercept of the lines is the same as before. 

Theoretically, the second derivative of the virial coefficients 

with respect to temperature may be evaluated if either the relative 

partial molal heat capacity or the relative apparent molal heat capa-

city are known. The respective equa tions for these two thermodynamic 

properties are: 
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(3.10) 

J 
and (3 .11) 

whe r e represents the molal heat capacity r e l a tive to infinite 

dilution, and 

J represents the apparent molal heat capacity relative to 

infinite dilution. 

Literature information on the numerical values of the heat 

capacity functions is rather limited. This information suggests that 

the variations of ¢L and L with respect to temperature are small in com-

parison with their respective values, and for most electrolyte~ they 

may be ignored. It is assumed throughout this dissertation that both 

¢L and L do not vary with temperature. In other words, it is assume d 

that the second partial derivative s of the virial coefficients with 

respect to temperature are equal to zero. 

The functions Y, x
1 

and x
2 

in equation (3. 7) may be evaluate d 

from their r espective terms in equations (3.6) and (3 . 9). The nume ri-

cal values of Y, x1 and x2 for some important e lectrolytes a re pre s e n

ted in tabular forms in the Appe ndix. Experimental results of ¢L and L 

at various ionic strengths are r eported in several litera ture sources . 

Y values (computed from the experimental results of the 1:1 and 1:2 

e l ec trolytes listed in the Appendix) are plotte d in Figures 3.1 and 3.2 

r e spectively. As expec t ed, the data points follow a linear correlation, 

especially for values of x1 between 0.15 and 0.6. This doma in corre -

sponds to values of I approximately betwee n 2.0 and 0 . 15 m. Devia -
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tions in the dilute range may b e explained by imprecisions in the Ion 

Interaction Model or more probably to minor experimental errors. Re

gardless of the actual source of error in the graphical estimation of 

b
0 

and b1 , its effect on the computation of both activity coefficients 

and osmotic coefficients of very dilute solutions is, for all practical 

purposes, insignificant. Deviations from ideality for extremely con

centrated 1:1 electrolyte solutions (X1 less than 0.15) in Figure 3.1 

suggest that the assumption that8CR7f is equal to zero is probably in

correct. However, for less concentrated solutions linearity is pre

served . Thus, the above assumption is sound for ionic strengths 

below 3 . 0 m. 

The values of b 0 and b 1 (i.e., 8{3°/()T and CJ{31/()T) for 1:1 and 

1:2 electr olytes were graphically calculated over the linear region in 

Figures 3 .1 and 3.2 respectively. These values were then plotted 

against their respe ctive virial coefficients at 25°C in Figures 3.3 

and 3 .4. The points in thes e figures were not labeled due to their 

relative closeness. 

Figures 3.3 and 3.4 illustrate that there exists a definite 

correlation between a specific virial coefficient and its variation 

with temperature. Further, this correlation appears to be linear 

within the studied range . Assuming that the correlation is linear over 

the whole plane, it is possible to express a virial coefficient varia

tion with tempe rature as a linear function of its corresponding virial 

coefficient . Such linear function is extremely adventageous to calcu

late the temperature effects on the thermodynamic properties of a 
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solution without implicitly knowing the rates of change of the indi-

vidual virial coefficients with temperature. 

The following linear e quation approximately describes the rc-

lationship between the ith virial coefficient, ~i, and 8~i/8T: 

(3.12) 

where i = 0, 1 . 

In the previous equation, d and e correspond to the intercept 

and the slope of the lines in Figures 3 . 3 and 3 .4. Integration of 

equation (3 .13) with respect to temperature leads to the following 

simple relationship: 

(3 . 13) 

Equation (3 .13) permits the evaluation of a virial coefficient 

at any temperature as a function of its virial coefficient at 25°C and 

the solution temperature . The values of d and e for 1:1 and 1: 2 elec-

trolytes, as evaluated from a least-square analysis of the data points 

in Figures 3 . 3 and 3.4, are presented in Table 3 .1. The magnitudes of 

d and e for 2:2 electrolytes are also presented in this Table. The 

evaluation procedure for this last case is discussed later in this 

section. 

The linear correlation coefficients of the various sets of 

data suggest that the assumptions which led to the derivation of 

equations (3.12) and (3.13) a r e reasonable. The degree of accuracy of 

the proposed model may be sensed in more practical terms by comparing 

the calculated osmotic and activity coefficients of electrolyte solu-
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tions against the expe rime nta l ones. Publications on labora tory deter-

mina tio ns o f the activi t y and osmotic coefficients of e l e ctro l yte 

solutions a t t e mpe r a tures other th a n 25°C a r e r a the r scarce a nd often 

incongruent. Literature informa tion on the the rmodynamic properties of 

s odium chloride solutions at various t e mpe r a ture s is somewha t more 

r el iable for these prope rties have been thoroughly studied by s ever a l 

investigators. The reported experimental activity and osmotic coeffi-

c i e nts of sodium chloride solutions at t emperatures betwee n 0°C a nd 

80°C and at conce ntrations as high as l.Om a r e listed in Table 3 . 2 . 

These two coefficients are calculated in this dissertation by means of 

the d a nd e paramete rs for 1:1 electrolytes in Table 3.1. The r esults 

of thes e calcula tions are presented in Table 3.2. 

TABLE 3 .1 

d AND e VALUES x 104 

Electrolyte 

1 : 1 LCC>'< 1:2 LCC* 2:2 LCC>'< 

do 9.80} 0.76 10.89} 0 . 92 
0 .0 

eo -70.92 -42.17 0 . 0 
dl 29.54} 205.08} 0.61 -232 .0 } 0 . 93 e l -61. 92 0 . 80 -77.76 14.5 

*Linear Correlation Coefficient 
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TABLE 3 . 2 

TEMPERATURE DEPENDENCE ON THE ACTIVITY AND 
COEFFICIENTS OF NaCl SOLUTIONS 

I Ycalc 

0 .1 0 .781 
0.2 0.735 
0 .5 0.680 
1.0 0.650 

0.1 0. 776 
0.2 o. 732 
0 .5 0.679 
1.0 0 . 655 

0.1 0 .783 
0 . 2 0 .7 27 
0 . 5 0 . 676 
1.0 0.655 

0 .1 0.755 
0.2 0 . 710 
0 . 5 0 . 660 
1.0 0 . 644 

aHarned and Owen (1958) 

bGibbard et al (1974) 

YExp 

0.78la 
0 .731 
0.673 
0.635 

0. 778c 
0 .735 
0.681 
0.657 

0. 774d 
0. 729 
0.677 
0.658 

0.758d 
0. 711 
0.659 
0.640 

cRobinson and Stokes (1959) 

dEnsor and Anderson (1973) 

<Peale 

0.932 
0.923 
0.921 
0.935 

0.932 
0.923 
0.921 
0.935 

0.934 
0.922 
0.922 
0.939 

0.926 
0.918 
0.921 
0 . 964 

OSMOTIC 

¢ Exp 

0.933b 
0.921 
0.911 
0.915 

0 . 932c 
0.925 
0.921 
0.936 

0.932d 
0.924 
0.923 
0.940 

0.927d 
0.919 
0.918 
0.939 

The calculated activity coefficients of NaCl in Table 3 . 2 are 

in excellent agreement with the experimental ones over the studied tern-

perature domain. At 80°C a considerable discrepancy between experi-

mental and calculated osmotic coefficients is observed. This discrep-

ancy is probably a result of assuming that o2~/oT2 is unimportant. 
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Nonetheless, for the range of t e mpera t ure of most natural wa ters, the 

above ass umption yields r eason able results. One may c onclude from the 

r e sults in Table 3.2 that the proposed simplifie d model may b e use d 

with high degree of certainty to compute the the rmody namic properties 

o f aqueous solutions at tempera tures b e tween 0°C a nd 40°C . At higher 

t empe ratures the usag e of the model should be discreet . 

Ha rned a nd Owen (1958) compiled the rel a tive partial molal en-

thalpies o f dilut e divalent cation sulfate solutions at 25°C . These 

values were used in this disse rtation t o calculate the Y variables, 

which corr espond to the left side of e quation (3.9) . TheY variables, 

as well a s the ir corresponding x1 and x2 values, we r e computed in the 

Appe ndix. It was previously discussed in this section that for most 

practical cases the last term in equation (3 . 9) can b e ignored. This 

assumption holds in the following mathema tical d e riva tions. 

Equation (3.9) is r epr e s ent ed by the linear polynomial equation 

(3 .7). It is initially assumed in this diss erta tio n tha t the b
0 

term 

(i.e., a{3° /a T), in equation (3 . 7) is equa l to zero. Ignoring bo, 

the following r e lationship is obtained whe n one divides this e quation 

(3 .14) 

If the above assumptions are correct over the studie d ionic 

s tre ng th range , for a given electrolyte solution, a plot of Y/X1 

against x2;x1 s hould yield points lying a long a straight line . Figure 

3 .5 g r aphica lly illustrates the results of this type of plots . 
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In all cases linearity is preserved for X2/x1 between 0.04 and 0.27~ 

This domain of the abscissa corresponds to ionic strengths from 0.36 

to 0.026m. Therefore, one may conclude that for this interval the 

above assumptions are valid. 

The intercept, b1, and the slope of any straight line, b 2 , in 

Figure 3.5 correspond to 8~1/8T and 8~2/oT respectively. Only two 

points are plotted for calcium sulfate in Figure 3.5 due to the limited 

solubility of gypsum. It is unreasonable to attempt to evaluate b1 and 

b 2 for CaS04 from this limited information. The b 1 and b 2 parameters 

for Caso4 were predicted according to a procedure described later in 

this section. 

Experimental enthalpy information of concentrated divalent 

cation sulfate solutions is extremely limited . The only available 

publication on this type of information seems to be the work by Snipes 

et al (19 75). These r esearchers have evaluated the relative apparent 

molal enthalpies of MgS04 at 40°C and up to 8 .0m. The values of Y, 

x1 and x
2 

for these Mgso4 solutions are evaluated in the Appendix. 

An attempt is now made to determine the actual magnitude of b 0 for 

Mgso
4 

solutions. The objective of such a determination is to demon

strate that for most practical cases the net effect of b 0 on the ther

modynamic properties of aqueous solutions is negligible. Subtracting 

b2X 2 from equation (3.7) yields: 

Y - b 2x2 = b 0 + b1X1 (3.15) 

Graphically calculating b 2 from Figure 3.5 one obtains that b2 

equals - 0.2475/deg . The left side of the previous equation may b e 
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then computed from the available information. The results of this 

computation are plotted as a function of x1 in Figure 3 . 6. The inte r

cept and slope of the best fit straight line in this figure correspond 

to b 0 and b1 respectively. The e ffect of b2 on the value of the depen

de nt variable in equation (3.15) may be visualized from the difference 

between the continuous and the dashed line s in Figure 3.6. The latter 

line repre sents a plot of the left side of equation (3 .15) ignoring the 

contribution of b 2 (i.e., b2 = 0 .). The following important conclu

sions may be drawn from the graphical results in Figure 3 .6: 

a ) The effects of b2X2 on the left side of equation (3 .15) are 

of importance, especially at low ionic strength. These 

effects are reflected on the linearity of the full points 

in Figure 3.6 . The excellent linear correlation of such 

points demonstrates the validity of the proposed magnitude 

o f b 2 • 

b) A l eas t-square analysis of Y + b2X2 as a function of x1 

shows that b 0 and b 1 e qual 0.0006/deg and 0.0272/deg. The 

assumption that one may neglect the effects of b 0 in dilute 

solutions is confirmed by the relatively small value of b 0 

in comparison with b1. This assumption should yield 

accurate r e sults up to ionic strengths as high as 2 .0 o r 

3 .Om. 

c) The value of b 1 calculated from the intercept of Figure 3 .5 

equals 0.0210/deg. This value is slightly different than 

the one calculated from the slope of Figure 3 .6. Howe ve r, 
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considering that data from ewo literature sources were 

utilized to compute these two values , the agreeme nt be twee n 

both values is remarkable. 

The values of bl (i.e . , o~1/oT) for 2:2 electrolyte solutions, 

as graphically calculated from Figures 3.5 and 3.6, are plotted as a 

function of their corresponding ~l values in Figure 3.7 . An excellent 

linear correlation coefficient of 0.93 is obtained for thes e data. The 

magnitudes of d1 and e 1 , which are listed in Table 3.2, are evaluated 

from a least-square analysis of the points in Figure 3.7. 

The value of ~l for CaS04 was utilized to estimate, from 

Figure 3.7, its corresponding magnitude of b 1 . The b 2 value of CaS04 

was then graphically evaluated from Figure 3.5 by assuming a best fit 

line (dashed line) with an intercept equal to b 1 . 

No apparent correlation was observed between the values of ~2 

and b 2 for divalent cation sulfates. Table 3.3 shows the calculated 

b 2 values (i.e., o~2/oT) for this type of electrolytes. 

TABLE 3.3 

DEPENDENCE OF {32 ON TEMPERAWRE 

Elect. 

CaS04 
CdS04 
CuS04 
MgS04 
ZnS04 

-55.70 
-48.07 
-47. 35 
-37 .23 
-32.81 

-0.284 
-0 . 515 
-0 . 393 
-0.248 
-0.280 
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3 . 3 Exampl e 

The purpo s e of this e xample is to illustrate the use of the 

e quations d eveloped in the two previous sec tions as applied t o the Ion 

Inte r ac tion Model. 

Statement: Calcula t e the osmotic c oefficient of a 1.0 m NaCl 

solution a t t = 40°C. 

Solut ion : According to e qua tion (3 . 1) a t t 40°C the dielec-

tric constant o f wate r equ a l s: 

E = 8 7. 924 - 0 .408 73 t + 1.01465 X 10-3t2 - 1 . 9365 X 10-6t3 

73 . 074 

The De bye-Hiickel coefficient may be ev a luated f r om equ a tion 

(3 . 3) as foll ows: 

A = 
1.400 X 106 

(E T) 3 / 2 
= 0 .4044 

For a 1 :1 e lectrolyte I is e qua l to the molal ity of the solu-

tion. Knowing tha t I = 1.0 m and A = 0.4044, the following r esult is 

obtaine d for the Debye -Huckel function (equat ion (2 . 3)): 

f ¢ = - 0 .1838 

The first and s econd virial coe fficients of MX e l e ctro l y t e 

solutions a t t °C may be calculated from their corresponding values a t 

25°C . Fr om equ ation (3.13) one obtains for sodium chl oride s olutions 

at 40°C: 

13!x It = ( d~x + e~x 13~x l2s0c) (t - 25) + f3Jx 125°C 
f 0 . 0831 

lo. 285 6 

for i 

for i 

0 

1 
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the values of d and e for the above calculations were obtained from 

Table 3.1 and the {3 values at 25°C from Pitzer and Mayorga (1973). 

One may proceed to calculate the interaction function for 

osmotic coefficients. From equation (2.4) one obtains 

Btfl = 0 . 1218 

Finally, inserting the appropriate variables into equation (2 . 2), the 

following result is obtained for the osmotic coefficient: 

¢ = 0 . 939 
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Chapter 4 

THE ACTIVITY COEFFICIENTS OF ALKALI 

AND ALKALINE EARTH BICARBONATES 

4.1 The Carbonate System in Aqueous Solutions 

The thermodynamic properties of the bicarbonate ion ar e of 

major importance in the study of the chemical equilibrium of aqueous 

solutions. However, the existing information on its behavior in such 

solutions is confusing and often inconsistent. The purpose of this 

section is to elucidate the chemical theory of the bicarbonate i on in 

aqueous solutions. 

The bicarbonate ion, HCOj, is the intermediate protonation 

state of the carbonate system. The most protonated state of this 

system being carbonic acid, H2co3 , and the least being carbona te 

itself, co3
2-. Carbonic acid is the direct result of the dissolution 

and hydration of carbon dioxide, co 2 . Although carbon dioxide exists 

as a dissolved component in aqueous solutions, its occurre nce is ofte n 

ignored in most chemical models (the reason being that dissolved C02 

is readily hydrated and available as carbonic acid). 

The chemical reactions which describe the v a rious protonation 

states of the carbonate system in an aqueous medium, as well a s the ir 

corresponding mass action equilibrium equations, are listed in Table 

4.1. (The adoption of the following convention greatly simplifies 

the nomencla ture of the equations in this dissertation: Variable s 
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enclosed in parentheses represent molal activities while those en-

closed in brackets (beginning on page 58) represent molal concentrations.) 

TABLE 4.1 

CHEMICAL REACTIONS AND EQUILIBRIUM EQUATIONS 
FOR THE CARBONATE SYSTEM IN WATER 

H20 = lrt + OH- (4 .1) 

Kw = (lrt)(OH-) (4. 2) 

co 2 (g) + H2o H2C03 (4.3) 

KH (H2co3 ) /PC0 2 a 1 (4.4) 

H2C03 H+ + HC03 (4. 5) 

Kl (H+)(HCOj)/(H2C03) (4. 6) 

HC03 H+ + CO 2-3 (4. 7) 

K2 (H+)(C03
2-)/(HCO)) (4.8) 

where PC02 represents the partial pressure of co 2 , 

Kw represents the ionization constant of 

water, 

KH represents the thermodynamic Henry's 

Law constant for co2 , and 

K1 and K
2 

represent the first and second 

thermodynamic ionization constant of 

the carbonate system. 

The thermodynamic constants in Table 4.1 are temperature 

dependent and may be calculated from semi-empirical relationships of 
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the form: 

log K = q + r/T + s/T (4.9) 

where q, r and s represent the temperature coefficients. 

The values of the tempe rature coefficients, as presented in 

the literature, are listed in Table 4.2. These coefficients may be 

used with confidence within the recommended temperature limits, 

0 to 50°C (Harned and Owen (1958)) . 

TABLE 4.2 

TEMPERATURE COEFFICIENTS FOR THE 
CARBONATE SYSTEM IN WATER 

K q r s Reference 

Kw 6.0875 -4470.99 0.01706 Harned and Owen (1958) 
KH -13.4170 2299.60 0.01422 Harned and Owen (1958) 
Kl 14.8435 -3404.71 -0.03279 Harned and Davis (1943) 
K2 6.4980 -2902.39 -0.02379 Harned and Scholes (1941) 

One observes from equations (4.4) and (4 . 6) that the activity 

of the bicarbonate ion may be expressed as a function of two variables: 

the partial pressure of carbon dioxide and the activity of the hydrogen 

ion. The latter property of a solution may be determined from experi-

mental measurements of the hydrogen potential (i.e., pH). The theory 

of the bicarbonate ion activity coefficient in alkali and alkaline 

earth chloride solutions, unde r a constant partial pressure of co2 , is 

studied in the following section. 
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4.2 General Principles of the Bicarbonate Ion Activity Coefficient 

At a specific temperature the activity of a specific ion in a 

mixed electrolyte solution is a function of the molality of the 

various ions in solution and the virial coefficients of counter-ions, 

like-charge ions and triplets. Obviously, in order to estimate the 

bicarbonate ion activity coefficient in mixed electrolyte solutions, 

one needs to know the virial coefficients for cation-bicarbonate salts. 

For maximum accuracy it is also desirable to know the virial coeffi

cients for anion-bicarbonate and cation-bicarbonate-cation virial 

coefficients. 

The effect of like-charge and triplet interactions on the 

activity of an ion in solution is usually minor in comparison with 

opposite charge interactions. For the above reason, the emphasis of 

this chapter is the exclusive study of cation-bicarbonate interac tions. 

The objective of this chapter is to experimentally obtain the virial 

coefficients between bicarbonate and the most common cations present in 

natural and contaminated waters. These cations areNa+, K+, NH4+, Ca2+ 

and Mg2+. 

The virial coefficients of an electrolyte MX are usually 

determined by one of the two following experimental methods (Pitzer 

and Mayorga (1973)): 

a) by measurements of the osmotic coefficients of single MX 

solutions, or 

b) by potentiometric measurements of the activity of M or X 



57 

in single MX solutions. 

The first experimental method requires the equilibration be

tween the osmotic (or vapor) pressures of a sample MX solution and a 

solution with known osmotic (or vapor) pressure. Due to the long 

periods of equilibration (up to several days) and the presence of the 

carbon dioxide gas phase, this experimental technique cannot be em

ployed to evaluate the MHC03 virial coefficients. 

The activity of bicarbonate in an aqueous solution is inti

mately related to the activity of the hydrogen ion. Theoretically, the 

MliC03 virial coefficients can be determined from potentiometric mea

surements of the hydrogen ion activity in MHC03 solutions under a 

constant partial pressure of carbon dioxide. Unfortunately, due to the 

amphiprotic properties of HC03-, the carbonate ion constitutes a con

siderable proportion of the total negative charge of the solution at 

pH values as low as 8.0 . Therefore, the presence of this last anion in 

concentrated MHC03 solutions affects the electroneutrality condition of 

the solution and hinders any attempt to evaluate the viral coefficients 

of MHC03 . Two alternate experimental procedures to evaluate these 

coefficients are proposed in.the following sections. 

4.3 Theoretical Approach to YMHCOJ in MCl-MHCOJ Solutions 

At pH values below 7. 0 the two anions of importance 

in a MCl - MHCOJ solution are chloride and bicarbonate. 

At a known temperature and partial pressure of COz, the pH of a MCl 
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solution containing a fixed concentration of MHe03 and a variable con

centration of Mel is a function of the Mel and MHeo3 virial coeffi

cients. The electroneutrality condition (ENe) for this type of solu

tion is as follows: 

(4.10) 

Assuming that the hydrogen ion concentration is small (relative 

to the bicarbonate ion concentration) and that the cation M is mono

valent, one obtains the following relationships for the mass balance 

conditions (MBe) of the particular problem: 

[e1 - ] = [Mel] 

[w] = [MHeo3J + [Mel] 

(4.11) 

(4.12) 

Simultaneously solving the three previous equations, the fol

lowing simple equality is obtained: 

(4 .13) 

The bicarbonate ion concentration may be expressed as a func

tion of its activity and activity coefficient: 

(4.14) 

One observes from equations (4.4) and (4.6) that the activity of 

bicarbonate ion equals Peo2KHKl a 1/ (H+) . In the ideal conditions of 

infinite dilution the natural logarithm of a 1 is, according to equation 

(2.7), equal to -0.036(M]. Due to the minor effects of a 1 on the 

solution equilibrium conditions one may confidently assume that its 

natural logarithm behaves ideally. Inserting the appropriate values 

into e quation (4.14) and t akin g the natural logarithms of the resulting 

relationship one obtains: 
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ln ( PC02KHK1E)- 0 . 036I + 2.303pH - ln YHco
3 

(4.15) 

I [M] for l:l electrolytes, and 

pH represents the negative logarithm (base 10) of the mea-

sured hydrogen ion activity, 

pH = pH0 
- pE (4.16) 

pH0 represents the actual pH of the solution, and 

pE = -log10E represents the pH calibration error. 

Expressing the natural logarithm of the bicarbonate ion as a 

function of the ionic concentrations and the appropriate virial coeffi-

cients (equation (2.13)), one obtains: 

2.303 pH- f- 0.036I - I(I-[MHC03])(~~Clg1' + ~Cl) 
0 Ql 

b + 2 I{3 MHC03 + 2 I gl fJ MHC03 ( 4. 17) 

where b ln (PC02KHK1E/[MHC03]) (4.18) 

Equation (4.17) is a polynomial of the form 

y = b + ~0MHC03Xl + ~1MHC03X2 + CMHC0
3

X3 (4.19) 

where Y represents the left side of equation (4.17), and 

x1 , x2 and x3 represent their respective functions of I in 

equation (4.17) 

Equation (4.17) describes the behavior of a measured pH func-

tion as one increases the ionic strength of a MHC03-MCl solution by the 

addition of MCl. (The t emperature of the solution and partial pressure 

of C02 must be constant.) 

Experimental pH measurements with accuracies greater than 

0.01 pH unit are difficult to obtain (Bates (1973)). However, the 
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precision of most modern digital meters is 0.001 pH unit. In other 

words, the accuracy of an individual pH reading is often below 0.01 

unit, but the accuracy of pH variations (i.e., JpH) is as high as 

0.001 unit. The method proposed in this work estimates the MHC03 

virial coefficients not based on absolute pH measurements, but on rel

ative values. Any least-square analysis of Y as a function of x1 , 

x2 and X3 must yield, regardless of the magnitude of the calibration 

error, constant calculated MHC03 virial coefficients (i.e., the pE is 

only reflected on the calculated b value). 

The described theoretical approach to the evaluation of the 

MHC03 virial coefficients was derived for solutions containing concen

trations of bicarbonate ion much greater than the concentrations of 

hydrogen ion (pH values between six and seven). Due to the limited 

solubility of calcium, magnesium and ammonia under these alkaline con

ditions, the virial coefficients for Ca(HC03) 2 , Mg(HC03)2 and NH4HC03 

have to be determined by the alternate model described in the following 

section. The applicability of the previously derived equations is 

therefore limited to the evaluation of the virial coefficients of 

sodium and potassium bicarbonate. 

4.4 Theoretical Approach to YMHC03 in MCl-H2C03 Solutions 

A second chemical model, which is able to predict the activity 

of bicarbonate ion in the presence of any of the studied cations, is 

presented below. This model relies on experimental pH measurements of 

single cation chloride solutions under a constant partial pressure of 
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co 2 . Even though this method is more versatile, its accuracy is lower 

due to the following reasons: 

a) Most chloride salts contain trace amounts of alkalinity, 

which may considerably affect the equilibrium conditions of 

the system. Therefore, a salt alkalinity correction must 

be included in the model. 

b) Under the proposed conditions, the activity of the bicar

bonate ion is strongly dependent on the activity coeffi

cient of the hydrogen ion. The latter ion exhibits unusual 

behavior in the presence of other cations. Thus, like

charge interactions must be considered in the model to ex

plain the behavior of the hydrogen ion. 

The trace alkalinity of a single MCl solution may be expressed 

as a fraction, p, of the ionic strength. The ENC for this type of 

solution under a constant partial pressure of carbon dioxide is 

and the MBC is 

zM[M] = [c1-] +pi 

Subtracting equation (4.21) from (4.20) one obtains 

[H+] = [HC03-J -pi 

( 4. 20) 

(4. 21) 

(4.22) 

It is commonly accepted that the hydrogen ion exists hydrated 

by one or more water molecules (Bates (1973)). In the following deri

vation it is assumed that the hydrogen ion is present as hydronium ion, 

H3o+. Expressing concentrations as activities and rearranging terms in 

the previous equations, the following relationship is obtained. (In 
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order to simplify nomenclature in the derivations H30+ is express ed as 

(4 . 23) 

Calculating the activity of the bicarbonate ion in equation 

(4.23) as a function of PC02, a 1 and (H+) (equations (4.4) and (4.6)), 

and expressing the activity coefficients according to equations (2 . 12) 

and (2.13) one obtains the following relationship: 

where 

1.151 ZM(ZM + l)pH- ~ (ZM + 1) ln {1 +pi/ [HJ} + I8;M 

-~M (ZM + 1) ln {Pc02KHK1E2 } + (f3°MHCOJ - Z,J3°Hcl) I 

1 1 2 
+ <13rilico3 - z~cl) I g (I) + (cMHCOJ - z McHcl) 2 I I (ZM + 1) 

(4. 24) 

The alkalinity fraction, p, may be determined from pH measure-

ments of aqueous MCl solutions under two different partial pressure s of 

carbon dioxide, PCo 2
1 and PC0 2

2 It can be demonstrated that 

where 

pi= (w- l)/([H!J2- (H~]l) 
w PC02

2 
exp {4.605(pH2 - pH1 )l 

PCo 21 

(4 . 25) 

(4. 26) 

For symmetric mixing (i.e., mixing of two or more electrolytes 

whose anionic and cationic valences are equal) the like-charge virial 

coefficients may be assumed to be constant over the ionic strength of 

the solution (Pitzer and Kim (1974)). Pitzer (1975) has observed 

marked deviations from this ideal behavior for unsymmetrical electro-

lyte mixing. The like-charge interaction coefficient, for cases of 

unsymmetrical mixing, may be expres sed as a function of the ionic 
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strength of the solution. Therefore, for MCl- H2C03 mixing the H-K, 

H-Na and H- NH4 ineeractions, OHM may be assumed to be constant. (Pitzer 

and Kim report 8 values for these types of interactions.) The 

non- ideal dependence of e with the ionic strength of the solution for 

H+Ca and a+Mg interactions may be evaluated from pH measurements of 

HCl-CaC1 2 and HCl-MgC1 2 solutions . Ignoring triple ion interactions 

the following is true for a solution containing a fixed concentration 

of HCl, [c1;], and 

2 [ M J eH~M c I) 

a variable concent ration of MC1 2 : 

2 . 303 pH+ f + lnl [ cl0 ]E} + 0.036(I/Z) 

+ [ cl-] ( 2(BHCl + [ cl- ]CHcl) + [M](BMCl 

+ [I:P-] (BHCl + CHCl)} 

The ionic strength in the above equation may be assumed to be 

equal to the value utilized in equation (4.24) for values of I much 

larger than [c1;]. Equations (4.25) and (4.27) require the knowledge 

of the hydrogen ion concentration. This parameter is computed by 

dividing the hydrogen ion activity by its activity coefficient (calcu

lated from equation (2.12)). 

The MHC03 virial coefficients may be estimated by the use of 

the chemical model studied in this chapter. This estimation requires 

the following information: 

a) pH measurements of MCl solutions under two different carbon 

dioxide partial pressures, and 

b) in the case of M divalent, pH measurements of MCl2-HCl 

solutions. 

Due to the many mathematical manipulations and assumptions 
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involved in the derivation of this model, it is expected that its 

accuracy will be lower than the model studied in the previous section 

(which can only be utilized to evaluate the virial coefficients of 

NaHC03 and KHC03). 

4.5 Experimental Procedures 

The virial coefficients of MHC03 salts may be evaluated from 

pH measurements of MCl-MHC03 and MCl-HzC03 solutions, as discussed in 

the two prior sections. The experimental procedures required for this 

type of evaluation are considered in this section. 

The experimental pH measurements of the aforementioned solu

tions are performed in the chemical reactor shown in Figure 4.1. (A 

complete listing of the equipment and instruments utilized in the ex

perimental phase of this dissertation is given in Table 4.3.) This 

figure illustrates the reactor in a disassembled form, so that its 

individual parts may be clearly seen. By means of the access port, 

250 grams of double distilled water are added into the previously 

washed and assembled reactor . The access port is also used when a 

known amount of salt needs to be added into the reactor. At any other 

time, this port is kept closed. A constant solution temperature is 

achieved by means of a constant temperature circulator which pumps 

water through the double wall bath. The thermometer in Figure 4.1 is 

used to confirm that the solution temperature is the desired one. 
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Figure 4.1 Chemical Reactor. A) Access Port, B) Constant 
Temperature Bath (1 liter), C) Cover, D) Glass Diffuser , 
G) Glass El ectrode, R) Re f e rence Electrode, S) Stirrer, 
T) Thermometer 
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TABLE 4.3 

EQUIPMENT AND INSTRUMENTS USED 
IN THE EXPERIMENTAL PROCEDURE 

Calomel reference electrode (Beckman 1170-5, 
fiber type) 

Constant temperature baths (1 liter and 0.25 
liter) 

Constant temperature circulator (Haake F K, 
approximate precision: 0.05°C) 

Digital pH meter (Orion 801, precision: 0.001 pH 
unit) 

Gas flow meter (Matheson R-2-15-B) 

Glass diffusers (Pyrex ASTM 40.60 12 C) 

Low sodium E2 glass (pH) electrode (Beckman 39099) 

Propeller stirrer (Talboys 0-5000 RPM 30W) 

Thermometer (ERTCO 84627 -20 to 110°C) 

The propeller-like stirrer is used for the following purposes: 

a) To guarantee constant temperature and homogeneity through-

out the solution, 

b) To facilitate the dissolution of salts and carbon dioxide 

in the reactor, and 

c) To avoid false pH readings, especially in low buffer 

capacity solutions. 

A common misconception in the experimental determination of the 

pH of a solution is that the solution should not be stirred while 

readings are taken . This procedure is erroneous; in fact, the sample 
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should be rapidly agitated a round the electrodes. Bates (1973) men

tions that "the pH of water can perhaps best be measured in a flow cell 

that permits a high rate of flow past the electrodes ." For the 

d escribed reactor, e stimates of flow v elocities around the e lectrodes 

y i eld e d values o f approximately 30 em/sec . 

In order to maintain a constant partial pressure of co 2 within 

the r eac tor, 300 cc/min of a co 2-Nz mixture we r e bubbled into the solu

tion by means of the g lass diffus e r shown in Figure 4 . 1 . (The partial 

pressure of carbon dioxide in the gas mixture was known.) Prior to its 

introduction into the system, the gas mixture was bubbled in a dis

tilled water constant temperature bath. The purpose of this pre

treatment of the gas mixture was twofold: first, to saturate the gas 

with r es pec t to wate r, and second, to e qualize the gas t empe rature with 

the solution t empe rature. 

The refere nce calomel electrode and glass (pH) electr od e are 

s h own in Figure 4.1. These electrodes are connected t o an 801 Orion 

digital pH meter (not shown). The precision of this appar atus is 0.001 

unit. The pH measurement procedure is as follows: 

a) The temperature dial is s e t at the appropria t e solution 

t emperature , and the slope set at 100 pe r cent. 

b) The e l e ctrodes are immersed in a constant temperature bath 

prior to the pH me t e r calibration. 

c) The pH mete r is calibrated with a 6.84 standard pH buffe r 

solution. The s lope of the e l ectrodes is calibrated by 

ad justing the t e mpe r ature dia l until the pH reading equ als 
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the pH of a second 4.01 standard pH buffer solution. (The 

temperatures of the buffe rs and electrodes must be equal to 

the solution t e mpe rature .) The measured slope in the par

ticular set of electrodes utilize d in this res earch was 

never b e low 98.5 per cent. 

d) The electrodes are inserted in their corresponding openings 

located in the cover of the reactor. The concentration of 

salt, MCl, in solution is increase d by increme nta l addi

tions of MCl. pH measurements are taken af ter the dis

playe d pH readings have reached a constant value (i . e ., 

equilibrium) . 

4 . 6 Experimental Determination of the MHC03 Virial Coefficients 

The theoretical approach to the evaluation of the MHC03 virial 

c oeffici e nts were studied in sections 4.3 and 4.4. It was found in 

the se two sections that, according to the Ion Interaction Model, the 

MHC03 virial coe fficients could be evaluated b y means of a l east-square 

analysis of a function Y(pH) against functions X1(I) and X2 (I). The 

experimental procedures involved in the determination of the pH of 

MCl - MHC03 and MCl-H2co3 solutions under constant tempe rature a nd PC02 

we r e discuss ed in the previous s ection . The purpose of this s ection 

is to obtain the MHC03 virial coefficients from experimental measure 

ments of the pH in these type s of solutions. The cations (M) studied 

in thi s r esearch include K+, Na+, NH4+, Ca2+ and Mg 2+ . 
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The virial coefficients of KHC03 and NaHCOJ may be determined 

from experimental pH measurements of MHC03- MCl solutions (where M = K, 

Na). The temperature and PC02 of such solutions are kept constant 

throughout the experimen t ation period, which is approximately one hour. 

Tables 4.4 and 4.5 contain the experimental pH0 measurements of MHC03 

solutions as one increases the ionic strength by adding r eagent grade 

MCl. (The pH0 of a solution is the actual pH value, which is obtained 

by adding the calibration error to the pH r eading . The calibra-

tion error is easily calculated from the first coefficient of the least

squar e analysis . ) The MHC03 virial coefficients, as calculated from 

least-square analyses of each set of data, are given in Tables 4.4 and 

4.5 . 

The pH0 of the solutions in Tables 4 . 4 and 4 . 5 may be calcu

lated as a function of the ionic strength of the solution, once the 

MHCo3 virial coefficients are known . Next to the measured pH0 values 

are also included the difference between the measured and calculated 

pH 0 values. 

Two different gas mixtures were utilized in this experimental 

phase . The mixtures, as prepared by the manufacturer (Matheson Gas 

Products) contained 100:0 and 50:50 C02:N2 aquarator grade. The actual 

PC0 2 over the solution, was approximately three per cent lower than the 

dry mixture due to its saturation with respect to water vapor in the 

reactor. 

The following important conclusions are obtained from the ex

perimental results in Table 4.4 and 4.5: 
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TABLE 4.4 

pH0 VALUES IN KHC03-KCl SOLUTIONS 

PC02 0.97 0.97 0.48 0.97 

to 10° 25° 25° 40° 

(KHC03] 0.1 0.1 0.05 0.1 

I(m) pHo D'l'< pHo D>'< pHo D>'< pHo D* 

0.2 6 .574 0 6.656 2 6.656 2 6 . 7 51 0 
0.4 6.516 0 6.602 -l 6.602 0 6 .703 l 
0.6 6.479 -1 6.567 0 6 . 570 0 6 . 668 -2 
0 . 8 6 . 456 2 6.545 0 6.547 1 6 . 646 -l 
l. O 6.432 -2 6 . 527 0 6 . 528 0 6 . 630 l 

1.2 6 . 417 -1 6.511 1 6 . 513 0 6 . 615 0 
1.4 6.406 1 6.501 0 6.501 0 6 . 605 1 
1.6 6 . 394 0 6 . 491 1 6 . 490 -1 6.596 1 
1.8 6.385 1 6 .484 1 6.483 0 6.579 -1 
2.0 6.376 -1 6.476 0 6.475 0 6.579 -1 

2.2 6.369 -1 6.471 -1 6.469 0 6.573 -1 
2.4 6.365 1 6 . 463 0 6 . 464 0 6.569 0 
2.6 6 . 359 - 1 6 . 461 0 6.460 1 

I 
6.564 0 

2 . 8 6.356 1 6.457 0 6.455 0 6.560 0 
3.0 6.352 0 6.453 0 6 . 451 -1 6.557 1 

po 0.0336 0 . 0550 0.0252 0.0445 
pl -0.1731 -0.1968 -0.0699 -0.0943 
c -0.00130 -0.00658 -0.00168 -0 . 00480 

* D (pH0 observed - pH0 calculated) x 103 
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TABLE 4.5 

pH0 VALUES IN NaHC03-NaCl SOLUTIONS 

PC02 0.97 0.97 0.48 0.97 

t°C 10° 25° 25° 40° 

( NaHC03] 0 . 1 0.1 0.05 0.1 

I(m) pRo D* pHo D>'< pHo D''' pHo D* 

0 . 2 6 . 562 2 6.644 2 6.642 0 6.730 1 
0.4 6.494 0 6 . 581 1 6.579 0 6.664 1 
0 . 6 6 . 450 0 6.537 - 1 6 . 538 0 6.621 -1 
0 . 8 6 . 415 -1 6.505 0 6.506 0 6.590 0 
1.0 6 . 389 1 6.479 0 6.480 -1 6.565 0 

1.2 6.365 0 6.457 0 6.460 1 6.544 1 
1.4 6.345 0 6.439 1 6.442 1 6.525 0 
1.6 6 . 328 0 6.423 1 6 .425 0 6 . 509 0 
1.8 6.313 0 6.408 0 6.411 0 6.494 0 
2.0 6 . 300 0 6 . 395 0 6 . 398 0 6 . 481 0 

2 . 2 6 . 288 0 6.383 - 1 6.386 0 6.470 0 
2.4 6.317 0 6.373 0 6 .376 0 6 .458 -1 
2.6 6.266 0 6.373 0 6.366 0 6.449 0 
2.8 6.258 0 6 . 355 0 6.352 0 6.439 0 
3.0 6.249 0 6.346 0 6 . 349 0 6 .431 0 

po 0 . 00731 0.0064 0.0016 0.0059 
p l - 0.2559 -0.2169 -0.1592 -0.1486 
c -0.00141 - 0.00246 - 0 . 00221 -0.00302 

* D (pR0 observed - pR0 calculated) x 103 
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a) The addition of a n eutral MCl salt to an MllC03 buffe r 

causes a d ecr ease of the solution pH. This decrease may 

be accurately d e scribed by the pr oposed Ion Interaction 

Model , whos e precision in a ll cases was a t l eas t 0.002 pH 

unit. 

b) Two sets of experimental pH0 measurements of MHCOJ-MCl 

solutions at 25°C we re performed at PC0 2 values of 0.97 and 

0.48. The r a tios of both PC0 2 we r e approximately equal to 

2.0. The ratios of the bica rbonate concentrations in b o th 

solutions also equaled 2 . 0 . Under thes e experimental con

ditions the theore tical mode l predicts that, for all prac

tical purpos e s, the measure d pH0 values in both cases 

should b e equal. The validity of the model is exp e rimen

tally d emonstra ted for the given conditions in that the 

absolute diffe r e n ces b e tween both sets of pH0 values at 

25°C never e xceede d 0.002 pH units. The excellent repro

ducibility of the measurements confirms the a ccura c y of the 

experime ntal procedure s. 

c) The calculated MHC03 virial coefficients a t 25°C a r e some

what diffe rent for the two give n conditions. These d if

ferences are due to minor pH0 measurement e rrors in the 

low ionic strength r ange. The e ffect of the s e e rrors on 

the c a lcula t e d viria l coefficie nts is considerable on the 

values of the p1 coeffici ents. None theless, the pH0 

of b o th sets of solutions may b e accurate l y predicte d by 
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using either one of the sets of calculated MHC03 virial 

coefficients. 

d) The t emperature variation of the MHC03 virial coefficients 

is positive as predicted by e quation (3 . 12). The experi

mentally determined variations of ~1 with temperature are 

very similar to those predicted by equation (3.13). How

ever, the experimental variations of $ 0 with temperature 

are slightly different than the ones calculated by equation 

(3.13) . Such differences may be due to HC03-- cl- inter

actions, whose effects are directly reflected on the value 

$0. 

The virial coefficients of MHC03 salts may be evaluated from 

pH measurements of MCl-HzC03 solutions according to the model proposed 

in Section 4.4. In order to apply this model it is necessary to con

sider H+M interactions. ForM monovalent, the H+M interaction coeffi

cients may be assumed to be constant with the ionic strength and tem

perature. The values of 8H+M for the studied monovalent cations, as 

presented by Pitzer and Kim (1974), are 0.005, 0.036 and -0.016 for 

H-K, H-Na and H-NH4 interactions. 

Due to the low buffering capacity of HzC03 solutions, one needs 

to consider the alkalinity effects of the salt MCl on the equilibrium 

conditions of the system. According to Section 4.4, the MCl alkalinity 

content may be e stima t e d from pH measurements of HzC03-MCl solutions 

under two different partial pressures of COz . The effectiveness of 

the method proposed in Section 4.4 may be evaluated by computing the 
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virial coefficients of KHC03 and NaHC03 from pH measurements of KCl 

and NaCl solutions under two different PCOz. The results for these 

types of measurements are given in Table 4.6. The MCl and HCl virial 

coefficients utilized for the calculation of the MHC03 virial coeffi

cients are taken from Pitzer and Mayorga (1973) . 

The values of p in Table 4 . 6 a r e not calculated for ionic 

strengths below 1.0 m due to imprecisions of the theoretical model and 

pH0 measurements in dilute solutions . The average value of the alka

linity factor, p , is used to calculate the MHC03 virial coefficients 

according to the model derived in Section 4 . 4 . 

A comparison between the values of the MHC03 virial coeffi

cients calculated by the method in Section 4.3 and the one in Section 

4 . 4 reveals that the latter method yields reasonable estimates for the 

first two virial coefficients. The validity of the Ion Interaction 

Model, as applied to bicarbonate solutions, may be sensed in practical 

terms by comparing the calculated pR0 of MCl-HzC03 solutions utilizing 

the MHC03 virial coefficients of each method . This comparison is 

shown in Table 4 .7, which contains the ~pH0 between both methods. The 

accuracy of pH0 prediction of the Ion Interaction Model is r epresented 

by the ~pR0 values in Table 4. 7. This accuracy is higher than 0. 01 pH 

unit for ionic strengths below 3. 0 M . 

The NH4HC03 virial coefficients may be determined from pHO 

measurements of NH4Cl-RzC03 solutions . Table 4.8 contains the results 

of these measurements at 25° and 40°C. The alkalinity fraction of 

NH4Cl is evaluated from the two sets of measurements at 25°C. 
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TABLE 4.6 

M K Na 

PC0 2 0.48 0.97 p X 105 0.48 0.97 p X 105 

I (m) 

0.2 4.041 3.887 4.031 3.880 
0.4 4.022 3.867 4.0ll 3.850 
0.6 4.006 3.851 3.984 3.824 
0.8 3.993 3.837 3.962 3.803 
l.O 3.982 3.823 3.945 3.784 

1.2 3.971 3.8ll 1.68 3.928 3.766 2.47 
1.4 3.961 3.800 1.57 3. 911 3.749 2.11 
1.6 3.952 3.789 1.66 3.898 3.734 2.18 
1.8 3.945 3.780 1.65 3.886 3. 720 2.21 
2.0 3.937 3. 771 1.55 3.875 3.706 2.39 

2.2 3.931 3.762 1.66 3.864 3.694 2.25 
2.4 3. 924 3.754 1.57 3.855 3.683 2.24 
2.6 3.919 3.746 1.64 3.847 3.674 2.11 
2.8 3.914 3.738 1.62 3.843 3.667 2.19 
3.0 3.911 3.733 1.66 3.840 3.660 2.32 

f3°MHC03 0.0266 -0.0166 

{3
1

MHC03 -0.0840 -0.1414 

c 0.00112 0.00159 

p 1. 63 x lo-5 2. 25 X 10-5 

Similarly, one may evaluate the virial coefficients of Ca(HC03)2 

and Mg(HC03)2 salts from pRO measurements in MCl2-H2C03 solutions. In 

order to perform this evaluation it is necessary to know the inter-
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TABLE 4.7 

~pH0 VALUES FOR MCl-H2C03 
SOLUTIONS AT 250C* 

M 

I(m) 

0.2 
0.4 
0.6 
0.8 
1.0 

1.2 
1.4 
1.6 
1.8 
2.0 

2.2 
2.4 
2.6 
2.8 
3.0 

K 

-0.001 
-0.002 
-0.002 
-0.003 
-0.003 

-0.003 
-0.003 
-0.004 
-0.005 
-0.005 

-0.007 
-0.008 
-0.009 
-0.010 
-0.012 

Na 

0.000 
0.000 
0.000 

-0.001 
-0.001 

-0.002 
-0.003 
-0 .003 
-0.003 
-0.003 

-0.004 
-0.004 
-0.004 
-0.004 
-0.004 

*~pRO = pRO calculated 
from MHC03 virial coefficients 
of the MCl-R2C03 method minus 
the pR0 calculated from the 
MRC03 coefficients of the MC1-
MHC03 method. 

action characteristics between R~and M (where M = ca2+, Mg2+). These 

characteristics are easily obtained from pR0 measurements of RCl-MCl2 

solutions. The experimental pRO measurements in these types of solu-

tions and in MCl2-R2C03 solutions at 25°C are presented in Tables 4.9 

and 4.10. Due to the uncertainty of both the theoretical model a nd 
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TABLE 4.8 

pH0 MEASUREMENTS IN N~C1-H2C03 SOLUTIONS 

PC0 2 0.48 0 . 97 0.97 
p X 105 

t°C 25 25 40 

I(m) 

0.2 4.044 3.884 3.934 
0 . 4 4.014 3 . 861 3.901 
0 . 6 3 . 993 3.841 3.977 
0 . 8 3.974 3.822 3.856 
1.0 3.957 3.806 3 . 836 

1.2 3.941 3 .790 3.820 -0. 28 
1.4 3 . 926 3 . 776 3 . 804 - 0.39 
1.6 3.911 3.761 3.788 - 0.34 
1.8 3.896 3 .747 3. 773 -0.41 
2 .0 3.881 3. 732 3.759 -0.37 

2.2 3.867 3. 718 3 .745 -0. 33 
2.4 3.854 3. 706 3 .731 -0.37 
2.6 3 . 841 3.693 3 . 718 -0.33 
2 . 8 3.829 3.681 3 .705 -0.30 
3 .0 3.817 3.669 3 .692 - 0.27 

{J
0

MHC03 -0.0011 0.0250 

fl1MHC03 -0.0336 -0.1 205 p = -0.34 X 10-5 

~C03 0.00024 0.0002 

experimental procedures involved in the evaluation of the M(HC03)2 

virial coefficients, one may assume , without much loss of accuracy, 

that the third viria1 coefficient has a value of zero. 

Pitzer and Mayorga (1973) mention that the d e gree of unce r-
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TABLE 4.9 

pH0 VALUES IN CaC1 2-H2co3 SOLUTIONS AT 25°C 

PC0 2 0.48 0.97 pH''' p X 105 

I(m) 

0.2 4.044 3.886 1.338 
0.4 4.042 3.869 1.323 
0.6 4.044 3.858 1.303 
0.8 4.047 3.851 1. 281 
1.0 4.052 3.845 1.257 

1.2 4.056 3.843 1.234 20.1 
1.4 4.061 3.840 1.211 21.1 
1.6 4.065 3.838 1.187 21.3 
1.8 4.069 3.836 1.164 21.8 
2.0 4.072 3.834 1.141 22.0 

2.2 4.074 3.832 1.117 21.8 
2.4 4.077 3.831 1.093 21.8 
2.6 4.079 3.830 1.070 21.4 
2.8 4.080 3.829 1.047 20.5 
3.0 4.080 3.827 1.024 19.8 

~Ca(HC03) 2 0.0886 

{3
1
Ca(HC03) 2 1. 2670 p = 21.2 

Cca(HC03) 2 
0.0000 

*pH of a solution containing -0.05 m HCl and I/3 m 
CaCl2 

tainty of the virial coefficients of electrolytes increases with the 

valences of the counter-ion components. It is therefore expected that 

the virial coefficients of the bicarbonate salts will be more accurate 

for M monovalent than for the divalent case. As expected, the confi-
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TABLE 4.10 

pH0 VALUES IN MgC1 2-H2co3 SOLUTIONS AT 25°C 

PC0 2 0.48 0.97 pH>'< p X 105 

I (m) 

0.2 4.022 3.870 1. 248 
0.4 3.976 3.823 1.233 
0.6 3.938 3.786 1. 210 
0.8 3.906 3.752 1.182 
1.0 3.877 3. 722 1.159 

1.2 3.849 3.693 1.136 1.72 
1.4 3.823 3.667 1.113 1.55 
1.6 3.798 3.643 1.089 1.15 
1.8 3. 775 3.619 1.064 1.30 
2.0 3.753 3.596 1.038 1.44 

2.2 3.730 3.573 1.013 1.38 
2.4 3.709 3.552 0.988 1.27 
2.6 3.690 3.531 0.965 1.58 
2.8 3.670 3.510 0.941 1.69 
3.0 3.650 3.491 0.916 1.42 

P0

Mg(HC03) 2 -0.0461 

P
1
Mg(HC03) 2 

0.9159 75 = 1.45 

~g(HC03)2 0.0000 

~~H of a solution containing - 0.05m HCl and I/3m 
MgC1 2 

d ence degree of the method described in Section 4.4 is low in the case 

of M divalent. One concludes that this method is not accurate enough 

to estimate the temperature variations of the virial coefficients o f 

diva l ent cation bicarbona te salts. It is assumed throughout this 
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dissertation that the tempe r ature effects on the values of thes e 

coeffici ents may b e described by equation (3.13). 

4.7 Temperature Effects on the MHC03 Virial Coefficients 

The virial coefficients at 25°C of various MHC03 electrolytes 

were experimentally determined in the previous section. These coeffi

cients were also determined at other temperatures for the case of M 

monovalent. Two experimental methods were utilized to estimate the 

KHC03 a nd NaHC03 virial coefficients. The first one, and more accurate, 

was b ased on pH measurements of NaCl solutions under alkaline condi

tions. The second one required pH measurements of NaCl solutions under 

acidic conditions. Due to the higher reliability of the first me thod, 

the KHC03 and NaHC03 virial coefficients summarized in this section are 

those determined under alkaline conditions. 

The experimentally determined MHC03 virial coe fficients are 

compiled in Table 4.11 (in which the values at 25°C are averaged). It 

is assumed in this dissertation that the third virial coefficient, C, 

does not change with temperature. The C magnitudes reported in Table 

4.11 are the average of the values at various temperatures. It is 

a lso assumed in this work that the value of C for M divalent is equal 

to zero. 

The variations of the MHC03 virial coefficients with tempe ra

ture have been calculated from the data in Table 4.11 and are included 

in this Table. These values have been plotted as a function of their 
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TABLE 4.11 

SUMMARY OF THE MHC03 VIRIAL COEFFICIENTS 

M 10°C (~@) X 104 25°C (~~) X 104 40°c 

{30 

K+ 0 . 0336 4.33 0.0401 2 . 93 0.0445 
Na+ 0. 0073 - 2 . 21 0.0040 1. 27 0.0059 
NH~+ -0.0011 7.43 0.0250 
Ca + 0.0886 
Mg2+ -0.0461 

K+ -0.1731 26.5 -0.1334 26.1 - 0 . 0943 
Na+ -0.2559 45.2 -0.1881 26 . 3 - 0.1486 
NH4+ -0.0336 -57. 9 - 0.1205 
ca2+ 1. 267 
Mg2+ 0.9159 

c 

-0.00359 
-0.00228 

0.00022 

respective virial coefficients in Figure 4 . 2. 

The best-fit lines in Figure 4.2 were calculated in Chapter 3 

from thermodynamic information of 20 1:1 electrolytes . The temperature 

variation of the NaHco3 virial coefficients were estimated from the 

respective points in Figure 3.3. These points were obtained from the 

literature values of dilution enthalpies of NaHC03 (Leung and Millero 
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(1975)). From Figure 3 . 3 one obtained 1.75 x lo-4/°K fo r the tempera-

. 
ture v a riation of the first virial coefficient of NaHC0 3 , and 

41 .5 x 10-4 / °K for the second on e . These values we r e a ls o plotted in 

Figur e 4.2 as a function of the ir corresponding virial coefficients. 

It is important t o r emember that $//JT e quals a{3/aT when f3 

is a linear functio n of tempe r ature. It is assumed in this disserta-

tion tha t this line arity condition holds over the studied r an ge of 

temperature. (The operators /J and a are us ed inte rchangeably thro ugh-

out this dissertation.) 

The following important conclusions are obtained from the 

r esults in Figure 4.2: 

a) The experimentally determined values of /Jf3/ /J T of NaHC03 

solutions are in exc e llent agr eement with those calculated 

from the d a ta by Leung and Millero. This agreement con-

firms the v a lidity o f the Ion Interac tion Model as applied 

to MHC03 solutions. 

b) The /Jf30//J T points for MHC03 electrolytes a r e somewhat 

l ower than the expec ted v a lues . The r eason for this devia-

tion is not we ll understood. A possible explanation for 

this deviation is that no HC03-Cl interactions we r e con-

sidered in this work. If such like-charge interactions a r e 

included in the models in Sections 4 .3 and 4.4, one finds 

that as Ocl-HC03 decreases, f30MHC0
3 

increases. Therefore , 

the MHC03 points in Figure 4.2 move toward the right, 

closer to the expec t e d values. However, the consideration 
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of an extra variable in the models does not increase its 

accuracy and complicates the calculations. The HC03-Cl 

interactions are not implicitly considered but they are 

absorbed by the value of the first virial coefficient. 

c) The NH4HC03 virial coefficients are calculated by means of 

the model described in Section 4.4. The reliability of 

these coefficients is not very high due to the many assump

tions involved in the model. The unreliability of the 

model is greatly magnified on the calculated ~~/~T of 

NH4HC03 electrolytes. For example, the calculated ~~l /~T 

is not plotted in Figure 4.2 because it falls off the 

graph. For the same obvious reason one cannot calculate 

the temperature effects on the virial coefficients of 

calcium and magnesium bicarbonate, but one may assume that 

these salts behave ideally according to equation (3.13). 

The average temperature variations of the potassium and sodium 

bicarbonate virial coefficients are listed in Table 4.12. 

TABLE 4.12 

AVERAGE ~~/~T OF MHC03 ELECTROLYTES 

(~~0 /~T) x 104 

(~~l/~T) x 104 

3.63 

26.3 

0.27 

37.7 
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4. 8 Behavior of the Bica rbonate Ion in Mixed Electrolyte Solutions 

The objective of this section is t o t es t the validity of the 

proposed Ion Interaction Mod e l in mixed e l ec tro l y t e solutions. This is 

done by me asuring pH0 values of K+, Na+-HC03-, Cl- solutions and then 

comparing the s e results with the calculated ones. The experimental 

procedures involved in the pH measurements have b een previously d e 

scribed in Section 4. 2 . 

Th e measured pH0 of two sets of K+, Na+-HC03-, cl- solutions 

at 25°C and under 0.97 PC02 are reporte d in Table 4 . 13. The first set 

contains a constant concentration of NaHC03 and a variable concentra

tion of KCl. In the second one the molality of KHC03 is kept constant 

while the molality of NaCl is increa sed. 

The pH0 may be calculated by means of the Ion Interaction 

Model, the MBC and ENC of the solution. The virial c oefficients used 

in these calculations are thos e presented by Pitzer and Mayorga (1973 ) 

and the MHC03 virial coefficients dete rmined in this dissertation . The 

like-charge inte raction coefficients us e d in the calcula tion of pHO are 

listed by Pitzer and Kim (1974). The parameter Din Table 4.13 (in 

thousandths of a pH unit) is computed by ignoring any triplets' inter

action and subra cting the calculated pHO value from the measured one. 

One may conclude from the r e sults in Table 4.13 that the Ion 

Interaction Mode l accurately describes the equilibrium conditions of 

the studied mixe d e l ec trolyte solutions. Further, the assumption that 

t r iplet interactions of the form K-HC03-Na a r e nil appears to be cor

rect ov er t h e anal yzed ionic strength range . This assumption is prob-
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ably a good one for all types of triplet interactions where bicarbonate 

is one of the components . 

TABLE 4.13 

MEASURED pH0 VALUES IN THE SYSTEM 
~' Na+-HC03-, Cl-

NaCl 0.97m KCl 0. 97m 
NaHC03 = O.lm KHC03 = O.lm 

MCl pHO D-1< pHo D* 
(m) 

0.0 6.479 0 6.527 0 
0.2 6.465 -1 6.502 - 2 
0.4 6.455 0 6.481 -2 
0.6 6.446 0 6.463 -3 
0.8 6.440 l 6.446 -4 
1.0 6.434 1 6.432 -4 
1.2 6.429 1 6.419 -5 
1.4 6.427 3 6.408 -4 
1.6 6.424 4 6.398 -4 
1.8 6.421 4 6.388 -4 
2.0 6.418 4 6.379 -4 

PC0 2 = 0.97, t = 25°C 

*D = (pH0 measured - pH0 calculated) x 103 

4.9 Comparison of Experimental and Literature Values 

Literature information of the activity coefficient of the bicar-

bonate ion is very limited. Perhaps the most r eliable work in this area 

is the one by Butler and Huston (1970). These researchers have deter-

mined the mean activity coefficient of NaCl in NaHC03 solutions by me ans 

of sodium ion activity measurements . They claim that for their experi -
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mental results at 25°C "Harned's Rule is obeyed over the ionic strength 

from 0.5 to 3 . 0 with a coefficient of a 12 = 0.047 ± 0.003.'' (Harned's 

Rule is a simplified form of the Ion Interaction Model.) According to 

Harned's Rule only one interaction coefficient, a 12 , is required to 

predict the activity of a n e lectrolyte in solution . 

Equating the NaCl activity coefficient function proposed by 

Butler and Huston and the one determined by the Ion Interaction Model 

one obtains the following r elationship: 

2 · 303 a 12 = /J0
NaCl - poNaHC03 + ( {JlNaCl - /31 ) e-

2
..fi NaHC03 

(4.28) 

The values of the NaCl and NaHC03 virial coefficients are 

r e spectively given by Pitzer and Mayorga (1973) and this dissertation. 

With these values one is able to calculate the Harned's Rule inte r-

ac tio n coefficient a s a function of the ionic strength of the solution. 

According to Butler and Huston's work, the value of a 1 2 is approxi-

ma t e ly constant over the ionic strength range of 0.5 to 3.0m. At 

these extreme values the a 12 calculated by means of e quation (4 . 28) is 

0.081 and 0.051 respectively. The latter magnitude is comparable with 

the constant 0.047 ± 0.003 proposed by Butler and Huston. One obs e rves 

that due to the exponential nature of the second term on the right side 

of the prior equation, the magnitude of this term rapidly decreases 

with the ion ic str ength . In other wo r ds, the values of a 12 calculated 

f rom e quation (4 . 28) quickly tends to the v a lue compute d a t I = 3.0 as 

ne increases the ionic strength from 0 . 5 to 3.0m. 
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The similarity between the a 12 value reported by Butler and 

Huston and thos e calculated in this dissertation is a positive indica-

tion of the effectiveness of both the theore tical model and the experi-

mental results presented in this work. 

The effectiveness of the experiment al procedures may be a lso 

determined by comparing the pH0 measurements in NaCl-NaHC03 solutions 

at 25°C presented in this dissertation with those by Garrels et al 

(1961). These investigators have measured the pH of O.lm NaHC03 solu-

tions with variable concentrations of NaCl and constant 0.97 PC0 2 . 

Table 4.14 contains a partial list of the pH0 (i.e., pH+ pE) pres ented 

by Garrels et al . The last column in this table gives the interpolated 

pH0 values from Table 4.5. 

TABLE 4.14 

COMPARISON OF EXPERIMENTAL 
pH0 VALUES 

I(m) pHo a 

0.35 6.59 
0.60 6.54 
0.85 6.50 
1.10 6.47 
1.60 6.42 
2.10 6.40 
3.10 6.33 

* Extrapolated value 
a Garrels e t al (1961), 

pE = 0.044 
b This disse rtation 

6.597 
6.537 
6.499 
6.468 
6.423 
6.389 
6.342* 
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The agreement between both sets of experimental pHo values in 

Table 4.14 is remarkable. The minor discrepancy between values at high 

ionic strength is probably caused by alkaline errors in the pH measure

ments by Garrels et al. Bates (1973) describes the alkaline error as 

the lowering of the measured pH due to high concentrations of cations 

of the alkaline and alkaline earth series. These errors are minimized 

by using a low sodium electrode, such as the Beckman "E-2" glass elec

trode used in this dissertation. 
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Chapter 5 

PRACTICAL APPLICATIONS 

5.1 Objective 

The scope of this chapter is to apply the proposed Ion Inter

action Model to the solution of various chemical and engineeringprob-

lems. These problems were partially solved with the aid of the 

FORTRAN IV program SOL. This program calculates the osmotic and 

activity coefficients of mixed electrolytes in aqueous solutions at 

any given temperature. By using the program SOL, one may also estimate 

the equilibrium conditions of solutions open to any atmosphere with 

known PC02. The theoretical approach of this program is base d on the 

Ion Interaction Model and the carbonat e system e quations described in 

Chapters 2, 3 and 4 of this dissertation. 

The program SOL may simultaneously handl e up to 15 different 

ions in solution. These ions include the following common cations and 

anions: 

a) Cations: ~. ~. Na+, NH4+, ca2+ and Mg2+ 

b) Anions: OR-, Cl-, N03-, HC03-, H2P04-, S04 2-, C032-, 

HPo4
2- and P043-

The 25°C like-charge and virial coefficients employed in the 

program SOL are those reported by Pitzer and Mayorga (1973, 1974), Pitzer 
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and Kim (1974), Pitzer and Silvester (1976) and this dissertation. The 

effect of triple ion interactions on the equilibrium conditions of 

mixed electrolytes is not consider ed in the program. Temperature 

variations of the first and second vir ial coefficients of 1:1 and 1:2 

electrolytes (except NaHC03 and KHC03) are assumed to behave ideally 

according to equation (3.12) The rates of change with temperature of 

the NaHC03 and KHC03 virial coefficients are taken from Table 4.12. A 

copy of program SOL and its function, block data and subroutines (FG, 

DATA, AC, AC2, CB, BB, FG) are presented in Appendix II . 

The usage of SOL requires the following input parameters: 

a) The partial pressure of co2 and temperature of the solution. 

(If the system is closed to the atmosphere, PC0 2 0.) 

b) The names of the cations and anions in solution. 

c) The molal concentrations of cations (excluding If+) and 

anions (excluding OH-, HCo3- and co3 2-). 

Once the computer calculates the equilibrium conditions of the 

solution, the terminal types out the following thermodynamic properties: 

a) The pH, osmotic coefficient, and ionic strength of the 

solution, 

b) The activity of the water in solution, 

c) The concentrations and activity coefficients of the 

individual ions, and 

d) The mean electrolyte activity coefficients. 
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5.2 The Thermodynamic Solubility Product of Gypsum 

The Ion Interaction Model was described in Chapter 2. In that 

chapter some important assumptions were proposed in order to resolve 

the inconsistencies of the Ion Interaction Model when calculating the 

thermodynamic properties of 2:2 electrolytes in aqueous solutions. The 

accuracy of the Ion Association Model, as proposed in this disserta

tion, is tested by determining the thermodynamic solubility product of 

gypsum (i.e., CaS04 • 2H20) in seawater and NaCl solutions. 

Marshall and Slusher (1966) present experimental gypsum solu-

bilities in NaCl solutions at various temperatures. Their results at 

25°C are presented in Table 5.1. One may obtain the thermodynamic 

properties of the solutions in this table by means of the program SOL. 

The experimental solubility products, Ksp• of gypsum r eported in Table 

5.1 are easily computed by inserting the appropriate variables into 

equation (2.24). The thermodynamic solubility product of gypsum is 

also calculated from experimental measurements of the solubility of 

Caso4 · 2H20 in seawater (Briggs and Lilley (1973)). 

Considering that there is a two-fold variation in the ionic 

strength of the solutions in Table 5.1 and the multiple components of 

seawater, the agreement between the calculated Ksp values is excellent. 

A statistical analysis of the calculated Ksp values in this table 

yields 2.466 x lo-5 and 0 . 068 x lo-5 for the mean and standard devia-

tion respectively. 

The the rmodynamic solubility product of gypsum at temperatures 

other than 250C were calculated from Marshall and Slusher's data at 
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ionic strengths below l.Om . Statistical analyses of the calculated 

Ksp values yielded the results in Table 5 . 2 . 

TABLE 5.1 

THERMODYNAMIC SOLUBILITY PRODUCT 
OF GYPSUM AT 250C 

NaCl a Caso4 
a Ksp X 105 

(m) (m) 

0 . 0000 0.0151 2.499 
0. 0117 0.0162 2 . 461 
0.0257 0.0175 2.459 
0.0513 0.0194 2.442 
0.1147 0 . 0231 2.430 

0.1921 0.0266 2.435 
0.2319 0.0281 2.435 
0 . 5480 0.0372 2.482 
0.6890 0.0388 2.350 
0.8340 0.0430 2.527 

1.005 0.0457 2.539 
1.024 0.0452 2.466 
2.024 0.0540 2.478 
2.870 0.0560 2.466 
4.125 0.0560 2 . 638 

Seawater saturated with gypsumb 2.356 

~arshall and Slusher (1966) 

bBriggs and Lilley (1973) 

The low variation coefficient (i.e., U/Ksp) of the results 

in Table 5.2 is a good indicator of the accuracy of the proposed Ion 

Association Model as applied to mixed electrolyte solutions at tempera-

tures from freezing point to 60°C. 

Further, the Ksp of gypsum at 25°C, 2.466 x lo-5, is in excel-
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lent agreement with other literature values, which vary from 2.45 x 1~5 

(Moreno and Osborn (1963)) to 2.50 x lo-5 (Nakayama and Rasnik (1967)). 

TABLE 5. 2 

THERMODYNAMIC SOLUBILITY PRODUCT OF 
GYPSUM FROM 0.5 TO 60°C 

Temp. 
co 

0.5 
5.0 

10.0 
15.0 
20.0 
25.0 
30.0 
40.0 
60.0 

Mean 
Ksp x 105 

2.270 
2.374 
2.470 
2.492 
2.475 
2.466 
2.404 
2.290 
1.887 

0.064 
0.050 
0.055 
0.024 
0.042 
0.068 
0.041 
0.055 
0.096 

5.3 The Solubility Product of Calcite 

No. of 
Points 

14 
7 
7 
6 
6 

18 
9 
8 
8 

In nature the most common carbonate solid phase is calcite 

(i.e., CaC03). This mineral plays a special role in the study of 

natural waters' equilibrium. Its dissolution in and precipitation 

from an aquatic medium produces important repercussions on the equili-

brium conditions of water solutions. For example, these processes of 

dissolution-precipitation of calcite are directly related to the pH 

of the solutions and their bicarbonate content (i.e., alkalinity). 

In order to understand the chemistry of calcite in water 

solutions it is convenient to know its thermodynamic solubility pro-
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duct. Most literature determinations of this thermodynamic constant 

are based on Frear and Johnston's (1929) experimental measurements of 

the solubility of calcite in water at 25°C. By using these and other 

literature data, Jacobson and Langmuir (1974) attempted to evaluate 

the Ksp of calcite in water. Their theoretical approach was based on 

the Ion Association Model. In this approach they considered the exis

tence of CaHC03+ and CaC03° ion pairs. Interestingly, they found that 

when these ion pairs are considered in their computations, the calcu

lated Ksp at a given temperature is not constant; rather, it decreases 

with the ionic strength of the solution. In fact, their results were 

closer to a constant value when they ignored the presence of ion pairs. 

The Ksp values, as calculated by assuming ion association, are presen

ted in the third column of Table 5.3. 

In this dissertation, the thermodynamic solubility product of 

calcite is calculated according to the Ion Interaction Model. For 

Frear and Johnston's data, the computer program SOL yields the Ksp 

values listed in the fourth column of Table 5.3. This program utilizes 

Ca(HC03 ) 2 virial coefficients, which are experimentally evaluated in 

this dissertation. 

It is observed from Table 5.3 that the standard deviation of 

the calculated Ksp values is significantly lower for the results of 

the Ion Interaction Model than for those of the Ion Association Model. 

One may conclude that for the particular set of experimental data, 

the former model is superior over the latter. 
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TABLE 5. 3 

THE THERMODYNAMIC SOLUBILITY 
OF CALCITE AT 25oca 

PCO b Ca x lo3b Ksp 
c 

2 
(atm) (m) 

0.00031 0.52 3.89 
0.00038 0.56 3.98 
0.00093 0.76 3.98 
0.00334 0.17 3.80 
0.00690 1.51 3.80 

0.01600 2.01 3. 63 
0.04320 2.87 3.55 
0.11160 4.03 3.39 
0.96840 8.91 3.09 

Mean 3.68 
q 0.30 

avalues of Ksp X 109 

bFrear and Johnston (1929) 

PRODUCT 

Ksp 
d 

4.07 
4.13 
4.12 
3.95 
3.93 

3.78 
3.74 
3.65 
3.47 

3.87 
0.23 

cJacobson and Langmuir (1974), con
sidering ion association 

dThis dissertation 

5.4 Heat Exchanger Problem 

Statement: A "once-through" nuclear power plant utilizes water 

from a nearby lake for cooling purposes. The annual average tempera-

ture of the lake, t, is 15°C. The lake water is pumped through the 

heat exchanger of the power plant, and its temperature is increased by 

~t °C. Determine the maximum theoretical ~t allowable in the heat 
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exchanger before precipitation of calcite or gypsum occurs. Assume 

that the lake water is in equilibrium with the atmosphere (PC0 2 = 

0.00035). The molal concentrations of the main components in solution 

are: [Na+] = 0.1520, [ca2+] = 0.00085, [cl-] = 0.0295 and [so4
2-] = 

0.0620. 

Solution: Assuming no ion association, Jacobson and Langmuir 

(1974) have proposed the following temperature function for the thermo

dynamic solubility product of calcite K2p: 

c log Ksp 13.870 - (3059/T) - 0.04035 T (5.1) 

The ion product of a salt, Kip• is defined as the activity 

product of the individual components of the salt. This thermodynamic 

variable equals Ksp under saturated conditions. The ion products of 

calcite, Krp, and gypsum, K~P' for the lake water are calculated at 

various temperatures by means of the program SOL and are presented in 

Table 5.4. This table also includes the K~p values as calculated from 

equation (5.1) and the thermodynamic solubility product of gypsum, K~P' 

which was evaluated in Section 5.2. 

The solubility ratios of calcite, sC, and gypsum, sG, in Table 

5.4 are calculated by dividing their respective Kip by Ksp· One 

notices from the values of sC that the lake water quickly s a turate s 

with respect to calcite as the temperature increases. The solution 

becomes saturated with calcite at approximately 39oc. Therefore, 

dt = 39 - 15 = 24°C . 

One observes from Table 5.4 that sG is less than 1.0 over the 
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range of temperatures from 25 to 600C. Therefore, the solubility of 

gypsum is not a dominant parameter in the design of the heat exchanger . 

TABLE 5.4 

SOLUBILITY PROPERTIES OF CALCITE AND GYPSUM 
IN A LAKE WATER 

t°C c 9 c 9 K9 X 105 K~p x 105 sc sG Kip x 10 Ksp X 10 ~p 

25.0 2.09 3.80 2.09 2.47 0.55 0.85 
30.0 2.37 3.41 1.99 2.40 0.70 0.83 
40.0 2.97 2.90 1.83 2.29 1.02 0.80 
60.0 4.09 1. 76 1.51 1.89 2.32 0.80 

5.5 Reverse Osmosis Problem 

Statement: A reverse osmosis proce ss is to b e utilized to 

desalinate seawater. The desired salt rej ection through the process 

is 99 per cent. At the operation condition of 102 Atm. and 25°C, the 

membrane constant, n, equals 0.75 X lo-5 g/(cm2-atm-sec). Calculate 

the energy consumption per unit volume of product and the water flux 

through the membrane. 

Solution: According to Garrels and Thompson's seawater model 

(1962) the main components of ocean waters and their respective molal 

concentrations are: Na+ = 0.4752, ~ = 0.0100, ca2+ = 0.0104, Mg2+ = 

0.0540, Cl- = 0.5543, HC03- = 0.00238 and so4 2- = 0.0284. 

Let us assume that the membrane's salt rejection properties are 

equal for all the above ions. Therefore, for the desired efficiency, 
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the ionic concentrations in the product water are reduced by a f actor 

of 0.01 from those in seawate r. 

Riley et al (1971) propose the following equation for the 

water flux, J, across an osmotic membrane: 

J (5. 2) 

where Ps and P0 represent the pressures on the seawater and product 

water sides, and 

11s and 170 represent the osmotic pressures of seawater and 

product water . 

According to equations (2.6) and (2.7) the osmotic pressure of 

a solution is related to the activity coefficient of water as follows: 

17 =- RT ln a 1 Vl 
(5.3) 

Without much loss of accuracy in the equation, one may assume 

that v1 equals 18.0 cc/mol. Then, RT/v1 = 1359.23 Atm. One may e asily 

obtain the activities of water in both seawater and product water by 

means of the computer program SOL. The input data for this program 

are the PCOz over the solution, which is assumed to be atmospheric, 

the solution temperature and the molal concentration of the dissolved 

species. The values of a 1 as calculated by SOL are presented in Table 

5.5. The corresponding osmotic pressures are also included in this 

table. 

Assuming that the pressure on the product side is atmospheric, 

one may calculate the water flux from equation (5.2): 



follows: 

100 

J 0.75 X 10-5 (102 + 0.27- 25.17) 

5.78 x lo-4 g/cm2-sec 

500 l/m2-day 

The power consumption per unit of products, therefore, is as 

W = 102 atm x 0.0199 kw/m3-day-atm 

W 2.03 kw/m3-day 

TABLE 5.5 

OSMOTIC PROPERTIES OF SEAWATER 
AND PRODUCT WATER 

Water 

Seawater 
Product 

0.98165 
0.99980 

fl(atm) 

25 .17 
0.27 
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Chapter 6 

CONCLUSIONS 

The purpose of this chapter is to summarize the most important 

conclusions of this dissertation, as follows: 

a) The main objection to the use of the Ion Interaction Model 

in aquatic chemistry is the execution of lengthy mathe

matical manipulations, but the accuracy of the model more 

than compensates this objection. In single electrolyte 

solutions the calculations involved in the Ion Interaction 

Model are probably more complex than those required by the 

Ion Association Model. However, the opposite condition is 

usually the case in mixed electrolyte solutions, where 

cumbersome approximations are necessary to satisfy both 

the ENC and MBC constraints in the Ion Association Model. 

The superiority of the Ion Interaction Model is also re

vealed by its reliability in predicting the activity and 

osmotic coefficients of mixed electrolytes over a wide 

range of ionic strengths 

b) An empirical modification of the thermodynamic model at 

25°C by Pitzer and Mayorga (1974) is proposed in this 

dissertation. This modification permits one to calculate 

the activity coefficients of an incompletely dissociated 

electrolyte in mixed electrolyte solutions. The accuracy 

of the proposed modification is tested by the computation 
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of the thermodynamic solubility product of gypsum in a 

variety of mixed electrolyte solutions. 

c) The Ion Interaction Model proposed in this work may be used 

to predict accurately the activity coefficient of any 

individual ion in mixed electrolyte solutions at tempera

tures ranging from 0° to 400C. Thermal effects on both 

electrostatic and short-range interactions are studied in 

this dissertation. Two simple temperature functions are 

required to calculate the thermal effects on the Debye

Hlickel functions (i.e., electrostatic interactions). The 

dependence of a determinate virial coefficient (i.e., 

short-range interaction) on temperature is found to follow 

approximately a linear function of the magnitude of the 

virial coefficient and the solution temperature. 

d) The virial coefficients at 25°C of MHC03 electrolytes 

(where M = K+, Na+, NH4+, ca2+ or Mg2+) were experimen

tally determined from pH measurements of MCl-MHC03 and/or 

MCl-H2C03 solutions. An excellent agreement was found 

between the MHC03 virial coefficients calculated from the 

results of both experimental techniques. 

e) The virial coefficients of KHC03 and NaHC03 at 100, 25° 

and 40°C were determined from pH measurements of NaCl 

solutions under alkaline conditions. The calculated tem

perature variations of the KHC03 and NaHC03 were found in 

good agreement with those determined experimentally. This 
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agreement led to the conclusion that the temperature 

variations of NR4HC03, Ca(HC03)2 and Mg(HC03)2 behave 

ideally according to the equations proposed for the tem

perature variations of 1:1 and 1:2 virial coefficients. 
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Appendix I 

VIRIAL COEFFICIENTS DEPENDENCE ON TEMPERATURE 

The temperature effects on the thermodynamic properties of 

aqueous solutions were studied in Chapter 3. It was found in this 

chapter that both the electrostatic and the short-range interaction 

functions are temperature dependent. The temperature effects on the 

former type of interactions is reflected only on the value of the 

Debye-Htickel coefficient. Therefore, at a given ionic strength, the 

electrostatic interactions depend only on the solution temperature and 

are independent of the nature of the electrolytes in solution. On the 

other hand, the virial coefficients, which describe the short-range 

interactions, are a function of both temperature and the nature of the 

electrolyte. The purpose of this appendix is to present the Y and X 

parameters for various 1:1 and 1:2 electrolytes. For a specific elec

trolyte, the temperature variation of its first virial coefficient is 

the intercept of the linear function of Y against X. The slope of 

such function represents the temperature variation of the second 

virial coefficient. 
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TABLE A.1a 

Y VALUES a OF SOME 1:1 ELECTROLYTE SOLUTIONSb 

I(m) X HC1 LiC1 LiBr NaC1 NaBr NaOH KF 

0.1 0.664 0.3 6 . 2 6.8 16.4 19.2 11.0 6.8 
0.2 0.564 -0.4 3.7 4.6 13.9 16.5 10.1 6.4 
0.3 0.499 -0.7 2.6 3.4 13 .o 14.9 9.5 6.3 
0.4 0.451 - . 1.9 2.7 12.4 13.8 9.1 6.0 
0.5 0.413 -1.2 1.5 2.1 12.0 12.9 8.8 5.7 

0.6 0.382 -1.4 1.2 1.7 11.6 12.3 8.5 5.4 
0.7 0.356 -1.5 0.9 1.4 11.3 11.8 8.2 5.1 
0.8 0.334 -1.7 0.7 1.1 11.0 11.4 8.0 4.8 
0.9 0.314 -1.8 0.5 0.9 10.7 11.1 7.8 4.6 
1.0 0.297 -1.9 0.3 0.7 10.4 10.8 7.6 4.4 

1.2 0.268 -2.2 0.1 0.4 10.0 10.4 7.2 4.0 
1.5 0.234 -2.5 -0.3 0.0 9.5 9.8 6.8 3 .5 
1.7 0.216 -2.6 -0.4 -0.1 9.1 9.5 6.4 3.3 
2.0 0.193 -2.8 -0.6 -0.4 8.7 9.2 6.0 3.0 
2.5 0.165 -3.1 -0.9 -0.7 7.8 8.6 5.4 2.6 

3.0 0.143 -3.3 -1.2 -0.9 7.5 8.1 4.8 2.3 
3.5 0.127 -3.5 -1.4 -1.1 7.0 7.6 4.3 2.1 
4.0 0.114 -1.6 -1.3 6.6 7.2 3.8 1.8 
4.5 0.103 -1.8 -1.4 6.1 6.8 3.3 1.6 
5.0 0.094 -2.0 -1.6 5.8 6.5 1.3 

5.5 0.086 -2.2 -1.7 5.4 6.2 1.1 
6.0 0.078 -2.4 -1.9 5.1 5.9 0.9 

(f.IJO/t.T)c -4.0 -2.5 -2.8 6.0 5.3 4.0 1.3 
(t./Jl/t.T)c 4.5 9.5 12.0 14.5 18.0 11.0 

ay value s x 104 calculated from¢L at 25°C 

bHarned and Owen (1958) 

CVa lueS X 104 

8.0 

KC1 KBr 

17.8 21.8 
15.2 16.7 
13.7 16.5 
13.1 15.5 
12.5 14.7 

12.0 14.2 
11.6 1 .7 
11.2 13.4 
10.9 13.2 
10. 1 2 .7 

10.0 12.2 
9.3 11.5 
9.0 11.1 
8.5 10.5 
8.0 9 .7 

7.4 9 .2 
7.0 8 .7 
6.7 8.3 
6.3 7. 9 
5.9 7.5 

7.2 
6.8 

5.3 6.5 
18.5 20.0 
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TABLE A.lb 

Y VALUESa OF SOME 1:1 ELECTROLYTE SOLUTIONSb 

I (m) X RbF CsF CsBr KI Rbl Csl 

0.1 0.664 8.7 8.9 31.0 23.7 29.2 37.5 
0.2 0.564 7.0 7.1 26.9 20.8 25.1 32.5 
0.3 0.499 6.2 6.2 24.3 19.3 22.3 29.4 
0.4 0.451 5.7 5.5 22.3 18.3 21.4 27.3 
0.5 0.413 5.3 5.1 20.8 17.5 20.2 25.7 

0.6 0.382 4.9 4.7 19.7 16.8 19.3 24.5 
0.7 0.356 4.7 4.4 18.8 16.3 18.5 23.5 
0.8 0.334 4.4 4.2 18.2 15.8 17.8 22.8 
0.9 0.314 4.2 4.0 16.8 15.4 17.0 22.2 
1.0 0.297 4.0 3.8 17.6 15.0 16.3 21.8 

(tJ{Jo /tJ T) c 0.8 -0.2 7.5 8.8 7.0 13.8 
( !J p 1 I !J T) c 11.0 12.5 31.5 21.0 22.0 28.0 

ay values x 104 calculated from ¢L at 

b~ calculated from empirical e quations 
by Fortier and Desnoyers (1976) 

CValueS X 104 
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TABLE A. 2 

Y VALUES OF SOME 1:1 AND 1:2 ELECTROLYTE SOLUTIONS 

1:1 Electrolytes 

I(m) X RbCl CsCl NaF Nal NaHC03 

0.2 0 . 230 9.3 10.6 5 .2 9 . 9 10 . 8 
0.3 0.211 8.9 10.2 5.0 9 .7 10.4 
0.4 0.194 8.7 9.8 4.9 9.5 9 . 9 
0.5 0.181 8.3 9 .5 4.7 9 .3 9 .6 
0.6 0.169 8.2 9.2 4.6 9.2 9.3 
0.7 0.159 7.9 9 .0 4.5 9.0 8 .7 
0.8 0.151 7.7 8 . 8 4.4 8 .9 8.4 
0.9 0.142 7.6 8.6 4.2 8 .7 7.0 

(fj/f /11T) X 104 5.0 5 .0 2 . 8 7.3 1.8 
<AfJl/11T) X 104 18.5 26.0 11.0 12.0 4.15 

1:2 Electrolytes 

I (m) X cac12 src12 BaCl2 Na2co3 

0.6 0.084 4.3 6.6 7. 9 -0.6 
0.9 0.070 3.6 5.7 7.3 -1.7 
1.2 0.060 3.1 5.1 6.9 -2.4 
1.5 0.053 2.8 4. 7 6.5 -2.7 
1.8 0.047 2.8 4.2 6 . 1 -2.8 
2.1 0.042 2.0 3.6 5.8 -2.6 
2.4 0.038 1.8 2 .8 5.5 -2.8 
2 .7 0.034 2 . 2 2 .1 2 .6 -1.6 

CA/1: /11T) X 104 0.0 1.0 3 .0 -2.0 
(11/Jl I 11 T) X 104 54.0 62.0 70.0 0.0 

-1< Calculated from IJ</>L values at 300C by Leung and Millero 
(1975) 
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TABLE A.3b 

Y VALUESa OF SOME 1:2 ELECTROLYTE SOLUTIONS 

I X CaC1 2b Zni2b ZnC1 2 
(m) 

0.1 0.597 37.4 18.3 19.3 
0.2 0.486 20.8 17.5 1.1 
0.3 0.417 21.5 15.5 -4.0 
0.4 0.367 20.3 12.7 -7.0 
0.5 0.328 18.7 10.9 -10.1 

0.6 0.297 17.4 9.3 -12.4 
0.7 0.272 16.1 8.2 -14.8 
0.8 0.250 14.9 7.1 -22.4 
0.9 0. 232 13.9 6.1 -26.0 
1.0 0.216 12.8 5.3 -27.8 

1.2 0.190 11.1 3.8 -30.8 
1.5 0.160 9.0 2.0 -34.2 
2.0 0.126 6.9 -1.3 -32.8 
2.5 0.104 5.7 -4.4 - 31.0 
3.0 0.087 4.8 -29.6 

4.0 0.066 3.2 
5.0 0.053 2.4 

(tJfJO /!JT) X 104 0.0 -6.0 -35.od 
(!JfJl /!JT) X 104 54.0 62.0 76.0 

ay values x 104 calculated from I values 

bLewis and Randall (1961) 

cHarned and Owen (1958) 

dNot plotted or used in least- square analysis 
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TABLE A.3c 

Y VALUESa OF SOME 1:2 ELECTROLYTE SOLUTIONSb 

I X cac1 2 src1 2 
(rn) 

0.6 0.084 4.3 6.6 
0.9 0.070 3.6 5.7 
1.2 0.060 3.1 5.1 
1.5 0.053 2.8 4.7 

1.8 0.047 2.8 4.2 
2.1 0.042 2.0 3.6 
2.4 0.038 1.8 2.8 
2.7 0.034 2.2 2.1 

(IJIJO /!JT) X 104 0.0 1.0 
(!J/Jl /!JT) X 104 54.0 62.0 

ay values x 104 calculated from !J~L 

bLeung and Millero (1975) 

Bac1 2 

7.9 
7.3 
6.9 
6.5 

6.1 
5.8 
5.5 
2.6 

3.0 
70.0 

Na2C03 

-0.6 
-1.7 
-2.4 
-2.7 

-2.8 
-2.6 
-2.8 
-1.5 

-2.0 
0.0 
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TABLE A.3d 

Y VALUESa OF SOME 1:2 ELECTROLYTE SOLUTIONSb 

I xl 
(m) 

MgCl2 Na2S04 

0.3 0.499 26.8 
0.4 0.451 22.4 
0.6 0.382 18.3 
0.8 0.334 14.9 

1.0 0.297 12.8 
1.2 0.268 11.0 
1.5 0.234 9.1 30.2 
2.0 0.193 6.8 27.3 

2.5 0.165 4.7 25.2 
3.4 0.143 3.0 23.5 
4.0 0.114 1.7 18.8 
5.0 0.094 0.6 18.8 

(!JfJ 0 I !J T) X 104 -5.0 10.0 
(!JfJ1 I IJ T) X 104 60.0 90.0 

ay values x 104 calculated from ¢L 
bsnipes e t al (1975) 
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TABLE A.4 

Y/X1 VALUESa OF SOME 2:2 ELECTROLYTE SOLUTIONSb 

I X2/Xl MgS04 Caso4 znso4 CdS04 CuS04 
(m) 

0.0256 0.2749 -485 -700 -663 -1305 -1004 
0.0400 0.2084 -301 -456 -390 -935 -684 
0.0900 0.1145 -84 c -109 -440 -306 

0.1600 0. 0717 19 c -10 -229 -152 
0.2500 0.0504 80 c 35 -126 -68 
0.3600 0.0385 64 -70 -18 

(!J/Jl/!JT) X 104 210 143d 80 130 125 
(!Jp2/!JT) X 104 -2475 -2840d -2800 -5150 -3925 

aY/X1 values x 104 calculated from L at 25°C 

bHarned and Owen (1958) 

csaturated with respect to gypsum 

dcalculated assuming intercept 
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TABLE A.5 

Y VALUESa OF SOME 2:2 ELECTROLYTE SOLUTIONSb 

I xl x2 Mgso4 c MgS04d 
(m) 

0.4 0.567 0.0346 37.7 123.3 
1.5 0.348 0.0093 44.6 67.5 
2.0 0.300 0.0069 31.8 49.0 
4.0 0.1962 0.0035 25.8 34.4 
5.0 0.1672 0.0028 23.5 30.4 

(!J/3° I !J T) X 104 6.0 
(!J fJ1 I !J T) X 104 272.0 

ay values x 104 calculated from~ 

bsnipes et al (197 5) 

cuncorrected for association virial coefficie nt 

dcorrected for association virial coefficient 
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Appendix II 

FORTRAN IV COMPUTER PROGRAMS 

Three sets of independent computer programs are presented in 

this appendix. The first set is the group of programs required to run 

the program SOL. The input-output parameters of this program are 

described in Section 5.1. 

The other two sets of programs, MHC03 and MX, are used to cal

culate the MHC03 virial coefficients. These programs are based on pH 

measurements of MHC03-MCl solutions and HzCO)-MCl solutions respec

tively. Both require the subroutines AMR, CB and FG. Their input 

parameters are: a) the solution temperature and PC0 2 , and b) the ionic 

strength of the solutions and their respective pH values. 



MAJN PROGRAM §OL 
REAL J,NCH,JP,NCH2,KW 
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DJMENSJON ACA(6),AAN(9),NA2(9),NC2(6),JC(6),JA(9), 
0 CCA(6),CAN(9),R(9,6),BP(0,6},GM(6),GX(9),BB0(9,6), 
2 R(9,6},BMX(~,9,6) 

COMMON/JN/ZC(6),ZA(9), 
: BBE(~,9,6),TA(9,9~,TC(6,6),TIC(2 , 6),TJA (2, 9~ 

NC:O 
DO 611 J:0,9 
CAN ( J): 0 
JA(J):O 

611 AAN(J~:O 
DO 62 K:r1,6 
CCA(K):O 
JC(K):O 

62 ACA(K):O 
JC(I'I ):11 
JA(O):Il 
JA(2):~ 
JAC:)=7 

26 NC:NC+Il 
LC:O 
LA:O 
NCH:O 
NCH2:C 
PCH:C 
PCH2:0 
PHI:O 
DL:.OCO 
SM:O 
H:O 
JP:O 
CALL READ(JC,JA,NCAT,NAN,CCA,CAN,PC02,NS,NC,NT,T) 
TK:27:.11~+T 
CKH:OO.•*(-o:.~I17+2299.6/TK+0.011422*TK) 
CKI1:110.**(11~.e4:5-:404.711/TK-0.0:279*TK) 
CK2:110.*•(6.~98-2902. :9/TK-0.02:79 *TK) 
KW:I10.*•(6.C875-4470.99/TK-0.011706•TK) 
DT:(T-25. )/r1.E4 
DO 74 J:ll,NAN 
DO 7~ K:ll,NCAT 
JF(ZA(JA(J)).EO.r1 .. AND.ZC(JC(Kn.EQ.r1. )GO TO 70 
JF(ZA(JA(J)).EQ.2 .. AND.ZC(JC(K)).EQ.2. )GO TO 72 
AI1:110.E9 
Bll:-~2.117 
A2:205.0E 
B2:-77.757 
GO TO 7: 

70 Al1:9.1979 



B11:-70.911 
A2:29.~4C 
B2:-611.9115 
JF(JA(J).NE.4)GO TO 7~ 
AI1:11.C7 
Bl1:0 
A2:~.~757 
B2:-11711.EJ5 
GO TO 7~ 

72 A2=-2~2. 
P2:rtll.5 
A==-117~9.~ 
B~:rt9.76 
Alt:O 
Blt:O 
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1~ B~X(It,JA(J),JC(K~):BBB(It,JA(J),JC(K))+(AI1+BA*BBB(11,JA(J), 
11 JC(K)))*DT 
BMX(2,JA(J),JC(K)~:BBB(2,JA(J),IC(K))+(A2+B2*BBB(2,JA(J), 

11 JC(K)))*DT 
BMX(=,IA(J),JC(K)):BBB(=,JA(J),JC(K)) 
IF(ZA(IA(J)).E0.2 .. AND.ZC(JC(K)).EQ.2. )BMX(=,JA(J),JC(K)): 

11 PBB(=,JA(J),IC(K))+(A=•B=*BBB(=,JA(J),JC(K)))*DT 
74 BMX(4,JA(J),IC(K)):BBB(4,JA(J),JC(K)) 

DO 6'3 J:l1,= 
65 CAN (I A (J H :0 

CCA(JC(fl)~:O 
DO 11 J:ll,NAN 
SM:SM+CAN(JA(J)) 
JF(Z.A(JA(J)).EQ.Il.)GO TOll 
LA:LA+Il 
NA 2(LA ):IA (J) 

4 NCH:NCH+CftN(JA(J))*ZA(IA(J)) 
11 NCH2:NCH2+CAN(JA(J~)*ZA(JA(J))**2. 

DO 2 J:ll,NCAT 
SM:SM+CCA (IC (J)) 
IF(ZC(JC(J)).EO.It.)GO TO= 
LC:LC+I1 
NC2(LC):IC(J) 

- PCH:PCH+CCA(IC(J)~*ZC(JC(J)) 
2 PCH2:PCH2+CCA(IC(J))*ZC(IC(J))**2. 

D:NCH-PCH 
J:0.5*(NCH2+PCH2) 
JF(PC02.EQ.O. )GO TO 50 
ACA(Il):0.5*(D+(D*D+ll.*PC021 CKH*CKI1)*•0.5) 
CCA(Il):.ACA(I1)/(2.7118**FG(J,T)) 

5 PCH:O 
SM:O 
NCH:O 



NCH2:0 
PCH2:0 
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DO 6 J:I1,NAN 
SM:SM+CAN(JA(J)) 
NCH:NCH+CAN(JA(J)~*ZA(IA(J)) 

6 NCH2:NCH2+CAN(IA(J))*ZA(JA(J))**2. 
DO 7 J:11,NCAT 
SM:SM+CCA (JC (J)) 
PCH:PCH+CCA(JC(J)~*ZC(IC(J)) 

7 PCH2:PCH2+CCA(IC(J)~*ZC(JC(J))**2. 
J:0.5*(NCH2+PCH2) 
JF(PHJ .EO.O.) AH20:f1.-.011P*SM 
AAN(t1 }:KW/ACA(~) 
H:ACA(I1) 
H2CO~:PC02*CKH*AH20 
AAN(U):H2CO~*CKI1/H 
AAN(7):AAN(U)*CK2/H 
JF(DL.LE.C.OOOI'I) GO TO 115 
JF(DL.GE.ABS((JP-1)/J) ~GO TO 11~ 

11c IP=I 
50 DO 11f1 J:t1,NAN 
1111 GX(IA(J)):2.711P**(FG(I,T) 1 ZA(JA(J))**2.) 

DO 112 J:I1,NCAT 
112 GM(JC(J)~:2.711f**(FG(J,T)*ZC(JC(J))**2.) 
115 CAN(I1):AAN(I1)/GX(I1) 

CAN(4):AAN(U)/GX(4) 
CAN(7):AAN(I)/GX(7) 
CCA(I1):ACA(t1)/GM(t1) 
DO 116 J:I'I,NAN 

116 AAN(JA(J)):CAN(IA(J))*GX(JA(J)~ 
DO 117 J:t1,NCAT 

117 ACA(JC(J)~:CCA(IC(J))*GM(JC(J)) 
JF(PC02.EO.O. )GO TO ~11 
E:CCA(t1~-(CAN(I1)+CAN(4)+D+2.*CAN(7)) 
CH C 0 ~ =CAN ( 4 ) 
CAN(4~:CHCO~*(I1.+E/(CHCO~+CCA(I1)+2.*CAN(7))~ 
ACA(I1):CKf1*H2CO~/(CAN(4)*GX(4)) 
JF(ABS((CHCO~-CAN(4)~/CHCO~).GE.O.OOI1) GO TO~ 
JF(DL.EO.O.OOOI1)GO TO 20 
DL:O.OOOI1 

~11 CALL AC(I,ZC,ZA,JC,IA,NCAT,NAN,NC2,NA2,CAN,CCA,B, 
f1 BP,AM,AX,BMX,GM,GX,EBI1,LC,TA,TC,PCH,LA,LC,R) 
SJ:I**0.5 
FF :FG (I, -11. ) 
DO 44 K:I'I,NCAT 
DO 44 J:I1,NAN 
JF(ZA(JA(J)).EO.f1 .. 0R.ZC(JC(K)).EQ.I1. )GO TO 4~ 
B(JA(J),IC(K)):BMX(I1,JA(J),IC(K))+(BMX(2,JA(J),JC(K))* 
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It 2.7~E~**{-0.~ 1 SJ))+BMX(~,JA(J),JC(K))*2.71lf~** 
2 (-ll2.•R(Jft(J),JC(K~)••0.5) 

GO TO l!~ 

~~ B(JA(J),JC(Kv):BMX(Il,JA(J),JC(K))+BMX(2,JA(J),JC(K))* 
It 2.71l8~ 11 (-2. 1 SJ) 

l!l! B(JA(J),JC(K~):B(Jft(J),JC(K~)+2.*PCH*BMX(~,JA(J),JC(K)) 
DO l!2 K:ll,NCAT 
DO ~2 J:ll,NAN 

b2 PHJ:PHJ+CCA(JC(K)~*CAN(JA(J))*E(JA(J),JC(K)) 
PHJ:((FF+2.*PHJ+AM+AX)/SM)+n. 
AH20:2.7n8~*•(-.0il802•PHJ*SM) 

20 CAN(ll):AAN(~)/GX(l!) 
JF(PC02.NE.O. )GO TO 52 
PH:7. 
E:D 
GO TO 5~ 

52 JF(DL.LE.ftBS((CHCO~-CAN(ll)~/CHCO~)) GO TO 5 
PH:-ALOGilO(ACA(I1)) 

5~ TYPE 27, PH,J,AH20,PHJ,E 
GK:CCA(5)*CAN(6)*AH20*AH20'BB0(6,5)*BBI1(6,5~ 
TYPE ll011,GK,BB0(6,5),GM(5),GX(6) 
GC:CCA(5) 1 CAN(7) 1 BBil(7,~) 1 BBn(7,5) 
TYPE non,GC,GM(5~,GX(7),GX(~) 

!lOll FORMftT(5Gn~.5) 
JF(NT.FO.C)GO TO 28 
TYPE ~~ 
DO 29 K:ll,NCAT 
ACA(JC(K)):CCA(JC(K)~*GM(JC(K)) 

29 TYPE ~~,(TJC(L,JC(K)),L:Il,2),CCA(JC(K)),GM(JC(K)),ftCft(JC(K)) 
DO ~0 J:ll,NAN 
AAN(JA(J)):CAN(JA(J)~*GX(IA(J)) 

~C TYPE ~~,(TJA(L,JA(J)),L:I1,2) ,CAN(JA(J ~),GX(JA(J)),AAN(JA(J)) 
TYPE ~5 ,((TJC(L,JC(K)~,L:n,2),K:n,NCftT) 
DO ~It J:ll,NAN 

~n TYPE ~~,(TJA(L,JA(J)),L:n,2),(BBil(JA(J),JC(K)),K:n,NCAT) 
FORMAT(/,5X, '10N',8X, 'CONC. ',l<X, 'A.C. ',8X, 'ACT.') 

~~ FORMAT(2A5,2X,5Gil~.5) 
~5 FORMAT(/,' MEAN A C',ll0(2A5,~X)) 
27 FORMAT(5X, 'PH',f!llX, 'l',I10X, '(H20~',9X, 'O.C. •n2X, 

n IE I , 1, 6Gn ~ . 5 ) 
28 JF(NC.LT.NS) GO TO 26 

STOP 
END 
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SUBROUTINF CB(A,W,X,Y) 
P:A*W**0.5 
X:2.«(0.-(0.+P)*2.708**-P)IP**2. 
Y:2.*(-0.+(0.+P+O.~*P**2. )12.708*«P)I(A•W)••2. 
RFTURN 
END 

ELOCK DATP 
REAL KW 
DIMENSION ZC(6),ZA(9),BMX(~,~,6),TA(9,a),TC(6,6), 

n TIC(2,6),TIA(2,9) 
COMMON IINIZC,ZA,EMY,TA,TC,TIC,TIA 
DATA ZCI0.,11.,0.,0.,2.,2.1,ZAI0.,11.,0.,0. ,0., 

~ 2.,2.,2.,~./,(((BMX(M,L,K),K:0,6~,L 
c:; :0,9),t-1:11,~)1C., .o86~, .11298, ~·o., .11775, .0765, 
6 .o~e~~, .0'322,. ~11t;9,. ::~2~, .n11119, .oo6e,-.o5o6, 
7 -.on~ij,.2noe,.~67n,o. ,.oou,.c~o~,-.conn,.o886, 
e -.OJJ611,0.,-.05~::,-.0678,~*0.,.011~5E,.Ot:S,.0~09,.2, 
9 . 2 211 , ~ * o. , o. oo, 2* o. , -. o 5 E:: , • o2Lt7 , ~ • o. , . 11 7 e 11 , . :: 7 29, ~ • o. , o. , 
11 .25::,.~2,2*0.,.29~5,.266~,.21122,.119118,o.611~. 
11 11.6en,.2206,.117e2,.0~9~,.no2,n.uo9,11.~PLt,o.,-.nean2, 
2 -.112~JJ,-.o::~6,11.267,.90'39,0.,.o::96,-.nou2,Lt*O., 
-: n.nn~,.779=,.65es,2.65,:.=J.t=,7•o.,n.lt66,o.27l4, 
JJ Lt • c. , :: . e 511 , :: . 9 7 2, :: • o. , 2 2 • o. , c. o, n n • c . , -55 . 1 , -:: 7 . 2 2 , n e • o. , o. , 
5 . o 02 2, . oo2o 5, ~ • o. , . ooo~ , . ooc6 !J , -. ooo~ 2, -. con~ o '3, 
6 -.000112,.000P.::,.o05,-.C00::6,.0022,-.0CC02,-.0C7112, 
7 -.co729,0. ,-.00259,-.oc~o::, .ooo22,o. ,o., 
E o.,.co::9f,5*0.,.oo2o2,o.,-.ooo4n,o.,.oo625,7*C., 
9 .CI104,.0058,~*0.,-.011Lt87,-.02~06,2*0.1, 
11 TAI0.,-.05,7*0.,-.05,0.,.0116,2*0.,-.02,~*0.,.0116, 
11 26 * 0 • , - • 0 2 , 2 Ll* 0 • I , 
2 rc1o., .o::6, .oos,-.o116,2•o., .026,o. ,-.on2, 2*0., 
· .oo~,-.on2,2*C.,-.o~,o.,-.on6,7*C.,-.oLt,2*C.,.on, 

Ll LI*O.,.OI1,0.1,TICII10H H 
c:; ltOH NA ,f'!OH K 
6 I'IOH NHJJ ,110H CA 
I 110H MG I,TIAI 
8 OOH OH ,110H 
9 I'IOH N02 ,ltOH 
11 110H H2POJJ ,110H 
2 110H C02 ,11CH 
· 110H POL! I 
END 

CL 
Hco:: 
SOLI 
HPOL! 
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SUBROUTINE READ(IC,IA,NCAT,NAN,CCA,CAN,PC02,NS,NC,NT,T) 
DIMENSION IC(6),IA(9),CCA(6),CAN(9) 
IF(NC.GT.I1)GO TO 9 
PC02:11. 
TYPE 25 

25 FORMAT(///,' COMPLETE INFORMATION? (YES:I1, NO:C)', 
11 1,' *') 

ACCEPT 2, NT 
TYPE 11 

11 FORMAT(' NO. OF SOLS. W/ COMMON 10NS',1,2X,'**') 
ACCEPT 2,NS 

2 FORMAT(I1X,f1CI2) 
TYPE ~ 

· FORMAT(' ENTER CATIONS',!,' NA:2 K=~ NH4:4 CA:5 MG:6', 
11 /,2X,5(' *')) 

ACCEPT 2,(1C(L),L:2,6) 
TYPE 4 

ll FORMAT(' ENTER ANIONS',/,' CL:2 NO~== H2P04:'3', 
f1 'S04:6 HPOli:E POll:9',/,2X,6(' *')) 

ACCEPT 2,(JA(L~,L:4,9) 
DO 5 1:11,6 

5 IF(IC(1).EO.C) GO TO 6 
6 NCAT:1-11 

DO 7 1:11,9 
7 1F(IA(I).EQ.O) GO TO E 
8 NAN:I-11 
9 IF(PC02.EO.C. )GO TO 20 

TYPE n:: 
n:: FORMAT(' PC02 T',l,' ******** ********') 

ACCEPT 114, PC02,T 
11 4 FORMAT(I1E9.::,11F9.::) 
20 TYPE 115 
115 FORMAT(' MOLAL CONCENTRATIONS OF CATIONS',/, 

11 5(' •·••••• ·~) ACCEPT 117, (CCA(IC(I~),1:2,6) 
117 FORMAT(I10FI10.5) 

TYPE f1E 
ne FORMAT(' MOLAL CONCENTRATIONS OF ANIONS',/, 

11 6(' •.•••••·)~ 
ACCEPT 117,(CAN(IA(I)~,I:4,9) 
RETURN 
END 

j 
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SUBROUTINE AC(I,ZC,ZA,JC,JA,NCAT,NAN,JC2,JA2,CAN,CCA, 
It B,BP,CO,CP,BMX,GM,GX,EBO,J2,TA,TC,PCH,LA,LC,R) 

REAL J 
DJMENSJON GCA(6),GAN(9),BBI1(9,6),BB2(~,9,6),CCA(6), 

It PC:, 9), Q ( ~), GX ( 9), GM ( 6), ZC ( 6), ZA ( 9), JC ( 6), JA ( 9), 
2 JC2(6),IA2(9),CAN(9),E(9,6),BP(9,6),FMX(~,9,6),KZ(9), 
: TA(9,9),TC(6,6),DEP(9,6),R(9,6) 

CALL CB(2.,J,Cil,CP) 
CALL BB(JA,JC,E,BP,Cil,CP,NAN,NCAT,BMX) 
IF(J2.EO.O) GO TO ~ 
CALL CB (n.~,J,Cil,CP) 
CALL BB(JA2,JC2,B,BP,CI1,CP,LA,LC,BMX) 

4 DO 5 L: f1, ~ 
Q(L):O. 
DO 5 J:fl,NAN 
P(L,JA(J)):C. 
DO 5 K:O,NCAT 
.AL:L 
BE2(L,JA(J),JC(K)):BP(JA(J),IC(K))*AL*AL 

f1 +BMX(~,IA(J),JC(K))*AL 
~ CONTINUE 

DO 7 L:O,~ 
DO 7 J:ll,NAN 
DO 6 K:ll,NCAT 

6 P(L,JA(J)):P(L,JA(J))+BB2(L,JA(J),JC(K))*CCA(JC(K)) 
7 O(L):O{L)+P(L,JA(J))*CAN(JA(J)) 

Cll:O 
CP:C 
DO 9 J:ll,NAN 
TAA:C 
DO 8 K:fl,NCAT 

6 BBfl(JA(J),JC(K)):B(JA(J),JC(K)~+PCH*B~X(~,JA(J),JC(K)) 
DO 90 L:O,NAN 
CP:CAN(JA(J))*CAN(JA(L~)*TA(JA(J),JA(L))+CP 

90 TAA:TAA+TA(JA(J),JA(L))*CAN(JA(L)~ 
KZ ( J I)= ZA (1 A ( J) ) 

9 GAN(JA(J)):O(KZ(J)~+2.•TAA 
DO 110 K:ll,NCAT 
TCC:C 
DO 911 L:ll,NCAT 
CI1:CCA(JC(K)~*CCA(JC(L))*TC(JC(K),IC(L))+CI1 

911 TCC:TCC+TC(JC(K),JC(L))*CCA(JC(L~~ 
KZ ( K ) : Z C (1 C ( K ) :) 

110 GCA(JC(K)~:O(KZ(K~)+2.*TCC 
DO 112 J:I1,NAN 
EC:C 
DO Ill! K:O,NCAT 

011 BC:2.*BBI1(JA(J),JC(K))*CCA(IC(K))+BC 
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GAN(JA(J)):2.70f**(GAN(IA(J))+EC) 
112 GX(IA(J)~:GX(JA(J))*GAN(IA(J)) 

DO 11'3 K:ll,NCAT 
BC:C 
DO Ill.! J:O,NAN 

~~ BC:2.*BBO(IA(J),IC(K)~*CAN(IA(J))+EC 
GCA(IC(K)):2.71l8**(GCA(IC(K))+BC) 

115 GM(IC(K)):GM(IC(K))*GCA(IC(K)) 
DE:C. 
DO 28 J:ll, NAt-1 

DO 28 K:O,NCAT 
JF(ZA(JA(Jn.Eo.n .. OR.ZC(IC(K)~.EQ.Il. )GO TO 28 

2ll IF(CAN(JA(J)).EO.C .. OR.CCA(IC(K)).EQ.O. )GO TO 28 
25 CALL AC2(IA(J),IC(K),CAN,CCA,ZA,ZC,BMX(~,IA(J),IC(K)), 

ll GX,GM,R(IA(J),IC(K))~ 
28 CONTINUE 

DO n~ K:t1,NCAT 
DO ll~ J:O,NAN 

n~ BEil(IA(J),IC(K)):((GM(JC(K))**ZA(IA(J)~)* 
ll (GX(IA(J)~**ZC(IC(K))))**(Il./(ZC(IC(K))+ZA(IA(J)))) 

RETURN 
END 

SUBROUTINE AC2(J,K,CAN,CCA,ZA,ZC,B,GX,GM,R) 
DIMENSION CCA(6),CAN(9),GM(6),GX(~),ZC(6),ZA(9~ 
A:ll2. 
P:(CCA(K)*ZC(K)*ZC(K~+CAN(J)*?A(J)*ZA(J))/2. 
R:A*SORT(P) 
CALL CB(A,P,C,CP) 
GX(J):GX(J)*2.71lE**(E*CCA(K)*(C+2.71l8**-R)) 
GM(K):GM(K)*2.711E 1 *(F*CAN(J)*(C+2.711B**-R)) 
RETURN 
END 

SUBROUTINE EB(IA,IC,B,BP,Cil,CP,NAN,NCAT,BMX) 
DIMENSION IA(9),IC(6),BMX(~,9,6),B(9,6~,EP(9,6) 
DO ll J:ll,NAN 
DO J1 K:ll,NCAT 
B(IA(J~,IC(K)):BMX(Jl,IA(J),IC(K))+ 

J1 BMX(2,IA(J~,IC(K))*CO 
n BP(IA(J),IC(K)~:BMX(2,IA(J),IC(K~)*CP 

RETURN 
END 



REAL FUNCTION FG(X,T) 
IF(T.GE.O.) GO TO ~0 
FG:-2.*A*S*.Y!P 
GO TO 50 

~0 JF(X.EO.XP)GO TO ~0 
S:X**O.') 
P:I1.+11.2*S 
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JF(T.EO.TP)GO TO ~0 
F:E7.~2~-C.~OP7~*T+(I1.011~65E-~)*T*T 

11 -(11.9~65E-6)*T*T*T 
A:I1~COOOO/(E*(T+21~.115))**11.5 

~0 FG:-A*((S/P)+I1.666667*ALOG(P)) 
TP:T 
XP:X 

50 FETURN 
END 

MAIN PROGRAM MHCQ~ 
REAL I,M 
DIMENSION PH(I10C~,PHC(I1CO),X(5,1100),I(I100),Y(I100) 

11 ,B(5),CC(~),PP(I100) 
TYPE 116 

116 FORMAT(~X,'THO',/,' *******• ') 
ACCEPT 1111,TH 
JF(TH.NE.C.)GO TO 2 
TYPE 118 
ACCEPT 112,NS,Z,B11MX,CMX,T,HCO~ 

11f FORMAT(' NS',LjX, 'ZM',7.Y, 'B11MX',7X, 'CMX',7X, 'T', 
11 7X,'HC0~',/,' **',5(' 1 ****•** ')) 

112 FORMAT(I1J~,5FI10.5) 
BI1MX:(29.5~-611.92*BI1MX)*(T-25. )*(11.E-~)+Bf1MX 
TYPE 11~ 

11~ FORMAT(5X,'l',eX,'PH',/,2(' ******** ')) 
ZZ:Z*(Z+Il.) 
DO no J:I1,NS 

110 ACCEPT 1111,J(J),PH(J~ 
2 DO 11 J:tl,NS 

M:2.*J(J)/ZZ 
AX:M*Z-HCO~ 
CALL CE(2.,J(J),G,GP) 
PP(J~:-FG(J(J),T)-O.OOE*I{J)/Z-M*AX*{BI1MX*GP+CMX) 

r. +2.*AX•TH•(C.6~8*G-11.) 
Y(J):PP(J)+2.:o:*PH(J) 
X(I1,J):2.*M 
X(2,J):2.*M*G 

11 .Y(=,J):2.*Z*M*M 



TYPF 11'3 
CALL AMR(NS,~,X,Y,P,CC) 
DO !J J:I1,NS 
Y(~,J):Y(J) 
Y(J):B(It) 
DO:: L:ll,:: 

- Y(J;:Y(J)+B(L+I1)*X(L,J) 
PHC(J ) :(Y(J)-PP(J))I2.::o:: 
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!J TYPE 1111,PH(J),(X(L,J),L:I1,~),Y(J~,PHC(J) 
TYPE 11 ~ , ( B ( L ) , L: 11 , Ll ) , ( C C ( L ) , L: 11 , :: ) 

1111 FORMAT(IlCGI1C.!J) 
11 !J FORMAT (I':: X' I K' '9X' 'BC' 'f. X' 'Bl1 I' 9X' I c' '7X' 

11 'CC 11 ', 7X, 'CC2', 7X 'CC:: ',I, 11 CGI1 0. !J, I I) 
11'3 FORMAT(II,::X, 'PH',8X, 'XI1',7X, 'X2',EX, •x::•, 

11 8Y,'Y',~X,'YC',7X,'PHC') 
STOP 
END 

SUEROUTJNF. AMR(N,M,X,Y,B,CC) 
DIMENSION CC(~),XX('3,'3),Y(IlCO),X('3,110C),YY('3), 

It SX('3),SX2(~),B(5),A('30,5),EX(~O) 
SY:O 
SY2:0 
AN :N 
DO 110 J:ll,N 

110 X(M,J):I1 
DO 20 J:I1,M 
SX(J):C 
YY(J):O 
SX 2 (J):C 
DO 116 K:I1,M 
XX(K,J):O 
DO 11~ J:I1,N 

11~ XX(K,J):XX(K,J)+X(J,J)*X(K,J) 
116 A(J,K):XX(K,J) 

DO 119 l:ll,N 
SX(J):SX(J)+X(J,J) 
SX2(J):SX2(J)+X(J,J)*X(J,J) 

119 YY(J ~ :YY(J)+X(J,J)*Y(J) 
20 BX(J):YY(J) 

DO 2'3 J =It, N 
SY:SY+Y(J) 

2~ SY2:SY2+Y(J)*Y(J) 
DO 29 J:l1,~-11 
cc (.i) = 0 
if(sxC1).ea.O. )go to 29 
CC(J):(AN*YY(J)-SX(J)*SY)I((AN•SX2(J)-SX(J) 1 

11 SX(J})*(AN*SY2-SY*SY~) 11 0.5 



r. SX(J~)•(AN*SY2-SY« SY))• • 0.5 
29 continue 

CPLL ~ATJNV(A,~,PX,O,D) 
P(I1):EJ(tl) 
DO ~C J:I1,M-11 

~C P(J+I1):PX(J) 
RFTURN 
END 

MAIN PROGRAM ~2' 
REAL J 
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~JMFNSJON PH(I1CC),PHC(OCO),J(~,I10C),J (I1 0C),Y(OCC), 
11 P(~),CC(~),H(I1CC),RC(OCC),RO(I1CC),A(f),PHS{I1CC),CY(nCC) 

CATA A/C.I177~,C.2?~5,C.OCC~,c.nnnq,0.~2C6,C.CCO~/ 
TYPE 112 
L:C 
ACCEPT 11C,NS,Z,P2,R,T 
TYPE 11C,NS,Z,A2,R,T 
JF(Z .LT .C. )L=~ 
NC:NS 
ZZ:Z«(Z+O.) 
NP:2 
JF(NS.GT.O)GO TO ~C 
NS:NN 
GO TO 20 

~C TYPE 0~ 
NN:NS 
DO 11 J:O,NS 
RO(J)=C 

0 PCCEPT nr,J(J),PH(J),PH(J+NS),PHS(J) 
JF(PP.(I1+NS).EO.O. )NP:I1 

2C DO E J:I1,NS 
CY(J):C 
)'(O,J):J(J) 
X(11,J+NS):J{J) 
CALL CP ( 2. , J ( J ) , C n , C P) 
JF(PHS(J).NE.O. )CY(J):-2.~0~*ZZ •PHS (J)/~. 

0 +. CC9 «J(J)•(Z+0. ) -Z*(Z+fl. ) •FG(J(J), )/2.-2.«J(J) 
2 «cP•A2/(Z+0.) 

X(2,J):I(J)•CI1 
:X(2,J+NS)::X(2,J) 
X(~,J):C 
CL:2.C*J(J)/(Z+I1.) 
GH:2.711E««(FG(J(J),T)+2.•CL*{A(I1+L)+A(2+L)«Cn 

11 +CL«A( ~+L )~ + CL«CL«P2•CP/Z) 
DO 9 K:O,NP 
JK=J+NS«(K-•1; 
H(JK;:(I1C.••-P~(JK);/GH 
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9 RC(JK):ALOG(rl.+R*J(J)IH(JK))I2. 
JF(NP.EO.I1)GO TO 8 
W:C.~*2.7rtf«*(ll.6C~*(PH(J)-PH(J+NS))) 
RO(J):(W-11. )I(J(J)«((I1.1H(J))-WIH(J+NS))) 

f CONTINUE 
TYPE nn,(RO(J),J:I1,NS),PH(rt),PH(n+NS) 
ACCEPT nn,D~C,DrtCC 
DO rt7 J:I1,N~ 
PH(J):PH(J)+D50 
CY(J+NS):CY(J) 

07 PH(J+NS):PH(J+NS)+DrtOC 
JF(D5C.NE.C •. OR.DrtCC.NE.C. )GO TO 20 

6 TYPE rt5 
DO 26 K:fl,NP 
U:(K-2)*(NP-n) 

2f DO 26 J:rt,NS 
JK:J+NS*(K-n) 

· JF(NC.GE.C)GO TO 5 
X(ll,JK):O 
GO TO 26 

5 X(ll,JK):2.•J(J)*J(J~I(Z+I1.) 
26 Y(JK):ZZ*(2.~0~«PH(JK)-RC(JK)+O.~U66•U~I2.+CY(JK) 

CALL A~R(NS 1 NP,5,X,Y,B,CC) 
DO U K:rt,NP 
U:(K-2)*(NP-11) 
DO U J:rt,NS 
JK:J+NS*(K-11) 
X(5,JK):Y(JK) 
Y(JK):P(rt) 
DO 7 L:rt,l.J 

7 Y(JK):Y(JK)+B(L+rt)*X(L,JK) 
PHC(JK):(2.*(Y(JK)-CY(JK))IZZ+RC(JK)-O.~l.J66*U)I2.~C~ 

ll TYPE rt11,PH(JK),(X(L,JK),L:I1,::),X('5,JK),Y(JK),PHC(JK ),RO(J) 
ne TYPE nl.!,(B(J),J:rl,~),(CC(J ),J:I1,2) 
rtC FORMAT(rtJ~,5Grt2.5) 
rtn FOR~AT(I1CGI1C.!!) 
rt2 FORMAT(' NS',~:X, 'ZM',9:X, 'Pr1MX',9X, 'R0',11CX, 'T',I, 

n ' •••,uc• •••••••• ')) 
rt~ FOR~AT(' J PH50 PHI10C',7X,'PH*',I, 

n~(' •.••••••)) 
f1lJ FORMAT(I,~X, 'K',8X, 'DB0',7X, 'DBI1 ',8:X, 'P2',8)', 'DC', 

n 7Y, •ccn ',7:x, 'CC2',!,nocno.l.J,II) 
n ~ FORMAT< 11, ~ x, 'PH', 7X, '1 = x11 1

, 7X, 'x 2 1
, 8X, 'x ~ ' , 

11 ex, 'Y 1 ,9X, 'YC',7X, 'PHC',9X, 'RO') 
STOP 
END 
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