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Abstract

A method for a comprehensive approach to analysis of the dynamics of an actively controlled
combustion chamber, with detailed analysis of the combustion models for the case of a solid
rocket propellant, is presented here. The objective is to model the system as interconnected blocks
describing the dynamics of the chamber, combustion and control (including sensors and
actuators).

The analytical framework for the analysis of the dynamics of a combustion chamber is based on
spatial averaging, as introduced by Culick. This method results in the determination of a set of
coupled oscillator equations that are then integrated with the appropriate forcing terms deriving
from combustion and control.

Combustion dynamics are analyzed for the case of a solid propellant. Considerable data exists
suggesting that the response functions for many solid propellants tend to have higher values, in
some ranges of frequencies, than predicted by the conventional quasi-steady theory. Hence,
quasi-steady theory is extended to include the dynamics of the gas-phase and also of a surface
layer interposed between the gaseous flame zone and the heated solid phase of the propellant. The
models are constructed so that they produce a combustion response function for the solid
propellant that can be immediately introduced in the our analytical framework. The principal
objective of this analysis is to determine which characteristics of the solid propellant are
responsible for the large sensitivity, observed experimentally, of propellant burning response to
small variations in the conditions. We show that velocity coupling, and not pressure coupling, has

the potential to be the mechanism responsible for that high sensitivity. Some issues related to the



modeling of solid propellant are also discussed, namely the importance of particulate modeling
and its effect on the global dynamics of the chamber and a revisited interpretation of the intrinsic
stability limit for burning of solid propeliants.

Active control is also considered in the analysis. A critical discussion about the most commonly
used control strategies used in combustion allows us to define which are the most promising
algorithms to use on future experiments. Particular attention is devoted to the effect of time delay
(between sensing and actuation) on the control strategy; several methods to compensate for it are
presented and discussed, with numerical examples based on the approximate analysis produced
by our framework.

Experimental results are presented for the case of a Dump Combustor. The combustor exhibits an
unstable burning mode, defined through the measurement of the pressure trace and shadowgraph
imaging. The transition between stable and unstable modes of operation is characterized by the
presence of hysteresis, also observed in other experimental works, and hence not a special
characteristic of this combustor. Control is introduced in the form of pulsed secondary fuel. We
show the capability of forcing the transition from unstable to stable burning, hence extending the
stable operating regime of the combustor. The transition, characterized by the use of a
shadowgraph movie sequence, is attributed to a combined fluid-mechanic and combustion

mechanism.
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1 Introduction

Propulsion systems, especially rocket engines, are prone to developing large undesired pressure
oscillations in the combustion chamber. These oscillations are referred to as ‘combustion
instabilities’. When dealing with combustor dynamics we will refer to a combustor with very
small pressure oscillations as ‘stable’ versus ‘unstable’ for a combustor exhibiting large pressure
oscillations. The term ‘unstable’ refers to the fact that the combustor is linearly unstable and does
not imply an infinite growth of the oscillations, which in general exhibit a limit cycle determined
by the nonlinearities present in the system.

The problem of combustion instabilities was observed since early development of liquid and solid
rocket engines and afterburners and ramjets since the early 1940°s. The consequence of these
large oscillations was often the loss of the engine due to mechanical failure, degradation of
performance or simply intolerable mechanical vibrations induced into the vehicle. The first
approach, based mainly on laboratory tests, led to the use of passive devices to prevent instability
(for example baffles placed in appropriate locations in the chamber) and to redesign of the
mjectors, in the case of liquid propellants, in order to obtain a favorable distribution of energy
release. The Rayleigh’s criterion might be invoked to justify this approach, even though there was
no accurate measurement of the energy release distribution to perform a quantitative analysis.

In general, pressure oscillations appear as spontanecous or pulsed. A spontaneous oscillation is due
to Intrinsic instability of the system: the combustor is (or becomes, due to a change of operation
conditions) linearly unstable and hence perturbations grow exponentially. Linear theory, the main

subject of research during the years 1950-60, deals with this situation. Pulsed oscillations (or



2
triggering) are a purely non-linear effect: in this case the system is linearly stable to ‘small’
perturbations, while it grows exponentially, possibly reaching a large amplitude limit cycle, if
subjected to a sufficiently large perturbation. An example of triggering is presented in Figure 1.1,
taken from Blomshield 2000. The figure shows the experimental results for two motors,
characterized by different chamber pressure. In both cases, a large enough perturbation causes the

motors to exhibit instability.
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Figure 1.1. Triggering instability (from Blomshield 2000).

Recently, triggering was addressed by Burnley 1996, using the approximate theory developed by
Culick to define some of the characteristics of a combustor exhibiting this dynamic behavior.

More recently, combustion instabilities have been observed in gas-turbine combustors dedicated
to power generation. The necessity of reducing emissions (particularly NO,) has pushed industry
to using existing ‘stable’ combustors in very lean conditions; as a consequence, many combustors

exhibit pressure oscillations of the two kinds described above.



Active control of instabilities, first investigated in the early 1980’s, initially on small laboratory
scale combustors, now is being considered as a viable option for full scale plants.

First applications of control were limited to a simple proportional feedback of the pressure signal,
and based on purely experimental trials. A problem in using more ‘sophisticated’ control
algorithms lies in the fact that a reasonably accurate and simple model of the combustor is
needed.

A very promising approach is to look at the combustor itself as a feedback system between the
combustion chamber and ‘combustion” (Figure 1.2): this separation allows the use of fairly well
developed and tested analytical tools used to represent and simplify the dynamics of the
combustor (including geometry and gasdynamics), coupled with appropriate models for the

‘combustion’ block.

Combustion

4

Response
Function

>0 > Chamber

Dynamics

Figure 1.2. Combustor system.

In the case of solid propellants, for example, experiments show a large sensitivity of the global
dynamics on small changes in the propellant composition. One example is presented in Figure
1.3, from Blomshield 2000. In this case, the addition of 1% stabilizer in the propellant mixture
prevents the insurgence of a catastrophic instability that would otherwise lead to the loss of the
motor. An objective of this work is to develop tools that would allow the analytical study and the

prediction of this sensitivity, and also of instabilities like triggering.
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Figure 1.3. Sensitivity of combustor on propellant changes (from Blomshield 2000).

Two main issues are the modeling of the combustion block (Figure 1.2) and the modeling of the
coupling mechanism between the combustion and chamber dynamics.

Notice that, if active control is added, another feedback loop is closed between the controller and
the plant represented by the shaded box in Figure 1.2.

The models of the coupling mechanism between combustion and combustion chamber can be
grouped in three general categories: pressure coupling, velocity coupling and vortex shedding-
acoustics interactions. Pressure coupling, especially in the case of solid propellants, is a widely
used approach: this model gives a fairly good agreement with experimental results at low
frequencies, but it fails to provide an analytical explanation for the observed sensitivity of solid
propellant burning behavior to small minor changes in the composition or in the physical state,
and also it seems unable to predict triggering (a typical nonlinear instability found in rocket motor
and gas combustors burning away from stoichiometric conditions).

The idea of velocity coupling comes from the observation that combustion of a burning surface is

sensitive to the magnitude of the velocity and fluctuations parallel to the surface itself: this gives



a nonlinear mechanism that could be able to explain triggering. A problem with velocity coupling
is that there is no satisfactory theory and no effective means of measuring it in the laboratory.
Large vortices, developing from unstable shear layers in flow past edges may couple directly to
the acoustic field or produce local acoustic sources when impinging on surfaces, and hence be the
energy source for unstable motions.

In the case of liquid and gas combustors, oscillations in the acoustic field can give rise to
oscillations in the fuel-oxidizer ratio, and hence introduce a further source of instability. This
phenomenon is also responsible for an increase in NOx emission, and hence poses severe
limitation on the use of these combustors for power generation, due to the current very strict
emission regulations.

In this context, control can be seen as a means to act on the feedback mechanism between
combustion and combustion chamber in order to prevent or reduce the instability. In this sense, a
good understating of the complete mechanisms would allow the design of very efficient
controllers, able to act directly on the source of the instability. Historically, passive control was
first introduced and it developed mainly from experimental trial and error. The introduction of
baffles, acoustic liners, Helmholtz resonators and an accurate design of the injection system was
often able to eliminate or reduce observed instability by “breaking” the feedback link between the
combustion and the dynamics of the chamber.

Active control was successively introduced to overcome some of the limitations of passive
methods: larger operating range, reduction of experimental testing (see Culick 1999 for a
historical overview of the passive and active control approaches). The control problem is
particularly complicated by the typical characteristics of a combustion system: internal
mstabilities, significant time lags, intrinsic non linearities, large internal noise and disturbances.
Regarding the design of controllers, the major problems come from the fact that the controller

changes the system (typically with the introduction of acoustic sources, secondary fuel, etc.),



modeling of combustion/combustors is not completely understood (large uncertainties), sensors
and actuators are not well defined and the effect of scaling from laboratory combustors to full-

scale items 1s not at all clear.

The work presented here covers several of the issues described above. The purpose of this work is
to present a comprehensive approach to the analysis of the dynamics of an actively controlled
combustion chamber, with detailed analysis of the combustion models for the case of a solid
rocket propellant.

The principal contributions of this work can be summarized in three categories: propellant and
combustor dynamics, experimental control of hysteresis, and control of systems with time delay.
Regarding propellant and combustor dynamics, we construct a framework, based on transfer
function representations, that allows analysis of sensitivities of the combustor to small changes in
the propellant. To this purpose, we extend the traditional quasi-steady approach with novel
consideration of unsteady dynamics of the propellant surface. We then use global combustor
simulations as a tool to identify sensitivities. This method allows us to identify the surface as
partly responsible for some experimental measurements regarding the combustion response at
relatively high frequency. We also assess that velocity coupling in the combustion response
function is an important mechanism that allows to explain sensitivity and triggering.

By using a Dump Combustor, we show that secondary fuel injection can extend the stable
operating region of the combustor; we then use high speed shadowgraph as a diagnostic method
to identify the mechanism responsible for the effectiveness of the control.

By using an analytical approach, we investigate the possibility of using time delay compensation

networks to control combustors affected by large time delays between sensing and control action.



In Chapter 2, we will outline the analytical framework for the analysis of the dynamics of a
combustion chamber, based on spatial averaging, as introduced by Culick. This method results in
the determination of a set of coupled oscillator equations that are then integrated with the
appropriate forcing terms deriving from combustion and control. The procedure used to integrate
the system and determine the results presented in all the subsequent chapters is also described.
Some issues regarding the modeling of actuators (used to introduce the control action into the
system) are also illustrated in the last part of the chapter.

Chapter 3 deals with the modeling of the combustion dynamics of a solid propellant. The
traditional approach, based on quasi-steady theory, is extended to include the dynamics of the
gas-phase and also of a surface layer interposed between the gaseous flame zone and the heated
solid phase of the propellant. The models are constructed so that they produce a combustion
response function for the solid propellant that can be immediately introduced in the formulation
presented in Chapter 2 and hence close the feedback loop depicted in Figure 1.2. The principal
objective of this analysis i1s to determine which characteristics of the solid propellant are
responsible for the large sensitivity, observed experimentally, of propellant burning response to
small variations in the conditions. We will analyze a response based on pressure coupling and
also velocity coupling, showing that velocity coupling, and not pressure coupling, has the
potential to be the mechanism responsible for the mentioned high sensitivity. Some issues related
to the modeling of solid propellant are also discussed here, namely the importance of particulate
modeling and its effect on the global dynamics of the chamber and a revisited interpretation of the
intrinsic stability limit for burning of solid propellants.

Chapter 4 closes the ‘outer’ loop by introducing the active control terms into the system. We will
show how the simplified analysis in Chapter 2 lends itself naturally to the convenient State-Space
representation used in control theory and hence allows using conventional control analysis and

design tools. A critical discussion (a more detailed discussion about the control work at the



Georgia Institute of Technology is presented in Appendix D) about the most commonly used
control strategies used in combustion allows us to define which are the most promising
algorithms to use on future experiments. Particular attention is devoted to the effect of time delay
(between sensing and actuation) on the control strategy; several methods to compensate for it are
presented and discussed.

Chapter 5 presents a short overview of some of the experimental work conducted in our facilities.
In particular, the case of a dump combustor is analyzed in detail. The combustor exhibits an
unstable burning mode, characterized through the measurement of the pressure trace and
Shadowgraph imaging. The transition between stable and unstable mode is characterized by the
presence of hysteresis (also observed in other experimental works, and hence not a special
characteristic of this combustor); control is introduced in the form of pulsed secondary fuel, and
we show the capability of forcing the transition from unstable to stable burning, hence extending
the stable operating regime of the combustor. The transition is characterized by the use of a
shadowgraph movie sequence.

Finally, the most important results are summarized in the concluding Chapter 6.



2 Linear and Nonlinear Modeling of the Combustion Chamber

2.1 Derivation of the Nonlinear Acoustic Equations

The flow in combustion chambers, especially when burning solid propellants, is characterized by
the presence of a mixture of different gases and of a substantial amount of condensed matter.
Consequently, the changes in the properties of the flow inside the chamber are accounted for by
writing conservation equations for the two-phase flow. Following Culick 1976, the problem is
greatly simplified by considering average properties for the gas mixture and the condensed
species and then combining the two-phase flow equations into expressions having the mass-

averaged properties of the two phases. The resulting conservation equations for the mixture are

@2.1) PowV)p=w
ot
ou
(2.2) p5+(u~V)u =-Vp+F
op
(2.3) 5+;qu=—u-Vp +@

where, neglecting terms involving interactions between phases

2.4) W=-pV-u
(2.5) p[g—l;+(u-V)u}:~Vp+T:V-?

2.6) e=(7-1V-q+0-u(v.7)
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The conservation equation can then be combined to form a nonlinear wave equation for the
pressure. We start by writing all variables as sums of averaged and small-amplitude fluctuating
parts (Culick 1976).

pl)=75+p')
@7 plr)= plr)+ plr,0)

u(r,t) = ii(r) + u’(r,t)

Properly, the equations for the mean flow should be derived by subtraction of the time average of
the difference of the general equations and those for the fluctuations. In this case, the resulting
equations would contain terms involving the time average product of mean flow and fluctuations;
these extra terms would require some additional theory to close the problem. In the case of the
present analysis, for simplicity we assume that the mean variables satisfy their own conservation
equations, in the form (2.1)-(2.3).

After substitution of (2.7) in the momentum and energy conservation equations, we can write the

following equations for the unsteady quantities.

! AT

2.8) ﬁaai+ Vp' = —p’%—ﬁ(ﬁ«Vu’+u’-Vﬁ+u’-Vu')—p'(ﬁ-Vﬁ+ﬁ-Vu’+u’-Vﬁ)+ F'
t

(2.9) %%—+ﬁVu':—ZD'V-‘ﬁ—ﬁ?’V-u'—ﬁ-Vp’—u’~V1'9—u’-\7p'+?’

where we dropped terms of order above the second in the perturbation. Third order gasdynamic
terms affect the quantitative values, without affecting the qualitative behavior (Yang, Kim and
Culick 1987, 1988, 1990, Paparizos and Culick 1990), and hence have been neglected.

The nonlinear wave equation used for the analysis is derived by first differentiating equation (2.9)
with respect to time and then substituting in (2.8). If we introduce the further assumption that
entropy waves can be neglected, and we use an isentropic relation to substitute the density

terms of the pressure, the resulting expression is:
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5, 1 azpra

2.10) Vip' - —
( a’ ot
where
h:—;v-(ﬁ»Vu'+u'-Vﬁ)+%ﬁ-vaai+_lz-a£’—v-ﬁ-ﬁv[u'~Vu’+p:?:“—]+
2.11) a t a° ot wp ot
10 7 0 1 o¢'
+——" - Vp' )+ ——(p'V-u)+V - F - —
a2 az( P) a’ ot v ) 7’ ot

The boundary condition for the pressure oscillations is set by the scalar product of the normal

vector (positive outward) with the momentum equation (2.8).

(2.12) n-Vp'=-f
where
_ou . _,_ e e\ A —f N~ pod . oA
(2.13) f:pa—-n+p(u-\7u +u-Vu)-n+p(u-Vu)~n+—2—a—-n—(F-n
t a t

2.2 Approximate Analysis

The partial differential equation describing the problem, equation (2.10), is then transformed into
a set of ordinary differential equations obtained by averaging over the combustion chamber’s
volume using a method similar to Galerkin’s (Culick 1971, 1976). The basic idea is to seek the
solution to our problem as the perturbation of an eigenvalue problem whose solution is known. In
this case, we use the unperturbed waveform predicted by classical acoustics for the same chamber
with rigid boundaries and no flow. The mode shapes can be simply obtained by setting 4 = = 0

in the equations describing the mode shapes for the unperturbed case.
(2.14) Vi, +kly, =0

(2.15) n-Vy, =0
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where k, denotes the wave number for the n” mode. Now multiply (2.10) by W (2.14) by p’,

subtract the results and integrate over the volume, i.e., spatial average the weighted difference.

@2}7’ 2
’ —~ V
Lar +k; J'y/np dv jy/,,hd

r r 1

(2.16) [lov2v, ~ by + =5 [,
a

Now we can use Green’s theorem on the left-hand side and substitute the boundary conditions.

1 azp/
2.17 —
(2.17) = Va—,

dv + k2 "-y/np'dV - J'thdV— f%fds

We assume an expansion of the unsteady pressure and velocity in terms of the unperturbed

normal acoustic modes.

(2.18) Pe.t)=5Y 7., (r)
m=]

(219) W)= 3 2ull)

This approach is based on the idea that combustion instabilities are dominated by acoustic waves.
In general, small disturbances are composed of three kinds of waves: acoustic, entropy and
vorticity waves. In the lowest approximation, they propagate independently and entropy and
vorticity components are neglected (Chu and Kovasznay 1956). As a consequence, the
expansions above solve the unperturbed acoustic problem term by term and are valid for
problems of linear stability up to third order, but are not valid for problems involving mean
flow/nonlinear acoustic interactions or problems of higher order. Assuming that the average
pressure and speed of sound are uniform throughout the chamber, we can substitute (2.18) and
(2.19) into (2.17), apply orthogonality and find a system of second order differential equations

describing the evolution of the amplitude of the acoustic modes.

(2.20)
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where w, =ak, and

| )
@21 F, o Iwnth+ jy/nfds
2.22) E} = Iyxﬁdx/

The solution of equation (2.20) requires knowledge of the two functionals f'and /. These include
the gasdynamics effects and all other mechanisms such as like viscous losses, particle damping
and combustion response. More details of the derivation of the equations above are given in

Culick 1976, Culick and Yang 1992.

2.2.1 Time Averaging

To further simplify the equations, the method of time averaging has been widely used, starting
with Culick 1971 and 1976. Burnley 1996 presents a detailed comparison between original
oscillator equations and time-averaged equations, and shows that time averaging preserves the
dynamical characteristics of the original system. The method is based on the idea that the
amplitudes and phases of the oscillations vary slowly with time, when compared to the period of
the first acoustic mode of the chamber. In this case, time averaging, based on the method
developed by Kryliov and Bogoliubov 1947, allows reducing the system of differential equations

from second to first order.

In short (details can be found in Culick 1976), the amplitude is written in the form:
(2.23) 7, = A, (t)sin w,t+ B, (t)cos w,t

where A4, and B, are slowly varying functions of time (when compared to @,f). Substitution
equation (2.23) in (2.20) and simplification yields the differential equations for the time averaged

evolution of the amplitudes.
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+7; —~ o~
(2.24) dA”: ! f ancoswntdt
da  w,r
+7] o~
(2.25) B, __1 J‘ 'F sinw,7dF
dt o,

The importance of the time averaged equation lies in the possibility of analytical solution for
simple cases, especially when truncated to two modes, as in Culick 1994, Wicker, Greene, Kim

and Yang 1996, Burnley and Culick 2000.

2.3 The Combustion Chamber as a Dynamical System

Dynamical Systems Theory offers some valuable tools for the analysis of the behavior of
combustion systems. One objective of the work relative to the modeling of the response of a solid
propellant (chapter 0) is to find a connection between propellant characteristics and global
dynamics, 1.e., dynamic behavior of the coupled system propellant-combustion chamber. For this
purpose, dynamical systems theory provides an approach that draws attention to the global trends;
for example, 1t simplifies the analysis of a parametric variation on the global dynamics, and the
identification of some characteristics, such as limit cycles, regions of possible nonlinear
instabilities: triggering, hysteresis, switching.

In particular, we will use bifurcation diagrams, a representation of the equilibrium points of the
system as a function of one (or more) parameters. For a given value of the parameter, the diagram
shows all the possible equilibrium states and their stability characteristics. Note that, for this
purpose, a limit cycle, when the system oscillates at a constant amplitude and period, counts as an
equilibrium state.

As an example, the bifurcation diagram of Figure 2.1 shows the behavior of a system that
presents a pulsed instability. The result refers to a case with 6 modes; the parameter «; is the

growth rate of the first mode. The system presents a subcritical pitchfork bifurcation followed by
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a saddle-node bifurcation; this pattern is typical of pulsed instabilities or triggering and systems
presenting hysteresis (Strogatz, 1994). If the pulse is small (point 1 in Figure 2.1) the oscillation
decays and the system falls back to the initial state; on the other hand, if the pulse is large enough
(point 2), the oscillation grows and eventually reaches a limit cycle. Also note that the system
exhibits hysteresis in the parameter ;. Both triggering and hysteresis have been observed
experimentally in rocket motors and laboratory combustors (for example, Isella, Seywert, Culick

and Zukoski 1997, Lieuwen and Zinn 2000).
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Figure 2.1. Bifurcation diagram obtained from the model of a combustor;
it presents a subcritical pitchfork bifurcation followed by a

saddle-node bifurcation at the turning point.

2.3.1 Method of Continuation

If we let

(2.26) X = (”j
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then the set of equations (2.20) reduces to first order and can be written in the general form

dx

_[;: f(xhu)

(2.27)

where x is unknown and 4 is a parameter of known value. The starting point of the analysis is to
find the equilibrium points for the system, i.e., the values of x and « for which f(x,2)=0. In the

case of our equations, describing a combustion chamber, we already know that the trivial solution
(i.e., no oscillations) is going to be an equilibrium. The question then becomes the stability
characteristics of the point. A theorem from dynamical system theory (Hartman-Grobman,
Wiggins 1996) establishes that the flow generated by (2.20) is C° conjugate to the flow generated
by the linearized system, provided that the Jacobian of the system has no eigenvalues on the
imaginary axis {see Appendix A for more details). Hence, as a first result, the stability of the
system can be determined from the linearized version. Note that the value of the eigenvalues
depends on the parameter sz Bifurcations occur when, changing 4, there is a change of the
stability characteristics of the system. A “Hopf bifurcation,” for example, occurs when there is a
pair of purely imaginary eigenvalues; a branch of periodic solutions is created. If the periodic
solutions are initially stable, the bifurcation is called supercritical; if initially unstable (Figure
2.1), the Hopf bifurcation is called subcritical.

A key tool for tracing diagrams like the one of Figure 2.1 is the use of the local continuation
method. For the calculations presented here, we use the software XPPAUT, created by
Ermentrout 1998 and based on the continuation package AUTO by Doedel 1997. The method is
based on the implicit function theorem, and takes advantage of the fact that, as long as f'in (2.27)
is sufficiently smooth, the steady states are continuous functions of the parameters. AUTO uses a
variation of this method, based on the pseudo-arclength continuation technique developed by
Keller, to allow the possibility of following different folds; moreover, eigenvalues of the Jacobian

are calculated and displayed at every step during the computation, to allow determination of the
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stability characteristics of the equilibria and bifurcations. More details about the program and the
methods can be found in Doedel, Keller, Kernevez 1991 and in Keller 1977. Note that AUTO
also allows continuation of periodic solutions and determination of bifurcations of periodic orbits,

performed by the use of Floquet multipliers (see Appendix A for more details).

2.3.2 Computation of the Global Dynamics of the Combustion Chamber

We refer to global dynamics of the combustion chamber when dealing with the coupled response
of the chamber acoustics and the combustion. The previous sections contain a short outline of the
theoretical derivation of a set of equations describing the dynamics of the combustion chamber
and the reduction to a system of coupled oscillators. Terms arising from combustion modeling
(described in the following chapters) appear in these equations as forcing, and depend on the
combustor state itself, thus creating a feedback loop between the dynamics of the two systems.
Most of the effort in the study of combustion instabilities is devoted to the study of the
characteristics of the feedback loop between chamber and combustion dynamics, responsible for
the phenomena typically observed in a combustor.

The numerical results and observations presented in the following sections are based on the
numerical solution of the set of equations representing the global system. The algorithm proceeds
as summarized in Figure 2.2. After setting a geometry for the combustion chamber, the acoustic
modes are calculated (with the assumption of no combustion), and then the system is truncated by
selection of an appropriate number of modes. A discussion of the effect of truncation on the result
of the simulations can be found in Jahnke and Culick 1993, and Bumnley 1996. More recently,
Ananthkrishnan 2001 has developed a semi-analytical rule to determine the minimum number of
modes required to completely capture the dynamics (in a qualitative manner) depending on which

mode is unstable. In particular, for a 1* mode instability, 4 modes are required, for a 2" mode

instability, 8§ modes are required.
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After that spatial (and time, if required) averaging is performed and then the system is coupled
with the appropriate combustion model and the equation solved. The result of the simulation is
typically the trace of the mode amplitudes and chamber pressure versus time.
We generally use a fourth order Runge-Kutta solver, except for the cases when a particular
software is used (for example, Simulink or AUTO). In that case the integrated solver is used. In
some cases, the system requires some care in order to obtain an accurate solution. For these cases,

details on the solution method and problems encountered are described in the relative section.
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Figure 2.2. Solution Algorithm.
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3 Modeling of Solid Propellant Dynamics

As mentioned in Chapter 1, solid rocket motors present some interesting phenomena, like large
sensitivity of the global dynamics on very small changes in the propellant and pulsed instabilities
(triggering).
The objective of this chapter is to develop a diagnostic tool that would allow the analytical
consideration of propellant characteristics on the global dynamics. In order to achieve this goal,
we will follow three steps.

1. Construct a model of the propellant dynamics.

2. Simulate the combustor (combustion chamber dynamics and propellant dynamics).

3. Use the results as a diagnostic tool to identify sensitivities and important characteristics

in the dynamics (e.g., triggering).

We also want a model based on transfer functions that describe each part, so that different models
can be easily constructed and tested by simply replacing a new transfer function for a section of

the entire system.

To construct a model of the propellant dynamics, we start from the traditional approach, based on
the QSHOD (Quasi-Steady Homogeneous One-Dimensional) model (Culick 1968, Beckstead,
Mathes, Price and Culick 1969), which includes the dynamics of the thermal wave in the solid
phase, while treating the gas phase response in a quasi-steady manner. This leads to a model that

gives no consideration to dynamical processes with a characteristic time shorter than that of the
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thermal wave in the solid phase, while experimental data suggest that many solid propellants have
a combustion response function with values higher than those predicted by the QSHOD model.
The natural extension of the QSHOD theory is to include the dynamics of the thermal wave in the
gas phase. Two previous works seeking to correct this deficiency (T’ien 1972, Lazmi and Clavin
1992) have focused their attention on this intent. T’ien's analysis is based on direct numerical
integration of the equations describing the temperature, species and velocity evolution in the
flame zone of the gas phase. The chemistry is described by a one-step forward chemical reaction,
with the reaction rate expressed by an Arrhenius-type expression.

Clavin achieves some simplification by applying the ideas of ‘activation energy asymptotics’ to
the reaction zone. While their results differ in detail, both works show influences at frequencies

higher than those near the broad peak of the response due to the thermal wave in the solid phase.

It is well known from many observations, both with high speed films and from pictures taken
with scanning electron microscopes, that the surface of a burning solid propellant is certainly not
smooth and in general contains both liquid and solid particles. For metallized propellants the
agglomeration of aluminum drops is an important process affected, for example, by small
amounts of impurities or additives. It seems clear that the dynamics of this region may be
significant to the response of a burning propellant to external disturbances, but this phenomenon
has not previously been studied. Section 3.1.3 contains the governing equations and presents a
simple framework in which phenomenological modeling of that surface layer can be introduced
m the general model considering the thermal waves in both the gas and solid phases. The
modeling of the surface is based on thermal analysis of the layer and matching of the boundary
conditions on the solid and gas-phase side. No chemical reactions (except for decomposition,
based on the Arrhenius law) are considered in either the solid phase or the surface layer. The

response function characterizing the behavior of the system is derived by considering small
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harmonic oscillations and linearizing the equations describing the different sections of the
propellant.

It has been shown (Isella and Culick 2000) that the representation of the dynamics of the solid
propellant by the use of a response function based on pressure coupling only does not justify the
experimental observations reporting large variations in the global dynamic response of the
chamber to even minimal variation of the propellant composition or physical characteristics (e.g.,
grain size or distribution).

Previous work (Levine and Baum 1983, Burnley 1996) has been done showing that another
mechanism, based on velocity coupling, might be fundamentally important in explaining such
behavior. Levine and Baum introduced a model based on nonlinear velocity coupling to explain
the observed experimental result of pulsed instabilities, and were able to match experimental
results by varying the parameter representing the relative weight of the velocity coupling terms.
Burnley used the same model and investigated the global dynamics by using the solution-

continuation method briefly described in section 2.3.1.

The result of propellant modeling are then incorporated in the dynamical analysis of a small
rocket motor to illustrate the consequences of the combustion dynamics for the stability and
nonlinear behavior of unsteady motions in a motor. That allows to study the influences of
propellant composition and chemistry on the global dynamical behavior of a solid rocket

combustor by connecting the microscopic and macroscopic through the response function.

3.1 Derivation of the Equations
The definition of the coordinate system is shown in Figure 3.1. The problem is reduced to one-
dimension, and the x axis has the origin always fixed to the propellant surface, the boundary

between solid and surface layer. Hence solid material flows from the left at the rate » = r(2), not
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the average burning rate often assumed. This choice has an effect on the momentum equation;
typically, the momentum equation is used to eliminate the dependence of the pressure from the
longitudinal coordinate x. In this case, the assumption that pressure is only a function of time is
still valid, provided that the time derivative of the burning rate is small compared to the inverse of
the Mach number based on the gas phase.
Reduction to a one-dimensional formulation implies an averaging in transverse planes not

examined here.

X Combustion
Zone

Surface Layer

Figure 3.1. Coordinate definition.

For the purpose of the analysis, the system can be divided into four different regions:

Solid phase: x = (- 0).

Surface layer: x = (0, x,).

Gas phase, combustion zone: x = (x;, x,).

Gas phase, containing products of combustion: . x = (x; «)

A set of conservation equations is written for each region, and the boundary values are suitably

matched.
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3.1.1 Solid Phase

The propellant in the solid phase (from x = -coto x = 0) is assumed to be homogeneous with no

chemical reactions. The energy equation for the temperature, written in non-dimensional form, is:

oL, o
Pe or O e axz

(3.1)

The non-dimensional quantities are defined with respect to the quantities in the non-reacting gas

phase as (x—»0):

" ® * . *C 2 . *Cu Ck
(3.2) o, =L A S P S g =t
s R k, k. Ck.

where k is the thermal conductivity; the subscript ¢ refers to the condensed phase, while the

subscript o refers to the gas phase.

Note that the caloric properties of the propellant have been assumed to be uniform and constant.

For the purpose of linear analysis, in the limit of small amplitude oscillations, the variables can be
split into the sums of average values and much smaller fluctuating parts, i.e., for the temperature:
T =T +T . Correspondingly, the equations can be written for the steady and unsteady part of the
solution.

The boundary conditions for equation (3.1) are (in non-dimensional form):

For x — -, i.e., at the “cold end” of the propellant: 7_"1 =T, and the oscillating temperature

T =0.

For x = 0 the boundary condition is set by the energy balance at the surface:

or

— L
o Zl c

ot

=X

(3.3)

o
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where 2; is the ratio of thermal conductivity of the propellant in the solid phase (x < 0) and

*

conductivity of the gas phase; L. is the non-dimensional latent heat ( L ~) of the phase

prw

transformation between solid and the state in the surface layer. Note that no assumption is made
so far concerning the state of the surface layer: it can still be a solid state in a different crystalline
state, or a liquid film. Whatever chemical transformation takes place between the solid-phase
propellant and the surface layer, we assume that it can be described as a chemical change

according to the Arrhenius law. In non-dimensional variables, the law can be written as:

(3.4) =e

Note that we neglect the direct dependence on pressure and temperature in (3.4); this is justified
by the fact that the phase transition from solid state is relatively independent of pressure and

temperature. This assumption is also common in the literature (T’ien 1972, Clavin and Lazmi

1992).

The solution to the steady part of equation (3.1) for the average temperature (7 ) is:

(3.5) T:n+ﬁ—nki

Equation (3.5) can be used in the equation for the fluctuating temperature (7 ) to obtain:

T T TR,
(36) Pe ot Ox Ae ax2 Z

(-0 <x<0)

Substituting the unsteady version of expression (3.4):
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into equation (3.6) and assuming oscillatory behavior for the time dependence of the independent

variables (i.e. T = Te™ , etc.; £2is the non-dimensional frequency), equation (3.6) becomes:

(3.8) a——T———a—Z—i pcf’—E L -1, T(O)elf
ax Ox 2 z.

Solving for the oscillatory temperature in the solid phase:

T+4f1+4 7,iQp,
Sy U EL-L) 2 *__1 ET-T, =
(3.9) T(x)=T(0) 1+ L ‘ —2os 0 7(0)et
Qp. T Ze i0p T 4

where we used the boundary conditions specified above to eliminate the exponentially growing

terms of the general solution. Note that for (2 — 0, expression (3.9) reduces to the correct limit:

(3.10) (x) = F(0)e”

Equation (3.9) is then substituted into the unsteady version of (3.3) to form a relation between the

temperature and the temperature gradient at the surface of the solid phase (x = 0) in the form:

; 7 1+ f1+ 4,10 5
or) _ 1) (0p, + W)L F o, Lot | = K@)
ol 1oz 27 Ze 7
(3.11) ¥ = TEZ le %
1 c

o

This expression will be used as a boundary condition on the left side of the surface layer. Note
that if we were to use the quasi-steady approach (QSHOD), in which no intrinsic dynamics is
associated with the gas phase (and no surface layer is present), (3.11) would contain all the
dynamics associated with the combustion of the solid propellant, i.e., the response of the solid

phase. In the following section, we use this expression as a reference to analyze the effect of
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including the dynamics of the surface layer in the model. In the limit of 0 — 0, equation (3.11)

reduces to the steady state expression written above.

Note that using the non-dimensional variables defined in (3.2), the non-dimensional frequency

assumes the following expression:

kcpg

—_—
m-C,

(3.12) Q=0

The convention adopted to express the non-dimensional frequency in the literature of QSHOD
theory (Culick 1968, Beckstead et al. 1969) often uses the density in the solid phase instead of the
gas phase. With the parameter values used in the examples reported here (Table 3-2), the
frequency will be scaled by p. = 1000.

Since we assume that there is no active chemical reaction in the surface layer, the species balance
is unaltered until the boundary of the surface layer and the gas-phase (boundary /, in Figure 3.1).
The mass flux balance at the surface states:

* ok * *

(3.13) P =pu

*

Writing (3.13) in non-dimensional form and considering that r* zl (with p, :p—f), we

U c P

obtain:
(3.14) r=p.u  (x=0)

Substitution of equation (3.7) into the unsteady part of (3.14) results in a relation between

unsteady mass flux and unsteady temperature:

(3.15) m

This simply states that the oscillations of the temperature and the mass flux are in phase at the

interface 0.
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If we were to consider only the dynamics of the solid phase, and assume quasi-steady behavior
for the gas phase, we can obtain an expression that falls into the quasi-steady approach. Culick
1967 presents in detail the derivation of the quasi-steady response function that can be written as

(Culick 1967)

nAB

(3.16) Ry = ——
Z+Z—(I+A)+AB

Furthermore, Culick 1968 shows that every quasi-steady theory leads to a response function that
can be cast in the form (3.16). In the literature, this is normally referred to as the “AB form” of
the combustion response function. The values of the coefficients 4 and B are related to the
physical characteristics of the propellant, and their expression differs depending on the theory

under consideration.

3.1.2  The Intrinsic Stability Limit for Burning of Solid Propellant

Regarding expression (3.16) as a transfer function, it is interesting to locate its poles: their
position defines the stability characteristics of the system (in our case, the propellant) associated
with the transfer function.

The denominator of (3.16) vanishes if
(3.17) A +(4B-A4-1)A+A4=0

or, defining & = (4 +1- 4B)

2
(3.18) “ il _[EJ (EJZ oy
2 2 2
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This condition is important in the dynamics of the chamber since an infinitesimally small
disturbance in the pressure would cause a large (within the linear limit, infinite) response of the
mass flux produced by burning; this in turn strengthens the original pressure disturbance, and
hence it provides a mechanism that leads to instability in the chamber.
Now consider the energy equation for the solid phase (3.1). Assuming harmonic motions 7 ~ ¢’ |

the spatial dependence can be determined from (3.1) to be exp(/lfp), where A satisfies

(3.19) HA-1)=iQ
and Q is the non-dimensional frequency parameter:

O = Kepe

(3.20)
mC,

Equation(3.19) yields two values for 4

:li\/l+z’4Q

(3.21) A 5

in order for T — 0 when x — —» (i.e., the disturbance propagating inside the propellant must
vanish, see Figure 3.1) we need to discard the solution with negative real part, hence the

condition
(3.22) Re(4)>0

The equation above sets a mathematical condition for the solution to have physical sense in

space.
Another condition, based on stability considerations, can be set on (2 the frequency of harmonic

time variations. In order to have stable transient motions, we need

(3.23) Im(Q2) > 0
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If we regard equation (3.18) as a relation between A and 4 and B, we can combine (3.18) with

(3.19) to obtain an expression for  in terms of 4 and B

2
(3.24) Q, =+(xc—1)/4- (g]

(3.25) Q, =0
2
1- (1-;{%1 (—2’(—) —A}A

Relative to the time behavior, equation (3.24) represents an exponential decay or growth

o)
I

(depending on the sign of ;) with superimposed oscillations, while equation (3.25) is a pure

exponential growth or decay with no oscillation.
If we now combine conditions (3.22) and (3.23), we obtain the following table, which contains all

the possible combinations for having a physically significant pole (in A space) of the response

function.
Decay in space: Re(4)>0 | { Decay in time: Im(Q)> 0
2 K
[%} <4 x>0 AND (I‘K)3+A
OR

2 2 2
1.9
- A X Xl _ K e
(2) > -t (2) A4>0 AND (I—K{?i (5] —AJ*A>O

(always true)

Table 3-1. Conditions for ‘intrinsic stability.’
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Let’s analyze condition

2
X
(3.26) (Ej =4

for the typical values of the parameter space

0<A<20
(3.27)
0<B <5
Solving for B
(3.28) :B+li2;/§
(B-1)

Figure 3.2 shows the regions defined by equation (3.26), and hence defines the areas where the

top or bottom conditions of Table 3-1 are valid.

The conditions in the top row of Table 3-2 can be rewritten as

(3:29) B+1> A(B+1)

1
3.30 B<l+—
(3.30) y

Figure 3.3 portraits the regions defined by the conditions above. Shaded areas represent regions
where either the propellant is ‘unstable’, i.e., condition (3.29) is violated, or the solution loses

physical significance, i.e., condition (3.30) is violated.
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Figure 3.2. Regions defined by equation (3.26).

Figure 3.3. Stability limits; shaded areas are “forbidden” regions

for propellant characteristics.
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2
Consider the case when [gj > A4, then, as said before, A is a real number. Then it is possible to

show that equation (3.19) and condition (3.23) lead to the necessary condition
(3.31) B>+t
' A

Thus the locus defined by the last of the inequalities in Table 3-2 (which covers a very small area
at the top left corner of the 4B plane) lays in a ‘forbidden’ region for the response function, and
hence 1s not relevant.

Figure 3.4 presents the final results of the present analysis. In the 4B plane, the only poles of the
combustion response function that actually satisfy all the other physical requirements lie on the
line separating the shaded region, that becomes a ‘forbidden region’ for propellant characteristics.
For reference, the figure also shows regions in the 4B plane occupied by real propellants. Global
dynamics simulations show that for propellants in those regions, the pressure coupled response

derived from the QS theory can not justify the combustor sensitivity observed in the experiments.

B 2.5¢ A-167-168 A-172

/

) Stable |

0.5¢ g
~ Unstable
0

0 5 10 15 20
A

Figure 3.4. ‘Forbidden region’ of the 4B plane.
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3.1.3 Surface Layer

In general, the dynamics of the surface layer (band 0-/ in Figure 3.1) can be represented by
introducing transfer functions connecting fluctuations of mass flux, temperature and heat transfer

at the edges of the zone:

(3-32) Ty = T, (Q)T,
dar dr
_ch—l Qo ( )Eo

The transfer functions appearing in the equations above can be derived directly from experiments
or from modeling. Note that by using this representation, the result of the QS formulation can be

immediately extended to include the surface layer:

(3.33) L= R, (@M, Q)= (x=2x)

3|
aSTERCH

where the term R, (Q) represents the result of the QS approach.
Generally, to accommodate true dynamical behavior in the surface layer, the functions Myp Tourss

Osury are complex functions.

3.1.3.1 Representations of Surface Dynamics with a Time Lag

Within the quasi-steady theory, the generation of a second peak in the response function can also
be interpreted as a consequence of a time delay between the heat generation in the gas phase and
the feedback into the solid propellant.

In general, a pure time-lag theory produces a combustion response function that does not present
any peak (Grad 1949, Cheng 1962) and is hence not suited to describe properly the response of a

solid propellant (experimental evidence shows the presence of one or more peaks). On the other
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hand, the use of a quasi-steady approach (with no consideration of the surface layer) produces a

response function that can be put in the general form (3.16).

Assuming that there is a relaxation time 7 (or time delay) between the mass flux and the pressure

perturbation, we can write

dfmy_1(, p m
(3-34) dt[i%j T(Rb}—) mj

For harmonic fluctuations with frequency £2, equation (3.34) becomes:

ot 1 ﬁ e—iQr ]3
(3.35) - (Rb :j =R £
m  1+iQr p N1+ Q22 P

Note that for £2 — 0, the correction term due to the relaxation time approaches / and (3.35)

reduces to the correct [imit.

Recall that in the case of the quasi-steady theory, the dynamics of the gas phase are neglected

5} om . _ . .
(—p— =0), so — =0 and hence m, =m ., In the gas phase, so, within this approximation,

(3.16) or (3.35) are enough to complete the description of the propellant behavior.

This result differs from other time-lag theories for solid propellants. In Grad 1949, the author
obtains an expression similar to (3.35), but without the R, term. In Cheng 1962, the author
presents a result that includes an exponential term in the numerator and the denominator, but it is
still missing a proper way to introduce the physical characteristics of the propellant, described by
A and B in the quasi-steady theory. In our case, the delay is introduced by an extra layer while the

normal quasi-steady response is considered for the solid and gas phases.

Equation (3.35) produces the response shown by the thin line in Figure 3.5, where the real part of

the delayed combustion response function is plotted. The thick line presents the traditional QS
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response. The values used for the plot are: 4 = /4, B = (.85, unitary n and time delay of /.5 non-

dimensional time units.

QS, AB form

Figure 3.5. AB form with time delay (thin line), AB form (thick line).

Note that the response shows several peaks at a higher frequency: the expression of the time delay
as an exponential brings in a series of successive peaks that may not be justified by the
experiments. In this respect, the consideration of the effect of a surface layer, as in section

3.1.3.2, likely gives a more realistic picture.

3.1.3.2 Representation of the Surface Layer as a Region with Different Properties

The surface layer (band 0-/ in Figure 3.1) is assumed to be homogeneous with no chemical
reaction (all the active chemical reactions are assumed to take place in the gas-phase).
Substantially the surface layer represents the zone of the propellant where the heat feedback from
the reacting gas causes sensible modifications in the physical characteristics of the solid. It can be
a mixture of liquid propellant with solid particles, or just the solid in a different physical state.

The dynamics of the surface layer will be represented by the use of transfer functions connecting

fluctuations of mass flux, temperature and heat transfer at the edges of the layer and feeding into



36

the gas-phase. Experimental evidence suggests that the surface layer might exhibit significant
response at a frequency higher than the usual peak in the response function derived from quasi-
steady theory. The effect of the dynamics of the surface layer will be considered in comparison to
the analysis with the solid phase only.

The structure of the analysis for the surface layer is analogous to the analysis of the solid layer.
The equations governing the dynamics of the layer are solved with boundary conditions derived
from the physical conservation conditions written for small control volumes across the boundary;
the problem is considered to be one-dimensional and physical characteristics are assumed to

remain constant throughout the zone.

We assume that the dependence of the surface layer density on pressure is negligible when
compared to that of the gas phase. This gives an energy equation for the temperature of the

surface layer similar to (3.1):

oT oT o'T

(3.36) Pagr tlumr "M o7 =
(0 <x<x)

The non-dimensional quantities are defined in a way analogous to (3.2). The decomposition of the
layer is governed by an Arrhenius equation that gives an exponential dependence, through the
activation energy, from the temperature. In this case the decomposition from the surface layer
phase to the gas phase happens at the interface x = x;.

The boundary conditions are set by the values of the temperature on the right end of the solid
phase and expression (3.11), and the value of the average temperature on the downstream side of
the surface layer. The analysis is carried out in a similar way as before: equations are linearized
and the average and unsteady parts split and solved separately. The average temperature profile is
still an exponential function of position because we assume that no energy is released or gained in

the surface region.
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Particularly important is the general solution for the oscillating temperature at position x within
the layer, since it carries a frequency dependence in it. The unsteady part of equation (3.36),

solved assuming oscillating solutions, gives an expression for the oscillating temperature in the

surface layer:

1+4/1+4 1,000 1-/1+4 7,02 x
X X —

(3-37) T(x)=T(x K[E+ 0k **  +@ % - L/ (0<x<x)
1Qp,
where:
E, T, -T,
\{jl — ___i ! s
"
1
3.38 =1 Y
(3-38) T iQp,
K(Q)+ LPI B 1+ 1+ 4,2’[,011'9 (E)
© = 1Qp 2y
\/1 + 47,000

where K(.f2) is defined in equation (3.11). Expression (3.37), used to write a boundary condition
for the gas-phase, carries the frequency dependence characteristic of the surface layer into the

solution to the problem.

The principal physical characteristics that influence the dynamics of the surface layer are the
activation energy (£)) that originally appears in the Arrhenius expression and the density (o),
relative to the density of the other zones. Figure 3.7 presents a plot showing the effect of the
variation of these two quantities on the shape of the transfer function describing the dynamics of

the surface layer. Equation (3.37) can be used to substitute in the unsteady energy balance at

boundary /:
(3.39) ar| _ 1 df| E, T(_XZO)LI
de| . g dx} ) T
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This produces an expression relating temperature and temperature gradient at the boundary,

similar to expression (3.11).
dT . .
(3.40) L )@ [x=x7)

The explicit expression for F(£J is quite involved; it can be easily obtained from (3.37) upon

substitution and is reported in Appendix B.

It is interesting to compare the position of the maximum values in equations (3.11) and (3.40).
For reference, their plot versus non dimensional frequency is reported in Figure 3.6.

Given the form of the equations, an exact analytical expression for the position of the maximum
can not be obtained. If we consider the typical values of the coefficients (reported in Appendix C)
appearing in those expressions, and we perform an order of magnitude analysis on the derivatives

and retain only the terms that contribute the most, we can find the approximate expressions

(3.41) Qp, =¥
3
(3.42) Qp, = (¥ +¥, )[&] oL,
P L

valid for the quasi steady and the surface layer case respectively. The constants are defined in
equations (3.11) and (3.38). In the case of the boundary condition for the surface layer, equation
(3.41) still defines the approximate position of the inflection point of the function (see Figure 3.6
on the right). In both cases we see that the ratio of the activation energy appearing in the
Arrhenius exponent for the decomposition law and the thermal conductivity is the one that
defines the position of the maximum. In the case of the solid layer, the relative density and the

latent heat also play a (minor) role.
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As stated before, no active chemical reactions are considered in the solid phase and in the surface
layer; the reactions are concentrated in the gas-phase, where we assume a one step chemical
reaction from fuel and oxidizer to products (see section 3.1.4.1 for a more detailed explanation).
As a consequence, the concentration of fuel and oxidizer remains constant throughout the band -
oo < x <'x; and no balance equations are needed for the species within the solid phase and the
surface layer. On the other hand in the gas phase, where there are chemical reactions, species
equations have to be considered; hence the need for setting boundary conditions on the species at
the surface x = x,. Since only 3 species are present (fuel, oxidizer, products), the species
equations can be reduced to one only (T’ien 1972, Huang and Micci 1991). If we decide to use
the equation for the fuel concentration, the required boundary condition can be expressed by

considering the fuel flux balance, written as

(3.43) yu —ypx LY
m Ox

X

Equation (3.43) can be rewritten in terms of the oscillating quantities as

(3.44) ﬂayiﬁ

Also, for unitary Lewis number and two species in the analysis, the average species flux is related

to the average temperature through the heat of combustion ¢:

(3.45) 7=L(-7)
g

The last equation we need is provided by the mass flux balance that, as for the solid phase,

equation (3.14), yields a mass flux oscillation in phase with the temperature oscillations:

(3.46) m



40

It is interesting to analyze what is the effect of the surface layer on the gas-phase. Table 3-2
presents some typical values of the characteristics of a solid propellant (Becksetead et al. 1969,

T’ien 1972, Clavin and Lazmi 1992, Culick and Dehority 1969).

E, 8.0 To 0.15
E| 4.0 T, 0.35
Pe 1000 T, 0.40
o 50 e 1.0
¥ 12 ” 1.0
L, 0.1122 e 1.0
L, | 0.0025 Qr 125

Table 3-2. Non-dimensional values of the physical characteristics

of the solid propellant used in the examples.

In the quasi-steady approach (QSHOD) no intrinsic dynamics are associated with the gas phase,
so the response of the solid phase to the heat feedback coming from the combustion zone is the
one that creates the characteristic response function with a low frequency peak. In our case, (3.11)
would represent the dynamics of the solid phase (it was shown that the temperature and mass
fluctuation solutions only differ by a scale factor). Using the values presented in Table 3-2, it is
possible to plot the solid response, i.e., equation (3.11), and the solid plus surface layer response,
represented by equation (3.40). The two plots are presented in Figure 3.6 and Figure 3.7. The
axes have been re-scaled so that the convention for the non-dimensional frequency is the common
one adopted in the literature (i.e., £2= 1000 @), and the value at the origin is /.

All the value of the parameters for the curves presented in Figure 3.6 are the same used as the

reference T’ien case, and are listed in Table 3-2.
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Figure 3.6. Frequency dependence of the temperature boundary condition for a model including the

solid phase only (left) and solid plus surface layer (right).

The effect of the surface layer is to generate a second peak in the response function, at a higher

frequency than the peak generated by the solid phase alone, and, for the parameters used here, of

higher absolute value. Also, as expected, it reduces the influence of the solid phase resonance: the

value of the response at the first peak is lower than the case with solid phase only.

Figure 3.7 shows the effect of activation energy and density of the surface layer on the response

function.
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7
7
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Increasing Density
of Surface Layer

Real Part

Non-gimensional frequency Q

Figure 3.7. Effect of the activation energy and density on the dynamics of the surface layer.

The peak value of the response function decreases with increasing activation energy and with

increasing density of the material composing the surface layer.
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More complex models of the surface layer can be devised, including chemical reactions, for
example; in the limit of the linear analysis presented here, models can be reduced to the form of

equations (3.32) and simply introduced in the representation of the whole system as a different

transfer function.

3.1.4 Gas Phase

The flame is assumed to be one-dimensional, laminar and premixed. The thermodynamic
characteristics of the gas are assumed to be constant, and later we will use the perfect gas
relations to simplify the equations.

For a one-step forward chemical reaction (fuel + oxidizer — products), the continuity and species

conservation equations, in non-dimensional form, are (Culick 1969):

o, dlp,u,)

3.47 +—"=0
( ) ot ox

ay oY 8%y
3.48 ——tp y —_ =—w
(3.48) Pegr TPt 3 T8

Note that, in the previous expressions, u, is measured relative to the solid interface.
By using the energy equation and perfect gas properties, the temperature energy equation for a

moving gas can be written as (neglecting viscous terms)

~ . DT Dp
3.49 C —— =
(3.49) Pets Df Dt

-V-G+0,i
where C, is the specific heat, assumed constant; w is the reaction rate and Qs is the heat of
combustion. By proper scaling of the momentum equation, it can be shown that the spatial

variation of the pressure over the flame zone is negligible, so (3.47) can be re-written (in non-

dimensional form) as:
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or or 0T y-1op
—+ ————— e —
(3.50) Ze o TP S T o y ot o
(x2<x<oo)

where 0, = QfN 1s the non-dimensional specific heat of combustion.

p o

Again, all the variables can be written as the sum of an average and a (small) fluctuating part;

hence equations (3.47), (3.48) and (3.50) can be divided into steady-state and fluctuating

equations.

3.1.4.1 Chemistry

In our model we consider active chemical reactions only in the gas phase; solid phase and surface
layer are only admitted to have the possibility of change of phase reactions, which will be simply
represented by using an Arrhenius-type exponential dependence on the thermodynamic
quantities.

For the chemical reaction in the gas phase we assume a one-step forward chemical reaction; such
an assumption is common in the literature (T’ien 1927, Huang and Micci 1990, Lazmi and Clavin
1992) and is justified by the enormous complexity of the chemical reactions taking place in the
flame zone of a solid propellant and by the relative scarcity of experimental data and chemical
flame models.

For a one-step forward reaction:
(3.51) v} [f]+ v [0]——) v}', [p]

Defining v; (i = o, f) as

(3.52) < i)
Wyvy
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and considering that fuel, oxidizer and products mass fraction are related by reaction (3.51), only

one equation is required for the species evolution, plus the fact that

(3.53) L= 4 const

where the constant can be determined by observing that at the flam edge both fuel and oxidizer
vanish. This allows writing the reaction rate w, appearing in (3.50), as
E

(3.54) w=BjTJ(—;lj Yie T

where j is the oxidizer-fuel ratio. If Le = 1, the steady state equation for the temperature and the

one for the species (3.59) can be made similar with the substitution:

(3.55) 7v-L(-7)

(3.56) w=2 Te2(1-T, Fe

For the non steady part we obtain

(3.57) v L P f’+(§vﬁ 12
op oT oY
where the coefficients are the value of the partial derivative in the mean state:

£
:ijﬁ"nniqni(l—f)”

| 32

£
= BT —e—T—(l—T_")"[d—n+—T£)

n

q
E

Bw =5 €T [ e
(5? =BT’ n%l—(l—T)"l

(3.58)

2y s
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3.14.2 Steady-State Equations
The pressure, as explained before, is only a function of time, and can be written as

p(t) =1+ pe"”, where p is a small quantity and £2is the non-dimensional frequency. Also all

the other quantities are split in steady and oscillating part: f(x,7) = J_‘(x) +f (x)e™. After the

substitution, the steady-state equations are

PeTy =

M, = Pyily =1
-

(3.59) a_dr_ 5
dx  dx?
dT, d°’T
g g _ —

dx - dxz - wa

Note that the solution to the equation for the species concentration can be derived from the

solution of the temperature equation with the transformation: )7:.1__(1 - f).

Oy
The solution of the steady state problem corresponds to the solution of the last of (3.59) with

(3.56).

0.14

Temperature

o

©
=
s
o

1
o
A

GL) (4]
3 ©
© 0.8 E
[0 (=]
g k3]
£

o X 0.08 §
2 0.7 o
® ©
5 ~ 5
5 0.6 ', Reaction Rate 10.08 -3
[ f ey
i3] \ (o]
E ) £
S 05 , {0.04
o v O
4 . =z

o4l 0.02
- |\_"‘-r—‘__ L 0
0 0.5 1 15 2 25 3 3.5

Figure 3.8. Typical steady-state solution for the gas-phase. Temperature (left axis),

non-dimensional reaction rate (right axis).
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The end of the flame zone (x;) is defined during the computation as the location where the
temperature reaches its final value (within a specified tolerance). The value of B, which appears
in (3.56), is obtained by integrating the equations backwards (from the right end of the flame)
with a guessed value for B, and then iterating until convergence to the imposed temperature

boundary condition on the left end side. A typical solution is presented in Figure 3.8.

3.1.43 Unsteady Equations
By using the perturbed equation of state, it is possible to write the mass conservation equation for

the mass flow directly, eliminating the explicit dependence on velocity and density:

>

dm R
dx

-1 =—i®

(3.60) T,

oﬁq 8
oy

Also, from the steady equation of state and continuity, i, = 7—‘g By making use of this fact,

equations (3.48) and (3.50), written for the oscillating quantities, become

2
(3.61) Y _dY ;05 4. 5
dx?  dx A dx ¢
d’T, df, o . dT. _
3.62 £ f T = Eh 0 m-il g
(3.62) dx’ dx . Eodx ¢ 9 ¥

where W is given by equation (3.57).
Equations (3.60), (3.61) and (3.62) form a fifth order system of differential equations (with
variable coefficients, depending on the steady state solution to the temperature, species

concentration and reaction rate), that can be integrated numerically, with proper boundary

conditions.
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3.1.5 Boundary Conditions

As shown in section 3.1.4.2, the steady-state equations for the flame zone in the gas-phase reduce
to a single equation for the average temperature distribution. The two boundary conditions for the
second order equation are the temperatures at the interface with the surface layer and the

temperature at the outer edge of the flame zone:

(3.63) T(x,)=T, T(0)=1
The unsteady equations form a fifth order differential system. Two boundary conditions at the

flame edge are ¥ =0 and Z—Y =0 . A condition on the temperature can be derived from the energy
X

equation written for the temperature outside the flame zone (where there are no heat sources or

reactions), assuming that the average temperature in that zone is constant ( T = T (w) = /). This, for

oscillating quantities, gives the same expression as in T ien 1972:

(3.64) ar _ im[y—"i - T) x> ®
dx Y

The other conditions are given at the inner boundary of the gas layer. A condition on the mass
flux is the given by the phase-change equation at the interface, written as m=E,T + 1. The last
boundary condition relates the temperature oscillations with the temperature gradient at the

interface, and is expressed by equation (3.40).

3.1.6 Numerical Solution Method
The numerical method used for the integration is based on linear conversion (Na 1979). The use
of this method allows us to reduce the boundary value problem to multiple initial condition

problems. The advantage over a shooting method (used in T’ien 1972) is that it does not require
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iteration. A Runge-Kutta algorithm is used to perform backward integration of the differential
equations from the flame edge (x = =) to the inner edge (x = x;). Since part of the boundary
conditions are specified on the inner edge and part on the outer edge, the first integration assumes
some guessed values for the boundary conditions at the outer edge. The objective of linear

conversion is to determine the correct boundary values at the outer edge using the information on

the inner boundary.

Using linearity of the system of equations, the inner boundary conditions can be written as a

function of the outer boundary conditions and a particular solution of the system:

(3.65)

§" ‘ S{,'ﬁ)&l E]";ﬂx R
it
=
S ISREY IS RS
+
§“ | Q‘)%’S? ! %,'ﬂ) 3

Note that /J] and {...}, (particular solution) depend on the system of differential equations but not
on the initial conditions. The solution can be obtained in four steps:

Determine {...}, by setting {... }, . = 0 and integrating the system once.

Determine /J] by using unitary values to the guessed boundary conditions

(3.66)

&"I%)%)&lg)ﬂ) §)
11
SO D~
CHISRH ISR NER
11
S O D~ D

X—>0 X—>©

and subtracting the particular solution obtained before. This gives the columns of /J] one at a
time. Note that some of the boundary conditions on the right end side of the flame zone are

known (see section 3.1.5), hence the system actually requires only three integrations.
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Determine the correct values of the boundary conditions at the flame outer edge, using the
knowledge of the correct boundary conditions at the inner edge and the coefficients evaluated in
the previous step; this simply requires the solution of a third order linear system.
Integrate the system (from the right boundary to the left) with the correct boundary values at the

right boundary of the flame edge.

3.2 Particle Damping Modeling

In this study, we are dealing with response functions that, compared to the quasi-steady result,
have a more significant an effect at higher frequencies; it is important then to carefully consider
the major source of damping: the particles present in the combustion chamber.

The equations representing the dynamics of the chamber, equations (2.20), can be re-written with
the linear contribution explicitly marked:

(3.67) 7, + ﬂ),%f]n =2a,7, +20,8,7, + (Fn )NL

where «, and 9, are the (linear) growth rate and frequency shift of mode n. Several factors
contribute to these two parameters. In particular: combustion, inert surfaces and condensed
material in the flow. In general, combustion drives the response, and its contribution is calculated
by using proper response functions. Inert surfaces, particularly the nozzle, have a stabilizing
effect, and their effect can be introduced by the use of an appropriate value for the admittance
(Culick and Yang 1992). Condensed material in the flow also has a stabilizing effect, and also a

very strong dependence on frequency.
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Figure 3.9. Relative values of contribution to o, for fixed particle diameter. First 10 modes.

Figure 3.9 presents graphically the relative values of the factors contributing to the value of o, for
the first ten modes of the chamber used in the examples of the following paragraphs. For clarity,
the contributions are presented in their absolute value ( &vozz. and @pgyiicies would be negative). It is
clear that, after the second mode, the damping due to the condensed material is dominating the
dynamics of the system.

The mechanism responsible for the damping due to condensed material is the viscous interaction
between the particles and the gas. Particle damping is calculated by using the linearized multi-
component fluid mechanics equations (Culick and Yang, 1992). Also the assumption is made that
the Reynolds number based on the relative speed between gas and particle is less than unity, and
hence Stokes’ flow approximation holds.

As it can be expected, the damping is a strong function of the size of the particles and the
frequency of oscillation; in particular, the damping at a given frequency presents a maximum at a
specific diameter, and, for a given size (within a range, cf. Figure 3.10), the damping increases

greatly with frequency. The situation is summarized in Figure 3.10.



51

2500

2000
1500 |

(=N
? 1000 +

500

Figure 3.10. Damping due to condensed material.

Some calculations (Culick and Yang 1992, Isella and Culick 2000) assumed a constant value (o=
2x10° m) for the particle diameter, resulting, as Figure 3.9 and Figure 3.10 show, in a very large
damping in the high frequency modes.

In Isella and Culick 2000, it was noticed that an artificial reduction of the particle damping (10%
constant reduction over the entire frequency range) could have a significant effect on the global
dynamics of the combustion chamber. To investigate further this possibility, we considered
introducing a realistic distribution of particle sizes in the calculation. In Kraeutle 1978, the author
finds that, for a typical aluminized propellant, about 65% of the particles has a diameter between
0.2 and 1 zm (1x10°°m), 10% is between 1zm and 10 zm, the remaining 25% is almost entirely
between 10sn and 30m, with a few particle (0.02%) falling outside of the categories listed.
Introducing this distribution in the model used to calculate condensed material damping, we
obtain the curves presented in Figure 3.11. The dotted line presents the damping in the case of
fixed particle diameter (o = 2 m) and the continuous line shows the damping corresponding to
the particle distribution measured by Kraeutle 1978. Note that the particle diameter distribution is

slightly bimodal, and this is reflected by the two peaks in the damping curve. Note also that,
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while for the first mode the damping is higher, the particle damping associated with the higher
modes is noticeably lower. For reference, in the example presented later, ®;=5.6x10° and

0s=3.4x10".

Figure 3.11. Condensed material damping with variable particle size (continuous line) and constant

particle diameter (dotted line) 6=2san.

With this model, the relative influence of the various components of the growth rate of the modes

becomes the one presented in Figure 3.12 (to be compared with Figure 3.9).
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Figure 3.12. Relative values of contribution to a,, for distributed particle diameter. First 10 modes.



53

An example of the calculation of the global response using this model is presented later.

3.3 Effect of Surface Layer Dynamics and Gas Phase Dynamics on Propellant

Response

Typically, the experimental measurement of the frequency response of a solid propellant is
limited to a few data points at relatively low frequency and with considerable scattering. The
quasi-steady theory gives a satisfactory representation of the behavior at low frequency, but there
is evidence that the response at higher frequency is higher than predicted by QS theory and it
might be responsible for the observed sensitivity of propellant burning behavior on small
variations in the propellant composition.

In this section we combine the models developed above to analyze the effect of the surface layer

and of the gas phase dynamics on the shape of the frequency response curve.

AFl —— Real Part
----------- Imaginary part

0
Figure 3.13. Reference case: quasi-steady response.

The reference case is shown in Figure 3.13 and is the quasi-steady case with parameters: 4 = 6.0,
B =0.60.
Adding the dynamics of the gas phase, we obtain the response function presented in Figure 3.14,

calculated for the parameters in Table 3-2, without the surface layer. As noted by T’ien 1972, this
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calculation verifies the quasi steady case for low frequency, but also shows another peak at a
higher frequency. An interesting characteristic is that the acoustic admittance and the burning rate
have the same trend at low frequency, while they assume opposite behavior at the high frequency
peak; for higher frequencies, the acoustic admittance grows again to positive values. The acoustic
admittance represents the velocity perturbation at the outer edge of the flame zone, and hence the
ability to amplify or damp disturbances. T’ien notes that a decreasing ratio of solid to gas
densities, which is inversely related to the ratio of gas residence time to solid characteristic
thermal time, produces much higher values of the acoustic admittance at high frequency. This is
verified by Clavin and Lazmi 1992 and also in the computations done here. Since very high
pressure burning is the typical application for solid propellants, this observation is very important
for experimental purposes: low pressure testing of a solid propellant will lead to a misleading
result for the high frequency (here “high” refers to the region following the peak in the quasi
steady response) region of the response. Effectively, low pressure (i.e., high density ratio) testing

results in the observation of a behavior that is opposite to the behavior at high pressure.

5 T T T
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Figure 3.14. Combustion response curve for model with gas phase dynamics.
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Figure 3.15 presents a similar case, including the dynamics of the surface layer, where we used
the previous values for solid and gas phase, and the values reported in Table 3-2 for the

characteristics of the surface layer.

In this case, the amplitude of the response function is lower, but the second peak is more evident.
Again, the acoustic admittance becomes positive and large at high frequency.

The principal parameters that characterize the surface layer are relative density ( p,;), activation
energy (£)), latent heat (L;), thermal conductivity (#;) and thickness of the surface zone (x;). The
effect of the variation of these quantities on the resulting response function is shown in Figure
3.16 to Figure 3.20. In these figures, one parameter is varied, while the others assume the values

reported in Table 3-2.
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Figure 3.15. Combustion response curve with surface layer

and gas phase dynamics.

The relative density of the surface layer (Figure 3.16; some of the imaginary parts are not drawn
for clarity) has a strong effect on the response function: both the position of the peaks and the

amplitude are influenced. In particular, for increasing o, we observe a large peak at intermediate
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frequency. Burnley 1996 observed, from simulation results, that a transfer function with a large
absolute value could give rise to a triggering phenomenon. At the time, he discarded the solution
since the quasi steady theory would require non physical values (see section 3.1.2 for more details
about stability boundaries) of the coefficients in the 4B form of the response. In our case, such a
response function is physical and justified by the presence of a surface layer. The explanation of
the triggering has been given recently by Ananthkrishnan 2001, and is based on the fact that such
a large value of the response causes a change of sign in one of the coefficients of the gasdynamics

equations, and hence produces the correct dynamics for triggering.

-3 1 L :
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Figure 3.16. Variation of the response function with 4.

The activation energy (Figure 3.17) influences only the amplitude of the peaks. This can be
explained by observing that the value of the activation energy sets the importance of each
particular section in the energy balance. Hence, a large value of the activation energy in the

surface layer (compared to the value in the solid phase) would make this zone more dominant.
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Figure 3.17. Variation of the response function with E,.

The same conclusion is reached in the case of the latent heat, shown in Figure 3.18. A large value

of this parameter makes the surface layer dominant in the response.
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Figure 3.18. Variation of the response function with L,
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Figure 3.19. Variation of the response function with _z;.

As expected, the thickness of the surface layer does not have a major effect on the results, since

all the chemical reactions remain concentrated in the gas phase by assumption.
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Figure 3.20. Variation of the response function with x;.
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3.3.1 Reduction to Transfer-Function Model
In order to analyze the effect of the various sections of the propellant on the total response, we
will now divide the contribution of each zone of the propellant into a separate transfer function.
For the purpose of this chapter, we will use a representation more typical of the control literature
and present the plots of the transfer functions as magnitude and phase, so the effect of combustion
is more immediately apparent from the analysis of the graphs. The ‘Solid phase’ line in Figure
3.21 shows the quasi-steady response under this convention.
By using the numerical solution for the case with full dynamics, we can now evaluate the

response of each phase in terms of a transfer function (Figure 3.21).
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Figure 3.21. Response in terms of transfer functions (in deg).
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We note that the gas phase dynamics adds a peak at high frequency. Also it has an effect on the
phase at low frequency. Also there is a significant effect of the surface layer at higher frequency
than the limit of the quasi steady response.

Regarding the sensitivity of the response functions to variation of the physical parameters in the
surface layer or solid phase, we can qualitatively refer to the figures from Figure 3.16 to Figure
3.20. Different transfer functions for different values of the parameters are not reported, but can
be easily calculated following the method described here.

The purpose of describing each ‘section’ (cf. Figure 3.1) of the propellant with a transfer function
was described in more detail in section 3.1.3; in brief, it allows to separate and identify the effects
of the various propellant zones on the dynamics of the combustion chamber. Furthermore, it is
very convenient for parametric studies and the introduction of different models of a particular

zone, since the new model can be just plugged in without recalculating the whole system.

3.4 Pressure Coupling - Results

This section presents the dynamical analysis of a small rocket motor to illustrate the
consequences of the combustion dynamics for the stability and nonlinear behavior of unsteady
motions in a motor. The simulated combustion chamber is 0.6 m long, 0.025 m in diameter and
has a throat radius of 0.009 m; the mean pressure in the chamber is 7.06x10" Pa. Figure 3.22
presents the results of the simulation for system with a combustion response based on the quasi-
steady theory. The top section presents the combustion response function; the vertical lines mark
the frequencies of the first acoustic modes of the combustion chamber. The bottom half shows the
time evolution of the amplitude of each mode. The values of the parameters are: 4 = 7.0, B =

0.60, n = 0.80.
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Figure 3.22. Simulation results for QSHOD combustion response.

The first mode is unstable and rapidly grows to a limit amplitude, while the other modes are all
stable, and draw energy from the first mode (allowing the system to enter a limit cycle).

Figure 3.23 shows the same simulation for the case of a delayed combustion response function:
note that the dynamic behavior of the system is richer. The limit cycle is reached later and the
first two modes (both unstable) have a more complex interplay. The values of the parameters for
this case is: 4 = 8.0, B = 0.60, n = 0.80, r = 1.5 (non-dimensional units). For some particular
values of the parameters, we also observed a switching of the most unstable mode after a (long)
period of time, which indicates that the system is close to a bifurcation where the period of the

limit cycle becomes influenced by both the first two modes, a case similar to period doubling.
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Figure 3.23. Simulation with time delay.

Figure 3.24 shows a similar calculation using the response including the dynamics of the surface
layer: the higher values of the response function at high frequency produce a very different time-

evolution of the amplitude of the modes before reaching the limit cycle values.
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Figure 3.24. Simulation with surface layer.
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Figure 3.25 presents the same simulation with surface layer and gas-phase dynamics. The
response function has a higher value than in the previous cases at high frequency. This has the
effect of driving the higher modes to a larger value. The effect on the response is not very
dramatic because the model used for the particle damping (Culick and Yang 1992) produces a
damping rapidly increasing with frequency, and, from the third mode, that constitutes the

dominating effect on the dynamic of the system.

Re 1 2 3

5L

0
10 10

0.25 T T

Mode amplitude

o Z 1
0 500 1000 1500
Non-dimensional time

Figure 3.25. Simulations with gas-phase and surface layer.

Figure 3.26 shows the same case with a /0% reduction in the particle damping. In this case the
final amplitude of each mode is consistently larger. Large values of high frequency modes cause
quite a marked difference in the shape of the pressure waveform in the limit cycle, as shown in

Figure 3.27.
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Figure 3.26. Simulations with gas-phase and surface layer, with reduced particle damping (constant

10% reduction over all the frequency range).
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Figure 3.27. Pressure waveforms for the limit cycles of (a): Figure 3.25 and (b): Figure 3.26.
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3.5 Pressure Coupling - Discussion

The examples presented in the previous section show the influence of including the dynamics of
the surface layer in the modeling of the burning of a solid propellant. Two simple models
representing the dynamics of the surface layer are introduced. One simply adds a time lag to the
conventional quasi-steady theory, the other introduces a layer with different properties.

The time lag model gives rise to a combustion response function that presents several peaks, and
hence it is not very realistic. The peaks could be eliminated by choosing a time lag dependent on
frequency (Grad 1949), but that choice does not have a physical justification and it reduces the
model to curve fitting with experimental data.

With the second model, the effect of the surface layer on the combustion response function
consists in the reduction of the peak induced by the solid phase, and in the appearance of another
peak (of higher absolute value) at higher frequency, due to the response of the surface layer to the
heat feedback from the combustion zone. The relative density of the surface layer seems to have
an effect on the response function that is larger than that of the activation energy.

The combustion model is also applied to an example computation of the dynamics of a rocket
motor, to show the effect of the combustion response function on the dynamics of the system.
For the examples chosen here, the waveforms in the limit cycles are similar whether or not
dynamics of the surface layer and gas phase are accounted for. This is a consequence of the heavy
damping in the higher harmonics introduced by the model used (Culick and Yang 1992).
Calculations with less damping of the higher modes show larger amplitudes of those modes in the
limit cycle. This affects the amplitude and the harmonic content of the waveforms in the limit
cycles.

In general, models based on pressure coupling do not show a dramatic sensitivity of the
propellant response to changes in composition, especially when compared with the introduction

of another coupling mechanism, based on velocity coupling, presented in the following section.
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3.6 Velocity Coupling (Continuation Method)
The idea of velocity coupling is based on the model introduced by Levine and Baum 1983. The
principle is that the velocity parallel to the propellant surface gives a contribution to the mass
burning rate of the propellant. This can be justified by the convective heat transfer, that becomes
particularly important if the flow is turbulent.

The total mass burning rate can now be written as
(3.68) =i fi+ R, F(u)}

where m,, is the mass flux due to pressure coupling, R, is a coupling coefficient and F(u) is the

velocity coupling function.

A simple model is to use the oscillating velocity as coupling function. Neglecting the mean flow

velocity, equation (3.68) becomes
(3.69) i =i, (14 B ofu)

This expression can be easily introduced in the formalisms presented in chapter 2 to perform the
simulations (Burnley 1996).

As also noted by Levine and Baum 1983, and Burnley 1996, velocity coupling has a significant
effect on the global dynamics of the system.

Similarly to Burnley 1996, in order to use a method based on solution continuation to study the
dynamics of the system, a continuous approximation is introduced in equation (3.69) to substitute
the absolute value. According to Burnley 1996, it is this approximation that produces a
‘threshold’ effect responsible for the incurrence of a subcritical bifurcation, as shown in Figure
3.28, where «is the growth rate of the first mode. The results presented in the figure are obtained
by using a solution continuation method (described in Appendix A), using the growth rate of the

first mode is used as a parameter in the continuation (x-axis in Figure 3.30).
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Some recent work done on the dynamics resulting from the functional form of the equations used
in the analysis by Ananthkrishnan 2001 seems to prove that the absolute value function in itself,
as it appears in a simple model of velocity coupling, is sufficient to produce a subcritical

bifurcation (pitchfork) followed by a fold (saddle-node bifurcation).
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Figure 3.28. Bifurcation diagram.

In order to analyze the effect of velocity coupling on the overall dynamics, the following two

relative sensitivities are defined:

(3.70) she = 1 e
R ALC ava

(3.71) s -1 0%
va a’BP ava

where 4, is the amplitude of the limit cycle (defined at a fixed value of &), and azp is the value
of the growth rate at which the unstable fold turns to a stable fold. Equation (3.70) defines the
relative sensitivity of the amplitude of the limit cycle to variations in the velocity coupling

coefficient; equation (3.71) refers to the sensitivity of the turning point to the same coefficient.
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Figure 3.29 shows a plot of the sensitivities, calculated for the combustion chamber used in the
examples of the previous section, and using a six mode approximation of the system. Note that
the sensitivity of the turning point is very high, and also the sensitivity of the amplitude of the

limit cycle is quite large in the range 0.15 to 0.25 of the coupling coefficient.
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Figure 3.29. Sensitivity of global dynamics to variations of the coupling coefficient.

3.7 Velocity Coupling - Results

We now analyze the same combustor described in section 3.4, with the introduction of the extra
terms due to velocity coupling.

For reference, Figure 3.30 presents the results of the simulation for the system with a combustion
response based on the quasi-steady theory. The top section presents the combustion response
function; the vertical lines mark the non-dimensional frequencies of the acoustic modes of the
combustion chamber considered in the simulations. The bottom half shows the time evolution of

the amplitude of each mode. The values of the parameters are: 4 = 6.0, B = 0.55, n = 0.50.
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Figure 3.30. Simulation results for QSHOD combustion response.

The first mode is unstable and rapidly grows to a limit amplitude, while the other modes are all

stable, and draw energy from the first mode (allowing the system to enter a limit cycle).

Figure 3.29 shows that there is a region of high sensitivity of the amplitude of the limit cycle for

variations in the velocity coupling coefficient. Figure 3.31 presents the global response for a

small variation of the velocity coupling coefficient (R,, = 0.15 and R, =0.165).
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The simulation uses the same coefficients for the pressure coupling as in the results of Figure
3.30, with the addition of the velocity coupling terms. Figure 3.32 and Figure 3.33 show the

pressure trace and the harmonic content for the same two cases.
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Figure 3.32. Pressure trace and harmonic content for the case 131,6 =0.15.
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Figure 3.33. Pressure trace and harmonic content for the case Evc =0.165.

Note that the combustor shows a quite large sensitivity on a small variation in the velocity

coupling parameter; this is shown by the final amplitude of the limit cycles that develop in both

cases.

Particle damping has a significant effect on the growth rate of the various modes. Figure 3.34
shows the same calculation as Figure 3.31 (a) but with the condensed matter damping calculated
according to the particle distribution of Kraeutle 1978 (see Figure 3.11 in section 3.2). Note the
considerably lower value of the limit cycle amplitude, a consequence of the fact that the first
mode, which is the only one having a positive growth rate exponent (hence it is linearly unstable),

is subjected to larger damping than before, and hence the absolute value of the growth rate is
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smaller. On the other hand, the influence of the higher frequency modes in the waveform is more
pronounced, as clearly shown, for a different example, by the amplitudes in the Fourier spectrum

of Figure 3.35.

It is interesting to show a result for the response using the combustion response including the
surface layer and the gas phase dynamics (as in section 3.3) and velocity coupling plus the

damping model with distributed size (Figure 3.35).
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Figure 3.34. Simulations with particle damping calculated according to the experimental size

distribution.
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Figure 3.35. Global dynamics with full combustion response and particle

damping according to the experimental size distribution.
In this case the first two modes are unstable, and the higher frequency modes are much less
damped (due to a combustion response function with higher values than the QSHOD response at
high frequency). The result is a higher value of the limit cycle amplitude and a richer harmonic

content.

3.8 Velocity Coupling - Discussion

The purpose of the analysis of velocity coupling is to investigate the sensitivity of global
dynamics to small changes in the propellant physical and chemical composition.

In section 3.5 it was shown that a model including combustion response based on pressure
coupling only is not sufficient to produce large effects in the global dynamics of the system. The
only exception is when the combustion response function has values near the boundary for

Intrinsic stability (see section 3.1.2 for a detailed discussion).
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The results of the simulations including velocity coupling suggest that unsteady surface
combustion responsive to velocity fluctuations parallel to the surface leads to a combustion
dynamics sensitive to small compositional changes.

We also show that particle damping is in effect an important factor in the simulations; changes in
composition of the propellant that would lead to changes in the size (or distribution of sizes) of
the condensed material after burning will have a great effect on the global dynamics of the
chamber. This is an important point and must be kept into consideration when detailed simulation

of combustion chambers is performed.

3.9 Sensitivity of Combustion Chamber Dynamics to Propellant Characteristics

In this chapter we constructed a model of the combustion of solid propellant and analyzed two
possible coupling mechanisms between combustor and propellant. The main objective is to
construct a formalism that allows simulation and testing of combustors and to identify the
possible causes of the observed sensitivity of combustion chamber dynamics to propellant
characteristics.

The conclusions of the present analysis, regarding sensitivity, can be categorized within two
groups: sensitivity of the propellant characteristics, analyzed through its effect on the combustion
response function, and sensitivity of the coupling mechanism between propellant and chamber
dynamics.

Regarding the propellant sensitivity, within the quasi steady theory, propellants exhibit a high
sensitivity to small variations in their parameters only when close to the intrinsic stability limit.
Even though potentially this mechanism could give rise to very sensible variations in the response
functions, it is unlikely to be the one responsible for the behavior observed experimentally, since

common propellants are mixed to stay away from intrinsic instabilities, and hence this mechanism

does not commonly appear in practice.
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If we abandon the quasi steady approximation and include gas phase dynamics, we observe a
response of the propellant at higher frequency than the QS predictions; this corresponds to some
of the experimental data available (see Baum et al. 1982) and hence it is a better model for the
propellant combustion, but still it does not justify any stronger sensitivity. The introduction of the
dynamics of the surface layer, beside considering solid phase and gas phase, introduces a very
interesting sensitivity of the propellant response function to the characteristic of the surface layer
itself. As shown above, the surface layer introduces the possibility for very different response
functions, which, for some values of the parameters, present large peaks at moderately low
frequencies and hence could justify some phenomena observed in rocket firing experiments (like
triggering).

Regarding the second mechanism, i.e., the coupling between propellant and combustion chamber,
we can summarize the results as follows. The traditional coupling mechanism, based on pressure,
does not show the capability of justifying a high sensitivity of chamber dynamics on propellant
characteristics. Simulations show that, even with large variations in the combustion response
function, the chamber dynamics is not strongly affected. On the other hand, the introduction of
velocity coupling, i.e., a dependence of the combustion response also on the velocity parallel to
the propellant grain, shows a path for a more direct connection between chamber and propellant
dynamics. It also introduces the possibility of explaining some observed dynamics (like
triggering) without recurring to excessively high values for the combustion response function.
Another point worth mentioning regarding the coupling between propellant and chamber regards
the effect of the solid particles on the dynamics. It is well known that particles introduce a
considerable amount of damping in the dynamics; this damping is a function of the frequency and
depends mainly on the size of the particles. All of the work done previously on reduced order
modeling and simulations used a single size distribution for the particles; our simulations show,

by introducing a realistic particle distribution, that previous analysis might have introduced too
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much damping of the high frequency modes, and hence underestimated some of the dynamics
coming from those modes. This is to say that some of the effects of a larger response function at
high frequency, introduced by considering gas phase and surface layer dynamics, might have
been filtered away in previous simulation by the excessive damping introduced by assuming an

incorrect particle size distribution in the computations.
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4 Control of Instabilities in Combustion Chambers

Even before the development of models including combustor dynamics and feedback control,
experimental application of feedback control of combustion instabilities was successfully tested
on small systems (mainly using loudspeakers as actuators). Those laboratory demonstrations
report examples in which the amplitudes of limit cycles in linearly unstable combustors have been
significantly reduced, sometimes even to vanishingly small values (Poinsot, Bourienne, Candel
and Esposito 1987, Gulati and Mani 1992). In most cases, the ‘practical’ controller was a simple
proportional feedback or a variation of a PID (Proportional-Integral-Derivative) controller. One
might wonder why that simple approach works or, conversely, ask why we need more
sophisticated control methods. From a general viewpoint, experiments show that an unstable
combustion chamber is a system exhibiting a linear instability (rapidly) growing to a limit cycle
(defined by the nonlinearities) that typically shows a marked predominant frequency.

In terms of dynamical systems, the combustor is characterized by two unstable complex-
conjugate poles and then a series of stable poles with relatively large damping. Provided that the
combustor is observable and controllable, for this kind of system, a proportional feedback or a
PID controller can be successfully tuned to obtain a stable feedback loop (Franklin et al. 1995).
Regarding the issue of controllability (and observability) of the system, for the purpose of this
argument, we will say that controllability has been proved in practice for those systems by the
success of the experiments cited. A detailed analysis of this point would allow optimization of the

position of actuators and sensors, but that is out of the scope of the present discussion.
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The need for more sophisticated control methods derives mainly from two aspects: first, one
might want to impose performance specifications on the controller, for example on the maximum
control action, or on the noise or disturbance rejection. Second, combustion systems show a high
degree of uncertainty and variability (Lieuwen and Zinn 2000), and a controller ‘tuned’ on a
particular operating point does not guarantee a reliable performance. Modern control design
methods allow for the introduction of this kind of consideration during the synthesis of the

controller.

All the considerations above and most of the design methods and examples found in the literature
are generally based on a linear model of the combustor. On the other hand, the real system is
manifestly nonlinear: the main indication of that is the fact that the pressure oscillations in the
combustion chamber rapidly reach a limit cycle. A complete understanding of the dynamics of
the combustor would allow tracing the source of the nonlinear behavior observed in the
experiments (limit cycles, hysteresis, as in Isella et al. 1997 and Lieuwen and Zinn 2000) to its
origin: nonlinear gasdynamics or nonlinear combustion. In that case nonlinearities in the system
could be exploited by an ‘ad hoc’ form of (nonlinear) control to overcome the main limitations of
linear control: requirement of a relatively high control effort and actuation frequency at the same
frequency of the instability.

Since such a complete model is not available (except for special cases), controller synthesis is
generally based on a linear model. Note that the linear model of the combustion chamber
presented in the section 4.1 is actually a linearization of the full model (ideally, of the real
system) around the operating point. Since the main purpose here is to keép the system ‘stable’,
i.e., as close as possible to the linearized equilibrium point, the linear model and simulation is a
valid and realistic approximation to the real case, provided that the nonlinearities do not give rise

to a subcritical bifurcation (Wang 2000). Note that nonlinearities have the effect of limiting the
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amplitude of the oscillations: hence the linear model is in this sense a ‘conservative’ approach to
the problem (for example, in terms of required control action, we will find an upper limit).
In short, within the present approach, nonlinearities can actually be neglected, except as a formal
vehicle for rigorously introducing noise sources. As a consequence, we will not be able to capture
the effects of any instability mechanism different from the linear growth and phase shifting

included in the model presented below.
On the other hand, the present approach allows for a clear distinction of the effects of

uncertainties, intrinsic noise sources, external noise sources, unmodeled dynamics and time-delay

(Seywert, Isella and Culick 2000).

4.1 Reduction of the Equations to State-space With Control

The approximate analysis outlined in chapter 2 leads to a set of equations representing the
dynamics of the combustion chamber that can be easily cast in the traditional control theory form.

To reduce the set of equations (2.20) to state-space form, we separate the linear terms from the

nonlinear
(4.1) o ”n*Z D+ Eyg )+ FM(L)=w,(0)+U, () n=1...k

where we have added two extra terms on the right-hand side: w, to represent the additive noise
input, and U, to represent the control input. The expression of the linear coefficients D,; and E,; is
reported by Kim 1989; for longitudinal one-dimensional motion they reduce to the simple

expressions:

2
2] 9 _ o
4.2) Dy = IA )K —;] u Vi +7V/i¥/n'5;“}dx

_L —0_0 2 _ 2
(4‘3) Eni - E,f J.A(X{WZM axu B V/njdxa En - J‘J- WndV
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Recall that the central idea of the approximate analysis is that combustion instabilities are
dominated by acoustic waves and hence we neglected entropy and vorticity components in the
expansion for the pressure. These extra contributions can be retained, and give rise to some extra
linear terms in the equations that can be treated as stochastic sources (Seywert et al. 2000); here,
we lump these contributions as unmodeled dynamics and ignore their explicit contribution to the
system. Also the contribution due to linear combustion is lumped together with linear
gasdynamics in the linear coefficients; in particular, it is the linear combustion that makes the
system unstable in the first place. This is a valid approximation within the approach described; for

a detailed analysis of the effect of this approximation, see Wang 2000.

For the purpose of linear control, we neglect non linear terms in (4.1) and we reduce the set of

differential equation to first order, similarly to chapter 2.3.1. Define

Th
(4.4) x=| "
7y
as the state vector. And
0 1 0
2
45) A= - +E, Dy Dy,
Enl Dnl Dnn
- ? 0 -
v (x,)
s E12 linpu! noise
(4.6) B=41 ..
P ? 0
v (x,)
EZ input noise
L n _
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(4'8) D= I_O 0 Wsensar naiseJ

where we assumed a system with one actuator at position x, and one sensor at position x,,, and W
is the weight associated to the noise input into the system and in the sensor. With this notation,

the set of equations (4.1) becomes equivalent to

X = Ax+ Bu

4.9
(49) y=Cx+Du

where u includes the control input and the additive noise terms.

There are some basic issues associated with introducing control into a system, namely the
observability and controllability of the system. For our case, where we chose to represent the
system with a (finite) sum of acoustic modes, the state of the system is not readily available as an
output, since the typical output would be just a pressure pick up, or a temperature measurement.
By following control system theory, it is possible to explicitly compute the controllability and
observability matrices for the system and check that the system is indeed controllable and
observable (provided that actuator and sensor are conveniently placed inside the chamber). In the
same manner, since, by using our approach we produce a simple model of the system, it can be
shown that we can estimate the model system from the pressure reading. An important question is
whether this can be always done in practice or not. A precise answer to this question would
require some experimental work that is currently planned; for now, we can say that, since our
control analysis and modeling work is based on the observation that similar control systems have
been applied to real system and shown to be effective, we work under the implicit assumption

that the real system are indeed controllable and observable.
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4.2 Sensor and Actuator Modeling

Experimental work on active control of combustion instabilities has been so far mainly
concentrated on laboratory combustors, with some examples, in more recent years, on full scale
items.

Regarding possible sensors for control purposes, from experimental work, it results that the most
reliable sensing can be done with the use of pressure sensors. Heat release measurements or
temperature measurements are less reliable and more complex/costly: they remain very important
as a tool for developing and testing models, but not for control feedback.

In our simulations, following common practice in combustion control literature (Fung 1992,
Haddad et al. 1997), we model the pressure sensor as a pure gain between the measured pressure
and the output voltage of the microphone. Possible time delays are lumped together in a single
delay for the whole system, as explained later. For simulation purposes, such model can be
immediately introduced in our formalism, since the pressure in the chamber can be immediately

written as a synthesis of the acoustic modes, as in equation (2.18).

Typical actuators present more variety than the sensors. The most commonly used include:
loudspeakers (especially for laboratory combustors), secondary fuel injection/modulation,
primary fuel modulation.

The typical model of a speaker is given in Haddad et al. 1997, and uses a second order transfer
function between speaker voltage input and velocity induced by the speaker baffle. This model
lends itself naturally to the introduction in the model of the system within our formalism, and
simulation is simply done by augmenting the system states with the actuator states. As noted
later, even the actuation from a loudspeaker has a time delay (that can become significant) due to

the traveling time of the acoustic waves in the chamber. Again, this delay is lumped as a system
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delay and treated separately. This actuator model is the most commonly used in the combustion
control literature.

More complex is the modeling of a liquid fuel injector. In this case we give an example of a
simulation that includes a liquid injector actuator, modeled from the results presented in
Neumeier, Nabi et al. 1997. The data reported make it is possible (with a few assumptions) to
identify the characteristics (transfer function) of a fuel injector.

Figure 4.1 presents the experimental injector transfer function and the corresponding model. Note
the scale factor on the gain, inferred from other data (not clearly specified by the authors in

Neumeier, Nabi et al. 1997). The frequency axis is in non-dimensional units.
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Figure 4.1. Experimental characterization of the injector versus identified model.

The model of the injector is the following transfer function:

s+700 00085
s+50

(12) inj = 300
Figure 4.2 presents the comparison of a run using the loudspeaker model and the injector model;

the combustor is based on the ‘standard’ test combustor, described in Seywert 2001. Delay

compensation is performed by using a predictive model, as explained in section 4.4.
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Figure 4.2. Control with time-delay, (7=10). Top half: system response. Bottom half: control action.

(a): Loudspeaker actuator; (b): Injector actuator

An interesting point is to compare what is the necessary (used by this controller) injector
authority versus the amplitude of natural oscillations in the chamber; the comparison is presented
in Figure 4.3. The top half shows amplitude of the pressure oscillations and amplitude of the

control effort; the lower half is the ratio of control and pressure.
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Figure 4.3. Injector heat release vs. mean heat release.
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This assures that the actuator would be in practice able to perform the required control. A similar
comparison obtained from experimental data, presented in Neumeier et al. 1997, shows that the
ratio presented in the bottom half of Figure 4.3 ranges from 0.55 to about 0.80, and is hence
consistent with the numbers obtained in our simulation.
More recently, an example of control using fuel injection is given by Hathout, Annswamy and
Ghoniem 2000. In this work, starting from a physical model of a generic ‘proportional’ liquid fuel
mjector, the authors produce a third order model of the injector, which is then immediately
simplified to a first order system. In this paper, the authors also analyze the possibility of using
the same model for an on/off injector (like the one used for the experiments described in chapter
5). Control design is done as for a linear system, and the on/off characteristic is added during
simulations.
An open question is the scaling of the actuators from laboratory combustors to industrial size
systems. As long as the systems are linear, the answer is obvious, but there is evidence that
nonlinearities in the flame dynamics might be responsible for some of the observed effects, and

hence scaling would be an issue.

4.3 “PID”-like Control

We dedicate a short mention to this kind of control, since it is the most commonly used for
laboratory applications, and it appears to be effective in most cases. One of the first applications
can be found in Poinsot et al. 1987, where the authors describe a feedback control example with
proportional feedback based on the observation of the unstable mode.

This method includes the common experimental approach of measuring an output from the
system (typically pressure) and using it as a feed-back input after filtering, phase-shifting and
amplifying. The only design variables are the gain of the amplification and the phase shift. This

method is shown to work in a variety of circumstances; the disadvantage is that it does not give
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much insight into the system and also it is not possible to impose some a priori performance
specification on the control design. Moreover, stability is typically not very robust, and hence is
not suitable for general applications, since combustion systems have large uncertainties on the
parameters, large noise in the sensors, actuators and system, and the models have to neglect or
approximate part of dynamics.

A detailed analysis of control algorithms, effects of residual dynamics, truncation, etc., is
presented in Seywert 2001 and is not repeated here. For the purpose of the examples, we use a
controller similar to the one used by Seywert et al. 2000, and we limit the analysis to the effects

of time delay in the controlled system.

4.4 Issues Relative to Control of Combustors: Time Delay

Time delays often arise in combustion systems: for example, even when no control is present,
there is delay between injection of the fuel mixture and fully developed combustion for the case
of liquid or gas combustors, as a consequence of transport and chemical mixing. When feedback
control is present, there are further delays intrinsic to the controller due to finite rates of actuators
and sensors, time spent for signal acquisition and processing, and clock time in case a digital
computer is used.

Even for the typical laboratory-scale combustor, when a loudspeaker is used as an actuator, time
delays might play an important role: suppose the first unstable acoustic mode has a frequency of
1 kHz, then a typical reaction time for the controller (if we consider linear approach, the
bandwidth of the controller should at least match the typical frequencies of the instability in the
plant) is of the order of 1 ms. Modern electronic equipment can certainly process the required
computation for determining the control input much faster than that; the bottleneck for this case is
the time it takes for the pressure input (from the loudspeaker) to influence the chamber acoustic

response. A similar situation would be present in the case of control based on fuel (primary or
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secondary) modulation: in this case, the longer delay would be the time elapsed between injection
and combustion and, consequently, the effect on the combustion chamber.
This time, for a 50 cm chamber, is of the order of 1-2 ms, just the same order of the instability.
In the case of industrial scale combustors, or when using secondary fuel injection as control
actuation, the necessity of considering time delays becomes even more compelling, since in these

cases the time delay can easily be larger than the characteristic timescale of the instability.

Time delays always reduce the stability of a system (Franklin et al. 1995), hence it is very
important to take them into consideration when simulating a realistic combustor and when
designing a suitable controller.

Regarding the controller design phase, three general approaches are possible.

e Classical Control. If we look at the transfer function of the system, and indicate with
the time delay, the problem with time delay is reduced to a conventional one by

expressing the nonrational function ¢® in terms of a rational function. Note that the

function e” is analytic (for finite values of s), so approximation with a rational function
is allowed. A typical approach is to use a Padé approximant, based on a McLauren series
expansion of the exponential function. The value of the method is limited by two factors.
First, the rational approximation of the delay rapidly increases the effective order of the
plant, making the control design problematic. Second, large values of time delay will
decrease the available phase margin to the point where it is no longer possible to design a
stabilizing controller. Also, in Wang 2000, the author shows that a low order polynomial
approximation of the time delay is not enough to have a satisfactory model in terms of

dynamical behavior of the original system. In the present paper we do not take this
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method into consideration, since we focus our attention on control design methods

capable of incorporating robustness requirements.

*  Modern Control. In this case, time delay can be viewed as an uncertainty in the system
and incorporated in the design as a perturbation to the original plant. More details are

given in the following section.

* Delay Compensation. This category includes all the other methods used to compensate
for time delay. An important group includes compensation networks that bring the delay
‘out of the loop’, and hence allow to design the controller using conventional methods
applied to the plant without time delay. A typical example is the Smith Regulator. A
caveat here is constituted by the fact that most networks based on linear elements
generally do not modify the eigenvalues of the original plant, so they only apply to stable
(or marginally stable) plants. On the other hand, by using these methods, arbitrarily large

time delays can be accounted for without loss of stability margin.

4.4.1 Modern Control
Time delay can be incorporated in the design of a controller by considering the time delay as a
multiplicative perturbation to the plant. Let P(s)= P(s)e ™ be the perturbed plant. The perturbed

plant can be included in the set
(4'10) {(1 + APlantqunc )P : ”APZant “w < 1}

In order to obtain that, the weight function W, is chosen so that

ﬁ(ja))_ .
(4.11) o) 1<, (jo) Vo, r




88

or

4.12) |77 =1/ < .. (o) Yo,z

The design of the controller then proceeds in the same way as before. Note that, if the time delay
is ‘large’, condition (4.12) typically imposes a significant limitation on the controller; in general
performance is degraded and, if ris large enough, it might be impossible to design a stabilizing
controller for the delayed system. On the other hand, when a solution exists, stability and
performance are guaranteed according to the design. Uncertainty in the numerical value of the
time delay, as it is typical in combustion systems, is automatically taken into consideration by the

design method. Application of this approach is included in the example presented later.

4.4.2 Delay Compensation
In this section we will examine a method based on predictive control: the time delay is
compensated by a predictor that acts on the measured or estimated state and feeds the controller

with the appropriate signal to perform the feedback action at the compensated time.

Smith Compensator
The idea is to bring the delay out of the feedback loop, so that traditional design methods can be
used.

Figure 4.4 shows a block diagram of a system with pure time delay.
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Linear State Space Model

Figure 4.4. System with pure time delay.

The input-output transfer function of the system is set equal to a transfer function of a system
with the delay out of the loop, as shown in equation (4.13), and then the equation is solved for the

appropriate regulator £’(s), given by equation (4.14).

o(s) _ k'(s)e " P(s) __k(s)P(s) o
i(s) 1+k'(s)e™P(s) 1+k(s)P(s)

(4.13)

k)
19 ) 1+ k(s)P(s)(l - e"”)

Figure 4.5 shows a block diagram of equation (4.14), and expands the controller box of Figure

4.4.

P(s)-P(s)e™

Figure 4.5. The Smith compensator.

In other words, Smith’s scheme utilizes two feedback loops to control the system: the inner (or

minor) feedback takes care of the delay, the outer (or major) loop is the normal control feedback.
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Linear State Space Model

Figure 4.6. Disturbance sources into the system.

Note that the noise rejection properties of the Smith’s compensator are not good

) _1+kP<1—e_”)_ 0 _P1+kP(1—e_”)
Woosor 1 HKP T Woy 1+ kP

(4.15)

As shown by equations (4.15), the compensator loop brings the controller gain on the numerator.
It is interesting to note that the noise rejection characteristics actually depend on the time delay.
As expected, in the limit of T—0, the system behaves as if the Smith Compensator were not
present, while with increasing 7, the noise rejection worsens.

Since the frequency range of interest for the dynamics of the combustor is limited, the noise
rejection properties can be drastically improved by adding a low-pass filter in the loop (the noise
is just random white noise).

For the case of a perturbation of the plant, where P(s), in Figure 4.4, is substituted by P(s), the

“model” of the plant acts as an ulterior perturbation, weighted by the time delay:

-

os) kP -
i(s)  1+k[Pe™™ + Pll-e™)

(4.16)

Stability Properties of the Smith Compensator
One important problem with the Smith scheme is represented by its stability properties. Furukawa

et al. 1983, presented an argument, based on a State-Space representation of the system, to show
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that the controller can not effectively modify the eigenvalues of the closed loop system. A similar

conclusion can be obtained from the following argument.

Considering the transfer function for the whole system, expressed by the last of (4.13), the

characteristic equation is
4.17) 1+k(s)P(s) = 0

If the plant is unstable, i.e., P(s) has poles with positive real part, on the condition that the system
is controllable and observable, by pole placement it is possible to find a controller k(s) such that
equation (4.17) has roots in the left half of the complex plane, and hence the closed-loop

interconnection appears to be stable.

o(s) -

i(s) S k(s) us) | e L P(s)

(1-e™)P(s)

Figure 4.7. Smith Compensator with Minor and Major feedback loops explicitly drawn.

Let us now consider some of the internal transfer functions, in particular, with the notation of

Figure 4.7, the relationship between input, i(s) and controller output, u(s).

(4.18) u=kv=-ukP(l-e®) +i-0o=-uP(l-€®) +i-uPe®
Hence
(4.19) u(s) _ 1

i(s) 1+kP{l—e )+ Pe®

Now the characteristic equation for this part of the system includes the plant itself; the poles of

the term:

(4.20) 1+ kP(l-e ")
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are placed in the left-hand side of the complex plane by the controller design, while nothing can

be done to the original (unstable by assumption) poles in the extra term:

@21 Pe®

Hence this part of the internal loop of the system is unstable. In other words, the spectrum of the
closed loop system contains all the original eigenvalues of P, plus the ones modified by the
presence of the controller. The same conclusion can be obtained by conducting the analysis with a
State-Space representation of the system. This fact prevents using the Smith Regulator in the case

of unstable plants and makes its value for our case rather marginal.

Other Predictive Control Schemes

The control system consists of a predictor and a controller; the closed loop equations for a generic

input-delayed system can be written as

4.22) ()= Cxle)
(4.23) p(t) = e"7x(¢) + (j[e““Bu(t + T
(4.24) u(r) = Kp(t) +i()

where i(?) is the external input to the system and might not be present, and, without loss of
generality, D is assumed to be zero. The predictor written as in (4.23) is simply derived by
integrating (4.22) from the current time ¢ to the time ¢+ 7 A change of variables produces the form
(4.23), which contains information only up to the current time and consequently it can be

physically implemented.
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In Furukawa and Shimemura 1983, the authors prove (by directly computing the closed-loop
characteristic equation) that if the pair (A, B) is controllable, then the predictor (4.23) and the
controller (4.22) yield a finite spectrum of the closed-loop system, located at arbitrarily pre-

assigned points in the complex plane.

Note that the predictor (4.23) contains an integral term up to the current time. It is impossible to
integrate up to current time without solving an integral equation, or iterating on the solution, but it
can be shown (Manitius and Olbrot 1979) that the limits in the integral term appearing in (4.23)
can be substituted by -t-g and -¢ if € is sufficiently small.

Let us now consider the following scheme

(4.25) 2(t) = %(t)-e*" %t - 7)
p(t) = e*“x(t) + z(r)
u(t)=Kp(r)

A simple substitution shows that computing z(#) from the equations above results in the
evaluation of the correct predictor term (4.23). The scheme (4.25) can be physically implemented
in Simulink by using the network connection presented in Figure 4.8, where symbols refer to the
letters used in (4.25) and p is the signal sent to the controller.

Since the time delay is compensated in this secondary predictor-loop, application of this scheme
to the plant presented above allows including significant time delays in the system without
compromising performance in the design of the controller. On the other hand, the use of a second

loop reduces the robustness of the system to uncertainties in the value of the parameters.
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Figure 4.8. SIMULINK realization of the predictor block, equations (4.25).

4.4.3 Application and Discussion

By using the standard model for the plant (cf. Fung 1992, Haddad et al. 1997, Seywert 2001) we

can demonstrate an application of the predictive control scheme described above. Figure 4.9

presents the result; the simulation refers to the plant described in detail by Seywert 2001, and

includes additive noise but no uncertainty into the system.
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Figure 4.9. Example of control with time delay.
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The non-dimensional time delay is chosen to be 7= 10, which corresponds to a delay of about
10ms, i.e., 5 periods of an oscillation at 500 Hz and constitutes a reasonable upper limit to the
delay that can be expected in a real combustor controlled by modulating the injection of
secondary fuel. Note how the predictor works: the controller (control action is plotted in the top
half of Figure 4.9) starts sending commands immediately when activated. The control is
computed on a prediction of the future state of the system, i.e., the state of the system when the
control signal will effectively reach the plant. The system response, plotted in the bottom half of
the figure, shows that the system effectively starts reacting to the control at a non-dimensional
time of 40, when the controller is put on line at a non-dimensional time of 30.

Figure 4.9 presents the results of a simulation with exact knowledge of both plant and time delay.
An 1mportant question is whether this compensation network would tolerate the presence of
uncertainty. A numerical evaluation of the stability region is presented in Figure 4.10, where we
used multiplicative uncertainty on the state matrix and uncertainty in the time delay as

parameters.
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Figure 4.10. Plant and time delay uncertainty.
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Simulations show that the limit uncertainty is not symmetrical, i.e., the results differ from
overestimating or underestimating any of the two parameters. The figure presents the worst case,
and shows that a modest uncertainty will rapidly bring the system to instability. The real test of
the effectiveness of this approach will be the application to an actual combustor, where it would

be possible to estimate the uncertainty in the parameters.

Inclusion of the time delay in the modern design framework as an uncertainty is adequate when
the time-delay is of the same order of the characteristic time of the instability, defined as the
inverse of the frequency of the unstable mode. Cases with longer time delays, as it might be the
case In full scale combustors, can be treated by adding a second loop to compensate for the delay:
simulation shows very good performance, but issues about robustness to uncertainty and
perturbation need to be addressed carefully. Since a good model of the system is needed to
perform the prediction, performance degrades rapidly if the time delay is long (unless the model
is perfect) or if the model is not very accurate. Some degree of capability to adapt on line might
be needed for application to real systems.

Some recent work by Evesque, Dowling, Annaswamy, 2000 and Hathout et al. 2000, also makes
use of the concept of predictive control to compensate for the time delay and also uses an
adaptive regulator (with fixed, and known, time delay). The approach is substantially the same as

the one presented here, and the authors reach similar conclusions.
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5 Experimental Investigation of a Dump Combustor with Pulsed

Secondary Fuel Control

Hysteretic behavior, as found in the dump combustor facility at GALCIT, allows nonlinear active
control of the instability, demonstrated first by Knoop, Culick and Zukoski (1996).

As in that work, pulses of secondary fuel, based on a simple on/off control law, have been
successfully used to drive the transition between the two modes present in the hysteretic region,
thereby reducing the amplitude of the pressure oscillations with minimal use of fuel.

In order to clarify the origin of the phenomenon, high speed shadowgraph images of the flowfield
during the transition between ‘unstable’ and stable burning have been taken, showing distinctive
features that may help in modeling the observed behavior. A preliminary parametric study (type
of injector, duration of pulses, type of secondary flow) has also been conducted, showing that the

transition can be obtained over a broad range of conditions.

5.1 Dump Combustor'

A vast variety of approaches to active control of combustion instabilities has been proposed;
McManus, Poinsot and Candel (1992) give a review of those strategies: the main feature is to act
on the system at the frequency of the instability without however taking advantage of the
underlying characteristics (non-linearities) of those systems. In this work, the idea proposed by

Knoop, Culick and Zukoski (1996), of using hysteretic behavior to perform a non-linear low

' The work described in this section was performed in collaboration (50%) with Claude Seywert.
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frequency control of the unsteady motions in a combustor is pursued further. Some of the
hypotheses presented in Knoop et al. (1996) are confirmed here and extended by the results
obtained in further experiments, conducted in the dump combustor facility at the Graduate

Aeronautical Laboratories, California Institute of Technology (GALCIT).

5.1.1 Experimental Apparatus and Procedure

The experimental apparatus (Figure 5.2) is essentially the same as that used by Knoop et al.
(1996); the combustor was originally designed by Smith, and details of the design and operation
of the facility are discussed in Smith (1985); an overall layout of the facility is presented in
Figure 5.1. A high speed motion picture camera was added in order to visualize (by using

shadowgraph technique) the transition between the two burning modes of the combustor.

The system consists of a blowdown supply of air and fuel (methane) controlled by dome
regulators. A three-way valve allows fuel and air lines to be pressurized separately or equally in a
‘paired mode’ of operation. This permits mixtures of any stoichiometry to be used (the nozzles

have been designed in such a way that ‘paired operation’ gives a stoichiometric mixture).
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Figure 5.1. Layout of the Dump Combustor Facility.
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Figure 5.2 shows a schematic of the combustor with the dimensions expressed in millimeters. The
section immediately following the expansion (which acts as flameholder) is water cooled and has
optical access from both sides through Vycor glass windows. Combustion is initiated by a spark

igniter located at the bottom of the chamber.

y 430 by 76 J - 830 by 76 .
~—>120
I
T
\ \ Pressure <
transducer ‘
75% % —
Injection blockage i
ports ‘

Figure 5.2. Experimental apparatus (measurements in mm).

Once the system has reached the desired operating condition, control is performed by injecting a
pulse of pilot gas (methane, hydrogen or nitrogen) whenever the combustion chamber exhibits
pressure oscillations surpassing a predefined threshold. The pulses are generated by using
commercial diesel engine injectors, and fed into the combustion chamber through two different
ports: either into the boundary layer of the incoming fuel-air mixture or immediately into the
recirculation zone behind the rearward facing step (Figure 5.2). The injectors line is pressurized
separately from the other lines and can be set in the range 0-15 psig. Two injectors are used and
can be commanded asynchronously to increase injection frequency.

The pressure is recorded by using a PCB model 106B piezoelectric pressure transducer mounted
in a small water cooled cavity on the top of the combustion chamber at a distance of 12 cm from
the dump plane. The cavity was designed so that its resonant frequency (5500 Hz) is well above
any acoustic frequency of the duct (the first observed mode is at 234 Hz) and there are no phase

or magnitude adjustments for frequencies below 800 Hz.
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The differences in pressure amplitude and frequency content of the two burning modes can be
seen by comparing Figure 5.3 and Figure 5.4; the two modes will be referred as stable (the one
with the lowest amplitude of pressure oscillations) and unstable (combustor operating on a limit

cycle, with large oscillations).
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Figure 5.4. Pressure trace and spectrum of the unstable burning mode.

Sterling 1987 shows a high speed shadowgraph sequence of the flow field for both the stable and
unstable burning conditions.

Two independent flow meters are used to monitor the pilot gas rate. A variable are flowmeter
(Matheson Gas Products, model FM-1050) located on the control panel allows accurate

measurement of the steady flow. A Honeywell Mass Airflow Sensor (model AWMS5101VN),
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located immediately upstream of the injectors, is used for measuring time variations in the pilot
fuel flow.

The possibility of stabilizing the combustion by this simple means relies on the fact that the
amplitude of pressure oscillations in the combustor exhibits an extended hysteresis loop when the
equivalence ratio ¢ is varied. Figure 5.5 clearly shows that for 0.75 £ ¢ < 0.9 two possible states
(stable and ‘unstable’) exist in the combustor. Which of these states is actually present depends
on the history. Thus if the combustor turns unstable (to be more precise: if it reaches the stable
limit cycle characterized by large oscillations) within this substantial region of values of the
equivalence ratio (¢), it should be possible to force it from the upper branch of the hysteresis to
the lower one (stable combustion). This transition can be consistently achieved, as demonstrated
by the experiments described later, by injection of secondary fuel into the chamber at the dump

plane.
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Figure 5.5. Hysteresis of the combustor.
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The flowfield in the combustion chamber is recorded using a standard Z-configuration
shadowgraph arrangement with a high speed camera and a high intensity Hg continuous light

source. The geometrical configuration of the elements in the setup can be seen in Figure 5.6.

K 82.000’ 124.500° j

Spherical Mirror 3.500
e Combustion Chamber Spherical Mirror

/ Flat Mirror

7.125 4875 28.500°

Figure 5.6. Setup of the shadowgraph imaging system.

The camera is a Hycamll, 16mm, high speed motion picture camera, manufactured by Visual
Instrumentation Corporation. It allows continuous speed regulation up to a top speed of 1100
frames per second. In this investigation recording was done at a rate of 5000 frames per second,
using 100 ft rolls of Kodak-Eastmann 7222 DoubleX negative film (black and white).

The camera takes about 40 f# of film to reach the desired speed, and the remaining 60 f# provide
0.4 seconds of useful recording at 5000 fps. To achieve synchronization, a triggering circuit has
been added to the facility. The combustor is brought to its unstable mode and data acquisition
started. As soon as the camera reaches the preset constant speed, it sends a signal to the
controlling workstation that starts operating the injectors in order to achieve transition to the
stable mode. This event takes place in a time of the order of milliseconds, and hence the camera

has enough time to record the complete event in a single run.
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The control software has been developed using Sparrow (Murray, 1995), and it allows real time
data acquisition and analysis. Analog signals are acquired using a 16 channel A/D converter
board model CIO-DAS 1600. The sampling frequency used in this investigation was 2000 Hz.
The feedback control law is based on the pressure signal: whenever amplitude of the pressure
oscillations in the combustion chamber reaches a defined threshold, the pilot fuel injectors are
opened for a defined amount of time. The parameters of the system are: threshold pressure,

duration of the pulse, phase between triggering and pulse, pressure in the pilot fuel line.

5.1.2 Experimental Observations

As mentioned above, the transition is driven by the pulsed injection of a small amount of gas near
the dump plane.

For a given fuel, the main parameters in the control law are: injection port, flow rate, length of the
pilot fuel pulse and pressure threshold used to trigger the action. Experiments show that both
injection ports are effective for control; the pulse duration is not critical as long as it doesn't reach
the "blow-out’ limit: long (more than 0.1 s) continuous injection of pilot fuel causes the flame to
be blown out of the combustion chamber. Also the pressure threshold (i.e., the minimum
amplitude of pressure oscillation required to trigger the control action) does not have a major
role: its sole purpose is to distinguish between ‘unstable’ and stable burning. The combination of
pulse duration and threshold value sets, as a consequence, the number of pulses required to obtain

the transition (in general, the shorter the pulse - with fixed threshold - the more pulses are

required).
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Figure 5.7. Typical control run, pulse duration: S0 ms (pressure oscillations in psig).

Figure 5.7 presents the typical output of a controlled run of the combustor. Triggering time and
position of the injectors are marked in the figure; pressure oscillations are plotted in psig. During
the opening time of the injectors, methane is injected into the recirculation zone downstream of
the step. In this combustor, 50 ms is the minimum opening time required to achieve control with a
single pulse. The data of Figure 5.7 correspond to the shadowgraph pictures presented in Figure
5.8 (1)-(8). The premixed flow enters the chamber at the top left of the picture; the geometry of
the system is presented in Figure 5.2.

These pictures are taken from a high-speed movie (shot at 5000 frames per second) that clearly
shows that a large scale recirculation zone, nonexistent in either of the two steady burning modes,
dominates the flowfield during transition and appears to be the major driving force enabling the
control. In stable burning, the recirculation zone is limited to a small section of the upper part of

the combustion chamber, cf. Figure 5.8-(8). During ‘unstable’ burning, the large vortex shedding,
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Figure 5.8 (1), produces a recirculation zone which extends 20 cm downstream of the step and

occupies the whole height of the chamber.
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(6)

(N

(8)
Figure 5.8. Behavior of the flow near the step during a transition from the unstable mode to the stable

mode.

The pulse of injected fuel begins at t=0. (1) t = -3 ms: Start in the unstable burning mode: large
vortex shedding. (2) t = 0: Injection of secondary fuel. (3) t = 1.4 ms: The next vortex still forms but is
not allowed to develop fully. (4) t = 8 ms: Instead, a recirculation zone appears next to the dump
plane. (5) t = 14 ms: The recirculation zone is now occupying all the chamber. (6) t = 18 ms: The
strength of the recirculation is fading and the size is shrinking. (7)-(8) t = 30 ms, 56 ms: The last
disturbances get ‘washed’ away, the recirculation zone has disappeared and the combustor will
eventually reach the state of stable burning where only a turbulent burning boundary layer can be

seen.

Note that Figure 5.8-(7) and (8) show a clear example of a wall jet developing along the upper

surface of the combustion chamber.
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Stabilizing the motions has also been achieved by injecting nitrogen into the recirculation zone. It
is not clear whether the same effect can be achieved by injection into the shear layer. Contrary to
methane injection, successful control seems to be very sensitive to the amount, and possibly the
phase, of nitrogen injection. It should be noted that, while with fuel the repeatability of the
control is high (100% over more than 40 runs of the combustor), with nitrogen the rate of success

1s much lower (about 45%).

It has also been noted that the presence of water droplets in the bottom of the combustion

chamber reduces, or even prevents, the instability in the combustor.

5.1.3  Discussion of Experimental Observations
In this investigation active control has been used to stimulate transition from an unstable state of a
combustor to a stable state:
¢ Control can be achieved by a simple feedback-loop monitoring the pressure oscillations
in the combustion chamber. The injection of pilot fuel need not take place at the same
frequency as the pressure oscillations; a pulse, extended over several periods of the
pressure oscillations (see Figure 5.7), is sufficient.
¢ Control by injection of secondary fuel over several periods of the oscillation has also
been reported by Richards et al. (1995) using entirely different apparatus. The character
of those results suggests that the mechanism is not that established here.
* The number of pulses needed to achieve control depends strongly on the length of the
pulses. Very long pulses (0.1 s for the combustor studied here) blow the flame out and
can not be used. On the other hand, very short pulses appear to be less effective than the

pulse of the minimum duration required to achieve control with a single pulse, i.e., the



109
sum of the duration of the multiple pulses normally is higher than the minimum single
pulse length.

o The flowrate of pilot fuel needed to stimulate the transition is substantial. Contrary to
Knoop et al. (1996), we find that the amount of fuel needed to achieve control is
approximately 25% of the primary fuel flow rate; the actual mass of injected fuel is
nevertheless low, due to the very short duration of the pulse. However, there is a
significant uncertainty due to the difficulty of measuring low flow rates on such a short
time scale.

o The possibility of control with nitrogen suggests that the action is partly dependent on the
flow-field modification induced by the pilot gas blowing. However, the low effectiveness
of the control with nitrogen, and the stabilizing effect of the presence of liquid water in
the chamber, indicate that the mechanism related to the energy transfer between the fluid
present in the combustion chamber and the fresh mixture coming into the combustor is
the dominant one.

Several high-speed shadowgraphs of the transition have been recorded. The most distinguishing
features of the transition are

e The flowfield changes completely during the transition phase. It is neither dominated by
the large vortex shedding of the unstable state nor by the turbulent boundary layer of the
stable mode. Instead a large recirculation zone occupying the entire combustion chamber
appears. On the time-scale of the whole transition process, this large-scale recirculation is
dominant for approximately one-fifth of the total duration.

The transition is extremely fast: barely a dozen cycles of the pressure oscillations are enough for
the combustor to become stable; the same is true for the onset of the limit cycle, when the critical

value of galong the lower branch of the hysteresis cycle is reached (cf. Figure 5.5).
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5.14 Conclusions
The possibility of initiating and controlling the transition from ‘unstable’ to stable burning
through the injection of pilot fuel into the combustor has been thoroughly confirmed with several
experiments, under a wide set of different operating conditions.
Two different mechanisms seem to be participating in the transition: one is the perturbation of the
local energy balance; the other is the perturbation of the flow field due to the blowing of the
secondary fuel. Experimental observations suggest that the first mechanism is by far the most
significant. An important feature is that both the addition and removal of energy in the
recirculating gas, if persistent for sufficient time, are able to drive the transition to the stable state.
The required time (cf. Figure 5.7) is about 50 ms, whereas the period of shedding large vortices is
about 4.3 ms: the fuel pulse covers 8-10 cycles.
The sequence of shadowgraph images of the transition shows that a distinctive feature of the
process is the presence, for a substantial time, of a large recirculation area, occupying the whole
combustor: that feature is not present in neither of the two ‘stationary’ modes, characterized by

large vortex shedding (the ‘unstable’ mode) and a small turbulent burning layer (stable mode).

How general the existence of hysteresis is in combustors remains a matter to be investigated: the
geometry has been fixed in all these tests. Moreover, at least three additional significant questions
are raised, and not answered by these results:
e How significant is the purely fluid dynamic effect of injecting pulses of secondary fuel or
nitrogen?
e What determines the required length of the pulses and why must they last for several

cycles of the oscillation?
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e What conditions must be met to ensure that the injected pulses do not cause a perturbed
state that simply decays to the initial oscillation or limit cycle, but do cause the desired

transition?
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6 Concluding Remarks

The present work describes a framework to perform the analysis and simulation of the dynamics
of an actively controlled combustion chamber with a detailed description of a model for the
combustion of solid propellant, including the dynamics of the solid phase, surface layer and gas
phase.

Different coupling mechanisms between combustor and propellant have been analyzed, as well as
different models for the propellant. The purpose of the analysis is both to establish a framework
to identify the possible sources of the observed sensitivity of chamber dynamics to propellant
characteristics.

We also show that the same framework can be extended to include active control. Detailed
analysis of some of the principal issues regarding control are described elsewhere (Seywert
2001). This work concentrates on some issues regarding the compensation of time delay in an
unstable system and a short overview of the sensors and actuator models currently used in
combustion literature.

Some experimental results are presented for the case of a dump combustor, where we analyze a

possible control scheme and show experimental evidence of the mechanisms responsible for some

of the dynamics observed in the combustor.

The effect of the dynamics of the surface layer on the chamber dynamics was previously

neglected. Here we analyze two simple models representing the dynamics of the surface layer.
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One simply adds a time lag to the conventional quasi-steady theory, and the other introduces a
layer with different properties.
The time lag model gives rise to a combustion response function that presents several peaks, and
hence it is not very realistic. The peaks could be eliminated by choosing a time lag dependent on
frequency (Grad 1949), but that choice does not have a physical justification and it reduces the
model to curve fitting with experimental data. Also this model does not add any significant
behavior to the dynamics observed when using the traditional quasi steady approach.
With the second model, the effect of the surface layer on the combustion response function can be
summarized in the reduction of the peak induced by the solid phase, and in the appearance of
another peak (of higher absolute value) at higher frequency, due to the response of the surface
layer to the heat feedback from the combustion zone. The relative density of the surface layer
seems to have an effect on the response function that is larger than that of the activation energy
and the other parameters describing the characteristics of the surface layer.
The combustion model is applied to an example computation of the dynamics of a rocket motor,
to show the effect of the combustion response function on the dynamics of the system. For the
examples chosen here, the waveforms in the limit cycles are similar whether or not dynamics of
the surface layer and gas phase are accounted for. This is a consequence of the heavy damping in
the higher harmonics introduced by the model used and of the coupling mechanism between
combustion and combustor (pressure coupling).
In general, models based on pressure coupling do not show a dramatic sensitivity of the
propellant response to changes in composition, especially when compared with the introduction
of a second coupling mechanism, based on velocity coupling between combustion and the

velocity parallel to the propellant grain.
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The results of the simulations including velocity coupling suggest that unsteady surface
combustion responsive to velocity fluctuations parallel to the surface leads to a combustion
dynamics sensitive to small compositional changes in the propellant.

We also show that particle damping is in effect an important factor in the simulations; changes in
composition of the propellant that would lead to changes in the size (or distribution of sizes) of
the condensed material after burning will have a great effect on the global dynamics of the
chamber. This is an important point and must be kept into consideration when detailed simulation

of combustion chambers is performed.

Regarding the sensitivity of the chamber dynamics, results can be categorized within two groups:
sensitivity of the propellant characteristics, analyzed through its effect on the combustion
response function, and sensitivity of the coupling mechanism between propellant and chamber
dynamics.

Regarding the propellant sensitivity, within the quasi steady theory, propellants exhibit a high
sensitivity to small variations in their parameters only when close to the intrinsic stability limit.
Even though potentially this mechanism could give rise to very sensible variations in the response
functions, it is unlikely to be the one responsible for the behavior observed experimentally, since
common propellants are mixed to stay away from intrinsic instabilities, and hence this mechanism
does not commonly appear in practice.

If we abandon the quasi steady approximation and include gas phase dynamics, we observe a
response of the propellant at higher frequency than the QS predictions; this corresponds to some
of the experimental data available (see Baum et al. 1982) and hence it is a better model for the
propellant combustion, but still it does not justify any stronger sensitivity. The introduction of the

dynamics of the surface layer, beside considering solid phase and gas phase, adds a sensitivity of
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the propellant response function to the characteristic of the surface layer itself, and hence to the
propellant composition.

Regarding the second mechanism, i.e., the coupling between propellant and combustion chamber,
we can summarize the results as follows. The traditional coupling mechanism, based on pressure,
does not show the capability of justifying a high sensitivity of chamber dynamics on propellant
characteristics. Simulations show that, even with large variations in the combustion response
function, the chamber dynamics is not strongly affected. On the other hand, the introduction of
velocity coupling, i.e., a dependence of the combustion response also on the velocity parallel to
the propellant grain, introduces a path for a more direct connection between chamber and
propellant dynamics. It also introduces the possibility of explaining some observed dynamics
(like triggering) without recurring to excessively high values for the combustion response
function.

Some further sensitivity is also introduced by the consideration of a realistic particle size
distribution; this results in less damping of the higher frequency modes, which are also subjected
to more excitation than previously considered because of the presence of surface and gas phase

dynamics that contribute to the response at high frequency.

Regarding active control, we analyzed the possibility of time delay compensation. We observe
that inclusion of the time delay in the modern design framework as an uncertainty is adequate
when the time-delay is of the same order of the characteristic time of the instability, defined as
the inverse of the frequency of the unstable mode. Cases with longer time delays, as it might be
the case in full scale combustors, can be treated by adding a second loop to compensate for the
delay: simulation shows very good performance, but issues about robustness to uncertainty and
perturbation need to be addressed carefully. Since a good model of the system is needed to

perform the prediction, performance degrades rapidly if the time delay is long (unless the model
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is perfect) or if the model is not very accurate. Some degree of capability to adapt on line might

be needed for application to real systems.

The experimental results presented confirm the possibility of initiating and controlling the
transition from ‘unstable’ to stable burning through the injection of pilot fuel into our laboratory
combustor.

Two different mechanisms seem to be participating in the transition: one is the perturbation of the
local energy balance; the other is the perturbation of the flow field due to the blowing of the
secondary fuel. Experimental observations suggest that the first mechanism is by far the most
significant. An important feature is that both the addition and removal of energy in the
recirculating gas, if persistent for sufficient time, are able to drive the transition to the stable state.
The required time is about 50 ms, whereas the period of shedding large vortices is about 4.3 ms:
the fuel pulse covers 8-10 cycles.

A distinctive feature of the process is the presence, for a substantial time, of a large recirculation
area, occupying the whole combustor: that feature is not present in neither of the two ‘stationary’
modes, characterized by large vortex shedding (the ‘unstable’ mode) and a small turbulent

burning layer (stable mode).

Future Directions

Several interesting questions are posed and left unanswered by the current work. These are some
of the possible future developments that will greatly contribute to their answer.

We have shown that the combustion response function for a solid propellant shows a large
amplitude at a frequency higher than the one predicted by quasi steady theory. Unfortunately
experimental data in a useful range of frequencies are very scarce and carry large uncertainties.

To that purpose we are currently proposing a new experimental method, based on LDV
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measurement, that will hopefully enable us to perform accurate (and direct) measurements of the
response for a large range of frequencies.
Regarding solid propellant, more work is needed in the modeling and experimental
characterization of the surface layer. More analysis is also required regarding velocity coupling: it
would be very helpful to have experimental results to validate our hypotheses.
Regarding control, we are at a point where there is a need of experimental validation of the
methods we describe and propose. Some work is being currently done to this purpose.
The dump combustor experiment also leaves some questions open; particularly important is to

obtain a quantitative theory to explain and justify the experimental observation.
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Appendix A Dynamical Systems and Continuation Method (AUTO)

Dynamical systems theory provides a systematic approach to study the behavior of systems
described by differential equations. This method was first applied to the study of combustion
instabilities by Jahnke and Culick 1993, and it allows for determining regions of similar dynamic
behavior of the solution of the approximate system of differential equations describing the
combustion chamber.

As outlined in chapter 2, the acoustic equations, including combustion and, if present, control and

actuation, can be written in the form (2.27), i.e., as a system of first order differential equations:

(A1) X s

Where x is the vector describing the system and yu is a parameter of interest.

For a moment, we consider the value of the parameter as given; the study of the dynamics of such
a system starts with the determination of the steady states, defined by simply setting the
derivatives to zero. In the general case, determination of the steady states (since the system is non
linear) might not be trivial. In our case, since the equations for the combustion chamber describe
the amplitude of an oscillation over a mean value, subtracted from the equations, we have the
advantage of knowing that x = 0 is always a physical steady state that the system will exhibit.
The next step consists in studying the local stability of the steady state: for this purpose, the
linearization theorem (Hartman-Grobman, Wiggins 1996) establishes that the flow (i.e., the
solution) generated by (Al.1) is C° conjugate to the flow generated by the linearized system,
provided that the Jacobian of the system has no eigenvalues on the imaginary axis. This means

that we are allowed to simply consider the eigenvalues of the linearized system to draw
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conclusions regarding the original non linear system. This is the basis for the validity of linear
stability analysis.
When the eigenvalues have a vanishing real part, the system might undergo a qualitative change
in its dynamics; cases where this happens are called bifurcations, and the value of the parameter
for which this happens is called bifurcation point (Strogatz 1994). A typical example of a simple
system exhibiting a bifurcation is the instability of a beam loaded in compression: the control
parameter in this case is the value of the compressive load.
The most common bifurcations encountered in the case of combustion systems are the Hopf and
the turning point bifurcation, which are characterized, respectively, by the presence of a pair of
imaginary eigenvalues and a non null Jacobian and a point for which the gradient of the
parameter with respect to x changes sign.
Bifurcation diagrams are created using a program (XPPAUT) based on AUTO, a package
developed by Doedel, and based on the continuation method developed by Keller and Doedel.
The software package XPPAUT, by Ermentrout 1998, allows to numerically integrate differential
systems in time domain, determine nullclines, direction fields and analyze phase plots. It also
includes a continuation package based on AUTO.
The continuation method is based on the use of the implicit function theorem, which determines
that the solutions of a continuously differentiable system are continuous functions of the
parameters. This fact allows the program to “continue” a steady state for incremental values of a
chosen parameter. During the continuation, the eigenvalues of the Jacobian are computed at every
step, thus allowing AUTO to identify the stability characteristics of the solution, and to identify
possible branches following a bifurcation.
AUTO is also capable of continuing periodic solutions: in order to do this, a procedure similar to
the construction of a Poincaré map is applied (Wiggins 1996). The periodic solution is discretized

in time and continuation is performed as if it were a steady state. The effectiveness of this method
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depends critically on the accuracy of the estimate of the period: this is the source of the
difficulties described by Burnley 1996 when starting a continuation from a periodic solution.
The nature of bifurcations arising from periodic orbits is determined by using Floquet multipliers
(Guckenheimer and Holmes, 1983); namely, the number of multiplier with unitary modulus

determine the type of bifurcation. The limit cycles will be stable only if all the other multipliers

have absolute value less than 1.

Floquet theory is based on the construction of a matrix called “fundamental solution matrix” of
the system.
Given a differential system:

(A2) V' =F(V)

that has a periodic solution V(¢) with period 7, its stability can be studied by looking at the
perturbation

(A3) V(1) = V(1) + W(?)

where w(t) is small. It can be shown (Levinson and Coddington 1955) that the evolution of w(t) is

determined by the linear system of equations:
(A4) w' = A(t)w

where A is periodic of the same period of V. The solution of (A.4) can be arranged as vectors in a

matrix Y(#), called the fundamental solution matrix. Two important properties of this matrix are:

Y(t+7)=Y([)K

(A5 Y(nT)=Y"(T)

where K is a constant matrix. For proofs and other properties of this matrix, see, for example,

Levinson and Coddington 1955.

The eigenvalues (4;) of this matrix are called Floquet multipliers. If we denote the corresponding

eigenvectors with the symbol X;, the solutions of (A.4) can be written as
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(A.6) w(r)=Y() X

We can now study the stability of the solution w(¢), that, according to equation (A.3), represents

the perturbation to the periodic solution of the original differential system;
(A7) w(t+nT)=Y(t+nT)-X = A'Y(£)-X
Hence, if |4]>1 then as ¢ — o, w(t)—> = and the periodic solution V(¢) is unstable; on the other

hand, if {/l[ <1, then the solution is stable.
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Appendix B

In this appendix, we report the expression of the temperature gradient boundary condition for the
case of the model of the burning of a solid propellant with the presence of a surface layer with

different physical properties. This corresponds to the term F(<£2) in equation (3.40).

We start from the energy equation for the temperature in the surface layer, expressed by equation
(3.36). The general solution for the oscillating temperature at position x within the layer is given
by solving the equation assuming oscillating solutions and the appropriate boundary conditions at

the two sides (see chapter 3.1.3 for more details). The solution is

L4/ 144 7, pQ 1-/1+4 3, 50 x
x — —

(B.1) T(x)=T( H[E+ 7, J0e  *# +@e - .—\Y—l—-el’ (0<x<x)
iQp
where:
E T -T,
poo ZLAL s
! T12 X
1
B.2 =
(B.2) 1+ o P,
K(Q)+ P, _1+,/1+4,{,pli§2 (E)
® = lQpl 2’/’{1
\/1+4le119

and
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1+ 1+ 4,iQ
== (©p, +¥) ik AEHQ/JC f; L.y
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L Z

k(@)
(B.3)

This last expression derives from consideration of the solid boundary, equation (3.11).

Considering the unsteady energy balance at the boundary between liquid layer and gas zone

(boundary 1), we have

&
dx

_Ladr

o e dx

+ El TEXO)LI

(B4)

X 1

We can now substitute expression (B.1) into (B.4) to obtain the required relation:

n n - T /144 ,g,piQx - 1-J1+4 l,pznx
dr| _ T(x) |1+ J1+id g, /0 B+ ﬁ@]e————% v 1-/1+4y,00 oo 21

(B.5) T A ’ i
_ ¥ ? _E_s_f(o) = 2
iQ/O; e +Zl/2’g 1_";2 f’(xl)Ll - F(Q)T(xl)

Note that if we let the surface layer vanmish, ¥, >0, E—1, ®—>K(Q)——1—, and hence
V4

expression (B.5) reduces to the form (3.11) that includes only the surface dynamics.
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Appendix C

Combustor and propellant data used in the examples reported in the previous chapters.

Geometrical Properties
Combustor length L=0.60m
Combustor radius r.=0.025m

Characteristics and geometrical configuration of the sensors/actuators for control are specified

case by case.

Combustion Properties

Mean pressure 7 =1.06x10" Pa
—_ 0.3
Linear burning rate 7= 0.0078(——’%} mfs =0.01145m/s
3.0x10
Flame temperature T =3540K

Non dimensional prop.

temperature T, =015
Non dimensional surf.
temperature T, =035

Mass particles/mass gas 0.36

Particle diameter o=2x10%m
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Parameters in the combustion response for quasi-steady response are specified case by

case.

Propellant and Gas Physical Properties

Thermal diffusivity of

propellant K, = 1.0><10‘7m2/s
Specific heat (gas) C, =2020J/Kg K
Specific heat (cond.) C =1400J/Kg K
Viscosity 1=8925x107° Kg/m s
Particle density 4x10° Kg/m®
Propellant density 1750Kg [m’
Gas density 7.97Kg/ m’

Mixture specific heat ratio 7 =1.18
Gas constant R=3778J/KgK

Other characteristics are listed in Table 3-2.
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Appendix D Review of Published Work about Dynamics and Control of

Combustion Processes at Georgia Institute of Technology

The Jet Propulsion Center has an ongoing effort to review the work of research groups in other
universities on the subject of control of combustion instabilities. The report on the work done at
Georgia Institute of Technology is included in this appendix. Other reviews describe the
combustion control work done at Cambridge University, included in Poncia 1998, and

Massachusetts Institute of Technology, included in Seywert 2001.

D.1 Introduction

Modeling and control of combustion instabilities in various systems has been investigated at the
Georgia Institute of Technology in the last twelve-fifteen years, mainly by the group of B. T.
Zinn.

The activity started in the late eighties with experimental investigation of the instability in ramjet
combustors. With the advent of Y. Neumeier in the group (1991-1992), the interest shifted
towards numerical and analytical modeling, and development of simple control schemes based on
a nonlinear observer. More recently (1996-1999) the interest moved towards modern control and
the investigation of the effect of the equivalence ratio oscillations on the driving of the instability
and emission of NO;.

From the published work, it seems quite evident that no specific coherent program for the

investigation of control of combustion instability was carried on during these years. Control was
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often introduced as a side effort in the main investigation regarding the mechanism of the
instabilities. As a result, control approaches are tailored to the particular case and often there is no
consideration toward the extension of the control strategy to a wide range of operating conditions

or different scale problems.

This appendix presents a thorough review of the work published on modeling and control of
combustion instabilities by the group at Georgia Institute of Technology. The review is divided in
two parts: the first section is a description of some work done between 1990 and 1994-95; the
second part is an analysis of more recent studies (1996-1999). Some general comments are made
at the end the last section.

The early work was mostly experimental and dealt with ramjet combustors (Hegde, Reuter,
Daniel, Zinn 1987). In this part, the main interest was in gathering data and modeling the
acoustics of the system (Hegde, Reuter, Zinn 1988, 1990). The first application of a control
system is described by Menon and Yang (1993) and tested on a numerical experiment. The
interest of the authors is not in the control strategy (they use a simple proportional law), but in
trying to develop a low order model that can reproduce the system behavior correctly.

With Neumeier, Zinn and Jagoda 1993, the more analytical part of the work starts: the interest is
now in the modeling from first principles and analysis of different control strategies. The group
declared goal is to develop an adaptive controller based on secondary fuel injection (Zinn, Daniel,
Neumeier 1994): this is considered the most viable solution for real systems.

In Neumeier, Zinn (1996b) and Neumeier, Markopoulos, Zinn (1997), the authors describe an
interesting control strategy, based on a non-linear observer (that follows the most-unstable mode)
and (simple) linear control. The controller is tested on numerical examples and shows very good
performance, even though many questions are left unanswered, especially regarding the

performance of the controller on a real system, with noise and perturbations.
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Neumeier, Nabi, Arbel, Vertzbeger, Zinn (1997) contains an interesting characterization of a fuel
injector, from a “control” point of view: the data provided there can be used to implement a
simulation using the experimentally derived characteristic of such an injector.

A change of perspective comes with Haddad, Leonessa, Corrado, Kapila (1997), written by a
group in the control department of Georgia Tech, with the collaboration of Dr. Zinn and Dr.
Neumeier. A complete design (tested on numerical examples) of a robust controller is presented,
with noise and perturbation added to the system. The system and the controller are linear, and a
speaker is used as actuator.

As said before, it is not easy to trace a unitary path followed through the years in the control
studies: it is more a collection of trials in different directions, starting from a common interest:

combustion instabilities.

D.2 Early Work

There are a few works published around 1990 related to control of combustion: the main theme of
the research is the investigation of instabilities (mostly longitudinal) in dump type ramjet
combustors. Both experimental and theoretical analysis has been performed as part of this
investigation. Figure D.1 (from Hegde et al. 1987) presents a schematic of the experimental
apparatus developed for these studies. A mixture of air and propane is introduced into the
combustor through the injector, built in sintered stainless steel; the flame is stabilized in the
combustor section (7.5 cm x 5 cm”) on a 0.8 mm diameter nichrome wire. A fine wire mesh grid is
located 8 cm upstream of the stabilizing wire and acts as a flame arrestor in case of a flashback.
The exhaust section is equipped with two acoustic drivers, used to excite a standing acoustic
wave of desired amplitude and frequency in the system. The injector can be moved axially so that
the stabilizing wire can be placed on any part of the standing wave; the maximum length of the

apparatus is 3 m. Pressure and temperature are measured along the combustor walls (water
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cooled); space-time resolved measurements of CH species radiation also allows quantitative

measurement of the reaction rate and hence of the heat release.

Acoustic

Pressure and Temp,
Measurements

Optical
Windows

T~ Inlet Section

R ——Injector
Fuel/Air
Inlet

Figure D.1. Experimental apparatus (from Hegde et al. 1987).

The acoustic behavior of the set-up was tested in cold flow conditions, and the authors
determined that the system behaves like a closed-open organ pipe, i.e,. the injector side behaves
like a closed end (Hegde et al. 1987).

Experiments conducted in this facility reveal the presence of a spontaneous instability of the first
acoustic mode (the quarter wave mode). The flame is stable when close to the lean flammability
limit, becomes unstable when increasing the fuel fraction and then stable again when the fuel
fraction is further increased, approaching the rich flammability limit. In a region around unitary
stoichiometric ratio, the flame is “blown-back” from the wire to the screen placed upstream, and
returns to the wire when operating in the fuel rich region. The instability is characterized by an
increase in the amplitude of the fundamental acoustic mode; pressure in the chamber reaches
levels of 140-150 dB, when the flame is back onto the screen. The instability, however, starts with
the flame still stabilized on the wire, and the results reported refer to experiments conducted with
the flame on the wire.

The presence of the instability is explained through an experimental investigation of the
characteristics of the flow behind the flameholder (Hegde et al. 1987), conducted by measuring

heat release and pressure (magnitude and phase) and a series of shadowgraph images.
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Rayleigh’s criterion can be written in a form suitable for flame driving:

®.1) _ﬂSP‘JlCOS lgpqu >0 (for driving)
Slame

Where S, is the cross-spectrum between pressure and heat release, 4, is the phase between the
unsteady heat release and the pressure and the integral is performed over the flame volume.

By calculating the integral (D.1) with the experimental data, the presence of the instability at the
fundamental frequency is justified.

The main characteristic of the flow field in this combustor is the presence of a small recirculation
zone behind the wire that acts as a flameholder and the periodic shedding of burning vortices
behind it. This feature is clearly visualized by shadowgraph images and inferred through CH
measurements (Hegde et al. 1987).

External forcing was also applied by the acoustic drivers (see Figure D.1), with acoustic
excitation driving a harmonic, a sub-harmonic or a random frequency. Note that the combustor
presents a spontaneous instability, and the acoustic driving at different frequencies was only used
to study its effect on frequency and characteristics of the vortex shedding from the flameholder;
no control of the instability is attempted.

Results show that the frequency of the vortex shedding is not affected by the external excitation
frequency (it remains at the first natural frequency). The propagation velocity of the vortices
(computed from the shadowgraph film and the phase of the CH emissions) is also unaffected by
the external driving.

The authors found that only in a small region behind the flame holder (the “near wake region,”
about 5 flameholder diameters long) the heat release spectrum is dominated by a component at
the external driving frequency (especially evident for frequencies in the range 200-500 Hz,

compared to a natural frequency of 80 Hz).
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The amplitude of the forcing is not specified: it might be that the acoustic forcing was too weak to
have any other significant effect, when compared to the dominant first mode instability reaching
peaks of 130 dB in the conditions at which the experiments where conducted.
Two conclusions can be drawn from this work:
1. The interaction between fluid mechanical instability of the flame and acoustic field provides a
mechanism (vortex shedding at the flameholder) for driving longitudinal mode instability.
2. The fact that external driving affects the recirculation region in the wake of the flameholder
might offer a way of controlling the instability by disrupting the vortices (non-linear
control).
Two later works (Hegde et al. 1988, 1990) introduce some comparisons between theoretical
models and the experiment just described.
The first (Hgde et al. 1988) develops a theory for predicting the sound generated by a flame in an
enclosed duct.
The model assumes a rectangular duct, premixed reactants, small (zero) Mach number of the
mean flow, and a given axial temperature profile. By expanding the flow variables in mean and

fluctuating part, and assuming small fluctuations, a wave equation for the pressure is derived:
v
(D.2) V'(TVP )—"———=——-——
a

Where 7 is the average temperature, p”’ and ¢’ are the unsteady pressure and heat release; C, is
the specific heat at constant pressure, a is the speed of sound.

The derivation makes use of the equation of state for a perfect gas, and takes into account the heat
release from the combustion process (¢ °) and the spatial variations of temperature.

Equation (D.2) is solved under the hypothesis of harmonic longitudinal motion in the case when
the length of the combustion zone is small compared to the acoustic wavelength. The solution

yields the pressure amplitude at a certain frequency (p,,) as a function of the heat release (g),
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wall losses, acoustic impedance at the boundaries and geometry of the system (see Hegde et al.
1988 for details):

i, (L)G(x, L)
C

P

(D.3) Pw (x) =

Where G is the appropriate Green’s function satisfying the wave equation, boundary and jump
condition across the discontinuity at the flame position (L;). For the results presented in Hegde et
al. 1988, the temperature is assumed to be the cold gas temperature up to the flame, and the flame
temperature from the flame location on.

This model applies directly to the experimental setup presented in Figure D.1; in order to
compare the results for the pressure spectra, unknown coefficients (like wall losses) were
determined via a “best fit” method between data and theoretical prediction, and kept fixed during

successive runs of the combustor.
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Figure D.2. Comparison of experimental and theoretical

pressure spectra (from Hegde et al. 1988).
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Figure D.2 presents a comparison between theoretical prediction and experimental pressure
spectrum, and shows a very good agreement. This is actually not surprising, since:

o the position of the peaks defines the natural (longitudinal) acoustic modes, and these are
almost exclusively functions of the geometry and are not much affected by the flame
zone (this is one of the results of Hegde et al. 1987);

e the spectra of the heat release, which affects directly the pressure spectra -see equation
(D.3)- is actually measured from the experiment and used into the theoretical solution: no
dynamical modeling of the flame is done;

e the amplitude of the predicted oscillations is adjusted via a preliminary “best fit”
evaluation of coefficients appearing in the formulation.

In any case, the main result is the agreement between the model and the experiment. The claim of
the authors that “a theoretical model capable of predicting the sound generated by confined
flames” has been developed is excessive: the model by itself only predicts the frequency of the
natural longitudinal modes (in a simple rectangular duct). It does not include any flow-field effect
caused by the flame, it does not have any flame dynamics, and relies on the measurement of the
complete heat release spectrum from the system that should be predicted. This poses a severe
limitation on the utility of the study. It might be more useful as an inverse method: to back up
coefficients from the experiment (wall loss coefficients), to determine the heat release spectrum
from the measured pressure spectrum, or to use as a model for simple numerical experiments.

A third paper (Hegde et al. 1990) investigates the effect of the phase of the unsteady heat release
on the dynamic behavior of the same combustor presented in Figure D.1. The phase of the heat
release is changed by varying the geometry of the flame zone: a W shaped flame is stabilized over
two cylindrical flameholders, 5 mm in diameter. The flameholders are located / m downstream of
the injection plane and can be moved vertically; see Figure D.3 for a schematic showing the

flameholder disposition.



Figure D.3. Disposition of the flameholders (from Hegde et al. 1990).

The position of the flameholders is defined by the ratio Y/H. A value of zero indicates only one
flameholder in the middle, and I indicates that the flameholders are on the external walls (they
are always moved symmetrically).

The experimental results are somehow strange: the amplitude of the pressure oscillations,
frequency of the instability and phase between CH radiation and pressure oscillations are a weird

function of the separation distance (normalized by H); see Figure D.4 for an example.
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Figure D.4. Frequency of instability versus separation

distance ¥/H (from Hegde et al. 1990).
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The authors do not give any explanation for that sort of behavior, consistently found in all the
measurements presented. The data are used to plot phase difference (CH radiation phase minus
pressure phase) versus frequency, to show that when CH radiation leads pressure oscillations the
frequency of the instability is increased and vice versa when radiation lags.

A theoretical investigation of this last phenomenon is presented. Using the solution (D.3), and
applying a method based on the one presented in Hegde et al. 1988, the authors study the effect of
an oscillating heat source (considered as a small perturbation) on the acoustic modes. As a result,
they obtain an expression, which is in good agreement with the measured behavior, for the
frequency shift due to the out-of-phase heat radiation. Again, as in Hegde et al. 1988, a key point
is represented by the flame dynamics (here referred to as “combustor process response”) that is
not modeled but based on direct experimental determination, so that it only allows analysis of the
experiment, but no prediction.

In all the three previous works, no attention is devoted to the possibility of controlling the

instability: all the interest is given to modeling.

A 1993 paper (Menon and Yang 1993), written in collaboration with Dr. V. Yang of
Pennsylvania State University, addresses the issue of active control of combustion. The system
under consideration is a generic ramjet engine, where low frequency (200-800 Hz) and high
amplitude pressure oscillations can develop. Also in this case, like in the combustor of Figure
D.1, the instability is attributed to a complex nonlinear coupling between the shear flow, the
pressure oscillations and the unsteady heat release. This mechanism manifests itself as a large-
scale vortex/flame structure propagating in the combustor at the same frequency of the instability
(this conclusion is based on previous works cited in Menon and Yang 1993).

After a brief discussion of previous work in the area, the authors conclude that secondary fuel

injection is the method of choice when compared with acoustic feedback (typically a
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loudspeaker) for real scale applications. Moreover, single frequency control approaches seem to
be limited by the fact that real ramjets show several unstable modes, and controlling one has often
led to amplification of other modes. Since the use of neural networks is very costly in terms of
training time, the authors conclude that adaptive schemes and secondary fuel injection should
constitute the appropriate approach for controlling a full-scale ramjet engine.
The theoretical analysis is based on the expansion in two parameters and derivation of an

equation for the pressure oscillations (p°) as in Culick 1976:

1 aZpl
D.4 Vip' —— =h+h,
(D.4) P == Y
n Vp’z_f"fc

Where % and f accommodate all acoustic, mean flow and combustion terms with no external
forcing, 4. and f; represent the control inputs; « is the speed of sound.
The control input is modeled as a secondary fuel injector by using a generalized time-lag theory.

Ignoring the effects of the acoustic field on the injector, /4, can be written as

®.5) ol -~ R0 ) ) - )

Where R is the gas constant, AH, is the heat of formation of the fuel, C, is the specific heat at
constant volume and R(¥(7),t) characterizes the fraction of the fuel burned at position r with a
time delay z For the purpose of calculation, the distributed action (represented by R) is

approximated by the sum of M point actuators.

Following Culick 1976, all source terms in equation (D.4) are treated as small perturbation to the
acoustic field, with second order accuracy. This allows using a synthesis of the non-perturbed

acoustic modes of the chamber to represent the solution to the wave equation.
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The state of the system (acoustic field) is determined by the use of a point pressure sensor that
can be immediately written in terms of the modal expansion. Numerically, this is formulated just
as the pressure value at the sensing point with a gain factor (no dynamics are associated to the
pressure sensor).
The chosen control scheme is a fixed-gain PD; the parameters of the distributed control system
(many actuators) are determined by averaging the optimization condition for individual point
actuators. The optimization condition used in this case is

e performance of the controller is least sensitive to the variation of the actuator time delay;

e energy of the control input is minimized.
The averaging procedure (see Menon and Yang 1993 for details) produces an expression that

defines the gains in terms of the linear growth rate and frequency shifts of the modes.

The design and test of a controller based on this idea is performed on the results of a numerical
simulation of a ramjet combustor presenting a combustion instability leading to a limit cycle with
pressure oscillation of about 15% at 234 Hz.

The theoretical model, based on equation (D.4), after spatial and time averaging, is first used to
reproduce the limit cycle behavior found in the numerical model (by appropriately choosing the
parameters). Then the controller parameters are selected and the controller tested, showing a
reduction of the amplitude of the instability of about 35%.

A simplified version of the same controller (with only the proportional part) is then tested in the
numerical simulation, with similar results (i.e., 35% reduction in the rms. amplitude of the
unstable modes).

Many important details are missing in the paper, especially regarding the control section. The
relationship between controller and combustor used in the simulations is not clear; also the

parallel between theoretical analysis and numerical simulation seems based more on a parameter
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matching rather than on an understanding of the physical system. The controller is very simple
and based on a linear model for the system: this approach works reasonably on the particular
numerical model but, as recognized by the authors, it is not likely to work in a real systen.
The main result is the development of a theoretical model capable of incorporating control action
in a natural way. The drawback is that the procedure requires parameters matching with real
system (especially of the time delays), and does not allow any a priori prediction of the

performance.

An interesting work is presented in Neumeier et al. 1993: the authors, starting from first
principles, develop a complete model of a combustor in order to perform a firequency domain
analysis of its behavior. The model uses a one-dimensional energy balance to obtain a closed
expression and allow the analysis in frequency domain aimed to the development of a simple
performance prediction method.

Figure D.5 presents a schematic of the combustor: the tailpipe is described by using linear

acoustics and corresponds to the acoustic resonator of Figure D.6.

| rr P,

: y 4 tailpipe
%]L . \
fuel combustion section ntrol valume

Figure D.5. Schematic of the combustor (from Neumeier et al. 1993).

The analysis is based on the integral energy equation written for the combustion section (the

control volume is indicated by the dashed line in Figure D.5). Kinetic energy terms are neglected.
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Where the subscript a refers to air, f to fuel and e to exit (tailpipe); ¢ is the heat flux, e the

internal energy and p the density (of the mixture). The integral on the right end side is eliminated
by using perfect gas relations, and by assuming that the pressure is uniform inside the control
volume. The tailpipe is described by the linear acoustics wave equation, and the solution is found
by assuming periodic time dependence (see Neumeier et al. 1993 for details) and expressed in
terms of frequency of the oscillations H(@). The feedback from the resonator to the combustion
and heat transfer process is through the boundary conditions at the combustion section exit. The
feedback loop (see Figure D.6) represents the whole combustor.
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Figure D.6. Combustor as a feedback system (from Neumeier et al. 1993).

The solution is written as a combination of modes and harmonics; each of them satisfies the
energy equation, and hence produces a transfer function in the frequency domain (i.e., a relation
between amplitude and phases of the modes and oscillation of the energy input).
Further assumptions include the following:
e the pressure in the chamber is considered uniform to simplify the energy equation (i.e.,
the oscillations are neglected);

e the pressure oscillations are assumed to be sinusoidal;
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e atemperature profile along the tailpipe is assumed.

The result of the analysis shows that most of the dynamics are associated with the fundamental
mode and minimum energy input is needed to maintain oscillations when the input frequency is
close to resonance. On the other hand, instability is completely damped when the energy input is
out of phase by 90°, as also stated by Rayleigh’s criterion.

The authors also include a discussion about the dissipation of the extra-energy produced by
combustion when the chamber is near resonance: the model requires that either a significant
amount of this energy is transferred to the tailpipe, or there is a large oscillatory heat dissipation
in the combustion area. Experimental evidence, on the other hand, suggests that neither of these
situations appear in real combustors. The conclusion of the authors is that there must be some
kind of “high oscillatory loss” that can not be accounted for by any “known heat transfer
mechanism.” It is likely that the deficiency of the model comes from the original assumption that
the pressure in the chamber is uniform: that limits the validity of the analysis to linear cases (very
weak perturbations), while in the last part the model is used to analyze limit cycle behavior. Also,
the only dynamics are associated with the tailpipe (linear acoustics), while the combustion

volume is treated as a uniform region with instantaneous response.

Zinn et al. 1994 presents a brief progress report on some of the work concerning active control of
instabilities. It is missing too many details to be of any use: the idea the authors intend to pursue
1s based on oscillating the fuel injection line in order to produce oscillation in the heat release and

hence reduce instability.
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D.3 Current Work
D.3.1 Experimental Work

D.3.1.1 Actuator Design

A short but quite complete review of the active and passive combustion control work (up to 1997)
is presented in Neumeier and Zinn 1997. The authors again conclude that the most viable
actuation method for active control of combustion instabilities in realistic systems seems fuel
injection (compared to shakers and speakers) coupled with some kind of adaptive control, to
compensate for the lack of complete understanding of combustion systems.

They also present some results referring to a test of the observer (Neumeier and Zinn 1996b) on a

small Westinghouse combustor, but, apart from some plots, no detail is given.

Neumeier et al. 1997 presents the experimental study of a secondary fuel injector for the control

of combustion instabilities. The experimental facility is presented in Figure D.7.
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Figure D.7. Experimental Set-up (from Neumeier et al. 1997).



142

The primary reactants are air and methane; the secondary fuel is methane. Transducers monitor
the pressure in different locations, while the photomultiplier is used to measure reaction rate. The
proximity sensor accurately measures actuator motion. The internal diameter of the combustor
segments 1s 1.44 in; the length varies depending on the number of pipe elements in the exhaust
section. The natural frequency of the system is between 200 Hz (in the longest configuration) and
1800 Hz (shortest). The secondary fuel is modulated by the use of a magnetostrictive actuator
connected to a needle: the axial motion changes the annular cross-sectional area between needle
tip and its seat, resulting in a modulated flow rate.

The end nozzle is always choked during experiments.

The main characteristics are as follows:
e high pressure gas combustor (45 psi);
e primary fuel flow: 10 g/s;
e secondary fuel flow: up to 0.2-0.3 g/s (depending on the operating conditions),
corresponding to a 20 kW peak-to-peak heat release oscillations;
e combustor power output: 55 kW (in nominal conditions);
e secondary fuel oscillation generated by using a magnetostrictive actuator, 1 kHz band;
e choked flow through injector plate (to prevent feed-back between the fuel supply lines
and the combustor).
The major drawback of the facility is the very small size of the combustor; also, the study is more

directed to rocket combustion chambers (very high pressure, choked nozzle) rather than gas

turbine combustors.
Figure D.8 shows two different injector configurations tested by the authors. The first one (a)

injects the secondary fuel directly into the combustion zone; the second (b) delivers the fuel in the

primary reactants stream before combustion.
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Figure D.8. Geometry of the fuel injectors (from Neumeier et al. 1997).

The performance of the injector is determined by open loop tests: the combustor (which presents

several unstable modes) and the secondary injector are both run with their own independent fuel

flow; pressure and radiation data are collected and then analyzed to identify the effect of the

secondary fuel flow oscillation. Figure D.9 presents a result of that analysis, and shows that the

lag between heat release and actuator displacement increases (in absolute value) with frequency.

This suggests that a pure time delay is involved in this particular process.
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Figure D.9. Frequency dependence of the phase difference

between heat release and actuator oscillations.
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Another finding is that greater heat release oscillations were induced (at constant secondary fuel
rate) when injecting directly into the primary combustion zone (injector a in Figure D.8).

No physical explanation is given for the phenomena observed. The authors did not try any flow
visualization to characterize the differences between the two injectors analyzed; it is not clear
how far these results can be extended to other configurations, or also how they would be affected
by scaling (the test combustor was quite small). On the other hand, the data presented in the paper
can be used to “identify” a suitable model for a realistic injector to be used in control simulations.
Both relative magnitude and phase characteristics are provided; some guessing might be required
on some parameters, but the description is fairly complete and detailed.

It seems that no further work has been published regarding experiments conducted in this facility.

D.3.1.2 Characterization of Combustion Instabilities

A new experimental facility for the study of low NOy gas turbines (LNGT) has been recently set-
up at the Georgia Institute of Technology. Figure D.10 shows a schematic of the facility, which is

divided in several sections: air inlet, mixing, combustor and exhaust.

Mixing Section )
Afr Inlet Section I 1 Cembustor Section Exhuust Section

Variable Ares Nozze

Figure D.10. LNGT simulator (from Torres et al. 1999).
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The length of the air inlet can vary from 101.1 ¢m to 163.8 em; the fuel is injected radially in the
airflow upstream of the mixing section, and passes over 45° inclined swirl vanes before entering
the combustor. Air and fuel (industrial grade methane) are choked upstream of the injectors to
prevent coupling with the feed lines. The flame is stabilized by a conical bluff body, and the
combustor is 47 c¢m long, with observation windows. The exhaust section length can vary from
192 c¢m to 350.5 c¢m, and is terminated by an adjustable throat nozzle, with a maximum area of
2.32 cm’. The apparatus is equipped with several pressure transducers and a CCD camera capable
of measuring CH radical chemiluminescence. Operating pressure range is 1-10 afm.
Depending on the operating conditions (mainly pressure and velocity, controlled by the area of
the nozzle throat valve in the exhaust section) the combustor can exhibit instabilities from 100 Hz
(fundamental mode) up to 700 Hz (7" mode).
Several observations are presented:

When sweeping the equivalence ratio from lean to rich and back, and when increasing and

then decreasing the flow velocity, hysteresis was observed between stable and unstable
burning (this point is not further investigated by the authors).

The inlet section length has no influence on the amplitude of the pressure oscillations in the

combustion region and on the frequency of instability. This is explained by the significant
area constriction in the mixing section between inlet and combustion section. It has a little

influence on the lean blowout limit. The same applies to the nozzle throat area.

Three operating conditions are observed:
1. Stable (low amplitude pressure oscillations).
2. Unstable (large amplitude oscillations).

3. Modulated Instability (intermittently alternated between the previous two).

Images show that most of the chemical reactions occur in a thin annular region near the

combustor walls. Also, the flame moves back and forth at the frequency of the instability;
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the movement decreases when increasing the frequency. This clearly indicates an
interaction with the flow field; it is not clear whether this is a cause or an effect of the
instability.
The experimental data are used to test an interesting correlation between instability and
equivalence ratio oscillation, resulting from a theory presented by the authors in Lieuwen,
Neumeier, Zinn 1998. Figure D.11 presents the result of the test. Shaded areas are predicted to be

unstable, white areas stable; the dark dots are the experimental data.

0.1

0.075
=4
2
(%1

£ 005

0.025

0 Y
0 0.7 1.2 1.7 2.2
Toonv.cff T

Figure D.11. Predicted stability limits and

measured data (from Lieuwen et al. 1998).
The theory predicts that the sum of the convection time of the equivalence ratio perturbation
(Zony) and the time required for the heat release to respond to the mixture perturbation at the base
of the flame (z,) divided by the period (7) is always close to some constant value (depending on

the combustor).
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Figure D.11 effectively shows that most of the unstable points lie inside the predicted (shaded)
instability region. On the other hand:

» Some of the stable points are also inside the predicted instability region.

¢ No unstable points are in the other instability bands predicted by the theory.
The authors conclude that the condition is only necessary, but not sufficient, for the instability,
and that some correction has to be made to the theory to forbid the other instability bands. Also,
apparently unrelated experimental conditions (time of the day, weather, ...) seem to have a major

impact on experiments (poor repeatability); this point is left unexplained in Torres et al. 1999.

Some recent experimental work conducted in the same facility (Zinn et al. 1999) shows that
convective processes control the instability behavior. The instability is a consequence of a
feedback loop between pressure oscillations, equivalence ratio oscillations and fluctuating heat
release.

Also, experimental data show that the amplitude of the instability correlates with the ratio of the
oscillating velocity in the combustor and the mean inlet velocity. This suggests that nonlinearities
in the heat release response might be responsible for the limit cycle oscillations, while nonlinear
gasdynamics does not play a major role (this conclusion is also supported by the observed
increase in instability amplitude with frequency). In this experiment, the amplitudes of pressure

oscillation were quite low (1-10% of the mean pressure).

D.3.1.3 Active Control
Zinn et al. 1999 gives a quick description of an experiment regarding active control of
combustion instabilities. Very few details are given: the controller is adaptive, and it scems based

on a frequency domain analysis. The actuation is performed by modulation of secondary fuel.
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Figure D.12. Schematic of Control System (from Zinn et al. 1999),

The performance of the controller is successfully tested on an unstable speaker-microphone
system, and then on an unstable combustor. The authors do not specify which combustor was
used, and it seems that it is not the one described in Lieuwen et al. 1998 and Zinn et al. 1999 as
the low NO, simulator. In any case, the controller takes about 2 s for identification, and then, in

0.05 s, obtains a 50% attenuation of the pressure oscillations due to the unstable 110 Hz mode. No

others details are given in those papers.

D.3.2 Theoretical Work

D.3.2.1 Observer Design
The idea is to use an observer to identify frequencies and amplitudes of the excited modes, which

are not known in advance.
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The observer assumes that the combustor oscillations are quasi-periodic, and can be expressed as
a combination of several modes and harmonics. The pressure can be therefore expressed as a
combination of K modes present in the combustor, and each mode can be written as a series

expansion with M terms (Neumeier and Zinn 1996):

=K n=

D.7) plt)= Z )= A,,,( Jsin(na + 4, (t))

i=1 n=1

Where 4,,; and ¢, are given by expressions similar to the integrals used in Fourier series analysis:

An,i(t) = Sn,i(t)2 + Cn,i(t)2

%(‘) ) t(c% )
05 —% '[ s1n(na} t)dt
(t = —72:1— J‘ cos(na) t)dt

Note that the expressions in (D.8) differ from conventional Fourier integrals as their limits may
vary with time. To reduce computation effort, the observer replaces (D.8) with the following
expressions:

S, At+dt)=S,(t)+ %[p, (t+dt)-p,(t - T, + dt)Jsin(nayt )dt

(D.9) 3
C,At+di)=cC,,(t)+ F[p,. (t+dt)- p;(t — T, + dt)|cos(n e,z )dt

i
The frequencies w; are not known at the beginning of the calculation, but it can be shown
(Neumeier and Zinn 1996) that there exists a simple iterative relationship which quickly
converges to the frequency of the dominant mode of the oscillation. Once this frequency is
determined, the dominant oscillation can be subtracted from the signal, and the second mode can
be determined, and so on. The computation is very quick and can be performed “on-line.”
Observer performance is successfully tested on several input cases both from synthesized signals

and real data.
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A more complete mathematical treatment of this approach is presented in Neumeier et al. 1997.
The authors show the derivation of the observer and analyze and discuss various details missing
in the previous papers, like the limits on the convergence of the series to the right frequency, the
possibility of different equilibrium points for the observer, effect of noise and uncertainty in the
parameters defining the system. There are also some notes regarding problems arising in the
actual numerical implementation of the method.
It is important to note that the asymptotic stability of the observer (i.e., the fact that the
equilibrium point corresponding to the right frequency in the observed signal is stable) can be
proved only for the case of an input containing one sinusoid. It is not proved, but only induced
from numerical experiments (the equilibrium points result locally asymptotically stable) for the
general case of a signal composed of an arbitrary number (greater than 1) of sinusoids.
If the observer is used to identify a signal containing more modes than the “order” of the
observer, i.e., K>M in equation (D.7), it behaves chaotically, depending on the relative amplitude
of the modes, and other features of the input signal. The observer is not always robust to this case;
this is an important issue for real application, since this might imply the necessity of a very high
order observer, depending on the specific case. The dynamic behavior of the observer is actually
quite complex, and, by admission of the authors, “it is not fully understood, but it works well in
numerical and laboratory applications” (Neumeier et al. 1997).
Two applications of the described observer to numerical examples are presented in Neumeier and
Zinn 1996. In the first example an unstable system of six oscillators (the instability is artificially
introduced by assuming positive growth constant for the 4™ and 6™ mode), representing a
combustion system, is controlled by introducing an oscillation in the heat addition to the
combustor. The controller (not specified in the paper) seems to be just a simple proportional
controller, and is set so that it damps the most unstable mode, as identified by the observer. The

instability is effectively damped quickly: when the controller is turned on, it takes about 40
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oscillation cycles of the pressure (0.05 s) for the oscillation to virtually disappear. Figure D.13 is
the trace of the observed frequency, and clearly shows the observer “jumping” between the two

unstable modes.
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Figure D.13. Time dependence of the observed frequency

of the dominant mode (Neumeier and Zinn 1996).

The second application is the control of an unstable rocket motor. The motor is simulated
numerically by solving the one-dimensional conservation equations for mass, momentum and
energy. Again, the heat addition in the combustion chamber is controlled proportionally (through
a negative constant) to the observed pressure. The model for the motor also includes a time delay
on the actuation line, which accounts for delays introduced in the actuation, fuel line and reaction
rate.

The controller deals with the time delay by adding a frequency shift to the output before sending
the signal to the actuator (this requires a priori knowledge of the exact time delay, and partially
reduces the significance of the example).

For this example, the most unstable mode and its five harmonics are controlled simultaneously:

Figure D.14 shows the results of the simulation.
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Figure D.14. Time dependence of the observed modes (Neumeier and Zinn 1996).

The performance of the controller is quite impressive: it seems to work really well, beyond the
proposed theoretical explanations. Also, contrary to previous “one-mode” (or one-frequency)
controllers, no stable mode is destabilized or excited by the control action on the unstable modes.
On the negative side, no experimental result is shown, and no “noise” or any kind of disturbance
was introduced in the simulations. It is likely that the dynamics of the controller (it tends to be
chaotic) will be consistently affected once these are added, affecting the issues of robustness and
stability. Another limitation of the controller lies in the fact that there must be as many terms in
the analysis as modes expected in the observed signal. In any case, for simple systems it might be

a very viable starting point for the design of a control system.

D.3.2.2 Active Control of Combustion Instabilities

The work directly involving control of combustion instability is mainly analytical and numerical.
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A heuristic one-dimensional combustor model, based on the solution of a set of Euler equations
modified by the addition of source terms to account for the effects of mixing and combustion
processes, is used as a test-bench for control systems (Mohanraj and Zinn 1998).
A controller based on the observer described in the previous section is compared with an adaptive
controller, based on a delayed least mean square (LMS) method.
The adaptive controller is based on a quite straightforward application of the LMS algorithm to
adapt the weights of a digital filter, whose input is the signal from the pressure sensor, and the
output is the fuel modulation. The parameters in both the applications are based on the knowledge
of the combustor model (mainly time delays).
Figure D.15 shows the results of simulation for both controllers, which actually have extremely

similar performance.
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Figure D.15. Adaptive (left) and observer based (right) controller response

(from Mohanraj and Zinn 1998).

The authors report that a correct choice of parameters and weights is necessary to avoid
instability of the adaptive controller, encountered during their numerical study.

It is important to note that the model of the plant does not include any source of disturbance, and
no robustness analysis is performed. The authors only present two controllers working (well) in
their well-defined design conditions, and this poses a limit to the validity of the work for practical

applications.
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A more analytical framework is used for an application of robust feedback control design
(Haddad et al. 1997). A state space model of a combustor is built by using conservation equations
to obtain a wave equation for the oscillating component of the pressure, similar to equation (D.4).
The general solution to the equation is written as a superposition of the classical acoustic modes
of the chamber, and the pressure is expressed as a sum of these modes with time dependent
amplitudes. This part of the analysis follows closely the one of Culick 1976.

After spatial averaging and considering terms up to linear acoustics, the system of equation
reduces to a system of ordinary differential equations for the amplitudes, representing coupled
oscillators:

k
(D.10) o+ onn, + Y Dyt + E))+ FX (L) =w,(0)+U, () n=1....k

i=]

Where 7, is the time dependent amplitude of mode #, @, is the mode frequency, D,;, E,; are the
linear acoustic coefficients, F includes the non-linear contributions (from combustion, for
example), w, is noise entering the system and U, is the control input.

The control action is performed by point actuators that introduce energy in the combustion system
(mass and momentum are not controlled). The sensing is performed by point measurements of the
unsteady pressure signal. Both the control input and the sensor output can be easily written as a
combination of the classical acoustic modes, to fit in the previous analysis.

The state-space representation of the system follows immediately from (D.10). Defining the state

as the vector:

(D.11) x=[p # .. 7]

The system (D.10), written as a system of first order equations, becomes:
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X = Ax+Bu

(D-12) y=Cx+Du

Where A, B, C and D can be easily derived from (D.10) and u includes control input and noise.
The model output (p) is a single pressure measurement at 1/3 of the combustor chamber.

A second order speaker dynamics and sensor noise are also included in the state space model by
properly augmenting 4 and D.

The control objective is to stabilize the system and to minimize the unsteady acoustic pressure
due to a disturbance in the input at a specified location in the chamber. A schematic of the
combustor used in the modeling is presented in Figure D.16. The noise input to the system is
placed at the combustor head and on the microphone line (both are independent white noise

sources of specified maximum amplitude).
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Figure D.16. Physical model.

The design of the controller is done for a system with constant real structured parameter
uncertainty, i.e., the system matrix in the state space model is substituted by a perturbed matrix,
where the perturbation is assumed to have a specific structure (in this case, symmetric) and be
bounded.

A robust reduced-order controller is then designed by using a modification of the Lyapunov
function method, and the resulting set of equations defining the controller matrices is solved

numerically (see Haddad et al. 1997 for details).



156
As an example application of the method, the authors present a case with four modes, one
microphone and one speaker (2x2+2=6 states) controlled by a second order controller.
A comparison between full-order LOG (Linear Quadratic Gaussian) and robust reduced order is
presented in Figure D.17: the reduced order controller is more robust to perturbations, and also

more stable without sacrifice in performance.
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Figure D.17. Cost contours for LOG and robust-reduced

order controllers (from Haddad et al. 1997).

While introduced in the analytical part of the work, it is not clear if the noise was actually
considered in the numerical simulation. Figure D.18 shows the closed-loop response of the
perturbed system with the reduced-order controller. The perturbation consists in the alteration of
one of the acoustic coefficients: £;; in equation (D.1) is changed from —0.005 to 2 (non-
dimensional units). The rationale of altering the acoustic coefficients comes from the fact that this

is the most uncertain part of the system. The controller is turned on after 17 ms, and Figure D.18



157
shows that the controller easily handles the perturbation. Incidentally, the LOG controller is

unstable in this same case.
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Figure D.18. Closed-loop response and control signal (from Haddad et al. 1997).

The problem is that the system appears completely free from noise, especially when compared to
some test simulations we run: the system is substantially the same, and the noise levels introduced
are the same as the ones claimed in Haddad et al. 1997. The following figure shows the results for
a case similar to the one presented in Figure D.18: the general trend is very similar, but the noise

has a much bigger influence.

0.01 T T T T T T T T T

0.005 b

Pressure oscillations
o

1 1 | 1 1
300 350 400 450 500 550 600 650 700 750 800

Controf effort

1 1 1 1 1 i ] i 1
300 350 400 450 500 550 600 650 700 750 800
Non-dimensional time

Figure D.19. Response of the system with noise.
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In any case, this work is a good application of modern linear control, and shows the possibility of
designing a low order, robust, linear controller for high order non-linear systems. A serious
problem that might arise in real application to a combustion chamber is that time delays are
completely ignored by the authors. But, as pointed out in many other works (Neumeier et al.
1997, Neumeier and Zinn 1997, Neumeier et al. 1997, Mohanraj and Zinn 1998, Lieuwen and
Zinn 1998), time delays seem to be a very important characteristic of the dynamics of combustion
systems (especially actively controlled systems), and can not be neglected for real applications.

The paper is a very good starting point for setting-up a state space control simulation of a
combustor, even though some details regarding the actuator and the sensor are missing and there

1s some confusion between dimensional and non-dimensional quantities.

A different approach to control, not specifically of combustion, is presented in Shapiro and Zinn
1997. In this case, taking advantage of a complete knowledge of the dynamics of the system
described by a differential equation (an inverse pendulum), nonlinear open loop control is
performed to enlarge the stability limits of an unstable equilibrium of the system. This is just an

academic exercise: an application of this idea to a real system is hardly imaginable.

D.4 Concluding Remarks

The work of the group at the Georgia Institute of Technology on the analysis and control of
combustion instability has been analyzed through the published paper.

The main interest of the group lies in the modeling effort: different combustor types are
experimentally tested and then a model is fitted to reproduce the experimental results. A
shortcoming of this part of the work consists in the lack of a flame or combustion model: the
flame zone is always treated as a discontinuity in the fluid field and the characteristics of the

combustion zone have to be derived experimentally and then put into the model. This procedure
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produces very good agreement between experiment and theory, but also seriously limits the utility
of the study for a general or predictive application.
An important consideration is that over the years the papers do not show a continuous and
planned study path: it is more like an exploration of different possibilities, without pursuing a
defined general objective.
Specific considerations regarding the experimental activity are:

¢ Most of the experimental activity stopped between 1993 and 1997.

* An interesting experiment is the one conducted in 1997 to characterize a secondary fuel

injector, producing results very useful for control simulations.
¢ Some experiments produced strange results, left unexplained by the authors (Hegde et al.

1990).

Regarding modeling:
¢ Most of the modeling refers to linear acoustics.
¢ No flame or combustion dynamics models are ever considered. Heat release is introduced as a
point source with no internal dynamics.
* An interesting paper (Neumeier et al. 1993) presents the complete frequency domain model
of a combustor, but the results are not used in further works.
® No consideration is given to scaling the models of laboratory combustors to industrial

applications.

Regarding control:
¢ Control does not seem to be the main interest of the group. The control part is always
introduced as a secondary item, and normally kept very simple (proportional, proportional-

derivative or integral controllers are commonly used).
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» The nonlinear observer, very promising in the simulation, seems abandoned after 1997: it is

e T

not clear if testing on a real system has ever been done. Also, important questions regarding
robustness and stability of the controller can not be answered analytically, and this poses a
serious limitation to possible applications.

he work on modern control (done by a different group) is quite different from the rest. It is
certainly helpful as a problem setting for future investigations or applications, in the sense
that they introduce control system terminology in the description of combustion system.
This allows them to use classical and modern methods to try some design on simple models,

and identify some of the issues, like time delays, stability, and robustness.
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Lo duca e io per quel cammino ascoso
intrammo a ritornar nel chiaro mondo,

e sanza cura aver d'alcun riposo,

salimmo su, el primo e io secondo,

tanto ch'i' vidi de le cose belle

che porta 'l ciel, per un pertugio tondo.

E quindi uscimmo a riveder le stelle.

Dante Alighieri 1310, Inferno, Canto XXXTV



