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Abstract

In this thesis we describe a system that tracks fruit flies in video and auto-

matically detects and classifies their actions. We introduce Caltech Fly-vs-

Fly Interactions, a new dataset that contains hours of video showing pairs

of fruit flies engaging in social interactions, and is published with complete

expert annotations and articulated pose trajectory features. We compare

experimentally the value of a frame-level feature representation with the

more elaborate notion of ‘bout features’ that capture the structure within

actions. Similarly, we compare a simple sliding window classifier architec-

ture with a more sophisticated structured output architecture, and find

that window based detectors outperform the much slower structured coun-

terparts, and approach human performance. In addition we test the top

performing detector on the CRIM13 mouse dataset, finding that it matches

the performance of the best published method.
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Introduction

1.1 Motivation

Machine understanding of human behavior is perhaps one of the most useful application

of computer vision. It will allow machines to be better aware of their environment,

enable rich and natural human-machine interaction, and it will unleash new applications

in a number of industries including automotive, entertainment, surveillance and assisted

living. Development of automated vision systems that can understand human behavior

requires progress in object detection, pose estimation, tracking, action classification and

detection, and activity analysis. The focus of this thesis is detection and recognition of

actions, which in the case of humans is hampered by two difficulties. First, tracking and

pose estimation of humans is very difficult, due to appearance variation, the amount of

occlusion in natural environments, and the sheer complexity of human body motions.

Second, it is difficult (both technically and legally) to film large numbers of humans

behaving spontaneously in natural settings. As a result, human action datasets are

small and unrepresentative, especially when social behavior is concerned.

In parallel, neurobiologists are interested in measuring and analyzing behavior of

animals of different genotypes, in order to understand the link between genes, brains and

behavior. One of their most popular model organism is the fruit fly; it is easy to care

for, has a fast life cycle, and exhibits a wide range of behaviors despite having merely

105 neurons. Through a collaboration with biologists we have put together a large

annotated dataset of fruit flies interacting spontaneously in controlled environments,

which allows us to study natural actions and develop insight into how to represent,

1



1.2 State of the art

segment and classify them. If our effort is successful, we can both advance the state

of the art in human action analysis and provide biologists with tools for automatic

labeling of actions, enabling them to do experiments at a scale which would otherwise

be extremely expensive or impossible.

In this thesis we describe an end-to-end approach for detecting the actions of fruit

flies from video. The main contributions of our study are:

1. We introduce a new dataset, Caltech Fly-vs-Fly Interactions (Fly-vs-Fly for short),

containing 22 hours of continuous video of fruit flies interacting, spontaneously and

sporadically. The dataset was annotated by neurobiologists, with complete labeling of

10 social actions. It additionally comes with a second layer of annotations, obtained

from trained novice annotators, which can be used as a reference point for action

detection performance. Along with the videos, we publish pose (position, orientation,

wing angles, etc.) trajectories, from which we have computed a number of time-varying

features that may be used to detect, segment and classify actions between the flies.

2. We discuss pitfalls of measures commonly used for benchmarking action detection

in continuous video and demonstrate which measures are most suitable, suggesting a

protocol for comparing the performance of different algorithms.

3. We define bout features that are designed to extract statistical patterns from an

interval of frame-level features and emphasize the similarities of bouts within an action

class. Our experiments show that actions cannot be well detected using frame-level

features alone, and that bout features improve performance by 28%.

4. We consider two different action detection architectures: sliding window detectors

and structured output detectors. By comparing five variants of the two architectures

on our dataset, we find that sliding window detectors outperform the structured output

detectors, in spite of being orders of magnitude faster.

1.2 State of the art

Datasets: A large number of human action datasets have been published. Most of

the earlier contributions, KTH [1], Weizmann [2], Hollywood 2 [3], Olympic Sports [4],

HMDB51 [5], and UCF-101 [6], consist of short pre-segmented action clips, making them
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suitable for action classification, but not for action detection and segmentation. UCF-

motion capture [7], HumanEva [8], and CAD-60/120 [9, 10] come with fully tracked

skeletons which makes them useful for analyzing a range of human motions; however,

these datasets are very small, and their actions are acted. Finally, a recent dataset,

VIRAT [11], contains hours of continuous video of humans behaving naturally and

intermittently, lending itself well to action detection research; however, the pose of the

subjects cannot yet be robustly tracked and the human motion that can be explored

is limited; furthermore, VIRAT does not contain social actions. Table 1.1 compares

details of the mentioned datasets.

The publicly available datasets of animal behavior videos are Honeybee Dance [12],

UCSD mice [13], Home-cage behaviors [14], and CRIM13 [15]. The latter two are suit-

able for action detection, containing long videos of spontaneous mouse actions, but both

are parameterized with only the tracked centroid of the subject and spatio-temporal

features. A large and well annotated dataset containing unsegmented spontaneous ac-

tions and including tracking of articulated body motion has not yet been published.

Our dataset aims to fill this place.

Dataset Year #Citations Duration* #Actions Natural Social Continuous Articulated 
pose

KTH    2004 1397 3 hours 6 x x x x

Weizmann 2005 858 1 hour 10 x x x x

HumanEva 2006 501 22 minutes 6 x x ✓ ✓
UCF-mocap 2007 185 1 hour 5 x x x ✓
Hollywood 2(1) 2009 352(1073) 20 hours 12 ✓ ✓ x x

Olympic Sports 2010 153 2 hours 16 ✓ x x x

HMDB51 2011 83 2 hours 51 ✓ ✓ x x

VIRAT 2011 59 9 hours 12 ✓ x ✓ x

UCF-101(50,11) 2012 16(31,357) 30 hours 101 ✓ x x x

CAD-60/120 2011/13 123/12 2 hours 10** x x ✓ ✓
UCSD mice 2005 1211 2 hours 5 ✓ x x x

Honeybee 2008 51 3 minutes 3 ✓ x ✓ x

Home-cage behs 2010 44 12 hours 8 ✓ x ✓ x

CRIM13 2012 15 37 hours 13 ✓ ✓ ✓ x

Fly-vs-Fly - - 22 hours 11 ✓ ✓ ✓ ✓
* estimated upper limit
** 22 activities, 10 subactivities (actions)

Table 1.1: Summary of existing datasets and our new dataset, shown in chronological

order and grouped by human vs. animal. Qualities that are desirable for the purpose of

detecting realistic social actions from articulated pose are highlighted in green.
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Action detection: The simplest approach to action detection and classification is

frame-by-frame classification, where each frame is classified based a signal on the frame,

or on a time window around it, using discriminative or generative classifiers. More

sophisticated approaches globally optimize over possible temporal segmentations, out-

putting structured sequences of actions. Recent work in action detection falls into these

two categories: Dankert et al. detected actions of fruit flies using manually set thresh-

olds along with nearest neighbor comparison [16]; Burgos et al. used boosting and

auto-context on sliding windows for detecting actions of mouse pairs [15]; and Kabra et

al. also use window based boosting for detecting actions of fruit flies in their interactive

behavior annotation tool JAABA [17]. Jhuang et al. used an SVMHMM, described

in [18], for detecting actions of single housed mice [14]; Hoai et al. used a multi-class

SVM with structured inference for segmenting the dance of the honeybee [19]; and Shi

et al. used a semi-Markov model for segmenting human actions [20].

We implement variants of the above methods, specifically comparing sliding window

SVM detectors against structured output SVM detectors, expecting the latter, which is

similar to [14, 19, 20], to improve frame wise consistency and better capture structured

actions. For reference, we also compare with the methods described in [17] and [15]

and with the performance of trained novice annotators.

1.3 Overview

Figure 1.1 shows the architecture for an end-to-end action detection system, and demon-

strates how data flows between user and software. The system takes as input a video of

flies, extracts meaningful tracking features for each fly, runs them through an inference

algorithm that uses an action model, learnt during a training stage on expert provided

annotations, and outputs predicted annotations to the user. The key components in

such a system, outlined in Figure 1.1, are: a) collecting a dataset of videos and an-

notations that can be used for training and testing a model (Chapter 2), b) tracking

flies and extracting meaningful features at each frame (Chapter 3), and c) devising

an algorithm for learning an action model, and an inference algorithm that utilizes the

model to detect actions from new videos (Chapter 5). Chapter 4 describes performance

measures for action detectors, Chapter 6 contains results and analysis of the different

approaches, and in Chapter 7 we conclude and discuss future directions.
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Figure 1.1: System overview: Videos are sent through a tracking module that extracts

meaningful features, those features and manual annotations are used by a learning module

to learn an action model, and an inference module uses that model to detect actions from

features extracted from new videos. Gray cylenders represent data, blue boxes represent

software, and the cut out section contains components that are used only during training.

The outlined sections represent three major phases of the system: a) Data aquisition, which

involves collecting videos and annotations of actions to be learnt (Chapter 2), b) Feature

extraction, which involves tracking flies in videos and extracting features useful for action

detection (Chapter 3), and c) Training, which involves training an action detection system

from features of annotated actions (Chapter 5).

5



2

Fly Data

2.1 Experimental setup

In collaboration with biologists we have collected a new action dataset, Fly-vs-Fly,

which contains a total of 22 hours (1.5m frames recorded at 200Hz and 2.2m frames at

30Hz) of 47 pairs of fruit flies interacting. The videos may be organized into three sub

datasets according to their preparations:

Boy meets boy is designed to study the sequence of actions between two male flies,

whose behaviors range from courtship to aggression. The flies are placed in a 4x5 cm2

chamber with food located in the center and walls coated with Fluon such that flies

are constrained to walking on the floor. It contains six 20 minute videos recorded at

200Hz with 24 pixels covering the fly body length (2mm).

Aggression contains two hyper aggressive males and is used to quantify the effect

of genetic manipulation on their behavior. The flies are placed in a circular 16mm

diameter chamber with no food. It consists of ten 30 minute videos recorded at 30Hz

with only 16 pixels covering the fly body length.

Courtship has one female and one male fly, which in some of the videos is wild type

and in the rest is a so-called hyper courter. This set of videos was used to study how

genetic manipulation affects male courtship behavior. It consists of 31 videos recorded

with the same chamber and video settings as Aggression, 10 of which contain hyper-

courters and the remaining videos with wild type males.

The filming setups for the three different experiments are shown in Figure 2.1.
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16 mm 16 mm40 mm

Boy meets boy Aggression Courtship
200 fps, 12 pix/mm 30 fps, 8 pix/mm 30 fps, 8 pix/mm

Monday, December 2, 13

Figure 2.1: Experimental setup: Boy meets boy has high temporal and spatial resolution

videos and a large chamber with food present, Agression and Courtship have lower resolu-

tion, a much smaller chamber, and no food. The Courtship experiments contain one male

and one female fly (the larger one), while the other two contain two male flies.

2.2 Annotations

The entire dataset was annotated by biologists, using an annotation tool that comes em-

bedded with our tracking tool, with 10 different action classes that they have identified

for the study of fruit fly interactions: the introductory behavior touch, the aggressive

behaviors wing threat, charge, lunge, hold, and tussle, and the courtship behaviors wing

extension, circle, copulation attempt, and copulation. Figures 2.2 and 2.3 show an ex-

ample instance of each of these behaviors, with a sequence of 5 frames subsampled from

an action bout, as well as a description of each behavior.

Annotating a video involves finding all intervals within the video that contain an

action of interest, also referred to as bouts of actions, and requires recording the start

frame, end frame, and class label of each detected bout. The dataset is annotated such

that actions can overlap, for instance tussling usually includes lunging, a wing threat

sometimes contains charge, wing extension and circling tend to overlap, and touch can

overlap with many of the behaviors. The action classes can have substantial intraclass

variation both in terms of duration and appearance, and some action instances are am-

biguous. Each action takes up only 0.1−7% of the frames, except for copulation which

takes up 57% of the Courtship videos. Figure 2.4 summarizes the dataset, showing the

number of instances of each action, the fraction of time spent in each action, and a

histogram of bout durations for each action.
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Touch

Wing threat

Charge

Lunge

Hold

Tussle

Wing extension

Circle

Copulation attempt

Copulation

The fly touches the leg, wing, or body of the other fly, and in doing so its 
gustatory organs sample chemicals that may help identify gender.   (Introductory)

The fly extends, and raises, both wings and presents them to the other fly.   
(Aggressive)

The fly extends both wings fully and charges towards the other fly.  (Aggressive)

The fly raises itself on its hind legs, then slams down onto (or close to) the other 
fly’s body.  (Aggressive)

After lunging, the fly sometimes holds onto the body of the other fly for an 
extended period.  (Aggressive)

The two flies lunge at each other repeatedly and tumble around in a hold.  
(Aggressive)

The fly extends one wing and vibrates it while presenting it to the other fly.  
(Courtship)

The fly moves along an arc around the other fly while facing it. (Courtship)

The fly approaches the other fly from behind, curls its abdomen towards it and 
tries to copulate, but is unsuccessful. (Courtship)

The fly approaches the fly from behind, curls its abdomen towards it and 
successfully copulates. (Courtship)

0 ms 117 ms

0 ms 70 ms

0 ms 50 ms

0 ms 20 ms

0 ms 96357 ms

0 ms 64 ms

0 ms 230 ms

0 ms 5 ms

0 ms 8 ms

0 ms 250 ms

640 ms

2300 ms

50 ms

80 ms

2500 ms

1170 ms

700 ms

500 ms

200 ms

16 minutes

Wednesday, April 2, 14

Figure 2.2: Descriptions and examples of all actions. (part 1 of 2)
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The fly touches the leg, wing, or body of the other fly, and in doing so its 
gustatory organs sample chemicals that may help identify gender.   (Introductory)

The fly extends, and raises, both wings and presents them to the other fly.   
(Aggressive)

The fly extends both wings fully and charges towards the other fly.  (Aggressive)

The fly raises itself on its hind legs, then slams down onto (or close to) the other 
fly’s body.  (Aggressive)

After lunging, the fly sometimes holds onto the body of the other fly for an 
extended period.  (Aggressive)

The two flies lunge at each other repeatedly and tumble around in a hold.  
(Aggressive)

The fly extends one wing and vibrates it while presenting it to the other fly.  
(Courtship)

The fly moves along an arc around the other fly while facing it. (Courtship)

The fly approaches the other fly from behind, curls its abdomen towards it and 
tries to copulate, but is unsuccessful. (Courtship)

The fly approaches the fly from behind, curls its abdomen towards it and 
successfully copulates. (Courtship)

0 ms 117 ms

0 ms 70 ms

0 ms 50 ms

0 ms 20 ms

0 ms 96357 ms

0 ms 64 ms

0 ms 230 ms

0 ms 5 ms

0 ms 8 ms

0 ms 250 ms

640 ms

2300 ms

50 ms

80 ms

2500 ms

1170 ms

700 ms

500 ms

200 ms

16 minutes

Wednesday, April 2, 14

Figure 2.3: Descriptions and examples of all actions. (part 2 of 2)
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Figure 2.4: Action statistics: Left: Number of bouts for each action. Center: Fraction

of time a fly spends in each action, where the gray area represents unlabeled frames and

the right pie shows the unlabeled slices from the left pie expanded exponentially. Right:

Distribution of bout durations for each action class.

In order to get a sense for the difficulty of the dataset, we hired novice annotators

and trained them on expert annotations to re-label a subset of the data. Human

performance provides a good reference point for evaluating automated action detection

but it is not an upper bound; we should strive for performance as least as good as

that of humans. Low human performance can result from difference in perception of

an action, one annotator may be more or less conservative than another annotator, or

some instances of an action may indeed be ambiguous. This, in fact, motivates the use

of automated or semi-automated detection systems which enforces consistency between

annotations. We discuss the human-human comparison in more detail in Chapter 6,

and show that consistency varies substantially depending on the action and whether it

is measured at a per frame level or a per bout level.
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3

Data Representation

For action recognition, data representation is half the challenge. If we were to represent

a 640x480 pixel resolution video by its grayscale image sequence, then its feature vector

would be 307,200 dimensional at each frame, which would require very complex learning

algorithms and a large number of training samples. An action classifier should recognize

a wing extension, regardless of where within a chamber a fly is standing and which way

it is facing, and whether it extends its left or its right wing. In other words, the classifier

must be handle any variance within an action class, that does not define the action.

To avoid having to work with massive amounts of data and/or requiring extremely

complex algorithms, we bring some of our knowledge about the domain into the data

representation. When we describe an action we find ourselves saying: it extends its

wings, it raises its body, or it touches another fly with its legs. To capture this we have

implemented a system that detects flies, segments them into body parts, and tracks

them throughout a video.

raw	 image segmentation skeleton

Tuesday, December 3, 13

Figure 3.1: Three stages of the tracking process, starting from the raw image of a fly, it’s

foreground segmented into body, wing, and legs, and the skeleton fit to those segments.
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3.1 Tracking

3.1 Tracking

We have implemented a tracking tool that extracts fly tracks from raw videos, by de-

tecting the flies at each frame, segmenting them into body, wing, and leg components,

connecting the detections across frames to form continuous trajectories, and finally pa-

rameterizing the body segments to further reduce dimensionality of the representation.

A full description of the tool can be found in a separate technical report [manuscript

in preparation], but here we describe in short how it works:

Detection: Our system assumes that videos are recorded with a fixed background,

which allows for detection of foreground objects using background subtraction [21].

Given a grayscale video with T frames, {I(t)}t=1...T , we compute a background image,

Bg, by taking a weighted mean of a subset of equally spaced frames from the video. Us-

ing the fact that the flies are dark, we find the foreground at each frame by thresholding

the background subtracted image. To account for variation in background intensity (for

example due to food in the chamber) we normalize the background subtracted image

with the background itself, such that the difference on top of darker areas are equally

accentuated. The foreground image, Fg, at frame t and the foreground mask, fg, are

computed as: Fg = |I(t)−Bg|./Bg
fg = Fg > threshfg

Segmentation: From the foreground mask, we compute masks for the body parts to

be segmented, using the fact that a fly’s body is darker than the remaining part of the

fly, its legs are slim, and when body and legs have been removed only wings should

remain: body = Fg > threshbody
legs = fg − dilate(erode(fg))

wings = fg − legs− dilate(body)

Masks are converted to a set of connected components, that are deemed as being a

body part of a fly if they satisfy constraints involving the expected size and relative

positioning of components, which can be determined form the video resolution. Before

assigning wing components, pixels along the major axis of the body ellipse are sub-

tracted, such that the wing component gets split into left and right components. In the

case when flies are touching, their bodies form a single multi-fly component which we

resolve by fitting its mask to a Gaussian mixture model with the appropriate number

of components, using an Expectation Maximization algorithm [22].
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3.2 Feature extraction

Individual features
1)  velocity
2)  angular velocity 
3)  min wing angle
4)  max wing angle
5)  mean wing length
6)  body axes ratio
7)  fg body ratio
8)  image contrast

Relative features
9)  distance between
10) leg distance
11) angle between
12) facing angle

3)

4)

11)

12)

Figure 3.2: Illustra-

tion of features derived

from the tracked fly

skeletons, which are in-

variant of absolute posi-

tion and orientation of

the fly and relate the

pose of the fly to that

of the other fly.

Tracking: Detections between adjacent frames are connected by minimizing the cost

of possible assignments. For n detections in frame t−1 and m detections in frame t, we

construct an n×m cost matrix where entry (i, j) represents the cost between detection

i in frame t−1 and detection j in frame t, measured in terms of the overlap of the body

segments and the distance between its centroids. The optimal assignment is found by

applying the Hungarian algorithm [23] to the cost matrix.

Parametrization: To narrow down the number of variables even further, we parame-

terize the segmented components of the flies. We fit an ellipse to the body components,

and represent it as (x, y, a, b, θ), where (x, y) is the centroid of the ellipse, (a, b) are

the minor and major axes of the ellipse, and θ is its orientation. The orientation of an

ellipse has a 180◦ ambiguity, so to determine what is front and what is back we use the

following (in that order) for disambiguation: 1) wing position, when wings detected

and not extended, 2) heading direction, if velocity is great enough, and 3) consistency

with previous frames. Finally, we parameterize the wings by the position of their wing

tips (the pixels farthest away from the body centroid), (wlx, w
l
y, w

r
x, w

r
y).

The tracking tool extracts, for each fly, a sequence of parameters describing its pose:

(c, y, a, b, θ, wlx, w
l
y, w

r
x, w

r
y)t∈{1,...,T}, and to further assist the learning algorithms we

derive a set of features that encode our knowledge about the actions of flies.

3.2 Feature extraction

From the trajectories computed by the tracker we derive a set of features that are

designed to be invariant of absolute position and orientation of a fly, and relate the

pose of one fly to the pose of the other fly, similar to the approaches of [16, 17]. The

features (illustrated in Figure 3.2) can be split into two categories: individual features

13



3.2 Feature extraction

which include the fly’s velocity, angular velocity, min and max wing angles, mean wing

length, body axis ratio, foreground-body ratio, and image contrast in a window around

the fly; and relative features which relate one fly to the other with distance between their

body centers, leg distance (shortest distance from its legs to the foreground of the other

fly), angle between, and facing angle. Analysis of the feature distributions showed that

the velocities, wing angles, and foreground-body ratio are better represented by their

log values, becoming more normal distributed and better separating actions. Figure 3.3

shows the distribution of each feature, for all actions in the Boy meets boy sub-dataset

and the grab-bag action other, giving an idea of which features are important for which

action. For each of the 12 features extracted we additionally take the first two time

derivatives, resulting in a feature space of 36 per frame features. We compute these

features for each fly, as annotation is done on a per fly basis, which yields double the

amount of data for videos containing two flies - more formally, we represent each video

by {x1, x2}, where xi(t) is the vector of per frame features for fly i at frame t.
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Figure 3.3: Feature distribution shown for the actions of the Boy meets boy sub-dataset,

and for the grab-bag action other in gray.
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4

Performance Measure

When measuring the performance of an algorithm it is important to use a measure that

is relevant to the problem at hand and favors desirable outcomes, which may depend on

the objective of the user and the nature of the data (i.e. whether classes are balanced).

Here we discuss a few different types of measures and their applicability to the problem

of action detection, and describe the difference between a frame based and a bout based

measure. For demonstration purposes we have generated synthetic data containing a

ground truth sequence with 5 action classes that take up 0.3%− 5% of the frames each

and less than 8% in total, and two different prediction sequences that are made to

emphasize the differences between the various measures.

4.1 Types of measures

A performance measure involves comparison of ground truth labels and predicted labels

and can generally be explained in terms of the following (depicted in diagram below):

the set of all datapoints S, positives P , negatives N , predicted positives PP , predicted

negatives PN , true positives TP , false positives FP , true negatives TN , and false

negatives FN .

S
P PP

TPFN FP
N = S/P

PN = S/PP
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4.1 Types of measures

Confusion matrix: Commonly used for multi-class classification, a confusion matrix

is a square matrix whose rows contain the normalized distribution of predicted classes

for all ground truth instances of a single class, i.e. each entry (i,j) represents the

fraction of ground truth instances of class i that are predicted as class j. An identity

matrix represents a perfect result where all instances are correctly classified and a value

lower than 1 on the diagonal means that some instances of the class are misclassified, it

is therefore common to use the average of the diagonal as a single number to compare

the quality of results. This works when classes are balanced within a datasets, but

fails when classes are very imbalanced, as is the case with detection problems. In

this case the diagonal of a confusion matrix captures well false negatives, but false

positives are absorbed into the grab-bag class other which contains a large majority of

datapoints. To account for this one must also compare the transpose confusion matrix,

where entry (i,j) represents the fraction of predicted instances of class i that belong

to class j according to ground truth. This is demonstrated in figure 4.1 where we

show the results for two synthetic prediction examples, both with the same mean on

the confusion matrix diagonal but vastly different on the transposed confusion matrix.

Effectively, the two matrices represent recall and precision, which we define below.

ROC: A receiver operating characteristic curve is a common tool to measure quality of

detection results for a single class. It plots two values, the true positive rate = TP/P

and the false positive rate = FP/N . A single prediction output can be represented

as a single point on the plot, however, most detection algorithms output scores (or

probabilities) and all data points whose score is above a threshold are said to belong

to the class under detection, so by varying the threshold one can obtain the full ROC

curve. This again places little emphasis on false positives; in a dataset with millions

of frames, a false positive rate of 1% means there are thousands of false positives,

which may be considerably higher than the number of positives. For the purpose of

quantifying actions between fruit flies, having more false positives than true positives

of a behavior is unacceptable, hence the false positive rate is insufficient to measure

the quality of an action detector.

Precision, Recall and F-score: A precision-recall curve is similar to an ROC curve;

on one axis it plots recall = TP/P , which is the same as the true positive rate, but on the

other axis it plots precision = TP/PP = 1−FP/PP , which compares the false positives
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4.1 Types of measures
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Figure 4.1: Results shown for two synthetic predictions compared to a single syntethetic

ground truth. The first two columns show how similar the confusion matrices are for the

two examples, but how different their transposed confusion matrices are. The thrid column

shows ROC curves for each class, and the fourth column demonstrates how precision recall

curves are able to better reveal the discrepancy between the two examples (points on the

curves represent the 0-threshold). The last column also shows how bout wise and frame

wise measurements can differ.

to the total number of predicted positives rather than the negatives. As shown in figure

4.1, this measures emphasizes the difference between the two synthetic predictions

better than the ROC curves. For ranking different methods we combine precision and

recall into a single value using the F-score, defined as Fβ = (1 + β2) · precision·recall
β2·precision+recall ,

which for β = 1 represents the harmonic mean. We prefer the harmonic mean over the

standard mean as it favors balanced precision-recall combinations.

We conclude that a confusion matrix is good choice for multi-class detection problems

where classes are mutually exclusive, due to its ability to compare classes against each

other, but one must also look at the transpose confusion matrix. However, for ex-

periments such as ours, where classes may overlap and false positives are expensive,

precision-recall curves are the best performance measurement tools.
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4.2 Bout vs. frame

4.2 Bout vs. frame

For behavior analysis, correctly counting the number of action instances is equally as

important as correctly measuring the duration spent in an action, hence we must also

measure performance at a bout level. To do that, we use an overlap criteria that deems

a ground truth bout at interval [sg, eg] and predicted bout at [sp, ep] to match only if

min(eg ,ep)−max(sg ,sp)
max(eg ,ep)−min(sg ,sp) > threshold.

When multiple bouts fit that criteria, we match only the one with the highest ratio.

A predicted output can have high precision-recall when measured on a per frame basis

but low when measured on a per bout basis, and vise versa. This can be seen on the

precision recall plots in Figure 4.1 and is explained by scenarios listed in Figure 4.2.

We define F*-score, a β-weighted mean of F1-frame and F1-bout, as a single metric

for comparing different algorithms, where β can be used to control whether emphasis

should be placed on bout- or frame-wise performance.

A:

B:

time

time

time

time

time

time

time

time

A:

B:

A:

B:

A:

B:

i)

ii)

iii)

iv)

Figure 4.2: Scenarios explaining discrepancies in bout wise and frame wise performance:

i) Under/over segmented bouts → lower bout than frame wise performance

ii) Short missed/false detections → lower bout than frame wise performance

iii) Under/over estimated duration → lower frame than bout wise performance

iv) Offset bout boundaries → lower frame than bout wise performance
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5

Action Detection

In this thesis we focus on action detection by exhaustive classification, in particu-

lar we compare two different architectures: Sliding window detection which refers to

classifying fixed size windows that move frame-by-frame over a video sequence, and

smoothing the predicted labels with post processing, and structured output detection

which refers to detection by optimizing over all possible segmentations of a sequence

into actions. Both schemes involve a training algorithm that learns an action classifier

from n labeled sequences, {(xi, yi)}i∈{1,...,n}, and an inference algorithm that takes a

new sequence x and predicts y := {yj} = {(sj , ej , cj)}, where yj is the jth bout in the

segmentation of x, sj and ej mark the start and end of the bout and cj is its class

label. We treat the problem of detecting different actions as disjoint detection prob-

lems, mainly because the data that we are interested in has many overlapping actions,

and because it is more general than a multi-class approach with respect to adding new

classes of actions. Before describing the detection architectures in detail we define bout

features that aggregate per frame features over an interval of frames, and are used in

our implementation of both detection schemes.

5.1 Bout features

We define a number of bout-level features that are designed to extract statistical pat-

terns from an interval of per frame features, and emphasize the similarities of bouts

within an action class, invariant of their durations. A bout feature ψk(x, tstart, tend) is

a function of sequence x and interval [tstart tend]; we consider the following:
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5.1 Bout features

Bout statistics features capture statistics of frame-features over an interval and can

be expressed as: op(x(tstart : tend)), where op ∈ {min, max, mean, std}.

x: time
min, max, mean, std

x: time
min, max, mean, std

x: time
+ - +

x: time

+-

mean

mean

mean mean

mean mean mean

+-

Thursday, December 12, 13

Temporal region features capture statistics over r equal subintervals, and are meant

to handle the differences within an action composed of r sub actions. They can col-

lectively be expressed as: {op(x(tstart + (i − 1)dt : tstart + idt−1))}i∈{1,...,r}, where

dt= (tend − tstart + 1)/(r − 1) and op ∈ {min, max, mean, std}.

x: time
min, max, mean, std

x: time
min, max, mean, std

x: time
+ - +

x: time

+-

mean

mean

mean mean

mean mean mean

+-
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Harmonic features are meant to capture harmonic actions and can be expressed as:∑r
i=1(−1)i mean(x(tstart+(i−1)dt : tstart+idt−1)), where dt= (tend−tstart+1)/(r−1).

x: time
min, max, mean, std

x: time
min, max, mean, std

x: time
+ - +

x: time

+-

mean

mean

mean mean

mean mean mean

+-
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Boundary difference features emphasize the change in features at the start and end

of a bout, and help with locating boundaries. They are expressed as:

mean(x(tstart/end : tstart/end+dt)) - mean(x(tstart/end−dt : tstart/end)).

x: time
min, max, mean, std

x: time
min, max, mean, std

x: time
+ - +

x: time

+-

mean

mean

mean mean

mean mean mean

+-

Thursday, December 12, 13

Bout change features capture the difference in features between the beginning and

end of a bout, expressed as: x(tend)− x(tstart).

Global difference features compare the mean of a bout to global statistics of data,

expressed as: mean(x(tstart : tend))−op(x), where op ∈ {min, max, mean}.

Histogram features represent the normalized distribution of each feature within the

bout, expressed as: hist(x(tstart : tend), bins), where bins are extracted from the

training data, such that an equal number of frames falls into each bin.

With K total bout functions applied to each of the N per frame features, the feature

representation for a bout ends up being a D = KN dimensional vector, ψ. In our

experiments we use two temporal region splits, n ∈ {2, 3}, and set the number of

histogram bins to be 23, resulting in a total of K = 48 bout features.
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5.2 Sliding window framework

5.2 Sliding window framework

Our sliding window implementation has 4 main components: a training algorithm that

learns a classifier from labeled sequences, a classifier module, an inference algorithm

that predicts labels for unseen sequences, and a post processing module that promotes

continuity in the prediction labels.

Training: The training algorithm converts each sequence of input labels, {yi} =

{(sj , ej , cj)i}, to indicator vectors, {zi}, that specify whether a frame belongs to an

action or not. It extracts normalized bout features over fixed sized windows surround-

ing each frame of all sequences, obtaining high dimensional data points whose labels are

the same as those of the frames around which the windows were placed. With this data

it trains a classifier using an iterative scheme that overcomes memory limitations that

may be associated with large data, and allows us to indirectly optimize with respect to

performance measures that involve the number of predicted positives. At each iteration

it learns a classifier from a subset of the data, using a learning algorithm suitable for

the classifier type, applies it to all of the data and adds misclassified samples to the

training set - repeating until the desired performance measure stops increasing.

Inference: The inference algorithm extracts bout features from a window around each

frame in x, normalized with statistics from the training data, and classifies each window

using the classifier obtained from the training step. The resulting sequence of scores is

thresholded to obtain an action indicator vector, ẑ, whose connected components make

up the predicted label sequence, ŷ, assigning each bout the label, start frame, and end

frame of its component.

Post processing: Classifying a sequence frame-by-frame often results in noisy labels,

that is, within a bout of an action a few frames may be just below a threshold and

therefore split the bout into multiple bouts. To account for this we fit an HMM to the

scores to achieve smoother transitions: we convert scores to posterior probabilities,

P (x(t)|z(t) = 1) := 1/(1+exp(−score(t))), P (x(t)|z(t) = 0) := 1− P ((t)|z(t) = 1),

compute priors, P (z(1) = c), and transition matrix, P (z(t+1) = ci|z(t) = cj), from the

training data, and run the Viterbi algorithm [24] to find the most probable frame-wise

sequence of actions. For comparison with previous work [15, 17] we also consider box

filtering and Auto-context as a way to smoothen the output.
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5.3 Structured output framework

Classifier: The classifier module consists of a binary classifier and its associated learn-

ing algorithm. For comparison with our structured SVM implementation, we choose to

use a linear SVM classifier, learnt using the LIBLINEAR implementation described in

[25]. The classifier can be substituted by any other binary classifier, such as boosting,

regression, neural net, or a generative model.

This approach can be converted to a frame-based detector, by simply substituting the

bout features around a frame with its per frame features.

5.3 Structured output framework

Structured output detectors differ from sliding windows in that they optimize over all

possible segmentations of a sequence into action intervals, finding the best start and

end frame of all bouts, allowing for varying sized intervals.

Structured SVM

We extend the structured SVM [26] to train a model that can be utilized for segmenting

sequences into actions, by defining a score function, f(x, y), which assigns high scores

to good segmentations and is used both by the training algorithm and the inference

algorithm, and a loss function, L(y, ŷ), which penalizes wrong segmentations and steers

the training algorithm.

Training: The goal is to learn the weights w of a score function from a given training

set, such that for each training example the score of the true segmentation yi is higher

than the score of any other segmentation y by at least L(yi, y). If these constraints

cannot be satisfied, a hinge loss is suffered. To learn these weights we use the primal

structured SVM objective:

w∗ ← arg min
w
‖w‖2 + C

1

n

n∑
i=1

(
max
y

[f(xi, y) + L(yi, y)]− f(xi, yi)

)
,

which we minimize using a cutting plane algorithm [26] that iteratively finds the most

violated constraint: ŷ = arg maxy [f(xi, y) + L(yi, y)]. Searching over all possible seg-

mentations is intractable, but since our score- and loss functions are linear in the bouts

of y, dynamic programming [27] can solve for the optimal y.

22



5.3 Structured output framework

Score function: We define a score function f(x, y), which measures how well y seg-

ments x into actions and can be represented as the sum of a bout score, unary cost,

transition cost, and duration cost, over all bouts in the segmentation:

f(x, y) =
∑

(sj ,ej ,cj)∈y

[wcj · ψ(x, sj , ej)− τ(cj)− λ(cj−1, (cj))− γ(cj , sj , ej)].

The weights wcj are used to calculate the score for a bout of class cj , τ(cj) is the cost

of detecting a bout of class cj , λ(cj−1, cj) is the cost of moving from action cj−1 to cj ,

and γ(cj , sj , ej) is the cost of spending ej − sj + 1 frames in action cj , which is 0 if

the duration is within that action’s standard range (observed in training) and grows

exponentially with its distance from the range.

Loss function: The loss function compares a ground truth segmentation y with a

predicted segmentation ŷ and penalizes intervals where the two disagree. It should be

constructed such that when the loss is small, then the results from the inference are

satisfactory. Since our experiments focus on detecting actions of flies, our objective is

to maximize the precision and recall of the actions on a bout-level, while maintaining

good per frame accuracy. We define the function as:

L(y, ŷ) =
∑

(s,e,c)∈y

`cfn
e− s+ 1

( ⋂
ŷ,ĉ6=c

(s, e)

)
+

∑
(ŝ,ê,ĉ)∈ŷ

`cfp
ê− ŝ+ 1

( ⋂
y,c6=ĉ

(ŝ, ê)

)
,

where
⋂
ŷ,ĉ 6=c(b, e) is the number of frames in ŷ intersecting with [b e] with different

action class ĉ 6= c, `cfn is the cost for missing a bout of class c, and `ĉfp is the cost for

incorrectly detecting a bout of class ĉ. This loss function softly penalizes predictions

where the start or end of the bout is slightly incorrect. On the other hand, since the

loss is normalized by the bout duration, it effectively counts the number of incorrectly

predicted bouts and, unlike a per-frame loss, long actions are not deemed to be more

important than short ones.

Inference: Given a score function, f(x, y), and an input x, the optimal segmentation

can be found by solving ŷ = arg maxy f(x, y). Again, similarly to the learning phase,

searching over all possible segmentations is intractable but we can solve for y using

dynamic programming.
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5.3 Structured output framework

Semi-structured SVM

This approach is effectively a hybrid of the sliding window SVM and the structured

SVM; its inference algorithm optimizes over possible segmentations of a sequence, using

dynamic programming, but the classifiers are trained using a linear SVM on fixed bouts

from the training set.

Training: We extract bout features from the positive bouts, {(sji , eji)}i, for each

sequence xi in the training set, and from randomly sampled negative bouts. We consider

a bout as negative if its intersection with a positive bout is less than half of their union,

so that large intervals containing positive bouts and small intervals that are parts of

a positive bout are still considered as negatives. Inference involves considering all

possible intervals of any duration as potential action bouts, however training on all

such possible intervals would be intractable. Instead, we generate a limited number of

randomly sampled negatives and use an iterative training process that gradually adds

useful negative samples. At each iteration we train a classifier on the current training

data, run inference with learnt classifier, and add falsely detected positives to the set

of negative training samples - repeating until no new false positives are detected.

Inference: Here the goal is the same as in the structured SVM approach, to find

the optimal segmentation of a new input sequence x, ŷ = arg maxy f(x, y), but with

a simpler score function: f(x, y) =
∑

(sj ,ej ,cj)∈y wcj · ψ(x, sj , ej). Again, we solve this

using dynamic programming. We speed up the inference by setting upper limits on the

duration of an action, which we obtain from the training set.
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6

Experiments and Analysis

In this chapter we present results for each described method on the Fly-vs-Fly dataset.

First, we show how detections of trained human annotators compare to those of experts,

to give an idea of the difficulty of each action, then we discuss model selection and

compare and analyze the performance of each method, and finally we show how the

best method performs on CRIM13 and compare it to published results.

6.1 Human vs. human

We trained novice annotators to learn to detect each action in the Fly-vs-Fly dataset,

by showing them a subset of annotated movies, having them annotate another subset

and providing them with feedback such that they could adjust their detection criteria.

Once trained, they re-annotated a portion of the test dataset, completing all movies for

Boy meets boy, 1/10 of movies for Aggression, and 4/15 of Courtship movies, enough

to give an idea about the difficulty of each action. Overall, the trained annotators

achieved best performance on the Courtship sub-dataset, with bout wise precision-recall

over 90% for each action, on Boy meets boy their performance was in the 70 − 100%

range, and on Aggression recall was generally above 80% but precision in the 60− 80%

range. The annotators described Courtship as being easier to annotate than the other

two sub-datasets, with actions seemingly less ambiguous, and the lower precision on

Aggression than Boy meets boy can partly be explained by the high commotion between

flies as well as lower spatial and temporal video resolution, and partly due to potentially

missed detections by the original annotator. Figure 6.1 shows the bout- and frame wise
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6.1 Human vs. human
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Figure 6.1: Human performance measured in terms of frame based (circles) and bout

based (squares) precision-recall. Note the large discrepancies between bout based and

frame based performance for a few of the actions, which is generally caused by over- or

under-segmentation of bouts, or due to the short duration of misclassified bouts.
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Figure 6.2: Segmentation samples from video sequences, explaining the high bout vs.

frame performance discrepancy of selected actions. The upper sequence represents the

ground truth (expert) annotations and the lower shows those of our trained annotators.

precision-recall for each action in the Fly-vs-Fly dataset. Actions that stand out from

the average are lunge (BMB) and charge (BMB), with over 90% bout wise performance,

charge (BMB) and circle, with much lower frame- than bout wise performance, and

tussle and wing threat with lower bout- than frame wise performance. Figure 6.2

shows action segmentation samples that explain this bout- vs. frame wise performance

discrepancy. The human performance is a good indicator for what to expect from

automatic detection algorithms; we do not expect perfection, due to action ambiguity

and imperfections in ground truth annotations, but ideally they should achieve at least

as good performance as humans.

26



6.2 Method comparison

6.2 Method comparison

We compare five action detection methods: frame based SVM, window based SVM,

and JAABA backend [17], which all fall under the window based detector framework

described in Chapter 5.2, structured SVM (5.3) and semi-structured SVM (5.3).

Model selection: All of the implemented methods have free parameters that affect

their outcome, such as the weight of regularization term in the optimization function,

the error tolerance for optimization termination, and threshold on output scores. These

parameters were set using a parameter sweep on the training dataset, such that optimal

bout- and frame wise precision and recall combination was achieved.

In order to account for over-segmentation of the window based SVM, we tested three

post-processing methods: Auto-context as described in [15], box-filtering which is pro-

posed as a post-processing step for JAABA [28], and HMM fitting. Table 6.1 shows the

test performance of each approach, averaged over all actions, and from the results we

can infer that: HMM outperforms Auto-context and box-filtering; post-processing im-

proves bout wise performance for each method; and bout features significantly improve

performance upon per-frame features. For the remainder of this chapter, all results are

reported with post-processing applied.

For comparison with JAABA we trained detectors on their bout features, plugging

their Boosting implementation into the learning and inference modules of our window

based framework. JAABA as presented in [17] does not include post processing, but

we include it here for a fair bout wise performance comparison.

Bout wiseBout wiseBout wise Frame wiseFrame wiseFrame wise
Recall Precision F1-score Recall Precision F1-score F*-score

Window based SVM 0.90 0.46 0.61 0.73 0.74 0.74 0.67

   + Autocontext 0.88 0.50 0.64 0.74 0.76 0.75 0.69

   + filtering 0.84 0.63 0.72 0.71 0.74 0.72 0.72

   + HMM 0.85 0.73 0.79 0.76 0.78 0.77 0.78

Frame based SVM 0.80 0.32 0.46 0.55 0.55 0.55 0.50

   + HMM 0.54 0.56 0.55 0.77 0.38 0.51 0.53

JAABA 0.90 0.50 0.65 0.79 0.78 0.79 0.71

   + filtering 0.86 0.67 0.75 0.79 0.78 0.78 0.77

Bout wiseBout wiseBout wise Frame wiseFrame wiseFrame wise

Semi struct SVM Recall Precision F1-score Recall Precision F1-score F*-score

  partials negative 0.71 0.81 0.76 0.56 0.87 0.68 0.72

  partials not negative 0.69 0.70 0.69 0.43 0.91 0.58 0.63

Bout wiseBout wiseBout wise Frame wiseFrame wiseFrame wise

Structured SVM Recall Precision F1-score Recall Precision F1-score F*-score

  Hamming loss 0.81 0.72 0.76 0.75 0.86 0.80 0.78

  Bout loss 0.84 0.82 0.83 0.82 0.82 0.82 0.83

Mean performance over all actions
On all 

data

On lunge and wt (B
MB)

On BMB

Bout wiseBout wiseBout wise Frame wiseFrame wiseFrame wise
Semi struct SVM Recall Precision F1-score Recall Precision F1-score F*-score
  regular 0.51 0.79 0.62 0.33 0.97 0.49 0.55

  short bootstrap 0.76 0.63 0.69 0.63 0.88 0.74 0.71

  two tiered 0.78 1.00 0.88 0.64 1.00 0.78 0.83

On we (BMB)

Table 6.1: Comparison of post-processing schemes for the window based framework.

Results show that post-processing of any kind improves performance for all of the methods,

and that bout features significantly improve performance over per-frame features.
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Figure 6.3: Histogram of method ranks over all actions, from F*-score computed with

varying emphasis (bout-equal-frame). Methods are ordered based on mean rank.

Performance: To measure the performance of our action detectors, we compute preci-

sion, recall, and F1-score, on a frame- and bout-wise level, and the F*-score with equal

emphasis on bout and frame, which can be used to rank the different methods. Figures

6.9 - 6.11 (at the end of this chapter) show how the different methods compare on each

action, showing these measures as well as count- and duration consistency which are

representative of what biologists use for quantifying actions in their experiments.

The results show considerable variation in method rank depending on the action, so

to get a holistic view we consolidate the results in detector rank histograms, which show

the number of times each detector achieved each rank and order methods according to

their mean rank. Figure 6.3 shows detector rank histograms for ranking based on F*-

scores with varying β, emphasizing bout performance, frame performance, and the two

equally. Through varying emphases ranking stays consistent, placing the window based

SVM at the top (after humans), followed by semi-structured SVM, JAABA, structured

SVM, and frame based SVM at the bottom, with the exception being that JAABA

moves up to first place when emphasis is placed on frame wise performance.

For a finer resolution view of how the methods line up we show the mean F-scores,

averaged over all actions, and the performance as a function of time it takes to run the

detector on 1 million frames, in Figure 6.4. This view preserves the rank observed in

Figure 6.3, but it also shows that most methods cluster around the 70% performance,

apart from humans at around 85% and frame based SVM at around 50%. In addition,

it shows that the window based methods, performing slightly better than the structured

output counterparts, are orders of magnitude faster.

28



6.2 Method comparison

−1 −0.5 0 0.5
−0.5

0

0.5

PC 1

PC
 2

bout emphasis

 

 
Human
Frame SVM + HMM
Window SVM + HMM
Semi−struct SVM
Structured SVM
JAABA + filtering

−0.5 0 0.5
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

PC 1

PC
 2

−1 −0.5 0 0.5
−0.5

0

0.5

PC 1

PC
 2

equal emphasis

−0.5 0 0.5

−0.4

−0.2

0

0.2

PC 1

PC
 2

−1 −0.5 0 0.5

−0.4

−0.2

0

0.2

0.4

PC 1

PC
 2

frame emphasis

−0.5 0 0.5

−0.4

−0.2

0

0.2

PC 1
PC

 2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

F1−bout

F1
−f

ra
m

e
Mean F−score performance

10^0 10^1 10^2 10^3 10^4

0.5

0.6

0.7

0.8

0.9

Inference time for 1m frames (minutes)

M
ea

n 
F*
−s

co
re

Performance vs timeMean F1-score Performance vs. time

real	  &me
(30	  Hz)

Figure 6.4: Left: Comparison of F1 scores of each method, averaged over all actions.

Right: F*-score of each method as a function of approximate inference time.

Analysis: The summary measures described above abstract away information about

performance patterns that may exist between methods and actions. To explore that,

we cluster methods based on their F*-score on each action, by first applying principal

component analysis to the #methods×#actions F*-matrix, eliminating correlations,

and then applying k-means to the dimension-reduced matrix, splitting methods into

4 groups. Similarly to the detector rank histograms we perform this analysis with

emphasis on bout, frame, or equal emphasis, to see whether clusters remain consistent

(see Figure 6.5). With equal- and frame wise emphasis, the window based SVM and

JAABA form a group, the structured output methods form another one, and humans

and frame based SVM are singletons. With emphasis on bout performance, the window

based SVM, semi-structured SVM and humans form one group while the remaining

methods are singletons. A perhaps more interesting grouping is the converse, where

we cluster actions into 4 clusters based on the transposed F*-matrix. A group that is

consistent across emphases contains lunge, charge, and copulation attempt, which all

share the characteristic of being short and concise but poorly captured by the frame

based detector. Wing threat and tussle are also consistently grouped together, both

sharing the property of high appearance- and duration variation. Wing extension and

touch are almost consistently grouped together, they can both be somewhat defined

by a feature (wing angle, leg distance) exceeding a threshold for an extended period of

time, and on both actions the frame based detector performs competitively. The final

notable observation is that copulation is a singleton in the bout wise grouping, being

the only action with near-perfect performance by all methods.

29



6.2 Method comparison

−1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

PC 1

PC
 2

bout emphasis

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

PC 1

PC
 2

−1 −0.5 0 0.5

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

PC 1

PC
 2

equal emphasis

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

PC 1

PC
 2

−1 −0.5 0 0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

PC 1

PC
 2

frame emphasis

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

PC 1

PC
 2

−1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

PC 1

PC
 2

bout emphasis

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

PC 1

PC
 2

−1 −0.5 0 0.5

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

PC 1

PC
 2

equal emphasis

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

PC 1

PC
 2

−1 −0.5 0 0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

PC 1

PC
 2

frame emphasis

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

PC 1

PC
 2

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

PC 1

PC
 2

bout emphasis

 

 

human
SVM frame
SVM window
SVM elastic
SVM structured
JAABA

−0.6 −0.4 −0.2 0 0.2 0.4

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

PC 1

PC
 2

 

 

touch BMB
lunge BMB
wing threat BMB
charge BMB
wing extension BMB
lunge
wing threat
charge
hold
tussle
wing extension
circling
copul attempt
copulation

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

PC 1

PC
 2

equal emphasis

−0.6 −0.4 −0.2 0 0.2 0.4
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

PC 1

PC
 2

−1 −0.5 0 0.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

PC 1

PC
 2

frame emphasis

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

PC 1

PC
 2

1st principal component

1st principal component

1st principal component

1st principal component 1st principal component

1st principal component

2n
d 

pr
in

ci
pa

l c
om

po
ne

nt

2n
d 

pr
in

ci
pa

l c
om

po
ne

nt

2n
d 

pr
in

ci
pa

l c
om

po
ne

nt

2n
d 

pr
in

ci
pa

l c
om

po
ne

nt

2n
d 

pr
in

ci
pa

l c
om

po
ne

nt

2n
d 

pr
in

ci
pa

l c
om

po
ne

nt

Equal emphasisBout emphasis Frame emphasis

M
et

ho
d 

cl
us

te
rs

A
ct

io
n 

cl
us

te
rs

−1 −0.5 0 0.5
−0.5

0

0.5

PC 1

PC
 2

bout emphasis

 

 
Human
Frame SVM + HMM
Window SVM + HMM
Semi−struct SVM
Structured SVM
JAABA + filtering

−0.5 0 0.5
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

PC 1

PC
 2

−1 −0.5 0 0.5
−0.5

0

0.5

PC 1

PC
 2

equal emphasis

−0.5 0 0.5

−0.4

−0.2

0

0.2

PC 1

PC
 2

−1 −0.5 0 0.5

−0.4

−0.2

0

0.2

0.4

PC 1

PC
 2

frame emphasis

−0.5 0 0.5

−0.4

−0.2

0

0.2

PC 1

PC
 2

Figure 6.5: Upper row: clustering of methods based on their F*-score on all actions,

showing that the window based methods form a group and the structured ones form an-

other, except when emphasis is on bout performance, in which case window based and

semi structured SVM group with humans. Lower row: clustering of actions based on their

F*-score by each method, showing that short and concise actions are grouped together and

actions across datasets generally belong to the same cluster.

For a closer look at the learnt detector models, we show the highest weighing fea-

tures for each of the SVM based classifiers, ordering features based on the sum of the

absolute of all bout features derived from each frame wise feature. Figure 6.6 shows the

top 5 features for each action, grouping per frame features with their derivatives, and

the 3 methods together for each action, and it can be seen that similar features tend to

be selected by different methods, and across sub-datasets. The cumulative vote over

methods and derivative orders deems the following features as most important:

touch: leg distance, fg body ratio lunge: axis ratio
wing threat: wing angles, wing length charge: min wing angle, velocity

wing extension: wing angles, wing length hold: dist. to other, facing angle
tussle: dist. to other, angle between circle: velocity, angular velocity

copul. attempt: dist. to other, axis ratio copul.: contrast, angle between
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Figure 6.6: Top 5 contributing features for the detectors of each action shown. Perframe

features are grouped together with their 1st and 2nd derivatives (in that order), and the

different rows per action show the selection for window based (yellow), semi-structured

(green), and structured (cyan) SVMs.

In addition we analyzed which type of bout features were most used, and found that

the window based detector made most use of the bout statistics and histogram features,

while the others used boundary dependent features to a similar extent.

6.3 Performance on CRIM13

Finally, to give a better idea of where these methods place within state of the art, we

test the top ranked detector on the most recently published animal dataset, CRIM13,

and compare our results with those presented in [15].

The dataset is labeled such that the 13 actions classes are non-overlapping, and the

detection problem is treated as a multi-class classification problem. In order to match

that we covert our binary action detectors to a single multi-class detector by fitting

them to a HMM with 13 states: First, we train a separate detector for each action,

including the null action. Then, we convert the scores from each detector to posterior

probabilities, the same way as we did before, and normalize them at each frame such
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that the probabilities of all actions sum to 1. Finally, we apply the Viterbi algorithm on

the frame-wise posteriors, and the transition matrix and class priors computed from the

training labels, obtaining a unique class label for each frame. Results on CRIM13 are

presented in terms of a frame wise confusion matrix, and its diagonal mean, so in order

to compete with their performance we optimize our multi-class detector accordingly.

We do that by shifting the scores output from each individual class detector, before

converting the scores to posterior probabilities, by subtracting scalars that are found by

greedy optimization on the training set, maximizing the diagonal mean of the confusion

matrix. Since the diagonal of the confusion matrix effectively measures only the recall

of each action, but we are also interested in precision, we do the same type of shift

optimization with respect to the mean F1-score, computed from the diagonals of the

confusion- and transposed confusion matrices.

Figure 6.7 shows the performance of our method using both optimization schemes,

and compares it to the method used in [15], and Figure 6.8 shows the confusion ma-

trices, and the transposed confusion matrices, for both optimization schemes using our

method. It can be seen that the recall-optimized shift results in a higher diagonal mean

on the confusion matrix, but a more imbalanced precision-recall. In our experiment

we use only the tracking features provided for CRIM13, but the best results reported

on CRIM13 additionally used spatio-temporal features (STF). Figure 6.7 shows that

our results are competitive with their full method, and considering only the tracking

features we outperform their reported results by 3.4%.

Method mean recall mean F1-score

 Boosting (TF) + Autocontext 58.30% -

 Boosting (TF + STF) + Autocontext 61.20% -

 Window SVM+HMM (recall shift) 61.66% 40.76%

 Window SVM+HMM (F1 shift) 45.42% 47.22%

Figure 6.7: Comparison of the window based SVM to the methods used in [15], showing

performance on the CRIM13 test dataset.
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Figure 6.8: Confusion matrices for Window SVM + HMM on the CRIM13 test dataset.

The upper row shows performance obtained by optimizing the diagonal mean on the con-

fusion matrix and the lower row performance obtained by optimizing the mean diagonal

F1-score, which results in a more balanced precision and recall.

33



6.3 Performance on CRIM13

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

Pr
ec

ici
on

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

Pr
ec

ici
on

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

F1−bout

F1
−f

ra
m

e

0 100 200 300
0

100

200

300

Ground truth count

Pr
ed

ict
ed

 c
ou

nt

0 50 100
0

20

40

60

80

100

120

Ground truth duration

Pr
ed

ict
ed

 d
ur

at
io

n

Human

Frame SVM + HMM

Window SVM + HMM

Semi−struct SVM

Structured SVM

JAABA + filtering

touch

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 20 40
0

10

20

30

40

0 20 40
0

10

20

30

40

Human

Frame SVM + HMM

Window SVM + HMM

Semi−struct SVM

Structured SVM

JAABA + filtering

lunge

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 20 40
0

10

20

30

40

0 10 20
0

5

10

15

20

25

Human

Frame SVM + HMM

Window SVM + HMM

Semi−struct SVM

Structured SVM

JAABA + filtering

wing threat

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 10 20 30
0

5

10

15

20

25

30

0 2 4 6
0

1

2

3

4

5

6

Human

Frame SVM + HMM

Window SVM + HMM

Semi−struct SVM

Structured SVM

JAABA + filtering
charge

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 10 20
0

5

10

15

20

25

0 5 10 15
0

5

10

15

Human

Frame SVM + HMM

Window SVM + HMM

Semi−struct SVM

Structured SVM

JAABA + filtering

wing extension

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

F1−bout

F1
−f

ra
m

e

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

Pr
ec

ic
io

n

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

Pr
ec

ic
io

n

0 100 200 300
0

100

200

300

Ground truth count

Pr
ed

ic
te

d 
co

un
t

0 50 100
0

20

40

60

80

100

120

Ground truth duration

Pr
ed

ic
te

d 
du

ra
tio

n

Human

Frame SVM + HMM

Window SVM + HMM

Semi−struct SVM

Structured SVM

JAABA + filtering

touch

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 10 20 30 40
0

10

20

30

40

0 10 20 30 40
0

10

20

30

40

Human

Frame SVM + HMM

Window SVM + HMM

Semi−struct SVM

Structured SVM

JAABA + filtering

lunge

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 10 20 30 40
0

10

20

30

40

0 10 20
0

5

10

15

20

25

Human

Frame SVM + HMM

Window SVM + HMM

Semi−struct SVM

Structured SVM

JAABA + filtering

wing threat

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 10 20 30
0

5

10

15

20

25

30

0 2 4 6
0

1

2

3

4

5

6

Human

Frame SVM + HMM

Window SVM + HMM

Semi−struct SVM

Structured SVM

JAABA + filtering
charge

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25
0

5

10

15

20

25

0 5 10 15
0

5

10

15

Human

Frame SVM + HMM

Window SVM + HMM

Semi−struct SVM

Structured SVM

JAABA + filtering

wing extension

F
* 

ra
n

k
F

1
-s

c
o

re
P

R
 -

 b
o

u
t

P
R

 -
 f

ra
m

e
C

o
u

n
t 

sc
at

te
r

D
u

ra
ti

o
n

 s
c

at
te

r

touch lunge wing threat charge wing extension

P
re
ci
si
on

P
re
ci
si
on

Figure 6.9: Results for Boy meets boy, showing F*-based method rank, F1-scores,

bout- and frame wise precision-recall, and count- and duration scatter, for each action.
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Figure 6.10: Results for Aggression, showing F*-based method rank, F1-scores, bout-

and frame wise precision-recall, and count- and duration scatter, for each action.
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Figure 6.11: Results for Courtship, showing F*-based method rank, F1-scores, bout-

and frame wise precision-recall, and count- and duration scatter, for each action.
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7

Discussion

In this thesis, we have described an end-to-end system for detecting actions of fruit

flies: We introduced a new dataset, Fly-vs-Fly, which we used for training and testing

the system, described a tracking tool used for parameterizing the videos, and compared

and analyzed the performance of several action detection algorithms. We tested our

approach on the most recently published animal dataset, and showed that our action

detection approach achieved performance at least as good as that of reported results.

What we have learnt from our experiments is that for most actions, bout features

provide a great performance gain over per frame features, and for bout wise perfor-

mance, post processing is essential for window based detectors, HMM fitting being the

most promising. Our experiments showed that overall, window based detectors work as

well or better than structured ones, but are orders of magnitude faster. This is contrary

to what we would have expected, which is that, especially for composite actions, the

structured output methods would perform better as they allow for elastic sized windows

which should in theory better capture the structure within bouts. However, this can

potentially be explained by the fact that the actions with most structure in the dataset,

such as lunge and copulation attempt, have low duration variation, so with bout fea-

tures that capture well the structure within a window, fixed sized windows may suffice.

Structured output methods also suffer from the problem of over-segmenting long bouts

of actions that do not have much structure, which leads to a lower bout wise perfor-

mance. The highest performing method, window based SVM+HMM, had an overall

bout- and frame precision-recall combination of 76%, averaged over all actions, while

trained human annotators achieved 84%.
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Something to consider is that human annotations are never perfect. There is always

the potential that an annotator overlooks action instances, and in our case, since anno-

tations are binary, ambiguous bouts are included based on the flip of a coin. This causes

a problem both during training of classifiers, and when estimating the performance of

the trained detectors. An ideal solution would be to have multiple annotators label

each video such that labeled bouts would have certainty associated with them, which

could be used in training and in performance computations - placing less emphasis on

low certainty bouts. However, obtaining such thorough annotations is expensive.

In future work, we would like to abandon the approach of detection by exhaustive

classification, and focus on developing more hierarchical methods that find interest

points within the video and center classification around those. We would like to apply

unsupervised learning on the domain, such that fewer training samples will be needed

to train good classifiers and unlabeled bouts will have less of an impact. To capture

the intraclass variability of actions, a considerable number of labeled action samples

will always be needed, so in order to bridge the gap between few training samples and

good classifiers, we see training with humans in the loop as a viable option.
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