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Abstract 

Nature has used a variety of protein systems to mediate electron transfer. 

In this thesis I examine aspects of the control of biological electron transfer by 

two copper proteins that act as natural electron carriers. 

In the first study, I have made a mutation to one of the ligand residues in 

the azurin blue copper center, methionine 121 changed to a glutamic acid. 

Studies of intramolecular electron transfer rates from that mutated center to 

covalently attached ruthenium complexes indicate that the weak axial 

methionine ligand is important not only for tuning the reduction potential of the 

blue copper site but also for maintaining the low reorganization energy that is 

important for fast electron transfer at long distances. 

In the second study, I begin to examine the reorganization energy of the 

purple copper center in the CuA domain of subunit II of cytochrome c oxidase. In 

this copper center, the unpaired electron is delocalized over the entire binuclear 

site. Because long-range electron transfer into and out of this center occurs over 

long distances with very small driving forces, the reorganization energy of the 

CuA center has been predicted to be extremely low. I describe a strategy for 

measuring this reorganization energy starting with the construction of a series of 

mutations introducing surface histidines. These histidines can then be labeled 

with a series of ruthenium compounds that differ primarily in their reduction 

potentials. The electron transfer rates to these ruthenium compounds can then be 

used to determine the reorganization energy of the CuA site. 



v 

Table of Contents 

Acknowledgments ....................................................................................................... iii 
Abstract .......................................................................................................................... iv 
List of Figures ............................................................................................................... vii 
Abbreviations ................................................................................................................ ix 

Chapter 1: Electron Transfer in Proteins 
Marcus theory in biological electron transfer .............................................. 2 
Protein control of electronic coupling ........................................................... 4 
Donor-bridge coupling .................................................................................... 7 

Chapter 2: Electron Transfer in Ml21E Azurin 
Measuring electron transfer rates in proteins .............................................. 36 

Photoinduced electron transfer .......................................................... 36 
Flash/ quench methodology ............................................................... 37 
Experimental design ............................................................................ 38 

Materials and methods .................................................................................... 38 
General ................................................................................................... 38 
Inorganic reagents ................................................................................ 38 
Mutant construction ............................................................................. 39 
Protein production ............................................................................... 39 
Protein purification .............................................................................. 40 
Ruthenation and purification- M121E/K122H/H83Q azurin ...... 41 
Ruthenation and purification- M121E(H83) azurin ....................... 42 
Laser sample preparation ................................................................... 42 

Results and discussion .................................................................................... 44 
Oxygen lability of reduced M121E azurin ........................................ 44 
Electron transfer rates .......................................................................... 45 

Chapter 3: Functional Changes in the M121E Mutant of Azurin 
Marcus-type analysis of ET rates ................................................................... 75 
Driving force ..................................................................................................... 75 
Electronic coupling .......................................................................................... 78 
Reorganization energy .................................................................................... 80 
Conclusions ....................................................................................................... 83 

Chapter 4: Probing the CuA Center by Intramolecular Electron Transfer 
Introduction ...................................................................................................... 94 
Experimental design ........................................................................................ 96 



vi 

Table of Contents Continued 

Materials and methods .................................................................................... 97 
General ................................................................................................... 97 
Mutant construction ............................................................................. 98 
Protein expression and purification .................................................. 100 
Metal modifications ............................................................................. 102 

Results and discussion .................................................................................... 103 
Design of surface accessible histidines for labeling ........................ 103 
Metal modifications ............................................................................. 104 
Preliminary ET data ............................................................................. 105 

Appendix A: 
Site-saturation Mutagenesis of M121 of Pseudomonas aeruginosa Azurin 

Chang et al. (1991) ........................................................................................... 129 
Selected M121 mutants in the pET9a expression system ........................... 134 

Appendix B: Map and Gene Sequence of pET /ASA 
............................................................................................................................. 138 

Appendix C: Map and Gene Sequence of pET /T9CuA 
............................................................................................................................. 143 



vii 

List of Figures 

Figures for Chapter 1: Electron Transfer in Proteins 
1.1 Photoinduced and thermal electron transfer ......................................... 13 
1.2 The effect of 6G0 on 6G* .......................................... .... ............................. 15 
1.3 The 'Marcus inverted region' .................................................................... 17 
1.4 Uniform barrier model of electronic coupling ................. .... .. ................ 19 
1.5 Comparison of distance and a-tunneling distance ............................... 21 
1.6 Wild type azurin Cu2+ site ........................................................................ 23 
1.7 Hydrogen bonds between the C112 and M121 strands of azurin ....... 25 
1.8 pH dependence of the UV /Vis spectrum of M121E azurin ................ 27 
1.9 Cu-ligand bond distances ......................................................................... 29 

Figures for Chapter 2: Electron Transfer Rates in M121E Azurin 
2.1 Photoinduced ET Scheme ......................................................................... 47 
2.2 Difference spectra of Ru2+*- Ru2+ and Ru3+- Ru2+ .............................. 49 
2.3 Flash/Quench ET Scheme ........................................................................ 51 
2.4 FPLC purification of ruthenated M121E/Kl22H azurin ...................... 53 
2.5 FPLC purification of ruthenated M121E (H83) azurin ......................... 56 
2.6 Reoxidation of M121E/Kl22HRu(bpyhlm azurin ............................... 59 
2.7 Transient absorption laser data ................................................................ 61 
2.8 Overlap of UV /Vis spectra: Ru label and M121E azurin ..................... 68 
2.9 Rates of luminescence decay and electron transfer ............................... 70 

Figures for Chapter 3: Functional Changes in the M121E mutant of Azurin 
3.1 Potentials of Ru2+*, Ru2+, and Ru3+ species ........................................... .84 
3.2 Predicted ET rates if only 6G0 changes ................................................... 86 
3.3 M121E azurin Cu2+ site ............................................................. .... ............ 88 

Figures for Chapter 4: Probing the CuA Center By Intramolecular ET 
4.1 The binuclear CuA site .............................................................................. 106 
4.2 PCR scheme for mutating CuA ................................................................ 108 
4.3 Oligonucleotides for CuA mutagenesis ................................................ .. 112 
4.4 Spectra of CuA and Ru(tpy)(bpy)Im ....................................................... 114 
4.5 Spectra of IMACS CuA fractions ............................................................. 116 
4.6 Alignment of protein sequences with CuA domains ........................... 118 
4.7 Locations of the surface histidines made for this study ....................... 120 
4.8 Preliminary CuA rate data .......................... ..................................... ......... l22 

Appendix A: Site-saturation Mutagenesis of M121 of P. aeruginosa azurin 
A.l Primers used for PCR mutagenesis of M121 ......................................... 136 



viii 

List of Figures Continued 

Appendix B: Azurin sequences and plasmid maps 
B.1 Annotated sequence of the synthetic azurin gene ................................ 139 
B.2 Map of the pET9a/ ASA plasmid ............................................................. 141 

Appendix C: CuA sequences and gene maps 
C.1 Annotated sequence of 'T9' CuA ............................................................. 144 
C.2 Map of the pET9a/CuA plasmid ............................................................ 146 



Az 

bpy 

ceo 
cytc 

DA 

EDTA 

ES-MS 

ET 

EXAFS 

HE PES 

HOMO 

Im 

IMAC 

IPTG 

LB 

LUMO 

LMCT 

MALDI-TOF MS 

M.W. 

SCFXa 

tpy 

Tris 

UV-Vis 

WT 

ix 

Abbreviations 

azurin 

bipyridine 

cytochrome c oxidase 

cytochrome c 

donor and acceptor 

Ethylenediamine tetraacetic acid 

Electrospray mass spectrometry 

electron transfer 

extended X-ray absorption fine structure 

N-[2-hydroxyethyl]piperazine-N'[2-ethanesulfonic acid] 

highest occupied molecular orbital 

imidazole 

Immobilized metal ion adsorption chromatography 

Isopropy 1-B-D-thiogalactoside 

Luria-Bertini Broth 

lowest unoccupied molecular orbital 

ligand-to-metal charge transfer 

matrix assisted, laser desorption ionization time-of-flight 

mass spectrometry 

molecular weight 

Self consistent field Xa calculations 

2,2':6',2"-terpyridine 

tris(hydroxymethy l)aminomethane 

ultraviolet and visible absorption spectroscopy 

wild type 



Chapter 1 

Electron Transfer in Proteins 



2 

Marcus theory in biological electron transfer 

Electron transfer (ET) is central to biological organisms' ability to manage 

energy. For example, the respiratory chains of many different types of bacteria 

consist of a series of electron transfer steps. The initial event in photosynthesis is 

the transformation of light energy into a charge separation across a membrane. 

And, in oxidative phosphorylation in mitochondria, electron transfer events are 

coupled to proton transfers that build up the chemiosmotic gradient which 

drives ATP synthesis. The way the amino acids and cofactors of these protein 

complexes control electron flow has been the subject of much theoretical and 

experimental work (Marcus and Sutin 1985; Beratan et al. 1991; Moser et al. 1992; 

Winkler and Gray 1992; Evenson and Karplus 1993; Farid et al. 1993; Friesner 

1994; Stuchebrukhov 1996). 

The most generally useful theoretical framework for thinking about 

electron transfer is Marcus theory (Franzen et al. 1993). Marcus's essential insight 

(Marcus 1993) is that the equilibrium positions of the nuclei around the donor 

and acceptor atoms are different before and after electron transfer and that, 

according to the Franck-Condon principle, nuclear rearrangements occur on 

much longer time scales than electronic changes. So, in order to conserve the total 

energy of the system, electron transfer must proceed either by pre-equilibration 

to. a nuclear configuration whose energy is the same for the DA and n+ A

electronic configurations (thermal ET reactions) or by addition of light energy to 

make the energy of the DA complex equal to that of an+ A- complex with the 

DA equilibrium nuclear configuration (photoinduced ET reactions). The energy 

that must be supplied to overcome the lack of prior rearrangement of the nuclei 

is the reorganization energy, A., defined as the charge transfer energy for a system 

where the ~Go for the reaction is zero (self-exchange reactions). (See figure 1.) 

The ~Go for an ET reaction is the difference in the reduction potentials of 

the donor and acceptor. According to semiclassical Marcus theory, the energies 

of the products and reactants can be plotted as a function of an abstract reaction 

coordinate which takes into account the positions of all nuclei relevant to the 

system (the donor and acceptor plus a solvation sphere). The energies for the 

products and reactants, plotted as a function of the reaction coordinate, form two 

parabolas. The point at which they cross gives the activation energy, ~G*, which 

is a function of the driving force for the reaction, -~Go, and A., the nuclear 
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reorganization barrier to the reaction: ~G* = (~Go +A.)2 I 4A.. Taking a semiclassical 

approach, one can describe the rate of electron transfer by the following 

equation: 

where (HAB)2 is the electronic coupling, and the exponential term is the Franck

Condon or nuclear energy term. 

An unusual prediction of the Marcus equation, the so-called inverted 

effect, comes from the form of the exponential term in the nuclear (Franck

Condon) factor, exp-(~G0+A.)2 I 4A.kBT. This indicates that as the driving force for 

the reaction increases (~Go becomes more negative), the activation barrier, ~G*, 

decreases until, at -~G0= A, it reaches zero. (See figure 2.) Then as the driving 

force increases further (~Go becomes even more negative), the activation energy 

increases again so that kET decreases with increasing driving force. (See figure 3.) 

The presence of this inverted region indicates that biological systems must 

modulate -~Go and A simultaneously to achieve fast electron transfer. 

Interestingly, there has been some suggestion that this inverted effect might be 

put to use in a situation where one wants a reaction to be inefficient. The inverted 

effect may help limit the rate of the non-productive charge recombination in the 

photosynthetic reaction center (Moser et al. 1992). 

Proteins modulate ~Go and A. in various ways. In order to conserve energy 

during ET, the driving force should be as small as possible so little chemical 

potential energy is lost in the transfer. In biological systems such as cytochrome c 

oxidase that mediate a series of ET reactions, the reduction potentials of 

successive electron acceptors are often only slightly higher than the potential of 

the upstream donor. To get high ET rates, -~Go should be almost equal to A.. 

These two factors dictate that, to achieve high ET rates, the reorganization 

energy, A., should be small too. 

It is often useful to partition A. into inner sphere and outer sphere 

components and examine each of these separately. The inner sphere 

contributions to A are generally changes in equilibrium bond lengths and bond 

angles around the donor and acceptor. In systems such as plastocyanin and 

azurin, crystal structures of the oxidized and reduced proteins indicate the Ainner 

is small because the positions of the metal ligands change only slightly (Guss and 
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Freeman 1983; Gusset al. 1986; Baker 1988; Shepard et al. 1990). In most cases, 

the largest contribution to Acuter is the reorientation of solvent dipoles to align 

with the new electric fields around D and A. Many ET proteins minimize Acuter 

by burying the electron transfer centers under a layer of low dielectric protein 

matrix. I 

For a series of reactions differing only in the driving force of the reaction, 

-~Go, as the driving force increases (becomes more negative) and approaches A., 
the activation energy, ~G*, drops to zero. As the ET reaction becomes 

activationless, it is controlled only by factors which determine the frequency of 

electron transfer once the nuclei have reached the required intermediate 

configuration. In the adiabatic limit, this transmission coefficient is 1; electrons 

are transferred every time the nuclear configuration is correct. In nonadiabatic 

situations, such as long-range ET in biological systems, the transmission 

coefficient is determined by the electronic coupling between the donor and 

acceptor, ( HA8)2. This electronic coupling, the overlap between the donor and 

acceptor wavefunctions, is determined by the match in energies of these 

wavefunctions and the way they attenuate over the distance between the two 

sites. The way in which the protein medium affects the electronic coupling 

between donor and acceptor has been the subject of much theoretical and 

experimental work (Winkler and Gray 1992; Farid et al. 1993; Fmnzen et al. 1993; 

Bjerrum et al. 1995; Stuchebrukhov 1996). 

Protein control of electronic coupling 
A compilation by Dutton and coworkers (Moser et al. 1992) of 

intramolecular protein ET rates at a variety of driving forces in natural and 

model systems suggests that many of the observed ET rates are near their 

predicted limit (kET::::: kmax, -~Go= A.). This would indicate that many biological 

ET reactions are controlled not by the nuclear I energetic factors but by the 

Ismail changes in bond angles with changes in oxidation state may not be enough to give small 
reorganization energies and thus fast rates of electron transfer. In a study of model complexes, 
Flanangan (Flanagan et al. 1993) demonstrated that a small Cu complex with ligand 
rearrangements on the order of those seen for blue copper proteins did not give fast electron 
transfer rates. Conversely, another model complex that goes from square pyramidal, 
pentacoordinate in the +2 state to pseudotetraheral, tetracoordinate in the +1 state, has much 
faster electron self-exchange rates - almost as fast as the self-exchange rates measured for azurin. 
They speculate that this may be due to the flexibility of the complex since they saw a correlation 
between flexibility of a complex and its ET rate. 
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electronic coupling between the donor and acceptor (HAB)2. For the reactions 

included in his analysis (mainly ET rates for various components of the 

photosynthetic reaction center and a few ruthenium-labeled heme proteins) 

Dutton asserts that distance is the primary controlling factor in biological ET and 

that the system is well modeled by a simple exponential decay of the orbital 

overlaps with increasing distance, kET =kETo exp(-P(r-r0
)), where kETo is the ET 

rate at close contact distance ( -1013 s-1) and p = 1.4 A-1. (See figure 1.4.) This value 

of P is similar to that measured for ET reactions in a frozen organic glass of 

methyltetrahydrafuran, P=1.2 A-1, intermediate between the p predicted for ET 

through a vacuum, 2.8 A-1, and that measured from a series of covalently 

coupled small molecule DA pairs, 0.7 A-1. 

Dutton's data span 12 A and eight orders of magnitude in ET rates2 and 

would seem to offer a broad range of conditions to observe long-range ET within 

ordered, biological systems. However, when the data set is expanded to include 

charge recombination rates at even longer distances within the photosynthetic 

reaction complex, the simple distance dependence model breaks down (Franzen 

et al. 1993). Using Dutton's distance decay parameter CP = 1.4 A-1), one would 

predict that, with a separation distance of 43 A, the charge recombination rate 

between the first heme of the bound cytochrome subunit and the menaquinone 

(CH1+ QA-) would be unobservably slow (10-6 s-1) but the measured rate is 2 s-1. 

Boxer and coworkers showed that the observed rate could be explained by 

including the ion pairs for the forward ET reactions as mediating states in a 

superexchange formalism describing the charge recombination reaction. Thus, 

even within the photosynthetic reaction center, ET rates appear to have a 

complex distance dependence that is sensitive to the details of the intervening 

medium. 

Inconsistencies in the dependence of kET on distance have led to a search 

for alternative representations of the electronic coupling factors controlling 

biological ET. In the Beratan-Onuchic pathways model, the transferring electron 

is conceptualized as localized in the series of one electron molecular orbitals 

linking the donor and acceptor (Beratan et al. 1987; Onuchic and Beratan 1990). 

The tunneling matrix element, TDA (analogous to the electronic coupling element 

2Including only rates where the kmax is known from driving force studies and excluding those 
reactions where kmax is inferred from kobs using very limited data. 
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HAs), is the sum of the individual pathway tunneling elements, toA, for all 

physical pathways between the donor and acceptor in the protein. Each 

individual tunneling element is the product of the bonded and nonbonded 

interactions along the pathway (toA = prefactor I1£ci1c.HI1£s). Covalent bonds 

provide the strongest coupling between atoms in the pathway (Ec = 0.6). 

Hydrogen bonds are thought to provide reasonable, perhaps somewhat weaker, 

coupling between the atoms involved. The original formulation weighted 

hydrogen bonds as two covalent bonds with an adjustment in the coupling if the 

hydrogen bond were significantly longer or shorter than average. However, 

measurements of ET across a hydrogen-bonded interface in a porphyrin model 

system suggest the coupling is better than for the same distance bridged by 

covalent bonds (c.H = 0.51 rather then 0.62) (de Rege et al. 1995). Recent 

measurement of ET rates in the P-barrel protein azurin confirm that, in proteins, 

the electronic coupling through a hydrogen bond may be similar to that through 

covalent bonds (Regan et al. 1995; Langen et al. 1996). 

Sometimes the through bond (covalent and hydrogen bonds) path 

between a donor and acceptor in a protein is excessively long, even though the 

two might be relatively close when the direct, through-space distance between 

them is measured. In this situation, even though ET through a vacuum is much 

slower than ET mediated by bridging molecular orbitals, it is sometimes better to 

include a disadvantageous through-space jump in a proposed ET pathway to 

'straighten out' the meandering of the protein structure. Through-space jumps 

are usually included as a penalty parameter times the difference in length of the 

jump and the length of a normal covalent bond (£s = 0.6 exp(-1.7(r-1.4))). 

Onuchic, Beratan, and coworkers have developed algorithms to find the 

best - most strongly electronically coupled - ET pathways in proteins (Betts et al. 

1992). One of the early successes of the pathways model of biological ET was to 

explain the very similar ET rates within cytochrome c 's with ruthenium labels 

appended at different distances from the porphyrin (Wuttke et al. 1992). (See 

figure 5.) It has also been used to map sites in cytochrome c and azurin that are 

predicted to be more poorly coupled to the metal center than would be expected 

from the straight-line distance. In the most recent of the pathways programs, 

collections of closely-related (largely redundant) pathways have been 

consolidated and dealt with as 'tubes' of pathways that exhibit positive and 

negative interferences (Regan et al. 1993; Regan et al. 1995). This was done, in 
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part, to deal explicitly with the situations such as is found in myoglobin where 

there is not one clearly best path; several paths give similar total couplings 

(Casimiro et al. 1993; Langen et al. 1996). However, the existence of multiple 

pathways brings up the question of whether those pathways provide alternative 

routes for ET (constructive interference) or are dissipating dead-ends (destructive 

interference). Since this interference is a quantum phenomenon, examining this 

requires a more detailed description of the propagation of the donor wave 

function by the bridge than is provided by the simple product of couplings. The 

use of Green's functions allows examination of these interferences without 

requiring a full description of system (Regan et al. 1993); Skourtis, 1994 #91. 

Recent advances in computing power and numerical methods have 

enabled some researchers to attempt more detailed calculations of the electronic 

coupling within proteins. Marcus and Siddarth (Siddarth and Marcus 1993) 

developed an artificial intelligence method which allowed them to identify the 

amino acids that contribute to electronic coupling between a donor and acceptor 

in a protein system. This simplification of the system allowed them to use a 

superexchange method to calculate the coupling between donor and acceptor 

through these amino acids. One of the advantages of the more detailed 

superexchange methodology is that it allows one to calculate absolute rates and 

electronic couplings. In the Beratan-Onuchic model, the initial coupling of the 

donor (or acceptor) into the bridge is not treated explicitly so one may only 

compare electron transfer rates within systems of related proteins. In comparing 

observed and calculated ET rates for a series of cytochrome c and myoglobin 

mutants, Siddarth and Marcus obtained very smooth correlations between their 

calculated absolute rates and experimentally determined ET rates; however, for 

reasons that were unclear, the slopes of their plots of calculated vs. observed 

rates differ from each other and from the desired slope of 1. 

Donor-bridge coupling 
In the Beratan-Onuchic model, as stated above, the initial coupling of the 

donor (or acceptor) into the bridge is not treated explicitly and is usually 

assumed to be the same for the proteins and pathways that are being compared. 

The reason for this lies more in the utility of the simplification than a true 

conviction of its validity. In the heme proteins, cytochrome c and myoglobin, 

treating all links equally ignores the anisotropic nature of the porphyrin ring and 
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the possibility of very real differences in coupling to the iron via an axial ligand 

rather than through the more delocalized orbitals of the conjugated porphyrin 

ring system. A recent paper calculating electronic coupling using a 

superexchange methodology explicitly addressed how big an effect one might 

expect to see in electron transfer reactions coupled through different Fe orbitals 

in the heme protein cyt c (Stuchebrukhov and Marcus 1995). Stuchebrukhov and 

Marcus found that the symmetry of the donor and acceptor metal ions imposed 

selection rules on the tunneling pathways that can be used. They predict the 

coupling from the Fe t2g to the porphyrin ligand orbitals will be of 1t symmetry; 

the correlation of experimental coupling with matrix elements calculated using 

an s orbital as the donor and acceptor states was much worse than any of the 

calculations using the Fe tzg orbitals. In addition, while all three t2g orbitals of the 

Ru label contributed approximately equally to all of the predicted ET routes, the 

contribution of each Fe tzg to a particular ET matrix element was highly 

dependent on its orientation relative to the Ru label (variations between 2 and 20 

fold in individual contributions to the matrix elements were calculated). 

While the anisotropy of the coupling into the cytochrome heme iron is 

intuitively satisfying, the anisotropic nature of couplings of ~-strands to the 

copper center in azurin is less apparent from casual inspection of the X-ray 

structure. (See figure 6.) But a combination of spectroscopic evidence and self 

consistent field Xa (SCF-Xa) calculations (modeling the analogous blue copper 

center in plastocyanin) indicate that the coupling of the copper ion to its ligands 

is very unequal (Gerwith and Solomon 1988; Lowery and Solomon 1992). The 

UV-Vis absorption spectrum of type I (blue) copper centers is dominated by the 

unusually strong interaction of the cysteine 112 sulfur with the copper ion. The 

extinction coefficient (indicative of the oscillator strength of the interaction) of 

this 625 nm ligand to metal charge transfer (LMCT) band is -6,000 M-lcm-1 

(compared to an£ of -50 M-lcm-1 in small molecule copper complexes) (Solomon 

et al. 1980). The CysS-Cu2+ bond is unusually short (2.25 A in WT azurin (Nar et 

al. 1991)) and is thought to be highly covalent in character. By contrast, the 

histidine ligands, which are both respectable metal ligands with bond distances 

of 2.03 A and 2.11 A, contribute only a small amount (-4 %) to the ground state 

wave function (Gerwith and Solomon 1988). The difference in metal-ligand 

coupling between the Cys and His ligands was invoked to explain the rates of 

electron transfer to two different sites on plastocyanin. The hydrophobic patch 
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on the surface centered near His37 mediates electron transfer to neutral and 

anionic complexes; ET to cationic complexes, on the other hand, mainly proceeds 

after their association with the acid patch centered around Tyr83. The rates of ET 

to complexes bound at these two sites are remarkably similar (-104-105 M-ls-1) 

despite the difference in the Cu to surface distances (6 A for the hydrophobic 

patch vs. 13 A for the acid patch). Using Newton's relationship between ligand 

covalency and the electronic coupling through that ligand (Newton 1988), 

Lowery et al. calculated that the difference in coupling through the strong Cys84 

ligand would balance the rate enhancement expected for ET to the closer site 

(Lowery et al. 1993). 

The fourth conserved ligand in most type I copper sites is a methionine. 

This methionine ligand is somewhat puzzling. Though it is found in most type I 

sites, the length of the Cu-Met bond (2.8 A in plastocyanin (Gusset al. 1992), 3.1 

A in azurin (Nar et al. 1991)) and the fact that in plastocyanin its interaction with 

the Cu ion cannot be seen by EXAFS3 (Scott et al. 1982), called into question its 

role as a copper ligand. SCF-Xa calculations by Solomon and coworkers 

demonstrate that, while a weaker interaction, the methionine sulfur does interact 

with the Cu2+ ion in blue copper sites; they estimate the Cu-Met bond to be about 

30% of a normal ligand-metal bond (Lowery and Solomon 1992). Site saturation 

mutagenesis has shown that methionine is not needed in order to form a blue 

copper site (Chang 1991), though the observation that most mutant sites are not 

fully occupied by Cu2+ suggest the methionine may contribute to the stability of 

the site (Karlsson et al. 1991). 

In an attempt to directly probe the relative abilities of the Cys and Met 

ligands to mediate electron transfer, Langen introduced histidines at several sites 

on the ~-strands leading from Cys112 and Met121 in P. aeruginosa azurin (Langen 

et al. 1995; Langen et al. 1996). Electron transfer rates to Ru(bpyhlm labels at 
these sites have been analyzed by several different methods. Regan et al. 

modified their Green's function pathways method to explicitly include a term 

describing the initial coupling from the Cu into the bridge (Regan et al. 1995). 
Comparing the case in which all the Cu-ligand couplings are weighted equally 

with one in which the relative couplings match the estimates from Solomon's 

30ne can see aS interaction at a distance of 3.04 A in the azurin EXAFS (Murphy et al. 1993) 
which has been attributed to M121 (X-ray Cu-S(Met) distance: 3.15 A). 
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SCF-Xa calculations of the Cu2+ HOMO (Cys = 1.0: Met =0.3: His= 0.1: His= 0.1), 

he showed that both give physically reasonable estimates for the DA coupling. 

The ET rate to the label at 126, at the far end of the Met ~-strand, does not 

attenuate as sharply as one might expect given its distance and the expected 

weak coupling of the all covalent bond path through the Met ligand. This is 

readily explained if one considers the effects of multiple constructively 

interfering paths. An electron leaving the Cul+ center could either leave through 

the weakly coupled Met ligand and follow an entirely covalent pathway to the 

Ru3+ acceptor or it could leave by the strongly coupled Cys sulfur, travel through 

part of the Cys ~-strand and then cross via one of several interstrand hydrogen 

bonds to reach the acceptor. (See figure 7.) The number of possible interstrand 

crossings increases down the strand so the existence of alternative pathways 

would affect the ET rates to labels at the far ends of the strands more strongly to 

the nearby His122label. 

Stuchebrukhov and colleagues have used several different computational 

methods at the extended Hiickel level of approximation to model electron 

transfer in azurin (Stuchebrukhov 1996; Diazadeh et al. 1997). In each case, to 

limit the computational expense they first 'prune' the protein to select the most 

important subset of amino acids on which to perform more rigorous calculations. 

In a direct comparison, they show that exact diagonalization of the Hamiltonian, 

perturbation theory, and their tunneling currents method all are in excellent 

agreement (Diazadeh et al. 1997). Because their tunneling currents method gives 

the flux of current between two atoms, one can estimate not just the net result of 

the coupling, but can see the effects of interfering currents. This enables one to 

determine the contribution of individual bonds to the electron transfer process 

and to address questions such as the importance of hydrogen bonds. 
In their examination of ET in labeled azurins, they used a donor 

wavefunction for the blue copper center that contained a strong contribution 

from the Cys-S and weaker contributions from the other ligands (in accordance 

with Solomon's studies of the blue copper site). At both the acceptor and donor 

sites they saw strong circular currents. For electron transfer to a Ru(bpyhlm label 

at His122 they saw the majority of the tunneling current flow from the Cu, 

through the Met ligand, down the peptide backbone through His122, and into a 

Ru t2g orbital. This is what one might intuitively expect and is substantially the 

same as is predicted by a pathway model. The more interesting result is for the 
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tunneling currents to His126. For this residue, the pathways model shows paths 

through both the Met and Cys strands with the possibility of crossing between 

them via the series of backbone hydrogen bonds; the relative contributions of 

these pathways depends on the parameterization for hydrogen vs. covalent 

bonds and the choice of donor-bridge coupling through the two very different 

sulfur ligands. The tunneling currents model shows substantial current flux 

through both strands; each ~-strand is a strongly coupling backbone linked 

strongly to the metal at one end and weakly to the metal at the other. But the Met 

strand, despite its weak ligation to the Cul+ donor, carries three times as much 

current as the Cys strand. Most interestingly, the flux is in opposite directions 

along the two strands, toward the Ru acceptor along the Met strand and away 

from it via the Cys strand. This is an example of destructive interference in which 

the existence of the coupling through the Cys strand decreases the overall rate of 

electron transfer. In contrast with the pathways model, the hydrogen bonds 

between the two strands carry no flux. At least in this system with parallel 

covalent ET routes, hydrogen bonds are not major contributors to electron 

transfer. 

If destructive interference between the two ligand containing strands in 

azurin explains the slower rates of electron transfer down the Met strand, would 

changing the nature of the Met ligand so it could compete more effectively for 

flux out of the Cul+ center increase overall rate of electron transfer? Site

saturation mutagenesis has replaced the M121 ligand with all 19 other natural 

amino acids (Chang et al. 1991; Karlsson et al. 1991). Not only are all of these 

substitutions possible, but they make remarkably little difference in the 

properties of the type I center. The UV-Vis spectra of most of the M121X mutants 

of the Pseudomonas aeruginosa azurin remain remarkably similar to that of wild 

type azurin with the major difference being increases in a peak near 420 nm. This 

peak is not seen in the WT azurin but has been observed in the spectra of other 

blue copper proteins and has been discussed as a possible indication of distortion 

in a type I site (Lu et al. 1993). The spectra of two of the mutants, M121E and 

M121K, show an interesting pH dependence in the relative heights of these two 

peaks. The absorption spectra of the M121E mutant at low and high pH are 

shown in figure 8. At low pH, the normal absorbance around 600 nm dominates, 

but at high pH, when the ligand would be presumed to be deprotonated, this 

peak diminishes in intensity and shifts to the blue (Amax = 570 nm) while the 
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420 nrn peak increases in intensity. Interpretation of this spectroscopic change as 

the addition of an axial ligand is supported by EXAFS studies of the M121E 

mutant which show an additional oxygen at 1.9 A at pH 8.0 (Strange et al. 1996). 

(For comparison, at pH 4.0, there is not fifth ligand in the M121E coordination 

sphere; the WT center shows a sulfur at 3.04 A.) (See figure 9.) 

This thesis sets out to examine how the changes in the azurin blue copper 

center evidenced by these spectroscopic changes affect the functional properties 

of the M121E azurin mutant. As described in the next chapter, ruthenium labels 

(Ru(Il)(bpyh(Im)) were placed either at the naturally occurring H83 or at an 

introduced histidine at position 122 and ET rates to these labels were measured 

at high and low pH using photoinduced and flash/ quench laser techniques. 

Chapter 3 discusses the rates obtained and their interpretation within the context 

of the spectroscopy and function of blue copper centers. Chapter 4 discusses a 

related project, initial attempts to characterize the electron transfer dynamics of 

the CuA center from cytochrome c oxidase using similar ruthenium labeling and 

transient-absorbance laser spectroscopy techniques to obtain intramolecular 

electron transfer rates. 
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Figure 1.1 Energy diagram for a self-exchange electron transfer reaction. The 

horizontal axis is an abstract reaction coordinate that represents the changes in 

position of the nuclei in the system during the course of the electron transfer. The 

vertical axis is the free energy of the system. The parabola on the left represents 

the energy of the reactants (D-A +),the parabola on the right, the energy of the 

products (D+-A) . The reorganization energy, "J...., is the energy required for an 

instantaneous electron transfer to give D+-A product but with the bond distances 

and bond angles that are the equilibrium configuration for the reactants. 
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Figure 1.2 As in Figure 1, the energy is depicted on the vertical axis, while the 

horizontal axis represents the abstract reaction coordinate. In the three diagrams, 

the increasing driving force for the reaction is shown by the product curve 

shifting downward. 
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Figure 1.3 Marcus parabola showing the relationship between driving force 

( -~G0 ) and the log of the electron transfer rate. 
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Figure 1.4 Plot of the maximal rate of electron transfer vs. the edge to edge 

distance between donor and acceptor for electron transfer reactions within the 

photosynthetic reaction center (open circles) and in select protein model systems 

(filled triangles). The solid line is the expected rate of electron transfer for a 

system with a dose-contact electron transfer rate of 1Q13 s-1 and a uniform rate 

decay, ~=1.4 A-1. Data from (Moser et al. 1992). 
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Figure 1.5 The maximal rates of electron transfer for a series of ruthenium

modified cytochrome c proteins are plotted against (a) the edge-to-edge distance 

between the metal centers and (b) the a-tunneling lengths predicted by the 

Beratan-Onuchic pathways model (Wuttke et al. 1992). 

In (a) the solid line denotes the best fit to the data, which gives ~=0.66 A-1 and a 

close contact ET rate of 1.6 x 108 s-1. The dotted line is the expected change in rate 

with distance if the cytochromes behaved like the steroid compounds of Closs 

and Miller (Closs and Miller 1988), ~=1.0 A-1 and a close contact ET rate of 3 x 

1012 s-1 at 3 A separation. The dashed line is the distance dependence found by 

Dutton and coworkers for other protein ET systems (Moser et al. 1992), ~=1.4 A-1 

and a close contact ET rate of 1 x 1013 s-1 at 3 A separation. 

In (b) the log of the ET rate is plotted vs. the tunneling length as predicted by the 

Beratan/Onuchic model; the through bond coupling was converted to A using 

an average bond length of 1.4 A. The solid line represents the best fit to the data 

(including the estimate of a close contact ET rate of 3 x 1012 s-1 at 3 A separation). 

The krnax falls off at a rate of 0.71 A-1. 
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Figure 1.6 The type I copper center of Pseudomonas aeruginosa azurin (Nar et al. 

1991). The copper ion is ligated by a trio of in-plane ligands, C112 (to the left and 

behind the Cu ion in this view), H117 (left front), and H46 (right). M121 (above) 

and the carbonyl oxygen of G45 (below and to the right) provide weaker axial 

interactions. The Cu ion is dark blue; the rest of the heavy atoms are colored 

according to the standard CPK scheme: carbon: gray, nitrogen: blue, oxygen: red, 

sulfur: yellow. 
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Figure 1.7 The ~-strands leading away from the azurin copper center via the 

Cys112 and Met121 ligands are shown as their peptide backbone; the 121-126 

strand is on the left, the 112-107 strand on the right. The 5 hydrogen bonds 

linking the two strands are shown in white. 
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Figure 1.8 UV-Vis spectra of M121E at pH 4.5 and pH 8.0. 
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Figure 1.9 Comparison of Cu-ligand distances for WT and M121E Pseudomonas 

aeruginosa azurin obtained by EXAFS and X-ray crystallography (Nar et al. 1991; 

Murphy et al. 1993; Strange et al. 1996; Karlsson et al. 1997). 
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EXAFS X-ray 

WT M121E WT M121E 
8.0 4.0 8.0 5.5 9.0 6.0 

Residue 

Cys 112 S 2.12 2.15 2.21 2.25 2.26 2.11 

His 117N 1.93 1.93 2.00 2.03 2.04 2.02 

His 46 N 1.93 1.93 2.00 2.11 2.09 2.02 

Gly45C=O 2.79 2.86 2.86 2.97 2.95 3.42 

Met 121 S 3.04 - 1.90 3.15 3.12 

or Glu 1210 2.21 
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Electron Transfer in M121E Azurin 
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Measuring electron transfer rates in proteins 

Several methods have been used to obtain electron transfer rates within 

protein media. One may study the natural systems plants and animals use to 

obtain energy, for example the oxidase systems of the mitochondria or the 

photosynthetic reaction center. Studying most oxidase systems is complicated by 

the fact that electron transfer is coupled to proton transfer, adding another layer 

of complexity. Several bacterial photosynthetic reaction centers have been widely 

studied. They are large but well defined; X-ray structures are available for 

Rhodopseudomonas viridis (Allen et al. 1987; Yeates et al. 1987) and 

Rhodobacter sphaeroides (Deisenhofer et al. 1984) . Electron transfers 

between various of the multiple chromophores can be followed spectroscopically 

and yield rates for ET over various distances and with different driving forces 

(Boxer 1990). 

However, one is limited in these natural systems to the distances, driving 

forces, and intervening media provided by the particular reaction center. The 

Gray group, among others, have chosen to study electron transfer reactions in 

model systems consisting of a metalloprotein that has been covalently modified 

to add a second metal center at various places on the protein surface (Winkler 

and Gray 1992). The metal modification used in this study is a ruthenium 

bisbipyridyl imidazole (Ru(bpyhlm-) bound to surface his~idines introduced on 

the surface of azurin through site-directed mutagenesis. Excitation with 480 nm 

laser light creates a long-lived Ru(bpyhlmHis excited state (66 ns for the 

Ru(bpy)2Im2 model compound (Wuttke 1994), 100 ns for Ru(bpy)2Im-labeled 

azurin (Di Bilio et al. 1997; Kiser 1997)) which is a good reductant. The reducing 

potential of the Ru(bpyhlm label has been exploited for the direct reduction of 

the Cu2+ center of azurin, in the photoinduced ET scheme, and, for the indirect 

oxidation of a Cul+ center after the reduction of an exogenous quencher in the 

flash/ quench scheme. 

Photoinduced electron transfer 

In the photoinduced electron transfer scheme (see figure 1), the 

Ru(bpyhlmHis label is excited at 480 nm, creating an excited electron on one of 

the bipyridylligands. This can decay by phosphorescence (emitting in a broad 

band around 670 nm), energy transfer, and non-radiative decay (collectively kd), 

and by electron transfer (kET ). When the Ru label is attached at points on the 

surface of azurin close to the copper center, the excited electron may be 
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transferred to the half filled Cu2+ HOMO. This reduction causes a bleach in the 

characteristic azurin -600 nm LMCT band. The concomitant creation of the Ru3+ 

center can most easily be monitored as a bleach in the Ru2+ /Ru3+ couple at 430 

nm, the isobestic point for the Ru(bpy)zlm22+/2+*. (See figure 2 (Sigfridsson et al. 

1996).) The Cu1+ /Ru3+ couple that is created is thermodynamically unstable and 

returns to the Cu2+ /Ru2+ ground state through a second electron transfer 

reaction (ksET). Since we are mainly interested in metal to metal, ground state 

electron transfers, this back electron transfer is the reaction of interest. This is 

fortunate, since the forward, excited state electron transfer reaction is on time 

scales too fast to be resolved from the 25 ns laser pulse used to create the initial 

Ru2+ excited state. Additional strong absorbance changes in the Ru2+ /Ru3+ 

difference spectrum occur at 310 and 500 nm. At these wavelengths, there are 

also strong absorbance changes due to the Ru2+* excited state. Rates for both the 

excited state decay and the back electron transfer can be identified using 

biexponential fits of the data because they occur on sufficiently different time 

scales as to be distinguishable. 

Flash/quench methodology 

The photoinduced electron transfer scheme only works in systems where 

the initial electron transfer from the Ru label competes favorably with the other 

processes by which the excited state electron may relax. In general, this requires 

an acceptor with a fairly high reduction potential located close to the point of 

attachment of the label. To study electron transfer at slower rates (longer 

distances), the flash/ quench scheme was developed (Chang et al. 1991). (See 

figure 3.) With this methodology, one starts with reduced azurin. The excited 

state of the Ru2+ label is rapidly quenched using an exogenously added 

[Ru(NH3)6]3+ quencher.l The Ru3+ label can then be reduced intramolecularly by 

electron transfer from a reduced Cul+ center in protein. Again this ground state 

electron transfer can be monitored at wavelengths characteristic of the Cu2+/l+ 

and Ru3+/2+ couples (600, 430, 310, and 500 nm). On longer time scales (0.5 ms), 

the reduced [Ru(NH3)6]2+ quencher rereduces the azurin Cu center. Because both 

the photoinduced reaction and the flash/ quench reaction using [Ru(NH3)6]3+ are 

reversible, the sample can be excited repeatedly and the resulting absorption 

transients averaged to increase the signal-to-noise ratio. 

1 The second order rate constant for Ru(NH3)63+ quenching of Ru(bpy)2(Im)(His33)Fe2+-cyt cis 
4.9 x 108 M-ls-1 (Chang et al. 1991). 
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Experimental design 

In this project I have attempted to alter the electron transfer properties of 

the blue copper protein, azurin, by altering one of its ligand residues. Using site

directed mutagenesis, M121E mutants of azurin containing a single surface

exposed histidine at either position 83 or 122 were constructed. They were 

labeled with Ru(bpyhlm and, using the photoinduced and flash/ quench 

schemes described above, ET rates from Cul+ to Ru3+ were measured at pH 4.3 

and 8.1. These rates were compared to rates of ET to labels at the same places on 

the wild-type protein (Langen 1995). In chapter 3 the observed alterations in ET 

rates are discussed within the framework of semiclassical Marcus theory and 

attempts are made to correlate changes in the ET function of the M121E mutant 

to other spectroscopic and structural changes at the Cu site. 

Material and methods 

General 

Unless otherwise stated, all chemicals were reagent grade. Restriction 

enzymes and T4 DNA ligase were purchased from a variety of suppliers (New 

England Biolabs, Beverly MA; Boehringer Mannheim, Indianapolis, IN) and used 

according to the manufacturer's instructions. PD10 columns, disposable columns 

prepacked with Sephadex G25, were purchased from Pharmacia Biotech 

(Uppsala, Sweden) and used for most buffer exchanges. Protein concentration 

was done by ultrafiltration using either an Amicon YM10 membrane or a 

Centricon10 spin concentrator (Amicon, Beverly, MA). Oligonucleotide synthesis 

was done at the Caltech polymer synthesis facility. Sequencing was originally 

done manually using a Sequenase Version 2.0 kit from US Biochemical and, later 

in the project, by the Caltech DNA sequencing facility. Protein purifications used 

a Pharmacia FPLC with a MonoQ 10/10 column and protein elution was 

monitored by absorption at 280 nm. Absorption spectra were taken using a 

Hewlett Packard 8452A diode array UV /Vis spectrophotometer. The pET 

expression system (vectors and the E. coli expression strain BL21(DE3)) were 

purchased from Novagen (Madison, WI). 

Inorganic reagents 

Ruthenium(ll) bis-bipyridine carbonate was prepared according to the 

method of Johnson and coworkers Gohnson et al. 1978). 1.01grams of dichloro 

bis(2, 2' bipyridine)ruthenium(II) dihydrate (Strem Chemicals, Inc., 

Newburyport, MA) was refluxed for 25 minutes in 100 ml water under a stream 
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of nitrogen gas. To this hot solution was added 3.3 g sodium carbonate (Na2C03); 

the solution turned a purple/red almost immediately. This solution was refluxed 

for a further two hours, still flushing the flask with nitrogen gas. The solution 

was allowed to cool, then filtered through Whatman No.5 filter paper to collect 

the crystals. UV /Vis absorption spectra show the expected bis(2, 2' 

bipyridine)ruthenium(ll)carbonate product. 

Hexamine ruthenium(III) trichloride, used as an oxidative quencher in 

laser experiments, was purchased from Strem Chemicals, Inc. Before use, it was 

recrystalized by first dissolving 1 g in 15 ml water, then precipitating it by 

addition of excess acetone (75 ml). The solid filtered out of this water I acetone 

mixture was then redissolved in 20-25 ml1 M HCl, filtered, and the solvent and 

acid were removed by rotary evaporation. The spectrum of the purified 

hexamine ruthenium(III) trichloride shows a strong absorbance at 276 nm and a 

greatly reduced shoulder at 322 nm. 

Mutant construction 

Our expression system for wild type azurin is the synthetic gene for 

Pseudomonas aeruginosa azurin constructed by Dr. Thomas K.-Y. Chang (Chang et 

al. 1991) cloned into a T7 promoter expression vector (pET, Novagen, Madison, 

WI) (Germanas et al. 1993). The construct I currently use is cloned into pET9a 

and is a gift from Dr. Jy-Ye Luo. The M121E mutant was constructed using the 

Kunkel method (Kunkel et al. 1991) of mutagenesis (Muta-gene kit from Bio-Rad) 

on a single stranded pTZ18U I azurin template with subsequent subcloning of the 

mutants into the pET9a expression vector; M121E azurin in pET9a was a gift 

from Dr. T. Jack Mizogouchi. The M121E/K122H/H83Q mutant was constructed 

using the Kunkel mutagenesis method (bottom strand mutagenic oligo: 5' CAG 

AGT CAG GGT ACC GTG CTC CAG TGC GGA GTG on a single-stranded 

template, pTZ18U/azurin containing the H83Q mutation, a kind gift from Dr. 

Ralf Langen) and was sub-cloned into pET9a. The M121E/Tl24H/H83Q gene 

was prepared by ligating a BamHI/Kpni fragment containing the M121E 

mutation into a pET3a construct containing the H83Q/T124H azurin described 

by Dr. Ralf Langen (Langen 1995). See appendix B for maps and sequences of 

these constructs. 

Protein production 
The expression vector is transformed into chemically competent 

BL21(DE3) E. coli (Novagen). Single colonies are used to inoculate starter 

cultures of LB (1% tryptone, 0.5% yeast extract, 0.5% NaCl) supplemented with 
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the appropriate antibiotic (50 J..lg/ml ampicillin for pET3a constructs or 50 J..lg/ml 

kanamycin for pET9a constructs). These are grown overnight shaking at 37°C 

and used to inoculate three 3 liter flasks of LB containing antibiotic. Cultures are 

grown to an OD6oo of 0.6-1.0. Protein production is initiated by addition of IPTG 

to a final concentration of 0.4 mM. After 4-8 hours at 37°C, the cells are harvested 

by centrifugation for 10 minutes, 4,000 x g. The cell paste is resuspended in 

1/10th volume of a high osmolarity solution (20% sucrose, 30 mM Tris pH 8.0, 1 

mM EDTA) and shaken for 10-30 minutes. The cells were repelleted (20 minutes, 

8,000 x g) then resuspended in 1/10th volume distilled water and left shaking at 

4°C for 4-12 hours. The cells are then pelleted (20 minutes, 8,000 x g) and the 

periplasmic extrudate is decanted from the cell debris, taking care to minimize 

the amount of lysed cell material carried into the next step. The protein solution 

is made acidic by the addition of sodium acetate to 20-100 mM and the pH 

adjusted to 4.5; this precipitates most of the other periplasmic proteins as well as 

the DNA from lysed cells, leaving mainly azurin in solution. After sitting at room 

temperature for an hour or more, the precipitate is removed by centrifugation (30 

minutes 8,000 x g). The solution is brought to 10 mM CuS04 and left at room 

temperature for up to a week to allow the protein to incorporate Cu. Then the 

protein solution is concentrated by ultrafiltration with an Amicon YM10 

membrane. The protein is generally stored at 4°C in sodium acetate buffer, pH 

4.3-4.5, with 5-10 mM CuS04. Upon storage at concentrations of 1-6 mg/ml, 

protein, mainly azurin, tends to precipitate. 

Protein purification 

For the labeling reactions, the proteins were used without further 

purification. For studies requiring pure holo-azurin, this crude protein 

preparation is purified by FPLC on a MonoQ anion exchange column using 20 

mM diethanolamine, pH 8.8, and eluting with a salt gradient of 0-30 mM NaCl; 

holo-azurin elutes at -20 mM NaCl. The apo-azurin can be made by exhaustive 

washing (concentration and dilution using a Centricon10) with buffer consisting 

of 100 mM thiourea, 10 mM EDTA, 100 mM NaOAc pH 4.5. The ape-protein is 

purified on a MonoS cation exchange column, loading with 25 mM NaOAc, pH 

4.5, 1 mM EDTA and eluting with a gradient of 300 mM NaOAc, pH 4.5, 1 mM 

EDTA; apoM121EAz elutes at 8-9% B. Apo-azurin may also be purified with a 

MonoQ anion exchange column, loading with 20 mM diethanolamine, pH 8.8, 

and eluting in the same buffer containing 200 mM NaCl; apo-azurin elutes at 

-17% B. 
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Ruthenation and purification - M121EIK122H/H83Q azurin 

Approximately 100 mg of crude azurin (quantitated using an E=3000 M-1 

cm-1 for the 610 nm band) is washed by repeated concentration and dilution to 

remove the excess CuS04 in which the protein is usually stored. Then, again by 

repeated concentration and dilution, the protein is exchanged into fresh 300 mM 

NaHC03, pH 7.3. Ru(bpy)2C03 · 4 HzO is added to a final azurin:Ru ratio of 

20mg:1mg (3:4 azurin:Ru molar ratio). The total volume of the reaction is 

adjusted to give final protein concentration of approximately 3 mg/ml and the 

reaction is left at room temp in the dark overnight (generally 12-16 hours) . To 

check extent of the reaction, a small amount is exchanged into 25 mM NaOAc pH 

4.5, using a PD10 column; the ruthenated azurin migrates as a forest green band, 

while the excess inorganic Ru migrates as a slower-moving red band. Initially 

there is a broad symmetric absorption near 465 nm which gradually shifts 

toward 486 nm, becoming sharper and less symmetric, leaning toward the red. 

The reaction is stopped when the inorganic Ru is consumed or when the Ru 

absorption band has shifted to 486 nm. The ratio of the extinction coefficients of 

the Ru2+ 486 nm band and M121E azurin Cu2+ band near 600 nm is ::::: 3. 

The 'mono-aquo' species azurinHis122Ru(bpy)z(H20) is concentrated and 

exchanged into 300 mM imidazole, pH 8.0. The imidazole reaction is again 

monitored by exchanging small aliquots into 25 mM NaOAc pH 4.5 using a PD10 

column. Again one generally sees a trailing band of inorganic Ru on the PD10 

column, indicating that some non-specifically bound Ru dissociates from the 

protein. As the reaction progresses the visible spectrum shows a shoulder 

growing in near 440 nm. One also generally sees an increase in the Ru:Az 

486/600 ratio, perhaps indicating Cu2+ loss due to imidazole chelation. After 3-6 

days, there are generally no further changes in the spectrum. 

The ruthenium modified azurin is purified by two successive FPLC 

separations using a Mono Q 10/10 column. The protein is loaded with 20 mM 

ethanolamine, pH 9.2, and eluted with 20 mM ethanolamine, pH 9.2, containing 

200 mM NaCl. The first separation uses a linear gradient from 0-30% buffer B. 

The constellation of peaks eluting between 0 and 10% B are thought to be 

multiply ruthenated azurins because the ratios of their 486 to 600 nm bands are 

greater than 3. The next fraction, the largest of the peaks (at -14% B), is 

Ru(bpy)2ImHis122Az. This is followed by the unmodified azurin (which still 

contains Cu2+) and then another peak with a spectrum nearly identical to the 

main peak (as yet unidentified). The pooled main peak is re-chromatographed 
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using the same column and buffers but with a much shallower gradient, 10-12% 

B. Typical elution profiles are shown in figure 4. Pooled main peak fractions are 

stored at 4°C in 25 mM NaOAc, pH 4.5, with or without addition of excess 

CuS04 ( -5 mM). Typical yields of Ru(bpy)zlmHis122Az are around 60%. 

Ruthenation and purification - M121E(H83) azurin 

The protein is exchanged into 300 mM NaHC03 buffer, pH 7.40, using a 

Centricon10. The extinction coefficient of a stock solution of Ru(bpy)zC03 · 4H20 

in 300 mM NaHC03 (Esw = 9,200 M-1cm-l) is used to calculate the amount needed 

to achieve a 1:1 or 1:2 molar ratio of azurin:Ru. The final protein concentration is 

adjusted to 3 mg/ml and the reaction is allowed to proceed for 12 hours at room 

temperature in the dark. The protein is exchanged into 300 mM imidazole, pH 

8.0, and left at room temperature in the dark for 1-3 days. 

Two rounds of FPLC purification are performed using a MonoQ 10/10 

column, loading in a buffer of 20 mM ethanolamine, pH 9.4, and eluting with a 

buffer containing 20 mM ethanolamine, pH 9.4, and 200 mM NaCl (see figure 5). 

For the initial purification, a gradient of 0-20% buffer B was used. 

M121EH83Ru(bpyhlm elutes as the main peak at -5% B. For the second round of 

purification, the sample is again loaded onto the column in 20 mM ethanolamine, 

pH 9.4, and washed with buffer A for 1/2 column volume before initiating a 

gradient of 0-10% buffer B. Sodium borate buffers (20 mM, pH 9.6) have also 

been used to purify M121EH83Ru(bpy)zlm. At this pH, the protein interacts 

more strongly with the column and elutes with -30 mM NaCl. 

Laser sample preparation 

For photoinduced electron transfer experiments, purified protein was 

exchanged into either 100 mM sodium phosphate, pH 8.1, or 25 mM sodium 

acetate, pH 4.3, using a PD10 column. 1-2 ml samples with protein concentrations 

ranging between 30 and 115 !J.M were placed in a 1 em path-length laser cuvette 

and degassed by repeated cycles of vacuum pumping and flushing with N2 gas. 

Luminescence and absorption transients were taken using the Beckman Institute 

Laser Research Center (BILRC) nanosecond dye laser, exciting with 25 

nanosecond, 1.5 mJ pulses of 480 nm light. Luminescence decay was monitored 
at 670 nm. Transient species were monitored at 600 (Cul+/2+), 430 (Ru3+/2+), 500 

and 310 (Ru2+/3+ and Ru2+*/2+) nm. The BILRC laser and transient absorption 

detection apparatus have been described previously (Wuttke 1994). 

For flash/ quench laser experiments, initial data were taken using a 

scheme allowing in situ reduction of oxidized azurin. Laser samples were 
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prepared using the photoinduced methodology above except that during the 

sample preparation, 1/10th volume of 60 mM [Ru(NH3)6]3+ in the appropriate 

buffer was placed in the other side of a two chambered laser cuvette - along with 

enough sodium ascorbate to be in 1-3 fold molar excess over the protein when 

the contents of the two chambers were mixed together. The sample was degassed 

and photoinduced laser data was taken. A UV /Vis spectrum of the sample 

verified that the photoinduced laser experiment did not degrade the labeled 

protein sample. The ascorbate and quencher were then mixed into the protein 

sample and reduction of the Cu center was verified by UV /Vis spectroscopy. 

Luminescence decay and transient absorption data were then taken in the same 

manner as the photoinduced data was taken. In samples containing only a 1:1 

molar ratio of ascorbate to protein (which is a 2 fold excess of electrons), the 

spectra indicated that the initial protein reduction was not complete. In the 

electron transfer data taken on in situ reduced samples, absorption transients did 

not return to baseline, even on time scales 10 times longer that than those 

required for the decay of the initial signal. In addition, the rate of the slower 

reoxidation of Ru2+ depended on the ascorbate concentration- higher ascorbate 

leading to faster bimolecular reoxidation. 

To remove the effects of ascorbate, in later experiments purified protein 

was reduced with a large excess of sodium dithionite then immediately loaded 

on a PD10 column. The column served both to remove the excess dithionite and 

to exchange the protein into the desired phosphate or acetate buffer. Sample was 

loaded into the cuvette side of a 2 chambered laser cuvette. One volume of 12 

mM [Ru(NH3)6]3+ in the appropriate buffer (or 1/10th volume of 60 mM 

[Ru(NH3)6]3+) was placed in the other side and the sample degassed. 

Luminescence decay measurements were taken on the reduced sample alone 

then the quencher was mixed in and luminescence decay and transient 

absorption data were taken. Initially samples were prepared on the lab bench 

and degassed with normal N 2 gas. The M121E Cul+ center appears to be very 

susceptible to reoxidation (see below) so in the final experiments for this thesis, 

flash/ quench samples were prepared in a glove box under a nitrogen 

atmosphere and degassed using repeated cycles of vacuum pumping and 

flushing with N 2 gas passed over a manganese-based oxygen-scrubbing catalyst 

to remove any residual impurities. 



44 
Results and discussion 

Oxygen lability of reduced M121E azurin 

In flash/ quench experiments using samples prepared on the lab bench, 

absorption signals did not return to baseline, even on time scales lOx the rate of 

the initial decay (see figure 7£). This was believed to indicate heterogeneity in the 

sample, either lack of copper occupancy (with possible Zn contamination of the 

sample (Nar et al. 1992)) or reoxidation of the Cu center, which prevents electron 

transfer to the quenched ruthenium label. At the concentrations used, the 

[Ru(NH3)6]3+ quencher will oxidize less than 1% of the reduced protein. 

Experiments described below indicated that the M121E mutant copper site was 

far more susceptible to reoxidation in air than the wild type center. 

UV /Vis spectra taken after shooting WT azurin did not show signs of 

steady-state reoxidation of the copper center during the course of flash/ quench 

laser experiments. However, spectra taken after flash/ quench experiments with 

the M121E mutant showed some signs of reoxidation of the Cu site. The 600 nm 

Cu2+ absorption seen at low pH increased with time even after shooting ceased. 

This raised the possibility that the absorption transients not returning to baseline 

was due to reoxidation of the Cu1+ center but in amounts that were hard to detect 

by steady state spectroscopy. The extinction coefficient of the 610 nm Cu2+ band2 

is about 3000 M-1cm-1, while the 486 Ru2+ band, which has a considerable tail to 

lower wavelengths, has an extinction coefficient of 9,200 M-1cm-1 (Regan et al. 

1995). In high pH experiments, no immediate information is available on the 

reoxidation of the sample because at pH 8.1 the copper peaks at 413 and 570 nm 

are obscured by the tails of the much larger Ru(bpyhlmHis absorption. 

Steady state reoxidation rates were studied using unlabeled WT and 

labeled and unlabeled M121E azurin. Samples were prepared by reduction with 

excess dithionite which was then removed using a PDlO column. When the 

experiment was done on the lab bench, extensive reoxidation, up to 61% of the 

M121E sample, was seen on the time that it takes to run the PDlO column, 

transfer the sample to the laser cuvette, and degas (10-15 minutes). Minimal 

reoxidation of the WT protein (14%) was seen on this time scale. Once degassed, 

the M121E does not reoxidize further; data for an experiment using 

M121E/H83Q/Kl22H Ru(bpy)2(1m) is shown in figure 2.6. The reoxidation of 

the M121E Cu1+ center while on the PDlO column indicates that, while the 

2cNK unpublished observations. From the integration of the EPR signal, Karlsson and coworkers 
report E = 4,500 M-1cm-1 at 614 nm, pH 3.5 (Karlsson et al. 1997). 
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reduction potential of the M121E mutant at pH 4 is substantially the same as that 

of the WT protein (0.37 vs. 0.35 mV (Pascher et al. 1993)), the center is far more 

kinetically labile and so is susceptible to attack by atmospheric 0 2. Preparation of 

laser samples in a glove box with a N2 atmosphere solved the problem of long

lived Ru2+(bpy)21mHis signals and the 02 lability of the M121E Cu2+ center was 
not explored further. 

Electron transfer rates 

The first step in the photoinduced electron transfer scheme is injection of 

the excited electron from the Ru2+*(bpyhlm label into the oxidized blue copper 

site. The estimated driving force for this reaction is -1.39 eV at pH 4.0 (see chapter 

3). With this relatively strong driving force, electron transfer is able to compete 

effectively with other relaxation processes when the electron acceptor is close to 

the label. Thus for labels placed at position 122 (metal to metal distance of 15.9A) 

and at the native His83 (metal to metal distance of 16.9A (Faham et al. 1998)), 

considerable photoinduced electron injection occurs. The initial injection rate in 

these experiments was not measured but it could be determined from the change 

in emission lifetime between the Zn2+ and Cu2+ proteins if the quantum yield for 

the reaction were measured. The absorbance transients that can be monitored on 

the time scale of our instrument are for the second step of the photoinduced 

electron transfer - the back electron transfer from the transiently reduced Cu 

center to the Ru3·t label. 

Photoinduced electron transfer experiments performed at low pH (25 mM 

NaOAc, pH 4.3) show good absorbance transients when the label was placed at 

position 122 and 83. At high pH (pH 8.1), no rate associated with electron 

transfer can be seen in photoinduced experiments with either of the labeled 

proteins. Absorption transients at all observed wavelengths for both the H83 and 

H122 samples decay with the same rate, 2 x107 s-1. The driving force for electron 

injection is lower at high pH but it is still considerably exothermic, -1.20 eV. The 

major difference between the high and low pH experiments is the major CT 

absorption band is considerably blue shifted at high pH. This has a major impact 

on the ability of energy transfer to compete with electron transfer and 

fluorescence as a means of relaxing the Ru2+ excited state. Energy transfer is 

promoted by close contact and good spectral overlap between the donor and 

acceptor states. In the oxidized protein at low pH, the absorption spectra of the 

Cu center and Ru(bpyhlm label overlap somewhat (see figure 8). At high pH, 
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this overlap is further enhanced by the shift of the azurin LMCT band from 610 

to 570 run. 

While we do not have enough information to calculate the individual 

contributions of energy transfer, forward electron transfer, radiative and non

radiative decay, some idea of the magnitude of the energy transfer reaction can 

be obtained by comparing the emission rates of the Ru2+* in different 

experiments. The observed emissions rate is the sum of all processes that lead to 

the decay of the Ru(bpyhlmHis excited state (Connors 1990). When the 

photoinduced experiment is done using the reduced Cul+ azurin, the protein's 

metal center is dlO so there is no acceptor state for the excited electron. In 

addition the site is colorless so there is no spectral overlap to facilitate energy 

transfer. The decay of the Ru2+ excited state ('t = 111(7) or 105(9) ns at positions 83 

and 122 respectively) is thus only due to fluorescence and non-radiative 

relaxation processes. The excited-state lifetimes of the oxidized proteins are all 

much shorter than this. At high pH, where no photoinduced electron transfer 

could be seen, the Ru2+* lifetimes are 76(6) and 50(7) ns for positions 83 and 122 

respectively. At low pH, where the Ru2+* excited state is quenched by both 

energy and electron transfer, the lifetimes are shorter still, 't = 65(10) and 37(11) 

ns for positions 83 and 122. 

Electron transfer rates for each protein at high and low pH are given in the 

table in figure 9. Confirmatory photoinduced rates are included where available. 

All of the electron transfer rates from the M121E Cu center are much slower than 

their WT counterparts. In addition, contrary to expectations we do not see a 

consistent increase in rate with increasing pH; ET to position 83 is faster at high 

pH but the 122 rate decreases with increasing pH. The interpretation of these 

rates will be taken up in chapter 3. In all cases, the rates observed were 

independent of protein concentration. 
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Figure 2.1 Photoinduced electron transfer scheme. 
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Photoinduced Electron Transfer Scheme 

fiv 
AzCu2+- Ru2+ --------t~~ AzCu2+- Ru2+* 

AzCu 1+- Ru3+ 
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Figure 2.2 Difference spectra for the Ru2+*-Ru2+ excited state and the Ru3+-Ru2+ 

ground state couples of the model complex Ru(bpy)2Im2. The difference spectra 

were taken by Morten Bjerrum and described in (Sigfridsson et al. 1996). 
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Figure 2.3 Flash/ quench electron transfer scheme. 
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Flash/QuenchElectron Transfer Scheme 

fz.v 
AzCul+- Ru2+ AzCul+- Ru2+* 

AzCul+- Ru2+ 
AzCu 1+- Ru3+ 
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Figure 2.4 FPLC purification of M121E/K122H Ru(bpyhlm azurin.Mono Q 

10/10 Buffer A: 20 mM ethanolamine, pH 9.2 Buffer B: 20 mM ethanolamine, pH 

9.2 with 200 mM NaCl. (a) Early peaks are multiply ruthenated protein. The main 

peak, eluting at 14% B, is the desired M121E/K122H Ru(bpyhlm azurin. The 

peak at 20% B is ruthenated but lacks the type I Cu center. And the peak at 23% B 

is unmodified azurin. (b) The main peak from (a) rerun with a shallower 

gradient. 
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Figure 2.5 FPLC purification of M121E/H83 Ru(bpy)21m azurin.Mono Q 10/10 

Buffer A: 20 mM ethanolamine, pH 9.4 Buffer B: 20 mM ethanolamine, pH 9.4 

with 200 mM NaCl. (a) The early peak is multiply ruthenated protein. The main 

peak, eluting at 6% B, is the desired M121E/H83 Ru(bpy)21m azurin. (b) The 

main peak from (a) rerun with a shallower gradient; multiply ruthenated protein 

elutes early, at 0% B. 
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Figure 2.6 Reoxidation experiment using with Ru(bpy)zlm-labeled 

H83Q/Ml21E/Kl22H azurin. The first data point gives the A486/ A600 ratio of 

the protein sample before reduction. Time zero is the reduced sample before it is 

introduced into the laser cuvette. The first time point for the sample with 

quencher (6 mM [Ru(NH3)6]) is immediately after degassing and mixing with the 

quencher. The final data point on each curve is the sample after removal from the 

laser cuvette and reoxidation using excess K3Fe(CN)6. 
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Figure 2.7 Laser data: (a-c) Photoinduced ET monitored at 430 nm. At pH 4.3, we 

can see the Ru3+ signal disappear as the electron is transferred back out of the 

transiently reduced Cu center ((a) M121E/H83Ru(bpy)zlm (c) 

M121E/H83Q/K122HRu(bpy)zlm. At pH 8.0, although plenty of Ru2+* excited 

state is seen at other wavelengths, no Ru3+ is made ((b) M121E/H83Ru(bpy)zlm). 

(d-f) ET measured using the flash/quench technique with 6 mM [Ru(NH3)6] 

quencher. Data taken at pH 4.3 with reduced M121E/H83Ru(bpy)zlm show that 

monitoring at characteristic Cu (590 nm (d)) and Ru wavelengths (430 nm (e)) 

give the same rate. (f) Data taken with samples prepared on the bench top show 

evidence of reoxidation. Data taken at high pH on reduced 

M121E/H83Q/K122HRu(bpy)zlm show rapid electron transfer but only about 

1/3 of the sample is still reduced and so able to undergo intramolecular ET to the 

Ru3+ label. 
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Figure 2.8 Overlaid absorption spectra of the Ru(bpyhlm label and M121E azurin 

at pH 4.5 and 8.0 showing the shift of the Cu LMCT up to wavelengths where the 

Ru label absorbs strongly. 
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Figure 2.9 Electron transfer rates for intramolecular electron transfer from 

ruthenium labels at positions 83 and 122 to the WT and M121E azurin Cu sites. 

ET rates to the M121E center could not be determined with the photoinduced 

methodology at pH 8.0; see text for interpretation. 
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ELECTRON TRANSFER RATES 

Wild Type M121E 

Acceptor site pH7.0 pH4.3 

H83 FQ 1.2(1) x 106 s-1 (a) 3.9(2) x 105 s-1 

PI 4.4(5) x 105 s-1 

122H FQ 7.1(4) x 106 s-1 (b) 1.9(2) x 106 s-1 

PI 1.9(4) x 106 s-1 

E. (vs. NHE) 326 mV (a) 350 mV (c) 
-~c· (est.) 756mV 712mV 

FQ = rates determined by the flash/ quench technique 
PI= rates determined by the photoinduced technique 

a. (Di Bilio et al. 1997) 
b. (Langen et al. 1995) 
c. (Karlsson et al. 1997) 

pH8.1 

5.2(6) x 105 s-1 

1.3(1) x 106 s-1 

184 mV (c) 

898mV 
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Marcus-type analysis of ET rates 

The Marcus theory of electron transfer has proven to be remarkably 

successful in explaining the important factors that determine ET rates in a variety 

of situations, from ET between small inorganic complexes in solution to ET 

within large biological complexes like the photosynthetic reaction center (Marcus 

and Sutin 1985). The semiclassical formulation of the original rate equation is an 

appropriate level of analysis for most biological systems: 

kET = 

In this formulation the solvent is treated classically and the electronic coupling is 

treated as a quantum phenomenon. Independent measurement of all of the 

factors affecting the electron transfer rate, T, ~Go, HAs, and A, is difficult. 

However, inferences about less directly accessible variables such as HAB or A can 

be made by spectroscopic measurements or by examination of ET rates for a 

series of DA systems where either of the more manipulable variables, Tor ~G0, is 

systematically varied. 

In this chapter I will discuss the electron transfer rates reported in the 

previous chapter within the context of the semiclassical Marcus equation in an 

effort to determine how the substitution of a glutamic acid residue for the normal 

methionine ligand affects the functioning of the blue copper site. 

Driving force 
The free energy change for any chemical reaction is the difference in the 

energy of the products and the reactants. For electron transfer reactions this can 

be broken into the work it takes to bring the donor and acceptor together and the 

difference between the reduction potentials of the acceptor and donor. Since we 

are concerned here only with intramolecular electron transfer reactions, we can 

neglect the work term. For the flash-quench experiment and the back electron 

transfer in the photoinduced experiment, the Ru(bpyhimHis3+ label is the 

electron acceptor. The reduction potential for the 3+/2+ couple for a Ru(bpy)2Im2 

model complex has been measured to be 0.98 eV (Casimiro et al. 1993). The 

reduction potential of the complex bound to a protein changes very little. The 
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reduction potential of Ru(bpy)21m bound to H33 of cyt c has been directly 

measured to be 1.07 eV (Mines et al. 1996). The reduction potential of the 

complex bound to H83 of azurin is 1.082 V (Di Bilio et al. 1997). For the forward 

reaction in our photoinduced electron transfer scheme, the electron donor is the 

excited state of Ru(bpy)21mHis2+*. This complex is a good electron donor and its 

reduction potential, estimated from difference between the energy of the excited 

state emission of the Ru2+ complex and the reduction potential of 

Ru(bpy)21mz3+/2+, is calculated to be -1.03 eV (Mines et al. 1996). (See figure 1.) 

The reduction potentials of azurin and mutant forms thereof can be 

measured by spectroelectrochemistry (Taniguchi et al. 1980). The reduction 

potentials of type 1 copper proteins are all higher than the 115-150 m V potential 

of most inorganic Cu2+/l+ complexes (Canters and Gilardi 1993). This, and more 

particularly, the large variation in reduction potentials of blue Cu proteins with 

very similar spectroscopic properties (184 m V for stellacyanin to 780 m V for 

fungallaccase (Taniguchi et al. 1982)) has been the subject of much discussion in 

the bioinorganic literature (Gray and Malmstrom 1983; St. Clair et al. 1992; 

Pascher et al. 1993). In most blue copper proteins, the Cu ion is buried under the 

surface of the protein in a fairly rigid, hydrophobic site. The enthalpy of 

reduction for the blue copper proteins is favorable (~Ho = -16.6 kcal/mol for WT 

P. aeruginosa azurin), probably because the reduced protein has an electrically 

neutral Cu site buried in the hydrophobic interior (Cul+ neutralized by the 

cysteine thiolate). The reaction entropies for reduction of blue copper proteins, 

however, are all negative (unfavorable), indicating an increase in order around 

the reduced copper protein (Taniguchi et al. 1982). 

The reduction potential of WT azurin has also been observed to have a 

moderate pH dependence. Between pH 8.0 and 5.0, the potential increases from 

292 m V to 349 m V (St. Clair et al. 1992). Formerly, this increase had been 

attributed to structural rearrangements that accompany the protonation of H35. 

Crystal structures of the oxidized protein at pH 5.5 and 9.0 show that protonation 

of H35 leads to formation of a strong hydrogen bond to the P36 carbonyl oxygen 

causing a change in the conformation of the peptide bond between P36 and G37 

(Nar et al. 1991). This peptide bond flip causes changes in the adjoining loop 

regions but only very small changes in copper center, thus there is no pH

dependence in the spectroscopic properties of the wild type protein. The 60 m V 

increase in the WT reduction potential at low pH is consistent with an additional 
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positive charge in the vicinity of the Cu site favoring the Cu1+ oxidation state. 

However, the H35K mutant shows very little change in reduction potential 

compared to wild type and the pH dependence of the potential remains nearly 

the same, effectively ruling out H35 protonation as the source of the pH 

dependence of the WT azurin reduction potential (Pascher et al. 1993). 

Changes in the ligand residues of P. aeruginosa azurin have been made 

using site directed mutagenesis. Surprisingly, changes can be made in all four 

side-chain ligands while still retaining the ability to bind copper. Although the 

blue color of the site is abolished, the C112D mutant binds copper and its 

reduction is reversible. The site's reduction potential is estimated from redox 

titration with cytochrome css1 to be -180 mV (Mizogouchi 1996).1 Glycine 

substitutions have been made for both histidine ligands and the sites can be 

converted to spectroscopically normal type 1 centers by adding imidazole 

ligands. However reduction of H117G, H46G, and all of their substituted 

derivatives is irreversible. This inability to reoxidize the H-X-G mutants is not 

due to chemical modification of the protein since one can remove the Cu1+ from 

H46G and reconstitute the protein with Cu2+. It may be due to an increased 

reduction potential because a three-coordinate site stabilizes the Cu1+ form 

relative to the Cu2+ form (van Pouderoyen et al. 1996). Reduction of a His46 

mutant containing a covalently attached ligand (His46Asp) is reversible, 

although its potential is somewhat lower than WT, in line with the increased 

polarity at the Cu site (Germanas et al. 1993). 

Proteins containing all 20 natural amino acids at position 121 have been 

isolated (Chang et al. 1991; Karlsson et al. 1991). Many show very little change 

from the WT reduction potential. The changes observed correlate with the 

polarity of the site. Deleting the entire last ~-strand in the M121End mutant 

increases the solvent accessibility of the site and drops the reduction potential to 

205 mV. When the uncharged but polar methionine is changed to a non-polar 

leucine residue, the reduction potential at pH 7.0 is increased by 138 mV to 448 

mV (Pascher et al. 1993). The reduction potential of one of the M121 mutants, 

M121E, shows an interesting pH dependence. At low pH it is rather similar to 

WT (370 mV at pH 4.0) but decreases dramatically with increasing pH, going to 

1 Cys112Asp will transfer electrons into and out of the copper site via the hydrophobic patch 
('self-exchange' rates with WT azurin have been measured by stopped-flow: k22 == 20 M-1 s-1, kn 
for WT azurin = 105 M-1 s-1) though ET to sites on the ~strands seems to be severely impaired. 
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184 mV at pH 8.0. This, along with the changes in the optical and EPR spectra 

seen with this mutant, have been taken as evidence of changes in Cu 

coordination. When the axial glutamic acid ligand is deprotonated, it is 

presumed to bind the Cu, altering the spectroscopy of the site and decreasing the 

reduction potential by favoring the Cu2+ state (Karlsson et al. 1997). 

Taking the difference between their reduction potentials, one can calculate 

the driving force (-~G0 ) for electron transfer from the reduced M121E Cu center 

to the oxidized Ru label: 0.71 eV at low pH, 0.90 eV at high pH. The driving force 

for ET from the WT center (at pH 7.0) is 0.76 eV. Despite these 50-140 mV 

changes in driving force, calculations predict very little change in the electron 

transfer rates. (See figure 2.) If there are no changes to other ET parameters, one 

would expect the rates from M121E to H83 to be essentially the same as those 

from the wild type center. For the more closely coupled acceptor at H122, one 

would expect to see a small decrease in the M121E rates because their driving 

forces are not quite as close to the measured A (0.80 eV (Di Bilio et al. 1997)) as the 

WT driving force. 

Our results are not consistent with these expectations. The M121E ET rates 

are much lower than predicted rates. Clearly the naive assumption that only the 

driving force changes is incorrect. This implies that either the electronic coupling 

or the reorganization energy is different in the M121E azu:-in mutant. 

Electronic coupling 

As discussed in the introduction, the original motivation for this project 

was to determine if the spectroscopic changes seen in the M121E mutant at high 

pH would translate into increased electronic coupling between the copper center 

and labels placed on the 121-126 ~-strand. An X-ray structure of the M121E 

mutant in the low pH form shows a closer interaction between the Cu2+ ion and 

the 0 of the glutamic acid ligand: a Cu-0 bond distance of 2.21 A, as compared 

to 3.15 A for the Cu-S interaction in the WT center (Karlsson et al. 1997). (See 

figure 3.) But at low pH the M121E site is a fairly typical type I blue site - both 

spectroscopically and in terms of its reduction potential. Thus, one might expect 

the electron transfer rates from the M121E center to be about the same as those 

from the WT center. 
At high pH, the deprotonated glutamic acid side chain interacts more 

strongly with the Cu ion. Evidence for this increased interaction includes an 
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additional coordinating oxygen seen in the EXAFS (Strange et al. 1996), shifts to 

higher energies of the LMCT bands in the M121E Ni2+, Co2+, and Cu2+ 

derivatives (Di Bilio et al. 1992), and increased rhombicity in the EPR spectrum at 

high pH (Karlsson et al. 1997). This increased metal-ligand interaction upon 

deprotonation would be expected to increase the electronic coupling (HAs) into 

the Cu site, leading to higher electron transfer rates at high pH. 

The observed ET rates for the M121E mutant do not conform to these 

initial expectations about changes in electronic coupling. All of the rates are 

lower than expected and while the M121E/H83 ET rates increase slightly with 

increasing pH, the M121E/K122H ET rate decreases at high pH - in direct 

contradiction to expectation if the electronic coupling through the new glutamic 

acid ligand increases. 

Recent work has shown that changes in ligand residues that have very 

small effects on the spectroscopy of a blue Cu site can have dramatic effects on 

the electron transfer properties of the mutant (Regan et al. 1998). Changes in the 

paramagnetic NMR shifts of ligand protons indicate that the H46D mutation 

induces an increase in the interaction of the Cu with the axial methionine, 

accompanied by a decrease in its interaction with the CysS (Vila et al. 1997). This 

is seen as a subtle change in the spectroscopy of the site; the H46D azurin has a 

-600 nm band that is slightly blue shifted and has a lower extinction coefficient 

than the WT LMCT. However, this small decrease in coupling between the Cu 

and its cysteine ligand leads to a dramatic decrease in the ET rate from the 

mutant site (a 36 fold drop from 1.2 x 106 to 3.2 x 104 s-1 ). 

The low pH spectrum of M121E shows an analogous blue shift and 

decrease in extinction coefficient of the LMCT band (Karlsson et al. 1997) and the 

ET rates are also significantly lower than wild type but they are only 2-6 fold 

lower, as opposed to 36 fold lower in the H46D mutant. And, more importantly, 
the decrease in rate does not correlate with the extent of change in the site's 

LMCT band. The low pH rate to H83 decreases more than the high pH rate but 

the converse is true for ET to labels at H122. So, while the M121E substitution 

may have some effect on the electronic couplings in the Cu site, either by 

changing the coupling through the axial ligand into the 13-strand, or indirectly 

through its effects on the Cu-Cys bond, this does not seem to supply an 

internally consistent explanation for the rate changes seen. 
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Reorganization energy 

All the rates reported here were taken at 298 K, so the other variable in the 

Marcus equation is the reorganization energy. According to the Marcus cross 

relation, the reorganization energy of a reaction is the average of the 

reorganization energies of the two components: 

'I ('An + 'A22) 
J\,12 = 2 

These reorganization energies can be broken down further into inner and outer 

sphere components: 

A=Aj+Ao 
The inner sphere reorganization component is the energy required to alter bond 

distances and bond angles that change with the change in oxidation state. The 

outer sphere reorganization is the energy required for reorientation of the solvent 

around the changed complexes. 

In blue copper proteins, the electron transfer reorganization energies are 

kept low by the small changes in ligand coordination (low Ai) and minimal 

solvent reorganization (small A0 ) because the metal centers are separated from 

bulk solvent, buried beneath the hydrophobic patch at the 'northern end of the 

molecule. X-ray structures of oxidized and reduced WT Alcaligenes denitrificans 

azurin show small increases (0.05 - 0.1 A) in all Cu-ligand bond lengths upon 

reduction, commensurate with the increase in radius of the Cu1+ ion; the copper 

atom is not displaced from the HisHisCys plane (Shepard et al. 1990). X-ray data 

are not available for reduced P. aeruginosa azurin but EXAFS data show similarly 

small changes in bond distances- with the possible exception of an increase in 

the MetS-Cu distance in the oxidized protein (Murphy et al. 1993).2 In addition, 

Loppnow and coworkers have studied the inner sphere reorganization energy of 

the WT azurin charge transfer interaction by analyzing the absolute cross section 

of the resonance Raman spectra (Webb et al. 1997). Using this technique they 

were able to estimate the relative contributions to the relaxation of the excited CT 

state of population decay (relaxation into lower lying CT and LF states of the 

2This result is, however, somewhat ambiguous since the Cu-S interaction that is fairly clearly 
seen at 2.7 A in the reduced protein is not needed to fit the X-ray scattering of the oxidized 
protein at high pH and a sulfur included at 3.45 A only slightly improves the fit of the low pH 
data. This may be due to increased mobility of the MetS ligand in the oxidized protein or, more 
plausibly, to increased distance bringing it into a shell where C back scattering destructively 
interferes with the S back scattering signal. 
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protein), specific vibrational modes, and solvent-like dissipation of energy. 

Adding up the mode-specific reorganization energies (A. for each RR band), they 

obtain 0.26 eV for the reorganization energy due to specific vibrational 

displacements. From the homogeneous line widths they further estimate that the 

rest of the protein provides 0.12 eV of 'solvent-like' reorganization energy. Their 

estimate of 0.38 eV for the total inner sphere reorganization during charge 

transfer further supports a low value of Ainner for the electron transfer reactions of 

WT azurin. 

Recently, Di Bilio measured the reorganization energy of the azurin WT 

Cu center (Di Bilio et al. 1997). By analyzing the driving force and temperature 

dependences of ET rates for a series of azurins modified at H83 with Ru and Os 

compounds, he obtained a A. for the ET between the Cu center and the 

Ru(bpy)2Im label of 0.80 eV. Taking a reorganization energy of 0.78 eV for the 

Ru(bpy)2Im label (estimated from ET studies with labeled cyt c), the 

reorganization energy of the blue copper center is 0.82 eV. Farver and Pecht have 

estimated the reorganization energy of ET from the disulfide bond at the 

'southern' end of azurin to the Cu center to be 1.03 eV (Farver and Pecht 1997). 

This does not give us an independent measure of the reorganization energy of 

the Cu site alone because reorganization energy of the disulfide bond is not 

known. However, given the substantial bond length change for the disulfide 

radical, the S-S reorganization energy would be expected to be substantial, so 

0.82 eV for the Cu center is in reasonable agreement with their expectations. 

While direct determination of reorganization energies requires either a 

driving force or temperature dependence study, estimates for the reorganization 

energies of the M121E site can be made by assuming that the electronic coupling 

remains constant and calculating the reorganization rates from the ratio of two 

electron transfer rates. 

Calculations comparing WT ET data from the 122 and 83 sites with M121E 

data give consistent reaction reorganization energies for each pH, 1.08 eV at low 

pH and 1.27 eV at high pH. Using the reorganization energy for Ru(bpyhlm, An 
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= 0.78 eV, and the Marcus cross relation, A-12 = (A.11 + A-22)/2, calculations predict 

reorganization energies of 1.38 eV at low pH and 1.76 eV at high pH for the 

M121E Cu site. The assumption that there is no change in electronic coupling 

through the cysteine S-Cu bond is naive so these calculated reorganization 

energies represent an upper limit for the changes in the M121E Cu site. 

Increased reorganization energies make sense if one examines the 

structure of the Cu site. The reorganization energy of the WT Cu center is low 

(A.22 = 0.82 eV) because the Cu ion in either oxidation state is protected from the 

surrounding aqueous medium. The crystal structure of the WT center shows that 

the Met ligand blocks access of the solvent to the Cu ion but is only weakly 

coordinated (Cu-S distance 3.15 A (Nar et al. 1991)). A crystal structure of the 

M121E mutant shows that, even in the protonated form,3 the glutamic acid 

ligand is well coordinated (Cu-0 bond distance 2.2 A (Karlsson et al. 1997)). In 

addition the M121E site is more polar, even when the glutamic acid residue is 

protonated. This leads to a more variable interaction with the Cu ion in its two 

oxidation states and a higher reorganization energy for the electron transfer 

reaction. At high pH, the glutamic acid residue is deprotonated becoming not 

only polar but negatively charged. This negative charge would be predicted to 

increase both the degree of inner sphere reorganization and the reorganization of 

the solvent around the site during oxidation. 

Corroboration for increased mobility of the Cu site in the M121E mutant 

comes from perturbed angular correlation (PAC) studies (Danielsen et al. 1995) . 

Data from several cadmium-substituted M121 azurin mutants show that the 

mutant Cu sites are less rigid than the WT site. Several of the mutants (Ala, Leu, 

and Glu) required two different nuclear quadrapole interactions (NQI) to model 

the site effectively. With the Ala and Leu mutants, one NQI is three coordinate 

(Cys, His, His) like the WT center while the other could best be described as four 

coordinate with an additional water molecule in the site. The data from the 

M121E mutant could not be modeled starting from the WT structure. However, 

one of the NQI's is modeled well starting from the crystal structure of the M121E 

mutant where the Cu is seen to be coordinated by C112, H46, H117, and one of 

the E121 oxygens. The other NQI may represent the site with E121 coordinated in 

3 As inferred by characteristic resonance Raman stretching frequencies . 
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a bidentate fashion . A further indication of decreased rigidity in the M121 

mutant sites is an increase in the linewidths of the PAC spectra. 

Conclusions 

In summary, despite clear spectroscopic indications of increased ligand

metal interaction in the high pH form of the M121E mutant of azurin, this does 

not translate into increased electronic coupling to donors placed on ~-strand 

leading away from that ligand. Our efforts to increase electron transfer rates 

through that section of the protein by the electronic coupling between the donor 

(the azurin Cu atom) and the bridge (the intervening protein) were thwarted by 

the simultaneous alteration of the nuclear factors, in particular a dramatic 

increase in the reorganization energy of the mutant Cu site. This gives a possible 

explanation for the puzzle of the almost absolute conservation of the methionine 

ligand in blue copper proteins despite the near normal stability and spectroscopy 

of substitutions at that ligand position. Methionine is a fairly large, polarizable 

but not very polar group; these properties help it exclude water from the Cu site 

while interacting minimally with the Cu ion. This is important in helping to tune 

the reduction potential of the site and, more importantly, in minimizing the 

reorganization energy during electron transfers.4 

4In addition, phenomenological observations indicate it might play a role in stabilizing the Cu ion 
in the site and in protecting it from direct oxidation by 02. Several of the M121 mutants loose Cu 
during procedures used routinely with the WT protein- MonoS strips Cu2+ from the M121E 
mutant (CNK, unpublished observations) and several of the mutants lost Cu during the course of 
reduction potential measurements using spectroelectrochemistry (Pascher et al. 1993). 
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Figure 3.1 Reduction potentials of various Ru(bpyh species (Roundhill 1994). 

From data summarized in (Mines et al. 1996), the analogous potentials for the 

3+ /2+ /2+* triangle for Ru(bpyhlmHis33 cytochrome c would be: Eoo = 2.1 V and 
Eo for Ru3+/2+ = 1.07 V, Eo for Ru2+/l+ = -1.03 V. 
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Reduction potentials of Ru(bpy) 3 species 

Ru 
2+* 

0.84 eV 

2.12 eV 

Ru 3+ ----~.- Ru 2+ -----.-r- Ru 1
+ 

1.26 eV -1.28 eV 
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Figure 3.2 Calculated and observed electron transfer rates to ruthenium labels at 

positions 83 and 122 in azurin. 



calculated 
WT 
Low pH 1.1 X 1Q6 
High pH 1.1 X 1Q6 

(a) (Di Bilio et al. 1997) 
(b) (Langen et al. 1995) 
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H83 H122 
observed calculated observed 
1.2 x 106 (a) 7.1 X 1Q6 (b) 
4.1 X 105 6.6 X 1Q6 1.9 X 1Q6 
5.0 X lQS 6.5 X 1Q6 1.3 X 1Q6 
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Figure 3.3 Oxidized copper site of the M121E mutant of P. aeruginosa azurin 

(Karlsson et al. 1997). The copper ion is ligated by four out of the five usual 

ligands, C112 (to the left and behind the Cu ion in this view), H117 (left front), 

H46 (right), and the carbonyl oxygen of G45 (below and to the right). The 

introduced glutamic acid side chain (top center) interacts with the Cu2+ ion via 

one of its oxygens. The resonance Raman spectrum of the crystal shows 

enhancements characteristic of the blue, low-pH form of the protein, indicating 

that this structure shows the position of the protonated glutamic acid. The heavy 

atoms are colored according to the standard CPK scheme: carbon: gray, nitrogen: 

blue, oxygen: red, sulfur: yellow. A similar view of the wild type center is shown 

in figure 1.6. 
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Introduction 

Although controversial when it was first proposed, Peter Mitchell 's 

chemiosmotic theory is now accepted as the basic way organisms generate ATP 

(Mitchell1961). The fundamental tenet of his mechanism is that while oxidizing 

substrates, organisms produce a proton gradient across a membrane. The influx 

of protons seeking to alleviate this gradient is then used by ATP synthetase to 

drive the production of ATP. One enzyme involved in the formation of the 

proton gradient is a terminal oxidase that binds molecular dioxygen and with the 

addition of four electrons and four protons, produces two water molecules. The 

energy released from the breaking of the oxygen-oxygen bonds is coupled to the 

pumping of four additional protons across the lipid bilayer in which the enzyme 

complex resides. There are several classes of terminal oxidases. One of the most 

common are the cytochrome c oxidases (CCO) which accept electrons from the 

soluble electron transport protein cytochrome c (Babcock and Wikstrom 1992). 

Cytochrome c oxidases are multi-subunit enzymes (from 4-13 proteins) 

which contain 3 distinct metal cofactors. The primary site for electron entry into 

CCO is the CuA domain which resides in subunit II. This binuclear copper site 

accepts electrons from cytochrome c and then quickly equilibrates with the 

heme a site in subunit II. The function of the CuA and heme a sites are to 

facilitate electron transport into the oxygen binding site which resides well 

buried in the interior of the membrane. The oxygen is bound to a coupled 

heme a3 and CuB. Flash-flow techniques have allowed the elucidation of several 

intermediate steps in the reduction of 02 to water, as well as the rates at which 

they occur. 

The structure of the CuA site of CCO was the subject of controversy for 

many years. Purification of this membrane protein by a variety of methods led to 

a wide range in values for the reported Cu content of the enzyme. It is difficult to 

observe the CuA center by absorption spectroscopy because the UV /Vis 

spectroscopy of ceo is dominated by the strong absorbances of the two heme

containing centers. A resolved absorption band at long wavelength (-830 nm) 

was assigned to the CuA center and two MCD bands at 480 and 530 nm were 

associated with the CuA center by a clever double resonance technique 

(Thomson et al. 1986). The MCD spectrum of CCO was taken in the presence and 

absence of microwave irradiation at the resonance frequency of the CCO EPR 
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signal. Bands associated with the CuA site were selectively suppressed by 

irradiation at the resonant frequency of the CuA site. The EPR signal intensity for 

the CuA site integrates to 1 Cu charge per subunit, in conflict with most of the 

atomic absorption data which indicated a total of 3 Cu atoms per molecule of 

CCO, 1 in the CuB site, leaving 2 for CuA center. Evidence that the CuA sites in 

CCO and nitrous oxide reductase (N20R) were similar helped solve this 

dilemma; nitrite reductase does not contain any heme cofactors and mutants 

have been isolated where the catalytically active Cu site of N20R, CuZ, does not 

form. Strong evidence for a binuclear Cu site was obtained from the EPR 

spectrum of this N20R variant which showed a seven line hyperfine splitting 

with intensities indicative of a mixed-valence, binuclear site. 

With the publication of X-ray crystal structures for the Paracoccus (Iwata et 

al. 1995) and bovine (Tsukihara et al. 1995; Tsukihara et al. 1996) cytochrome c 

oxidases, the CCO CuA site has also been shown to be a binuclear copper site 

with a central parallelogram of two Cu atoms and two bridging cysteine sulfurs. 

In addition, each Cu has a histidine ligand and an addition terminal ligand, a 

methionine sulfur for one and a backbone carbonyl oxygen for the other. (See 

figure 1.) The discrepancy between the EPR and atomic absorption estimates of 

Cu content can be explained as a binuclear copper center in which a single charge 

is delocalized over both copper atoms, giving each of them a +1 I 2 formal charge. 

The evolutionary rational for the use a binuclear rather than mononuclear Cu site 

as an electron transporter has been the subject of much speculation (Ramirez et 

al. 1995; Bertini et al. 1996). One frequently mentioned possibility is the provision 

of separate entrances and exits for the electron which is particularly 

advantageous in a complex membrane-bound electron transporter. Another 

potential benefit is a longer range bridge for electron transport; a binuclear site in 

which the electron is delocalized would bridge those 6 A with better coupling 

(less transmission loss over the distance) than is provided by coupling through 

normal protein medium. With the electron delocalized over a larger site, changes 

to the site geometry would also be expected to be smaller since the additional 

electron is shared over more atoms (smaller ~nner). Recent EXAFS data on the 

mixed-valence and reduced CuA sites from T. thermophilus and B. subtilis, show 

very small changes in Cu-S bond lengths upon reduction. There is a small, 

symmetric expansion of the central Cu2S2 parallelogram that is similar to the 
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lowest energy A1g modes observed by resonance Raman (Andrew et al. 1996; 
Blackburn et al. 1997). 

Prior to the elucidation of the X-ray structure several groups had pursued 

the question of the composition and spectroscopy of the CuA site by making 

soluble fragments containing the CuA site from subunit II (Lappalainen et al. 

1993; von Wachenfeldt et al. 1994; Slutter et al. 1996). In addition, CuA models 

were made by engineering proposed purple sites into other proteins. Lu and 

coworkers engineered a purple site into the B-barrel of azurin by addition of an 

additional Cys ligand and small rearrangements of the interligand loops (Hay et 

al. 1996). Addition of a mixture of Cul+ and Cu2+ gives a strong purple color with 

the characteristic 480, 530, and 790 nm absorption bands. If one adds only Cu2+, 

the protein spectrum shows an additional strong band at 600 nm characteristic of 

the blue copper centers. Reduction with ascorbate converts the protein entirely to 

the purple copper form. Canters and coworkers have made another purple center 

starting with the blue copper protein, amicyanin (Dennison et al. 1995). Saraste 

and coworkers, engineered a CuA site into the initial acceptor subunit of the 

functionally homologous cytochrome bo quinol oxidase (van der Oost et al. 1992). 

The C-terminal domains of subunit II of the quinol and cytochrome c oxidases 

have a high degree of homology and were predicted to form B-barrel structures. 

Saraste's engineered CyoA fragment has the spectroscopic signature predicted by 

the double resonance studies of ceo and the crystal structure of the protein 

shows a slightly distorted tetrahedron with the same ligand structure as was 

later seen in the ceo structures. 

Experimental design 

Claire Slutter, in this lab, had cloned and expressed the soluble portion of 

CCO subunit II from Thermus thermophilus (Slutter 1996). Extensive 

characterization of this fragment showed it contains a well delocalized CuA 

center very similar to other characterized CuA centers. I took this cloned 

fragment as the basis for studies of the electron transfer properties of the CuA 

site. 
One of the central tenets of bioenergetics is that to maximize efficiency, the 

energy difference (the driving force) for each step should be as small as possible. 

For the electron transfer from the CuA site to the binuclear heme site, the energy 

difference has been measured to be a mere 50 mV. With this small a driving 
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force, and a metal to metal distance of -19 A, the rate of 1.8 x 104 s-1 is 

remarkable. Using the Marcus theory of electron transfer and the average 

distance dependence of ET (~ = 1.0 A-1 ), this implies an exceedingly low 

reorganization energy for the reaction (150-500 mV (Ramirez et al. 1995)). I set 

out to test this proposal by measuring intramolecular electron transfer rates as a 

function of driving force in metal-modified mutants of the T. thermophilus CuA 

soluble fragment. 

As was discussed in chapter 1, the rate of electron transfer varies with the 

driving force of the reaction. Figure 1.3 shows the classical Marcus driving force 

curve, the rate of electron transfer as a function of the driving force. The electron 

transfer rate is predicted to be maximal when the driving force (-~Go) is equal to 

the reorganization energy for the reaction (A.12). To measure the reorganization 

energy of the CuA site (A.11), one needs electron transfer rates at a variety of 

driving forces and the reorganization energy of the labeling complex (A.22, which 

can be estimated from the self-exchange rates of analogous inorganic complexes). 

I have made site-directed mutants of the CuA fragment to introduce modifiable 

histidines on the surface of the protein at sites predicted to be 12-15A from the 

CuA site and I planned to covalently modify these histidines with Ru(tpy)(bpy)-, 

Ru(tpy)(phen)-, and Os(tpy)(bpy)- complexes. Electron transfer rates between the 

CuA and surface metal complexes would then be measured using the laser 

techniques described in chapter 2. 

Material and methods 

General 

General molecular biology techniques were performed according to 

Maniatis or Current Protocols (Sambrook et al. 1989; Ausubel et al. 1995). PCR 

conditions and protein purification protocols are modifications of methods 

described in Slutter (Slutter 1996). Plasmid preparation and purification of PCR 

fragments was done using Qiagen plasmid prep kits and PCR cleanup I gel 

extraction kits (Qiagen, Chatsworth, CA). Taq polymerase was purchased from 

Boehringer Mannheim (Indianapolis, IN) . Restriction enzymes were purchased 

from New England Biolabs (Beverly, MA) and Boehringer Mannheim and used 

with the supplied buffers according to manufacturer's instructions. Buffer 

exchange was done by ultrafiltration using CentriconlO's or YMlO membranes 

(Arnicon, Beverly, MA) or by gel filtration using PD10 pre-packed Sephadex G25 



98 

columns (Pharmacia, Uppsala, Sweden) . Proteolytic digestions and mass 

spectrometry analysis was done at the California Institute of Technology's 

Protein/Peptide Micro Analytical Laboratory by Dr. Gary Hathaway. 
Mutant construction 

All genes used in this study were double mutants: H117Q plus the desired 

new surface histidine. (See figure 2 for design scheme.) For the mutants with 

histidines at positions 118-121, the mutagenesis was done with one cloning step, 

introducing the H117Q and X-to-H mutation with the same set of 

oligonucleotides. The rest of the mutations were made in two steps; the H117Q 

plasmid was constructed and then used as the template for the PCR mutagenesis 

to create the rest of the surface histidine mutations: 147H, 146H, 163-166H. The 

mutations leading away from M160, 163-166, were done with a single round of 

PCR using long oligonucleotides that extended to the mutation site from the 

BamHI restriction site marking the 3' end of the gene. The other, interior 

mutations were constructed using two-piece PCR employing a set of flanking 

primers, CuANdel.s and CuABamHI.as, and sense and anti-sense primers 

covering the 146 or 147 mutation sites. The internal primers were designed so 

they started immediately 5' to aT residue (see figure 3 for sequences) (Reikofski 

and Tao 1992) . Initially I had planned to do two temperature PCR (cycling 

between 96° and 72°C) so all the primers have melting temperatures around 82° 

C (calculated using 4° per GC pair, 2° per AT pair, and ignoring mismatches). 

However, two temperature PCR did not give adequate yields of PCR products 

despite the high annealing temperature of the primers. Also unsuccessful were 

attempts to use the mega-primer method which uses only a single internal 

mutagenic oligo (Reikofski and Tao 1992). 

After construction of the desired series of mutants, I concluded that it 

would be better to be working with the "T9" truncation of the original construct. 

The original clone of the soluble portion of subunit II of T. thermophilus CCO 

contained the gene coding for amino acids 34 through 168 cloned into the pET9a 

expression vector (Novagen, Madison WI). N-terminal sequencing of the 

expressed protein from the original construct showed several nested N-terminal 

proteolytic cleavages including a considerable portion starting GVIP A. To 

address this N-terminal heterogeneity, and to remove H40 which might provide 

a competing labeling site, PCR mutagenesis was used to remove the first 10 

amino acids of each mutant construct (new N-terminus MVIP A ... ). Production of 
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the correct truncated CuA domain (M. W. 13,942) was demonstrated by MALDI

MS. The sequence of the CuA gene and surrounding vector sequences of this 

plasmid (T9CuAH117Q) is given in Appendix C. 

Primers were synthesized on the 0.4 J.Lmole scale by the Beckman Institute 

oligonucleotide synthesis facility and resuspended to a final concentration of 25 

pmoles/J.Lliter in water before use. All PCR reactions contained (final 

concentrations): 60 mM Tris-HCl, 1.5 mM (N~)2S04, 2 mM MgC12, pH 9.5@ 

22°C (Buffer J from the PCR Optimizer Kit, Invitrogen, San Diego, CA), 0.2 mM 

each dNTP, 2.5 pmole/J.Ll sense and anti-sense primers, and 5 units Taq 

polymerase per 100 J.Ll reaction. For reactions starting with purified plasmid 

templates, 0.25 to 0.5 J.Lg was used in each 100 J.Ll reaction; for the second round of 

two piece PCR mutagenesis, approximately half of each purified first-round 

reaction was used as template in the second round. Reaction mixtures overlaid 

with mineral oil were placed in a Perkin-Elmer DNA Thermal Cycler 480. 

Templates were denatured at 96°C for 5 minutes followed by thirty PCR cycles 

denaturing at 96°C for 30 seconds, annealing at 55°C for 30 seconds, and 

polymerizing at 72°C for 1 minute. Final polymerization was given 5 minutes at 

72°C and the reactions were held at 4° C until further analysis or purification. 

For the two piece PCR, in the first round the gene was amplified in two 

100 J.Ll reactions; the portion 5' to the mutation site was amplified using a sense 

primer that binds to the Ndel cloning site and an antisense primer covering the 

mutation site, and the 3' portion using a sense primer covering the mutation site 

and an anti-sense primer that anneals to the BamHI site following the CuA gene. 

The two PCR reactions were run on an agarose gel (1-2% agarose, 1X TAE) and 

the bands excised and purified using a Qiagen gel extraction kit according to the 

manufacturers instructions, eluting with 30 J.Ll of 5 mM Tris, pH 8. Half (15 J.Ll) of 

each was mixed together and used as the template for a second round of PCR 

using only the flanking primers, CuANdel.s and CuABamHI.as. The resulting 

DNA was extracted from the PCR reaction mixture using a Qiagen PCR clean-up 

kit. The DNA, eluted in 30 J.Ll of 5 mM Tris pH 8, was digested with Ndel and 

BamHI in NEB's BamHI buffer. These digests were purified (and the second 

round of PCR checked) by running on an agarose gel and extracting the band of 

appropriate size. A pET9a plasmid containing the f3-lactamase gene was similarly 

digested and gel purified. Ligations in a total volume of 20 J.Ll, containing 1X BMB 

ligase buffer, 0.4-2.0 J.Lg digested pET vector DNA, 1/3 of each purified PCR 
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reaction (10 J.ll), 1 unit T4 DNA ligase (BMB), were incubated overnight at 16°C. 

1 J.ll of the ligation mix was transformed into 20 J.ll of chemically competent 

BL21(DE3) cells (Novagen, Madison, WI). 

Initial screening of transformed colonies was done by PCR, starting with 5 

J.ll of a 50 J.ll cell suspension (in water). PCR was performed as above in a final 

reaction volume of 25 J.ll using the T7 promoter and terminator primers and 0.125 

units of Taq polymerase per reaction. After 55 cycles, the results were assessed 

on a 1.2% agarose gel. Qiagen spin minipreps were done on colonies with inserts 

of the correct size, starting with 7 ml cultures of cells grown overnight in LB with 

35 J.lg/ml kanamycin. The DNA was eluted in 20 J.ll 5 mM Tris, pH 8, and 

submitted to the Beckman Institute DNA Sequencing Facility for dye-terminated 

cycle sequencing with the T7 promoter and terminator primers. This mutagenesis 

procedure is extremely efficient; more than 90% of the colonies sequenced 

contained the desired mutation with no secondary mutations. 

Protein expression and purification 

Protein expression was carried out using the pET expression system from 

Novagen (Madison, WI). CuA expression is under the control of the T7 

polymerase promoter in the pET9a expression vector. IPTG induction of the 

production of T7 polymerase under the control of the lac operon in the E. coli 

strain BL21(DE3) leads to overexpression of the cytoplasmic CuA soluble 

fragment. Typically small overnight starter cultures (50 ml LB with 50 J.lg/ml 

kanamycin) are grown from frozen glycerol stocks or from colonies of freshly 

transformed cells. These starter cultures are expanded into 1-2 1 of LB (50 J.lg/ml 

kanamycin) in 4 1 culture flasks. Cultures are grown with vigorous shaking at 

37°C until the optical density (0D6oo) of the culture is 0.6-1.0. IPTG is added to a 

final concentration of 0.4 mM and the cells shaken at 37°C for a further 8-12 

hours. Cells are harvested by pelleting at 5,000 x g for 10 minutes. At this point, 

the cell pellet is usually frozen; freezing and thawing appears to increase the 

efficiency of cell disruption during the sonication step. The cell pellet is 

resuspended in 50 mM Tris-HCl pH 8.0, 25 ml per liter of cell culture. Triton 

X-100 is added to a final concentration of 0.1% and the cells are sonicated (4 30-

second cycles at the microtip limit using a Branson Sonifier Cell Disrupter 200). 

Cell debris is removed by centrifugation, 20 minutes 18,000 x g. (Resuspension 

and sonication of the cell pellet sometimes leads to recovery of considerable 

additional CuA protein.) 
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CuA was initially purified by modifications of a method devised by Dr. 

Claire Slutter (personal communication). CuS04 is added to the decanted 

supernatant to a final concentration of 10 mM, turning the solution a dark purple. 

The solution is acidified by adding 1 M sodium acetate, pH 4.6, incubated for 30 

minutes on ice, and centrifuged to remove the precipitated material. 

Acidification to pH 4.6 leads to considerable precipitation, mainly of 

contaminating proteins but carrying down variable amounts of CuA. 

Resuspension of the precipitate in 50 mM Tris pH 8.0 leads to the recovery of 

some of the precipitated CuA. Acidification of the original purple supernatant to 

pH 5.5 leads to precipitation of much smaller amounts of non-purple protein. 

The pH of the supernatant is readjusted to approximately 7 using 5 M 

NaOH before loading it onto a HiTrap Chelating column (Pharmacia, Uppsala, 

Sweden) that has been charged with CuS04 and equilibrated in 100 mM 

potassium phosphate, 500 mM KCl, pH 7.0 (buffer A). The column is washed 

with 1-3 column volumes (5-15 ml) of buffer A, depending on how well the 

protein adheres to the chelating column. The protein is eluted with buffer A 

supplemented with 10 mM imidazole. The eluent is concentrated by 

ultrafiltration using a YM10 membrane (Amicon, Beverly, MA) and washed into 

either buffer A or 20 mM Tris. pH 8.0. The low binding affinity of the CuA 

mutants with a single surface histidine means that the HiTrap chelating column 

does not effectively purify CuA from most of the contaminating proteins but it 

does remove the Triton X100 from the sample and partially concentrates the 

sample. 

Later in the project, the initial purification of CuA was modified. In this 

new procedure, CuS04 is added to the decanted supernatant to give a final 

concentration of 20 mM. The protein is washed into 20 mM Tris, pH 8.0, by 

repeated concentration and dilution with an Amicon ultrafiltration device and a 

YM10 membrane. Aliquots of the crude protein, enough to color the upper 

quarter of the column, are then injected onto a 5 ml HiTrap Q anion exchange 

column (Pharmacia, Uppsala, Sweden). The column is then washed with 3 

column volumes of 20 mM Tris, pH 8.0. The protein is eluted either with a 

gradient of 10-20% 20 mM Tris, 200 mM NaCl, pH 8.0 or stepwise, using 20 mM 

Tris, 40 mM NaCl, pH 8.0. After processing several aliquots, contaminating 

proteins were removed from the column by washing in 2M NaCl. 
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After either initial purification procedure, the protein is further purified 

by anion exchange FPLC. Protein equilibrated into 20 mM Tris pH 8.0 is loaded 

onto a MonoQ 10/10 column and eluted with a shallow gradient of 4-9% 20 mM 

Tris, 200 mM NaCl, pH 8.0, over 90 minutes. The major contaminants are 

retained on the column and eluted by washing briefly with 100% buffer B. Using 

very shallow gradients on the MonoQ FPLC, one can see two poorly resolved 

peaks with identical UV /Vis spectra. MALDI-TOF MS shows the first of the two 

peaks is the holo protein (M. W. 13,942); the second peak has a molecular weight 

of 13,985 which could be the holo protein with an additional acetyl group. After a 

single MonoQ column, CuA is generally used in the metal labeling reactions 

without further purification. 

Metal modifications 

Initial experiments indicated that the CuA metal center is not stable to 

incubation in imidazole. Incubation of the protein in 200 mM imidazole for 21 

hours at room temperature in an open test tube (conditions similar to those used 

for adding imidazole to Ru(bpyhHzO-His azurin) results in colorless protein that 

cannot be reconstituted by reduction followed by addition of CuS04 . So we 

elected to try an alternate labeling system developed by Dr. Angelo Di Bilio (Di 

Bilio et al. 1998) which uses Ru(tpy)(bpy)- or Ru(tpy)(phen)- compounds to avoid 

the problem of having to fill the sixth Ru coordination site subsequent to protein 

labeling. The Rull(tpy)(phen)H20 and Rull(tpy)(bpy)Cl used in this study were a 

gift from Dr. Di Bilio. 

T9 H117Q/E119H CuA (50 mg in 10 mM HEPES, pH 7.7) is incubated 

with a 4-fold molar excess of Rull(tpy)(phen)H20 at 30° C for 7 days. During this 

time, protein precipitation is seen, perhaps eventually amounting to as much as 

10-20% of the starting material. Unreacted Rull(tpy)(phen)HzO is removed by gel 

filtration (PD10 column) into IMAC buffer A, 20 mM HEPES, pH 7.7, 750 mM 

NaCl. Upon incubation at room temperature, non-specifically bound ruthenium 

often dissociates; this is removed by a second gel filtration step before the sample 

is loaded onto a Cu-charged IMAC chelating sepharose FPLC column 

(Pharmacia). The protein is eluted with a buffer consisting of 20 mM HEPES, pH 

7.7, and 750 mM NH4Cl. The first major peak has the UV /Vis spectrum expected 

for Ru(tpy)(phen)His119CuA. (See figure 4.) Its identity has been confirmed by 

MS analysis of purified fragments from a trypsin digest of the protein. The 

second peak has not been unambiguously identified but, like the third peak, has 
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a spectrum that is red shifted in comparison to the Ru(tpy)(phen)His119CuA 

spectrum. (See figure 5.) The third peak has a slightly red-shifted ruthenium peak 

consistent with labeling at a carboxylic acid residue; MS analysis of HPLC

purified trypsin digest products indicates that this peak is CuA labeled at 

position D54 with Ru(tpy)(phen). A small amount of unreacted CuA elutes from 

the IMAC column after these ruthenium-modified peaks. 

Yields for the Rull(tpy)(phen)H20 labeling reaction are low ( -2%). 

Additional labeling experiments using different buffer conditions (50 mM 

HEPES, pH 6.8, or 100 mM NaC03, pH 7.1), higher incubation temperatures (37° 

C), and up to a 10-fold molar excess of either Rull(tpy)(phen)H20 or 

Rull(tpy)(bpy)Cl all gave similarly low yields of the desired labeled protein, 2-

3.5%. At room temperature, the CuA soluble fragment is stable in 50% 

isopropanol; reaction of CuA with Ru(tpy)(bpy)C03 in 50% isopropanol did not 

show appreciable labeling after 5 days. However, enough Rull(tpy)(phen)H119 

CuA was obtained to enable preliminary photoinduced ET data to be collected. 

Results and discussion 

Design of surface accessible histidines for labeling 

As the starting point for covalent attachment of a second metal site in 

CuA, we would like to place histidine residues on the protein surface -15 A 
away from the CuA site. We do not currently have an X-ray or NMR structure for 

the Thermus thermophilus CuA fragment we work with. However, all CuA 

domains show a high degree of homology (Saraste 1990) so sequence alignment 

allows one to make inferences based on similarity to proteins of known structure 

(See figure 6). Crystallographic structures at 2.8 A resolution are available for the 

complete cytochrome c oxidase complexes of Paracoccus denitrificans (Iwata et al. 

1995)and bovine heart muscle (Tsukihara et al. 1995; Tsukihara et al. 1996). These 

two proteins show 50% and 45% similarity to the T. thermophilus CuA site.l In 

addition, there is a 2.3 A resolution structure of the soluble domain of subunit II 

of E. coli quinol oxidase into which a purple copper center has been engineered 

(purple CyoA) (Wilmanns et al. 1995). The coordinates for the P. denitrificans 

structure, the structure having the highest overall sequence identity with our 

construct (28%), are not publicly available at this time. But the coordinates for the 

bovine CuA and CyoA sites are on deposit at the Protein Data Bank 

1 Using the BestFit program from the Genetics Computing Group package (Madison, WI) . 
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(http:/ /www.pdb.bnl.gov /)and have been used to estimate distances to the Cu 

site and surface accessibility of analogous residues in our Thermus soluble 

fragment. 

While the overall fold of all CuA domains appears to be conserved, details 

of the loop regions are likely to be less well conserved than the strands. 

Therefore, I confined myself to histidine mutations on the ~-strands leading into 

the Cu ligands. Figure 7 shows the CyoA fragment with the engineered CuA site 

with the residues on ~-strands leading into the H172, C207, and M218 ligands 

highlighted (corresponding positions for the CuA fragment are H114, C149, and 

M160). The average distances from the Cu atoms to the o-carbons of selected 

surface accessible CyoA residues are (CuA residue number in parentheses): 

K221(T164) 17.1 A, D204(R146) 15.7 A, 1176(V118) 14.5 A, P177(E119) 13.3, 

R178(G120) 20.7 A. The proline in CyoA causes a kink unlikely to be present in 

the analogous region in CuA so several residues in that region were mutated, 

V118H, E119H, G120H, T121H. The desired R146H and T164H mutations were 

flanked by additional histidine substitutions to allow for the possibility that the 

CuA strands are in a different register than the CyoA strands: 1147H, R146H, 

T163H, T164H, and V165H. In initial expression studies, mutations to residues 

that are surface accessible in CyoA (E119H, G120H, T121H, R146H, and T164H) 

give proteins that express well and have the normal purple UV /Vis spectrum. 

The rest of the mutants did not express well and were not examined further. 'T9' 

truncations of the expressed purple mutants were made; an additional mutant 

H117Q/V166H was constructed at this time. 

Metal modifications 
Mass spectrometry analysis of HPLC-purified fragments from a tryptic 

digest of ruthenated CuA confirmed addition of Ru(tpy)(phen) to H119 in 

H117Q/E119H. However, despite exploration of a variety of incubation 

temperatures and buffer conditions, the yield of the desired product was 

uniformly low, -2% of the initial protein. Since preliminary labeling experiments 

with Ru(bpy)2C03 had given high yields (30-50%) of ruthenium modified 

protein, it is unlikely that H119 was buried within the protein interior and 

therefore inaccessible to metal modification. The steric bulk of the ligands in the 

Ru(tpy)(phen)(H20) complex and the existence of only one free coordination site 

have severe consequences to the ligand substitution kinetics of the Ru labeling 
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reaction. Since osmium is more substitutionally inert than ruthenium, the 

Os(tpy)(bpy)-labeling reactions were not attempted. 

Preliminary ET data 

Photoinduced electron transfer experiments were performed as described 

for azurin in chapter 2. Figure 8 shows the absorption transients at 406 nm and 

790 nm. At 406 nm, the Ru(tpy)(phen)(lm) isobestic, one can see the transient 

formation and disappearance of Ru(tpy)(phen)(His)3+ (Di Bilio 1997). At 790 nm 

one can observe the regeneration of the oxidized (purple) CuA center during the 

back electron transfer reaction. The ET rates at the two wavelengths, 1.23 x 106 s-1 

and 1.92 x 106 s-1 respectively, are in reasonable agreement. More extensive data 

collection at additional wavelengths would be needed to obtain a better value for 

the true electron transfer rate constant. This would be possible with the 

preparation of additional sample. However, the limitations on the amount of 

labeled protein obtained imply that it would be impractical to continue to pursue 

a driving force study using M(tpy)(N-N)- systems (M = Ru, Os; N-N = dipyridyl 

ligands such as bipyridine and phenanthroline). 

Fortunately, I have recently shown that the instability of the CuA center in 

imidazole can be alleviated if the imidazole reaction is done under anaerobic 

conditions. This opens up opportunities to use alternative Ru(N-Nhlm- labels 

with driving forces ranging from 0.56 to 1.02 eV (Mines et al. 1996). This should 

provide enough of a span of driving forces to indicate whether the 

reorganization energy of the binuclear CuA center is substantially smaller than 

that of other electron transport proteins such as azurin and cytochrome c. 
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Figure 4.1 The binuclear copper site of the CyoA model for CuA (Wilmanns et al. 

1995). The central parallelogram of two Cu and two cysteine sulfur atoms is 

shown obliquely. The histidine ligands flank the site. The methionine sulfur is on 

the upper right and the backbone carbonyl sixth ligand is on the lower left. 
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Figure 4.2 PCR strategy for construction of CuA mutants. 

The base plasmid 117Q and the 117Q/118-121H series of mutants were 
constructed in a single cloning step by two piece PCR. The gene for the CuA 
soluble fragment was amplified using sense and anti-sense mutagenic primers 
paired with the appropriate flanking sense and anti-sense primers, CuANdel.s 
and CuABamHI.as. The purified fragments from this first round of PCR then 
served as template for a second round of PCR with the flanking CuANdel.s and 
CuABamHI.as primers. The resulting full length gene was restriction enzyme 
digested and cloned into pET9a as a Ndei/BamHI fragment. 

The 117Q/146H and 117Q/147H mutants were done in a single cloning 
step by two piece PCR. The CuA gene containing the 117Q mutation was 
amplified using sense and anti-sense mutagenic primers paired with the 
appropriate flanking sense and anti-sense primers, CuANdel.s and 
CuABamHI.as. The purified fragments from this first round of PCR then served 
as template for a second round of PCR with the flanking CuANdel.s and 
CuABamHI.as primers. The resulting full length gene was restriction enzyme 
digested and cloned into pET9a as a Ndei/BamHI fragment. 

The 117Q/163-166H series of mutants was constructed with one round of 
PCR using mutagenic primers that spanned the mutation and the BamHI site. 
The CuA gene containing the 117Q mutation was amplified using CuANdel.s 
and the mutagenic anti-sense primers. The purified fragments were restriction 
enzyme digested and cloned into pET9a as Ndei/BamHI fragments. 

Construction of the 'T9' truncated versions of these mutant CuA's was 
accomplished by cloning the PCR product produced by amplifying each of the 
mutants with the T9CuA.s and CuABamHI.as primers. 
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Construction of the CuA 117Q base plasmid 

Ndel BamHI 

Primers: 

+ Ndel.s and 117Q.as 
117Q.s and BamHI.as 

1 
PCR and purify 

Ndel 117Q 117Q BamHI • • 

1 
PCR using Ndel.s and BamHI.as flanking primers 

Ndel BamHI 
Ndel 117Q BamHI 

pET9a/bla 

Restriction enzyme digest, and 

Jig• to into pET9• / 

Ndel BamHI 
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Construction of the CuA 117Q/146H and 117Q/147H plasmids 

Ndel 

Ndel 117Q 

117Q 

146H 

+ 

l 
146H • 

1 

Primers 
CuANdel.s and 146H.as or 147H.as 
146H.s or 147.s and CuANhel.as 

PCR and purify 

146H Nhel 

PCR using CuANdel.s and CuANhel.as flanking primers 

BamHI Nhel Ndel BamHI 

Restriction enzyme digest, and 

ligot• into pEl'l• / 

Ndel BamHI 
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Construction of the CuA 117Q /163-SH plasmids 

Ndel 

Ndel BamHI 

Primers 

+ Ndel.s and 163H.as 

117Q 

l 
PCR and purify 

163H BamHI 

Restriction enzyme digest, and / 

Hg•t• IDto pET9• / 

Ndel BamHI 

Ndel 

Truncated versions of the histidine mutants that expressed 
well were made bY. the same strategy as above using the 
T9CuA.s and Cu.A.BamHI.as primers. 

BamHI 
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Figure 4.3 Primers for site-directed mutagenesis of the CuA soluble fragment. 
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Flanking primers with restriction sites underlined 

CuANdel.s 

T9CuA.s 

CITTAAGAAGGAGAT ATACATATG GCCTACA 

GCC ACC CAC ACC CAT ATG GTC A IT CCC GC 

CuANhel.as GC GTG CTG CT A GCG CTA TAT GCG ITG A 

CuABamHI.as IT A GCA GCC GGA TCC TCA CTC CIT CAC 

His substitution primers mutated codons in boldface 

H117QCuA.s C CAC GGC TIT CAG GTG GAG GGC ACC AA 

H117QCuA.as GGT GCC CTC CAC CTG AAA GCC GTG GAT 

CuA V118H.s C CAC GGC TIT CAG CAC GAG GGC ACC AAC AT 

CuA V118H.as GIT GGT GCC CTC GTG CTG AAA GCC GTG GAT 

CuAE119H.s C CAC GGC TIT CAG GTG CAC GGC ACC AAC AT 

CuAE119H.as GIT GGT GCC GTG CAC CTG AAA GCC GTG GAT 

CuAG120H.s C CAC GGC TIT CAG GTG GAG CAC ACC AAC AT 

CuAG120H.as GAT GIT GGT GTG CTC CAC CTG AAA GCC GTG 

CuAT121H.s C CAC GGC TIT CAG GTG GAG GGC CAC AAC AT 

CuA T121H.as GAT GIT GTG GCC CTC CAC CTG AAA GCC G 

CuAI147H.s G GAG TAC CGC CAC ATC TGC AAC CAG TAC 

CuAI147H.as GTA CTG GIT GCA GAT GTG GCG GTA CTC C 

CuAR148H.s G GAG TAC CAC ATC ATC TGC AAC CAG TAC 

CuAR148H.as GTA CTG GIT GCA GAT GAT GTG GTA CTC C 

CuAT163H.as ITA GCA GCC GGA TCC TCA CTC CIT CAC CAC GAT CGT GTG GAA C 

CuAI164H.as ITA GCA GCC GGA TCC TCA CTC CIT CAC CAC GAT GTG GCC G 

CuAV165H.as ITA GCA GCC GGA TCC TCA CTC CIT CAC CAC GTG CGT G 

CuA V166H.as IT A GCA GCC GGA TCC TCA CTC CIT CAC GTG GAT C 
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Figure 4.4 (a) Absorption spectra of T9 H117Q/El19H CuA and the 

Ruii(tpy)(phen)Im model. The solid line is the predicted spectrum of a 1:1 

complex of the two. (b) Comparison of the predicted T9 

H117Q/El19HRuii(tpy)(phen) CuA spectrum and the spectrum of the first peak 

from the IMAC column purification. 
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Figure 4.5 Spectra of fractions from the IMAC purification of T9 

H117Q/El19HRull(tpy)(phen) CuA. The first peak is the desired product. The 

third peak is CuA labeled at D54. 
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Figure 4.6 Alignment of the protein sequences of the CuA domains discussed in 

the text: bovine, Paracoccus denitrificans, Thermus thermophilus, and subunit II of 

the E. coli quinol oxidase. Protein sequences from Entrez at the National Center 

for Biotechnology Information (http:/ /www.ncbi.nlm.nih.gov /Entrez/). 

Alignment was done using the Pileup program from the Genetics Computer 

Group, Madison, Wisconsin. 
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Bovine MAYPMQLGFQ 
Para. MMAIATKRRG VAAVMSLGVA TMTAVPALAQ DVLGDLPVIG KPVNGGMNFQ 
Therrn. 
CyoA MR LRKYNKSLGW LSLFAGTVLL SGCNSALLDP 

Bovine DATSPIMEEL LHFHDHTLMI ..... VFLIS SLVLYIISLM LTTKLTHTST 
Para. PASSPLAHDQ QWLDHFVLYI ITAVTIFVCL LLLICIVRFN RRANPVPARF 
Therrn. MVDE HKAHKAILAY EKGWLAFSLA MLFVFIALIA YTLATHTAGV 
CyoA KGQIGLEQRS LILTAFGLML IVVIPAILMA VGFAWKYRAS NKDAKYSPNW 

Bovine MDAQEVETIW TILPAIILIL IALPSLRILY MMDE .... I. NNPSLTVKTM 
Para. THNTPIEVIW TLVPVLILVA IGAFSLPILF RSQE .... MP NDPDLVIKAI 
Therrn. IPAGKLERV. .......... . .... DPTTV RQEG .... PW ADPAQAVVQT 
CyoA SHSNKVEAVV WTVPILIIIF LAVLTWKTTH ALEPSKPLAH DEKPITIEVV 

Bovine GHQWYWSYEY TDYEDLSFDS YMIPTSELKP GELR .... LL EVDNRVVLPM 
Para. GHQWYWSYEY PN.DGVAFDA LMLEKEALAD AGYSEDEYLL ATDNPVVVPV 
Therrn. GPNQYTVYVL AF .. AFGYQP . . . . . . . . . . .......... . .. NPIEVPQ 
CyoA SMDWKWFFIY PEQG ...... .......... . ........ I ATVNEIAFPA 

Bovine EMTIRMLVSS EDVLHSWAVP SLGLKTDAIP GRLNQTTLMS SRPGLYYGQC 
Para. GKKVLVQVTA TDVIHAWTIP AFAVKQDAVP GRIAQLWFSV DQEGVYFGQC 
Therrn. GAEIVFKITS PDVIHGFHVE GTNINVEVLP GEVSTVRYTF KRPGEYRIIC 
CyoA NTPVYFKVTS NSVMNSFFIP RLGSQIYAMA GMQTRLHLIA NEPGTYDGIS 

Bovine SEICGSNHSF M .. PIVLELV PLKYFEKWSA SML 
Para. SELCGINHAY M .. PIVVKAV SQEKYEAWLA GAKEEFAADA SDYLPASPVK 
Therm. NQYCGLGHQN MFGTIVVKE 
CyoA ASYSGPGFSG MKFKAIATPD RAA.FDQWVA KAKQSPNTMS DMAAFEKLAA 

Bovine 
Para. LASAE 
Therm. 
CyoA PSEYNQVEYF SNVKPDLFAD VINKFMAHGK SMDMTQPEGE 
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Figure 4.7 Space-filling model of the CyoA CuA model system, E. coli quinol 

oxidase into which a CuA site has been engineered. The introduced CuA ligand 

residues are shown in purple. The position corresponding to the naturally 

occurring surface histidine in T. thermophilus CuA, H117, is shown in violet. The 

positions corresponding to the mutations made in this study, E119H, R146H, and 

T164H, are shown in cyan, blue, and yellow respectively. 
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Figure 4.8 Absorption transients of T9 H117Q/El19HRu(tpy)(phen)CuA at 406 

nm (a) and 790 nm (b). Single exponential fits to the data give ET rates of 

1.23 x 106 s-1 and 1.92 x 106 s-1 respectively. 
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proteins azurin and plastocyanin 

(c:opper center/ synthetic gene) 
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ABSTRACT Genes for the blue copper proteins Populus 
nigra var. ilalica plastocyanin and Pseudomonas aeruginosa 
azurin have been constructed by a stepwise procedure. The 
leader sequence for azurin has been placed before the genes 
directing plastocyanin and azurin transport to the periplasmic 
space when the genes are expressed in Escherichia coli. Site
saturation mutagenesis has been used to alter two copper
binding residues or azurin (Met-121 and His-46) and Met-92 or 
plastocyanin. While the plastocyanin mutants do not appear to 
bind copper, the azurin variants all bind copper and show 
characteristic type I blue copper centers. In particular, the 
electronic spectra reflect the dominance of the charge transfer 
interaction between copper and the thiolate of Cys-112, being 
relatively insensitive to changes in Met-121 or His-46. In con
trast, removal or Met-121 appreciably alters the EPR spectra of 
the mutants, although, to a first order, the spectra of all mutants 
are themselves similar, suggesting a more distorted geometry 
around copper In the mutants than in the wild type. 

The family of blue copper proteins includes plastocyanins (1) 
from green plants and some algae and azurin (2) from 
bacteria. These proteins perform essential roles as electron 
carriers (3, 4) in such important processes as photosynthesis 
and bacterial respiration . They provide a unique ligand 
environment (5-8) to their single type I copper atom that 
endows them with a rich blue color as well as an unusually 
high potential for the Cu(ll)-Cu{l) couple (9) . Fucthermore, 
the ligation geometries are essentially identical for both 
Cu(ll) and Cu(l) forms near neutral pH, giving these proteins 
the ability to transfer el.:ctrons very rapidly {10, 11). Lastly, 
the three-dimensional structures for a representative azurin 
at 1.8 A (12) and plastocyanin at 1.6 A (13) have been 
determined. For these reasons, the blue copper proteins 
provide attractive candidates for mutagenic structure
function studies (14) aimed at gaining insights into such 
diverse aspects of their behaviors as electronic spectra, 
paramagnetic properties. redox potentials, rates of electron 
transfer, transmission of electrons through the interior of the 
protein for subsequent transfer to redox partners, and surface 
sites involved in such protein-protein interactions. The close 
relationship in both structure and function of the plastocya
nins and azurins provides an additional attraction for the 
concurrent study of these questions against these similar, but 
nevertheless significantly different, protein backgrounds. 

We have approached this problem by the total synthesis of 
genes for poplar (Populus nigra var. ita fica) leafplastocyanin 
(because of its highly refined three-dimensional structure ; 
ref. 13) and Pseudomonas aeruginosa azurin (15). The syn
thetic genes were introduced adjacent to synthetic leader 

The publication costs of this article were defrayed in part by page charge 
payment. This article must therefore be hereby marked .. udv~rtis~m~nl' ' 

in accordance with 18 U.S.C. §1734 solely to indicate this fact. 

sequences for plastocyanin and azurin and the resulting 
constructs were expressed in Escherichia coli. When grown 
in the presence of 1 mM Cu(ll), the properly processed and 
folded native proteins can be isolated from the periplasm. 
Because of the presence in the synthetic genes of relatively 
closely spaced sites for restriction endonuclease digestion, 
cassette mutagenesis (16) allows facile creation of specific 
mutants or families of mutants obtained by procedures such 
as site saturation (17). Using these approaches, we have 
created mutants at two of the copper ligation sites of azurin 
(His-46 and Met-121) and at one site ofplastocyanin (Met-92). 

MATERIALS AND METHODS 
Materials. Most restriction enzymes were purchased from 

Boehringer Mannheim or New England Biolabs. Polynucleo
tide kinase was purchased from New England Biolabs. DNA 
ligase was purchased from either BRL or Boehringer Mann
heim. Ampicillin was purchased from Sigma; isopropyl fJ· D
thiogalactopyranoside, Tris, and other buffer reagents came 
from Boehringer Mannheim. FMC provided the high purity, 
low melting point agarose (GTG grade) used in preparative gels. 
Plasmid pBR322 was purchased from BRL, while pUC18 and 
chromatographic material came from Pharmacia. The Vecta
stain Elite kit for Western blotting was purchased from Vector 
Laboratories. Rabbit anti-plastocyanin or anti-azurin antibody 
was obtained from Berkeley Antibody (Richmond, CA). 

E. coli strain LSI, an HBlOl derivative, was used in the 
construction of both genes. Cells harboring the plasmids with 
the partially constructed gene were grown in L broth (10 g of 
tryptone per liter/5 g of yeast extract per liter/5 g ofNaCI per 
liter) . E. coli ~train TGl (18) , a JMlOl derivative, was used 
during the expression experiments. This strain was grown in 
a richer medium such as modified XB (25 g of tryptone per 
liter/7.5 g of yeast extract per liter/20 mM MgS04/50 mM 
sodium phosphate, pH 7.5) containing 1 mM CuS04 • 

Oligonucleotides were synthesized by phosphoramidite 
chemistry (19) on an Applied Biosystems automated DNA 
synthesizer (model 380A or 380B). They were then purified 
by electrophoresis on polyacrylamide gels followed by pas
sage through NACS PREPAC columns from BRL. Alterna
tively , the dimethoxytrityl group could be left attached to the 
5' -terminal nucleotide at the end of the synthesis and the 
oligonucleotides purified through OPC cartridges obtained 
from Applied Biosystems. 

Gene Synthesis. Our approach involves synthesis of the gene 
in a stepwise fashion . The construction of the gene by this 
method proceeds from the ends toward the middle. Segments 
of the gene are sequentially cloned into an appropriate vector 
that allows amplification of the growing gene at intermediate 
stages of synthesis. After a segment has been inserted and the 
plasmid amplified, the resulting intermediate, containing two 
unique restriction sites within the segment last inserted, is 
opened at these sites, which then act as recipients for the next 
segment of the gene. Importantly, although all bases that 
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define one of the particular sites used for opening must, of 
course, be present in that intermediate, the site(s) need not be 
reconstituted for incorporation of the next cassette; only those 
bases necessary to provide compatible overhangs or located 
upstream of the upstream site and downstream of the down
stream site need to be retained in the final gene. Thus, any 
particular restriction endonuclease may in principle be used 
multiple times in a given synthesis. 

Though a very conservative approach for the synthesis of 
genes that encode plastocyanin (297 base pairs) or azurin (384 
base pairs), this general strategy has considerable flexibility 
and should prove particularly suited to the synthesis of larger 
genes that might be difficult to prepare by the consecutive 
annealing of segments followed by cloning. The approach 
also permits editing at intermediate stages. This strategy is 
shown in Fig. 1, which outlines the steps used in synthesis of 
the structural genes for plastocyanin and azurin. We used 
pBR322 as the vector for this synthesis and constructed the 
gene between the EcoRl and Ava I sites after removal of the 
Tel' gene that occupies this region ofpBR322. This removes 
a large number of unique restriction sites that can subse
quently be utilized in gene synthesis and leaves the J3-lacta
mase gene intact as a selectable marker. Fig. 2 shows the base 
sequences and restriction sites for the two synthetic genes. In 
a similar way, a ribosome binding site and plastocyanin (20, 
21) or azurin (22, 23) leader sequences were prepared and 
introduced just in front of the structural genes and then 
ligated into the polylinker site of pUC18 for expression that 
is controlled by a lac promoter induced by isopropyl J3-o
thiogalactopyranoside. 

Expression. A pUC18 vector (24) into which the appropri
ate genetic information had been inserted (promoter, ribo
some binding site, spacer, leader sequence , and structural 
gene) was used to transform E. coli (TG1), and the cells were 
grown at37°C in medium (25 g ofbactotryptone, 7.5 g of yeast 
extract, and 5 g ofNaCI per liter) containing 1 mM CuSO. and 
50 J.Lg of ampicillin per mi. After reaching logarithmic phase 
(0D6(xh 0.5-1.0), the cells were induced with isopropyl 
J3-o-thiogalactopyranoside (0.5 mM) and allowed to grow an 
additional 3-5 hr. 

Protein Isolation. For Western blot analysis, a small sample 
of cells (=2 ml) was centrifuged in a microcentrifuge and 
suspended in 100 J.LI of buffer (10% glycine/5% 2-mercapto
ethanol/3% SDS/62.5 mM Tris-HCI, pH 7.6/1 mM EDTA/ 
0.05% bromophenol blue) . The solution was heated at 95•c 
for 10 min. The resulting solution was vigorously mixed in a 
Vortex to reduce viscosity and a 5-J.LI aliquot was loaded onto 
a SDS/15% polyacrylamide gel with a 4% stack. After 
electrophoresis, protein from the gel was transferred to a 
nitrocellulose membrane using a Bio-Rad Trans-Blot cell 
equipped with a surface electrode. The protein (azurin or 
plastocyanin) was visualized by using rabbit antibody raised 
against the appropriate protein together with the Vectastain 
Western blotting kit . 

Osmotic extrusion was used for isolation of protein. Cells 
were harvested in a Sorvall superspeed centrifuge and the 
resulting pellet was resuspended in a hyperosmotic solution 

A E=RI Sal I BamHI EcoR I Nae I Ava I 

I b c d 

B E=RI Bsm I EcoR V Bel I Sail Hpa I BstE II 

b I c d I I g 
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(20% sucrose/30 mM Tris·HCI, pH 8). After sitting on ice for 
10 min, the solution was centrifuged to a pellet and gently 
resuspended in a cold solution of 0.5 mM MgCh. (In the case 
of plastocyanin, this solution also contains 1 mM CuSO.; see 
below.) Periplasmic proteins were extruded and the cell 
debris was removed by further centrifugation. 

Protein Purification. Azurin. To the solution obtained after 
osmotic extrusion was added 1/10th vol of0.5 M ammonium 
acetate buffer (pH 4.1). This causes some contaminating 
proteins to precipitate. The supernatant was filtered through 
a 0.22-J.Lm filter and the pH was adjusted to 4.1 before being 
loaded onto a column (5 x 5 em) of CM -Sepharose previously 
equilibrated with ammonium acetate (pH 4.1). The column 
was washed with the same buffer, and the rich blue azurin 
was then eluted with ammonium acetate (pH 5.1). The 
fractions containing azurin were concentrated by ultrafiltra
tion (Amicon YM3) and dialyzed against ammonium acetate 
buffer (pH 4.1). The solution was applied to an FPLC Mono 
S cation-exchange column and the azurin eluted with a pH 
gradient of 4.1-9, and further purified using a Sepharose 12 
gel-filtration column at pH 7 .0. 

Plastocyanin. For purification of plastocyanin, the osmotic 
extrusion buffer contained 0.5 mM MgCh, 1.0 mM Cuso •• 
and 1 mM [bis(2-hydroxyethyl)amino]tris(hydroxymethyl)
methane (Bistris) (pH 7.5). Plastocyanin was purified by 
anion-exchange chromatography [Q-Sepharose, 20 mM Bis
tris (pH 6.5)], eluted in buffer containing 0.5 M NaCI followed 
by two consecutive FPLC gel filtrations [Sepharose 12, 
16/50; run 1, 20 mM Bistris (pH 6.5); run 2, 60 mM Tris (pH 
8.0)] and FPLC anion-exchange [Mono Q, 10/10; 20 mM Tris 
(pH 8.0) eluted with a 0-0.5 M NaCI gradient] . All buffers 
also contained 5 mM K3Fe(CN)6 to maintain the Cu(ll) form 
of the protein. 

Mutagenesis. Mutants were prepared by cassette mutagen
esis, in which the DNA sequences were inserted between 
appropriate restriction sites. For preparation of families of 
mutants, as for example at Met-121 in azurin, the approach 
of site saturation was used with mixed oligonucleotide cas
settes NN(G/C) (21) to generate all 20 amino acid substitu
tions at a site at one time. 

Spectral Analysis. CD spectra were recorded on a Jasco 
J-600 spectrophotometer. EPR spectra were recorded on a 
Varian E-Line Century series X-band spectrometer at 77 K 
and 9.077 GHz. 

RESULTS AND DISCUSSION 
Before the successful approaches for expression outlined 
above, many other attempts to produce blue copper proteins 
were tried. Biosynthesis of full-length apoplastocyanin itself 
directly into the cytoplasm of E. coli seemed to cause death 
of the cells. However, fusion proteins such as protein A--apo
plastocyanin could be isolated in good yields. Cleavage of 
this fusion protein by factor Xa (25-27), enterokinase (28-
30), or formic acid (31) (with appropriately unique amino acid 
target sequences inserted between protein A and plastocya
nin), although fraught with various technical difficulties, did 

Mlu I Bglll Narl Hpal Hind Ill Ava I 

g I b I I k I 

Sac II Nhe I Xho I BamHI Hind Ill Xma I Kpn I Ava I 

I h k I I m I n 

FIG. l. General strategies used in the construction of plastocyanin (A) and azurin (B) genes. In each step of gene synth~sis, the plasmid ~as 
cleaved at two adjacent restriction sites. and the next piece was ligated into that opening. This approach allows for tsolatton and amphfi~auon 
of a partially constructed gene for editing. (A) Step 1. a-<: and k; step 2. d and e; step 3, f, g. i, and j; step 4, h. The Ec~RI and Ava I sttes of 
pBR322 between which this gene was constructed were destroyed during ligation. making the. EcoRI and .Ava I sttes wnhm the plastocyamn 
gene unique on the entire plasmid. (B) Step 1. 1-n; step 2. a and k; step 3, k ; step 4. f and J; stepS , g-1 . 
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A 

RBS Met Leu Arg Lys Leu Ala Ala Val Ser Leu Leu Ser Leu 
GTCGAC~ TAAATTAAT ATG CTG CGC AAG CTA GCT GCA GTG TCT CTG CTG TCT CTG 

Nhe I Pst I 

n 
Leu Ser Ala Pro Leu Leu Ala Ile Asp Val Leu Leu Gly Ala Asp Asp Gly Ser Leu 
CTG TCT GCT CCG CTG CTG GCT ATC GAC GTA CT~T GCT GAC GAC ~ CTG 

Sty I Barnll I 

Ala Phe Val Pro Ser Glu Phe Ser Ile Ser Pro Gly Glu Lys lle Val Phe Lys Asn 
GCA TTC GTT CCG TCC ~ TCT ATC TCT CCG GGC GAA AAA ATC GTA TTC AAA AAC 

EcoR I 

Asn Ala Gly Phe Pro His As n Ile Val Phe Asp Glu Asp Ser Ile Pro Ser Gly Val 
AAC ~ TTC CCG CAC AAC ATC GTA TTT GAC GAA GAC TCC AT~T GGC GTT 

Nae I Ava I 

Asp Ala Ser Lys Ile Ser Met Ser Glu Glu Asp Leu Leu Asn Ala Lys Gly Glu Thr 
GAC GCG TCC AAA ATC TCC ATG TCC GAA G~G CTG AAC GCA AAA GGT GAA ACT 

Bgl II 

Phe Glu Va l Al a Leu Ser Asn Lys Gly Glu Tyr Ser Phe Tyr Cys Ser Pro His Gl n 
TTT GAA GTA GCA CTG TCC AAC AAA GGT GAA TAC TCC TTC TAC TGC TCC CCG CAC CAG 

Gly Ala Gly Met Vdl Gly Lys Val Thr Val Asn Trm 
~ GGT ATG GTT GGT AAA GTA ACC li:U....A.M: TAG 

Nar I Hpa I 

B 
RBS Met Leu Arg Lys Leu Ala Ala Val Ser Leu Leu Ser Leu Leu 
C~ AATAACATA ATG CTG CGT AAG CTG G~TG TCT CTG CTG TCT CTG CTG 

Pst I 

n 
Se: Ala Pro Leu Le u Ala Ala Glu Cys Ser Val Asp I le Gln Gly Asn Asp Gln Met 
TC':" GCT CCG CTG CTG GCT GCi\ GM....l1il: TCC GTT ~ CAG GGT A!\I...JiA:LCAG ATG 

Bsm I EcoR V Bel I 

Gln Phe Asn Thr Asn Ala Ile Thr Val Asp Lys Ser Cys Lys Gln Phe Thr Va l As n 
Ci\G TTC AAC ACC AAC GCC ATC ACC ~ AAG AGC TGC AAG CAG TTC ACT li:U....A.M: 

Sal I Hpa I 

Leu Ser H1s Pro Gly As n Leu Pro Lys Asn Val Met G~y His As n Trp V~l Leu Ser 
CTG TCT CAC CCA GGT AAC CTG CCG AAG AAC GTT ATG GGT CAC AAC TGG GTT CTG TCC 

BstE II 

Thr Ala Ala Asp Met Gln Gly Val Val Thr Asp Gly Met Ala Ser Gly Leu Asp Lys 
i\~CT GAC ATG CAA GGC GTT GTC ACT GAC GGT i\7G ~ GGT CTG GAT ~\A 

Sac II Nhe I 

As p Tyr Leu Lys Pro Asp Asp Ser Arg Val Ile Ala His Thr Lys Leu Ile Gly Ser 
GAC TAC CTG AAG CCG GAT GAC '~TT ATC GCC CAC ACC AAG CTG ATC ~ 

Xho I BamH I 

Gly Glu Lys Asp Ser Val Thr Phe Asp Val Ser Lys Leu Lys Glu Gl y Glu Gln Tyr 
GGT GAA AAA GAC TCC GTT ACT TTC GAC GTT TCC ~ AAA GAA GGT GAA CAG TAC 

HinD III 

Xet Phe Phe Cys Thr Phe Pro Gl y His Ser Ala Leu Met Lys Gly Thr Leu Th: Le u 
ATG TTC TTC TGC ACT TT~T CAC TCC GCA CTG i\TG AAA ~ CTG ACT (;TG 

:..ys Trm 
. :..;.,.;.. -rr.G 

Xma I Kpn I 

FIG. 2. Base sequences and restriction 
sites for plastocyanin (A.) and azurin (8), in
cluding the ribosomal binding sites (RBS) and 
the azurin signal sequence from P. auugin
osa . Arrow indicates the junction between the 
signal sequence and the structural gene of 
plastocyanin or azurin that is correctly cleaved 
by£. coli signal peptidase upon cell membrane 
translocation. Each of the restriction sites is 
unique when these genes are located between 
the £coRI and A. va I sites of pBR322 . 

produce apoplastocyanin whose efficient refolding in the 
presence of Cu(Il) has yet to be achieved . 

Far more successful expression was achieved when the 
blue copper proteins were transported to the periplasm as 
constructs involving the leader sequence for P. aeruginosa 
azurin (23, 32) or white campion plastocyanin (20, 21) fol
lowed by a structural gene . In these experiments. vectors 
incorporating the azurin leader followed by either the plas
tocyanin or azurin gene under control of the isopropyl 
J3-o-thiogalactopyranoside-inducible lac promoter and grown 
in medium containing 1 mM Cu(Il) led to the blue copper 
protein , properly processed and folded, being present in the 
periplasm. Use of a construct involving the entire plastocy
anin leader (from white campion) followed by the structural 
gene for poplar plastocyanin also produced properly pro
cessed and folded plastocyanin, although in considerably 
lower yields than were obtained with a vector containing the 
azurin leader/plastocyanin sequence . The correct removal of 

the plastocyanin sequence during processing to generate 
mature plastocyanin upon translocation to the E. coli peri
plasm is an intriguing result as the complete plastocyanin 
leader (66 amino acids) is in fact two concatenated signal 
sequences; the first governs transport ofplastocyanin into the 
chloroplast stroma while the second controls the subsequent 
translocation into the thylakoid lumen. The junction between 
these two sequences is unknown (21). Moreover, growth in 
the presence of 1 mM Cu(II) gave considerably higher yields 
of blue copper proteins than growths without Cu(II), pre
sumably because of the greater resistance to proteolysis of 
the holoproteins (33). Our constructs contained a synthetic 
ribosome binding site designed from a consensus sequence 
(34-36) ; higher yields will likely be possible with more 
efficient ribosome binding sites as, for example, from that of 
the native azurin gene (23). 

Azurin and plastocyanin were characterized by amino acid 
analyses, N-terminal sequencing, determination of the mass 
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A 

TAC Val Tyr Trp Thr Ser 1'10 Phe Met Lys Leu llo Hit Cly Clu Cln Cys AJp Asn A1J Ala Azurin 

B 1 3 • S 6 7 8 9 10 11 12 13 
Gin Met Phe Asn Asp Cys Thr Ser His stop Azu TGI M ltD a 

97.4 

S8.1 

: · 
:- E. Coli Protein 

~ -14 kD (Azurin) 

• 39.8 

of the molecular ion by time-of-flight mass spectrometry . 
UV -visible spectra. and CD. In all cases, the proteins from E. 
coli were indistinguishable from analogous proteins from 
native sources. 

Mutagenesis. General. At least three aspects of the function 
of blue copper proteins hold interest and should be amenable 
to analysis by mutagenic approaches: (i) the copper center, 
including the nature of ligands and their geometry; (ii) intra
molecular electron transmission ; (iii) docking sites involved 
in interactions between proteins and transfer of electrons 
along the redox chain . 

Most of our work has so far focused on the first question 
with preliminary attention to two of the four copper ligands 
(Met-121 and His-46 in azurin) . (The other two ligands in 
azurin are His-117 and Cys-112.) By site saturation (17), we 
have prepared genes for all 19 possible mutants at Met-121 
and His-46. Expression of the Met-121 mutants has shown 
that protein for 20 of these can be demonstrated in the 
peri plasm by Western blot analysis (Fig. 3). Of these , seven 
Met-121 mutants have been isolated as copper-containing 
proteins and characterized in a preliminary way. Of particular 
interest is the observation that all manifest the characteristic 
rich blue color originating most likely in the interaction 
between the copper and the thiolate of Cys-112. Neverthe-

Table 1. Spectroscopic characteristics of azurin mutants based 
on UV -visible and CD observations 

Major peak, nm Minor peak , nm 

Wild type 625 445 
Met-121 - Val 630 459 
Met-121- lie 626 459 
Met-121- Asn 622 447 
Met-121- Asp 622 445 
Met-121- His 612 449 
His-46- Asp 616 458 

The absorbance maxima of the two peaks witlrin the visible region 
for the si x mutants shown are all shifted by relatively small amounts 
due to both the absence of methionine and probably slightly per
turbed geometries of the copper site. 

29.0 

20.1 

14.3 

FtG. 3. Western blot analysis of whole cell extracts of 
cells harboring plasmids for mutants of azurin at Met-121 
(A.) and His-46 (B). (A.) All 19 other amino acids and the 
amber stop codon substitutions for Met-121 show compa
rable amounts of expressed protein . Each of these mutants 
has the same apparent molecular mass as azurin isolated 
from P. aeruginosa . (B) All 10 mutants for His-46 show 
comparable amounts of expressed protein . Lane M, mo
lecular mass standards . 

less . replacement of Met-121 does result in clear changes in 
the electronic spectra as summarized in Table 1. Another 
mutant at this site, Met-121 -+ Leu, increases the redox 
potential by 70 mY and shifts the peak at 625 nm by 5 nm (37). 
Of the 19 mutants at His-46, one has been purified (His-46-+ 
Asp) . It is also a deep blue protein with the spectral charac
teristics outlined in Table 1. CD spectra of the azurin mutants 
show all of the previously identified peaks, although at 
slightly altered frequencies . These results, along with the 
UV-visible data, indicate that the essential integrity of the 
copper site has been retained in these mutants. 

Frozen solution EPR spectra for the wild-type azurin and 
three Met-121 mutants were recorded and the g and A values 
were determined (Table 2) . Preliminary examination of the 
data suggests that the spectra of the mutants are more 
rhombic than the spectrum of the wild-type protein. 

Fascinatingly, a great latitude in ligands , almost univer
sally conserved throughout the blue copper family, can be 
accommodated in these mutants of azurin , while preserving 
the ability to bind copper and apparently normal, stable 
protein folding. [Some exceptional proteins with ligands 
other than the four commonly observed probably exist in 
nature-for example , stellacyanin (38), amicyanin (39), and 
rusticyanin (40).) The ability to generate analogues of these 
ligand environments at will should prove particularly useful. 

Other examples of substituting either a conserved or a 
semiconserved residue of azurin have recently been re
ported. Both His-35 -+ Lys and Glu-91 -+ Gin have un
changed spectroscopic and redox properties, while in Phe-
114 -+ Ala the optical band is downshifted by 7 nm and the 

Table 2. Spin hamiltonian parameters for wild-type azurin [50 
mM ammonium acetate (pH 7)) and Met-121 mutants [pH9] 

gn A.1• x10' em 1 
g~ 

Wild type 2.271 61 2.054 
Met-121 - Asn 2.249 36 2.056 
Met-121- lie 2.246 35 2.060 
Met-121- Val 2.243 34 2.064 
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Ala Gly Cys }lli Met M kDa 

-;...?"""-...... --~--,...~· . -# 09• • ··. :- .__._ ... - 97.4 
~ ..-- 58.1 

i 39.8 

'~ . 
;!' •· ~ 

29 ..... .~ ": 

--· ... ~;... 
. ~- f"::; ~: . • • 20 .. 14.3 

£ . coli protein 

Plastocyanin 

r~~~;~~~t::~?t~:~v;·~ · 

• ~~:~~~~--- -
FtG. 4. Western blot analysis of plastocyanin and four mutants at 

Met-92 . Three of the mutants (His, Gly, and Ala) show a band at the 
same molecular mass as the native plastocyanin . No protein can be 
visualized for the Met-92 --+ Cys mutant. Lane M. molecular mass 
standards . 

reduction potential is lowered by 20-24 mV {41). Another 
mutation at a conserved residue within the hydrophobic 
patch , Met-44- Lys, causes only a minimal effect on the 
spectroscopic properties but significantly affects the electron 
self-exchange rate {42). 

Plasrocyanin . The ability to create a particular mutation 
against both the azurin and plastocyanin backgrounds pro
vides one of the rationales for the concurrent study of both 
families of proteins. To this end , we have prepared mutants 
at Met-92 of plastocyanin. {This is the ligand in plastocyanin 
analogous to Met-121 in azurin.) Site saturation generated all 
19 mutant genes. Of these mutants, Met-92- Cys, Met-92-
His, Met-92- Ala, and Met-92- Gly have been studied . On 
producing these mutants,£. coli has a frustrating tendency to 
lyse {behavior not observed with analogous mutants of 
azurin) . This problem can be circumvented if the cells are 
aerated but not agitated during expression. Western blot 
analysis {Fig. 4) shows protein for the mutants Met-92- His, 
Met-92- Ala, and Met-92- Gly present in the periplasm; 
no protein for the Met-92- Cys has been observed . In no 
case has it so far been possible to isolate a blue copper
containing protein with any of these mutants. This may be 
due to a kinetic difficulty these proteins have in acquiring the 
copper or because the thermodynamic affinity for a copper 
ligand has been sharply reduced . Thus, although azurin and 
plastocyanin share very similar overall three-dimensional 
structures and almost identical copper sites, analogous mu
tations in these two systems seem to behave differently. 
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Selected M121 mutants in the pET9a expression system. 

The site-saturation mutagenesis of the azurin Cu ligand M121 described 

in the previous paper was carried out using cassette mutagenesis on the 

synthetic azurin gene cloned into pUC18. Subsequent to this work, a better 

expression system for azurin was developed in this lab (Germanas et al. 1993). 

Rather than transfer all the previously constructed M121 mutants into the pET 

expression system, representative mutants at M121 have been constructed 

directly from the wild type azurin cloned into pET9a using PCR mutagenesis. 

The sense-strand primer spans the upstream Nde I restriction enzyme 

site. (See figure 1.) The anti-sense primer starts downstream of the azurin gene 

and contains two mutations, one to give the desired amino acid at position 121 

and one to restore the Bgl II restriction enzyme site that is lost upon ligation to 

the compatible Bam HI overhang from the pET9a vector. Bam HI cannot be used 

to clone azurin into pET9a because our synthetic gene contains an internal Bam 

HI site. 

The PCR reactions contained BMB buffer, dNTP's (0.2 mM each), 5 units 

Taq polymerase, 0.35 J..Lg template DNA, and 250 pmoles of each primer in a 

total volume of 100 J..Ll. Reaction mixtures overlaid with mineral oil were placed 

in a Perkin-Elmer DNA Thermal Cycler 480. Templates were denatured at 96°C 

for 5 minutes followed by 30 PCR cycles denaturing at 96°C for 30 seconds, 

annealing at 55°C for 30 seconds, and polymerizing at 72°C for 1 minute. Final 

polymerization was given 5 minutes at 72°C. The PCR products were extracted 

from the reaction mix using 15 J..Ll Qiaex II resin according to the manufacturer's 

instructions (Qiaex II Gel Extraction Kit, Qiagen, Chatsworth, CA). The DNA 

was eluted with 20 J..Ll water and digested with Nde I and Bgl II in BMB buffer H 

(50 mM Tris HCl, 10 mM MgClz, 100 mM NaCl, 1 mM dithioerythritol - final 

concentrations). The vector, pET9a/bla (pET9a containing the ~-lactamase gene, 

a kind gift from Dr. Claire Slutter), was digested with Nde I and Bam HI in New 

England Biolabs (Beverly, MA) Bam HI buffer. Digests were purified on a 1.2% 

low melting point agarose gel; the bands were cut out and the agarose removed 

by overnight digestion with 1 unit of Gelase (Epicenter Technologies, Madison 

WI) followed by ethanol precipitation and resuspension in 20 J..ll water. Ligations 

contained 1x NEB ligation buffer, 50 units ligase (New England Biolabs Beverly, 

MA), an estimated 1.5 J..Lg pET9a vector DNA, and the PCR products. After 21 
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hours at 16°C, 1 f.ll of each ligation was transformed into 20 J.ll of competent 

BL21(DE3) cells (Novagen, Madison, WI). 

Initial screening of transformed colonies was done by PCR, starting with 

5 f.ll of cells suspended in 50 f.ll water. PCR was performed as above in a final 

reaction volume of 25 f.ll using the T7 promoter and terminator primers and 

0.125 units of Taq polymerase per reaction. After 55 cycles, the results were 

assessed on a 1.2% agarose gel. Qiagen Plasmid Maxipreps were done on 

colonies with inserts of the correct size, starting with 100 ml cultures of cells 

grown overnight in LB with 35 J.lg/ml kanamycin. After isopropanol 

precipitation, the DNA was resuspended in 100 J.ll water (average yields: 100 J.ll 

at 4.2 J.lg/J.ll). The identities of the mutants were confirmed by dye-terminated 

cycle sequencing with the T7 promoter and terminator primers at the Beckman 

Institute DNA Sequencing Facility. 

Germanas, J.P., Di Bilio, A. J., Gray, H. B. and Richards, J. H. (1993). "Site 
saturation of the histidine-46 position in Pseudomonas aeruginosa azurin: 
Characterization of the His46Asp copper and cobalt proteins." Biochem. 32: 
7698-7702. 
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Figure A.l 

Oligonucleotides for selected M121 mutants in pET9a. Restriction enzyme 

recognition sites are underlined; mutations at position 121 are in boldface. 
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Azfront.s 

CTT TAA GAA GGA GAT ATA CAT ATG CTG CG 

M121G.as 

GCA GCC AGA TCT CTA TTT CAG AGT CAG GGT ACC TTT ACC CAG T 

M121K.as 

GCA GCC AGA TCT CTA m CAG AGT CAG GGT ACC TTT TTT CAG T 

M121D.as 

GCA GCC AGA TCT CTA m CAG AGT CAG GGT ACC TTT A TC CAG T 

M121L.as 

GCA GCC AGA TCT CTA m CAG AGT CAG GGT ACC TTT CAG CAG T 
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Map and Gene Sequence of pET/ASA 



139 

Figure B.l Azurin gene with some potentially useful (though not necessarily 

unique) restriction enzyme sites annotated. The junction between the signal 

sequence and the mature protein is shown. The metal ligands are indicated in 

the protein sequence by boldface type. 
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Nde I Pst I <- Signal sequence 
ATGCTGCGTAAGCTGGCTGCAGTGTCTCTGCTGTCTCTGCTGTCTGCTCCGCTGCTGGCT 
M L R K L A A V S L L S L L S A P L L A 

Mature protein -> Bel I 
GCTGAATGCTCCGTTGATATCCAGGGTAATGATCAGATGCAGTTCAACACCAACGCCATC 
A E C S V D I Q G N D Q M Q F N T N A I 

Sal I Hpa I BstE II 
ACCGTCGACAAGAGCTGCAAGCAGTTCACTGTTAACCTGTCTCACCCAGGTAACCTGCCG 
T V D K S C K Q F T V N L S H P G N L P 

Sac II 
AAGAACGTTATGGGTCACAACTGGGTTCTGTCCACCGCGGCTGACATGCAAGGCGTTGTC 
K N V M G H N W V L S T A A D M Q G V V 

Nhe I Xho I 
ACTGACGGTATGGCTAGCGGTCTGGATAAAGACTACCTGAAGCCGGATGACTCTCGAGTT 
T D G M A S G L D K D Y L K P D D S R V 

BamH I 
ATCGCCCACACCAAGCTGATCGGATCCGGTGAAAAAGACTCCGTTACTTTCGACGTTTCC 
I A H T K L I G S G E K D S V T F D V S 

Hind III xma I 
AAGCTTAAAGAAGGTGAACAGTACATGTTCTTCTGCACTTTCCCGGGTCACTCCGCACTG 
K L K E G E Q Y M F F C T F P G H S A L 

Kpni 
ATGAAAGGTACCCTGACTCTGAAATAG 
M K G T L T L K End 
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Figure B.2 Map of the plasmid pET9A/ ASA: the azurin gene, with signal 

sequence, cloned downstream of the T7 polymerase promotor in the expression 

vector pET9a. The origin of replication and kanamycin resistance gene are also 

shown. Recognition sites for restriction enzymes cutting only once in the 

plasmid are shown along the outside of the plasmid. 
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EcoRI 4750 
Espl 4290 

Kpnl 4217 
Asp718 4217 

BamH I 4112 
Sac II 4005 

BstE II 3959 
Hpa I 3941 
Bell 3880 

Pst I 3807 
Nde I 3788 
Xbal 3749 
Bglll 3691 

Sphl 3498 

Eagl 3121 

Msc I 2616 

Kanamycin resistance 

pET9a/ASA 

+ 
4752 base pairs 

Unique Sites 

998 HgiE II 

1171 AlwN I 

origin of replication 

1816 Xca I 
1835 BsaA I 
1840 Tth111 I 

1996 Pvu II 
2027 Xmn I 
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Figure C.l DNA and protein sequences for the 'T9' soluble CuA domain from 

Thermus thermophilus. The valine following the initiating methionine is residue 

44 in the sequence of the intact cytochrome c subunit II. The metal ligands, 

H117, C149, Q151, C153, H157, and M160, are in boldface. In the plasmids with 

surface histidines introduced by site-directed mutagenesis, the non-ligand, 

surface histidine H117 (underlined) was mutated to a glutamine residue. These 

plasmids differ from the original CuA fragment described by Slutter (Slutter 

1996) by the introduction of a silent mutation at V132 (GTC -> GTT). 

Slutter, C. E. (1996). Overexpression and Characterization of the Copper A 
Domain from Cytochrome ba3 or Thermus thermophilus. Division of Chemistry 
and Chemical Engineering. Pasadena, California Institute of Technology. 
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ATGGTCATTCCCGCCGGAAAGCTTGAGCGCGTGGACCCCACCACGGTAAGGCAGGAAGGC 

M V I P A G K L E R V D P T T V R Q E G 

CCCTGGGCCGACCCGGCCCAAGCGGTGGTGCAGACCGGCCCCAACCAGTACACGGTCTAC 

P W A D P A Q A V V Q T G P N Q Y T V Y 

GTCCTGGCCTTCGCCTTCGGCTACCAGCCGAACCCCATTGAGGTGCCCCAAGGGGCGGAG 

V L A F A F G Y Q P N P I E V P Q G A E 

ATCGTCTTCAAGATCACGAGCCCGGACGTGATCCACGGCTTTCACGTGGAGGGCACCAAC 

I V F K I T S P D V I H G F H V E G T N 

ATCAACGTGGAGGTGCTCCCGGGCGAGGTTTCCACCGTGCGCTACACCTTCAAAAGGCCC 

I N V E V L P G E V S T V R Y T F K R P 

GGGGAGTACCGCATCATCTGCAACCAGTACTGCGGCCTAGGCCACCAGAACATGTTCGGC 

G E Y R I I C N Q Y C G L G H Q N M F G 

ACGATCGTGGTGAAGGAGTGA 

T I V V K E Stop 
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Figure C.2 Map of the plasmid pET9a/T9CuA: the 'T9' soluble CuA fragment 

from Thermus thermophilus cloned downstream of the T7 polymerase promoter 

in the expression vector pTE9a. The origin of replication and the kanamycin 

resistance gene are also shown. Recognition sites for restriction enzymes cutting 

only once in the plasmid are shown along the outside of the plasmid. 
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EcoR I 4684 
Nhe I 4453 

Espl 4224 
BamH I 4172 
Avril 4126 
Seal 4116 

Xcm I 4026 
Pmll 4013 Kanamycin resistance 

Sfi I 3856 
Nde I 3788 
Xbal 3749 

Bgl II 3691 

Sphl 3498 

Sail 3409 
HinC II 3409 

Eagl 3121 

BspM I 2997 

Msc I 2616 

785 PaeR71 
785 Xho I 

998 HgiE II 
1058 Eco57 I 

1171 AlwN I 

1816 Xca I 
1840 Tth 111 I 
Pvu II 


