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Abstract

The proliferation of smartphones and other internet-enabled, sensor-equipped consumer devices

enables us to sense and act upon the physical environment in unprecedented ways. This thesis

considers Community Sense-and-Response (CSR) systems, a new class of web application for acting

on sensory data gathered from participants’ personal smart devices. The thesis describes how rare

events can be reliably detected using a decentralized anomaly detection architecture that performs

client-side anomaly detection and server-side event detection. After analyzing this decentralized

anomaly detection approach, the thesis describes how weak but spatially structured events can be

detected, despite significant noise, when the events have a sparse representation in an alternative

basis. Finally, the thesis describes how the statistical models needed for client-side anomaly detection

may be learned efficiently, using limited space, via coresets.

The Caltech Community Seismic Network is a prototypical example of a CSR system that har-

nesses accelerometers in volunteers’ smartphones and consumer electronics. Using CSN, this thesis

presents the systems and algorithmic techniques to design, build and evaluate a scalable network for

real-time awareness of spatial phenomena such as dangerous earthquakes.
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Chapter 1

Introduction

Phones, wearable sensors, and home sensing are dramatically increasing the number of ways we

measure the physical world. The quantity and variety of sensors in these devices promise to make

applications more powerful and intuitive by allowing online services to observe the user’s immediate

physical context, and infer the broader environmental context from multiple users’ data. Systems

utilizing networked consumer-owned sensors - collectively referred to here as sensor-aware apps

- can have sweeping impact on how we collect, access, and act on information relevant to our

physical world. For example, commercial products like Google Glass, the Jawbone activity tracking

wristband, the Nest home thermostat, and the FitBit are already quantifying sensory data about

our environment, our health, and our homes. Inevitably, such devices bought for personal use will

provide information that, when viewed in aggregate, provides insight into large-scale social and

environmental phenomena.

This thesis focuses on a particular class of sensor-aware app, called Community Sense-and-

Response (CSR) systems, and develops technology needed to make reliable, real-time decisions about

spatial events such as earthquakes and natural disasters using large numbers of unreliable consumer

sensors. CSR systems are distinguished from standard web applications by the use of individu-

ally owned or operated commercial sensor hardware as a means of observing, understanding, and

ultimately acting on physical events. Just as social networks connect and share human-generated

content, CSR systems work to gather, share, and act on sensory data from people’s internet-enabled

devices. I discuss the Caltech Community Seismic Network as a prototypical CSR system harnessing

accelerometers in smartphones and consumer electronics, and describe the systems and algorithmic

challenges of designing, building and evaluating a scalable system for real-time awareness of danger-

ous earthquakes using large numbers of unreliable consumer sensors.
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1.1 From smart devices to sensitive devices

In the last several years, mobile computing has drastically reshaped the way that people produce

and access information and is now the dominant means of internet access worldwide. While it

is easy to think of mobile devices simply as smaller computers, smart devices like phones and

tablets also possess an array of sensors such as gyroscopes, cameras, accelerometers, and compasses

not present on traditional computers. The smartphone and tablet market has certainly paved the

road technologically for inexpensive internet-enabled, battery-powered sensor devices, but perhaps

equally importantly, mobile computing has created the expectation that web services should be

ubiquitously available during daily life. I conjecture that the omnipresence of mobile devices has

also led many people to an expectation or desire that digital services be cognizant of their immediate

physical context, providing contextually relevant information as needed and retreating unobtrusively

at other times.

These trends partly explain the recent emergence of so many sensor-oriented consumer devices.

Many products in this space are directly marketed towards personal sensing, environmental sensing,

and providing contextually relevant information. Examples of personal sensing include health and

wellness sensors such as the Basis smart watch, or the Nike FuelBand activity tracker and fitness

monitor. Home-oriented products from Nest (such as thermostats and smoke alarms) technologically

refresh familiar domestic products with the intent of optimizing their owner’s immediate environment

through unobtrusive measurements and mobile-friendly interfaces. Google’s recent $3B acquisition

of Nest and its foray into wearable technologies (Glass and Android Wear) demonstrate the web

giant’s increasing interest in sourcing physically relevant information to better provide its users with

“The right information at just the right time”.

1.2 The sensed world

“The paramount value of the devices, in a sense, lies not in the hardware itself but the

interconnectedness of that hardware. As the devices talk to each other, by building

an aggregate picture of human behavior, they anticipate what we want before even we

know.” (Marcus Wohlsen, on Google’s $3B acquisition of Nest)

Nearly 2 million Android and iOS devices are activated every day, each carrying numerous sensors

and a high-speed internet connection. At present the core Android mobile OS recognizes 13 distinct

sensor types, with additional “composite” sensors such as step counters. Apple’s iOS offers similar

sensors and a “motion co-processor”. These sensors are largely focused on the phone and tablet

market, but new product form factors like wristbands, glasses, watches, and home sensing promise

to dramatically increase the repertoire of sensors available to the consumer. While the immediate



4

intent of these products is to sense the user’s personal environment, the same technology is equally

applicable to sensing city-wide or global environments.

Burke [16] first coined the term participatory sensing to describe potential applications that “task

deployed mobile devices to form interactive, participatory sensor networks that enable public and

professional users to gather, analyze and share local knowledge,” and indeed, the last several years

have witnessed the creation of several projects that seek to crowdsource sensor data from public

volunteers or app users via consumer hardware and web technologies. For example, applications of

participatory sensing include:

• Understanding traffic flows [63, 98, 68, 12]

• Identifying sources of pollution [6, 2]

• Monitoring public health [83]

• Responding to natural disasters like hurricanes, floods, and earthquakes [24, 35, 37, 66]

• Predicting adoption of trends and estimating app installation rates [90]

Additionally, [14] provides an excellent overview of how the tools of the social and mobile Web

facilitate crowdsourcing data from individuals and their sensor devices, with an emphasis on human

participation in sharing and understanding data.

These systems are made possible by volunteer sensors and low-cost web solutions for data col-

lection and storage. However, as these systems mature, they will undoubtedly extend beyond data

collection and begin to take real-time action on the community’s behalf. For example, traffic net-

works may reroute traffic around an accident, or a seismic network may automatically slow trains

to prevent derailing.

1.3 Reliable actions from unreliable data

In principle, sensing the world through consumer hardware is merely an HTTP PUT away. However,

one of the main claims of this thesis is that acting on data from community sensors is fundamentally

different from acting on data from scientific sensors, as well as fundamentally different from acting

on data from most web applications. The potential scale of raw data is vast, even by the standards

of large web applications. Community sensors are also exposed to noisy, dynamic environments,

and data recorded by community sensors often include signals produced by the people who operate

them. Additionally, many of the desired applications push the limits of our current understanding

of physical phenomena.

Scale. Given that the most popular mobile apps can boast more than 100,000,000 downloads, it

is exciting to imagine sensor-aware apps growing into vast global sensor applications. However, the
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volume of raw data that could be produced by such a CSR network is astounding by any standard.

Smartphones and other consumer devices often have multiple sensors, and can produce continuous

streams of GPS position, acceleration, rotation, audio, and video data. While events of interest (e.g.,

traffic accidents, earthquakes, disease outbreaks) may be rare, devices must monitor continuously

in order to detect them. Beyond obvious data heavyweights like video, rapidly monitoring even

a single accelerometer or microphone produces hundreds of megabytes per day. Such data rates

become challenging when we consider sensor-aware apps containing tens of thousands or millions of

devices. For example, equipping taxi cabs with GPS devices or air quality sensors could easily yield

a network of 50,000 sensors in a city like Beijing [109]. At these scales, even collecting a small set

of summary statistics becomes daunting: if 500,000 sensors reported a brief status update once per

minute, the total number of messages would rival the daily load in the Twitter network.1

Non-traditional sensors. Community devices are also different from those used in traditional

scientific and industrial applications. Beyond simply being lower in accuracy (and cost) than “pro-

fessional” sensors, community sensors may be mobile, intermittently available, and affected by the

unique environment of an individual’s home or workplace. For example, the accelerometer in a

smartphone could measure earthquakes, but will also observe user motion.

Complex phenomena. By enabling sensor networks that densely cover cities, community sensors

make it possible to measure and act on a range of important phenomena, including traffic pat-

terns, pollution, and natural disasters. However, due to the previous lack of fine-grained data about

these phenomena, CSR systems must simultaneously learn about the phenomena they are built to

act upon. For example, a community seismic network may need to use measurements of frequent

smaller quakes in order to obtain the models of ground composition needed to accurately estimate

damage during rare, large quakes.

These challenges are compounded by the need to make reliable decisions in real-time, and with

performance guarantees. For example, choosing the best emergency response strategies after a natu-

ral disaster could be drastically aided by real-time sensor data. However, false alarms and inaccurate

data can have high costs; consequently, rigorous performance estimates and system evaluations are

prerequisites for automating real-world responses.

1.4 The Caltech Community Seismic Network

CSR systems have the potential to change how we understand and act on city-wide physical phenom-

ena like natural disasters. One compelling example if this is the Caltech Community Seismic Network

1http://www.sec.gov/Archives/edgar/data/1418091/000119312513390321/d564001ds1.htm

http://www.sec.gov/Archives/edgar/data/1418091/000119312513390321/d564001ds1.htm
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(CSN) project. CSN is a system for real-time earthquake measurement and response. In contrast to

traditional seismic networks that use a relatively small number of high quality seismometers, CSN

emphasizes large numbers of consumer-grade sensors that are owned and operated by volunteers

in the community. While this presents numerous challenges, it also promises a degree of spatial

resoultion that would be infeasible for traditional networks. Indeed, given that smartphones, game

consoles, and many wearable devices are equipped with MEMS accelerometers, it’s fair to say that

millions of sensors have already been deployed and are merely waiting to be harnessed. Using even

a fraction of these sensors could provide a high spatial density that makes possible a range of ap-

plications in disaster response and earth science. The CSN system is used as a motivating example

throughout much of this thesis; it is presented in detail in Chapter 3, and is outlined here.

Figure 1.1: CSN volunteers contribute data from low-cost accelerometers (left) and from Android
smartphones via the CSN app CrowdShake (right).

1.4.1 Community Sensors

The CSN project is designed to incorporate large numbers home and personal sensor devices that

stream data to cloud applications. To better understand how these devices can be used for event

detection and response, the CSN project has developed client applications for home (desktop) and

personal (phone and tablet) platforms. Fig. 1.1 illustrates a USB accelerometer that volunteers may

connect directly to their home laptop or desktop and an Android app for phones and tablets. These

client types differ drastically in their ambient noise profiles, as well as in available computation and

network resources. For example, continuously transmitting data may be acceptable for a desktop

client, but would be an excessive drain on battery power and bandwidth for a mobile client.

1.4.2 Applications

Low cost, volunteer sensor devices make it possible to network larger numbers of sensors than

has been done in traditional seismic networks. For example, the California Integrated Seismic

Network operates several hundred sensors across California, while CSN seeks thousands of sensors
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per city. Instrumenting a city block-by-block or building-by-building offers the opportunity for

several valuable applications, including detailed disaster response planning, earth science, building

health monitoring, and earthquake early warning.

Disaster response planning. Given that a large earthquake is likely to produce varying levels of

damage throughout a city, emergency response teams would benefit from detailed maps of damage

severity while planning emergency responses. At present, aerial photos and satellite images are used

to assess damage after severe earthquakes, as shown in Fig. 1.2. This reconnaissance costs precious

time. Instead, a city-wide network of sensors could provide fine-grained estimates of shaking intensity

as a proxy for damage levels.

Earth science. The complex patterns of acceleration caused by earthquakes are due in part

to variations in subsurface structure, and the particular details of the fault rupture process. High

spatial sensor density provides observations of these effects, reducing the need for model interpolation

between sensor locations.

Building health monitoring. Earthquakes may damage buildings in ways that are not readily

apparent, but that could be inferred from sensors. For example, changes in a building’s resonant

frequency may indicate a loss of stiffness resulting from cracks or broken welds. Similarly, the occur-

rence of structural damage may manifest in acoustic or accelerometer data. Estimates of structural

health could be used to prioritize post-quake inspections and help determine which buildings are

safe to re-enter.

Earthquake Early Warning. Earthquake Early Warning (EEW) is another exciting application

of community seismic networks. EEW operates on the principle that once an earthquake is detected,

warning messages can be transmitted ahead of the relatively slow seismic waves. Warning times of

tens of seconds to a minute are possible, though warning depends on the speed of detection and the

distance from detectors to the recipient of the warning message. Consequently, large numbers of

sensors may help in rapidly detecting an event. Community networks may also allow countries with

limited seismic infrastructure - such as Haiti, Peru, or India - to establish early warning systems.

1.5 Decentralized Event Detection

Once sensor data is available, what is involved in using it? Using earthquakes as a concrete example,

suppose that a strong earthquake begins near a metropolitan area, and that a 0.1% of the population

contributes accelerometer data from a personally-owned internet-enabled device. In Los Angeles

county, this means data from 10,000 noisy sensors located on a coastal basin of rock and sediment,

striped with fault lines, and cross-hatched with vibration-producing freeways. A recent seismic study
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Figure 1.2: A satellite-based damage map from Haiti, following the January 12, 2010 earthquake,
depicts localized variation in damage. Sensors could provide such information to emergency teams
without waiting for aerial photos. Image provided by Google.

in Long Beach, CA demonstrates this in Fig. 1.3. How could we detect the quake, and estimate its

location and magnitude as quickly as possible?

One direct approach from detection theory for determining the occurrence of an event (i.e.,

quake) from noisy observations is to collect all data centrally, and perform classification using a

likelihood ratio test:
P [ all measurements | strong quake ]

P [ all measurements | no quake ]
> τ (1.1)

This test declares a detection if the ratio exceeds a pre-determined threshold τ . Unsurprisingly,

this involves transmitting a daunting amount of data; a global network of 1M phones would be

transmitting 30TB of acceleration data per day! Additionally, the likelihood ratio test requires

the distribution of all sensor data, conditioned on the occurrence or non-occurrence of a strong

earthquake. Each community sensor is unique, and so modeling these distributions requires modeling

each sensor individually.

A natural next step is a decentralized approach. Suppose each device instead only transmits

a finite summary of its current data, called a pick message. The central server again performs a

hypothesis test, but now using the received pick messages instead of the entire raw data. Results

from decentralized hypothesis testing theory state that if the sensors’ measurements are independent

conditional on whether there is an event or not, and if the probability of the measurements is known

in each case then the asymptotically optimal strategy is to perform a hierarchical hypothesis test
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Figure 1.3: A map of peak acceleration amplitudes experienced in Long Beach, California during
the Carson earthquake, as recorded by Signal Hill Petroleum. The map shows large variations in
peak acceleration and the effects of a minor fault line.

[99]: each sensor individually performs a hypothesis test, for some threshold τ , and picks only when

P [ one sensor’s measurements | strong quake ]

P [ one sensor’s measurements | no quake ]
> τ. (1.2)

Similarly, the Cloud server performs a hypothesis test on the number of picks S received at a

given time, and declares a detection when a threshold τ ′ is exceeded:

Bin(S; rT ;N)

Bin(S; rF ;N)
≥ τ ′, (1.3)

The parameters rT and rF are the true positive and false positive pick rates for a single sensor, and

Bin(·, p,N) is the probability mass function of the Binomial distribution. Asymptotically optimal

decision performance can be obtained by using the decision rules (1.2) and (4.2) with proper choice

of the thresholds τ and τ ′ [99]. Additionally, collecting picks instead of raw data may help preserve

user privacy by reducing the amount of raw sensor data that is centrally collected.

Challenges for the classical approach. While this classical, decentralized detection approach

appears promising, detecting rare events from community sensors presents three main challenges:

1. How can we perform likelihood ratio tests on each sensor’s data, when we do not have enough

data (e.g., measurements of large, rare quakes) to accurately model sensor behavior during an

event?

2. How can we model each sensor? Server-side modeling scales poorly, while on-device learning

involves computational and storage limits.
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3. How can we overcome the (strong) assumption of conditionally independent sensors, and in-

corporate spatial dependencies?

Next, we will consider how the abundance of normal data can be leveraged to detect rare events for

which we lack training data. Then, we will see that new tools from computational geometry make

it possible to compute the needed probabilistic models on resource-constrained devices. Finally,

learning on the server-side adapts data aggregation according to spatial dependencies.

1.5.1 Leveraging “normal” data

The client-side hypothesis test in (1.2) requires two conditional probability distributions. The nu-

merator models a particular device’s acceleration during a strong quake, and due to the rarity of large

quakes is impractical to obtain. In contrast, the denominator can be estimated from abundantly

available “normal” data. Can we still hope to produce reliable picks?

It turns out that under mild conditions, a simple anomaly detection approach that uses only the

probability of an acceleration time series in the absence of a quake can obtain the same asymptotically

optimal performance. A given sensor now picks when

P [ one sensor’s measurements | no quake ] < τ. (1.4)

For an appropriate choice of threshold, this can be shown to produce the same picks as the full

hypothesis test, without requiring a probabilistic model of sensor data during future, unknown

quakes.

1.5.2 Learning on smartphones with Coresets

The above anomaly detection scheme makes use of the abundant “normal” data produced by each

device, but leaves us the challenge of computing a distribution over the sensor data. In principle,

each sensor could maintain a history of its observations, and periodically estimate a probabilistic

model describing that data. On a mobile device, this means logging around 3GB of acceleration data

per month. Storing and estimating models on this much data is a burden on volunteers’ smartphone

resources. Could we accurately model a sensor’s data with (much) less storage?

In the CSN system, sensor data is modeled by a Gaussian Mixture Model (GMM) over a feature

vector of acceleration statistics from short time windows, similar to how phonemes are used in speech

recognition. GMMs are flexible, multi-modal distributions that can be practically estimated from

data using the simple EM algorithm [11]. In contrast to estimating a single Gaussian, which can

be fit knowing only the mean and variance of the data, estimating a GMM requires access to all

the data; formally, GMMs do not admit finite sufficient statistics. This precludes, for example, our
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ability to compress the 3GB of monthly acceleration data and still recover the same GMM that

would have been learned from the full data. Fortunately, it turns out that the picture is drastically

different for approximating a GMM: a GMM can be fit to an arbitrary amount of data, with an

arbitrary approximation guarantee, using a finite amount of storage!

A tool from computational geometry, called a coreset, makes such approximations possible.

Roughly, a coreset for an algorithm is a (weighted) subset of the input, such that running the

algorithm on the coreset gives a constant-factor approximation to running the algorithm on the full

input. Coresets have been used to obtain approximations for a variety of geometric problems, such

as k-means and k-medians clustering.

Figure 1.4: A coreset for Gaussian Mixture Models is a small, weighted subset of the data that
allows us to fit a model that is “almost as good as” a model fit to the full dataset. The green bars
denote the scalar weights γj associated with each selected point.

It turns out that many geometric coreset techniques can also provide approximations for statis-

tical problems. Given an input dataset D, we would like to find the maximum likelihood estimate

for the means and variances of a Gaussian mixture model, collectively denoted θ. A weighted set C

is a (k, ε)-coreset for GMMs if with high probability the (weighted) log likelihood on the sampled

data, denoted L(C | θ), is an ε approximation to the log likelihood on the full data L(D | θ), for any

mixture of k Gaussians:

(1− ε)L(D | θ) ≤ L(C | θ) ≤ φ(D | θ)(1 + ε).

[44] showed that given input D, it is possible to sample such a coreset C whose size is independent

of the size of input D (i.e., only depends polynomially on the dimension of the input, the number of

Gaussians k, and parameters ε, δ), with probability at least 1−δ for all (non-degenerate) mixtures θ

of k Gaussians. This implies that learning mixture model parameters θ from a constant size coreset
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C can obtain approximately the same likelihood as learning the model from the entire, arbitrarily

large D.

But how do we find C? [44] showed that efficient algorithms to compute coresets for projective

clustering problems (e.g., k-means and generalizations) can provide coresets for GMMs. A key insight

is that while uniformly subsampling the input may miss “important” regions of data, an adaptive

sampling approach is likely to sample from “enough” regions to reliably estimate a mixture of k

Gaussians; weighting the samples accounts for the sampling bias. Previous work [59] also identified

that coresets for many optimization problems can be computed efficiently in the parallel or streaming

model, and several of those results apply here. In particular, a stream of input data can be buffered

to some constant size, and then compressed into a coreset. Careful merging and compressing of such

coresets provides an approximation to the entire stream so far, while using space and update time

polynomial in all the parameters, and logarithmic in n.

1.5.3 Understanding Spatial Phenomena

Quake detection in community networks requires finding a complex spatio-temporal pattern in a

large set of noisy sensor measurements. The start of a quake may only affect a small fraction of

the network, so the event can easily be concealed in both single-sensor measurements and network-

wide statistics. Data from recent high-density seismic studies, shown in Fig. 1.3, demonstrate that

localized variations in ground structure significantly impact the magnitude of shaking at locations

only a kilometer apart. Consequently, effectively detecting earthquakes and estimating their impact

requires algorithms that can learn subtle dependencies among sensor data, and detect changes within

groups of dependent sensors.

The “classical” approach described in Sec. 1.5 assumes that the sensors provide independent,

identically distributed measurements conditioned on the occurrence or non-occurrence of an event.

In this case, the Cloud server would declare a detection if a sufficiently large number of sensors

report picks. However, in many practical applications, the particular spatial configuration of the

sensors matters, and the independence assumption is violated. Here, the natural question arises

of how (qualitative) knowledge about the nature of the event can be exploited in order to improve

detection performance.

Suppose that a small fraction of sensors in a large network observe the initial effects of a spatial

phenomena. For example, a small number of smoke detectors may observe the start of a fire,

or seismometers near a fault line may first observe shaking. If each sensor transmits a binary

observation, the signal received by the Cloud server may be viewed as transmitting a vector x ∈ Rp

through a noisy channel where the signal is mostly zeros (sparse), but many bits in the received

vector y are flipped due to noise. We should expect nearby sensors to be strongly correlated during

a quake. If we knew groups of correlated sensors, detection could be improved by testing each group
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separately.It turns out that this intuition (and some desirable analytic properties) can be captured

by learning a orthonormal change-of-basis matrix that projects the binary messages received by

the server onto a coordinate system that, roughly, aggregates groups of strongly correlated sensors.

Given such a matrix B with columns bi, . . . ,bp, the server declares an event when

max
i

bTi y > τ

where τ again denotes some scalar threshold. To obtain reliable detection when the signal is weak

(measured by the `0 pseudo-norm, ||x||0 <
√
p), traditional hypothesis testing requires the error rate

of each sensor (each element of x) to decrease as the number of sensors p increases. This is in stark

contrast to our intuition that more sensors should be better, and in contrast to the “numerous-but-

noisy” approach of community sensing. However, Chapter 5 shows that if the matrix B is sparsifying,

i.e., ||BTx||0 = pβ , ||x||0 = pα, 0 < β < α < 1/2, then the test maxi b
T
i y > τ gives probability

of miss and false alarm that decays to zero exponentially as a function of the “sparsification ratio”

||x||0/||BTx||0, for any rate rF < 1/2 of pick errors. Effectively, this allows large numbers of noisy

sensors to contribute to reliable detection of signals that are observed only by a small fraction (||x||0)

of sensors.

Learning to sparsify. The success of the above result depends on B’s ability to concentrate weak

signals. We could learn a basis B that optimizes ||BTx||0 by solving

min
B
||BTX||0, subject to BBT = I (1.5)

where X is a matrix that contains binary observations as its columns and ||·||0 is the sum of non-zero

elements in the matrix. The constraint BBT = I ensures that B remains orthonormal.

(5.3) can be impractical to compute, and can be sensitive to noise or outliers in the data. Instead,

we may wish to find a basis that sparsely represents “most of” the observations. More formally, we

introduce a latent matrix Z, which can be thought of as the “cause”, in the transform domain, of

the noise-free signals X. In other words X = BZ. We desire Z to be sparse, and BZ to be close to

the observed signal Y. This suggests the next optimization, originally introduced for text modeling

[20], as a heuristic for (5.3):

min
B,Z
||Y −BZ||2F + λ||Z||1, subject to BBT = I (1.6)

where || · ||F is the matrix Frobenius norm, and λ > 0 is a free parameter. (5.6) essentially balances

the difference between Y and X with the sparsity of Z: increasing λ more strongly penalizes choices

of Z that are not sparse. For computational efficiency, the `0-norm is replaced by the convex and
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heuristically “sparsity-promoting” `1-norm.

Although (5.6) is non-convex, fixing either B or Z makes the objective function with respect to

the other convex. The objective can then be efficiently solved (to a local minima) via an iterative

two-step convex optimization process.

Empirically, this approach gives strong performance in several event detection applications, in-

cluding quake measurements of 1795 earthquakes following the Japanese Tohuku M9.0 quake, quake

measurements from the Signal Hill dense seismic study, from the Community Seismic Network as

well as simulated virus outbreaks in the Gnutella P2P network.

1.6 Contributions and Outline of the thesis

Figure 1.5: An architecture for decentralized event detection: each consumer device runs a client
application for modeling its sensor data and transmits pick messages about potential events. A
cloud server receives the stream of pick messages, and detects spatial-temporal events.

The remainder of this thesis presents systems and algorithms for large-scale event detection in

CSR systems. For reference, it is helpful to refer to Fig. 1.5, which presents a cartoon overview

of a system where individual sensor clients communicate directly with a cloud server. The sensor

clients are responsible for local data modeling and processing, while the (cloud) server performs

system-wide event detection.

Chapter 3 describes the CSN project in detail, which can be viewed as the overall structure of

Fig. 1.5. CSN is a large, multi-year effort that reflects the work of many individuals. My primary

contribution to the system, and the first contribution of this thesis, is the design and implementation

of an Android sensor client that uses the accelerometer and GPS in smartphones for event detection

and data collection. This chapter also discusses CSN components that operate alongside the Android

client, including the cloud server, developed on Google App Engine by Michael Olson and Julian

Bunn, and a desktop client (for Mac, Linux, and Windows) for CSN, developed by Lief Strand. The

CSN system was first described in [37] and [21].



15

The second contribution of this thesis, presented in Chapter 4, is theory for decentralized detec-

tion of rare events, design choices for implementing the algorithm on Android devices, and experi-

mental investigations of earthquake detection performance. This can be thought of as a particular

implementation of the client-level processing and server-level event detection in Fig. 1.5. This work

first appeared in [37].

The third contribution, presented in Chapter 5, is theory and experimental investigation of

detecting spatially-structured signals. In [36], I formulate an event detection model of sparse binary

signals observed through a noisy binary channel, and demonstrate that a sparsifying transform

(designed from domain knowledge or learned from data) allows a network of numerous-but-noisy

sensors to detect otherwise weak events. Chapter 5 also discusses preliminary investigations, first

published as joint work in [88], into detecting spatially structured signals. Notably, this work

incorporates sensor models from [37] into a simulation framework developed by Annie Liu. This

chapter can be thought of as providing a more advanced design for the server-level event detection

component of the above system cartoon.

The final contribution of the thesis is an application of coresets for Gaussian Mixture models

to community sensing. Leveraging earlier results by Daniel Feldman and other on using coresets to

approximate clustering tasks, [44] develops approximation results for Gaussian mixture models and

related distributions. The ability to compute coresets in both parallel and streaming settings has

large potential impact for learning from sensor data on mobile devices. I demonstrate that coresets

provide practical approximations on a variety of real-world tasks, including data from smartphone

accelerometers. Coresets provide a way to efficiently learn a probabilistic model of data at the sensor

client level.
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Chapter 2

Related Work

The work in this thesis centers on using mobile and cloud computing platforms to build sensor-aware

applications capable of making reliable, real-time decisions, and as such is related to several bodies

of research.

2.1 WSNs and Community sensing

Collecting and understanding sensor data is a key component of several disciplines, including wireless

sensor networks (WSNs), community sensing, and participatory sensing.

Research in WSNs is similar in spirit to the concept of sensor-aware apps, but tends to differ

in fundamental assumptions about target applications and resource availability. WSN research

often assumes a network of limited-CPU devices with power-constrained short-range wireless radios,

typically connected to each other and a centralized data sink via a multi-hop network. These

assumptions have been partly motivated by a desire to perform long-term, unattended environmental

monitoring. In such a setting, sensor devices may be required to operate on a strict power budget

that precludes standard wifi or cellular communication.

Community / Participatory sensing has been used effectively in a variety of problem domains for

environmental monitoring and data collection via community-owned or operated sensors. Several

projects have used smartphones’ position and motion sensing to

• monitor traffic flows and road conditions [63, 98, 68, 12, 81, 62]

• Community-owned sensors offer great potential in environmental monitoring [83, 103] by ob-

taining up-to-date measurements of the conditions participants are exposed to.

• Mobile phones and body sensors are used to encourage physical activity by categorizing body

motion and comparing activities to exercise goals [25],

• Monitoring public health [83],
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• Identifying sources of pollution [6, 2],

• Responding to natural disasters like hurricanes, floods, and earthquakes [24, 35, 37, 66]

Additionally, [14] provides an excellent overview of how the tools of the social and mobile Web

facilitate crowdsourcing data from individuals and their sensor devices, with an emphasis on human

participation in sharing and understanding data.

Commercial Sensor-aware apps. Technology from these fields has found new application in

several commercial applications. Waze1 crowd-sourced traffic and navigation, Nooly2 and Weath-

erSignal3 crowd-sourced weather apps, the Vaavud4 wind meter for smartphones, and KitLocate’s5

tools for low-power position tracking and geofencing. A glance at TechCrunch will often provide a

glimpse of the sensor app du jour. The Funf open sensing framework6 is particularly relevant, as it

allows the creation of Android apps for sensor data collection.

2.2 Seismic networks

CSN should be viewed in light of existing traditional seismic networks, and in light of recent projects

that explore lower-cost consumer sensor technologies. While these projects differ in their sensors,

algorithms and scope, they share a common intent of detecting earthquakes, mapping their intensity,

and providing warnings and data products for emergency responders.

Among non-traditional seismic networks, perhaps the most closely related system is the Quake-

Catcher network [24]. While QuakeCatcher shares the use of MEMS accelerometers in USB devices

and laptops, the CSN system differs in its use of algorithms designed to execute efficiently on cloud

computing systems and statistical algorithms for detecting rare events, particularly with heteroge-

neous sensors including mobile phones. Mobile phones create far more complex statistical challenges,

but also promise to facilitate much larger groups of volunteers. Kapoor et al. [66] analyzes the in-

crease in call volume after or during an event to detect earthquakes. Another related effort is the

NetQuakes project [101], which deploys more expensive stand-alone seismographs with the help of

community participation. Our CSN Phidget sensors achieve different tradeoffs between cost and

accuracy.

Japanese seismic network. Japan experiences a large number of seismic events due to earth-

quakes and volcanic activity, and contains several large seismic sensor networks. The Japan Me-

tereological Agency (JMA) operates a seismic network containing roughly 1000 seismic sensors.

1www.waze.com
2www.nooly.com
3weathersignal.com
4vaavud.com
5www.kitlocate.com
6https://code.google.com/p/funf-open-sensing-framework/
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Additionally, the National Research Institute for Earth Science and Disaster Prevention (NIED)

currently operates 777 sensor stations, and Japanese local governments currently operate nearly

3000 sensor stations. The data from these sensors is used to detect earthquakes and produce esti-

mates of hypocenter, magnitude and observed seismic intensity. The JMA uses information from

these sensors to provide early warning alerts and issue reports to the public and disaster relief

workers within minutes of a quake.

CISN. The California Integrated Seismic Network (CISN) is a collaboration among state, federal,

and university organizations that perform earthquake monitoring. The network spans approximately

400 seismic stations located throughout California. The network is comprised of a variety of sensor

types and technologies, including short-period, broadband, and strong-motion sensors. Fig. 2.1

depicts a “borehole” seismic station in the CISN network. Using these sensors, CISN determines

earthquake warnings using the P-wave pulse width and peak initial 3-second displacement amplitude

[107].

Figure 2.1: A CISN sensor station installed in a “borehole”. Installing and maintaining such stations
represents significant investment, but provides exceptional quality.

GPS displacement networks. Networks of high sample rate Global Positioning System (GPS)

sensors seek to quickly and accurately observe surface displacements. Large earthquakes can produce

centimeters to meters of ground surface displacement. Accurately estimating displacement in real-

time and incorporating those estimates into early warning algorithms is a topic of ongoing research

[74].

Earthquake Early Warning. Several Earthquake Early Warning (EEW) systems have been
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developed to process data from existing sparse networks of high-fidelity seismic sensors (such as the

Southern California Seismic Network). The Virtual Seismologist [26] applies a Bayesian approach

to EEW, using prior information and seismic models to estimate the magnitude and location of

an earthquake as sources of information arrive. ElarmS [5] uses the frequency content of initial

P-wave measurements from sensors closest to the epicenter, and applies an attenuation function to

estimate ground acceleration at further locations. Recently, PreSEIS [13] uses a 2-layer feed-forward

neural network trained on historic seismic data to estimate quake parameters including hypocenter

location, moment magnitude, and earthquake rupture movement in real time.

We view our approach of community seismic networking as fully complementary to these efforts

by providing a higher density of sensors and greater chance of measurements near to the epicenter.

Our experiments provide encouraging results on the performance improvements that can be obtained

by adding community sensors to an existing deployment of sparse but high quality sensors.

2.3 Decentralized detection

There has been a great deal of work in decentralized detection. The classical hierarchical hypothesis

testing approach has been analyzed by Tsitsiklis [99]. Chamberland et al. [17] study classical hier-

archical hypothesis testing under bandwidth constraints. Their goal is to minimizes the probability

of error, under constraint on total network bandwidth. Wittenburg et al. [106] study distributed

event detection in WSN. In contrast to the work above, their approach is distributed rather than

decentralized: nearby nodes collaborate by exchanging feature vectors with neighbors before mak-

ing decision. Their approach requires a training phase, providing examples of events that should

be detected. Martinic et al. [80] also study distributed detection on multi-hop networks. Nodes are

clustered into cells, and the observations within a cell are compared against a user-supplied “event

signature” (a general query on the cell’s values) at the cell’s leader node (cluster head).

The communication requirements of the last two approaches are difficult to meet in community

sensing applications, since sensors may not be able to communicate with their neighbors due to

privacy and security restrictions. Both approaches require prior models (training data providing

examples of events that should be detected, or appropriately formed queries) that may not be

available in the seismic monitoring domain.

2.4 Anomaly Detection

There has also been significant amount of prior work on anomaly detection. Yamanishi et al. [108]

develop the SmartSifter approach that uses Gaussian or kernel mixture models to efficiently learn

anomaly detection models in an online manner. While results apply only in the centralized setting,
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they support the idea of using GMMs for anomaly detection could be extended to learn, for each

phone, a GMM that adapts to non-stationary sources of data.

Davy et al. [31] develop an online approach for anomaly detection using online Support Vector

machines. One of their experiments is to detect anomalies in accelerometer recordings of industrial

equipment. They use produce frequency-based (spectrogram) features, similar to the features we

use. However, their approach assumes the centralized setting.

Subramaniam et al. [97] develop an approach for online outlier detection in hierarchical sensor

network topologies. Sensors learn models of their observations in an online way using kernel density

estimators, and these models are folded together up the hierarchy to characterize the distribution of

all sensors in the network. Rajasegarar et al. [92] study distributed anomaly detection using one-class

SVMs in wireless sensor networks. They assume a tree topology. Each sensor clusters its (recent)

data, and reports the cluster descriptions to its parent. Clusters are merged, and propagated towards

the root. The root then decides if the aggregate clusters are anomalous. Both approaches above

are not suitable for the community sensing communication model, where each sensor has to make

independent decisions. Zhang et al. [110] demonstrate online SVMs to detect anomalies in process

system calls in the context of intrusion detection. Onat et al. [89] develop a system for detecting

anomalies based on sliding window statistics in mobile ad hoc networks (MANETs). However, their

approach requires for nodes to share observations with their neighbors.

2.5 Sparse detection

Detecting a sparse signal in the presence of strong noise is challenging without placing some as-

sumptions on the class of signals. Signals that possess tree-structured dependencies naturally lend

themselves to wavelet analysis where the basis is supported on subtrees. Singh et al.[96] proposed

using a natural Haar-like wavelet basis constructed from agglomerative hierarchical clustering to

encode the dependencies for improved detection under strong noise. Gavish [50] and Lee [73] also

propose multi-scale bases for signals with tree structure. [96] and [73] construct a transform using

agglomerative clustering to identify hierarchical tree structure. Krishnamrurthy et al.[69] further

extends the analysis to graph structured network defined over spanning trees.

The work of Singh et al.[96] is particularly relevant, as they identify the asymptotic limits of

detectability for the orthonormal basis and generative models used in Chapter 5. In contrast,

we focus on the decentralized case with binary channel noise, and provide theoretical guarantees

that hold even in the non-asymptotic regime. Several other possible forms of structured activation

patterns have also been applied to sparse detection problems. [7] describes detecting sparse binary

patterns with a variety of combinatoric structures under Gaussian noise. Lower bounds on minimax

detection rates are given, and it is shown that forms of the scan statistic achieve within a log factor
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of these rates. However, these results are asymptotic and appear computationally intractable for

large sensor networks.

2.6 Scan statistics

Spatial and space-time scan statistics were first developed to monitor health data and disease out-

breaks [70]. The main idea is to evaluate all subsets of the data for possible events. Of course,

enumerating all possible O (2n) subsets is infeasible for even moderately sized problems, so later

variations impose constraints on space and time to reduce the number of subsets, which is often

done by scanning only subsets of distinct sizes and shapes [85, 86]. This approach reduces the com-

plexity to O
(
n2
)

(and to O (n) in [86]) but may also impair the detection performance if important

signals are not well captured by tested subsets.

Linear Time Subset Scanning was recently developed to further reduce the complexity [86]. It

states that for any scoring functions G, e.g., the ratio of count to baseline G(si) = ci/bi, that satisfies

the LTSS property (that the subset S that maximizes sum of score F (S) must only consist some

of the top k scoring stations), then only O (k) subsets should be evaluated to determine detection.

However, this approach often gives undesirable spatially separated subsets and the spatial version

that includes distance constraints suffers the same problem as predefined shape.

2.7 Basis Learning

Learning a sparsifying basis is intimately related to dictionary learning and topic models. Dictionary

learning [4] attempts to find an overcomplete dictionary D ∈ Rn,K , K > n that can sparsely encode

signals in Rn. Similarly, topic models [104] represent text data as a linear combination of a “topics”,

e.g., vectors of word frequencies. Topic models seek topics that sparsely approximate the documents,

though the number of topics is significantly less than the number of words (i.e., the topic matrix is

undercomplete).

ICA is a transformation method developed to recover nongaussian, statistically independent

components z from their linear combination x [65], assuming that the linear transformation matrix

B is orthonormal and x = Bz. The nongaussianity is required because the orthogonal transformation

of any number of Gaussian distributions is inseparable. Strongly nongaussian data (i.e., having a

very different distribution from Gaussian) is often sparse, and so nongaussianity is yet another

measure of sparsity. ICA has enjoyed most success in signal separation and unsupervised feature

learning. Recent work has extended it for overcomplete dictionary learning [72].



22

2.8 Theoretical results on mixtures of Gaussians

There has been a significant amount of work on learning and applying GMMs (and more general

distributions). Perhaps the most commonly used technique in practice is the EM algorithm [33],

which is however only guaranteed to converge to a local optimum of the likelihood. Dasgupta [28]

is the first to show that parameters of an unknown GMM P can be estimated in polynomial time,

with arbitrary accuracy ε, given i.i.d. samples from P . However, his algorithm assumes a common

covariance, bounded excentricity, a (known) bound on the smallest component weight, as well as a

separation (distance of the means), that scales as Ω(
√
d). Subsequent works relax the assumption on

separation to d1/4 [29] and k1/4 [102]. [8] is the first to learn general GMMs, with separation d1/4.

[45] provides the first result that does not require any separation, but assumes that the Gaussians

are axis-aligned. Recently, [82] and [9] provide algorithms with polynomial running time (except

exponential dependence on k) and sample complexity for arbitrary GMMs. However, in contrast to

our results, all the results described above crucially rely on the fact that the data set D is actually

generated by a mixture of Gaussians. The problem of fitting a mixture model with near-optimal

log-likelihood for arbitrary data is studied by [8], who provides a PTAS for this problem. However,

their result requires that the Gaussians are identical spheres, in which case the maximum likelihood

problem is identical to the k-means problem. In contrast, our results make only mild assumptions

about the Gaussian components. Furthermore, none of the algorithms described above applies to

the streaming or parallel setting.

2.9 Coresets

Approximation algorithms in computational geometry often make use of random sampling, feature

extraction, and ε-samples [60]. Coresets can be viewed as a general concept that includes all of the

above, and more. For a comprehensive survey on this topic, see [42]. It is not clear that there is

any commonly agreed-upon definition of a coreset, despite several inconsistent attempts to do so

[57, 43].

Coresets have been the subject of many recent papers and several surveys [3, 27]. They have been

used to great effect for a host of geometric and graph problems, including k-median [57], k-mean [43],

k-center [58], k-line median [41] subspace approximation [41, 78], etc. Coresets also imply streaming

algorithms for many of these problems [57, 3, 47, 43, 46, 71]. A framework that generalizes and

improves several of these results has recently appeared in [42].
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Chapter 3

The Caltech Community Seismic
Network

The Community Seismic Network project at Caltech is a collaboration between civil engineers,

geophysicists, and computer scientists that seeks to rapidly detect earthquakes and provide real-

time estimates of their impact using community-operated sensors. Given that large earthquakes are

among the few scenarios that can threaten an entire city, the CSN project is built upon a vision of

people sharing accelerometer data from their personal devices to collectively produce the information

needed for effective real-time and post-event responses to dangerous earthquakes. To that end, CSN

has partnered with more than a thousand volunteers in the Los Angeles area and cities around

the world who contribute real-time acceleration data from their Android smartphones and low-cost

USB-connected sensors. This chapter, based on [37], describes the project goals and challenges,

as well as the client-server architecture implemented on Google App Engine, Android phones, and

desktop computers. The main contribution is the design and implementation of the CSN-Droid and

CrowdShake Android client.

3.1 Goals

Rapid Situational Awareness. After an earthquake, fire fighters, medical teams and other

first-responders must build situational awareness before they can effectively deploy their resources.

Due to variations in ground structure, two points that are only a kilometer apart can experience

significantly different levels of shaking and damage, as illustrated in Fig. 3.1(a). Similarly, different

buildings may receive differing amounts of damage due to the types of motion they experience.

These differences in shaking can be important for allocating emergency relief resources. However,

if communication has been lost in a city, it can take up to an hour for helicopter surveillance to

provide the first complete picture of the damage a city has sustained. In contrast, a seismic network

with fine spatial resolution could provide accurate measurements of shaking (and thus an estimate
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of damage) immediately. Because sensors can detect the moderate P-wave shaking that precedes the

damaging S-wave shaking, sensors are expected to report data before network and power are lost,

and before cellular networks are overloaded by human communication.

(a) Carson (b) Compton

Figure 3.1: A map of peak acceleration amplitudes during the Carson and Compton earthquakes,
as recorded by Signal Hill Petroleum in Long Beach California. The maps shows large variations in
peak acceleration and the effects of a minor fault line, indicated by the overlaid line. Information on
localized shaking intensity is valuable to emergency teams, and for mapping subterranean geological
structures.

Earthquake Early Warning. Another potential application of a community seismic network is to

provide early warning of strong shaking. Early warning operates on the principle that accelerometers

near the origin of an earthquake can observe initial shaking before locations further from the origin

experience strong shaking. While the duration of warning that a person receives depends on the speed

of detection and their distance from the origin, warning times of tens of seconds to a minute have

been produced by early warning systems in Japan, Mexico, and Taiwan. These warning times can be

used to evacuate elevators, stop trains, or halt delicate processes such as semiconductor processing or

medical surgery. Additionally, warning of aftershocks alerted emergency workers involved in debris

clearing during the 1989 Loma Prieta earthquake. Since false alarms can have fairly high cost, it is

important to accurately control the false positive rate of the system.
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3.2 Crowdsourcing environmental sensing

The CSN project turns to volunteer participation from members of the community to obtain its

sensor coverage. This community participation is ideal for seismic sensing for several reasons. First,

community participation makes possible the densely distributed sensors needed for accurately mea-

suring shaking throughout a city. For example, instrumenting the greater Los Angeles area at a

spatial resolution of 1 sensor per square kilometer would require over 10,000 sensors. While tradi-

tional seismometer stations cost thousands of dollars per sensor to install and operate, the same

number of sensors could be reached if 0.5% of the area’s population volunteered data from their

smartphones. The effects of finer spatial resolution are illustrated in Fig. 3.2. In this way, com-

munity sensors can provide fine spatial coverage, and complement existing networks of sparsely

deployed, high quality sensors.

Present Ideal 1,000 stations 10,000 stations 

Figure 3.2: The low spatial density of many existing sensor networks makes it difficult to accurately
reconstruct spatial phenomena from measurements. For example, the Southern California Seismic
Network has roughly 100 sensors in the Los Angeles area. Using the present configuration of sensors,
interpolation provides a crude estimate of an ideal radial pattern. Increasing the number of sensors
allows even simple interpolation to adequately reconstruct the signal.

Community sensors are also ideally situated for assisting the population during an emergency.

In addition to collecting accelerometer data, the same smartphone app could be used to report

the last-known location of family members, or give instructions on where to gather for help from

emergency teams. In short, community sensing applications provide a new way for people to stay

informed about the areas and people they care about.

CSN makes it easy for the community to participate by using low-cost accelerometers and sensors

already present in volunteers’ Android phones. A free Android application on the Google Play app

store called CSN-Droid makes volunteering data as easy as installing a new app. The CSN project

also partners with LA-area schools and city infrastructure to freely distribute low-cost accelerometers

from Phidget, Inc. that interface via USB to a host PC, tablet, or other internet-connected device.

Phidget sensors have also been installed in several high-rise buildings to measure structural responses

to earthquakes. Fig. 3.3 displays these sensors.

The recent trend towards smartphones and other Internet-enabled devices offers unique possi-
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bilities for decentralized event detection. Smartphones contain a rich suite of sensors, such as GPS,

accelerometers, and cameras, that can gather information about a variety of geospatial phenomena.

smartphones, tablets and laptops have accelerometers that are being used by our project and others

[23, 1] to obtain seismic measurements. It is exciting that worldwide cellphone coverage is dramati-

cally increasing, and that recent projects such as Google’s Project Loon (“Balloon powered internet

for everyone”) seek to provide internet to remote and developing areas. Global internet access and

smartphone availability make it possible to extend community networks to developing regions such

as Haiti, which suffers from devastating earthquakes. We speculate that as smartphones become less

expensive, they will be adopted in greater numbers within developing economies and will provide a

substitute for unavailable centralized infrastructure.

Figure 3.3: CrowdShake, a free Android app, allows volunteers to join the CSN network, contribute
data, and access daily information about earthquakes worldwide.

3.3 Are consumer sensors adequate?

The low cost and ready availability of consumer sensors makes them an enticing foundation for

sensing applications, but we must first ascertain that they are capable of measuring the phenomena

of interest. For CSN, this means experimentally verifying that accelerometers in USB devices and

mobile phones can sense typical acceleration patterns for moderately large and dangerously large

earthquakes.

Android Phone Specifications. The motion sensors in smartphones have been designed foremost

as an input modality for user interfaces and are often lacking in available technical specifications, and
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Mean Std. Dev. Min. Diff.
x (m/s2) -0.308843 0.0687218 0.0136203
y (m/s2) 0.116929 0.0620888 0.0136203
z (m/s2) 9.710770 0.0899053 0.0136200

t (s) 0.033375 0.0712159 0.0127570

Table 3.1: Mean, standard deviation, and minimum difference between measurements for the sam-
pling rate (t) and accelerations along each of the three axes (x, y, z) recorded in one hour of stationary
data on the Dev 1.

so it is necessary to empirically evaluate their sensitivity. As a simple baseline, Table 3.1 summarizes

accelerometer recordings from an Android Dev Phone 1, which is functionally equivalent to the HTC

Dream and T-Mobile G1, taken while the phone was stationary for one hour. Given that an M5

earthquake may produce accelerations of 0.5m/s2, and an M6 earthquake may produce accelerations

of 1.5m/s2, these measurements suggest that an Android phone near the epicenter of a moderately

large quake (M5 or greater) is likely to observe the shaking. Additionally, this data reflects that

accelerometer samples in Android are produced at a variable rate.

Shake table validation.

Figure 3.4: A shake table is used to reproduce the acceleration of historic quakes.

Experiments with a large actuator called a “shake table” allow us to expose sensors to accurate

reproductions of historic, moderately large (M4.5-6.5) earthquakes. The shake table demonstrates

that both USB sensors and the lower quality phone accelerometers can detect the smaller initial

shaking (P-wave) and stronger secondary shaking (S-wave) that produce the characteristic signature

of an earthquake, as shown in Fig. 3.5.

These results indicate that smartphone accelerometers are capable of observing acceleration

produced by damaging earthquakes. Accelerometers in Android phones typically provide 12 to 14

bits of resolution; in contrast, 16 Phidget USB accelerometers provide significantly gerater sensitivity.

Fig. 3.6 summarizes the capability of Android and Phidget sensors to detect earthquakes of different

magnitudes.

A second experiment assesses whether community sensors can detect changes in the motion of
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Figure 3.5: Android accelerometers accurately record strong shaking during a shake table experi-
ment. (a) Ground truth. (b) Android phone. (c) Android phone in backpack.

buildings caused by earthquakes.

Millikan Library on the Caltech campus is rather uniquely equipped with a large “oscillator”:

a rotating eccentric weight on the roof of the building. This oscillator can be used to excite the

building at a controlled frequency, and can be used to study the resonant frequencies (modes) of

the building. Data shown in Fig. 3.7 indicates that USB sensors can measure the low frequency

resonance of large buildings. This is relevant for structural monitoring aplications, as changes in a

building’s resonant frequencies may indicate structural damage and a loss of stiffness.

3.4 Systems Challenges

The CSN project was designed in anticipation of several systems challenges that arise from net-

working vast numbers of community sensors into a reliable, real-time event detection system. These

challenges include: large message volumes, rare events, heterogeneous sensors and client platforms,

complex environmental noise, and user privacy. While some of these challenges are particularly rele-

vant to earthquake monitoring, they demonstrate the breadth of issues which need to be considered

for a successful CSR system.

Message volume. A system that scales to tens of thousands or millions of sensors must limit the

rate of message traffic so that it can be handled efficiently by the network and fusion center. For

example, one million phones would produce approximately 30 Terabytes of accelerometer data each

day. Another key challenge is to develop a system infrastructure that has low response time even

under peak load (messages sent by millions of phones during an earthquake). Moreover, the Internet

and computers in a quake zone are likely to fail with the onset of intensive shaking. So, data from

sensors must be sent out to a distributed, resilient system that has data centers outside the quake

zone.

Rare events. The most important earthquakes are also the rarest. Empirically, the magnitude

of earthquakes follows a power law distribution. The USGS reports that since 1900, on average
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Figure 3.6: The accelerometers in smartphones (e.g., Android) and USB sensors (e.g., 16-bit Phidget
accelerometers) are capable of sensing moderately large earthquakes. Scientific-quality sensors (e.g.,
the 24-bit Episensor) are capable of measuring quakes well below the level of human perception.
Figure courtesy of Ming Hei Cheng.

only 1 earthquake of magnitude 8 or higher occurred each year.1 In contrast, more than 100,000

moderately large (M3-M5) earthquakes occurred each year. This situation is challenging for two rea-

sons. First, the rarity of high-magnitude earthquakes means that limited historical data is available

for modeling and testing detection algorithms. It may also mean that large earthquakes have not

yet been recorded in a given geographic region, and so models may need to be based on data from

other, geologically different regions. Second, the relatively high rate of moderately large earthquakes

compared to dangerously large earthquakes makes it important to both detect events and estimate

their magnitude.

Heterogeneous sensors. Using community-based sensors for earthquake monitoring is partic-

ularly challenging due to the large variety of sensor hardware and client platforms. For example,

more than 10,000 distinct Android device models have been sold, making it infeasible to perform

a detailed characterization of each. Similarly, client software may need to operate across a range

of platforms and operating systems, which inevitably introduce inconsistencies in reported data.

1http://earthquake.usgs.gov/earthquakes/eqarchives/year/eqstats.php

http://earthquake.usgs.gov/earthquakes/eqarchives/year/eqstats.php
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Figure 3.7: Eccentric weights oscillate Millikan Library, demonstrating that CSN hardware can
observe resonant frequencies in buildings.

Further, these sensors will be mobile, intermittently available, and irregularly distributed spatially.

Algorithms must account for these numerous sensor characteristics.

Complex environmental noise. Community sensors experience complex environmental noise.

Community operated sensors are exposed to the unique environment of their owners: a home sensor

is affected by activity within and around the house, while personal devices like phones and wearables

are affected by their owner’s behavior and periods of activity. While such noise reduces the reliability

of each individual sensor, we may hope that much of this noise affects only one or a few sensors.

Perhaps more problematic are noise sources that affect larger sets of sensors, such as construction,

thunder, or the firing of the Caltech cannon. In this case, reliably detecting earthquakes means

distinguishing other spatial vibrational events as non-seismic.

3.5 CSN Architecture

The CSN system involves three major components: a web server, stationary desktop clients with

USB accelerometer, and an Android app for phones and tablets.

Managing a community sensor network and processing its data in real-time leads to challenges in

scalability and data security. Cloud computing platforms, such as Amazon EC2, Heroku, or Google

App Engine provide practical and cost-effective resources for reliably scaling web applications. The

CSN network is built upon Google App Engine (GAE). Fig. 3.8 presents an overview of the CSN

architecture. Heterogeneous sensors include cell phones, stand-alone sensors, and accelerometers

connected via USB to host computers to the cloud. The cloud, in turn, performs event detection

and issues notifications of potential seismic events. An advantage of the cloud computing system is

that sensors anywhere in the world can connect merely by specifying a URL.
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Figure 3.8: The CSN cloud maintains the persistent state of the network in Datastore, performs
real-time processing of pick data via Memcache, and serves notifications and data products.

3.5.1 CSN messages

Fig. 3.8 depicts the main data flows through the cloud. Message types include Client Registration,

Client Update, Heartbeat, Pick, and CM Data Request.

Client Registration. When a client first registers with the CSN network, the client provides a

client ID and receives a secret that is used to hash the message ID in subsequent messages from the

client to the Cloud server. These hashes are used to validate the origin of the message.

Client Update. Client Update messages allow the client to update metadata about the client,

such as operating system version or location. This message type is not used by the Android client.

Heartbeat. Each client periodically sends a Heartbeat message to notify the server of its continuing

operation. For Android clients, Heartbeat messages provide a means of maintaining relatively up-

to-date position information. At present, Heartbeats are sent once every 10 minutes. Heartbeat

messages may also be used to announce that they are going offline, allowing the server to perform

more accurate computations involving the number of active clients in each region. The server’s

response to a heartbeat may contain a request for specific pieces of sensor data.

Pick. The raw stream of accelerometer data is continuously tested for anomalies, which are reported

as pick messages. The Internet and cellphone networks are likely to be congested, if not damaged,
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immediately after the occurrence of a disaster. Therefore, sensor data must be sent through the

communication network to remote servers before the network gets congested or fails. Each message

from a sensor should be short and self contained so that the server can process messages received

out of order and after varying delays. A message cannot reference a previous message because the

previous message may be lost.

GCM data request. First, client registration and heartbeat messages are persisted to the

geographically-replicated Datastore. Next, incoming picks are spatially aggregated via geographic

hashing into Memcache (a distributed in-memory data cache). While memcache is not persistent

(objects can be ejected from the cache due to memory constraints), it is much faster than the data-

store. Memcache is also ideal for computations that need to occur quickly, and, because memcache

allows values to set an expiry time, it is also perfect for data whose usefulness expires after a period

of time. Finally, an Associator performs the final event detection and issues notifications.

3.5.2 Advantages of Cloud Computing

Dynamic scaling. Incoming requests are automatically load-balanced between instances that are

created and destroyed based on current demand levels. This both simplifies algorithmic development,

and reduces costs during idle periods.

Robust data. Datastore writes are automatically replicated to geographically separate data

centers. This is prudent for any application, but especially important to CSN, where we may lose

data hosted at Caltech due to a large earthquake in Los Angeles.

Easy deployment. Deploying applications on App Engine is comparatively straightforward as

individual server instances do not need to be configured and coordinated. Additionally, by utilizing

the same front ends that power Google’s search platform, we can expect low latency from any point

in the world. Together, these facts allow the network to encompass new cities or countries as soon

as volunteers emerge.

The Situational Awareness Framework: a web backend for event detection. The

emergence of affordable Platform-as-a-Service (PaaS) makes scaling (relatively) easy and affordable.

The distributed nature of PaaS infrastructure allows data replication in geographically distinct

locations, providing reliability and resiliency to localized emergencies. Structuring a sensor network

as a web application makes it easy to extend the project’s reach to any point on the globe.
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3.6 Desktop Client

Desktop clients with USB accelerometers provide low-to-moderate cost stationary sensors, with

several advantages. Inexpensive (< 100USD) USB sensors are capable of observing earthquakes that

are too small for most people to notice, as shown in Fig. 3.6. Desktop clients are subject to ambient

vibrations, but can potentially be affixed to walls or other stable reference points. Similarly, desktop

clients often have access to wired internet connections and power, allowing continuous operation and

ample bandwidth for data collection.

The CSN desktop client software is designed with these favorable conditions in mind. Due to the

availability of bandwidth, the client routinely transmits all raw acceleration measurements alongside

its heartbeat messages. Pick messages are generated using a relatively simple pick algorithm which

compares the low-frequency energy contained in a short period (several seconds) of acceleration

time series data to the low-frequency energy contained in a longer period, and reports a pick if the

short period contains significantly more energy. This algorithm, called the Short-term average over

Long-term average (STA/LTA) is a simple ratio test that has proven to be reliable and effective. An

NTP daemon is used to synchronize the desktop client’s clock.

Event Detection using Averages: STA/LTA. STA/LTA (Short Term Average over Long Term

Average) computes the ratio between the amplitude of a short time window (STA) and the amplitude

of a long time window (LTA) and decides to “pick” when the ratio reaches above a threshold. In

our analysis, we used a short term window size ST = 2.5 s and a long term window size LT = 10 s.

This simple algorithm can detect sudden changes in transients that may indicate the occurrence of

an event in a low-noise environment. In an ideal situation where the sensors have fixed orientation,

the signal on each axis can be used to derive the direction of the incoming wave. We do not assume

consistent orientation here, but instead simply take the L2 norm of all three axes before computing

the STA/LTA.

Desktop clients also have their drawbacks for building a large sensor network for long-term oper-

ation. The cost of a USB accelerometer, while low, can be a hurdle to participation for a volunteer,

and can limit the number of sensors that can be centrally provided. Volunteers may not immediately

install their sensors, or may accidentally unplug them. Similarly, desktops are increasingly replaced

by laptops or mobile phones, limiting the number of volunteers with continuously-operating desk-

tops. To address these issues, CSN has distributed stand-alone “boxes” containing a sensor and a

small SheevaPlug plug computer. These boxes require little to no configuration or maintenance from

volunteers, and can simply be plugged into power and a network connection.
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(a) “Orange Box”

(b) “Phidget USB accelerometer”

Figure 3.9: (a) An “Orange Box” sensor station contains a small SheevaPlug computer, a 16-bit
Phidget USB sensor (b), and an optional backup power supply. It allows volunteers to deploy a
sensor with low effort and maintenance.

3.7 Android apps for community sensing

This section discusses two versions of an Android app that volunteers may install on their Android

phones or tablets in order to join the CSN network. After discussing the goals and challenges of the

app, I discuss the design choices and architecture of the app, and how it interfaces with the CSN

cloud server. The section ends with observations about using the Android platform for Community

Sense and Response systems.

CSN-Droid is a mobile sensor client designed to abstract away the data complexities of an

individually-owned sensor. CSN-Droid uses acceleration data from volunteers’ phones or tablets

to rapidly measure the intensity of earthquakes. When a device detects possible seismic activity,

a pick message transmits the device’s acceleration and location measurements. Location data is

periodically transmitted to build an estimate of network coverage.

3.7.1 Goals and Challenges

Engaging a volunteer user base. The app needs to provide value to the end user. While many

volunteers may be sufficiently enthusiastic about science, or earthquakes in particular, attracting

a large user base requires interesting, relevant content. To this end, the Android client provides a
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Figure 3.10: CSN-Droid stores and processes sensor data locally on an Android phone or tablet;
sends pick messages during potential quakes; receives alerts; and responds to data requests.

simple, clean visualization of earthquakes worldwide, and a list of recent news articles related to

earthquakes.

CSN-Droid served as a viable proof-of-concept for crowd-sourcing earthquake data from smart-

phones. More than 500 people worldwide installed the app. However, users commonly reported that

the app was not very interesting or engaging. Similarly, the title CSN-Droid was ambiguous, and

was not enticing to users who had searched in the app market for “quake” or “earthquake”.

Partly to address these challenges, I developed CrowdShake with the intent of providing a user

experience that provides fresh information about earthquakes on a daily basis. To accomplish this,

the app displays a set of earthquakes, drawn from a USGS data feed, in map or list format. The app

only displays earthquakes that occurred within 24 hours, ensuring that content is fresh. Additionally,

the app has a “News” screen that provides a list of daily news items related to large earthquakes.

This set of news items is drawn from a custom Google news feed.
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(a) CSN-Droid accelerometer view (b) CSN-Droid map view

Figure 3.11: The CSN-Droid user interface provides a simple Map view of worldwide earthquakes,
and visualized the device accelerometer time series.

3.7.2 Design choices

Fig. 3.10 shows the internal data flow and the messaging between client and cloud. At the core of

the application is a suite of sensors, including the 3-axis accelerometer and GPS. The raw stream

of accelerometer data is continuously tested for anomalies, which are reported as pick messages.

The raw data is also stored temporarily in a local database. This both allows the server to issue

data requests for specific intervals of data, and allows updates to the anomaly detection model. The

client also listens for push notifications from the server, implemented via Google’s Cloud Messaging

services.

3.7.3 An interface of Fragments

To better address a variety of device form factors, the CrowdShake interface is composed of a number

of Fragments. Fragments, introduced in Android 3.0, provide a means of encapsulating parts of an

interface. These parts can then be combined to produce an overall interface in a way that is suitable

to the particular device. For example, a low-priority interface component might be visible on a large

tablet, but require additional navigation to access on a small phone screen.
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3.7.4 Event Detection

The CSN-Droid and CrowdShake apps detect and report significant changes in accelerometer behav-

ior. The apps use a GMM-based anomaly detection scheme, described in detail in Sec. 4.1, which

requires that sensor data be represented as (small) vectors. Android provides raw accelerometer

data as a stream of timestamped triples of X,Y,Z axis acceleration. In order to use this data for

anomaly detection, it undergoes preprocessing and segmentation and then is converted into feature

vectors.

Given that Android devices are subject to motion and may be in any orientation, the first

preprocessing step is to identify the downward direction and remove the contribution due to gravity.

A 10 second low-pass filter is used to determine the direction of gravity; the acceleration time series

is rotated so that this direction is the negative Z axis, and then one unit of gravity is subtracted

along this direction.

Once the acceleration time series has been oriented with respect to gravity, the time series is

cut into short segments that will ultimately be used to compute feature vectors. In much the same

way that short segments of audio data are used as phonemes in audio processing, short windows

of accelerometer are used to capture sudden changes in motion. A sliding window of 8.5 seconds’

worth of acceleration is created, and split into three segments: the oldest 5 seconds of measurements

provide a long-term window ; the next second is discarded; the most recent 2.5 seconds comprise the

short-term window. This choice is motivated by a desire to detect sudden changes in acceleration

characteristics by comparing baseline motion (the long-term window) with the immediate data (the

short-term window). One second of dead time between the windows avoids ambiguous segmentation

that partially capture a transition in behavior in both time windows.

The resulting acceleration time series segments only represent a few seconds of motion, but may

contain up to 1000 accelerometer samples. Motivated by the observation that most seismic motion

occurs at low frequency, a discrete Fourier transform is used to identify the energy across a range

of frequencies in each time series window. In addition to these Fourier coefficients, the variance

and maximum absolute acceleration for each window are computed. The features for each axis of

acceleration are then concatenated into a total feature vector. Empirically, overall performance can

be improved by “compressing” this total feature vector via principle component analysis (PCA). The

final feature vector is produced by retaining a fixed number (e.g., 16) of the top PCA dimensions,

and concatenating the magnitude of signal present in the discarded PCA dimensions. This last

quantity was added to represent the amount of signal not well modeled by the top PCA dimensions,

and has been empirically found to be useful.

Finally, the probability assigned to each feature vector by a Gaussian Mixture Model is computed,

and compared to a likelihood threshold to identify sufficiently low-probability feature vectors. These

anomalies are identified as picks.
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3.7.5 Data Logging

The app has a SQLite database that contains a fixed number of “chunks” of accelerometer data.

Chunks are filled with a fixed number of accelerometer samples (e.g., 10000 samples) and then

persisted to the database. If the database already contains the maximum number of “chunks”, then

the oldest chunk is deleted. Chunks are indexed by the timestamp of their first and last sample.

3.7.6 Observations about Android for CSR systems

Fragmentation and Obsolescence.

Figure 3.12: The distribution of Android OS versions over time shows substantial software fragmen-
tation. Notably, it is rare for the majority of devices to run any single OS version. Image courtesy
of Wikimedia Commons.

Android is an open platform, giving great freedom to device manufacturers to create devices and

modify the operating system. While this openness fosters innovation, and has certainly encouraged

the market growth of Android, it also presents many challenges to the app developer. Chief among

these are fragmentation and obsolescence.

Android is notable for its hardware fragmentation. In contrast to Apple’s iPhone, which has

only undergone a handful of hardware updates, there are more than 10,000 distinct Android device

models, with no single device manufacturer responsible for more than half of those models. For

the developer, this means that there is no “canonical” device for testing with, and that instead the
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developer must be prepared for a large number of screen resolutions, sensor behaviors, available

memory, and network speeds.

Software fragmentation is also a concern. Since the first release of CSN-Droid, the Android

platform has gone through five major operating system versions (Gingerbread, Honeycomb, Ice

Cream Sandwich, Jelly Bean, and KitKat), spanning 11 different API levels. Fig. 3.12 displays the

distribution of Android OS versions over time. The source for the Android operating system is

licensed under the Apache License, which allows device manufacturers to install modified versions

of the OS on their devices. It has been observed that devices sold from Google Play (which ship

with the standard OS releases) may differ in behavior from the same devices sold directly by their

manufacturer.

The mobile market is fast-paced, and in the quest for ever-greater libraries and services, many

things quickly become obsolete. The first CSN app, CSN-Droid, made use of the Google Maps

API v1 map library and the Google Cloud To Device Message (C2DM) library, both of which were

deprecated within two years of the app’s release. In this case, deprecation means that API keys

are no longer available for those services, preventing subsequent release of apps using them. Both

libraries were replaced by superior services (Maps API v2, and Google Cloud Messaging), but such

upgrades mean mandatory additional app development just to maintain existing apps.

Possible Improvements. In principle, Android devices maintain accurate system clocks by

receiving GPS timestamps. Unfortunately, some Android devices reportedly2 do not compensate for

differences between GPS time and UTC time, resulting in clock errors of up to 15 seconds.

Finally, compelling apps are interactive and personal. It should be easier for users to see their

own contribution to CSN. Social media is effective for publicity. The app should incorporate social

media channels, possibly by allowing users to share data products (maps, videos, etc.) from the app.

This could provide greater exposure for the project and the app.

2https://code.google.com/p/android/issues/detail?id=5485

https://code.google.com/p/android/issues/detail?id=5485
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Chapter 4

Decentralized Anomaly Detection

This chapter outlines a methodology developed to rapidly detect quakes from thousands of com-

munity sensors. As we will see, the computational power of community devices can be harnessed

to overcome the cacophony of noise in community-operated hardware, and that on-device learning

yields a decentralized architecture that is scalable and heterogeneous while still providing rigorous

performance guarantees. Much of this work first appeared in [37].

Event detection is a primary goal of CSR systems. Community sensing has recently been used to

detect rare and unpredictable events, such as traffic accidents [63, 81, 67] and earthquakes [24]. Rare

events are often difficult or impossible to model and characterize a priori, yet we wish to maximize

detection performance. Further, heterogeneous, community-operated sensors may differ widely in

quality and communication constraints, due to variability in hardware and software platforms, as

well as differing in environmental conditions.

This chapter presents a principled approach towards detecting rare events from community-

based sensors. Due to the unavailability of data characterizing the rare events, our approach is

based on anomaly detection; sensors learn models of normal sensor data (e.g., acceleration patterns

experienced by smartphones under typical manipulation). Each sensor then independently detects

unusual observations (which are considered unlikely with respect to the model), and notifies a fusion

center. The fusion center then decides whether a rare event has occurred or not, based on the received

messages. Our approach is grounded in the theory of decentralized detection, and we characterize

its performance accordingly. In particular, we show how sensors can learn decision rules that allow

us to control system-level false positive rates and bound the amount of required communication in

a principled manner while simultaneously maximizing the detection performance.

4.1 The Decentralized Detection Problem

We consider the problem of decentralized detection of rare events, such as earthquakes, under con-

straints on the number of messages sent by each sensor. Specifically, a set of N sensors make repeated
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(a) Earthquake (Chino Hills, Magn. 5.4,
July 2008)

Shaking in:4.1 s

(b) Early warn-
ing

(c) Phidget sensor with housing

Figure 4.1: (a) Seismic waves (P- and S-waves) during an earthquake. (b) Anticipated user interface
for early warning using our Google Android application. (c) 16-bit USB MEMS accelerometers with
housing that we used in our initial deployment.

observations Xt = (X1,t, . . . , XN,t) from which we would like to detect the occurrence of an event

Et ∈ {0, 1}. Here, Xs,t is the measurement of sensor s at time t, and Et = 1 iff there is an event

(e.g., an earthquake) at time t. Xs,t may be a scalar (e.g., acceleration), or a vector of features

containing information about Fourier frequencies, moments, etc. during a sliding window of data

(see Section 3.7.4 for a discussion of features that we use in our system).

We are interested in the decentralized setting, where each sensor s analyzes its measurements

Xs,t, and sends a message Ms,t to the fusion center. Here we will focus on binary messages (i.e., each

sensor gets to vote on whether there is an event or not). In this case, Ms,t = 1 means that sensor s

at time t estimates that an event happened; Ms,t = 0 means that sensor s at time t estimates that

no event happened at that time. For large networks, we want to minimize the number of messages

sent. Since the events are assumed to be rare, we only need to send messages (picks) for Ms,t = 1;

sending no message implies Ms,t = 0. Based on the received messages, the fusion center then decides

how to respond: It produces an estimate Êt ∈ {0, 1}. If Êt = Et, it makes the correct decision (true

positive if Et = 1 or true negative if Et = 0). If Êt = 0 when Et = 1, it missed an event and

thus produced a false negative. Similarly, if Êt = 1 when Et = 0, it produced a false positive.

False positives and false negatives can have very different costs. In our earthquake example, a false

positive could lead to incorrect warning messages sent out to the community and consequently lead

to inappropriate execution of remedial measures. On the other hand, false negatives could lead

to missed opportunities for protecting infrastructure and saving lives. In general, our goal will be

to minimize the frequency of false negatives while constraining the (expected) frequency of false

positives to a tolerable level (e.g., at most one false alarm per year).

Classical Decentralized Detection. How should each sensor, based on its measurements Xs,t,

decide when to pick (send Ms,t = 1)? The traditional approach to decentralized detection assumes

that we know how likely particular observations Xs,t are, in case of an event occurring or not
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occurring. Thus, it assumes we have access to the conditional probabilities P [Xs,t | Et = 0] and

P [Xs,t | Et = 1]. In this case, under the common assumptions that the sensors’ measurements are

independent conditional on whether there is an event or not, it can be shown that the optimal

strategy is to perform hierarchical hypothesis testing [99]: we define two thresholds τ, τ ′, and let

Ms,t = 1 if and only if
P [Xs,t | Et = 1]

P [Xs,t | Et = 0]
≥ τ. (4.1)

i.e., if the likelihood ratio exceeds τ . Similarly, the fusion center sets Êt = 1 if and only if

Bin(St; p1;N)

Bin(St; p0;N)
≥ τ ′, (4.2)

where St =
∑
sMs,t is the number of picks at time t; p` = P [Ms,t = 1 | Et = `] is the sensor-level

true (` = 1) and false (` = 0) positive rate respectively; and Bin(·, p,N) is the probability mass

function of the Binomial distribution. Asymptotically optimal decision performance in either a

Bayesian or Neyman-Pearson framework can be obtained by using the decision rules (4.1) and (4.2)

with proper choice of the thresholds τ and τ ′ [99].

There has also been work in quickest detection or change detection (cf., [91] for an overview),

where the assumption is that there is some time point t0 at which the event occurs; Xs,t will be

distributed according to P [Xs,t | Et = 0] for all t < t0, and according to P [Xs,t | Et = 1] for all

t ≥ t0. In change detection, the system trades off waiting (gathering more data) and improved

detection performance. However, in case of rare transient events (such as earthquakes) that may

occur repeatedly, the distributions P [Xs,t | Et = 1] are expected to change with t for t ≥ t0.

Challenges for the Classical Approach. Detecting rare events from community-based sensors

has three main challenges:

1. Sensors are highly heterogeneous (i.e., the distributions P [Xs,t | Et] are different for each sensor

s)

2. Since events are rare, we do not have sufficient data to obtain good models for P [Xs,t | Et = 1]

3. Bandwidth limitations may limit the amount of communication (e.g., number of picks sent).

Challenge (i) alone would not be problematic; classical decentralized detection can be extended

to heterogeneous sensors, as long as we know P [Xs,t | Et]. For the case where we do not know

P [Xs,t | Et], but we have training examples (i.e., large collections of sensor data, annotated by

whether an event is present or not), we can use techniques from nonparametric decentralized detec-

tion [87]. In the case of rare events, however, we may be able to collect large amounts of data for

P [Xs,t | Et = 0] (i.e., characterizing the sensors in the no-event case), while still collecting extremely

little (if any) data for estimating P [Xs,t | Et = 1]. In our case, we would need to collect data from
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cell phones experiencing seismic motion of earthquakes ranging in magnitude from three to ten on

the Gutenberg-Richter scale, while resting on a table, being carried in a pocket, backpack, etc.

Furthermore, even though we can collect much data for P [Xs,t | Et = 0], due to challenge (iii) we

may not be able to transmit all the data to the fusion center, but have to estimate this distribution

locally, possibly with limited memory. We also want to choose decision rules (e.g., of the form (4.1))

that minimize the number of messages sent.

4.2 Online Decentralized Anomaly Detection

This section describes an approach to online, decentralized detection of anomalous events.

Assumptions. In the following, we adopt the assumption of classical decentralized detection that

sensor observations are conditionally independent given Et, and independent across time (i.e., the

distributions P [Xs,t | Et = 0] do not depend on t). For earthquake detection this assumption is

reasonable (since most of the noise is explained through independent measurement noise and user

activity). While spatial correlation may be present, e.g., due to mass events such as rock concerts, it

is expected to be relatively rare. Furthermore, if context about such events is available in advance,

it can be taken into account. We defer treatment of spatial correlation to future work. We do not

assume that the sensors are homogeneous (i.e., P [Xs,t | Et = 0] may depend on s). Our approach

can be extended in a straightforward manner if the dependence on t is periodic (e.g., the background

noise changes based on the time of day, or day within week).

Overview. The key idea behind our approach is that since sensors obtain a massive amount of

normal data, they can accurately estimate P [Xs,t | Et = 0] purely based on their local observations.

In our earthquake monitoring example, the cell phones can collect data of acceleration experienced

under normal operation (lying on a table, being carried in a backpack, etc.). Further, if we have

hope of detecting earthquakes, the signal Xs,t must be sufficiently different from normal data (thus

P [Xs,t | Et = 0] must be low when Et = 1). This suggests that each sensor should decide whether

to pick or not based on the likelihood L0(x) = P [x | Et = 0] only; sensor s will pick (Ms,t = 1) if

and only if, for its current readings Xs,t = x it holds that

L0(x) < τs (4.3)

for some sensor specific threshold τs. Note that using this decision rule, for a pick it holds that

P [Ms,t = 1 | Et = e] = P [L0(Xs,t) < τs | Et = e] = pe. This anomaly detection approach hinges on
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the following fundamental anti-monotonicity assumption: that

L0(x) < L0(x′)⇔ P [x |Et=1]

P [x |Et=0]
>

P [x′ |Et=1]

P [x′ |Et=0]
, (4.4)

i.e., the less probable x is under normal data, the larger the likelihood ratio gets in favor of the

anomaly. The latter is the assumption on which most anomaly detection approaches are implicitly

based. Under this natural anti-monotonicity assumption, the decision rules (4.3) and (4.1) are

equivalent, for an appropriate choice of thresholds.

Proposition 4.2.1. Suppose Condition (4.4) holds. Then for any threshold τ for rule (4.1), there

exists a threshold τs such that rule (4.3) makes identical decisions.

Since the sensors do not know the true distribution P [Xs,t |Et=0], they use an online density

estimate P̂ [Xs,t | Et = 0] based on collected data. The fusion center will then perform hypothesis

testing based on the received picks Ms,t. In order for this approach to succeed we have to specify:

1. How can the sensors estimate the distribution P̂ [Xs,t | Et = 0] in an online manner, while using

limited resources (CPU, battery, memory, I/O)?

2. How should the sensors choose the thresholds τs?

3. Which true positive and false positive rates p1, p0 and threshold τ ′, cf., (4.2), should the fusion

center use?

We now discuss how our approach addresses these questions.

Online Density Estimation. For each sensor s, we have to, over time, estimate the distribution

of normal observations L̂0(Xs,t) = P̂ [Xs,t | Et = 0], as well as the activation threshold τs. There

are various techniques for online density estimation. Parametric approaches assume that the density

P [Xs,t | Et = 0] is in some parametric family of distributions:

P [Xs,t | Et = 0] = φ(Xs,t, θ).

The goal then is to update the parameters θ as more data is obtained. In particular, mixture

distributions, such as mixtures of Gaussians, are a flexible parametric family for density estimation.

If access to a batch of training data is available, algorithms such as Expectation Maximization can

be used to obtain parameters that maximize the likelihood of the data. However, due to memory

limitations, it is rarely possible to keep all data in memory; furthermore, model training would

grow in complexity as more data is collected. Fortunately, several effective techniques have been

proposed for incremental optimization of the parameters, based on Variational Bayesian techniques

[93] and particle filtering [40]. Online nonparametric density estimators (whose complexity, such as
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the number of mixture components, can increase with the amount of observed data) have also been

developed [52].

Online Threshold Estimation. Online density estimators as introduced above allow us to

estimate P̂ [Xs,t | Et = 0]. The remaining question is how the sensor-specific thresholds τs should be

chosen. The key idea is the following. Suppose we would like to control the per-sensor false positive

rate p0 (as needed to perform hypothesis testing in the fusion center). Since the event is assumed to

be extremely rare, with very high probability (close to 1) every pick Ms,t = 1 will be a false alarm.

Thus, we would like to choose our threshold τs such that, if we obtain a measurement Xs,t = x at

random, with probability 1− p0, it holds that L̂0(x) ≥ τs.

This insight suggests a natural approach to choosing τs: For each training example xs,t, we

calculate its likelihood L̂0(xs,t) = P̂ [xs,t | Et = 0]. We then choose τs to be the p0-th percentile of

the data set L = {L̂0(xs,1), . . . , L̂0(xs,t)}. As we gather an increasing amount of data, as long as we

use a consistent density estimator, this procedure will converge to the correct decision rule.

In practice, due to memory and computation constraints, we cannot keep the entire data set

L of likelihoods and re-estimate τs at every time step. Unfortunately, percentiles do not have

sufficient statistics as the mean and other moments do. Moreover, Munro and Paterson [84] show

that computing rank queries exactly requires Ω(n) space. Fortunately, several space-efficient online

ε-approximation algorithms for rank queries have been developed. An algorithm that selects an

element of rank r′ from N elements for a query rank r is said to be uniform ε-approximate if

|r′ − r|
N

≤ ε

One such algorithm which requires logarithmic space is given by [55]. We summarize our analysis

in the following proposition:

Proposition 4.2.2. Suppose that we use a uniformly consistent density estimator

(i.e., lim supx{P̂ [x | Et = 0] − P [x | Et = 0]} → 0 a.s.). Further suppose that τs,t is an ε-accurate

threshold obtained through percentile estimation for p0. Then for any ε > 0, there exists a time

t0 such that for all t ≥ t0, it holds that the false positive probability p̂0 = P
[
L̂0(xs,t) < τs

]
is

|p̂0 − p0| ≤ 2ε.

The proof of Proposition 4.2.2 hinges on the fact that if the estimate L̂0(x) converges uniformly

to L0(x), the p0-th percentiles (for 0 < p0 < 1) converge as well. Furthermore, the use of an

ε-approximate percentile can change the false positive rate by at most ε.

Uniform convergence rates for density estimation have been established as well [51], allowing us

to quantify the time required until the system operates at ε-accurate false positive rates. Since we

assume that communication is expensive, we may impose an upper bound on the expected number
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Algorithm 1: Threshold Optimization procedure

Data: Estimated sensor ROC curve, N sensors, communication constraints p̄, bound on
fusion-level false positives P̄

Result: sensor operating point (p0, p1)
for ith operating point (pi0, p

i
1) s.t. pi0 ≤ p̄ do

//Do Neyman-Pearson hypothesis testing to evaluate pi0;
Compute N(pi0) = min{N ′ :

∑
S>N ′ Bin(S; pi0;N)≤ P̄};

Compute P iD =
∑
S>N(pi0) Bin(S; pi1;N);

Compute P iF =
∑
S>N(pi0) Bin(S; pi0;N);

Choose ` = arg maxi P
i
D and set (p0, p1) = (p`0, p

`
1);

of messages sent by each sensor. This can be achieved by imposing an upper bound p̄ on p0, again

relying on the fact that events are extremely rare. We present more details in the next section.

Hypothesis Testing for Sensor Fusion. Above, we discussed how we can obtain local decision

rules that allow us to control the sensor-level false positive rate p0 in a principled manner, and in

the following we assume that the sensors operate at this false positive rate. However, in order to

perform hypothesis testing as in (4.2), it appears that we also need an estimate of the sensor-level

true-positive rate p1.

Suppose that we would like to maximize the detection rate PD at the fusion center while guar-

anteeing a false positive rate PF that is bounded by P̄ . It can be shown that the optimal decision

rule (4.2) is equivalent to setting Êt = 1 if and only if St ≥ N(p0), for some number N(p0) that only

depends on the total number N of sensors, and the sensor false-positive rate p0. Thus, to control

the fusion-level false positive rate PF we, perhaps surprisingly, do not need to know the value for

p1, since PF does not depend on p1:

PF =
∑

S>N(p0)

Bin(S; p0;N) and PD =
∑

S>N(p0)

Bin(S; p1;N).

Thus, our online anomaly detection approach leads to decision rules that provide guarantees about

the fusion-level false positive rate.

Our goal is not just to bound the false positive rate, but also to maximize detection performance.

The detection performance PD above depends on the sensor-level true positive rate p1. If we have

an accurate estimate of p1, all sensors are homogeneous and the anti-monotonicity condition (4.4)

holds, the following result, which is a consequence of [99], holds:

Theorem 4.2.3. Suppose condition (4.4) holds and the sensors are all homogeneous (i.e., P [Xs,t | Et]

is independent of s). Further suppose that for each sensor-level false-positive rate p0 we know its

true-positive rate p1. Then one can choose an operating point (p∗0, p
∗
1) that is asymptotically optimal

(as N →∞).
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Unfortunately, without access to training data for actual events (e.g., sensor recordings during

many large earthquakes), we cannot obtain an accurate estimate for p1. However, in Section 5.8,

we show how we can obtain an empirical estimate p̂1 of p1 by performing shaketable experiments.

Suppose now that we have an estimate p̂1 of p1. How does the detection performance degrade with

the accuracy of p̂1?

One way to quantify detection performance is with a Receiver Operator Characteristic (ROC)

curve. The curve plots true positive rate against false positive rate for each possible decision thresh-

old. ROC curves allow us to estimate the obtainable TPR of a sensor, given a constraint on its

FPR, such as a limit on the average number of pick messages per day.

Suppose we have access to an estimate of the sensors’ curve, i.e., the dependency of the achievable

true positive rates p̂1(p0) as a function of the false positive rate (see Figure 4.3(a) for an example).

Now we can view both the estimated rates P̂D ≡ P̂D(p̂1(p0)) ≡ P̂D(p0) and P̂F = P̂F (p0) as

functions of the sensor-level false positive rate p0. Based on the argument above, we have that

P̂F (p0) = PF (p0), i.e., the estimated false positive rate is exact, but in general P̂D(p0) 6= PD(p0).

Fortunately, it can be shown that if the estimated ROC curve is conservative (i.e., p̂1(p0) ≤ p1(p0)

for all rates p0), then it holds that P̂D(p0) ≤ PD(p0) is an underestimate of the true detection

probability. Thus, if we are able to obtain a pessimistic estimate of the sensors’ ROC curves, we

can make guarantees about the performance of the decentralized anomaly detection system. We can

now choose the optimal operating point by

max
p0≤p̄

P̂D(p0) s.t. P̂F (p0) ≤ P̄ ,

and are guaranteed that the optimal value of this program is a pessimistic estimate of the true

detection performance, while P̂F is in fact the exact false alarm rate. Algorithm 1 formalizes this

procedure. We summarize our analysis in the following theorem:

Theorem 4.2.4. If we use decentralized anomaly detection to control the sensor false positive rate

p0, and if we use a conservative estimated ROC curve (p0, p̂1), then Algorithm 1 chooses an operating

point p0 to maximize a lower bound on the true detection performance, i.e., P̂D(p0) ≤ PD(p0).

4.3 Experimental Evaluation

Could a network of cheap community sensors detect the next large earthquake? This section ex-

plores whether consumer sensors are adequate for sensing important earthquakes, and analyzes the

effectiveness of distributed anomaly detection for quake detection.

• We measure the sensitivity of commercial hardware by reproducing historic moderately large

earthquakes gathered by the Southern California Seismic Network (SCSN) via a shake table.
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We find that mobile phone accelerometers and consumer USB accelerometers are capable of

sensing moderately large earthquakes.

• In the absence of recordings of large earthquakes by mobile phones, we simulate observations

of quakes by combining accelerometer time series collected from volunteers’ smartphones with

time series data of historic Los Angeles area earthquakes. This data set allows us to investigate

the average performance of single-sensor detection (pick algorithms).

• Earthquakes are spatial-temporal events, and so it is natural to ask how the distribution of

population (and hence, sensors) impacts the detection of different earthquakes as they traverse

a city. Combining a simulator for earthquake propagation with sensor-level detection simula-

tors allows us to investigate how quake of a given magnitude and origin would be observed by

a particular configuration of community sensors, and assess the time needed to reliably detect

the event.

Data Sets. While earthquakes are rare, data gathered from community sensors can be plentiful. To

characterize “normal” (background) data, seven volunteers from our research group carried Android

phones throughout their daily routines to gather over 7GB of phone accelerometer data. Similarly,

an initial deployment of 20 USB accelerometers recorded 55GB of acceleration over a period of 4

months. However, due to the infrequent occurrence of large earthquakes, it could require many

years of observation to obtain records from several dangerously large events. One approach to

overcome this limitation is to simulate sensor observations from existing seismic records, and use

these simulated observations for testing. The Southern California Seismic Network, a network of

several hundred high-fidelity seismometers, provides a database of such records. We extract a set

of 32 records of moderately large (M5-5.5) events from stations at distances of under 40 km from

the event epicenter. Simulated sensor observations are produced by subsampling these records to

50 samples per second and superimposing them onto segments of Android or Phidget data. As

we will see in our shaketable experiments, this method of obtaining simulated sensor data yields a

reasonable estimate of detection performance when we reproduce quake records using a shaketable

and directly sense the acceleration with both Androids and Phidgets.

Our previous experiments have used synthetically produced data (recorded seismic events su-

perimposed on phone recordings) to simulate how different detection algorithms may respond to a

moderately large earthquake. Is such a simulation-based approach valid? Would these sensors actu-

ally detect an earthquake from their own recordings? To answer these questions, we take recordings

of three large historical earthquakes, and play them back on a shaketable (see Figure 3.5 for an

illustration).
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First, we test the ability of Android phones to accurately capture seismic events, relative to

one of the sensors used in the SCSN. We reproduce records of three large M6-8 earthquakes on the

shaketable, and record the motion using one Android placed on the table, and another in a backpack

on the table. Ground truth acceleration is provided by a 24-bit EpiSensor accelerometer mounted

to the table. Unlike the EpiSensor, the phones are not affixed and are free to slide. The backpack

also introduces an unpredictable source of error. Despite these significant challenges, after properly

resampling both signals and aligning them temporally, we obtain an average correlation coefficient

of 0.745, with a standard deviation of 0.0168. This result suggests that the phones reproduce the

waveforms rather faithfully.

A more important question than faithful reproduction of waveforms is whether the sensors can

detect an earthquake played back on the shaketable. To assess this, we use the model trained

on background noise data, as described above. We further use percentile estimation to choose

the operating point which we experimentally determined to lead to high system-level detection

performance above. All six of the recordings (three from the phone on the table and three from the

phone in the backpack) were successfully detected.

4.3.1 Decentralized detection: device-level performance

Picking Algorithm Evaluation. In our first experiment, we evaluate the sensor-level effectiveness

of our density-based anomaly detector. We compare four approaches: two baselines and two versions

of our algorithm.

1. A hypothesis-testing based approach (as used by classical decentralized detection), which uses

a GMM-based density estimate both for P [Xs,t | Et = 0], as well as P [Xs,t | Et = 1]. For

training data, we use 80 historic earthquake examples of magnitude M4.5-5, superimposed on

the sensor data.

2. A domain specific baseline algorithm, STA/LTA, which exploits the fact that the energy in

earthquakes is broadband in 0-10Hz. It compares the energy in those frequencies in the last

2.5s to the energy at those frequencies in the previous 5s; a sharp rise in this ratio is interpreted

as a quake.

3. A simplified GMM based approach, which uses features from a sliding window of 2.5s length

4. Our full GMM approach, which combines combines features of the last 2.5s with features from

the previous 5s (to better detect the onset of transient events).

Notice that implementing the hypothesis testing baseline in an actual system would require

waiting until the sensors experienced such a number of earthquakes, carefully annotating the data,
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and then training a density estimator. On the other hand, our anomaly detection approach can

be used as soon as the sensors have gathered enough data for an estimate of P [Xs,t | Et = 0]. We

applied each of these four algorithms to test data created by superimposing historic earthquake

recordings of magnitude M5-5.5 on phone and Phidget data that was not used for training. The

resulting estimated sensor ROC curves are shown in Fig. 4.3(a) and Fig. 4.3(b), respectively.

First note that in general the performance for the Phidgets is much better than for the phones.

This is expected, as phones are subject to much more background noise, and the quality of the

accelerometers in the Phidgets is better than those in the phones. For example, while the STA/LTA

baseline provides good performance for the Phidgets (achieving up to 90% detection performance

with minimal false positives), it performs extremely poorly for the phone client (where it barely

outperforms random guessing). The other techniques achieve close to 100% true positive rate even

for very small false positive rates. For the phone data, both our anomaly detection approaches

outperform the hypothesis testing baseline, even though they use less training data (no data about

historic earthquakes). In particular for low false positive rates (less than 5%), the full GMM LtSt

model outperforms the simpler model (that only considers 2.5s sliding windows). Overall, we find

that both for the phones and the Phidgets, we can achieve detection performance far better than

random guessing, even for very small false positive rates, and even for lower magnitude (M5-5.5)

events. We expect even better detection performance for stronger events.

Figure 4.2: CSN sensors produced picks (blue and red bars) for both P-wave and S-wave of the Anza
M3.6 earthquake. Time series plots are arranged by distance to quake epicenter.

4.3.2 From sensor performance to network performance

Based on the estimated sensor-level ROC curves, we can now estimate the network-wide detection

performance. To avoid overestimating the detection performance, we reduce the estimated true

positive rates, assuming that a certain fraction of the time (10% in our case) the sensors produce

pure random noise. We now need to specify communication constraints p̄ on how frequently a

message can be sent from each sensor, as well as a bound P̄ on the fusion-level false positive rate.

We choose p̄ to be at most one message per minute, and P̄ to be at most one fusion-level false



51

(a) Android detection performance (b) Phidget detection performance

Figure 4.3: In all plots, the system-level false positive rate is constrained to 1 per year and the
achievable detection performance is shown. (a,b) Sensor level ROC curves on magnitude M5-5.5
events, for Android (a) and Phidget (b) sensors.

positive per year. This fusion-level false positive rate was chosen as representative of the time scale

the CSN must operate on; in practice this would depend on the cost of taking unnecessary response

measures.

We consider sensors located in geospatial areas of size 20 km × 20 km, called cells. The choice

of this area is such that, due to the speed of seismic waves (≈ 5-10 km/s), most sensors within one

cell would likely detect the earthquake when computing features based on a sliding window of length

2.5s. However, in order to achieve larger spatial coverage we will need many spatial cells of 20 km

× 20 km. For example, roughly 200 such cells would be needed to cover the Greater Los Angeles

area. Increasing the number of cells additively increases the number of false positives due to the

fact that multiple hypotheses (one per cell) are tested simultaneously. Consequently, to maintain

our objective of one system-wide false positive per year, we must decrease the rate of annual false

positives per cell. The effect on detection rates from this compensation as a function of the total

number of cells is shown in Figure 4.4(a). Notice that even for 200 cells, approximately 60 phones

per cell suffice to achieve close to 100% detection performance, as long as they are located close to

the epicenter.

Sensor Type Tradeoffs. A natural question is what is the tradeoff between the different sensor

types? Figures 4.4(b) and 4.4(c) shows the estimated detection performance as a function of the

number of Phidgets and number of phones in the area, when constrained to one false alarm per

year. Our results indicate that approximately 50 phones or 10 Phidgets should be enough to detect

a magnitude 5 and above event with close to 100% success.

The results in Figures 4.4(b) and 4.4(c) also allow us to estimate how we could ensure sufficient

detection performance if a given area contains only a limited number of active phone clients. For
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(a) Detection rates (b) 1 pick per minute, LtSt features (c) 1 pick per minute, alternate view

Figure 4.4: (a) Detection rate as a function of the number of sensors in a 20 km × 20 km cell. We
show the achievable performance guaranteeing one false positive per year, while varying the number
of cells covered. (b,c) Detection performance for one cell, depending on the number of phones and
Phidgets.

example, if only 25 phones are active in a cell, we could manually deploy 5 additional Phidgets to

boost the detection performance from close to 70% to almost 100%.

Notice that all these results assume that the sensors are located close to the epicenter (as they

assume the sensors experience maximum acceleration), and are thus to be taken with some care.

Covering an area such as Greater Los Angeles likely requires tens of thousands of sensors.

The Previous Big One.

To perform an end-to-end test of the entire system, we performed an experiment with the goal

to find out whether our CSN would have been able to detect the last big event. A recent major

earthquake in Southern California occurred on April 4, 2010 (32.25◦N,−115.28◦E). This M7.2 quake

in Baja, California was recorded by SCSN, although the nearest station was more than 60 km from

the event epicenter. Using 8 recordings of this event, at distances of 63 km to 162 km, we produce

simulated Android data and evaluate how many phones would have been needed to detect this event.

Specifically, we constrain the system as before to one false alarm per year, and one message per

minute in order to determine detection thresholds, sensor operating points and sensor thresholds for

both the GMM anomaly and hypothesis testing detector, for each deployment size. We then simulate

observations for each sensor in a deployment ranging from 1 sensor to 100 sensors. The models and

thresholds are then applied to these observations to produce picks; the fusion center hypothesis test

is then performed and the decision is made whether an event has occurred or not. The average

detection rates for each deployment size (averaged over 100 iterations, using different Android data

to simulate each observation) are shown in Figure 4.5 along with the estimated detection rates for the

GMM-based anomaly detection. The latter estimate is based on the ROC that we estimated using

a different collection of seismic events, as explained in our Picking Algorithm Evaluation section.

Notice that the actual detection performance matches well the predicted detection performance. As

baseline, we compare against the hypothesis testing based baseline (trained on 80 smaller-magnitude
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earthquakes). Anomaly detection significantly outperforms hypothesis testing, and suggests that a

deployment of 60 phones in a cell 60 km from the epicenter would have been quite likely to detect

the Baja, California M7.2 event.

Figure 4.5: Actual detection performance for the Baja event (100 iterations averaged). Note that our
approach outperforms classical hypothesis testing, and closely matches the predicted performance.

Next, we evaluate the ability of community sensors to detect future quakes for which no training

data is available. While earthquakes are rare, data gathered from community sensors can be plentiful.

To characterize “normal” (background) data, seven volunteers carried Android phones throughout

their daily routines to gather over 7GB of phone accelerometer data, and 20 USB accelerometers

recorded 55GB of acceleration. From this data, we estimated models for each sensor type’s normal

operating behavior. We evaluated anomaly detection performance on 32 historic records of mod-

erately large (M5-5.5) events (as recorded by the Southern California Seismic Network). Fig. 4.3

summarizes the ability of individual sensors to transmit “event” or “no event” to the cloud server, in

the form of Receiver Operating Characteristic curves, and shows anomaly detection outperforming

several standard baselines: the vertical axis is the attainable detection (pick) rate of a single sensor,

against the horizontal axis of allowable false detection (pick) rate. Combining the accuracy results

for USB and Android sensors, Fig. 6.5 shows the tradeoff of detecting with a mix of sensor types,

while constraining to one false alarm per year. Our results indicate that approximately 50 phones

or 10 Phidgets should be enough to detect a nearby magnitude 5 or larger event with close to 100%

success.
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Chapter 5

Rapid detection of structured
spatial patterns

Quake detection in community networks requires finding a complex spatio-temporal pattern in a

large set of noisy sensor measurements. The start of a quake may only affect a small fraction of the

network, so the event can easily be concealed in both single-sensor measurements and network-wide

statistics. Data from recent high-density seismic studies, Fig. 1.3, show that localized variations in

ground structure significantly impact the magnitude of shaking at locations only a few kilometers

apart. Consequently, effective quake detection requires algorithms that can learn subtle depen-

dencies among sensor data, and detect changes within groups of dependent sensors. In this sense,

quake detection is prototypical of many challenging real-time detection problems, including detecting

epidemic outbreaks [95], intrusions in networks [111], and sudden changes in traffic patterns [48].

The previous chapters have introduced a decentralized system architecture using cloud computing

with desktop and mobile clients, and explained how a decentralized anomaly detection approach can

allow practical scalability by dividing the detection task into per-client anomaly detection tasks

and a network-wide event detection task. This chapter, based on [36] and [88], explores a different

aspect of event detection with large numbers of community sensors: how can knowledge of the spatial

dependencies among sensors be used – or learned – to improve detection?

To help answer this question, two approaches for incorporating spatial structure are presented.

The first approach, described in Sec. 5.3, uses the concept of a geocell to subdivide the network

into disjoint regions. These regions are tested individually for the occurrence of an event. While

conceptually simple, testing by geocell has several practical advantages and allows easy evaluation

of event and sensor density scenarios. The second approach, discussed in Sec. 5.4, considers learning

network-wide dependencies from historical data or, alternatively, using qualitative knowledge of

sensor similarity.
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Figure 5.1: ROC curves for (a) Phidget and (b) Android. (c) Detection performance vs. distance
from epicenter under the guarantee of at most 1 false message per hour for the Phidget and 1 false
message every 5 minutes for the Androids.

5.1 Preliminaries

As preliminaries, this chapter adopts the pick model from Sec. 1.5. To help study spatiotemporal

events, this chapter also introduces a simulator for the CSN network that generates pick messages

as a function of event parameters and (virtual) sensor location. An estimate of sensor performance

is obtained by using historic quake measurements, partitioned according to distance from sensor to

epicenter.

5.1.1 Lower Bounds for Sensor Performance

As a first step towards simulating the behavior of the CSN network, Receiver Operating Character-

istic (ROC) curves are used to gain insight into the detection performance of each client type as a

function of event magnitude and distance from client to event epicenter.

We obtain simulated acceleration time series recordings for both Phidget and Android clients

by combining historical earthquake recordings from the USGS Southern California Seismic Network

(SCSN) with noise recordings from volunteers’ Phidget and Android sensors. We collected a set of 54

SCSN records of magnitude M5-5.5 earthquakes from seismic stations between 0-100 km. The SCSN

recordings are down-sampled to 50 samples per second to be comparable with low-end consumer

accelerometers, and are then overlaid with Phidget or Android recordings from the volunteer data

set in order to obtain a realistic noise profile.

Using these simulated acceleration time series, we can compute ROC curves for each sensor type

under a variety of seismic scenarios. From a data set of magnitude M = 5 − 5.5 earthquakes, we

extract 5 sets of records, containing data from stations at varying distances away from the epicenter.

The data sets correspond to distance ranges d in kilometers, d = {0−10, 20−30, 40−50, 70−80, 90−

100}. Fig. 5.1 illustrates the performance of the the STA/LTA algorithm (evaluated on synthetic

records made with volunteers’ Phidget data), and the anomaly detection algorithm (evaluated on
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Figure 5.2: (a) Single cell of varying number of Phidgets observing 3 levels of seismic events of M5.5
and lower. (b) Single cell of varying number of Androids observing 3 levels of seismic events of M5.5
and lower. (c) Number of pick messages received by the system as a function of time since the event
started.

synthetic records made with volunteers’ Android data). These ROC curves demonstrate that the

Phidgets - higher resolution sensors that are typically not subjected to user motion - obtain superior

performance to the Android sensors at all distance ranges. The curves also reflect the 1/r2 decay

rate of shaking intensity, where r is distance from the quake epicenter.

5.1.2 Analyzing groups of sensors by Geocell

One practical way of spatially aggregating data is to partition the data according to rectilinear

regions of latitude and longitude. Geocells [88] provide an efficient way to query data according to a

multi-resolution grid of latitude and longitude. With a slight abuse of notation, “geocell” shall refer

to one member of such a rectilinear partitioning.

Consider a number of sensors occupying a relatively small geocell (e.g., several street blocks).

Inside this geocell, each sensor experiences similar seismic shaking during an event, and independent

noise (such as motions caused by a cell phone’s user) in the absence of an event. We can roughly say

that all sensors within a geocell have the same signal to noise ratio (SNR) and that their picks can be

well approximated as independent, identically distributed binary random variables when conditioned

on whether an event has occurred or not. Thus, from the ROC of a single sensor, we can analyze the

collective behavior of a group of sensors. By fixing the decision rule for each sensor, and a decision

rule for geocell-wide event detection, we can evaluate the event detection performance as a function

of the number of sensors in the geocell.

The sensor decision rules can be specified by constraining the maximum allowable rate of false

positive picks. Here, we constrain the Phidget USB sensors to produce at most 1 false pick per hour,

and constrain the Android sensors to at most 1 false pick per 5 minute interval. The cell-wide false

positive rate is constrained to no more than 1 per year, on average. Fig. 5.2(a) and Fig. 5.2(b) show

cell detection performance as a function of sensor density, generated from synthetic M5-5.5 records.

These results indicate that a cell containing 30 Phidgets or 100 Androids could reliably detect a
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Phidget 
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Figure 5.3: Snapshot of simulated detection of a M5.5 event 80 km outside the great Los Angeles
area. There are 100 desktop clients and 1000 Android clients distributed according to population
density. The snapshot is taken 20 seconds after the event occurred.

moderately large earthquake at a distance of 50km from the epicenter, and that the higher-quality

Phidget sensors are capable of detecting the signal from up to 100km.

5.1.3 Simulation Platform

Earthquakes are complex phenomena whose effects differ according to a variety of geological factors.

Seismologists have developed detailed simulations that capture these subtle relationships, but as this

work is interested in the dominant behavior of a network comprised of a large numbers of relatively

noisy sensors, we use a relatively simple model. The simulator, developed by Liu [88], generates time

series of pick messages as a function of each client’s sensor type and location, as well as event origin

and magnitude using a seismic model based on a point source (i.e., the epicenter is a single point) and

isotropic wave propagation (i.e., the wave travels in all directions with equal speed). As discussed

in Sec. 4.2, each client’s false positive rate may be chosen to maximize detection performance while
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satisfying the per-sensor constraints on average message rates.

Given the location of each sensor in the network and the origin of a seismic event, the simulator

computes the probability that each sensor picks during each time instance, and generates picks

with these probabilities to produce a time series of pick messages. Fig. 5.3 shows a snapshot of

simulated detection of a M5.5 event. The snapshot is taken 20 seconds after the event occurs. For

this simulation, the Phidget FPR is set at 1 pick per hour and the Android FPR is set to 1 pick

every 5 minutes. The pick messages are timestamped after factoring in network delays.

5.2 Naive Event Association

As a baseline, consider the naive aggregation policy described in Sec. 4.1. At each time step, the

system decides whether an event has occurred based on the pick messages it has received so far. The

naive decision rule is to perform hypothesis testing on the aggregated pick counts in the past few

seconds, that is, to compute the ratio of likelihood for the two hypothesis: 1) that there is an event

(p = p1), and 2) that there is no event (p = p0). In other words, the naive decision rule performs

the test

Binomial(k;n, p1)

Binomial(k;n, p0)
≥ r

where n is the total number of sensors in the system, k is the number of picks observed in the

past few seconds and r is the decision threshold chosen to satisfy a constraint on the system false

positive rate. If the inequality holds, the system declares detection.

This policy is referred to as performing naive aggregation because it disregards the varying

strengths of geospatial correlation between sensors as well as the temporal pattern in which seismic

waves cross the network. Depending on the distance and direction of the wave relative to the region of

sensors, different number of sensors are affected at a given time. Therefore it may not be reasonable

to consider measurements from all sensors equally at all times.

We collected 1000 sets of measurements from 2000 Androids and 20 Phidgets separately during a

simulated M5.5 event within 60 km of downtown Los Angeles. During a period of T = 0−10 seconds

after the event occurs, we perform the naive association algorithm on each 2-second interval and

compute the system level detection rate while maintaining the guarantee of at most 1 false alarm

per year. The results are shown in Fig. 5.4 as the lower bounds for the two types of sensors.

5.3 Spatial Aggregation by Geocell

Even crude knowledge of the spatio-temporal structure of an event should allow for improved de-

tection performance, as it makes possible tests that aggregate data from groups of clients that tend
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Figure 5.4: Detection of a M5.5 event with (b) 2000 Androids and (c) 20 Phidgets in the three
scenarios described in Figure 5.5. This result guarantee at most 1 false alarm per year at the
system-wide level. Results computed using the geocell-based association algorithm are compared to
those using the naive algorithm.

(a) Central Model (b) Corner Model (c) Side Model

Figure 5.5: Regions of different sizes and shapes are activated in different sequence for each of the
three scenarios. The rainbow-colored rings indicate the order of activation. Red: first. Purple: last

to co-activate. For the CSN network, events can be very coarsely modeled as originating at a point

source and traveling outward isotropically at a fixed speed. With this assumption in mind, we can

break down the detection problem into a few case scenarios in terms of how the incoming waves

come to contact with the sensors. By exploiting sensor co-activation patterns in these scenarios, one

can design a more logical on-line event association algorithm.

Figure 5.5 shows three such possible cases after pre-gridded the area into geocells — (a) the

epicenter is inside the cluster, (b) the epicenter is diagonally away from the cluster, and (c) the

epicenter is on the side and away from the cluster. In each of these cases, regions of different sizes

and shapes will be activated in different sequences during an event. While it is computationally

nontrivial to partition a 2-dimensional space into arbitrary regions, the geocell library provides the

tools to compute these regions efficiently. We can perform hypothesis testing in parallel for each

possible regions to improve the system-wide detection performance.
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We computed the system-wide detection performance for each of the scenarios illustrated in

Figure 5.5 with either 20 Phidgets or 2000 Androids distributed according to the population density

in the area. The regions in terms of activation sequence are identified a priori using the geocell

library. A region consists of multiple nearby geocells. Each geocell is ≈ 10 × 10 km in size, which

is approximately how far the shock wave travels in 2 seconds. Two seconds is also roughly the

short-term integration window used in both STA/LTA and anomaly detection algorithm. We can

thus safely assume that all sensors in the same region have the same SNR and model them as

independently identically distributed random variables, following the analysis in Section 5.1.2. In

each time step of 2 seconds, we perform hypothesis testing on each of the regions and compute the

system-wide ROC curves.

Figure 5.4(a) shows an example of how ROC curves of 2000 Androids evolve in time for the

corner case illustrated in Figure 5.5(b). We slice the surface of this figure at the false alarm rate

of 1 per year and retrieve the detection rate as a function of time in Figure 5.4(b) and 5.4(c). The

results are compared to the baseline results computed using the naive total association algorithm

discussed in Sec. 5.2. These results clearly highlight the benefit of intelligent event association by

locality. They also touch on the tradeoffs between delayed decision making and gain in detection

confidence. In the case with 2000 Androids (Fig. 5.4(b)), we can fire off alarm at T=2 second that

allows us to give 10s of seconds of early warning to surrounding cities such as Santa Barbara or San

Diego but with only 20% confidence. Or we can wait till T=10 second or after to fire the alarm with

≈ 100% confidence but give slower warnings.

5.4 Beyond Geocells: learning spatial dependencies

The previous results demonstrate the utility of aggregating data via regions based on event spatio-

temporal dynamics, but made coarse assumptions in order to implement the idea. This section

formalizes the idea that small groups of sensor clients may observe an event, and that recognizing

these co-activations may provide improved detection. Further, it should be possible to learn an

effective aggregation scheme that makes use of the large number of noisy devices that characterize

CSR systems.

Standard approaches in decentralized detection [100] assume that the sensors provide i.i.d. mea-

surements conditioned on the occurrence or non-occurrence of an event. In this case, the fusion

center would declare a detection if a sufficiently large number of sensors report picks, corresponding

to the naive aggregation approach . However, in many practical applications, the particular spatial

configuration of the sensors matters, and the i.i.d. assumption is violated. Here, the natural question

arises of how (qualitative) knowledge about the nature of the event can be exploited in order to im-

prove detection performance. In this section, we propose to use sparsification to optimize detection.
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In particular, we linearly represent the network-wide noisy, binary activation patterns in a suitable

basis, which is carefully chosen so that “typical” activations (associated with the events of interest)

are sparsely represented in the basis. This effectively concentrates the signal energy along a small

number of basis coordinates. Natural questions, addressed in this work, are thus: When can we

expect sparse representations to aid detection? And, which bases are appropriate for this purpose?

As a starting point, consider a wavelet basis that emerges naturally when sensors are clustered

hierarchically [79, 50, 96]. [96] recently proposed a generative model for network data that produce

strong localized dependencies and weaker long-range dependencies. They show that in the limit as

the number of sensors p→∞, signals drawn from the model are concentrated in a small number of

coordinates of the wavelet basis. As a result, the wavelet basis can detect sparse patterns in strong

Gaussian noise that cannot be detected by single-sensor readings or the network-wide average.

However, these existing results are centralized in nature: they require aggregation of measure-

ments from all sensors in the network. As our first major contribution, we analyze the wavelet basis

and prove theoretically that similar improvements in detection performance can be achieved using

only the binary pick messages of the decentralized setting.

The first major contribution of this chapter uses a wavelet basis that emerges naturally when

sensors are clustered hierarchically to provide improved event detection. We prove theoretically that

when the wavelet basis sparsifies the received picks, decentralized detection becomes possible in a

noise regime that cannot be handled by a simple network-wide average. We derive strong bounds on

the detection rate when events are drawn from a recently proposed latent tree model that produce

strong localized dependencies and weaker long-range dependencies.

One of the strengths of the wavelet basis is that it can be constructed using as little information

as a matrix of pairwise similarity between sensors, e.g., a covariance matrix or a qualitative measure

of similarity. However, additional information such as event simulations or measurements of events

in the network are often available. Incorporating this information should improve detection. As our

second major contribution, we show how modern results from dictionary learning can be used to

directly learn sparsifying bases from simulated or measured training data.

As third main contribution, we perform extensive empirical studies of detection using measure-

ments of 1795 earthquakes following the Japanese Tohuku M9.0 quake, quake measurements from

the Signal Hill dense seismic study, from the Community Seismic Network as well as simulated virus

outbreaks in the Gnutella P2P network.

5.4.1 The weak spatial detection problem

We are interested in the problem of detecting whether or not some phenomenon (say an earthquake

with magnitude above some threshold, or an epidemic) is present at any locations monitored by a

massive network of noisy sensors. We model the presence of the phenomenon at locations 1, . . . , p
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as a binary vector x = [x1, . . . , xp] ∈ {0, 1}p that is observed by noisy sensors. The Gaussian noise

model is a natural choice for sensor observations, where sensor i observes

yi = xi + εi,

where εi ∼ N (0, σ2). In our seismic detection application, the variables yi may refer to accelerometer

readings of a sensor deployed at location i. This continuous noise model captures how a subset of sen-

sors in areas experiencing shaking observe a shift in the mean of their accelerometer measurements,

while the rest of the network observes i.i.d. noise.

The decentralized setting. In many domains, collecting the raw sensor measurements of all

sensors would require prohibitive bandwidth to transmit (e.g., the accelerometers in one million

smartphones produce ≈ 30 Terabytes of data each day). A natural way to circumvent this bottleneck

is to use decentralized detection [100] where sensors individually test their measurements and report

the occurrence of a possible event. As an example, the CSN system employs a hierarchical anomaly

detection approach [38] that allows each sensor to transmit only the results of a local anomaly

detection computation (known as a picking algorithm) to the fusion center. We can model the

resulting picks using a binary symmetric channel noise model, where

yi =

xi with prob. 1− π

1− xi with prob. π,

for some error rate 0 < π ≤ 1
2 . The goal of the detection problem is to distinguish the null hypothesis

H0, xi = 0 for all i (i.e., no earthquake present) from the alternate hypothesis H1, where xi = 1 for

one or more i (i.e., the earth is shaking at least at one location i).

Decentralized linear detection. While (decentralized) hypothesis testing in general has been

studied extensively, here we focus on the particularly challenging, and not well understood, setting

where the patterns x are sparse and have strong noise. This is exactly the case for our motivating

example of community seismic networks, where we wish to detect the event as early as possible (i.e.,

few sensors have been reached yet), and each sensor is very noisy. Formally, we quantify the sparsity

of a vector x as the number of non-zero elements xi 6= 0, denoted by the `0-norm ||x||0. Generally,

we will be interested in quantifying the detection performance as the network grows. We say x is

sparse if ||x||0 grows as p1−α for some 1/2 < α < 1, where a larger α means a sparser signal. Thus,

as the number p of sensors grows, the ratio of sensors reached by the event ||x||0/p = p−α vanishes

as p→∞.

We focus on hypothesis tests of linear functions of the observations, i.e., for some matrix B with
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columns b1, . . . ,bn, we consider hypothesis tests of the form

max
i

bTi y Q τ

for some threshold τ . Proper choice of the basis B can lead to dramatically improved detection

performance, i.e., with the same false positive rate much sparser signals (or much higher noise) can

be tolerated.

5.4.2 Detecting sparsifiable events

Detecting sparse signals in the decentralized setting is fundamentally challenging. Suppose the

expected number of errors in the network is pγ for some 0 < γ < 1, and the per-sensor error rate

π = pγ/p. Could we use the observed number of picks ||y||0 to detect a pattern with ||x||0 = p1−α <

p0.5 non-zero entries?

Under both H0 and H1, the variance of ||y||0 grows as pγ . Consider the variable ||y||0/
√
pγ :

it has variance converging to 1 under both H0 and H1. Under H0, its mean is p0.5γ , and under

H1 its mean is p1−α−0.5γ(1 − 2π) + p0.5γ . For γ > 2(1 − α), the distributions of ||y||0 under H0

and H1 converge, while for γ < 2(1 − α) < 1 the distributions are asymptotically separable. The

statistic ||y||0 (classically used in decentralized detection) can only provide reliable detection if the

per-sensor error rate decreases (π = pγ/p→ 0) as the network size p grows. That is, as the network

grows, the sensors must have vanishing error rate for H0 and H1 to be separable.

Fortunately, data is rarely unstructured. Even when the network-wide activation pattern is

sparse, the activation pattern within some groups may be dense and thus more easily detectable. As

a starting point, we might partition the network into disjoint groups, or clusters, that capture strong

dependencies among sensors in the hope that these clusters will individually have a high signal to

noise ratio. Ideally, the number and size of the clusters would be adapted to the structure of the

activation pattern, but the appropriate scale of the clustering is not clear in advance. Hierarchical

clustering is useful for finding meaningful clusters at a range of scales, and is compatible with efficient

data aggregation systems [77] for sensor networks. Recently, hierarchical clustering has been used

to define wavelets bases for trees, graphs, and high-dimensional data [50, 96]. For example, a Haar

wavelet basis is defined by a hierarchical clustering: whenever two clusters cl and cr are merged into

a cluster of coarser scale, a unit vector is created,

bi ∝
(

1

|cl|
1cl −

1

|cr|
1cr

)
(5.1)

where 1c indicates the support of cluster c. The clustering algorithm performs p − 1 merges; the

p−1 vectors b1, . . . ,bp−1 along with the constant vector 1√
p1p form the columns of an orthonormal
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(a) ||x||0=p.9, ||BTx||0=p.25 (b) ||x||0=p.7, ||BTx||0=p.25

Figure 5.6: Sparsification ||BTx||0 � ||x||0 exploits spatially coherent activation patterns, while
small ||x||0 produces fewer activations. The data are drawn from a quad-tree of height 5.

matrix B. Multiplying the network observations y by B is a projection onto a new basis, where each

coordinate bi corresponds to the difference between the relative number of activations in a pair of

merged clusters. Fig. 5.7(a) illustrates the basis functions of the transformation. The transform B

has the property that each element bi corresponds to local averages over sets of related nodes cl and

cr. Under the assumption that many sets usually activate (or do not activate) jointly, events may

be clearly apparent as strong signal along a small number of basis elements. More formally, patterns

in x supported on the clusters used to define B will tend to be concentrated in a few elements bi,

and so ||BTx||0 � ||x||0. Fig. 5.6 shows that sparsifiable data is inherently structured.

A basis for detection. Just as a Fourier transform maps an acoustic signal into a coordinate frame

that yields insight about the frequency content of the signal, multiplying network activations x by the

basis B maps the sensor data onto a new coordinate system defined by the hierarchical clustering, and

can expose correlated activations. In the following, we prove that with the Haar wavelet basis, the

“sparsification ratio” ||x||0
||BTx||0 plays a central role in achievable error rates. In particular, the following

new theorem (with proof outline in the appendix) shows the power of a sparsifying transform to

concentrate the signal along at least one new coordinate without concentrating the random noise.

Theorem 5.4.1. Let B be a Haar basis that sparsifies a signal x, i.e. ||BTx||0 = p1−β, ||x||0 =

p1−α, 0 < α < β < 1. Let y be the signal observed through a binary symmetric channel, with

error rate π bounded away from 1/2 (i.e., for some ε > 0, π < 1/2 − ε). Then applying the test

|bTy| > (1−2π)
2

√
||x||0
||BTx||0 to each of the p− 1 non-constant basis elements b ∈ B gives false negative
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(b) Latent Tree Model

Figure 5.7: Illustration of the transform (a), constant b0 not shown. (b) Latent Tree Model for
d = 2 and p = 4. The sensors y measure the pattern x = [x1, . . . , x4] up to some noise. The pattern
is structured hierarchically; variables zi represent the variables of the latent tree.

rate (FNR) and false positive rate (FPR) bounded as

FNR ≤ 2p exp

(
− (1− 2π)2

2

||x||0
||BTx||0

)
→ 0 as p→∞,

FPR ≤ 2p exp

(
− (1− 2π)2

2

||x||0
||BTx||0

)
→ 0 as p→∞

Proof of Theorem 5.4.1. Let k be the size of clusters merged by a non-constant basis element b.

If no signal is present, the number of picks is the support of each cluster is binomially distributed:

picks(ci) ∼ Bin(·; k, π), and so the difference picks(ci)− picks(c2) is zero-mean, with variance 2kπ(1−

π) The projection b(k)y of observations y onto the basis element scales each pick by 1√
2k

(recall that

each basis element has unit L2 length), so if y is only i.i.d noise, b(k)y is zero-mean, with variance

π(1−π). Let τ = (1−2π)
2

√
||x||0
||BTx||0 . UnderH0, E

[
|bTy|

]
= 0, and is the sum of 2k terms (k from each

cluster) taking values {− 1√
2k
, 0, 1√

2k
}. Hoeffding’s inequality gives P

[
|bTy| ≥ τ

]
≤ 2 exp

(
−τ2

)
→ 0.

P
[
|b(k)y| ≥ ε

]
≤ 2 exp

−2ε2∑2k
i=1(1/

√
2k)2

= 2 exp
(
−2ε2

)

Plugging in the threshold
√

||x||0
||BTx||0 gives Substituting τ for ε gives

P
[
|b(k)y| ≥ τ

]
≤ 2 exp

(
−τ2

)
→ 0
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Taking the union bound, FPR ≤ 2p exp
(
−τ2

)
→ 0. UnderH1, for some b, E

[
|bTy|

]
≥
√

||x||0
||BTx||0 (1−

2π). As under H0, Hoeffding’s inequality bounds the probability of deviation by τ from the mean

(conveniently, E
[
|bTy|

]
− τ > τ): P

[
|b(k)y| ≤ τ

]
≤ 2 exp

(
τ2
)
→ 0. Taking the union bound over

p basis elements, FNR ≤ 2p exp
(
−τ2

)
→ 0.

This theorem states that for any constant error rate π, as the network size p grows, the probability

of miss (FNR) and the probability of false alarm (FPR) are driven to 0 by the decision rule that

declares “event” when |bTy| exceeds the specified threshold, for any of the p− 1 non-constant basis

elements b. For comparison, recall that reliable detection using the network-wide pick count ||y||0
requires the error rate π to rapidly decay to zero as p grows.

The sparsifying basis B thus enables reliable detection in a broad noise regime that cannot be

detected by the network-wide average. This insight shows that indeed quality of sensors can be

traded against quantity. Of course, this strong result assumes that the event signal x is sufficiently

sparsifiable by the basis B. This assumption holds both in a natural theoretical model, discussed

next, and appears to be reasonable for many types of real world data.

Modeling sparsifiable events. When is sensor data sparsifiable? Let us consider again the

natural hierarchical basis B, defined according to Eq. 5.1 as introduced at the beginning of this

section. Singh [96] shows that for this particular basis, the assumption ||BTx||0 � ||x||0 ≤
√
p is

fulfilled when the pattern x is drawn from an intuitive class of generative models. For completeness,

the model is presented here. In this model, dependencies among sensors are modeled via a tree of

regular degree d: the leaves correspond to the event occurrence xi at each sensor, and internal nodes

correspond to the occurrence or non-occurrence of an event at a particular region and scale. Let

` = 0, 1, . . . L denote the level in the tree, where the activations {xi}, i = 1, . . . , p are leaves at level

L = logd p, and the root is at ` = 0. The internal (non-leaf) nodes in the tree capture multi-scale

dependencies among the leaves. Let z denote all nodes in the tree. The joint distribution of z

factorizes as

p(z) = p(z0)

L∏
`=1

∏
i∈V`

p(zi|zparent(i)) (5.2)

where Vl denotes the vertices at layer l. The probability that a node equals its parent is spec-

ified by γ` = `β log d. This coupling is weaker near the root and stronger near the leaves, pro-

ducing multi-scale dependencies. Sufficiently weak dependencies are considered negligible, and so

the latent variables zi ∈ `0 at some initial level `0 are drawn independently from their parents:

p(zi = 1|zparent(i)) = p(zi = 1) ∝ eγ`0 . This approximates distant regions of the network as inde-
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pendent. The conditional probability of a node zi at ` > `o is

p(zi|zparent(i)) ∝


eγ` , if zi = zparent(i)

1 , if zi 6= zparent(i)

Patterns drawn from this model are localized and multi-scale, as illustrated with a quad-tree in

Fig. 5.6.

Bounds for finite networks. When the event x is drawn via Eq. (5.2), Singh [96] showed that

as the number of sensors goes to infinity, the assumption ||BTx||0 � ||x||0 ≤
√
p holds with high

probability. However, these results do not clearly indicate whether the bounds are effective for large

(e.g., hundreds to tens of thousands of sensors) but finite networks. Next, we provide a stronger

bound on the sparsification ratio obtained by the wavelet transform, and explain how Theorem 5.4.1

can be strengthened to provide bounds on FNR and FPR for fixed network size.

Theorem 5.4.2. Let x be a pattern drawn at random from the latent tree model with uniform degree

d and depth L = logd p. Let `0 = α
β and γ` = `β log d for ` ≥ `0, where 0 ≤ α ≤ β ≤ 1. Then for

0 < ε < 1,

P
[
||x||0 > (1 + ε)(Lp1−α)

]
≤ exp

(
−ε

2

3
Lpα( 1

β−1)

)
P
[
||x||0 < (1− ε)cp1−α] ≤ exp

(
−cε

2

2
pα( 1

β−1)

)

where c =
(

1
4

)( 1
α−

1
β+0.5)

is constant with respect to p.

P
[
||BTx||0 > (1 + ε)d2 logd p · p(1−β)

]
≤ exp

(
−ε

2

3
d · p(1−β)

)

P
[
||x||0
||BTx||0

>
κ(ε)

logd p
· p

1−α

p1−β

]
≥ 1− 2 exp

(
−cε

2

2
pα( 1

β−1)

)

where c =
(

1
4

)( 1
α−

1
β+0.5)

and κ(ε) = (1−ε)
(1+ε)

c
d2 are constant with respect to p.

Proof of Theorem 5.4.2. Let X
(i)
T denote the leaves in the ith subtree rooted at level `0. In the

latent tree model, the nodes at level `0 are independent, and so the numbers of active leaves in each

subtree ‖X(i)
T ‖0, i = 1, . . . , d`0 are i.i.d. We now obtain upper and lower bounds on E

[
‖X(i)

T ‖0
]
.

Lemma 1. E
[
‖X(i)

T ‖
]
≥ c · p1−αp−

α
β where

c =
(

1
4

)( 1
α−

1
β+0.5)

is constant with respect to p.
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Proof. Observe that P [Xi = 1] ≥ q`0
∏L
`>`0

(1− q`) > q`0(1− q`0)L−`0 , which is the probability that

Xi and all its ancestors to level `0 are active. Linearity of expectation gives

E
[
‖X(i)

T ‖0
]
≥ 1

2
p1−αp−

α
β

[
(1− p−α)(logd p

α)
]( 1
α−

1
β )

Line 2 uses the fact that d−β`

2 ≤ q` ≤ d−β`.

Line 3 uses L− `0 = L(1− α
β ) = (logd p

α)( 1
α −

1
β )

Line 4 uses dL = p. The term
[
(1− p−α)(logd p

α)
]( 1
α−

1
β )

can be bounded as follows. Let w = pα, and

consider (1− p−α)(logd p
α) = (1− 1

w )(logd w). Now, w > 1, and so (1− 1
w )(logd w) > (1− 1

w )w, which

is a monotone increasing function that converges to e−1 as w →∞. Thus (1− 1
w )w > 1

4 for w ≥ 2,

or equivalently, for p ≥ 21/α. Then,

[
(1− p−α)(logd p

α)
]( 1
α−

1
β )

≥
(

1

4

)( 1
α−

1
β )

and

E
[
‖X(i)

T ‖0
]
≥ 1

2
p1−αp−

α
β

[
1

4

]( 1
α−

1
β )

for p ≥ 21/α.

Lemma 2. (1− 1
x )x is monotonic increasing for x > 1.

Proof.

d

dx

[
(1− 1

x
)x
]

=

(
x− 1

x

)x(
1

x− 1
− log

(
x

x− 1

))

Using ln x
x−1 =

∑∞
n=1

1
nxn <

∑∞
n=0

1
xn −1 = 1

x−1 , the rightmost term is shown to be positive. Then,

d
dx

[
(1− 1

x )x
]
> 0 for x > 1.

Let W
(i)
T =

‖X(i)
T ‖0

p
1−α

β
, and W =

∑
iW

(i)
T . There are p1−αβ leaves in each X

(i)
T , so W

(i)
T ∈ [0, 1].

There are p
α
β subtrees, so by Lemma 1, cp−αp

α
β < E [W ]. Hoeffding’s inequality gives, for 0 < ε < 1,

P
[
‖X‖0 > (1 + ε)(Lp−αp

α
β )p1−αβ

]
≤ exp

(
−ε

2

3
Lp−αp

α
β

)
P
[
‖X‖0 > (1 + ε)(Lp1−α)

]
≤ exp

(
−ε

2

3
Lpα( 1

β−1)

)
P
[
W < (1− ε)cp−αp

α
β

]
≤ exp

(
−ε

2

2
cp−αp

α
β

)
P
[
‖X‖0 < (1− ε)cp1−α] ≤ exp

(
cε2

2
pα( 1

β−1)

)
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Next, we will say an edge flip occurs at level ` when a node at level ` does not equal its parent. The

number of non-zero coefficients is bounded as ||BTx||0 ≤ dL ·F , where F is the number of edge flips

in the tree. An edge at level ` flips with probability q` = 1/(1 + dβ`) < d−β`, so we find that

E [F ] =
d(1−β)(L+1) − d1−β

d(1−β) − 1
< d · dL(1−β)

Let µ̄ = d · dL(1−β) For 0 < ε < 1, the Hoeffding inequality gives P [F > (1 + ε)µ̄] ≤ exp
(
− ε

2

3 µ̄
)

from which follow

P
[∥∥BTx

∥∥
0
> (1 + ε)d2L · dL(1−β)

]
≤ exp

(
−ε

2

3
d · dL(1−β)

)

P
[∥∥BTx

∥∥
0
> (1 + ε)d2 logd p · p(1−β)

]
≤ exp

(
−ε

2

3
d · p(1−β)

)

This result shows that the crucial sparsification ratio ||x||0
||BTx||0 in Theorem 5.4.1 grows at (within a

log factor of) the desired rate p1−α/p1−β , with probability that increases exponentially with network

size p. This theorem can be used to derive bounds on FNR and FPR for a specified network size p

and model parameters α, β, degree d: the bound is substituted for ||x||0
||BTx||0 in Theorem 5.4.1, and

the probability that the above bound does not hold can be added to the resulting FNR and FPR.

In summary, in this section, we have shown that under a natural model of sensor activations,

there indeed exists a sparsifying transform which leads to improved detection performance. In the

following, we show how one can adapt a basis to data in order to achieve maximal sparsification.

5.5 Sparsifying Basis Learning

Sec. 5.4.2 shows that if an event is “sparsifiable” we can better separate H0 and H1 by projecting

(multiplying by a basis B) the observations y onto a different coordinate system where the signal

is concentrated into fewer components (a “sparser representation” of the signal). The Haar wavelet

basis is an example of a basis that improves detection of signals with certain structured (hierarchical)

dependencies. In general, can we construct or learn a sparsifying basis without assuming such

dependencies?

Let B be an orthonormal matrix and x a vector of uncorrupted binary activations, Theorem 5.4.1

states that the sparsification ratio ||x||0
||BTx||0 directly impacts the amount of separation betweenH0 and

H1. In fact, given that ||x||0 is fixed, the two hypotheses are maximally separated when ||BTx||0 is

minimized. In other words, we can construct the optimal basis by solving the following optimization
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problem:

arg min
B

||BTX||0, subject to BBT = I (5.3)

where X is a matrix that contains binary observations as its columns and ||·||0 is the sum of non-zero

elements in the matrix. The constraint BBT = I ensures that B remains orthonormal.

However, direct minimization of ||BTX||0 is NP-hard in general [30]. In practice, the `0-norm

is often replaced by the convex and “sparsity-promoting” `1-norm [18]. This suggests the following

relaxation heuristic for (5.3).

arg min
B

||BTX||1, subject to BBT = I (5.4)

where || · ||1 is the maximum absolute column sum of the matrix.

Direct approximation. For large problems, we are interested in efficiently computable heuristics

for Eq. (5.4). Independent Component Analysis (ICA) is one such approximation, and solves the

following optimization problem

arg min
B

G(BTX), subject to BBT = I (5.5)

where G is a nonlinear convex smooth approximation to the `1 penalty function, e.g., log cosh(x),

− exp(−x2/2), and x4 [65]. Fig. 5.5 illustrates these functions in relation to the linear penalty

function.

Eq. (5.5) can be solved with stochastic gradient algorithm by taking the derivative of G. However

this approach is often slow and requires fine tuning; this leads to the development of “FastICA”,

an efficient fixed-point algorithm. Implementation details of FastICA and in-depth analysis can be

found in [65].

Let g = G′, the one unit algorithm for fastICA is given below for completeness.

Algorithm 2: ICA one-unit solution

b← random unit vector
while b not converged do

b← E
[
xg(bTx)

]
− E

[
g′(bTx)

]
x;

b← b/ ‖b‖;

There exists two variations of FastICA, both of which use Alg. 2 as subroutine. The deflationary

orthogonalization greedily finds and fixes one component bi at a time. The symmetric orthogo-

nalization finds all components bi,∀i = 1, . . . , p and orthogonalizes all of them at the end of each

iteration [64]. While the symmetric approach utilizes parallelization and is multitudes faster than

deflationary approach, the latter gives much better results empirically.
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Figure 5.8: Smooth `1 approximation functions used in ICA with the linear `1 penalty function
plotted in blue solid line.

ICA is a mature technique that finds a linear transformation for non-Gaussian data so that the

components are as independent as possible in the transform domain. For unlabeled training data

x ∈ Rp×n where p is the dimension of the data and n the number of samples, ICA is traditionally

defined as the following optimization problem [65]:

Noise-tolerant relaxed approximation. Ideally we want to learn from noise-free observations

X. However, training data constructed from real-world measurements will contain noise or outliers,

and instead we are forced to train with Y, which is the observation matrix X corrupted with noise.

Consequently, we may not be able to obtain the “best” basis by optimizing BTY as in ICA.

Instead, we may wish to find a basis that sparsely represents “most of” the observations. More

formally, we introduce a latent matrix Z, which can be thought of as the “cause”, in the transform

domain, of the noise-free signal X. In other words X = BZ. We desire Z to be sparse, and BZ to

be close to the observed signal Y. This motivates the next optimization:

arg min
B,Z

‖Y −BZ‖2F + λ‖Z‖1, subject to BBT = I (5.6)

where || · ||F is the matrix Frobenius norm, and λ > 0 is a free parameter. Eq. (5.6) essentially

balances the difference between Y and X with the sparsity of Z: increasing λ more strongly penalizes

choices of Z that are not sparse.

Although Eq. (5.6) is non-convex, fixing either B or Z makes the objective function with respect
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to the other convex. The objective can then be solved in an iterative two-step convex optimization

process — Orthogonal Procrustes [54] and LASSO with orthonormal design [15]. The two-step

procedure is given below.

Algorithm 3: SLSA two-step convex optimization procedure

Step 1: Orthogonal Procrustes
Fix Z, solve minB ||Y −BZ||2F , : BBT = I

M ← YZT ;

M = UΣV T ;
B← UV ;

Step 2: LASSO with orthonormal design
Fix B, solve minZ ‖Y −BZ‖2F + λ‖Z‖1

K ← ZTY;
Z← sign(K)×max(|K| − λ);

The formulation of Eq. (5.6) and solution in Alg. 3 is equivalent to Sparse Latent Semantic

Analysis (SLSA) [19], which was introduced for applications involving topic models for text data.

Here we adopt the name for consistency.

We note that both Eq. (5.5) and Eq. (5.6) should be viewed as efficiently computable heuristics

for Eq. (5.3), which is a non-convex optimization over the Stiefel manifold of all size-p orthonormal

matrices. As such, they are practical expedients towards the goal of obtaining a sparsifying basis.

5.6 Implementation in Wireless Sensor Networks

In this section, we describe practical issues necessary for using a sparsifying basis for event detection

in real-world sensor networks. We highlight how the previous problem formulation can be separated

into two computational steps:

• Offline training of basis learning and detection threshold selection;

• Online detection via decentralized detection or in-network data aggregation.

5.6.1 Offline Training

The three sparsifying bases (haar wavelet, ICA, SLSA) considered here can be easily implemented and

are available in many off-the-shelf optimization packages. Basis learning in small networks (p < 100)

is very fast in general (within seconds) and can be done online. For larger networks (p > 500), offline

training may be more suitable.

Basis learning.

Learning a basis for p sensors requires at least p measurements of the network. If this is not

available (e.g., a seismic network with 1000 sensors may not yet have observed 1000 earthquakes,
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or a network of health sensors may not have observed an epidemic), then simulations provide a

practical way to supplement real data. One advantage of using simulations in this way is that

while simulations may be slow and compute-intensive, the learned basis produces a fast and efficient

detection rule. In Sec. 5.8, we empirically assess the amount of data required to train a good basis

and present two case studies using only data generated from simulations.

Supplementing a training set of real data with data from simulations requires domain knowledge

of the applications, e.g., simulation of seismic waves or disease infection models. When training with

such a combined data set, it may be appropriate to place higher weights on the real data than the

simulated data. This can be easily achieved with a modified version of SLSA.

Selecting the detection threshold. An event is reported whenever |bTi y| ≥ τ for any non-

constant bi ∈ B. The threshold τ is typically chosen as a value that satisfies constraints on the

false positive rate during cross validation with historical data of event observations. This approach

does not rely on positive training examples, and so a threshold τ can be learned using only the noise

profile of each sensor. Suppose sensors i = 1, 2, . . . , p have binary error rates π1, . . . , πp, we have

E
[
|bTy|

]
=
∑p
i biπi. Given that the basis is orthonormal, under H0, Hoeffding’s Inequality states

that

P
[
|bTy| > τ

]
≤ exp

(
−2
(
τ − E

[
|bTy|

])2)
By setting the right hand side to a false positive rate constraint, we can easily derive a threshold

that satisfies the system requirement. In particular, in order to ensure that |bTy| ≤ τ for all b ∈ B

(i.e., no false alarm happens) with probability at least 1− δ, it suffices to choose

τ = max
b∈B

E
[
|bTy|

]
+

√
1

2
log

p

δ
.

This approach is similar in flavor to the threshold selection method in [38].

5.6.2 Online Detection

At runtime, the fusion center collects information from the sensors and applies the threshold τ to

the statistics |BTy|. Depending on the network structure, this aggregation can be done in-network.

Decentralized Detection. The proposed sparsifying bases are suitable for both measurements

from binary or other real-valued sensors. However, in large sensor networks, it is infeasible to con-

stantly stream raw measurements to the fusion center. Instead, it may be desirable to offload the

computation from the fusion center to each sensor locally so that only a small amount of information

(e.g., a single message) is communicated infrequently when a significant signal is detected. For exam-

ple, sensors in the Community Seismic Network perform local anomaly detection and communicate



74

“abnormal” accelerations (using hypothesis testing) as a binary signal [38].

In-network Aggregation.

In a multi-hop WSN where individual sensors have limited transmission range, it is likely that the

communication topology will be hierarchically organized in a way that closely resembles the spatial

configuration of the sensors. Consequently, strong dependencies are likely to exist among groups of

sensors that are near in the communication network. This suggests that the test statistics biy can

also be computed in-network by hierarchically aggregating sensor data into clusters. For example,

by using the number of hops needed to communicate between a pair of nodes as a measure of the

dissimilarity of two sensors, hierarchical clustering produces the transforms B supported over groups

of communication-efficient clusters. These clusters may compute the transform By in a bottom-up

fashion while simultaneously testing for detection.

For bases that lack obvious spatial hierarchy, it is possible to adaptively build a routing tree to

minimize the communication distance between groups of sensors that tend to co-activate in a sparse

sensor setting [49].

5.7 Preserving user privacy

Figure 5.9: Even simple statistics such as pick rates can reveal patterns of activity and occupancy
in the area around a sensor. A Phidget sensor in an office setting (above) shows high ambient noise
(human activity) during weekday business hours, while a Phidget in a home (below) shows typical
evening and weekend activity.

Personal sensor devices make it easy to collect immense amounts of personal information, and so

it is important for systems designers and members of the public to understand the potential tradeoff

between privacy and the performance of digital services. Fig. 5.9 demonstrates how even simple

data like false pick rates can inadvertently convey information about patterns of human behavior.

While revealing by itself, such sensor data is likely to be combined with other information to create
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an increasingly detailed picture of each user’s daily activities. Indeed, it is standard practice for

internet services to aggregate multiple sources of information about their users: “When you upload,

submit, store, send or receive content to or through our Services, you give Google (and those we work

with) a worldwide license to use, host, store, reproduce, modify, create derivative works (such as

those resulting from translations, adaptations or other changes we make so that your content works

better with our Services), communicate, publish, publicly perform, publicly display and distribute

such content.”1 Given the open-ended implications of sensor data collection, it is natural to ask,

how little data can be collected while still adequately performing a task?

Theorem 5.4.1 and Theorem 5.4.2 provide a way to quantify the relationship between the number

of sensors, the error rates of each sensor, and the performance of the network to detect sparsifiable

events. This relationship makes it possible to determine the maximum allowable error rate for

each sensor when all other parameters are held fixed, with the implication that sensors with lower

error rates may deliberately corrupt some of their data while maintaining network-wide performance

criteria. Fig. 5.10 demonstrates how the maximum allowable error rate increases as a function of

network size.

Figure 5.10: Thm. 5.4.2 implies a relationship between the number of sensors and the maximum
per-sensor error rate π required to achieve a given system-wide false positive rate. Here, the system-
wide false positive rate is fixed at 0.1, and the maximum allowable error rate is plotted as a function
of the number of sensors, across a range of values for β. α = 0.5.

Deliberately increasing the false pick rate of each sensor serves to limit the rate of information

collected about a given user. This is in contrast to other approaches to privacy, such as differential

privacy [34] which typically adds noise to the result of a query function operating on a database

of sensitive information. Volunteers may be uncomfortable about providing information to the

1Google Terms of Service, http://www.google.com/intl/en/policies/terms/

http://www.google.com/intl/en/policies/terms/
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Figure 5.11: Comparing the three bases — SLSA, ICA, haar to baselines — global average (and
single max in (a)) on a synthetic data set generated from the latent tree model. Figures (b) and
(c) evaluate two different false positive constraints. The learned bases significantly outperform the
baselines under strong noise.
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Figure 5.12: Detection performance as a function of network size p =
[36, 72, 108, 216, 432, 648, 864, 1080, 1296] using all 20,000 training samples. The learned bases
show more than 5x performance improvement compared to the baselines in (a) and (b).

“trusted” database assumed by differential privacy schemes, and so may wish to reduce the accuracy

of information that their sensors report.

5.8 Experiments

We empirically evaluate the detection performance of the three sparsifying bases: SLSA, ICA, and

hierarchical wavelets (haar) trained and tested on both simulated and real measurements in different

domains. The experimental setup is summarized here.

Baseline algorithms. In keeping with our focus of very large community sensor networks, we

compare against baselines that could potentially be computed for real-time detection on tens of

thousands of sensors, and that are naturally suited to the client-server communication model of

internet-enabled sensors.

• avg: network-wide average, 1/p
∑p
i yi;

• max: single sensor maximum, maxi yi;
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• SS-k: scan statistics that aggregates the k-nearest neighbors for each sensor [86];

• SS-r: scan statistics that aggregates all sensors within a radius r for each sensor [86].

Evaluation data sets. The data sets include

• Synthetic data from latent tree model, 1296 nodes;

• Gnutella P2P network: 1769 nodes;

• Japan seismic network: 721 nodes;

• CSN seismic network: 128 nodes;

• Long Beach seismic network: 1,000 nodes.

Evaluation metrics and goals. We adopt two metrics in the evaluation of detection performance:

• AUCf : measures the area-under-curve (AUC) in the Receiver Operating Characteristic (ROC)

curve only for false positive rates between 0 and f, f ≤ 1. The integral AUCf takes values in

[0, f ] and is normalized to 1 for simplicity. E.g., AUC0.05 = 0.8 indicates that the detection

performance reaches 80% of the optimal performance under the false positive constraint of 5

false alarms every 100 tests.

• Detection time: the time it takes for the test statistics to exceed a threshold that is selected to

satisfy a certain system false positive requirement. Rapid and reliable detection is a key require-

ment for many time sensitive applications. For example, in earthquake response sub-seconds

improvement in detection time can allow utility companies to shut down large transformers

that are responsible for long and costly recovering period post a major earthquake.

5.8.1 Synthetic Data

We generate samples from the latent tree model for network activation as described in Sec. 5.4.2.

The tree contains p = 1296 leaf nodes with degree d = 6 and depth L = 4. We choose the sparsifying

parameters α = 0.5 and β = 0.95 so that that the expected number of total activations ||x||0 <
√
p

is sparse. Of the three bases, haar is constructed from the known tree model whereas ICA and SLSA

are trained with 20,000 samples drawn from the model. The bases are tested on 20,000 separate

samples corrupted with Gaussian or binary channel noise. For the Gaussian noise case, the range of

σ is chosen to satisfy the weak signal constraint, i.e., σ > 1√
2 log p

= 0.2641.

Fig. 5.11 shows that all three bases outperform the naive baselines under both Gaussian and

binary noise. Note that, perhaps surprisingly, both the learned ICA and SLSA outperform haar even

though the latter is constructed from the known latent tree model.
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Figure 5.13: Detection performance as a function of of training data size. (a)(b) shows it only takes
approximately 2,000 samples for both ICA and SLSA to achieve the same performance as using all
20,000 samples. SLSA is 10 times faster to train than ICA as shown in (c).
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Figure 5.14: Experiment with Gnutella-P2P network. (a) visualizes ∼ 1/10 of the total network with
a sample activation pattern colored. Blue: first infected node, Red: nodes subsequently infected
through the cascade. (b)(c) shows that the learned bases achieve and exceed the state of the art
algorithms that use additional prior knowledge of the network.

Next we study how the network size and the number of training samples affect the quality of

learned basis and detection performance.

Increasing network size. We perform basis learning with subsets of the network, using p =

[36, 72, 108, 216,

432, 648, 864, 1080, 1296] sensors and n = 20, 000 training samples. Fig. 5.12 shows that the detection

performance of the learned bases grows more than 5x faster than the baseline. Note that haar is now

learned from data; this accounts for the slight inferior performance compared to that in Fig. 5.11.

Increasing number of training samples. With the network size fixed, we evaluate bases learned

from increasing numbers of training samples n = [20, 100, 200, 1000,

2000, 4000, 10000, 15000]. Fig. 5.13 shows that haar outperforms at smaller training size since it

assumes a simple hierarchical structure. It also shows that it takes only 2,000 samples for ICA and

SLSA to achieve the same detection performance as using all 20,000 samples.
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5.8.2 Gnutella P2P network data

Our next set of experiments simulate virus outbreaks on a peer-to-peer network. We obtain a

snapshot of the Gnutella P2P file sharing network2 through the Stanford Network Analysis Project

(SNAP). 1,769 nodes of the highest degree of connectivity were selected from this network for the

experiment. Fig. 5.14(a) visualizes part of this sub network. We simulate 40,000 outbreak events

– “cascades” – that mimic virus outbreaks on this directed network. We adopt the independent

cascade model, where a starting node is picked at random, and whenever a node r is infected, a

connected node w is infected with decreasing probability as a function of distance to r,

P [xi = 1] = max{0, a− dist(i, r)× b}

where r is the first infected node randomly chosen among all nodes i = 1, . . . , p and dist()̇ is the

number of hops between node i and r.

Here, haar is constructed as spanning tree wavelet basis, using the known network structure [69]

and Wilson’s uniform spanning tree (UST) sampling method on a directed graph via random walk

[105]. We also apply the subset scan baseline SS-k [86] for reference. The parameter k is “optimally”

selected based on the prior knowledge that on average between 10 and 30 nodes are activated in

each event in the cascade model.

For comparison with scan statistics, we implement the subset scan with spatial “k-fixed neigh-

bors” constraints as described in [86]. Each subset i consists of node Vi and its k nearest neighbors.

The detection statistics takes the subset with the highest aggregated value and compares that to a

threshold. In general, k depends on event structure and intensity that can’t be determined a priori.

However in this experiment k is selected based on the prior knowledge of the cascade model that on

average there are between 10 and 30 nodes activated; in other words, this is the optimal subset scan

results.

Fig. 5.14(b) and Fig. 5.14(c) compare the detection performance evaluated on 40,000 testing

samples. Both SLSA and ICA demonstrate superior detection performance compared to the state of

the art algorithms that use additional prior knowledge of the network.

5.8.3 Japan seismic network data

Next we turn to perhaps one of the most robust and long-running sensor networks in the world

– the Japan seismic network. We obtain 48-hour, 150 GB of recordings from 721 Hi-net NIED

seismometers for the dates March 18 and 19, 2011, just one week after the Tohoku M9.0 earthquake

on March 11, 2011. On both days, 1,000+ events ranging from M1.0 - M6.0 were recorded in the

the Japan Meteorology Agency catalog.3Many events triggered clustered activations as observed in

2http://snap.stanford.edu/data/p2p-Gnutella05.html

http://snap.stanford.edu/data/p2p-Gnutella05.html
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Figure 5.15: There are approximately 1,000 (≈ 1 per 20 km2) seismic stations that observe and
record on average 500+ seismic events that occur in Japan each day. Among those 1,000 stations,
≈ 800 are Hi-net stations, pictured here. These research-grade sensors are professionally installed
and maintained and therefore experience very little instrument or ambient noise.

Fig. 5.16(a).

For all 1795 events recorded on March 18, 2011, 10 snapshots of network activations at a two-

second period were taken after the first detection at each event to construct the training data set of

[p x n] = [721 x 17950]. The learned bases are tested on the first one-second data of the 1324 events

recorded on March 19, 2011. We added binary noise of different error rate to control the problem

complexity.

For the comparison with the SS-r baseline, the aggregation distance r is selected to be 20km

which is roughly the distance covered by the seismic waves in a 2-second period. Fig. 5.16(c)

presents the performance in detecting within two seconds of event arrival under a very small false

positive constraint of 0.001. Of the three learned bases, both ICA and SLSA show significant gain

in detection power, whereas haar has no improvement over the avg baseline. Perhaps surprisingly

SS-r20 performs very poorly in comparison. An explanation is that most of the events during this

period originated from the ocean and affects an array of stations along the coast. However, this

pattern is not captured by the fixed radius subset scan construction. This explanation is supported

by the plot of four prominent basis elements from ICA in Fig. 5.16(b). This example demonstrates

the limited detection capability of subset scan for unknown patterns and the power of learning-based

detection algorithms such as ICA and SLSA.

3http://www.hinet.bosai.go.jp/REGS/JMA/?LANG=en

http://www.hinet.bosai.go.jp/REGS/JMA/?LANG=en
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Figure 5.16: (a) Japan’s seismic network frequently exhibit localized activation patterns (circled).
Colors indicate raw accelerations (red: large shaking, blue: no shaking). The learned bases are able
to capture these nonuniform patterns with basis elements such as the ones in (b) and show 2x better
detection performance compared to the baselines (c), while algorithms with hard-coded patterns
such as SS-r20 fail to perform well in this scenario.

Figure 5.17: Locations and magnitudes of Southern California quakes since 1973.

5.8.4 Dense and participatory seismic networks

Lastly, we consider two dense, real-world seismic networks in Southern California. We show that

good bases can be learned without historical sensor data: instead, we simply use basic earthquake

simulators to generate the binary activation patterns for training, as discussed in Sec. 5.6.1. In the

shortage of testing data – only a small number of events have been recorded by these networks,

not enough to reliably compute AUC scores – the detection performance is evaluated in terms of

detection time with detection thresholds computed as described in Sec. 5.6.1. This measure of time

is critical in many applications; seconds or sub-second savings may enable automated responses that

prevent huge loss of capital and lives.

3http://earthquake.usgs.gov/earthquakes/eqarchives/epic/

http://earthquake.usgs.gov/earthquakes/eqarchives/epic/
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(b) Detection time comparison

Figure 5.18: CSN network. (a) plots the layout of 128 sensors and epicenter of 4 recorded events. (b)
The learned bases detect on average several seconds faster than the baselines under the constraint
of at most one false alarm a year.

Generating training data. We generate training data using a basic earthquake simulator in the

following two steps. First we randomly sample an earthquake from a prior distribution of seismic

events in Southern California that is constructed from a list of historic earthquakes (Fig. 5.17)

available in the USGS database.4Then time sequences of sensor activations are generated from an

earthquake model that computes the expected wave arrival time with the encoded speed of seismic

waves and distance to the hypocenter. This model is simplistic compared to many state-of-the-

art earthquake simulators, yet captures qualitative spatio-temporal dependencies. An activation

probability similar to that in [76] is used to simulate signal attenuation for unreliable noisy sensors.

Community Seismic Network. We simulate 1,000 network activation snapshots for 128 Com-

munity Seismic Network [22] sensors as described above. After training, each algorithm is then

evaluated on its ability to detect four recent events using real measurements recorded by the net-

work. Fig. 5.18(a) shows the spatial layout of the network and the hypocenters of the four events.

Fig. 5.18(b) summarizes detection performance: the bases learned from simple simulations in general

achieve faster detection than other algorithms, e.g., 8 seconds faster in detecting the Beverly Hills

event. Note that ICA performs better than SLSA, as simulations are noise-free.

Long Beach Array.

The Long Beach network consists of approximately 5,000 sensors covering an area of 5 x 7 km.

The network was deployed for 6 months during the first half of 2011 to provide detailed images of the

Signal Hill Oil Field in Long Beach, California. These sensors are in the same performance regime

as the USB accelerometers adopted in the CSN project and are constantly exposed to high level,

time-varying noise. During the deployment period, a total number of 5 detectable earthquakes were

recorded by the network (Fig. 5.19(a)). Fig. 1.3 is a visualization of one of the events.

We take a subset of 1,000 sensors and train the sparsifying bases with 2,000 simulated events.
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(a) Sensors and events layout
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(b) Detection time comparison

Figure 5.19: Long Beach array. (a) shows the layout of 1,000 stations and 5 recorded events. (b)
Under the constraint of at most one false alarm a year, the learned bases detect on average 0.1
seconds faster than the baselines, which is significant considering it only takes 1 second for the
seismic wave to travel through the network and only 0.5 seconds for the network to be saturated
with signals.

The results in Fig. 5.19(b) show that the learned bases detect on average 0.1 second faster, especially

for the more difficult events that are smaller and further away. This improvement in detection time

is significant considering that it only takes about one second for the quake to travel through the

entire network.
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Chapter 6

Coresets for scalable and
resource-constrained GMM
learning

Motivated by a desired to probabilistically model the streams of data produced by sensor-equipped

devices, this chapter presents algorithms and results for training mixtures of Gaussians or related

distributions on massive data sets using the concept of a coreset. Previously, coresets have been

designed to provide approximation guarantees for geometric problems such as K-means clustering.

It turns out that much of that geometric machinery can be lifted to the statistical realm to provide

approximation guarantees for statistical problems, as well. Despite the fact that Gaussian mixture

models do not admit finite sufficient statistics, this chapter explains how learning a “good enough”

mixture model only requires retaining a finite (weighted) subset of the input data. Leveraging earlier

coreset results, this allows estimating GMMs in both the streaming and parallel setting, which are

both highly relevant for learning about sensor data stored across a network of client devices. The

main contribution of this chapter is experimental evaluation of coresets on several applications,

including accelerometer data from CSN. The results here first appeared in [44].

An introduction to Coresets. The concept of a coreset first developed for approximating

geometric problems, and while there are several competing definitions of a coreset, they are typically

a small set of points (possibly weighted, usually a subset of the input) with the property that models

fitting the coreset will also provide a good fit for the original data set.

It is helpful to think about coresets with respect to a specific task and a specific approximation

guarantee. For example, consider the k-means clustering problem: given a set P of n points in Rd,

choose a set of k points in Rd, called centers, such that the sum of squared distances from the points

in P to their nearest center is minimized. Finding an optimal set of centers is NP-hard, and so we

may instead seek a set of centers that provide a (1+ε) approximation to the sum of squared distances

between P and the optimal centers. We say that a (weighted) set of points is a (k, ε)-coreset for the
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k-means problem if the clustering cost of the coreset (a weighted sum of squared distances) given

an arbitrary set of k centers is (1 ± ε) of the clustering cost of the full input. This notation makes

clear that the coreset depends on both the task (here, the number of centers k), and the desired

approximation factor ε.

Coresets have been used for more problems than k-means, and have been developed for a wide

class of projective clustering problems. In a projective clustering problem, we have an input set P

and we want to approximate it using a collection of subspaces, called centers. We fix the number of

subspaces to be k, and require each to be of dimension j. Let x = (x1, . . . , xk) be the collection of

centers. Our goal is to choose the centers to minimize the projective clustering error, which is the

distance from each point p ∈ P to its nearest center:

cost(P, x) =
∑
p∈P

dist(p, x) (6.1)

In the simplest case, the centers are just points (affine subspaces with dimension j = 0), and we

recover the k-means or k-medians problem by choice of distance function

dist(p, x) = min
xi∈x
||p− xi||21

In the k-means problem, `2 distance is used instead:

dist(p, x) = min
xi∈x
||p− xi||22

TODO: transition from these projective clustering objectives to the GMM objective

Figure 6.1: A coreset for mixture models is a small, weighted subset of the data that provides
approximation guarantees on the “goodness” of models learned from it.

Results. We show that, perhaps surprisingly, Gaussian mixtures admit coresets of size independent

of the size of the data set. More precisely, we prove that a weighted set of O(dk3/ε2) data points
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suffices for computing a (1 + ε)-approximation for the optimal model on the original n data points.

Moreover, such coresets can be efficiently constructed in a map-reduce style computation, as well as

in a streaming setting. Our results rely on a novel reduction of statistical estimation to problems

in computational geometry, as well as new complexity results about mixtures of Gaussians. We

empirically evaluate our algorithms on several real data sets, including a density estimation problem

in the context of earthquake detection using accelerometers in mobile phones.

We consider the problem of training statistical mixture models, in particular mixtures of Gaus-

sians and some natural generalizations, on massive data sets. Such data sets may be distributed

across a cluster, or arrive in a data stream, and have to be processed with limited memory. In

contrast to parameter estimation for models with compact sufficient statistics, mixture models gen-

erally require inference over latent variables, which in turn depends on the full data set. We show

that Gaussian mixture models (GMMs), and some generalizations, admit small coresets: A coreset

is a weighted subset of the data which guarantees that models fitting the coreset will also provide

a good fit for the original data set. Perhaps surprisingly, we show that Gaussian mixtures admit

coresets of size independent of the size of the data set.

We focus on ε-semi-spherical Gaussians, where the covariance matrix Σi of each component i

has eigenvalues bounded in [ε, 1/ε], but some of our results generalize even to the semi-definite case.

In particular, we show that given a data set D of n points in Rd, ε > 0 and k ∈ N, how one can

efficiently construct a weighted set C of O(dk3/ε2) points, such that for any mixture of k ε-semi-

spherical Gaussians θ = [(w1, µ1,Σ1), . . . , (wk, µk,Σk)] it holds that the log-likelihood lnP (D | θ)

of D under θ is approximated by the (properly weighted) log-likelihood lnP (C | θ) of C under θ

to arbitrary accuracy as ε → 0. Thus solving the estimation problem on the coreset C (e.g., using

weighted variants of the EM algorithm, see Section 6.2.3) is almost as good as solving the estimation

problem on large data set D. Our algorithm for constructing C is based on adaptively sampling

points from D and is simple to implement. Moreover, coresets can be efficiently constructed in a

map-reduce style computation, as well as in a streaming setting (using space and update time per

point of poly(dkε−1 log n log(1/δ))).

Existence and construction of coresets have been investigated for a number of problems in com-

putational geometry (such as k-means and k-median) in many recent papers (cf., surveys in [3, 27]).

Here, we demonstrate how these techniques from computational geometry can be lifted to the realm

of statistical estimation. As a by-product of our analysis, we also close an open question on the VC

dimension of arbitrary mixtures of Gaussians.

We evaluate our algorithms on several synthetic and real data sets. In particular, we use our

approach for density estimation for acceleration data, motivated by an application in earthquake

detection using mobile phones.
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6.1 Background and Problem Statement

Fitting mixture models by MLE. Suppose we are given a data set D = {x1, . . . ,xn} ⊆ Rd.

We consider fitting a mixture of Gaussians θ = [(w1, µ1,Σ1), . . . , (wk, µk,Σk)], i.e., the distribution

P (x | θ) =
∑k
i=1 wiN (x;µi,Σi), where w1, . . . , wk ≥ 0 are the mixture weights,

∑
i wi = 1, and µi

and Σi are mean and covariance of the i-th mixture component, which is modeled as a multivariate

normal distribution N (x, µi,Σi) = 1√
|2πΣi|

exp
(
− 1

2 (x− µi)TΣ−1
i (x− µi)

)
. In Section 6.3, we will

discuss extensions to more general mixture models. Assuming the data was generated i.i.d., the

negative log likelihood of the data is L(D | θ) = −
∑
j lnP (xj | θ), and we wish to obtain the

maximum likelihood estimate (MLE) of the parameters θ∗ = arg minθ∈C L(D | θ), where C is a set

of constraints ensuring that degenerate solutions are avoided1. Hereby, for a symmetric matrix A,

spec A is the set of all eigenvalues of A. We define

C = Cε = {θ = [(w1, µ1,Σ1), . . . , (wk, µk,Σk)] | ∀i : spec(Σi) ⊆ [ε, 1/ε]}

to be the set of all mixtures of k Gaussians θ, such that all the eigenvalues of the covariance matrices

of θ are bounded between ε and 1/ε for some small ε > 0.

Approximating the log-likelihood. Our goal is to approximate the data set D by a weighted

set C = {(γ1,x
′
1), . . . , (γm,x

′
m)} ⊆ R× Rd, such that L(D | θ) ≈ L(C | θ) for all θ, where we define

L(C | θ) = −
∑
i γi lnP (x′i | θ).

What kind of approximation accuracy may we hope to expect? Notice that there is a nontrivial

issue of scale: Suppose we have a MLE θ∗ for D, and let α > 0. Then straightforward linear

algebra shows that we can obtain an MLE θ∗α for a scaled data set αD = {αx : x ∈ D} by simply

scaling all means by α, and covariance matrices by α2. For the log-likelihood, however, it holds

that L(αD | θ∗α) = d lnα + L(D | θ∗). Therefore, optimal solutions on one scale can be efficiently

transformed to optimal solutions at a different scale, while maintaining the same additive error. This

means, that any algorithm which achieves absolute error ε at any scale could be used to achieve

parameter estimates (for means, covariances) with arbitrarily small error, simply by applying the

algorithm to a scaled data set and transforming back the obtained solution. Thus, we cannot expect

to approximate L(D | θ) to additive error ε, since by rescaling, the error in the parameters (means,

covariances) could be made arbitrarily small in relation to L(D | θ).

An alternative, scale-invariant approach may be to strive towards approximating L(D | θ) up

to multiplicative error (1 + ε). Unfortunately, this goal is also hard to achieve: Choosing a scaling

parameter α such that d lnα + L(D | θ∗) = 0 would require any algorithm that achieves any

bounded multiplicative error to essentially incur no error at all when evaluating L(αD | θ∗). The

1equivalently, C can be interpreted as prior thresholding.
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above observations hold even for the case k = 1 and Σ = I, where the mixture θ consists of a single

Gaussian, and the log-likelihood is the sum of squared distances to a point µ and an additive term.

Motivated by the scaling issues discussed above, we use the following error bound that was

suggested in [8] (who studied the case where all Gaussians are identical spheres). We decompose

the negative log-likelihood L(D | θ) of a data set D as

L(D | θ) = −
n∑
j=1

ln

k∑
i=1

wi√
|2πΣi|

exp

(
−1

2
(xj − µi)TΣ−1

i (xj − µi)
)

= −n lnZ(θ) + φ(D | θ)

where Z(θ) =
∑
i

wi√
|2πΣi|

is a normalizer, and the function φ is defined as

φ(D | θ) = −
n∑
j=1

ln

k∑
i=1

wi

Z(θ)
√
|2πΣi|

exp

(
−1

2
(xj − µi)TΣ−1

i (xj − µi)
)
.

Hereby, Z(θ) plays the role of a normalizer, which can be computed exactly, independently of the

set D. φ(D | θ) captures all dependencies of L(D | θ) on D, and via Jensen’s inequality, it can be

seen that φ(D | θ) is always nonnegative.

We can now use this term φ(D | θ) as a reference for our error bounds. In particular, we call θ̃

a (1 + ε)-approximation for θ if (1− ε)φ(D | θ) ≤ φ(D | θ̃) ≤ φ(D | θ)(1 + ε).

Coresets. We call a weighted data set C a (k, ε)-coreset for another (possibly weighted) set

D ⊆ Rd, if for all mixtures θ ∈ C of k Gaussians it holds that

(1− ε)φ(D | θ) ≤ φ(C | θ) ≤ φ(D | θ)(1 + ε).

Hereby φ(C | θ) is generalized to weighted data sets C in the natural way (weighing the contribution

of each summand x′j ∈ C by γj). Thus, as ε → 0, for a sequence of (k, ε)-coresets Cε we have

that supθ∈C |L(Cε | θ) − L(D | θ)| → 0, i.e., L(Cε | θ) uniformly (over θ ∈ C) approximates

L(D | θ). Further, under the additional condition that all variances are sufficiently large (formally∏
λ∈spec(Σi)

λ ≥ 1
(2π)d

for all components i), the log-normalizer lnZ(θ) is negative, and consequently

the coreset in fact provides a multiplicative (1 + ε) approximation to the log-likelihood, i.e.,

(1− ε)L(D | θ) ≤ L(C | θ) ≤ L(D | θ)(1 + ε).

Note that if we had access to a (k, ε)-coreset C, then we could reduce the problem of fitting

a mixture model on D to one of fitting a model on C, since the optimal solution θC is a good

approximation (in terms of log-likelihood) of θ∗. While finding the optimal θC is a difficult problem,

one can use a (weighted) variant of the EM algorithm to find a good solution. Moreover, if |C| � |D|,
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(d) Final approximation B (e) Sampling distribution (f) Coreset

Figure 6.2: Illustration of the coreset construction for example data set (a). (b,c) show two iterations
of constructing the set B. Solid squares are points sampled uniformly from remaining points, hollow
squares are points selected in previous iterations. Red color indicates half the points furthest away
from B, which are kept for next iteration. (d) final approximate clustering B on top of original data
set. (e) Induced non-uniform sampling distribution: radius of circles indicates probability; color
indicates weight, ranging from red (high weight) to yellow (low weight). (f) Coreset sampled from
distribution in (e).

running EM on C may be orders of magnitude faster than solving it on D. In Section 6.2.3, we give

more details about solving the density estimation problem on the coreset.

The key question is whether small (k, ε)-coresets exist, and whether they can be efficiently con-

structed. In the following, we answer this question affirmatively. We show that, perhaps surprisingly,

one can efficiently find coresets C of size independent of the size n of D, and with polynomial de-

pendence on 1
ε , d and k.

6.2 Efficient Coreset Construction via Adaptive Sampling

Naive approach: uniform sampling. A naive approach towards approximating D would be

to just pick a subset C uniformly at random. In particular, suppose the data set is generated from

a mixture of two spherical Gaussians (Σi = I) with weights w1 = 1√
n

and w2 = 1 − 1√
n

. Unless

m = Ω(
√
n) points are sampled, with constant probability no data point generated from Gaussian

2 is selected. By moving the means of the Gaussians arbitrarily far apart, L(D | θC) can be made

arbitrarily worse than L(D | θD), where θC and θD are MLEs on C and D respectively. Thus, even

for two well-separated Gaussians, uniform sampling can perform arbitrarily poorly. This example
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already suggests that, intuitively, in order to achieve small multiplicative error, we must devise a

sampling scheme that adaptively selects representative points from all “clusters” present in the data

set. However, this suggests that obtaining a coreset requires solving a chicken-and-egg problem,

where we need to understand the density of the data to obtain the coreset, but simultaneously

would like to use the coreset for density estimation.

Better approximation via adaptive sampling. The key idea behind the coreset construction

is that we can break the chicken-and-egg problem by first obtaining a rough approximation B

of the clustering solution (using more than k components, but far fewer than n), and then to

use this solution to bias the random sampling. Surprisingly, a simple procedure which iteratively

samples a small number β of points, and removes half of the data set closest to the sampled points,

provides a sufficiently accurate first approximation B for this purpose. This initial clustering is then

used to sample the data points comprising coreset C according to probabilities which are roughly

proportional to the squared distance to the set B. This non-uniform random sampling can be

understood as an importance-weighted estimate of the log-likelihood L(D | θ), where the weights

are optimized in order to reduce the variance. The same general idea has been found successful in

constructing coresets for geometric clustering problems such as k-means and k-median [42]. The

pseudocode for obtaining the approximation B, and for using it to obtain coreset C is given in

Algorithm 4.

Algorithm 4: Coreset construction

Input: Data set D, ε, δ, k
Output: Coreset C =

{
(γ(x1),x1), . . . , (γ(x|C|),x|C|)

}
D′ ← D; B ← ∅;
while |D′| > 10dk ln(1/δ) do

Sample set S of β = 10dk ln(1/δ) points uniformly at random from D′;
Remove d|D′|/2e points x ∈ D′ closest to S (i.e., minimizing dist(x, S)) from D′;
Set B ← B ∪ S;

Set B ← B ∪D′;
for each b ∈ B do Db ← the points in D whose closest point in B is b. Ties broken
arbitrarily;
;
for each b ∈ B and x ∈ Db do

m(x)←
⌈

5
|Db| + dist(x,B)2∑

x′∈D dist(x′,B)2

⌉
;

Pick a non-uniform random sample C of 10ddk|B|2 ln(1/δ)/ε2e points from D, where for
every x′ ∈ C and x ∈ D, we have x′ = x with probability m(x)/

∑
x′∈Dm(x′);

for each x′ ∈ C do γ(x′)←
∑

x∈Dm(x)

|C|·m(x′) ;

We have the following result, proved in the supplemental material:

Theorem 6.2.1. Suppose C is sampled from D using Algorithm 4 for parameters ε, δ and k. Then,



91

with probability at least 1− δ it holds that for all θ ∈ Cε,

φ(D | θ)(1− ε) ≤ φ(C | θ) ≤ φ(D | θ)(1 + ε).

In our experiments, we compare the performance of clustering on coresets constructed via adap-

tive sampling, vs. clustering on a uniform sample. The size of C in Algorithm 4 depends on

|B|2 = log2 n. By replacing B in the algorithm with a constant factor approximation B′, |B′| = l

for the k-means problem, we can get a coreset C of size independent of n. Such a set B′ can be

computed in O(ndk) time either by applying exhaustive search on the output C of the original

Algorithm 4 or by using one of the existing constant-factor approximation algorithms for k-means

(say, [56]).

6.2.1 Sketch of Analysis: Reduction to Euclidean Spaces

Figure 6.3: Level sets of the distances between points on a plane (green) and (disjoint) k-dimensional
subspaces are ellipses, and thus can represent contour lines of the multivariate Gaussian.

The key insight in the proof is that the contribution logP (x | θ) to the likelihood L(D | θ) can

be expressed in the following way:

Lemma 3. There exist functions φ, ψ, and f such that, for any point x ∈ Rd and mixture model

θ, lnP (x | θ) = −fφ(x)(ψ(θ)) + Z(θ), where

fx̃(y) = − ln
∑
i

w̃iexp
(
−Widist(x̃− µ̃i, si)2

)
.

Hereby, φ is a function that maps a point x ∈ Rd into x̃ = φ(x) ∈ R2d, and ψ is a function that

maps a mixture model θ into a tuple y = (s, w, µ̃,W ) where w is a k-tuple of nonnegative weights

w̃1, . . . , w̃k summing to 1, s = s1, . . . , sk ⊆ R2d is a set of k d-dimensional subspaces that are weighted

by weights W1, · · · ,Wk > 0, and µ̃ = µ̃1, · · · , µ̃k ∈ R2d is a set of k means.

The main idea behind Lemma 3 is that level sets of distances between points and subspaces are

quadratic forms, and can thus represent level sets of the Gaussian probability density function (see

Figure 6.3 for an illustration). We recognize the “soft-min” function ∧w′(η) ≡ − ln
∑
i w
′
iexp (−ηi)
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as an approximation upper-bounding the minimum min(η) = mini ηi for ηi = Widist(x̃− µ̃i, si)2 and

η = [η1, . . . , ηk]. The motivation behind this transformation is that it allows expressing the likelihood

P (x | θ) of a data point x given a model θ in a purely geometric manner as soft-min over distances

between points and subspaces in a transformed space. Notice that if we use the minimum min()

instead of the soft-min ∧w̃(), we recover the problem of approximating the data set D (transformed

via φ) by k-subspaces. For semi-spherical Gaussians, it can be shown that the subspaces can be

chosen as points while incurring a multiplicative error of at most 1/ε, and thus we recover the

well-known k-means problem in the transformed space. This insight suggests using a known coreset

construction for k-means, adapted to the transformation employed. The remaining challenge in the

proof is to bound the additional error incurred by using the soft-min function ∧w̃(·) instead of the

minimum min(·). We tackle this challenge by proving a generalized triangle inequality adapted to

the exponential transformation, and employing the framework described in [42], which provides a

general method for constructing coresets for clustering problems of the form mins

∑
i fx̃(s).

As proved in [42], the key quantity that controls the size of a coreset is the pseudo-dimension

of the functions Fd = {fx̃ for x̃ ∈ R2d}. This notion of dimension is closely related to the VC

dimension of the (sub-level sets of the) functions Fd and therefore represents the complexity of this

set of functions. The final ingredient in the proof of Theorem 6.2.1 is a new bound on the complexity

of mixtures of k Gaussians in d dimensions.

6.2.2 Streaming and Parallel Computation

One major advantage of coresets is that they can be constructed in parallel, as well as in a streaming

setting where data points arrive one by one, and it is impossible to remember the entire data set due

to memory constraints. The key insight is that coresets satisfy certain composition properties, which

have previously been used by [57] for streaming and parallel construction of coresets for geometric

clustering problems such as k-median and k-means.

1. Suppose C1 is a (k, ε)-coreset for D1, and C2 is a (k, ε)-coreset for D2. Then C1 ∪ C2 is a

(k, ε)-coreset for D1 ∪D2.

2. Suppose C is a (k, ε)-coreset for D, and C ′ is a (k, δ)-coreset for C. Then C ′ is a (k, (1+ε)(1+

δ)− 1)-coreset for D.

In the following, we review how to exploit these properties for parallel and streaming computation.

Streaming. In the streaming setting, we assume that points arrive one-by-one, but we do not have

enough memory to remember the entire data set. Thus, we wish to maintain a coreset over time,

while keeping only a small subset of O(log n) coresets in memory. There is a general reduction that

shows that a small coreset scheme to a given problem suffices to solve the corresponding problem
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Figure 6.4: Tree construction for generating coresets in parallel or from data streams. The bottom
ovals denote (k, ε)-coresets computed for disjoint sets of data. Each higher-level oval represents the
result of a “merge-and-compress” operation, where a (k, ε)-coreset is computed from the union of
the coresets beneath it. When performed in this way, the approximation error grows logarithmically
with the number of “leaf” coresets.

on a streaming input [10, 57]. The idea is to construct and save in memory a coreset for every

block of poly(dk/ε) consecutive points arriving in a stream. When we have two coresets in memory,

we can merge them (resulting in a (k, ε)-coreset via property (1)), and compress by computing

a single coreset from the merged coresets (via property (2)) to avoid increase in the coreset size.

An important subtlety arises: While merging two coresets (via property (1)) does not increase the

approximation error, compressing a coreset (via property (2)) does increase the error. A naive

approach that merges and compresses immediately as soon as two coresets have been constructed,

can incur an exponential increase in approximation error. Fortunately, it is possible to organize the

merge-and-compress operations in a binary tree of height O(log n), where we need to store in memory

a single coreset for each level on the tree (thus requiring only poly(dkε−1 log n) memory). Figure 5.7

illustrates this tree computation. In order to construct a coreset for the union of two (weighted)

coresets, we use a weighted version of Algorithm 4, where we consider a weighted point as duplicate

copies of a non-weighted point (possibly with fractional weight). A more formal description can be

found in [43]. We summarize our streaming result in the following theorem.

Theorem 6.2.2. A (k, ε)-coreset for a stream of n points in Rd can be computed for the ε-semi-

spherical GMM problem with probability at least 1−δ using space and update time poly(dkε−1 log n log(1/δ)).

Parallel and distributed computations. Using the same ideas from the streaming model, a

(non-parallel) coreset construction can be transformed into a parallel one. We partition the data
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into sets, and compute coresets for each set, independently, on different computers in a cluster. We

then (in parallel) merge (via property (1)) two coresets, and compute a single coreset for every pair

of such coresets (via property (2)). Continuing in this manner yields a process that takes O(log n)

iterations of parallel computation. This computation is also naturally suited for map-reduce [32]

style computations, where the map tasks compute coresets for disjoint parts of D, and the reduce

tasks perform the merge-and-compress operations. Figure 5.7 illustrates this parallel construction.

We summarize our distributed computation result in the following theorem.

Theorem 6.2.3. A (k, ε)-coreset for a set of n points in Rd can be computed for the ε-semi-spherical

GMM problem with probability at least 1−δ using m machines in time (n/m)·poly(dkε−1 log(1/δ) log n).

6.2.3 Fitting a GMM on the Coreset using Weighted EM

One approach, which we employ in our experiments, is to use a natural generalization of the EM

algorithm, which takes the coreset weights into account. We here describe the algorithm for the case

of GMMs. For other mixture distributions, the E and M steps are modified appropriately.

Algorithm 5: Weighted EM for Gaussian mixtures

Input: Coreset C, k, TOL
Output: Mixture model θC
Lold =∞; Initialize means µ1, . . . , µk by sampling k points from C with probability
proportional to their weight. Initialize Σi = I and wi = 1

k for all i;
repeat

Lold = L(C | θ);for j = 1 to n do for i = 1 to k do Compute ηi,j = γi
wiN (x′j ;µi,Σi)∑
` w`N (x′j ;µ`,Σ`)

;

;
;
for i = 1 to k do

wi ← wi/
∑
` wi; µi ←

∑
j ηi,jx

′
j/
∑
j ηi,j ; Σi ←

∑
j ηi,j

(
x′j − µi

)(
x′j − µi

)T
/
∑
j ηi,j ;

until L(C | θ) ≥ Lold − TOL;

Using a similar analysis as for the standard EM algorithm, Algorithm 5 is guaranteed to converge,

but only to a local optimum. However, since it is applied on a much smaller set, it can be initialized

using multiple random restarts. In our experiments, we show that running weighted EM on the

coreset typically leads to comparable performance as running EM on the full data set.

6.3 Extensions and Generalizations

We now show how the connection between estimating the parameters for mixture models and prob-

lems in computational geometry can be leveraged further. Our observations are based on the link

between mixture of Gaussians and projective clustering (multiple subspace approximation) as shown

in Lemma 3.
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Generalizations to non-semi-spherical GMMs. For simplicity, we generalized the coreset

construction for the k-means problem, which required assumptions that the Gaussians are ε-semi-

spherical. However, several more complex coresets for projective clustering were suggested recently

(cf., [42]). Using the tools developed in this article, each such coreset implies a corresponding coreset

for GMMs and generalizations. As an example, the coresets for approximating points by lines [41]

implies that we can construct small coresets for GMMs even if the smallest singular value of one of

the corresponding covariance matrices is zero.

Generalizations to `q distances and other norms. Our analysis is based on combinatorics

(such as the complexity of sub-levelsets of GMMs) and probabilistic methods (non-uniform random

sampling). Therefore, generalizations to other non-Euclidean distance functions, or error functions

such as (non-squared) distances (mixture of Laplace distributions) is straightforward. The main

property that we need is a generalization of the triangle inequality, as proved in the supplemental

material. For example, replacing the squared distances by non-squared distances yields a coreset

for mixture of Laplace distributions. The double triangle inequality ‖a− c‖2 ≤ 2(‖a− b‖+‖b− c‖2)

is replaced by Hölder’s inequality, ‖a− c‖2 ≤ 2O(q) ‖a− b‖ + 2 ‖b− c‖2. Such a result is straight-

forward from our analysis, and we summarize it in the following theorem.

Theorem 6.3.1. Let q ≥ 1 be an integer. Consider Algorithm 4, where dist(·, ·)2 is replaced by

dist(·, ·)q and ε2 is replaced by εO(q). Suppose C is sampled from D using this updated version of

Algorithm 4 for parameters ε, δ and k. Then, with prob. at least 1− δ it holds that for all θ ∈ Cε,

φ(D | θ)(1− ε) ≤ φ(C | θ) ≤ φ(D | θ)(1 + ε),

where Z(θ) =
∑
i
wi
g(θi)

and φ(D | θ) = −
∑

x∈D ln
∑k
i=1

wi
Z(θ)g(θi)

exp
(
− 1

2

∥∥∥Σ
−1/2
i (x− µi)

∥∥∥q) using

the normalizer g(θi) =
∫

exp
(
− 1

2

∥∥∥Σ
−1/2
i (x− µi)

∥∥∥q) dx.
6.4 Experiments

We experimentally evaluate the effectiveness of using coresets of different sizes for training mixture

models. We compare against running EM on the full set, as well as on an unweighted, uniform

sample from D. Results are presented for three real datasets.

MNIST handwritten digits. The MNIST dataset contains 60,000 training and 10,000 testing

grayscale images of handwritten digits. As in [53], we normalize each component of the data to have

zero mean and unit variance, and then reduce each 784-pixel (28x28) image using PCA, retaining

only the top d = 100 principal components as a feature vector. Using the digit labels, we construct

training and testing sets with a skewed distribution over the digits, whereby digit i occurs in pro-
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(a) MNIST Skewed (b) Tetrode recordings

(c) CSN data

Figure 6.5: Experimental results for three real data sets. We compare likelihood of the best model
obtained on subsets C constructed by uniform sampling, and by the adaptive coreset sampling
procedure.

portion to 0.5i. From the training set, we produce coresets and uniformly sampled subsets of sizes

between 30 and 5000, using the parameters k = 10 (a cluster for each digit), β = 20 and δ = 0.1

(see Algorithm 4), and fit GMMs using EM with 3 random restarts. The log likelihood (LLH) of

each model on the testing data is shown in Figure 6.5(a).

Neural tetrode recordings. We also compare coresets and uniform sampling on a large dataset

containing 319,209 records of rat hippocampal action potentials, measured by four co-located elec-

trodes. As done by [53], we concatenate the 38-sample waveforms produced by each electrode to

obtain a 152-dimensional vector. The vectors are normalized so each component has zero mean and

unit variance. The 319,209 records are divided in half to obtain training and testing sets. From the

training set, we produce coresets and uniformly sampled subsets of sizes between 70 and 1000, using

the parameters k = 33 (as in [53]), β = 66, and δ = 0.1, and fit GMMs. The log likelihood of each

model on the held-out testing data is shown in Figure 6.5(b). Coreset GMMs obtain consistently

higher LLH than uniform sample GMMs for sets of the same size.
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CSN cell phone accelerometer data.

smartphones with accelerometers are being used by the Community Seismic Network (CSN) as

inexpensive seismometers for earthquake detection. In [39], 7 GB of acceleration data were recorded

from volunteers while carrying and operating their phone in normal conditions (walking, talking, on

desk, etc.). From this data, 17-dimensional feature vectors were computed (containing frequency

information, moments, etc.). The goal is to train, in an online fashion, GMMs based on normal data,

which then can be used to perform anomaly detection to detect possible seismic activity. Motivated

by the limited storage on smartphones, we evaluate coresets on a data set of 40,000 accelerometer

feature vectors, using the parameters k = 6, β = 12, and δ = 0.1. Figure 6.5(c) presents the results

of this experiment. Notice that on this data set, coresets show an even larger improvement over

uniform sampling. We hypothesize that this is due to the fact that the recorded accelerometer data

is imbalanced, and contains clusters of vastly varying size, so uniform sampling does not represent

smaller clusters well.
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Chapter 7

Conclusion

This thesis has described theory and methodology for building CSR systems that provide real-time

detection of spatial events using large numbers of community-owned sensor devices.

It presented the Caltech Community Seismic Network as an exemplar CSR system, and discussed

how volunteer-operated sensor clients networked to cloud servers offers a practical and scalable archi-

tecture. The CSN project demonstrates how CSR systems can act on large-scale events by improving

disaster response. CSN is also representative of the challenges faced by CSR systems, including the

need to detect events in real-time, provide performance guarantees in the form of constrained false

detections and estimates on detection performance, as well as the challenges inherent in using diverse,

community hardware.

Interestingly, the CSN project was formed with the anticipation that sensor-equipped smart

devices would play an increasing role in everyday life. This optimism has been confirmed, as mobile

internet access outstripped traditional laptops and desktops. CSN-Droid and CrowdShake are two

iterations of a free Android app that volunteers may use to join the CSN network. These apps

share a foundation of anomaly detection and data collection, but differ in how they approach user

engagement. The growing number of wearable sensor devices and other sensor hardware further

confirms that trends are underway to extensively instrument our world with internet-connected

consumer devices.

Decentralized Anomaly Detection. As the second main contribution, this thesis presents a

decentralized anomaly detection approach for detecting rare, disruptive events using community-held

sensors. Detecting rare events like dangerous quakes is made possible by learning local statistical

models characterizing normal data (e.g., acceleration due to normal manipulation of a cellphone),

in an online manner. Using local online percentile estimation, it can choose operating points that

guarantee bounds on the sensor-level false positive frequency, as well as the number of messages sent

per sensor. We then showed how a conservative estimate of the sensors’ ROC curves can be used to

make detection decisions at a fusion center which guarantee bounds on the false positive rates for
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the entire system, as well as maximize a lower bound on the detection performance. The pessimistic

predicted true positive rates allow us to assess whether a given density of sensors is sufficient for

the intended detection task. This online decentralized anomaly detection approach allows us to

cope with the fundamental challenge that rare events are very difficult or impossible to model and

characterize a priori. It also allows the use of heterogeneous, community-operated sensors that may

differ widely in quality and communication constraints.

Motivated by quake detection in large community seismic networks, the third contribution of the

thesis is evidence that large numbers of noisy sensors can be leveraged to detect weak-but-structured

events: constructing or learning a sparsifying basis enables detection of sparse event patterns in the

decentralized setting. I provide theoretical bounds on the power of sparsification using a haar

wavelet basis that emerges naturally from a hierarchical clustering of sensors, and obtained strong

bounds on error rates for events produced by the latent tree model that can be evaluated for any

network size. These results strengthen and complement previous work on the limits of detectability

of sparse patterns in Gaussian noise.

We extend the intuition for the wavelet transform’s success - its ability to concentrate signals with

a small number of basis elements - and obtained a general framework to learn sparsifying bases for

detection. We considered two optimizations, ICA and SLSA, for learning a basis that approximately

maximizes sparsification, and explain how it can be implemented in sensor networks using real or

simulated data in the absence of sufficient training data.

Finally, we thoroughly evaluate the detection performance of the sparsifying bases on several

problem domains: simulated virus outbreaks on the Gnutella P2P network; detecting quakes follow-

ing the Tohuku M9.0 event in the Japan seismic network with bases learned from network measure-

ments; and detecting quakes recorded by the dense Long Beach and Community Seismic Network

sensors using simulated measurements for training. In all domains, learned bases outperform previ-

ous state-of-the-art algorithms. We believe that our insights are an important step towards solving

challenging detection problems using large-scale, noisy, participatory sensor networks.

The final contribution of the thesis is an evaluation of coresets for efficient learning of Gaussian

Mixture Models. We have shown how to construct coresets for estimating parameters of GMMs and

natural generalizations. Our construction hinges on a natural connection between statistical estima-

tion and clustering problems in computational geometry. To our knowledge, our results provide the

first rigorous guarantees for obtaining compressed ε-approximations of the log-likelihood of mixture

models for large data sets. The coreset construction relies on an intuitive adaptive sampling scheme,

and can be easily implemented. By exploiting certain closure properties of coresets, it is possible

to efficiently construct them in both the parallel and streaming setting, which promises to allow

client-level modeling of large sensor data sets on resource constrained devices, as demonstrated on

CSN sensor data and other data sets.
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Final thoughts.

This thesis outlined several algorithmic and systems principles that facilitate detecting rare and

complex spatial signals using large numbers of low-cost community sensors. We have found that

employing machine learning at each stage of a decentralized architecture allows efficient use of sensor-

level and cloud-level resources, and is essential to providing performance guarantees when little can

be said about a particular community sensor, or when little is known about the events we seek to

detect.

Community sensing is applicable to a variety of application domains, including disasters like fires,

floods, radiation, epidemics, and traffic accidents, as well as monitoring the pollution, pedestrian

traffic, and acoustic noise levels in urban environments. In all of these cases “responding” may

range from taking physical action to merely devoting additional resources to an event of interest.

While the CSN project is motivated by detecting and reacting to strong earthquakes, we believe that

community sense and response systems for these domains and others will require a similar blueprint

of machine learning and scalable systems.
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Appendix A

Supplemental Material: Chapter 6

A.1 A Geometric Approach for Mixture of Gaussians

Let D̃ = {x̃1, . . . , x̃n} ⊆ R2d and S be a set of subspaces of R2d. Let Y be the set of all 4-

tuples (s, w, µ̃,W ), where s = (s1, . . . , sk) ∈ Sk, µ̃ = (µ̃1, · · · , µ̃k), W = (W1, · · · ,Wk) ∈ Rk,

w = (w1, · · · , wk) ∈ Rk,
∑k
i=1 wi = 1 and wi,Wi ≥ 0, and µ̃i ∈ R2d for every i, 1 ≤ i ≤ k.

For every x̃ ∈ R2d and a set X ⊆ R2d, we define dist(x̃, X) = minq∈X dist(x̃, q). For a tuple

y = (s, w, µ̃,W ) ∈ Y , we define

dist(x̃, y) = min
1≤i≤k

Widist(x̃− µ̃i, si).

For every x̃ ∈ R2d and y = (s, w, µ̃,W ) ∈ Y we define

fx̃(y) = − ln

(
k∑
i=1

wiexp
(
−Widist(x̃− µ̃i, si)2

))
.

Note that a flat (affine subspace) can be represented by a subspace s1 and a translation vector

µ̃. The distance from a point x to the flat is then the distance between (x− µ̃) to the subspace s1.

Lemma 4. Let Σ ∈ Rd×d be a covariance matrix whose smallest singular value is W 2
min > 0. Let

µ ∈ Rd. Then there is a vector µ̃ ∈ R2d and a d-dimensional subspace s of R2d such that for every

x ∈ Rd and a corresponding x̃ = (x, 0, . . . , 0) ∈ R2d we have

(x− µ)TΣ−1(x− µ) = W
−1/2
min dist(x̃− µ̃, s)2.

Proof. Let Σ−1 = LLT be the Cholesky decomposition of Σ−1, L = UDV T denote the SVD of

L, and Di,i denote the ith entry of the diagonal of D, 1 ≤ i ≤ d. Let AT = WminD
TUT and
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µ̃ = (µ, 0, . . . , 0) ∈ R2d. Since Σ = (LLT )−1 = UD−2UT , we have

1

max
{
D2

1,1, . . . , D
2
d,d

} = min
{
D−2

1,1, . . . , D
−2
d,d

}
= W 2

min.

Hence,

W
−1/2
min

∥∥AT (x− µ)
∥∥2

=
∥∥W−1

minA
T (x− µ)

∥∥2

=
∥∥DTUT (x− µ)

∥∥2
=
∥∥V DTUT (x− µ)

∥∥2

=
∥∥LT (x− µ)

∥∥2
= (x− µ)TΣ−1(x− µ).

(A.1)

We denote by I the identity matrix. We have that I − ATA = I −W 2
minD

2 is a semi-positive

definite matrix. Hence, there is a Cholesky decomposition MTM = I − ATA of I − ATA. Let

ST = [AT | MT ] ∈ Rd×2d, and let s denote a d-dimensional subspace of R2d that is orthogonal to

every column of S. Since STS = ATA+MTM = I, the columns of S are mutually orthogonal unit

vectors. Hence,

∥∥AT (x− µ)
∥∥ =

∥∥ST (x̃− µ̃)
∥∥ =

∥∥SST (x̃− µ̃)
∥∥ = dist(x̃− µ̃, s).

Together with (A.1) we obtain

W
−1/2
min dist(x̃− µ̃, s)2 = W

−1/2
min

∥∥AT (x− µ)
∥∥2

= (x− µ)TΣ−1(x− µ).

For the case that the smallest singular value Wmin of L is at least 1, we have

(x− µ)TLTL(x− µ) = dist(x̃− µ̃, s)2,

by replacing Wmin with 1 in the above proof.

Theorem A.1.1 (Jensen’s inequality). For every convex function g : R→ R and a random variable

X, we have g(E[X]) ≥ E[g(X)].

Lemma 5. For every y = (s, w, µ̃,W ) ∈ Y , 0 < ε < 1/2, and x̃, x̃′ ∈ R2d, we have

fx̃(y) ≤ (1 + 2ε)fx̃′(y) +
3Wmaxdist(x̃, x̃′)2

ε
,

where Wmax = max1≤i≤kWi.
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Proof. Put y = (s, w, µ̃,W ) ∈ Y , x̃, x̃′ ∈ R2d and 1 ≤ i ≤ k. By the triangle inequality,

|dist(x̃− µ̃i, si)2 − dist(x̃′ − µ̃i, si)2| = |dist(x̃− µ̃i, si)− dist(x̃′ − µ̃i, si)|(dist(x̃− µ̃i, si) + dist(x̃′ − µ̃i, si))

≤ dist(x̃− µ̃i, x̃′ − µ̃i)(2dist(x̃′ − µ̃i, xi) + dist(x̃− µ̃i, x̃′ − µ̃i))

= dist(x̃, x̃′)2 + 2dist(x̃, x̃′)dist(x̃′ − µ̃i, si).

(A.2)

If dist(x̃, x̃′) ≤ εdist(x̃′−µ̃i, si) we have dist(x̃, x̃′)dist(x̃′−µ̃i, si) ≤ εdist(x̃′−µ̃i, si)2. Otherwise,

dist(x̃′ − µ̃i, si) < dist(x̃, x̃′)/ε so dist(x̃, x̃′)dist(x̃′ − µ̃i, si) < dist(x̃, x̃′)2/ε. In both cases we thus

obtain

dist(x̃, x̃′)dist(x̃′ − µ̃i, si) ≤ dist(x̃, x̃′)2/ε+ εdist(x̃′ − µ̃i, si)2.

Together with (A.2) we have

|dist(x̃− µ̃i, si)2 − dist(x̃′ − µ̃i, si)2| ≤ dist(x̃, x̃′)2 + 2dist(x̃, x̃′)2/ε+ 2εdist(x̃′ − µ̃i, si)2

= 3dist(x̃, x̃′)2/ε+ 2εdist(x̃′ − µ̃i, si)2.
(A.3)

Let Wmax = max1≤i≤kWi. Using (A.3),

fx̃(y) = − ln

(
k∑
i=1

wiexp
(
−Widist(x̃− µ̃i, si)2

))

≤ − ln

(
k∑
i=1

wiexp
(
−Wi

(
dist(x̃′ − µ̃i, si)2 + 3dist(x̃, x̃′)/ε+ 2εdist(x̃′ − µ̃i, si)2

)))

= − ln

(
k∑
i=1

wiexp
(
−Wi(1 + 2ε)dist(x̃′ − µ̃i, si)2 − 3Widist(x̃, x̃′)/ε

))

≤ − ln

(
k∑
i=1

wiexp
(
−Wi(1 + 2ε)dist(x̃′ − µ̃i, si)2

)
+ 3Wmaxdist(x̃, x̃′)/ε

)

= − ln

(
k∑
i=1

wi
(
exp

(
−Widist(x̃′ − µ̃i, si)2

))1+2ε

)
+ 3Wmaxdist(x̃, x̃′)/ε.

(A.4)

Let X be a random variable such that X = exp
(
−Widist(x̃′ − µ̃i, si)2

)
with probability wi,

1 ≤ i ≤ k. Since z1+2ε is a convex function over z ∈ [0, 1], applying Theorem A.1.1 with g(z) = z1+2ε

yields E [[] g(X)] ≥ g(E [[]X]). Hence,

k∑
i=1

wi
(
exp

(
−Widist(x̃′ − µ̃i, si)2

))1+2ε
= E [[]X1+2ε] = E[g(X)] ≥ g(E[X]) = (E[X])1+2ε

=

(
k∑
i=1

wiexp
(
−Widist(x̃′ − µ̃i, si)2

))1+2ε

.
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Combining the last inequality with (A.4) yields

fx̃(y) ≤ − ln

(
k∑
i=1

wi
(
exp

(
−Widist(x̃′ − µ̃i, si)2

))1+2ε

)
+ 3Wdist(x̃, x̃′)/ε

≤ − ln

(
k∑
i=1

wiexp
(
−Widist(x̃′ − µ̃i, si)2

))1+2ε

+ 3Wmaxdist(x̃, x̃′)/ε

= −(1 + 2ε) ln

(
k∑
i=1

wiexp
(
−Widist(x̃′ − µ̃i, si)2

))
+ 3Wmaxdist(p, p′)/ε

= (1 + 2ε)fx̃′(y) + 3Wmaxdist(x̃, x̃′)/ε.

Lemma 6. Let y∗ be a tuple that minimizes
∑

x̃∈P dist(x̃, y)2 over every y ∈ Y . Then for every

y ∈ Y ∑
x̃∈D̃

dist(x̃, y∗)2 ≤
∑
x̃∈D̃

fx̃(y).

Proof. Fix y = (s, w, µ̃,W ) ∈ Y and x̃ ∈ D̃. We have

fx̃(y) = − ln

(
k∑
i=1

wiexp
(
−Widist(x̃− µ̃i, si)2

))

≥ − ln

(
k∑
i=1

wi · exp
(
dist(x̃, y)2

))
= dist(x̃, y)2.

Hence, ∑
x̃∈D̃

fx̃(y) ≥
∑
x̃∈D̃

dist(x̃, sm)2 ≥
∑
x̃∈D̃

dist(x̃, y∗)2

A.2 Coresets For Semi-Spherical Mixtures of Gaussians

Let y∗ ∈ Y be a tuple that minimizes
∑

x̃∈D̃ dist(x̃, y) over every y ∈ Y . Suppose that B ={
b1, b2, · · · , b|B|

}
⊆ R2d and α > 0 such that

∑
x̃∈D̃

dist(x̃, B)2 ≤ α
∑
x̃∈D̃

dist(x̃, y∗). (A.5)

Let
{
D̃1, · · · , D̃|B|

}
be a partition of D̃, where D̃i =

{
x̃ ∈ D̃ | dist(x̃, bi) = dist(x̃, B)

}
are the

points that are served by bi, 1 ≤ i ≤ |B|. Ties are broken arbitrarily.
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Lemma 7. For every 1 ≤ i ≤ |B|, x̃ ∈ D̃i and y = (s, w, µ̃,W ) ∈ Y , we have

fx̃(y)∑
x̃∈D̃ fx̃(y)

≤ O(1)(ε+ αWmax)

ε|x̃i|
+

O(1)dist(x̃, B)2

ε
∑

x̃∈x̃ dist(x̃, B)2
.

Proof. Put y = (s, w, µ̃,W ) ∈ Y , 1 ≤ i ≤ |B|, x̃ ∈ D̃i, ni = |D̃i|, and b = bi. By Lemma 5,

fx̃(y) ≤ (1 + 2ε)fb(y) +
O(1)Wmaxdist(x̃, b)2

ε
≤ 2fb(y) +

O(1)Wmaxdist(x̃, B)2

ε
. (A.6)

We now bound fb(y). Applying Lemma 5 with x̃ ∈ D̃i and b yields

fb(y) ≤ (1 + 2ε)fx̃(y) +
O(1)Wmaxdist(x̃, b)2

ε
.

Summing over every x̃ ∈ D̃i yields

ni · fb(y) ≤ (1 + 2ε)
∑
x̃∈D̃i

fx̃(y) +
O(1)Wmax

∑
x̃∈D̃i dist(x̃, b)2

ε

≤ 2
∑
x̃∈x̃

fx̃(y) +
O(1)Wmax

∑
x̃∈D̃ dist(x̃, B)2

ε

Plugging the last inequality in (A.6) yields

fx̃(y) ≤ 2

ni

∑
x̃∈D̃

fx̃(y) +
O(1)Wmax

∑
x̃∈D̃ dist(x̃, B)2

εni
+
O(1)Wmaxdist(x̃, B)2

ε
.

Hence,
fx̃(y)∑

x̃∈D̃ fx̃(y)
≤ 2

ni
+
O(1)Wmax

∑
x̃∈D̃ dist(x̃, B)2

εni
∑

x̃∈x̃ fx̃(y)
+
O(1)Wmaxdist(x̃, B)2

ε
∑

x̃∈D̃ fx̃(y)
. (A.7)

By (A.5) and Lemma 6,

∑
x̃∈D̃

dist(x̃, B)2 ≤ α
∑
x̃∈D̃

dist(x̃, y∗)2 ≤ α
∑
x̃∈D̃

fx̃(y).

Using the last inequality with (A.7) yields

fx̃(y)∑
x̃∈D̃ fx̃(y)

≤ 2ε+O(1) ·Wmaxα

εni
+
O(1)Wmaxdist(x̃, B)2

ε
∑

x̃∈D̃ dist(x̃, B)2
.

Theorem A.2.1 ([42]). Let F be a set of n functions from Y to [0,∞) and 0 < ε < 1/4. Let
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m : F → N \ {0} be a function on F such that

m(f) ≥ n ·max
x∈X

f(x)

cost(F, x)
. (A.8)

For each f ∈ F , let gf : Y → [0,∞) be defined as gf (y) = f(y)/m(f). Let Gf consists of mf

copies of gf , and let S be a random sample of

t =
dim(F )

(∑
f∈F m(f)

)2

(εn)2

functions from the set G =
⋃
f∈F Gf . Then for every y ∈ Y ,

|
∑
f∈F

f(y)−
∑
f∈S

f(y)| ≤ ε
∑
f∈F

f(y).

Theorem A.2.2 ([42]). Let B ⊆ Rd be the set that is computed during the execution of the algo-

rithm 4. Then ∑
x∈D

dist(x, B) ≤ O(1) min
C∗⊆Rd,|C∗|=k

∑
x∈D

dist(x, C∗)

A.3 Complexity of Mixture of Gaussians

Definition A.3.1 (range space [61]). A range space is a pair (F, ranges) where F is a set, and

ranges is a set of subsets of F . The dimension of the range space (F, ranges) is the smallest integer

d, such that for every G ⊆ F we have

∣∣∣ {G ∩ range | range ∈ ranges}
∣∣∣ ≤ |G|d .

The dimension of a range space relates (but is not equivalent) to a term known as the VC-

dimension of a range space.

Definition A.3.2 (range space and dimension of F [75]). Let F be a finite set of functions from a

set X to [0,∞). The dimension dim(F ) of F is the dimension of the range space
(
F, ranges(F )

)
,

where ranges(F ) is the range space of F , that is defined as follows. For every x ∈ X and r ≥ 0, let

range(F, x, r) = {f ∈ F | f(x) ≤ r}. Let ranges(F ) = {range(F, x, r) | x ∈ X, r ≥ 0}.

Theorem A.3.3 ([94]). Let q be a natural number and suppose that G is the class of real-values

functions in the variables y1, · · · , yd satisfying the following conditions: For every f ∈ G there is

affine functions g1, · · · , gr where r ≤ q, in the variables y1, ·, yd such that f is an affine combination
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of y1, · · · , yd and eg1 , · · · , egr . Then G has solution set components bound

|B| = 2O(d2q2).

Theorem A.3.4.

dim(Y ) = O(kd2).

Proof. Let y = (s, µ̃, w) ∈ Y . Since s is a hyperplane, there is a tuple of d+1 vectors h0, · · · , hd+1 ∈

Rd such that s =
{
h0 +

∑d
i=1 aihi | a1, . . . , ad ∈ R

}
, and

dist2(x, s) = ‖x− h0‖22 −
d∑
i=1

(
(x− h0)Thi

)2
= ‖x− h0‖22 −

d∑
i=1

(xThi − hT0 hi)2.

For two vectors (m1, · · · ,ms) ∈ Rs and (y1, · · · , yt) ∈ Rt, we denote bymy the tuplem1, · · · ,ms, y1, · · · , yt.

Let h′ = (1, h0 · · ·hd) ∈ Rd(d+1)+1, and x′ = (1,x) ∈ Rd+1. Hence, we have

dist2(x, s) =
∑

i0,i1∈[d+1],i2,i3∈[d(d+1)+1]

ci0,i1,i2,i3p
′
i0x
′
i1h
′
i2h
′
i3 , (A.9)

where ci0,i1,i2,i3 is a constant that depends only on i0, . . . , i3, and equals to zero for all except

d1 = O(d2) terms of the summation. That is, dist2(x, ·) is an affine function .

Theorem A.3.5. Let D ⊆ Rd, δ, ε > 0, k ≥ 1 and Wmin,Wmax > 0. Let C be the collection of all

mixtures of Gaussians θ = [(w1, µ1,Σ1), . . . , (wk, µk,Σk)] such that Σi is a d× d covariance matrix

whose singular values are between W 2
min and W 2

max, for every 1 ≤ i ≤ k. Let C be the output of

Algorithm 4.

Then, with probability at least 1− δ, for every mixture θ ∈ C we have

∣∣∣∣∣∑
x∈D

ln

k∑
i=1

wiexp

(
−1

2
(x− µi)TΣ−1

i (x− µi)
)
−
∑
x∈C

γ(x) ln

k∑
i=1

wiexp

(
−1

2
(x− µi)TΣ−1

i (x− µi)
)∣∣∣∣∣

≤ εW
2
max

W 2
min

L(D | θ)

Proof. For every x ∈ D define x̃ = x̃(x) = (x, 0, . . . , 0) ∈ R2d and let D̃ = {x̃(x) | x ∈ D}. Fix

θ = [(w1, µ1,Σ1), . . . , (wk, µk,Σk)] ∈ C. For every i, 1 ≤ i ≤ k, let Wi be the inverse of the smallest

singular value of Σi. By Lemma 4 there is a vector µ̃i, and a subspace si such that

−1

2
(x− µi)TΣ−1

i (x− µi) = Widist(x̃− µ̃i, si)2.
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Let y = y(θ) = (s, w, µ̃,W ) where µ̃ = (µ̃1, · · · , µ̃k), w = (w1, · · · , wk), W = (W1, · · · ,Wk) and

s = (s1, · · · , sk), Y = {y(θ) | y ∈ Y }. For every x̃ ∈ D̃ and y = (s, w, µ̃,W ) ∈ Y we define

fx̃(y) = − ln

(
k∑
i=1

wiexp
(
−Widist(x̃− µ̃i, si)2

))
,

and F =
{
fx̃ | x̃ ∈ D̃

}
. By Theorem A.3.4, we have dim(F ) = O(d2k). For every f ∈ F , let

m(f) =
O(1)(ε+ αWmax)

ε|x̃i|
+

O(1)dist(x̃, B)2

ε
∑

x̃∈x̃ dist(x̃, B)2
,

and note that
∑
f∈F m(f) = O(|B|). By Lemma 7, for every f ∈ F we have

m(f) ≥ n ·max
y∈Y

f(y)∑
f∈F f(y)

.

Let Gf consists of mf copies of gf , and note that C in Algorithm 4 is a uniform random sample

from GF . By Theorem A.2.1 we thus have∣∣∣∣∣∣
∑
f∈F

f(y)−
∑
f∈C

f(y)

∣∣∣∣∣∣ ≤ ε
∑
f∈F

f(y).

Observation A.3.6. Let θ = [(w1, µ1,Σ1), . . . , (wk, µk,Σk)] ∈ C such that

∀i :

 ∏
λ∈spec(Σi)

λ

 ≥ 1

(2π)d
.

If C is a (k, ε)-coreset for D ⊆ Rd, then L(C | θ) is a (1 + ε)-approximation for L(D | θ). That is,

(1− ε)L(D | θ) ≤ L(C | θ) ≤ L(D | θ)(1 + ε).

Proof. Since
∑
i wi = 1, we have by the assumption on θ

Z(θ) =
∑
i

wi√
|2πΣi|

≤ max
i

1√
|2πΣi|

= max
i

1√
(2π)d

∏
λ∈spec(Σi)

λ
≤ 1.
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Hence, −n lnZ(θ) ≥ 0. By this and the assumption on θ,

L(C | θ) = −n lnZ(θ) + φ(C | θ)

≤ −n lnZ(θ) + (1 + ε)φ(D | θ)

≤ (1 + ε)
(
− n lnZ(θ) + φ(D | θ)

)
= (1 + ε)L(D | θ).

Similarly,

L(C | θ) = −n lnZ(θ) + φ(C | θ)

≥ −n lnZ(θ) + (1− ε)φ(D | θ)

≥ (1− ε)
(
− n lnZ(θ) + φ(D | θ)

)
= (1− ε)L(D | θ).
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