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Abstract

Smartphones and other powerful sensor-equipped consumer devices make it possible to sense the physical

world at an unprecedented scale. Nearly 2 million Android and iOS devices are activated every day, each

carrying numerous sensors and a high-speed internet connection. Whereas traditional sensor networks have

typically deployed a fixed number of devices to sense a particular phenomena, community networks can grow

as additional participants choose to install apps and join the network. In principle, this allows networks of

thousands or millions of sensors to be created quickly and at low cost. However, making reliable inferences

about the world using so many community sensors involves several challenges, including scalability, data

quality, mobility, and user privacy.

This thesis focuses on how learning at both the sensor- and network-level can provide scalable techniques

for data collection and event detection. First, this thesis considers the abstract problem of distributed algorithms

for data collection, and proposes a distributed, online approach to selecting which set of sensors should be

queried. In addition to providing theoretical guarantees for submodular objective functions, the approach is

also compatible with local rules or heuristics for detecting and transmitting potentially valuable observations.

Next, the thesis presents a decentralized algorithm for spatial event detection, and describes its use detecting

strong earthquakes within the Caltech Community Seismic Network. Despite the fact that strong earthquakes are

rare and complex events, and that community sensors can be very noisy, our decentralized anomaly detection

approach obtains theoretical guarantees for event detection performance while simultaneously limiting the rate

of false alarms.
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Chapter 1

Introduction

In the last several years, mobile computing has drastically reshaped the way that people produce and access

information. While it is easy to think of mobile devices simply as smaller computers, smart devices like phones

and tablets also possess an array of sensors - such as gyroscopes, cameras, accelerometers, and compasses

- not present on traditional computers. These sensors are commonly used as additional forms of user input,

but can be used more broadly to sense many aspects of the user’s immediate environment. In fact, a variety

of recent commercial apps and products make use of or supplement these mobile sensors, including Google

Glass, the Jawbone activity tracking wristband, the Nest home thermostat, and the FitBit. While the immediate

intent of these products is personal sensing, the same technology is equally applicable to sensing city-wide or

global environments.

Recently, the field of Community Sensing has emerged to study how networks of community-owned or

operated devices can be used to sense the physical environment. For example, several recent sensing projects

seek to partner with the owners of smartphones and other consumer devices to collect, share, and act on sensor

data about phenomena that impact the community. Coupled to cloud computing platforms, such projects

can reach an immense scale previously beyond the reach of sensor networks [10]. Current applications of

community and participatory sensing include:

• Understanding traffic flows and monitoring road conditions [33, 61, 39, 8, 44, 31]

• Identifying sources of pollution [4, 1, 64]

• Monitoring public health [45, 42, 51]

• Responding to natural disasters like hurricanes, floods, and earthquakes [14, 20, 22, 34]

Given that the most popular mobile apps can boast more than 100,000,000 downloads, it is exciting to

imagine projects like these growing into vast community networks. However, community sensing applications

face several challenges beyond those of more typical mobile apps. The potential scale of raw data is vast,

even by the standards of large web applications. Community sensors are also exposed to noisy, dynamic

environments. And many of the desired applications, while far-reaching, push the limits of our current

understanding of physical phenomena.



3

Scale. The volume of raw data that can be produced by a community network is astounding by any standard.

Smartphones and other consumer devices often have multiple sensors, and can produce continuous streams of

GPS position, acceleration, rotation, audio, and video data. While events of interest (e.g. traffic accidents,

earthquakes, disease outbreaks) may be rare, devices must monitor continuously in order to detect them.

Beyond obvious data heavyweights like video, rapidly monitoring even a single accelerometer or microphone

produces hundreds of megabytes per day. Community sensing makes possible networks containing tens of

thousands or millions of devices. For example, equipping taxi cabs with GPS devices or air quality sensors

could easily yield a network of 50,000 sensors in a city like Beijing [71]. At these scales, even collecting a

small set of summary statistics becomes daunting: if 500,000 sensors reported a brief status update once per

minute, the total number of messages would rival the daily load in the Twitter network.

Non-traditional sensors. Community devices are also a different breed of sensor than those used in traditional

scientific and industrial applications. Beyond simply being lower in accuracy (and cost) than “professional”

sensors, community sensors are coupled to the individuals who own them. As a result, community sensors are

often mobile, intermittently available, and directly experience the unique environment of an individual’s home,

workplace, or pocket.

Complex Phenomena. By enabling sensor networks that densely cover cities, community sensors make

it possible to measure and act on a range of important phenomena, including traffic patterns, pollution, and

natural disasters. However, due to the previous lack of fine-grained data about these phenomena, these systems

must simultaneously learn about the phenomena they are built to act upon. For example, a community seismic

network may need to use measurements of frequent smaller quakes in order to obtain the models of ground

composition needed to accurately estimate damage during rare, large quakes.

1.1 Main Contributions

This thesis presents two approaches to selective data gathering in community sensor networks. The first

contribution is an online algorithm by which a set of devices (sensors) collectively learn to self-select a fixed

size subset who will transmit their observations to a central server. This work appeared as Online Distributed

Sensor Selection [27] in the 9th International Conference on Information Processing and Sensor Networks

(IPSN). We analyze sensor selection under the bandit feedback model, where the algorithm only receives

feedback about the utility of the selected sensors. We prove very strong theoretical no-regret guarantees

that apply whenever the (unknown) utility function satisfies a natural diminishing returns property called

submodularity. These results are most appropriate when the utility function is fixed or slowly varying;

however, a heuristic for observation-dependent sampling allows the algorithm to respond to rapid changes in

environmental behavior, at the cost of additional communication.
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The second contribution is a detailed study of earthquake detection in a community network of Android

smartphones and other consumer sensors. Published in IPSN as The Next Big One: Detecting Earthquakes and

Other Rare Events from Community-based Sensors [22], this work presents the Caltech Community Seismic

Network (CSN), a distributed system comprised of an Android app, a desktop client, and a Google App Engine

cloud application. In contrast to many environmental sensing networks, a seismic network may experience long

periods of time without observing the object of interest (i.e. a dangerously large earthquake). Consequently,

earthquake monitoring is a task of detecting rare events. We describe how CSN uses distributed anomaly

detection to transmit observations of potential earthquakes, while limiting bandwidth usage during the usual

quiescent periods. This concept is implemented by the CSN-Droid Android app, and is evaluated with shake

table experiments and simulations of historic earthquakes.

1.2 Related work

The work in this thesis draws on several fields of research. In addition to the community sensing research

outlined above, there is also a significant amount of research on sensor selection and submodular optimization.

The Caltech Community Seismic Network should be viewed in the context of several recent community-

oriented seismic sensing projects, and in the context of recent developments in earthquake early warning

systems. The problem of detecting spatial events using community sensors is directly related to a large body

of work in decentralized detection and anomaly detection.

Sensor selection. The problem of deciding when to selectively turn on sensors in sensor networks in order

to conserve power was first discussed by [57] and [73]. Many approaches for optimizing sensor placements

and selection assume that sensors have a fixed region [32, 29, 6]. These regions are usually convex or even

circular. Further, it is assumed that everything within a region can be perfectly observed, and everything

outside cannot be measured by the sensors. For complex applications such as environmental monitoring, these

assumptions are unrealistic, and the direct optimization of prediction accuracy is desired. The problem of

selecting observations for monitoring spatial phenomena has been investigated extensively in geostatistics [15],

and more generally (Bayesian) experimental design [11]. Several approaches have been proposed to activate

sensors in order to minimize uncertainty [73] or prediction error [19]. However, these approaches do not have

performance guarantees. Submodularity has been used to analyze algorithms for placing [38] or selecting [68]

a fixed set of sensors. These approaches however assume that the model is known in advance.

Submodular optimization. The problem of centralized maximization of a submodular function has been

studied by [48], who proved that the greedy algorithm gives a factor (1 − 1/e) approximation. Several

algorithms have since been developed for maximizing submodular functions under more complex constraints

(see [65] for an overview). Streeter and Golovin [59] developed an algorithm for online optimization of

submodular functions, which we build on here.
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Seismic networks. In addition to CSN, several other projects are exploring non-traditional seismic networks.

Perhaps the most closely related system is the QuakeCatcher network [14]. While QuakeCatcher shares the use

of MEMS accelerometers in USB devices and laptops, our system differs in its use of algorithms designed to

execute efficiently on cloud computing systems and statistical algorithms for detecting rare events, particularly

with heterogeneous sensors including mobile phones (which create far more complex statistical challenges).

Kapoor et al. [34] analyze the increase in call volume after or during an event to detect earthquakes. Another

related effort is the NetQuakes project [63], which deploys more expensive stand-alone seismographs with

the help of community participation. Our CSN Phidget sensors achieve different tradeoffs between cost

and accuracy. Several Earthquake Early Warning (EEW) systems have been developed to process data from

existing sparse networks of high-fidelity seismic sensors (such as the Southern California Seismic Network).

The Virtual Seismologist [16] applies a Bayesian approach to EEW, using prior information and seismic

models to estimate the magnitude and location of an earthquake as sources of information arrive. ElarmS [3]

uses the frequency content of initial P-wave measurements from sensors closest to the epicenter, and applies an

attenuation function to estimate ground acceleration at further locations. We view our approach of community

seismic networking as fully complementary to these efforts by providing a higher density of sensors and

greater chance of measurements near to the epicenter. Our experiments provide encouraging results on the

performance improvements that can be obtained by adding community sensors to an existing deployment of

sparse but high quality sensors.

Decentralized detection. There has been a great deal of work in decentralized detection. The classical

hierarchical hypothesis testing approach has been analyzed by Tsitsiklis [62]. Chamberland et al. [12] study

classical hierarchical hypothesis testing under bandwidth constraints. Their goal is to minimizes the probability

of error, under constraint on total network bandwidth. Wittenburg et al. [69] study distributed event detection

in WSN. In contrast to the work above, their approach is distributed rather than decentralized: nearby nodes

collaborate by exchanging feature vectors with neighbors before making decision. Their approach requires a

training phase, providing examples of events that should be detected. Martinic et al. [43] also study distributed

detection on multi-hop networks. Nodes are clustered into cells, and the observations within a cell are

compared against a user-supplied “event signature” (a general query on the cell’s values) at the cell’s leader

node (cluster head).

The communication requirements of the last two approaches are difficult to meet in community sensing

applications, since sensors may not be able to communicate with their neighbors due to privacy and security

restrictions. Both approaches require prior models (training data providing examples of events that should be

detected, or appropriately formed queries) that may not be available in the seismic monitoring domain.

Anomaly Detection. There has also been significant amount of prior work on anomaly detection. Yamanishi

et al. [70] develop the SmartSifter approach that uses Gaussian or kernel mixture models to efficiently learn

anomaly detection models in an online manner. While results apply only in the centralized setting, they support
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the idea of using GMMs for anomaly detection could be extended to learn, for each phone, a GMM that adapts

to non-stationary sources of data.

Davy et al. [18] develop an online approach for anomaly detection using online Support Vector machines.

One of their experiments is to detect anomalies in accelerometer recordings of industrial equipment. They

use produce frequency-based (spectrogram) features, similar to the features we use. However, their approach

assumes the centralized setting.

Subramaniam et al. [60] develop an approach for online outlier detection in hierarchical sensor network

topologies. Sensors learn models of their observations in an online way using kernel density estimators, and

these models are folded together up the hierarchy to characterize the distribution of all sensors in the network.

Rajasegarar et al. [53] study distributed anomaly detection using one-class SVMs in wireless sensor networks.

They assume a tree topology. Each sensor clusters its (recent) data, and reports the cluster descriptions to its

parent. Clusters are merged, and propagated towards the root. The root then decides if the aggregate clusters

are anomalous. Both approaches above are not suitable for the community sensing communication model,

where each sensor has to make independent decisions. Zhang et al. [72] demonstrate online SVMs to detect

anomalies in process system calls in the context of intrusion detection. Onat et al. [50] develop a system for

detecting anomalies based on sliding window statistics in mobile ad hoc networks (MANETs). However, their

approach requires for nodes to share observations with their neighbors.
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Chapter 2

Online Learning for Distributed Sensor
Selection

Community networks of consumer devices make it possible to build sensor networks at very large scale, yet

efficiently operating such a network will require selectively gathering only a small percentage of the total

sensor data. As an illustration, a single smartphone can easily produce hundreds of megabytes of sensor data,

even if video data is not included. Transmitting this data from each device is both a burden on the device

bandwidth and power, but also a burden on the central server that must process or store this information.

Sensor selection is one strategy for reducing the burden of data collection, whereby individual sensors

are activated at specific points in time in order to obtain the most useful information from the network (e.g.,

accurate predictions at unobserved locations) while also minimizing power consumption. Sensor selection is

a key challenge in deploying sensor networks for real-world applications such as environmental monitoring

[38], building automation [56]. The problem has received considerable attention [2, 73, 19], and algorithms

with performance guarantees have been developed [2, 35]. However, many of the existing approaches make

simplifying assumptions. Many approaches assume (1) that the sensors can perfectly observe a particular

sensing region, and nothing outside the region [2]. This assumption does not allow us to model settings where

multiple noisy sensors can help each other obtain better predictions. There are also approaches that base their

notion of utility on more detailed models, such as improvement in prediction accuracy w.r.t. some statistical

model [19] or detection performance [37]. However, most of these approaches make two crucial assumptions:

(2) The model, upon which the optimization is based, is known in advance (e.g., based on domain knowledge

or data from a pilot deployment) and (3), a centralized optimization selects the sensors (i.e., some centralized

processor selects the sensors which obtain highest utility w.r.t. the model). We are not aware of any approach

that simultaneously addresses the three main challenges (1), (2) and (3) above and still provides theoretical

guarantees.

This chapter presents an efficient algorithm, called Distributed Online Greedy (DOG), which addresses

these three central challenges. Prior work [36] has shown that many sensing tasks satisfy an intuitive

diminishing returns property known as submodularity, which states that activating a new sensor helps more if
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few sensors have been activated so far, and less if many sensors have already been activated. Our algorithm

applies to any setting where the true objective is submodular [48], thus capturing a variety of realistic sensor

models. Secondly, our algorithm does not require the model to be specified in advance: it learns to optimize

the objective function in an online manner. Lastly, the algorithm is distributed; the sensors decide whether to

activate themselves based on local information. We analyze our algorithm in the no-regret model, proving

convergence properties similar to the best bounds for any centralized solution.

A bandit approach toward sensor selection. At the heart of our approach is a novel distributed algorithm

for multiarmed bandit (MAB) problems. In the classical multiarmed bandit [54] setting, we picture a slot

machine with multiple arms, where each arm generates a random payoff with unknown mean. Our goal is to

devise a strategy for pulling arms to maximize the total reward accrued. The difference between the optimal

arm’s payoff and the obtained payoff is called the regret. Known algorithms can achieve average per-round

regret ofO(
√
n log n/

√
T ) where n is the number of arms, and T the number of rounds (see e.g. the survey of

[25]). Suppose we would like to, at every time step, select k sensors. The sensor selection problem can then be

cast as a multiarmed bandit problem, where there is one arm for each possible set of k sensors, and the payoff

is the accrued utility for the selected set. Since the number of possible sets, and thus the number of arms, is

exponentially large, the resulting regret bound is O(nk/2
√

log n/
√
T ), i.e., exponential in k. However, when

the utility function is submodular, the payoffs of these arms are correlated. Recent results [59] show that this

correlation due to submodularity can be exploited by reducing the nk-armed bandit problem to k separate

n-armed bandit problems, with only a bounded loss in performance.

Existing bandit algorithms, such as the widely used EXP3 algorithm [5], are centralized in nature.

Consequently, the key challenge in distributed online submodular sensing is how to devise a distributed bandit

algorithm. In Sec. 2.3 and 2.4, we develop a distributed variant of EXP3 using novel algorithms to sample

from and update a probability distribution in a distributed way. Roughly, we develop a scheme where each

sensor maintains its own weight, and activates itself independently from all other sensors purely depending on

this weight.

Observation specific selection. A shortcoming of centralized sensor selection is that the individual sensors’

current measurements are not considered in the selection process. In many applications, obtaining sensor

measurements is less costly than transmitting the measurements across the network. For example, cell

phones used in participatory sensing [9] can inexpensively obtain measurements on a regular basis, but it is

expensive to constantly communicate measurements over the network. In Sec. 2.5, we extend our distributed

selection algorithm to activate sensors depending on their observations, and analyze the tradeoff between

power consumption and the utility obtained under observation specific activation.

Communication models. We analyze our algorithms under two models of communication cost: In the

broadcast model, each sensor can broadcast a message to all other sensors at unit cost. In the star network
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model, messages can only be between a sensor and the base station, and each message has unit cost. In Sec. 2.3

we formulate and analyze a distributed algorithm for sensor selection under the simpler broadcast model. Then,

in Sec. 2.4 we show how the algorithm can be extended to the star network model.

Our main contributions.

• Distributed EXP3, a novel distributed implementation of the classic multiarmed bandit algorithm.

• Distributed Online Greedy (DOG) and LAZYDOG, novel algorithms for distributed online sensor

selection, which apply to many settings, only requiring the utility function to be submodular.

• OD-DOG, an extension of DOG to allow for observation-dependent selection.

• We analyze our algorithm in the no-regret model and prove that it attains the optimal regret bounds

attainable by any efficient centralized algorithm.

• We evaluate our approach on several real-world sensing tasks including monitoring a 12,527 node

network.

2.1 Sensor Selection

We now formalize the sensor selection problem. Suppose a network of sensors has been deployed at a set

of locations V with the task of monitoring some phenomenon (e.g., temperature in a building). Constraints

on communication bandwidth or battery power typically require us to select a subset A of these sensors for

activation, according to some utility function. The activated sensors then send their data to a server (base

station). We first review the traditional offline setting where the utility function is specified in advance,

illustrating how submodularity allows us to obtain provably near-optimal selections. We then address the more

challenging setting where the utility function must be learned from data in an online manner.

2.1.1 The Offline Sensor Selection Problem

A standard offline sensor selection algorithm chooses a set of sensors that maximizes a known sensing quality

objective function f(A), subject to some constraints, e.g., on the number of activated sensors. One possible

choice for the sensing quality is based on prediction accuracy (we will discuss other possible choices later

on). In many applications, measurements are correlated across space, which allows us to make predictions

at the unobserved locations. For example, prior work [19] has considered the setting where a random

variable Xs is associated with every location s ∈ V , and a joint probability distribution P (XV ) models the

correlation between sensor values. Here, XV = [X1, . . . ,Xn] is the random vector over all measurements.

If some measurements XA = xA are obtained at a subset of locations, then the conditional distribution

P (XV \A | XA = xA) allows predictions at the unobserved locations, e.g., by predicting E[XV \A | XA = xA].

Furthermore, this conditional distribution quantifies the uncertainty in the prediction: Intuitively, we would

like to select sensors that minimize the predictive uncertainty. One way to quantify the predictive uncertainty
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is the mean squared prediction error,

MSE(XV \A | xA) =
1

n

∑
s∈V \A

E[(Xs − E[Xs | xA])2 | xA].

In general, the measurements xA that sensors A will make is not known in advance. Thus, we can base our

optimization on the expected mean squared prediction error,

EMSE(A) =

∫
dp(xA) MSE(XV \A | xA).

Equivalently, we can maximize the reduction in mean squared prediction error,

fEMSE(A) = EMSE(∅)− EMSE(A).

By definition, fEMSE(∅) = 0, i.e., no sensors obtain no utility. Furthermore, fEMSE is monotonic: if

A ⊆ B ⊆ V , then fEMSE(A) ≤ fEMSE(B), i.e., adding more sensors always helps. That means, fEMSE is

maximized by the set of all sensors V . However, in practice, we would like to only select a small set of, e.g.,

at most k sensors due to bandwidth and power constraints:

A∗ = arg max
A

fEMSE(A) s.t. |A| ≤ k.

Unfortunately, this optimization problem is NP-hard, so we cannot expect to efficiently find the optimal

solution. Fortunately, it can be shown [17] that in many settings1, the function fEMSE satisfies an intuitive

diminishing returns property called submodularity. A set function f : 2V → R is called submodular if, for

all A ⊆ B ⊆ V and s ∈ V \ B it holds that f(A ∪ {s})− f(A) ≥ f(B ∪ {s})− f(B). Many other natural

objective functions for sensor selection satisfy submodularity as well [36]. For example, the sensing region

model where fREG(A) is the total area covered by all sensors A is submodular. The detection model where

fDET (A) counts the expected number of targets detected by sensors A is submodular as well.

A fundamental result of Nemhauser et al. [48] is that for monotone submodular functions, a simple greedy

algorithm, which starts with the empty set A0 = ∅ and iteratively adds the element

sk = arg max
s∈V \Ak−1

f(Ak−1 ∪ {s}); Ak = Ak−1 ∪ {sk}

which maximally improves the utility obtains a near-optimal solution: For the set Ak it holds that

f(Ak) ≥ (1− 1/e) max
|A|≤k

f(A),

i.e., the greedy solution obtains at least a constant fraction of (1− 1/e) ≈ 63% of the optimal value.

1For Gaussian models and conditional suppressorfreeness [17]
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One fundamental problem with this offline approach is that it requires the function f to be specified in

advance, i.e., before running the greedy algorithm. For the function fEMSE, this means that the probabilistic

model P (XV ) needs to be known in advance. While for some applications some prior data, e.g., from pilot

deployments, may be accessible, very often no such prior data is available. This leads to a “chicken-and-egg”

problem, where sensors need to be activated to collect data in order to learn a model, but also the model is

required to inform the sensor selection. This is akin to the “exploration–exploitation tradeoff” in reinforcement

learning [5], where an agent needs to decide whether to explore and gather information about effectiveness

of an action, or to exploit, i.e., choose actions known to be effective. In the following, we devise an online

monitoring scheme based on this analogy.

2.1.2 The Online Sensor Selection Problem

We now consider the more challenging problem where the objective function is not specified in advance, and

needs to be learned during the monitoring task. We assume that we intend to monitor the environment for a

number T of time steps (rounds). In each round t, a set St of sensors is selected, and these sensors transmit

their measurements to a server (base station). The server then determines a sensing quality ft(St) quantifying

the utility obtained from the resulting analysis. For example, if our goal is spatial prediction, the server would

build a model based on the previously collected sensor data, pick a random sensor s, make prediction for the

variable Xs, and then compare the prediction µs with the sensor reading xs. The error ft = σ2
s − (µs − xs)2

is an unbiased estimate of the reduction in EMSE. In the following analysis, we will only assume that the

objective functions ft are bounded (w.l.o.g., take values in [0, 1]), monotone, and submodular, and that we

have some way of computing ft(S) for any subset of sensors S. Our goal is to maximize the total reward

obtained by the system over T rounds,
∑T
t=1 ft(St).

We seek to develop a protocol for selecting the sets St of sensors at each round, such that after a small

number of rounds the average performance of our online algorithm converges to the same performance of

the offline strategy (that knows the objective functions). We thus compare our protocol against all strategies

that can select a fixed set of k sensors for use in all of the rounds; the best such strategy obtains reward

maxS⊆V :|S|≤k
∑T
t=1 ft(S). The difference between this quantity and what our protocol obtains is known as

its regret, and an algorithm is said to be no-regret if its average regret tends to zero (or less)2 as T →∞.

When k = 1, our problem is simply the well-studied multiarmed bandit (MAB) problem, for which many

no-regret algorithms are known [25]. For general k, because the average of several submodular functions

remains submodular, we can apply the result of Nemhauser et al. [48] (cf., Sec. 2.1.1) to prove that a simple

greedy algorithm obtains a (1− 1/e) approximation to the optimal offline solution. This is closely related to

the problem of maximizing a monotone submodular function subject to a cardinality constraint. Nemhauser et

al. [48] showed that for the latter problem the simply greedy algorithm obtains a (1− 1/e) approximation,

and Feige [24] showed that this is optimal in the sense that obtaining a

2Formally, if RT is the total regret for the first T rounds, no-regret means lim supT→∞ RT /T ≤ 0.
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(1− 1/e+ ε) approximation for any ε > 0 is NP-hard. These facts suggest that we cannot expect any efficient

online algorithm to converge to a solution better than

(1 − 1/e) maxS⊆V :|S|≤k
∑T
t=1 ft(S). We therefore define the (1 − 1/e)-regret of a sequence of (possibly

random) sets {St}Tt=1 as

RT := (1− 1/e) · max
S⊆V :|S|≤k

T∑
t=1

ft(S) −
T∑
t=1

E [ft(St)]

where the expectation is taken over the distribution for each St. We say an online algorithm producing a

sequence of sets has no-(1− 1/e)-regret if lim supT→∞
RT

T ≤ 0.

2.2 Centralized Online Sensor Selection

Before developing the distributed algorithm for online sensor selection, we will first review a centralized

algorithm which is guaranteed to achieve no (1− 1/e)-regret. In Sec. 2.3 we will show how this centralized

algorithm can be implemented efficiently in a distributed manner. This algorithm starts with the greedy

algorithm for a known submodular function mentioned in Sec. 2.1.1, and adapts it to the online setting. Doing

so requires an online algorithm for selecting a single sensor as a subroutine, and we review such an algorithm

before discussing the centralized algorithm for selecting multiple sensors in Sec. 2.2.1.

Let us first consider the case where k = 1, i.e., we would like to select one sensor at each round.

This simpler problem can be interpreted as an instance of the multiarmed bandit problem (as introduced

in Sec. 2.1.2), where we have one arm for each possible sensor. In this case, the EXP3 algorithm [5] is a

centralized solution for no-regret single sensor selection. EXP3 works as follows: It is parameterized by a

learning rate η, and an exploration probability γ. It maintains a set of weights ws, one for each arm (sensor) s,

initialized to 1. At every round t, it will select each arm s with probability

ps = (1− γ)
ws∑
s′ ws′

+
γ

n
,

i.e., with probability γ it explores, picking an arm uniformly at random, and with probability (1−γ) it exploits,

picking an arm s with probability proportional to its weight ws. Once an arm s has been selected, a feedback

r = ft({s}) is obtained, and the weight ws is updated to

ws ← ws exp(ηr/ps).

Auer et al. [5] showed that with appropriately chosen learning rate η and exploration probability γ it holds that

the cumulative regret RT of EXP3 is O(
√
Tn lnn), i.e., the average regret RT /T converges to zero.
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2.2.1 Selecting Multiple Sensors?

In principle, we could interpret the sensor selection problem as a
(
n
k

)
-armed bandit problem, and apply existing

no-regret algorithms such as EXP3. Unfortunately, this approach does not scale, since the number of arms

grows exponentially with k. However, in contrast to the traditional multiarmed bandit problem, where the

arms are assumed to have independent payoffs, in the sensor selection case, the utility function is submodular

and thus the payoffs are correlated across different sets. Recently, Streeter and Golovin showed how this

submodularity can be exploited, and developed a no-(1− 1/e)-regret algorithm for online maximization of

submodular functions [59].

The key idea behind their algorithm, OGunit, is to turn the offline greedy algorithm into an online algorithm

by replacing the greedy selection of the element sk that maximizes the benefit sk = arg maxs f({s1, ..., sk−1}∪

{s}) by a bandit algorithm. As shown in the pseudocode below, OGUNIT maintains k bandit algorithms, one

for each sensor to be selected. At each round t, it selects k sensors according to the choices of the k bandit

algorithms Ei 3. Once the elements have been selected, the ith bandit algorithm Ei receives as feedback the

incremental benefit ft(s1, . . . , si)− ft(s1, . . . , si−1), i.e., how much additional utility is obtained by adding

sensor si to the set of already selected sensors. Below we define [m] := {1, 2, . . . ,m}.

Algorithm OGUNIT from [59]:

Initialize k multiarmed bandit algorithms E1, E2, . . . , Ek,

each with action set V .

For each round t ∈ [T ]

For each stage i ∈ [k] in parallel

Ei selects an action vti

For each i ∈ [k] in parallel

feedback ft(
{
vtj : j ≤ i

}
)− ft(

{
vtj : j < i

}
) to Ei.

Output St = {at1, at2, . . . , atk}.

In [58] it is shown that OGUNIT has a
(
1− 1

e

)
-regret bound ofO(kR) in this feedback model assuming each

Ei has expected regret at most R. Thus, when using EXP3 as a subroutine, OGUNIT has no-(1− 1/e)-regret.

Unfortunately, EXP3 (and in fact all MAB algorithms with no-regret guarantees for non-stochastic reward

functions) require sampling from some distribution with weights associated with the sensors. If n is small, we

could simply store these weights on the server, and run the bandit algorithms Ei there. However, this solution

does not scale to large numbers of sensors. Thus the key problem for online sensor selection is to develop

a multiarmed bandit algorithm which implements distributed sampling across the network, with minimal

overhead of communication. In addition, the algorithm needs to be able to maintain the distributions (the

weights) associated with each Ei in a distributed fashion.

3Bandits with duplicate choices are handled in Sec. 4.6.1 of [59]
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2.3 Distributed Online Sensor Selection

We will now develop DOG, an efficient algorithm for distributed online sensor selection. For now we make

the following assumptions:

1. Each sensor v ∈ V is able to compute its contribution to the utility ft(S ∪ {v})− ft(S), where S are a

subset of sensors that have already been selected.

2. Each sensor can broadcast to all other sensors.

3. The sensors have calibrated clocks and unique, linearly ordered identifiers.

These assumptions are reasonable in many applications: (1) In target detection, for example, the objective

function ft(S) counts the number of targets detected by the sensors S. Once previously selected sensors have

broadcasted which targets they detected, the new sensor s can determine how many additional targets have

been detected. Similarly, in statistical estimation, one sensor (or a small number of sensors) randomly activates

each round and broadcasts its value. After sensors S have been selected and announced their measurements,

the new sensor s can then compute the improvement in prediction accuracy over the previously collected data.

(2) The assumption that broadcasts are possible may be realistic for dense deployments and fairly long range

transmissions. In Sec. 2.4 we will show how assumptions (1) and (2) can be relaxed.

As we have seen in Sec. 2.2, the key insight in developing a centralized algorithm for online selection is to

replace the greedy selection of the sensor which maximally improves the total utility over the set of previously

selected sensors by a bandit algorithm. Thus, a natural approach for developing a distributed algorithm for

sensor selection is to first consider the single sensor case.

2.3.1 Distributed Selection of a Single Sensor

The key challenge in developing a distributed version of EXP3 is to find a way to sample exactly one element

from a probability distribution p over sensors in a distributed manner. This problem is distinct from randomized

leader election [47], where the objective is to select exactly one element but the element need not be drawn

from a specified distribution. We note that under the multi-hop communication model, sampling one element

from the uniform distribution given a rooted spanning tree can be done via a simple random walk [40], but

that under the broadcast and star network models this approach degenerates to centralized sampling. Our

algorithm, in contrast, samples from an arbitrary distribution by allowing sensors to individually decide to

activate. Our bottom-up approach also has two other advantages: (1) it is amenable to modification of the

activation probabilities based on local observations, as we discuss in Sec. 2.5, and (2) since it does not rely on

any global state of the network such as a spanning tree, it can gracefully cope with significant edge or node

failures.
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A naive distributed sampling scheme. A naive distributed algorithm would be to let each sensor keep track

of all activation probabilities p. Then, one sensor (e.g., with the lowest identifier) would broadcast a single

random number u uniformly distributed in [0, 1], and the sensor v for which
∑v−1
i=1 pi ≤ u <

∑v
i=1 pi would

activate. However, for large sensor network deployments, this algorithm would require each sensor to store a

large amount of global information (all activation probabilities p). Instead, each sensor v could store only their

own probability mass pv; the sensors would then, in order of their identifiers, broadcast their probabilities pv ,

and stop once the sum of the probabilities exceeds u. This approach only requires a constant amount of local

information, but requires an impractical Θ(n) messages to be sent, and sent sequentially over Θ(n) time steps.

Distributed multinomial sampling. In this section we present a protocol that requires only O(1) messages

in expectation, and only a constant amount of local information.

For a sampling procedure with input distribution p, we let p̂ denote the resulting distribution, where in all

cases at most one sensor is selected, and nothing is selected with probability 1−
∑
v p̂v. A simple approach

towards distributed sampling would be to activate each sensor v ∈ V independently from each other with

probability pv. While in expectation, exactly one sensor is activated, with probability
∏
v(1 − pv) > 0 no

sensor is activated; also since sensors are activated independently, there is a nonzero probability that more than

one sensor is activated. Using a synchronized clock, the sensors could determine if no sensor is activated. In

this case, they could simply repeat the selection procedure until at least one sensor is activated. One naive

approach would be to repeat the selection procedure until exactly one sensor is activated. However with two

sensors and p1 = ε, p2 = 1 − ε this algorithm yields p̂1 = ε2/(1 − 2ε + 2ε2) = O(ε2), so the first sensor

is severely underrepresented. Another simple protocol would be to select exactly one sensor uniformly at

random from the set of activated sensors, which can be implemented using few messages.

The Simple Protocol:

For each sensor v in parallel

Sample Xv ∼ Bernoulli(pv).

If (Xv = 1), Xv activates.

All active sensors S coordinate to select a single sen-

sor uniformly at random from S, e.g., by electing the

minimum ID sensor in S to do the sampling.

It is not hard to show that with this protocol, for all sensors v,

p̂v = pv · E
[

1

|S|

∣∣∣∣ v ∈ S] ≥ pv/E [|S| | v ∈ S] ≥ pv/2

by appealing to Jensen’s inequality. Since p̂v ≤ pv, we find that this simple protocol maintains a ratio

rv := p̂v/pv ∈ [ 1
2 , 1]. Unfortunately, this analysis is tight, as can be seen from the example with two sensors

and p1 = ε, p2 = 1− ε.
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To improve upon the simple protocol, first consider running it on an example with p1 = p2 = · · · = pn =

1/n. Since the protocol behaves exactly the same under permutations of sensor labels, by symmetry we have

p̂1 = p̂2 = · · · = p̂n, and thus ri = rj for all i, j. Now consider an input distribution p where there exists

integers N and k1, k2, . . . , kn such that pv = kv/N for all v. Replace each v with kv fictitious sensors, each

with probability mass 1/N , and each with a label indicating v. Run the simple protocol with the fictitious

sensors, selecting a fictitious sensor v′, and then actually select the sensor indicated by the label of v′. By

symmetry this process selects each fictitious sensor with probability (1− β)/N , where β is the probability

that nothing at all is selected, and thus the process selects sensor v with probability kv(1− β)/N = (1− β)pv

(since at most one fictitious sensor is ever selected).

We may thus consider the following improved protocol which incorporates the above idea, simulating this

modification to the protocol exactly when pv = kv/N for all v.

The Improved Protocol(N ):

For each sensor v in parallel

Sample Xv ∼ Binomial(dN · pve , 1/N).

If (Xv ≥ 1), then activate sensor v.

From the active sensors S, select sensor v with proba-

bility Xv/
∑
v′∈S Xv′ .

This protocol ensures the ratios rv := p̂v/pv are the same for all sensors, provided each pv is a multiple

of 1/N . Assuming the probabilities are rational, there will be a sufficiently large N to satisfy this condition.

To reduce β := Pr [S = ∅] in the simple protocol, we may sample each Xv from Bernoulli(α · pv) for

any α ∈ [1, n]. The symmetry argument remains unchanged. This in turn suggests sampling Xv from

Binomial(dN · pve , α/N) in the improved protocol. Taking the limit as N →∞, the binomial distribution

becomes Poisson, and we obtain the desired protocol.

The Poisson Multinomial Sampling (PMS) Protocol(α):

Same as the improved protocol, except each

sensor v samples Xv ∼ Poisson(αpv)

Straight-forward calculation shows that

Pr [S = ∅] =
∏
v

exp {−α · pv} = exp
{
−
∑
v

α · pv
}

= e−α

Let C be the number of messages. Then

E [C] =
∑
v

Pr [Xv ≥ 1] =
∑
v

(1− e−αpv ) ≤
∑
v

αpv = α

Here we have used linearity of expectation, and 1 + x ≤ ex for all x ∈ R. In summary, we have the following

result about our protocol:
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Proposition 1. Fix any fixed p and α > 0. The PMS Protocol always selects at most one sensor, ensures

∀v : Pr [v selected] = (1− e−α)pv

and requires no more than α messages in expectation.

In order to ensure that exactly one sensor is selected, whenever S = ∅ we can simply rerun the protocol

with fresh random seeds as many times as needed until S is non-empty. Using α = 1, this modification

will require only O(1) messages in expectation and at most O(log n) messages with high probability in the

broadcast model. We can combine this protocol with EXP3 to get the following result.

Theorem 2. In the broadcast model, running EXP3 using the PMS Protocol with α = 1, and rerunning the

protocol whenever nothing is selected, yields exactly the same regret bound as standard EXP3, and in each

round at most e/(e− 1) + 2 ≈ 3.582 messages are broadcast in expectation.

The regret bound for EXP3 is O(
√

OPTn log n), where OPT is the total reward of the best action. Our

variant simulates EXP3, and thus has identical regret.

Remark. Running our variant of EXP3 requires that each sensor know the number of sensors, n, in order

to compute its activation probability. If each sensor v has only a reasonable estimate of nv of n, however,

our algorithm still performs well. For example, it is possible to prove that if all of the sensors have the

same estimate nv = cn for some constant c > 0, then the upper bound on expected regret, R(c), grows as

R(c) ≈ R(1) ·max {c, 1/c}. The expected number of activations in this case increases by at most
(

1
c − 1

)
γ.

In general underestimating n leads to more activations, and underestimating or overestimating n can lead to

more regret. This graceful degradation of performance with respect to the error in estimating n holds for all of

our algorithms.

2.3.2 Distributed Online Greedy

We now use our single sensor selection algorithm to develop our main algorithm, the Distributed Online

Greedy algorithm (DOG). It is based on the distributed implementation of EXP3 using the PMS Protocol.

Suppose we would like to select k sensors at each round t. Each sensor v maintains k weights wv,1, . . . , wv,k

and normalizing constants Zv,1, . . . , Zv,k. The algorithm proceeds in k stages, synchronized using the

common clock. In stage i, a single sensor is selected using the PMS Protocol applied to the distribution

(1−γ)wv,i/Zv,i+γ/n. Suppose sensors S = {v1, . . . , vi−1} have been selected in stages 1 through i−1. The

sensor v selected at stage i then computes its local rewards πv,i using the utility function ft(S ∪{vi})− ft(S).

It then computes its new weight

w′v,i = wv,i exp(ηπv,i/pv,i),
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and broadcasts the difference between its new and old weights ∆v,i = w′v,i − wv,i. All sensors then update

their ith normalizers using Zv,i ← Zv,i + ∆v,i. Fig. 1 presents the pseudo-code of the DOG algorithm. Thus

given Theorem 12 of [58] we have the following result about the DOG algorithm:

Theorem 3. The DOG algorithm selects, at each round t a set St ⊆ V of k sensors such that

1

T
E

[
T∑
t=1

ft(St)

]
≥

1− 1
e

T
max
|S|≤k

T∑
t=1

ft(S)−O

(
k

√
n log n

T

)
.

In expectation, only O(k) messages are exchanged each round.

Algorithm 1: The Distributed Online Greedy Algorithm
Input: k ∈ N, a set V , and α, γ, η ∈ R>0. Reasonable defaults are any α ∈ [1, ln |V |], and γ = η =

min
(

1, (|V | ln |V |/g)
1/2
)

, where g is a guess for the maximum cumulative reward of any
single sensor [5].

Initialize wv,i ← 1 and Zv,i ← |V | for all v ∈ V , i ∈ [k]. Let ρ(x, y) := (1− γ)xy + γ
|V | .

for each round t = 1, 2, 3, . . . do
Initialize Sv,t ← ∅ for each v in parallel.
for each stage i ∈ [k] do

for each sensor v ∈ V in parallel do
repeat

Sample Xv ∼ Poisson(α · ρ(wv,i, Zv,i)).
if (Xv ≥ 1) then

Broadcast 〈sampled Xv, id(v)〉; Receive messages from sensors S. (Include v ∈ S
for convenience).
if id(v) = minv′∈S id(v′) then

Select exactly one element vit from S such that each v′ is selected with
probability Xv′/

∑
u∈S Xu.

Broadcast 〈select id(vit)〉.
Receive message 〈select id(vit)〉.
if id(v) = id(vit) then

Observe ft(Sv,t + v); π ← ft(Sv,t + v)− ft(Sv,t);
∆v ← wv,i(exp {η · π/ρ(wv,i, Zv,i)} − 1); Zv,i ← Zv,i + ∆v;
wv ← wv + ∆v; Broadcast 〈weight update ∆v, id(v)〉.

if receive message 〈weight update ∆, id(vit)〉 then Sv,t ← Sv,t ∪ {vit};
Zv,i ← Zv,i + ∆;
;

until v receives a message of type 〈select id〉;

Output: At the end of each round t each sensor has an identical local copy Sv,t of the selected set St.

2.4 Communication to the cloud: The Star Network Model

In some applications, the assumption that sensors can broadcast messages to all sensors may be unrealistic.

Furthermore, in some applications sensors may not be able to compute the marginal benefits ft(S∪{s})−ft(S)

(since this calculation may be computationally complex). In this section, we analyze LAZYDOG, a variant of
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our DOG algorithm, which replace the above assumptions by the assumption that there is a dedicated base

station4 available which computes utilities and which can send non-broadcast messages to individual sensors.

We make the following assumptions:

1. Every sensor stores its probability mass pv with it, and can only send messages to and receive messages

from the base station.

2. The base station is able, after receiving messages from a set S of sensors, to compute the utility ft(S)

and send this utility back to the active sensors.

These conditions arise, for example, when cell phones in participatory sensor networks can contact the base

station, but due to privacy constraints cannot directly call other phones. We do not assume that the base station

has access to all weights of the sensors – we will only require the base station to have O(k + log n) memory.

In the fully distributed algorithm DOG that relies on broadcasts, it is easy for the sensors to maintain their

normalizers Zv,i, since they receive information about rewards from all selected sensors. The key challenge

when removing the broadcast assumption is to maintain the normalizers in an appropriate manner.

2.4.1 Lazy Renormalization & Distributed EXP3

EXP3 (and all MAB with no-regret guarantees against arbitrary reward functions) must maintain a distribution

over actions, and update this distribution in response to feedback about the environment. In EXP3, each sensor

v requires only wv(t) and a normalizer Z(t) :=
∑
v′ wv′(t) to compute pv(t)5. The former changes only when

v is selected. In the broadcast model the latter can simply be broadcast at the end of each round. In the star

network model (or, more generally in multi-hop models), standard flooding echo aggregation techniques could

be used to compute and distribute the new normalizer, though with high communication cost. We show that a

lazy renormalization scheme can significantly reduce the amount of communication needed by a distributed

bandit algorithm without altering its regret bounds whatsoever. Thus our lazy scheme is complementary to

standard aggregation techniques.

Our lazy renormalization scheme for EXP3 works as follows. Each sensor v maintains its weight wv(t)

and an estimate Zv(t) for Z(t) :=
∑
v′ wv′(t), Initially, wv(0) = 1 and Zv(0) = n for all v. The central

server stores Z(t). Let

ρ(x, y) := (1− γ)
x

y
+
γ

n
.

Each sensor then proceeds to activate as in the sampling procedure of Sec. 2.3.1 as if its probability mass in

round t were qv = ρ(wv(t), Zv(t)) instead of its true value of ρ(wv(t), Z(t)). A single sensor is selected by

the server with respect to the true value Z(t), resulting in a selection from the desired distribution. Moreover,

4Though the existence of such a base station means the protocol is not completely distributed, it is realistic in sensor network
applications where the sensor data needs to be accumulated somewhere for analysis.

5We let x(t) denote the value of variable x at the start of round t, to ease analysis. We do not actually need to store the historical
values of the variables over multiple time steps.
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v’s estimate Zv(t) is only updated on rounds when it communicates with the server under these circumstances.

This allows the estimated probabilities of all of the sensors to sum to more than one, but has the benefit of

significantly reducing the communication cost in the star network model under certain assumptions. We call

the result Distributed EXP3, give its pseudocode for round t in Fig. 2.

Since the sensors underestimate their normalizers, they may activate more frequently than in the broadcast

model. Fortunately, the amount of “overactivation” remains bounded.

Theorem 4. The number of sensor activations in any round of the Distributed EXP3 algorithm is at most

α+ (e− 1) in expectation and O(α+ log n) with high probability, and the number of messages is at most

twice the number of activations.

Unfortunately, there is still an e−α probability of nothing being selected. To address this, we can set

α = c lnn for some c ≥ 1, and if nothing is selected, transmit a message to each of the n sensors to rerun the

protocol.

Corollary 5. There is a distributed implementation of EXP3 that always selects a sensor in each round, has

the same regret bounds as standard EXP3, ensures that the number of sensor activations in any round is at

most lnn+O(1) in expectation or O(log n) with high probability, and in which the number of messages is at

most twice the number of activations.

2.4.2 Lazy Renormalization

Once we have the distributed EXP3 variant described above, we can use it for the bandit subroutines in

the OGUNIT algorithm (cf. Sec. 2.2.1). We call the result the LAZYDOG algorithm, due to its use of lazy

renormalization. The lazy distributed EXP3 still samples sensors from the same distribution as the regular

distributed EXP3, so LAZYDOG has precisely the same performance guarantees with respect to
∑
t ft(St) as

DOG. It works in the star network communication model, and requires few messages or sensor activations.

Corollary 5 immediately implies the following result.

Corollary 6. The number of sensors that activate each round in LAZYDOG is at most k lnn + O(k) in

expectation and O(k log n) with high probability, the number of messages is at most twice the number of

activations, and the (1− 1/e)-regret of LAZYDOG is the same as DOG.

2.5 Observation-dependent sampling

Theorem 3 states that DOG is guaranteed to do nearly as well as the offline greedy algorithm run on an

instance with objective function fΣ :=
∑
t ft. Thus the reward of DOG is asymptotically near-optimal on

average. In many applications, however, we would like to perform well on rounds with “atypical” objective

functions. For example, in an outbreak detection application, we would like to get very good data on rounds
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Algorithm 2: Distributed EXP3: the PMS Protocol(α) with lazy renormalization, applied to EXP3
Input: Parameters α, η, γ ∈ R>0, sensor set V .
Let ρ(x, y) := (1− γ)xy + γ

|V | .
Sensors:
foreach sensor v in parallel do

Sample rv uniformly at random from [0, 1].
if (rv ≥ 1− α · ρ(wv(t), Zv(t)) then

Send 〈rv, wv(t)〉 to the server.
Receive message 〈Z,w〉 from server.
Zv(t+ 1)← Z; wv(t+ 1)← w.

else Zv(t+ 1)← Zv(t); wv(t+ 1)← wv(t).
;

Server:
Receive messages from a set S of sensors.
if S = ∅ then Select nothing and wait for next round.;
else foreach sensor v ∈ S do

Yv ← min {x : Pr [X ≤ x] ≥ rv}, where X ∼ Poisson(α · ρ(wv(t), Z(t))).
Select v with probability Yv/

∑
v′∈S Yv′ .

Observe the payoff π for the selected sensor v∗; wv∗(t+ 1)← wv∗(t) · exp {ηπ/ρ(wv∗(t), Z(t))};
Z(t+ 1)← Z(t) + wv∗(t+ 1)− wv∗(t);
for each v ∈ S \ v∗ do wv(t+ 1)← wv(t);
;
for each v∈S do Send 〈Z(t+1), wv(t+1)〉 to v.
;

;

with significant events, even if the nearest sensors typically report “boring” readings that contribute very little

to the objective function. For now, suppose that we are only running a single MAB instance to select a single

sensor in each round. If we have access to a black-box for evaluating ft on round t, then we can perform well

on atypical rounds at the cost of some additional communication by having each sensor v take a local reading

of its environment and estimate its payoff π̄ = ft({v}) if selected. This value, which serves as a measure

of how interesting its input is, can then be used to decide whether to boost v’s probability for reporting its

sensor reading to the server. In the simplest case, we can imagine that each v has a threshold τv such that v

activates with probability 1 if π̄ ≥ τv , and with its normal probability otherwise. In the case where we select

k > 1 sensors in each round, each sensor can have a threshold for each of the k stages, where in each stage

it computes π̄ = ft(S ∪ {v})− ft(S) where S is the set of currently selected sensors. Since the activation

probability only goes up, we can retain the performance guarantees of DOG if we are careful to adjust the

feedback properly.

Ideally, we wish that the sensors learn what their thresholds τv should be. We treat the selection of τv

in each round as an online decision problem that each v must play. We construct a particular game that the

sensors play, where the strategies are the thresholds (suitably discretized), there is an activation cost cv that v

pays if π̄v ≥ τv , and the payoffs are defined as follows: Let πv = ft(S ∪ {v})− ft(S) be the marginal benefit

of selecting v given that sensor set S has already been selected. Let A be the set of sensors that activate in
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the current iteration of the game, and let max
(
π(A\v)

)
:= max (πv′ : v′ ∈ A \ {v}). The particular reward

function ψv we choose for each sensor v for each iteration of the game is

ψv(τ) =

 cv −max
(
πv −max

(
π(A\v)

)
, 0
)

if π̄ < τ

max
(
πv −max

(
π(A\v)

)
, 0
)
− cv if π̄ ≥ τ

based on empirical performance. Thus, if a sensor activates (π̄ ≥ τ ), its payoff is the improvement over the

best payoff πv′ among all sensors v′ ∈ A minus its activation cost. In case multiple sensors activate, the

highest reward is retained.

In the broadcast model where each sensor can compute its marginal benefit, we can use any standard

no-regret algorithm for combining expert advice, such as Randomized Weighted Majority (WMR) [41], to

play this game and obtain no regret guarantees6 for selecting τv. In our context a sensor using WMR simply

maintains weights w(τi) = exp (η · ψtotal(τi)) for each possible threshold τi, where η > 0 is a learning

parameter, and ψtotal(τi) is the total cumulative reward for playing τi in every round so far. On each step each

threshold is picked with probability proportional to its weight. In the more restricted star network model, we

can use a modification of WMR that feeds back unbiased estimates for ψt(τi), the payoff to the sensor for

using a threshold of τi in round t, and thus obtains reasonably good estimates of ψtotal(τi) after many rounds.

We give pseudocode in Fig. 3. In it, we assume that an activated sensor can compute the reward of playing any

threshold.

Algorithm 3: Selecting activation thresholds for a sensor
Input: parameter η > 0, threshold set {τi : i ∈ [m]}
Initialize w(τi)← 1 for all i ∈ [m].
for each round t = 1, 2, . . . do

Select τi with probability w(τi)/
∑m
j=1 w(τj).

if sensor activates then
Let ψ(τi) be the reward for playing τi in this round of the game. Let q(τi) be the total
probability of activation conditioned on τi being selected (including the activation probability
that does not depend on local observations.)
for each threshold τi do

w(τi)← w(τi) exp (ηψ(τi)/q(τi)).

We incorporate these ideas into the DOG algorithm, to obtain what we call the Observation-Dependent

Distributed Online Greedy algorithm (OD-DOG). In the extreme case that cv = 0 for all v the sensors will

soon set their thresholds so low that each sensor activates in each round. In this case OD-DOG will exactly

simulate the offline greedy algorithm run on each round. In other words, if we let G(f) be the result of running

the offline greedy algorithm on the problem

arg max {f(S) : S ⊂ V, |S| ≤ k}
6We leave it as an open problem to determine if the outcome is close to optimal when all sensors play low regret strategies (i.e., is the

price of total anarchy [7] small in any variant of this game with a reasonable way of splitting the value from the information?)
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then OD-DOG will obtain a value of
∑
t ft(G(ft)); in contrast, DOG gets roughly

∑
t ft(G(

∑
t ft)), which

may be significantly smaller. Note that Feige’s result [24] implies that the former value is the best we can hope

for from efficient algorithms (assuming P 6= NP). Of course, querying each sensor in each round is impractical

when querying sensors is expensive. In the other extreme case where cv = ∞ for all v, OD-DOG will

simulate DOG after a brief learning phase. In general, by adjusting the activation costs cv we can smoothly

trade off the cost of sensor communication with the value of the resulting data.

2.6 Experiments in sensor selection

In this section, we evaluate our DOG algorithm on several real-world sensing problems.

2.6.1 Data Sets

Temperature data. In our first data set, we analyze temperature measurements from the network of 46

sensors deployed at Intel Research Berkeley. Our training data consisted of samples collected at 30 second

intervals on 3 consecutive days (starting Feb. 28th 2004), the testing data consisted of the corresponding

samples on the two following days. The objective functions used for this application are based on the expected

reduction in mean squared prediction error fEMSE, as introduced in Sec. 2.1.

Precipitation data. Our second data set consists of precipitation data collected during the years 1949 - 1994

in the states of Washington and Oregon [67]. Overall 167 regions of equal area, approximately 50 km apart,

reported the daily precipitation. To ensure the data could be reasonably modeled using a Gaussian process

we applied preprocessing as described in [38]. As objective functions we again use the expected reduction in

mean squared prediction error fEMSE.

Water network monitoring. Our third data set is based on the application of monitoring for outbreak

detection. Consider a city water distribution network for delivering drinking water to households. Accidental

or malicious intrusions can cause contaminants to spread over the network, and we want to install sensors

to detect these contaminations as quickly as possible. In August 2006, the Battle of Water Sensor Networks

(BWSN) [21] was organized as an international challenge to find the best sensor placements for a real

metropolitan water distribution network, consisting of 12,527 nodes. In this challenge, a set of intrusion

scenarios is specified, and for each scenario a realistic simulator provided by the EPA is used to simulate the

spread of the contaminant for a 48 hour period. An intrusion is considered detected when one selected node

shows positive contaminant concentration. The goal of BWSN was to minimize impact measures, such as

the expected population affected, which is calculated using a realistic disease model. For a security-critical

sensing task such as protecting drinking water from contamination, it is important to develop sensor selection

schemes that maximize detection performance even in adversarial environments (i.e., where an adversary
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picks the contamination strategy knowing our network deployment and selection algorithm). The algorithms

developed here apply to such adversarial settings. We reproduce the experimental setup detailed in [37].

For each contamination event i, we define a separate submodular objective function fi(S) that measures the

expected population protected when detecting the contamination from sensors S. In [37], Krause et al. showed

that the functions fi(A) are monotone submodular functions.

2.6.2 Convergence Experiments

In our first set of experiments, we analyzed the convergence of our DOG algorithm. For both the temperature

[T] and precipitation [R] data sets, we first run the offline greedy algorithm using the fEMSE objective function

to pick k = 5 sensors. We compare its performance to the DOG algorithm, where we feed back the same

objective function at every round. We use an exploration probability γ = 0.01 and a learning rate inversely

proportional to the maximum achievable reward fEMSE(V ). Fig. 2.1(a) presents the results for the temperature

data set. Note that even after only a small number of rounds (≈ 100), the algorithm obtains 95% of the

performance of the offline algorithm. After about 13,000 iterations, the algorithm obtains 99% of the offline

performance, which is the best that can be expected with a .01 exploration probability. Fig. 2.1(b) show the

same experiment on the precipitation data set. In this more complex problem, after 100 iterations, 76% of the

offline performance is obtained, which increases to 87% after 500,000 iterations.

2.6.3 Observation Dependent Activation

We also experimentally evaluate our OD-DOG algorithm with observation specific sensor activations. We

choose different values for the activation cost cv, which we vary as multiples of the total achievable reward.

The activation cost cv lets us smoothly trade off the average number of sensors activating each round and the

average obtained reward. The resulting activation strategies are used to select a subset of size k = 10 from a

collection of 12,527 sensors. Fig. 2.1(c) presents rates of convergence using the OD-DOG algorithm under

a fixed objective function which considers all contamination events. In Fig. 2.1(d), convergence rates are

presented under a varying objective function, which selects a different contamination event on each round. For

low activation costs, the performance quickly converges to or exceeds the performance of the offline solution.

Even under the lowest activation costs in our experiments, the average number of extra activations per stage in

the OD-DOG algorithm is at most 5. These results indicate that observation specific activation can lead to

drastically improved performance at small additional activation cost.
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Figure 2.1: Experimental results on [T] Temperature data, [R] precipitation data and [W] water distribution network data.
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Chapter 3

Decentralized Anomaly Detection in
Community Networks

In contrast to the previous chapter which focused on repeatedly selecting sets of sensors to observe the same

(or similar) environment, this chapter considers the problem of detecting sudden and rare events such as

earthquakes or other disasters using data from a large community network. Due to the unavailability of data

characterizing the rare events, the approach described here is based on anomaly detection. First, each sensor

learns a model of normal sensor data (e.g., acceleration patterns experienced by smartphones under typical

manipulation). Each sensor then independently detects unusual observations (which are considered unlikely

with respect to the model), and notifies a central server, or fusion center. The fusion center then decides

whether a rare event has occurred or not based on the received messages. Our approach is grounded in the

theory of decentralized detection, and we characterize its performance accordingly. In particular, we show

how sensors can learn decision rules that allow us to control system-level false positive rates and bound the

amount of required communication in a principled manner while simultaneously maximizing the detection

performance.

To better study the challenges and opportunities of community sensing, we implement our approach

in the Community Seismic Network (CSN). The goal of the CSN system is to detect seismic motion using

accelerometers in smartphones and other consumer devices (Figure 3.4), and issue real-time early-warning of

seismic hazards. The duration of the warning is the time between a person or device receiving the alert and the

onset of significant shaking; this duration depends on the distance between the location of initial shaking and

the location of the receiving device, and on delays within the network and fusion center. Warnings of up to

tens of seconds are possible [3], and even warnings of a few seconds help in stopping elevators, slowing trains,

and closing gas valves. Since false alarms can have high costs, it is important to limit the false positive rate of

the system.

Using community-based sensors for earthquake early warning is particularly challenging due to the large

variety of sensor types, sensor locations, and ambient noise characteristics. For example, a sensor near a

construction site will have different behavior than a sensor in a quiet zone. Moreover, sensor behavior may
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change over time; for example, construction may start in some places and stop in others. With thousands

of sensors, one cannot expect to know the precise characteristics of each sensor at each point in time; these

characteristics have to be deduced by algorithms. A system that scales to tens of thousands or millions of

sensors must limit the rate of message traffic so that it can be handled efficiently by the network and fusion

center. For example, one million phones would produce approximately 30 Terabytes of accelerometer data

each day. Another key challenge is to develop a system infrastructure that has low response time even under

peak load (messages sent by millions of phones during an earthquake). Moreover, the Internet and computers

in a quake zone are likely to fail with the onset of intensive shaking. So, data from sensors must be sent out to a

distributed, resilient system that has data centers outside the quake zone. The CSN uses cloud-computing based

sensor fusion to cope with these challenges. We report our initial experience with the CSN, and experimentally

evaluate our detection approach based on data from a pilot deployment. Our results, including data from

shaketable experiments that allow us to mechanically play back past earthquakes, indicate the effectiveness of

our approach in distinguishing seismic motion from accelerations due to normal daily manipulation. They also

provide evidence for the feasibility of earthquake early warning using a dense network of cell phones.

In summary, this chapter describes:

• a novel approach for online decentralized anomaly detection,

• a theoretical analysis, characterizing the performance of our detection approach,

• an implementation of our approach in the Community Seismic Network, involving smartphones, USB

MEMS accelerometers and cloud-computing based sensor fusion, and

• a detailed empirical evaluation of our approach characterizing the achievable detection performance

when using smartphones to detect earthquakes.

3.1 Problem Statement

We consider the problem of decentralized detection of rare events, such as earthquakes, under constraints on

the number of messages sent by each sensor. Specifically, a set of N sensors make repeated observations

Xt = (X1,t, . . . , XN,t) from which we would like to detect the occurrence of an event Et ∈ {0, 1}. Here,

Xs,t is the measurement of sensor s at time t, and Et = 1 iff there is an event (e.g., an earthquake) at time

t. Xs,t may be a scalar (e.g., acceleration), or a vector of features containing information about Fourier

frequencies, moments, etc. during a sliding window of data (see Section 3.4.2 for a discussion of features that

we use in our system).

We are interested in the decentralized setting, where each sensor s analyzes its measurements Xs,t, and

sends a message Ms,t to the fusion center. Here we will focus on binary messages (i.e., each sensor gets to

vote on whether there is an event or not). In this case, Ms,t = 1 means that sensor s at time t estimates that an

event happened; Ms,t = 0 means that sensor s at time t estimates that no event happened at that time. For

large networks, we want to minimize the number of messages sent. Since the events are assumed to be rare,
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we only need to send messages (that we henceforth call picks) for Ms,t = 1; sending no message implies

Ms,t = 0. Based on the received messages, the fusion center then decides how to respond: It produces an

estimate Êt ∈ {0, 1}. If Êt = Et, it makes the correct decision (true positive if Et = 1 or true negative if

Et = 0). If Êt = 0 when Et = 1, it missed an event and thus produced a false negative. Similarly, if Êt = 1

when Et = 0, it produced a false positive. False positives and false negatives can have very different costs. In

our earthquake example, a false positive could lead to incorrect warning messages sent out to the community

and consequently lead to inappropriate execution of remedial measures. On the other hand, false negatives

could lead to missed opportunities for protecting infrastructure and saving lives. In general, our goal will be to

minimize the frequency of false negatives while constraining the (expected) frequency of false positives to a

tolerable level (e.g., at most one false alarm per year).

Classical Decentralized Detection. How should each sensor, based on its measurements Xs,t, decide when

to pick (send Ms,t = 1)? The traditional approach to decentralized detection assumes that we know how likely

particular observations Xs,t are, in case of an event occurring or not occurring. Thus, it assumes we have

access to the conditional probabilities P [Xs,t | Et = 0] and P [Xs,t | Et = 1]. In this case, under the common

assumptions that the sensors’ measurements are independent conditional on whether there is an event or not,

it can be shown that the optimal strategy is to perform hierarchical hypothesis testing [62]: we define two

thresholds τ, τ ′, and let Ms,t = 1 iff
P [Xs,t | Et = 1]

P [Xs,t | Et = 0]
≥ τ. (3.1)

i.e., if the likelihood ratio exceeds τ . Similarly, the fusion center sets Êt = 1 iff

Bin(St; p1;N)

Bin(St; p0;N)
≥ τ ′, (3.2)

where St =
∑
sMs,t is the number of picks at time t; p` = P [Ms,t = 1 | Et = `] is the sensor-level true (` =

1) and false (` = 0) positive rate respectively; and Bin(·, p,N) is the probability mass function of the Binomial

distribution. Asymptotically optimal decision performance in either a Bayesian or Neyman-Pearson framework

can be obtained by using the decision rules (3.1) and (3.2) with proper choice of the thresholds τ and τ ′ [62].

There has also been work in quickest detection or change detection (cf., [52] for an overview), where the

assumption is that there is some time point t0 at which the event occurs; Xs,t will be distributed according

to P [Xs,t | Et = 0] for all t < t0, and according to P [Xs,t | Et = 1] for all t ≥ t0. In change detection, the

system trades off waiting (gathering more data) and improved detection performance. However, in case of

rare transient events (such as earthquakes) that may occur repeatedly, the distributions P [Xs,t | Et = 1] are

expected to change with t for t ≥ t0.

Challenges for the Classical Approach. Detecting rare events from community-based sensors has three

main challenges:
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(i) Sensors are highly heterogeneous (i.e., the distributions P [Xs,t | Et] are different for each sensor s)

(ii) Since events are rare, we do not have sufficient data to obtain good models for P [Xs,t | Et = 1]

(iii) Bandwidth limitations may limit the amount of communication (e.g., number of picks sent).

Challenge (i) alone would not be problematic – classical decentralized detection can be extended to

heterogeneous sensors, as long as we know P [Xs,t | Et]. For the case where we do not know P [Xs,t | Et],

but we have training examples (i.e., large collections of sensor data, annotated by whether an event is present

or not), we can use techniques from nonparametric decentralized detection [49]. In the case of rare events,

however, we may be able to collect large amounts of data for P [Xs,t | Et = 0] (i.e., characterizing the sensors

in the no-event case), while still collecting extremely little (if any) data for estimating P [Xs,t | Et = 1]. In our

case, we would need to collect data from cell phones experiencing seismic motion of earthquakes ranging in

magnitude from three to ten on the Gutenberg-Richter scale, while resting on a table, being carried in a pocket,

backpack, etc. Furthermore, even though we can collect much data for P [Xs,t | Et = 0], due to challenge (iii)

we may not be able to transmit all the data to the fusion center, but have to estimate this distribution locally,

possibly with limited memory. We also want to choose decision rules that minimize the number of messages

sent.

3.2 Online Decentralized Anomaly Detection

We now describe our approach to online, decentralized detection of anomalous events.

Assumptions. In the following, we adopt the assumption of classical decentralized detection that sensor

observations are conditionally independent given Et, and independent across time (i.e., the distributions

P [Xs,t | Et = 0] do not depend on t). For earthquake detection this assumption is reasonable (since most of

the noise is explained through independent measurement noise and user activity). While spatial correlation

may be present, e.g., due to mass events such as rock concerts, it is expected to be relatively rare. Furthermore,

if context about such events is available in advance, it can be taken into account. We defer treatment of spatial

correlation to future work. We do not assume that the sensors are homogeneous (i.e., P [Xs,t | Et = 0] may

depend on s). Our approach can be extended in a straightforward manner if the dependence on t is periodic

(e.g., the background noise changes based on the time of day, or day within week).

Overview. The key idea behind our approach is that since sensors obtain a massive amount of normal data,

they can accurately estimate P [Xs,t | Et = 0] purely based on their local observations. In our earthquake

monitoring example, the cell phones can collect data of acceleration experienced under normal operation (lying

on a table, being carried in a backpack, etc.). Further, if we have hope of detecting earthquakes, the signal

Xs,t must be sufficiently different from normal data (thus P [Xs,t | Et = 0] must be low when Et = 1). This

suggests that each sensor should decide whether to pick or not based on the likelihood L0(x) = P [x | Et = 0]
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only; sensor s will pick (Ms,t = 1) iff, for its current readings Xs,t = x it holds that

L0(x) < τs (3.3)

for some sensor specific threshold τs. See Figure 3.6(c) for an illustration. Note that using this decision rule,

for a pick it holds that P [Ms,t = 1 | Et = e] = P [L0(Xs,t) < τs | Et = e] = pe. This anomaly detection

approach hinges on the following fundamental anti-monotonicity assumption: that

L0(x) < L0(x′)⇔ P [x |Et=1]

P [x |Et=0]
>

P [x′ |Et=1]

P [x′ |Et=0]
, (3.4)

i.e., the less probable x is under normal data, the larger the likelihood ratio gets in favor of the anomaly. The

latter is the assumption on which most anomaly detection approaches are implicitly based. Under this natural

anti-monotonicity assumption, the decision rules (3.3) and (3.1) are equivalent, for an appropriate choice of

thresholds.

Proposition 7. Suppose Condition (3.4) holds. Then for any threshold τ for rule (3.1), there exists a threshold

τs such that rule (3.3) makes identical decisions.

Since the sensors do not know the true distribution P [Xs,t |Et=0], they use an online density estimate

P̂ [Xs,t | Et = 0] based on collected data. The fusion center will then perform hypothesis testing based on the

received picks Ms,t. In order for this approach to succeed we have to specify:

(i) How can the sensors estimate the distribution P̂ [Xs,t | Et = 0] in an online manner, while using limited

resources (CPU, battery, memory, I/O)?

(ii) How should the sensors choose the thresholds τs?

(iii) Which true positive and false positive rates p1, p0 and threshold τ ′, (3.2), should the fusion center use?

We now discuss how our approach addresses these questions.

Online Density Estimation. For each sensor s, we have to, over time, estimate the distribution of normal

observations L̂0(Xs,t) = P̂ [Xs,t | Et = 0], as well as the activation threshold τs. There are various techniques

for online density estimation. Parametric approaches assume that the density P [Xs,t | Et = 0] is in some

parametric family of distributions:

P [Xs,t | Et = 0] = φ(Xs,t, θ).

The goal then is to update the parameters θ as more data is obtained. In particular, mixture distributions,

such as mixtures of Gaussians, are a flexible parametric family for density estimation. If access to a batch

of training data is available, algorithms such as Expectation Maximization can be used to obtain parameters
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that maximize the likelihood of the data. However, due to memory limitations, it is rarely possible to keep all

data in memory; furthermore, model training would grow in complexity as more data is collected. Fortunately,

several effective techniques have been proposed for incremental optimization of the parameters, based on

Variational Bayesian techniques [55] and particle filtering [23]. Online nonparametric density estimators

(whose complexity, such as the number of mixture components, can increase with the amount of observed

data) have also been developed [28]. Here, we use Gaussian mixture models for density estimation.

Online Threshold Estimation. Online density estimators as introduced above allow us to estimate

P̂ [Xs,t | Et = 0]. The remaining question is how the sensor-specific thresholds τs should be chosen. The key

idea is the following. Suppose we would like to control the per-sensor false positive rate p0 (as needed to

perform hypothesis testing in the fusion center). Since the event is assumed to be extremely rare, with very

high probability (close to 1) every pick Ms,t = 1 will be a false alarm. Thus, we would like to choose our

threshold τs such that, if we obtain a measurement Xs,t = x at random, with probability 1− p0, it holds that

L̂0(x) ≥ τs.

This insight suggests a natural approach to choosing τs: For each training example xs,t, we calculate

its likelihood L̂0(xs,t) = P̂ [xs,t | Et = 0]. We then choose τs to be the p0-th percentile of the data set

L = {L̂0(xs,1), . . . , L̂0(xs,t)}. As we gather an increasing amount of data, as long as we use a consistent

density estimator, this procedure will converge to the correct decision rule.

In practice, due to memory and computation constraints, we cannot keep the entire data set L of likelihoods

and reestimate τs at every time step. Unfortunately, percentiles do not have sufficient statistics as the mean

and other moments do. Moreover, Munro and Paterson [46] show that computing rank queries exactly requires

Ω(n) space. Fortunately, several space-efficient online ε-approximation algorithms for rank queries have been

developed. An algorithm that selects an element of rank r′ from N elements for a query rank r is said to be

uniform ε-approximate if

|r′ − r|
N

≤ ε

One such algorithm which requires logarithmic space is given by [30]. We do not present details here due to

space limitations. We summarize our analysis in the following proposition:

Proposition 8. Suppose that we use a uniformly consistent density estimator (i.e., lim supx{P̂ [x | Et = 0]−

P [x | Et = 0]} → 0 a.s.). Further suppose that τs,t is an ε-accurate threshold obtained through percentile

estimation for p0. Then for any ε > 0, there exists a time t0 such that for all t ≥ t0, it holds that the false

positive probability p̂0 = P
[
L̂0(xs,t) < τs

]
is |p̂0 − p0| ≤ 2ε.

The proof of Proposition 8, which we omit for space limitations, hinges on the fact that if the estimate

L̂0(x) converges uniformly to L0(x), the p0-th percentiles (for 0 < p0 < 1) converge as well. Furthermore,

the use of an ε-approximate percentile can change the false positive rate by at most ε.
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Algorithm 4: Threshold Optimization procedure
Data: Estimated sensor ROC curve, N sensors, communication constraints p̄, bound on fusion-level

false positives P̄
Result: sensor operating point (p0, p1)
for ith operating point (pi0, p

i
1) s.t. pi0 ≤ p̄ do

//Do Neyman-Pearson hypothesis testing to evaluate pi0;
Compute N(pi0) = min{N ′ :

∑
S>N ′ Bin(S; pi0;N)≤ P̄};

Compute P iD =
∑
S>N(pi0) Bin(S; pi1;N);

Compute P iF =
∑
S>N(pi0) Bin(S; pi0;N);

Choose ` = arg maxi P
i
D and set (p0, p1) = (p`0, p

`
1);

Uniform convergence rates for density estimation have been established as well [26], allowing us to

quantify the time required until the system operates at ε-accurate false positive rates. Since we assume that

communication is expensive, we may impose an upper bound on the expected number of messages sent by

each sensor. This can be achieved by imposing an upper bound p̄ on p0, again relying on the fact that events

are extremely rare. We present more details in the next section.

Hypothesis Testing for Sensor Fusion. Above, we discussed how we can obtain local decision rules that

allow us to control the sensor-level false positive rate p0 in a principled manner, and in the following we

assume that the sensors operate at this false positive rate. However, in order to perform hypothesis testing

as in (3.2), it appears that we also need an estimate of the sensor-level true-positive rate p1.

Suppose that we would like to maximize the detection rate PD at the fusion center while guaranteeing a

false positive rate PF that is bounded by P̄ . It can be shown that the optimal decision rule (3.2) is equivalent to

setting Êt = 1 iff St ≥ N(p0), for some number N(p0) that only depends on the total number N of sensors,

and the sensor false-positive rate p0. Thus, to control the fusion-level false positive rate PF we, perhaps

surprisingly, do not need to know the value for p1, since PF does not depend on p1:

PF =
∑

S>N(p0)

Bin(S; p0;N) and PD =
∑

S>N(p0)

Bin(S; p1;N).

Thus, our online anomaly detection approach leads to decision rules that provide guarantees about the

fusion-level false positive rate.

Our goal is not just to bound the false positive rate, but also to maximize detection performance. The

detection performance PD above depends on the sensor-level true positive rate p1. If we have an accurate

estimate of p1, all sensors are homogeneous and the anti-monotonicity condition (3.4) holds, the following

result, which is a consequence of [62], holds:

Theorem 9. Suppose condition (3.4) holds and the sensors are all homogeneous (i.e., P [Xs,t | Et] is inde-

pendent of s). Further suppose that for each sensor-level false-positive rate p0 we know its true-positive rate

p1. Then one can choose an operating point (p∗0, p
∗
1) that is asymptotically optimal (as N →∞).
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Unfortunately, without access to training data for actual events (e.g., sensor recordings during many large

earthquakes), we cannot obtain an accurate estimate for p1. However, in Section 3.5, we show how we can

obtain an empirical estimate p̂1 of p1 by performing shaketable experiments. Suppose now that we have an

estimate p̂1 of p1. How does the detection performance degrade with the accuracy of p̂1? Suppose we have

access to an estimate of the sensors’ Receiver Operator Characteristic (ROC) curve, i.e., the dependency of the

achievable true positive rates p̂1(p0) as a function of the false positive rate (see Figure 3.8(a) for an example).

Now we can view both the estimated rates P̂D ≡ P̂D(p̂1(p0)) ≡ P̂D(p0) and P̂F = P̂F (p0) as functions of

the sensor-level false positive rate p0. Based on the argument above, we have that P̂F (p0) = PF (p0), i.e.,

the estimated false positive rate is exact, but in general P̂D(p0) 6= PD(p0). Fortunately, it can be shown

that if the estimated ROC curve is conservative (i.e., p̂1(p0) ≤ p1(p0) for all rates p0), then it holds that

P̂D(p0) ≤ PD(p0) is an underestimate of the true detection probability. Thus, if we are able to obtain a

pessimistic estimate of the sensors’ ROC curves, we can make guarantees about the performance of the

decentralized anomaly detection system. We can now choose the optimal operating point by

max
p0≤p̄

P̂D(p0) s.t. P̂F (p0) ≤ P̄ ,

and are guaranteed that the optimal value of this program is a pessimistic estimate of the true detection

performance, while P̂F is in fact the exact false alarm rate. Algorithm 4 formalizes this procedure. We

summarize our analysis in the following theorem:

Theorem 10. If we use decentralized anomaly detection to control the sensor false positive rate p0, and if we

use a conservative estimated ROC curve (p0, p̂1), then Algorithm 4 chooses an operating point p0 to maximize

a lower bound on the true detection performance, i.e., P̂D(p0) ≤ PD(p0).

3.3 The Community Seismic Network

To better understand the possibilities and challenges of community sensing with commercial hardware, the

Caltech Community Seismic Network project was created to detect and measure earthquakes using the

accelerometers in smartphones and other low-cost commercial sensors.

Several factors make earthquake monitoring a suitable application for community sensing. Current

smartphones have the necessary sensors (such as an accelerometer, GPS, gyroscope, and compass) to measure

strong shaking. Historically, large earthquakes have had catastrophic consequences for a large number of

people, and so many people in active seismic areas may be willing to participate in an effort to better understand

earthquakes. Further, earthquakes are spatial events that benefit from the fine spatial resolution of massive

sensor networks.

CSN makes it easy for the community to participate by using low-cost accelerometers and sensors already

present in volunteers’ Android phones. A free Android application on the Google Play app store called
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Figure 3.1: The CSN system collects performs decentralized anomaly detection by processing pick messages
from low-cost sensors and smartphone accelerometers. Data is processed in a web application built on Google’s
App Engine. Data products, such as alerts and shake maps, may be issued to the community or emergency
responders.

CSN-DROID makes volunteering data as easy as installing a new app. The CSN project also partners with

LA-area schools and city infrastructure to freely distribute 3000 low-cost accelerometers from Phidget, Inc.

that interface via USB to a host PC, tablet, or other internet-connected device. Phidget sensors have also been

installed in several high-rise buildings to measure structural responses to earthquakes.

3.4 Applications

After an earthquake, fire fighters, medical teams and other first-responders must build situational awareness

before they can effectively deploy their resources. Due to variations in ground structure, two points that are

only a kilometer apart can experience significantly different levels of shaking and damage. If communication

has been lost in a city, it can take up to an hour for helicopter surveillance to provide the first complete picture

of the damage a city has sustained. In contrast, a seismic network with fine spatial resolution could provide

accurate measurements of shaking (and thus an estimate of damage) immediately. Similarly, accelerometers in

buildings could inform decisions about which buildings are safe to re-enter after a quake.

Another intriguing application of a community seismic network is to provide early warning of strong

shaking. Early warning operates on the principle that accelerometers near the origin of an earthquake can

observe initial shaking before locations further from the origin experience strong shaking. While the duration

of warning that a person receives depends on the speed of detection and their distance from the origin, warning

times of tens of seconds to a minute have been produced by early warning systems in Japan, Mexico, and

Taiwan. These warning times can be used to evacuate elevators, stop trains, or halt delicate processes such as

semiconductor processing or medical surgery. Additionally, warning of aftershocks alerted emergency workers
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Figure 3.2: CSN volunteers contribute data from low-cost accelerometers (above) and from Android smart-
phones via a CSN app.

involved in debris clearing during the 1989 Loma Prieta earthquake.

Figure 3.3: Map of locations where measurements have been reported from during our pilot deployment of
CSN.

3.4.1 Community Sensors: Android and USB Accelerometers

The Community Seismic Network currently uses two types of sensors: accelerometers in Google Android

smartphones (see Figure 3.2), and 16-bit MEMS accelerometers manufactured by Phidgets, Inc., used as USB-

accessories to laptops and desktop computers (see Figure 3.4). Each of the sensors has unique advantages: The

USB sensors provide higher fidelity measurements. By firmly affixing them to a non-carpeted floor (preferably)

or a wall background noise can be drastically removed. However, their deployment relies on the community

purchasing a separate piece of hardware (currently costing roughly USD 150 including custom housing). In
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Figure 3.4: A low-cost USB accelerometer manufactured by Phidget, Inc.

contrast, the Google Android platform has a large market share, currently approximately 16.3% (more than

the Apple iOS platform, and slightly less than Research in Motion), and is projected to grow further [13].

Android based smartphones typically contain 3-axes accelerometers, and integration of an Android phone into

the CSN only requires download of a free application. On the other hand, the built-in accelerometers are of

lower quality (our experiments showed a typical resolution of approximately 13 bits), and phones are naturally

exposed to frequent acceleration during normal operation. We have also built early prototypes of stand-alone

devices on top of Arduino boards that connect through USB or WiFi to computing systems with access to the

cloud.

Are inexpensive accelerometers sensitive enough to detect seismic motion? We performed experiments to

assess the fidelity of the Phidgets and a variety of Android phones (the HTC Dream, HTC Hero and Motorola

Droid). We placed the sensors on a flat surface and recorded for an hour. We found that when resting, the

phones experienced noise with standard deviation ≈ 0.08m/s2, while the Phidgets experienced noise with

standard deviation of ≈ 0.003m/s2. Earthquakes with magnitude 4 on the Gutenberg-Richter scale achieve

an acceleration of approximately .12m/s2 close to the epicenter, which can be detected with the Phidgets,

but barely exceeds the background noise level of the phones. However, earthquakes of magnitude 5 already

achieve acceleration of .5 m/s2, increasing to roughly 1.5 m/s2 for magnitude 6 events. These phones sample

their accelerometers at between 50Hz and 100Hz, which is comparable to many high fidelity seismic senors.

These numbers suggest that cell phone accelerometers should be sensitive enough to be able to detect large

earthquakes.

Figure 3.4 presents the locations where messages have been reported from in our network.
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Figure 3.5: CSN-Droid app architecture

3.4.2 Android Client

Figure 3.4.2 presents an overview of our Android client application. It consists of several components, which

we explain in the following. The client for the Phidget sensors follows a similar implementation, and a detailed

discussion is omitted due to space limitations.

A central policy decision of the system was that the only manner in which information is exchanged

between a client computer and the cloud computing system is for the client to send a message to the cloud and

await a reply: in effect to execute a remote procedure call. All information exchanges are initiated by a client,

never by the cloud. This helps ensure that participants in the CSN are only sent information at points of their

choosing.

Registration. Upon the first startup, the application registers with the Cloud Fusion Center (CFC). The CFC

responds with a unique identifier for the client, which will be used in all subsequent communications with the

CFC.

Picking Algorithm. A background process runs continuously, collecting data from the sensor. The picking

algorithm generates ”pick” messages by analyzing raw accelerometer data to determine if the data in the recent

past is anomalous. The algorithm executes in the background without a user being aware of its existence. It

implements the approach discussed in Section 3.2.

For density estimation, we use a Gaussian mixture model for P [Xs,t | E]. The most important design

choice is the representation Xs,t of the sensor data. Our approach is to compute various features from short

time windows (similar to phonemes in speak recognition). The idea is that normal acceleration, e.g., due to

walking, or manual phone operation, lead to similar signatures of features.

A first challenge is that phones frequently change their orientation. Since accelerometers measure gravity,

we first determine (using a decaying average) and subtract out the gravity component from the [X,Y, Z]-

components of the signal. We then rotate the centered signal so that the estimated gravity component points

in the negative Z direction [0, 0,−1]. Figures 3.6(a) and 3.6(b) illustrate this process. Since we cannot
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(a) Before gravity correction (b) After gravity correction (c) GMM based picking

Figure 3.6: (a) 5 hours of recording three-axis accelerometer data during normal cell phone use. (b) Data
from (a) after removing gravity and appropriate signal rotation. (c) Illustration of the density estimation based
picking algorithm. The red plane shows an operating threshold. Acceleration patterns for which the density
does not exceed the threshold result in a pick.

consistently orient the other axes, we use features that are invariant under rotation around the vertical (Z) axis,

by replacing the [X,Y ] component by its Euclidean norm ||[X,Y ]||2.

We consider time windows of 2.5 seconds length and, for both the Z and ||[X,Y ]||2 components calculate

16 Fourier coefficients, the second moment, and the maximum absolute acceleration. This procedure results

in a 36-dimensional feature vector. To avoid the curse of dimensionality we perform linear dimensionality

reduction by projection on the top 16 components. These principal components can be computed using online

algorithms [66]. While PCA captures most variance in the training data (normal acceleration patterns), it is

expected that unusual events may carry energy in directions not spanned by the principal components. We

therefore add the projection error (amount of variance not captured by the projection) as an additional feature.

We arrived at this choice of features, as well as the number k = 6 of mixture components through careful

cross-validation experiments, using our experimental setup discussed in Section 3.5.

Our threshold for picking is obtained using online percentile estimation, as detailed in Section 3.2. In order

to bootstrap the deployment of Gaussian mixture models to new phones, our phone client has the capability

of updating its statistical model via messages from the CFC. The threshold by which the algorithm on a

client computer determines whether an anomaly is present can also be changed by a message from the cloud

computer. This allows the CFC to throttle the rate at which a given sensor generates pick messages.

Pick Reporting. Whenever the picking algorithm declares a pick, a message is sent to the CFC, which

includes the time, location, and estimated amplitude of the data which triggered the pick. Including the location

is important for two reasons. First, for mobile clients, it is more efficient than receiving regular location

updates. Second, sending the location is helpful in order to facilitate faster association by avoiding database

lookups for every stationary sensor pick. While it should be possible to improve detection performance

at the CFC by sending more information or additional rounds of messages, it is unclear if the cost of this

communication is acceptable. Electricity and the Internet may be lost shortly after a large quake, and so our

system is designed to use minimal messages to report crucial information as quickly as possible.
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Heartbeats. At some prespecified interval, “heartbeat” messages are sent to the CFC, allowing the CFC

to keep track of which phones are currently running the program. The heartbeats contain the time, location,

waveform logs, and a parameter version number. Using the parameter version number, the CFC can determine

whether to send updated parameters to each phone or not. This mechanism allows modifications to the picking

algorithm without requiring changes to the underlying client software.

User interface. While the main application runs in the background using Android’s multitasking capability,

the application provides a user interface to display the recorded waveforms. We are currently collaborating

with a USGS led effort in earthquake early warning. Our application will connect to the early warning system

and be able to issue warnings about when shaking will occur, as well as the estimated epicenter of the event.

While the application is currently a research prototype and not yet deployed in public use, we anticipate that

the capability of real-time early warning may encourage users to download and install the application.

Power Usage. Battery drain is an important factor in users’ decisions to install and run our application. In

our experiments on the Motorola Droid, the battery life exceeded 25 hours while continuously running the

client (but without any further operation of the phone). This runtime would not inconvenience a user who

charges their phone each night. However, prior to public release of the client, power optimizations or duty

cycling will need to be performed.

3.4.3 Cloud Fusion Center

The Cloud Fusion Center (CFC) performs the fusion-level hypothesis test defined in (3.2) and administers the

network. In devising a system to serve as a logically central location, we evaluated building our own server

network, using virtualized remote servers, having collocated servers, and building our application to work on

Google App Engine. App Engine was chosen as the platform for the CFC for several reasons: easy scalability,

built in data security, and ease of maintenance.

The App Engine platform is designed from the ground up to be scalable to an arbitrary number of clients.

As we expect to grow our sensor network to a very high sensor density, this element of the platform’s design is

very important. What makes the scalability of the platform easily accessible is the fact that incoming requests

are automatically load-balanced between instances that are created and destroyed based on current demand

levels. This reduces algorithmic complexity, as the load balancing of the network is handled by the platform

rather than by code written for our CSN system.

A second consideration in our selection was data security. With the other solutions we had available to us,

if the data we collected was stored on the server network we were using, then, without redundant servers in

separate geographies, we risked losing all of our data to the very earthquakes we hoped to record. App Engine

solves this problem for us by automatically replicating datastore writes to geographically separate data centers

as the writes are processed. This achieves the level of data redundancy and geographical separation we require,

without forcing us to update our algorithms. Other network storage solutions would have been possible as
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well, but having it built into the platform meant that latency for code accessing the storage would be lower.

A final compelling reason to select the App Engine was its ease of maintenance. Rather than spending

time building server images and designing them to coordinate with each other, we were able to immediately

begin working on the algorithms that were most important to us. Server maintenance, security, and monitoring

are all handled by the App Engine team and do not take away from the time of the research team members.

App Engine also includes a number of other benefits we considered. First, it utilizes the same front ends

that drive Google’s search platform, and, consequently, greatly reduces latency to the platform from any point

in the world. Since we plan to expand this project beyond Southern California, this is very useful. Second, the

platform supports live updates to running applications. Rather than devising server shutdown, update, and

restart mechanisms as is commonly required, we can simply redeploy the application that serves our sensors

and all new requests to the CFC will see the new code instead of the old code with no loss of availability.

All of these features do not come without a price, however. We will discuss what we perceive as the two

largest drawbacks of the platform: loading requests and design implications.

Loading Requests. Because App Engine dynamically scales the number of available instances available to

serve a given application as the volume of requests per unit time changes, it creates a phenomenon known as a

loading request. This request is named in this manner because it is the first request to a new instance of the

application. That is, when App Engine allocates a new instance to serve increasing traffic demands, it sends

an initial live request to that instance. In Java, this results in the initialization of the Java Virtual Machine,

including loading all of the appropriate libraries.

Over the last three months, we experienced loading requests with a median frequency of 9.52% of all

requests. While this means that 90.48% of requests did not experience increased latency as a result of the

platform, the remaining requests experienced a median increased processing duration of 5,400 ms. Because

of the extreme penalty paid by loading requests, when examining average request duration, their presence

dominates the figures. This results in a unique property of App Engine, which is that the system performs

much better at higher request loads.

Fig. 3.7(a), shows that, as the request volume increases, the average duration of each request decreases.

This is a result of a reduced impact of loading requests. This data leads to the conclusion that if we avoid

potential bottleneck points such as datastore writes, we can expect our performance to stay the same or get

better for any increased future load imposed on the system (e.g., as the number of sensors scales up).

Design Implications. When designing an algorithm to run on App Engine, the algorithm has to fit inside

of the constraints imposed by the architecture. There are a few factors to consider. First, as a result of the

automatic scaling done by App Engine, every request to the system exists in isolation. That is, the running

requests maintain no shared state, nor do they have any inter-process communication channels. Additionally,

since there are no long running background processes, maintaining any form of state generated as a result of

successive calls is more difficult. In order to accurately ascertain the number of incoming picks in a unit time
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Figure 3.7: (a) Average duration of a pick request as a function of system load. (b) Model of dispersed sensors
using a hash to a uniform grid to establish proximity. (c) A picture of the CSN android client in debug mode,
capturing picks.

over a specified geography, we had to surmount these hurdles.

The only common read/write data sources provided are memcache (a fast key value store) and datastore.

The datastore is a persistent object store used for permanent data archiving for future analysis or retrieval.

Long term state which changes infrequently, such as the number of active sensors in a given region, is stored

and updated in the datastore, but cached in the memcache for quick access. Due to its slower performance,

particularly in aggregating writes for immediate retrieval by other processes, it is unsuitable for short term

state aggregation.

Short term state, such as the number of picks arriving in an interval of time in a particular region, is stored

in memcache. While memcache is not persistent, as objects can be ejected from the cache due to memory

constraints, operations that utilize the memcache are much faster. Memcache is ideal for computations that

need to occur quickly, and, because memcache allows values to set an expiry time, it is also perfect for data

whose usefulness expires after a period of time. That is, after a long enough period of time has passed since a

pick arrived, it can no longer be used in detecting an event; therefore, its contributed value to the memcache

can be safely expired.

Memcache operates as a key value store, effectively a distributed hash table. In order to determine how

many sensors sent picks in a given period of time, we devised a system of keys which could be predictably

queried to ascertain the number of reporting sensors. We used a geography hashing scheme to ascribe an

integer value to every latitude/longitude pair, which generates a uniform grid of cells whose size we can

control, with each sensor fitting into one cell in the grid (see Fig. 3.7(b)). Incoming picks then update the key

corresponding to a string representation of the geographical hash and a time bucket derived by rounding the

arrival time of the pick to the nearest second.

In this manner, independent processes aggregate their state, and each process runs the hypothesis testing

algorithm of Section 3.2 in the cell whose state it updated to determine the value of Êt. If Êt = 0, then no

action needs to be taken. If Êt = 1 a task queue task is launched to initiate the alert process; the task is named

using the hash values that generated the alert. Each named task creates a ’tombstone’ (a marker in the system)

on execution which prevents additional tasks with the same name from being created, so even if successive

picks also arrive at the Êt = 1 conclusion, we know that only one alert will be sent out for a given set of
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inputs.

3.5 Experiments

Could a network of cheap community sensors detect the next large earthquake? We obtain accurate estimates

of the distribution of normal sensor data by collecting records from volunteers’ phones and and USB ac-

celerometers. Using an earthquake shaketable and records of ground acceleration gathered by the Southern

California Seismic Network (SCSN) during moderately large earthquakes, we obtain estimates of each sensor’s

ROC curves. These estimates of sensor performance allow us to evaluate the effect of network density and

composition on the detection rate. Finally, we apply the learned detection models to data from the 2010 Baja

California M7.2 quake.

Data Sets. While earthquakes are rare, data gathered from community sensors can be plentiful. To character-

ize “normal” (background) data, seven volunteers from our research group carried Android phones throughout

their daily routines to gather over 7GB of phone accelerometer data. Similarly, an initial deployment of 20

USB accelerometers recorded 55GB of acceleration over a period of 4 months. However, due to the infrequent

occurrence of large earthquakes, it could require many years of observation to obtain records from several

dangerously large events. One approach to overcome this limitation is to simulate sensor observations from

existing seismic records, and use these simulated observations for testing. The Southern California Seismic

Network, a network of several hundred high-fidelity seismometers, operating since the 1920s, provides a

database of such records. We extract a set of 32 records of moderately large (M5-5.5) events from stations at

distances of under 40km from the event epicenter. Simulated sensor observations are produced by subsampling

these records to 50 samples per second and superimposing them onto segments of Android or Phidget data. As

we will see in our shaketable experiments, this method of obtaining simulated sensor data yields a reasonable

estimate of detection performance when we reproduce quake records using a shaketable and directly sense

the acceleration with both Androids and Phidgets.

Picking Algorithm Evaluation. In our first experiment, we evaluate the sensor-level effectiveness of

our density-based anomaly detector. We compare four approaches: two baselines and two versions of our

algorithm.

1. A hypothesis-testing based approach (as used by classical decentralized detection), which uses a GMM-

based density estimate not just for P [Xs,t | Et = 0], but also for P [Xs,t | Et = 1]. For training data,

we use 80 historic earthquake examples of magnitude 4.5-5, superimposed on the sensor data.

2. A domain specific baseline algorithm, STA/LTA, which exploits the fact that the energy in earthquakes is

broadband in 0-10Hz. It compares the energy in those frequencies in the last 2.5s to the energy at those

frequencies in the previous 5s; a sharp rise in this ratio is interpreted as a quake.

3. A simplified GMM based approach, which uses features from a sliding window of 2.5 s length
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(a) Android detection performance (b) Phidget detection performance (c) Detection rates

(d) 1 pick per minute, LtSt features (e) 1 pick per minute, alternate view (f) Detection rate on Baja M7.2 (100 itera-
tions averaged)

Figure 3.8: (a,b) Sensor level ROC curves for magnitude 5-5.5 events, for Android (a) and Phidget (b)
sensors. In (c-d), the system-level false positive rate is constrained to 1 per year, and the achievable detection
performance is shown: (c) Detection rate as a function of the number of sensors in a 20 km × 20 km cell.
We show the achievable performance guaranteeing one false positive per year, while varying the number of
cells covered. (d,e) Detection performance for one cell, depending on the number of phones and Phidgets. (f)
Actual detection performance for the Baja event. Note that our approach outperforms classical hypothesis
testing, and closely matches the predicted performance.

4. Our full GMM approach, which combines combines features of the last 2.5s with features from the

previous 5s (to better detect the onset of transient events).

Notice that implementing the hypothesis testing baseline in an actual system would require waiting until the

sensors experienced such a number of earthquakes, carefully annotating the data, and then training a density

estimator. On the other hand, our anomaly detection approach can be used as soon as the sensors have gathered

enough data for an estimate of P [Xs,t | Et = 0]. We applied each of these four algorithms to test data based

on historic earthquake recordings of magnitude 5-5.5 superimposed on held-out phone / Phidget data (i.e.,

data that was not used for training). The resulting estimated sensor ROC curves are shown in Fig. 3.8(a) and

Fig. 3.8(b), respectively.

First note that in general the performance for the Phidgets is much better than for the phones. This is

expected, as phones are subject to much more background noise, and the quality of the accelerometers in

the Phidgets is better than those in the phones. For example, while the STA/LTA baseline provides good

performance for the Phidgets (achieving up to 90% detection performance with minimal false positives), it

performs extremely poorly for the phone client (where it barely outperforms random guessing). The other

techniques achieve close to 100% true positive rate even for very small false positive rates. For the phone data,
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both our anomaly detection approaches outperform the hypothesis testing baseline, even though they use less

training data (no data about historic earthquakes). In particular for low false positive rates (less than 5%), the

full GMM LtSt model outperforms the simpler model (that only considers 2.5s sliding windows). Overall, we

find that both for the phones and the Phidgets, we can achieve detection performance far better than random

guessing, even for very small false positive rates, and even for lower magnitude (M5-5.5) events. We expect

even better detection performance for stronger events.

Sensor Fusion. Based on the estimated sensor-level ROC curves, we can now estimate the fusion-level

detection performance. To avoid overestimating the detection performance, we reduce the estimated true

positive rates, assuming that a certain fraction of the time (10% in our case) the sensors produce pure random

noise. We now need to specify communication constraints p̄ on how frequently messages can be sent from the

sensors, as well as a bound P̄ on the fusion-level false positive rate. We choose p̄ to be at most one message

per minute, and P̄ to be at most one fusion-level false positive per year. This fusion-level false positive rate

was chosen as representative of the time scale the CSN must operate on; in practice this would depend on the

cost of deploying unnecessary response measures.

We consider sensors located in a geospatial areas of size 20 km × 20 km, called cells. The choice of this

area is such that, due to the speed of seismic waves (≈ 5 − 10km/s), most sensors within one cell would

likely detect the earthquake when computing features based on a sliding window of length 2.5s. However,

in order to achieve larger spatial coverage we will need many spatial cells of 20 km × 20 km. For example,

roughly 200 such cells would be needed to cover the Greater Los Angeles area. Increasing the number of cells

additively increases the number of false positives due to the fact that multiple hypotheses (one per cell) are

tested simultaneously. Consequently, to maintain our objective of one system-wide false positive per year, we

must decrease the rate of annual false positives per cell. The effect on detection rates from this compensation as

a function of the total number of cells is shown in Figure 3.8(c). Notice that even for 200 cells, approximately

60 phones per cell suffice to achieve close to 100% detection performance, as long as they are located close to

the epicenter.

Sensor Type Tradeoffs. A natural question is what is the tradeoff between the different sensor types?

Figures 3.8(d) and 3.8(e) shows the estimated detection performance as a function of the number of Phidgets

and number of phones in the area, when constrained to one false alarm per year. Our results indicate that

approximately 50 phones or 10 Phidgets should be enough to detect a magnitude 5 and above event with close

to 100% success.

The results in Figures 3.8(d) and 3.8(e) also allow us to estimate how we could ensure sufficient detection

performance if a given area contains only a limited number of active phone clients. For example, if only 25

phones are active in a cell, we could manually deploy 5 additional Phidgets to boost the detection performance

from close to 70% to almost 100%.

Notice that all these results assume that the sensors are located close to the epicenter (as they assume the
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Figure 3.9: Experimental setup for playing back historic earthquakes on a shaketable, and testing their effect
on the sensors of the CSN system.
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Figure 3.10: Shake table comparison of 24-bit EpiSensor, Android, and Android in a backpack. Notice that
the phone recordings closely match those of the affixed high-fidelity EpiSensor.

sensors experience maximum acceleration), and are thus to be taken with some care. Covering an area such

as Greater Los Angeles likely requires tens of thousands of sensors.

Shaketable Validation.

Our previous experiments have used synthetically produced data (recorded seismic events superimposed

on phone recordings) to simulate how different detection algorithms may respond to a moderately large

earthquake. Is such a simulation-based approach valid? Would these sensors actually detect an earthquake

from their own recordings? To answer these questions, we take recordings of three large historical earthquakes,

and play them back on a shaketable (see Figure 3.5 for an illustration).

First, we test the ability of Android phones to accurately capture seismic events, relative to one of the

sensors used in the SCSN. We reproduce records of three large M6-8 earthquakes on the shaketable, and

record the motion using one Android placed on the table, and another in a backpack on the table. Ground truth

acceleration is provided by a 24-bit EpiSensor accelerometer mounted to the table. A sample record from each
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sensor is shown in Figure 3.10. Unlike the EpiSensor, the phones are not affixed and are free to slide. The

backpack also introduces an unpredictable source of error. Despite these significant challenges, after properly

resampling both signals and aligning them temporally, we obtain an average correlation coefficient of 0.745,

with a standard deviation of 0.0168. This result suggests that the phones reproduce the waveforms rather

faithfully.

A more important question than faithful reproduction of waveforms is whether the sensors can detect an

earthquake played back on the shaketable. To assess this, we use the model trained on background noise data,

as described above. We further use percentile estimation to choose the operating point which we experimentally

determined to lead to high system-level detection performance above. All six of the recordings (three from the

phone on the table and three from the phone in the backpack) were successfully detected.

The Previous Big One. To perform an end-to-end test of the entire system, we performed an experiment

with the goal to find out whether our CSN would have been able to detect the last big event. A recent major

earthquake in Southern California occurred on April 4, 2010. This M7.2 quake in Baja, California was recorded

by SCSN, although the nearest station was more than 60km from the event epicenter. Using 8 recordings

of this event, at distances of 63km to 162km, we produce simulated Android data and evaluate how many

phones would have been needed to detect this event. Specifically, we constrain the system as before to one

false alarm per year, and one message per minute in order to determine detection thresholds, sensor operating

points and sensor thresholds for both the GMM anomaly and hypothesis testing detector, for each deployment

size. We then simulate observations for each sensor in a deployment ranging from 1 sensor to 100 sensors. The

models and thresholds are then applied to these observations to produce picks; the fusion center hypothesis

test is then performed and the decision is made whether an event has occurred or not. The average detection

rates for each deployment size (averaged over 100 iterations, using different Android data to simulate each

observation) are shown in Figure 3.8(f) along with the estimated detection rates for the GMM-based anomaly

detection. The latter estimate is based on the ROC that we estimated using a different collection of seismic

events, as explained in our Picking Algorithm Evaluation section. Notice that the actual detection performance

matches well the predicted detection performance. As baseline, we compare against the hypothesis testing

based baseline (trained on 80 smaller-magnitude earthquakes). Anomaly detection significantly outperforms

hypothesis testing, and suggests that a deployment of 60 phones in a cell 60 km of the epicenter would have

been quite likely to detect the Baja, California M7.2 event.
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Chapter 4

Conclusions

Large-scale community sensing offers the possibility of observing the physical world more rapidly and

with finer resolution than has been previously possible. The growing number of sensor-equipped internet

devices mean that people will be able to measure and act on more information about their environment, and

that collectively they will be able to monitor and act upon large-scale phenomena like traffic, public health,

pollution, and natural disasters.

Very large numbers of sensors will be required to compensate for per-device noise, and to attain a high

spatial density. Fortunately, the community already possesses the necessary hardware. However, utilizing the

data produced by a large (e.g. city-wide or global) network of sensors requires techniques for reducing the

amount of data transmitted from each device, and the amount of data processed centrally.

This thesis presents two approaches for selective data gathering in community sensor networks. The first

approach considers the case of learning about the state of the environment over time, and leverages powerful

no-regret algorithms to learn to select a fixed set of sensors, in order to maximize a utility function. The DOG

algorithm was shown to provide strong guarantees for a useful class of sensing objective functions – those

which are submodular. The algorithm has extremely low communication requirements, and scales well to

large sensor deployments. The DOG algorithm can be extended to address several concerns in wireless sensor

networks: the LAZYDOG variant is suited to networks of internet-connected devices which communicate with

a cloud server, local rules or heuristics for detecting and transmitting potentially valuable observations. We

empirically demonstrate the effectiveness of our algorithm on several real-world sensing tasks.

As the second contribution, we present a principled approach towards detecting rare events based on

learning sensor-specific decision thresholds online, in a distributed way. It maximizes anomaly detection

performance at a fusion center, under constraints on the false alarm rate and number of messages per sensor.

We then present an implementation of our approach in the Community Seismic Network (CSN), a community

sensing system with the goal of rapidly detecting earthquakes using cell phone accelerometers, consumer

USB devices and cloud-computing based sensor fusion. We experimentally evaluate our approach based on

a pilot deployment of the CSN system. Our results, including data from shake table experiments, indicate

the effectiveness of our approach in distinguishing seismic motion from accelerations due to normal daily
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manipulation. They also provide evidence of the feasibility of earthquake early warning using a dense network

of cell phones.

We studied the problem of detecting rare, disruptive events using community-held sensors. Our approach

learns local statistical models characterizing normal data (e.g., acceleration due to normal manipulation of

a cellphone), in an online manner. Using local online percentile estimation, it can choose operating points

that guarantee bounds on the sensor-level false positive frequency, as well as the number of messages sent

per sensor. We then showed how a conservative estimate of the sensors’ ROC curves can be used to make

detection decisions at a fusion center which guarantee bounds on the false positive rates for the entire system,

as well as maximize a lower bound on the detection performance. The pessimistic predicted true positive rates

allow us to assess whether a given density of sensors is sufficient for the intended detection task. This online

decentralized anomaly detection approach allows us to cope with the fundamental challenge that rare events

are very difficult or impossible to model and characterize a priori. It also allows the use of heterogeneous,

community-operated sensors that may differ widely in quality and communication constraints.

We then presented an implementation of our approach in the Community Seismic Network (CSN), a novel

community sensing project with the goal of rapidly detecting earthquakes using cell phone accelerometers and

consumer USB devices. We presented empirical evidence suggesting how cloud-computing is an appropriate

platform for real-time detection of rare, disruptive events, as it naturally copes with peaked load, and is

designed for redundancy and replication. We furthermore experimentally assessed the sensitivity of our sensors,

estimating and evaluating ROC curves using experiments involving data obtained through the playback of

historical earthquakes on shaketables. These assessments provide evidence of the likely detection performance

of the CSN as a function of the sensor density. For example, we found that approximately 100 Android clients,

or 20 Phidgets per 20 km × 20 km area may be sufficient to achieve close to 100% detection probability for

events of magnitude 5 and above, while bounding the false positive rate by 1 per year. While these results are

very promising, they have to be taken with some care. In particular, the results are based on the assumption

that the phones are located very close to the epicenter of the quake (so they experience maximum acceleration).

To enable coverage of the Greater Los Angeles area, this would require a uniformly high density of sensors

(tens of thousands of sensors) across the entire domain. We will defer the detailed study of spatial effects, and

numbers of sensors needed to achieve spatial coverage, to future work.

These two approaches - online distributed sensor selection, and distributed anomaly detection for rare

events - address alternate ends of the sensing spectrum. The first approach is best suited to sensing an

environment when training data is available, and when the environment is fixed or more slowly changing; the

network repeatedly samples a small set of sensors learns over time to maximize the value of its selections. The

latter approach is suited to a detecting rare events characterized by a rapid departure from typical network

behavior. The observation-depended activation heuristic (OD-DOG) can be viewed as one means to bridge the

divide between the two cases.
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