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Abstract

This thesis describes simple extensions of the standard model with new sources of baryon

number violation but no proton decay. The motivation for constructing such theories comes

from the shortcomings of the standard model to explain the generation of baryon asym-

metry in the universe, and from the absence of experimental evidence for proton decay.

However, lack of any direct evidence for baryon number violation in general puts strong

bounds on the naturalness of some of those models and favors theories with suppressed

baryon number violation below the TeV scale. The initial part of the thesis concentrates

on investigating models containing new scalars responsible for baryon number breaking.

A model with new color sextet scalars is analyzed in more detail. Apart from generating

cosmological baryon number, it gives nontrivial predictions for the neutron-antineutron os-

cillations, the electric dipole moment of the neutron, and neutral meson mixing. The second

model discussed in the thesis contains a new scalar leptoquark. Although this model pre-

dicts mainly lepton flavor violation and a nonzero electric dipole moment of the electron, it

includes, in its original form, baryon number violating nonrenormalizable dimension-five

operators triggering proton decay. Imposing an appropriate discrete symmetry forbids such

operators. Finally, a supersymmetric model with gauged baryon and lepton numbers is

proposed. It provides a natural explanation for proton stability and predicts lepton number

violating processes below the supersymmetry breaking scale, which can be tested at the

Large Hadron Collider. The dark matter candidate in this model carries baryon number

and can be searched for in direct detection experiments as well. The thesis is completed by

constructing and briefly discussing a minimal extension of the standard model with gauged

baryon, lepton, and flavor symmetries.
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Chapter 1

Introduction

1.1 Motivation

One of the most fundamental questions in elementary particle physics is whether baryon

number is an exact or just an approximate global symmetry. This is a highly nontrivial

problem, since the conservation of baryon number insures the stability of ordinary matter.

On the other hand, baryon number violation is essential for producing a baryon asymmetry

in the early universe, as required for a successful mechanism of baryogenesis. Proton decay

is predicted by grand unified theories at a rate that could be detected by present day exper-

iments. Also, the type I seesaw mechanism for neutrino masses requires Majorana mass

terms which break lepton number by two units, and since the weak interactions preserve

the difference between baryon and lepton number at the classical and quantum level, this

suggests that baryon number should be broken by two units as well. However, despite all

those hints, no baryon number violating processes have been observed experimentally.

The standard model contains the ingredients necessary to generate a cosmological baryon

asymmetry. Nevertheless, the quantity in which they appear is insufficient to fully explain

baryogenesis. It is therefore important to investigate extensions of the standard model

which can account for a new structure generating baryon number violation. This is the

main motivation behind this thesis: proposing and analyzing simple models preserving all

the virtues of the standard model, but at the same time incorporating new baryon number

violating processes, and reconciling those models with the current null experimental result

in searches for baryon number nonconservation, especially the absence of proton decay.
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This thesis incorporates three published papers: [1], [2], and [3], which constitute Chap-

ters 2, 3, and 4, respectively. The first and the second papers were written in collaboration

with Mark Wise and Jonathan Arnold, and the third one in collaboration with Pavel File-

viez Pérez, Sogee Spinner, and Jonathan Arnold. Chapter 5 describes the details of an

unpublished project with specific directions for future work. In addition, the thesis is sup-

plemented with appendices providing details of most of the calculations.

1.2 Baryon number in the standard model

1.2.1 Standard model review

The standard model of particle physics is a chiral gauge theory describing the electromag-

netic, weak, and strong interactions [4, 5, 6, 7, 8, 9], based on the gauge group

SU(3)c × SU(2)L × U(1)Y . (1.1)

The matter fields of the standard model are three spin 1/2 generations of quarks and leptons,

and a spin zero Higgs boson. The only particles carrying baryon number are the quarks,

and they are assigned baryon number 1/3. The leptons have lepton number 1. The gauge

fields associated with the gauge group of the standard model are: GA
µ , W a

µ , and Bµ, where

A = 1, ..., 8 and a = 1, 2, 3. The particle content is summarized in Table 1.1.

As a relativistic quantum field theory, the standard model is described by a Lagrangian

which can be schematically written as

LSM = Lgauge + Lkinetic + LHiggs + LYukawa . (1.2)

The various terms are:

Lgauge = −1
4
GA
µνG

Aµν − 1
4
W a
µνW

aµν − 1
4
BµνB

µν , (1.3)

Lkinetic = Q̄i
L i /DQi

L + ūiR i /D uiR + d̄iR i /D diR + l̄iL i /D liL + ēiR i /D eiR , (1.4)

LHiggs = (DµH)† (DµH)− λ
(
H†H − v2

2

)2

, (1.5)

LYukawa = −giju Q̄i
L εH

∗ ujR − gijd Q̄i
LHd

j
R − gije L̄iLHejR + h.c. . (1.6)
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Field Spin SU(3)c SU(2)L U(1)Y B L

Qi
Lα =

(
uiLα
diLα

)
1/2 3 2 1/6 1/3 0

uiRα 1/2 3 1 2/3 1/3 0

diRα 1/2 3 1 −1/3 1/3 0

liLα =

(
νiLα
eiLα

)
1/2 1 2 −1/2 0 1

eiRα 1/2 1 1 −1 0 1

H 0 1 2 1/2 0 0

GA
µ 1 8 1 0 0 0

W a
µ 1 1 3 0 0 0

Bµ 1 1 1 0 0 0

Table 1.1: Particle content of the standard model. The quantum numbers of the fields under
the gauge groups are listed along with their baryon and lepton numbers. Quarks and leptons
come in three generations, as denoted by the index i.

The Yang-Mills part of the Lagrangian (1.3) is built from the field strength tensors of the

three gauge groups in a gauge invariant way. The kinetic part (1.4) describes the dynamics

of quarks and leptons, with the gauge covariant derivative given by

Dµ = ∂µ + igGA
µT

A + ig2W
a
µT

a + ig1BµY , (1.7)

where TA, T a, and Y are the SU(3), SU(2), and U(1) generators, respectively. The third

part of the Lagrangian (1.5) involves only the Higgs doublet, both the kinetic and potential

terms. Finally, the Yukawa part (1.6) describes how the quarks and leptons interact with

the Higgs boson. The gij’s are the Yukawa couplings with i, j = 1, 2, 3 being generation

indices. The color and spinor indices are not included in Eqs. (1.4) and (1.6).
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The SU(2)L×U(1)Y part of the Lagrangian symmetry is spontaneously broken by the

vacuum expectation value of the Higgs doublet [10, 11, 12],

H =

H+

H0

 → 〈H〉 =
1√
2

 0

v

 , (1.8)

and reduces to the electromagnetic U(1)EM. After symmetry breaking, the spin one gauge

fields carrying the interactions are the photon (electromagnetic), W and Z bosons (weak),

and gluons (strong). The photon and weak Z boson fields are linear combinations of the

gauge fields Bµ and W 3
µ . The Higgs mechanism is responsible for giving masses to the

matter fields (Yukawa couplings produce quark and lepton mass matrices), as well as the

W and Z bosons. For an excellent review of the standard model with a more detailed

mathematical formulation, see Ref. [13].

The standard model provides an extremely successful description of our world. It ex-

plains the results of most of the particle physics experiments with stunning accuracy. How-

ever, despite its countless triumphs, it is incomplete by itself, even in the low energy regime.

The standard model:

→ does not explain the existence of dark matter, confirmed by many astronomical and

astrophysical observations;

→ predicts massless neutrinos, whereas neutrino oscillation experiments clearly indi-

cate nonzero neutrino masses;

→ suffers from the hierarchy problem: the natural scale for the Higgs mass is the Planck

mass, by far greater than the measured 125 GeV;

→ has a strong CP problem, since the upper limit on the observed CP violation in

strong interactions (coming from neutron electric dipole moment measurements) is

smaller than 10−10 of its expected value;

→ gives no explanation for the hierarchical pattern of the Yukawa couplings;

→ does not include an efficient mechanism for cosmological baryon number generation.
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In the following two subsections we concentrate on the last issue mentioned above. We

discuss baryon number violation in the standard model and explain why there is a problem

with accommodating baryogenesis. This will serve as a motivation for building models

with new sources of baryon number violation.

1.2.2 Baryon number nonconservation

The Lagrangian of the standard model is invariant under an accidental global baryon num-

ber symmetry. It is impossible to violate baryon number at the classical level, as well as at

any order in perturbation theory, since the baryon number current is conserved:

∂µj
µ
B = ∂µ

[
1

3

∑
i

(
Q̄i
Lγ

µQi
L + ūiRγ

µuiR + d̄iRγ
µdiR
)]

= 0 . (1.9)

The lowest dimensional nonrenormalizable baryon number violating operators allowed by

the standard model gauge symmetries are dimension-six,

O(6) ∼
q q q l

Λ2
, (1.10)

and are very suppressed. However, within the standard model, baryon number can also be

broken nonperturbatively through the electroweak chiral anomaly.

At the quantum level, the baryon number symmetry is anomalous and the baryon cur-

rent is no longer conserved [14, 15],

∂µj
µ
B =

3

64π2
εαβγδ

(
g2

2 W
a
αβW

a
γδ + g2

1 BαβBγδ

)
6= 0 , (1.11)

where the factor of three corresponds to the number of generations. The electroweak chiral

anomaly is closely related to the vacuum structure of the standard model. To understand

this quantitatively, let us define the Chern-Simons number (in the gauge where W0 = 0),

nCS(t) ≡ g3
2

96π2
εijkεabc

∫
d3x W a

i W
b
jW

c
k , (1.12)
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and consider static gauge field configurations corresponding to different values of nCS.

Those configurations which have integer nCS are pure gauge configurations of zero energy.

Such minima correspond to topologically distinct vacuum states. The change in baryon

number for a transition between those vacua starting at time ti and ending at tf is

∆B =

∫ tf

ti

dt

∫
d3x ∂µj

µ
B = 3 [nCS(tf )− nCS(ti)] . (1.13)

Now, nCS is a topological number and takes only integer values. Therefore, the change

in baryon number can occur only in multiples of three units. Between the minima the

energies of the configurations are positive and create an energy barrier. The energy of the

saddle point configuration, being an extremum of the static energy, is simply the height of

this barrier. Such a configuration is known as the sphaleron [16, 17].

At zero temperature, the rate for quantum tunnelling through the energy barrier is ex-

ponentially suppressed [18],

Γ(T = 0) ∼ exp

[
−16π2

g2
2

]
' 10−165 , (1.14)

so there is essentially no baryon number violation in this case. On the other hand, at finite

temperature the barrier can be overcome by a thermal excitation. In the broken phase

(T . mh) the rate of sphaleron events is [19]

Γ(T . mh) ∼ T 4 exp

[
−8πmW (T )

g2
2 T

f

(
mh

mW

)]
(1.15)

and is suppressed as well (the function f takes values of order one). However, at temper-

atures above the electroweak symmetry breaking scale there is no longer any exponential

suppression and the rate takes the form

Γ(T & mh) ∼
(
g2

2

4π

)5

T 4 . (1.16)

Determining when the sphalerons were active in the early universe requires analyzing the

condition for thermal equilibrium, i.e., comparing the sphaleron rate within the thermal
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volume 1/T 3 with the Hubble expansion rate,

Γ

T 3
& H ∼ T 2

MP

. (1.17)

Inserting numerical values into Eq. (1.17) yields an upper bound of 1012 GeV on the tem-

perature at which the sphaleron processes remain efficient. We conclude that the baryon

number violation mechanism in the standard model works only at temperatures

125 GeV . T . 1012 GeV . (1.18)

1.2.3 Generation of baryon asymmetry

There are three ingredients every model is required to have in order to produce a baryon

asymmetry. Those are described by the three Sakharov conditions [20]:

(1) baryon number violation,

(2) C and CP violation,

(3) departure from thermal equilibrium.

The standard model contains all of those elements so, a priori, it could incorporate baryo-

genesis. However, the amount of baryon asymmetry generated in the standard model is

much smaller than current observations indicate. The first condition, baryon number non-

conservation, is satisfied by sphaleron transitions. As for the second criterion, although the

standard model does violate charge conjugation symmetry C maximally (since it is a chiral

theory), the main contribution to the conjugation-parity symmetry CP comes only from

the Cabibbo-Kobayashi-Maskawa matrix [21, 22] and it was proven to be insufficient for

producing the present baryon asymmetry of the universe [23, 24]. On top of this, the stan-

dard model does not fulfill the third Sakharov requirement since it cannot accommodate a

large enough departure from equilibrium: for a Higgs particle of mass 125 GeV there is no

first-order electroweak phase transition crucial for having an inequilibrium state.

The lack of an efficient mechanism for baryogenesis within the standard model leads us

(in Chapter 2) to include new scalar particles in the spectrum, providing additional sources
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of CP violation. The models we discuss have the potential of explaining the observable

baryon asymmetry of the universe and do not suffer from tree-level proton decay. Some of

them predict also new phenomena such as neutron-antineutron oscillations.

1.2.4 Proton decay

Since baryon number is conserved in the standard model at the perturbative level and the

nonperturbative effects of the sphalerons change baryon number by a multiple of three

units, proton decay can occur only through nonrenormalizable operators. The least sup-

pressed nonrenormalizable operators of this type are dimension-six:

1

Λ2
εαβγ

[
(dRα)TCuRβ

] [
(uRγ)

TCeR
]
,

1

Λ2
εαβγεijεkm

[
(Qi

Lα)TCQj
Lβ

] [
(Qk

Lγ)
TClmL

]
,

1

Λ2
εαβγεij

[
(Qi

Lα)TCQj
Lβ

] [
(uRγ)

TCeR
]
,

1

Λ2
εαβγεij

[
(dRα)TCuRβ

] [
(Qi

Lγ)
TCljL

]
,

1

Λ2
εαβγ(τaε)ij(τ

aε)km
[
(Qi

Lα)TCQj
Lβ

] [
(Qk

Lγ)
TClmL

]
, (1.19)

where C is the charge conjugation matrix and the generation indices were suppressed for

simplicity. Those operators mediate proton decay since they violate baryon and lepton

number by one unit. In light of a null experimental observation of proton decay, the oper-

ators above can be used to derive lower limits on the proton mean lifetime, with the most

stringent constraint coming from the decay mode p→ e+π0 [25],

τp > 8.2× 1033 years . (1.20)

In order to satisfy this experimental bound, the scale Λ of new physics has to be very high,

Λ & 1016 GeV. This implies a huge desert between the electroweak scale and the scale Λ,

at which the origin of baryon number violating interactions can be understood.

The effective operators (1.19) have their origin in degrees of freedom at the high scale,

where the physics is probably governed by a grand unified theory (GUT). Actually, grand

unification is one of the most compelling arguments behind the experimental searches for

proton decay, since it predicts a proton decay rate at a level not far from current experimen-

tal detection capabilities.
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q 

q q 

l 
V 

Figure 1.1: GUT vector boson exchange leading to proton decay.

Grand unified theories unify the three types of interactions in the standard model:

strong, weak, and electromagnetic. They provide explanation to many puzzles of the stan-

dard model, like the quantization of electric charge, cancellation of chiral anomalies, and

the origin of quantum numbers for quarks and leptons. The simplest and most studied

grand unification theories are based on the gauge symmetry SU(5) [26] and SO(10) [27].

For a review of proton decay in grand unified theories, see Ref. [28].

Grand unification predicts new superheavy particles whose interactions with the stan-

dard model may violate baryon number at the perturbative level, causing proton decay. An

example of a diagram involving a GUT vector boson leading to proton decay is shown in

Fig. 1.1. This type of interaction is the origin of the nonrenormalizable dimension-six op-

erators listed in (1.19). Denoting the mass of the new gauge boson bymV , the proton decay

rate can be estimated as

Γp =
1

τp
∼ g4

V

16π2

m5
p

m4
V

, (1.21)

where gV is the coupling constant andmp is the proton mass. Combining this estimate with

the experimental bound (1.20) gives the lower limit on the mass of new vector bosons,

mV & 1016 GeV , (1.22)

which is in agreement with our previous bound on the scale Λ.
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1.3 Neutron-antineutron oscillations

Apart from proton decay, which violates baryon number by one unit, an interesting and

complimentary method of probing baryon number violation is to look for neutron-antineutron

(nn̄) oscillations, in which a neutron spontaneously changes into an antineutron. This pro-

cess violates baryon number by two units (see Fig 1.2). There are various motivations for

studying nn̄ oscillations:

→ New physics behind nn̄ oscillations may be responsible for creating a baryon asym-

metry in the universe.

→ The process of nn̄ oscillations is uniquely suited for studying the nature and scale

of the seesaw mechanism. Since the neutrino Majorana mass term violates lepton

number by two units, and the weak interactions conserve B−L at the classical and

quantum level, this suggests that ∆B = 2 processes should exist as well.

→ Observation of nn̄ oscillations would point to a relatively low scale of new physics,

contradicting the picture of a desert between the electroweak scale and the grand uni-

fication scale. This is a consequence of the fact that nn̄ oscillations are mediated by

dimension-nine operators. In light of this fact, searches for nn̄ oscillations can be

viewed as complimentary to searches for proton decay: while proton decay experi-

ments probe physics at the grand unification scale, the nn̄ oscillation experiments are

sensitive to physics at a scale as low as a TeV.

To better understand the phenomenon of nn̄ oscillations, let us consider the dynamics

of a two-level system consisting of a neutron and an antineutron described by an effective

Hamiltonian. Its dynamics are governed by the following equation:

i~
∂

∂t

 n

n̄

 =

 En ∆m

∆m En̄

 n

n̄

 . (1.23)
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d d 

d d 

u u 

Figure 1.2: Diagram showing an interaction leading to neutron-antineutron oscillations.

The mixing parameter ∆m contains information about the underlying theory which breaks

baryon number by two units. The transition probability for a free neutron is given by

Pn→n̄(t) =
(∆m)2

1
4
(En − En̄)2 + (∆m)2

sin2
(√

(En − En̄)2 + (2∆m)2 t
)
. (1.24)

The oscillation time is defined as

τnn̄ =
~
|∆m| . (1.25)

For neutrons bound inside a nucleus, there is a relation between the measured nuclear

instability lifetime and the corresponding nn̄ oscillation time given by

τbound = TR τ
2
nn̄ , (1.26)

where TR is obtained from nuclear structure calculations. A more thorough discussion of

nn̄ oscillations in various models is provided in Ref. [29].

Table 1.2 shows the experimental limit on the mixing parameter |∆m|. The strongest

bound comes from the Super-Kamiokande nuclear decay experiment in Japan [30],

|∆m| < 2.7× 10−33 GeV . (1.27)
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Experiment (year) Type of search Limit on |∆m|

Super-Kamiokande (2011) nuclear decay in 16O < 2.7× 10−33 GeV [30]

Soudan (2002) nuclear decay in 56Fe < 5.1× 10−33 GeV [31]

ILL (1994) free neutrons < 7.7× 10−33 GeV [32]

NNbarX (prospective) free neutrons . 7× 10−35 GeV [33]

Table 1.2: Best limits on the neutron-antineutron oscillation mixing parameter ∆m from
experiments of different type and the predicted sensitivity of the NNbarX experiment.

The search for nn̄ oscillations in nuclear decay experiments becomes less efficient when

we require higher sensitivity, which is the result of the atmospheric neutrino induced back-

ground. This is the reason why currently there is a focus on free neutron beam nn̄ os-

cillation experiments. The prospective NNbarX experiment at Fermilab is exactly such

an experiment. It should be able to probe nn̄ oscillations in free neutron beams with a

huge improvement in sensitivity by almost two orders of magnitude. In the case of no nn̄

oscillation detection, the predicted upper limit for the mixing parameter will be

|∆m| . 7× 10−35 GeV . (1.28)

The limits (1.27) and (1.28) can be used to set current and future bounds on the couplings

and masses of new particles, as will be shown in Chapter 2.

1.4 Lepton flavor violation

One of the most important open questions in flavor physics concerns the existence of pro-

cesses violating flavor symmetry in the charged lepton sector. Some processes of this type

would be:
µ→ e γ , µ→ e conversion , µ→ e e e . (1.29)
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Figure 1.3: One of the diagrams contributing to the process µ→ e γ in the minimal exten-
sion of the standard model with massive neutrinos.

The standard model itself does not predict any charged lepton flavor violation, since it is

invariant under the symmetry

U(1)e × U(1)µ × U(1)τ . (1.30)

Even in the minimal extension of the standard model with just the neutrino masses included,

the predicted rates for charged lepton flavor violating processes are extremely suppressed.

To estimate the level of suppression, consider the process µ → e γ in such a model.

From Feynman diagrams like the one in Fig. 1.3, the branching ratio is given by [34]

B(µ→ e γ) =
α

2π

∣∣∣∣∑
i

UeiU
∗
µi

m2
νi

m2
W

∣∣∣∣2 ' α

2π

∣∣∣∣Ue3U∗µ3

∆m2
atm

m2
W

∣∣∣∣2 . 10−54 , (1.31)

where U is the Pontecorvo-Maki-Nakagawa-Sakata matrix [35, 36, 37]. Such a huge sup-

pression highlights the importance of experimental searches for charged lepton flavor vi-

olation. With essentially no background, a positive signal would be a clear indication of

physics beyond the standard model other than neutrino oscillations. Similar claims are not

applicable in the quark sector. Quark flavor violation is well established within the standard

model and described by the Cabibbo-Kobayashi-Maskawa matrix. It is not suppressed at

all, making it incredibly hard to distinguish between small deviations from the standard

model predictions and experimental uncertainties.
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Experiment (year) Process Limit on branching ratio

MEG (2012) µ→ e γ < 5.7× 10−13 [38]

SINDRUM II (2006) µ−Au→ e−Au < 7.0× 10−13 [39]

SINDRUM (1988) µ→ e e e < 1.0× 10−12 [40]

COMET (prospective) µ−Al→ e−Al . 2.6× 10−17 [41]

Mu2e (prospective) µ−Al→ e−Al . 5.4× 10−17 [42]

Table 1.3: Best experimental limits on the branching ratios of various charged flavor vio-
lating processes and the predicted sensitivity of the COMET and the Mu2e experiments.

From an effective theory point of view, charged lepton flavor violation can be described

by the nonrenormalizable dimension-five and dimension-six operators:

1

Λ
l̄iσµνljF

µν ,
1

Λ2
l̄iγµlj

(
q̄kγ

µqm + l̄kγ
µlm
)
, (1.32)

where i, j, k and m are generation indices (i 6= j). The dimension-five operator encapsu-

lates the lepton couplings to the electromagnetic field and describes the µ → e γ effective

vertex, as well as the tree-level part of the µ→ e conversion and the µ→ e e e process. The

dimension-six operators are relevant for the four-fermion vertices responsible for the other

contributions to µ→ e conversion and µ→ e e e, but do not contribute to the µ→ e γ de-

cay. The most stringent experimental limits on charged lepton flavor violation come from

the µ → e γ and µ → e conversion experiments (see Table 1.3). Although the constraints

are severe, the background is still suppressed by an additional forty orders of magnitude.

The state-of-the-art in measuring µ → e γ is the MEG experiment in Switzerland,

which provides the bound [38]

Br(µ→ e γ)MEG < 5.7× 10−13 . (1.33)
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The best limit on µ→ e conversion is set by SINDRUM II in Switzerland [39],

Br(µ→ e conversion)SINDRUM II < 7× 10−13 . (1.34)

This result will be improved by four orders of magnitude by the Mu2e experiment at Fer-

milab, which by the year 2020 should reach the sensitivity [42]

Br(µ→ e conversion)Mu2e . 5× 10−17 . (1.35)

Its future competitor, the COMET experiment in Japan, by 2020 should reach a similar

sensitivity of [41]

Br(µ→ e conversion)COMET . 3× 10−17 . (1.36)

Those high precision experiments are complimentary to the physics searches at the Large

Hadron Collider (LHC). Although narrowed down to a single channel each, their signal

would be very clean and provide evidence for new physics even before the LHC. Such a

signal might be tied in some way to baryon number violation. In Chapter 3 we consider a

model of this type, one that exhibits an enhancement of charged lepton flavor violation, but

also contains dimension-five operators breaking baryon number. A discrete symmetry has

to be imposed to forbid operators mediating proton decay in this model.

1.5 Baryon number in the minimal supersymmetric stan-

dard model

The minimal supersymmetric standard model (MSSM) [43] is viewed as one of the most

promising candidates for physics beyond the standard model. It has a number of very

attractive features, including that it:

→ does not suffer from the hierarchy problem;

→ contains a natural dark matter candidate;

→ explains gauge coupling unification;

→ is based on supersymmetry suggested by string theory.
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Particle content
Superfield

Spin 0 Spin 1/2 Spin 1
SU(3)c SU(2)L U(1)Y B L

Q̂i ũiL, d̃
i
L uiL, d

i
L − 3 2 1/6 1/3 0

(ûc)i ũ∗iR ūiR − 3̄ 1 −2/3 −1/3 0

(d̂c)i d̃∗iR d̄iR − 3̄ 1 1/3 −1/3 0

l̂i ν̃iL, ẽ
i
L νiL, e

i
L − 1 2 −1/2 0 1

(êc)i ẽ∗iR ēiR − 1 1 1 0 −1

Ĥu H+
u , H

0
u H̃+

u , H̃
0
u − 1 2 1/2 0 0

Ĥd H0
d , H

−
d H̃0

d , H̃
−
d − 1 2 −1/2 0 0

ĜA − g̃ g 8 1 0 0 0

Ŵ a − W̃±, W̃ 0 W±, W 0 1 3 0 0 0

B̂ − B̃0 B0 1 1 0 0 0

Table 1.4: Chiral and gauge superfields of the minimal supersymmetric standard model.
The quantum numbers of the fields under the gauge groups are listed. Quarks, squarks,
leptons, and sleptons come in three generations as denoted by the index i.

Supersymmetry relates masses and couplings of particles with different spins, combining

them into chiral superfields. Within a given superfield, the particles are described by the

same quantum numbers and have equal masses, but their spins differ by a half. It is obvious

that supersymmetry must be broken at some scale in the real world, since we do not observe

any equal-mass partners of the standard model particles.

The MSSM is based on the same SU(3)c × SU(2)L × U(1)Y gauge group as the

standard model. The spin zero partners of quarks and leptons are the squarks and sleptons.

The spin 1/2 partner of the Higgs is the higgsino. Finally, the spin 1/2 partners of the
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gauge bosons, GA
µ , W a

µ , and Bµ, are the gluinos, winos, and bino, respectively. A second

Higgs doublet with its supersymmetric partner is needed to cancel the SU(2)2
L × U(1)Y

and U(1)3
Y gauge anomalies and to give masses to both the up- and down-type quarks. The

complete particle content of the MSSM, including both the chiral and gauge superfields, is

presented in Table 1.4. After electroweak symmetry breaking, the bino and neutral wino

mix to give a zino (Z̃0) and photino (γ̃).

The Lagrangian of a supersymmetric theory with supersymmetry broken below some

scale can be written as

L = Lkin + Lint + LW + LSB . (1.37)

Assuming the theory is described by the superpotential

W =
1

2
mijΦ̂iΦ̂j +

1

6
λijkΦ̂iΦ̂jΦ̂k , (1.38)

where the chiral superfields Φ̂i have scalar components φi and fermion components ψi, the

terms in the Lagrangian (1.37) have the following form:

Lkin = Dµφ∗iDµφi + i ψ̄i σ̄µDµψi −
1

4
F a
µνF

µνa + i λ̄aσ̄µDµλ
a , (1.39)

Lint = −
√

2ga (φ∗T aψ)λa −
√

2gaλ̄
a
(
ψ̄T aφ

)
, (1.40)

LW = −m∗ikmkjφ∗iφj −
1

2
minλ∗jknφiφ

∗jφ∗k − 1

2
m∗inλ

jknφ∗iφjφk

−1

4
λijnλ∗klnφiφjφ

∗kφ∗l − 1

2
g2
a (φ∗T aφ)2

−1

2
mijψiψj −

1

2
m∗ijψ̄

iψ̄j − 1

2
λijkφiψjψk −

1

2
λ∗ijkφ

∗iψ̄jψ̄k , (1.41)

LSB = −
(

1

2
maλ

aλa +
1

6
aijkφiφjφk +

1

2
bijφiφj + tiφi

)
+ c.c.− (m2)ijφ

j∗φi .

(1.42)

In the expressions above the sums extend over all scalars φi, chiral fermions ψi, gauginos λa

and vector bosons Aaµ in the spectrum of the theory, and Dµ is the covariant derivative. The

first part of the Lagrangian (1.39) consists of kinetic terms for all the fields and includes the

Yang-Mills term for the gauge fields. The second piece (1.40) describes the interactions be-

tween the scalar and fermion components of the chiral superfields and the gauginos. There
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are no adjustable parameters in those two parts of the Lagrangian. The third part (1.41)

contains the supersymmetric contribution to the scalar potential and Yukawa interactions

between the scalar and fermion components of the chiral superfields. The last part (1.42)

is responsible for supersymmetry breaking and consists of the gaugino mass terms, trilin-

ear scalar interactions, scalar mass terms, as well as terms linear and bilinear in the scalar

fields.

The minimal superpotential for the MSSM is

WMSSM = εab

[
yiju Q̂

a
i (û

c)jĤ
b
u + yijd Q̂

b
i(d̂

c)jĤ
a
d + yije L̂

b
i(ê

c)jĤ
a
d − µĤa

uĤ
b
d

]
. (1.43)

With this superpotential, it is straightforward to write down the full supersymmetric sector

of the MSSM Lagrangian using the relations (1.38)−(1.41). In order for the MSSM to

solve the hierarchy problem, we expect the characteristic mass scale of the supersymmetry

breaking sector to be on the order of msoft ≈ 1 TeV. Therefore, it is reasonable to expect

that masses of the few lightest sparticles are approximately at the TeV scale. A more

detailed review of the MSSM is given in Ref. [44].

The superpotential (1.43) is sufficient for the MSSM to be a phenomenologically viable

model. However, apart from the terms included in (1.43), it is possible to construct four

other Lagrangian terms which are also gauge invariant and consistent with supersymmetry:

LRP =
1

2
λijk1 L̂iL̂j ê

c
k + λijk2 L̂iQ̂j d̂

c
k +

1

2
λijk3 ûci d̂

c
j d̂
c
k + µ′iL̂iĤu . (1.44)

Those operators violate baryon and lepton number, and result in proton decay at a rate

Γ(p→ e+ π0) ≈ |λ11i
2 λ11i

3 |2
m5
p

m4
d̃i

. (1.45)

The experimental limit [25] gives

|λ11i
2 λ11i

3 | < 10−25
( md̃i

1 TeV

)2

, (1.46)

which requires a huge fine-tuning of the couplings.
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One possible way to avoid this naturalness problem is to impose a discrete symmetry

called R-parity,

R ≡ (−1)3(B−L)+2s , (1.47)

where s is the spin of the particle. This symmetry forbids all the Lagrangian terms in (1.44).

Of course, this was not necessary in the standard model, where gauge invariance itself did

not allow for interactions violating baryon or lepton number. Apart from forbidding proton

decay,R-parity plays another extremely important role in the MSSM: it assures the stability

of the lightest supersymmetric particle, making it a good dark matter candidate.

However, even after imposing R-parity, there still exist nonrenormalizable operators in

the MSSM which mediate proton decay:

Q̂Q̂Q̂L̂

Λ
and

ûcûcd̂cêc

Λ
, (1.48)

suppressed only by the supersymmetry breaking mass scale compared to ordinary dimension-

five operators. Due to tightening experimental bounds on proton decay, a mechanism for

suppressing those nonrenormalizable operators is needed as well.

In Chapter 4 we propose an extension of the MSSM with gauged baryon and lepton

numbers, which naturally solves all the problems related to proton decay without imposing

any ad hoc discrete symmetry.
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Chapter 2

Simplified models with baryon number
violation but no proton decay

We enumerate the simplest models that have baryon number violation at the classical level

but do not give rise to proton decay. These models have scalar fields in two representations

of SU(3) × SU(2) × U(1) and violate baryon number by two units. Some of the models

give rise to nn̄ (neutron-antineutron) oscillations, while some also violate lepton number by

two units. We discuss the range of scalar masses for which nn̄ oscillations are measurable

in the next generation of experiments. We give a brief overview of the phenomenology

of these models and then focus on one of them for a more quantitative discussion of nn̄

oscillations, the generation of the cosmological baryon number, the electric dipole moment

of the neutron, and neutral kaon mixing.

The contents of this chapter were written in collaboration with Mark Wise and Jonathan

Arnold, and have been published in Ref. [1].

2.1 Introduction

The standard model has nonperturbative violation of baryon number (B). This source of

baryon number nonconservation also violates lepton number (L); however, it conserves

baryon number minus lepton number (B − L). The violation of baryon number by non-

perturbative weak interactions is important at high temperatures in the early universe, but

it has negligible impact on laboratory experiments that search for baryon number violation

and thus we neglect it in this paper. If we add massive right-handed neutrinos that have a
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Majorana mass term and Yukawa couple to the standard model left-handed neutrinos, then

lepton number is violated by two units, |∆L| = 2, at tree level in the standard model.

Motivated by grand unified theories (GUT), there has been an ongoing search for proton

decay (and bound neutron decay). The limits on possible decay modes are very strong. For

example, the lower limit on the partial mean lifetime for the mode p → e+π0 is 8.2 ×
1033 yrs [25]. All proton decays violate baryon number by one unit and lepton number by

an odd number of units. See Ref. [28] for a review of proton decay in extensions of the

standard model.

There are models where baryon number is violated but proton (and bound neutron)

decay does not occur. This paper is devoted to finding the simplest models of this type

and discussing some of their phenomenology. We include all renormalizable interactions

allowed by the SU(3) × SU(2) × U(1) gauge symmetry. In addition to standard model

fields, these models have scalar fields X1,2 that couple to quark bilinear terms or lepton

bilinear terms. Baryon number violation occurs either through trilinear scalar interactions

of the type (i)X2X1X1 or quartic scalar terms of the type (ii)X2X1X1X1. The cubic scalar

interaction in (i) is similar in structure to renormalizable terms in the superpotential that

give rise to baryon number violation in supersymmetric extensions of the standard model.

However, in our case the operator is dimension three and is in the scalar potential. Without

adding right-handed neutrinos to the standard model spectrum there are four models of type

(i) where each of the X’s couples to quark bilinears and has baryon number −2/3. Hence,

in this case the X’s are either color 3 or 6̄. There are also five models of type (ii) where

X1 is a color 3 or 6̄ with baryon number −2/3 that couples to quark bilinears, and X2 is a

color singlet with lepton number −2 that couples to lepton bilinears.

We analyze one of the models in more detail. In that model the SU(3)×SU(2)×U(1)

quantum numbers of the new colored scalars are X1 = (6̄, 1,−1/3) and X2 = (6̄, 1, 2/3).

The nn̄ oscillation frequency is calculated using the vacuum insertion approximation for

the required hadronic matrix element and lattice QCD results. For dimensionless coupling

constants equal to unity and all mass parameters equal, the present absence of observed

nn̄ oscillations provides a lower limit on the scalar masses of around 500 TeV. If we

consider the limit M1 � M2 then for M1 = 5 TeV, the next generation of nn̄ oscillation
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experiments will be sensitive to M2 masses at the GUT scale.

There are three models that have nn̄ mixing at tree level without proton decay. In these

models, constraints on flavor changing neutral currents and the electric dipole moment

(edm) of the neutron require some very small dimensionless coupling constants if we are

to have both observable nn̄ oscillations and one of the scalar masses approaching the GUT

scale.

In the next section we enumerate the models and discuss their basic features. The

phenomenology of one of the models is discussed in more detail in Section 2.3. Some

concluding remarks are given in Section 2.4.

2.2 The models

We are looking for the simplest models which violate baryon number but do not induce

proton decay. We do not impose any global symmetries. Hence, all local renormaliz-

able interactions permitted by Lorentz and gauge invariance are assumed to be present.

We begin by considering renormalizable scalar couplings with all possible standard model

fermion bilinears. A similar philosophy can be used to construct models involving proton

decay [45] or baryon number violating interactions in general [46, 47]. We first elimi-

nate any scalars which produce proton decay via tree-level scalar exchange as in Fig. 2.1.

In particular, this eliminates the scalars with SU(3) × SU(2) × U(1) quantum numbers

(3, 1,−1/3), (3, 3,−1/3), and (3, 1,−4/3). Note that in the case of (3, 1,−4/3) we need

an additional W -boson exchange to get proton decay (Fig. 2.2), since the Yukawa coupling

to right-handed charge 2/3 quarks is antisymmetric (for a detailed discussion see Ref. [48]).

The remaining possible scalar representations and Yukawa couplings are listed in Table 2.1.

We have assumed there are no right-handed neutrinos (νR) in the theory.

None of these scalars induce baryon number violation on their own, so we consider

minimal models with the requirement that only two unique sets of scalar quantum num-

bers from Table 2.1 are included, though a given set of quantum numbers may come with

multiple scalars.

Baryon number violation will arise from terms in the scalar potential, so we need to
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Figure 2.1: ∆B = 1 and ∆L = 1 scalar exchange.
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e
X
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W
e

ν

Figure 2.2: Feynman diagram that contributes to tree level p → K+e+e−ν̄ from
(3, 1,−4/3) scalar exchange.

take into account just the models whose scalar quantum numbers are compatible in the

sense that they allow scalar interactions that violate baryon number. For scalars coupling

to standard model fermion bilinears, there are three types of scalar interactions which may

violate baryon number: 3-scalar X1X1X2, 4-scalar X1X1X1X2, and 3-scalar with a Higgs

X1X1X1H or X1X1X2H , where the Higgs gets a vacuum expectation value (Fig. 2.3).

Actually, the simplest possible model violating baryon number through the interaction

X1X1X1H includes just one new scalar (3̄, 2,−1/6), but it gives proton decay via p →
π+π+e−νν (Fig. 2.4). Note that a similar diagram with 〈H〉 replaced by X2 allows us to

ignore scalars with the same electroweak quantum numbers as the Higgs and coupling to

Q̄u and Q̄d, X2 = (1, 2, 1/2) and (8, 2, 1/2), as these will produce tree-level proton decay

as well. The other two baryon number violating models with an interaction termX1X1X2H
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SU(3)× SU(2)× U(1)Operator
representation of X

B L

XQQ,Xud (6̄, 1,−1/3) , (3, 1,−1/3)PD −2/3 0

XQQ (6̄, 3,−1/3) , (3, 3,−1/3)PD −2/3 0

Xdd (3, 1, 2/3), (6̄, 1, 2/3) −2/3 0

Xuu (6̄, 1,−4/3) , (3, 1,−4/3)PD −2/3 0

XQ̄L̄ (3, 1,−1/3)PD , (3, 3,−1/3)PD 1/3 1

Xūē (3, 1,−1/3)PD 1/3 1

Xd̄ē (3, 1,−4/3)PD 1/3 1

XQ̄e,XLū (3, 2, 7/6) 1/3 −1

XL̄d (3̄, 2,−1/6)PD −1/3 1

XLL (1, 1, 1), (1, 3, 1) 0 −2

Xee (1, 1, 2) 0 −2

Table 2.1: Possible interaction terms between the scalars and fermion bilinears along with
the corresponding quantum numbers and B and L charges of the X field. Representations
labeled with the subscript “PD” allow for proton decay via either tree-level scalar exchange
(Fig. 2.1) or 3-scalar interactions involving the Higgs vacuum expectation value (Fig. 2.4).

are X∗1 = (3, 1,−1/3), X2 = (3̄, 2,−7/6) and X1 = (3, 1,−1/3), X∗2 = (3̄, 2,−1/6). As

argued earlier, such quantum numbers for X1 also induce tree-level proton decay, so we

disregard them.

We now consider models with a 3-scalar interaction X1X1X2. A straightforward anal-

ysis shows that there are only four models which generate baryon number violation via a

3-scalar interaction without proton decay. We enumerate them and give the corresponding

Lagrangians below. All of these models give rise to processes with ∆B = 2 and ∆L = 0,

but only the first three models contribute to nn̄ oscillations at tree level due to the symmetry
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〈H〉
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Figure 2.3: Scalar interactions which may generate baryon number violation.

X1

X1
X1

d

e+

ν̄

d ν̄

d

〈H〉

Figure 2.4: Interaction which leads to proton decay, p → π+π+e−νν, for X1 =
(3̄, 2,−1/6).

properties of the Yukawas. Note that a choice of normalization for the sextet given by

(Xαβ) =


X̃11 X̃12/

√
2 X̃13/

√
2

X̃12/
√

2 X̃22 X̃23/
√

2

X̃13/
√

2 X̃23/
√

2 X̃33

 (2.1)

leads to canonically normalized kinetic terms for the elements X̃αβ and the usual form of

the scalar propagator with symmetrized color indices. Unless otherwise stated, we will be

using two-component spinor notation. Parentheses indicate contraction of two-component

spinor indices to form a Lorentz singlet.
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Model 1. X1 = (6̄, 1,−1/3), X2 = (6̄, 1, 2/3),

L = − gab1 X
αβ
1

(
Qa
LαεQ

b
Lβ

)
− gab2 X

αβ
2 (daRαd

b
Rβ)− g′ab1 Xαβ

1 (uaRαd
b
Rβ)

+λXαα′

1 Xββ′

1 Xγγ′

2 εαβγεα′β′γ′ . (2.2)

By virtue of the symmetric color structure of the 6̄ representation and the antisymmetric

weak structure of the QQ bilinear in the first term, g1 must be antisymmetric in flavor.

However, this antisymmetry is not retained upon rotation into the mass eigenstate basis.

Similarly, g2 must be symmetric because of the symmetric color structure in the second

term. In this case, the symmetry character of g2 will be retained upon rotation into the

mass eigenstate basis because it involves quarks of the same charge. Therefore, the inter-

action involving the Yukawa coupling g2 gives rise to (and is thus constrained by) K0-K̄0

mixing through tree-levelX2 exchange. The coupling g′1 has no particular flavor symmetry.

Model 2. X1 = (6̄, 3,−1/3), X2 = (6̄, 1, 2/3),

L = − gab1 X
αβA
1 (Qa

Lαε τ
AQb

Lβ)− gab2 X
αβ
2 (daRαd

b
Rβ)

+ λXαα′A
1 Xββ′A

1 Xγγ′

2 εαβγεα′β′γ′ . (2.3)

Here the matrix ε τA is symmetric. Because the first and second terms have symmetric

color structures, g1 and g2 must be symmetric in flavor. The weak triplet X1 has com-

ponents which introduce both K0-K̄0 and D0-D̄0 mixing. As in model 1, the interaction

involving g2 will introduce K0-K̄0 mixing via X2 exchange.

Model 3. X1 = (6̄, 1, 2/3), X2 = (6̄, 1,−4/3),

L = − gab1 X
αβ
1 (daRαd

b
Rβ)− gab2 X

αβ
2 (uaRαu

b
Rβ) + λXαα′

1 Xββ′

1 Xγγ′

2 εαβγεα′β′γ′ . (2.4)

Both terms have symmetric color structures and no weak structure, so g1 and g2 must be

symmetric in flavor. In this model, the interactions involving g1 and g2 each have the po-
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tential to introduce neutral meson-antimeson mixing. For example, the g1 interaction will

induce K0-K̄0 mixing while g2 will induce D0-D̄0 mixing.

Model 4. X1 = (3, 1, 2/3), X2 = (6̄, 1,−4/3),

L = − gab1 X1α

(
daRβ d

b
Rγ

)
εαβγ − gab2 X

αβ
2 (uaRαu

b
Rβ) + λX1αX1βX

αβ
2 . (2.5)

Because of the antisymmetric color structure in the first term, g1 must be antisymmetric

in flavor, which prevents it from introducing meson-antimeson mixing. The antisymmet-

ric structure of g1 also prevents the existence of six-quark operators involving all first-

generation quarks, and thus prevents nn̄ oscillations. As in previous models, g2 is symmet-

ric and so we will get D0-D̄0 mixing as in model 3. Although this model does not have

nn̄ oscillations, there are still baryon number violating processes which would constrain

this model – for example, the process pp → K+K+. This has been searched using the

Super-Kamiokande detector looking for the nucleus decay 16O → 14CK+K+ [49]. Had

we included νR, model 4 would have been excluded by tree-level scalar exchange.

Now, a similar line of reasoning applies to the case where we have a quartic scalar inter-

action term X1X1X1X2. The only models violating baryon number which do not generate

proton decay (or bound neutron decay) are discussed briefly below. These last five models

have dinucleon decay to leptons, but do not contribute to tree-level nn̄ oscillations by virtue

of their coupling to leptons.

Model 5. X1 = (6̄, 1,−1/3), X2 = (1, 1, 1),

L = − gab1 X
αβ
1

(
Qa
LαεQ

b
Lβ

)
− gab2 X2(LaLεL

b
L)− g′ab1 Xαβ

1 (uaRαd
b
Rβ)

+ λXαα′

1 Xββ′

1 Xγγ′

1 X2 εαβγεα′β′γ′ . (2.6)

Similar arguments to those for the previous models tell us that g1 and g2 must be antisym-

metric in flavor.
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Model 6. X1 = (6̄, 3,−1/3), X2 = (1, 1, 1),

L = − gab1 X
αβA
1 (Qa

Lαε τ
AQb

Lβ)− gab2 X2(LaLεL
b
L)

+ λXαα′A
1 Xββ′B

1 Xγγ′C
1 X2 ε

ABCεαβγεα′β′γ′ . (2.7)

In comparison with model 2, we see that g1 is symmetric in flavor, while g2 is antisymmet-

ric.

Model 7. X1 = (6̄, 3,−1/3), X2 = (1, 3, 1),

L = − gab1 X
αβA
1 (Qa

Lαε τ
AQb

Lβ)− gab2 X
A
2 (LaLετ

ALbL)

+ λXαα′A
1 Xββ′B

1 Xγγ′C
1 XD

2 εαβγεα′β′γ′ (δABδCD + δACδBD + δADδBC) . (2.8)

Once again, as in model 2, we have a symmetric g1, thus the coupling g2 must be symmetric

in flavor as well.

Model 8. X1 = (6̄, 1, 2/3), X2 = (1, 1,−2),

L = − gab1 X
αβ
1 (daRαd

b
Rβ)− gab2 X2(eaRe

b
R) + λXαα′

1 Xββ′

1 Xγγ′

1 X2 εαβγ εα′β′γ′ . (2.9)

As in model 1, g1 must be symmetric. The coupling g2 must also be symmetric in flavor.

Model 9. X1 = (3, 1, 2/3), X2 = (1, 1,−2),

L = − gab1 X1α(daRβd
b
Rγ)ε

αβγ − gab2 X2(eaRe
b
R) + λX1αX1βX1γX2 ε

αβγ . (2.10)

By comparison with model 4, we see that g1 must be antisymmetric in flavor. The coupling

g2 is symmetric. Note that the antisymmetric color structure of the scalar interaction re-

quires the existence of at least three different kinds of X1 scalars for this coupling to exist.

Including νR would eliminate model 9 for the same reason as model 4.
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2.3 Phenomenology of model 1

In this section we present a detailed analysis of model 1. The corresponding calculations for

the other models can be performed in a similar manner. Our work is partly motivated by the

recently proposed nn̄ oscillation experiment with increased sensitivity [33]. In addition to

nn̄ oscillations, we also analyze the cosmological baryon asymmetry generation in model

1 as well as flavor and electric dipole moment constraints. A brief comment on LHC

phenomenology is made.

2.3.1 Neutron-antineutron oscillations

The topic of nn̄ oscillations has been explored in the literature in various contexts. For

some of the early works on the subject, see Refs. [50, 51, 52, 53]. Recently, a preliminary

study of the required hadronic matrix elements using lattice QCD has been carried out [54].

Ref. [55] claims that a signal of nn̄ oscillations has been observed.

The scalar content of model 1 we are considering is similar to the content of a unified

model explored in Ref. [56]. The transition matrix element

∆m = 〈n̄|Heff |n〉 , (2.11)

leads to a transition probability for a neutron at rest to change into an antineutron after time

t equal to Pn→n̄(t) = sin2(|∆m| t).

Neglecting the coupling g1 in the Lagrangian (2.2) (for simplicity) the effective |∆B| =
2 Hamiltonian that causes nn̄ oscillations is (see Appendix A)

Heff = −(g′11
1 )2g11

2 λ

4M4
1M

2
2

dα̇Rid
β̇
Ri′u

γ̇
Rjd

δ̇
Rj′u

λ̇
Rkd

χ̇
Rk′εα̇β̇εγ̇δ̇ελ̇χ̇

×
(
εijkεi′j′k′ + εi′jkεij′k′ + εij′kεi′jk′ + εijk′εi′j′k

)
+ h.c. , (2.12)

where Latin indices are color and Greek indices are spinor. It arises from the tree-level

diagram in Fig. 2.5 (see, for example Ref. [57]). We have rotated the couplings g′1 and

g2 to the quark mass eigenstate basis and adopted a phase convention where λ is real and
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u
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u
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Figure 2.5: Interaction which leads to neutron-antineutron oscillations.

positive. We estimate ∆m using the vacuum insertion approximation [58]. This relates the

required nn̄ six-quark matrix element to a matrix element from the neutron to the vacuum

of a three-quark operator. The later matrix element is relevant for proton decay and has

been determined using lattice QCD methods. The general form of the required hadronic

matrix elements is

〈0|dα̇Ridβ̇Rjuγ̇Rk|n(p, s)〉 = − 1

18
β εijk

(
εα̇γ̇uβ̇R(p, s) + εβ̇γ̇uα̇R(p, s)

)
. (2.13)

Here uR is the right-handed neutron two-component spinor and the Dirac equation was

used to remove the term proportional to the left-handed neutron spinor. The constant β was

determined using lattice methods in Ref. [59] to have the value β ' 0.01 GeV3. In the

vacuum insertion approximation to Eq. (2.11) we find (see Appendix B)

|∆m| = 2λβ2 |(g′11
1 )2g11

2 |
3M4

1M
2
2

. (2.14)

We note that an analogous calculation using the MIT bag model was performed in Ref. [60]

and yields a similar result. The current experimental limit on ∆m is [30]

|∆m| < 2× 10−33 GeV . (2.15)

For scalars of equal mass, M1 = M2 ≡M , and the values of the couplings g′11
1 = g11

2 = 1,
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λ = M , one obtains

M & 500 TeV . (2.16)

If, instead, the masses form a hierarchy, the effect on nn̄ oscillations is maximized if we

choose M2 > M1. Assuming M1 = 5 TeV (above the current LHC reach) and λ = M2,

this yields

M2 & 5× 1013 GeV . (2.17)

Note that λ = M2 is a reasonable value for this coupling, since integrating out M2 then

gives a quartic X1 interaction term with a coupling on the order of one. Of course, this

model does have a hierarchy problem, so having the Higgs scalar and theX1 light compared

with X2 requires fine-tuning.

Experiments in the future [33] may be able to probe nn̄ oscillations with increased

sensitivity of |∆m| ' 7× 10−35 GeV. If no oscillations are observed, the new limit in the

case of equal masses will be

M & 1000 TeV . (2.18)

On the other hand, having M1 = 5 TeV would push the mass of the heavier scalar up to the

GUT scale, leading to the following constraint on the second scalar mass:

M2 & 1.5× 1015 GeV . (2.19)

We note, however, that in Section 2.3.2 we show that M1 on the order of a few TeV is

disfavored by the electric dipole moment constraints.

2.3.2 LHC, flavor and electric dipole moment constraints

If the mass of the scalar X1 is small enough, it can be produced at the LHC through both

single and pair production. Detailed analyses have been performed setting limits on the



32

dRdL X1

t

Figure 2.6: Diagram contributing to the electric dipole moment of the down quark.

mass of X1 from such processes [61, 62, 63]. A recent simulation [61] shows that 100 fb−1

of data from the LHC running at 14 TeV center of mass energy can be used to rule out or

claim a discovery ofX1 scalars with masses only up to approximately 1 TeV, even when the

couplings to quarks are of order one. Our earlier choice of M1 = 5 TeV used to estimate

the constraint on M2 from nn̄ oscillations lies well within the allowed mass region.

Some of the most stringent flavor constraints on new scalars come from neutral meson

mixing and electric dipole moments. Since in model 1 X1 couples directly to both left- and

right-handed quarks, this means that at one loop the top quark mass can induce the chirality

flip necessary to give a light quark edm, putting strong constraints on this model even when

X1 is at the 100 TeV scale. The diagram contributing to the edm of the down quark is given

in Fig. 2.6. We find

|dd| '
mt

6π2M2
1

log

(
M2

1

m2
t

) ∣∣∣Im[g31
1 (g′

31
1 )∗]

∣∣∣ e cm . (2.20)

Here we have neglected pieces not logarithmically enhanced. This will give the largest

contribution to the neutron edm because of the top quark mass factor. All Yukawa couplings

in this section are in the mass eigenstate basis.

Using SU(6) wavefunctions, this can be related to the neutron edm via dn = 4
3
dd −

1
3
du ' 4

3
dd. The present experimental limit is [64]

dexp
n < 2.9× 10−26 e cm . (2.21)

Assuming M1 = 500 TeV, neutron edm measurements imply the bound
∣∣Im[g31

1 (g′31
1 )∗]

∣∣ .
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6 × 10−3. Furthermore, for observable nn̄ oscillation effects, with M2 being close to

the GUT scale, we need M1 ≈ 5 TeV. In such a scenario the edm constraint requires∣∣Im[g31
1 (g′31

1 )∗]
∣∣ . 10−6.

Another important constraint on the parameters of model 1 is provided by K0-K̄0 mix-

ing. Integrating out X2 generates an effective Hamiltonian,

Heff =
g22

2 (g11
2 )
∗

M2
2

(sRαsRβ)(d∗αR d
∗β
R ) → g22

2 (g11
2 )
∗

2M2
2

(d̄αRγ
µsRα)(d̄αRγµsRα), (2.22)

where in the second line we have gone from two- to four-component spinor notation. This

gives the following constraints on the couplings [65]:

∣∣Re
[
g22

2

(
g11

2

)∗]∣∣ < 1.8× 10−6

(
M2

1 TeV

)2

, (2.23)

∣∣Im[g22
2

(
g11

2

)∗]∣∣ < 6.8× 10−9

(
M2

1 TeV

)2

. (2.24)

If we set M2 to 500 TeV, this corresponds to an upper bound on the real and imaginary

parts of g22
2 (g11

2 )
∗ of 0.45 and 1.7× 10−3, respectively.

2.3.3 Baryon asymmetry

We now investigate baryon number generation in model 1. B and L violating processes in

cosmology have been studied in the literature in great detail (for early works, see Refs. [66,

67]). We treatX2 as much heavier thanX1, and use two differentX2’s to get aCP violating

phase in the one-loop diagrams that generate the baryon asymmetry. For this calculation

X1 is treated as stable with baryon number −2/3, as each will eventually decay via baryon

number conserving processes to two antiquarks. To simplify our discussion, let us consider

the case in which the couplings satisfy the hierarchy λ, λ̃� g2, g̃2. The top line of Fig. 2.7

shows the dominant tree-level and one-loop diagrams contributing to the baryon number

violating decays of X2. Rotating the X fields to make the couplings λ and λ̃ real, we find
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Figure 2.7: Diagrams corresponding to the decay of X2. The diagrams on top contribute to
the ∆B = 2 decays, while the diagrams on bottom contribute to ∆B = 0.

(see Appendix C)

Γ(X2 → X1X1) =
3λ

8πM2

[
λ− λ̃ M2

2

4π(M2
2 − M̃2

2 )
Im(Tr(g†2 g̃2))

]
,

Γ(X2 → X1X1) =
3λ

8πM2

[
λ+ λ̃

M2
2

4π(M2
2 − M̃2

2 )
Im(Tr(g†2 g̃2))

]
. (2.25)

The net baryon number produced per X2X2 pair is (see, Table 2.2)

∆nB = 2(r − r̄) =
6

πTr(g†2g2)

1

M̃2
2 −M2

2

Im
[
λ λ̃∗Tr(g†2 g̃2)

]
, (2.26)

where we have used the fact that CPT invariance guarantees that the total width of X2 and

X̄2 are the same. Given our choice of hierarchy for the couplings, we have approximated

the total width as coming from the tree-level decay of X2 to antiquarks. A similar result in

the context of SO(10) models was obtained in Ref. [56].

Even with just one generation of quarks, the CP violating phase cannot be removed

from the couplings λ, λ̃, g2, g̃2 and a baryon asymmetry can be generated at one loop. At
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Decay Br Bf

X2 → X1X1 r 4/3

X2 → d̄Rd̄R 1− r −2/3

X2 → X1X1 r̄ −4/3

X2 → dRdR 1− r̄ 2/3

Table 2.2: Branching ratios and final state baryon numbers for the decays of X2 and X2

which contribute to the baryon asymmetry in the coupling hierarchy λ, λ̃� g2, g̃2.

first glance this is surprising since there are four fields (X2, X̃2, X1, and dR) whose phases

can be redefined and four relevant couplings. However, this can be understood by looking

at the relevant Lagrangian terms, g2X2dd, g̃2X̃2dd, λX1X1X2 and λ̃X1X1X̃2. The problem

reduces to finding solutions to the following matrix equation:
2 1 0 0

2 0 1 0

0 1 0 2

0 0 1 2




φX1

φX2

φX̃2

φd

 =


φλ

φλ̃

φg2

φg̃2

 , (2.27)

where the phases on the right-hand side are arbitrary. Let us take the difference of the first

two equations to remove phases for the couplings λ and λ̃, and the difference of the last

two equations to remove phases for the couplings g2, g̃2. We therefore obtain φλ̃2 − φλ2 =

φX̃2
− φX2 and φg̃2 − φg2 = φX̃2

− φX2 . Those two equations cannot be simultaneously

fulfilled for arbitrary φλ, φλ̃, φg2 , φg̃2 .

The baryon number generated in the early universe can be calculated from Eq. (2.26)

by following the usual steps (see, for example, Ref. [68]). Out of equilibrium decay of

X2 and X̄2 is most plausible if they are very heavy (e.g., ∼ 1012 GeV). However, to get

measurable nn̄ oscillation in this case, X1 would have to be light – a case that is disfavored

by neutron edm constraints, since it requires some very small dimensionless couplings.
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2.4 Conclusions

We have investigated a set of minimal models which violate baryon number at tree level

without inducing proton decay. We have looked in detail at the phenomenological aspects

of one of these models (model 1) which can have nn̄ oscillations within the reach of future

experiments. When all the mass parameters in model 1 have the same value, M , and

the magnitudes of the Yukawa couplings g′11
1 and g11

2 are unity, the present limit on nn̄

oscillations implies that M is greater than 500 TeV. For M = 500 TeV, the neutron

edm and flavor constraints give Im[g31
1 (g′31

1 )∗] < 6 × 10−6, Re[g22
2 (g11

2 )∗] < 0.45, and

Im[g22
2 (g11

2 )∗] < 1.7 × 10−3, which indicates that some of the Yukawa couplings and/or

their phases must be small if nn̄ oscillations are to be observed in the next generation of

experiments. Of course, even in the standard model some of the Yukawa couplings are

small.

There are two other models (model 2 and model 3) that have nn̄ oscillations at tree level.

Similar conclusions can be drawn for them, although the details are different. In models

2 and 3, exchange of a single X1 does not give rise to a one-loop edm of the neutron.

However, K0-K̄0 mixing can occur from tree-level X1 exchange.

Observable nn̄ oscillations can occur for M2 � M1 with M2 at/near the GUT scale.

This requires M1 ' 5 TeV, and flavor and electric dipole constraints require some very

small Yukawa couplings in that case.
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Chapter 3

Phenomenology of scalar leptoquarks

We study the simplest renormalizable scalar leptoquark models where the standard model

is augmented only by one additional scalar representation of SU(3)× SU(2)×U(1). The

requirement that there be no proton decay from renormalizable interactions singles out two

such models, one of which exhibits an unusual top mass enhancement of the µ→ eγ decay

rate. We analyze the phenomenology of the model with the unusual top mass enhancement

of loop level chirality changing charged lepton processes in the light of existing and upcom-

ing experiments. Both of the models that do not allow proton decay from renormalizable

interactions have dimension-five operators that, even if suppressed by the Planck scale, can

give rise to an unacceptably high level of baryon number violation. We discuss symmetries

that can forbid these dimension-five operators.

The contents of this chapter were written in collaboration with Mark Wise and Jonathan

Arnold, and have been published in Ref. [2].

3.1 Introduction

Currently, the standard model describes most aspects of nature with remarkable precision.

If there is new physics at the multi-TeV scale (perhaps associated with the hierarchy puz-

zle), it is reasonable to expect measurable deviations from the predictions of the standard

model in the flavor sector. Among the experiments with very high reach in the mass scale

associated with beyond the standard model physics are those that look for flavor violation in

the charged lepton sector through measurements of the processes, µ→ eγ [69] and µ→ e
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conversion [41, 42], and the search for electric dipole moments of the neutron, proton, and

electron. For a recent discussion of the reach provided by the data from K and B meson

decays, see, for example, Ref. [70].

Models with scalar leptoquarks can modify the rates for these processes. Simple models

of this type have been studied previously in the literature, including their classification and

phenomenology [71, 72, 73, 74, 75, 76, 77, 78].

Our approach is to first identify the minimal renormalizable scalar leptoquark models

containing one single additional representation of SU(3) × SU(2) × U(1) and construct

the most general renormalizable model without any additional constraints on the couplings

apart from the usual ones, i.e., gauge invariance, Poincaré invariance, and locality. Given

the strong experimental constraints on baryon number violating processes like p → π0e+,

we concentrate only on those scalar leptoquark models which do not have baryon num-

ber violation in perturbation theory. Of course, there is baryon number violation through

nonperturbative quantum effects, since it is an anomalous symmetry. But this is a very

small effect at zero temperature. Only two models fulfill this requirement. One of those

two models gives a top mass enhanced µ → eγ decay rate. We perform an analysis of the

phenomenology of this specific model, including the µ → eγ decay rate, µ → e conver-

sion rate, as well as electric dipole moment constraints, focusing mostly on the regions of

parameter space where the impact of the top quark mass enhancement is most important.

For lepton flavor violating processes at higher energies such as τ → µγ, deep inelastic

scattering e+p→ µ(τ) +X , etc., the impact on the phenomenology of the top quark mass

enhancement of charged lepton chirality flip is less dramatic, and that is why we focus in

this paper on low energy processes involving the lightest charged leptons.

There is also an mt enhancement of the one-loop contribution to the charged lepton

mass matrix. We explore the region of parameter space where this contribution does not

necessitate a fine-tuning of parameters.

We also consider the effects of dimension-five operators that can cause baryon number

violation. We find that the two models without renormalizable baryon number violation

can have such operators, and even if the operators are suppressed by the Planck scale, they

may (depending on the values of coupling constants and masses) give rise to an unaccept-
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able level of baryon number violation. We discuss a way to forbid these dimension-five

operators.

This paper is not a broad survey of the phenomenology of leptoquark models. Rather,

we focus on two issues that have not been discussed adequately in the previous literature:

first, whether the chirality flip by the top quark mass results in much greater experimental

reach in leptoquark mass when one takes into account a naturalness constraint on the lepton

mass matrix, and second, the nature of baryon number violation in these models.

3.2 Models

A general classification of renormalizable leptoquark models can be found in Refs. [71, 72].

However, in the spirit of our approach, in which we are interested in models with no proton

decay, a more useful list of possible interaction terms between the scalar leptoquarks and

fermion bilinears is presented in Ref. [1], where those models that have tree-level proton

decay are highlighted. The relevant models are listed in Table 3.1. The only two models

fulfilling our requirement are X = (3, 2, 7/6) and X = (3, 2, 1/6).

Model I: X = (3, 2, 7/6).

The Lagrangian for the scalar leptoquark couplings to the fermion bilinears in this

model is

L = −λiju ūiRXT εLjL − λije ēiRX†Qj
L + h.c. , (3.1)

where

X =

 Vα

Yα

 , ε =

 0 1

−1 0

 , LL =

 νL

eL

 . (3.2)

After expanding the SU(2) indices, it takes the form

L = −λiju ūiαR(Vαe
j
L − YανjL)− λije ēiR(V †αu

j
αL + Y †αd

j
αL) + h.c. . (3.3)

Note that in this model the left-handed charged lepton fields couple to right-handed top
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Leptoquark Diquark SU(3)× SU(2)× U(1)
couplings couplings representation of X

XQ̄e, XLū − (3, 2, 7/6)

XLd̄ − (3, 2, 1/6)

XQ̄L̄, Xūē XQQ, Xud (3, 1,−1/3)PD

XQ̄L̄ XQQ (3, 3,−1/3)PD

Xd̄ ē Xuu (3, 1,−4/3)PD

Table 3.1: Possible interaction terms between the scalar leptoquarks and fermion bilinears
along with the corresponding quantum numbers. Representations labeled with the subscript
“PD” allow for proton decay via tree-level scalar exchange.

quarks, and the right-handed charged lepton fields couple to left-handed top quarks. So a

charged lepton chirality flip can be caused by the top mass at one loop.

Model II: X = (3, 2, 1/6).

The corresponding Lagrangian is

L = −λijd d̄iRXT εLjL + h.c. , (3.4)

where we have used the same notation as in the previous case. Expanding the SU(2)

indices yields

L = −λijd d̄iαR(Vαe
j
L − YανjL) + h.c. . (3.5)

In model II the leptoquark cannot couple to the top quark, so there is no mt enhancement

in the µ → eγ decay rate. There is also no mb enhancement, and the one-loop effective

Hamiltonian for µ→ eγ (after integrating out the massive scalars and the heavy quarks) is

proportional to the muon mass. For this reason, in the remainder of the paper we will focus

entirely on model I.
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3.3 Phenomenology

In this section we analyze some of the phenomenology of model I, i.e., X = (3, 2, 7/6).

We concentrate only on those constraints which are most restrictive for the model and po-

tentially most sensitive to the unusual top mass enhancement of the charged lepton chirality

change, i.e., the ones coming from the following processes: muon decay to an electron and

a photon, muon to electron conversion, and electric dipole moment of the electron.

3.3.1 Naturalness

There is a logarithmically divergent contribution to the charged lepton mass matrix that is

enhanced by mt. This contribution to the mass matrix, coming from momenta between Λ

(the cutoff) and mV , is

∆mij ' λ̃3i
u λ̃

j3
e

3mt

16π2
log

(
Λ2

m2
V

)
. (3.6)

To avoid unnatural cancellations between this loop contribution to the lepton mass matrix

and the tree-level lepton mass matrix, we require

|∆mij| .
√
mimj . (3.7)

For example, for a scalar of massmV = 50 TeV and a cutoff set at the GUT scale, Eq. (3.6)

gives

∆mij ' λ̃3i
u λ̃

j3
e × 170 GeV , (3.8)

which, combined with Eq. (3.7), yields the following constraint on the couplings:

|λ̃13
e λ̃

32
u |, |λ̃23

e λ̃
31
u | . 4.3× 10−5 . (3.9)

In the subsequent analysis, we will include the constraint imposed by Eq. (3.7) by indicat-

ing which regions of the plots are not favored by the naturalness considerations. A more
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Figure 3.1: Feynman diagrams contributing to the process µ→ eγ.

precise analysis would involve solving renormalization group equations for the couplings

in the model.

3.3.2 µ→ eγ decay

The relevant Feynman diagrams for this process are presented in Fig. 3.1. The uniqueness

of model I is that, apart from the fact there is no tree-level proton decay, the µ→ eγ rate is

enhanced by the top quark mass. To our knowledge, such an enhancement of µ→ eγ was

observed previously only in Ref. [75] in the context of an SU(2) singlet scalar leptoquark

model. However, that model suffers from perturbative proton decay, and the impact of the

mt enhancement was not focused on.

Keeping only the piece enhanced by mt, the sum of amplitudes corresponding to the

diagrams in Fig. 3.1 (neglecting the terms proportional to me) is given by (see Appendix D

for a detailed calculation)

iM = − 3 emt

16 π2m2
V

f

(
m2
t

m2
V

)
kν εµ(k)

×
[
λ̃13
e λ̃

32
u ēR(p− k)σµνµL(p) + (λ̃31

u )∗(λ̃23
e )∗ ēL(p− k)σµνµR(p)

]
, (3.10)
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where k is the photon four-momentum and ε is the photon polarization. The function

f(m2
t/m

2
V ) is given by

f(x) =
1− x2 + 2x log x

2(1− x)3
+

2

3

(
1− x+ log x

(1− x)2

)
, (3.11)

and the tilde over the couplings denotes that they are related by transformations that take

the quarks and leptons to their mass eigenstate basis through the following 3 × 3 matrix

transformations:

λ̃u = U(u,R)†λuU(e, L) , λ̃e = U(e, R)†λeU(u, L) , (3.12)

where the right-handed up quarks in the Lagrangian are related to the right-handed mass

eigenstate up-type quarks by the matrix U(u,R), the left-handed up quarks in the La-

grangian are related to the left-handed mass eigenstate up-type quarks by the matrixU(u, L),

etc.

The µ→ eγ decay rate is

Γ(µ→ eγ) =
9 e2λ2m2

tm
3
µ

2048π5m4
V

f

(
m2
t

m2
V

)2

, (3.13)

where

λ ≡
√

1

2

∣∣λ̃13
e λ̃

32
u

∣∣2 +
1

2

∣∣λ̃31
u λ̃

23
e

∣∣2 . (3.14)

Fig. 3.2 shows the relation between λ and the scalar leptoquark mass. This dependence

was plotted for the µ → eγ branching ratio equal to the current upper limit of Br(µ →
eγ) ' 2.4 × 10−12 reported by the MEG experiment and the prospective MEG sensitivity

of Br(µ → eγ) ' 5.0 × 10−13. It shows that the experiment will be sensitive to scalar

leptoquark masses at the hundred TeV scale for small values of the couplings.

For very small x, f(x) → f̃(x) = 2
3

log x. This is a reasonable approximation in the

range of x we are interested in. For example, f̃(10−8)/f(10−8) ' 1.1.
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Figure 3.2: The combination of couplings λ from Eq. (3.14) as a function of the scalar
leptoquark mass for two values of the µ→ eγ branching ratio relevant for the MEG exper-
iment. The shaded region consists of points which do not satisfy Eq. (3.7).

3.3.3 µ→ e conversion

The effective Hamiltonian for the µ→ e conversion arises from two sources,

Heff = H(a)
eff +H(b)

eff . (3.15)

The first is the dipole transition operator that comes from the loop diagrams, which are

responsible for the µ→ eγ decay, given by

H(a)
eff =

3 emt

32π2m2
V

f(m2
t/m

2
V )
[
λ̃13
e λ̃

32
u ēRσµνµLF

µν + (λ̃31
u )∗(λ̃23

e )∗ ēLσµνµRF
µν
]
. (3.16)

Using the following Fierz identities for spinors (see Appendix E),

(ū1Lu2R)(ū3Ru4L) =
1

2
(ū1Lγ

µu4L)(ū3Rγµu2R) ,

(ū1Lu2R)(ū3Lu4R) =
1

2
(ū1Lu4R)(ū3Lu2R) +

1

8
(ū1Lσ

µνu4R)(ū3Lσµνu2R) , (3.17)
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we arrive, after integrating out the heavy scalar leptoquarks (at tree level), at the second

part of the effective Hamiltonian:

H(b)
eff =

1

2m2
V

{
λ̃12
u (λ̃11

u )∗(ēLγ
µµL)(ūαRγµuαR)

+ λ̃11
e λ̃

12
u

[
CS(µ)(ēRµL)(ūαRuαL) +

1

4
CT (µ)(ēRσ

µνµL)(ūαRσµνuαL)
]

+ λ̃11
e (λ̃21

e )∗(ēRγ
µµR)(ūαLγµuαL)

+ (λ̃21
e )∗(λ̃11

u )∗
[
CS(µ)(ēLµR)(ūαLuαR)+

1

4
CT (µ)(ēLσ

µνµR)(ūαLσµνuαR)
]}

+
1

2m2
Y

(λ̃eVCKM)11
(

(λ̃eVCKM)21
)∗

(ēRγ
µµR)(d̄αLγµdαL) + . . . . (3.18)

The Cabibbo-Kobayashi-Maskawa matrix arises whenever a coupling to the left-handed

down-type quark appears. In Eq. (3.18) the contribution of the heavy quarks, as well as

the contribution of the strange quark, is in the ellipses. Since the operators q̄q and q̄σµνq

do require renormalization, their matrix elements develop subtraction point dependence

that is cancelled in the leading logarithmic approximation by that of the coefficients CS,T .

Including strong interaction leading logarithms, we get

CS(µ) =

[
αs(mV )

αs(µ)

]−12/(33−2Nq)

(3.19)

and

CT (µ) =

[
αs(mV )

αs(µ)

]4/(33−2Nq)

, (3.20)

whereNq = 6 is the number of quarks with mass belowmV . In order to match the effective

Hamiltonian (3.18) to the Hamiltonian at the nucleon level and use this to compute the

conversion rate, we follow the steps outlined in Refs. [79, 80].

Our results, taking into account only the contribution from H(a)
eff , are shown in Fig. 3.3.

The current experimental limit is Br(µ→ e conversion in Au) < 7.0× 10−13 [81]. How-

ever, here we focus on the prospective Mu2e experiment [42], which has a sensitivity goal

of 5× 10−17. The COMET experiment [41] aims for comparable sensitivity in later stages.

We use the total capture rate for 27
13Al of ωcapture = 0.7054 × 106 s−1 [82] to switch from

the µ→ e conversion rate to a branching ratio.
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Figure 3.3: The combination of couplings λ from Eq. (3.14) as a function of the scalar
leptoquark mass for two values of the Br(µ → e conversion in Al) relevant for the Mu2e
experiment. The thin solid line, corresponding to Br(µ → eγ) = 10−14, is included for
reference. The shaded region consists of points which do not satisfy Eq. (3.7).

Apart from coupling constant factors, the contribution to the µ → e conversion ampli-

tude from H(a)
eff is enhanced over the contribution to the amplitude from H(b)

eff roughly by

(mt/mµ)(3e2/32π2) log(m2
V /m

2
t ) ∼ 10 for mV in the hundred TeV range.

Our results show that in some regions of parameter space, the Mu2e experiment will be

able to constrain leptoquark couplings with similar precision to that which can be done with

an experiment which is sensitive to a branching ratio for µ→ eγ of around 10−14. In other

regions the Mu2e experiment is likely to give a more powerful constraint for such a µ→ eγ

branching ratio, as, for example, when the Yukawa couplings are strongly hierarchical and

the top quark loop is very suppressed.

To show graphically the contributions to the branching ratio originating from terms in

the effective Hamiltonian with different structures, we set all the couplings to zero apart

from λ̃13
e , λ̃

23
e , λ̃

31
u , λ̃

32
u , λ̃

11
u , λ̃

12
u for simplicity; i.e., we leave only the couplings relevant for

the µ→ eγ decay and one of the vector contributions toH(b)
eff .

Note that the heavy quark contributions are suppressed by ΛQCD/mQ; low energy phe-
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nomenology suggests that the strange quark contribution is small, and furthermore the ten-

sor contributions are not enhanced by the atomic number of the target.

In addition, we consider only real couplings and define κ ≡ λ̃11
u λ̃

12
u . We also assume

λ̃13
e λ̃

32
u = λ̃31

u λ̃
23
e = λ, so that we can plot λ as a function of the scalar leptoquark mass mV

for a given value of the ratio,

r ≡ κ

λ
=

λ̃11
u λ̃

12
u√

1
2
(λ̃13

e λ̃
32
u )2 + 1

2
(λ̃31

u λ̃
23
e )2

. (3.21)

Figs. 3.4 – 3.7 show our results for a few values of r = ±1, ±10, ±100, ±200, and two

values of the branching ratio Br(µ→ e conversion in Al) = 10−16, 10−17.

For r . 1 the branching ratio is dominated by theH(a)
eff contribution, and in this param-

eter region all curves look like the ones in Fig. 3.3. For larger values of r, depending on

the relative sign between the contributions from H(a)
eff and H(b)

eff , there are two possibilities.

If the interference is constructive, the curve moves down with increasing r, since a smaller

value of the coupling λ is required to achieve a given branching ratio (Figs. 3.5 and 3.7).

In the case of a destructive interference, the curves move up until a value of r is reached

for which the two contributions are the same (Figs. 3.4 and 3.6). As estimated before,

this occurs for r ≈ 10. Increasing r further brings the curves back down, since the H(b)
eff

contribution becomes dominant.

Large values of r are expected if the Yukawa couplings of X exhibit a hierarchical

pattern like what is observed in the quark sector; κ changes generations by one unit, while

the product of couplings in λ involves changing generations by three units. Finally, we

note that for all the curves in the plots above, the Yukawa couplings are well within the

perturbative regime.

3.3.4 Electron EDM

Another flavor constraint on the couplings of model I comes from the electric dipole mo-

ment (EDM) of the electron. As mentioned earlier, the fact that X couples directly to both

left- and right-handed quarks means that at one loop the top quark mass can induce the
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leptoquark mass for a branching ratio Br(µ → e conversion in Al) = 10−16 and four
different positive values of the ratio of the couplings r from Eq. (3.21). The shaded region
consists of points which do not satisfy Eq. (3.7).
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Figure 3.5: Same as Fig. 3.4 but for negative values of r.
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Figure 3.6: Same as Fig. 3.4 but for a branching ratio Br(µ → e conversion in Al) =
10−17.
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Figure 3.7: Same as Fig. 3.5 but for a branching ratio Br(µ → e conversion in Al) =
10−17.
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chirality flip necessary to give an electron EDM. We find that

|de| '
3 emt

16π2m2
V

f

(
m2
t

m2
V

) ∣∣Im[λ̃13
e λ̃

31
u ]
∣∣ . (3.22)

The present electron EDM experimental limit [83] is

|de| < 10.5× 10−28 e cm . (3.23)

We can write the dipole moment in terms of the branching ratio, Br(µ → eγ), giving the

constraint ∣∣Im[λ̃13
e λ̃

31
u ]
∣∣

λ

√
Br(µ→ eγ) < 2.0× 10−7 . (3.24)

For example, if model I gave a branching ratio equal to the current experimental bound of

Br(µ → eγ) < 2.4 × 10−12, this would correspond to the constraint on the couplings of∣∣Im[λ̃13
e λ̃

31
u ]
∣∣/λ < 0.13. Fig. 3.8 shows the relation between the parameters

∣∣Im[λ̃13
e λ̃

31
u ]
∣∣

and mV for the electron EDM equal to |de| = 10−27, 10−28, and 10−29 e cm.
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3.4 Baryon number violation and dimension-five opera-

tors

Tree-level renormalizable interactions are not the only possible source of baryon number

violation. It might also occur through higher-dimensional nonrenormalizable operators.

In the standard model, proton decay is restricted to operators of mass dimension six or

higher. However, the scalar leptoquark models we consider exhibit proton decay through

dimension-five operators.

Let us first consider model I, in which X = (3, 2, 7/6). Although it does not give

proton decay at tree level, one can construct the following dimension-five operator:

OI =
1

Λ
gabdaRαd

b
Rβ(H†Xγ)ε

αβγ . (3.25)

The coupling constant matrix g is antisymmetric in flavor space. Because of the tree-level

leptoquark couplings (see Table 3.1), baryon number violating decay occurs here through

the process shown in Fig. 3.9 , resulting in n→ e−K+ and p→ K+ν. Setting the coupling

constants to unity, we estimate the baryon number violating nucleon decay rate caused by

this operator to be

Γp ≈ 2× 10−57

(
50 TeV

mV

)4(
MPL

Λ

)2

GeV . (3.26)

Since the current experimental limit is Γexp
p < 2.7 × 10−66 GeV [25], even if the scale of

new physics Λ is equal to the Planck mass MPL when the coupling constants are unity, this

operator causes too large a proton decay rate for mV . 10 000 TeV.

In the case of model II, where X = (3, 2, 1/6), there are two dimension-five baryon

number violating operators:

O(1)
II =

1

Λ
gabuaRαd

b
Rβ(H†Xγ)ε

αβγ ,

O(2)
II =

1

Λ
gabuaRαe

b
R(XβεXγ)ε

αβγ . (3.27)
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Figure 3.9: Feynman diagram representing proton decay in model I.

The operator O(1)
II permits a nucleon decay pattern similar to the previous case, e.g., n →

e−π+ and p→ π+ν. Proton decay through the operator O(2)
II is much more suppressed.

In order to prevent proton decay through dimension-five operators, one could introduce

a discrete gauge symmetry that forbids the baryon number violating nonrenormalizable

couplings. Since B − L is the only anomaly-free global symmetry in the standard model,

we chose to impose a discrete subgroup ofB−L. In models I and II, the leptoquark hasB−
L = 4/3. The usual Z2, where the nontrivial transformation is (−1)B−L, does not work, as

the operators OI , O(1)
II , and O(2)

II are invariant under this transformation. However, we find

that imposing a Z3 discrete symmetry, with elements that are powers of exp[2πi(B−L)/3],

forbids these dimension-five operators, and thus, prevents the proton from decaying in this

class of models. Note that gauging B−L and spontaneously breaking the symmetry with a

charge three scalar (at some high scale) leaves this unbroken discrete Z3 gauge symmetry.

It is not possible to use any discrete subgroup of B − L to forbid proton decays in the

models from Table 3.1 which exhibit proton decay at tree level since all the interactions

conserve B − L.

Finally, we would like to comment on the relation between this work and that of

Ref. [1], where renormalizable models that have additional scalars and have baryon num-

ber violation at tree level, but not proton decay, were enumerated and discussed. In these

models, none of the scalars were leptoquarks (they could rather be called diquarks or dilep-

tons). However, if we permit higher dimension operators, then models 4 and 9 presented
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in Ref. [1] containing the scalar X = (3, 1, 2/3) (which has renormalizable diquark cou-

plings) have dimension-five leptoquark-type couplings,

OIII =
1

Λ
gab(Q̄αa

L H)ebRXα . (3.28)

This operator, combined with the renormalizable couplings of X to two quarks, gives pro-

ton decay with the rate estimated in Eq. (3.26). This observation restricts the parameter

space of models 4 and 9 to the one in which either the color triplet scalar X is very heavy

or its Yukawa couplings are small.

3.5 Conclusions

We have investigated the minimal set of renormalizable models in which a single scalar

leptoquark is added to the standard model with the requirement that proton decay not be

induced in perturbation theory. We have looked in detail at the model which gives an

unusual top quark mass enhancement of the branching ratio of µ→ eγ, and studied whether

this enhancement results in greater experimental reach given a naturalness constraint on the

lepton mass matrix.

For this model, we have considered the µ→ eγ branching ratio, the µ→ e conversion

rate, and the electric dipole moment of the electron, in light of current constraints and

future experiments. We have shown the potential limits that the MEG, Mu2e, and the

electron EDM experiments could place on some of the couplings of the scalar leptoquark

to the Q̄e and Lū bilinears. We have explored the region of parameter space for which

the loop contribution to the charged lepton mass matrix does not overwhelm the tree-level

part. Given this naturalness constraint, and focusing on the contribution enhanced by mt,

we have found that current experiments are sensitive to leptoquark masses on the order of a

hundred TeV, whereas future experiments may push the sensitivity into the several hundred

TeV mass region. Without the naturalness constraint, taking the relevant Yukawa couplings

to unity, the experimental reach would be 10 000 TeV.

We have commented on the existence of nonrenormalizable operators in these minimal
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models, which can give an unacceptably large proton decay rate for mV . 10 000 TeV, as

well as provided a simple mechanism for avoiding them.

Since there are only two scalar leptoquark models where at the renormalizable level

baryon number is automatically conserved, it would be interesting to examine a more ex-

tensive range of phenomena and address, over a wide range of parameter space, how to

distinguish experimentally between these two models.
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Chapter 4

B and L at the supersymmetry scale,
dark matter and R-parity violation

We present a simple theory where baryon and lepton numbers are spontaneously broken at

the supersymmetry scale. In this context R-parity must be spontaneously broken, but the

theory still contains a stable field which can play the role of the cold dark matter of the uni-

verse. We discuss the spectrum of the theory, the properties of the dark matter candidate,

and the predictions for direct detection experiments. This theory provides a concrete exam-

ple of exotic supersymmetric signatures associated with having the simultaneous presence

of R-parity violating and missing energy signals at the Large Hadron Collider.

The contents of this chapter were written in collaboration with Pavel Fileviez Pérez,

Sogee Spinner and Jonathan Arnold, and have been published in Ref. [3].

4.1 Introduction

The minimal supersymmetric standard model (MSSM) is considered one of the most ap-

pealing candidates for physics beyond the standard model. While the recent results from

the Large Hadron Collider (LHC) have set serious constraints on the masses of the super-

symmetric particles, if one suspects that new physics exists at an LHC accessible scale, an

MSSM-like theory still highly recommends itself as a candidate theory.

Despite its various appealing properties, the MSSM poses a challenge for proton stabil-

ity. This is because it introduces two separate sets of operators which induce proton decay:

tree-level terms, which separately violate baryon and lepton number, and nonrenormaliz-
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able terms which individually violate both baryon and lepton number. The first of these

are

L̂Ĥu, L̂L̂ê
c, Q̂L̂d̂c, and ûcd̂cd̂c,

where the first three operators violate lepton number and the last baryon number. Any

combination of the first three operators with the last one leads to rapid proton decay. Their

absence is typically explained by invokingR-parity, an ad hoc discrete symmetry defined as

R = (−1)3(B−L)+2S , which forbids all of these terms. However, the fate of such operators

is most simply divined from models of gauged B − L. The most minimal of such models

lead to lepton number violating R-parity violation (and therefore no tree-level proton de-

cay) [84] but R-parity conserving models are also possible [85, 86, 87]. Regardless of the

type of B−L model, the second type of proton decay inducing operators exists. These are

nonrenormalizable operators which conserve B − L but violate B and L separately, e.g.,

Q̂Q̂Q̂L̂

Λ
and

ûcûcd̂cêc

Λ
.

Despite the suppression in these terms due to the scale of new physics, the bounds on proton

decay are strong enough to motivate a mechanism for suppressing them. See Ref. [28] for

a review of proton decay.

Recently, a simple theory for the spontaneous breaking of local baryon and lepton num-

bers has been proposed in Ref. [88]. In this context one can define an anomaly-free theory

using fermionic leptobaryons which have both baryon and lepton number charges. Further-

more, even after symmetry breaking, the lightest leptobaryon is stable due to a remnant

Z2 symmetry and can therefore be a dark matter candidate (see also Refs. [89, 90, 91] for

similar studies). This idea can be applied in the context of supersymmetric theories to es-

tablish not only the origin of the R-parity violating terms, as in the B −L models, but also

determine the fate of the nonrenormalizable terms which violate B and L separately.

In this paper we investigate an extension of the MSSM where the local baryonic and

leptonic symmetries are spontaneously broken at the supersymmetry scale. We find that

the minimal model predicts that R-parity must be spontaneously broken in the MSSM

sector (leading only to lepton number violation). Despite the breaking of R-parity, the
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remnant Z2 symmetry from the breaking of the baryonic and leptonic symmetries ensures

that the lightest leptobaryon is stable and may be a candidate for the cold dark matter

of the Universe. We investigate the spectrum of the theory and the predictions for dark

matter direct detection. This article is organized as follows: in Section 4.2 we discuss the

model with local B and L symmetries, and in Section 4.3 we discuss the possible dark

matter candidates and the predictions for dark matter experiments; finally, we summarize

our results in Section 4.4.

4.2 Spontaneous breaking of B and L

In order to define a theory for local baryon and lepton numbers, we use the gauge group

SU(3)C × SU(2)L × U(1)Y × U(1)B × U(1)L .

An anomaly-free theory can be achieved by adding the following new leptobaryonic fields

with B and L numbers [88]:

Ψ̂ ∼ (1, 2,−1/2, B1, L1) , Ψ̂c ∼ (1, 2, 1/2, B2, L2) ,

η̂c ∼ (1, 1, 1,−B1,−L1) , η̂ ∼ (1, 1,−1,−B2,−L2) ,

X̂c ∼ (1, 1, 0,−B1,−L1) , and X̂ ∼ (1, 1, 0,−B2,−L2) .

Notice that these fields are vector-like with respect to the SM transformations. The anoma-

lies can be canceled for any values of Bi and Li (i = 1, 2), which satisfy the conditions

(see Appendix F)

B1 +B2 = −3 and L1 + L2 = −3 . (4.1)

In order to generate masses for the new fields and for symmetry breaking, we need the

chiral superfields

Ŝ1 ∼ (1, 1, 0, 3, 3) and Ŝ2 ∼ (1, 1, 0,−3,−3) .
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Therefore, the superpotential of this theory is given by

WBL = WRpC + WLB , (4.2)

where

WRpC = YuQ̂Ĥuû
c + YdQ̂Ĥdd̂

c + YeL̂Ĥdê
c + YνL̂Ĥuν̂

c + µĤuĤd (4.3)

contains the R-parity conserving terms present in the MSSM (plus a Yukawa coupling for

the neutrinos, Yν) and

WLB = Y1Ψ̂Ĥdη̂
c + Y2Ψ̂ĤuX̂

c + Y3Ψ̂cĤuη̂ + Y4Ψ̂cĤdX̂

+λ1Ψ̂Ψ̂cŜ1 + λ2η̂η̂
cŜ2 + λ3X̂X̂

cŜ2 + µBLŜ1Ŝ2 (4.4)

is the superpotential of the leptobaryonic sector needed for anomaly cancelation. Of course,

because of the conservation of B and L, both the R-parity violating terms and the non-

renormalizable terms leading to proton decay are forbidden. Notice that when B1 = B2

and L1 = L2 we can have Majorana masses for the X̂ and X̂c, but we stick to the general

case where B1 6= B2 and L1 6= L2.

An interesting consequence of the leptobaryonic sector is the presence of a Z2 sym-

metry once S1 and S2 acquire a vacuum expectation value (VEV). Under this symmetry,

all leptobaryons are odd: Ψ → −Ψ, Ψc → −Ψc, η → −η, ηc → −ηc, X → −X and

Xc → −Xc. The consequence of this is that the lightest leptobaryon is stable (must be

neutral) and therefore a dark matter candidate.
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4.2.1 Symmetry breaking and gauge boson masses

Symmetry breaking in the baryon and lepton number sector proceeds through the following

scalar potential:

V =
(
M2

1 + |µBL|2
)
|S1|2 +

(
M2

2 + |µBL|2
)
|S2|2 +M2

ν̃c|ν̃c|2 +
9

2
g2
B

(
|S1|2 − |S2|2

)2

+
1

2
g2
L

(
3|S1|2−3|S2|2−|ν̃c|2

)2 − (bBLS1S2+h.c.) , (4.5)

where M1, M2 and Mν̃c are the soft terms for the scalar fields S1, S2 and ν̃c, respectively.

Here bBL is the bilinear term between S1 and S2, and we define the VEVs as

√
2S1 = v1 + h1 + ia1 , (4.6)
√

2S2 = v2 + h2 + ia2 , (4.7)
√

2 ν̃c = vR + hR + iaR . (4.8)

The squared mass matrix for the new gauge bosons can be written as

M2
Z′ =

 9g2
B(v2

1 + v2
2) 9gBgL(v2

1 + v2
2)

9gBgL(v2
1 + v2

2) 9g2
L(v2

1 + v2
2) + g2

Lv
2
R

 , (4.9)

which has a zero determinant if vR = 0; note that this cannot be modified even in the

case where 〈X〉 6= 0 when Bi = Li. We stick to these scenarios for simplicity. This is a

consequence of the fact that when S1 and S2 acquire VEVs the symmetry group U(1)B ×
U(1)L is broken to U(1)B−L. The B − L symmetry can only be broken by the VEV of

the right-handed sneutrino, as in Ref. [84]. Therefore, we conclude that R-parity must be

spontaneously broken in this theory. However, it is only lepton number violating R-parity

violation and therefore the proton remains safe.
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The minimization conditions read as

0 =
(
M2

1 + |µBL|2
)
− bBL

v2

v1

+
9

2
g2
B(v2

1 − v2
2) +

3

2
g2
L(3v2

1 − 3v2
2 − v2

R) , (4.10)

0 =
(
M2

2 + |µBL|2
)
− bBL

v1

v2

− 9

2
g2
B(v2

1 − v2
2)− 3

2
g2
L(3v2

1 − 3v2
2 − v2

R) , (4.11)

0 = M2
ν̃c −

1

2
g2
L

(
3v2

1 − 3v2
2 − v2

R

)
, (4.12)

and can be reformulated as

v2
R =

2

g2
L

[
−M2

ν̃c +
3

2
g2
L

(
v2

1 − v2
2

)]
, (4.13)

sin(2γ) =
2bBL

M2
1 +M2

2 + 2|µBL|2
, (4.14)

where we have defined

tan γ =
v2

v1

. (4.15)

One can easily prove that there is no symmetry breaking in the supersymmetry (SUSY)

limit. Therefore, the B and L breaking scales are determined by the SUSY scale. In order

to have a potential bounded from below, we must satisfy the condition

2bBL < M2
1 +M2

2 + 2|µBL|2, (4.16)

and in order to break the symmetry we need the condition

b2
BL >

(
M2

1 + |µBL|2 −
3

2
g2
Lv

2
R

)(
M2

2 + |µBL|2 +
3

2
g2
Lv

2
R

)
. (4.17)

The mixing angle between Z1 and Z2 is defined byZB
ZL

 =

 cos θBL sin θBL

− sin θBL cos θBL

Z1

Z2

 , (4.18)
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where MZ1 < MZ2 . The eigenvalues for the new neutral gauge bosons are

M2
Z1,2

=
1

2

(
M2

ZL
+M2

ZB
±
√(

M2
ZL
−M2

ZB

)2
+ 4

g2L
g2B
M4

ZB

)
, (4.19)

where

M2
ZB
≡ 9g2

B(v2
1 + v2

2) , (4.20)

M2
ZL
≡ g2

L

(
9v2

1 + 9v2
2 + v2

R

)
, (4.21)

and the mixing angle is given by

sin(2θBL) =
2gBgL(v2

1 + v2
2)

M2
Z2
−M2

Z1

. (4.22)

Note that this produces a Z1 lighter than Z2 only for MZB
< MZL

. For the opposite case

take θBL → −θBL and Z1 ↔ Z2. In the limit v2
R � v2

1 + v2
2 the eigenvalues are

MZ1 ∼ 9g2
B

(
v2

1 + v2
2

)
(1− 9ε) , (4.23)

MZ2 ∼ g2
Lv

2
R (1 + 9ε) , (4.24)

where ε ≡ (v2
1 + v2

2)/v2
R and the mass eigenstates are

Z1 =

(
1− 81

2

g2
B

g2
L

ε2
)
ZB − 9

gB
gL

ε ZL , (4.25)

Z2 = 9
gB
gL

ε ZB +

(
1− 81

2

g2
B

g2
L

ε2
)
ZL . (4.26)

This is an interesting limit, since the lighter Z1 eigenstate is predominately ZB-like and

therefore has lower collider bounds [92, 93] compared to a Z ′ that significantly couples to

leptons [94].

Finally, we note that when baryon and lepton numbers are broken at the SUSY scale,

one expects operators mediating proton decay. However, in this theory, the proton is stable

because baryon number is broken by three units. The least suppressed nonrenormalizable
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terms which generate baryon and lepton number violating interactions occur at dimension

fourteen, e.g.,

W14 =
1

Λ10

[
c1Ŝ1(ûcûcd̂cêc)3 + c2Ŝ1(ûcd̂cd̂cν̂c)3 + c3Ŝ2(Q̂Q̂Q̂L̂)3

]
. (4.27)

Because of this large suppression, there is no need to assume a large scale to be in agree-

ment with experiments.

4.2.2 Spontaneous R-parity violation

As we saw earlier, in order to avoid a long range B − L force, the sneutrino must acquire

a VEV. The consequences of this are very similar to those in the minimal supersymmetric

B − L model [84] and we briefly review them here.

The first and most obvious of these consequences is that R-parity is spontaneously bro-

ken. This induces a mixing between SUSY and non-SUSY fields with the same quantum

numbers: neutralinos with neutrinos, charginos with charged leptons, sneutrinos with neu-

tral Higgs, and charged sleptons with charged Higgs. Typically, the most important of

these mixings proceeds through the neutrino Yukawa coupling in the superpotential once

the right-handed sneutrino acquires a VEV, and one obtains

W ⊃ 1√
2
YνvRL̂ Ĥu, (4.28)

which is the so-called bilinear R-parity violating term usually referred to as µ′. This term

also induces a VEV for the left-handed sneutrino which leads to various mixing terms of

gauge coupling strength such as 1
2
g1B̃νvL and gLB̃LνvL, where B̃ and B̃L are the hyper-

charge and lepton number gauginos, respectively. The size of R-parity violation is related

to the neutrino sector and is therefore small. Phenomenologically, this means that SUSY

processes proceed as if R-parity is conserved except for the decay of the lightest super-

symmetric particle (LSP), which can now decay into SM states. More specifically, SUSY

particles are still pair produced. For specific decay channels for a given LSP, see Ref. [95].

A further interesting consequence is that a sizable VEV can only be realized for one
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generation of right-handed sneutrinos. This means that lepton number is broken by one

unit only in one generation, and it is only the corresponding generation of right-handed

neutrinos which attains a TeV scale mass; the other two right-handed, or sterile, neutrinos

attain sub-eV masses [96, 97, 98]. This has important consequences for cosmology in the

form of dark radiation in the early universe and for neutrino oscillation anomalies.

4.3 Dark matter candidates

After symmetry breaking, the lightest leptobaryon is stable due to the remnant Z2 sym-

metry, as discussed earlier. This particle must be neutral and could play the role of dark

matter. Furthermore, unlike in R-parity conservation, the lightest leptobaryon can be either

a fermion or a scalar. The best candidates are the X̂ and X̂c superfields since they do not

couple to the Z. In this study, we assume the lightest leptobaryon is the fermionic compo-

nent of X̂ and X̂c, whose Dirac spinor we refer to as X̃ , and focus on its properties. It is

also interesting to note that because the mass of X̃ is given by the VEV of S2, it is auto-

matically at the SUSY scale, and therefore like a weakly interacting massive particle. This

would not be true if its mass was simply a parameter in the superpotential whose magnitude

would be arbitrary. Of course, there is a trade-off here with the µ-type problem associated

with the µBL parameter.

The fermionic dark matter candidate can annihilate into two fermions through the neu-

tral gauge bosons present in the theory:

¯̃XX̃ → Zi → f̄f . (4.29)

The relevant interactions in this case are

−L = gB
¯̃Xγµ (−B2PL +B1PR)ZBµX̃ + gL

¯̃Xγµ (−L2PL + L1PR)ZLµX̃ , (4.30)

which in the physical basis reads as

−L = gB
¯̃Xγµ (C11PL + C12PR)Z1µX̃ + gB

¯̃Xγµ (C21PL + C22PR)Z2µX̃ , (4.31)
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where

C11 = −B2 cos θBL +
gL
gB
L2 sin θBL , (4.32)

C12 = B1 cos θBL −
gL
gB
L1 sin θBL , (4.33)

C21 = −B2 sin θBL −
gL
gB
L2 cos θBL , (4.34)

C22 = B1 sin θBL +
gL
gB
L1 cos θBL . (4.35)

Assuming the contribution from Z1 dominates, we find an annihilation cross section (see

Appendix G)

σv =
∑
q

1

36πs

√
1− 4m2

q

s

g4
BC̃

(s−M2
Z1

)2 + Γ2
Z1
M2

Z1

, (4.36)

where

C̃ =
[
(C2

11 + C2
12)(s+ 2m2

q)(s−M2
X̃

) + 6C11C12M
2
X̃

(s+ 2m2
q)
]

cos2 θBL . (4.37)

In the nonrelativistic limit, the cross section is given by

(σv)NR =
∑
q

1

24π

√
1− m2

q

M2
X̃

g4
BC

2(2M2
X̃

+m2
q)

(4M2
X̃
−M2

Z1
)2 + Γ2

Z1
M2

Z1

, (4.38)

where we have denoted

C = (C11 + C12) cos θBL . (4.39)

In the present epoch the energy density of the relic dark matter particles X̃ would be

ΩX̃h
2 ' xf√

g∗ σ0MP

(1.07× 109)

GeV
. (4.40)

We adopt the value Ωobs
DMh

2 = 0.1199 ± 0.0027 [99]. The freeze-out temperature xf =
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MX̃/Tf is then given by

xf = ln

(
0.038 gMPMX̃σ0√

g∗

)
− 1

2
ln

[
ln

(
0.038 gMPMX̃σ0√

g∗

)]
, (4.41)

where g is the number of internal degrees of freedom (in our case g = 4), g∗ is the effective

number of relativistic degrees of freedom evaluated around the freeze-out temperature, MP

is the Planck mass, and σv = σ0 + σ1v
2.

The direct detection also proceeds through the Zi:

X̃N → Zi → X̃N , (4.42)

and the spin-independent nucleon-dark matter cross section is then given by

σSI =
1

4π

M2
X̃
M2

N

(MX̃ +MN)2

g4
B

M4
Z1

C2 , (4.43)

assuming that the dominant contribution comes from the Z1 gauge boson. Because both

the dark matter annihilation and direct detection proceed through Z1, they are intimately

related to each other. Specifically, once one determines the parameters that yield the correct

relic density for a given dark matter mass, there are no free parameters left to hide it from

direct detection. Keeping this in mind, we present the predictions for the direct detection

experiments.

In Fig. 4.1 we show the values for the spin-independent cross section versus the dark

matter mass when C = 1, 0.1 ≤ gB ≤ 0.3, 2.5 TeV ≤ MZ1 ≤ 5 TeV, and assuming that

the relic density is in the range 0.11 < ΩX̃h
2 < 0.13. One can appreciate in Fig. 4.1 that

the allowed solutions are below the XENON100 bounds [100], but could be tested in future

dark matter experiments such as XENON1T or LUX.

In Fig. 4.2 we show some solutions when the mass of the new lightest neutral gauge

boson is 2, 3, or 4 TeV. One can see that there is no need to be very close to the resonance

to achieve the required cross section for the relic density.
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Figure 4.1: Predictions for the elastic nucleon-dark matter cross section for different values
of the dark matter mass when 0.11 < ΩX̃h

2 < 0.13.

1000 1200 1400 1600 1800 2000
0.10

0.15

0.20

0.25

0.30

MX
� HGeVL

g B

0.11 < WX
� h2

< 0.13

MZ1
= 3 TeV

MZ1
= 2 TeV

MZ1
= 4 TeV

Figure 4.2: Allowed values for the gauge coupling and the dark matter mass when 0.11 <
ΩX̃h

2 < 0.13 and MZ1 = 2, 3, 4 TeV.
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4.4 Summary and discussions

In this article we have presented the simplest supersymmetric extension of the model pro-

posed in Ref. [88] where baryon and lepton number are local symmetries. In this context,

the baryonic and leptonic gauge symmetries are broken at the SUSY scale and the proton

is stable.

One of the main predictions of this theory is thatR-parity must be spontaneously broken

in the MSSM sector because the right-handed sneutrino VEVs are needed to break the

remnant local U(1)B−L that results from the VEVs of S1 and S2. Even though R-parity

is broken, the lightest leptobaryon is stable and can be a cold dark matter candidate. The

dark matter candidate can either be the spin one-half or spin zero SM singlet leptobaryon;

we have focused on the former in this paper. It furthermore has baryon and lepton number,

and therefore couples to the two Z ′s in the model.

There are many interesting predictions for the Large Hadron Collider searches in this

theory. SinceR-parity is broken in the MSSM sector, we will have lepton number violating

signatures at the LHC. For example, one can have exotic channels with four leptons and

four jets where three of the leptons have the same electric charge [95, 101]. On the other

hand, there is a stable dark matter candidate in the theory which can be produced through

the new neutral gauge bosons. Therefore, one can also expect signatures with missing

energy at the LHC. This theory provides a simple example of very exotic supersymmetric

signatures at colliders, since one can have the simultaneous presence of R-parity violating

and missing energy signatures at the LHC.
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Chapter 5

Standard model with gauged baryon,
lepton and flavor symmetries

We propose an extension of the standard model in which baryon number, lepton number,

and the flavor group are spontaneously broken local gauge symmetries. The anomalies

are cancelled by including leptobaryonic and flavor-triplet fields with appropriate quantum

numbers. The model contains a dark matter candidate, generates masses for the neutrinos,

and does not suffer from dangerous low-dimensional baryon number violating operators

inducing proton decay. It also has the potential to solve the flavor puzzle. We discuss

the Lagrangian of the theory, the symmetry breaking mechanism, experimental constraints,

and possible signatures at the LHC.

5.1 Introduction

The standard model has been providing an extremely successful description of our world.

However, despite its undisputable virtues, it suffers from a variety of issues enumerated in

Chapter 1. Apart from experiencing the hierarchy problem, it does not explain the existence

of dark matter and neutrino masses, requires a desert between the electroweak scale and the

GUT scale to be consistent with experimental limits on proton decay, exhibits the strong

CP problem, provides no explanation for the hierarchical pattern of Yukawas, and much

more. All this suggests that the standard model by itself is incomplete. Many extensions

have been proposed, each having its advantages, but so far none of the new physics models

have been able to successfully explain all issues simultaneously.
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It has recently been shown that theories with gauged baryon and lepton numbers are

not plagued with dimension four and five baryon number violating operators responsible

for proton decay [88, 89, 90, 102]. Anomaly cancellation in those theories requires in-

troducing a set of new fields: a sequential fourth generation [89, 102], vector-like fourth

generation [90], or vector-like leptobaryons [88]. The models with a fourth generation are

in tension with experiments either because of the nonperturbativity of the Yukawa cou-

plings [89], or because of the suppression in the H → γγ decay rate [103, 104]. This

leaves the model presented in [88] as the most appealing non-supersymmetric extension of

the standard model with baryon and lepton numbers gauged.

At the same time, much progress has been made in understanding flavor symmetries.

In particular, models with gauged flavor symmetries were brought back into attention in

[105] by constructing a minimal anomaly-free extension of the standard model of this type.

The cancellation of anomalies was obtained by introducing a set of fermionic fields which

are vector-like with respect to the flavor gauge group. A more detailed phenomenological

study of this model was carried out in [106]. An interesting property of such theories is that

spontaneous flavor symmetry breaking, driven by the flavon fields, is capable of explaining

the hierarchy of the standard model Yukawas through the appropriate shape of the flavon

potential [107].

In this thesis we propose a model in which all the baryon, lepton, and flavor symmetries

are gauged. We call this model the BLFSM. Our motivation is to construct a consistent

theory which has an appealing dark matter candidate, contains a mechanism for generating

neutrino masses, does not exhibit proton decay, and within which the hierarchical pattern

of Yukawas can be understood. We are not concerned with the hierarchy problem, since it

can be alleviated by supersymmetrizing our model, which itself would be an extension of

the model presented in [108], but with baryon and lepton numbers gauged in addition to

the flavor group.
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5.2 The model

Our model is based on the gauge group

SU(3)c × SU(2)L × U(1)Y × U(1)B × U(1)L

× SU(3)QL
× SU(3)uR × SU(3)dR × SU(3)lL × SU(3)νR × SU(3)eR ,

where the second line represents the gauged flavor symmetries of the standard model aug-

mented by a right-handed neutrino. The minimal particle content of the model, along with

the quantum numbers of the fields, is presented in Table 5.1.

The leptobaryonic fermion fields ΨL, ΨR, ηR, ηL, XR, XL are introduced in order

to cancel the gauge anomalies involving U(1)B and U(1)L. The requirement of anomaly

cancellation imposes the following conditions on the baryon and lepton charges of the new

fields:

B2 −B1 = 3 , L2 − L1 = 3 . (5.1)

We note that a similar particle content was introduced in Ref. [88] when gauging only

baryon and lepton numbers. For consistency, we stick to their notation for some of the

fields and couplings, but we do not make the simplifying assumption that B1 = −B2 and

L1 = −L2. On the contrary, we focus specifically on the case B1 6= −B2 and L1 6= −L2 in

order to avoid Majorana mass terms for XR and XL. The new Higgs field SBL has to have

baryon and lepton number equal to −3 in order to generate vector-like masses for the new

fermions. An additional Higgs field SL is required to realize the type I seesaw mechanism

for neutrino masses.

The simplest way to cancel gauge flavor anomalies in the quark sector is to add the

fermionic fields Ψu
R, Ψd

R, Ψu
L, Ψd

L. This unique choice of fields (chiral with respect to the

standard model gauge group and vector-like with respect to the flavor gauge symmetry)

was proposed in Ref. [105]. We include an additional set of fields (Ψν
R, Ψe

R, Ψν
L, Ψe

L) to

cancel the gauge anomalies in the lepton sector.

The flavor symmetry breaking occurs through the scalar potential. The quark flavor

gauge group SU(3)QL
× SU(3)uR × SU(3)dR is broken spontaneously by the vacuum
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Field SU(3)c SU(2)L U(1)Y U(1)B U(1)L 3 under 3̄ under

QL 3 2 1/6 1/3 0 SU(3)QL
–

uR 3 1 2/3 1/3 0 SU(3)uR –

dR 3 1 −1/3 1/3 0 SU(3)dR –

lL 1 2 −1/2 0 1 SU(3)lL –

νR 1 1 0 0 1 SU(3)νR –

eR 1 1 −1 0 1 SU(3)eR –

H 1 2 1/2 0 0 – –

ΨL 1 2 1/2 B1 L1 – –

ΨR 1 2 1/2 B2 L2 – –

ηR 1 1 1 B1 L1 – –

ηL 1 1 1 B2 L2 – –

XR 1 1 0 B1 L1 – –

XL 1 1 0 B2 L2 – –

SBL 1 1 0 −3 −3 – –

SL 1 1 0 0 −2 – –

Ψu
R 3 1 2/3 1/3 0 SU(3)QL

–

Ψd
R 3 1 −1/3 1/3 0 SU(3)QL

–

Ψu
L 3 1 2/3 1/3 0 SU(3)uR –

Ψd
L 3 1 −1/3 1/3 0 SU(3)dR –

Ψν
R 3 1 2/3 0 1 SU(3)lL –

Ψe
R 3 1 −1/3 0 1 SU(3)lL –

Ψν
L 3 1 2/3 0 1 SU(3)νR –

Ψe
L 3 1 −1/3 0 1 SU(3)eR –

Yu 1 1 0 0 0 SU(3)uR SU(3)QL

Yd 1 1 0 0 0 SU(3)dR SU(3)QL

Yν 1 1 0 0 0 SU(3)νR SU(3)lL

Ye 1 1 0 0 0 SU(3)eR SU(3)lL

Table 5.1: Matter fields of the minimal BLFSM.
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expectation values (VEVs) of the scalar fields Yu and Yd, while the lepton flavor gauge

symmetry SU(3)lL × SU(3)νR × SU(3)eR is broken by the VEVs of Yν and Ye. In order

for the model to explain the hierarchy of standard model Yukawas one needs to include in

the flavon potential, in addition to the Higgs and Yukawa fields, additional scalar fields Z

being triplets under each of the individual flavor groups, as discussed in Section 5.3.

The Lagrangian of the theory is given by

L = Lkin + LBLint + LYint − V (H,Y, Z) , (5.2)

where Lkin describes the dynamics of the fields, LBLint corresponds to the interactions in the

leptobaryonic sector with the additional Majorana mass term for the right-handed neutrino,

LYint consists of Yukawa interactions and mass terms, and V (H, Y, Z) is the scalar potential.

In particular:

LBLint = h1Ψ̄LHηR + h2Ψ̄LH̃XR + h3Ψ̄RHηL + h4Ψ̄RH̃XL

+λ1Ψ̄LΨRSBL + λ2η̄RηLSBL + λ3X̄RXLSBL + λ4νRνRSL + h.c. , (5.3)

LYint = λuQ̄LH̃Ψu
R + λ′uΨ̄

u
LYuΨ

u
R +MuΨ̄

u
LuR + λdQ̄LHΨd

R

+λ′dΨ̄
d
LYdΨ

d
R +MdΨ̄

d
LdR + λν l̄LH̃Ψν

R + λ′νΨ̄
ν
LYνΨ

ν
R

+MνΨ̄
ν
LνR + λel̄LHΨe

R + λ′eΨ̄
e
LYeΨ

e
R +MeΨ̄

e
LeR + h.c. , (5.4)

and the potential V (H,Y, Z), invariant under the flavor group, is a function of the Higgs

and Yukawa fields, as well as other scalar fields in some representations of the flavor group

needed to produce a hierarchical pattern of the standard model Yukawa couplings.

5.3 Symmetry breaking

As mentioned in the previous section, the VEVs of the Yukawa fields, 〈Y 〉, spontaneously

break the flavor symmetry. The values of those VEVs are governed by the shape of the

flavor invariant potential V (H,Y, Z). The standard model Yukawa interactions are obtained
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by integrating out the new fermions from the Lagrangian (5.4):

yu = V †q
λuMu

λ′u〈Yu〉
, yd =

λdMd

λ′d〈Yd〉
, yν = V †l

λνMν

λ′ν〈Yν〉
, ye =

λeMe

λ′e〈Ye〉
(5.5)

and follow an inverted hierarchy pattern [105]. In Eq. (5.5) the unitary matrices Vq and Vl

arise after a flavor transformation diagonalizing Yd and Ye, respectively. This seesaw-like

mechanism for the standard model Yukawa couplings results in the suppression of flavor

and electroweak precision constraints. The mass scale for the flavor gauge bosons can be

as low as the TeV scale.

Most of the literature regarding dynamical flavor symmetry breaking concentrates only

on the case of a global flavor symmetry and is confined to the quark sector. In those mod-

els the standard model Yukawa couplings are generated from dimension-five operators and

follow the same hierarchy pattern as the VEVs of the Yukawa fields. It was shown in

Ref. [109] that the most general renormalizable flavor invariant potential built from Yu and

Yd after spontaneous symmetry breaking can only give the tree-level vacuum configuration

〈Yq〉 ∼ diag(0, 0, vq), where q = u, d. This was proven to hold to all orders in pertur-

bation theory, also at the nonrenormalizable level, in Ref. [110]. The same paper shows

that adding new scalar fields in nontrivial representations of the flavor group can yield a

hierarchical Yukawa structure of the form 〈Yq〉 ∼ vq diag(ε1, ε2, 1), where ε1 � ε2 � 1.

Those ideas were extended to the full quark sector in Ref. [107], explaining not only the

quark mass hierarchy, but also the Cabibbo-Kobayashi-Maskawa mixing and the weak CP

violating phase. All this was accomplished at the cost of introducing four new scalar fields

in the following representations of SU(3)QL
× SU(3)uR × SU(3)dR : ZQ1 ∼ (3, 1, 1),

ZQ2 ∼ (3, 1, 1), Zu ∼ (1, 3, 1), and Zd ∼ (1, 1, 3).

In our model, and in the case of spontaneously broken gauged flavor symmetries in

general, the construction of a flavor invariant potential providing a given Yukawa pattern

proceeds along similar lines. However, contrary to models with a global flavor symmetry,

for which a hierarchical pattern of the Yukawa VEVs corresponds to a hierarchical pattern

of standard model Yukawas, we require an inverted hierarchy of the Yukawa VEVs to

emerge.
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The first step to explaining the inverted hierarchy of the Yukawa VEVs in models with

gauged flavor symmetry in the quark sector was provided in Ref. [111], where an explicit

formula for the flavor part of the scalar potential V (Y ) is given:

V (Y ) = −m2
u Tr

(
Y †uYu

)
+ λu1 Tr

(
Y †uYu

)2
+ λu2 Tr

(
Y †uYuY

†
uYu

)
+ det (Yu)

−m2
d Tr

(
Y †d Yd

)
+ λd1 Tr

(
Y †d Yd

)2

+ λd2 Tr
(
Y †d YdY

†
d Yd

)
+ det (Yd)

+
[
m2
ud Tr

(
Y †uYd

)
+ λijkl Tr

(
Y †i YjY

†
k Yl

)
+ λ′ijkl Tr

(
Y †i Yj

)
Tr
(
Y †k Yl

)
+ εijkYiYjYk + h.c.

]
. (5.6)

This potential has a minimum at 〈Yq〉 = diag(mq, 0, 0), where q = u, d. The authors

suggest that an inverse hierarchy pattern with all diagonal elements nonzero might be ac-

complished after including contributions from higher dimensional operators.

Their speculation seems very well-founded. Taking into account dimension-six op-

erators would correspond, at the renormalizable level, to including new scalar fields in

the potential involving appropriate interactions with the Yukawa fields. One could use

the known results from spontaneous breaking of global flavor symmetry and construct

a potential which would give an inverted hierarchy of the Yukawa VEVs in the case of

our model. In order to accomplish this, one most likely needs six new scalar fields,

three in nontrivial representations of SU(3)QL
× SU(3)uR × SU(3)dR : ZQ ∼ (3, 1, 1),

Zu ∼ (1, 3, 1), Zd ∼ (1, 1, 3), and the other three in the following representations of

SU(3)lL × SU(3)νR × SU(3)eR : Zl ∼ (3, 1, 1), Zν ∼ (1, 3, 1), Ze ∼ (1, 1, 3). Further-

more, to reproduce not only the standard model Yukawa hierarchy, but also the nonzero

mixing and phases in the CKM matrix, additional fields would have to be included. We

leave a detailed investigation of this aspect for future work.

5.4 Leptobaryonic dark matter

The dark matter candidate in our model is the fermionic particle X . The calculations

of the relic density and direct detection cross section are analogous to those in Ref. [3],

assuming that X couples dominantly to the ZB gauge boson. This analysis was the subject

of Section 4.3 of this thesis. The updated limits from the LUX experiment [112] are more
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constraining, but there is still a large potion of parameter space available. We recall that

in the dark matter analysis we strongly rely on the assumption B1 6= −B2. Otherwise,

the annihilation cross section would be velocity suppressed and it would not be possible to

keep it in agreement with observational constraints in a non-fine-tuned way.

5.5 Phenomenology and constraints

The phenomenology of the quark flavor sector in models with just the flavor symmetry

gauged was analyzed in great detail in Refs. [105, 106]. Their results are applicable to

our model with the additionally gauged baryon and lepton numbers without any substantial

modifications, since the quantum numbers B and L we chose for the flavor-triplet fields in

order to cancel the gauge anomalies allow for the same couplings to quarks as in Ref. [105].

The bounds originate mainly from mixing effects between the standard model and new

fermions. Although the flavor and electroweak precision constraints are greatly reduced by

the seesaw-like mechanism for the standard model Yukawas, they are not absent, especially

for the third generation. The relevant processes and precision observables considered in

Ref. [105] affected by the mixing are Z → bLb̄L, electroweak oblique parameters, b→ sγ,

and Vtb. Other bounds come from direct searches. One of the most striking signatures of

the model consists of six bottom quarks in the final state. Ref. [106] completes this study

by concentrating on a precise analysis of flavor constraints, including those coming from

tree-level heavy gauge boson exchanges. The lepton flavor sector still needs to be analyzed.

A phenomenological investigation of the leptobaryonic sector has not been carried out

yet as well, even in models with only baryon and lepton numbers gauged. However, we

note that for an extension of the standard model with just lepton number gauged such an

analysis was performed in Ref. [113]. The authors study the phenomenology of the exotic

lepton sector and its effects on Higgs decay rates. One of the unique signatures of their

model is a four-lepton final state with the new gauge boson resonance in two of the leptons.

It would be interesting to extend their results to the case in which baryon number is gauged

as well. We leave such an investigation for future work.
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5.6 Conclusions

We have constructed a model (BLFSM) based on the standard model gauge group extended

by gauging baryon and lepton numbers, as well as flavor symmetries. The BLFSM provides

solutions to some of the most important problems of the standard model, while at the same

time not being heavily constrained by experiments. Some of its appealing features are the

following:

→ The BLFSM contains a natural dark matter candidate required for the theory to be

anomaly-free. A large region of parameter space is consistent with current dark

matter experimental constraints.

→ The model incorporates the type I seesaw mechanism for neutrino masses.

→ Proton decay is forbidden by gauge symmetry. Processes violating baryon and lepton

number are strongly suppressed.

→ Spontaneous breaking of gauged flavor symmetry through the appropriate shape of

the scalar potential can provide a dynamical mechanism generating the hierarchy of

standard model Yukawa couplings.

Future work on this model includes constructing the flavor invariant scalar potential which,

after spontaneous breaking of the flavor symmetry, yields an inverted hierarchy for the vac-

uum expectation values of the Yukawa fields, thus explaining the standard model Yukawa

hierarchy. It would also be interesting to analyze the LHC constraints on the leptobaryonic

and lepton flavor sectors of the theory and propose other specific signatures to look for in

experimental searches.
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Chapter 6

Thesis summary

This thesis investigates models beyond the standard model which contain new processes

violating baryon number but are not plagued by tree-level proton decay. The main body of

the thesis is composed of three published papers: Refs. [1], [2], and [3], which constitute

Chapters 2, 3, and 4, respectively. Chapter 5 discusses an unpublished idea involving an

extension of the standard model with gauged baryon number, lepton number, and flavor

symmetry.

In Chapter 2 we consider simple renormalizable models containing new scalars respon-

sible for baryon number violation, in which proton decay does not occur at tree level. We

investigate models where the new scalar fields couple to quark or lepton bilinear terms in a

gauge invariant way. The sources of baryon number violation are the trilinear and quartic

scalar interactions. We identify nine such models and briefly discuss their properties, but

concentrate our analysis on the phenomenological aspects of the model containing scalars

in the following representations of the standard model gauge group: X1 = (6̄, 1,−1/3) and

X2 = (6̄, 1, 2/3). We calculate the neutron-antineutron oscillation frequency in this model

using the vacuum insertion approximation, discuss the generation of cosmological baryon

number, compute the electric dipole moment of the neutron, and analyze constraints from

neutral kaon mixing. We show that in this model the neutron-antineutron oscillation signal

is potentially detectable by present day experiments, with the mass of the lighter scalar at

the TeV scale and the mass of the heavier scalar being as high as at the grand unification

scale. Nevertheless, in such a case the constraints on flavor changing neutral currents and

the electric dipole moment of the neutron require some very small Yukawa couplings.
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In Chapter 3 we concentrate on finding the minimal renormalizable models with just a

single scalar leptoquark added to the standard model particle spectrum. As in the previous

case, we impose the condition that proton decay not be induced in perturbation theory.

There are only two models that fulfill our requirements and contain the scalar leptoquark

in the following gauge representations: X = (3, 2, 7/6) and X = (3, 2, 1/6). We perform

a detailed analysis of the phenomenology of the first model since it exhibits a top quark

mass enhancement of the µ → eγ branching ratio. Our study includes the calculation of

the µ → eγ decay rate, the µ → e conversion rate, and the electric dipole moment of the

electron. We show the potential limits which current and future experiments could place

on some of the couplings involving the scalar leptoquark. We concentrate on the region

of parameter space for which the loop contribution to the charged lepton mass matrix does

not overwhelm the tree-level part. Given this naturalness constraint, we find that current

experiments are sensitive to leptoquark masses on the order of a hundred TeV, whereas

future experiments may push the sensitivity into the several hundred TeV mass region.

The model in its original form also predicts baryon number violating nonrenormalizable

dimension-five operators triggering proton decay. We show that imposing an appropriate

discrete symmetry forbids these dimension-five operators.

In Chapter 4 we propose a simple extension of the minimal supersymmetric standard

model, in which baryon and lepton numbers are local gauge symmetries spontaneously

broken at the supersymmetry scale. The gauge anomalies are cancelled by adding a set of

leptobaryonic chiral superfields. The theory provides a natural explanation for the absence

of proton decay. It also predicts that R-parity must be spontaneously broken. However, de-

spite R-parity nonconservation, the remnant Z2 symmetry from the breaking of the baryon

and lepton symmetries ensures that the lightest leptobaryon is stable and may serve as a

good dark matter candidate. We discuss the spectrum of the theory, the properties of the

dark matter candidate, and the predictions for direct detection experiments. A large region

of parameter space is consistent with current dark matter experimental constraints. This

model provides concrete exotic supersymmetric signatures associated with having the si-

multaneous presence of R-parity violating interactions and missing energy signals at the

Large Hadron Collider.
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In Chapter 5 we describe a non-supersymmetric extension of the standard model with

an even larger gauge sector, which now includes gauged baryon, lepton, and flavor symme-

tries. New leptobaryonic and flavor-triplet fields are required to cancel the anomalies. This

theory has a number of virtues. As the model described in Chapter 4, it contains a natural

leptobaryonic dark matter candidate required for the theory to be anomaly-free. It realizes

the type I seesaw mechanism for neutrino masses. Baryon and lepton number violating

processes are heavily suppressed and proton decay is totally forbidden by gauge symmetry.

In addition to inheriting those appealing properties, this theory has the potential to explain

the hierarchical structure of the standard model Yukawas through the spontaneous breaking

of the gauge flavor symmetry by the vacuum expectation values of the Yukawa fields. A

nice feature of the model is that the seesaw-like mechanism for the standard model Yukawa

couplings offers a suppression of experimental constraints in the flavor sector. Directions

for future work are discussed.
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Appendix A

Effective Hamiltonian for low energy
|∆B| = 2 processes

The process leading to neutron-antineutron oscillations in model 1 is shown in Fig. 2.5.

The relevant Feynman rules derived from the Lagrangian (2.2) are the following:

d 

d 

X 2 
= −ig11

2

u 

d 

X 1 
= −ig′11

1

X 

X 

X 2 
ii’ 

1 
jj’ 

1 

kk’ 

= 2iλ εijkεi′j′k′
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The low energy effective Hamiltonian responsible for the |∆B| = 2 process is

−iHeff =
−i λ (g′11

1 )
2
g11

2

8(−M2
1 )(−M2

1 )(−M2
2 )
εijkεi′j′k′

(
dα̇Rid

β̇
Ri′ + dα̇Ri′d

β̇
Ri

)
εα̇β̇

×
(
uγ̇Rjd

δ̇
Rj′ + uγ̇Rj′d

δ̇
Rj

)
εγ̇δ̇

(
uλ̇Rkd

χ̇
Rk′ + uλ̇Rk′d

χ̇
Rk

)
ελ̇χ̇ + h.c. , (A.1)

where Latin letters denote color indices and dotted Greek letters indicate spinor indices.

Writing out all the terms in Eq. (A.1) separately, the effective Hamiltonian takes the form

Heff = −λ (g′11
1 )

2
g11

2

8M4
1M

2
2

εijk εi′j′k′ εα̇β̇ εγ̇δ̇ ελ̇χ̇

×
(
dα̇Rid

β̇
Ri′u

γ̇
Rjd

δ̇
Rj′u

λ̇
Rkd

χ̇
Rk′ + dα̇Rid

β̇
Ri′u

γ̇
Rjd

δ̇
Rj′u

λ̇
Rk′d

χ̇
Rk + dα̇Rid

β̇
Ri′u

δ̇
Rj′d

γ̇
Rju

λ̇
Rkd

χ̇
Rk′

+ dα̇Rid
β̇
Ri′u

δ̇
Rj′d

γ̇
Rju

λ̇
Rk′d

χ̇
Rk + dα̇Ri′d

β̇
Riu

γ̇
Rjd

δ̇
Rj′u

λ̇
Rkd

χ̇
Rk′ + dα̇Ri′d

β̇
Riu

γ̇
Rjd

δ̇
Rj′u

λ̇
Rk′d

χ̇
Rk

+ dα̇Ri′d
β̇
Riu

δ̇
Rj′d

γ̇
Rju

λ̇
Rkd

χ̇
Rk′ + dα̇Ri′d

β̇
Riu

δ̇
Rj′d

γ̇
Rju

λ̇
Rk′d

χ̇
Rk

)
+ h.c. . (A.2)

This expression can be rewritten as

Heff = −λ (g′11
1 )

2
g11

2

4M4
1M

2
2

εijk εi′j′k′ εα̇β̇ εγ̇δ̇ ελ̇χ̇

×
(
dα̇Rid

β̇
Ri′u

γ̇
Rjd

δ̇
Rj′u

λ̇
Rkd

χ̇
Rk′ + dα̇Ri′d

β̇
Riu

γ̇
Rjd

δ̇
Rj′u

λ̇
Rkd

χ̇
Rk′

+ dα̇Rid
β̇
Ri′u

γ̇
Rj′d

δ̇
Rju

λ̇
Rkd

χ̇
Rk′ + dα̇Rid

β̇
Ri′u

γ̇
Rjd

δ̇
Rj′u

λ̇
Rk′d

χ̇
Rk

)
+ h.c.

= −λ (g′11
1 )

2
g11

2

4M4
1M

2
2

dα̇Rid
β̇
Ri′u

γ̇
Rjd

δ̇
Rj′u

λ̇
Rkd

χ̇
Rk′ εα̇β̇ εγ̇δ̇ ελ̇χ̇

× (εijk εi′j′k′ + εi′jk εij′k′ + εij′k εi′jk′ + εijk′ εi′j′k) + h.c. , (A.3)

which is equivalent to Eq. (2.12).
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Appendix B

|∆m| in the vacuum insertion
approximation

Using Eq. (2.12), we can write the matrix element (2.11) as

〈n̄|Heff |n〉 = −λ (g′11
1 )

2
g11

2

4M4
1M

2
2

εα̇β̇ εγ̇δ̇ ελ̇χ̇ (εijk εi′j′k′ + εi′jk εij′k′ + εij′k εi′jk′ + εijk′ εi′j′k)

× 〈n̄|dα̇Ridβ̇Ri′uγ̇Rjdδ̇Rj′uλ̇Rkdχ̇Rk′|n〉 . (B.1)

Applying the vacuum insertion approximation and keeping track of the minus signs when

interchanging two fermionic fields gives

〈n̄|Heff |n〉 = −λ (g′11
1 )

2
g11

2

4M4
1M

2
2

εα̇β̇ εγ̇δ̇ ελ̇χ̇ (εijk εi′j′k′ + εi′jk εij′k′ + εij′k εi′jk′ + εijk′ εi′j′k)

×
[
− 〈n̄|dα̇Ridβ̇Ri′uγ̇Rj|0〉〈0|dδ̇Rj′dχ̇Rk′uλ̇Rk|n〉+ 〈n̄|dα̇Ridβ̇Ri′uλ̇Rk|0〉〈0|dδ̇Rj′dχ̇Rk′uγ̇Rj|n〉

− 〈n̄|dδ̇Rj′dχ̇Rk′uγ̇Rj|0〉〈0|dα̇Ridβ̇Ri′uλ̇Rk|n〉+ 〈n̄|dδ̇Rj′dχ̇Rk′uλ̇Rk|0〉〈0|dα̇Ridβ̇Ri′uγ̇Rj|n〉

+ 〈n̄|dδ̇Rj′dβ̇Ri′uγ̇Rj|0〉〈0|dα̇Ridχ̇Rk′uλ̇Rk|n〉 − 〈n̄|dδ̇Rj′dβ̇Ri′uλ̇Rk|0〉〈0|dα̇Ridχ̇Rk′uγ̇Rj|n〉

+ 〈n̄|dα̇Ridδ̇Rj′uγ̇Rj|0〉〈0|dβ̇Ri′dχ̇Rk′uλ̇Rk|n〉 − 〈n̄|dα̇Ridδ̇Rj′uλ̇Rk|0〉〈0|dβ̇Ri′dχ̇Rk′uγ̇Rj|n〉

+ 〈n̄|dα̇Ridχ̇Rk′uγ̇Rj|0〉〈0|dδ̇Rj′dβ̇Ri′uλ̇Rk|n〉 − 〈n̄|dα̇Ridχ̇Rk′uλ̇Rk|0〉〈0|dδ̇Rj′dβ̇Ri′uγ̇Rj|n〉

+ 〈n̄|dχ̇Rk′dβ̇Ri′uγ̇Rj|0〉〈0|dδ̇Rj′dα̇Riuλ̇Rk|n〉 − 〈n̄|dχ̇Rk′dβ̇Ri′uλ̇Rk|0〉〈0|dδ̇Rj′dα̇Riuγ̇Rj|n〉
]
.

(B.2)
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Symmetry considerations yield

〈0|dα̇Ridβ̇Rjuγ̇Rk|n〉 =
1

12
εijk ξ(p)

[
εα̇γ̇uβ̇R(p) + εβ̇γ̇uα̇R(p)

]
,

〈n̄|dα̇Ridβ̇Rjuγ̇Rk|0〉 =
1

12
εijk ξ(p)

∗
[
εα̇γ̇vβ̇R(p) + εβ̇γ̇vα̇R(p)

]
, (B.3)

where p is the momentum of the neutron, while uR(p) and vR(p) are spinors. Comparing

those formulas with the following relation (see Ref. [59]):

εijkεα̇β̇〈0|uα̇Liuγ̇Lkdβ̇Lj|p(k)〉 = β(k)uγ̇L(k) (B.4)

(with the value of β calculated using lattice methods), and acting on both sides of Eq. (B.3)

with εijkεα̇β̇ , gives

ξ(p) = −2

3
β(p) . (B.5)

Therefore

〈n̄|dα̇Ridβ̇Ri′uγ̇Rj|0〉〈0|dδ̇Rj′dχ̇Rkuλ̇Rk′ |n〉

=
1

144
εii′jεj′kk′ |ξ(p)|2

[
εα̇γ̇vβ̇R(p) + εβ̇γ̇vα̇R(p)

] [
εδ̇λ̇uχ̇R(p) + εχ̇λ̇uδ̇R(p)

]
. (B.6)

The contribution of the first term in Eq. (B.2) contains the following factor:

εii′j εj′k′k (εijk εi′j′k′ + εi′jk εij′k′ + εij′k εi′jk′ + εijk′ εi′j′k)

= εii′j εijk εi′j′k′ εj′k′k + εii′j εi′jk εj′k′k εij′k′ + εii′j εi′jk′ εj′k′k εij′k + εii′j εijk′ εj′k′k εi′j′k

= (−2δi′k)(2δi′k) + (2δik)(2δik) + (2δik′)(−2δik′) + (−2δi′k′)(−2δi′k′) = 0 . (B.7)

Similarly, the contributions from all other terms in which a single matrix element contains

the pair of indices (i, i′), (j, j′), or (k, k′) vanish as well.
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This leaves us with

〈n̄|Heff |n〉 = −λ (g′11
1 )

2
g11

2

4M4
1M

2
2

εα̇β̇ εγ̇δ̇ ελ̇χ̇ (εijk εi′j′k′ + εi′jk εij′k′ + εij′k εi′jk′ + εijk′ εi′j′k)

×
[
〈n̄|dα̇Ridχ̇Rk′uγ̇Rj|0〉〈0|dδ̇Rj′dβ̇Ri′uλ̇Rk|n〉 − 〈n̄|dδ̇Rj′dβ̇Ri′uλ̇Rk|0〉〈0|dα̇Ridχ̇Rk′uγ̇Rj|n〉

+ 〈n̄|dχ̇Rk′dβ̇Ri′uγ̇Rj|0〉〈0|dδ̇Rj′dα̇Riuλ̇Rk|n〉 − 〈n̄|dα̇Ridδ̇Rj′uλ̇Rk|0〉〈0|dβ̇Ri′dχ̇Rk′uγ̇Rj|n〉
]
.

(B.8)

Using Eq. (B.6), the four terms in Eq. (B.8) can be calculated separately.

(1) 〈n̄|Heff |n〉1 = −λ (g′11
1 )

2
g11

2

4M4
1M

2
2

εα̇β̇ εγ̇δ̇ ελ̇χ̇ (εijk εi′j′k′ +εi′jk εij′k′ +εij′k εi′jk′ +εijk′ εi′j′k)

× 〈n̄|dα̇Ridχ̇Rk′uγ̇Rj|0〉〈0|dδ̇Rj′dβ̇Ri′uλ̇Rk|n〉

= −λ (g′11
1 )

2
g11

2

4M4
1M

2
2

εα̇β̇ εγ̇δ̇ ελ̇χ̇ (εijk εi′j′k′ +εi′jk εij′k′ +εij′k εi′jk′ +εijk′ εi′j′k)

× 1

144
εik′jεj′i′k|ξ(p)|2

[
εα̇γ̇vχ̇R(p) + εχ̇γ̇vα̇R(p)

] [
εδ̇λ̇uβ̇R(p) + εβ̇λ̇uδ̇R(p)

]
.

(B.9)

It is straightforward to show that

εik′jεj′i′k (εijk εi′j′k′ + εi′jk εij′k′ + εij′k εi′jk′ + εijk′ εi′j′k) = 72 . (B.10)

Using the property of the antisymmetric symbols, ελ̇α̇ελ̇β̇ = δα̇
β̇

, gives

εα̇γ̇vχ̇R(p)εδ̇λ̇uβ̇R(p)εα̇β̇εγ̇δ̇ελ̇χ̇ = −εα̇γ̇vχ̇R(p)εβ̇λ̇uδ̇R(p)εα̇β̇εγ̇δ̇ελ̇χ̇

=
1

2
εχ̇γ̇vα̇R(p)εδ̇λ̇uβ̇R(p)εα̇β̇εγ̇δ̇ελ̇χ̇ = εχ̇γ̇vα̇R(p)εβ̇λ̇uδ̇R(p)εα̇β̇εγ̇δ̇ελ̇χ̇ = vα̇R(p)εα̇β̇u

β̇
R(p) . (B.11)

All this yields

〈n̄|Heff |n〉1 = −3λ (g′11
1 )

2
g11

2

8M4
1M

2
2

|ξ(p)|2vα̇R(p)εα̇β̇u
β̇
R(p) . (B.12)
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(2) 〈n̄|Heff |n〉2 =
λ (g′11

1 )
2
g11

2

4M4
1M

2
2

εα̇β̇ εγ̇δ̇ ελ̇χ̇ (εijk εi′j′k′ + εi′jk εij′k′ + εij′k εi′jk′ + εijk′ εi′j′k)

× 1

144
εj′i′kεik′j|ξ(p)|2

[
εδ̇λ̇vβ̇R(p) + εβ̇λ̇vδ̇R(p)

] [
εα̇γ̇uχ̇R(p) + εχ̇γ̇uα̇R(p)

]
.

(B.13)
Using the relations:

εj′i′kεik′j (εijk εi′j′k′ + εi′jk εij′k′ + εij′k εi′jk′ + εijk′ εi′j′k) = 72 (B.14)

and

−εδ̇λ̇vβ̇R(p)εα̇γ̇uχ̇R(p)εα̇β̇εγ̇δ̇ελ̇χ̇ = −1

2
εδ̇λ̇vβ̇R(p)εχ̇γ̇uα̇R(p)εα̇β̇εγ̇δ̇ελ̇χ̇

= εβ̇λ̇vδ̇R(p)εα̇γ̇uχ̇R(p)εα̇β̇εγ̇δ̇ελ̇χ̇ = −εβ̇λ̇vδ̇R(p)εχ̇γ̇uα̇R(p)εα̇β̇εγ̇δ̇ελ̇χ̇ = vα̇R(p)εα̇β̇u
β̇
R(p) , (B.15)

we arrive at

〈n̄|Heff |n〉2 = −3λ (g′11
1 )

2
g11

2

8M4
1M

2
2

|ξ(p)|2vα̇R(p)εα̇β̇u
β̇
R(p) . (B.16)

(3) 〈n̄|Heff |n〉3 = −λ (g′11
1 )

2
g11

2

4M4
1M

2
2

εα̇β̇ εγ̇δ̇ ελ̇χ̇ (εijk εi′j′k′ +εi′jk εij′k′ +εij′k εi′jk′ +εijk′ εi′j′k)

× 1

144
εk′i′jεj′ik|ξ(p)|2

[
εχ̇γ̇vβ̇R(p) + εβ̇γ̇vχ̇R(p)

] [
εδ̇λ̇uα̇R(p) + εα̇λ̇uδ̇R(p)

]
.

(B.17)

In this case

εk′i′jεj′ik (εijk εi′j′k′ + εi′jk εij′k′ + εij′k εi′jk′ + εijk′ εi′j′k) = −72 (B.18)

and

−1

2
εχ̇γ̇vβ̇R(p)εδ̇λ̇uα̇R(p)εα̇β̇εγ̇δ̇ελ̇χ̇ = −εχ̇γ̇vβ̇R(p)εα̇λ̇uδ̇R(p)εα̇β̇εγ̇δ̇ελ̇χ̇

= −εβ̇γ̇vχ̇R(p)εδ̇λ̇uα̇R(p)εα̇β̇εγ̇δ̇ελ̇χ̇ = εβ̇γ̇vχ̇R(p)εα̇λ̇uδ̇R(p)εα̇β̇εγ̇δ̇ελ̇χ̇ = vα̇R(p)εα̇β̇u
β̇
R(p) , (B.19)

which gives

〈n̄|Heff |n〉3 = −3λ (g′11
1 )

2
g11

2

8M4
1M

2
2

|ξ(p)|2vα̇R(p)εα̇β̇u
β̇
R(p) . (B.20)
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(4) 〈n̄|Heff |n〉4 =
λ (g′11

1 )
2
g11

2

4M4
1M

2
2

εα̇β̇ εγ̇δ̇ ελ̇χ̇ (εijk εi′j′k′ +εi′jk εij′k′ +εij′k εi′jk′ +εijk′ εi′j′k)

× 1

144
εij′kεi′k′j|ξ(p)|2

[
εα̇λ̇vδ̇R(p) + εδ̇λ̇vα̇R(p)

] [
εβ̇γ̇uχ̇R(p) + εχ̇γ̇uβ̇R(p)

]
.

(B.21)

Again, it is easy to show that

εij′kεi′k′j (εijk εi′j′k′ + εi′jk εij′k′ + εij′k εi′jk′ + εijk′ εi′j′k) = −72 (B.22)

and

−εα̇λ̇vδ̇R(p)εβ̇γ̇uχ̇R(p)εα̇β̇εγ̇δ̇ελ̇χ̇ = εα̇λ̇vδ̇R(p)εχ̇γ̇uβ̇R(p)εα̇β̇εγ̇δ̇ελ̇χ̇

= εδ̇λ̇vα̇R(p)εβ̇γ̇uχ̇R(p)εα̇β̇εγ̇δ̇ελ̇χ̇ =
1

2
εδ̇λ̇vα̇R(p)εχ̇γ̇uβ̇R(p)εα̇β̇εγ̇δ̇ελ̇χ̇ = vα̇R(p)εα̇β̇u

β̇
R(p) , (B.23)

so that

〈n̄|Heff |n〉4 = −3λ (g′11
1 )

2
g11

2

8M4
1M

2
2

|ξ(p)|2vα̇R(p)εα̇β̇u
β̇
R(p) . (B.24)

Inserting relations (B.12), (B.16), (B.20), and (B.24) into Eq. (B.8) gives

|∆m| = |〈n̄|Heff |n〉| =
3λ|(g′11

1 )
2
g11

2 |
2M4

1M
2
2

|ξ(p)|2 = 2λβ2 |(g′11
1 )

2
g11

2 |
3M4

1M
2
2

, (B.25)

which is exactly Eq. (2.14).
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Appendix C

Baryon asymmetry

The diagrams responsible for generating baryon asymmetry in model 1 are shown below.

X 
2 

aa’ 

p 

X 
1 

gg’ 

X 
1 

bb’ 

p 

X 
1 

gg’ 

X 
1 

bb’ 

X’ 
2 

aa’ ~ ~ 

p 
X 

2 

aa’ 

q 

-p-q 

d 
R 

d 
R 

The relevant Feynman rules are listed in Appendix A.

• The tree-level contribution to the amplitude for the process X2 → X̄1X̄1 is

iMtree
X2→X̄1X̄1

= 2iλ εαβγ εα′β′γ′ . (C.1)

• The one-loop contribution is given by

iM1−loop

X2→X̄1X̄1
=

2 λ̃Tr(g2 g̃
†
2)

M2
2 − M̃2

2

εαβγ εα′β′γ′

∫
d4q

(2π)4
Tr

(
/q

q2 + iε

/p+ /q

(p+ q)2 + iε

)
.

(C.2)
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The loop integral is equal to

I =

∫
d4q

(2π)4
Tr

(
/q

q2 + iε

/p+ /q

(p+ q)2 + iε

)
= 4

∫
d4q

(2π)4

p · q + q2

(q2 + iε)[(p+ q)2 + iε]
. (C.3)

We are interested only in the absorptive part,

Iabs = 4

∫
d4q

(2π)4

[
iπδ(q2)

] [
iπδ
(
(p+ q)2

)]
(p · q + q2)

=
p2

16π2

∫
d4q δ(q2) δ

(
p2

2
+ p · q

)
. (C.4)

Choosing center of mass coordinates, p = (M2,~0), the integral takes the form

Iabs =
M2

4π

∫
d|~q | |~q |2 δ

(
|~q |2 − M2

2

4

)
=
M2

2

16π
, (C.5)

therefore

iM1−loop

X2→X̄1X̄1
=

λ̃M2
2 Tr(g2 g̃

†
2)

8π(M2
2 − M̃2

2 )
εαβγ εα′β′γ′ . (C.6)

The sum of the tree-level and one-loop contribution to the amplitude is

iMX2→X̄1X̄1
= 2i

[
λ− iλ̃ M2

2 Tr(g2 g̃
†
2)

16π(M2
2 − M̃2

2 )

]
εαβγ εα′β′γ′ . (C.7)

In order to calculate the decay rate, we compute the squared matrix element summed over

the final states,

∑
final colors

|M|2αα′,µµ′ = 4

∣∣∣∣∣λ− iλ̃ M2
2 Tr(g2 g̃

†
2)

16π(M2
2 − M̃2

2 )

∣∣∣∣∣
2

1

2
(δβνδβ′ν′ + δβν′δβ′ν)

× 1

2
(δγλδγ′λ′ + δγλ′δλγ′) εαβγ εα′β′γ′ εµνλ εµ′ν′λ′

' 24

|λ|2 +
M2

2 Re
(
iλλ̃∗Tr(g2 g̃

†
2)
)

8π(M2
2 − M̃2

2 )

 (δαµδα′µ′ + δαµ′δµα′) .

(C.8)
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The decay rate is given by

Γ
(
X2 → X̄1X̄1

)
=

1

16πM2

〈|MX2→X̄1X̄1
|2〉

=
1

8πM2

|λ|2 +
M2

2 Re
(
iλλ̃∗Tr(g2 g̃

†
2)
)

8π(M2
2 − M̃2

2 )

 (δαµδα′µ′ + δαµ′δµα′)

× 1

2
(δαµδα′µ′ + δαµ′δµα′)

' 3λ

8πM2

[
λ− λ̃ M2

2

4π(M2
2 − M̃2

2 )
Im
(

Tr(g2 g̃
†
2)
)]

, (C.9)

where we rotated the X fields in such a way that λ and λ̃ are real.

Analogously, one obtains

Γ
(
X̄2 → X1X1

)
' 3λ

8πM2

[
λ+ λ̃

M2
2

4π(M2
2 − M̃2

2 )
Im
(

Tr(g2 g̃
†
2)
)]

. (C.10)
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Appendix D

µ→ e γ decay rate

The relevant Feynman rules derived from the Lagrangian (3.3) are the following:

u 

e 

V 

i 

j 

L 

= −iλiju
(

1−γ5
2

)

e 

u 

V 

i 

 j 

R 

= −iλije
(

1−γ5
2

)

g 

V 

V 

p 
1 

p 
2 

m 
= i5

3
e(p1 + p2)µ

Here we calculate all three contributions to the amplitude for the process µ → e γ. For

now, let us neglect the Hermitian conjugate part. We will take it into account at the end.
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(1) Feynman diagram for the first contribution:

p 
m 

L 
p - k 

e 
 R 

t 
V 

q - p 

g 
k 

t 
q q - k 

The amplitude is given by

iM1 = −2

3
eλ32

u λ
13
e ēR(p− k)

∫
d4q

(2π)4

[
/q − /k +mt

q2 −m2
t

]
γµ

[
/q +mt

(q − k)2 −m2
t

]
×
[

1

(q − p)2 −m2
V

]
µL(p)

= −2

3
eλ32

u λ
13
e mt ēR(p− k)

×
∫

d4q

(2π)4

2qµ − kµ − 1
2

[/k, γµ]

(q2 −m2
t )[(q − k)2 −m2

t ][(q − p)2 −m2
V ]
µL(p) . (D.1)

Working to linear order in the external momenta, we obtain

iM1 ' −2

3
eλ32

u λ
13
e mt ēR(p− k)

∫
d4q

(2π)4

[
4 q · k qµ

(q2 −m2
t )

3(q2 −m2
V )

+
4 q · p qµ

(q2 −m2
t )

2(q2 −m2
V )2

+
−kµ − 1

2
[/k, γµ]

(q2 −m2
t )

2(q2 −m2
V )

]
µL(p)

= −2

3
eλ32

u λ
13
e mt ēR(p− k)

( −i
16π2m2

V

)[
kµ

∫ ∞
0

y2 dy(
y +

m2
t

m2
V

)3

(y + 1)

+ pµ

∫ ∞
0

y2 dy(
y +

m2
t

m2
V

)2

(y + 1)2

+ (−kµ − 1
2
[/k, γµ])

∫ ∞
0

y dy(
y +

m2
t

m2
V

)2

(y + 1)

]
µL(p)

= −2

3
eλ32

u λ
13
e mt ēR(p− k)

( −i
16π2m2

V

)[(−3 + 4x− x2 − 2 log(x)

2(1− x)3

)
kµ

+

(
1− x2 + 2x log(x)

(1− x)3

)
pµ +

(
1− x+ log(x)

(1− x)2

)
(kµ + 1

2
[/k, γµ])

]
µL(p), (D.2)

where x = m2
t/m

2
V .
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(2) Feynman diagram for the second contribution:

p 
m 

L 
p - k 

e 
 R 

t 

V V 

q 

q - p q - p+k 

g 
k 

The amplitude is

iM2 = −5

3
eλ32

u λ
13
e ēR(p− k)

∫
d4q

(2π)4
(2qµ − 2pµ + kµ)

×
[

1

(q − p+ k)2 −m2
V

] [
1

(q − p)2 −m2
V

] [
/q +mt

q2 −m2
t

]
µL(p)

= −5

3
eλ32

u λ
13
e mt ēR(p− k)µL(p)

×
∫

d4q

(2π)4

(2q − 2p+ k)µ
[(q − p+ k)2 −m2

V ][(q − p)2 −m2
V ](q2 −m2

t )
.

(D.3)

In the low energy regime (where p and k are small) we can expand
1

[(q − p+ k)2 −m2
V ][(q − p)2 −m2

V ](q2 −m2
t )

' 1

(q2 −m2
V )2(q2 −m2

t )
+

2q · (2p− k)

(q2 −m2
V )3(q2 −m2

t )
, (D.4)

which yields

iM2 = −5

3
eλ32

u λ
13
e mt ēR(p− k)µL(p)

×
∫

d4q

(2π)4

[
(2p− k)µ

(q2 −m2
V )2(q2 −m2

t )
+

q2(2p− k)µ
(q2 −m2

V )3(q2 −m2
t )

]
= −5

3
eλ32

u λ
13
e mt ēR(p− k)µL(p)

( −i
16π2m2

V

)
(2p− k)µ

×
[ ∫ ∞

0

y dy(
y +

m2
t

m2
V

)
(y + 1)2

+

∫ ∞
0

y2 dy(
y +

m2
t

m2
V

)
(y + 1)3

]

= −5

3
eλ32

u λ
13
e mt ēR(p− k)µL(p)

( −i
16π2m2

V

)
(2p− k)µ

×
[

1− x+ x log(x)

(1− x)2
+

1− (4− 3x)x− 2x2 log(x)

2(1− x)3

]
. (D.5)
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(3) Feynman diagrams for the third contribution:

p 
m 

L p - k 
e 

 R 

t 

p - k+q 

V 

q 

g 

k 

p - k 

m 
L 

p 

e 
R 

k 

e 
 R 

t 

p+q 

V 

q 

g 

p p - k 
m 

L 

The amplitude,

iM3 = −eλ32
u λ

13
e ēR(p− k) γµ

[
/p+me

p2 −m2
e

] ∫
d4q

(2π)4

(
1 + γ5

2

)[
/p+ /q +mt

(p+ q)2 −m2
t

]
×
[

1

q2 −m2
V

](
1 + γ5

2

)
µR(p)

− eλ32
u λ

13
e ēR(p− k)

[
/p− /k +mµ

(p− k)2 −m2
µ

] ∫
d4q

(2π)4

(
1 + γ5

2

)[
/p+ /q +mt

(p+ q)2 −m2
t

]
×
[

1

q2 −m2
V

](
1 + γ5

2

)
γµ µR(p)

= −eλ32
u λ

13
e mt ēR(p− k) γµ

[
/p+me

p2 −m2
e

](
1 + γ5

2

)
µR(p)

×
∫ 1

0

dx

∫
d4q

(2π)4

1

[(q + px)2 + p2x(1− x)−m2
tx−m2

V (1− x)]2

−eλ32
u λ

13
e mt ēR(p− k)

[
/p− /k +mµ

(p− k)2 −m2
µ

](
1 + γ5

2

)
γµ µR(p)

×
∫ 1

0

dx

∫
d4q

(2π)4

1

[[q + (p− k)x]2 + (p− k)2x(1− x)−m2
tx−m2

V (1− x)]2
.

(D.6)

Expanding the integral in small momenta yields

∫ 1

0

dx

∫
d4q

(2π)4

1

[(q + lx)2 + l2x(1− x)−m2
tx−m2

V (1− x)]2

=

∫ 1

0

dx

∫
d4q

(2π)4

[
1

[q2 −m2
tx−m2

V (1− x)]2
+ 2l2

x(1− x)

[q2 −m2
tx−m2

V (1− x)]3

]
= F (mt,mV ) + l2

( −i
16π2m2

V

)∫ 1

0

dx
x(1− x)[

x
(
m2

t

m2
V
− 1
)

+ 1
] . (D.7)
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Neglecting the electron mass and using the relations:

/pµ(p) = mµµ(p) , ēR(p− k)(/p− /k) = 0 , (D.8)

it is easy to see that the contribution of the zeroth order term in the expansion (D.7) cancels

out in Eq. (D.6), since F (mt,mV ) does not depend on the momentum:

ēR(p− k) γµ

[
/p+me

p2 −m2
e

]
µR(p) + ēR(p− k)

[
/p− /k +mµ

(p− k)2 −m2
µ

]
γµ µR(p)

' ēR(p− k)γµ
mµ

m2
µ

µR(p) + ēR(p− k)
mµ

−m2
µ

γµµR(p) = 0 . (D.9)

We are left with

iM3 = −eλ32
u λ

13
e

( −i
16π2m2

V

)∫ 1

0

dx
x(1− x)[

x
(
m2

t

m2
V
− 1
)

+ 1
] ēR(p− k)

×
[
p2 γµ

[
/p+me

p2 −m2
e

]
+ (p− k)2

[
/p− /k +me

(p− k)2 −m2
e

]
γµ

]
µR(p)

' −eλ32
u λ

13
e

( −i
16π2m2

V

)
mµēR(p− k)γµµR(p)

[
1− x2 + 2x log(x)

2(1− x)3

]

= −eλ32
u λ

13
e

( −i
16π2m2

V

)
ēR(p− k)(2pµ − kµ − iσµνkν)µR(p)

×
[

1− x2 + 2x log(x)

2(1− x)3

]
, (D.10)

where in the last step we used the Gordon identity.

Putting together formulas (D.2), (D.5), (D.10) and including the Hermitian conjugate gives

iM = − 3 emt

16 π2m2
V

[
1− x2 + 2x log x

2(1− x)3
+

2

3

(
1− x+ log x

(1− x)2

)]
kν εµ(k)

×
[
λ13
e λ

32
u ēR(p− k)σµνµL(p) + (λ31

u )∗(λ23
e )∗ ēL(p− k)σµνµR(p)

]
. (D.11)

This leads to Eq. (3.10) upon rotating the couplings as in Eq. (3.12).
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Note that the electric dipole moment of the down quark can be computed along similar

lines. The only difference is the overall factor coming from the difference in charges be-

tween the electron and the down quark.

The spin averaged squared matrix element is:

〈|M|2〉 =
9 e2m2

t

512π4m4
V

f

(
m2
t

m2
V

)2

kνkν′

×
{∣∣λ̃13

e λ̃
32
u

∣∣2Tr

[
(/p− /k +me)

(
1− γ5

2

)
σµν(/p+mµ)

(
1 + γ5

2

)
σν

′

µ

]

+
∣∣λ̃31
u λ̃

23
e

∣∣2Tr

[
(/p− /k +me)

(
1 + γ5

2

)
σµν(/p+mµ)

(
1− γ5

2

)
σν

′

µ

]}
.

(D.12)

Neglecting the electron mass, both traces can be calculated using the following formula,

Tr

[
γασµνγβσν

′

µ

(
1± γ5

2

)]
= 4gαν

′
gβν − 2gαβgνν

′
+ 4gανgβν

′
. (D.13)

Choosing the muon center of mass coordinates, the momenta become: p = (mµ,~0) and

k = (mµ/2, ~pe), where |~pe| = mµ/2, and the expression for the decay rate becomes

Γ(µ→ e γ) =
1

16πmµ

〈|M|2〉 =
9 e2λ2m2

tm
3
µ

2048π5m4
V

f

(
m2
t

m2
V

)2

, (D.14)

where

λ ≡
√

1

2

∣∣λ̃13
e λ̃

32
u

∣∣2 +
1

2

∣∣λ̃31
u λ̃

23
e

∣∣2 . (D.15)
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Appendix E

Fierz identities

(a) We start by proving the first relation in Eq. (3.17). Let us choose the same masses,

momenta and spins (m, p, s) for particles 1 and 2, and assume (m′, p′, s′) for particles

3 and 4. The only Lorentz invariant expression which can be written down is

[ū1L(p, s)u2R(p, s)] [ū3R(p′, s′)u4L(p′, s′)]

= A [ū1L(p, s)γµu4L(p′, s′)] [ū3R(p′, s′)γµu2R(p, s)] . (E.1)

Performing a sum over spins on both sides of Eq. (E.1) gives

Tr

[
(/p+m)

(
1 + γ5

2

)]
Tr

[
(/p
′ +m′)

(
1− γ5

2

)]
= A Tr

[
(/p+m)γµ

(
1− γ5

2

)
(/p
′ +m′)γµ

(
1 + γ5

2

)]
. (E.2)

Taking the traces yields

4mm′ = Amm′ Tr

[
γµγµ

(
1 + γ5

2

)]
, (E.3)

which results in A = 1/2 and agrees with the first relation in Eq. (3.17).

(b) In order to prove the second relation in Eq. (3.17), we first choose the same masses,

momenta and spins as in the previous case. There are now only two terms which we
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can write down on the right-hand side:

[ū1L(p, s)u2R(p, s)][ū3L(p′,s′)u4R(p′,s′)]=B [ū1L(p, s)u4R(p′,s′)][ū3L(p′,s′)u2R(p, s)]

+ C [ū1L(p, s)σµνu4R(p′,s′)][ū3L(p′,s′)σµνu2R(p, s)] . (E.4)

Summing over spins gives

Tr

[
(/p+m)

(
1 + γ5

2

)]
Tr

[
(/p
′ +m′)

(
1 + γ5

2

)]
= B Tr

[
(/p+m)

(
1 + γ5

2

)
(/p
′ +m′)

(
1 + γ5

2

)]
+ C Tr

[
(/p+m)σµν

(
1 + γ5

2

)
(/p
′ +m′)σµν

(
1 + γ5

2

)]
. (E.5)

Taking the trace of both sides yields

4mm′ = 2Bmm′ +
1

2
C mm′ Tr [σµνσµν ] , (E.6)

which, using the fact that σµν = i[γµ, γν ]/2, gives B + 12C = 2.

Next, if we choose the same masses, momenta and spins (m, p, s) for particles 1 and

4, and assign (m′, p′, s′) to particles 2 and 3, we get

[ū1L(p, s)u2R(p′,s′)][ū3L(p′,s′)u4R(p, s)]=B [ū1L(p, s)u4R(p, s)][ū3L(p′,s′)u2R(p′,s′)]

+ C [ū1L(p, s)σµνu4R(p, s)][ū3L(p′,s′)σµνu2R(p′,s′)] . (E.7)

Taking the trace yields

Tr

[
(/p+m)

(
1 + γ5

2

)
(/p
′ +m′)

(
1 + γ5

2

)]
= B Tr

[
(/p+m)

(
1 + γ5

2

)]
Tr

[
(/p
′ +m′)

(
1 + γ5

2

)]
. (E.8)

This, along with the previous result, gives B = 1/2 and C = 1/8, which agrees with

the second equation in (3.17).
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Appendix F

Cancellation of anomalies

The gauge symmetry SU(3)c × SU(2)L × U(1)Y × U(1)B × U(1)L is anomalous in the

minimal supersymmetric standard model. We will show here that all the anomalies are

cancelled by adding the set of fields introduced in Section 4.2. The subscripts next to

each quantum number denote the chiral superfield whose fermionic component enters the

calculation. The nontrivial anomaly cancellation conditions are the following:

• SU(3)2×U(1)Y , SU(3)2×U(1)B and SU(3)2×U(1)L vanish since the new particles

are singlets under the color group.

• SU(2)2 × U(1)Y :

3× Tr (tαtβ)×
{

3×
[
2×

(
1
6

)
Q

+
(
−2

3

)
uc

+
(

1
3

)
dc

]
+ 2×

(
−1

2

)
l
+ (1)ec +

(
1
2

)
Hu

+
(
−1

2

)
Hd

}
+ Tr (tαtβ)

{
2×

[(
−1

2

)
Ψ

+
(

1
2

)
Ψc

]
+ (1)ηc + (−1)η

}
= 0 . (F.1)

• SU(2)2 × U(1)B:

3× 3× Tr (tαtβ)× 2×
(

1
3

)
Q

+ 2× Tr (tαtβ) [(B1)Ψ + (B2)Ψc ] = 0 , (F.2)

which requires B1 +B2 = −3.

• SU(2)2 × U(1)L: analogously gives L1 + L2 = −3.
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• U(1)3
Y :

3×
{

3×
[
2×

(
1
6

)3

Q
+
(
−2

3

)3

uc
+
(

1
3

)3

dc

]
+ 2×

(
−1

2

)3

l
+ (1)3

ec +
(

1
2

)3

Hu
+
(
−1

2

)3

Hd

}
+
{

2×
[(
−1

2

)3

Ψ
+
(

1
2

)3

Ψc

]
+
[
(1)3

ηc + (−1)3
η

] }
= 0 . (F.3)

• U(1)2
Y × U(1)B:

3× 3×
[
2×

(
1
6

)2 (1
3

)
Q

+
(
−2

3

)2 (−1
3

)
uc

+
(

1
3

)2 (−1
3

)
dc

]
+ 2×

[(
−1

2

)2
(B1)Ψ +

(
1
2

)2
(B2)Ψc

]
+
[
(1)2(−B1)ηc + (−1)2(−B2)η

]
= 0 , (F.4)

which gives B1 +B2 = −3.

• U(1)2
Y × U(1)L: analogously gives L1 + L2 = −3.

• U(1)Y × U(1)2
B:

3× 3×
[
2×

(
1
6

) (
1
3

)2

Q
+
(
−2

3

) (
−1

3

)2

uc
+
(

1
3

) (
−1

3

)2

dc

]
+ 2×

[(
−1

2

)
(B1)2

Ψ +
(

1
2

)
(B2)2

Ψc

]
+
[
(1)(−B1)2

ηc + (−1)(−B2)2
η

]
= 0 . (F.5)

• U(1)Y × U(1)2
L: analogously vanishes.

• U(1)Y × U(1)B × U(1)L:

2×
[(
−1

2

)
(B1)(L1)Ψ +

(
1
2

)
(B2)(L2)Ψc

]
+ [(1)(−B1)(−L1)ηc + (−1)(−B2)(−L2)η] = 0 . (F.6)

• U(1)2
B × U(1)L:

2×
[
(B1)2(L1)Ψ + (B2)2(L2)Ψc

]
+
[
(−B1)2(−L1)ηc + (−B2)2(−L2)η

]
+
[
(−B1)2(−L1)Xc + (−B2)2(−L2)X

]
= 0 . (F.7)

• U(1)B × U(1)2
L: analogously vanishes.
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• U(1)3
B:

3× 3×
[
2×

(
1
3

)3

Q
+
(
−1

3

)3

uc
+
(
−1

3

)3

dc

]
+ 2×

[
(B1)3

Ψ + (B2)3
Ψc

]
+
[
(−B1)3

ηc + (−B2)3
η

]
+
[
(−B1)3

Xc + (−B2)3
X

]
= 0 . (F.8)

• U(1)3
L: analogously vanishes.

• gravity2 × U(1)B:

3× 3×
[
2×

(
1
3

)
Q

+
(
−1

3

)
uc

+
(
−1

3

)
dc

]
+ 2× [(B1)Ψ + (B2)Ψc ] + [(−B1)ηc + (−B2)η] + [(−B1)Xc + (−B2)X ] = 0 . (F.9)

• gravity2 × U(1)L: analogously vanishes.
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Appendix G

Annihilation and direct detection cross
section

The relevant Feynman rules derived from the Lagrangian (4.31) are:

Z 1 

X 
~ 

X 
~ 

= −igBγµ(C11PL + C12PR)

Z 2 

X 
~ 

X 
~ 

= −igBγµ(C21PL + C22PR)

Z B 

q 

q 

= − i
3
gBγ

µ



103

The Feynman diagram for the process ¯̃X X̃ → Z1 → q̄ q is the following:

Z 1 

X 
~ 

X 
~ 

q 
p 

1 

-p 
2 

p 
3 

-p 
4 

q 

The matrix element is given by

iM =
g2
B

3
cos θBL q̄(p4)γµq(p3)

[
1

(p1 + p2)2 −M2
Z1

+ iMZ1ΓZ1

]
×
[
gµν −

(p1 + p2)µ(p1 + p2)ν
M2

Z1

]
¯̃X(p2)γν(C11PL + C12PR)X̃(p1) . (G.1)

After squaring, summing over final states, and averaging over initial ones, it takes the form:

〈|M|2〉 =
g4
B

12
cos2 θBL Tr

[
(/p4
−mq)γ

µ(/p3
+mq)γ

µ′
] 1[

(p1 + p2)2 −M2
Z1

]2
+M2

Z1
Γ2
Z1

×
[
gµν −

(p1 + p2)µ(p1 + p2)ν
M2

Z1

] [
gµ′ν′ −

(p1 + p2)µ′(p1 + p2)ν′

M2
Z1

]
× Tr

[
(/p2
−MX̃)γν(C11PL + C12PR)(/p1

+MX̃)γν
′
(C11PL + C12PR)

]
. (G.2)

Using standard formulas for traces and simplifying the resulting expression gives

〈|M|2〉 =
g4
B

12
cos2 θBL

[
1

[(p1 + p2)2 −M2
Z1

]2 +M2
Z1

Γ2
Z1

]
×
{

(C2
11 + C2

12)
[
(p1 · p2)m2

q + (p1 · p3)(p2 · p4) + (p1 · p4)(p2 · p3)
]

+ 2C11C12M
2
X̃

(
p3 · p4 + 2m2

q

)}
. (G.3)
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Working in the center of mass frame,

p1 = (E, ~p) , p2 = (E,−~p) , p3 = (E,~k) , p4 = (E,−~k) ,

~p · ~k = |~p||~k| cos θ , s = (p1 + p2)2 = 4E2 , (G.4)

formula (G.3) can be rewritten as

〈|M|2〉 =
g4
B

12
cos2 θBL

[
1

(s−M2
Z1

)2 +M2
Z1

Γ2
Z1

]
×
{

(C2
11 + C2

12)
[
(s− 4m2

q)(s− 4M2
X̃

) cos(2θ) + s(3s+ 4m2
q − 4M2

X̃
)
]

+ 16C11C12M
2
X̃

(s+ 2m2
q)

}
. (G.5)

The differential cross section is given by

dσ

dΩ
v =

|p3|
16π2s

√
s
〈|M|2〉 , (G.6)

and integration over the angles yields

σv =
g4
B

36πs
cos2 θBL


√

1− 4m2
q

s

(s−M2
Z1

)2 +M2
Z1

Γ2
Z1


×
[
(C2

11 + C2
12)(s+ 2m2

q)(s−M2
X̃

) + 6C11C12M
2
X̃

(s+ 2m2
q)
]
, (G.7)

which is equivalent to Eq. (4.36), with the definition (4.37), upon summing over the quarks.
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The Feynman diagram corresponding to the direct detection is shown below.

Z 1 

X 
~ 

X 
~ 

q q 

p 
1 

p 
2 

p 
3 

p 
4 

The formula for the direct detection cross section can be obtained from the annihilation

cross section result (G.3) by substituting:

p2 → −p3 , p3 → −p2 , mq →MN . (G.8)

In the nonrelativistic limit

p1 = p3 = (MX , 0) , p2 = p4 = (MN , 0) , (G.9)

and the expression for the cross section reduces to

σSI =
1

4π

M2
X̃
M2

N

(MX̃ +MN)2

g4
B

M4
Z1

(C11 + C12)2 cos2 θBL , (G.10)

which is exactly Eq. (4.43).
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