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ABSTRACT 

The 0.2% experimental accuracy of the 1968 Beers and Hughes 

measurement of the annihilation lifetime of ortho - positronium 

motivates the attempt to compute the first order quantum electro­

dynamic corrections to this lifetime. The theoretical problems 

arising in this computation are here studied in detail up to the 

point of preparing the necessary computer progr·ams and using them 

to carry out some of the less demanding steps - - but the computation 

has not yet been completed. Analytic evaluation of the contributing 

Fcynman diagrams is superior to numerical evaluation, and for this 

process can be carried out with the aid of the Reduce algebra 

manipulation computer program. 

The relation of the positronium decay rate to the electron­

positron annihilation- in-flight amplitude is derived in detail, and 

it is shown that at threshold annihilation- in- flight, Coulomb diver­

gences appear while infrared divergences vanish . The threshold 

Coulomb divergences in the amplitude cancel against like diver gences 

in the modulating continuum wave function . 

Using the lowest order diagrams of electron- positr on 

annihilation into three photons as e test case, various pitfalls of 

computer algebraic manipulation are discussed along with ways of 

avoiding them. The computer manipulation of artificial polynomial 

expressions is preferable to the direct treatment of rational 

expressions , even though redundant variables may have to be intro­

duced . 
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Special properties of the contributing Feynman diagrams 

are discussed, including the need to restore gauge invariance to 

the sum of the virtual photon-photon scattering box diagrams by 

means of a finite subtraction. 

A systematic approach to the Feynman-Brown method of 

decomposition of single loop diagram i ntegrals with spin- related 

tensor numerators is developed in detail. This. approach allows 

the Feynman-Brown method to be straightforwardly programmed in the 

Reduce algebra manipulation language. 

The fundamental integrals needed in the wake of the 

application of the Feynman-Brown decomposition are exhibited and 

the methods which were used to evaluate them -- primarily dis-

persion techniques are briefly discussed. 

Finally, it is pointed out that while the techniques 

discussed have permitted the computation of a fair number of the 

simpler integrals and diagrams contributing to the first order 

correction of the ortho -positroni~ annihilation rate, further 

progress with the more complicated diagrams and with the evaluation 

of traces is heavily contingent on obtaining access to adequate 

computer time and core capacity. 
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INTRODUCTION 

In l968 Beers and Hughesl measured the annihilation rate 

of ortho-~sitronium to be (7.262 ± .Ol5)xl06/sec, the percentage 

experimental error being about 0 . 2% . 2 As was expected, this accurate 

measurement was discrepant by significantly more than its experi -

6 mental error with the annihilation rate of (7.2l2 ± . 004)xl0 /sec 

computed from lowest order quantum electrodynamics 2 by Ore and 

Powell3• 

The author set out to compute the first order corrections 

to the lowest order result found by Ore and Po~~ll . Because of the 

great labor involved in this computation, it is as of this writing 

still incomplete, but by utilizing the Reduce4 algebra manipulation 

~rogram on some of the largest computers presently available, the 

author hopes to complete the calculation in the next eight to ten 

months. This thesis is a progress re~rt on the calculation, the 

theoretical and computational details of which have been largely 

~. H. Beers and v. W. Hughes, Amer. Phys . Soc. Bul. l3, 
633 (l968). 

~. W. Hughes, "Muonium and Positronium," Physics of the 
One and Two Electron Atoms, ed . F. Bo~p and H. Kleinpoppen (North 
Holland, Amsterdam, l970), p. 407. 

3A. Ore and J. L. Powell, Phys. Rev. 75, l696 (l949). 

4A. C. Hearn, "Reduce 2 User's Manual" (Stanford University 
Computer Science Department Report l8l, l970) . 
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comprehended, but whose completion demands a further investment of 

time and, even more crucially, of computer resources. 

The numerical integration of Feynman diagrams is an 

extraordinarily tricky business . Partly this is because multi -

dimensional integrals over spiky rational functions are involved 

and partly it is because of the existence of ultraviolet , infrared, 

and even Coulomb divergences. Standard subtraction procedures are 

generally used to eliminate the ultraviolet divergences , but this, 

of course, tends to define the integrand as a small difference of 

large numbers in the ultraviolet region. Infrared divergences can 

sometimes be so intractable that curve fitting with increasingly 

5 
smaller values of the photon mass must be resorted to. Coulomb 

divergences have not, to the author ' s knowledge , occurred in 

Feynman diagrams on which numerical integration has been attempted, 

but they are endemic to higher order positronium calculations . 

Finally, most diagram integrals which have been treated numerically, 

such as those con~ributing to the anomalous electron magnetic 

moment, yield single numerical values, while the corresponding 

diagram integrals for the three photon annihilation of ortho-

positronium yield functions of two variables. 

Thus, it seems that the exact analytic integration of 

all Feynman diagrams contributing to the correction of the anni-

5
Private conversation with Jaques Calmet . 
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hilation rate of ortho-positronium is preferable to attempted 

numerical integration. Fortunately, thr ough the use of dispersion 

and double dispersion methods as well as the computerized application 

of ar. extension of a method of Feynman and Brown for algebraically 

6 calculating numerator factors in a single loop diagram integrals , 

is now appears quite feasible, though tedious and demanding of 

considerable computer time, to carry out all th~ integrals analyt-

ically . Traces can be carried out quite straightforwardly, if again 

at a cost of considerable computer time, by also using the Reduce 

algebra progra~ . Finally, the resulting differential annihilation 

rate, expected on physical groundsto be a fairly smooth function, 

can be satisfactorily integrated numerically over its two variables 

to give the total annihilation rate. 

The author has recently learned that Pascual and de Rafael 

have published a numerical computation of the photon-photon scatter-

ing contribution -- given by six diagrams of the type shown i n 

Figure 8 -- to the ortho-positr onium annihilat ion rate. 7 Numer ical 

integration was aided by the lack of Coulomb , infrared, and ultra-

violet divergences in the sum of these six diagrams, but there is no 

known reason for these diagrams to be dominant . 

6L. M. Brown and R. P . Feynman, Phys . Rev . 85 , 231 (1952) , 
pp . 243-244. 

7P . Pascual and E. de Rafael, Lett. al Nuovo Cim., ! ' 
1144 (1970). 
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CHAPI'ER I 

THE THEOREI'ICAL GROUNDWORK 

The first theoretical problem that must be examined in 

positronium annihilation is the relationship of the electron-positron 

annihilation- in- flight amplitude to the positronium annihilation 

amplitude . We will here generalize a treatment given by Jauch and 

Rohrlich1 such that its validity is extended at least up to cor-

rections of first order in the fine structure constant a . The 

author can discern no reason in principle why this generalization 

should not be valid in yet higher order corrections, but this 

cor-tention hasn 't been examined in great detail. An alternative 

and computationally more difficult approach is followed by Harris 

and Brown in their treatment of the first order corrections to 

para-positronium annihilation. 2 Note that throughout this thesis 

the units and conventions used are those of Bjorken and Drell, 

but with their optional spinor normalization of u (p,s) u (p , s)=2m .
3 

The different interaction forces between electron and 

positron may be considered in terms of the typical distances over 

· 1J . M. Jauch and F. Rohrlich, The Theory of Photons and 
Electrons (Addison -\·Jesley, Reading, Mass ., 1955), p . 283 . 

2r . Harris and L . M. Brown, Phys . Rev . 105, 1656 (1957) . 

3J . D. Bjorken and s . D. Drell, Relativistic Quantum 
Mechanics (McGraw-Hill, New York, 1964) . 
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which they produce variations in the electron- positron quantum state 

function . Thus, the static Coulomb potential produces variations 

typically over a Bohr radius (l/am), while annihilation itself1 

being a crossed Compton scattering process~ produces variations 

over about a Compton wavelength (l/m). All the other interactions~ 

including among others, the spin-orbit, spin-spin, and virtual 

annihilation forces, produce variations over about a Compton wave­

length or less . The static Coulomb potential, then,occupies a 

special position in virtue of the "long range" variations it 

produces . 

The perturbation Feynman diagram approach breaks down 

in any finite order as a description of a bound state such as posi­

tronium. The failure is most severe at large electron-positron 

se~arations. But it is just at such large distances that the 

positronium wave function is shaped essentially entirely by the 

static Coulomb potential. Thus, the static Coulomb potential must 

be treated properly to all orders in positronium,which can be 

achieved by making use of the Schroedinger Coulomb bound state wave 

functions . To obtain the positronium annihilation amplitude, these 

Schroedinger Coulomb bound state wave functions must be folded into 

the electron-positron annihilation amplitude computed to a given 

l 
order in perturbation theory, as set forth by Jauch and Rohrlich . 

However, the perturbation theory electron-positron annihilation 

amplitude already contains the effect of the static Coulomb potential 
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up to a cer tain order. To avoid double counting the s t atic Coulomb 

contribution, the electron-positron annihilation amplitude must be 

Coulomb "purified" to the appropriate order by being unfolded from 

the static Coulomb Schroedinger continuum wave function (which need 

only be computed to that order). This Coulomb upurified" electron­

positron annihilation amplitude is dubbed Mt(p, q) and may be 

considered to be defined by equation (4), given further on, in 

~ ~ 

which M(p', q') is the ordinary electron-positron annihilation 

amplitude and¢~{p' ) is the momentum space Schroedinger Coulomb 
p 

continuum wave function. The assertion that the positronium anni -

h~lation amplitude V.(E ) is obtained by folding the Schroedinger 
n 

Coulomb bound state wave function into the Coulomb "purified" 

electron-positron annihilation amplitude ~(p, q) is expressed 

formally by equation (3) . 

Mt(p, q), since it has been purged of the static Coulomb 

influence, possesses, as discussed above , a Compton wavelength 

variation property which can be expressed schematically in terms of 

~ ~ 
its p and q gradients at zero momenta: 

To supply the Coulomb effects missing f r om J' (p, q) , 

there are the standard Schroedinger center of mass Coulomb wave 

functions , both those of the bound states 'l' cr) 
E 

n 
and those 

(l ) 



of the continuum states 

--): 

lim 'l':Ar) p 
a~o 

7 

'l'~ (rJ . 
p 

The 'l'~ (r} satisfy: 
p 

(2) 

--): 

V is the ver y large quantization volume~ and all the 'l'(r) 

are normalized to one in this volume. Actually, the perturbative 

plane wave condition (2) cannot be satisfied for the Coulomb 

potential . We get around this by assigning the photon a very 

small mass A in order to truncate the Coulomb potential: 

Of course, in the field theoretic part of the calculation, 

the same small photon mass A is again needed . 

We Fourier transform the Coulomb wave functions to momen-

tum space : 

~ ~ .JV 
~, ~, 

(P - q ) ~ ¢ (P'- q ') J ~ (;) - i ·r 
= 

(211:)3 
d r 'l'E e 2 

E 2 v n n 

~, ~, 
~, - q' ) ~ .JV ~ ~ - i(P ~(p - q ) f d r 'l',.,Jr) 2 · r = 

(211:)3 
e 

p 2 v p 
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1 Now, in the manner of Jauch and Rohrlich, we have that 

the amplitude M(E ) 
n 

for positronium at rest to annihilate from the n'th 

Coulomb bound state may be expressed as: 

-7, -7, 

J d3:p: d:sq' 
11 -7 _, (3) -l> -7 

M(E ) (p ',<i')o (p'+.q') ¢E 
(p - ·q ) (3) 

n 2 n 

The total amplitude for electron-positron annihilation 

in flight M(p, qJ, as is computed by field theoretic methods, may 

be expressed as: 

(4) 

It is worthwhile to again note that (4) may be regarded 

as the definition of 11(p'~ q') while (3) is a recipe for computing 

1 M(E ), set forth in the spirit of Jauch and Rohrlich . 
n 

Moving all expressions to the center of mass frame 1 we 

Thus: 

M(En) = f d3:p' 11 cP') ¢E (p') 
n 

(5) 
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3-7 ~~ ~ rl. ~ 
= fd p ' ~ (p') 'P:;t (p') p 

(6) 

Because of the perturbative plane wave condition (2), we 

may write: 

= 5 ( 3 ) (p-p') + an :kf•) 
p 

Thus, we may rewrite (6) in the form: 

---\ 3-> ~ ~_p~ 
M(pJ - afd p' n~p') ~(p') p 

(7) 

If M(pJ is computed from field theory, .(7) may be regarded 
p~ 

as an integral equation forM (p'). Its iteration solution yields 

~(If) as a perturbation series in a. This ~ cJh may then be in-

serted into (5) to yield the desired positronium annihilation 

amplitude . In line with the perturbative approach, and making use 

of (1), a further simplification of (5) and (7) can be made. 

~(If} may be expanded about p = 0: 
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Also: 

Denoting the Fourier transform of n_/i}) as w_/r!), we 

have: 

2 
~ (j l'E 

- ~ d~.dp.j-7 
0 

dr.dr~~-7 
0 

+ ••• ) 
lJP= l J I'= 

~~o -7 
r=O 

+ ••• ) 

p p 

(8) 

(9) 

It is worthwhile to note that in some cases where integrals 

such as [d~p ¢ (p) are well defined, the corresponding gradients 
-7 

\7~ 1' crJ ~~O can involve such ill-defined expressions as ~~ 
0 
l~l . 

A convenient recipe for properly resolving such ambiguities is to 

define gradients in terms of central differences, e.g .: 



lim 
h~O 

ll 

(10) 

For the gradients of Coulomb wave functions, we have the 

following "range" conditions to add to (1): 

-:-.k ':!:'~ 
,.. 0 "0 
=¥--m k - ~ 
p~o or r=O 

(a m)k '¥~ (o) 
~im p 
p~o 

Thus, for small values of 1~, both (8) and (9) are 

perturbation series in powers of a. Of course, (9) need only be 

solved (by iteration) for ~ (P} at small values of I~ to provide 

all the gradients of ~(P} at p = 0 needed in (8). 

In the present calculation, we only need go to corrections 

of first order in a. Solving (9) to this order, we have for I~ << m: 

(ll) 

We are considering the anni hilation of the 1 3s1 state 

with wave function ':I:'E ~' which sat i sfi es the Schroedinger equation: 
l 



l2 

For this ground state, we have: 

3/2 3/2 m a 
-18; 

2 - ma 
4 

-IIICl::r 
<=>-
- 2 (l2) 

-? 
Since ~E1 (r) is spherically symmetric, we find in accord 

with our gradient definition (lO), that V-? ~E (0) = 0. Thus, to 
r l 

terms of relative order a, we may write (8) as: 

M(E1) = JV(t:/(o) ~E (0)) 
l 

= .JVM(O) ~E (0) (l-a.fVw-? _ 0 (0)) 
l p-

In the second step, we have used (ll). 

M(O) is to be computed from the Feynman diagrams for 

annihilation from rest up to relative order a, and ~E (0) follows 
l 

from (l2). We still need wp = 0 (o). We know that: 

..l.. + a w-? 
0

(r) 
JV p = 

(l3) 

(l4) 
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We also know that 'l' p = 
0 

(r) satisfies the Schroedinger 

equation with the small photon mass ~ cutoff: 

0 (15) 

Substituting (14) into (15), we have to order a the equation: 

For 

l 
r 

-~r 
=-~(-e-) .;vr (16) 

the spherically symmetric solution of (16), we have: 

d2 -~r 
(rw~ 0 (r)) 

m (-e-) 
dr

2 p = .JV r 

d2 
(rw.v = 0 (r)) 

m -~r 

dr
2 = e 

JV 

r w~ o(r) 
m -~r 

+ c1 r + c2 .JV ~2 
e 

p = 

JV ~2c2 -~r -me 
w~ 

0
(r) + cl p JV~2r 

For large r, we expect 'l'Jf = 
0 

(r) ~ 1f[V, since the poten­

tial is localized. Thus, for large r, w~ o(r) ~ o, and so cl = o. 
p = 

At r = 0, we expect 'l' TJ = 
0 

(r) to be finite. This must also be true 
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of wp = o(r), so that .JV /\2 
c2 = m. Thus: 

(17) 

Thus, from (12), (13), and (17) we have: 

3/2 3/2 
.JVM(O) m a (l - T) 

J8; 
(18) 

In the approximately 2m energy available to the three 

annihilation photons of momenta ~' k2, and k
3 

and energies w1 , w2, 

and w3, we may, to this first relative order in a, ignore the 

corrections due to the binding energy of positronium (O(a2m)) and 

to the width of the 1 38 state (O(a6m)). Thus, from the standard 

3 rate formula of perturbation theory, we may write the rest frame 

1 38 annihilation rate as: 

d~ 
2 

d~ 
3 (19) 
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~ 

Here wi = ikil' i = l, 2, 3, are the photon energies. 

The l/6 is the statistical factor for the three identical 

annihilation photons~ while the 4/3 is inserted because it is assumed 

that 'IM(E
1

) 1
2 

has been averaged over four initial fermion spin ~tates, 

while the triplet level has only three such states. The kinematics 

of (19) is that of three photon electron-positron annihilation from 

rest. It is convenient to make use of the sets of kinematic variables 

for this process whose properties are given below: 

In the rest frame ki = (wi, ki), i = l, 2, 3 and p = (m, 0). 

2 "' k 2= k 2 2 2p kl+ k2 + k3, 
c. 

k3 0 = p m , = = l 2 

P · k. 
w 1. i l, 2, 3 = ' i m 

2 
(2p-k3)2 4m2 2 

s !!!: (~+ k2) = -4mw - m s
3 3 

(20) 

(2p_v
2

)2 = 4m2 4m _ 2 = .n. - w2 = m 82 

2m 

0 ~ wi ~ m, i = 1, 2, 3 
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In terms of the dimensionless variables s1 , s 2, and s
3

, we 

can simplify (19) to: 

(21) 

We turn now to the computation of M(O), the electron-

positron annihilation amplitude from rest into three photons. 
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CHAPI'ER II 

LESSONS FROM THE LOWEST ORDER DIAGRAMS 

The lowest order contribution to M(O) consists of six 

diagrams of the type shown in Figure 1 formed by permuting the order 

of the photons 1, 2, and 3 along the electron l i ne. 

The amplitude corresponding to Figure 1 can be written: 

3 ( - ie ) 

4
. 3 

(~) 
1 

m 

= 

In spite of its simplicity, the lowest order amplitude 

reveals some of the subtleties and pitfalls of computer algebra. 

The Reduce program inexorably expands the numerator of (1) out to 

1 a sum of nine terms. If instead of using the external particle 

momenta p, ~' and k 3, we use the internal (virtual) momenta 

(1) 

ql = p -k1 and q
3 

= p-k
3

, the numerator of (1) becomes a sum of only 

four terms : 

l A. C. Hearn, "Reduce 2 User 's Manual" (Stanford University 
Computer Science Department Report 181, 1970) . 
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v(p)i3(n3-m)i2(nl+ m)il u(p) 

(4-s
3

) (4-s
1

) 

The use of virtual rather than real momenta is a useful 

economizing measure Which is adopted in all computer portions of 

the calculation. The kinematic properties of the virtual momenta 

follow: 

qi = p - ki, i = 1, 2, 3 p = ql+ q2+ q3 

2 2 (si;2)j 2 s. 2 sk ]. 

qi = m p·qi m qi.qj = m 4' 4 

i, j, k = 1, 2, 3 in cyclic order. 

The symmetrization of the lowest order amplitude with 

respect to the three photons requires that the six permutations 

with respect to 1, 2, and 3 of (2) must be summed. The computer 

(2) 

puts this sum over a common denominator and expands it out completely. 

This results in tens of thousands of terms! 

Such a disaster is easily evaded by abbreviating: 

1 
i 1, 2, 3 (3) 

In the course of the calculation, all denominator factors 

which are not monomials are similarly abbreviated. 
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Thus, for computer manipulation, (2) is entered as: 

(4) 

The outer spinors v(p) and u(p) are implicitly understood. 

The use of abbreviations such as s 1w in addition to s1 

is a redundancy which can make complex computed expressions larger 

than they strictly need to be. Thus, (4-s1 )s1w can be simply 

rewritten as l. A large, automatically computed expression con-

taining redundant variables can generally be written as a sum of 

much smaller subexpressions so chosen that each one will, in 

isolation, tend to contract rather than expand in size when the 

redundant variables are removed, a common denominator is invoked, 

and the greatest common divisor cancelled. Then the abbreviations 

can be reinstated by hand, and the shortened subexpressions resummed. 

"2 3 3 2 ~ 
As a simple example the expression (s1 s1w - l6slw + Bs1w)~1 + 

2 2 ~ (Bs
3
w - 2s

3
s 3w - s 3w)~3 is separated into the two subexpressions 

2 3 3 2 2 2 ~ 
(s1 slw - l6slw + 8s1w)y{1 and (ss 3w - 2s 3s 3w - s 3w)~3 • When the 

abbreviations are removed and a common denominator is invoked in 

each of the two stibexpressions, there result 

If a common 

denominator had been invoked before the separation into subexpressions, 

the result would have clearly had many more terms. 
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When the greatest common divisor is cancelled in each subexpression, 

(Reduce can perform greatest 

common divisor elimination automatically, at the user : s option . ) 

Reinstating the abbreviations and then resumming the subexpressions, 

we see that the original expression has simplified to 

s1w i 1 + s 3w i 3 • Such a "shrinkage" procedure is extremely tedious, 

and consumes a fair amount of computer time in the running of checks 

to make sure the shrunken expressions are e~ual to the original ones. 

Moreover, the re - introduction of the abbreviations must be carried 

out by hand, a necessity that makes the "shrinkage" of extremely 

large expressions more labor than it is worth . Typically, computed 

expressions containing redundant variables can be shr unk to about 

one third their "raw" size. This saves both computer processing 

time and core in subse~uent manipulations of the expressions , but 

such savings must be balanced against the sheer labor involved in 

the shrinkage process. Most of the intermediate computed expressions 

containing a few hundredsof terms or less will be shrunken to as 

compact a form as possible. For expressions running over a thousand 

terms, it is most likely only feasible to shrink a small fraction of 

the contributing subexpressions. The automatic greatest common 

divisor elimination option in Reduce is a most useful aid to 

2 
shrin_~age . 

~earn, "Reduce 2 User's M.anual", p . 3- 9 . The author learned 
the techni~ues of abbreviation and shrinkage from A. C. Hearn and 
R. Loos . 
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We denote by 1r( 0 the symmetrization of (4) with respect 

to photons 1, 2, and 3, and by ~J7 1 the order a correction to ~0 • 

'-»(_ 1 , of course, includes a term - T n(
0 

as noted in I - ( 2l), to 

cancel out the "double-counting" of the static Coulomb potential-

The rest of 71
1 

comes from the types of diagrams illustrated in 

Figures 2-9. 

We have: 

2 
IM(O)(l -~)I = 

::: 

photon spins 

1 
4 

The first term of 

jv(p)( "11[ o+ 71fl)u(p) I 
" c 

spins 

(5) 3 was computed by Ore and Powell, 

(5) 

While we propose to compute the second. It is to be noted that if 

'71{_ 0 is symmetrized with respect to the six permutations of the 

three photons, then such symmetrizati on can be postponed for n( 1 • 

Indeed, it is preferable to carry out the spin sums in the second 

term of (5) with the unsymmetrized ~1, since it is only one sixth 

the length of the properly symmetrized n(
1

• Then the symmetrization 

3 A. Ore andJ.L.Powell, Phys . Rev. 75,1696 (1949) . 
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~ 2 
of the whole of the r e l ative or der a part of !M(O)(l - ~) I can be 

economically carried out numerically just befor e the numerical 

integration of I - (21). Numerical symmetr ization is vastl y less 

demanding of computer resources than is explicit algebraic symme-

trization. For future convenience in the evaluation of (5), the 

expression 2(p + m)~{ 
0

(p - m) has been explicitly computed. It 

runs to about seventy terms. Since some of the diagrams contri­

buting to~(1 are expected to run to many thousands of terms, it 

is clear that a major commitment of computer resources will be 

needed to compute the spin sums. Fortunately, it is expected that 

the spin sums themselves will be quite compact , running to no more 

than perhaps a hundred terms after shri~~age . Reduce tends to 

curry out u lengthy calculation with considerably augmented speed 

if the result of that calculation is fairly compact . 
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CHAPI'ER III 

SPECIAL FEATURES OF THE FIRST ORDER CORRECTION DIAGRAMS 

The most complicated of the diagrams contributing to ~(1 
is that of Figure 9. We will see later that in a sense all the other 

diagrams can be looked upon as arising from subparts of this pentagon. 

The pentagon has no ultraviolet divergence, but it is undefined with-

out the small photon mass A. Then it is found to give rise to a 

O!n 
term of the form (A a + - log 

1{ 
(A-)) 
m 

times the diagram in Figure l. 

The T term cancels against the like term in -~ Jt{
0 

(Coulomb 

correction). The~ log (~) term cancels against the infrared diver-
1{ m 

gence in the fermion wave function renormalization factor JZ; , 
Which arises from the diagrams of Figure 2. 

It is thus that all terms depending on the small photon 

mass A cancel. There can be no true infrared term in electron-

positron annihilation from rest, because no "acceleration" of charge 

occurs . 

The box diagram of Figure 8 has been noted as particularly 

interesting by V. W. Hughes because of its possible relation to the 

as yet experimentally inaccessible phenomenon of photon-photon 

scattering.1 However, the mass of the virtual photon (2m), far from 

~- W. Hughes, "Muonium and Positronium", Physics of the 
One and Two Electron Atoms, ed . F. Bopp and H. Kleinpoppen (North 
Holland, Amsterdam, 1970), p. 407 . 
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being negligible, perches the diagram directly atop a dynamical 

threshold. In consequence, the analytic form of this diagram seems 

to be rather simpler than that of true photon-photon scattering. 

Althougr. each box diagram is individually logarithmically 

divergent, it has often been noted that the symmetric sum of all 

2 six box diagrams is convergent. However, an elementary check of 

this symmetrized sum reveals that it is not gauge invariant . 3 

Technically, this is because the origin of integration in momentum 

space cannot be simply shifted in a linearly divergent integral. A 

correct solution is to cut off the individual box diagrams with 

Pauli-Villars regulators -- the origin shift can now be simply 

carried out since at most logarithmically divergent integrals are 

involved, and gauge invariance holds for the cutoff independent sum 

of the regularized box diagrams. The effect of the regularization 

procedure on the finite sum of the six diagrams is simply to subtract 

out a finite, gauge non-invariant polarization contact term. 

Thus, for Figure 8, we must consider the following 

regularized integral: 

2 J. M. Jauch and F. Rohrlich, The Theory of Photons and 
Electrons (Addison-Wesley, Reading, Mass., 1955), p. 290 . 

3J. D. Bjorken and S . D. Drell, Relativistic Quantum Fields 
(McGraw-Hill, New York, 1965), p. 200 . 
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4 2 1-L J d £ (-A ) Sp [ l ( t + p + m) f. 1 ( t + i 1 + m) f. 2 ( t - i 3 + m) f. 3 

( 2 2) ( 2 2 2 2 2 2 £ - A ( £ + 1?) - m ) ( ( £ + q
1

) - m ) ( ( £ - q_
3

) - m ) 

U - p + m)] 
2 2 ((£ - p) - m ) 

2 where A ~ oo • 

The second integral in (1) evaluates to: 

(±)(i~2)(log~
2) - ~)(E 1-L(E •E ) ~ E 1-L(E •E ) - 2€ 1-L(E •E )) 

3 t-2 6 1 3 2 ' 3 1 2 2 1 3 
M 

Upon symmetrization, (2) becomes: 

This is the finite, gauge non-invariant polarization 

contact term which must be removed from the symmetric sum of the 

(1) 

(2) 

(3) 

six box diagrams in the interests of gauge invariance. It is inter-
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esting to note that Dyson in 1949 apparently did not believe that 

this gauge violating term existed. 4 Karplus and Neuman in their 

classic paper on photon-photon scattering properly disposed of it 

through regularization.
5 

For their trouble, they earned a tongue 

lashing from Jauch and Rohrlich, who were mistakenly convinced that 

since the sum of the six box diagrams is finite, it "must" be gauge 

0 0 t 2 2nvar2an • 

The author wishes to express the pious hope that future 

generations will have a better grasp of this subtle matter. It is 

perhaps the only instance in quantum electrodynamics where a con-

vergent sum of diagrams requires a subtraction. 

The diagrams in Figure 7 have neither ultraviolet nor 

infrared divergences. Speculations have been made that these 

diagrams might be dominant because of a big spike as the odd external 

6 photon goes to zero energy. But the analytic form of many of the 

terms in these diagrams seems to be repeated in some terms of the 

pentagon, Figure 9. 

~- J. Dyson, Phys. Rev. 75, 1739 (1949), p . 1747 . 

5R. Karplus and M. Neuman, Phys. Rev. ~ 380 (1950) . 

6 Private conversation with J. Espinosa concerning the 
interpretation of an idea of C. Fronsdal. 
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The self energy diagrams, Figure 3, require mass renormal­

ization counter terms, Figure 4 . This being done, Ward ' s identity 

guarantees the cancellation of all further ultraviolet divergences 

among the vertex diagrams of Figure 5, the mass renormalized self 

energy diagrams of Figure 3 and 4, and the fermion wave function 

renormalization diagrams of Figure 2. 

The photon wave function renormalization diagrams of Figure 6 

are entirely absorbed into charge renormalization and require no expli­

cit consideration . 
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CHAPI'ER IV 

DECOMPOSITION OF DIAGRAMS INTO BASIC INTEGRALS 

The diagrams Which must be evaluated, Figures l-9, involve 

at most single loop integrals. The evaluation of these integrals is 

considerably complicated by the presence of spin related tensor 

factors in the numerators of the integrands. In an all scalar theory 

with non-derivative coupling, the integrands would only have the 

number one in the numerator and products of simple scalar propagators 

in the denominator. Feynman and Brown pointed out that the tensors 

in the numerator could be expanded as linear combinations of the 

propagator factors occurring in the denominator.1 Successive 

applications of this procedure, interspersed with preparatory shifts 

of the origin of the integration where necessary, allow the decompo-

sition of an integral with a tensorial numerator into a linear 

combination of integrals with one in the numerator, such as occur 

in scalar theory. The basic single loop integrals, those with one 

in the numerator, form a reasonably small set, often possess fairly 

compact analytic forms, and tend to be especially amenable to dis-

persion theoretic computation. The decomposition procedure, however, 

is usually extremely bulky and tedious, and thus cries out for the 

use of computer algebra. 

~- M. Brown and R. P. Feynman, Phys. Rev. ~ 231 (1952), 
pp. 243-244. 
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For programming purposes, it was found expeditious to 

·sharpen the Feynman-Brown decomposition method into a small collection 

of formulas. From these it became pleasantly clear that explicit 

matrix inversion was only necessary for matrices of dimension at most 

fou~ by four, however high the rank of the tensorial integrand. The 

remainder of the Feynman-Brown coefficients follow from a~ automatic 

orthogonality property. This is important, because the ability of 

computers to invert algebraic matrices decays rapidly with the 

growth of those matrices' dimensions. It was also found necessary 

to clarify the application of the Feynman-Brown method to divergent 

integrals, as well as to derive s ome formulas for the origin shift 

i n such integrals. Finally, it is pointed out that difficulties 

arise in trying to extend the Feynman-Brown decomposition to 

problems involving multi-loop integrals. 

Every integral occurring in the diagrams of Figure 2-9 can 

be written asa linear combination of Dirac gamma expressions con-

tracted into integrals of the following form: 

(l) 

2 2 
The propagator factors[~-pj) - mj] in the denominator 

of (l) must all be distinct elements of the set of five propagator 

( 
2 2 2 2 2 2 2 2 2) 

factors £ , (£+p) -m , (£-p) -m , (t+p-~) -m , (£-P+k3) -m , 

as we see upon examination of the diagrams. The total number of 
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5 subsets of this set of five propagator factors is 2 = 32 . Of course, 

not all 32 possible denominator types occur directly in the quantum 

electrodynamics, but as we decompose the numerators of (l), we will 

see the gaps being indirectly filled. We glimpse, then, a sense in 

which the pentagon of Figure 9, in which all five propagators occur 

is the "grand daddy" diagram. A further look at the diagrams shows 

that in (l) the rank k of the numerator tensor is never greater than 

the number r + l of propagator factors. This is, of course, a 

general feature of Q. E. D. single loop diagrams. In all our 

diagrams k < 4. 

Performing a shift or origin, if necessary, we can rewrite 

integrals of the type given by (l) as linear combinations of integrals 

of the following form: 

(2) 

Of the qi , i = l, ••• , r, we select the first n, i .e., 

q1 , ~' to be a maximal linearly independent set . Of course 

n < 4 . It is crucial to note that we can now write: 
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1 { 2 2 
2 

2 - [£ -m] - [(£ -q) -m] 2 0 i i 

n 

2 
+m 

0 

2 2 2} + qi + mo -mi 

(3) 

The formulas (3) will, after expansion, allow the cancel-

lation of £ - dependent numerator factors against the denominator. 

Let us first expand (2) in the simplest case, namely When 

the tensor rank k = 1 . As pointed out by Feynman and Brown:~ 

The a (q
1

, ... , q ) are scalars and may be explicitly 
i n 

computed . We need to consider the Gram matrix Gij= qi •qj for 

i,j = 1, ••• , n . Since the qi fori= 1 , • . . , n a r e linearly 

2 independent, the Gr am matrix is nonsingular and may be inverted . 

It may then be readily verified that: 

n 
[ (G -1) (qj· I (ql , • • • , q )) 

j=l ij n 

2 An exception to this proposition will be discussed later 
in this chapter . See also Appendix B. 
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Thus: 

n 

[ ( 4) 

i=l,j=l 

The higher rank tensor integrals will involve the explicit 

appearance of the metric tensor g~v unless n = 4. To this end it 

is convenient to introduce the projective metric tensor J!/~v: 

n 

I 
i=l,j=l 

We note the "orthogonality" property: 

= 0 i 1, ..• , n 

~~v Of course, if n = 4, ~ = 0 . 

It is convenient to define the complimentary projector 

~v- g~v-~v as well: 

n 

'U-~v = 

i=l,j=l 

We may now write the expansions for tensor integrals up to fourth 

rank: 

(5) 

(6) 



33 

I J-LV = ff-J-L 1av 
0.: 

J-L v '11' "/\ 9-1 cx,8 )" p 

I 
J-Lv"Ap = ~r J-L - av"Ap + Ji (fly {Las I ) 

Fi a l (4-n ) 

li J-LP ( 1f ~ }j d6 IQ/3A5) 

(4-n) 

( Jj_ J-LV 1j Ap + ;}_ J-LA lJ. pv + Jj_ J-LP 1J vf-.) 

+ 3(4-n) (6-n) 

(7) 

(8) 

(10) 
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Note that when n = 4, all terms in (7) - (10) containing );/ IJ.V 

vanish. 

The tensor contractions in (7) - (10) may be moved under 

the integral sign, and the substitutions (3) may then be linearly 

instituted. We define: 

n 
1-L 1 q_l_ ( G- ) . , ( q_ • , £) 

lJ .) L 
i=l, j=l 

n 

[ 
2 

+m 
0 -m~} 

i=l, j=l 

2 
+m 

0 

Using (7) - (11)~ we may expand the integrand numerator tensors 

through fourth rank as follows: 

(11) 

(12) 

(13) 

(14) 
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eli IJ.V 1J i\p + 1i IJ.A Jj pv + 11 ~ 1J v/\)(1/ PP£f3)(£2 _.g p,Y) 
+ --------------------------------------~a~f3~--------~r __ __ 

(4-n) (6-n) 

(15) 

Of course , when n = 4, all terms i n (12) - (15) containing ~IJ.V 

vanish . 

The important point is that the whole £- dependence of the 

JLIJ. and £2 terms appearing in (12) - (15) may be cancelled against 

propagator factor s i n the denominator because of the representation 

(ll ). Since ~IJ. and £2 appear to linear order t hroughout (12) - (15) , 

the upshot i s the lowering of t he tensor r ank of numerator terms by 

at least one order in all integrals i n the resulting linear combi -

nation. The number of propagator factors i n the denominator may 

decrease b y up to one as well. The repeated application of (12) - (15 ), 

with intersper s ed origin shifts where necessary: can finally reduce 

an integral of type (l) to a linear combination of integrals of tensor 

rank zero , i.e ., our 32 basic integr als . 

After programming the definitions (5) and (ll) and per­

forming the substitutions (12 ) - (15) unde r t he i ntegral sign in ( 2) , 

3 the LINEAR OPERATOR feature of the Reduce language proves to be of 

3A new feature of Reduce which will be descr ibed i n an up­
coming version of A. C. Hearn ' s "Reduce 2 Use r ' s Manual" · 
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particular value. It automatically performs the separation of the 

integr al i nto a linear combination of i ntegrals of the form (l) but 

of lower tensor rank. Then, alternating with possibly needed o r igin 

shifts~ t he p rocess may be conveniently repeated until zero tensor 

ra~$ is everywhere obtained . Afte~ an interspersed or igin shift, the 

LINEAR OPERATOR feature is equally useful in restoring the form (2). 

The Feynman-Br own decomposition tends. to express a given 

integral as a linear combination of less convergent i ntegrals! since 

a numerator facto~ £~ and a denominator factor [(£ -qi)
2

-m1
2J are 

often simultaneously eliminated . When divergent integrals finally 

come to be i nvolved, it is most convenient to cu t them off in a 

cascading manner, so that the cutoffs automatically drop out singly 

where appr opr iate . 

Thus , for quadratically or cubically divergent integrals 

there is i nserted unde r the integr al sign of (l) t he cascading 

double cutoff : 

11. 2 >> 11. 2 
2 l 

00 (16) 

Thus , if a linear combination of quadratically dive r gent 

integrals equals a linearly diver gent i ntegral, all terms dependent 
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on A2 will automatically cancel" The use of cascading cutoffs 

permits the Feynman-Brown method to be in all cases very straight-

forwar dly pursued down to the 32 basic integrals. 

In some cases where (l) is divergent : it is necessary to 

perfor.m a shift of origin in order to obtain integrals of the form 

(2). Rules for performing the shift of origin of all t he types of 

diver gent integr als which occur and need shifting in this computation 

are listed in Appendix A. The rules are quite simple and were easily 

incorporated into the Reduce program. 

It is interesting to point out that in one class of 

integr als which occur in this computation the Gram matr ix is singular. 

This occur s when the number of linearly i ndependent vector s n is 

e~ual to one, and that one is lightlike ~ e . g . , a photon momentum. 

The formulas (12) - (15): which are the keystone of the Re duce 

program: then fail . I n such a case the lightlike vector can be made 

slightly timelike, e . g . , the photon given a small mass, and the 

Feynman -Brown program followed through as usual. Then, in the final 

answer, the lightlike limit is taken. In the present computation, 

the lightlike single vector case only occurs in i ntegrals of up to 

tensor r ank k = 2 . These integrals were worked out by hand by the 

method des cribed and included as special cases in the Reduce program . 

They may be found in Appendix B. 

More generally, the Gram matrix fails t o be non-s ingular 

for linearly independent q, if and only if no linear combination of 
l 

the qi is timelike and there exists a l inear combination of the qi 
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which is lightlike. If this lightlike linear combination of the q
1 

is made "slightly" timelike: then the Gram matrix becomes non-

sir~ular, and the Feynman-Brown decomposition may be carried through. 

At the end: the lightlike limit of this linear combination is taken. 

It is notable that the Feynman-Brown method treats the 

i ndices of a symmetric tensor in a highly asymmetric manner, as can 

be seen from an inspection of (13) - (15). Thus, making sure the 

final result is indeed symmetric provides an excellent overall check 

of the computation of integrals of type (l). Also, for tensor rank 

k > l in (l), there should be no Coulomb or infrared divergences 

present, providing a further check ir- certain cases. On the ultra-

violet side, the lack of proper cancellation 9f the cascading cut -

offs would provide a warning signal for some kinds of mistakes. In 

sum, it seems there are enough error warnings implicit in the com-

puterized Feynman-Brown method to buoy one's confidence in its results. 

Finally, a few words are in order about the possibility of 

extending the very useful Feynman-Brown method to mult i - loop integrals . 

The main difference between the single loop and multi - loop cases 

appears to be that the set of basic integrals would be considerably 

larger for multi - loop diagrams. • £ be the . n 

loop four vector variables of integration, then the numerators of 

the basic integrals would not j ust be one , as in the single loop 

case, but products of the following form : 



n 

I \ 
i=l .. j=l 

i < j 
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a . j 
(£ • n £ •) 2. 

2 .J 

The a .. are non-negative integers . The maximum size of 
2J 

(17) 

the a. 4 would be relate G. to the maximum tensor rank of the integrals 
2._ 

to be decomposed into linear ~ombinations of such basic integrals. 

Given the considerable increase in size of the basic integral set 

due to the presence of numerators of the type (17): it is questionable 

whether this extension to mu~ti -loop diagrams of the Feyrrman-Brown 

decomposition method could be of practical value. 
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CHAPTER V 

COMPUTATION OF THE BASIC INTEGRALS 

The basic integrals with one anc two scalar propagator 

factors in their denominators can be computed quite generally, anG 

the results will be displayed here. General results for integrals 

having three or more propagator factors are inordinately complicated 

and usually fairly useless for quantum electrodynamics since very 

difficult limits must generally be t aken. Thus! the basic integrals 

with three or more propagator factors a re computed one at a time: 

rather than making any attempt to obtain them f rom general results. 

These integrals are given in Appendix C: with this chapter touching 

only on some of the highlights of the i ntegration methods used . 

The actual carrying out of the integrations which will be 

so lightly touched in this chapter cost the author a very considerable 

amount of time and labor. Tremendous care had to be exercised when-

ever limits were involved, as, for example , in the Coulomb and 

infrared divergent basic i ntegrals. Subtle changes of variable had 

to be d~scovered . A fairly arcane body of knowledge concerning 

l 
dilogarithmic functions had to be mastered . In the course of all 

the drudgery of integration, nothing truly new or interesting came 

to light . Ver y similar messy and , from a r eader's point of view, 

~- Lewin, Dilogarithms and Associated Functions (MacDonald , 
London, 1958 ) . 
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indigestable calculations in quantum electrodynamics have appeared 

many times previously in the literature. However, for the reader 

who ~ay be interested in reproducing or checking the evaluatior- of 

of the integrals giver- in Appendix c .. the key steps~ transformations, 

and formulas which the author made use of are set forth in Appendix D. 

The genera: cne propagator basic integral evaluated with 

cascading cutoffs is: 

2 2 2 2. 2 2 (.e - A,.., )(.e -A,.., J((£-a) -!l) 
c. c. 

(1) 

2 
~ ] 

It is most convenient to evaluate the first rank tensor 

integral with a single propagator directly rather than by means of a 

Feynman-Brown decomposition . That is because cubically divergent 

integrals do not obey such simple origin shift relations as the less 

divergent integrals listed in Appendix A. 

. 2 
(~) 

2 

We have: 

\"'---____) 

A 2 >>A 2 
2 1 

~ 00 

( 2) 
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The two propagator basic i ntegral is not needed in this 

computation i n ~l generality. Only the equal mass and the one 

mass e~ual to zero cases are necessary, and those only i n the 

appropr iate physical region. The results a re g iven below: 

2 { A2 (R2 Q2 ) (J Q2 (- in ) -(log(~) + l) + 2 m - 2 a rctan 2 2 
m Q 4m - Q 

0 < Q2 < 4m2 • 
- -

2 2 2 2 2 (£ - A )((£-q ) )((£-q ) -m ) l 2 

~ 
2 A -? oo 

2 2} 
log (m ~~ ) 

)} 
(3) 

( 4 ) 
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Most of the 16 three, four~ and five propagator bas ic 

i ntegrals listed in Appendix C were evaluated by dispersion methods 

and the use of Cut kosky's rules. For every member of this set of 

16 oasic integr als there exists a corresponding (possibly identical) 

membe~ of tee same set in which the roles of photon momenta k
1 

and k
3 

and thus the kinematic variables s and u have simply been inter-

changed . In Appendix C -these "'partners" have been omitted as under-

stood, leaving 10 rather than 16 integrals. 

I n the application of Cutkosky' s rules to these integrals~ 

the threshold condition, i.e ., the equality of the electron and 

positron four momenta: meant that care had to be t aken not to over-

look resulting multiple singulari ties in s or u, e ach of whose 

2 
discontinuities had to be separately computed and the r esul ts summed . 

In Appendix C these multiple singularity cases a r e wri tten as a sum 

of dispersion integrals . 

For those four and five pr opagator bas i c integrals 

dependent on both the variables s and u, i t was found computationally 

simplest to utilize the Mandelstam double dispersion representation. 

Cutkosky briefly sets forth a simple method for computing the 

Mandelstam double discontinuity of four propagator integrals as the 

normalized inverse Jacob ian evaluated at the point whe r e the four 

2A private conver sation with James S . Ball confirming 
this poi nt is gratefully acknowledged . 
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internal lines are taken to the mass shell. 3 This is a highly 

unphysical point~ requiring the deformation of the integration 

contour such that one of the components of the f our-momentum 

variable of i ntegration is pure imaginary. The Jacobian also ana-

lytically continues to a pure imaginary value at this point. It 

is found as vell that the usual Cutkosky recipe for the number 

of 2~i's needed to normalize a discontinuity prope~ly fails by an 

extra factor of two in this case, a~parently due to the necessary 

drastic deformation of the integration contour. Although Cutkosky ' s 

paper does not give adequate warning of these minor points , 3 it is 

easy to straighten out the matters of ~hase and normalization by 

compar i ng in a few cases the independently computed ordina~y dis -

continuity in a single variable with the double discontinuity com-

puted by Cutkosky's simple method. Also, Mandelstam develops a 

closed form for the double disontinui ty of a general integr al with 

four propagators in which the phase and normalizat ion are given 

4 
correct ly. 

Two interesting features occur among the ¥~ndelstam double 

disper sion integrals found in Appendix C. First, in the basic 

integrals (C.9) represent ed by the spinless particle version of the 

di agrams in Figure 7, the Mandelstam r egion has as one boundary the 

line s = u. That there are singularities along this line may be 

3R. E. Cutkosky, Journ. Math . Phys . ~ 429 (1960 ), 
pp . 432- 433. 

4s . Mandelstam , Phys . Rev. 115, 1741 (1959), pp. l746 -l750 . 
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veri~ied ~rom the Landau equations for these basic integrals. Further~ 

the independent (and tedious) calculation of the ordinary single 

variable discontinuities confirms this boundary feature of the double 

discontinuities. Second_, the o asic integra::i.. with all five propa­

gators (C . lO) ~ ~ep~esented by the s pinless version of Figure 9: has 

single variable discontinuities which can each be decomposed into 

simple linear combinations of single variable discontinuities of 

integrals having only fo~ propagators. Of course, these resulting 

single variable discontinuities of four propagator integrals can be 

represented by dispersion integrals over double discontinuities in 

the standard manner set forth by Mandelstam~ for four propagator 

integrals. Thus is the rather complicated double dispersion repre­

sentation of the five propagator basic integral i n Appendix C 

derived from ordinary f our propagator. double dispersion repre­

sentations . 

On all computational matters~ more detail is to be found 

in Appendix D. 

Finally, it is to be noted that for many of the three 

propagator basic integrals and for all of the four and five propa­

gator basic integrals, dispersion methods are computationally far 

simpler than the parametric integrat ion method. Also: where 

applicable , double dispersion methods are computationally simpler 

than the ordinary single variable dispersion approach . This latter 

fact is due mostly to the simplicity of Cutkosky ' s double dis -



46 

continuity recipe . The author, at an early stage having nothing 

but the parametric integration method in his arsenal, was about to 

give up the four a nd five propagate~ integrals as intractable~ when 

5 
8thers made him aware of the potential ~elative simplicity of the 

dispersior.. approach. :Sater, e.fter readir..g with delight the beautiful 

L 
article of Mandelstam- and struggling ·with the terse but profound 

3 work of Cutkosky: the author realized the further computational 

simplifications inherent in utilizing double dispers~on theory. It 

now seems to the autho~ that .• as a. rule of thumb: the larger are 

the number of propagator s per loop in a basic integral, the greater 

is the computational advantage of dispe r sion over parametric methods. 

5Private conversations with M. Kislinger and F . Zachariasen . 
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CONCLUSION 

The methods of the forgoing chapters have b een used in 

conjunction with the Reduce algebra program to ,compute the self 

energy and vertex correcti on di agrams found in Figures 2 - 5 . In 

addition: most of the necessary tensor integrals of fi rst and second 

rank have been calculated: although many of these have not yet been 

sub j ected to "shrinkage." Typi call y, the largest expressions cal­

culated so far have run to hundreds of terms. It is estimated that 

some of the third and fourth rank tensor integrals yet to be computed, 

as well as the more complicated diagrams, will each run to several 

thousand terms. After traces are taken, hundreds of terms or even 

l ess should again be the rule. To make it ove r the "hump," computer 

resources must be available in a very generous measur e, 

It is the author's heartfelt hope that even in this era 

of contracting support for physics resear ch, enough funds will 

somehow be forthcoming to permit this calculation to be carried to 

its goal of comparison with experiment . 
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APPENDIX A 

ORIGIN SHIFI' FORMULAS FOR SOME DIVERGENT INTEGRALS 

1-1 v (£ -c) (£ -c) (A.l) 

2 2 2 2 2 2 ((£-q ) -m )((£-q ) -m )((£-q ) -m ) l l 2 2 3 3 

(A . 2) 
2 2 , 2 2 2 2 ((£-c-q) -m )((£-c-q ) -m )((£-c-q ) -m ) 

l l 2 2 3 3 
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(A.3) 

Any logarithmically divergent single loop Feynman integral 

may be origin shifted at will. 
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APPENDIX B 

TWO TENSOR INTEGRALS DEPENDENT ON A LIGHTLIKE VECTOR 

-:::--~ 
A2 

-4 oo 

k 2 = 0 

A 2 >> A 2 ~ oo 
2 l 

k
2 

= 0 

(- 1~2 ) [(2: -~ ~og (:: )) k~v + h 2 ~og c2:) 
l 

(B.l) 

) 

(B. 2 ) 



Thus : 
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APPENDIX C 

TRE THREE TO FIVE PROPAGATOR BAS IC Th'TEGRALS 

l 

00 log ( . ;2 2) 
r · - 4m +A 

~r ' (r '-4m
2

) (r'-r) 

l 
2 2 2 2 2 2 (£ -A )((t +p) -m )((£-p) -m 

:::: 

2 
Whe r e r =. (p

1
+ p

2
) 

2 2 2 
and p = p = m l 2 

(c . l ) 
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l 
2 2 2 2 2 (£ )((£+p) -m )((£-p+k3) -m ) 

0 

arctanh (s 
1 ~;tm

2

) 
2 (s ' - s )(s ' - 4m ) 

l 

l 

(x (v-w)+w) 

(-l )log(l- t ) 
t 

= 

arctarili ( ¥) 
(s'- s )(s ' - 4m2 ) 

2 
1( 

3 

= 

(c . 2) 

, the standard dilogarithm. 

= 

= 
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The above integr al was done by the parametric method , in 

which propagators are combined by successive applications of 

Feynman's integral: 
l 

Thus: 

l 

l 

2 
[ ax+b (1 -x)] 

2 2 2 2 2 (t )((t -(p-k3)) -m )((£-p) -m ) 

(C . 3 ) 

(c . 4 ) 
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( ~) arcta!:ln v~ 

s' (s · -s) 

( arctan ( J 2
8 

)) 

2 

4m - s 

l 
2 2 , 2 2 2 2 ((£+p) -m )((£-p+k3, -m )((£-p) -m) 

2 
(-2i1( ) 

2 
( 4rn - s ) 

00 

arctanh ( W) 
(s'-4m2 )(s'- s) 

= 

( ~
2 

- (arctan ( J---=;.-4rn~ - s ) ) 

2 

) 

= 

(C.5) 

(C . 6) 
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) 

2 2 (m ) ( 4m - s) 

(2) ff arctan ( ts:- ) 
4m - s 4m - s 

(C. 7) 
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l 

{ 
2 u'fu ' -4m) \ I 

(8i1r
2

) ( l ) (arctan ( J4m~ -s )) ( l \} 
I (4m2 \ I (4m2 , Vs - s, 'Vu -U J 

(arctan ( ~ )) 

Q(u'- s') 

cjca , f3 )) 

= 

= 

s F!F 1 f 1 

( 2f3 )arctan(ax ) where a= 2 , f3 = 2 , and{f(a,f3)= dx 2 2 
4m -s 4m -u (l+f3 x ) 

0 

= 

(c.s) 

= 

(c . 9) 
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Note that# (cx,t3) _... jCt3 ~ cx) = (2)(arctan(cx)) (arctan( t3)). 

~ (CX:t3) may be expressed in terms of dilogrithms of complex 

argument .. but such a form is not enlightening. 

2 2 2 2 2 2 2 2 2 2 (£ -X )((.e+p) - m )((£+p-k
1

) -m )((£-p+k3) -m )((£ - p) -m) 

00 

1 ds' 

( s' - s ) .[;. 
4m2 

(See next page for continuation) 
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00 

du" g (s ' -u') 

(u ' -u);:;: J s'-4m2-4A2 Ju' -4m2- l6m~2 
l 

s ·! - 4m2 -4"A2 

00 

du' 
G(s'-u ' ) 



+ 

+ 2 ~---::~:--
4m - s 

( 4m
2 )(s I (a , f3 ) + u f ( f3 , a ) ) 

Vs (4m2-s) u (4m2-u) 

59 

4m -u 
( 

2 ) + l og 2m2 

f, a , and f3 have b een defined after (C.9). 

a rctan 

(C . lO ) 
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APPENDIX D 

COMPUTATION METHODS USED FOR THE BASJC INTEGRALS . 

A basic single loop Feynman integral may be regarded as an 

analytic function of any one of the kinematic variables on which it 

depends . Of course this requires the analytic continuation of the 

integral beyond the physical domain of the kinematic variable in 

question . Landau and others explored the nature of the singularities 

which occur in analytically continued single loop Feynman integrals and 

found them to be branch points which occur for those values of the 

kinematic variables which allow two or more virtual particles in a 

loop to become real. The mass shell and physical propagation require­

ments for the exis tence of a branch point are known as the Landau 

equations, and should be familiar to the reader. Since it is known 

that the three or more denominator basic single loop integrals have 

only branch point singularities (which are readily located with the 

aid of Landau ' s equations) and that they vanish at infinite values 

of their kinematic variables, knowledge of the discontinuities 

across their branch lines is sufficient to express them as Cauchy 

integrals restricted to those branch lines - known to physici sts as 

dispersion integrals . As shown by Cutkosky and others , the dis­

continuities across the branch lines are far easier t o compute than 

the full i ntegrals themselves. The recipes for computing dis­

conti nuities are known as Cutkosky ' s rules. If a basic integral 
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depends on more than one kinematic var iable, one can go further~ and, 

in the manner of Mandelstam, consider the discontinuities in a 

second variable of a discontinuity of the integral in one of the 

other variables. c~tkos~y has given a very sim~le recipe for 

computing such a double discontinuity in certai n cases. The original 

integral, of course, is expressed as a double disper sion integral 

over the double discontinuity. 

The detailed application of Cutkosky's rules to t he 

computation of single variable discontinuities will be illustrated 

with the gener al three propagator basic integral. From Cutkosky's 

work we know that: 

disc 2 
a 

2 J 4 = (-2n:i ) d .t 
2 2 ( ( .t -b) -m2 ) 

2 2 5 ( ( .t - a ) -m1 ) 

Q is the Heaviside function which satisfies Q(x)=l for x > 0 

and Q(x)=O for x < 0 . disc means the discontinuity in the variable 
z 

z. In the discontinuity region a 2 > 0, so we may choose a coordinate 

system such that: 
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a = ( [;}, o, o, o) 

~{a ·b ) 2 -a~2 
b = (D o, 0_. ) ." 

J::2 a 

We are, of course, using the four vector dot product 

convention of Bjorken and. Drell in which .. for the four vectors 

(
0 ~ (0 ~ 00 ~~ c = c, C) and d = d, d ),we have c · d = c d- c·d . 

For the four vector variable of integration £, we have : 

£ = (£0
, 111 sinQ cos ¢, !11 sinQ sin ¢, !1J cosQ) 
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Now: 

G(£o )G (a.0 - .eo) o(£2-A2 ) o ((£-a) 2-DJ_2 ) 

((£ -b) 2 
- m,., ) 

c. 
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Now -we integrate a-way the 5 - functions one by one to get: 

(A2 8 f2 2 2\ 
5 - 2.£ V a + a -m, l 

-'- = 

l 
D, (cos G) 

where D
1

(cosG) 

2 2 2 (a • b ) (A +a -m
1 

) 

2 + 
a 

J 2 2 2 2 2 2.2 (a -(A+m1) )(a -(A-m1) )((a·b ) -a b ) 2 2 
2 

cosG+b -m2 ) . 
a 
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After performing the trivial azimuthal angle ¢ integration 

and changing variables to x = oos9 we have: 

~ 
2 2 2 2 

,., 2 (a -(A+m!) )(e. -(A-m1 ) , 
Q(ac-(~) ) - 8 (2n) l 

2 2 2 2 2 2 2 
,Ca (A +b -m2 )-(a·b)(A +a -m

1 
)+ 

Jc 2 2 2 2 2 ~ 2 a -(A+m
1

) )(a - (A-m
1

) )((a.b) -ao ) x) 

Integrating over x we get : 

(

/ 2 2 2 · 2 2 ~-2) V(a - (A+m1 ) )(a -(A-~) )((a.b) -ao ) 
arctanh 2 2 2 2 2 2 2 

a (A +b -m2 )-(a ·b)(A +a -m
1 

) 
(D.l) 

When (D. l) is inserted into the dispersion integral over 

2 l 2 2 2 a , (a.b) must be re-expressed as 2 [a +b -(a -b) ] ~ because the 

variables in which the Landau threshold singularities occur are 

a 2, b 2, and (a-b) 2 • 

If we wish to analytically continue (D.l) in the· variable 

b
2 

or the variable (a-b) 2
, it is to be noted that m2

2 
has a small 

negative imaginary part. Depending on the kinematic region, the log 
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or arctan functions may be more appropriate to (D.l) than the arctenh: 

e.rctanh x l arcte..>J. ( -ix). 

(D.l) can be '.lsed 5_n the computation -:>f any oa.sic integral 

containing three propagators .• such as (C. 5) .• for example. 

When the Cutkosky single variable discontinuity procedure 

is applied to basic integrals containir~ four or more propagators! 

a non-trivial integratio~ over azimuthal as ~ll as polar angle may 

be required. This can be performed with the aid of the formula: 

2rr 
= 

A -1- C sin¢ 

The subseq,.lent polar angle integration will involve the 

square root of a quadratic, and for such integrals the variable 

change given below is useful: 
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l 

J dx 
= 

/ax2 V + bx -:- c (dx 

(~a 4- b + c ·-t{a) 
2 J... 

dy --~------------
(dy2-2e~ y + (eb-cd)) 

Jax2 -'- bx .._ c -.J: x 

(va -b + ~ + ra) 

Actually, all the integral~ whi~b. would have :-:-equired non-

trivial azimuthal integration in the direct computatio!l. of their 

single variable discontinuities are amenable to the much simpler 

double discontinuity approach. Nevertheless , the very tiresome 

azimuthal and polar integration sequence was pursued in detail for 

the integrals given by (C. S ) and (C .9). Doing (c . s ) the hard way 

confirmed that the easy way (double discontinuity) r eally works and 

settled the question of normalization and phase to be used with the 

easy method. Doing (C .9) the hare (siP..gle discontinuity) va.y con-

firmed the presence of the s = u boundary for the double discont i -

nuity -- a feature which follow~ as well from the Landau equations. 

It is always comforting to see the single and double discontinuity 

approaches yielding the same answer . 

Having examined in detail the computation of single 

variable discontinuities, let us now examine methods of carrying out 
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the dispersion integra,tion over these discontinuities in individual 

cases. 

In the dispersion integral ~receding (C.l) the ~ollowing 

change o~ variables ~s decisive: 

1~ ( 4m;:A2) (/ 2 
log - X 

'2 ) 
-1- 2 2 

4rn -A 

(rx 
2 + 4m2) - r 

0 

'Where x 

(D.2) 

2 We are interested in (D.2) only at r = 4m " At t his value 

of r, (D.2) can be evaluated by an elementary , if slightly tedious, 

integration by parts . 

The integral in (C. 2) has two singularities, the dis-

continuities of which must be summed: 
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l 

~ ~ ~ 2 
5+( (£+p)c-mc)5 +( ( £-p+k3)c-m) 

(£2) 

2 2 0 2 2 
5 (a -m ) means G(a ) 5 (a -m ) • 
+ 

In t he second resulting dispersion int egra l i n (C . 2) ~ 

make a change of variable like that of (D. 2) : 

0 

~ 1 4m2 s -arctanh 
s 

2 
( s' -s )( s ' - 4m ) 

a r ctanh (x ) 

(
2 4m2-s) X X+ --

S 

( ~ ) }~ [(~ - x 2 )arctanh(x~ 
4m - s 2 (4m -sj 

0 X+ s 

whe r e x = 
r-:-:2 
v9-

(D.3) 
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From the table of i ntegrals and the properties of diloga-

rithms of real and co:nplex argument to be found in Chapter IX of 

L. Le•Nin · s Dilogrithms and Associated Functions (Macdonald, London, 

l958), tne f'ollmnng integral :ne.y be readiJ_y deduced: 

J~ c2:J arctanh(x) 2 

1 

0 

(D*4) allows (D.3) to be readily evaluated . 

For the first dispe~sion int egral in (C . 2) ve have the 

change of variables: 

00 

( ' 4m2) arctanh s ~, 

2 
( S I - S) ( S I - 4m ) 

where y 

l 
2 

( 4m -s) 

arctanh (y) 

(D. 4) 

(D. 5) 

We can again readily deduce from Lewin's integral tables 

that: 
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f : ( c ) arcta.nh(y) y(y+c) (D.6) 

0 

With (D. 6) -we eva:uate (D. 5). 

Moving now to the ~arametric integral Whi ch precedes end 

permits the evaluation of (C.3) and (C.4L -we .see that t he following 

change o f variable lucidly reveals the dilogar:Lthmic nature of the 

answer : 

J~ 
0 

l ~ · (x(v-w)+w-~2 ) 
(x (v -w)+w) ~og 2 

- m 

dz 
- log (l-z) z "Whe r e z 

= 

x (v-w)+w 
2 

m 

The dispersion integrals in both (C . 5 ) a nd (C . 6 ) are readily 

/ s• -4Jn2 
evaluated by making the change of variable x = ~ s ' 

using (D. 4 ). 

and then 

The integral in (C.7) has four propagators, but since it 

is a function of s alone! the azimuthal angle i ntegrat ions to be 

done in deriving i t s discontinuity structure are t r ivial . However, 

it possesses two singular ities whose discontinui t ies must be summed : 
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The result ing dispersion integrals in (C.7) require a 

care:f'ul limiting procedure as /\2 ~ 0. Beginning with the familiar 

I s I -4m2 
x = ~ , we give below the steps in 

s' 
change of variables 

evaluating the first dispersion integra~ in (C . 7): 
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J~ 
( (A,2 ) - / X 

( 8~2) 
arctanh ~ .A 2 

X + (-) 
m 

(x)(x2+ (4m:-s)) 
0 

( 22) fl ~ 

.L 

(x2+(~)2) (x2+ ( 4rn:-s)) sm 
0 

,--...__/ 

(~)2 ~ 0 
m 

= 

arctan (J-±~ 4rn -s ~ -.J 
)\ 2 

f-) ~o 
'm 
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For the second dispersion integraL in (C . 7) ve have : 

00 

(~) ds 1 l (D. 7) 

The kinematic region of interest is 4m
2 > s > 0 . In order 

to make further progress in evaluating (D.?) in this region ve must 

split the integration interval into two parts. We introduce the 

parameter a which has dimensions of mass squared and satisfies : 

2 
( 4m - s ) >> a >> 4mA --+ o 

We split the integration interval into the two parts 

2 2 2 s 1 > 4m + a and 4m + a > s 1 > 4m + 4mA. In each part ve can 

approximate the integrand differently as follows: 



co 

(l 2)Jds
1 1 

2 
m , (s'-s)(s '-4m) 

(4m2+4m"A) 

00 

1 
2 

(s ' - s)(s 1 -4m) 

75 

( 2 ..... \ 4m + 4m" , 

(D. B) 

The first integral in (D. 8) can be evaluated immediately, 

while in the second we make a ve.r::table change to: 

z = 
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Thus, (D. 8) is equal to: 

+ arctanh (~l-(4m/\ ) 2 )- ~l-(4m/\ )2} ~ 
\ 0: 0: ( 4mc - s) >> 0: >> 4m/\ -? 0 

The t echnique of separating the int egration regi on into 

two parts in order t o compute small phot on mass limits is set forth 

in detail by Feynman and Brown (Phys.Rev. 85, 231 (1952)) . It is 

very useful once again for evaluating the dispersion i ntegrals in 

(C .10). 
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Going on now to (C . 8 ) we will indicate the method of 

~omputing double discontinuities. A simple alternative weald be to 

just utilize t he closed. formula given by Mandelstam (Phys. Rev . 115, 

1741 (1959) ~ p . 1750) . In line with Cutkosky's work, however: 

disc d:i_sc 
E U 

= 

(D.9) 

! 4 2 2 2 2 2 2 2 2 
d £ 5 ((£+p) -m )5 ((£+p -~) -m )5((£-p+k3) -m )5((£ -p) -m ) 

Note that (D.9) has an extra factor of two, as mentioned 

in Chapter V. After shifting the origin in (D.9) by -p and recalling 

that 2p = ~ + k 2 + k 3, we can r ewrite t he integral i n (D. 9 ) as: 

(D.lO) 

From (D.lO) we see t hat if we could change the variables 

of integration from the four components of £~ to £2, (£.k1 ), (£ · k 2 ), 
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and (£ ·k3 )~ then the i ntegral would drop out immediately. 

We note: 

(D.ll) 

Now we can co~ve~iently choose a reference frame in vhich: 

£ (l) = 

In this frame the four components of £~ satisfy: 

l 

Vstu 

, 

{s {k ·£)- u(k_ . £)- t (k •£)) 3 -"l 2 

(D.l2) 

(D. l3) 
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r, ) 
Thus we see that£\- is simply related to t he Jacobian 

we need in (D. ll). Now .e (l) s atisfies a simple property which 

pe=mits the Jacobian to be computed in terms of our ~ew variables 

(D.l4} 

Combining (D.l4) with (D.l3) a.nd inserting the result into 

(D.ll), we have the required change of varia~les: 

(D.l5) 

Noting that the 0-:furJ.ctions in (D.lO) enforce the conditions 

2 
m ' 

) s 4rn2 - s (£ · k1 = O, (£·k2 ) = 2 , and (£.k
3

) = 
2 

, 1~ get for 

the double discontinuity: 

1 
(D. l6) 

2 2 In the Mandelstam region we have s > 4m and u > 4m , so 

the argument of the square root in the denominator of (D.l6 ) is 

negative. The correct recipe is to factor a (+i)out of the square 
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root, yielding the ~inal ans~~~ ~or the doubl e discontinuity (D.9) 

as: 

1 
(D.l7) 

We note as well tha·:: in the Mandelstam region the 5 -fUnctions 

have required the .e (2 ) component o~ .i f.l given in (D. l3) to be pure 

imaginary. This ~orced distortion o~ the d4
.t integration region 

presumably accounts for the anomalous ~actor o~ two requi red in 

(D.9) as well as the st~ange +i phase of the Jacobi~~ . Lest such 

normalization and phase anomalies make the ~eader ~easy~ he may 

check them against Mandelstam!s closed formula o~ the single variable 

discontinuity approach. 

The reader 's attention is directed to the unusual and 

pleasant s and u f actorization property of the double discontinuity 

(D . l 7). Photon-photon scattering i ntegrals with all four photons 

on mass shell don ' t have this pleasant feature , as was noted in 

Chapter III. The factorization makes t he double disper sion integr al 

in (C . 8 ) factor into a product of e lementary integrals -- we give 

below a formula for the general type of e lementary integr al : 
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u 

J
r ds · 

Vs'(s ' - a) (s, -s ) 
= 

2 -;:::=:::::::::=- a:rctan 
J s(a- s) 

(D.l8) 

a. 

for 0 < s < e. < u. 

Nov -..,e turr.. o•.lr attention tc the integra]_ in (C . 9), 'Which 

may be regarded as coming from e. spin..less version of Figure 7. 

This diagram is not of the norma:_ Mandelstam form, since one of the 

lines leading into the four propagator 2..oop has a virtual mass 'Which 

varies along 'With s, one of the two Mandelstam variables . Indeed~ 

examination of the Landau equations shows the existence of singu-

larities along the line s = u as ·..rell as along t he usual Mandelstam 

2 2 
boundary of the region s > 4m .• u >4m • Thus, the dou'ble ·dis-

continuity is computed in the usual fashion 7 but the additional 

boundary constraint must be incorporated i ntc the double dispersion 

integral, appearing in (C.9) as Q(u 0
- s r ). The single variable 

dispersion approach confirms the correctness of this procedure. 

The integral over s ' in (C.9) is readily carried out by 

using (D.l8 ). The subsequent u ' integral can be simplified by usual 

change of variable 
fu ' -4m2 

x = "/ u' as below: 
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arctan 

('.l' -u) 

4m2 

0 

as in (c. 9). 

Usir~ Lewin, f (a,~) can be expressed as the difference of 

the real parts of two dilogarithms of complex argument, but as 

stated below (C.9), this is not an enlightening form . 

Turning now to the ?entagon j_n. ( C .10 L we see that we 

cannot apply directly to this f i ve propagator integral the double 

discontinuity procedures which are tailored to four propagator 

integrals, such as Mandelstam' s closed formula. or Cutkosky ' s four 

a-function recipe. Thus we temporarily fall back on the well - defined 

Cutkosky procedure for the s i ngle variable discontinuity in s . There 

are two singularities in s, and thei r discontinuities must be summed: 
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2 2 2 2 2 2 
( (.e+p) - m ) ( (£+p-k

1
) - m )( (£ -p) -m ) ) 

Looking at the first integre~ in (D .l9) ve note the identity: 

2 2 
5 ((£+p) -m ) 

2 2 2 2 (£ -A )((£-p) -m ) 
= 2 2 2 (£ -A )(£ - 2£ ·p) 

= 

(D.l9) 

(D. 20) 
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Similarly~ looking at the second integral in (D.l9) we note: 

2 2 2 2 ( (.£+p'~J - m. ) (( £ --o ) -m 
~ ,/ \ \ • • I 

(D.2l) 

Usin.g (D.20) and. (D.2l) we can rewrite the discontinuity 

(D.l9) as a linear combination of fou~ integrals, each of which 

involves only four propagators: 
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5 (£
2

-A
2 ',o ((£-u+k )

2
-m

2
' +' + - 3 I 

,: (£+p-k)2 -r.:t2) ( ( £ -p) 2-m2) 

(D.22) 

The four s discontinuity integrals entering into (D.22) 

can each be expressed as u dispersion integrals over double dis -

continuities Which are calculable by the standard methods used for 

(C . B)and (C . 9), for these s discontinui ty integrals only have four 

propagators apiece. The five propagator problem has been r educed 

to a linear combination of four propagator problems, which can each 

be tackled by a standard double discontinuity approa ch. (D. 22) 

leads directly to the four double dispersion integrals given in 

(C . 10). 

Alt e rnatel y , we could have chosen to wri t e t he or iginal 

five propagat or integral as a l inear combination of fou r pr opagat or 

integrals before taking any discontinuities at all. The possib i lity 

of doing this springs from the identity: 
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1 
2 2 2 2 2 2 (£ -A )((.e+p) - m )((£ - p) -m ) 

l 
-..,.2,----......,2,---2,.- -'-
(£ )((i+p) -m ) 2 2 2 2 (£ -A )((£-p) -m ) 

(D. 23) 

Again, the res1.Lting four propagator integrals 'WOuld be 

treated by a standard double d.iscontinuity approach . 

The result of performing the f'our double dispersion 

i ntegrals in (C.lO) involves only functions which have already 

been encounteren in (C.?): (c .s) , and (C.9). Just so~ no really 

new techniques are needee to ~arry out the dispersion integrations 

in (C .lO), just a wonderf ully teeious melange of' the methods learned 

from carrying out the integrations in (C.?) , (C. B) , and (C.9 ). The 

gruesome details of the bookkeeping task that is required occupy 

eleven pages of scratch paper in the author' s desk. Even in an 

appendix so pedantic as this one it is too emb arass i ng to present 

such a mass of complicat ed trivia. Anyway, it would be s habby of 

the author to try to deny the truly masochistic r eader the exquisite 

pleasures of intimate rather t han vicarious experience with prolonged 

tedium . 
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Fig. 3 

Fig.4 

Fig.5 
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Fig. 6 

Fig. 7 
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