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ABSTRACT

The 0.2% experimental accuracy of the 1968 Beers and Hughes
megsurement of the annihilation lifetime of ortho-positronium
motivates the attempt to compute the first order quantum electro-
dynamic corrections to this lifetime. The theoretical problems
arising in this computation are here studied in detail up to the
point of preparing the necessary computer programs and using them
to carry out some of the less demanding steps -- but the computation
has not yet been completed. Analytic evaluation of the contributing
Feynman diagrams is superior to numerical evaluaticon, and for this
process can be carried out with the aid of the Reduce algebra
manipulation computer program.

The relation of the positronium decay rate to the electron-
positron annihilation-in-flight amplitude is derived in detail, and
it is shown that at threshold annihilation-in-flight, Coulomb diver-
gences appear while infrared divergences vanish. The threshold
Coulomb divergences in the amplitude cancel against like divergences
in the modulating continuum wave function.

Using the lowest order diagrams of electron-positron
annihilation into three photons as a test case, various pitfalls of
computer algebraic manipulation are discussed along with ways of
avoiding them. The computer manipulation of artificial polynomial
expressions is preferable to the direct treatment of rational
expressions, even though redundant variables may have to be intro-

duced.



Special properties of the contributing Feynman diagrams
are discussed, including the need to restore gauge invariance to
the sum of the virtual photon-photon scattering box diagrams by
means of a finite subtraction.

A systematic approach to the Feynman-Brown method of
decomposition of single loop diagram integrals with spin-related
tensor numerators is developed in detail. This approach allows
the Feyrmman-Brown method to be straightforwardly programmed in the
Reduce algebra manipulation language.

The fundamental integrals needed in the wake of the
application of the Feymman-Brown decomposition are exhibited and
the methods which were used to evaluate them -- primarily dis-
persion techniques -- are briefly discussed.

Finally, it is pointed out that while the techniques
discussed have permitted the computation of & fair number of the
simpler integrals and diagrams contributing to the first order
correction of the ortho-positronium annihilation rate, further
progress with the more complicated diagrams and with the evaluation
of traces is heavily contingent on obtaining access to adequate

computer time and core capacity.
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INTRODUCTION

In 1968 Beers and Hughes1 measured the annihilation rate
of ortho-positronium to be (7.262 * .015)x106/sec, the percentage
experimental error being about 0.2%.2 As was expected, this accurate
measurement was discrepant by significantly more than its experi-
mental error with the annihilation rate of (7.212 t .004)x106/sec
computed from lowest order quantum electrodynamic52 by Ore and
Powellsu

The author set out to compute the first order corrections
to the lowest order result found by Ore and Powell. Because of the
great labor involved in this computation, it is as of this writing
still incomplete, but by utilizing the Reduce4 algebra manipulation
program on some of the largest computers presently available, the
author hopes to complete the calculation in the next eight to ten
months. This thesis is a progress report on the calculation, the

theoretical and computational details of which have been largely

lR. H. Beers and V. W. Hughes, Amer. Phys. Soc. Bul. 13,
633 (1968).

. w. Hughes, "Muonium and Positronium," Physics of the
One and Two Electron Atoms, ed. F. Bopp and H. Kleinpoppen (North
Holland, Amsterdam, 1970), p. 407.

5A. Ore and J. L. Powell, Phys. Rev. 75, 1696 (1949).

4A. C. Hearn, "Reduce 2 User's Manual" (Stanford University
Computer Science Department Report 181, 1970).



comprehended, but whose completion demands a further investment of
time and, even more crucially, of computer resources.

The numerical integration of Feymman diagrams is an
extraordinarily tricky business. Partly this is because multi-
dimensional integrals over spiky rational functions are involved
and partly it is because of the existence of ultraviclet, infrared,
and even Coulomb divergences. Standard subtraction procedures are
generally used to eliminate the ultraviolet divergences, but this,
of course, tends to define the integrand as a small difference of
large numbers in the ultraviolet region. Infrared divergences can
sometimes be so intractable that curve fitting with increasingly
smaller values of the photon mass must be resorted to.s Coulomb
divergences have not, to the author's knowledge, occurred in
Feynman diagrams on which numerical integration has been attempted,
but they are endemic to higher order positronium calculations.
Finally, most diagram integrals which have been treated numerically,
such as those contributing to the anomalous electron magnetic
moment, yield single numerical values, while the corresponding
diagram integrals for the three photon annihilation of ortho-
positronium yield functions of two variables.

Thus, it seems that the exact analytic integration of

all Feynman diagrams contributing to the correction of the anni-

B
Private conversation with Jaques Calmet.



hilgtion rate of ortho-positronium is preferasble to attempted
numerical integration. Fortunately, through the use of dispersion
and double dispersion methods as well as the computerized application
of an extension of a method of Feynman and Brown for algebraically
calculating numerator factors in a single loop diagram integralsG,
is now appears quite feasible, though tedious and demanding of
considerable computer time, to carry out all the integrals analyt-
ically. Traces can be carried out quite straightforwardly, if again
at a cost of considerable computer time, by alsc using the Reduce
algebra program. TFinally, the resulting differential annihilation
rate, expected on physical groundsto be a fairly smooth function,
can be satisfactorily integrated numerically over its two variables
to give the total annihilation rate.

The author has recently learned that Pascual and de Rafgel
have published a numerical computation of the photon-photon scatter-
ing contribution -- given by six diagrams of the type shown in
Figure 8 -- to the ortho-positronium annihilation rate..7 Numerical
integration was aided by the lack of Coulomb, infrared, and ultra-
violet divergences in the sum of these six diagrams, but there is no

known reason for these diagrams to be dominant.

%L. M. Brown and R. P. Feynman, Phys. Rev. 85, 231 (1952),

Pp. 243-244,

"P. Pascual and E. de Rafael, Lett. al Nuovo Cim., 4,
1144 (1970).



CHAPTER T

THE THEORETICAL GROUNDWORK

The first theoretical problem that must be examined in
positronium ammihilation is the relationship of the electron-positron
annihilation-in-flight amplitude to the positronium annihilation
amplitude. We will here generalize a treatment given by Jauch and
Rohrlichl such that its validity is extended at least up to cor-
rections of first order in the fine structure constant a. The
author can discern no reason in principle why this generalization
should not be valid in yet higher order corrections, but this
contention hasn't been examined in great detail. An alternative
and computationally more difficult approach is followed by Harris
and Brown in their treatment of the first order corrections to
para-positronium annihilation.2 Note that throughout this thesis
the units and conventions used are those of Bjorken and Drell,
but with their optional spinor normalization of E(p,s)u(p,s):&n.3

The different interaction forces between electron and

positron may be considered in terms of the typical distances over

'lJ. M. Jauch and F. Rohrlich, The Theory of Photons and

Electrons (Addison-Wesley, Reading, Mass., 1955), p. 283.

21, Harris and L. M. Brovn, Phys. Rev. 105, 1656 (1957).

SJ. D. Bjorken and S. D. Drell, Relativistic Quantum
Mechanics (McGraw-Hill, New York, 1964).




which they produce variations in the electron-positron quantum state
function. Thus, the static Coulomb potential produces variations
typically over g Bohr radius (1/om), while annihilation itself,
being a crossed Compton scattering process, produces variations
over sbout a Compton wavelength (1/m). All the other interactions,
including among others, the spin-orbit, spin-spin, and virtual
annihilation forces, produce variations over about a Compton wave-
length or less. The static Coulomb potential, then, occupies a
special position in virtue of the "long range" variations it
produces.

The perturbation Feynman diagram approach breaks down
in any finite order as a description of a bound state such as posi-
tronium. The failure is most severe at large electron-positron
separations. But it is just at such large distances that the
positronium wave function is shaped essentially entirely by the
static Coulomb potential. Thus, the static Coulomb potential must
be treated properly to all orders in positronium,which can be
achieved by making use of the Schroedinger Coulomb bound state wave
functions. To obtain the positronium annihilaetion amplitude, these
Schroedinger Coulomb bound state wave functions must be folded into
the electron-positron annihilation amplitude computed to a given
order in perturbation theory, as set forth by Jauch and Rohrlich.l
However, the perturbation theory electron-positron annihilation

amplitude already contains the effect of the static Coulomb potential



up to a certain order. To avoid double counting the static Coulomb
contribution, the electron-positron annihilation amplitude must be
Coulomb "purified" to the appropriate order by being unfolded from
the static Coulomb Schroedinger continuum wave function (which need
only be computed to that order). This Coulomb "purified" electron-
positron annihilation amplitude is dubbed Mr(ii 53 and may be
considered to be defined by equation (4), given further on, in
which M(En,a?) is the ordinary electron-positron amnihilation
amplitude and¢£?(s‘) is the momentum space Schroedinger Coulomb
continuum wave function. The assertion that the positronium anni-
hilation amplitude M(En) is obtained by folding the Schroedinger
Coulomb bound state wave function into the Coulomb "purified"
electron-positron annihilation amplitude MP(fﬁ 53 is expressed
formally by equation (3),

MP(EZ 63, since it has been purged of the static Coulomb
influence, possesses, as discussed above, a Compton wavelength
variation property which can be expressed schematically in terms of

its ;band a?gradients at zero momenta:

I (E, T ~ (1/m)** (0,0) (1)

ap™ 3q* o=

MP—)
To supply the Coulomb effects missing from M (p, Eﬁ,
there are the standard Schroedinger center of mass Coulomb wave

functions, both those of the bound states WE (?ﬁ and those
n



of the continuum states Y, (¥). The Y, (¥) satisfy:
el D
ie-e
p-r
= e
lim Y(r) = ——— (2)
P Jv

a0

V is the very large quantization volume, and all the Y(?)
are normalized to one in this volume. Actually, the perturbative
plane wave condition (2) cannot be satisfied for the Coulomb
potential. We get around this by assigning the photon a very

small mass A in order to truncate the Coulomb potential:
-Ar
<(1/r) = -a(e™ " /r)

Of course, in the field theoretic part of the calculation,
the same small photon mass A is again needed.
We Fourier transform the Coulomb wave functions to momen-

tum space:




Now, in the manner of Jauch and Rohrl:!.ch,:L we have that
the amplitude M(En) for positronium at rest to annihilate from the n'th

Coulomb bound state may be expressed as:

-, =
>, .3 -, = 3) .2 = '-q’
M(E ) = [a7p" 47q" (53 G . 5 (3)
n
The total amplitude for electron-positron annihilation
in flight M(p, a), as is computed by field theoretic methods, may

be expressed as:
- 3, 3 - = 3 — -
M(p,3) = [a%p a3 M (E,T) 8 )(—5'+ T'-p-a)f o (B

(4)

Tt is worthwhile to again note that (4) may be regarded
as the definition of MP(E)', a)') vhile (3) is a recipe for computing
M(En), set forth in the spirit of Jauch and Roh:t'lich.l

Moving all expressions to the center of mass frame, we

write MP(;') = MP(;', ';') and M(—I_;) M(Sy '5))-

Thus:

M(E ) = [a%' (') By (B') (5)



() = [a% W E) b () (8)

Because of the perturbative plane wave condition (2), we

may write:
g @) = 8@ + an o3
Thus, we may rewrite (6) in the form:
W (B) = ¥E) - of D agym) M () (7)

i M(;) is computed from field theory, (7) may be regarded
as an integral equation for MP(E)'). Its iteration solution yields
W (D) as & perturbation sexies in ¢. This W (B) may then e in-
serted into (5) to yield the desired positronium annihilation
amplitude. In line with the perturbative approach, and making use
of (1), a further simplification of (5) and (7) can be made.

MP(;) may be expanded about p = O:

F@) = 1PV s dpp,
(®) (0)+p -0 + 20,0y W >0 *
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Also:

[ o0, .- #G) =J§(.i£_i) (1%) e ¥ (D)

—
r = 0

Denoting the Fourier transform of Q_)(-;') as w_)(;)), we

have: E .
M(E ) =V (ﬁ(o)wEn(o)-i(vFMP(o)) : (v? QEn(o))
1 BEMP 62 YEn (8)
"z m;"plo ordry - )
@) = @7 () 050 (7 7 (0) + (7 0 (0)
2
- .é. ’_i?‘irj lg;o ii rj 5 B ot ) (9)

It is worthwhile to note that in some cases where integrals

such as Id3§5’¢ (5’) are well defined, the corresponding gradients
_)

V_F)‘Y(?)l—lg_o can involve such ill-defined expressions as lim l_r-;I .
- r =»0'r
A convenient recipe for properly resolving such ambiguities is to

define gradients in terms of central differences, e.g.:
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AN o
8vo¥@) - 1m  YE+ ) - ¥E@ ond) (10)

2h
= h—0 =

For the gradients of Coulomb wave functions, we have the

following "range” conditions to add to (1):

—  ~ @)y (o)
or - n
r=0
k Yo
0
Lim B——EEH ~ (o m)* Lim b (0)
p—=0 or |r=0 p—0

Thus, for small values of |£n, both (8) and (9) are

perturbation series in powers of . Of course, (9) need only be

solved (by iteration) for MP(E3 at small values of Iiﬂ to provide
all the gradients of MP(EB at D = O needed in (8).
In the present calculation, we only need go to corrections

of first order in . Solving (9) to this order, we have for IEH << m:

M () = M(P) < W(0)us (0) + o (0)) - (11)

We are considering the annihilation of the 1351 state

with wave function YE (;3, which satisfies the Schroedinger equation:
1
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(-7 -9 v, (_’)_E v, (@)
B

For this ground state, we have:

. @ ms/z O53/2 —
g (T) = e = (12)
3 N 8x
2
- me
and El —4—

—\
Since YEl(r) is spherically symmetric, we find in accord
with our gradient definition (10), that V_,¥, (0) = O. Thus, to
r Al

terms of relative order o, we may write (8) as:

(B = VVOE (0) ¥ (0))

=vm(0) ¥, (o) (l—a's/-\—fw?: 5(0)) (13)
1

In the second step, we have used (11).
M(0) is to be computed from the Feynman diagrams for

annihilation from rest up to relative order &, and YE (0) follows
A

from (12). We still need w O(O). We know that:
p:
v, @) ==+a0s__ @ (14)
p=0"" Y p=0
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We also know that Y_, O(;)) satisfies the Schroedinger
p =

equation with the small photon mass A cutoff:

-Ar

r

(- 2% - a5 vy @) = o (15)

Substituting (14) into (15), we have to order a the equation:

R (16)
r

VE(.O_) r:-i
(%) =

For the spherically symmetric solution of (16), we have:

L & ron (1) = - 2 <)
. dr2 F=L ﬁ .

2

d m -Ar

S (rog  (r) = - 2 e

dr2 P=0 'JV

m -Ar
rw;ﬁo(r)=_ﬁ7\2 = +Clr+02
Jv 7\2C2 - meJ\r
“g= o) = = e

For large r, we expect ‘1’;_ 0(—1_‘)) - 1NV, since the poten-
tial is localized. Thus, for large r, w?__. O(r) -0, and so C, = O.

At r = 0, we expect ‘Y?_ O(?} to be finite. This must also be true
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o e o) = 2= B (l—%)

|dl

Wy _ ol0) = == () (17)

Thus, from (12), (13), and (17) we have:

M(E,) = Sy (o) M

= Q-5 (18)

In the approximately 2m energy available to the three

3 . - —) _) —> -
annihilation photons of momenta kl, kg, and k3 and energies wl, wg,

and w we may, to this first relative order in «, ignore the

3’
corrections due to the binding energy of positronium (O(azm)) and
to the width of the 1°S state (O(aem)). Thus, from the standard

rate formulas of perturbation theory,3 we may write the rest frame

138 annihilation rate as:
il 4 (32 . 2 24
R, = (2;5) [ (2x) B(2m-w, - wy- w )8 (k) + K+ k) (3) -

e ML T T (19)

v 3 3 )
2wl(2n') 2002(21‘[) 2033(21()
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Here w, = |K,|, 1 = 1, 2, 3, are the photon energies.

The 1/6 is the statistical factor for the three identical
annihilation photons, while the 4/3 is inserted because it is assumed
that ']M(El)l2 has been averaged over four initial fermion spin states,
while the triplet level has only three such states. The kinematics
of (19) is that of three photon electron-positron annihilation from
rest. It is convenient to make use of the sets of kinematic variables
for this process whose properties are given below:

In the rest frame k, = (v, E;), 1=1,2 3and p= (m, O).

2 2 2 2 2

2p=k+tky +ky D=m, K=k =k =0
D-k,
wi= T’ i=l’2’3

2 P 2 2
s = (k+ ky)" = (2p-ky) an” -4mw, = W75,
2 2 2
= = - = = = 20
u (k2+ kS) (2p kl) 4" -amw, = ms) (20)
= 2 _ 2 2 _ 2
% = (k3+ kl) = (2p-k2) = 4n” -4mw, = m's,
s+t+u = 4m2 s.+s,+8_ =4, W+ W+ W, = 2m
- . 2 3 A 2 3
2 2 2
0<s<4, 0<t<4mS, 0<u<4m’, 0<8, <4
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In terms of the dimensionless variables By 859 and 53, we
can simplify (19) to:
15 2 4 4 4-8
1 1 ] 3.3 . 1 omy | 2
”R = (3 (3 () anw” fas Jas, [M(0)(1 - 7]
0 o -

15 8. 4 4 4 4 2
(%) (%) (%) IR édsl £d52 £d53 8(sy+ s+ 85-4)[M(0)(21- %)‘

(21)

We turn now to the computation of M(0), the electron-

positron annihilation amplitude from rest into three photons.
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CHAPTER IT

LESSONS FROM THE LOWEST ORDER DIAGRAMS

The lowest order contribution to M(0) consists of six
diagrams of the type shown in Figure 1 formed by permuting the order
of the photons 1, 2, and 3 along the electron line.

The amplitude corresponding to Figure 1 can be written:

V()¢ (Ys-P + m)f, (-, + m)¢ u(p)

(-1e”) a

((1,-p) ") (-1, ) 2m®

(4ie5) V()¢5 (B-Kzm)d, (B-¥, + m)g u(p) 5
& (4—Sg) (4-31)

m

In spite of its simplicity, the lowest order amplitude
reveals some of the subtleties and pitfalls of computer algebra.
The Reduce program inexorably expands the numerator of (1) out to
a sum of nine tenns.l If instead of using the external particle
momenta p, kl, and kS’ we use the internal (virtual) momenta
a, = p-k; and q = p-k,, the numerator of (1) becomes a sum of only

four terms:

. c. Hearn, "Reduce 2 User's Manual" (Stanford University
Computer Science Department Report 181, 1970).
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4ie” V(P)gs(ﬁs'm)fg(ﬁl+ m)él u(p)
G a-s;7 (3=57)

(2)

m

The use of virtual rather than real momenta is a useful
economizing measure which is adopted in all computer portions of
the calculation. The kinematic properties of the virtual momenta

follow:

i; Js ¥ = 13 25 3 'in eyclic order

The symmetrization of the lowest order amplitude with
respect to the three photons requires that the six permutations
with respect to 1, 2, and 3 of (2) must be summed. The computer
puts this sum over a common denominator and expands it out completely.

This results in tens of thousands of terms!

Such a disaster is easily evaded by abbreviating:

5, = T—— =1, 2 3 (3)

In the course of the calculation, all denominator factors

which are not monomials are similarly abbreviated.



19
Thus, for computer manipulation, (2) is entered as:

4ie 35 SWB Tig

___:;Z———— ¢3(¢3—m)¢2(¢1+ m)fl (4)

The outer spinors v(p) and u(p) are implicitly understood.

The use of abbreviations such as 5 in addition to 5,
is a redundancy which can make complex computed expressions larger
than they strictly need to be. Thus, (4-51)5lw can be simply
rewritten as 1. A large, automatically computed expression con-
taining redundant variables can generally be written as a sum of
much smaller subexpressions so chosen that each one will, in
isolation, tend to contract rather than expand in'size when the
redundant varigbles are removed, a common denominator is invoked,

and the greatest common divisor cancelled. Then the abbreviations

can be reinstated by hand, and the shortened subexpressions resummed.

i . - 3 2
As a simple example the expression (sl S1y - 1651w + lew)dl -
2 2 : 5
(BSSW - 28,8, - ssw)gi3 is separated into the two subexpressions
2.5 3 2 2 2
o= - - . h
(Sl 51, - 16sy + lew)ﬁl and (853w 25,5 st)ﬁs When the

abbreviations are removed and a common denominator is invoked in

each of the two subexpressions, there result

2

8, = le + 16 4-53
= 53 dl and |————oror ¢3 . If a common
64-4851+ l?sl -sl 16-855+ 33

denominator had been invoked before the separation into subexpressions,

the result would have clearly had many more terms.
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When the greatest common divisor is cancelled in each subexpression,
(7:%—)dl and (Z:%—)ﬁs result. (Reduce can perform greatest

Rl B 3
common divisor elimination automatically, at the user's option.)
Reinstating the abbreviations and then resumming the subexpressions,
we see that the original expression has simplified to
514 dl + 54 ¢3 . Such & "shrinkage" procedure is extremely tedious,
and consumes a fair amount of computer time in the running of checks
to mske sure the shrunken expressions are equal to the original omes.
Moreover, the re-introduction of the abbreviations must be carried
out by hand, a necessity that makes the "shrinkage" of extremely
large expressions more labor than it is worth. Typically, computed
expressions containing redundant variables can be shrunk to about
one third their "raw" size. This saves both computer processing
time and core in subseqguent manipulations of the expressions, but
such savings must be balanced against the sheer labor involved in
the shrinkage process. Most of the intermediate computed expressions
containing a few hundreds of terms or less will be shrunken to as
compact a form as possible. For expressions running over a thousand
terms, it is most likely only feasible to shrink a small fraction of
the contributing subexpressions. The automatic greatest common
divisor elimination option in Reduce is a most useful aid @0

shrinkage.2

2Hearn, "Reduce 2 User's Manual", p. 3-9. The author learned

the techniques of abbreviation and shrinkage from A. C. Hearn and
R. Loos.



We denote by M , the symmetrization of (4) with respect
to photons 1, 2, and 3, and by qu the order @ correction to 7#0.
WU > of course, includes s term - g%fm% as noted in I-(21), to
cancel out the "double-counting" of the static Coulomb potential.
The rest of 771.comes from the types of diagrams illustrated in
Figures 2-9.

We have:

1

2 2
M@ - B = T ) [T g+ 7 u)]

spins

_ Z [

photon spins

i L

Sp(($-m) 7 o (b + m) H )

+ 2Re( T Sp(7( (B + m) 7 ($-m)))] (5)

The first term of (5) was computed by Ore and Powell,s
while we propose to compute the second. It is to be noted that if
7;C0 is symmetrized with respect to the six permutations of the
three photons, then such symmetrization can be postponed for h{lf
Indeed, it is preferable to carry out the spin sums in the second
term of (5) with the unsymmetrized W{l, since it is only one sixth

the length of the properly symmetrized 77&. Then the symmetrization

3 Ove and L. Powell, Phys. Rev. 75, 1696 (1949).
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of the whole of the relative order o part of |M(0)(1 - Q%JIE can be
economically carried out numerically just before the numerical
integration of I-(21). Numerical symmetrization is vastly less
demanding of computer resources than is explicit algebraic symme-
trization. For future convenience in the evaluation of (5), the
expression 2(p + m)ag;o(ﬁ - m) has been explicitly computed. It
runs to about seventy terms. Since some of the diagrams contri-
buting toin{i are expected to run to many thousands of terms, it
is clear that a major commitment of computer resources will be
needed to compute the spin sums. Fortunately, it is expected that
the spin sums themselves will be quite compact, running to no more
than perhaps a hundred terms after shrinkage. Reduce tends to
carry out a lengthy celculation with considerasbly augmented speed

1f the result of that calculation is fairly compact.
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CHAPTER IIT

SPECTAL, FEATURES OF THE FIRST ORDER CORRECTION DIAGRAMS

The most complicated of the diagrams contributing to 77/1
is that of Figure 9. We will see later that in a sense all the other
diagrams can be looked upon as arising from subparts of this pentagon.
The pentagon has no ultraviolet divergence, but it is undefined with-
out the small photon mass A. Then it is found to give rise to a
term of the form.(Q%- + %-log (g)) times the diagram in Figure 1.

The %? term cancels against the like term in -Q%VW{O (Coulomb
correction). The % log (2) term cancels against the infrared diver-
gence in the fermion wave function renormalization factor J—1; >
which arises from the diagrams of Figure 2.

It is thus that all terms depending on the small photon
mass A cancel. There can be no true infrared term in electron-
positron annihilation from rest, because no "acceleration" of charge
occurs.

The box diagram of Figure 8 has been noted as particularly
interesting by V. W. Hughes because of its possible relation to the
as yet experimentally inaccessible phenomenon of photon-photon

scattering.l However, the mass of the virtual photon (em), far from

. w. Hughes, "Muonium and Positronium", Physics of the
One and Two Electron Atoms, ed. F. Bopp and H. Kleinpoppen (North
Holland, Amsterdam, 1970), p. 407.




24

being negligible, perches the diagram directly atop a dynamical
threshold. In consequence, the analytic form of this diagram seems
to be rather simpler than that of true photon-photon scattering.

Although each box diagram is individually logarithmically
divergent, it has often been noted that the symmetric sum of all
six box diagrams is convergent.2 However, an elementary check of
this symmetrized sum reveals that it is not gauge invariant.3
Technically, this is because the origin of integration in momentum
space cannot be simply shifted in a linearly divergent integral. A
correct solution is to cut off the individual box diagrams with
Pauli-Villars regulators -- the origin shift can now be simply
carried out since at most logarithmically divergent integrals are
involved, and gauge invariance holds for the cutoff independent sum
of the regularized box diagrams. The effect of the regularization
procedure on the finite sum of the six diagrams is simply to subtract
out a finite, gauge non-invariant polarization contact term.

Thus, for Figure 8, we must consider the following

regularized integral:

EJ. M. Jauch and F. Rohrlich, The Theory of Photons and

Electrons (Addison-Wesley, Reading, Mass., 1955), p. 290.

3J. D. Bjorken and S. D. Drell, Relativistic Quantum Fields
(McGraw-Hill, New York, 1965), p. 200.
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. a®s (0% sp [PM(f + B+ m)f (£ + d) + mE (4 - Ay + m)f,

(£5- 22)((£ +2)%- %) ((2 + a)%- n°) ((2 - q5)%- n°)

(£ - % +m)]

((¢ - p)2- n°)

a*s (1F)sp DML + M) (f + ML + ME (L + )] 1)
(ze _ AE) (£2 _ M2)4

where A2 - o ,

The second integral in (1) evaluates to:
(4 (12 (108 ) - B)(eMege,) + e e o) - 26, (e o))
3 € 2 B €1 \€3°€a/ * €5 161°%p 2 \€1°%3
+ (D) (117 (e, M(egee,) + e (e re,) - e M(e-en)) (2)
3 1 3 2 3 1 2 2 L. =5
Upon symmetrization, (2) becomes:
(i)(iﬂz)(e Hle ce.) + e Mlegee,) + € Hle. .€.)) (3)
3 il 2 3 2 5 1 3 1 2
This is the finite, gauge non-invariant polarization

contact term which must be removed from the symmetric sum of the

six box diagrams in the interests of gauge invariance. It is inter-



26

esting to note that Dyson in 1949 apparently did not believe that
this gauge violating term existed.4 Karplus and Neuman in their
classic paper on photon-photon scattering properly disposed of it
through regulariza,tion.5 For their trouble, they earned a tongue
lashing from Jauch and Rohrlich, who were mistakenly convinced that
since the sum of the six box diagrams is finite, it "must" be gauge
invariant.2

The author wishes to express the pious hope that future
generations will have a better grasp of this subtle matter. It is

perhaps the only instance in guantum electrodynamics where a con-

vergent sum of diagrams requires g subtraction.

The diesgrams in Figure 7 have neither ultraviolet nor
infrared divergences. Speculations have been made that these
diagrams might be dominant because of a big spike as the odd external
photon goes to zero energy.6 But the analytic form of many of the
terms in these diagrams seems to be repeated in some terms of the

pentagon, Figure 9.

“r. g, Dyson, Phys. Rev. 75, 1739 (1949), p. 1747.

°R. Karplus and M. Neuman, Phys. Rev. 80, 380 (1950).

6Private conversation with J. Espinosa concerning the
interpretation of an idea of C. Fronsdal.
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The self energy diagrams, Figure 3, require mass renormal-
ization counter terms, Figure 4. This being done, Ward's identity
guarantees the cancellation of all further ultraviolet divergences
among the vertex diagrams of Figure 5, the mass renormalized self
energy diagrams of Figure 3 and 4, and the fermion wave function
renormalization diagrams of Figure 2.

The photon wave function renormalization diagrams of Figure 6

are entirely absorbed into charge renormalization and require no expli-

¢it consideration.
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CHAPTER IV

DECOMPOSITION OF DIAGRAMS INTO BASIC INTEGRALS

The diagrams which must be evaluated, Figures 1-9, involve
et most single loop integrals. The evaluation of these integrals is
considerably complicated by the presence of spin related tensor
factors in the numerators of the integrands. Ip an all scalar theory
with non-derivative coupling, the integrands would only have the
nurber one in the numerator and products of simple scalar propagators
in the denomingtor. Feynman and Brown pointed out that the tensors
in the numerator could be expanded as linear combinations of the
propagator factors occurring in the clencmlina:t:or.:L Successive
applications of this procedure, interspersed with preparatory shifts
of the origin of the integration where necessary, allow the decompo-
sition of an integral with a tensorial numerator into a linear
combination of integrals with one in the numerator, such as occur
in scalar theory. The basic single loop integrals, those with one
in the numerator, form a reasonably small set, often possess fairly
compact analytic forms, and tend to be especially amenable to dis-
persion theoretic computation. The decomposition procedure, however,
is usually extremely bulky and tedious, and thus cries out for the

use of computer algebra.

lL. M. Brown and R. P. Feynman, Phys. Rev. 85, 231 (1952),
pp. 243-244,



For programming purposes, it was found expeditious to
‘sharpen the Feynman-Brown decomposition method into a small collection
of formulas. From these it became pleasantly clear that explicit
matrix inversion was only necessary for matrices of dimension at most
four by four, however high the rank of the tensorial integrand. The
‘remainder of the Feynman-Brown coefficients follow from an automatic
orthogonality property. This is important, bécause the ability of
computers to invert algebraic magtrices decays répidly with the
growth of those matrices' dimensions. It was also found necessary
to clarify the application of the Feymman-Brown method to divergent
integrals, as well as to derive some formulas for the origin shift
in such integrals. Finally, it is pointed out that difficulties
arise in trying to extend the Feynman-Brown decomposition to
problems involving multi-loop integrals.

Every integral occurring in the diagrams of Figure 2-S2 can
be written asa linear combination of Dirac gammse expressions con-

tracted into integrals of the following form:

T
[ats 2 1,2 Mk (1)
z 2 2

The propagator factors[(z-pj)2- mje] in the denominator

of (1) must all be distinct elements of the set of five propagator
2 2 2 2 2 2

factors { ze, (2+p) -m2, (£-p)2-m . (£+p-k1) -m", (E-p+k3) -m } s

as we see upon examination of the diasgrams. The total number of
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subsets of this set of five propagator factors is 25 = 32. Of course,

not all 32 possible denominator types occur directly in the quantum
electrodynamics, but as we decompose the numerators of (1), we will
see the gaps being indirectly filled. We glimpse, then, a sense in
which the pentagon of Figure S, in which all five propagators occur
is the "grand daddy" diagram. A further look at the diagrams shows
that in (1) the rank k of the numerator tensor is never greater than
the number r + 1 of propagator factors. This is, of course, a
genergl feature of Q. E. D. single loop diagrams. In all our
diagrams k < 4.

Performing a shift or origin, if necessary, we can rewrite
integrals of the type given by (1) as linear combinations of integrals

of the following form:

j[pl"'“k Ej‘z; zul ng... .zuk (2)

a”s
(ays5e0e5 @) (ze-mi) T [(ﬂ-qi)g-mfl
1=1

Of the qi, i=1, sss , ¥, we gelect the first n, i.e.,
ql, cunn g qn, to be a maximal linearly independent set. Of course

n < 4, Tt is crucial to note that we can now write:



31

2
1 2 2 2 2 2 2
a4 = -é-{[ﬂ -mO] - [(f,-qi) 'mi] +a # mo-mi}

for L= dpy wwe 3 B

L5 = [Ee-mg] + mi (3)

The formulas (3) will, after expansion, allow the cancel-
lation of f-dependent numerator factors sgainst the denominator.
Let us first expand (2) in the simplest case, namely when

the tensor rank k¥ = 1. As pointed out by Feynman and Brown: ™

n
L
[Magseeer @) = 3 ay(ayseees e
i=1
The ai(ql, P qn) are scalars and may be explicitly
computed. We need to consider the Gram matrix Gy 5= 459 for
1;J = 1y «ws , B Sinee the qi for 1 = 1, sw»= 3 N are linearly

independent, the Gram matrix is nonsingular2 and may be inverted.

It may then be readily verified that:

n

By (s wox 2 9] = ng (c ‘l>iJ CIRCHPPRTINY

2An exception to this proposition will be discussed later
in this chapter. ©See also Appendix B.
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Thus:

(0
™= Y de™y, (a,]) (4)
1=1, 3=1

The higher rank tensor integrals will involve the explicit
appearance of the metric tensor guv uniess n = 4. To this end it

is convenient to introduce the projective metric tensorAS/uV:

)b«/“v = g" - Z (¢™hy., qz q; (s)

We note the "orthogonality" property:

(6)

]
o
He
Il
H
-
4
e
=]

TR
ip ol

Of course, if n = 4, 4"V = o.

It is convenient to define the complimentary projector

?LFV = g"’- 4" as well:

n
‘H_w = Z (G'l)jl'j qg q;

We may now write the expansions for tensor integrals up to fourth

rank:



uvhp
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A
(Fen 1™
(4-n)

MY o
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CO/IGV')')

=

(4-n) '
(4-n)

A0S
by oo 1)
)

(4 n)

+
(4-n)

(D&/uv A
ﬁp &Lﬂ\dpv Jue
4

3(4-n) (6-n)

C
aB "{/75

+ ,},
s g 4
ob B-),)( I opyd)

(7)

(9)

(10)
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Note that when n = 4, all terms in (7) - (10) containing /Ajuv
vanish.
The tensor contractions in (7) - {10) may be moved under

the integral sign, and the substitutions (3) may then be linearly

instituted. We define:

Jrode e 5 af 67y, (a,08)

i=1,j=1
- Hora-d 1 2 2 2 5 2 2 2
= y a; (G )13(5){[3 -nd - T(e-qy) -mi] + ay + mg -mj}
i=1l; 3=l
ﬂg = [ﬂ2—m2] d m2 (11)
(8] (o) )

Using (7) - (11), we may expand the integrand numerator tensors

through fourth rank as follows:

M J{“ (12)

g LLV(E2_ j"a ‘ea)

BV no,v o
AR Sl A ) (13)

(Lf“"ﬂ% M 2y (P A, )

w v oA ‘v A
PE ML (TA P i) (14)
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NP - BN G NP YRR LR P

T iR ST L RTINS i
(4-2) (-n)

(15)

Of course, when n = 4, all terms in (12) - (15) containing éﬁuv
vanish.

The important point is that the whole fZ-dependence of the
JLH and e terms appearing in (12) - (15) may be cancelled against
propagator factors in the denominator because of the representation
(11). Since }%“ and i appear to linear order throughout (12) - (15),
the upshot is the lowering of the tensor rank of numerator terms by
at least one order in all integrals in the resulting linear combi-
nation. The number of propagator factors in the denominator may
decrease by up to one as well. The repeated application of (12) - (15),
with interspersed origin shifts where necessary. can finally reduce
an integral of type (1) to a linear combination of integrals of tensor
rank zero, i.e., our 32 basic integrals.

After programming the definitions (5) and (11) and per-
forming the substitutions (12) - (15) under the integral sign in (2),

the LINEAR OPERATOR feature3 of the Reduce language proves to be of

3A new feature of Reduce which will be described in an up-
coming version of A. C. Hearn's "Reduce 2 User's Manual'.
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particular value. + auvtomatically performs the separation of the
integral into & linear combination of integrals of the form (1) but
of lower tensor rank. Then, alternating with possibly needed origin
shifts, the process may be conveniently repeated until zerc tensor
rank is everywhere obtalned. After an interspersed origin shift, the
LINEAR OPERATOR feature is equally useful in restoring the form (2).
The Feynman-Brown decomposition tends. to express a given
integral as a linear combination of less convergent integrals, since
& numerator factor ZM and a denominator factor [(£-qi)2-m12}

often simultaneously eliminated. When divergent integrals finally

are

come to be involved, it is most convenient to cut them off in a
cascading manner, so that the cutoffs automatically drop out singly
where appropriate.

Thus, for quadratically or cubically divergent integrals
there is inserted under the integral sign of (1) the cascading

double cutoff:

(- 8,%) (- 4%

(22- Age) (22- Ale)

AT > A o T (16)

Thus, if a linear cowmbination of quadratically divergent

integrals equals a linearly divergent integral, all terms dependent



37

on A2 will automatically cancel. The use of cascading cutoffs
permites the Feymman-Brown method tc be in all cases very straight-
forwardly pursued down to the 32 basic integrals.

In some cases where (1) is divergent, it is necessary to
perform a shift of origin in order to obtain integrals of the form
(2). Rules for performing the shift of origin of all the types of
divergent integrais which occur and need shifting in this computation
are listed in Appendix A. The rules are quite simple and were easily
incorporated into the Reduce program.

It is interesting to point out that in one clase of
integrsls which occur in this computation the Gram matrix is singular.
This occurs when the number of linearly independent vectors n is
ecual to one, and that one is lightlike, e.g., a photon momentum.

The formulas (12) - (15), which are the keystone of the Reduce
program, then fail. In such a case the lightlike vector can be made
slightly timelike, e.g., the photon given a small mass, and the
Feynman-Brown program followed through as usual. Then, in the final
answer, the lightlike 1imit is teken. In the present computation,
the lightlike single vector case only cccurs in integrals of up to
tensor rank k = 2. These integrals were worked out by hand by the
method described and included as special cases in the Reduce program.
They may be found in Appendix B.

More generally, the Gram matrix fails to be non-singular
for linearly independent qy if and only if no linear combiéation of

the a. is timelike and there exists a linear combination of the qi
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which is lightlike. If this lightlike linear combination of the ay
is made "slightly"” timelike, then the Gram matrix becomes non-
singular, and the Feynman-Brown decomposition may be carried through.
At the end, the lightlike iimit of this linear combination is taken.
It is notable that the Feynman-Brown method treats the
indices of a symmetric tensor in a highly asymmetric manner, as can
be seen from an inspection of (13) - (15). Thus, making sure the
final result is indeed symmetric provides an excellent overall check
of the computation of integrals of type (1). Also, for tensor rank
k > 1 in (1), there should be no Coulomb or infrared divergences
present, providing a further check in certain cases. On the ultra-
violet side, the lack of proper cancelliation of the cascading cut-
offs would provide & warning signal for some kinds of mistakes. In
sum, 1t seems there are enough error warnings implicit in the com-
puterized Feymmen-Brown method to buoy cne's confidence in its results.
Finally, a few words are in order about the possibility of
extending the very useful Feynman-Brown method to multi-loop integrals.
The main difference between the single loop and multi-loop cases
appears to be that the set of basic integrals would be considerably

larger for multi-loop diagrams. If we let ﬂl, £ e s 5 En be the

2,
loop four vector variables of integration, then the numerators of

the basic integrals would not just be one, as in the single loop

case, but products of the following form:
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(17)

The <&, ., are non-negative integers. The maximum size of

ij

the ai would be related to the maximum tensor rank of the integrals

; Cie

to be decomposed into linear combinations of such basic integrals.
Given the considerable incresse in size of the basic integral set
due to the presence of numerators of the type (17), it is questionable
whether this extension to multi-loop diagrams of the Feynman-Brown

decomposition method could be of practical value.
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CHAPTER V

COMPUTATION OF THE BASIC INTEGRALS

The basic integrals with one and twe scalar propagator
factore in their denominators can be computed quite generally, and
the results will be displayed here. General results for integrals
having three or more propagator factors are inordinately complicated
and usually fairly useless for quantum electrodynamics since very
difficult limits must generally be taken. Thus, the basic integrals
with three or more propagator factors are computed one at a time,
rather than making any attempt tc obtain them from general results.
These integrals are given in Appendix C, with this chapter touching
only on some of the highlights of the integration methods used.

The actual carrying out of the integrations which will be
so lightly touched in this chapter cost the author a very considerable
amount of time and labor. Tremendous care had to be exercised when-
ever limits were involved, as, for example, in the Coulomb and
infrared divergent basic integrals. Subtle changes of variable had
to be discovered. A fairly arcane body of knowledge concerning
dilogarithmic functions had to be mastered.l In the course of all
the drudgery of integration, nothing truly new or interesting came

to light. Very similar messy and, from a reader's point of view,

lL. Lewin, Dilogarithms and Associated Functions (MacDonald,
London, 1958).
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indigestable calculations in quantum electrodynamics have appeared

many times previously in the literature. However, for the reader

who may be interested in reproducing or checking the evaluation of

of the integrals giver in Appendix C, the key steps, transformations,

and formulas which the suthor made use of are set forth in Appendix D.
The general cne propagator basic integral evaluated with

cgscading cutoffs is:

2 ~
(4,7 (0, ®)

4
fa™s

2 2 2 2 2 2

(£7- A7) (£7= A7) ((2-a)7-1")

(1)
2 s (a5 2 A ° c
" i (-in%) f(Al Jlog| —= | - 4 log ~— |+ %? ]
A22 >> A12 - o A]_ M

It is most convenient to evaluate the first rank tensor
integral with a single propagator directly rather than by means of a
Feymman-Brown decomposition. That is because cubically divergent
integrals do not obey such simple origin shift relations as the less

divergent integrals listed in Appendix A. We have:

(-6, (-0, %) 2

Ja*s - 5 2 A(—e\‘\;é .
(420, D) (470 B (1232 SZ=n? o e
o A2 >
(Z2) 1(8,®)108| 25)-20%10g ’i;— w0+ 287 (29 (2)
fL_L K
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The two propagator basic integral is not needed in this
computation in full generality. Only the equal mass and the one
mass equal to zero cases are necessary, and those only in the

appropriate physical region. The results are given below:

(~0%)
fd4ﬁ =5 s 5 /E;\__,/
(£°-A) (-0 ) ") ((£-a,)“m) AT = =

2 D 2 2
(Hiﬂe) —(103({\‘—2) #1) + 2 ég‘-—i%—-— arctan —-—2ﬂ—2—
m Q 4m—-Q
where Q2 = (ql- q_g)2 s 0 Q2 < i . (3)
—A2
fa*s 5 zg : 5 5 o Cud
(£5- A7) ((£-a))) ((£-9,)"-m") AT o w

2 2 2 e 2
(-1x°) {-(mg(%) + 1) + @;;ll 1og (23 )}

m

where Q° = (a, - q2)2 , Q2 < n® . (4)
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Most of the 16 three, four, and five propagator basic
integrals listed in Appendix C were evaluated by dispersion methods
and the use of Cutkosky's rules. For every member of this set of
16 basic integrals there exists a corresponding (possibly identical)
memper of the same set in which the roles of photon moments kl and kS
and thus the kinematic variables s and u have simply been inter-
changed. In Appendix C these "partners’ have been omitted as under-
stood, leaving 1C rather than 16 integrals.

In the application of Cutkosky's rules to these integrals,
the threshold condition, i.e., the equality of the electron and
positron four momenta, meant that care had to be taken not to over-
look resulting multiple singularities in s or u, each of whose
discontinuities had tc be separately computed and the results summed.
In Appendix C these multiple singularity cases are written as a sum
of dispersion integrals.

For those four and five propagator basic integrals
dependent on both the variables s and u, it was found computationally
simplest to utilize the Mandelstam double dispersion representation.
Cutkosky briefly sets forth a simple method for computing the
Mandelstam double discontinuity of four propagator integrals as the

normalized inverse Jacobian evaluated at the point where the four

2A private conversation with James S. Ball confirming
this point is gratefully acknowledged.
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internal lines are tasken tc the mass shell.3

This is & highly
unphysical point, requiring the deformation of the integration
contour such that one of the components of the four-momentum
variable of integration 1s pure imaginary. The Jacobian alsc ana-
lytically continues to a pure imaginary value at this point. It
is found as well that the usual Cutkosky recipe for the number
of 2xl's needed to normalize a discontinuity properly fails by an
extra factor of two in this case, apparently due to the necessary
drastic deformation of the integration contour. Although Cutkosky's
paper does not give adequate warning of these minor points,3 it is
easy to straighten out the matters of phase and normalization by
comparing in a few cases the independently computed ordinary dis-
continuity in a single variable with the doubie discontinuity com-
puted by Cutkosky's simple method. Also, Mandelstam develops &
closed form for the double disontinuity of a general integral with
four propagators in which the phase and normalization are given
correctly.4

Two interesting features occur among the Mandelstam double
dispersion integrals found in Appendix C. First, in the basic
integrals (C.9) represented by the spinless particle version of the
disgrams in Figure 7, the Mandelstam region has as one boundary the

line s = u. That there are singularities along this line may be

°R. E. Cutkosky, Journ. Math. Phys. 1, 429 (1960),
Pp. 432-433.

%s. Mandelstam, Phys. Rev. 115, 1741 (1959), pp.1746-1750.



verified from the Landau equations for these basic integrals. Further,
the independent (and tedious) calculation of the ordinary single
variable discontinuities confirms this boundary feature of the double
discontinuities. Second, the basic integral with a8ll five propa-
gators (C.10), represented by +the spinless version of Figure 9, has
singie varigble discontinuities which can each be decomposed into
simple linear combinations of single variable discontinuities of
integrals having only four propagators. Of course, these resulting
single variable discontinuities of four propagator integrals can be
represented by dispersion integrals over double discontinuities in

- 4
the standard manner set forth by Mancdeistam for four propagator

ck

integrals. Thus is th

(]

rather complicated double dispersion repre-
sentation of the five propagator basic integral in Appendix C
derived from ordinary four propagetor double dispersion repre-
sentations.

On all computational matters, more detail is to be found
in Appendix D.

Finally, it is to be noted that for many of the three
propagator basic integrals and for all of the four and five propa-
gator basic integrals, dispersion methods are computationally far
simpler than the parametric integration method. Also, where
applicable, double dispersion methods are computationally simpler
than the ordinary single variable dispersion approach. This latter

fact is due mostly to the simplicity of Cutkosky's double dis-
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continuity recipe. The author, at an early stage having nothing

but the parametric integration method in his arsenal, was about to
give up the four and five propagator integrals as intractasble, when
otherss made him aware of the potential relative simplicity of the
dispersion approach. Later, after reading with delight the beautiful
article of Mandelstamé and struggling with the terse but profound
work of Cutkosky_.3 the author realized the further computational
simplifications inherent in utilizing double dispersion theory. It
now seems to the author that, as a rule of thumb, the larger are

the number of propagators per loop in a basic integral, the greater

is the computational advantage of dispersion over parametric methods.

5Private conversations with M. Kislinger and F. Zachariasen.



CONCLUSION

The methods of the forgoing chapters have been vsed in
conjunction with the Reduce algebra program to ,compute the self
energy and vertex correction diagrams found in Figures 2 -5. 1In
addition, most of the necessary tensor integrals of first and second
rank have been calculated, although many of these have not yet been
subjected to "shrinkage." Typically, the largest expressions cal-
culated so far have run tTo hundreds of terms. It is estimated that
some of the third and fourth rank tensor integrals yet to be computed,
as well as the more complicated diagrams, will each run tc several
thousand terms. After traces are taken, hundreds of terms or even

less should again be the rule. To make it over the "hump,"

computer
resources must be available in a very generous measure.

It is the author's heartfelt hope that even in this era
of contracting support for physics research, enough funds will

somehow be forthcoming to permit this calculation to be carried to

its goal of comparison with experiment.
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APPENDTX A

ORIGIN SHIFT FORMULAS FOR SOME DIVERGENT INTEGRALS

[B) VvV
53
fdéﬁ £ 2

52 55
((2-a,)"-m, ) ((£-a,)"m,")

e d (8- (£-c)¥

- fae s 5 (8.1}
((E-c-ql) -ml )((z-c_q_E) -mg

2

)

ix v, 2 % L v vV u
= (—g—) g7 (c%ren (g + gp))-cMe’s (ay+ g )Me” + (gy+ a,) e

ra 2" g¥ 4P
((£-a,)%m %) ((£-0,)%m,%) ((2-a)°m,

%)

m v b
- fa*s (£-c)” (4-c) (£-c)
((ﬂ—c-ql)e-mle) ((ﬂ—c—q2)2-m2
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%) ((3-c-a,)%n,")



49

B V3
fa‘s : - Ja%s {4-c)

((2-0,)%-m %) ((2-0,)%m,%) ((#-c-a,)%-m ®) ((2-c-a,)%-m?)

= (72) (=) (a.3)

Any logarithmically divergent singile loop Feynman integral

may be origin shifted at will.
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APPENDIX B

TWO TENSOR INTEGRALS DEFENDENT ON A LIGHTLIKE VECTOR

fa*s Cl o N s .
: 2 2 2 2 2 2 2 7
(£7= ATY(£"m")((£ + k) -m") AT - o
k< = 0
2 2

() (32 (£) ()

faty (= Aeg) (‘Alg) et gY N
(2= 82 (12 A2 (Pa®) ((15)%0®) A2 >> AP o o
K = 0
o 2
A A
o0 4 1 P o
(— 1%) [( 5= = lo (_5)) e 4 (Al log (X—é)
m 1
"
..2(112 log ( —]l§ ) + m2) g“V] (B.2)



APPENDIX C

THE THREE TO FIVE PROPAGATOR BASIC INTEGRALS

IS L -
(4%- 2%) ((£4p,)%n") ((£-p,)"-m")
) 7\2
. ' 1os(r__4m2+ )\2) o 5
(ix") Jdr where r = (p,+ Pg)
5 ~Jr' (r'—4m2) (r'-r) o o o
4m and p,” = p," =m
Thus:
Jats 1l P
(12 2 ((249)°0%) (1D P (D) 0
. 2
L) [« B + 108 @ 4] (c-1)
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r. b4 1

(£%) ((£42)%n%) ((£-p+i,) *-n®)

v

Y ' 2 o0 ' 2
5 arctanh (§____4-_m_) arctanh (V-S———g'——)
(4ixn") ds* R - | ast
s’ -4m”~ ~ (s*

- (s'-s)(

B | s ([Z0))° - Ly (220) - £ e

X
vhere l_ig(x) =I at ('1)*,‘25@"‘) , the standard dilogarithm,

O

fa*e L _
(4%) ((£-q,)%n°) ((£-a,)°n®)

1
(ix°) fd.x m ek (X(V“—Z; W-me) -
O
At | L (2) - Le(3)

2 2 2
where G =V, =W and (ql- qg) = 0.



The gbove integral was done by the parametric method, in
which propagators are combined by successive applications of

Feymmen's integral: 4

L m Y —————
ab e [a.x-!—'b(l-x)]2

Thus:

fd4z L
(£%) ((£- (2 ) Z-m") ((£-(p-k)) " -m

0 Lot} Ly (23]

2m

4 L

fa~s
(1%) (2= (p-k,)) “m® ) ((2-0) %

Lol [ L, (43)]

) Tt
since L_lg(l) = 3



fa*s
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a9
8

((2+0)%-n®) ((g4p-k, ) 2m) ((£-prk ;)P n®)

oo

1% / 2
: . s’ -4m
o arctanh =
(-2ix") | as*
(]

S

fats

s’(s'- s5) -
c

4m

{-211122 (arctan (\/—S— )) :

ckng-s

1
=

2y

((24)%-n%) ((£-p+k ) -n”) ((2-p)*-m)

0

s' -41n2 )
arctanh s!

(—21:152) fds' 5 ”
(s'-4m“)(s'- s)

4m2

'(—‘)—(;igfj) (1—;-2- = (arctan(qf 45”2_5 )) 2)

{C.5)

(c.6)



fdéﬂee 22l SR 55 =
(£°-37) ((2+p) " -n") ((£-p+k;) “-n") ((£-p) “-m")

S

Df
AR = S -'

® (3= ‘\/(s' i I
arctanh L — 5 5 7
- as* m (s’ -4m“) + As'-2A