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Abstract

Nucleic acids are a useful substrate for engineering at the molecular level. Designing the detailed

energetics and kinetics of interactions between nucleic acid strands remains a challenge. Building

on previous algorithms to characterize the ensemble of dilute solutions of nucleic acids, we present a

design algorithm that allows optimization of structural features and binding energetics of a test tube

of interacting nucleic acid strands. We extend this formulation to handle multiple thermodynamic

states and combinatorial constraints to allow optimization of pathways of interacting nucleic acids.

In both design strategies, low-cost estimates to thermodynamic properties are calculated using hi-

erarchical ensemble decomposition and test tube ensemble focusing. These algorithms are tested on

randomized test sets and on example pathways drawn from the molecular programming literature.

To analyze the kinetic properties of designed sequences, we describe algorithms to identify dominant

species and kinetic rates using coarse-graining at the scale of a small box containing several strands

or a large box containing a dilute solution of strands.
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Chapter 1

Introduction

DNA and RNA are information storage, transmission, and processing materials for biological sys-

tems. Recently, researchers have used nucleic acids as a nanoscale engineering material, constructing

novel structures, devices, and systems. The initial nucleic acid designs were static assemblies; the

earliest was a sixty-four nucleotide long four-arm junction [67]. Structural DNA nanotechnology

has advanced tremendously since then [57, 66]. Researchers today produce DNA origami, brick,

and crossover structures consisting of thousands of strands [19, 39, 59]. In the meantime, dynamic

DNA nanotechnology has also proliferated, and a wide range of behaviors has been demonstrated

[85]. Researchers have created boolean logic circuits [65], spatiotemporal oscillators [2, 55], condi-

tional and catalytic structure assembly [15, 79], DNA walkers [6, 45, 77], and many other assemblies

with triggerable state changes [6, 31, 80]. Additionally, practical tools have been built for detecting

mRNA expression, proteins, and other analytes [7, 12, 11]. Technologies to conditionally interact

with mRNA, siRNA, and biological nucleic acid pathways point to even more opportunities to study,

treat, and engineer biological systems using rationally designed nucleic acid systems [33, 36].

These diverse nucleic acid systems are feasible to design because nucleic acids are typically

dominated by the energy of local interactions. The energetics of folding a small nucleic acid complex

are dominated by the contributions of base pairing of opposing nucleotides in a double helix and

base stacking of adjacent base pairs. These simple energetics permit the use of empirical energy

models and design tools based on nearest-neighbor interactions. Chapter 2 of this thesis describes a

few rationally designed nucleic acid systems, the nearest neighbor model, and previous algorithms

relating to this thesis.

Previous thermodynamic nucleic acid design tools address the design of single strands or com-

plexes in isolation. These algorithms do not consider the possibility of off-target complexes forming

in solution. Chapter 3 describes a test tube design algorithm that addresses this deficiency, enabling

efficient optimization of the equilibrium base-pairing properties of a test tube of interacting nucleic

acid strands. This chapter is heavily based on work that has been submitted for publication.

Optimization of a single state is useful for designing static assemblies, but optimization of dy-
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namic nucleic acid systems requires consideration of multiple states. Many approaches are currently

used to do this, but these are typically limited to a subset of the thermodynamic model, and often

rely primarily on combinatorial approaches to design against undesired interactions. In Chapter 4,

we describe a multistate thermodynamic design algorithm that optimizes multiple dilute solutions

and target structures while satisfying combinatorial sequence constraints. By designing initial, in-

termediate, and final states of reaction pathways, nucleic acid engineers can design sequences for

dynamic nucleic acid systems. By allowing combinatorial sequence constraints, engineers can restrict

the allowed sequence space and enforce interactions not included in the thermodynamic model. The

work in this chapter is being prepared for publication.

Understanding the dynamic behavior of the resulting sequence designs can be important to pre-

dicting their effectiveness. There has been significant recent work simulating nucleic acids at various

levels of detail. Chapter 5 describes a coarse-graining algorithm to find a high level description for

the kinetics of a small number of nucleic acid strands, and its extension to find the mass-action

kinetics for a test tube of interacting nucleic acid strands. These algorithms are modifications and

extensions of a previous coarse-graining algorithm developed by Jonathan Othmer [51].

Chapter 6 summarizes the impact of this work.

The Appendices contain details and subtleties that are not crucial to the main thesis. Appendix

A contains the pseudocode of several algorithms that were useful as references for understanding

the algorithms in this thesis, for writing certain sections of the code, or for generating test sets.

Appendix B contains parameter sensitivity studies and further characterization of the test tube

design algorithm. Appendix C contains a description of the NUPACK design language and descrip-

tions of material in the supplementary archive. Appendix D contains a description of material in

the supplementary archive and a brief discussion of error bounds that may be helpful for future

development.

A supplementary archive contains input files, structures, and test set generation scripts that may

be used to replicate the studies in this thesis.
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Chapter 2

Model and background

Here, we describe the types of systems we aim to design and analyze, the underlying free energy

model and kinetic model, and previous work to computationally design nucleic acids and coarse-grain

their kinetics. Section 2.1 describes basic terminology and properties of nucleic acids. Section 2.2

describes some rationally designed nucleic acid systems that are used as examples in this work.

Section 2.3 describes the empirical nearest neighbor thermodynamic model and kinetic model for

nucleic acids. Section 2.4 describes previous work in nucleic acid sequence design. Section 2.5

describes previous work on coarse-graining the kinetics of nucleic acid secondary structures.

2.1 Nucleic acids

DNA and RNA are poly-nucleotides. Each nucleotide consists of a negatively charged phosphate,

a sugar, and a nucleobase that can differ between nucleotides. Each molecule consists of a specific

ordering of the four bases: A, C, G, and U for RNA, where T replaces U for DNA. The phosphate

groups join the 5′ and 3′ carbons of adjacent sugars to form the backbone of the molecule. The

ends of the molecule are labeled 5′ and 3′, corresponding to the position of the carbon closest to

the end, e.g., sequence 5′–GGAUGUA–3′. A double helix of nucleic acids consists of two anti-parallel

strands or strand segments. The strands are held together by a combination of hydrogen bonding

between opposing bases that form base pairs and stacking between adjacent bases and base pairs.

Base pairs are typically either Watson-Crick pairs, [A·U] and [G·C], or wobble pairs, [G·U]. Base pairing

can occur both between strands and between subsequences on a single strand. The complement of a

nucleotide is the nucleotide that forms a Watson-Crick pair with it. The complement of a sequence

is the sequence in which all opposing nucleotides are complementary when aligned antiparallel with

the original. A secondary structure for an ordered list of strands is a set of base pairs between the

constituent nucleotides.

For example, the strand 5′–GCAUG–3′ is the complement of 5′–CAUGC–3′. These strands can form

a perfect duplex. Also, the first five bases of the nucleic acid strand 5′–GCAUGAAAACAUGC–3′ are
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Figure 2.1: a) A secondary structure. b) A polymer graph representation of the same structure.
Loops are colored according to their type: 1) stacked loop, 2) bulge loop, 3) interior loop, 4)
multiloop, 5) hairpin loop, 6) exterior loop.

complementary to the last five bases. This sequence can form a hairpin, where the beginning and

end of the structure come together, leaving a small loop. Secondary structures can be drawn as a

backbone connected by base pairs, as shown in Figure 2.1a.

It is also helpful to be able to specify degenerate sequences, where each position matches a subset

of allowed nucleotides. These sequence patterns can be specified using IUPAC notation, as shown

in Table 2.1. For example, sequence pattern 5′–SSAANN–3′ matches 64 possible RNA sequences,

including 5′–GCAAGU–3′.

In nature, the specificity provided by complementarity is used during replication of DNA, tran-

scription of RNA, translation of RNA into proteins, and post-transcriptional regulation. Taking

advantage of this specificity, researchers have been able to rationally design molecules, systems, and

devices out of nucleic acids [57, 86].

2.2 Rationally designed nucleic acid systems

Many rationally designed nucleic acid systems use toehold mediated strand-displacement [80, 86].

In toehold mediated strand displacement, a duplex ends with a short unstructured region called a

toehold. A new strand, complementary to the toehold and the continuation of that strand in the

duplex, can bind to the toehold and displace the partner strand in a random walk [80].

This basic mechanism has been used to implement many behaviors, including AND gates (Fig-

ure 2.2), conditional assembly of long polymers (Figure 2.3), catalytic assembly of 3-armed junctions

(Figure 2.4), cooperative gates (Figure 2.5), and conditional assembly of biologically relevant com-

plexes (Figure 2.6). The mechanism for each system is described in the figure captions. We will use

these design types as examples in the multistate design and kinetic coarse-graining chapters of this

thesis.
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Symbol Possible nucleotide(s)
A A

C C

G G

T T

U U

R A or G
Y C, T, or U
M A or C
K G, T, or U
W A, T, or U
S C or G
B C, G, T, or U
D A, G, T, or U
H A, C, T, or U
V A, C, or G
N A, C, G, T or U

Table 2.1: IUPAC notation for degenerate nucleotides. The symbol on the left represents any of the
possible nucleotides listed on the right.

Eb2

Fb*

EtEx Eb1
Fx

Ft*
Eb2

Fb*

EtExGb*

Fx

Eb1Gt*

Ft*
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Inputs
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Gate Intermediate Output
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Figure 2.2: DNA AND gate, from Seelig et al. [65]. In this mechanism, the gate reacts with inputs
G and F via toehold mediated strand displacement to produce output E and two waste molecules.
Input G binds to the gate via domain Gt and performs a branch migration; simultaneously creating
the first waste duplex while exposing toehold Ft. Input F binds to the newly exposed toehold and
performs a second branch migration across domain Fb, producing a waste duplex and releasing
output molecule E.
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Figure 2.3: Hybridization chain reaction (HCR) mechanism, from Dirks et al. [17]. In this mecha-
nism, an initiator molecule, I, starts a polymerization of hairpins H1 and H2. Initially, I binds to
toehold a of H1, performs a branch migration to open the hairpin, and exposes sequestered toehold
c∗. Subsequently, H2 can bind to the newly exposed region and perform a symmetric addition step.
This exposes a tail that is identical to initiator I, allowing this process to repeat. In the absence of
I, the hairpins should be metastable and polymerization should be slow.
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Figure 2.4: Three-arm junction mechanism, from Yin et al. [79]. In this mechanism, an initiator
molecule catalyzes the formation of three-arm junctions. Starting with the unstructured initiator,
each hairpin adds to the free end of the complex, performs a branch migration, and exposes a new
unstructured tail. After the third hairpin is added, the initiator, which is identical to the first four
domains of the now-free tail of the third hairpin, is regenerated via a final branch-migration step.
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D, T1 can bind to toehold a∗ or T2 can bind to toehold d∗. In the absence of the other input,
any branch migration will be unproductive since many base pairs will remain between the two gate
strands, and the input will eventually dissociate. When both inputs bind to the same molecule,
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Xs

Target window

y z a b

x

y* z* a* b*

c*

x* w*

wxy

s

a*
z*

y*

A-B

C

Input scRNAs

x y z a b

a b c

c*b*a*

y*

z*

Xs-A

B

Intermediates

x y z a

b

w

x

y
s

a*z*y*x*w*

B-C

Dicer substrate

a b c

Figure 2.6: Conditional dicer substrate mechanism, from Hochrein et al. [33]. In this mechanism,
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x, y, z. These are used to specify the downstream target.



8

2.3 Physical model

The sequence, φ, of one or more interacting RNA strands is specified as a list of bases φa =

{A,C,G,U}, for a = 1, . . . , |φ|; T replaces U for DNA. A secondary structure, s, of one or more

interacting nucleic acid strands is defined by the set of base pairs [a · b]. A polymer graph represen-

tation of a secondary structure is constructed by ordering the strands around a circle, drawing the

backbones in succession from 5′ to 3′ around the circumference with a nick between each strand, and

drawing straight lines connecting paired bases. A secondary structure is unpseudoknotted if and

only if there exists a strand ordering for which the polymer graph has no crossing lines. A secondary

structure is connected if and only if every subset of the strands can be reached from every other

by traversing only the backbones within strands and base pairs between strands. The secondary

structure in Figure 2.1a is accompanied by its corresponding polymer graph representation in panel

b.

A complex of interacting strands with strand ordering π has structural ensemble Γ(π), containing

all connected, unpseudoknotted secondary structures. For sequence φ and secondary structure s ∈ Γ,

the free energy ∆G(φ, s), is calculated using nearest-neighbor empirical parameters for RNA at 1 M

Na+ [48, 47] or for DNA in user-specified Na+ and Mg2+ [54, 56, 62, 63].

A particular secondary structure can be decomposed into its constitutive loops; each loop is

bounded by the backbone and a set of zero or more base pairs. Loops are categorized by the number

of bounding base pairs and by the presence or absence of nicks. All loops that contains a nick are

exterior loops. Hairpin loops are bounded by exactly one base pair. Interior loops are bounded by

exactly two base pairs. Multiloops are bounded by at least three base pairs. Interior loops are further

divided into stacked loops (between two adjacent base pairs), bulge loops (between two base pairs

with at least one nucleotide interceding on exactly one side) and other interior loops. The nearest

neighbor model assigns a free energy to each loop based on its type and constitutive nucleotides.

The loops in the secondary structure depicted in Figure 2.1 are colored according to their type.

In addition to the loop free energies, a complex containing L strands has a free energy cost

associating those strands of (L− 1)∆Gassoc [14]. If the complex contains indistinguishable strands,

the structure may be symmetric. For a structure, s, with rotational symmetry R(φ, s), the free

energy must be adjusted by a symmetry correction kBT log[R(φ, s)], accounting for the reduction in

the number of distinguishable states. The free energy, ∆G(φ, s), of sequence φ folded into secondary

structure s is estimated as the sum over loop free energies, the association energy, and the rotational

correction [14]:

∆G(φ, s) = kBT logR(φ, s) + (L(φ)− 1)∆Gassoc +
∑

loop∈s

∆G(φloop). (2.1)
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2.3.1 Analyzing equilibrium properties

Let Ψ0 denote the set of strand species that interact in a test tube to form the set of complex species

Ψ. For complex j ∈ Ψ, with sequence φj and structural ensemble Γj , the partition function,

Q(φj) =
∑
s∈Γj

exp[−∆G(φj , s)/kBT ],

can be used to calculate the equilibrium probability of any secondary structure s ∈ Γj :

p(φj , s) = exp[−∆G(φj , s)/kBT ]/Q(φj).

The secondary structure with the highest probability in Γj is the minimum free energy structure

sMFE(φj), satisfying

sMFE(φj) = argmin
s∈Γj

∆G(φj , s).

Here, kB is the Boltzmann constant and T is the temperature. The equilibrium base pairing prop-

erties of complex j are characterized by the base pairing probability matrix P (φj), with entries

P a,b(φj) ∈ [0, 1] corresponding to the probability,

P a,b(φj) =
∑
s∈Γj

p(φj , s)S
a,b(s),

that base pair [a · b] forms at equilibrium within ensemble Γj . Here, S(s) is the structure matrix of

structure s. Sa,b(s) = 1 if structure s contains base pair [a · b], and is zero otherwise. Sa,|s|+1(s) = 1

if base a is unpaired and is zero otherwise. Hence, the entry P a,|φj |+1(φj) ∈ [0, 1] denotes the

equilibrium probability that base a is unpaired over ensemble Γj , and the row sums of the augmented

S(s) and P (φ) matrices are unity. Let QΨ ≡ Qj ∀j ∈ Ψ denote the set of partition functions of all

complexes in a test tube. The set of equilibrium concentrations, xΨ, (specified as mole fractions)

are the unique solutions to the strictly convex optimization problem [14]:

argmin
xΨ

∑
j∈Ψ

xj(log xj − logQj − 1) (2.2a)

subject to Ai,jxj = x0
i ∀i ∈ Ψ0., (2.2b)

where the constraints impose conservation of mass. A is the stoichiometry matrix with entries Ai,j

corresponding to the number of strands of type i in complex j, and x0
i is the total concentration of

strand i introduced to the test tube.

To analyze the equilibrium base pairing properties of a test tube, the partition function, Q(φj),
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and equilibrium pair probability matrix, P (φj), must be calculated for each complex, j ∈ Ψ, us-

ing Θ(|φj |3) dynamic programs. The equilibrium concentrations, xΨ, are calculated by solving the

convex optimization problem (2.2) using an efficient trust region method at a cost that is typi-

cally negligible by comparison [14]. The overall time complexity to analyze the test tube is then

O(|Ψ||φ|3max), where |φ|max is the size of the largest complex.

In specifying an analysis problem, a convenient and powerful approach to define Ψ is to include

all complexes up to Lmax strands. For a test tube containing the set of strands, Ψ0, the total number

of complexes that can form up to size Lmax is

|Ψ| =
Lmax∑
L=1

L∑
l=1

|Ψ0|gcd(l,L)

L
(2.3)

so the overall time complexity to analyze the test tube is O(|Ψ0|Lmax|φ|3max/Lmax) [14].

The set of possible complexes is equivalent to the set of all possible necklaces over alphabet Ψ0

from length 1 to Lmax. The FKM algorithm [60] can be used to efficiently enumerate the set of

complexes (see Appendix Section A.1).

2.3.2 Analyzing kinetic properties

Kinetic properties of nucleic acids have been studied at many levels of abstraction, including atomic

detail molecular dynamics [10, 42], coarse-grained molecular dynamics [52, 76], and secondary struc-

ture kinetics [21, 64]. We choose to use the Multistrand kinetic model [64]; here, each secondary

structure is a state in a continuous time Markov chain, and states are connected by the breaking or

forming of single base pairs. By enforcing connectivity and detailed balance with respect to the free

energies assigned by the thermodynamic model, the probability of being in a particular state will

converge to the equilibrium probabilities as calculated in the previous section [64, 75].

To consider the kinetics of a solution of interacting nucleic acids, we first define the secondary

structure of a small box, ω, as a set of complexes and their corresponding secondary structures. The

ensemble of all unpseudoknotted secondary structures of the box is Ω∗. The free energy of each

complex can be determined from (2.1). The free energy of the box additionally accounts for the

free energy of mixing, which, assuming the nucleic acids are vastly outnumbered by water, can be

written [64]:

∆Gbox(ωi) = (|Ψ0| − L(ωi))kBT log

(
V

V0

)
+
∑
j∈ωi

∆G(sj , φj). (2.4)

Here, L(ωi) is the number of complexes in secondary structure ωi. Using this, we can define secondary

structure matrices, S(ω), and pair probability matrices, P (φ), analogously to the single-complex

definitions.

Each small box secondary structure, ωi, is a state in the secondary structure kinetic model.
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Since the kinetic model assumes the Markov property, we can write down the corresponding master

equation describing the time-varying probabilities for each secondary structure ωj at time t

d

dt
p̄j(t) =

∑
i∈Ω∗

r̄i→j p̄i(t)− r̄j→ip̄j(t) (2.5)

Collecting the rates into the rate matrix R(φ), where Ri,j(φ) = r̄j→i, we can write this as

d

dt
p̄(t) = R(φ)p̄(t). (2.6)

Given a vector of initial secondary structure probabilities, p̄(0), this has the solution

p̄(t) = eR(φ)tp̄(0). (2.7)

To find reaction rates consistent with the nearest neighbor thermodynamic model, we enforce

detailed balance between secondary structures, constraining the ratio of forward and reverse rates

so that no flux occurs at equilibrium, i.e.,

r̄i→j p̄(ωi, φ) = r̄j→ip̄(ωj , φ). (2.8)

This defines each ratio, but the scaling of each pair of rates still needs to be determined. In practice,

the kinetic rates are set either via the Metropolis rule [50],

ri→j =

 kuni exp[−(∆Gj −∆Gi)/kBT )] : ∆Gj ≥ ∆Gi

kuni : ∆Gj < ∆Gi
, (2.9)

or the Kawasaki rule [38],

ri→j = kuni exp[−(∆Gj −∆Gi)/2kBT )]. (2.10)

As in all Markov processes, self-transitions are governed by

ri→i = −
∑

j 6=i,j∈Γ

ri→j (2.11)

to conserve probability. Both rate rules enforce detailed balance and every state is reachable from

every other state by single base pair changes (for any given starting and ending secondary structure,

consider that all base pairs from the starting secondary structure can be removed sequentially and

then base pairs corresponding to the final state can be added sequentially, so every other state is

reachable). These properties are sufficient to guarantee that the Markov chain is irreducible and the
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probability of sampling a particular state converges to the equilibrium probability of the state as

described by the thermodynamic model [75].

The master equation can be simulated directly for sufficiently small systems. However, the

number of structures grows exponentially in the length of the nucleic acid strand, which necessitates

the use of the Monte Carlo simulators such as Multistrand [64].

These tools provide mechanisms to measure mean first-passage times, and so they can be used

to estimate kinetic rates. The simulations for toe-hold mediated , however, have not yet consistently

predicted experimental reaction rates. By using finer grained simulations, Srinivas et al. [72] recently

discovered modifications to the thermodynamic and kinetic model that reduce some of this error (it

was shown that the rate laws will need to be adjusted to accurately match experimental results).

2.4 Previous design algorithms

A wide range of design algorithms have been developed for the the design of single complexes and

for the design of pathways of interacting strands. Here, we provide an overview of these methods.

2.4.1 Single-complex design

Single complex design has been approached in two ways. The first approach is to view design as

an optimization process, using an adaptive walk to find local minima according to some measure

of the defect for each candidate sequence. The second approach is to view design as a constraint

satisfaction problem, where combinatorial and thermodynamic constraints are used to generate a

set of feasible sequences. Efficient design using either approach takes advantage of the locality of

the energy function to decompose the design problem.

Thermodynamic optimization approaches attempt to optimize a nucleic acid sequence according

to a given objective function. The following objective functions have been used:

• The MFE defect,

n(φ, s) = |s| −
∑

1≤a≤|φ|
1≤b≤|φ|+1

S(sMFE(φ))S(s), (2.12)

the number of nucleotides paired differently between the target structure and the minimum

free energy structure [4, 9, 44].

• The probability defect,

χ(φ, s) = 1− p(s, φ), (2.13)

the cumulative equilibrium probability of all structures except the target structure.
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• The ensemble defect,

n(φ, s) = |s| −
∑

1≤a≤|φ|
1≤b≤|φ|+1

P a,b(φ)S(s), (2.14)

the average number of incorrectly paired nucleotides at equilibrium [15, 83].

For the chosen objective, an algorithm typically performs a local search, mutating bases or base

pairs. More recent approaches have applied other metaheuristics, including genetic algorithms and

global sampling [43, 73] to the MFE optimization problem.

To allow efficient design, many of these algorithms take advantage of the locality of the free

energies to implement a divide-and-conquer approach to sequence design. The target structure is

hierarchically decomposed based on dominant features (multiloops or helices), producing a tree of

smaller substructures. The leaves of this tree are designed independently and the resulting sequences

are merged up the tree, recursively reconstructing the sequence of the root. If the merged sequences

exhibit defects not present in the children, a perturbation is applied to the sequences and optimiza-

tion is reattempted using the same decomposition. This decomposition approach has been used

for both MFE structure optimization and ensemble defect optimization. Using these approaches,

both MFE design and ensemble defect optimization can exhibit asymptotic optimality. Due to the

Θ(N3) cost of evaluating the MFE structure and ensemble defect, both design types must satisfy

an optimality bound: the minimal cost of design is at least 4/3 the cost of evaluating the defect if

at least one mutation is made. As target structures that allow decomposition get longer, the typical

design cost empirically approaches this 4/3 optimality bound [83].

Most single-complex design algorithms focus on MFE defect optimization (also called inverse

folding). The weakness of this approach is its assumption that the MFE structure dominates the

base pairing properties of the ensemble. While it is the most probable structure, the base pairs in the

MFE structure can have arbitrarily low probability. By assuming that the MFE structure dominates

the ensemble, the algorithm may ignore defects that are obvious from the base pairing probabilities.

The ensemble defect, on the other hand, captures this type of design flaw. The advantages of using

the more physically meaningful ensemble defect instead of the other objectives are discussed in detail

by Dirks and Zadeh [15, 83].

Constraint-programming-based design of single complexes has recently been developed. This

takes advantage of progress in development of high-performance constraint-programming algorithms

and enumerates the set of sequences that satisfy combinatorial and thermodynamic constraints

[25]. These approaches allow one to directly enumerate all sequences that, for example, satisfy

complementarity for two different folds and have an MFE of exactly the target structure. Constraint

programming is the only approach that can determine that no sequence exists with an MFE structure
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matching the target structure. This approach also allows elegant specification of combinatorial and

other constraints using the same constraint satisfaction framework.

2.4.2 Pathway design

The design of pathways of interacting nucleic acids is typically performed much differently. Many

design approaches in the molecular programming community use little to no thermodynamic model-

ing during design. These design approaches typically rely on pure combinatorial approaches, design

heuristics based on past experience, or design-specific thermodynamic approaches that optimize the

thermodynamics of particular structural features [20, 70, 85].

Pure combinatorial algorithms attempt to optimize against off-target binding by minimizing

ad-hoc measures of binding like sequence symmetry. These tools scale well to a large number of

sequences and the simple energetics of nucleic acids have permitted their use. By ignoring the

empirical model completely, however, these approaches cannot be predictive of failure modes and

cannot motivate or take advantage of improvements in the free energy model. One heuristic designer

was created by David Zhang and used to design many experimental systems [85].

To address the problems of designing with respect to the known thermodynamic parameters,

specialty algorithms have been developed to design sequence domains using a subset of the ther-

modynamic model. For example, the algorithm in Evans et al. does a complete enumeration of all

pairs of sticky ends [20] to find a subset with minimal off-target binding and nearly iso-energetic

on-target binding. Shortreed et al. [70] used a combination of thermodynamic and combinatorial

metrics to design a similar set of orthogonal subsequences.

In contrast to the combinatorial and the domain-based optimization algorithms, a multi-structure

thermodynamic design algorithm was presented in Joseph Zadeh’s thesis [81]. This algorithm opti-

mizes the ensemble defect of multiple complexes simultaneously, subject to several basic sequence

constraint types. This algorithm succeeds at rigorously using the free energy model to optimize

checkpoint structures in reaction pathways, but cannot optimize against off-target complexes, lim-

iting its utility.

The algorithms presented in Chapters 3 and 4 introduce test tube design and multistate design for

a set of test tubes. Test tube design allows specification of a set of ‘on-target complexes’, each with

a target structure and target concentration, and a set of ‘off-target’ complexes, each with vanishing

target concentration. We extend this with multistate design, elegantly capturing thermodynamic

design of nucleic acid reaction pathways in the context of a dilute solution, and rigorously optimiz-

ing against off-target complexes. Additionally, we generalize the constraint handling of previous

thermodynamic optimization approaches, allowing engineers to use a wide variety of combinatorial

constraints during the optimization process.
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2.5 Previous coarse-graining algorithms

There are many tools that can be used to compute the features of a folding landscape for sin-

gle strands of RNA. For small sequences, a barrier tree representation of the secondary structure

landscape can be constructed, caputuring all minima and the saddle points between them [23, 78].

If starting and ending secondary structures are specified, kinetics between them can be projected

to a two dimensional distance matrix, and the kinetics through this reduced dimension space can

be estimated, providing reasonable estimates of the full simulation [68]. One can also perform a

semi-greedy search for low energy paths between two structures, as described in [18].

Another approach constructs a set of local minima by repeatedly sampling secondary structures

and relaxing them to their nearest minimum [41]. These local minima can be used as the start

and end points for any of the path search algorithms described above, and kinetics can then be

derived from the resulting barrier heights. These methods are practical tools for exploring the

folding landscape for single strands.

For multiple strands, macroscopic kinetic properties have been explored using Monte Carlo sim-

ulations between starting and ending states, and between sampled first contact states and a set of

ending states [64].

In Chapter 5, we present a trajectory-based coarse-graining for a small box containing a few

nucleic acid strands and for a test tube containing a large number of strands, estimating the master

equation and mass-action kinetics of the respective systems.
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Chapter 3

Nucleic acid sequence design for
dilute solutions of interacting
strands

In this chapter, we describe an algorithm for designing the equilibrium base pairing properties of

a test tube of interacting nucleic acid strands. A target test tube is specified as a set of desired

‘on-target’ complexes, each with a target secondary structure and target concentration, and a set

of undesired ‘off-target’ complexes, each with vanishing target concentration. Sequence design is

performed by optimizing the test tube ensemble defect, corresponding to the concentration of in-

correctly paired nucleotides at equilibrium evaluated over the ensemble of the test tube. To reduce

the computational cost of accepting or rejecting mutations to a random initial sequence, on-target

structures are each decomposed into a tree of substructures, yielding a forest of decomposition trees.

The influence of each candidate mutation on the test tube ensemble defect is estimated using nodal

defect contributions calculated efficiently over the leaf subensembles. As optimized subsequences

are merged moving toward the root level of the forest, any decomposition defects are eliminated via

ensemble redecomposition and sequence reoptimization. After successfully merging subsequences to

the root level, the exact test tube ensemble defect is calculated for the first time, explicitly checking

for the effect of the previously neglected off-target complexes. Any off-target complexes that form

at appreciable concentrations are hierarchically decomposed, added to the decomposition forest, and

actively destabilized during subsequent forest reoptimization. For target test tubes representative of

design challenges in the molecular programming and synthetic biology communities, RNA sequence

design at 37 ◦C typically succeeds in achieving a normalized test tube ensemble defect ≤ 1% at a

design cost within an order of magnitude of the cost of a single evaluation of sequence quality.
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3.1 Introduction

The programmable chemistry of nucleic acid base pairing serves as a versatile medium for the rational

design of self-assembling molecular structures, devices, and systems [57, 84]. To assist in these

engineering efforts, analysis algorithms have been developed to enable calculation of the equilibrium

base pairing properties of a dilute solution of interacting nucleic acid strands (e.g., a test tube),

yielding predictions for the equilibrium concentration and base pairing probabilities for an arbitrary

number of complex species that form from an arbitrary number of strand species [14, 82]. Of course,

in an engineering setting, sequence analysis must be preceded by sequence design. However, no

analogous sequence design algorithm exists for engineering the equilibrium base pairing properties

of a test tube of interacting nucleic acid strands.

To date, considerable effort has been invested in addressing the crucial subsidiary challenge of

designing the equilibrium base pairing properties of a single complex of (one or more) interacting

nucleic acid strands [1, 3, 5, 8, 9, 15, 16, 22, 24, 34, 43, 46, 49, 58, 71, 73, 74, 83]. For complex

design, the user specifies a target secondary structure for the complex; neither the concentration

of the complex, nor the concentrations of other undesired complexes are considered. As a result,

sequences that are successfully optimized to stabilize a target secondary structure in the context of

a complex may nonetheless fail to ensure that this complex forms at appreciable concentration when

the strands are introduced into a test tube (see Figure 3.1). To address this major conceptual and

practical shortcoming, this chapter formulates nucleic acid sequence design in the context of a test

tube of interacting nucleic acid strands at equilibrium. For test tube design, the user specifies: 1) a

set of desired ‘on-target’ complexes, each with a target secondary structure and target concentration,

and 2) a set of undesired ‘off-target’ complexes, each with vanishing target concentration.

We have previously shown that complex design can be formulated as an optimization problem

based on a physically meaningful objective function, the complex ensemble defect [82, 83]. For

a candidate sequence and target secondary structure, the complex ensemble defect is the average

number of incorrectly paired nucleotides at equilibrium evaluated over the ensemble of the complex

[15]. Here, to provide a physically meaningful objective function for test tube design, we derive

the test tube ensemble defect, corresponding to the concentration of incorrectly paired nucleotides

at equilibrium evaluated over the ensemble of the test tube. To efficiently optimize the test tube

ensemble defect, we build on hierarchical sequence optimization concepts previously developed for

complex design [1, 3, 9, 34, 83] by deriving a hierarchical decomposition of the test tube ensemble.

3.1.1 Test tube design problem specification

A test tube design problem is specified as a target test tube containing a set of desired on-target

complexes, Ψon, and a set of undesired off-target complexes, Ψoff . The set of complexes in the test
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Figure 3.1: Complex design versus test tube design. (a) Complex design. Sequence design formu-
lated in the context of a complex (left) ensures that at equilibrium the target structure dominates
the structural ensemble of the complex (center). Unfortunately, subsequent thermodynamic analysis
in the context of a test tube reveals that the desired heterodimer occurs at negligible concentration
relative to other undesired monomers and homodimers (right). (b) Test tube design. Sequence de-
sign formulated in the context of a test tube (left) ensures that at equilibrium the desired ‘on-target’
complex is dominated by its target structure and forms at approximately its target concentration,
and that undesired ‘off-target’ complexes (all monomers and homodimers) form at negligible con-
centrations (center). Subsequent thermodynamic analysis in the context of a test tube (right) is
consistent with the test tube design formulation, hence providing no new information and no un-
pleasant surprises.

tube is then:

Ψ = Ψon ∪Ψoff .

Each complex, j ∈ Ψ, is specified as a strand ordering, πj , corresponding to structural ensemble

Γ(πj). For each on-target complex, j ∈ Ψon, the user specifies a target secondary structure, sj ,

and a target concentration, yj . For each off-target complex, j ∈ Ψoff , the target concentration is

vanishing (yj = 0) and there is no target structure (sj = ∅). When specifying the off-targets in Ψoff ,

it is convenient to include all complexes of up to Lmax strands. For example, by (2.3), four strands

can interact to form 108 complexes of up to size four.

Complementarity constraints may be imposed on the design at the sequence level by defining

strands in terms of sequence domains and at the structural level by specifying base pairing within

the on-target structures. Complementarity constraints can propagate between complexes if, for

example, nucleotides a are b are paired in one on-target structure and nucleotides b and c are paired

in another on-target structure.
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3.1.2 Test tube ensemble defect objective function

We seek to perform sequence optimization for test tube design based on a physically meaningful

objective function that quantifies sequence quality with respect to the target test tube.

As a precedent for this approach, consider the related problem of complex design, where the goal

is to design strands that, at equilibrium, adopt a target secondary structure within the ensemble

of a complex. For a candidate sequence, φj , and target structure, sj , the complex ensemble defect

[15, 83]

n(φj , sj) = |φj | −
∑

1≤a≤|φj |
1≤b≤|φj |+1

P a,b(φj)S(sj), (3.1)

is the average number of incorrectly paired nucleotides at equilibrium evaluated over the ensemble

of the complex, Γj . The complex ensemble defect falls in the interval (0, |φj |). For complex design,

the complex ensemble defect provides a physically meaningful objective function for quantifying

sequence quality.

Here, to provide a basis for test tube design, we derive the test tube ensemble defect, representing

the concentration of incorrectly paired nucleotides at equilibrium evaluated over the ensemble of the

test tube. For a target test tube with target secondary structures, sΨ, target concentrations, yΨ,

and candidate sequences, φΨ, the test tube ensemble defect

C(φΨ, sΨ, yΨ) =
∑
j∈Ψ

c(φj , sj , yj) (3.2)

may be expressed in terms of the defect contribution of each complex j ∈ Ψ:

c(φj , sj , yj) = n(φj , sj) min (xj , yj) + |φj |max (yj − xj , 0) . (3.3)

For each on-target complex j ∈ Ψon, the first term in (3.3) represents the structural defect, quanti-

fying the concentration of nucleotides that are in an incorrect base pairing state on average within

the ensemble of complex j, and the second term represents the concentration defect, quantifying the

concentration of nucleotides that are in an incorrect base pairing state because there is a deficiency

in the concentration of complex j. Because yj = 0 for off-target complexes, the structural and con-

centration defects are both identically zero (so the sum in (3.2) may be written over Ψon instead of

Ψ). This does not mean that the defects associated with the off-targets are ignored. By conservation

of mass, non-zero off-target concentrations imply deficiencies in on-target concentrations, and these

concentration defects are quantified by (3.3). The test tube ensemble defect falls in the interval
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(0, ynt), where

ynt ≡
∑
j∈Ψon

|φj |yj

is the total concentration of nucleotides in the test tube.

Note that if there is only one species of complex in the test tube (|Ψ| = 1), its concentration

is necessarily equal to the target concentration (x1 = y1), so the formulation is independent of

concentration. In this case, optimization of the test tube ensemble defect, C(φ1, s1, y1), is equivalent

to optimization of the complex ensemble defect, n(φ1, s1).

Calculation of the test tube ensemble defect (3.2) requires calculation of the complex partition

functions, QΨ, which are used to calculate the equilibrium concentrations, xΨ, as well as the equi-

librium pair probability matrices, PΨon
, which are used to calculate the complex ensemble defects,

nΨon
. Hence, the time complexity to evaluate the test tube ensemble defect is the same as the time

complexity to analyze equilibrium base pairing in a test tube.

3.2 Algorithm

3.2.1 Overview

We describe a test tube design algorithm based on test tube ensemble defect optimization. For a

target test tube with target secondary structures, sΨ, and target concentrations, yΨ, we seek to

design a set of sequences, φΨ, such that the test tube ensemble defect satisfies the test tube stop

condition:

C(φΨ, sΨ, yΨ) ≤ Cstop (3.4)

with

Cstop ≡ fstopynt (3.5)

for a user-specified value of fstop ∈ (0, 1).

The test tube ensemble defect is reduced via iterative mutation of a random initial sequence.

Because of the high computational cost of calculating the test tube ensemble defect, it is important

to avoid direct recalculation of C in evaluating each candidate mutation. We exploit two approx-

imations to enable efficient estimation of the test tube ensemble defect: using test tube ensemble

focusing, sequence optimization initially focuses on only the on-target portion of the test tube ensem-

ble; using hierarchical ensemble decomposition, the structural ensemble of each on-target complex

is hierarchically decomposed into a tree of subensembles, yielding a forest of decomposition trees.

Candidate sequences are evaluated at the leaf level of the decomposition forest by estimating the

test tube ensemble defect from nodal properties calculated efficiently over the leaf subensembles. As

optimized subsequences are merged toward the root level of the forest, decomposition defects that
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arise due to crosstalk between subsequences are eliminated via ensemble redecomposition from the

parent level on down and sequence reoptimization from the leaf level on up. After subsequences

are successfully merged to the root level, the full test tube ensemble defect, C, is calculated for

the first time, including all on- and off-target complexes in the test tube ensemble. Any off-target

complexes that form at appreciable concentration are hierarchically decomposed, added to the de-

composition forest, and actively destabilized during subsequent forest reoptimization. The elements

of this hierarchical sequence design algorithm are described below and detailed in the pseudocode

of Algorithm 3.1.

3.2.2 Test tube ensemble focusing

To reduce the cost of sequence optimization, the set of complexes, Ψ, is partitioned into two disjoint

sets:

Ψ = Ψactive ∪Ψpassive (3.6)

where Ψactive denotes complexes that will be actively designed, and Ψpassive denotes complexes that

will inherit sequence information from Ψactive. Initially, we set

Ψactive = Ψon, Ψpassive = Ψoff ,

so that only the on-target complexes are included in the focused test tube ensemble at the outset of

sequence design.

3.2.3 Hierarchical decomposition of on-target structures

Exact evaluation of the test tube ensemble, C, requires calculation of the defect contribution, cj ,

for each complex j ∈ Ψactive. The Θ(|φj |3) cost of calculating cj is dominated by calculation of

the partition function, Qj , and equilibrium pair probability matrix, Pj . To reduce the cost of

evaluating candidate sequences, we seek to estimate cj at lower cost by hierarchically decomposing

the structural ensemble Γj of each complex j ∈ Ψactive into a tree of subensembles, yielding a

forest of |Ψon| decomposition trees. Estimating the defect contribution, cj , using physical quantities

calculated at depth d in the decomposition forest requires calculation of the nodal partition function,

Q̃k, and nodal pair probability matrix, P̃k, at cost Θ(|φk|3) for each node k at depth d. For these

calculations, a bonus free energy is applied to base pairs sandwiching the split point to make them

form with high probability, thus enforcing the decomposition assumption. For an optimal binary

decomposition, |φk| halves and the number of nodes doubles at each depth moving down the tree, so

the cost of estimating cj at depth d can be a factor of 1/22(d−1) lower than the cost of calculating cj

exactly on the full ensemble Γj . Hence, for maximal efficiency, candidate mutationts are evaluated



22

a b

Figure 3.2: Ensemble decomposition of a parent node using one or more split-points sandwiched
between base pairs. (a) A single split-point F partitions the nucleotides of parent node k into
child nodes kl and kr. (b) The two split-points, F1 and F2, cross in the polymer graph and are
hence exclusive (denoted F1 ⊗ F2). Split-points within each parent are depicted in red, nucleotides
sandwiching the split point are depicted in green in the children, and the remaining nucleotides are
depicted in black.

based on the estimated test tube ensemble defect calculated at the leaves of the decomposition

forest. As designed subsequences are merged toward the root level, the test tube ensemble defect is

estimated at intermediate depths in the forest.

To decompose the structural ensemble, Γk, of parent node k, the nucleotides of k are partitioned

into left and right child nodes, kl and kr, by a split-point, F (Figure 3.2a). The resulting child

ensembles, Γkl and Γkr , can be used to reconstruct a strict subset, ΓFk , of the structures in the

parent ensemble, Γk, (a subset that excludes all structures with base pairs crossing F in the polymer

graph). For the purposes of accuracy, it is important that ΓFk should include those structures that

dominate the equilibrium physical properties of Γk, while for the purposes of efficiency, it is important

that ΓFk should exclude as many structures as possible that contribute negligibly to the equilibrium

physical properties of Γk. Hence, the utility of ensemble decomposition hinges on suitable placement

of the split-point F within parent node k.

The dual goals of accuracy and efficiency can both be achieved by placing the split point, F ,

within a duplex that forms with high probability at equilibrium such that approximately half the

parent nucleotides are partitioned to each child. Recall that the structural ensemble, Γk, is defined to

contain all unpseudoknotted secondary structures, corresponding to precisely those polymer graphs

with no crossing base pairs. Since no structure can contain both base pairs that sandwich F and

base pairs that cross F , placement of F between base pairs with probability close to one implies

that the structures containing base pairs crossing F occur with low probability at equilibrium and

may be safely neglected; it is exactly these structures with base pairs crossing F that are excluded

from ΓFk . Partitioning the parent nucleotides into left and right children of equal size minimizes the

total cost, Θ(|φkl |3) + Θ(|φkr |3), of evaluating both children.

During the course of sequence design, if the base pairs sandwiching the split-point F in parent
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k do not form with probability close to one, the accuracy of the decomposition breaks down. In

this case, ΓFk excludes structures that are important to the equilibrium physical properties of Γk,

preventing the children from approximating the full defect of the parent. As we describe later,

decomposition defects are overcome by redecomposing the parental ensemble, Γk, using a set of

exclusive split-points, {F}, that define exclusive child subensembles (Figure 3.2b), again enabling

accurate estimation of the parent physical properties.

3.2.3.1 Structure-guided decomposition of on-target complexes

At the outset of sequence design, equilibrium base pairing probabilities are not yet available to guide

ensemble decomposition. Instead, initial decomposition of each on-target complex, j ∈ Ψactive, is

guided by the user-specified on-target structure, sj , making the optimistic assumption that the base

pairs in sj will form with probability close to one following sequence design. Using this structure-

guided ensemble decomposition approach, as the quality of the sequence design improves, the quality

of the ensemble decomposition approximation will also improve.

Each target structure, sj ∈ Ψactive, is decomposed into a (possibly unbalanced) binary tree of

substructures, resulting in a forest of |Ψon| trees. Each node in the forest is indexed by a unique

integer k. For each parent node, k, there is a left child node, kl, and a right child node, kr.

Each nucleotide in parent structure sk is partitioned to either the left or right child substructure

(sk = skl ∪ skr , skl ∩ skr = ∅) via decomposition at a split-point F between base pairs within a

duplex stem of sk.

Eligible split-points are those locations within a duplex stem with at least Hsplit consecutive

base pairs on either side, such that each child would have at least Nsplit nucleotides. An eligible

split-point is selected so as to minimize the difference in the number of nucleotides in each child,

||φkl | − |φkr ||. See Figure 3.3 for an example of structure-guided decomposition. Decomposition of

the sequence, φk, is performed in accordance with decomposition of structure sk.

If the maximum depth of a leaf in the forest of binary trees is D, any nodes with depth d < D that

lack an eligible split-point are replicated at each depth down to D so that all leaves have depth D.

Let Λ denote the set of all nodes in the forest. Let Λd denote the set of all nodes at depth d. Let Λd,j

denote the set of all nodes at depth d resulting from decomposition of complex j. Each nucleotide

in complex j is present in exactly one nodal sequence, φk ∈ φΛd,j , at any depth d ∈ 1, . . . , D.

3.2.3.2 Stop condition stringency

In order to build in tolerance for a basal level of decomposition defect as subsequences are merged

moving up the decomposition forest, the stringency of the test tube stop condition (3.5) is increased
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Figure 3.3: Hierarchical decomposition of an on-target structure. The selected split-point within
each parent is denoted by a red line. The base pairs sandwiching split points are depicted in green
in the children. The remaining nucleotides within each structure are depicted in black. Hsplit =
2, Nsplit = 12.

by a factor of fstringent ∈ (0, 1) at each level d ∈ {2, . . . , D} moving down the decomposition forest

Cstop
d ≡ Cstop(fstringent)

d−1. (3.7)

3.2.4 Test tube ensemble defect estimation from nodal contributions

In the following sections, we describe how to calculate each of the nodal contributions at any level

d ∈ {2, . . . , D} so as to efficiently and accurately estimate the complex contributions, cΨactive
, to the

test tube ensemble defect. We describe how to construct the complex partition function estimates,

Q̃Ψactive , and pair probability matrices, P̃Ψactive , using nodal partition functions, QΛd , and probability

matrices, PΛd . Complex concentration estimates, xΨ̃active
, are then calculated based on Q̃Ψactive

,

using deflated mass constraints to model the effect of the neglected off-target complexes in Ψpassive.

Complex ensemble defect estimates, ñΨon , are calculated based on P̃Ψactive . The concentration and

complex ensemble defect estimates are then used to calculate the complex contributions to the test

tube ensemble defect, c̃Ψactive
, which are summed to produce the test tube ensemble defect estimate,

C̃d.

3.2.4.1 Complex partition function estimate

We begin by calculating the complex partition function estimate, Q̃j , for each complex j ∈ Ψactive

in terms of partition function contributions evaluated efficiently at the nodes k ∈ Λd,j at any level

d ∈ {2, . . . , D}. This decomposition is illustrated for parent node k and its children kl and kr in

Figure 3.4a.

Let Ek denote the set of base pairs adjacent to split points in node k. For each base pair
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Figure 3.4: Efficient estimation of physical quantities from nodal contributions. (a) Complex par-
tition function estimate. Conceptually, Q̃kl , the partition function estimate of child kl (calculated
on child node kl at cost Θ(|φkl |3), approximates the contribution of the left-child nucleotides to the
partition function of parent k (which can be calculated exactly on parent node k at higher cost
Θ(|φk|3)). (b) Pair probability estimates. Conceptually, P̃kl , the pair probabilities of child kl (calcu-
lated on child node kl at cost Θ(|φkl |3), approximates the contribution of the left-child nucleotides
to pair probabilities of parent k (which can be calculated exactly on parent node k at higher cost
Θ(|φk|3)).

[a · b]∈ Ek, we apply a bonus free energy, ∆Gbonus, to all structures containing the base pair while

calculating the nodal partition function, Q(φk, Ek). The nodal partition function estimate Q̃k is

then calculated by dividing bonus contributions from the nodal partition function:

Q̃k = Q(φk, Ek)/ exp(−|Ek|∆Gbonus/kBT ). (3.8)

As ∆Gbonus is made more favorable, the probabilities of base pairs in Ek approach unity and the

nodal partition function estimate approaches the corresponding partition function over only struc-

tures containing all pairs in Ek. The partition functions, Q(φk), are calculated using dynamic

programs suitable for complexes containing arbitrary numbers of strands [14].1

Next, the partition functions calculated at depth d are merged recursively to estimate the par-

tition function for complex j. Consider split-point F in parent k, with left-child and right-child

partition functions Q̃kl and Q̃kr , and free energy, ∆Ginterior
F , for the interior loop formed by the base

1The periodic strand repeat, vj , of complex j is defined as the number of different rotations of the polymer graph
that map strands of the same type to each other (e.g., vj = 4 for complex AAAA, vj = 3 for complex ABABAB,
vj = 2 for ABAABA). For complexes in which all strands are distinct, vj = 1. However, complexes containing
multiple copies of the same strand may have vj > 1, in which case the dynamic program that is used to calculate
the partition function of complex j will be incorrect due to symmetry and overcounting errors that are different for
different structures in Γj . Fortunately, these errors interact in such a way that they can be exactly and simultaneously
corrected by dividing the calculated partition function by the integer vj

Q(φj) = Qcalc(φj)/vj .

When employing the dynamic program to calculate the nodal partition functions for k ∈ Λd,j , it is important to
correct each of these values using vj .
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pairs sandwiching F . The partition function estimate for parent k is then2

Q̃k = Q̃klQ̃kr exp(−∆Ginterior
F /kBT ). (3.9)

The expression becomes exact as the equilibrium probabilities of the base pairs sandwiching F

approach unity, which is enforced for the children as ∆Gbonus is made more favorable. At the

conclusion of recursive merging, the partition function estimate for complex j based on information

calculated at depth d is then

Q̃j = Q̃k (3.10)

where {k} = Λ1,j is the root node of the decomposition forest.

3.2.4.2 Complex concentration estimate using deflated mass constraints

After calculating the set of complex partition function estimates, Q̃Ψactive
, based on the nodal par-

tition function contributions at level d, the corresponding equilibrium complex concentration esti-

mates, x̃Ψactive
, may be found by solving the convex programming problem (2.2a). To impose the

conservation of mass constraints (2.2b), the total concentration of each strand species, i ∈ Ψ0, must

be specified. The total strand concentrations,

x0
i =

∑
j∈Ψon

Ai,jyj ∀i ∈ Ψ0, (3.11)

follow from the target concentrations, yΨ, and strand composition, Ai,j , of each on-target complex

j ∈ Ψon.

Using test tube ensemble focusing, initial sequence optimization is performed on a decomposition

forest that contains only the on-target complexes in Ψactive, but ultimately, we wish to satisfy the

test tube stop condition (3.4) for the full set of complexes in Ψ, including the off-targets in Ψpassive.

Recall that the off-targets in Ψpassive do not contribute directly to the sum used to calculate the test

tube ensemble defect (3.2), but contribute indirectly by forming at positive concentrations, causing

concentration defects for complexes in Ψactive as a result of conservation of mass. Hence, we can

pre-allocate a portion of the permitted test tube ensemble defect, fstopynt, to the neglected off-target

complexes in Ψpassive by deflating the total strand concentrations (3.11) used to impose the mass

constraints in calculating the equilibrium concentrations x̃Ψactive
.

Following this approach, if Ψpassive 6= ∅, we make the assumption that the complexes in Ψpassive

2During merging, free energies contributions inherent in the sandwiching base pairs terminating a helix must be
corrected. In particular, there is a free energy penalty for ending a duplex in a non-[G·C] base pair in the current free
energy models. This is corrected during the merge step since the base pairs no longer terminate duplex.
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consume a constant fraction of each total strand concentration:

∑
j∈Ψpassive

Ai,j x̃j = fpassivefstop

∑
j∈Ψon

Ai,jyj ∀i ∈ Ψ0,

corresponding to a total mass allocation of fpassivefstopynt to the neglected off-targets in Ψpassive.

To estimate the equilibrium concentrations of the complexes in Ψactive via (2.2a), we therefore use

the deflated strand concentrations:

x0
i = (1− fpassivefstop)

∑
j∈Ψon

Ai,jyj ∀i ∈ Ψ0 (3.12)

in place of the full strand concentrations (3.11).

3.2.4.3 Complex ensemble defect estimate

For each complex j ∈ Ψactive, the complex pair probability estimate, P̃j , is calculated from the nodal

pair probability matrices, P (φk), calculated efficiently at nodes k ∈ Λd,j at any level d ∈ {2, . . . , D}.

The complex ensemble defect estimate ñj is calculated using P̃j . Estimation of pair probabilities is

illustrated for parent node k and its children kl and kr in Figure 3.4b.

Because each nucleotide in complex j is present in exactly one node, k ∈ Λd,j , we can approximate

the complex pair probabilities as a mapping of the nodal pair probability matrices at any depth in

the subtree. The nodal pair probability matrix, P (φk), was previously calculated during nodal

partition function estimation (3.8). During this calculation, a free energy bonus is applied to the

formation of each base pair that sandwiches a split point [a · b]∈ Ek. As the free energy bonus is

made more favorable, the pair probabilities converge to the pair probabilities calculated over only

structures that contain all base pairs in Ek.

The nodal pair probabilities calculated at level d are merged recursively to estimate the pair

probabilities for complex j. Consider parent k, with left-child and right-child pair probabilities P̃kl

and P̃kr . We define P̃ ak,bkkl
to be the pair probability of base pair [a · b] in parent node k according

to child kl. If both bases are present in the child, this corresponds to an entry in the child’s

pair probability matrix. Otherwise, the child cannot capture this contribution to the parental pair

probabilities, so it is zero. Using this, the parental pair probabilities can be estimated by merging

the child probabilities

P̃ a,bk = P̃ ak,bkkl
+ P̃ ak,bkkr

. (3.13)

At the conclusion of recursive merging, the pair probability estimate for complex j based on the
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information calculated at depth d is then

P̃j = P̃k (3.14)

where P̃k is the pair probabilities of nodes k ∈ Λd,j , merged to the root node, k : {k} = Λ1,j , of the

decomposition forest.

The complex ensemble defect for complex j can then be estimated using the pair probability

matrix estimate:

ñj = |φj | −
∑

1≤a≤|φj |
1≤b≤|φj |+1

P̃ a,bj S(sj). (3.15)

This estimate becomes exact in the limit as the equilibrium probabilities of the base pairs sandwiching

the decomposition split-points approach unity. The contribution of nucleotide a to the complex

ensemble defect of complex j is given by

ñaj = 1−
∑

1≤b≤|φj |+1

P a,bj Sa,bj . (3.16)

As the bonus free energy is made more favorable for nucleotides sandwiching the split points, the

nucleotide defects at these locations approach zero, enforcing the decomposition assumption; base

pairs in long helices form with high probability. If this assumption is correct, the low defect in these

base pairs will be an accurate portrayal of parental properties. If this assumption is incorrect, a new

set of split points will be chosen during redecomposition, as described later.

3.2.4.4 Test tube ensemble defect estimate

Having calculated the complex concentration estimates, x̃Ψactive , and the complex ensemble defect

estimates, ñΨactive , based on nodal contributions at any depth d ∈ {2, . . . , D}, the contribution of

complex j ∈ Ψactive to the test tube ensemble defect is

c̃j = ñj min (x̃j , yj) + |φj |max (yj − x̃j , 0) , (3.17)

and the test tube ensemble defect estimate is:

C̃d =
∑

j∈Ψactive

c̃j . (3.18)

This sum can equivalently be expressed as a sum over nucleotide contributions at depth d. The

test tube ensemble defect associated with nucleotide a in complex j ∈ Ψactive is

c̃aj = ñaj min(x̃j , yj) + max(yj − x̃j , 0)
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and the test tube ensemble defect estimate (3.18) becomes:

C̃d =
∑

j∈Ψactive

∑
a∈1,...,|φj |

caj . (3.19)

3.2.5 Sequence optimization at the leaves of the decomposition forest

3.2.5.1 Initialization

The sequences for the complexes j ∈ Ψactive are randomly initialized subject to complementarity

constraints in the design problem specification: Watson-Crick complements are used to initialize

complementary sequence domains or any bases that are paired within an on-target structure. These

initial sequences are pushed down to the leaf level of the decomposition forest.

3.2.5.2 Leaf mutation

To reduce computational cost, all candidate mutations are evaluated at the leaf nodes, k ∈ ΛD, of

the decomposition forest. Leaf mutation terminates successfully if the leaf stop condition,

C̃ ≤ Cstop
D , (3.20)

is satisfied. A candidate mutation is accepted if it decreases the test tube ensemble defect estimate

(3.18) and rejected otherwise.

We perform defect weighted mutation sampling by selecting nucleotide a for mutation with proba-

bility proportional to the contribution of nucleotide a to the defect at level d: caj /C̃D. If the selected

candidate mutation position is subject to complementarity constraints implied by the design problem

specification, either via complementary sequence domains or via base pairing within any on-target

structure, the candidate mutation respects the constraint in either Watson–Crick complementarity

(default; constrained nucleotides are selected randomly from a uniform distribution of Watson–Crick

pairs) or wobble complementarity (constrained nucleotides are selected randomly from a uniform dis-

tribution of Watson–Crick and wobble pairs). For design problems where on-targets place competing

demands on the test tube ensemble defect, permitting wobble complementarity gives the algorithm

additional flexibility in meeting these demands (see Figure 3.11).

A candidate sequence φ̂ΛD is evaluated via calculation of the test tube ensemble defect estimate,

C̃D, if the candidate mutation, ξ, is not in the set of previously rejected mutations, γunfavorable

(position and sequence). The set, γunfavorable, is updated after each unsuccessful mutation and

cleared after each successful mutation. A counter, munfavorable, is used to keep track of the number

of consecutive failed mutation attempts; it is incremented after each unsuccessful mutation and reset

to zero after each successful mutation. Leaf mutation terminates unsuccessfully if munfavorable ≥
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Munfavorable. The outcome of leaf mutation is the set of leaf sequences, φΛD , corresponding to the

lowest encountered C̃D.

3.2.5.3 Leaf reoptimization

After leaf mutation terminates, if the leaf stop condition (3.20) is not satisfied, leaf reoptimization

commences. Sequences are perturbed by using defect weighted mutation sampling to pick Mreseed

distinct nucleotides to mutate. These locations, and any complementary locations, are reseeded and

a new round of leaf mutation is performed, starting at the perturbed sequences. The reoptimized

candidate sequences, φ̂ΛD , are accepted if they decrease C̃D and rejected otherwise. The counter

mreopt is used to keep track of the number of consecutive rejections; it is incremented after each

rejection and reset to zero upon sequence acceptance. Leaf reoptimization terminates successfully

if the leaf stop condition is satisfied, and unsuccessfully if mreopt ≥ Mreopt. The outcome of leaf

reoptimization is the set of leaf sequences, φΛD , corresponding to the lowest encountered C̃D.

3.2.6 Subsequence merging, redecomposition, and reoptimization

After leaf reoptimization terminates, parent nodes at depth d = D − 1 merge their left and right

child sequences to create the set of candidate sequences φ̂Λd . The parental test tube ensemble defect

estimate, C̃d is calculated and the candidate sequences, φ̂Λd , are accepted if they decrease C̃d and

rejected otherwise. If the parental stop condition,

C̃d ≤ max(Cstop
d , C̃d+1/fstringent), (3.21)

is satisfied with Cstop
d ≡ Cstop(fstringent)

d−1, merging continues up to the next level in the forest.

Otherwise, failure to satisfy the parental stop condition indicates the existence of a decomposition

defect,

C̃d − C̃d+1/fstringent > 0, (3.22)

exceeding the basal level permitted by the parameter fstringent. The parent node at depth d that

results in the smallest decomposition defect when replaced by its children from depth d + 1 is

subject to (structure- and probability-guided) hierarchical ensemble redecomposition, as described

later. Additional parents are redecomposed until

C̃d − C̃∗d+1/fstringent ≤ fredecomp(C̃d − C̃d+1/fstringent), (3.23)

where C̃d+1 is the child defect estimate before any redecomposition, and C̃∗d+1 is the child defect

after redecomposition and fredecomp ∈ (0, 1).

After redecomposition, the current sequences at depth d are pushed down to all nodes below
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depth d, and a new round of leaf mutation and leaf reoptimization is performed. Following leaf re-

optimization, merging begins again. Subsequence merging and reoptimization terminate successfully

when the parental stop condition (3.21) is satisfied at depth d = 1. The outcome of subsequence

merging, redecomposition, and reoptimization is the set of sequences, φΨactive
, corresponding to the

lowest encountered C̃1.

3.2.7 Test tube evaluation, refocusing, and reoptimization

Using test tube ensemble focusing, initial sequence optimization is performed for the on-target com-

plexes in Ψactive, neglecting the off-target complexes in Ψpassive. At the termination of initial forest

optimization, the estimated test tube ensemble defect, C̃1, is calculated using (3.18). For this es-

timate, the complex defect contributions, c̃Ψactive
, are based on complex concentration estimates,

x̃Ψactive
, calculated using deflated total strand concentrations (3.12) to create a built-in defect al-

lowance for the effect of the neglected off-target in Ψpassive. The exact test tube ensemble defect, C,

is then evaluated for the first time over the full ensemble Ψ using (3.2). For this exact calculation,

the complex defect contributions, cΨ, are based on complex concentrations, xΨ, calculated using the

full strand concentrations (3.11).

Sequence design terminates successfully if the test tube ensemble defect satisfies the termination

stop condition:

C ≤ max
(
Cstop, C̃1

)
. (3.24)

Otherwise, failure to satisfy the termination stop condition indicates the existence of a focusing

defect :

C − C̃1 > 0. (3.25)

The test tube ensemble is then refocused by transferring the highest-concentration off-target in

Ψpassive to Ψactive. Additional off-targets are transferred from Ψpassive to Ψactive until

C̃ − C̃∗1 ≤ frefocus(C − C̃1), (3.26)

where C̃1 is the forest-estimated defect before any refocusing and C̃∗1 is the forest-estimated defect

after refocusing (calculated using deflated strand concentrations if Ψpassive 6= ∅, and frefocus ∈ (0, 1).

The new off-target structures in Ψactive are then decomposed using probability-guided decom-

position, as described later. The decomposition forest is augmented with new nodes at all depths,

and forest reoptimization commences starting from the final sequences from the previous round of

forest optimization. During forest reoptimization, the algorithm actively attempts to destabilize the

off-targets that were added to Ψactive, since the estimated concentrations of on-targets will decrease

when off-target concentrations increase. This process of ensemble refocusing and forest reoptimiza-
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tion is repeated until the termination stop condition (3.24) is satisfied, which is guaranteed to occur

in the event that all off-targets are eventually added to Ψactive. At the conclusion of sequence de-

sign, the algorithm returns the sequences, φΨ, that yielded the lowest encountered test tube ensemble

defect, C.

3.2.8 Hierarchical ensemble decomposition using multiple exclusive split-

points

Prior to sequence design, in the absence of base pairing probability information, hierarchical ensemble

decomposition was performed for each complex j ∈ Ψactive based on the user-specified on-target

structure, sj . For a parent node, k, with structural ensemble, Γk, a single split-point, F , was

positioned within a duplex in target structure sj , so as to minimize the cost of evaluating both

children, yielding left and right child nodes kl and kr with ensembles Γkl , and Γkr . These child

ensembles enable reconstructurion of a strict subset, ΓFk , of the structures in the parent ensemble, Γk,

(a subset which excludes all structures with base pairs crossing F in the polymer graph). Following

leaf optimization, when left and right child sequences are merged to form a parent sequence, if

decomposition defects are observed, this is symptomatic of an inadequate ensemble decomposition;

when the base pairs sandwiching F form in the parent with a probability below unity, then ΓFk

excludes structures that are important to the equilibrium physical properties of Γk, preventing

the child nodes from predicting the full defect contribution of the parent node. This situation is

remedied by redecomposing the parent, taking into consideration the newly-available parental base

pairing probabilities.

Two candidate split-points, Fi and Fj , are exclusive if they cross when depicted in a polymer

graph (denoted Fi ⊗ Fj ; see Fig. 3.2b). The parental ensembles, ΓFik and Γ
Fj
k , reconstructed from

the child ensembles implied by exclusive split points, Fi and Fj , have no structures in common

(ΓFik ∩ Γ
Fj
k = ∅). Hence, if a single split-point is inadequate for ensemble decomposition of a parent

(i.e., the sandwiching base pairs form with probability substantially below one), a set of mutually

exclusive split-points, {F}, can be used to non-redundantly decompose the parent ensemble so that

collectively, the probability of the base pairs sandwiching the split-points approaches unity from

below. During subsequence merging, redecomposition of parent nodes derived from on-target com-

plexes is performed using structure- and probability-guided decomposition with multiple exclusive

split-points. During off-target destabilization, decomposition of parent nodes derived from off-target

complexes (for which no target structures exist), is performed using probability-guided decompo-

sition with multiple exclusive split points. In either case, selection of the optimal set of exclusive

split points is determined using a branch and bound algorithm to minimize the cost of evaluating

the implied child nodes (see section B.2). Because exclusive split-points lead to exclusive structural
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ensembles, it is straightforward to generalize the expressions used to reconstruct parental physical

properties, as detailed below.

3.2.8.1 Structure-guided decomposition using a single split-point

For comparison with the formulations that follow, here we recast structure-guided decomposition

using modified notation. Let F denote a split point and let F± denote the union of the sets of

Hsplit base pairs sandwiching F on either side. For a node, k, descendant from on-target complex

j ∈ Ψactive with user-specified target structure sj , the nodal target structure matrix, Sk, is defined

using the corresponding entries from the root target structure matrix, Sj . The set of valid split-points

may be denoted

B(Sk) ≡

F :

min
a·b∈F±

Sa,bk = 1

min(|φkl |, |φkr |) ≥ Nsplit

 (3.27)

and the optimal split-point selected for decomposition,

F ∗ ≡ min
F∈B(Sk)

(
|φkl |3 + |φkr |3

)
, (3.28)

minimizes the cost of evaluating the two child nodes implied by F .

3.2.8.2 Probability-guided decomposition using multiple exclusive split points

The set of sets of valid exclusive splits points may be denoted

B̄(Pk) ≡


{F} :

fsplit ≤
∑

Fi∈{F}

min
a·b∈F±i

P a,bk

min
Fi∈{F}

(|φkli |, |φkri |) ≥ Nsplit

Fi ⊗ Fj ∀Fi 6= Fj ∈ {F}


(3.29)

and the optimal set of exclusive split points selected for decomposition,

{F}∗ ≡ min
{F}∈B̄(Pk)

∑
Fi∈{F}

(
|φkli |

3 + |φkri |
3
)
, (3.30)

minimizes the cost of evaluating the 2|{F}| child nodes implied by {F}.
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3.2.8.3 Structure- and probability-guided decomposition using multiple exclusive split

points

The set of sets of valid split points may be denoted3

B̂(Sk, Pk) ≡ (3.31){F} :
{F} = Gi ∪ {G}j , Gi ∈ B(Sk), {G}j ∈ B̄(Pk)

Fi ⊗ Fj ∀Fi 6= Fj ∈ {F}

 (3.32)

and the optimal set of exclusive split-points selected for decomposition,

{F}∗ ≡ min
{F}∈B̂(Sk,Pk)

∑
Fi∈{F}

(
|φkli |

3 + |φkri |
3
)
, (3.33)

minimizes the cost of evaluating the 2|F | child nodes implied by {F}. The structure-guided compo-

nent of this approach ensures that the redecomposition is compatible with the user-specified target

structure, while the probability-guided component of this approach ensures that the physical prop-

erties of the parent can be accurately estimated using the children.

3.2.9 Test tube ensemble defect estimation using multiple exclusive split

points

Here, we generalize the formulation of test tube ensemble defect estimation at depth d ∈ {2, . . . , D}

to account for the possibility of multiple exclusive split-points within any parent in the decomposition

forest. Consider parent k decomposed using the set of exclusive split-points {F}. Following (3.9),

for each split-point, Fi ∈ {F}, the corresponding exclusive contribution to the parental partition

function is

Q̃ki = Q̃kli Q̃kri exp(−∆Ginterior
Fi /kBT ), (3.34)

yielding the partition function estimate for parent k:

Q̃k =
∑

Fi∈{F}

Q̃ki . (3.35)

Recursive merging is performed until the complex partition function estimate is obtained using

(3.10).

At each recursive step, we simultaneously merge the nodal pair probabilities. For each split-point,

3Note that for a child node, k, generated using multiple exclusive split-points, the target structure matrix, Sk,
may have row sums not equal to unity; if a nucleotide a in node k is intended to form an on-target base pair with a
nucleotide not contained in node k, this will cause Sk to be zero for all entries in row a.
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Parameter RNA

Hsplit 2
Nsplit 12
fsplit 0.995
fstringent 0.995
fredecomp 0.9
frefocus 0.9
fpassive 0.05
Mleaf 6
Munfavorable 200
Mreseed 50
∆Gbonus −25 kcal/mol

Table 3.1: Default parameters for RNA sequence design. For DNA sequence design, Hsplit = 3.

Fi ∈ {F}, the corresponding exclusive pair probability contributions are

P̃ a,bki
= P̃ ak,bkkli

+ P̃ ak,bkkri
. (3.36)

Weighting each contribution by its exclusive contribution to the parental partition function yields

pair probability matrix estimate for parent k:

P̃ a,bk =
∑

Fi∈{F}

P̃ a,bki

Q̃ki
Q̃k

. (3.37)

Recursive merging is performed until the complex pair probability estimates are obtained using

(3.14). Together, the complex partition function estimate and pair probability estimates enable cal-

culation of complex concentration estimates (Section 3.2.4.2) and complex ensemble defect estimates

(3.15), from which the test tube defect estimate at level d can be calculated (3.18).

3.3 Methods

3.3.1 Implementation

The test tube design algorithm is coded in the C programming language. The algorithm is available

for non-commercial research purposes via the NUPACK web application and code base

(www.nupack.org) [82].

3.3.2 Target test tubes

Algorithm performance is demonstrated using a set of target test tubes. For the engineered test set,

each on-target structure was randomly generated with stem and loop sizes randomly seelcted from

a distribution of sizes representative of the nucleic acid engineering literature. For the random test
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OptimizeTube(sΨ, yΨ,Ψ,Ψon,Ψoff)

φΨ ← InitSeq(∅, sΨ,Ψ)
Ψactive,Ψpassive ← Ψon,Ψoff

φΛ,Λ, D ← Decompose(φΨactive
, sΨactive

, yΨactive
)

φΨ, C̃1 ← OptimizeForest(φΛ, sΨactive
, yΨactive

, D)
C ← EvaluateDefect(φΨ, sΨ, yΨ)

φ̂Ψ, Ĉ ← φΨ, C

while Ĉ > max(Cstop, C̃1)

sΨactive
← AugmentActive(sΨactive

, Ĉ, C̃1, φ̂Ψ)
φΛ,Λ, D ← Decompose(φΨactive

, sΨactive
, yΨactive

)

φ̂Ψ, C̃1 ← OptimizeForest(φΛ, sΨactive
, yΨactive

, D)

Ĉ ← EvaluateDefect(φ̂Ψ, sΨ, yΨ)

if Ĉ < C

C, φΨ ← Ĉ, φ̂Ψ

return φΨ

OptimizeForest(φΛ, sΨactive
, yΨactive

, D)

C̃1,...,D ←∞
Cstop
d ← Cstop(fstringent)

d−1 ∀d ∈ {1, . . . , D}
pstop← false
while ¬pstop

φΛD , C̃D ← OptimizeLeaves(
φΛD , sΨactive

, yΨactive
, D)

d← D − 1
pstop← true
while d ≥ 1 and pstop

φ̂Λd ←MergeSeq(φΛd+1
)

Ĉd, ĉΨactive
← EstimateDefect(

φ̂Λd , sΨactive
, yΨactive

)

if Ĉd < C̃d
φΛd , C̃d ← φ̂Λd , Ĉd

if Ĉd > max(Cstop
d , C̃d+1/fstringent)

pstop←false

Λ, φ̂Λ, sΨactive
, yΨactive

←
Redecompose(Λ, φ̂Λ, sΨactive

, yΨactive
)

for d′ = d+ 1, . . . , D

φΛd′
← SplitSeq(φ̂Λd′−1

)

C̃d′ ←∞
d← d− 1

return φΛ1 , C̃1

AugmentActive(sΨactive
, C, C̃1, φΨ)

C̃∗1 ← C̃1

while C − C̃∗1 > frefocus(C − C̃1)

ĵ ← j ∈ Ψpassive : xj ≥ xk∀k ∈ Ψpassive

Ψactive ← {ĵ} ∪Ψactive

Ψpassive ← Ψpassive \ {ĵ}
C̃∗1 , cΨactive

← EstimateDefect(
φΨactive

, sΨactive
, yΨactive

)
return sΨactive

OptimizeLeaves(φΛD , sΨactive
, yΨactive

, D)

φΛD , C̃D, cΨactive
←

MutateLeaves(φΛD , sΨactive
, yΨactive

, D)

C̃stop
D ← Cstop(fstringent)

D−1

mreopt ← 0

while C̃D > C̃stop
D and mreopt < Mreopt

{ξ1, . . . , ξMperturb
}, φ̂ΛD ←

WeightedMutationSampling(

φΛD , C̃
T
d ,Mperturb)

φ̂ΛD , ĈD, ĉΨactive
←

MutateLeaves(φΛD , sΨactive
, yΨactive

, D)

if ĈD < C̃D
φΛD , C̃D, cΨactive

← φ̂ΛD , ĈD, ĉΨactive

mreopt ← 0
else

mreopt ← mreopt + 1

return φΛD , C̃ΛD

MutateLeaves(φΛD , sΨactive
, yΨactive

, D)

C̃D, cΨactive
← EstimateDefect(

φΛD , sΨactive
, yΨactive

)
γunfavorable ← ∅
munfavorable ← 0

C̃stop
D ← Cstop(fstringent)

D−1

while C̃D > C̃stop
D and munfavorable < Munfavorable

ξ, φ̂ΛD ←WeightedMutationSampling(φΛD ,

{c1j , . . . , c
|φj |
j ∀j ∈ Ψactive}, 1)

if ξ ∈ γunfavorable

munfavorable ← munfavorable + 1
else

ĈD, ĉΨactive
← EstimateDefect(

φ̂ΛD , sΨactive
, yΨactive

)

if ĈD < C̃D
φΛD , cΨactive

← φ̂ΛD , ĉΨactive

C̃D ← ĈCD
munfavorable ← 0
γunfavorable ← ∅

else
munfavorable ← munfavorable + 1
γunfavorable ← γunfavorable ∪ {ξ}

return φΛD , C̃D, cΛD

EstimateDefect(φΛd , sΨactive
, yΨactive

)

QΛd , PΛd ← NodalProperties(φΛd )

Q̃Ψactive
, PΨactive

← ComplexProperties(QΛd , PΛd )
x0

Ψ0 = AΨ0,jyj ∀j ∈ Ψactive

if Ψpassive 6= ∅
x0

Ψ0 = x0
Ψ0 (1− fstopfpassive)

x̃Ψactive
← ComplexConcentrations(Q̃Ψactive

, x0
Ψ0 )

ñΨactive
← ComplexDefect(PΨactive

, sΨactive
)

c̃Ψactive
← TestTubeDefect(nΨactive

, x̃Ψactive
, yΨactive

)

C̃d ←
∑
cΨactive

return C̃d, cΨactive

Algorithm 3.1: Pseudocode for hierarchical test tube ensemble defect optimization. For a given set
of target secondary structures, sΨ, and target concentrations, yΨ, a set of designed sequences, φΨ,
is returned by the function call OptimizeTube(sΨ, yΨ,Ψ,Ψon,Ψoff).
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Figure 3.5: Structural features of the dimer target structures for the on-target complexes in the
standard test set. a) The fraction of bases paired. b) The number of duplex stems per structure.
c) The number base pairs per stem. d) The minimum number of base pairs that must be cut to
disconnect a strand from a structure. Structures shown for the engineered test set (solid lines) and
random test set (dashed lines).

set, each on-target structure was generated by calculating the minimum free energy structure of a

random RNA dimer at 37 ◦C. Within each target test tube, there are two on-target dimers (each

with a target concentration of 1 µM) and 106 off-target monomers, dimers, trimers, and tetramers

(each with vanishing target concentrations), representing all complexes of up to Lmax = 4 strands

(excluding the two on-target dimers). For each test set, fifty target test tubes were generated for

each on-target dimer size, |φ| ∈ {50, 100, 200, 400} nt, with all strands the same length in each target

test tube. The structural properties of the on-target structures in the engineered and random test

sets are summarized in Figure 3.5. Typically, the random test set contains on-target structures with

a lower fraction of paired nucleotides, more stems, and shorter stems (as short as one base pair).

For the design studies that follow, new target test tubes were generated from scratch. The design

algorithm was not tested on these target test tubes prior to generating the depicted results.

3.3.3 Sequence design trials

For all studies, five independent design trials were performed for each target test tube. Design trials

were run on a cluster of 2.53 GHz Intel E5540 Xeon dual-processor/quad-core nodes with 24 GB

of memory per node. Unless otherwise noted, trials were performed on a single computational core

using the default algorithm parameters of Table 3.1. Design quality is plotted [35] as the normalized
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Figure 3.6: Algorithm performance for test tube design. a) Design quality. The stop condition is
depicted as a dashed black line. b) Design cost. c) Sequence composition. The initial GC content
is depicted as a dashed black line. d) Cost of sequence design relative to a single evaluation of the
objective function. RNA design at 37 ◦C for the engineered test set (solid lines) and random test
set (dashed lines).

test tube ensemble defect, C/ynt. Data are typically presented as cumulative histograms over design

trials. Our primary test scenario is RNA sequence design at 37 ◦C with fstop = 0.01 (i.e., less

than 1% of the nucleotides should be incorrectly paired within the test tube at equilibrium) for the

engineered test set.

3.4 Results and discussion

3.4.1 Algorithm performance for test tube design

Figure 3.6 demonstrates the performance of the test tube design algorithm on the engineered and

random test sets. For each target test tube, the algorithm designs for on-target dimers (each with a

target secondary structure and target concentration) and against 106 off-target monomers, dimers,

trimers, and tetramers (each with vanishing target concentration). Most design trials surpass the

desired design quality (normalized test tube ensemble defect ≤ 0.01; panel a). Typical design

cost ranges from less than a second for test tubes with 50-nt on-targets in the engineered test set

to approximately 3 hours for test tubes with 400-nt on-targets in the random test set (panel b).

Starting from random initial sequences, the desired design quality can be achieved with a broad

range of GC contents (panel c). The typical cost of design relative to the cost of a single evaluation
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Figure 3.7: The importance of designing against off-target complexes. Comparison of design quality
for test tube design performed using an ensemble containing all off-targets up to size Lmax = 0
(dotted line; |Ψoff | = 0), Lmax = 2 (dashed line; |Ψoff | = 12), or Lmax = 4 (solid line; |Ψoff | = 106).
Design quality is evaluated by calculating the test tube ensemble defect for a reference ensemble
containing all off-targets up to size Lmax = 5. The stop condition is depicted as a dashed black line.
RNA design at 37 ◦C for the on-targets in the engineered test set.

of the test tube ensemble defect is only a factor of 3 for the engineered test set and a factor of 10

for the random test set.

3.4.2 Importance of designing against off-targets

Is it important to include off-target complexes in the test tube ensemble so that the design algorithm

can actively destabilize them? To examine this question in the context of the engineered test set,

Figure 3.7 compares the design quality for sequences designed in a test tube ensemble containing

either no off-targets (equivalent to complex design), all off-targets up to dimers, or all off-targets up

to tetramers. The quality of the resulting design is evaluated using a reference test tube ensemble

including all off-targets up to pentamers. Only the sequences designed against all off-targets up to

tetramers are consistently of high quality; designing against no off-targets or against all off-targets

up to dimers typically leads to very poor sequence designs.

We note that in the absence of off-target destabilization, the strands in an on-target complex

will often also form a dimerized off-target complex (containing two copies of each strand) at non-

negligible concentration. In anticipation of this phenomenon, we recommend actively designing

against these dimerized off-targets, which was achieved for the engineered test set (containing two

dimer on-targets per target test tube) by designing against all off-targets up to tetramers.

3.4.3 Contributions of algorithmic ingredients

To avoid the expense of evaluating candidate mutations on all off-target complexes throughout the

design process, test tube ensemble focusing partitions the complexes in Ψ into the sets Ψactive and

Ψpassive. To efficiently accept or reject each candidate mutation, the test tube ensemble defect is esti-

mated at the leaf level of the decomposition forest obtained via hierarchical ensemble decomposition
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Figure 3.8: Performance of test tube ensemble defect estimation. a) Accuracy relative to exact
defect. b) Cost relative to exact defect cost. The exact test tube ensemble defect, C, is calculated
using all on- and off-target complexes j ∈ Ψ. The test tube ensemble defect estimate, C̃D, is
calculated using the leaf nodes, k ∈ ΛD, of the final decomposition forest obtained by hierarchically
decomposing the structural ensembles of the on- and off-target complexes j ∈ Ψactive. RNA design
at 37 ◦C for the engineered test set. For each design trial, comparisons are made using the final
designed sequences, φΨ.

of the complexes in Ψactive. Figure 3.7 demonstrates that the estimated defect typically closely ap-

proximates the exact defect, but at a cost that is lower by 2-3 orders of magnitude for the engineered

test set. Figure 3.9 demonstrates that the cost savings resulting from hierarchical decomposition

become substantial as the size of the complexes in Ψactive increases (due to the increasing depth of

the decomposition forest), and that the cost savings resulting from test tube ensemble focusing are

substantial independent of complex size (due to the large number of off-targets in Ψpassive).

3.4.4 Robustness to model perturbations

Algorithms for the analysis and design of equilibrium nucleic acid secondary structure depend on

empirical free energy models [40, 48, 62, 63, 69]. It is inevitable that the parameter sets in these

models will continue to be refined, so it is important that assessments of design quality are robust

to parameter perturbations. Figure 3.10 demonstrates that for the engineered test set, the predicted

quality of most sequence designs is typically robust to 3% parameter perturbations (with the test

tube ensemble defect often less than the stop condition), and even to 10% parameter perturbations

(with test tube ensemble defect often within a factor of 2 of the stop condition), but not to 30%

parameter perturbations (with test tube ensemble defect rarely within a factor of 10 of the stop

condition).

3.4.5 Designing competing on-target complexes

In the engineered test set, each of the four strands appears in exactly one of two on-target dimers,

so there is no disadvantage to stabilizing these dimers to the maximum extent possible, since the

target concentration for all off-target complexes is zero. However, if there are multiple on-target
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Figure 3.9: Efficiency implications of test tube ensemble focusing and hierarchical ensemble decom-
position. a) Design quality. The stop condition is depicted as a dashed black line. b) Design cost.
Comparison of test tube design performed with: the full algorithm (including test tube ensemble
focusing and hierarchical ensemble decomposition permitting multiple exclusive split-points per par-
ent; solid lines); test tube ensemble focusing and hierarchical ensemble decomposition permitting
only a single split-point per parent (dotted lines); test tube ensemble focusing but no hierarchical
ensemble decomposition (dashed lines); or no test tube partitioning and no hierarchical ensemble
decomposition (uneven dashed lines) (Note: the 200-nt tests were prohibitively expensive for this
test, so they were not completed).
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Figure 3.10: Robustness of design quality predictions to model perturbations. Each sequence design
was evaluated using 100 perturbed physical models, with each parameter perturbed by Gaussian
noise with a standard deviation of 0, 1, 3, 10, or 30 percent of the parameter modulus. RNA design
at 37 ◦C for target test tubes in the standard test set with |φ| = 200. The stop condition is depicted
as a dashed black line.
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Figure 3.11: Test tube design with competing on-target copmlexes. A range of target test tubes
were defined, with the monomer target concentration, ymonomer, ranging from 0 to 1 µM in 0.01 µM
increments and the total strand concentration held fixed at 1 µM (i.e., ydimer = (1 − ymonomer)/2).
b) Median design quality with Watson-Crick complementarity constraints. c) Median design quality
with wobble complementarity constraints. d) Robustness of design quality predictions to pertur-
bations in model parameters for sequence designs with wobble complementarity constraints. For
each design trial, the median test tube ensemble defect was calculated over 100 perturbed physical
models (each parameter perturbed by Gaussian noise with a standard deviation of 10 percent of the
parameter modulus). RNA sequence design at 37 ◦C with Lmax = 2 (i.e. no off-targets). The test
tube stop condition is depicted as a dashed black line (fstop = 0.02).
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complexes competing for the same strands, then the algorithm must balance the relative stability

of these competing on-targets. To examine this challenge, we consider target test tubes in which a

strand is intended to form both a monomer hairpin and a dimer duplex (Figure 3.11a), varying the

target concentration of the monomer while keeping the total strand concentration fixed. Figure 3.11b

demonstrates that typical design quality varies greatly depending on the target monomer concen-

tration (i.e. depending on the desired relative stability of the monomer and dimer on-targets). For

example, the algorithm typically succeeds in satisfying the stop condition for low monomer target

concentrations, but struggles to satisfy the stop condition for high monomer target concentrations.

These designs were performed requiring Watson–Crick complementarity constraints. If wobble pairs

are permitted, typical design performance significantly improves (Figure 3.11c), reflecting the addi-

tional flexibility provided to the algorithm.

Because of the competition between on-target complexes it is interesting to revisit the question

of robustness to model perturbations. The perturbation studies of Figure 3.11d demonstrate that

the predicted design quality is typically robust to model perturbations for test tubes where one on-

target dominates the other, but becomes more sensitive to model perturbations for test tubes where

both on-targets are in competition at non-saturated target concentrations. Hence, for applications

where on-targets are intended to form at non-saturated concentrations, it is more likely that the

relative stabilities of the on-targets will need to be fine-tuned based on experimental measurements

to account for imperfections in the physical model. Fortunately, many applications seek to saturate

all on-targets at maximum concentration, reducing the sensitivity of computational predictions to

perturbations in model parameters.

3.4.6 Test tube design with large numbers of on- and off-target complexes

Figure 3.12 demonstrates the performance of the algorithm for target test tubes containing a larger

number of on- and off-target complexes. Typical design trials surpass the desired design quality

(normalized test tube ensemble defect ≤ 0.01; panel a) and the typical design cost is less than

four times the cost of a single evaluation of the test tube ensemble defect (panel d), ranging from 10

seconds for a test tube containing 1 on-target and 14 off-targets, to 8 hours for a test tube containing

8 on-targets and 17976 off-targets (panel b).

3.5 Conclusion

Test tube design provides a powerful framework for engineering nucleic acid base pairing. The de-

sired equilibrium base pairing properties for the test tube are specified as an arbitrary number of

on-target complexes, each with a target secondary structure and target concentration, and an arbi-

trary number of off-target complexes, each with vanishing target concentration. Given a target test
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Figure 3.12: Test tube design with large numbers of on- and off-target complexes. Target test
tubes contain Ψon = 1, 2, 4, or 8 on-target dimers and all off-target complexes up to size Lmax = 4
(corresponding to |Ψoff | = 14, 106, 1260, or 17976 off-targets). a) Design quality. The stop condition
is depicted as a dashed black line. b) Design cost. c) Sequence composition. The initial GC content
is depicted as a dashed line. d) Cost of sequence design relative to a single evaluation of the test
tube ensemble defect for a test tube containing all complexes up to size Lmax = 4. RNA sequence
design at 37 ◦C. Fifty target test tubes for each value of Ψon; on-target dimers randomly selected
from the subset of the engineered test set with |φ| = 100 nt.



45

tube, the test tube ensemble defect quantifies the concentration of incorrectly paired nucleotides at

equilibrium. Test tube ensemble defect optimization implements a positive design paradigm (stabi-

lize on-targets) and a negative design paradigm (destabilize off-targets) at two levels: a) designing for

the on-target structure and against the off-target structures within the structural ensemble of each

on-target complex [15, 83], and b) designing for the on-target complexes and against the off-target

complexes within the ensemble of the test tube. Both paradigms are crucial at both levels in order

to achieve high-quality test tube designs with a low test tube ensemble defect. Test tube ensemble

focusing and hierarchical ensemble decomposition enable efficient estimation and optimization of the

test tube ensemble defect for target test tubes representative of design challenges in the molecular

programming and synthetic biology communities, typically yielding sequences with a test tube en-

semble defect ≤ 1% at a design cost within an order of magnitude of the cost of a single evaluation

of sequence quality.

3.6 Appendix

Appendix Section A.2 explains the algorithm used to generate structures for the engineered test set.

Appendix B contains structural feature summaries for the engineered and random test sets, a de-

scription of the branch-and-bound algorithm used during hierarchical decomposition using multiple

exclusive split points, additional studies on algorithm performance: complex design, random seed

composition, design material, and parallel performance, sensitivity studies for the design parameters,

and descriptions of the archive content for the test tube design algorithm.
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Chapter 4

Design of nucleic acid reaction
pathways via constrained
thermodynamic optimization

We describe an algorithm for designing reaction pathways of interacting nucleic acid strands by de-

signing multiple thermodynamic ensembles. Each ensemble optimizes a target structure or a target

test tube and can represent a step within a reaction pathway. Sequence design is performed by opti-

mizing a weighted sum of test tube ensemble defects. Hierarchical ensemble decomposition and test

tube ensemble focusing enable efficient design of the combined objective. To satisfy experimentally

important sequence constraints, we use a combinatorial constraint satisfaction algorithm to gener-

ate random initial sequences and mutations. This constrained, hierarchical sequence optimization

algorithm makes it practical to perform thermodynamic optimization for systems of interest in the

molecular programming and synthetic biology communities.

4.1 Introduction

The previous chapter describes an algorithm which generalizes the design of a single target structure

to the design of a target test tube, designing the structure and concentration for a set of on-target

complexes and designing against a set of off-target complexes. Conditional, dynamic processes move

through multiple states. To design these systems, we formulate a generalization of test tube design.

The new design algorithm optimizes a set of dilute solutions while satisfying combinatorial sequence

constraints. The dilute solutions being optimized represent states in the reaction pathway.

The differences between this algorithm and the test tube algorithm are of three types. First, the

optimization procedure is generalized to account for the presence of multiple design objectives. Sec-

ond, a constraint satisfaction procedure is included in the design algorithm to enforce combinatorial

constraints. Third, minor changes are made to structural ensemble decomposition to handle multiple

target structures for the same complex. In the following sections, we describe the changes in the
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formulation needed to handle multiple tubes and combinatorial sequence constraints. Section 4.2

describes more details about the design process, including the remaining changes.

4.1.1 Multistate design problem specification

A multistate design problem is specified as a set of target test tubes, T . Each tube, h ∈ T , contains

a set of desired on-target complexes, Ψh
on, and a set of undesired off-target complexes, Ψh

off . The

total set of all considered complexes is then

Ψ =
⋃
h∈T

Ψh
on ∪Ψh

off .

This can be partitioned into complexes that appear as on-targets in at least one tube,

Ψon =
⋃
h∈T

Ψh
on,

and off-target complexes that appear as off-targets in at least one tube, but never appear as on-

targets in any tube,

Ψoff = Ψ \Ψon.

Each complex, j ∈ Ψ, is specified as a strand ordering, πj , corresponding to structural ensemble

Γ(πj). For each tube, h, the user specifies a target secondary structure, sh,j , and target concentra-

tion, yh,j , for all complexes j ∈ Ψh
on. The target concentration is vanishing for all other complexes

j ∈ Ψh
off . It is convenient to specify the maximum off-target size Lmax for each tube, including all

complexes with no more than Lmax strands as off-targets in Ψ.

To capture these design goals, we seek to perform sequence optimization on sequences φΨ such

that each test tube has a test tube ensemble defect C(φΨh , sΨh , yΨh) that satisfies its test tube stop

condition,

C(φΨh , sΨh , yΨh) ≤ Chstop, (4.1)

where Chstop is the allowed concentration of nucleotides in the incorrect state in the test tube. This

is the product of a user specified stop condition for the tube, fhstop, and the total concentration of

nucleotides in the tube, yhnt,

Chstop = fhstopy
h
nt.

When the design problem is a single tube with a single on-target complex, this is equivalent to

complex ensemble defect optimization [83]. When the design problem is a single test tube, this

equivalent to test tube ensemble defect optimization as described in the previous chapter. When

the design problem contains multiple tubes, each with a single on-target complex, this is equivalent
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to ensemble defect optimization for multiple target structures [81]. The multistate design algorithm

is thus a generalization of all three optimization problems.

4.1.2 Constraints

Nucleic acid designs in synthetic biology and molecular programming typically have constraints on

the sequence space. These are often used to specify interactions (or lack thereof) with nucleic acids,

proteins, ligands, or other external entities that are not captured in the thermodynamic specification.

In this section, we motivate and define the available sequence constraints.

The constraint satisfaction problem is defined over the set of variables, v, their domains, D, and

constraints over subsets of variables, C. Each unique sequence position, φa, is linked to a variable,

vb, that takes a value in domain Db = {A, C, G, U}. A constraint, Ci, is defined over a list of variables,

vCi ≡
(
v1
Ci , . . . , v

|vCi |
Ci

)
: vaCi ∈ v

called the scope of Ci. Each constraint is defined by a subset of the Cartesian product of the domains

of the variables in its scope

Ci ≡ vCi 7→⊆ D1
Ci × . . .×D

|vCi |
Ci .

For example, Watson-Crick complementarity can be defined between two variables (va, vb). The

constraint defines the set of possible joint assignments for the two variables

CWC
i ≡ (va, vb) 7→ {(A, U), (C, G), (G, C), (U, A)}; (4.2)

a subset of all sixteen possible assignments between unconstrained nucleotides. A partial instantia-

tion,

V ≡ {va 7→ d ∈ Da},

maps a subset of variables to values within their respective domains. A partial instantiation is

consistent with constraint Ci if every variable in its scope, vCi , is instantiated and all instantiated

values are found within a single tuple in the constraint. A complete instantiation is an instantiation

that maps all variables to values within their respective domains.

Before describing each of the constraints, it is useful to define the sequence distance dseq between

a list of nucleotides q and a degenerate pattern r as the number of nucleotides qa that are not

instantiations of the corresponding degenerate nucleotide ra,

dseq(q, r) =
∑

a∈1,...,|q|

 1 : qa ∈ ra

0 : qa /∈ ra
, (4.3)
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e.g., dseq(ACGU, SSWW) = 2.

In the remainder of this section we define the available sequence constraints.

• Identical constraints are defined between two variables va and vb. An identical constraint is

consistent with any instantiation that maps both variables to the same value. We write this:

Cident
i ≡ (va, vb) 7→ {(A, A), (C, C), (G, G), (U, U)}. (4.4)

These constraints are implicitly specified through the use of sequence domains and explicitly

defined through the use of the identical statement.

• Complementary constraints are also defined between two variables, va and vb. Complemen-

tarity has two variants, Watson-Crick complementarity and wobble complementarity. Watson-

Crick complementarity is defined by (4.2). Wobble complementarity also allows wobble [G·U]

pairs:

Cwobble
i ≡ (va, vb) 7→ {(A, U), (C, G), (G, C), (G, U), (U, A), (U, G)}. (4.5)

These constraints are implicitly specified through the use of sequence domains and by the

base pairing of target structures, and explicitly defined through the use of the complement

statement.

• Sequence assignment constraints act on a single variable and limit it to a subset of its

domain. These are typically specified using the generalized nucleotides listed in Table 2.1. For

example, a constraint CWi on variable va is defined by

CWi ≡ (va) 7→ {(A), (U)}.

These are explicitly defined during sequence domain definition using the domain statement.

• Match constraints act on a set of variables. Each match constraint specifies the sequence dis-

tance between a given pattern and the constraint scope using a minimum, fmin
i , and maximum,

fmax
i , match fraction.

Cmatch
i ≡ vCmatch

i
7→
{
q : fmin

i ≤ d(q, r)

|q|
≤ fmax

i

}
. (4.6)

If fmin
i = fmax

i = 1, this is equivalent to a sequence assignment constraint over a set of

variables. These are explicitly defined using the match statement.

• Library constraints restrict a list of nucleotides to match enumerated sets of allowed patterns

{r}i. Each library constraint allows an engineer to enumerate a set of allowed domain se-

quences. The library constraint is defined by the set of possible sequences that exactly match
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any pattern in the library

Clibrary
i ≡ vClibrary

i
7→ {q : ∃r ∈ {r}i s.t. dseq(q, r) = 0}. (4.7)

This constraint can be used for many purposes. If part of a mechanism is a protein coding

sequence, a user can specify codon constraints. If a user has a pre-existing library of orthogonal

toeholds, this constraint can force the algorithm to optimize among them for a particular

design. These constraints are explicitly defined using the library and libseq statements.

• External sequence constraints are a special case of the library constraint. We define external

sequence constraints as library constraints where the set of allowed patterns {r}i is defined

by the set of all subsequences of a source pattern, rsource
i , of a given length, |vCext

i
|. This can

be used to conveniently specify interactions with long targets, e.g., target mRNA sequences.

These are explicitly defined through the use of the source and window statements.

• Pattern prevention constraints avoid overly repetitive sequences. Some repetitive sequences

are known to form alternative secondary structures that may not be captured by the nearest

neighbor model [27, 48, 61]. To forbid these, pattern prevention constraints, Cpattern
i , can be

specified. For a list of variables, vCpattern
i

, and pattern r, the prevented pattern constraint

defines the set of assignments such that no subsequence qa:a+|r|−1 matches r:

Cpattern
i ≡

{
q : @qi:i+|r|−1 s.t. dseq(qi:i+|r|−1, r) = 0

}
. (4.8)

These are explicitly defined through the use of prevent statements.

Finding sequences that satisfy these constraints is NP-hard in general. Empirically, however, the

constraints used for nucleic acid design in the molecular programming community are practical to

solve. We use a randomized depth-first branch and propagate algorithm to find random sequences

and random mutations that satisfy all the constraints during sequence initialization and sequence

mutation [13], as described later.

4.2 Algorithm

We describe a multistate design algorithm based on optimizing a scaled sum of test tube ensemble

defects. This multistate defect is reduced via iterative mutation of a random initial sequences. On-

target decomposition of target structures yields a forest of decomposition trees. Candidate mutations

are evaluated efficiently by estimating test tube ensemble defects based on nodal properties calcu-

lated at the leaves of the decomposition forest. During leaf optimization, defect-weighted mutation

sampling is used to select a nucleotide to mutate with probability proportional to its contribution
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to the estimated multistate defect. Each mutation is chosen to satisfy combinatorial constraints

using a branch and propagate procedure. After leaf optimization, parental defects are evaluated

based on the optimized sequences of the children. As optimized subsequences are merged toward

the root level of the forest, decomposition defects that arise due to crosstalk between subsequences

are eliminated via redecomposition and reoptimization of parents that are not well approximated by

their children. After subsequences are merged to the root level, the full defect for each tube is cal-

culated for the first time, including all on- and off-target complexes in all test tube ensembles. Any

off-target complexes that form at appreciable concentrations in any target tube are decomposed and

added to the decomposition forest and actively destabilized during subsequent forest reoptimization.

The elements of this hierarchical sequence design algorithm are described below and detailed in the

pseudocode of Algorithm 4.1.

We take the approach of optimizing a weighted sum of objectives, relying on the user to specify

meaningful stop conditions for each objective. For this purpose, we define the multistate defect

contribution as the ensemble defect normalized by its allowed defect

Mh =
Ch

Chstop

. (4.9)

The multistate defect is defined as the average multistate defect contribution over all tubes

M =
1

|T |
∑
h∈T

Mh. (4.10)

To avoid over-optimization of objectives that satisfy their stop condition, we define the thresholded

multistate defect as the average multistate defect, with each contribution thresholded to unity

Mthresh =
1

|T |
∑
h∈T

max(Mh, 1). (4.11)

This quantity captures the defect in excess of each stop condition, normalized by the stringency of the

stop condition. When all tubes satisfy their respective stop conditions, the thresholded multistate

defect is minimized at Mthresh = 1.

4.2.1 Ensemble focusing

To reduce the cost of sequence optimization, the set of complexes, Ψ, is partitioned into two disjoint

sets:

Ψ = Ψactive ∪Ψpassive (4.12)

∅ = Ψactive ∩Ψpassive (4.13)
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where Ψactive denotes complexes that will be actively designed, and Ψpassive denotes complexes that

will inherit sequence information from Ψactive. Initially, we set

Ψactive = Ψon (4.14)

so that only structures that are on-targets in at least one tube are initially actively designed. The

user-specified on-target structures provide the basis for hierarchical ensemble decomposition, which

enables efficient sequence design. The sequences for complexes j ∈ Ψactive are initialized using a

randomized branch and bound algorithm, as described below.

4.2.2 Hierarchical ensemble decomposition

Exact evaluation of the test tube ensembles, Ch, requires calculation of the defect contributions, ch,j ,

for each complex, j ∈ Ψactive. To reduce this cost during sequence optimization, we seek to estimate

these contributions at lower cost by hierarchically decomposing each actively designed complex into

a tree of subensembles, yielding a forest of |Ψactive| decomposition trees. Hierarchical ensemble

decomposition proceeds similarly to Section 3.2.6 except that multiple target structures can exist

for a single complex. This requires minimal modification to the previously described procedures.

First, we define the set of structure matrices at the root of the decomposition tree for complex

j:

{S}k = {S(sh,j) ∀h ∈ T }. (4.15)

Following the notation from Section 3.2.8, we redefine structure-guided decomposition (previously

defined using (3.27)) to use a set of exclusive split points, {F}, to allow the algorithm to decompose

multiple target structures for a single node.

B̃({S}k) ≡


{F} :

|{S}k| =
∑

Sh∈{S}k

∑
Fi∈{F}

min
a·b∈F±i

Sa,bh

min
{Fi}

(|φkli |, |φkri |) ≥ Nsplit

Fi ⊗ Fj ∀Fi 6= Fj ∈ {F}


, (4.16)

and optimal set of exclusive split points,

{F̃}∗ ≡ min
{F}∈B̃({S}k)

∑
Fi∈{F}

(
|φkli |

3 + |φkri |
3
)
. (4.17)

Similarly, the set of possible split points for structure- and probability-guided decomposition (pre-
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viously defined in (3.32)) is redefined to account for the possibility of multiple target structures:

B̂({Sk}, Pk) ≡

{F} :
{F} = {F}i ∪ {F}j , {F}i ∈ B̃({Sk}), {F}j ∈ B̄(Pk)

Fi ⊗ Fj ∀Fi 6= Fj ∈ {F}

 ,

and the optimal set of exclusive split points,

{F}∗ ≡ min
{F}∈B̂({S}k,Pk)

∑
Fi∈{F}

(
|φkli |

3 + |φkri |
3
)
. (4.18)

Both of these quantities are equivalent to those presented in Section 3.2.8 if the complex has a single

target structure.

As in test tube design, let Λ denote the set of all nodes in the forest. Let Λd denote the set of all

nodes at depth d. Let Λd,j denote the set of all nodes at depth d resulting from decomposition of

complex j. Note that each complex contributes a single tree to the decomposition forest, even when

the complex appears in multiple tubes.

4.2.2.1 Stop condition stringency

To account for a basal level of crosstalk moving back up the tree, we make the stop condition more

strict as we go deeper in the forest:

C̃h,dstop = Chstop(fstringent)
d−1. (4.19)

To capture this in the thresholded multistate defect during optimization, we make the threshold

more strict, but not the normalization. That is, we define the thresholded multistate defect estimate

at level d as

Mthresh
d ≡ 1

|T |
∑
h∈T

max(C̃h,d, Ch,dstop)

Chstop

. (4.20)

This quantity can take values below unity. When the level stop conditions (4.19) are satisfied

for all tubes, h, at level d, the thresholded multistate defect estimate takes its minimal value of

(fstringent)
d−1.

4.2.3 Multistate defect estimate from nodal contributions

To estimate the multistate defect at low cost, we must calculate partition function and pair prob-

ability estimates of the root ensemble using information calculated efficiently at descendant nodes

in the forest. Using these, we can estimate the concentrations, complex ensemble defects, and test

tube ensemble defect contributions for each complex in each tube.
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The partition functions, Q̃j , and pair probability matrices, P̃j , for each complex, j ∈ Ψactive,

are estimated as described in Section 3.2.4.1 and 3.2.4.3, respectively. For each complex, j, we then

calculate its estimated concentration, xh,j , for each tube, h, in which it appears using deflated strand

concentrations as described in Section 3.2.4.2. Similarly, we estimate the complex ensemble defect

for each on-target j in tube h:

ñh,j = |φj | −
∑

1≤a≤|φj |
1≤b≤|φj |+1

P̃ a,bj S(sh,j). (4.21)

The concentration and complex ensemble defect are combined to produce a test tube ensemble defect

contribution estimate for each tube,

c̃h,j = ñh,j min (x̃h,j , yh,j) + |φj |max (yh,j − x̃h,j , 0) , (4.22)

and the test tube ensemble defect, which is the sum of these contributions

C̃h,d =
∑
j∈Ψhon

c̃h,j (4.23)

4.2.4 Leaf mutation

To reduce computational cost, all candidate mutations are evaluated at the leaf nodes, k ∈ ΛD, of

the decomposition forest. Leaf mutation attempts to reduce the leaf-level thresholded multistate

defect estimate M̃thresh
d until all tubes, h, satisfy their leaf stop conditions

C̃h,D ≤ Ch,Dstop. (4.24)

A candidate mutation set is accepted if it decreases the thresholded multistate defect estimate and

rejected otherwise.

We perform defect weighted mutation sampling by selecting nucleotide a for mutation with prob-

ability proportional to the contribution of nucleotide a to the stop-normalized ensemble defect in

each unsatisfied objective. After choosing a nucleotide position to mutate, the resulting instanti-

ation is chosen from all other feasible instantiations at that position. The remaining nucleotides

in candidate sequence φ̂ are instantiated using a randomized branch and propagate algorithm that

preferentially chooses branches that minimize the number of mutated nucleotides compared to the

previous sequence. The changed nucleotides are characterized by the mutation set ξ (a list of changed

instantiations).

A candidate sequence, φ̂ΛD , is evaluated via calculation of the multistate defect estimate, M̃D,

if the candidate mutation, ξ, is not in the set of previously rejected mutations, γunfavorable. The set,
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γunfavorable, is updated after each unsuccessful mutation and cleared after each successful mutation.

The counter munfavorable is used to keep track of the number of consecutive failed mutation attempts;

it is incremented after each unsuccessful mutation and reset to zero after each successful mutation.

Leaf mutation terminates unsuccessfully if munfavorable ≥Munfavorable. The outcome of leaf mutation

is the set of leaf sequences, φΛD , corresponding to the lowest encountered C̃D.

4.2.5 Leaf reoptimization

After leaf mutation terminates, if any leaf stop conditions are unsatisfied, leaf reoptimization com-

mences. During each round of leaf reoptimization, the algorithm perturbs the current sequence by

reseeding Mreseed distinct sequence positions using defect weighted mutation sampling. Mutation

locations are chosen without replacement, based on the defect calculated over the sequences returned

from leaf mutation. Mutations are chosen sequentially using the randomized branch and bound pro-

cedure used in leaf mutation. The resulting perturbed sequences are used as the initial sequences

for the new round of leaf mutation. The reoptimized candidate sequences, φ̂ΛD , are accepted if

they decrease M̃thresh
D and rejected otherwise. The counter mreopt keeps track of the number of

consecutive rejections of reoptimized sequences. It is incremented after each rejection and reset to

zero after each acceptance. Leaf reoptimization terminates successfully if all leaf stop conditions are

satisfied, and unsuccessfully if mreopt ≥Mreopt. The outcome of leaf reoptimization is the set of leaf

sequences, φΛD , corresponding to the lowest encountered M̃thresh
D .

4.2.6 Subsequence merging, redecomposition, and reoptimization

After leaf reoptimization terminates, parent nodes at depth d = D − 1 merge their left and right

child sequences to create the set of candidate sequences φ̂Λd . The parental defect estimate, M̃thresh
d ,

is calculated and candidate sequences, φ̂Λd , are accepted if they decrease M̃thresh
d , and are rejected

otherwise. If all parental stop conditions:

C̃h,d ≤ max(Ch,dstop, C̃
h,d+1/fstringent) (4.25)

are satisfied, merging continues up to the next level in the forest. Otherwise, failure to satisfy the

parental stop condition indicates the existence of decomposition defects resulting from low probability

base pairs surrounding a split point, invalidating the ensemble decomposition. For each tube that

fails to satisfy (4.25), the parent node that exhibits the largest ensemble defect reduction when

replaced by its children is chosen for structure- and probability-guided ensemble decomposition.

Additional parents are redecomposed until

C̃h,d − C̃h,d+1∗/fstringent ≤ fredecomp(C̃h,d − C̃h,d+1/fstringent) (4.26)
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is satisfied for all tubes that failed to satisfy their parental stop condition. Here, C̃h,d+1 is the child

defect estimate before any redecomposition, C̃h,d+1∗ is the child defect after redecomposition, and

fstringent ∈ (0, 1). If a parent is chosen for redecomposition and its split points are still eligible, those

split points are forbidden and will not be chosen in any future decompositions.

The current sequences at depth d are then pushed down to all nodes below depth d, and a new

round of leaf mutation and leaf reoptimization is performed. Following this, merging begins again.

Subsequence merging and reoptimization terminates successfully when the parental stop condition

(4.25) is satisfied at depth d = 1. The outcome of subsequence merging, redecomposition, and

reoptimization is the set of subsequences φΨactive , corresponding to the lowest encountered M̃1.

4.2.7 Test tube evaluation, refocusing, and reoptimization

Initial forest optimization is performed for the on-target complexes in Ψactive, neglecting complexes

that are off-targets in all tubes, Ψpassive. At the termination of forest optimization, the thresholded

multistate defect estimate at depth d = 1, Mthresh
1 , is calculated. For this estimate, the test tube

defect estimates are based on estimated concentrations, x̃Ψhactive
, calculated using deflated total

strand concentrations (3.12) to create a built-in defect allowance for the effect of the neglected

off-target in Ψh
passive. For the first time, the full thresholded multistate defect, Mthresh, is then

calculated, including all complexes in Ψ. For this calculation, all test tube defects are based on

complex concentrations calculated using the full strand concentrations (3.11).

Sequence design terminates successfully if all test tube ensemble defects satisfy their correspond-

ing test tube stop condition (4.1), or are no greater than the forest-estimated defect (3.18):

Ch ≤ max
(
Chstop, C̃

h,1
)
. (4.27)

This condition allows sequence design to terminate if the actual defect contributions resulting from

the off-target complexes in Ψpassive are no greater than the built-in defect allowances resulting from

deflation of the total strand concentrations during forest optimization. If (4.27) is unsatisfied, this

implies the existence of a focusing defect,

Ch − C̃h,1 > 0, (4.28)

for some tube, h ∈ T . For each tube, h, that fails to satisfy (4.27), the off-target complex, j ∈

Ψpassive, with the highest concentration in the tube is transferred to Ψactive and decomposed using

probability-guided decomposition. This is repeated until the refocusing stop condition,

Ch − C̃h,1∗ ≤ frefocus(C
h − C̃h,1), (4.29)
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is satisfied for all tubes that failed to satisfy (4.27). Here, C̃h,1 is the estimated defect before

augmenting Ψactive, and C̃h,1∗ is the newly estimated defect using the augmented Ψactive. Finally,

the decomposition forest is reinitialized to include the newly decomposed complexes and forest

optimization recommences, designing against the formation of the newly included off-targets. This

process of tube refocusing is repeated until all stop conditions are satisfied. This is guaranteed to

occur after adding all complexes to Ψactive, i.e., Ψactive = Ψ.

4.2.8 Constraint solving

During sequence initialization and sequence mutation, the algorithm needs to find a set of sequences

that satisfy the sequence constraints. We first describe the branch and propagate algorithm to

find mutations and then handle sequence initialization as a special case. To find feasible mutated

sequences, we use a branch and propagate algorithm, as described in Chapter 5 of Dechter [13]. For

each mutation, the previous sequences, φ, and a position to mutate, a, are used in the mutation

generation procedure. A new instantiation for position a is chosen from its domain, then branch

and propagate commences. At each branching step in the algorithm, an uninstantiated variable, v̂b,

is chosen at random, weighted by the size of its domain. The implications for each feasible value are

explored, and the one that implies the fewest mutations with respect to the original sequence, φ, is

chosen for a subsequent branching step. Constraints are propagated using arc consistency. The same

process is used during sequence initialization, but no nucleotide instantiation is initially chosen, and

no previous sequence is defined; the instantiation of all nucleotides is done at random. The result of

constraint solving is a new candidate sequence φ̂ that satisfies all specified constraints. If no feasible

sequences exist, the algorithm instead returns a warning.

4.2.9 Structural defect weighting

The desired behavior of a nucleic acid system may be strongly dependent on the folding of a particular

region of a target structure, but only weakly dependent on other regions. To allow engineers to

differentially weight nucleotide defects in different regions of a target structure, we define structural

defect weights αah,j as a scaling factor for the nucleotide defect of complex j at nucleotide a in tube

h. Each weight must be in the range [0, 1]. The contribution of nucleotide a ∈ φj to the weighted

complex ensemble defect for any tube, h, is

n̄aj = αah,jn
a
h,j .
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OptimizeTubes(sT ,Ψ, yT ,Ψ,Ψ,Ψon,Ψoff , T )

φΨ ← InitSeq(∅, sT ,Ψ,Ψ)
Ψactive,Ψpassive ← Ψon,Ψoff

φΛ, sΛ,Λ, D ← Decompose(φΨactive
,

sΨactive
)

φΨ, C̃
T ,1 ← OptimizeForest(φΛ, sΨactive

, yΨactive
, D)

CT ,Mthresh ← EvaluateDefects(φΨ, sΨ, yΨ)

φ̂Ψ, Ĉ
T ,M̂thresh ← φΨ, C

T ,Mthresh

while ∃h ∈ T : Ĉh > max(Chstop, C̃
h,1)

sΨactive
← AugmentActive(sΨactive

,

yΨ, Ĉ
T , C̃T ,1, φ̂Ψ)

φΛ, sΨactive
,Λ, D ← Decompose(φΨactive

,
sΨactive

, yΨactive
)

φ̂Ψ, C̃
T ,1 ← OptimizeForest(

φΛ, sΨactive
, yΨactive

, D)

ĈT ,1,M̂thresh ← EvaluateDefects(φ̂Ψ, sΨ, yΨ)

if M̂thresh <Mthresh

Mthresh, φΨ ← M̂thresh, φ̂Ψ

return φΨ

OptimizeForest(φΛ, sΨactive
, yΨactive

, D)

M̃thresh
1,...,D ←∞

Ch,dstop ← Chstop(fstringent)
d−1 ∀h ∈ T ,∀d ∈ 1, . . . , D

pstop← false
while ¬pstop

φΛD , C̃
T ,D ← OptimizeLeaves(
φΛD , sΨactive

, yΨactive
, D)

d← D − 1
pstop← true
while d ≥ 1 and pstop

φ̂Λd ←MergeSeq(φΛd+1
)

ĈT ,d,M̂thresh
d ← EstimateDefect(

φ̂Λd , sΨactive
, yΨactive

)

if M̂thresh
d < M̃thresh

d

φΛd ,M̃
thresh
d ← φ̂Λd ,M̂

thresh
d

if ∃h ∈ T : Ĉh,d > max
[
Ch,dstop,

C̃h,d+1/fstringent

]
pstop←false

Λ, φ̂Λ, sΨactive
, yΨactive

←
Redecompose(Λ, φ̂Λ, sΨactive

, yΨactive
)

for d′ = d+ 1, . . . , D

φΛd′
← SplitSeq(φ̂Λd′−1

)

M̃d′ ←∞
d← d− 1

return φ̂Ψ, C̃
T ,1

AugmentActive(sΨactive
, yΨ, C

T , C̃T ,1, φΨ)

CT ∗,1 ← C̃T ,1

while ∃h ∈ T : Ch − C̃h∗,1 > frefocus(C
h − C̃h,1)

ĥ← h ∈ T : Ch − C̃h∗,1 ≥ Ch′ − C̃h′,1∗∀h′ ∈ T
ĵ ← j ∈ Ψpassive : xĥj ≥ xĥk∀k ∈ Ψpassive

Ψactive ← Ψactive,∪{ĵ}
Ψpassive ← Ψpassive \ {ĵ}
C̃T ,1,Mthresh ← EstimateDefects(φΨactive

,
sΨactive

, yΨactive
)

return Ψactive,Ψpassive

OptimizeLeaves(φΛD , sΨactive
, yΨactive

, D)

φΛD , C̃
T ,D,M̃thresh

D ←MutateLeaves(φΛD ,
sΨactive

, yΨactive
, D)

mreopt ← 0
while mreopt < Mreopt and

∃h ∈ T : C̃h,D > Ch,Dstop

{ξ1, . . . , ξMperturb
}, φ̂ΛD ←

WeightedMutationSampling(

φΛD , C̃
T ,D,Mperturb)

φ̂ΛD , Ĉ
T ,D,M̂thresh

D ←MutateLeaves(φΛD ,
sΨactive

, yΨactive
, D)

if M̂thresh
D < M̃thresh

D

φΛD , C̃
T ,D,Mthresh

D ← φ̂ΛD , Ĉ
T ,D,M̂thresh

D
mreopt ← 0

else
mreopt ← mreopt + 1

return φΛD , C̃T ,D

MutateLeaves(φΛD , sΨactive
, yΨactive

, D)

C̃T ,D,M̃D ← EstimateDefect(φΛD , sΨactive
, yΨactive

)
γunfavorable ← ∅
munfavorable ← 0

while ∃h ∈ T : C̃h,D > Ch,Dstop

and munfavorable < Munfavorable

{ξ}, φ̂ΛD ←
WeightedMutationSampling(φΛD , C̃

T ,d, 1)
if ξ ∈ γunfavorable

munfavorable ← munfavorable + 1
else

ĈT ,D,M̂thresh
D ← EstimateDefect(

φ̂ΛD , sΨactive
, yΨactive

)

if M̂D < M̃D

φΛD ,M̃D, C̃
T ,D ← φ̂ΛD ,M̂D, Ĉ

T ,D

munfavorable ← 0
γunfavorable ← ∅

else
munfavorable ← munfavorable + 1
γunfavorable ← γunfavorable ∪ {ξ}

return φΛD , C̃T ,D

EstimateDefect(φΛd , sΨactive
, yΨactive

, T )

QΛd , PΛd ← NodalProperties(φΛd )

Q̃Ψactive
, P̃Ψactive

← ComplexProperties(QΛd , PΛd )
for h ∈ T

x0
Ψ0 = AΨ0,jy

h
j ∀j ∈ Ψactive

if Ψhoff ∩Ψpassive 6= ∅
x0

Ψ0 = x0
Ψ0 (1− fstopfpassive)

x̃Ψhactive
← ComplexConcentrations(

Q̃Ψhactive
, x0

Ψ0 )

ñh,Ψactive
← ComplexDefects(
sh,Ψactive

, PΨactive
, QΨactive

)
c̃h,Ψactive

← TubeDefects(
ñh,Ψactive

, x̃h,Ψactive
, yh,Ψactive

)

C̃h,d ←
∑
c̃h,j

Mthresh
d ← 1

|T |
∑
h∈T max(C̃h,d/Chstop, (fstringent)

d−1)

return C̃T ,d,Mthresh
d

Algorithm 4.1: Multiobjective design. For a given set of target secondary structures, sΨ, target test
tubes, T , and target concentrations within each test tube, yΨ, a set of designed sequences, φΨ, is
returned by the function call OptimizeTubes(sT ,Ψ, yT ,Ψ,Ψ,Ψon,Ψoff).
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If all weights are unity, this is equivalent to the complex ensemble defect. The analogous weighted

complex ensemble defect estimates are defined equivalently

˜̄naj = αah,j ñ
a
h,j

The weighted complex ensemble defect and the weighted complex ensemble defect estimate replace

their unweighted versions everywhere in the optimization algorithm. The default weights are all

unity.

4.3 Methods

The pathway design algorithm was evaluated on two groups of test problems. The first set of prob-

lems compares the performance of the pathway design algorithm to previously described algorithms

for the special cases of single complex design and test tube design. The second set of problems are

drawn from the molecular programming community and characterized with several types of sequence

constraints.

4.3.1 Single complex and single test tube designs

The first group of test sets compare the performance of the pathway design algorithm to the Zadeh

single-complex design algorithm [83] and to the test tube design algorithm described in Chapter 3.

These test sets were generated using the same test set as in the previous chapter. The engi-

neered test set was produced by randomly combining helices and unpaired regions to produce target

structures of the desired length. The length of the helices and unpaired regions were chosen to be

consistent with feature lengths seen in the nucleic acid design literature. The random test set was

chosen by generating random sequences, calculating the MFE structure for each sequence, and using

that as a target structure. Every structure in both test sets was required to be connected by at least

8 base pairs to ensure feasibility during design.

4.3.2 Pathway designs

The second set of designs was created based on five real-world systems. Starting states, intermediate

states, and final states were used as objectives. To explore the ability of the algorithm to design in-

dependently acting reaction pathways, five versions of each system were created, with 1, . . . , 5 copies

of the system in each design specification, each designed to act independently. For example, five

HCR designs were created, the smallest containing a single HCR system, and the largest containing

five HCR systems designed to act orthogonally, that is, they should not interact with high affinity in

the test tube. To implement orthogonality, select inputs, intermediates, and outputs from different



60

systems were designed in combined test tube ensembles, optimizing against off-target complexes

that form due to cross-talk between the systems. Orthogonal sets were designed for all five system

types, resulting in twenty-five design types for each test. For each design type, ten design trials

were executed per condition. In this section, we describe the system types and rationales for the

objective choices. It is informative to compare the reaction pathways specifications in Chapter 2

to the tube specifications below to see how each pathway is divided into distinct thermodynamic

ensembles which can be optimized independently.

Figure 4.1 shows the design objectives used to optimize HCR. The first two tubes, ‘Initiators’ and

‘Hairpins’, optimize against interactions between the two initiators and the two hairpins from the

same system, respectively. Tube ‘Detect 1’ optimizes for the binding of hairpin H1 with its initiator

I1 to form intermediate D1, with an exposed initiation site for subsequent H2 addition. The H2

addition step is captured in ‘Detect 2’ by including the exposed tail of the previous intermediate,

I2, with the second hairpin, H2, which should form the tail of the growing polymer after one more

addition, D2. These two steps approximately capture the energetics of each subsequent addition.

The final tube type, ‘Cross-target’, optimizes against off-target binding and activation. Each set of

hairpins is designed in the context of all off-target initiators, designing against all possible dimers.

This optimizes against initiators from independent systems binding to each other as well against

HCR initiation by an off-target initiator.

The cooperative gate designs follow similar logic, as shown in Figure 4.2. Each input gate is

optimized to form along with the downstream reporter, even in the presence of one or the other

input. The inputs are designed to avoid interaction with each other. When both are present along

with gate D, they should displace strand P, which releases the fluorophore-labeled F from the reporter

gate, if present. One cross-target tube optimizes against interaction of the inputs T1 and T2 from

one system with the input strands, gates, and reporter gates from other systems. The other tube

optimizes against intermediate strand P from one system interacting with reporter gate R from

another system. This system requires balancing the strength of tohold binding; binding must be

strong to drive the reaction at experimental concentrations when both inputs are present, but weak

enough to avoid persistent binding of either input to the gate in the absence of the other input.

Figure 4.3 shows the design specification for the boolean logic gates [65]. The 3-stranded gate

molecule is designed in isolation, and the two input strands are designed together to be unstructured.

The first step and output step are optimized in independent tubes. Cross-activation is captured in

two sets of tubes; the cross-active tubes prevent inputs from binding to the wrong gate molecule,

and the ‘All Inputs’ and ‘All Gates’ tubes prevent binding between independent input and gate

molecules. Note that each tube that primarily optimizes a multi-stranded on-target complex (‘Gate’,

‘Step’ and ‘Output’ tubes) contains all species at a low concentration, 1 nM, to enforce high affinity.

The remaining tubes design primarily against unintended binding. These contain all species at a
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Initiators Hairpins Detect 1 Detect 2 Cross-target

Figure 4.1: Design objectives for HCR [17, 11]. This design takes advantage of the symmetry of
the addition steps, designing the end of the polymer after each addition step by creating a virtual
initiator I2 in addition to the normal initiator I1. The ‘Initiators’ tube optimizes initiators to be
single-stranded. The ‘Hairpins’ tube optimizes metastability of the hairpins in solution. The ‘Detect
1’ and ‘Detect 2’ tubes optimize the two addition events for an HCR polymer. The first optimizes
the addition of H1 to a polymer or the initiator, I1, and the second optimizes H2 addition to the
exposed tail of H1. The ‘Cross-target’ tube includes one set of hairpins, H1 and H2, from a system,
X, and the initiators from all other systems, Y, and designs against all possible dimers. This tube
avoids cross-activation of system X by any system Y and binding between the initiators of different
systems. Each tube contains all off-targets containing up to Lmax = 2 strands. Designed using DNA
at 25 ◦C.

higher concentration, 100 nM, to stringently avoid cross-talk.

Figure 4.4 shows the design specification for the catalytic assembly of three-arm junctions. The

three hairpin binding steps are captured in independent ‘Step’ tubes, capturing the same symmetry

as in the HCR designs. The final product is designed in a separate ‘Product’ tube. Each pairwise

dimerization of hairpins is designed against in the ‘Spurious’ tubes. The cross-target tubes design

against dimerization of any off-target input or intermediate hairpin tail with the each hairpin.

Figure 4.5 shows the design specification for the conditional Dicer substrates [33]. The reactant

dimer and hairpin are designed to be stable when mixed in a dilute solution, even at a concentration of

100 nM. The two steps of the reaction are captured using the tubes Step 1 and Step 2. Unintended

interactions between the input and hairpin are designed against. Cross-talk between orthogonal

systems is designed against using the Cross-target tube. For this system, most nucleotides are

constrained to be subsequences of either a detection target or a silencing target. The input molecule

is constrained via an external sequence constraint to be a subsequence of the detection target, eGFP.

The output duplex, consisting of the first 19 nucleotides of the dicer substrate, starting at the side

with a 2-nt overhang, is completely independent of the input and is constrained via another external

sequence constraint to be a subsequence of the silencing target dsRed2. These constraints reduce

the number of feasible sequences for the design by over ten orders of magnitude compared to the
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Figure 4.2: Design objectives for cooperative gates [84]. The first two tubes capture the desired
initial states, optimizing against premature activation of the reporter RF (tube ‘Initial’) and against
any dimerization of the input strands (tube ‘Inputs’). The tubes ‘Intermediate 1’ and ‘Interme-
diate 2’ optimize against activation of the gate when only one input is present. The ‘Triggered’
tube is representative of the state of the tube with both inputs but without the reporter, and the
intermediate output P is released. The ‘Final’ tube is representative of the final state of the gate
when both inputs are present, and the final output F is released. The ‘Cross-target’ tube optimizes
against cross-talk between the gate from one system, X, and the input strands from all other systems
Y. The ‘Cross-output’ tube optimizes against cross-talk between the reporter from one system, X,
and all possible intermediate outputs from the other systems, Y. Each tube contains all off-targets
containing up to Lmax = 3 strands. Designed using DNA at 25 ◦C.
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Figure 4.3: Design objectives for AND gates [65]. The first two tubes, ‘Gate’ and ‘Inputs’ capture
desired initial states, optimizing against input strand dimerization and towards formation of the
AND gate trimer. The ‘Step’ tube optimizes the first step of the reaction (after adding input strand
G). The ‘Output’ tube optimizes for correct output production after adding the second input strand.
The ‘Cross-active 1’ tube designs against interaction between the gate complex from one system,
X, and the inputs from all other systems, Y. The ‘Cross-active 2’ tube designs against interactions
between the intermediate complex from one system, X, and the inputs from all other systems, Y. In
both of the ‘Cross-active’ tubes, all off-target input strands are included in the same tube as the gate
or intermediate. For the design of three orthogonal AND gate systems, for instance, there would
be three ‘Cross-active 1’ tubes, and each tube would include a single AND gate and four off-target
input strands. The ‘All Inputs’ and ‘All Gates’ tubes include all input strands and all gates in the
same dilute solution, designing against unintended binding of input strands and crosstalk between
gate complexes. The ‘Gate’, ‘Step’, ‘Output’, ‘Cross-active 1’, and ‘Cross-active 2’ tubes contain all
off-targets containng up to Lmax = 3 strands. The remaining tubes contain all off-targets containing
up to Lmax = 2 strands. Designed using DNA at 25 ◦C.
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Figure 4.4: Design objectives for catalytic three-arm junction assembly [79]. This design takes
advantage of the pattern of the three addition steps, including only the exposed tail of the previous
hairpin in each addition step. The first three tubes, ‘Step 1’, ‘Step 2’, and ‘Step 3’, represent
the three hairpin additions. Product formation is optimized in the ‘Product’ tube. ‘Spurious 1’,
‘Spurious 2’, and ‘Spurious 3’ optimize against all pairwise dimerizations between the hairpins. We
cannot directly optimize against the three-arm junction forming since the mechanism is metastable.
If the ‘Product’ tube forms correctly, the stable state of the three hairpins in solution will be the
three-arm junction. Each ‘Cross-target’ tube optimizes against binding of the hairpin from one
system, X, to the input strands and exposed tails of intermediates from the remaining systems, Y.
For example, in the design of three orthogonal three-arm junction assembly instantiations, there are
three tubes of the type Cross-target 1. Each of these tubes contains seven on-targets, one hairpin,
and six single-stranded molecules, representing the input catalyst strand and exposed tails of hairpins
from each of the other two systems. Each tube contains off-targets with up to Lmax = 2 strands
except the ‘Product’ tube, which contains all off-targets with up Lmax = 3 strands. Designed using
DNA at 25 ◦C.
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Figure 4.5: Design objectives for conditional Dicer [33]. The mechanism is captured in the first
three tubes. The Reactants tube ensures the two input molecules are stable. The ‘Step 1’ tube
optimizes the first step of the reaction: binding of A-B to input window Xs to form intermediate
B and waste Xs-A. The ‘Step 2’ optimizes B binding to hairpin C, forming dimer B-C. This dimer
is an RNA duplex that can trigger Dicer, silencing the knockout target gene. The ‘Inactive’ tube
designs against unintended interactions between C and the input window Xs. The ‘Cross-target’
tube designs against off-target interactions between orthogonal systems. The sequence of each Xs
strand is constrained to be a subsequences of the input target, eGFP, using an external sequence
constraint. The sequence of the first 19 nucleotides of the duplex B-C was similarly constrained
to be a subsequence of the knockdown target, dsRed2, using another external sequence constraint.
Each tube contains all off-targets containing up to Lmax = 3 strands. Designed using RNA at 37 ◦C.

unconstrained design problem.

The number of tubes, on-targets, and off-targets for each design type are shown in Table 4.1. The

design specification with the smallest number of complexes, a single HCR instantiation, contains 6

on-target structures and 6 off-target structures in a total of 5 tubes. The design specification with

the largest number of complexes, 5 orthogonal cooperative gates, contains 40 on-target complexes

and 3245 off-target complexes.

4.3.3 Implementation

The test tube design algorithm is coded in the C and C++ programming languages. The algorithm

is available for non-commercial research purposes as part of the NUPACK web application and code

base (www.nupack.org).

All designs were generated using Python scripts and encoded using the NUPACK design language.

A specification of the design language is available in Appendix Section C.2. The Python scripts and

resulting NUPACK design scripts are available in the supplementary archive file.
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System type # instantiations |T | |Ψon| |Ψoff |

HCR 1 5 6 6
2 10 12 20
3 15 18 54
4 20 24 96
5 25 30 150

Cooperative gate 1 8 8 95
2 16 16 318
3 24 24 846
4 30 32 1790
5 36 40 3245

AND gate 1 8 7 58
2 14 14 201
3 20 21 549
4 26 28 1190
5 32 35 2180

3-arm junction 1 10 11 41
2 20 22 116
3 30 33 225
4 40 44 368
5 50 55 545

Conditional Dicer 1 5 6 32
2 10 12 94
3 15 18 213
4 20 24 406
5 25 30 690

Table 4.1: Number of objectives, on-targets, and off-targets for each design type. The number of
instantiations is the number of orthogonal instantiations of the specified design type being designed.

4.4 Results

4.4.1 Special-case comparisons to previous algorithms

This algorithm generalizes complex ensemble defect optimization and test tube ensemble defect

optimization using similar decomposition approaches. To ensure parity with these past algorithms

for the special case of complex ensemble defect optimization, we tested all three algorithms on

an engineered test set without designing against any off-target complexes. The results shown in

Figure 4.6 demonstrate similar performance between the three algorithms for the special case of

single-complex design. The 1% stop conditions are achieved by all algorithms (panel a). The test

tube design algorithm and multistate design algorithm typically overshoot the stop condition by a

smaller amount. The design cost is comparable between the algorithms. For intermediate lengths,

the test tube and multistate design algorithms are typically slightly faster. The GC content is also

comparable (panel c). All three design algorithms typically succeed in designing 400-nt complexes

in just over 4/3 the cost of evaluating the structural ensemble defect for the sequence (panel d).
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Figure 4.6: Multistate algorithm performance for single complex design. Algorithm performance
for test tube design. a) Design quality. The stop condition is depicted as a dashed line. b) Design
cost. c) Sequence composition. The initial GC content is depicted as a dashed line. d) Cost of
sequence design relative to a single evaluation of the objective function. RNA design at 37 ◦C for
the engineered test set for the Zadeh 2011 algorithm (dashed lines), the test tube design algorithm
(dotted lines), and the multistate design algorithm (solid lines).
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Figure 4.7: Multistate algorithm performance for test tube design. Algorithm performance for test
tube design. a) Design quality. The stop condition is depicted as a dashed line. b) Design cost.
c) Sequence composition. The initial GC content is depicted as a dashed line. d) Cost of sequence
design relative to a single evaluation of the objective function. RNA design at 37 ◦C for the standard
test set for the engineered test set (solid lines) and random test set (dashed lines).

For the special case of test tube design, the multiobjective design algorithm was compared to

the test tube design algorithm for the design of multiple complexes in dilute solution. Figure 4.7

demonstrates that both algorithms behave similarly, as expected, since these algorithms are nearly

identical for the special case of single test tube design.

4.4.2 Design of nucleic acid reaction pathways

One to five orthogonal instantiations of each system type were specified in each design. Ten trials

were run for each of the resulting 25 designs. The stop condition, fhstop, was set to 0.05 for each

objective. The median values forM, the design cost, and design cost normalized by the analysis cost

are shown in Figure 4.8. The average of the stop conditions was below unity, indicating that the stop

conditions were achieved on average (panel a). Notably, the algorithm succeeds in generating five

orthogonal designs for conditional dicer substrate production, even though library constraints im-

posed sequence identity with subsequences from the same two target mRNAs for each instantiation.

The design costs increase as the cost of evaluating the multistate defect. The cost relative to the

cost of evaluating the multistate defect sometimes remains the same, but sometimes increases. The

logic gates and cooperative gates show nearly constant relative costs. Designs for HCR, conditional

Dicer, and catalytic 3-arm junction formation all show an increase in relative design cost as the
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Figure 4.8: Multistate design performance. a) Multistate defect. b) Design cost. c) Normalized
design cost shown vs the size of the analysis problem, characterized by the cost of evaluating the
full multistate defect. Colors indicate the system type.

number of orthogonal instantiations is increased.

An example result for the design of two orthogonal HCR systems is depicted in Figure 4.9. The

stop condition was achieved for every target test tube. Comparing this with the HCR objective

specification in 4.1, we can see that the concentrations are similar to the target concentrations.

Each tube is dominated by the on-target complexes and each structural ensemble is dominated by

its target structure.

4.4.3 Preventing sequence patterns

Adding prevented patterns keeps particular subsequences from appearing on a specified strand or

set of strands. For example, we can prevent any nucleotide from showing up four positions in a

row by preventing the patterns AAAA, CCCC, GGGG, UUUU, or we could prevent any pair of nucleotides

from appearing in six consecutive positions by preventing the patterns RRRRRR, YYYYYY, MMMMMM,

KKKKKK, WWWWWW, SSSSSS. The design performances while preventing four consecutive instances of

the same nucleotide or both four consecutive of the same nucleotide and six consecutive of any

two nucleotides are shown in Figure 4.10, along with the original design performance. Preventing

any repeats of a single nucleotide four times in a row does not have substantial effect on design

quality or cost. Preventing a single nucleotide from appearing four consecutive times and any pair

of nucleotides six consecutive times has an effect on two of the designs. The cost of design for

conditional Dicer systems increases by nearly an order of magnitude when these constraints are

used, and the cost of HCR systems increases by a factor of one to two when these constraints are

included. Remarkably, the conditional Dicer designs nearly satisfy their stop conditions even under

these additional constraints. The remaining design types do not show a large effect on design quality

or cost when these constraints are included.

Example sequences are shown in Table 4.2 for a single HCR system. Long repeats observed
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Figure 4.9: Summary of an HCR design of two systems intended to perform orthogonally. Each
nucleotide is depicted in its intended state and shaded according to its probability of being in the
depicted state. Compare to the specification in Figure 4.1. The first row of tubes corresponds to
the specification for the first instantiation of HCR, and the second row of tubes corresponds to the
second instantiation. The ‘Cross-target’ tubes minimize cross-talk between the two instantiations.
The normalized test tube ensemble defect for each tube is shown at the bottom of the tube.
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Figure 4.10: Effect of preventing sequence patterns. a) Design quality. b) Cost of design. c) Cost
of design relative to cost of evaluation. Colors indicate the design type. Marker shapes indicate the
type of constraint used.

without pattern preventions are eliminated when using explicit pattern prevention.

No prevented patterns
0-h1 GTAAGGGGGAAAGTAAGTAAGGAAAAAGCAAAAAACCTTCGATATTTTTGCTTTTTCCTTACTTACTT

0-h2 TTTTTGCTTTTTCCTTACTTACTTTCCCCCTTACAAGTAAGTAAGGAAAAAGCAAAAATATCGAAGGT

0-i1 TTTTTGCTTTTTCCTTACTTACTTTCCCCCTTAC

0-i2 ACCTTCGATATTTTTGCTTTTTCCTTACTTACTT

Prevent: AAAA, CCCC, GGGG, and UUUU

0-h1 TCAAACCATCACTCTCCATCACCCTTCTCTACCTGGAGGAGAAGAGGTAGAGAAGGGTGATGGAGAGT

0-h2 AGGTAGAGAAGGGTGATGGAGAGTGATGGTTTGAACTCTCCATCACCCTTCTCTACCTCTTCTCCTCC

0-i1 AGGTAGAGAAGGGTGATGGAGAGTGATGGTTTGA

0-i2 GGAGGAGAAGAGGTAGAGAAGGGTGATGGAGAGT

Prevent: AAAA, CCCC, GGGG, UUUU, RRRRRR, RRRRRR, RRRRRR, RRRRRR, RRRRRR, RRRRRR, RRRRRR
0-h1 GGAAACGTGAAATGTAAAGGCTGGGATGGAATGTTCACCTTTACACATTCCATCCCAGCCTTTACATT

0-h2 ACATTCCATCCCAGCCTTTACATTTCACGTTTCCAATGTAAAGGCTGGGATGGAATGTGTAAAGGTGA

0-i1 ACATTCCATCCCAGCCTTTACATTTCACGTTTCC

0-i2 TCACCTTTACACATTCCATCCCAGCCTTTACATT

Table 4.2: Sequences designed with and without prevented patterns.

4.4.4 Constraining content

The match constraint can be used to specify similarity to any pattern. In particular, it can be used

to specify sequence content for domains or strands. We demonstrate this by creating a set of designs

that are constrained to have a GC content between 40% and 60% for every domain. We created

another set of designs where no nucleotide type could make up more than 35% of any domain longer

than 3-nt.

The effect of these sequence content constraints on the quality and cost of design is shown in

Figure 4.11. The defect and cost both are worse under these constraints. Under the GC content
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Figure 4.11: Effect of content constraints. a) Multistate defect. b) Cost of design. c) Cost of design
relative to cost of evaluation. Colors indicate the design type. Marker shapes indicate the type of
constraint used.
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Figure 4.12: Effect of including structural defect weights. a) Multistate defect. b) Cost of design. c)
Cost of design relative to cost of evaluation. Colors indicate the design type, marker shapes indicate
the value of weight used. All weights were applied to all unstructured regions except for the toeholds
used in subsequent reaction steps.

constraint, the cooperative gates typically fail to satisfy their stop condition. The ensemble defect

shows deterioration of design quality when no nucleotide is allowed to constitute more than 35% of

any domain. In several cases, the design cost increases by over an order of magnitude using this

set of constraints. Note that the conditional Dicer designs cannot satisfy the constraints. Instead,

these designs correctly warn that the constraints cannot be satisfied, and they permit no feasible

sequences.

4.4.5 Weighting structural defects

Figure 4.12 shows the performance of the test tube design algorithm when using strucural de-

fect weighting. All single-stranded regions except toeholds were assigned a reduced weight αah,j ∈

{0.05, 0.10, 0.25, 0.50}. Migration regions had their structural defect weight reduced from 1.00 to

0.50, 0.25, 0.10, and 0.05. Reducing the weight of the structural defects from unity makes the

stop condition less stringent, and so typically results in lower design cost and satisfaction of more
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Figure 4.13: Detect 1 target structure from an HCR design designed without (panel a) and with
(panel b) structural defect weighting to reduce the contribution to the structural defect contribution
of the single-stranded domain b∗ (indicated). The toehold and stem remain at full weight.

stop conditions. The effect of using structural weights is shown in Figure 4.13 for the Detect 1

target structure from a designed HCR system. Panel a shows the target structure when the default

weights of 1.0 are used everywhere. Panel b shows the target structure designed with nucleotide

defect weights of 0.25 on the exposed branch migration region b∗. The complex designed with all

weights equal to unity shows reduced base-pairing in the exposed b∗ region, while the structure with

reduced weights there maintains low nucleotide defects in the stem and in the toehold, but allows

some pairing in the exposed b∗ domain.

4.5 Conclusion

Multistate sequence design provides a powerful framework for optimizing the structures and binding

energetics of pathways of interacting nucleic acid strands. The desired equilibrium properties for each

test tube are specified as an arbitrary number of on-target complexes, each with a target secondary

structure and target concentration, and an arbitrary number of off-target complexes, each with

vanishing target concentration. Given a set of target test tubes, the multistate defect quantifies their

average normalized test tube ensemble defect. Multistate defect optimization implements a positive

design paradigm (stabilizes on-targets in each tube) and a negative design paradigm (destabilizes

off-targets in each tube) at the structural and test tube levels. The algorithm allows restriction

of the feasible sequence space through specification of a set of combinatorial sequence constraints

that are satisfied throughout optimization. Using hierarchical ensemble decomposition and ensemble

focusing, it is feasible to design sequences for nucleic acid reaction pathways of practical interest to

the molecular programming and synthetic biology communities at cost comparable with the cost of

evaluating the pathway’s thermodynamic properties.
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4.6 Appendix and archive content

Appendix Section A.2 explains the algorithm used to generate structures for the engineered test set.

Appendix C contains additional studies on algorithm performance, a specification of the NUPACK

design language, a discussion of the supplementary archive content, and a brief discussion about

implementing new constraints and new objective functions.

The supplementary archive contains simple design examples that demonstrate constraints and

Python scripts used to generate the examples used for this chapter.
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Chapter 5

Simulation-based coarse-graining of
nucleic acid energy landscapes

In the previous chapter, we described an algorithm to design the equilibrium base-pairing properties

of a set of dilute solutions and used this algorithm to design sequences for nucleic acid reaction

pathways. Following sequence design and prior to strand synthesis, it would be desirable to screen

sequences by their kinetic behavior. Several recently developed tools have shown utility in under-

standing the kinetics of nucleic acid interactions [53, 72]. It is still inconvenient to summarize the

results of these simulations, enumerating probable states and kinetic rates between them. Here, we

describe two algorithms to estimate dominant states and high-level kinetics via simulation-based

coarse-graining. Using the secondary structure kinetic model from Section 2.3.2, we formulate small

box coarse-graining to generate low-dimensional approximations of secondary structure master equa-

tions for small numbers of distinguishable nucleic acid strands in solution. We extend this formula-

tion to large box coarse-graining to estimate the mass action kinetics for a test tube of interacting

nucleic acid strands. We validate both coarse-graining approaches against finer-grained simulations.

The small box coarse-graining algorithm follows closely from the algorithm presented in Jon Oth-

mer’s thesis [51]. Large box coarse-graining is based on collaborations with Victor Beck and Justin

Bois, previous researchers in the Pierce Lab. This thesis contributes a unified way of presenting

these algorithms.

Both algorithms construct a set of species that is partitioned into an unexplored and an ex-

plored subset. Initial species are discovered using simulations starting from user-supplied initial

conditions. The rest of each algorithm iteratively selects a species and explores its outgoing rates

by using stochastic secondary structure simulations and by enforcing detailed balance among the

explored species. Each unexplored species is selected for exploration based on its probability or its

concentration in a coarse-grained simulation. The set of explored species is expanded until most of

the probability or mass is contained in the explored species over the entire timescale of interest.
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5.1 Small box coarse-graining

Small box coarse-graining attempts to determine a low-dimensional approximation of the master

equation governing secondary structure transitions for a small box containing a few distinguishable

strands. Given a set of strand sequences, φ, a corresponding ensemble of possible secondary struc-

tures, Ω∗, and a rate matrix, R(φ), that specifies transition rates between structures in Ω∗, we can

describe the probability of being in secondary structure ω ∈ Ω∗ at time t by the master equation,

dp̄(t)

dt
= R(φ)p̄(t), (5.1)

where p̄(t) is a vector of secondary structure probabilities for the small box.

The master equation is a linear ODE, and so can be solved analytically or numerically if R(φ) is

small enough. Given an initial configuration, ω0, a relaxation time, τrelax, and a maximum transition

time, τmax, small box coarse-graining attempts to find dominant macrostates, Ω, consisting of sets

of structures that locally equilibrate over timescales much less than τrelax, and to find transitions

between these macrostates that occur slower than τrelax, but faster than τmax.

One could imagine trying to find a nearly block diagonal form of the rate matrix, where eigen-

values corresponding to transitions between blocks, λslow, are much smaller than eigenvalues corre-

sponding to transitions within each block, λfast. If all eigenvalues, λ, could be partitioned into either

λfast or λslow for some choice of timescale, τrelax, via

λ ∈ λfast �
1

τrelax
� λ ∈ λslow, (5.2)

we could approximate the dynamics of the system over timescales slower than τrelax by calculating

the local equilibrium distribution within each block (based on the eigenvectors corresponding to the

smallest eigenvalues), and estimating transition rates between the blocks using λslow. This estimate

would hinge on the assumption that timescale separation existed between the two sets of eigenvalues,

and on the correct choice of τrelax to lie between these sets.

In nucleic acid systems, such timescale separation often exists. The fastest unimolecular transi-

tions occur with rates on the order of 1× 108/s, while the slowest transitions can occur at least four

orders of magnitude slower [51, 64, 72]. Also, for most in vitro nucleic acid experiments, the rate of

nucleic acid molecule collisions is typically much slower than the rate of intramolecular relaxation.

For the purposes of this algorithm, we assume τrelax exists and that the user has chosen it appro-

priately. We further require the user to choose a maximum simulation time, τmax. Coarse-grained

simulations and rate determination steps are run for at most τmax simulated time.

The rate matrix, R(φ), is typically much too large to enumerate. Direct simulation becomes

infeasible for 25-nt sequences due to storage and computational constraints. Scaling to practical
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systems requires efficient ways to represent and prune the state space [23, 41]. Instead, we use

the Monte Carlo algorithm developed in Schaeffer’s thesis, multistrand, to simulate secondary

structure dynamics [64]. Each Monte Carlo simulation of the secondary structure master equation

(5.1) results in a trajectory. We write the secondary structure at time t in trajectory i as ωti . The

interval of trajectory i in the range [t1, t2] is written ωt1:t2
i .

In Section 5.1.1, we outline the algorithm, introducing key concepts. In Section 5.1.2, we describe

the concepts in more detail.

5.1.1 Overview

Small box coarse-graining uses Monte Carlo trajectories to discover a set of macrostates based on a

user-provided sequence, initial secondary structure, relaxation timescale, and maximum timescale.

Discovering a set of macrostates, Ω, and transition rates between them, r. Each macrostate is a set of

secondary structures that approximately reach local equilibrium over timescale τrelax, as determined

by comparing adjacent τrelax-long windows. Macrostates are written Ωh, where h is a unique index.

In the matrix depiction, each macrostate corresponds to a block in the matrix. Transition rates r

characterize transitions that occur on timescales longer than τrelax, but shorter than τmax. These

rates correspond to eigenvalues in λslow. This section outlines the progression of the coarse-graining

algorithm.

First, the algorithm discovers initial macrostates and estimates their starting probabilities. To

do this, a trajectory is simulated, starting from the user-specified initial condition, until it reaches

a local equilibrium, determined by comparing two adjacent windows of length τrelax. This local

equilibrium is a macrostate, Ωh. It is added to the set of discovered macrostates, Ω, and a new

trajectory is started from ω0. Subsequent trajectories are run either until they are similar to a

previously discovered macrostate, Ωh, or until they reach local equilibrium in a new macrostate

(which is saved as before). This process is repeated many times to discover the possible starting

macrostates. The fraction of trajectories that end in each macrostate, Ωh, is used to estimate its

initial probability in coarse-grained master equation simulations, ph(0).

For the rest of this algorithm, the set of macrostates, Ω, is partitioned into an unexplored sub-

set, Ωu, and an explored subset, Ωx. Immediately after discovery, macrostates are unexplored.

Unexplored macrostates can only have incoming transitions. Explored macrostates can have both

incoming and outgoing transitions, and the partition function for each explored macrostate is es-

timated. Using this partition function estimate, detailed balance is enforced between macrostates

in Ωx. After discovering initial macrostates (which are added to Ωu) and estimating their initial

probabilities, the rest of the algorithm consists of iteratively selecting a state from Ωu, transferring it

to Ωx, estimating its outgoing rates, and estimating its partition function. This process is depicted

in Figure 5.1. Each panel will be referenced in the appropriate paragraph of this overview. The
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Ωu Ωx Ωu Ωx Ωu Ωx

Figure 5.1: The algorithm is initialized with a set of sequences and an initial secondary structure.
Trajectories are simulated starting from this secondary structure, and all discovered basins are added
to Ωu (panel a). No rate information is available so ph(τmax) = ph(0). Next, the macrostate with
the highest probability, B, is added to Ωx, and simulations are run from the MFE of this basin until
τmax total time has been simulated in that macrostate. Newly discovered macrostate, C, is added
to Ωu (panel b). The remaining macrostates are simulated and added to the set of reactions until
the total probability in Ωu at τmax is less than pstop (panels c and d). In panel d, all macrostates
are in Ωx, and the algorithm terminates.

state of the algorithm before exploration commences is shown in panel a: macrostates A and B were

discovered during the initial stage of the algorithm, added to Ωu, and their initial probabilities were

estimated.

After estimating the initial probabilities, the macrostate, Ωĥ, with the highest estimated starting

probability, pĥ(0), is transferred to Ωx and outgoing transition rates are estimated using macrostate

exploration. Outgoing rates are initially estimated by simulating long trajectories that start in

the selected macrostate until they enter a different macrostate. The entered macrostate can be a

known macrostate or a newly discovered macrostate, discovered when the trajectory reaches local

equilibrium. After simulating τmax total time starting from the selected macrostate, the outgoing

transition rate to each other macrostate, rĥ→j , j 6= ĥ, is estimated based on the number of observed

transitions to it. The previously estimated initial macrostate probabilities and newly estimated

macrostate transition rates define a coarse-grained Markov Chain that is now simulated. Figure 5.1b

represents this stage in the algorithm. Macrostate B was explored since it had the highest initial

probability. Transition rates to previously discovered macrostate A and newly discovered macrostate

C were estimated by simulating long trajectories starting in B. The final probabilities, ph(τmax), were

updated by simulating the coarse-grained master equation.

After the coarse-grained simulation, the unexplored macrostate, Ωh ∈ Ωu, with the highest
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probability at the end of the simulation is transferred to Ωx, and its outgoing rates are estimated

in a subsequent round of macrostate exploration. After performing the trajectory simulations and

calculating transition rates as before, detailed balance is enforced between all macrostates in Ωx using

estimates of the macrostate partition functions. This stage of the algorithm is shown in Figure 5.1c.

Macrostate A was chosen for the second round of exploration. The rates between A and B satisfy

detailed balance, but transitions to macrostate C are unidirectional since it is not yet explored.

The total probability in Ωu at time τmax is a quantification of the error in the coarse-graining that

can be eliminated by further rounds of exploration. Macrostate exploration is repeated, selecting

the macrostate with the highest probability at time τmax each round until this coarse-graining error

is less than a user-specified stop probability, pstop. Figure 5.1d shows the state of the algorithm after

the third round of exploration. All macrostates are now explored, so detailed balance is enforced for

the entire coarse-grained Markov chain and the coarse-graining algorithm terminates.

5.1.2 Algorithm

There are three important ingredients for this algorithm: characterization of macrostates, initial state

discovery based on short trajectories starting from the initial secondary structure, and transition

discovery based on long trajectory simulations starting within each macrostate. In this section,

we explain each of these: Section 5.1.2.1 describes how distance metrics are used to discover new

macrostates and match known macrostates, Section 5.1.2.2 describes how starting macrostates are

identified and how their starting probabilities are estimated, and Section 5.1.2.3 describes the process

of selecting a macrostate, estimating its outgoing transition rates, and simulating the coarse-grained

master equation.

5.1.2.1 Characterizing trajectories

To identify macrostates using trajectories, we compare trajectory windows of length τrelax, quan-

tifying their similarity. This similarity metric will be used to determine when a trajectory is in

local equilibrium, i.e., when a trajectory is approximately ergodic. The metric will also be used to

determine when a trajectory is in a known macrostate. In this section, we first describe two distance

metrics, the distance in variation and the base pair distance. Next, we introduce representative

trajectories and representative structures for macrostates. Finally, we describe how we use the dis-

tance metrics and representative trajectories to discover new macrostates and to determine when a

trajectory is in a known macrostate.
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Distance metrics. The distance in variation, dV , between two trajectory regions ω0:τrelax
i and

ω0,τrelax

j is half the L1 distance between the sampled secondary structure probability vectors [28, 51]:

dV (ωi, ωj) =
1

2

∑
ω∈Ω∗

∣∣∣∣∣
∫ τrelax

0
δ(ω, ωti)dt

τrelax
−
∫ τrelax

0
δ(ω, ωtj)dt

τrelax

∣∣∣∣∣ , (5.3)

where δ(ω, ωti) is equal to unity if ω = ωti and is equal to zero otherwise. The total distance is

normalized by 1/2 to take a value between zero and unity. The distance in variation is zero if and

only if the sampled distributions are exactly equal. The distance is unity if there is no overlap

between the two sets of sampled secondary structures. This distance metric was used to determine

the location of transitions between macrostates in the initial macrostate discovery stage of Othmer’s

algorithm [51]. This distance metric has the advantage that it relies solely on the fraction of time

spent in each state and makes no assumptions about the underlying Markov chain. It has the

disadvantage that, for larger nucleic acid systems, the number of states that are nearly isoenergetic

increases rapidly, and it takes a correspondingly long time to approach ergodicity among individual

states.

To find an alternative metric, we note that the distance in variation treats each pair of structures

as if they were completely different, ignoring structural similarities. Also, in Othmer’s work, each

macrostate is characterized by its pair probability matrix during macrostate clustering; macrostates

are clustered based on the L1 norm between their sampled pair probability matrices. This metric

is convenient because the space used by pair probability matrices scales quadratically with the

number of nucleotides and the base pair probabilities converge more rapidly than secondary structure

probabilities (see Figure 5.3ab). To take advantage of this faster convergence and reduced storage

use, we define the trajectory base pair distance as the L1 norm between the sampled pair probability

matrices normalized to lie between zero and unity. For trajectory ωi starting at t0 and ending at tf ,

we define the sampled pair probability matrix P̃ (ω
t0:tf
i ) as

P̃ a,b(ω
t0:tf
i ) ≡ 1

tf − t0

∫ tf

t0

Sa,b(ωti)dt, (5.4)

where Si,j is the natural extension of the structure matrix to the small box, as defined in Chapter 2.

The base pair distance between two trajectories, ωi and ωj , is then

dP (ωi, ωj) =
1

2|φ|
∑

1≤a≤|φj |
1≤b≤|φj |+1

∣∣∣P̃ a,b(ωi)− P̃ a,b(ωj)∣∣∣ . (5.5)

This is normalized by twice the number of nucleotides, so it falls between zero and unity. Note that

it can be zero even if the sampled distributions are unequal. Therefore, it is not a distance metric

over the space of possible probability distributions, only over the sampled pair probability matrices.
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The lost information is the difference in correlations between base pairs. Within a macrostate,

we typically don’t care about these differences in correlation, so we use the base pair distance to

take advantage of its faster convergence and lower storage use when compared to the distance in

variation. A computationally expensive alternative that captures the correlation in base pairs is the

Wasserstein distance. A good survey of probability metrics and how they relate is given by Gibbs

[28].

Representing macrostates. To use the distance metrics, we associate each macrostate, Ωh, with

a representative trajectory, ω0:τrelax

Ωh
. This is used to identify entries to and exits from the macrostate

during subsequent trajectory simulations. For practical purposes, the full trajectory need not be

saved; if the base pair distance is used, only the sampled pair probability matrix needs to be saved.

When trajectories need to be started from within a macrostate, we select the initial secondary

structure based on the representative trajectory. Othmer argued that the centroid secondary struc-

ture, which is the structure with the minimal ensemble defect according to the sampled pair proba-

bility matrix,

ωcentroid
Ωh

= argmin
ω∈Ω∗

|φ| − ∑
1≤a≤|φ|

1≤b≤|φ|+1

P̃ a,b(ωΩh)Sa,b(ω)

 (5.6)

should be used for this purpose. This has the disadvantage of possibly choosing a structure that

has an arbitrarily low probability compared to the structures in the representative trajectory (see

Figure 5.2). In this work, we choose to use the sampled minimum free energy structure as the

starting structure for trajectories instead:

ωMFE
Ωh

≡ argmin
ωtΩh
∈ω0:τrelax

Ωh

[
∆G

(
ωtΩh

)]
. (5.7)

This has the highest probability of any sampled structure in the trajectory.

Trajectory distance criteria. At any point in the algorithm, we determine that a trajectory

has locally equilibrated when the previous and next windows of length τrelax are approximately the

same, indicating the trajectory is approaching ergodicity on this timescale. We characterize this

using the local equilibration criterion,

dP (ωt−τrelax:t
i , ωt:t+τrelax

i ) < fequil, (5.8)

where fequil ∈ (0, 1). This criterion is used to identify new macrostates. The parameter fequil

specifies the stringency of the equilibration criterion.

In addition to the local equilibration criterion, we wish to be able to determine if a trajectory is
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in a known macrostate. To do this, we measure the difference between the representative trajectory,

ω0:τrelax

Ωh
, for each macrostate, Ωh, and the next window of length τrelax. A trajectory window,

ωt:t+τrelax
i , matches Ωh if it satisfies the macrostate match criterion:

dP (ωt:t+τrelax
i , ω0:τrelax

Ωh
) < fmatch. (5.9)

The macrostate match criterion is used to determine entry and exits times for known macrostates.

We typically set fmatch > fequil so known macrostates are preferentially matched using (5.9), and

rediscovery of the same macrostate using (5.8) is avoided.

5.1.2.2 Identifying initial macrostates

Given an initial secondary structure, ω0, the first step of the algorithm identifies the macrostates it

relaxes into. A set of Minit trajectories starting from ω0 are run. The first trajectory is run until

the local equilibration criterion (5.8) is satisfied and the first macrostate Ωh is initialized and added

to the set of unexplored macrostates, Ωu. The corresponding representative trajectory is assigned

to the window of length τrelax centered at equilibration time t,

ω0:τrelax

Ωh
≡ ωt−

τrelax
2 :t+

τrelax
2

i , (5.10)

and the representative MFE structure is assigned using (5.7). The initial entry counter, mh
init, keeps

track of the number of transitions into macrostate Ωh from the initial secondary structure. Upon

macrostate identification, this counter is initialized to unity.

Subsequent trajectories are run until they either satisfy the local equilibration condition (5.8)

(in which case the new macrostate, Ωh, is saved and the corresponding counter mh
init is initialized

to unity), or until they satisfy the macrostate match criterion (5.9) with any previously identified

macrostate, Ωh, (in which case the corresponding counter, mh
init, is incremented). After simulating

Minit trajectories, the probability of starting in each macrostate Ωh is estimated as

ph(0) =
mh

init

Minit
. (5.11)

These probabilities constitute the initial conditions for the coarse-grained master equation simula-

tions.

5.1.2.3 Macrostate exploration

After identifying initial macrostates and their initial probabilities, the algorithm iteratively explores

macrostates, estimating their outgoing transition rates and transferring them from Ωu to Ωx. Out-

going transition rates are estimated by simulating long trajectories and by enforcing detailed balance
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among explored macrostates. Macrostates are selected for exploration based on their probability

during coarse-grained simulations.

Simulating outgoing transitions. During the first iteration of macrostate exploration, the

macrostate, Ωĥ, with the highest initial probability, pĥ(0), is chosen, and transitions away from this

macrostate are explored. A set of trajectories is simulated, starting from the representative mini-

mum free energy structure, ωMFE
ĥ

, for the chosen macrostate. Each trajectory can either a) leave

the initial macrostate and enter an already discovered macrostate, b) leave the initial macrostate

and reach local equilibrium in a newly discovered macrostate, or c) remain in the initial macrostate

until τmax cumulative time has been simulated in that macrostate.

To determine if a trajectory has transitioned to a previously discovered macrostate, the distances

between the next window of length τrelax and the representative trajectories of previously discovered

macrostates are constantly updated as the trajectory is simulated. At any time, t, if the trajectory

transitions to a known macrostate, Ωj , by satisfying the macrostate match criterion (5.9) with any

macrostate except the initial macrostate, the trajectory is ended. A counter, mĥ→j
trans, keeps track of

the number of observed transitions from the initial macrostate, Ωĥ, to each destination macrostate,

Ωj .

To discover transitions to previously undiscovered macrostates, the distance between the pre-

vious window of length τrelax and the next window of length τrelax is constantly updated as the

trajectory is simulated. If, at any point, the local equilibration criterion (5.8) is satisfied between

these two windows, the trajectory is in a macrostate. If no known macrostates satisfy the macrostate

match criterion with the next τrelax window, then a new macrostate has been discovered. This new

macrostate, Ωj , its representative trajectory, ω0:τrelax

Ωj
, and its MFE structure, ωMFE

Ωj
, are saved as in

initial macrostate discovery and the counter for that transition, mĥ→j
trans, is initialized to unity.

After τmax cumulative time has been simulated starting from the chosen macrostate, Ωĥ, outgoing

transition rates to all other macrostates, Ωj , are estimated:

rĥ→j ≡
mĥ→j

trans

τmax
. (5.12)

Estimating partition functions. All transition rates between explored macrostates are required

to satisfy detailed balance. For this, we need an estimate of the partition function of each macrostate.

This is done by calculating the trajectory partition function, Q̃ĥ, over the representative trajectory

for the macrostate, ωΩĥ
, and inflating it based on the estimated fraction of the macrostate it captures.

The trajectory partition function is the sum of Boltzmann weights over all structures in the
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representative trajectory:

Q̃ĥ ≡
∑

ωjΩh
∈ω0:τrelax

Ωh

exp(−∆G(ωjΩh)/hBT ). (5.13)

To estimate the fraction of the macrostate included in this sum, Mpfunc trajectories are then sim-

ulated for τrelax time, starting from the minimum free energy structure, ωMFE
Ωh

. The ending state,

ωτrelax
i , for each trajectory is assumed to be a randomly sampled secondary structure from the

macrostate. A counter, mpfunc, keeps track of the number of times the sampled ending state is

present in the representative trajectory. The probability of sampling a structure from the represen-

tative trajectory is given by

p(ωτrelax
i ∈ ω0:τrelax

Ωh
) ≈ Q̃h

Qh
. (5.14)

where Qh is the true partition function of the macrostate. We then estimate the true partition

function by the ratio

Qh ≡
Q̃hMpfunc

mpfunc
. (5.15)

For a discussion of the error bounds on rate estimates and partition functions, see Othmer’s thesis

[51].

Enforcing detailed balance. At this point, each macrostate in Ωx has an estimate of its partition

function and an estimate of its outgoing rates. When multiple states have been added to Ωx,

the partition functions can be used to enforce detailed balance between the explored macrostates.

Typically, the energetically favorable direction for any transition will be simulated much more often

than the unfavorable direction, so the estimate of the favorable transition rate will be more accurate.

The coarse-graining algorithm keeps the rate for whichever transition was sampled more often and

calculates reverse rates using detailed balance, e.g., for two states h and j, if mh→j
trans > mj→h

trans, we

override any transition rate from Ωj to Ωh calculated with (5.12), with the rate calculated using

detailed balance:

rj→h = rh→j
Qh
Qj

. (5.16)

Macrostate selection and termination conditions. At this point in the algorithm, the macrostates

in Ωx all have estimates of their partition functions and estimates of their outgoing rates. Addition-

ally, all transition rates between macrostates in Ωx satisfy detailed balance. These transition rates

and the previously determined initial conditions define a coarse-grained Markov chain. The master

equation for this coarse-grained Markov chain is now simulated [32].

Note that transitions to states in Ωu are irreversible since no outgoing rates are specified un-

til after exploration. Thus, if Ωu 6= ∅, the coarse-grained Markov chain is decomposable and the
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probability of being in a macrostate contained in Ωu is non-decreasing as the coarse-grained mas-

ter equation simulation proceeds. However, some macrostates in Ωu may accumulate a negligible

amount of probability after τmax time, and so have only a minor effect on the solution to the master

equation. To enumerate macrostates with the highest probability first and to enable a user to stop

the coarse-graining before all macrostates are explored, we define the unexplored probability as the

total probability in all unexplored states at time τmax:

pΩu ≡
∑

Ωh∈Ωu

ph(τmax). (5.17)

Using this, we define the small box stop condition:

pΩu ≤ pstop, (5.18)

where pstop ∈ [0, 1) is a user-specified cutoff probability. The algorithm terminates when this is

satisfied, which is guaranteed to occur when Ωu = ∅, in which case Ωx = Ω.

If the stop condition is not satisfied, the unexplored macrostate with the highest probability at

time τmax,

Ωĥ = argmax
Ωh∈Ωu

[ph(τmax)], (5.19)

is selected and the next round of macrostate exploration commences, determining outgoing rates

from this macrostate. This process is repeated until the stop condition is satisfied.

Looking back, we picked the macrostate with the highest initial probability for the first iteration

of macrostate exploration. No transition rates were enumerated at this point; this was equivalent to

performing a coarse-grained simulation of a constant master equation and choosing the macrostate

based on its probability at τmax instead. We thus define the coarse-grained Markov chain after initial

macrostate discovery to have no transitions and we simulate this master equation. This allows us to

always choose the macrostate with the highest probability after τmax time according to the current

coarse-grained master equation.

The pseudocode for small box coarse-graining is shown in Algorithm 5.1.

5.1.3 Methods

The small box coarse-graining algorithm was tested on a set of small single strands that exhibit

multi-state behavior. For a particularly small strand, the resulting master equation solution was

compared to the full, exhaustively enumerated, master equation solution.

The algorithm was also tested on an HCR system designed in section 4.4.2. This test is similar

to the intended use: coarse-graining reaction pathways.

All single-stranded tests were run using RNA at 25 ◦C with no dangles. The HCR tests were
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SmallboxCG(ω0, φ)

Ωu, ωΩ, pΩ(0)← FindInitialStates(ω(0), φ)
ph(τmax)← ph(0) ∀Ωh ∈ Ω
while

∑
j∈Ωu pj(τmax) > pstop

Ωĥ← argmaxΩh∈Ωu ph(τmax)

Ωx ← Ωx ∪ {Ωĥ}
Ωu ← Ωu \ {Ωĥ}
mĥ→Ω, ωΩ,Ω

x ← ExploreState(ĥ, ωΩ,Ω, φ)
Qĥ ← EstimatePfunc(ωĥ)
rΩ→Ω ← EstimateRates(mΩ→Ω, QΩ)
pΩ(τmax)← SimulateCG(rΩ, pΩ(0), τmax)

return pΩ(0), QΩ, rΩ→Ω

FindInitialStates(ω(0), φ)

Ωu, ωΩ ← ∅, ∅
for i ∈ 1, . . . ,Minit

Ωu, ωΩ, h←MatchTrajectory(ω0, φ,Ωu, ωΩ)
mhinit ← mhinit + 1

ph(0) = mhinit/Minit ∀Ωh ∈ Ωu

return Ωu, ωΩu , pΩu

MatchTrajectory(ω0, φ,Ω, ωΩ)

t← −τrelax

ω̂ ← ω0

while t < tf and dP (ωt−τ :t, ωt:t+τrelax ) ≥ fequil

dP (ωh, ω
t,t+τ ) ≥ fmatch∀h ∈ Ω

ω′, t′ ←MCStep(ω̂)

ωt+τrelax:t+τrelax+t′ ← ω̂
t← t+ t′

ω̂ ← ω′

if ∃h ∈ Ω : dP (ωh, ω
t,t+τrelax ) < fmatch

ĥ← argminΩh∈Ω(dP (ωΩh , ω
t,t+τrelax ))

else

ĥ← |Ω|+ 1

Ω← Ω ∪ {ĥ}
ωΩ

ĥ
← ωt−

τrelax
2

,t+
τrelax

2

return ĥ,Ω, ωΩ

ShortTrajectory(ω0, φ, tf )

cmatch ← true
ω̂ ← ω0

t← 0
while t < tf

ω′, t′ ←MCStep(ω̂)

ωt:t+t
′ ← ω̂

t← t+ t′

ω̂ ← ω′

return ω0:tf

ExploreState(ĥ, ωΩ,Ω, φ)

t← 0
mĥ→j ← 0 ∀Ωj ∈ Ω

while t < τmax

j, t′,Ω, ωΩ ←
LongTrajectory(ωMFE

Ω
ĥ

, φ,Ω, ωΩ, t− τmax)

t← t+ t′

mĥ→j ← mĥ→j + 1

return mĥ→Ω, ωΩ,Ω

LongTrajectory(ω0, φ,Ω, ωΩ, τ
f , ĥ)

t← −τrelax

ω̂ ← ω0

while t < tf and dP (ωh, ω
t,t+τ ) ≥ fmatch∀h ∈ Ω, h 6= ĥ

dP (ωt−τ :t, ωt:t+τrelax ) ≥ fequil

ω′, t′ ←MCStep(ω̂)

ωt+τrelax:t+τrelax+t′ ← ω̂
t← t+ t′

ω̂ ← ω′

if ∃Ωh ∈ Ω : dP (ωΩh , ω
t,t+τrelax ) < fmatch

j ← argminΩh∈Ω(dP (ωΩh , ω
t,t+τrelax ))

else
j ← |Ω|+ 1
Ωu ← Ωu ∪ {j}
ωΩj ← ωt−

τrelax
2

,t+
τrelax

2

return j, t,Ω, ωΩ

EstimatePfunc(ωΩ
ĥ

)

Q̃h ←
∑
ω∈ω

Ωĥ
exp

[
−∆G(ω)

hBT

]
for i ∈ 1, . . . ,Mpfunc

ωi ← ShortTrajectory(ωMFE
Ωĥ

, φ, τrelax)

if ω
τrelax
i ∈ ωΩĥ
mpfunc ← mpfunc + 1

Qh ←
Q̃hMpfunc

mpfunc

return Qh

EstimateRates(mΩ→Ω, QΩ)

rΩ→Ω ← 0, . . . , 0
for Ωj1,Ωj2 ∈ Ωx × Ω

if mj2→j1 > mj1→j2
j1, j2 = j2, j1

rj1→j2 ← mj1→j2/τmax

if Ωj2 ∈ Ωx

rj2→j1 ← rj1→j2Qj1/Qj2
return rΩ→Ω

Algorithm 5.1: Small box coarse-graining. Given a sequence φ and initial secondary structure ω0,
this algorithm identifies the dominant macrostates and transition rates for the small box kinetic
problem. Each Monte Carlo step is picked using the MCStep process. To ensure the next τrelax

window is defined for positive times t, we start each simulation at t = −τrelax and append each Monte
Carlo step at t+ τrelax in both MatchSimulation and LongSimulation. We use the convention
that the distance dP to an incomplete window is infinite.
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run using DNA at 25 ◦C with no dangles.

5.1.3.1 Implementation

This algorithm was coded in C, calling the multistrand C++ library to implement the secondary

structure kinetic model [64] and ODEPACK Fortran library to simulate the coarse-grained master

equation [32]. The exhaustively enumerated solution was coded in Python using the SciPy library

[37], and all graphs were generated in Python using matplotlib [35].

5.1.4 Results

The main results demonstrate the effectiveness of the choices for the representative structure and

distance metric. We also demonstrate that the algorithm behaves as expected, enumerating impor-

tant initial, intermediate, and final states for HCR in a small box. No unexpected or unintended

macrostates were observed.

5.1.4.1 Centroid versus MFE as representative structure

In the Othmer algorithm, the centroid was used as a representative secondary structure. While this

typically works well, it is an inconvenient choice because it may not be sampled with high probability.

Figure 5.2 shows a pathological example that highlights the disadvantage of using the centroid as

a representative structure. For a long enough trajectory, the pair probabilities will converge to the

equilibrium values shown in panel a. The two hairpins shown in panel b constitute most of the

probability; the centroid structure, containing no base pairs, is sampled at a probability six orders

of magnitude lower than either hairpin. If this were used to recognize entry into the macrostate (as

is the case in the previous algorithm), few, if any, transitions to the corresponding macrostate would

be sampled. To avoid starting from structures that are unlikely to be sampled in the macrostate,

we choose to use the sampled minimum free energy structure as the representative structure for

each macrostate, instead of using the centroid. To avoid using a single representative stopping

structure, we use the macrostate match criterion, relying on base pair distances between sampled

pair probability matrices.

5.1.4.2 Base pair distance properties

To determine if a trajectory is at a local equilibrium, the previous window, ωt−τrelax:t
i , is constantly

compared to the next window ωt:t+τrelax
i . We previously described two distance metrics to compare

trajectory windows using the distance in variation and the base pair distance. In previous work,

the distance in variation was used to recognize transitions between macrostates, while the pair

probability distance was used to cluster macrostates [51]. In panels a and b of Figure 5.3, we show
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Figure 5.2: Centroid structure versus MFE structure. a) Equilibrium pair probabilities for φ =
5′–UCCAGUCGUGGGUGGGACUGGGCACCCAU–3′. Position a, b is shaded with probability P a,b(φ). b) Two
hairpins shown which constitute approximately 70% of the total probability. c) The centroid sec-
ondary structure has a probability of being sampled of 3.3× 10−7. RNA at 37 ◦C.

the behavior of each distance metric when adjacent trajectory windows are compared. For these

tests, the multistate designer described in Chapter 4 was used to design a sequence to fold into three

nearly isoenergetic structures.

For a single trajectory, the distance in variation (panel a) and base pair distance (panel b) were

calculated between adjacent time windows between 1 µs and 1000 µs long. Peaks close to unity in

the distance in variation are indicative of transitions between macrostates. Peaks show up in the

same location in the plot of normalized pair probability, but they do not reach unity. It is clear

that the base pair distance converges to zero for shorter windows than the distance in variation, but

has lower peaks during transitions. We choose to use the base pair distance for its fast convergence

towards zero (which becomes even more apparent for longer sequences) and for its low storage cost.

After an initial macrostate has been discovered, each subsequent trajectory is continuously com-

pared to all known macrostates. These distances are used to determine when a trajectory enters

or exits known macrostates. The small box coarse-graining algorithm was used to identify the

macrostates for the previously described sequence. The minimum free energy structures for the

macrostates are shown in Figure 5.3c. After identifying the macrostates, the windows of the trajec-

tory used in panels a and b were compared to each of the discovered macrostates. The base pair

distances to each macrostate over time are shown in Figure 5.3d. The current macrostate and transi-

tions to and from macrostates are clearly visible. The trajectory starts in macrostate A, transitions

to B, then back to A, and finally to C. During initial macrostate identification, the trajectory would

be stopped as soon as the macrostate match criterion was satisfied, at t ≈ 0 ms. During macrostate

exploration, a trajectory starting from macrostate A, as shown, would stop as soon as it entered

another macrostate, e.g., macrostate B at 4.5 ms.
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Figure 5.3: Distance metric characterization. a) The distance in variation between the previ-
ous and next windows of length τrelax dV (ωt−τrelax:t

i , ωt:t+τrelax
i ). b) The base pair distance be-

tween the previous and next windows of length τrelax, dP (ωt−τrelax:t
i , ωt:t+τrelax

i ), for the same tra-
jectory. c) Representative MFE structures for macrostates identified using small box coarse-
graining. Bases are shaded according to their sampled probabilities. d) Base pair distance to
each macrostate over time for the same trajectory used in panels a and b. RNA at 25 ◦C,
φ = 5′–CCTATAGGAGAAACCTATAGGAAGACCTATAGG–3′, ω0 = ((((((((.....))))))))....((....)),
τrelax = 100 µs (panel d), τmax = 10 s.
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Figure 5.4: Small box coarse-grained results versus exhaustively enumerated results. a) Identified
macrostates and transition rates between them. b) Base pair distance between simulations of the
full master equation and the coarse grained master equation. c) Master equation simulation, linearly
scaled time axis. d) Master equation simulation, logarithmically scaled time axis. RNA at 25 ◦C,
φ = 5′–GCGUCGCGUCGCUAUGC–3′, ω0 = .....((((....)))), τrelax = 10 µs, τmax = 1 s.

5.1.4.3 Coarse-grained versus enumerated solution

To check the accuracy of the small box coarse-graining algorithm, we compared a coarse-grained

simulation of the base-pair probabilities of a 17-nt sequence to base-pair probabilities calculated

using a full simulation of the master equation. The full master equation pair probabilities were

calculated using an explicit sum at each timepoint

P̄ a,b(t) =
∑
j∈Ω∗

p̄j(t)S
a,b(sj). (5.20)

The coarse-grained master equation pair probabilities were calculated using a coarse-grained version:

P̂ a,b(t) =
∑
h∈Ω

ph(t)P̃ a,bh . (5.21)

The base pair distance was calculated at each point in time using

d̂P (P̄ a,b(t), P̂ a,b(t)) =
∑

1≤a≤|φj |
1≤b≤|φj |+1

∣∣∣P̄ a,b(t)− P̃ a,b(t)∣∣∣ . (5.22)

The results are shown in Figure 5.4. Three macrostates were identified (panel a). The base

pair distance between the coarse-grained simulation and full simulation quickly drops to 0.1 (10% of
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Figure 5.5: Coarse-grained results for 5′–GUCGCGUCGCGUCGCUAUGCGAC–3′. a) Identified macrostates
and transition rates between them. b) Master equation simulation, linearly scaled time axis.
c) Master equation simulation, logarithmically scaled time axis. The initial microstate was
..........(((((...))))), similar to the representative structure for macrostate A. RNA at 25 ◦C,
τrelax = 100 µs, τmax = 10 s.

nucleotides paired differently on average), and drops near the end of the trajectory at 1 ms (panel b).

The coarse-grained simulations (panels c and d) show that trajectories typically start in macrostate

A and transition to macrostates B and C. By 1 ms, macrostate B dominates most trajectories.

5.1.4.4 Coarse-grained dynamics of a single strand

Figure 5.5 shows the macrostates (panel a) and master equation solution (panels b and c) for another

single strand. Starting from a structure with a short hairpin (macrostate A), the system transitions

to either a slightly longer hairpin (macrostate C) or a hairpin that spans nearly the whole strand

(macrostate B). Eventually, the system transitions to the long hairpin and remains there.

5.1.4.5 Simulation results for HCR

The coarse-graining algorithm was tested on HCR sequences designed using the multistate sequence

design algorithm presented in Chapter 4. The macrostates, rates, and master equation simulations

for the HCR system are shown in Figure 5.6. As expected, the hairpins add sequentially to the

initiator, transitioning from macrostate A to B to C. The addition rates are within an order of

magnitude of each other, and the reverse rates differ by approximately an order of magnitude.
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Figure 5.6: HCR small box coarse-graining results. a) Identified macrostates. b) Master equation
simulation, linearly scaled time axis. c) Master equation simulation, logarithmically scaled time axis.
The initial microstate contained the three strands, I1, H1, and H2, folded into the same structures
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5.2 Large box coarse-graining

Small box coarse-graining allows coarse-graining of a small number of strands, but it does not address

the experimentally relevant problem of determining mass-action kinetics in a test tube. Large box

coarse-graining builds on small box coarse-graining to estimate the mass-action kinetics of a test

tube of interacting nucleic acid strands. Unimolecular reactions are explored in a process similar

to macrostate exploration in the small box. Bimolecular reactions are explored by sampling initial

contact states between pairs of reacting species and simulating them until they relax into local

equilibria in a process similar to the initial macrostate discovery in small box coarse-graining.

In Section 5.2.1, we provide an overview of the algorithm and introduce key concepts. In Sec-

tion 5.2.2, we describe the algorithm in detail, following the structure of the small box coarse-graining

section. The methods and results sections demonstrate agreement between the small and large box

coarse-graining formulations and demonstrate the utility of the algorithm in capturing the kinetics

of engineered reaction pathways.

5.2.1 Overview

From a user-provided set of initial complexes, J0, corresponding initial secondary structures, s0
J0 ,

and corresponding initial concentrations, x0
J0 , large box coarse-graining discovers a set of reacting

species, J , and bimolecular and unimolecular reaction rates between them, k. Reacting species in

the large box are analogous to the macrostates of the small box. Each reacting species is indexed

by a unique integer h. In contrast to macrostates, however, each reacting species, Jh, consists of a

set of secondary structures from the ensemble of a single complex, as defined in Section 2.3. As in

the small box, this set of secondary structures is chosen to reach local equilibrium over a relaxation

timescale, τrelax. The reaction rates, k, capture dynamics that are important on timescales longer

than τrelax but shorter than τmax.

The first part of the algorithm identifies initial reacting species and their initial concentrations.

This is performed by simulating trajectories for each initial complex. Each trajectory starts from

the specified initial secondary structure, and continues until it reaches a local equilibrium. This

local equilibrium is a reacting species, Jh, and it is added to the set of reacting species, J , and a new

trajectory is started. This is repeated many times for each initial complex to discover the possible

starting reacting species. The fraction of trajectories that end in each reacting species and the initial

concentration for each complex are used to estimate an initial concentration for each reacting species

for the large box coarse-grained simulation.

For the rest of the algorithm, the set of reacting species, J , is partitioned into an unexplored

subset, Ju, and an explored subset, Jx. Immediately after discovery, reacting species are unexplored.

Unexplored reacting species can only be products of reactions. Explored reacting species can be
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Figure 5.7: Diagram of large box reacting species exploration. a) The algorithm is initialized with
the set of complexes, each with an initial structure. Initial reacting species A and B are discovered
from these. b) In the first round of reacting species exploration, species B is selected. A unimolecular
transition B → A and a bimolecular self-reaction is found B+B → C. c) In the second round, react-
ing species A is selected, and the reaction A→ B is discovered via unimolecular rate determination
or via detailed balance. A bimolecular reaction to a new species is discovered: A + B → D. d) In
the third iteration, reacting species D is chosen, and the reaction rate for D → A+B is estimated
either via unimolecular rate exploration or via detailed balance.

either reactants or products and the partition function for each reacting species is estimated. Using

this partition function information, detailed balance is enforced for each reaction that acts only on

explored reacting species. After discovering initial reacting species (which are added to Ju) and

estimating their initial concentrations, the rest of the algorithm iteratively selects a reacting species

from Ju, transfers it to Jx, and estimates its partition function, outgoing unimolecular reaction

rates, and outgoing bimolecular reaction rates. This iterative exploration is depicted in Figure 5.7.

Starting at panel a, reacting species A and B were discovered based on the initial set of complexes

and their initial secondary structures. The remaining panels are referenced below.

After estimating the initial concentrations, reacting species exploration commences, the reacting

species, Jĥ, containing the highest concentration of nucleotides is transferred to Jx, and unimolec-

ular and bimolecular reaction rates are estimated. Unimolecular rates are initially estimated by

simulating long trajectories that start in the selected reacting species until the trajectories enter

a different reacting species or until the complex dissociates. If the complex dissociates, the two

resulting complexes are simulated in isolation until they enter a reacting species. Each resulting

product reacting species can be a newly discovered reacting species (discovered when the trajectory

reaches local equilibrium outside of its starting reacting species), or it can be a previously discov-

ered reacting species. After simulating τmax cumulative time within the selected reacting species,
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outgoing unimolecular rates are estimated based on the number of observed transitions from the

selected reacting species to each list of product reacting species. This process is very similar to

the macrostate exploration process in the small box, but this algorithm isolates complexes upon

dissociation.

After estimating unimolecular reactions rates, bimolecular rates are estimated by sampling initial

contact states between the selected reacting species and each reacting species in Jx, including initial

contact states of the selected reacting species with itself. Simulations are started from the sampled

initial contact states until the simulation reaches a reacting species (either known or newly discov-

ered) or the complex dissociates (in which case the resulting structures are simulated independently

until they individually reach reacting species). Each resulting bimolecular reaction rate, k{h}→{j}, is

estimated based on its estimated collision rate and the fraction of collisions that create its product

reacting species {j}.

At this point, a coarse-grained mass-action simulation can be performed using the current set of

reacting species and reaction rates. Using this, the concentrations at the maximum time, xh(τmax),

for each reacting species, Jh, are estimated. Figure 5.7b shows this stage of the algorithm. Reacting

species B was explored since it had the highest initial concentration. A unimolecular reaction

was discovered to reacting species A (a previously discovered reacting species) and a bimolecular

self-reaction was discovered that resulted in new reacting species C (discovered using the local

equilibration criterion).

After the coarse-grained simulation, the unexplored reacting species, Jĥ ∈ J
u, with the highest

concentration at the end of the simulation is transferred to Jx, and its outgoing rates are estimated

in a subsequent round of reacting species exploration. In addition to the rate estimates described

above, partition function estimates are used to enforce detailed balance for all reactions where the

reactants and products are all in Jx. Figure 5.7c illustrates the state after the next round of reacting

species exploration; bidirectional arrows indicate reactions between members of Jx; these rates are

calculated to satisfy detailed balance.

The total concentration in unexplored species at time τmax is a quantification of the error in the

coarse-graining that can be eliminated by further rounds of exploration. Reacting species exploration

is repeated, selecting the reacting species containing the highest mass after τmax time each iteration,

until the fraction of mass in Ju is less than a user specified stop fraction fstop of the total mass in

the tube. Figure 5.7d illustrates the state after a third round of reacting species exploration. After

this round, a single reacting species, C, remains unexplored.

The algorithm is described in the next section and detailed in Algorithm 5.2.
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5.2.2 Algorithm

We use adaptations of each ingredient used in small box coarse-graining in the large box algorithm.

Reacting species are characterized using similar trajectory criteria, and initial state discovery is again

based on short trajectory simulations from user-specified initial conditions, and unimolecular reaction

rates are estimated by simulating long trajectories, starting at the representative structure for a

reacting species. In addition to these ingredients, we estimate bimolecular reaction rates between

reacting species by sampling initial contact secondary structures and simulating short trajectories

to find the resulting reacting species.

This section describes each of these ingredients: Section 5.2.2.1 defines the trajectory match

criteria for the large box, Section 5.2.2.2 describes how the initial reacting species are discovered

and how their initial concentrations are estimated, and Section 5.2.2.3 describes how reacting species

are explored, including how unimolecular and bimolecular rates are estimated, how detailed balance

is enforced, and how reacting species are chosen for exploration.

At any point during large-box coarse-graining, if the strands can be divided into two complexes

that are not connected by any base pairs, they are divided and simulated independently. This ensures

that every trajectory in large box coarse-graining always contains a single complex. We continue

to write trajectories using ωti notation introduced for the small box for parallelism, but each box

consists of a single complex.

5.2.2.1 Characterizing reacting species

Each reacting species, Jh, is characterized by a representative trajectory, ω0:τrelax

Jh
, analogous to

a macrostate representative trajectory. Additionally, each reacting species has a representative

secondary structure, ωMFE
Jh

. Simulations from the reacting species typically start from this secondary

structure.

Large box coarse-graining uses similar distance metrics as small box coarse-graining to recognize

local equilibria. We define the base pair distance only between trajectories consisting of the same

complex, i.e., trajectories with the same strand ordering. Each reacting species consists of secondary

structures drawn from a complex, so no comparisons between trajectories containing other complexes

are necessary.

At any point in the algorithm, we determine that a reacting species has locally equilibrated when

the previous and next windows of length τrelax are approximately the same, indicating the trajectory

is approaching ergodicity on this timescale. We characterize this by using (5.8), as before.

In addition to the local equilibration criterion, we wish to be able to determine if a trajectory is in

a known reacting species. To do this, we measure the difference between the representative trajectory,

ω0:τrelax

Jh
, for each reacting species, Jh, consistent with strand ordering of the current trajectory and
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the next window of length τrelax in the current trajectory. Similar to (5.9), a trajectory window,

ωt:t+τrelax
i , matches reacting species Ωh if they have the same strand ordering and the distance

satisfies the reacting species match criterion:

dP (ωt:t+τrelax
i , ω0:τrelax

Ωh
) < fmatch. (5.23)

The reacting species match criterion is used to determine entries to and exits from known reacting

species.

5.2.2.2 Identifying initial reacting species

Given an initial set of complexes, J0, their sequences, φJ0 , their initial concentrations, x0
J0 , and

their initial secondary structures, sJ0 , the first step of the algorithm identifies the reacting species

each complex relaxes into. For each complex, this is done by simulating Minit short trajectories

that start at its specified initial secondary structure. The first trajectory is run until the trajectory

stabilization criterion (5.8) is met. When this occurs, the window of length τrelax centered on the

equilibration time, t, is chosen as a representative trajectory for the new reacting species, Jh:

ω0:τrelax

Jh
≡ ωt−τrelax/2:t+τrelax/2

i . (5.24)

Subsequent trajectories halt when they satisfy either the local equilibration criterion or the reacting

species match criterion (5.23) with any known reacting species. If the initial complex dissociates

before either criterion is met, the dissociated complexes are separated and simulated independently

until they individually reach reacting species. This can recur, with the resulting complexes dis-

sociating repeatedly until each complex consists of a single strand. Thus, for each trajectory, the

algorithm finds a list of initial reacting species {Jh}. Each newly discovered reacting species is added

to the set of unexplored reacting species, Ju.

An initialization counter, m
j→{h}
init , keeps track of the number of trajectories that start in initial

complex J0
j that end in the list of reacting species, {Jh : h ∈ {h}}. After running Minit trajectories

for each reacting species, the initial concentration of each reacting species, Jĥ, is estimated as

xĥ(0) =
∑

m
j→{h}
init

∑
h∈{h}

x0
jm

j→{h}
init δ(ĥ, h)

Minit
, (5.25)

where the first sum is over all non-zero initialization counters and the second sum is over the list of

resulting reacting species corresponding to the current counter, and δ(ĥ, h) is unity if ĥ = h, and is

zero otherwise. Note that the same reacting species can appear multiple times in a list.
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5.2.2.3 Reacting species exploration

After identifying initial reacting species and their initial concentrations, the algorithm iteratively

explores reacting species, transferring them from Ju to Jx, and exploring their outgoing reaction

rates. Outgoing transition rates are estimated by simulating long Monte Carlo trajectories to find

unimolecular reactions, by simulating initial contact states to find bimolecular reactions, and by en-

forcing detailed balance for reactions where reactants and products have all been explored. Reacting

species are selected for exploration based on their concentration during large box coarse-grained sim-

ulations. For the first iteration of reacting species exploration, the reacting species, Jĥ, with the

highest initial concentration, xĥ(0), is selected.

Simulating unimolecular reactions. First, unimolecular reactions from the selected reacting

species are explored by simulating long trajectories that start at the representative structure for the

reacting species. Each trajectory can either a) leave the initial reacting species and enter reacting

species in the same complex, b) dissociate into two separate complexes, or c) remain in the initial

reacting species until τmax cumulative time has been simulated in that reacting species.

The conditions for determining if a trajectory has entered a different reacting species are the same

as in small box coarse-graining. A previously discovered reacting species is entered if the reacting

species match condition (5.23) is satisfied for any reacting species except the selected reacting species.

A new reacting species is discovered if the local equilibration criterion (5.8) is satisfied, and the

reacting species match condition is unsatisfied for every known reacting species with the same strand

ordering.

If the complex dissociates before either of these conditions are satisfied, the resulting species are

simulated in isolation until they reach reacting species (again identified using the reacting species

match criterion or the local equilibration criterion). Thus, each observed unimolecular reaction is

of the form Jĥ → {Jj : j ∈ {j}}, where {j} is a list of indices of product reacting species. Counters

mĥ→{j} count the number of times each reaction type is observed.

After τmax total time has been simulated, each unimolecular reaction rate kĥ,{j} is estimated:

kĥ→{j} ≡
mĥ→{j}

τmax
. (5.26)

Simulating bimolecular reactions. Following estimation of unimolecular reactions, bimolecular

reaction rates are estimated. For these, total reaction rates depend on the rate of collision between

two molecules and on the fraction of these collisions that result in each list of product species.

The rate of collision in the multistrand model scales linearly with the number of possible initial

contact secondary structures between two molecules. We estimate this using the empirical collision

rate kbimol given in Schaeffer’s thesis [64] and the average number of possible initial contact states,



99

based on sampled secondary structures from each reacting species as described below. We estimate

the fraction of productive collisions by sampling initial contact secondary structures and observing

reacting species they relax to.

For each iteration of reacting species exploration, Mbimol, attempts are made to react the chosen

reacting species Jĥ with each explored reacting species, Jh ∈ Jx, including itself. For each attempt,

a trajectory is simulated for τrelax time from the MFE structure of each reacting species, ωMFE
Jĥ

and

ωMFE
Jh

, to generate sampled structures, ωsample
Jĥ

and ωsample
Jh

, for the trial. For trial i, the number

of possible base pairs joining the two structures between exterior loops, mcontact
ĥ+h,i

, is recorded and

one of these base pairs is sampled to join the complexes, forming secondary structure ωijoin with

sequence φijoin. A trajectory is then simulated, starting from ωijoin until it reaches product reacting

species {j}. As in previous cases, this can be either a single product reacting species, or a list of

product reacting species (if the initial structure dissociates). Each reacting species may be newly

discovered using the local equilibration criterion (5.8) or may have been previously discovered and

be recognized via the reacting species match criterion (5.23). The observed reaction is thus of

the form Jĥ + Jh → {Jj : j ∈ {j}}, where each bimolecular reaction can produce a list of product

reacting species. A counter, mĥ+h→{j}, keeps track of the number of times each reaction is observed.

Unproductive reactions (reactions that end in the starting pair of reacting species) are ignored.

After simulating Mbimol collisions for a pair of reactants, the corresponding reaction rates are

estimated. First, the average number of initial contact states,

m̄contact
ĥ+h

≡

∑
i∈1,...,Mbimol

mcontact
ĥ+h,i

Mbimol
(5.27)

is calculated. The rate of collision is then determined using the empirical bimolecular collision rate,

kbimol, given in Schaeffer’s thesis [64]:

kcontact
ĥ+h

≡ kbimolm̄
contact
ĥ+h

. (5.28)

Using this and the fraction of trials that end in each list of products, we estimate the total bimolecular

rate:

kĥ+h→{j} ≡ k
contact
ĥ+h

m̄ĥ+h→{j}

Mbimol
. (5.29)

Partition function estimation. We estimate the partition function for each reacting species, Qh,

as described in the small box coarse-graining section, except that we use complex free energies instead

of small box free energies in the Boltzmann summation (5.13). Additionally, each reacting species

has the potential to be symmetric. We account for this by treating all strands as distinguishable at

the secondary structure level and then dividing the partition function by the maximum symmetry,
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simultaneously correcting for over-counting and rotational symmetry penalties [14].

Enforcing detailed balance. When the reactants and products for a particular reaction have

been explored (and thus have estimates of their partition functions), the algorithm enforces detailed

balance for the reaction. As in the small box case, the reaction direction that is sampled more often

is assumed to be correct and the reverse rate is calculated using detailed balance. In other words,

if m{h}→{j} > m{j}→{h}, then the rate calculated using (5.26) or (5.29) is overridden with a rate

calculated using detailed balance:

k{j}→{h} = k{h}→{j}

∏
h∈{h}Qh∏
j∈{j}Qj

. (5.30)

Stop condition After estimating unimolecular and bimolecular rates and satisfying detailed bal-

ance within Jx, the coarse-grained mass action kinetics are simulated until τmax. For each species,

Jh, this produces an estimate of its concentration at the final time, xh(τmax). The final concentration

of nucleotides in species in Ju at time τmax is

yJu ≡
∑
h∈Ju

|φh|xh(τmax), (5.31)

where |φh| is the number of nucleotides in reacting species Jh. This concentration of nucleotides in

unexplored states is a quantification of the deficiency of the current coarse-graining. We choose to

use this deficiency to define the stop condition for the coarse-graining procedure:

yJu

yJ
≤ fstop, (5.32)

where yJ is the total concentration of nucleotides in the test tube,

yJ ≡
∑
h∈J

|φh|xh(0), (5.33)

and fstop ∈ [0, 1) is a user specified stop fraction. If (5.32) is satisfied after estimating final reacting

species concentrations, exploration terminates and the current set of reacting species, their repre-

sentative trajectories, partition functions, and reaction rates are returned. Otherwise, at least one

unexplored reacting species forms at non-zero concentration at time τmax. The unexplored reacting

species with the most mass in the tube at τmax,

Jĥ ≡ argmax
Jh∈Ju

[xh(τmax)|φh|] , (5.34)
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LargeboxCG(J0, ω0
J0 , φJ0 , x0

J0 )

Ju, ωJ , xJ (0)← FindInitialStates(ω(0), φ, x0)
xJ (τmax)← xJ (0)
while

∑
j∈Ju xj(τmax)|φj | > fstop

∑
j∈J0 x0

j |φj |
Jĥ ← argmaxJh∈Ju (xh(τmax)|φj |)
Jx ← Jx ∪ {Jĥ}
Ju ← Ju \ {Jĥ}
J, ωJ ,mĥ→{J} ←

ExploreUnimolecular(Jĥ, ωJ , J)
J, ωJ ,mĥ+J→{J},m

contact
{J} ←

ExploreBimolecular(ĥ, ωJ , J
u, Jx)

Qĥ ← EstimatePfunc(ωJ
ĥ

)

k{J}→{J} ←
EstimateRates(m{J}→{J}, m̄

contact
{J} , QJ )

xJ (τmax)← SimulateCG(xJ , xJ (0), τmax)
return J,QJ , k{J}→{J}

ExploreUnimolecular(Jĥ, ωJ , J)

t← 0
γproduct = {}
while t < τmax

{j}, t′, J, ωJ ← LongTrajectory(ωMFE
J
ĥ

, φ,

J, ωJ , t− τmax)
t← t+ t′

if {j} /∈ γproduct

γproduct ← γproduct ∪ {j}
mĥ→{j} ← 1

else
mĥ→{j} ← mĥ→{j} + 1

return Ju, ωJ ,mĥ→{J}

ExploreBimolecular(ĥ, ωJ , J
x, Ju)

for h ∈ Jx

γproduct = {}
for i ∈ {1, . . . ,Mbimol

ωsample
J
ĥ

← ShortTrajectory(ωMFE
J
ĥ

)

ωsample
Jh

← ShortTrajectory(ωMFE
Jh

)

mcontact
ĥ+h,i

← PossiblePairs(ωsample
J
ĥ

, ωsample
Jh

)

ωijoin, φ
i
join ← RandomJoin(ωsample

J
ĥ

, ωsample
Jh

)

J, {j} ←MatchTrajectory(ωijoin, φ
i
join, ωJ , J)

if {j} /∈ γproduct

mĥ+h→{j} ← 1

else
mĥ+h→{j} ← mĥ+h→{j} + 1

m̄contact
ĥ,h

←
∑
i∈1,...,Mbimol

mcontact
ĥ,h,i

/Mbimol

return mĥ+J→{J}, m̄
contact
ĥ+J

EstimateRates(m{J}→{J}, m̄
contact
{J} , QJ )

for m{h}→{j} ∈ m{J}→{J}
if m{h}→{j} > m{j}→{ĵ}

if |{h}| = 1
k{h}→{j} ← m{h}→{j}/τmax

else if |{h}| = 2
k{h}→{j} ← m{h}→{j}m

contact
{j} kbimol/Mbimol

if {j} ⊂ Jx

else
k{j}→{ĵ} ← 0

return k{J}→{J}

Algorithm 5.2: Large box coarse-graining. Given an initial set of reacting species J0 and initial
concentrations x0, the function LargeboxCG(J0, ω0

J0 , φJ0 , x0
J0) returns the reacting species and

reaction rates for a test tube of interacting nucleic acid strands.

is chosen for a new round of reacting species exploration. This is repeated until the stop condition

(5.32) is satisfied.

5.2.2.4 Small box versus large box

The structure of the small and large box algorithms is very similar. To expose the parallelism,

Table 5.1 compares the key notation and terminology in the small and large box coarse-graining

algorithms. In the next subsection, we describe how transition rates in the small box can be compared

to unimolecular and bimolecular rates in the large box.

Converting small box rates to large box rates. We can do a basic check of the estimated

reaction rates for the large box calculations using the transition rates from small box coarse-graining.

For this, we note the equivalence of the two sets of rates [29, 30]. For unimolecular reactions, reaction
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Description Small box Large box

Species name macrostate reacting species
Species symbol Ω J
Unexplored symbol Ωu Ju

Explored symbol Ωx Jx

Coarse-grained quantities probability concentration
Quantity symbol ph(t) xh(t)
Rates transition rate reaction rate
Rate symbol rh→j k{h}→{j}
Stop condition pΩu ≤ pstop xJu/xJ ≤ fstop

Table 5.1: Comparison of small and large box quantities.

rates of the large box and transition rates of the small box should be equal:

ri1→i2 ≈ kh1→h2
. (5.35)

For bimolecular reactions, the large box reaction rate needs to be normalized by Avogadro’s constant,

NA, and the volume of the small box Vsmallbox; reaction rates are given in molar concentrations or

mole fractions per unit time, but small box transition rates are given in events per unit time. For

a transition in the small box, Ωj1 → Ωj2 , representing a bimolecular reaction in the large box,

Jh1 + Jh2 → Jh3 , we find that

ri1→i2 =
kh1+h2→h3

VsmallboxNA
, (5.36)

where Vsmallbox is the volume of the small box [30]. Following Schaeffer’s definitions [64], we have

defined the volume of the small box to be the volume in which a single copy of each strand is present

for a user-specified concentration xsmallbox:

Vsmallbox ≡
1

NAxsmallbox
. (5.37)

Thus, after coarse-graining using both approaches, we expect to be able to relate the transition rate

of the small box to the reaction rate of the large box using

kh1+h2→h3
≈ rj1→j2
xsmallbox

. (5.38)

5.2.3 Methods

The large box coarse-graining algorithm was first tested on a dimerization reaction and the results

were compared to the equivalent small box coarse-graining results calculated at several concentra-

tions to check the equivalence of the coarse-graining approaches. These examples were run using

RNA at 25 ◦C with no dangles.
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xsmallbox (M) ri1→i2 (1/s) ri1→i2/xsmallbox (1/M/s)

1× 10−3 4.10× 10−4 0.410
1× 10−4 3.99× 10−5 0.399
1× 10−5 3.92× 10−6 0.392
1× 10−6 3.90× 10−7 0.390

large box k{j1,j2}→j3 : 0.415

Table 5.2: Small and large box dimerization rates. Small box simulations started from a single copy
of each strand 5′–GGGACGAGGC–3′ and 5′–GCCUCGUCCC–3′. The large box simulation was started
with 1 µM of each strand in solution. Parameters: τrelax = 100 µs, τmax = 50 s, fmatch = 0.1,
fequil = 0.02. For the large box, Mbimol = 2000.

The algorithm was then tested on a variety of sequences designed using the multi-state sequence

design algorithm: a DNA AND gate, a cooperative gate, and an HCR system. Since HCR is intended

to form an infinite polymer, a maximum simulation time of τmax = 10 s was used during enumeration.

These tests were run using DNA at 25 ◦C with no dangles.

5.2.3.1 Implementation

The algorithm was coded in C, calling the multistrand C++ library to implement the secondary

structure kinetic model. All graphs were generated using matplotlib [35].

5.2.4 Results

5.2.4.1 Simulating dimerization

The dimerization of two strands was simulated using both small and large box coarse-graining. The

resulting dimerization rate constants are shown in Table 5.2. We would hope that the reaction

rates of the small box would converge to the reaction rate derived using the large-box simulation.

Discouragingly, while the rates only differ by 5%, the rates for the small box appear to be converging

to a slower rate than the rate calculated using large-box coarse-graining.

5.2.4.2 Simulating logic gates

The logic gate designs were simulated, starting with the gate complex and the two input strands.

Off-target formation was rare. The resulting reacting species and mass action kinetics are shown in

Figure 5.8. The desired mechanism is followed precisely, and each discovered reacting species has

the desired base pairing properties.

5.2.4.3 Simulating cooperative gates

The cooperative gate designs were also simulated. In this case, the algorithm needed to capture

the intermediate state when either of the input strands bound to the gate. We see that these
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Figure 5.8: Large box coarse-grained results for AND gate [65]. a) Reacting species discovered. b)
Reaction simulation with a linear time axis. c) Reaction simulation with a logarithmic time axis.
Only enumerated reacting species that form at higher than 1 pM within 105 seconds are shown.
Parameters: τrelax = 3 ms, τmax = 100 s, fmatch = 0.1, fequil = 0.02, Mbimol = 2000.

transients were captured and the intended final product was produced with minimal production

of side products. A dimer between the output P and input T1 was predicted to form, but the

concentration remained below 1 pM at all times, so it is not shown.

5.2.4.4 Simulating HCR

HCR designs were also simulated using the large box coarse-graining algorithm. Identified reacting

species and mass action simulations are shown in Figure 5.10. Unlike small box coarse-graining,

the large box simulation could create increasingly long polymers. We ran the mass-action kinetics

for only 10 seconds during reacting species exploration to avoid enumerating polymers that were

excessively long. Some side products were discovered, but their final concentrations remained below

10 fM for the entire simulation, so they are not shown.
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Figure 5.9: Large box coarse-grained results for cooperative gate [84]. a) Reacting species discovered.
b) Reaction simulation with a linear time axis. c) Reaction simulation with a logarithmic time axis.
Only enumerated reacting species that form at higher than 1 pM within 105 seconds are shown.
Parameters: τrelax = 3 ms, τmax = 100 s, fmatch = 0.1, fequil = 0.02, Mbimol = 2000.

5.3 Limitations

The current approach for coarse-graining has several important limitations that should be addressed

in future work. The underlying kinetic model needs to be updated, the relaxation timescale, τrelax,

should be automatically chosen or at least validated, and the stopping criteria for both coarse-

grainings should be more explicitly characterized, particularly for large box coarse-graining.

The most fundamental of these is the kinetic model. The coarse-grained algorithm cannot be

expected to match experimental results if the underlying secondary structure kinetics predict reaction

rates that are incorrect by several orders of magnitude. After a model is developed that agrees with

experiments, the coarse-graining algorithm can be updated.

The second limitation is the selection of the relaxation timescale, τrelax, by the user. Ideally, the

algorithm would discover τrelax based on an initial guess by the user. Currently, if τrelax is chosen such

that timescale separation is not achieved, new basins are often spuriously identified. This sometimes

results in the enumeration of a large number of nearly-identical macrostates or reacting species. To
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Figure 5.10: Large box results for HCR. a) Reacting species discovered. b) Reaction simulation with
a linear time axis. c) Reaction simulation with a logarithmic time axis. Only enumerated reacting
species that formed at higher than 1 pM during the full simulation timescale are shown. Mass action
results were cut off at 100 s during the coarse-graining algorithm (depicted by the dashed black line
in panel c). Parameters: τrelax = 3 ms, τmax = 10 s, fmatch = 0.1, fequil = 0.02, Mbimol = 2000.

avoid this situation in practice, it will be necessary to recognize invalid relaxation timescales and

either produce a warning or correct the timescale.

In addition to selection of τrelax, the current reliance on a user-specified maximum timescale and

stop condition is unsatisfying. It would be beneficial to include known thermodynamic properties

as part of the stopping criterion.

Another improvement could take transition times into account. The current bimolecular reac-

tion exploration procedure assumes the time spent relaxing from a bimolecular collision is negligible.

Using the approach of section 7.6 of Schaeffer’s thesis, these times could be included in rate calcu-

lations.
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5.4 Conclusions

The coarse-graining approaches discussed in this chapter outline a potential tool for extending

secondary-structure level simulations to automatically discover and enumerate macroscopic kinetic

properties. For both small and large box coarse-graining, we define an error metric to measure the

mass (or probability) lost to unexplored species that have no outgoing reactions (or transitions). It-

eratively exploring species, the algorithms systematically discover kinetically important macrostates

and transition rates for the small box, and important reacting species and reaction rates for the

large box. We compared each algorithm to finer-grained simulations and tested their effectiveness

at identifying states in engineered sequences. These algorithms demonstrate viable approaches to

exploring the kinetic properties of engineered sequences. With further development, they can be-

come practical tools for nucleic acid engineers to verify kinetic sequence properties prior to strand

synthesis.

5.5 Appendix and archive content

Appendix D contains an brief explanation of the deficiency of the large-box stop criterion and a

description of the input files contained in the supplementary archive.
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Chapter 6

Conclusion

The algorithms developed in this thesis are powerful new tools for designing and analyzing nucleic

acid reaction pathways. It is now possible to optimize the thermodynamics of multiple dilute so-

lutions subject to a variety of combinatorial sequence constraints, thus enabling thermodynamic

optimization of nucleic acid systems of practical interest.

First, we formulated sequence design of a test tube of interacting nucleic acids as an optimization

problem, minimizing the average concentration of nucleotides in the incorrect state at equilibrium

over the ensemble of a test tube. Using test tube ensemble focusing and hierarchical ensemble de-

composition, we demonstrate efficient design of test tubes containing sixteen strands and thousands

of off-targets.

Next, we extended this formulation to the simultaneous design of multiple dilute solutions that

share sequence information. This algorithm uses the same ingredients as test tube design to efficiently

optimize pathways of interacting nucleic acid strands via the design of initial, intermediate, and final

states. To address practical needs of nucleic acid engineers, we extended the sequence initialization

and mutation procedures to handle combinatorial sequence constraints during the design process.

Finally, we demonstrated small and large box coarse-graining. These algorithms estimate macro-

scopic kinetic properties for solutions of interacting nucleic acid strands. They can be used to

validate kinetic properties of sequences designed using the thermodynamic design algorithms prior

to strand synthesis.
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Appendix A

Useful algorithms

This appendix contains a few algorithms that were either used as subroutines for the main part of

the thesis, or were used as inspiration for this work.

A.1 Necklace generation

Generating the set of possible complexes is easy to do in a naive fashion, where each possible

permutation of a given length is generated, and rotationally equivalent complexes are eliminated by

some post-processing step. Instead, one can use the FKM algorithm [60] to efficiently enumerate this

set. The computational cost of either method is low, but this algorithm is systematic and elegant.

The FKM algorithm is detailed in Algorithm A.1.

A.2 Engineered test set generation

In Chapters 3 and 4, the engineered test set was generated by creating randomized trees. Starting

from an empty exterior loop, in each iteration, a loop was selected and a stem terminating in a

hairpin was appended to the loop. The chosen loop was then extended by an unstructured region.

This process was repeated until the structure reached the desired size. This structure was then cut

by inserting a nick halfway through. At this point, the algorithm checked feasibility of design by

ensuring that the two strands were joined by at least Mcut base-pairs and all hairpins were at least

3-nt long (hairpins smaller 3-nt allowed during structure generation so that small interior loops and

multiloops are allowed). The engineered structure generation procedure is detailed in Algorithm A.2.

A.3 Branch and propagate

We used a branch-and-propagate algorithm to find feasible sequences during multistate sequence

design in Chapter 4. At each step in a branch-and-propagate algorithm, an uninstantiated variable
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MakeNecklaces(n, k)

π̂i ← 0 ∀i ∈ 1, . . . , n
π∗ ← {}
h← 0
i← n
while i 6= 0

π̂i ← π̂i + 1
for j ∈ 1, . . . , n− i

π̂i+j ← π̂j

if n mod i = 0
h← h+ 1
πh ← π̂

i← n
while i > 0 and π̂i 6= k − 1

i← i− 1
return {π1, . . . , πh}

Algorithm A.1: Algorithm to enumerate all necklaces, i.e., all complexes. Given the number of
strand types k and a length n, this algorithm returns the set of all sequences of length n, treating
all circular permutations as equivalent. By calling this for every length from 1 to Lmax, it is possible
to enumerate all possible complexes in a test tube.

v̂i was chosen based on a heuristic. One value from its domain Di,j was chosen, again based on a

heuristic. The variable was instantiated to that value and all other values removed from its domain 1.

Constraints were propagated by removing values from the domains of the remaining uninstantiated

variables. Values were removed if no consistent partial instantiation could be made that includes

both the current instantiation set and instantiating the variable to that value. Full consistency

of each value was infeasible to check, so local consistency that checks consistency with respect to

a small subset of constraints simultaneously was typically used. The basic branch and propagate

algorithm is shown in Algorithm A.3.

Typically, the procedure to perform mutations in multistate design preferentially selects instan-

tiations that have a minimal number of nucleotides changed from the original sequence. One could

also use branch-and-bound to find the mutation that changes the fewest nucleotides, but this ac-

tually provides no benefit in design quality and takes substantially longer per mutation (data not

shown). If the constraint propagation algorithm is replaced this may become feasible.

A.4 Iterated local search

One of the primary advantages of the design formulations that were shown in Chapter 3 and Chap-

ter 4 was use of an explicit defect estimate at each level of the decomposition forest. Throughout

1Other algorithms split the domain into several segments. This is valuable for linear constraints or real-valued
constraints (e.g. in mixed integer programming). It is less helpful for the pure combinatorial constraints we use in
this algorithm.
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each design algorithm, we construct and gradually improve the quality of these defect estimates.

One potential advantage of this is that the current strategy for leaf optimization can be replaced

with any search metaheuristic. We use a form of iterated local search in both algorithms, but this

could just as easily be replaced with tabu search, simulated annealing, genetic algorithms, or other

metaheuristics [26]. To see the similarity between iterated local search and the OptimizeLeaves

procedure, it may be helpful to write down the general form of iterated local search, as shown

in Algorithm A.4. Compare this to the OptimizeLeaves procedure in Algorithm 3.1 to see the

similarity.
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EngineeredStructure(N)

Mcut ← 8
s← EngineeredTrial(N)
while MinCut(s) < Mcut or MinHairpin(s) < 3

s← EngineeredTrial(N)
return s

EngineeredTrial(N)

Hmin ← 4
Hmax ← 16
Umin ← 0
Umax ← 8
l← []
l.append(Unpaired(UniformSample(Umin, Umax)))
ŝ← [l0]
while |ŝ| < N

l← SampleLoop(ŝ)
m← N − |ŝ|
if m < 2Hmin + Umin

l← l | Unpaired(m)
else

H ← UniformSample(Hmin,min(Hmax,m/2))
U1 ← UniformSample(Umin,min(Umax,m− 2H))
U2 ← UniformSample(Umin,min(Umax,m− 2H − U1))
u← [Unpaired(U1))]
l← l | Duplex(H,u)
l← l | Unpaired(U2)

s← CutStruc(ŝ)
return s

Algorithm A.2: The algorithm used to generate the structures in the engineered test set. The proce-
dure EngineeredStructure(N) is called with N ∈ {50, 100, 200, 400} and returns a structure of
the corresponding length. This calls EngineeredTrial(N), which generates a candidate structure
by iteratively sampling a loop, and appending a stem, hairpin, and unstructured region to the chosen
loop. After reaching the target length, a nick is added and the candidate structure is returned. The
candidate structure is checked to ensure that each hairpin is at least 3 nt long and that at least Mcut

base pairs connect the strands. When these conditions are satisfied, the resulting target structure
is returned.
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BranchAndPropagate(v,D, C)
i← 1
D̄, V ← {}, {}
D̄1 ← D
while 1 ≤ i ≤ |v|

D ← D̄i
vk ← ChooseVariable(v,D)
if vk 6= ∅

Vi,Dk ← Instantiate(Dk)

success, D̂ ← Propagate(v, V,D, C)
if success

i← i+ 1

D̄i ← D̂
else

D̄i ← D
else

D̄i, Vi ← ∅, ∅
i← i− 1

return V

Propagate(v, V,D, C)
success← true
changed← true
while changed and success

changed← false
for Ci ∈ C

for vj ∈ vCi
for Dj,k ∈ Dj

if V ∪ {vj 7→ Dj,k} ⇒��Ci
changed← true

Dj ← Dj \ D̃j
return V

Algorithm A.3: A depth-first branch and propagate algorithm that can be used to solve CSPs.
The stack D̄ tracks the remaining domains after each instantiation. Specialized data structures
and caching can reduce the cost beyond naive implementations. Research typically focuses on
finding heuristics for choosing variables and instantiations, strengthening consistency to generate
more implications, or breaking symmetries to reduce the search space.

HillClimbing(v,D, V 0)

V ← V 0

mmutate ← 0
C ← CalculateCost(V )
while mmutate < Mmutate

µ, V̂ ← GenerateMutation(V,D)

Ĉ ← CalculateCost(V̂ )

if Ĉ < C

V ← V̂
else

mmutate ← mmutate + 1
return V, C

IteratedLocalSearch(v,D)

V ← Initialize(v,D)
V,C ← HillClimbing(v,D, V )
mreopt ← 0
while mreopt < M reopt

µ, V̂ ← LargeMutation(V )

V̂ , Ĉ ← HillClimbing(v,D, V̂ )

if Ĉ < C

V ← V̂
mreopt ← 0

else
mreopt ← mreopt + 1

return V, C

Algorithm A.4: Iterated local search algorithm. Here we write the general form of an iterated local
search algorithm. Compare to the OptimizeLeaves procedures in Algorithms 3.1 and 4.1.
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Appendix B

Test tube design: supplementary
information

B.1 Structural features of the engineered and random test

sets

For the engineered test set, each dimer on-target structure was randomly generated, with stem

and loop sizes randomly selected from a distribution of sizes representative of the nucleic acid

engineering literature. For the random test set, each dimer on-target structure was generated by

calculating the minimum free energy structure of a different random pair of RNA sequence at 37 ◦C.

Target structures were selected so that the minimum cut (the number of intermolecular base pairs

that must be broken to dissociate the dimer strands) was at least 9 bp for the engineered test set

and at least 7 bp for the random test set. The structural properties of the on-target structures in

the engineered and random test sets are summarized in Figure 3.5. Typically, the random test set

contains on-target structures with a lower fraction of paired nucleotides (panel a), more stems (panel

b), and shorter stems (panel c), and a higher minimum cut (panel d). The loop composition of each

test set is summarized in Figure B.1. The target structures for the engineered test set, the random

test set, and the big tube test set used for Figure 3.12 are provided as text files in the test tube

directory of the supplementary archive.

B.2 Selection and use of multiple exclusive split-points

During probability-guided decomposition, the set of exclusive split points {F} is chosen to minimize

the cost,

cost({F}) =
∑

Fi∈{F}

(
|φkli |

3 + |φkri |
3
)
,
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Figure B.1: Loop composition of the (dimer) on-target structures in the engineered (solid lines) and
random (dashed lines) test sets. a) Number of hairpin loops per structure. b) Number of unpaired
nucleotides in each hairpin loop. c) Number of bulge interior loops per structure. d) Number
of unpaired nucleotides in each bulge loop. e) Number of non-bulge interior loops per structure.
f) Number of unpaired nucleotides in each non-bulge interior loop. g) Number of multiloops per
structure. h) Number of unpaired nucleotides in each multiloop. i) Number of branches in each
multiloop. j) Number of exterior loops per structure (always 2 since these are all dimers). k)
Number of unpaired nucleotides in each exterior loop. l) Number of branches in each exterior loop.
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subject to constraints on the collective probability,

P ({F}) =
∑
{F}

min
a·b∈F±

P a,bk ,

and exclusivity among split points (3.29). We use a depth-first branch and bound search procedure.

At each branching step, a split point is added the current branch, {F}, greedily maximizing the

collective probability while ensuring exclusivity among split points and sufficient leaf size among all

potential children. The bound for each branch in the search tree is the cost of its split set. Upon

backtracking, branches are explored only if their current bound is less than the minimum solution

cost found so far, otherwise they are trimmed. If the probability constraints (3.29) are satisfied for

an untrimmed branch, that set of split points is the current minimal cost solution and is therefore

saved.

During structure- and probability-guided decomposition using multiple exclusive split-points, the

first branch F is chosen from B(Sk) (see (3.27)). Again, this branch is chosen to greedily maximize

its probability. For structure-guided decomposition, the pair probability matrix P is set to be the

structure matrix S of the target structure and the procedure is called as in structure- and probability-

guided decomposition. The computational cost of this procedure is typically trivial compared to the

cost of evaluating partition functions and pair probabilities.

Ensemble decomposition using multiple exclusive split-points allows ensemble properties to be

estimated at low cost in some situations where single split-points do not. Figure B.2 shows the

extent to which multiple exclusive split-points are used. From these graphs we see that only a

small fraction of parents use multiple exclusive split-points (panel a), but almost 30% of complexes

(panel b) and 80% of designs (panel c) include at least one parent with four children (and thus two

split-points) for on-target lengths of 200 nt.

B.3 Algorithm performance for complex design

Here, we examine algorithm performance for the special case in which test tube design reduces to

complex design: a target test tube containing one on-target complex and no off-target complexes.

Figures B.3 and B.4 demonstrate that the performance of the current algorithm and the previously

published single-complex design algorithm [83] is similar for the (dimer) on-target structures in the

engineered and random test sets, respectively. Typical designs surpass the desired design quality

(normalized ensemble defect ≤ 0.01; panel a), with the current algorithm overshooting the stop

condition by a smaller margin. Typical design costs range from a fraction of a second for 50-nt

on-target dimers in the engineered test set (B.3b) to 70 seconds for 400-ht on-target dimers in the

random test set (B.4b). Starting from random initial sequences, the desired design quality can be
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Figure B.2: Extent of multiple split point usage. a) Cumulative of the number of children per parent,
b) cumulative histogram of the maximum number of children for any parent node in each complex,
c) histogram of the maximum number of children for any parent node in each design. All data is for
final decompositions for the engineered test set. RNA design at 37 ◦C.

achieved with a broad range of GC contents, with typical GC content less than 60% starting for

both test sets. As the depth of the decomposition tree increases with increasing on-target size, the

relative design cost, costdes/costeval, decreases asymptotically towards the 4/3 optimality bound for

typical design trials (panel B.3d).

B.3.1 Sequence initialization

Figure B.5 compares algorithm performance using different GC contents for random seeding and

reseeding. Sequences were initialized with either random sequences (default), random sequences

using only A and U, or random sequences using only G and C. The desired design quality is achieved

independent of the initial conditions (panel a), with the typical design cost increasingly marginally

if the initial sequence contains only G and C (panel b). Designs initiated with random AU or with

random GC sequences illustrate that the desired design quality can be typically achieved over a

broad range of GC contents (0.4 to 0.75). The typical cost of test tube design relative to a single

evaluation of the test tube ensemble defect is within a factor of 4 (panel d).
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Figure B.3: Algorithm performance for complex design using the on-target structures from the engi-
neered test set. Comparison of the current test tube design algorithm (solid lines) to the previously
published single-complex design algorithm [83] (dashed lines). a) Design quality. The stop condition
is depicted as a dashed line. b) Design cost. c) Sequence composition. The initial GC content is
depicted as a dashed line. d) Cost of sequence design relative to a single evaluation of the objective
function. The optimality bound is depicted as a dashed line. RNA design at 37 ◦C. Each tube
contains a single on-target dimer and no off-targets. There are 100 target tubes for each on-target
size.
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Figure B.4: Algorithm performance for complex design using the on-target structures from the
random test set. Comparison of the current test tube design algorithm (solid lines) to the previously
published single-complex design algorithm [83] (dashed lines). a) Design quality. The stop condition
is depicted as a dashed line. b) Design cost. c) Sequence composition. The initial GC content is
depicted as a dashed line. d) Cost of sequence design relative to a single evaluation of the objective
function. The optimality bound is depicted as a dashed line. RNA design at 37 ◦C. Each tube
contains a single on-target dimer and no off-targets. There are 100 target tubes for each on-target
size.
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Figure B.5: Effect of sequence initialization on algorithm performance. a) Design quality. The stop
condition is depicted as a dashed line. b) Design cost. c) Sequence composition. The GC contents
used for seeding/reseeding are depicted as dashed lines. d) Cost of sequence design relative to a
single evaluation of the objective function. RNA design at 37 ◦C for the subset of the engineered
test set with 100-nt on-targets.

B.3.2 RNA vs DNA design

Figure B.6 compares RNA and DNA design. DNA designs are performed in 1 M Na+ at 25 ◦C to

reflect that DNA systems are typically engineered for room temperature studies. In comparison to

RNA design, DNA design leads to similar design quality (panel a), marginally higher design cost

(panels b and d), and comparable GC content (panel c).

B.4 Sensitivity of algorithm performance to design parame-

ters

This section summarizes the results from sensitivity studies performed for each adjustable parameter

in the paper, Hsplit, Nsplit, fsplit, fstringent, fredecomp, frefocus, fstop, fpassive, Mreopt, and Munfavorable.

All studies were carried out with the 200 nt structures from the engineered test set. Two trials were

carried out for each of the structures for a total of 100 trials per condition.

• Figure B.7 demonstrates the effect of changing the stop condition, fstop. The 200-nt engineered

and random test sets were designed with f stop ∈ {0.001, 0.003, 0.01, 0.03, 0.1}. When the stop

condition stringency is relaxed from 0.01, the defect correspondingly increases. When the stop
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Figure B.6: Effect of design material on algorithm performance. a) Design quality. The stop
condition is depicted as a dashed black line. b) Design cost. c) Sequence composition. The initial
GC content is depicted as a dashed black line. d) Cost of sequence design relative to a single
evaluation of the objective function. RNA design at 37 ◦C (solid lines) and DNA design at 25 ◦C
(dashed lines) for the engineered test set.

stringency is increased (fstop ∈ {0.001, 0.003}), the stop condition is typically not satisfied and

design cost typically increases from 70 seconds to over 150 seconds. For a stop condition of

0.001, fewer than 20% of the resulting sequences satisfy their stop condition.

• Figure B.8 demonstrates the effect of changing fstringent, the basal level of emergent defect

allowed. We note little change in design quality or cost upon varying fstringent between 0.95

and 1.0. The value of fstringent only becomes apparent for designs which typically fail to satisfy

their stop conditions. Figure B.9 demonstrates the effect of changing fstringent for the random

test set when fstop = 0.03. At fstringent = 1.0, we see that 5-10% of design trials take the

maximum allowed time. By not allowing any decomposition defect if the stop condition isn’t

satisfied, a small minority of design trials typically take much longer to complete.

• Figure B.10 demonstrates the effect of changing Mreopt, the number of consecutive leaf re-

optimization attempts that must fail before leaf optimization terminates unsuccessfully. No

substantial effect was seen on the resulting design quality or cost for the engineered test

set, suggesting Mreopt is typically not exhausted on this test set. For the random test set,

Mreopt = 1 results in designs failing to satisfy their stop condition more than 10% of the time.

• Figure B.11 demonstrates the effect of changing Munfavorable, the number of consecutive leaf
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mutation attempts that must fail before leaf mutation terminates unsuccessfully. The design

quality and design cost were unchanged for the engineered test set except for trials where

Munfavorable = 10, when almost 20% of trials failed to satisfy their stop condition. The random

test set shows a decreasing cost and an increasing fraction of satisfied trials as Munfavorable is

increased.

• Figure B.12 demonstrates the effect of changing fredecomp, the amount of defect that must be

included on parental rejection. Design cost and quality was insensitive to this parameter for

the 200 nt engineered test set. The design cost may be slightly reduced for fredecomp = 0.1 for

some trials in the random test set.

• Figure B.13 demonstrates the effect of changing frefocus, the amount of defect that must be

included on parental rejection and full test-tube rejection. For the engineered test set, the

median design time decreases from 1000 seconds to 700 seconds as frefocus decreases from 0.5

to 0.0. For the random test set, however, the median design time decreases until frefocus = 0.

At this point, the median design time increases by a factor of two.

• Figure B.14 demonstrates the effect of changing fpassive, the fraction of the allowed defect that

is reserved for off-target complexes. For the engineered test set, little effect on the design cost

or quality is noticeable for any non-zero value of fpassive. A zero value of fpassive increases the

maximum observed design cost, but has little effect on the median cost. A similar effect is

observed for the random test set. A value of fpassive = 0.01 appears to be superior than either

of the other options.

• Figure B.15 demonstrates the effect of changing fsplit, the probability accounted for by the

exclusive split points. For both test sets, increasing fsplit beyond 0.995 caused an increase in

design cost and produced nearly equivalent design quality.

• Figure B.16 demonstrates the effect of changing Hsplit, the size of stable helix required at

a split point and the length of the dummy nucleotide duplex. Varying Hsplit changes the

ability of the algorithm to perform efficient decompositions and changes the quality of the

root estimate. When Hsplit = 1, the resulting root estimate is sufficiently inaccurate that the

design process typically fails to find high quality sequences. Hsplit ≥ 2 designs typically satisfy

their stop condition, overshooting by a smaller amount and taking longer as Hsplit is increased.

Doubling Hsplit from 2 to 4 results in nearly an order of magnitude increase in the median

design cost for the random test set.

• Figure B.17 demonstrates the effect of changing Nsplit, the minimum number of native nu-

cleotides in a leaf. Varying Nsplit between 8 and 40 nucleotides shows a consistent increase in

design cost as Nsplit is increased.
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Figure B.7: Sensitivity to fstop. a) Design quality. The stop condition is depicted as a dashed line.
b) Design cost. Engineered (solid lines) and random (dotted lines) test sets with |s| = 200, RNA
design at 37 ◦C.

10−3 10−2 10−1 100

Normalized ensemble defect

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 tr

ial
s

stop condition

a Design Quality

102 103 104 105 106

costdes (s)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 tr

ial
s

b Design Cost

fstringent
0.900
0.970
0.990
0.997
0.999

Figure B.8: Sensitivity to fstringent. a) Design quality. The stop condition is depicted as a dashed
line. b) Design cost. Engineered (solid lines) and random (dotted lines) test sets with |s| = 200,
RNA design at 37 ◦C.
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Figure B.9: Sensitivity to fstringent at fstop = 0.003. a) Design quality. The stop condition is
depicted as a dashed line. b) Design cost. Random test set with |s| = 200, RNA design at 37 ◦C.
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Figure B.10: Sensitivity to Mreopt. a) Design quality. The stop condition is depicted as a dashed
line. b) Design cost. Engineered (solid lines) and random (dotted lines) test sets with |s| = 200,
RNA design at 37 ◦C.
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Figure B.11: Sensitivity to Munfavorable. a) Design quality. The stop condition is depicted as a
dashed line. b) Design cost. Engineered (solid lines) and random (dotted lines) test sets with
|s| = 200, RNA design at 37 ◦C.
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Figure B.12: Sensitivity to fredecomp. a) Design quality. The stop condition is depicted as a dashed
line. b) Design cost. Engineered (solid lines) and random (dotted lines) test sets with |s| = 200,
RNA design at 37 ◦C.
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Figure B.13: Sensitivity to frefocus. a) Design quality. The stop condition is depicted as a dashed
line. b) Design cost. Engineered (solid lines) and random (dotted lines) test sets with |s| = 200,
RNA design at 37 ◦C.
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Figure B.14: Sensitivity to fpassive. a) Design quality. The stop condition is depicted as a dashed
line. b) Design cost. Engineered (solid lines) and random (dotted lines) test sets with |s| = 200,
RNA design at 37 ◦C.
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Figure B.15: Sensitivity to fsplit. a) Design quality. The stop condition is depicted as a dashed line.
b) Design cost. Engineered (solid lines) and random (dotted lines) test sets with |s| = 200, RNA
design at 37 ◦C.
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Figure B.16: Sensitivity to Hsplit. a) Design quality. The stop condition is depicted as a dashed
line. b) Design cost. Engineered (solid lines) and random (dotted lines) test sets with |s| = 200,
RNA design at 37 ◦C.
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Figure B.17: Sensitivity to Nsplit. a) Design quality. The stop condition is depicted as a dashed
line. b) Design cost. Engineered (solid lines) and random (dotted lines) test sets with |s| = 200,
RNA design at 37 ◦C.
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Appendix C

Nucleic acid reaction pathway
design supplementary information

C.1 Supplementary results

C.1.1 Single complex and test tube designs: random test set

The multiobjective designer was tested on the random test set for single-complex design to ensure the

performance matched the specialized single complex design algorithm. Figure C.1 shows the results

of the single complex design algorithm, the test tube design algorithm, and the multiobjective design

algorithm for the special case of single complex design on the random test set. The algorithms all

perform similarly. Sequence quality (panel a), cost (panel b), GC content (panel c), and relative

design cost (panel d) are nearly indistinguishable among the algorithms.

C.1.1.1 Tradeoffs between objective functions

In some cases, a nucleic acid engineer may wish to design a sequence that is compatible with multiple

target structures. The multistate design algorithm allows specification of multiple target structures

for a single complex, but stop conditions in this case need to be chosen carefully. To test the

multistate algorithm on this design problem, two 50-nt target structures were chosen to have 16

nucleotides paired differently (d(s1, s2) = 16). Clearly, the lowest feasible sum of ensemble defects

for any candidate sequence φ is

n(s1, φ) + n(s2, φ) ≥ 16 nt. (C.1)

To optimize the structures to have a partitioning of the probability and to avoid overoptimizing one

target structure at the expense of the other, we set fstop = 0.1 for both target structures. The stop

condition is infeasible, forcing optimization to continue until mutation and reoptimization attempts

are exhausted.

The resulting sequence design and its design quality are shown in Figure C.2. The sequence
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Figure C.1: Multistate algorithm performance for single complex design. Algorithm performance
for test tube design. a) Design quality. The stop condition is depicted as a black dashed line. b)
Design cost. c) Sequence composition. The initial GC content is depicted as a dashed line. d) Cost
of sequence design relative to a single evaluation of the objective function. RNA design at 37 ◦C
for the random test set for the Zadeh 2011 algorithm (dashed lines), the test tube design algorithm
(dotted lines), and the multistate design algorithm (solid lines).

transitions one nucleotide from a Watson-Crick [G·C] in structure s1 to a Wobble [G·U] in s2 (panel

a). The two target structures are close to isoenergetic for the designed sequence, and both ensemble

defects are near 8 nt (panel b).

This result suggests that using stop conditions appropriately enables design of multistable se-

quences. Hierarchical decomposition using multiple exclusive split points allows estimation of the

ensemble defect of all target structures for a complex using properties calculated inexpensively at

the leaves of its decomposition tree.

C.2 Language definition

The scripting language is designed to be a descriptive domain specific language for defining nucleic

acid reaction pathways. Here we specify the language using augmented Backus-Naur form (BNF).

For simplification, three aspects are not covered in the following BNF, comments, escaped new-

lines, and extra whitespace. Comments are Python-style comments, a comment starts with a #

symbol and continues to the end of the line. If the last non-comment, non-whitespace character on

a line is \, the next line is assumed to be a continuation of the current line. Whitespace is used only

to separate tokens. Whitespace can intercede between any two tokens except within basic types, as
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Figure C.2: Sequence designed with two target structures. a) The target structures with each
nucleotide shaded according to its identity. b) The target structures with each nucleotide shaded
according to its probability of being in the depicted state. The ensemble defect is labeled. φ =
5′–CCCAGUGGUAUCUGGCACACAAAUAAGUGCUAGAUACCAUUGAAGCUGGG–3′, RNA at 37 ◦C.

described below.

The starting symbol is 〈input〉 which contains zero or more statements. Each statement takes a

single line

〈input〉 |= 〈statements〉 | ε

〈statements〉 |= 〈statement〉\n | 〈statements〉〈statement〉\n

〈statement〉 |= 〈structuredef〉 | 〈domaindef〉 | 〈tubedef〉 | 〈globaldef〉 | 〈dotdef〉 |

〈librarydef〉 | 〈dlistdef〉 | 〈sourcedef〉 | 〈namelistdef〉 | 〈matchdef〉 | ε

The production for the basic types that follow must be contiguous (no whitespace).

〈name〉 |= 〈namestart〉 | 〈name〉〈namecont〉

〈namestart〉 |= | A . . . Z | a . . . z

〈namecont〉 |= | A . . . Z | a . . . z | 0 . . . 9

〈integer〉 |= 0 . . . 9 | 〈integer〉0 . . . 9

〈float〉 |= A floating point number (1e-6, 1.0, etc)

〈domainname〉 |= 〈name〉 | 〈name〉*

〈bool〉 |= true | false
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C.2.1 Structure definitions

The following productions define a single target structure using DU-plus notation or dot-parens-plus

notation.

〈structuredef〉 |= structure 〈name〉=〈structure〉

〈structure〉 |= 〈dppstructure〉 | 〈dupstructure〉

〈dppstructure〉 |= 〈dppstructure〉+〈onedppstructure〉 | 〈onedppstructure〉

〈onedppstructure〉 |= 〈onedppstructure〉. | 〈onedppstructure〉(〈dppstructure〉) | ε

〈dupstructure〉 |= 〈dupstructure〉+〈onedupstructure〉 | 〈onedupstructure〉 | ε

〈onedupstructure〉 |= 〈onedupstructure〉〈dupelement〉 | ε

〈dupelement〉 |= 〈dupunpaired〉 | 〈dupduplex〉

〈dupduplex〉 |= D〈integer〉〈dupelement〉 | D〈integer〉(〈dppstructure〉)

〈dupunpaired〉 |= U〈integer〉

The following examples show the two ways of defining structures. The first, S1, is written in dot-

parens-plus notation. The second, S2, is written in DU-plus notation.

structure S1 = ((((((((((......+))))))))))

structure S2 = D10 ( U6 + )

C.2.2 Sequence definitions

The following productions define domains, strands, and windows. Domains and strands are threaded

onto target structures. Windows are used to define collections of domains that can be used in source-

based constraints. Windows could be replaced with domains in future work.

〈domaindef〉 |= domain 〈domainname〉=〈sequence〉

〈sequence〉 |= 〈sequenceelement〉 | 〈sequence〉〈sequenceelement〉

〈sequenceelement〉 |= 〈nucleotide〉 | 〈nucleotide〉〈integer〉

〈nucleotide〉 |= A | C | G | T | U | R | Y | M | K | W | S | B | D | H | V | N

〈domainlist〉 |= 〈domainname〉 | 〈domainlist〉 〈domainname〉

〈domainlistdef〉 |= 〈domainlisttype〉 〈domainname〉=〈domainlist〉

〈domainlisttype〉 |= strand | window
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An example declaration of each type of element:

domain a = NNNNNNNNNN

domain b = N10

domain c = RRSSAUGCCA

domain d = R2 S2 AUGC2 A

strand s1 = a b* c

strand s2 = b* c* d

window w1 = a b*

C.2.3 Tube definitions

The following definition defines a tube to contain a set of target structures. The target concentrations

are set using the conc properties defined later.

〈tubedef〉 |= tube 〈name〉=〈namelist〉

An example tube declaration:

tube T = S1 S2

C.2.4 Advanced sequence constraints

Explicit external sequence constraints, complementary and identical domains, percent matches, and

library definitions can be defined using the following productions.

〈sourcedef〉 |= source 〈name〉=〈sequence〉

〈namelistdef〉 |= 〈relationtype〉 〈domainlist〉=〈domainlist〉

〈relationtype〉 |= complement | identical

〈matchdef〉 |= match 〈name〉=〈sequence〉

〈librarydef〉 |= library〈units〉 〈name〉=〈seqlist〉

〈seqlist〉 |= 〈sequence〉 | 〈seqlist〉,〈sequence〉

Examples of each are shown below.

# A source sequence, note the backslashes at the end of the line

source GFP = \
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auggugagcaagggcgaggagcuguucaccgggguggugcccauccuggu \

cgagcuggacggcgacguaaacggccacaaguucagcguguccggcgagg \

gcgagggcgaugccaccuacggcaagcugacccugaaguucaucugcacc \

accggcaagcugcccgugcccuggcccacccucgugaccacccugaccua \

cggcgugcagugcuucagccgcuaccccgaccacaugaagcagcacgacu \

ucuucaaguccgccaugcccgaaggcuacguccaggagcgcaccaucuuc \

uucaaggacgacggcaacuacaag

# specify a b c are equal to e f g

identical a b c = e f g

# specify the concatenation of a b c must be the reverse

# complement of x y z

complement a b c = x y z

# declare a match pattern

match q = AUGUCAGU

# declare a normal library

library select = CAGUGG, AGCUCG, CAGGGC

# declare an amino acid library. namespacing provided by the units

library[codons] I = ATT, ATC, ATA

library[codons] L = CTT, CTC, CTA, CTG, TTA, TTG

library[codons] V = GTT, GTC, GTA, GTG

library[codons] F = TTT, TTC

library[codons] M = ATG

library[codons] C = TGT, TGC

library[codons] A = GCT, GCC, GCA, GCG

library[codons] G = GGT, GGC, GGA, GGG

library[codons] P = CCT, CCC, CCA, CCG

library[codons] T = ACT, ACC, ACA, ACG

library[codons] S = TCT, TCC, TCA, TCG, AGT, AGC

library[codons] Y = TAT, TAC

library[codons] W = TGG

library[codons] Q = CAA, CAG
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library[codons] N = AAT, AAC

library[codons] H = CAT, CAC

library[codons] E = GAA, GAG

library[codons] D = GAT, GAC

library[codons] K = AAA, AAG

library[codons] R = CGT, CGC, CGA, CGG, AGA, AGG

library[codons] STOP = TAA, TAG, TGA

The following properties are used to complete the definition of many constraints and objectives.

〈units〉 |= [〈name〉] | [%] | ε

〈namelist〉 |= 〈name〉 | 〈namelist〉 〈name〉

〈dnamelist〉 |= 〈domainname〉 | 〈dnamelist〉.〈domainname〉

〈dotdef〉 |= 〈dotnumerical〉 | 〈dotnamelist〉 | 〈dotrangelist〉

〈dotnumerical〉 |= 〈dnamelist〉〈dotnumericalname〉〈units〉=〈float〉

〈dotnamelist〉 |= 〈dnamelist〉〈dotnamelistname〉〈units〉=〈domainlist〉

〈dotrangelist〉 |= 〈dnamelist〉〈dotrangelistname〉〈units〉〈nameorblank〉=〈rangelist〉

〈dotnumericalname〉 |= conc | maxsize | stop | weight

〈dotnamelistname〉 |= seq | libseq | source

〈dotrangelistname〉 |= exclude | accessible | similarity | matchrange

〈rangelist〉 |= 〈range〉 | 〈rangelist〉〈range〉

〈range〉 |= 〈float〉 | [〈float〉,〈float〉]

〈nameorblank〉 |= 〈name〉 | ε

# Setting the sequence for a structure is done with the seq statement

# this sets the sequence to be strand s1 then strand s2

S1.seq = s1 s2

# Setting concentration for tube T containing structures S1 and S2

# Units are specified in brackets (allowed are M, mM, uM, nM, fM, aM)

T.S1.conc[uM] = 1

# Default units are molar

T.S2.conc = 1e-6
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# The source for a window w is set to source sequence GFP with this

# constrains w to be a subsequence of GFP

w.source = GFP

# The sequence for domain a is constrained to be drawn from the concatenation

# of library sequences. Here we define the sequence of a based on the codon

# library.

a.libseq[codons] = I M C G

# domain a must match between 0 and 50% of the nucleotides of

# match pattern q.

q.matchrange[%] a = [0, 50]
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C.2.5 Global parameters and options

Global properties, such as temperature, material, and Nsplit are set using the following productions.

〈globaldef〉 |= 〈globalnumerical〉 | 〈globalboolean〉

| 〈globalname〉 | 〈globalseqlist〉

〈globalnumerical〉 |= 〈globalnumericalname〉=〈float〉

〈globalboolean〉 |= 〈globalbooleanname〉=〈bool〉

〈globalname〉 |= 〈globalnamename〉=〈name〉

〈globalseqlist〉 |= 〈globalseqlistname〉=〈seqlist〉

〈globalnumericalname〉 |= magnesium | sodium | seed | munfavorable | mleafopt

| fsplit | nsplit | hsplit | frelax | fpassive

| gcinit | minppair | ntrials | maxopttime

〈globalnamename〉 |= material

〈globalnamename〉 |= dangles

〈globalseqlistname〉 |= prevent

〈globalbooleanname〉 |= printsteps | printleaves

| allowwobble | disablemutweights

Examples of global property settings:

temperature[C] = 23

temperature[K] = 310.15

magnesium[mM] = 100

sodium[M] = 0.9

seed = 1032

material = rna1999

dangles = all

prevent = AAAA, CCCC, GGGG, UUUU, GGCCUU
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C.3 Example design scripts

Two types of design files are available in the supplementary archive (available through CaltechTHE-

SIS). The first set of files are simple specifications intended to demonstrate features or design char-

acteristics. A brief description of each specification is given in Section C.3.1.

The second set of designs are specifications generated from Python scripts. Two Python scripts

are included in the archive file. The usage of each script and its output is described in Section C.3.2.

C.3.1 Simple examples

The following scripts are available as text files in the archive under multistate/simple. Each

specification demonstrates a different type of design or constraint.

Single target structure. 00 singletarget.np optimizes the complex ensemble defect of a single

target structure.

Multiple target structures for a single sequence. 01 doubletarget.np optimizes the com-

plex ensemble defect of two target structures as described in Section C.1.1.1. Here, wobble pairing

is enabled for implicitly defined constraints between base pairs in target structures.

Single test tube. 02 singletube.np is an example from the random test set used during test tube

design characterization. Note that no domains or strands are specified. If sequence constraints for a

target structure are not specified, all strands in the target structure are assumed to be unconstrained

except for implicit constraints defined by base pairs. The \ character is used to break structure

definitions over multiple lines.

Multiple target structures. 03 multiplestruc.np demonstrates how multiple target struc-

tures can be defined to optimize the structural ensemble of multiple complexes that share sequence

information. Design of multiple complexes was first presented in Joseph Zadeh’s thesis [81].

Multiple test tubes. 04 multipletube.np specifies a design for a similar system using the test

tube formulation presented in this thesis.

External sequence constraints. 05 externalseqs.np specifies the design a reaction pathway

using external sequence constraints. The sequences for two input strands are required to be subse-

quences of the given source sequences.

Library constraints. 06 codonlib.np specifies the design of a reaction pathway using library

constraints. The domain ‘proteinseq’ is constrained to match a list of codons.
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C.3.2 Python-generated scripts

There are many possible ways to write design scripts. The test sets that were generated for this

thesis and for several other design types in the Pierce Lab use Python scripts to automate the

generation of large numbers of orthogonal systems. This method scales well to dozens of components.

Within the multistate/generated directory of the thesis archive, there are two Python scripts,

make multistate.py and make hcr.py. Each script is summarized below.

The script make multistate.py was used to generate the test sets used in Chapter 4. When

executed, it generates a directory for each design variant (with and without prevented patterns, etc.).

Each subdirectory contains a single design type, labeled by the first author of the representative

paper for the design type (dirks, hochrein, seelig, yin, and zhang). The directory below that

contains a directory for each instantiation count, 1,. . . , 5. That directory contains 10 copies of each

input file. In addition to the design specifications, a PBS queue file is saved in the qsub files

directory for each input file.

The script make hcr.py was used to create DNA HCR design scripts. Sequences designed using

a variant of this script and an early version of the multistate design algorithm were used in Choi et

al. [11]. This script allows the user to specify the number of orthogonal systems, the length of the

stem domain, b, and the length of the toeholds, a and c, via command line options. It saves the

output into a file hcr.np in the current directory.

C.4 Extending the design algorithm

The design algorithm is written to be extended with additional constraints and design objectives.

The algorithm implementation is in the src/design/cpathway directory of the NUPACK source

distribution.

For examples on how to specify constraint types, inspect files constraint handler.h and

constraint handler.cc. In particular, note the structure of the propagate constraint functions.

These functions determine infeasible instantiations of variables based on recently assigned variables.

For examples on how to specify design objectives, examine objective handler.cc and

objective handler.h. These specify the standard test tube and complex ensemble defect objec-

tives. To see how a combinatorial objective can be integrated, see the example sequence symmetry

minimization implementation in symmetry calc.h, symmetry calc.cc, and symmetry objective.h.

It may be beneficial to use an external library for constraint satisfaction instead of the current

implementation. Any library would have to be released under a liberal open source license to be

useful for the NUPACK source distribution. Only the constraint handler should need to be modified

to integrate with a constraint satisfaction library.
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Appendix D

Kinetic Coarse Graining:
Supplementary Information

D.1 Large box stop condition

Unlike small box coarse-graining, satisfying an error bound on the total mass in unexplored reacting

species does not guarantee an error bound on the accuracy of the simulations, even if all rates are

known exactly. Consider a system that has one reaction,

A+ C 
 B + C (D.1)

where we start with xA = 1 µM, xB = 0 µM, and xC = 0.0001 µM and |φA| = |φB | = |φC |.

In the current algorithm, molecule A would be chosen first, all unimolecular reactions and self-

reactions would be explored, and none would be discovered. If fstop = 0.001, the coarse-graining

algorithm would then halt, regardless of τmax, since there would be no flux into Ju. In reality,

the concentration of B would gradually increase due to the catalytic effect of C. If the maximum

estimated flux through reactions with unexplored species was used instead of just the flux through

known reactions, it might be feasible to derive a more rigorous upper bound on the error that can

be eliminated by further exploration.

D.2 Archive content

The archive file contains input files and scripts for the small and large box coarse-graining figures.

The files are briefly described below along with references to the figures they were used in.
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D.2.1 Small box input files

The files listed below were used in the small box section of the Chapter 5. All files are available in

the archive in the coarsegraining/small directory.

• threestate.in: Used in Figure 5.3. This sequence has three nearly isoenergetic states and

switches between them. It is useful for testing and exploring distance metrics at low cost.

Figure 5.3 was generated with a slight modification of the normal coarse-graining algorithm

that runs a final trajectory after identifying basins. During that trajectory the distances were

printed to create the data for the plot.

• exhaust.in: Used in Figure 5.4. This input file was used to compare the coarse-graining to

the full master equation solution.

• othmer33.in: This was used in Figure 5.5. It is also the same sequence as used in Figure 3.3

of Jonathan Othmer’s thesis [51].

• hcr.in: This input file was used in Figure 5.6, the coarse-graining of HCR in the small box.

D.2.2 Large box input files

The files listed below were used in the large box section of the Chapter 5. All files are available in

the archive in the coarsegraining/large directory.

• andgate.in: Used in Figure 5.8, the coarse graining of the AND gate [65].

• cooperativegate.in: Used in Figure 5.9, the coarse-graining of the cooperative gate [84].

• hcr.in: Used in Figure 5.10, the coarse-graining of HCR [11, 17].

D.2.3 Exhaustive enumeration

The exhaustively enumerated solution used in Figure 5.4 was simulated in Python. The script

kinutils.py is available in the archive under coarsegraining/exhaustive.


