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Summary

Number systems which satisfy part but not all
of the postulates for a field are called subvarieties
of a field. The purpose of this paper is the deter-
mination of as great as possible a number of such
varieties by suitable definitions of the class of
elements and of the two operations involved.

Two postulate systems are considered. The first
gives rise to 284 varieties, instances of all of which
are given for infinite classes of elements, and of all
except three for finite classes.

Of the 8192 combinations of postulates arising
from the second srstem, not more than 1146 can be
consistent. Instances are given of 1054 of these.

As the postulates of this system are not independent,
no conclusion has been reached regarding the remain-

ing cases.



THE SUBVARIETIES OF A FIELD

l., Introduction

The properties of a number field may be regarded
in s more general sense as definitions of the be-
havior of o set X of arbitrary elements under two
binary operations denoted by @ and ®.

Consider a set of postulates for a field. These
may be weakened either by the assumption of the
falsity of any particular postulate>or postulates,
or by the omission of certain postulates, Any instance
of a class K of elements together with definitions
of @ and © such that the modified postulste system
is satisfied will be termed a subveriety of a field.
When a subvariety can be determined, the modified
postulate s¥stem is evidently consistent., The case of
systems from which certain postulates have been ob-
tained is covered by the consideration of instances
in which the omitted postulates are true, as well as
examples in which they are false,

The problem proposed is that of deétermining the
number of existent subvarieties of a field. To this
end, the most extensive postulate system yet published,
due to Huntington, has been selected. After modification
of the original system by the introduction as postulates
of two theorems which when so regarded offer instances
not otherwise distinet, there is a total of thirteen

postulates to be considered. Of the resulting 2% vaerieties,

(1)
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not more than 1146 can be consistent, and instances of
most of these have been obtained,

Another system, formulated by Dickson, and in-
volving only nine postulates, is exeamined first., The
fundementel distinetion between the two systems lies
in the treatment of zeros and units: in Huntington's
system their existence, unicity, and distinctness are
postulated, while in the other system none of these are
required.

Instances are given of the 284 varieties resulting
from the Dickson system, for both infinite and finite
classes.

The Moore symbol (+ + ... #+) is used to demote the
properties of a variety, where + indicates that a
partieular postulate holds for all elements of a class,

- that it is false for at least one element of the class,
end O that it is without significance. As the closure
property of the sets under the defined operations is
assumed throughout the paper, these postulates are not
considered in writing the symbol of a variety. rFor con-
venience the symbols for G); ®, and the distributive law
are written in separate parentheses.

The instances themselves are for the most part
systems of number ennuples, for which it is most con-
venient to define the operation® by meens of multiplication
tebles such as are used for linear algebras. These tables
for systems in which multiplication is associative

have all been selected from those for known algebras.
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I am greatly indebted to Professor E, T. Bell for
his generous advice throughout the preparation of this
paper, to Dr. R.S. Martin for a particularly useful
definition of addition, and to Lr. Neal H, McCoy for

suggestions derived from a yet unpublished paper.



2. Varieties for Which the Existence of Zero and Unit

is not Postulated

2.1 The postulates The first set of postulates to be

examined was formulated by Dickson""; to this has been
added the postulate of commutativity of addition. We
shall consider a set X ={a, b, ¢, ..} of elements with
the following propertiesi

AQ. For every two equsl or distinet elements
& and b of the set a @b is a uniquely determined element
of the set.

Al, e @b = Db @a for every a and b in the
set.

A2. (a D) ®c =2 @ (b @¢) for every a, b,
¢, in the set.

A3, There exists an element z in X such that

for every & in the set 2 @z =

I

A4, If such elements z occur, then for a part-
icular z, and for every & in the set, there is an element
a’in K.such that 2 ® 2’= z.

MO. For every two equal or distinet elements
a and b of the set aob 1is a uniquely determined element
of the set.

il. 2eb =boa for every a and b in the set,

M2. (aob)oc =go(boc) for every a, b, ¢, in
the set.

¥3. There exists an element u in K such that
for every 2a inX aou =a

M4, If such elements u occur, then for a part-

iculer u, and for every a different from each z, there is

an element a’ in X such that aog’=21

(4)
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D. 20(b @c) = aeh @ noc for every &, b, ¢, in K.

We shall assume that A0, 30 hold throughout the dis-
cussion. It is to be noted that the falsity ofypostulate
3 for either operation implies the suppression of post-
ulate 4, Hence the Moore symbols for postulates 1 - 4 for
either operation are:

(£ ++ 2),(+ + - 0),
As the property of commutativity of addition can be

provided from certain other postulates 1

» the symbols
(= + + +) (+ + + +) (4), (= + + +) (+ ++ =) (+),
(= + + 4) (+ =+ +) (#), (= + 4+ +) (+ -+ =) (+),

cannot oeccur. The total number of possible varieties

s therefore 12 x 12 x 2 - 4 = 284,

2.2 Infinite Varieties. We shall first eonsider classes

K which contain an infinite number of elements. These
elements will be regarded as ennuples of real numbers
(8, Bgs ++0ys 2a)=(2) 2nd a @ Db will be interpreted as

(B,s Bgs <vo0s Bad @ (D) Bgy <nes D) = (A7 @D,
240 by ceees 8O D)
except where the matrix notation is used. The product a
ob may be more compactly considered as

*' a; ‘_oZb eJ-Zal_uel H

where e(g;is defined by a multiplication table, For all
except certain cases to be considered later, a variety
having any desired kioore symbol can be constructed by
combining suitable definitions of addition and multiplie-

etion.
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The operations defining @ are as follows:

1, (+ + + +) (+)
2, (+ + + +) (=)

Bo (= + + +) (=)

(+)

(=)
(+)
(=)
(+)
L=}
(+)
(=)
(+)
(=)

11,
120 (-
13, (- + - 0)

+ - 0)

* See Excer‘h‘ongl Cases

Reals; a @b =2 + b.

Reals; a + b + 1 (for verieties in

which the multiplication in verse is
not required)*

Rationals; 2,/ b,® 2,/ byis defined
by writing, in the denominator, the
digits of b, in front of those in bjy;
and similarly in the numerator, with
the restrictions that if the last m
digits of a; are the first m digits

of aq in reverse order, all these are
to be supressed, and further ‘l:ha‘l; a
zero at the beginning or end of a number
is to be suppressed, except that

0@®0 =0. Thus, 230/71 @ 25/17 =
2325/7117; 135/11 @ 53/17 = 1/1117.
Reals;(a) @ (b) = (a + b) if(a) #A(b);
(2) @ (8) = (0).

Reals; Sgnz_a._smh,_g_+gl ; San 0 = 1,
Reals; O.

Reals; 1.%

Reels = 0; a +‘_1_)_ ¥

Reals; a sgn b + b sgn a; sgn 0 = 1,

Reals; a

+ 2b.
Reals; ab + a.
Reals; b.

Reals; [g_l :



*
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14. (- + + =) (+) Reals; a,
15, (- + + =) (-) Reals; a sgn b.
16, (+ - - 0) (+) Reals; Eg +b] /2.
17. (# - - 0) (~) Reals; Ja +}b] .
18. (+ = + =) (+) Reals; (2 + D) if(a) # (-b);
(2) ® (-2) = (-a) @ (2) = (2a);
to determine (a), choose that one
of (&), (-a) for which the first a
not zero is positive.

19, (+ - + =) (-) Reals;$san a d[laf + fo] +)a + 2[] -
20, (- = + =) (+) Reals; (a) @ (0) = (2), (a) + (R) =
(2p) if (p) # (0).

2l.(- =+ =) (=) Reals; a + 1)_1 .
22, (- = = 0) {(+) Reals; 2 /2.

23, (- - = 0) (=) Reals; a + 1.

See Exceptional Cases
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The multiplication tables for aeb are:

a) (+ + + +)

c)

e)

g)

i)

€y

{4 ="+ +)

Oy ©q ©3
el-e[ e[

83 ey "23,

(+ + + =)

e, ea

el e,

(- + = 0)
eq 0 O
R A 1
610 0
(+ - - 0)
0 0 e,_
0 € 0

eq 0 O

b) (= + + +)

a)

£)

h)

J)

ey

e,_ e, e‘.‘

“y

(+
g
€s
0

3

Gy ~€q-€,

+ - 0)
eg O
B 0D
0 A

-+ %)
0

ey

+ + =)

€q €3 ea,

. 5
eg 0 O

Cq €3
e; O

0 ey



k)

to

{+

(+

(+

(+

(+

(+
(+

(9)

FRE 1) 4 G i D)

e; 0 O 0 0 ey
eg ey O 0 eq®
e300 ey e; 0 O

.The following are the exceptional cases referred

above:

+ + 4) (+ + + +) (=) E=£c'ealig};§._eh=g+lg_;

gaob =2 +Db + 1,
++ +) (- ++4+) (=) K = &ationalsj; a@®b =38 +b;
2obd is defined as in case 3 for

addition, except that 0 is to be
replaced by 1 in thisdidefinition,
++4) (+ -+ 4) (=) K= {realg}; a@Db =2 + D; 20b

=8gn 2 b (a + b), where san ae

0 = sgn a.

+ 4+ 4) (= =+4) (=) K=freals}; a®b =2 +Db; 20d
=a - D.

+-0) (+++4) (=) K= {realg); a@D =1; 26b =
& + b,

+=0) (- + + +) (=) K = {freals); a @D =1; aoh is
defined as is the numerator in
definition 3 for addition,

+ = 0) (+ -~ + 2) (=) _I_C_:&eal@;;_a_._@}l:l;gog..—.
a+b if a #Db; aea =0

+=0) (- -+ 4+) (-) K=reals ;a@®@Db =1; aob =8 (b + 1)

+ 4+ =) (= + 4+ +) (+) K ={fintegers}; a @b = the num-

erically greater of a, b;
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e ob is defined as is the
numerator in 3 for addition.
(+ = '+ 5KW28 #2000 K= reals ; a + b = the
numerically greater of a, b;
aeb =2abif a #£b;
aeca = 1.

We next make use of number systems G = {a + gl
where & is a real number, g an element of a finite non-
abelian group, with the operations

(2, ) @(a,%g,) =(2,+8,) *g,8,

(2,*g)ela,¥g,) =2z2,te,
where e is the identity element of the group. This system
hes the symbol (- +.+ +) (+ + - 0) (+). Using the elegents
of G_ as coordinates of number ennuples with multi-
plication tables g, i, k, we have the respective symbols

(= ++4) (= +=0) ()
= + 4+ +) (+ = =0) (#)
(= # + 4) (= = =0} {+)
if the operation of addition of group elements is
always that in the definition of @ . Using the same
definition of addition, and
(B,%g)elag,) =2a,+88,
with the restriction that if a factor g; occurs more
than once in a term, buthhas a g # g:;between two g,
such g; are to be suppressed after the first occurrence,
we have the symbol
(= + +4) (= + + =) (+);

this definition used with multiplication table ives
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a variety with symbol
(= 4+ + #) Ue o & =j ikl
Varieties with properties satisfying the remain-
ing two symbols are:

(= + 4 4) (- + + +) (+) K ={fintegers); a @b is
defined as in case 3 for
eddition, with the additional
restricetions that if a sequence
of digits occurs twice in a
number, the second seguence
is to be suppressed, and that
if a digit is repeated, its
second occurence is likewise
suppressed: ig, 1231 @ 1423 =
12314; aob is also defined as
in 3, except that here 0 must
be replaced by 1 in the def-
inition.

(= + + 4) (= =+ +) (+) K = (integers}; a @b is defined
as in the preceding example;
aob =g if b #1, a0l =0,

2.3 Finite Varieties Finite systems of elements may be

defined in much the same way as infinite systems. Here
the class K is a set of residues modulo a prime p. The
operations defining @ are as follows:

W RS, LR Y a +b (mod p).

2, (+ + + +) (=) & +Db + 1 (mod p) (to be used only

where the multiplication inverse is

not required. For the other cases,



8.

10.
i % o
12,

13.
14.

15,

16.

175

18.

(+

(+

axl %

(+

(+

0)
0)

+)
+)
0)
0)

(+)

(=)

(+)

(=)
(+)

(=)
(+)
(+)
(+)
(=)

(+)
(=)

(+)

(+)

(=)

(12)
see the end of this section).
(& +Db) (mod p) if (2) & (b) (mod p);
(a) @ (2) = (0).
(1) if (2) #0, (b) #0, (= + b) (0
(a) if (b) = (0), (b) if (a) =(0}
(0) if (a + b) =(0) (mod p).
0.
1.
The coordinates consist of the numbers

0, 1, with the operations

@ 1 0
olo 1 0Jo 0
1j11 1j0 1

+b +ab (mod p).

1o
o

+2b (mod p) (p=>2)

|

-ab (mod p).

It e

(mod p).

]a] (mod p), if X is the system of
least residues. .

a (mod p).

a sgn h- (mod p) (system of least
residues).

2a + 2b (mod p). (p>2).

a2+ b2 (mod p).

(& +b) (mod p) if(a) & (-b) (mod p);
(a) @ 1-a) = (-a) @ (a)-= (22) (mod p)
(p>2) .

The greatest of a, b, ab, (mod p).
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19, (- =+ =) (+) (a) @ (0) = (a);
(2) @ (b) = (2b) (mod p), (p>2)

if (b) # (0).

20. (- -+ -) (-} a + Db (mod p).
2l, (- - =0) (+) 228 +3b (mod p). (p>2)
22, (- - -0) (-) 2%+ p

(mod p).

The multiplication tables used &re the same as
for the infinite case except that for b) and ¢) must
be substituted:

b’) (ae,+beol(ece+de,) = @9_ - (-l)&g:h Q-__} e,
e + (& aY e,

where the coefficients and a b are restricted to the

values 1, 0, -1% This definition of addition may be any

except 7.
c’) e, e 2 es3
€ q e3 2e,+ eg
€3 2e + ey 4 e,+ 4deg+ Beg

taken modulo 52

For varieties which have the addition symbol (- + + +)
we consider first the numbers G = {E ? 5_}, where the
quantities a are elements of a finite field. Treating
these numbers exactly as in §2.2 we have systems with the
symbols

- + + +) (+ + - 0) (+) (= + + ) (= + +8) (%)
(- ++4) (=+=0)(+) (= 4+ 4) (= =+ =) (4)
(= + 4 4) (+==0)(4) (= ++ +) (= = =0) ()
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Let @ be defined as above, and let
(a ®gno(p+gs) =2bPg
where g is a fixed element, other than the identity,
of the group. This system has the symbol
(= + & 4) (+ + = 0)£=);
and when used as coefficients of a system with table
g, the system is
(= + +4) (= +=0) (=)
Next let K =L§L} be a finite non-abelian group.
In the next ten systems, a @b = 5108, = 818,

-J

(= + +4) (+ 4+ 4) (=) sios;=8(,;, where 1 + ]

is taken modulo the order

of the group.

(r tut #) (4o a)y(ndy Biog;= 8.8;
(= + + +) (+ = + +) (=) SieS;=¢ 1if si#¢ e , s/# e,

=8y it i =j.
(- +++) (+ + + =) (-) siesj= whichever of s, 84, in-
volves the greater. number of

transpositions; if both involve
the same number, then whichever
introduces the greater sub-
seript first. (Here K is a

substitution group on n letters.)
-~/

(= ¢ 4 4) (= q# #) () (go8=8 10
Se

(= ++4) (= ++=) (=) Sies,=



(- +

+ +) (+ = =

. +) A+ = +

+ 4) (= = 4

+ ) if=imim

(15)
0) (=)

-}

=) (=)
0) (=)

8{o8,= si*or s;*determined as

in the variety (- + + +) (+ + + =)
(=)

508, = si@jwhere i @®@Jj =1+
ifi1 -, (1)@t =1i@ (-1)

= 21, all taken modulo the order
of the group.

Sieg;= & 8.8,

Siesy = (8i8))*%.

Teking 8@ Sj= Si+j» Where 1 + J is taken modulo

the order of the

(+ + +

To complete

for addition, we

(+ +

(+ +

(+ +

+ +) (+ + +

+ +) (+ - +

+ +) (= - +

group, and Sios;= sis,,we have

+) (- +

+ «) L=},

the cases mot covered by definition 2

may use

g1 =)

+). (=)

+) (=)

e@b =8 +Db (mod p); ach
=a +Db +1 (mod p).
=2 +b (mod p); aed =

+ 1 (mod p) if a #Db ,

20D =2 +D (mod p); 2ed

=a =) +1 (mod p).

No examples have been found of finite varieties

with the properties

(= + + +) (+ + + =) (+)

(@ +ttgt) i+ - £ =) (#)

(+ .+ + =) (+ = + ) (+).



3. Varieties for which the Existence of Zero

and Unit is Postulated

3.1 The postulates The set of postulates which

will now be considered is based on one by Huntingtoni
to which have been added the postulates of commutativity
of addition (A 1), and of an identity element for
multiplication (M5), both of whiech ean be proved from
the original set. While the independence of the post-
nlates is thus destroyed, the loss is more than com-
pensated by the determination of distinet wvarieties
which would by abstractly equivalent under the original
system of postulates.

We shall consider a class XK of elements and the
operations @ and o on those elements with regard to the
following properties:

A0. If 2 and b are any elemenis of K, then

@ b is a uniguely determined element of K.

o

M0. If a and b are any elements of X, then
aob is a uniquely determined element of K.

These two postulates are assumed to hold throughout
the discussion.

A1, If a and b are any elements of X, then
2a®b =D ®g.

A2, If &, b, and ¢ are any elements of K, then
(a@®)) ®c =2@ (b og)

A3. There is at least one element 2z in K such
that z ® 2 = Z.

(16)
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A4. There is not more than one element Z in K
such thet z @2z =z

A5. 1If there is a unique z such thet z @ 2z = z,
then either a ® 2z = a for every 2 in K, or z ®@a = a
for every a in K.

A6. If there is s unique z such that z @z = z
then @éther for every a in K there is an element a’in
K such that a @ 2’= z, or for every & in K there is
an a2 in K such thet a’@® a = z.

M1, If a and b are any elementsoof K, then aod

M3. There is at least one element u in K such
that uou =uand u ® u # u.

M4, There’'is not more than one element u in K
such that uou =u and u ® u # u.

M5. If there is a unique u sueh that ot = u,
u®u #u, then either a ou = 2 for every a2 in K, or
noa =a for every a in K.

M6. If there is a unique u such that ueu = u,
u@®u #u, then either for every a in K there is an
element a' in K such that aesa’=u, or for every a in
K there is an a“such that a”oa = u.

[} o

D. Either ao(b ®@c) =

I®

o]

o
|@
1o

for every &,

(=]

| [=2

o
lo

oa Tfor every a,

b, e, ink, or (b®gcloza =

b, &, in K.
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Postulate M5 may be proved from A0, A2 -- 48,

MO -- M4, M6, and D; A may be proved by the use of
a2ll the other postulates. Hence the following symbols
ere inconsistent:

(- + + 4+ 4) (+ + %+ + 4) ()

(= + 4+ 4 4+ +) (+ =244+ 4) (+)

(= + 4+ + 4+ 4) (+ ++ + = 4) (4)

+ + + + =) (+)

L
I

e
+
+
&
+
S

L
+

(= + + 4+ + 4) (+ =+ + + =) (4)
+) (+).
Upon examinetion of the postulates it will be

(+ + % + + +) (+ 4+ + +

noted that numbers 5 and & for either operation have
significance only when postulates 3 and 4 for the same
operation are both true; also that if 3 is false, 4

is redundent, Hence of the 2' verieties arising from the
thirteen postulates under consideration, there remain -
only those with the symbols (for either operation):

(2 £ + +S22T0E £ + §9990)5"C+ 2" 00 0). These are
in number 2%+ 2%+ 2%, so that on combining both oper-
ations and considering the distridbutive law, as well as

the inconsistent cases listed above, there is a total

of 84 x 24 x 2 - 6 = 1146 varieties to be considered.

3.2 Definitions of K and of the operations. As

in 2, the varieéties chosen =s examples of the Moore

symbols are for the most part systems of ennuples
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of numbers. Here, however, the properties of any part-
icular definition of # vary with the definition of @ ,
so that it is necessary to state brecisely the nature
of K, ® , and o for each of the Moore symbols. To do
this, we first catzlogue 211 classes and operations to
be used, and then combine these into a2 teble according
to the properties exhibited.

The elements of X are the coordinates of the
ennuples. The nature of X i& indicated as follows:

R, real numbers; I, integers;

r rational numbers; C, complex numbers,
A prime (') after one of these letters restricts X to
non-negative values, & double prime (") to properly
positive values, and the subseript 1 to values = 1.
Further, for ennuples (&,, 83, .. , 8a), We use the
classes

R*, reals £ 0 such that Sa.=>0;

R¥, , reals £ 0 such that£a;Z 1;

R**, reals = 0 such that a>0.
These notations will occasionally be used for other
., clagses than that of all real numbers.,

In case the @cordinates of an ennuple are themselves
coordinates of an ennuple, these will be denoted by, for
example, “R - &7 where 4 denotes a multiplication
table for ennuples., In this example the coordinates
of the ennuple under consideration are real ennuples of

the system defined by d. While such a system should be
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written in detail if the binary relations are in-

terpreted strietly, for brevity of expression this

indication of its composition will be used.

The operations defining @ are always to Dbe

regarded as opérating on coordinates of like subsecript,

(Bys Bgs eees 20) ®(Dy, Bay -00y Do) = (2,00, 599 Das

ceey 89 ® D,), except when the metrix notation indicates

that.the operation is to be applied to the entire ennuple.

In defining the operations + denotes ordinary addition,

2 b ordinary multiplication.of a2 and D.

Definitions of g @ b are as follows:

1.8+
2.a+bh +1
3. (a +B)if (a) # (b)

8.(a + 1)/ 3

9.Ja + 1|

10. J2f +lb]

11 % #58

12. g*- bt

13. (a) + (0)= (2a),
(a) + () = (2b), if

(b) # (0)

12.(12) + | 3

15. (a) ® (0) = (0)

@ (a) = (2),

(a) @(b) = (2a + 2b)
if (a) # (b)

(a) @ (-2) = (-2) @ (2)
= (_?,_)*

16. 2]zl + 3|2]

17. (a) ® (b) = (0) if
(a) # (b); (2) @ (2)

= (a)

18. & + b + ab

19.(2 +B)/ 2

20, at+ b%

2l. a
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22. -|a|
23, 2a =D

24.&-2

25. |a] +]p) +1

26. 1 + ab

27. a +1

28. (a) ® (0) = (0) + (a) =(2a);
(2) ® (b)) = (g + D) if (2)#

(B),“%a) + (-a) = (a)=
(-&) ‘+ (8)a,*

29. (a) + (0)
(a) + (b)
In the following, sgn (0. a) = sgﬁ 8.

]

(a),

(2b) 1f (B)# (0).

]

%0. sgn 2 b |2 + b
3l. 2 sgn b + b sgn a
32.4 sen 2 b [lal + |2| +|2 + bJ].

In the next set of definitions,** g and b are
integers, and if B is the number of digits in b, then
108 a +b is equivalent to writing the digits of a in
front of those in b: thus if g =51, b =37, a + Db =
5137. These definitions are designed for application to
rational fractions; if X = I, the law for the denominator
of the sum is to be ignored. If a (or b) = 0, teke A (or B)
= 0, Considering fractions ag/ by we define a,/b, @ 29 /Dg

to be

* For (a), choose that one of (a), (-2) for which the

first a( not zero is positive.

*¥ T am indebted to Dr. R.S., Martin for a definition of

addition which led to theése.
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33, sen 8, 10A’|g,] /1102 1)) + [p,]]
34, 10 g,] / [[10% ] + |na[]
[125%8,) + [2q0] /01302 b1+ [al]

36, [126™ 2]+ |eall [120%0,] + |4f]
37. 8"+, (K =10)
38. R(2 + b) (K=C)

In the following, a =& %(e;, where the multiplication
teble for the e is indicated by the letter following
that for XK.
9.

@

e'.+£ez

40,

|e

£y

41,

I

e --b ey

4:2. ea
i}

&
S Semie,

We shall now consider two systems of €lements and

Io |

43.

binary operations R =§r +, 6_} g = {s +y, Oy end
from these form a new system X =£_I£ =Te +8 € @,
°J , with the properties
K, ©kyg = (2% zgle +(g48,)¢
£ 0 K= Z,0, g8 * 505, €
As the first instances of this sort, let the elements
of both R and glbe real numbers, bothe,and ey ordinary

multiplications, and:

44, 1) ) Ty= T+ Tg, 8y 284 =0

45. ;) + Lga = It Igs B *g Be T 0 1if 5,#8,4, 8,
+g 8,= 5;

46, B, HXZy =By D, 8, tg B~ -3,
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A more extensive set of definitions is obtained
by teking for the elements r real numbers, for s the
elements g of a finite non-abelian group of which i
represents the identity element, while ®;, and @9 are
defined to be ordinary multipliecation and group
multiplication respectively, and @,, @4 are defined

as follows:

|

Gl Byt By =k, * 29 B0 g -
48. r;+ £4=0 81098y =1

In definitions 49 and 50, g, oy £, = £,8y, eXcept that
in a product ﬂiﬁi_--.&p if an element gg occurs more
than once, and elements gg (h # k). Separate the gy,
then every gg affer the first is to be suppressed;
and

435, *; T, =FE, T

l

S5le T, 2, =X, + X, » & *a2 83~ £,8,-

3/ O, -1:1 v ..I.‘.I.:E.i » .ﬁl Oq 5& % ﬁ,.ﬁx
528, Wz, E Bg s £ *e Be &g
.1_‘[ o, .I:‘.z 8 .11,21’ E[ 0152 = 5,59\

53. £, 4, E=Z, *Eg*t Ly B *2 82"

By 0 = T84 2,089 * £/89

For systems X = £k = E‘Q’Ii‘ _s:;_gtf«-‘ 24,0 , OJ , Where
r and g are real numbers, g is an element of a finite
non-abelian group, we use the definitions
54. k @E,= (r, + Tole, + Otg+ g,84%

K o k,=I, T8 *5,B,8r1¢
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(x; +xq) ¢ +0 ey + g/8403
k) 0 kg =T,rse, + 8,8,e9+ (g8 ey

vhere (g,gq)denotes that the restriction of definition

49 is to hold here

The tables for multiplication of ennuples follow.

(For convenience (2), +..., 8) will be regarded as
seiel)
a) e, b) e, eq es ey

€, -y ey -e3

€3 —eq ol o | ez

€y €4 —-€3 -€y

4
) e, e egz d) e, &,

e -e; e e, e

e) e, eq f) e, es ez
eq O 0 e; O

8. B e,

gl e, eq e; ey h) 0 0 ey
eq ez 0 O 0 eg O

gy R0 0 eq 0 O

ey €3 0 0



€y
irie, eq €3

k)

m)

0)

a)

t)

€a

€3

-€3 =€, -Cy5
5

€3

ey

s B

0
e -es5~ O

ey

e3

€1

3

o%

€2
0

o

€2

(25)

ey 6¢
et -ey—
-93
€4
0

e -804 U

6
0. 0° 0 ..b

i s

el

0

€3
ez

€y

€]

€3

J)

Z)

n)

D)

s)

u)

e, 0
0 -ey
63 €2
ez 0

0 €q
€3 0
ey ez
s 7
e, ©ea
eq O

0 0

0 0
ez 93
ez O

0 0
e2 0 O
0 S S ©
39\0 0

€1

€3

e3 e'f

ey 0O



v)

x)

z)

(26)

€ a 0 0
eq O 0
ez 0 0
0 0 33
Q e,, 0
e/ 0 0
e‘ B? e_,

e, e, O
e, « O
PSR R
0 0 ey
aoeb =1
el el
a. o,

The following examples are

table:

X
M. R
M2, R

o o
+

o
s

®

w) e, ey

W

.V) 0 0] e_z

0 es €

€y 0 ey
a'} e, o,

e, €,
c')e, O

0 e

e')gog=loﬂ+ S
where A is the
number of digits

n 8.

listed by number in the

b aed
b 2+b el
b abifa

o
0

 fo
"
(=1



M5

55 &

19

Mo
Ml
ma
M3
M4

M5
16

R-d

R"

f;é", m

k3

(26)
a+|p+2

(2) + (0)
(a) + (b) = (0)
if (b) # (0)
(a) + (0)= (2a)
(a) +(p) = (0)
if (p) # (0)

2,

o

bssnabd

I® o
+ 4+
Iz o

|8
+
|o

0 (integersﬂ

I
I

|
+
|o*

o
&+
o

Table d

2a + 2b if 8,
bh #1

o
'_J
1
I.-l
|
1
I

2b

&8 b '+ 1719
e i
 ath

No. 36 for a
addition,0 to
be replaced by
1 whenever it
occurs in a

product



M7
Mi8
9
120

M2l
M22
M23

24
M25
u26
M27

- O Q B

v

L I~ o I 1

a+b 25? + B} + 1/12

-2} - 1

i lal + (2] <1

a+b 10'2, where B is
the number of digits
ind

2 +Dd g+

a+b a-2

Def. 35 ab if & #b , 2 a =
x

10’9 + D fg_f

a+d la bl

lal + Iz l2 2l

Digits of a Digits of &

followed by
those of b;

followed by those

of b; if a se-

if a sequence

is repeated,
suppress after
first occurrence;
if repeated in —
reverse order,

suppress both;

guence is repeated
in reverse order,
suppress both;
write 1 for a

suppressed number.

write 0 for a number

.whieh is suppressed.



M28

¥29

1130
M31
M32

addition and for multiplication are indicated separately

3.3 Table of the verieties.

Il'

I!

I"
In
Il

(28)
Same as M27, except Same
that 0 is written for
e suppressed sequence,
and between a and b.
Digits of a followed Same
by those of b; suppress

repeated sequences after
first occurrence; suppress

ZEero.
Same =s HM29 Same
10%a + b Same

Same as M29 with mod-

ifieations of 128 Same

by number

G oS i

s
(+
(+
(+

e

+

-+

es follows:

+

-+

&

+

+ 4+ +)

+)
+)

13, (= =+ + + =)
14, (+ = + + = =)

15, (= + + + = =)

16, (= = + + = =)
17. (+ + + = 0 0)
18, (+ = + = 06 O)
19. (= + + = 0 0)
20, (- = + = 0 0)

21, (+ + -

—~
4
1
!

23.

0 Q. @ 9.9 B 9
o

0
22. (= + -0
0
0

24, (= - -

as

as

as

as

as

27

127

M27

M27

The lMoore symbols for
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2ddition symbols ere indieated in the right hand
column, multiplication symbols in the top row.of each
pege of the tables. The letter D indicates that the
distributive law holds, N.that it does not hold.

The first letter of each formula defines X,
the second (number) the rule for @ , the final letter
that for # . Thus 6,14D, with formula R61 represents the
symbol

(= = + + + ) (+ =+ + = =) (+)

for which the instance offered is the system of triples

of real numbers (54, 2.0 25 ) defined by the operations

CE_.: ?.'.1,’ Es) Q(El’ Hl’ 23) o (2.?‘..'| bl lJ..I' 2 E?. z E'L’

284 + by)i (8, 8, 8300 (B, b, by = (0, 2,B.+ £.Da,
2,bs+ 2sbs ).

When the definition of addition is any one of
47 -- 55, that of K refers to the real number components
of the system. In the cases where multiplication is
indiceted by & number, the addition rule listed under

this number is to be used as that for multiplication.



N+ ®

>

LT LR - LN SR I S

10
b - 3
12
13
14
15
16
17
18
19
20
21
22
23
24

REsg
Rl5e

Rlla
R29sa
RZ28Ba

R™Ma
R"52a
R"8a
RY"6a

(30)

1N
mn
ra33a
RZ0a
C38w
RZ1a
R7a
roda
r3ba
R9sa
R32a

R10s

Rl2a
C37w
Rl4a
ra6a
Rl6a
Rl8a
R20a
R22a
R24a
R"2a
R"53e
R"26sa
R"27a

2D

Rlb
M27
R3b
R4b

R6Db

M29
R8D
R15b

Rl1lb
R29b
R28D
M32

R1%b

130

I 26,33
I 27,33
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21
22
23
24

Rle

R3e
Rée

Ré6e

R8e

Rl5e

Rlle

R2%¢c

R28c

R36e

(31)

r33ec
R30c
R5,4
R3le
R7¢
r34ec
r35¢
R9e
R32c
R10e
Rl2e
M3
Rlé4e
r36ec
Rl6e
Rl8e
R20c
R22c
R24c

R*25,3
123

R*26,3
R*27,3

R'3d
R'44
R'lad
14

R'15d4

R'294
R'28d4

R'13d4

R*1ld
R*52d
R*8d
R*64

4N
R2s
I334°
R304°
R5s
R314’
R74°
1344

I3bd’

R94?
R324"
R'454°*
R124*
R'7d4
R144d?
I1364°"
Rlé6d’
R184"
R204"
R224!
R244°'

R*254
R*53d
R*26d
R*274
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11
12
13
14
15
16
17
18
19
20

22
29
24

5D
Rle

* ¥

Rde
R'le

R6e

RBe
Rl5e
R'44e
Rlle
R29%e
R28e

Rl%e
R45n
R*¥-c'43n
R'=a'42n
R¥ 40n
R"ln
R*52e
R"™En
R"6n

(32)

5N

M6
I33e
R30e
C3Bw-e
RZle
R7e
IZ4e
I35e
R9e
R32e
R10e
Rize
C37w-e
Rl4e
IZ26e
Rlée
RlEe
R20e
R4ln
R24e
R"25n
R*53e
R"26n
R"27n

6D
rft

R3f
R4f
R'If
R6f

R8T
R15%

RIXL-

R29f
R2sf

R13f

R¥1f
R*52f
R*gT
R*6L

6N

7
r33f
R30f
C38w-rL
RZ1f
R7f
r34f
r3bt
ROf
R32f
R10f£
R12f
Ca7Tw-£

r36f
Rl6f
R18T
R20f
R22f
R24f
R*25¢%
R*53f
R*261
R¥27f
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(33)

™R

I133e?
I3e!
R5u
'le’
I'6e!
I34e’
135e!
I%e?
132e!
I10e!
I12e"
Il3e"
I28e!
I36e’
I15e"
Ilge!
I20e’
I22e!

I24e?
R25u
I'36e!
R26u
R27u

R45g
R¥-c'43g
R'-a'42g
R§F-n40g
R¥lg
R"49a
R*8g
R*6g

Rlzg
CETw=-g
Rl4g
r36g
Rlég
Rl8g
R20g
R22g

R24g
125,35
R'59a
126,25
127,358



& N

O M = O ;g P

9D
Rlh

R3h
R4h
R'1h
R6h

R8h
R15h

Rllh
R2%h
R28h

R13h

R*1h
R*52h
R*8h
R*6h

(34)

ION
R2t
I52h
R30h
R5h
R31h
R7h

I34h
I35h
R9%h
R32h
R10h
R12h
C37w-h

R1l4h
I36h
Il6h
R1€h
R20h
R22h
R24h
R*25h
R*53h
R*26h
R*27h

10D
Rli
* ok
R31
R41i
R'lz
R61

R13i
R45i1
R*-c'432
R'-a'42z
R¥-n40z
R¥1z
R*52z
R*8z
R*6z

10K
M8
r33i
RZ01
Ca8w-1i
R311
R71

r34i
r351
R9i
R321
R10i
R12i
C37w-1i
R14i
r36i
R16i
Rlei
R201

"Rezi

R241
Mo
R*53z
100
M1
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11D

Rld
R47a
R34

R4d
R'-dle
R6d
R48a,
R'47a
R84
R-dl5e
2
R11ld
R29d
R-e28d
R'55a
R12d
R45d
R¥~-c'43d
R'-a'42d4
R¥-n40d
R*-eld
R*474
R*-e8d
R*¥-e6d

(35)

11N

M25
I33d
R30d
C38w-d
R31d
RrR7d4
1344
1354
R9d
R324
R10C4
Rl2d
C37w-d
R14d
1264
Rlé6d
R18d4
R20d
R224
R24d
R*-e25d4
R*53d
R*-e26d
R*-e27d

12D
R1j

R3J
R4j
R¥ly
R6J

R8)
R*3y
R*37y
R11j
R29}
R¥28y

R¥ly
52y
R*By
R*6y

12N

r33])
R20J
C38w-j
R31}
R7j
r34]
r35)
R9J
R32]

R10J

. R12]

C37w-J
R14j
r36J
R16j
R18j
R20}
R22J
R24]
R*25y
ﬁﬁ53y
R*26y
R*27Ty
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12D

R49k
R3k
R4k
R'lk
R6k
R50k
R'49k
R8k
R15k
R'44x
Rllk
R29k
R28k
R*52k
R13k
R45k
R¥=-¢ 743k
R'-a'42k
Rf-n40k
R*1k
R*49k
R*8k
R*6X

(28)

13N
114
I3%k
R30Xk
C38w-k
R31k
R7k
134k
135k
R9k
R32k
R10k
Rl2k
C37w-k
Rl4k
I36k
Rl6k
R18k
R20k
R22k
R24k
R*25k
R*51k
R*26k
R*27Tk

14D
R1X
R47Y
R3X
R4X
40 4
R6YX
R48Y
RY47Z
R8X
R15X
R'44Y
R11X
R29X
R28Y
R'55X
R13X
R45Y
R*-1 143X
R'-a'42X
R46X
R¥1X
R*47Y
R*8YX
R*6X

14N
M5
133X
R30X
C38w-X
R31X
R72
r34Y
r35X
R9X
R32X
R10X
R12%
C3Tw-X
R14X
I36Y
R16X
R18%X
R20X
R22Y
R24Y
R*25%
R*53X
R*26Y
R*27X
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15D
R-dlg
R-d4%9g
R-43g
R-d4g
R'-dYg
R-d 6g
R-450g
R'-d4%9g
R-dgg
R-d15¢g
R' -d44g
R-dllg
R-d29g
R-d28g
R'-d55¢g
R-dl3g
R-d45g

R*=-@'-d43g
R'-a'-d42g

R¥-n-a40g
R¥-dlg
R*-d49g
R*-d8g
R*-d6g

(37)

15K

M6
I-d33g
R-4%0g
C-d38w-g
R-d3lg
R-d7g
I-d34g
I-d35g
R-d%g
R-d32g
R-d10g
R-dl2g
R-d37w-g
R-dl4g
I-d36g
R-dlég
R-dl8g
R-d20g
R-d22g
R-d24g
R¥-d25¢g
R*-d51g
R*¥-d26g
R*-d27g

16D

R49m
R3m

R4m
R'1lm
Rém
R50m
R"49m
R8m
R15m
R'44nm
Rllm
R29m
R28m
R!'55m
Rl3m
R45m
R*-¢'43m
R'-a'42nm
R¥-n40m
R,1x
R**49m
R, 8x

R, 6x

16N

M7
r33m
R30m
C38w-m
RZ1m
R7m
r34m
r35m
R9m
R32m
R10m
R12m
C37w-m
Rl4m
rdém
Rlém
R1Em
Rp0m
R22m
R24m
R, 25x
R**51m
R,26x
R,27x
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17D

R47n

R3n

R4n

R'ln

Rén

R4&n
R'-a'3%n
RE8n

R15n
R'44n
Rlln

R29n

R28n
R'-b'44(Dp'")
R13n

ms
R'-c'43(c")
C-£139(£")
R-a'4ln
R*¥1n
R*-a'39n
R*8n

R*6n

(38)

17N
RZ2n
radn
R30n
R5n
RZ1n
R7n
r34n
r35n
R9n
R32n
R10n
Rl2n
C37w-n
Rl4n
r36n
Rlén
Rl8n
R20n
R22n

R*25n
R*53n
R*26n
R*27n

18D 18N
Rlo R2e
R470 1330
R3o0 R300
Rdo R5e
R'lo R300
Ré6o R70
R48o I340
R'-a'3%0 I350
R8o R%o
Rl50 R320
R'440 R10o
Rlloe Rl2o
R290 C&7w-o0
R280 Rl4o
R'-b'440 IZ60
Rl%o0 R160
R450 R18o
R'-e'430 R200
C-£'3%¢ R220
R-a'4lo R240
R*¥lo R25¢
R*-a'3%0 R*530
R*8o R26¢
R*60 R27¢
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12
13
14
15
16
17
18
19
20
21
22
23
24

19D

R1Db
R47p
R3p

R4p

R'lp
R6Dp
R48p
R'-2'39p
R8Dp
R15p
R'44p
Rllp
R29p
R28p
R'-b'39Dp
R13p
R45p
R'-c'43p
C-£1'39p
R-a'4lp
R*1p
R*=a'39p
R*8p
R*6p

(39)

19N
R2b
133D
R30p
R5b
R31p
R7p
I34p
I35p
R9p
R32p

R10p
R12p
C37w-p
Rl4p
I36p
R16Dp
R18p
R20D
R22D
R24p
R25p
R*51p
R26Dp
R27p

20D
Rlg
R47q
R3q
R4q
R'laq
R6q
R48q
R'-a'49q
R8q
R15qg

R'44q
Rllag
R29q
R28q
R'-b'39q
R13q
R45q
R'-c'43q
C-£'39q
R-a'4lqg
R*'1q*
R*-a'139q
R*'8q*
R*'6q*

*R#T = Creals 3 0 such that a,'ﬁ 1}

20N
R2f
I33q
R30q
R5L
R31q
R7q
I34q
IZ%6q

R9q
R32q

R12q
C37w-q
Rl4qg

R16q
R18q
R20q
R22q
R24q
R25q
R"51q
R26q
R27q
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21D
Rls
R47s
R3s
Rés
R'ls
Rés
R48s
R'-a'39s
R8s
Rl5s
R'44s

Rlls

R29s
R28s
R'-b'39s
R13s
R17n
R19n
R21n
R22n
R**le
R**39n
R**8e

R**6e

(40)

21N
M9
I73s
R30s
Rba
R31ls
R7s
I34s
I35s
R9s
R32s
R10s
RlZ2s
Ca7w=-8
Rl4s
I3%6s
Rlés
Rlén
R20n
R4le
R24n
R**25e
R"53n
R**26e
R¥¥27e

22D

Rlu
R47ua

R3u
Rdu
R'lu
Réu
R48u
R'-a'39%u
R8u
R15u
R'44qu
Rllu
R29%u
R28u
R'"=b'3%u
R13u
R17u
R19u
R2lu
R23u
R"lg
R**39g
R"8g
R"6g

B8N
M20
I33u
R30u
C38w-u
R31u
R7u
I%34u
I35u
R9u
R32u
R10u
Rl2u

C37w-u
Rldu

I36u
Rl6u
R18u
R20u
R22u
R24u
R,253
R"5lg
R,Beg
R,Z?g
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23D

Rlt
R47t
R2t
R4t
R'1l%

R6t

R48t
R'-a'39%
R8%

R15%
R'44%
R1lt
R29t

R28%
R'-b'39%
R13t
R17¢
R19%
R21%
R23t
Rylo
R*-a'39%
R)8c
Ry60

(41)

23N

M21
133t
R30t
C38w-&
R31t
R7t
124t
I35t
R9t
R32t
R10%
R12%
C37w-t

R14t
136t
R16%
R18t
R20%
R22%
R24t
R, 250
M24

R 260
Ry 270

Rév
R48v
R'-a'39v
R8v
Rl5v
R'44v
Rllv
R29v

R28v
R'-b'39v
R13v
R17v
R19v
R21v
R23v
RS
R*-a1'39v
Rwgf
R"6L

I35v
R9v
R32v
R10v
Rl2v
C37w-v

Rl4v
IZ6v
Rlév
R18v
R20v
R22v
R24v
R"25¢f
RY51Y
R"26f
R"27f
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