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Abstract 

Consumption of addictive substances poses a challenge to economic m odels of ratio

n al , forward-looking agents. This dissertation presents a theoretical and empirical 

examination of consumption of addictive goods. 

The theoretical model draws on evidence from psychology and nem obiology to 

improve on the st andard assumptions 11secl in intertemporal cons11mption studies. I 

model agents who may misperceive the severity of the future consequences from con

suming addictive substances and allow for an agent 's environment to sh ap e her pref

erences in a systematic way suggested by numerous studies tha t have found craving to 

be induced by the presence of environmental cues associated with past substance use. 

The b ehavior of agents in this behavioral model of addiction can mimic the pattern 

of quitting and relapsing that. is prevalent among addictive substance users. 

Chapter 3 presents an empirical analysis of the Becker and Mmphy (1988) model 

of rational addiction using data on grocery store sales of cigarettes. This essay empir

ically tests the model's predictions concerning consumption responses to future and 

past price changes as well as the prediction that t he response to an anticipated price 

change differs from the response to an unanticipated price change. In addition, I 

consider the consumption effects of three institutional chan ges that occnr dnring the 

time p eriod 1996 through 1999. 
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Chapter 1 Introduction 

Schelling (1978) proposes that consumption of addictive goods is an anomaly in con

sumer theory b ecause "consumers [are] getting negative satisfaction out of something 

they spend a lot of money to consume" (p. 293) . Unless these con sumers prefer 

"negative" satisfaction, this anomaly poses a cha llenge to modern economic theory. 

I t appears, however , t hat this phenomenon can be understood once the standard 

restrictive assumptions of dynamic models of consumption are relaxed . 

This thesis presents an economic model of consumpt ion of addictive goods. Un

like previous economic models of addiction , this model can generate behavior t hat 

resembles the pattern of quitting and relapse that is extremely prevalent among ad

dictive substan ce users . The standard economic model of addiction is the "rationa l 

addiction" model of Becker and Mnrphy (1990) . This t hesis includes an empirical 

analysis of this m odel. 

Habit formation models, such as P ollak (1970) , Ryder and Heal (1973) and Boyer 

(1978), relax the assumption of intertemporal sep aration of utility. They allow u t ility 

of current con sumption to depend on past consumption . The m acroeconomic theory 

research by Ryder and Heal (1973) and Boyer (1978) finds that the assmnption of 

intertemporally dependent preferences can substantially ch ange the optimal growth 

path of an economy. The more relevant stndy is Pollak's study, which finds that 

the relaxation of th e assumption of intertemporal separability also leads to different 
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optimal behavior on the individua l level. For example, long-run demand functions 

differ from short-run demand functions . Pollak, however, implicitly assumes that 

agents arc myopic. 

The rational choice model of addiction was first introduced by Stigler and Becker 

(1977) in an attempt to demonstrate that m any b ehavioral phenomena, including 

addiction, can be modeled without the assumption of a ch ange in tastes over time. 

The model of rational addiction was flnther developed hy Becker and M 11rphy ( 1988). 

Like P ollak, Becker and Mnrphy focus on individual behavior. However , they assmn e 

that individuals are fully aware of the effect of their current con sumption on future 

consumption. They find that consumption patterns consistent with addiction result 

from forward-looking u tility maximization with stable preferences. 

Orphanides and Zervos address the criticism of the Becker and Murphy model 

that addicts in their model are "h appy addicts" in t hat they choose t heir addiction. 

In the Orphanidcs and Zervos model, agents arc uncertain as to whether or not they 

will experience negative side effects as a result of past consumption. By the time th e 

individual realizes his trne type, he m ay already be addicted. Their model captures 

the same characteristics of addictive goods as Becker and Murphy, but it also offers 

an explanation for such things as experimentation with addictive substances; th e 

sinmltancous existence of casual users, addicts, and non-users; and the role of drug 

education programs . 

The work presented in the subsequent chapters follows directly from this line of 

research , but it is also strongly influenced by research in other disciplines. The mod-
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els most. similar to th0 one tha t I develop are those tha t Rt.r ess the importance of 

environmenta l cues in expla ining the consumption patterns of those who consume 

addic tive goods (Laibson , 1999 and Loewens tein, 1999) . Both papers draw on neu

robiological and psychological evidence tha t environnwntal cues associated with past 

consumption of addic tive substances can induce craving. In Laibson 's model , past 

behavior in a certain environment. only affects curren t. utility if the agent is current ly 

in that environment. His model demonstra t es how it is possible for an agent to be 

addicted in one onvironm0nt, but no t another. In addi t ion to the characteristics of 

addiction tha t Boeker and Mnrphy ex plain, Laibson's model can also explain shor t

term impatience with regard to consmnption of addictive goods . Loewenst ein finds 

tha t ntility derived from consuming tho addic tive good decreases over t ime, while, 

simultaneously, the craving tho agent. experiences inC1·oascs in severity if he abstains 

from consuming the good in t he presence of the environmental cue. 

There arc also m odels of addic tion arising from self-control problems. In some 

models agents have two personalities with distinct preferences (soc Schelling, 1978; 

Thaler and Shefrin, 1981; or Winston, 1980) . In other mod els, agents are simply 

over-attentive to present well-being a t the expense of futmo well-being (O 'Donoglme 

and Rabin, 1999 or Grnber and Koszcgi, 1999). Both typ es of self-control models 

predict that individuals may choose to cons train t heir choice sot in order to control 

or prevent addiction. 

"Adjnst.mont cost" theories of addiction (Jones, 1999 or Snranovic, Goldfarb and 

Leonard , 1999) model utility from cmront consnmption as depending on a reference 
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level of consumption, which is a function of past consumption. The disutility from 

decreasing cmTent consumption below the reference level is greater in magnitnde than 

the utility from increasing consumption beyond the reference level. 

Chapter 2 presents a behavioral model of addiction. The model adds to the lit

erature by expla ining the cycle of quitting and relapse that is extremely common 

in snbstance abnscrs. All the previous economic models of addiction can easily ex

plain consumption of addictive goods. Agents receive immediate positive utility from 

consnmption, bnt the negative effects are delayed. In some models, this delay is exac

erbated by self-control problems or nncertainty or underestimation of these negative 

consequences. In my model, the negative effects from consnmption of the addictive 

good is not only delayed, but also nnderestimated. Not a ll the previons models have 

a well-motivated explanation for why agents wonld choose to qnit. In Becker and 

Mmphy, for example, agents will quit only as the resnlt of an exogenons shock to the 

measure of past consnmption. In the model presented in the next chapter, agents 

may qnit when they realize the trne negative consequences. 

The real pnzzle is why a person would resume consnmption of an addictive sub

stance after deciding to quit. Addiction research in neurobiology suggests that seem

ingly neutral environments are the main cansc of relapse. A person's physiological 

system learns to predict the onset of addictive substances through environmental cues 

after repeated drug use. Even long after quitting, experiencing environmental cues 

that were once associated with drug usc will in a sense remind the individual 's sys

tem of past drug usc. This "reminder" manifests itself as craving for the addictive 
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substance. In my model, I allow for an agent's environment. t.o shape her preferences 

in a systematic way suggested by these findings . Every period, the agent is in one 

of two possible environments. Past consumption in a given environment only enters 

into the utility function if the agent is in that environment. Therefore, even though 

the environments may initially be neutral in that they have no direct effect on utility, 

preference can come to depend on environment. 

The main results are driven by the environmentally dependent preferences, sepa

rability between environments, and multiple steady states. The multiple steady states 

arc possible because of the complementarity between current and past consumption. 

Under this framework , I show how an agent can choose to quit her addiction in one 

environment (e.g., hospital, jail), but not in the other (e.g. , home). Therefore, when 

she is in the first environment, she consumes very little or none of the addictive good, 

but when she is in the other environment, environmental cues trigger craving, and 

she resumes consuming large quantities. 

Chapter 3 presents an empirical analysis of the Becker and Murphy model of ra

tional addiction using data on grocery store sales of cigarettes. Thus far, Becker and 

Murphy's rational model has been the standard model of addiction in economics. 

There have been a few empirical tests of the rational addiction model t hat pertain 

to a variety of addictive substances and activities, such as cocaine (Grossman and 

Chaloupka, 1998), alcohol (Grossman, Chaloupka, and Sirtalan, 1998), casino gam

bling (Nichols, 1999) and cigarettes (Becker, Grossman and Murphy, 1994; Chaloupka, 

1991; Keeler, Hu, Barnett and Manning, 1993; and Grnber and Koszegi , 1999). 
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T he previous empirical tests of rational addiction that study cigarette addiction 

typically use either state cigarette and tobacco tax receipts or survey data. A seri

ous problem with using cigarette and tobacco tax receipts to measure consumption 

is that, for most s tates, state-level tobacco taxes arc paid by tobacco distributors, 

rather than tobacco consumers. Therefore, state-paid tobacco taxes more accurately 

reflect distributors' demand for cigarette and tobacco tax stamps, rather than con

sumer demand for cigarettes. As for survey data, there may be concern that survey 

respondents may deny or downplay their consumption of such goods as cigarettes, 

alcohol, or illegal drugs due to social conformity. 

T he dataset that I usc avoids these da ta problems. The data, compiled by In

formation Resources Incorporated from grocery store scanner data, describe weekly 

sales in 20 markets that span the states of California, Arizona, Colorado, Nevada, 

and Washington. 

The previous tests of the rational addiction model have focused on the model's 

predictions concerning consumption responses to future and past price changes. This 

essay also allows an empirical test of the prediction that the response to an anticipated 

price change differs from the response to an unanticipated price change. According 

to the rational model, if a price change will cause an agent to change his consump

tion of the addictive good, then if the price change is anticipated, as in the case of 

an announced future tax increase, the agent will change his consumption after t he 

announcement, but before the implementation of the price change. 

I consider the consumption effects of three inst.i t utional changes that occur during 
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the time period 1996 through 1999. The first is the ban on smoking in bars and 

taverns in California as part of the state's comprehensive "Smoke-Free Workplace" 

law. Secondly, as a result of the settlement that the five largest tobacco companies 

signed with 46 states in November 1998, these companies raised wholesale tobacco 

prices by 45 cents per pack, the largest cigarette price increase in history. Lastly, 

in the November 1998 election, California voters approved a 50 cent tax increase on 

cigarettes. 
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Chapter 2 A Behavioral Theory of Addiction 

2.1 Introduction 

Consumption of addictive goods has b een studied by researchers in such diverse fields 

as psychology, biochemistry, nem obiology, epidemiology, and sociology. Herrnstein 

and P relec (1992) argue that this broad range of disciplines reflects the complexity 

of the issues involved . Recent. work in economics adds a unique p erspective to the 

study of addiction. 

The ra tional choice model of addiction was first introduced by Stigler and Becker 

(1977) in an attempt. to demonstra te tha t many behavioral phenomena, including ad

d iction , can be modeled without. the assumption of a change in tastes over t ime. The 

model of rational addiction was further developed by Becker and Murphy (1988) to 

explain how a perfectly ra tional forward looking agent may develop a harmful addic

tion . Becker and Murphy (B-M) p resen t an infinite horizon continuous time problem 

where u t ili ty dep ends on current consmn ption of addictive and non-addictive goods 

as well as a stock of past. consumption of the addictive good. Agents are aware of the 

negative effect of their current. consumption of a (harmfully) addict ive good on fu ture 

utility via fut.nre craving. T he key to this model lies in t he relaxation of the usual 

assumption of intert.emporal separability. Consumpt ion patterns consistent with ad

diction result from forward-looking utili ty maximization with stable preferences. T he 
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franwwork incorporates charact.erist ics associated wi t.h addiction such as tolerance, 

reinforcement, and withdrawal, and it offers an explanation for behaviors such as 

bingeing or quitting "cold-tnrkey." 

Orphanides and Zervos (0-Z) extend the B-M framework to an infinite horizon 

discrete time problem in which there is uncertainty about types. The population 

consists of addictive types, who may experience negative side effects as a result of 

past consumption, and non-addictive types, who are not. adversely affected by past 

ronsmnption. In their model, the negative side effects from past consumption are 

irregular. An addictive type may, therefore, believe that he is a non-addictive type 

and begin to consume as a non-addictive type would. By the time the individual 

realizes his true type, he may a lready be addicted. 0-Z refer to these individuals as 

"regretful" addicts~if they had known with certainty that they were addictive types, 

they would have consumed less or none of the addictive good. Their model captures 

the same characteristics of addictive goods as B-M, but it a lso offers an explanation for 

such things as experimentation with addictive substances; the simultaneous existence 

of rasnalnsers, addicts, and non-users; and the role of drug education programs. 

There a re also models of addiction that deviate from t he rational paradigm. Lai b

son (1999) presents a model of "cue-based ronsnmption," in which agents perfectly 

forecast their preferences, but neutral environments, or cues, ran eventnally affect 

both welfare and behavior. Utility in Laibson's model is qualitatively similar to the 

ntility function nsed in B-M. As in the rational models, past behavior affects em 

rent utility and marginal utility. However, in Laibson's model, past behavior in a 
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certain environment only affects current utility if the agent is currently in that en-

vironment. His model demonstrates how it is possible for an agent to be addicted 

in one environment., but not another. The Laibson framework formalizes a biological 

micro-foundation for why an agent may have significantly different preferences in dif

ferent environments . In addition to the characteristics of addiction that B-M explain, 

Laibson's model can also expla in short-term impatience with regard to consumption 

of addictive goods. 

Like Laibson, Loewenstein (1999) stresses the importance of environmental cues in 

explaining t he consumption patterns of those who consume addictive goods. Loewen

stein argues that drug craving falls into the category of "visceral factors," which in

dudes such other motivational states as hunger, thirst , or sexual a rousal. Visceral 

factors in general , and craving in particular, are defined by a direct, negative impact 

on utility together with the ability to focus attention on alleviating this aversive ef

fect so that the relative desirability of other goods or actions is severely diminished. 

Loewenstein's visceral factor account of addiction places great weight on environmen

tal cues because these cues can induce craving. He finds that the utility derived from 

consuming the addictive good decreases over time, while, simultaneously, the craving 

the agent experiences increases in severity if he abstains from consuming the good in 

the presence of the environmental cue. 

This line of economic research may be traced back to Schelling (1978) who, in his 

essay on "Egonomics, or the art of self-management," argues that agents often behave 

as if they are two people one who is "straight" and one who is "wayward." Thaler 
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and Shefrin (1981) explicitly model an agent as having two sets of preferences at any 

given point in time. One set of preferences represents short-run preferences, while 

the oth er represents long-run preferences. In order to maximize long-run preferences, 

an agent may choose to restrict his short-run choice set. For example, in t he case 

of alcohol abuse, an alcoholic may take Antabuse, which will make him severely ill 

if he then consumes alcohol. Their model of self control implies that "people will 

rationally choose to impose constraints on their own behavior." 

O 'Donoghue and Rabin (1999) explicitly model agents as having self-control prob

lems. They show how self-control problems can affect the consumption of addictive 

goods by comparing agents who have no self-control problems, agents who have self

control problems but a re not aware of this, and agents who have self-control prob

lems and are aware of their problems. Unlike t he previously mentioned models, 

O'Donoghue and Rabin's (0-R) model considers both stationary and dynamic pref

erences as well as finite and infinite horizon s. Gruber and Koszegi (1999) generalize 

the 0-R fram ework from the case of a bina ry consumption decision to continuous 

consumption and include prices so that they can analyze optimal government policy. 

Despite this range of research , there are two p revalent featmes of addiction and 

addicts themselves that these rational addiction models do not capture at all , and 

that the b ehavioral models of Laibson, O'Donoghue and Rabin, and others fail to 

formalize completely. The initial choice to consume an addictive good may be vol

untary, but, after sus tained drug use, the addict's physiological system is altered 

in such a way that the individual's preferences ch ange (for example, see Leshner, 
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1997 or O 'Brien and 1\IcLellan , 1996). The ra tion al models capture these changes 

simply by the indusion of pas t consumption in the current utility function. In the 

B0ckcr-Mnrphy, Laibson and O 'D onoglme-Ra bin models, the forward-looking agent 

p erfectly foresees the future effects of his current consumption (although agents in 

the 0-R model may not p erfectly predict their own self-control problems) . As in 

the B-M model, individuals in th 0 Orphanides-Zervos m odel know the extent of the 

future effects, should th ey occnr, but t hey do not know when , and even if, they will 

occnr. However , in contrast to all of th ese m odels, addictions are frequently believed 

to result from underestimation of future cravings (sec for example, Loewenstein et 

a l. , 1999 or Loewenstein , 1999). 

The second omitted feature is the pa ttern of quitting and relapse that is frequently 

seen in addicts. It is estimated tha t 50-70% of addicts wh o complete a treatment 

program fail to abstain (i .e., relapse a t least once) within the following year (O'Brien 

and McLellan , 1996). In the Becker-Murphy model, the decision t o quit or to relapse 

can b e explained by the addition to the model of an exogen ous shock tha t directly 

a ffects the m easure of past consumption . However , this ad hoc extension of the model 

is not empirically test able , offers no room for policy ana lysis , and leaves unclear 

the interpreta tion of a shock to the consumption stock variable. Furt hermore, if 

the sh ocks are sufficiently regular , then the model should include t he agen t's beliefs 

ab out the process genera ting these sh ocks. This typ e of chan ge to the m odel could 

significantly change the dynamics and results. 

Alterna tively, the B-M model can explain bingcing cycles, which may also b e 
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interpreted as quitting-relapsing cycles, by introducing two separate consumption 

stock variables which depreciate at different rates. As with the exogenous shock to 

the consumption stock variable, the justification for having two different consumption 

stocks is not made clear. 

The 0-Z model predicts that quitting can occm at most once, at the time that 

the agent realizes he is an addictive type. The 0-R model generates, in the infinite 

horizon case with stationary preferences , agents who may begin an addiction and 

agents who may end an addiction, but these agents do not quit and then relapse. 

Research outside of economics offers insight into the phenomenon. Numerous 

studies have found that the presence of environmental cues that h ave been associ

ated with past consumption of an addictive good can induce craving, even after the 

addict has quit the substance: "Even after detoxification and long periods of absti

nence, relapse frequently occurs despite sincere efforts to refrain. People or situations 

previously associated with drug use may provoke a relapse" (O'Brien 1997, p. 66). 

Although Laibson's model can not explain quitting and therefore relapse, it can ex

plain this important link between environment and behavior that is often observed 

in cases of relapse. 

The model presented in this paper captnres both of the aforementioned features of 

addiction: agents may not perfectly forecast the effect of their cnrrent consumption 

on fntnre utility, and, among those agents who do begin to consume the addictive 

good, some may exhibit consumption behavior consistent with a pattern of quitting 

and relapse. First, the agent knows that cnrrent consumption of an addictive good 
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will decrease fu ture utility and increase fntnre m arginal utility from consumption of 

the addictive good , but sh e does not know the strength of these effects. In particular, 

a fter Sllffk ien t experience cons11ming the addictive good , these effects become more 

severe , b11t the agent d ocs no t fully anticipa te this ch ange. 

Behavior tha t can b e interpreted as a p at tern of q11itt.ing and rclpase is gen era ted 

by b11ild ing on Laibson 's (1999) framework in which environment m ay play a role in 

shaping preferences, together wit h allowing for imperfect foresigh t. t ha t is similar to 

the nncer tainty in Orphanides a nd Zervos (1995). Using this framework, I show how 

an addict m ay choose to q11it h er addiction in one environment, yet being placed in 

an environment in which she h ad frcq11cntly used the addictive s11bst ance may trigger 

such strong craving that the addict will resume consumption of th e addictive good. 

T h e m ispcrception of th e toleran ce function can generate quit ting, while the link 

between environments and preferences can generate relapse. 

T his paper focuses on s11bstan cc addiction . The wealth of informa tion from oth er 

disciplines has given economists a n11mber of insights as to how preferences for ad

dictive substances m ay b e m odelled. Of course, consump tion of addic tive goods is a 

somewha t anom alous example of consumptiOn behavior. However , i t is easy to see 

how s11ch an an alysis could apply to a wide range of cons11mp tion goods for which 

p references d isplay som e degree of habit formation , a lbeit not nearly as strong as that 

of addictive goods . 
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2.2 Evidence from Psychology and Neurobiology 

The complexity of issnes involved in stndying addiction is revealed not only in the 

nnmber of disciplines that are involved in its research, but also in the variety of 

definitions of addiction (for examples of the wide range of definition, see Pomerleau 

and Pomerlean, 1988). There does appear to be a strong consensus, however, about 

the underlying behavioral mechanisms involved in the addiction process. 

2.2.1 Conditioned Responses 

An organism's physiological system relics on internal equilibrium (Koob and LeMoal, 

1997). Disturbances to stability are mediated by homeostatic mechanisms, mecha

nisms that work to return the organism to its equilibrium. For example, even though 

the external temperature may fluctuate , one's body maintains a constant internal 

body temperature through adjustments to heart rate and blood pressure. However , 

some disturbances, such as those caused by the administration of an unfamiliar chem-

ical, require more complex strategies. 

Classical conditioning is the experimental study of anticipatory responses. In a 

typical conditioning paradigm, two stimuli are repeatedly paired so that eventually 

one stimulus predicts the second stimulus . Conditioning then allows an organism's 

physiological system to prepare for the second stimulus. Classical conditioning studies 

have revealed that there are two effects of repeated drug administration: the responses 

elicited by the administration of the drng, which are labelled as feedback responses, 

and responses elicited by the anticipation of administration of the drng, labelled 
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feedforward responses (see Siegel et al. , 1988, or Eikelboom and Stuart, 1982). 

In terms of addiction research, the first stimulus is typically an environmental 

"cue." Cues for laboratory animals can include sounds, temperatures, or such visual 

cues as colors. Cues in the addict's world "can inclnde mood states (positive as 

well as negative), specific persons, locations, events or times of year, mild alcohol 

intoxication, interpersonal strife previously soothed by cocaine euphoria, or abuse 

objects (for example, money, white powder, glass pipes , mirrors, syringes, and single

edged razor blades)" (Gawin, 1991 , p. 1582). 

Homeostatic responses tend to be compensatory. That is, they work to counteract 

the direct effect of the substance in order to restore stability. For example, nicotine 

raises blood sugar. The compensatory response that is generated works to lower blood 

sugar. When the administration of a drng is anticipated, feedforward mechanisms are 

activated, and therefore the compensatory response is operational before the actual 

administration of the drng. If the drug is subsequently administered, then the effects 

of the drug appear to be diminished. This "progressively diminished response to a 

drug over the course of successive administrations defines tolerance" (Siegel et al., 

1988, p. 88). 

The consensus among researchers is that tolerance and withdrawal are both man

ifestations of the same mechanism. Tolerance manifests itself when the drug is ad

ministered, and withdrawal occurs when the drng is withheld. Continning with the 

nicotine example, suppose a nicotine addict frequently follows drinking an alcoholic 

beverage by smoking a cigarette. Eventually, the consumption of an alcoholic bev-
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erage signals the physiological system that nicotine will soon follow. If the nicotine 

addict subsequently smokes a cigarette, then by the time nicotine has entered the 

system, the blood sugar level has already decreased. Therefore, the net increase in 

blood sugar from the administration of nicotine is not as large as if the system had 

not anticipated the nicotine. On the other hand, if the addict docs not subsequently 

smoke the cigarette, the decrease in blood sugar will cause the addict to feel hunger 

or irritability, traits often associated with nicotine withdrawal. 

Repeated administration of a drng docs not necessarily imply tolerance. Instead, 

tolerance is environmentally specific. It. results from repeated administration of a 

drug in the presence of environmental cues. Because "overdose" is often simply a 

failure of tolerance, studies of overdose' can shed light on tolerance. In a study by 

Siegel ct al. (1982), rats were given regular and increasing doses of heroin in a specific 

environment. The rats were subsequently given a high dose of heroin in either the 

familiar environment or an unfamiliar environment. Survival rates were significantly 

higher for rats that received the heroin in the familiar environment than for rats 

who were given heroin in an unfamiliar environment. Similarly, in a small study of 

survivors of heroin overdose, the majority stated that the overdose occurred when the 

drug was administered without the usual environmental cues (Siegel, 1984). 

Lastly, consider the experience of U.S. enlisted Army men who served in Vietnam. 

While serving overseas, a large proportion of soldiers, the majority of whom had little 

prior experience with narcotics, became addicted to heroin and/or opium (Robins 

1993). In a study of over 600 men who left Vietnam in September of 1971 , Robins 
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(1974) found that 45% of enlisted men had tried narcotics while in Vietnam. About 

20% of the sample of soldiers reported that they had felt addicted to heroin or opium 

in Vietnam. Despite prior warning of a mandatory urine test at the time of departure, 

11% of enlisted men t ested positive. However , one year after discharge, the relapse 

r ate among the addicted servicemen was only 5%. In contrast, young men who had 

not served in Vietnam who were treated in a Federal Narcotics Hospital during the 

same time p eriod as the Vietnam study had a six month relapse rate of 67%. In 

terms of the conditioning framework, because the addicted servicemen were removed 

from the environment that they had associated with opiate use, and returned to an 

environment with very few past drug cues, it is not surprising that their relapse rate 

is so low. 

The meaning of the term "craving" is less clear. Unlike tolerance and withdrawal 

symptoms which can b e measured by ch anges in observed outcomes such as heart 

rates, chemical levels in the brain, or blood sugar levels in both humans and animals, 

craving is subjective and usu ally measured by human self-reports. For pnrposes of 

this paper , craving is taken to be "a strong desire for the alleviation of unpleasant 

withdrawal symptoms" (Marlatt, 1987, p. 42). 

2.2.2 Perceptions of the Effects of Addictive Substances 

The degree of tolerance and the intensity of withdrawal symptoms vary widely among 

users and substances (Goldstein and Kalant, 1990) . Because effects of substances 

vary widely across substances, it. is not surprising that people h ave misperceptions or 
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judgment biases about those effects. 

For example, when asked their perceptions of the risks associated with heavy 

drinking and drunk driving, those who abstain from drinking alcohol perceive more 

risks than those who drink. (Agostinelli and Miller, 1994). Champion and Bell (1980) 

a lso report an inverse relationship between substance use and perceptions of danger 

of addictive substances in a study in Australia that includes high school and college 

students, nurses, prisoners, probationers, and juvenile delinquents. In a survey of 

college students, Rohsenow (1983) finds that socia l drinkers expect that other people 

will be more strongly affected, for both positive and negative effects, by alcohol than 

they expect themselves to be affected. 

Predicting future, or long term, effects of substance use may be more difficult. 

Loewenstein (1999) argues that craving fa lls into the category of "visceral factors," 

which includes such other motivational states as hunger , thirst , or sexual arousal. He 

claims that people tend to underestimate not only the strength of visceral influences, 

but also their own susceptibility to them. 

Even after negative effects of substance use manifest themselves, users can ignore 

or deny their existence. For example, "as cocaine addiction develops, a transition to 

high-dose long-duration bingeing occurs, in which the intensely pleasurable effects are 

experienced alone, and increasingly apparent negative contingencies go unrecognized" 

(Gawin, 1991, p . 1581). Addicts may not even realize that their consumption may 

b e excessive, presumably due to tolerance. In a study of nurses and high school and 

college students, of respondents who were categorized by the researchers as heavy or 
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excessive substance users, only 33.3% p erceived their own usc to b e h eavy or excessive 

(Champion and Bell, 1980) . 

2 .3 Basic Model 

The first basic featnre of the model is the variable environment. In each p eriod , the 

agent can find himself in one of two environments, environment A or environmen t B . 1 

After observation of the environment, the agent allocates his/her resources b etween 

two goods : c, a non-addictive consumption good, and a, a potentia lly addictive con-

smnption good. Assume that the choice variables c and a are continuous. Let a~ and 

c~ denote consumption of the potentially addictive good and the non-addictive good , 

resp ectively, when the environment a t time t is environment A. Likewise, let af and 

cf den ote consumption of the potentially addictive good and the non-addictive good , 

resp ectively, under environment B. 

P ast consumption of the p otentially addictive good in environment A is summa-

rized by a stock variable xA. Each p eriod in which the environment is A ( Wt = A), 

the compensat ory process evolves and the stock variable is updated according t o 

where a , {3 E (0 , 1) . When the environment IS B (wt B ), this stock variable is 

nne h anged : 

A A 
x t+l = x t 

1 The ma in results are easily extended to n > 2 environments. 
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Past consumption of the potentially addictive good in environment B is summarized 

by a stock variable x 8 which evolves as follows: 

when Wt = B, and 

when Wt =A. 

Initial stocks, x~, x~ are exogenous. As in Loewenstein, et al. (1999), the con-

sumption stocks can be thought of as levels of addiction. When the agent is in 

environment A , the addiction level associated with environment B, x 8 , is dormant: 

the addiction level docs not evolve, and utility is unaffected by x 8
. Likewise, when 

the environment is B, the addiction level associated with environment A is dormant. 

For now, I assume that the probability of the environment is exogenous: 

A with probability f.1, 

B with probability 1 - f.1, 

where f.1, E [0, 1] . 

The second basic feature of the model is the potential misperccption by the in-

dividnal of the underlying physiological changes caused by her consumption of the 

addictive good. The tolerance and withdrawal that an agent may experience is rep-

resented by a "tolerance function" v(a,x) where v(a,x)::; 0 for all a,x, with strict 

inequality if and only if x > 0. The agent misperceives the tolerance function as 
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X 

--~ -- ~-- --- --, --
________ ..,. ____ _ 

-- --- ... ------- -

v(a,x) 

Figure 2.1 : Example of true vs. perceived tolerance function 

v(a, x) where, as with the true tolerance function, v(a, x) ~ 0 for all a, x, with strict 

inequality if and only if x > 0. I assume that given a, v(a, x ) is weakly steeper , and 

more negative than v(a, x) for all x (see Fignre 2.1). After sufficient exp erience with 

the addictive good, that. is, when the addiction level , x, reaches some threshold level, 

x, the agent realizes the t rue tolerance function. I assume tha t this threshold level is 

exogen011s and may be environmen t-specific. 

If xi < xj' the agent believes tha t current and fu ture instantaneous u t ility when 
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Wt = j , j E {A. B} is given by 

U(c[, ai, xi) = u(c:I , ai) + v(ai , x{) 

where u 1 , u 2 ;:::: 0. However, when xi ;:::: :i), the agent learns that his true instantaneous 

utility when Wt = j is given by 

U(C: , ai, x{) = u(c[ , a{)+ v(a{, x{) 

The basic assumptions of the model arc 

1. u ( c, a) is twice continuously differentiable in c and a, and v (a, x) and v( a, x ) 

are twice continuously differentiable in a and x. 

2. u is increasing and strictly concave in c and a; u 1 (c, a) ;:::: 0, u 2 (c, a) 2: 0 and 

uu(c,a) < 0, u22(c, a) < 0, u11 (c,a) +u22(c,a) < 2u12(c, a). 

3. The tolerance functions are negative, with v(a, x) more negative than v(a, x) : 

for all a, X, v(a, x ) ::; v(a, x) ::; 0, with v(a, x ) = 0 iff X= 0 and v(a, X) = 0 iff 

X= 0. 

4. The tolerance functions arc strictly increasing in a and decreasing in x, with 

v(a,x) steeper than v (a ,x) with respect to x: vl(a,x ),vl (a,x) > 0 for a> 0 

and X> 0 and V2(a, x) :S V2 (a , x) :S 0. 

5. 11(a,x) andv(a,x) areconcaveina: v11 (a ,x),::;O,v11 (a,x),::;O. 
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6. a and c are complem ents: u 12 2:: 0, Furthermore, t he cross-partia l derivatives 

between a and X arc p ositive: ?112, V12 2:: 0. 

Incom e, y , and prices a rc assumed constant. Let c b e the uumcr aire and let p be 

the price of the potentially addictive good . Define {X} to b e the indicator function 

tha t takes on the value 1 if the s tatement X is t rue; otherwise, it equals zero. The 

problem faced by an individual with discount rate b and infinite time horizon is: 

(2.1) 

subject to 

d + paf < y 

ci > 0 

as well as the stochastic process on Wt and the stock evolution equa tions: 

X B XB 
t+l- t 

when Wt = A , and 

X II XA 
t+ l - t 
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when Wt =B. 

However, the problem that the individual believes that he needs to solve is 

(2 .2) 

subject to the same constraints. 

2.3.1 Discussion 

Addiction Levels and Environments 

Under the assumptions of the model, the budget constraint holds with equality 

(ct = y -pat), and therefore we can focus on the consumption path of the addic-

tive good. This result obtains because, for simplicity, saving and borrowing are not 

a llowed. Therefore, all the intertemporal considerations enter the model through t he 

consumption stock of the addictive good. Unlike the standard consumption problem 

in which the agent builds a stock of assets through savings, the agent in this model 

builds a stock based on past consumption of the addictive good. In the standard 

model , higher capital stock implies higher utility (under the usual assumptions of 

positive marginal utility of consumption and non-satiation). In the model of addic-

tion, utility is decreasing in the consumption stock and, furthermore, there is no free 

disposal of the stock. 

Previous models of addiction and habit formation (Ryder and Heal (1973), Becker 

and Murphy (1988), and Orphanides and Zervos (1995)) have also used a stock vari-
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able to summarize past consumption. However, the present model, which borrows 

from the framework used by La i bson ( 1999) , accounts for the fact that environment 

can play an important role in shaping preferences for addictive goods. Neurobio

logical evidence presented in Section 2.1 suggests that tolerance and withdrawal do 

not necessarily occur purely as a result of past consumption, as the previous models 

assume. Instead , repeated consumption in a particular environment results in tol

erance and withdrawal that are specific to that environment . This is captured in 

the present model through the use of environm ent-specific consumption stocks, or 

addiction levels, x~ and xf. 

Note that in this framework, the environment is neutral- the environment has no 

direct impact on utility. Utility and tolerance functions are constant across environ

ments. Any effects of the environment enter only through t he addiction levels and 

the threshold levels, xA and x8. 

Tolerance Function 

The tolerance function is essential to incorporating withdrawal and tolerance into the 

model. 

In Laibson 's model, the addiction levels , or what he refers to as "the compensatory 

processes," enter into the utility function by directly offsetting consumption of th e 

addictive good. That is, instantaneous utility is of the form: 

f(c) + g(a- .Ax) 
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whereas in my model, the addiction levels enter utility only through the tolerance 

function v(a, x) : 

u(c, a)+ v(a, x) 

Note tha t this model nests Laibson's model. 

Past consumption of the addictive good causes current disutility (v (a , x ) < 0 and 

v( a, x) < 0 iff x > 0). If t he agent abstains in the current p eriod, she exp eriences 

withdrawal symptoms in the form of disu tility. As the level of addiction increases, 

this disutility becomes more pronounced (v2(a, x), v2(a, x) :::; 0). 

However , these aversive effects can be "eased" by current consumption of the good 

( 1!1 (a , X)) 111 (a, X) ~ 0). Furthermore, as the stock increases, the appeal of the good as 

a m ediator of craving increases, as represented by the positive cross partial derivative 

(v12 , v12 ~ 0). In other words, preferences display what Becker and Murphy refer to 

as "adjacent complementarity" 2 , as in the "rational" models of addiction. 

Las tly, note how tolerance and withdrawal operate through the sam e mechanism: 

if the agent chooses to consume the addictive good, the net utility derived from a 

fixed close of the addictive good is diminished by past consumpt ion: for all feasible 

c, a u(c, a) > u(c, a)+ v(a, x) > u(c, a)+ v(a, x') where 0 < x < x'. 

In their paper , O 'Donoghue and Rabin discuss two characteristics of addictive 

goods: they are habit-forming, and they involve "internalities ." Both these charac-

t eristics arc represented by the tolerance function. 
2 T he term "adjacent complementarity" appears to have been coined by Ryder and Heal (1973) 

and referred to complementari ty between consumption on adjacent dates, rather than consump
tion on distant dates. As Becker and Murphy use it, "adjacent complementarity" simply refers to 
com plementarity between current consumption and the s tock of past consumption. 
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Current consumption of a habit forming good will increase future marginal utility 

of consumption. In terms of my model, this is represented by the assumption that 

the cross partial derivative between the stock variable and current consumption is 

strictly positive. A good has internalities if current consumption affects the future 

level of instantaneous utility from consumption of the good. For example, tolerance 

is a negative internality. That is, current consumption decreases the future u t ility 

level from consumption . The assumptions on the toleran ce function imply that the 

good in question has negative internalities. 

Laibson 's model implicitly assumes that the addictive good in question is one 

that is habit forming and has negative internalities. In the present model, these 

two facets of the addictive good can be separated , even though this feature is not 

taken advantage of in this paper. In order to generalize the model to goods that a re 

not necessarily harmfully addictive substances, this sort of separability is necessary. 

There are goods that may be habit forming, but have positive internalities (exercise, 

for example). Alternatively, there are goods that may h ave negative internalities, but 

are not habit forming (overeating at a meal, for example) . 

Misperception of Tolerance Function 

The assumptions on the t he rela tionship b etween the true tolerance function and 

the misperceived tolerance function imply that the agent underestimates the negative 

consequences from current consumption . Of course, there are individuals who mis

perceive the future effects of current consumption in the opposite direction. That is , 

they overestimate the future effects. Recall that the studies of Agostinelli and Miller 
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(1994) and Champion and Bell (1980) find an inverse relationship b etween substance 

or akoholuse and perceived risk of using addictive substances. For this paper , I focus 

only on agents who underestimate the future consequences from using addictive sub-

stances, in part because those who overestimate the effects are very unlikely to become 

addicts. However , a generalization of the model to include consumption of goods that 

are not necessarily harmfully addictive substances might want to incorporate those 

who overestimate the future effects of consumption. 

One interpretation of the misperception of the true tolerance function is as fol-

lows: the function v(a,x) is approxima ted by v (a ,x), given a, when X is close to Xo. 

For example, v (a , x) may be the linear Taylor approximation to v(a, x), as in Figure 

1. While the agent has little experience at consuming the addictive product, the 

tolerance and withdrawal symptoms that result from p as t consumption are rela tively 

minor. However , the agent suffers from projection bias3- she underestima tes changes 

in future utility from the present. She assumes that the process that governs the 

negative side effects from consumption of the addictive good will continue into the 

future as it has in the past. She does not realize that, after sufficient consumption 

of the addictive good , changes in her physiological system s cause tolerance and with-

drawal symptoms to increase dramatically. Under this interpretation, the threshold 

level can b e thought of as the point at which the true tolerance function v(a, x) and 

the perceived tolerance function v( a, X) begin to diverge. 

An a lternative interpretation involves a heterogeneous population of agents. Sup-

pose the population consists of two groups: one group for whom v(a, x) is the true 
3For further discussion on projection bias, see Loewenstein, et a l. (1997). 
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tolerance fnnction, and another gronp for whom v(a, x) is the t rue toleran ce fnnction. 

The popnla tion of interest in this pap er are those for whom v(a, x) is the trne toler

ance function, bnt they initially believe tha t they are of the group for whom v( a, x) 

is t he trne tolerance func tion. Initia lly these agents b elieve with probabili ty one that 

their tolerance function is v( a , x ). After sufficient consumpt ion of the addictive good 

that is, once x > x, the agent upda t es her beliefs and b elieves with probability one 

tha t her t olerance function is given by v (a, x ). 

In this fram ework, regardless of the interpretation , the agent 's "learning" of the 

t rue tolerance function is very simple-the agen t is comp letely unaware of the t rue 

tolerance func tion b efore his addiction level reaches the threshold level, after which 

he perfectly foresees the fut ure effects of current consumption. In Section 5, I consider 

two alterna tive frameworks in which the agent slowly learns, or adjusts to , the t rne 

tolerance function. 

Addiction 

Although there are numerous defini t ion s of addiction (for an overview , see P om erleau 

and P om erleau , 1988), most agree tha t addic tion is characterized by prolonged com

pulsive use, tolerance, and physical and/ or psychic dep endence. In terms of t he mod el , 

it seem s tha t a reasonable baseline is the consumption levels and consumption stock 

of a hyp othe tical individnal who does not exp erience tolerance and dependence, an 

individual for whom inst antaneons ntility is simply u(c, a) ra ther th an u(c, a) +v(a, x) . 
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Assume then , that an agent 's consumption is compulsive if and only if 

wh ere aN A is the optimal con sumption of the hypothetical individual: 

An individual is "addicted " if and only if his addiction level is high er than the baseline 

defined by aN A; that is, if and only if 

t - 1 

Xt > Xt(aNA) = C\/Xo + 2..::: eti{3aNA 

i = O 

Susceptibility to Addiction 

Clearly, individuals are not homogeneous in their susceptibility to addiction. The 

probability that an individual becomes addicted is influenced by a hos t of exogenous 

factors that may be genetic, social, or environmental. Many of these factors can be 

captured in the model. 

Consider the initial addiction levels , x~, x~ . These can reflect any genetic ten-

dcncy toward addiction. In the extrem e case of children who are born addicted to a 

substance, they can reflect the degree to which the child is addicted at birth. Alterna-

tively, suppose the decision-making process regarding addictive substan ces begins not 

a t birth, but later in life , su ch as adolescence. In this case, the initial addiction lev-
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els can represent any first-hand or second-hand experience with addictive substances 

prior to the adolescent years. In this latter example, it may be plausible that the ini

tial addiction levels may vary across environments; however, different interpretations 

may suggest otherwise. Therefore, I assume xt = x~. 

An individual's genetic tendency toward addiction may also be reflected in his 

true tolerance function. For example, the second derivative of the tolerance function 

may increase in magnitude as genetic tendency toward addiction increases. Or the 

appeal of the addictive substance as a m ediator of craving (the cross partial derivative 

of v between a and x) may increase with genetic tendency. 

The threshold levels, £A , x8, or the degree of misperception of the true tolerance 

function may be in part determined by the individual's personality. As discussed 

above, the misperception of the true effects of addictive substances may be due to 

projection bias. The threshold levels represent the point at which the agent realizes 

the true tolerance function. 

I allow the threshold levels, £A, x8 , to capture any difference in susceptibility 

across environments. For example, events that elicit dysphoric or euphoric states may 

sensitize an individual to the direct effects of addictive substances (Pomerleau and 

Pomerleau, 1988). In certain environments, it may take an agent longer to realize the 

degree of his substance abuse than in others. Alternatively, this phenomenon could 

be captured by having the perceived tolerance function vary across environments. 

Initially, I assume that the thresholds vary, but the perceived tolerance functions do 

not. 
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2.4 Optimal Behavior and Dynamics 

2 .4. 1 S ingle Environme nt M o d e l 

To facilitate the analysis, I begin by analyzing optimal b ehavior in the world in 

which there is only one possible environment. Before I characterize the optimal p olicy 

function for the single environment (SE) model , con sider the first order conditions in 

order to gain an understanding of optimal b ehavior. 

Initially, the agent b elieves that she mnst solve: 

00 

V5E(xo) = max Eo~ 8t [u(y- pat, at)+ v(at, xt)] 
{a, ,ct} ~o t= O 

(2.3) 

where xo is given. Assnming an interior solution, the first order condition to the 

problem in Eqnation (2.3) is 

00 

u2(y- pat, at)+ V1 (at, Xt) = pul (y- pat, at) + ~ Diai- l {3v2(at+i, Xt+i ) (2 .4) 
i = l 

Each period, the individual weighs the b enefit from consnming the addictive good, 

current marginal n tility, against what Becker and Murphy call the full price of the 

addictive good. The full price includes the price of the addictive good, as well as 

the marginal effects of current consumption on fntnre utility. The agent realizes that 

current consumption has a d etrimental effect on fu ture utility. However , when x < x 

the agent does not realize the extent of these effects. 

Note that, even though the agent may know the true utility level at time t, the 
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agent docs not necessarily know the true marginal utility that he will experience as 

a result of continued consumption at time t. In making the consumption decision 

at time t , the agent is unaware of the true m arginal effect of cnrrent consnmpt ion 

on current u tility: the agent's first order condition h as u2(y -pat , at) + v1 (at , Xt) 

rather than u2(y --pat, at)+ v1 (at, Xt) on the left-hand side. D ep ending on the form of 

v(at, Xt), the agent could overestimate, or even underestimate, the current marginal 

utility from current consumption. 4 

When x > x, the agent realizes the true tolerance function, and the problem that 

the individual must now solve is 

00 

V 5 E(xr) = max Eo L ot [u(ct, at)+ v(at, xt) ] 
{at ,Ct }~ -r t =T 

(2.5) 

where T denotes the first period after the change m the tolerance func tion. The 

appropriate first order condition is: 

00 

u2(Y- pat , at)+ vl(at, xt) = pul(Y- pat, at) + L oia.i-l {3v2 (at+i, Xt+i) 
i=l 

The individual 's maximization problems can be recast as s tationary dy namic pro-

gramming problems. While x < x, the Bellman equat ion is: 

V 5 E(x)= max [u(y - pa,a)+v(a, x)+oV5 E(a.x+{3a)] 
aE[O,;J 

(2.6) 

4 Recall that, even though there are assumptions on the relationship b etween v2 and v2, there a re 
no restrictions on the relationship between v 1 and v1 . 
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After the agent realizes the true tolerance function, the Bellman eqnation is given by: 

V 5 E(x) = max [u(y - pa, a)+ v(a, x) + 8V5 E(ax + ,Ba)] (2.7) 
aE (O,; J 

The assumptions on utility and the Theorem of the Maximum ensure the existence, 

uniqneness, and differentiability of ifsE(x) and V 5 E(x), as well as the existen ce of 

non-empty upper semi-continuous policy correspondences 

¢(x) [x'IV5 E(x) = u(y- ~(x' - ax), ~(x'- ax))+ v(~(x'- ax),x) + 8V5 E(x') ] 

¢(x) [x ' IV5 E(x) = u(y- ~(x' - ax), ~(x'- ax))+ v(~(x'- ax), x) + 8V5 E(x') ] 

Standard dynamic programming techniqnes can not be used to ch aracterize if;(x) 

and ¢(x) for two reasons. First, ntili ty is not assnmecl to be strictly concave in c, a, 

and x. Second, utility is decreasing in the stock variable, in contrast to the standard 

production or consumpt ion dynamic programming problems. Furthermore, th ere is 

no free disposal of the stock. 

Both if;( x) and ¢( x), the optimal stock evolutions , can be characterized by the 

following proposition, which draws heavily from Orphanides and Zervos, 1994: 

Proposition 1 For an agent with value function given by Equation (2.6} or (2. 7), 

(i) every optimal path is a monotonic sequence; (ii) any optimal path converges to a 

steady state; and (iii} there exists exactly one critical level between any two consecutive 

stable steady states. 
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Monotonicity follows from the fact that timet marginal utility with respect to time 

t stock is increasing in time t + 1 s tock. Convergence to a s teady state then follows 

because the optimal path is a bounded monotonic sequence. The critical value may 

or m ay not be an unstable steady s tate. When the critical value is not an unstable 

steady state, the possibility of multiple optimal paths a rises. Such a critical value 

exists b ecause of the complementarity between current consumption of the addictive 

good and the stock of past consumption. All proofs arc in the appendix. 

Suppose the optimal paths associated with equations 2.6 and 2. 7 have one crit ical 

value (x* and x*, respectively) between two stable steady states, as pictured in Figure 

2.25 . The optimal consumption correspondence for the misperceived maximization 

problem, a*(x) = *(;f;(x) -ax), is represented by the medium bold correspondence, 

and a*(x) = *(¢>(x) -ax), the consumption policy for the agent 's true problem, is 

represented by the heavy bold correspondence. The steady states that correspond 

to Equation (2.6) a re given by i and i, while the steady states that correspond to 

Equation (2.7) a re ;f and x. For ease of exposition, denote the lower steady states i 

and ;!2 as the no-addiction steady states, and the higher steady states as t he addiction 

steady states. 

When the critical value associated with Equation (2.6) is less than the critical 

level associated with equation 2.7 (x* < x*), as in this example , whether the agent 

ultimately enters a state of addiction depends on the initia l addiction level, x 0 , and the 
51n this example, u( c, a) = ln c + ln a , v( a, x) = 5.6ax - 6x and v( a , x) = 5.6ax - 5.6x. I assume 

y = p = 1, a = 0.5, {3 = 1 and 8 = 0.9. T he policy correspondence associated with the t rue tolerance 
function , a*(:r) , has two stable steady states .l = 0.23 and x = 1.79 and a cri tical value x* = 0.94. 
The policy correspondence associated with the perceived tolerance function , a* (x ) , has two stable 
s teady states ;I = 0.26 and ?f = 1.81 and a critical valuE' x* = 0.83 
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threshold, x. If x 0 < x* < x* , the agent will never b ecom e addicted , regardless of the 

threshold. The optimal stock converges toward ;I or ;f d ep ending on the relationship 

b etween Xo and X. On the other hand, Xo > x* > x* implies th a t the optimal stock 

will converge toward ?f or x, b oth of which yield h armful addiction s. 

If x* < Xo < x*' the agent will b ecome addicted if and only if X> x*. Initially, the 

agent 's consumption s tock will b egin to approach the higher steady state ?f (assum ing 

tha t x > x0 ). However , b efore this steady sta te is reached , the threshold level x will 

b e reach ed . At x, t he agent will realize the t rue toler ance function, and his opt imal 

p a th will shift. If x > x*, then the agent will cont inue consuming the addictive good 

and his addictive level will m ono tonically approach t he steady st a te labelled as x. On 

the other hand, if x < x*, then the agent 's consumption of the addictive good will 

decrease and his stock will converge to the steady s ta te lab elled by ;f. Therefore, if 

x > x* the individua l will m ove toward a state of addiction , wh ereas, if x < x*, the 

individual will essentia lly "quit." In this example, a t the addiction steady state, the 

agent 's inst antaneous u t ility every p eriod is -2.80 wh ereas ins tantaneous u tility at 

t he no-addiction s teady state is -2.23. 

The case when x* < Xo < x* and X > x* illustra tes how it is possible for the 

agent 's consumption of the addictive good to converge to the st eady state associated 

with the state of addiction , although had he known the t rue tolerance function , his 

consumption would never had progressed as far . These addicts are similar to th e 

"regretful addicts" of Orphanides and Zervos ( 1995). 

The agent for whom x* < Xo < x* and X < x* "experiments" with the addictive 
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good, but does not ultimately b ecom e addicted. When he is s till naive to the true 

effects of the addictive good, he b egins to consume the addictive good. When he then 

learns of the true effects of his past consumption, he decreases h is consumption. 

This example also illustrates that the agent's lifetime utility is weakly decreasing in 

the threshold level x. The earlier t hat the agent realizes the trne toler ance function, 

the better off the agent is m ade, because he can then maximize his trne lifetime 

consumption problem, rather than the incorrect, perceived problem. 

Notice that in the single environment model, as in the 0-Z model, agents can quit 

their addiction at most once, with no relapse, as illustrated by t he previous case. 

2.4.2 Dual Environment Model 

Now consider the problem given by Equations (2. 1) and (2.2). When x~ < xA and 

xf < x8
, the first order conditions for the solution to the problem given by Equation 

(2.2) are 

00 

u2(y - pat, at)+ v1 (at, x t) = pu1 (y - pat, at)+ L ~-tb'ai-l ,Bv2(at+i' xt+i) (2.8) 
i=l 

when the environment is A, and 

i= l 

(2.9) 
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when the environment is B. After the agent realizes the true tolerance function, the 

first order conditions are 

00 

u2(y-pa:,a:) +vl(a:,x:) =pu1(y-pa:,a:) + Lf.LOiai- lj)v2(a:+i,x:+i) (2. 10) 
i = l 

when the environment is A, and 

00 

u2(y- paf, af) + vl(af, xf) = pul(Y- paf, af) + L (1- f.L) 8iai-lj)v2(a~i' xf+J 
i=l 

(2.11) 

when the environment is B. 

Once the environment is revealed , the agent compares marginal utility of consump-

tion with the full price of consumption, as before. However , in the dual environment 

(DE) model, the full price of consumption is less than in the SE model. Futnre con-

siderations are further discounted because current consumption will not affect every 

future period. Suppose that the environment is A at time t. Current consumption 

is only relevant in the future periods in which the environment is also A. Therefore, 

marginal utility at time t+-r with respect to timet consumption, a 7
-

1jJv2 (a:+n x:+7 ), 

is also discounted by the probability that the environment will be A at timet+ T. 

The corresponding Bellman equation to Equation (2.2) is: 

max f.L [u(y- paA ,aA) + v(aA,xA) + 8V(axA + j)aA,x8 ) ] (2.12) 
aA,aB 

+ (1 - f.L) [u(y - pa8
, a 8

) + v(a8
, x 8

) + 8V(xA, ax 8 + j)a8
)] 
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and the Bellman equation corresponding to the true problem, given by Equation (2.1) , 

is: 

Notice that these value functions reflect the agent's welfare before the realization 

of the environment. Again, the assumptions on utility, together with the Theorem of 

the Maximum, ensure that V(xA , x 8 ) and V(xA, x 8 ) exist and are unique. 

These value functions can be expressed in terms of the single environment value 

flmctions. 

Proposition 2 

and 

where V5 E(.Tib = 0 and V 5E(xlb = 0 are the solutions to Equations (2.6} and (2. 7}, 

respectively, given discount rate ~. 

The intuition b ehind the proposition is sketched ou t here. The proof, which 

closely follows the same line of reasoning as Proposition 3 of Laibson (1999) , is in 
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the appendix. Proposition 2 relies on the separability of utility with respect to the 

environment-specific addiction levels. That is, when the environment is A (or B ), the 

addictive level associated with environment B (or A) is not updated and does not 

affect current utility. 

The proposition reflects the intuition derived from the first-order conditions re-

garding discounting of future periods. Any given future period is discounted not only 

by the rate of time preference, but also by the probability that current consumption 

will not have an effect on that period. In essence, l -o~T-1-L) < o is the disconnt rate 

between the cnrrent period and the next period in which the environment is A. Like-

wise, 6i~~~) < o is the disconnt rate between the current period and the next p eriod 

in which the environment is B. 

The optimal policy correspondences , conditional on the environment, can then be 

written as fnnctions of the relevant addiction level only. The optimal consnmption 

policy correspondences associated with the fnnctional equation given by Equation 

(2.12) when the environment is A or B , respectively, are: 

;{;A (x) { x'IV5 E(x l
1 

_ 0~~ _ p,)) = u(y- ~(x'- ax), ~(x'- ax))+ v(~(x'- ax) ,x) 

+ 1-L 1/SE (x'l op, ) } 
1-o(l-p,) 1-o(l-p,) 

{ x'IV5 E(xlo(l- p,)) = u(y - p_(x' - ax), ~(x'- ax))+ v( ~(x' - ax), x) 
1 - op, (3 (3 (3 

+ 1 - 1-L V s E ( x'l 8 ( 1 - 1-L) ) } 
l-op, l -op, 

and the optimal policy correspondences associated with eqnation (2.13), when the 
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environment is A or B, are: 

'1/JA(x) 

Because the dual environment value fnnctions arc essentially linear combinations of 

the single environment valne functions (with modified disconnt rates), we can also 

characterize these optimal stock evolutions as in proposition 1. 

Proposition 3 The optimal stock evolutions associated with the Bellman Equations 

given by Equations (2.12) and (2.13}, ;jA(x), ;j8 (x) ,'ljJA(x) and '1jJ 8 (x) , can each be 

characterized as follows: (i) every optimal path is a monotonic sequence; (ii) any 

optimal path converges to a steady state; and (iii) there exists exactly one critical 

level between any two consecutive stable steady states. 

Using an example where the optimal consmnption path has two steady stable 

states, it is easy to see how it is possible for an agent's consnmption to converge to 

the addictive state in one state of the world, but not in the other. 

Consider the example illnstratcd in Figure 2.3. 6 As in theSE l'vlodel example, the 

optimal consumption correspondences for Eqnation (2.12), aA*(x) = ~(;[A(x)- ax), 
6u(c, a) = In c+ In a, v(a , x) = 5.6ax- 6x and v (a , x) = 5.6ax- 5.6x , y = p = 1, a = 0.5, {3 = 1, 

8 = 0.95 and f1 = 0.5. aA* (x) and a8 *(x) each have two stable steady states .I= 0.23 and x = 1.79 
and a critical value x* = 0.94. aM(x) and a 8 *(x) each have two stable steady states i = 0.26 and 
~ = 1.81 and a critical value x* = 0.83. 
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Figure 2.3: Dual environment example. The top panel represents Environment A and 
the hot tom panel represeats Environment B. 
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and a8*(x) = ~(;f8 (x)- ax) are represented by the m edium bold corresponden ce in 

their resp ective figures, and aA*(x) = ~('lj;A(x) -ax) and a8 *(x) = b('l/J8 (x)- ax), 

the consumption policies for Equation (2. 13) , arc represented by the heavy bold 

correspondence. 

Assume that the threshold level in environment B , x8 , is less than the threshold 

level in environment A, XA. In p articular , suppose that x* < x 8 < x* whereas 

x* < x* < xA, as illustrated in the Figure 2.3 above. In this case, once the addictive 

level that is activated in environment A reaches the threshold level, xA, the agent will 

continue consuming the addictive good, and the addiction level will converge to the 

higher steady state xA. On the other h and, when the agent realizes the trne tolerance 

function in environment B, the agent will essentially quit her addiction in this state 

of the world. 

In this example, there a re four possible outcomes. One outcome is low consump

tion of the addictive good, regardless of the environment, which corresponds to the 

no-addiction steady state in the SE model. Another outcom e is high consumption 

of the addictive good, regardless of the state of the world , which corresponds to the 

addiction steady st a t e in the SE Model. The last two outcomes involve high con

sumption of the addictive good in on e st ate of the world, but not the other. 

The two outcomes that result in addiction in one environment but not the other 

are the outcom es that can not occur in the models such as those of B-M and 0-Z, 

but they arc essential to capturing the pattern of quitting and relapsing that is so 

prevalent. The agent behaves as if she has quit her addiction in Environment B 
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(a rehabilitation program, for example), but once she returns to Environment A (a 

neighborhood where she frequently consnmed the addictive good), she continues to 

consume. Notice that there are other interpretations of these ontcomes. For example, 

consider binge behavior. "Bingeing" is characterized by periods of high consnmption 

alternating with periods of abstinence. Cocaine addiction is characterized by binge 

behavior (see for example, Gawin, 1991). It is not uncommon for cocaine addicts to 

fnnction normally throughout the working day or week, and then to consume high 

doses of cocaine after working hours or on weekends. In terms of the model, in the 

working or office environment, the agent is at the lower of the two steady states, 

the one associated with no addiction. In the after-hours or weekend environment, 

however, the agent is at the addiction steady state. 

These ontcomes that correspond to high consnmption m one environment bnt 

not the other demonstrate how environment can come to have a very real impact on 

behavior even thongh utility and all exogenons variables, other than threshold levels, 

are constant across environments. Discovery of the true consequences of snbstance 

nse early on implies that it is optimal or "rational" for the agent to qnit nsing the 

snbstance, and therefore, consnme very little, or none, of the snbstance. In the other 

environment, realization of the true conseqnences when it is "too late" implies that 

the optimal or "rational" consumption path for the agent leads to addiction. However, 

notice that because preferences are constant across environments, if preferences are 

snch that the agent chooses to qnit in one environment, then if consnmption in the 

other environment converges to the addiction steady state, the agent "regrets" this 
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addiction. If the agent had known her true preferen ces, she would be at the lower 

steady s ta t e regardless of environment, where utili ty is higher than at the addiction 

steady s ta te . 

One interpretation of th ese outcomes might b e t h a t t he agent chooses to quit in 

one environment, but , in the other environment , h e chooses to continue his addiction . 

This interpretation seems contrary to observation of ad dicts who seek trea tm ent . 

Apparently, they would like to qui t regardless of environment. A m ore realistic inter-

pretation of the b eh avior generated by the m odel is t ha t the agent chooses to qui t in 

one environment , but finds it too pa inful to quit in t he other. However , if possible, 

he would seek t o avoid the "addiction" environment, because his u t ility is higher in 

the environment in which he has quit . For example, m any recovery programs advo-

cate elimina ting the "addiction" environment altogther , if possible (Frawley, 1988). 

Although the environment is exogenously determined in t his model, an extension to 

allow for endogenous d eterminat ion of t he m odel could predict such b ehavior. 

T he agent in this model essentia lly b eh aves as if h e has two p ersonalities. 7 One 

p ersonality corresponds to environment A, while the other corresp onds to environ-

ment B. The consumption decisions that one p erson ality makes do not affect th e 

other , and therefore each personality has u t ility tha t is separ at e and indep endent of 

the other . If the agent 's b eh avior approaches the outcome where his consumption 

of the addictive good is high in one environment but low in t he other , then his two 
7T h c dual person ality that I describe here differs from the typical "divided self" in the literature 

where agents with self control problems are modelled as having multiple selves. One (or more) 
selves are myopic, and one (or more) selves a rc more forward looking. In t his model, bo th selves a re 
forward looking, but uncon cerned with the u tili ty of t he other. See, for exam ple, Winston (1980), 
T haler and Shefrin (1981) for applications to addiction. 
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personalities can be interpreted as one that is operational when craving strikes, and 

another that is operational at all other times. 

2.5 Learning and Tolerance 

2 .5. 1 G radual Learning 

As pointed out in Section 3.1 of this chapter , the agent's assumed process of learning 

the trne tolerance function is somewhat simplistic. Suppose instead that the agent 

gradually learns the trne tolerance function, v (a, x). As an additional modification to 

the original model, assume that the perceived tolerance function is not constant across 

environments. For example, the functional form may b e constant across environments, 

but the parameters are not. 

The agent initially b elieves that the tolerance function in environment j is 1J]0 (a, x ), 

where the value 1/J0 (a, Xb) = vJ (a , xb) . 

Every p eriod in which the environment is j, the agent experiences the trne toler

ance or craving associated with his addiction level and updates his perceived tolerance 

function associated with environment j in such a way that the p erceived tolerance 

function and the trne tolerance function are equal for all previously realized (a, x) 

pairs. That is, 

vjt (a , x) = v(a, x) 

for all (a ,x) = (ai,x{) , Vi ::; t such that w i = j. 

Las tly, assume that 1J]t(a , x) satisfy all the assumptions on v. Figure 2.4 provides 
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- --. ---~1( ) -.. __ v a,x 

Figure 2.4: An example of gradual learning of the tolerance function 

an example in which there is only one environment, and a 1 = a 2 = a3 . 

Note that under this sort of learning, in each period, the agent behaves as if her 

p erceived tolerance function at that time is the true tolerance function. At each time 

t, the agent believes that his lifetime utility maximization problem is: 

00 

max EtL 
{ af ,afl ,cAt ,ctB } oo 

't = t i= t 

(2.14) 

Therefore, the agent's problem at time t can be written as a stationary Bellman 
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equation: 

max f-1, [u(y- paA' a A) + VAt(aA ' XA) + ovt( axA + (3aA ' x 8
)] (2.15) 

aA,aB 

+ (1- f.-t) [u(y- pa8 ) a8 ) + v8 t(a8
' x 8

) + ovt(xA ) ax8 + (3a8
)] 

and the agent 's behavior every period is qualitatively similar to that of the agent 

with th e simple learning process u sed in the bulk of this paper. That is, the Theorem 

of the Maximum together with the assumptions on utility guarantee the existence 

and uniqueness of vt(xA) x 8 ). As before, because utility is separable with respect to 

environments, the value function can be written as the weighted sum of two separate, 

environment-specific value functions: 

Proposition 4 

where WJt(xlb = 0 is the solution to 

(2. 16) 

for j =A, B. 

Given the environment-specific value functions, wAt(x) and W 8 t(x), we can again 

characterize the optimal policy correspondence with t he following Proposition: 

Proposition 5 The optimal stock evolutions associated with the Bellman Equations 
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gwen by Equations ( 2. 16), can each be characterized as follows: (i) every optimal 

path is a monotonic sequence; (ii) any optimal path converges to a steady state; and 

(iii) there exists exactly one critical level between any two consecutive stable steady 

states. 

In this setting, depending on the factors that determine the cri tical values, the 

agent may choose to quit (or relapse) in any period, not simply in the one p eriod in 

which the threshold is reach ed , as in the simple learning case. Therefore, even though 

the agent's one-period behavior m ay b e the same as in the simple learning case, her 

dynamic behavior m ay be substantially richer. 

As a simple example in the single environment setting, consider Figure 2.5, in 

which the tolerance function takes the func tional form v(a, x) = -!xX + laxax. Ad

ditionally, assume that the agent knows the functional form, but does n ot know lx or 

lax · In p articular, suppose the true tolerance function is v(a, x) = - 6x + 5.6ax but 

the agent 's initial perceived tolerance function is v0 (a , x ) = -5.5x + 5.5ax. Suppose 

x0 = 0.85. Given the agent's perceived tolerance function, his optimal consumption 

is ao = 0.72 , which implies x 1 = 1.14. The agent observes the realized valu e of the 

actual tolerance function, and upda tes his perceived toler ance function accordingly. 

Suppose v1 (a , x) = -5.93x + 5.5ax. Then his optimal consumption is a 1 = 0.80. At 

this point, after observing two realizations of the true toleran ce process, the agent ex

actly identifies both parameters of the true tolerance function, and follows the optimal 

con sumption path that results from the true problem. 
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2.5.2 A More Complete Model of Learning and Beliefs 

As m entioned above, under this sort of learning, the agent b ehaves in each period 

as if her p erceived tolerance function at that time is the true tolerance function . A 

rich er m odel would include agents who realize tha t their p erceived tolerance function 

is simply a belief about the true tolerance function and who know how their beliefs 

will b e updated in the future. 

Consider a more gen era l model of learning, in which agents upda t e their percep-

tions of the true toler ance func tion. Suppose that the agent knows the true function al 

form of the tolerance function , but does not know all the p aram et ers of the true tal-

erance function. Let 1 denot e the vector of unknown parameters, and write the t rue 

t olerance function as v (a, x, 1). As b efore, assume tha t the p erceived tolerance func-

t ion varies across environments. In environment j , the agent h as some initial belief 

on 1, denoted by ::Y6, and upda t es ::Y{ according to some function g that is assumed to 

b e twice continuously differentiable in b oth its a rguments 

- j (-j J) lt+ l = g It , I 

The updated b eliefs depend not only on last period 's b eliefs, bnt also on any knowl-

ed ge having to do with the trne p aram et er set . For exam ple , a t time t in environment 

j, the agent knows the val11e of v (a{, x{ , 1), and 11ses this information to 11 pdate her 

b eliefs. 

At time t , if the environment is A, the agent's belief ::Y/! d ocs n ot evolve: ::Yf'!t. 1 = ::Yt8 . 
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Likewise, if the environment is B, the agent's b elief -;y~ does not evolve. The mini-

mum number of periods in environment j for the agent to realize the true tolerance 

function is eqnal to the number of free parameters, assuming that he observes the 

value v(ai, x{, 1'j) at timet. The time it takes for an agent to realize the true toler-

ance fnnction is increasing in the degree of persistence of past beliefs. The perceived 

tolerance function is also written as a function of t he perceived parameters: v(a, x, -;::y). 

As an example, assume as before that the tolerance function is linear in a and 

x. That is, suppose v(a, x, 1') = 1'axax- "fxX. Now suppose that 1'ax is known to the 

agent, bnt 1'x is not . The agent has an initial belief on 1' in environment A , denoted 

as -;::yt . Suppose that the agent's initia l beliefs have some degree of persistence and 

every period in which he is in environmen t A, he updates his belief on 1' according to 

this simple updating function: 

-A - A ( ) 1't+l = P1't + 1 - p 1' 

In this case, if p = 1, the agent never updates his belief. He is cons tantly surprised 

by his realized utility. If p = 0, the agent updates his beliefs r ight away, and realizes 

the true tolerance function after the first period. 

The functiona l equation for the genera l problem is given by 

~a~ ,U [u(y- paA, aA) + V (aA, XA, -;::yA ) + 8V(axA + {3aA, x 8
, g (-;::y A, 1') , -;y 13

)] 
a ,a 
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As before, the separability of utility with respect. to the addiction levels as well 

the beliefs about. the trnc tolerance fnnction allows the valne function to b e written 

as the snm of two environment-sp ecific valne functions . 

Proposition 6 

f.L A - A - 6 f.L 1 - f.L B - B - 6 ( 1 - f.L) 
V(xA,xB ,::vA,;::;B )= W( x "'16 )+ W (x "' 16- ) 

I I 1 - 6(1 - f.L) ' I = 1 - 6(1 - f.L) 1 - 6f.L ' I - 1 - 6f.L 

where W(x, :::YI6 = ~) is the solution to 

vV(x, :::Y) =max [u(y- pa, a)+ v (a , x , :::Y) + ~W(ax + f3a, g (:::Y, !))] 
a 

Once again, the assumptions on utility and the function g(-) and the Theorem of 

the fviaximum en sure the exist ence, uniqueness, and differentiability of W (x , :::Y), as 

well as the existence of a non-empty upper semi-continuous policy correspondences: 

Unfortunately, without. additional restrictions on the utility or tolerance functions, 

the optimal policy correspondences ), A ( x), ), 8 ( x ) can not. be fnrt.hcr characterized. 
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2.6 Direct ions for Future Research 

Clearly, there are many interesting extensions and applications of the model. A few 

are described below. 

2 .6 .1 Spillover in Addiction Lev e ls 

In general, tolerance is environment-specific, but there may be som e spillover of tol-

erance to other environments. For example, in the overdose s tudies of Siegel et al. 

(1982), exp erienced rats who were injected with heroin in an unfamiliar environment 

h ad a lower rate of overdose than rats who were completely inexperienced with heroin. 

Consider the basic model, but with the following change to ins tantaneous utility. 

Utility d epends on the addiction level associa ted with the present environment, as 

before. However , the addiction levels associated with the other non-present environ-

ments a lso have minor impact on the utility function. 

Suppose that the state of the world at time t is Wt = j, j E {A , B}. The addiction 

level associated with environment k -=f j has a minor effect on utility. Before the 

agent realizes the true tolerance function: 

and after the agent realizes the true tolerance function : 

U(dr,a{ , xi,x~) = u(c1_,a{) + v(af,xi + ax~) 
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where a E [0, 1]. 

For ease of exposition, I will work with only the actnal problem to the individual. 

The resnlts are the same for the problem that the individual mistakenly perceives 

that he must solve. 

Again, begin by con sidering the first order conditions to the individual's problem. 

In environment. A , 

i = l 
<Xl 

+ L (1 - 11) biai-1a/3v2(af+i> xf+i + a xt+i) (2.17) 
i = l 

and in environment B, 

<Xl 

( B B)+ ~ s:i i-1/3 ( B B + A ) pu1 y - pat , at L 11u a v2 at+i , x t+i ax t+i 
i=l 

<Xl 

+ L(l - 11)biai- laf3v2 (at+i> xt+i + axf+J (2.18) 
i= l 

The spillover in addiction levels has two effects that are not present. in the case with 

no spillover. First, the addiction level associated with the non-present. environment 

enters directly into the tolerance fnnction . Therefore, as the amount or strength of 

the spillover (a) increases, marginal ntili ty from consmnption of the addictive good 

is weakly increasing. Second, the agent realizes that cnrrent consumption will h ave 

an effect not only on the periods in which the environment is the same as the cnrrent 

environment, bnt also on the periods in which the environment is different. Hence, 
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the "full cost" of consuming the addictive good is also increasing in a. 

Under this framework, the Bellman eqnation to the individual 's problem is 

(2.19) 

When a = 0, the aetna! problem that the individual must solve reduces to that 

given by Equation (2.2). First order conditions (2.17) and (2.18) reduce to (2.10) and 

(2.11) and Equation (2.19) reduces to Bellman Equation (2.13). 

At the other extreme, when a = 1, the problem is essentially the same problem 

as that given in theSE Model with Bellman eqnation given by (2.7).8 In this case, 

optimal consumption is independent of the environment. 

Without the separability of ntility with respect to environments, the value function 

can not be written as the sum of two separate value functions as in Proposition 2. 

However , Equation (2.19) can be re-written as 

S(xA,xB) = J-L [f(xA,xB)] + (1- J-L) [g(xA,xB)] (2.20) 
--~------~--~-------------

8Let :r = x 1 + x0 . Then, because preferences are the same, regardless of environment, the only 
difference between this problem and that of the SE ?dodd is in the updating of the consumption 
stock. 
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where 

and 

The problem to the individual when the environment is A is given by J(xA , xB ), 

and the problem to the individual when the environment is B is given by g(xA , x 8). 

Again, the agent's consumption problem can be viewed as a problem of two sepa-

rate personalities. Unlike the case with no spillover, however , the dual personalities in 

this case are intertwined. As O" increases, the separation between the two p ersonalities 

decreases. 

More work is needed in this area in order to characterize optimal b ehavior of an 

agent for whom there is spillover of addiction levels. 

2.6.2 Endogenous Environments 

Consider the case in which the probability of one of the environments is increasing 

in the addiction level associated with that environment. For example, consider an 

agent who can consume alcohol at home or at the neighborhood bar. Initially, h e 
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consumes more alcohol at the bar than at home. As he consumes more alcohol, his 

visits to the bar become more frequent. In this case, the probability of environment 

A , J.L , is an increasing function of the addiction level associated with that environment: 

J.L'(xA) 2: 0. Although the full cost of consuming the addictive good in environment A 

is greater when J.L'(xA) 2: 0 than when J.L'(xA) = 0, if the agent chooses to consume the 

good in environment A , the endogenous determination of environment may "speed 

up" the addiction process. As the agent's consumption increases, not only does 

the strength of future craving increase when he is in environment A, but also the 

probability that he will be in environment A also increases. 

2.6.3 P eer E ffects 

The model with cues can serve as a framework to study peer effects on consumption 

of addictive goods. For example, among adolescents, the peer group may be a strong 

determinant of the decision to b egin consuming an addictive good: 

The one feature that is consistent in every clinical case is the presence 

of peer-drug associations. The young person's pattern of drug use is 

matched, almost point by point by shared drug use with his or her "gang," 

bes t friend, and/or boyfriend/girlfriend. (Oetting and Beauvais 1988, p. 

156) . 

The model d eveloped in this paper presents a way to generate "neighborhoods" 

or "pockets" of addictive substance users without assuming an explicit preference for 

p eer or social acceptance. For example, suppose one environment is the presence of a 
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friend or gronp of friends. Then using the interaction among this gronp, it is possible 

to solve for conditions nnder which the entire group chooses to consnme the addictive 

good when they are together. Alternatively, there are conditions under which none 

of the group chooses to consume the addictive good. 

2 .6.4 Advertis ing 

Another application of this model is the stndy of how firms might be able to manip

nlate environments in order to affect demand. Typical advertisements convey very 

little information abont such things as price and qnality. One explanation is that 

firms are trying to induce craving for goods by re-creating environments that arc 

associated with past consnmption of these goods. For example, advertisements for 

food, drink, or alcohol may try to indncc craving by simply showing the product 

or showing others enjoying their product. These phenomena may be captured by a 

generalization of the present model to one of goods that display some degree of habit 

formation. 

2 .6.5 Policy Implications 

The model with environmental cnes demonstrates the problem that cncs produced 

by other agents may impose negative externalities on the addict or recovering addict. 

Recall that if preferences are such that an agent would choose to qnit in one environ

ment bnt not the other, she "regrets" her addiction in that environment. Her ntility 

is higher in time periods in which she is in the environment in which she docs not 
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focl addicted than when she is in the environment in which she is addicted. Cues 

produced by others that place her in the environment in whid 1 she is addicted is 

therefore a negative externality for her. 

From a policy p erspective, it may be possible to increase welfare to agents who 

are either addicts or recovering addicts by limiting their cxposnre to environmental 

cues associated with consumption of addictive goods. For example, smoking bans 

in public places may serve not only to provide clean air to nonsmokers, but also to 

reduce the temptation of t hose who arc trying to quit smoking. 

Lastly, the model also implies that drug education can a lso be wclfaro-enhancing, 

because drug education can inform agents abou t their true t olerance function. 

2.7 Conclusion 

The relapse rate among abusers of addictive substances is strikingly high . This phe

nomenon has proven to be an intricate problem for addiction researchers from all 

fields. Previous economic research on addiction , however, h as not fully utilized find

ings from oth er disciplines. Studies on how people misjudge the severity of fu tnre 

consequences of addictive substance usc expla in why people might begin to use an 

addictive subs tance that they eventually choose to quit. Research on conditioned 

responses offers an explanation for why addicts who decide to stop using addictive 

substances b egin to consume again , even if, at that point, they no longer have mis

perceptions abou t the negative effects of consumption. 

In this paper, I have sh own that agents wh o misperccive the futmc consequences 
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of using addic tive substances m ay fa ll into this pa ttern of qnitting and relapse. This 

occnrs becanse preferences and environmental cnes becom e intertwined in snch a way 

th a t craving can be indnced simply by the presence of environm ental cues. 
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Chapter 3 An Empirical Test of Rational 

Addiction: Consumer Response to Price and 

Policy Changes 

3.1 Introduction 

Rational choice models of addiction describe perfectly rational, forward looking agents 

who may develop a harmful addiction. The Becker and Mmphy (1998) framework 

is an infinite horizon continuous t ime problem where utility is a function of current 

consumption of addictive and non-addictive goods, as well a.s a stock of past consump

tion of the addictive good. The key to this model lies in the relaxation of the usual 

assumption of intertemporal separabili ty. Consumption patterns consistent with ad

diction can result from forward-looking utility maximization with stable preferences; 

that is, the functional form of utility is invariant over time. In this model, agents fully 

anticipate the effects of their current consumption of a (harmfully) addictive good on 

futme utility. The model predicts that cmrent consumption of an addictive good is 

increasing in past consumption because past consumption increases current marginal 

utility of consumption. Fmthermore, if the agent is rational and forward looking, 

then current consumption should also be increasing in expected future consumption. 

In the previous chapter, I point out that the rational model omits two prevalent 
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features of addiction- misperception by agents of the future consequenres of consum-

ing the addictive good and the pattern of quitting and relapse that is frequently seen 

in addicts. Drawing on evidence from addiction research in other fields, I develop 

a behavioral model of addiction that captures these two features of addiction. Re

lated economic research includes the work of Laibson (1999) , O'Donoghue and Rabin 

(1999), and Orphanides and Zervos (1995). 

Thus far , Becker and Murphy's rational model h as been the st andard model of 

addiction in economics. There have been a few empirical tests of the rational addic

tion model that p ertain to a variety of addictive subs tances and activities, such as 

cocaine (Grossman and Chaloupka, 1998), alcohol (Grossman, Chaloupka, and Sirta

lan, 1998), and casino gambling (Nichols, 1999) . A few papers use data on cigarette 

consumption to conduct empirical tests of the rational addiction model. Examples 

include Becker, Grossman and Murphy (1994), Chaloupka (1991) K eeler , Hu , Barnett 

and Manning (1993), and Grnber and Koszegi (1999). 

Becker, Grossman, and Murphy (BGM) use state level annual cigarette tax re

ceipts from 1955 through 1985 to mcasnre per capita consumption of cigarettes. They 

find that cigarettes are addictive. That is, current consumption is increasing in past 

con sumption. Furthermore, addicts are forward looking, as opposed to myopic, in 

that current consumption is found to be increasing in fu t ure consumption. Lastly, 

they find that long-run responses to permanent price ch anges arc a lmost twice as 

large as short nm responses. 

A serious problem with u sing cigarette and tobacco tax receipts to measure con-
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sumpt.ion is that., for most states, state-level tobacco taxes are paid by tobacco dis-

tributors, rather than tobacco consumers. For example, according to the California 

State Board of Equalization, the department that oversees cigarette and tobacco tax 

collections: "The [cigarette] tax and [cigarette and tobacco products] surtax are paid 

by distributors, who purchase tax stamps from banks and affix them to each package 

of cigarettes before distribution. Distributors can be reimbursed for these taxes by 

the businesses to whom they sell the cigarettes, and the businesses include the taxes 

as part. of the retail selling price of the cigarettes" (Cigarette and Tobacco Products 

Tax Law, 1998). Furthermore, cigarette distributors do not necessarily hold the same 

number of packs of cigarettes and number of stamps in st,ock. Therefore, state-paid 

tobacco taxes more accurately reflect distributors ' demand for cigarette and tobacco 

tax stamps, rather than consumer demand for cigarettes. Using state tax receipt data 

can therefore lead to mistaken inferences, as I discuss below. 

Chaloupka (1991) tests the rational model using data from the second National 

Health and Nutrition Examination Snrvey, which includes 28,000 respondents and 

covers the time p eriod 1976-1980. Unlike the aggregate data that. BGM use, these data 

describe the consumption of individuals. Like BGl\I, Chaloupka finds that. cigarettes 

are addictive and that individuals are not myopic. That is, he finds that both past 

and future consumption have positive effects on current consumption, although he 

finds long-run price elasticities that arc about half those of BGM. Chaloupka also 

estimates separate cigarett0 demand equations for subsamplcs based on educational 

attainment and age. HC' finds that for less educated and younger individuals, thC' 
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coefficient on fnture consumption is not significantly different from zero. Individua ls 

in these groups b ehave more myopically than do more edncated or older individnals . 

To test the rational model , at least three consecutive p eriods of da ta a re reqnired. 

However , the survey da ta tha t Chaloupka nses include only two consecutive p eriods . 

Therefore, for fntnre consnmption , he uses wha t respondents rep ort as curren t con

snmption. For current consnmption , he uses reported one year lagged consnmption. 

Lastly, for past consnmption, he nses reported maximnm average daily quantity for 

those who b egan smoking more than two years ago ; otherwise past consnmption is 

recorded as zero. In all likelihood , this measm ement error is not indep endently and 

identically distributed across resp ondents. Therefore, the resulting estima tes may b e 

biased in an unanticipated m anner. 

Keeler , et a l. (1993) include an analysis of the ra tiona l model of addiction in their 

study of taxation and regula tion . T hey nse cigarette t ax receipts for the sta t e of Cali

fornia as t he m easure of consnmption. Unlike the previons stndies, they acknowledge 

and attempt to correct for serial correla tion in th e ra tional model. As in the pre-

vions studies, they find a p ositive and significant coefficient on fnture consumption. 

However, they find a negative coefficien t on lagged consnmption, which is difficult to 

reconcile with the ra tiona l model. Their finding hints tha t the BGM implem en tation 

of the rational m odel is n ot very robnst to different econometric specifications, as 

Gruber and Koszegi (1999) explicit ly discuss in their p ap er. 

Gruber and Koszegi h ave a thorough critiqne of the m ethods n sed by BGM and 

Chalon pka . In particula r , they find that the BGM resnlts are ext remely sensitive to 
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different specifications of the model. They replicate the BGM analysis using a similar 

dataset of state level tax receipt data, and they find similar results. However , when 

Grnber and Koszegi attempt to control for any state-specific fixed effects, they find 

that the coefficient on future consumption is no longer significant. 

To provide a better test of forward-looking behavior, Gruber and Koszegi use 

the tax receipt data, as well as Vital Statistics Natality Data, to study the effect on 

consumption of announced tax increases that are not yet effective. This latter dataset 

describes the smoking behavior of expectant mothers. As predicted by the rational 

model, they find that consumption decreases during the period between enactment 

and implementation of tax hikes. 

The main problem with the dataset that Gruber and Koszegi use is that it is not 

representative of the population as a whole. Expectant mothers who smoke likely 

have lower discount rates than the average consumer. Furthermore, any concern 

that survey respondents may deny or downplay their consumption of su ch goods as 

cigarettes, alcohol, or illegal drugs due to socia l conformity should be heightened 

when the survey respondents a re pregnant women. 

The dataset that I use avoids the previously mentioned data problems. The data, 

compiled by Information Resources Incorporated from grocery store scanner data, 

describe weekly sales in 20 markets that span the states of California, Arizona, Col

orado, Nevada, and Washington. 

The previous tests of the rational addiction model have focused on the model's 

predictions concerning consumption responses to fntme and past price changes. This 
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essay also allows an empirical test of the prediction that the response to an anticipated 

price change differs from the response to an unanticipated price change. 

In particular, I consider the consumption effects of three institutional changes that 

occur during the time period 1996 through 1999. The first is the ban on smoking 

in bars and taverns in California as part of the state's comprehensive "Smoke-Free 

Workplace" law. I argue that this is an anticipated permanent shock to future con-

sumption. 

Secondly, as a result of the settlement that the five largest tobacco companies 

signed with 46 states in November 1998, these companies raised wholesale tobacco 

prices by 45 cents per pack, the largest cigarette price increase in history. Although 

analysts, and perhaps smokers, may have predicted a price increase contingent on 

settlement of the litigation, it was not clear when a settlement would occur and 

what the terms of the settlement would be. Tobacco companies announced the price 

increase the same day that they signed the settlement. 

Lastly, in the November 1998 election, California voters approved a 50 cent tax 

increase on cigarettes. This tax increase was anticipated. The increase was not 

effective until January 1, 1999, but the official outcome of the election was announced 

in mid-November. The price increase due to the tobacco settlement occurred during 

the period between the approval of this tax and its implementation. Fortunately, for 

purposes of econometric identification, the tax increase applied to California only, 

whereas the tobacco settlement price increase affected the whole country. Therefore, 

I can study these two events separately. 
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The next section gives additional details on these three policy changes. Section 3 

lays ont the theoretical model of Becker and Murphy and discusses some of the econo

metric issues that arise in estimation of the model. Section 4 provides a description 

of the data. 

Section 5 presents the empirical results. I begin by attempting to replicate the 

BGM results using the grocery store scanner data. Like BGM, I find that the co

efficients on lagged and lead consumption are positive and significant. An attempt 

to correct for fixed trends in the panel data, however , reveals the sensitivity of the 

results to the econometric specification. While the results are not inconsistent with 

the rationa l model, they arc difficult to interpret within the context of the rational 

framework. 

As an additional modification, I assume that consumers forecast prices using 

lagged prices and other available information, rather than assume that they can per

fectly predict future prices and consumption. While the results of this analysis arc 

not very different from the previous results, the price forecast results raise questions 

about the validity of the methods used in the majority of the empirical studies of 

ra tional addiction. 

Next, I consider the effects of the policy changes described in Section 2. I find that 

the ban on smoking in bars and restaurants has no effect on consumption. Again, the 

analysis of the smoking ban raises some issues with the econometric sp ecification of the 

rational model. Lastly, I compare the effects of the unanticipated price increase dne 

to the tobacco settlem ent and the anticipated Proposition 10 tax increase. Contrary 
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to the r ational model, I find that the consumption response to both price changes are 

simila r. 

Section 6 discusses some methodological issues, measurement. error and serial cor-

relation, that the results raise and Section 7 concludes. 

3.2 Institutional Background 

3.2.1 California Smoke-Free W orkp lace Law 

This paper considers the effects of California's "Smoke-Free Workplace" Law. As-

sembly Bill 13, introduced to tlw Assembly in December, 1992, and chaptered in 

July, 1994, added to the Labor Code a section prohibiting smoking of tobacco in any 

enclosed spaces of a workplace. All workplaces, with some exceptions which include 

bars and taverns, were to comply immediately. 1 Bars and taverns were to begin com-

pliance on January 1, 1997. However, assembly Bill 3037, chaptcred in September, 

1996, amended the Labor Code section to extend from January 1, 1997 to January 

1, 1998 the elate of compliance by bars and taverns. 

The California ban on smoking in bars and taverns provides a natura l test for 

the predictions of the rational model. This ban acts as a permanent shock to future 

con sumption for smokers. Consider the rational, forward-looking addict for whom 

this shock is prohibitive enough that he would quit smoking once the ban is in effect. 
1Therc arc a few workplaces which arc exempted from the smoke-free workplace laws such as 

private residences; employers with a total of five or fewer employees, with some a dditional conditions; 
or retail or wholesale tobacco shops and private smokers' lounges. Note that "retail or who lesale 
tobacco shop" is defined as "any business establishment the main purpose of which is the sale of 
tobacco products," (Cali fornia Labor Code Section 64.04.5) and therefore docs not include bars or 
taverns which a lso sell tobacco products. 
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This individnal shonld begin to decrease consnmption after the p assage of the law bnt 

prior to the date of compliance. The smoking b an is not a moneta ry price increase; 

therefore, t here is no need t o worry abont individnals who might stockpile cigarettes 

before the implem entation d a te, as could be a problem in an analysis of an anticipated 

tax or price increase. 

3.2.2 California Proposition 10 Tax Increase 

In th e November 1998 election, California voters passed Proposition 10, a measure 

tha t wonld increase tobacco taxes by 50 cents on J annary 1, 1999, to finance early 

childhood development program s. Proposition 10 passed with 50.4% of the vote, 

m aking it one of the n arrowest victories in California referenda history. 

I argn e tha t this tax increase to smokers is an anticipated price ch ange. The final 

on tcome for this prop osition was annonnced on November 12, 1998, yet the tax hike 

would not go into effect until J annary 1, 1999. Furthermore , this proposition received 

extensive press coverage not only because the outcom e was so close, but a lso b ecause 

Prop osit ion 10 was drafted by Hollywood actor , director and producer Rob R einer , 

who a lso helped finan ce the campaign. T here was also drama tic sp ending on the "No 

on 10" campaign: Tob acco companies a lone sp ent over $30 m illion . 

3.2.3 Tobacco Litigation Settlement Price Increase 

On November 23 , 1998, the five largest tobacco companies in the Unites Sta tes set

tled a lawsuit filed by 46 st a tes, th e District of Columbia , and five U .S. territories. 
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The settlement called for tobacco companies to pay $206 billion dollars to reimburse 

states for providing health care to smokers. That same day, the three largest tobacco 

companies announced a 45 cent per pack price increase (Los Angeles Times, 1998). 

When compared to the Proposition 10 tax increase to be implemented on Jan

uary 1, 1999, this price increase seems mnch less likely to h ave been anticipated by 

consmners. Althongh analysts may have predicted a price increase if the tobacco 

companies and states were to settle, they did not predict such a large price increase, 

in part because this was the largest one t ime price incrca.<;e in history. 

In addition, the settlement occmrcd quite rapidly. The terms of the settlement 

were not formulated until November 14, nine days before the price hike, and the 

states signed the settlement November 20. Fnrthermore, some stores raised prices 

right away, while other stores waited unt il distributors passed the price increase on 

to them before raising prices (Howe, 1998). 

3.3 Theoretical Model 

In the rational model of Becker and Mmphy (1988), period t ntility depends on the 

current consumption of the addictive consumption good, at, cnrrent consumption of 

the non-addictive consnmption good , Ct, and past consnmption of the addictive good 

as snmmarized by Xt . In their empirical test of the rational model, Becker, Grossman, 

and Murphy (1994) add an error term, et , which is also referred to as the "impact of 

nnmeasm ed life-cycle variables on ntility" (p. 398). Instantaneons ntilit.y is given by 

u(at, Ct, x,,, et), where the utility fnnction u(-) is concave in all its argnments. 
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Let the price of the addictive good at time t be Pt , with c1 as numeraire. If the 

agent's discount rate is 6, the agent's maximization problem nuder perfect foresight 

is: 

subject to 

00 

max L 6t- 1u(at, Ct, Xt, et) 
t=l 

00 

L 6t- l (ct + Ptat) = A 0 

t = l 

where x 0 , initial consnmption stock, is given exogenously and A0 , the present value 

of lifetime wealth, is assumed constant and exogenous. 

Let ..\ be the Lagrange multiplier on the budget constraint. Then the first order 

conditions associated with the maximization problem are: 

Ut(at, Ct,Xt,et) + L 61 aj-I,Bu3(at+j,Ct+j , Xt+j,et+j) .APt 
j = l 

Becker, Grossman, and Murphy assume a quadratic ntility function. Fmthermore, 

they assume that past consumption can be summarized by last. period's consumption. 

That. is, Xt = at- l· Under these assumptions, we get. t.he following demand function 

for the addictive good: 

(3.1) 

If t.he agent. can perfectly forecast. her future consumption, as is implicitly assmned 
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by BGM, then Equation (3.1) gives the agent's demand function. How0vcr, if the 

agent can not perfectly predict h er future consumption, then the demand funct ion 

can be rewritten as: 

where <I>t is the information available to the agent at time t 2 . Such information can 

include the history of past prices, history of past consumption, and any price or tax 

change annmmcements. 

According to this model, past consumption of the addictive good increases current 

consumption if (h > 0. That is, the addictive good is trnly addictive if fh is positive 

and significant. If the good is addictive and the agent is forward looking, current 

consumption will depend on futmc consumption; that is 802 > 0. 

A serious problem for estimating either Equation (3.1) or Equation (3.2) is the en-

dogenci ty of lagged consumption and lead consumption (actual or expected). Current 

consumption (at) is a function of lagged consumption ( at-d and lead consumption 

(at+d, while lagged consumption (at_1) is a function of at and at_2 . Likewise, at+l 

is a function of at and at.+l· Therefore, these two right-hand side variables, at- l and 

at+1 , are likely h1ghly correlated with the error, et. Least squares estimation would 

lead to inconsistent estimates. 

Previous empirical studies have attempted to find instrnmcnts for lead and lagged 

consumption. The most common instruments arc lags and leads of prices. Lagged 
2T his simple relationship between Equations (3.1) and (3.2) a rises because of the assumption of 

quadratic utility. 
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prices a rc correlated with lagged consnmption, and lead prices are correla ted with lead 

consnmption . Equation (3.1) implies that, at-l and at+l fixed, current consnmption at 

is independent of lagged and lead prices. Unfortnnately, the validity of lagged and lead 

prices as instrnments for lagged and lead consumption relics on stron g assnmptions 

on model specification and measurement errors. 

Lastly, note that current period prices are assnmed to be exogenons. It may be 

that this assnmption is not too problematic during many time periods studied in 

which supply is very elastic at the m arket level. The 45 cent price increase dne to 

the tobacco settlement is clearly an cxogenons price shock during this sample period. 

However , evidence that retail prices rise in advance of an anticipated tax increase 

would indicate otherwise. 

It conld be argued that t he 50 cent tax increase in California is an endogenous 

price change. That is, decreased demand in California would make it easier to pass a 

tax increase. However, as seen in Section 5 below, there is no apparent demand shift 

in California dnring the sample period. In fact, even though there is a downward trend 

in consnmption, consnmption in California is decreasing slower than consumption in 

the other states over the sample period. 

Overall, prices do not appear to be driven by demand shocks. There is lit t le 

weekly variation in prices until the sharp price increase in November , 1998, even 

thongh weekly consumption fluctuates. As discnssed in section 5 below, prices over 

the sample period have a slight npward trend while there is a downward trend in 

consnmption. However, the trend in prices is fairly constant across states, even 
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though the trend in consmnption varies greatly. 

3.4 Data Description 

Information Resources, Inc., Sales Data. The consumption and price data 

employed in this analysis are scanner data obtained from Information Resources In-

corp orated (IRI), a company that specializes in collecting scanner data from various 

grocery stores, drugstores, and convenience stores. 

The unit of observation is the Designated l\ Iarketing Area (Dl\IA) defined by 

Nielsen Media Research. DMAs are mutually exclusive and are defined as "all counties 

whose largest viewing share is given to [television] stations of that same market area" 

(Nielsen l\Iedia Research website http:/ fwww.nielsenmedia.com). Dl'viAs cover all of 

the contiguous states, Hawaii and parts of Alaska. 

The IRI data include weekly sales from January 1, 1996, through May 9, 1999, 

in 20 different markets that. cover California, Arizona, Colorado, Nevada and Wash-

ington.3 Eleven of these DMAs are California markets. IRI provides data on total 

revenues and total units sold in each DMA in each week. The average price of a pack 

of cigarettes within a DMA can then be calculated. Prices include state and federal 

cigarette and tobacco taxes, but do not include any additional state or local retail 

sales tax. As mentioned earlier, state cigarette and tobacco taxes are paid by distrib-

utors, and federal cigarette and tobacco taxes are paid by t he cigarette manufacturer. 
3There arc actually 21 markets that cover the states of California, Arizona, Colorado, Nevada 

and ' Vashington. One of the marke ts, the Grand Junction-l"d ontrose marke t in Colorado, exhibits a 
sharp decr<'asc in sales that starts in the beginning of August 1998. Because it is not clear whether 
this decline is due to a d<'mand shift or a problem with the data collection, I have eliminated this 
market from the analysis. 
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Thus, the calculated price is the average price paid by consumers within a DMA net 

of (i.e., before) sales tax. 

Yearly Dl\IA popnlation estimates through 1998 were obtained from the Polk 

Company, a company that specializes in collecting DMA-level d ata for marketing 

purposes. DMA populations for 1999 are estimated using linear projections based 

on population data from 1995-1998. In order to calculate per capita consumption of 

ciga rettes purchased from the IRI grocery stores, I usc a 52 week moving averag<' of 

yearly population. 

Board of Equalization Tax Receipt Data. In addition , I have collected 

California tobacco tax receipts from the California State Board of Equalization. These 

data allow for comparison between IRI sales data and state tax receipts. 

In order to calculate the BOE per capita consumption variable, I use connty 

population estimates from the Bnrean of Economic Analysis. 

Finally, per capita income data by county from 1996-1997 were obtained from 

the Bnrcan of Economic Analysis. Income for 1998-1999 arc estimated using simple 

linear projections based on income data from 1983-1997. Per capita income used in 

the regressions are 52 wE:'ck moving averages of yearly income. 
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3. 5 Empirical Analysis 

3.5.1 Descriptive Analysis 

The descriptive statistics of the variables used in the analysis arc summarized in Table 

3.1. Per capita cigarette pack consumption in week tis denoted at . The average retail 

price of a cigarette pack in week t is denoted Pt. 

Table 3.1: Descriptive statistics 

variable SOllrCe description mean 
at IRI and Polk weekly per capita consumption (packs) 0.261 

at BOE and BEA CA monthly per capita consumption (packs) 4.311 

Pt IRI price (January 1996 dollars) 1.985 

std dev 
0 .192 

0.679 

0.441 

yt BEA annual income (1000's of 1996 dollars) 20.333 3.290 
Correlation between weekly per capita consumption and real price = -0.404 
Correlation between CA monthly per capita consumption and real price (in CA) - -0.573 

Figures 3.1-3 .2 and Table 3.2 further describe the weekly IRI sales data. 3. 1 

plots the time series of per capita units of cigarette sales, where the data have been 

aggregated to the state level. The time series of average prices by state is plotted in 

Figure 3.2. It is dear that there is a general downward trend in consumption and an 

upward trend in prices. 

Week 105 is the first. week of 1998, when the ban on smoking in bars began. 

Examination of the California series indicates that the ban has no obvious effect on 

cigarette prices and per capita consumption. If anything, the downward trend in 

consmnption appears to slow clown after the implementation of t he ban, a finding 
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that is consistent with forward-looking agents decreasing consumption in advance of 

the implementation. However, the lack of data on consumption prior to the enactment 

of the legislation makes inference difficult. The tobacco settlement was signed by the 

five largest tobacco companies on November 23, 1998, in Week 152. The 45 cent 

per pack price increase was announced the same day. Average prices in some states 

increased immediately (Nevada for example) , while in other states, prices increased 

more slowly (Washington and Colorado, for example). Aside from the general time 

trend, there does not appear to be any significant effect on consumption. Week 157 

is the first week of 1999, when the 50 cent Proposition 10 tax increase went into 

effect. Average prices started to increase prior to the new year, perhaps because 

grocery stores anticipated that consumers might stockpile cigarettes before the new 

tax increase. Indeed, there does appear to be a temporary increase in consumption 

(or sales) prior to week 157. 

Table 3.2 presents average weekly per capita consumption by state over six-month 

intervals. Again,the downward trend in consumption is apparent. 

Table 3.2: Weekly per capita consumption by state and six month interval 
Time period CA AZ co NV WA AZ,CO,NV,WA 

01.01.96-06.30.96 0.200 0.317 0.437 0.299 0.394 0.362 

07.01.96-12.31.96 0.195 0.291 0.429 0.308 0.360 0.347 

01.01.97-06.30.97 0.176 0.252 0.395 0.296 0.326 0.317 

07.01.97-12.31.97 0.177 0.238 0.353 0.264 0.305 0.290 

01.01.98-06.30.98 0.163 0.209 0.303 0.243 0.279 0.259 

07 .01 . 98-12.31.98 0.147 0.183 0.246 0.233 0.217 0.220 

01.01.99-05.09.99 0.113 0.147 0.194 0.186 0.177 0.176 
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IRI sales d ata in California and the Board of Equalization tax receipt data are 

compared in Figure 3.3. The IRI data arc aggregated into monthly sales for easier 

comparison with the BOE data. The IRI and BOE data follow fairly closely, with 

the IRI sales about one-tenth of the BOE tax receipts , until November , 1998.4 Once 

the weekly sales d a ta are aggregated into monthly data, there appears to be no 

stockpiling of cigarettes before the January 1, 1999, tax increase. However , it appears 

as if cigarette distributors are s tockpiling cigarettes (or tax s tamps) from November 

through December 1998. In January 1999, t ax receipts drop sh arply. 

3.5.2 Replication of Becker Grossman Murphy (1994) 

Table 3.3 presents the results from attempts to replicate the BGM analysis using 

various d a t a sources . Recall tha t BGM's analysis focuses on estimation of Equation 

(3 .1). As a basis of comparison, one set of BGM two stage leas t squares estimates 

(2SLS) is reported in Column (i) of the top panel (corresponding to BGM's Table 3 , 

Column (i) on page 406) . To address the problem of endogeneity of lagged and lead 

consumption, they use lagged and lead prices as instruments. Additional regressors 

are full sets of dummy variables for sta t e and year. The reported estimates corresp ond 

to the identified pa rameters of Equa tion (3.1). 

There a re some important distinctions between the da ta set tha t they employ and 
4 This proportion suggests that 90% of the cigarettes sold in California a re sold outside of the 

grocery s tores in the IRI data. 1\Iaintaincd assumpt ions in this analysis arc that variation in grocery 
store purchases with prices (and other variables) is representative of the smoking population and 
that this propor t ion is constant across states and over t ime. However, measured levels of per capi ta 
consumption a re affected by this low proportion because the population used to calculate per capita 
consumption is population of the en t ire market, not the populat ion that shops at those grocery 
sto res. Furthermore, as I discuss later, the data may not capture casual smokers. 
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the data sets that I usc. The first is that BGM nsc annual per capita consumption as 

implied by the state tax receipts. I use weekly per capita cigarette consumption for the 

regressions using the IRI data, and monthly p er capita consumption for the regression 

that uses the BOE tax data. Prices in my data set are expressed as January 1996 

dollars, and weekly or monthly (for IRI and BOE, respectively) incom e is expressed 

as thousands of January 1996 dollars. BGM use hundreds of 1969 dollars for annual 

income and 1969 cents for prices. I use full sets of dummy variables for month, not 

year, for the IRI data analyses. For the BOE analysis, I use a linear time trend 

instead , because there are only 35 observations. Lastly, I do not replicate their use 

of the indices for importing and exporting across stat e lines and for long distance 

smuggling . 5 

The top p anel of Table 3.3 reports 2SLS estimates. Column (ii) presents 2SLS 

estimates using the IRI data. Additional regressors arc dummy variables for state. 

Estimates using the BOE tax receipt data over the time period J anuary 1996-March 

1999 are presented in Column (iii). Lastly, for another comparison with the BOE tax 

receipt results, Column (iv) presents 2SLS estimates using IRI data for the state of 

California only. 

Standard errors are in parentheses below the cstima t.es.6 Lastly, implied short-

nm price elasticities and long-run price elasticities evaluated at the sample means arc 
5 In constructing the long-distance smuggling index, BGl\I assume that states located over 1,000 

miles away from Kentucky, Virginia, and North Carolina do not smuggle. All five states in my 
sample fa ll in this category. The short-distance smuggling index is a function of the difference 
between neighboring states' tobacco and cigarette taxes, which do not vary much , if at all, in my 
dataset. 

6 Although they are the correct standard errors for 2SLS estimates, t hey do not take into account 
the longitudinal nature of the panel data. The true standard errors are likely larger than those 
reported in the table. 
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reported. 7 

The lower panel of Table 3.3 presents results from the first stage regressions. The 

dependent variable is per capita consumption. Regressors include current, lagged 

and lead prices, as well as income. In the second stage, the fitted, rather than actua l, 

values of lagged and lead p er capita consumption a re used. 

Results based on IRI data 

Compare the first two columns. Like BGM, I find that the coefficients on lagged 

and lead consumption a rc both positive and significant. According to the rational 

framework, the positive coefficient on lagged consumption implies that cigarettes are 

addictive and the positive coeffi cient on lead consumption implies that smokers are 

forward looking. The coefficient on lagged consumption is greater t han the coefficient 

on lead consumption, as occurs if the discount r ate is less t han one. 

To assess the rela tionship b etween con sumption and price, focus on estimated 

elasticities, rather than the estimates of the coefficient on price. Otherwise, the 

difference in consumption units (annual vs. weekly vs. monthly) and price units 
7T he short-run price elasticities are calculated as follows: 

dat 83 
dPt 82(1 - (i>I)(¢2) 

and the long-run price elasticities are calcaulated as follows: 

daoo 83 
dP 82(1- ¢1)(¢2- 1) 

where ¢ 1 and ¢2 are given by: 

1 - (1- 48~8)1 
¢ 1 = 282 

1 + (1 - 48~8)1 
¢ 2 = 282 

See BGM Appendix A for derivation. 
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( 1969 cents vs. 1996 dollars) confuses the comparison. 

Comparison between the first two columns reveals that short-run price elasticity 

calculated using the IRI data is much greater than the elasticity that BGM find. In 

fact , consumers represented by the IRI data appear to be over three times as sensitive 

to price as the cigarette distributors represented by the tax r eceipt data that BGM 

use. One possible reason for this difference in response to permanent price changes 

may be the timing of purch ases. The IRI data are weekly, whereas the BGM data arc 

yearly. Another possible reason for the difference in elasticities may be measurement 

error in price in the BGM dataset. The prices used in their analysis a re the retail 

prices paid by consumers, but the consumption variable is distributors' consumption 

of tax stamps. 

Like BGM, I find that long-nm price elasticities are greater t han short-run price 

elasticities. They argue that this relationship lends support to the rational addiction 

m odel. However , the LeChatalicr principle guarantees that all goods, not just addic-

tive goods, are more elastic in the long run than in the short nm. That is, because 

other consumption goods may b e held fixed in the short nm but not in the long run, 

short-run demand elasticities a re lower than long-run demand elasticities. 8 

Lastly, BGM find that the relationship between cigarette consumption and income 

is positive and significant, whereas the coefficient on income in the IRI regression is 

negative and significant . The dummy variables for states control for any interstate 

differences in income. However , because the data a re market-level data, the nega-

tive coefficient on incom e captures intrastate, m arket level differences in income and 
8 See Chapter 3 of Samuelson (1947). 
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consumption. The nPgative coefficient appears to capture the cross-sectional relation-

ship between cigarette consumption and income. Of the total variation in the income 

data, 99.2% is due to variation between markets, whereas only 0.8% is due to varia-

tion within markets, over time. Therefore, the estimated income effect is unlikely to 

be caused by the downward trend of consumption as incomes have risen. 

The BGM data span the years between 1955 and 1985, whereas the IRI data 

is very recent (1996-1999) . The finding of a negative coefficient. on income in the 

analysis that uses the IRI data may support the assertion of Keeler, ct. al. (1993) 

that. during the past 30 years, cigarettes have moved from being a normal good to an 

inferior good. 

Consider the first. stage regression results in the second panel of Table 3.9 The 

coefficients on current, lagged and lead prices all have the expected sign, according 

to the rational addiction model. According t.o Equation (3. 1), lead and lagged prices 

have a negative effect on current consumption b ecause these prices affect. current. 

consumption through lead and lagged consumption, which are not held fixed. 

Results based on BOE data 

The regression results based on the BOE data arc striking. The coefficients on lagged 

and lead consumption are positive, but not. significantly different from zero at con-

ventional levels of significance. These results suggest that, for cigarette distributors, 

cigarettes arc not an addictive good. 
9 T hc first stage regTessions include not only prices. but also all other exogenous variables in the 

model. However , I only report the coefficients on price in Table 3. 
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Price elasticities are much sm aller than those ba._<;cd on the IRI California only 

data rep orted in Column (iv), but they are close to t he price elas ticit ies that BGM 

found (Column (i)) . Cigarette dis tributors appear to be less sensitive to price changes 

than consnmcrs . As m entioned ab ove, one possible reason for the differen ce in price 

elasticity b etween the BOE and IRI California only resnlts may b e the timing of pur

chases. The BOE da ta is m on thly, wh ereas the IRI da ta is weekly. Any int ra-mon th 

resp onse to price ch anges by cigare tte distribntors is not cap t ured. As wit h the BGM 

data, anoth er possible reason for the difference in elasticities may be m easurement 

error in p rice in the BOE d a taset. The prices nsed are the prices paid by consnmers, 

wh ereas the consnmption variable is distribntors' consnmp tion of tax stamps. 

Consider the first stage regression rcsnlts. The coefficien t on cnrrcnt price is neg

a tive, as exp ected. The coefficien t on lagged price is positive b n t sm all in magnitude 

and not significantly different from zero. Lastly, the coefficien t on lead p rice is positive 

and significant. This result is m ost likely led by the last few m onths of t he sample in 

which distributors appear to b e stockpiling cigaret tes in advance of the Prop osition 

10 t ax hike (recall Figure 3.3) . During this time, prices a re rising due t o the tobacco 

settlement, but sales are a lso increasing. 

R esu lts based on IRI data (California only) 

Lastly, compare the param eter estimates for California only (Column (iv)) with the 

param et er estimates obta ined when all fives sta tes arc inclndcd in the analysis . The 

estima ted coefficients arc all of the sam e sign. T he coefficien t on lagged consump tion 

is sm aller in m agnitude and t he coefficient on lead consump tion is greater in magni-
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t ude than th ose rep orted in Column (ii) . This implies a larger p oint estima te of the 

discount ra te to Californians (8 = g:;g~ = .86) than th e point estimate of the discount 

rate of the whole sample ( 8 = g:~~~ = .45). 

California consumers are over twice as sensitive to price ch anges in the short run 

as consumers in the wh ole sample, and almost twice as sensitive to p ermanent price 

changes in the long nm. That the California results are differen t from t he general 

results suggests tha t p erhaps allowing for st a te-specific coefficients, or at least state

specific t ime trends , is a n ecessary modification. 

3 .5.3 State-specific Time Trends 

The BGM replications include dummy variables for m on ths. These variables may 

account for general variation across time, but t hey can not cap ture st a te-sp ecific or 

market specific time t rends. The dummy variables for sta tes may capture fixed effects, 

but not fixed trends . T h e graphs in Figure 3.1 indicate tha t each state h as a general 

downward trend in consumption, but som e st a tes trend downward fas t er than others . 

For example, a t the beginning of the time series, the difference b etween the highest 

and lowest per capita cigarette pack consumption (between California and Colorado) 

is 0.29. Both st a t es h ave a downward trend in consumption , but Colorad o's ra t e is 

faster than tha t of California. At the end of th e time series, t his difference is 0.07. 

As in Gruber and K oszegi, a regression using first differences of the independent 

and dependent variables may capture these fixed t rends. However, because the IRI 

d ata p ertain to weekly sales, there appears to b e much negatively correla t ed week- to-
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week variation (see Figure 3.1) that. could be easily explained by measmcment errors 

in reporting or other timing issues. 

As an alternative approach, I expand the preceding analysis by including state

specific linear time trends. Table 3.4 reports the results of a 2SLS regression using 

the IRI data with state-specific time trend variables. As in the analysis summarized 

in Table 3.3, instruments for lagged and lead consumption a rc lagged and lead prices. 

First stage regression results arc presented in the lower panel of Table 3.4. The results 

presented in this table are analogous to those presented in Column (ii) of Table 3.3. 

Consider first the estimated relationship between price and consumption. The 

point estimate of the coefficient on current. price is similar to that. in Column (ii) of 

Table 3.3 (-0.087 vs. -0.117) as arc the estimated short-run price elasticity (-1.666 vs. 

-1.314) and long-run price elasticity (-2.770 vs. -2.791). 

Again, the coefficients on lagged and lead consumption arc positive and signifi

cant. Unlike the results of the 2SLS regression without state-specific time trends, the 

coefficient. on lead consumption is greater than the coefficient on lagged consumption. 

Ass1 uning that. the econometric model is specified correctly, the finding of a larger 

coefficient. on lagged than on lead consumption is difficult. to reconcile. Recall that. 

the coefficient on lead consumption divided by the coefficient. on lagged consumption 

should yield the discount rate of consumers. The estimates of the coefficients in Table 

3.4 imply that. the point. estimate of the discount. rate is greater than one. 

To examine whether the inclusion of state-specific time trends improves the fit of 

the model, I conduct a Wald test. of joint. significance of the state-specific time trends. 
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Table 3.4: 2SLS regression with state-specific time trend 
Dependent variable is per capita consumption. 

at-1 0.330 

SR price elasticity 
LR price elasticity 

R 
N 

(0.048) 

0.431 
(0.055) 

-0.087 
(0.019) 

-0.058 
(0.020) 
-1.666 
-2.770 

0.335 
3410 

Standard errors arc in parentheses. Additional regressors arc state-specific time 
trends and full sets of dummy variables fo r mont h and state. First stage regres
sors include lagged and lead prices as well as the other explanatory variables. 

First stage regressions 
Dependent variable is per capita consumption 

P t -0.188 
(0.072) 

Pt- 1 -0.109 
(0.056) 

P t+1 -0.047 
(0.056) 

-2 
R 0.334 

The F -statis tic for the joint test , which is clistribntcd F [5, 3357], is 5.011 whereas the 

critical value for the 99th percentile is less than 1.69. Therefore, the test. rejects the 

null hypothesis that t he coefficients on the state-specific time trends are jointly zero 

at. the 1% significance level. 
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3.5.4 Price Forecasts 

R('Call from Section 3 that the model estimated in the above regressions is given 

by Equation (3.1), in which cmTcnt consumption is a function of actual future con

smnption. Without developing an explicit model of expectations, using actual future 

prices as an instrument for actua l future consumption iu the above regressions im-

plies that agents perfectly forecast, prices and consumption. f\Iost likely, previous 

empirical studies have viewed actual fu ture price and consumption as proxies for ex-

pectations generated under the assumption of rational expectations. Instead, it seems 

more reasonable to explicitly model expectations based on information available at 

the time that these expectations arc formed. To account for this consideration, I es

timate Equation (3.2) rather than Equation (3.1). That is, I include expected future 

consumption rather than actual future consumption as a right-hand side variable. 

As instruments for lagged consumption and expected lead consumption, I use the 

one-period lag of price and one-period-ahead forecast of price. Price forecasts are 

estimated using current price and two lags of price: 

(3.3) 

Table 3.5 reports results from the price forecast regressions. 

The results of the price forecast regressions reveal that current price predicts fu ture 

price very closely. One-period lagged price adds a little m ore explanatory power, but 

th e coefficients on two-period lagged price are not significantly different from zero. 
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Table 3.5: Price forecast regressions 
Dep endent variable is futnre price Pt+l· 

M11ltistate CA only 
fixed trends no fixed trends 

(i) (ii) (iii) 
Pt 0.913 0.915 0.854 

(0.017) (0.017) (0.023) 

Pt- t 0.066 0.067 0.111 
(0.023) (0.023) (0.030) 

Pt-2 0.016 0.013 0.031 
(0.017) (0.017) (0.023) 

R 0.987 0.987 0.984 
N 3432 3432 1892 

Standard errors are in parentheses. For Column (i) the forecast 
includes state-specific time trends whereas the forecast only 
includes a gen eral time trend for Columns (ii) a nd (iii). 

These declining coefficients over time are as expected. All together, in conjunction 

with the time trends, the independent variables predict over 98% of the variation in 

future price. 

The high correlation between prices in adjacent time periods raises questions about 

the validity of lagged and lead prices as ins truments for lagged and lead consumption 

in the basic model. That is, cnrrent consumption may not be independent of lagged 

and lead prices when lagged and lead consumption arc held fixed. These results imply 

that perhaps two-period lead and lagged prices should be used as instruments. 

Table 3.6 presents the results from 2SLS regressions where predicted, ra ther than 

actual, price is a first stage regressor. Columns (i) and (ii) use data from all five 

states. Column (i) allows for state-specific time trends, whereas Column (ii) d oes 

not. Lastly, Column (iii) uses the California data only. The lower panel presents first 

st age r egression results. 
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T he results in Column (i) arc comparable to the results in Table 3.4. Results in 

Columns (ii) and (iii) arc comparable to those in Table 3.3, Columns (ii) and (iv), 

respectively. Based on comparison with these preceding rcsnlts , it is apparent that, 

for the analysis without state-specific time trends and the California only analysis, the 

estimated coefficients on price and income and the implied price elasticities are similar 

to those found before. When comparing the analyses that include state-specific time 

trends, we find that the coefficients on price and income are greater in magnitude 

when expected future price rather than actual future price is used as an instrument 

(-0.131 vs. -0.087 for price, and -0.090 vs. -0.058 for income). Short-run response 

to price changes is a lso more pronounced: short-run price elasticity of -2.014 when 

expected future price is an instrument as compared to a short-rnn price elasticity of 

-1.666 when actual future price is used as an instrument. 

The estimates of the coefficients on lagged consumption are smaller in magnitude 

when expected rather than realized future prices are used as instruments. Lastly, 

when data from all states are nscd and state-specific time trends arc included, the 

coefficient on future consumption is smaller in the 2SLS regression with expected 

future price as an instrument than in the regression with actual future price as an 

instrument. However , when state-specific time trends arc not included or when only 

California data are used, the opposite occurs: the coefficient on future consumption 

is larger when expected fnture price is an instrument than when aetna! future price 

is used. 

Consider now a comparison across columns of Table 3.6. Columns (i) and (ii) 
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Table 3.6: 2SLS Estimation of Equation 3.2 
Dependent variable is per capita consumption. 

Multi-state CA only 
fixed trends no fixed trends 

(i) ( ii) (iii) 

at-1 0.235 0.367 0.248 
(0.068) (0.058) (0.072) 

E [at+1] 0.400 0.288 0.329 
(0.080) (0.077) (0.084) 

Pt -0.131 -0.122 -0 .189 
(0.025) (0.028) (0.045) 

yt -0.090 -0.087 -0.155 
(0.027) (0.030) (0.051) 

SR price elast icity -2.014 -1.569 -3.747 
LR price elasticity -2.731 -2.691 -5.150 

R 0.336 0.320 0.325 
N 3370 3370 1859 

Standard errors are in parentheses. Expected price is forecas t using 3 lags of price. 
Additional regressors in both columns are full sets of dummy variables for state 
and month. Additional regressors in the first column are state-specific t ime trends. 

First s tage regressions 
Dependent variable is per capita consumption 

Pt 3.054 -4.618 -5.934 
(3.272) (1.435) (1.409) 

Pt- t 0.178 -0.495 -0.969 
(0.290) (0.136) (0.235) 

E [Pt+d -3.595 4.809 6.519 
(3.575) (1.562) (1.631) 

-2 
0.318 R 0.335 0.317 
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reveal the same relationships as were found when comparing Table 3.4 and Column 

(ii) of Table 3.3. Coefficients on income and price and similar, but the short nm 

elasticity is greater in magnitude than the short. nm elasticity that results from the 

regression without a state-specific time trend. The higher estimated elasticity of 

short-run demand is dnc in part to the smaller coefficient on lagged consumption 

together with the larger coefficient on lead consumption. In fact., when state-specific 

time trends are included in the model, t he coefficient on lagged consumption is smaller 

than the coefficient on lead consumption. Once again, a Wald test rejects at the 1% 

significance level the hypothesis that the state-specific time trends are jointly zero 

(F[5, 3318] = 4.821). 

Comparing the adjusted R 2 from the second stage of the regression provides a cur

sory comparison between the two models represented by Equations (3.1) and (3.2). 

Consider the regression results using data from all five states. When expected price 

is used as an instrument, 0.336 of the variation in consumption is explained by vari

ation in th e independent variables that enter the second stage of the regression, in

cluding predicted values of lagged consumption and predicted values of expected lead 

consumption. When actual future price is used as an instrument, variation in the 

independent variables that. enter the second stage of the regression explains 0.335 of 

the variation in consumption. The difference is probably not. statistically significant, 

and this test. is not a formal test of one model versus another because the models arc 

not. nested models. 

To test whether one equation fits the data better than the other, I apply Davidson 
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and MacKinnon's J test10 to the second stage of the regression. Unfortunately, as 

can happen when comparing nonnested models, the test rejects one model in favor of 

the other, and then rejects the other in favor of the first. In comparing the models 

without state-specific time trends, the coefficient on the model described by Equation 

(3.1) is 1.324 with a standard error of 1.405, and therefore this model is rejected in 

favor of the model described by Equation (3.2). On the other hand, the coefficient 

on the Equation (3.2) model is -0.008 with standard error 1.347, and therefore this 

model is rejected for the Equation (3.1) model. The results for comparing the models 

with state-specific time trends arc qualitatively similar. 

Lastly, consider the first stage results in the lower panel of Table 3.6. Because 

expected future price is forecast using current price and two lags, there is obviously 

high correlation among these variables. From the first stage results, we see that 

this high correlation leads to anomalous estimates. In Column (i), none of the three 

coefficients is statistically different from zero. Only the coefficient on expected futme 

price has the expected negative sign. In Columns (ii) and (iii), all the coefficients 

are significantly different from zero, but the coefficients on expected futme price are 

positive. 
10See Chapter 7 of Greene (1993). 



100 

3.5.5 Institutional Changes 

Smoking Ban 

Examination of Figure 3.1, together with Table 3.2, docs not reflect any obvious effect 

of the ban on smoking in bars and taverns in California. In this section, I re-estimate 

the cigarette demand function using an indicator variable for the enactment of the 

smoking ban. It takes the value one if the state is California and the date is January 

1, 1998 or later, and zero otherwise. 

As reported in the top panel of Table 3. 7, the coefficient on the smoking ban 

dummy variable is positive and significant, but small. In the first stage regression 

results, the coefficient on the smoking ban dummy variable is also positive and sig

nificant. This result seems surprising, given that the smoking ban should decrease 

smoking. One explanation may be that , following passage of the ban but prior to 

its implementation, cigarette consumption began declining in anticipation of its im

plementation, as predicted by the rational model. In fact, the rate of decline may 

decrease at the time the ban becomes effective, and therefore, the coefficient on the 

smoking ban is positive. However, without additional data on consumption before 

the passage of the legislation, this hypothesis is not testable. 

Another important explanation is that the monthly dummy variables are picking 

up relevant variation across time. That is, this variation may be exactly what we 

would like the smoking ban dummy variable to capture. Therefore, it is possible that 

the smoking ban has no effect on cigarette consumption, but the positive coefficient 

on the smoking ban variable simply reflects a time variation that neither the general 
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monthly varia tion nor t he California-specific time trend is picking up. 

An alternative approach is to exclude the monthly dummy variables from t he anal

ysis , and ins tead include various time trends and interactions between the smoking 

ban variable and these trends. As a basis of comparison, Table 3.8 presents results 

from replications of Table 3.3, Column . (ii) that exclude monthly dummy variables. 

Column (i) of Table 3.8 includes a linear time trend instead , and Column (ii) includes 

adds a quadra tic t ime trend. The results in Table 3.8 highlight the sensit ivity of the 

model to the econometric specification. Comparison with Table 3.3, Column (ii) , 

reveals tha t the regression with both linear and quadra tic time trends yields simila r 

coefficients on lagged and lead consumption. Note tha t , as in Table 3.3, Column (ii) , 

the coefficient on lead consumption in Table 3.8 , Column (ii) is highly significant. 

When the regression includes only a linear time trend, however , the coefficient on 

lead consumption is not significantly different from zero. The implication from this 

regression is tha t cigarette consumers a re not forward looking . The coefficients on 

price and the short-run price elasticities are smaller , especially when both a linear 

and quadra tic time trend are included in the regression. 

In Column (i) , the coefficien t on the t ime t rend is positive, but insignificant. 

T his s ign is surprising, given tha t there seems to b e a steady downward t rend in 

consumption (recall Figm e 3. 1). It. appears tha t lagged and lead consumption arc 

capturing the d ownward trend. The coefficients on these variables sum t o less than 

one, implying a downward trend. 
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Table 3.7: Effect of smoking ban on consumption 
Dependent variable is per capita consmnption. 

fixed trends no fixed trends 
(i) (ii) 

at- 1 0.328 0.408 
(0.048) (0.054) 

0.432 0.306 
(0.055) (0.059) 

-0.087 -0.107 
(0.019) (0.022) 

[-1.635] [-1.474] 

-0.058 -0.065 
(0.020) (0.023) 

Smoking Ban -0.002 0.019 
(0.005) (0.006) 

R 0.335 0.328 
N 3410 3410 

Standard errors arc in parentheses. Additional regressors arc 
full sets of dummy variables for month and state. Additional 
regressors in column (i) are state specific time trends. 

First stage regressions 
Dependent variable is per capita consumption 

Pt -0.188 -0.179 
(0.072) (0.072) 

Pt- 1 -0.109 -0.115 
(0.056) (0.056) 

Pt+l -0.047 -0.038 
(0.056) (0.056) 

Smoking ban -0.003 0.082 
(0.021) (0.011) 

-2 
R 0.334 0.325 



103 

Table 3.8: 2SLS Estimation of Equation 3.1 with time trend 
Dependent variable is per capita consumption. 

i) ii) 
at-1 0.553 0.551 

t 

SR price elasticity 
LR price elasticity 

R 
N 

(0.086) (0.024) 

0.101 
(0.139) 

-0.085 
(0.036) 

-0.132 
(0.065) 

0.398 X 10-4 

(0.298 X 10- 11 ) 

-0.770 
-1.870 

0.280 
3410 

0.386 
(0.034) 

-0.023 
(O.Oll) 

-0.016 
(0.014) 

-0.209 X 10- 3 

(0.939 X 10- 4 ) 

0.135 X 10- 5 

(0.610 X 10- 6 ) 

-0.570 
-2.778 

0.302 
3410 

Standard errors are in parentheses . Additional regressors are full sets of 
dummy variables for state. 

Table 3.9 presents results from 2SLS regression of Equation (3.1) that includes the 

dnmmy variable for the smoking ban but does not include monthly dummy variables. 

The regression associated with Column (i) includes a linear time trend. The regression 

in Column (ii) adds a quadratic time trend. The regression in Column (iii) includes 

a linear time trend as well as an interaction term between the smoking ban and the 

linear time trend. Finally, the regression in Column (iv) includes both trend variables, 

as well as interactions between the smoking ban and the trends. 

Again, note the sensitivity of the model to changes in specification. The coeffi-

cient on lead consumption is not significantly different from zero in Colmnn (i), but 

highly significant according to the other specifications. The coefficient on price is not 
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significant at the 5% level in the regressions that include interactio11 terms (Columns 

(iii) and (iv)). The coefficient on price is negative in the regression that includes 

linear and quadratic terms, and interactions between these trends and the smoking 

ban dummy variable. 

Table 3.9: Effect of smoking ban on consumption 

Regression uses Time trends rather than 1\Ionthly dummy variables. 
Dependent variable is per capita consumption. 

(i) (ii) (iii) (iv) 
at- 1 0.566 0.542 0.450 0.504 

(0.077) (0.025) (0.023) (0.020) 

at+t 0.132 0.397 0.553 0.512 
(0.104) (0.032) (0.021) (0 .023) 

P, -0.076 -0.022 -0.003 0.001 
(0.029) (0.011) (0.009) (0 .009) 

Yt -0.112 -0.016 0.004 0.008 
(0.051) (0.014) (0.010) (0.009) 

Smoking ban 0.014 0.001 -0.010 0.115 
(0.007) (0.002) (0.015) (0.054) 

Smoking ban x t 0.688 X 10- 4 -0.002 
(0.131 X 10- 3 ) (0.001) 

Smoking ban x t 2 0.637 X 10- 5 

(0 .345 X 10- 5 ) 

t -0.275 X 10- 4 -0.202 X 10- 3 0.110 X 10- 4 -0.356 X 10- 4 

(0.280 X 10- 4 ) (0.906 X 10- 4 ) (0.873 X 10- 5 ) (0.482 X 10-4 ) 

t2 0.127 X 10- 5 0.253 X 10- 6 

(0.559 X 10- 6 ) (0.293 X 10-6 ) 

Overall effect of smoking ban at t = 105 -0.003 -0.025 

R 0.285 0.305 0.318 0.332 
N 3410 3410 3410 3410 

The• results reported in Table 3.9 are mixed, but suggest that the smoking ban 

has no contemporaneous negative effect on consumption. The regression with a linear 
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time trend only (Column (i)) yields a positive coefficient on the smoking ban dummy 

variable. Column (ii) reports a positive, but much smaller, coefficient on the smoking 

ban dummy variable from the regression that includes both linear and quadratic time 

trends. 

On the other hand, the regression that includes a linear time trend and an inter

action term between the smoking ban dummy variable and the trend (Column (iii)) 

yields a negative and insignificant coefficient on the dummy variable. Unexpectedly, 

the coefficients on the interaction term and the linear time trend are positive, indi

cating that the overall time trend is positive, and becomes steeper after the smoking 

ban goes into effect. As in the analysis without the smoking ban dummy variable, 

this anomalous result may be due in part to the presence of lag and lead consumption 

in the model. Lastly, noting that the smoking ban occms at week t = 105, per capita 

consumption the first week after the ban is 0.003 packs less than it would be without 

the ban, assuming that the model in Column (iii) is the correct model. The positive 

coefficient on the interaction term implies that by October of 1998 (week 146), the 

per capita consumption is greater than it would be without. the ban. 

Lastly, consider the regression that. includes linear and quadratic time trends, 

as well as interactions (Column (iv)) . The coefficient. on the smoking ban dummy 

variable is positive, but. given the coefficients on the smoking ban dummy variable 

and the interaction terms, per capita consumption the first week after the ban is 0.025 

packs less than it would be in the absence of the ban. 

It. would not be too smprising to find that. the smoking ban has no short. term 
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effect on consumption for a number of reasons. To begin with, other studies of 

smoke-free workplace laws have found small effects, if any, on cigarette consumption. 

Evans, Farrelly and Montgomery (1999) find that. smoke-free workplace bans decrease 

smoking participation among workers by 5%, and decrease consumption by about 

10% among workers who arc current smokers. Bar and restaurant workers who would 

be affected by the ban on smoking comprise about 3% of California's population 

according to estimates from the 1990 Census. 

In a study of smoking among college students, Chaloupka and Wechsler (1997) 

find that workplace smoking bans have no effect on cigarette demand or smoking 

participation. They find that restaurant smoking bans have a small negative effect 

on smoking participation, but no effect on cigarette demand. 

Casual observation suggests that there is a significant population of smokers who 

only smoke when they drink alcohol. The smoking ban may have the most significant 

effect on these casual smokers, but. this effect may not be picked up by the gro

cery store data used in this analysis. Casual smokers may be less likely to purchase 

cigarettes at the grocery store during a regular grocery shopping trip. Rather, they 

seem more likely to buy cigarettes from a gas station, convenience store, or cigarette 

machine at a bar or restaurant while they are out for the night. 

Lastly, there was (and still is) much uncertainty surrounding t.hc ban. The effective 

date had already been postponed once. The original legislation (California Assembly 

Bill 13) , signed by the governor on July 21, 1994, had set an implementation date 

of January 1, 1997. In September 1996, lawmakers approved Assembly Bill 3037 



107 

which postponed the implementa tion date until January 1, 1998. Through mid-1997, 

the Assembly debated an additional one year postponement of the ban . Even after 

implem entation, California lawmakers are still discussing repealing t he ban. 

Proposition 10 Tax Increase 

If consumers use all available information to forecast prices, the passage of Proposition 

10 should lead them to incorporate the upcoming 50 cen t tax increase into their fu ture 

price forecast. Therefore, to forecast lead prices, I usc current price and two lags of 

prices and a dichotomous variable for the pending tax hike. This dummy variable is 

equal to one in the two weeks b efore J anuary 1, 1999, in any California market and 

zero for all other dates and a ll other markets. Note th at this t ime period coincides 

with the tobacco litigation settlement. I3ccause the Proposition 10 tax increase applies 

to California consumers only, whereas the unanticipated tobacco settlement price 

increase applies to consumers in a ll states, I can separa tely identify the effects of 

these two price increases. That is , the price forecast equa tion includes an indicator 

variable, denoted as Dec98, tha t is a dummy variable on the las t two weeks of 1998 to 

con trol for the effects of the tobacco li tigation settlement price increase. The variable 

denoted as Prop10 is the interaction between the indicator on the last two weeks of 

1998 and a California state dummy variable. 

The price forecast equation is: 
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Table 3.10 reports the price forecast. regression results. 

Table 3.10: Price forecast. includes Prop 10 indicator 
Dependent. variable is fnt.me price. 

fixed trends no fixed trends 
(i) (ii) 

Pt 0.909 0.911 
(0.168) (0.017) 

Pt-1 0.072 0.072 
(0.023) (0.023) 

Pt-2 0.013 0.012 
(0.017) (0.017) 

Dec98 -0.003 -0.006 
(0.012) (0.012) 

Prop10 0.102 0.106 
(0.016) (0.016) 

R 0.987 0.987 
N 3432 3432 

Standard errors are in parentheses. Dec98 is the dummy varia ble 
on the last two weeks of 1998. Prop10 is the indicator variable on 
t he last two weeks of 1998, if the state is California. For Column 
(i) the forecast also includes st a te-specific time trends and for 
Column (ii) , the forecast also includes a genC'ral time trend. 

The resul ts in Table 3.10 are comparable t.o those reported in Table 3.5, Columns 

(i) and (ii). As in the price forecasts that. do not. include the Prop10 or Dec98 indica-

tors, these resu lts indicate that current price predicts future price very closely. The 

coefficients on one-period lagged price arc small, but. significant. , and the coefficients 

on two-period lagged prices are not significantly different. from zero. The coefficient. 

on the indicator for the last. two weeks of December is negative, but. not. significantly 

different from zero. This is not. surprising given that., holding the upcoming Proposi-

t.ion 10 tax increase in California fixed , together with holding current. price and two 
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lags of price fixed , the last two weeks of December 1998 should not affe>ct future pr ice. 

Lastly, the coefficient on the Prop10 variable is positive and significant , as expected . 

The impending tax hike d ocs affect. future prices. 

Table 11 rep orts the results from 2SLS regression using expected lead prices rather 

than actual lead prices. Comparison be tween these results and those reported in Table 

3 .6, Columns (i) and (ii ) , y ields insight as to how the inclusion of the Prop10 variable 

in the price forecasts affects the 2SLS regression results . 

Compare the results from the m odel tha t includes st a te-sp ecific time trends (T able 

3 .11 , Column (i) vs . T able 3 .6 , Column (i)) . The estima tes arc not much affect ed by 

the inclusion of the Prop osition 10 variable. In fact , the differences arc most likely 

no t sta tistically significant. When t he impending tax hike is included in the price 

forecast , the coefficients on lagged and lead consumption are larger (0.257 vs. 0.235 

for the coefficient on a t - l, and 0.419 vs. 0.400 for a t+1) and the implied discount ra te 

is also slight ly larger (0.614 vs. 0.588) . The coefficient on price and the estima ted 

sh ort nm price elas ticities a rc smaller , and the coefficien t on incom e is also sligh t ly 

sm aller. 

Consider the results from the model tha t does not include sta te-specific time 

t rends. T he coefficient on lagged consumption is larger (0.428 vs. 0.367) and the 

coefficient on expected lead consumption is smaller (0.204 vs. 0.288) which implies 

a sm aller discount ra te (0 .477 vs. 0.785) . The coefficients on price and incom e arc 

similar. 

Comparison across columns reveals the previously identified relationship when 
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state-specific time trends arc included in the regression: the coefficient on lead con-

sumpt.ion is greater than the coefficient on lagged consumption. Once again, a Wald 

test indicates that the hypothesis that state-specific time trends arc jointly zero can 

be rejected 11 . 

Table 3.11: 2SLS Estimation of Equation 3.2 
Expected price forecast includes Prop10 indicator. 

Dependent variable is per capita consumption. 
fixed trends no fixed trends 

(i) (ii) 
at-1 0.257 0.428 

(0.057) (0.064) 

0.419 0.204 
(0 .069) (0.074) 

-O.ll7 -0.134 
(0.024) (0.027) 

[-1.973] [-1.480] 

-0.079 -0.089 
(0.025) (0.031) 

R 0.336 0.320 
N 3370 3370 

Standard errors arc in parentheses. Additional regressors in both 
columns are full sets of dummy variables for state and month. Addi
tional regressors in the first column are state-specific time trends. 

First stage regressions 
Dependent variable is per capita consumption. 

Pt -0.047 -0.635 
(0.362) (0.345) 

Pt- 1 -0.089 -0.157 
(0.066) (0.066) 

E [Pt+1] -0.209 0.475 
(0.395) (0.380) 

-2 
R 0.335 0.315 

As in the first stage regression results reported i11 Table 3.6, the first stage ro-

11 F[5, 3318] = 4.678 
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gression resnlts reported in Table 3.11 are not as expected, due in part to the high 

correlation between E [Pt+l] and Pt. In the first stage regression results for the model 

that includes state-specific time trends, the signs on the coefficients are all negative, 

as expected, but are not precisely estimated. In the resnlts for the model that does 

not include state-specific time trends, only the coefficient on lagged price is negative. 

To compare the model that includes the Proposition 10 indicator with the one that 

does not, I apply Davidson and McKinnon's J test to the second stage, becanse neither 

model nests the other. Unfortnnately, nsing the Davidson and McKinnon J test to 

compare the various models yields inconclusive results. For example, in comparing the 

models that inclnde state-specific time trends, the coefficient on the model withont 

the ProplO variable is -0.242 with a standard error of 2.93 , and therefore, this model 

is rejected in favor of the model that includes the Prop10 variable in the price forecast. 

However, the coefficient on the model that includes Prop10 is -0.057 with a standard 

error of 0.166, and therefore, this model is rejected in favor of the model without the 

Prop10 variable in the price forecast. Likewise, comparing the model discnssed in 

this section with the model that uses actual future consumption as a right-hand side 

variable yields the same inconclusive results. 

Tobacco Settlement Price Increase and Proposition 10 Tax Increase 

It is difficult to assess the effects of the tobacco settlement price increase and the 

Proposition 10 tax increase, because they occur during the same t ime p eriod, even 

though the former affects all five states in the data, whereas the t ax increase affects 

California only. However , the tobacco settlem ent price increase is unanticipated, 
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wherC'as th0 Proposition 10 tax increase is anticipated. The rational model predicts 

that. consumers will act. in advance of an anticipated tax or price hike, because they 

anticipate that. their consumption after the tax hike will decrease. 

As a cursory glance at the effects of the tobacco settlement price increase and 

the Proposition 10 tax increase in California, consider again Figme 3.1. Ignoring the 

slight hoarding effects the week of the tax and price increases, the levels of consump

tion appear to decrease below the original levels before the tobacco settlement price 

increase. In California, after the Proposition 10 tax increase, the consumption level 

again decreases. Holding all else equal , the rational model predicts not only that 

Californians should decrease consumption in reaction to the tobacco settlement, but 

during the same time period, they should fmther decre&<Je consumption in anticipa

tion of the Proposition 10 tax increase. In the five weeks before the California election, 

consumption averages 0.189 packs per capita. In the eight weeks after the election, 

but before the tax increase, consumption averages 0.186 packs per person. Following 

the tax hike, consumption averages 0.147 pack per person. Without holding other 

effects such as price or time fixed , it appears that consumption has decreased sligh tly 

in anticipation of the imminent tax increase, as the rational model predicts. However, 

consider the consumption pattern of the other fom states which do not have the 50 

cent tax increase. Before November 3, 1998, average per capita consumption is 0.208. 

Between November 3 and January 1, 1999, average p er capita consumption is 0.199 

and after January 1, it is 0.173. In Colorado, Arizona, Nevada, and Washington, in 

which consumers are reacting to the tobacco settlement price increase, consumption 
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decreases by about 4%. On the other hand, in California, consumption decreases by 

less than 2%. Comparison of these figures suggests that, contrary to the prediction of 

the rational model, cigarette consumers in California did not decrease consumption 

in anticipation of the Proposition 10 tax increase. 

Of course, this is not a rigorous test of the rational model, because it ignores 

all other factors that affect consumption. An alternative approach is to compare 

the rational model with a restricted version of the model in which the coefficient on 

future consumption is constrained to be zero. The rational model predicts that the 

reaction will be different depending on whether the price increase is anticipated or 

unanticipated. A model in which addicts are not forward-looking, however, predicts 

the same reaction. 

I use the full sample to estimate two models. The first is the rational addiction 

model with a linear time trend and state-specific dummy variables. The second is 

a restricted rational addiction model where the coefficient on lead consumption is 

constrained to be zero. Previous authors refer to this model as "myopic addiction." 

In the unrestricted model, I assume that agents forecast prices using the model in the 

previous section. Using the estimated coefficients, I predict per capita consumption 

for the period between January, 1999 and May, 1999. The estimation results are in 

Table 12.12 

12 A better test of the models may be to estimate the two models using only the first 143 weeks 
of data (through the end of September, 1998). Using these estimates to forecast consumption for 
the next 32 weeks (i.e. , out of sample), I could then compare the forecasts with actual per capita 
consumption. However, in the first 143 weeks of the dataset , there are no price increases that 
are nearly as large as the ones following the tobacco settlement and the implementation of the 
Proposition 10 tax increase. \Vithout the price changes, it appears that the estimates of the models 
are driven by noise. For example, using only the 143 weeks of data to estimate the unrestricted model 
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Table 3.12: 2SLS Estimation of Equation 3.2 with time trend 
Dependent variable is per capita consmnption. 

t 

R 
N 

Unrestric ted model 
(i) 

0.578 
(0.031) 
0.311 

(0.049) 
-0.032 
(0.014) 
-0.038 
(0.024) 
0.0021 

(0.0113) 

0.281 
3370 

Restric ted model (at+l = 0) 
(ii) 

0.488 
(0.033) 

-0.124 
(0.008) 
-0.196 
(0 .015) 
-0.0001 
(0.0111) 

0.280 
3374 

Addit ional regressors a re dummy varia bles for s ta te. 

Note, from Table 3.12, tha t the estimated coefficient on price is almost three times 

as large in the restric ted model than in the unrestricted model. The coefficient on 

lagged consumption is smaller , and the coefficient on income is almost four times as 

la rge in the restricted model than in the unrestricted model. 

Using the estima tes in Table 3.12, I predict per capita consumption for Oct ober , 

1998, through May, 1999. For the right-hand side variable of lead consmnption in the 

unrestricted model , I use the reduced form predictions for lead consumption. The 

sum of squared devia tions between actual per capita consumption and consumption 

predicted by the unrestricted model is 2.48. The sum of squared deviations between 

actual consumption and consumption predicted by the restricted model is 3.37. 

gives insignificant estimates of the coefficients on lagged and lead consumption. In fact, the coefficient 
on lagged consumption is negative. Furthermore, the coefficient on price is over 5 times as la rge as 
the coefficient that results from estimation using the full sample. Using these estimates to predic t 
consumption for October , 1998 , through ~Iay, 1999, yields predictions of negative consumption in 
both models. 
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Figure 3.4 plots the average of realized p er capita consumption for m arkets in 

California, as well as predicted values for both the restricted and unrestricted models . 

Figure 3.5 plots the average of realized p er capita consumption for markets in the 

other s tates, along with the predic ted values. 

Examination of both figures reveals that the models' predictions are very close to 

one another. Consider Figure 3.4 first. Both models p erform well until the tobacco 

settlem ent price increase. At that time, the models overreact to the price increase. 

At the January 1, 1999 tax hike, both models again predict a s tronger reaction than 

actually occurred. 

Figure 3.5 reveals that the models predict p er capita consumption much better 

in the other states than in California. Before the tobacco settlem ent, the predicted 

values of consumption are higher than actual consumption. As with the California 

da t a, the models predict stronger responses to the price increase than actu ally occur. 

Therefore, after the price increase, the predictions from both models follow actu al 

consumption closely. 

The unrestricted m odel does slightly better than the restricted model. The pre

dictions of the restricted and the unrestricted models are very simila r , even though 

the unrestricted model should predict a different reaction to an unanticipated price 

ch ange than a n anticipated price ch ange, whereas it is irrelevant to the restricted 

model whether a price change is anticipated or unanticipated. However , the predic

tions are more simila r in the oth er states, in which all price changes a re unanticipated, 

as the rational model would predict. One possibility is t hat both price ch a nges are 
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unanticipated to the consumers: California consumers did not anticipate the Propo-

sition 10 tax hike, despite the election and publicity surrounding the proposition. 

Another possibility is that. the stores began raising prices prior t.o t.he tax hike, and 

the models predict that the consumers are merely responding to the price increases. 

Lastly note that neither the unrestricted nor the restricted model predicts the 

hoarding of cigarettes that occurs, most noticeably in the last week of December. 

Even though the data used in this analysis measure sales, the model of rational 

addiction (as well as the restricted model) describes consumption behavior, rather 

than purchasing b ehavior, and therefore, does not predict hoarding. 

In fact, when the analysis is applied using aggregated monthly data, rather than 

weekly data, so that the effects of hoarding arc smoothed over, predicted consump

tion more closely follows actual consumption. The mean squared deviation between 

actual per capita consumption and consumption predicted by the unrestricted model 

is 0.0035 and the mean squared deviation between actual and predicted consumption 

for the restricted model is 0.0014, which are less than the mean squared deviations 

from the original analysis in which weekly data was used. 

Hoarding behavior is not inconsistent with the rational addiction model. If the 

anticipated tax hike will not cause an agent to quit smoking, then subject to bud

get and storage constraints, it is forward-looking and utility-maximizing to hoard 

cigarettes before the tax increase. It is not clear what the optimal level of hoarding 

is, but the consumers represented in this dataset do not appear to be hoarding very 

much. There is a small spike in sales in the week of the tobacco settlement price 
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hike, the week ending November 29, and there is la rger spike in sales the last week 

of December. A finding that consumers do not hoard enough would lend suppor t to 

studies that have found that consumers engage in p urcha.se quantity rationing when 

pnrcha..sing goods tha t are vices, such as cigarettes (sec Wcr tcnbroch , 1998). 

3.6 A Methodological Note on Measurement Er-

ror and Serial Correlation 

T he positive and significant coefficient on future (or expected fu tnrc) consumption 

may imply tha t consumers a rc indeed forward looking and ra tional. However , there 

are some serious issues tha t this test of ra tional addiction r aises. One issue is the 

question of how seria l correla tion might affect the estimates. Recall from Fignrcs 

3.1 and 3.2 tha t cigarette sales follow a general upward t rend, while prices follow a 

general downward trend. It is p ossible that the coefficien t on fu ture consumption is 

picking up the serial correla tion t hat is not fully accounted for by the time t rend and 

time varia tion variables. 

A rela ted issue is that the p ositive and significant coefficient may simply be a sta

tistical artifact dne to mcasnrcment error. Grether and Maddala (1973) demonstrate 

how measm ement error in t he independent variable can lead to a non-zero coefficient 

on lags of the independen t or dep endent variables, even when the t rue model contains 

no lags. Following the same typ e of ana lysis , we can show tha t measurement error 

in the dependent variable can also result in biased coefficients on lags or leads of 
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dependent variables 

Suppose, for simplicity, that consumption of addictive goods depends only on 

current price, which is exogenously given. For case of exposition, let the variables be 

expressed as deviations from their means. Then the true model is given by: 

(3.5) 

where, as before, at and Pt are consumption and price, respectively, at time t. How

ever , instead of observing consumption, we observe expenditures, state tax receipts, 

or p erhaps survey n 'sponscs. That is, we observe 

where '17t is measurement error. Assume 

E [et] = E [ryt] = 0 

and for all j , 

Lastly, to simplify the computation, assume 

E[Pt] = 0 
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Now, su ppose the econometric model is misspecified as 

(3.6) 

Then the estima ted model yields 

In the limit, the least squares estimate of (3 is given by: 

(3.7) 

where 

Using sample variances and covariances of sales and pr ices from the IRI d ata, the 

bias is estimated to be 0.9912, assuming that the coefficient on lead consumption is 

zero. 

Now suppose tha t. the true model is given by Equa tion (3 .6) rather t han Equation 

(3.5), but consumption is again mcasm ccl with error. In the limit, we can show tha t 

(3.8) 

Derivation of Equations (3.7) and (3.8) can be found in the Appendix. 
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If there is no serial correla tion in the measuremen t. error , then the second term 

drops ont and the estima te of (3 is biased towmd zero hecanse the denominator of the 

firs t term is always greater t han the nnmerator. Notice tha t t his bias toward zero is 

similar to the downward bias that rcsnlts from the classical problem of measurement 

error in an independent. variable. The sign of the second t erm depends on the seria l 

correla tion of the measnrem ent error. If the errors arc positively correlated , then the 

estima te of (3 is even smaller , assnming that (3 is positive. On the other hand, if 

the errors are negatively correlated , the sign of the second t erm is negative, and it is 

inconclnsivc as to whether or not (3 is biased downward. 

This measnremcnt error bias may have affected the analysis of Keeler , e t al. (1993) 

in which they estima te the ra tional modcl nsing California st a te cigarette and t obacco 

tax data. In their analysis, ra ther than one-period lagged and lead consmn ption , they 

nse previons 12 month and snbseqnent 12 month moving averages, rC'sp ectivcly. They 

argne: "Usc of only one-month lead and lag valncs in [Eqnation (3.1 )] genera ted 

nonsense resnlts qnite anithetical to the ra tional-addic tion hy pothesis, sp ecifically 

insignificant and/ or negative valnes of both lead and lagged qnanti ty demanded ." 

(p.14) 

3.7 Conclusion 

Previons empirical s tndies of addictive goods typically nse either st ate cigarette tax 

receipt da ta or survey da ta. Analysis of grocery store scanner da ta is a promising 

approach to the empirical s tndy of cigarette addiction. Unlike tax receipt data, 
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grocery store sales reflect sales to consumers rather than sales by distribu tors to 

wholesalers or retailers. Furthermore, grocery store sales data have the advan tage 

over survey data that there is no concern about adjusting answers due to social 

conformity. 

The results I find are mixed with respect to the rational addiction model, and 

there are som e important issues raised. The results arc very sensitive to econometric 

specification , and som e results arc difficult to reconcile within the rational fram ework. 

For example, in the regressions that include a linear time trend rather than monthly 

variation (Tables 3.8 and 3.9), the coefficient on lead consumption is not. significantly 

different from zero. Furthermore, the specifications of the model with state-specific 

time trends fit the data bett er than those without.. However , when state-specific time 

trends arc included in the model, the coefficients on lagged consumption are smaller 

than the coefficients on lead consumption , y ielding point estima tes of discount rates 

that exceed unity. 

I believe that. the model represented by Equation (3.2), in which current consump

tion depends on expected future consumption rather than act.nal future consumption, 

as in the m odel represented by Equation (3.1), is the more realistic model. It is note

worthy that, although model (3.2) uses less informat ion (in particular, actua l future 

consumption is not included in the model), model (3.2) docs equally well, if not bet

ter, a t. explaining variation in the dep endent variable than model (3. 1). Furthermore, 

the data reveal strong downward trends in consumption that differ across states, and 

I reject the hypothesis that the state-specific t ime trends arc JOintly zero in all regrcs-
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sions in which they a re included. Therefore, t.he results I focus on are t hose given in 

Table 3. 11 , Column (i) based on model (3.2) with state-specific time trends. Support 

for the rational addiction model is found in that. the coefficients on pas t and exp ected 

futnre consumption are positive and significant. However, as mentiorwd above, the 

results also ca.c.;t doubt on t.he rational addiction model because of the negative point 

estimate of the rate of time preference. 

Fmthermore, the analyses that use price forecasts raise questions about the va

lidity of lagged and lead prices a.c.; instruments. However, the majority of empirical 

studies rely on the validity of these instruments. 

In analyzing the effects of policy chang<'S, I find that the ban on smoking in bars 

and restaurants docs not. have a contemporaneous negative effect. on consumption of 

cigarettes. In comparing the effects of an anticipated tax change with the effects of 

an unanticipated price change, I find that. an unrestricted ra tional addiction mod el 

performs slightly better than a model in which the coefficient on future consumption 

is restricted t.o b e zero. 

This analysis may not adequately account for t.he correla tion structure of these 

panel data. For example, it does appear that the errors arc serially correlated. Fur

thcnnore, the price foreca.<>t equation estimates also suggest strong correlation be

tween prices realized in adjacent periods. It should be recognized, however , that. 

this analysis, as well as previous empirical studies, have found that the econometric 

implementation of the rational model is not very robust to different specifications. 

Therefore, although investigating the degree of serial correlation in the data may be 
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fruitful , correcting for serial correla tion m ay not off0r more insight . 

A larger project would involve conducting a sim ilar econom etric analysis using 

simila r da ta on sales of goods tha t are believed to b e n on-addictive. Because m any of 

the issues ra ised are problems with the econometric specification of the m odel, rather 

than the theoretical m odel itself, using consumption of other non-addic tive goods 

as a comparison could help differentia te results th a t are a rtifacts of t he econom etric 

sp ecification from results th a t. lend support to the rational model. 
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Chapter 4 Conclusion 

This dissertation presents a theoretical and empirical analysis of consumption of ad

dictive goods. 

The pattern of quitting and relapse that is prevalent among substance abusers 

has proved to be a difficult problem for addiction researchers from all fields. Previous 

economic research on addiction has not fully utilized findings from other disciplines . 

Research on people's misjudgment of the severity of future consequences of substance 

use explain why people might begin to usc an addictive substance that they eventually 

choose to quit. Research on conditioned responses sheds light on why addicts who 

decide to stop using addictive substances begin to consume again, even though they 

no longer have misperceptions about the negative effects of consumption. 

I develop a model of addiction of addictive goods that departs from conventional 

models of consumption in two ways: first, by introducing craving that can be induced 

by the presence of environmental cues such as locations, persons, or drug parapher

nalia, and second, by allowing for the possibility that individuals misperceive the 

severity of the future consequences from consuming addictive substances. Whereas 

for addicts in "rational addiction" models addiction is simply a utility-maximizing 

decision, addicts in my model may experience regret and could improve their welfare 

by controlling or eliminating environmental cues that generate cravings. Agents in 

my model may exhibit consumption patterns that resemble a pattern of quitting and 
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relapse. 

The third chapter presents an empirical analysis of the Becker and 1\Inrphy model 

of rational addiction using data on grocery store sales of cigarettes. Analysis of 

grocery store scanner data on cigarette sales is a promising approach to the empirical 

study of cigarette addiction. Unlike tax receipt data, grocery store sales reflect sales 

to consumers rather than sales by distributors to wholesalers or retailers. Sales data 

also have an advantage over survey data in that there is no concern about adjusting 

answers due to social conformity. 

The results I find arc mixed with respect to the rational model, but there arc 

some important issues raised. First of all , the results arc very sensitive to econometric 

specification, and some results arc difficult to reconcile within the rationa l framework. 

Secondly, the analyses that usc price forecasts raise questions about the validity of 

lagged and lead prices as instruments, an approach adopted in previous empirical 

studies. 

I analyze the effects of three policy changes: the implementation of the California 

Smokc-Ftec Workplace ban on smoking in bars and restaurants; a. nationwide price 

increase due to a settlement between tobaC'C'o companies and state governments; and 

a 50 cent tax increase in California. I find that the ban on smoking in bars and restau

rants does not have a contemporaneous negative effect on consumption of cigarettes. 

I compare the effects of an anticipated tax change with those of an unanticipated 

price change. The rational addiction model predicts that, because agents are forward

looking and because of the lark of intertemporal seperability with respect to addictive 
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goods, agents' behavior will changc in advance of an anticipated price change. Indeed, 

I find t.hat an unrestricted rational addiction model performs slightly better than a 

model in which t.he coefficient on future consumption is restrict.cd t.o be zero. 

A future project would focus on distinguishing between t.he rational modcl of 

addiction and various behavioral models of addiction, including my own. Because the 

various models have been designed t.o explain why individuals would become addicts 

using a decision-theoretic framework, many of these modcls yield similar observable 

outcomes. It is important to develop sharp predictions t.hat are empirically testable 

in order to distinguish between t.hc various models. For example, the models might 

diffcr in their predictions as t.o whether people will seek treatment and the success of 

treatment programs. Alternatively, t.he models might. predict different. responscs t.o 

price changes or policy changes. 
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Appendix A Proof Appendix 

For case of exposition, let w(a) = u(y- pa, a) and let U(a) = w(a) + 11(a, x) and 

iJ(a) = w(a) + v(a, x). 

Pr·oof of Proposition 1: By om a.';;snmpt.ions on u(-, · ), v(- , ·) and v(·, · ), the partial 

derivative of cmrent ntili ty (with the perceived tolerance fnnction) with respect to 

the consnmption stock, which is given by 

a 
ax [w(~(x'- ax))+ v(~(x'- ax),x)] 

-~w'(~(x'- ax))- ~v1 (~(x' - ax) , x) + v2 (~(x'- ax) , x) 

and the partial derivative of cnrrent ntili ty (with the true tolerance fnnction) with 

respect to the consn mption stock, which is given by 

a 
ax [ w ( ~ ( x' - ax)) + v ( ~ ( x' - ax) , x)] = 

-~w'(~(x' - ax)) - ~v1 (~(x' - ax),x) + v2 (~(x'- ax) ,x) 

a rc both strictly increasing x'. The assumptions on the ntility and tolerance functions 

satisfy Assnmptions 1-4 of Orphanides and Zervos (1994) , and therefore their Lemmas 

2 and 3 and Proposition 1 apply. I 

Proof of Proposition 2: I will prove 



137 

The proof for 

is t.hc same. Begin by proving t.hc following Lemma 

Lemma 7 If V * () is the solution to 

then 

Proof: 

V*(x) 

V*(x) =max f.£ [w (a)+ 11(a, .r) + oV*(ax + ,Ba)J + (1 - f.L) V"(.z:) 
a 

V"( ) f.L vsE( lo Of.£ ) 
X = 1 - 0(1 - f.L) X = 1 - 0(1 - f.L) 

f.L vsE(xl Of.£ ) 
1 - o(1 - f.L) 1 - o(1 - f.L) 

max U(a, x) + V J(ax + .Bal ) f.L [ Of.£ SE Of.£ ] 
aE(O, ~ J 1 - 0(1 - f.L) 1 - 0(1 - f.L) 1 - 0(1 - f.L) 

max ot ) [U(a, x) + bV*(ax + ,Ba)] 
aE(O , ~ J 1 - 1 - f.L 

- max f.L [U(a, x) + oV*(ax + ,Ba)] + (1 - Jl)OV*(x) 
aE(O, ~ J 

Now, let 

and show that 

I 

J1 vsE (.z:A lo = Of.L ) + 1 - f.L vsE (xJJ lo = o(1 - J1)) 
1 -o(l-f.£) 1 - 0(1 - f.£) 1 - 0f.£ 1 - 0f.£ 

- V *(xAIP: = 11) + V*(xBIP: = 1 - 11) 
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max 1-" [U(aA,xA) + 8V*(axA + ,BaA!f.t) + 8V*(x8 !1 -!-")] 
aAE(O,~j 

+ max (1 - !-") [U(a8
, x 0

) + 8V*(~xiJ + ,6a8 !1 - !-") + 8V*(xA!1-")] 
aBE[O, ~j 

max 1-" [U(aA,xA) +8V(axA +,6a11 ,x8
)] 

aAE[O,;J 

+ max (1 -- !-") [U(a 8
, x 8

) + 8V(xA, ax8 + ,6a8
)] 

aB E[o,;J 

I 

Proof of Proposition 3: By om assumption s on u(· , ·), v(·, ·)and v(·, ·), marginalutil-

ity (with the perceived tolerance function) with respect to the consumption stock, 

which is given by 

a 
Dx [w(~(x' - ~x)) + v(~(x'- ax),x)] 

-; w' ( ~ ( x' - ax)) - ; v1 ( ~ ( x' - ax), x) + 112 ( ~ ( x' - ax), x) 

and marginal utility (with the trne tolerance function ) with respect to the consump-

tion stock , which is given by 

a 
ox [ w ( ~ ( x' - ax)) + v ( ~ (.c' - ax), x)] 

- ~ w' ( ~ ( x' - ax)) - ~ v1 ( ~ ( x' - ~x), x) + 112 ( ~ ( x' - ~x) , x) 

are both strictly increasing x'. The assumptions on the utility and tolerance functions 

satisfy Assumptions 1-4 of Orphanides and Zervos (1994), and therefore their Lemmas 

2 and 3 and Proposition 1 apply to the policy correspondences ;{;A ( x), ;j 8 ( x), 'lj;A ( x) 

I 

Proof of Proposition 4: Begin by proving the following Lemma 
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Lemma 8 If V* () is the solution to 

V*(x) = m~xf.L [ujt(a , x) + 8V*(ax +/)a)]+ (1- J.L) V*(x) 

then 

V*(x) = f.L Wjt (xi8 = 8
J.L ) 

1 - 8(1 - J.L) 1 - 8(1 - J.L) 
for j =A, B. 

Proof: 

V*(x) J.L wjt (xl8 = 
8J.L ) 

1-8(1-J.L) 1 - 8(1-J.L) 

max U1 t(a, x) + W 1t(ax + /Jal ) J.L [ - 8J.L ~. 8f.L ] 
aE[O , ~j 1 - 8(1 - J.L) 1 - 8(1 - J.L) 1 - 8(1- f.L) 

max 
8
t ) [ifjt(a , x) + 8V*(ax +/)a)] 

aE[O , ~J 1 - 1 - f.L 

max f.L [ifJt(a , x) + 8V*(ax +/)a)] + (1- J.L)8V*(x) 
aE[O , ~j 

I 

Now, let 

and show that 

~~ f.L [ifAt(aA , XA) + 8Vt(axA + /)aA, x 8
)] 

+ (1 - J.L) [ifBt(a 8 , x 8 ) + 8Vt(XA , QXA + /)a 8 )] 

J.L wAt(xAI8 = 8f.L ) + 1- J.L wat(xal8 = 8(1- J.L)) 
1-8(1-J.L) 1 - 8(1-J.L) 1-8f.L 1 - 8f.L 

V*(xAIJ:L = J.L) + V*(x 8 i}:L = 1 - tt) 

max J.L [ifAt(aA , xA) + 8V*(axA + /)aAiJ.L) + 8V*(x 8 i1- f.L)] 
aA E[O,~ J 

+ max (1- J.L) [if 8 t(a8 , x8
) + 8V*(ax 8 + /)a8 i1- J.L) + 8V*(xAiJ.L)] 

a8 E[O , ~j 
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max JL [fJAt(aA, xA) + oV(axA + f3aA, x 8 )] 
aAE(O,;J 

+ max (1 - JL) [U81 (a8
, x 8

) + oV(xA, ax8 + f3a8
)] 

aBE(O,;J 

I 

Proof of Proposition 5: By om assumptions on u(-, ·)and v11 (-, ·) , perceived marginal 

utility in environment. A with respect to the consumpt iou stock, which is given by 

f) 

EJx 

and perceived marginal utility in environment B wit.h respect. to the consumption 

stock, which is given by 

f) 

EJx 

are both strictly increasing x' for all t. The assumptions on the utility and tolerance 

functions satisfy Assumptions 1-4 of Orphanides and Zervos (1994), and therefore 

their Lemmas 2 and 3 and Proposi t.ion 1 apply. 

Proof of Proposition 6: Begin by proving the following Lemma 

Lemma 9 If V* () is the solution to 

V*(x , ::Y) = maxJL [U(a, x, ::Y) + 8V*(ax + f3a, g (::Y, 1))] + (1- JL) V*(x , ::Y) 
a 

then 

I 
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Proof: 

V"(x , ;;) 

J-L W ( -~ 6
J-L ) X '"'( 

1 -6(1 - J-L) ) 1 -6(1 - J-L) 

J-L [ _ 6J-L _ 6J-L ] 
a~~~] 1 - 6(1- J-L) U(a, x, '"'t) + 1 - 6(1- J-L) W(ax + (3a , g ('"Y, '"Y) 11- 6(1- J-L)) 

max 
6
t ) [U(a, x , ;y) + 6V*(ax + (3a, g (;;, '"'t))] 

aE[O,;J 1 - 1 - J-L 

max J-L [U(a, x , ;;) + 6V*(ax + (3a, g (;;, '"'t))] + (1- J-L)6V*(x) 
aE[O,;J 

Now, let 

t-,A B - /A -B~ ( A -A~ 6j.L ) 1- J-L ( B -a~ 6 6(1- J-L)) 
V \"' '1$ -' 8( 1' ]_ ~) W X ' '"'( 

6 = 1 - 6 ( 1 - J-L) + 1 - 6 J-L W X ' '"'( = 1 - 6 J-L 

and show that 

J-L A -A 6j.L 1 - J-L B -B 6(1 - J-L) 
1 - 6(1- J-L) W(x ''"Y 11 - 6(1 - J-L)) + 1 - 6J-L W(x ''"Y I 1 - 6J-L ) 

V*(xA,;yAIJ:L = J-L) + V*(xa ,;yalf:L = 1- J-L) 

max J-L[U(aA ,xA,;yA) + 6V*(axA + (3aA, g(;yA,'"'f) IJ-L) + 8V*(x8 ,;y8 ll- J-L)] 
aAE[O,;J 

I 

+ max (1- J-L) [U(a8 ,x8 ,;y8
) + 8V*(ax 8 + (3a8 ,g(::Y8 ,'"'f)l1- J-L) + 6V*(xA,;yAIJ-L)] 

a 8 E[0,;J 
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;na[ Xll j.t [U(aA , XA, ::YA) + 8V(axA +,BaA , x 8
, g(::YA, /), ::Y8

)] 
a~ E 0, PI 

+ max (1 - p,) [U(a 8 ,x8 ,::Y8
) + 8V(xA,ax8 + ,8a8 ,::YA,g(::Y8 ,!))] 

aBE[O,;J 

I 
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Appendix B 
(3.8) 

Derivation of Equations (3. 7) and 

I'll begin with the derivation of equation (3. 7) 

(3~ = Ozz(l)o},- OpzOpz( l ) 
') 2 2 ( ) a;ap- Opz 1 

Recall that the model that is estimated is 

In the limit, the least squares estimate'S are given by: 

L ( -Zt + iJzt+l + -::ypt) Zt+l 0 
t 

L ( -Zt + 1Jzt+1 + -::ypt ) Pt 0 
I 

or 

~ 

Therefore, (3 is given by 

Taking limits, we arrive at.: 

fj = Ozz( l )ai,- OpzOpz( l ) 

a;a;,- a~z (l) 

Now, t.o derive equation (3.8), suppose that the true coefficient on at+1 is not 0, 



that. is fJ f 0. 

f3 is given by 

or 

so that. in the limit: 

Now consider fJ 

fJ 
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fJ _ L atat+1 L P?- L atPt L at+1Pt 

- L az+l L P? - (2: at+1Pt)
2 

fJ = (}aa(1)(}~- (}ap(}pa(1) 

(}~(}~ - (}~a (1) 

(}zz( 1)(}~- (}pz (}pz ( 1) 

(}'} (}~ - (}~z (1) 

(}~ ((}aa(1)- (}7)1)(1)) - O"pa(}Pa(1) 

2 2 2 (1) + 2 2 (}a(}P- O"pa (}1)(}P 

O"~O"aa(1) - (}pa0"Pa( 1) (}~(}1)1)(1) 

fJ 
2 2 2 (1) + 2 2 (} aO" P - a Pa (}110" P 

which gives us equation (3.8): 

22 2() 22 O"aO"P - (}Pa 1 + (}11 (}P 


