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Abstract

We examine voting situations in which individuals have incomplete information over
each others’ true preferences. In many respects, this work is motivated by a desire to
provide a more complete understanding of so-called probabilistic voting.

Chapter 2 examines the similarities and differences between the incentives faced
by politicians who seek to maximize expected vote share, expected plurality, or prob-
ability of victory in single member, single vote, simple plurality electoral systems.
We find that, in general, the candidates’” optimal policies in such an electoral system
vary greatly depending on their objective function. We provide several examples, as
well as a genericity result which states that almost all such electoral systems (with
respect to the distributions of voter behavior) will exhibit different incentives for can-
didates who seek to maximize expected vote share and those who seek to maximize
probability of victory.

In Chapter 3, we adopt a random utility maximizing framework in which indi-
viduals™ preferences are subject to action-specific exogenous shocks. We show that
Nash equilibria exist in voting games possessing such an information structure and in
which voters and candidates are each aware that every voter’s preferences are subject
to such shocks. A special case of our framework is that in which voters are playing
a Quantal Response Equilibrium (McKelvey and Palfrey (1995), (1998)). We then
examine candidate competition in such games and show that, for sufficiently large
electorates, regardless of the dimensionality of the policy space or the number of can-
didates, there exists a strict equilibrium at the social welfare optimum (i.e., the point
which maximizes the sum of voters’ utility functions). In two candidate contests we
find that this equilibrium is unique.

Finally, in Chapter 4, we attempt the first steps towards a theory of equilibrium in
games possessing both continuous action spaces and action-specific preference shocks.

Our notion of equilibrium, Variational Response Equilibrium, is shown to exist in all



-
games with continuous payoff functions. We discuss the similarities and differences
between this notion of equilibrium and the notion of Quantal Response Equilibrium

and offer possible extensions of our framework.
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Chapter 1 Introduction

Games of incomplete information arise in many scttings. Perhaps the most pervasive
of such settings is environments in which many individuals’ actions each affect one
another. Such environments are inherently characterized by incomplete information
since it is usually impossible for any individual to know every other individual's
preferences or motives, for example.

In the following chapters, we examine an application of the theory of games of
incomplete information to voting situations. In particular. we examine models in
which proposals are made to a group of voters whose true preferences over outcomes
are incomplete information.

We attempt to answer several questions, including examining the incentives to
candidates in elections where candidates have incomplete information about voters’
true preferences (Chapter 2), characterizing a Nash equilibrium of spatial voting
games when the number of voters is large (Chapter 3), and defining a notion of
equilibrium for games of incomplete information in which there exists a metric on the

action space (Chapter 4).

1.1 Literature Review

This work is closely related to that of many other scholars. This section attempts
to review previous work. The relationships between this work and earlier results are

outlined when helpful.

1.1.1 Related Work on Games of Incomplete Information

Most of this research is firmmly embedded in a Bayesian environment. As such, this
work would not have been possible without the pioneering research of Harsanyi (1967-

68). which defined the primitives and earliest solution concepts for games of incom-



plete information.

Similarly, most of the primitives used in this research satisfy the conditions im-
posed by Milgrom and Weber (1985) in a seminal work on distributional strategies
and Bayesian Nash equilibria in games of incomplete information. We use their exis-
tence and purification theorems in Chapter 3 and provide results similar to theirs in
Chapter 4.

1.1.2 Related Work on Candidate Objectives

Several articles discussing properties of different candidate strategies were published
in the 1970s. Foremost among these early efforts is Aranson, Hinich, and Ordeshook
(1974). Aranson, et al. offer an equivalence result which rests on assumptions re-
garding perturbations of the candidate’s objective functions, perhaps representing
forecast errors. Their result, however, requires that these forecast errors are unbiased
and, more importantly, that the errors are uncorrelated with the strategies chosen
by the candidates. As the authors point out, this assumption is untenable, since the
value of the objective functions (even after the errors are taken into account) must
fall between zero and one. A second equivalence result obtained by Aranson. et al
requires that the votes received in a two candidate election be distributed according to
a multivariate normal distribution. This obviously requires that negative vote totals
be a positive probability event. Aranson, ef al. were unable to offer any equivalence
results between expected plurality and probability of victory based on assumptions
regarding the primitives of the model.

Hinich (1977), however, provided justification for examining expected vote share
in place of probability of victory which depended only on the Central Limit Theorem.
Hinich's equivalence result states that the two objective functions converged in 2
candidate elections without abstention. This finding was extended by Ledyard (1984)
to include 2 candidate elections in which abstention is allowed. Providing intuition
for his claim, Ledyard argues at the limit, which is never actually realized in his
framework. In addition. there is a discontinuity at the limit, making his argument

impossible to generalize immediately for finite numbers of voters.
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1.1.3 Related Work on Probablisitic Voting

Much other literature has studied probabilistic voting (see Coughlin (1992) for a re-
view of this literature). Hinich (1977) showed that the median voter theorem does
not always hold in a setting with probabilistic voting, and he constructed examples
in a one-dimensional space with equilibria at other locations. In particular, with
quadratic utility functions. he obtained an equilibrium in two candidate elections at
the mean (which is the social welfare optimum with those preferences). Coughlin
and Nitzan (1981a), (1981b) (see also Coughlin (1992), p. 96, Theorem 4.2) proved
if voters have likelihood of voting functions satisfying the Luce axioms over subsets,
there is a local equilibrium at a point maximizing the social log likelihood. While this
work was not explicitly rooted in a utility maximization framework, subsequent work
(see (1992), p. 99-100, Corollaries 4.4 and 4.5, Theorem 4.2) shows how it can be so
interpreted. Coughlin (1992) also gives various conditions on voter likelihood func-
tions or on preferences that result in a global equilibrium. If the likelihood functions
are concave, there is a global equilibrium. In a re-distributional model where voters
have logarithmic utility functions for income. and candidates use a logistic model to
estimate the probability that voters vote for each candidate, there is a global equi-
librium at the social utility maximum (p. 57, Theorem 3.7). All of the above results
are for two candidate competition. Recently, Lin, Enelow and Dorussen (1999) show
that one can also obtain equilibrium for multi-candidate elections using probabilistic
voting models. They assume preferences based on distance, with a random utility
shock. and obtain local equilibria at the social utility maximum. Lin, et al. also find
that if the utility shocks have high enough variance, then the expected vote function
for each candidate becomes concave, implying the existence of a global equilibrium.
Recent work by Banks and Duggan (1999) examines the properties of spatial
competition between two candidates in a very general class of models of probabilistic
voting. They assume that voters’ probabilistic behavior is a function of the preferences
over the policy space, rather than the expected utility of each action. Thus, voters’

behavior is invariant to the probability that their vote will have any effect. Banks and
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Duggan show that the point which maximizes the sum of the voters’ utility funetions
has a special property. in that it is, very generally. a critical point of both candidates’
expected vote share. They also provide results concerning the continuity of “almost
core” policies when the core “almost™ exists. where almost is defined topologically on
the space of possible policies.

In all of the above cited probabilistic voting literature, game theoretic consid-
erations for the voter are not modeled. Voters are assumed to vote based on their
preferences for the candidate policy positions rather than based on the effect their
vote will have on the outcome of the election. Ledvard (1984) develops a Bavesian
model of two candidate competition that does model the game theoretic considera-
tions for the voter. In his model. voters vote deterministically (there is no random
utility shock to preferences), but they can abstain as well as vote for one of the two
candidates, and the cost of voting is a random variable. Voter types consist of pref-
erences as well as a cost of voting. He shows that in large elections, if voting costs
are non-negative, there is an equilibrium at the social welfare optimum, which un-
der certain restrictive conditions on the distribution of costs, is a global equilibrium.
Myerson (1997) extends Ledvard’s results in a model where the number of voters is
a Poisson random variable. unknown to the voters. He shows that as long as the
density function of the costs of voting is positive at zero, there is a global equilibrium
in Ledvard’s model as the number of voters becomes large. The Ledvard model, as
well as Myerson's generalization of it. require that no voters have negative costs of

voting.

1.2 Notation

This section defines much of the notation used in the remainder of this work. ¢
1. Topology. Sets. ete.

We denote the set of M/-dimensional real vectors with all strictly positive entries

by R':",' and the set of positive integers by Z .
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Let X" be a space and \ be a topology on X', In an abuse of notation, we denote
the Borel o-algebra of (X.y) by B(X). For anv set B € B(.\'). the wndicator
function defined by B is denoted by 1[B]. For any finite set Z, we denote the
set of probability distributions over Z by A(Z). If X is a metric space. we will
write ||, || to denote the metric on X,

Given a pair of topological spaces X and Y. will write C(\,Y") to denote the

set of continuous functions taking X as their domain and Y as their range.

g
Convergence

When discussing convergence. we use — to denote pointwise convergence of
functions and —— to denote weak convergence of measures. For any real-valued
function g taking as its domain a subset of a finite dimensional Euclidean space,
we adopt the notation lim g(z) = z if for any £ > 0, there exists 6(¢) > 0, such

that for any point y satistving || — y|| < é(2). |g(x) — g(y)| < =.
Vectors and Matrices

For any vector x € R™. we write o = (a'.... ,2™). Similarly. for any matrix

1" e R™ x R*, we write gJ"- for the entry in the i"* row and ;"

columu.
Derivatives

For any space X' € R, and any continuously differentiable function f: X — R.

we denote the vector of partial derivatives of f with respect to o by
d af

and write D f(z) when this vector is evaluated at a point z € X. Similarly,

we will write D2 f for the matrix of second order partial derivatives of f with
respect to x, and D?f(z) for the evaluation of this matrix at a point z € X.
Integration

For any integrable function f and probability measure ¢, each defined on a

topological space X', we denote the integral of f with respect to ¢ on Y € X



by one of the following notations:

/fd,u.
/f(.r);t((l.r).

or
E,[f(x)|z € Y].

When ¥ = X. we may drop the notation for the space over which integration

is performed if the context is clear.



Chapter 2 Candidate Objective Functions

2.1 Introduction

Game theory was first applied to the social sciences in an economic setting (von
Neumann and Morgenstern (1944)). so the question of which pavoff functions to use
was often simple. While the debate regarding what actual preferences over monetary
rewards look like is still unresolved, at least the supposition that preferences are
weakly increasing in monetary rewards seemed uncontroversial.

When political scientists started to apply game theoretic models to the study
of elections. the issue of pavoff functions became more complicated, however. In
particular, what should we assume that candidates wish to maximize as a result of
their platform choice? On the one hand, each vote carries equal weight ez ante, so it
seems intuitive that a candidate may seek to maximize her vote share. In addition,
there are other reasons, such as "mandate” effects, reputation benefits in repeated
elections. and signaling value to receiving more votes in an election (or poll) which
may justify seeking to maximize the absolute amount of electoral support.

On the other hand. the first works in formal political theory assumed that can-
didates were pure office seckers (see Downs (1957) and Black (1958), for example),
implving that candidates should maximize the probability of winning the election in
a one-shot electoral model. The question of equivalence is straight forward: which, if
any, different candidate objectives lead to identical optimal behavior?

\While the question of equivalence is interesting for several reasons, including some
normative reasons, such as what tvpes of candidate objective functions lead to more
“representative” outcomes in equilibrium. there are several technical reasons which
motivate our examination. First. much of the work on spatial competition (see, for
example, Hotelling (1929)) was in an economic environment. where the analogue to

candidates are firms secking to maximize profits. Thus. to apply the results of this
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work directly to political science. one must assume that candidates wish to maximize
the number of votes they each receive. Second, the calculation of the expected number
of votes is a much simpler operation than the calculation of the probability of victory
in many models of electoral competition. Finally, even if the calculation of probability
of victory is not difficult, this function is discontinuous in many electoral models in
which the candidates” expected vote shares and expected pluralities are continuous.

As noted above, both Hinich (1977) and Ledvard (1984) provide equivalence re-
sults for elections with two candidates. Part of this chapter’s motivation is to examine
their results at a deeper level. In particular, we examine the question of best response
equivalence in general probabilistic voting models. While we find difficulties with re-
spect to both Hinich’s and Ledvard’s results, neither Hinich nor Ledvard focused
much attention on equivalence as their results did not depend on any tvpe of equiv-
alence holding. Hinich's proposition is merely a statement, as the paper’s principal
finding (a one-dimensional spatial model in which the unique equilibrinm is not at the
median. but rather at the mean of the voters’ ideal points) is important regardless of
what the candidates’ objective functions are assumed to be. Ledvard’s results also

do not require an equivalence result to be considered important.

2.1.1 Overview and Structure

Section 2.2 sets up a general model of voter behavior within single vote. single mem-
ber, simple plurality electoral svstems. Three different candidate objectives, maxi-
mization of expected plurality, maximization of expected vote share, and maximiza-
tion of probability of victory, are formally defined in Section 2.3. We then provide a
preliminary result which states that expected vote and expected plurality maximiza-
tion are equivalent in all two candidate elections in which abstention is not allowed.
The following section, Section 2.4, then formally defines four types of equivalence:
best respouse and equilibrium equivalence in both pure and mixed strategies by the
candidates. We prove, for completeness, a simple nesting result (Theorem 6) which
essentially states that best response equivalence implies equilibrinm equivalence be-

tween any pair of objective functions.
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Section 2.5 contains one of our main results: establishing sufficient conditions for
best response equivalence to hold between all three objective functions (Theorem 13).
It turns out that our sufficient conditions are very stringent: there may only be two
candidates, and each voter must act independently and, in expectation, identically.
We refer to any electoral system in which voter behavior satisfies our sufficient con-
ditions as possessing a representative voter. The remainder of Section 2.5.1 provides
examples to show why these conditions are, at least in some sense, tight.

In Section 2.5.3, we examine Ledyvard’s (1984) equivalence result and provide an
example highlighting a difficulty with equivalence in 2 candidate elections in which
abstention is allowed. In particular, the special role of abstention and its effect on
the probability of victory by a front-running candidate are discussed.

In Section 2.5.4 we examine Hinich's (1977) equivalence result. We provide a
counterexample to his claim which raises a difficulty with extending our sufficient
conditions to his framework.

Following the question of best response equivalence, we examine the question
of equilibrium equivalence in Section 2.6. We provide sufficient conditions for local
equilibrium equivalence between maximization of expected vote share and probability
of victory in a broad class of models of electoral competition (Theorems 28 and 29),
furthering recent work by Duggan (2000) on the topic.

Section 2.6.5 contains a discussion of necessary conditions for best response and
equilibrium equivalence. We utilize a notion of genericity for infinite dimensional
spaces, shyness, due to Hunt, Sauer, and Yorke (1992), and recently generalized by
Anderson and Zame (2000), to show that the set of electoral games in which the
necessary first order conditions for either type of equivalence are satisfied is small
in a formal, measure-theoretic sense (Theorems 37 and 38). Section 2.7 contains a
discussion of possible generalizations and extensions of our results to other models of

voter behavior and other models of electoral competition. Section 2.8 concludes.
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2.2 The Model

In this section we define the framework in which we will examine the question of

equivalence between objective functions.

2.2.1 Primitives

Let A denote a finite set of voters, with |[A| = N, and 7 denote a finite set of
alternatives (which may include both candidates and abstention, for example), with
7| = J. We denote the set of candidates by J° Cc 7, with |7°| = J°. Each
candidate j chooses a policy, z; € X, where X, a compact subset of a complete
and separable metric space, denotes the policy space. We denote the J%dimensional
vector of all policies by z, and the space of all such vectors is denoted by ¥ = X*°.
The vector of all announced policies, other than the policy announced by candidate
J» is denoted by x_,, and the space of all such vectors by Y_;. We denote the set of
all mixed strategies for candidate j by M;, the set of all profiles of mixed strategies
by M = ]_[JJZ1 and set of all profiles of mixed strategies for candidates other than j
by M_;.

Each voter i chooses one alternative, denoted by a; € 7. The vector of all choices,
(ay,...,an), is denoted by a. The space of all such vectors is denoted by A. Each
candidate j possesses an objective function u; : A — R. For any a € A and j € 7,
we denote the vote total of candidate j by v; = Z;’il T = 7).

Each candidate j picks a policy proposal z; € X simultaneously. These choices are
then made common knowledge to the voters. After observing the policy proposals,
each voter votes for one alternative. As described above, this vector of choices is

denoted by a. For any a € A, let w(a) € {j € J

v; 2> maXiey v} denote the winning
candidate at s. In the case of a tie, the winner is assumed to be determined by a fair
lottery between all candidates j for which v; = maxie 7 v;. We denote the set of such
candidates by W (a). That is, we are examining a single winner, simple plurality rule

system.
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2.2.2 Voter Behavior

Each voter ¢ € A is characterized by a response function, p; : Y — A(TJ). Such a

function represents the strategy of voter i. We denote the probability an alternative

j € J receives voter i's vote, conditional on policy proposal vector ., by p!(x).
Throughout, we assume that each p;(z) characterizes an independent multinomial

random variable a;(x). This is stated formally below.

Assumption 1 (Independence) Conditional on a vector of policy proposals, x €
Y. the set of a;(x) are mutually independent random variables, each distributed ac-

cording to p;(x), respectively, for all i € N .

Finally, we define an electoral game to be any sextuple, I' = (7, Jo, X, A, p.u).
We denote the set of vectors of pure strategy Nash equilibria to an electoral game I"

by PNE(I') C Y and the set of all Nash equilibria by NE(T") C M.

2.3 Candidate Objective Functions

We now use the set of p; to define three different candidate objective functions,
expected vote share, expected plurality, and probability of victory. For clarity, we
first define these objective functions with respect to pure strategies by the candidates

and then extend these definitions to the case of mixed strategies by the candidates.

2.3.1 Maximizing Expected Vote Share

Given opponents’ pure strategies z_;, an expected vote share mazimizing candidate

j € J° seeks to maximize
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which, given Assumption 1, reduces to

V@) = = 3 #ita). (2.1)
T i=l

A few notes are in order. A candidate who seeks to maximize vote share is, in some
sense, competing against all other alternatives — not just the other candidates. In
particular, a candidate who seeks to maximize her expected vote share is also trying
to increase the number of voters who turn out to vote for her. In addition, an expected
vote share maximizing candidate is indifferent with respect to the distribution of the

votes she does not receive.

2.3.2 Maximizing Expected Plurality

Given pure strategies z_; by her opponents, an ezpected plurality mazimizing candi-

date j € J° seeks to maximize

N N
1 ;
wlEa ) = TE ;:1 1{a;=j}—- o LEZI 1{a; = k}||,

which, given Assumption 1, reduces to

ke T0.k#j

1 N N
wilE) = N Zpl’(r) — F | max Z 1{a;, = k} . (2.2)
: i=1 i=1

That is. an expected plurality maximizing candidate seeks to maximize the dif-
ference between her own vote share and the maximum vote share received by any of
the other candidates. Thus, expected plurality maximizing candidates are assumed
to not care about beating alternatives which can not win the election anyway, such
as abstention. This implicitly rules out nonstrategic alternatives which can win the
election, such as a choice of “None of the above,” for instance. An expected plural-
ity maximizing candidate is also not completely insensitive to the distribution of the

votes she does not receive.
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2.3.3 DMaximizing Probability of Victory

Given opponents’ pure strategies z_ ;. a probability of victory mazimizing candidate

j € J° seeks to maximize

1 . . ey
Rilz)= Z (WIU € W(a)] Pl‘[u]) : (2.3)

2.3.4 Payoffs with Mixed Strategies

We now extend the above objective functions to the case where candidates may
use mixed strategies. This is a standard exercise, and is necessary only because our
extension implies that candidates possess von Neumann-Morgenstern payoff functions
regardless of their objective.

Given any candidate objective function u; : ¥ — R, we will write

w53 peg) = /\ 5 /\ wi(z)pr(dxy) ... pi_a(dr;_1) i (dxjgr) - - - psp(dx )

for the expected value to candidate j of action x, by candidate j. given mixed strate-
gies fly, ..., fi—1, g1, -+  fg DY the other candidates.

Similarly, given candidate objective function u; : ¥ — R, we will write

wi(pgs p—j) = uj(p) = / . [ wy (@) (dey) ... gy (dag,)

for the expected value to candidate j of mixed strategy p; by candidate j, given

mixed strategies foy, ..., f; 1. fjs1, .. 5 fg, by the other candidates.

2.4 Two Different Definitions of Equivalence

There are at least two definitions of equivalent objective function, best response equiv-
alence and equilibrium equivalence. The first, and most demanding, is best response
equivalence. In words, best response equivalence holds whenever two objective func-

tions prescribe identical optimal strategies regardless of the strategy chosen by the
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opponent(s). Best response equivalence may hold with respect to all strategies or only
with respect to pure strategies.! Such equivalence is essentially a decision-theoretic
concern, as the strategic effects of other players’ motivations are inconsequential to
the player in question.

Formally, we define best response equivalence in pure strategies as
Definition 2 Two payoff functions u; and u. exhibit best response equivalence in
pure strategies for candidate i if, for all v_; € Y,

arg max u;(x, r_;) = arg max ui(x, x_;).
J‘€~\—1 Ie-\': .

Similarly, we define best response equivalence in mixed strategies as

Definition 3 Two payoff functions u; and v} exhibit best response equivalence in
mixed strategies for candidate 1 if, for all p_; € M_;,

arg max u;(fi, p—;) = arg max u,(;, p—;).
i EM; wiEM;

A second, and weaker, form of equivalence, equilibrium equivalence, holds when-
ever the set of Nash equilibria under two different objective functions are identical.
Just as with best response equivalence, we can speak of equilibrium equivalence hold-
ing with respect to the space of all strategies, or just with respect to the set of pure
strategy equilibria.?

Formally, we define the two types of equilibrium equivalence as follows.

Definition 4 Two vectors of payoff functions u and u' exhibit equilibrium equiva-

lence in pure strategies if for all z € Y,

x € PNE(u) < x € PNE(u').

'Since players posscss von Neumann-Morgenstern utility functions, then mixed strategy best
response equivalence implies pure strategy best response cquivalence, but the reverse implication
does not hold, as we show in Section 2.5.2.

“As with best response equivalence. equilibrium equivalence in mixed strategies implies equilib-
rium equivalence in pure strategies, but the reverse implication does not necessarily hold.
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Definition 5 Two vectors of payoff functions v and u' ezhibit equilibrium equiva-

lence in mixed strategies if for all p € M,
pw€ NE(u) < pe NE(u).

Obviously, both of these definitions are satisfied whenever best response equiva-

lence in mixed strategies holds.? For completeness, we prove this formally.

Theorem 6 Let I' = (7,7, X, N,p,u) and ' = (T, Jo, X, N,p,u'). If u and o'
ezhibit best response equivalence in mized strategies, then uw and u' ezhibit equilibrium

equivalence in mized strategies.

Proof: Suppose, by way of contradiction, that u and u’ exhibit best response equiva-
lence in mixed strategies but fail to exhibit equilibrium equivalence in mixed strate-
gies. Then there must exist a profile, p*, which is an equilibrium under one set of
objective functions, say u, but which is not an equilibrium under the other set, u'.
Then there exists some candidate k& for whom, given px*, and maximization of uj,

there exists a unilateral deviation, fi; # p. such that

wy (e u¥ ) > up(u*).

Then it is the case that the best response correspondence for candidate k under
objective function u" does not contain puj when g, = p*,. However, since pu* is an
equilibrium under w, then the best response correspondence for candidate k under
objective function « must contain puj when p_j = p*,.

Thus, for candidate K facing opponents’ mixed strategy profile u* .,

arg max uk(pe, p* ) # arg max uy (g, 1),
M €My, R €My

contradicting the fact that v and ' exhibit best response equivalence in mixed strate-

gies.

*For a more detailed discussion of this, see Aranson, Hinich, and Ordeshook (1974), p. 144-145.
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Since supposing that equilibrium equivalence in mixed strategies does not hold
when best response equivalence in mixed strategies does hold leads to a contradic-
tion, it must be the case that best response equivalence in mixed strategies implies

equilibrium equivalence in mixed strategies. |

The next corollary follows immediately from Theorem 6. It states that best re-
sponse equivalence in pure strategies implies equilibrium equivalence in pure strate-

gies.

Corollary 7 Let T = (J, Jo, X, N,p,u) and T = (T, Jo, X, N,p,v'). If u and v’
exhibit best response equivalence in pure strategies, then u and u' exhibit equilibrium

equivalence in pure strategies.

Of course, the converses of Theorem 6 and Corollary 6 do not hold in general.
Nevertheless, while equilibrium equivalence is a weaker criterion for equivalence, it
is often “enough” for our purposes, since most analyses of electoral competition are
solely concerned with (possibly some refinement of) Nash equilibrium.

We now examine the question of when best response equivalence does (and does

not) hold between expected plurality, expected vote share, and probability of victory.

2.5 Best Response Equivalence

Spatial models of elections often assume that the candidates’ sole goal is victory. To
calculate the optimal strategy for such a candidate, one must take into account the
probability of victory resulting from each strategy. In general, this probability is
not a trivial computation, especially when studying probabilistic voting models (e.g.,
Hinich (1977), Coughlin and Nitzan (1981a), (1981b), Ledyard (1984), and Chapter
3 of this work). For this reason, researchers have sought candidate objectives which
are easier to compute and vet lead to the same predictions as those generated by
probability of vietory.

The existing literature has shown that equivalence results do not hold in general.

In order to show equivalence between maximizing plurality and probability of victory,
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three things are assumed to hold. Voters choices are mutually independent conditional
upon the policy choices of the candidates, all voters, conditional upon any policy
profile x, have identical expected behavior, and candidate’s strategies are announced
simultaneously. We label the first two requirements independence and syminetry.
respectively, and we describe any electoral game which satisfies these requirements
as possessing a representative voter, since the expected behavior of any voter can be
inferred from the expected behavior of any other voter.

In Section 2.5.1 we prove our main result, Theorem 13, which states that maxi-
mization of expected plurality, maximization of expected vote, and maximization of
probability of victory exhibit best response equivalence in any electoral game sat-
isfving the following conditions: the electorate is finite, there are two candidates,
abstention is not allowed, and the game possesses a representative voter. In Section
2.5.3 we examine the issue of abstention in two candidate elections, the case exam-
ined by Ledvard. An example is provided which shows that Theorem 13 can not
be extended to this case. Section 2.5.4 contains Hinich’s claim and a counterexam-
ple. Section 2.5.5 contains a discussion of elections involving more than 2 candidates,
including an example showing that asymptotic best response equivalence between

expected vote share and probability of victory is not generally true in such elections.

2.5.1 2 Candidates, No Abstention

First it is shown that, for all N with J; = J = 2, maximizing expected plurality, 7;,

is equivalent to maximizing expected vote share, 1.

Proposition 8 Assume that J = 2 and Assumption 1 holds. Then, for any j and

all T2,

arg max m;(x;; x—;) = arg max Vj(z;;2-;)
T;€EX T EX
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Proof: By Assumption 1 and J = 2,

N
mi(r) = %Z[pf(m)—pf(;r)]
= Li[’lp‘(a) - 1]
N = ‘
% i
= V[; p;(z)] — 1
= 2Vi(z) — 1.

Thus, since the choice of candidate 1 is arbitrary, 7; is an increasing affine transfor-

mation of 17, proving the proposition. L]

Representative Voter

We now restrict attention to elections which satisfy an admittedly stringent symmetry
condition. In particular, we require for all voters to have identical response functions.

Formally, we make the following assumption.

Assumption 9 (Symmetry) For alli,j € N and all z € Y,

As mentioned above, we describe any game with J = J% = 2 which satisfies As-
sumptions 1 and 9 as possessing a representative voter, since the entire electorate’s
expected behavior can be expressed as a function of a single voter’s expected behav-
ior. In particular, we can drop the subscripts from the voters’ response functions, as

thev are identical to one another. We formally define this class of games below.

Definition 10 Any electoral game, U = (T, Jo, X, N, p,u), in which the set of vot-
ers, N, is finite and the set of response functions, p, satisfies Assumptions 1 and 9

15 said to possess a representative voter.
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We now show that, in any electoral game with a finite electorate and possessing a
representative voter, maximization of expected vote share, maximization of expected
plurality, and maximization of probability of victory exhibit best response equivalence
in pure strategies.

The following lemmata make the proof of Theorem 13 almost immediate. In
particular, Lemma 11 allows us to use differential calculus to show that the probability
of victory is a strictly increasing function of expected vote when an electoral game
with 2 candidates and no abstention possesses a representative voter. In a more
general sense, Lemma 11 ensures that the probability of victory is a smooth function

of the vector of all voters’ response functions.

Lemma 11 Let N and J be finite sets. If Assumption 1 holds, then R;(x) is con-

tinuously differentiable in p(x) for all j, for arbitrary values of J.

Proof: Fix a vector of policy proposals z € Y. The probability of a vector of votes

a € A is given by

N
fla:p(a)) = [[ (@),
=1

where a; denotes the alternative receiving i's vote whenever a is the vector of votes.

The probability of alternative j receiving the most votes is

1 . .
Rilz)=3" ey 1 € W(@)f(a:p(@)].
acA
For anyv a € A, x € Y, and i € N, f(a:p(x)) is linear, and hence continuously
differentiable, in p;. Since R; is a linear combination of f(a;p(x)) for different values

of a, it follows that R; is continuously differentiable in p(z). N

The next result, Lemma 12, states that the conditional expected value of the
upper 50% tail of the binomial distribution is strictly positive. We use this fact to
show that the probability of victory is a strictly increasing function of expected vote

share.
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Lemma 12 For any positive integer N,

>

(A(j) [P (1 = p)¥ "} (c— Np)] >0, (2.4)
=[5] *°

wl2

]

where the inequality is strict for all p € (0,1).

Proof: Let X be a random variable distributed according to a Binomial( NV, p) distri-
bution. Let Z = X' — Np denote the mean zero standardization of X'. It is obvious
that if p = 0 or p = 1 then Equation 2.4 is satisfied with equality. Therefore. assume
p€(0,1).

First, supposing that p € (0,1), the expected value of Z can be rewritten as

N

Z (f) P*1-p)"(c—Np)] = 0,
| N |
p(1—p)- > (C) P'A-p)" e = Np)] = 0,
e==0 '

so that, dividing through by p(1 — p), we obtain

N

S (M) bt -t ] =0 @

C
c=0

o
(&)
S—

Next, notice that, supposing that p € (0,1), for all ¢ < Np,
N -
( )p“(l —-p)"(c = Np) <0,
o
while, for all ¢ > Np,
N ;
(i)p'(l - p)VN=%(e — Np) > 0,
and, for ¢ = Np,

N ; .
( . )1)"(_] — p)h’ (¢ — Np) =0.
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Accordingly, supposing that p € (0,1), for all ¢ < Np,
N .
(1 )p“(] -p)" %(e=Np) < 0,
N c—1 N=e¢-1 r
pl=p)-{  Jr" (1 -p) (c—=Np) < 0,

(]:)pr_l(l_p)Nﬂ'_l(C“Np) < 0, (2.6)

while, for all ¢ > Np,

(V)ra-mec-nn > o

p(1—p)- (JZ)P“'(I -p)" Y e=Np) > 0,

and, for ¢ = Np,

N :
(1 )1)‘(1 - )" (c-Np) = 0,
3
N
p(1—p)- ( . )p"’(l -p)" " He=Np) = 0,

N\ v .
(r)p“" '1-p)" " Ye—-Np) = 0.

We complete the proof in two cases. The first case is when 0 < p < ;. Combining

il
&
Equations 2.5 and 2.6, we see that

N

_% (2) (P71 = p)V =" c - Np)]

is a sum of nonnegative (and at least one strictly positive) terms whenever p <

-

implving the result in this case.



In the final case, ; < p < 1, the sum

1
2

0
is completely comprised of strictly negative terms. Rewriting this sum as

AT
N\

N N ' N z
Z(‘C)[pf(lp)"‘"u—Nm} - > (‘C

) [p"'i('l — pyN—e1fe — 1'\-"]))} <0
implving that

as desired. [ |

Using Lemmas 11 and 12, we can now prove the main result in this section. In any
2 candidate election without abstention, a sufficient condition for expected plurality,
expected vote share, and probability of victory to be equivalent is that the electoral

game possess a representative voter.

Theorem 13 For any game possessing a representative voter,
T; € arg In%_i.‘l‘](.‘l,'j!.’l.'_jJ & r; € argmax Halts Bi)s

Proof: Since Vi(x;;x_;) is a strictly increasing function of p/(x), it suffices to show
that R;(x;;2_;) is also an increasing function of p?(x).
Lemma 11 ensures that we can differentiate R;(z;; x_;) with respect to p’(z). For

notational ease, let ?; = R;(x,;2_;) and p; = p/(x). Taking the first derivative of
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, with respect to p;, we obtain

N

: N . )
%i:= Z:()Pﬁ”ﬂ—mwﬁ-ﬂ—dmﬂ—ww“ﬂ-
P
M (N .
- > (D) ra-m = ca-p - W -am),

N ¢
e=[%§

N

where the final inequality comes from Lemma 12. Thus, the probability of victory
is a strictly increasing function of the expected vote and by Proposition 8, a strictly

increasing function of expected plurality. i

Theorem 13 only gives sufficient conditions for best response equivalence. The
following examples show that Assumptions 1 and 9, respectively, are not necessary

for best response equivalence.

Example 14 In this example, the individual response functions violate Assumption
1. In particular, realizations of a; and a; are perfectly correlated for all ¢, j € N'. We
show that, nevertheless, best response equivalence holds between all three objective
functions.

Let X' = {L, R} be a binary policy space, 7 = J" = {1,2}, and N = 3. The vot-
ers’ response functions are identical, but do not satisfy Assumption 1. In particular,

the voters’ responses are given by the following rule, where a; denotes the action of
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voter 7, and a denotes the vecror of all a;.

€

(1;1:1) if @=L i)
lgud5 1 /ith probability 0.5
( ) with probability 0.5 v (L.L)
(2,2,2) with probability 0.5
a =
(1,1.1) with probability 0.5
it o= (R R)
(2,2,2) with probability 0.5
(2,2,2) it z=(R,L)

\

That is, in all states, the voters vote unanimously for one candidate, and prefer
position L.

Regardless of whether a candidate is maximizing expected vote share, expected
plurality, or probability of victory, the pure strategy L weakly dominates all other
pure and mixed strategies. In fact, L is a best response for either candidate to any
strategy chosen by her opponent under any of the three objective functions. Thus,
best response equivalence holds in this case. even though Assumption 1 does not

hold. A

Example 15 In this example, the response functions do not satisfy Assumption 9.
In particular, two voters’ behaviors are the “mirror image” of each other, while the
third voter’s behavior is invariant to the policv chosen by the candidate. We show
that best response equivalence still holds between all three objective functions in this
example, even though the game does not possess a representative voter.

Let X =[0,1], N =3, 7 = J° = {1,2}, and let the voters’ response functions

satisfy Assumption 1. In particular, assume the following response functions.

1
1y — =
miz) = 5
I 1
ps(z) = 3 t3l@1—22)
1 1
pi(z) = 5 5{;1:1 — Ia).
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Thus. voter 1's behavior is completely unresponsive to the policies announced by
the candidates, while voters 2 and 3 each are more likely to choose the candidates
announcing the rightmost and leftmost policies, respectively.

It follows easily that the expected vote share and expected plurality of either
candidate is invariant to the vector of policies chosen by the candidates, with each
candidate receiving an expected vote share of 0.5 and an expected plurality of zero.
In calenlating the best response correspondence for candidate 2 under maximization
of probability of victory, we obtain

Ry(z) = (0.5) [1—2[x; — 22]* + 2[z; — 22]°]

= 0.5

for all choices of x; and x», implying that a probability of victory maximizing can-
didate is indifferent between all policies, regardless of the opponent’s strategy. Since
this holds under all of the three objective functions, best response equivalence holds

in this model, in which voters’ behavior does not satisfy Assumption 9. A

2.5.2 Best Response Equivalence in Mixed Strategies

We now show that even if Assumptions 1 and 9 are satisfied in a 2 candidate election
without abstention, best response equivalence in mixed strategies does not necessarily
hold. In particular, it is possible for a candidate to be indifferent between all possi-
ble pure actions under one objective function and not under another, implying that
the best response correspondence under the first objective function contains at least
one totally mixed strategy while the best response correspondence under the second

objective function contains no such mixed strategies.

Example 16 This example shows that Let X = {a, 3,7}, T = Jo = {1.2}, N be
finite, and assume that the game possesses a representative voter.

Suppose that p(x;,x3) is given by
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O 3 Y

a | (0.3,0.7) | (0.3,0.7) | (0.3,0.7)
4| (0.3,0.7) | (0.3,0.7) | (0.3,0.7)
v | (0.9,0.1) (0,1) (0.1)

Table 2.1: Expected Vote

First consider the case where N = 1. In this case, the probability of victory for
candidate one and expected vote share are identical, so that best response equivalence
holds trivially. Now consider the case where N is arbitrarily large. In this case, given
Assumptions 1 and 9, the payoffs of an expected vote share maximizing candidate are
still given by Table 16. However, probability of victory maximizing candidates face

pavofts given, for arbitrarily small € > 6 > 0,

v Jé} i
al(e,1—2)|(e,1—¢) | (e,1=¢2)
l(s,1—=¢)| (5,1 =¢) | (e,1=¢)
~ 1 (1—6.1) 0 0

Table 2.2: Probability Of Victory, N Large

Now suppose that candidate 2 is mixing with equal probability between the three
policies, «, 4, and . Then the expected vote share offered to candidate 1 by any of
the three positions is equal to 0.3. However, the probability of victory offered by a
and 7 is approaching 0, while the probability of victory offered by ~ is approaching %
Thus. in large elections, the best response correspondence of an expected vote share
maximizing candidate would contain all mixtures over X* while that of a probability

of victory maximizing candidate would only contain the pure strategy x; = . A

Aside from its obvious role as a counterexample to an extension of Theorem 13,
Example 16 is also interesting for the following reason. Hinich’s and Ledyard’s results

regarding asymptotic best response equivalence in pure strategies rely on appeals to

Tt can be easily verified that the same is true for an expected plurality maximizing candidate:
simply subtract ]E from every pavoff for both candidates in Table 16.
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forms of the Law of Large Numbers, while Example 16 shows that the same logic

actually breaks equivalence in mixed strategies.

2.5.3 2 Candidates with Abstention

The previous section provided a theorem which strengthens Hinich’s statement that,
in two candidate elections without abstention and without coordination by voters,
maximizing plurality and probability of victory vielded equivalent strategies in equi-
librium. As discussed in the conclusion. the proposition proved here for J = 2 is both
weaker and stronger than Hinich’s original claim, but it is obviously concerned with a
very special case, since abstention is generally allowed in most elections, for example.
When abstention is allowed, maximizing expected vote is generally not equivalent
to maximizing plurality, as we show in Example 19. In this section, we provide an
example of a 2 candidate election in which abstention is allowed and voters’ behav-
lor satisfies both Assumptions 1 and 9, but maximizing plurality and maximizing

probability of victory do not exhibit best response equivalence.

Ledyard’s Result

Ledyard (1984) provides a result stating that, when the number of voters is large
enough, maximization of V(z) and R;(z) are equivalent when J° = 2 and J = 3.
For clarity. we quote the claim, replacing Ledvard’s notation with the concepts they

denote in his model.

If [the number of voters| is large, then [expected plurality] is a good ap-

proximation for a candidate to use in place of [probability of victory].

Since the [individual vote choices| are independently identically dis-
tributed, it follows from a Law of Large Numbers that ... maximizing
[Candidate A’s expected plurality] maximizes (in the limit) the probabil-

ity that A wins. [Ledyard, (1984), pp. 20-21.]

Ledyard proves his result at the limit (i.e., an infinite number of voters), which

is never realized in his model. As the quote makes clear, Ledyard’s argument is



28
that expected plurality is a good approximation of probability of victory in large
electorates. We are silent on this issue. What we now show is that the abstention
can not be allowed in order for Theorem 13 to hold. The next example, due to John
Duggan, highlights why best response equivalence may fail to hold in 2 candidate

elections with abstention, even when the election possess a representative voter.

Example 17 This example shows how, even in a two candidate election, a significant
change in expected total turnout can alter the candidates’ probabilities of victory
without altering their expected pluralities.

We assume that voter behavior satisfies Assumptions 1 and 9. Let N =3, J = 3,
J® = 2, and consider two policy positions, z,y € Y, with x = (2,,2) and y = (2, x2),
characterized by the following voter behavior, where p(z) = (a b, ¢) means that, given
policy proposal vector z, the probability of any given voter voting for candidate 1 is
a, while the probability of voting for candidate 2 is b and the probability of abstention

is c:

p(z) = (0.08,0.02,0.90) and
(0.53,0.47, 0.00).

=
—_
2
~—r
I

We focus on candidate 1. It is straight forward to compute the following:

m(x) = 0.059933

Ri(z) = 0.581396,

while

mi(y) = 0.06
Ri(y) = 0.544946,

so that m () < m1(y), but Ry(x) > Ri(y).
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The reason that the two objective functions are not equivalent is that, conditional
on any given voter showing up, the probability of candidate 1 receiving that voter’s
vote is much higher at z than it is at y. It is interesting to note that if z; and z} are
her onlv choices, candidate 1 has a strict incentive to reduce expected turnout if she

wishes to maximize her probability of victory. JAN

2.5.4 Hinich’s Result

For over twenty vears, the theoretical literature has been largely silent on the im-
plications of the modeler’s choice of candidates’ objectives. We suggest that a re-
examination of this silence is necessary.

First, the validity of the claim in Hinich (1977) regarding asymptotic equivalence
of maximizing expected vote and maximizing probability of victory in two candidate

elections is not obvious. For clarity, we quote the claim.

If voters in a large electorate act independently, the distribution of a
candidate’s total vote approximates a normal distribution for Bernoulli
trials. The mean of this normal distribution is the expected vote. Thus
for large electorates, maximizing probability of victory is equivalent to
maximizing expected vote, which is also equivalent to mazimizing plurality

since everyone votes. [Hinich (1977), pp. 212-213. Italics in original.]

This claim has been cited by several authors (including Coughlin and Nitzan
(1981a), (1981b), Enelow and Hinich (1989), and Ledyard (1984), among others).
Exactly when Hinich’s claim holds is an open question, however. Theorem 13 states
that Hinich's claim is correct for finite electorates whenever the game possesses a
representative voter. We now show, however, that it is not the case that best response
equivalence holds in all 2 candidate elections without abstention. In particular, we
construct an example in which voters’ behavior does not satisfy Assumption 9 and

best response equivalence does not hold in any finite electorate, contradicting Hinich's

result.
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Example 18 This example highlights the fact that, even in a 2 candidate election
without abstention, best response equivalence between expected plurality and proba-
bility of victory can fail if voters do not satisfy our symmetry assumption, Assumption
9.
Let J = J° =2 and N = 3. Consider an election in which X' = {L, R} and voter

behavior is given by

pi(L, L) =pj(L,L) = p3(L,L) =
pi(R,R) = p;(R,R) = pj(R, R) =

e

0=

while
pi(R, L) = €
3
p(llL) = {-¢
3
B L) = =—§,
pa( ) 1
and
pi(L,R) = 1-¢
i
pé(L,R) = 1+:
1 1

Consider the pure strategy profile (L, L). Note that this is a strict Nash equilibrium

under maximization of expected vote share:

1
VI(L, L) =Va(L, L) = 5,
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while
1 3]
ViR, L) = 5(-+1~ +1—c)
1.3
= zlz—#)
_ 1 €
=373
1l
=2
Vi(R,L) < Vi(L,L),
and, by the svmmetry of the voters’ behavior,
1 3 3
Voll; B) = —(le4+-—€+-—E
2(L, R) 3( —f—4 +3 )
1 ¢
- 2 3
& 1
2
Vo(L,R) < VA(L,L)

Thus, by Proposition 8, (L. L) is also an equilibrium under maximization of expected
plurality. Note that (L. L) is a Nash equilibrium under these objective functions for
any ¢ € [0, 5].

Now suppose that candidate 1 deviates to R, both her expected vote and expected

plurality decrease by ¢, but for her probability of victory is

RUR.L) = f(%—:)%—5)+(1—5)(§—c‘)(§—5)
3~ o)z —e) el —e)G —e)
= (2—:)2+2:(§—5)(§—:)
= %—§5+:2+25(1%—:+:2)
= %—?—g~—a-’+253

Given ¢ > 0, the difference between candidate 1’s probability of victory at (R, L) and



her probability of victory at (L, L) is

| o 30 , ., 1
— : _— e ey et e YEL
R(RL)-Ri(LL) = - jge—+2°—3
1030 ., .
= —— ety
6 16 -

Now, letting = get arbitrarily close to zero, we see that

11_1.1(1] [Ri(R,L) — Ry(L,L)] = }1_1}(1) % - %5 —g2 4 253]
- 1
T 16
> 0,

so that, for sufficiently small positive values of £, L is not a best response for candidate
1 if candidate 2 chooses L. In other words, for sufficiently small positive values of =,
(L, L) is a Nash equilibrium under maximization of expected vote share or expected
plurality, but not a Nash equilibrium under maximization of probability of victory.
This example can be extended to arbitrary numbers of voters. Assuming that
J =2 and N odd, assume that p;(L,L) = % for all i, and take voter behavior to be

such that

Again, deviating from (L, L) to (R, L) decreases both candidate 1's expected vote
share and expected plurality by &, but increases her probability of victory. Indeed,

denoting candidate 1's probability of victory by R,(g, N), it can be shown that

1 1
lim lim Ry(e,N)=— > =.
e—0 N—oc (& ) \/F 2
Thus, even asymptotically, best response equivalence between the two objective func-

tions does not hold in general when voters’ behavior fails to satisfy Assumption 9.

It should be noted that this example can be trivially extended to a larger policy
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space (including an interval of R. To see this, just let L and R denote the endpoints
of the interval, and give voters’ linear response functions. It is easily verified that the
remainder of the analysis remains the same: (L, L) remains a Nash equilibrium vote
or plurality maximizing candidate while R is the best response to L for a probability

of victory maximizing candidate 1. A

Note, as a note for our discussions later in this Chapter, that Example 18 also
provides an example of a case where, in a 2 candidate election without abstention,
probability of victory and expected plurality maximization do not even exhibit equi-

librium equivalence,

2.5.5 More Than 2 Candidates

Another open question regards elections between more than two candidates. What
can we say, if anvthing, about the relationship between different incentives in such a
framework? The next example, due to Tom Palfrey, shows that asymptotic equiva-

lence in our framework is not possible without more restrictions.

Example 19 This example utilizes the fact that an increase in one candidate’s ex-
pected vote share does not necessarily imply a decrease in every other candidate’s
expected vote share.

Let the policy space be the unit interval, voters’ preferences be Euclidean, and let
there be three candidates. We assume that voter behavior is sincere: voters vote for
the candidate whose announced position is closest to the voter’s ideal policy. We also
assume there is a continuum of voters. Assume that candidates 1 and 2, proposing
x and y, respectively, are adopting identical strategies. Candidate 3 is adopting a
strategy, z, which is different from that chosen by candidates 1 and 2. As it stands
now, candidates 1 and 2 are each receiving 45% of the vote, while candidate 3 is
receiving only 10% of the vote. The probability of victory for candidates 1 and 2 is
also equal at this strategy profile. In particular, each candidate wins half of the time,

while candidate 3 never wins.
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Assume now that candidate 1 seeks to maximize her expected vote share and that
there exists a policy ' such that, given y and z, she will receive 47% of the vote at
z', candidate 3 will receive 5% of the vote, and candidate 2 will receive 48% of the
vote. Thus, candidate 1’s vote share has increased, but her probability of victory has
gone to zero, since candidate 2’s vote share is higher than candidate 1's.

This example shows that, even with a continuum of voters, a candidate mayv
increase her expected vote share but decrease her probability of victory. This is

generally the case when there are more than 2 candidates. A

Notice that Example 19 does not violate equivalence between expected plurality,
as defined above, and probability of victory. The question of asymptotic equivalence
between expected plurality and probability of victory with more than two candidates

is an open question, one which we discuss to some degree later in this chapter.

2.6 Equilibrium Equivalence

2.6.1 Introduction

We now extend the study of candidate objective functions to the question of equi-
librium equivalence. As discussed earlier, best response equivalence is essentially a
decision-theoretic concern, as it is defined to hold regardless of the opponents’ strate-
gies. Equilibrium equivalence, on the other hand. is a game-theoretic concern. Two
objective functions are said to exhibit equilibrium equivalence if the sets of Nash
equilibria under the two objective functions are identical.

In this section, we examine strict local Nash equilibria - profiles of candidate
strategies in which no candidate has an arbitrarily small deviation which leads to
a weakly greater pavoff. Our motivation for examining local equilibria is two-fold.
Obviously, every global equilibrium is also a local equilibrium. If local equilibrium
equivalence fails at all local equilibria, then global equilibrium equivalence fails, im-
plving by Theorem 6 that best response equivalence must fail as well. The following

section provides a result which states that, for generic continuously differentiable
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voter response functions, the first order conditions for local equilibrium equivalence
fail to be satisfied, implving that, generically, best response equivalence fails to hold
between maximization of expected plurality and probability of victory maximization.

Secondly. the global equilibrium constructed in Theorem 46 in Chapter 3 1s, in-
tuitively, a local equilibrium which “becomes” global. Hence, it is hoped that an
understanding of the general properties of local equilibrium equivalence will simulta-
neously lead to an understanding of the robustness of the equilibrium constructed in
Chapter 3 to the specification of the candidates’ objective functions.

Our first result in this section is that interior p-symmetric strict local equilibria
under maximization of expected vote share and maximization of probability of victory
are identical whenever voters’ types are independently distributed and the second
derivative of each candidates’ expected vote share is negative definite at the local
equilibrium. We show that local equilibria under maximization of probability of
victory are also local equilibria under maximization of expected vote share even if
we relax the local negative definiteness of the second derivative of each candidate’s
expected vote share to local strict concavity of each candidate’s expected vote share
with respect to her own policy choice.

These positive local equilibrium equivalence results are motivated by the results
of several previous papers in probabilistic voting models of candidate competition.
For instance, Coughlin and Nitzan (1981a), (1981b) examine local Nash equilibria for
two candidate elections under a probabilistic voting model, and our results apply in
much of their framework, as they require voters “make independent voting decisions,”
which corresponds to Assumption 1 in our framework. Additionally, our equilibrium
equivalence results apply to the framework studied by Hinich (1977).

Similarly, in Chapter 3, we examine a model of strategic probabilistic voting with
an arbitrary number of candidates seeking to maximize expected margin of victory.
We prove the existence of a p-symmetric strict Nash equilibrium at the point that
maximizes the sum of the voters’ utility functions whenever the number of voters is
large enough. Our method of proof, using a Taylor Series expansion of the expected

payoffs of a deviation by any candidate). utilizes the fact that the point which max-
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imizes the sum of voters’ utilities is a local critical point which becomes a global
expected payoff maximum as the number of voters grows without bound.

Finally, we prove that interior p-asymmetric local equilibria are generically not
equivalent under maximization of expected vote share and maximization of proba-
bility of victory whenever voters’ behaviors are continuously differentiable. We show
this by noting that the first order conditions for interior equilibrium are almost always

not met simultaneously under the two objective functions.

2.6.2 The Model

Let 7, with | 7| = J, denote the set of candidates, as we do not deal with abstention
in this section, and let A/, with |[N'| = N, denote the set of voters. Each candidate
simultaneously chooses a point in some policy space X. We denote the space of all
J-dimensional vectors of policy proposals by Y.

We write the action of voter 4, given y € Y, as a; € J, and denote the number
of votes received by candidate j by v; = [{ € N|a; = j}|. We write a for the vector
of a; for all voters ¢ and A for the space of all such vectors. Again, as above, we
denote the probability that voter ¢ votes for candidate j at y € Y™ by pf(y) and the
vector of all p{(y). for some candidate 7 and all voters i, by p/(y). We will note any
additional assumption we make about p; as we need them. We continue to refer to p;
as a response function for voter 1.

For any = € Y, let G;(i,2) denote the probability candidate j wins, conditional
on voter 7 voting for j (i.e., a, = j) and let H,(i,x) denote the conditional probability

that candidate j wins, conditional on a; # j. Formally,

G, ) = Priw(a)=jlp_ilz);a; = j}
1
— Z [W Pr{a|p_i(z); a; :_i}l[.f € W(a)l|, (2.9)

ag A



and

Hi(i,z) = Pr{w(a)= jlz;p- o i}

- Z [H—Vl(a)[ Pr{a|z;p_i;a; # j}1[j € W(a)]| . (2.10)
aceA /

2.6.3 Equilibrium

We use the notation from Section 2.6.2 to express the probability of victory for can-
didate j, given a candidate strategy profile x, as a sum over the voters. This sum is

given in the following lemma.

Lemma 20 Given a policy profile, € Y, the probability of victory by candidate j is

qoen by

X
Ri(a) = % S I@)G;(i,2) + (1 = p(@) H (s ). (2.11)

Proof: Consider any voter i and any candidate j. From the definition of conditional

probabilities and the assumption of independence,
Ri(z) = Prla;,=j N w(a) =j]+Prla; # 3 N w(a) = j]
= Prle; = j| Pr{w(a) = jle; = j] + Prla; # j] Prw(a) = jla; # j]
piG;(i,z) + (1 — p))H,(i, z).
The result then follows immediately by summing over 7. L]

Given Equations 2.1 and 2.11, the following lemmata state the first derivatives
of each candidate’s expected vote and probability of victory with respect to her own

strategy, respectively.
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Lemma 21 For any electoral game with differentiable response functions p, any can-

didate j € J, and any policy profile x € Y,
D,,Vj(z) = _ Dy, pi(z). (2.12)
ieN

Lemma 22 For any electoral game with differentiable response functions p, any can-

didate j € J, and any policy profile v € Y,

- be(p,i(:L'))DIJ[)f(;ﬂ) (2.13)

1EN

where G,(j;x) and H,(j;x) are defined in Equations 2.9 and 2.10, respectively, and

their difference, & (p_;(x)), equals i's pivot probability with respect to candidate j.

Proof:
Ri(z) = ZI” 1[zeu (a)] Prla|p(x)]

1 N . .
= 2, |n-'(a)11:llpf( )

acAlleW(a)

DyRyz) = 3 {m |Z[Hv r)} np?'(x)]

acA:le W ( J#i

J N I
1 a a
N Z? > {Z [HW(J’) Dy,p; ‘(")J
k=1 _aEA:[EH'('u)Jll'(a}‘:k =1 Lj#i i
J 1 '~ T 8
B k Z Z [HPJ% (z) | Da,pi* (z) (2.14)
k=1 | i=1 [acAueW (a)|W(a)l=k Lj#i ]

.
> > {H p, (z-)} D, pl(z)

I.i:I acA:leW (a),|W(a)|=k,a;=l Lj#i

+ > [H P 1)} 2P ( . (2.15)

aEAlEW (a),|W (a)l=k,a; #l Lj#i

,
Il

Il
.M{-
>
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For any voter i € A" and any vector of policy proposals r € Y, ZLI pl(z) =1, s0
that, for any candidate j € 7, Zfil D;pl(x) = 0. For any voter i and any candidate j.
let D(2: j) C A denote the vote vectors in which i is decisive (or pivotal) for candidate

j; i.e., all vote vectors a such that a; = j, j € W(a), and W (a?€¢) and j ¢ W (a’ for

any @’ = (ay, ... ;. a7 g, ..., an) with ™€ # j. Rewriting Equation
2o
g N
D, Ri(z J N D I( 5
2 15 () % D (z) 2 Pi(T)
k=1 =1 a€D(il):leW (a),|W (a)|=k,a;=l Lj#1

+ > {Hp Je ] Dy, pi(z)
kgl

ag@D(i;5):leW (a),|W (a)|= J#

+ M {Hp‘;i (:r)] l,p"'(r)H : (2.16)
koa;#l

ac AlleW(a),|W (a)|= J#i

For any voter i, any candidate j, and any vote vector a € A, a; # j implies that
a & D(i;j). Thus, it is possible to combine the second and third inner sums in

Equation 2.16 and obtain

D, R

| =

; i XA: D [Hp“’ } D, pi(x)

k=1 i=1 |acD(;l):leW(a),|W(a)|=k.a;=l Lj#i

+ > [Hl)}“(r)} 2PE @) | |- (2.17)

ag@D(i;j):LeW (a),|W(a)l =k Lj#i

For any voter i € A" and candidate j € 7, let [(i;j) C A_; denote the set of vectors
of votes other than i's in which j € W(A) and 7 can not be pivotal for j. That is,

regardless of i’s vote, W (a) remains the same (and includes j). Formally,

D(isj) ={a-, € A_; : j € W(a;;a_;)Va; € J}.
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Rewriting Equation 2.17

)

| =

3 "
DRy Z Z Z o I:Hpj-’(])} Dﬂpﬂ(g-)

k=1 i=1 | a€D(i1):leW (a),|W(a)|= J#

J
> {Z [HPB”(J‘)} D, pi"(x )} : (2.18)

a_;€[(5):W(a)|l=k Lm=1 Lj#i

+

Since Z;’nzl D;p™(z) = 0 for any i € N and 2 € Y, the second inner sum in Equation

2.18 vanishes, leaving

J N
1 a
DeRi(e) = 3 4|3 > [Hmz)} D, p(#)
k=1 1=1 | a€eD(i:l):leW(a),|W(a)|=k,a;=1 _’]#l‘
.
. {Hz; T>] Dapl(s) (2.19)
=1 | aeD(i;l

The pivot probability of voter 7 with respect to candidate [, given a policy profile

2 € Y and other voters’ response functions p_;, is equal to

Bp_i(z) = > L”( Hp } (2.20)

acD(il)

Using Equation 2.20 and substituting &! into Equation 2.19, we obtain

A.‘
D, Ri(z) = Z 8] (2) Dy, pi(),

i=1
as was to be shown. [ |

We now define p-symmetric, local, interior, and p-interior vectors of response
functions. In words, these conditions are fairly straight forward: p-symmetry holds
whenever, at some policy profile € Y, all voters behave identically in expectation;
two policy profiles -,y € Y are local if the distance between them is not too great; a
policy profile € Y is interior to Y if it is not on the boundary of Y; and a policy

profile € Y is p-interior if no voter is voting for any candidate with probability zero,
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conditional upon x being the announced policy positions.
Our definition of p-svmmetry is satisfied when, conditional on the policy an-
nounced, each voter’'s expected behavior is identical. That is, p-symmetry is a point-

wise satisfaction of Assumption 9, as used earlier in Section 2.5.1.

Definition 23 Given a vector of response functions, p, a policy profile y € Y s

p-svmmetric if, for alli,57 € A" and all k € J,
pi(y) = P ().

Any policy profile which is not p-symmetric is referred to as p-asymmetric.

Two policy profiles are z-local if the distance between them is no greater than e.

Definition 24 Two policy profiles, .y € Y, are e-local if
Iz —yl| <e.

Our methods of proof utilize the necessary first order and sufficient second order
conditions for optimization. In order to simplify the analysis, we examine interior
equilibria - equilibria for which the necessary first order conditions are that the gra-
dient vanish. Perhaps obviously, an interior equilibrium is any equilibrium in pure
«

strategies, z*, where z* is in the interior of Y.

Definition 25 A vector x € Y is in the interior of Y, written x € Int(Y'), if, for

some = > (),
(lz—z|]| <e)=>z€Y.

We provide results for p-symmetric local equilibria at p-interior vectors of response
functions. The reason for this restriction is that the partial derivatives of a candidate’s
probability of victory with respect to any voter’s response function are functions of

the other voters’ response functions. Hence, p-interior vectors of response functions
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imply that these partial derivatives do not vanish.

Definition 26 A vector of response functions p is p-interior at a point x € Y if, for

all voters i € N and candidates j € 7, pj(.L) = 1.

We now define a strict local equilibrium of an electoral game.

Definition 27 Let T = (7,70, N.N,p,u) be an electoral game, let v € Y be a
candidate policy profile, and let =, be any unilateral deviation by candidate j from x.
Then x s a strict local equilibrium of ' «f there exists £* > 0 satisfying the following.

For all j € J and for all .l; which are £*-local to x,

with the inequality being strict whenever x'; # ;.

To simplify exposition, whenever we are comparing two electoral games I' =
(T, Jo, X,N,p,u) and T" = (T, Jo, X, N,p,u'), we will refer to the set of strict
local equilibria of I' and I as being strict local equilibria under u and strict p-local
equilibria under u', respectively.

Finally, for any voter i, any policy profile x € Y, and any given vector of the
other voters’ response functions, p_;, we will denote the probability of a vector of
other voters’ actions, a_; € A_;, such that candidate j is either tied for the lead or
one vote behind the leading candidate by 63 (p-:(x)). This probability is also referred

to as the pivot probability and is dealt with quite extensively in Chapter 3.

2.6.4 Sufficient Conditions for Equilibrium Equivalence °

In this section, we provide two results which, when taken together, provide an insight
into when local equilibria under maximization of expected vote share and probability
of victory are equivalent. In essence, p-symmetric local equilibria in which voter

behavior is “concave enough” are equivalent. The p-symmetry condition can be linked

°I am extremely grateful to John Duggan for many helpful comments on this topic,
including the discovery of a serious error in an earlier draft of this section.
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to the sufficient conditions found in Theorem 13 - voters, at least locally. “look the
same” to the candidates. Both of the main results in this section (Theorems 28 and
29) generalize and closely mirror results (Theorems 1 and 4, respectively) in recent
work by Duggan (2000).

Duggan (2000) examines the question of equilibrium equivalence between maxi-
mization of probability of victory and expected vote share maximization in 2 candi-
date elections without abstention. In particular, Duggan shows that, in such elec-
tions, strict interior Nash equilibria under probability of victory maximization are
also equilibria under maximization of expected vote share when the voters’ types are
independent. As for the converse, Duggan examines a general model of probabilistic
behavior known as the additive bia model, in which voters’ types are represented by
a utility bias in favor of one candidate or the other. He proves that the negative defi-
niteness of the matrix of second derivatives of the sum of the voters’ utility functions
is a sufficient condition for a strict interior Nash equilibrium under maximization of
expected vote share to be a Nash equilibrium under maximization of probability of
victory.

Our main contributions are to allow for more than 2 candidates in both results
and allow for a broader class of voter behavior in Theorem 29.

We now show that, if z* € Y is a p-symmetric local equilibrium under cither
expected vote share or probability of victory maximization, then the negative defi-

niteness of

2 G0, .
E Dpl(z*) (2.21)
ieN
for each candidate j is a sufficient condition for equilibrium equivalence. We also
show that this condition can be relaxed to local strict concavity in each candidate j's

policy position of

> vl (2.22)

iEN
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for local equilibria under probability of victory maximization to also be local equilibria

under expected vote share maximization.

Theorem 28 Let 2* € RM be an interior p-symmetric strict local equilibrium under
probability of victory mazimization in which p}(ar*) > 0 for all voters i € N and
candidates j € J and that, for each candidate j € J. the following condition is
satisfied:

> Pl (2.23)
iEN
is strictly concave with respect to x; in an open neighborhood of 5. Then z* is also

a strict local equilibrium under mazimization of expected vote share.

Proof: Since 2* is an interior local equilibrium under maximization of probability of

victory, then the following condition must hold for any candidate j € 7.

DR;(z*) =) _[8](p-s(z"))Dpl(")] = 0.
eN
The first order conditions for an interior local equilibrium under maximization of

expected vote share are given by the following.

DVj(z*) = > Dpl(a*) =0.
1EN
By p-symmetry, it follows that each voter is equally likely to be pivotal, so that
8 (p_i(a®)) = 6 (p_i(x*)) for all i,k € N and all j € J. Therefore, the first order
conditions for local equilibrium under expected vote share are satisfied at x*.

By the hypothesis that >, }f{(;r*) is strictly concave in z; in an open neighbor-

*

hood of z*, z;

is a strict local maximizer of (") in an open neighborhood of z* for

all candidates j, implving the result. [ |

If the second derivative of expected vote share is negative definite at an interior

p-symmetric policy profile 2* for each candidate j, then a strict local equilibrium
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under maximization of probability of victory is also a strict local equilibrium under

expected vote share maximization.

Theorem 29 Let z* € RM be an interior p-symmetric strict local equilibrium under
expected vote mazimization in which pl(x*) > 0 for all voters i € N and candi-
dates j € J. If D*V,(z*) s negatwe definite for all j, then = 1s also a strict local

equilibrium under probability of victory mazimazation.

Proof: The first order condition for an interior local equilibrium under expected vote
maximization is DV;(x*) = 0, for all j € J. To see that this implies the first order
condition for local equilibrium under probability of victory maximization, DR;(x") =

0 for all j € 7, note that
DR; =& - Dp/,

where &/ is the N x 1 vector of pivot probabilities for each voter with respect to
candidate j, and Dp’ is the N x M matrix of partial derivatives of each voter’s

individual probability of voting for candidate j, and
DV; = Dp'.

Since § > 0 by the interior nature of p; for all i € A and &/ = (51 for all voters i,k € N/

and candidates j € 7, it follows immediately that
(DV; =0) & (Dp) =0) & (DR; = 0).

A sufficient second order condition for local equilibrium under maximization of R

at 2 is the negative definiteness of

D’R;(z*) =) _[Dé! - Dp] + 6/ D*pl], (2.24)

1EN

where D¢/ = Dé] for all i,k € NV and j € J by the p-symmetry of z*, so that the
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first term on the RHS of Equation 2.24 disappears at 2™, since 3. Dpl = Dp’ = 0.

Thus, by the fact that each voter is equally likely to be pivotal,

DFR(a") = > &lDfp]

€N

— & 2,7
iEN
for any voter k € A, so that D*R; is a positive scalar multiple of 3~ D*p/, implying

that D?R; assumes the definiteness of > ._.- D*p!. Finally, since

DV =y D%,
1EN
it follows immediately that D?R;(z*) assumes the definiteness of D?V;(z*). By hy-

pothesis, D*V; is negative definite, implying the desired result. |

An immediate question is what conditions on voter response functions would imply
that D?1;(x) is negative definite? It turns out that a sufficient condition is local
concavity of each voter’s behavior, coupled with the existence, for each candidate,
of at least one voter whose behavior at z* has a negative definite matrix of second
partial derivatives with respect to that candidate’s policy choice. The next lemma is

straight forward.

Lemma 30 Suppose that for all i € N and some point x*, p; is concave in x; at x*
for each j € J, and, for each candidate k € J, there exists at least one voter [ € N
for whom D'pr"k(:r*) is negative definite. Then D*V;(z*) is negative definite for each

jE€J.

Proof: Choose any candidate j. We have shown that the matrix of second partial

derivatives of v; is given by

BYV(a*) = Z Dpl ().

ieN
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The sum of negative semidefinite matrices is negative semidefinite, and the matrix of
second partial derivatives of a concave function is a negative semidefinite matrix. In
addition, the sum of any nonnegative number of negative semidefinite matrices and
any positive number of negative definite matrices is a negative definite matrix. The

result follows immediately by noting that the choice of j is arbitrary. |

2.6.5 Necessary Conditions

In this section, we investigate necessary conditions for equilibrium equivalence and
best response equivalence between maximization of expected vote share and maxi-
mization of probability of victory. We examine necessary conditions for equilibrium
equivalence first, as equilibrium equivalence is itself a necessary condition for best

response equivalence (Theorem 6 and Corollary 7).

Preliminaries

In this section, we restrict attention to the case where X is a compact subset of a

M where M is an arbitrary integer. We first

finite dimensional Euclidean space, R
provide a technical result regarding a representation of voter behavior in our model.
In particular, we characterize voter behavior as a point in finite dimensional Euclidean
space. We also retain the restriction that each p; is continuously differentiable on Y.

Given that we are concerned with satisfaction of first order conditions at some
vector of proposals @ € Y, each continuously differentiable response function p; is
completely characterized by a vector ¢;(x) € A(J) x R’. For a given z € Y, the
space of all such ¢;(z) is denoted by Q,(z) c R/(M+1)

Formally, we define ¢;(z) as follows:

ai(z) = (pi(z), Dp;(z),...,Dpj(x))
7, Opl(x) Ip}(z) Ip}(x) ap} ()

= 1 2 * '» 5 e ey &8s o T T T .
- (p1 ('L)v"' spz (I) 8.’?’} ? 8:1:{” ’ aTﬁ L) ) (I).T:’y )

That is, ¢;(x) is the concatenation of p;(z) and its derivatives with respect to each

candidate’s policy proposal evaluated at . This definition of ¢; turns out to be a suf-
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ficient parameterization of the space of continuously differentiable response functions
to show that the first order conditions for equilibrium equivalence between maximiza-
tion of expected plurality and probability of victory are generically not satisfied by
vectors of continuously differentiable response functions. Given a vector of response
functions p = {p1,... ,pn}, we write ¢(z) = {qi(z),... ,qn(x)}.

The next proposition states that ¢(x) is a sufficient statistic for the first derivatives
of both expected vote share and probability of victory with respect to any candidate’s

policy choice.

Proposition 31 Choose x* € Int(Y') and let p and p be vectors of continuously

differentiable response functions such that q(x*) = ¢g(z™). Then
e DR;(p(x*)) = DR;(p(z*)) and
o DVj(p(z*)) = DV;(p(z"))

forall j € 7.

Similarly, it follows immediately that if two sequences, {g(x)4}52, and {¢(2)a}oZ,,
converge. then the sequences of evaluations of each candidate’s objective functions

converge as well, since V; and R; are both continuous functions of g.

Generic Failure of Equilibrium Equivalence

The following results hinge on the fact that the first derivative of a candidate’s ex-
pected vote share with respect to her own policy choice is a mapping from RV to R
while the first derivative of her probability of victory with respect to her policy choice
is a mapping from R*V to R.

For the remainder of this section we restrict attention to the case where the
response functions are each continuously differentiable in X" and show that the set
of continuously differentiable response functions under which expected plurality and
probability of victory maximization are equivalent is “small” in a precise sense. In

particular, we show that the set of continuously differentiable response functions
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which vield a given vector q is shy in the space of continnously differentiable response

functions. First, however, we define a shy set.

Definition 32 Let X be a complete metrizable topological vector space. A Borel set
E C X is shy if there exists a reqular Borel probability measure p on X with compact
support such that p(E + ) = 0 for every x € X. A (not necessarily Borel) subset
F C X is shy if it is contained in a shy Borel set. A subset Y C X is prevalent if
X\Y is shy.

These definitions of shyness and prevalence are due to Hunt, Sauer, and Yorke
(1992). The notion of shvness has been generalized by Anderson and Zame (2000)
to include a notion of relative shyness. For our purposes, for example, the set of
continuously differentiable response functions turns out to be shy (since the ambient
vector space is the space of continuous response functions). Thus, we use the following

definition of shyness with respect to another set.

Definition 33 Let X be a topological vector space and let C' C X be a convex Borel
subset of X which is completely metrizable in the relative topology. Fir ¢ € C. A
Borel subset E C X is shy in C at ¢ of for each 6 > 0 and each neighborhood W of 0
i X, there is a regular Borel probability measure o on X with compact support such
that supp p C [6(C —c)+c]N(W +¢) and u(E +z) = 0 for every x € X. A subset E
is shy in C if it is shy at each point ¢ € C. A (not necessarily Borel) subset FF C C
15 shy in C' if ot 1s contained in a shy Borel set. A subset Y C C' is prevalent in C' if
its complement C'\ 'Y is shy in C.

A stronger version of shyness is finite shyness. as defined in Anderson and Zame
(2000). For any finite dimensional subspace V" C X, we write Ay for Lebesgue measure

on V.

Definition 34 A Borel subset E C C is finitely shy in C of there is a finite-
dimensional subspace V' C X such that \v(E + z) = 0 for every x € X. A (not
necessarily Borel) subset F' C X is finitely shy in C' if it is contained in a finitely shy
Borel set.
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The notion of shyness extends measure-theoretic notions of genericity to infinite
dimensional spaces. Since the space of continuous response functions is infinite di-
mensional whenever X is infinite, we use shyness as our analogue for “smallness™ in
this space.

We denote the space of continuously differentiable response functions from Y to
A(J) by Pais(Y, T). This set is a closed subset of the space of continuous functions
C(Y,R7). We denote the space of N-dimensional vectors of continuously differentiable
response functions by Pj (Y, 7).

Our next result states that, for any vector of policy proposals z € Y any point in
the .J-dimensional simplex, tg, and any J-dimensional vector of M-dimensional real
vectors ¢1,... .1y, the set of continuously differentiable response functions p for which
g =1t (i.e. p(x) =ty and Dp’(x) = t;) is finitely shy in the space of all continuously
differentiable response functions. In words, the space of functions which satisfy a

given first-order condition is “small.”

Theorem 35 Let Y be compact. Then, given any T € Y and anyt € R’T7M | the set

Ct) ={p:q(x) =t}

is finitely shy in Pair (Y, T), the space of continuously differentiable response functions

on Y.

Proof: We first show that C(¢) is a Borel subset of Py (YT).
Choose any countable dense subset X C Int(X). By the continuous differentia-
bility of p, if p(Z) = k and Dp(%) = L, where k € A(J) and L is a J x J real-valued

matrix.

i [p(z) — p(a) — ~L (x— 7)) _o.
2 o =3

Equivalently, for each «v € Z ., there exists J € Z_. . such that

p(z) — p(z) — L- (& — 1) " 1
||&— &| o




for any # € X such that ||& — z*|| < f’—i

For any o, 3 € Z,. and & € X,

which is easily verified to be an open subset of Py (Y, 7).

Now let

C(t) — mZQ:l U;;ozl ((ﬁo<||1._1-”<z1;C(t\ o, ,{3.1’})) s

which, as the countable union and intersection of open subsets of Pyir(Y, 7). is a
Borel subset of Py¢(Y, 7).
We now show that C(t) is finitely shy in Pgr(Y, 7). In order to see this, choose

r* € Y and define

edllzi—z"| e~ dllzi—z|| 1 1

hge(Z59) = (g(eahm—-r'\\ + e tUm—=1)" 2(edllm—=1 4 e—lm—="11)’ 2(J — 2)

qomim s iy

It is simple to verify that h.-(-; @) € Pauyp(Y,J) for all x* € Int(Y') and all ¢ € R.
Let

H = {hz(z;¢): ¢ € R}

denote the one-dimensional subspace of C(Y; R’) which is spanned by h,-(x; ¢). Since
every element of H is also an element of Py f(Y, 7), it follows that Ay (Pas (Y, T)) > 0.
Now we must check that Ay (C(t) + ¢) = 0 for any g € C(Y,R’). It suffices to show
that, for any g € C(Y,R’), (H —g)NC(t) is empty or a singleton. Suppose, by way of

contradiction, that this were not the case. Then there would exist some g € C(Y,R’),
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some distinct ¢, ¢» € R and some distinet py, ps € C(f) such that

h(s01)—9 = m

h(02) —g = pa.
If this were the case, then it would follow that
h(-; 1) — h(-; d2) = p1 — po. (2.26)

Since, by construction, all four functions in Equation 2.26 are everywhere continuously
differentiable in Y, we can take the first derivative of the first component of each of

these vector-valued functions:

D(h'(2%;¢1) — h'(2™;42)) = D(pi(a*) — pa(a”))

¢ —¢p2 = Dp— Dps

contradicting the supposition that ¢; # ¢2. Thus, (H — g) N C(t) is either empty or
a singleton, implying that Ay (C(¢) + g) = 0 for every g € C(Y,R’). Thus, C(¢) is

finitely shy in Pgyp(Y, 7). Since ¢ is arbitrary, the result follows. [ |

Theorem 35 states that the set of continuously differentiable response functions
which possess a given value of ¢(7) at a given point in & € Y is finitely shy in
(i.e., small relative to) the space of all continuously differentiable response functions.
The next result strengthens this finding by showing that the set of continuously
differentiable response functions which, for a given point z € Y, possess a given value,
p(&) = p € A(T), and vector of derivatives, Dp(%) = d = {Dp'(@),...,Dp’(¥)},
(i.e., all continuously differentiable p for which ¢(#) = (f,d)) is finitely shy in the space
of all continuously differentiable response functions possessing a derivative equal to d

(i.e.. all continuously differentiable p for which ¢(#) = (. d) for some t € A(J).
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Theorem 36 Given any & € Y, any p € A(J), and any d € R’ , the set
C(p.d) = {p € Pus(Y.T) : q(2) = (p,d)}
s finitely shy in
B(d) = {p € Paus(Y,TJ) : Dp(&) = d}.

Proof: We show that C'(p, (f) is a Borel subset of B(ai). Define

C(t:d) = {p € Pus (Y, T) : a(T) = (s,d),s > t},
and

C(t;d) = {p € Pus(V, T) : (&) = (s,d),s < t},

where > denotes the usual partial ordering of R”. It is simple to see that C(¢;d) is an
open subset of B(d). Denoting the set of J-dimensional vectors of rational numbers
by Q. noting that the set of .J-dimensional rationals are a countably dense subset of

R/, and observing that
C(®,d) = [NiprealC(E P N [Ne<prealC(E B)]

we see that C'(p, d) is a countable intersection of open subsets of B((Z). Hence, C(p, d)

is a Borel subset of B(d).

Now choose r = {ry.... ,rx} € (Puif(¥Y,T))N satisfying

r = p; and

D’I‘-, — di
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forall i € {1....,] N}. Obviously, r € B(p) and r € C(p, d). Next, define

h(r;t) = (r1+t,... ,rn + 1), (:

!v
o
=)

for all t € R’ that sum to zero. That is,
J
teT={teR :> t;=0}

i=1

Let H(r) denote the one-dimensional subspace of C(Y,R’) spanned by h(r;t) and
An(ry denote Lebesgue measure relative to H(r)

Recall that

e pi(x) € (0,1) foralli e Nandallz €Y,

e p; is continuously differentiable for all i € A/,
e Y} is compact, and

e both 7 and A are finite sets.

Thus. there must exist £* > 0 satistving the following:

teN | JET | z€Y

£" = min [min [mir_l[p{(.r)]” > 0.

For all ¢ in the following set:

J
T={teR’: t; =0, max t; < £},

i=1 bmisd
it follows that, as defined in Equation 2.27, h(r;t) € Pais(¥Y,T) for all t € T. Fur-
thermore, Dh,(r;t) = d; for all t € T, so that hir;t) € B(d) for all t € T. Since T is
a nonempty open subset of T, restricting ¢ to 7' determines an open subset of H(r),
implying that )\H(T)(B(cz)) > (.
For simplicity, let C' = C(j, d~,) and H = H(r). Now we claim that Ag(C +g) =0
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for any gC(Y;R’). To see this, it suffices to show that

(H-—g)NnC

is empty or a singleton.
Suppose, by way of contradiction, that (H — ¢) N C has at least two elements for
some g € C(Y,R7). Then, for some g € C(Y,R’), there must exist distinct s,¢t € T

and distinct a.b € C such that

r+s—g = a

r+t—g = b
This would imply that

s—t = a—2»

s=F = 0

implying that s and ¢ are not distinct, resulting in a contradiction. (Recall that
s,t € R’ so that s — t = 0 implies that s; = ¢; for all i € 7.) Since the supposition
that (H — g) N C has more than one element results in a contradiction, it must be
the case that (H — g)NC has at most one element. implyving that Ay (C) = 0, so that
C'(p.d) is finitely shy in B(d). L

Theorems 35 and 36 together imply our main negative result concerning equi-
librium equivalence between maximization of expected vote share and probability of
victory maximization: for any finite electorate, the set of continuously differentiable
respounse functions which simultaneously satisfy the necessary first order conditions
for local equilibrium equivalence is finitely shy in the set of continuously differentiable
response functions which satisfv the necessary first order conditions for expected vote
share maximization.

In particular, for any finite positive number of voters NV, any finite positive number
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of candidates .J, and any point * € Int(Y), let P} (2*..J) C T’,‘f\;_r(Y. J) denote
the set of N-dimensional vectors of continuously differentiable response functions
such that z* satisfies the necessary first order conditions for local equilibrium under
maximization of expected vote share, 1, and let PY,(x*,J) C P¥(z*,J) denote the
set of N-dimensional vectors of continuously differentiable response functions which
satisfv the necessary first order conditions for local equilibrium under both expected
vote share maximization and maximization of probability of victory, R, at x”. The
next theorem states that PYp(z*, J) is finitely shy in P (2*, J) for any finite N and
any x* € Int(Y").

Formally, for finite and positive N and J, compact X, and any z* € Int(}).

P¥(x2*,J) is defined as any p € Ph(Y,J) for which, for all j € {1,... N},

N
DVj(a*) =3 Dpl(a*) =0,
i=1

and P (x*,J) is defined as any p € Py (Y, J) for which, for all j € {1....,N},
N
DR;(z") =) & Dpl(z*)=0.
i=1

Finally, Pygla®, J) = B{a*,J) NPg (% d):

Theorem 37 For any finite, positive N, any finite, positive J, any compact policy

space X, and any point x* € Int(Y'). P¥p(z*. J) is finitely shy in P (z*, J).

Proof: Fix N,J € Z. . choose any compact X C RY, and choose any =~ € Int(}Y").
Now select any p € P()rv(."l.'*, J). We show that any collection of N — 1 voter response
functions exactly pins down the necessarv g;(z”) for the final voter i. We consider
voter NV without loss of generality.

Note that Dp) (x*) is uniquely determined by Dp(z*),... .Dp{i\-_,(;r*) because,

since p € P¥(z*,J), it must be the case that, for each j € {1,...,J},

Z Dypl(z*) = 0.

1EN
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Furthermore, note that p € P*p(z*, .J) implies that, for each j € {1,... .. 7}.

> 8(p_i(z")Dpi(z") = 0,

iEN
implying that the N** individual’s probability of voting for each candidate j, p{\-(r").
is uniquely determined by py,...,py—1 and Dp'{(:f*), s ,Dp‘k(;t?*).

Thus, given p_y, Dph(z*) is uniquely determined for each j € J by the fact
that z* satisfies each candidate’s necessary first order conditions for maximization of
expected vote share. Furthermore, this uniquely determines p&(r") for each candidate
7 € J. Denote the determined value of Dpj,'\,(m*) by d_x. and the determined value
of ]&-(1"‘) by p_n. where the subscripts emphasize the manner in which these values
are determined.

Applying Theorem 36, it follows that the set of continuously differentiable response
functions which satisfy both Dp (2*) = d_x and pl (2*) = p_y is finitely shy in the
set of continuously differentiable response functions which satisfy Dp'j,(:c’) = d_y.

The result follows by noting that the ordering of voters is arbitrary. |

Theorem 37 states that interior equilibrium equivalence is an incredibly rare event
with respect to distributions of voter behavior. Indeed. the result is stronger: “critical
point” equivalence is a rare event. This result may seem alternatively surprising or
expected, depending on how one views our parameterization of the space of response
functions. One requirement we make is that voter behavior be p-interior and continu-
ously differentiable in x - this rules out deterministic voting models, for example. We
also do not require that behavior satisfy any normative properties, such as symmetry
- one might think that p!(z,y) should equal p?(y,z), for example. Investigation of
further restrictions on voter behavior is an important research topic for future work.
In particular, if voter response functions are symmetric, then the zero sum nature of
candidate competition in the absence of abstention will lead to no candidate receiving
as probability of victory. or an expected vote share, of less than l, in a pure strategy

equilibrium. A final point is that we do not deal with mixed strategy equilibrium

equivalence. An investigation of this question might be a worthwhile topic for future



research as well.

Generic Failure of Best Response Equivalence

The next result, which follows immediately from Theorem 37, states that, so long
as voter behavior is continuously differentiable with respect to the policy positions
of the candidates and at least one candidate’s best response correspondence takes at
least one value in the interior of X,° best résponse equivalence between maximization
of expected vote and probability of victory maximization will generically not hold in

probabilistic voting models.

Theorem 38 Let there exist at least one candidate j € J and one vector of proposals
by all candidates other than j, 2_; € Y_;, such that arg max,ex V;(z;; 2_;)NInt(X) #
0. Then, for any finite integer n, any finite set of candidates J and any compact
policy space X, the set of n-dimenstonal vectors of continuously differentiable response

functions for which, for alljeJ andallz_; €Y_j,
arg gl_)lg} Vilz;; z-;, p) = arg gng iz =42 P)

s finitely shy in the space of all n-dimensional vectors of continuously differentiable

response functions.

Proof: Consider a candidate j and a vector opponent’s proposals z_; for which there

exists £; € Int(X) such that
DV,(i;:5_;) = 0. (2.28)

(The existence of such a candidate and vector of proposals is guaranteed by hypoth-

esis.) By Theorem 37, it follows that the set of continuously differentiable voter

%This condition seems mild, given the zero-sum nature of the different objective functions, but
we have not explored its implications to any extent.



response functions under which

DRJ(;&];;?LJ) =) (2.29)

is finitely shy in the set of all continuously differentiable voter response functions
satisfving Equation 2.28. Since p; is continuously differentiable on Y for all i € A
and R; is differentiable in p by Lemma 11. Equation 2.29 is a necessary condition for

Z; to be a best response to ;. The result follows immediately. .

Thus, by supposing that a point is a best response under expected vote share and
assuming that voter behavior is continuously differentiable in the policy proposals, we
have shown that the set of voter response functions which satisfies the necessary first
order conditions for best response equivalence between maximization of probability
of victory and expected vote share maximization is small in relation to the entire set
of continuous voter response functions. It should be noted that this qualification is
a key point. Our arguments are taking any continuous voter response function as a
possible form of probabilistic behavior. This assumption may or may not be justified
in different areas of inquiry. For example, one may want to restrict attention to those
voter response functions which are derivable from a traditional logit model of voter
behavior with underlyving single-peaked policy preferences (such response functions

must intersect the centroid, for example).

2.7 Extensions

There are several questions regarding candidates’ objective functions which remain
open. A few of these questions are what are the effects of different electoral institu-
tions on equivalence between candidate objective functions, what is the asymptotic
behavior of candidate objective functions, what happens when candidates are uncer-
tain about their opponents’ objective functions, and how are the behaviors of the

voters affected by the objective functions of the candidates?



60
2.7.1 Electoral Rules

Regarding electoral rules, this chapter has ignored the possibility of proportional
representation, multiple winners, multiple ballot systems (e.g., simple majority rule
systems with runoffs or party based systems with primaries), and different scoring
rules such as approval voting and the Borda count. A positive result which is not
particularly surprising is that maximizing probability of victory in a pure (i.e., one
without a minimum vote threshold required for representation) proportional repre-
sentation system is equiavent to maximizing expected vote share. Investigating how
the optimal strategies under different candidate objectives change as the electoral

system is changed is not only a very interesting topic, but also seemingly tractable.

2.7.2 Asymptotic Equivalence

The issue of asymptotic equivalence has been broached earlier in this chapter in ref-
erence to the works of Hinich (1977) and Ledyvard (1984). We have shown in two
examples (Examples 19 and 18), that asymptotic best response equivalence may not
hold in electoral competition. Further, both examples can be shown, in a straight for-
ward fashion, to be robust in the sense that the parameters of each may be perturbed
and retain the failure of best response equivalence. However, we have not provided
any general results about asymptotic equivalence of candidate objectives. We have
not done so for several reasons, of which at least two should be noted.

First, the question of asymptotic equivalence is muddied by at least one significant
issue: what exactly does one mean by asymptotic? In what way does one assume that
the electorate grow larger? Secondly, it is not clear what the notion of asymptotic
equivalence actually means.

Both of these issues lead to a number of somewhat promising routes for future
work. With respect to the first issue (how does one assume that larger electorates
are generated), one might examine the behavior of the three payoff functions when a
given electorate is replicated without bound, or when each voter’s response function

is drawn independently according to some distribution on the space of possible re-



61
sponse functions. The positive results presented in this chapter regarding equilibrium
equivalence may be used as leverage in such a research project. With respect to the
second issue, one might consider several definitions of asymptotic equivalence. A few
examples include (1) the existence of a finite number such that, for all electorates with
more than this number of voters, one or more of the notions of equivalence defined
above holds, (2) best response functions converge asymptotically, or (3) some subset
of the equilibria (if they exist) under two objective functions in the sequence of games

with finite electorates converge asvmptotically.

2.7.3 Strategic Importance of Objective Functions

If we as researchers are uncertain about the true motives of candidates, then it seems
reasonable to suppose that at least some candidates are unsure as to their opponents’
true motivations. Is such uncertainty important? For example, will different equilib-
ria appear in electoral games in which candidates must account for the fact that their
opponent may not care about winning, per se, but rather attempt to maximize his
or her vote total, conditional upon victory? A preliminary intuition is “probably,” as
we have provided several examples of situations in which the incentives of candidates
differ considerably under maximization of expected vote share and maximization of
probability of victory. This question of electoral competition with incomplete in-
formation about opponent’s payoff functions is a very promising avenue for future

research.

2.7.4 Voter Behavior and Preferences

Finally, an important question concerns the behavior of voters. In particular, the
incentives of voters are usually assumed to be with respect to the implemented pol-
icy. We have assumed that voter behavior is taken as given by the candidates and is
invariant to the candidates’ preferences. We do this for two reasons. The first reason
is methodological - one of the motivations for the study of equivalence is analytical - if

objective functions are equivalent, then the analysis of a model under the assumption
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of one objective function is, in the appropriate sense, sufficient analysis of the same
model with the equivalent objective function. The second reason is that in many
cases it is assumed that voters’ preferences are defined over outcomes, and therefore,
after the policy announcements are made, the voters are playing a subgame amongst
themselves - one in which the candidates have no further role. In some sense, the pol-
icy announcements are assumed to have been handed down from outer space. While
this is a pessimistic view of the role voters play in the campaign, it is analytically
tractable as well as serving as a useful benchmark case. This is not to say that future
research should not examine the implications of voter behavior and preferences which
are not invariant to candidate objective functions. Indeed, if the candidate incentives
under two different candidate objective functions are not identical, then the incen-
tives and abilities of voters to affect candidate behavior under each of the candidate

objective functions may differ.”

2.8 Conclusions

In this chapter. we have attempted to make several contributions to the formal theory
of elections. The first of these is to point out that a rigorous statement and proof
of Hinich’s (1977) claim that, asymptotically, maximizing plurality and maximizing
probability of victory vield equivalent strategies in equilibrium in two candidate elec-
tions without voter abstention is not as obvious as might have been assumed. This
is important if only because the claim has been widely cited in the literature. We
also provide a counterexample to the claim in order to show the need for further
investigation into the topic.

The second contribution concerns two candidate elections. It is shown in Theorem
13 that, regardless of the number of voters, maximization of plurality and maximiza-
tion of probability of victory are equivalent objective functions (i.e., they vield iden-
tical best response correspondences) in two candidate elections without abstention

when voters” behavior satisfies Assumptions 1 and 9.

1 thank Richard McKelvey for pointing out this issue.
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As stated earlier, Theorem 13 is in some respects weaker, and in others stronger,
than Hinich's original statement. Hinich’s claim does not require our symmetry condi-
tion, Assumption 9. On the other hand, Hinich’s claim is asvmptotic, while Theorem
13 states that the best response functions are identical for any number of voters.

We have also provided sufficient conditions for local equilibrium equivalence be-
tween expected vote share maximization and maximization of probability of victory.
By extending arguments due to Duggan (2000), we have shown that “concave enough”
aggregate voter behavior is a sufficient condition for local equilibrium equivalence
between these objective functions. Conversely, we have shown that the set of contin-
uously differentiable voter response functions which exhibit local equilibrium equiva-
lence is a “small” set of continuously differentiable response functions. That is, local
equilibrium equivalence is nongeneric. In particular, we have shown that the set of
continuously differentiable response functions which lead, at a given vector of pro-
posals, to local equilibria under both objective functions is small relative to the set
of continuously differentiable response functions which lead to a local equilibrium at
that same point under maximization of expected vote share.

Finally. we have shown that, generically, best response equivalence does not hold
between maximization of expected vote share and maximization of probability of
victory in single member, simple plurality elections without abstention. This follows
from our genericity result regarding equilibrium equivalence. In particular, if local

equilibrium equivalence does not hold, then best response equivalence does not hold.
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Chapter 3 Voting in Large Elections '

3.1 Introduction

This chapter investigates properties of Quantal Response Equilibrium (see McKelvey
and Palfrey (1995), (1998)) in spatial voting games. The Quantal Response Equi-
librium (QRE) is a theory of behavior in games that assumes that individuals get
privately observed random payoff disturbances for each action available to them. The
QRE is then just the Bayesian equilibrium of this game of incomplete information.
In a QRE, although voters adopt pure strategies, from the point of view of an out-
side observer who does not know the payoff disturbance, the players choose between
strategies probabilistically, choosing actions that yield higher utility with higher prob-
ability than actions that yield lower utility. The probability that one action is chosen
over another is based on the utility difference between the alternatives.

In this chapter, we work in a Bayesian framework, as in Ledyard (1984), and take
into account the game theoretic considerations for the voters, but unlike Ledvard, we
assume that voters have privately observed payoff disturbances associated with each
action. Our only restrictions on preferences are that they are uniformly bounded.
Further, we consider multi candidate contests. But our results basically extend those
of the earlier literature. We find that for large enough electorates there is a conver-
gent equilibrium at the alternative that maximizes social welfare. For two candidate
contests, the equilibrium is unique. Our equilibrium is global, as in Lin, Enelow,
and Dorussen (1999), but in our model, the conditions for a global equilibrium are
satisfied by allowing the number of voters to grow large rather than by assuming the
utility shock becomes large.

The main contribution of this research over the previous work is to obtain a global

'This chapter is jointly authored with Richard McKelvey, who acknowledges the
financial support of NSF grant #SBR-9631627 to the California Institute of Technology.
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candidate equilibrinm in large electorates with very little in the way of assumptions
about voter preferences. The main difference between our approach and previous
work on probabilistic voting is the way in which we model the probabilistic voting.
As in (1984), by treating the voter decisions as a game, we explicitly include the pivot
probability in the voters’ expected utility calculations. In large electorates, because
the probability of being pivotal goes to zero, the expected utility difference between
any two candidates also goes to zero. Thus, under the QRE assumptions, the voter’s
choice is determined mainly by the candidate specific payoff disturbance. Hence, in
aggregate, voters vote less based on policy, and more based on candidate attributes
as the size of the electorate grows. However, even though individuals become less
responsive to policy differences, in large electorates, since the total number of voters
is also getting large, there is still enough policy voting at the aggregate level to force

the candidates to the social optimum.

3.2 The Model

We assume the existence of a finite dimensional policy space, X C R™, where X
is bounded, and finite sets N and R of voters and candidates, respectively. Write
n = |N| and k = | K| for the total number of each. We let 0 indicate abstention, and
write Ky = K U {0} for the set of candidates plus abstention.

We assume that for each voter, 7 € N, there is a space T; of possible characteristics,
or types of the voter. Write T' = Il;en7;. We assume that 7; = 7 x (§RK°)T is
partitioned into two parts, representing the policy and consumption based parts,
respectively, and that 7 is a complete separable metric space. Voters' preferences
over the policy space are described by a wutility function, u : X x T — R. Hence,
the utility of voter ¢« € N, of type t; = (7, n:i(r;)) € T; for the policy z € X is
u(x,7;). Assume that the distribution of the voter i’s types is given by an atom-less
probability measure of full support, p;, over the Borel sets of T}, and that the joint
distribution is given by p. We assume that p is absolutely continuous with respect to

the product measure J],.y pi- Note that this implies that certain well-behaved types
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of correlation between the distribution of types for different voters are allowed in the
model.

We assume three things about the distribution of preferences. First, we assume
that u is uniformly bounded with respect to N, i.e., there exists a D € R such that
for all € X and 7 € T, |u(x,7) — u(y,7)| < D. This is essentially a restriction
that rules out sequences of voters possessing arbitrarily strong policy preferences. In
addition, uniform boundedness would follow from continuity of u and compactness
of X and 7. Second, we assume that, for any set of voters N there exists a unique
policv, z* € X, which maximizes the expected sum of voters’ utilities. Third, we

assume the existence of a number M satisfying the following for all NV:

M > sup —Er [Fien (uilz; 7) — wiz*;7)?)] |

3.1
zex E; [ZiEN [ui(z; 7) — wi(z™; r)]] (3.1)

This assumption rules out preferences which become arbitrarily “diverse” in relation
to the optimality of any particular policy. Unfortunately, this restriction rules out
some plausible preference profiles. On the other hand, we only need this condition
for the final results of the Chapter, Theorem 46 and Corollary 47.

For notational simplicity, we drop the argument of 7;(7;), and just write 7; when
there is no confusion. Also, 7;; is used to represent the j™ component of 7;(7;) . All
of the n;; for i € N, j € Ky, and 7; € T are assumed to be independently distributed
absolutely continuous random variables with full support, each with a cumulative
density function that is twice continuously differentiable. We assume that the 7;;(7;)
are identically distributed for all i € N, j € K, and 7; € 7. However, we allow for 7,9
to have a different distribution than 7;; to allow for costs or benefits of voting. Any
joint distribution p on T satisfying all of the above conditions is said to be admissible.
Let p be the common mean of 7;; for j € K. o be the mean of 7,0, and ¢ = p — po.
Then ¢ is the expected cost of voting.

We now define a game, in which the candidates each simultaneously choose policy
positions in X' and then, after observing the candidate policy positions, the voters

vote for a candidate. Thus, the strategy set Y; for candidate i € K is ¥; = X, and the
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set of strategy profiles for the candidates is Y = IT,exY;. The strategy set S, for voter
i € N is the set of functions s; : Y x T; — K, and the set of strategy profiles for the
voters is S = I,y S;. We use the notation S_; = I1,4,S;, and s_; € S_; to represent
strategy profiles for all voters except voter 7, with similar notation for candidates.
Given a strategy choice y = (y1,... ,ykx) € Y of the candidates, and s = (s1.... ,8,) €

S of the voters, define for any j € Ky, and t € T"
Vi(y, s t) I{Z € N:si(y. t:) =5}l (3.2)
to be the proportion of the vote for 7, and
W(y,sit)y={j€eR :j€ argr[ré'r}\:_{(‘.f}(y, s;t))} (3.3)
to be the set of winners of the election. For any J C K, write
Py(y, s;t;) = Pr[{t_; € T_; : W(y,s;t) = J}]. (3.4)

to be the probability of a first place tie among the candidates .J. We assume that a
fair lottery is used to select a winner when there is a tie, so that we can define voter

utilities over subsets J C K by
(g, 7i) = Z u(y;, 7). (3.5)
J el

The payoff to voter i € N of type t; = (7;.7;) from the strategy (y,s) € ¥ x S is
defined to be:

(yys:t:) = D Pr(y, sits) - v3(y,70) + Misycyot) (3.6)

JCK
In other words, a voter voting for candidate j = s;(y, t;) receives the expected utility
of the policy of the winning candidate, plus a payoff disturbance 7;; that is associated

with the vote, j € K that the voter makes. We write U(j;y,s,t;) = Uy, (J,5-:); i)
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for the utility that voter i of type t, gets from voting for strategy j, given y, and s_; €
S_;. Since Py(y, s;t;) is a function of t; only through s;, it follows that P;(y, (j,s-i):t:)
is independent of t; . So we write P;(y, (4, s-;)) = P(y, (4, 5-:):t;). Then, we can

write for all j € K,

Uljiy,8,t) = lj’(j;y,s.ﬂ)+nij (3.7)
where
U(iy,8.m) = D Pi(y, (. 5-4)) - vs(y, ) (3.8)
JCK

is the expected utility to voter i of tvpe 7; of voting for candidate j, unconditioned
on the payofft disturbance, 7;;.
It follows from McKelvey and Ordeshook (1972) that the difference in the expected

utility of voting for j over abstaining can be written in the form:?

Uiy, s.m) = U0y, 8,m) = »_ 65y, s) - [u(y;, 7) — w(ye, 7)) (3.9)
k#j

where 6'3"”'(3,:, s) is the pivot probability for j over k:

: 1 qj

6Jk -8 = — (0 -+ J 3‘10

i ('lj ‘5) -kZ ) |J| qy ‘J| —1 ( )
JkeJTK

where we use the shorthand ¢ = P,;(y, (k.s_;)). The pivot probability is the proba-

bility that by voting for j rather than abstaining, voter i changes the outcome from

a win for k to a win for j . It then follows from Equation 3.9 that the difference in

?Equation (3.9) follows by reversing the order of summation in the expression for (E7 — E?) of
the Theorem on p. 49 of (1972).
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expected utility of voting for j over [ is:

Uiy, 8,7) — Ul y, 8,7) = (6f{(y,3)+6fj(y,s))»[zL(yJ,Tl)—lt.(y,,T,)} (3.11)

o Z (‘;{k(y: s) - [“(Uy i) — u(Yks Tz')] 3.12)

k#i,l +5fk(y‘ g} [“(yka TE) = wl L Ti)]

which, for the case of two candidates, K = {j,{}. reduces to
Uljiysm) — ULy, s,m) = (5fl(y,s) +5§j(yﬁ-)) ey ) —wly. )] (3.13)

To define the candidate payoff functions, we first define 1;(y, s) to be the expected

proportion of the votes for candidate j at the profile (y, s):
. . 1 . :
Vily, s) = Ec[Vi(y, si)] = —Ei [[{i € N = sily, ) = 5] (3.14)

Then we define the payoff to candidate j to be the margin of expected victory f],

defined by:

Uiy ) = Vi(y,s) = max Vi(y,s) (3.15)

Remark 39 Any voter with unbounded utility would be subject to the St. DPeters-
burg paradox: If x; is chosen to satisfy u(xzy,7;) > 2%, for & = 1,2,..., the voter
would not trade the lottery that gives prize zx with probability ?ﬂ— for any x. Simi-
larly, if the zp satisfv u(xg, ;) < —2%, they would not accept the lottery for any .
Thus, bounded utility for any one voter is implied if the voter is not subject to the
St. Petersburg paradox. The uniform boundedness condition requires further that

there be a common maximum and minimum bound across all voters.

Remark 40 Note that our assumptions do not preclude atoms in the marginal dis-
tribution of p over 7. The requirement that p be atomless is automatically satisfied
via the assumptions that are imposed by admissibility on the distribution of the 7),’s.

Thus. our assumption of admissibility of p encompasses on the one hand the classical
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framework, in which all voter ideal points are known and common knowledge, and
on the other hand, models such as that of Ledyard. in which all voter types are in-
dependent and drawn i.i.d from a common distribution on voter types. The classical

framework arises if we let the marginal distribution of p on 7 be discrete.

Remark 41 The assumption that the distribution of the n;; are i.i.d with respect
to voters is an implicit normalization of utility functions. This is important in inter-
preting the main theorem, since the weights that individuals are given in the social

utility function is determined by this normalization.

3.3 Voter Equilibrium

In this section, we consider the voter equilibrium to the game defined by equation
3.7 conditional on fixed candidate positions, y € Y. Since the candidate positions
are fixed, the strategy space for the voter reduces from S; (the set of functions s; :
Y x T; — K;) to the set of functions of the form s,(y,-) : T; — Ky. We write S;(y)
to designate this conditional strategy space, and S(y) to designate the set of profiles
of conditional strategies.

For any fixed y € Y, we define a voter equilibrium for y to be a pure strategy
Bayesian Nash equilibrium (BNE) to the voter game defined by ( 3.7) over the strategy
space S(y). This is any profile, s € S(y), in which voters always choose an action that
maximizes expected utility conditional on their type. Thus, s is a voter equilibrium

fory ifforalli e N, t; € T;, and j € Ky,

sy i) =7 & Uiy s t) = maxU(Ly, s, t)
=np

& U(isy,sm) +ny = max [U(ly, s,7) + 14 (3.16)
(4]

Note the structure of the payvoffs is exactly the same as used in McKelvey and Pal-
frey (1998) in defining the agent quantal response equilibrium (AQRE) for extensive
form games. So as long as the distribution of the errors, 7,; is admissible, a Bayes

Nash equilibrium to the voter game is exactly the same as an AQRE to the game.
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Note further that in any voter equilibrium for y. except on a set of measure zero. the
strategy s;(y,t;) depends on 7 only through t;. So we can drop the subscript on s

without loss of generality.
Proposition 42 For any y € Y, there exists a voter equilibrium for y.

Proof: This is a game of incomplete information, with action spaces 4; = K, and
type space T, for each i € N. The action spaces are finite, and the distribution of types
is independent across individuals. Thus, we can apply Theorem 1 of Milgrom and
Weber (1985) to conclude that there exists an equilibrium in distributional strategies.
Further, since the distribution of player i’s types, p;, is assumed atomless, it follows
from Theorem 4 in the same paper that the equilibrium can be purified to be in pure

strategies. |

Of particular interest is the average behavior of a voter i of type t;, after integrating
out 7;. For any s;(y, ) € Si(y), define 5;(y,-) : T — AK° as the marginal distribution

of s; with respect to 7;: for any 7; € T and j € Ko,
5:(y, 7)(4) = Prlmi : si(y, (ri,m)) = 3] (3.17)

We have assumed that the 7;; are independently distributed, for all 4, j and 7,
and identically distributed for all j € K. Let H(-) be the cumulative distribution
function of n;, i. e., H(w) = Prn; < w; for all j € K] for w € RKo. And let G,(-)
be the cumulative distribution function of ¢ € R, where {, = n; —n;; forl € K—{j},

and z; = m; — 1;;. Thus,
Gi(z) = Pr[nio — mi; < z; and ng — 7;; < 2z for all I # j] (3.18)

for any z € R¥. Under the assumptions we have made on the 7, for all j € K, both
H(w) and G;(z) are twice continuously differentiable and strictly increasing in all

arguments, and everywhere positive. Thus, if s is a Bayes Nash equilibrium, applying



equation (3.16), for j € K,

sy, 7)) = P0Gy, s, 7) +my = max [Uly, 5.7) + nal

= Prigy=my = U(jiy,s,1) — ULy, s,7) for all l € Ko — {j}]

G, (T (y, 5,7))- (3.19)

where U7(y, s, 7;) is a vector in RX with components Uf(y,s,7:) = U(jiy.s,7:) —

U(l;y,s,m) for L # j, and U’(y s,7) =U(G;y,8,m)—U0;y,s,7)

Ezample: One example of the above is the logit AQRE, where the density functions
of wy =m0 + ¢ and w; = n,; for j € K follow a type one extreme value distribution,

Hj(w;) = exp[— exp[—Aw,]]. Thus, with independence, we have H(w) = [, H,(w;).

This leads to the logistic formula G;(z) = Er—ry e )i—Z[,e w0y 1o this case, for
3 z " z

fixed A, we get:

5i(u.m)i) = Gi(U(y,s,7))

1
1+ exp [/\- (c+U(0;y.8,7) = Uljiy, s. T,))] ,

+ 3, (exp A (Oy.s,m) — UGy y.s,m))])

and in the case of two candidates, where K = {j.l}.

gi(yv Tl)(]) =i

1+exp (A- (c+ 6y, s) - [uly;, 7)) — w(y, 7)]))
+exp (A (87 (y, 8) + 89(y, 5)) - [uly;, ) — w(y, 7))

We now show that for fixed candidate positions at ¥y € Y, and for any voter
equilibrium, that all pivot probabilities go to zero and the probability of voting for
any two candidates in & becomes equal as n — oo. The reason for this result is

simple: one’s vote only matters when it is pivotal.? Thus, one’s vote only matters

3The logic of pivotal voting is explained in the voting literature. See e.g.., Myerson and Weber
(1995).
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when the other voters are either evenly split between the two top candidates or when
the vote difference between the two top candidates differs by one vote. As n grows
large, this becomes a very low probability event. Thus, in general. one’s vote doesn’t
make a difference very often. This implies that voters effectivelv become indifferent
with respect to which candidate they vote for as n — oo. We formalize the above in

the following proposition:

Proposition 43 Assume u is uniformly bounded. Fiz y € Y, and for each integer
n, let p" be any admissible joint distribution over 1"\ T,, and let s" be any AQRE
for the voters. Then for any j,l € K and i,k > 0,

(a) limg, .o 87 (y. s™) = 0 and

(b) limp oo 67 (y, s) /60 (y. 5") = 1

(c) lim,, 6fl(y,.s")/6fj(y. a™) =1

(@) limy_oo[57 (y, 7:)(F) — 87 (y, ) (1)] = 0.

Further, in all cases, the convergence is uniform. I. e.. for any ¢ > 0, there is an n.
such thatl for all i, k,7,1,y, p", s™ if n > n., 6{1(31, 5 < g b,ﬂ(y, s”)/&il(y,s") —-1| <

g, and 57 (y, 7:)(7) — 8¢ (y, i)(l) < €.

To prove the proposition, we need a Lemma.

Lemma 44 Fiz c* > 0, and let Z" be the set of sequences Z = (Zy....,Z,) of

independent random vectors Z; € R¥ of the form
Zi = a; w. p. Pij

where a; is the j™ unit basis vector in R, and p € (AK")n satisfies p;; > €% for all

i.j. For any J C K, define

By={zeAX i 2=z, >z foralljke J, 1 & J}.



Write Z = 3, Zi, and define
87 = max Pr(Z € By] (3.20)

Then for any J € K with |J| > 2

(o) limy 03" =0

(b) limy, .o 67 /63 =0 for any J C J

Proof: An element Z = (Z,,...,Z,) € 2" consists of independent, but not identi-
cally distributed random vectors, and is characterized by a vector p = (p1,-.. .Pn)s
where p; = (pio, Pi1,- - - ,pix) € AKo. The mean of Z, is pu; = (pi1,-.. ,pix) which
consists of all but the first component of p. Pick Z" = (Z7,....Z}) € Z" to attain
the maximum in Equation 3.20. Since Pr[Z € B,] is continuous as a function of p,
which ranges over a compact set, it follows that such a 67" and Z" exist. Define 1},;
to be the variance covariance matrix of Z', and X' = Z" — ;. Set 1}, = %Z: Vi

and T;; = V7', From our assumption that p;; > £* for all j € K, it follows that 1},

is strictly positive definite and hence invertible. Then

" = Pr[Z" € By

- ZiZ —>:Zk =0for j,k € J, and
_ZiZ{_;—Zi m>0forje Jl&J

_ pr ] > (X2 —X%) =%, (P — pij) for j,k € J, and
_Zl_(_,\’i"j— >3 (pa—piy) forjedl¢d

. %ZL (\Z — \:1) Pt — pij) for J,k € J, and (3.21)
| 23 (X2 — X3) > \/; Z (Pzz pij) forje Jl ¢ J

But now the X' form a triangular array where each random variable X! has zero
mean, and for each n, the X" are independent. Further, writing Q7 for the cumu-

lative density function of X', the random vectors satisfy the following multivariate
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a1

Lindeberg condition: For every ¢ > 0,

1 .
lim —Z[ 1T X:|I> dQ™M(X) =0 (3.22)
nmoe T ST Xl >evm

To see this, note that Z/* is in the simplex A®. Hence,

X|| € 2. The probability
that ZE = 1is p;; > €*. Further, the variances and covariance of 13,; are all uniformly
bounded away from zero and one, since p;; > €* for all ¢, j. Thus, the same will
be true of V;,. So 1}, will be invertible, and for any e, we can pick large enough
n so that ||T,X;|| < ey/n. So each term in the summation of Equation 3.22 goes
to zero with n, which establishes (3.22). It follows by the multivariate version of
the central limit theorem for triangular arrays (see Bhattacharya and Rao, (1986),
Corollary 18.2, p 183) that the distribution of ﬁTn >, X7 converges weakly to a
multivariate unit normal distribution. Hence the probability it falls in a subset of
any lower dimensional subspace goes to zero. Thus, when |J| > 2, the right-hand
side of Equation 3.21 converges to 0 with n. L. e., lim, .., 6" = 0 , proving (a). To
prove (b), we note that B describes a lower dimensional subspace than B;. Hence,
an argument similar to above shows that for all sequences, the Pr[Z € Bj| goes to

zero faster than Pr[Z € B, establishing the result. 2
We now proceed to a proof of the proposition.

Proof: To prove (a), define D = 2. (|K| — 1) - sup,, . [u(z,7) — u(y, )], and &
= minjeg G;(—=1- D), where 1 = (1,...,1) is the unit vector of length |K|. By the
assumptions we have made on the 7,;, £* > 0. Then from Equation 3.9, using the
fact that 6;ﬂ < 1 for all 4, j, k,we have —D < U(j;y,s,7) — U(L;y,s,7:) < D for all
J,1 € K, which implies that 5,(y, 7:)(j) = G;(U’(y, s, 7)) > Gj(—1: D) > ¢~.

Now, given any sequence 7 = (13,...,7,) with 7, € T for all i > 0, define the

random variable

Zni(T) = oy if s (y. (1, m:)) = J

S50 Zani(r:) € 2%, with py; = 859, Ta)(J):
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Then, letting (0, s™,) be the profile where the voter i abstains, and (j, s";) be the

profile where voter ¢ votes for candidate j, we have, from Equation 3.10:

(S’-” ’ Lo} e 0 J 323

1,kEJCK

But, from Equation 3.4, for any J C K,

@) = Py(y,(0,5_;)) =Pr[{t_; € T_;: W(y,s;t) = J}] (3.24)
= E,_, [W( 0,8 )t)=J] =B, | Y Zuln) € B, (3.25)
l#1
= ET_,En_.' Z Zni(T[) = BJ:l < ET_I[(S;*] = é";", (326)
I#i

where the inequality follows from the definition of ¢7* in Lemma 44. A similar ar-
gument shows the second term in Equation 3.23 is less than or equal to 6. Thus,
&y, s") < 2 ikeICK (\J\;—l) & < (Zg,kng\' |7.le) &*, where 6™ = max;cg 0%"
By Lemma 44, lim, . 6™ = 0, which proves (a). Since 6™ is independent of ¢, 7,1, ¥,
the convergence is uniform in all arguments.

To show (b). for each .J C K, we can write P;(y, (0,5 ;) = Ey_, [Zl# Zu(m) € BJ]
the corresponding expression for voter j is P;(y, (0,s_;)) = E;_, [Z,# Zu(m) € B_;]
But the RHS of these two expressions differ only by the i and j* terms, and hence,
by Lemma 44, both converge weakly to the same multivariate normal distribution.
Hence, in the limit, the ratio of the two must approach one. The same argument ap-
plies to all terms in the sum in (3.23). Thus, the result follows. A similar argument
suffices to establish (¢).

To show (d), we have from Equation 3.17 that

5 (v, )(J) = Pr[n;ax Ullyy, s*,7) +ma < UGy, 8™ 1) + i)
1

Now, in the first part of the proposition we showed all pivot probabilities go to zero

uniformly as n gets large. Hence, using Equation 3.12 we get that as n — oo, for



‘i
e K, ULy, s*7)—U(;y, s 1) = 0 uniformly in 7, j,1,y, 7. But then we get
J Ly J ;

lim [57(y, 7)(j) — §'(y. 7)(1)] = Pr{maxmn, —n; < 0] — Prlmax g, — 7 < 0]
a#) a#l

n—oo

Since the convergence of U(l;y, s",7;) — U(j:y, s™. ;) is uniform in all arguments, it

follows that the convergence in Equation 3.27 is also. |

Based on Proposition 43 (b), it follows that for large n, we can ignore the voter
subscript on &, and write 6/ (y, s) = 6" (y, ") = 6(y, s*). Further, from Lemma 44,
it follows that in any voter equilibrium, all ties involving three or more candidates will
be small in relation to the two candidate ties. Recall the notation g% = P, (y, (k, s_,)).

Then for J ¢ J',

lim /gy = lim Py(y, (k,5-0))/ Py (y, (k,5-4)) =0

Hence, for large electorates, formula (3.10) for the pivot probability has the following

approximation:

55y = D |3v—| (‘13 * J|q]]. 1) - é (’I?j,k} +qu,k})
HhkeJCK
Remark 45 Note that the requirement that voters adopt a Bayesian equilibrium
means that voters vote strategically in multi-candidate elections, Thus, a voter may
rank u(y;, 7) > w(y, 7), and yet (even if the realization of the payoff disturbances is
zero) vote for their second ranked alternative [ over their first ranked alternative j if
the pivot probability for the first ranked alternative is sufficiently low in relation to
that for the second ranked alternative so that we have U(l;y, s",7,) — U(j; 4, 5", 7i) >

0.
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3.4 Candidate Equilibrium

This section examines the incentives of candidates competing for votes in a world
populated by voters who play quantal response equilibrium strategies. We establish
that for a large enough electorate, N, all candidates adopting the social optimum
constitutes a global equilibrium. In the case of two candidates, the global equilibrium
is unique. Our results hold regardless of the how the measure p changes as the
size of the electorate increases, as long as the admissibility condition is met. More
specifically, recall that admissibility required that the 7,; are 7.i.d. with full support.
We also assume that the distribution of the 7;; is independent of the size n of N.
For a fixed electorate, N, and measure p on T = [[..y Ti, let s be any strategy
profile for the voters? such that for any candidate positions, y € Y, s(y,7) is a quantal
response equilibrium for the voters, as described in the previous section. We use the

notation

Vi(y) = Vily, s(y, ")) = E¢ [Vi(y, s(y, )i )] (3.28)

to represent the expected vote for the candidates j, assuming that the voters follow

the strategyv s in response. Then,

Vi) = B i€ N sy t) = jH]
_ %E [E, [I{i € N : si(yymim) = 5}]]

= 2E [T awn0)| =2 3 B s m0)l- (3.29)

n
IEN teN

We assume that candidates seek to maximize the margin of expected victory. So

the payoff of candidate j € K at the profile (y. s) is given by:

~

Vily) = Vity 9) = Vi) = max Vi(y). (3.30)

1To be technically correct, since we are considering N and p to be variables, we should subscript
voter and candidate strategies on these variables. To simplify notation. we leave off these parameters.



Let
T, = arg max z\: E. [u(z,7)] (3.31)
eN

denote the expected social optimum. We assume for each N and p that such a point

exists and is unique.

Theorem 46 Let u be uniformly bounded. There exists an integer n* such that for

any set of voters N with = n > n", and any admessible p on T = H,E,\;T;-

y* = (z},...,x,) constitutes a global equilibrium under the margin of expected victory:
for any j € K and y; € X, Vi(y) = V;(y;, y-;) < Vi(y*), with the weak inequality

becormang strict whenever y; # x”.

Proof: For any set of voters N, and admissible p, let y = (y;,4>;) , where y] =
for all I # j and y; # x,. We first show that for large enough n, V;(y) = V;(y;, y=; ) <
Vi(y™).

For z € R¥, write Q(z) = G(z), where G; is as defined in Equation 3.18. Given
an individual 7 € N, and using equations ( 3.9) and (3.12), the probability of a vote

for candidate j is given by

si(y,)(7) = Pr| max [U([;y,s,fi)—U(j;y,:s.ti)]SU]
leKo—1{j}

Nk — Ni; < A¥(y, s) - [uly;, 7i) — wlag, )] for ke K — {j}
and 70 — ni; < A (y, 8) - [w(y;. ) — u(x}, 73]

= Q(Ai(y, s) - [u(y;, 7)) — ulzy, m)]) (3.32)

= Pr

where Ai(y,s) = (Al(y,s),... . ANy, 5)). Al(y, s) = 267 (y,8) + oy 61 (y, 5), for
alll € K — {j}, and Al(y,s) =S 6%y, s).

a#] i

Using Equation 3.29 we can express the vote for candidate j as

Vi) = =Y Ex [5:(y, ) ()] (3.33)

1EN
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Then, from Equation 3.32, we have that
. 1 *
‘/j(y) - ;; ; ET, [Q(AI(U ") : [“(yj* Tl) - '“-(-Tpa Tz)])]

Without loss of generality, we can assume utility functions are normalized with
u(z*,7;) = 0forall e € N and 7; € T. Write u; = u(y;, ) € R, and A; = Ai(y, 5).

Then, the above can be written as:

Vi) = = 3 Er [QUA, 8) - ulup, 7)) = = 3 Er, [QAw)] (3.34)

ieN iEN

Using parts (b) and (c¢) of Proposition 43, normalize the A; by A, in the following

manner. Fori € N, let

Al AT
Xi = (—3—}—\_’{> ’

and

Al o0
D=1 0 0
0 0 Ak

It is easily shown that A7 > 0 for all i € N and j € K, so that x; is well defined.

Then, applying Taylor’s theorem, we can write

V) -G = =S {EL QD xi w)] - B, [QO))

iEN
1 ! 1 n
= =D En [(D xe )@ (0) + 5 (A w) Q" (24(y)) (Ay - w)
tEN
(3.35)
where z;(y) = a0 + (1 — a)(0,... ,u;,0,...,0) for some a € (0,1) for each i € N,

and 0 denotes a & dimensional vector of zeros.

Now, by Proposition 43, it follows that for any € > 0, we can find a value n* such
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that max D < e, max;en[max|(x; — 1)]] < (1 — ¢€), and max;ey[max[(A;]] < ¢ for all

n > n#. Using these facts and continuing the derivation of Vj(y) — V;(y"),

) "™ 1 1 " :
Vilty) = Vi(y") = ; E-, [Q (0)D - xi - u; ,,( A uw)TQ" (2:(y)) (A - wy)
1EN -
= -D - ZE i+ (i — 1) -y
ienN
+—ZET, (AT Q" (2i(y)) - Ai - u?]
1EN
< B9 S B )+ Eegn S B, (1] (3.36)
oom ' 7 TR o —~ i L ‘

where Q'(0) is a & dimensional vector consisting of the gradient of @ evaluated at 0,
@"(0) is a k x k symmetric matrix of second partial derivatives of ) evaluated at 0,

Q" is the smallest element of Q'(0), Q** is defined as

Q™ = sup[Q"(2)],

2Rk

and 1 represents a k dimensional vector of ones.
We now want to show that there exists n* such that for all N with n > n*, the
right-hand side of Equation 3.36 becomes less than zero for all y # z* € X. For a

given y # ~,

k N B s ”
;(l —€)eQ ZE“ [w;] + E&Q ZET’ [u;] < 0

1EN ieN

k* 5 k .
%6262t‘ Z E‘r,' [u;] << —;(1 — E)EQ ZET' [’U,i]

iEN iEN
— 2 ien B, [u?] < 2(1—¢) _Q_'
2ien B, ] ke Q'

The inequality in Equation 3.37 is satisfied for sufficiently small ¢ > 0. Of course,
this is for a given y # x*. In order to satisfy Equation 3.37 for all y # x*, we must
take the supremum of the left-hand side over all y # z*. This supremum is defined

to be finite and denoted by M in Equation 3.1, resulting in the following requirement
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for Equation 3.37 to be satisfied for all y # z™:

2(1 —¢€) Q*
Tk @

M < (3.37)
As with Equation 3.37, for € sufficiently small, Equation 3.37 is satisfied. Thus, for
any y; € Y, Vi(y) = Vi(y;,v2,) < Vi(y*) with strict inequality whenever y; # .
Next, we show that for some [ # j, Vi(y;, v* ;) > Vi(y*). We pick [ € K — {7} for
which 67(y, s) is maximized. For z € ¥, write Q(z) = G;(z), where G, is as defined

in equation (3.18). Then we have

U (Oa Y. s, Tz) - U'(lu Y, S, Ti) S 01 and
si(y,m:)(1) = Pr U(j;y,8,1:)= U (l; 4,8, 7:) <0,and
maxiex—q151 [U(kiy, 8, %) — ULy, 8,7)] <0,

mo — ma < Al(y, 5) - [u(z}, 1) — u(Ye, 7)), and
= Pr| ny;—mq < Al(y,s)- [u(z}, ;) — u(y;, 7)), and

| ik — M < maxper—q5) (AF (Y. 8) - [ulz), 7o) — uly;, 7))
= Q(A(y,s) - [w(z), i) — uly;, 7i)])

where A;(y, ) = (AX(y, s),...,A%(y, s)), with Al(y,s) = > o sla(y, s), Al(y,s) =
269y, 8) + o g5 81°(0: 5), and A(y. ) = 67y, 5) — 85 (y, 5) for all k € K — {1, j}.

Using equation (3.29) we can express the vote for candidate [ as

Vi(y) = Z E. [si(y. )] = =D Ex, [Q(Ai(y, ) - [u(z}.73) — u(y;. ™))
(3.38)

As above, we can assume utility functions are normalized with u(z*,7;) = 0 for all
i€ N and 7; € T. As before, write u, = u(y;, ), and A; = A;(y, s). Then, the above

can be written as:

Z E., [Q(=Ai(y, s) - u(y;, 7)) Z E. [Q(—Au)] (3.39)

ze’\ ze’\:
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Note that the above takes exactly the same form as equation (3.34) above. with the
exception of the negative sign. Consequently, an analogous argument to that in (3.36)

establishes that we can find large enough n so that Vj(y)—Vi(y*) is positive. Thus, for

any y; € Yj, Vi(y) = Vi(y;.y* ;) = Vi(y™) with strict inequality whenever y; # z;,. We
have shown that ‘J(yj,yij) < h(y ) and Vi(y;, y*;) = Vily®). So Vi(y; v7,) < Vily*).
So y* is a global equilibrium for the objective function V. i

For the case of two candidates, the above theorem can be strengthened:
Corollary 47 If k = 2, then the equilibrium found in Theorem 46 is unique.

Proof: Suppose there is another equilibrium, y. Then for at least one candidate j,
y; # z*. Assume W.L.O.G. that j = 2. By Theorem 46, Ijl(yl.yg) > Vi(z*,y2) > 0.
Hence, Vi(y1,72) < 0. But this can not be an equilibrium for candidate 2, since
fﬁ(yl,r‘) >0 > f'g(yl,yg). This yvields a contradiction. Hence the equilibrium is

unique. |

Note that in the equilibrium defined by Theorem 46, that y; =y, = x, for all
J,1 € K. Hence, we have u(y;, ;) = u(y;,n;) for all j,l € K. Thus, the level of

abstention in equilibrium is determined by Vy(y*.s) =15 _ o E,. [s:(y*, 7)(0)]. But
B ) 1EN ] Y

n

-

§¢(y*’ Tt)(o) = PI' I{é‘}x [E'(l1 y*s S, ft) - E'(Ov y*a S,ti) + i — 7}:‘0] S O:I
:

= Pr ma\ |:Z 8y, s) - [u(y;, 1) — w(yr, 7)) + na — Tlil)j| < Ujl

a#l

= Pr |no =2 max [771'!]} .
leK

For example, if ¢; = 0 for all i € N, then under the assumptions we have made, all of

the n, for I € Ky are 4. i. d. Hence the above evaluates to h_+1 It follows that

= 3 B [y m)(O0)] =

— A +1

So that in a two candidate election, one would obtain equilibrium turnout of about
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two thirds of the electorate. Of course. the above calculation would be very sensitive
to the assumed distribution of costs of voting.
Thus, asymptotically we find that the social optimum is a global equilibrium so

long as preferences are uniformly bounded.

3.5 Conclusions

We have provided a general framework for probabilistic spatial voting models in large
electorates. In particular, we have extended equilibrium results of Coughlin, Ledyard,
and other researchers to spaces of arbitrary finite dimensionality and elections with
both abstention and arbitrary numbers of candidates. In addition, our model allows
for strategic behavior by the voters.

As an aside, our model is agnostic as to the cause of probabilistic choice. The
probabilistic choice in a QRE model can be assumed to arise either as the result of
rational behavior under payoff disturbances (as we have modeled it here), or as the
result of boundedly rational behavior. A key point to note in interpreting our results is
that, with respect to the distributions of the alternative-specific payoff disturbance, we
have assumed only that these distributions possess full support and are independently
and identically distributed, while allowing for the abstention-specific shock to possess
a nonidentical, independent distribution. In particular, we do not require that these
payoff shocks be in any sense large. Thus, our results demonstrate the existence of
an asymptotic equilibrium at the social welfare optimum in a relatively large class of

probabilistic voting models.



Chapter 4 Variational Response Equilibrium

4.1 Introduction

This chapter discusses a Bayesian framework for games with incomplete information
and possibly continuous action spaces. In particular, we define a framework in which
each player’s true payoff functions are unobserved by either the modeler or the other
plavers. Each player’s payoff function is assumed to be continuous with respect to
the action space and is the sum of two terms: an observable component and an
unobserved component, both of which are assumed to be continuous with respect to
the action space.

For any game of complete information. Iy, with continuous payoff functions, we
define a class of incomplete information games which possess the payoffs of Iy as the
observable component of players’ payoffs. We restrict the incomplete information to
be with respect to continuous variations of these payoffs.

Using this class of extensions of Iy, we define the set of (possibly mixed) strategy
profiles which are rationalizable as Bavesian Nash equilibria of such an incomplete
information extension of Iy, I'. We term any element of this set a variational response
equalibrium of ['y.

Our framework is similar to the work of several other scholars. Most recently,
our work is closely related to the notion of quantal response equilibrium (QRE), first
defined by McKelvey and Palfrey for both extensive-form (1998) and normal-form
games (1995) with finite action spaces. A similar notion of equilibrium is due to
Chen, Friedman, and Thisse (1997), though their notion of boundedly rational Nash
equilibrium is narrower in scope than the QRE.

Earlier work on issues closely related to those examined here includes the work
of Harsanyi (1967-68), (1973) on perturbed games and the work of Aumann, et al.

(1983) on purification of mixed strategies. The work of Milgrom and Weber (1985)
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is a seminal contribution to the understanding of Bavesian equilibria in games of
incomplete information. Milgrom and Weber define a distributional strategy as a
measure over the Cartesian product of a player’s action and type spaces. Our Theorem
58 rests upon their equilibrium existence result (Theorem 1 in Milgrom and Weber
(1985)). Similarly, the logic behind our Theorem 59 closely resembles Milgrom and
Weber's existence result as well.

This framework has many similarities to that examined in Milgrom and Weber
(1985). On the technical side, the conditions of our Theorem 58 satisfies their As-
sumptions R1 (Equicontinuous pavoffs) and R2 (Absolutely Continuous Information).
Substantively, however, our framework differs in its motivation. Milgrom and Weber
established existence results for a very general class of games of incomplete informa-
tion. Our motivation is to provide a particular foundation for the study of games in
which payoff perturbations are continuous with respect to the players’ actions spaces.
Thus, while we do provide a result (Theorem 59) using assumptions whose relation-
ship to Milgrom and Weber’s R1 and R2 is not clear,! the point of this chapter is
essentially to direct attention at a specific application of their results.

This chapter provides a Bayesian framework for understanding behavior in strate-
gic situations within a framework of unobserved payoff disturbances. In many cases,
theorists assume that agents possess continuous payoff functions. This framework
does not depart from this assumption. Our generalization of the perturbed games
literature is to allow for utility perturbations which are correlated across possibly a
continuum of pure actions. We allow this both for mathematical generality as well
as possibly increased empirical realism. In addition, we can allow for correlation be-
tween the utility perturbations received by different players (Theorem 59). Our main
result (Theorems 58), however, assumes that each player’s shock is independent of
her opponents’ perturbations.

We first define the notion of variational response equilibrium (VRE). Next we

prove existence of variational response equilibria as well as the existence of equilib-

'That is, the conditions under which Theorem 59 holds are not nested with Milgrom and Weber’s
Assumptions R1 and R2.
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rinm in a class of games of incomplete information which satisfy a weaker informa-
tional requirement. In addition, we provide some discussion of the similarities and
differences between QRE in finite games and VRRE in finite and continuous games.

Unfortunately, our definition does not appear to vield itself easily to empirical
application, as our type space is the space of continuous functions on a metrizable
action space. A different tact one could take in attempting to extend the definition
would be to begin with the desired characteristics of individual behavior, such as that
more costly mistakes are no more likely to be made than less costly ones, for example,
and then examine the properties of fixed points of quantal response correspondences
satisfving these characteristics.

We define our primitives in Section 4.2. Our existence results are found in Section

4.3. Conclusions are offered in Section 4.4.

4.2 The Model

In this section we describe the basic assumptions of our model. We consider normal-

form games. Let N denote the set of playvers, with |N| = n < oc.

4.2.1 Action Spaces

Let A; denote the action space of player 7. For all # € N, we assume that A4, is a

compact subset of a complete and separable metric space, and write A = []._y 4;.

iEN

Assumption 48 For alli € N, A, is a compact subset of a complete and separable

metric space.

4.2.2 Preferences and Types

Each player ¢ € N is endowed with a payoff function u; : 4 — R. We assume that

u; € C(A;R).

Assumption 49 For alli € N, u;, € C(A; R).
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Each player i € N possesses a type, n; € T; = C(A,;:R), which represents an
additive payoff perturbation. The player receives the payoff perturbation associated

with the action she chooses, regardless of the other players’ actions. We write T =

n
1=1

T, for the space of all possible type profiles.

Formally, let B(X) denote the Borel g-algebra on C(XX;R), where X denotes any
compact subset of a complete and separable metric space. For each i € N, let p; be
an atomless probability measure defined on B(A,).2 As we state formally below, we
will denote the resulting product measure on [ [,y B(A,;) by p, the joint distribution
of types, which is represented by an atomless measure since each p; is assumed to be

atomless.

Assumption 50 The distribution of 1 is represented by a probability measure,

PZH!)i-

iEN
Where each p; is atomless. Such a probability measure p is referred to as admissible.

Assumption 50 is equivalent to assuming that players’ types, or utility pertur-
bations. are independently distributed. As alluded to above, it is possible to prove
existence of Nash equilibria in distributional strategies by assuming only that the
joint distribution of types is atomless on T', which we show formally in Theorem 59.

In our framework, the payoff functions are assumed to be continuous with respect
to the action space and the types enter in a simple and very particular fashion. As
discussed above, and now defined formally, we assume that the privately observed

tvpes affect payoffs in an additively separable fashion.

Assumption 51 Given an action profile a € A, and type n; € Cy(A;), player i
receives a payoff of

vi(a:n;) = ui(a) + ni(a,). (4.1)

“Such a measure exists since A is compact and hence C(A4;R) is Polish (Aliprantis and Border
(1994). Theorem 11.58, p.407).
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Let U = {uy,... ,u,} and v = {vy,... ,v,}. Any game I' = (U, N, A, v, p) sat-
isfying Assumptions 49-51 is termed admsissible. For clarity, we denote the game of
complete information corresponding to I' by Ty = (U, N, 4), and will often write

I' = ([p, v, p) when the context is clear.

4.2.3 Distributional Strategies

Distributional strategies are a means of describing mixtures over possibly uncountably

infinite action and type spaces.

Definition 52 A distributional strategy for player i is a probability measure p; :

A, x T, — [0, 1] where the marginal of p; on T; is equal to p;.

The notion of a distributional strategy is meant to represent a possibly mixed
strategy while avoiding measurability problems with continuous action and/or type
spaces. The requirement that the marginal distribution of a players’ distributional
strategy with respect to her type equals the true distribution of her type represents

the fact that a playver can not change her type distribution.

4.2.4 Expected Payoffs

The expected payoff for player i of action a; € A;, given type 7; and opponents’

strategies pu_;, is given by

Vilai; i, i) = Eﬂ_,[u,,-(al:a,i)+ni(a1-)]

We denote the set of all distributional strategies for player ¢ by A, and write
M = [T, M; for the set of all possible vectors of distributional strategies. For
any player ¢ € N, we write p_; = {g1,... ,fti_1, fit1,--- s fn} for the profile of 7’s
opponents’ distributional strategies. The space of all such vectors for a given player
¢ is denoted by M_;.

We will denote the expected payoff of player ¢, given distributional strategy profile
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Ji. by W3 (y). Formally,

W, = E,ui(a) + ni(ai]. (4.2)

The next result notes that W; is linear in p;.

Lemma 53 Fori e N, any a € (0,1], any 6 € R, and any p—; € M_;. and any pair

of distributional strategies p;, i € M;,

Wilapi + (1 — a)pls pi) = aW (i p—i) + (1 — o)W (s pi)
and
Wi(Bui; p—i) = BW (w5 —i)
Proof: The result follows from the fact that integration is a linear functional. i

4.2.5 Equilibrium in Distributional Strategies

Definition 54 A Nash equilibrium in distributional strategies is an N-tuple, p* =

(p3s .- 1) for which, for alli € N and all 1; € M,,
Wi(p) = Ep [Vilaim)] = Ep, [Vias m) fis] = Wil p—i)-

In words, a Nash equilibrium is a vector of distributional strategies at which no player
has an alternative distributional strategy that would result in a strictly higher payoff.

We now define a p-Variational Response Equilibrium of a game of complete in-
formation, 'y, as any Nash equilibrium in distributional strategies of the game of
incomplete information given by (I'g, 7. p), where p is admissible, and T = C(A: R),

endowed with its Borel o-algebra.

Definition 55 For an admissible game T = (Uy, T, p), let i* be a Nash equilibrium in

distributional strategies. Then the marginal distribution of pu* with respect to the ac-
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tion space A, denoted by ot : B(A) — [0,1] s a p-Variational Response Equilibrium

()f PU i

Definition 56 Let [y be a game of complete information and (o,.... ,0n) be a vec-
tor of probability measures, with o; : B(A;) — [0,1]. Then the product measure
o= H;\:l o; is a Variational Response Equilibrium of Ty if there erists an admissible
probability measure p, defined on B(C(A;R)), and a p-Variational Response Equilib-

rium i satisfying

ala) = Luf(a,t)dt

for all a € A.

Thus, one can view the set of variational response equilibria for a game of complete
information I' as being parameterized by p, since the nature of v, i.e., that the payoff
shocks are additive with respect to pure actions, is specified by the definition of

admissibility.

4.3 Existence

In this section we prove existence of variational response equilibria for all games
possessing continuous payoff functions. The next lemma states that, for a given p,
the set of distributional strategy profiles is closed in the weak™ topology. This result
is referred to by Milgrom and Weber (1985) in the proof of their Theorem 1, but not
shown. In addition, Mas-Colell (1984) implicitly refers to this result in the proof of

his Theorem 1. Being unable to find a formal proof of this fact, it is included here.

Lemma 57 Given a type distribution p, the set of distributional strategy profiles,

M(A x T;p), is a closed subset of P(A x T) when endowed with the weak* topology.

Proof: When endowed with the relative weak* topology induced by the weak* topol-
ogy on P(A x T), M(A x T;p) is a metric space. Thus, one can verify its closure by

checking sequences. In addition, the separability and completeness of A and T ensure
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that P(A x T) is complete and separable (i.e., Polish) when endowed with the weak*
topology (Aliprantis and Border (1994), Theorem 14.15).

We know that M(A x T;p) is a tight set of probability measures® because 4 x T
is Polish, and every finite Borel measure on a Polish space is regular (Aliprantis and
Border, (1994), Theorem 10.7).

By Prohorov’s theorem (Billingsley (1968), p. 240), M is a relatively compact
subset of P(A x T') when endowed with the weak* topology.” Thus, let {y} be a
sequence in M,(A x T'). The relative compactness of M ensures that {j,} contains a
weak* convergent subsequence, so we assume without loss of generality that {u,} is
itself a weak™ convergent sequence, with limit p necessarily in M, the closure of M.

We now show that the limit, g, is itself a distributional strategy profile in M (A x
T; p). To show this, we must show three things: (1) u(AxT) = 1, (2) p is nonnegative
for all Borel subsets of A x T, and (3) the marginal of p with respect to T equals p.
We now proceed to show these in order.

(1) From Theorem 14.3 in Aliprantis and Border (1994). weak* convergence of p,

to u is equivalent to

lim Sup e (F) < p(F) (4.3)
for each closed set F'€ A x T, and

limigf 1a(G) > n(G) (4.4)

for each open set G € A x T.
Letting F' = A x T (which is a closed set since the empty set is open), it is trivial
to see that limsup, pa(A x T) = limsup{1,1,...,} = 1. Then, if p, = p, it must

be the case that u(A x T) > 1.

3A set F of probability measures on a space X is tight if, for each £ > 0 there exists a compact
set K satisfying p(K) > 1 — ¢ for each pu € F.
*A subset Y of a topological space X is relatively compact if its closure is compact.
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Similarly, note that F is also an open Borel subset of AxT, and liminf,{1,1,... .} =
1, so that p, = p, implies u(AxT) < 1. Therefore, i, = p implies that p(AxT) > 1
and pu(A x T) < 1, meaning that u(A x T) = 1.
(2) Since po € M(AxT;p) for all v, any closed set B C AxT, limsup, po(B) > 0.
By Equation 4.3,

-3
&
Vv

lim sup pa(B)

x

[V

0,

implying that g is nonnegative for all closed subsets of A x T

(3) For all «,

f dpala,n) = p.
A

Since integration is a linear functional, for any sequence pu, it must be the case that

f lim dp,(a,n) = lim dpa(a,n),

A O —00 a—00 A

implying that
/ du(a,n) = p.
A

Thus, the marginal of g with respect to T is equal to p. Therefore, lim,—o pta €
M(A x T; p) for all convergent sequences {1}, so that M is closed, completing the

proof. | |

Let ¢, : M_, —— M, denote the best response correspondence for plaver : and
n /
¢ =TI, ¢

Theorem 58 Let I' be admissible, and u; € C(A;R) for allt € N. Then I'y possesses

a Variational Response Equilibrium.
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Proof: We show that conditions R1 and R2 for Theorem 1 in Milgrom and Weber
(1985) are satisfied. Endowing 7" with the topology of uniform convergence, v

T x A — R is a uniformly continuous function. Hence, by Proposition 1 in Milgrom
and Weber (1985), Condition R1 is satisfied. The random variables {r,... .7x}
are mutually independent so that, by Proposition 3 in Milgrom and Weber (1985).
Assumption R2 is satisfied. Therefore, by Theorem 1 in Milgrom and Weber (1985),
there exists an equilibrium in distributiomal strategies. The projection of such an

equilibrium onto A is a variational response equilibrium of I'y. i

We now digress for a moment to prove an existence result under the assumption
that the joint distribution of types, p, possesses full support and is atomless. Only the
latter of these conditions is implied by our earlier assumptions. One implication of our
requirement is that the players can assign no profile of the other players’ tvpes zero
probability conditional upon their own type. Nevertheless, their conditional beliefs
about the other players’ tyvpes may differ according to the realization of their own

type, of course.

Theorem 59 Let p be an atomless distribution on T =[]\, C(A;) and u; : A = R

be continuous for each i € N. Then 'y possesses a Variational Response Equilibrium.

Proof: For all i € N, W, is an integral of the sum of continuous functions,

Wi(p) = /; : [wi(a) + mi(a;)] dula,n).

Endowing M with the product weak* topology, W; is continuous on M. Since T
is a complete and separable metric space, p is a tight probability measure.

Since p is tight, it follows from Prohorov’s Theorem that M is a relatively compact
set for each 7 € N (see Billingslev (1968), p. 240). By Lemma 57, M is closed. The
closure of a relatively compact set is compact, so M is compact.

By the continuity of W; and Berge’s Theorem of the Maximum (Aliprantis and
Border (1994), Theorem 14.30), the graph of ¢; is closed for cach i € N. Every closed

subset of a compact topological space is compact, so that the graph of ¢, is compact.
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In addition. the graph of ¢; is convex by the linearity of 1} for all i € N (Lemma 53).
In addition, having closed graph implies that ¢; is upper hemicontinuous since A,
is a compact space. The product of upper hemicontinuous correspondences is upper
hemicontinuous (see Border, (1985), Proposition 11.25). This implies that ¢ is an
upper hemicontinuous correspoudence.

Thus, by Fan’s fixed point theorem (1952), there exists u € M such that u € o(u).
Such a fixed point is a Nash equilibrium in distributional strategies, completing the

proof. |

4.4 Comparisons, Extensions, and Conclusions

In this chapter we have defined and explored the notion of variational response equi-
librium. The notion of VRE is in some senses a generalization of the notion of quantal
response equilibrium in finite games. It is also related to the more general literature
on games with perturbed payoffs. Primarily. our definition of VRE allows for correla-
tion of payvoff perturbations across actions. Indeed, correlation of payoff disturbances
across actions is required within our framework (except as a limiting case) whenever
the action space is continuous. In addition, we have shown that certain types of
correlation can be allowed between the realizations of players’ types (Theorem 59).
Several questions follow from our definition. For example, are any probability
measures on A mot variational response equilibria of I'y? That is, do there exist
mixed strategy profiles that can not be rationalized according to an admissible game of
incomplete information? One conjecture along this dimension is that any measure, o :
B(A) — [0,1] induced by a VRE must have full support on A. This is a characteristic
of quantal response equilibria in finite games, as well as the notion of logit equilibrium
used by Anderson, Goeree, and Holt. The validity of the conjecture is not known at
this point, however. A related question is whether we can use this refinement to select

certain equilibria of the complete information game, ['g.
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4.4.1 VRE and QRE in Finite Games

The notion of quantal response equilibrium, as discussed earlier, has been defined
as a Bayes Nash equilibrium in games with finite action spaces. Our definition of
variational response equilibrium is also defined for such games, given a metric on the
action space, A. This section discusses the relationship between QRE and VRE in
finite normal form games.

The idea underlying quantal response equilibrium is that playvers are unable to
commit to playing any action with zero probability. This lack of commitment ability
may be due to any of several factors, including imperfect implementation of a pure
strategy (e.g., trembles), incorrect beliefs, or idiosyncratic shocks to each playver’s
preferences. Thus, the notion of QRE is both a theoretical and an empirical tool.
Theoretically, the QRE framework provides an environment in which to examine the
properties of games in which there is always a positive probability that each action
profile will be observed. On the other hand, the QRE has already been fruitfully
applied in attempts to explain actual behavior in the laboratory (see McKelvey and
Palfrey (1995), (1998)).

McKelvey and Palfrev define the QRE as a Bayesian equilibrium of a game in
which each player observes independently and identically distributed shocks to the
expected payoff for each action available to her. Thus, the set of quantal response
equilibria is parameterized by the distribution from which these payoff perturbations
are drawn. This formulation implies that pavers are more likely to choose actions
with higher expected payoff, ceteris paribus.

The empirical motivations behind VRE are similar in spirit to those behind QRE.
Both equilibrium concepts are motivated by a desire to provide stochastic explana-
tions for deviations from Nash equilibrium play. The substances of the two notions
are not identical, however. In particular, even in finite games, the notion of varia-
tional response equilibrium is sensitive to the “distance” between two actions. This
is because, for any playver in a finite game, the distance between actions determines

the correlations between that plaver’s action-specific utility perturbations. In a QRE,
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each action’s utility perturbation is realized independently, regardless of any metric
structure which the action space may possess.

For finite games in which some player has more than two pure actions. the type
distributions which are admissible in our framework contain those distributions which
McKelvey and Palfrey (1995) classify as admissible for quantal response equilibria as
a strict subset. In fact, we can provide the following nesting result, which states
that, for every finite normal form game I'y, if ¢* is a probability distribution on A
which is induced by some quantal response equilibrium with payoff perturbations
distributed according to an admissible probability measure I, then there exists an
admissible type distribution p and type space T which generate a variational response
equilibrium which induces o on A as well.

Let A; be finite for every player i, with |4;| = a;, and let Ty = (N, A, U). For each
i € N, relabelling A;, define A, = {1,...,a;}. Now define T; to be set of piecewise

continuous functions from (1, a;] defined as

Ti={g € C([0, 0q]: R) : ¥r ¢ Ay, g(r) = (g(|7]) — 9([r1)(r = 7]},

and

(233
i = H P,?,
j=1

with

pi(r) = Prlg(j) < r] = Fi(r),

for all j € A;, where F} is the cumnulative density function of the payoff perturbations
which generates o as a quantal response equilibrium of 'y (see McKelvey and Pal-
frev (1995)). Thus. by enriching the type space and choosing the type distribution
judiciously, any QRE of a finite normal form game can be justified as a variational
response equilibrium. The converse is easily seen to be false.

There are other important differences aside from the fact that every QRE is also
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a VRE in finite games. In particular, if the game being played is a multistage game,
even in normal form, the choice of metric over the space of all pure actions for any
given plaver may have an enormous impact on the set of variational response equilibria
of such a game, due to the presence of correlation in the unobserved payoff shocks.

We feel that the notion of QRE in finite games, as defined by McKelvey and
Palfrev, is best thought of as either representing the unobservable characteristics
of players in a game or as a statistical model of bounded rationality. The latter
interpretation is qualified by the restriction that players are less likely to make a
mistake the more costly that mistake is in expectation. We have presented a notion,
that of variational response equilibrium, which is similar in spirit and which we feel
can be motivated in the same fashion.

One technical difference between the notions is that the VRE is defined for games
with possibly continuous action spaces. But two key elements of our framework, re-
gardless of the action space, are that variational response equilibrium requires that
the action space be endowed with a metric, and that the pavoff shocks observed by
any given player are correlated with respect to this metric. Indeed, for the case of
continuous action spaces, we suspect that this correlation is necessary for payvoff max-
imization to make any sense. Regardless, this metric is an exogenous (and seemingly

unobservable) parameter of the framework.

4.4.2 VRE: A Continuous Version of QRE?

One might ask whether variational response equilibrium is the natural extension of
quantal response equilibrium to games with continuous action spaces. We argue that
it is not, for the following reasons. First, the comparative statics of the QRE in finite
games are similar to many models of probabilistic choice, such as the Luce model
(1959) and the random payoff maximization framework of McFadden (1981), among
others. We discuss below why such comparative statics, such as the fact that the
probability of a player choosing some strategy x is weakly increasing in the expected
payoff offered by . may not hold for VRE.

Second, at least one of the parameterizations of the QRE, the logit QRE, has an
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appealing functional analogue in the continuous case, termed by Anderson, Goeree,
and Holt (1998) the “logit equilibrium.”
Let T’ be an n player game. In a logit equilibrium, for each player i € N, the
probability that an action x with corresponding expected pavoff U;(x) is chosen by

playver 7 is given by

i elil@) _
jl‘(:lf) = W (40)

This functional form has been used both theoretically and empirically by several
researchers. including Anderson, Goeree, and Holt (1997). (1998), and Capra, Goeree,
Gomez, and Holt (1997). We discuss below the potential problems with rationalizing
the logit equilibrium as a variational response equilibrium.

Finally, a central assumption of VRE is that there is an ordering of each player’s
action space. In particular, each player’s action space is endowed with a metric. The
perturbation associated with an action is more highly correlated with the perturba-
tions of nearby actions than with those of actions further away. In a quantal response
equilibrium, each plaver's choice probabilities are invariant to a “shuffling” of the
strategies - the ordering of the strategies is irrelevant. We show below that this is not

the case in general for variational response equilibria.

Comparative Statics

A key qualitative element of Quantal Response Equilibria in finite games is that ac-
tions with higher expected pavoff (given a distributional strategy profile for player i’s
opponents) are plaved with higher probability and choice probabilities are continuous
functions of the expected payoffs of the strategies. Variational respounse equilibria
may not have the continuity property, and very likely do not possess the monotonic-
ity property in general, as two actions may yield the same expected payoff but have
very different expected payoffs due to the expected payoffs of other actions which are

“close” to either of them.
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Functional Forms

The fact that comparative statics are difficult to provide for general variational re-
sponse equilibria highlights a more fundamental problem: what do variational re-
sponse equilibria look like? That is, one would like to be able, even if only for
a restricted class of type distributions, to write down a function of the observable
pavoffs which generates a set of variational response equilibria to a given game of
complete information, I'y.? -

It seems that studying random payoff maximization in an environment with a
possibly uncountable choice set is not only difficult, but that the links that exist
between functional form models, such as that used by Anderson, Goeree, and Holt
(1997), (1998), and Capra. Goeree, Gomez, and Holt (1997), and models based in a
Bayesian equilibrium setting, such as that defined here, are not at all clear. As an
example, it is not known at this time whether or not there exists any admissible type
distribution p for which the notion of logit equilibrium employed in Anderson, Goeree,
and Holt (1998) is a p-variational response equilibrium. It seems that the answer
to this question is no, since the logit equilibrium shares the monotonicity property
possessed by the quantal response equilibrium as discussed above. In particular, for
any player : € N any two actions z and y in A; satisfying U;(z) = U;(y), f(z) = f(y),
meaning that, conditional on choosing either x or y, each is equally likely to be chosen
in a logit equilibrium. A more rigorous answer to this question is left as a topic for

future research.

The Action Space

As stated earlier, the notion of variational response equilibrium imposes both a met-
ric on the action space as well as a framework of unobserved payoff shocks, while
the notion of quantal response equilibrium only imposes a framework of unobserved

pavoff shocks. Each player’'s payofl shocks in the variational respounse equilibrium

Indeed, as Tom Palfrey has pointed out to me, the notion of quantal response equilibrium began
as a functional form; in particular. as the discrete version of the logit equilibrium discussed above.
See McKelvey and Palfrey (1996).
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are correlated with respect to the metric imposed on her action space. This is very
different from the assumption of independent payoff shocks which rationalize quantal

response equilibria from a Bayesian perspective.

4.4.3 Extensions

Possible extensions of this framework include allowing for the payoff perturbation to
enter in ways other than as an additive shock. In addition, there are many alternative
tvpe spaces which could be examined. We have explored the possibility of directly
extending the definition employed by McKelvey and Palfrey (1995) by assuming that
cach player is endowed with a continuum of independently and identically distributed
random perturbations, one for each pure action. It turns out that the arg max of
the resulting v; function is not even guaranteed to be Lebesgue measurable. This
problem is related in an intimate fashion to the use of the Axiom of Choice which
1s required by the uncountable nature of the action space. Thus, such an extension
does not seem to even make sense. much less be tractable.

A more promising extension would be to take a space of random walks (which
is, of course, a subset of the type space assumed here) generated by a particular
random process, such as a normally distributed “step” (i.e., Brownian motion). The
potential value of such an approach largely consists of the ability to say more about
the characteristics of behavior in such a framework. In addition, such a definition of
the tvpe space may be more appealing from a descriptive standpoint.

In short, much remains to be developed in the theory of perturbed games. We
argue that any complete theory must begin to place a structure on the game being
plaved. By placing a structure we mean that the theory must account for explicitly
behavioral effects of the game's context, design, and representation.

We have attempted to start this endeavor by placing a metric on the action space,
a technique which is a very preliminary attempt at capturing, for example, the sim-
ilarity of actions as perceived by the players. Other aspects of games which a more
complete theory might take into account include the implications of different play-

ers’ roles (e.g.. whether a player perceives some of his opponents as having more or
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less of an advantage, whether a player infers something about other players’ future
behavior from his or her own perecptions, etc.), differences in mental representations
of stochastic processess, the effect of the order in which decisions are made in an
extensive-form game, and the representation of payvoffs (e.g.. pavofts as losses versus
gains, pavofls expressed relative to other players, etc.), among what is surely a large

number of other possibilities.
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