Investigations of the Origin of Stereocontrol in Syndiospecific Ziegler-Natta Polymerizations

Thesis by

Deanna Lynn Zubris

In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

Division of Chemistry and Chemical Engineering California Institute of Technology Pasadena, California

> 2001 (Submitted July 10, 2000)

© 2001

Deanna Lynn Zubris

All Rights Reserved

For Mom and Dad

Acknowledgments

My five years at Caltech have been a huge learning experience for me on both a scientific and personal level. This brief section expresses some of my gratitude for those who have helped me along the way.

John Bercaw has helped me to learn a great deal of chemistry and really enjoy doing it by providing a challenging intellectual environment. Throughout my time at Caltech he has been a compassionate listener and friend and for this I will always be grateful. My committee members Bob Grubbs, Harry Gray, and Doug Rees have also provided helpful suggestions and advice. It was especially fun to organize Organometallics talks with Harry around to spice things up. I would also like to thank Gui Bazan, Rich Eisenberg and Bill Jones for urging me to consider Caltech for graduate school while I was an undergraduate at the University of Rochester.

Starting out in the Bercaw group I was very fortunate to get teamed up with Tim Herzog. He showed me the ropes on the vacuum line and despite his tendency to store items out of my reach he was a great line mate and friend. Talking chemistry with Tim and Dario Veghini was invaluable to me as a new graduate student. Dario's charm, honesty, and sense of humor made him a wonderful confidant. Although I enjoyed having Shannon Stahl around for late night chats and his strong convictions regarding birthday celebrations, I admit that I was excited to assume his prime desk location when he finished at Caltech. And while Mike Abrams was initially apprehensive about sharing the Nook[™] with a "chick", he seemed to really warm up to my lists of "things to be happy about". Mike also did a great job of helping me to pick out a monstrous pair of hiking boots and related gear for the group hike I attended with John, Dario, Chris and Jennifer Levy, and Arnel Fajardo.

My labmates really defined my experience in the Bercaw group. I'm glad that Steve Miller was there to provide me with back-up on the softball field, as a fellow TA, and in the lab. Most of my ups and downs at Caltech were shared with Paul Chirik and I'm thankful for his genuine support and encouragement. Susan Schofer has been a great linemate and I'm pretty sure she doesn't realize how important her friendship was for maintaining my sanity in the lab. Chris Jones (Boss #3) was a fun addition to the lab and hopefully he won't tease my sister too much at Georgia Tech. Best of luck to my newest labmates, Sara Klamo and Endy Min. Also, best wishes to Lily Ackermann in her admirable pursuit of group 5 *ansa*-metallocenes. Their fresh enthusiasm was a boost to me as I was in the home stretch of my thesis work.

My time in the Bercaw group has been shared with a very diverse group of people and I would like to acknowledge some of them here. I'm grateful for Chris (Theory) Brandow's upbeat attitude and ability to bring out the best in people. I appreciate John Scollard giving me a shoulder to cry on (often literally) and for supporting my love of Snoopy. Antek Wong-Foy was also there to lend me a hand when I needed it. Andy Kiely, Cory Nelson, Jim Gilchrist, Matt Holtcamp, Jeff Yoder, Shigenobu Miyake, Ola Wendt, Seva Rostovstev, and Chris Levy are other "Hogs" who have helped me along the way. While not technically a "Hog" (due to an apparent aversion to softball) I've also had helpful talks with Joseph Sadighi.

Caltech is a pretty incredible place to be a graduate student in part due to a few people who work hard to keep things running smoothly. Dian Buchness and Pat Anderson have both been very helpful and especially understanding when I needed to vent my frustrations. My time in the lab was a lot easier due to Rick Gerhart's ability to compensate for my clumsiness with a glass blowing torch and Mike Roy's assistance with blue box repairs. Larry Henling and Mike Day were helpful for obtaining X-ray diffraction data. Despite many ugly, misshapen crystals Larry still managed to provide me with all of the information I needed when I needed it along with well-timed, free snacks.

I'm very grateful to my friends who have provided me with much needed breaks from the laboratory and helped to keep me grounded. The Caltech Masters Swim Club was a welcome reprieve after many tough days in the lab; Laurie and Dan Stein and coaches Kenny Grace and Mo Salama provided me with laughs and friendship. I've shared many of my grad school experiences with the "chick lunch" gang Aileen Kua, Claudine Chen, and Liz Krider. Aileen's thoughtful and kind nature and Liz's encouragement to "let my light shine" helped to keep me going. Magali Billen has been a caring friend through many of my tough times at Caltech and I hope that our paths cross again in the future. Fred Miller, Sarah Lorenz, and Kary Caccamise have been my constant cheerleaders and their friendship has helped me to believe in myself. Even though our lives are always moving in different directions I know they will always be my friends.

Lastly I would like to acknowledge my parents, Donald and Sharon Zubris, and my sister Melissa for their constant support and love. I can't thank them enough for helping to me make it this far.

Abstract

In order to expand our understanding of the mechanism of stereocontrol in syndiospecific α -olefin polymerization, a family of Cs-symmetric, ansa-group 3 metallocenes was targeted as polymerization catalysts. The syntheses of new ansa-yttrocene and scandocene derivatives that employ the doubly [SiMe2]bridged ligand array $(1,2-SiMe_2)_2 \{C_5H_2-4-R\} \{C_5H-3,5-(CHMe_2)_2\}$ (where R = tbutyl, tBuThp; where R = i-propyl, iPrThp) are described. The structures of tBuThpY(µ-Cl)₂K(THF)₂, tBuThpSc(µ-Cl)₂K(Et₂O)₂, tBuThpYCH(SiMe₃)₂, Y₂{µ₂- $(tBuThp)_2$ ₂(μ_2 -H)₂, and tBuThpSc(μ -CH₃)₂Al(CH₃)₂ have been examined by single crystal X-ray diffraction methods. Ansa-yttrocenes and scandocenes that incorporate the singly [CPh₂]-bridged ligand array (CPh₂)(C₅H₄)(C₁₃H₈) (where $C_5H_4 = Cp$, cyclopentadienyl; where $C_{13}H_8 = Flu$, fluorenyl) have also been prepared. Select metallocene alkyl complexes are active single component catalysts for homopolymerization of propylene and 1-pentene. The scandocene tetramethylaluminate complexes generate polymers with the highest molecular weights of the series. Under all conditions examined atactic polymer microstructures are observed, suggesting a chain-end mechanism for stereocontrol.

A series of *ansa*-tantalocenes have been prepared as models for Ziegler-Natta polymerization catalysts. A singly bridged *ansa*-tantalocene trimethyl complex, Me₂Si(η^5 -C₅H₄)₂TaMe₃, has been prepared and used for the synthesis of a tantalocene ethylene-methyl complex. Addition of propylene to this ethylene-methyl adduct results in olefin exchange to give a mixture of *endo* and *exo* propylene isomers. Doubly-silylene bridged *ansa*-tantalocene complexes have been prepared with the tBuThp ligand; a tantalocene trimethyl complex and a tantalocene methylidene-methyl complex have been synthesized and characterized by X-ray diffraction. Thermolysis of the methylidene-methyl complex affords the corresponding ethylene-hydride complex. Addition of either propylene or styrene to this ethylene-hydride compound results in olefin exchange. In both cases, only one product isomer is observed. Studies of olefin exchange with *ansa*-tantalocene olefin-hydride and olefin-methyl complexes have provided information about the important steric influences for olefin coordination in Ziegler-Natta polymerization.

Investigations of the Origin of Stereocontrol in Syndiospecific Ziegler-Natta Polymerizations

TABLE OF CONTENTS

Acknowledgments	iv
Abstract	vi
Table of Contents	vii
List of Figures	viii
List of Tables	xi

Chapter 1: Synthesis of C_{S} - Symmetric Group 3 Metallocenes as Catalysts for α -Olefin Polymerization

Abstract	1
Introduction	2
Results and Discussion	8
Conclusions	45
Experimental	46

Chapter 2: Group 5 *Ansa*-Metallocenes as Models for Ziegler-Natta Polymerization Catalysts

Abstract	64
Introduction	65
Results and Discussion	71
Conclusions	100
Experimental	101
Appendix A: GPC Data	116
Appendix B: X-ray Crystallographic Data	

List of Figures

Chapter 1:

Figure 1. Various metallocenes (unlinked, singly bridged, and doubly bridged) and an <i>ansa</i> -monocyclopentadienyl-amido complex can be utilized as α -olefin polymerization catalysts
Figure 2. <i>C</i> _{<i>s</i>} -symmetric singly linked cyclopentadienyl-fluorenyl cationic group 4 metallocenes serve as catalysts for the production of syndiotactic polypropylene
Figure 3. Original proposed mechanism for formation of syndiotactic polypropylene
Figure 4. <i>C</i> _{<i>s</i>} -symmetry is not the only requirement for formation of syndiotactic polypropylene
Figure 5. Proposed transition state for propylene insertion into a growing polymer chain for a syndiospecific zirconocene catalyst4
Figure 6. <i>C_s</i> -symmetric RThp zirconocene dichlorides, when activated with MAO, serve as highly active catalysts for the production of syndiotactic polypropylene
Figure 7. Essential features for formation of syndiotactic polypropylene5
Figure 8. <i>C_s</i> -symmetric yttrocenes and scandocenes are desired as catalysts for Ziegler-Natta polymerization
Figure 9. Calculations predict that neutral scandocene and cationic titanocene alkyl complexes have different preferences for the location of the alkyl substituent in the metallocene wedge
Figure 10. A chain-end control mechanism may operate for <i>C</i> _s -symmetric group 3 metallocenes
Figure 11. Molecular structure of tBuThpY(μ-Cl) ₂ K(THF) ₂ 11
Figure 12. Molecular structure of tBuThpSc(μ-Cl) ₂ K(Et ₂ O) ₂ 13
Figure 13. Molecular structure of tBuThpYCH(TMS) ₂ 19
Figure 14. Molecular structure of tBuThpYCH(TMS) ₂ 20
Figure 15. Select atom labels for [OpYCH(TMS) ₂]21

Figure 16. Two types of dimeric <i>ansa</i> -yttrocene hydride complexes have been observed previously22	2
Figure 17. Molecular structure of [tBuThpYH] ₂ 24	1
Figure 18. Molecular structure of tBuThpSc(μ-Me) ₂ AlMe ₂ 29)
Figure 19. Molecular structure of tBuThpSc(μ-Me) ₂ AlMe ₂ 30)
Figure 20. Reaction of $Cp_2MMe_2AlMe_2$ with pyridine provides different products for M = Y versus M = Sc	L
Figure 21. Compounds tBuThpY(μ -Me) ₂ AlMe ₂ , tBuThpSc(μ -Me) ₂ AlMe ₂ , iPrThpSc(μ -Me) ₂ AlMe ₂ , EpSc(μ -Me) ₂ AlMe ₂ , and (tBuThpYCH(TMS) ₂ + H ₂) may be used as catalysts for α -olefin polymerization	

Chapter 2:

Figure 1. Metallocene symmetry exerts an influence on resulting poly(propylene) microstructure
Figure 2. Doubly-silylene bridged zirconocenes favor 1,2-olefin insertion over 2,1-olefin insertion
Figure 3. Proposed α-olefin insertion into yttrocene-hydride and yttrocene- polymer moieties
Figure 4. A proposed transition state for α -olefin insertion into a growing polymer chain for a C_s -symmetric, RThp metallocene
Figure 5. Potential olefin insertion preferences into metal-hydride and metal-polymer bonds for C_s -symmetric, RThp metallocenes
Figure 6. Singly- and doubly-silylene linked tantalocene olefin-hydride and olefin-alkyl complexes are desired as model complexes for Ziegler-Natta polymerization catalysts
Figure 7. Cp ₂ TaMe ₃ may be used as a synthetic precursor to the corresponding tantalocene ethylene-methyl complex70
Figure 8. [Cp* ₂ TaMe ₂][BF ₄] may be used as a synthetic precursor to the corresponding tantalocene ethylene-hydride complex71
Figure 9. Molecular structure of SpTaMe ₃ 73

Figure 10. General equation for equilibration of metallocene ethylene and propylene adducts
Figure 11. Examples of previously reported doubly-silylene bridged <i>ansa-</i> zirconocene dichloride complexes
Figure 12. Doubly-silylene bridged ligand salts targeted for the synthesis of <i>ansa</i> -tantalocenes
Figure 13. Both <i>trans</i> and <i>cis</i> relationships between the propylene methyl substituent and the β -carbon of the polymer chain may be possible for olefin coordination
Figure 14. Invoking both a site epimerization mechanism and facile rotation about the α -carbon of the polymer chain may explain the atactic polymer formed using the RRp ligand array
Figure 15. Potential products from thermolysis of tBuRpTa(CH ₂)CH ₃ 89
Figure 16. While tBuThpTaMe ₃ decomposes in ambient light, tBuThpTa(CH ₂)CH ₃ is stable. A bridged dinuclear complex is formed as a byproduct under select metallation conditions91
Figure 17. Molecular structure of tBuThpTaMe ₃ 93
Figure 18. Molecular structure of tBuThpTa(CH ₂)CH ₃ 94
Figure 19. Comparison of molecular structures of tBuThpTaMe ₃ and tBuThpTa(CH ₂)CH ₃
Figure 20. Conversion of tBuThpTa(CH ₂)CH ₃ to tBuThpTa(η^2 -CH ₂ CH ₂)(H) may involve a tantalocene-ethyl complex as an intermediate
Figure 21. Difference NOE experiments indicate that (CH ₂ =CHR'), where R' is methyl or phenyl, coordinates in an <i>endo</i> fashion with the R' substituent directed between the two isopropyl groups of the cyclopentadienyl ring
Figure 22. Selectivity for olefin coordination exerted by the C_s -symmetric tBuThp ligand and the C_2 -symmetric Bp ligand100

List of Tables

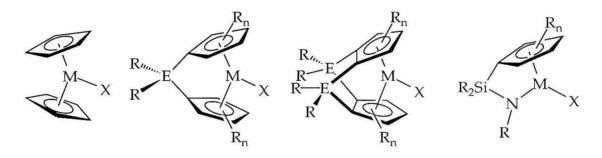
Chapter 1:
Table 1. Select bond distances and bond angles for potassium chloride adductstBuThpY(μ -Cl) ₂ K(THF) ₂ and tBuThpSc(μ -Cl) ₂ K(Et ₂ O) ₂ 13
Table 2. Select bond distances and bond angles for tBuThpYCH(TMS) ₂ and OpYCH(TMS) ₂
Table 3. Select bond distances and bond angles for dimeric yttrocene hydride complexes
Table 4. ¹ H NMR resonances for bridging and terminal methyl substituents of select metallocene tetramethyaluminate complexes
Table 5. Select bond distances and bond angles for monomeric tetramethylaluminates tBuThpSc(μ-Me) ₂ AlMe ₂ and Cp ₂ Y(μ-Me) ₂ AlMe ₂ 29
Table 6. 1-pentene polymerizations 40
Table 7. Propylene polymerizations40
Table 8. Polymerizations of 1-pentene and propylene41

Chapter 2:

Table 1. Comparison of percent <i>endo</i> versus percent <i>exo</i> product for niobocen and tantalocene propylene adducts	е 77
Table 2. Equilibrium data for ethylene (R' = H) and propylene (R' = Me) adducts	78
Table 3. Pentad analysis for polypropylene produced using catalysttBuRpZrCl2	87
Table 4.Select bond distances and bond angles for tBuThpTaMe3 andtBuThpTa(CH2)CH3	94

Chapter 1

Synthesis of C_s - Symmetric Group 3 Metallocenes as Catalysts for α -Olefin Polymerization

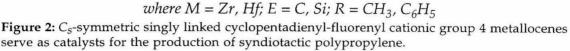

Abstract

The preparation of a series of C_s -symmetric yttrocene and scandocene complexes incorporating the doubly (silvlene-bridged) ligand array, (1,2- $SiMe_2$ /2[4-R-C5H2][3,5-(CHMe_2)2-C5H] (RThp), is described. Reaction of K2RThp (where R = t-butyl or *i*-propyl) with MCl₃(THF)_n (where M = Y, n = 3.5; M = Sc, n = 3) affords the corresponding metallocene chloride complexes $tBuThpY(\mu$ - $Cl)_2K(THF)_{n_\ell}$ tBuThpSc(μ -Cl)_2K(THF)_{n_\ell} and iPrThpY(μ -Cl)_2K(THF)_n (where $0 \le n$ \leq 2). The analogous scandocene bromide complex, iPrThpSc(μ -Br)₂K(THF)_n, has also been prepared. Reaction of tBuThpY(μ -Cl)₂K(THF)_n with NaI and subsequent metathesis with KCH(SiMe₃)₂ provides a bis(trimethylsilyl)methyl yttrocene complex, tBuThpYCH(TMS)₂. Hydrogenation of tBuThpYCH(TMS)₂ provides a mixture of two dimeric yttrocene hydride complexes, Y{µ- $(tBuThp)_2(\mu-H)_2$ Y. One of these hydride complexes has been characterized by X-ray diffraction; each ligand array spans two metal centers in a "fly-over" dimeric structure. Combination of $RThpM(\mu-X)_2K(THF)_n$ (where M = Y, Sc; R = tBu, iPr; X = Cl, Br) with LiAlMe₄ affords the corresponding tetramethylaluminate complexes $RThpM(\mu-Me)_2AlMe_2$ (where M = Y, Sc; R = tBu, iPr). Scandocene and vttrocene tetramethylaluminate complexes that employ a singly linked cyclopentadienyl-fluorenyl ligand, $[(C_6H_5)_2C_3]$ C_5H_4)(η^5 -fluorenyl)}]M(μ -Me)₂AlMe₂ (where M = Y, Sc), have been prepared via a similar methodology.

Select tetramethylaluminate complexes serve as single component polymerization catalysts for the polymerization of 1-pentene and propylene. Use of these catalysts under a variety of conditions yields polymers with essentially atactic microstructures with a continuum of tacticities that range from a slight syndiotactic preference ($[r] \approx 68\%$) to a slight isotactic preference ($[m] \approx$ 67%). This data is consistent with a chain-end control mechanism. These C_s symmetric group 3 catalysts follow a stereocontrol mechanism unlike what has been observed for analogous zirconocene catalysts.

Introduction

The use of metallocenes as catalysts for ethylene and α -olefin polymerization is an area of intense investigation for academic and industrial chemists alike.¹ Homogeneous Ziegler-Natta catalysts (neutral group 3 and cationic group 4 metallocenes and their derivatives, see Figure 1) excel at the homopolymerization and copolymerization of these monomers.



where $M = Ti^+$, Zr^+ , Sc, Y, La X = alkyl, H; E = C, Si; R = alkyl, aryl**Figure 1:** Various metallocenes (unlinked, singly bridged, and doubly bridged) and an *ansa*monocyclopentadienyl-amido complex can be utilized as α -olefin polymerization catalysts.

The predictable correlation between metallocene structure and polypropylene tacticity is one of the most striking features of these polymerization catalysts.¹ In general, C_{2v} -symmetric metallocenes produce atactic polypropylene, C_2 -symmetric metallocenes provide isotactic polypropylene, and select C_1 -symmetric metallocenes yield isotactic polypropylene, generally with less stereospecificity than what is observed with C_2 -symmetric catalysts.

While a variety of metallocene catalysts have been reported for generation of isotactic polypropylene, the number of catalysts for production of syndiotactic polypropylene is limited. Ewen and Razavi first described the preparation of C_s -symmetric, singly-linked cyclopentadienyl-fluorenyl zirconocenes as syndiospecific polymerization catalysts.² Following this discovery a family of C_s -symmetric catalysts were synthesized for the production of syndiotactic polypropylene, as illustrated in Figure 2.^{2,3}

The mechanism first proposed by Ewen and Razavi² for formation of syndiotactic polypropylene requires olefin insertions from alternating (enantiotopic) sides of the metallocene wedge. The authors also suggested that the methyl substituent of the propylene monomer would be directed away from the larger fluorenyl ligand. This mechanism is depicted in Figure 3.

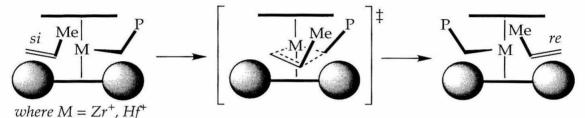


Figure 3: Original proposed mechanism for formation of syndiotactic polypropylene.

Recent efforts in our group have helped to delineate the essential requirements for syndiospecific α -olefin polymerization catalysts. Two features of the singly linked cyclopentadienyl-fluorenyl catalysts, their C_s -symmetry and cyclopentadienyl ligands of differing sizes, were adopted in the zirconocene pictured in Figure 4.⁴ These two features were not sufficient for creation of a syndiospecific catalyst. Activation of this zirconocene with methylaluminoxane (MAO, 10³ equivalents) in liquid propylene at 0°C provides essentially atactic polypropylene ([r] \approx 55%).

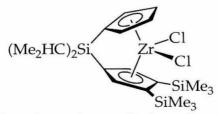


Figure 4: C_s-symmetry is not the only requirement for formation of syndiotactic polypropylene.

Further consideration of the olefin insertion transition state described in Figure 3 suggested that the alkyl substituent of the incoming monomer may be oriented *trans* with respect to the β -carbon of the polymer chain, as illustrated in Figure 5.⁴ This stereochemical assignment is supported by theoretical⁵ and experimental⁶ measurements of transition state geometry in related *C*₂-symmetric metallocenes. Incorporation of α C-H agostic assistance in the olefin insertion transition state⁷ is also consistent with this stereochemical assignment.

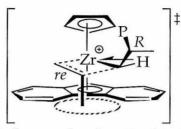
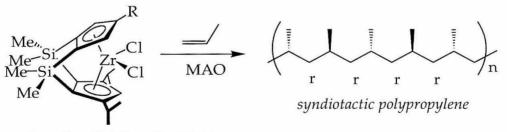
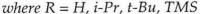
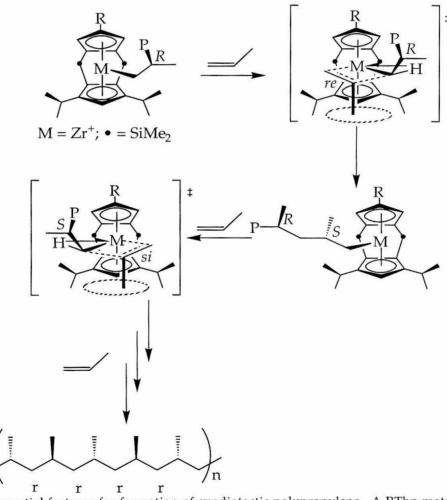
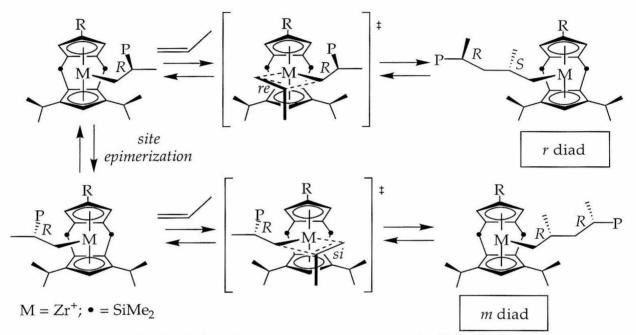
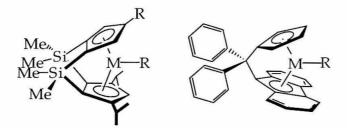




Figure 5: Proposed transition state for propylene insertion into a growing polymer chain for a syndiospecific zirconocene catalyst.

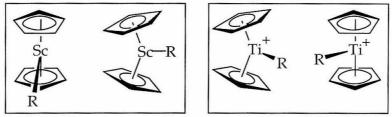

These observations were implemented in the design of a family of C_s -symmetric, doubly-silylene bridged *ansa*-zirconocenes, $[(1,2-SiMe_2)_2(\eta^5-4-R-C_5H_2)(\eta^5-3,5-(CHMe_2)_2-C_5H)]ZrCl_2$ (RThpZrCl_2, where R = H, iPr, tBu, TMS) for the production of highly syndiotactic polypropylene (Figure 6).⁴ These catalysts are notable for their high syndiospecificity, activity, and polymer molecular weights. For example, ThpZrCl_2 (R = H) produces highly syndiospecific polypropylene ([*rrrr*] = 93.4% for ThpZrCl_2/MAO = 1 : 2000, in liquid propylene at 20°C) with high molecular weight (M_w = 1,300,000, PDI = 1.9). The highest syndiospecificity is found using iPrThpZrCl_2 (iPrThpZrCl_2/MAO = 1 : 2000, in liquid propylene at 20°C) where a [*rrrr*] value of 97.5% has been observed.


Figure 6: *C*_{*s*}-symmetric RThp zirconocene dichlorides, when activated with MAO, serve as highly active catalysts for the production of syndiotactic polypropylene.

From this work it appears that syndiospecific propylene polymerization catalysts operate via the general mechanism illustrated in Figure 7. Since both sides of the metallocene wedge are enantiotopic for a C_s -symmetric metallocene, regular migratory insertions from opposite sides of the metallocene wedge are required for syndiospecificity via enantiomorphic site control. One of the cyclopentadienyl ligands must have steric bulk flanking the metallocene wedge; this provides an open region to accommodate a propylene methyl group for olefin coordination and insertion. An α -agostic interaction in the transition state for olefin insertion may help enforce a *trans* relationship between the propylene methyl substituent and the β -carbon of the polymer chain.


Figure 7: Essential features for formation of syndiotactic polypropylene. A RThp metallocene has been used for illustrative purposes.

While these doubly-silylene bridged zirconocenes produce highly syndiotactic poly(α -olefins) under high olefin pressure and low temperature conditions, polymerization under other conditions produces stereoerrors in the polymer microstructure. Examination of these errors reveals that site epimerization, polymer chain migration without insertion, is the predominant stereoerror forming mechanism (Scheme 1).⁸ Site epimerization disrupts regular migratory insertions from opposite sides of the metallocene wedge, and as a result syndiospecificity is lost.


Scheme 1: Site epimerization is the principle stereoerror mechanism for RThp zirconocenes.

In order to expand our understanding of the source of stereoerrors and mechanism of stereocontrol in syndiospecific α -olefin polymerization, we targeted a family of *C*_s-symmetric, *ansa*-group 3 metallocenes as polymerization catalysts (Figure 8). These target molecules are isoelectronic with cationic zirconocene catalysts. While group 3 metallocenes are typically less active polymerization catalysts than the analogous zirconocene cations, they have the advantage of being single component catalysts.

where M is Y or Sc and R is H or alkyl **Figure 8:** *C*_s-symmetric yttrocenes and scandocenes are desired as catalysts for Ziegler-Natta polymerization.

In contrast to cationic C_s -symmetric zirconocenes, theoretical studies predict that neutral C_s -symmetric yttrocene and scandocene complexes will not generate syndiotactic poly(α -olefins).⁹ Calculations indicate that a pendant alkyl substituent, such as a growing polymer chain, has an energetic preference to rest in a lateral position of the metallocene wedge for cationic group 4 metallocenes and rest in the central position of the wedge for neutral group 3 metallocenes (Figure 9). Isoelectronic compounds with the general formula X₂M-R were examined in this study (where X = Cl, (η^5 -C₅H₅); M = Sc, Ti+; R = H, CH₃, SiH₃).

Figure 9: Calculations predict that neutral scandocene and cationic titanocene alkyl complexes have different preferences for the location of the alkyl substituent in the metallocene wedge.

By extension, after each monomer insertion with a group 3 metallocene the growing polymer chain will relax to the central position of the metallocene wedge. The difference in transition state energies for olefin insertion may produce stereoregularity in the polymer microstructure if one transition state is energetically favored (Figure 10). Stereoregularity arising from a chain-end control mechanism contrasts our current understanding for generation of syndiotactic poly(α -olefins) with zirconocene catalysts, where regular alternation of monomer approach from different sides of the metallocene wedge yields syndiotactic polymer. These theoretical predictions provided further impetus for preparation of C_s -symmetric group 3 metallocenes to expand our understanding of stereocontrol in Ziegler-Natta polymerization.

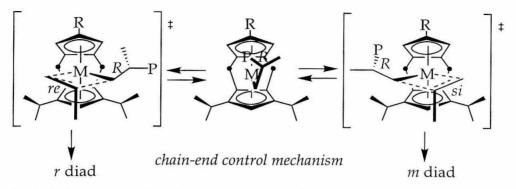
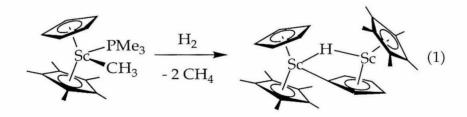
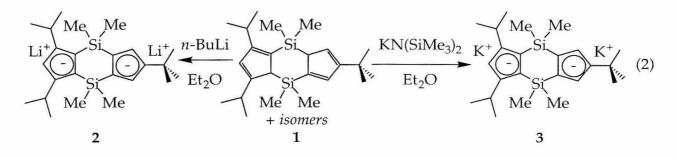
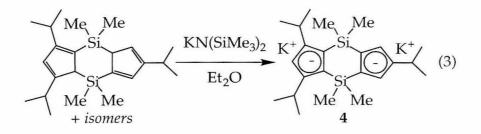



Figure 10: A chain-end control mechanism may operate for C_s-symmetric group 3 metallocenes.

Results and Discussion

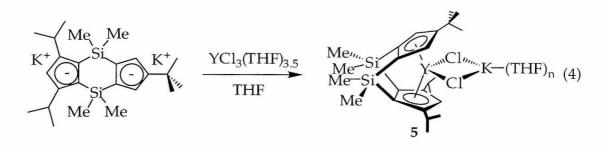

Preparation of yttrocene and scandocene RThp chloride complexes

The *tert*-butyl substituted Thp ligand, $[(1,2-SiMe_2)_2(4-CMe_3-C_5H_2)(3,5-(CHMe_2)_2-C_5H)]$ (tBuThp), was first targeted for the preparation of scandocene and yttrocene halide complexes. It was hoped that the bulky *tert*-butyl substituent would help prevent intermolecular C-H activation of the cyclopentadienyl ring by the electrophilic metal center, as has been observed previously (eq. 1).¹⁰



The most common synthetic route for the preparation of group 3 (Sc, Y, La) metallocenes is the reaction of deprotonated ligand salts with metal halides.¹¹ For this reason, the dilithio and dipotassio tBuThp ligand salts, Li₂[(1,2-SiMe₂)₂(4-CMe₃-C₅H₂)(3,5-(CHMe₂)₂-C₅H)] (**2**, Li₂tBuThp) and K₂[(1,2-SiMe₂)₂(4-CMe₃-C₅H₂)(3,5-(CHMe₂)₂-C₅H)] (**3**, K₂tBuThp), have been synthesized (eq. 2). The dilithio ligand salt was prepared by addition of 2.2 equivalents of *n*-BuLi to a 0°C

diethyl ether solution of 1; complex 2 was isolated as a white powder in high yield. Combination of 1 and 1.90 equivalents of $KN(SiMe_3)_2$ in diethyl ether at -78°C and slow warming to 25°C affords the dipotassio ligand salt, 3; this compound has been isolated as an off-white powder in high yield. Examination of THF-*d*₈ solutions of 2 and 3 by ¹H NMR spectroscopy reveals that variable amounts of diethyl ether may be present in these samples; this coordinated solvent is taken into account for calculation of molecular weight.



In a similar fashion, $K_2iPrThp \{K_2[(1,2-SiMe_2)_2(4-CHMe_2-C_5H_2)(3,5-(CHMe_2)_2-C_5H)], 4\}$ has been prepared by reaction of protio iPrThp with 1.90 equivalents of KN(SiMe_3)_2 (eq. 3). This ligand salt may be isolated as an off-white powder in high yield.

Metallation of **2** was attempted by addition of THF to a mixture of **2** and YCl₃(THF)_{3.5} at -78°C followed by slow warming to 25°C. Examination of the reaction product in THF-*d*₈ by ¹H NMR spectroscopy reveals that two C_s-symmetric compounds are present. A variety of products are possible, such as solvent adducts (L_nMCl(THF)_x), dimeric complexes ((L_nMCl)₂), or salt adducts (L_nM(μ -Cl)₂Li(THF)_x).¹¹ Selective crystallization of one component of the reaction mixture has not been achieved.

In contrast, the dipotassio ligand salt **3** may be metallated with YCl₃(THF)_{3.5} to provide one isolated yttrocene product. Combination of **3** and YCl₃(THF)_{3.5} and addition of THF at -78°C followed by slow warming to 25°C provides the salt adduct, $[(1,2-SiMe_2)_2(\eta^{5}-4-CMe_3-C_5H_2)(\eta^{5}-3,5-(CHMe_2)_2-C_5H)]Y(\mu-Cl)_2K(THF)_n$ (tBuThpY(μ -Cl)₂K(THF)_n, **5**), as the sole yttrocene product (eq. 4). Compound **5** has been analyzed by ¹H NMR spectroscopy in THF-*d*₈ and displays characteristic resonances for a *C*_s-symmetric, doubly-silylene bridged metallocene. Two cyclopentadienyl resonances are present (in a 2 : 1 ratio); two isopropyl methyl and two dimethylsilyl resonance are also observed. Variable amounts of protio THF are observed for different batches of **5** ($0 \le n \le 2$ equivalents); the amount of coordinated solvent may be quantified by comparison to integrations for ligand resonances.

The presence of potassium in **5** has been supported by addition of 18crown-6 to a THF- d_8 solution of **5**. This crown ether is known for its ability to solubilize cationic potassium. In the presence of 18-crown-6, the ¹H NMR resonances of **5** are shifted, suggesting coordination of potassium.

The structural assignment of **5** has been confirmed by X-ray crystallography. Diffusion of pentane into a diethyl ether/tetrahydrofuran solution of **5** with slow cooling to -20°C affords colorless crystals that are suitable for X-ray diffraction, as illustrated in Figure 11. This structure is monoclinic and fits the $P2_1/n$ space group. The ligand exhibits η^5, η^5 cyclopentadienyl coordination with yttrium-cyclopentadienyl distances that are typical of RThp metallocenes.¹² The potassium atom coordinates two molecules of THF, two bridging chlorides, and also displays η^3 -coordination to a *t*-butyl substituted cyclopentadienyl ring of another molecule in the unit cell. The THF molecules have been modeled isotropically but their disorder appears to have little effect

on the remainder of the structure. Select bond distances and angles are given in Table 1.

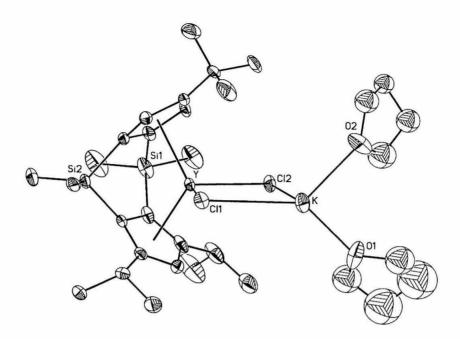
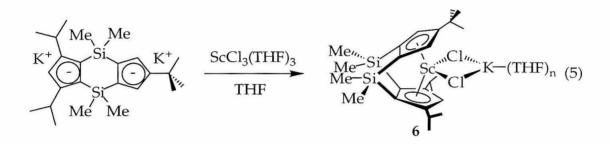



Figure 11: Molecular structure of 5 with selected atoms labeled (50% probability ellipsoids).

Group 3 metallocene potassium chloride adducts are more rare than lithium chloride adducts.¹¹ For example, prior work in our group suggested that use of dipotassio ligand salts, such as K₂[(1-SiMe₂)(2-SiMe₃-4-CMe₃-C₅H₂)₂] (K₂Bp), may prevent formation a salt adduct upon metallation with YCl₃(THF)_{3.5}.¹³ Formation of a yttrocene potassium chloride adduct has been implicated previously, e.g., (η^{5} -C₅Me₅)₂Y(μ -Cl)₂K(THF)₂, but an X-ray crystal structure is not available.¹⁴ The analogous cerium compound, (η^{5} -C₅Me₅)₂Ce(μ -Cl)₂K(THF)₂, has been analyzed by X-ray diffraction; in this structure each potassium atom coordinates four chlorides and one THF molecule.¹⁵

Similar experiments were examined for preparation of tBuThp scandocene chloride complexes. Combination of ScCl₃(THF)₃ and the dilithio ligand salt **2** provides a mixture of products, as evidenced by ¹H NMR spectroscopy. Attempts to selectively crystallize one component of the reaction mixture have not been successful to date.

The dipotassio ligand salt **3** may be employed for metallation with ScCl₃(THF)₃ to provide a single isolated scandocene product. Combination of **3** and ScCl₃(THF)₃ and addition of THF at -78°C followed by slow warming to 25°C provides the salt adduct, [(1,2-SiMe₂)₂(η ⁵-4-CMe₃-C₅H₂)(η ⁵-3,5-(CHMe₂)₂-C₅H)]Sc(μ -Cl)₂K(THF)_n (tBuThpSc(μ -Cl)₂K(THF)_n, **6**) (eq. 5). Analysis of **6** by ¹H NMR spectroscopy in THF-*d*₈ reveals characteristic resonances for a *C*_s-symmetric, doubly-silylene bridged metallocene. Variable amounts of protio THF are observed for different batches of **6** (0 ≤ n ≤ 2 equivalents) and the amount of solvent may be quantified by comparison to integrations for ligand resonances. Addition of 18-crown-6 to a THF-*d*₈ solution of **6** causes the ¹H NMR resonances to shift, thus supporting the presence of potassium in **6**.

Compound **6** has been analyzed by X-ray crystallography. Diffusion of petroleum ether into a diethyl ether solution of **6** with slow cooling to -20°C affords colorless crystals that are suitable for X-ray diffraction, as illustrated in Figure 12. This structure is triclinic and fits the P_{-1} space group. Standard η^5, η^5 cyclopentadienyl coordination for RThp metallocenes is observed. The conditions for crystal growth appear to displace the coordinated THF (observed by ¹H NMR spectroscopy) with two coordinated diethyl ether molecules. The potassium atom coordinates two molecules of Et₂O and three bridging chlorides; one of these chlorides is from another molecule in the unit cell. The diethyl ether molecules are disordered, but their disorder appears to have little effect on the remainder of the structure. Select bond distances and angles are given in Table 1.

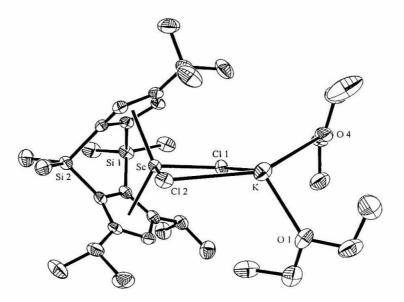
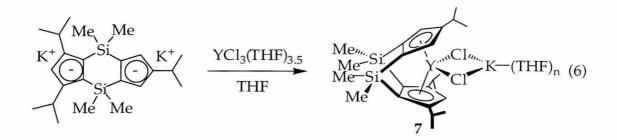
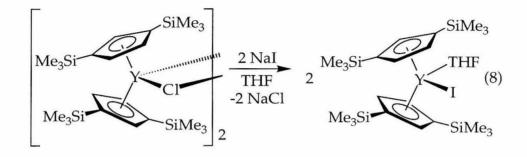



Figure 12: Molecular structure of $6 \cdot Et_2O$ with selected atoms labeled (50% probability ellipsoids).

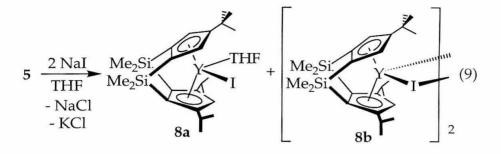
select bond distances (Å)	tBuThpY(µ-Cl) ₂ K(THF) ₂	tBuThpSc(µ-Cl) ₂ K(Et ₂ O) ₂
and bond angles (°)		
М-СрА	2.403	2.351(8)
М-СрВ	2.391	2.2830(9)
M-Cl1	2.587(2)	2.4488(10)
M-Cl2	2.579(2)	2.5070(13)
СрА-М-СрВ	115.0	122.71(3)
PlnA-PlnB	80.7(3)	66.74(10)
Cl1-M-Cl2	95.7(1)	94.52(4)

An isopropyl functionalized Thp yttrocene chloride complex has been prepared by combination of the dipotassio ligand salt, K₂iPrThp {K₂[(1,2-SiMe₂)₂(4-CHMe₂-C₅H₂)(3,5-(CHMe₂)₂-C₅H)], 4} with YCl₃(THF)_{3.5} in THF. After two days of reaction at 25°C, the desired yttrocene chloride complex may be isolated (eq. 6). Characterization by ¹H NMR spectroscopy in THF-*d*₈ solvent reveals that the complex has C_s -symmetry and that a non-stoichiometric amount of protio THF is present. The amount of coordinated protio THF may be quantified by comparison to integrations of ligand resonances. This compound appears to be the potassium chloride adduct, $[(1,2-SiMe_2)_2(\eta^{5}-4-CHMe_2-C_5H_2)(\eta^{5}-3,5-(CHMe_2)_2-C_5H)]Y(\mu-Cl)_2K(THF)_n$ (iPrThpY(μ -Cl)₂K(THF)_n, 7).

Protio THF may be removed from yttrocenes 5 and 7 via a modified Soxhlet extraction, as described in the experimental section. Analysis of the products by ¹H NMR spectroscopy reveals that all protio solvent is absent following this procedure.

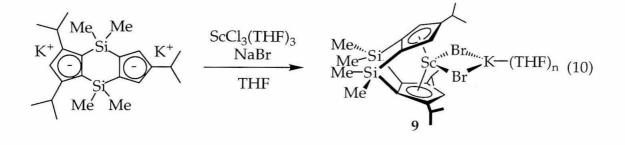

Metallation of K_2 iPrThp with ScCl₃(THF)₃ in THF does not provide the corresponding scandocene chloride under reaction conditions analogous to those for the preparation of **6**. As a result, a related scandocene bromide complex has been synthesized (*vide infra*).

Isolation of an unsubstituted Thp scandocene halide complex has not been achieved to date. Reaction of $K_2[(1,2-SiMe_2)_2(C_5H_3)(3,5-(CHMe_2)_2-C_5H)]$ (K₂Thp) with ScCl₃(THF)₃ in THF-*d*₈ at 87°C provides a mixture of products and decomposition, as evidenced by ¹H NMR spectroscopy (eq. 7). Addition of excess NaI or NaBr to the reaction mixture also leads to decomposition. It is likely that intermolecular C-H activation of the unsubstituted cyclopentadienyl ring by scandium forms undesired products (e.g., eq. 1).


$$\begin{array}{c|c} & Me & Me \\ K^{+} & Si & K^{+} \\ & & \\$$

Preparation of yttrocene and scandocene RThp iodide and bromide complexes

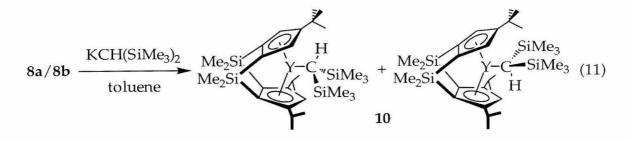
While yttrocene and scandocene chloride complexes tend to be synthesized most frequently, analogous bromide and iodide complexes have been reported.¹¹ In some cases, bromide and iodide complexes may be prepared by chemical modification of known chloride complexes. For example, $[(\eta^{5}-1,3-SiMe_{3}-C_{5}H_{3})_{2}]YI(THF)$ has been synthesized by addition of 2 equivalents of NaI to $\{[(\eta^{5}-1,3-SiMe_{3}-C_{5}H_{3})_{2}]YCl\}_{2}$ in THF (eq. 8).¹⁶ Alternatively, deprotonated ligand salt (e.g., Li₂tBuThp), MCl₃(THF)₃ (where M = Y, Sc) and excess NaX (where X = Br, I) may be combined in one pot to yield the desired metallocene bromide or iodide complex.


Addition of THF to a mixture of tBuThpY(μ -Cl)₂K(THF)_n and 2 equivalents of NaI results in halide exchange after two days of stirring at 25°C (eq. 9). Analysis by ¹H NMR spectroscopy in THF-*d*₈ solvent reveals a 1 : 1 mixture of a *C*₁-symmetric product and a *C*_s-symmetric product. The presence of approximately 1 equivalent of protio THF suggests that the *C*₁-symmetric product is an iodo-THF complex, [(1,2-SiMe₂)₂(η ⁵-4-CMe₃-C₅H₂)(η ⁵-3,5-(CHMe₂)₂-C₅H)]YI(THF) (tBuThpYI(THF), **8a**). The *C*_s-symmetric product may be assigned as a dimeric yttrocene iodide complex with bridging iodide ligands, {[(1,2-SiMe₂)₂(η ⁵-4-CMe₃-C₅H₂)(η ⁵-3,5-(CHMe₂)₂-C₅H)]Y(μ -I)}₂ {[tBuThpY(μ -I)]₂, **8b**}.

Other methods for preparation of tBuThp yttrocene iodide complexes are not as efficient as the procedure described in eq. 9. Heating a mixture of tBuThpY(μ -Cl)₂K(THF)_n and NaI in THF to 87°C induces some decomposition; similar results are obtained if dioxane- d_8 is used as a solvent. Combination of K₂tBuThp, YCl₃(THF)_{3.5}, and excess NaI in THF- d_8 also provides some decomposition. Analogous reactions with NaBr as a halide source do not produce yttrocene bromide products.

Further experimentation suggests that halide interconversion is highly dependent on the ligand and metal identity. Scandocene bromide or iodide complexes that employ the tBuThp ligand array cannot be isolated through the procedures described above. Addition of NaX to tBuThpSc(μ -Cl)₂K(THF)_n in THF or combination of K₂tBuThp, ScCl₃(THF)₃, and excess NaX in THF-*d*₈ does not yield the desired halide complexes. Boron triiodide is also ineffective for conversion of tBuThpSc(μ -Cl)₂K(THF)_n to the corresponding iodide complex.

Curiously, reaction of K₂iPrThp, ScCl₃(THF)₃, and excess NaBr in refluxing THF for four hours allows isolation of a scandocene bromide complex as an off-white powder (eq. 10). Analysis of the reaction product by ¹H NMR spectroscopy in THF-*d*₈ reveals *C*_s-symmetry of the product and the presence of protio THF. This is consistent with formation of a potassium bromide adduct, $[(1,2-SiMe_2)_2(\eta^{5}-4-CHMe_2-C_5H_2)(\eta^{5}-3,5-(CHMe_2)_2-C_5H)]Sc(\mu-Br)_2K(THF)_n$ (iPrThpSc(μ -Br)₂K(THF)_n, **9**).



Preparation of yttrocene alkyl and hydride complexes

Alkyl substituents with significant steric bulk, such as bis(trimethylsilyl)methyl, are commonly used for the preparation of monomeric yttrocene and scandocene alkyls.¹¹ The significant steric bulk prevents formation of dimeric alkyls which tend to be less reactive towards dihydrogen or α -olefins. The lack of β hydrogens prevents decomposition of the alkyl complex via a β -hydrogen elimination pathway.

Addition of either LiCH(SiMe₃)₂ or KCH(SiMe₃)₂ to tBuThpY(μ -Cl)₂K(THF)_n in toluene-*d*₈ provides decomposition, as evidenced by ¹H NMR spectroscopy. Slow addition of a toluene solution of LiCH(SiMe₃)₂ to a toluene solution of tBuThpY(μ -Cl)₂K(THF)_n at -78°C, followed by slow warming to 25°C, also provides extensive decomposition.

In contrast, combination of tBuThpYI(THF)/[tBuThpY(μ -I)]₂ (8a/8b) and KCH(SiMe₃)₂, addition of toluene at -78°C, and slow warming to 25°C affords the desired monomeric alkyl complex, [(1,2-SiMe₂)₂(η ⁵-4-CMe₃-C₅H₂)(η ⁵-3,5-(CHMe₂)₂-C₅H)]YCH(SiMe₃)₂ (tBuThpYCH(TMS)₂, **10**) (eq. 11). The product is isolated as an off-white powder by recrystallization from cold pentane.

Compound **10** has been analyzed by ¹H and ¹³C NMR spectroscopy in both benzene- d_6 and toluene- d_8 solvent. Two C_s -symmetric species are evident. Variable temperature ¹H NMR spectroscopy from 196 to 356 K reveals that these two species are maintained in this temperature range. Two energetically preferred rotamers of the bis(trimethylsilyl)methyl substituent may be used to rationalize this observation, as illustrated in equation 11. This implies hindered rotation about the Y-C sigma bond.

This phenomena has been observed for other singly-linked yttrocenes, such as $[Me_2Si(\eta^5-C_5Me_4)_2]YCH(SiMe_3)_2$ $[OpYCH(TMS)_2]^{17}$ and $[Me_2Si(\eta^5-C_5Me_4)(\eta^5-C_5H_4)]YCH(SiMe_3)_2$.¹⁸ For example, examination of OpYCH(TMS)_2 by ¹H NMR spectroscopy reveals a single resonance for all six Si-CH₃ groups of the CH(SiMe_3)_2 ligand and two sets of ($\eta^5-C_5Me_4$) resonances at 25°C (300 MHz, benzene- d_6). Again this signifies hindered rotation about the Y-C sigma bond.

Colorless six-sided plates suitable for X-ray diffraction were precipitated from a toluene- d_8 solution of **10**. This compound crystallized in the $P2_1/n$ space group and its molecular structure appears in Figure 13. Atoms C25 and C26 exhibited some disorder during refinement. In fact C25 exists in two distinct conformations, with its attached hydrogen either up or down with respect to the metallocene wedge. The relative populations of C25A and C25B are 0.719(11) and 0.281(11), respectively. This contributes to the disorder of C26; it was most effectively modeled as a single anisotropic atom. The partial atom, C25A, was refined isotropically and is included in Figure 13.

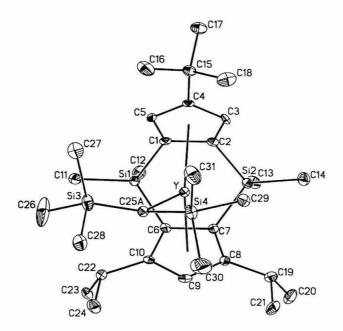
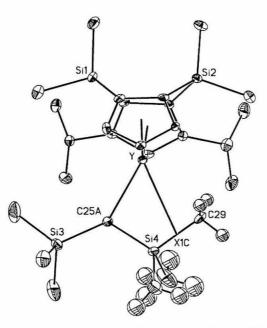



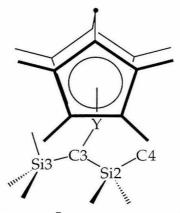
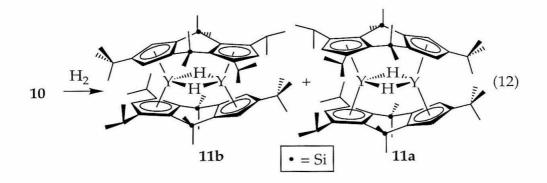
Figure 13: Molecular structure of 10 with selected atoms labeled (50% probability ellipsoids). Hydrogens omitted for clarity.

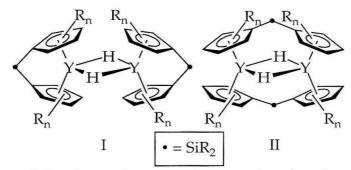
The bonding of the bis(trimethylsilyl)methyl group in **10** is notable (Figure 14). There appears to be an interaction between the yttrium atom and a silicon carbon bond (Si4-C29). C25A seems to be shifted to the side of the metallocene wedge to facilitate this interaction. Select bond angles and bond distances for **10** are given in Table 2.

Figure 14: Molecular structure of **10** with selected atoms labeled (50% probability ellipsoids). Select hydrogens omitted for clarity.

select bond distances (Å) and bond angles (°)	tBuThpYCH(TMS) ₂	OpYCH(TMS) ₂
Ү-СрА	2.394	2.377
Ү-СрВ	2.386	2.377
Y-X1C	2.806	_
Y-C25A/Y-C3	2.437(4)	2.418(7)
YC29/YC4	2.751(4)	2.816(7)
Si3-C25A-Si4/Si3-C3-Si2	118.5(2)	122.8(3)
СрА-Ү-СрВ	116.1	124.3
PlnA-PlnB	80.7(1)	<u> </u>

Table 2: Select bond distances and bond angles for tBuThpYCH(TMS)₂ and OpYCH(TMS)₂. The centroid of Si4 and C29 is assigned as X1C.


Figure 15: Select atom labels for [Me₂Si(η⁵-C₅Me₄)₂]YCH(SiMe₃)₂ [OpYCH(TMS)₂].¹⁷

Related singly-linked bis(trimethylsilyl)methyl complex $[Me_2Si(\eta^{5}-C_5Me_4)_2]YCH(SiMe_3)_2$ $[OpYCH(TMS)_2]^{17}$ (Figure 15) and the lutetium analog of $[Me_2Si(\eta^5-C_5Me_4)(\eta^5-C_5H_4)]YCH(SiMe_3)_2^{18}$ have been analyzed by X-ray diffraction. Both complexes display a bridging M-(CH₃)-Si interaction (where M = Y, Lu). This type of three center, two electron bridging interaction has been studied by Schaverien for other metallocenes.¹⁹

Hydrogenation of **10** in benzene- d_6 solvent induces liberation of bis(trimethylsilyl)methane and generation of a mixture of two dimeric hydride complexes, as evidenced by ¹H NMR spectroscopy (eq. 12). The bridging yttrium hydrides of **11a** and **11b** resonate as 1 : 2 : 1 triplets at 2.78 and 2.51 ppm with ¹J_{Y-H} values of 32.7 and 31.6 Hz, respectively. Each bridging hydride is coupled to two equivalent ⁸⁹Y nuclei (I = 1/2; 100% natural abundance) producing this characteristic splitting pattern.

Dimeric ansa-yttrocene hydride complexes of two types have been reported in the literature (Figure 16). Type I is more common that type II; the latter is often referred to as a "flyover" dimer.¹¹ Marks has described the preparation of $[Et_2Si(\eta^5-C_5Me_4)(\eta^5-C_5H_4)YH]_2$ and suggests that it is a type II dimer.¹⁸ The analogous lutetium complex, Lu{ μ -[Et₂Si(η^{5} -C₅Me₄)(η^{5} -C₅H₄)]₂(μ -H)₂}Lu has been characterized by X-ray diffraction and possesses a type II coordination environment.¹⁸ Conversion of the type I complex, [Me₂Si(η⁵- $C_5Me_4)_2YH]_2$, to the type II complex, $Y{\mu_2-[Me_2Si(\eta^5-C_5Me_4)(\eta^5-C_5Me_4)]_2(\mu_2-Me_4)(\eta^5-C_5Me_4)]_2(\mu_2-Me_4)(\eta^5-C_5Me_5)(\eta^5-C_5Me_5)(\eta^5-C_5Me_5)(\eta^5-C_5Me_5)(\eta^5-C_5Me_5)(\eta^5-C_5Me_5$ H)₂}Y through a "facile ligand redistribution" has been reported.¹⁷ Our group has also reported type I compounds that do not generate the corresponding type II compounds over time, such as meso and rac-[Me₂Si(n⁵-2-SiMe₃-4-Ad- $C_{5}H_{2}Y(\mu-H)_{2} ([AbpYH]_{2})^{20} [Me_{2}Si(\eta^{5}-2-SiMe_{3}-4-CMe_{3}-C_{5}H_{2})_{2}Y(\mu-H)]_{2}$ $([BpYH]_2)$ ²¹ and homo- and heterochiral $[(OC_{10}H_6C_{10}H_6O)Si(\eta^5-2-SiMe_3-4-$ CMe₃-C₅H₂)₂Y(µ-H)]₂ ([BnBpYH]₂).²² Proton NMR chemical shifts and ¹*J*_{Y-H} coupling constants for these yttrocene hydrides are listed in Table 3. Bridging hydride ligands of both Type I and Type II complexes appear as 1:2:1 triplets due to coupling to two equivalent ⁸⁹Y nuclei.

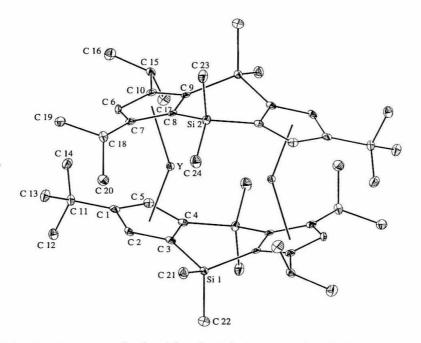


Figure 16: Two types of dimeric *ansa*-yttrocene hydride complexes have been observed previously.

compound	type	¹ H: δ (Y-H)	$^{1}J_{\text{Y-H}}$	reference
$[Et_2Si(\eta^5\text{-}C_5Me_4)(\eta^5\text{-}C_5H_4)YH]_2$	II	3.03	35.3	18
$[Me_2Si(\eta^5-C_5Me_4)_2YH]_2$	Ι	5.286	33.3	17
$[\mathrm{Me_2Si}(\eta^5\text{-}\mathrm{C_5Me_4})_2\mathrm{YH}]_2$	II	3.867	34.4	17
11a	II?	2.78	32.7	*
11b	II	2.51	31.6	*
[meso-AbpYH]2	Ι	4.65	31.1	20
[rac-AbpYH]2	Ι	4.76	31.3	20
[BpYH] ₂	Ι	4.87	31	21
homochiral [BnBpYH] ₂	Ι	4.98	31.4	22
heterochiral [BnBpYH] ₂	Ι	5.97	31.4	22

Table 3: Select bond distances and bond angles for dimeric yttrocene hydride complexes. * denotes data from this work.

Key structural information has been obtained from X-ray diffraction studies. X-ray quality crystals of **11b** were deposited from a benzene- d_6 solution of **11a** and **11b**. The space group for these colorless square column crystals is $P2_1/c$. The molecule sits on a center of symmetry, so the unique bridging hydride was located by Direct methods. The yttrium hydride distance is 2.11(2) Å. Notably, **11b** possesses a Type II, "flyover" dimeric structure where each tBuThp ligand array spans two yttrium atoms (Figure 17). The yttrium centroid distances are 2.2775(13) and 2.3594(15) Å, respectively, and the centroid-yttriumcentroid angle for a single tBuThp ligand is 146.24(3)°.

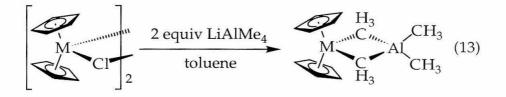
Figure 17: Molecular structure of **11b** with selected atoms labeled (50% probability ellipsoids). Hydrogens omitted for clarity.

Dissolution of crystals of **11b** in toluene-*d*⁸ and examination by ¹H NMR spectroscopy reveals that this "flyover" structure corresponds to the upfield hydride resonance at 2.51 ppm. Further NMR experiments have been directed at determining the structural identity of **11a**. Comparison of the bridging hydride ¹H chemical shifts listed in Table 3 suggests that **11a** may be a Type II, "flyover" dimer; Type I dimers tend to have more downfield chemical shifts for their hydrides. However, since **11a** incorporates a doubly-silylene bridged ligand comparison to singly-silylene bridged yttrocenes may not be valid. Additional structural evidence for both yttrocene hydride complexes has been obtained by NOE difference NMR spectroscopy. These studies provided additional support for the "flyover" nature of both **11a** and **11b**.

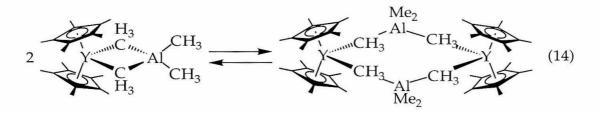
The relative amounts of **11a** and **11b** formed during the course of hydrogenation (eq. 12) and subsequent equilibration of these dimers has been monitored by ¹H NMR spectroscopy. In related experiments other reagents have been added, such as dideuterium, trimethylphosphine, tetrahydrofuran, and α -olefins, to examine the effect on equilibration of **11a** and **11b**.

Hydrogenation of tBuThpYCH(TMS)₂ has been examined by variable temperature NMR spectroscopy. Both yttrocene hydride compounds appear in approximately a 50 : 50 ratio after 1 hour at 0°C. Over the course of 4 hours at this temperature, these compounds grow in intensity but maintain the same relative ratio. The yttrocene alkyl starting material is still present at this point. Upon warming the sample to 25°C for 1 week, an equilibrium ratio of yttrocene hydride compounds is reached (38 : 62 ratio, **11a** : **11b**). When excess dihydrogen is removed, the product ratio remains the same. These results provide further support for a "flyover" structure of both **11a** and **11b**.

Addition of dideuterium to an equilibrium mixture of **11a** and **11b** (38 : 62 ratio) results in approximately 65% deuterium incorporation over the course of 48 hours, as evidenced by ¹H NMR spectroscopy. Removal of dideuterium and addition of dihydrogen provides complete restoration of the bridging hydride resonances.

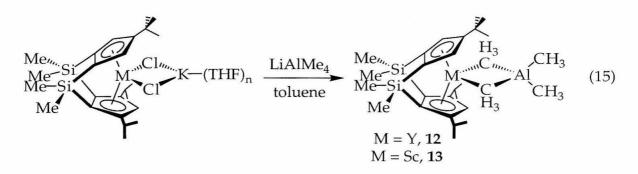

When 22 equivalents of ethylene is added to a benzene- d_6 solution of **11a** and **11b** (38 : 62 ratio), olefin is not consumed over the course of 12 hours at 25°C. The relative amount of **11b** increases upon ethylene addition, suggesting an associative pathway for the interconversion of **11a** and **11b**. Ethylene does not appear to react with these complexes since their ¹H NMR resonances are not altered in the presence of ethylene. Similar behavior is observed upon addition of excess PMe₃ or THF to **11a** and **11b** (38 : 62 ratio) in toluene- d_8 solvent; these reagents promote formation of **11b**. Upon removal of PMe₃ or THF the altered **11a** : **11b** ratio is maintained with no observed chemical modification of either compound.

Heating a benzene- d_6 solution of **11a** and **11b** to 87°C also promotes equilibration of these compounds to generate increased amounts of **11b**. Since each yttrium of **11a** and **11b** has sixteen valence electrons, it is unclear why addition of σ -donor ligands such as PMe₃ and THF promotes this equilibration.


Synthesis of tetramethylaluminate complexes

Unlinked group 3 metallocene tetramethylaluminate complexes of the form $(\eta^{5}-C_{5}H_{5})_{2}M(\mu-CH_{3})_{2}Al(CH_{3})_{2}$ (Cp₂MMe₂AlMe₂, where M = Y, Sc²³) and

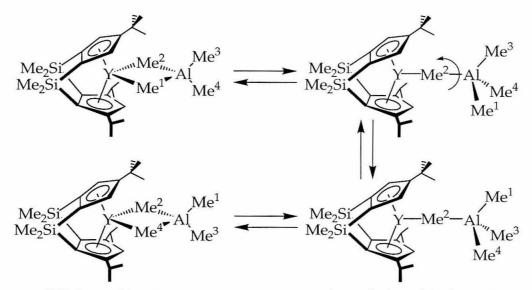
 $(\eta^{5}-C_{5}Me_{5})_{2}M(\mu-CH_{3})_{2}Al(CH_{3})_{2}$ (Cp*₂MMe₂AlMe₂, where M = Sm,²⁴ Yb, Y^{25,26}) have been reported previously. The unsubstituted complexes, Cp₂MMe₂AlMe₂ (where M = Y, Sc), are prepared by reaction of [Cp₂MCl]₂ and LiAlMe₄ in toluene (eq. 13). The monomeric yttrocene tetramethylaluminate complex, Cp₂YMe₂AlMe₂, has been analyzed by X-ray diffraction.^{23a} The ¹H NMR resonances for bridging and terminal methyl substituents are diagnostic for tetramethylaluminate complexes. For the yttrocene compound, spectra acquired at -40°C reveal distinct bridging and terminal methyl resonances and at 40°C a single broad resonance is present for all methyl substituents. In contrast, the scandocene compound is static at 25°C, and distinct bridging and terminal methyl resonances are observed.



Use of the more sterically hindered bis-pentamethylcyclopentadienyl ligand array leads to formation of mixtures of monomeric and dimeric tetramethylaluminates. For example, Watson has described an equilibrium between monomeric Cp*₂YMe₂AlMe₂ and dimeric (Cp*₂YMe₂AlMe₂)₂, as illustrated in equation 14.^{25c} Reaction of Cp*₂YMe₂Li with AlMe₃ affords these products. Teuben has also reported the preparation of these complexes via reaction of Cp*₂YCl•THF and LiAlMe₄ in toluene.²⁶ At 20°C the monomer is dominant in solution; the monomer to dimer ratio is 4 : 1. Watson has characterized this dimeric yttrocene by X-ray crystallography.

Lithium tetramethylaluminate has been utilized for conversion of the chloride complexes, **5** and **6**, to the corresponding tetramethylaluminate complexes. Combination of either **5** or **6** with LiAlMe₄ in toluene results in

alkylation; removal of toluene and extraction with pentane allows isolation of $[(1,2-SiMe_2)_2(\eta^{5}-4-CMe_3-C_5H_2)(\eta^{5}-3,5-(CHMe_2)_2-C_5H)]M(\mu-CH_3)_2Al(CH_3)_2$ (tBuThpMMe_2AlMe_2, where M = Y, **12**; where M = Sc, **13**) (eq. 15). Both **12** and **13** may be purified via recrystallization from pentane followed by addition of benzene and lyophilization.

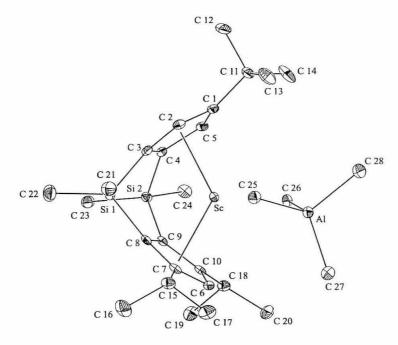


These tetramethylaluminate complexes have been analyzed by ¹H and ¹³C NMR spectroscopy. Due to the C_s -symmetry of these compounds, the bridging methyl substituents are chemically equivalent and the terminal methyl substituents are distinct. These methyl resonances are listed in Table 4 along with comparisons to previously reported tetramethylaluminate data.

compound	bridging Me	terminal Me	solvent	temp.	ref.
tBuThpYMe2AlMe2	-0.32	-0.33, -0.41	benzene- d_6	25°C	*
tBuThpScMe2AlMe2	-0.35	-0.23, -0.38	benzene- d_6	25°C	*
Cp ₂ YMe ₂ AlMe ₂	-0.2	-0.09	toluene-d ₈	-45°C	23
Cp ₂ YMe ₂ AlMe ₂	-0.32	-0.98	CD_2Cl_2	-45°C	23
Cp ₂ ScMe ₂ AlMe ₂	-0.29	-0.84	CD_2Cl_2	25°C	23
Cp* ₂ SmMe ₂ AlMe ₂	-17.6	1.63	benzene- d_6	25°C	24
[Cp*2SmMe2AlMe2]2	-14.3	-2.26	benzene- d_6	25°C	24
Cp*2YMe2AlMe2	-0.61	-0.47	toluene-d ₈	20°C	26
[Cp*2YMe2AlMe2]2	-1.08	-0.29	toluene-d8	20°C	26
Cp*2YMe2AlMe2	-0.506	-0.218	toluene- <i>d</i> 8	-40°C	25
[Cp*2YMe2AlMe2]2	-0.982	-0.038	toluene-d ₈	-40°C	25

Table 4: ¹H NMR resonances for bridging and terminal methyl substituents of select metallocene tetramethyaluminate complexes. Both monomeric and dimeric complexes are tabulated where appropriate. * denotes data from this work.

As previously noted, metallocene tetramethylaluminate complexes may exist in monomeric or dimeric form. To probe the molecularity of **12** and **13** variable temperature ¹H NMR spectroscopy was used for characterization. NMR spectra were acquired in a temperature range from 200 to 340 K; no evidence was obtained for a monomer-dimer equilibrium in either case. For yttrocene **12**, the three chemically distinct methyl resonances coalesce at -0.45 ppm at 338 K. This has also been observed for Cp₂YMe₂AlMe₂.^{23c} Coalescence of bridging and terminal methyl resonances may be attributed to dissociation of a bridging methyl substituent, rotation about the remaining yttrium-methyl bond, and recoordination of an aluminum bound methyl substituent. This sequence for equilibration of methyl substituents is illustrated in Scheme 2.



Scheme 2: Bridging and terminal methyl substituents may be equivalenced by this series of equilibrium reactions.

In contrast, scandocene **13** displays three methyl resonances that remain distinct throughout the temperature range examined. Equilibration of bridging and terminal methyl resonances is not observed on the NMR time scale.

Further evidence for the monomeric nature of **13** has been obtained by X-ray crystallography. Slow cooling of a solution of **13** afforded colorless crystals that were suitable for X-ray diffraction, as illustrated in Figure 18. The space group is $P\overline{1}$. The aluminum displays a nearly tetrahedral arrangement of methyl substituents. The *tert*-butyl substituent appears to exert a small steric influence

on the coordination environment of aluminum; the aluminum is found 0.1 Å below the plane formed by scandium and the bridging carbon atoms (C25 and C26). Select bond distances and bond angles are given in Table 5.

Figure 18: Molecular structure of **13** with selected atoms labeled (50% probability ellipsoids). Hydrogen atoms are omitted for clarity.

select bond distances (Å) and bond angles (°)	tBuThpSc(µ-Me)2AlMe2	Cp ₂ Y(µ-Me) ₂ AlMe ₂
М-СрА	2.239(1)	2.62(2) (average)
М-СрВ	2.233(1)	2.62(2) (average)
M-C25/M-C1	2.442(2)	2.57(2)
M-C26/M-C2	2.414(2)	2.60(2)
C25-M-C26/C1-M-C2	88.48(8)	85(1)
C25-Al-C26/C1-Al-C2	108.73(9)	112(1)
C27-Al-C28/C3-Al-C4	113.13(10)	111(1)
СрА-М-СрВ	123.53(3)	—
PlnA-PlnB	75.68(7)	

 $\label{eq:Table 5: Select bond distances and bond angles for monomeric tetramethylaluminates tBuThpSc(\mu-Me)_2AlMe_2 and Cp_2Y(\mu-Me)_2AlMe_2.^{23b}$

Hydrogen atoms H25C and H26C are 2.21(2) and 2.19(2) Å from scandium, respectively, suggesting bonding interactions (see Figure 19). These agostic C-H interactions have been observed in other metallocenes⁷ but have not been noted for tetramethylaluminate complexes to date.

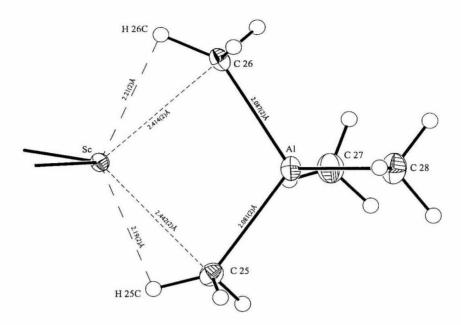
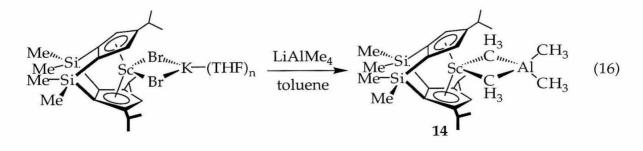
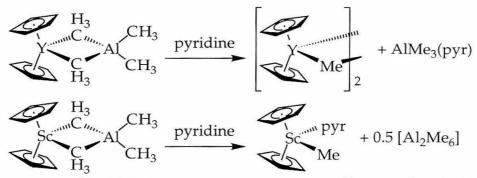
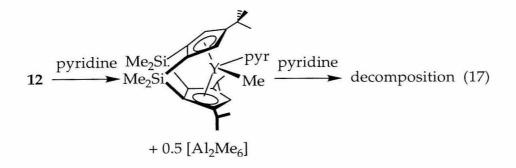




Figure 19: Molecular structure of 13 with selected atoms labeled (50% probability ellipsoids).

The analogous iPrThp scandium tetramethylaluminate complex may be prepared from combination of the scandocene bromide precursor, iPrThpSc(μ -Br)₂K(THF)_n, with LiAlMe₄ in toluene (eq. 16). Removal of toluene and extraction with pentane allows isolation of [(1,2-SiMe₂)₂(η ⁵-4-CHMe₂-C₅H₂)(η ⁵-3,5-(CHMe₂)₂-C₅H)]Sc(μ -CH₃)₂Al(CH₃)₂ (iPrThpScMe₂AlMe₂, 14). Like 12 and 13, complex 14 may be purified via recrystallization from pentane followed by addition of benzene and lyophilization.



Addition of pyridine to Cp₂MMe₂AlMe₂ (where M = Y, Sc) has been reported previously.²⁷ When 1 equivalent of pyridine (pyr) is added to Cp₂YMe₂AlMe₂, it coordinates AlMe₃, and a dimeric yttrocene methyl compound is formed. In contrast, 1 equivalent of pyridine coordinates the scandium of Cp₂ScMe₂AlMe₂ yielding a scandocene methyl-pyridine complex and 0.5 equivalents of [Al₂Me₆] (Figure 20). Similarly, addition of THF to Cp₂ScMe₂AlMe₂ affords the corresponding methyl-THF compound. Removal of pyridine from Cp₂ScMe(pyr) *in vacuo* provides an unidentified product.

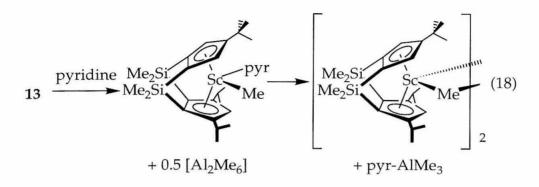
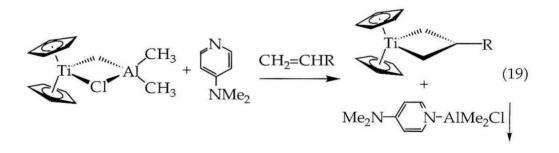


Figure 20: Reaction of Cp₂MMe₂AlMe₂ with pyridine provides different products for M = Y versus M = Sc.

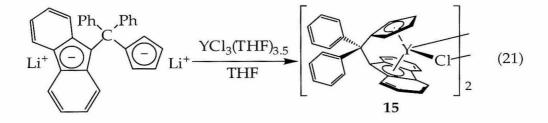

Addition of 1 equivalent of pyridine to tBuThpYMe₂AlMe₂ in benzene- d_6 provides approximately 66% conversion to a C_1 -symmetric species, as evidenced by ¹H NMR spectroscopy. The ligand and pyridine resonances are consistent with formation of a methyl-pyridine compound, as illustrated in eq. 17. When additional pyridine is added to drive this reaction to completion, decomposition occurs.

When 1 equivalent of pyridine is added to $tBuThpScMe_2AlMe_2$ in benzene- d_6 , a C_1 -symmetric species forms initially and a C_s -symmetric species grows in over the course of 24 hours. Analysis by ¹H NMR spectroscopy reveals that the initial product may be a methyl-pyridine adduct and the second product a dimeric methyl complex (eq. 18).

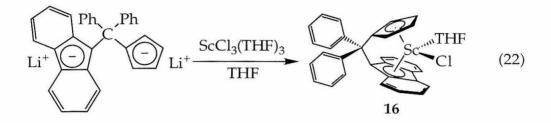
Strauss and Grubbs have utilized 4-dimethylaminopyridine (DMAP) as a stoichiometric trap for AlMe₂Cl.²⁸ The insolubility of DMAP-AlMe₂Cl in pentane was designed as a driving force for the reaction described in equation 19.

Addition of approximately 1 equivalent of DMAP to $tBuThpYMe_2AlMe_2$ in benzene- d_6 solution provides a mixture of products, as evidenced by ¹H NMR spectroscopy. At least one C_1 - and one C_s - symmetric product are present. Notably, all of the starting yttrocene was consumed. However, when this reaction was attempted on a preparative scale, extensive decomposition occurred.

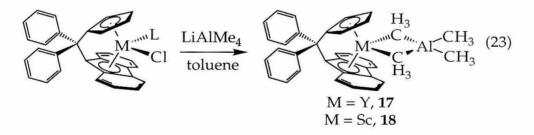
The reactivity of the yttrocene and scandocene products described in eq. 17 and eq. 18 towards propylene has been examined. Addition of 1 equivalent of pyridine and 10 equivalents of propylene to tBuThpMMe₂AlMe₂ (where M = Y,


Sc) in benzene- d_6 , does not lead to olefin consumption, as evidenced by ¹H NMR spectroscopy (eq. 20). Over the course of three days at 25°C, negligible propylene is consumed and additional metallocene products are formed that were not observed in the propylene-free reactions. Addition of stoichiometric pyridine does not enhance the reactivity of tBuThpMMe₂AlMe₂ (where M = Y, Sc) towards α -olefins, such as propylene.

$$Me_{2}Si \qquad M_{3} \qquad CH_{3} \qquad 10 \text{ equiv} \qquad Me_{2}Si \qquad M_{3} \qquad CH_{3} \qquad 10 \text{ equiv} \text{ pyridine} \qquad multiple metallocene products (20) Me_{2}Si \qquad H_{3} \qquad CH_{3} \qquad where M = Y, Sc$$


Methylaluminoxane has also been examined as a potential additive to enhance the reactivity of tBuThpMMe₂AlMe₂ (where M = Y, Sc) towards α olefins. However, addition of MAO (\approx 100 equivalents) to tBuThpMMe₂AlMe₂ (where M = Y, Sc) in combination with propylene (in benzene- d_6) or 1-pentene (neat) does not lead to olefin consumption.

Preparation of linked cyclopentadienyl-fluorenyl complexes


The dilithio ligand salt, Li₂[Ph₂C(C₅H₄)(C₁₃H₈)] (Li₂Ep)²⁹ has been utilized for the preparation of C_s -symmetric yttrocene and scandocene complexes. Metallation of Li₂Ep with YCl₃(THF)_{3.5} in THF affords the dimeric yttrocene chloride complex, {[Ph₂C(η ⁵-C₅H₄)(η ⁵-C₁₃H₈)]YCl}₂ [(EpYCl)₂, 15] as a bright yellow solid (eq. 21). The ¹H NMR spectrum of **15** is consistent with this structural assignment; no protio THF is present and the product exhibits C_s symmetry.

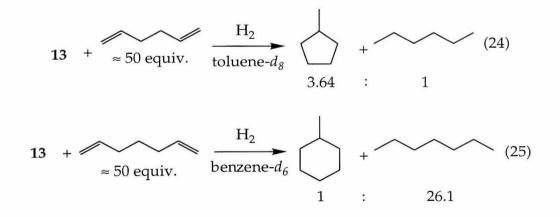
Metallation of Li₂Ep with ScCl₃(THF)₃ in THF provides the monomeric scandocene complex, [Ph₂C(η^5 -C₅H₄)(η^5 -C₁₃H₈)]ScCl(THF) [EpScCl(THF), **16**] as a bright yellow solid (eq. 22). Analysis of **16** by ¹H NMR spectroscopy in THF-*d*₈ reveals that one equivalent of protio THF is present. Since **16** appears to be C_s-symmetric, the THF may be dissociating and recoordinating to scandium at a rate that is fast relative to the NMR time scale.

Combination of either **15** or **16** with excess LiAlMe₄ provides the corresponding tetramethylaluminate complexes, $[Ph_2C(\eta^5-C_5H_4)(\eta^5-C_{13}H_8)]M(\mu-CH_3)_2Al(CH_3)_2$ (where M = Y, EpYMe_2AlMe_2, **17**; where M = Sc, EpScMe_2AlMe_2, **18**], respectively (eq. 23). These complexes have been isolated via Soxhlet extraction with pentane solvent; low solubility of **17** and **18** in pentane results in low isolated yields.

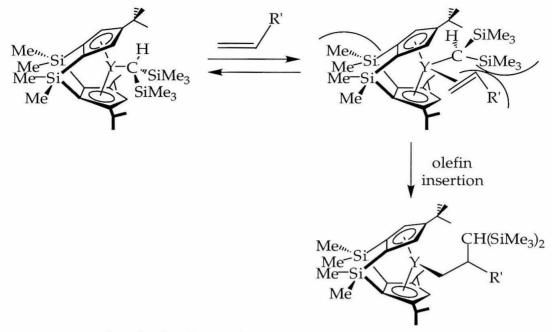

Both **17** and **18** have been characterized by ¹H NMR spectroscopy in benzene- d_6 solution at 25°C. Yttrocene **17** displays a broad resonance at -1.2 ppm that corresponds to all four yttrium-methyl resonances, both bridging and terminal. Scandocene **20** displays three distinct scandium methyl resonances; the bridging methyls are found at -1.83 ppm and the terminal methyls are found at -0.52 and -0.55 ppm.

Polymerization of α -olefins

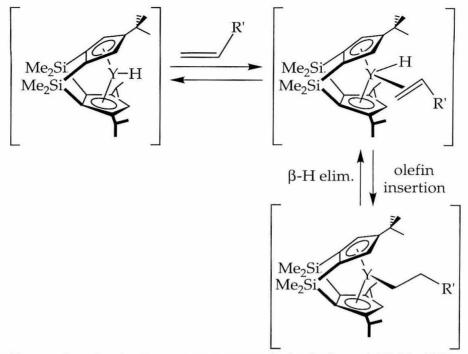
The yttrocene and scandocene alkyl and hydride complexes described above have been tested as potential catalysts for α -olefin polymerization. Both small scale (\approx 15 mg metallocene) and preparative scale (\approx 300 mg metallocene) reactions have been carried out to examine the efficiency of olefin consumption.


When ethylene (\approx 100 equivalents) is added to a benzene- d_6 solution of the yttrium tetramethylaluminate compound, tBuThpYMe₂AlMe₂ (**12**), it is consumed rapidly as evidenced by ¹H NMR spectroscopy. The increased viscosity of the solution and the ¹H NMR spectrum suggest formation of polyethylene. Addition of α -olefins such as propylene or 1-hexene (\approx 100 equivalents) to this yttrocene yields no measurable olefin consumption after weeks at 25°C. In contrast, when 1-hexene (\approx 40 equivalents) is added to a benzene- d_6 solution of the related scandocene compound, tBuThpScMe₂AlMe₂ (**13**), olefin is completely consumed within 4 hours at 25°C. Analysis by ¹H NMR spectroscopy reveals that 1-hexene oligomers have formed. From these experiments it appears that **13** is more reactive towards α -olefins than **12**.

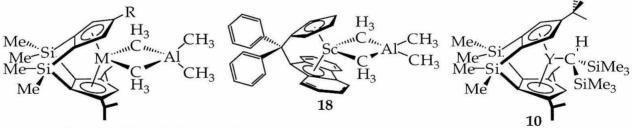
A proposed mechanism for α -olefin insertion into a tetramethylaluminate complex of the form RThpMMe₂AlMe₂ (where M = Y, Sc) is given in Scheme 3. Presumably when aluminum does not share bridging methyl substituents with the metallocene, trimethylaluminum may dissociate readily. This dissociation is shown in Scheme 3 when the olefin CH₂=CHR' coordinates to the metallocene. Throughout the course of polymerization, AlMe₃ may be associated with the metallocene between olefin insertions. These mechanistic issues are currently under investigation with singly-linked and unlinked scandium tetramethylaluminate complexes.³⁰


Scheme 3: Proposed mechanism for α -olefin insertion with compounds of the form RThpMMe₂AlMe₂.

Compound **13** also serves as an effective hydrocyclization catalyst for α - ω dienes. Addition of 1,5-hexadiene (\approx 50 equivalents) to a toluene- d_8 solution of **13** under dihydrogen affords a mixture of cyclized and uncyclized products (eq. 24). The relative amounts of methylcyclopentane and hexane were ascertained by gas chromatography. Combination of 1,6-heptadiene (\approx 50 equivalents) and **13** in benzene- d_6 under dihydrogen affords a mixture of cyclized and uncyclized products (eq. 25). The relative amounts of methylcyclohexane and heptane were measured by gas chromatography. For both reactions, conversion to products is complete within approximately 24 hours.


Yttrocene compounds tBuThpYCH(TMS)₂ (**10**) and [tBuThpYH]₂ (**11a/11b**) are less reactive towards ethylene and α-olefins than their tetramethylaluminate counterparts. When ethylene (\approx 5 equivalents) is added to a benzene- d_6 solution of **10** no olefin consumption is observed over the course of 12 hours at 25°C. Similarly, addition of ethylene (\approx 5 equivalents) to a benzene d_6 solution of **11a/11b** results in no olefin consumption over the course of 12 hours at 25°C. Addition of α -olefins such as propylene or 1-pentene (100 equivalents) to **11a/11b** yields no measurable olefin consumption after weeks at 25°C. When **11a/11b** are exposed to neat 1-butene (\approx 860 equivalents) for five days at 25°C, no isolable polymer is formed. Combination of **10** and approximately 5200 equivalents of neat 1-pentene does not provide isolable polymer after one week at 25°C. Successful polymerization of 1-pentene was achieved by *in situ* generation of the corresponding yttrium hydride species; when **10** is exposed to neat 1-pentene (\approx 8100 equivalents) under a dihydrogen atmosphere, poly(pentene) is isolated after 7.5 days at 25°C.

The observed lack of reactivity of **10** and **11a/11b** towards α -olefins and the requirement for *in situ* generation of a yttrium hydride species may be rationalized by Schemes 4 and 5. Scheme 4 delineates a mechanism for α -olefin insertion into the bis(trimethylsilyl)methyl complex, **10**. Unfavorable steric interactions between the bulky bis(trimethylsilyl)methyl substituent and an incoming α -olefin (CH₂=CHR') may hinder olefin coordination and subsequent insertion. Coordination and insertion of CH₂=CHR' may be more facile for related tetramethylaluminate complexes since loss of trimethylaluminum may reduce the steric hindrance at the metal center (Scheme 3).


Scheme 4: Proposed mechanism for α-olefin insertion for tBuThpYCH(TMS)₂.

Scheme 5 describes α -olefin coordination and insertion with a monomeric yttrocene hydride intermediate. Previous studies have suggested that a monomeric hydride species is required for polymerization of α -olefins.³¹ The steric hindrance for olefin coordination and insertion is negligible as compared to what is described in both Scheme 3 and Scheme 4. However, dimerization of the monomeric yttrocene hydride may compete with olefin insertion, thus reducing the rate of propagation. *In situ* hydrogenation of **10** may be necessary to generate a working concentration of monomeric [tBuThpYH] that is necessary for propagation.

Scheme 5: Proposed mechanism for α -olefin insertion for *in situ* formed [tBuThpYH].

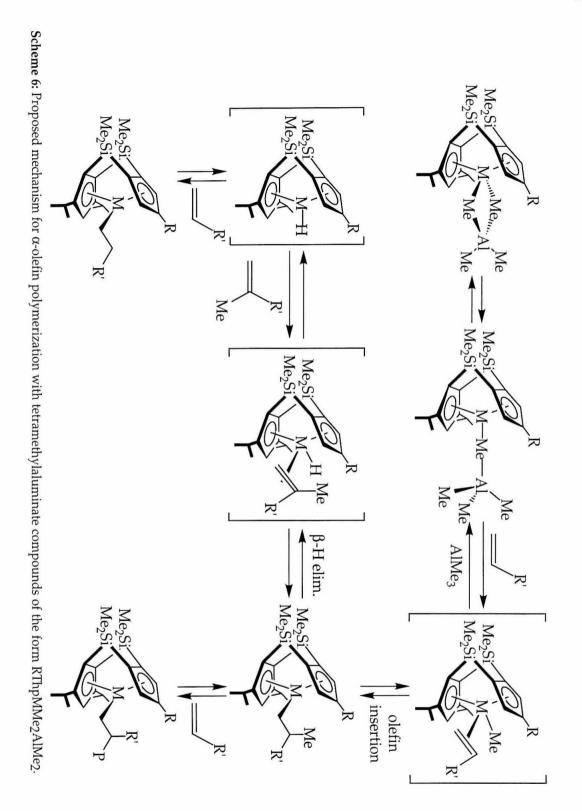
The metallocenes illustrated in Figure 21 have been utilized for polymerization of 1-pentene and propylene. Tetramethylaluminate complexes **12, 13, 14,** and **18** serve as single component polymerization catalysts. Dihydrogen gas (4 atm) was added to **10** to promote the polymerization of 1pentene (*vide supra*). Select reaction conditions and full pentad distributions for these polymers are listed in Tables 6 and 7.

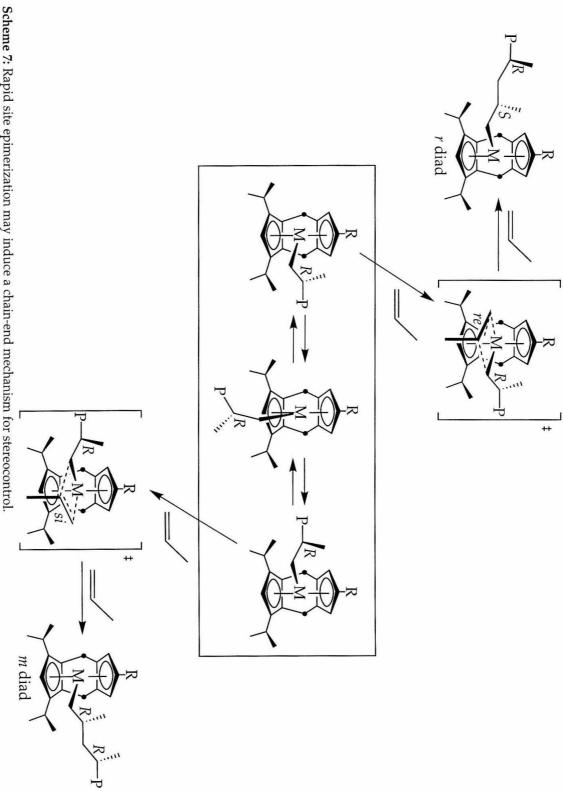
where R = tBu: M = Y, **12**; M = Sc, **13** where R = iPr: M = Sc, **14**

Figure 21: Compounds **12**, **13**, **14**, **18**, and $(10 + H_2)$ may be used as catalysts for α -olefin polymerization.

48.77	51.22	4.38	11.49	5.9	14.35	27.28			11.1	3.72	4 hr*	14 4	7
48.84	51.14	6.23	11.02	5.18	14.19	26.93	11.7	7.85	11.91	4.97	1 hr	14	6
49.42	50.58	5.52	11.22	5.38	14.48	28.1		8.35 1	11.17	3.76	2.5 hr	14 2	J
57.21	42.79	5.21	15.48	11.19	14.21	25.82		7.43 1	7.96	2.07	4 hr*	13 4	4
58.66	41.35	5.09	16.23	11.34	13.96	27.12		6.98 1	6.93	1.44	3 hr	13	ω
61.13	38.88	7.42	17.64	12	13.97	24.39	9.78	6.35 9	6.56	1.9	1 hr	13	2
68.26	31.74	10.45	19.41	16.4	13.83	21.58	8.6	4.87	4.24	0.62	10.67 hr	18 10	щ
						[rmrr]							
[<i>r</i>]	[m]	[mrrm]	[mrrr]	[rrrr]	[mrmr]	nrmm]	ımrr] [1	cat. duration [mmmm] [mmmr] [mmr] [mmrr] [mmm] [mrmr] [rrrr] [mrrr] [mrm] [m]	[mmmr]	[mmmm]	ration	cat. du	entry
33.18	66.86	3.92	7.84	5.16		25.79	27.85	29.45	49.9	24 hr	21	18	7
40.81	59.23	7.18	7.79	10.34		27.68	25.40	21.62	8.6	7.5 d	22	10 + H ₂	6
35.51	64.39	3.80	8.38		6.54	27.36	28.40	25.39	4.8	7.5 d	22	12	J
38.62	61.69	4.60	9.15	8.28		27.24	30.20	20.81	64.5	2 hr	21	14	4
37.26	62.76	4.55	8.30			28.17	29.03	22.64	89.0	9 hr	0	14	ω
52.12	47.92	6.35	12.57	21.29		26.22	24.68	8.90	37.5	2 hr	20	13	2
51.73	48.31	4.52	11.78	25.03		25.26	23.84	9.49	50.7	10.75 hr	0	13	Ц
				[rrrr]		[rmmr]	[rmmr] [mmrr]		by mass				
[<i>r</i>]	[m]	[mrrm]	[mrrr]			[mmrm]	[mmmr]	[mmmm]	% yield	catalyst $T(^{\circ}C)$ duration	T(°C)	catalyst	entry

Table 7: Propylene polymerizations. * denotes polymerization with a 50/50 (v/v) mixture of propylene and toluene.


entry	catalyst	catalyst monomer	T(°C)	T(°C) duration	[m]	[7]	M _n (x 10 ³)	$M_n (x \ 10^3) M_w (x \ 10^3) M_w / M_n$	$M_{\rm W}/M_{\rm n}$
كم	18	propylene	പ്	10.67 hr	31.74	68.26	86.0	195	2.3
2	13	propylene	ப்	1 hr	38.88	61.13	I]	I
ω	13	propylene	ե	3 hr	41.35	58.66	I	I	1
4	13	propylene	փ	4 hr*	42.79	57.21	13.4	34.0	2.5
ഗ	13	1-pentene	20	2 hr	47.92	52.12	4.5	11.6	2.6
6	13	1-pentene	0	10.75 hr	48.31	51.73	9.3	26.7	2.9
7	14	propylene	பு	2.5 hr	50.58	49.42	I	I	I
8	14	propylene	ե	1 hr	51.14	48.84	I	ĺ.	
9	14	propylene	ե	4 hr*	51.22	48.77	16.0	32.1	2.0
10	$10 + H_2$	1-pentene	22	7.5 d	59.23	40.81	I	Ι	l
11	14	1-pentene	21	2 hr	61.69	38.62	3.9	7.5	1.9
12	14	1-pentene	0	9 hr	62.76	37.26	I		l
13	12	1-pentene	22	7.5 d	64.39	35.51	2.9	5.5	1.9
14	18	1-pentene	21	24 hr	66.86	33.18	5.3	10.5	2.0
Tahle 8	Polymeriz	Table 8. Polymerizations of 1-mentene and propylene	itene an	d nronvlene					


Table 8: Polymerizations of 1-pentene and propylene.* denotes polymerization with a 50/50 (v/v) mixture of propylene and toluene.

A comparison of the [m] and [r] diad content for these 1-pentene and propylene polymerizations is summarized in Table 8. Polymer molecular weight information is also provided when available. The scandium tetramethylaluminate complexes **13**, **14**, and **18** display the highest polymer molecular weights of the series; this is notable since scandocene complexes generally dimerize α -olefins.³² In general, the scandocenes, **13**, **14**, and **18**, are more active polymerization catalysts than yttrocenes, **12** and (**10** + H₂). A proposed mechanism for α -olefin insertion, chain propagation, and termination with tetramethylaluminate compounds of the form RThpMMe₂AlMe₂ (where M = Y, Sc) is provided in Scheme 6.

Use of these catalysts under a variety of conditions yields polymers with essentially atactic microstructures with a continuum of tacticities that range from a slight syndiotactic preference ($[r] \approx 68\%$) to a slight isotactic preference ($[m] \approx 67\%$). Changes in polymerization temperature or monomer dilution appear to exert little influence on polymer tacticity, within experimental error. For a given catalyst, the [r] diad content is larger for the polypropylene it produces versus polypentene. This effect is most striking for catalyst **18**; it forms the most syndiospecific polypropylene and the most isospecific polypentene of the series.

This tacticity data is consistent with the chain-end control mechanism depicted in Scheme 7, where small differences in transition state energies for olefin insertion may provide some stereoregularity in the polymer microstructure. Since relaxation of the polymer chain to the central position of the metallocene wedge appears to be fast relative to olefin insertion, stereocontrol is not derived from regular alternating olefin insertion. These C_s symmetric group 3 catalysts appear to follow a chain-end control mechanism unlike the mechanism of stereocontrol for analogous zirconocene catalysts.

Scheme 7: Rapid site epimerization may induce a chain-end mechanism for stereocontrol.

Conclusions

A series of C_s-symmetric yttrocene and scandocene hydride and alkyl complexes have been prepared as single component catalysts for α -olefin polymerization. Yttrocene and scandocene chloride complexes that employ the doubly-silylene bridged ligand array, [(1,2-SiMe₂)₂(4-CHMe₂-C₅H₂)(3,5-(CHMe₂)₂-C₅H)] (tBuThp), have been synthesized and characterized by X-ray diffraction. Both compounds exist as potassium chloride adducts with ethereal solvent coordinated to potassium (tetrahvdrofuran or diethyl ether. respectively). The related complexes $iPrThpY(\mu-Cl)_2K(THF)_n$ and $iPrThpSc(\mu-Cl)_2K(THF)_n$ Br)₂K(THF)_n have been prepared as well. A yttrocene alkyl complex, tBuThpYCH(TMS)₂, has been synthesized by combination of tBuThpY(µ-Cl)₂K(THF)_n with NaI and subsequent metathesis with KCH(SiMe₃)₂. This yttrocene alkyl compound has been characterized by X-ray crystallography; its structure displays an interaction between yttrium and one of the silicon-carbon bonds of the bis(trimethylsilyl)methyl substituent. Hydrogenation of tBuThpYCH(TMS)₂ provides a mixture of two dimeric yttrocene hydride complexes, $Y{\mu-(tBuThp)_2(\mu-H)_2}Y$. One of these hydride complexes has been analyzed by X-ray diffraction; each ligand array spans two metal centers in a "flyover" dimeric structure. Reaction of RThpM(μ -X)₂K(THF)_n (where M = Y, Sc; R = tBu, iPr; X = Cl, Br) with LiAlMe₄ affords the corresponding tetramethylaluminate complexes $RThpM(\mu-Me)_2AlMe_2$ (where M = Y, Sc; R = tBu, iPr). Scandocene and yttrocene tetramethylaluminate complexes that employ a singly linked cyclopentadienyl-fluorenyl ligand, $[(C_6H_5)_2C_1](\eta^5 C_5H_4$)(η^5 -fluorenyl)}]M(μ -Me)₂AlMe₂ (where M = Y, Sc), have been synthesized using a similar methodology.

Select tetramethylaluminate complexes serve as single component catalysts for polymerization of propylene and 1-pentene. *In situ* generation of [tBuThpYH] provides an active species for polymerization of 1-pentene. The scandium tetramethylaluminate complexes display higher polymerization activities and produce higher polymer molecular weights than the yttrocene catalysts. Overall these catalysts produce polymers with essentially atactic microstructures under a variety of conditions. Polymer tacticities range from a slight syndiotactic preference ([r] \approx 68%) to a slight isotactic preference ([m] \approx 67%). This tacticity data is consistent with a chain-end control mechanism. The polymer chain appears to relax to the central position of the metallocene wedge at a rate faster than olefin insertion. Therefore, stereocontrol is not derived from regular alternating olefin insertion. The C_s -symmetric group 3 catalysts described herein follow a stereocontrol mechanism unlike that of analogous zirconocene catalysts. These metallocenes have expanded our understanding of stereocontrol for syndiospecific α -olefin polymerizations.

Experimental

General Considerations. All air or moisture sensitive chemistry was performed using standard high vacuum line or Schlenk techniques, or in a dry box under a nitrogen atmosphere as described previously.³³ Dinitrogen, dihydrogen, and argon were purified by passage over MnO on vermiculite and activated molecular sieves. Petroleum ether and toluene were distilled from sodium and stored under vacuum over titanocene.³⁴ Tetrahydrofuran and diethyl ether were distilled from sodium benzophenone ketyl. Pyridine was distilled from CaH₂ immediately before use. 1-hexadiene and 1-heptadiene were distilled from LiAlH₄ immediately before use. Benzene- d_6 was distilled from LiAlH₄ and then distilled from sodium sand before use. Tetrahydrofuran- d_8 was distilled from sodium benzophenone ketyl and stored over 4Å molecular sieves. Methylene chloride- d_2 was distilled from calcium hydride. Ethylene was purchased from Matheson and passed through a dry ice/acetone trap before use. Propylene was purchased from Aldrich and stored under vacuum over triisobutylaluminum. MAO (methylaluminoxane, Albemarle) was prepared by removing toluene in *vacuo*; the white MAO solid was dried at 25°C for 48 hours at high vacuum. LiCH(TMS)₂ was prepared by the method of Cowley.³⁵ Potassium bis(trimethylsilyl)amide (KN(TMS)₂) was sublimed before use. Li₂[Ph₂C(C₅H₄)(C₁₃H₈)] (Li₂Ep) was prepared as described by Razavi.²⁹ ScCl₃(THF)₃ and YCl₃(THF)_{3.5} were prepared according to literature methods.³⁶ Protio RThp ligands, $(1,2-SiMe_2)_2(4-R-C_5H_3)(3,5-(CHMe_2)_2-C_5H_2)$ (where R = tBu, iPr), were synthesized as described previously.⁴ All dilithio and dipotassio ligand salts were prepared via standard procedures³⁷ unless otherwise noted. All other reagents were purchased from Aldrich and used as received or purified using standard methods.³⁸

Instrumentation. NMR spectra were recorded on a Bruker AM500 (¹H, 500.13 MHz; ¹³C, 125.77 MHz) spectrometer, a Joel GX-400 (¹H, 399.78 MHz; ¹³C 100.53 MHz; ¹⁹F, 376.1 MHz) spectrometer, a G.E. QE300 (¹H, 300.1 MHz) spectrometer, a Varian INOVA 500 (¹H, 500.13 MHz; ¹³C, 125.77 MHz) spectrometer, or a Varian 300 (¹H, 300 MHz) spectrometer. All chemical shifts are relative to TMS for ¹H (residual) and ¹³C NMR (solvent used as a secondary standard). Nuclear Overhauser (NOE) difference experiments were conducted using a Varian INOVA 500 MHz spectrometer. Elemental analysis was performed at the California Institute of Technology Elemental Analysis Facility by Fenton I. Harvey or at Midwest Microlab in Indianapolis, Indiana. X-ray crystallography was carried out by Dr. Michael W. Day and Lawrence M. Henling using an Enraf-Nonius CAD-4 diffractometer. Small crystalline fragments were cut under Paratone-N oil and mounted on the diffractometer under a stream of cold N₂ gas.

Li₂[(1,2-SiMe₂)₂(4-CMe₃-C₅H₂)(3,5-(CHMe₂)₂-C₅H)] (2). (Li₂tBuThp). In the dry box a 100 mL round bottom flask was charged with [(1,2-SiMe₂)₂(4-CMe₃- $(C_5H_3)(3,5-(CHMe_2)_2-C_5H_2)$ (2.21 g, 5.74 mmol) and attached to a fine porosity swivel frit assembly. On the vacuum line, diethyl ether (50 mL) was added by vacuum transfer. The -78°C cold bath was replaced with a 0°C ice water bath and the apparatus was backfilled with argon. A cannula was threaded through the side arm of the swivel frit and then *n*-BuLi (9.0 mL, 12.60 mmol, 2.2 equiv, 1.4 M in hexanes) was added dropwise via a syringe. When addition was complete, the cannula was removed and replaced with the Kontes valve and the reaction was left open to the mercury bubbler to slowly warm to 25°C. After 24 hr of stirring, diethyl ether was removed *in vacuo*, petroleum ether (50 mL) was added by vacuum transfer, and the reaction mixture was stirred for 30 minutes. Petroleum ether was removed *in vacuo*, then fresh petroleum ether (50 mL) was added by vacuum transfer. A yellow supernatent was filtered away from a white solid and washed with recycled petroleum ether $(2 \times 40 \text{ mL})$. The petroleum ether was removed in vacuo and the white solid was dried under high vacuum for 4 hr; 2.49 g (89.7%). ¹H NMR (THF- d_8): $\delta = 0.27$ (s, 12H, broad (CH₃)₂Si), 1.21 (d, 12H, $(CH_3)_2CH, J = 6.8), 1.27 (s, 9H, (CH_3)_3C), 3.13 (m, 2H, (CH_3)_2CH, J = 6.8), 5.92 (s, 2H)$ 1H, Cp-H), 6.12 (s, 2H, Cp-H).

K₂[(1,2-SiMe₂)₂(4-CMe₃-C₅H₂)(3,5-(CHMe₂)₂-C₅H)] (3). (K₂tBuThp). In the dry box a 250 mL round bottom flask was charged with $[(1,2-SiMe_2)_2(4-CMe_3-C_5H_3)(3,5-(CHMe_2)_2-C_5H_2)]$ (3.55 g, 9.20 mmol) and KN(TMS)₂ (3.49 g, 17.5 mmol, 1.90 eq) and attached to a fine porosity swivel frit assembly. On the vacuum line, diethyl ether (150 mL) was added by vacuum transfer. A few minutes after the addition of diethyl ether, the solution becomes cloudy. The -78°C cold bath was removed to allow the reaction to slowly warm to 25°C. The apparatus was backfilled with argon and stirred for 12 hr. A yellow supernatent was filtered away from an off-white solid and washed with recycled diethyl ether (4 x 100 mL). After removing diethyl ether *in vacuo*, petroleum ether (75 mL) was added by vacuum transfer and used to wash the solid three additional times. Petroleum ether was removed *in vacuo* and the off-white solid was dried under high vacuum for 6 hr with heating to 50°C; 3.80 g (89.6%). ¹H NMR (THF-*d*₈): δ = 0.13 (s, 12H, broad (CH₃)₂Si), 1.14 (d, 12H, (CH₃)₂CH, J = 6.77), 1.27 (s, 9H, (CH₃)₃C), 3.05 (m, 2H, (CH₃)₂CH, J = 6.30), 5.71 (s, 1H, Cp-H), 5.97 (s, 2H, Cp-H).

K₂[(1,2-SiMe₂)₂(4-CHMe₂-C₅H₂)(3,5-(CHMe₂)₂-C₅H)] (4). (K₂iPrThp).

Compound **4** is prepared in an analogous manner to **3** by the reaction of $[(1,2-SiMe_2)_2(4-CHMe_2-C_5H_4)(3,5-(CHMe_2)_2-C_5H_3)]$ (4.69 g, 12.6 mmol) with KN(SiMe_3)_2 (4.78 g, 23.9 mmol, 1.90 equiv) in diethyl ether (125 mL). The resulting suspension was allowed to slowly warm to 25°C while stirring for 12 hr. The white solid was isolated on a fine frit and washed with diethyl ether (3 x 50 mL) and then with petroleum ether (3 x 50 mL). The solvent was removed *in vacuo* and the solid dried under high vacuum for 6 hr with heating to 50°C to provide a white powder; 4.87 g (86.5%).

[(1,2-SiMe₂)₂(η^{5} -4-CMe₃-C₅H₂)(η^{5} -3,5-(CHMe₂)₂-C₅H)]Y(μ -Cl)₂K(THF)_n (5). (tBuThpY(μ -Cl)₂K(THF)_n). In the glove box, a 200 mL flask was charged with 3 (3.49 g, 7.58 mmol) and YCl₃(THF)_{3.5} (3.39 g, 7.58 mmol) and attached to a fine porosity swivel frit assembly. On the vacuum line, tetrahydrofuran (125 mL) was added by vacuum transfer while stirring at -78°C, and then this cold bath was replaced by a 0°C ice water bath and the reaction was allowed to slowly warm to 25°C while stirring. After 72 hr of reaction, solvent was removed *in vacuo* and the solid dried under high vacuum for 12 hr. Diethyl ether (100 mL) was added to the reaction flask via vacuum transfer to give a pale tan slurry; a pale tan solid was filtered away from the orange supernatant and washed with recycled solvent (3 x 75 mL). Solvent was removed in vacuo and the solids dried under high vacuum for 12 hr. Petroleum ether (100 mL) was added to the flask containing the orange diethyl ether soluble material by vacuum transfer to yield an off-white solid precipitate and a pale yellow solution. This off-white solid was filtered away from the supernatant and washed with recycled petroleum ether (4 x 75 mL). Solvent was removed *in vacuo* and hexane (50 mL) was added for two additional solid washings. Solvent was removed in vacuo and the off-white product was dried under high vacuum for 12 hr; 2.44 g (51.3%). ¹H NMR (THF d_8 : $\delta = 0.56$ (s, 6H, (CH₃)₂Si), 0.69 (s, 6H, (CH₃)₂Si), 0.99 (d, 6H, (CH₃)₂CH, I = 6.9), 1.21 (d, 6H, $(CH_3)_2CH$, J = 6.6), 1.27 (s, 9H, $(CH_3)_3C$), 1.78 (m, ~0.25H, protio THF), 2.90 (m, 2H, (CH₃)₂CH, J = 6.7), 3.62 (m, ~0.25H, protio THF), 5.75 (s, 1H, Cp-H), 6.32 (s, 2H, Cp-H). ¹H NMR (CD₂Cl₂): $\delta = 0.54$ (s, 6H, (CH₃)₂Si), 0.76 (s, 6H, $(CH_3)_2Si$, 1.02 (d, 6H, $(CH_3)_2CH$, J = 6.8), 1.18 (d, 6H, $(CH_3)_2CH$, J = 5.7), 1.23(s, 9H, (CH₃)₃C), 1.82 (broad, ~2H, protio THF), 2.75 (broad, 2H, (CH₃)₂CH), 3.68 (broad, protio THF), 5.83 (s, 1H, Cp-H), 6.34 (s, 2H, Cp-H). 13 H NMR (THF- d_8): δ = 0.68, 5.29 ((CH₃)₂Si), 22.75, 30.42 ((CH₃)₂CH, (CH₃)₂CH, overlapping peaks), 33.33, 33.98 ((CH₃)₃C, (CH₃)₃C), 106.46, 116.77, 121.61, 139.61, 154.23 (Cp). Analysis Calculated (Found) C: 52.91 (53.04); H: 7.03 (7.63). Note regarding preparation- amount of protio THF present in product varies from run to run, and is quantified by integration of protio THF resonances as compared to ligand resonances in the ¹H NMR spectrum.

Addition of 18-crown-6 (excess) to this sample yields: ¹H NMR (THF- d_8): $\delta = 0.59$ (s, 6H, (CH₃)₂Si), 0.65 (s, 6H, (CH₃)₂Si), 0.99 (d, 6H, (CH₃)₂CH, J = 6.9), 1.21 (d, 6H, (CH₃)₂CH, J = 6.6), 1.27 (s, 9H, (CH₃)₃C), 2.97 (m, 2H, (CH₃)₂CH, J = 6.77), 5.70 (s, 1H, Cp-H), 6.33 (s, 2H, Cp-H).

Removal of protio THF from 5. Tetrahydrofuran was removed from 5 via a modified Soxhlet extraction, similar to a method utilized previously.³⁹ In the glove box, 5 (0.80 g) was placed in a 150 mL round bottom flask and attached to a Soxhlet extractor. A glass thimble (fitted with coarse frit) was filled 3/4 full with 10 Å activated molecular sieves and carefully placed inside the Soxhlet extractor. A condenser and 180° needle valve were attached and the apparatus was removed from the glove box. Toluene (100 mL) was added to the round bottom flask by vacuum transfer and then the apparatus was closed to dynamic vacuum. The solution was stirred at 25°C and the condenser cooled to -30°C with a methanol cooling unit to begin the Soxhlet extraction. After 24 hr, the

flask was attached to a fine porosity swivel frit assembly, toluene was removed and hexane (50 mL) was added via vacuum transfer to provide a white slurry. A white solid was filtered away from a yellow supernatant; the product was washed with recycled hexane (2 x 30 mL) and dried under high vacuum for 12 hr; 0.49 g. ¹H NMR (THF-*d*₈): same chemical shifts as 5 but no protio THF present.

 $[(1,2-SiMe_2)_2(\eta^5-4-CMe_3-C_5H_2)(\eta^5-3,5-(CHMe_2)_2-C_5H)]Sc(\mu-Cl)_2K(THF)_n$ (6). (tBuThpSc(µ-Cl)₂K(THF)_n). In the glove box, a 100 mL flask was charged with 3 (2.80 g, 6.07 mmol) and ScCl₃(THF)₃ (2.23 g, 1 equiv) and a fine swivel frit assembly was attached. On the vacuum line, tetrahydrofuran (60 mL) was added by vacuum transfer while stirring at -78°C, and then this cold bath was replaced by a 0°C ice water bath and the reaction was allowed to slowly warm to 25°C while stirring. After 4.5 days of reaction at 25°C, solvent was removed *in vacuo* to leave a brown sludge which was dried under high vacuum for 12 hr. Diethyl ether (60 mL) added to the reaction flask by vacuum transfer to provide a pale brown slurry. A pale tan solid was filtered away from a red-orange supernatant and the solid washed with recycled solvent (6 x 30 mL). Diethyl ether was removed in vacuo and petroleum ether (50 mL) was added by vacuum transfer. The slurry was stirred for 1 hr and then the solvent was removed *in vacuo* and the solid dried under high vacuum for 12 hr. Petroleum ether (50 mL) was added by vacuum transfer to the flask containing the orange diethyl ether soluble material. Next, a pale tan precipitate was filtered away from the supernatant and washed with recycled petroleum ether (3 x 30 mL). Solvent was removed *in vacuo* and hexane was added for three additional solid washings. Solvent was removed *in vacuo* and the pale tan product was dried under high vacuum for 12 hr; 1.21 g (36.0%). ¹H NMR (THF- d_8): $\delta = 0.54$ (s, 6H, (CH₃)₂Si), 0.68 (s, 6H, (CH₃)₂Si), 0.98 (d, 6H, (CH₃)₂CH, J = 7.0), 1.19 (d, 6H, (CH₃)₂CH, J = 6.6), 1.28 (s, 9H, (CH₃)₃C), 1.77 (m, \sim 1H, protio THF), 2.86 (m, 2H, (CH₃)₂CH, J = 6.72), 3.62 (m, ~1H, protio THF), 5.81 (s, 1H, Cp-H), 6.29 (s, 2H, Cp-H). ¹³H NMR (THF- d_8): $\delta = -0.55, 4.33$ ((CH₃)₂Si), 21.82, 26.43, 28.99, 29.17, 32.77 ((CH₃)₂CH, (CH₃)₃C), 110.11, 113.56, 119.94, 128.03, 140.31, 156.54 (Cp). Note regarding preparation- amount of protio THF present in product varies from run to run, and is quantified by integration of protio THF resonances as compared to ligand resonances in the ¹H NMR spectrum.

Addition of 18-crown-6 (excess) to this sample yields: ¹H NMR (THF-*d*₈): $\delta = 0.57$ (s, 6H, (CH₃)₂Si), 0.65 (s, 6H, (CH₃)₂Si), 0.98 (d, 6H, (CH₃)₂CH, J = 7.0), 1.22 (d, 6H,

(CH₃)₂CH, J = 6.6), 1.29 (s, 9H, (CH₃)₃C), 2.91 (m, 2H, (CH₃)₂CH, J = 4.66), 5.79 (s, 1H, Cp-H), 6.31 (s, 2H, Cp-H).

 $[(1,2-SiMe_2)_2(\eta^{5}-4-CHMe_2-C_5H_2)(\eta^{5}-3,5-(CHMe_2)_2-C_5H)]Y(\mu-Cl)_2K(THF)_n$ (7). (iPrThpY(µ-Cl)₂K(THF)_n). Compound 7 is prepared in an analogous manner to 5 by the reaction of 4 (824 mg, 1.84 mmol) with YCl₃(THF)_{3.5} (826 mg, 1 equiv) in tetrahydrofuran (50 mL). After 48 hr of reaction at 25°C, solvent was removed in vacuo, petroleum ether (50 mL) was added by vacuum transfer, and the resulting slurry was stirred for 2 hr. The solvent was removed *in vacuo* and the solid dried under high vacuum for 12 hr. Diethyl ether (40 mL) was added by vacuum transfer to provide a pale tan slurry; a pale tan solid was filtered away from an orange supernatant and washed with recycled solvent (3 x 30 mL). Solvent was removed *in vacuo* and the solids dried under high vacuum for 12 hr. Petroleum ether (25 mL) was added via vacuum transfer to the flask containing the orange diethyl ether soluble material, resulting in precipitation of an offwhite solid from the yellow-orange solution. This off-white solid was filtered away from the supernatant and washed with recycled petroleum ether (3×20) mL). Solvent was removed in vacuo and hexane (20 mL) was added by vacuum transfer for two additional solid washings. Hexane was removed in vacuo and the off-white product was dried under high vacuum for 9 hr; 0.70 g (65.0%). ¹H NMR (THF- d_8): $\delta = 0.56$ (s, 6H, (CH₃)₂Si), 0.70 (s, 6H, (CH₃)₂Si), 0.99 (d, 6H, $(CH_{3})_{2}CH, J = 6.9$, 1.78 (m, ~0.8H, protio THF), 1.97 (d, 12H, $(CH_{3})_{2}CH, J = 6.8$), 2.83 (m, 1H, $(CH_3)_2CH$, J = 6.86), 2.89 (m, 2H, $(CH_3)_2CH$, J = 6.79), 5.75 (s, 1H, Cp-*H*), 3.62 (m, ~0.8H, protio THF), 6.26 (s, 2H, Cp-*H*). ¹³H NMR (THF- d_8): $\delta =$ 5.19, 9.72 ((CH₃)₂Si), 27.22, 34.83 ((CH₃)₂CH, (CH₃)₂CH, overlapping peaks), 112.08, 121.57, 126.40, 139.89, 158.64 (Cp).

Removal of protio THF from 7. Tetrahydrofuran was removed from 7 with an analogous procedure to that used for 5. In the glove box, 7 (0.35 g) was placed in a 50 mL round bottom flask and the Soxhlet apparatus was assembled as for 5. Toluene (30 mL) was added to the round bottom flask and the Soxhlet extraction was carried out for 30 hr. The flask was attached to a fine porosity swivel frit assembly, toluene was removed and hexane (20 mL) was added via vacuum transfer to provide a white slurry. A white solid was filtered away from a yellow supernatant; the product was washed with recycled hexane (2 x 10 mL) and dried

under high vacuum for 12 hr; 0.49 g. ¹H NMR (THF- d_8): same chemical shifts as 7 but no protio THF present.

 $[(1,2-SiMe_2)_2(\eta^{5}-4-CMe_3-C_5H_2)(\eta^{5}-3,5-(CHMe_2)_2-C_5H)]YI(THF)$ (tBuThpYI(THF), 8a), {[(1,2-SiMe₂)₂(η⁵-4-CMe₃-C₅H₂)(η⁵-3,5-(CHMe₂)₂-C₅H)]Y(µ-I)}₂ {[tBuThpY(µ-I)]₂, 8b} In the glove box, a 100 mL round bottom flask equipped with stir bar was charged with 5 (678 mg, 1.13 mmol) and NaI (381 mg, 2.54 mmol, 2.2 equiv) and a fine swivel frit assembly attached. On the vacuum line, tetrahydrofuran (50 mL) was added by vacuum transfer while stirring at -78°C, and then this cold bath was replaced by a 0°C ice water bath and the reaction was allowed to slowly warm to 25°C. After 48 hr of reaction at 25°C, solvent was removed in vacuo, petroleum ether (20 mL) was added by vacuum transfer, and the resulting slurry was stirred for 30 minutes. The solvent was removed in vacuo and the solid dried under high vacuum for 4 hr. Diethyl ether (25 mL) was added by vacuum transfer to provide a yellow slurry; this slurry was stirred for 12 hr. A yellow-orange solution was filtered away from a white solid and the solid washed with recycled solvent (3 x 15 mL). Solvent was removed in vacuo and pentane (25 mL) was added to the collection flask via vacuum transfer. An orange solution was filtered away from a white solid, solvent was removed in vacuo, and this white solid was dried under high vacuum for 4 hr. 8a/8b was isolated as a white solid; 470 mg (44.5%). 8a: ¹H NMR (THF d_8): $\delta = 0.55$ (s, 6H, (CH₃)₂Si), 0.66 (s, 3H, (CH₃)₂Si), 0.70 (s, 3H, (CH₃)₂Si), 0.99 (d, $3H_{1}(CH_{3})_{2}CH_{1} = 7.0$, 1.20 (d, $3H_{1}(CH_{3})_{2}CH_{1} = 6.6$), 1.23 (d, $3H_{1}(CH_{3})_{2}CH)$, 1.33 (s, 9H, (CH₃)₃C), 1.39 (d, 3H, (CH₃)₂CH), 1.78 (m, 4H, protio THF), 2.97 (m, 1H, (CH₃)₂CH, J = 5.6), 3.05 (m, 1H, (CH₃)₂CH, J = 5.6), 3.62 (m, 4H, protio THF), 5.98 (s, 1H, Cp-*H*), 6.46 (s, 1H, Cp-*H*), 6.52 (s, 1H, Cp-*H*). 8b: ¹H NMR (THF-*d*₈): $\delta = 0.54$ (s, 6H, (CH₃)₂Si), 0.70 (s, 6H, (CH₃)₂Si), 0.98 (d, 6H, (CH₃)₂CH, J = 7.0), 1.20 (d, 6H, (CH₃)₂CH, J = 6.6), 1.27 (s, 9H, (CH₃)₃C), 2.83 (m, 2H, (CH₃)₂CH, J = 6.8), 5.86 (s, 1H, Cp-H), 6.30 (s, 2H, Cp-H).

$[(1,2-SiMe_2)_2(\eta^{5}-4-CHMe_2-C_5H_2)(\eta^{5}-3,5-(CHMe_2)_2-C_5H)]Sc(\mu-Br)_2K(THF)_n$

(**iPrThpSc**(μ-**Br**)₂**K**(**THF**)_n, 9). In the glove box, a 100 mL round bottom flask equipped with stir bar was charged with 4 (971 mg, 2.17 mmol), ScCl₃(THF)₃ (798 mg, 1 equiv), and NaBr (849 mg, 8.25 mmol, 3.8 equiv) and a 14/20 reflux condensor and 180° needle valve attached. On the vacuum line, tetrahydrofuran (30 mL) was added by vacuum transfer and the reaction mixture was heated to

reflux under an argon atmosphere. After 4 hr of reaction, solvent was removed in vacuo and the solid was dried under high vacuum for 2 hr. In the glove box, a medium swivel frit assembly was attached. Petroleum ether (30 mL) was added by vacuum transfer, and the resulting yellow-white slurry was stirred for 12 hr. Solvent was removed *in vacuo* and diethyl ether (25 mL) was added by vacuum transfer to provide a yellow slurry. This slurry was stirred for 3 hr, and then a yellow solution was filtered away from a white solid. The solid was washed with recycled solvent (5 x 15 mL) and then solvent was removed *in vacuo* to provide a pale yellow foam in the collection flask. Petroleum ether (25 mL) was added to the collection flask via vacuum transfer, the slurry was stirred for 1 hr, and then solvent was removed *in vacuo*. The resulting pale yellow solid was dried under high vacuum for 12 hr. 9 was isolated as a pale yellow solid; 898 mg (65.7%). ¹H NMR (THF- d_8): $\delta = 0.54$ (s, 6H, (CH₃)₂Si), 0.70 (s, 6H, (CH₃)₂Si), 0.98 (d, 6H, $(CH_{3})_{2}CH, J = 6.9), 1.20 (d, 6H, (CH_{3})_{2}CH, J = 6.6), 1.21 (d, 6H, (CH_{3})_{2}CH, J = 6.9),$ 1.78 (m, ~0.5H, protio THF), 2.84 (m, 1H, (CH₃)₂CH, overlapping), 2.85 (m, 2H, (CH₃)₂CH, overlapping), 3.62 (m, ~0.5H, protio THF), 5.82 (s, 1H, Cp-H), 6.21 (s, 2H, Cp-H).

 $[(1,2-SiMe_2)_2(\eta^5-4-CMe_3-C_5H_2)(\eta^5-3,5-(CHMe_2)_2-C_5H)]YCH(SiMe_3)_2$ (10). (tBuThpYCH(TMS)₂). In the glove box, a 100 mL flask was charged with 8a/8b (422 mg, 0.70 mmol) and KCH(TMS)₂ (154 mg, 1.1 equiv) and a fine swivel frit assembly was attached. On the vacuum line, toluene (50 mL) was added by vacuum transfer while stirring at -78°C, and then this cold bath was replaced by a 0°C ice water bath and the reaction was allowed to slowly warm to 25°C while stirring. After 23 hr of reaction, a yellow solution was filtered away from an offwhite solid and the solid was washed with recycled solvent (3 x 25 mL). Toluene was removed *in vacuo* and then pentane was added by vacuum transfer (10 mL). After stirring for 6 hr, pentane was removed *in vacuo* and then added again (20 mL). This pentane slurry was stirred for 12 hr, and then a pale yellow solution was filtered away from an off-white solid. Solvent was removed in vacuo and the apparatus was left open to dynamic vacuum for 4 hr. In the dry box, the offwhite powder (from the collection flask) was collected as a first crop of the desired product. A new collection flask was attached to the swivel frit assembly in order to collect a second crop of the desired product. The extraction procedure was repeated with toluene and pentane as described, but the final filtration was carried out at -78°C to maximize the product yield. Two crops of

an off-white powder were collected; 211 mg (47.8%). Major isomer ¹H NMR (benzene-*d*₆): $\delta = -0.19$ (s, 1H, *CH*(Si(CH₃)₃)₂), 0.14 (s, 18H, *CH*(Si(*CH*₃)₃)₂), 0.48 (s, 6H, (*CH*₃)₂Si), 0.89 (s, 6H, (*CH*₃)₂Si), 1.06 (d, 6H, (*CH*₃)₂CH, J = 6.8), 1.28 (d, 6H, (*CH*₃)₂CH, J = 6.7), 1.35 (s, 9H, (*CH*₃)₃C), 2.70 (m, 2H, (*CH*₃)₂CH, J = 6.7), 6.40 (s, 1H, *Cp*-*H*), 6.42 (s, 2H, *Cp*-*H*). Minor isomer ¹H NMR (benzene-*d*₆): $\delta = -0.18$ (s, 1H, *CH*(Si(CH₃)₃)₂), 0.15 (s, 18H, *CH*(Si(*CH*₃)₃)₂), 0.50 (s, 6H, (*CH*₃)₂Si), 0.89 (s, 6H, (*CH*₃)₂Si), 1.08 (d, 6H, (*CH*₃)₂CH, J = 6.4), 1.28 (d, 6H, (*CH*₃)₂CH, J = 6.7), 1.35 (s, 9H, (*CH*₃)₂Si), 2.74 (m, 2H, (*CH*₃)₂CH, J = 6.7), 6.21 (s, 1H, *Cp*-*H*), 6.34 (s, 2H, *Cp*-*H*). Major and minor isomers ¹³H NMR (benzene-*d*₆): $\delta = 0.05$, 1.78, 3.76, 3.95, 4.08, 4.11, 4.42, 4.61 ((*CH*₃)₂Si, *CH*(Si(*CH*₃)₃)₂), 21.81, 22.13, 24.63, 24.88, 29.17, 29.26, 29.78, 29.85, 30.58, 31.92, 32.20, 32.58, 33.05, 33.33 ((*CH*₃)₂*CH*, (*CH*₃)₃*C*), 109.02, 110.68, 119.79, 120.85, 124.38, 125.16, 125.33, 125.55, 144.76, 145.93, 154.61, 154.78 (Cp).

$\{[(1,2-SiMe_2)_2(\eta^5-4-CMe_3-C_5H_2)(\eta^5-3,5-(CHMe_2)_2-C_5H)]YH \}_2 (11a/11b).$

((tBuThpYH)₂). In the glove box, a thick walled reaction vessel equipped with stir bar was charged with 10 (57 mg, 0.90 mmol) and benzene (2 mL). The apparatus was degassed on the vacuum line using two freeze-pump-thaw cycles. The vessel was cooled to -78°C and dihydrogen was admitted. After 5 minutes of exposure to dihydrogen, the Kontes valve of the vessel was closed and the reaction was warmed to 25°C with vigorous stirring. After 20 hr of reaction, the pale vellow solution was frozen and the benzene was removed by lyophilization. The resulting pale yellow powder was dissolved in toluene- d_8 and cooled slowly to encourage growth of X-ray quality crystals. As a consequence a product yield was not determined. Major product (11b) ¹H NMR (benzene- d_6): $\delta = 0.52$ (s, 6H, (CH₃)₂Si), 0.54 (s, 6H, (CH₃)₂Si), 1.18 (d, 6H, (CH₃)₂CH, J = 6.7), 1.38 (d, 6H, (CH₃)₂CH, J = 6.7), 1.46 (s, 9H, (CH₃)₃C), 2.78 (t, 2H, Y-(µ-H), J = 32.0), 2.86 (m, $2H_{1}$ (CH₃)₂CH, J = 6.7), 6.10 (s, 2H, Cp-H), 6.76 (s, 1H, Cp-H). ¹³H NMR (toluene $d_8): \ \delta = 2.09, 5.77 \ ((CH_3)_2Si), 23.74, 25.58, 29.65, 30.31, 33.53 \ ((CH_3)_2CH, (CH_3)_3C),$ 107.71, 116.47, 123.05, 126.21, 143.53, 147.89 (Cp). Minor product (11a) ¹H NMR (benzene-d₆): $\delta = 0.49$ (s, 6H, (CH₃)₂Si), 0.58 (s, 6H, (CH₃)₂Si), 1.07 (d, 6H, $(CH_3)_2$ CH, J = 7.0), 1.24 (d, 6H, $(CH_3)_2$ CH, J = 6.9), 1.54 (s, 9H, $(CH_3)_3$ C), 2.51 (t, 2H, Y-(µ-H), J = 31.5), 2.84 (m, 2H, (CH₃)₂CH), 6.19 (s, 2H, Cp-H), 6.59 (s, 1H, Cp-*H*). ¹³H NMR (toluene-*d*₈): δ = 4.29, 6.13 ((CH₃)₂Si), 23.12, 27.78, 28.89, 33.10, 33.37 ((CH₃)₂CH, (CH₃)₃C), 109.00, 112.58, 126.00, 127.08, 144.32, 153.75 (Cp).

 $[(1,2-SiMe_2)_2(\eta^5-4-CMe_3-C_5H_2)(\eta^5-3,5-(CHMe_2)_2-C_5H)]Y(\mu-(CH_3))_2Al(CH_3)_2$ (12). (tBuThpYMe₂AlMe₂). In the dry box a 100 mL round bottom flask equipped with stir bar was charged with 5 (501 mg, 0.83 mmol) and LiAlMe₄ (149 mg, 1.58 mmol, 1.9 equiv) and a fine swivel frit assembly was attached. On the vacuum line, toluene (75 mL) was added to the flask by vacuum transfer, and the dry ice/acetone bath was left intact to allow the reaction to slowly warm to 25°C while stirring. After 24 hr of reaction, toluene was removed in vacuo and pentane (40 mL) was added by vacuum transfer. The pale yellow slurry was stirred for 12 hr, and then a pale yellow solution was filtered away from a white solid. The solid was washed with recyled pentane (10 x 20 mL) and the pentane was removed in vacuo to provide an off-white residue in the collection flask that was dried under high vacuum for 4 hr. Complex 12 was isolated as an off-white powder; 322 mg (58.9%). ¹H NMR (benzene- d_6): $\delta = -0.41$ (s, 3H, (μ - $CH_{3}_{2}Al(CH_{3}_{2})$, -0.33 (s, 3H, (μ -CH₃)₂Al(CH₃)₂), -0.32 (s, 6H, (μ -CH₃)₂Al(CH₃)₂), 0.40 (s, 6H, (CH₃)₂Si), 0.87 (s, 6H, (CH₃)₂Si), 1.03 (d, 6H, (CH₃)₂CH, J = 6.8), 1.23 $(d, 6H, (CH_3)_2CH, J = 6.7), 1.27 (s, 9H, (CH_3)_3C), 2.63 (m, 2H, (CH_3)_2CH, J = 6.7),$ 6.32 (s, 1H, Cp-H), 6.33 (s, 2H, Cp-H). ¹³H NMR (toluene- d_8): $\delta = -0.41, 3.45$ ((CH₃)₂Si), 20.96, 29.04, 29.35, 32.08, 32.53 ((CH₃)₂CH, (CH₃)₃C), 109.91, 124.01, 125.22, 143.40, 154.95, 158.19 (Cp). (μ-CH₃)₂Al(CH₃)₂ resonances not located.

 $[(1,2-SiMe_2)_2(\eta^{5}-4-CMe_3-C_5H_2)(\eta^{5}-3,5-(CHMe_2)_2-C_5H)]Sc(\mu-(CH_3))_2Al(CH_3)_2$ (13). (tBuThpScMe₂AlMe₂). In the dry box a 100 mL round bottom flask equipped with stir bar was charged with 6 (297 mg, 0.39 mmol) and LiAlMe₄ (369 mg, 3.72 mmol, 3.5 equiv) and a fine swivel frit assembly was attached. On the vacuum line, toluene (50 mL) was added to the flask by vacuum transfer, and the dry ice/acetone bath was removed to allow the reaction to slowly warm to 25°C while stirring. After 24 hr of reaction, toluene was removed in vacuo and pentane (40 mL) was added by vacuum transfer. The pale yellow slurry was stirred for 12 hr, and then a yellow solution was filtered away from a white solid. The solid was washed with recyled pentane (5 x 20 mL) and the pentane was removed *in vacuo* to provide a yellow solid that was dried under high vacuum for 4 hr. In the dry box, this yellow solid was dissolved in benzene (2.5 mL) and transferred to a 10 mL round bottom flask equipped with stir bar. A 180° needle valve was attached. On the vacuum line, the solution was frozen and the benzene lyophilized away in vacuo. Complex 13 was isolated as a pale tan powder; 215 mg (78.6%). ¹H NMR (benzene- d_6): $\delta = -0.38$ (s, 3H, (µCH₃)₂Al(CH₃)₂), -0.35 (s, 6H, (μ -CH₃)₂Al(CH₃)₂), -0.23 (s, 3H, (μ -CH₃)₂Al(CH₃)₂), 0.39 (s, 6H, (CH₃)₂Si), 0.81 (s, 6H, (CH₃)₂Si), 0.99 (d, 6H, (CH₃)₂CH, J = 6.8), 1.24 (d, 6H, (CH₃)₂CH, J = 6.6), 1.31 (s, 9H, (CH₃)₃C), 2.55 (m, 2H, (CH₃)₂CH, J = 6.7), 6.24 (s, 2H, Cp-H), 6.49 (s, 1H, Cp-H). ¹³H NMR (toluene-*d*₈): δ = -6.28, -4.38 ((μ -CH₃)₂Al(CH₃)₂, broad singlets), -0.92, 3.52 ((CH₃)₂Si), 30.27 ((μ -CH₃)₂Al(CH₃)₂), 20.83, 29.07, 29.14, 31.49, 33.26 ((CH₃)₂CH, (CH₃)₃C), 113.55, 116.14, 121.05, 126.67, 137.37, 155.87 (Cp).

$[(1,2-SiMe_2)_2(\eta^{5}-4-CHMe_2-C_5H_2)(\eta^{5}-3,5-(CHMe_2)_2-C_5H)]Sc(\mu-(CH_3)_2)A1(CH_3)_2$

(14). (iPrThpScMe₂AlMe₂). In the dry box a 100 mL round bottom flask equipped with stir bar was charged with 9 (606 mg, 0.97 mmol) and LiAlMe₄ (369 mg, 3.72 mmol, 3.8 equiv) and a fine swivel frit assembly was attached. On the vacuum line, toluene (50 mL) was added to the flask by vacuum transfer, and the dry ice/acetone bath was removed to allow the reaction to slowly warm to 25°C while stirring. After 28 hr of reaction, toluene was removed in vacuo and pentane (40 mL) was added by vacuum transfer. The pale yellow slurry was stirred for 12 hr, and then a yellow-orange solution was filtered away from a white solid. The solid was washed with recyled pentane (5 x 20 mL) and the pentane was removed in vacuo to provide a yellow solid that was dried under high vacuum for 4 hr. In the dry box, this yellow solid was dissolved in benzene (2.5 mL) and transferred to a 10 mL round bottom flask equipped with stir bar. A 180° needle valve was attached. On the vacuum line, the solution was frozen and the benzene lyophilized away in vacuo. Complex 14 was isolated as a pale yellow solid; 407 mg (83.8%). ¹H NMR (benzene- d_6): $\delta = -0.45$ (s, 3H, (μ - $CH_{3}_{2}Al(CH_{3}_{2}), -0.44$ (s, 6H, (μ -CH₃)₂Al(CH₃)₂), -0.25 (s, 3H, (μ -CH₃)₂Al(CH₃)₂), 0.36 (s, 6H, (CH₃)₂Si), 0.81 (s, 6H, (CH₃)₂Si), 0.97 (d, 6H, (CH₃)₂CH, J = 6.8), 1.20 (d, 6H, (CH₃)₂CH, J = 6.7), 1.21 (d, 6H, (CH₃)₂CH, J = 6.4), 2.53 (m, 2H, (CH₃)₂CH, J = 6.7), 3.03 (m, 1H, (CH₃)₂CH, J = 6.6), 6.06 (s, 2H, Cp-H), 6.43 (s, 1H, Cp-*H*). ¹³H NMR (toluene-*d*₈): δ = -0.94, 3.51 ((CH₃)₂Si), 24.12, 27.58, 29.11 ((CH₃)₂CH), 112.31, 116.27, 120.99, 134.40, 139.15, 155.70 (Cp). (μ-CH₃)₂Al(CH₃)₂ resonances not located.

[{(C_6H_5)_2C[(η^5 - C_5H_4)(η^5 - $C_{13}H_8$)]}YCl]_2 (15). ([EpYCl]_2). In the dry box a 100 mL round bottom flask equipped with stir bar was charged with Li₂Ep (2.01 g, 4.94 mmol) and YCl₃(THF)_{3.5} (2.21 g, 1 equiv) and a fine swivel frit assembly was attached. On the vacuum line, tetrahydrofuran (50 mL) was added to the flask

by vacuum transfer, and the dry ice/acetone bath was removed to allow the reaction to slowly warm to 25°C while stirring. The reaction mixture begins as cherry-red solution and slowly changes to brick-red in color. After 72 hr of reaction, tetrahydrofuran was removed in vacuo and petroleum ether (50 mL) was added by vacuum transfer. The slurry was stirred for 12 hr and then solvent was removed in vacuo. Diethyl ether (50 mL) was added by vacuum transfer and subsequent filtration provided a bright yellow solution in the collection flask. The solid was washed with recycled solvent (18 x 30 mL) until the solid remaining on the frit was no longer yellow in color. Solvent was removed in *vacuo* to leave a bright yellow solid in the collection flask. In the dry box, the collection flask was attached to a fine swivel frit assembly. Petroleum ether (40 mL) was added via vacuum transfer, and a yellow solution was filtered away from a bright yellow solid. The solid was washed with recycled solvent (5×20) mL), solvent was removed *in vacuo*, and the bright yellow solid that was dried under high vacuum for 4 hr. Complex 15 was isolated as an bright yellow powder; 2.27 g; (44.5%). ¹H NMR (THF- d_8): $\delta = 5.82$ (s, 2H, Cp-H), 5.91 (s, 2H, Cp-*H*), 6.57 (d, 2H, Flu-*H*, J = 8.7), 6.78 (t, 2H, Ph-*H*, J = 7.7), 6.94 (t, 2H, Ph-*H*, J = 7.2), 7.09 (t, 2H, Flu-H, J = 7.2), 7.13 (t, 2H, Flu-H, J = 7.5), 7.27 (t, 2H, Ph-H, J = 8.0), 7.87 (d, 2H, Ph-H, J = 7.4), 8.03 (d, 2H, Flu-H, J = 8.3), 8.06 (d, 2H, Ph-H, J = 7.4).

[$(C_6H_5)_2C[(\eta^5-C_5H_4)(\eta^5-C_{13}H_8)]$]ScCl(THF) (16). (EpScCl(THF)). In the dry box a 100 mL round bottom flask equipped with stir bar was charged with Li₂Ep (3.00 g, 7.37 mmol) and ScCl₃(THF)₃ (2.71 g, 1 equiv) and a fine swivel frit assembly was attached. On the vacuum line, tetrahydrofuran (75 mL) was added to the flask by vacuum transfer, and the dry ice/acetone bath was removed to allow the reaction to slowly warm to 25°C while stirring. The reaction mixture begins as red-brown slurry and slowly changes to a red-orange transparent solution. After 96 hr of reaction, tetrahydrofuran was removed *in vacuo* and petroleum ether (50 mL) was added by vacuum transfer. The slurry was stirred for 9 hr and then solvent was removed *in vacuo*. The solid was dried under high vacuum for 12 hr. Next, diethyl ether (50 mL) was added by vacuum transfer to provide a bright orange slurry. An orange solution was filtered from a redorange solid, and this solid was washed with recycled solvent (8x 30 mL) until the solid remaining on the frit was no longer orange in color. Solvent was removed *in vacuo* to leave an orange-yellow solid in the collection flask. In the dry box, the collection flask was attached to a new fine swivel frit assembly. Diethyl ether (40 mL) was added via vacuum transfer and then the swivel frit assembly was cooled to -78°C for a cold filtration. A red-orange solution was filtered away from a bright yellow solid. The solid was washed with recycled solvent at -78°C (1 x 20 mL) and then solvent was removed *in vacuo*. Petroleum ether (30 mL) was added by vacuum transfer and the bright yellow solid was washed with recycled solvent (4 x 20 mL). The solvent was removed *in vacuo* and then the solid was dried under high vacuum for 4 hr. Complex **16** was isolated as an bright yellow powder; 1.01 g (24.9%). ¹H NMR (THF-*d*₈): δ = 1.78 (m, 4H, protio THF), 3.62 (m, 4H, protio THF), 5.75 (s, 2H, Cp-*H*), 5.87 (s, 2H, Cp-*H*), 6.45 (d, 2H, Flu-*H*, J = 8.7), 6.71 (t, 2H, Ph-*H*, J = 7.3), 7.00 (t, 2H, Ph-*H*, J = 7.5), 7.13 (t, 2H, Flu-*H*, J = 6.2), 7.18 (t, 2H, Flu-*H*, J = 7.2), 7.31 (t, 2H, Ph-*H*, J = 6.9), 7.88 (d, 2H, Ph-*H*, J = 6.3), 7.90 (d, 2H, Ph-*H*, J = 7.7), 8.06 (d, 2H, Ph-*H*, J = 7.6).

$\{(C_{6}H_{5})_{2}C[(\eta^{5}-C_{5}H_{4})(\eta^{5}-C_{13}H_{8})]\}Y(\mu-(CH_{3})_{2})Al(CH_{3})_{2}$ (17). (EpYMe₂AlMe₂).

In the drv box a 100 mL round bottom flask equipped with stir bar was charged with 15 (511 mg, 0.492 mmol) and LiAlMe₄ (162 mg, 1.72 mmol, 3.5 equiv) and a fine swivel frit assembly was attached. On the vacuum line, toluene (50 mL) was added to the flask by vacuum transfer, and the dry ice/acetone bath was removed to allow the reaction to slowly warm to 25°C while stirring. After 21.5 hr of reaction, toluene was removed *in vacuo* and petroleum ether (50 mL) was added by vacuum transfer. The slurry was stirred for 1 hr and then solvent was removed in vacuo. In the dry box, the contents of the reaction flask were transferred to a small Soxhlet thimble, and a Soxhlet apparatus was assembled with a small Soxhlet extractor, 14/20 condensor, 180° needle valve, and 25 mL collection flask. On the vacuum line, pentane (15 mL) was added by vacuum transfer, the apparatus was backfilled with argon, and the toluene solution was heated to reflux to begin the extraction. After 8 hr, the solution that passed through the thimble was colorless and the extraction was terminated. Pentane was removed in vacuo to provide a bright yellow solid that was dried under high vacuum for 4 hr. Complex 17 was isolated as an bright yellow powder; 44 mg (7.8%). ¹H NMR (benzene-*d*₆): $\delta = -1.22$ (s, 12H, (μ -CH₃)₂Al(CH₃)₂, broad), 5.74 (s, 2H, Cp-H), 5.78 (s, 2H, Cp-H), 6.60 (d, 2H, Flu-H, J = 8.6), 6.75 (t, 2H, Ph-H, J = 7.4), 6.96 (t, 2H, Ph-H, J = 7.4), 7.00 (t, 2H, Flu-H, J = 7.3), 7.03 (t, 2H, Flu-H, J = 6.8), 7.15 (t, 2H, Ph-H, J = 7.5), 7.75 (d, 2H, Flu-H, J = 7.8), 7.94 (d, 2H, Ph-H, J = 7.4), 8.01 (d, 2H, Ph-H, J = 8.2). ¹³C NMR (benzene- d_6): δ = 30.58, 37.31, 60.30,

90.68, 106.24, 112.83, 120.09, 120.67, 121.16, 121.63, 123.96, 125.84, 126.77, 126.94, 127.90, 129.09, 129.30, 130.28, 147.75.

 $\{(C_6H_5)_2C[(\eta^5-C_5H_4)(\eta^5-C_{13}H_8)]\}Sc(\mu-(CH_3)_2)Al(CH_3)_2$ (18). (EpScMe₂AlMe₂). In the dry box a 100 mL round bottom flask equipped with stir bar was charged with 16 (492 mg, 0.90 mmol) and LiAlMe₄ (296 mg, 3.15 mmol, 3.5 equiv) and a fine swivel frit assembly was attached. On the vacuum line, toluene (50 mL) was added to the flask by vacuum transfer, and the dry ice/acetone bath was removed to allow the reaction to slowly warm to 25°C while stirring. After 8 hr of reaction, toluene was removed *in vacuo* and pentane (40 mL) was added by vacuum transfer. The reaction mixture was stirred for 12 hr and then solvent was removed *in vacuo*. In the dry box, the contents of the reaction flask were transferred to a small Soxhlet thimble, and a Soxhlet apparatus was assembled with a small Soxhlet extractor, 14/20 condensor, 180° needle valve, and 25 mL collection flask. On the vacuum line, pentane (15 mL) was added by vacuum transfer, the apparatus was backfilled with argon, and the toluene solution was heated to reflux to begin the extraction. The extraction was terminated after 6 hr. Pentane was removed *in vacuo* to provide an orange powder that was dried under high vacuum for 4 hr. Complex **18** was isolated as an bright orange solid; 57 mg (12.1%). ¹H NMR (benzene- d_6): $\delta = -1.83$ (s, 6H, (μ -CH₃)₂Al(CH₃)₂), -0.55 (s, 3H, (μ-CH₃)₂Al(CH₃)₂), -0.52 (s, 3H, (μ-CH₃)₂Al(CH₃)₂), 5.46 (s, 2H, Cp-H), 5.78 (s, 2H, Cp-H), 6.50 (d, 2H, Flu-H, J = 8.8), 6.59 (t, 2H, Ph-H, J = 6.9), 6.97 (t, 2H, Ph-H, J = 7.4), 7.03 (t, 2H, Flu-H, J = 7.4), 7.06 (t, 2H, Flu-H, J = 8.6), 7.15 (t, 2H, Ph-*H*, J = 7.7), 7.77 (d, 2H, Flu-*H*, J = 7.9), 7.89 (d, 2H, Ph-*H*, J = 8.1), 7.91 (d, 2H, Ph-*H*, J = 6.0). ¹³C NMR (benzene- d_6): δ = 10.27, 25.15, 30.59, 60.58, 70.41, 87.76, 106.27, 116.16, 117.12, 121.71, 122.43, 123.38, 123.80, 123.93, 126.18, 127.06, 127.73, 129.18, 129.35, 130.40, 147.29.

Polymerizations of 1-pentene using 12, 13, 14, 18, and 10 + H₂ as catalysts. 1pentene polymerizations were executed in neat monomer; this reagent was stored under vacuum over lithium aluminum hydride and freshly distilled immediately prior to use. Approximately 5 mg (\approx 0.010 mmol) of metallocene and 5000 equivalents of 1-pentene were used for each polymerization. The specific conditions for these polymerizations, such as temperature, duration, and percent yield (by mass), as well as pentad information⁴⁰ are given in Table 6. Measurements of polymer molecular weight were made elsewhere.⁴¹ *Representative polymerization:* In the dry box a thick walled reaction vessel equipped with stir bar was charged with **18** (5.4 mg, 0.010 mmol). The vessel was cooled to -78°C and 1-pentene (5.6 mL, 5000 equiv) was added by vacuum transfer. The reaction was warmed to 21°C with vigorous stirring. After 24 hr of reaction, the solution was slightly viscous. In the fume hood, the reaction solution was rinsed into a flask with diethyl ether (10 mL). While stirring rapidly, methanol (6 mL), dilute methanol-HCl (6 mL, 3 :1, v/v), and additional methanol (50 mL) were added to quench the reaction. A white semi-solid precipitates out this solution; it was removed and dried in vacuo at 50°C for 4 hr. The product was obtained in 49.9% yield by mass (1.79 g). A small sample was dissolved in 1,2-dichlorobenzene-benzene- d_6 (9 : 7, v/v) and analyzed by ¹³C NMR spectroscopy at 323 K to determine the polymer pentad distribution.

Polymerizations of propylene using 12, 13, 14, and 18 as catalysts. Most propylene polymerizations were carried out in neat monomer at -5°C in a thick walled glass vessel. A 5 mm Kontes needle valve with an extended tip was used to seal the vessel. Approximately 10 mg (≈ 0.020 mmol) of metallocene and 4 mL of propylene (at 77 K) (\approx 3000 equiv) were used for each polymerization. Propylene was stored under vacuum over triisobutylaluminum ($\approx 1.1 \text{ v/v}$ at 77 K) and distilled immediately prior to use. Monomer was first distilled into a calibrated trap for volume measurement and then distilled into the liquid nitrogen cooled reaction vessel. The reaction mixture was warmed to -5°C with rapid stirring in a sodium chloride/ice water cold bath. Multiple blast shields were used as a precaution due to the elevated pressure in the reaction vessel. Two polymerizations were carried out using a 50/50 (v/v) mixture of propylene and toluene; these experiments were run to evaluate the effect of monomer concentration on polymer tacticity. The pentad distributions⁴² for these polymerizations are provided in Table 7. Measurements of polymer molecular weight were made elsewhere.41

Representative polymerization: In the dry box a thick walled reaction vessel equipped with stir bar was charged with **18** (6.6 mg, 0.0125 mmol). The vessel was cooled to with liquid nitrogen and propylene (3.1 mL at 77 K, \approx 3100 equiv) was added by vacuum transfer. In the fume hood behind multiple blast shields, the reaction was warmed to -5°C in a sodium chloride/ice water cold bath with vigorous stirring. After 10.67 hr of reaction, the solution was slightly viscous. The reaction was slowly vented to release excess propylene. The reaction

contents were dissolved in a minimal amount of diethyl ether (10 mL) and transferred to a flask. While stirring rapidly, methanol (10 mL), dilute methanol-HCl (10 mL. 3:1, v/v), and additional methanol (50 mL) were added to quench the reaction. A white semi-solid precipitates out this solution; it was removed and dried in vacuo at 50°C for 4 hr. The product was obtained in 44.7% yield by mass (0.72 g). A small sample was dissolved in 1,2-dichlorobenzene-benzene- d_6 (9 : 7, v/v) and analyzed by ¹³C NMR spectroscopy at 323 K to determine the polymer pentad distribution.

References

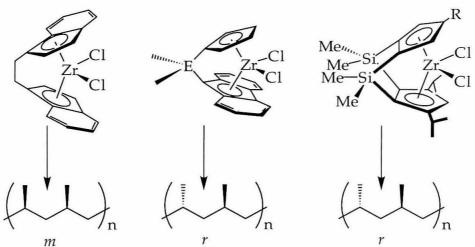
- 1. Brintzinger, H.H.; Fischer, D.; Mülhaupt, R.; Rieger, B.; Waymouth, R.M. Angew. Chem. Int. Ed. Engl. 1995, 34, 1143.
- Ewen, J.A.; Jones, R.L.; Razavi, A.; Ferrara, J.D. J. Am. Chem. Soc., 1988, 110, 6255.
- (a) Patsidis, K.; Alt, H. G.; Milius, W.; Palackal, S. J. J. Organomet. Chem. 1996, 509, 63. (b) Razavi, A.; Atwood, J. L. J. Organomet. Chem. 1993, 459, 117. (c) Winter, J.; Rohrmann, M.; Dolle, V.; Spaleck, W. Eur. Pat. Appl. 0,387,690 and 0,387,691, 1991. (d) Spaleck, W.; Aulbach, M.; Bachmann, B.; Kuber, F.; Winter, A. Macromol. Symp. 1995, 89, 237. (e) Ewen, J. A. Macromol. Symp. 1995, 89, 181. (f) Alt, H. G.; Zenk, R. J. Organomet. Chem. 1996, 518, 7.
- 4. Herzog, T.A.; Zubris, D.L.; Bercaw, J.E. J. Am. Chem. Soc., 1996, 118, 11988.
- (a) Longo, P.; Grassi, A.; Pellecchia, C.; Zambelli, A. *Macromolecules* 1987, 20, 1015-1018.
 (b) Pino, P.; Galimberti, M. J. Organomet. Chem. 1989, 370, 1.
- 6. Gilchrist, J. H.; Bercaw, J. E. J. Am. Chem. Soc. 1996, 118, 12021.
- (a) Piers. W.E.; Bercaw, J.E. J. Am. Chem. Soc. 1990, 112, 9406.
 (b) Grubbs, R.H.; Coates, G.W. Acc. Chem. Res. 1996, 29, 85.
- 8. Veghini, D.; Henling, L.M.; Burkhardt, T.J.; Bercaw, J.E. J. Am. Chem. Soc., 1999, 121, 564.
- 9. Bierwagen, E.P.; Bercaw, J.E.; Goddard, W.A. J. Am. Chem. Soc., **1994**, 116, 1481.
- 10. Bunel, E. E. Ph.D. Thesis, California Institute of Technology, 1989.
- (a) Chirik, P.J.; Bercaw, J.E. in *Metallocenes: Synthesis, Reactivity, Applications, Vol. 1*; Togni, A.; Halterman, R.L. Eds.; Wiley-VCH: Weinheim, Germany, 1998, pp. 111-152.
 (b) Schumann, H.; Meese-Marktscheffel, J.A.; Esser, L. *Chem. Rev.* 1995, 95, 865.

- (a) Henling, L.M.; Herzog, T.A.; Bercaw, J.E. Acta Crystallogr., Sect. C 52, 1996, submitted.
 (b) Veghini, D.; Day, M.W.; Bercaw, J.E. Inorganica Chimica Acta 1998, 280, 226.
- 13. Coughlin, E.B. Ph.D. Thesis, California Institute of Technology, 1994.
- 14. Evans, W.J.; Peterson, T.T.; Rausch, M.D.; Hunter, W.E.; Zhang, H.; Atwood, J.L. Organometallics 1985, 4, 554.
- 15. Evans, W.J.; Olofson, J.M.; Zhang, H.; Atwood, J.L. Organometallics 1988, 7, 629.
- 16. Xie, Z.; Liu, Z.; Zhang, Z.; Mak, T.C. W. J. Organomet. Chem. 1997, 542, 285.
- 17. Coughlin, E.B.; Henling, L.M.; Bercaw, J.E. Inorg. Chimica Acta 1996, 242, 205.
- 18. Stern, D.; Sabat, M.; Marks, T.J. J. Am. Chem. Soc. 1990, 112, 9558.
- 19. Schaverien, C.L. Adv. Organometallic. Chem. 1994, 36, 283.
- 20. Abrams, M.A. Ph.D. Thesis California Institute of Technology, 1998.
- 21. Coughlin, E.B. Ph.D. Thesis California Institute of Technology, 1994.
- Mitchell, J.P.; Hajela, S.; Brookhart, S.K.; Hardcastle, K.I.; Henling, L.M.; Bercaw, J.E. J. Am. Chem. Soc. 1996, 118, 1045.
- (a) Ballard, D.G.H.; Pearce, R. J.C.S. Chem. Comm. 1975, 621. (b) Holton, J.; Lappert, M.F.; Scollary, G.R.; Ballard, D.G.H.; Pearce, R.; Atwood, J.L.; Hunter, W.E. J.C.S. Chem. Comm. 1976, 12, 425. (c) Holton, J.; Lappert, M.F.; Ballard, D.G.H.; Pearce, R.; Atwood, J.L.; Hunter, W.E. J.C.S. Dalton. 1979, 45. (d) Holton, J.; Lappert, M.F.; Ballard, D.G.H.; Pearce, R.; Atwood, J.L.; Hunter, W.E. J.C.S. Dalton. 1979, 54.
- 24. Evans, W.J.; Chamberlain, L.R.; Ulibarri, T.A.; Ziller, J.W. J. Am. Chem. Soc. 1988, 110, 6432.
- (a) Watson, P.L. J. Am. Chem. Soc. 1982, 104, 337. (b) Watson, P.L.; Parshall, G.W. Acc. Chem. Res. 1985, 18, 51. (c) Busch, M.A.; Harlow, R.; Watson, P.L. Inorganica Chimica Acta 1987, 140, 15.
- 26. den Haan, K.H.; Wielstra, Y.; Eshuis, J.J.W.; Teuben, J.H. J. Organomet. Chem. 1987, 323, 181.
- 27. Holton, J.; Lappert, M.F.; Ballard, D.G.H.; Pearce, R.; Atwood, J.L.; Hunter, W.E. J.C.S. Dalton. 1979, 54.
- 28. Strauss, D.A.; Grubbs, R.H. J. Mol. Cat. 1985, 28, 9.

- 29. Razavi, A.; Atwood, J.L. J. Organomet. Chem. 1993, 459, 117.
- 30. Schofer, S.J.; Bercaw, J.E. unpublished results.
- 31. Coughlin, E.B.; Bercaw, J.E. J. Am. Chem. Soc. 1992, 114, 7606.
- 32. Piers, W.E.; Shapiro, P.J.; Bunel, E.E.; Bercaw, J.E. Synlett, 1990, 2, 74.
- 33. Burger, B. J.; Bercaw, J. E. New Developments in the Synthesis, Manipulation, and Characterization of Organometallic Compounds, **1987**; Vol. 357. ACS Symposium Series.
- 34. Marvich, R. H.; Brintzinger, H. H. J. Am. Chem. Soc. 1971, 93, 203.
- 35. Cowley, A. H.; Kemp, R. A. Synth. React. Inorg. Metal-Org. Chem. 1981, 11, 591.
- 36. Manzer, L.E. Inorg. Synth. 1982, 21, 135.
- 37. Herzog, T.A. Ph.D. Thesis, California Institute of Technology, 1997.
- Perrin, D. D.; Armagrego, W. L. F. Purification of Laboratory Chemicals, 3rd ed.; Pergamon Press: New York, NY, 1988.
- 39. Herzog, T.A.; Bercaw, J.E. unpublished results.
- 40. Asakura, T.; Demura, M.; Nishiyama, Y. Macromolecules 1991, 24, 2334.
- 41. DLZ thanks Dr. Steve A. Cohen at BP Amoco Chemical for his assistance in obtaining molecular weight data.
- 42. Zambelli, A.; Locatelli, P.; Bajo, G.; Bovey, M.A. Macromolecules 1975, 8, 687.

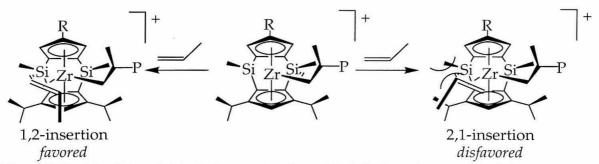
Chapter 2

Group 5 Ansa-Metallocenes as Models for Ziegler-Natta Polymerization Catalysts


Abstract

To further elucidate the origin of stereocontrol in *ansa*-metallocene Ziegler-Natta polymerization catalysts, a family of *ansa*-tantalocene complexes has been prepared. The dipotassio ligand salt, K₂[Me₂Si(C₅H₄)₂], has been utilized for preparation of the tantalocene trimethyl complex, Me₂Si(η^{5} -C₅H₄)₂TaMe₃ (SpTaMe₃). This complex has been characterized by X-ray crystallography. SpTaMe₃ may be used as a synthetic precursor for the corresponding tantalocene ethylene-methyl complex, SpTa(η^{2} -CH₂=CH₂)Me. Excess propylene may be added to this ethylene-methyl complex to induce olefin exchange; a mixture of *endo* and *exo* propylene-methyl isomers is observed.

Metallation of the doubly-silylene bridged ligand, $M_2[(1,2-SiMe_2)_2(C_5H_3)_2]$ (M_2Rp) with TaCl₂Me₃ yields a bridged dinuclear complex, Rp(TaMe₃Cl)₂. In contrast, metallation of $M_2[(1,2-SiMe_2)_2(4-CMe_3-C_5H_2)(C_5H_3)]$ (M₂tBuRp) with TaCl₂Me₃ allows isolation of an ansa-tantalocene methylidene-methyl complex, tBuRpTa(CH₂)CH₃, as a minor product. The dipotassio ligand salt, $K_2[(1,2-$ SiMe₂)₂(4-CMe₃-C₅H₂)(3,5-(CHMe₂)₂-C₅H)] (K₂tBuThp) when combined with TaCl₂Me₃ yields a mixture of [(1,2-SiMe₂)₂(η⁵-4-CMe₃-C₅H₂)(η²-3,5-(CHMe₂)₂-C₅H)]TaMe₃ and $[(1,2-SiMe_2)_2(\eta^5-4-CMe_3-C_5H_2)(\eta^5-3,5-(CHMe_2)_2 C_{5}H$]Ta(CH₂)CH₃. Both complexes have been characterized by X-ray crystallography. Thermolysis of this methylidene-methyl complex promotes conversion to the corresponding ethylene-hydride complex, tBuThpTa(η^2 -CH₂=CH₂)H. This ethylene-hydride complex undergoes olefin exchange with propylene and styrene to form the olefin-hydride complexes, tBuThpTa(η2-CH₂=CHR')H (where R' is methyl or phenyl). Both olefin-hydride complexes have been analyzed by Nuclear Overhauser difference NMR spectroscopy to determine the relative orientation of the bound olefin. These model systems have provided a more thorough understanding of stereocontrol with ansametallocene catalysts.


Introduction

Understanding mechanisms of stereocontrol in *ansa*-metallocene Ziegler-Natta polymerization catalysts has been an area of intense study since the infancy of these catalysts.¹ Brintzinger's report of isotactic polypropylene formation utilizing the C_2 -symmetric, *rac*-ethylene bisindenyl zirconocene dichloride as a precatalyst² provided important insight into how metallocene symmetry affects polymer microstructure. Later work by Ewen suggested that C_s -symmetry may be necessary for the formation of syndiotactic polypropylene; he and others have employed C_s -symmetric, singly-linked cyclopentadienylfluorenyl zirconocenes for propylene polymerization.³ Further studies in our group established additional requirements for syndiospecific polymerization catalysts; this work culminated in the introduction of a family of C_s -symmetric, doubly-silylene bridged *ansa*-zirconocenes (RThpZrCl₂) for production of highly syndiotactic polypropylene.⁴ These zirconocene precatalysts and the polypropylene microstructures they provide are illustrated in Figure 1.

Figure 1: Metallocene symmetry exerts an influence on resulting polypropylene microstructure. Select C_2 -symmetric zirconocenes may be used for the preparation of isotactic polymer (high *m* diad content). Select C_s -symmetric zirconocenes may be used for the preparation of syndiotactic polymer (high *r* diad content).

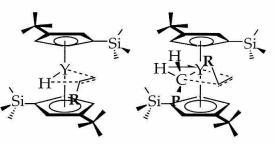
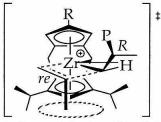
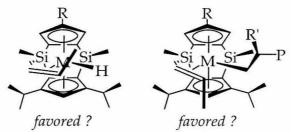

While the relationship between metallocene symmetry and polymer microstructure is becoming more well understood, the important stereodirecting interactions during olefin insertion that provide polymers with high stereospecificity and controlled molecular weight remain unclear. Prior studies have established that prevalent 2,1-olefin insertions limit polymer molecular weight.⁵ For example, RThp zirconocene catalysts can provide very high molecular weight polymers and exhibit negligible 2,1-olefin insertions (*exo* olefin coordination). This may be attributed to steric interactions between the incoming α -olefin and the dimethylsilyl methyl groups that orient themselves towards the metallocene wedge, as illustrated in Figure 2. This suggests the importance of ligand array in dictating olefin coordination preferences (*endo* versus *exo*). A systematic study of diastereomeric preferences for olefin coordination for a range of *ansa*-metallocenes has not been achieved to date.

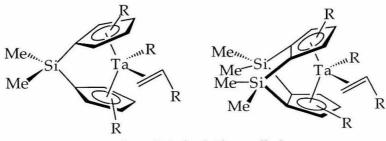
Figure 2: Doubly-silylene bridged zirconocenes favor 1,2-olefin insertion over 2,1-olefin insertion.


Prior studies have probed the important stereodirecting interactions that operate in the formation of isospecific poly(α -olefins). Pino *et al.* were the first to report the absolute enantioselectivity for α -olefin insertion into metal-hydride and metal-alkyl bonds of *ansa*-zirconocene polymerization catalysts.⁶ Optically pure ethylene bis(4,5,6,7-tetrahydroindenyl) zirconocene dichloride was used to prepare low molecular weight hydrooligomers. Polarimetry measurements of select fractions suggest that olefin insertions into metal-hydride and metal-*n*-pentyl bonds proceed from opposite enantiotopic faces of 1-pentene. More recently, Gilchrist and Bercaw utilized an isotopically chiral olefin as a more sensitive probe for measurement of olefin insertion stereoselectivity.⁷ An optically pure yttrocene, (R,S)-BnBpY-R (where R is H or *n*-pentyl), was employed to determine the absolute enantioselectivity for 1-pentene insertions into yttrocene-hydride and yttrocene-*n*-pentyl bonds. Insertions of 1-pentene into Y-H and Y-*n*-pentyl bonds were found to proceed with opposite olefin enantiofaces (as illustrated in Figure 3). In addition, while insertion into Y-H

exhibits low enantioselectivity (ee \approx 33%), insertion into Y-*n*-pentyl is highly enantioselective (> 95% ee).


Figure 3: Proposed α -olefin insertion into yttrocene-hydride and yttrocene-polymer moieties.

These olefin insertion preferences with C_2 -symmetric, isospecific metallocenes have been extended to predict preferences for C_s -symmetric, syndiospecific metallocenes. For example, the α -olefin insertion transition state for RThp zirconocene polymerization catalysts has been postulated (see Figure 4). It is presumed that the bulky diisopropyl-substituted cyclopentadienyl ring forces the polymer chain towards the R-substituted cyclopentadienyl ring, and the alkyl substituent of the incoming α -olefin is oriented *trans* with respect to the β -carbon of the polymer chain. In fact, the open region between the isopropyl substituents was designed to readily accommodate this alkyl substituent.


Figure 4: A proposed transition state for α -olefin insertion into a growing polymer chain for a C_s -symmetric, RThp metallocene.

While previous studies have demonstrated that enantiofacial preferences for olefin insertion into metal-hydride and metal-*n*-pentyl bonds of C_2 symmetric metallocenes differ, similar preferences for C_s -symmetric metallocenes (such as RThp metallocenes) have not been examined directly. If olefin insertions into metal-hydride and metal-alkyl bonds of RThp metallocenes proceed with opposite enantiofaces (as observed for C_2 -symmetric metallocenes), intermediates such as those illustrated in Figure 5 may be operating. An understanding of olefin coordination and insertion for C_s - symmetric metallocenes may further our understanding of the mechanism of syndiospecific α -olefin polymerization. More generally, examination of olefin coordination and insertion for a range of *ansa*-metallocenes may provide valuable insight into the origins of stereocontrol in Ziegler-Natta α -olefin polymerization.

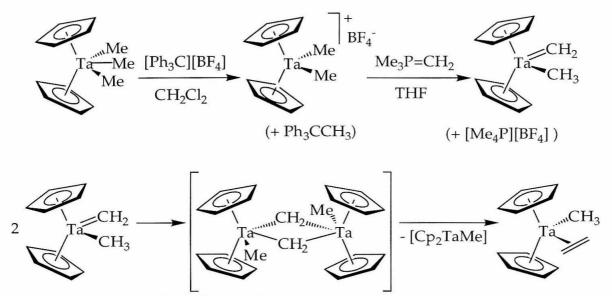
Figure 5: Potential olefin insertion preferences into metal-hydride and metal-polymer bonds for C_s -symmetric, RThp metallocenes.

In order to probe these important stereocontrol issues, a family of *ansa*tantalocene complexes has been prepared. Unlike neutral group 3 or cationic group 4 metallocenes, group 5 metallocenes may stabilize olefin adducts through π -backbonding. Isolation and characterization of these olefin adducts may allow an investigation of olefin coordination preferences for both metal-hydride and metal-alkyl complexes. Variation of ligand array (singly versus doubly-silylene bridged metallocenes with different substitution patterns, see Figure 6) may provide insight regarding the importance of ligand sterics and electronics in olefin coordination. This may furnish an understanding of diastereomeric

where R is hydride or alkyl

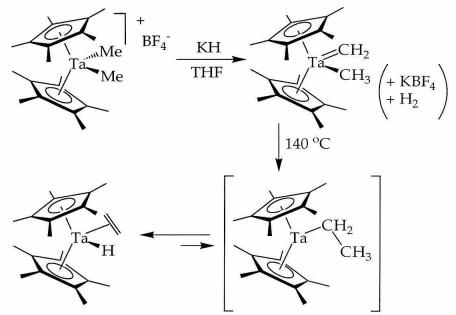
Figure 6: Singly- and doubly-silylene linked tantalocene olefin-hydride and olefin-alkyl complexes are desired as model complexes for Ziegler-Natta polymerization catalysts.

preferences for olefin coordination (*endo* versus *exo*, etc.). Also, olefin equilibration reactions may supply information regarding the relative ground


state energies of distinct tantalocene olefin adducts. Overall, it is hoped that these *ansa*-tantalocene olefin-hydride and olefin-alkyl complexes may serve as models for the olefin insertion transition state in Ziegler-Natta polymerization.

Few *ansa*-metallocenes incorporating group 5 transition metals have been reported to date. Green and coworkers have prepared a series of isopropylidene-linked niobocene dichloride complexes via reaction of deprotonated ligand salts with NbCl₄(THF)₂.⁸ Select metallocenes may be converted to the corresponding borohydrides, yet subsequent conversion to niobocene olefin-hydride complexes has been unsuccessful to date. Dimethylsilyl-linked niobocene dichloride have been prepared similarly, and select alkyne-chloride complexes have also been reported.⁹ More recently, Parkin has described the synthesis of the *ansa*-tantalocene, Me₂Si(η^{5} -C₅Me₄)₂TaH₃.¹⁰ This tantalocene is prepared by metallation of the distannylated ligand with TaCl₅, reduction of the resulting trichloride complex with LiAlH₄, and subsequent hydrolysis. Addition of ethylene to the tantalocene trihydride complex and thermolysis (80°C, hours) affords the corresponding ethylenehydride complex, Me₂Si(η^{5} -C₅Me₄)₂Ta(η^{2} -CH₂=CH₂)H. This is the first reported example of a group 5 *ansa*-metallocene olefin-hydride complex.

The use of TaCl₂Me₃ as a metal source for the preparation of *ansa*tantalocenes has not been explored previously. This starting material has been utilized for the preparation of unlinked tantalocene trimethyl complexes; select metallocenes may serve as synthetic precursors to tantalocene olefin adducts. Moreover, the preparation of *ansa*-tantalocene complexes from distannylated ligands and TaCl₅ has some synthetic limitations (*vide infra*). Thus, our initial synthetic efforts directed towards the preparation of *ansa*-tantalocene olefin adducts have mirrored these prior investigations.

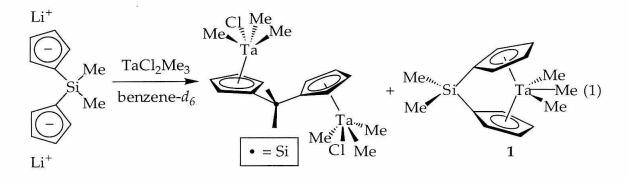

Schrock and coworkers have described the utility of TaCl₂Me₃ for the preparation of unlinked tantalocene trimethyl complexes, such as $(\eta^{5}-C_{5}H_{5})_{2}Ta(CH_{3})_{3}$ (Cp₂TaMe₃).¹¹ These complexes have been used as synthetic precursors to tantalocene ethylene-methyl complexes, as illustrated in Figure 7. Trityl tetrafluoroborate may be used to abstract a methyl group from the tantalocene trimethyl complex. Subsequent reaction of the cationic tantalocene dimethyl complex with base, such as methylidene trimethylphosphorane, affords

the corresponding tantalocene methylidene-methyl complex. The methylidenemethyl complex is unstable in solution at 25°C and undergoes facile bimolecular decomposition to afford one equivalent of $[Cp_2TaMe]$ (not detected by ¹H NMR spectroscopy) and one equivalent of $Cp_2Ta(\eta^2-CH_2=CH_2)Me$. This bimolecular decomposition pathway has been supported by trapping experiments with donor ligands, such as ethylene, trimethylphosphine, dimethylphenylphosphine, and carbon monoxide; $Cp_2Ta(CH_3)L$ complexes are formed.

Figure 7: Cp₂TaMe₃ may be used as a synthetic precursor to the corresponding tantalocene ethylene-methyl complex.

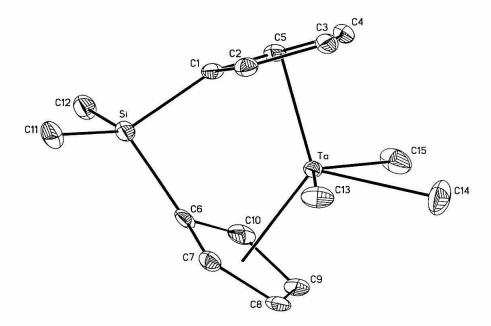
In contrast, reaction of $[(\eta^5-C_5Me_5)_2Ta(CH_3)_2][BF_4]$ ($[Cp^*_2TaMe_2][BF_4]$) with base, such as potassium hydride, affords the corresponding methylidenemethyl complex which is stable in solution at 25°C. Thermolysis (at 140°C) of this complex induces intramolecular α -migratory insertion to yield the ethylenehydride complex, $(\eta^5-C_5Me_5)_2Ta(\eta^2-CH_2=CH_2)H.^{12}$ This reaction pathway is illustrated in Figure 8. The increased steric bulk of the bispentamethylcyclopentadienyl ligand framework appears to inhibit the bimolecular decomposition pathway observed for the bis-cyclopentadienyl tantalocene methylidene-methyl complex.

Figure 8: [Cp*₂TaMe₂][BF₄] may be used as a synthetic precursor to the corresponding tantalocene ethylene-hydride complex.

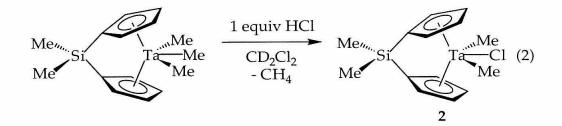

Results and Discussion

Singly-silylene bridged ansa-tantalocenes

Preparation of *ansa*-tantalocene complexes incorporating the singlysilylene linked ligand, Me₂Si(C₅H₄)₂, was an attractive initial synthetic target due to the simplicity of the ligand array. The *ansa*-tantalocene trihydride complex, Me₂Si(η^{5} -C₅H₄)₂TaH₃, has been prepared in our laboratories as a synthetic precursor to the corresponding ethylene-hydride complex.¹³ In contrast to Me₂Si(η^{5} -C₅Me₄)₂TaH₃, thermolysis of Me₂Si(η^{5} -C₅H₄)₂TaH₃ in the presence of excess ethylene provides a mixture of ethylene-hydride and ethylene-ethyl complexes. This result provided additional motivation for the preparation of *ansa*-tantalocene trimethyl complexes as synthetic precursors for olefin adducts.


Reaction of the dilithio ligand salt, Li₂[Me₂Si(C₅H₄)₂] (Li₂Sp), with TaCl₂Me₃ in benzene- d_6 provides a mixture of two products: Me₂Si(η^{5} -C₅H₄)₂(TaMe₃Cl)₂ [Sp(TaMe₃Cl)₂] and Me₂Si(η^{5} -C₅H₄)₂TaMe₃ (SpTaMe₃, **1**), as illustrated in eq. 1. These products have been identified by ¹H NMR spectroscopy; the tantalum-methyl resonances are diagnostic. The bridged

dinuclear complex, Sp(TaMe₃Cl)₂, comprises the majority of the product mixture. Preparative scale metallation of Li₂Sp with TaCl₂Me₃ in diethyl ether affords the bridged dinuclear complex as the sole isolable product.¹⁴


The desired tantalocene trimethyl complex (1) may be generated as the major product by use of the dipotassio ligand salt, $K_2[Me_2Si(C_5H_4)_2]$ (K_2Sp) for metallation. Dropwise addition of a dilute diethyl ether solution of TaCl₂Me₃ to a slurry of K₂Sp at 25°C was employed to maximize formation of the desired *ansa*-metallocene. Complex 1 may be isolated as an off-white powder in 19.8% yield.¹⁵

Slow cooling of a diethyl ether solution of **1** provides transparent crystals that are suitable for X-ray diffraction. Figure 9 contains the solid state structure of **1**; the space group is P2(1)/n. This structure does not contain any unusual features. The cyclopentadienyl rings display η^5 , η^5 hapticity with 2.215 Å distances from tantalum to each cyclopentadienyl centroid. The tantalum-methyl bonds of 2.300 Å (Ta-C13), 2.277 Å (Ta-C14), and 2.310 Å (Ta-C15) are standard tantalum-alkyl bond lengths.

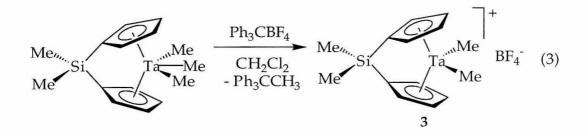
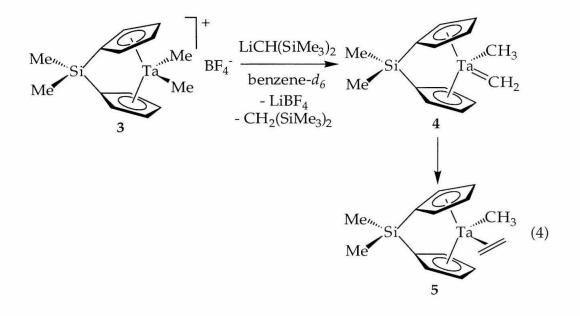
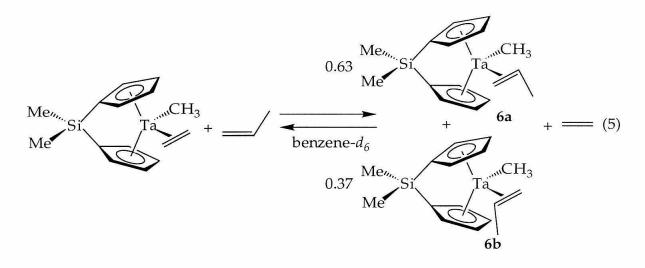


Figure 9: Molecular structure of **1** with selected atoms labeled (50% probability ellipsoids). Hydrogen atoms are omitted for clarity.


The lability of the tantalum-methyl ligands of **1** has been examined. Addition of 4 atm of dihydrogen to a benzene- d_6 solution of **1** provides no reaction. Since **1** is an 18 electron, coordinatively saturated complex, this lack of reactivity was not surprising. Combination of **1** with one equivalent ZnCl₂ in benzene- d_6 solution also provides no reaction, presumably due to the low solubility of ZnCl₂ in this solvent. Reaction of **1** with one equivalent HCl in methylene chloride- d_2 affords the tantalocene dimethyl-chloride complex, Me₂Si(η^5 -C₅H₄)₂TaMe(Cl)Me (SpTaMe(Cl)Me, **2**), where the central methyl group has been protonated to form the C_{2v} -symmetric product (eq. 2). Addition of one or two equivalents HCl to **2** does not provide the expected tantalocene methyl-dichloride and trichloride complexes, respectively; a mixture of products and decomposition are observed instead.

Addition of one equivalent of either trityl tetrafluoroborate or trityl hexafluorophosphate to **1** in methylene chloride liberates Ph_3CCH_3 and provides the corresponding cationic tantalocene dimethyl complex. Trityl tetrafluoroborate has been used to generate $[Me_2Si(\eta^5-C_5H_4)_2TaMe_2][BF_4]$ ([SpTaMe₃][BF₄], **3**) on a preparative scale (eq. 3); **3** has been isolated as a bright yellow powder in high isolated yield (89.6%). Complex **3** is sparingly soluble in methylene chloride- d_2 ; consequently, only ¹H and ¹⁹F NMR spectroscopy have been used for characterization purposes.

The reactivity of **3** towards various bases such as LiCH(SiMe₃)₂, LiCH₂(SiMe₃), and LiN(SiMe₃)₂, has been examined. Reactions have been carried out in benzene-*d*₆ and monitored by ¹H NMR spectroscopy. At short reaction times the methylidene-methyl complex, Me₂Si(η^{5} -C₅H₄)₂Ta(CH₂)CH₃ (**4**), is observed. Over the course of 24 hours the ethylene-methyl complex, Me₂Si(η^{5} -C₅H₄)₂Ta(η^{2} -CH₂=CH₂)CH₃ (**4**), becomes the only metallocene product detected in the reaction mixture. Use of a sterically hindered base, such as LiCH(SiMe₃)₂ or LiN(SiMe₃)₂, minimizes formation of impurities. The reaction pathway for conversion of **3** to **5** is illustrated in eq. 4.



Diagnostic resonances for complexes 4 and 5 have been observed by ¹H and ¹³C NMR spectroscopy. The methylidene-methyl complex displays a singlet at 10.30 ppm in the ¹H NMR spectrum for the methylidene hydrogens. The ¹H NMR spectrum of the ethylene-methyl complex contains two triplets at 1.23 and 0.96 ppm that correspond to the hydrogens of the bound ethylene. The carbons of the bound ethylene resonate at 26.53 and 18.89 ppm, and the tantalum-methyl carbon is observed at -4.54 ppm.

The proposed mechanism for formation of **5** is analogous to the bimolecular decomposition pathway illustrated in Figure 1. Two equivalents of the methylidene-methyl complex, **4**, may combine to form a bimolecular intermediate that disproportionates to generate one equivalent of **5** and one equivalent of a tantalum(III) methyl complex, $[Me_2Si(\eta^5-C_5H_4)_2TaCH_3]$, that is not observed by ¹H NMR spectroscopy.

This reaction pathway has been probed by addition of donor ligands, such as ethylene and propylene, to trap the putative tantalocene(III) methyl complex. Indeed, combination of **3** with LiCH(SiMe₃)₂ in the presence of 25 equivalents of ethylene produces greater than 50% conversion to **5**; the control experiment without added ethylene provides less than 50% conversion. Also, combination of **3** with LiCH(SiMe₃)₂ in the presence of 25 equivalents of propylene yields **5** with some evidence for tantalocene propylene-methyl complexes. These results support a bimolecular decomposition mechanism for formation of 5. Slower observed rates for conversion of the more sterically encumbered [Me₂Si(η^{5} -C₅H₄)(η^{5} -2,4-(CHMe₂)₂-C₅H₂)]Ta(CH₂)CH₃ to the corresponding ethylenemethyl complex also are in accord with a bimolecular decomposition mechanism.¹³

Consequently, complex **5** has been prepared on a preparative scale by combination of **3** with LiCH(SiMe₃)₂ under an atmosphere of ethylene; recrystallization from pentane affords **5** as a pale tan solid. Olefin exchange has been demonstrated with **5**; addition of excess propylene to **5** in benzene- d_6 solution affords two new olefin adducts (**6a**, **6b**) in a 1.70 : 1 ratio, as evidenced by ¹H NMR spectroscopy. These propylene-methyl complexes exhibit characteristic ¹H NMR resonances for the propylene-methyl substituents (doublets at 2.04 and 1.92 ppm). NMR analysis is consistent with the formation of *endo* and *exo* propylene adducts, as illustrated in eq. 5.

A preference for formation of the *endo* isomer may be attributed to unfavorable steric interactions in the *exo* isomer between the propylene-methyl substituent and a silyl-methyl substituent of the ligand. A comparison of the *endo* : *exo* ratio for **6** and other linked and unlinked niobocene and tantalocene propylene-hydride complexes is provided in Table 1.

molecular formula	% endo	% exo	reference
Cp ₂ Nb(CH ₂ =CHCH ₃)H	50%	50%	16
Cp*2Nb(CH2=CHCH3)H	100%	0%	17
Cp ₂ Ta(CH ₂ =CHCH ₃)H	50% (100%)	50% (0%)	18
Cp* ₂ Ta(CH ₂ =CHCH ₃)H	100%	0%	19
iPrSpTa(CH ₂ =CHCH ₃)H	100%	0%	20
tBuSpTa(CH ₂ =CHCH ₃)H	100%	0%	20
SpTa(CH ₂ =CHCH ₃)Me	63%	37%	*

Table 1: Comparison of percent *endo* versus percent *exo* product for niobocene and tantalocene propylene adducts.

 * denotes data from this work.

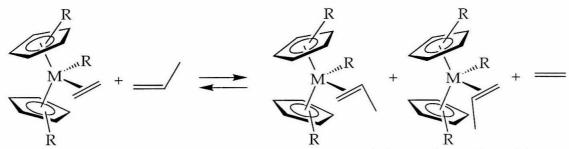
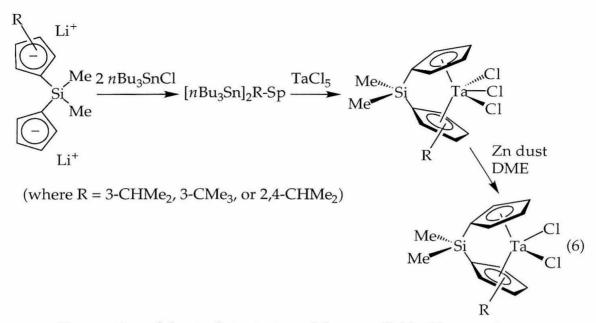
Contrasting **6** with its unlinked, niobium counterpart Cp₂Nb(η^{2} -CH₂=CHCH₃)H suggests that the *ansa*-bridge enforces a slight preference for the *endo* isomer. Two different *endo* to *exo* ratios have been reported for Cp₂Ta(η^{2} -CH₂=CHCH₃)H.¹⁸ When Cp₂Ta(η^{2} -CH₂=CHCH₃)H is generated by reaction of Cp₂TaCl₂ with two equivalents of *i*-PrMgCl, a 1 : 1 ratio of *endo* to *exo* isomers is observed. In contrast, when two equivalents of *n*-PrMgCl are employed, the endo isomer is the exclusive product.

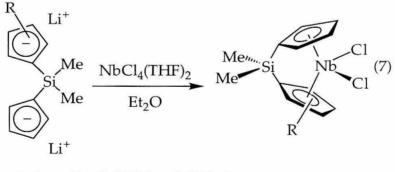
The sterics towards the sides and back of the metallocene wedge of **6** appear to be less significant than those of Cp*₂M(η^2 -CH₂=CHCH₃)H (where M = Nb, Ta), where exclusive *endo* olefin coordination is enforced. Similarly, *ansa*-tantalocenes of the form [Me₂Si(η^5 -C₅H₄)(η^5 -3-R-C₅H₂)]Ta(η^2 -CH₂=CHCH₃)H (RSpTa(CH₂=CHCH₃)H, where R = CMe₃, CHMe₂) display exclusive *endo* coordination of propylene. From this data, it appears that joining cyclopentadienyl ligands with a dimethylsilyl linker plays a small yet significant role in hindering *exo* propylene coordination.

The equilibrium described in equation 5 has been analyzed to determine the equilibrium constant, free energy change (at 298 K), and relative ground state energies (G.S.E.) for 5 and 6 (Table 2). When appropriate, the equilibrium constants in Table 2 were each calculated as an average of $K_{eq}(endo)$ and $K_{eq}(exo)$. Calculation of relative G.S.E. requires consideration of the contributions of free olefin to the equilibrium. Since coordination of an olefin to tantalum or niobium involves partial reduction of the double bond, olefin hydrogenation may be used as a model reaction. Free energies of hydrogenation for ethylene and propylene²¹ were used to determine the relative G.S.E. of **5** and **6**. This type of analysis has been used previously.^{17,22} Equilibration between ethylene and propylene adducts is illustrated in Figure 10 in a more general fashion.

molecular formula	K _{eq} 298	ΔG°	relative	reference	
		(kcal/mol)	G.S.E.		
Cp2Nb(η ² -CH2=CHR')H	3.0 (5) x 10-3	3.4 (4)	3.7 (4)	16	
$Cp^*_2Nb(\eta^2-CH_2=CHR')H$	6.9 x 10-4	2.9 (2)	1.1	17	
SpTa(η ² -CH ₂ =CHR')Me	$9.2 \ge 10^{-4}$	4.1	2.4	*	

Table 2: Equilibrium data for ethylene (R' = H) and propylene (R' = Me) adducts, as described in Figure 10. * denotes signifies the data from this work.


Figure 10: General equation for equilibration of metallocene ethylene and propylene adducts.

Development of a Ta(IV) starting material

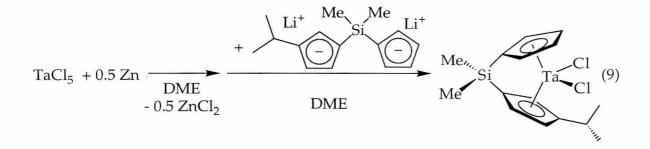
Recently, *ansa*-tantalocene dichloride complexes of the form [Me₂Si(η^{5} -C₅H₄)(η^{5} -3-R-C₅H₂)]TaCl₂ (RSpTaCl₂, where R = CMe₃, CHMe₂) and [Me₂Si(η^{5} -C₅H₄)(η^{5} -2,4-(CHMe₂)₂-C₅H₂)]TaCl₂ (iPr₂SpTaCl₂) have been employed as synthetic precursors for olefin-hydride complexes.²⁰ These dichlorides have been synthesized using a multistep procedure, as illustrated in equation 6. Some notable aspects of this synthesis are the use of tri-*n*-butyl tin chloride for stannylation of the dilithio ligand salt and the zinc reduction of the tantalocene trichloride complex to generate the desired tantalocene dichlorides.

Preparation of the analogous *ansa*-niobocene dichloride complexes may be achieved by combination of dilithio ligand salts and NbCl₄(THF)₂ (eq. 7).²⁰ The availability of a niobium (IV) starting material eliminates the need for a metallocene trichloride reduction and does not require use of stannylated ligand.

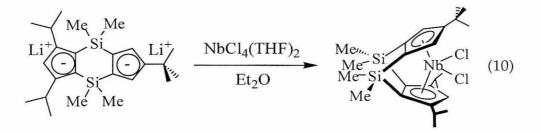
(where R = 3-CHMe₂, 3-CMe₃)

The synthesis of tantalocene dichloride complexes described in equation 15 has some synthetic limitations. Use of n-Bu₃SnCl is generally undesirable due to its toxicity. Also, stannylation of dilithio ligand salts is limited in ligand scope. Bulky ligand arrays such as tBuThp and Bp¹⁴ are not amenable to distannylation. Moreover, the number of required reactions is greater than in preparation of the analogous niobocene complexes (eq. 7). This is due the lack of a suitable Ta(IV) precursor to date.

The number of Ta(IV) complexes in the literature are limited.²³ Some tantalum tetrachloride adducts have been reported, such as TaCl₄(CH₃CN)₂, TaCl₄(pyridine)₂,²⁴ TaCl₄(PMe₃)₃, and TaCl₄(PEt₃)₂.²⁵ The attempted preparation of TaCl₄(THF)₂ has also been described.²⁶ *In situ* generation of a Ta(IV) species for generation of dicyclopentadienyl tantalocene dichloride is also precedented; *i*-PrMgBr was used to reduce TaCl₅ to TaCl₄ (eq. 8).²⁷

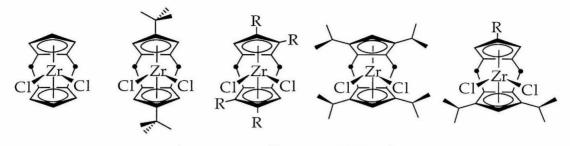

$$TaCl_{5} + i PrMgBr \longrightarrow TaCl_{4} + MgBrCl + [i - Pr \bullet]$$

$$green suspension \qquad (8)$$


$$TaCl_{4} + 2 CpNa \longrightarrow Cp_{2}TaCl_{2} + 2 NaCl$$

Both TaCl₄(CH₃CN)₂ and TaCl₄(THF)₂²⁸ were tested for metallation of the singly-bridged ligand, Li₂iPrSp {Li₂[Me₂Si(3-CHMe₂-C₅H₃)(C₅H₄)]}. These Ta(IV) sources did not afford the desired *ansa*-tantalocene dichloride complex. DME (1,2-dimethoxyethane) was examined in attempt to prepare a stabilized tantalum tetrachloride complex. Reduction of TaCl₅ with either Al or Zn in DME provided an olive-green solution over the course of hours. Attempts to concentrate the DME solution or isolate the reduction product as a solid resulted in decomposition or unexplained mixtures of products, as evidenced by EPR spectroscopy.

However, *in situ* reduction of TaCl₅ has been employed for preparation of the known complex, iPrSpTaCl₂ (eq. 9).¹³ Reduction of TaCl₅ by 0.5 equivalents of zinc dust in DME affords an olive-green solution; dropwise addition of this solution to Li₂iPrSp (in DME) affords iPrSpTaCl₂ upon workup. This tantalocene dichloride was identified by ambient temperature EPR spectroscopy. Further reaction of this tantalocene dichloride complex with 2.2 equivalents of phenethylmagnesium chloride afforded the corresponding tantalocene styrene-hydride complexes, as reported previously. Similar reactions were attempted with a singly linked cyclopentadienyl-fluorenyl ligand, Li₂[Ph₂C(C₅H₄)(C₁₃H₈)] (Li₂Ep), but the desired metallocenes were not isolated.



As noted above, tantalocene trichloride or dichloride complexes have not been prepared to date with the tBuThp ligand. Attempts to metallate M₂tBuThp (where M = Li, K) with TaCl5 have been unsuccessful. Also, addition of two equivalents of *n*-Bu₃SnCl to M₂tBuThp does not yield the desired distannylated ligand, presumably due to the sterics of the diisopropyl substituted cyclopentadienyl ring. Therefore, NbCl₄(THF)₂ was examined as a starting material for the preparation of corresponding niobocene dichloride complex. Indeed, combination of Li₂tBuThp and NbCl₄(THF)₂ in diethyl ether affords tBuThpNbCl₂ over the course of days at 25°C (eq. 10). This niobium(IV) complex has been analyzed by ambient temperature EPR spectroscopy; in methylene chloride solution it exhibits a characteristic ten line spectrum (⁹³Nb = 100%, S = 9/2). Further manipulation of this complex to afford olefin adducts is currently in progress.

Doubly-silylene bridged ansa-tantalocenes

A variety of doubly-silylene bridged *ansa*-zirconocenes has been developed in recent years for use as α-olefin polymerization catalysts (see Figure 11). These catalysts display a range of polymerization activities and produce polymers with markedly different tacticities. Examination of these trends may provide a better understanding of the origin of stereocontrol for Ziegler-Natta polymerization catalysts. In turn, this may facilitate the development of new $poly(\alpha$ -olefins).

RpZrCl2BsZrCl2BrZrCl2TIPZrCl2RThpZrCl2Figure 11: RpZrCl2^{29,30}, BsZrCl2³¹, BrZrCl2³², TIPZrCl2³³, and RThpZrCl2⁴ are examples of
previously reported doubly-silylene bridged *ansa*-zirconocene dichloride complexes.

Three types of doubly-silylene bridged ligands have been investigated for preparation of ansa-tantalocene complexes as models for Ziegler-Natta catalysts (see Figure 12). The unsubstituted, doubly-silylene bridged ligand, (1,2- $SiMe_2_2(C_5H_3)_2$ (Rp), was chosen for comparison to the singly-silvlene linked Sp ligand discussed above. The C_s-symmetric ligand array, (1,2-SiMe₂)₂(4-R- C_5H_2)(C_5H_3) (RRp, where R = CMe_3, CHMe_2), has not been reported previously. This ligand was designed to further explore the importance of sterics in doubly-silvlene bridged metallocenes. Also, it may provide some insight regarding the relationship between incoming monomer, polymer chain, and ligand array in α -olefin polymerization. Ansa-tantalocenes employing the RThp ligand, $(1,2-SiMe_2)_2(4-R-C_5H_2)(3,5-(CHMe_2)_2-C_5H)$ (RThp, where R = CMe_3), were also targeted. The mechanism for stereocontrol employed by RThp metallocene catalysts has received the most attention, primarily due to the high activity and syndiospecificity they can induce. While the mechanisms for propagation and stereoerror formation have been examined by polymerization studies with group 4³⁴ and group 3³⁵ RThp catalysts, the preparation of group 5 metallocenes may allow further investigation of olefin coordination preferences and the olefin insertion transition state in Ziegler-Natta polymerization.

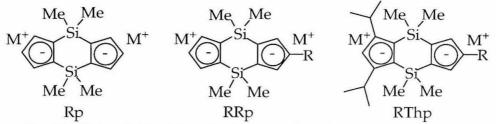
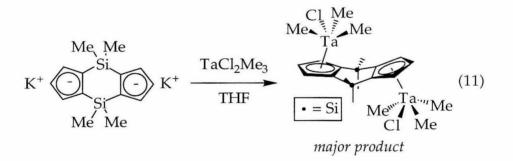



Figure 12: Doubly-silylene bridged ligand salts targeted for the synthesis of ansa-tantalocenes.

Rp ligand

Addition of a dilute solution of $TaCl_2Me_3$ (in THF) to a slurry of dipotassio ligand salt (K₂[(1,2-SiMe₂)₂(C₅H₃)₂], K₂Rp) affords a bridged-dinuclear complex as the major reaction product (eq. 11) in addition to other decomposition products. Following the course of metallation in THF-*d*₈ by ¹H NMR spectroscopy reveals that the major product decomposes under the reaction conditions over the course of days. Use of the dilithio ligand salt (Li₂Rp) also provides this bridged-dinuclear complex as the predominant reaction product.¹⁴ One hypothesis for the formation of this bridged-dinuclear complex is the low concentration of the ligand salt under reaction conditions due to poor solubility as compared to TaCl₂Me₃.

To address the low solubility of the ligand salts, crown ethers (12-crown-4 or 18-crown-6) were added to the reaction mixture to complex Li+ or K+, respectively. However, in the presence of these crown ethers decomposition is accelerated and no metallocene products could be isolated.

A synthetic methodology analogous to that used for the preparation of the *ansa*-tantalocene, $Me_2Si(C_5Me_4)_2TaH_3^{10}$, was also attempted with the Rp

ligand. Transmetallation of Li₂Rp with *n*-Bu₃SnCl in diethyl ether affords (*n*-Bu₃Sn)₂[(1,2-SiMe₂)₂(C₅H₃)₂] ((*n*-Bu₃Sn)₂Rp) as an orange oil. Subsequent reaction of the distannylated ligand with TaCl₅ affords a highly insoluble redpurple solid; ¹H NMR analysis of this product in THF-*d*₈ was inconclusive. Reduction of this red-purple solid with LiAlH₄, and subsequent hydrolysis (with aqueous ammonium chloride) did not provide the desired *ansa*-tantalocene trihydride complex. The very low solubility of the red-purple tantalocene product suggests the formation of bridged-dinuclear or higher oligomeric structures. Thus, the Rp ligand's lack of cyclopentadienyl substituents appears to favor spanning two tantalum centers. Since these methodologies have not allowed isolation of the desired η^5 , η^5 *ansa*-tantalocenes, more substituted doubly-bridged ligand arrays were examined.

RRp ligand

The RRp ligand array, $[(1,2-SiMe_2)_2(4-R-C_5H_2)(C_5H_3)]$ (RRp, where R = iPr, tBu), was designed to probe its ability to direct olefin binding preferences. To provide a preliminary understanding of the stereodirecting ability of this ligand array, tBuRp zirconocene dichloride has been prepared and utilized for propylene polymerization. It is expected that bulky R substituent (iPr or tBu) will force the methyl substituent of an incoming propylene molecule towards the unsubstituted cyclopentadienyl ring (as illustrated in Figure 13). However, whether the propylene methyl substituent and β -carbon of the polymer chain exhibit a *trans* or *cis* relationship during olefin coordination and insertion is unclear. A *trans* relationship has been detected for select singly-bridged

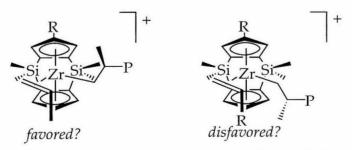
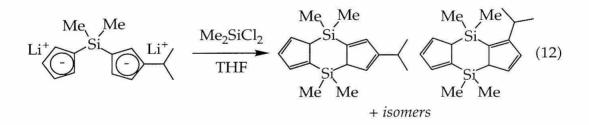
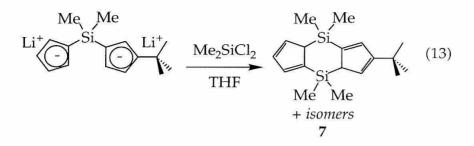
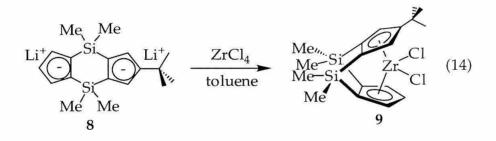



Figure 13: Both *trans* and *cis* relationships between the propylene methyl substituent and the β -carbon of the polymer chain may be possible for olefin coordination.


metallocenes^{6,7} and postulated for other C_s -symmetric, doubly-silylene bridged metallocenes.⁴ This relationship cannot be probed in a straightforward manner by employing RRp zirconocene polymerization catalysts. For these reasons, RRp tantalocene complexes were targeted.

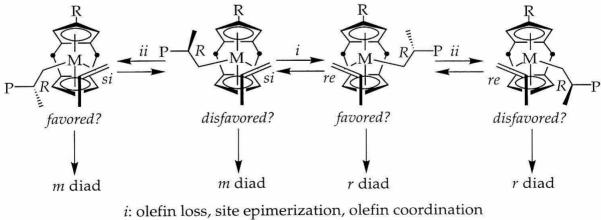
The synthetic route employed for the preparation of RRp ligands is similar to that of other substituted doubly-silvlene bridged ligands.³⁶ Preparation of the protio iPrRp ligand was attempted by the addition of Me₂SiCl₂ to a -78°C THF solution of Li₂iPrSp (eq. 12). The product of this reaction was isolated as a yellow oil; the ¹H NMR spectrum of the resulting product exhibited a large number of peaks and was difficult to interpret. Subsequent addition of *n*-BuLi to a diethyl ether solution of the reaction product affords a white solid. Analysis by ¹H NMR spectroscopy in THF- d_8 solvent reveals that the product is a mixture of two isomers, Li₂[(1,2-SiMe₂)₂(4-CHMe₂-C₅H₂)(C₅H₃)] and Li₂[(1,2-SiMe₂)₂(3-CHMe₂- C_5H_2)(C_5H_3)]. A similar observation was made by Herzog in the preparation of $M_2[(1,2-SiMe_2)_2(4-CHMe_2-C_5H_2)(3,5-CHMe_2-C_5H)]$ (where M = Li, K); 10% of the undesired isomer, $Li_2[(1,2-SiMe_2)_2(3-CHMe_2-C_5H_2)(3,5-CHMe_2-C_5H)]$, was formed.³⁶ Metallation of Li₂iPrRp with ZrCl₄ in toluene provides a mixture of product isomers, as anticipated. Separation of [(1,2-SiMe₂)₂(4-CHMe₂-C₅H₂)(C₅H₃)]ZrCl₂ from [(1,2-SiMe₂)₂(3-CHMe₂-C₅H₂)(C₅H₃)]ZrCl₂ was not straightforward and thus not pursued further.



The tBuRp ligand was prepared in a similar fashion. Addition of Me₂SiCl₂ to a -78°C THF solution of Li₂tBuSp {Li₂[Me₂Si(3-CMe₃-C₅H₃)(C₅H₄)} affords [(1,2-SiMe₂)₂(4-CMe₃-C₅H₂)(C₅H₃)] (7) as a yellow-white waxy solid (eq. 13). Subsequent deprotonation of 7 with either *n*-BuLi or KH provides the corresponding dilithio (Li₂tBuRp, **8**) or dipotassio (K₂tBuRp) ligand salts, respectively. Analysis by ¹H NMR spectroscopy reveals that only the desired 4-tBu substituted isomer is formed. The known propensity for *tert*-butyl

substituents to avoid occupying a position alpha to a dimethylsilyl linking substituent has been described previously.³⁷

The corresponding zirconocene dichloride complex was prepared in a standard fashion by addition of toluene to a mixture of **8** and ZrCl₄ at -78°C and slow warming to 25°C (eq. 14). The reaction product was extracted away from lithium chloride using petroleum ether and isolated as a yellow-white solid. Examination of the ¹H NMR spectrum of the reaction product in benzene- d_6 indicates that only the desired 4-tBu substituted isomer, [(1,2-SiMe₂)₂(4-CMe₃-C₅H₂)(C₅H₃)]ZrCl₂ (tBuRpZrCl₂, **9**), is formed. Notably, use of refluxing toluene for metallation leads to extensive decomposition and **9** cannot be isolated.

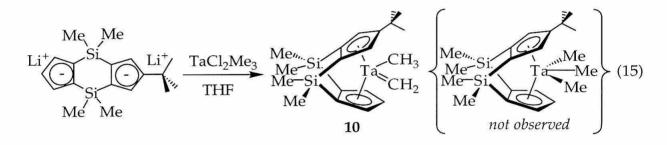


Complex 9 was targeted as an α -olefin polymerization precatalyst in order to assess the stereodirecting ability of the tBuRp ligand array. Towards this end, 9 was activated with 500 equivalents of MAO for propylene polymerization. The reaction was carried out in neat monomer at 0°C. Examination of the polymer tacticity by ¹³C NMR spectroscopy indicates that the polymer is primarily atactic, with a slight syndiotactic preference ([r] \approx 55.6%). The full pentad distribution for this sample is given in Table 3. Other polymerization conditions, such as dilute monomer concentration or higher polymerization temperature, have not been examined to date.

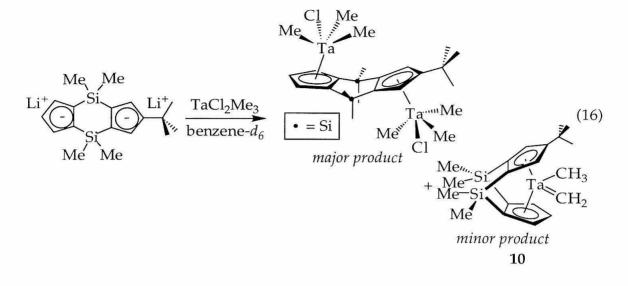
[mmmm]	[mmmr]	[rmmr]	[mmrr]	[mrmm]	[mrmr]	[rrrr]	[mrrr]	[mrrm]	[<i>r</i>]
				[rmmr]					
7.23	8.59	7.96	5.21	23.86	12.26	13.92	14.78	6.19	55.6

Table 3: Pentad analysis for polypropylene produced using catalyst 9.

The low syndiospecificity derived from the C_s -symmetric precatalyst, **9**, may be accounted for by a facile site epimerization mechanism. This phenomenon has been observed for other doubly-silylene bridged metallocene catalysts under various polymerization conditions.^{34,35} Since *trans* and *cis* relationships between the propylene methyl substituent and the β -carbon of the polymer chain may be viable for olefin coordination (Figure 13), this adds another dimension to the operating polymerization mechanism. Assuming that the propylene methyl substituent will orient itself away from the *tert*-butyl group, the possibilities for olefin coordination are illustrated in Figure 14. The possibilities for olefin coordination and subsequent insertion in Figure 14 are based on presumed unfavorable steric interactions between certain polymer chain configurations and linking dimethylsilyl substituents. The relative energies of *trans* and *cis* conformers cannot be determined with this data.



ii: rotation about α -carbon of polymer chain


Figure 14: Invoking both a site epimerization mechanism and facile rotation about the α -carbon of the polymer chain may explain the atactic polymer formed using the RRp ligand array.

Tantalocenes employing the tBuRp ligand were targeted to ascertain how the sterics of this ligand array influence olefin coordination. Trimethyl complexes were sought as synthetic precursors for olefin adducts.

Dropwise addition of a THF solution of TaCl₂Me₃ to a -78°C THF solution of Li₂tBuRp and slow warming to 25°C provides an orange solution. Removal of THF *in vacuo* and extraction with toluene affords a brown oil that is primarily the methylidene-methyl complex, [(1,2-SiMe₂)₂(4-CMe₃-C₅H₂)(C₅H₃)]Ta(CH₂)CH₃ (tBuRpTa(CH₂)CH₃, **10**) (eq. 15). The methylidene protons appear as doublets at 9.43 and 9.74 ppm in the ¹H NMR spectrum; these resonances are characteristic of a tantalocene-methylidene complex. ¹H NMR analysis provides no evidence of the expected tantalocene trimethyl complex (see eq. 15). Subsequent dissolution of the brown oil in petroleum ether allows recrystallization of **10** as a tan solid in low yield.

This metallation reaction was examined more closely by combination of the dilithio ligand salt, Li₂tBuRp, and TaCl₂Me₃ in benzene- d_6 in the absence of ambient light (eq. 16). Monitoring the reaction by ¹H NMR spectroscopy reveals that after 3.5 hours, the bridged dinuclear complex, [(1,2-SiMe₂)₂(4-CMe₃-C₅H₂)(C₅H₃)](TaMe₃Cl)₂ [tBuRp(TaMe₃Cl)₂] was present as the predominant reaction product. Two tantalum-methyl resonances of equal intensity at 1.06 ppm and 1.09 ppm are diagnostic for this type of ligand coordination. Fast rotation about the tantalum cyclopentadienyl bond equivalences the three methyl substituents bound to each tantalum center. The tantalocene methylidene-methyl complex (**10**) is also present yet it comprises only approximately 1.5% of the product mixture. Over time, the ratio of **10** to

tBuRp(TaMe₃Cl)₂ increases but decomposition also becomes more prevalent. Again, there is no evidence of the expected tantalocene trimethyl complex.

The mechanism for formation of **10** and the absence of the tantalocene trimethyl complex under these reaction conditions has not been investigated further. These issues will be addressed with reference to RThp tantalocenes.

Thermolysis of the methylidene methyl complex, **10**, in benzene- d_6 causes starting material resonances to diminish and other peaks to grow in the ¹H NMR spectrum. After four days at 100°C, a small resonance is present at -2.45 ppm that may be attributed to a tantalocene-hydride resonance but a variety of cyclopentadienyl and alkyl resonances are also present (too many to indicate sole formation of a tantalocene ethylene-hydride complex). Upon continued heating, extensive decomposition occurs providing no identifiable products. Some potential tantalocene products are illustrated in Figure 15.

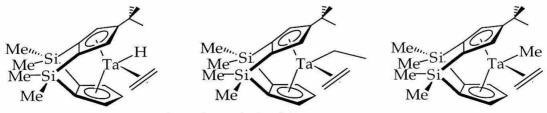
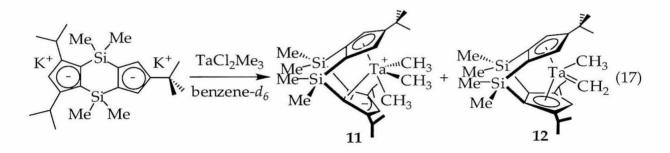



Figure 15: Potential products from thermolysis of 10.

RThp ligand

Reaction of the dipotassio ligand salt, $K_2[(1,2-SiMe_2)_2[4-CMe_3-C_5H_2][3,5-(CHMe_2)_2-C_5H]]$ (K₂tBuThp), with TaCl₂Me₃ in benzene-*d*₆ provides a mixture of two products: $[(1,2-SiMe_2)_2]\eta^5-C_5H_2-4-CMe_3]\{\eta^2-C_5H-3,5-(CHMe_2)_2]$ Ta(CH₃)₃ (tBuThpTaMe₃, **11**) and $[(1,2-SiMe_2)_2]\eta^5-C_5H_2-4-CMe_3]\{\eta^5-C_5H-3,5-(CHMe_2)_2]$ Ta(CH₂)CH₃ (tBuThpTa(CH₂)CH₃, **12**), as illustrated in eq. 17. The unusual η^2 -cyclopentadienyl coordination observed for this tantalocene trimethyl complex (*vide infra*) and the formation of a tantalocene methylidene-methyl complex under these reaction conditions are notable.³⁸ The doubly-silylene bridged ligand array appears to induce this unexpected reactivity. Analogous reactivity is observed with K₂TMSThp as a ligand source.¹³ In order to explore the course of this reaction, a variety of reaction conditions have been examined.

Order of addition does not alter the product distribution. Mild heating (60°C) also appears to exert little influence on the course of reaction. Addition of base, such as NEt₃, or excess ligand salt, K₂tBuThp, are other reaction-modifications that do not affect metallation.

The product distribution was found to be highly dependent on the presence or absence of ambient light. If the metallation (eq. 17) is conducted in the presence of ambient light, **11** decomposes over the course of 24 hours. Compound **11** does not decompose to form **12**; these tantalocenes are formed at different rates under these reaction conditions. In the absence of ambient light, **12** is stable; compound **11** is also formed and is stable under these conditions. Hence, the tantalocene trimethyl and methylidene-methyl complexes may be isolated independently by selective recrystallization.

Following the course of metallation in benzene- d_6 by ¹H NMR spectroscopy (in the absence of ambient light) reveals that both **11** and **12** are formed in low yield (24% and 18%, respectively). This, in part, may be attributed to formation of a bridged dinuclear complex (see Figure 16) as an undesired byproduct.

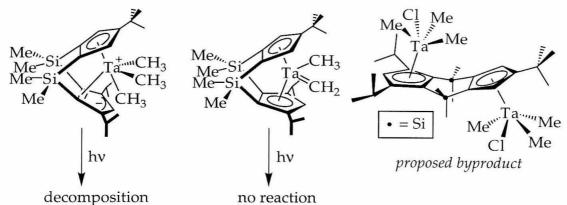
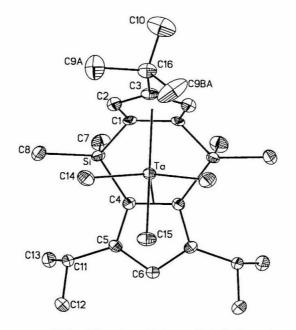


Figure 16: While 11 decomposes in ambient light, 12 is stable. A bridged dinuclear complex is formed as a byproduct under select metallation conditions.

The effect of solvent choice on metallation has been examined by monitoring metallation by ¹H NMR. Various deuterated solvents have been employed providing a range of product distributions. Generally, when tantalocene products are observed, the formation of the trimethyl complex is favored over the methylidene-methyl complex. The relative amount of the bridged dinuclear species (Figure 16) varies with solvent.

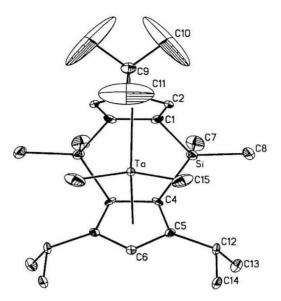
The use of polar solvents such as CD₃CN or THF- d_8 is unfavorable for metallation. The former leads to decomposition and the latter yields some of the bridged dinuclear species (as a result, K₂tBuThp is not completely consumed). When cyclohexane- d_{12} is used, the bridged dinuclear species is the major product. While metallation in Et₂O- d_{10} generates some of the bridged dinuclear species, formation of the methylidene-methyl complex is minimized (11/12 \approx 3.1). Thus, Et₂O is the preferred solvent for isolation of 11. Metallation in benzene- d_6 minimizes formation of the bridged dinuclear species with a similar tantalocene product ratio (11/12 \approx 4). Since separation of 12 from the bridged dinuclear structure is difficult due to similar solubility properties, toluene has been utilized for isolation of **12**. Recrystallization is crucial for the independent isolation of **11** and **12**.

The mechanism for formation of **12** is not well understood. Complex **11** does not appear to be a synthetic precursor to **12**; dissolution of isolated **11** in benzene- d_6 provides no evidence for production of **12** via methane loss over the course of months at 25°C. Also, thermolysis of isolated **11** in benzene- d_6 does not promote conversion to **12**; instead, decomposition ensues. Formation of **12** does not appear to be promoted by excess dipotassio ligand salt, K₂tBuThp. These results are consistent with two independent pathways for formation of **11** and **12**.


Complex **11** may be synthesized on a preparative scale by slow warming (from -78°C to 25°C) of a diethyl ether solution of K₂tBuThp and TaCl₂Me₃ in the absence of ambient light. Three hours after solvent addition, extraction of the product with diethyl ether and recrystallization affords **11** as an orange-yellow solid in reasonable yield (25.6%).

Complex **12** may be isolated preparatively by slow warming (-78°C to 25°C) of a toluene solution of K₂tBuThp and TaCl₂Me₃ in the presence of ambient light. After three days of reaction, extraction with diethyl ether and recrystallation from petroleum ether affords **12** as a mustard colored solid in modest isolated yield (20.9%).

Complexes **11** and **12** have been characterized by ¹H and ¹³C NMR spectroscopy. The NMR spectra of **11** do not possess any unusual features. In benzene-*d*₆, two diagnostic downfield doublets are observed at 9.30 and 9.58 ppm in the ¹H NMR spectrum for the methylidene hydrogens of **12**. The methylidene carbon of **12** resonates at 211.26 ppm in the ¹³C NMR spectrum. These NMR signals for **12** are consistent with other tantalocene methylidene-methyl complexes, such as Cp₂Ta(CH₂)CH₃¹² (¹H NMR: $\delta = 10.11$ (s), Ta=CH₂; ¹³C NMR: $\delta = 224$, Ta=CH₂).


Slow cooling of a diethyl ether/petroleum ether solution of **11** affords tangerine colored crystals suitable for X-ray diffraction, as illustrated in Figure 17. Compound **11** crystallized in the space group *Pnma*. This metallocene sits on

a crystallographic mirror plane thus contributing to the disorder of the *tert*-butyl substituent. The η^5 , η^2 -cyclopentadienyl coordination of **11** was observed previously for the similar compound, TMSThpTaMe₃.¹³ There are few examples of η^2 -cyclopentadienyl coordination in the literature. Green and coworkers have characterized (η^5 -C₅H₅)₂Ti(η^2 -C₅H₅) by X-ray crystallography.³⁹ Shapiro has examined Cp₂AlMe by X-ray diffraction and observed η^2 -cyclopentadienyl coordination.⁴⁰ Select bond distances and angles are listed in Table 4.

Figure 17: Molecular structure of **11** with selected atoms labeled (50% probability ellipsoids). Hydrogen atoms are omitted for clarity.

Slow cooling of a diethyl ether/pentane solution of **12** affords crystals suitable for X-ray diffraction, as illustrated in Figure 18. Compound **12** crystallized in the space group P2(1)/m. This metallocene sits on a crystallographic mirror plane and as a consequence the methylidene and methyl substituents in the metallocene wedge are indistinguishable. Importantly this structural analysis confirms η^5 coordination of both cyclopentadienyl ligands. Select bond distances and angles are provided in Table 4.

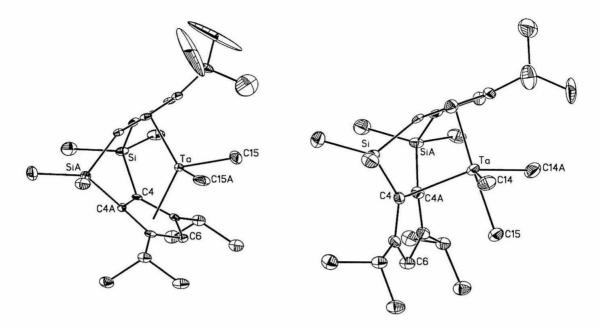


Figure 18: Molecular structure of **12** with selected atoms labeled (50% probability ellipsoids). Hydrogen atoms are omitted for clarity.

select bond distances (Å) and bond angles (°)	tBuThpTaMe ₃ (11)	tBuThpTa(CH ₂)CH ₃ (12)
Ta-CpA	2.150	2.129
Та-СрВ	2.349	2.140
Ta-C14	2.215	—
Ta-C15	2.223	2.154
C15-Ta-C15A		99.3
C14-Ta-C14A	113.4	—
СрА-М-СрВ	97.6	125.5
PlnA-PlnB	112.7(2)	67.0(3)

Table 4: Select bond distances and bond angles for 11 and 12.

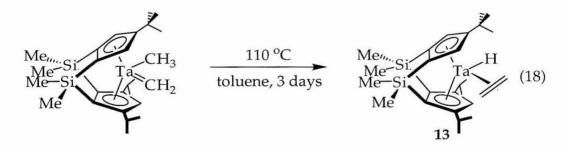

It appears that tantalocenes that employ the RThp ligand may not allow three substituents to occupy the metallocene wedge while maintaining standard η^5 coordination of both cyclopentadienyl ligands (Figure 20). This may be a consequence of the dimethylsilyl linking substituents that orient themselves towards the center of the metallocene wedge. The steric bulk of these methyl groups may hamper coordination of substituents in lateral positions of the metallocene wedge.

Figure 19: Comparison of molecular structures of **11** and **12** with selected atoms labeled (50% probability ellipsoids). Hydrogen atoms are omitted for clarity.

Conversion to olefin-hydride complexes

Thermolysis of **12** (at 100°C) in benzene- d_6 affords the *ansa*-tantalocene ethylene-hydride complex, tBuThpTa(η^2 -CH₂CH₂)(H) (**13**), over the course of days; the yield of **13** is quantitative by ¹H NMR spectroscopy. This reaction may be carried out on a preparative scale; heating a toluene solution of **12** to 110°C for three days provides **13** in slightly diminished yields (eq. 18).

Complex **13** has been characterized by ¹H and ¹³C NMR spectroscopy. The tantalocene hydride resonance at -2.05 ppm in the ¹H spectrum and the ethylene carbon resonances at 21.75 and 23.08 in the ¹³C spectrum are diagnostic for tantalocene ethylene-hydride complexes. For example, the tantalocene hydride resonance of Cp*₂Ta(η^2 -CH₂=CH₂)H appears at -2.84 ppm in the ¹H NMR spectrum and the ethylene carbon resonances appear at 20.57 and 14.86 ppm in the ¹³C spectrum.¹⁹ A more thorough assignment of ¹H NMR resonances has been obtained by use of NOE difference NMR spectroscopy.

Presumably, complex **13** is formed via an α -methyl migration to the methylidene fragment and subsequent β -H elimination from the incipient tantalocene-ethyl complex (as illustrated in Figure 20). Formation of **13** from **12** is analogous to formation of Cp*₂Ta(η^2 -CH₂=CH₂)H by thermolysis of the methylidene-methyl complex, Cp*₂Ta(=CH₂)(CH₃).¹² The latter thermal rearrangement requires more forcing conditions (heating to 140°C) than conversion of **12** to **13**. This rearrangement contrasts the solution behavior of Cp₂Ta(=CH₂)(CH₃) which upon standing undergoes bimolecular decomposition forming one-half of an equivalent of the tantalocene ethylene-methyl complex, Cp₂Ta(η^2 -CH₂CH₂)(CH₃).¹¹ Similar to the sterically hindered bis-(C₅Me₅) ligand framework, it appears that cyclopentadienyl substitution serves to protect the metal center of **12** such that bimolecular decomposition is prevented. Instead, intramolecular α -migratory insertion affords **13**.

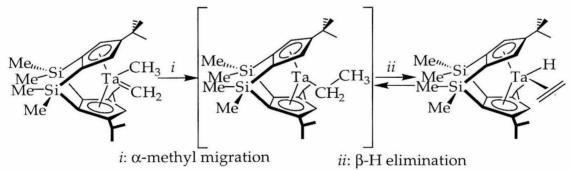
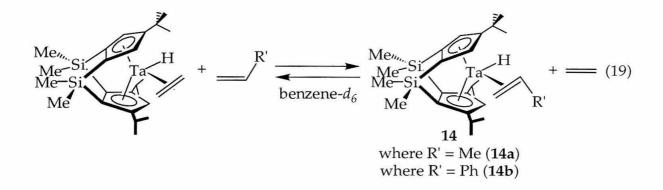
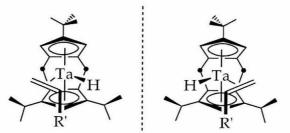



Figure 20: Conversion of 12 to 13 may involve a tantalocene-ethyl complex as an intermediate.

In attempt to capture the tantalocene-ethyl intermediate as a tantaloceneethyl-(L) complex, trimethylphosphine was added to a benzene- d_6 solution of **13**. No reaction was observed, even upon heating to 100°C for days. Generation of alkyl-(L) complexes from olefin-hydrides has been reported when L may serve as a π -acid. For example, addition of CO or CNMe to Cp*₂Nb(η^2 -CH₂=CHR')H provides the corresponding alkyl-(L) complexes;¹⁷ addition of CO to tBuSpTa(η^2 -CH₂=CHPh)H affords the corresponding alkyl-(CO) compound.¹³ The reactivity of π -acid ligands such as CO or CNMe towards **13** has not been examined to date. Addition of excess ethylene to **13** was attempted to promote conversion to a tantalocene ethylene-ethyl complex. At 25°C, **13** remains intact; thermolysis of **13** (87°C) in the presence of excess ethylene also does not chemically modify **13**. Ethylene is not an effective trap for the proposed tantalocene-ethyl intermediate


Complex **13** undergoes olefin exchange with both propylene and styrene to afford the corresponding propylene-hydride and styrene-hydride complexes, respectively (eq. 19). Addition of excess propylene to a benzene- d_6 solution of **13** results in olefin equilibration over the course of weeks at 25°C. Notably, only one isomer of a propylene-hydride complex is detected in the equilibrium mixture; there are four possible isomers that may be detected (two endo and two exo).⁴¹ Since both sides of the wedge are enantiotopic, two enantiomers of the tantalocene propylene-hydride may form. These enantiomers are indistinguishable by ¹H NMR analysis. In benzene- d_6 , the ¹H NMR spectrum of **14a** displays a characteristic upfield resonance at -1.85 ppm for the tantalum hydride resonance as well as a doublet at 2.32 ppm for the methyl group of the coordinated propylene.

As with propylene, addition of excess styrene results in slow olefin exchange, forming one diastereomer of the tantalocene styrene-hydride complex (14b) (eq. 19). Two enantiomers of the tantalocene styrene-hydride may form that are indistinguishable by ¹H NMR analysis. The tantalocene-hydride resonance of 14b appears at -1.10 ppm in the ¹H NMR spectrum, in benzene- d_6 solvent. Olefinic carbon resonances at 21.29 and 22.40 ppm in the ¹³C NMR spectrum are also consistent with a styrene-hydride complex. The ortho, meta, and para styrene substituents are detected in the ¹H NMR spectrum at 7.47, 7.23, and 6.82 ppm, respectively. The equivalence of both ortho and meta hydrogens suggests that rotation of the phenyl ring is fast relative to the NMR time scale.

Difference NOE experiments were used to establish the relative orientation of the bound propylene in **14a** in solution. Irradiation of the tantalocene-hydride, cyclopentadienyl resonances, and the propylene methyl substituent provide spectroscopic information that is consistent with the structures illustrated in Figure 21. These data indicate that the preferred diastereomer has the propylene coordinated in an *endo* fashion with the propylene methyl group directed away from the bulky *tert*-butyl substituent, nestled in the open region between the isopropyl groups. Unfavorable steric interactions between the propylene methyl group and the dimethylsilylene linkers appear to force coordination of the olefin in an *endo* arrangement. Formation of this diastereomer is consistent with the model previously proposed for this ligand array in the syndiospecific polymerization of propylene.⁴

Identification of the observed styrene-hydride complex, **14b**, has been accomplished by NOE difference NMR spectroscopy. Irradiation of the tantalocene-hydride, cyclopentadienyl resonances, and styrene resonances provides spectroscopic information that is consistent with the enantiomers illustrated in Figure 21. Irradiation of other ligand resonances (isopropyl, dimethylsilyl, and *tert*-butyl substituents) also corroborates this structural assignment. The preferred isomer is analogous to the isomer observed in the propylene-hydride case, namely where the olefin is coordinated in an *endo* arrangement with the phenyl substituent directed between the two isopropyl groups on the cyclopentadienyl ring. It is notable that complexes **14a** and **14b** exhibit the same thermodynamic preferences for olefin binding despite the increased sterics of bound styrene.

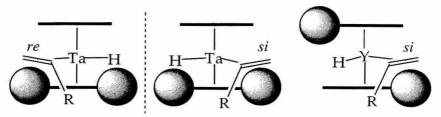


Figure 21: Difference NOE experiments indicate that (CH₂=CHR'), where R' is methyl or phenyl, coordinates in an *endo* fashion with the R' substituent directed between the two isopropyl groups of the cyclopentadienyl ring. Both possible enantiomers are shown; they are indistinguishable by ¹H NMR spectroscopy.

Olefin equilibration with **13** has also been achieved with fluorinated styrenes, such as 2,3,4,5,6-pentafluorostyrene and 4-trifluoromethylstyrene. Tantalocene-hydride resonances at -0.77 and -1.00 ppm in the ¹H NMR spectrum are typical for tantalocene olefin adducts. Isobutylene does not promote olefin exchange with **13**, even under forcing conditions (heating to 140°C). Further investigation of these olefin-hydride complexes is currently in progress.

This selectivity for CH_2 =CHR' coordination in an olefin-hydride complex contrasts what has been observed previously for C₂-symmetric yttrocenes (vide supra). The selectivity for olefin coordination exerted by the C_s -symmetric tBuThp ligand and the C_2 -symmetric Bp ligand is illustrated in cartoon fashion in Figure 22. The C_s -symmetric tBuThp ligand array displays some influence on olefin coordination by favoring two enantiotopic tantalocene olefin-hydride complexes. In contrast, the C₂-symmetric Bp yttrocene hydride compound exhibits a slight preference for coordination of one olefin enantioface. Two factors may contribute to these differences in olefin coordination. While isolated tantalocene olefin-hydrides are a measure of thermodynamic coordination preferences (ground states), prior measurements with group 3 and cationic group 4 metallocenes are based on kinetic coordination preferences (transition states). However, if the olefin insertion transition state is "early," it follows from the Hammond postulate that the olefin-hydride ground state may serve as a reasonable model for the olefin insertion transition state.42 Metallocene symmetry is likely a more important factor for dictating stereocontrol; while 14a and 14b utilize the C_s -symmetric tBuThp ligand array, prior studies have employed C₂-symmetric metallocenes. It appears that metallocene symmetry

and disposition of ligand sterics may play a more substantial role in olefin coordination than previously postulated.

Figure 22: Selectivity for olefin coordination exerted by the C_s -symmetric tBuThp ligand and the C_2 -symmetric Bp ligand.

Conclusions

A family of singly- and doubly-silylene linked tantalocene trimethyl and methylidene-methyl complexes have been synthesized and used as synthetic precursors for olefin adducts. These olefin complexes have been utilized as models for olefin coordination in Ziegler-Natta polymerization catalysts. A tantalocene trimethyl complex has been prepared that incorporates the singlybridged [Me₂Si(C₅H₄)₂] (Sp) ligand. This compound has been characterized by X-ray crystallography and employed in the synthesis of the corresponding ethylene-methyl complex, SpTa(η^2 -CH₂=CH₂)Me. Olefin exchange with propylene provides a mixture of *endo* and *exo* propylene-methyl isomers; the preference for *endo* isomer formation may be attributed to the *ansa*-bridge.

Doubly-silylene bridged ligands, $[(1,2-SiMe_2)_2(C_5H_3)_2]$ (Rp), $[(1,2-SiMe_2)_2(4-CMe_3-C_5H_2)(C_5H_3)]$ (tBuRp), and $[(1,2-SiMe_2)_2(4-CMe_3-C_5H_2)(3,5-(CHMe_2)_2-C_5H)]$ (tBuThp) have been targeted for the preparation of *ansa*-tantalocenes. While the Rp ligand affords bridged dinuclear and oligomeric complexes under the reaction conditions examined herein, the tBuRp ligand allows isolation of the methylidene-methyl complex, tBuRpTa(CH_2)CH_3, as a minor product. Thermolysis of this methylidene-methyl complex provides a mixture of products and decomposition, presumably due to the limited steric protection of the metal center. Metallation of the tBuThp ligand with TaCl_2Me_3 yields a mixture of $[(1,2-SiMe_2)_2(\eta^{5-4}-CMe_3-C_5H_2)(\eta^{2-3},5-(CHMe_2)_2-C_5H)]$ TaMe_3 and $[(1,2-SiMe_2)_2(\eta^{5-4}-CMe_3-C_5H_2)(\eta^{5-3},5-(CHMe_2)_2-C_5H)]$ Ta(CH_2)CH_3. Both complexes have been characterized by X-ray crystallography. Upon

thermolysis, the methylidene-methyl complex undergoes conversion to the corresponding ethylene-hydride complex, tBuThpTa(η^2 -CH₂=CH₂)H. The ethylene-hydride complex undergoes olefin exchange with propylene and styrene to form the olefin-hydride complexes, tBuThpTa(η^2 -CH₂=CHR')H (where R' is methyl or phenyl). Only one isomer is observed in each case, suggesting the importance of ligand array on olefin coordination. These models have provided an enhanced understanding of stereocontrol for *ansa*-metallocene catalysts.

Experimental

General Considerations. All air or moisture sensitive chemistry was performed using standard high vacuum line or Schlenk techniques, or in a dry box under a nitrogen atmosphere as described previously.⁴³ Dinitrogen, dihydrogen, and argon were purified by passage over MnO on vermiculite and activated molecular sieves. Petroleum ether and toluene were distilled from sodium and stored under vacuum over titanocene.⁴⁴ Tetrahydrofuran, diethyl ether, and dimethoxyethane were distilled from sodium benzophenone ketyl. Benzene- d_6 was distilled from LiAlH₄ and then distilled from sodium sand before use. Tetrahydrofuran- d_8 was distilled from sodium benzophenone ketyl and stored over 4Å molecular sieves. Methylene chloride- d_2 was distilled from calcium hydride. Anhydrous hydrochloric acid was purchased from Aldrich and used as received. Ethylene was purchased from Matheson and passed through a dry ice/acetone trap before use. In some cases, propylene was purchased from Aldrich and stored under vacuum over triisobutylaluminum. For polymerizations, propylene (99.5% polymer grade) was dried by passage through a Matheson 6110 drying system equipped with an OXISORB[™] column. MAO (methylaluminoxane, Albemarle) was prepared by removing toluene in vacuo; the white MAO solid was dried at 25°C for 48 hours at high vacuum. TaCl₂Me₃ was prepared according to literature procedures¹¹ and sublimed under static vacuum at 50°C before use. Alkylchlorosilanes were distilled from CaH₂ immediately prior to use. LiCH(TMS)₂ was prepared by the method of Cowley.⁴⁵ Potassium bis(trimethylsilyl)amide (KN(TMS)₂) was sublimed before use. All dilithio and dipotassio ligand salts were prepared via standard procedures³⁶ unless otherwise noted. All other reagents were purchased from Aldrich and used as received or purified using standard methods.46

Instrumentation. NMR spectra were recorded on a Bruker AM500 (¹H, 500.13 MHz; ¹³C, 125.77 MHz) spectrometer, a Joel GX-400 (¹H, 399.78 MHz; ¹³C 100.53 MHz; ¹⁹F, 376.1 MHz) spectrometer, a G.E. QE300 (¹H, 300.1 MHz) spectrometer, a Varian INOVA 500 (¹H, 500.13 MHz; ¹³C, 125.77 MHz) spectrometer, or a Varian 300 (¹H, 300 MHz) spectrometer. All chemical shifts are relative to TMS for ¹H (residual) and ¹³C NMR (solvent used as a secondary standard). Nuclear Overhauser (NOE) difference experiments were conducted using a Varian INOVA 500 MHz spectrometer. Elemental analysis was performed at the California Institute of Technology Elemental Analysis Facility by Fenton I. Harvey or at Midwest Microlab in Indianapolis, Indiana. X-ray crystallography was carried out by Dr. Michael W. Day and Lawrence M. Henling using either an Enraf-Nonius CAD-4 diffractometer or a Bruker Smart 1000 CCD diffractometer. Small crystalline fragments were cut under Paratone-N oil and mounted on the diffractometer under a stream of cold N₂ gas.

 $Me_2Si(\eta^5-C_5H_4)_2Ta(CH_3)_3$ (1). (SpTaMe_3). In the dry box a 100 mL round bottom flask equipped with stir bar was charged with K₂Sp (1.35 g, 5.11 mmol) and Et₂O (60 mL) was added to provide an off-white slurry. A 25 mL round bottom flask was charged with TaCl₂Me₃ (1.52 g, 5.11 mmol) and Et₂O (15 mL) was added to provide a bright yellow solution. While rapidly stirring the slurry of K₂Sp, the solution of TaCl₂Me₃ was slowly added dropwise (over the course of 15 minutes). When the addition was complete, a fine swivel frit assembly was attached and the apparatus was connected to the vacuum line. An atmosphere of Ar was admitted to the reaction and it was left open to a mercury bubbler. After 11 hr of stirring at 25°C, a pale yellow solution was filtered away from a dark yellow precipitate. The solid was washed with Et₂O (6 x 15 mL), and solvent was removed *in vacuo* providing a pale yellow powder. This powder was transferred to a 50 mL round bottom flask equipped with stir bar and a fine swivel frit assembly was attached. On the vacuum line, Et₂O (25 mL) was added by vacuum transfer and then the frit was backfilled with Ar. The solution was cooled to -78°C to recrystallize the desired product; a yellow supernatent was filtered away from an off-white powder. After removal of solvent in vacuo 1 was isolated as an off-white powder; 417 mg (19.8%). Analysis for C₁₅H₂₃Ta₁Si₁: Calculated (Found) C: 43.69 (44.38); H: 5.62 (5.39). ¹H NMR (benzene- d_6): $\delta =$ -0.04 (s, 6H, (CH₃)₂Si), 0.47 (s, 3H, Ta-CH₃), 0.51 (s, 6H, Ta-CH₃), 4.76 (s, 4H, Cp*H*), 5.37 (s, 4H, Cp-*H*). ¹H NMR (CD₂Cl₂): δ = -0.24 (s, 3H, Ta-CH₃), 0.18 (s, 6H, (CH₃)₂Si), 0.53 (s, 6H, Ta-CH₃), 5.12 (s, 4H, Cp-*H*), 5.59 (s, 4H, Cp-*H*). ¹³H NMR (benzene-*d*₆): δ = -5.37 ((CH₃)₂Si), 22.85, 24.89 (Ta-CH₃), 90.24, 105.11, 117.64 (Cp).

bridged-dinuclear byproduct Sp(TaMe₃Cl)₂ ¹H NMR (benzene-*d*₆): δ = 0.10 (s, 12H, (CH₃)₂Si), 0.87 (s, 9H, Ta-CH₃), 5.66 (s, 4H, Cp-*H*), 5.83 (s, 4H, Cp-*H*).

Me₂Si(η⁵-C₅H₄)₂Ta(CH₃)(Cl)(CH₃) (2). (SpTa(Me)(Cl)(Me)). A J-Young NMR tube was charged with 1 (10.6 mg, 0.0257 mmol) and on the vacuum line CD₂Cl₂ was added by vacuum transfer. The solution was cooled to -196°C and HCl (0.0257 mmol) was condensed into the NMR tube at this temperature, the tube was closed and warmed to 25°C. Immediately the solution turned bright yellow in color and 2 was observed by ¹H NMR spectroscopy. ¹H NMR (CD₂Cl₂): δ = 0.56 (s, 6H, (CH₃)₂Si), 0.62 (s, 6H, Ta-CH₃), 5.55 (s, 4H, Cp-H), 6.16 (s, 4H, Cp-H).

[Me₂Si(η^{5} -C₅H₄)₂Ta(CH₃)₂][BF₄] (3). ([SpTaMe₂][BF₄]). A 50 mL round bottom flask equipped with stir bar was charged with 1 (508 mg, 1.23 mmol) and (C₆H₅)₃CBF₄ (406 mg, 1.23 mmol) and a medium swivel frit assembly was attached. On the vacuum line, 30 mL methylene chloride was added by vacuum transfer at -78°C. The solution immediately turned bright yellow in color and precipitate began to form. The reaction mixture was allowed to warm slowly to 25°C. After 19 hr of stirring, the solvent was removed *in vacuo* and Et₂O (25 mL) was added by vacuum transfer. After 2 hr of stirring, a pale yellow-orange solution was filtered away from a bright yellow precipitate. The solid was washed with Et₂O (4 x 10 mL) and then solvent was removed *in vacuo* to provide 3 as a bright yellow powder; 525 mg (89.6%). ¹H NMR (CD₂Cl₂): δ = 0.63 (s, 6H, (CH₃)₂Si), 0.72 (s, 6H, Ta-CH₃), 6.07 (s, 4H, Cp-H), 7.35 (s, 4H, Cp-H). ¹⁹F NMR (CD₂Cl₂): δ = -75.5.

Me₂Si(η⁵-C₅H₄)₂Ta(CH₂)CH₃ (4). (SpTa(CH₂)CH₃). (transient). ¹H NMR (CD₂Cl₂): δ = 4.59 (s, 2H, Cp-*H*), 5.67 (s, 2H, Cp-*H*), 5.75 (s, 2H, Cp-*H*), 5.90 (s, 2H, Cp-*H*), 10.28 (s, 2H, Ta-CH₂), *Me*₂Si and Ta-*Me* resonances not located.

 $Me_2Si(\eta^5-C_5H_4)_2Ta(\eta^2-CH_2=CH_2)CH_3$ (5). ($SpTa(\eta^2-CH_2=CH_2)CH_3$). A 50 mL round bottom flask equipped with stir bar was charged with 3 (206 mg, 424 mmol) and LiCH(SiMe_3)_2 (70.2 mg, 424 mmol) and a fine swivel frit assembly

was attached. On the vacuum line, 25 mL methylene chloride was added by vacuum transfer at -78°C. The reaction solution was frozen to -196°C and 1 atm ethylene was admitted to the reaction apparatus. The -196°C bath was replaced with a -78°C bath and the reaction mixture was allowed to warm slowly to 25°C. After 43 hr stirring, solvent was removed in vacuo and 25 mL pentane was added by vacuum transfer. After 2 hr of vigorous stirring, a yellow solution was filtered away from a tan solid. The solid was washed with pentane (4 x 10 mL) and then the solvent was removed *in vacuo*. In the dry box, the collection flask was transferred to another fine swivel frit apparatus. On the vacuum line, 25 mL pentane was added by vacuum transfer, the swivel frit apparatus was backfilled with Ar and the solution was cooled to -78°C. A cold filtration was used to separate the yellow supernatent from the pale tan solid. Solvent was removed in *vacuo* to afford 5 as a pale tan solid; 24 mg (13.5%). ¹H NMR (benzene-d₆): $\delta =$ -0.02 (s, 3H, (CH₃)₂Si), 0.10 (s, 3H, (CH₃)₂Si), 0.48 (s, 3H, Ta-CH₃), 0.96 (t, 2H, CH₂=CH₂), 1.23 (t, 2H, CH₂=CH₂), 3.74 (s, 2H, Cp-H), 4.56 (s, 2H, Cp-H), 5.25 (s, 4H, Cp-*H*). ¹³C NMR (benzene- d_6): $\delta = -8.89, -6.88$ ((CH₃)₂Si), -4.54 (Ta-CH₃), 18.89, 26.53 (CH₂=CH₂), 78.74, 87.83, 94.81, 106.45, 123.37 (Cp).

$Me_2Si(\eta^5-C_5H_4)_2Ta(CH_2=CHCH_3)CH_3$ (6a (endo), 6b (exo)). (SpTa(CH_2=CHMe)Me).

Me₂Si(η ⁵-**C**₅**H**₄)(η ⁵-**3**-**CHMe₂-C**₅**H**₃)₂**TaCl**₂. (iPrSpTaCl₂). In the dry box a 50 mL round bottom flask equipped with stir bar was charged with TaCl₅ (602 mg, 1.68 mmol) and Zn dust (55 mg, 0.84 mmol, 0.5 equiv) and a fine swivel frit assembly was attached. DME (25 mL) was added by vacuum transfer at -78°C, then the cold bath was removed to slowly warm the reaction mixture to 25°C. After 12 hr of stirring, an olive-green solution was filtered away from a gray precipitate and solid was washed with recycled solvent (2 x 15 mL). In the dry box, a 250 mL round bottom flask equipped with stir bar was charged with Li₂iPrSp (407 mg, 1.68 mmol) and DME (75 mL) was added to provide a pale yellow solution. While stirring this solution at 25°C, the olive-green solution was slowly added dropwise via a pipette. Upon addition the solution changed to redbrown in color. A fine swivel frit assembly was attached and the reaction mixture was stirred for 16 hr. DME was removed *in vacuo* and then diethyl ether (50 mL) was added by vacuum transfer. After stirring for 2 hr, solvent was removed *in vacuo* and petroleum ether (50 mL) was added by vacuum transfer.

The reaction mixture was stirred for 12 hr, and then solvent was removed *in vacuo*. Methylene chloride (70 mL) was added by vacuum transfer and then a red-brown solution was filtered from an off-white precipitate. The solid was washed with recycled solvent (3 x 30 mL) and then solvent was removed *in vacuo* to leave a red-black residue in the collection flask. Drying the product under high vacuum provides a black solid. Yield not determined. EPR spectrum consistent with the previously reported spectrum for this complex.¹³

[(1,2-SiMe₂)₂{η⁵-C₅H₂-4-CMe₃}{η²-C₅H-3,5-(CHMe₂)₂]NbCl₂. (tBuThpNbCl₂). In the dry box a 100 mL round bottom flask equipped with stir bar was charged with Li₂tBuThp (417 mg, 0.86 mmol) and NbCl₄(THF)₂ (327 mg, 1 equiv) and a fine swivel frit assembly was attached. Diethyl ether (50 mL) was added by vacuum transfer at -78°C, and with the cold bath intact the reaction mixture was left to slowly warm to 25°C. After 120 hr of stirring, solvent was removed *in vacuo* and petroleum ether (50 mL) was added by vacuum transfer. After stirring for 2 hr, solvent was removed *in vacuo* and methylene chloride (50 mL) was added by vacuum transfer. A red-brown solution was filtered away from a brown solid, and then the solid was washed with recycled solvent (4 x 30 mL). Solvent was removed *in vacuo* to leave a brown-black residue in the collection flask. Drying the product under high vacuum provides a black solid; 300 mg (73.9%). This product was analyzed by ambient temperature EPR spectroscopy in methylene chloride solvent; a characteristic ten line pattern was observed for the Nb(IV) nucleus (⁹³Nb = 100%, S = 9/2).

[(1,2-SiMe₂)₂(C₅H₃)₂](Ta(CH₃)₃Cl)₂ (Rp(TaMe₃Cl)₂). In the dry box a 100 mL round bottom flask equipped with stir bar was charged with K₂Rp (289 mg, 0.97 mmol) and tetrahydrofuran (60 mL) was added to provide an off-white slurry. In another flask, TaCl₂Me₃ was dissolved in tetrahydrofuran (10 mL). With rapid stirring in the absence of room light, the TaCl₂Me₃ solution was slowly added via pipette to the ligand slurry. A medium swivel frit assembly was attached to the reaction flask and reaction was continued for 12 hr in the absence of room light. Solvent was removed *in vacuo*, and petroleum ether (60 mL) was added by vacuum transfer. The petroleum ether slurry was stirred for 12 hr in the absence of room light. A yellow solution was filtered away from a yellow precipitate, and the solid was washed with recycled solvent (2 x 40 mL). Solvent was removed *in vacuo* to provide a yellow-orange residue in the collection flask and a

bright yellow solid above the frit. ¹H NMR analysis of the bright yellow solid reveals that the bridged-dinuclear complex, Rp(TaMe₃Cl)₂, is the major product. No yield was determined. ¹H NMR (benzene-*d*₆): δ = 0.40 (s, 12H, (CH₃)₂Si), 1.09 (s, 9H, Ta-CH₃), 4.89 (d, 4H, Cp-H, J = 2.8), 6.29 (t, 2H, Cp-H, J = 2.8).

(*n*-Bu₃Sn)₂[(1,2-SiMe₂)₂(C₅H₃)₂] ((*n*-Bu₃Sn)₂Rp). In the dry box a 100 mL round bottom flask equipped with stir bar was charged with Li₂Rp (1.82 g, 5.53 mmol) and diethyl ether (50 mL). While stirring rapidly, *n*-Bu₃SnCl (3.0 mL, 11.1 mmol, 2 equiv) was slowly added dropwise via syringe. After the addition was complete, a fine swivel frit assembly was attached. After 96 hr stirring at 25°C, a viscous orange solution was filtered away from a white solid. The solid was washed with recycled solvent (3 x 30 mL) and then solvent was removed *in vacuo* to provide an orange oil in the collection flask. No yield determined. ¹H NMR (benzene-*d*₆): $\delta = 0.38$ (s, 12 *H*, (CH₃)₂Si), 0.46-1.71 (*n*-Bu₃Sn, overlapping multiplets), 6.49 (s, 2H, Cp-H), 6.85 (s, 4H, Cp-H).

[(1,2-SiMe₂)₂(4-CHMe₂-C₅H₃)(C₅H₄)] and [(1,2-SiMe₂)₂(3-CHMe₂-

C₅H₃)(C₅H₄)]. (iPrRpH₂). A 500 mL round bottom flask equipped with stir bar was charged with Li₂iPrSp (10.37 g, 42.81 mmol) and a fine swivel frit assembly was attached. On the vacuum line, 300 mL THF was added via cannula transfer. At -78°C, Me₂SiCl₂ (5.2 mL, 42.8 mmol) was added by vacuum transfer and the pale yellow reaction mixture was allowed to warm slowly to 25°C. The reaction mixture was stirred for 20 hr, and then the THF was removed *in vacuo*. Petroleum ether (150 mL) was added via cannula transfer, and the resulting yellow solution was filtered away from the white solid. The solid was washed with petroleum ether (3 x 50 mL) and then solvent was removed *in vacuo* to afford iPrRpH₂ as a pale yellow oil; 9.08g (74.0%).

Li₂[(1,2-SiMe₂)₂(4-CHMe₂-C₅H₂)(C₅H₃)] and Li₂[(1,2-SiMe₂)₂(3-CHMe₂-

C₅H₂)(C₅H₃)]. (Li₂iPrRp). A 250 mL round-bottom flask equipped with stir bar was charged with iPrRpH₂ (3.88 g, 13.54 mmol) and a medium swivel frit assembly was attached. On the vacuum line, 125 mL Et₂O was added via cannula transfer. At 0°C, 1.6 M *n*-BuLi (18.6 mL, 29.8 mmol) solution was added via syringe against an Ar counterflow. The reaction mixture was allowed to warm slowly to 25°C. Upon stirring a white precipitate crashed out of the yellow solution. The reaction mixture was stirred for 40 hr, and then the yellow

supernatent was filtered away from the white solid. The white solid was washed with Et₂O (2 x 50 mL), and then the Et₂O was removed *in vacuo*. Petroleum ether (150 mL) was added to the apparatus via cannula transfer, and the white solid was washed with petroleum ether (2 x 50 mL). Petroleum ether was removed *in vacuo* and the white solid was dried under high vacuum for 4 hr affording Li₂iPrRp; 4.37g (86.8%). Both isomers are isolated in a 3 : 2 ratio. Major isomer ¹H NMR (THF-*d*₈): $\delta = 0.19$ (s, 12H, (CH₃)₂Si), 1.12 (t, 6H, ((CH₃CH₂)₂O), 1.20 (d, 6H, (CH₃CH₂)₂O), 5.95 - 6.20 (overlapping resonances, Cp-*H*). Minor isomer ¹H NMR (THF-*d*₈): $\delta = 0.27$ (s, 12H, (CH₃)₂CH), 3.39 (q, 4H, ((CH₃CH₂)₂O), 1.20 (d, 6H, (CH₃)₂CH, 6.4 Hz), 2.89 (s, 1H, (CH₃)₂CH), 3.39 (q, 4H, ((CH₃CH₂)₂O), 5.95 - 6.20 (overlapping resonances, Cp-*H*).

[(1,2-SiMe₂)₂(4-CMe₃-C₅H₃)(C₅H₄)] (7). (tBuRpH₂). A 500 mL round bottom flask equipped with stir bar was charged with Li₂tBuSp (4.55 g, 17.76 mmol) and a fine swivel frit assembly was attached. On the vacuum line, 250 mL THF was added via cannula transfer. At -78°C, Me₂SiCl₂ (2.2 mL, 17.76 mmol) was added by vacuum transfer and the yellow reaction mixture was allowed to warm slowly to 25°C. The reaction mixture was stirred for 20 hr, and then the THF was removed *in vacuo*. Petroleum ether (150 mL) was added via cannula transfer, and the resulting yellow solution was filtered away from the white solid. The solid was washed with petroleum ether (4 x 50 mL) and then solvent was removed *in vacuo* leaving an orange-yellow oil. Under an Ar counterflow the collection flask was transferred to a Kügelrohr assembly and then the orangeyellow oil was Kügelrohr distilled at 100°C and <1 torr yielding 7 as a pale yellow-white waxy solid; 2.68 g (50.2%).

Li₂[(1,2-SiMe₂)₂(4-CMe₃-C₅H₂)(C₅H₃)] (8). (Li₂tBuRp). A 250 mL roundbottom flask equipped with stir bar was charged with tBuRpH₂ (3.32 g, 11.05 mmol) and a medium swivel frit assembly was attached. On the vacuum line, 100 mL Et₂O was added via cannula transfer. At 0°C, 1.6 M *n*-BuLi (15.2 mL, 24.3 mmol) solution was added via syringe against an Ar counterflow. The reaction mixture was allowed to warm slowly to 25°C. Upon stirring a white precipitate crashed out of the yellow solution. The reaction mixture was stirred for 48 hr, and then the yellow supernatent was filtered away from the white solid. The white solid was washed with Et₂O (4 x 50 mL), and then the Et₂O was removed *in vacuo*. Petroleum ether (75 mL) was added to the apparatus via cannula transfer, and the white solid was washed with petroleum ether (2 x 50 mL). Petroleum ether was removed *in vacuo* and the white solid was dried under high vacuum for 4 hr affording **8** as a Et₂O adduct; 1.63 g (46.9%). ¹H NMR (THF-*d*₈): $\delta = 0.19$ (s, 12H, (CH₃)₂Si), 1.12 (t, 6H, ((CH₃CH₂)₂O), 1.26 (s, 9H, (CH₃)₃C), 3.39 (q, 4H, ((CH₃CH₂)₂O), 6.03 (t, 1H, Cp-*H*), 6.11 (s, 2H, Cp-*H*), 6.14 (d, 2H, Cp-*H*).

[(1,2-SiMe₂)₂(4-CMe₃-C₅H₂)(C₅H₃)]ZrCl₂ (9). (tBuRpZrCl₂). A 25 mL round bottom flask equipped with stir bar was charged with 8 (282 mg, 0.726 mmol) and ZrCl₄ (169 mg, 1 equiv) and a fine swivel frit assembly was attached. On the vacuum line, 15 mL toluene was added by vacuum transfer at -78°C. The cold bath was removed to allow the solution to slowly warm to 25°C. After 18.5 hr, a yellow-orange solution was filtered away from a white solid. The solid was washed with toluene (3 x 10 mL) and solvent removed *in vacuo*. Petroleum ether (15 mL) was added by vacuum transfer, the reaction mixture stirred briefly, and solvent removed *in vacuo* to provide 9 as a pale yellow solid; 107 mg (32.0%). ¹H NMR (benzene-*d*₆): δ = 0.29 (s, 6H, (CH₃)₂Si), 0.52 (s, 6H, (CH₃)₂Si), 1.45 (s, 9H, (CH₃)₃C), 6.24 (t, 1H, Cp-H, 2.8 Hz), 6.82 (d, 2H, Cp-H, 1.4 Hz), 6.83 (d, 2H, Cp-H, 1.4 Hz). ¹³C NMR (benzene-*d*₆): -4.33, 2.51 ((CH₃)₂Si), 31.99 ((CH₃)₃C), 33.27 ((CH₃)₃C), 114.67, 114.91, 115.60, 136.91, 140.30, 144.16 (Cp).

Propylene Polymerization Using 9 as catalyst (neat olefin, 0°C). A 6 oz. high pressure glass reactor equipped with a septum port, large stir bar, and pressure gauge (0-200 psig) was charged with MAO (500 mg, 8.6 mmol). The reactor was connected to a propylene line (120 psig), and the vessel purged with propylene for approximately 10 minutes. Next the vessel was placed in a 0°C ice water bath and propylene (~25 mL, ~0.6 mol) condensed inside. The propylene inlet valve was then closed, and a solution containing the zirconocene catalyst (2.5 mg, 0.0054 mmol) in toluene (0.25 mL) was added to the vigorously stirred MAO/ propylene suspension via a 1 mL Hamilton gas tight syringe through the septum. (The addition requires significant force since the pressure in the reactor is ~95 psig.) The reaction mixture was stirred for 25 minutes at 0°C, and then excess propylene was vented through an oil bubbler via a needle in the septum port. In the fume hood, the top was removed from the glass vessel and the reaction quenched with methanol (6 mL) and dilute methanol-HCl (10 mL. 3 :1, v/v). Addition of methanol (50 mL) and 20 minutes of stirring afforded a white

solid that was dried at high vacuum at 60°C for 3 hr. Activity: 769 g polymer/g catalyst/hr. Polymer tacticity was determined by ¹³C NMR, using pentad level analysis as described by Bovey.⁴⁷ A small amount of the polymer sample was dissolved in a 9 : 7 (v/v) mixture of 1,2-dichlorobenzene and benzene- d_6 , and ¹³C NMR data was acquired at 306 K.

$[(1,2-SiMe_2)_2(4-CMe_3-C_5H_2)(C_5H_3)]Ta(CH_2)CH_3$ (10). (tBuRpTa(CH_2)CH_3). A 250 mL round bottom flask equipped with stir bar was charged with 8 (626 mg, 1.61 mmol). A 100 mL addition funnel with two Kontes was charged with TaCl₂Me₃ (478 mg, 1 equiv) and a small stir bar. The addition funnel was attached to the top of the reaction flask and a 180° needle valve was placed on top of the addition funnel. On the vacuum line, 125 mL THF was added to the reaction flask by vacuum transfer at -78°C and 25 mL THF was transferred to the addition funnel. While maintaining the reaction solution at -78°C, the apparatus was backfilled with Ar and left exposed to a mercury bubbler during the slow, dropwise addition of the TaCl₂Me₃ solution to the ligand solution. After 30 minutes, addition was complete and the reaction solution was orange in color. The cold bath (in a recrystallizing dish) was left intact to allow the solution to slowly warm to 25°C. After 1 day of stirring, THF was removed in vacuo and petroleum ether (75 mL) was added and the reaction mixture stirred briefly, and solvent then removed *in vacuo*. Inside the dry box a swivel frit assembly was attached to the reaction flask. On the vacuum line, toluene was added by vacuum transfer to provide a brown solution and off-white precipitate. The supernatent was filtered away from the solid and then the solid was washed with toluene (4 x 50 mL) and solvent removed *in vacuo*. Petroleum ether (50 mL) was added by vacuum transfer, the reaction mixture stirred briefly, and solvent removed *in vacuo* to provide a brown thick oil. In the dry box, the reaction product was dissolved in petroleum ether (4 mL) and cooled slowly to provide a tan precipitate. The supernatent was removed, the solid washed with chilled petroleum ether (2 x 1 mL), and then the solid was dried under high vacuum. 10 was isolated as a tan powder; 30 mg (3.7%). ¹H NMR (benzene- d_6): $\delta = 0.19$ (s, 3H, (CH₃)₂Si), 0.21 (s, 3H, (CH₃)₂Si), 0.27 (s, 3H, Ta-CH₃), 0.31 (s, 3H, (CH₃)₂Si), 0.35 (s, 3H, (CH₃)₂Si), 1.41 (s, 9H, (CH₃)₃C), 5.50 (t, 1H, Cp-H, 2.4 Hz), 5.85 (s, 1H, Cp-H), 5.90 (d, 1H, Cp-H, 1.5 Hz), 6.46 (d, 1H, Cp-H, 1.8 Hz), 6.53 (s, 1H, Cp-H),

[(1,2-SiMe₂)₂(4-CMe₃-C₅H₂)(C₅H₃)](Ta(CH₃)₃Cl)₂. (tBuRp(TaMe₃Cl)₂)]. ¹H NMR (benzene-*d*₆): δ = 0.43 (s, 6H, (CH₃)₂Si), 0.47 (s, 6H, (CH₃)₂Si), 1.06 (s, 9H, Ta-CH₃), 1.09 (s, 9H, Ta-CH₃), 1.28 (s, 9H, (CH₃)₃C), 5.87 (d, 2H, Cp-H, 3.0 Hz), 6.24 (t, 1H, Cp-H), 6.42 (s, 2H, Cp-H).

$[(1,2-SiMe_2)_2\{\eta^5-C_5H_2-4-CMe_3\}\{\eta^2-C_5H-3,5-(CHMe_2)_2\}]Ta(CH_3)_3 (11).$

(tBuThpTaMe₃). All synthetic manipulations were carried out in the absence of ambient light. A 250 mL round bottom flask equipped with stir bar was charged with K_2 tBuThp (1.05 g, 2.27 mmol) and a medium swivel frit assembly was attached. A 50 mL round bottom flask equipped with stir bar was charged with TaCl₂Me₃ (674 mg, 2.27 mmol) and a 180° needle valve was attached. On the vacuum line, Et₂O (250 mL) was added to the swivel frit assembly by vacuum transfer to provide an off-white slurry, and Et₂O (25 mL) was added to the latter assembly by vacuum transfer to provide a bright yellow solution. The K₂tBuThp slurry was cooled to -78°C and the solution of TaCl₂Me₃ was slowly added via cannula transfer. After 15 minutes of stirring at -78°C, the dry ice/acetone bath was replaced with a 0°C ice water bath and the reaction apparatus was covered in foil to exclude light. The reaction mixture was stirred for 3 hr, and then an orange solution was filtered away from an off-white solid. The solid was washed with Et₂O (3 x 25 mL), and solvent was removed *in vacuo* to provide **11** as an orange residue; 354.3 mg (25.6%). ¹H NMR (benzene- d_6): $\delta = 0.38$ (s, 6H, (CH₃)₂Si), 0.48 (s, 6H, (CH₃)₂Si), 1.12 (s, 9H, (CH₃)₃C), 1.16 (d, 3H, (CH₃)₂CH, 6.6 Hz), 1.38 (d, 6H, (CH₃)₂CH, 6.9 Hz), 1.49 (s, 9H, Ta-CH₃), 2.72 (m, 2H, (CH₃)₂CH), 6.6 Hz), 6.51 (s, 1H, Cp-H), 6.59 (s, 1H, Cp-H). ¹³C NMR (benzene d_6 : $\delta = -28.52$ (Ta-CH₃), -0.60, 5.24 ((CH₃)₂Si), 21.61, 25.39, 31.63 ((CH₃)₂CH), 31.93 ((CH₃)₃C), 32.67 ((CH₃)₃C), 73.99, 74.05, 75.83, 75.88 (C₅H₁), 102.36, 118.32, 123.41, 129.63 (C₅H₂).

$[(1,2-SiMe_2)_2\{\eta^5-C_5H_2-4-CMe_3\}\{\eta^5-C_5H-3,5-(CHMe_2)_2\}]Ta(CH_2)CH_3$ (12). (tBuThpTa(CH_2)CH_3). A 250 mL round bottom flask equipped with stir bar was

charged with K₂tBuThp (2.68 g, 5.82 mmol) and TaCl₂Me₃ (1.73 g, 5.82 mmol) and a 180° needle valve was attached. On the vacuum line, 125 mL toluene was added to the reaction flask by vacuum transfer at -78°C. The dry ice/acetone bath cooling bath was removed and the reaction mixture was allowed to warm slowly to 25°C. The reaction mixture was stirred for 72 hr, and then the solvent was removed *in vacuo*. In the dry box, Et₂O (150 mL) was added to the reaction

mixture and then the contents were filtered through a bed of Celite and washed with Et₂O (5 x 25 mL). A 250 mL round bottom flask equipped with stir bar was charged with the brown mother liquor and a fine swivel frit assembly was attached. On the vacuum line the Et₂O was removed in vacuo and then 50 mL pentane was added by vacuum transfer. A brown supernatent was filtered away from a vellow precipitate, and the solid was washed with pentane $(2 \times 25 \text{ mL})$. Solvent was removed *in vacuo* to provide **12** as a yellow solid; 723 mg (20.9%). ¹H NMR (benzene-*d*₆): $\delta = 0.24$ (s, 3H, (CH₃)₂Si), 0.36 (s, 3H, (CH₃)₂Si), 0.44 (s, 3H, (CH₃)₂Si), 0.45 (s, 3H, Ta-CH₃), 0.51 (s, 3H, (CH₃)₂Si), 1.10 (d, 3H, (CH₃)₂CH, 7.0 Hz), 1.12 (d, 3H, (CH₃)₂CH, 5.9 Hz), 1.16 (d, 3H, (CH₃)₂CH, 6.6 Hz), 1.39 (d, 3H, (CH₃)₂CH, 6.6 Hz), 1.49 (s, 9H, (CH₃)₃C), 2.55 (m, 1H, (CH₃)₂CH, 5.4 Hz), 3.38 (m, 1H, (CH₃)₂CH, 5.7 Hz), 5.91 (s, 2H, Cp-H), 6.57 (s, 1H, Cp-H), 9.30 (d, 1H, Ta=CH₂, 9.8 Hz), 9.58 (d, 1H, Ta=CH₂, 9.8 Hz). ¹³C NMR (benzene- d_6): δ = -2.01 (Ta-CH₃), -1.82, -1.40, 3.78, 4.00 ((CH₃)₂Si), 21.61, 22.20, 28.04, 28.90, 30.18, 30.64 ((CH₃)₂CH), 31.16 ((CH₃)₃C), 33.05 ((CH₃)₃C), 102.71, 118.67, 123.74 (C₅H₃), 211.26 (Ta=CH₂).

 $[(1,2-SiMe_2)_2]^{5}-C_5H_2-4-CMe_3]^{5}-C_5H-3,5-(CHMe_2)_2]Ta(\eta^2-CH_2=CH_2)H$ (13). (tBuThpTa(η²-CH₂=CH₂)H). A 25 mL round bottom flask equipped with stir bar was charged with 12 (121 mg, 0.203 mmol) and a reflux condensor and 180° needle valve were attached. On the vacuum line, 15 mL toluene was added to the reaction flask by vacuum transfer providing a yellow-brown solution. The apparatus was backfilled with Ar and then heated to reflux. After 72 hr at reflux, the toluene was removed *in vacuo*, pentane (10 mL) was added by vacuum transfer and then removed *in vacuo* to provide a brown solid in 96.5% yield (116 mg). ¹H NMR (benzene- d_6): $\delta = -2.06$ (s, 1 H, Ta-H), 0.43 (s, 3H, (CH₃)₂Si), 0.55 (s, 3H, (CH₃)₂Si), 0.63 (s, 3H, (CH₃)₂Si), 0.68 (s, 3H, (CH₃)₂Si), 0.78 (d, 3H, (CH₃)₂CH, 6.6 Hz), 0.97 (s, 9H, (CH₃)₃C), 1.10 (d, 3H, (CH₃)₂CH, 7.3 Hz), 1.11 (d, 3H, (CH₃)₂CH, 7.2 Hz), 1.37 (d, 3H, (CH₃)₂CH, 6.6 Hz), 2.97 (m, 1H, (CH₃)₂CH, 6.9 Hz), 3.40 (m, 1H, (CH₃)₂CH, 6.5 Hz), 4.13 (s, 1H, Cp-H), 5.81 (s, 1H, Cp-H), 6.35 (s, 1H, Cp-H). ¹³C NMR (benzene- d_6): $\delta = -1.53, -0.78, 5.00, 6.14$ ((CH₃)₂Si), 21.75, 23.08 (CH2=CH2), 28.67, 29.18, 29.63, 30.44, 31.93, 33.04, 30.83 ((CH3)2CH, (CH₃)₃C), 98.36, 110.66, 111.18, 137.72 (Cp).

[(1,2-SiMe₂)₂{η⁵-C₅H₂-4-CMe₃}{η⁵-C₅H-3,5-(CHMe₂)₂}]Ta(η²-CH₂=CH(CH₃))H (14a). (tBuThpTa(η²-CH₂=CHMe)H). A J-Young NMR tube was charged with 13 (10.8 mg, 0.0182 mmol) and dissolved in benzene-*d*₆ to provide a red-brown solution. On the vacuum line, the solution was frozen at -196°C and the NMR tube was degassed. Propylene (0.182 mmol) was condensed into the NMR tube at this temperature, the tube was closed and warmed to 25°C. After 19 days at 25°C, a 10 : 1 ratio of **14a** : **13** was observed. ¹H NMR (benzene-*d*₆): δ = -1.86 (s, 1 H, Ta-*H*), -0.27 (br s, 1H, CH₂=CH(CH₃)), -0.19 (m, 2H, CH₂=CH(CH₃)), 0.42 (s, 3H, (CH₃)₂Si), 0.54 (s, 3H, (CH₃)₂Si), 0.61 (s, 3H, (CH₃)₂Si), 0.66 (s, 3H, (CH₃)₂Si), 0.97 (d, 3H, (CH₃)₂CH, 6.8 Hz), 1.01 (s, 9H, (CH₃)₃C), 1.11 (d, 3H, (CH₃)₂CH, 6.9 Hz), 1.16 (d, 3H, (CH₃)₂CH, 7.1 Hz), 1.35 (d, 3H, (CH₃)₂CH, 6.6 Hz), 2.32 (d, 3H, CH₂=CH(CH₃), 6.6 Hz), 3.10 (m, 1H, (CH₃)₂CH, 6.3 Hz), 3.38 (m, 1H, (CH₃)₂CH, 7.0 Hz), 4.19 (s, 1H, Cp-H), 5.55 (s, 1H, Cp-H), 6.32 (s, 1H, Cp-H). ¹³C NMR (benzene-*d*₆): δ = -1.56, -0.91, 3.94, 4.17 ((CH₃)₂Si), 13.95, 21.77, 21.91 (CH₂=CH(CH₃)), 23.10, 28.68, 29.19, 29.40, 29.51, 30.67, 30.83, 32.03 ((CH₃)₂CH, (CH₃)₃C), 98.32, 110.14, 112.65, 126.66, 139.34, 147.42 (Cp).

$[(1,2-SiMe_2)_2\{\eta^5-C_5H_2-4-C(CH_3)_3\}\{\eta^5-C_5H-3,5-(CHMe_2)_2\}]Ta(\eta^2-1)^{-1}a(\eta^2-1)a(\eta^2-1)a(\eta^2-1)a(\eta^2-1)a(\eta^2-1)a(\eta^2-1)a(\eta^2-$

 $CH_2=CH(C_6H_5))H$ (14b). (tBuThpTa(η^2 -CH₂=CHPh)H). A J-Young NMR tube was charged with 13 (20.0 mg, 0.0337 mmol) and dissolved in benzene- d_6 to provide a red-brown solution. A small amount of a styrene/benzene- d_6 solution was added (0.4044 mmol, 12 equiv) and reaction was monitored at 25°C by ¹H NMR spectroscopy. After 79 days at 25°C, a 10 : 1 ratio of 14b : 13 is observed. ¹H NMR (benzene- d_6): $\delta = -1.10$ (s, 1 H, Ta-H), 0.35 (s, 3H, (CH₃)₂Si), 0.48 (s, 3H, (CH₃)₂Si), 0.56 (s, 3H, (CH₃)₂Si), 0.58 (s, 3H, (CH₃)₂Si), 0.60 (d, 3H, (CH₃)₂CH, 6.7 Hz), 0.95 (d, 3H, (CH₃)₂CH, 7.0 Hz), 1.08 (s, 9H, (CH₃)₃C), 1.14 (d, 3H, (CH₃)₂CH, 7.1 Hz), 1.18 (d, 3H, (CH₃)₂CH, 6.7 Hz), 1.29 (m, 2H overlapping, CH₂=CHPh), 2.80 (t, 1H, CH₂=CHPh, 12.5 Hz), 3.19 (m, 2H overlapping, (CH₃)₂CH, 7.2 Hz), 3.63 (s, 1H, Cp-H), 5.62 (s, 1H, Cp-H), 6.43 (s, 1H, Cp-H), 6.82 (t, 1H, C₆H₅, para, 7.1 Hz), 7.23 (t, 2H, C₆H₅, meta, 8.0 Hz), 7.47 (d, 2H, C₆H₅, ortho, 7.9 Hz). ¹³C NMR (benzene- d_6): $\delta = -1.84, -0.71, 3.89, 8.82$ ((CH₃)₂Si), 21.29, 22.40 (CH₂=CHPh), 28.91, 29.42, 29.80, 31.26, 32.26, 33.13 ((CH₃)₂CH), 30.67 ((CH₃)₃C), 78.67, 81.34, 87.07, 102.93, 110.45, 112.08, 121.52, 126.31, 2 not located (Cp), not *located* ((CH₃)₃C), 142.41, 148.40, 156.48, 1 not located (C₆H₅).

References

1. Brintzinger, H.H.; Fischer, D.; Mülhaupt, R.; Rieger, B.; Waymouth, R.M. Angew. Chem. Int. Ed. Engl. 1995, 34, 1143.

- (a) Kaminsky, W.; Kulper, K.; Brintzinger, H.H.; Wild, F.W.P. Angew. Chem. Int. Ed. Engl. 1985, 24, 507. (b) Roll, W.; Brintzinger, H.H.; Rieger, B.; Zolk, R. Angew. Chem. Int. Ed. Engl. 1990, 29, 279. (c) Wiesenfeldt, H.; Reinmuth, A.; Barsties, X.X.; Evertz, K.; Brintzinger, H.H. J. Organomet. Chem. 1989, 369, 359.
- 3. Ewen, J.A.; Jones, R.L.; Razavi, A.; Ferrara, J.D. J. Am. Chem. Soc., 1988, 110, 6255.
- 4. Herzog, T.A.; Zubris, D.L.; Bercaw, J.E. J. Am. Chem. Soc., 1996, 118, 11988.
- 5. (a) Ewen, J.A. J. Am. Chem. Soc. **1984**, 106, 6355. (b) Grassi, A.; Zambelli, A.; Resconi, L.; Albizzati, E.; Mazzocchi, R. Macromolecules **1988**, 21, 617.
- 6. Pino, P.; Galimberti, M. J. Organomet. Chem., 1989, 370, 1.
- 7. Gilchrist, J.H.; Bercaw, J.E. J. Am. Chem. Soc., 1996, 118, 12021.
- a) Chernega, A.N.; Green, M.L.H.; Suárez, A.G. Can. J. Chem. 1995, 73, 1157.
 b) Bailey, N.J.; Cooper, J.A.; Gailus, H.; Green, M.L.H.; James, J.T.; Leech, M.A. J. Chem. Soc. Dalton Trans. 1997, 3579. c) Bailey, N.J.; Green, M.L.H.; Leech, M.A.; Saunders, J.F.; Tidswell, H.M. J. Organomet. Chem. 1997, 538, 111.
 d) Conway, S.L; Doerrer, L.H.; Green, M.L.H.; Leech, M.A. Organometallics 2000, 19, 630.
- 9. Antinolo, A.; Martinez-Ripoll, M.; Mugnier, Y.; Otero, A.; Prashar, S.; Rodriguez, A.M. Organometallics **1996**, *15*, 3241.
- 10. Shin, J.H.; Parkin, G. Chem. Comm. 1999, 887.
- 11. Schrock, R.R.; Sharp, P.R. J. Am. Chem. Soc. 1978, 100, 2389.
- 12. Parkin, G.; Bunel, E.; Burger, B.J.; Trimmer, M.S.; Asselt, A.V.; Bercaw, J.E. J. Mol. Cat., 1987, 41, 21.
- 13. Chirik, P.J. Ph.D. Thesis California Institute of Technology, 2000.
- 14. Chirik, P.J.; Bercaw, J.E., unpublished results.
- 15. A more efficient synthesis of **1** has been developed elsewhere; addition of a THF solution of Li₂Sp to a solution of TaCl₂Me₃ at -78°C permits isolation of **1** in 50-60% yield. Piers, W.E.; Cook, K.S.C., *personal communication*.
- (a) Klazinga, A.H.; Teuben, J.H. J. Organomet. Chem. 1980, 194, 309. (b) Burger, B.J.; Santarsiero, B.D.; Trimmer, M.S.; Bercaw, J.E. J. Am. Chem. Soc. 1988, 110, 3134.
- 17. Doherty, N.M.; Bercaw, J.E. J. Am. Chem. Soc. 1985, 107, 2670.

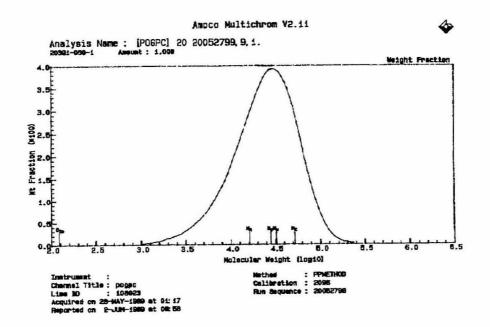
- 18. Klazinga, A.H.; Teuben, J.H. J. Organomet. Chem. 1978, 157, 413.
- 19. Gibson, V.C.; Bercaw, J.E.; Bruton, W.J. Jr.; Sanner, R.D. Organometallics **1986**, 5, 976.
- 20. Chirik, P.J.; Zubris, D.L.; Ackerman, L.J.; Bercaw, J.E. manuscipt in preparation.
- 21. Benson, S.W. *Thermochemical Kinetics* 2nd Ed.; Wiley and Sons, New York, 1976.
- 22. Burger, B.J.; Santarsiero, B.D.; Trimmer, M.S.; Bercaw, J.E. J. Am. Chem. Soc. 1988, 110, 3134.
- 23. Dictionary of Inorganic Compounds.
- 24. Fowles, G.W.A.; Tidmarsh, D.J.; Walton, R.A. Inorg. Chem. 1969, 8, 631.
- 25. Cotton, F.A.; Duraj, S.A.; Roth, R.J. Inorg. Chem. 1984, 23, 4046.
- 26. Fowles, G.W.A.; Tidmarsh, D.J.; Walton, R.A. Inorg. Chem. 1969, 8, 631.
- 27. Van Baalen, A.; Groenenboom, C.J.; De Liefde Meiijer, H.J. J. Organomet. Chem. 1974, 74, 245.
- 28. TaCl₄(CH₃CN)₂ was prepared by reduction of TaCl₅ by Al in CH₃CN solvent for 96 hours at 25°C. TaCl₄(THF)₂ was isolated as a viscous redbrown oil, as described previously.
- 29. Siemeling, U.; Jutzi, P.; Neumann, B.; Stammler, H.G.; Hursthouse, M.B. *Organometallics* **1992**, *11*, 1328.
- 30. Cano, A.; Cuenca, T.; Gómez-Sal, P.; Royo, B.; Royo, P. Organometallics **1994**, 13, 1688.
- 31. Bulls, A.R. Ph.D. Thesis California Institute of Technology, 1988.
- 32. Mengele, W.; Diebold, J.; Troll, C.; Röll, W.; Brintzinger, H.-H. Organometallics 1993, 12, 1931.
- 33. Miyake, S.; Bercaw, J.E. J. Mol. Cat. A Chem. 1998, 128, 29.
- 34. Veghini, D.; Henling, L.M.; Burkhardt, T.J.; Bercaw, J.E. J. Am. Chem. Soc., 1999, 121, 564.
- 35. Zubris, D.L., Chapter 1.
- 36. Herzog, T.A. Ph.D. Thesis California Institute of Technology, 1996.

- 37. Coughlin, E.B. Ph.D. Thesis California Institute of Technology, 1994.
- 38. Chirik, P.J.; Zubris, D.L.; Henling, L.M.; Bercaw, J.E. manuscript in preparation.
- 39. Lucas, C.R.; Green, M.L.H.; Forder, R.A.; Prout, K. J. Chem. Soc. Chem. Comm. 1973, 97.
- 40. Fisher, J.D.; Wei, M.-Y.; Willett, R.; Shapiro, P. J. Organometallics, **1994**, 13, 3324.
- 41. Enantiomeric forms are not considered in the total isomer count.
- 42. Lowry, T.H.; Richardson, K.S. *Mechanism and Theory in Organic Chemistry* 3rd Ed.; Harper Collins, New York, 1987.
- 43. Burger, B. J.; Bercaw, J. E. New Developments in the Synthesis, Manipulation, and Characterization of Organometallic Compounds, **1987**; Vol. 357. ACS Symposium Series.
- 44. Marvich, R. H.; Brintzinger, H. H. J. Am. Chem. Soc. 1971, 93, 203.
- 45. Cowley, A. H.; Kemp, R. A. Synth. React. Inorg. Metal-Org. Chem. 1981, 11, 591.
- 46. Perrin, D. D.; Armagrego, W. L. F. *Purification of Laboratory Chemicals*, 3rd ed.; Pergamon Press: New York, NY, 1988.
- 47. Zambelli, A.; Locatelli, P.; Bajo, G.; Bovey, F. A. Macromolecules 1975, 8, 687.

Appendix A: GPC Data

GPC data for select polypropylene and polypentene samples that appear in Table 8 of Chapter 1. This data was collected with the assistance of Dr. Steve A. Cohen at BP Amoco Chemical.

Two of the samples contain a higher molecular weight component: "Samples 20391-050-4 and 20391-050-8 exhibited a long, low amplitude shoulder on the high mol.wt. side of the peaks. This shoulder was verified by a rerun of 050-8 and all four measurements were averaged for the reported data."


COMPONENT NAME RESULT VALUE UNITS

Entry 9 = 20391-050-1

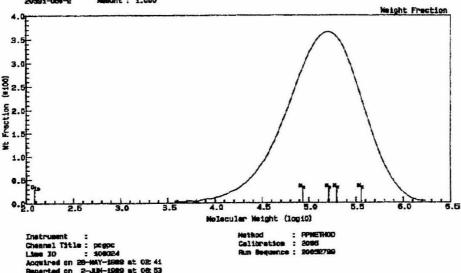
==

No. Avg. Mol. Wt.	16.0
Wt. Avg. Mol. Wt.	32.1
Z Avg. Mol. Wt.	51.9
Z+1 Ävg. Mol. Wt.	75.0
Wt. Avg./No. Avg. (PDI)	2.0
Std. Dev. (No. Avg.)	0.1
Std. Dev. (Wt. Avg.)	0.0
Std. Dev. (Z Avg.)	0.3
Std. Dev. (Z+1 Ävg.)	1.0
Std. Dev. (Wt./No. Avg)	
- (PDI)	0.0

1000 g/mol 1000 g/mol 1000 g/mol 1000 g/mol

COMPONENT NAME RESULT VALUE UNITS

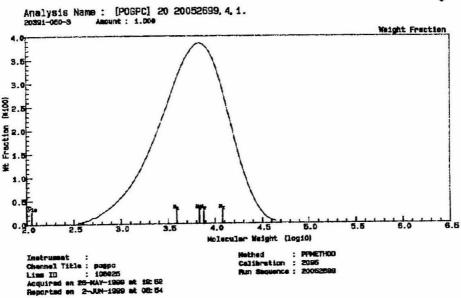
Entry 1 = 20391-050-2


No. Avg. Mol. Wt.	86.0
Wt. Avg. Mol. Wt.	195
Z Avg. Mol. Wt.	356
Z+1 Ävg. Mol. Wt.	562
Wt. Avg./No. Avg. (PDI)	2.3
Std. Dev. (No. Avg.)	1.6
Std. Dev. (Wt. Avg.)	0.4
Std. Dev. (Z Avg.)	2.5
Std. Dev. (Z+1 Ävg.)	6.7
Std. Dev. (Wt./No. Avg)	
- (PDI)	0.1

1000 g/mol 1000 g/mol 1000 g/mol 1000 g/mol

Amoco Multichrom V2.11

Analysis Name : [POGPC] 20 20052799, 10, 1. 20391-000-2 Amount : 1.000

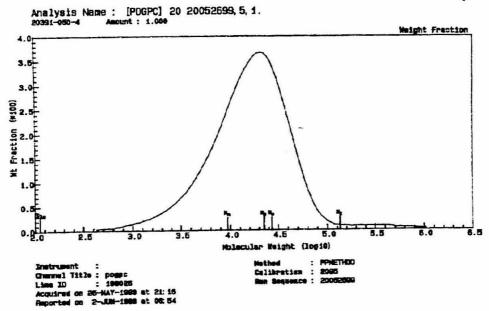

COMPONENT NAME RESULT VALUE UNITS

Entry 11 = 20391-050-3

No. Avg. Mol. Wt.	3.9
Wt. Avg. Mol. Wt.	7.5
Z Avg. Mol. Wt.	12.0
Z+1 Ävg. Mol. Wt.	16.9
Wt. Avg./No. Avg. (PDI)	1.9
Std. Dev. (No. Avg.)	0.1
Std. Dev. (Wt. Avg.)	0.0
Std. Dev. (Z Avg.)	0.0
Std. Dev. (Z+1 Avg.)	0.2
Std. Dev. (Wt./No. Avg)	
- (PDI)	0.0

1000 g/mol 1000 g/mol 1000 g/mol 1000 g/mol

Amoco Multichrom V2.11


COMPONENT NAME RESULT VALUE UNITS

Entry 6 = 20391-050-4

No. Avg. Mol. Wt.	9.3
Wt. Avg. Mol. Wt.	26.7
Z Avg. Mol. Wt.	133
Z+1 Ävg. Mol. Wt.	501
Wt. Avg./No. Avg. (PDI)	2.9
Std. Dev. (No. Avg.)	0.0
Std. Dev. (Wt. Avg.)	0.1
Std. Dev. (Z Avg.)	2.6
Std. Dev. (Z+1 Avg.)	6.1
Std. Dev. (Wt./No. Avg)	
- (PDI)	0.0

1000 g/mol 1000 g/mol 1000 g/mol 1000 g/mol

COMPONENT NAME RESULT VALUE UNITS

Entry 4 = 20391-050-5

No. Avg. Mol. Wt.	13.4
Wt. Avg. Mol. Wt.	34.0
Z Avg. Mol. Wt.	57.0
Z+1 Avg. Mol. Wt.	81.1
Wt. Avg./No. Avg. (PDI)	2.5
Std. Dev. (No. Avg.)	0.6
Std. Dev. (Wt. Avg.)	0.0
Std. Dev. (Z Avg.)	0.4
Std. Dev. (Z+1 Avg.)	1.0
Std. Dev. (Wt./No. Avg)	
- (PDI)	0.1

1000 g/mol 1000 g/mol 1000 g/mol 1000 g/mol

Amoco Multichrom V2.11

Analysis Name : [POGPC] 20 20052799, 11, 1. 20393-060-5 Amount : 1.000 Weight Fraction a. з. (¥100) 2 Frection . # 1. 0. 0.0 3.0 3.5 5.5 6.0 6.5 Melecular Weight (logio) Nothed : PPNETHOD Calibration : 2005 Run Sequence : 20052799 Instrum Charmel Title : pogpc Lime ID : 108027 Acquired on 28-MAY-1999 at 04:05 Recorded on 2-JUN-1999 at 06:53 Reported on

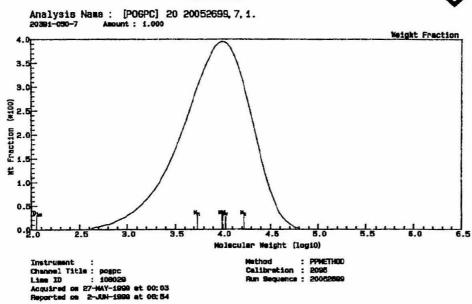
COMPONENT NAME RESULT VALUE UNITS

Entry 13 = 20391-050-6

No. Avg. Mol. Wt.	2.9
Wt. Avg. Mol. Wt.	5.5
Z Avg. Mol. Wt.	8.8
Z+1 Ävg. Mol. Wt.	12.4
Wt. Avg./No. Avg. (PDI)	1.9
Std. Dev. (No. Avg.)	0.1
Std. Dev. (Wt. Avg.)	0.0
Std. Dev. (Z Avg.)	0.2
Std. Dev. (Z+1 Avg.)	0.5
Std. Dev. (Wt./No. Avg)	
- (PDI)	0.1

1000 g/mol 1000 g/mol 1000 g/mol 1000 g/mol

Amoca Nultichrom V2.11


COMPONENT NAME RESULT VALUE UNITS

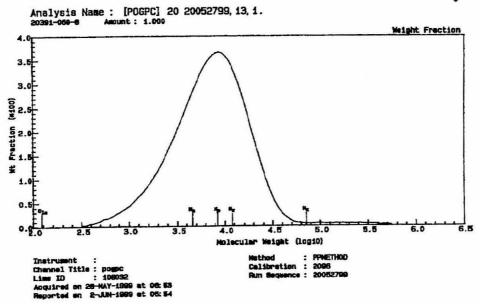
Entry 14 = 20391-050-7

No. Avg. Mol. Wt.	5.3
Wt. Avg. Mol. Wt.	10.5
Z Avg. Mol. Wt.	16.7
Z+1 Avg. Mol. Wt.	23.3
Wt. Avg./No. Avg. (PDI)	2.0
Std. Dev. (No. Avg.)	0.2
Std. Dev. (Wt. Avg.)	0.0
Std. Dev. (Z Avg.)	0.2
Std. Dev. (Z+1 Avg.)	0.5
Std. Dev. (Wt./No. Avg)	
- (PDI)	0.1

1000 g/mol 1000 g/mol 1000 g/mol 1000 g/mol

Amoco Multichrom V2.11

COMPONENT NAME	RESULT VALUE	UNITS	
----------------	--------------	-------	--


Entry 5 = 20391--050-8

No. Avg. Mol. Wt.	4.5
Wt. Avg. Mol. Wt.	11.6
Z Avg. Mol. Wt.	69.0
Z+1 Ävg. Mol. Wt.	285
Wt. Avg./No. Avg. (PDI)	2.6
Std. Dev. (No. Avg.)	0.1
Std. Dev. (Wt. Avg.)	0.3
Std. Dev. (Z Avg.)	5.0
Std. Dev. (Z+1 Avg.)	23.2
Std. Dev. (Wt./No. Avg)	
- (PDI)	0.0

1000	g/mol
1000	g/mol
	g/mol
	g/mol
	202220

Amoco Multichrom V2.11

4

Appendix B: X-ray Crystallographic Data

$\label{eq:constant} \begin{array}{l} \mbox{Table 1. Crystal Data and Structure Analysis Details for dlz1-} \\ [(Me_2Si)_2(4-CMe_3-C_5H_2)(3,5-CMe_2H-C_5H_1)]Y(\mu-Cl)_2K(THF)_2. \end{array}$

Empirical formula		. 7
Empirical formula	$C_{32}H_{54}Cl_2K_1O_2Si_2Y_1$	
Formula weight	725.86	
Crystallization solvent	diethyl ether/tetrahydı	ofuran/pentane
Crystal shape	irregular	
Crystal color	colorless	
Crystal size	0.190 x 0.200 x 0.330 mr	n
Data (Collection	
Preliminary photograph(s)	rotation	
Type of diffractometer	CAD-4	
Wavelength	0.7107 Å MoKα	
Data collection temperature	160 K	
Theta range for 25 reflections used		
in lattice determination	11 to 13°	
Unit cell dimensions	a = 10.204(2) Å	$\alpha = 90^{\circ}$
	b = 16.220(6) Å c = 23.074(7) Å	$\beta = 91.02(2)^{\circ}$ $\gamma = 90^{\circ}$
Volume		$\gamma = 90$
	3818.3(20) Å ³	
Z	4	
Crystal system	monoclinic	
Space group	$P 2_1/n (\# 14)$	
Density (calculated)	1.263 g/cm^3	
F(000)	1528	
Theta range for data collection	1.0 to 25.0°	
Index ranges	$0 \le h \le 12, -19 \le k \le 15, -19$	$-27 \le l \le 27$
Data collection scan type	ωscans	
Reflections collected	12148	
Independent reflections	6700 [R _{int} = 0.046; GOF ₁	merge ^{= 1.14}]
Reflections > $2\sigma(I)$	6700	
Absorption coefficient	1.866 mm ⁻¹	
Absorption correction	not applied	
Number of standards	3 reflections measured every 60 min	
Decay of standards	within counting statistics	
	0	

Structure Solution and Refinement

Primary solution method		direct methods
Secondary solution method	4	difference map
•	4	*
Hydrogen placement		calculated
Refinement method		full-matrix least-squares on F ²
Data / restraints / parame	ters	6700 / 0 / 330
Treatment of hydrogen ato	ms	not refined, U_{iso} fixed at 120% U_{eq} of
		attached atom
Goodness-of-fit on F ²		1.65
Final R indices [I> 2σ (I), 6700 reflections] R1 = 0.1099, wR2 = 0.1191		
R indices (all data)		R1 = 0.1099, wR2 = 0.1191
Type of weighting scheme	used	sigma
Weighting scheme used		$w=1/\sigma^2(Fo^2)$
Max shift/error		0.02
Largest diff. peak and hole		1.50 and -1.43 e∙Å ⁻³
Programs Used		
Cell refinement	CAD-4 Sof	tware (Enraf-Nonius, 1989)
Data collection	CAD-4 Software (Enraf-Nonius, 1989)	
Data reduction	CRYM (Duchamp, 1964)	
Structure solution	SHELXS-86 (Sheldrick, 1990)	
Structure refinement	CRYM (Du	ichamp, 1964)

Special Refinement Details

A small, irregular, colorless crystal was mounted on a glass fiber with Paratone-N oil. Data were collected with 1.0° ω -scans. The GOF_{merge} was 1.14 (4027 multiples) in point group 2/m; R_{merge} was 0.046 for 2989 duplicates with F_o > 0. The individual backgrounds were replaced by a background function of 20 derived from the backgrounds of weak reflections.

Weights w are calculated as $1/\sigma^2(F_o^2)$; variances ($\sigma^2(F_o^2)$) were derived from counting statistics plus an additional term, (0.014I)²; variances of the merged data were obtained by propagation of error plus another additional term, (0.014<I>)². The refinement of F² is as always against all reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F². The threshold expression of F² > 2 σ (F²) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement.

The two tetrahydrofuran molecules are disordered and were not modeled

satisfactorily. One, modeled with only on position, has very large displacement parameters for two of the atoms. The other, modeled with two arrangements for the two outside carbon atoms, has a very unrealistic geometry for the minor site (C30B and C31B are 2.09(5)Å apart). In fact, it is not possible to rule out the presence of a small fraction of diethyl ether at this location.

There is also a much lesser disorder in one of the isopropyl groups.

The disorder of these groups should have little effect on the rest of the structure.

The K atom is coordinated to the two THF ligands, two chlorides (bridging to Y), and is also η^3 coordinated to the *t*-butyl cyclopentadienyl. This produces helical chains along the b-axis.

Y-Cl1	2.587(2)	C4-C15	1.504(9)
Y-Cl2	2.579(2)	C5-H5	0.95
Y-K	4.266(2)	C6-C7	1.480(9)
Y-Si1	3.281(2)	C6-C10	1.420(9)
Y-Si2	3.268(2)	C7-C8	1.422(9)
Y-C1	2.590(6)	C8-C9	1.397(9)
Y-C2	2.586(6)	C8-C19	1.518(9)
Y-C3	2.704(6)	C9-C10	1.402(9)
Y-C4	2.828(6)	С9-Н9	0.95
Y-C5	2.735(6)	C10-C22	1.52(1)
Y-C6	2.545(6)	C11-H11a	0.95
Y-C7	2.548(6)	C11-H11b	0.95
Y-C8	2.750(6)	C11-H11c	0.95
Y-C9	2.815(7)	C12-H12a	0.95
Y-C10	2.737(7)	C12-H12b	0.95
Y-CpA ^a	2.403	C12-H12c	0.95
Y-CpB ^b	2.391	C13-H13a	0.95
Si1-Ĉ1	1.847(6)	C13-H13b	0.95
Si1-C6	1.856(7)	C13-H13c	0.95
Si1-C11	1.880(8)	C14-H14a	0.95
Si1-C12	1.856(9)	C14-H14b	0.95
Si2-C2	1.870(6)	C14-H14c	0.95
Si2-C7	1.873(6)	C15-C16	1.52(1)
Si2-C13	1.877(7)	C15-C17	1.53(1)
Si2-C14	1.865(7)	C15-C18	1.52(1)
C1-C2	1.438(8)	C16-H16a	0.95
C1-C5	1.428(9)	C16-H16b	0.95
C2-C3	1.426(9)	C16-H16c	0.95
C3-C4	1.423(9)	C17-H17a	0.95
C3-H3	0.95	C17-H17b	0.95
C4-C5	1.393(9)	C17-H17c	0.95

Table 2. Bond lengths [Å] and angles [°] for dlz1 – $[(Me_2Si)_2(4-CMe_3-C_5H_2)(3,5-CMe_2H-C_5H_1)]Y(\mu-Cl)_2K(THF)_2$.

C18-H18a C18-H18b C18-H18c C19-C20 C19-C21 C19-H19 C20-H20a C20-H20b C20-H20c C21-H21a C21-H21b C21-H21b C21-H21c C22-C23 C22-C24 C22-C24 C22-H22 C23-H23a C23-H23b C23-H23c C24-H24a	0.95 0.95 0.95 1.525(9) 1.54(1) 0.95 0.95 0.95 0.95 0.95 0.95 0.95 1.51(1) 1.53(1) 0.95	C30A-C31A C30A-C30B C30A-H30b C30A-H30b C31A-C31B C31A-C32 C31A-H31a C31A-H31b C30B-H30c C30B-H30d C30B-C31B C31B-C32 C31B-H31c C31B-H31d C32-H32a C32-H32b C32-H32c C32-H32d	$\begin{array}{c} 1.50(2)\\ 0.97(4)\\ 0.95\\ 0.95\\ 1.06(4)\\ 1.58(2)\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 2.09(5)\\ 1.26(4)\\ 0.95\\$
C24-H24a C24-H24b C24-H24c K-Cl1 K-Cl2 K-O1 K-O2 K-C1 K-C2 K-C5 O1-C25 O1-C25 O1-C28 C25-C26 C25-H25a C25-H25a C25-H25b C26-C27 C26-H26b C27-C28 C27-H27a C27-H27a C27-H27a C27-H27b C28-H28a C28-H28b O2-C29 O2-C32 C29-C30A C29-C30B C29-H29a C29-H29b C29-H29c C29-H29d	0.95 0.95 0.95 3.163(2) 3.189(2) 2.622(6) 2.751(6) 3.021(6) 3.224(6) 3.285(7) 1.52(2) 1.42(1) 1.33(2) 0.95 0.95 1.50(3) 0.95 0.95 1.45(2) 0.95 0	CpA-Y-CpB CpA-Y-Cl1 CpA-Y-Cl2 CpB-Y-Cl2 Cl1-Y-Cl2 C6-Si1-C1 C11-Si1-C1 C12-Si1-C1 C12-Si1-C1 C12-Si1-C6 C12-Si1-C6 C12-Si1-C6 C12-Si1-C1 C7-Si2-C2 C13-Si2-C2 C13-Si2-C2 C13-Si2-C7 C14-Si2-C2 H3-C3-C2 H3-C3-C2 H3-C3-C2 H3-C3-C4 C5-C4-C3 C15-C4-C3 C15-C4-C3	$\begin{array}{c} 115.0\\ 113.1\\ 111.0\\ 109.3\\ 111.1\\ 95.74(6)\\ 96.1(3)\\ 107.4(3)\\ 116.3(3)\\ 116.3(3)\\ 116.3(3)\\ 113.5(3)\\ 107.1(4)\\ 95.7(3)\\ 116.8(3)\\ 107.3(3)\\ 115.5(3)\\ 115.5(3)\\ 115.5(3)\\ 115.5(3)\\ 115.3(3)\\ 106.1(3)\\ 122.2(4)\\ 127.2(5)\\ 106.4(5)\\ 123.8(4)\\ 124.9(4)\\ 106.3(5)\\ 110.6(5)\\ 124.7\\ 124.7\\ 105.3(5)\\ 126.9(6)\\ 127.4(6)\\ \end{array}$

C4-C5-C1	111.4(6)	H16b-C16-C15	109.5
H5-C5-C1	124.3	H16c-C16-C15	109.5
H5-C5-C4	124.3	H16b-C16-H16a	109.5
C7-C6-Si1	122.3(5)	H16c-C16-H16a	109.5
C10-C6-Si1	128.6(5)	H16c-C16-H16b	109.5
C10-C6-C7	106.1(5)	H17a-C17-C15	109.5
C6-C7-Si2	121.9(4)	H17b-C17-C15	109.5
C8-C7-Si2	127.8(5)	H17c-C17-C15	109.5
C8-C7-C6	106.8(5)	H17b-C17-H17a	109.5
C9-C8-C7	108.5(6)	H17c-C17-H17a	109.5
C19-C8-C7	125.5(6)	H17c-C17-H17b	109.5
C19-C8-C9	125.8(6)	H18a-C18-C15	109.5
C10-C9-C8	109.5(6)	H18b-C18-C15	109.5
H9-C9-C8	125.3	H18c-C18-C15	109.5
H9-C9-C10	125.3	H18b-C18-H18a	109.5
C9-C10-C6	108.9(6)	H18c-C18-H18a	109.5
C22-C10-C6	127.3(6)	H18c-C18-H18b	109.5
C22-C10-C9	123.6(6)	C20-C19-C8	110.4(5)
H11a-C11-Si1	109.5	C21-C19-C8	113.2(5)
H11b-C11-Si1	109.5	H19-C19-C8	106.5
H11c-C11-Si1	109.5	C21-C19-C20	110.2(5)
H11b-C11-H11a	109.5	H19-C19-C20	109.7
H11c-C11-H11a	109.5	H19-C19-C21	106.7
H11c-C11-H11b	109.5	H20a-C20-C19	109.5
H12a-C12-Si1	109.5	H20b-C20-C19	109.5
H12b-C12-Si1	109.5	H20c-C20-C19	109.5
H12c-C12-Si1	109.5	H20b-C20-H20a	109.5
H12b-C12-H12a	109.5	H20c-C20-H20a	109.5
H12c-C12-H12a	109.5	H20c-C20-H20b	109.5
H12c-C12-H12b	109.5	H21a-C21-C19	109.5
H13a-C13-Si2	109.5	H21b-C21-C19	109.5
H13b-C13-Si2	109.5	H21c-C21-C19	109.5
H13c-C13-Si2	109.5	H21b-C21-H21a	109.5
H13b-C13-H13a	109.5	H21c-C21-H21a	109.5
H13c-C13-H13a	109.5	H21c-C21-H21b	109.5
H13c-C13-H13b	109.5	C23-C22-C10	113.5(7)
H14a-C14-Si2	109.5	C24-C22-C10	108.8(7)
H14b-C14-Si2	109.5	H22-C22-C10	107.6
H14c-C14-Si2	109.5	C24-C22-C23	110.7(7)
H14b-C14-H14a	109.5	H22-C22-C23	105.6
H14c-C14-H14a	109.5	H22-C22-C24	110.6
H14c-C14-H14b	109.5	H23a-C23-C22	109.5
C16-C15-C4	110.9(5)	H23b-C23-C22	109.5
C17-C15-C4	109.0(5)	H23c-C23-C22	109.5
C18-C15-C4	111.0(6)	H23b-C23-H23a	109.5
C17-C15-C16	108.7(6)	H23c-C23-H23a	109.5
C18-C15-C16	107.5(6)	H23c-C23-H23b	109.5
C18-C15-C17	109.8(6)	H24a-C24-C22	109.5
H16a-C16-C15	109.5	H24b-C24-C22	109.5

^a CpA is the centroid of atoms C1, C2, C3, C4 and C5 ^b CpB is the centroid of atoms C6, C7, C8, C9 and C10

Table 3. Crystal Data and Structure Analysis Details for dlz2 – $[(Me_2Si)_2(4-CMe_3-C_5H_2)(3,5-CMe_2H-C_5H_1)]Sc(\mu-Cl)_2K(Et_2O)_2.$

	γο enic ₂ 11 e ₅ 11 ₁ /joe(μ ei/ ₂ 1(lit ₂ 0) ₂ .
Empirical formula	$C_{32}H_{32}Cl_2KO_2ScSi_2$
Formula weight	659.72
Crystallization solvent	diethyl ether/petroleum ether
Crystal shape	fragment
Crystal color	colorless
Crystal size	0.19 x 0.30 x 0.67 mm
	Data Collection
Preliminary photograph(s)	rotation
Type of diffractometer	CAD-4
Wavelength	0.71073 Å MoKα
Data collection temperature	160 K
Theta range for 25 reflections	
in lattice determination	10.6 to 12.2°
Unit cell dimensions	$a = 12.328(5)$ Å $\alpha = 95.58(2)^{\circ}$ $b = 12.894(4)$ Å $\beta = 105.57(3)^{\circ}$
	$c = 13.059(4) \text{ Å}$ $\gamma = 100.41(3)^{\circ}$
Volume	1943.3(11) Å ³
Z	2
Crystal system	triclinic
Space group	P ī (# 2)
Density (calculated)	1.127 g/cm ³
F(000)	684
Theta range for data collection	n 1.5 to 25.0°
Index ranges	$-15 \le h \le 14$, $-15 \le k \le 15$, $-16 \le l \le 15$
Data collection scan type	omega scans
Reflections collected	15191
Independent reflections	7609 [R _{int} = 0.034]
Reflections > $2\sigma(I)$	5720
Average $\sigma(I)/(\text{net I})$	0.0499
Absorption coefficient	0.519 mm ⁻¹
Absorption correction	none
Number of standards	3 reflections measured every 60 min
Decay of standards	1.2%

Structure Solution and Refinement

Primary solution method		direct methods		
Secondary solution method		difference map		
Hydrogen placement		calculated		
Refinement method		full matrix least-squares on F ²		
Data / restraints / parame	ters	7603 / 16 / 609		
Treatment of hydrogen ato	ms	coordinates refined, U_{iso} fixed at 120%		
		U _{eq} of attached atom		
Goodness-of-fit on F ²		1.432		
Final R indices [I> $2\sigma(I)$, 5720 reflections] R1 = 0.0421, wR2 = 0.0731				
R indices (all data)		R1 = 0.0656, wR2 = 0.0806		
Type of weighting scheme used		sigma		
Weighting scheme used		$w=1/\sigma^2(Fo^2)$		
Max shift/error		-0.562		
Average shift/error		0.019		
Largest diff. peak and hole		0.407 and -0.381 e∙Å ⁻³		
Programs Used				
Cell refinement	CAD-4 Sof	tware (Enraf-Nonius, 1989)		
Data collection	CAD-4 Software (Enraf-Nonius, 1989)			
Data reduction	CRYM (Duchamp, 1964)			
Structure solution	SHELXS-86 (Sheldrick, 1990)			
Structure refinement	SHELXL-9	3 (Sheldrick, 1993)		

Special Refinement Details

A colorless crystal was mounted on a glass fiber with Paratone-N oil. Data were collected with ω -scans. Weights w are calculated as $1/\sigma^2(F_o^2)$; variances ($\sigma^2(F_o^2)$) were derived from counting statistics plus an additional term, (0.014I)²; variances of the merged data were obtained by propagation of error plus another additional term, (0.014<I>)². The refinement of F² is as always against all reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F². The threshold expression of F² > 2 σ (F²) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement.

Sc-CpA ^a	2.2351(8)	C34-H34B	0.98(3)
Sc-CpB ^b	2.2820(9)	C34-H34C	1.00(4)
Sc-C10	2.390(2)	C4-C5	1.420(3)
Sc-C6	2.399(3)	C4-H4A	0.87(2)
Sc-C5	2.436(2)	C6-C7	1.423(3)
Sc-C1	2.438(2)	C6-C10	1.472(3)
Sc-Cl1	2.4488(10)	C7-C8	1.407(3)
Sc-Cl2	2.5070(13)	C7-C71	1.511(3)
Sc-C4	2.567(3)	C71-C73	1.513(4)
Sc-C2	2.574(2)	C71-C72	1.534(4)
Sc-C9	2.650(2)	C71-H71A	0.97(2)
Sc-C7	2.679(3)	C72-H72A	0.99(3)
K-O1	2.62(2)	C72-H72B	0.98(3)
K-O2	2.704(4)	C72-H72C	0.96(3)
K-O3	2.762(12)	C73-H73A	0.94(3)
K-04	2.952(9)	C73-H73B	0.98(3)
K-Cl1	3.082(2)	C73-H73C	1.00(3)
K-Cl2 ⁱ	3.1923(15)	C8-C9	1.400(3)
K-Cl2	3.2354(14)	C8-H8A	$0.91(2)^{2}$
K-K ⁱ	4.735(2)	C9-C10	1.432(3)
Cl2-K ⁱ	3.1923(15)	C9-C91	1.512(3)
Si1-C102	1.864(3)	C91-C93	1.529(4)
Si1-C101	1.866(3)	C91-C92	1.529(4)
Si1-C6	1.868(3)	C91-H91A	0.94(2)
Si1-C1	1.871(3)	C92-H92A	1.00(3)
Si2-C202	1.864(3)	C92-H92B	0.95(3)
Si2-C5	1.865(3)	C92-H92C	0.95(3)
Si2-C201	1.865(3)	C93-H93A	0.95(3)
Si2-C10	1.871(3)	C93-H93B	0.98(3)
C1-C2	1.418(3)	C93-H93C	0.93(3)
C1-C5	1.446(3)	C101-H10A	0.94(4)
C2-C3	1.410(3)	C101-H10B	0.92(4)
C2-H2A	0.92(2)	C101-H10C	0.92(4)
C3-C4	1.409(3)	C102-H10D	0.98(3)
C3-C31	1.520(3)	C102-H10E	0.96(3)
C31-C32	1.511(4)	C102-H10F	0.96(3)
C31-C34	1.529(4)	C201-H20A	0.87(4)
C31-C33	1.538(4)	C201-H20B	0.91(4)
C32-H32A	1.01(3)	C201-H20C	0.89(5)
C32-H32B	1.04(3)	C202-H20D	0.96(3)
C32-H32C	0.96(4)	C202-H20E	0.96(3)
C33-H33A	1.10(3)	C202-H20F	0.95(3)
C33-H33B	1.11(4)	O1-C112	1.494(10)
C33-H33C	1.05(3)	O1-C113	1.520(9)
C34-H34A	1.01(4)	C111-C112	1.531(10)

Table 4. Bond lengths [Å] and angles [°] for dlz2 – $[(Me_2Si)_2(4-CMe_3-C_5H_2)(3,5-CMe_2H-C_5H_1)]Sc(\mu-Cl)_2K(Et_2O)_2.$

C111-H111	0.96	C413-H413	0.97
C111-H111	0.96	C414-H414	0.96
C111-H111	0.96	C414-H414	0.96
C112-H112	0.97	C414-H414	0.96
C112-H112 C113-C114 C113-H113 C113-H113 C114-H114	0.97 1.511(9) 0.97 0.97 0.96	CpA-Sc-CpB C10-Sc-C6 C10-Sc-C5 C6-Sc-C5	122.71(3) 35.79(8) 69.34(9) 80.26(9)
C114-H114	0.96	C10-Sc-C1	79.78(9)
C114-H114	0.96	C6-Sc-C1	69.01(9)
O3-C312	1.469(8)	C5-Sc-C1	34.52(8)
O3-C313	1.509(7)	C10-Sc-C11	135.96(7)
C311-C312	1.519(8)	C6-Sc-Cl1	105.30(7)
C311-H311	0.96	C5-Sc-Cl1	139.13(6)
C311-H311	0.96	C1-Sc-Cl1	108.68(7)
C311-H311	0.96	C10-Sc-Cl2	106.84(7)
C312-H312	0.97	C6-Sc-Cl2	137.49(7)
C312-H312 C312-H312 C313-C314 C313-H313 C313-H313	0.97 1.519(7) 0.97 0.97	C5-Sc-Cl2 C1-Sc-Cl2 Cl1-Sc-Cl2 Cl1-Sc-Cl2 C10-Sc-C4	107.49(7) $108.46(7)$ $138.78(6)$ $94.52(4)$ $97.29(9)$
C314-H314	0.96	C6-Sc-C4	$113.09(9) \\ 32.85(8) \\ 54.45(8) \\ 123.29(6) \\ 24.55(7) \\ 25.55(7$
C314-H314	0.96	C5-Sc-C4	
C314-H314	0.96	C1-Sc-C4	
O2-C212	1.445(6)	Cl1-Sc-C4	
O2-C213	1.472(7)	Cl2-Sc-C4	84.36(7)
C211-C212	1.529(8)	C10-Sc-C2	112.50(9)
C211-H211	0.96	C6-Sc-C2	96.32(9)
C211-H211	0.96	C5-Sc-C2	54.51(8)
C211-H211	0.96	C1-Sc-C2	32.72(8)
C211-H211 C212-H212 C212-H212 C213-C214 C213-H213	0.97 0.97 1.509(7) 0.97	Cl1-Sc-C2 Cl2-Sc-C2 C4-Sc-C2 C10-Sc-C9	84.66(7) 123.10(6) 51.93(8) 32.49(8)
C213-H213	0.97	C6-Sc-C9	54.56(8)
C214-H214	0.96	C5-Sc-C9	97.45(8)
C214-H214	0.96	C1-Sc-C9	112.24(8)
C214-H214	0.96	Cl1-Sc-C9	119.06(6)
O4-C413	1.484(8)	Cl2-Sc-C9	$\begin{array}{c} 82.94(6)\\ 117.02(8)\\ 144.95(8)\\ 54.43(8)\\ 31.95(8)\end{array}$
O4-C412	1.528(9)	C4-Sc-C9	
C411-C412	1.547(9)	C2-Sc-C9	
C411-H411	0.96	C10-Sc-C7	
C411-H411	0.96	C6-Sc-C7	
C411-H411	0.96	C5-Sc-C7	112.20(9)
C412-H412	0.97	C1-Sc-C7	96.57(9)
C412-H412	0.97	Cl1-Sc-C7	81.53(6)
C413-C414	1.519(10)	Cl2-Sc-C7	120.78(6)
C413-H413	0.97	C4-Sc-C7	145.04(8)

C2-Sc-C7 C9-Sc-C7 O1-K-Cl1 O2-K-Cl1 O3-K-Cl1 O4-K-Cl1 O1-K-Cl2 ⁱ O2-K-Cl2 ⁱ O3-K-Cl2 ⁱ O4-K-Cl2 O1-K-Cl2 O2-K-Cl2 O2-K-Cl2 O3-K-Cl2 O3-K-Cl2 O4-K-Cl2 Cl1-K-Cl2 Cl1-K-Cl2 Cl2 ⁱ -K-Cl2 O1-K-K ⁱ O2-K-K ⁱ O2-K-K ⁱ O3-K-K ⁱ O3-K-K ⁱ O3-K-K ⁱ Cl2-K-K ⁱ Cl2-K-K ⁱ Sc-Cl1-K Sc-Cl2-K K ⁱ -Cl2-K Cl02-Si1-Cl0 Cl02-Si1-Cl0 Cl02-Si1-Cl Cl01-Si1-C6 Cl01-Si1-C6 Cl01-Si1-C6 Cl01-Si1-C6 Cl01-Si1-C6 Cl01-Si1-C1 Cl02-Si1-C1 Cl02-Si1-C2 Cl01-Si1-Sc Cl01-Si1-Sc Cl02-Si2-C201 C5-Si2-C201 C202-Si2-C10 C202-Si2-C10 C202-Si2-C10 C202-Si2-Sc C202-Si2-Sc	$\begin{array}{c} 115.34(8)\\ 51.14(8)\\ 109.2(3)\\ 89.21(10)\\ 102.7(2)\\ 80.5(2)\\ 106.9(3)\\ 92.18(14)\\ 113.9(2)\\ 108.0(2)\\ 142.36(3)\\ 114.6(4)\\ 139.90(11)\\ 116.9(2)\\ 144.5(2)\\ 70.32(3)\\ 85.12(4)\\ 118.7(3)\\ 123.25(15)\\ 125.6(2)\\ 139.9(2)\\ 107.68(4)\\ 42.91(2)\\ 42.21(2)\\ 99.58(4)\\ 142.56(3)\\ 94.43(4)\\ 94.88(4)\\ 105.8(2)\\ 115.99(14)\\ 114.53(14)\\ 106.95(13)\\ 119.3(2)\\ 94.25(11)\\ 103.58(11)\\ 150.59(14)\\ 49.38(7)\\ 50.56(8)\\ 108.85(14)\\ 106.5(2)\\ 116.29(15)\\ 114.98(13)\\ 94.59(11)\\ 115.5(2)\\ 105.05(12)\\ 50.63(8)\\ \end{array}$	C2-C1-Si1 C5-C1-Si C2-C1-Sc C5-C1-Sc Si1-C1-Sc C3-C2-Sc C3-C2-C1 C3-C2-Sc C1-C2-Sc C3-C2-H2A C1-C2-H2A Sc-C2-H2A C4-C3-C2 C4-C3-C31 C2-C3-C31 C4-C3-Sc C2-C3-Sc C31-C3-Sc C32-C31-C33 C32-C31-C34 C32-C31-C33 C32-C31-C33 C34-C31-C33 C34-C31-C33 C34-C31-C33 C31-C32-H32B H32A-C32-H32B H32A-C32-H32C H32B-C32-H32C H32B-C32-H32C C31-C33-H33B H33A-C33-H33B H33A-C33-H33B C31-C33-H33B H33A-C33-H33C C31-C34-H34A C31-C34-H34A C31-C34-H34A C31-C34-H34B H34A-C34-H34B H34A-C34-H34C H34B-C34-H34C H34B-C34-H34C H34B-C34-H34C H34B-C34-H34C H34B-C34-H34C H34B-C34-H34C H34B-C34-H34C	124.0(2) 123.6(2) 78.94(14) 72.67(13) 93.08(10) 110.4(2) 78.80(14) 68.34(13) 125.0(15) 124.6(15) 117.8(14) 106.0(2) 127.1(2) 126.4(2) 69.88(14) 70.17(13) 130.6(2) 108.6(2) 108.6(2) 108.6(2) 108.9(3) 111.5(2) 108.9(3) 111.6(2) 106.1(3) 100.3(15) 108.4(19) 124.4(25) 112.1(21) 102.3(25) 108.9(28) 99.9(17) 109.8(21) 119.9(26) 111.6(17) 105.2(23) 110.0(26) 106.1(25) 108.8(17) 106.2(28) 112.4(20) 112.3(31) 110.6(26) 110.6(2) 79.09(14) 68.49(14) 128.1(15) 121.3(15)
C10-Si2-Sc C2-C1-C5	49.25(7) 106.7(2)	C4-C5-Si2	106.3(2) 126.5(2)

C1-C5-Si2	121.6(2)	C9-C91-H91A	110.0(15)
C4-C5-Sc	78.66(14)	C93-C91-H91A	107.9(15)
C1-C5-Sc	72.81(13)	C92-C91-H91A	106.0(15)
Si2-C5-Sc	93.08(10)	C91-C92-H92A	114.0(17)
C7-C6-C10	107.4(2)	C91-C92-H92B	106.5(17)
	107.4(2) 127.4(2)	H92A-C92-H92B	113.2(25)
C7-C6-Si1	• •		
C10-C6-Si1	122.3(2)	C91-C92-H92C	109.1(18)
C7-C6-Sc	84.93(14)	H92A-C92-H92C	104.2(24)
C10-C6-Sc	71.77(13)	H92B-C92-H92C	109.9(24)
Si1-C6-Sc	94.41(10)	C91-C93-H93A	114.0(19)
C8-C7-C6	107.8(2)	C91-C93-H93B	108.6(19)
C8-C7-C71	125.7(2)	H93A-C93-H93B	106.6(26)
C6-C7-C71	126.4(2)	C91-C93-H93C	109.2(19)
C8-C7-Sc	78.76(15)	H93A-C93-H93C	110.0(26)
C6-C7-Sc	63.12(13)	H93B-C93-H93C	108.3(26)
C71-C7-Sc	126.4(2)	C9-C10-C6	106.4(2)
C7-C71-C73	113.0(2)	C9-C10-Si2	128.6(2)
		C6-C10-Si2	
C7-C71-C72	110.3(2)		122.0(2)
C73-C71-C72	109.6(2)	C9-C10-Sc	83.80(14)
C7-C71-H71A	109.1(13)	C6-C10-Sc	72.44(13)
C73-C71-H71A	107.2(13)	Si2-C10-Sc	94.37(10)
C72-C71-H71A	107.5(14)	Si1-C101-H10A	111.4(21)
C71-C72-H72A	108.8(15)	Si1-C101-H10B	108.7(22)
C71-C72-H72B	110.8(16)	H10A-C101-H10B	113.4(29)
H72A-C72-H72B	111.6(22)	Si1-C101-H10C	119.3(25)
C71-C72-H72C	111.2(16)	H10A-C101-H10C	103.4(30)
H72A-C72-H72C	107.9(22)	H10B-C101-H10C	100.3(30)
H72B-C72-H72C	106.5(21)	Si1-C102-H10D	111.0(17)
C71-C73-H73A	109.2(17)	Si1-C102-H10E	107.6(19)
C71-C73-H73B	112.9(18)	H10D-C102-H10E	108.8(25)
H73A-C73-H73B	110.3(24)	Si1-C102-H10F	111.9(16)
C71-C73-H73C	109.6(14)	H10D-C102-H10F	104.5(23)
H73A-C73-H73C	107.4(21)	H10E-C102-H10F	113.0(24)
H73B-C73-H73C	107.4(23)	Si2-C201-H20A	111.0(27)
C9-C8-C7	110.1(2)	Si2-C201-H20B	113.7(26)
C9-C8-Sc	70.25(14)	H20A-C201-H20B	99.6(34)
C7-C8-Sc	71.39(14)	Si2-C201-H20C	116.0(29)
		H20A-C201-H20C	103.7(36)
C9-C8-H8A	126.1(15)	H20B-C201-H20C	
C7-C8-H8A	123.7(16)	Si2-C202-H20D	111.2(37)
Sc-C8-H8A	126.5(15)		112.5(17)
C8-C9-C10	108.3(2)	Si2-C202-H20E	110.1(17)
C8-C9-C91	125.2(2)	H20D-C202-H20E	107.5(23)
C10-C9-C91	126.3(2)	Si2-C202-H20F	109.2(17)
C8-C9-Sc	79.95(14)	H20D-C202-H20F	111.1(24)
C10-C9-Sc	63.71(13)	H20E-C202-H20F	106.3(23)
C91-C9-Sc	126.3(2)	C112-O1-C113	91.7(12)
C9-C91-C93	112.4(2)	С112-О1-К	128.1(12)
C9-C91-C92	109.8(2)	С113-О1-К	132.4(12)
C93-C91-C92	110.5(3)	C112-C111-H111	109.4(14)

C112-C111-H111 H111-C111-H111 C112-C111-H111 H111-C111-H111 H111-C111-H111 O1-C112-C111 O1-C112-H112 C111-C112-H112 C111-C112-H112 C111-C112-H112 C114-C113-H113 O1-C113-H113 O1-C113-H113 O1-C113-H113 H113-C113-H113 C114-C113-H113 C114-C113-H113 C113-C114-H114 H114-C114-H114 H114-C114-H114 H114-C114-H114 H114-C114-H114 H114-C114-H114 H114-C114-H114 H114-C114-H114 C312-O3-C313 C312-O3-K C312-C311-H311 C312-C311-H311	$\begin{array}{c} 109.4(12)\\ 109.5\\ 109.6(13)\\ 109.5\\ 109.5\\ 109.5\\ 101.5(18)\\ 111.3(10)\\ 111.5(12)\\ 111.4(9)\\ 111.7(13)\\ 109.4\\ 100.5(11)\\ 111.7(7)\\ 111.7(7)\\ 111.7(7)\\ 111.7(7)\\ 109.4\\ 109.5(7)\\ 109.5(7)\\ 109.5(7)\\ 109.5\\ 109.5(7)\\ 109.5\\ 109.5(7)\\ 109.5\\ 109.5(7)\\ 109.5\\ 109.5(7)\\ 109.5\\ 109.5(7)\\ 109.5$	$\begin{array}{c} \text{O3-C312-C311}\\ \text{O3-C312-H312}\\ \text{C311-C312-H312}\\ \text{C311-C312-H312}\\ \text{C311-C312-H312}\\ \text{C311-C312-H312}\\ \text{C312-C312-H312}\\ \text{O3-C313-C314}\\ \text{O3-C313-H313}\\ \text{C314-C313-H313}\\ \text{C314-C313-H313}\\ \text{C314-C313-H313}\\ \text{C313-C314-H314}\\ \text{C313-C314-H314}\\ \text{C313-C314-H314}\\ \text{H314-C314-H314}\\ \text{H314-C314-H314}\\ \text{H314-C314-H314}\\ \text{H314-C314-H314}\\ \text{C212-O2-C213}\\ \text{C212-O2-K}\\ \text{C213-O2-K}\\ \text{C213-O2-K}\\ \text{C212-C211-H211}\\ \text{H211-C211-H211}\\ \text{H211-C211-H211}\\ \text{H211-C211-H211}\\ \text{H211-C211-H211}\\ \text{H211-C211-H211}\\ \text{H211-C211-H211}\\ \text{O2-C212-C211}\\ \text{O2-C212-C211}\\ \text{O2-C212-H212}\\ \end{array}$	$\begin{array}{c} 108.1(14)\\ 110.1(6)\\ 110.2(10)\\ 110.2(7)\\ 109.9(10)\\ 108.4\\ 103.2(7)\\ 111.1(6)\\ 111.1(5)\\ 111.1(6)\\ 111.1(5)\\ 109.1\\ 109.5(4)\\ 109.5(5)\\ 109.5\\ 109.5(5)\\ 109.5\\ 109.5\\ 109.5\\ 112.3(6)\\ 125.0(5)\\ 117.6(4)\\ 109.5(5)\\ 109.5(6)\\ 109.5\\ 109.5(6)\\ 109.5\\ 109.5\\ 109.5(6)\\ 109.5\\ 109.5\\ 109.5(6)\\ 109.5\\ 109.5\\ 109.5(6)\\ 109.5\\ 109$
C312-C311-H311 H311-C311-H311	109.3(10) 109.5	C211-C212-H212	110.4(6)
H311-C311-H311	109.5		
O2-C212-H212 C211-C212-H212	110.4(4) 110.4(6)	C412-O4-K C412-C411-H411	118.0(8) 109.5(9)
H212-C212-H212	108.6	C412-C411-H411	109.5(13)
O2-C213-C214	110.9(6)	H411-C411-H411	109.5
O2-C213-H213 C214-C213-H213	109.5(3) 109.4(5)	C412-C411-H411 H411-C411-H411	109.5(13) 109.5
O2-C213-H213	109.4(3) 109.5(3)	H411-C411-H411	109.5
C214-C213-H213	109.5(4)	O4-C412-C411	101.1(11)
H213-C213-H213	108.0	O4-C412-H412	111.6(8)
C213-C214-H214	109.5(5)	C411-C412-H412	111.5(13)
C213-C214-H214	109.5(5) 109.5	O4-C412-H412 C411-C412-H412	111.6(9) 111.5(13)
H214-C214-H214 C213-C214-H214	109.5(4)	H412-C412-H412	109.4
H214-C214-H214	109.5	O4-C413-C414	104.3(12)
H214-C214-H214	109.5	O4-C413-H413	110.9(5)
C413-O4-C412	106.4(9)	C414-C413-H413	110.9(8)
C413-O4-K	121.6(8)	O4-C413-H413	110.9(7)

C414-C413-H413	110.9(10)	H414-C414-H414	109.5
H413-C413-H413	108.9	C413-C414-H414	109.5(10)
C413-C414-H414	109.5(9)	H414-C414-H414	109.5
C413-C414-H414	109.5(8)	H414-C414-H414	109.5

Symmetry transformations used to generate equivalent atoms: (i), -x+1,-y+1,-z+1

 $^{\rm a}$ CpA is the centroid of atoms C1, C2, C3, C4 and C5 $^{\rm b}$ CpB is the centroid of atoms C6, C7, C8, C9 and C10

Table 5. Crystal Data and Structure Analysis Details for dlz3 – $Y{\mu-[(Me_2Si)_2(4-CMe_3-C_5H_2)(3,5-CMe_2H-C_5H_1)]_2(\mu-H)_2}Y$.

		27
Empirical formula	$[C_{24}H_{39}Si_2Y]_2[C_6H_6]_2$	
Formula weight	[945.32][156.23]	
Crystallization Solvent	benzene- d_6	
Crystal Habit	square columns	
Crystal size	0.48 x 0.22 x 0.17 mm ³	
Crystal color	colorless	
Data (Collection	
Preliminary Photos	none	
Type of diffractometer	CAD-4	
Wavelength	0.71073 Å MoKα	
Data Collection Temperature	85 K	
Theta range for reflections used in lattice determination	16.6 to 20.3°	
Unit cell dimensions	a = 10.477(6) Å b = 16.312(11) Å c = 17.341(13) Å	$\beta = 105.12(6)^{\circ}$
Volume	2861(3) Å ³	
Z	2	
Crystal system	monoclinic	
Space group	$P2_1/c$	
Density (calculated)	1.279 Mg/m ³	
F(000)	1168	
Theta range for data collection	1.75 to 25.0°	
Completeness to $\theta = 25.00^{\circ}$	100.0 %	
Index ranges	$-12 \le h \le 12, -19 \le k \le 1$	$9, 0 \le l \le 20$
Data collection scan type	ωscans	

Reflections collected Independent reflections	11228 5031 [R _{int} = 0.031; GOF _{merge} = 1.11]
Absorption coefficient	2.138 mm ⁻¹
Absorption correction	none
Number of standards	3 reflections measured every 75 min.
Variation of standards	within counting statistics, zero %.

Structure solution and Refinement

Structure solution program	SHELXS-97 (Sheldrick, 1990)
Primary solution method	Direct methods (See Special Refinement Details)
Secondary solution method	All non-H in initial solution
Hydrogen placement	Difference Fourier map
Structure refinement program	SHELXL-97 (Sheldrick, 1997)
Refinement method	Full matrix least-squares on F ²
Data / restraints / parameters	5031 / 0 / 478
Treatment of hydrogen atoms	unrestrained
Goodness-of-fit on F ²	1.392
Final R indices $[I>2\sigma(I)]$	R1 = 0.0324, $wR2 = 0.0550$
R indices (all data)	R1 = 0.0525, wR2 = 0.0588
Type of weighting scheme used	sigma
Weighting scheme used	$w=1/\sigma^2(Fo^2)$
Max shift/error	0.012
Average shift/error	0.000
Largest diff. peak and hole	0.413 and -0.280 e.Å ⁻³

Special Refinement Details

Direct methods and the Patterson method were unsuccessful at solving this structure in the true space group, $P2_1/c$, although fragments were discernable. The structure was solved by Direct methods in space group P1 using a triclinic expansion of the data, which revealed the positions of all the non-hydrogen atoms as well as the positions of the hydride. Since Z=2 for the dimer it was clear that the molecule must sit on a center of symmetry. The dimer was translated to the center at 0,0,0 and the unique atoms were retained for refinement. All other hydrogen atoms were visible in the Fourier map and were included in the refinement without restraints.

The variances $[\sigma^2(Fo^2)]$ were derived from counting statistics plus an additional term, $(0.014I)^2$, and the variances of the merged data were obtained by propagation of error plus the addition of another term, $(0.014<I>)^2$.

Refinement of F^2 against ALL reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F^2 , conventional R-factors (R) are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Y-Cent2	2.3594(15)	$C(4)-Si(2)^{i}$	1.860(3)
Y-Cent1	2.3775(13)	C(5)-H(5)	0.94(2)
Y-Pln2	2.3576(27)	C(6)-C(10)	1.410(4)
Y-Pln1	2.3736(27)	C(6)-C(7)	1.416(4)
Y-C(9)	2.613(3)	C(6)-H(6)	0.89(2)
Y-C(3)	2.622(3)	C(7)-C(8)	1.426(4)
Y-C(8)	2.626(3)	C(7)-C(18)	1.517(3)
Y-C(4)	2.628(3)	C(8)-C(9)	1.455(3)
Y-C(2)	2.664(3)	C(9)-C(10)	1.422(4)
Y-C(10)	2.668(3)	$C(9)-Si(1)^{i}$	1.871(3)
Y-C(6)	2.676(3)	C(10)-C(15)	1.519(4)
Y-C(5)	2.679(3)	C(11)-C(13)	1.526(4)
Y-C(7)	2.680(3)	C(11)-C(14)	1.528(4)
Y-C(1)	2.744(3)	C(11)-C(12)	1.535(4)
Y-H	2.11(2)	C(12)-H(12A)	1.00(3)
Si(1)-C(3)	1.859(3)	C(12)-H(12B)	0.90(3)
$Si(1)-C(9)^{i}$	1.871(3)	C(12)-H(12C)	0.98(3)
Si(1)-C(21)	1.871(3)	C(13)-H(13A)	0.98(3)
Si(1)-C(22)	1.872(3)	C(13)-H(13B)	0.94(3)
$Si(2)-C(4)^{i}$	1.860(3)	C(13)-H(13C)	0.99(3)
Si(2)-C(24)	1.871(3)	C(14)-H(14A)	0.96(2)
Si(2)-C(8)	1.878(3)	C(14)-H(14B)	0.96(3)
Si(2)-C(23)	1.879(3)	C(14)-H(14C)	0.99(3)
C(1)-C(2)	1.416(4)	C(15)-C(16)	1.528(4)
C(1)-C(5)	1.422(4)	C(15)-C(17)	1.529(4)
C(1)-C(11)	1.523(4)	C(15)-H(15)	0.88(2)
C(2)-C(3)	1.415(4)	C(16)-H(16A)	0.96(3)
C(2)-H(2)	0.85(2)	C(16)-H(16B)	0.97(3)
C(3)-C(4)	1.438(3)	C(16)-H(16C)	0.95(3)
C(4)-C(5)	1.424(4)	C(17)-H(17A)	0.89(3)

Table 6. Bond lengths [Å] and angles [°] for dlz3 – $Y{\mu-[(Me_2Si)_2(4-CMe_3-C_5H_2)(3,5-CMe_2H-C_5H_1)]_2(\mu-H)_2}Y$.

C(17)-H(17B) C(17)-H(17C) C(18)-C(20) C(18)-C(19) C(18)-H(18) C(19)-H(19A) C(19)-H(19B) C(19)-H(19C) C(20)-H(20A) C(20)-H(20B) C(20)-H(20C) C(21)-H(21A)	$\begin{array}{c} 0.97(2) \\ 0.92(3) \\ 1.527(4) \\ 1.530(4) \\ 0.95(2) \\ 0.97(3) \\ 0.94(2) \\ 0.97(3) \\ 0.89(3) \\ 0.99(3) \\ 0.94(3) \\ 0.98(3) \end{array}$	C(4)-Y-C(2) $C(9)-Y-C(10)$ $C(3)-Y-C(10)$ $C(8)-Y-C(10)$ $C(4)-Y-C(10)$ $C(2)-Y-C(10)$ $C(9)-Y-C(6)$ $C(3)-Y-C(6)$ $C(3)-Y-C(6)$ $C(4)-Y-C(6)$ $C(2)-Y-C(6)$ $C(2)-Y-C(6)$ $C(10)-Y-C(6)$	51.22(8) 31.22(8) 159.28(8) 52.05(9) 134.18(9) 133.93(9) 51.27(9) 140.08(8) 51.35(9) 139.68(9) 109.08(9) 30.60(8)
C(21)-H(21B) C(21)-H(21C) C(22)-H(22A) C(22)-H(22B) C(22)-H(22C) C(23)-H(23A)	$\begin{array}{c} 0.98(3) \\ 1.02(3) \\ 0.91(3) \\ 0.96(3) \\ 0.88(3) \\ 0.95(3) \\ 0.02(2) \end{array}$	C(9)-Y-C(5) C(3)-Y-C(5) C(8)-Y-C(5) C(4)-Y-C(5) C(2)-Y-C(5) C(10)-Y-C(5) C(10)-Y-C(5) C(5) C	$134.75(8) \\51.44(8) \\159.41(8) \\31.12(8) \\50.02(9) \\108.92(9) \\108.92(9)$
C(23)-H(23B) C(23)-H(23C) C(24)-H(24A) C(24)-H(24B) C(24)-H(24C)	$\begin{array}{c} 0.93(3) \\ 0.92(3) \\ 0.93(3) \\ 0.96(3) \\ 0.94(3) \end{array}$	C(6)-Y-C(5) C(9)-Y-C(7) C(3)-Y-C(7) C(8)-Y-C(7) C(4)-Y-C(7) C(2)-Y-C(7) C(3)-Y-C(7) C(4)-Y-C(7) C(4)-Y-C(7) C(2)-Y-C(7) C(2)-Y-C(7) C(3)-Y-C(7) C(3	$108.58(9) \\51.90(8) \\134.36(8) \\31.16(8) \\158.97(8) \\109.02(9) \\51.10(8)$
C(61)-C(62) C(61)-C(66) C(61)-H(61) C(62)-C(63) C(62)-H(62) C(63)-C(64) C(63)-H(63)	$\begin{array}{c} 1.380(4) \\ 1.380(4) \\ 0.91(3) \\ 1.377(4) \\ 0.90(3) \\ 1.383(4) \\ 0.86(3) \end{array}$	C(10)-Y-C(7) C(6)-Y-C(7) C(5)-Y-C(7) C(9)-Y-C(1) C(3)-Y-C(1) C(8)-Y-C(1) C(4)-Y-C(1) C(4)-Y-C(1) C(1) C(1)-Y-C(1) C(1)-Y-C(1) C(1)-Y-C(1) C(1)-Y-C(1) C(1)-Y-C(1) C(1)-Y-C(1) C(1)-Y-C(1) C(1)-Y-C(1) C(1)-Y-C(1) C(2)-Y-C(1) C(2)-Y-C(1) C(3)-Y-C(1) C(3)-Y	$51.10(8) \\ 30.66(8) \\ 133.29(8) \\ 139.90(8) \\ 51.42(8) \\ 139.46(8) \\ 51.37(8)$
C(63)-H(63) C(64)-C(65) C(64)-H(64) C(65)-C(66) C(65)-H(65) C(66)-H(66)	$\begin{array}{c} 1.376(4) \\ 0.92(3) \\ 1.378(4) \\ 0.91(3) \\ 0.90(3) \end{array}$	C(4)-1-C(1) C(2)-Y-C(1) C(10)-Y-C(1) C(6)-Y-C(1) C(5)-Y-C(1) C(7)-Y-C(1) C(9)-Y-H	$30.31(8) \\108.72(9) \\93.12(9) \\30.36(8) \\108.32(9) \\92.0(6)$
Cent2-Y-Cent1 Pln2-Y-Pln1 C(9)-Y-C(3) C(9)-Y-C(8) C(3)-Y-C(8) C(9)-Y-C(4) C(3)-Y-C(4) C(8)-Y-C(4) C(9)-Y-C(2) C(3)-Y-C(2) C(8)-Y-C(2)	$146.24(3) \\151.7(1) \\168.20(8) \\32.24(8) \\145.69(8) \\145.98(8) \\31.80(8) \\168.58(8) \\159.65(8) \\31.03(8) \\134.44(8)$	C(3)-Y-H C(8)-Y-H C(4)-Y-H C(2)-Y-H C(10)-Y-H C(6)-Y-H C(5)-Y-H C(7)-Y-H C(7)-Y-H C(1)-Y-H C(3)-Si(1)-C(9) ⁱ C(3)-Si(1)-C(21) C(9) ⁱ -Si(1)-C(21)	78.2(6) 74.0(6) 96.2(6) 96.5(6) 122.5(6) 122.8(6) 126.5(6) 93.1(6) 126.4(6) 105.27(12) 109.13(13) 117.71(13)

C(3)-Si(1)-C(22) C(9) ⁱ -Si(1)-C(22) C(21)-Si(1)-C(22) C(4) ⁱ -Si(2)-C(24) C(4) ⁱ -Si(2)-C(8) C(24)-Si(2)-C(8) C(4) ⁱ -Si(2)-C(23) C(24)-Si(2)-C(23) C(8)-Si(2)-C(23) C(2)-C(1)-C(5) C(2)-C(1)-C(11)	$\begin{array}{c} 110.11(13)\\ 107.79(13)\\ 106.75(14)\\ 109.88(13)\\ 105.75(12)\\ 117.07(13)\\ 109.98(12)\\ 104.61(15)\\ 109.52(12)\\ 105.5(2)\\ 127.2(2) \end{array}$	C(8)-C(7)-Y C(18)-C(7)-Y C(7)-C(8)-C(9) C(7)-C(8)-Si(2) C(9)-C(8)-Si(2) C(7)-C(8)-Y C(9)-C(8)-Y Si(2)-C(8)-Y Si(2)-C(8)-Y C(10)-C(9)-C(8) C(10)-C(9)-Si(1) ⁱ C(8)-C(9)-Si(1) ⁱ	$\begin{array}{c} 72.33(14)\\ 123.34(16)\\ 107.1(2)\\ 129.40(19)\\ 123.36(19)\\ 76.52(14)\\ 73.36(14)\\ 119.05(11)\\ 107.7(2)\\ 129.22(19)\\ 122.70(19) \end{array}$
C(5)-C(1)-C(11)	126.3(2)	C(10)-C(9)-Y	76.55(14)
C(2)-C(1)-Y	71.73(15)	C(8)-C(9)-Y	74.40(14)
C(5)-C(1)-Y	72.28(15)	Si(1) ⁱ -C(9)-Y	120.33(11)
C(3)-C(1)-T C(11)-C(1)-Y C(3)-C(2)-C(1)	129.54(17) 110.8(2)	C(6)-C(10)-C(9) C(6)-C(10)-C(15)	107.9(2) 126.8(2)
C(3)-C(2)-Y	72.83(15)	C(9)-C(10)-C(15)	125.3(2)
C(1)-C(2)-Y	77.97(15)	C(6)-C(10)-Y	75.03(15)
C(3)-C(2)-H(2)	126.0(17)	C(9)-C(10)-Y	72.24(14)
C(1)-C(2)-H(2)	123.2(17)	C(15)-C(10)-Y	121.54(16)
Y-C(2)-H(2)	117.5(17)	C(1)-C(11)-C(13)	111.6(2)
C(2)-C(3)-C(4) C(2)-C(3)-Si(1)	106.6(2) 129.41(19)	C(1)-C(11)-C(14) C(13)-C(11)-C(14)	111.0(2) 111.4(2) 108.9(2)
C(4)-C(3)-Si(1)	123.89(19)	C(1)-C(11)-C(12)	108.1(2)
C(2)-C(3)-Y	76.15(15)	C(13)-C(11)-C(12)	108.0(2)
C(4)-C(3)-Y	74.32(14)	C(14)-C(11)-C(12)	108.8(2)
Si(1)-C(3)-Y	117.66(11)	C(11)-C(12)-H(12A)	110.1(15)
C(5)-C(4)-C(3)	107.0(2)	C(11)-C(12)-H(12B)	107.6(16)
$C(5)-C(4)-Si(2)^{i}$	129.6(2)	H(12A)-C(12)-H(12B)	109(2)
$C(3)-C(4)-Si(2)^{i}$	123.37(19)	C(11)-C(12)-H(12C)	112.9(15)
C(5)-C(4)-Y	76.43(15)	H(12A)-C(12)-H(12C)	107(2)
C(3)-C(4)-Y	73.88(14)	H(12B)-C(12)-H(12C)	110(2)
Si(2) ⁱ -C(4)-Y	116.23(11)	C(11)-C(13)-H(13A)	112.1(14)
C(1)-C(5)-C(4)	110.0(2)	C(11)-C(13)-H(13B)	111.2(15)
C(1)-C(5)-Y	77.36(15)	H(13A)-C(13)-H(13B)	109(2)
C(4)-C(5)-Y	72.46(15)	C(11)-C(13)-H(13C)	111.1(14)
C(1)-C(5)-H(5)	124.2(15)	H(13A)-C(13)-H(13C)	105(2)
C(4)-C(5)-H(5) Y-C(5)-H(5)	125.8(15) 118.4(15) 109.4(2)	H(13B)-C(13)-H(13C) C(11)-C(14)-H(14A) C(11)-C(14)-H(14B)	108(2) 109.2(15) 110.5(16)
C(10)-C(6)-C(7)	$109.4(2) \\ 74.38(15) \\ 74.83(15)$	C(11)-C(14)-H(14B)	110.5(16)
C(10)-C(6)-Y		H(14A)-C(14)-H(14B)	107(2)
C(7)-C(6)-Y		C(11)-C(14)-H(14C)	113.2(14)
C(10)-C(6)-H(6)	126.5(15)	H(14A)-C(14)-H(14C)	107(2)
C(7)-C(6)-H(6)	123.8(15)	H(14B)-C(14)-H(14C)	110(2)
Y-C(6)-H(6)	122.2(15)	C(10)-C(15)-C(16)	112.5(2)
C(6)-C(7)-C(8) C(6)-C(7)-C(18)	107.9(2) 126.8(2)	C(10)-C(15)-C(17) C(16)-C(15)-C(17) C(10)-C(15)-H(15)	$113.1(2) \\110.1(2) \\106.6(15)$
C(8)-C(7)-C(18)	125.1(2)	C(10)-C(15)-H(15)	106.1(15)
C(6)-C(7)-Y	74.51(14)	C(16)-C(15)-H(15)	

$\begin{array}{llllllllllllllllllllllllllllllllllll$	Si(1)-C(22)-H(22B) H(22A)-C(22)-H(22C) H(22A)-C(22)-H(22C) H(22B)-C(22)-H(22C) Si(2)-C(23)-H(23A) Si(2)-C(23)-H(23B) H(23A)-C(23)-H(23B) Si(2)-C(23)-H(23C) H(23B)-C(23)-H(23C) H(23B)-C(23)-H(23C) Si(2)-C(24)-H(24B) H(24A)-C(24)-H(24B) Si(2)-C(24)-H(24B) Si(2)-C(24)-H(24C) H(24A)-C(24)-H(24C) H(24B)-C(24)-H(24C) H(24B)-C(24)-H(24C) C(62)-C(61)-H(61) C(63)-C(62)-H(61) C(63)-C(62)-H(62) C(61)-C(62)-H(62) C(62)-C(63)-H(63) C(65)-C(64)-H(64) C(65)-C(64)-H(64) C(63)-C(65)-H(65) C(66)-C(61)-H(65) C(65)-C(66)-H(66) C(61)-C(66)-H(66)	110.2(17) $115.3(18)$ $104(2)$ $115(2)$ $106(2)$ $105(3)$ $111.6(17)$ $106.8(19)$ $110(2)$ $111.4(18)$ $107(2)$ $111.4(18)$ $107(2)$ $114.1(16)$ $109(2)$ $109.8(18)$ $110(2)$ $109.8(18)$ $110(2)$ $109.8(18)$ $110(2)$ $109.8(18)$ $110(2)$ $109.8(18)$ $110(2)$ $109.8(18)$ $120.9(18)$ $120.9(18)$ $120.9(18)$ $120.9(18)$ $120.2(3)$ $121.4(19)$ $118.6(19)$ $120.2(3)$ $122.3(19)$ $117.5(19)$ $119.8(3)$ $121.6(17)$ $120.1(3)$ $118.9(17)$ $120.2(3)$ $116.8(17)$ $120.2(3)$ $116.8(17)$ $123.0(17)$
--	---	--

Symmetry transformations used to generate equivalent atoms: (i),-x,-y,-z

Cent1 is the centroid formed by C1, C2, C3, C4 and C5. Cent2 is the centroid formed by C6, C7, C8, C9 and C10. Pln1 is the plane formed by C1, C2, C3, C4 and C5. Pln2 is the plane formed by C6, C7, C8, C9 and C10.

Table 7. Crystal Data and Structure Analysis Details for dlz4 – $[(Me_2Si)_2(4-CMe_3-C_5H_2)(3,5-CMe_2H-C_5H_1)]Sc(\mu-Me)_2AlMe_2.$

	2 3 1/4 1 /2	
Empirical formula	$C_{28}H_{50}AlScSi_2$	
Formula weight	514.80	
Crystallization Solvent	toluene	
Crystal Habit	fragment	
Crystal size	0.41 x 0.28 x 0.09 mm ³	
Crystal color	colorless	
Data	Collection	
Preliminary Photos	none	
Type of diffractometer	CAD-4	
Wavelength	0.71073 Å MoKα	
Data Collection Temperature	85 K	
Theta range for reflections used		
in lattice determination	10.9 to 16.8°	
Unit cell dimensions	a = 10.960(3) Å b = 11.033(5) Å	$\alpha = 96.39(4)^{\circ}$
	b = 11.033(5) Å c = 12.835(8) Å	$\beta = 104.22(4)^{\circ}$ $\gamma = 94.01(3)^{\circ}$
Volume	1487.5(12) Å ³	1 (-)
Z	2	
Crystal system	triclinic	
Space group	Pī	
Density (calculated)	1.149 mg/m^3	
F(000)	560	
Theta range for data collection	1.65 to 25.0°	
Completeness to $\theta = 25.00^{\circ}$	100.0 %	
Index ranges	$-13 \le h \le 12, -13 \le k \le 1$	3, -15 ≤ l ≤ 14
Data collection scan type	ωscans	
Reflections collected	11200	
Independent reflections	5212 [R _{int} = 0.021; GOF	merge= 1.06]
Absorption coefficient	0.371 mm ⁻¹	
Absorption correction	none	
Number of standards	3 reflections measured	every 75 min.
Variation of standards	within counting statist	ics, zero %.
Structure solut	ion and Refinement	
Structure solution program	SHELXS-97 (Sheldrick,	1990)

Primary solution method	Direct methods
Secondary solution method	All heavy atoms in initial solution
Hydrogen placement	Difference Fourier map
Structure refinement program	SHELXL-97 (Sheldrick, 1997)
Refinement method	Full matrix least-squares on F ²
Data / restraints / parameters	5212 / 0 / 489
Treatment of hydrogen atoms	unrestrained
Goodness-of-fit on F ²	1.725
Final R indices [I>2σ(I)]	R1 = 0.0305, wR2 = 0.0646
R indices (all data)	R1 = 0.0387, wR2 = 0.0664
Type of weighting scheme used	sigma
Weighting scheme used	$w=1/[\sigma^2(Fo^2)]$
Max shift/error	0.001
Average shift/error	0.000
Largest diff. peak and hole	0.336 and -0.213 e.Å ⁻³

Special Refinement Details

Inspection of the structural geometry and the bond distances would suggest that the methyl groups (C25, C26, C27 & C28) are bonded to the aluminum atom. Methyl groups C(25) and C(26), those closest to scandium, are approximately 0.4Å further from the scandium than would be expected for a Sc-C single bond to an alkyl (See Table 3, Figures 5 and 6). This would suggest they are not strongly bond to scandium. However, the hydrogen atoms H(25C) and H(26C) are at a distance from scandium that would suggest a bonding interaction (See Table 3, Figures 5 and 6).

The variances $[\sigma^2(Fo^2)]$ were derived from counting statistics plus an additional term, $(0.014I)^2$, and the variances of the merged data were obtained by propagation of error plus the addition of another term, $(0.014 < I >)^2$.

Refinement of F^2 against ALL reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F^2 , conventional R-factors (R) are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Table 8. Selected bond lengths [Å] and angles [°] for dlz4 – $[(Me_2Si)_2(4-CMe_3-C_5H_2)(3,5-CMe_2H-C_5H_1)]Sc(\mu-Me)_2AlMe_2$.

Pln1-Sc	2.213(1)	Cent1-Sc	2.239(1)
Pln2-Sc	2.195(1)	Cent2-Sc	2.233(1)
Sc-Al	2.9179(14)	Al-C(27)	1.971(2)
Sc-C(26)	2.9179(14) 2.414(2)	Al-C(27) Al-C(28)	1.971(2) 1.970(2)
Sc-C(25)	2.442(2)	Al-C(25)	2.081(2)
	2.21(2)	Al-C(25)	2.081(2) 2.087(2)
Sc-H(26C) Sc-H(25C)	2.19(2)	AI-C(20)	2.007(2)
5C-A(25C)	2.19(2)		
A males anone	16.	Analas an	
Angles around	<u>15c</u>	Angles are	bund Al
Pln1-Sc-Pln2	104.32(7)	C(27)-Al-C(28)	111.13(10)
Cent1-Sc-Cent2	123.53(3)	C(27)-Al-C(25)	109.69(10)
C(26)-Sc-C(25)	88.48(8)	C(28)-Al-C(25)	110.14(9)
H(25C)-Sc-H(26C)	131.4(9)	C(27)-Al-C(26)	113.52(10)
		C(28)-Al-C(26)	103.45(10)
		C(25)-Al-C(26)	108.73(9)
	Angles	around C(25)	
	•		
Al-C(25)-Sc	79.92(7)		
Al-C(25)-H(25A)	112(1)	Sc-C(25)-H(25A)	107(1)
Al-C(25)-H(25B)	90(1)	Sc-C(25)-H(25B)	146(2)
Al-C(25)-H(25C)	134(1)	Sc-C(25)-H(25C)	63(2)
			00(=)
	Angles	around C(26)	
Al-C(26)-Sc	80.47(7)		
Al-C(26)-H(26A)	108(1)	Sc-C(26)-H(26A)	106(1)
Al-C(26)-H(26B)	90(1)	Sc-C(26)-H(26B)	145(1)
Al-C(26)-H(26C)	139(1)	Sc-C(26)-H(26C)	67(1)

Cent1 is the centroid formed by C1, C2, C3, C4 and C5. Cent2 is the centroid formed by C6, C7, C8, C9 and C10. Pln1 is the plane formed by C1, C2, C3, C4 and C5. Pln2 is the plane formed by C6, C7, C8, C9 and C10.

$[(Me_2Si)_2(4-CMe_3-C_5)]$	H ₂)(3,5-CMe ₂ H	$-C_5H_1$]Sc(μ -Me) ₂ AlMe	e ₂ .
Pln1-Sc	2.2134(1)	C(11)-C(12)	1.530(3)
Pln2-Sc	2.1950(14)	C(12)-H(12A)	0.96(2)
Cent1-Sc	2.2387(1)	C(12)-H(12B)	0.96(3)
Cent2-Sc	2.2331(10)	C(12)-H(12C)	0.91(2)
Sc-C(9)	2.3759(18)	C(13)-H(13A)	0.98(2)
Sc-C(8)	2.381(2)	C(13)-H(13B)	0.94(2)
Sc-C(26)	2.414(2)	C(13)-H(13C)	0.96(2)
Sc-C(3)	2.417(2)	C(14)-H(14A)	0.97(3)
Sc-C(4)	2.423(2)	C(14)-H(14B)	1.02(3)
Sc-C(25)	2.442(2)	C(14)-H(14C)	0.96(2)
Sc-C(2)	2.575(2)	C(15)-C(17)	1.522(3)
Sc-C(5)	2.583(2)	C(15)-C(16)	1.530(3)
Sc-C(10)	2.6117(19)	C(15)-H(15)	0.977(18)
Sc-C(7)	2.619(2)	C(16)-H(16A)	0.94(2)
Sc-C(6)	2.704(2)	C(16)-H(16B)	0.99(2)
Sc-C(1)	2.715(2)	C(16)-H(16C)	0.98(2)
Si(1)-C(22)	1.862(2)	C(17)-H(17A)	0.96(2)
Si(1)-C(3)	1.864(2)	C(17)-H(17B)	0.94(2)
Si(1)-C(21)	1.872(2)	C(17)-H(17C)	0.92(2)
Si(1)-C(8)	1.882(2)	C(18)-C(20)	1.523(3)
Si(2)-C(23)	1.852(2)	C(18)-C(19)	1.530(3)
Si(2)-C(24)	1.866(2)	C(18)-H(18)	0.971(18)
Si(2)-C(4)	1.8729(19)	C(19)-H(19A)	0.96(2)
Si(2)-C(9)	1.878(2)	C(19)-H(19B)	0.96(2)
Al-C(27)	1.971(2)	C(19)-H(19C)	0.95(2)
Al-C(28)	1.970(2)	C(20)-H(20A)	0.92(2)
Al-C(25)	2.081(2)	C(20)-H(20B)	0.95(2)
Al-C(26)	2.087(2)	C(20)-H(20C)	0.97(2)
C(1)-C(5)	1.414(2)	C(21)-H(21A)	1.01(2)
C(1)-C(2)	1.416(3)	C(21)-H(21B)	0.94(2)
C(1)-C(11)	1.528(2)	C(21)-H(21C)	0.93(2)
C(2)-C(3)	1.424(2)	C(22)-H(22A)	0.89(3)
C(2)-H(2)	0.969(19)	C(22)-H(22B)	0.94(3)
C(3)-C(4)	1.443(3)	C(22)-H(22C)	0.92(3)
C(4) - C(5)	1.420(3)	C(23)-H(23A)	0.95(3)
C(5)-H(5)	0.898(18)	C(23)-H(23B)	0.93(2)
C(6)-C(7)	1.407(3)	C(23)-H(23C)	0.89(2)
C(6)-C(10)	1.410(3)	C(24)-H(24A)	0.95(2)
C(6)-H(6)	0.903(18)	C(24)-H(24B)	0.96(2)
C(7)-C(8)	1.430(3)	C(24)-H(24C)	0.95(2)
C(7) - C(15)	1.519(3)	C(25)-H(25A)	0.99(2)
C(8)-C(9)	1.471(2)	C(25)-H(25B)	0.84(3)
C(9)-C(10)	1.419(2)	C(25)-H(25C)	0.92(3)
C(10)-C(18)	1.521(3)	C(26)-H(26A)	1.00(2)
C(11)-C(14)	1.517(3)	C(26)-H(26B)	0.93(2)
C(11)-C(13)	1.521(3)	C(26)-H(26C)	0.98(2)

Table 9. Bond lengths [Å] and angles [°] for dlz4 – $[(Me_{\circ}Si)_{\circ}(4-CMe_{\circ}-C_{\circ}H_{\circ})(3.5-CMe_{\circ}H-C_{\circ}H_{\circ})]Sc(u-Me)_{\circ}A|Me_{\circ}$

$\begin{array}{c} C(2)^{+} F(27) \\ C(27)^{+} F(27) \\ C(27)^{+} F(27) \\ C(27)^{+} F(27) \\ C(27)^{+} F(27) \\ C(28)^{+} F(28) \\ O(28)^{+} F(28) \\ O(29)^{+} Sec^{-} C(8) \\ O(26)^{+} Sec^{-} C(6) \\ O(26)^{+} Sec^{-} C(6) \\ O(26)^{+} Sec^{-} C(26) \\ O(26)^{+} Sec^{-} C(26) \\ O(26)^{+} Sec^{-} C(26) \\ O(26)^{+} Sec^{-} C(26) \\ O(26)^{+} Sec^{-} C(3) \\ O(26)^{+} Sec^{-} C(4) \\ O(26)^{+} Sec^{-} C(25) \\ O(26)^{+} Sec^{-} C(4) \\ O(26)^{+} Sec^{-} C(25) \\ O(26)^{+} Sec^{-} C(4) \\ O(26)^{+} Sec^{-} C(25) \\ O(26)^{+} Sec^{-} C(2) \\ O(2$	C(27)-H(27A)	0.90(3)	C(4)-Sc-C(7)	112.66(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	an exercise of the former of the former of the former of the second second second second second second second s			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				and the second sec
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		· · · ·		
$\begin{array}{ccccccc} C(28)-H(28C) & 0.93(3) & C(9)-Sc-C(6) & 53.17(6) \\ & C(8)-Sc-C(6) & 90.67(7) \\ Cent1-Sc-Cent2 & 123.53(3) & C(3)-Sc-C(6) & 90.67(7) \\ Cent1-Sc-Cent2 & 123.53(3) & C(3)-Sc-C(6) & 122.77(6) \\ C(9)-Sc-C(8) & 36.02(6) & C(4)-Sc-C(6) & 122.38(7) \\ C(9)-Sc-C(26) & 107.45(7) & C(2)-Sc-C(6) & 147.25(6) \\ C(9)-Sc-C(3) & 80.79(7) & C(5)-Sc-C(6) & 146.33(6) \\ C(8)-Sc-C(3) & 69.51(7) & C(10)-Sc-C(6) & 30.61(6) \\ C(26)-Sc-C(3) & 139.32(7) & C(7)-Sc-C(6) & 30.61(6) \\ C(26)-Sc-C(4) & 69.24(7) & C(9)-Sc-C(1) & 122.75(6) \\ C(26)-Sc-C(4) & 69.24(7) & C(9)-Sc-C(1) & 91.87(7) \\ C(3)-Sc-C(4) & 109.71(7) & C(26)-Sc-C(1) & 91.87(7) \\ C(3)-Sc-C(4) & 34.68(6) & C(3)-Sc-C(1) & 91.87(7) \\ C(3)-Sc-C(25) & 110.22(8) & C(25)-Sc-C(1) & 92.31(7) \\ C(26)-Sc-C(25) & 110.32(8) & C(25)-Sc-C(1) & 92.31(7) \\ C(26)-Sc-C(25) & 110.32(8) & C(25)-Sc-C(1) & 92.31(7) \\ C(26)-Sc-C(25) & 110.33(7) & C(7)-Sc-C(1) & 146.57(6) \\ C(9)-Sc-C(2) & 113.73(7) & C(7)-Sc-C(1) & 146.57(6) \\ C(9)-Sc-C(2) & 113.73(7) & C(7)-Sc-C(1) & 147.53(6) \\ C(4)-Sc-C(2) & 12.74(7) & C(9)-Sc-H(25C) & 122.7(7) \\ C(3)-Sc-C(2) & 32.95(6) & C(8)-Sc-H(25C) & 129.4(7) \\ C(4)-Sc-C(2) & 54.74(6) & C(26)-Sc-H(25C) & 134.4(7) \\ C(4)-Sc-C(2) & 54.57(7) & C(6)-Sc-H(25C) & 124.7(7) \\ C(4)-Sc-C(2) & 54.57(7) & C(4)-Sc-H(25C) & 134.4(7) \\ C(4)-Sc-C(5) & 54.55(7) & C(4)-Sc-H(25C) & 134.4(7) \\ C(4)-Sc-C(5) & 54.55(7) & C(3)-Sc-H(25C) & 134.4(7) \\ C(4)-Sc-C(5) & 54.55(7) & C(3)-Sc-H(25C) & 134.4(7) \\ C(4)-Sc-C(5) & 54.55(7) & C(3)-Sc-H(25C) & 134.4(7) \\ C(4)-Sc-C(5) & 52.00(7) & C(6)-Sc-H(25C) & 134.4(7) \\ C(2)-Sc-C(5) & 52.00(7) & C(6)-Sc-H(25C) & 134.4(7) \\ C(2)-Sc-C(5) & 52.00(7) & C(6)-Sc-H(25C) & 134.4(7) \\ C(2)-Sc-C(10) & 32.63(6) & C(1)-Sc-H(25C) & 134.4(7) \\ C(2)-Sc-C(10) & 52.37(7) & C(3)-Sc-H(25C) & 134.4(7) \\ C(4)-Sc-C(10) & 97.33(7) & C(3)-Sc-H(26C) & 134.6(5) \\ C(20)-Sc-C(10) & 113.41(6) & C(20)-Sc-H(26C) & 114.6(5) \\ C(20)-Sc-C(10) & 113.41(6) & C(20)-Sc-H(26C) & 114.6(5) \\ C(20)-Sc-C(10) & 113.64(6) & C(20)-Sc-H(26C) & 114.6(5) \\ C(20)-Sc-C(10) & 114.6(5) & C(20)-Sc-H(26C)$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				1.50 S
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$C(20)^{-11}(20C)$	0.90(0)		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Pln1-Sc-Pln2	$104\ 32(7)$		
$\begin{array}{ccccc} C(9)-Sc-C(8) & 36.02(6) & C(4)-Sc-C(6) & 122.38(7) \\ C(9)-Sc-C(26) & 107.45(7) & C(2)-Sc-C(6) & 91.13(7) \\ C(8)-Sc-C(26) & 138.07(7) & C(2)-Sc-C(6) & 146.33(6) \\ C(9)-Sc-C(3) & 69.51(7) & C(10)-Sc-C(6) & 30.70(6) \\ C(26)-Sc-C(3) & 139.32(7) & C(7)-Sc-C(6) & 30.61(6) \\ C(9)-Sc-C(4) & 69.24(7) & C(9)-Sc-C(1) & 122.75(6) \\ C(8)-Sc-C(4) & 79.88(7) & C(8)-Sc-C(1) & 91.87(7) \\ C(3)-Sc-C(4) & 34.68(6) & C(3)-Sc-C(1) & 53.54(6) \\ C(26)-Sc-C(25) & 139.82(7) & C(4)-Sc-C(1) & 53.54(6) \\ C(3)-Sc-C(25) & 139.82(7) & C(4)-Sc-C(1) & 53.54(6) \\ C(3)-Sc-C(25) & 110.22(8) & C(25)-Sc-C(1) & 92.31(7) \\ C(3)-Sc-C(25) & 110.22(8) & C(2)-Sc-C(1) & 30.83(6) \\ C(4)-Sc-C(25) & 110.3(7) & C(1)-Sc-C(1) & 146.57(6) \\ C(4)-Sc-C(25) & 140.31(7) & C(10)-Sc-C(1) & 146.57(6) \\ C(9)-Sc-C(2) & 113.73(7) & C(7)-Sc-C(1) & 147.53(6) \\ C(8)-Sc-C(2) & 97.55(7) & C(6)-Sc-C(1) & 175.78(5) \\ C(26)-Sc-C(2) & 122.7(7) & C(9)-Sc-H(25C) & 122.7(7) \\ C(3)-Sc-C(2) & 32.95(6) & C(8)-Sc-H(25C) & 122.7(7) \\ C(4)-Sc-C(2) & 54.74(6) & C(26)-Sc-H(25C) & 122.7(7) \\ C(4)-Sc-C(5) & 96.55(7) & C(4)-Sc-H(25C) & 109.6(7) \\ C(25)-Sc-C(5) & 96.55(7) & C(4)-Sc-H(25C) & 131.4(7) \\ C(4)-Sc-C(5) & 112.65(7) & C(2)-Sc-H(25C) & 80.5(7) \\ C(3)-Sc-C(5) & 122.77(6) & C(1)-Sc-H(25C) & 131.4(7) \\ C(3)-Sc-C(5) & 122.86(7) & C(2)-Sc-H(25C) & 80.5(7) \\ C(3)-Sc-C(5) & 32.77(6) & C(1)-Sc-H(25C) & 80.5(7) \\ C(4)-Sc-C(5) & 32.77(6) & C(1)-Sc-H(25C) & 114.9(7) \\ C(25)-Sc-C(10) & 32.63(6) & C(1)-Sc-H(25C) & 84.3(7) \\ C(2)-Sc-C(10) & 32.63(6) & C(1)-Sc-H(25C) & 84.3(7) \\ C(2)-Sc-C(10) & 32.63(6) & C(1)-Sc-H(25C) & 84.3(7) \\ C(2)-Sc-C(10) & 32.63(6) & C(1)-Sc-H(25C) & 114.9(7) \\ C(2)-Sc-C(10) & 32.63(6) & C(1)-Sc-H(25C) & 84.3(7) \\ C(2)-Sc-C(10) & 13.41(6) & C(26)-Sc-H(26C) & 114.9(7) \\ C(2)-Sc-C(10) & 13.41(6) & C(26)-Sc-H(26C) & 114.9(7) \\ C(2)-Sc-C(10) & 13.41(6) & C(26)-Sc-H(26C) & 114.9(5) \\ C(4)-Sc-C(10) & 115.77(7) & C(2)-Sc-H(26C) & 114.9(5) \\ C(4)-Sc-C(10) & 115.77(7) & C(2)-Sc-H(26C) & 114.6(5) \\ C(2)-Sc-C(10) & 115.77(7) & C(2)-Sc-H(26C) & 114.6(5) \\ C(2)-Sc-C(10) & 115.77($				
$\begin{array}{ccccc} C(9)-Sc-C(26) & 107.45(7) & C(25)-Sc-C(6) & 91.13(7) \\ C(8)-Sc-C(26) & 138.07(7) & C(2)-Sc-C(6) & 147.25(6) \\ C(9)-Sc-C(3) & 80.79(7) & C(5)-Sc-C(6) & 146.33(6) \\ C(8)-Sc-C(3) & 69.51(7) & C(10)-Sc-C(6) & 30.70(6) \\ C(26)-Sc-C(4) & 69.24(7) & C(9)-Sc-C(1) & 122.75(6) \\ C(26)-Sc-C(4) & 79.88(7) & C(8)-Sc-C(1) & 123.04(6) \\ C(26)-Sc-C(4) & 109.71(7) & C(26)-Sc-C(1) & 91.87(7) \\ C(3)-Sc-C(4) & 34.68(6) & C(3)-Sc-C(1) & 53.54(6) \\ C(9)-Sc-C(25) & 139.82(7) & C(4)-Sc-C(1) & 53.51(6) \\ C(9)-Sc-C(25) & 139.82(7) & C(4)-Sc-C(1) & 53.51(6) \\ C(8)-Sc-C(25) & 110.22(8) & C(25)-Sc-C(1) & 92.31(7) \\ C(26)-Sc-C(25) & 110.02(8) & C(2)-Sc-C(1) & 30.83(6) \\ C(4)-Sc-C(25) & 110.3(7) & C(5)-Sc-C(1) & 146.57(6) \\ C(9)-Sc-C(2) & 113.73(7) & C(7)-Sc-C(1) & 146.57(6) \\ C(9)-Sc-C(2) & 113.73(7) & C(7)-Sc-C(1) & 147.53(5) \\ C(26)-Sc-C(2) & 97.55(7) & C(6)-Sc-C(1) & 175.78(5) \\ C(26)-Sc-C(2) & 32.95(6) & C(8)-Sc-H(25C) & 192.47(7) \\ C(3)-Sc-C(2) & 32.95(6) & C(8)-Sc-H(25C) & 192.47(7) \\ C(4)-Sc-C(2) & 32.95(6) & C(8)-Sc-H(25C) & 194.47(7) \\ C(4)-Sc-C(2) & 32.95(6) & C(8)-Sc-H(25C) & 113.47(7) \\ C(4)-Sc-C(5) & 112.65(7) & C(2)-Sc-H(25C) & 131.47(7) \\ C(4)-Sc-C(5) & 112.65(7) & C(2)-Sc-H(25C) & 131.47(7) \\ C(4)-Sc-C(5) & 112.65(7) & C(2)-Sc-H(25C) & 131.47(7) \\ C(4)-Sc-C(5) & 121.98(7) & C(7)-Sc-H(25C) & 131.47(7) \\ C(4)-Sc-C(5) & 32.77(6) & C(10)-Sc-H(25C) & 131.47(7) \\ C(4)-Sc-C(5) & 54.55(7) & C(5)-Sc-H(25C) & 114.9(7) \\ C(4)-Sc-C(5) & 54.55(7) & C(5)-Sc-H(25C) & 114.9(7) \\ C(4)-Sc-C(5) & 52.00(7) & C(6)-Sc-H(25C) & 114.9(7) \\ C(4)-Sc-C(5) & 52.00(7) & C(6)-Sc-H(25C) & 98.0(7) \\ C(4)-Sc-C(10) & 32.63(6) & C(1)-Sc-H(25C) & 98.0(7) \\ C(4)-Sc-C(10) & 32.63(6) & C(9)-Sc-H(25C) & 114.9(7) \\ C(25)-Sc-C(10) & 132.41(6) & C(26)-Sc-H(26C) & 113.41(7) \\ C(25)-Sc-C(10) & 132.41(6) & C(26)-Sc-H(26C) & 114.6(5) \\ C(25)-Sc-C(10) & 113.41(6) & C(26)-Sc-H(26C) & 128.1(5) \\ C(25)-Sc-C(10) & 115.77(7) & C(2)-Sc-H(26C) & 128.1(5) \\ C(3)-Sc-C(10) & 115.77(7) & C(2)-Sc-H(26C) & 114.6(5) \\ C(4)-Sc-C(7) & 120.28(7) & C(7)-Sc-H(26C) & 114.6(5) \\ C($				
$\begin{array}{cccccc} C(8)-Sc-C(26) & 138.07(7) & C(2)-Sc-C(6) & 147.25(6) \\ C(9)-Sc-C(3) & 80.79(7) & C(10)-Sc-C(6) & 146.33(6) \\ C(8)-Sc-C(3) & 69.51(7) & C(10)-Sc-C(6) & 30.61(6) \\ C(9)-Sc-C(4) & 69.24(7) & C(9)-Sc-C(1) & 122.75(6) \\ C(8)-Sc-C(4) & 79.88(7) & C(8)-Sc-C(1) & 123.04(6) \\ C(26)-Sc-C(4) & 109.71(7) & C(26)-Sc-C(1) & 91.87(7) \\ C(3)-Sc-C(4) & 34.68(6) & C(3)-Sc-C(1) & 53.51(6) \\ C(9)-Sc-C(25) & 139.82(7) & C(4)-Sc-C(1) & 53.51(6) \\ C(8)-Sc-C(25) & 110.22(8) & C(25)-Sc-C(1) & 92.31(7) \\ C(26)-Sc-C(25) & 110.22(8) & C(25)-Sc-C(1) & 30.90(6) \\ C(3)-Sc-C(25) & 111.03(7) & C(5)-Sc-C(1) & 30.83(6) \\ C(4)-Sc-C(25) & 111.03(7) & C(5)-Sc-C(1) & 146.57(6) \\ C(9)-Sc-C(2) & 113.73(7) & C(7)-Sc-C(1) & 147.53(6) \\ C(8)-Sc-C(2) & 121.74(7) & C(9)-Sc-H(25C) & 122.7(7) \\ C(3)-Sc-C(2) & 32.95(6) & C(8)-Sc-H(25C) & 109.6(7) \\ C(4)-Sc-C(2) & 54.51(7) & C(3)-Sc-H(25C) & 109.6(7) \\ C(25)-Sc-C(2) & 85.61(7) & C(3)-Sc-H(25C) & 109.6(7) \\ C(25)-Sc-C(5) & 96.55(7) & C(4)-Sc-H(25C) & 109.6(7) \\ C(25)-Sc-C(5) & 112.65(7) & C(2)-Sc-H(25C) & 109.6(7) \\ C(4)-Sc-C(5) & 112.65(7) & C(2)-Sc-H(25C) & 109.6(7) \\ C(4)-Sc-C(5) & 122.87(7) & C(6)-Sc-H(25C) & 109.6(7) \\ C(4)-Sc-C(5) & 121.98(7) & C(7)-Sc-H(25C) & 109.6(7) \\ C(4)-Sc-C(5) & 52.37(7) & C(6)-Sc-H(25C) & 128.6(7) \\ C(4)-Sc-C(5) & 52.37(7) & C(6)-Sc-H(25C) & 128.6(7) \\ C(4)-Sc-C(5) & 52.37(7) & C(6)-Sc-H(25C) & 114.9(7) \\ C(25)-Sc-C(10) & 32.63(6) & C(1)-Sc-H(25C) & 84.3(7) \\ C(4)-Sc-C(5) & 52.37(7) & C(6)-Sc-H(25C) & 84.3(7) \\ C(4)-Sc-C(10) & 52.33(6) & C(9)-Sc-H(25C) & 114.9(7) \\ C(25)-Sc-C(10) & 13.41(6) & C(26)-Sc-H(26C) & 114.9(7) \\ C(25)-Sc-C(10) & 13.41(6) & C(26)-Sc-H(26C) & 128.1(5) \\ C(26)-Sc-C(10) & 113.41(6) & C(26)-Sc-H(26C) & 114.9(5) \\ C(25)-Sc-C(10) & 116.77(7) & C(2)-Sc-H(26C) & 114.9(5) \\ C(25)-Sc-C(10) & 115.77(7) & C(2)-Sc-H(26C) & 111.6(5) \\ C(26)-Sc-C(7) & 120.28(7) & C(7)-Sc-H(26C) & 111.6(5) \\ C(26)-Sc-C(7) & 120.28(7) & C(7)-Sc-H(26C) & 111.6(5) \\ C(26)-Sc-C(7) & 120.28(7) & C(7)-Sc-H(26C) & 1114.6(5) \\ C(26)-Sc-C(7) & 120.28(7) & C(7)-Sc-H(26C) & 114.6(5) \\ C$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	sector for the sector of the s			
$\begin{array}{cccccc} C(26)-Sc-C(3) & 139.32(7) & C(7)-Sc-C(6) & 30.61(6) \\ C(9)-Sc-C(4) & 69.24(7) & C(9)-Sc-C(1) & 122.75(6) \\ C(8)-Sc-C(4) & 79.88(7) & C(8)-Sc-C(1) & 123.04(6) \\ C(26)-Sc-C(4) & 34.68(6) & C(3)-Sc-C(1) & 91.87(7) \\ C(3)-Sc-C(25) & 139.82(7) & C(4)-Sc-C(1) & 53.51(6) \\ C(9)-Sc-C(25) & 110.22(8) & C(25)-Sc-C(1) & 30.90(6) \\ C(3)-Sc-C(25) & 110.3(7) & C(5)-Sc-C(1) & 30.83(6) \\ C(4)-Sc-C(25) & 111.03(7) & C(5)-Sc-C(1) & 146.57(6) \\ C(9)-Sc-C(2) & 113.73(7) & C(7)-Sc-C(1) & 147.57(6) \\ C(26)-Sc-C(2) & 113.73(7) & C(7)-Sc-C(1) & 175.78(5) \\ C(26)-Sc-C(2) & 113.73(7) & C(7)-Sc-C(1) & 175.78(5) \\ C(26)-Sc-C(2) & 121.74(7) & C(9)-Sc-H(25C) & 122.7(7) \\ C(3)-Sc-C(2) & 32.95(6) & C(8)-Sc-H(25C) & 122.7(7) \\ C(4)-Sc-C(2) & 54.74(6) & C(26)-Sc-H(25C) & 190.6(7) \\ C(4)-Sc-C(2) & 54.74(6) & C(26)-Sc-H(25C) & 190.6(7) \\ C(4)-Sc-C(5) & 96.55(7) & C(4)-Sc-H(25C) & 131.4(7) \\ C(8)-Sc-C(5) & 112.65(7) & C(25)-Sc-H(25C) & 131.4(7) \\ C(8)-Sc-C(5) & 54.55(7) & C(25)-Sc-H(25C) & 122.7(7) \\ C(25)-Sc-C(5) & 54.55(7) & C(25)-Sc-H(25C) & 131.4(7) \\ C(4)-Sc-C(5) & 54.55(7) & C(25)-Sc-H(25C) & 128.6(7) \\ C(25)-Sc-C(5) & 54.55(7) & C(25)-Sc-H(25C) & 128.6(7) \\ C(4)-Sc-C(5) & 54.55(7) & C(5)-Sc-H(25C) & 114.9(7) \\ C(25)-Sc-C(10) & 32.63(6) & C(1)-Sc-H(25C) & 144.9(7) \\ C(25)-Sc-C(10) & 32.63(6) & C(1)-Sc-H(25C) & 144.9(7) \\ C(25)-Sc-C(10) & 13.41(6) & C(26)-Sc-H(25C) & 144.9(7) \\ C(25)-Sc-C(10) & 113.41(6) & C(26)-Sc-H(26C) & 114.9(7) \\ C(25)-Sc-C(10) & 113.41(6) & C(26)-Sc-H(26C) & 114.9(7) \\ C(4)-Sc-C(10) & 13.41(6) & C(26)-Sc-H(26C) & 128.1(5) \\ C(4)-Sc-C(10) & 113.41(6) & C(26)-Sc-H(26C) & 128.1(5) \\ C(4)-Sc-C(10) & 113.41(6) & C(26)-Sc-H(26C) & 128.1(5) \\ C(2)-Sc-C(10) & 115.77(7) & C(3)-Sc-H(26C) & 128.1(5) \\ C(2)-Sc-C(10) & 115.77(7) & C(2)-Sc-H(26C) & 138.1(5) \\ C(2)-Sc-C(10) & 115.77(7) & C(2)-Sc-H(26C) & 111.6(5) \\ C(2)-Sc-C(10) & 115.77(7) & C(2)-Sc-H(26C) & 111.6(5) \\ C(2)-Sc-C(10) & 115.77(7) & C(2)-Sc-H(26C) & 111.6(5) \\ C(2)-Sc-C(7) & 22.29(7) & C(7)-Sc-H(26C) & 114.6(5) \\ C(20)-Sc-C(7) & 120.28(7) & C(7)-Sc-H(26C) & $				AND THE PARTY AND AND A DESCRIPTION
$\begin{array}{cccccc} C(9)-Sc-C(4) & 69.24(7) & C(9)-Sc-C(1) & 122.75(6) \\ C(8)-Sc-C(4) & 79.88(7) & C(8)-Sc-C(1) & 123.04(6) \\ C(26)-Sc-C(4) & 109.71(7) & C(26)-Sc-C(1) & 91.87(7) \\ C(3)-Sc-C(25) & 139.82(7) & C(4)-Sc-C(1) & 53.54(6) \\ C(9)-Sc-C(25) & 139.82(7) & C(4)-Sc-C(1) & 53.51(6) \\ C(8)-Sc-C(25) & 110.22(8) & C(25)-Sc-C(1) & 92.31(7) \\ C(26)-Sc-C(25) & 111.03(7) & C(5)-Sc-C(1) & 30.83(6) \\ C(4)-Sc-C(25) & 111.03(7) & C(5)-Sc-C(1) & 146.57(6) \\ C(9)-Sc-C(2) & 113.73(7) & C(7)-Sc-C(1) & 146.57(6) \\ C(9)-Sc-C(2) & 113.73(7) & C(7)-Sc-C(1) & 147.53(6) \\ C(8)-Sc-C(2) & 97.55(7) & C(6)-Sc-C(1) & 175.78(5) \\ C(26)-Sc-C(2) & 121.74(7) & C(9)-Sc-H(25C) & 122.7(7) \\ C(3)-Sc-C(2) & 32.95(6) & C(8)-Sc-H(25C) & 109.6(7) \\ C(25)-Sc-C(2) & 85.61(7) & C(3)-Sc-H(25C) & 109.6(7) \\ C(25)-Sc-C(5) & 96.55(7) & C(4)-Sc-H(25C) & 109.6(7) \\ C(26)-Sc-C(5) & 112.65(7) & C(25)-Sc-H(25C) & 109.6(7) \\ C(26)-Sc-C(5) & 84.78(7) & C(25)-Sc-H(25C) & 131.4(7) \\ C(8)-Sc-C(5) & 54.55(7) & C(5)-Sc-H(25C) & 128.6(7) \\ C(4)-Sc-C(5) & 32.77(6) & C(10)-Sc-H(25C) & 128.6(7) \\ C(4)-Sc-C(5) & 32.77(6) & C(10)-Sc-H(25C) & 128.6(7) \\ C(4)-Sc-C(5) & 52.00(7) & C(6)-Sc-H(25C) & 128.6(7) \\ C(25)-Sc-C(10) & 32.63(6) & C(1)-Sc-H(25C) & 84.3(7) \\ C(9)-Sc-C(10) & 32.63(6) & C(1)-Sc-H(25C) & 84.3(7) \\ C(9)-Sc-C(10) & 113.41(6) & C(26)-Sc-H(26C) & 114.9(7) \\ C(25)-Sc-C(10) & 113.41(6) & C(26)-Sc-H(26C) & 114.6(5) \\ C(26)-Sc-C(10) & 113.47(7) & C(4)-Sc-H(26C) & 114.6(5) \\ C(2)-Sc-C(10) & 115.77(7) & C(3)-Sc-H(26C) & 114.6(5) \\ C(2)-Sc-C(10) & 115.77(7) & C(2)-Sc-H(26C) & 114.6(5) \\ C(2)-Sc-C(7) & 32.79(6) & C(10)-Sc-H(26C) & 78.1(5) \\ C(2)-Sc-C(7) & 32.79(6) & C(10)-Sc-H(26C) & 78.1(5) \\ C(2)-Sc-C(7) & 120.28(7) & C(7)-Sc-H(26C) & 114.6(5) \\$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{ccccc} C(26)-Sc-C(4) & 109.71(7) & C(26)-Sc-C(1) & 91.87(7) \\ C(3)-Sc-C(4) & 34.68(6) & C(3)-Sc-C(1) & 53.54(6) \\ C(9)-Sc-C(25) & 139.82(7) & C(4)-Sc-C(1) & 53.51(6) \\ C(8)-Sc-C(25) & 110.22(8) & C(25)-Sc-C(1) & 92.31(7) \\ C(26)-Sc-C(25) & 88.48(8) & C(2)-Sc-C(1) & 30.90(6) \\ C(3)-Sc-C(25) & 111.03(7) & C(5)-Sc-C(1) & 146.57(6) \\ C(9)-Sc-C(2) & 113.73(7) & C(7)-Sc-C(1) & 146.57(6) \\ C(9)-Sc-C(2) & 113.73(7) & C(7)-Sc-C(1) & 147.53(6) \\ C(8)-Sc-C(2) & 97.55(7) & C(6)-Sc-C(1) & 175.78(5) \\ C(26)-Sc-C(2) & 121.74(7) & C(9)-Sc-H(25C) & 122.7(7) \\ C(3)-Sc-C(2) & 32.95(6) & C(8)-Sc-H(25C) & 122.7(7) \\ C(3)-Sc-C(2) & 32.95(6) & C(8)-Sc-H(25C) & 19.6(7) \\ C(25)-Sc-C(2) & 85.61(7) & C(3)-Sc-H(25C) & 19.6(7) \\ C(25)-Sc-C(2) & 85.61(7) & C(3)-Sc-H(25C) & 131.4(7) \\ C(8)-Sc-C(5) & 96.55(7) & C(4)-Sc-H(25C) & 131.4(7) \\ C(8)-Sc-C(5) & 96.55(7) & C(4)-Sc-H(25C) & 122.6(7) \\ C(4)-Sc-C(5) & 54.35(7) & C(2)-Sc-H(25C) & 22.2(7) \\ C(26)-Sc-C(5) & 54.35(7) & C(2)-Sc-H(25C) & 124.9(7) \\ C(4)-Sc-C(5) & 54.35(7) & C(2)-Sc-H(25C) & 114.9(7) \\ C(25)-Sc-C(5) & 52.00(7) & C(6)-Sc-H(25C) & 114.9(7) \\ C(25)-Sc-C(10) & 32.63(6) & C(1)-Sc-H(25C) & 114.9(7) \\ C(2)-Sc-C(10) & 32.63(6) & C(1)-Sc-H(25C) & 114.9(7) \\ C(2)-Sc-C(10) & 13.41(6) & C(26)-Sc-H(26C) & 23.9(5) \\ C(2)-Sc-C(10) & 13.41(6) & C(26)-Sc-H(26C) & 23.9(5) \\ C(2)-Sc-C(10) & 13.41(6) & C(26)-Sc-H(26C) & 114.6(5) \\ C(2)-Sc-C(10) & 120.34(7) & C(4)-Sc-H(26C) & 114.6(5) \\ C(2)-Sc-C(10) & 120.34(7) & C(4)-Sc-H(26C) & 114.6(5) \\ C(2)-Sc-C(7) & 32.79(6) & C(10)-Sc-H(26C) & 78.1(5) \\ C(8)-Sc-C(10) & 115.77(7) & C(2)-Sc-H(26C) & 78.1(5) \\ C(8)-Sc-C(7) & 32.79(6) & C(10)-Sc-H(26C) & 78.1(5) \\ C(2)-Sc-C(7) & 32.79(6) & C(10)-Sc-H(26C) & 78.1(5) \\ C(2)-Sc-C(7) & 120.28(7) & C(7)-Sc-H(26C) & 114.6(5) \\ \end{array} \right)$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	and the second second second second second second second			• •
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				· · /
$\begin{array}{cccccc} C(26)-Sc-C(25) & 88.48(8) & C(2)-Sc-C(1) & 30.90(6) \\ C(3)-Sc-C(25) & 111.03(7) & C(5)-Sc-C(1) & 30.83(6) \\ C(4)-Sc-C(25) & 140.31(7) & C(10)-Sc-C(1) & 146.57(6) \\ C(9)-Sc-C(2) & 113.73(7) & C(7)-Sc-C(1) & 147.53(6) \\ C(8)-Sc-C(2) & 97.55(7) & C(6)-Sc-C(1) & 175.78(5) \\ C(26)-Sc-C(2) & 121.74(7) & C(9)-Sc-H(25C) & 122.7(7) \\ C(3)-Sc-C(2) & 32.95(6) & C(8)-Sc-H(25C) & 89.4(7) \\ C(4)-Sc-C(2) & 54.74(6) & C(26)-Sc-H(25C) & 109.6(7) \\ C(25)-Sc-C(2) & 85.61(7) & C(3)-Sc-H(25C) & 109.6(7) \\ C(25)-Sc-C(5) & 96.55(7) & C(4)-Sc-H(25C) & 109.6(7) \\ C(26)-Sc-C(5) & 96.55(7) & C(4)-Sc-H(25C) & 131.4(7) \\ C(8)-Sc-C(5) & 112.65(7) & C(25)-Sc-H(25C) & 22.2(7) \\ C(26)-Sc-C(5) & 54.55(7) & C(2)-Sc-H(25C) & 22.2(7) \\ C(26)-Sc-C(5) & 54.55(7) & C(2)-Sc-H(25C) & 114.9(7) \\ C(3)-Sc-C(5) & 54.55(7) & C(5)-Sc-H(25C) & 114.9(7) \\ C(4)-Sc-C(5) & 32.77(6) & C(10)-Sc-H(25C) & 114.9(7) \\ C(25)-Sc-C(5) & 52.00(7) & C(6)-Sc-H(25C) & 84.3(7) \\ C(4)-Sc-C(5) & 52.00(7) & C(6)-Sc-H(25C) & 84.3(7) \\ C(9)-Sc-C(10) & 32.63(6) & C(1)-Sc-H(25C) & 98.0(7) \\ C(3)-Sc-C(10) & 53.3(6) & C(9)-Sc-H(26C) & 119.6(5) \\ C(26)-Sc-C(10) & 113.41(6) & C(26)-Sc-H(26C) & 128.1(5) \\ C(26)-Sc-C(10) & 113.41(6) & C(26)-Sc-H(26C) & 128.1(5) \\ C(20)-Sc-C(10) & 115.77(7) & C(3)-Sc-H(26C) & 128.1(5) \\ C(2)-Sc-C(10) & 115.77(7) & C(2)-Sc-H(26C) & 127.0(5) \\ C(9)-Sc-C(7) & 32.79(6) & C(10)-Sc-H(26C) & 78.1(5) \\ C(26)-Sc-C(7) & 32.79(6) & C(10)-Sc-H(26C) & 78.1(5) \\ C(26)-Sc-C(7) & 120.28(7) & C(7)-Sc-H(26C) & 114.6(5) \\ \end{array}$				
$\begin{array}{ccccccc} C(3)-Sc-C(25) & 111.03(7) & C(5)-Sc-C(1) & 30.83(6) \\ C(4)-Sc-C(25) & 140.31(7) & C(10)-Sc-C(1) & 146.57(6) \\ C(9)-Sc-C(2) & 113.73(7) & C(7)-Sc-C(1) & 147.53(6) \\ C(8)-Sc-C(2) & 97.55(7) & C(6)-Sc-C(1) & 175.78(5) \\ C(26)-Sc-C(2) & 121.74(7) & C(9)-Sc-H(25C) & 122.7(7) \\ C(3)-Sc-C(2) & 32.95(6) & C(8)-Sc-H(25C) & 89.4(7) \\ C(4)-Sc-C(2) & 54.74(6) & C(26)-Sc-H(25C) & 109.6(7) \\ C(25)-Sc-C(2) & 85.61(7) & C(3)-Sc-H(25C) & 109.6(7) \\ C(25)-Sc-C(5) & 96.55(7) & C(4)-Sc-H(25C) & 131.4(7) \\ C(8)-Sc-C(5) & 112.65(7) & C(25)-Sc-H(25C) & 22.2(7) \\ C(26)-Sc-C(5) & 84.78(7) & C(2)-Sc-H(25C) & 22.2(7) \\ C(3)-Sc-C(5) & 54.55(7) & C(5)-Sc-H(25C) & 20.5(7) \\ C(4)-Sc-C(5) & 32.77(6) & C(10)-Sc-H(25C) & 114.9(7) \\ C(25)-Sc-C(5) & 121.98(7) & C(7)-Sc-H(25C) & 84.3(7) \\ C(9)-Sc-C(10) & 32.63(6) & C(9)-Sc-H(25C) & 84.3(7) \\ C(9)-Sc-C(10) & 32.63(6) & C(9)-Sc-H(25C) & 84.3(7) \\ C(9)-Sc-C(10) & 32.63(6) & C(9)-Sc-H(25C) & 98.0(7) \\ C(3)-Sc-C(10) & 113.41(6) & C(26)-Sc-H(26C) & 119.6(5) \\ C(26)-Sc-C(10) & 113.41(6) & C(26)-Sc-H(26C) & 119.6(5) \\ C(3)-Sc-C(10) & 113.41(6) & C(26)-Sc-H(26C) & 128.1(5) \\ C(25)-Sc-C(10) & 115.77(7) & C(3)-Sc-H(26C) & 114.6(5) \\ C(25)-Sc-C(10) & 115.77(7) & C(2)-Sc-H(26C) & 114.6(5) \\ C(25)-Sc-C(10) & 115.77(7) & C(2)-Sc-H(26C) & 114.6(5) \\ C(25)-Sc-C(10) & 115.77(7) & C(2)-Sc-H(26C) & 114.6(5) \\ C(20)-Sc-C(7) & 32.79(6) & C(10)-Sc-H(26C) & 78.1(5) \\ C(8)-Sc-C(7) & 32.79(6) & C(10)-Sc-H(26C) & 114.6(5) \\ C(26)-Sc-C(7) & 120.28(7) & C(7)-Sc-H(26C) & 114.6(5) \\ C(26)-Sc-C(7) & 120.28(7) & C(7)-Sc-H($				
$\begin{array}{cccccc} C(4)-Sc-C(25) & 140.31(7) & C(10)-Sc-C(1) & 146.57(6) \\ C(9)-Sc-C(2) & 113.73(7) & C(7)-Sc-C(1) & 147.53(6) \\ C(8)-Sc-C(2) & 97.55(7) & C(6)-Sc-C(1) & 175.78(5) \\ C(26)-Sc-C(2) & 121.74(7) & C(9)-Sc-H(25C) & 122.7(7) \\ C(3)-Sc-C(2) & 32.95(6) & C(8)-Sc-H(25C) & 199.4(7) \\ C(4)-Sc-C(2) & 54.74(6) & C(26)-Sc-H(25C) & 109.6(7) \\ C(25)-Sc-C(2) & 85.61(7) & C(3)-Sc-H(25C) & 97.3(7) \\ C(9)-Sc-C(5) & 96.55(7) & C(4)-Sc-H(25C) & 131.4(7) \\ C(8)-Sc-C(5) & 112.65(7) & C(25)-Sc-H(25C) & 22.2(7) \\ C(26)-Sc-C(5) & 84.78(7) & C(2)-Sc-H(25C) & 120.6(7) \\ C(3)-Sc-C(5) & 54.55(7) & C(5)-Sc-H(25C) & 120.6(7) \\ C(4)-Sc-C(5) & 54.55(7) & C(5)-Sc-H(25C) & 120.6(7) \\ C(4)-Sc-C(5) & 32.77(6) & C(10)-Sc-H(25C) & 114.9(7) \\ C(25)-Sc-C(5) & 121.98(7) & C(7)-Sc-H(25C) & 144.9(7) \\ C(25)-Sc-C(10) & 32.63(6) & C(1)-Sc-H(25C) & 98.0(7) \\ C(9)-Sc-C(10) & 32.63(6) & C(1)-Sc-H(25C) & 98.0(7) \\ C(8)-Sc-C(10) & 55.33(6) & C(9)-Sc-H(26C) & 119.6(5) \\ C(26)-Sc-C(10) & 113.41(6) & C(26)-Sc-H(26C) & 119.6(5) \\ C(3)-Sc-C(10) & 120.34(7) & C(3)-Sc-H(26C) & 128.1(5) \\ C(25)-Sc-C(10) & 120.34(7) & C(4)-Sc-H(26C) & 128.1(5) \\ C(25)-Sc-C(10) & 115.77(7) & C(5)-Sc-H(26C) & 128.1(5) \\ C(2)-Sc-C(10) & 115.77(7) & C(5)-Sc-H(26C) & 127.0(5) \\ C(9)-Sc-C(7) & 52.27(7) & C(5)-Sc-H(26C) & 127.0(5) \\ C(9)-Sc-C(7) & 32.79(6) & C(10)-Sc-H(26C) & 78.1(5) \\ C(26)-Sc-C(7) & 120.28(7) & C(7)-Sc-H(26C) & 114.6(5) \\ C(26)-Sc-C(7) & 120.28(7) & C(7)-Sc-H(26C$				
$\begin{array}{ccccccc} C(9)-Sc-C(2) & 113.73(7) & C(7)-Sc-C(1) & 147.53(6) \\ C(8)-Sc-C(2) & 97.55(7) & C(6)-Sc-C(1) & 175.78(5) \\ C(26)-Sc-C(2) & 121.74(7) & C(9)-Sc-H(25C) & 122.7(7) \\ C(3)-Sc-C(2) & 32.95(6) & C(8)-Sc-H(25C) & 199.6(7) \\ C(4)-Sc-C(2) & 54.74(6) & C(26)-Sc-H(25C) & 109.6(7) \\ C(25)-Sc-C(2) & 85.61(7) & C(3)-Sc-H(25C) & 97.3(7) \\ C(9)-Sc-C(5) & 96.55(7) & C(4)-Sc-H(25C) & 131.4(7) \\ C(8)-Sc-C(5) & 112.65(7) & C(2)-Sc-H(25C) & 22.2(7) \\ C(26)-Sc-C(5) & 84.78(7) & C(2)-Sc-H(25C) & 128.6(7) \\ C(3)-Sc-C(5) & 54.55(7) & C(5)-Sc-H(25C) & 128.6(7) \\ C(4)-Sc-C(5) & 32.77(6) & C(10)-Sc-H(25C) & 114.9(7) \\ C(25)-Sc-C(5) & 121.98(7) & C(7)-Sc-H(25C) & 114.9(7) \\ C(25)-Sc-C(5) & 52.00(7) & C(6)-Sc-H(25C) & 84.3(7) \\ C(9)-Sc-C(10) & 32.63(6) & C(1)-Sc-H(25C) & 98.0(7) \\ C(8)-Sc-C(10) & 55.33(6) & C(9)-Sc-H(26C) & 85.3(6) \\ C(26)-Sc-C(10) & 113.41(6) & C(26)-Sc-H(26C) & 119.6(5) \\ C(3)-Sc-C(10) & 113.41(6) & C(26)-Sc-H(26C) & 128.1(5) \\ C(2)-Sc-C(10) & 120.34(7) & C(3)-Sc-H(26C) & 128.1(5) \\ C(2)-Sc-C(10) & 146.36(6) & C(25)-Sc-H(26C) & 128.1(5) \\ C(2)-Sc-C(10) & 146.36(6) & C(25)-Sc-H(26C) & 128.1(5) \\ C(2)-Sc-C(10) & 115.77(7) & C(5)-Sc-H(26C) & 127.0(5) \\ C(9)-Sc-C(7) & 52.27(7) & C(5)-Sc-H(26C) & 78.1(5) \\ C(8)-Sc-C(7) & 32.79(6) & C(10)-Sc-H(26C) & 114.6(5) \\ C(26)-Sc-C(7) & 120.28(7) & C(7)-Sc-H(26C) & 114.6(5) \\ C(26)-Sc-C(7) & 120.28(7) & C(7)-Sc-H(26$	and the second			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{ccccccc} C(3)-Sc-C(2) & 32.95(6) & C(8)-Sc-H(25C) & 89.4(7) \\ C(4)-Sc-C(2) & 54.74(6) & C(26)-Sc-H(25C) & 109.6(7) \\ C(25)-Sc-C(2) & 85.61(7) & C(3)-Sc-H(25C) & 97.3(7) \\ C(9)-Sc-C(5) & 96.55(7) & C(4)-Sc-H(25C) & 131.4(7) \\ C(8)-Sc-C(5) & 112.65(7) & C(25)-Sc-H(25C) & 22.2(7) \\ C(26)-Sc-C(5) & 84.78(7) & C(2)-Sc-H(25C) & 128.6(7) \\ C(3)-Sc-C(5) & 54.55(7) & C(5)-Sc-H(25C) & 128.6(7) \\ C(4)-Sc-C(5) & 32.77(6) & C(10)-Sc-H(25C) & 114.9(7) \\ C(25)-Sc-C(5) & 121.98(7) & C(7)-Sc-H(25C) & 114.9(7) \\ C(2)-Sc-C(5) & 52.00(7) & C(6)-Sc-H(25C) & 84.3(7) \\ C(9)-Sc-C(10) & 32.63(6) & C(1)-Sc-H(25C) & 84.3(7) \\ C(9)-Sc-C(10) & 32.63(6) & C(9)-Sc-H(26C) & 85.3(6) \\ C(26)-Sc-C(10) & 82.76(7) & C(8)-Sc-H(26C) & 119.6(5) \\ C(3)-Sc-C(10) & 113.41(6) & C(26)-Sc-H(26C) & 128.1(5) \\ C(25)-Sc-C(10) & 120.34(7) & C(4)-Sc-H(26C) & 128.1(5) \\ C(25)-Sc-C(10) & 146.36(6) & C(25)-Sc-H(26C) & 111.6(5) \\ C(5)-Sc-C(10) & 115.77(7) & C(2)-Sc-H(26C) & 111.6(5) \\ C(5)-Sc-C(10) & 115.77(7) & C(2)-Sc-H(26C) & 127.0(5) \\ C(9)-Sc-C(7) & 55.27(7) & C(5)-Sc-H(26C) & 78.1(5) \\ C(8)-Sc-C(7) & 32.79(6) & C(10)-Sc-H(26C) & 114.6(5) \\ C(26)-Sc-C(7) & 120.28(7) & C(7)-Sc-H(26C) & 114.6(5) \\ \end{array}$				
$\begin{array}{cccccc} C(4)-Sc-C(2) & 54.74(6) & C(26)-Sc-H(25C) & 109.6(7) \\ C(25)-Sc-C(2) & 85.61(7) & C(3)-Sc-H(25C) & 97.3(7) \\ C(9)-Sc-C(5) & 96.55(7) & C(4)-Sc-H(25C) & 131.4(7) \\ C(8)-Sc-C(5) & 112.65(7) & C(25)-Sc-H(25C) & 22.2(7) \\ C(26)-Sc-C(5) & 84.78(7) & C(2)-Sc-H(25C) & 80.5(7) \\ C(3)-Sc-C(5) & 54.55(7) & C(5)-Sc-H(25C) & 128.6(7) \\ C(4)-Sc-C(5) & 32.77(6) & C(10)-Sc-H(25C) & 144.9(7) \\ C(25)-Sc-C(5) & 121.98(7) & C(7)-Sc-H(25C) & 68.6(7) \\ C(2)-Sc-C(5) & 52.00(7) & C(6)-Sc-H(25C) & 84.3(7) \\ C(9)-Sc-C(10) & 32.63(6) & C(1)-Sc-H(25C) & 98.0(7) \\ C(8)-Sc-C(10) & 55.33(6) & C(9)-Sc-H(26C) & 85.3(6) \\ C(26)-Sc-C(10) & 113.41(6) & C(26)-Sc-H(26C) & 119.6(5) \\ C(3)-Sc-C(10) & 120.34(7) & C(4)-Sc-H(26C) & 128.1(5) \\ C(25)-Sc-C(10) & 146.36(6) & C(25)-Sc-H(26C) & 111.6(5) \\ C(5)-Sc-C(10) & 115.77(7) & C(2)-Sc-H(26C) & 111.6(5) \\ C(5)-Sc-C(10) & 115.77(7) & C(2)-Sc-H(26C) & 127.0(5) \\ C(9)-Sc-C(7) & 32.79(6) & C(10)-Sc-H(26C) & 78.1(5) \\ C(26)-Sc-C(7) & 120.28(7) & C(7)-Sc-H(26C) & 114.6(5) \\ \end{array}$				
$\begin{array}{cccccc} C(25)-Sc-C(2) & 85.61(7) & C(3)-Sc-H(25C) & 97.3(7) \\ C(9)-Sc-C(5) & 96.55(7) & C(4)-Sc-H(25C) & 131.4(7) \\ C(8)-Sc-C(5) & 112.65(7) & C(25)-Sc-H(25C) & 22.2(7) \\ C(26)-Sc-C(5) & 84.78(7) & C(2)-Sc-H(25C) & 80.5(7) \\ C(3)-Sc-C(5) & 54.55(7) & C(5)-Sc-H(25C) & 128.6(7) \\ C(4)-Sc-C(5) & 32.77(6) & C(10)-Sc-H(25C) & 114.9(7) \\ C(25)-Sc-C(5) & 121.98(7) & C(7)-Sc-H(25C) & 68.6(7) \\ C(2)-Sc-C(5) & 52.00(7) & C(6)-Sc-H(25C) & 84.3(7) \\ C(9)-Sc-C(10) & 32.63(6) & C(1)-Sc-H(25C) & 98.0(7) \\ C(8)-Sc-C(10) & 55.33(6) & C(9)-Sc-H(26C) & 85.3(6) \\ C(26)-Sc-C(10) & 82.76(7) & C(8)-Sc-H(26C) & 119.6(5) \\ C(3)-Sc-C(10) & 113.41(6) & C(26)-Sc-H(26C) & 128.1(5) \\ C(4)-Sc-C(10) & 97.33(7) & C(3)-Sc-H(26C) & 128.1(5) \\ C(25)-Sc-C(10) & 120.34(7) & C(4)-Sc-H(26C) & 111.6(5) \\ C(5)-Sc-C(10) & 115.77(7) & C(2)-Sc-H(26C) & 111.6(5) \\ C(5)-Sc-C(10) & 115.77(7) & C(2)-Sc-H(26C) & 127.0(5) \\ C(9)-Sc-C(7) & 55.27(7) & C(5)-Sc-H(26C) & 78.1(5) \\ C(8)-Sc-C(7) & 32.79(6) & C(10)-Sc-H(26C) & 78.1(5) \\ C(26)-Sc-C(7) & 120.28(7) & C(7)-Sc-H(26C) & 114.6(5) \\ \end{array}$	and the second			
$\begin{array}{ccccccc} C(9)-Sc-C(5) & 96.55(7) & C(4)-Sc-H(25C) & 131.4(7) \\ C(8)-Sc-C(5) & 112.65(7) & C(25)-Sc-H(25C) & 22.2(7) \\ C(26)-Sc-C(5) & 84.78(7) & C(2)-Sc-H(25C) & 80.5(7) \\ C(3)-Sc-C(5) & 54.55(7) & C(5)-Sc-H(25C) & 128.6(7) \\ C(4)-Sc-C(5) & 32.77(6) & C(10)-Sc-H(25C) & 114.9(7) \\ C(25)-Sc-C(5) & 121.98(7) & C(7)-Sc-H(25C) & 68.6(7) \\ C(2)-Sc-C(5) & 52.00(7) & C(6)-Sc-H(25C) & 84.3(7) \\ C(9)-Sc-C(10) & 32.63(6) & C(1)-Sc-H(25C) & 98.0(7) \\ C(8)-Sc-C(10) & 55.33(6) & C(9)-Sc-H(26C) & 85.3(6) \\ C(26)-Sc-C(10) & 13.41(6) & C(26)-Sc-H(26C) & 119.6(5) \\ C(3)-Sc-C(10) & 113.41(6) & C(26)-Sc-H(26C) & 128.1(5) \\ C(25)-Sc-C(10) & 120.34(7) & C(4)-Sc-H(26C) & 128.1(5) \\ C(25)-Sc-C(10) & 146.36(6) & C(25)-Sc-H(26C) & 111.6(5) \\ C(5)-Sc-C(10) & 115.77(7) & C(2)-Sc-H(26C) & 127.0(5) \\ C(9)-Sc-C(7) & 55.27(7) & C(5)-Sc-H(26C) & 78.1(5) \\ C(26)-Sc-C(7) & 32.79(6) & C(10)-Sc-H(26C) & 114.6(5) \\ C(26)-Sc-C(7) & 120.28(7) & C(7)-Sc-H(26C) & 114.6(5) \\ \end{array}$				
$\begin{array}{cccccc} C(8)-Sc-C(5) & 112.65(7) & C(25)-Sc-H(25C) & 22.2(7) \\ C(26)-Sc-C(5) & 84.78(7) & C(2)-Sc-H(25C) & 80.5(7) \\ C(3)-Sc-C(5) & 54.55(7) & C(5)-Sc-H(25C) & 128.6(7) \\ C(4)-Sc-C(5) & 32.77(6) & C(10)-Sc-H(25C) & 114.9(7) \\ C(25)-Sc-C(5) & 121.98(7) & C(7)-Sc-H(25C) & 68.6(7) \\ C(2)-Sc-C(5) & 52.00(7) & C(6)-Sc-H(25C) & 84.3(7) \\ C(9)-Sc-C(10) & 32.63(6) & C(1)-Sc-H(25C) & 98.0(7) \\ C(8)-Sc-C(10) & 55.33(6) & C(9)-Sc-H(26C) & 85.3(6) \\ C(26)-Sc-C(10) & 82.76(7) & C(8)-Sc-H(26C) & 119.6(5) \\ C(3)-Sc-C(10) & 113.41(6) & C(26)-Sc-H(26C) & 119.6(5) \\ C(3)-Sc-C(10) & 113.41(6) & C(26)-Sc-H(26C) & 128.1(5) \\ C(25)-Sc-C(10) & 120.34(7) & C(4)-Sc-H(26C) & 93.8(5) \\ C(25)-Sc-C(10) & 146.36(6) & C(25)-Sc-H(26C) & 111.6(5) \\ C(5)-Sc-C(10) & 115.77(7) & C(2)-Sc-H(26C) & 127.0(5) \\ C(9)-Sc-C(7) & 55.27(7) & C(5)-Sc-H(26C) & 78.1(5) \\ C(8)-Sc-C(7) & 32.79(6) & C(10)-Sc-H(26C) & 114.6(5) \\ C(26)-Sc-C(7) & 120.28(7) & C(7)-Sc-H(26C) & 114.6(5) \\ \end{array}$			C(4)-Sc-H(25C)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(8)-Sc- $C(5)$	112.65(7)	C(25)-Sc-H(25C)	
$\begin{array}{cccccc} C(4)-Sc-C(5) & 32.77(6) & C(10)-Sc-H(25C) & 114.9(7) \\ C(25)-Sc-C(5) & 121.98(7) & C(7)-Sc-H(25C) & 68.6(7) \\ C(2)-Sc-C(5) & 52.00(7) & C(6)-Sc-H(25C) & 84.3(7) \\ C(9)-Sc-C(10) & 32.63(6) & C(1)-Sc-H(25C) & 98.0(7) \\ C(8)-Sc-C(10) & 55.33(6) & C(9)-Sc-H(26C) & 85.3(6) \\ C(26)-Sc-C(10) & 82.76(7) & C(8)-Sc-H(26C) & 119.6(5) \\ C(3)-Sc-C(10) & 113.41(6) & C(26)-Sc-H(26C) & 128.1(5) \\ C(4)-Sc-C(10) & 97.33(7) & C(3)-Sc-H(26C) & 128.1(5) \\ C(25)-Sc-C(10) & 120.34(7) & C(4)-Sc-H(26C) & 93.8(5) \\ C(2)-Sc-C(10) & 146.36(6) & C(25)-Sc-H(26C) & 111.6(5) \\ C(5)-Sc-C(10) & 115.77(7) & C(2)-Sc-H(26C) & 127.0(5) \\ C(9)-Sc-C(7) & 55.27(7) & C(5)-Sc-H(26C) & 78.1(5) \\ C(8)-Sc-C(7) & 32.79(6) & C(10)-Sc-H(26C) & 66.4(5) \\ C(26)-Sc-C(7) & 120.28(7) & C(7)-Sc-H(26C) & 114.6(5) \\ \end{array}$	C(26)-Sc-C(5)	84.78(7)	C(2)-Sc-H(25C)	
$\begin{array}{cccccc} C(25)-Sc-C(5) & 121.98(7) & C(7)-Sc-H(25C) & 68.6(7) \\ C(2)-Sc-C(5) & 52.00(7) & C(6)-Sc-H(25C) & 84.3(7) \\ C(9)-Sc-C(10) & 32.63(6) & C(1)-Sc-H(25C) & 98.0(7) \\ C(8)-Sc-C(10) & 55.33(6) & C(9)-Sc-H(26C) & 85.3(6) \\ C(26)-Sc-C(10) & 82.76(7) & C(8)-Sc-H(26C) & 119.6(5) \\ C(3)-Sc-C(10) & 113.41(6) & C(26)-Sc-H(26C) & 128.1(5) \\ C(4)-Sc-C(10) & 97.33(7) & C(3)-Sc-H(26C) & 128.1(5) \\ C(25)-Sc-C(10) & 120.34(7) & C(4)-Sc-H(26C) & 93.8(5) \\ C(2)-Sc-C(10) & 146.36(6) & C(25)-Sc-H(26C) & 111.6(5) \\ C(5)-Sc-C(10) & 115.77(7) & C(2)-Sc-H(26C) & 111.6(5) \\ C(5)-Sc-C(10) & 115.77(7) & C(2)-Sc-H(26C) & 127.0(5) \\ C(9)-Sc-C(7) & 55.27(7) & C(5)-Sc-H(26C) & 78.1(5) \\ C(8)-Sc-C(7) & 32.79(6) & C(10)-Sc-H(26C) & 66.4(5) \\ C(26)-Sc-C(7) & 120.28(7) & C(7)-Sc-H(26C) & 114.6(5) \\ \end{array}$	C(3)-Sc- $C(5)$	54.55(7)	C(5)-Sc-H(25C)	128.6(7)
$\begin{array}{cccccc} C(2)-Sc-C(5) & 52.00(7) & C(6)-Sc-H(25C) & 84.3(7) \\ C(9)-Sc-C(10) & 32.63(6) & C(1)-Sc-H(25C) & 98.0(7) \\ C(8)-Sc-C(10) & 55.33(6) & C(9)-Sc-H(26C) & 85.3(6) \\ C(26)-Sc-C(10) & 82.76(7) & C(8)-Sc-H(26C) & 119.6(5) \\ C(3)-Sc-C(10) & 113.41(6) & C(26)-Sc-H(26C) & 23.9(5) \\ C(4)-Sc-C(10) & 97.33(7) & C(3)-Sc-H(26C) & 128.1(5) \\ C(25)-Sc-C(10) & 120.34(7) & C(4)-Sc-H(26C) & 93.8(5) \\ C(2)-Sc-C(10) & 146.36(6) & C(25)-Sc-H(26C) & 111.6(5) \\ C(5)-Sc-C(10) & 115.77(7) & C(2)-Sc-H(26C) & 127.0(5) \\ C(9)-Sc-C(7) & 55.27(7) & C(5)-Sc-H(26C) & 78.1(5) \\ C(8)-Sc-C(7) & 32.79(6) & C(10)-Sc-H(26C) & 66.4(5) \\ C(26)-Sc-C(7) & 120.28(7) & C(7)-Sc-H(26C) & 114.6(5) \\ \end{array}$	C(4)-Sc- $C(5)$			114.9(7)
$\begin{array}{cccccc} C(9)-Sc-C(10) & 32.63(6) & C(1)-Sc-H(25C) & 98.0(7) \\ C(8)-Sc-C(10) & 55.33(6) & C(9)-Sc-H(26C) & 85.3(6) \\ C(26)-Sc-C(10) & 82.76(7) & C(8)-Sc-H(26C) & 119.6(5) \\ C(3)-Sc-C(10) & 113.41(6) & C(26)-Sc-H(26C) & 23.9(5) \\ C(4)-Sc-C(10) & 97.33(7) & C(3)-Sc-H(26C) & 128.1(5) \\ C(25)-Sc-C(10) & 120.34(7) & C(4)-Sc-H(26C) & 93.8(5) \\ C(2)-Sc-C(10) & 146.36(6) & C(25)-Sc-H(26C) & 111.6(5) \\ C(5)-Sc-C(10) & 115.77(7) & C(2)-Sc-H(26C) & 127.0(5) \\ C(9)-Sc-C(7) & 55.27(7) & C(5)-Sc-H(26C) & 78.1(5) \\ C(8)-Sc-C(7) & 32.79(6) & C(10)-Sc-H(26C) & 66.4(5) \\ C(26)-Sc-C(7) & 120.28(7) & C(7)-Sc-H(26C) & 114.6(5) \\ \end{array}$	C(25)-Sc-C(5)	121.98(7)	C(7)-Sc-H(25C)	68.6(7)
$\begin{array}{cccccc} C(8)-Sc-C(10) & 55.33(6) & C(9)-Sc-H(26C) & 85.3(6) \\ C(26)-Sc-C(10) & 82.76(7) & C(8)-Sc-H(26C) & 119.6(5) \\ C(3)-Sc-C(10) & 113.41(6) & C(26)-Sc-H(26C) & 23.9(5) \\ C(4)-Sc-C(10) & 97.33(7) & C(3)-Sc-H(26C) & 128.1(5) \\ C(25)-Sc-C(10) & 120.34(7) & C(4)-Sc-H(26C) & 93.8(5) \\ C(2)-Sc-C(10) & 146.36(6) & C(25)-Sc-H(26C) & 111.6(5) \\ C(5)-Sc-C(10) & 115.77(7) & C(2)-Sc-H(26C) & 127.0(5) \\ C(9)-Sc-C(7) & 55.27(7) & C(5)-Sc-H(26C) & 78.1(5) \\ C(8)-Sc-C(7) & 32.79(6) & C(10)-Sc-H(26C) & 66.4(5) \\ C(26)-Sc-C(7) & 120.28(7) & C(7)-Sc-H(26C) & 114.6(5) \\ \end{array}$	C(2)-Sc-C(5)		C(6)-Sc-H(25C)	84.3(7)
$\begin{array}{cccccc} C(26)-Sc-C(10) & 82.76(7) & C(8)-Sc-H(26C) & 119.6(5) \\ C(3)-Sc-C(10) & 113.41(6) & C(26)-Sc-H(26C) & 23.9(5) \\ C(4)-Sc-C(10) & 97.33(7) & C(3)-Sc-H(26C) & 128.1(5) \\ C(25)-Sc-C(10) & 120.34(7) & C(4)-Sc-H(26C) & 93.8(5) \\ C(2)-Sc-C(10) & 146.36(6) & C(25)-Sc-H(26C) & 111.6(5) \\ C(5)-Sc-C(10) & 115.77(7) & C(2)-Sc-H(26C) & 127.0(5) \\ C(9)-Sc-C(7) & 55.27(7) & C(5)-Sc-H(26C) & 78.1(5) \\ C(8)-Sc-C(7) & 32.79(6) & C(10)-Sc-H(26C) & 66.4(5) \\ C(26)-Sc-C(7) & 120.28(7) & C(7)-Sc-H(26C) & 114.6(5) \\ \end{array}$	C(9)-Sc-C(10)	32.63(6)		
$\begin{array}{ccccc} C(3)-Sc-C(10) & 113.41(6) & C(26)-Sc-H(26C) & 23.9(5) \\ C(4)-Sc-C(10) & 97.33(7) & C(3)-Sc-H(26C) & 128.1(5) \\ C(25)-Sc-C(10) & 120.34(7) & C(4)-Sc-H(26C) & 93.8(5) \\ C(2)-Sc-C(10) & 146.36(6) & C(25)-Sc-H(26C) & 111.6(5) \\ C(5)-Sc-C(10) & 115.77(7) & C(2)-Sc-H(26C) & 127.0(5) \\ C(9)-Sc-C(7) & 55.27(7) & C(5)-Sc-H(26C) & 78.1(5) \\ C(8)-Sc-C(7) & 32.79(6) & C(10)-Sc-H(26C) & 66.4(5) \\ C(26)-Sc-C(7) & 120.28(7) & C(7)-Sc-H(26C) & 114.6(5) \\ \end{array}$	C(8)-Sc-C(10)			
$\begin{array}{ccccc} C(4)-Sc-C(10) & 97.33(7) & C(3)-Sc-H(26C) & 128.1(5) \\ C(25)-Sc-C(10) & 120.34(7) & C(4)-Sc-H(26C) & 93.8(5) \\ C(2)-Sc-C(10) & 146.36(6) & C(25)-Sc-H(26C) & 111.6(5) \\ C(5)-Sc-C(10) & 115.77(7) & C(2)-Sc-H(26C) & 127.0(5) \\ C(9)-Sc-C(7) & 55.27(7) & C(5)-Sc-H(26C) & 78.1(5) \\ C(8)-Sc-C(7) & 32.79(6) & C(10)-Sc-H(26C) & 66.4(5) \\ C(26)-Sc-C(7) & 120.28(7) & C(7)-Sc-H(26C) & 114.6(5) \\ \end{array}$		and the second		
$\begin{array}{ccccc} C(25)-Sc-C(10) & 120.34(7) & C(4)-Sc-H(26C) & 93.8(5) \\ C(2)-Sc-C(10) & 146.36(6) & C(25)-Sc-H(26C) & 111.6(5) \\ C(5)-Sc-C(10) & 115.77(7) & C(2)-Sc-H(26C) & 127.0(5) \\ C(9)-Sc-C(7) & 55.27(7) & C(5)-Sc-H(26C) & 78.1(5) \\ C(8)-Sc-C(7) & 32.79(6) & C(10)-Sc-H(26C) & 66.4(5) \\ C(26)-Sc-C(7) & 120.28(7) & C(7)-Sc-H(26C) & 114.6(5) \\ \end{array}$	C(3)-Sc- $C(10)$			
$\begin{array}{ccccc} C(2)-Sc-C(10) & 146.36(6) & C(25)-Sc-H(26C) & 111.6(5) \\ C(5)-Sc-C(10) & 115.77(7) & C(2)-Sc-H(26C) & 127.0(5) \\ C(9)-Sc-C(7) & 55.27(7) & C(5)-Sc-H(26C) & 78.1(5) \\ C(8)-Sc-C(7) & 32.79(6) & C(10)-Sc-H(26C) & 66.4(5) \\ C(26)-Sc-C(7) & 120.28(7) & C(7)-Sc-H(26C) & 114.6(5) \\ \end{array}$		and the second		and a second
C(5)-Sc-C(10)115.77(7)C(2)-Sc-H(26C)127.0(5)C(9)-Sc-C(7)55.27(7)C(5)-Sc-H(26C)78.1(5)C(8)-Sc-C(7)32.79(6)C(10)-Sc-H(26C)66.4(5)C(26)-Sc-C(7)120.28(7)C(7)-Sc-H(26C)114.6(5)		Concerns and the second second second		
C(9)-Sc-C(7)55.27(7)C(5)-Sc-H(26C)78.1(5)C(8)-Sc-C(7)32.79(6)C(10)-Sc-H(26C)66.4(5)C(26)-Sc-C(7)120.28(7)C(7)-Sc-H(26C)114.6(5)				
C(8)-Sc-C(7)32.79(6)C(10)-Sc-H(26C)66.4(5)C(26)-Sc-C(7)120.28(7)C(7)-Sc-H(26C)114.6(5)				
C(26)-Sc-C(7) 120.28(7) C(7)-Sc-H(26C) 114.6(5)				
$C(3)-3C-C(7)$ $37.30(7)$ $C(0)-5C-\Pi(20C)$ $84.4(3)$				
	C(3)-3C-C(7)	97.00(7)	C(0)-3C-11(20C)	04.4(0)

C(1)-Sc-H(26C) H(25C)-Sc-H(26C) C(22)-Si(1)-C(3) C(22)-Si(1)-C(21) C(3)-Si(1)-C(8) C(2)-Si(1)-C(8) C(2)-Si(1)-C(8) C(2)-Si(1)-Sc C(3)-Si(1)-Sc C(3)-Si(1)-Sc C(2)-Si(1)-Sc C(2)-Si(2)-C(24) C(23)-Si(2)-C(4) C(23)-Si(2)-C(4) C(23)-Si(2)-C(9) C(24)-Si(2)-C(9) C(24)-Si(2)-C(9) C(23)-Si(2)-Sc C(24)-Si(2)-Sc C(24)-Si(2)-Sc C(24)-Si(2)-Sc C(27)-A1-C(28) C(27)-A1-C(28) C(27)-A1-C(25) C(28)-A1-C(25) C(27)-A1-C(26) C(27)-A1-C(26) C(27)-A1-C(26) C(27)-A1-C(26) C(27)-A1-C(26) C(27)-A1-Sc C(28)-A1-C(26) C(27)-A1-Sc C(26)-A1-Sc C(26)-A1-Sc C(26)-A1-Sc C(26)-A1-Sc C(26)-A1-Sc C(26)-A1-Sc C(26)-A1-Sc C(26)-A1-Sc C(26)-A1-Sc C(26)-A1-Sc C(26)-A1-Sc C(20)-C(1)-C(11) C(2)-C(1)-C(11) C(2)-C(1)-C(2)-C(3) C(1)-C(2)-Sc C(1)-C(2)-C(3) C(1)-C(2)-Sc C(1)-C(2)-H(2) C(3)-C(2)-H(2) C(3)-C(2)-H(2) C(2)-C(3)-C(4) C(2)-C(3)-Si(1) C(4)-C(3)-Si(1)	96.6(5) 131.4(9) 114.79(10) 107.25(11) 108.98(10) 116.43(10) 93.83(9) 115.12(10) 146.90(8) 49.92(6) 105.74(8) 48.85(6) 105.99(10) 120.56(9) 106.91(9) 114.15(9) 116.00(9) 93.26(8) 149.60(7) 104.36(8) 49.91(6) 48.48(6) 111.13(10) 109.69(10) 110.14(9) 113.52(10) 103.45(10) 108.73(9) 118.51(8) 130.29(7) 55.47(6) 54.67(6) 106.06(16) 126.50(16) 69.41(10) 69.05(10) 135.25(12) 110.09(16) 80.05(11) 67.44(10) 124.5(11) 125.4(11) 121.3(11) 106.80(15) 127.13(14) 121.31(13)	Si(1)-C(3)-Sc C(5)-C(4)-C(3) C(5)-C(4)-Si(2) C(3)-C(4)-Sc Si(2)-C(4)-Sc C(3)-C(4)-Sc C(1)-C(5)-C(4) C(1)-C(5)-Sc C(1)-C(5)-H(5) C(4)-C(5)-H(5) C(4)-C(5)-H(5) C(7)-C(6)-C(10) C(7)-C(6)-Sc C(10)-C(6)-Sc C(10)-C(6)-H(6) C(10)-C(6)-H(6) C(6)-C(7)-C(8) C(6)-C(7)-C(8) C(6)-C(7)-C(15) C(8)-C(7)-Sc C(8)-C(7)-Sc C(8)-C(7)-Sc C(15)-C(7)-Sc C(15)-C(7)-Sc C(15)-C(7)-Sc C(15)-C(7)-Sc C(15)-C(7)-Sc C(15)-C(7)-Sc C(15)-C(7)-Sc C(10)-C(9)-Si(1) C(7)-C(8)-Sc C(10)-C(9)-Si(2) C(10)-C(9)-Si(2) C(10)-C(9)-Si(2) C(10)-C(9)-Sc C(8)-C(9)-Sc C(8)-C(9)-Sc C(8)-C(9)-Sc C(8)-C(9)-Sc C(8)-C(9)-Sc C(6)-C(10)-C(18) C(6)-C(10)-C(18) C(6)-C(10)-Sc C(10)-C(10)-Sc C(14)-C(11)-C(13) C(14)-C(11)-C(1) C(14)-C(11)-C(1)	93.92(8) 106.63(15) 124.80(13) 123.62(13) 79.82(11) 72.45(10) 93.83(8) 110.41(16) 79.76(11) 67.41(10) 125.2(11) 124.4(11) 119.5(11) 109.59(16) 71.38(10) 71.05(10) 125.4(12) 124.9(12) 127.4(11) 108.16(16) 125.34(16) 126.10(16) 78.01(11) 64.41(10) 128.63(12) 106.68(15) 127.79(13) 122.00(13) 82.80(11) 71.80(10) 94.64(8) 107.23(15) 128.14(13) 121.48(13) 82.86(10) 72.18(10) 95.23(8) 108.23(16) 126.01(16) 125.44(16) 78.25(11) 64.51(9) 127.67(12) 108.91(18) 111.47(16) 111.52(16) 108.89(19)
C(4)-C(3)-Si(1)	121.31(13)	C(14)-C(11)-C(12)	108.89(19)
C(2)-C(3)-Sc	79.60(11)	C(13)-C(11)-C(12)	108.18(19)
C(4)-C(3)-Sc	72.87(10)	C(1)-C(11)-C(12)	107.78(16)

C(18)-C(20)-H(20B)	111.5(12)
H(20A)-C(20)-H(20B)	104.6(16)
C(18)-C(20)-H(20C)	113.3(12)
H(20A)-C(20)-H(20C) H(20B)-C(20)-H(20C)	103.9(16)
H(20B)-C(20)-H(20C) Si(1)-C(21)-H(21A)	111.7(16) 113.4(11)
Si(1)-C(21)-H(21B)	110.3(13)
H(21A)-C(21)-H(21B)	108.1(16)
Si(1)-C(21)-H(21C)	106.2(14)
H(21A)-C(21)-H(21C)	107.9(17)
H(21B)-C(21)-H(21C)	110.9(19)
Si(1)-C(22)-H(22A) Si(1)-C(22)-H(22B)	108.3(16)
H(22A)-C(22)-H(22B)	109.4(14) 111(2)
Si(1)-C(22)-H(22C)	113.2(16)
Si(1)-C(22)-H(22C) H(22A)-C(22)-H(22C)	109(2)
H(22B)-C(22)-H(22C)	106(2)
Si(2)-C(23)-H(23A)	113.7(14)
Si(2)-C(23)-H(23B)	113.7(13)
H(23A)-C(23)-H(23B)	109.0(19)
Si(2)-C(23)-H(23C) H(23A)-C(23)-H(23C)	106.4(15) 105(2)
H(23B)-C(23)-H(23C) H(23B)-C(23)-H(23C)	103(2) 108.6(19)
Si(2)-C(24)-H(24A)	110.2(12)
Si(2)-C(24)-H(24B)	114.6(12)
H(24A)-C(24)-H(24B)	107.8(17)
Si(2)-C(24)-H(24C)	106.8(14)
H(24A)-C(24)-H(24C) H(24B)-C(24)-H(24C)	110.3(18)
H(24B)-C(24)-H(24C) Al-C(25)-Sc	107.0(18) 79.92(7)
Al-C(25)-H(25A)	111.8(13)
Sc-C(25)-H(25A)	106.6(13)
Al-C(25)-H(25B)	90.6(17)
Sc-C(25)-H(25B)	145.9(17)
H(25A)-C(25)-H(25B)	107(2)
Al-C(25)-H(25C)	134.1(16)
Sc-C(25)-H(25C) H(25A)-C(25)-H(25C)	63.3(15) 105(2)
H(25B)-C(25)-H(25C)	105(2)
Al-C(26)-Sc	80.47(7)
Al-C(26)-H(26A)	107.9(11)
Sc-C(26)-H(26A)	106.3(12)
Al-C(26)-H(26B)	90.2(12)
Sc-C(26)-H(26B) H(26A)-C(26)-H(26B)	145.1(12) 108.6(17)
A1-C(26)-H(26C)	139.0(12)
Sc-C(26)-H(26C)	66.6(12)
H(26A)-C(26)-H(26C)	104.4(16)
H(26B)-C(26)-H(26C)	102.8(17)

Al-C(27)-H(27A)	117(2)	Al-C(28)-H(28A)	112.4(13)
Al-C(27)-H(27B)	114(2)	Al-C(28)-H(28B)	109.8(15)
H(27A)-C(27)-H(27B)	100(3)	H(28A)-C(28)-H(28B)	103.8(19)
Al-C(27)-H(27C)	113(2)	Al-C(28)-H(28C)	115.5(16)
H(27A)-C(27)-H(27C)	102(3)	H(28A)-C(28)-H(28C)	108(2)
H(27B)-C(27)-H(27C)	109(3)	H(28B)-C(28)-H(28C)	107(2)

Cent1 is the centroid formed by C1, C2, C3, C4 and C5. Cent2 is the centroid formed by C6, C7, C8, C9 and C10. Pln1 is the plane formed by C1, C2, C3, C4 and C5. Pln2 is the plane formed by C6, C7, C8, C9 and C10.

Table 10. Crystal Data and Structure Analysis Details for dlz5 – $[(Me_2Si)_2(4-CMe_3-C_5H_2)(3,5-CMe_2H-C_5H_1)]YCH(SiMe_3)_2$.

Empirical formula	$C_{31}H_{57}Si_4Y$	
Formula weight	631.04	
Crystallization solvent	toluene-d ₈	
Crystal shape	six-sided plate	
Crystal color	colorless	
Crystal size	0.22 x 0.37 x 0.37 mm	
Data	Collection	
Type of diffractometer	CAD-4	
Wavelength	0.71073 Å MoKα	
Data collection temperature	84 K	
Theta range for 25 reflections used in lattice determination	13 to 15°	
Unit cell dimensions	a = 16.262(4) Å b = 11.833(6) Å c = 17.978(9) Å	$\alpha = 90^{\circ}$ $\beta = 92.94(3)^{\circ}$ $\gamma = 90^{\circ}$
Volume	3455(3) Å ³	
Z	4	
Crystal system	monoclinic	
Space group	P2 ₁ /n (#14)	
Density (calculated)	1.213 g/cm ³	
F(000)	1352	
Theta range for data collection	1.5 to 25.0°	
Completeness to theta = 25.0°	100.0 %	
Index ranges	$-15 \le h \le 19, -14 \le k \le 14$	4, -21 \le 1 \le 21

Data collection scan type		ω-scan	
Reflections collected		20178	
Independent reflections		$6067 [R_{int} = 0.057; GOF_{merge} = 1.07]$	
Reflections > $2\sigma(I)$		4766	
Average $\sigma(I)/(\text{net I})$		0.0533	
Absorption coefficient		1.845 mm ⁻¹	
Absorption correction		ψ-scan	
Max. and min. transmission	n	1.08 and 0.91	
Number of standards		3 reflections measured every 75 min	
Decay of standards		0.6%	
Struc	ture Soluti	on and Refinement	
Primary solution method		direct methods	
Secondary solution method	1	difference map	
Hydrogen placement		calculated	
Refinement method		full-matrix least-squares on F ²	
Data / restraints / parameters		6067 / 0 / 492	
Treatment of hydrogen ato:	ms	coordinates refined, $U_{\mbox{\tiny iso}}$ fixed at 120%	
		U _{eq} of attached atom	
Goodness-of-fit on F ²		1.456	
Final R indices [I>2 σ (I), 4766 reflection		s] $R1 = 0.0416$, $wR2 = 0.0598$	
R indices (all data)		R1 = 0.0665, wR2 = 0.0640	
Type of weighting scheme used		sigma	
Weighting scheme used		$w=1/\sigma^2(Fo^2)$	
Max shift/error		0.032	
Average shift/error		0.001	
Largest diff. peak and hole		0.406 and -0.390 e∙Å ⁻³	
Programs Used		ams Used	
Cell refinement	CAD-4 Sof	tware (Enraf-Nonius, 1989)	
Data collection CAD-4 Soft		tware (Enraf-Nonius, 1989)	
Data reduction	CRYM (Du	ichamp, 1964)	
Structure solution Bruker SHI		ELXTL v5.1	
Structure refinement Bruker SHI		ELXTL v5.1	

Special Refinement Details

A small colorless six-sided plate was mounted on a glass fiber with Paratone-N oil. Data were collected with 1.0° ω -scans. Data that agreed poorly in a preliminary merging were recollected. The individual backgrounds were replaced by a background function of 2 θ derived from those reflections with I < 3σ (I). The GOF_{merge} was 1.07 (6067 multiples) in point group 2/m; R_{merge} was 0.061 for 2233 duplicates with F_o > 0. Ψ -scan data were used for the absorption correction. There was 0.6% linear decay. No outlier reflections were omitted from the refinement. A power failure occurred during the collection of reflection number 17290, shutting down the diffractometer and cooling unit; however, this event seems to have had no significant effect on the crystal or data set quality.

Weights w are calculated as $1/\sigma^2(F_o^2)$; variances $(\sigma^2(F_o^2))$ were derived from counting statistics plus an additional term, $(0.014I)^2$; variances of the merged data were obtained by propagation of error plus another additional term, $(0.014 < I >)^2$. The refinement of F^2 is as always against all reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement.

There is one molecule in the asymmetric unit.

During refinement two atoms, C25 and C26, exhibited elongated displacement ellipsoids indicating disorder. The central carbon of the $CH(SiMe_3)_2$ moiety, C25, exists in either of two conformations, with the H up or with the H down with respect to the wedge of the cyclopentadienyl rings. The inversion of the carbon primarily affects C26, a terminal methyl group, which can also be correspondingly down or up. Various models were tried which attempted to split both atoms into two sites each, ~0.6Å apart. None were very successful. The final model leaves the methyl carbon C26 as a single anisotropic atom and C25 split into C25A with a population of 0.719(11) with the hydrogen atom pointed towards the t-butyl group and C25B with a population of 0.281(11). Both partial atoms were refined isotropically with a single U_{iso} .

A more interesting feature of the structure is the interaction between the Y atom and a Si-C bond (Si4-C29). The disordered coordinated carbon C25 of the $CH(SiMe_3)_2$ moiety is shifted to one side of the wedge to allow the Si-C bond access to the Y atom.

Table 11. Bond lengths [Å] and angles [°] for dlz5 – $[(Me_2Si)_2(4-CMe_3-C_5H_2)(3,5-CMe_2H-C_5H_1)]YCH(SiMe_3)_2$.

2.394	Y…PlnA ^b	2.371(2)
2.386	Y…PlnB ^d	2.356(2)
2.806	Y-C6	2.534(3)
	2.386	2.386 Y…PlnB ^d

$Y \cdots Si4$ $3.1673(16)$ $C15-C18$ $1.523(4)$ $Y \cdots H29C$ $2.58(3)$ $C15-C17$ $1.534(4)$ $Si1-C11$ $1.859(3)$ $C16-H16A$ $1.00(3)$ $Si1-C12$ $1.864(3)$ $C16-H16C$ $0.97(3)$ $Si1-C1$ $1.869(3)$ $C17-H17A$ $0.94(3)$ $Si2-C13$ $1.847(3)$ $C17-H17A$ $0.94(3)$ $Si2-C14$ $1.862(3)$ $C17-H17C$ $0.95(3)$ $Si2-C2$ $1.874(3)$ $C18-H18A$ $1.04(3)$ $Si2-C7$ $1.878(3)$ $C18-H18B$ $0.98(3)$ $Si3-C25A$ $1.859(4)$ $C19-C21$ $1.524(4)$ $Si3-C25B$ $1.865(4)$ $C19-C20$ $1.529(4)$ $Si3-C25B$ $1.888(11)$ $C20-H20A$ $0.96(3)$ $Si4-C25B$ $1.888(1)$ $C20-H20A$ $0.96(3)$ $Si4-C25B$ $1.888(1)$ $C21-H21A$ $0.97(3)$ $Si4-C25B$ $1.882(1)$ $C21-H21A$ $0.97(3)$ $Si4-C25B$ $1.882(1)$ $C21-H21A$ $0.97(3)$ $Si4-C25B$ $1.882(1)$ $C21-H21A$ $0.97(3)$ $Si4-C25B$ $1.882(1)$ $C21-H21A$ $0.97(3)$ $Si4-C25B$ $1.82(4)$ $C22-H22$ $0.93(3)$ $C3-C4$ $1.415(4)$ $C22-H22$ $0.93(3)$ $C3-C4$ $1.405(4)$ $C22-H22$ $0.93(3)$ $C3-C4$ $1.405(4)$ $C23-H23A$ $1.00(3)$ $C3-C4$ $1.405(4)$ $C23-H23A$ $0.98(3)$ $C4-C15$ $1.521(4)$ $C24-H24A$ $0.98(3)$ $C4-C5$ $1.405(4)$ $C23-$	Y-C7 Y-C1 Y-C2 Y-C4 Y-C5 Y-C3 Y-C10 Y-C8 Y-C9 Y-C25B Y-C25B Y-C25A Y-C29	2.535(3) 2.549(3) 2.591(3) 2.842(3) 2.681(3) 2.737(3) 2.742(3) 2.743(3) 2.821(3) 2.377(10) 2.437(4) 2.751(4)	C11-H11B C11-H11C C12-H12A C12-H12B C12-H12C C13-H13A C13-H13B C13-H13B C13-H13C C14-H14A C14-H14B C14-H14C C15-C16	$\begin{array}{c} 0.94(3) \\ 0.95(3) \\ 0.94(3) \\ 0.95(3) \\ 0.95(3) \\ 0.98(3) \\ 0.91(3) \\ 0.83(3) \\ 0.97(3) \\ 0.92(3) \\ 0.89(3) \\ 1.518(4) \end{array}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Y…H29C	2.58(3)	C15-C17	1.534(4)
	Si1-C11	1.859(3)	C16-H16A	1.00(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Si1-C1	1.869(3)	C16-H16C	0.97(3)
	Si1-C6	1.889(3)	C17-H17A	0.94(3)
	Si2-C13	1.847(3)	C17-H17B	1.00(3)
Si3-C26 $1.865(4)$ C19-C20 $1.529(4)$ Si3-C28 $1.876(4)$ C19-H19A $0.97(3)$ Si3-C25B $1.888(11)$ C20-H20A $0.96(3)$ Si4-C25A $1.828(4)$ C20-H20B $0.96(3)$ Si4-C31 $1.858(4)$ C20-H20C $0.91(3)$ Si4-C30 $1.860(4)$ C21-H21A $0.97(3)$ Si4-C25B $1.882(11)$ C21-H21B $0.95(3)$ Si4-C29 $1.922(3)$ C21-H21C $0.91(3)$ C1-C5 $1.429(4)$ C22-C24 $1.517(4)$ C1-C2 $1.440(4)$ C22-C23 $1.527(4)$ C2-C3 $1.419(4)$ C22-H22 $0.93(3)$ C3-C4 $1.415(4)$ C23-H23A $1.00(3)$ C3-H3 $0.90(3)$ C23-H23B $0.88(3)$ C4-C5 $1.405(4)$ C23-H23C $0.97(3)$ C4-C15 $1.521(4)$ C24-H24A $0.98(3)$ C5-H5 $0.91(3)$ C24-H24B $1.00(3)$ C5-H5 $0.91(3)$ C24-H24B $1.00(3)$ C6-C7 $1.457(4)$ C25A···C25B $0.63(1)$ C7-C8 $1.424(4)$ C25A-H25A 0.9800	Si2-C2	1.874(3)	C18-H18A	1.04(3)
	Si2-C7	1.878(3)	C18-H18B	0.98(3)
	Si3-C25A	1.859(4)	C18-H18C	0.93(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Si3-C26	1.865(4)	C19-C20	1.529(4)
	Si3-C28	1.876(4)	C19-H19A	0.97(3)
	Si3-C25B	1.888(11)	C20-H20A	0.96(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Si4-C31	1.858(4)	C20-H20C	0.91(3)
	Si4-C30	1.860(4)	C21-H21A	0.97(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Si4-C29 C1-C5 C1-C2	1.922(3) 1.429(4) 1.440(4)	C22-C24 C22-C23	1.517(4) 1.527(4)
C5-H50.91(3)C24-H24B1.00(3)C6-C101.437(4)C24-H24C0.95(3)C6-C71.457(4)C25AC25B0.63(1)C7-C81.424(4)C25A-H25A0.9800	C3-C4	1.415(4)	C23-H23A	1.00(3)
	C3-H3	0.90(3)	C23-H23B	0.88(3)
	C4-C5	1.405(4)	C23-H23C	0.97(3)
	C5-H5 C6-C10 C6-C7	$\begin{array}{c} 0.91(3) \\ 1.437(4) \\ 1.457(4) \\ 1.424(4) \end{array}$	C24-H24B C24-H24C C25A-C25B C25A-H25A	1.00(3) 0.95(3) 0.63(1) 0.9800

C27-H27C C28-H28A C28-H28B C28-H28C C29-H29A C29-H29B C29-H29C C30-H30A C30-H30B C30-H30B C30-H31A C31-H31B C31-H31B	0.90(3) 0.88(3) 0.99(3) 0.96(3) 0.90(3) 0.94(3) 1.00(3) 0.94(3) 0.94(3) 0.91(3) 0.92(3) 0.87(3) 0.98(3)	C31-Si4-C30 C31-Si4-C25B C30-Si4-C25B C25A-Si4-C29 C31-Si4-C29 C30-Si4-C29 C25B-Si4-C29 C5-C1-C2 C5-C1-C2 C5-C1-Si1 C2-C1-Si1 C3-C2-C1 C3-C2-Si2 C1-C2-Si2 C4-C3-C2	108.0(2) $103.5(5)$ $129.3(6)$ $109.62(17)$ $105.70(16)$ $103.42(16)$ $104.9(4)$ $106.7(2)$ $129.8(2)$ $119.7(2)$ $106.3(2)$ $124.7(2)$ $124.2(2)$ $110.8(2)$
CpA-Y-CpB CpA-Y-C25A CpA-Y-C25B CpB-Y-C25B CpB-Y-C25B CpA-Y-Cen Cen-Y-C25A Cen-Y-C25B PlnA-PlnB C25B-Y-C29 C25A-Y-C29 C11-Si1-C1 C12-Si1-C1 C12-Si1-C1 C12-Si1-C1 C12-Si1-C6 C12-Si1-C6 C13-Si2-C14 C13-Si2-C2 C14-Si2-C2 C14-Si2-C2 C14-Si2-C7 C25A-Si3-C26 C27-Si3-C26 C27-Si3-C28 C26-Si3-C28 C26-Si3-C25B C28-Si3-C25B C28-Si3-C25B C28-Si3-C25B C28-Si3-C25B C25A-Si4-C31 C25A-Si4-C31	116.1 127.5 113.2 109.1 123.6 121.5 115.3 52.3 52.4 80.7(1) 71.6(3) 72.15(12) 107.32(15) 109.24(14) 115.14(14) 115.72(14) 95.65(12) 107.51(16) 119.13(14) 106.47(14) 112.79(14) 115.34(14) 95.48(12) 118.7(3) 111.3(2) 105.47(19) 107.9(2) 106.47(18) 106.4(2) 99.8(6) 116.2(4) 120.8(5) 118.6(3) 110.4(3)	C4-C3-H3 C2-C3-H3 C5-C4-C3 C5-C4-C15 C3-C4-C15 C4-C5-C1 C4-C5-H5 C1-C5-H5 C10-C6-C7 C10-C6-Si1 C7-C6-Si1 C8-C7-C6 C8-C7-Si2 C9-C8-C7 C9-C8-C19 C10-C9-C8 C10-C9-H9 C9-C10-C2 C6-C10-C22 C6-C10-C22 Si1-C11-H11A Si1-C11-H11B H11A-C11-H11B H11A-C11-H11B H11A-C11-H11B H11A-C11-H11C H11B-C11-H11C H11B-C11-H11C H11B-C11-H11C H11B-C11-H11C H11A-C12-H12B H12A-C12-H12B Si1-C12-H12C H12B-C12-H12C H12B-C12-H12C	$\begin{array}{c} 110.0(2)\\ 122.1(17)\\ 127.1(17)\\ 105.8(2)\\ 127.9(3)\\ 125.2(2)\\ 110.3(2)\\ 124.3(17)\\ 125.2(17)\\ 106.7(2)\\ 127.4(2)\\ 122.5(2)\\ 107.9(2)\\ 129.0(2)\\ 107.6(2)\\ 107.6(2)\\ 107.6(2)\\ 107.6(2)\\ 107.9(2)\\ 129.0(2)\\ 113.6(18)\\ 114.8(17)\\ 107(2)\\ 110.1(17)\\ 106(2)\\ 105(2)\\ 108.7(17)\\ 112.1(18)\\ 103(2)\\ 113.7(18)\\ 113(2)\\ 106(2)\\ \end{array}$

Si2-C13-H13A Si2-C13-H13B H13A-C13-H13B Si2-C13-H13C H13A-C13-H13C H13B-C13-H13C Si2-C14-H14A Si2-C14-H14B H14A-C14-H14B Si2-C14-H14C H14B-C14-H14C H14B-C14-H14C H14B-C14-H14C C16-C15-C18 C4-C15-C18 C16-C15-C17 C15-C16-H16A C15-C16-H16B H16A-C16-H16B H16A-C16-H16C H16B-C16-H16C H16B-C16-H16C H16B-C16-H16C H16B-C16-H16C H16B-C16-H16C H16B-C16-H16C H16B-C16-H17B H17A-C17-H17B H17A-C17-H17C H17B-C17-H17C H17B-C17-H17C H17B-C17-H17C H17B-C17-H17C H17B-C17-H17C H17B-C17-H18B H18A-C18-H18B C15-C18-H18B H18A-C18-H18C H18B-C18-H18C H18B-C18-H18C H18B-C18-H18C H18B-C18-H18C H18B-C18-H18C H18B-C18-H18C H18B-C18-H18C H18B-C18-H18C H18B-C18-H18C H18B-C18-H18C H18B-C18-H18C H18B-C18-H18C H18B-C18-H18C H18B-C18-H18C H18B-C18-H18C H18B-C18-H18C C8-C19-C20 C21-C19-C20 C21-C19-C20 C21-C19-C20 C21-C19-C20 C21-C19-C20 C21-C19-C20 C21-C19-C20 C21-C19-C20 C21-C19-C20 C8-C19-H19A	$\begin{array}{c} 109.2(17) \\ 112.7(18) \\ 104(2) \\ 113(2) \\ 103(3) \\ 115(3) \\ 108.5(17) \\ 113.6(18) \\ 107(2) \\ 114.2(19) \\ 102(2) \\ 110(3) \\ 111.3(2) \\ 109.4(3) \\ 111.4(2) \\ 109.0(3) \\ 108.0(2) \\ 107.7(3) \\ 111.4(18) \\ 114.3(17) \\ 105(2) \\ 111.0(18) \\ 109(3) \\ 106(3) \\ 111.9(18) \\ 111.5(16) \\ 108(2) \\ 110.3(17) \\ 110(2) \\ 105(2) \\ 111.5(17) \\ 108.4(17) \\ 109(2) \\ 111.3(19) \\ 111(2) \\ 106(2) \\ 113.7(3) \\ 109.1(3) \\ 110.2(3) \\ 109.4(16) \end{array}$	C19-C21-H21B H21A-C21-H21B C19-C21-H21C H21A-C21-H21C H21B-C21-H21C C10-C22-C24 C10-C22-C23 C24-C22-C23 C10-C22-H22 C24-C22-H22 C23-C22-H22 C23-C22-H22 C22-C23-H23B H23A-C23-H23B H23A-C23-H23B C22-C23-H23C H23B-C23-H23C H23B-C23-H23C H23B-C23-H23C C22-C24-H24A C22-C24-H24B H24A-C24-H24B C22-C24-H24C H24A-C24-H24C H24B-C24-H24C H24B-C24-H24C H24B-C24-H24C Si4-C25A-Si3 Si4-C25A-Y Si3-C25A-Y Si3-C25A-H25A Si3-C25A-H25A Si3-C25B-H25B Si3-C25B-H25B Si3-C25B-H25B Si3-C26-H26B H26A-C26-H26B Si3-C26-H26C H26A-C26-H26C	108.8(19) 109(2) 108.6(19) 110(3) 111(3) 113.1(3) 113.1(3) 110.0(2) 110.0(3) 109.7(17) 105.9(17) 108.0(17) 109.7(16) 112.1(19) 110(2) 109.9(17) 109(2) 105(2) 111.1(16) 112.6(16) 105(2) 110.5(18) 110(2) 107(2) 118.5(2) 94.83(18) 139.3(3) 98.6 114.4(6) 95.4(4) 141.8(6) 99.1 99.1 99.1 99.1 99.1 103(2) 110(2) 100(3) 118(3) 116(3)
C15-C18-H18B	108.4(17)	Si3-C25B-Y	141.8(6)
H18A-C18-H18B	109(2)	Si4-C25B-H25B	99.1
H18A-C18-H18C	111(2)	Y-C25B-H25B	99.1
H18B-C18-H18C	106(2)	Si3-C26-H26A	103(2)
C8-C19-C20	109.1(3)	H26A-C26-H26B	100(3)
C21-C19-C20	110.2(3)	Si3-C26-H26C	118(3)
C20-C19-H19A C19-C20-H20A C19-C20-H20B H20A-C20-H20B C19-C20-H20C H20A-C20-H20C H20A-C20-H20C H20B-C20-H20C	103.9(17) $108.4(16)$ $112.9(17)$ $113.0(18)$ $105(2)$ $108.5(19)$ $112(3)$ $105(3)$	Si3-C27-H27A Si3-C27-H27B H27A-C27-H27B Si3-C27-H27C H27A-C27-H27C H27B-C27-H27C Si3-C28-H28A	107.8(19) 112.2(19) 110(3) 112(2) 109(3) 107(3) 106(2)
C19-C21-H21A	109.6(18)	Si3-C28-H28B	111.4(19)

H28A-C28-H28B Si3-C28-H28C H28A-C28-H28C H28B-C28-H28C Si4-C29-Y Si4-C29-H29A Y-C29-H29A Si4-C29-H29B H29A-C29-H29B Si4-C29-H29C H29A-C29-H29C H29B-C29-H29C	107(3) $111(2)$ $112(3)$ $109(3)$ $83.34(11)$ $114.6(18)$ $72.8(18)$ $103.7(18)$ $172.3(18)$ $106(2)$ $115.6(16)$ $111(2)$ $104(2)$	Si4-C30-H30A Si4-C30-H30B H30A-C30-H30B Si4-C30-H30C H30A-C30-H30C H30B-C30-H30C Si4-C31-H31A Si4-C31-H31B H31A-C31-H31B Si4-C31-H31C H31A-C31-H31C H31B-C31-H31C	$109(2) \\ 110(2) \\ 109(3) \\ 113(2) \\ 118(3) \\ 97(3) \\ 112(2) \\ 108(2) \\ 113(3) \\ 112.8(19) \\ 103(3) \\ 109(3) \\ 100(3) \\$
---	---	--	---

^a CpA is the centroid of atoms C1, C2, C3, C4 and C5 ^b PlnA is the best plane through atoms C1, C2, C3, C4 and C5

^c CpB is the centroid of atoms C6, C7, C8, C9 and C10

^d PlnB is the best plane through atoms C6, C7, C8, C9 and C10

^a Cen is the centroid of atoms Si4 and C29

Table 12. Crystal Data and Structure Analysis Details for dlz6 - $[(Me_{2}Si)_{2}(\eta^{5}-4-CMe_{3}-C_{5}H_{2})(\eta^{5}-3,5-CMe_{2}H-C_{5}H_{1})]Ta(CH_{2})CH_{3}.$

Empirical formula	$C_{26}H_{43}Si_2Ta$	
Formula weight	592.73	
Crystallization solvent	diethyl ether / pentane	
Crystal shape	twinned plate	
Crystal color	golden orange	
Crystal size	0.07 x 0.18 x 0.19 mm	
Data C	Collection	
Type of diffractometer	CAD-4	
Wavelength	0.71073 Å MoKα	
Data collection temperature	84 K	
Theta range for 25 reflections used	10 . 100	
in lattice determination	13 to 18°	
Unit cell dimensions	a = 8.508(3) Å b = 16.123(6) Å	$\alpha = 90^{\circ}$ $\beta = 112.39(3)^{\circ}$
	c = 9.984(3) Å	$\gamma = 90^{\circ}$
Volume	1266.3(8) Å ³	
Z	2	
Crystal system	monoclinic	
Space group	P2 ₁ /m (# 11)	

Density (calculated)	1.555 g/cm ³
F(000)	600
Theta range for data collection	2.21 to 25°
Completeness to theta = 25°	71.5 %
Index ranges	$-10 \le h \le 10, -19 \le k \le 19, -11 \le l \le 11$
Data collection scan type	ω-scan
Reflections collected	11978
Independent reflections	$1651 [R_{int} = 0.050; GOF_{merge} = 1.58]$
Reflections > $2\sigma(I)$	1576
Average $\sigma(I)/(\text{net I})$	0.0256
Absorption coefficient	4.445 mm ⁻¹
Absorption correction	ψ-scan
Max. and min. transmission	1.16 and 0.84
Number of standards	3 reflections measured every 75 min
Decay of standards	0.5%
Ci (C 1)	1 D C

Structure Solution and Refinement

Primary solution method		direct methods
Secondary solution method	1	difference map
Hydrogen placement		calculated
Refinement method		full-matrix least-squares on F ²
Data / restraints / parame	ters	1651 / 0 / 140
Treatment of hydrogen ato	ms	not refined, U_{iso} fixed at 120% U_{eq} of
		attached atom
Goodness-of-fit on F ²		2.385
Final R indices [I>2 σ (I), 157	76 reflection	s] $R1 = 0.0274$, $wR2 = 0.0659$
R indices (all data)		R1 = 0.0297, wR2 = 0.0664
Type of weighting scheme	used	sigma
Weighting scheme used		$w=1/\sigma^2(Fo^2)$
Max shift/error		0.017
Average shift/error		0.001
Largest diff. peak and hole		1.577 and -0.823 e∙Å ⁻³
	Progra	ams Used
Cell refinement	CAD-4 Sof	tware (Enraf-Nonius, 1989)
Data collection	CAD-4 Sof	tware (Enraf-Nonius, 1989)
Data reduction	CRYM (Du	achamp, 1964)
Structure solution	Bruker SH	ELXTL v5.1

Special Refinement Details

The crystals grow as twinned, golden orange plates. Samples were mounted on a glass fibers with Paratone-N oil. Finally a crystal was found for which a unit cell could be determined. Although this crystal was also twinned, orientation matrixes were obtained for both twin components. The reflection indices (h k l) and (h' k' l') for the two twin components are related as:

$$(h' \ k' \ l') = \begin{pmatrix} 1 & 0 & 0.65 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \times \begin{pmatrix} h \\ k \\ l \end{pmatrix}$$

The twin may be described as a reflection twin across the $[1 \ 0 \ 0]$ plane; the corresponding reciprocal space description is a rotation twin about the $(1 \ 0 \ 0)^*$ axis as this axis is normal to the [100] plane. Since by the monoclinic symmetry, (h k l) is equivalent to (h k l), Two interpretations of the reciprocal lattice overlap are shown as additional figures. Data were collected with $1.0^{\circ} \omega$ scans. Data which agreed poorly in a preliminary merging were recollected. The individual backgrounds were replaced by a background function of 2θ derived from those reflections with I < $3\sigma(I)$. The first attempts at refinement included all measured reflections; those reflections which presumably included overlap between the two twin components were given two sets of indices corresponding to the two twins. A twin parameter relating the relative contributions of the two components was included in the least squares matrix. Various criteria were used to identified overlapping reflections. However none of these approaches were particularly successful, presumably since most reflections do not perfectly coincide. The measured intensities of these reflections would then not reflect the true sum of the two contributing components. Finally, all reflections with l = 3, 6, 9 and 11 were removed from the dataset; these reflections transform with h'deviating from integral values by 0.05, 0.10, 0.15 and 0.15, respectively. Therefore only the (h k 0) reflections, which overlap perfectly with the (h - k 0)reflections of the twin, contain any twin contribution. The (h - k 0) reflections were added as the symmetry equivalent (h k 0) form. The GOF_{merge} was 1.58 (1651 multiples) in point group 2/m; due to the high redundancy of the data, there were no duplicates from which to calculate R_{merge} . Ψ -scan data were used for the absorption correction. There was 0.5% linear decay. No outlier reflections were omitted from the refinement.

Weights w are calculated as $1/\sigma^2(F_o^2)$; variances $(\sigma^2(F_o^2))$ were derived from counting statistics plus an additional term, $(0.014I)^2$; variances of the merged data were obtained by propagation of error plus another additional term, $(0.014<I>)^2$. The refinement of F^2 is as always against all reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is

used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement.

The molecule lies on a mirror plane containing the Ta and bisecting both Cp rings; there is 1/2 molecule in the asymmetric unit. The *t*-butyl group is disordered about the mirror plane, as is seen in similar compounds. Splitting the three methyl carbon atoms into two sites each did not improve the model, so these atoms were left at single sites with elongated displacement ellipsoids. Unfortunately, the mirror plane also confuses the =CH₂ and -CH₃ groups bound to the Ta. The principal axis of the displacement ellipsoid is perpendicular to the Ta to C bond. The hydrogen atoms on this C15 were modeled with three calculated sites, as a normal CH₃ group with one hydrogen atom pointing up with population one and the other two hydrogen atoms with population _. All hydrogen atoms were placed at calculated positions with U_{iso}'s fixed at 120% of the U_{eq} of the attached atom.

The minor twin component refined to a fractional population of 0.168(4). There are only two peaks greater than $|1| e \dot{A}^{-3}$ in the final difference map: 1.57 $e \dot{A}^{-3}$ (1.75Å from H6) and 1.07 $e \dot{A}^{-3}$ (0.79Å from H6).

Ta-CpA ª	2.129	C7-H7A	0.9800
Та-СрВ ^с	2.139	С7-Н7В	0.9800
Ta…PlnA ^b	2.117(4)	C7-H7C	0.9800
Ta…PlnB ^d	2.126(4)	C8-H8A	0.9800
Ta-C15	2.155(7)	C8-H8B	0.9800
Ta-C4	2.360(6)	C8-H8C	0.9800
Ta-C1	2.369(5)	C9-C10	1.440(10)
Ta-C2	2.464(5)	C9-C11	1.479(17)
Ta-C5	2.514(5)	C10-H10A	0.9800
Ta-C6	2.549(7)	C10-H10B	0.9800
Ta-C3	2.579(7)	C10-H10C	0.9800
Si-C8	1.856(6)	C11-H11A	0.9600
Si-C7	1.857(7)	C11-H11B	0.9601
Si-C1	1.874(6)	C12-C13	1.513(8)
Si-C4	1.891(5)	C12-C14	1.524(8)
C1-C2	1.418(8)	C12-H12	1.0000
C1-C1 ⁽ⁱ⁾	1.449(10)	C13-H13A	0.9800
C2-C3	1.422(7)	C13-H13B	0.9800
C2-H2	0.9500	C13-H13C	0.9800
C3-C9	1.513(12)	C14-H14A	0.9800
C4-C5	1.434(8)	C14-H14B	0.9800
C4-C4 ⁽ⁱ⁾	1.448(10)	C14-H14C	0.9800
C5-C6	1.416(7)	C15-H15A	0.9800
C5-C12	1.523(7)	C15-H15B	0.9800
C6-H6	0.9500	C15-H15C	0.9800

Table 13. Bond lengths [Å] and angles [°] for dlz6 – $[(Me_2Si)_2(\eta^5-4-CMe_3-C_5H_2)(\eta^5-3,5-CMe_2H-C_5H_1)]Ta(CH_2)CH_3.$

CpA-Ta-CpB CpA-Ta-C15 CpB-Ta-C15 PlnA-PlnB C15-Ta-C15 ⁽ⁱ⁾ C8-Si-C7 C8-Si-C7 C8-Si-C1 C7-Si-C1 C8-Si-C4 C7-Si-C4 C1-Si-C4 C2-C1-C1 ⁽ⁱ⁾ C2-C1-Si C1 $^{(i)}$ -C1-Si C1 $^{(i)}$ -C1-Si C1 $^{(i)}$ -C1-Si C1 $^{(i)}$ -C1-Si C1 $^{(i)}$ -C2-C3 C1 $^{(i)}$ -C2-H2 C3 $^{(i)}$ -C3 $^{(i)}$ -C3 $^{(i)}$ -C2-H2 C3 $^{(i)}$ -C3 $^{(i)}$ -C2 C2 $^{(i)}$ -C3 $^{(i)}$ -C2 C2 $^{(i)}$ -C3 $^{(i)}$ -C2 C2 $^{(i)}$ -C3 $^{(i)}$ -C2 C2 $^{(i)}$ -C3 $^{(i)}$ -C2 C3 $^{(i)}$ -C4 $^{(i)}$ -C3 $^{(i)}$ -C3 $^{(i)}$ -C4 $^{(i)}$ -C4 $^{(i)}$ -C4 $^{(i)}$ -C4 $^{(i)}$ -C3 $^{$	$125.4 \\107.1 \\107.4 \\67.0(3) \\99.3(4) \\106.9(3) \\108.1(3) \\116.5(3) \\116.4(3) \\116.7(3) \\91.9(2) \\106.8(3) \\124.8(4) \\122.55(17) \\110.1(5) \\124.9 \\124.9 \\106.0(7) \\126.5(4) \\107.5(3) \\125.4(4) \\122.23(16) \\107.7(5) \\125.2(5) \\126.7(5) \\109.4(7) \\125.3 \\109.5 \\100.5 $	H8B-C8-H8C C10-C9-C10 ⁽ⁱ⁾ C10-C9-C3 C11-C9-C3 C9-C10-H10A C9-C10-H10B H10A-C10-H10B H10A-C10-H10C H10B-C10-H10C C9-C11-H11A C9-C11-H11B H11A-C11-H11B C13-C12-C5 C13-C12-C14 C5-C12-C14 C5-C12-C14 C5-C12-H12 C14-C12-H12 C14-C12-H12 C12-C13-H13B H13A-C13-H13B H13A-C13-H13C H13B-C13-H13C H13B-C13-H13C H13B-C13-H13C C12-C14-H14B H14A-C14-H14B H14A-C14-H14B H14A-C14-H14C H14B-C14-H14C H14B-C14-H14C H14B-C15-H15B H15A-C15-H15B H15A-C15-H15C H15B-C15-H15C H15B-C15-H15C	109.5 107.3(15) 106.5(9) 110.9(6) 114.3(8) 109.5 109.5 109.5 109.5 109.5 109.5 109.6 109.4 109.5 109.1(4) 112.3(5) 108.4 108.4 108.4 108.4 108.4 109.5 $109.5109.5$ 109.5 1
---	--	---	---

Symmetry transformations used to generate equivalent atoms: (i) x,-y+1/2,z

^a CpA is the centroid of atoms C1, C2, C3, C4 and C5

^b PlnA is the best plane through atoms C1, C2, C3, C4 and C5

^c CpB is the centroid of atoms C6, C7, C8, C9 and C10

^d PInB is the best plane through atoms C6, C7, C8, C9 and C10

Table 14. Crystal Data and Structure Analysis Details for dlz7 - $Me_2Si(C_5H_4)_2TaMe_3$.

$1012_{2}51(C_{5}11_{4})_{2}1$ and 102_{3} .		
Empirical formula	C ₁₅ H ₂₃ SiTa	
Formula weight	412.37	
Crystallization solvent	diethyl ether	
Crystal shape	irregular chunk	
Crystal color	colorless	
Crystal size	0.09 x 0.15 x 0.41 mm	
Data (Collection	
Type of diffractometer	CAD-4	
Wavelength	0.71073 Å MoKα	
Data collection temperature	84 K	
Theta range for 25 reflections used		
in lattice determination	16 to 19°	
Unit cell dimensions	a = 7.722(3) Å b = 15.010(4) Å	$\alpha = 90^{\circ}$
	b = 15.010(4) Å c = 12.620(4) Å	$\beta = 90.54(3)^{\circ}$ $\gamma = 90^{\circ}$
Volume	1462.7(8) Å ³	1
Z	4	
Crystal system	monoclinic	
Space group	P 2 ₁ /n (# 14)	
Density (calculated)	1.873 g/cm ³	
F(000)	800	
Theta range for data collection	1.5 to 30°	
Completeness to theta = 30°	100.0 %	
Index ranges	$-10 \le h \le 0, -21 \le k \le 21,$	$-17 \leq l \leq 17$
Data collection scan type	ω-scan	
Reflections collected	11938	
Independent reflections	4257 [R _{int} = 0.0234; GO	F _{merge} = 1.73]
Reflections > $2\sigma(I)$	3974	
Average $\sigma(I)/(\text{net I})$	0.0270	
Absorption coefficient	7.574 mm ⁻¹	
Absorption correction	ψ-scan	
Max. and min. transmission	1.12 and 0.88	
Number of standards	3 reflections measured	every 75 min

Decay of standards		no correction applied
Struc	ture Soluti	on and Refinement
Primary solution method		direct methods
Secondary solution method	ł	difference map
Hydrogen placement		calculated
Refinement method		full-matrix least-squares on F ²
Data / restraints / parame	ters	4257 / 0 / 224
Treatment of hydrogen ato	ms	coordinates refined, U_{iso} fixed at 120%
		U _{eq} of attached atom
Goodness-of-fit on F ²		2.555
Final R indices $[I>2\sigma(I), 3974$ reflections		s] $R1 = 0.0350$, $wR2 = 0.0819$
R indices (all data)		R1 = 0.0377, wR2 = 0.0823
Type of weighting scheme	used	sigma
Weighting scheme used		$w=1/\sigma^2(Fo^2)$
Max shift/error		0.051
Average shift/error		0.001
Extinction coefficient		0.00133(16)
Largest diff. peak and hole		3.186 and -3.035 e∙Å ⁻³
	Progra	ams Used
Cell refinement	CAD-4 Sof	tware (Enraf-Nonius, 1989)
Data collection	CAD-4 Sof	tware (Enraf-Nonius, 1989)
Data reduction	CRYM (Du	1champ, 1964)
Structure solution	Bruker SH	ELXTL v5.1
Structure refinement	Bruker SH	ELXTL v5.1

Special Refinement Details

An irregular chunk was cut from a colorless blob and mounted on a glass fiber with Paratone-N oil. Data were collected with 1.1° ω -scans. Data which agreed poorly in a preliminary merging were recollected. The crystal turned brown during irradiation. The individual backgrounds were replaced by a background function of 2 θ derived from those reflections with I < 8 σ (I). The GOF_{merge} was 1.73 (3408 multiples) in point group 2/m; R_{merge} was 0.0207 for 3088 duplicates with F_o > 0. Ψ -scan data were used for the absorption correction. The three check reflections behaved erratically (or anisotrpically), showing changes of –2.6, -1.5 and 3.3% during data collection; accordingly, no correction was applied. Some reflections were lost due to a power failure (11589 – 12116). The last reflections collected merged poorly and so the range 8900 – 12466 was deleted from the data

file, leaving 8899 reflections. As these were redundant data or recollections of poorly merging multiples, there are no gaps in the data.

Weights w are calculated as $1/\sigma^2(F_o^2)$; variances $(\sigma^2(F_o^2))$ were derived from counting statistics plus an additional term, $(0.014I)^2$; variances of the merged data were obtained by propagation of error plus another additional term, $(0.014<I>)^2$. The refinement of F^2 is as always against all reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement.

There is one molecule in the asymmetric unit. Although the β angle of 90.54(3)° is ~90° and the molecule possesses internal symmetry, the structure is clearly monoclinic. The 0 1 1 reflection was an outlier and omitted from the refinement. A SHELXL extinction coefficient refined to 0.00133(16). There are a number of large peaks in the final difference map; the three greater than $|1.5| e Å^{-3}$ are all near the Ta atom: 3.19 e Å^{-3} at 0.70 Å from Ta, -3.04 e Å^{-3} at 0.65 Å from Ta and 2.93 e Å^{-3} at 0.71 Å from Ta.

Ta-CpA ^a	2.125	C8-C9	1.398(8)
Ta-CpB ^c	2.125	C8-H8	0.89(7)
Ta…ŶlnA⁵	2.124	C9-C10	1.407(7)
Ta…PlnB ^d	2.125	C9-H9	0.98(7)
Ta-C14	2.277(6)	C10-H10	0.90(7)
Ta-C13	2.300(6)	C11-H11A	0.95(7)
Ta-C15	2.310(6)	C11-H11B	0.92(7)
Si-C11	1.846(6)	C11-H11C	0.88(7)
Si-C12	1.856(6)	C12-H12A	0.97(7)
Si-C1	1.869(5)	C12-H12B	0.81(7)
Si-C6	1.874(5)	C12-H12C	1.00(6)
C1-C5	1.426(7)	C13-H13A	0.87(8)
C1-C2	1.432(7)	C13-H13B	0.95(7)
C2-C3	1.425(7)	C13-H13C	0.87(7)
C2-H2	0.82(7)	C14-H14A	0.86(8)
C3-C4	1.403(8)	C14-H14B	0.95(8)
C3-H3	0.90(7)	C14-H14C	0.94(8)
C4-C5	1.419(7)	C15-H15A	1.03(7)
C4-H4	0.93(7)	C15-H15B	1.00(8)
C5-H5	0.95(6)	C15-H15C	0.91(8)
C6-C7	1.420(7)		
C6-C10	1.436(7)	СрА-Та-СрВ	128.3
C7-C8	1.420(7)	CpA-Ta-C13	99.0
C7-H7	0.77(6)	CpA-Ta-C14	115.8
		CpA-Ta-C15	98.2

Table 15. Bond lengths [Å] and angles [°] for dlz7 - $Me_2Si(C_5H_4)_2TaMe_3$.

CpB-Ta-C13 CpB-Ta-C14 CpB-Ta-C15 PlnA-PlnB C14-Ta-C13 C14-Ta-C15 C13-Ta-C15 C11-Si-C12 C11-Si-C1 C12-Si-C1 C12-Si-C6 C1-Si-C6 C1-Si-C6 C5-C1-C2 C5-C1-Si C3-C2-C1 C3-C2-H2 C4-C3-C2 C4-C3-H3 C2-C3-H3 C2-C3-H3 C2-C3-H3 C3-C4-C5 C3-C4-H4 C5-C4-H4 C5-C4-H4 C5-C4-H4 C4-C5-C1 C4-C5-H5 C1-C5-H5 C7-C6-C10 C7-C6-Si C10-C6-Si C6-C7-H7 C8-C7-H7 C9-C8-C7 C9-C8-H8 C7-C8-H8	$\begin{array}{c} 98.2\\ 115.9\\ 98.6\\ 55.0(2)\\ 69.8(3)\\ 70.6(3)\\ 140.3(2)\\ 115.7(3)\\ 115.7(3)\\ 111.8(2)\\ 111.9(2)\\ 111.9(2)\\ 111.9(3)\\ 110.0(2)\\ 93.4(2)\\ 105.7(4)\\ 124.5(4)\\ 124.5(4)\\ 124.2(4)\\ 109.1(4)\\ 124(5)\\ 127(5)\\ 107.8(5)\\ 125(4)\\ 127(4)\\ 108.0(5)\\ 129(4)\\ 123(4)\\ 109.4(4)\\ 124(4)\\ 124(4)\\ 124(4)\\ 124(4)\\ 124(4)\\ 124(4)\\ 124(4)\\ 124.1(4)\\ 109.3(5)\\ 125(5)\\ 107.6(5)\\ 130(4)\\ 123(4)\\ \end{array}$	C8-C9-C10 C8-C9-H9 C10-C9-H9 C9-C10-C6 C9-C10-H10 C6-C10-H10 Si-C11-H11A Si-C11-H11B H11A-C11-H11B H11A-C11-H11C H11B-C11-H11C Si-C12-H12A Si-C12-H12B H12A-C12-H12C H12A-C12-H12C H12B-C12-H12C H12B-C12-H12C Ta-C13-H13A Ta-C13-H13B H13A-C13-H13B H13A-C13-H13C H13B-C13-H13C H13B-C13-H13C H13B-C13-H13C Ta-C14-H14B H14A-C14-H14B H14A-C14-H14B Ta-C14-H14C H14B-C14-H14C H14B-C14-H14C H14B-C14-H14C H14B-C15-H15B H15A-C15-H15C H15A-C15-H15C H15A-C15-H15C	108.5(5) $122(4)$ $129(4)$ $108.9(5)$ $129(4)$ $122(4)$ $103(6)$ $106(4)$ $112(6)$ $115(6)$ $109(4)$ $113(5)$ $115(6)$ $108(4)$ $108(5)$ $104(6)$ $119(5)$ $114(4)$ $102(6)$ $115(5)$ $100(7)$ $104(6)$ $109(5)$ $112(5)$ $98(6)$ $124(5)$ $113(7)$ $99(6)$ $111(4)$ $101(4)$ $96(5)$ $104(6)$ $138(6)$
--	---	--	---

^a CpA is the centroid of atoms C1, C2, C3, C4 and C5 ^b PlnA is the best plane through atoms C1, C2, C3, C4 and C5 ^c CpB is the centroid of atoms C6, C7, C8, C9 and C10 ^d PlnB is the best plane through atoms C6, C7, C8, C9 and C10

Table 16. Crystal Data and Structure Analysis Details for dlz8 - $[(Me_2Si)_2(\eta^5-4-CMe_3-C_5H_2)(\eta^2-3,5-CMe_2H-C_5H_1)]TaMe_3.$

Empirical formula	$C_{27}H_{46}Si_2Ta$		
Formula weight	607.77		
Crystallization solvent	diethyl ether / petroleum ether		
Crystal shape	tapered block		
Crystal color	tangerine		
Crystal size	0.19 x 0.28 x 0.33 mm		
Data Collection			
Preliminary photograph(s)	rotation		
Type of diffractometer	Bruker SMART 1000 ccd		
Wavelength	0.71073 Å MoKα		
Data collection temperature	98 K		
Theta range for 7898 reflections used in lattice determination	2.4 to 28.5°		
Unit cell dimensions	$a = 16.9762(8)$ Å $\alpha = 90^{\circ}$ $b = 16.2378(8)$ Å $\beta = 90^{\circ}$ $c = 9.8844(5)$ Å $\gamma = 90^{\circ}$		
Volume	2724.7(2) Å ³		
Z	4		
Crystal system	orthorhombic		
Space group	<i>Pnma</i> (# 62)		
Density (calculated)	1.482 g/cm^3		
Density (calculated) F(000)	A 23		
	1.482 g/cm^3		
F(000)	1.482 g/cm ³ 1236		
F(000) Theta range for data collection	1.482 g/cm ³ 1236 2.38 to 28.54°		
F(000) Theta range for data collection Completeness to theta = 28.54°	1.482 g/cm ³ 1236 2.38 to 28.54° 96.6 %		
F(000) Theta range for data collection Completeness to theta = 28.54° Index ranges	1.482 g/cm ³ 1236 2.38 to 28.54° 96.6 % -22 \leq h \leq 22, -21 \leq k \leq 21, -13 \leq l \leq 12		
F(000) Theta range for data collection Completeness to theta = 28.54° Index ranges Data collection scan type	1.482 g/cm ³ 1236 2.38 to 28.54° 96.6 % -22 \leq h \leq 22, -21 \leq k \leq 21, -13 \leq 1 \leq 12 ω scans at 6 fixed φ values		
F(000) Theta range for data collection Completeness to theta = 28.54° Index ranges Data collection scan type Reflections collected	1.482 g/cm ³ 1236 2.38 to 28.54° 96.6 % -22 \leq h \leq 22, -21 \leq k \leq 21, -13 \leq l \leq 12 ω scans at 6 fixed φ values 46479		
F(000) Theta range for data collection Completeness to theta = 28.54° Index ranges Data collection scan type Reflections collected Independent reflections	1.482 g/cm ³ 1236 2.38 to 28.54° 96.6 % -22 \leq h \leq 22, -21 \leq k \leq 21, -13 \leq 1 \leq 12 ω scans at 6 fixed φ values 46479 3468 [R _{int} = 0.0698]		
F(000) Theta range for data collection Completeness to theta = 28.54° Index ranges Data collection scan type Reflections collected Independent reflections Reflections > $2\sigma(I)$	1.482 g/cm ³ 1236 2.38 to 28.54° 96.6 % -22 $\leq h \leq 22, -21 \leq k \leq 21, -13 \leq l \leq 12$ ω scans at 6 fixed φ values 46479 3468 [R _{int} = 0.0698] 3219		
F(000) Theta range for data collection Completeness to theta = 28.54° Index ranges Data collection scan type Reflections collected Independent reflections Reflections > $2\sigma(I)$ Average $\sigma(I)/(net I)$	1.482 g/cm ³ 1236 2.38 to 28.54° 96.6 % -22 \leq h \leq 22, -21 \leq k \leq 21, -13 \leq 1 \leq 12 ω scans at 6 fixed φ values 46479 3468 [R _{int} = 0.0698] 3219 0.0216		
F(000) Theta range for data collection Completeness to theta = 28.54° Index ranges Data collection scan type Reflections collected Independent reflections Reflections > $2\sigma(I)$ Average $\sigma(I)/(net I)$ Absorption coefficient	1.482 g/cm ³ 1236 2.38 to 28.54° 96.6 % -22 $\leq h \leq 22, -21 \leq k \leq 21, -13 \leq l \leq 12$ ω scans at 6 fixed φ values 46479 3468 [R _{int} = 0.0698] 3219 0.0216 4.134 mm ⁻¹		

Structure Solution and Refinement

Primary solution method		direct methods	
Secondary solution method		difference map	
Hydrogen placement		calculated	
Refinement method		full-matrix least-squares on F ²	
Data / restraints / parameters		3468 / 0 / 157	
Treatment of hydrogen ato	oms	not refined, U_{iso} fixed at 120% U_{eq} of	
		attached atom	
Goodness-of-fit on F ²		2.547	
Final R indices [I>2σ(I), 3219 reflections		s] $R1 = 0.0450$, $wR2 = 0.1515$	
R indices (all data)		R1 = 0.0479, wR2 = 0.1545	
Type of weighting scheme used		sigma	
Weighting scheme used		$w=1/[\sigma^2(F_o^2) + (0.05P)^2]$	
Max shift/error		0.020	
Average shift/error		0.001	
Largest diff. peak and hole		10.876 and -4.558 $e \cdot Å^{-3}$	
Programs Used			
Cell refinement	Bruker SA	INT v6.02	
Data collection Bruker SM.		ART v5.606	
Data reduction Bruker SAL		INT v6.02	
Structure solution Bruker SHI		ELXTL v5.1	
Structure refinement Bruker SHI		ELXTL v5.1	

Special Refinement Details

A tapered block was cut from a large irregular lumpish tangerine-colored crystal and was mounted on a glass fiber with Paratone-N oil. Six runs of data were collected with 18 second long, -0.25° wide ω -scans at six values of φ (0, 120, 240, 60, 180, 90 and 300°) with the detector 5 cm (nominal) distant at a θ of -28°. The initial cell for data reduction was calculated from just under 1000 reflections chosen from throughout the data frames. For data processing with SAINT v6.02, all defaults were used, except: a fixed box size of $1.8 \times 1.8 \times 0.6$ was used, profiles for the nine detector areas were blended, periodic orientation matrix updating was disabled, the instrument error was set to zero, no Laue class integration restraints were used, and for the post-integration global least squares refinement, no constraints were applied. No decay correction was needed. A data set corrected with SADABS v. 2.0 (beta) showed no improvement and consequently was not used. The data were intense and a weighting scheme of w= $1/[\sigma^2(F_o^2) + (0.05P)^2]$ was used, where P = $[2F_c^2 + max(F_o^2, 0)] / 3$.

There is 1/2 molecule in the asymmetric unit; the molecule lies on the mirror plane (Wyckoff site *c*). The mirror plane bisects both cyclopentadienyl rings and contains five atoms: Ta, C3 and C6 (cyclopentadienyl carbons), C15 (central tantalum methyl carbon), and C16 (*t*-butyl carbon).

The three methyl carbons on the *t*-butyl group are disordered about the mirror plane; consequently the population ratio is 50:50. This disorder is common in similar *t*-butyl substituted metallocenes. In particular this compound is essentially isostructural with the trimethysilyl-substituted analog, TMSThpTaMe₃ (PJC 22). These structures differ in the orientation of the 4-substituent on the cyclopentadienyl ring; in the latter case, one of the silyl-methyl bonds is oriented towards the center of the metallocene wedge. The orientation of this substituent is rotated 180° with respect to the *t*-butyl substituent of this structure.

No reflections were specifically omitted from the final processed dataset; 2369 reflections were rejected, with 50 space group-absence violations, 218 inconsistent equivalents and no reflections suppressed. Refinement of F² was against all reflections. The weighted R-factor (*w*R) and goodness of fit (S) are based on F², conventional R-factors (R) are based on F, with F set to zero for negative F². The threshold expression of F² > 2σ (F²) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement.

This dataset is typical for a tantalum containing compound on the CCD. There are many large peaks in the final difference map; the eight greater than $|1| e Å^{-3}$ are: 10.88, -4.56, -1.67, 1.61, -1.60 and 1.19 $e Å^{-3}$ at 0.55 to 1.37Å from Ta, 1.01 $e Å^{-3}$ at 0.47Å from C10 and 1.01 $e Å^{-3}$ at 0.84Å from C4.

Ta-C1	2.392(4)	C1-C2	1.422(6)
Ta-C2	2.484(4)	C1-C1 ⁱ	1.458(9)
Ta-C3	2.593(7)	C2-C3	1.423(6)
Ta-C4	2.465(4)	C2-H2	0.9300
Ta-C14	2.215(6)	C3-C16	1.518(9)
Ta-C15	2.222(7)	C4-C5	1.423(6)
Ta…PlnA ^ª	2.140(3)	C4-C4 ⁱ	1.499(9)
Ta…PlnB ^b	2.129(7)	C5-C6	1.408(5)
Ta-CpA ^c	2.150	C5-C11	1.518(6)
Ta…ĊpB ^d	2.895	C6-H6	0.9300
Ta-Cen ^e	2.349	C7-H7A	0.9600
Si-C1	1.862(4)	C7-H7B	0.9600
Si-C4	1.863(4)	C7-H7C	0.9600
Si-C7	1.870(6)	C8-H8A	0.9600
Si-C8	1.871(6)	C8-H8B	0.9600
		C8-H8C	0.9600

Table 17. Bond lengths [Å] and angles [°] for dlz8 - $[(Me_2Si)_2(\eta^5-4-C_3-C_5H_2)(\eta^2-3,5-CMe_2H-C_5H_1)]TaMe_3$.

C9A-C16 C9A-H9A C9A-H9B C9A-H9C C10-C16 C10-H10A C10-H10B C10-H10C C9B-C16 C9B-H9D C9B-H9D C9B-H9F C11-C13 C11-C12	$\begin{array}{c} 1.663(12)\\ 0.9600\\ 0.9600\\ 1.493(14)\\ 0.9600\\ 0.9600\\ 0.9600\\ 1.447(13)\\ 0.9600\\ 1.447(13)\\ 0.9600\\ 0.9600\\ 0.9600\\ 1.532(6)\\ 1.534(6)\end{array}$	C2-C3-C16 C5-C4-C4 i C5-C4-Si C4 i -C4-Si C6-C5-C4 C6-C5-C11 C4-C5-C11 C5-C6-C5 i C5-C6-H6 Si-C7-H7A Si-C7-H7B H7A-C7-H7B Si-C7-H7C	127.4(3) $106.1(3)$ $129.1(3)$ $122.40(14)$ $109.5(4)$ $125.6(4)$ $124.9(4)$ $108.6(5)$ 125.7 109.5 109.5 109.5 109.5 109.5 109.5
C11-H11	0.9800	H7B-C7-H7C	109.5
C12-H12A	0.9600	Si-C8-H8A	109.5
C12-H12B	0.9600 0.9600	Si-C8-H8B H8A-C8-H8B	109.5 109.5
C12-H12C C13-H13A	0.9600	Si-C8-H8C	109.5
C13-H13B	0.9600	H8A-C8-H8C	109.5
C13-H13C	0.9600	H8B-C8-H8C	109.5
C14-H14A	0.9600	С16-С9А-Н9А	109.5
C14-H14B	0.9600	C16-C9A-H9B	109.5
C14-H14C	0.9600	H9A-C9A-H9B	109.5
C15-H15A	0.9684	C16-C9A-H9C	109.5
C15-H15B	0.9563	Н9А-С9А-Н9С	109.5
		H9B-C9A-H9C	109.5
C14-Ta-C14 ⁱ	113.4(4)	C16-C10-H10A	109.5
C14-Ta-C15	75.15(16)	C16-C10-H10B	109.5
PlnA-PlnB	112.75(24)	H10A-C10-H10B	109.5
СрА-Та…СрВ	115.7	C16-C10-H10C	109.5
CpA-Ta-Cen	97.6	H10A-C10-H10C	109.5
CpA-Ta-C14	103.3	H10B-C10-H10C	109.5
CpA-Ta-C15	176.8	C16-C9B-H9D	109.5
Cen-Ta-C14	117.7	C16-C9B-H9E	109.5
Cen-Ta-C15	85.6	H9D-C9B-H9E C16-C9B-H9F	109.5 109.5
C1-Si-C4	93.7(2)	H9D-C9B-H9F	109.5
C1-Si-C7	115.4(3) 115.9(3)	H9E-C9B-H9F	109.5
C4-Si-C7	108.1(2)	C5-C11-C13	111.0(4)
C1-Si-C8 C4-Si-C8	116.6(2)	C5-C11-C12	112.8(4)
C7-Si-C8	106.8(4)	C13-C11-C12	109.0(4)
C2-C1-C1 ⁱ	106.3(3)	C5-C11-H11	108.0
C2-C1-Si	125.1(3)	C13-C11-H11	108.0
C1 ⁱ -C1-Si	123.17(14)	C12-C11-H11	108.0
C1-C2-C3	111.4(4)	C11-C12-H12A	109.5
C1-C2-H2	124.3	C11-C12-H12B	109.5
C3-C2-H2	124.3	H12A-C12-H12B	109.5
C2 ⁱ -C3-C2	104.7(5)	C11-C12-H12C	109.5

H12B-C12-H12C109.5H1C11-C13-H13A109.5TaC11-C13-H13B109.5TaH13A-C13-H13B109.5H1C11-C13-H13C109.5C9H13A-C13-H13C109.5C9H13B-C13-H13C109.5C1Ta-C14-H14A109.5C9Ta-C14-H14B109.5C1	14B-C14-H14C -C15-H15A -C15-H15B 15A-C15-H15B PB-C16-C10 ⁱ PB-C16-C3 PB-C16-C3 PB-C16-C9A ⁱ 0-C16-C9A	109.5 109.5 109.2 109.7 109.1 111.3(10) 113.6(6) 108.5(7) 108.5(11) 105.2(9) 109.4(5)
---	---	---

Symmetry transformations used to generate equivalent atoms: (i) x,-y+1/2,z

- ^a PlnA is the best plane through atoms C1, C2, C3, C1ⁱ and C2ⁱ ^b PlnB is the best plane through atoms C4, C5, C6, C4ⁱ and C5ⁱ
- ^c CpA is the centroid of atoms C1, C2, C3, C1ⁱ and C2ⁱ ^d CpB is the centroid of atoms C4, C5, C6, C4ⁱ and C5ⁱ ^e Cen is the centroid of atoms C4 and C4ⁱ