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ABSTRACT

In Part I, methods for determining the strain energy function and
the associated ;:onstitutive stress-deformation law for rubber-like mate-
rials is undertaken and the mechanics of data reduction needed to deter-
mine some parameters of the theory; are displayed. Experiments were
performed in four different stress fields on a foamed polyurethane rubber
(dilatable rubber)’amél on several kinds of continuum rubbers. A new
strain energy fuﬁction and the associated stress-deformation law for a
foamed rubber are generated which correlate most of the data to a high
degree of accﬁracy. A parameter appearing in the functional expression
for a foam rubber has the same significance as Poisson's ratio in infini-
tesimal elastic theory. For continuum rubbers, the isotropic Neo-Hookean
representations of quasi-static behavior is found to be sufficient over
most of the whole range of extension.

In Part II, geometrical representations of an isotropic failure
surface based on various criteria are depicted both in principal stress and
principal stretch spaces for elastic materials. The experimental data are
compared with all criteria and the results are discussed.

In Part III, finite elastic theory is used to determine the stress
and deformation fields around the base of a radial crack in an infinitely
long rubber log opened by a facially bonded rigid wedge-shaped bellow.

In the last Part, the topology of interstices idealized as closest
packed spherical holes (idealized foam structure) is investigated. Equi-
valent elastic constants are calculated for rubbery interstices of bofh
hexagonal and face-centered cubic closest packings under small displace- ’

ment.
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PART 1

DETERMINATION OF STRAIN ENERGY FUNC TION AND THE
ASSOCILA E STRESS-DEFORMATIO
FOR LARGE DEFORMATIONS

I,l, INTRODUCTION

In classical infinitesimal elastic theory the Hookean strain and
rotation are so small that the product of Hookean strains, or the prod-
uct of Hookean strain and rotation, or the product of rotations are dis~-
regarded, However, this is not legitifnate for deformations in which
the above products may be many times greater than the Hookean strain
itself, A hyper=elastic {(or rubbery) material is a good example of a
material which can evince such deformation, and whose typical fea-
tures are high extensibility under relatively small applied load (uniaxial
ultimate extension may go up to 1000 per cent), high recoverability |
without noticeable hysteresis, and no yielding.

Since Hooke, a number of theoreticians have attempted to ex~
tend the classical infinitesimal elastic theory to formulate more gen~
eral constitutive stress-deformation law to account for large deforma-
tions, As a result of the formalism of continuum elasticity enunciated
by Rivlin (17), Reiner (18), and Truesdell (19) etc., there has devel-
0péd a rational foundation for the analytical representation of the elas-
tic deformation of continuous media under the assumption that the elas-
tic material is (i) a homogeneous continuum, ii) isotropic both in its
natural and its deformed state, and iii) quasi-static (infinitely sllow motion)
during a deformation process. Inherent in these representations is

the notion of a strain energy function, W, which, for a homogeneous,



-2
isotropic, isothermal elastomeric continuum, is an explicit function
of certain invariants, which in turn are functions only of the proper
values of the deformation tensor. Assuming the smoothness of W on
these invariants, it can be expanded in triply-infinite series in these
invariants and the leading terms can be identified by comparison with
inﬁnitesirnal Hooke-Cauchy theory, however, the determination of the
coefficients of higher order terms depends entirely on experiments.
The importance of finding the explicit form of W lies in the fact that
the methéd of solution in large deformation theory is usually inverse
to that of linear theory, i.e, a class of deformations is first assumed
and reduced, then the stresses necessary to produce such deformations
are calculated provided the strain energy function, W, is known.

In this part we proceed to show how the nature of the strain
energy function can be deduced from experiments on rubbery materials
with the aid of a new parameter ¥ which in the limit has the same
significance as Poisson's ratio in infinitesimal elastic theory. A
great deal of work (17) has been carried out along this line., Most
of it has been limited to nearly incompressible materials, and in the
course of data reduction, incompressibility was assumed since most
rubber { # = 0.49997) is practically incompressible. In order to
investigate the dilatational effect, a highly dilatable elastic material
(foamed rubber) is used, and data are obtained in uniaxial, strip-
biaxial, homogeneous-biaxial, and triaxial tensile tests, Several
kinds of continuum rubbers are also tested in the same stress fields
in order to determine the nature of the gradients of W with respect to

its invariants which appear in the stress-deformation law,



I.2 THE CONSTITUTIVE STRESS-DEFORMATION LAW IN
FINITE ELASTIC THEORY

A. General Stress Field

Let an isotropic continous elastic body be referred to a rec-
tangular Cartesian system. Initially at time, t=0, a typical point in
the undeforrﬁed body having coordinates P, (xj) is displaced continuously
to a new position P(Xi) at t=t., The Cauchy~Green's deformation ten~

sor which characterizes this mapping is denoted by:

ax¥ ax™
SxX™ 3X® (L.1)

Cik=

Under isothermal deformation the strain energy function, W, meas-
ured per unit volume of the undeformed homogeneous isotropic con-
tinuous body in three dimensional space, is a function only of the
three invariants* of the deformation tensor C ik, Hence, from the

principle of virtual work the physical stresses resulting in the de-~

formed body are given by (see Appendix and (19))

= _ 2|3V -1 W (1. 2
O’ik— 13[ a1, K 3 31 (C— ) +(Iz 21, “"13 313)8“(] )

where _O_'ik are the true stresses referred to the deformed body,

and Il’ I 27 13 are invariants of the deformation tensor C ik given by:
1, = Tr Cik = Ci: (1, 3)
= A2
I ERC CKK [I) - ci,k CKL] (1. 4)

These invariants are defined by equations L. 3, 1.4, L. 5.



Ia = Det Cik (I. 5)

It is our purpose to evaluate the gradients of W with respect to these
invariants which appear in the constitutive law, 1.2, To do so itis

convénient to.introduce a new set of invariants defined by:

J=1=0C; (L. 6)

(L. 7)

~VBet Ty (.8.)

It may be noted in passing that the invariant J 3 is the ratio of the vol-
ume of an element of the deformed body, V, to that of the undeformed

body, Vo. After substitution, equation I, 2 becomes;

= 2 - .v
Tpe= = [ W, Cope ~ W2 (€7, ] + Wa 6, (€. 9)
2W \
where Wk = ._a..j: (1. 10)

Consider now a special case of a uniform orthogonal deforma-
tion field, i.e. the deformation tensor has only the diagonal compo-

nents, )\‘2 , N, )\zs, where



A o 2X
1 = 3¢ & stretch ratio

(i not summed)

In this case, equations L. 6, I.7 and L. 8 become:

d, = Z)\zu
3= I3z
b=TA,

And the constitutive law I, 2 i\s reduced to:

0.0, = G A = 2[W N - S2]4 7w,

(i not summed)

(1.11)

(1.12)

(L.13)

(I.14)

(L. 15)

where .6‘: is the true stress referred to the deformed cross-section,

and O’L is the so~called engineering stress referred to the undeformed

cross~section.

Before using equation 1,15 in connection with experimental

data to determine W-gradients, the character of the leading terms of

W-gradients under small strain will firstly be established from linear

theory. If W is a smooth function of the deformation invariants, it

can be expanded in a triply-infinite series in its scalarx: invariants:



b

w=3 Cpn (31= 3 (J=3)" (Jg- )" (L.16)
hon |

in which Coeozo’ since the reference state is undeformed, The defor-

mation invariants can be expressed in terms of the small strain in-

variants in the following way:

A= 1+e; (L.17)
where \
e = U = Hookean strain
L EXL
J=3+29+¥-29,~3+2% (L.18)
J,=3-2%+39%-6¥, =3-2¢ {L.19)
Ja=1+9+%a+%; = 1+ (L. 20)
where
V= e (L 21)
%
39'2_: > e.bek (L. 22)
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After differentiating equation I. 16 with respect to J~invariants, sub-
stituting the -} -invariants, and grouping terms, the W-gradients are

given by:

'\A/'l-:'.. A+B%+... (1. 24)
wz:: C + D'|9'+'-- (1-25)
W, = E+F%+--. (1. 26)

Equation I, 15 can now be written up to linear terms as following:

0 = (1-¢€) [2( 1+2e,)(A+BY) - 2(i-2€,)(C+DH)+(1+8)(E+FY)] (L. 27)

which is to be compared with the more conventional form of Hooke's

law,

0, = (K-Z2p)S+2pue; (1. 28)

After comparing the corresponding coefficients, there results three

equations for six parameters:

2A-2C +E =0 (I. 29)



~8m

2A+6C-E =2M (1.30)
2B+ 2D+E+F= K- _g../.( , from which results (1. 31)
_ M
A -+ C — 2 Io 32)
It is observed that the parameters A and C are related to the Mooney~-

' : C

Rivlin parameters C, and C_* in such a way thatC, = A, C_= 2,
1 2 1 2 J3

so that the constancy of C does not necessarily imply the constancy of

C_., and vice versa due to the factor J

2! 3°
After introducing the notation:

A=y | (L. 33)
C = _g_( {-f) there results (L. 34)
E=M0-2§) (L 35)
2B-2D+F = K— M(-5— 2f) (L. 36)

where f is a material parameter such that o € £ € 1,

sk

Mooney-Rivlin Strain Energy Function:
= I -3)+C_(1-3 = AW o EW =2W_L3W_ ¢

W=Cp (L =3)+C,([,-3),7C =3¢ =2¢ 4 C = =ud=%
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We shall now consider materials which evince a behavior such

that Wl and Wz are constants, i.e. - B, D and the coefficients of

higher order terms in equations I, 24, I.25 vanish. This is a good
postulation which agreesvery well with the data of dilatable rubber as

will be seen later., For those materials equation I, 36 becomes:

F=kK—k(Z- 2f) (L. 37)

In addition, since Wl and Vv"2 are constants, ‘W13 = W23 =0 ; and

therefore W, is independent of J and J 5° In view of equations I, 26,

3

I, 35, L 37, W3 becomes:

1

Wy = A(1-20)+[K-A(F-29)] (3- D+ O[(F-0 ]+ E38)

and from equation 1,15 the constitutive stress-deformation law becomes:

G Js= 0N, = /4[§ X - %\f—] + J3 W, (J; only) (L. 39)
L
(i not summed)

Since the principal stress difference is independent of W3, the use of

it permits one to determine { M, f’} directly by plotting?

O AL = 05 A - £ I
Bz i R 1. 40
Nox L+ )\?L)ej] e NN (L. 40)

(i, j not summed)

in which X f [== 2W1] is the intercept and M (1-f) [= ZWZ] is the slope
if the plot is linear which turned out to be so in our experiments.

B. Special Stress Fields

In order to determine W, itis necessary to express A as



~10w=

functions of J S'and evaluate W3 from equation I. 39 in one direction of

i, J» k for which stress is to be presumed zero. This is done in the

following way.

1. Uniaxial Tension

For this case:

)\|=)\) )\2=)\3=)\lat ) o;=0uni ) 0"z:—"‘_oﬂa‘:o (L41)
Iy = AN _ (I.42)

lat

And by setting i =1, j = 2 or 3, equation 1,40 becomes:

Ouni A - \~f
it U N ] (1. 43)

Equation I. 39 for the lateral directions (seti = 2 or 3) bécomes:
o= M[-§A2 = W. (L. 44)
= lat ~ t] +J3W; .
a

Substitution of equation I.42 into equation I, 44 yields s

=== S

Jaz (L. 45)

It remains now 1I;o relate J_ and A . We define a new parameter 7/

3

for large deformation as follows:

ﬁn )\la‘t

V= - j’:—n—x— (1. 46)



or NA =1 (L. 47)
lat N

which turned out to correlate the data very nicely. For small strains

equation I, 46 may be linearized to a familiar form:

. |
Y=- = (L 48)

where ] € = A-1, €lat= AN jpp—! (1. 49)

Thus # has the significance of Poisson's ratio under small deforma-

tions. Under the above definition equation I,42 becomes:
l —

The relation 1.46 is not unique in large deformation theory, since
there are many ways of defining 4 which could be reduced to the
form 1,48 of linear theory (e. g. )\zlat =-|-:£:—/—()T_-T etc.); which of
these functions is useful can only be decided by experimental evi~
dence. Of these functions the definition I.46 was found to fit the data
best,

Now using equation I, 50, equation L, 45 becomes:
2v

Ja _-A[fas T2 zy"‘ (l—f)Jal 21/] (I.Sl)

which, after integration and use of equations I, 24, 1. 25, in which

B and D are set to zero according to the postulation, leads to :

W, J;,d3) = -ﬂ{[(.} 3)+‘“‘2"(J i N]
2
+ B G-pg) + 2L I wsa)
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where
I.12
g=1=Cy t-12)
Iz ‘ ~i
Jz-' I_3=(C )I.,i, (Io 131

JS =-JT3' —_-.‘}De'tCLk ‘-—'—.\% (I. 14}

We thus have an isothermal elastic equation of state for large deforma~
tions, from which one can predict the stress-deformation behavior in
any stress or displacement fields by using (I.15). For small strain
equation I, 52 reduces to the usual Hookean strain energy function, As
we shall see, the prediction of equation 1,52 agrees with most of the
data very nicely for a foamed rubber., In order to apply it to continuum
rubbers however, very accurate large deformation data in certain
stress fields, especially those close to hydrostatic ones, are needed
+ 2V

to evaluate the dilatational term J ; 1-2¢ , (Since the linear value of

4 is 0.49997, therefore the exponent is of the order of 3 x 104.‘)

The constitutive stress~deformation law associated with

(I.52) becomes:

2 2y
-2 ' z
-qu'—- OE'AL=M'F[)\2L"‘J31 21/] - M(‘-.g)[—x—ii—’-v Ja ! 24}] (Io53)
(i not summed)

which also reduces to the ordinary Hooke~Cauchy law for small strains.

2, Strip-Biaxial Tension* (Plane-~Strain}

For this case:

)\|=)\; Aa=1, Azg=Ay ; 01 = Cg_pi » dz=qat1 O3=0 (L. 54)

% If the Poisson's ratio is 1/2, this stress field becomes pure shear
for small deformations,
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And the dilatation-stretch relation becomes:

@

Js = AN Ay (I.55)

Setting i = 1, j = 3, equation I.40 becomes:

Os-bi A
N Ny

=n[f+ ;;th] | (1. 56)

and by setting i= 3 equation 1.53 is reduced to:

__=z¥ | 2y 157
ey — 29 .
'f[)‘ath"Js | zu]z(‘__ﬂ[_x?_‘_._ 3" ] (1.57)
th
An additional check on the theory would be using the equation cor-
responding to i = 2, however, since the measurement of O’lat is not
easy, it is not used,

Bolution of equation I.57 leads to

v
Ay = J; -2 (1.58)

and by using equation I. 55 it follows that:

X \-2¢ (L. 59)
ANTPAy=1, or Jy;=ATT .

These expressions may be linearized to the result that is given by
the plane~-strain case in linear theory, thus reinforcing the inter-
pretation of the parameter 7 as a large deformation Poisson's

ratio. Namely, expressions }[59 can be obtained by replacing

v

T in the uniaxial expression I, 50,

J by



ml e

3. Homogeneouns-Biaxial Tension

For this case:
)\|=)‘z= N, Az= )\Th 5 Oi=0,= 0, ; 03=0 (I. 60)
The dilatation~stretch relation becomes:

Js = Ny, (L 61)

The constitutive relations are identical with equations 1.56 and 1.57.
Solution of equation 1.57 for this case also leads to the form L, 58, but

after combining with equation I, 61, it leads to :

2y 20~2y)
)\l...-‘jl )\_thz { ) or J3 —_ A V- (1’62)

Equation I, 62 differs from equation I,59 only by the presence of factor
2 in the numerator of the exponent which arises from the equal defor-

mations imposed on two coordinates,

4, Triaxial Tension

This stress field will provide information about the nature of

W3, which can not be obtained from uniaxial and biaxial fields because

of the low stresses involved and the high value of the exponent -'-_-:‘2—”—- o

For this case:
)\l= )\, A= )\3=I ; 0}:—. ()’h_i ’ 0, = 0 = OTat (L. 63)
The dilatation-~stretch relation becomes:

J.= A (1. 64)
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And the constitutive law is reduced to the form:

2=

Otyi 1=29_

7 -3,

Since in this equation there are three unknown parameters, 4, 4, ¢

[fJ 2 (‘Jf)] (L, 65)

to be determined, one must know any two of them in order to determine
the third one, Therefore it is necessary to use the data obtained in

the previous three different stress fields., Thus equation 1.65 can

only be used for double check of the accuracy of the theory. Hence,

the averaged shear modulﬁ.s, M , is to be used, and f {(shear mod~
ulus fractional factor) is determined by taking the value # the same
as that of the other three stress fields, or alternatively determine 7/
by using the value of f based on the previous three stress fields, Un-
der such viewpoint one can make two kinds of plots from equation I, 65,

namely: i) If ¥ is known equation 1.65 yields:

ot - 2! 1—3:;)
tri - - 1—2
Mla,- 7] f+r (-£) 3, (L. 66)
Oy “—g——z '-3:;)
and f is determined by the plot of =y vs. -2
7 ? K [Js"' JBW] s s
ii) If f is known equation IL. 65 could be written in the form:
e g
{%‘—"—‘J:*fJ:-U—H]*:*fJa + (-7, \-2y (L. 67)

which is hardly plotted except for special cases for which f = 0 or
f=1, As we shall see later the value £ for the foam rubber is £ =0,
and f =1 for certain continuum rubbers tested. Hence, for £ = 0

equation I, 67 is reduced to the form:



=165

ot z(_|—-v)

which permits one to determine ? from log [_%11' A |1 V8. a

log J, plot.

3
Taking f * 1 equation I, 67 can be written as:

v - 20-9)
tri i-29
i ] = - - (L. 69)
[MJ3 ] JS ’ f=1
Again ¥ is determined from the plot of log —ldgtri—-ll vs. log J,
Ja

5. Hydrostatic Compression

Like triaxial tension, this stress field also serves the purpose
of finding the nature of W 3°

For this case:
3
Ao=Re= Ay =JJ, Ol=0,=03=-P (L. 70)
The constitutive law is reduced to the form:

.._}1:_.;[ Fs e Jsﬁw+(._4>3;‘g‘] (1. 71)

Again there are three unknown parameters My ¥/, § to be determined,

and the method of determining them is the same as triaxial tension.

Namely:
i) If » is given equation 1. 71 is reduced to:
PJ-L » _2(1-5%)
-zgliv =4 + (1—-§)J, 30—z 1. 72)
l“[ -2V — ] (L.
2(|+'V) _%ﬂ(l_l“_%%))_
and the plot of PJQ/)A J’3 2T l] vs. J,

will determine § .
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ii) If fis given equation I. 71 can be written in the form:

=i+av

=1
- ) = -24
H:_"' .}:'/a" (lJ}/a]= £3 T -0-H T 70 (L. 73)

Again we will consider special cases for which f = 0 and f = 1.

For £ = 0:
| _i+av
p _ 1-2v
—H—- J35/3 = Js (1. 74)
For f=1:
Va _ 20+
PJ. - 3(1-29)
— 2+ = 7 (L. 75)

m

Equations I.74, 1. 75 allow one to determine # from the plots

log[—P—— ! ] vs. log J,» and log [ PJ;/3+ ll vs. log T
2 Jagl-a 3 M 3

respectively for £ = 0 and f = 1.

1.3 EXPERIMENTAL ADDUCTIONS

A. Description of the Experiments

In order to test the hypothesis i) that W1 and W?_ or {,M, {-}
are constant for certain rubbers, and ii) that dilatation may be ex-
pressed by equation I. 51 with # a constant parameter, tests were
run on polyurethane foamed rubber and several kinds of continuum

rubbers listed below.

1. Materials
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%k
(i) Foamed Rubber

A castable polyurethane elastomer was first mixed with sod-
ium-chloride powder, about 404 in diameter. After curing, the foam
was obtained by leaching out salt from a filled composite in hot water.
The resultant foam has approximately forty seven volume per cent of
voids. It is highly dilatable, and is mechanically ideal since no hy-
steresis is observed.

ii) Continuum Rubbers

These were pi‘epa.::ed by curing gum stocks at 307° F or 180° F in
a hot-press mold for the prescribed cure-time listed below, and then

cooling the mold containing the specimen in an ambient atmosphere.

TYPE OF RUBBERS Cured at 307° F for
indicated number of
minutes

i) SBR-1500 (1. 75 per cent Sulfur) 45
ii) SBR-1500 (3 per cent Sulfur) 45
iii) Natural Rubber (2 per cent Sulfur) 20
iv) Natural Rubber (4 per:cent Sulfur) 20
v) CIS-4 Rubber ' 20
vi) Paracril-B Rubber 45
vii) Neoprene-GNA Rubber 20
viii) Butyl-217 Rubber 45
ix) Polyurethane Rubber Cured at 180° F for 4 hours

— ,
This test material was prepared by the Aerojet-General Corporation,
courtesy of Mr. F. Salcedo.

Rk

The materials i) ~ viii) were prepared by Phillip's Petroleum Cor-
poration and cured at the Jet Propulsion Laboratory, courtesy of
Dr. R. F. Landel and Mr. R. E. Neal.
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2. Test SetuEs

All the tests were Performed in an INSTRON testing machine,
and all the specimens were prestressed isothermally up to
40 percent ~ 50 percent ext.ension to eliminate hysteresis which was
observed to be nearly zero. In all tests only isothermal equilibrium
values were mea.s;ured up to 10’-4 inches accuracy, so that the applica-
tion of the load was continuously interrupted until all friction effects
were adjusted and relaxation had died out.

Figures 1.1, L. 2 show the technique used to evaluate uniaxial
tension. A specimen is JANAF type (50, p.92) and a grid of circles
was inked on the gage section. The longitudinal and lateral deforma-
tions were read under an optical comparator. Figure L. 3 shows the
other type of technique mainly used for the thin continuum rubbers.
The ends of a specimen were glued around circular bolts by Eastman
910 adhesive, and By making use of friction between the unglued por-
tion of specimen and the bolt surfaces, the end effect was success-
fully minimized, causing the rupture to take place at the middle re-
gion of the specimen. The method of measuring the deformations re-
mains the same.

The strip-biaxial tension was produced in wide rectangular
sheéts (7" x 1" x 3/16" for foamed rubber, 12" x 1/2'" or 1" x 0.08"
for continuum rubbers) by gluing two pairs of rigid metal plates to
both of the long edges (see the left and the-middle pictures of figures
I.6, 1.9) or by gripping the long edges of specimen which has a dog
bone (JANAF) cross-section (see the right hand side pictures of fig-

ures I.6, 1.7). The corners of the bonding metal plates of the second
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type and of the grips of the third type were rounded so that the stretch
ratios at the édges of a specimen was made lower than that in the
center section, thus reducing the— corner stress concentration, The
rounded corners of the grip of the third type also served as stops
against lateral contraction of a specimen after stretching. The
pictures at the left hand side of figures L, 6, I.7 show how edge
contraction was prevented by gluing to the two edges retractors
which were bent over rollers mounted on the rails, Load was applied
normal to the long edges., Longitudinal deformation was measured
by an optical comparator as in the previous case, but the thickness
change was measured by twin micrometers from each side of the
specimen up to 10”4 inches accﬁracy (see figure I.4), A conducting
liquid film was painted on the surface of the specimen in order to
connect an electric circuit when the end points of the micro-meters
come into contact with the soft rubber surface., Tthus preventing
the specimen from being squeezed by the micrometers. However,
due to poor conductivity of the film at large strain and due to the
additional thickness of the film, this method was used only for a
few tests.

The homogeneous-biaxial stress field was produced in
square thin sheets {3" x 3" x 3/16" for foam, 3'" x 3" x 0, 08" for
continuum rubbers) to which were glued retractors which in turn
were bent over rollers mounted on the four outer edges of two
boomerang rods, The measurement of deformations was similar
to that in strip-biaxial field (see figures 1.5, 1.8, 1.9).

The triaxial stress field was produced by using a thin

circular disk
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(diameter x thickness = 2-1/2" or 3" x 1/4") whose both disk faces were
bonded on plexiglass or metal flanges. The specimen was pulled in a
direction normal to the disk surface (see figure 1.10). The displace~
ments for the foam material were read from the INSTRON dial gage,
while the displacements of continuum rubber were measured by stand-
ard Baldwin microformers (linear differential transformers) whose
signal was fed into the INSTRON X-¥ plotter.

"B. Data Reduction

1. Foamed Rubber

Figure 1.1l shows the uniaxial stress-deformation plots, and
figure 1.12 shows the dimensional changes associated with the uniaxial
tensile test. The plots in figure 1.13 are rectified in a manner sug-
gested by equation 1.43. The straightness of the rectified curve in-
dicates that the dependency of W., W_ to the invariants is negligible

1 2
and that the hypothesis of constancy of W, and W_ is reasonable for

1 2
the foamed rubber. It is observed that, for this foam rubber, Wl is
very small, whereas W2 is large and positive, so that, figuratively
speaking, most of the shear behavior arises from the second Mooney-
Rivlin type constant. When the data of figure 1.12 are plotted in the
form suggested by the definition L. 50, namely log J3 against log A
as shown in figure I1.14, there results a straight line with slope 1/2,
giving Poisson's ratio a value 1/4. This value is used to pr'edi\ct
theéretical slopes for the data obtained in the other stress fields.

Based on this value, the theoretical uniaxial stres gs~-deformation

curve calculated from equation I.53 is plotted in figure I.1l. Itis
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seen to fit the experimental points very nicely.

Figure>s I.15, I.19 show the stress-deformation plots in strip-
biaxial and homogeneous-biaxial\ tensile tests respectively. The plots
based on equation I.56 also yield straight iines giving le 0. for both
biaxial fields, as shown in figures 1.17, I.2l. Figures I.18, I.22 show
the excellent agreement evinced between the log-log dilatation data and
the theoretical line based on # =1/4 in the both biaxial fields. Again
we notice that the theoretical stress-deformation curves computed
from equation I, 53 for both biaxial stress fields agree with the experi-

mental data very well. The results of the above three tests are sum-

- marized in table I.1.

TABLEI.1
Type of Test Shear Modulus, (psi) Shear .Modulus Poisson's
Fractional Ratio
Factor, f
Uniaxial Tension 38 0.13 1/4
Strip-Biaxial Tension 30 0,07 1/4
Homogeneous - _
Biaxial Tension 21 0.19 1/4
Average 32 : 0 1/4

It follows that the general stress deformation behavior of a
forty seven volume per cent foamed pblyurethane rubber is completely
contained within the strain energy function I.52, with the experimen-

tally determined values { £f=0, #%*1/43%}, for which

w =4(3, + 27, - 5) (1. 76)

and the constitutive law becomes:
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G, 33 = G A, = K (33— 53 (1. 77)
l’(i not summed)

The averaged values in table 1.1 are now to be used in plotting
the triaxial data to check the validity of the theory for internal con-
sistency. Figure 1. 23 shows the triaxial stress-deformation plots
based on experiment, and the theoretical curve calculated from equation
I.53 for £=0, ¥ =1/4. Due to the premature pulling away of the speci-
men from the flanges, the experimental points are more or less scat-
tered; however, the theoretical curve falls within the middle region of
this scattering band thus indicating that the theory correlates well with
at least the mean values of the experimental points. Figure I.24 shows
that the theoretical curve suggested by equation I. 68, for which f = 0,

7 =1/4, falls in the middle region of the band of scattéring of the ex-
perimental points. The other theoretical curve based on equation 1.66
for which £ =0, # =1/4 as shown in figure I. 25 also lies" on the aver-
aged region of the scattered experimental points. Indeed, if one used a
better bonded specimeﬁ containing less imperfections, one would expect
the experimental points to fall even closer to the vicinity of the theoreti-
cal curve.

The experimental evidence therefore strongly suggests the con-
clusion: the strain energy function I.52 and its associated constitutive
stress-deformation law I. 53, incorporating the effect of volume change
and the proposed definition of a large deformation Poisson's ratio, is uni~
versal in any kind of siéress or deformation fields in a foamed rubber.

Furthermore the same conclusion should also be expected for continuum

rubbers.
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2. Continuum Rubbers

a. Uniaxial, Strip-Biaxial, Homogeneous-Biaxial Tensions

All the rubbers tested show similar behavior in biaxial stress
fields, however, the uniaxial behavior can be classified into three
categories: i} Neo-Hookean behavior (evinced by polyurethane and
butyl rubber_s), ii} Mooney~-Rivlin type behavior (SBR, CIS-4, para-
cril-B rubbers), and iii) Non-Neo~Hookean, non-Mooney~Rivlin type
(natural and neoprene~GNA rubbers). Thus, we shall only use the
data of polyurethane, SBR and natural rubbers to represent the lst,
2nd and 3rd type of behaviors respectively. The data for the rest of
rubbers appear in {9). Figures I.26 ~ 1,45 show; the isothermal
equilibrium stress~deformation plots, reduced stress-deformation
plots for evaluating Wl(== —-é-‘— f) and W2 (= —g‘— (l-f))suggested by equations
1,43, I,56; in uniaxial, strip-~biaxial, homogeneous-biaxial and tri-
axial tensions (polyurethane rubber only). Note that the way of plot~
ting reduced strip-biaxial data for evaluation of f is different from
those in uniaxial and homogeneous-biaxial stress fields. Since devia~
tion of J3 from unity in the first three types of stress fields is undetect-
able within the measurement accuracy, the incompressibility condition
is used for the reduced strip~biaxial plot in which W1 and W2 cannot be
determined separately but only their sum, W1 + W2 . It is noted that
the excellent straight line with zero slope in reduced stress-deformation

plots in the homogeneous-biaxial stress field for all the rubbers*

tested,

* Data for polyurethane rubber are not as good for the horhogeneous-
biaxial stress field.
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indicates that'WZ =z 0, f = 1; the intercept of this line determines the
shear modulué M = 2W1 (see the representative figures L, 31, L. 39,
1.45)., So, all the rubbers teste‘d behave excellently in a Neo~Hookean
way up to rupture in the homeogeneous-biaxial field.

In the strip-biaxial field, there is no difference between the
behaviors in extension and retraction cycles as shown in figure I, 42,
The reduced stress~deformation plot also gives a nice straight line
for all the rubbers tested, and the slope gives the shear modulus,

h = Z(Wl-l-Wz)'. This constancy of the sum of W1 and W2 does not
necessarily imply the individual constancy of W, and WZ’ however,

as will be seen later W2 is actually zero, indicating all the rubbers
tested are also Neo-Hookean type in this stress field (see figures I, 29,
1,37, 1.43). The relatively high value of shear modulus in the homo-
geneous-~biaxial stress field is due to the unavoidable grip-effect
which tends to give a higher stress level than the ideal one under

the same extensions.

Figures I1.27, I, 35, 1.41 show the uniaxial reduced stress-
deformation plots represented by the three types of rubbers. Figure
1. 27 shows the plot is almost linear for polyurethane rubber with
W2==0, indicating the material has Neo-~-Hookean character (type 1
rubbers). Figure I.37 shows the plot is also linear for SBR, but
with a positive slope, W2> 0; the intercept of this line determines
Wl’ and the sum, 2(W1+W2)-gives the shear modulus. Thus, such
materials have Mooney-Rivlin type character (type 2 rubbers} in this

stress field. Figure I.41 shows that the plots for both extension and

retraction cycles for natural rubber have upturns near high
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extensions but with (WZ)N='> 0 and (WZ)A:F'O for the two cycles
respectively. Any rubber which evinces a remarkable upward
curvature during high extensions in its stress~deformation curve
will give such a reduced plot (see figure 1.40 for an example). It
is noted that the retractional stress is far below than that of exten-
sional one a;t the same extension. This remarkable hysteresis
loop is possibly caused by the result of crystallization which diminishes
at high temperature (24, pp. 213-214). This inconsistancy of Wl and
W, in uniaxial and in biaxial stress fields makes one suspect that

2
W. and WZ may not be constants although the experimental data

1
indicate them to be so6 in biaxial stress fields. Hence, for better
representation of the materials, non-linear terms of the series
expansion of an isotropic strain energy function about its scalar
invariants, must be included. We therefore choose the following

strain energy function (modified Signorini function) with seme

coefficients already compared with linear theory:

W= %’E (3,-3)+ %( I-£)(J- 8) + B (3~ 3)°+ D (F~ 3)*+ F (3,-3)(J,-3)

+ K (1-20)@ )+ B+ A F - ) - 4 (B+D R (5,-1)®
{1 78)*

where B, D, F are not the same as B, D, F as in equations I. 24, I, 25,
1. 26,

The constitutive.law I. 15 now takes the form (allowing
compressibility)
% The third, the fourth, and the fifth terms are the same order of

magnitude in small strain invariants, however, the Signorini function
includes only the third term.
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T3, = O, = ALk + 48 (1-3)+ 2F (3= 3)] 5 [(- U +aD(,-3)+ (53]

+ Ja[,u(n—z{)+ {k+2U(f -2 -8(B+D+F)(T,-1) | (L. 79)

And, for any stress field with zero stress at least in one coordinate,

the principal stress difference takes the form:

oA ¢ (- IM +4D(J:-3)+2F (3~ 3)
——a— =M +4B(-3)+2F(J.-3)+
N=Niat, A ' * NN, (1. 80)
+h 7 +h
where the stress in lateral or thickness direction is zero. For uni-~

axial tension the constitutive law I. 80 becomes:

Ouni (=M +4D (J2~3)+2F (Ji-3)
——=puf ~3)+2F(J,-3)+
)\"Ja/)\z M +48(3~3)+2F(J, ) TN (1. 81)

or for the incompressible case, we have:

Oumi _ 3 oy (I=f)A+4D (3,-3)+ 2F (3,-3)
m— M +4B(I3-3)+2F (J,-3)+ N (L. 82)
where
J=X+2 T =5z + 2\ (L. 83)

For strip-biaxial tension equation I.80 takes the form:

Os-bi (I~)n+4D(J,—3)+2F(J,-3)
FT /)\;--.‘hc +4B(J,-3)+2F(J,-3)+ 23: (I. 84)

or for the incompressible case, we have:

. Og-b; _ - (I. 85)
}\_s‘/)\a_/.q+4(a+p+l=)(3| 3) :

where

J|= Jz —_ )\z_*_#_‘_' (Ia86)

And for homogeneous-biaxial tension equation I.80 becomes:

[(1-§)H+4D(J,~3) +2F (J,- ]
= pf +aB(J-3)+2F (3-3) + 3= (I.87)
3

Oh-bi
A=32/N5
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or under the incompressibility condition; we have:
Oh-bi

T = M+ 4B 9)+ 2F (T A H(- DA +4D (T 312F (-3 R (L. 88)
- /)\5 .

] 2 4
J= 2 X+ — J ===+ N
' a7 e R (L. 89)

Since the data show Jsfn‘: 1, we will assume incompressibility here
and use equations I, 82, I.85, I.88 for an investigation. By fitting
these equations to the corresponding data of natural rubber, it
develops that

fz], B=D=F=0 (1. 90)
for a homogeneous-biaxial stress field, and,

B+D+F=0 {(1.91)

for strip-biaxial stress field. In order to be consistent, equation

I. 90 must also be applicable to 1.91., Thus, the material really

behaves in Neo-Hookean way in biaxial stress fields,

The uniaxial data fitting was performed in such a way that
the values of f and M were firstly obtained from the intercept and
slope at A = 1 of the reduced stress~deformation plot (see figure
I.41). Next, the remaining three parameters, B, D. F, were found
by collocation of the data at three points giving

A =T2 psi

f=0,417
B/u = 0.003
D/y = -0.009
F/u = + 0,001
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It is seen that B, D and F are very small numbers. The
theoretical cﬁrve based on these parameters gives excellent agree-
ment with the uniaxial data (seekfigure 1.40, 1.41). In figure I.41
we note that the uniaxial shear modulus for extensional and retra-
catioal cycles are remarkably different; the retractional shear
modulus is cpmparable with that of biaxial fields, while that for an
extensional cycle is comparatively larger. This may be attributed to
non-affine deformation of molecular network of the rubber resulting
from the élip of interlooping points of the network. Thus the configu-
rations of the network at the beginning of the extensional cycle where
the extensional shear modulus is evaluated, and at the end of retra-
ctional cycle where the retractional shear modulus is evaluated, are
considered to be quite different (20). However, this phenomenon
does not arise in biaxial stress fields as is shown by the strip-~biaxial
data (see figure I.42) in which both the extensional and retractional
data are in good agreement. Since in biaxial stress fieldé the inter-
looping points may act like molecular junction points (or cross-linkage
points), so that there is almost no relative slip between the molecular
chains at these points, the deformation in biaxial stress fields is
affine type.

The modified Signorini function I. 78, when applied to uniaxial
and two biaxial stress fields, gives very poor fit to the data. Qn the
other hand, the Neo-Hookean function when applied to uniaxial and
to two biaxial stress fields gives a better overall fit to the data,
except for a slight deviation in unié,xial data (see figure I.40). It
is seen that this deviation is only 10 ?o at A= 3.5 and becomes

1argér at the non-Gaussian region. Thus the rubber tested
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is Neo-Hoqkea.n in character rather than modified=-Signorini in
character,

The small amount of deviation of uniaxial extensional data
from the Neo-Hookean curve, we believe, must be attributed
mainly to anisetropic behavior and, for better representation of
such materials, the use of a transversely isotropic strain energy
function is suggested, i,e.,

W= W(T, T, T Ky K))

2’

where K, =€;;

Kz = €34 €34

= (X" 3™
€ik="3 ( 3%- XK S’LK) (i=3: axis of anisotropy)

(x=1, 23

Since, i) the anisotropy may arise from anisotropic orientation of

molecular chains when stretched, and ii) examination of anisotropic

2 "3 1 KZ)
indicates that a better overall fit might be obtained, the above strain

J.s K

stress-deformation law derived from W(Jl' J
energy function is recommended. However, this has not been done
until additional da.ta. a.i'e procured, because, as indicated above, the
need for anisotropic analysis is not important over most of the
range of extension, However, in problems in which it is desired

to a.n.a.lyze either; failure behavior, or stress singularities, then
a,nisotrqpy must be accounted for,

But, in theoretical stress analysis where mathematical
simplicity is important, and where other than a pure uniaxial stress
field is involved, the isoiropic Neo~Hookean or Mooney~Rivlin
(which becomes Neo-Hookean in plane strain case) representations

of quasi~static behavior of incompressible rubbers will suffice
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over most pf the whole range of extension.
In general, for compressible rubbers, the strain energy
function I.52 and its associated constitutive law I.53, will give
an excellent representation in any kind of multiaxial stress or

deformation fields.

b. Hydlfosta.tic Compression
Next, we will apply our constitutive law, I.53 under hydro-
static compression conditions in a continuum rubber and examine
the resulting correlation with existing data, For the Neo-Hookean

solid (f = 1) in this stress field, equation I, 75 can be rewritten in

the form:
U _ig_‘i”)_ S S
p= Jlls[Jasi-zy)-q =/‘[ Jsl-zy" Jsa] s f=1 (I.92)
3

where the first and second terms on the right hand side are similar
to the repulsive and the attractive terms respectively in an inter-
atomic potential function. Murnaghan (25) also developed the

following equation for hydrostatic stress field: -

-k
p= _}E.( s ) (L. 93)

and fitted the data for the atomic alkali metals. He found the
parameter k to be of the order of 4, Since J'3 is a measure of the
cube of change in interatomic distance, Murnaghan's observation
suggests an inverse twelfth power dependence of interatomic forces.
When the equivalent terms in equation 1. 92, I.93 are compared, it

follows that:
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(1+9) |
*® ~ g(:tzu) i.99)

and in view of these relations, if J 3, 1, K will obey the linear

3
definition of bulk modulus,

Now the functional behavior of equation 1,92 for butyl tread
rubber is shown in figure 1,46 where Bridgman's data up to
350, 000 psi (10} are plotted. The rectified straight line is character-
ized by the finite strain value of Poisson*s ratio, # = 0,463 which
gives a linear bulk modulus of K ® 475, 000 psi, This value compares
fairly well with data (49} on polyisobutylené* and the value 7/ = 0,463
indicates that an actual rubber is not as incompressible as the
linear theory would indicate, The value # = 0,463 corresponds to
k = 13,3 in Murnaghan's equation 1,93, and the reason why the value
of k = 13,3 is larger than that Murnaghan found for monatomic mole~
cules may be inferred from the fact that the small monomeric units

are tied together in long polymer chains,

Co Tria.xlal Tension
Finally, the constitutive law I,53 will be applied to a triaxial
tensile stress field in continuum rubber., Figure I,32 shows a
triaxial stress-deformation curve of polyurethane rubber for which
f=]1, and figure I, 33 shows the-plot based on equation L 69, The
rectified straight line is characterized by the finite strain value of
Poisson's ratio, # = 0,473, indicating this iubber is partially

compressible,
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PART II

TOPOLOGY OF FAILURE SURFACES

II,1 INTRODUCTION

 Following the determination of an adequate strain energy
function and the asseciated constitutive law* we will proceed to
focus attention upon the rupture behavior of the previous materials
in different stress fields, i,e., the geometrical surfaces generated
by the failure points in different principal stress or deformation
space.

Various hypetheses have been suggested as to the condition
under which an isotropic material fails; however, in relating stress
and strain, a linear constitutive law was generally used, Thus the
surfaces generated in this way are not applicable in large deforma=
tiens,

The geometry of failure surfaces based on stress criteria
depicted in stress space or the failure surfaces based on stretch
criteria depicted in sti’etch space where no constitutive law is used,
remains the same both in linear and large deformation theories,

In the linear theory the shape of failure surfaces based on a
stress criterion remains unchanged {but not geometrically similar)
either plotted in principal stress or principal stretch space except
for a change in values of the parameters, Similarly, a geometry
based on a strain criterion has the same shape (net geometrically
similar)'depicted in either principal-stress or principal stretch
space, In large deformation representation the situation is different,

Since the constitutive law is non~linear and multivalued, a given
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surface in principal stress space may be associated with a
plurality of surfaces in principal stretch space, Likewise, to a
given surface in principal stretch space can be associated with a
plurality of surfaces in principal stress space.

The purpose of the discussion in this part is to furnish a
geometrical representation of failure surfaces based on all possible
different criteria depicted in principal stress, principal stretch and
invariant spaces for elastic materials,and to compare these
surfaces with the data obtained in uniaxial, strip~biaxial, homo-~
geneous~-biaxial, and triaxial stress fields for foamed and continuum
rubbers, Itis desired, therefore, to reach a tentative conclusion,
based on the up to date data, as to the shape of these surfaces,

II,2 FAILURE CRITERIA AND THE CORRESPONDING
GEOMETRIES

Since in large deformations the stretch ratio can not be
expressed explicitly in terms of stresses, it is not easy to postulate
failure surfaces based on a stretch criterion and plotted in stress
space, or based on a stress criterion and plotted in stretch space:
however, some special cases do occur depending on the value of
fand 7 in the constitutive law,

We will consider a special material for which f=0, # = 1/4

and simplify the constitutive law 1,53 in the following form:
— |
O = - — :
=M% (L. 1)

which shows that the maximum achievable value of true stress in
an infinitely extensible material (f=0, # = 1/4) under any arbitrary

tensile stress field is its shear modulus, Equation II, 1 immediately
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sets an upper bound to the stresses expected in a deformed
foam rubbe’r. | This equation is nonlinear and multivalued in the
displacements, so th;t to a given surface in principal stress
space is associated a plurality of surfaces in pri.ncipai stretch
space, Likewise to a given surface in stretch space there is
associa.te‘d a plurality of surfaces in principal stress space. This
non~uniqueness is highlighted as follows:
Inverting equation II, 1:

N, = i[ﬁ%‘gﬂ (1L, 2)

and multiplying )\f by A )\i s .T3 can be expressed in terms

j.’

of stresses:

=[BT =

~="f =F =t
N= (-3 " (-Z(- Ty’ (i 4)

Thus the stretch, now expressed explicitly in terms of stresses,
can be used in plotting a stretch criterion in principal stress space.
We shall discuss several geometries of the failure surface in the
following.

A, Stress Criteria

1. Maximum Principal Stress Criterion (Rankinéls Theory)(28)-

This criterion states that the failure is measured by the
greatest principal stress, The geometry based on this criterion is

given by:
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S

O = ﬁ»s Oy {11, 5)

(i=1,2,3)
where O is the ultimate uniaxial tensile true stress, and T)’c

is the unspecified ultimate uniaxial compressive stress, Equation
I, 5 gives a cube in principal stress space, three faces of which
intersect the positive {i, j, k} axes at each of three points ata
distance U’T from the coordinate origin, and which intersect
mutually at an apex which lies on the positive ra;)r of the hydrostatic
vec tor at a distance 'EM B'T from the coordinate origin. The
other three faces of this cube will intersect the negative {i, s k}
axes at each of three points T)—"c whose position is unspecified
(see figure II, 1), Based on this criterion any combined stress
field which falls inside this surface is considered to be safe,
Since the compression failure point is unspecified and may theoreti=
cally approach infinity, in the following discussion the geometry in the
negative {i, j, k} octant is disregarded,

In order to plot equation IL, 5 in principal stretch space
we use relation II, 1 and express formula IL, 5 in term of stretches,
Thus:

Xs A% (IL 6)
(i=1,2,3) ‘

where }\T is ultimate uniaxial stretch ratio, KEquation I, 6 represents
a maximum stretch criterion and depicts a cube in Xz-space whose
three faces intersect positive ii, Je k}at )\TZ from the coordinate

origin (see figure II, 2),
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2. Maximum Shear Criterion {Guest's Theory} (28)

Under this hypothesis the failure is measured by the greatest
principal stress difference (or Tresca condition)(29), and the

geometry is represented by:

5,-T, < T, a1y
which defines six planes in G~space, each of which make.a 45°
angle with two of the coordinate axes and mutually intersect to form
a regular hexagonal prism whose axis is coaxial with the hydrostatic
vector, This prism is infinitely long since the shear remains small
as long as the three principal stresses are nearly equals Thus,

this criterion permits unlimited nearly equal principal stresses
which contradicts with reality. The six edges of the prism pass
through the six vertices of the cube defined by equation I, 5, a.nd

the six sides of which pass through the six edges of the same cube
(see figure I, 1},

3. Maximum First Stress Invariant Criterion

Based on this criterion, failure should occur when the
mean principal tensile stress {or hydrostatic tension) regches

the extreme value, The geometry for this criterion is defined by:

>0 <0y {1 8)
i .

[

which gives a plane normal to the hydrostatic vector in T ~space
and located at a distance V3 % (Ma}dmum hydrostatic tension)=

FT/ 43" from the coordinate origin, passing through the positive
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$i, j» k} axes at '(")‘_T {see figure II,1), Equation II, 8 can be
plotted in stretch space by the use of equation I, 1 to express
stress in terms of stretches:
zi;(»-—)\{Tj)\—K)g_gz_ {11, 9)

{i, j» k permute cyclically)
which depict a dish shaped hyperboloid in }\2-space and
allowing unlimited uniaxial and biaxial deformations {see figure
11, 3).

4, Maximum Second Stress Invariant Criterion

The failure is to be measured by the extreme value of the
second stress invariant, The geometry based on this criterion

is represented by:

Z G0 =<37° (1L, 10)
a3

where ?H is the maximum attainable hydrostatic tensile stress
(= E‘T/ 3) . This geometry depicts a dish~-shaped triangular
hyperboloid in @ =-space allowing unlimited deformation near the
uniaxial stress field {see figure II,4), Expressing equation II, 10

in terms of stretches by using equation II, 1 it follows that:

5 (1= = )(1 = ) < 354" |
i ( Asi)\j)\k)(! }\i )\j )\K Q2 {IL,11)

{is js k permute cyclically)
which also depicts a dish shaped surface in the positive fis Jo K}

octant of stretch space, and allows infinite.uniaxial and biaxial
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extensions (see figure II.5). The position of the dilatational failure
point on this surface is also indicated.

5. Maximum Third Stress Invariant Criterion

Based on this criterion,failure is to be predicted when the
third stress invariant reaches the extreme value. The geometry

is defined by:

F 3 1I.
TI- O-L < O—H (I1. 12)

which depicts a concave dish-shaped surface in the positive { i, 3, k}
octant of stress space. This surface also allows unlimited stretches
in one or two coordinates (see figure IIL. 6).

6. Maximum Octahedral Shear Stress Criterion

This corresponds to a maximum distortional strain energy
criterion (Von Mises-—Hencky Theory (26)) in linear theory. The

geometry associated with this criterion is represented by:

z (“o';__ ’Eg)as 2'5’1_2 (IL. 13)
which depicts an infinitely long circular cylinder in & -space and
coaxial with the hydrostatic vector, circumscribing the hexagonal
prism defined by the maximum shear criterion (see figure II, 1),
This criterion also allows unlimited deformations near hydrostgtic
tension and compression.

By using relation II. 1 equation IL. 13 can be written in terms

of stretch ratios:
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N - N5V =2
AW (1. 14)
i N I .
(i, j, k permute cyclically)

which depicts a wavy dish-shapéd surface in the positive {i, Js k}
octant in )\2 -space allowing unlimited uniaxial and biaxial
extensions. This criterion predicts dilatational failure to occur
at natural state ( Ai = 1) which is not real (see figure II. 7).

7. Maximum stress Resultant Criterion

Based on this criterion the rupture is to be anticipated
when the resultant stress reaches its ultimate value. The geometry

is defined by:

207 <07 (IL. 15)
v

which depicts a sphere with radius B__T in principal stress space.
This theory also predicts failure (negative §i, j, k} octant) which
is not observed in reality (see figure II. 8).

Using relation II. 1, formula II. 15 can be written in terms

of stretch ratios:

R
%’( I o )\k) <G (I 16)

(i, j, k permute cyclically)
which depicts a surface with two dish-shaped hyperboloid-like -
surfaces joined and extends to positive infinite in {i, j» k}direction,
thus allowing unlimited extension for a near uniaxial stress field

(see figure II. 9),



8. Maximum Mean Deviatoric Stress Criterion

This theory is to predict failure by the extreme value
of the mean deviatoric stress, The corresponding ggometry is

defined hy:
Z0,— 30, < 0;, Gcs<o (L 17)
v

which depicts three planes in § ~space, each of which is parallel
to the hydrostatic vector and intersect mutually to form an
infinitely iong regular triangular prism inscribing the circular
cylinder defined by the maximum octahedral shear stress criterion
{see figure IL, 1)

B, Stretch Criteria

1, Maximum Principal Stretch Criterion

This theory predicts failure to occur at the maximum

principal stretch, The correspeonding geometry is defined by:

Nog N3 (11, 18)

L

where )\T is uniaxial lﬂtimate stretch ratio, Equation II, 18 repre~
sents three faces of a cube cutting positive {i, j, k} at )\26[. in
)\2 -space {see figure II, 2},
By the use of relation II, 4, equation II, 18 can be expressed

in terms of stresses:
N (|—§L)4>(I—FL)(1- D) (1L, 19)

Taking AL = 2.4, based on the experimental data for foamed
polyurethane rubber, the geometry of equation II, 19 consists of

three concave surfaces in principal stress space, each of which
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2.5 and

intersects the three negative coordinate axes at 1- )\T-
forming a con‘cave trigona.l pyramid with convex edges and concave
faces which extend to negative infinity., The vertex lies on the
hydrostatic vector at a position (1- )\,I'.'S, 1- >\T_5 . 1-)\,1'.'5 ). We
notice that the maximum uniaxial failure point falls within this

surface (see figure II. 10).

2., Maximum Principal Strain Criterion (Saint Venant's Theory)(28)

This criterion predicts fracture when the extreme value of
the princiéal strain is reached. Since the linear stress-strain law
is used to depict the criterion in stress space the theory is valid
only for small deformations., The geometry is obtained from the

eguation:

O — 9 (0] + Oy ) & E€y = O (IL. 20)

where O'T » €g are uniaxial yield stress and strain respectively.

Equation II. 20 gives three planes in (’"-space each of which intersects
i o/.,0 O/ 1=, -1/, -

the coordinate axes at{ »/O»Ts J/Of') K/Of,-}"g" '/1/, %,} , and form a

trigonal pyramid whose faces extend out te negative infinity. The

vertex of the pyramid lies on the hydrostatic vector at a position

{'__121, ’ |__IZ4/ ’ .__'Zd} (see figqre II,11). The slope and inter-
cepts of these faces change with the value 2/ . When the material

is incompressible (# = 1/2) it becomes an infinitely long trigonal
prism circumscribing the circular cylinder defined by the maximum
octahedral shear stress criterion. When # = 0, the three surfaces
will coincide with that of the cube defined by maximum principal

stress criterion.
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3. Maximum Principal Stretch Difference Criterion

This theory predicts failure to start under the maximum

value of stretch difference, whose geometry is defined by:

N X

EEATEE N {11, 21)

where K = )\ZT - )\?L s and )\L is the uniaxial ultimate contraction
ratio, Equation II, 21 represents a regular hexagonal prism in
)\Z-spa.re whose axis is perpendicular to the octahedral plane
and three 7edges of which intersect the positive {i, Js k} axes at a
position ( X?i. - )\ZL ) (see figure II.12),
When stretches are expressed in terms of stresses by the

use of relation I, 4, equation II, 21 takes the form:
E--B -0 B me

which gives six slightly concave surfaces'in © -space, mutually

intersected at{ Z" ’ %L ) %} = {1. 1o 1}011 the hydrostatic vector

forming a concave hexagonal pyramid whose faces extend out to
negative infinity (see figure II, 13},

4, Maximum First Stretch Invariant Criterion

Initiation of fajlure is to be predicted by the extreme
value of the first stretch invariant, The corresponding geometry

is defined by:

2

I= Z X\, € K (11, 23)
v

b\

where K = )\2 +2 )\2 o This equation gives a plane in )xzu—spa.ce
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which intergects the three positive {i, j, k} axes at a distance
( )\%I, + 2 )\i)/ 43" from the coordinate origin (see figure IL, 2),
When equation II, 23 is expressed in terms of stresses, it
takes the form:

2, 0-B0-BPe eM-BF s

J¥K

which gives 3 waving surface in §~space, intersecting the hydro-
static vector at { 1-(3/K)7%, 1-(3/%7% | 1-(3/K)7%} enclosing
the uniaxial failure point within it and extending out to negative
infinity (see figure II, 14),

5, Maximum Second Stretch Invariant Criterion (Iz..):.

This theory predicts fracture to be started at the maximum

second stretch invariant. The geometry based on it is defined by:
I—-Z.A)\ < K (1L, 25)
%

where K = 2 )\E.I. >\ + >\ 1, s+ giving a dish shaped triangular
hyperboloid, This criterion allows unlimited stretch in the vicinity
of a uniaxial stress field (see figure II, 15),

Rewrite equation II, 25 in terms of stresses by using relation
11,4 in the form:

(20 BT - BT (. 26)

1%

which depicts a convex surface in G -space extending out to negative

in;finity, and intersecting the hydrostatic vector at a position
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%, T, B 2F, - (2F, 1-(2F)  The uniaxial fall
%F’T\L s w={1- & (K)"’ (£F} The uniaxial failure
point falls within this surface (see figure IL. 16),

6. Maximum Second Stretch Invariant Criterion (J 2)

The equation of this criterion is given by:
Jo= S~z s K {1, 27)
L

where K = 1/ }\%I. + 2/ )\i . The corresponding geometry depicts
a concave dish shaped surface in )\Z-spa.ce (see figure I, 17),

This criterion allows unlimited uniaxial and biaxial stretches,
Rewrite equation II, 27 in terms of stresses by the aid of relation

IT, 4:
 E-Been-B

and plotting this in 0-space we have a convex surface intersecting

the hydrostatic vector at the position (-/% y ;?:J_, % =1,1.1)

where the surface forms a rectangular corner (see figure II, 18),

7. Maximum Third Stretch Invariant Criterion (13)

Failure is measured when the third stretch invariant reaches

its extreme value, The corresponding geometiry is given by:

Is = -ﬂ—)\z' S K ‘IIO 29)

where K = )\ZT A 4L + which depicts a concave dish~shaped surfé,ce
extending out to positive infinity in )\Znspace (see figure 11, 19),
Thus, the theory permits unrealistic unlimited uniaxial and biaxial
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stretches, Applying the relation II,4 to equation II, 29 there results:

Ks[n(l—"_fu)]zzn (11, 30)

which depicts an almost spherical convex surface in the first

octant of ¢ ~space intersecting the hy‘drcsta.tic vectoer at a position,
—_— -5 ....5.
{%_ y G, 'P_\g { K 1=K & |~ K }, and extending out to negative

infinlty. The round edges will become sharper as the negative
infinity is approached (see figure I, 20),

8. Maximum Mean Deviatoric Stretch Criterion

Maximum mean deviatoric stretch criterion assumes failure

to take place at its extreme value according to the formula:

TR -3N €K (IL, 31)
14

where K = )\?:I‘ - )\i o« The geometry of this formula consists of

three planes in )\z-spa.ce* which mutually intersect to form an
infinitely long triangular prism whose axis is perpendicular to the
octahedral plane and inscribe the hexagonal prism defined by the
maximum stretch difference criterion {see figure II,12),

Substitution of relation II, 4 into formula IL, 31 yields:

_ T T T 2% T4 21

EOR-P-0-R-Bl<me-Fa) - w2
(rxs)

which depicts in G -space three convex surfaces which intersect

mutually on the hydrostatic vector ata position, {/0; , 9 5 UK% {1 1. 1}

where the surface forms a sharp corner, and extendhg out to
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negative infinity, The uniaxial failure point falls almost en this
surface (see figure II, 21),

C. Maximum Sirain Energy Criterion

The failure surface based on this criterion in large deforma-~
tion theory will be entirely different from that based on linear
theory., And in large deformation the geometry will vary as the
values of / and f,

i) For large deformation, there will be multiple surfaces based
on the différent values of fand # . Here we will consider the
representative materials for which 4 = 1/4, f=0jand + =1/2,
f=1,

For # =1/4, f=0, the strain energy function I, 76 can be

rewritten in the form:

T+ 2Ty < 2¥4s (1L, 33)

which depicts surfaces in )\Z-space and A ~space and which look
like figures II, 22 and II, 23 respectively. These two surfaces are

not closed and thus allew unlimited stretch near the uniaxial stress

field,
Using the constitutive law I, 4, equation II, 33 can be written
in the form:
— |3 —_ .
o; 5 o
‘ - 2 S '— (Ilo 34
[£0-F)+2] < <T0- 3 )
where K= 2w 5

7
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Equation IL, 34 depicts a convex surface in the first octant of
G -space which extends out to negative infinity. (See figure
II. 24), Moreover, equation L. 76 will depict a plane in the invariant
space as shown in figure II, 25,
For 4 =1/2, £f= 1, the strain energy function is reduced

to the form: }

W= Lz( dJ,- 3) {Neo~Hookean solid) (11, 35)

or

N, S +3 (IL. 36)

2
which is a plane in X\ -space, passing positive { i, j, kjaxes at

s 2W .
the position, " +3 (see figure II, 26).

ii) For infinitesimal deformations the geometry in the stress space

is based on:

2EW = Z.0* -2/ X 070 (IL. 37)
i ¥k 1 K

which depicts a symmetrical ellipsoid, passing the coordinate axes

att O'ps and whose major axis coincides with the hydrostatic

vector (27) (see figure II, 27). The shape of this surface varies with

different values of Poisson's ratio. For example, when 4/ = 1/2

(incompressible case). the ellipsoid becomes an infinitely long

circular cylinder coaxial to the hydrostatic vector and, when 2 = 0
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it becomes a sphere. This criterion predicts fracture under
hydrostatic compression which is not observed in reality.

D, Failure Surfaces Based on Experimental Data

In order to reduce sample to sample variation of material
properties, all the specimens used for different stress fields were
cut out from one piece of material. Failures in the two types of
uniaxial specimens, the third type of strip-biaxial specimen
(see right pictures of figure 1.6, I.7), and the triaxial specimen
were succéssfully caused to start at the middle region of the
specimens, thus giving good rupture data in each of the above stress
fields. But in the homogeneous-biaxial field, due to the gripping
effect, failure usually starts at the vicinity of the grips. Thus the
failure data are considered to be far below the ideal homogeneous-
biaxial failure values and such points were used just for reference.

We believe that the variation in the failure data is due to
sample to sample variation which depends on the presence of local
defects in the sample rather than solely the size effect (see
figures I, 26, 1.28, and I. 30 for polyurethane rubber which is used
for failure surface study). The lower rupture data were not used
in plotting the failure surface but only the averaged ultimate values
of those falling within a narrow region. Note that the variation of
the failure values in stress-wise is less than that in stretch-wige.

The so-called isotropic failure criterion can only be
obtained when the standard deviation of the measured ultimate

values becomes independent of sample dimensions (this we observed
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in our data)in the limit of large dimensions in which local
defects are ré.’ndomly distributed and are averaged out in testing
a large number of samples, Hawaver, this criterion does not
give a true picture of fracture initiation, In order to obtain a
frue one, defect free samples must be prepared, and presumably
one has to work in the region of relatively small dimensions. This
is extremely difficult to perform, as evidenced by the analogy with
studies on single crystals in metals, An alternative method is to
introduce a. well defined crack or notch and study the growth of this
effect, Nevertheless, failure da.ta. obtained from medium sized
samples as in our tests should be able to give a fairly good initial
representation of the failure surfaces,

In plotting the data, ultimate lateral stresses in strip~
biaxial and triaxial fields were calculated from equation I, 53,

f being taken to be zero or unity respectively for a foam and a
continuum rubber, Figures II, 28 and II, 30 show the plot of ultimate
values, in normal stress space;, of 470/0 voided polyurethane foam
rubber and polyurethane continuum rubber obtained from different
stress fields,

The (++4+) data of the foam rubber seems to aepict a plane
in normal stress space {see figure II, 28), dish-shaped trigonal
hyperboloid in )\2~spa;ce (see figure II, 15), and almost a plane in

A~gpace (see- figure II, 29), Based on all the present available
data and considering all the failure surfaces investigated, the
failure surface in normal stress space for a foam rubber looks

like a frustum of a prism i) whose distortional carpet cannot exceed
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that of a ci::‘:cula,r cylinder defined by maximum eoctahedral shear
stress criteribn and ca.n not fall within a triangular prism defined
by mean deviatoric stress criteriony ii) whose frustrated facet
in the (+++) octant is a carpet of the dilatational plane, Thus the
foamed material fails in'a: dilatational mode in the first octant of
stress space.

While the (+++) data of the continuum rubber (polyurethane)
seems to depict a triangular pyramid in normal stress space,

which obeys the equation
0,+TC; - %G, <0y (11, 38)

where —-<€ X £ )

with its vertex lying between the hydrostatic plane for which o » =1,
and the vertex of a cube for which « = 1 {see figure I, 30), Thus

the continuum rubber fails in a distortional mode in the first octant
of stress space, Moreover, the same (+++) data depicts a plane in

normal stretch space obeying

ZA; £ Const, {11, 39)
L

For determining more precisely the location of the distortional
sides of the failure surfaces, it is recommended that additional stress
fields should be investigated; in particular one should investigate
i) uniaxial tension under hydrostatic compression, and ii) biaxial
tension combined with hydrostatic compression. These additional

tests, however, have not been presented in this discussion,
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PART III

FINITE PLANE STRAIN TANGENTIAL SPREADING OF A RADIALLY
CRACKED INFINITELY LONG INCOMPRESSIBLE RUBBER LOG BY
A RADIALLY RIGID BONDED WEDGE-SHAPED BELLOWS

III. 1. Introduction

In Part I we have presented experimental evidence that a
Neo-Hookeaﬁ representation of the behaviors of elastomers under
quasi-static deformation provides a good representation of material
behavior even up to rupture, except in a pure uniaxial stress field.
In the subsequent analysisbof this part, we shall therefore assume
that the elastomer will be a Neo~Hookean solid. Also, we
mentioned in Part II that an alternate method of studying failure is
to introduce a well defined crack or notch and study its growth.

This situation arouses our interest in studying stress-deformation
fields near the point of a stationary crack under large deformations.
Based on linear theory many investigations have been conducted on
the elastic stress-strain behavior around the crack tip and the

sim ilar situation of sharp corners (35, 36, 37, 38). Itis generally
noticed that there exists some sort of stress or strain singularities
at the base of crack or in the neighborhood of any geometrical
discontinuities. Occasionally inconsistencies { or paradoxes) (38)
arise. For a large deformation analysis of a particular crack problem,
Blatz (2) considered the plane strain problem of an infinitely long
radially cracked rubber log tangentially spread by a frictionless
rigid wedge. It turned out that the non-linear displacements were

non-singular as compared to the linear displacements which were
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singular, In this problem, it has been noticed that in order to
eliminate shea.r Stress,‘ the base of a crack must be allowed to
deform into a 'keyhole' shape; furthermore, a radial compression
stress must be applied at the boundary so that equilibrium is
maintained, Due to this "keyhole' effect, i,e,5 ~ the undeformed
point (crack base} is deformed into a sector of a circle, the
tangential stress at the crack base becomes infinite, while the
radial stress remains non-singular,

In 6rder to eliminate the keyhole effect {or to take into
account the shear component) the above problem is modified, in
the present discussion, such that the faces of the wegdge are bonded
to the crack, and for simplicity in analysis a special displacement
field is a.ssumed. At present this approach is the conventional
method for facile application of finite elastic theory, It resulted
that a particular surface traction is needed to maintain equilibrium,
It is desired to compare this surface traction with the two~dim ensional
hydrostatic stress needed in the previously described problem, In
such non~linear solution with non-hydro static surface traction it is
required to modify the deformation field by Adkin's perturbation
technique {23} so that the surface traction is reduced to a pure two=-
dimensional hydrostatic traction, however, in this discussion we
consider only the solution for a particular displacement field and

the assoclated stress deformation fields near the crack tip,
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III. 2. Geometry of the Problem

A scheinatic diagram of the problem under consideration
is shown in figure III.1. An infinitely long rubber log of radius
a is split lengthwise by a radial crack of depth a. Into this crack
an infinitely long wedge of flank angle 2¢ is inserted and bonded
to the rubber in such a way that the tip of the wedge comes to meet
the base of the crack and the radius of the rubber on the bonded
plane still remains a.

Let an arbitrary point p_ of the undeformed body with
cylindrical polar coordinates (r, & , z)be displaced to a new
position P (see figure IIL. 1) with deformed coordinates (T, § , Z )

under the displacement fieldﬁ

¥=1A@ (I1I. 1)
B=K(©) (11I. 2)
FT=Z (I1I, 3)

where A(© )and K (6 ) are functions only of undeformed coordinate,
6 , and could be determined by the aid of equations of equilibrium.

ITII. 3. Finite Elastic Solution

Since in large deformations one is interested in true
stresses, let the deformed coordinates be chosen to be orthogonal
(in this fashion mutually orthogonal planes in the deformed body
will in general be non-orthogonal in the undeformed state), then
the metric tensors, gij’ of the undeformed body, and Gij’ of the

deformed body, are respectively given by:
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il -¥X
N 2K’
= |-FX ¥ H2 '
%= e =wr [(T)""] © (IL. 4)
o 0 I
where /= AN ! - dK_
: N=de K=de
[ o (o)
Gyi=lo F* o (111, 5)
o ) i

The determinant of these two matrixes are respectively given by:

2

g=Detg;; = 7\1;‘«; (111, 6)
G = bet G’lj = ¥2 (IIL, 7)

Assuming the material is incompressible, one can set the above

two determinants equal. It follows that:

K/(e) = gg - ) (111, 8)

- which relates the two undetermined functions K and A . Relation
III, 8 leads to expressing the two associated contravariant tensors

for each configuration in the form:



NSV __7\, o
g9 = | _X " {111, 9)
TA <l ©
(o] (o) |
e o o
G"J - o '|F2 o {IH. 10)
(o] o {

Now assume the material behaves in a Neo~Hookean or Mooney-
Rivlin way {in plane strain there is no difference between the above
two types of behavior), the constitutive stress-deformation law takes

the form {22}

%‘-’jz 315 + % G.Lj {III, 11)
where ’I_'ij are true stresses referred to the deformed body, and
%X is an unknown invariant function of coordinates, representing
homogeneous stress fields, and could be determined from the
equations of equilibrium and boundary conditions,

Substitution of formulas III, 9, and III, 10 into the constitutive

law III, 11, yields the tensorial true stress components:

T pre orE N+ X+ R ?Z\;_\. o

-] _eor _ o0 { } -

e A 4 (xR o (IIL 12)
7 1 T 0 o I+ %



and the physical stress components become:

ol

r= N+ N+ %

Do . L+ % {TLL, 14}
H T RE ‘ . 14}
Oz = 1+ % (T, 15)-
A

Tyl T X

=R A (1L, 16)
Tra=Tar= Loz = Tzge= O (T, 17y

The equations of equilibrium referred to the deformed coordinates

are the familiar form:

30y, | Tve . Orr—Oce __ I11, 18
57 v T v —° (18]
a%.:"+—_‘_—3-}°+ 2 Tre =0 (IIL 19
3¥ T 9% T

20z \ 111, 20
3% —° ( )

It is noticed that A\ appears in the stress formulas III, 13, III, 14,

IIT, 16 is a function of © , Hence before substitution of stress
expressions into the equilibrium equations, the equilibrium equations
are firstly transformed to the undeformed coordinates, giving the

forms:



36:)—\» )\2 BTre — AN / BTYQ

+ 0, O = O {111,
3nr T Shny T TrvT Vee {1, 21)
2Tve , x2 2000 _ AN 206 L 2F =0 {11, 22
Sy AN T Py re }
303z PN (111, 23}
22 ‘

Now, substitution of formulas III, 13 ~ III, 16 into equilibrium

equations III, 21, III, 22, III, 23 yields:

2%

> Inr + AN+ )\2-——)\—~ o (IIL, 24)
3% _ >%

Addnr alnmA (111, 25)
o% _ o {111, 26)
°oZ

Equation III, 26 shows tha.t% is a function of r and ¢ only, hence

equation III, 25 immediately yields a solution:
& = & Unr\) (IIL, 27)

Putting equation III, 25 into equation III, 24 and integrating with

respect to § , we have:

—E+)2"+—§+ 3 = $Unr) {111, 28)



where f is a function of Jur only, Now differentiating equation

IIT, 28 with respect to Inr and using equation III, 24, we have:

d-f- U4 2 l
d%T_—A)\—A tSE= M (1IL, 29)
where m is a separation constant to be determined from boundary
conditions,
After integrating the two differential equations generated
from equation III, 29 with respect to the corresponding variables,

one obtains:

f=-mhr+c (11, 30)

X:%: i‘/mjan2+B—->\2——)‘\—z (1;1,31)

where B and C are integration constants and are also to be
determined from boundary conditions,
Upon combining equations IIL, 28, and III, 30, %is given in

the form:

—_ 12 2 \

And, integrating equation III, 31, © and A\ are related as:

dax
— - {111, 33
©= S‘[;n!m'X2+B—~7§z- '|Xz ¢ )
!
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with the boundary conditiens:

T=¢ , F=1 , A,=I at 6=o0 (11I, 34)

€=2W‘¢ ’ F=1 > )\211-': | at 0=2T (IH“ 35’
— ) Y r -
9:0(,']1’ 9 —a—e--;zo b2 Ad’_n_a——o at e—'d,-“' (qu 36)

where of is an angle other than T where X also becomes extreme,
This is known in the following ways
From relation IIl, 31 the extreme condition is given by:
2 N 11, 37

Wnﬂ,n}}w+B )\dﬂr )\:’1‘_0 ( )
where /\“sTr are to represent the two extreme values of A\ at
6= and ©=% wrespectively, The existence of these two extreme
values can be more easily visualized by the aid of following trans-
formation:

X = In A (111, 38)

then, condition III, 37 takes the form:
m deﬂ— B — 2 cosh Xyw=0 {111, 39)

where Xo( . are the two extreme values of X corresponding to
s

A A respectively. In view of formula IIL, 31, the quantity

under the square root must be pesitive, so after using the -



transformation III, 38 it is easy to see that B = 2, And since
m > 0 (this will be shown later) the straight line mX + B will

intersect the cosh X curve at two points X . < 0, X >0
; min max

a

in a fashion as shown in figure IIL. 2 giving two extreme values

of A_. <1, A > 1. As will be seen later, A , Amax
min max

min

are identifiedtobe A_= A ., A=z A
. ™ L3 ma

min x*

Integrating equation III. 8 with respect to § , and making

use of relation III, 31 and the boundary condition at @ = 0, we

have:
A

dX
XY mInX2eB -2 ,}1\: (II1. 40)

5=¢+|

where m, B are related from the extreme condition III, 37.
The non-zero stress components, after using relations III, 31,

and III, 32, and assuming E‘rr = 0% at r=za, 6=, become:

;.;W=m‘o’"%§_d+—5l\—§ -7|\5 ;:;_,mbn% (I1I. 41)
f;%_um%_g%J, >\§+;';; —::mﬁm% (IIL. 42)
.%=m%%%_>\z+, _m.mpma? (I1I. 43)
——Eﬁ- = %«J’rn!bn)&-»&—)&-%{ (Hlf44)

Eliminating B by using the extreme condition III. 37 and using the

* This is just one of the ways to determine constant C.



boundary condition III, 36 for © = w, the two formulas II, 33,
III, 40 become:

Ao~ d A N
AdA dA
Tf==§ e ,+S — O (11,45)
Ny ———) — A% N =X)YN=3)-N m”ﬂ'l}\“f“
l\[()ﬁw XX A:ﬂ) KmlnZix )\1/4,( N Ad,,,) P
Nat- Ap-
dn an
Tr—¢=§ 7 A = - (III.46)
AYOZ R A2 L Y= Xmin Ngr S)\ 2_ )2y (Ne L) - N Asuw
1 ﬁ)&m’)\)()\ )\3'}‘ FX M-o»JO}WA )X )\"{;13 N 7\-2'_

>It is noted that in the above integrals, singularities arise, at

0= and © = w due to the extreme condition 1Il, 37, The relations
11,45, 111,46, III, 37 (which is double valued) determine the four
parameters, B, m, Ay and )\ﬂ, « Since these integrals do not
yield elementary forms, a graphical method will be used for

special flank angles,

Before doing this however, we will first consider the case

of a émall flank angle for which parameters m and )\max

can be related to ¢ in a simple form in the following way,

For ¢ << 1, assume A = )\ma,x and write:
N= X (-€), << (L1, 47)

The integrands of formula IIl, 45 can be expanded and integrated out

to give the following relation for m and Ay :

2 V23—

)\’;<~ﬁ-—m

T = 7 (111, 4 8)
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It must be noted that the expansion of the integrands must be
based on A ma;x otherwise the result will include an imaginary
term, In case A_%* A we also obtain the same form
v ™ max
LI, 48 only with A, replaced by A_ .

Similarly, writing (let Ay = A rna.x)'

N = N €<<| "
T l+e ? (I, 49)

then the formula IIl,46 can be integrated to give:

A (T-dyme ST az sl (I1L, 50)

\
= I, 51)
Mg % ( 1)
Combine relations IIL, 48, IIL,51 it follows that:
P~ -2 ¢ 2 . b 2)
m == 4 (1 Wa)$+0(¥$)+--- (1. 52)

from which we know that m can never be negative, B is obtained

from relations III, 37, IIL 51, IIL 52 to be:
B= 2+ O (&R ... (I 53)

The a.bdve three relations IIl.51, IIL, 52, III,53 can be used
to estimate the starting trial values of Ay, m, B in the
graphical evaluation of integrals III, 45, IIl,46 for the case of

large ¢.
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Now we will integrate equations 111,45 and IIl,46 graphically
for the case of large flank angle 2¢.= 90° and of small angle 2¢ = 90 o
xma.x is firstly determined frem formula III,51 and m is estimated
from formula I, 52, Tentatively fix the point Xma.x {see figure
IIL, 2) and vary the slope m and obtain the best values m, B, A min

such that the equalities of equations III, 45 and 111,46 hold, We

note that there are two types of order of integration, i.e.:

i) From A=1 —» )\max — A (111, 54)-

min

ii) From Azl —» Appin —™ A {111, 55}

max
The second type never makes the equal signs of equations III, 45 and
101,46 hold, but the first type does. Therefore, it is identified
that:

N ® N (III. 56)

)\ﬂ = Amin (I11.57)

In this graphical evaluation the regions near infinity were cut off
and the total error was kept far less thanl percent of the total
value, and the best values of parameters are found to be:
For 2¢ = 900:
Ay = 1,330
A =0,965
w

m = 0,514
(111, 58)
B = 2,041 -
o« = 83°

(.6 "¢)°< = 610
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For 2¢ = 9°;

A= 1,025

)\-n = 0,999

m = 0,470 ”

B = 2,00003 (. 59)

of = 88°

(8-¢), = 85°

Thus the periphery of the rubber log is deformed in such a way
that at ¢ = & the material is squeezed out and at © = w it is moved
in as shown in figures III, 3, and III, 6 respectively for large and
small flank angles, For large flank angle 2¢ = 90°,  Ay= A _ asx
occursat @ - ¢ = 61° which corresponds to 9 = X = 83°, and
A=1alsooccursat § - ¢ = 120° (or 6= 1660) o For small
flank angle 2¢ = 90, Ao ® )\ma.x occursat G- ¢ =85° (or
0= « = 880) and A = 1occursat §=¢ = 170° {or o= 1740), and
for very small flank angle, ¢ «< 1, the position of Ax will
approach (m-¢y 2, Figure II[,5 shows the relation of ¢ and § for
the two flank angles. For very small strain 6 and © are nearly
linearly related, Figrue IIl,4, and III, 7 show the boundary stresses
which must be applied in order that the deformation field III, 1,
III, 2, and II1, 3 is maintained for the two cases of different flank
angles, Itis seen from the stress formulas I, 41 ~~ Il 44 that
shear stress is independent of the radial coordinate, while the three

normal stresses behave as Imn(a/r)as the crack base is approached,

Thus the crack base is subjected to infinite hydrostatic tensions,
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Also we noﬁice that the surface tractions are somewhat different
from the two-dimensional hydrostatic traction. Hence the stress
field must be modified so that the surface tractions are reduced
to the two-dimensional hydrostatic traction, which however is not

our interest at present.
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PART IV
DEFORMATIONS OF FOAMED ELASTOMERS

IV.1. Introduction

Beside the widespread pfactical use, a foamed material
(a metal foam is also included, which may be used as an impact
energy absorber) can be used, as in Part I, to investigate the
dilatational eﬂect of continuum rubbers; it can also be used for
studying the behavior of unfilled composite propellants. The
thermodyné,mic properties of composites generally depend on the
weight percent of filler material, and conversely the mechanical
properties of foam depend largely on volume percent of the
binder ( = foam structure).

Furthermore, the structure of continuum rubbers in the
region of non~Gaussian extension, i.e., - the finite length of the
chains of the network become distributed in a non~Gaussian
fashion at large extensions, may be represented by that of a
highly voided foam. Since such foam consists of a number of thin
threads joined at their ends to form a three dimensional network,
these threads and joints may be considered as equivalent molecular
chains and junction points of a rubber network. The foam rubber
also serves for a phenomenological study of crack growth in
rubbers since the intrinsic nature of tearing in rubbers is nothing
but continuous breakage of molecular chains which can be visuaiized

as tearing of the foam threads.
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In this discussion a theoretical treatment of an idealized
open cell model for a foam structure is presented. For this we
first investigate the geometry of interstices of idealized packings
of uniform spherical voids and by using three dimensional beam
analysis, equivalent elastic constants of the system are calculated
and compared with the experimental data.

IV.2. Packing of Spheres

Spheres of identical size can be piled and packed together
in fourteen different ways (46). Of these only typical closest
packings will be considered.

For closest packing in a flat plane, each circle contacts
six surrounding circles, and the packing density (area of circles
in unit area/unit area) or the void content ( when one considers
circles as void and the intérstices material) is 0,907,

In an ordinary space there are two ways for closest
packing of uniform spheres, i.e., - hexagonal and face~centered
cubic packings. Suppose the first layer is the plane closest
packing, the second layer is formed by placing spheres in
alternate hollows of the first layer. In making the third layer
there are two different ways: i) Place each sphere on a hollow
that is directly aBove a sphere in the first layer, which structure
leads to a hexagonal-closest packing as shown in figure IV, 1.

ii) Place each sphere in a hollow directly above a hollow in the
first layer, , which piling is obtained by rotating the third layer

of the hexagonal packing by 60° . The
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structure bgcomes a face~centered cubic closest packing as
shown in figure IV, 3, In both types of packing each sphere makes
contact with twelve other surrounding ones, in these cases the
packing density (or void content) is 0, 74 for both, This is the
hitherto known maximum density of packing uniform spheres,
however densities higher than this could be obtained if the spheres
are not uniform in sizes, since smaller spheres will fill the inter=-
stices of the big ones. The closest packing of spheres has also
been studiés in four and five dimensional spaces, however, the
packing density is always lower than that in ordinary space. The
following table shows the packing densities of some typical ways of

packing uniform spheres:

Ways of Packing Packing Density
Plane Closest Packing 0.907
Hexagonal Closest Packing 0. 740
Face Centered Cubic Closest Packing 0. 740
Body Centered Cubic Closest Packing 0. 681
Cubic Packing 0.524
Four-Dimensional Packing 0.617
Five-Dimensional Packing 0.465
Tetrahedral Packing 0. 340

Random Packing (41) 0.59~0,63
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IV.3. Geometry of Interstices

In order that the interstices can be easily visualized,
let each sphere expand uniformly, so that a contacting surface
becomes flat and tangent to a contact point. Thus, each sphere
becomes a polyhedron. The hexagonal-closest packing will turn
each sphere into a trapezo-rhombic dodecahedron (we will call
this unit cell) with six equilateral trapezoids and six congruent
rhombics. Most of the interstices are then squeezed to form
24 edges of this dodecahedron as shown in figure IV.2. If the
whole system of the interstices is oriented in the way shown in
this figure, each unit cell will involve three members vertically
connected with that of neighboring cells, forming straight-through
members of the whole system, and three vertical members
connected to that of the neighboring cell by means of inclined
members, forming non-~straight through members of the entire
system.

The face centered cubic packing will transform each
sphere into rhombic-dodecahedron, the twelve faces of which are
congruent rhombics. The interstices now form the 24 edges of
this dodecahedron as shown in figure IV.4., If the system is oriented
in the way shown in this figure, all the vertical members will be
connected by means of the inclined members and form non straight -
through members of the entire system. Clearly if a trapezo-rhombic
dodecahedron is sliced in half by a horizontal plane and one half of

it is rotated by 600, it will become a rhombic dodecahedron.
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In an actual highly voided foam structure, most of the
cells are observed to be pentagonal dodecahedrons, as shown in
figure IV.7, which are formed by packing five spheres around
the hollow of two adjacent spheres as shown in figure IV.5 and
then the spheres are allowed to expand uniformly (see figure
IV.6). In this packing the spheres do not contact each other
before expansion.

The obtuse angle in either trapezoid or rhombic is
109028' Which is the angle made by any two of the four members
extended radially from the same point and equally spanned in a
space (tetrahedral angle).

In the two dimensional case, if the circles are allowed
to expand. uniformly, a contacting point of two circles will
become a line, thus each circle will be transformed into a
regular hexagon.

IV.4, Deformation of Interstices

A. Hexagonal Closest Packing

For simplicity let all the members of the interstices have
a uniform equilateral triangular cross section (this is very
representative for a highly voided foam structure). Let the system
be oriented in such a way that the straight through members lie
in the z-direction (see figure IV. 2 and figure IV.8.a) and subjected
to a small uniaxial deformation. Since the unit structure cut out
by a hexagonal cylinder shown in figure IV.8.a is repeated in the

whole system, the deformation of the whole system can be
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represented by this unit structure. It consists of one straight
through member connected to six non~straight through members
by means of three inclined members joined at one point. Figure
IV.8.b shows a top view of the whole structure divided by the unit
structures.

Let the stress 0, be transformed into axial forces P and P!
acting on the straight-through and non~straight-through members
respectively., Since only a one third part of a non~straight-through
member is within the unit hexagonal cylinder, the axial force P! is
divided into three parts so that the axial force acting on this one
third part is P*/3., The stress o'z could relate to the forces

P and P! in the following fashion:
P+ p'= 512522557126 Oy (IvV.1)

where P and P! can be related in such a way that after deformation
points A and C still lie on the same plane perpendicular to the
z~axis, and ™ -9 = 109028’ or cos® = 1/3, and [ is the length of
the member.,

1. Deformation of System AOBC

The deformation of the unit hexagonal cylinder under the
present orientation can be represented by that of the system AOBC,
since it is repeated in the unit structure,

i) Member OA

At point O, four members OA, OB!, OI', OJ!' are equally

spanned in the space from a point O, - similarly for the rest of the
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four members OA}, OB, OL OJ. Thus, the six moments at O
are mutually balanced out, causing null net bending at O of
member OA (see figure IV.10.a). The only contribution to the
deformation of OA is an axial force P, Hence, the displacement

of A in the z~direction with respect to O is given by:

§,.= ——;,{‘E (1+ cos @) {Iv.2)

where A is the cross sectional area of any member, and E its
elastic modulus,

ii) Member BC

From point B, there are four members extending out and
equally spanned in the space. The three moments at this point
are mutually balanced, so that there is no net bending on member
BC (see figure IV, ¥0.b). Hence, the deformation of BC is due to
the simple tensile force P! only, and the axial displacement of C
with respect to B is given by:

Pl
¢z 2AE

(1— cose) (IV.3)

iii) Member OB

This member is subjected to tension, shear and bending
as shown in diagrams a, b, c of figure IV.9 . Figure IV,10,c

shows the free body diagram of OB. The displacement of B with

1

respect to O in OB direction due to the tensile force z;— cos@ is:

_ PL (IV.4
SB = 3AE cos e )
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1
And the shear displacement of B due to shearing force il sing

3
is:
7 /

where 3 is the Poisson's ratio of any member. Finally the

moment displacement of B with respect to O due to moments M is:

5" = M _ AT ML (LV, 6)
B ggr | EAZz

A3 2
where I = % A is the moment of inertia taken about the

principal axis of the cross section. Since the moment M at both

ends of OB is balanced by the shear force, —Pg-— cose , we have:

P’
M = ~—6—-Sfﬂ.9 (IV.7)

Now the total displacement of C with respect to O in z, r directions,

D D ecome:
cz ? crb c

DcZ: 8C2+ SBE+ Slaz+ SI’BE

= :;Dé [5 — 3coS6 + {2(|+2v>+4/§'—£i} sin‘e] (IV, 8)

’ p,
Dey = Sar + Sar + 8By

/ 2 \
__E_A'Q_E[z(;+2y)+1/_3’%] Sing cose (IV.9)
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The strains in z, r directions are respectively given by:

2 6Az P .
e = _ (IV.10
Z D (1+coss) AE !

Dey
l sine

» P/ Lz
€, = =—az[ 2O+ 2 +vF5]cose  (IV.11)

And the equivalent Poisson's ratio of the unit structure is given by:
/ 2
YJ*—_Ev _ _P o)+ 5L {(Iv.12)
o = ep [20+20)+43 X ]cose

As mentioned before, we will relate P and P! such that after
deformation points A and C are still coplaner. Hence by equating

equation IV, 2 and IV, 8, it follows that:

2
P _ B-3Cos0+ {z(|+zu)+w/§'-%-} sine (IV.13)
P’ 3 (1+CoS 0)

which after combining with equation IV, 1 yields:

a3 2oz sin*e
2[l+ 3(C)1-+ COSQ)]
Q

b= (IV.14)

g 3T L0 Sine (IV, 15)
2 [H- & 1
3(1+ cosg)d
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2
where ]= 5—3cose+{2(|+21))+1/?-%—} sin“e

Substitution of relation IV, 13 into equation IV, 12 yields:

[2(+2)+ ﬁ—?][wcos o ]cose

2[5-—3Cose+f2(|+24/)+'d-3’T}sm 6]
Since w-© = 109°28" or cos e==x1/3, sing = 24’32_’ , this
formula becomes:
)2
J* = Z(H-Zl/)“"\[é' A (IV.17)

J'IIN

i
+ -'-2- + 49+ 43 —é
Thus the equivalent Poisson's ratio of the entire system depends
on i) Poisson's r%tio of the interstices, and ii) the slenderness of
each member -%;:- » Which is related to the density of packing, and

independent of the cell size. For incompressible interstices,

4 = 1/2, it follows that:

9

L L B ‘ | :
4 “4[' WTE—ET;] %T_::T (1V.18)

which is always less that 1/4,

The equivalent elastic modulus of the system is given by:

*_ o CEl 9 ]
= = ’T['+4{13+a¢/+ 21’5’%2}][%] (tv.19)

which also depends on Poisson's ratio and slenderness of the
members of interstices, and for incompressible interstices this

formula becomes:
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%* '\/‘5' =) = A }
==L |1+ Jtmremn ] O (V. 20)
A Foo
12

By the aid of figure IV.8,a, the slenderness, — can be

related to the density of voids;d:

{IV.21)

Thus for a given void content the elastic constants E¥, 3/ * can
be calculated in terms of those of elastomeric binders.

B. Face-Centered Cubic Closest Packing

The unit structure for this case is shown in figure IV.11.a,
which consists of one vertical member and twelve inclined members.
In this case, there is no straight through member: in the entire
system, The deformation of this unit structure is represented by
that of sub~system AOBC which in turn is governed by the deforma-
tion of the rhombic AOB'C? , All the vertical members in the entire
structure are subjected to the same tensile load P,

1. Deformation of System AOBC

i} Member OA

Like the previous case, the end moments at A and O cause
null net bending moment (see figure IV, 11,c), thus the deformation
of OA is only caused by the uniaxial tensile load P. Hence, the .

displacement A with respect to O is:

5Az - PL (IV, 22)

AE
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ii) Member OB (or AC)

As in the previous case, this member is subjected to
tension, shear and bending. Figure IV.11l.b shows its free body
diagram, The displacement at B is one half that at B! which can
immediately be obtained by replacing P! for the previous case by

P. Hence, the z, r displacements at B become:

Sop="" IZAE [2+ 2(|+211)+w/"'— } sino ] (1V.23)
——PlL 22y .
63y— “m [ 2(1+29) + H—A—] sing cos (IV, 24)

The total displacement at B in the z~direction with respect to O

takes the form:

D= S+ S ™= [1 +-——{2 +{2(i+21/)+4/§'——}5m9}] (IV. 25)

The strains in z, r directions become:

= ™ Aelon = Bosid IV. 26)
2 J),(1+1:C_‘22§Q)— AE(2+Cose)[' + ‘2{2+{2(|+211)+V'3'A§5 ne}] (

- 2 Spr —_— [
r lgine 6AE

2(|+21})+\["_] cos® (Iv.27)

After substituting the known values, the equivalent Poisson's ratio

takes the form:
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QZ
+ 4V +43 %
Se-gozle 3 A (1v. 28)
z [+ av 445 L]
And for incompressible interstices { ¥ = 1/2) this becomes:
e
*. 7 4WVSAT 7 (IV. 29)
"'=73 79 8

T-I'\IEJE %"Poo

Thik value of p * is nothing unusual, because the structure of the
interstices is non-isotrdpic and the value of j * will vary with the
axis of orientation, For example if a square frame is pulled
uniaxially in the direction perpendicular to its faces the value of
¢ * is zero, On the other hand if it is pulled in the diagonal
direction the value # * becomes =1, The equivalent elastic

modulus for this case becomes:

. |
B 6343 _A (IV. 30)
= T+ evg L B

or for incompressible interstices:

E*__ €343 A

— O (IV. 31)
>0

E 79 -+ 4,,,:-.3-'__%; g2

>he

C. Combined Structure

Now, in order to represent the actual foamed structure by
combining the above two types of structure, we adjust the amount of
content of each type of structure in the combined structure such
that the over-all value of #* is equal to the experimental value for

certain typical voids content (we use 47(70 voids). For such avoid
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content, the hexagonal-closest packing gives the equivalent
Poisson's ratio as:

y¥= o0.184

while the face-centered-cubic-closest packing gives a value of:

7*= 0.386
If the combined foam structure consists of 67. 4%
hexagonal packing and 32, 6‘70 face-centered-cubic packing then the
equivalent Poisson's ratio of such structure will give the value

exactly the same as the previously measured value,
V* = o.25

Now we use this combined structure containing the two types of
structure in the above ratio and calculate the value ¢ * for 87‘70

voided foam structure for an example, we obtain
1/* = 0,35

which compares favorably with Gent and Thomas' (44) observed
value #* = 0,33 for the similar void content. In actual foam

it is observed that there is no systematic trend of dependence of
Poisson's ratio on void contents and the Poisson's ratios of
natural rubber for a wide range of void contents fall in the vicinity
of 0,33 (44). This maybe ascribed not only to the errors involved
in measuring small dimensional changes but also to the buckling\
of threads at the extensions for which measurement is possible,

Thus the calculated values of 9/ * based on the above combined
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structure should be reasonable predictions for whole range of
void contents of an actual foam rubber, and thus the idealized

model is reasonably good.
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APPENDIX

DERIVATION OF CONSTITUTIVE STRESS-DEFORMATION LAW
FOR A HOMOGENEOUS, CONTINUOUS, ISOTROPIC MATERIALS

(22)

Let
_ 2" ™ 2X™ aX™
si,k T 28l 26k G£k= 0L 26K (A.1)

be the metric tensors respectively for the undeformed and deformed
bodies, where

xi : undeformed rectangular cartesian coordinates

Xi : deformed rectangular cartesian coordinates

i .
©" : general curvilinear coordinates.

Define a deformation tensor, M{k as:

. pm
MI’K:‘- 8 Gmk (A" 2)
(not necessarily
symmetric)

The strain energy per unit undeformed volume for the above
material is a function only of the three invariants of the deformation

i .
tensor, M'k s 1.8,

where
In=—l gl o L A
M 11 (j L P TT‘ M'K ( '4)
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_ 1l k2§ o2 i K
Ly =27 &M= = (1, - MicMy) (4.5)
tkm . 3
I,,=—578 1w MaMy M= Det M, (A.6)

From the principle of virtual work we obtain:

. ik ¢,
SW =4I, T, = VI, T—E‘g’i“— (A.7)
where
Tk =5 (Gix - k) (A.8)

Then the tensorial stresses at a point in the deformed body,

. i .
referred to curvilinear coordinates @, become:

kL2 W 2 W 3Mk 2 smiawﬂ_
TVE, 3G VEn M 26 VI, Y M«

or

Tik____ 2 Smi[aw 3Im aW 2@y ;‘_?W 'amM]
JI,, 3T 3M% 3L 3ML T 3, omn

Now, differentiating equations A.4, A.5, and A, 6 with

respect to the deformation tensor M, we have:

2Im K
- $
‘K

(A.9)

(A.10)

m (A.11)

ol _ 1, 8% - Mm% = I, (MK - I, (MO (M), (AL12)

amm
L
=)
2R ST, S = Tu MU+ MY M7 = I, (M) (A.13)
K
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where (M )"m is the inverse of M,m » and the second halves
of relations A, 12 and A, 13 are obtained by using Cayley-Hamilton's
Theorem,
Substitution of relations A,11, A.12, and A,13 into A, 10
yields a general form of constitutive stress-deformation law:

i 2 W i W ki
ik =-‘F][—'_M[ __aa___i_; skl.__ mMﬁG Sﬂ.nG‘“L +(]IM%IZ+]1M )G ] (A.14)

Now the physical stresses Blk at a point Xi in the deformed
body, referred to the rectangular cartesian coordinates 'Xl are
obtained by setting 61 = Xi. By so doing, the relations A,4,

A.5 and A, 6 are reduced to
In=1, 5 E=1, , .= IS (A.15)

and equation A, 14 is reduced to the form:

5 i 23w W
OT=O’ .‘T—a—"'[alc -I351 31, )»k+(123;g‘:7+'_[3 )é ] (A.16)

which is equation I, 2,
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- Bonded

“—Undeformed State

Deformed State

FIG.I11.1. Schematic Draving of an Infinitely Liong Rubber Log
Spread Lengthwise by a Bonded Wedge.

A Cosh x,
mx + B
mx + B
|
|
!
|
|
: Cosh x :
| |
|
L —— L
Xmin© Xmax X
U\min <) (Amox > )

FIG.IIl.2. Plots of Extreme Condition, mXo( T + B - cos th . 0.
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FIG.III.4. Surface Tractions Required for the Spegiofied
Deformation Field {Flank Anpgle, 26 = 907).
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FIG. IV.1. Hexagonal Closest Packing

FIG. IV. 2. Interstices of Hexagonal Closest Packing
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FIG. IV. 3. Face Centered Cubic Closest Packing.

FIG. IV.4. Interstices of Face Centered Cubic Closest Packing.
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FIG. IV.5. Pentagonal Packing. FIG. IV.6. Interstices of Pentagonal
Packing

FIG. IV.7. Actual Structure of Foam



At Junction B.

CUT- OFF BOUNDARY

(B) Top View
FIG. IV.8. Idealized Interctices for Hexagonal Closest Packing.
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) Due to
Bending

@) Due to Tencion (b) Due to Shear

FIG. IV.9. Deformation of Member OB.

~

f—
wio

A
P
M ™ ® 0
MCQ\ /()H A%/ CO
"C/"NHM 4\
P 1=2.A
©)

@) (b)

FIG. 1V.10. Free Body Diagram of Members OA, BC, OB.
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T

(¢) Free Body

Diagrams of
OM and OA.

N

Unit Structure

@)

Idealized Interstices for Face Centered Cubic

Packing.

FIG.I1V. 11.



