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Abstract 

Three separate topics, each stimulated by experiments, are treated theoretically in 

this dessertation: isotopic effects of ozone, electron transfer at interfaces, and in

tramolecular directional electron transfer in a supramolecular system. 

The strange mass-independent isotope effect for the enrichment of ozone, which 

has been a puzzle in the literature for some 20 years, and the equally puzzling un

conventional strong mass-dependent effect of individual reaction rate constants are 

studied as different aspects of a symmetry-driven behavior. A statistical (RRKM

based) theory with a hindered-rotor transition state is used. The individual rate 

constant ratios of recombination reactions at low pressures are calculated using the 

theory involving (1) small deviation from the statistical density of states for symmet

ric isotopomers, and (2) weak collisions for deactivation of the vibrationally excited 

ozone molecules. The weak collision and partitioning among exit channels play ma

jor roles in producing the large unconventional isotope effect in "unscrambled" sys

tems. The enrichment studies reflect instead the non-statistical effect in "scrambled" 

systems. The theoretical results of low-pressure ozone enrichments and individual 

rate constant ratios obtained from these calculations are consistent with the corre

sponding experimental results. The isotopic exchange rate constant for the reaction 

160 + 180 180 ----+ 16 0 180 + 18 0 provides information on the nature of a varia

tionally determined hindered-rotor transition state using experimental data at 130 

K and 300 K. Pressure effects on the recombination rate constant, on the individual 

rate constant ratios and on the enrichments are also investigated. The theoretical 

results are consistent with the experimental data. The temperature dependence of 

the enrichment and rate constant ratios is also discussed, and experimental tests are 

suggested. The desirability of a more accurate potential energy surface for ozone m 

the transition state region is also noted. 

Electron transfer reactions at semiconductor /liquid interfaces are studied usmg 
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a tight-binding model for the semiconductors. The slab method and a z-transform 

method are employed in obtaining the tight- binding electronic structures of semicon

ductors having surfaces. The maximum electron transfer rate constants at Si/viologen2-/+ 

and InP /Me2 Fc+/O interfaces are computed using the tight-binding type calculations 

for the solid and the extended-Hiickel for the coupling to the redox agent at the in

terface. These electron transfer reactions are also studied using a free electron model 

for the semiconductor and the redox molecule, where Bardeen's method is adapted 

to calculate the coupling matrix element between the molecular and semiconductor 

electronic states. The calcula,ted results for maximum rate constant of the electron 

transfer from the semiconductor bulk states are compared with the experirnentally 

measured values of Lewis and coworkers, and are in reasonable agreement, without 

adjusting parameters. In the case of InP /liquid interface, the unusual current vs ap

plied potential behavior is additionally interpreted, in part, by the presence of surface 

states. 

Photoinduced electron transfer reactions in small supramolecular systerns, such 

as 4-aminonaphthalimide compounds, are interesting in that there are, in principle, 

two alternative pathways (directions) for the electron transfer. The electron transfer, 

however, is unidirectional, as deduced from pH-dependent fluorescence quenching 

studies on different compounds. The role of electronic coupling matrix element and 

the charges in protonation are considered to explain the directionality of the electron 

transfer and other various results. A related mechanism is proposed to interpret the 

fluorescence behavior of similar molecules as fluorescent sensors of metal ions. 
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Introduction 

The research presented in this thesis focuses on the theoretical treatment of 

two types of chemical reactions: the recombination reaction of ozone and electron 

transfer reactions at semiconductor /liquid and metal/liquid interfaces and within a 

supramolecule. In this Introduction, I summarize the various chapters. The strange 

isotopic effects of the formation of ozone have been a puzzle in the geophysics and 

geochemistry literature for some 20 years and we hope to provide here a systematic 

explanation of the many and varied experimental observations. The research on the 

semiconductor/liquid interfacial electron transfer, as well as that on the directional 

electron transfer reaction in 4-aminonaphthalimide was also stimulated by experi

ments, the semiconductor experiments being those of Nate Lewis and coworkers at 

this institute. 

Various ozone isotopic effects are considered in Chapters 1 and 2. Both the strange 

"mass-independent" isotope effect in ozone formation in "scrambled" system and the 

equally puzzling large unconventional mass-dependent effect in "unscrambled" sys

tems are treated. The field itself, it has been suggested in the literature, provides 

added insight into diverse phenomena, such as stratospheric/tropospheric mixing~ 

oxida.tive processes in the stratosphere and mesosphere, and the nature of ancient 

atmospheres. (References for the remarks in this introduction are given in the appro

priate chapters.) 

A small non-statistical factor introduced by Hathorn and Marcus is employed in 

applying the RRKM theory to the present treatment. However, the present study 

extends this previous work in our group in two rnajor aspects, which now permit 

the treatment of a large body of data at various tern peratures and pressures, instead 

of only at low temperatures (130 K) and low pressures (Most of the experimental 

data are at the room temperature.): (1) a hindered rotor transition state determined 

variationally is used instead of assuming a. "loose" transition state, and (2) a weak 

collisional energy transfer and a master equation formalism is used for the recombi

nation reaction of ozone, instead of the strong collision assumption used earlier. The 
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importance of weak collisions in the activation-dea.ctivation processes has long been 

recognized, especially for understanding detailed experimental results on pressure 

effects in unimolecular reactions. Pressure and temperature effects on the recombina

tion reaction rate constants, on the enrichment, and on the rate constant ratios are 

all treated in Chapters 3 and 4 of this thesis. These various experiments are listed in 

Table 1 of Chapter 1. 

The information on the transition state is obtained from the temperature de

pendence of exchange reactions rate constant. Although the exchange reactions are 

studied at low pressures, the information they provide is, under a certain condition 

noted in Chapter 2, closely related to that which is normally provided by the high 

pressure rate constant. The assumption of a loose transition state, i.e., free rotation 

of the reacting diatom.ic molecule in the transition state, leads to a positive or only 

extremely small negative temperature dependence. Accordingly, to conform with the 

experimental data, which show a large negative temperature dependence, a hindered 

rotation of the diatomic species is incorporated in the present treatment of the tran

sition state. The latter is located variationally and is then applied to study all the 

other effects considered in this thesis. 

In Chapter 3, a treatment of the effect of pressure on bimolecular recombination 

and unimolecular dissociation is discussed. The analysis of recombination and dissoci

ation is n1ade by showing how the nonequilibrium energ:v (E) and angular momentum 

(I)-dependent steady-state population distribution functions for these reactions are 

related to each other and to the equilibrium population distribution function a.t that 

E and J. As a. special case a strong collision model for the collisional angular momen

tum transfer and a step ladder model for the energy transfer, also used in Chapter 1 

and 2, are used here. An analytical result is obtained for states below the dissociation 

threshold. 

Electron transfer reactions at interfaces are treated in Chapters 4, 5 and 6. Elec

tron transfer reactions at semiconductor electrode/liquid interfaces have been of inter

est in many experimental and theoretical studies. The understanding of the dynam

ics of these reactions has the potential of being helpful in constructing efficient and 
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stable photoelectrochemical cells and other applications, and in understanding the 

basic chemical reactions. Due to the instability and the non-ideal behavior of most 

ser11iconductor electrodes in conta.ct with liquids, only recently have reliable kinetic 

measurements been performed at .semiconductor/electrolyte interfaces. In Chapter 4 

an estimate is made for the electronic coupling strength between the semiconductor 

bulk states and the molecular electron a.cceptor, using a tight- binding treatment of 

the solid and an extended Ruckel treatment of tl1e molecule. The semiconductor elec

tronic wave functions are obtained using a "slab" method and a method developed 

some years ago in our group, the z transform method. The maximum electron trans

fer rate constant at Si/viologen2+/+ and InP /Me2Fc+/O interfaces are then calculated 

and compared with experiments. 

Mainly motivated by the non-ideal behavior of the current/ applied potential be

havior at the InP /Me2 Fc+/O interfa.ce, the role of surface states in interfa.cial elec

tron transfer reactions was also investigated. In treating the electron transfer at 

InP /MezFc+/O interfaces, the possibility of surface states was subsequently included 

in Chapter 4, as one interpretation of the non-ideal current vs applied potential be

havior in the experiments. 

For a simpler description of the electron transfer reactions between the semrcon

ductor bulk states and the molecular acceptors, a free electron model is developed 

in Chapter 5. In this model, the electrons in the semiconductor are treated as free 

electrons in a semi-infinite potential well with a constant potential inside the well and 

a known effective mass. The electronic wave function of the molecule is obtained by 

solving a Schrodinger equation whose potential is constant inside a spherical potential 

well and is zero outside. The electronic coupling matrix element is then obtained by 

adapting Bardeen's method, and from it an approximate expression for the maximum 

electron transfer rate constant. 

In Chapter 7, the z-transform method is a.dapted to treat composite ITlaterials, 

e.g., solid/ solid interfaces and "molecular wire"/ solid interfaces. It proves to be useful 

for the study of both bulk and interfacial states for these materials. The existing 

conditions for interfacial states are obtained and discussed using this method. There 
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are many applications which could be made usmg this technique, evaluating and 

comparing with other methods which have been used in these systems, but the present 

study for this thesis was limited to being an exploratory one and to showing the 

feasibility of applying this approach to these series of problems of both scientific and 

technological interest. 

In Chapter 8, photoinduced intramolecular electron transfer reactions in a supramolec

ular system ( 4-aminonaphthalimide) are treated. Of particular interest is the direc

tionality of the electron transfer observed in the experiments. This selection of the 

electron transfer pathway was explained in the literature by assuming that a local 

internal electric field created on a molecular scale by excitation serves to direct the 

electron transfer. In the present study, the structure of tbe model system and the 

pH-dependent quenching of the fluorescence are considered, and an alternative expla

nation is proposed based on the calculation of the coupling matrix elements for the 

electron transfer readions through the two different pathways. This mechanism also 

provides an explanation for the shift of spectra 1T1easured at different pH, and is also 

proposed to interpret the fluorescence behavior of similar molecules as fluorescent 

sensors of metal ions. Experimental tests are proposed. 

In summary, the present doctoral dissertation treats theoretically problems in a 

variety of fields, which have in common that all were stimulated by striking, and 

in some cases puzzling, results in the literature. In the case of ozone problem, the 

results have previously defied explanation and it is hoped that the theory developed 

in this dissertation will provide a stimulation for understanding more deeply at the 

chemical physics level the wide variety of analogous recombination reactions in the 

upper atmosphere using isotopic tools. Many examples of unconventional isotopic 

effects have been reported in the geochemistry/ geophysics/physical chemistry litera

ture, but until now there has been no underlying theory which had the possibility of 

explaining them. 
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Strange and Unconventional Isotope Effects in Ozone Formation 

Yi Qin Gao and R. A. Marcus 

Noyes Laboratory of Chemical Physics, Mail Code 127-72 

California Institute of Technology 

Pasadena, California 91125 

Abstract 

The puzzling mass-independent isotopic enrichment in ozone formation contrasts 

markedly with the more recently observed large unconventional mass-dependent ratios of 

the individual ozone formation rate constants in certain systems. An RRKM-based 

theory is used to treat both effects. This theory contains devia6ons from the statistical 

density of states, greater for the vibrationally hot symmetric than for the asymmetric 

ozone isotopomers, weak collisions for the deactivation of the vibrationally hot 

molecules, and variationally determined hindered rotor transition states. The resulting 

restrictions of symmetry on how energy is shared among the rotational/vibrational states 

of the ozone isotopomer, together with an analysis of the competition between the 

transition states of its two exit channels, permit the calculation of isotope effects 

consistent with a wide array of experimental results. Different types of experiments 

emphasize these different theoretical effects. 
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Introduction 

A puzzling "mass-independent" isotope effect, reported in 1973 for 160/70/180 

ratios in meteorites initially was attributed to nucleosynthetic processes (1). The validity 

of that description is still uncertain. In 1981 the enrichment of 180 in ozone in the upper 

atmosphere was observed (2-6), and in 1983 the mass-independent effect was found for 

ozone formation in the laboratory (7-15) and then in the upper atmosphere (16-18). 

Laboratory studies of the formation of ozone from the recombination of oxygen atoms 

and oxygen molecules have shown that there is an approximately equal enrichment of 170 

and 180 over 160 , instead of the enrichment ratio being the standard literature mass-

dependent value (19,20) close to 112 found in other reactions [(cf., also (21-24)]. A 

"mass-independent" effect is also seen in heavily enriched mixtures (25-29). More 

recently, and paradoxically, large unconventional mass-dependent isotopic effects were 

observed under special experimental conditions ("unscrambled" conditions, i.e., little 

complication from isotopic exchange) (30-33). The theoretical treatment given in the 

present article is designed to treat mass-independent and mass-dependent processes, as 

well as others (5,12-15,34-41), and to show that there are two distinctly different effects 

in the theory, one dominant in the scrambled and the other dominant in the unscrambled 

experiments. 

It was once thought that the explanation of the mass-independent effect might 

have a simple symmetry origin: In the formation of ozone with trace 
17

0 and 
18
0, these 

isotopes have in common that they alone can form an asymmetric isotopomer, e.g., 
17

0 + 

16
0 

16
0 ~ 17

0 
16

0 
16
0. Statistically, 16

0 
16

0 
16

0 possesses, because of the symmetry of the 

17 16 160 d 180 160 160 symmetric ozone, one half the number of quantum states that 0 0 an 
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do. However, it was subsequently recognized that this simple statistical factor of 1/2 is 

automatically incorporated into the definition of the enrichment [(cf also (24)], and so a 

different explanation was needed- even if it might involve symmetry in a subtler role 

(42,43). 

Here we present a theory which draws upon the statistical (RRKM, Rice, 

Ramsperger, Kassel, Marcus) theory of unimolecular dissociation/bimolecular 

recombination reactions (44,45) in its variational form (46-49). It initially involves the 

formation of vibrationally excited ozone isotopomers from the recombination of 0 and 

RRKMtheory 

In RRKM theory (50) for a bimolecular recombination X + YZ --7 xyz• (the 

asterisk denoting a vibrationally excited molecule) the vibrational-rotational energy of 

xyz· is assumed to be statistically distributed among its vibrational-rotational modes, 

consistent with the given total energy E of those modes (that is, a microcanonical 

distribution) and total angular momentum J. The molecule can redissociate, xyz• ~ XY 

+ Z or X + YZ, or lose or gain in its excess energy by collisions, the losing being the 

more prominent, and eventually form a stabilized XYZ molecule. In the present instance 

of ozone formation, X, Y and Z may be the same isotope or any combination of different 

. 160 170 180 ISOtopes , , . 

Because of the statistical assumption and the use of transition state theory (50), 

the unimolecular dissociation rate constant k£1 for a vibrationally excited molecule of 

vibrational-rotational energy E and total angular momentum J is (44-48) 

(1) 
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where Nl1 is the number of quantum states accessible to the "transition state" for the 

dissociation for the given E and J, and pEl is the density (number per unit energy) of 

quantum states of the vibrationally excited molecule. The bimolecular rate constant to 

form this hot molecule is given by a related expression, e.g., (42, 43, 49), because of 

"microscopic reversibility." 

Nonstatistical aspects 

As a modification of RRKM theory it is argued that the effective pEl in Eq. 1 

might be less than the statistical value, and more so for the symmetric isotopomers XYX. 

than for xyz·. This p£
1 

should be only the density of the quantum states of the triatomic 

molecule that are sufficiently dynamically coupled to the two "exit channels" that they 

can lead to the dissociation of the molecule in the typical lifetime of the latter: After the 

formation of the vibrationally excited molecule the subsequent redistribution of the 

energy among its vibrational-rotational modes at the given E and J proceeds at some 

finite rate and may be incomplete during the typical lifetime of the molecule (the non

RRKM effect). The pEl in Eq. 1 should then refer only to the quantum states which have 

been equilibrated intramolecularly. 

Examples are known from various experiments, e.g., (51-53), which illustrate the 

time needed for this internal equilibration of isolated molecules. Since there are fewer 

dynamical coupling terms (e.g., anharmonic vibration-vibration and Coriolis vibration

rotation) in the symmetric XYX than in the asymmetric XYZ, some terms being 

forbidden by the symmetry, it was suggested (42,54) that this nonstatistical (non-RRKM) 

effect for p£
1 

is expected to be greater for XYX than for XYZ. This idea remains to be 
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tested by direct real-time experiments proposed later, or by very detailed accurate 

quantum dynamical calculations yet to be made. 

The situation just described is depicted schematically in the cartoon in Fig. 1: 

dming the typical lifetime of the dissociating ozone the shaded regions indicate the ozone 

quantum states sufficiently strongly coupled dynamically to the two exit channels so as to 

contribute to p£1 during that lifetime. The shaded region for the asymmetric molecule is 

drawn as a greater fraction of the total region than is that for the symmetric molecule for 

the dynamics-based reason given above. The ratio of the fraction of shaded to total region 

for the asymmetric molecule to the same fraction for the symmetric molecule is denoted 

by 'l'), a symbol introduced previously for this purpose (42,54). 

New features in present treatment 

In the recent article ( 43) which applied these ideas in ( 42) the simplest possible 

transition state for the reaction X+ YZ -7 xyz· was assumed for convenience, namely, a 

transition state xyzt, frequently called "loose," in which the YZ rotates freely. The 

transition state for a barrierless recombination reaction is typically loose when the energy 

of the recombining particles is low enough, e.g., (43,55-58). However, more generally, it 

is expected that the rotation of YZ is somewhat hindered in the transition state xyzt, 

particularly with increasing total vibrational-rotational energy E of the ozone (43, 55-

58). If, as at low energies, the 0
2 

••• 0 distance in the o1 transition state is large, the 0 2 

indeed can rotate more or less freely. Although this simple assumption of free rotation of 

the 0
2
in o1 was very useful in (43), we avoided it here in order to generalize this 
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previous work and so include in the treatment a much wider range of experimental 

temperatures and pressures. The two approaches are compared in (49). 

A second major difference between the treatment in the present article and that in 

(42, 43) is the elimination of a "strong collision" assumption: it was assumed in (43) that 

every collision of the XYZ* with a molecule Min the surrounding gas deactivates (and so 

stabilizes) an xyz·. In the case of "weak" collisions, on the other hand, the average 

energy lost by xyz· in "downward" collisions (!lE) and the energy gained in "upward" 

collisions can be relatively small. Some limited information on collisional energy 

transfer with vibrationally hot molecules such as xyz· is available in the literature from 

experiments and from classical trajectory calculations (59-62). A "master equation" ( 47-

49) is now used to treat these weak collisions. The limitation imposed by weak collisions 

is profound: only XYZ*'s with low energies (excess above threshold) can be deactivated 

at low pressures, collisions being few then, thereby affecting various properties, as listed 

later in Table 1. 

To determine the nature of the transition state (e.g., loose, "tight," hindered) 

variational RRKM theory can be used, but some potential energy surface for the ozone 

formation is needed. At present, the ab initio surface in the literature (63) is inadequate. 

For example, there should be no energy barrier in the entrance channel from X+ YZ (64). 

The use of an empirically modified smface (65) which eliminates this barrier led to 

results which disagreed ( 49) with the known isotopic exchange rate data. In the interim 

we have adopted (49) an approximate model which is consistent with those data. The 

potential energy smface and the calculation of the number of states N£
1 

along the reaction 

coordinate in a given exit channel serves to determine variationally (50) the transition 
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state (TS) for that channel, whose N£1 is then denoted by Nl1 , and appears in Eq. 1. The 

choice of transition state affects mostly the pressure effects and the temperature effects at 

higher pressures, and the isotopic exchange reactions, but it also has some influence on 

the other quantities listed later in Table 1. 

Application to ozone formation 

We consider a reaction scheme involving recombination, deactivation, activation 

and redissociation, given by X+ YZ --7 XYz·, XYZ* --7 X+ Y Z, xyz· --7 XY + Z, 

and, further, a se1ies of collisional activation/deactivation steps which can lead eventually 

to a full deactivation, xyz• + M --7 XYZ + M. The second and third steps represent the 

two dissociative exit channels from xyz·, a and b, and are equivalent when Z =X. As a 

convention in these studies a was chosen (42) to be the exit channel with the lower zero

point energy of the diatomic molecule. The bimolecular rate constant of the above 

reaction, X+ YZ --7 XYZ, is denoted below by kbi or kgi, according as YZ or XY has 

the lower zero-point energy. 

An expression can be obtained for the net bimolecular reaction rate constant kbi for 

the recombination: To implement the collisional deactivation/activation scheme we 

employed (49) for simplicity a "stepladder" model (48), in which the xyz· gains or loses 

its energy in collisions in discrete amounts ("steps"), M. In the interests of brevity, we 

use as an illustration here an expression for kbi which is a special case of our more general 

results: We consider the special case where there is only one step of the ladder that is 

reactive but where there are any number of steps below the dissociation threshold of 

XYZ" (66). We then have (66) 
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J 
k k 

k a = " a diff dE 
bz .::... k k k geq 

J AE 'a + b + 'diff 
(2) 

where ka.b = ka.b (EJ) is the dissociation rate constant given by Eq. 1. The kdiffdenotes the 

rate constant for the stepwise collisional deactivation of XYZ' (a stepwise "diffusion" 

process in energy space), and geq is the equilibrium distribution function of the (EJ) states 

of XYZ'. The integration over E is over an interval equal to the step size !J.E, and the 

summation (or integration) is over all J. At low pressures, the kdiffin the denominator can 

be neglected, and in that case the factor k/(k" + kb) in the integrand plays a prominent role 

for the individual rate constants. It equals N~} I(N~} + N~J) and was termed the 

partitioning factor ya in (42, 43), because it "partitions" the dissociation rate of xyz· into 

the two dissociation channels. The "strong collision" model used in (42, 43) can be 

retrieved from Eq. 2 by letting !J.E become very large. In that case it can also be shown 

that kdiff equals m, the collision frequency appearing in ( 42, 43). 

Enrichments 

The enrichment 8 of 170 and that of 180 over 160 in the fmmation of ozone, 

denoting the 170 or 180 by Q, is defined by (67,68) 

8
Q = Q I 0 in ozone _ 

1 
Q I 0 in oxygen 

(3) 

Expressions for each 8Q were given in (42) in terms of the individual rate constants and 

certain equilibrium constants. 

When the study is made, instead, of systems heavily enriched in 170 and/or 18
0, 

the definition used for the enrichment for an ozone molecule of mass M relative to 48
0 3 is 

£"' (25, 42): 
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l( M J /( M J J M 03 03 
E = ~ ~ -1 

03 meas 0 3 calc 

(4) 

The denominator in Eq. 4 is calculated statistically from the isotopic composition of the 

0 2 (42). The It"' can be shown to reduce to the 8° upon reducing the mole fractions of 170 

and 180 to trace amounts (49). 

Individual rate constants and ratios 

The ratios of rate constants calculated for the specific isotopomelic recombination 

reactions, X + YZ -7 XYZ, are used to compare with the experimental data on them and 

also to calculate the enrichments 8° and It"' (69) and compare with the data on the latter. 

The expression ( 42, 43) for the exchange rate constants X + YY -7 XY + Y at low 

pressures, where the measurements of the isotopic exchange rates are made, was also 

readily obtained (42, 43): In the solution of the master equation in the low-pressure limit 

we note that the large majority of XYZ''s will redissociate. When dissociation occurs via 

the other exit channel, an isotopic exchange has occurred. A simple expression for the 

isotopic exchange rate constant was then obtained. It is independent of the details of the 

collision process (42). 

The individual recombination rate constants at low pressures were obtained using 

a more elaborate version of Eq. 2, one which involves the detailed solution of the master 

equation for the collisional deactivation/activation and reaction steps, for many "steps" in 

the stepladder (49). AM -210 cm-1 was used for the deactivating collisions (49). The 

two quantities, M and 11 (= 1.18), were chosen to fit the two experimentally measured 
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We note in passing that in Eq. 2 kd1ffand the p£1 in the k's occur as a product, since 

the k£1 (here ka and kl>) in Eq. 1 is proportional to 1/p£1 and the g,q is proportional to pEr 

Thereby, all results for the present data would be unchanged if the '11-effect were ascribed 

instead to a kdiff' as examined in (49). 

Results 

The various experimental results (Table 1, Figs. 2-4) are compared with the 

calculations. The results in Figs. 2 and 3 for the "unscrambled systems" show a strong 

and unconventional mass-dependence. Their correlation with ratios of masses given in 

Fig. 3 of (43) contrasts with the usual isotopic mass-dependence described for other 

reactions in a pioneering article (71). The results in Fig. 4 for~ and those for 8Q for 

trace systems show the "mass-independence": Although the enrichments of all 

isotopometers XYY + YXY in Fig. 4 are not exactly equal, i.e., strictly mass

independent, they are seen to vary far less widely than the ratios of k"/s do in Figs. 2 and 

3. We have also indicated in Table 1 the relative importance of the various properties Y, 

Y}, M, and TS (transition state) in each type of measurement. 

Discussion 

We first note that in the formation of ozone, the insertion reaction of 0 into 0 2 is 

assumed to be negligible, in agreement with current data (32). Before proceeding to 

discuss the present results, we first comment on the heart of the explanation (42,43) for 

the paradox described earlier: Under unscrambled conditions the vibrationally hot 

molecule XYZ' is formed only from one entrance channel, the channel depending on the 
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initial choice of reactants. Small differences in zero-point energies of these two entrance 

or exit channels lead to major effects on kbi and kgi: The unexpected effect of small 

differences in zero-point energies on the individual rate constants and rate constant ratios 

occurs by affecting the partitioning factors Y" and Y,,. At the lowest energies Ya = 1 and Yb 

= 0, while once the zero-point energy of b has been exceeded, the number of states NZJ 
grows approximately as the square of its excess energy above this zero-point energy (49), 

but meanwhile N~J has been growing roughly as the square of its excess over its zero

point energy. The result is a large difference ( 49) in Y" and YJor most of the energy 

region of interest at low pressures (energies less than the step size), and so a kbi can be 

quite large. For kgi,in contrast, there is no low energy region where Yb= 1. Instead, Yb 

typically begins at Yb:::: 0. In (43) it was shown that the individual recombination rate 

constants kbi correlated well with a property which depended only on certain differences 

in masses, namely zero-point energies, moments of inertia, or reduced masses, all three of 

which were shown to be simply related to each other. (Cf Fig. 3 in ( 43) and the remarks 

in its Legend and in Sec. VI there.) Indeed, in the theory all three properties contribute to 

Ya and Yb (43). 

Under isotopically "scrambled" conditions, i.e., conditions where extensive 

isotopic exchange affects the observations, both entrance channels leading to XYZ' are 

accessed and it was shown mathematically that the partitioning factors Ya and Yb have 

disappeared (42). The essence of the underlying physical basis is surprisingly simple: 

entrance via the a channel yields a Y" factor at low pressures, while entrance via the b 

channel yields Yb. The sum Y" + Yb is unity and so, for the enrichments, the partitioning 
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factors and their dramatic nonconventional isotope effect have vanished, because of this 

access to xyz· from both entrance channels. The nonstatistical effect mentioned earlier 

is the only influence now left and yields the "mass-independent" effect (42, 43), which is 

exhibited in Fig. 4 and in Table 1. The disappearance of the partitioning factors in the 

enrichment experiments yields the dramatic effect in Fig. 4, seen in the marked contrast 

between the 11 = 1 and the 11 = 1.18 results. 

As the above discussions of the theory illustrate there are two types of isotope 

effects in the theory for the phenomena: There is the partitioning effect between the two 

competing transition states, which affects strongly the ratios of rate constants measured in 

"unscrambled" experiments, as in Figs. 2 and 3. There is also the non-RRKM effect in 

the ozone molecule itself, namely a deviation from the statistical (RRKM, 

microcanonical) density of states pEl of the ozone isotopomer itself, and which differs for 

vibrationally excited symmetric (XYX) as compared with asymmetric (XYZ) ozone 

molecules. It is the principal factor affecting the enrichments. Thus, the two types of 

isotope effects, which are seen to have distinctly different theoretical origins, are also 

revealed separately by the two types of experiments, scrambled and unscrambled. 

The comparison of many expe1iments and theory is summarized in Table 1. We 

first note that in the large body of experimental data listed there, some data are sensitive 

to the weak collision aspect, M, but relatively insensitive to the nature of the transition 

state, while others are sensitive to the partitioning factors Y. Still others are sensitive to 

the nature of the potential energy smiace and the transition state, and are denoted in Table 

1 by TS. We have indicated in this Table which measurements are sensitive most to each 

of the quantities, M, Y, 11, and TS. For example, all of the data in Figs. 2-4, the low 
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pressure kbi for 160 + 320 2 -7 
480 3 and its temperature exponent n, are dependent on l:l£, the 

mean downward energy transferred from the xyz* per collision, but are relatively 

insensitive to TS, in particular to the short-range effects of the potential energy surface 

(49). The temperature effect on the individual rate constants is influenced by M: the 

smaller the 6E, the larger the negative exponent n in Table 1, since a smaller M implies 

that a smaller proportion of the reacting molecules at the higher temperatures can 

contribute to the recombination rate at low pressures. 

We have not shown the pressure effects on the enrichments and individual rate 

constant ratios but note that we have found the calculated results to be in reasonable 

agreement with the experiments ( 49, 72). The temperature effect on enrichment (15) 

remains to be explored theoretically, but one factor may be a decrease in '11 with 

* decreasing temperature, because of a longer lifetime of 0 3 at low temperatures and so 

more time for redistribution. Dynamical information on '11 and M which can be inferred 

from temperature effects, within the assumptions of the present theory, are described in 

the concluding remarks. Given an experimentally measured enrichment 6Q for Q = 17, 18 

at other temperatures, predictions can be made of the various k~i and kgi 'sat those 

temperatures (49) and an example is given in (49). 

The present results provide a rationale for an ad hoc assumption used in (43), 

though not here. In ( 43) a "loose transition state," which is appropriate for low energies, 

was used, together with strong collisions, to treat the experimental data in Figs. 2-4. The 

ad hoc assumption was that the ratios of these rate constants would approximate the 

ratios at room temperature, even though the latter have a hindered transition state. The 
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existence of the present •E tends to limit the actual low pressure studies to low energies. 

Thus, ozone molecules formed with an energy excess over the threshold greater than fl.E 

are not deactivated in a single collision regime, which is the regime occurring at low 

pressures, so providing a rationale for the use in ( 43) of low energy k"/ s. 

The key isotope effects in the present paper, 11 and Y, are in a sense symmetry-

driven: the deviation of the Y's from 1/2 occurs for the asymmetric isotopomers, and the 

Y's are responsible for the large differences in individual rate constants and their ratios. 

The origin of 11 is also a consequence of symmetry. 

The future 

The question arises as to where the theory may go from here. There are individual 

features of the theory which can be tested using delicate molecular beam/laser excitation 

experiments (49), e.g., "pump-dump" or direct high overtone absorption to well-defined 

energies £: The weak dynamical couplings could lead to a real-time biexponential or 

multiexponetial dissociative decay, instead of the single exponential decay expected from 

the usual RRKM (microcanonical) behavior. The dissociative decay at long times would 

arise from the ozone quantum states weakly coupled to the two exit channels. An 

example of a biexponential decay exhibited in classical trajectory studies of a 

vibrationally excited triatomic molecule is seen in (73). 

Further experiments on temperature effects are highly desirable and could provide 

further evaluation of concepts related to the lifetime of o; and its effect on 11 and 11£. 

For example, it was noted earlier that 11 and M were calculated using two pieces of data: 

k f 160 180 130 s20 d f 180 160 160 so0 A . .1 f d h 
'bi or + ~ 3 an or + ~ 3 . s1rm ar use o ata at ot er 

temperatures, when they become available, would provide information on these two 
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quantities at the new temperatures (74). Alternatively, if M were assumed to be 

approximately temperature-independent, then the enrichment at some temperature would 

suffice to detennine 11 at that temperature, from which all other relevant quantities in 

Table 1 could be calculated and compared with future data (74, 75). However, when 

possible, the first choice would be the use of the above two rate constant ratios. 

Isotopic effects are widely studied for other reactions in the upper atmosphere, 

though not yet in the detail accorded to the ozone formation. For gas phase reactions 

where symmetric intermediates can occur the 11 would again enter, while for 

intermediates which are structurally asymmetric, the isotopic effect on 11 would disappear 

but some of the isotopic effect on Y can survive, leading to unconventional isotope 

effects. Thoroughly detailed studies of the type available for ozone would be highly 

desirable for these other reactions, and assist in the detailed understanding of them. 

Unconventional isotope effects have been invoked in discussions of 

stratospheric/atmospheric mixing, oxidative processes in the upper atmosphere, and 

ancient atmospheres (76-79). 

In conclusion we note that the present theory is consistent with the experiments 

we have treated thus far, and can be used to make predictions. If the concepts are correct, 

it also provides detailed information on several dynamical effects. 
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Table 1. Comparison of experiment and theory. All quantities in units of cm3 molecule-
1S-1 are to be multiplied by 10-12

. In the last column, the quantities in parentheses are less 
important. The quantities are defined in the text. 

Experiments 

Ratios of rate constants, Figs. 2 and 3 
(28, 30-33) 

Enrichments 170 (11.3%), 
180 (13.0%) at 300 K (7-15) 

Heavily enriched systems, Fig. 4 
(25-29) 

L 16 30 48 ow pressure 0 + -o
2 
+ M ~ 0

3 

M k 5 10-34 6 1 1 -2 -1 + , -b, = x em mo ecu e s 
(41) 

kbi a y-", n = 2.6 (130-300 K) (41) 

k 160 + 180 180 160180 + 180 
ex --7 ' 

2.9 ± 0.8 cm3 molecule-1s-1 (300 K), 
5.6 cm3 molecule-1s-1 (130 K), 
k,, exT -m, m = 0.88 ± 0.26 (38) 

High pressure kb, 
160 + 320 ~ 480 

2 2' 

18 cm3 molecule-1s-1 (130 K), 
>4 cm3 molecule-1s-1 (300 K) 
(limiting value not reached) (41) 

Pressure effects on enrichments (14,15) 

Pressure effects on rate constant ratios 
(33) 

Temperature effect on rate constant 
ratios 

Temperature effect on enrichment (15) 

Calculated Results 

Figs. 2 and 3 

12.0 and 12.2%, respectively 

Fig. 4 

n = 2.2 

Fitted to data: 
2.7 cm3 molecule-1s-1 (300 K), 
4.3 cm3 molecule-1s-1 (130 K), 
m = 0.53 

10.4 cm3 molecule-1s-1 (130 K), 
6.5 cm3 molecule-1s-1 (300 K) 

Broad agreement (53) 

Broad agreement (53) 

Approximate prediction from 
temperature effect on 
enrichments 8° 

Sensitivitv 
" 

!lE, Y,YJ 

Y] I (!lE) 

Y] I (!lE) 

!lE 

!lE 

TS 

TS, !lE (at 
high T) 

Y] I (!lE) 

!lE, Y,YJ 

!lE, Y,YJ 



XY+X~ 

XY+Z ~ 

30 

XYX 

XYZ 

J ~~ ~ ~~ 
I 

1. 

i 

1111 . II .'I' I 
I 

States stronsdy connected 
to exrts ...., 

s 

States weakly connected 
to exits 

tates s 
to exits 

trongly connected 

~ 

"" 
Ill 
I[ ..,.._X+YZ 

LtU ~I lj' ~~ I . ill ~ '-states 
to exit 

weakly connected 
s 

FIG. 1. Sche1natic picture for XYX and for XYZ of differences in ratios of 

rotational-vibrational states of ozone strongly coupled (shaded region) to 

the two dissociation exit channels of ozone and those that weakly coupled 

(unshaded region) to the exit channels. This difference in ratios has an 

origin in syn1metry, as noted in the text and discussed in (42). In one lirnit 

the unshaded region is absent for XYZ. 
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Abstract 

The strange mass-independent isotope effect for the enrichment of ozone and the 

contrastingly unconventional strong mass-dependent effect of individual reaction rate 

constants are studied here as different aspects of a symmetry-driven behavior. A 

statistical (RRKM) based theory with a hindered-rotor transition state is used. The 

individual rate constant ratios of recombination reactions at low pressures are cal-

cula.ted using the theory involving ( 1) small deviation from the statistical density of 

states for symmetric isotopomers, and (2) weak collisions for deactivation of the vi

brationally excited ozone molecules. The weak collision a.nd partitioning among exit 

channels play major roles in producing the large unconventional isotope effect in "un

scrambled" systems. The enrichment studies reflect instead the non-statistical effect 

in "scran1bled" systems. The theoretical results of low-pressure ozone enrichments 

and individual rate constant ratios obtained from these calculations are consistent 

with the corresponding experimental results. The isotopic exchange rate constant for 

the reaction 16 0 + 180 180 ----+ 16 0 180 + 180 provides information on the nature of 

a. variationally determined hindered-rotor transition state using experimental data at 

130 K and 300 K. Pressure effects on the recombination rate constant, on the individ

ual rate constant ratios and on the enrichments are also investigated. The theoretical 

results are consistent with the experimental data. The temperature dependence of 

the enrichment and rate constant ratios is also discussed. Experimental tests are 
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suggested. The desirability of a more accurate potential energy surface for ozoDe in 

the transition state region is also noted. 

It is shown that the two type of experiments (scrambled and unscrambled) reveal 

markedly different aspects of the ozone problem. In unscrambled systems the parti

tioning effect is dominant, and it is shown how small differences in zero-point energies 

of the two exit channels of dissociation of an asymmetric ozone isotopomer lead to 

large differences in numbers of states in the two transition states and, thereby, to 

large differences in the individual recombination rate constants. For experiments on 

scrambled systems it was shown [J. Chern. Phys. 112) 9491 (2000)] that the par

titioning factors disappear exactly and what is left is the nonstatistical effect. It is 

pointed out how both aspects can be regarded as "symmetry driven" isotopic effects. 
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I. INTRODUCTION 

There is a. wide variety of observations involved in the study of the isotopic effect 

in the recombination of oxygen atoms and oxygen molecules. VVe have summarized 

these results elsewhere. 1 The various experiments involve a. "mass-independent" iso

tope effect in ozone formation in scrambled systems 2- 24 and contra.stingly different 

experimental results 25- 29 in unscrambled systems, which show dramatic unconven

tional mass-dependent effects. In addition, there is the temperature effect on the 

low-pressure recombination rea.ction,30 the isotopic exchange reaction,31 and the iso

topic enrichment,12 and the pressure effect on the recombination rate constant,30 the 

isotopic enrichment9 •12 ,13•28 and the individual rate constant ratios. 28 It has been pro

posed that the field itself provides added insight into diverse phenomena., such as 

stratospheric/tropospheric mixing, oxidative processes in the stratosphere and meso

sphere, and other aspects. 32- 35 

As noted in earlier papers from our group,36 •37 the difference in physical terms 

in the theory of the two types of experiments, scrambled and unscrambled, is that 

in the unscrambled experiments only one of the entrance channels from 0 + 02 

to form a vibra.tiona.lly excited ozone isotopomer, such as XYY*, is accessed, e.g., 

X+ YY ----+ XYY*. In scrambled experiments XYY* is formed also via the additional 

channel, Y + XY ----+ XYY", since the isotopic exchange reaction X + YY --:---'" XY + Y 

is extensive under scrambled conditions. A different and mass-specific percentage of 

the transition state phase space of the two exit channels, described by a "partitioning 

factor," is occupied when the access to it arises only from one channel. This differ

ence in conditions led in the kinetic scheme to a. marked difference in the theoretical 

expressions36 for the two types of experiments. 

The present study extends the previous work in our group in this field in two major 

aspects, which permits the treatment of a. large body of data. at various temperatures 

and pressures, instead of just37 at low temperatures: (1) a hindered rotor transition 

state determined variationally is used instea.d of a "loose" transition state, and (2) 

a weak collisional energy transfer and a master equation formalism is used for the 
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recombination reaction of ozone, instead of the strong collision model used earlier. 37 

The importance of weak collisions in the activation-deactivation processes has long 

been recognized,38
-

43 especially for understanding the detailed experimental results 

on pressure effects. 44-
49 

As before variational RRKM theory50
•
51 is used as the zeroth-order theory, with 

a small perturbation correction for the effective density of states of symmetric iso

topomeric ozone molecules, XXX and XYX, as compared with the asymmetric ones 

YXX or YXZ. (This correction is apart from symmetry numbers, which are also 

included.) The "non-RRKM" correction is small (the density of states for the sym

metric ozone isotopomers are reduced by a. factor r;, chosen later to be 1.18) relative 

to what such a. correction could be, but is large in its consequence for the phenomena. 

discussed in the present paper. 36 More generally, as noted elsewhere/ the asymmet

ric ozone may also show deviation from the statistical behavior, but the deviation is 

greater for the symmetric ozones. In the latter certain anharmonic vibrational cou

pling and Coriolis rotational-vibrational coupling terms are absent, because of the 

symmetry, so leading to an extra nonsta.tistica.l effect for the symmetric isotopomers. 

It is the coupling terms which are responsible for the intramolecular statistical be

havior. 

By introducing the weak collision model for the deactivation of the excited ozone 

molecule by collisions with bath gas molecules (in this study, N2 ), rate equations 

for the population density as a function of the energy E and of the total angular 

momentum J are obtained for ozone recombination reactions. For the collisional 

angular momentum transfer of ozone a. strong collision model is used, which leads 

to a one-dimensional model for the energetic ozone in the energy space. A similar 

reduction of the dimension of the master equations for a unimolecular dissociation 

reaction had been used by Smith and Gilbert. 52 

An important quantity in the weak collisions is the average energy of downward 

transfer .6.E, (.6.E), for the deactivating collisions. Studies have revealed that typi

cally the results for the energy transfer depend mainly on this (.6.E), and are relatively 

insensitive to the functional form of the energy transfer. 44
•
45 In the present study, for 
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simplicity, a stepladder model is used. In the latter the energy transferred between 

the excited ozone molecule and a bath gas molecule occurs in discrete steps, !::..E. 

Thus, at low pressures where only one collision is important during the lifetime of 

a vibrationally excited ozone molecule only low energy states of the energetic ozone 

molecules, those with energy less than !::..E above the threshold, can lead to stabilized 

( deacti va.ted) ozones. 

The isotopic exchange reaction of ozone is also considered in the present study. 

Normally, information about the transition state for a. recombination reaction, such 

as 160 +32 0 2 -
48 0 3 , would be inferred from the magnitude and temperature depen

dence of the high pressure rate constant. However, for ozone formation the behavior of 

the rate constant kbi versus third-body pressure becomes surprisingl:v complex at high 

pressures, except at the lowest temperature studied, 130 K: A plot of log( koi) versus 

log(pressure) swoops upward at high pressures, before tending to approach a. high

pressure limit. Until the complexity of the high pressure behavior is understood (and 

several possibilities have been suggested30
), information about the transition state 

must be sought from other sources. One such set of data, which would be collision

free, would be the dissociation behavior of ozone, studied a,s a function of energy in 

suitable "pump-dump" time-resolved molecular beam experiments. However, these 

experiments have yet to be done. 

An actually available source of data are the isotopic exchange reactions,31
,
53

•
54 

which a.re studied at low pressures. Under a certain condition noted later they provide 

information closely related to that which normally would be provided by the high 

pressure rate constant. In particular, under a certain assumption noted below, an 

expression for the isotopic exchange rate constant is given by Eq. (8) below [Eq. 

(1.12) of Ref. 36]. It is seen there to be independent of the density of the quantum 

states of the energetic ozone molecule and of the deactivational effect of third-bodies, 

factors that are prominent in the expression for the low pressure limit of lcbi· It is 

also free of the complicating effects of pressure at high pressures. 

The principal assumption made in this interpretation of the isotopic exchange rate 

constant is that once an energetic ozone molecule is formed in the recombination it 
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loses its memory of its initial conditions, apart from the presence of certain constants 

of the motion. This common statistical assumption is by no means proven for the 

present system but is useful as a zeroth-order starting point. Indeed, we mentioned 

a postulated small deviation from statistical theory for symmetric isotopomers, but 

even this correction need not influence the partitioning of the states between the two 

exit channels and hence the exchange reaction. 

In utilizing the isotopic exchange rate constant data of the reaction 

(1) 

we consider both the absolute value of the rate constant and its negative temperature 

coefficient. This negative dependence31 is particularly important, since the assump

tion of a loose transition state, i.e., free rotation of the reacting diatomic molecule 

in the transition state, leads to a. positive or only an extremely small negative tem

perature dependence. Accordingly, to conform with the experimental data31 we have 

found that it is necessary to have a hindered rotation of the diatomic species in the 

transition state. 

A third topic in the present article is on various pressure effects on ozone formation 

reactions. There exist mainly three types of experiments on the pressure effects: 

that on the recombination reaction 160 +32 0 2 -+ 48 0 3 a.t different temperatures,30 

that on the isotopic enrichment,9 •
12

•13•
28 and that on the individual recombination 

rate constant ratios for forn"ling ozone isotopomers. 28 In the present study, these 

pressure effects are treated using the weak collision approximation and a hindered

rotor transition state. A method of solving the rate equations at any given pressure 

is developed for the recombination reactions using a strong collision model for the 

rotational angular momentum transfer. Without further approximation, the master 

equation with E and J as coordinates is reduced to a one-dimensional problem with 

E as the coordinate and then solved numerically. 

A fourth topic discussed in the present article 1s the temperature effect on the 

isotopic enrichment12 and on the individual recombination rate constant ratios. 

The manner in which the present paper is distinguished from previous papers36 •37 
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from our group is three-fold: (1) a weak collision model is introduced, implemented in 

the present paper using a stepladder model for a series of deactivating and activating 

collisions, (2) a hindered-rotor ~variational transition state is used and compared with 

the free rotor results, and (3) a greater variety of experimental effects can now be 

treated, such as pressure and temperature effects, because of (1) and (2). In an earlier 

paper37 the room temperature data on ratios of reaction rates were indeed treated 

with very encouraging results. Nevertheless, because the limitation of the transition 

state used and of the strong collision model, it was necessary to introduce an ad hoc 

assumption in that treatment: low pressure ratios were calculated at low temperatures 

(130 K, where the transition state is more or less loose) and it was assumed that the 

same ratio would apply to the room temperature data. This assumption in Ref. 37 

is eliminated in the present paper. 

The paper is organized as follows: the theory involving a hindered-rotor transition 

state theory and a master equation approach is described in Sec. II. Expressions are 

obtained for rate constants of isotopic exchange reaction, the individual recombination 

reactions including an effective rate constant kU 136 contributing to studies made with 

isotopically scrambled conditions (extensive isotopic exchange) and so contributing to 

the theoretical expression for the enrichment 8 or E described in Ref. 36. A numerical 

procedure of treating the pressure effects for recombination reactions is also described 

there. The expressions are used in Sec. III to calculate the rate constants and for the 

enrichment, and to obtain various pressure and temperature effects. The results are 

discussed in Sec. IV. A simple explanation of the large effect of small differences in 

zero-point energies of the competing exit channels of a dissociating molecule is given 

in Sec. IV D and Fig. 13 there. Temperature effects on isotopic enrichrnents and on 

rate constant ratios are discussed in Sec. IV E. 

Vl/e use extensively a relation obtained in the first paper of this series,36 relating 

the enrichments to the individual rate constants. Those equations are independent 

of the approximations made in calculating the rate constants, e.g., hindered vs free 

rotor and weak vs strong collisions. 
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II. THEORY 

A. General Remarks 

The kinetic process of an ozone formation reaction involving many collisions, lead

ing ultima.tely to a master equation, can be written as 

X+ YZ ---7 XYZ(E, J) k;(E, J), (2) 

XYZ(E, J) + M ---7 XYZ(E', f)+ M w(E, J ---7 E', f), (3) 

XYZ(E', f) ---7 X+ YZ ka(E', f), (4) 

XYZ(E', f) ---7 XY + Z kb(E', f), (5) 

and, in a series of steps to form a stable ozone molecule of energy E 1, E 1 being 

an energy sufficiently below the dissociation threshold that the molecule XYZ has a 

negligible chance of reacquiring enough energy by collisions to dissociate 

XYZ(E, J) + M ---7 XYZ(E 1
, f)+ M 

. { I 

w(E, J ---7 E , J ). (6) 

Here, X, Y and Z denote oxygen atoms, which may or may not be different isotopes. 

The energy and the total angular momentum are conserved in individual recombina

tion and dissociation reactions. The k~(E,J) and ka(E,J) (kb(E,J)) are theE and 

]-dependent rate constants of recombination and dissociation reactions, respectively, 

and w(E, J ---7 E', J') is the rate offorming XYZ at (E', J') from (E, J) by a collision 

with a third body. For dissociation there exist the two distinguishable exit channels, 

a and b, when X-1-Z. For a symmetric molecule, where X=Z, the designation (a, b) 

is omitted. By convention,36
•
37 the channel with the lower zero-point energy of the 

diatomic species is denoted by a. Thus when YZ has a higher zero-point energy than 

XY, the rate constant for Eq. (2) would be written as k~ instead of k~. 

The rate equation for the population distribution function g(E, J) 

c(E, J)/[X][YZ], c(E, J) being the population of ozone molecules in the various quan

tum states (E, J), can be written as·55 

dg(!, J) = k;(E, J)- [k:i(E, J) + k~(E, J) + w]g(E, J) 
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+ L fr, w(E', f -f E, J)g(E', f)dE', 
J' E 

(7) 

where w is the integral of w(E, J -f E', f) over E' and J'. 

B. The Isotopic Exchange Reaction and the Hindered-rotor Transition State 

Theory 

The hindered-rotor transition state theory described in this section is used to 

obtain an expression for the isotopic exchange reaction rate constant for ozone. The 

expression for the rate constant lc~x of the isotopic exchange reaction, e.g., Eq. (1), 

is given by37 

(8) 

where Qa is the partition function of the reacting pair in the center of mass system of 

coordinates for channel a, N1 ( E, J) is the number of states of the transition state for 

exit channel a of ozone dissociation at the given E and J, and Ni(E, J) is tbat for 

tbe second channel of the energetic ozone molecule. Each of the two exit channels has 

a transition state (TS) and each TS is determined variationally for each E and J as a 

function of a selected reaction coordinate for that channel. If a component K of the 

total angular momentum J, namely the one involving the rotation of the energetic 

molecule about the axis with the smallest moment of inertia, were also assumed to 

be an invariant, each Nt(E, J) would be replaced by Nt(E, J, K) and the summation 

in Eq. (8) would be over J and K. One common assumption in the unimolecular 

dissociation/bimolecular recombination literature is to treat K as "active," i.e., not 

as a constant, and for simplicity we adopt this approximation here. 

For the orbital-hindered rotational part of the Hamiltonian, we use body-fixed 

axes with the line of centers R of the atom and the diatomic molecule serving as the 

body-fixed z-axis. The Hamiltonian H, apart from the kinetic energy for the radial 

(R) motion, can be written as 

j2 F 
H = 2I + 2pR2 + V(r, R, 8) (9) 
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where j2 is the square of the angular momentum operator for the diatomic molecule, 

I the moment of inertia of the latter, F the square of the orbital angular momentum 

operator, R the distance between the atom and the center of mass of the diatomic 

fragment, r the instantaneous bond length of that fragment, and e the angle between 

R and r, the vector along the axis of the diatomic molecule. Following a common 

procedure 56
-

59 we transform from a spa.ce-fixed )jlmjmz) representation to another 

space-fixed )jlJlv11 ) one, and then from the latter to a body-f1xed representation 

IJJ M/J), where S1 is the component of J along the body-fixed z-axis. Since l is 

perpendicular to the body-fixed z-axis, it follows that D is also the component of j 

along this z-axis. One finds that j 2 is diagonal in this representation, as is J 2 , but 

not F. When 12 is expressed in terms of J and j, we have 

12 = ( J - j) . ( J - j) = J 2 - 2j . J +?. (10) 

In body-fixed components j · J is )zJz + Jxlx + jyJy, i.e., jzJz + j+J- + j_J+, where the 

J± = lx ± iJy, and similarly for J±, are the usual raising and lowering operators. In 

the matrix (j' S1'IH ljD) in the body-fixed IJD) representation ( J MJ is suppressed for 

notational brevity), we have the well-known result, in units of 1i = 1, for the elements 

diagonal in D (S1' = n), 56- 59 

H .. , =(·niHI:'n\=[j(J'+1), J(J+1)+j(j+1)-2D2Jo.,__j_v. ., (n) 
;O,J n J IJ 1 21 ' 211R2 JJ , Jn,1 o· 

For the elements off-diagonal in n (S1' =/=-D), we have 

Hjo,j'o' = (jDIHI/ S1') = -
211

1
R

2 
[J( J + 1) - DS1']112[j(j + 1) - nn'J1128jj' 80 ' 0 ±1 . 

(12) 

The potential energy matrix element in the body-fixed frame ~o,j'o is given by 

Vjo,j'o = j j Yj'rzV(r,R,8)1J'nd(cos8)d¢, (13) 

where the Y's are spherical harmonics. Integration is immediately made over ¢. For 

any given n the conditions on the matrix elements are that 

j ;::: IS11, J;::: IDI. (14) 
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In performing the B-integration in Eq. (13), one half of the cos B domain is assigned 

to the entrance channel to XYZ, XY + Z ---+ XYZ, and the other half to the second 

entrance channel, X -i- YZ ---+ YXZ. 

In the present calculation of the energy levels of the transition state, we shall 

neglect the elements off-diagonal in D (D' =f:- D), and so diagonalize the matrix by 

setting [Hja,j'o - E&h' [ = 0. The neglect of off-diagonal elements (D' =f:- D) when 

considering the radial motion of the two reactants has been variously termed in the 

collision dynamics literature as the "jz-conserving," "coupled state," or "centrifugal 

decoupling'' approximation. 59 It is well known that typically a zeroth-order body-fixed 

description is better at short separation distances R than the space-fixed, and vice 

versa at large R. 57 At very large initial R, D is the projection of j and of J along the 

initial wave vector k, the line of the centers. The evolution of D as R decreases is of 

interest in a full collision dynamics calculation, but in the present case of a statistical 

calculation we are principally interested in the accessibility of the quantum states 

rather than in the detailed coupling between states of different D's. 

As a kinetic scheme we consider initially a system forming an energetic ozone 

molecule with given total angular momentum J and an energy in the range (E, 

E +dE) in the center of mass system of coordinates. The mechanism of the isotopic 

exchange reaction X+ YY---+ XY + Y is given by Eqs. (2), ( 4) and (5), with the Z being 

replaced by Y. The expressions for the k's are readily obtained: The probability of 

finding the (X, YY) pair with the specified J and in a phase spa.ce volume element 

dqdp for motion along the reaction coordinate q is (2J + 1)exp(-E/kBT)dqdpjhQa, 

where Q a is the partition function for the reacting pair in this center of mass system 

of coordinates. To obtain the incident probability flux we divide by dq and multiply 

by q, the velocity along the reaction coordinate. The contribution to the rate constant 

from this J and energy range, (E, E +dE), after summing over all accessible states 

n, 1s 

(15) 
n 

where h(E- E;{,a) is the unit step function, E;{·a the energy barrier along q associated 
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with the state Jn for channel a, and where we have used the relation qdp = (p/ f-L )dp = 

d(p2 /2J.L) = dE, f.L being the reduced mass of motion along q. It is noted here that 

only one half of B space at the transition state is assigned to the channel leading to 

the expected product XYZ. 

Each state n1 has its own "transition state," corresponding to the maximum of 

its energy along the reaction coordinate. \TVe assume a local adiabaticity near each 

maximum, rather than assuming a global one for all values of the reaction coordinate 

q (taken here to be R), i.e., rather than assuming that D is constant through the 

motion along R. The sum over n in Eq. (15) is over D and over the quantum number 

j for the hindered rotation, since the oxygen molecule remains in its lowest vibrational 

quantum state in the transition state region in the present system, reflecting the wide 

spacing of its vibrational energy levels. Before collision the four appropriate quantum 

numbers were j, l, and their projections on space-fixed axes, but now they are replaced 

by 1 MJD and the quantum number for hindered rotation. The 111J gives rise to the 

21 + 1 factor in Eq. (15). 60 

For the k'J ( E, 1) in Eq. ( 4), the rate constant for dissociation of the vibrationally 

excited XYY back into the incident channel, the RRKM expression in the present 

notation is 

k':;(E, 1) = 2:)21 + 1)h(E- Efft)jhp(E, J) ( 16) 
j,rJ 

where p(E, J)dE is the number of quantum states of the XYY with the given J and in 

(E, E+dE). The summation in Eq. (16) and later is over j and D, with the restriction 

IDI :::; j. The dE in the numerator arose, as before, from (dqdp/h)qjdq = dEjh, 

and the p(E, 1)dE includes a 2J + 1 factor. If it were assumed that the body

fixed projection D were constant during the lifetime of the vibrationally excited XYY 

("adiabatic rotation") it would have been added to the E1 in p(E, 1)dE. 

For the k~ ( E, 1) in Eq. ( 5) for dissociation to XY + Y, we have similarly 

k~(E, 1) = 2:)21 + 1)h(E- Ej~)jhp(E, 1) ( 1 7) 
j,rJ 

where the sum is over the states (j, D) of the exit channel b. 
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\iVhen a vibrationally excited XYY is formed from X+ YY in the energy range dE 

and with the given J, the probability that it forms the exchange products XY + Y is 

k~(E, J)j[k~(E, J) + k'J(E, J)] at low pressures (i.e., where collisional deactivation or 

activation is negligible relative to dissociation). Thereby k~x' the isotopic exchange 

rate constant at low w, becomes 

( 18) 

which is the same as Eq. (8) in the present notation for the Nt's. \iVhen the incident 

channel is b rather than a, the a's and b's are interchanged. 

C. Stepladder model for the collisional energy transfer 

In the following, we consider a collisional energy transfer model which is applied in 

the following sections both to obtain an expression for the low-pressure recombination 

rate constant and to study the pressure effect on the ozone formation reaction. For 

simplicity, a stepladder model for the collisional energy transfer is used in the present 

study. A schematic depiction of this collisional energy transfer model is given in Fig. 

1. In this model, only a certain amount of energy L::,.E is transferred from an ozone 

molecule to a bath molecule in a collision. In Fig. 1, there exists a ladder of N 

steps for the energy levels,62 E 1 , E 2 = E 1 + 6.E, · · ·, EN = E1 + (N- 1 )6.E, where 

N is some cut-off beyond which the contribution to the formation rate constant is 

negligible. States with energies less than E 1 are sufficientl.Y below the dissociation 

threshold that their probability of reacquiring energy to dissociate is negligible, and 

are treated together as a sink. The energy E 1 is later varied to ensure that the 

calculated rate constant converge to a finite value. It has been shown that the flux 

below the threshold can be treated analytically,61 and the arguments are summarized 

in the present Appendix B. In such a. model, there exist many (an infinite number) 

sets of ladders, each differing in their starting energy. In the following, we first obtain 

the solution for a single ladder, i.e., a single set of ladder steps which has a fixed E 1 . 

The total rate constant is then obtained by summing the rate constants over all the 
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ladders, i.e.: integrating over £ 1 in an interval (step size) .6.E. 

Gsing the stepladder model, vlhen E' > E the collision becomes a deactivation 

and the w(E', f -+ E, J) can be written as 

w(E', f-+ E, J) = wdt(f-+ J)6(E'- E- .6.£), (19) 

where wd is the deactivation collision frequency and is assumed to be independent of 

E in the region of interest (close to the dissociation threshold). 

The t(f -+ J) in Eq. (19) is the transition probability from a total angular 

momentum f to ]. Under an assumption of a strong collision for rotational angular 

momentum transfer, t( f -+ J) = P( J), where P( J) is the therma.l distribution of the 

rotational states of XYZ with a total angular momentum J at a given temperature:52 

The frequency Wa for activation collisions is related to wd by microscopic reversibility: 

(20) 

where p(E-.6.£) = LJ p(E-.6.E, J) and p(E) = LJ p(E, J) (Appendix A). Further, 

for a range of energies near the dissociation threshold, p(E) can be approximated as 

a constant, and so a relation Wa = wde-b.E/kpT will be used for Wa. and Wd. It should 

be noted that under these assumptions the total collision frequency w in Eq. (7) is 

now Wa +wd = w. 

Using the stepladder and strong rotational collision model described above, the 

rate equation for the population density of XYZ at (En, J), g(En, J), can be written 

as 

dg(~;' J) = k~(En, J)- [k:J(En, J) + k~(En, J) + w]g(En, J) + 

P(J)wd ~g(En+l 1 f)+ P(J)wa ~g(En-1, f), (21) 

where En is an energy in the nth ladder in the stepladder model, and En+l -En = 

En- En-1 = .6.E. 

D. Recombination Reactions at Low Pressures 

In the present study, as also in Ref. 52 for the dissociation case, the two

dimensional master Eq. (7) is reduced to a. one-dimension problem using the strong 
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collision approximation for rotational angular momentum transfer. The derivation 

given below is for recombination reactions at the low pressure limit. A derivation 

which applies at all pressures is given in the following section. \Ve first note that 

for energies above the threshold, there exist, in principle, in steps Eqs. (2), ( 4) and 

( 5), two types of quantum states due to the conservation of the total angular mo

mentum. The effective dissociation barrier heights differ for different J's because of 

their different centrifugal barrier. At each energy above the dissociation threshold, 

ozone states with small centrifugal barriers are able to dissociate via one or both of 

the exit channels (open channels), but the states with higher barriers have a zero 

kd(E, J) (closed channels), and can only be either further deactivated or activated by 

collisions in later steps. 

Thus, in the following treatment, states with a giVen energy En > D0 , where 

Do is the dissociation energy at ] = 0 of the ozone isotopomer via the exit channel 

having the smaller zero-point energy, are divided into open and closed states by their 

total angular momentum. An open state has an angular momentum J such that 

k'J(En, 1) + k~(En, J) > 0, while k'J(En, J') + k~(En, J') = 0 for a closed state with 

an angular momentum J'. Clearly, if En < Do there exist only closed states. 

The rate equations for the population density g of the closed states contain only 

collision terms, and thus can be written as 

(22) 

where 9n+l = LJ' g(En+l, J'), 9n-l = LJ' g(En-1, J'), and Wa and Wd are treated as 

independent of n in the region of n of interest. (A more general model which allows 

for the dependence of Wa on n is given in Ref. 61.) A rate equation for the sum of 

the population densities over all closed states at energy En is obtained by summing 

both sides of Eq. (22) over states with k'J(En, f)+ k~(En, f) = 0 at this energy 

(23) 

where g~ is the sum of population densities over J of closed states with an energy En, 

P~ is the sum of P ( J) over the closed states at that energy, P~ is the corresponding 
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quantity for the open states, and 9n+l = g~+l + g~+l is the total population density 

of states with an energy En+l. Vv'e note here that P~ is a function of energy, since 

whether a state v.'ith a total angular momentum J is closed or not is dependent on 

its energy. 

Since for any ladder m, where Em < D 0 , there exist only closed states, the pop

ulation density of states with such an energy Em can be simpl:y written as 9m- The 

rate equation for 9m contains only collisional terms, thus can be written as 

1 < m :s; l\1, (24) 

while form= 1, 

(25) 

For the population density g0 of states with energy less than E 1 , we have 

(26) 

because these states are treated together as a sink. The rate constant for the formation 

of a stable ozone molecule via this set of ladders is then given by wdg1. 

To obtain the rate equations for the open states, we focus on the recombination 

reactions at the low pressure limit in the following. In this limit, the collision terms in 

Eq. (21) are small compared to the terms containing k's, and can be neglected. Under 

steady-state conditions, the population density of an open state can be obtained by 

neglecting thew terms in Eq. (21). We have then in the steady-state at low pressures 

(27) 

The rate equations for the population density g~ over open states can be written at 

low pressures, from Eqs. (21) and (27), as 

(28) 

where g~ is the sum of the population densities of the open states, 'LJ,open g(En, J), 

dg~j dt = 0 in the steady-state, 
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k~(En) = L k:(En, J), (29) 
J 

and the kd(En) is an averaged dissociation rate constant, 

(30) 

In all cases the summation is over the J of states having a total energy En. 

Combining the rate equations for the closed states (Eqs. (23)-(25)) and open 

states (Eq. (27)), and using the steady-state assumption, we have a set of linear 

equations. In the case of N steps in any ladder, A1 of which are below the dissociation 

energy, we have 2N -1\11 variables, written as 91 , · · · ,9M,9~1+ 1 ,9'M+ 1 , · · · ,9!v,9'}v, and 

2N- lvf linear equations. From this set of equations, one then obtains the expression 

for the population density 91 of molecules with an energy E 1 , and thus for the rate 

constant Wd9l of the reaction via this set of energy ladders. The final expression for 

the low pressure recombination rate constant for channel a is then obtained by an 

integration over all sets of ladders, 

k~t = 0.-'d- Wa ( r6E LP(E, J)Ya(E, J)e-EfkBT w 0 . dE+ 
Qa Jo J wd+waP(E) 

e6E L p(E, J)Ya(E, J)e-EfkBT WdPC(E- !:'!.E) dE+ .. ·) ' (31) 
J6E J Wd + WaP 0 (E- !:'!.E) 

where p(E, J) 1s the density of states of the isotopomer, Ya(E, J) 

N1 (E, J)j (N1 (E, J) + N: (E, J)) is the partitioning factor, and P 0 (E- !:'!.E) is defined 

as 1- pc(E- !:'!.E). Here, N1(E, J) and N:(E, J) are the number of quantum states 

in the transition state at theE and J. In Eq. (31) and in later equations D 0 , the dis

sociation energy of the channel with a smaller zero-point energy, is defined as the zero 

of energy. The states with energies higher than 26E have negligible contributions to 

Eq. (31) at low pressures (cf Appendix B) and could be neglected. A derivation of 

Eq. (31) is given in Appendix B. 

E. Effective rate constants and enrichments in scrambled syster:n.s 

The method for the calculation of enrichments for a scrambled system was de

scribed in detail in Ref. 36 and 37 and is only sketched here. For a. scrambled system 
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at low pressures the isotopic exchange reactions, 

X+ YZ. · Z+XY (32) 

where Z =f. X, are extensive, and a local isotopic equilibrium between atomic and 

diatomic species is readily established. Reaction (32) occurs via a highly energetic 

intermediate, XYZ*, which can either dissociate to form products of (32) or the 

reactants, or more rarely be deactivated by collision to form XYZ, as discussed in the 

previous section. 

The rate of recombination to form a sta.bilized XYZ under these conditions of 

rapid isotopic exchange is 

dXYZ _ 7_o,ax , 7 z -L ko,bz . X'T _ kef J.ax . yz 
dt - l'vbi • l 1 "bi ' l - bi (33) 

where 

(34) 

Here, Kex is the equilibrium constant for reaction (32) and the Q's are conventional 

partition functions containing the zero-point energies. The combination of rate con

stants in (35) appears below, and in Refs. 36 and 37, as k~,8q6 +lc~.~6Kex in an expression 

for the isotopic enrichment 8, the superscript as denoting the formation of an asym-

metric isotopomer. Equations (31) and (33) lead to 

For the k~{1· 6 , we have a similar expression, but with Qa replaced by Qb. We note from 

this result that, as in the strong collision model, the partitioning factor }\l1f ( N! + 1Vl) 

and N/ /(N! + N/) have disappeared, an exact result. 

The enrichments can then be calculated with the rate constants obtained usmg 

the method described in Refs. 36 and 37 and the equilibrium constant for the corre

sponding isotopic exchange reaction. Vv'hen two of the three isotopes are present in 
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trace amounts, the enrichment is calculated with equations in Ref. 37: Eqs. ( 4.18a) 

and (4.18b) for Eijj, and (4.26) for E;jk for unequal i, j, and k. In Eqs. (4.18a) and 

( 4.18b) there, kx~yz is the rate constant for the channel X+ YZ-rXYZ only, while in 

Eq. ( 4.26) each kas denotes the total formation rate constant for the sum of the two 

isotopomeric ozone molecules. The enrichment Eijj is readily shown63 to be the same 

as i(j when j = 16 and when i ( =17 or 18) is only present in trace amounts. The 

derivation of Eqs. ( 4.18) and ( 4.26) in Ref. 36 involved treating a large number of 

permutations of isotopes in the ozone and in the oxygen molecule and atom, and was 

considerably facilitated by an approximation (good to a few parts per thousand) re

lating the various isotopic oxygen atom concentrations to the various isotopic oxygen 

molecule concentrations. 

F. Pressure Dependence of Rate Constants and Enrichments 

We next describe the solution of rate Eqs. (21) at arbitrary pressures, using the 

stepla.dder energy transfer model described in Sec. II C. As in the preceding section, 

the angular momentum transfer is treated using the strong collision approximation, 

and the rate equations in coordinates E and J are first reduced to a problen1 of one 

coordinate E, and then solved numerically for the ozone formation rate constant. 

We first note that under the steady-state approximation, the left-hand side of Eq. 

(21) is zero, and we have for the population density g(En, J), 

(E J) = k~(En, J) + P(J)wd LJ' g(En+l, f)+ P(J)wa LJ' g(En-1, f) 
g n' kd(En, J) + k~(En, J) + W ' 

(36) 

where the LJ' g( En+1, f) is, as before, denoted by gn+1, the population density of 

ozone states with an energy En. Similarly, LJ' g(En_1, f) = gn_ 1, the population 

density of states with an energy En_ 1 . Summing both sides of Eq. (36) over the 

angular momentum J, we have then 

(37) 

where 
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U = L k~(En, J) . 
n J k'J(En, J) + k~(En, J) + W .· 

(38) 

V = L P(J)wa 
n .J k'j(En, J) + k~(En, J) + W 

1 (39) 

T{.!n = L P( J)wd ' 
J k'J(En, J) + k~(En, J) + W 

(40) 

and we note that 

( 41) 

where Qa is the partition function of the X+ YZ reactants in the a channel, including 

the electronic contribution, in the center of mass system of coordinates. 

For an N -ladder system described earlier (Fig. 1), the ozone formation reaction 

rate constant is again given by l.l.-'d9I, where 91 is the steady-state population density 

of the state in the ladder with the lowest energy, since states with energy less than E 1 

belong to the sink. For the solution of 91 , a method similar to that given in Appendix 

B is used. The solution for 91 can be written as the ratio between the determinants 

of the matrices B and A, where the elements of A are A( i, i) = 1 ( i = 1, 2, · · ·, N), 

A(i,i -1) = \1; (i = 2,3··· ,N), A(i+ 1,i) =TV; (i = 1,2,·· ·,N -1), and all other 

elements vanish. (Thus, A is a tridiagonal band matrix.) The elements of B are the 

same as those of A, except for those in the first column, which are B( i, 1) = Ui. The 

elements of both A and B are functions of energy. 

The rate constant can then be obtained as an integral over all energies in the 

range of 0 to .6.£: 

( 42) 

It should be noted here that the B and A in Eq. ( 42), which are defined above, differ 

from the Band A defined in Appendix B. Equation (42) contains in IBI/IAI a sum 

of terms, the first from EM+1 , the next from EM+ 2 , etc. 

At low pressures, Un, 1;;1 and ~Vn become 
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1,~ = L P(J)0.-'a/w = P~wa/w, ( 44) 
].closed 

L P(J)~..<:d/w = P~wd/0.-', ( 45) 
].closed 

where Y~(En, J) is the partitioning factor, and P;. is again the sum of P(J) over closed 

states with the energy En . It is readily shown that the rate constant obtained using 

the Un, Vn and vVn given by Eqs. (43)-(45) is the same a.s that obtained in Eq. (31) 

in the previous section. 

On the other hand, at the high pressure limiL Un, Vn and vVn can be written a.s 

U,, = L k~(En, J)/0.-', 
J 

1 ~ = '-'-'a/ 0.-', 

(46) 

( 4 7) 

( 48) 

and it then readil:;.· follows that the high pressure recombination rate constant is given 

by 

k::O = _1_ "1 ,\Tt(E J)e-E/kBTdE 
tn Q h ~ · a ' ~, 

a J E 
( 49) 

as expected. 

III. RESULTS 

A. Isotopic Exchange reaction rate constant 

To implement Eq. (18) a potential energ_y surface is needed, particularly in the 

region of configuration space appropriate to the hindered rotational transition state. 

The longer 0-0 bond length in this region is estimated in the calculations given below 

to be in the neighborhood of 2.6 A. Ab initio calculations of the potential energy 

surface for ozone have not focused on this transition state region, and instead have 

been optimized mainly for configurations near the equilibrium configuration or near 

the equilateral triangle one, where a conical intersection occurs. 64 \Ve have found 

that the calculated potential energ_y surface gave a poor result66 for the temperature 
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coefficient of the isotopic exchange rate constant, even when an empirically modified 

version65 was used. (The modification eliminated, in effect, a potential energy barrier 

which is known from the observed negative temperature coefficient of the recombina

tion and isotopic exchange rate constant, not to occur.) Instead, a model potential 

energy surface is used to fit the isotopic exchange reaction rate constant at both room 

and low (130 K) temperatures. The fitted potential energy surface is then also used 

for the ozone formation reactions later. Vi/hen more data or an improved calculation 

of the potential energy surface become available, this approximation can be removed. 

A model potential67 V(R, r, B) = Vi, 1(R) + Vi,end(R; 0) is used in the following 

for the ozone formation and isotopic exchange reaction, where ~lbJ(R) is a bond

fission potential and ~end ( R, B) is a bending potential, and where the dependence of 

V(R, r, 0) on the bond length r of the fragment oxygen molecule is neglected. Here, 

R is the center to center distance between the oxygen atom and the fragment oxygen 

molecule, 0 is the angle between the line along the axis of the dia.tmnic molecule and 

the line connecting the two centers of mass, and the ~f ( R) is chosen to be -C6 / R6 

for large R. The C6 = 27.6 e V A 6 was obtained from the collision cross-section 

for 0 + 0 2 .
68 For small R's, %J(R) is chosen to be a. Morse potential function, 69 

VbJ(R) = D(1-exp( -(3(R-Re)) 2
,
67 where D, the dissociation energy, is 9107 cm-1,53 

,B is 2.88 A -1, 70 and Re, the equilibrium value of R, is 1.667 A, 53 and the two %/s 

are matched at R = 2.6 A. The bending potential is chosen to be of the form 71 

~~R = \loexp( -a(R- Ro)), (50) 

·where the parameters are chosen to be roughly consistent with the experimental 

values of the isotopic exchange reaction rate constant at 300 K and its temperature 

dependence. \iVhen R 0 is taken as 2.6 A, Va has a value of 0.35 e V, and a is 5.5 A -l. 

The hindered-rotational potential given in Eq. (50) is then applied to Eq. (11) to 

obtain elements of the Hamiltonian matrix, and the energies of the hindered rotational 

states are obtained as the eigenvalues of the Hamiltonian matrix. The energy of the 

state denoted by I.JjD) can then be written as 

. J(J + 1)- 2it2 . 
E(R; J,J,r:l) = ? R2 + t(R;J,D), 

~f-1 

(51) 
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where c.(R:j, D) is an eigenvalue of a two-dimensional hindered rotor state with quan

tum numbers j and D, and is obtained numerically in this study. The t(R; j, D) is 

dependent on the potential 11/,end(R, B) and thus is dependent on R. The eigenvalues 

t(R; j, D)'s are plotted in Fig. 2 in units of 1/21 + 1/2f.1R2
. Also plotted in that 

:figure are the barrier height vR_ and the energies for a free rotor (both in units of 

1/2! + 1/2f.1R2 
). It is seen from that Figure that the states with energies well below 

the barrier resemble those of a harmonic oscillator and the energies of states above 

the barrier quickly converge to those of a free rotor plus a potential energy averaged 

over the angle e. For the \IR cos4 e potential used here, the potential averaged over 

cosB is (3/S)VR. 

As discussed earlier, the E(R; Jj, D) + Vb1 (R) for each of the two channels is 

obtained as a function of the reaction coordinate R and is shown in Fig. 3. The 

E(R; J,j, D)+ \l,J(R) is plotted there as a function of R for a hindered rotational 

potential (50) and, for comparison, for a free rotor for the same set of quantum 

numbers J, j and D. It is seen from this Figure that the transition state for each 

state moves to a. smaller value of R because of the hindrance, as expected from other 

studies. 80
-9

2 For the state (0,0,0), the difference between the energies for systems with 

and without the rotational hindrance is due to the zero-point energy of the hindered 

rotor state. The energy barrier Ef0 of a sta.te with quantum numbers J, j and D is 

then obtained as the maximum of E(R; J,j, D) along the reaction coordinate. It is 

then applied in Eq. (18) for the calculation of the isotopic exchange rate constant. 

Here, the N1(E, J) is given by 

N1(E, J) = ~ 2:(21 + 1) L L h(E- Efo.), 
2 J j 0. 

(52) 

where -J ~ D ~ J and - j ~ D ~ j. The factor 1/2 in Eq. (52) a.ss1gns one half 

of the e space of the configuration at the transition state to the reaction leading to 

the XYZ molecule for the reaction X+ YZ---t XYZ. The reaction coordinate for this 

reaction is chosen to be the distance between X and the center of mass of YZ, and 

the r for the fragment YZ is chosen to be two times the distance between Y and the 

center of mass of YZ. To illustrate the effect of the hindered rotational barrier, the 



58 

plot for the term N1 Nf/ (JV1 + N:) as a function of energy is very similar to the plot 

of Nt in Fig. 4. 

The rate constant for the isotopic exchange reaction is then obtained usmg Eq. 

(18). The calculated results are shown for reactions at both 130 K and 300 Kin Table 

1. For comparison, the experimental results and the results calculated using the loose 

transition state are also shown. The partition functions for the collision pair, Qa, 

including the electronic partition function, are calculated using Eqs. ( 4.8)-( 4.12) of 

Ref. 37. 

B. Low pressure recombination rate constant for 16 0 +16 0 16 0 -------. 48 0 3 

As seen from Eq. (31), the density of states of ozone is needed for the calcula

tion of the low-pressure recombination rate constant. The density of states for ozone 

is obtained from a convolution44
•
45

•
49

•
72 of the rotational and vibrational density of 

states, as described in Ref. 37. In particular, the vibration frequencies of the vari-

ous isotopomers were obtained using a second-order perturbation formulation, which 

gives the unknown frequencies to an accuracy of about 1 em -l. 73 To include anhar-

monicity in the calculation of density of states p(E, J), vibration frequencies of the 

ozone molecule 48 0 3 given in Ref. 74 up to 6000 crn-1 are fitted using anharmonicity 

constants, where the energy of a state with vibrational quanta ( v1 , v 2 , v3 ) is given by75 

3 1 3 1 3 1 1 
E( v 1 , v2, v3) = 2.:: hew;( Vi+ 2) + L hcxii( Vi+ 2 )2 + L :2: hcxjj( v; + 2 )( Vj + 2 ). 

7=1 7=1 !=l J>! 

(53) 

The fit 76 to the vibrational frequencies is given in Fig. 5. The total number of states in 

the range of 0 to 2000 em -l above the dissociation threshold, which is more than the 

maximum range of energy needed for the present study of ozone formation reaction, 

is calculated with and without inclusion of the anharmonicity. An averaged factor 

of 1.5 is obtained as the ratio between the total number of states that includes the 

anharmonicity effect and the one that does not. This factor is taken to be the same 

for all ozone isotopomers. The effect of anharmonicity on the densities of states for 
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each isotopomer is then taken into account, in an approximate way, by mult1plying 

this factor with the harmonic density of states of that isotopomer. 

Other critical quantities involved in the implementation of the formulas for the 

rate constants are the sums of states, which are obtained for both the hindered-rotor 

and the free rotor transition states, the partition function for the collision pair, which 

is again given by Eqs. ( 4.8)-( 4.12) in Ref. 37, and the collision frequencies. For the 

collisional frequencies in Eq. (21), we have used a Lennard-Jones collision frequency 

with a unit collision efficiency, which is also given in Ref. 37 by Eq. (4.14). 

The rate constant for the recombination reaction 160 + 32 0 2 -+ 48 0 3 is calculated 

using the hindered-rotor and, for comparison, the free rotor transition states, together 

with the weak collision assumption and the stepladder energy transfer model. Calcu

lated values of k~i for 160+ 32 0 2 -+ 48 0 3 are given in TableLand compared there with 

experimental values and with results calculated using strong collision model. In the 

calculations using the weak collision assumption, a. value of 210 cm- 1 is used for both 

130 K and 300K, for the energy transfered per collision !:-:.E, which is about 1 kBT for 

T = 300 K. Other values of !:-:.E were also used in the stepladder energy transfer model 

for comparison, and the results for L::.E =180 and 250 cm-1 are listed in Footnote c 

to Ta.ble I. The results obtained using the free rotor ("loose") transition state for this 

16 0 + 32 0 2 -+ 480 3 reaction are the same as those obtained using the hindered-rotor 

transition state theory with the same value of L::.E, namely 5.8 x 10-12 cm-3 s-1 at 

130 K and 0.9 x 10-12 cm-3 s-1 300 K. 

C. Individual rate constant ratios 

The individual low-pressure rate constants at 300 K for both channels of the 

formation of XYZ molecules are calculated using Eq. (31). In these calculations, a. 

small non-RRKM effect TJ (= 1.18) is assumed for the formation of symmetric ozone 

molecules. The rate constants for the formation of symmetric molecules are obtained 

by dividing the values obtained using Eq. (31) by TJ· The values of TJ and of !':-:.E are 

chosen to fit two experimental rate constant ratios, 16 0 + 18 0 180/160 + 16 0 160 and 
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180 +16 0 160jl8 0 +18 
0

18
0. The hindered-rotor transition state theory, T/ = 1.18 and 

a t::.E of 210 em -l are used to obtain the results shown in Tables II, III and IV as well 

as in Figs. 6 and 7. \Nhen a free rotor transition state is used -vvith an ry = 1.18, and 

a t::.E = 260 cm- 1 , results within ±0.02 of those in Tables II and III for all reactions 

are obtained at these low pressures. 

To test the sensitivity of the rate constant ratio results to the choice of t::.E, two 

different values, 180 cm-1 and 250 cm-1 , are also used in applying the hindered rotor 

transition state theory and the weak collision approximation. The calculated rate 

constant ratio for 16
0 + 360 2 ---+ 

16
0

18
0

18
0 varies from 1.55 to 1.53 to 1.50 when t::.E 

varies from 180 to 210 to 250 cm-1 . 

D. Isotopic Enrichments 

Calculated results for isotopic enrichments at low pressures for "scrambled" sys

tems with large concentrations of heavy isotopes are presented in Table V and Fig. 

8. They are obtained from individual isotopomeric rate constants and Eqs. (4.18a), 

(4.18b) and ( 4.26) of Ref. 36 for the enrichments. Results obtained using the steplad

der energy transfer model are shown for t::.E = 210 cm-I, with no effort being made 

to obtain a better fit. The individual rate constants used for the enrichment calcula-

tions are listed in Tables III and IV, which already include the factor ry = 1.18 in the 

rate constants for the formation of syrnmetric molecules. 

E. Pressure effect on the recombination rate constant for 160 + 32 0 2 --> 
48 0 3 , 

the enrichment 186 and individual rate constant ratios 

The rate constants for the reaction 16 0 +32 
0 2 ---+ 

48 
0 3 at 130 K and 300 l{ were 

both calculated as a function of the pressure using the methods described in Sec. II 

D. The pressure dependence of this ozone formation rate constant at both tempera

tures is shown in Fig. 9 together with the experimental results. Recombination rate 

constants for reactions 16
0 +16 

0
18

0 ---+
16 

0
16

0
18

0, 
16

0 +16 
0

18
0 ---+

16 
0

18
0

16
0 and 

180 +16 0160 ---+16 016018 0 are also obtained as a function of the pressure. The 
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enrichment of the isotopic combination 160 + 16 0 160 180, calculated by Eq. ( 4.18a) 

of Ref. 36, is then obtained as a function of pressure. The comparison between the 

experimental and calculated pressure effect on the enrichment is given in Fig. 10, and 

the pressure dependence of the rate constants for reactions 160+18 0 18 0 ---t
16 0 180 180 

and 180 + 18 0 180 ---+ 18 0 180 180 was also obtained as a function of pressure. The pres

sure dependence of the individual rate constant ratios, lc6,ss/ k6,66 and ks,66/ ks,ss, is 

plotted in Fig. 11 and compared there with the experimental results. In all these cal

culations using the hindered-rotor transition state, the l:-.E = 210 cm-1, and 77 = 1.18 

are used. 

F. Temperature effect on isotopic enrichments and on individual rate constant 

ratios 

To investigate the temperature effect on 7J in the absence of individual rate con

stant ratio data, calculations were performed in the present study by assuming l:-.E to 

be approximately independent of temperature in the temperature range of interest, 

140 to 300 K. An "7 = 1.13 was then obtained by fitting the experimental data of 

enrichment of 160 160 180 at 140 K. This TJ and a l:-.E of 210 cm-1 are then used to 

predict the rate constant ratios for reactions involving 160 and/or 180. In addition, 

enrichments of 160 180 180 and 180 180 180 are calculated using these rate constant 

ratios and the appropriate pa.rtition functions at 140 K. The predicted results are 

shown in Table VI, including the results for 300 K. 

IV. DISCUSSION 

A. The symmetry-related non-RRKM effect 

The recombination reaction rate constants for ozone formation at low pressures, 

the rate constants for the isotopic exchange reactions, and the various te1nperature 

and pressure effects are considered in this study. In particular we have focused on 

an explanation both of the experimentally observed "mass-independent" effect for 
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scrambled systems2- 24 and the dramatic and unconventional "mass-dependent'' effect 

for unscrarnbled systems25- 29 in the ozone formation reactions and their pressure 

dependence. In each case we have seen that reasonable agreement is obtained between 

the present theoretical results and the experimental values. In the treatment of 

these various phenomena, we have employed what can be characterized as "symmetry 

driven" isotopic effects: Lack of symmetry gives rise to the difference between the 

partitioning factors Ya and Y/, from 1/2 and, as discussed in Sec. C, this effect is 

responsible for the large unconventional mass-dependent effects in the individual rate 

constant ratios in unscrambled systems. 

Again, we have introduced a factor r; = 1.18, for the so called non-RRKM 

effect,36
•
37 which is used to reduce the effective density of states for the symmetric 

species, with a basis discussed in Refs. 36 and 37, and so it too has a symmetry-based 

origin. (Fewer anharmonic and Coriolis matrix coupling elements, which promote 

statistical behavior, are present in the symmetric species.) We also note that, in 

principle, there could be a different origin of this 'I] factor: Since some collisional fre

quency, such as w, and p occur as a product in the expressions for the rate constants, 

one may not be able to distinguish between this effect on p a.nd an effect on w on 

the basis of kinetic data alone: In principle, the lower density of states of symmetric 

molecules could make the collisional energy transfer less efficient for these molecules 

and thus make w smaller. 

B. Weak Collision Aspect and Temperature Effect 

The weak collision assumption used in the present study provides an explanation 

for the significant negative temperature dependence of the recombination rate con

stant at low pressures: As seen in Table I, the experimental rate constant a.t 130 K 

is about 8 times faster than that at 300 K, while when a strong collision assumption 

is used, the present expression reduces to those in Refs. 36 and 37, 

(54) 
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The use of Eq. (54) would only giVe a ratio of the rate constants at these two 

temperatures to be less than 2. Instead, when the weak collision model is used 

(Eq. (31)) a factor 6 is obtained, which is in significantly better a.greement with the 

experin1ental results. This large negative temperature coefficient arises in part, in 

the present treatment, because of the smaller contribution from the more energetic 

ozone states populated at the higher temperatures than those from the less energetic 

ones, reflecting the small amount of energy transferred per collision. The higher the 

temperature, the less occupied the energetic states that have energy low enough to be 

deactivated, and thus the smaller the rate constant. The results in Ta.ble I using Eqs. 

(31) are obtained by assuming the same averaged energy transferred per collision !::.E 

and the same 17 for both temperatures. 93 

We note that ·when the weak collision assumption is used the choice of transition 

state has almost no effect on the low-pressure recombination rate constant and on its 

temperature dependence ( cf Table I). One reason why the free rotor transition state 

(phase space) theory yields results very close to the more realistic theory at both 130 

K and 300 K is that the former is already a good approximation for activa.tionless 

recombination reactions at low energy, and in the weak collision model, only states 

within a small range of !::.E above the barrier height contribute to the formation of 

stable ozone molecules at low pressures. For states with low energies, the transition 

states tend to be "loose" (free rotor). 

The individual rate constants at low pressures are approximately determined by 

the integration of (wd -wa) LJ pe-E/ksT N1/(N1 +N:) over energy, which is dependent 

on the choice of the transition state via the ratio N1/(N1 + N:). In the case of a. 

symmetric molecule, the ratio is reduced to a heaviside step function h(Na), and 

proves to be quite insensitive to the choice of the transition state. This behavior is 

easily understood using Fig. 12, where the free and hindered-rotor transition state 

theories are compared for the effective density of states LJ p(E, J)h(N1), for the 

formation of 16 0 160 160. It is seen there that there is very little difference in the 

effective density of states, especially at energies lower than 300 cn"l-1, ·which contribute 

more sicrnificantlv to the formation of ozone due to the weak collision effect. As a 
0 v 
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result, at low pressures the recombination rate constant for a symmetric molecule is 

almost independent of the nature of the transition state for the present system and 

conditions. We turn next to the effect for an asymmetric reaction. 

For an asymmetric molecule, the ratio N1/(N} + N:) depends sensitively on the 

functional form of Nt's. As a result, the ratios of rate constants for the two different 

entrance channels show a greater dependence on the nature of transition state. To fit 

the low pressure experimental results of the rate constant ratios using the free rotor 

transition state, it is recalled, a value of 260 cm-1 is needed for f:::.E, while when 

the hindered-rotor transition state is used, a f:::.E = 210 em - 1 yields good agreement 

with the experimental values. The reason for the best fit f:::.E being smaller for the 

hindered-rotor transition state is readily seen: Both NJ and N: for the hindered rotor 

transition state (TS) increase more slowly with energy than they do for the free rotor 

TS, due to the hindrance of the rotation permitting fewer states. Correspondingly, the 

difference between N} and N: decreases more rapidly as a function of energy in the 

hindered-rotor model/9 and so a smaller f:::.E suffices. A comparison for the values of 

N} calculated using the free and hindered-rotor transition states is very similar to that 

depicted in Fig. 4. The ]-averaged quantity LJ pe-E/kBT N1/ LJ pe-EfkBT(N}-+- N:) 

is shown in Fig. 13 as a function of energy. 

As discussed earlier, in the present model the negative temperature dependence 

of the recombination rate constant at low pressures for 160+32 0___, 48 03 is mainly due 

to the small value('"'"' 210 cm-1 ) of f:::.E in the deactivation of hot ozone molecules. 

One would expect the negative temperature coefficient to be less when this collisional 

deactivation of ozone is not rate-determining. This condition is achieved in isotopic 

exchange experiments and in recombination reactions at high pressures. 

The experimental ratio of the isotopic exchange rate constants at 130 K and 300 

K for 16Q+18Q1SQ___,16Q 18 0+180 is about 1.9, which is substantially smaller than the 

experimental factor of 8 for the low pressure recombination reaction. \11/hen the re

action rates are written as proportional to the y-m, where Tis the temperature, the 

coefficient m obtained using the present calculations is 0.53 for the isotopic exchange 

reaction, and 2.2 for the low pressure recombination reaction, as compared with the 
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experimental values of 0.88 ± 0.26 and 2.6. The negative temperature dependence 

obtained in the present theory for the isotopic exchange reaction arises from the in

creasingly hindered rotation, due to the well-known tightening effect of the transition 

state, with increasing temperature.so-on The effective number of states for exchange 

LJ N1N:J(lv1 + N:) as a function of energy is similar to the 1'l1 plotted in Fig. 4. 

The smaller number of states for the hindered-rotor transition state, compared to 

those obtained using a free rotor transition state, is evident, and with the movement 

of the transition state inward with increasing temperature, the free rotor at low T 

becomes hindered at high T, and there is a corresponding decrease of the number of 

states. Thereby, a negative temperature dependence occurs for the isotopic exchange 

reaction, and similarly for the high pressure recombination rate constant. 

The pressure dependence of the ozone recombination reaction was studied exper

imentally for the reaction 160+160 2 -+ 16 0 3 at various temperatures. Only at low 

temperatures (below 160 K) has the expected simple unimolecular reaction behavior 

been observed. At higher temperatures, however, there is a sudden rise on the log-log 

plot of the rate-pressure curves at very high pressures, which also corresponds to the 

negative temperature dependence being smaller at higher pressures. 

C. Individual Recombination Rate Constants 

Experiments at 300 K have shown a dramatic isotopic effect on the ratios of the 

individual recombination rate constants. The rate constant for the channel with a 

lower zero-point energy for the fragments is substantially larger than that for the 

other channel. This behavior can be explained by consequences of the difference of 

the two zero-point energies on the number of states N1 and N:, when a weak collision 

is assumed. However, if a strong collision limit is assumed, the expression given by Eq. 

(54) is used. This expression gives too small an effect37 at 300 K for the differences 

in the various rate constant ratios: the reason is that states with high energies, 

where N1/(N1 + N:) :=::::; 1/2, are accessible for recombination when a strong collision 

approximation is made. For exarnple, the experimental results for the ratios of the 
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rate constants (compared with 160+160 2 ----+ 16 0 3 ) for 16 0+180 18 0----+ 160 18 0 180 is 

1.53, and for 18 0+18 0 16 0----+ 16 0 18 0 18 0 is 0.46, while the use of the strong collision, 

Eq. (54), yields instead 1.27 and 0.58, respectively. The latter two figures barely 

differ from what one would expect from the ry effect alone, namely 1.18 and 0.59. 

However, in general, l}nimolecular reactions are best treated not in the strong colli

sion deactivation form, according to extensive data,44
-

49 and so the present treatment 

is consistent with that view. In the present study, since the weak collision assumption 

is used with a ~E '"'"' 200 cm-1
, highly energetic states of ozone are less important 

for the low pressure recombination reaction, and much better agreement with the ex

perimental results for the individual rate constant ratios at room temperature (Table 

II, III, and IV) follows, using this 6.E. 

An understanding of the effect of small difference in zero-point energ1es on the 

rate constant ratios is provided in Fig. 13. As seen there the small difference between 

the zero-point energies dramatically influences the ratio N1/(N! + N1) even up to a 

relative high energy, i.e., '"'"' 200 cm-1 , and yields a large difference between the rate 

constants. For a better understanding of this unexpectedly large effect of the relative 

small zero-point energy difference, plots are given in Fig. 14 using a simple model 

for N! and N:. The N! (N1) is assumed to be either a linear or quadratic function 

of E - Ea(Eb) with Ea (Eb) being the dissociation energy for channel a (b). The 

quadratic function gives a better agreement with the results for a real system (the 

points in Fig. 14), as indicated by the plots of LJ N!(E, J) versus energy given in 

Fig. 4. For a quadratic case, the small difference of the zero-point energy contributes 

to a relatively large difference between the rate constants for the two channels even 

for energies up to 300 cm-1 , since it magnifies the effect on the differences in the 

partitioning factors Ya and }/,. The quadratic behavior of N! and N: above threshold 

is easily understood using a crude model. 94 
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D. Pressure Effects 

Various pressure effects have been investigated in these ozone systems: the effect 

of pressure on the formabon rate constant of 48 0 3 ,
30 on the enrichment of the iso

topic combination 16 0 160 180, 28 and on the rate constant rabos, k16,l8l8/ k16,I6l6 and 

k18,1616 / k 18,1818 . 
28 All these calculated results were seen to be in reasonable agreement 

with the experimental results (Figs. 9, 10, and 11). We note, however, that there 

is some discrepancy between the calculated and experimental results for the pressure 

effect on the recombination rate constant for 16 0 +32 0 -+ 48 0: the rate constants 

are too large at low pressures and too small at high pressures. 

A better agreement between the experimental and calculated pressure effect, es

pecially at the low pressure region, is expected if some additional non-RRKM ef

fects, which reduce the effective density of states for both symmetric and asymmetric 

species, were included, or if the collisions less effective in deactivation (the effective 

p(E, J) and some collisional term w occur as a product p(E, J)w. Either effect above 

would serve to decrease kbi at low pressures but, because of cancellation, would not 

affect the calculated low pressure results for individual rate constant ratios. 

The present calculations using the weak collision approximation and the non

statistical factor TJ = 1.18 provide, as mentioned earlier, a reasonable fit to the vari

ous experimental results (Figs. 9, 10, and 11). One striking feature of these pressure 

effects is that the effect of pressure both on the enrichment and on the rate con

stant ratios k16 ,1818 / k16,1616 is more sensitive than is that on the recombination rate 

constant for 16 0 +16 0 160. A large effect of pressure on the first two is evident at 

102 torr, whereas that on the k~~£6 becomes evident at 104 torr. This effect arises, 

at least in part, because the first two quantities are related to the slope of the pres

sure dependence of the rate constants, and the changes in a slope are more easily 

detected than changes in the "integrated" quantity, the kbi. The effect is illustrated 

in Fig. 15. In this figure, a simple formalism is assumed for N1, which is assumed 

to be a quadratic function94 of E - Eo,a for E - Eo,a 2: 0, where E is the energy, 

Eo,a is the zero-point energy for channel a. A similar function of E - Eo,b 2: 0 is 
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assumed for Ni. Each function drawn in Fig. 15 is the quotient, as a function of w, 

of fa= w(N1 + N:)J[w + (N1 + N:)JrJp], where Eo,a - Eo,b = 23 cm-1
, r; = 1, and a 

corresponding value where N1 = N: and r; = 1.18, i.e., that for a symmetric molecule. 

The logarithm of the function J0=wNtj(w + Ntjp)dE, which represents a rate con

stant is also shown in arbitrary units in the same figure. It is seen from that figure 

that in this simple model the change of rate constant ratios with pressure is more 

easily detected than that of the rate constant itself, leading to a similar conclusion 

to that obtained using calculations for the real system. 

An interesting effect of the non-RRKM parameter r; is also seen using the above 

model system. The dashed line in Fig. 16 represents a function similar to that of the 

solid line, except that r; is taken as unity there. In this case, only very weak pressure 

dependence of the rate constant ratios is seen: with increased pressure the importance 

of r; is reduced, and so the presence of r; makes the additional contribution to the 

effect of pressure. 

It has been noted28 that there is a marked difference between the pressure de

pendence of the rate constant ratios k 16,1s 1s/ k16,1616 and k1s,1616/ k 1s,1s1s: when the 

pressure is varied from 100 to 3000 torr, while k 16,18ls/ k16 ,16l6 decreases from 1.53 

to 1.27, k1s,1616 j k 18,1818 is almost a constant. The present calculations show a trend 

similar to that for these experimental results (Fig. 11). Pressure effect on the enrich

ment of 160 180 18 0 +18 0 160 180 and is also calculated in the present study, and is 

shown in Fig. 17 with a. comparison to the pressure dependence of the enrichment of 

16Ql6Ql8Q +16 Ql8016Q. 

E. The Potential Energy Surface, r;, and L::,.E 

We have noted earlier the need for an improved potentia.l energy surface, and we 

have used, in the interim, a crude model potential instead. While calculations should 

be repeated with an improved potential energy surface when it becomes available, it 

is also true that fortunately most of the important results in the present study are 

obtained at the low pressure limit, and as noted earlier, these results are relatively 
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insensitive to the type of transition state and thus of the details of the potential energy 

surface, when a weak collision is assumed. In fact, the transition state tends to be 

rather loose for low energy states, which are the only important states in the weak 

collision case. The potential energy surface, however, does influence more strongly 

the results on the isotopic exchange reaction and the recombination reaction at high 

pressures. Since the temperature dependence of the isotopic exchange reaction rate 

constant is sensitive to the potential energy surface, and also since it does not suffer 

the complication of the high-pressure recombination rate constant, we have used a 

potential which is fitted to give reasonable results on the isotopic exchange reaction. 

It was then applied to all the other recombination reactions. 

The ry, as indicated earlier, in principle could be temperature dependent. Most of 

the experimental data treated in the present study were obtained at 300 K. The 

ry and !::.E for this temperature were chosen to fit the two rate constant ratios, 

16Q +1s 0 1s0 p6o +16 0 160 and 1so +16 0 160 pso +18 o1so, and were applied to 

obtain the other reaction rate constants, and from them, the isotopic enrichments. It 

would be desirable to have similar data on these two rate constant ratios at other tem

peratures, which would provide information on the temperature dependence of ry and 

!::.E. Currently, experimental results in the temperature range of 140 to 373 K, have 

been reported for the temperature dependence of the enrichment of 16 0 160 180.12 An 

ry of 1.13 was obtained at 140 K by fitting the experimental enrichment 188 and was 

then used, together with a !::.E = 210 cm-1
, to calculate the rate constant ratios and 

isotopic enrichments for some other isotopic combinations. Predictions were made 

and are shown in Table VI. 

To conclude, we would like to comment on the value of !::.E used in this study. As 

mentioned earlier, a value of !::.E = 210 cm-1 and r; = 1.18 were chosen at 300 K to 

fit the two experimental rate constant ratios, 160 + 18 0 180/16 0 + 16 0 160 and 18 0 +
16 

Q16Q j18Q + 18 Q 18Q. These reactions are chosen because of their large difference in 

ratios. This !::.E and ry were then used for the calculations for all the other properties 

and provide results that are in reasonable agreement with the experimental data for 

the various isotope arrangements. The use of 210 cm-1 for !::.E also gives reasonable 
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values for the rate constants for the recombination reaction of 160+160 2 -> 160 3 

compared with the experimental results at both 130 K and 300 K and thus also 

provides the correct negative temperature dependence. When other values of I:::.E 

were used for comparison in some of the calculations for ry = 1.18, it was found 

that for I:::.E in the range of 180 to 250 em - 1
, the calculations also gave results in 

reasonable agreement with the experimental values. Further, this value of !:::.E is also 

not inconsistent with classical trajectory energy transfer studies for highly excited 

ozone molecules: In classical trajectory studies on the collisional energy transfer 

between highly energetic ozone molecules and Ar, He, and N2, it was found that 

the averaged magnitude of the energy transferred per collision (both deactivation 

and activation collisions are counted) is about 0.4 kBT at 2500 K ( rv 600 cm-1 ) and 

0.5-0.6 kBT at 500 K ( rv 200 cm- 1 ). 95 
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APPENDIX A: DERIVATION OF EQ. (2.19) 

Vve have (cf Eq. (2.18)) 

w(E
1

, f-> E, J) = wdt(i-> J)8(E
1

- E -!:::.E) (A1) 

and 

w(E, J-> E
1

, f)= Wat(J-> f)8(E- E
1 

+!:::.E). (A2) 

Microscopic reversibility yields 

I I I I -E
1 /kBT 'L_w(E, J -> E, J)p(E, J )c = 

J'J 
'L_w(E,J-> E 1 ,f)p(E,J)e-EfkBT, (A3) 
J'J 
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e.g., suppose E' = E + 6.E, then E' -+Eisa deactivation and we have 

r.e., 

and so, 

J' 

Wa8(E'- E- 6.E) L p(E, J)e-E/kBT, 
J 

Wd L p(E + 6.E, J)e-b.E/kBT = Wa L p(E, J) 
J' J 

(A.5) 

(A6) 

which yields Eq. (2.19) of the text when p(E- 6.E) = L.J p(E- 6.E, J) and p(E) = 

"LJ p(E, J). 

APPENDIX B: DERIVATION OF THE LOW PRESSURE 

RECOMBINATION RATE CONSTANT 

In this Appendix, an expression for the ozone recombination rate constant is ob

tained by solving the rate equations for the population densities of ozone states. The 

stepladder model discussed in the text is applied. The states above the dissociation 

threshold are divided into open and closed states, the rate equations for open and 

closed states are given by Eqs. (23) and (27), respectively. The states below the dis

sociation threshold contain only closed states, and their population densities can be 

described by Eqs. (24)-(26). Combining these equations, for anN ladder system with 

M of them below the dissociation threshold, we have in matrix notation, AC = K, 

under the steady-state assumption, where C is a 1 X ( N + A1) matrix with elements 

g'fv, · · · ,9M+u9'N, · · · ,gM+l' · · · ,92,91, and K is also a 1 x(N+M) matrix, with ele

ments -k~(EN ), -k~(EN_ 1 ), · · ·, -k;(EM+I), 0, · · ·, 0. The A is an (N +111) x (N +111) 

sparse matrix. For simplicity, an example is given for N = 6, "A,{ = 3 
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-kd(E3) 0 0 0 0 0 0 0 0 

0 -kd(E2) 0 0 0 0 0 0 0 

0 0 -kd(EI) 0 0 0 0 0 0 

0 WaP~ 0 -Wd WaP~ 0 0 0 0 

A= wdP~ 0 Wap2c wdP~ -w WaP~ 0 0 0 (B1) 

0 Wdplc 0 0 wdP{ -w Waplc 0 0 

0 0 Wd 0 0 Wd -w Wa 0 

0 0 0 0 0 0 Wd -w w a 

0 0 0 0 0 0 0 Wd -w 

The /c/s in Eq. (B1) are defined by Eq. (29), and the k:'s in the expression forK is 

defined in Eq. (30). 

The population density g1 of the ladder n = 1 is then obtained as 

g1 = IBI/IAJ, (B2) 

where the matrix A is given by Eq. (B1) and B is the same as A except that its last 

column is substituted by the elements of K. 

To evaluate JAJ, the determinant of the matrix A, it is first noted that the terms 

containing w are small compared to those of kd's, at the low pressure limit. Thus 

the w's in the rows that also have a kd term can be replaced by zeros. The JAJ 
is then decomposed to the product of the determinant of two matrices Kct and D, 

the Kct containing only kd 's and determinant of Kct is the product of k/s, and the 

D containing only collision terms. The matrix D is an N x N band matrix and 

its determinant is readily calculated. To calculate the determinant of D, a series of 

matrices Di can be constructed from the elements of D. The Di is an i x i matrix 

( i = 1, 2, · · · N, thus Di = D), it is formed by the last i rows and columns of the 

matrix D. It is then readily obtained that 

(B3) 

(B4) 

(B5) 
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where DN-I,N-1+1 and DN-1+1,N-I are the (N- I, N- I+ 1) and (N- I+ 1, N- I) 

elements of the matrix D. 

We first note that the use of Eq. (B5) leads to 

[ 

W 

(
'·' )M-1] l\1 1 a ""'a IDI ex wd- 1 +- + · .. + - . 

Wd Wd 
(B6) 

Thus by increasing M but keeping N- M constant, i.e., increasing the number of 

ladders below the dissociation threshold but keeping the number of ladders above 

constant, one has a convergent result IDI ex w[j-1 /(1- wa/'-'-'d)· 

The determinant of the matrix B in Eq. (B2) can be evaluated similarly. Partic

ularly, the ladder steps below the dissociation threshold contributes a factor of wd\1- 1 

which cancels with the same factor in !AI. We have then for the population g1 , for 

N-M= 3, 

(B7) 

Since P~ is the sum of P(J), the occupation probability of states with total angular 

moment J, over the states that are nonreactive at the energy En, it is a decreasing 

function of En (Fig. 18. For a fiE '""" 200 em - 1 used in this study, the third term in Eq. 

(B7) can be safely neglected. The rate constant is then obtained by summing g1 over 

all sets of ladders, weighted by the distribution of X+ YZ. The resulting expression of 

the rate constant is given by Eq. (31). 
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TABLES 

TABLE I. Calculated and experimental rate constants. 

k Reaction T (K) Expt. Calc. Calc. 
(present) (strong or loose) 

ko a 
"bi 160 + 3202 + ~2-+ 4so3 + N2 130 4b 5.8c 

kbi ex y-n 130- 300 n = 2.6 n = 2.2 

300 0.5b 0.9c 

k e ex 160 + 180180 -+ 160180 + 180 130 5.6f 

300 2.9f 

kex ex T-m 130- 300 m = 0.88 ± 0.26 m = 0 .. 53 

k ooe 160 + 320 , 480 
bi 2 ~ 3 130 

300 

bExperimental data from Hippler et al., Ref. 30. 

7.0d 

n = 0.77 

3.7d 

9.2h 

9.5h 

rn = -0.07 

ccalculated from Eq. (31) using a value of 210 cm-1 for t::.E. When t::.E =180 cm-1 the 

values are 4.6, 0.7 and when t::.E =250 cm-1 the values are 6.1, 1.3. The results obtained 

for k~i and n using a free rotor transition state are, for the weak collision case, the same to 

those given in the first three rows of the penultimate column in this Table. 

dCalculated using the strong collision assumption. 

eunits are 10-12 cm 3 molecule- 1 s-1 . 

fExperimental data from \;viegell ei al., Ref. 31. 

gCalculated from Eq. (18), using the hindered-rotor transition state theory. 

hCalculated using the loose transition state theory. 

iCalculated from Eq. ( 49), using the hindered-rotor transition state theory. 

jCalculated from Eq. (49), using the loose transition state theory. 
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TABLE II. Relative rate coefficients of atom plus homonuclear diatomic formation chan-

nels (X+ YY---+ XYY relative to X+ XX---+ X3 ) at low pressure at 300 K. 

Reaction Expt.a Cal. 

160 + 3602j160 + 3202 1..53 ± 0.03 1.53 

17 0 + 3602/170 + 3402 1.29 ± 0.07 1.36 

160 + 3402/160 + 3202 1.23 ± 0.03 1.38 

170 + 3202/170 + 3402 1.01 ± 0.05 1.01 

180 + 3402/180 + 3602 1.00 ± 0.06 1.04 

180 + 3202/180 + 3602 0.90 ± 0.03 0.90 

aFrom Mauersberger et al., Ref. 26. 
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TABLE III. Reaction rate coefficients for ozone formation processes relative to 

160 + 32 0 2 -----+ 48 0 3 at low pressure. 

Reaction Expt.a Calc.b 

160 + 160160 1.00 1.00 

170 + 17Q170 1.02 1.02 

180 + 18Q18Q 1.03 1.03 

180 + 160160 0.9:3 0.93 

170 + 1601('0 1.03 1.03 

180 + 170170 1.03 1.07 

170 + 18011'0 1.31 1.39 

160 + 170170 1.23 1.38 

160 + 18Q18Q 1..53 1.53 

160 + 16Q17oc 1.17 1.19 

16 0 + 16 0 1s0 c 1.27 1.25 

no+ 16Q17oc 1.11 1.04 

170 + 110 1s0 c 1.21 1.20 

18 0 + 16 0 18 0 c 1.01 0.99 

180 + n 0 18oc 1.09 1.05 

160 + 17Q18QC 1.43 

110 + w 0 180 c 1.21 

180 + H>onoc 1.01 

aFrom Mauersberger et al. Ref. 26, at room temperature. 

bThe effective densities of states are reduced by a factor 17 = 1.18 for symmetric molecules. 

Results are obtained using the stepladder energy transfer model (Eq. (31)), with t::J.E = 210 

cm-1, and the hindered-rotor transition state theory. The results obtained using the loose 

transition state theory are essentially the same as when the hindered-rotor transition state 

theory is used. but there b..E = 260 cm-1. 

cThe rate constant which appears here is the sum of both channels, i.e., both X+ YZ _. XYZ 

and X+ YZ ~ XZY. Each of the rate constants were determined separately, with the non

RRKM correction only applied to the symmetric channel, where applicable. 
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TABLE IV. Reaction rate coefficients for asymmetric and symmetric channels of recom-

bination reactions, relative to 16 0 + 16 0 2 ---+ 16 0 3 at low pressure. 

Reaction 

Symmetric Products 

160 + 170160 ---+ 160170160 

160 + 180160 ---+ 160180160 

170 + 160170 __,. 170160170 

170 + 180170 __,. 170180170 

180 + 160180 ---+ 180160180 

180 + 170180 ---+ 180170180 

Asymmetric Productsc 

180 + 170160---+ 180170160 

180 + 180160 ---+ 180180160 

no+ 180160 __,. 170180160 

170 + 170160---+ 170170160 

180 + 180170---+ 180180170 

180 + 160170---+ 180160170 

170 + 160180---+ 170160180 

160 + 160170 __,. 160160170 

no+ 170180---+ 170170180 

160 + 180170---+ 160180170 

160 + 160180 ---+ 160160180 

160 + 170180---+ 160170180 

Expt.a 

0.54±0.01 

0.52±0.01 

0.46±0.03 

0.73±0.02 

Calc. b 

0.51 

0.52 

0.51 

0.51 

0.52 

0.52 

0.47 

0.47 

0.52 

0.53 

0.53 

0.53 

0.70 

0.68 

0.70 

0.69 

0.74 

0.74 

a From Janssen et al., Ref. 27. See also Ref. 78 for a definition of the value of k used. 

bCalculated using the stepladder energy transfer model and the hindered-rotor transition 

state theory. ~E is 210 cm-1 . 

cReactions for asymmetric products are ordered in sequence of increasing zero-point energy 

difference. 
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TABLE V. Calculated and experimental isotopic enrichments at 300 K. 

Isotope Combination 

160160160 

170170170 

180180180 

160 16 0 170 c 

160 16 0 1s0 c 

170 170 16 0 c 

170 170 1s0 c 

1s0 1s0 160 c 

1s0 1s0 170 c 

160 170 1s 0 c 

Experimenta 

0.0 

-1.8 

-4.6 

11.3 

13.0 

12.1 

9 .. 5 

14.4 

8.3 

18.1 

aExperimental data at 300 K are from ~1auersberger et a!., Ref. 26. 

Calc.b (%) 

0.0 

-2.1 

-4.7 

12.3 

12.7 

12.2 

10.4 

12.7 

9.2 

17.4 

bCalculated from Eqs. (4.18a), (4.18b), and (4.26) of Part I. The definition of enrichment 

is given by Eq. (4.13) there. A value of210 em - 1 is used for the .6.E. 

cEnrichment is for all possible isotopomers. 



87 

TABLE VI. Temperature effect on enrichments and rate constant ratios. 

Cal. (140 K) 

17 1.13c 

160 +16 0180/160 +16 0160 0.75 

180 +16 0160 j160 +16 0160 0.83 

160 +18 0160/160 +16 0160 0.52 

enrichment of 160 16 0 18 0 8.2% 

150 +18 0 18o;r6o +16 0 16 0 1.53 

180 +18 0160 j160 +16 0160 0.44 

180 +16 0180/160 +16 0160 0.52 

enrichment of 160 180 18 0 3.0% 

180 +18 0180j160 +16 0160 1.03 

enrichment of 180 18 0 18 0 -16.6% 

aExperimental results are taken from Ref. 12. 

bExperimental results are taken from Ref. 26. 

Exp. (140K)a 

8.3% 

Cal. (300 I~) Exp. (300K)b 

1.18d 

0.74 0.73 

0.93 0.93 

0.52 0.54 

12.7% 13.0% 

1.53 1.53 

0.47 0.46 

0.52 0.52 

14.1% 14.4% 

1.03 1.03 

-4.7% -4.6% 

cobtained by fitting the experimental value of enrichment of 160 16 0 180 at 140 K. 

dObtained by fitting the experimental value of two rate constant ratios, 160 + 18 

0180/160 +16 0160 and 180 +16 016opso +18 o1so, at 300 K. 
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Figure Captions 

Fig. 1 The stepladder model for the deactivation of XYZ* molecules formed by 

the recombination reaction. 

Fig. 2 Examples of the energies for the eigenstate of a. hindered rotor. The points 

are the calculated results. The horizontal line represents the height of the rotational 

barrier. The dashed line is the energy of a free rotor plus the averaged value of the 

potential energy. 

Fig. 3 The total energy of a hindered rotor state ( J, j, D) as a function of R. The 

maximum of the hindered rotor states (symbols) are shifted inward compared to that 

of a free rotor (J,j,K) (solid lines), increasingly shifted with increasing (J,j,w). 

Fig. 4 The number of states Nt as a function of R for the recombination reaction 

160 + 32 0 2 -+
48 0 3 . The top curve is obtained using free rotation in the transition 

and the other two curves are obtained using the hindered-rotor transition state: The 

middle curve, labeled by "Hindered Rotor TS 1 ," is obtained using a hindered-rotor 

potential cos2 e' and the lowest curve is obtained using a cos4 e type potential. 

Fig. 5 The fits of the known vibrational frequencies 77 (taken from Ref. 7 4) of 

160 16 0 160 using up to second-order anharmonicity corrections. 

Fig. 6 Comparison of calculated and experimentaF6 relative atom+ diatomic rate 

constant ratios, kx+YY/kx+XX, at 300 K with r; = 1.18. 

Fig. 7 Comparison of calculated and experimentaP6 relative atom + diatomic rate 

constant ratios, kx+Yz/k6+66 , at 300 K with r; = 1.18. Some of the experimental rate 

constants are "derived quantities" 26
. 

Fig. 8 ExperimentaF6 (grey bars) and calculated isotopic enrichments for scram

bled systems heavily enriched in heavy isotopes at 300 K, with r; = 1.18 (dark bars) 

and r; = 1.0 (light bars) respectively. 

Fig. 9 The pressure dependence of the recombination rate constant for 16 0 + 32 

0 2 -t48 0 3 at 130K and 300 K. The units are 10-12 cm-3 molecule-1 s- 1
. The 

experimental data are taken from Ref. 30. 
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Fig. 10 The pressure dependence of the enrichment 188. The filled diamonds are 

the experimental results28 and the solid line gives the calculated results using the 

hindered-rotor transition state with a 6.E = 210cm- 1 . 

Fig. 11 The pressure dependence of the individual rate constants. The filled circles 

are the experimental results 28 for the rate ratio between 18 0 +32 0 2 -+18 0 160 160 and 

180 +36 0 2 -+ 54 0 3 , and the triangles are the experimental results for the rate ratio 

between 160 +36 0 2 -+ 18 0 18 0 160 and 160 +32 0 2 -+ 48 0 3 . The solid lines arc the 

calculated results using the hindered-rotor transition state with a 6.E = 210 cm-1 . 

Fig. 12 The effective density of states LJ p(E, J)h(Nt(E, J)) as a function of R 

for the recombination reaction 16 0 +32 0 2 -+48 0 3 , where h is the unit step function. 

The dashed curve is obtained using a free rotor transition state and the lower one is 

obtained using the hindered-rotor transition state. The E's are given relative to the 

lowest state of the separated 0 and 0 2 • 

Fig. 13 The partitioning factors versus energy. The functions plotted in the figure 

are LJ p(E, J)N1,b/(N1 + N:) as a function of the excess energy. The zero of the 

energy is set to be Do, the dissociation energy at J = 0 for the channel with the 

smaller zero point energy, in the present case 160 +18 0 180 -+ 16 0 180 180. The solid 

lines are obtained using a free rotor transition state, and the triangles are obtained 

using the hindered-rotor transition state. The upper solid line and points are for the 

channel a, the channel with a smaller zero-point energy, and the lower ones are for 

channel b. 

Fig. 14 The partitioning factors versus energy. The functions plotted in the figure 

is LJ p(E, J)N1(E, J)j[N1(E, J) + N:(E, J)] as a function of energy. The points are 

the same as in Fig. 13 for the channel with a large zero-point energy. The lines are 

for the function N1(E)j(N1(E) + N:(E)), with modeling Nt(E)'s for an illustration 

of the partitioning between two channels. The upper line is obtained by assuming94 

N1.b to be proportional to E- Ea,b and the lower one assumes N1,b to be proportional 

to (E- Ea,b) 2 • Here, Ea is the dissociation energy for channel a at J = 0, and the J 

dependence of the Nt's is neglected. 

Fig. 15 A model for the pressure effects on the rate constant and the rate 
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constant ratios, ( k~:68 + k~,566 ) / k6 ,66 . To represent the pressure effect on the en

richment, the rate constant for the formation of a symmetric molecule is modeled 

by ks = i£wNt/UVtjr;p + w), and that for an asymmetric one is assumed to be 

ka = fEw(N1 +NZ)/[(N1 +NZ)/p+w], which corresponds to a k~{1 for a real system. 

N1,b is assumed to be proportional to (E- Ea,b) 2
, where Ea,b is the dissociation barrier 

of the channel a or b. The "Rate Ratio" curve is a plot of ka/ ks with an r; = 1.18, 

and the "log [Rate Constant]" curve is a plot of log k 8 • The units of ks is 10-12 cm-3 

s-1
. In the plot log ks has been mutiplied by 1/33 and then shifted by 0.8 to fit in 

the same rectangle as the plot of the Rate Constant ratio vs log (pressure) without 

affecting the conclusion. 

Fig. 16 The same as Fig. 15. The low curve is a plot of the same function as the 

top rate ratio curve, except that r; = 1 for both symmetric and asymmetric cases. 

Fig. 17 The comparison between the calculated pressure dependence of the en

richment of 16Q16Q18Q and 16Ql8Q18Q. 

Fig. 18 The pc as a function of energy. 
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Chapter 3 

Pressures effects on unimolecular dissociation 

bimolecular recombination reactions 

( J. Chern. Phys. in press) 
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Abstract 

The treatment of pressure effects on bimolecular recombinations and 

unimolecular dissociations is discussed. The analysis of recombination and 

dissociation reactions is made by showing how the nonequilibrium energy (E) 

and angular momentum U)-dependent steady-state population distribution 

functions for the two reactions are related to each other and to the equilibrium 

population distribution function at the given E and J. As a special case a strong 

collision model is then used for the collisional rotational angular momentum 

transfer, and a ladder model for the collisional energy transfer. An analytical 

result is obtained for states below the dissociation threshold. The extension to 

recombinations with two exit channels is described, for application to ozone 

formation and isotopic effects. 
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I. Introduction 

Unimolecular dissociations and bimolecular associations have been 

intensively studied in the literature, and have been treated in well-known texts, 

monographs and articles .
1

-
5 

It has been recognized for many years that weak 

collisions play a significant role in the activation-deactivation process and are 

needed to explain the detailed experimental results on pressure effects.1'
2

'
6

-
8 An 

important quantity in these collisions is the average energy of transfer !:J.E, (!:J.E), 

for the deactivating collisions and, determined by microscopic reversibility, the 

average energy transfer in upward (activating) collisions. Studies have revealed 

that apart from rare "supercollisions"
9

-
11 

the results for the energy transfer 

depend mainly on (!:J.E) (and the microscopic reversibility related upward 

average), and are relatively insensitive to the precise form of the collisional 

energy transfer function ro(E -7 E').
1

'
2 

In a recent study we have noted that an 

unusual"mass-independent" effect in recombination rates in "scrambled" 

systems and unconventional "mass-dependent" effects in unscrambled ones, 

may, in the interpretation given there, provide information on the dependence 

of (!:J.E) on temperature.12 We discuss this particular aspect elsewhere,
13 

using 

the formalism in the present paper, as well as using also an alternative 

"exponential-down" model for the collisional deactivation? These applications 

. . 14 h . . . ff 15,16 d of the present paper are to recombmatlons, tot e1r 1sotop1c e ects, an 

. . h . 17 to 1sotop1c exc ange reachons. 
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The formalism is first given in Sec. II for the case of one distinguishable exit 

* channet i.e., for a system X + YX ~ XYX ~ XY + X, the asterisk denoting an 

energetic molecule. In Sec. II the relation of the steady-state distribution 

functions, as a function of the energy E and angular momentum J, is described 

for the recombination and dissociation reactions, both to each other and to the 

equilibrium distribution function. The treatment is specialized in Sec. III to 

include the strong collision approximation for rotations and a stepladder model 

for the collisional energy transfer, so leading to an analytical expression for the 

diffusion in "energy space" below the reaction threshold for dissociation. This 

model reduces significantly the number of quantum states needed in a numerical 

treatment. In Sec. IV the treatment is extended to the case of two distinguishable 

* exit channels, e.g., X+ YZ ~ XYZ ~ X + YZ or XY + Z (X"# Z). The present 

equations, or their equivalent, are utilized elsewhere.
13 

Isotopic exchange 

reactions are discussed in Sec. V. 

II. A. Recombination 

For the recombination of two particles X and YZ, where X may denote an 

atom or larger particle and YZ may denote a diatomic or larger particle, the 

reaction sequence for recombination can be written as 

X+YZ 
k~(EJ) XYZ(EJ) (2.1) 

XYZ (EJ) 
w(E~E',J~J') XYZ (E' J') (2.2) 

XYZ (EJ) X+YZ (2.3) 
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XYZ (EJ) XY+Z (2.4) 

where the energy E and the total angular momentum J of the colliding particles 

X and YZ are constants of the motion in (2.1), (2.3) and (2.4), and where, 

depending on (En, either or both ka(EJ) and kb(EJ) may vanish. Reactions (2.3) 

and (2.4) tacitly include XYZ(E'J')'s since the EJ in (2.1) can be an E'J' and the 

double integration later in (2.7) and (2.13) is over all E, J, E' and J'. 

In addition to the first step (2.1) a different reaction product XZY(EJ) may 

also be formed, with its own subsequent sequence of collisional and dissociation 

18 19 
steps. It can be treated separately. ' 

The collisional frequency ro(E ---7 E', J ---7 J') for E and J transfer is typically 

proportional to the concentration of the ambient gas. The component K of the 

angular momentum of XYZ along a major symmetry or near-symmetry axis of 

XYZ may or may not be approximately constant during the lifetime of XYZ. We 

shall consider the latter case ("active rotation" K), and integrate over Kin 

calculating the density of quantum states of an XYZ of given E and J. We first 

consider the case where there is only one distinguishable exit channel, i.e., where 

Z =X in Eqs. (2.1)- (2.4). 

We let c(EJ) be the concentration of XYZ(EJ) arising from reaction (2.1), 

abbreviate w(E ---7 E', J ---7 J') by w(EJ,E'J'), and write 

f f w(EJ,E'J')dE'dl' = w 
E' J' 

(2.5) 

where w is the total collision frequency. We define a population distribution 

function g(EJ): 

g(EJ) = c(EJ)/(X) (YZ) (2.6) 
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where (X) and (YZ) denote concentrations. In a steady-state approximation for 

20 
g(EJ) we have 

0 = !!_ g(EJ) = k~ (EJ)- [ka(EJ) + cu] g(EJ) + J J cu(E'J',EJ) g(E'J')dE' dJ' (2.7) 
dt 

This equation can be rewritten by defining an equilibrium population 

distribution function geq(EJ), such that when introduced into Eq. (2.7) the forward 

and reverse reaction rate constants are equal 

(2.8) 

(microscopic reversibility), while the collision terms are also equal (again, 

microscopic reversibility): 

m geq(EJ) = JJ cu(E'J', EJ) geq(E'J') dE'dJ' (2.9) 

Equation (2.7) then becomes 

[ka(EJ) + cu] [geq(EJ)- g(EJ)] = JJ cu(E'J', EJ)[geq(E'J')- g(E'J')] dE'dJ' (2.10) 

We denote the difference between the equilibrium population distribution 

function geq(EJ) and g(EJ) by f(EJ), 

j(EJ) = geq(EJ) - g(EJ) (2.11) 

Thereby, Eqs. (2.10)-(2.11) yield a "master equation" for j(EJ) 

[ka(EJ) + cu]j(EJ) = JJ cu(E'J', EJ)j(E'J') dE'dJ' (2.12) 

The bimolecular recombination rate constant kbi is given by 

kbi = JJ [k' a(EJ) - g(EJ) ka(EJ)] dEdJ (2.13) 



which with (2.8) and (2.11) yields 

kbi = If ka(En f<En dEdJ 
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The rate constant kbi is calculated by solving Eq. (2.12) for f(En and 

(2.14) 

introducing it into Eq. (2.14), or alternatively by calculating the net collisional 

downward diffusion of the molecule XYZ in energy space to form a fully 

deactivated XYZ molecule. 

B. Unimolecular dissociation 

We denote by C(EJ) the concentration of energetically excited XYZ 

molecules arising in the unimolecular dissociation and introduce a population 

distribution function F(En defined by 

F(EJ) = C(En/ (XYZ) (2.15) 

where (XYZ) is the concentration of XYZ. The unimolecular dissociation rate is 

given by 

(2.16) 

and so 

kuni = If kaCEn F(EndEdJ (2.17) 

Before proceeding with the equations leading to the analog of Eqs. (2.12) 

and (2.14) for unimolecular reactions we first note that when there is an 

equilibrium between X+ YZ and XYZ, the equilibrium concentration of excited 

XYZ at any (EJ), ceq(En, is the sum of two terms: 

ceq(EJ) = c(EJ)+ C(En (2.18) 
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where c(EJ) consists of marked XYZ molecules (labeled by a dagger t, say) which 

originated from X + YZ, and of differently marked XYZ molecules (labeled by tt) 

of concentration C(EJ), which originated from XYZ. Each marked (tor tt) 

molecule may either continue on to the reactants or products region. This 

progress is followed only until it has reached either destination, at which point it 

loses its label. If it leaves again, it is with a mark appropriate to the new 

departure point, tor tt. That is, the equilibrium population ceq(EJ) consists of 

molecules XYZ t which arose from X + YZ and molecules XYZ tt which arose 

from XYZ, but where neither of them has yet arrived with its current label at a 

destination. In this way we consider in the equilibrium population, ceq(EJ), the 

point of origin of the XYZ (EJ) and so include in our considerations the forward 

and reverse reactions. 

We have introduced expressions for the concentrations in terms of 

population distribution functions and note that at equilibrium the ratio 

(XYZ)/(X) (YZ) equals KQJ~, the equilibrium constant. From Eq. (2.6) we have 

ceq(EJ)/(X)(YZ) = geq (EJ). Then, upon dividing both sides of (2.18) by the product 

of the concentrations (X) (XY), then introducing the equilibrium constant to 

relate (X) (YZ) to (XYZ) and using the definition (2.15) of F(EJ), we have 

XYZ 
geq(EJ) = g(EJ) + F(EJ)Kx,Yz (2.19) 
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Inasmuch as j(EJ) is given by Eq. (2.11), it is seen from (2.19) that the population 

distribution function F(EJ) for the unimolecular dissociation is given by 

F(EJ) = j(EJ)! K~,l~, (2.20) 

a result used below. 

We consider next for unimolecular reactions the analog of Eq. (2.6) and 

the subsequent equations. In the steady-state we have
21 

That is, 

0 = !!:_ F(EJ) = [ka(EJ) + w] F(EJ)- fi w(E'J', EJ) F(E'J')dE' dJ' 
dt 

[ka(EJ) + w] F(EJ) = f f w(E'J',EJ)F(E'J')dE'dJ' 

(2.21) 

(2.22) 

It is seen from Eqs. (2.12) and (2.22) that j(EJ) and F(EJ) obey the same equation 

relating values at one EJ to those at the other EJ's. Indeed, they should, in virtue 

of (2.20). 

The unimolecular rate constant kuni given by Eq. (2.17) thus also equals 

kuni = fi j(EJ) ka(EJ) dEdJ I K~J~ (2.23) 

Thereby, 

(2.24) 

as expected. The kbi or kuni can equally be obtained by solving master equations 

for j(EJ) or F(EJ), since the latter two functions differ only by a factor K~J~. 
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III. Solution of the master equation 

A. Master equation and stepladder model 

In the master equation for f(EJ) we first introduce a strong collision 

approximation for rotation by writing 

m(E' J' ,EJ) = m(E ,E) Pr (3.1) 

where PJq denotes the equilibrium distribution of J's. Equation (2.12) now reads 

[ka(EJ) + m]j(EJ) = PJq f m(E',E)j(E'J')dE'dJ' (3.2) 

We next introduce a stepladder model for the collisional energy transfer, 

the steps being of energies En (n = 0 to=) of stepsize !lE. We note that in the 

stepladder model (llE) becomes !lE. If En is an energy in a 

deactivation/ activation collision stepladder, then En= EN- (N- n) !lE, where we 

choose N as the value corresponding to EN lying in an interval of !lE whose 

lower limit is at the threshold for dissociation. Later we integrate over each En in 

its relevant energy interval !lE. For the distribution function j(EnJ), obtained 

from Eq. (2.12), Eq. (3.2), and the stepladder model we have 

(3.3) 

where 

(3.4) 
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wd is the deactivation collision frequency w(EwE11_ 1), which will be assumed to be 

independent of n in the region of interest (n close to N),
22 

and wa 
11

_ 1 is the 
I 

collision frequency for the reverse (activation) step (the a in Wa 11_ 1 denotes 
I 

activation) . The two are related by microscopic reversibility, as in Eq. (3.13) 

given later. 

Summed over the steps of energies E0, E1, ... , the total net incoming flux 

s1 for a given J is 

S1 = I, Snl, Snl = kaCEn,J)j(En,J) (3.5) 
n=N 

the lower summation limit arising since the ka(E11J)'s vanish for n < N. To obtain 

kbi one then integrates the E11 in each 511! over an energy interval bE and sums 

(or integrates) over J. We then have 

kbi = I_ IS Sn1dEndl (3.6) 
n=N 

Alternatively, kbi is obtained from the net downward diffusional flux in energy 

space for n < N via Eq. (3.15) below. 

A master equation is obtained for thef's upon integrating (3.3) over J: 

where 

An = f[kaCEnl) + w]-1 PJq dl 
J 

(3.7) 

(3 .8) 
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-1 and fn is defined by (3.4). This An becomes co for n < N. 

When the master equation (3.7) is solved for thefn's, subject to the 

appropriate boundary conditions, f(E 11n is obtained from (3.3), and kbi is then 

obtained. Two boundary conditions are needed since (3.7) is a second-order 

difference equation. One boundary condition is to take the population 

distribution function at the lowest step g0 to be zero. The second condition is the 

conservation of flux Sr We first show in the following Section that the equation 

relating thefn's for n :'£ N can be solved analytically. 

B. Flux below the dissociation threshold 

For energies E71 below EN the net downward flux s1!ff of the energetic 

XYZ' s along the energy stepladder can be written as 

(n :'£ N) (3.9) 

where 

(3.10) 

The microscopic reversibility equation is 

where it can be shown that
23 

(3.12) 
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The [-dependent part of the energy of XYZ is included in En and Qx yz is the 
f 

partition function for X + YZ. (The actual energy of this molecule is 

En+ D, where Dis the dissociation energy. To simplify the notation we have 

denoted this p(En + D,J) by p(EnJ).) In the last equality in (3.12) we have defined 

a free energy term G~, a function of En and f. 

We next rewrite (3.11) in terms of the free energy difference, 

GJ GJ · n-1- n · 

Thereby, using (3.9), 

(n :::;N) 

(3.13) 

(3.14) 

On multiplying (3.14) by exp ( G~ /kBT) and summing over n from n = 1 ton= N 

we have 

(3.15) 

where k[tff is defined by 

N 1 0 1 
kN _ I" (Gn- N)lksT 

diff - (J) d L.. e (3.16) 
n=! 

and where we have treated then= 0 state as a sink by setting g0 = 0. The PJq 

cancels in the difference G~- G/v, and so the k[tff in (3.16) does not depend onJ. 

C. Case of only one reactive step N in the ladder 
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We first consider for simplicity the case where only one recombination 

step N in the ladder for the XYZ formation in reaction (2.1) contributes 

significantly. In this case there is no need to solve the master equation (3.7), since 

there is only one reactive stateN and a solution for all other states n < N was 

obtained analytically in terms of gN, namely, via Eq. (3.15). 

The net incident flux s1 from reactants X and YZ for this EN and J, using 

(3.5) and (3.3), is given by 

ro P eq .f k (E J) 
S =S =k (E J)f(E J)= a,N-1 J JN-1 a . N 

J NJ a N N• ka(ENJ) + ro 
(3.17) 

where the term rod,N+lfN+l in (3.3) is now absent, since stateN is the highest 

state considered in this one-reactive state model. 

Equations (3 .9) (for n = N), (3.15), and (3.17) contain the unknowns gN and 

gN_1. Equating these expressions for s1 yields two equations. Since there are 

two unknowns, gN_1 and gN, one can solve for gN. Use of Eq. (3.15) then yields 

an 

(3.18) 

Further, for this model of only one reactive stateN, roaN must vanish and so ro, 
' 

which equals rod+ roaN, equals rod . Equations (3.6), (3.15), (3.18) and the first 
I 

equality in Eq. (3.12), then yield 
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(3.19) 

where the EN integration is over an interval 11E. 

In the strong collision limit k:/iff equals its first term in a series expansion 

of (3.16), namely rod, which in turn now equals CD. Equation (3.19) then reduces 

to the usual strong collision expression, on taking 11E to be very large. 

D. Case of any number of reactive steps 

We consider next the case where there are reactive states N, N + 1, N + 2, 

... oo, where EN lies in (0,11E) and EN+ n in [n 11 E,(n + 1)11E]. The contribution of 

these particular energies to the flux S at a given J is given by (3.5), and Eq. (3.6)-

(3.16) also apply. Equations (3.5), (3.3), and (3.7) yield 

(3.20) 

noting that rod n+1 equals rod in the present approximation. Thefn's for n > N can 
I 

be expressed in terms of fN by solving the master Eq. (3.7). Upon then equating 

the Sf in (3.20) to the Sf in (3.15), gN is obtained. The kbi equals the downward 

flux Sf in Eq. (3.15), integrated over 11E and summed (or integrated) over J: 

(3.21) 
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IV. Two Reaction Exit Channels a, b 

A. Master Equation 

We consider now the reactions (2.1)- (2.4) where Z 1:- X. Equation (2.8) 

now serves as a definition of a quantity which we again write as geqCEJ): 

(4.1) 

This geq(EJ) is thereby an equilibrium population distribution function. 

Equation (2.7) is replaced by 

0 = k~(EJ)- [ka(EJ) + kb (EJ) + m] g(EJ) + J f m(E'J' ,EJ)g(E'J' )dE' dJ' (4.2) 

and so with (2.8) and (2.11) we then have, instead of (2.12), 

[ka (EJ) + kb(EJ) + m]j(EJ)- kb(EJ)geq (EJ) =PrJ m(E',E)j(E'J')dE'dJ' (4.3) 

where we have again introduced (3.1). The bimolecular recombination rate 

constant for X+ YZ ---7 XYZ is given, following (2.11) and (2.13), by 

kbi =I I ka(EJ)j(EJ)dEdJ (4.4) 

where j(EJ) now satisfies the master Eq. (4.3). 

Upon introducing the stepladder model for the collisional energy transfer, 

Eq. (4.3) becomes 

where fn is again given by (3.4). The bimolecular rate constant is again obtained 

from the downward diffusional probability flux given by (3.5), integrated over 

EN and summed over J. Thereby, the bimolecular rate constant, which we now 
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denote by kbi to indicate that the entrance channel in the example is a, is again 

given by (3.6), namely 

(4.6) 

A master equation for thefn's obtained by integratingf(Enn in (4.4) over J, 

is now 

(4.7) 

where 

We note that the two exit channels will have slightly different energy thresholds, 

because of a difference in zero-point energies of YZ and XY, and the integration 

in (4.6) over EN is intended to begin at the lower threshold of the two. The 

master Eq. (4.7) is first solved for the f's in terms of fN and hence of gN- Then, as 

before, gN can be obtained from the boundary condition describing flux 

conservation. We proceed as follows: 

The net flux entering via channel a for a given J, Sj, is the same as (3.5) 

and so we have 

sj = I s~J' s,~ = ka(En,J)f(Enl) (4.9) 
n=N 

The flux outgoing in channel b, sJ' is given by 

(4.10) 
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The downward diffusional flux sJiff is again given by (3.15) and conservation of 

flux yields 

(4.11) 

which serves as a boundary condition for solution of the master equation, by 

providing an equation for gN. Equation (4.6) then yields kbi· 

This material balance Eq. (4.11) can also be written equivalently as 

(4.12) 

The present equations, or their equivalent, are utilized elsewhere in a 

f . . ff 12,13 treatment o 1sotop1c e ects. 

D. Special Case of One Reactive Step N 

An expression for gN is obtained from Eqs. (3.9), (3.12), (3.15), (4.5), and 

(4.9)-(4.11). From Eq. (4.6) and the first equality in (3.12), one then obtains 

(4.13) 

On letting !lE become very large k/tff reduces to rod and hence to ro as before, 

and the result obtained in Ref. 18 is recovered. Further, Eq. (4.13) reduces to 

(3.22) when kb(ENJ) vanishes. The equation for kgi is obtained from (4.13) by 

interchanging a's and b' s. 
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V. Isotopic Exchange Reactions 

The isotopic exchange reactions 

X + YZ ---7 XY + Z, (5.1) 

where X, Y, Z are isotopes, are typically studied at low pressures, where the 

* newly formed vibrationally hot XYZ typically dissociates before it can undergo 

a collision with the bath gas. The results are then independent of whether the 

deactivating collisions are strong or weak, and so the equations given in Refs . 18 

and 19 apply. 
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But the first term equals -[C(Eni(XYZ)]kuni' i.e., kunlEJ' which is typically 

small relative to the individual terms enhancing or decreasing F(En in the rate 

expression (2.21). Accordingly, dC(Enl dt typically equals zero to a good 

approximation. 
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I 

can have some implications for the behavior of ro. 

forD+ En- EN - Er) is the vibrational energy E~~ib' and so Pvib(En- Er) is 

the vibrational density of states. Then writing En as En- EJ' + EJ' and 

integrating over J' one obtains PrPvib(E~ib)exp(-E~ib I kT)I Qx,Yz, which can 



130 

Chapter 4 

On the theory of electron transfer reaction at 

semiconductor /liquid interfaces 

(Appeared in J. Chern. Phys. 112, 3358 (2000)) 



131 
JOURNAL OF CHEMICAL PHYSICS VOLUME 112, NUMBER 7 15 FEBRUARY 2000 

On the theory of electron transfer reactions at semiconductor 
electrode/liquid interfaces 

Yi Qin Gao, Yuri Georgievskii, and R. A. Marcus 
Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125 

(Received 5 October 1999; accepted 23 November 1999) 

Electron transfer reaction rate constants at semiconductor/liquid interfaces are calculated using the 
Fermi Golden Rule and a tight-binding model for the semiconductors . The slab method and a 
z-transform method are employed in obtaining the electronic strucrures of semiconductors with 
surfaces and are compared. The maximum electron transfer rate constants at Si/viologen2 +/+ and 
lnP!Me2Fc+'0 interfaces are computed using the tight-binding type calculations for the solid and the 
extended-Hiickel for the coupling to the redox agent at the interface. These results for the bulk states 
are compared with the experimentally measured values of Lewis and co-workers, and are in 
reasonable agreement, without adjusting parameters. ln the case of InP/liquid interface, the unusual 
current vs applied potential behavior is additionally interpreted. in part, by the presence of surface 
states. © 2000 American Institute of Physics. [S0021-9606(00)70507-1] 

I. INTRODUCTION 

Insight into the dynamics of the electron transfer reac
tions at semiconductor/liquid interfaces can be helpful in 
constructing efficient and stable photoelectrochemical cells 
and other applications, and is of interest in understanding the 
basic chemical reactions. Due to the instability and the non
ideal behavior of most semiconductor electrodes in contact 
with liquids, only recently have reliable kinetic measure
ments been performed at semiconductor/electrolyte 
interfaces. 1

- 6 In these experiments the flux from the conduc
tion band edge of a semiconductor to a molecular electron 
acceptor species dissolved in the solution can be expressed 
as 

liE)= ek.,n.JE)[A ], (1) 

where 11 (current per unit area) is the current density due to 
the direct electron transfer, e is the elementary charge, 
ns(cm- 3

) is the electron concentration at the surface of the 
semiconductor and is a function of E, the applied potential, 
and [A](cm-3) is the concentration of the acceptors in the 
solution. An analogous expression can also be written for 
hole transfer from the valence band of the semiconductor. 
The units of ku defined by Eq. (I) are cm4 molecule- 1 s- 1 

and it contains the energy distribution of the electrons. 
The electron transfer reactions at n-type 

Si(l OO)/viologen2+1+ (CH30H) and n-type 
InP(l OO)!Me2Fc +10(CH30H) interfaces were studied system
atically by Lewis group. 1•

4 The built-in voltage (the voltage 
drop inside the semiconductor) and the concentration of the 
semiconductor conduction band electrons were obtained by 
differential capacitance vs potential measurements. The cur
rent densities were also measured as a function of the applied 
potential for different concentrations of acceptors and do
nors. The first-order dependence of current density on con
centration of surface electrons n s in the semiconductor and 
concentration of electron acceptors [A] in the solution was 
verified for a series of Si/viologen2+1+(CH3 0H) interfaces 4 

0021-9606/2000/112(7)/3358/12/$17.00 3358 

In this srudl the authors chose a series of viologen ions with 
very similar molecular strucrures and thus presumably simi
lar reorganization energies, but with very different free en
ergy changes for the electron transfer reactions. The electron 
transfer rate constants obtained experimentally served also to 
measure the maximum of the electron transfer rate constant. 
The measured maximum rate constant for the electron trans
fer reaction across such an interface was in the range of 
w-t?_ 10- 16 cm4 s- 1. The experimental studies of the elec
tron transfer reaction at InP/Me2Fc+10(CH3 OH) interfaces 
provided similar maximum rate constant results but less ideal 
voltage-current behavior. 

By applying a treatmenr1 for liquid/liquid interfacial 
electron transfer reactions to semiconductor/liquid interfaces 
and by assuming an "electron ball" model for the electron 
in the semiconductor, Lewis2

•
8 provided a theoretical esti

mate of the maximum rate constant which is close to the 
experimental value. The treatment is closely related to the 
model suggested by Gerischer9 who used a half-sphere in
stead of a sphere, and is a nonadiabatic approach. In the 
model of Lewis the electron in the semiconductor is repre
sented by a spherical donor with radius around 10 A, and any 
reorganization around the electron in the semiconductor was 
neglected. The electron transfer rate constant was then cal
culated using the formula derived for the electron transfer 
reactions at liquid/liquid interface, 

(2) 

where v 11 is typically expected to be around 1013 s- 1 for a 
process which is adiabatic when the reactants are in contact, 
and where the decay of rate with distance through the sol
vent, assumed to be exponent with a decay length f3s , rv and 
rA are the radii of the donor and the acceptor, 'Av and 'AA are 
the reorganization associated to the donor and acceptor, and 
/1 G0 is the standard free energy of the reaction in the pre-

© 2000 American Institute of Physics 
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FIG. I. The energetics at semiconduc!Orlliquid interfaces with surface states 
homogeneously distributed in the energy range (- a£,0) referred to the 
conduction band edge at the surface (a) with a larger [A)/[A -)ratio and the 
Fermi level is far below the surface states; (b) with a smaller [A )/[A-) ratio 
and the occupancy of the surface states must be described by a Fermi-Dirac 
distribution. In (a) and (b), the same potential vs E(AIA -)is applied but (a) 
has a larger built-in voltage. 

vailing medium. Royea, Fajardo, and Lewis 10 also investi
gated the relation between the electron u·ansfer reactions at 
metallliquid and semiconductor/liquid interfaces using Fermi 
Golden Rule. The coupling between the semiconductor and 
the redox molecules was not calculated for an actual 
system.10 

Dogonadze and Kuznetsov 11 studied both nonadiabatic 
and adiabatic electron transfer reactions at semiconductor/ 
liquid interfaces by analogy with the metal/liquid interfacial 
electron transfer reactions. The reorganization energy of the 
redox molecules at semiconductor/liquid interfaces was in
vestigated by one of us 12 and was shown to be different from 
the reorganization energy for the same molecules in a homo
geneous situation. Smith and Nozik13

•
14 studied the 

semiconductor/liquid interfacial adiabatic electron transfer 
reactions by extending Schrnickler's treatrnent 15 for metal/ 
liquid electron transfer reactions, choosing an Anderson-type 
Hamiltonian , and by molecular dynamic calculations. 16 

In the present paper, the electron transfer reactions at 
semiconductor/liquid interfaces are treated nonadiabatically. 
Extended-Hiickel calculations are performed to estimate the 
electronic coupling between the donor/acceptor level of the 
redox agent and the solid electronic states of the semicon
ductor. The electronic structure of the solid is treated by 
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FIG. 2. View of the Si and lnP semiconductor with (100) surfaces . For a Si 
electrode, all circles represent silicon atoms; for an loP electrode, 
1,3,5, .. . =P and 2,4, ... =In. The numbers indicate the two-dimensional 
layer to which the atoms belong. Every two layers of atoms form a super
layer. 

tight-binding calculations using existing solid state param
eters in literature, parameters that had been chosen to fit the 
band structure. Each semiconductor electrode is treated both 
as a slab and as a semi-infinite crystal for comparison. For a 
slab, the direct diagonalization of the Hamiltonian matrix is 
performed as usual to obtain the eigenvalues as well as the 
eigenstates,17 while for a semi-infinite crystal, a transform 
method introduced earlier by one of us for this purpose 18 is 
employed. The procedure is applied to two semiconductor/ 
liquid interfaces, Si/viologen2 +!+ and InP!Me2Fc +!0, 

lnP/PV2 +/+. In addition, surface states are included for the 
current vs applied potential behavior observed at 
lnP/Me2Fc+10, py2+t+ interfaces, as one way for accounting 
for the nonideal behavior observed for this system. The 
maximum rate mentioned earlier, which is the principal fo
cus of our attention, is calculated under conditions where 
surface states are unimportant. 

The paper is organized as follows: The theoretical basis 
for the electron transfer rate constant calculation and solid 
state calculation is described in Sec. II. The application of 
the theoretical methods to the actual systems are given in 
Sees. liT and IV, and the results are discussed there. 

II. THEORETICAL MODELS 

A. General comment 

The net cun-ent density J due to the electron transfer 
reaction at a semiconductorS/liquid interface, 

(3) 

can be written as 

(4) 

where J 1 is the current density due to the electron transfer 
from the semiconductor to the molecule and J,. is the current 
density corresponding to the reverse process. J 1 and J r de
pend on the concentrations of A and A-, respectively, at the 
interface, 

J1=ek;{A], 

lr=ekr[A -], 

(5) 

(6) 
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where k1 and kr are the first-order rate constants. In the fol
lowing only the forward reaction is considered, unless other
wise stated. When it is assumed that the electron transfer 
from the electrode to the acceptors is proportional to the 
concentration of the electrons n s at the electrode surface, in 
the case of an n-type semiconductor, the forward electron 
transfer rate constant is expressed as 

(7) 

Here, k.,, a rate constant for a reaction that is second-order 
with respect to the concentrations, is the quantity obtained in 
Lewis ' experiments. 

The rate of a nonadiabatic electron tunneling from one 
electronic state to another is frequently described by the 
Landau-Zener formula. Under the weak-coupling assump
tion, the Golden Rule expression for the nonadiabatic elec
tron transfer rate constant, which includes both the electron 
tunneling and the ''nuclear reorganization,'' contains implic
itly the Landau-Zener expression, 19 

27T , 
k'=-IVI-FC 

f fi ' (8) 

where FC is the Franck-Condon factor, Vis the electronic 
coupling matrix element, and fi is Planck 's constant. A com
mon classical expression for the Franck-Condon factor is 19 

1 ( -(A.+t.G)
2

) 
FC= exp , 

../47TA.k8 T 4AksT 
(9) 

where A. is the reorganization energy, and t.G is a free en
ergy of reaction under the prevailing conditions of tempera
ture, electrode- sol ution potential difference and environ
ment. We return later to this quantity for the present systems. 

The electron transfer at the semiconductor/liquid inter
faces involves the continuum of electronic states in the semi
conductor, whose theory, strictly speaking, requires solving a 
many-electronic state problem. Quantum mechanical studies 
of many-state crossing problems show that the Landau
Zener fommla is applicable to a large variety of such prob
lems, when the splitting of the states caused by crossing is 
smal1.20 The major charge carriers in a semiconductor have 
very low concentrations and can be treated individually in 
interfacial reactions.9 In accordance with a weak-coupling 
approxirnation20 transitions can be treated as occurring be
tween pairs of states, and a "two-level" approximation can 
then be considered, in which the electron transfer current 
between the electrode and an acceptor state is treated as the 
sum of the currents from each electronic state of the elec
trode to the acceptor state. Considering first the acceptor as 
being at position r in the solution, the rate constant is 

kj(r)= 2: k.f(k,r). 
k 

(I O) 

Here, kj(r) is the rate constant for tl1e total current from the 
semiconductor to the molecule, expressed as a sum of the 
currents from all the electronic states of the semiconductor, k 
denotes the electronic state of the semiconductor with the 
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wave vector k , and k{(k,r ) varies with the position r of the 
acceptor relative to the electrode. It can be further written 
as 10.11.21 

kj(r)= 
2

h7T J,FC(e)/(e)~ IV( k,r)i227T8(ek-e)de, 

(11) 

where the coupling matrix element V is defined later and 
f( e) is the probability that a state in the semiconductor with 
energy e is occupied, while t. G in Eq. (9) is related to e by 

t:. G=!:lG0 -e. (12) 

Here, t. G0 is defined as the standard free energy of the re
action when the donor state in the electrode is at the conduc
tion band edge at the semiconductor surface. t:. G0 can be 
obtained from electrochemical measurements. After denoting 

by V(e,r) the averaged coupling of all the states with energy 
e, Eq. (11) can be written as 

27TJ kj(r) = T /( e)p( e)FC( e)j V( e,r)j2de, (13) 

where p(e) is the density of states, i.e., I.k27Tb'(ek- e) (Ref. 

22) and IV< e, r)!Z denotes I.kl V(k,r)!Z 8( ek - e)/I.ko( ek 
-e) . 

The current density at the electrode is obtained by sum
ming over the current from the electrode to all the acceptors 
A in the solution and dividing tl1e sum by the area of the 
electrode surface u, 

(14) 

where A(r ) is the concentration of A at r. When the reaction 
is not diffusion-controlled, and when the change of electrical 
potential inside the liquid can be neglected, A( r ) can be 
taken as constant. A first-order electron transfer rate con
stant, which is independent of the concentration of acceptors 
in tl1e solution but dependent on the concentration of elec
trons in the semiconductor, can be defined, 

(15) 

When k/r) depends exponentially on distance with a decay 
constant f3 s , the k 1 becomes 

I 
k1= f3s kj(contact), (16) 

where kj(contact) is the value of kj(r) at the van der Waals' 
contact distance, averaged over orientations as discussed 
later in Sec. III A. 

B. Tight-binding model 

For obtaining the electronic states of the semiconductors, 
we consider the tight-binding method, which has been used 
extensively in treating the electronic properties of solids and 
their surfaces and has been useful and efficient in approxi
mately solving solid state physics problems. 23

-
27 As noted 

earlier, 18
•
21.28 because it involves a linear combination of 
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atomic orbitals, the tight binding method for the electronic 
structure calculations for the solid is readily combined with 
the extended-Hiickel treatment to estimate the electronic 
coupling at the interface. 

In this approach the one-electron wave function of an 
infinite solid is expressed as a linear combination of Bloch 
functions, ~R,exp(ik·R;)I/t,(r-R1), 

where c,(k)'s are coefficients, 1/t,(r-R;)'s are atomic orbit
als centered at the position R1, and the n' s denote different 
bands of orbitals. 

Substitution of the wave function into the Schrodinger 
equation, H'l'k(r)= E<"'frk(r) , produces the well known set 
of linear algebraic equations, with the standard result for 
non-trivial solutions that23 

JH-ESJ=O, (18) 

where H and S are matrices of the Hamiltonian and overlap 
with elements H nm and S nm. The elements of the matrices 
are readily obtained by the consideration of the symmetry of 
the solid and by choosing appropriate interaction and overlap 
parameters for the neighboring atoms, H,.m and S,m. We 
have 

H,m=L exp(ik·(Ri-R1))J l/t:(r-R1) 
R; 

XH 1/lm(r- Ri)d3r, (19) 

(20) 

In practice the parameters are adjusted in the band structure 
calculation so as to fit experimental data on the band 
structure.24 If an orthonormal basis is chosen, the S matrix 
becomes the unit matrix and Eq. (18) becomes29 

JH-EIJ=O, (21) 

where I is the unit matrix. The solution of the electronic 
structure is provided by the direct diagonalization of the 
Hamiltonian matrix. 

An infinite solid can also be viewed as being formed by 
an infinite number of layers of atoms. Each of the layers has 
the full two-dimensional translational symmetry. In this 
scheme, the wave function is expressed as 

'l'k(ru) = L c,'"(k[[)L exp(ik11· Ru,;)l/t,m(r[[-RII,;), 
n,m R~, 1 

(22) 

where ku and ru are the wave vector and the space vector in 
the two-dimensional layer. Here, 1/J,m(RJ[,;) is the mth type 
atomic orbital at the position R[[,; in the nth layer. This wave 
function is easily generalized to the case where the solid is 
not infinite, e.g., has one (semi-infinite) or two (slab) sur-
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faces. For a semi-infinite crystal, n, the number of the layer 
counted from the surface, varies from 1 to oo. For a slab , n 
varies from 1 to some finite number. 

In the slab method, the model of the solid is constructed 
using a finite number of infinite planes parallel to the surface. 
Each plane is composed of lattice atoms and the electronic 
motion in it can be described by Bloch plane waves. The 
one-electron wave functions of a slab consisting of N atomic 
layers are expanded in M X N LCAO-type Bloch functions, 
where M is the number of different atomic orbitals per layer 
for each value of ku. The overlap and Hamiltonian matrix 
elements are expressed in terms of the overlap and interac
tion integrals between the atomic orbitals. Again, an ortho
normal atomic basis can be chosen and the eigenvalues and 
eigenvectors can be obtained by direct diagonalization of the 
Hamilionian matrix. 

For a semi-infinite semiconductor, the z-transform 
method, which was introduced earlier for the tight-binding 
study of a semi-infinite solid, is applied to the present study. 
The detailed derivation is given in Ref. 18. In the following 
we consider a semi-infinite solid having M coupled bands, 
which arises either when an atom has several different orbit
als or when each layer of the solid is a superlayer, i.e., con
sisting more than one layer, or both. Substitution of the wave 
function Eq. (22) into the Schrodinger equation yields an 
infinite set of difference equations. In matrix notation, the 
difference equations can be written as 

Btcn+2+ (A- £1)c11+! + Ben = 0, (n;;., 1), 

B! c2+ (A1 - £I)c1 = 0, 

(23) 

(24) 

where C0 is a column vector whose elements c m n describe the 
coefficients of the bands in the nth layer, and where 

by 

Bm/b'(k [[-klj)=(I/JmnJHJI/tl.n-1 ), (n•Pl), (25a) 

Amlb'(k[[-ki!)=(I/Jm11 JHJI/Jin), (ni' 1), (25b) 

A l,mlo(k11-kli) = ( 1/tmdHJI/Jil), (n *I), 

B l.mlo(k[[-k[[) = ( 1/tmziHJ 1/t/l ), (n * 1). 

(25c) 

(25d) 

Introducing the z-transform for the coefficients, defined 

(26) 

its inversion formula is 

- 1 f n-2 cm,- -
2 

. Fmz dz, 
7TI C 

(m=l toM). (27) 

Applying them to the set of difference equations Eq. (23), 
and writing the result in the matrix form, we obtain 

[z 2Bt + z(A- £1) + B]F 

(28) 

with the boundary condition relating c2 to c 1 given by Eq. 
(24). 

The vector F, whose elements are F m , can then be ob
tained from Eqs. (24) and (28), 
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F= lc1- [z 2Bt + z(A- EI) + Br 1 

X [B1 + zBtBi- 1(A1- EI)] c1. (29) 

As can be seen from Eq. (29), the poles of the integrand in 
Eq. (27) are found by locating the zeros of the polynomial 

det[z 2Bt+z( A-EI) + B] , (30) 

and are used in the inversion formula to yield the coefficients 
cm,·s in terms of c,11 's. The boundary condition at the sur
face is included in the expression for F, and in Eq. (29) the 
requirement that the wave functions do not become infinite 
as n -H>o is satisfied by choosing cm 1 's which make the terms 
with lzl>l in Eq. (24) for Cmn's vanish. 

A numerically simpler way of solving the preceding 
problem is proposed and used here and is illustrated as fol
lows. Since 

At= A, (31) 

in Eq. (30), z and z * - 1 are both the zeros of the polynomial 
in that equation. As a result, the number of zeros inside the 
unit circle must equal the number of zeros outside the unit 
circle. By denoting the roots of z by z1, I= 1 to 2M, the 
integral in Eq. (27) can be evaluated using Cauchy ' s residue 
theorem, 

2M 2M 

c,",=2: z7- 2 ResF,(z1)= 2: c1mz7- 1 

1=1 1=1 
(32) 

where 

(33) 

In order to satisfy the outgoing boundary condition at n 
----> oo, the zeros outside the unit circle are discarded by setting 

the corresponding c 1, the column vector whose elements are 

;lm, .equal to zero. 
Substitution of Eq. (32) into Eq. (23) yields 

L z7+ 2Btc1+ L z7+ 1(A-EI)cl+ L z?+ 1Bc1=0. 
I l l 

(34) 

The above equation holds for all n?3 1, which can be satisfied 
by setting 

(35) 

for all z/s. Thereby, cl is the solution of the linear system, 

(3 6) 

with boundary condition given by Eq. (24). When it can be 
assumed that 

AI=A, Bt = B, 

the boundary condition can be rewritten as 

Btc2 + (A- EI)c1 + Bc0 = 0, 

with 

C -~-c - 1 ---0 o- LJ 1Z1 - . 
I 

(37) 

(38) 

(39) 
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Upon obtaining the roots z and the corresponding coef

ficient vectors cl , the coefficients in the wave function are 
readily obtained using Eq. (32). Since the system is semi
infinite, although these cm,'s constitute both propagating and 
decaying components, the decaying wave functions go to 
zero as n goes to infinity and so they do not contribute to the 
normalization, the normalization of the wave functions only 
needs to be performed on the propagating ones. The wave 
functions are normalized to give correct number of orbitals 
per unit cell. For example, for a semi-infinite silicon semi
conductor, there are eight C0 's satisfying the boundary con
dition. For a bulk state, each en is the linear combination of 
eight wave functions , at least two of which are propagating 
ones, and each of these wavefunctions is a linear combina
tion of the eight atomic orbitals of the unit cell. The normal
ization of the c11 's, after taking into account the spin of the 
electrons, is performed in such a way that 2:mcm,c!,=2 , 
where the sum is over the propagating components of C0 • The 
eight orthogonal wave functions satisfying the boundary con
ditions then give 16 orbitals per unit cell. Given the condi
tion in Eq. (37) the final equations used in this method be
come equivalent to those used by Gosavi and Marcus30 in 
their treatment of elecrron transfer at metal elecrrodes, aJ
though their appearance differs. 

Although the above formulation of the z-transform 
method was derived by considering the first nearest neighbor 
interactions between the solid atoms, the z-transform method 
can be applied to the tight-binding model with interactions 
involving as many atoms as desired. When the interactions 
include more than the nearest neighbors, one can simply in
crease the thickness of the superlayer so that only the nearest 
neighboring superlayers interact with each other. 

When the one-electron wave functions are expressed in 
an orthonormal atomic basis set, the coupling V(k,r) be
tween a solid electronic state I 'I' k) and the acceptor state 
I ell >, 

(40) 

can be expressed in terms of the couplings between the 
atomic states, 

V(k,r)= L .. eiku·rl,•c,m(k)*C;j{ l/l,.miH( r )j¢ij), 
n ,a ,tn,r,J 

(41) 

where the tPij is the jth orbital of the ith atom in the mo
lecular acceptor state, and C ij is the coefficient of the this 
orbital in forming the acceptor state, 1/Jnam is the mth type of 
atomic orbital which belongs to the ath semiconductor atom 
in the nth layer. Tff,a in Eq. (41 ) is the position of the atom a 
in a semiconductor layer. We may illusrrate the notation by 
considering a semi-infinite silicon semiconductor. Each su
perlayer of silicon consists of two layers of silicon atoms, 
and each silicon atom contains 4 relevant orbitals(e.g., 3s, 
3px, 3py, 3p,) and so m varies from 1 to 8. The first layer 
is formed by atoms denoted by ( 1 ,a), where a is onJy odd 
numbered, 1, 3, 5, . .. , the orbitals of which are then denoted 
by (1, a, m), where m = 1, 2, 3, 4. The second layer also 
belongs to the first superlayer and thus n = 1, a= 2, 4, 6, ... 
and m=S, 6, 7, 8. (We note that the a=2, a=4, etc. atoms 
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FIG. 3. Calculated density of states p for the bulk of Si semiconductor. The 
unit of the density of states is per unit cell (2 atoms) per eV. The Fermi level 
is located at 0 eV. 

interact differently with the molecule, because of their dif
ferent positions with respect to it. ) The Cnm in Eq. (41 ) are 
obtained by the tight-binding calculations described earlier 
and are functions of kn but are independent of r ll,a· The cou
pling matrix elements ( iftnamiH(r ) l¢;j) are obtained by the 
extended-Hiickel calculations for the acceptor atomic orbital 
(i,j) and the semiconductor atomic orbital mat the position 
(n, a) . 

Ill. APPLICATIONS 

A. Silicontviologen system 

1. Band structure calculations of silicon 

The LCAO ("tight-binding") method has provided a 
good description for the semiconductor valence band and 
conduction band edge for silicon even when only the nearest
neighbor interactions are considered and an orthogonal basis 
is used.31 In this calculation, the nearest-neighbor interaction 
parameters are taken from a table of solid state parameters in 
Ref. 25. The density of states is obtained by randomly choos
ing a certain number of wave vectors in the calculation 
which show a statistical number of the energy eigenvalues. 
The computed density of states for a bulk silicon is normal
ized to give 16 orbitals per unit cell (including the spin of the 
electrons) and is shown as a function of the orbital energy in 
Fig. 3. 

The surface studied experimentally for silicon was, as 
noted earlier, the (1 00) surface. In the slab method, the sili
con (100) surface bands were calculated using models of 
infinite silicon slabs with ideal (100) surfaces, i.e., a finite 
number of layers, each consisting of an infinite number of 
(100) silicon atoms as a two-dimensional array, are placed as 
in a perfect silicon crystal (Fig. 2). The one-electron wave 
functions are written as linear combinations of Bloch func
tions as in Eq. (22), where the sums are over the layers and 
the 3S,3P x,3P y,3P z orbitals, respectively. The (1 00) surface 
is treated as ideal and the matrix elements between a Bloch 
function of the surface plane and one plane inside the slab is 
treated as the same as the corresponding elements between 
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FIG. 4. Calculated density of states p for a slab of Si semiconductor. The 
unit of the density of states is per e V per unit cell. There are 20 atoms per 
unit cell, which has one atom on each face of the slab and so is 20 atoms 
thick. The Fermi level is located at 0 e V. 

two Bloch functions well inside the slab. The wave functions 
are determined by solving the eigenvalue problem repre
sented by Eq. (18). 

The Hamiltonian matrix elements were computed as 
functions of a two-dimensional wave vector (ky ,kz) by 
choosing the same parameters as in the bulk calculation. The 
energy eigenvalues and the eigenstates were obtained by di
agonalizing the Hamiltonian matrix, and the density of states 
as a function of energy is calculated using a statistical num
ber of the eigenvalues. The density of states was normalized 
to give the proper number of orbitals per unit cell (which 
contains N silicon atoms for the unit cell in an N layer slab) . 
Except for the intrinsic surface states, which lie in the band 
gap, the density of states calculated for a slab of a Si semi
conductor (Fig. 4) is similar to the one obtained for the bulk 
silicon. 

Since each primary unit cell of a bulk silicon crystal has 
two silicon atoms, one should include at least two layers of 
(100) plane in a superlayer in the application of the 
z-transforrn to a semi-infinite system. The B and A matrices, 
obtained by using the same solid state parameters as in the 
bulk and slab calculations, are all 8 X 8 matrices. The bulk 
and surface states of the semi-infinite semiconductor can 
both be obtained using the z-transform. A bulk state contains 
at least two propagating components and a surface state has 
only decaying wave functions. 

In the experiments,4 the electrode surfaces were occu
pied by hydrogen atoms to saturate the dangling bonds of 
surface silicon atoms, removing thereby the surface states 
resulted from the dangling bonds of the surface silicon at
oms. According to previous calculations in the literature on a 
hydrogen-terminated Si (111) surface32 all surface states 
were removed and the silicon-hydrogen interaction forms 
two bands deep inside the silicon bulk bands . Although the 
band structure of the hydrogen-terminated Si (I 00) slab is 
different, it seems reasonable to suppose that there will be no 
intrinsic surface states left for a perfect hydrogen-terminated 
Si (1 00) surface. 
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2. The electronic structure of the redox molecule 

For the calculation of the rate constant of the electron 
transfer reaction at the siliconlviologen2+ 1+ interfaces, 
N,N' -dimethyl-4,4' -bipyridylium2+ was chosen as the elec
tron acceptor. Using the structural data of this cation in a 
crystal,33 the most stable structure of the ion was obtained by . 
the EHMACC (extended-Hiickel molecular and crystal cal
culations prograrn) 34 The two pyridyl planes formed thereby 
a 50° angle. However, since the calculation was performed 
without the consideration of the interactions between the ac
ceptor and the solvent molecules, some differences may oc
cur for the structure of this ion in solution. The LUMO of the 
ion , i.e., the acceptor state was obtained as a linear combi
nation of the atomic orbitals, 

(42) 

where the sum is over the atoms i and the valence orbitals j 
of each atom with Ci/s obtained from the extended-Hiickel 
calculation. 

3. Calculation of the electron transfer rate constant 

To be consistent with the experiments where the only 
rate-limiting step is the electron transfer process the accep
tors are considered homogeneously distributed in the solu
tion. The orientations are taken as random, using 125 differ
ent orientations, each translated so as to have the closest pair 
of atoms, of the molecule and of the semiconductor surface, 
in van der Waals' contact, i.e., they have a separation dis
tance equal to the sum of the atomic van der Waals' radii. 
The square of the electronic coupling is averaged over these 
orientations. In the calculations, the semiconductor is as
sumed to be uniform and is represented by the surface x 
= 0, and the 125 orientations of the molecule are created by 
the rotations of the molecule in the three-dimensional space 
each with a set of randorn.ly chosen Eulerian angles. The 
geometric center of the molecule with each selected orienta
tion has 16 randomly chosen (y, z) coordinate relative to the 
closest Si surface atom. Because of the symmetry of the Si 
semiconductor surface, y and z vary between 0 and half a 
lattice constant. Under the assumption that the coupling de
cays exponentially with distance with a decay exponent f3s, 
the range of contributing distances is 1/ f3s, and we note that 
/3.,= 1 A - I .

19 The averaged quantity of coupling matrix ele
ment, denoted by (IV(k)l 2

) at the van der Waals' contact 
mentioned earlier was obtained by an extended-Hiickel34 cal
culation. For the hydrogen-terminated silicon surface, 
(I V(k)j2) is calculated assuming a direct van der Waals ' 
contact between the hydrogen atom on the Si surface and the 
closest atom of the redox species35 for each given orienta
tion. A certain number of states at each energy E is randomly 
chosen to give the average of the square of the coupling, 

( IV( c)!Z), which is then multiplied by the density of states to 
yield the total coupling at that energy. 

Combining Eqs. (9), (13), and (16) an expression is ob
tained for the first-order electron transfer reaction rate 
constant, 

Gao, Georgievskii , and Marcus 

TABLE I. Experimental and calculated k':,~ .• 

k'"ll){ 
" 

km"' 
" 

km" 
" System (ex pl. ) (z-trans.) (slab) 

Si/viologen2 +/+ 0.6b 1.3 1.6 
InP/Me2Fc+ 10 1-2' 0.084 0.086 

8Units are 10 - 16 cm4 s- 1
, and the theoretical e;:x includes only bulk states. 

'From Ref. 4. 
'From Ref. l. 

21r 1 1 f "' ( (A.+LIG
0
-c)

2
) 

k -- - exp - ---,-:-:--:::--
/- fi .J41TA.ksT f3 s o 4AksT 

x(l V( c)IZ)f( c) p ( c)dc, (43) 

where p( E) and ( IVC E) 12) are normalized to the unit cell. 
Because of the low occupancy of the semiconductor conduc
tion band, and reflecting the Boltzmann factor the electron 
transfer can be regarded as occurring only near the edge of 
the conduction band, i.e., nearly at c=O. In Eq. (43) and 
hereinafter for convenience of discussion the energy E of the 
electrons in the semiconductor will be refened to the con
duction band edge at the semiconductor surface as zero. 

For a semiconductor/electrolyte interface as in the elec
tron transfer reaction studies in Refs. 1-6, the change of 
electrostatic potential across a semiconductor/liquid interface 
exists mainly within the semiconductor, because of the low 
concentration of the charge carriers in the semiconductor. In 
this case, the change of applied potential changes only the 
concentration of carriers at the interface and does not change 
the free energy .:1 G0 of the electron transfer reaction. As 
shown in the Appendix, the maximum second-order electron 
transfer rate constant can then be expressed as 

21T 1 v 
k':r"= T .J41TA.ksT f3s (li!/2), (44) 

where (li!l 2) is defined in the Appendix [cf. Eq. (A6)]. The 
maximum rate constant computed using the above equation 
is shown in Table I. 

B. Indium phosphide/ferrocene interfaces 

1. Band structure of indium phosphide 

The bulk band structure of the InP semiconductor was 
calculated using the Hamiltonian and the interaction param
eters given by Chadi et al. 24

·
36

•
37 The density of states com

puted for the bulk and a slab of the InP semiconductor are 
shown in Figs. 5 and 6, respectively . The electronic structure 
of Me2Fc + was obtained from the extended-Hiickel 
calculation34 using the molecular structure given in Ref. 38. 
The electronic structure calculations were again performed 
for a slab and for a semi-infinite crystal model of the InP 
semiconductor with a (1 00) surface. The maximum second
order electron transfer rate constant (per unit area) was com
puted and the results are given in Table I. 
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FIG. 5. Calculated density of states p for the bulk of InP semiconductor. 
The unit of the density of states is per unit cell (2 atoms) per eV. The Fermi 
level is located at 0 e V. 

2. Contribution of surface states 

Using considerations similar to those used in the treat
ment of bulk states we shall also assume that the electron 
transfer between a surface state and the bulk state is much 
faster than the electron transfer between the surface state and 
the molecular acceptor. In the preceding treatment we ne
glected the interactions which might lead to such a coupling, 
e.g., radiationless transitions. The resulting expression for 
the current density conesponding to the electron transfer 
from the surface states of the semiconductor to the acceptor 
is 

27T 1 I 
J"=e[A]- -
I li .J47TAknT /3, 

X f.J V
55

( E)j2e- [(Hl>.G)
2

/
4AkHTlj( E)p ss( E)dE, (45) 

where Pss is the density of surface states, and 

!J.G=!::..G0
- E, (46) 

is the driving force for the electron transfer from a surface 
state with energy E to the acceptor. If, for simplicity, it is 
further assumed that the surface states are distributed homo
geneously in an energy range from - !::..£ to 0 , i.e., in an 
interval !::..£ below the conduction band edge, then 

N,, 
Pss= !J.E' 

where N,, is the total number of surface states. 

(47) 

The occupancy of these states obeys the Fermi-Dirac 
distribution, 

1 
/(c)= 1 +e C•-•1Jik 8 T' (48) 

where E1 is the Fermi level, and depends linearly on the 
applied potential E app, 

(49) 
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FIG. 6. Calculated density of states p for a slab of InP semiconductor. The 
unit of the density of states is per eY per unit cell. There are 20 atoms per 
unit cell, which has one atom on each face of the slab and so is 20 atoms 
thick. The Fermi level is located at 0 eY. 

Here, cJ is the value of Et when Eapp= 0 , '1; is the built-in 
voltage, the potential drop within the semiconductor, when 
Eapp=O, and cJ is the energy difference between the Fermi 
level and the conduction band edge inside the semiconductor 
(Fig. 1). When any dependence of the coupling between the 
surface states and the acceptor state on the energy € is ne
glected, an expression for the surface states contribution to 
the current density from the semiconductor to the acceptor 
state Jj' is 

27i I 1 NssJVssJ 2 

J"- e[A]- - --:-::::--
/- li .J47TA.knT /3, !::..£ 

(SO) 

where !::..G is given by Eq. (46) . Similarly, the current density 
due to the electron transfer from the donor to the surface 
states can be ex pressed as 

f
o 2 

X e-[(X-l>.G) 14i..k811(1-j(E))d E. 
-l>.E 

(51) 

The sum Jj'+ J1' is next used to interpret the current
applied potential behavior obtained in the experiments. The 
N,,J VssJ 2 is treated as a single parameter which can be ad
justed to fit the experimental data, in the absence of any 
other complicating factors . 

3. Current vs applied potential behavior 

As we have noted earlier, the total cunent can be written 
as the sum of two components, 

J = J"+ J bk (52) 

In the present treatment J" is computed using Eqs. (SO) and 
(51) and ; bk , the cunent from the bulk states, is calculated 
using the tight-binding method. 
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FlG. 7. Current-applied potential behavior at the lnP/Me,Fe+10 interfaces. 
The experimental data are taken from Ref. I. From left to right, the concen
trations of Me,Fe~ are 0.001 M, 0.01 M, 0.1 M, respectively. The concen· 
tration of Me, Fe is 0.1 M. To fit the experimental data, N .,I V.,l ' is taken as 
1.25, 0.31, 0.44X 10-• eV2, respectively. 

When the current via the surface states dominates, 
namely, when the surface states are much more occupied 
than the conduction band or when the density of surface 
states is high, one bas approximately for the forward and 
reverse current density, 

Jj'+ lb'= 0, (53) 

at equilibrium. In the case of the lnP/Me2Fc+/O interface, 
using Eqs. (48), (49), (50), (51), and (53) to fit the built-in 
voltage ~i of the semiconductor at zero applied potential, 
which leads to a equality between the integrals in Eqs. (50) 
and (51), a value for !::..E is obtained as 0.4 eV. This value of 
!::..E agrees with results from surface state studies of the (1 00) 
surface of lightly doped n-InP senliconductors in vacuum 
both experimentalll9 and theoretically,40 where the surface 
states were shown to be located at (1/3) E

8 
below the con

duction band minimum. 41 Here, E
8 

is the band gap of the 
semiconductor and is around 1.35 eV. 

Sinlllarly, the electrochemical studies at p-InP/ 
electrolyte interfaces42 also lead to surface states distributed 
mostly near the conduction band edge. Other parameters 
used in this calculation are as follows: the reorganization 
energy A. is 0.8 eV, as suggested in Ref. 1, !::..G 0 is 0.79 eV; 1 

the parameter N ssi V ssl 2 is chosen as 10- 8 (e V)2 to fit the net 
current density obtained in the experiments 1 using Eqs. (50) 
and (51). The current density is then obtained as a function 
of the applied potential for different [A]f[A - ]ratios and is 
compared with the experimental data. The curvature of the 
plot is deternlined by the relative position of the energy of 
the surface states and the Fermi level, and so depends on 
Eapp and !::..G 0 , as shown in Fig. 1. When the Fernli energy is 
much lower than the energies of the surface states, the occu
pancy of these states can be treated as obeying a Bolt=ann 
distribution, and the ln[J] vs E app curve is a straight line. 43 

When the energy difference between the lowest surface 
states and the Fermi level is less than k8 T, the Fermi-Dirac 
distribution must be employed. The ln[J] vs Eapp plot then 
deviates from a straight line, as shown in Fig. 7. In order to 
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FIG. 8. Currenl-applied potential behavior at the fnP/PV2+ /+ interfaces. 
The experimental data are taken from Ref. 1. N,.l V.,l2 is taken as 3.2 
X 10- 8 eV2 . 

fit the experimental results different densities of states are 
used for different InP/liquid interfaces. This assumption is 
not necessarily correct, since the deviation of the horizontal 
distance between the neighboring curves in Fig. 7 from the 
value of 0.059 V may also result from experimental 
uncertainties.44 

In order to fit the experimental current vs applied poten
tial data obtained at the InP!PV2 +t+ interface by the diode 
equation, 1 

J=fo(e-eE,PPIAkBT -1 ), (54) 

the A in Eq. (54) should be greater than 1.8, which indicates 
that the current vs applied potential behavior at this interface 
is far from ideal (A= 1) . A better fit is obtained by including 
surface states in the calculation, using the following param
eters: !::..£=0.4 eV, !::..G0 =-0.34 eV, 1 >..=0.5 eV, 1 and 
N 551Vssj2 =2X 10- 8 (eV)2 Here, !::..E is taken the same as in 
the InP/Me2Fc + 10 case and N ssl V ss1 2 is chosen to fit the mea
sured net current density. The calculated result is shown in 
Fig. 8 together with the experimental results . 

IV. DISCUSSION 

The nonadiabatic description and the two-level approxi
mation applied in our theoretical studies of electron transfer 
reactions at senliconductor/liquid interfaces provide a consis
tent value for the reaction rate constant when compared with 
the experimental results. Senliconductors differ from metals 
because of their band gap, which, as pointed out by 
Dogonadze, 11 makes the electron transfer reactions more 
likely to be nonadiabatic. This effect is associated with the 
low occupancy of the semiconductor conduction band, which 
allows the electron transfer to occur mainly nearly the edge 
of the conduction band. For a metal/liquid interface, the elec
tron transfer reaction happens largely at the Fermi energy, 
and the coupling strength between the metal electrode and 
the molecular acceptor can be characterized by 15

•
22 

(55) 



J. Chem. Phys., Vol. 1 12, No. 7, 15 February 2000 

where A(£) is evaluated at the Fermi energy. t:.(<=1)11iwmax 
has been then taken 15·45 as the crite1ion for distinguishing 
nonadiabatic from adiabatic reactions for a metal/liquid 
interface, 15 where Wmax is the "fastest phonon mode" con
tributing to the electron transfer reaction. For an Wmax/27T of 
the order of 1013 s- 1 this liwmax is about 0.03 eV. At a 
semiconductor/liquid interface, the electron transfer reaction 
occurs mainly near the edge of the conduction band. The 
interaction strength between the continuum states of a semi
conductor and the acceptor state is better characterized by20 

(56) 

where the limit '' E' ' denotes a narrow interval of an amount 
k 8 T at the semiconductor conduction band edge. Because of 
the low occupancy of the electronic states in the semicon
ductor conduction band, the electron transfer happens only at 
a small energy range near the conduction band edge, and 
then the important integration regime only covers a narrow 
interval of the order of k8 T. As pointed out by Harrison,25 

band energy is proportional to the square of k- k0 near the 
conduction band edge, where k 0 is the value of k at the 
conduction band edge (conduction band minimum). The 
value of k 0 depends on the nature of the interaction of dif
ferent bands. For InP k 0 is zero,46 while for Si it is quite 
large.46 For Si and InP, the density of states is very low near 
the conduction band edge,25

•
46 the total coupling between 

these semiconductors and the molecular acceptor is typically 
weak. The t.. 1 is the counterpart of the usual matrix element 
that appears in the two-state Landau-Zener formula. The 
present approximate calculations lead to a value oft.. 1 of the 
order of 10- 5 eV. In that case, with nwmax~0.03 eV, the 
reactions can be regarded as nonadiabatic. 

Since the double layer at the interface of semiconductor/ 
liquid interfaces is neglected and the redox molecules are 
also allowed to penetrate to the electrode surface, the present 
calculations more likely represent an upper bound of the 
maximum rate constant. Although the approach in this study 
is intended to be a pragmatic one, the calculated result for 
the maximum rate constant at the Si/viologen2 +t+ interfaces 
is in a surprisingly reasonable agreement with the experi
mental data. The agreement for lnP/Me2Fc+ 10 is less satis
factory, the calculated value being approximately an order of 
magnitude smaller than the experimental one. Nevertheless, 
considering the approximation of using the extended-Hiickel 
treatment to obtain the coupling, this extent of agreement is, 
in our opinion, encouraging. 

The difference between the calculated results for 
Si!viologen2 +t+ and InP/Me2Fc +tO systems47 may be due to 
several effects. One factor is the difference in size of the 
acceptor state, since the LUMO of a viologen2 +/+ ion is 
calculated in the present work to be delocalized over the 
whole ring system, and the LUMO of a Me2Fc+to ion is 
localized mainly on the Fe3 + ion (here and in Ref. 48) and so 
distant from the periphery of the molecule. This effect would 
yield a larger electronic coupling between the semiconductor 
and the first redox species, other things being equal. How
ever, there are factors which would make InP more effective 
than Si, e.g., a smaller effective electron mass, 25

·
46 and so 
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tend to counter the above molecular effect. It would be use
ful therefore to study the two semiconductor systems with 
the same molecular species, if possible. In an effort to re
solve this question using calculations we have compared the 
calculated maximum rate constant for the Silviologen2+t+ 
system, 1.6X10-16 cm4 s- 1, as in Table I, with a maximum 
rate constant which we subsequently calculated for the 
Si/Me2Fc+to system, 0.17 X 10- 16 cm4 s- 1. Thus, it is seen 
that the viologen2+t+ pair has a closer effective contact with 
the Si interface than does the Me2Fc+to pair. Accordingly, 
the experimental result in Table I, in contrast with the calcu
lated results in that table, that the lnP/Me2Fc +tO has a higher 
rate than Silviologen2+/+, cannot be attributed to a more ef
fective contact. For this reason we attribute the higher ex
perimental rate for InP to the presence of surface states in the 
InP, as discussed earlier. We note also that the calculated 
(bulk state) result for InP/Me2Fc +10 (0.086X 10- 16 cm4 s-1) 
is comparable with the calculated (bulk state) result for 
Si/Me2Fc+to (0.17XI0- 16 cm4 s- 1). 

Under some conditions, surface states may play a role in 
the electron transfer reactions at semiconductor/liquid inter
faces, because of their localization at the electrode surfaces , 
as noted by previous authors.9·16 Although the density of 
bulk states of the InP conduction band is large, of the order 
of 1017 cm- 3 , the decay length of their coupling to the mol
ecule of about 1 A yields an effective surface density of 
states of the conduction band of the order of only 109 em- 2

. 

We note further that in a free-electron model a surface state 
has a wave function which can be expressed as 

(57) 

The 11 f3ss is about 8 A for the InP semiconductor.49 As a 
result, a large fraction of surface states can be effective in 
contributing to the electron tunneling event. In treating the 
electron transfer at InP/Me2Fc+tO interfaces, the possibility 
of surface states was subsequently included in Sec. III B, as 
one interpretation of the nonideal current vs applied potential 
behavior in the experiments. A coupling strength between 
the surface states and the acceptor required to account for the 
discrepancy between the theoretical and experimental results 
was then estimated. We have not included any such contri
bution in Table I, the discrepancy in the rate constant of a 
factor of 10 between experimental and calculated results for 
the InP system in Table I could also have other sources. 

While the inclusion of the surface states helps to explain 
the current vs applied potential behavior obtained in the ex
periments, the nonideal behavior being explained by the 
Fermi-Dirac occupancy of the surface states, the nonideal 
behavior can also result from many other mechanisms, such 
as the recombination of charge carriers in the solid bulk. The 
latter can produce a diode plot with a slope larger than 
unity.50·51 We have noted earlier that the part of the present 
calculation which includes surface states is based on the as
sumption that the electron transfer between the bulk states 
and the surface states is much faster than the interfacial 
charge transfer, and is also based on a simplified model for 
the density of surface states. A deeper understanding of the 
mechanism would require the investigation of other pro-
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cesses at the semiconductor/liquid interface and inside the 
semiconductor, as Anz and Lewis50 have concluded from 
their recent simulation. 

We turn next to a comparison of the electronic structure 
calculations of semiconductors with surfaces using the direct 
diagonalization vs using the z-transform. The direct diago
nalization uses a slab of the crystal and mathematically is 
more straightforward, but because the computing time in
creases rapidly with the size of the slab, it is a less practical 
way to treat a very ''thick slab''. On the other hand, as noted 
in the literature.52 usually a 20-layer slab is enough to pro
duce a correct band structure for the crystal. The slab method 
is also a convenient method for obtaining the band structure 
and the density of states, and is practical for our purpose. 
With the z-transform method, a semi-infinite crystal is 
treated. Its mathematical formula is more complicated than 
that of the slab method, in that its solution requires the loca
tion of the roots of a high order and in many cases complex 
polynomial. Although it is time-consuming to obtain the 
whole band structure, in the application of the z-transform 
the energy is an input, the computing time can be consider
ably reduced if only states of some specific energies are re
quired. The two methods provide similar results when they 
are applied to the calculations of the electron transfer reac
tion rate constants at semiconductor/liquid interfaces 
(Table I). 
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APPENDIX A: THE EXPRESSION FOR THE MAXIMUM 
ELECTRON TRANSFER RATE CONSTANT 

As discussed in the text, in the integral in Eq. (43) f( E) 
is the only term which depends on the applied potential Eapp, 

E- E1 -e£app 
( 

0 ) 
/(c)=exp - kaT , (A l) 

where the quantities in Eq. (Al) were defined earlier in the 
text [cf. Eq. (49)]. EJ is a constant for a semiconductor/liquid 
interface. Equation (43) can then be written as 

(A2) 

where fo( E) is the occupancy, exp[ -(E- EJ)!k8lj, of the con
duction band states at the semiconductor surface at zero ap-
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plied potential. The number density of electrons n , at the 
semiconductor surface is also a function of the applied po
tential, 

( 
eV~i-eEapp) 

n,.=no exp - ksT ' (A3) 

where n 0 is the number density of conduction band electrons 
in the semiconductor bulk, and V~i is the potential drop 
within the semiconductor at zero applied potential, i.e., at 
Eapp=O. 

Comparison of Eqs. (A2) and (A3) then illustrates that 
k1(Eapp) is proportional to the density of surface electrons 
n,. An expression of a second-order electron transfer rate 
constant that is independent of the applied potential, and thus 
of the density of surface electrons of the semiconductor, can 
be written as 

(A4) 

The n 0e- 0/,;iknT in Eq. (A4) is readily evaluated, being equal 
to f p(E)fo(E)dEIV, with E=O to E=co as integration 
limits 53 The v is the volume of the unit cell, and in the 
calculations using Eq. (A4) the wave functions are normal
ized to a unit cell. 

Since we are interested in the maximum rate constant for 
the electron transfer, where A+!:,. G0 is nearly zero, in the 
exponent term of the free energy one can set E= 0, since 
E~A, and remove it from the integral, one then has 

f~(l V( c)i2)fo( E)p( E)dE 
X "' ) ·(!J.G0=-A). 

fofo(E)p(E dE 
(AS) 

In the experiments,4 the maximum rate constants were 
obtained by choosing a series of acceptors in the liquid with 
different reaction free energy but with similar reorganization 
energy around 0. 7 e V4 Here, by setting !:,. G0 + A = 0, and by 
introducing an averaged coupling matrix element square,53 

(I Vi 2
), where 

_ f~(l V( c)iZ)/0 ( E)p( E)d E 
(jVj2)= J~fo(c)p(E)dE (A6) 

an expression of the second-order electron transfer rate con
stant is then obtained as in Eq. (44). 
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Electron transfer reactions at semiconductor/liquid interfaces are studied using the Fermi Golden 
rule and a free electron model for the semiconductor and the redox molecule. Bardeen's method is 
adapted to calculate the coupling matrix element between the molecular and semiconductor 
electronic states where the effective electron mass in the semiconductor need not equal the actual 
electron mass. The calculated maximum electron transfer rate constants are compared with the 
experimental results as well as with the theoretical results obtained in Part I using tight-binding 
calculations. The results , which are analytic for an s-electron in the redox agent and reduced to a 
quadrature for p z· and d ,2-electrons, add to the insight of the earlier calculations. © 2000 
American Institute of Physics. [S0021-9606(00)70739-2] 

I. INTRODUCTION 

The electron transfer reactions at the Si/viologen2+l+ and 
lnP!Me2Fc+IO interfaces were studied recently by Lewis and 
co-workers.1

-
3 The experiments yielded a maximum electron 

transfer rate constant in the range of 10- 17-10- 16 cm4 s- 1. 

To compare with the experimental results, the maximum rate 
of interfacial electron transfer reactions between a redox 
agent in solution and InP and Si semiconductors was calcu
lated in Part I, the InP surface, as is believed, being termi
nated with 0' s and the Si surface with H' s4 A tight-binding 
model was used for the semiconductor and extended Hi.ickel 
calculations were performed for the molecule and for the 
electronic coupling, in conjunction with z-transform5 and 
slab methods. 6 Since a free electron model for the problem 
provides a simple description which can add to the physical 
insight, the present treatment was undertaken, by adapting 
Bardeen's method to this study. It is known that with an 
effective mass the free electron model describes many prop
erties of bulk semiconductors 7-

12 and that the free electron 
model with the actual electron mass describes various prop
erties associated with the LCAO molecular wave functions 
of aromatics and polyenes, such as electron densities and 
bond orders 13 (and so even the coefficients). 

The paper is organized as follows: The theoretical model 
is given in Sec. II. The expression for the electron transfer 
rate constant and its application is given in Sec. III, and the 
results are compared with those in Part I and are discussed in 
Sec. TV. 

II. THEORY 

A. Preliminary remarks 

The electrons in the semiconductor are treated here as 
free electrons in a semi-infinite potential well with a constant 
potential inside the well and a known effective mass. The 
potential well has a surface normal to the z direction and is 
infinite in extent in the x and y directions. The electronic 

0021-9606/2000/ 11 3( 1 5)/6351 /1 0/$17.00 6351 

wave function of the molecule is obtained by solving a 
Schri:idinger equation whose potential is constant inside a 
spherical potential well and is zero outside. Analogous mod
els for molecules were applied in earlier studies of the ori
entation effect on the electron transfer reactions by Siders 
et al. 14,15 

The wave functions for the semiconductor electrode and 
the molecule obtained using the free electron model are then 
used to calculate the electronic coupling matrix element, and 
from it the maximum electron transfer rate constant. The 
electron transfer between a semiconductor electronic state 
and the molecular state is treated as nonadiabatic and Fermi 
Golden Rule is applied, and the electronic coupling matrix 
element is calculated by adapting the method introduced by 
Bardeen. 16 The application of Bardeen' s method, with an 
adaptation to the present case where the effective electron 
mass in a semiconductor differs from the actual electron 
mass, provides an analytical or quadrature expression for the 
coupling matrix element between the semiconductor and the 
molecular state. 

The total electron transfer current between the semicon
ductor and the molecule is obtained as the sum of the cur
rents between each semiconductor electronic state and the 
molecular state. This procedure was discussed and applied 
earlier in Part I to the study of electron transfer reactions at 
semiconductor/liquid interfaces using a tight-binding mode1. 4 

It has also been used by various groups in the study of elec
tron transfer reactions at metal 17

-
20 and semiconductor 

surfaces. 18
•
21 

The formula for the maximum rate constant is then ap
plied to two semiconductor/liquid interfaces (Si/viologen2+l+ 
and InP!Me2Fc+10). These two interfaces were studied ex
perimentally by Lewis and co-workers, 1

- 3 and conditions 
were obtained for the former and partly for the latter which 
satisfied ideal current vs applied potential behavior. In these 
studies, the current density 11 due to electron transfer from 
the semiconductor to the molecule is proportional to both the 

© 2000 American Institute of Physics 
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concentration [A] of the molecules in the liquid and the den
sity of electrons n., at the semiconductor surface,2 

(1) 

where e is the elementary charge and k 0 , is the electron trans
fer rate constant. These studies also provided experimental 
values for the maximum rate constant, which were around 
10- 16 cm4 s- 1, for the electron transfer reaction at the two 
interfaces. The free electron model used in the present study 
provides rate constants for the two systems in reasonable 
agreement with the results of tight-binding calculations and 
with the experimental maximum rate constants. 

B. Kinetics at semiconductor/liquid interfaces 

The net current density J due to the electron transfer 
reaction at a semiconductor (S)/ liquid interface, 

A+e(Sh="A-+S, (2) 

can be written as 

(3) 

where J 1 is the current density due to the electron transfer 
from the semiconductor to the molecule and J r is the current 
density corresponding to the reverse process. J 1 and J r de
pend on the concentration of A and A-, respectively, at the 
interface, 

J1=ekj[A], 

Jr=ekr[A -], 

(4) 

(5) 

where k1 and kr are pseudo-first-order rate constants, and, 
from Eq. (1), 

(6) 

ln the following, we obtain an expression for k1 using a 
standard result22 on electron transfer reactions: Under the 
weak coupling assumption, the rate constant kj for the elec
tron transfer from a single electronic state of the semicon
ductor described by a superscripts, which includes both the 
effect of electron tunneling or hole and ''nuclear reorganiza
tion," can be expressed using the Fermi Golden Rule, 22 for 
an electronic state to electronic state transition, 

27T 
kj=y1Vi 2FC, (7) 

where FC is the Franck- Condon factor, V is the electronic 
coupling matrix element, and n is Planck 's constant. A com
mon classical expression for the Franck-Condon factor is22 

1 (-(}..+ AG)
2

) 
FC= exp , 

.J47TAk8 T 4Ak8 T 
(8) 

where A is the reorganization energy, and AG is the free 
energy change of the reaction under the prevailing conditions 
of temperature, electrode-solution potential difference and 
environment. 

Electron transfer at the semiconductor/liquid interface 
involves a continuwn of electronic states in the semiconduc
tor, whose solution, strictly speaking, requires solving a 
many-electronic state problem. A quantwn mechanical study 
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of the many-state crossing problem shows that when the 
splitting of the states caused by crossing is small the 
Landau-Zener formula is applicable to a large variety of 
such problems. 23 

The major charge carriers in these semiconductors have 
very low concentration and can be treated individually in 
interfacial reactions. 24 As in the tight-binding calculations4 

for the semiconductor/liquid interfacial electron transfer rate 
constant, it is assumed in the present study that only transi
tions between each pair of semiconductor/molecule states are 
important, and we restrict ourselves to this two-level ap
proximation. Under this approximation the electron transfer 
current between the electrode and an acceptor state is the 
sum of the current from each electronic state of the semicon
ductor electrode to the molecular state, and a total rate con
stant (total denoted by t) kj(r) can be written as kj(r) 
= :Z:kkj(k,r). Here, k denotes a semiconductor electronic 
state whose wave vector is k. The kj(r) varies with the po
sition r of the acceptor molecule relative to the electrode, 
and can be further written as I 8 

(9) 

where Ek is the energy of the state k, /( Ek) is the probability 
that the state k is occupied and V k(r) is the coupling matrix 
element between the electronic state k of the semiconductor 
and the molecule. The FC and 1Vk( r )l 2 have units of 
energy- 1 and energyZ, and kj(r) has units of s- 1

. When Ek 
denotes the energy of state k relative to the edge of the 
conduction band, the t::..G in Eq. (8) is related to Ek by 

(10) 

where t::..G 0 is defined as the standard free energy of the 
reaction when the donor state in the semiconductor electrode 
is at the conduction band edge at the interface (Ek=O). t::..G 0 

can be obtained from electrochemical measurements. 
An expression for the cwTent density is given next in the 

terms of kj(r). The forward current density through the elec
trode is obtained by first summing over cWTents from the 
electrode to all the acceptors in the solution and then divid
ing the sum by the area of the electrode surface u, 

(11) 

When the reaction is not diffusion-controlled, and when the 
change of electrical potential inside the liqwd can be ne
glected, as apparently it is under the condition in Lewis' 
experiments, 1

- 3 [A ( r )] can be taken as cons tant. The elec
tron transfer rate constant in Eq. (4), which is independent of 
the concentration of acceptors in the solution but is implicitly 
dependent on the concentration of electrons in the semicon
ductor is then 

(12) 

It has units of ems- I. 
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In particular, when k 1(r ) is only a function of R, the 
distance between the redox species and the electrode surface, 
Eq. (12) becomes 

k1= J"' kj(R)dR. 
Ro 

(13) 

This equation, together with Eq. (9), will be used later in 
deriving an expression for the maximum electron transfer 
rate constant at a semiconductor/liquid interface. 

C. Electronic coupling matrix element 

In this section, the electronic coupling matrix element is 
obtained using the semiconductor and molecular electronic 
wave functions given in Appendices A and B as the zeroth
order orbitals for the interacting system. 

For an electron donor (D) and acceptor (A) system, if 
treated as a two-state problem, the coupling matrix element 
can be obtained by solving a secular equation det(H- ES) 
= 0, where H and S are the Hamiltonian and overlap matri
ces for the two-level system. When the two zeroth-order 
states have the same energy, or in the context of Eq . (14) 
below, (DI HID )=(AIHIA), the matrix element TvA is then 
half of the value of the difference between the two eigenval
ues of the above secular problem, and can be expressed 
as25.26 

(DIH IA ) -(DIHID)(DIA) 
T DA = 1-I(DIA)I (14) 

where (DIA) is the electronic overlap integral of the donor 
and the acceptor state. The electron transfer between each 
semiconductor state and the molecular state will be treated as 
a two-state problem with the coupling matrix element ob
tained using Eq. (14). For a free electron model the Hamil
tonian of such an interacting system isH= -li 2!2m \1 2+ V, 
where V= V1 within the semiconductor, V= V 2 within the 
molecule, and V= 0 everywhere else. In this case, the cou
pling matrix element denoted by V k between the semicon
ductor state with wave vector k and the molecule, can be 
written asi4,I5,27,28 

v [ ( 1/ll 'IJr k) [- v 1 ( t/111/J) 1 ( 1/ll '}! k) 
Vk= 1-1 (1/flo/k)IZ 

= v [ ( 1/11 '}! k) I- vI (I/! II/I) I ( 1/ll '}! k)' (15) 

where ( · · · ) 1 means the integration over the space occupied 
by the semiconductor. The term I(I/Jio/k)l 2 in the denomina
tor of the first equality can be neglected relative to unity as 
the volume of the semiconductor region becomes large. 

To apply Bardeen's method to calculate Vk, it is neces
sary to extend it to the present system where the electron 
mass m2 in the molecule differs from the effective mass m of 
the electron in the semiconductor. Further, the effective mass 
for an electron of the semiconductor has been defined only 
for the bulk properties, and yet an electron mass in the wave 
function just outside the semiconductor is needed also. With 
these observations in mind, we introduce the following pro
cedure. 
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FIG. 1. Profile of potential wells of the semiconductor and of the spherical 
molecule. There is an electron tunneling through the intervening enviro
ment. 

A typical fall-off factor of an electron transfer coupling 
matrix element with distance is exp(- f3R/2), where R is 
distance from the relevant edge of one reactant to the rel
evant edge of the second reactant and {3= 1 A -I. 22 We can 
achieve this distance dependence in the free electron model 
as follows : we write R = R 1 + R 2, where R 1 is the distance 
from a field point along R to the edge of one reactant and R 2 
is the distance from that point to the edge of the other reac
tant. In a free electron description each wave function then 
decreases as exp(- f3R;I2), i = I ,2. For the semiconductor, 
denoting (3 by (3 1 , we have (3 112=.J-2m(Ec+Ek)!li, 
where Ec is the conduction band edge relative to the energy 
in the solvent, taken as zero. [The Ek given later in Eq. (16) 
is this Ec+ Ek.] Since Ec is about 1-2 eV and Ek is about 
kBT, we have Ek<111Ecl and so {3 112=.J-2mEcfli. For any 
choice form, e.g., choosing it to equal to the effective mass 
in the bulk semiconductor, we can choose E c to yield the 
chosen (3 1 (- I k 1

). 

For the molecule the wave function and energy of the 
electron depends on the relevant molecular radius b, on the 
electron mass m 2 , and on the position of the molecular en
ergy level £ 2 relative to the solvent, again taken as zero. 
Inasmuch as the relevant (3, written as (3 2, equals 
2.)-2m2E 2/Ii, and we wish to have (32={3 1=(3. In the 
interests of simplicity, we can choose the pair (m 2 ,E2 ) so as 
to produce the desired (3 2 . If we take, for example, m 2 
= m, the effective mass in the bulk semiconductor, we can 
adjust £ 2 to achieve this (3 2 . The adjusted £ 2 equals E c 
+ Ek (and hence =Ec). Indeed, for electron transfer we have 
Ec+ Ek=E2 in the transition state and so this selection of m 
for the electron mass outside the molecule is consistent with 
this energy requirement (see Fig. 1). 

It remains to consider the behavior of the molecular 
wave function inside the molecule. We have already fixed 
the energy E 2 , a mass m, and a radius b. To achieve this E 2 

for the given b and m we merely choose the appropriate 
depth of the potential energy well V 2. Accordingly, we now 
have a system which has the same electron mass m through-



6354 J. Chem. Phys. , Vol. 113, No. 15, 15 October 2000 

out and yields the desired decrease of the wave function with 
distance. 

The method due to Bardeen,16 used here for the evalua
tion of the value of Vk , is only applicable when the donor 
and acceptor states have the same energy, which is the case 
for the electron transfer reaction obeying the Franck
Condon principle and considered in this study. Since 
( 1/r\ 1/1) 1 ( 1/1\ 'l' k) is typically small as compared to (if! I 'l' k) 1 , 

29 

the V k in Eq. (15) can be approximated by V 1 ( 1/JI 'l' k) 1 . Fol
lowing Bardeen, 16 this quantity can be written as an integral 
over the space occupied by one of the reactants, here the 
serruconductor S, we note that 

(16) 

where Ek is the eigenvalue corresponding to \'I' k) and T 
denotes the kinetic energy operator, - (n/!2m) \1 2

, in coor
dinate space. But we also have Tlif!)=£2 11/1) in the region 
outside the molecule, where £ 2 is the eigenvalue for the 
molecule. Thereby, 

('l':ITII/r*) 1 = Ez('l': I if!*) 1 = Ez( if! I'¥ k)J. (17) 

We have from Eqs. (16) and (17), 

X(I/J\'l'J1· (18) 

When (DIHID) and (A IHIA) are set equal in the transition 
state, Ek and £ 2 are not quite equal, but the difference be
tween them30 is neglected.27.28 We thus obtain, on neglecting 
the terms mentioned earlier, 

(19) 

where n is a unit vector normal to the surface of well S and 
pointing outward from S, i.e., in the direction of negative z. 
and ds is the area element of the surface of well S. Setting 
z = 0 at the semiconductor surface, Eq. (19) then becomes, 

fi 2 J Vk=- -
2 

{if!(a'l':!az)-'l':(aif!Jaz)}ds. 
m z=O 

(20) 

In the following the implementation of Bardeen's 
method is illustrated by an evaluation of the electronic cou
pling matrix element between a semiconductor state and an 
s-type state of the molecular acceptor. The expressions used 
for p ,-like and d:2-like molecular wave functions are given 
in Appendix B. The integrand in Eq. (20) is evaluated at the 
serruconductor surface. We have 

(21) 

(22) 

and when an s-type orbital is used for the molecular accep
tor, we have 

(23) 
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aif!/az(x,y,z=O) 

2A 0R 1 +(f32/2)1(7+R2 -fJ <..r,;r+R'r-b)l2 
=- .J4; f32(p2+ R2)3!2 e 2 P (24) 

The normalization of 'l' k will be made with respect to a large 
volume v, most of which encompasses the serruconductor 
surface. The a 1 in Eqs. (21) and (22) has units of 1/,Jv, and 
is given by Eq. (27) below, and the A 0 in Eqs. (23) and (24) 
has units of ern - 112 A normalization to a delta function 
could have been introduced instead if we had introduced a 
z-dependent electric field inside the serruconductor sirrlllar to 
the actual field. However, the present procedure is simpler 
and should suffice for our purpose. 

Equations (23) and (24) are obtained using Eq. (B7) and 
setting the coordinate of the center of the spherical potential 
well as (0, 0, - R), R being the distance between the center 
of the molecule and the serlliconductor surface, p being 
,J?+?, and ds being 27Tpdp. 

Equations (21)-(24) are next used for the evaluation of 
the coupling matrix element. For a semiconductor conduc
tion band, the occupation of the electronic states is low 
enough to be considered as obeying Boltzmann statistics. 
Thus, only states within an energy range of k 8 T above the 
conduction band edge are important in the electron transfer 
reaction. Since k = I kl is only about 0.1 A - 1 at room tem
perature, it is a good approximation to replace the term 
ei(k_,x+k,y) by unity in Eqs. (21) and (22). A final expression 
for the coupling matrix element is then obtained by perform
ing the integral in Eq. (20), yielding 

(25) 

In obtaining the above expression, the approximation that 
f~0(e -u!u 2 )du=e -uofu~, and f~0(e- "!u)du =e -uofu 0 , 

when u0~ 1, are used. Here, u = (/3212) ~. and uo 
= f3 2R/2, the value of u at p = 0. Because of a 1 , V k(R) is 
seen to be proportional to 11 ,Jv. 

The term llf32R is small compared to the other term in 
the parenthesis in Eq. (25) when R is large. In the problems 
treated in this paper, R is always greater than 4 A, and the 
term llf3 2R can then be neglected. In this case, Eq. (25) 
becomes, 

and so Vk(R) depends exponentially on the edge to edge 
distance R- b between the serruconductor and the molecule. 
A 0 is given by Eq. (B8) or approximately by Eq. (Bll). 

The quantity a 1 in Eq. (26) is estimated as in Appendix 
A to be 

(27) 

the second equality arising because k, <t, /3 1 • 

Using the relation that /3 1 = f3 2 , and the above expres
sion for a 1 , the expression for Vk(R) then becomes 
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4k)i 2 

Vk(R)=- - A
0
-;i-e-f32(R-b)l2, 

v j32m 
(1/J=s). (28) 

The procedure discussed above for the s-type orbital can 
also be applied to a system with other types of molecul ar 
orbitals. In the present study, when a p,-like or d,2-like or
bital is used for the molecular orbital, as it should be for the 
molecules considered here, the approximation that 1/j32 

= 11/3 1""' 1 A is also used. The wave function ljJ is given by 
Eqs. (Bl) and (82), with l= 1, m=O for a p,-like orbital, 
and l = 2, m = 0 for a d,2-like orbital, and their normalization 
constants are given by Eqs. (B3)-(B5). The electronic cou
pling matrix elements for these orbitals are then calculated 
using Eq. (20). 

Ill. ESTIMATE OF THE MAXIMUM ELECTRON 
TRANSFER RATE CONSTANT 

We next obtain the expression for the maximum rate 
constant k~ax of the electron transfer reaction at a 
semiconductor/liquid in terface, based on the free electron 
model given in the preceding section . We first discuss the 
f( Ek) term in Eq. (9) and then derive an expression for kj 
using Eqs. (9) and (28) . 

For a low-doped semiconductor of the zincblende type, 
the occupation of its conduction band at the surface is low 
enough that the occupancy probability, j( Ek), of the state k , 
the kinetic energy of which is n 2 k 2/2m, 11 can be treated as 
obeying Boltzmann statistics. The sum L: k · · · j( Ek) in Eq. 
(9) can be written as an integral over k-states, when properly 
normalized. The number of electrons in the semiconductor 
conduction band in the volume v is n,.v, and the probability 
of finding one of these electrons in dkxdk ydk, is 
the Boltzmann factor exp(-9<1k8 T)dkxdk ydk,l 

}:,..f':,..J":..,.. exp(- Ekl k 8 T)dkxdkydk , . When multiplied by 
n,v it becomes the probability that a state is occupied. The 
sum in Eq. (9) thus becomes 

_ nsv J J fFC( Ek) I Vk( r )i2e- •klkoT dkxdkydk, 

- Jffe •ktkoTdkxdkydk, 
(29) 

Since I Vkl 2 is inversely proportional to u, the u cancels. 
Equation (9) yields 

1 
27T f f fFC(Ek)JVk( r )j2e-•k 1

k 8 Tdkxdkydk, 
kf(r) = n,v h (27TmkoT)3t2;fi3 , 

(30) 

where Vk for an s-Jike electron is given by Eq. (28), and for 
p,-like and d,2-like electrons in the molecule is given by Eq. 
(B 12) in Appendix B. 

Integration over kx, kv, and k, is inte1mediately per
formed, and one obtains -

t - 27Tii 2( 2A )5/2 r:;;:k;i 
kf(R)-n,.m(f3z12)4Ao A.-~Go -v--->:---A.-

Xe- [(l.+l>G
0

)
2

t4Ak 8T]e-f3 2(R-b), A.-~G0};>-0, 

(31) 

148 
Electron transfer at semiconductor/liquid intertaces 6355 

where ~ G 0 is the same as defined earlier and /3 1 = /3 2 has 
been used. Equation (31) was obtained under the condition 
that A-~G0 ;l>0. 

The kj given by Eq. (31) is then introduced in to Eq . (13) 
to yield an expression for k 1 . The maximum electron trans
fer rate constant k/ax is obtained by setting A+~ G 0 = 0 in 
Eq. (31) to obtain 

7Tii J¥-k8T 
kmax= A2 __ -{32( R0 -b) 
f n, m(f3zl2)5 o A e , ( s electron) . 

(32) 

It is seen to be linearly dependent on n s, the electron density 
near the surface of the semiconductor electrons . Here, R 0 is 
the smallest distance between the center of the molecule and 
the semiconductor surface. We then have an expression for 
the maximum second-order electron transfer rate constant 
written as 

(s electron), 

(33) 

where A 0 is given by Eqs. (B8) and (B9). 
The above equation is then applied in the following to 

the two systems studied by Lewis and co-workers for a com
parison with the experimental results. Following the discus
sion in the earlier section, /3 2 is taken as 1 A -I. 

The rate constant of the electron transfer reaction at 
the silicon/viologen2+t+ interface is estimated using Eq. 
(33) for a (hypothetical) s -like electron. At the Si/ 
N,N' -dimethyl -4,4' -bipyridylium2+ interface, one of the Si/ 
vi ologen systems studied by Fajardo and Lewis, 1

•
3 the radius 

of the spherical potential b is estimated as 3 A., 31 which gives 
approximately the size of the LUMO of the molecular accep
tor. The m was obtained from self-consistent band structure 
calculations to be 0.191 m. , 32 where m, is the mass of a 
free electron . Since the surface of the silicon semiconductor 
in the experiments is terminated by a single layer of hydro
gen atoms to remove the dangling Si bonds, the value of R 0 
is chosen as the value corresponding to the direct contact of 
the adsorbed hydrogen atoms and the acceptors and is about 
5 A. 33 The value of A obtained from a fit in Ref. 12 to the 
experimental data/ is about 0.7 eV and the calculated rn.aJO 
murn rate constant is relatively insensitive to A. When the 
maximum rate constant for this s-electron model is calcu
lated using Eq. (33), the result in Table I is obtained, and 
compared there wi th the experimental results as well as the 
theoretical results obtained in Par1 I by the tight-binding 
method. 

We turn next to the estimate of the electron transfer re
action rate constant at the TnP/Me2Fc+tO interface. For this 
system, b is taken as 0.6 A,34 the radius of a Fe2+, because 
of the localization of the LUMO at Fe atom35 The (100) 
surface InP semiconductor used in the experiments is 
believed36 to be terminated by a layer of oxygen atoms 
which saturate the dangling P bonds. The smallest distance 
R 0 between the center of the acceptor and the electrode is 
chosen to be 5 A which corresponds to the direct contact of 
the molecular acceptor (the whole ferrocene molecule) and 
the oxygen atom. 33 The experimental effective mass m of an 
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TABLE I. Experimental and calculated maximum electron transfer rate 
constant.• 

k~~IU 
System (expt.) 

Si/viologen2 +'+ 0.6b 
Si!Me,Fc+to 
lnP!Me2Fc +to l-2c 

•units are 10- 16 cm4 s- 1. 

bFrom Ref. 12. 
'From Ref. 10. 
'From Ref. 4. 

k:IU 
(z-trans.)' 

1.3 

0.084 

k~ kmax 
" 

kmax 
" (slab)" (free e)' (free e) 

1.6 1.2(p,) 1.9( "s") 

0.17 0.024(d,2) 1.2( "s") 

0.086 0.017(d,,) 1.1(" s ") 

'1"be result for viologen2 +1+ was obtained using a P:-like orbital and the 
result for Me,Fc +/0 was obtained using a d,,·like orbital. The results in the 
last column were obtained using a hypothetical s -like orbital and Eq. (33). 

electron in the InP conduction band is 0.077 m e . 11
•
37 The 

reorganization energy ll. of the system is about 0.8 eY,2 but 
k~~ax is again relatively insensitive to ll.. The estimated rate 
constant for the s-electron model is then given in Table I. 

However, to compare with the real systems studied by 
Lewis and co-workers, 1•

2 a p ,-like orbital should be used for 
the viologen to be more consistent with the symmetry of the 
LUMO of the viologen ions. For the lnP/Me2Fc +to system, 
since the LUMO of Me2Fc+ has primarily d,2 character,35 

the dzz-Iike orbital is used for the acceptor state of Me2Fc+. 
When a p,- or d,z-like orbital is used, we average the rate 
constant38 over the orientation of the orbital respect to the 
semiconductor surface, yielding the results in Table I. 

For comparison, the maximum electron transfer rate con
stant at the Si!Me2Fc+/O interface is also calculated, although 
the data on the maximum rate constant for this system are 
absent. The effective electron mass for the Si conduction 
band is again taken as 0.191 m e, the reorganization energy 
is 0.8 eV, the radius of Me2Fc +to LUMO is 0.6 A, and R0 is 
taken as 4 A. The results obtained using an s-type orbital and 
a d,2-like orbital are both given in Table I. 

IV. DISCUSSION AND CONCLUSION 

A. Discussion 

In the present paper, the free electron model is applied to 
the study of electron transfer reactions at semiconductor 
electrode/liquid interfaces. The electronic wave functions of 
the semiconductor are obtained in terms of plane waves in a 
semi-infinite potential well and the wave function of the ac
ceptor is approximated to be a p,-like or d,2-like orbital and 
for comparison results for an s-like orbital are also given, all 
for a spherical potential well. An analytic formula for the 
coupling matrix element is obtained for an s-like orbital us
ing Bardeen's method, and then an expression for the elec
tron transfer rate constant is obtained using this formula of 
the coupling matrix element. 

The maximum electron transfer rate constants for 
Silviologen2 +/+ and lnP!Me2Fc+10, the two systems studied 
experimentally by Lewis et al., are then estimated using Eq. 
(33). The maximum rate constants of both systems are com
pared with the experimental result, which is of order of 
10- 17 to I0- 16 cm- 4 s- 1. The agreement is reasonable, con
sidering the approximations involved, and the result is also 
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in reasonable agreement with the theoretical results obtained 
in Part I using tight-binding calculations. As mentioned ear
lier, to mimic the experiments and the tight-binding calcula
tions, a p,-like orbital and a d,2-like orbital were used for the 
viologen2+t+ and Me2Fc+/O ions, respectively, in the calcula
tions of the coupling matrix elements for these two systems. 
The error is greater for Me2Fc +/O ions, where the LUMO is 
assumed to be localized on the Fe atom. For comparison, an 
s-like orbital was also used for the calculation of the maxi
mum rate constant. However, this s-like orbital is hypotheti
cal, since the LUMO of these systems is not an s-orbital. 

The difference between the theoretical maximum rate 
constants at Si/viologen 2+1+ and lnP!Me2Fc +tO interfaces in 
these calculations is partly due to the different size of the 
molecular orbitals. The LUMO, the electron acceptor state, 
of a viologen molecule is more delocalized than that of the 
Me2Fc molecule, which is essentially localized on the Fe 
atom35 Although the centers of the two spherical potential 
wells representing the two molecules are at approximately 
the same distance from the semiconductor surface, the calcu
lated electron transfer rate constant for the Si/viologen2+i+ 
interface is larger than that for the InP!Me2Fc +to_ The cou
pling mauix element as a function of the size of the acceptor 
orbital is shown in Fig. 2. The distance between the center of 
the spherical orbital and the semiconductor surface is kept 
constant in obtaining this figure. Another factor responsible 
for the larger calculated maximum rate constant at the 
Si/viologen2+i+ interface is the character of the acceptor or
bital. The use of a p , -like orbital yields more efficient cou
pling between the semiconductor and the acceptor for the 
Si/viologen2+/+ interface than does the d,2-like orbital that 
used for the lnP/Me2Fc +to interface, both for the tight
binding and for the free electron calculations. The relative 
inefficiency of d-electron in electron transfer was described 
in an earlier paper40 

It is interesting that a model as simple as the free elec
tron model yields a result for the electron transfer matrix 
element in reasonable agreement with the tight-binding cal
culation and with experiments. In these applications, the 
wave functions of the semiconductor or a reactant are needed 
outside the molecular potential well and on the surface of the 
semiconductor. For both wave functions boundary conditions 
are imposed (continuity of the respective wave function and 
of their derivatives at the relevant boundary). For the region 
outside the semiconductor and outside the molecule we in
troduce a distance dependence of the wave function which 
yielded the expected distance dependence of the electronic 
matrix element. Since the expected distance dependence is 
also reproduced quite well by extended-Hiickel 
calculations,39 with no adjustable parameters, perhaps the 
agreement of the matrix element calculated using the free 
electron model with the obtained tight-binding/extended
Hiickel calculations or from experiments is also consistent 
with this earlier work. The analytical expression Eq. (28) 
serves to bring out some of the sources of error: when the 
molecule and the semiconductor are more or less in edge-to
edge contact, as in the methyl viologen case, the exponential 
factor in Eq. (28) is of the order of unity, and so is not a 
major source of error. However, when the orbital in the mol-
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ecule is localized, as in the ferrocene and so is buried, the 
orbital distance R-b, is large. Because of the exponential , 
the corresponding free electron model matrix element is sub
ject to a substantially large error, as seen in Table I , using 
orbitals of the appropri ate symmetry. Errors in the other 
quantities, e.g., for A 0 in Eq. (B 11), appear to be more mi
nor. 

We explore further in the next section the relation be
tween the free electron and the tight-binding models. 

B. Relation of free electron and tight-binding models 

We make this comparison initially for a one-dimensional 
chain of length I. For this chain the free electron value of a 1 

is still given by Eq. (27), but with ,/v replaced by .[z. The 
tight-binding coefficients C~ for a chain of N atoms can be 
written as41 

C~=.J2/(N+l) sin7TMKI(N+I), (34) 

where M is a lattice atom index (M= I, . .. ,n), K is an elec
tronic state index (K= l, ... ,N), and M= 1 is a surface atom. 
Since the wave number k,=27TI'A=7TKI(N+ l)a, where a 
is the lattice distance parameter, we can write 

(35) 

Inasmuch as the C~'s are normalized to unity (~::MIC~I 2 

=I) and the individual atomic wave functions are normal
ized over a length a, the C~/ Fa forM= I is the quantity to 
compare with the one-dimensional analog of a 1 in Eq. (27), 
fiii2k,lj3 1 • Since k, is small, Eq. (35) yields C~l[; 
= ..)2ii.k,a. When the tight-binding model is extended to the 
x and y directions, infinite in both directions, normalized to 
periodic boundary conditions (area 12) using complex expo
nential wave functions, which are the discrete analogs of the 
exp ik,.x+ikyy in Eq. (A2), Eq. (35) again applies but with 
~2 all replaced by ~2a 3!v, 

(36) 
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FIG. 2. The coupling matrix element between the semi
conductor state k= (0, 0, 0.02) and an s -like molecular 
orbital as a function of the size of the acceptor state . 
The distance between the center of the moJecule and the 
semiconductor surface is kept as a constant 5 A. 

Omitted for brevity in the right-hand side of Eq. (36) are the 
discrete analogs of expik,.x+ ikyY· ForM= I and with k,a 
being small, we can write 

a 1=2Cf/f3 1a.J;f, (37) 

where cf is the same for each surface atom (for small k,.x 
and kyy). Thereby, 21j3 1a.J;f can be regarded as the factor 
in a 1 contributing to the atom/atom exchange integral be
tween the semiconductor and the adjacent solvent. 

The contribution C 2 to fiif!I 247Tr 2dr outside r=b is , 
from Eq. (B7), 4A~/ f3i. Taking the coefficient C of the mol
ecule as unity, we can now rewrite Vk in Eq. (25) as 

- I 4Aon2 K 
Vk=-y7T~j3 51 CC 1 , m 2a 

(38) 

where C= 1. Now the lowest energy of an electron in a cubic 
box of edge length a is E= 3n 2!8a 2m. In terms of E, Eq. (38) 
becomes 

Vk=-.Ji3 :2ECC~. (39) 

For a value of j3=1 A·', m=O.l m,, and the lattice con 
stant a= 3 A, the factor multiplying ccf is about 2.5 e v. 
Not all of C can contribute to Vk, but more than one semi
conductor atom, and its cf, can contribute. To some extent 
these neglected aspects approximately cancel. The coeffi
cient of ccf is seen to have (approximately) the value ex
pected for an atom/atom exchange integral. 

C. Conclusion 

Although the free electron model is highly approximate, 
it does provide a reasonable description for the semiconduc
tor electronic structure at the conduction band edge. 1

1.3
2

•
42

·
43 

The present model also incorporates the actual molecular or
bital size and symmetry and the experimental coupling decay 
length, and perhaps for these reasons gives a reasonable 
zeroth-order approximation for treating the electron transfer 
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at semiconductor/liquid interfaces . Although one cannot gen
eralize from only two cases, we suspect on comparing the 
tight-binding and free electron results in Table I that the free 
electron model is better for a delocalized orbital like that of 
viologen than for a highly localized one like that of fer
rocene. In this paper, for simplicity, the molecular orbital 
was first taken as an s-like orbital with a certain size, leading 
to an analytic result. However, the symmetry of the molecu
lar orbital was taken into account instead by choosing orbit
als with appropriate quantum numbers l and m in Eqs . (B6) 
and (B7). 

In summary, it appears that the free electron model pro
vides a reasonable and simple though crude description of 
the electron transfer reaction at semiconductor/liquid inter
faces. Since this method uses Bardeen 's method of estimat
ing the coupling matrix element, it is not applicable to two 
overlapping potential wells 16 and thus it is only applicable to 
relatively weak couplings. Also it is only applicable to the 
electron transfer reaction near the semiconductor conduction/ 
valence band edge, because of the use of the free electron 
model. This method of estimating the electron transfer rate 
constant can be readily applied to other semiconductor/liquid 
interfaces. 
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APPENDIX A: FREE-ELECTRON MODEL FOR THE 
SEMICONDUCTOR ELECTRODE 

We treat the semiconductor electrode first and then the 
molecular electron acceptor in the solution using the poten
tial wells. The electrons in the semiconductor are treated as 
free electrons in a potential well in the three-dimensional 
space, with a constant potential V 1 inside the well ( V 1 
< 0). The potential well is infinite in the x and y directions 
and has a surface at z = 0, and the potential is taken as zero 
outside the potential well. The wave functions are then ob
tained using the one-electron Schriidinger equation, 

li2 
-

2
m 'ii' 2 + V(r)i'l'k)=Ekl'l'k), (A1) 

where V(r) = V1 when z;;.O and V(r) = 0 when z<O. The k 
again denotes the wave vector of the electronic state '¥ k and 
m is the effective mass of the electron. 

The relevant solution of Eq. (A 1) is 

'¥ k( r ) = ei(kxx+kyYl(aze ik ,z+ a 3e- ik,z)' (inside well)' 

(A2) 
for z;;.O, and 

'l'k(r) =a 1eiCkxr+kyYle,Biz12, (outside well), (A3) 
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where {3 1 is a positive number, for z~O. Here, kx, ky, and 
k,(f3) are the components of the wave vector kin x , y, and 
z directions, respectively, with 

li2 
-(k 2+e+k 2) =E- v 2m x Y ' 1' 

where E is the energy of the electron. 
In Eqs. (A2) and (A3), a 2 , a 3 , and a 1 are constants 

which can be obtained by satisfying the boundary condition 
at the surface of the semiconductor and by the normalization 
of the wave function. The boundary condition at z-;oo re
quires that {3 1>0. The amplitude of 'l':(r) outside the po
tential well is considerably smaller than inside, a normaliza
tion of the wave function , (o/k j'l'J= 1, yields iazl 2 + la3 l2 

= 1/v to a good approximation, where v is the volume of the 
semiconductor as discussed in the text. · 

As usual , the relations between a 2 and a 3 , and between 
a 2 and a 1 are obtained using the continuity of the wave 
function and its first derivative with respect to z at z = 0, and 
can be written as 

k,- if31/2 
a3=k,+if3I/2az, (A5) 

These two equalities combined with the normalization equa
tion, la 2 1

2 + la3l2 = 1/v, determine the three constants a 2 , 

a 3 , and a 1 up to an arbitrary phase factor. These quantities 
will be used later in calculate the coupling matrix element 
between the o/ k and the wave function of the molecule. From 
Eq. (AS) one can verify that la3l2 = ja 2 j2 , and if, without 
loss of equality we choose a 1 to be real, then a i = a 3 and Eq. 
(27) is obtained. 

APPENDIX 8: THE ELECTRONIC WAVE FUNCTION 
OF THE ACCEPTOR MOLECULE 

For simplicity, we treat the electronic wave function of 
the molecule in liquid as an electron moving in a finite 
spherical potential well with a radius b. The potential V2(r) 
within the potential well is a constant V2 and is zero outside. 
The problem is well known 44 and the results will be used as 
follows. 

The solution of the Schriidinger equation in the spherical 
polar coordinate (r, B, c/>) gives the normalized wave func
tions which are continuous at r = b, 14 

Ji(ab)e,B2b 12 (inside well), (B I) 

when r~b, and 

1/Jm/r, B, cf>;E) =A1N mi<Pm( c/> )Pr( cos B)k 1({3 2 rl2)e.B2b
12

, 

(outside well), (B2) 

when r~b. For use in Eqs. (B1) and (B2) we have defined 
theA/sIn Eqs. (B3) and (B5) below by introducing there a 
factor e-,62b12, so as to make the A 1's less sensitive to {3 2 . 

Here, m and I are the usual quantum numbers, a 
= .)2m (E- V 2)11i, {3 2/2= .J-2mE!Ii, <Pm (c/>) is 
eimc/>; .J2;, Pr is an associated Legendre polynomial, and j 1 
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and k1 are spherical Bessel and Hankel functions. The nor
malization constants A 1 and N ml are given by 

(B3) 

and 

(B4) 

A 1 can be further evaluated to be 

The v in Eq. (B4) is 2 form= 0, and 1 form* 0. In particu
lar, m = l = 0 corresponds to an s state with a wave function 
denoted by 1/J, 

2A 0 sin(ar) 

1/J= )4; [3 2r sin( ab) ' (B 6) 

and 

(B7) 

The constant A 0 obtained by setting l = 0 in Eq. (B3) is given 
by 

3.5 4 

A =[32 {2ab-sm(2ab) + 2.} -112 

0 2 4a sin2(a.b) f3z 
(B8) 

Clearly A 0 varies with the radius b of the spherical potential 
well. The relation between a and [3 2 in the last three equa
tions, obtained by making 81/f/ ar continuous at r = b, gives 

tan(ab)=-2a/f32· (B9) 

For a given [32 and b, the eigenvalue of the energy E of the 
systems are then determined by the above equation and the 
relation between [3 2 and E. 

Using Eq. (B9), Eq. (B8) can be expressed as 

=f3z { a.2+(f32/2) 2 2ab-sin(2ab) + ~} - 112 

Ao 2 a 4a f3 2 · 

(B10) 

One notes from Eq. (B9) that tan(ab)<O, thus 2ab > 7T 

> sin(2ab). When a 2 is sufficiently large, Eq. (B8) can be 
approximated by 

(B 11) 

The a decreases monotonically when b increases and is 
0.73A - 1 when b=3 A. The A~ calculated using Eqs. (B8) 
and (B 11 ) are compared in Fig. 3. In the text and in Table I 
only Eq . (B8) is used. We note that Jllfrl 24 7Tr 2d r outside of 
the well of radius b equals 4A61 [3~ , and we wish 4A 61 [3~ to 
be small. The value from Eq. (B 11) is [2/(2 + b/32)] 112. 

As discussed in the text, the coupling matrix element 
between a molecular and a semiconductor state can be evalu
ated using 
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where the wave function rfimt given by Eq. (B2) is a p , -like 
orbital when l = 1, m = 0 and is a d,2-like orbital when l 
= 2, m = 0, and where we have written the area element as 
pdpd¢ and integrated the ¢ from 0 to 27T, noting that the 
integrand is independent of ¢. 
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Abstract 

The temperature dependence of the electronic contribution to the nonadiabatic electron transfer rate constant (kET) at metal 
electrodes is discussed. It is found in these calculations that this contribution is proportional to the absolute temperature T. A 
simple interpretation is given. We also consider the nonadiabatic rate constant for electron transfer at a semiconductor electrode. 
Under conditions for the maximum rate constant, the electronic contribution is also estimated to be proportional to T, but for 
different reasons than in the case of metals (Boltzmann statistics and transfer at the conduction band edge for the semiconductor 
versus Fermi-Dirac statistics and transfer at the Fermi level, which is far from the band edge, of the metal). © 2001 Elsevier 
Science B.V. All rights reserved. 

Keywords: Heterogeneous electron transfer rate constant; Metal electrode; Semiconductor electrode; Temperature dependence of electronic 
coupling matrix element 

1. Introduction 

In this article, the temperature dependence of the 
electronic factor in the expression for the nonadabatic 
rate constant (kET) is discussed, both for metals and for 
semiconductors. In the case of the electrochemical ex
change current at metal electrodes the temperature 
dependence of kiT is due to two parts: one part arises 
from the well known variation with temperature of the 
Franck-Condon factor. It has an exponential term and 
a pre-exponential term which, classically, is propor
tional to r- 112 The second part of the temperature 
variation arises from the increasing range of energies of 
electronic states in the metal near the Fermi level that 
can contribute significantly to the rate constant with 
increasing temperature. An experimental system of an 

• Corresponding author. Tel.: + 1-626-3956566; fax: + 1-626-
7928485. 

E-mail address: ram@caltech.edu (R.A. Marcus). 

alkanethiol monolayer adsorbed on two different 
metals, Au and Pt, is considered to investigate how this 
temperature dependence of the Fermi-Dirac distribu
tion affects the rate. The metal electronic state depen
dence of the metal-reagent electronic coupling matrix 
element is included in the calculation. To a good ap
proximation, the averaged electronic factor for the ex
change current rate constant is calculated below to be 
proportional to T, the known proportionality when the 
electronic coupling element is energy-independent. 

The temperature dependence of the electronic factor 
for nonadiabatic electron transfer at semiconductor 
electrodes is also discussed. For the present purpose, in 
lieu of detailed calculations, this factor is estimated 
using the free electron model. It is found to be propor
tional to the temperature T under conditions for the 
maximum of the rate constant, but the origin of the 
proportionality is quite different from that in the case 
of the electrochemical exchange current at metal 
electrodes. 

0022-0728(0 1($ -see front matter «:> 2001 Elsevier Science B.V. All rights reserved. 
Pil: S0022-0728(00)00452-6 
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In the following sections the theoretical model used 
and the predictions that can be made from this model 
are described. 

2. Theory 

2. 1. Metals 

The rate constant for nonadiabatic electron transfer 
from a metal to a reactant at the interface (kET) is given 
by [1] 

(1) 

where f(e) is the Fermi-Dirac distribution with e mea
sured relative to fl., the chemical potential of the elec
trons in the electrode, 

1 
f(e) = 1 + eefknT (2) 

FC is the Franck- Condon factor, which in its classical 
form is 

e- (.<- ·~- E)z/4-<knT 

FC = -----,..,,..--
(4n;\kaT)1 12 

(3) 

Here, A is the reorganization energy, e the electronic 
charge, 17 the overpotential, and I V(e)j2 the square of 
the electronic coupling matrix element, integrated over 
the distribution of the electronic states at the given e: 

(4) 

where IHkAJ denotes < 11\IHJ If' A) and describes the elec
tronic coupling between the redox agent (A) and each 
electronic state of wave vector k of the electrode. 

Eqs. (1)-(4) are given for the reduction rate constant. 
The rate constant for the reverse reaction, which we 
will denote by kkT is obtained by replacing e by - e 
and 1J by -17. One can verify, for example, that the 
equilibrium constant kETfkkT is then given by exp(ery / 
kaT), as expected. 

From Eqs. (1)-(3) we have 

2n e--</4><nT f"" -C'+h(e,q) 

kET = h (4nAkaT)' I2 - oo e 4knT g(e)l V(e)l2de 

where g(e) is given by 

g(e) = ~sech(-8-) 
2 2kBT 

and 

h(e,17) = 2(,{- e)ery - (ery )2 

(5) 

(6) 

(7) 

In applications, the dependence of IV(e)l2 is normally 
neglected. The reorganization energy A is then obtained 
in two different ways, one from a plot of ln kET versus 

17 [2-13], and the other from a plot (noted below) 
involving ln (k 0 j T 112

) versus 1/ T, or both [14 -19]. 
While the effect of neglecting the dependence of V(e) 
on e is expected to be small, it is estimated in the 
present paper. Results for finite 17 can also be estimated 
from the calculations, with appropriate additions, as 
discussed later. 

When 17 = 0, Eq. (5) becomes k 0, the standard rate 
constant 

ko = _!!_ e- C';4.<knT(e)!V(e)l2de 
2 e- ..!j 4knT Joo 
li (4nAkBT) 112 _ 00 

(8) 

We first consider, for comparison, the simplest case: 
both the dependence of V(e) on e and the e2j4;\kaT 
term Eq. (8) are neglected. In that case the integral in 
Eq . (8) is a standard integral [20) 1 yielding 

2 - ..!/4k8 T 

o ~ ~ e k I / (0)12 
k = li ( 4nAka T) l /21t aT T (9) 

When the value of A is obtained from Eq. (9) and a plot 
of the experimental rate constant k 0, ln (k 0/T 1i 2) versus 
1/ T, we have 

),fka = - 4aln (k 0 T - 112)/0(1/T) (1 0) 

We next consider the case where the dependence of 
I V(e)l2 is neglected, as before, but where the e2f4kaT in 
Eq. (8) is included. In this case we have 

2 -.</4k8 T 

k 0 ==~ e nk TIV(O)I2(e-?14.<k 8~ (11) 
- /i (4n;\kBT) 112 B 

where we have used [20] nk8 T= J~ 00g(e)de and where 
() denotes an average over the distribution function, 
g(e)defJ~ 00g(e)de. The exponent is so small that the 
exponential in () can be expanded, retaining only the 
first two te1ms. Use of standard integrals [20) 1 then 
yields 

2n e- .<f4knT ( n2kB T) 
ko = li (4nAkaT)1 12nkaTI V(O)jZ I-~ (12) 

For a value [15) of ;\~0.8 eV and k 8 T;:::;0.025 eV, the 
last factor in the parentheses, due to ( exp(- e2f 
4;\k8 T)) term, is 0.923, and so is close to unity. In the 
following the exp(- e2j4Jck8 T) in Eq. (8) will be re
placed by unity. 

In passing, we note that from Eq. (11) that the slope 
of In (k 0(Jc fkaT) 112) versus ).fkaT equals - (1/4)(1 -
n2(k8 T f;\)2), because of the smallness of kaTf;\. The 
reciprocal of this quantity can, because of the smallness 

I:"' g(ej2)'g(dt) = (rr.k8 T)3
/4, I: ro g(e/2)

4
g(dc) = (rr.k8 T)5

(5/16) 

I:"' g(e/2)
6
g(de) = (rr.k8 T)

6
(61/64) 
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of the correction, be written, as - 4.04. A numerical 
evaluation of the integral [15) gave - 4.03, which is 
within the round off error. The difference of -4.03 
from -4 is 1% and so can be neglected relative to 
other sources of error in J.. 

The integral in Eq. (8) can now be written as 

I(knT) = I~""g(s)J V(s)J 2ds (13) 

We have written the limits as ± oo, but of course the 
lower limit is finite. It equals the lower limit of the 
energy of the band, which is very negative. More than 
adequate for our purpose is changing the limits of 
integration to ± 1.1 eV. 

The temperature dependence of I(knT) arises from 
the weighting function, g(s), which becomes broader 
with increasing temperature. The J V(s)l2 depends only 
on £ and so is independent of temperature. However, 
because of the broadening of g(s) with increasing T, 
parts of JV(s)l2 at larger and smaller s contribute more 
in the integral when the temperature is increased. For a 
JV(s)/2 replaced by JV(O)I2

, the integral in Eq. (12), is as 
already noted I V(O)I2nkBT. 

For fiat and broad bands, such as s and p bands, one 
expects /V(s)j2 to remain constant with s. In that case, 
the temperature dependence arises mainly from the 
width of the weighting function, g(.s), given in Eq. (6). 
For narrow bands such as d bands the density of states, 
p, changes fairly rapidly over a short energy range. If 
this feature leads to a large change in I V(s)l2 then 
widely varying values of I(knT) become increasingly 
included in l(knT) when the temperature is increased, 
and some deviation of the temperature dependence of 
I(knT) from / V(0)/ 2nknT is expected. However, the d 
states do not couple as well into the donor/acceptor 
species in solution [2lf; the large change in the density 
of d states with s is diminished by the small coupling of 
these states, so leading again to an approximately con
stant I V(.s)l2. In this case, the temperature dependence 
would remain about the same as in the case of the sand 
p bands, i.e., depending only on the width of the 
weighting function. 

The accessible number of participating electronic 
states near the Fermi level (.s = 0) increases linearly with 
temperature, a result well known from the proportion
ality of the electronic specific heat of the metals to the 
temperature. However, this observation offers no infor
mation on the average strength of jHkA/2 as a function 

2 In this reference and the present paper the surface of the metal is 
a (Ill) face. For some simpler surfaces with more symmetry elements 
the Z-transform method that we use is not necessary and the wave
functions can be described in these cases by a simple sine-like 
function. We use extended Hiickel (EH) theory to calculate the bridge 
coupling matrix elements in both the above article and the present 
paper. The EH method gives more accurate results for relative matrix 
elements and rates than it does for absolute values. 

of s. The question of the behavior of the matrix ele
ment, suitably averaged, is addressed in calculations in 
a later section. 

Numerical results of the calculations based on Eqs. 
(4) and (8) (both with and without s2 f4}..kBT neglected), 
are given in Section 3.1 . 

2.2. Semiconductors 

In the case of electron transfer from a semiconductor 
to a reactant species in solution, the rate is first-order in 
the concentration of electrons in the semiconductor at 
the surface and first-order in the reactant. An expres
sion for the second-order nonadiabatic rate constant 
kET was given earlier [22P 

21t v 
kET=-~===' 

/i .j4nknT (J,. 

leo e- (.<+Ad>- <)
2
/ l4knT (jV(.s)l2)e- </knT p (c)d£ 

L:o e- r.fknT p (s)ds 
(14) 

where (jV(6)/2) is an electronic matrix element [22] 

jV(6)/2 =I V(.s)l
2 

(15) 
p (s) 

and 

p(s) = fd 3kb(6(k)- 6) (16) 

The average () was over all orientations of the reactant 
at the contact distance [2). In Eq. (14), v is the volume 
of the unit cell in the semiconductor (the wave func
tions appearing in V(.s) are normalized to that volume), 
and Ps is the exponent for the decay of the square of 
the matrix element with distance. 

We note, in passing, that in the experiments [23] !'J.Go 
is varied by varying the redox reagent in solution. The 
maximum kET• kg;.x determined in this way, corre
sponds to ). + !'J.Go = 0. 

The exponent of the first factor in the integral in the 
numerator of Eq. (14) can be written as 

(). + t:.Go _ .s)2 ().. + /lGo)2 (). + !'J.Go)2.s 62 

4J.k8 T 4J.k8 T 4J...k8 T + 4)..k8 T 
(17) 

The first term in the r.h.s . of the above equation is 
independent of 6 and can be removed from the integral. 
The second term varies much more slowly with s than 
the sfk8 T in the exponent of the third term in the 

3 The v, in this article is denoted in the present paper by H u · 
Since the form of the electronic matrix element is the same for both 
semiconductors and metals Eqs. (4), (15) and (16) remain valid for 
both types of electrodes. 
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Fig. 1. Band structure of Au and Pt with the Fermi energies of each set to 0. * is for Pt and 0 is for Au. p(e) is in units of number of states 
per atom per eV. The weighting function g(e) x 5 at k 8 T= 0.025 eV i.e. T= 300 K is also plotted ( -·) to show the density of states which 
contribute to the integral in the rate constant kET· For simplicity a 'splined' fit is drawn through the points for p(e) for Pt. 

integral in Eq. (14), when .lc +;:...co;:::: 0 (the important 
region for k'f.f', as noted above). The ratio of the third 
term in Eq. (17) to sfk8 T is e/4./c, which is very small 
since e;:::: k 8 T, i.e., 0.025 eV, and A is typically 1 eV. The 
dependence of (A+ ;:...co- sf on e in Eq. (17) can then 
be ignored, yielding 

2rc v 
kET = h -_j-;=4=rc=:=:A.k;=

8
=::T fJ s 

I"" (jV(e)l2)e-rJknTp(e)de 
e - (< + LIG"- e)

2!4<kn T Jo (18) 

l""e-•lk• Tp(e)de 

as in eq. (AS) of Ref. [22]. Of particular interest is k\rf'X, 
which, obtained from Eq. (18) is 

I"" (jV(e)l2)e- efknT p(e)dc: 
kmax- 2rc v I Jo (19) 

ET - n .j4rcA.kaTPs l""e- efknTp(e)de 

When lA. +;:...col/A. becomes different from zero, say, 
~ 1/2, then the ratio of the second term in Eq. (17) to 
e/k8 T becomes 1/4, which on integration, including a 
slowly varying V(e) will affect the pre-exponential fac
tor a little. The ratio of the last tenn in Eq. (17) to 
e/k8 T becomes e/4A., which for an averaged value of 
e;:::: .lc/4 in the sampling of es for the exothermic direc
tion, is still a relatively small though not negligible 

quantity. Accordingly, Eq. (18) is expected to suffice for 
typical conditions. When it does not suffice Eq. (14) 
could be used instead. However, our main interest here 
is in klr.f' and so in Eq. (19). 

3. Applications 

3. 1. Metals 

A particular system, an alkanethiol monolayer with 
15 CH2 units and with the redox agent Ru(NH3) 5Py2+ 

tethered to it is considered here. Only one alkanethiol 
molecule adsorbed on a metal electrode is used in our 
calculation, since it has been found that this approxi
mation is reasonable, and adding more molecules does 
not have a large effect on the rate [24). Two metals, 
gold (Au) and platinum (Pt) are considered, the method 
of Z-transforms and a tight binding Hamiltonian are 
used to obtain the wavefunctions of the metal. The 
details of the calculation are given elsewhere [21]. For 
the purpose of the calculations we use Eqs. (4), (15) and 
(16). 

The metal Au has no d states near the Fermi level 
while the d band of Pt lies close to its Fermi level. The 
p(e) given by Eq. (16) is plotted in Fig. 1 for both these 
metals, as well as the g(e) at T = 300 K. The Fermi 
levels of both metals are used as the zeros for their 
respective es. 
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Fig. 2. A plot of iVCe)[2 vs. c. 0 gives the plot for Au and* gives the plot for Pt. A plot of g(e) x 10 - ro (-·)is also given. The Au curve is a 
best fit to the points, the Pt curve is a 'splined' fit. 

The I V(6)1 2 is plotted in Fig. 2 for the two metals as 
a function of 6. It is seen that even though the I V(6)1 2 

for Pt does change somewhat with the energy 6, the 
effect is considerably less than the change in p(6). 
Although the extent of 6 is nonzero is ~ ± 0.3 eV (Fig. 
2) the validity of the ). « 6 approximation and the 
neglect of the 6 2 term should be checked against the full 
width at half maximum of the g(6) curve. The half
width is 6 ~ 0.066 eV. Thus, with the usual values of 
}, = 0.6 to 1.2 eV the approximation is still valid. 

Although only a narrow range of 6 is needed for our 
purpose of calculating the standard reduction rate con
stant k 0

, we have given in Fig. 2 a substantially larger 
range of e. When large overpotentials ± e17 are consid
ered, electronic energy levels with a correspondingly 
large range of e are needed for the evaluation of the 
integraL Accordingly, this larger range of 6S is given in 
Fig. 2, should kET (or the reverse rate constant kh at 
larger 111 Is, rather than just at 1J = 0, be needed. How
ever, when large overpotentials are considered, the ef
fect of the energy denominators should be included, 
e.g., Ref. [25]. 

The In (J(k8 T)) is plotted in Fig. 3 versus In (kaT) 
from T~ 120-325 K with and without e2 j4},kaT. A 
value of 0.8 eV is used for },. The slope is close to unity 
without the e2j4A.kaT correction (1.00 for Au and 0.97 
for Pt) and deviates a little from it with the correction 
(0.96 for Au and 0.93 for Pt). Thus, in both cases 

!(kaT) ockaT is valid for the nonadiabatic electron 
transfer to Au and Pt. Accordingly, the temperature 
dependence of the electronic factor in Eq . (13) is pro
portional to T and so the kET in Eqs. (1)-(3) (apart 
from the exponential part of the Franck-Condon fac
tor) is proportional to T f T 1f2, i.e. T 1i 2• With the classi
cal formulation for the Franck - Condon factor for the 
electrochemical exchange current kET oc T 1i 2e- J.i

4
knT for 

both metals and thus we expect it to apply for other 
metals at these temperatures. 

The slopes from Fig. 3 can be used to evaluate the 
value of the prefactor in Eq. (10) . We proceed by 
writing the integral in Eq. (8) as C(kaT) 1 +an, where f:.n 
is the deviation of the slope from unity and C is some 
constant. Eq. (8) can then be written as 

2rc e- J.f4ksT 
k 0 --- C(k T) 1 +l>n 

- li (4n}.kaT)! f2 a 
(20) 

The above equation can then be used to find the value 
of 5ln (k0T- 112)j5(1 j T). It equals - }.jkB[J j4 + f:.nk 8 T j 
}.], which gives instead of the factor of 4 in Eq. (10) a 
factor of 4/(1 + 4f:.nkaTf ,.\). For the slopes from Fig. 3, 
with }. = 0.8 eV and kaT= 0.025 eV we get values of 
4.02 and 4.04 for Pt (with and without e2 j4}.kaT correc
tion) and 4.00 and 4.02 for Au (with and without 
correction). 

The slopes of the In (!(kaT)) versus In (kaT) given 
above (1 + f:.n) could also have been obtained from an 
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(with correction). 

expansion of I V(e)l 2 in the vicinity of e = 0, using the 
data in Fig. 2. 

(21) 

The terms having odd powers of e do not contribute, 
and so we have 

l(k8 T) = jV(O)I2nk8 T[1 + (nk 8 T)1b + 5(nk8 T)4d + ... ] 
(22) 

Since the I V(e) l2 for Au is linear in e at e = 0, Fig. 2, b 
vanishes and it is clear why a plot of In (J(k8 T)) versus 
In (k8 T) was 1.00 for Au. Expanding jV(e)l2 around 
e = 0 for Pt by fitting the Pt curve in Fig. 2 with various 
polynomial functions it was found that the calculated 
slope varied from 0.9 to 1.0, thus yielding an almost 
linear plot4

• 

3.2. Semiconductors 

To treat the T dependence for semiconductor elec
trodes using Eq. (18) or Eq. (19), calculations such as 
those given in Ref. [22] would need to be repeated at 

4 For a particular fit function we find a value of b = - 10.84 and 
d = 203.47 which gives an average correction of 0.96 for a kaT range 
of- 0.01 to 0.027 eV, i.e., 120 :S T:S 325 K. Because of the peak of 
the Pt curve in Fig. 2 at the Fermi energy, the slopes of the Pt plots 
in Fig. 3 are sensitive to the fitted polynomial used. 

various temperatures. In the absence of those particular 
results we use here the free electron model [26]5 in 
which the matrix element HkA (i.e. < tf\ IH I '/'A) ) at small 
e is found to be proportional to kz [27]6 (because 'l'k is 
proporational to kJ, and so IHkAI2 ex: k~ ex: P /3 ex: e, 
where e is the energy. Since p (e) varies as some (known) 
power of e, one finds that the electronic factor , <IV(e)l2 ) 

in Eq. (4), is proportional to k 8 T. A consequence is that 
k~' varies as T /Tt l2, i.e., Tt/2 . 

4. Discussion 

Two differences between metals and the present non
degenerate semiconductors may be noted: (1) In the 
fom1er the Fermi-Dirac distribution is needed , while 
the Boltzmann distribution suffices for the semiconduc
tor. (2) As a first approximation the HkA in Eq. (4), 

5 If in other cases, HkA were proportional to a linear combination 
of kx ky and k,, then IHkAI2 averaged near the conduction band edge 
would still be proportional to e. In general, '!' k and thus the matrix 
element is proportional to sin(k,), which becomes k, only at a 
band-edge (small k,). Like k, the distribution of sin(k,) is hardly 
changed when e is changed in the case of a metal since L1 »e. 

6 In the case of indirect bandgap semiconductors the k., ky and k, 
are replaced by kx-k0 , kr-k0 and k,-k0 throughout and the same 
conclusion applies. 



161 

S. Gosavi et a/. I Journal of Electroanalytical Chemistry 500 (2001) 71-77 77 

appearing via Eq. (15) in Eq. (19) or kE'.YX, is approxi
mately proportional to k. in the free electron model for 
the semiconductor [26]. Since <IV(e)i2 ) is , as seen from 
above, proportional to k; and since the transfer is from 
the edge of the conduction band , it is also proportional 
to e. In the case of the metal, however, the distribution 
of the ks is hardly changed when the energy e relative 
to the Fem1i level is changed. Thus, now <IV(e)i2 ) is 
essentially independent of e. Specifically, at the high 
energies associated with ks near the Fermi level in free 
electron metals, k~ would be proportional to (L1 +e), 
where L1 is the energy of the Fermi level relative to that 
of the bottom of the band, namely about 2 or more eV. 
Thus, as e is varied, the distribution of the k.s is hardly 
changed, since L1 »e. This behavior is in marked con
trast to that of the semiconductor at its band edge, 
where k; o: e. 

These two effects, seen to be different for the semi
conductor and the metal, never the less, for different 
reasons, gave rise to a proportionality of the electronic 
factor to k 8 T for krrr for the exchange current in the 
case of the metal and for kE'f' in the case of the 
maximum rate constant for the semiconductor. 
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Abstract 

Applications of the z-transform were made earlier to interfacial electron transfer 

involving semi-infinite solids, e.g., semiconductor/liquid and metal/liquid interfaces 

and STM. It is shown how this method is readily adapted to treat composite materials, 

such as solid/solid interfaces or "molecular wire" /solid interfaces. 
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I. INTRODUCTION 

The electronic structure of solids having surfaces has been of much interest in a 

variety of physical and chemical studies. 1- 4 Among the simple theoretical methods 

used for treating the electronic properties of solids the tight~ binding approach is 

considered the simplest that is also reliable for approximate calculations. 1
'
3 In the 

implementation of this method to solids with surfaces, the solids can be considered 

as consisting of coupled atomic layers parallel to the surface. The system can then 

be simplified as a one-dimensional chain, with each unit representing a principal 

layer. 5 ,6 The principal layers are then treated separately using the two-dimensional 

space group symmetry. 

Various methods have been developed in tight-binding studies of solids having 

surfaces . In the 'slab' method7 the solid is treated as consisting of a finite number of 

principal layers parallel to the surface and the electronic structure of such a 'slab' is 

usually obtained by direct diagonalization of the Hamiltonian. The elements of the 

Hamiltonian are expressed in terms of atomic or molecular orbitals and their inter

actions within and between layers. Other methods for semi-infinite solids include the 

transfer matrix6
'
8 and scattering-theoretic9 formalisms, which usually employ Green 

function techniques. 

Instead of the Green function method, a z-transform method has also been used 

to treat the electronic structure of a semi-infinite solid. 10 The z-transform, also known 

as the discrete Laplace transform,n had been applied earlier in electrical engineering 

and allied fields. The transform reduces the problem of solving an infinite set of 

linear difference equations to an algebraic equation. This transform method can be 

applied to multi-band and/or complex interacting systems and still be transparent in 

its mathematical results. It was recently used to obtain the electronic wave functions 

of single element (Si) and compound element (InP) semiconductorsP The calculated 

electronic wave functions were then used to calculate the electronic coupling matrix 

element for electron transfer reactions at semiconductor/liquid interfaces. The z

transform method proved to be efficient and the results showed good agreement with 
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those of the slab method in those studies . 

The Green function approach lends itself quite naturally to focusing on local 

regions, 13•14 such as defects or surfaces. It is adaptable to thermal averaging, and 

there are well defined procedures for treating Green functions and summing over 

formal expansions. The wave function approach has been more commonly used in 

chemical studies, particularly in the form of a slab or cluster approach, since it has 

permitted very detailed electronic structure calculations. The Green function has 

been extensively used in recent years in the treatment of "molecular wires" and related 

systems. 14 

In earlier studies, the application of the z-transform has been used in the 

treatment of semi-infinite solids,10 including electron transfer reactions for STM/5 

semiconductor /liquid12 and metal/ attached monolayer systems. 16 In the present ar

ticle the method is extended to composite systems, such as solid/solid interfaces. 

The extension also applies to "molecular wire" /solid interfaces, as a particular ex

ample of a composite system. Interfaces between a metal and a semiconductor and 

that between two semiconductors have been studied extensively in the literature,17- 19 

and reflect the scientific and technological interest in such systems. Their electronic 

structures have been studied by Green function techniques, using tight-binding3 •
17 or 

pseudopotential methods. 2 In the present paper the electronic wave function of such 

systems is obtained by introducing separate z-transforms for the coefficients of both 

solids and using the interaction parameters between the two solids. Both bulk and 

interfacial states can be studied in this manner. 
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II. THE Z-TRANSFORM METHOD FOR TREATING SEMI-INFINITE 

SOLIDS AND SOLID /SOLID INTERFACES 

A. z-transform 

We have noted earlier the use of "principal layers," which are parallel to the 

surface, and the subsequent treatment of the system is one-dimensional, each unit 

being a principal layer. 5 In the following, we first consider the tight-binding wave 

functions for a one-dimensional solid-solid interface, and show how the z-transform 

method can be applied to it. For its application to solid/solid interfaces, it is useful to 

first illustrate the z-transform method by applying it to electronic wave functions of 

a semi-infinite solid. A more detailed derivation is given in Ref. 10. In this approach 

the tight-binding type electronic wave functions can be written as 

00 

l\llk) = L Cn(k) I1/Jn), (1) 
n=l 

where the coefficient cn(k) in Eq. (1) is the solution of an infinite set of linear 

equations, 

Cn+l(J* +en( a- E)+ Cn-lf3 = 0, n ~ 2, (2) 

with the boundary condition 

(3) 

notation for the k-dependence of the Cn is suppressed for brevity. 

To solve the linear equations given by Eq. (2), the z-transform for en is defined 

by 

00 

Z(cn) = L CnZl-n =: F(z), (4) 
n=l 

which, using Eqs. (2) and (3), can be shown to yield10 

F( )
- (a-a1)z-(3*z 2 

Z - Cl---' __ .,......:-___ _ 
(3*z 2 +(a - E)z + (3 . 

(5) 
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The coefficients Cn are recovered using the in verse z -transform of F ( z) , 

(6) 

that is 

(7) 

The latter is readily integrated using Cauchy's residue theorem. The z-transform is 

applied to solid/solid interfaces in the next section. For simplicity, the solid/solid 

interfaces will be studied using mainly one-dimensional models, but the results are 

immediately generalized to the 3-D case. Ideal interfaces and reconstructed interfaces 

are treated separately in the following. The constant c1 is evaluated by normalizing 

the wave function to a delta function .10 

B. Ideal interface between two one-dimensional one-band systems 

The one-dimensional model of the composite interface is illustrated in Fig. 1 (a) . 

The wave function of such a system can be written in terms of localized atomic orbitals 

00 

n=-<X> 

where 7/;n again denotes the orbital localized at the nth site. 

The tight-binding Hamiltonian of this system can be written as 

H = n~oo a2l'l/;n)('l/;nl + c~oo fi2l'l/;n)('l/;n-1l + c.c.) 

+ ~ a1l'l/;n)('l/;nl + (~ fi1l'l/;n)('l/;n+11 + C.c.) 
+ (JI'I/;-1)(7/J11 + c.c.), 

(8) 

(9) 

where fJ1 and fi2 are the interaction parameters between the neighboring sites within 

each of the two semi-infinite chains, denoted by positive and negative numbers, respec

tively, a1 and a2 are the corresponding coulombic parameters, and 1 is the interaction 

parameter between the two adjacent sites 1 and -1 of the two chains. As can be seen 

from the Hamiltonian, it is assumed here for simplicity that the interface consists of 
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only two sites ( -1 and 1), and at first the coulombic parameter a for each of the 

two sites at the interface is given the same value as that in each semi-infinite solid. 

When the interfacial potential parameters a 1 and a_1 are different from their bulk 

values and/or when the interaction involves more than the nearest neighbors, the 

same derivation is applicable, but the final formulae are more complicated. 

Using the same strategy as that used in the semi-infinite solid case a set of dif

ference equations is obtained for the coefficients en's, n = 1, 2, . .. CX) and a set for the 

other coefficients, n = -1, -2, ... - CX), instead of just one set of equations. These two 

sets are coupled by the coefficients c_1 and c1, 

,a; Cn+1 + ( a1 - E)cn + ,81 Cn-1 = 0, n = 2,3,4, ... , (solid 1) (10) 

,B;c2 + (a1- E)c1 + ;c-1 = 0, (11) 

and 

,82cn+1 + ( a2 -E) en+ ,B;cn-1 = 0, n = -2, -3, -4, ... , (solid 2) (12) 

;"'c1 + ( a2- E)c-1 + ,B;c-2 = 0. (13) 

The z-transforms for solid 1 ( n 2: 1) and solid 2 ( n ::=; -1) are, respectively, 

00 - 00 

(14) 
n=1 n=-1 

With these definitions, F+( z) and F-( z) converge when lzl :::; 1 and n ~ CX) and 

n ~ -CX), respectively. Application of the z-transform to the two sets of difference 

equations, Eqs. (10) and (12) separately, yields the z-transform for Cn (n > 0) as 

F+(z) and that for Cn (n < 0) as F-(z), 

F+(z) __ ,8;z
2

c1 +
2 

( a1 - E)zc1 + z,8;c2, 
,Biz + (a1- E)z + ,81 

(solid 1) 

F -(z) __ ,8;z2c-1 + (a2- E)zc-1 + z,82c-2 
(solid 2) 

,8:;z2 + (a2- E)z + ,82 

Equations (11) and (13)-(16) yield 

p+(z)= ~1,8;z2-c_1/'Z ' (solid 1) 
,Biz +(a1-E)z+,81 

,8* 2 * 
F -(z) __ c

2
-1 2z - c1; z . ( ) solid 2 

,82z + (a2- E)z + ,82 

(15) 

(16) 

(17) 

(18) 
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The coefficients obtained by the inverse z-transform are 

1 i (c1f3;z- c-11)zn-1 d 
Cn = 27ri c f3iz 2 + (ar- E)z + fJ1 z, 

(solid 1, n > 0) (19) 

1 i (c-1f3;z- Crl*)z-(n+l) 
Cn =- dz. 

27ri c f32z 2 + ( a2 - E)z + fJ2 
(solid 2, n < 0) (20) 

For n = 1 and n = -1, integration of the above equations yields c1 = cr and c-1 = c_r, 

as they should. 

To obtain solutions which are propagating to infinity in both sides of the solid, 

Cn and c_n should neither vanish nor become infinite as n ---+ oo . (We treat bound 

interfacial states later.) We thus require that the poles of the integrand in Eqs. (19) 

and (20) lie on the unit circle, a result which implies that the solution z = z1 of 

(21) 

and the solution z = z 2 of 

(22) 

both lie on the unit circle. In a simple case where /31 and /32 are real, the solutions of 

Eqs. (21) and (22) are both of the type e±iO, but each typically has a different value 

of e. We then have 

(23) 

and 

(24) 

which also serve to relate ()2 to B1 at each E. 

The en for n > 0, as discussed earlier, is given by Eq. (19). The poles of the 

integrand of the right hand side of Eq. (19) are at z = exp(iB1) and z = exp( -i81). 

The former gives a term exp(inB1) and the latter exp( -inB1 ) . After evaluating the 

residues in Eq. (19), we have 

( c1f31 ei01 _ c_n )ei(n-1)01 ( c
1

f31 e-i01 _ c_n )e-i(n-1)81 

Cn = 2 '(3 . f) + 2 'j3 . f) ' Z 1 Sill 1 - Z 1 Sill 1 
(n > 0, solid 1). 

(25) 
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Similarly, from Eq. (20), we have 

(c_If3
2
e-i0z _ Cll*)e-i(n+l)02 (c_

1
j32eil}z _ Cll*)ei(n+l)02 

Cn = + ~----~~~~~------
2ij32 sin ()2 -2i j32 sin ()2 

(n < 0, solid 2). 

(26) 

The constants c1 and c_1 are obtained by a normalization and by satisfying a boundary 

condition at infinity. For example, if a traveling wave is incident in solid 1, partially 

reflected at the interface, and a purely outgoing wave, e-ine2 , occurs in solid 2, n 

becoming progressively more negative, then the boundary condition is to set the 

coefficient of the exp( in()) term ( n < 0) in Eq. (26) equal to zero. Thereby, 

(27) 

and so from Eq. (26) 

(n < 0). (28) 

The Cn in Eq. (25) can also be expressed in terms of c_1 using Eq. (27), and the c_1 

can be evaluated from whatever normalization that is used. (e.g., unit incident wave 

in solid 1, or normalization to a delta function.) 

Two limiting cases are readily retrieved from these equations: In the limiting case 

where 1 = 0, the two semi-infinite solids are uncoupled, and the above expressions 

yield wave functions which are those of semi-infinite chains. 1 •10 The other limiting 

case is where the two semi-infinite chains are the same, so that 1 = j31 = j32, a 1 = a 2, 

and ()1 = ()2 = B. We then have an infinite one-dimensional chain of sites, and 

Cn = ei(n-l)B c1, for n > 0, c_l eiB = C1, and Cn = c-1 e-i(n+l)B, for n < 0. 

At both metal-semiconductor20 and semiconductor-semiconductor interfaces , 18 

bound interfacial states are common and are known to play an important role in 

determining physical features such as conduction behavior17 and the Schottky barrier 

height. 18 The bound interfacial states have been studied extensively using the Green 

function method. 21 In the following it is seen that the z-transform method similarly 

provides an examination of conditions and energy values for these interfacial states. 

To illustrate the use of the z-transform method for this purpose, we again model 

such a situation by a one-dimensional chain. In this case, the solutions of Eqs. (21) 
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and (22) are both of the form z = e-81
•2 , where the real parts of B1 and B2 are positive. 

Since e81 is also a solution of Eq. (21), in order to avoid Cn increasing as n increases , 

the integrand of Eq. (19) is such that the numerator has z- e81 as a factor to cancel 

a corresponding term in the denominator. Thus we require that 

(29) 

which yields 

(30) 

Similarly, we have that 

(31) 

from the requirement that Cn (n < 0) decreases as n decreases. Comparison of Eqs . 

(30) and (31) finally yields 

(32) 

The interfacial states can exist only if Eq. (32) is satisfied, and thus /''( / (31(32 must 

exceed unity. These results are readily extended to three-dimensional cases and the 

z-transform method proves to be a simple method for obtaining the existing condition 

of interfacial states. 

C. One-dimensional one-band systems with a reconstructed and/or coated 

interface 

When two solids form a heterojunction, the interface is frequently reconstructed. 

In many cases one of the solids is coated by som e other material beforehand. Such 

systems have usually been treated by the Green function technique. 19 This situation 

is readily modeled by treating the interface as a different unit from the two bulk 

phases, as illustrated in Fig. 1(b). One type of atom occupies sites from 1 to oo, 

those of the other type occupy -1 to - oo, and the interface occupies site 0. Using 

the same parameters a 1 , a 2 , /31 and (32 tacitly defined in Eq. (10) and introducing 
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11 = (~oiHI~1), 12 = (~-11HI ~o), (33) 

the following linear equations are obtained for this system by the same method as 

that described earlier, 

and 

n = -2, -3, -4, ... , 

(34) 

(35) 

(36) 

(37) 

Electronic wave functions of such a system can again be obtained usmg the z

transform method described in the previous section. Using the boundary condition, 

(38) 

the tight-binding coefficients are obtained as 

1 {c ((3'"z- -rn; ) - c_ 'Yl'Y2 }zn-1 _ j 1 1 E-cx0 1 E-cxo d 
Cn-2?riJc (3;z2+(a1-E)z+(31 z 

(39) 

1 i {
c_ ((3"'z _ -rn2 ) _ c -r2-rt }z-(n+1) 

_ 1 2 E-cxo 1 E-cxo d Cn-- Z 
2?ri c (3i_z 2 +(a2-E)z+f3z 

(40) 

The condition for the existence of bound interfacial states can be found m a 

way similar to that discussed in the previous section. For bound interfacial states 

there should only be terms of exponentially decaying waves in the expression for en. 

Accordingly, terms that increase as n increases are made to vanish. As in the previous 

section, one obtains 

( 41) 

( 42) 

In order for there to be a nontrivial solution for c1 and c_ 1 , the determinant of the 

coefficients in Eqs. ( 41) and ( 42) vanishes, yielding 
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(43) 

The requirement that the wave functions decay in both sides of the solid yields the 

following condition for the existence of bound interfacial states, obtained by requiring 

that the poles in Eqs. (39) and ( 40) be of the form z = e111 and e112 , respectively, 

(44) 

It is readily verified that the expected results can be obtained for several limiting 

situations . 

For simplicity, in the following all the interaction parameters are treated as real. 

A simple semi-infinite system is achieved by setting 

(45) 

The condition for the existence of bound surface states can be obtained by applying 

the above equalities to Eqs. (43) and (44), 

(46) 

which can be rewritten as 

( 4 7) 

and is in agreement with the known result. 1 •10 

Another limiting case occurs when two identical semi-infinite linear chains form 

an interface, 

( 48) 

It then readily follows that the condition for the existence of bound interfacial states 

lS 

( 49) 

i.e., that the surface states below the allowed band of the infinite chain can exist only 

if the ao is more negative than a 1 . 
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III. CONCLUDING REMARKS 

In the present study the z-transform method has been applied to composite ma

terials, such as solid/solid interfaces. The existing condition for bound interfacial 

states is obtained in terms of tight-binding solid state parameters, treating both re

constructed and ideally non-reconstructed interfaces. The z-transform and the models 

introduced in the present paper can be applied to systems of experimental interest, 

including charge transfer through diodes and molecular wires. In particular, it can 

be applied, using the tight-binding wave functions, to study the interface between a 

"molecular wire" and a metallic surface,22 and the contact between nanotubes and 

metals. 23 
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(b) 
FIG. 1. Schematic picture of the interface formed by two semi-infinite linear chain: (a) 

an ideal interface, (b) a reconstructed (coated) interface. a, f3 and 1 are the interaction 

parameters. The sites in the left-hand side are denoted by negative numbers and the sites 

in the right-hand side are denoted by positive numbers. 
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Abstract 

Photoinduced electron transfer reactions in small supramolecular systems, such as 

the 4-aminonaphthalimide compounds, are interesting in that there are two alterna

tive directions for the electron transfer to occur. Nevertheless, the electron transfer is 

unidirectional, as deduced from pH-dependent fluorescence quenching studies of se

lected compounds. The role of the electronic coupling matrix element, and the effect 

of the charges accompanying protonation, are considered so as to explain the direc

tionality of the electron transfer and other results. A related mechanism is suggested 

for interpreting the behavior of similar molecules which serve as fluorescent sensors 

of metal ions. 
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I. IN TRODUCTION 

In recent years the 4-aminonaphthalimide compounds have been the subject of 

many studies,1- 8 in part because of their fluorescence properties and their serving 

as sensors. Recently, the photoinduced electron transfer reactions in synthesized 

supramolecular systems, consisting of various 4-aminonaphthalimide compounds, 

were studied by de Silva and coworkers. 1 •
2 The pH-dependent fluorescence spectrum 

was investigated for the compounds depicted in Fig. 1. Each of these molecules con

tains a fluorescent 4-aminonaphthalimide as the core and different amino groups in the 

side chains serving as the electron donors. The electronic absorption and fluorescence 

emission spectra were measured as a function of the pH of the solution, the solvent 

being water : methanol in a ratio of 1 :1. Some of the observed optical properties1
•
2 

are given in Table I. A strong pH-dependence of the fluorescence quantum yield is 

displayed by 3/ 4,2 and 5,2 but not by 1 or 2 :1 The fluorescence quantum yield of 1 

and 2 remains relatively low (rv 0.2) in the pH range of experiments (4 to 11), while 

the fluorescence quantum yield for 3 , 4 and 5 is very low ( < 0.1) in base but high in 

acid (> 0.5) . The recovery of the fluorescence of 3 / 4,2 and 5 2 occurs at a pH that 

corresponds to the pKa of the distal nitrogen of the 4-substituent. 

Of particular interest was the pH-dependent fluorescence experiment for 4 and 

5. 2 Each of these two compounds consists of a fluorophore with two side chains, 

each containing an amino electron donor. With the pH-dependent fluorescence spec

troscopy studies, two possible electron transfer directions responsible for the fluores

cence quenching could be investigated. In their experiments,2 de Silva and Rice made 

the striking discovery that the electron transfer is unidirectional: The fluorescence is 

recovered only when the distal nitrogen on the 4-substituent is protonated, while the 

protonation of the distal nitrogen in the 9-substituent has negligible influence on the 

fluorescence quantum yield . Thus, only the electron transfer from the distal nitrogen 

in the 4-substituent occurred. 

In their explanation of their striking observations on the unidirectional behavior 

of 4 and 5, de Silva et al. suggested2 that the excitation first produces a charge-
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separated state, namely a charge +8 on the 4-N and a charge -8 on the di carboximide 

(-CO-N-CO-) group, the 4-N being the amino group at the 4-position. The resulting 

internal electric field then directs the hole to the distal nitrogen in the 4-substituent. 

A similar mechanism was assumed later by Tian et al. to explain the pH-dependence 

of the fluorescence of a 4-amino-1 ,8-naphthalimide compound. 9 

Indeed, as de Silva et al. noted, there is an effect of a ground state dipole on the 

direction of electron transfer in an a-helical polypeptide. 13 However, there is a striking 

contrast in the two phenomena: in the 4-aminonaphthalimide, the hole-electron pair 

( +8, -8) (in the excited state denoted by le) later) changes after its initial formation. 

It is part of the dipolar field itself, rather than moving in an external field, and the 

concept was not developed further in the form of an actual calculation. In the present 

paper a different but simple explanation of the results is proposed, one based on the 

calculations of the relevant electronic coupling matrix elements between the orbitals. 

The paper is organized as follows: Further experimental results are described in 

Sec. II. The electronic states involved in the present mechanism are given in Sec. III. 

In Sec. IV a crude estimate of the electronic coupling matrix elements is given for 

the two electron transfer directions. The electronic coupling matrix elements for the 

two pathways are calculated and used to interpret the directionality of the electron 

transfer in Sec. V, and explanations of various other experimental results are given 

in Sec. VI and VII. A concluding discussion is given in Sec. VIII. 

II. FURTHER EXPERIMENTAL RESULTS 

In the experiments/•2 a noticeable difference was observed between the pH

dependence of the wavelength of absorption maxima X;:/,~x for 1 and 2 and that for 

3 , 4 and 5 (Table I): The ) . ."~/,~x undergoes very little change with pH for compounds 

1 and 2, while there was about a 20 nm blue shift of the absorption spectra of 3 , 4, 

and 5 when measured in acid relative to the spectra in base. 10 These changes of the 

>.. ~t,~x's of 3 , 4, and 5 occur at pH 's corresponding to the pKa's of the distal nitrogens 

in the 4-substituents. 
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In a related study, other 4-aminonaphthalimide compounds (6 , and 7 in Fig. 2) 

were investigated by Mitchell et al. as fluorescent sensors for metal ions,6
•
11 where 

the compounds are again believed to undergo intramolecular quenching by the distal 

nitrogen of the 4-substituent. For comparison, the fluorescence of 8, a molecule similar 

to 6 and 7 but with a much longer 4-substituent side chain, was also studied in the 

presence of metal ions. 6 This quenching of 6 and 7 disappeared with the complexation 

of the metal ions with the distal nitrogen of the 4-substituent . The electron transfer 

from this distal nitrogen is thus again believed to be responsible for the fluorescence 

quenching of 6 and 7. The fluorescence decay profile of 6 and 7 shows that the 

addition of metal ions which form amino complexes increases both the intensity and 

the lifetime of the fluorescence, while such effects have not been observed for 8. 

Experiments also confirmed that when a 4-substituent is moved to the 9-position 

it has, Mitchell et al. noted,6 much less influence on the fluorescence quenching and 

on the fluorescence recovery mechanism of 6 and 7. 7 •12 It was also observed that the 

addition of metal ions, which can readily form complexes with the 4-distal nitrogen 

of all three molecules, causes the absorption maxima of 6 and 7 to undergo a 10-

30 nm blue shift, while the addition of the same metal ions to the solution of 8 has no 

effect on absorption wavelength. The addition of metal ions that do not form amino 

complexes causes no change in the spectrum of any of the three molecules, 6 , 7 and 

8. 

III. THE ELECTRONIC STATES 

We consider a mechanism for the fluorescence quenching and for its recovery for 

the 4-aminonaphthalimide compounds in which there are the ground state, jg), and at 

least two excited states, one of which, je), is less charge-separated and is fluorescent. 

The other, labeled lecT1 ) in Fig. 3, is more charge-separated and relatively non

fluorescent. The state je) is created by the excitation of a HOMO of the fluorophore 

and consists of a HOMO and a LUMO of the fluorophore (Fig. 4). The lecTI) is 

coupled to ie) and arises from the electron transfer from the distal nitrogen. It has a 
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positive charge on that nitrogen, and the electron transfer quenches the fluorescence. 

This quenching mechanism is removed if this charge transfer is inhibited, and then 

the fluorescence increases. For the present systems, the attached amino groups act 

as electron donors and the ring system as an electron acceptor. The assumption of 

having a locally excited state and a charge-separated state is common for similar 

systems. 17 The various states discussed above are shown in Fig. 4 with the relevant 

orbitals given as follows: 

Jg) : (HOM0)2(LUM0) 0 (N4)2(ND)2, 

Je) : (HOM0) 1 (LUMOh(N4)2(ND)2, 

JecTI) : (HOM0)2(LUMO)l(N4)2(NDh, 

JecT2) : (HOM0)2(LUMOh(N4)I(ND)2, 

where, as indicated in Fig. 4, N4 is an orbital localized on the 4-amino group and 

ND is an orbital localized on a distal nitrogen. The possible role of JecT2), which is 

higher in energy than JecTI) because of the very electrophilic nature of the 4-N, is 

discussed later. 

IV. CRUDE THEORETICAL ESTIMATE OF THE ELECTRONIC 

COUPLING MATRIX ELEMENTS 

We first consider a very approximate estimate of the difference in coupling to 

the two distal nitrogens by noting that the distal N on the 4-substituent is three 

bonds removed from the 4-N, which is found in the calculations given later to make a 

significant contribution to the HOMO of the system, and is part of the initial acceptor 

state Je) for the electron transfer reactions (Fig. 4). Using as an approximate figure 

a decrease of the square of the coupling matrix element V of a factor of 3 per bond 

of an alkyl chain,14 this JVJ 2 is about 1/27 of the contact value. If the contact value 

is of the order of 2 eV, the V then would be of the order of 2/-J27, i.e., "'"' 0.4 eV. 

On the other hand, the distal nitrogen in the 9-substituent is three single bonds and 

6 double bonds away from that 4-N. If one takes the decay of the coupling matrix 
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element for electron transfer via double bonds as e- f3 R, where (3 is a distance decay 

parameter and R is the total length of the double bonds, about 8.5 A in this case, 

the coupling matrix element for the electron transfer from the distal nitrogen of the 

9-substituent would be (2/..f27)e-S.S(3 / 2 . If (3 is taken as 0.36 A - 1 
(although strictly 

speaking this (3 refers to a direct distance), 15 this coupling matrix element would be 

about 0.08 eV, and if (3 is instead 0.57 A - 1 ,1 6 it would be about 0.03 eV. 

The energy barrier to electron transfer at the crossing point is lowered by an 

amount equal to V , and so the activation energy for the electron transfer from the 

distal N of the 4-substituent would be significantly less than that for the electron 

transfer from the distal N of the 9-substituent. If these crude "back of the envelope" 

figures were taken literally, the electron transfer from the distal Non the 9-substituent 

would be "' e0
·
3 71°·025 (0.025 being kBT in eV) or 107 times slower than the electron 

transfer from the distal N on the 4-substituent. 

In the following section, we give a more detailed estimate, usmg an extended 

Hiickel theory, with similar results also being obtained using a Hartree-Fock calcula-

tion. 

V. CALCULATIONS: DIRECTIONALITY AND [EcTI) 

We focus first on a comparison between the electron transfer from the distal ni

trogens in the 4- and 9-substituents of 4 and 5, where je) and jecT1 ) are the principal 

states involved. Calculations for the electronic coupling matrix elements between 

jecTI) and je) were performed, as noted earlier , using an extended Hiickel and, sep

arately, using an ab initio Hartree-Fock method. 

A model system, compound 9 in Fig. 5 was used instead of 4 and 5 in the 

calculations, to reduce the computational time and so the two distal amino groups 

of 9 were both chosen to be a NH2 group in the extended Hiickel and Hartree-Fock 

calculations. The molecular structure given in ref. 18 was used after an optimization 

by a Hartree-Fock calculation using the basis set 6-31G*. In both calculations, the 

acceptor state was chosen to be the HOMO of the molecule and the donor states 
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were identified as the states having electron localized at the distal amino groups. The 

coordinates are given in the supplementary material in Table I S. 

For convenience in the extended Hiickel calculations the relative energies of the 

donor and acceptor diabatic states were changed by placing at different distances an 

F- anion near the nitrogen of the donor group under consideration, as far as possible 

from all the other atoms, to increase mainly the energy of the state /e) and to minimize 

the change of the stable molecular structure. The energies of the two states, in one of 

which the orbital is delocalized in the fiuorophore and in the other it is localized on 

the distal amino group, were then plotted as a function of the distance between the 

nitrogen of the amino group and the anion. In this way, the two adiabatic curves were 

obtained and the coupling matrix element was obtained from their avoided crossing 

as one half of the least splitting of the adiabatic curves. That avoided intersection 

occurred when the distance between the distal group in the 4-substituent and the F

was about 1.9 A. 
Ab initio Hartree-Fock calculations were performed in a way similar to the ex

tended Hiickel calculations, except that in these calculations the change of the energies 

of the states of interest was achieved by applying an electric field, which is a built-in 

function of the Gaussian 98, along the direction of the electron transfer. The avoided 

crossing of the energy curves occurred at an applied field of 8.5 x 106 in the units in 

Gaussian 98. 

The calculated electronic coupling matrix element between /e) and /ecT1) for the 

electron transfer from the distal N in the 4-substituent is 0.25 eV for the extended 

H iickel calculation and 0. 39 e V in the Ear tree-Fock calculation. For the electron 

transfer from the distal nitrogen in the 9-substituent it is 0.030 and 0.035 eV, re

spectively. The calculated electronic coupling matrix elements for electron transfer 

reactions from both 4- and 9-substituents are large enough for the reactions to be 

considered as adiabatic, and the coupling matrix element for the electron transfer 

from the 4-distal nitrogen is about 10 kBT larger than that for the electron transfer 

reaction from the 9-distal nitrogen. Since this difference in the electronic coupling 

matrix elements makes the energy barrier about 10 kBT smaller at the avoided cross-
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ing for the electron transfer from the 4-distal nitrogen than that from the 9-distal 

nitrogen, on this basis the electron transfer from the 4-distal nitrogen would be much 

faster ("' e10 or 104 , if the calculations were literally correct) than that via the com

peting pathway, from the 9-distal nitrogen. The fluorescence of the fluorophore is 

then mainly quenched by the electron transfer from the distal amino group in the 

4-substituent. 

When this distal nitrogen is protonated, the electron transfer reaction is inhibited 

because the protonation of that nitrogen should considerably stabilize electrons on 

it and, in terms of Fig. 3, increase the energy of the charge-separated state ( lecTl)) 

relative to the fluorescent excited state (I e)), reflecting in part the role of coulombic 

repulsion. The fluorescence recovery is then observed at pH's equal to and lower 

than the pKa values of the distal nitrogens, because of this inhibition of the electron 

transfer. 

VI. FLUORESCENCE QUENCHING IN 1 AND 2 AND THE ROLE OF 4-N 

We turn next to the differences between the pH-dependence of the fluorescence of 

1 and 2, and that of 3, 4 and 5. As noted earlier, the experimentaP•2 fluorescence 

quantum yields of molecules 1 and 2 are relatively low at all pH values compared to 

those of 3, 4, and 5 in acid (Table I). The main structural difference between them is 

that there exists a distal nitrogen in the 4-substituent of 3, 4 and 5 but not in that 

of 1 or 2. 

The fluorescence of the 4-aminonaphthalimide, due to an le) -+ lg) transition, is 

in competition with a radiationless transition, even in the absence of any distal amino 

group. The quantum yield of the fluorescence is low ("' 0.2) for 1 and 2 because of that 

competition. This radiationless transition is enhanced when the (HOMO)I(LUMO)I 

and (HOM0)2(LUM0) 0 surfaces are more displaced in coordinate space from each 

other. The presence of the 4-amino substituent on the ring presumably enhances 

this displacement (by concentrating the charge in a smaller region near the 4- N) and 

so enhances the radiationless transition rate and hence decreases the fluorescence 
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quantum yield. 

Upon the protonation of the 4-distal nitrogen, not only is the energy of the HOMO 

is raised, but also its electron distribution is less concentrated in the small region near 

4-N, and so the (HOMO )I(LUMO )I state is expected to be less shifted in coordinate 

space from the (HOM0)2(LUM0 )0 state. This change results in a corresponding 

decrease in the radiationless transition rate and so in an enhancement of the fluores

cence quantum yield . Accordingly, the protonation of the 4-distal nitrogen increases 

the fluorescence quantum yields of 3 , 4 and 5 to values (> 0.5) greater than that of 

1 or 2 ( rv 0.2), which do not contain a distal nitrogen in the 4-substituent. 

The energy of a state JecT2 ) (Fig. 4) is expected to be appreciably higher than 

that of JecT1) (Fig. 4), because of the electrophilic nature of the 4-N. This difference is 

reflected in the pi< a's of the 4-N and and the distal nitrogen, e.g. , -0.5 as contrasted 

with 6 or 8, depending on the nature of the distal group . This difference is about 0.39 

eV. Accordingly the state JecT2) may not be directly involved in the present electron 

transfer, but its presence would only enhance the pathway to the 4-distal n itrogen. 

The latter pathway could make use of JecT2 ) via a superexchange mechanism, whereas 

the pathway from distal nitrogen in the 9-substituent could not . 

The above discussion also applies to the pH -dependence of the absorption spec

tra of 1 to 5. Compounds 1 and 2 cannot be protonated in the pH range of the 

experiments, because of the absence of the distal nitrogen in the amino position and 

the low pi<a of the 4-N . Correspondingly, their A. :J,~x should be pH-independent. For 

compounds 3 , 4 , and 5 , however, the protonation of the distal nitrogen increases the 

energy of the fluorescent state Je) (which is slightly charge-separated), leading to a 

blue shift of the A.:J,~x in acid compared with that in base. 

VII. FLUORESCNCE OF 6, 7, AND 8 IN THE PRESENCE OF METAL 

IONS 

The spectra of systems 6 , 7 , and 8 6 ·10 can be interpreted in a similar way. The 

electron transfer is faster from the distal nitrogen of the 4-substituent than that 
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from the distal nitrogen of the 9-substituent, for the reason discussed above. The 

fluorescence is quenched by the distal amino group on the 4-substituent and recovery 

occurs when a complex between this nitrogen and some metal ion is formed, both the 

intensity and the lifetime being increased with the increase of the ion concentration. 6 

This complexation between the distal nitrogen and metal ions, which has a charge 

effect on the fluorophore , also provides a possible explanation of the blue shift of 

the absorption spectra19 of 6 and 7 in the presence of metal ions which can form an 

amino complex. The molecule 8, however, has a much longer side chain at the 4-

substituent position and the distal nitrogen and 4-N are separated by 8 other atoms. 

Accordingly, the metal ion attached to this distal nitrogen has a much smaller effect 

on the fluorophore and there is negligible influence of the metal ions on the observed 

absorption and fluorescence wavelength of 8. 20 

VIII. CONCLUDING DISCUSSION 

Summarizing the calculations, the fast electron transfer from the distal nitrogen 

m the 4-substituent, versus slow charge transfer from the 9-substituent, is mainly 

due to the difference in the electronic coupling matrix elements for the two reactions. 

Both the extended Ruckel and the ab initio Hartree-Fock calculations yield a much 

larger electronic coupling matrix element for the electron transfer from the distal 

nitrogen attached to the 4-position than that from the distal nitrogen attached to the 

9-position. This result is consistent with the "back of the envelope" argument given 

in Sec. IV. 

It would be desirable for further pH-dependent fluorescence studies of similar sys

tems to be performed to test the mechanism of the fluorescence quenching and the 

corresponding recovery. For example, the electron transfer from the distal nitrogen on 

the 4-substituent can be reduced by lengthening the carbon chain of that substituent. 

The question of assessing the role of a possible hydrogen-bond interaction in the pro

tonated form of 4 and 5, as in Fig. 6, to the 4-N also arises. Reducing the carbon 

chain length will enhance the coulombic repulsion of the protonic charge, so decrease 
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the formation of a +8 on the 4-N and reduce this source of quenching of the :fluores

cence. It would also reduce the formation of a hydrogen bond to the 4-N by requiring 

a 4-member hydrogen-bonded ring. The protonation of the distal nitrogen then would 

not reduce the quenching by the 4-N if the formation of an intramolecular bond were 

needed for recovering the :fluorescence. This experiment would distinguish the rela

tive importance of the coulombic repulsion and of the hydrogen bonding caused by 

the protonation of the distal N to the 4-N . Nuclear magnetic resonance experiments 

might also permit the detection of a hydrogen bond. Real-time experiments on the 

decay of the :fluorescence under the condition of the experiments in refs. 1, 2 and 6 

would also be helpful. In summary, a simple electronic mechanism is proposed for 

explaining the various observations1
•
2

•6 of the behavior of the 4-aminonaphthalimides 

and some experimental consequences are suggested. 
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APPENDIX A: CALCULATIONS FOR THE COUPLING MATRIX 

ELEMENT 

To obtain the coupling matrix element, a two-state picture is used for each of the 

two electron transfer reactions. In the two-state model, the Hamiltonian is written 

as21 

(A1) 

where HDD and HAA are the energ1es of the donor and acceptor diabatic states, 

respectively, and V is the coupling between the two states. When the donor and 
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acceptor states are chosen to be orthonormal to each other, as in the extended Ruckel 

and Hartree-Fock calculations in this study, the energies of adiabatic states , denoted 

by E 1 and E 2, are obtained directly from the diagonalization of the Hamiltonian 

matrix as 

E1 = HDD + Vtan7], E2 = HDD- Vtan7], (A2) 

where tan 27] = 2Vj(HDD- HAA)· It then immediately follows that 

V = (1 / 2) (El - E2) sin 27]. (A3) 

As indicated by Eq. ( A3) E 1- E 2 has a minimum when sin 27] = 1, and E1- E2 = 2V. 

Equation (A3) then provides a way of calculating the coupling matrix element V, if 

the energies of two adiabatic states can be changed continuously in the neighborhood 

of HDD = HAA to give the two adiabatic curves. The coupling matrix element is one 

half of the minimum splitting of the two adiabatic curves. 
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TABLES 

TABLE I. Optical propertiesa for 1 to 5. 

1 2 3 4 

>.~~x (baseb)/nm 454 455 449 450 

>.~~x( acidb)/nm 454 455 431 432 

AshiJtfnm 0 0 18 18 

>.~~x(pH=7.0)/nm 432 

.XJI~x( acidb)/nm 555 559 538 526c 

.Xfl~x( acidb)/nm 555 557 549 

~flu( acidb)/nm 0.23 0.12 0.76 0.53 

~ftu(pH=7.0)/nm 0.23 0.12 0.57 0.66 

<I> flu(baseb)/nm 0.23 0.15 0.030 0.030 

a The properties for 1, 2 , and 3 are taken from ref. 1, 

and those for 4 and 5 are taken from ref. 2. 

b pH was only specified for 4 and 5. Here, the pH was 3.0 

in acidic solution and 10.8 in basic solution. 

c Value changes very little with the pH. 

5 

452 

433 

19 

452 

524c 

0.52 

0.062 

0.070 
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Figure Captions 

Fig. 1 The structures of the five molecules 1 through 5 studied by the pH

dependent fluorescence spectroscopy. 1 •
2 

Fig. 2 The structures of the fluorescent sensors 6, 7, and 8 studied by Mitchell et 

az.6,7 

Fig. 3 Schematic diagram of the free energy vs nuclear coordinate for the ground 

and excited states for the fluorophore. Jg > is the ground state, Je) is the fluorescence 

excited state, JecTl) is the charge-separated, non-fluorescent state due to the electron 

transfer from the distal nitrogen. When the distal nitrogen in the 4-substituent is 

protonated, the energy of the fluorescent state Je), which is slightly charge-separated, 

is increased and there is a blue shift of the absorption. The JecT1) does not exist in 

1 or 2. 

Fig. 4 The various diabatic states and the relevant orbitals. About 70% of the 

relevant orbital of Je), which is the HOMO of the system, is localized at the 4-N 

(40%), 3-C, 4-C, and 10-C. 

Fig. 5 The structure of the model system used in the calculations of electronic 

coupling matrix elements. 

Fig. 6 The structures of 4 and 5 after the formation of the intra-molecular hy

drogen bond. 
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FIG. 6. 
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TABLE I. Supplement: Coordinatesa for the atoms in compound 9 

atom X y z 

c 4.8230510044 -0.3202431448 -0.6322330717 

c 5.3314123096 -0 .8463867416 0. 7170130084 

N 6.5107271908 -1.6855480060 0.6318883857 

H 4.6138234392 -1.1427535941 -1.3057447175 

H 5.6064503504 0.2643353318 -1.1045595255 

H 5.5606951848 -0 .0027 495506 1.3609009242 

H 4.5491144263 -1.4070772611 1.2146705592 

H 6.3362950750 -2 .5151741063 0.0985787343 

H 7.2773984 780 -1.2046072295 0. 2026040968 

0 -1.9488737966 -2.4437315046 0.1652261903 

0 -3.3598489565 1.8117499560 0.5132628936 

N -2.6570397602 -0.3207840034 0.3942461687 

c -0.2950912589 -0.7895881805 -0.0172085241 

c 0.7249681017 -1.6785108577 -0.2103238109 

c 2.0460594129 -1.2521944717 -0.3801761210 

c 2.3705111016 0.0893216663 -0.3718209382 

c 1.5197001319 2.4557073435 -0.2514894690 

c 0.4931876216 3.3381757890 -0 .0827623759 

c -0.8125820052 2.8660455104 0.1317642030 

c -1.0568719225 1.5227681644 0.1593240834 

c -0.0064679805 0.5936380213 -0 .0177017292 

c 1.3100764817 1.0560048559 -0.2094190026 

c -1.6698280683 -1.2769089962 0.1799013630 

c -2.4484710511 1.0462778508 0.3686119263 

H -1.6292561986 3.5488702926 0.2656579527 

H 0.5023513057 -2 .7286330004 -0.2159769515 

H 2.8090459642 -1.9943427421 -0.5023698772 

H 0.6786821099 4.3954831305 -0.1231013306 
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H 2.4985591246 2.8528974317 -0.4429622112 

N 3.6549490042 0.5319047787 -0.5454213400 

H 3.8443303750 1.454 7608002 -0.234 7824217 

N -6.1703655159 -1.4182275536 -0.5187698382 

c -4.8084 709850 -0.9487928752 -0.6943895358 

c -4.0287500243 -0.7959085467 0.6132451245 

H -6.1890681707 -2.3165983394 -0.0755749081 

H -6.6998123881 -0.7879283107 0.0524242232 

H -4.8410956121 0.0062437193 -1.2054662598 

H -4 .2886909644 -1.6462343143 -1.3405213356 

H -3.9633445889 -1.7447905237 1.1217432384 

H -4.5181895358 -0.0836981790 1.2589527244 

a In units of A. 


