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ABSTRACT 

PART I 

Studies of vibrational relaxation in excited electronic states of 

simple diatomic molecules trapped in solid rare -gas matrices at low 

temperatures are reported. The relaxation is investigated by 

monitoring the emission intensity from vibrational levels of the 

excited electronic state to vibrational levels of the ground electronic 

·state. The emission was in all cases excited by bombardment of the 

doped rare-gas solid with X-rays . 

The diatomics studied and the band systems seen are : N2 , 

Vegard-Kaplan and Second Positive systems ; · 0 2 , Herzberg system; 

OH and OD, A 2
2; + - ~ni system . . The latter has been investigated 

only in solid Ne, where both emission and absorption spectra were 

recorded; observed fine structure has been partly interpreted in 

terms of slightly perturbed rotational motion in the solid. For N:11 
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OH, and OD emission occurred from v' > 0, establishing a vibrational 

relaxation time in the excited electronic state of the order, of longer 

than, the electronic radiative lifetime. The relative emission intensity 

and decay times for different v' progressions in the Vegard-Kaplan 

system are found to depend on the rare -gas host and the N2 concen­

tration, but are independent of temperature in the range 1. 7°K to 30°K. 

PART II . 

Static crystal field effects on the absorption, fluorescence, and 

phosphorescence spectra of isotopically mixed benzene crystals were 

investigated. Evidence is presented which demonstrate that in the 

crystal the ground, lowest excited singlet, and lowest triplet states of 

the guest deviate from hexagonal symmetry. The deviation appears 

largest in the lowest triplet state and may be due to an intrinsic 

instability of the 3
BlU state . High resolution absorption and phospho-

\ 

rescence spectra are reported and analyzed in terms of site-splitting 

of degenerate vibrations and orientational effects. The guest phospho­

rescence lifetime for various benzene isotopes in C6D6 and sym­

C6H3D3 hosts is presented and discussed. 
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EXPERIMENTAL 
~ 

In Part II of this thesis, studies of the electronic emission 

and absorption spectrum of diatomic guests in rare-gas solids is re­

ported. The general technique of preparing such solids, which may 

contain chemically unstable diatomic radicals, is commonly termed 

matrix isolation. Since the experimental method is well known, l, 2 

only the specifics of this work will be discussed. All gases were 

obtained from commercial sources (Matheson or Linde) and used 

without further purification. 

The diatomic molecule, or its precursor, plus rare-gas mixtures 

were prepared in one of two different ways. In the first method, the 

mixture is prepared in a Pyrex glass vacuum line and stored in a glas$ 

flask fitted with a stopcock. The mixing manifold is shown schematically 

in Fig. la. Throughout Fig. 1, "X" denotes either a stopcock or a 

metal valve and "P" denotes a pressure gauge, which is either an 

ionization, thermocouple, or mechanical type. The volume of. bulb A was 

determined by weighing A empty and then filled with water at a known 

density. The volumes of the other .parts of the system were easily 

determined, assuming the perfect gas law and the volume of A, from 

the pressure changes occurring when a given amount of gas in A 

expanded throughout the system. A given mixture could be prepared 

by filling A and B with the diatomic and rare-gas respectively to the 

appropriate pressures. The gases were transferred to the storage 

flask C by immersing the side arm in liquid helium. The liquid helium 

was contained in a small, portable double dewar, 3 consisting of a 
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Fig. 1. Schematic of manifolds used to prepare ra:re-gas plus ~ 

diatomic mixtures. 
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commercial 1/2 gal bulb-type dewar inside a one gal straight-side 

dewar. The pressures in A and B were chosen to give less than one 

atmosphere in C. The actual volumes used were: A= 55. 82 em 
3

, 

3 3 
B = 1109 em , and C = 1036 em . The flask C is then attached to an 

auxiliary vacuum line by which the mixture can be admitted to the 

vacuum chamber of a liquid helium cooled cryostat. The gases were 

allowed to mix overnight in the storage flask before depositing. 

This auxiliary deposit system is shown in Fig. 1 b. The flask C 

is separated from the vacuum chamber surrounding the cold-finger 

·by a variable leak~ (Nupro, . Series M), labelled L1 in Fig. lb. This 

leak is continuously adjusted during the deposition to maintain a 

constant pressure of roughly 3 mm Hg between L1 and the fixed leak 

· · L 2 , which leads to the dewar vacuum chamber. These conditions 

correspond to a deposition rate of- 5 J.Lmole/sec, which is continued 

for roughly one hour. During this time .the pressure remaining in C 

is monitored by a gauge. 

Alternately, the mixture is prepared and deposited using the 

continuous flow system shown in Fig. 1 c. The solvent flow rate is 

determined by a Pyrex capillary leak L 3 • The solute flow rate, and 

therefore its concentration, is controlled by means of a variable leak 

L4 (Granville-Phillips Series 203). The. respective flow rates were 

checked using an electric clock and pressure gauges before each ex­

periment~ However, this was found to be an unnecessary precaution. 

The rate through L 3 changed only very slightly with time, apparently 

due to foreign material becoming trapped in the capillary from the 

high pressure gas cylinders and the variable leak could be reproducibly 
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set to any desired flow rate once it was calibrated. The gases mix in 

the glass manifold and them impinge on the liquid helium cooled cold­

finger through a fixed leak L2 • During deposition a steady state con-

dition exists and the pressure in the manifold equilibrates at roughly 5 mm Hg 
3 

for a manifold volume of 500 em . The mixture enters the dewar vacuum 

chamber at approximately the same rate as the rare-gas enters the 

manifold, which was · - 3 ,umole/sec for most of the experiments. 

Deposit times were of the order of one hour. Both methods worked 

equally well. The only modification suggested is replacement of the 

fixed leak L 3 . with a variable leak, so that the depositim rate could be 

varied in the continuous flow technique. 

The additional access to the vacuum manifold shown in Fig. 1c 

is mainly for solutes or precursors which are liquids at room temp­

erature. These are degassed and vacuum distilled into the cold trap, 

where they are maintained at the appropriate reduced temperature. 

The cold finger on which the gas mixture is deposited is 

either an optical window or a copper plate. The latter was used at 

T < 4. 2 °K when only emission spectra were required. Front surface 

irradiation was of course necessary. The optical window for T <4. 2°K 

was sapphire in direct contact with liquid helium.. The dewar and cold 

finger design has been described by R. P. Frosch. 4 Typical pressures 

in the cryostat are as follows. Without addition of liquid N2 to the 

outer jacket, the dewar pressure after overnight pumping with a diffusion 
-5 -6 

pump is- 6 x 10 mm Hg. The pressure quickly drops to < 1 x 10 

mm Hg when liquid N2 is added. A small amount of liquid N2 is also added to 

the inner helium dewar to remove air vapor. This N2 must be removed 

- . - ·- -~··- . - ------ . - ···-··-·-· -- ---- ----- -·-· ·----_ ... _ 

., 



5 

before liquid helium is transferred. After liquid helium ha$ been 

transferred, the pumping port to the cryostat is closed and the 
-6 

pressure in the dewar remains < 1 X 10 mm Hg. For deposition of 

all mixtures except those which have large amounts of Ne or H2 , . the 

pumping port to the cryostat remains closed during the actual depositing. 
-3 

The pressure equilibrates at ;S 1 x 10 mm Hg by the efficient 

cryopumping of the liquid helium. While depositing Ne or H2 , the 

dewar pumping port is left open. The internal pressure equilibrates 

at about the same value, but if the dewar is isolated the helium boil-off 

rate becomes excessive. Moreover, to deposit these two gases good 

thermal contact is required and sapphire is recommended if an optical 

window is required. 

For the temperature studies, a previously described 
5 

dewar, 

which has been slightly modified to be completely interchangeable with 

the system used for T ::::; 4. 2 °K , is employed. The cold finger in 

this case is a quartz window, mounted in a copper holder. A carbon 

resistance thermometer served as the temperature sensor. The 

actual temperature measured was that of the copper frame and not that of 

the optical window. One would, therefore, expect the sample temp­

erature to be somewhat greater than the temperatures reported. 

In all cases reported in Part II the diatomic emission spectrum 

was excited by irradiation with 50 kV X-rays f:J;"om a tungsten target at 

a tube current load of 45 rna. The experimental apparatus was de­

signed by Frosch, who has adequately described it. The optical 

set-up for spectral observations is shown in Fig. 2. Light sources 

used for the absorption experiments include General Electric tungsten 
i 

- --··-··-- -· . ··-· ----- ----- ·- - ------ --- -------- ---------- . -
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filament (A. = 4000-12000 A) and PEK high pressure xenon (A. = 2500-

. 4ooo.A). 

The spectra were recorded either photographically or photo­

electrically. A Jarrell-Ash 0. 75 m spectrograph with a 7500 grooves/in 

grating, blazed for 1JJ. in a Czerny-Turner optical mount was used for 

nearly all experiments. This instrument has an entrance aperture of f/6. 3 

and with the grating employed gave a first order plate factor of about 

. 40 .A/mm. Spectra was taken in the first four orders using Kodak 

103a-0, 103-F, I-N, and hypersensitized I-M and I-Z plates in the 

appropriate spectral regions. Slit widths varied, but in all cases the 

natural line widths reported were determined with much narrower 

slit widths. Some preliminary spectra were taken with a Bausch and 

Lomb medium quartz prism spectrograph and a McPherson Model 235 

0. 5 m scanning monochrometer. However, all line measurements 

reported were taken from plates exposed on the Jarrell-Ash spectro­

graph. The appropriate Corning glass and/or liquid Kasha filters were 

used to order sort . . For the most extensively studied Vegard-Kaplan 

bands of N2 , the combinations of filters, grating order, and photographic 

plate used for the different wavelength ranges are recorded in Table I. 

Plate measurements were done with a travelling microscope (CIT 

Chemistry No. 4067 ). Lines from an Fe-Ne hollow cathode 

lamp served as wavelength standards. Reproductions of spectra were 

made with either a Jarrell-Ash recording microphotometer or a Joyce-Loeb 

recording m·icrodensitometer. The former records the spectrum on a 

percent transmission scale, wheras the latter gives the optical density 
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Table I. Filter, grating order, and photographic plate combinations 

used for the Vegard-Kaplan bands of N2 • 

A.(A) Kodak a grating filters 
plate orders 

2300-3400 108a-O 3,4 NiS04 -CoS04 b 

3000-5000 103a-O 2,3 Corning 77 40 c 

4200-6500 103 -F 1, 2 Corning 3389 c 

6000-9000 I-N 1 Corning 3384 c 

aKodak photographic plate number . 

. bM. Kasha, J. Opt. Soc. Amer. 38, 929 (1947). 

c Corning glass number. 



on the plate directly. This should be borne in mind when comparing 

the spectra presented in later parts of this thesis. 

The Jarrell-Ash spectrograph could be easily converted to a 

spectrometer by replacing the plateholder racking assembly with a 

commercial (Jarrell-Ash) photoelectric attachment. This has been 

ultimately modified 6 to include bilateral adjustable exit slits and 

an easily adjustable photomultiplier tube holder. The latter has 

been designed so that with slight modifications the photomultiplier 

may be cooled. In addition a motor drive has been added. Decay 

time measurements were performed using this system. The X-rays 

could be shut off in about 0. 005 msec by a spring driven brass shutter 

and this, therefore, set a lower limit on the decays which could be 

monitored. Both RCA IP28 and EMI 62568 photomultiplier tubes 

were used. The photomultiplier signal was developed across a 1M Q 

load resistor, which was then fed to a simple cathode follower made 

from a Philbrick P65AU operational amplifier. A range of capcitances 

could be inserted into the circuit in parallel with the load resistor to 

reduce high frequency noise. The resulting RC time constants were 

- 0 and 0. 001 to 0.1 sec. 
-2 

These were always chose.ri 'S 10 times the 

lifetime of the decay being monitored. The follower signal was dis­

played on a Tektronix type 531 oscilloscope and photographed in the 

usual manner. If the decays were quite long, they were occasionally 

recorded on a Bristol strip chart recorder. The photomultiplier signal 

in this case is amplified by a Victoreen electrometer (Model VTE 1) 

before being fed to the recorder. 

-·-------····-·-·-- . ---------------· -­··------ ---------
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The experiments on isotopically mixed benzene crystals, 

reported in Part III of this thesis, were performed with additional 

experimental apparatus and techniques than that described above. 

However, this is described either in the particular section or 

elsewhere. 7 
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. s ic Evidence for Slow Vibrational and E.lectronic 

PositiveS stems of N in Solid Rare Gases.* · 

D. S. TINT I AND G. W. ROBINSON 

Gates and Crellin Laboratories of Chemistry,t California Institute 

of Technology, Pasadena, . California 91 f 09 

ABSTRACT 
~ 

The spectra emitted from N2 doped rare-gas solids at low 

temperatures, irradiated with X-rays, has been investigated in detail. 

. ·. The molecular N2 emission seen in the spectral range 2300 A to 5000A 

consists of the Vegard':"Kaplan (VK) A3~~- 2f~; and the second positive · · 
. 3 

C3~- B Ilg band systems. The latter is observed only in solid Ne. 

Forbi_dden transitions of N-atoms and sometimes impurity 0-atoms 

are also seen~ 

Both N2 band systems. show emission fro~ v' > 0, establishing a 

relatively slo::w vibrational relaxation rate in the A3~~ and 'C
3:f\r states 

in solid rare gases. For the VK system the relative intensity of 

emission from v' > 0 is strongly dependent on the rare-gas host and on 

the N2 concentration. No v' > 0 is seen for a Ne host, · whereas in Ar, 

Kr, and Xe the relative intensity of v' > 0 increases with decreasing N2 

concentrations and a maximum v' = 6 is found in these three hosts. 

•' 

* Supported in part by the Atomic Energy Commission . 
... 
1 Contributio.n No. · 

' • ' . . ~- .. . - . ::·: : .. ' .· · .... - .. . .. ' ·, . . '·· ..... . \ . ' ' 

. : . 
' .· . .. . · .. . . . ... . ' •;-· .. 

· . . ' 
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Decay times for isolated VK bands were measured and appeared 

· e},.-ponential ·within experimental error. From the measured lifetime in . . 

Ar, we conclude that th~ Vibrational relaxation time in the A3~~ state of . 

N2 in solid Ar is greater than 0. 4 sec. The effect of temperature on the 

relaxation was found to be small in the range 1. 7 °K to 3 0 °K. 

. . . . 

. ·.· . 

(. 

. ; . . 
. _- ·; 

··, · .. . 

.· . . . 
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I. illTRODUCTION 

Relaxation of electronically excited molecules in solids has 

received considerable attention in the last few years. Most of this 

work has assumed that vibrational relaxation of molecules in van der 

Waals solids occurs in a time. fast compared with the radiative and 

nonradiative processes that depopulate electronic levels. This 

· seems to be true for complex molecules as well as for sqme dia­

tomics . However, systems are known where the vibrational relaxa­

tion rate in a solid environment is roughly the same as that for radia-

tive transitions: ~ ," C
2 

A;IIg- X's~ (Swan bands);1 N
2 
As~~- X1·~;- ------· ----

(V.egard-Kaplan bands);2-7 0 2 A
3L~- ~L~ (Herzberg bands);7 and . 

S2 B3L~- X
3
L;. 8 The slow vibrational relaxation in these systems is 

evidenced by emission originating from higher vibrational levels in 

the upper electronic state. The highest v' observed is that for N2 , 

and, therefore, we have chosen this system for further study of vibra­

.. · tional relaxation processes in simple van der Waals solids. 

Diatomics and small polyatomics with few internal degrees of 

freedom and large vibrational spacings should lose vibrational energy 

rather slowly in the solid phase, since multiphonon processes are re­

quired. In particular, a homonuclear diatomic with large vibrational 

energy spacing might be expected to have the slowest rate of vibra-

tional relaxation~ A r~cent theoretical study by Sun and Rice9 al~o 

suggests that vibrational relaxation of diatomic molecules in the solid 

might be slow. We present here further evidence emphasizing that 

vibrational relaxation in the solid phase can indeed be very slow. 

. ·· ' ; . · . 
. ... -•· . - --~ .. -- ... : 
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Experiments are also described that demonstrate the occurrence of 

radiative transitions between two excited molecular electronic states 

in the solid state. 

I 
~ . . 

'• . 

. , , _ . 

. : . · .. . · 
j • I •' . : 

·. · \ 
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IT. EXPERIMENTAL 

The general technique of matrix isolation, which is used in this 

work to study diatomic guest molecules in rare-gas solids, has been 

described previously, 10 as has the use of X-irradiation to excite the 

emission spectrum of the guest molecule. 11 

. The rare gases employed were Linde MSC grade. High purity 

·diatomic gases were obtained from either Matheson or Linde. 14W5 N 

was obtained from the Isomet Corporation with a stated isotopic purity 

of 98%. All gases were used without further purification. The mixtures 

of the diatomic molecule and the rare-gas were prepared in one of two 

different ways. In the first method, the mixture ·was prepared in a glass 

vacuum line and stored in a glass flask fitted with a stopcock. The gases 

were then transferred to the storage flask by immersing a side arm in 

liquid helium and were allowed to mix in the flask overnight. ·The flask · 

was then attached to an auxiliary vacuum line from which the mixture 

could be slowly admitted to the vacuum chamber of the cryostat for 

· deposition. Alternately, the mixture could be admitted to the cryostat 

without prior mixing using a continuous flow system. The flow rate of 

the host gas was determined by a Pyrex capillary leak. The flow rate 

of the guest, and therefore its concentration, was controlled by means 

of a variable leak. For both techniques the deposit rate was roughly 

... 15 ± 10 mmole/hour. Deposit times were of the order of one hour. · 

For the studies at< 4. 2 oK, the cold-finger on which the mixed 

gases impinged is either a copper plate or a sapphire window' both of 

which are in direct contact with the liquid coolant .. Identical spectra are 

obtaineq in both cases. ·.:· . . · 

··: · 

•'·':- . : : . - . ' ' . .. .. . · ' ':' 

.. · ' . . .. · 
., 

' 
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For the variable temperature studies a previously described 

dewar, 12 which has been slightly modified, was used. In this case the 

· optical window on which the gas mixture was deposited is not in direct 

contact with the coolant. The temperature measured and reported is not 

that of the window, but rather is the temperature of the copper frame 

in which the window is clamped with indium washers. A calibrat ed 

carbon resistor served as the temperature sensor. The lowest me as­

ured temperature in this dewar was about 8 °K and could be continuously · 

adjusted up to about 30 °K. The· window temperature was probably sev­

eral degrees higher, especially at the ~ower temperatures. 

The diatomic emission spectrum was excited with 50 kV X-rays 

from a tungsten target at a tube current load of 45 rna. The X-ray 

excitation could be shut off by means of a brass shutter in about 0. 005 

sec to facilitate lifetime measurements. The lifetimes were obtained 

mainly from photographs of oscilloscope traces. RCA IP28 and EMI 

63568 photomultiplier tubes were used. The emission spectra were 

photographed on Kodak 0- or F-plates with a 0. 75 meter f/6. 3 Jarrell-

.. Ash spectrograph, which also served as a monochromator to isolate 

individual vibronic transitions for lifetime determinations. The spect ra 

were taken in the second and third orders of a grating with a first-order 

. plate factor of about 40A/mm. Exposure times varied from approximately 

10 min to a few hours. Order-sorting, where necessary, was accomp-
. . . 

. plished by means of the appropriate combination of solution and glass 

filters. 

. -.. . . . . 
. ' . . . :,:. 

\ 
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ill. RESULTS 
~ 

The emission of light from solid N2 and from dilute solid solutions 

of N2 has been investigated previously by numerous authors, employing 

varying excitation techniques. These include electron bombardment, 2 ' 3' 6' 7 

application of ac and de discharges, 5 and the condensation at low tem­

peratures of the products from a gas discharge. 4 Most of this work, 

since the pioneering work ~f Vegard2 some 40 years ago, was carried 

out at the National Bureau of standards where Broida and co-workers4-7 

extensively studied free-radial stabilization at low temperatures. The 

most common molecular emission seen. in all these studies is the 

Vegard-Kaplan band system of N2 A
3:E~- r:E; . . 

The molecular N2 emission observed in the spectral range 23 00 A 
to 5000 A when a deposited mixture of N2 plus rare-gas is irradiated 

· with X-rays consists of the Vegard-Kaplan (VK) and the second positive 

· cf~- B3IIg band systems. A discussion of the sec~md positive group, 
' ' 

which is observed only in solid Ne, will be reserved until Sec. III D. 

Emission from N-atoms 2p3 2
D- 2p

3
. 

4
S and sometimes from impurity 

0-atoms 2p4 1
S- 2p4 1

D is also observ~d. These two transitions are 

designated the ex and {3 groups, respectively, ·in the publications of 

Broida and co-workers., The Herzberg bands of 0 2 . A3 :E+ - ~:E- are 
'' u g ' 

. . also sometimes weakly seen as an impurity. 

A. Atomic Emissions 

The atomic emissions are generally less sharp than the molecular 

bands and appear as doublets with the blue component sharper and more 

intense. The a-group is typically sharper and more intense than the 

· ...... ·. . ·:· . 

· \ . ... 
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· J3 -group. Approximate frequencies for the most intense feature of the 

atomic emissions a and J3 are shown in Table I. 

The vibronic spectrum--The VK bands are sharpest in solid Ne, 

becoming progressively broader and degraded to the red in the heavier 

rare-gases or with increasing N2 concentration. The narrowest observed 

bandwidths at half intensity in the four rare gases are approximat ely: . 

0 -1 - 1 A -1 -1 :S 1 em in Ne, 20 em in r, 40 em in Kr and 40 em in Xe. 
. . 

Besides the red shading, additional fine structure is often observed. 

· For example, in solid Ar the VK bands are all at least double-headed 

· under the usual experimental conditions. This is discussed in more 

·.· . detail below. 

Tables II to V summarize the observed VK band frequencies, 

assignments, and the corresponding matrix shifts for solid Ne, Ar, 

. Kr and Xe, respectively. The gas phase transition energies were com­

puted from the molecular constants given by Benesch et al. 13 .The 

tabulated frequencies in the Ar host are for the highest energy band 

component, which is generally the most intense. In Kr and Xe solids 

· the broader lines cause the frequency measurements to be less p r ecise 

and also results in considerable overlap of different bands. The over­

lap makes some of the vibrational assignments in Kr and Xe somewhat · 

uncertain. 

The vibrational constants of the A and X states in the four r are­

· ' :·. gases were calculated from a least_;squares fit of the e:A.'J)erimental 

· line frequencies to the equation14 
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v == v + (w' -w' x' )v' 00 e e e w'x'v' 2 
- (w'-w"x" )v" + w"x"v"2 

ee e ee ee (1) 

These constants are shown in Table VI. The difference between the 

band frequencies calculated from these constants using Eq. (1) and the 

observed frequencies is included in Tables II to V. The average stan­

dard error in the four rare-gases between observed and calculated 

frequencies is 2. 2 em - 1
, which is about the experimental measure­

ment error. A progressive red shift in .v 00 is found from gas to solid 

and from N e to Xe. The solid perturbations on we and w x , as shown ·. e e 
in Table_ VI, are small. The general decrease of we and increase of 

w x in the X 1~; state from Ne to Xe presumably results from an 
e e b . 

·overall increasing attractive interaction in the heavier rare-gases. 
·-·--- ---·- - --

The vibrational assignments in Ar were confirmed using 14d"5N 

of 98% isotopic purity. The band frequencies and assignments are tabu­

lated in Table VII for 0. 25% 14~5N in solid Ar at8 °K~ The ratios of 

the reduced masses p 2 
7 • deduced from the vibrational constants. of the 

N2 isotopes i~ solid Ar calculated by Eq. (1 ), are in excellent agreement 

with t.he theoretical value of 0. 9668. The comparison is · shown in .. 
Table . vm, which also gives the vibrational constants of 

14d"5
N in the 

A and X states . . Table VID also gives the vibrational constants deter­

mined for 
14~5N in natural abundance ("" 0. 7%) in a 

14
N2 sample in 

· solid Ne. The observed band frequencies for 
14~5N in Ne are ;r;resented . 

in Table IX. ·These measurements are less precise than those of the 

major isotope present due to· the overall weakness of the bands. How­

ever, within the experimental error the inferred values for p 2 are again 

in agreement with the theoretical value • 

. \ . ; 
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Intensities--Rough estimates of the relative intensities within each 

v' progression are given only in the case of Ar in Table III. No large 

changes from this intensity distribution were noticed for the other 

· · ·· : · .. · · . matrices. The overall intensity distribution for 14N2 is in good qualita­

tive agreement with Rydberg-Klein-Rees Franck-Condon factors15 for 

. I. . 

.the VK system, giving further support to the Vibrational assignments. 

· .. Most of the v', v" transitions labeled "not observed" in Tables II 
-2 . 

through V have Franck-Condon factors~ 10 . In Ar (Table III) some of 

these very weak bands were ob.serv~d on heavily overexposed plates. 

The intensity distribution in the 'different v" progressions of the 

VK system depends strongly on the host rare-gas and on t)le N2 concen­

tration. Several bands of the VK system as observed in solid Ar at 

4. 2 oK are shown in Fig. 1 for different N2 concentrations. At high 

concentrations (> 1 %) of N2 in Ar most of the emitted intensity arises 

from v' = 0, with higher v' very weak. However, as the N2 concentration · 

is decreased, more of the emitted intensity originates from v' > 0 . 

. Levels as high as v' = 6 have been identified for ~ 0. 3% N2 in Ar. - For · 

concentrations less than about 0.1% N2 , no changes in the relative 

intensity distribution occur and no higher v' than 6 is observed. A 

series of plates for 0. 3% N2 in Ar at 1. 7 oK were purposely overexposed · 

. to search for weak emission from v' > 6. Although lines due to 11~5N in 

natural abundance ("' 0. 7%) were seen to the high energy side of the 

· stronger VK bands, no emission from v' > 6 was found. 

Very simi'lar results are obtained in Kr and Xe solids except that 
. . 

, . m~re VK emissio~ occurs from v' > 0 for a fixed N2 concentration in 

these heavier rare-gases . . · Figure 2 compares the VK emission in Ne, 

."'· . . 
\. 
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Ar, Kr and Xe for 1% N2 • Concentration studies again indicate that 

v' = 6, as shown for the Kr studies in Fig. 3. The absence of max . . 
emission from v > 6 of the A state is not, of course, due to predisso-

ciation since higher vibrational levels of A are known from the first 

positive system of N2 • 
16 Furthermore, the lowest dissociation limit of 

N2 has been conclusively determined to be 9. 78 eV, 17 some 2. 5 e'( above 

v = 6 of the A state. A possible explanation for this breaking off is pre­

sented in Sec.IV in terms of the excitation mechanism. 

For the 0. 1-1. 3% range of N2 concentrations studied in a Ne host, 
. 14 

no bands of N2 with v' > 0 were photog:r:aphed on plates where the v' = 0 

progression of 
14~5N is seen in natural abundande. ·We estimate, there­

fore, that the steady state population of v = 0 in the A state must exceed 

that of v > 0 by roughly two or more orders of magnitude in the Ne host. 

In the recent investigations by Broida and co-workers, only bands 

with v' = 0, 1, and 2 were observed, and these decreased in intensity 

with increasing v'. However, the concentration of N2 was approximately 

3% or greater and the resolution employed was less than ours. At these 

high N2 concentrations the VK bands are typically broad and, therefore, 

bands with v' ~ 3 overlap bands originating from v' ~ 2. Vegard originally 

. observed bands with higher v' but in agreement with our results only 

v' ~ 6 were seen. Vegard also assigned a few bands for which v' > 0 in 

solidified Ne, but they were very weak and this could explain our failure 

to photograph them. 

The conclusive observation of emission from v' > 0 in Ar, Kr, and 

Xe establishes a vibrational relaxation time in the A 3 :E~ state of the 

order of, or longer than, the electronic lifetfme of the spin-forbidden 
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VK bands in these solid hosts. This will be discussed more fully in 

Sec·. IV. 

Temperature studies--The VK system in solid Ar and Kr hosts 

was photographed over a temperature range 1. 8 to 30 °K. In Ne the 

range was limited to the two temperatures 1. 8 and 4. 2 °K. Figure 4 

shows microphotometer tracings of part of the V'"l.{ system for 0. 2% N2 

in Ar at various temperatures. The upper tracing is the spectrum of 

the unannealed sample at the deposition temperature, approximately 

8 °K. The lower spectra show emission from this same deposit after 

· .. annealing at around 28 °K for roughly 30 min. Fu;ther annealing at 28 °K 

did not change the spectrum in any way, implying that "annealingn is 

complete in less than 30 min. 

The spectrum from a · gas mixture of nearly the same composition 

deposited at 4. 2 °K in a different dewar system and photographed at 

4. 2 °K and 1. 8 oK was the same. as t]1.e una.nnealed spe.ctrum .in Fig. 4 

except for an overall line sharpening and the absence of the continuum. 

The annealed spectra in Fig. 4 also do not show the broad. emission 

present in the unannealed sample. Although various broad continua have 

been seen at various times in all rare-gas solvents·, they are not always 

present. The source of these continua and the reason for their disap-

. pearance with annealing are unknown. 

The relative intensity of emission from higher v' is slightly 

reduced after the first annealing. However, for late r temperature 

cycling between 4 °K and 3 0 °K, the only spectral effects observed are 

a general line broadening and· an apparent reduction in the r elative 

intensity of the red components at higher temperatures (£!_. Fig. 4). 



24 

These latter two effects are completely reversible. Since the relative 

v' intensity does not vary with temperature after the initial annealing, 

· the Vibrational relaxation rate in the A state is not a strong function of 

temperature below 30°K. 

Completely analogous results, although not as complete, are 

obtained in Ne and Kr hosts. Identical spectra were observed at 1. 7 and 

4. 2 oK in solid Ne. Sharper lines are obtained if the Ne sample is pre­

pared at 4. 2 o rather than at 1. 7 °K. When 0. 2% N2 in Kr was deposited 

at 8 °K, additional spectral features were observed that were absent in 
.... 

the spectra taken at 4. 2 °K. These consisted of a broad emission band 

approximately 220 cm-
1 

to low energy of each VK band as shown in 

Fig. 5_ for some representative bands at the two temperatures 9 and 

32 °K. The sample was annealed at,....., 30°K before these spectra were 

taken. In Kr some line sharpening of the higher energy component 

occurs with deposition at ""' 1 0 rather than 4. 2 °K. Annealing at ,....., 3 0 °K 

does not lead to any further reduction in the linewidth. The intensity of 

the low energy component, contrary to the results in solid Ar, increases 

. with increasing temperature, which may explain why it was not found at 

4. 2 °K. Neglecting the broad components, the relative v' intensity 

remains approximately constant, independent of temperature, below 30 °K. 

Fine structure--The VK bands in solidified Ar, as seen from the 

spectra presented earlier, are all at least doublets. This fine structure, 

which has been noted by previous workers, 2 -7 is not seen in Kr or Xe 

.hosts. However, this may be due to the increased linewidth in the latter 

two hosts. The fine structure ·in Ar appears to the low frequency side of 

. the main line reported in Table II. The energy separation of the red 
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components from the main line is (40± 4) cm-1 and (61 ± 2) cm-1 • The 
- · ·· - -- -· ---

-1 . 
61 em component 1s seen only on the v' = 0 progression. Both 

features are seen for both 
1~2 and 

1~15N in Ar. For completeness 

we note that on one very heavily exposed plate an additional feature 

was seen in the v' = 0 progression ...... 306 em -l to the red of the -main 

line. This has a sharp blue edge but is very strongly degraded to the 

red; which could explain why it is not usually photographed. 

· The relative intensity of the various components varies some-

what with experimental conditions. However, the only changes which 

appear systematic are as follows. Under all conditions investigated 

in Ar the relative intensity of the red components decreases with 
-1 

increasing v' . At 4. 2 °K the 60 em removed feature is usually 

. slightly more intense and the 40 em -l feature less intense than the 

main v' = 0 line. For progressions with v' > 0 the single additional 

component 40 em -l to the red is always weaker than the main line. 
-.. 

These relative intensities are generally independent of N2 concentra-
-1 -

tion as seen from Fig. 1. The 40 and 60 em red components in Ar 

decrease in intensity reversibly with increasing temperature, while 

the much further removed red component in Kr increases in intensity 

reversibly with increasing temperature ~- Figs. 4 and 5). 

In N e fine structure is seen ma~nly to high energy of the strong 

. main line reported in Table II, although weaker structure and shading 

appears to low energy. For example, the 0, 10 VK band for low con­

centrations of N2 in Ne has additional features at +90(vw), +60(w), 

+43(w), +28(m), -15(w), -34(vw), and -54(vvw) cni-1 removed from the 

... .... 
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main line. Intensity estimates relative to the very strong main line 

are given in parenthesis. As in Ar this fine structure is somewhat 

variable. At high N2 concentrations (> 1%) only the main line and 
"' 

structureless red shading is seen. 

The origin of this varied multiplet structure remains un...l{nown. 

The theoretical frequency spectrum18 for both solid Ne and Ar have · 

two maxima at about 40 and 60 cm-1 which is withi~ the range of the 

?bserved splittings. Howev~r, it is clear that phonon emission alone 

is insufficient to explain all the observations . Other possible explana­

tions include multiple trapping sites and restricted translational motion. 

C. Deca Times for Vegard-Ka lan Bands and the 0:!-Grou 

Atomic emissions--The f3 -group, reportedly due to the 
1
S - 1D 

· . transition of the 0-atom, 8 decayed faster than the "' 5 msec limit 

imposed by the X-ray shutter. The forbidden atomic N emission 
2
D -

4
S, on the other hand, is very l~ng lived and deviates considerably 

from a first-order decay law at short time, as is shown in Fig. 6 for 

Ne and Arhosts. The decay of the 0:!-group was partially studied only 

for these two rare-gas hosts and only at 4. 2 °K. The atomic decay in 

Kr was measured only once and decayed non- exponentially, very simi­

lar to the decay in Ar, but in a shorter time. The initial half-life in 

Kr is "'5 sec, increasing to "'7 sec at the end of the first decade decay. 

In Ar the corresponding half-lives· are "'7. 5 and"' 10 sec, respectively . 

The atomic decays were measured with a relatively large monochrom-

. ator band pass (40 cm-
1
), so that the decay does not represent an iso­

lated component of the 0:!-group. The latter is not a single line, but 
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consists of at least two components which could explain a non- exponential 

decay. Alternately, the non- exponential behavior could arise from 

recombination reactions involving 2D N-atoms, e. g., 2D + 2D and 2 D + 4 S . . · 

If recombination reactions were large contributors to the decay kinetics, 

highly non-exponential decays would be predicted. 

The atomic decays do not appear to follow the same kinetics in Ne 

and Ar. For example, in Ne the initial decay seems to follow second­

order kinetics since a plot of I-1 versus time is linear during the first 

"' 15 0 sec of the decay. However, in Ar such a plot is not linear. It 

seems reasonable to ascribe the exponential decay at long times in Ne 

to the 
2
D -

4
S radiative transition of the N-atom. This then has a lifetime 

· of (340± 10) sec in solid Ne, compared to 41 sec 19 in solid nitrogen and 

"'12 hours in the free atom. 20 If the exponential tail indicated in Fig. 6 

for the a-group .in solid Ar persists to longer times, then the 2
D-

4 S 

radiative lifetime is roughly.18 sec in Ar. The short time non-exponential 

behavior in Ne, Ar, and Kr is assigned to atom recombination. In .Ne the 

recombination is apparently mainly 
2
D + 2D which gives second~order 

kinetics at short times for the 2D decay. In Ar and Kr presumably other 

recombinations are also occurring to a substantial degree, y~e.lding a 

complicated decay. The atomic decays were not investigated as a func­

tion of X- irradiation time, which might help to elucidate the kinetics. 

We note that in all three rare-gases the atomic decay times are much 

longer than the initial VK decays . . 

Vegard-Kaplan system--The decay times for the N2 VK bands 

were measured in the rare -gas solvents for different N2 concentrations 

and sample temperatures. The data obtained for the VK bands are 
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summarized in Table X. The lifetime in Xe is shorter than the X-ray 

. excitation shut-off time and, therefore, only an upper limit could be 

set. Considerable difficulty was encountered in obtaining the VK decays 

in a Kr host because of 'lower signal-to-noise and since the emission 

intensity had already partly decayed from its mean steady state value 

before the exciting X-rays were completely off. Therefore, lifetimes 
. . 

were determined only for "'1% N2 in F...r which roughly corresponds to 

the lowest concentration for which the decay could be monitored with 

the available s ens iti vity. 

The lifetimes reported are averages for different isolated bands · 

with the same v'. Care was taken to use only well-resolved l:ands in 

clean spectral regions. Therefore, the number of different bands 

measured, especially at low concentrations, was limited. The decay 

for each band used was measured several times and at least two bands 

were used for each v'. The .decay constants for a given band agreed to 

better than 10% with each other and with the constants for other bands 

of the same v' progression for any particular sample. However, the 

reproduCibility between different experiments at the same N2 concen­

tration and temperature is around 10%. · 

· · The- monochrometer band pass -was nearly always sufficiently 

large that the measured decay r~presents some mean of the high and 

low energy components. The wavelength setting of the monochrometer 

was slightly adjusted to maximize the photomultiplier current,. so that 

the wavelength at which the intensity decay was monitored for the same 

band in different experiments· is not necessarily th~ same. · 

. 
. ·-··· .. . ·-···· . -· --· -··· .... ------ :-· . -----. ------ -~-----.. :··-- ·---~--:-- --- -.--~--- ----;- ·· ·--·- ·-·· -·····-.-· · · · - _-:-·:·· -~ --- - . .. -· -. : 
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Individual decay times were determined graphically from the slope 

of a logarithm of intensity versus time plot, examples of which are 

shown in Fig. 7. As nearly as can be determined, the initial decay 

of the VK bands appears exponential. However, with the experimental 

signal-to-noise ratio a definitive conclusion on the decay law can not 

be reached, since the intensity of an isolated VK band is usually too 

weak to follow its decay over much more than one decade change in 

intensity. Nevertheless, it is important to note that for short times 

after the excitation shut-off, where the signal-to-noise is maximum, no . 

certain deviation from an exponential decay law is apparent for any 

of the isolated bands studied. For this reason the initial points of 

the log I versus time plot were weighted slightly more in the graphical 

determination of the decay time. Thus, the reported values represent 

mainly the initial decay with an assumed first -order rate law and 

accordingly are referred to as "lifetimes". More correctly these 

· . values are the times for the emission intensity to decay to 1/ e of its 

steady state value. When "half-life" is used, we mean the time for the 

intensity" to decay to 1/2 its initialvalue. 

In solid Ne where only v' = 0 is seen for the VK bands, it was 

possible by using a larger slit width and electrical high.:.frequency 

. filtering to increase the signal-to.-noise and, thereby, follow the · 

·. decay for longer times. A typical decay is shown in Fig. 8 for 

0. 1% N
2 

. in solid Ne at 4. 2°K. The initial decay is exponential, 

. but a very long lived nonexponential tail is present. This tail, 

however, · does not contribute-appreciably to the initial decay which 

. ·- ... -- --- ·- . --·- ···--· --·· . - ~-- - ·-- - ·-- . ·-----· ----------------- --- -.--­--- ------ ---
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we take to be the lifetime of the A state in the Ne host. The tail most 

likely arises from ato~ recombination in the solid which repopulates 

the A state after the X-rays are extinguished. Presumably, atom 

recombination also occurs in the other rare-gas hosts as suggested by 

the non-exponential decay of the a - group. However, no' evidence of this 

is present in the initial VK decays, so that the pumping from recombina-

. tion occurs much more slowly than the rate for disappearance of the A 

state. Moreover, the results for Ne imply that atom recombination is 

not the dominant mechanism for exciting the A state. 

If the lifetimes are rigorously exponential, then no vibrational 

. cascading is occurring during the lifetime of the A state, even in the 

.. . hosts where v' > 0 are seen in the VK system. · If the decays were ob-

viously nonexponential at short times, or if greater sensitivity were 

available, it would be possible with certain assumptions t o analyze 

. the decay curve and obtain inf?rmation-concerning the relaxation 

· kinetics. It is, therefore, of interest to determine the decay law 

much more accurately than was possible in this work. However, as 

will be discussed in Sec. IV, the _limited experimental results do 

permit a rough quantitative limit to be set on the vibrational relaxation 
3 + 

rate in the A :L;u state of N2 • 

· - ···----· ·---- . 3 

The lifetime of the N2 A 2.:;: state in solid Ne should be com-

pared with the gas phase radiative lifetime, · since previous (limited) 

experience in this laboratory has indicated that the solid Ne perturba­

tion on molecular lifetimes iD not usually very severe. Moreover, 

since v' > 0 are not seen in the VK system for a Ne host, the decays 

are not affected by slow vibrational cascading. · 
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However, · considerable uncertainty exists as to the fr ee molecule 

radiative lifetime. A direct measurement of the gas phase lifetime is 

most desirable, but because of the small radiative transition probability 

such measurements are very difficult and easily distorte d by r adiation­

less quenching of the long-lived A state. _ A direct measuremer.t by 
. 2n 

Zipf 21 resulted in T A ~ 0. 9 sec. A more recent determination L. 

gave'. T ;:.=0 ~ 10 sec. Both of these measurements involve signifi­

cant co;rections for diffusion and quenching of A 
3
L+ molecules at . u 

the walls of the discharge vessel. Alternately T A can be indirectly 

determined from the ratio of the radiative lifetimes of the A and B 

states, which has been determined in an elegant experiment by 
23 . 

Carleton and Oldenberg. From the absorption strength of the 

1. 0 B -A transition and the absolute intensity emitted in the VK 

A- X 0,6 band simultaneously measured in a discharge through 
. v=O v=l (1 0 0 ·. 4) 106 

purif~ed N2 , they obtain T A / r B · . = · ± _ : __ X _ sec. 

. Although T B was for a long time very uncertain, recent direct deter-

minations ~24 appear to pe converging to T ~=1 = (7. 8 ± 1. 0) x 1 0-6 sec, 

· · . which yields T~=O = (12. 5 ± 4. 9) sec if the Carleton and Oldenberg 

. . ratio is accepted. · Thus, even'· the recent determinations of T A have a 

range 0. 9 to 17 ·sec. 

The VK lifetime of 3. 3 sec in solid Ne lies within the range of 

. the gas phase values and may be very close to the actual radiative 

lifetime. This measured lifetime reflects of course both the radiative 

and nonradiative mechanisms for depopulating the A stat~. For highly 

forbidden transitions, it .is well known that measured . lifetimes in 

· ·. ·. 
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solids can be considerably shortened by nonradiative mechanisms. 

The nonradiative rate for internal electronic relaxation from v =0 in 

the A state to high v in the ground state should be very small since the 

density of vibrational levels of X in the vicinity of A is very coarse. 25 

· However, it should be emphasized that thepresence of N-atoms, 
' 

.. besides giving a long lived tail to the decay from recombination reactions, 

might also in some fashion help quench excited N2 molecules. 

Large changes in the decay times for both the atomic and 

molecular emissions occur witn chal).ging the solid .environment since 

the heavier rare-gas solids shorten the. lifetime of a spin-forbidden 

. transition. A mechanism whereby the transition acquires additional 

. probability has been discussed by Robinson and Frosch1 O, 25 and in 

detail by Robinson. 26 In brief, the states of the host heavy-atoms, 

which have large spin-orbit coupling, are mixed with the guest states 

so that the guest states of different multiplicities are more strongly 

·coupled in the heavy-atom environment relative to the free molecule. 
------· - ·-· -- ·-· 

A scheme for estimating the additional oscillator strength f' due to 

heavy atom perturbations has been given py Robinson, who concludes 

from a second-order ·perturbation treatment that for heavy rare-gas 

solvents, 

. f' ':::: 

2 2 2 
· (2. 5) C A v m 

Fo (Fo - v ) 4 m 

f 
- P 

(2) 

Here C is a semiempirical interaction matrix element, A is the spin­

orbit coupling constant in the rare-gas, F 0 is the center-of-gravity of 
---~ ------ --------------:---------------------·-· ·-·-. 
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the lowest P 1 states of the rare-gas, v m is the appropriate guest 

transition energy, and f is the total perturber oscillator strength for . p . 
1)3 1 2 

the P 1 - So transition. The factor (2. 5) roughly accounts for 

contributions to the perturbed oscillator strength from otter than the 

lowest resonance transitions. Robinson suggests that the value of the 
-1 

interaction matrix element is 10-25 em . Although this range is based 

on experimental interaction energies in organic crystals, we assume 

. the magnitude to be correct for nitrogen in solid rare-gases. The 

values of the host parameters used in Eq. (2), which were also taken 

from Robinson, and the calculated p€1·turbed oscillator strength and 

lifetime for the VK system in the three hosts, Ar, Kr, and Xe, 

respectively, are given in Table XI. The VK lifetimes refer to the 

zeroth vibrational level of the A state. The rare-gas oscillator 

strength given in Table XI is 12 times the gas value since each guest 

molecule is perturbed by roughly 12 host heavy atoms . . 

The observed dipole strength should equal the sum of the 

free molecule plus the heavy-atom induced dipole strengths. If 

the longest lifetime measured in Ne, 3. 3 s~c, is taken as the unper­

turbed radiative lifetime of the VK transition, then with the calculated 

perturbed lifetimes shown in Table XI the radiative lifetimes for the 

. v = 0 level of the A state in the heavy-atom hosts become: 0. 5 sec in 

Ar, 0. 024 sec in Kr, and 0. 008 sec in Xe. These lifetimes are only in 

fair agreement with the experimental lifetimes. However, if the inter ­

action constant C is increased somewhat, then the calculated perturbed 

lifetimes can be made to agree with the observed lifetimes, as shown 

in Table XI. Since there is no reason to expect the interaction constant 

,·, . 
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to be either 25 cm-1 or constant for all the rare-gases, we take this 

near agreement between calculated and experimental lifetimes as 

support for both the theory of Robinson and the correctness of the 

experimental lifetimes. 

In the free N2 molecule, the A-+ X transition probability i s ex­

pected to depend on the vibrational level of A. This arises mainly fr om 

a large variation of the electronic transition moment with internuclear 

distance, 27 together with a smaller frequency factor. The overall effect . 

acts to increase the transition probability, i.e., decrease the radiative 

lifetime,£ or VK emission from vT>O. The magnitude change in the VK 

radiative lifetime relative to vr= 0 can be estimated as ;::;. 15% for low vt. 

This small change in the lifetime results from the large Franck-Condon 

enveiope for the VK system, which causes th.e varying transition moment.? 

to be averaged over many bands. Such effects are expected to show up 

where the transition is highly forbidden and become of diminished impor­

tance as the transition gains allowedness. Thus, in a heavy-atom envi­

ronment these effects are not expected to appear for the VK bands. The 

concentration dependence of the VK lifetimes, as shown in Table X, 

Sl:lggests that the lifetime shortening for high v' is due to some form of 

concentration quenching. This is supported by the concentration depend­

ence of the steady state intensities discussed earlier and shown in 

Figs. 1 and 3. 

. . . '• .. 
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D. Second Positive System of N2 in Solid Neon 

The second positive (2+) band system of N2 , C
3
Tiu. --. B

3
TI 

g 
is well known in the gas phase, 

16 
but has not previousl; been 

observed in condense d phases. However, when a solid mixture of 

Ne plus low concentrations of N2 is irradiated with X-rays the (2+) 

system of N2 is readily emitted. The observed bands belonging to 

the sequences Av == -1, -2 , and -3 are shown in Fig. 9a. The overall 
' I 

·.· VK intensity from the 1% N2 in Ne sample corresponding to Fig. 9a 

is roughly two orders of magnitude greater than the (2+) intensity. 

Therefore, the D.v ::-: 0 and +1 sequences are strongly overlapped by 

the structure associated with the heavily overexposed 0, 8 and 0~ 9 VK 

bands. These latter two sequences are shown in Fig. 9b which cor..: 

responds to 0. 2% N2 in Ne where the (2+) intensity is increased relative 

to the VK. This concentration dependence can also be seen by compar-

. ing the emission spectrum from "''1% N2 in Ne shown earlier in Fig. 2 

with the spectra displayed in Fig. 9. 

The transition energies, vibrational assignments and matrix 

shifts are given in Table XII. The vibrational constants in the C and 

B states, calculated from Eq. ( 1 ), are compared with the gas phase 

values in Table XII. Although the vibrational numbering was not 

checked by isotopic substitution, the agreement of the calculat ed 

constants and obser ved band positions with the gas phase values 

leaves little doubt as to the correctness of the assignment. The solid 

perturbations on we and w exe are small for both the Band the C 

states. The transition shows a relatively uncommon blue shift in the 

. . .. 



3o 
-l 

solid, but it is quite small, amounting to only 80 em · for the 0, 0 band 

and is not unreasonable for a transition between two excited states. 

Furthermore, as in the VK system, the intensity distribution in the 

·three observed v" progressions of the (2+) system agrees with the 

relative intensities predicted from Franck-Condon factors. 28 

The potential curve for the C state is rather complicated in 

the gas phase. Presumably, · at least four bound vibrational levels 

exist,. each of which shows a breaking off on' account of predissociation. 

. 29' 30 
No emission is seen from v' > 4. Carroll has suggested that 

part of the observed irregularities in the C' state (upper state of the 

· : Goldstein-Kaplanbands)is due to interaction with the C state and con­

cludes that the potential curves for the two states are possibly joined 
3 . . 

together to form an overall IT curve with a double minimum separated . u 
4 2 . 

from the S + D dissociation limit by a potential hump. Unfortunately, 
3 

no emission from v' > 2 in the C II s tate nor any evidence of the u . 

Goldstein-Kaplan system was seen in the solid spectrum, so that we 

are unable to investigate possible solid perturbations on the ~nter-

. esting ·features outlined above. 

The vibrational relaxation rate in the C state must again be 
. - 9 .31 J 

slow compared to the gas phase radiative lifetime of 40 X 10 sec, 

since emission from v' = 0, 1, and 2 is seen. However, the intensity 

of v' > 0 is less than ,that of v' = 0 for all N2 concentrations 

studied and does not appear to change with either guest concentration 

or t em p erature between 4. 2 and 1. 7o K. The absence of emission from 

v'> 2 in solid Ne might be due to an absence of bound vibrational levels 

-------.- - -·- - - -- ·-- ---·------·--------~-·--·-- -- ~--··--·------- --
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in the C state for v > 2 in the solid. However, this explanation for 

the breaking off of emission appears unlikely . . As . Schnepp and 

Dressler32 have shown for the dissociation of the B 3
:Z- state of 0 · u 2 

in solid Ar and N2 hosts, the repulsive interactions in the solid 

often increase the dissociation limit or at least introduce a 

potential maximum. Moreover, larger changes in the vibrational 

constants of the C state than are observed would be expected if the 

change in the potential curve in the solid were sufficient to reduce 

the number of bound levels. We, thus, conclude that either v > 2 

in the C state is not populated or, if populated, relaxes within the 

radiative lifetime to lower vibrational levels. 

The observation of the (2+) system of N2 in a solid environ­

ment is at first sight · surprising since molecular emission in 

solids normally comes only from the lowest excited state of a given 

spin multiplet. For polyatomic molecules radiationless processes 

are nearly always sufficiently rapid to depopulate the higher electronic 

states, even though they may have allowed radiative transitions to 

lower states. For diatomics , however, electronic relaxation might 

be expected to be somewhat slower since the molecule has fewer and 

more coarsely spaced internal modes. Following the theoretical 

model of Robinson and Frosch, 
25 

this implies the density of available 

final states in the relaxation process will be lower and thus the overall 

relaxation rate reduced. Nevertheless, only a few band systems 

originating from. higher electronic states have been reported and none 

are known to terminate in other than the ground state. Presumably 

this is partly due to the difficulty of excit~ng these high energy states 
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in a solid environment. We note that the (2+) system is not observed 

in Ar, Kr, or Xe matrices, where the excited states of the rare-gas 

solid 33 lie near or below the ~ 1 i eV gas phase energy of the C 

state. 16 This suggests that fast relaxation takes place in the heavier 

rare-gases at least down to the lowest host states or band so that the 

C state is excited only in solid Ne. It is most likely a general :~.~ule 

for solids that molecular radiative transitions can not compete with · 

nonradiative transitions when the upper state is imbedded in or 

lies above the host band. The guest and host states will be strongly 

mixed under these conditions and both inter- and intramolecular 

relaxation processes will proceed faster than radiation of light. 

One experimental attempt was made to observe the first 

positive system in absorption (B 
3
I1 - A 

3
L + ). Since the lifetime 

' g u 

of the A (v = 0) state is quite long in solid Ne and the VK system 

rather intense, it was felt that perhaps the 0, 0 of the allowed B- A 

transition could be observed, while irradiating with X-rays. However, 

no absorption was seen for ""1% N2 in Ne in the spectral region 9000 

to 12,000 A, ·which brackets the gas phase ;0, 0 of the first positive . 

systein16 at 10,510 A. , 
. ... . . ' . 

. •'· . 
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N. DISCUSSION 
~ 

A. Excitation Mechanism 

Rather complicated mechanisms are available for exciting the 

N2 VK bands in a solid irradiated with X-rays. The actual mechanism 

or mechanisms must explain the breaking off of the VK emission above 

v' = 6. The gas phase potential energy diagram of N2 , 
34 .shown in 

Fig. 10, suggest a possible radiationless path for populating the A 

state which would not populate v > 6. Fig. 10 shows a near resonance 

of the v = 0 leve+ of the B state with the v = 7 level of the A state. If 

relaxation to the v = 0 level of the B state were relatively fast and if only 

the transfer B .- A were important, then the observation v' ~ 6 in the 

VK bands could be understood providing the relative energy shifts of 

the states in the solid were not too large. Faster relaxation in the B 

and higher states occurs, we believe, because the overall density of 

states is much greater than in the low vibrational levels of the A state. 

The N2 molecule is probably excited mainly by energy transfer 

from the lowest host exciton band, which lies 33 at 8. 4, 10. 0, ·11. 6 

and roughly 17eV for .Xe, Kr, Ar and Ne, respectively. Only in solid 

Ne does the C state lie below the host band and, thus, the (2+) C- B 

system is seen only in Ne. The only experimental observation inconsistent 
2 

with the proposed mechanism is the presence of D N-atoms in all four 

rare-gases. If relaxation were sufficiently fast above the lowest host 
. 2 

band, then from energy considerations excited · D N-atoms would 

occur only in Ne and possibly Ar solids (cf. Fig. 10). · Perhaps the 

atoms are formed from the fraction of molecules that directly absorb 

energy from the X-ray photons. 
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That a substantial number of atoms are present in these solids 

is evidence by an intense a -group emission. This is often the single 

most intense feature in the emission spectrum after prolonged X­

irradiation, although the integrated VK intensity is always one ·or 

more orders of magnitude greater than that of the atomic a-group. 

The total N- atom concentration is of course not known. 2 4 
No P- S 

emission is seen, but this would be very weak since most 
2
P N- atoms 

2 2 . 

_______ __ .... _____ .. __ will decay by P - D whose transition energy ~-s ?~~-~~~ ~~~e- sp_~_ctral 

region investigated here. Atom recombination also leads to excited N 
. . . 2 

. . 

molecules. Evidence for recombination is present in the VK decays 

· for a Ne host -as discussed earlier. The non- exponential atomic decay 

in Ne, Ar, and Kr also suggests recombination reactions. 

B. Vibrational Relaxation Time 

It is obvious that emission from v' > 0 in a molecular band system 

can occur only if the radiative lifetime of the band system is of the order 

or shorter than, the vibrational relaxation time. If the radiative life­

time is much shorter than the relaxation time, the observed intensities 

of different v" progressions reflect the different excitation rates and the 

variation of the radiative lifetime with vibrational level. On the other 

hand, if the radiative lifetime is much longer than the vibrational 

relaxation time~ then all emission occurs from the lowest vibrational . 

·level of the excited state regardless of the initial vibrati. onal level or 

levels excited. In these two limiting cases the observed decay after 

the excitation cut off for v' = 0 will appear exponential. However, if 

the electronic radiative lifetime and the vibrational relaxation time 

are nearly equal 1 then the observed decays will not appear e:A'J)onential. 

---· -·-----------· ---·· ..... .. .. , . .. . ·-·--·- ·- - ---------- ····- ··-··-- ·--- --~-- ---------
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Since v' > 0 are seen for the VK bands in Ar, Kr, and Xe and since 

the decays for Ar and Kr are exponential at short times within ex­

perimental error, the vibrational relaxation time must be longer than 

the VK radiative lifet ime. Thus , in solid Ar the vibrational relaxation 

time in the A 
3

L1_ ~ st~te of N2 is longer than 0. 4 sec. Iri the other 
-------

rare-gases where v' > 0 are seen, a lower limit for the vibrational · 

relaxation time may be similarly set. 
----- ------ ---- .. 

. '· 

This lower bound to the vibrational relaxation time· does not 

depend on the measured VK decay times being the radiative lifetimes. 

It only depends on the relative magnitudes for populating a given 

vibrational level by cascading fr om higher levels and for depopulating 

that level by either radiative or nonradiative transitions to the ground 

electronic .state. This conclusion is not aifect~d by such factors as 

as atom recombination as long as the time scales are sufficiently 

. different. 

C. Concentration De endence 

Without the decay measurements, it is attractive to relate the 

concent ration dependence of the steady state intensities to a concentra­

tion dependent vibrational relaxation . . The competition between a 

roughly constant vibrational relaxation time and the changing VK radia- . 

tive lifetime might then account for the different steady state popula-

tions of v:;::::. 0 in the A state among the four rare-gases for a given N2 

concentration. However, this requires that the vibrational relaxation 

time be very nearly equal to the VK lifetime in solid Ar, in which case 

non-exponential behavior at short times is expected. Although we 
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cannot completely eliminate such a mechanism, it is probably not 

important. 

The concentration dependence of both the steady state populations 

and the decay t1me for v > 0 is presumably due to a selective concentra­

tion quenching of higher vibrational levels of A, assuming that the excita­

tion mechanism is not appreciably concentration dependent. Intermolecular 

transfer of the total electronic plus vibrational excitation energy 

between N2 molecules in a solid is most probable in the resonance case.· 

Considering only resonance transfer between A 
3

~~ N2 molecule with 

v > 0 and a ground state N2 molecule, the largest Franck-Condon fac ­

tors15 a.11d band oscillator stren~Jls27 occur for high v and, therefore, · 

the maximum energy transfer to "relaxation centers" occurs for high v . 

These centers could be, for example, lattice defects, atoms, dimers, 

or impurities. These are all expected to increase in number with 

increasing concentration. During the long time scales involved, a very 

small non- nearest- neighbor coupling between N2 molecules, as suggested 

by Sun and Ri~e, 9 could thus lead to significant energy transfer .and 

concentration quenching. 

D. Com arison with Other Systems 

A number of other light atom diatomics have also shown emission 

from v' > 0 when present as guests in solid rare -gases . Table XIV presents 

the pertinent data for all these known systems. Also tabulated are data for 

some diatomics for which v' > 0 is not seen in solid rare-gases. 

With the exception of 0 2 and S2 , the diatomic band systems tabu­

lated·were all studied in these laboratories using X-ray excitation 
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techniques. We have reinvestigated the Herzberg system of 0 2 (A- X) 

in the rare-gases employing X-ray excitation and also see v' > 0 only 

in solid Xe, where weak emission from what seems to he v' = 1 is 

observed. The spectrum in Xe is quite diffuse whereas in Ar and Kr, 

where only v' = 0 is seen, the linewidths are similar to those observed 

for the VK system. The S2 B- X system \'las excited8 by absorbing into 

v = 3, 7, and 9 of the B state. In all cases only v' = 0 and 1 was reported · 

for the Xe host. 

It is obvious from Tabl~ XIV. that emission from v'> 0 for dia-

tomics in solids is a relatively frequent occurrence . It occurs for both 

homonuclear and heteronuclear diatomics and in the lowest and higher 

lying excited states. This is much different than the usual case for 

larger polyatomics where emission only occurs from the zeroth vibra­

tional level of the lowest excited state of a given spin multiplet. This is 

probably related t o faster relaxation rates in the larger molecules 

because of the greater number of internal degrees of freedom. 

Based on the available data, it is not possible to draw any major 

conclusions or make generalizations at this time. However, the follow-

ing features seem noteworthy. Even among the simple diatomic mole-

cules shown in Table XIV, the vibrational relaxation time in excited 

electronic states varies from "'1 sec to 10-9 sec . The highest v' 

observed occur for the N2 VK bands where v' = 6 is observed. Moreover, 

this band system has the longest radiative lifetime. As · seen from Fig. 10, 

the A state is the lowest excited state of N2 and is far removed in energy 

from other known N2 electronic states. Furthermore, the VK emission 

breaks off when the upper state vibrational level lies very near or above 



44 

the next lowest lying excited state . Thus, it appears that an increased 

density of states where present may preclude observation of high v' in 

·solid phases by increasing the number of paths for relaxation and in-

creasing the relaxation rate. It is also interesting to note that for 

CH, OH, and OD fine s t ructure is observed 35, 56 which can at least 

in part be assigned to rotational structure. Thus, even if the molecule 

is undergoing rotational motion in the site, the vibrational relaxation 

time can remain long relative to electronic radiative l~fetim es . . ·· This 

is particularly significant for heteronuclear diatomics since the 

rotational motion is coupled to the "quasi - translational" motion of 

the guest molecule in the rare-gas cage. 37 This coupling might be 

expected to increase the relaxation rates. It would in fact predict 

the apparent faster relaxation for OH relative to OD. 

For polyatomics in solids the only estimates of vibrational 

relaxation rates at low temperatures comes from spectral line widths. 

Robinson and Frosch have pointed out that at 4. 2 oK the typical line 
-1 

widths ~e - kT = 3 em so that from the uncertainty principle the 

vibrational relaxation time is---: 10 ... 
11

sec. More recent studies 38 on 

isotopically mixed aromatic :crystals have shown that the guest 
. · - -- ..•. ... 

phosphorescence linewidth of C6 fls is~ 0.1 cm-1
, which corresponds to 

vibrational relaxation time in the ground electronic state of ,G 1 o-10 sec . 

The Vibrational r ,ela.Xation times imposed by the above data are 

much longer than the often quoted times of~ 10-13 sec . This is in qual­

itative agreement with the recent theoretical conjecture of Sun <:md 

Rice (SR). These authors calculate a ' collision induced vibrational. 

relaxation time for a ground state N2 molecule in solid Ar of 0. 01 sec 
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(at 65 9 K ?). Since we for N2 in its ground state is 1. 6 times that in the 
3 + . 

A l;u state, one reasonably expects the vibrational relaxation time in 

the ground state to be even longer than our value of > 0. 4 sec for the 

excited state. Moreover~ the rate expression given .by SR suggests a 

relatively large temperature dependence at moderate temperatures, 

contrary to our observations. 

Other models for vibrational relaxation in solids have also 

recently been reported. 39, 40 These involve resonance interaction 

between the vibrational quantum and the appropriate number of lattice 

phonons at the Debye maximum. Fairly good agreement is obtained 

between rates deduced from acoustic measurements and calculated rates. 

All examples, however, are near room temperature and involve only a 

small number of phonons. For N2 in solid Ar more than 20 phonons at 

the Debye maximum are required and any numerical calculation along 

these lines is probably not meaningful. However, these models do sug­

gest that higher-order multiphonon processes, as required for N2 in Ar, : 

· are slow. They also are in agreement with experiment in predicting no 

temperature effect at temperatures well belo'Y the Debye maximum. 
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TABLE I. 

Most Intense Feature of the a and f3 Groups in Solid Rare - Gases 

0! f3 
N. zD - 4s 0 1 S - lD 

Host (cm- 1 ) (em - 1 ) 

o-asa 
b 19227 17925 

Ne 19217 17926 

Ar 19185 17833 

Kr 19136 17763 

Xe 18964 

a C. E . Moore, Natl. Bur. Std. (U .. S. )Circ. No. 467, Vol. I 

.· (1949) pp. 32, . 95i III (1 958), p. 239. 

•.· 
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TABLE II. 

Vegard- Kaplan System of N2 in Solid Neon 

I -.! - I - 1 

I VT v" vvac (em ) t::.v . (em ) ~v(cm ) · matnx · 
l.lvac - calculated 1 gas - solid 

Ia 

I 
;· 
I 

3 42749 102 - 0.2 

4 40506 101 - 0. 3 Ia 
I 

io 5 38292 . .. 100 - 0. 5 
I 

i ' lo 6 36109 96 ' 1. 3 
I 

94 JO 7 33953 1.0 

lo .8 31824 94 - 1. 3 

Ia 9 29728 91 0. 4 
I ~ .. . . 

0 10 27661 87 1.9 

0 11 25617 90, - 2. 5 

0 12 23607 88 2. 1 

0 13 21630 82 2. 3 
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TABLE III. 

Vegard- Kaplan System of N2 in Sclid Argon 

r elative a 
-I -I -1 

v ' v" v vac(cm ) LWmatrix(cm .) w(cm ) 
intensity gas -solid v · - calculated vac 

0 3 w 42717 134 - 2. 0 
0 4 m 40477 130 0. 6 
0 5 ms 38263 129 1.2 

0 6 · s 36080 125 1.2 
0 7 s 33925 122 1.3 
o · 8 s . 31799 119 1.2 
0 9 ms 29700 119 - 1. 1 
0 10 m 27635 113 1.4 
0 11 w · 25595 112 -0.3 

1 3 w · 44151 133 - 1. 4 
., 

4 41909 
.. 

131 - 0. 8 J. m 
. . 

1 5 m 39698 126 1. 6 . 

1 6 not observed · 

1 7 mw 35359 121 1.9 
1 8 m 33232 119 0.8 
1 9 ms 31134 118 - 0. 5 
1 10 s 29065 116 - 2.0 
1 11 ms 27030 110 1.4 
., 
.1. 12 w 2~018 110 -1. 5 
1 13 vw 23042 103 . . 2. 5 . 

2 4 w 43312 133 - 3.2 
2 5 w 41102 128 0. 2 
2 6 m 38917 126 - 0.5 
2 7 m 36763 122 0. 5 

2 8 w 34638 118 1. 4 

2 9 vvw 32540 117 . 0. 1 

2 10 ms 30473 113 0.6 

. . 
---·-----~-·-···-- - ---·· - -- ·--·- - - - -----·---·-- · -------- - -- - -·-····-- --··· --- -· . ---- - · --



--·-- ·----- - - -----·· .. ~--· -..-·-·- ···- -- --~· ··- ··-·-- ·----- ··-···· ···--···-·-· ... ···-· - . -· . 
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TABLE III (cont . ) 

a . - 1 -1 
D.v(cm- "') v' v"· relative vvac (em ) f:::JI .,.~ . (em ) 

intensity 
mau.1x vvac-calculated 

: . gas - solid 

4 16 m 21408 99 0. 9 I . 

4 17 vw 19546 . 96 2.2 

5 6 w 42966 126 - 0. 2 
5 7 w 40813 121 1. 9 

5 8 not observed 

5 9 mw 36589 . 117 0. 4 
5. 10~ m 34521 .. . . 114 .· . - 0. 0 

5 11 ·. not observed 

5 12 overlap w ith 2, 10 

0 13 . s 28492 107 - 1. 6 

5 14 ms. 26541 105 - 1. 8 . 

5 15 vw 24621 101 - 0. ~ 
5 16 s 22730 98 1.3 

5 17 s 20868 96 2. 6 

6: 7 not obser ved 

6 8 m 39981 118 2.0 

6 9 m 37881 118 - 1. 3 

6 10 not observed 

6 11 ms . 33776 112 - 0. 4 . 

6 12 ms 31766 110 .:..1. 2 

6 13 not obs.erved 

6 ·14 ms 27835 105 ... 1, 5 

6 15 s 25914 102 0.8 

6 16 w 24024 98 1.6 

6 17 not observed 

6 18 vw 20323. 99 - 2.0 

a. The strongest band in each v'' progression (constant v') is 
· called st~ong. 
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,· TABLE IV~ 
<· 

Vegard-Kaplan System of N 2 in Solid Krypton 

I 
I -1 - 1 - l 

I v
1 v" vvae (em ) Lwmatrix (em ) Lw (em ) 

)) l 1 
.L d gas - solid vac- ea eu1a t-e 

0 3 42621 230 - 3. 2 
0 4 40385 222 0. 1 

10 
5 38176 216 1.1 

10 6 35996 209 2. 1 
0 7 33845 202 2. 9 
0 8 31720 198 0. 5 
0 9 29626 192 . 0. 1 
0 10 27563 185 

.. 
1.5 

10 
11 . 25525 182 - 1. 3 

11 4 41812 ' 228 .·. -1. 8 . 
1 5 39600 224 - 3. 7 
1 . 6 not observed 

1 7 * 
1 8 33147 204 . - 1. 3 
1 9 31052 200 - 2. 8 

.. 

1 . 10 28992 189 1.6 I 
1 11 26957 183 .· 1.9 I 

·.· 

I 1 12 * . . 
. . . ' . . 

I 2 5 410C5 225 0. 2 I 
2 6 38826 217 2. 1 I 
2 7 36671 214 - 1. 1 
2 8 * 
2 9 not observed 

2 10 30388 198 - 3. 5 
2 11 28356 189 - 0. 2 
2 12 26348 185 . - 2. 1 
2 13 24373 177 -0.2 



v' v'' 

2 14 

3 5 
3 6 
3 7 

3 8 

'"' .) 9 

3 10 
3 11 
3 12 
3 13 

. 3 14 

4 6 
4 7 
4 8 
4 · 9 

4 10 
4 11 

4 12 
4 13 
4 14 
Ll 15 

I ~ 16 

5 6 

5 7 
5 8 
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TABLE IV (cont. ) 

-l 

vvac(cm ) 
-1 

LWmat;rix (em ) 
gas - solid 

22423 . 174 

42385 222 
40203 217 

not observed 

overlap with 0, 6 ·. 

* 
overlap with 0, 8 
not observed 

27723 187 
25750 178 
23800 175 

not observed· 

39391 . 221 
37266 218 

not observed 
33114 200 . 
31077 19Q 
29066 194 

not observed 
25142 182 

23228 173 
21334 172 

42857 235 
.. 

40710 224 

not observed 

-L 
bY (em ) 

v -calculated vac 

- 2.3 

6.7 
5.7 

- 0. 6 I . 
I 

3. 4 . : I 
.. 1. 2 l . 

I 

-o.3 · 
- 2.6 

3.3 
1.5 

- 3. 4 

-2. 5 
2. 2 

- 2. 3 

- 4.2 
0. 6 . 
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TABLE IV (cont.) 

I 

/v' 
-1 - 1 . -1 

v" v (em ) .6.vm~J..-,.;x (em ) .6.v(cm) 
I 

vac a.L~-

v vac - calculated I gas - solid I 
I 

15 9 36495 211 1.8 

15 10 . ::::< 

5 11 not observed 

5 12 overlap with 2, 10 

5 13 28407 192 -3. 5 

5 14 not observed 

6 7 41997 231 -2. 8 

6 8 39877 222 - 0. 1 
. 6 9 37783 . 216 . - 0.6 

16 10 not observed 

6 11 33684 204 -0.0 

6 12 31678 198 '' 0. 1 

6 13 not observed · 

6 14 27753 187 - 0.0 

16 15 25840 176 5. 7 

16 
16 23945 ·. 177 0. 2 

* observed but not accurately measured 
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TABLE V 

Vegard- Kaplan System of N2 in Solid Xenon 

- 1 - 1 - 1 
VI v" · v (em ) A1J matrix( em ) tw (em ) vac 

gas - solid v vac - calculated I 

I~ 3 42529 322 2.0 

4 40289 318 - 1. 4 

0 5 38080 312 - 3.0 

0 6 35905 300 - 0.0 

0 7 33759 288 2. 7 

0 8 31640 278 3. 1 

0 9 29548 270 1.2 

0 10 27 486 262 - 0.0 

0 11 .25457 250 2. 5 

1 4 41717 323 1. 6 

l 5 39509 . 315 0. 9 

1 6 not observed: ' 

1 7 35178 302 - 3. 3 

1. 8 33061 290 - 0. 9 

1 ·9 30971 · 281 - 0.8 

1 10 28910 271 . - 1. 0 

1 11 26865 255 . 5. 4 

1 .12 24872 256 - 5. 4 

2 5 40902 328 . - 3. 0 

2 r> 
0 38726 317 - 1. (j 

2 7 36577 308 ~1. 3 

2 8 34455 302 -3. 9 
I 

I 
2 9 not observed . I 
2 10 30307 279 - 1. 0 

2 11 28277 268 . 0. 5 
+ 

.. 
. . . . 

,. 
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TABLE V (cont. ) 

- 1 -1 -1 

v' v" v (em ·) t:,v . (em ) w(cm ) 
vac mat:nx v -calculated 

gas - solid vac 

2 12 .26273 2oO · - 1. 4 
2 13 24301 249 - 0. 5 

12 14 >:< 

13 
I 5 42277 330 3.0 

3 6 40093 327 - 2. 9 
3· 7 not observed 
3 8 not observed 
3. 9 overlap with 0, 7 
3 J O overlap with 0, 8 · 

3 11 not observed 
3 12 27646 ·. 264 2. 7 

. I 3 13 25669 25~ - 1.4 
3 14 23721 254 . ·· -5.9 

1 . 
I 4 6 not observed 

I 4 7 39293 319 .· 4. 9 
4 8 37170 .. 314 1. 3. 

I 4 9 not observed 
4 10 * ,. 

4 11 overJap with 1,. 9 
4 12 28985 275 0. 8 
4 13 not observed 

.. 

Li. 14 25072 252 4.2 
4 15 23157 244 3.4 

,. 

5 7 40601 333 0.0 I 
5 8 not observed 
5 9 36390 316 -1. 4 
5 10 34339 . 296 8. 3 
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TABLE V (cont. ) 

IV. 
· I 

I 

-1 -1 . -1 

v" v (em ) wmatrix(cm · ) tw (em ) 
. vac v vac -calculat ed gas - solid 

5 11 not observed 

5 12 overJap with 2, 10 

5 13 28325 274 0. 8 

5 14 26380 266 -0. 6 

6 8 99764 335 -2. 4 

6 9 37678 321 1.7 

6 10 not observed . 

6 11 33577 311 -7.0 

6 12 ~:< 

6 13 not observed . 

i: 14 overlap v.i th 3, 12 

15 25750 266 -1. 2 
I 

* Observed, but not accurately measured. 
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TABLE VII 

14 15 
Vegard- Kaplan System of N N In Solid Argon 

- 1 - 1 I 
v' v" v vac (em ) tw (em ) I 

v vac - calculated , 

0 4 4063 4 . 1.4 .I , 0 5 38453 • - 1. 5 I 
0 6 36305 0. 5 i 

I 0 7 34182 - 0.6 

'o 8 32089 0. 1 
I 0 9 30024 0.7 

0 10 27989 3. 2 

0 11 25975 - 1. 5 

1 6 not observed 

1 7 · not observed 

1 8 33497 . - 0. 6 

1 9 31431 - 1. 1 
i 1 ,- 10 29396 . 1.. 4 

1 11 27385 - 0. 2 ' 

1 12 25405 1.0 

I 12 
I 

. 6 39094 "':'1. 2 

2 ? 36975 1.6 

2 'it 8 34871(?) - 8. 7 
. I 

·2 9 not obser ved I· 
12 ·· 10 .30772 -4. 5 I 
12 11 28769 1.8 

I 
)2 12 26786 0. 0 

I '2 13 24833 0. 2 . 
l2 

I 
14 22904 - 3. 9 

3 8 overlap with 0, 6 

3 9 34170 0. 8 
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TABLE VII (cont. ) 

VT v! ! - 1 - 1 
vvac(cm ) fW (em ) 

v vac - calculat ed . 

I 

~ ~ 
10 32129 - 2.7 

-: ·. 

11 not observed 

I; 12 28141 - 0.2 
13 . 26190 .. - 0. 1 IV 

13 14 · .. 24263 -1. 2 I . .. 
3 15 22365 - 2. 2 I· 
4 8 37561 -2.2 

I 
14 

; . 

9 not observed __... 

14 10 33460 · .. · .. ·· .. - 0. 2 
14 11 31451 0. 2 

' Li 
12 2947'2 2. 4 I • 

i 13 not observed ,: 14 25592 0. 5 

j4 15 23696 1.3 

14 16 21826 0. 1 I 
. ' . I 

I 
15 () not observed 

' ~ 
0 

I ~ 
9 * 

10 34767 5.2 
15 11 not observed 

!5 12 overlap with 2,10 . 
\ ,_ 13 28818 - 0. 1 t;) 

15 14 26894 0. 8 

5 15 not observed 

5 16 23128 0. 4 .. 

15 17 21289 0.2 
I 

(6 9 38072 - 2.2 

16 10 not. observed 

Is 11 34027 - 0. 3 

6 12 32047 0;9 
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0.) 

TABLE VII (cont. ) 

- 1 . --1 
v' v'' v vac (em ) lw (em ) 

v vac - calculated 

6 13 · not observed 

6 14 28163 -5.0 

6 15 26270 - 1. 2 

I 
>:< 

Observed, but not accurately measured . 

. \ 
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TABLE IX 
14 lfi 

Vegard- Kaplan System of N N in Solid Neon 

v" 

4 . 40662 

5 34482 
6 36330 
7 . . 34208 
8 32117 
9 30046 

10 28012 

- 1 
w(cm ) 

v ·. - calculated vac 

0 . 3 

- 0. 1 
- 0.9 

- 0. 3 
3.0 

- 2. 5 

0. 6 



I 

I 

I 
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TABLE X 

Decay Times for the Vegard-Kaplan Bands in Solid Rare- Gases 

Interpreted as an E:xponential Decay 

I 
' T (sec) 

host %N2 T(°K) · v '=O v'=1 v'=2 v' =3 v'=4 

Ne 0. 6 1.7 2. 8 

1.0 4.2 3. 3 

:0. 1 4~2 3.2 

Ar 0.1 1. 7 0.42 .. 

I .. 

1.0 4.2 0.35 0. 31 0.24 0. 21 

0;5 4.2 0. 38 0.34 0. 28 . 

0. 1 4.2 0. 38 0.38 0. 41 0.35 0.27 

0. 8 8.0 0.37 
. • 

. . . . 
0. 2 8.0 0. L!. ; 0. 38 0.34 0. 24 .2 .. ... 

~ 

0. 8 20 0. 39 ; 

; 

Kr 1.0 4. 2 0. 015 : 0.014 0. 013 

Xe I 1.0 I 4.2 < 0. 005 . 
I 

I 

I 

I 

I 

I 

I 
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TABLE XI 

3 ..!... 

Calculated Perturbed Lifetimes for the A L~ State of N2 in the 

- 1 
A. (em ) 

-l 
F 0 (em ) 

-1 

C(cm ) 

f' 

T' (sec) 

-l 
C(cm ) 

f' 

T' (sec) 

Heavy Rare Gases 

Ar 

- 664 

94341 

·25 
. -10 

8.44X 10 

1. 54 

49 
-9 

3. 24X10 

0 . . 40 

Kr 

3.7 6. 1 

- 2460 - 4304 

82513 7:1095 

25 25 
· - 8 - 6 

5.52X 10 · 1.73X10 

~024 0.0008 

32 
-8 

8 . 84X 10 

0. 015 ·. 
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TABLE XII 
Second Positive System of N2 in Solid Neon 

. -1 -1 a - 1 

v" intensity vvac(cm ) b (em) w(cm ) matrix 
ll · -calculated 

soUd- gas vac 

0 s 29751 76 0. 2 
1 ms 28042 72 - 0. 7 
2 m 26364 71 -0.0 
3 w 24716 70 ' 1.3 

4 vvw 23094 67 - 0.8 

o· w 31745 75 0. 1 
., not observ~d 

2 w 28359 71 0.9 
3 w . . 26709 68 0. 2 

4 vw 25088 66 . . -0. 9 

5 vvw 23498 65 - 0. 3 

0 vw 33687 75 . . . (1. 4)b . 

1 vw 31977 7·1 -0. 5 
2 not observed 

. ;. 

3· not observed 

4 vw 27029 65 - 0.6 

5 vw 35440 66 1.0 

6 vvw 33878 64 0. 1 

aGas values taken from Ref. 16. 

bThis band was not included in the analysis for the vibrational 

const~nts. 

----------.. - ----------·.- - -· ·- -- ··-··- · - ··-

I 
I 
! 

! 
i 

I 
·I 
I. 
I 

J . . 
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I 

State · 

'; . 3 
err . u 

3 ff 
B g 

TABLE XIII 

Molecular Co:1s tants of N2 from the Second 

Positive System in Solid Neon 

. - 1 . a 
(em ) gas Ne 

l/ 00 29675 29751 

2047 . 09 2047 . 5 ± 0. 9 . w 
e 

wx 
e e 28.446 26 . 70±0.5 

w , 1735. 42 1737.5 ±0. 4 e 

14. 69± 0. 07 1. wx 15. 198 e e 

aRef. 16 · 
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Fig. 1. Microphotometer tracings of part of theVegard- Kaplan 

system of N2 at various concentrations in solid Ar. · The v', · vll 

assignments are given below the tracings. "02 " designates part of the 

Herzberg system of 0 2 • T = 4. 2 °K. 
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Fig. 2. Microphotometer tracings of part of the Vegard-

K2.9lan system of 1% N2 in solid rare- gases_ The v' . v" .. assia-n -
. ' . 0 

ments are given below the tracings . · "2+" designates the second 

posit ive group of N2 • T = 4·. 2 °K . 
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Microphotometer tracings of part of the Vegard-

Kaplan system of N2 at various concentrations of solid Kr. The 

v', V
11assignments are given below the tracings. T = 4.2°K. 
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Fig. 4 . Microphotometer tracings of part of the Vegard-Kaplan 

system of 0. 2% N2 in solid Ar at various temperatures. (a) not 

annealed; (b) annealed at 30°K, The v' , . v" assignments are given 

below the tracings . 
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Fig. 5. Wlicrophotometer tracings of part of the Vegard- Kaplan 

system of 0. 2% N2 in solid Kr at 9°K and 32°K. The v', v" assign­

mer:.-.:s are given below the tracmgs. 
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Fig. 6. ·.Decay of the a - grOt1P for 0. 1% N2 in solid Ar (a) and 

Ne (b). T = 4. 2 °K. 
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Fig. 7. Representative decay curves of the Vegard-:-Kaplan 

bands for 0. 1% N2 in solid Ar. T = 4; 2 °K. · 



.2 Li. . ' 

86 

,.. 
.0 

t (sec)--> 

.8 

I 

~ . 
! 

. I 

. I .-, 

1.0 



87 

Fig. 8. Decay of the Vegard-Kaplan 0, 7 band for 0. 1% N2 in 

solid Ne. T = 4. 2 °K. 
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Fig. 9. Microphotometer tracings of part of the second positive 

(2+) system of N2 in solid Ne. (a ) 1. O% N2 ; (b) 0. 1% N2 • T = 4. 2°K. 

The v' , v" assignments are given below the tracings. 
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Figure 10. Potential energy curves for known states of N2 below 

12 2V, taken from Ref . . 34. The right hand s·cale corresponds· to the 
l ..!. 

X 2: ~- state. 
0 

l 
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KINETICS FOR A MODEL SYSTEM UNDERGOING VIBRATIONAL 

RELAXATION IN AN ELECTRONICALLY EXCITED STATE. 

We now consider the kinetics for the relaxation of a system 

of diatomic oscillators prepared initially in a nonequilibrium vibra­

tional distribution. The analysis given here closely resembles that 

of Montroll and Shuler. 1 The diatomic . molecules are present as 

guests in a solid rare-gas crystal which acts as a heat bath. The 

states of the gu.es t molecule which we are interested in are A and X, 

the excited and ground electronic states, with vibrational levels v' 

and v" respectively. The system of oscillators consists of the 

molecules in the v' levels of the A state prepared by electronic 

excitation of the diatomic molecule. 

The concentration of diatomic guest molecules is assumed to 

be sufficiently small that energy exchange takes place only between 

guest and host molecules, that is the relaxation processes in the 

vibrational manifold of the A state are first order with respect to 

the concentrations. This is apparently the experimental situation for 

less than about 0. 2% by volume guest for the system N2 in soliq Ar. 

The rate of change in the population of the level v' = i may be 

written 

• 
\'{. 

4-

(1) 

-· -·--- ------ -- ··-- -·-··- -~----·- -----·-- ···--------·-····--~- - - · ·· ···--- -
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where Ni is the population of the level v' = 1, gij is the rate constant 

for vibrational relaxation between levels v' = i and v' = j (i>j), and k. 
. l 

is the rate constant for all other mechanisms of depopulating the level i. 

Thus, for example, k. includes the rate of spontaneous emission A --.X 
. l 

and the rate of the electronic radiationless transition A ~x from the 

ith vibrational level of the A state to the vibrational levels v" of the 

ground electronic state X. The vibrational relaxation rate g .. may 
lJ 

similarly be made up of radiative and nonradiative parts. K. is the 
l 

rate, assumed small, at which oscillators are produced by external 

pumping into the ith vibrational level of the A state. For example, if 

the A state were excited by the absorption of light, K. would depend 
l 

on such factors as the diatomic concentration, the intensity of the 

radiation at frequency v. and the oscillator strengih f.. In writing 
l l 

Eq. (1) we have assumed the temperature to be sufficiently low that 

the Boltzmann equilibrium population of v > 0 is negligible and that 

the probability of the diatomic absorbing phonons from the surrounding 

lattice, thereby undergoing "up transitions" from lower vibration 

levels to v' = i and from v' = i to higher vibrational levels is much 

less tban the rate of vibrational relaxation. 

To proceed further we must have some knowledge of the 

t ransition probabilities. We will assume that the potential function 

for the A electronic state is harmonic. Since we are primarily inter ­

ested in low v', this is a relatively good approximation to the actual 

potential function. Thus, a diatomic molecule vibrating in the 

potential function of the A state must obey the rather strict selection 

rules for transitions between levels of a simple harmonic oscillator . 
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For the radiative transitions of a harmonic oscillator, the selection 

rules and transition probabilities are well known to be given by 

j;ld: \ (2a) 

(2b) 

If the perturbation which induces the radiationless transition be ­

tween vibrational -levels is linear in the normal coordinate of the 

diatomic oscillator and sufficiently small for a first order perturba-

tion calculation, then the matrix elements for relaxation are identical, 

except for a constant factor, with those for radiative transitions of a 
2 

harmonic oscillator. Thus, the selection rul e Av = ± 1 and the rela-

tionship among the transition probabilities given i n Eqs. (2) wi!l hold 

for radiationless as well as radiative transitions. Even if the 

diatomic vibrated in an anharmonic potential, the squared matrix 

elements 3 and, therefore, the transition probabilities would still be 

very nearly proportional to the upper state quantum number for a 

perturbation linear in the oscillator coordinate. 

This linearization of the intermolecular potential assumes a 

nearly adiabatic interaction, 2 i. e . , the amplitude of the oscillator 

vibration i s small compared with the effective range of the intermolecular 

force field. This approximation becomes increasingly inaccurate 
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as the amplitude increases in the higher vibrational levels. Thus, 

we do not expect Eqs. (2) to be generally true for radiationless 

transitions, but a possible starting point for comparison with 

·experiment. 

However, the selection rule .6.v = ± 1 probably holds, or at 

least dominates, independent of the form of the coupling. Calculations 4 

show that in low energy collisions of a particle with a harmonic 

oscillator one quantum transfers have the greatest probability. In 

a solid, as compared to a gas, transitions with Av > 1 probably have 

relatively lower probabilities since higher multiphonon processes 

are required. 

Assuming only nearest neighbor transitions and limiting the 

discussion to the lowest (a+ 1) vibrational levels of the A state 

(v 1 = a), Eq. (1) may be written max 

N. 
I. 

where 

a.. -::::: 0 y ·~, = D ) ·~, '> 01. 

The constants a., b. repres ent the relative change with vibrationa l 
1 1 

(3) 

level of the ratios (g/g), .(k/k). In general both of these are dep endent 
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on the vibrational level i. For example, if k. is the rate of spontaneous 
1 

emission, then b. depends on the v ariation of the electronic transition 
1 

dipole moment with internuclear distance for the A __. X band system . 
·• 

Note that Ni for i = 0, a contain fewer terms, since we have assumed 

ao = aj = 0 for j > 0!.. 

Eq. (3) can be put into a mor e compact form by letting 

(4) 

whence 

• 
~-

" 
(5) 

The set of (a+ 1) differential difference equations Eq. (5) governs the 

kinetic~ of the model system. We proceed to obtain first the steady 
" 

state solutions and then find the general solution with - the steady state 
'· 

populations as initial conditions. 

:N. = 0. 
1 

Steady State Solution 

At steady state, the ·level populations are at equilibrium and 
0 

By iteration the steady state populations Ni are easily found. 
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(6) 

For i = a, the second term on the right hand side of Eq. (6) is not present. 

The real experimental system generally falls into one of three 

possible limits of Eq. (6). If the rate of spontaneous emission is much 

less than the rate of vibrational relaxation, k « g, then 

i...,. 0 

Thus, only the zeroth vibrational level of the A state is significantly 

populated and emission of the A --+X band system should consist of a 

single v" progression with v' = 0. This is the usual case for poly­

atomics in solids and for some diatomics. This is definitely not the 

case for N2 in solid rare-gases. 

On the other hand if k » g, then 

and most of the observed A--+ X band system is resonance emission. 

(7a) 

(7b) 
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Therefore~ the intensities of different v" progressions reflect the 

different pumpingrates Ki and the bi. 

For the most interesting case of k ~ g, Eq. (6) reduces to 

(9) 

and, thus, emission occurs from all energetically available vibrational 

levels of the excited electronic state. 

A further simplification of Eq. (6) results if the vibrational 

manifold of A is populated by external pumping only at the level v = a. 

This would be the case, for example, if the A state were excited by 

absorption of monochromatic light of frequency vv ' v" = v orO. For this 

limit where only KCI:' is non zero, Eq. (6) simplifies and only the last 

term of the sum remains. 

(10) 

This condition can generally be chosen by the experimenter or often 

results from the requirement of conservation of energy during an 

excitation energy transfer to the A state. Moreover, bik, which in 

most cases equals the rate of spontaneous emis$ion, can be determined 

from lifetime m easurements. If the lifetime of A is independent of 

vibrational l evel , then of course hi_ = 1. By measuring the relative 
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populations 

(11) 

a-equations are obtained in the a-unknowns g. , i. e . , g and the a. for 
1 ---- 1 

i = 2, 3, ... , a. Thus, the relative s t eady s tate populations of the (a+ I)-

vibrational levels in the A state determine in principle the v ibr ational 

relaxation rate and its change with vibrational level if the b:k are 
1 

known. 

The applicability of the model can be experimentally checked 

by varying the initial level excited. Thus, by exciting into say v' = 1 
.o 0 

and determining N1 / N0 , g10 is obt ained. By next exciting int o v' = 2 
0 0 0 

and measuring relative populations N2 , N1 , and N0 , g21 and g10 are 

obtained. This can obviously be extended, at least in princip le , in­

definitely. If the rates so calculated do not agree, multiquantum jumps 

. are strongly implied. The model can in fact be easily. extended to 

include .6.v = 2 transitions and the results show that the rates for these 

double quantum jumps can be obtained if the populations are experim ent ally 

determined for the levels removed by .6.v = 2 from the level excit ed. A 

system wherein this may be possible is suggested in Part IV of this 

thesis. 

If as suggested earlier ai = i, Eq. (11) becomes 

i.-1 

lT (1+ b£ -o/q) (12) 
~ ... o 
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These equations have a total of (a+ 2)-unknowns. If the bik are a gain 

assumed known, the rate constant g is .overdetermined from only a few 

steady state populations. 

General Solution 

We now proceed to determine the time behavior of the system of 

oscillators which is prepared initially in the vibrational distribution 

set up by the steady state conditions. The equations to be solved are 

- N ex = ') ~o4 N~ (13a) 

(13b) 

These equations are identical to Eq. (5) except that the pumping rate 

Ki is set equal to zero. This assumes no pumping of the A state after 

. the primary excitation is shut off . . Thus, for example, atom recombin­

ation and cascading from higher electronic states are neglected. If these 

processes occur either much faster or much slower than either k or g, 

they do not appreciably distort the analysis. These are linear differ ­

ential equations of the first order whose general solutions are 

N._ = C1 exp(-~ ~'- t) • exp ("~ ~. t) J•'?('? M) 

x a. ·aN . dt 
~+-1 ;J 4.-P/ 

(14a) 

(14b) 
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Substitution of Eq. (14a} into Eq. (14b) yields a solution for Na_1. 

The general solution can then be obtained by iteration for N,, . : 
u:-J 

1\\~(t) '= C;..ex~(-5~1t) + :~~-\ . Ci..+ l ex?(-'1 ~~1- , t ) 
ct.-.. 

+ ..• 
v• :.. to:-.<-o • •• 

• ~l «-i. 

where 

.. (~ -a. ) · ... "'-Qt.-P Cl -1!. +rn 

(15a) 

(16) 

The solution Eq. (15) does not apply if yfl = 0, which only occurs, except 

for an accidental cancellation of the terms in Eq. (16), if ai = bi = 1. 

This condition is not expected to occur in practice. 

The general solution Eq. (15) may be written in a more compact 

form by treating the populations Ni (t) as a column vector. In matrix 

notation Eq. (15) reads 

N (t) :: D c. ~1} (15b) - ---
The matrix Dis triangular with elements 

....... . 
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(17a) 

(17b) 

(17c) 

9_(t) is a column vector whose elements are the time independent co-:­

efficients Ci times the factor exp(-g!\t). The constants Ci are 

obtained from the initial conditions at time t = 0, i.e., the steady 
·0 

state population Ni determined earlier. Substituting Eq. (6) into 

Eq. (15) for t = 0, 

(19) 

The problem is now formally solved. Eq. (15) describes the 

approach to thermal equilibrium for the system of oscillators having 
. . . 

. an initial vibrational distribution in the A electronic state prescribed 

by Eq. ( 6). We note that as t-oo, N. _, 0. Thus, all of the guest 
. I 1 · 

diatomic molecules are in the ground electronic state, as required 

for Boltzmann equilibrium at the low temperatures under consider ation. 

For intermediate times the populations Ni (t) approach their thermal 
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equilibrium values by a sum of first order decays. Thus, unless one 

term of the sum dominates, the observed decay of the population N. (t) 
1 

will not follow an exponential law. This will be the case for short times if 

vibrational relaxation is taking place. 

Comparison with Experiment 

It is not possible to directly apply the kinetic model to the VK 

system in solid rare-gases. The reasons for this are obvious from 

earlier discussion and will only be sketched here. With X-ray excitation, 

the pumping mechanism for populating the vibrational levels of A is 

not known. Thus, the vibrational relaxation rate can not be evaluated from 

the steady state spectrum. Even if the excitation mechanism were known, 

the relative populations in the A state are not well known. These in 

principle can be calculated from the experimental band intensities if 

Franck-Condon factors and the variations of the electronic transition 

moment were known for the VK system in the solid rare-gas hosts. 

Even allowing certain approximations for the above quantities, the 

experimental band intensities were not accurately obtained. 

A major difficulty is how to treat the observed fine structure, which is 

not completely resolved from the main line. For example, as discussed 

earlier ~· p. ), the red components in solid Ar are usually more 

intense than the main line for the v' = 0 progression, whereas the opposite 

is true for progressions with v' > 0. However, even in the latter case, the 

intensity in the red components is a large fraction of the total band 
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intensity. If the red components are due to molecules in defect sites, 

then the intensity in these features should be neglected. 

The following very approximate approach was taken. Band 

intensities were obtained by photographic photometry neglecting entirely 

the red components. Peak height rather than integrated area was 

used. Relative populations were then estimated in a standard manner 5 

using gas phase Rydberg-Klein-Ress Franck-Condon factors 6 and 

assuming a constant transition moment. 

Although the results show considerable scatter, they indicate that 

for low concentrations of N2 in Ar the relative populations in the A state 

increase with vibrational level, v' = 2 to 6 being roughly a factor of 

2-4 more populated than v' = 0. However, if the red components are 

included, then the maximum population shifts strongly towards v' = 0. 

No actual determinations were made in this latter case. 

Clearly many different sets of the variables in the kinetic equations 

will yield . the population distribution. However, a large number of 

these produce highly nonexponential decays. Thus, if lower vibrational 

levels of the A state are pumped entirely relaxation from higher v', 

very nonexponential decays result. Numerical calculations show that 

this "amount of nonexponentiality" would have been immediately obvious 

in the experimental decay curves. 

Assuming the correctness of the model, the following conclusions 

are imposed by comparing numerical calculations with the experimental 

population distribution and the observed' "exponential decay. " Lower 

vibrational levels of A are populated by unknown mechanisms other 

than one quantum vibrational relaxation. If we assume that the vibra-
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tional relaxation rate depends linearly on the upper level quantum number 

(ai = i) and that the electronic radiative rate is independent of vibra-

tional level (bi = 1), then the radiative rate k is at least three times as large 

as the vibrational relaxation rate g. The lower limit to the ratio 

k/g increases as the population distribution favors higher v'. On the 

other hand, if the steady state populations strongly favor low v', the 

decays become more nearly exponent1al and the lower limit for k/g 

is decreased. 
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THE EMISSION SPECTRA OF 0 AND CO IN SOLID RARE GAS 

MATRICES 

The results discussed in earlier sections demonstrate that 

vibrational relaxation of diatomics in solid matrices can be quite slow 

This was evidence by the appearance of bands with v' > 0 in the 

diatomic emission spectrum. The Vegard-Kaplan bands of N2 were 

particularly significant in this respect since the system is spin­

forbidden and, therefore, has a very long radiative lifetime. Thus, 

the observation of v' > 0 emphasizes the slow vibrational relaxation. 

It was hoped that the results obtained with N2 could be extended to 

other forbidden band systems. The two first row diatomics CO and 

0 2 were chosen since both have well known forbiddE;;n transitions 

connecting their lowest excited triplet .state with the ground state: 
3 . f + 

viz., the Cameron bands of CO, a II- X I: , and the Herzberg bands 
3 + 3 -of 0 2 , A I:u - X I: g . The Cameron bands are spin-forbidden, whereas 

the Herzberg bands are forbidden since I:+ states cannot combine with 

I: states. The results to be described are highly preliminary and 

incomplete, but will serve as a guide for future work. 

Experimental conditions were generally the same as previously described. 

CO or 0 2 concentration of 0.2-l.C'% were chosen, employing the con-

tinuous flow technique. The guest emission spectrum was excited 

by X-irradiation of the solid guest plus rare-gas mixture. Some 

preliminary spectra were taken on a Bausch and Lomb medium 

quartz spectrograph, but all measurements reported herein were 

from plates taken with the Jarrell-Ash 0. 75 meter grating spectrograph. 

The latter was used in second, third and fourth orders. The first 

order plate factor was roughly 40 A/mm. 
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1. The Herzberg bands of 0 2 

The Herzberg bands of 0 2 have been previously observed in 

solid Ar, Kr and Xe hosts by Schoen and Broida, 1 who used electron 

bombardment of the solid to excite the diatomic emission spectrum. 

v' > 0 were seen only in the Xe host where emission from v' = 1 is 

reported. The Herzberg bands were not seen in solid Ne. Instead 

· the Second Negative system of 0 2 +was observed. In addition a strong 

line of 7943 A was assigned in the Ne host to the 0, 0 band of the 
1 + 3 -A :L; _. X 2; transition of 0 2 • The {3 group, attributed to the 

g g 
1
S--. 

1D transition of the 0-atom, was seen in all four rare-gases. 

Our results in the main part agree w:lth the observations of Schoen 

and Broida (SB). There are, however, certain differences which will 

be discussed. 

The spectral region covered herein for the molecular bands is 

that encompassed by Kodak 103a-O plates, i.e. , A. ;::;: 5000 A. The 

appropriate plates were also taken for slightly longer wavelengths , 

but the exposures were such that only rather intense features .were 

photographed. Thus, we also saw the {3 group in all four rare-gases. 

The frequency of this feature in 0 2 doped rare-gas solids is the same 

as that reported earlier in Part II of this thesis for N2 doped solids. 

·us intensity is, however, usually greater when 0 2 is intentionally 

added. The frequencies for the {3 group in all four rare-gases agree 

well with those reported by SB. 

Our measurements of the Herzberg system of 0 2 are given in 

Table I. The v', v" assignments are based on the work of SB. In 
-1 

Ar and Kr the bands are relatively sharp (- 30 em ) and red shaded. 

However, in Xe the bands are more diffuse and appear superimposed 
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on a broad structured continuum. The intensity maxima in the 

continuum have the frequencies given in Table rr.· We were not able 

. to photograph any molecular emission from an 0 2 doped Ne solid. 

When X-rays first impinged on the Ne solid, it glowed blue. The 

afterglow was similar at short times and then turned deep red at 

longer times. After approximately 15 mins of X-irradiation, the 

glow from tre sample was a whitish-yellow and no afterglow lasting 

longer than -o. 1 sec was visually observed. The deep red afterglow 

seen initially may well be due to the forbidden atmosphere bands of 

0 2 which SB assigned in solid Ne. The yellow · glow was identified as 

the {3 group. This experiment was repeated twice with identical 

results. 

The measurements of the Herzberg system reported in Table I 
-1 

are generally slightly to the red (0-37 em ). of those reported by 

SB. This difference may well be less than the combined experimental 

errors. However, it appears somewhat systematic in that the 

difference either increases (Ar) or. decreases (Kr and Xe) with in-

creasing v". SB do not report frequencies for the six members of the 

v' = 1 progression which they assigned in solid Xe. However, their 

published spectrum confirms six bands roughly midway between ad­

jacent members of the v' = 0 progression as expected. We observed 

the two strong members of this progression which fall in the spectral 

range covered here. 
3 -The vibrational constants of the X :6 state of 0 2 in Ar and Kr 

g . 
were calculated from the data given in Table I 'Nith the results 
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Table I. Herzberg bands of 0 2 in solid rare- gases. 

Ar Kr Xe 

v" v' = 0 v' = 0 v' =a · v' = 1 
(em -r) - 1 

(em ) (em -1
) 

- 1 
(em ) 

3 29443 vw 

4 28041 vw •27968 mw 

5 26590 w 26511 m 26574 w 

6 25152 m 25079 s 25130 m 

7 23739 ms . 23670 vs 23710 m 

8 22351 ms 22283 vs * 23104 w 

9 20979 m 20918 s * 21678 mw 

10 * 

.* 
observed, but not accurately measured. 

Table II. Unassigned bands observed from 1% 0 2 in solid Xe. 

v(cm-r) intensity 

26155 m 

25547 w 

24963 vw 

24546 mw 

23935 vw 

23452 vvw 
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shown in Table III. The data for Xe are too incomplete to allow such 

an analysis. The calculated constants are in relatively good agree­

ment with both the gas values and those reported earlier by SB. 

However, our calculated 0, 0 frequency shows a progressive red shift, 

whereas SB report the 0, 0 for Kr at higher energy than for Ar. An 

unusual feature of this system is the very large red shift observed in 
-1 

solid Ar and Kr. This amounts to about 1000 em and is the largest 

observed for any first-row diatomic. 2 Typically these shifts are 
~1 

::::300 em . 
3 If Morse Franck-Condon factors calculated for the free 

molecule are applicable to the solid spectrum, the most intense 

transitions from v' = 1 should terminate in v" = 5, 6, 7 and 8. The 

Franck-Condon maximum of the v' = 0 progression should similarly 

occur between v" = 8 and v" = 10. The intensity maximum in Ar, Kr, 

and Xe for the v' = 0 progression occurs at v" ~ 8 in good agreement with 

the simple theoretical prediction. However, the v' = 1 progression is 

not seen until v" = 8. Our estimate of the intensity maximum from 

SB 's published spectrum is v" = 9 . Moreover, an apparent intensity 

anomoly occurs even in the v' = 0 progression for solid Xe at 0, 9. 1 

This band is much weaker than expected, while 0, 10 has what seems to 

be the correct relative intensity. 

In summary nov' > 0 are seen f?r the Herzberg bands in Ar or 

Kr solids. In Xe the observations suggest emission from v' = 1, but 

they are not totally convincing. The results appear very similar to 

that obtained for S2 
4 in that emission from v' > 0 occurs only in Xe. 

For the Herzberg bands this could be due to a competition between the 

radiative lifetime, which would be shortened in the Xe matrix, 
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Table ill. Vibrational constants of 0 2 in solid rare- gases. All entries 

are in cm-1 . 

State Gas a Ar Kr 

!) 00 35000 34075 ± 15 34010 ± 4 
Asz;+ w 802.8 . u e 

wexe 14.64 

X sz;~ w e · 1580. 4 1561. 4± 5 1567.3±1.3 

wexe 12.07 10. 63± 0. 4 11. 26± 0. 1 
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and a nearly constant vibrational relaxation time. This cannot be the 

explanation for S2 since the band system observed is allowed. 

2. The Cameron bands of CO 

No emission from CO has been previously assigned in a solid 

matrix. 5 We find relatively strong emission fr.om -1% CO in .Ar while 

irradiating with X-rays. Hov.e ver, the spectrum is somewhat compli-

cated and has only been partially analyzed. New features appear in 

the spectrum and grow in intensity as the length of time X-rays have 

impinged on the sample lengthens. 

Initially the spectrum consists primarily of two well separated 

band systems, one of which is the Herzberg system of 0 2 • This 

presumably results from 0 2 impurity in the commercial CO, since 

an air leak would have also shown the typically stronger Vegard-Kaplail 

bands of N2 • . These were sometimes seen, but always much weaker than 

the Herzberg 0 2 system. The other, much stronger, system consists 

of five very broad bands with a relatively sharp blue edge. The width 
. -1 

of these bands at half intensity is roughly 500 em . They are tentatively 

assigned to tP.e Cameron system of CO. The positions of the bands 

are shown in Table IV and are compared with the gas frequencies for 

the Cameron system. Measurements were made at the intensity 

maximum as determined from densitometer tracings. The spectral 

region to the blue of the highest energy band reported in Table IV was 

not searched. 

If these are the Cameron bands, a red shift in the 0, 0 of 
-1. 

(764 ± 50) em · occurs in solid Ar. If the blue edge is measured, the 
-1 . 

shift is reduced to -600 em This is a relatively large matrix shift, 
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1 
Table IV. Cameron bands of CO in solid Ar. All entries are in em . 

gas Ar 

v' v" 
a 

AG z;b L!..G z; 

0 0 48474 47710 
2144 2193 

0 1 46330 45517 
2116 2133 

0 2 44214 43384 
2089 2062 

0 3 42125 41322 
2063 1982 

0 4 40062 39340 

aG~ Herzberg, Molecular Spectra and Molecular Structure I. 

Spectra of Diatomic Molecular (D. Van Nostrand Co. , Inc. , 

New York, 1950), p. 520 

bmeasurement error ·± 20 cm-1 
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but similar size shifts have been previously observed (vide s upra). 

More unusual is the excessive width of the bands. Leroi, Ewing and 

Pimentel 6 have investigated the infrared spectrum of CO in solid Ar . 

and note that the spectrum is extremely dependent upon a variety of 

experimental conditions. In particular, their results show that a 

considerable clustering of CO occurs in a deposited sample. T llis 

agrees with the more recent work 7 on the equilibrium phase diagram 

of Ar-CO. These aggregates would be expected to produce diffuse 

bands. However, Leroi, ~ al. observe the aggregate ground state 
-1 

fundamental to be red shifted from the gas by 5 em to the value 

observed in the pure solid, whereas the monomer is blue shifted by 

the same amount. Our results seem to indicate a rather large blue 

shift and increased anharmonicity (£!. Table IV). 

An alternate explanation of both the large red shift and the 

excessive line width involves the recently determined 8 large change 
. 3 

in dipole moment resulting from excitation of CO to the a II state. 
9 . . 

The ground state moment is only 0. 112 D. This small value ·in the 

ground state is attributed to a balancing of the polarity of the C-0 

bond by the "lone pair" of electrons on the carbon atom. In the 

excited state the dipole moment increases to 1. 38 D 87 since qualitatively 

one of these lone pair electrons is .excited into a 7T-orbital. Therefore, 

· the excited state energy is reduced more than that of the ground stat e 

by dipole-induced dipole interactions with the surrounding polarizable 

medium. A net overall red shift above that usually present for small 

guests from dispersion interactions results. Applying the Franck­

Condon principle to the entire system of guest plus host, the excessive 
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3 
line width can then be explained. In the relatively long lived a II state, 

the system has a chance to adjust to its minimum energy position 

before emission occurs. Not only might this cause a further red shift, 

but, and more importantly, rather broad bands would result. If we 

assume that the CO occupies a substitutional site in the Ar lattice and 

make the point dipole approximation, the shift due to dipole-induced 

dipole interactions is given by 10 

fl..E 
he 

2 2 
= 14.45 a (J.J.' - ll") I r 6 

where a= 1. 63 X 10-
24

cm3 is the polarizability of Ar, 11 r = 3. 76 A is 

the nearest neighbor distance in solid Ar 12 and fJ. is the CO dipole 

moment in the excited (') and ground (") electronic states. This leads 
-1 

to an additional red shift of about 80 em , which still leaves a rather 

large shift. However, the point dipole approximation is probably not 

applicable at these intermolecular distances. 

A disturbing feature of even the assignment is the fact that the 

0, 0 band of the Cameron system for solid CO, observed in absorption 
13 . ~ 

by Hexter, is red shiftedfrom the gas by only- 74 em . It is 

clear that more experimental work, aimed primarily towards reducing 

the linewidth of the observed bands and confirming the assignment, is 

necessary. The only experimental condition varied here was the CO 

concentration from l.Oto 0. 2%. No changes were observed in the 

features ascribed to the Cameron system. In particular nov' > 0 are seen. 

Besides the features described above, new spectral lines appear 
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and grow in intensity with X-irradiation. These features are grouped 

in Table V. Those lines whose intensity grows in are noted. For · 

the weak lines, it could not be determined if the relative intensity 

changed with x.:..irradiation time. The group of lines at around 
-l l 3 

33800 em is assigned to the S ___., P transition of the 0-atom, which 

occurs 14 at 33700 cm-
1 

in the free atom. The ,8-group is seen in 
l 

these solids, supporting the presence of S 0-atoms. The relative 
l l l 3 

intensities of the S ___., D and S ___., P emission features are roughly 

equal in solid Ar, whereas the free atom transition probabilities 14 

l l . l 3 
predict S ___., D to be about 20 times more intense than S ___., P. This 

l 3 
could be due to an increased S ___., P transition probability resulting 

from mixing with the Ar states, which have large spin-orbit coupling. 

However, these arguments depend on the assignment of the ,8-group 

which is still not certain. l Moreover, in other systems where the 
-l 

,8-group is observed, the features at 33800 em are not seen. We did 

not, for example, see them in an 0 2 doped Ar solid. This may have 

been only an intensity effect since relatively weak exposures were 

taken. Assignments are not conjectured for the remaining lines in 

Table V. I.t appears that CO is not the carrier of these bands, but 

that they belong to some product or products formed in the solid. 
15 

·Jacox, et al. have, for example, shown that in Ar matrices C-atoms 

react with co to form ceo. 
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Table V. Unassigned bands observed from 1% CO in solid Ar 

/) 
vac 

(cm-1 ) 

33908 

33839 

33733 

25939 

24354 

22786 

22723 

21571 

X-raya 
time 

+ 

+ 

+ 

+ 

+ 

? 

? 

? 

relative 
intensity 

m 

s 

s 

s 

m 

w 

w 

.6.v 
(em ·1 ) 

30 

50 

50 

25 

25 

25 

25 

25 

0 

assignment 

1 3 s--> p ? 

a + indicates that the features grow in intensity with the length 

of X-irradiation time. 
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Abstract 

2 + 2 
The A :z:; - X IIi system of OH ~1d OD has been studied 

in solid Ne at 4. 2 °K. Both absorption and emission spectr a 

have been recorded, the latter for the first time in a solid 

matrix. Emission is seen from v' > 0, establishing a relatively 

slow vibrational relaxation rate in the A~+ state for OH and OD 

in solid Ne. Considerable fine str ucture is seen that differs for 

the two isotopes and is not a mirror image in absorption and 

emission. This structure bears no resemblance to the structure 

previously observed for OH and OD in the other rare gases. The 

. observed structure can be partly interpreted in terms of slightly 

perturbed rotational motion in the solid. The. larger pertrubation 

for OH compared with OD suggests that translation-rotation 

coupling may be important. Rotational relaxation times shorte1~ 
-6 

than ":5 10 sec have been established from the lack of "hot-band" 

structure in the emission spectrum. 

T Contribution No. 3555 
* .. Supported in Part by the Atomic Energy Commission. 



1. JNTRODUCTION 

Many small molecules have· been shown to undergo nearly frGe 
1 

rotation when trapped in solid rare gas hosts. Thes e include CH1., -

H:P, 2 HCl, 3 NH3 , 
4 NH2 

5 and NH. 6 Most of these investigations of 

rotational motion in solids have employed infrared spectroscopy. 

However, the latter two molecules, viz . NH2 and NH, have shown 

rotational structure in their electronic spectra. In the case of NH 

in solid Ar, McCarty and Robinson 6 have observed four lines of the 

A3 II -X3 2:- transition in absorption and four lines in resonance fluo-

rescence, assigning all eight lines to individual rotational transitions 

with nearly constant solid shifts. By analogy to N".d, it may be antic­

ipated that OH and CH should also show considerable rotational free -

dom in solid rare gases. However, the evidence to date has not 

. completely confirmed this expectation. Keyser 7 has studied CH in 

solid Ar and partly explained fine structure observed in both emis ­

·sion and absorption to rotation. Robinson and McCarty8 have 

assigned the 0, 0 band of the A22:+- X2 IIi system of OH and OD in 

solid Ar and Kr. Although fine structure is observed, it could not 

. be consistently assigned to rotationa l motion. More recently Wei9 

has reaffirmed the results of Robinson and McCarty and, in addition, 

investigated the A- X system of OH and ODin solid Xe. For the 

three hosts Ar, Kr and Xe the fine structure is very similar. How­

ever, the structure is also only slightly depen~ent on whether the 

guest is OH or OD. This implies that,if the fine structure is due to 

rotation, the rotational motion is strongly perturbed. 
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We have studied the A-X system of OH and ODin s olid Ne at 

4. 2 °K. Both absorption and emission spectra have been r ecorded. This 

is the first time that the emission spectrum of OH or OD have been ob-

served in a solid matrix. The fine structure of these molecules in solid 

Ne bears no resemblance to that in the other rare gases . The present 

results can be partly interpreted in terms of rotation in the solid. 

2. EXPERIMENTAL 

The molecular fragment OH in solid Ne wa s prepared by X ­

irradiation of H20-Ne solid mixtures . The solid was formed by 

deposition of the gaseous mixture on a sapphire window maintained at 

4. 2°K by direct contact with liquid helium. After deposition the 

sample was radiated with 50 kV X-rays from a tungsten target at a 
J 

tube current load of 45 ma. The intensity of the features assigned t o 

OH did not change appreciably with the length of time of irradiation 

after about 30 minutes. 

The gaseous mixture was prepared during deposition by flowing 

the rare-gas from a tank through a capillary leak and over a cold 

trap containing water at a reduced temperature . Water concentra­

tions between 0. 1 and 1. O% were typically used. · T he H20 employed 

was triply distilled. The D20 was obtained from General Dynamics 

Corporation with a specified purity of 99. 7%. The rare - gases \vere 
i 

Linde MSC grade and were used without further purification . 

The spectra were taken with a Jarrell-Ash 0. 75 meter gr ating 

spectrograph. In the neighborhood of 0, 0 band of OH at 312 5A the 

linear dispersion was roughly 14A/mm. A high pressure Xe lamp 

was used as a source for the absorption studies. The emission 
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spectra of the solids were excited using X-irradiation·. Exposure 

. times for the latter ranged from approximately 15 minutes to one 

hour. 

3. RESULTS 
~ 

The observed spectral lines assigned to OH and OD are listed 

in Tables I and II respectively. The only other molecular band sys-

tems observed were the Vegard-Kaplan and Second Positive systems cf the 

N2 molecule in emission. These occurred presumably because of either an 

air leak in the vacuum system or N2 impurity in the commercial Ne . 

Although some overlap of the OH and OD bands with the N2 systems 

resulted, this was not excessively serious and no attempt was made 
' ' 

to remove this trace of N2 • Overlapped lines are n?.ted in Tables I 

and II. The band systems of N2 in solid Newill be discussed else ­

where.10 

Microphotometer tracings of a portion of the OH and OD 

spectra are shown in Figs. 1 and 2. OE could not be completely re­

moved from the OD spectrum, even though the system was purged 

with D20 overnight. The corresponding lines are, however, suffi­

cently resolved even for the 0, 0 band, as seen from Figs. 1 and 2. 

Note that the line widths of the absorption features increase with 

increasing energy, while for the emission bands the line widths 

increase with decreasing energy. 

It is readily seen from Fig. 1 that the fine st:-ucture observed 

in the 0, 0 band for OD is compressed relative to OH, as expected 
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for rotational levels. By comparing Figs. 1 and 2, one also notes 

that the observed fine structure is. not a mirror image in absorption 

and emission. 

Emission from excited vibrational levels of the upper A2 L;+ · 

state occurs for both OH and OD . The maximum v' observed is 2 

for OH and 4 for OD. Emission from v' > 4 in a solid environment 

has been observed10 only for the Vegard-Kaplan bands of N2 in solid 

Ar, Kr and Xe, where v' as high as 6 are seen. The observation of 

v' > 0 for OH in the A2 L;+ -:X2 lli system establislies a vibrational 

relaxation time in the A state the order of, or longer than, the radia­

tive A-X lifetime. In the gas phase, the radiative lifetime is 

1><10-6 sec. 11 We can only set a limit of < 5><10-3 sec, imposed ,...., 

by the X-ray shut-off time, for the A state lifetime in solid Ne. On 

the other hand, no emission from excited rotational levels is 

assigned (vide infra) so that rotational relaxation occurs much more 

rapidly than the radiative lifetime. 

Employing the highest energy line for each emission band 

observed, the vibrational constants for the A and X states for OH 

and OD were calculated. The results are given in Table m, where 

the usual spectroscopic notation 12 is employed. The corresponding 

gas phase values are included for comparison. 12 It should be noted that 

the gas constants refer to "null lines", whereas the highest energy solid 

line is here assigned to a rovibronic transition. The results show only 

small perturbations on the vibrational constants by the Ne environment 

and confirm the vibrational analysis given in Tables I and II . 

.. ................. .... ~.--... ... _______ , , , ... ..... _ .. ··-····· .. --~---·· .. , ________ .,, ... ... .. .. ...... . -···· ·. 
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4. DIS CUSS ION 
~ 

The lower rotational levels in the energy diagram of the 

A2~+-X2IIi system of OH in the gas phase are given in Fig. 3. The 
. ? 

A-doubling of the rotational levels of the -rri state and the spin-

doubling in the 2~+ state are neglected since they are both small 

( < 1 em -
1
). The allowed transitions from the lowest rotational level 

in both absorption and emission are shown in Fig. 3 by vertical lines. 

A l t d . . . ' M ll:iJ 13 mh more comp e e energy 1agram 1s g1ven oy llU , \:en. 11 ree 
I . 

allowed rotational transitions from K · = 0 occur in emission. Six 

transitions from the J''=3/2 level o{the 2 II3; 2 substate are allowed 

in absorption, but only four lines are expected since the satellite 

bands R21(1) and Q21(1) are nearly degenerate with R 1 (1) and Q1 (1) 

respectively. 
-: L1 15 

Table IV lists the gas phase energies .I.., and the relative 

intensities of the transitions designated in Fig. 3 for the 0, 0 band of 

OH and OD. The intensities were calculated from the exp1·essions 

given by Earls16 for 2
::0-

2 II transitions. The observed lines and 

intensity estimates for OH and ODin solid Ne are given in columns 5 

and 6 of Table IV. All observed absorption lines are shown; however, 

only the three stronger emission lines are tabulated. The remaining, 

much weaker, emission features are given in Tables I and il. These 

will be discussed later. The three stronger emission lines for both 

OH and OD are assigned to the P 1 (1), P 12(1) and 0 2 (2) transitions. 

The intensities observed in solid N e agree approximately with the 
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intensities predicted for the free molecule. These transitions all 

originate from the lowest rotational level of the A 2 :6+ state , 

but only P 12(1) and 0 2 (2) terminate in the X2 IT1; 2 substate. The 

separation between these two lines gives the J" =1/2, J'' =3/2 energy 

difference in the solid (£. Fig. 3). The measured energy separation 

for the 0, 0 band is 51 and .36 em -
1 

for OR and OD respectively~ while the 

average P 12(1)-02 (2) separation for all vibrational bands is 52 
-1 

and 38 em . The corresponding gas phase values for 
-1 

the 0, 0 band are 61 and 32 em . For OD the line assigned to 0 2 (2) 

is not clearly resolved from P 12(l),as seen from Fig. 2. Thus, the 

measured separation could easily be too large by ,...., 6 em - 1
, which is 

. -1 
the solid-gas difference in P 12(1)-02 (2). However, the -9cm difference in the 

splitting for OH between gas and solid is real. The P 1 (1)-P12 (1) 

separation depends not only on the rotational term values, but also 

on the multiplet splitting in the 2 l1~ ground state. The mean P 1 ( 1)-
.!. 

P 12(1) splitting in Ne is 144 and 152 cm-
1 

for OH and OD respectively. 
-l . 

For both isotopes these are roughly 20 em smaller than the gas 

values. The energy separations discussed above are summarized in 

Table V. 

The other, much weal~er, emission features can not be readily 

assigned to rotational structure. For OH two additional broad lines 
-1 

can usually be seen to lower energy of P 1(1) by about 35 and 70 em . 
_1 

Only one such feature is seen for OD roughly 55 em to the red of 

P 1 (1). However, this could correspond to the two features seen in 
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OH if these were unresolved for OD. These additional emission 

lines remain unassigned. 

In absorption the two lowest energy lines are quite sharp 

(----5 em - 1
) for both OH and OD. These have been assigned to P 1 (1) 

.. I I 

and Q 1 (1) + Q21 (1), which terminate at K =0 and K =1 respectively. 

The observed intensities disagree with those for the free molecule. 

However, the predicted intensities are quite sensitive to the ratio of 

the spin-orbit coupling constant to the rotational constant. 16 More -

over, if the rotational levels are perturbed as discussed later, sig­

nificant departure fron1 the free molecule intensities could result. 

The perturbation on the A 2 L+ rotational levels, as given by 

[ Q1(1)+Q21(1)]- P 1(1), is much less for OD than OH. The appropriate 

differences are s hown in Table V. 

The next higher energy absorption feature should be 

R1 (1) + R21(1) which terminates inK' = 2. Two lines are seen 

at about the correct energy for R1 (1) + R21 (1), separated by 40 and 
-1 . 

20 em for OH and OD, respectively. In the reduced symmetry of 

the crystalline site, the K 1 = 2 rotational level could be split by 

static crystal interactions. Two different substitutional site sym ­

metries are possible for a doped rare-gas crystal, corr-esponding to 

either the normal face-centered-cubic (fcc) or the hexagonal-close­

packed (hcp) structure, which is stabilized by certain impurities. 17 

The substitutional site symmetry f>3h in a hcp crystal is much lower 

than the .Qh site symmetry of the fcc crystal. In a f>3h site even the 

K' = 1 level can split, and this splitting is predicted to be roughly the 
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I 

same as the overall splitting for K =2 for low values of the rota-

tional ban·ier. 18 However, the QJ.(1)+Q21.(1) line (K
1 

=1) is much 

sharper than even the individual features assigned to RJ.(l)+R2 1.(1) 
I ., 9 

(K' =1) . In an ~h site only levels with K ~2 are split . .I. Again for 

low values of the barrier the band widths for K' =2 and K' =3 are 
I I 

roughly the same. However, K =2 splits into two levels while K =3 is 

split into three levels. As seen from Fig. l,the features assigned 

to RJ.(l)+R2 J.(l) and SJ.(l), where K
1

=2 and 3 respectively, have rough­

ly equal widths for OD. The SJ.(l) line was not seen for OH, presum-

ably because of the lower H20 concentrations employed. Thus , one 

possible explanation for the observed structure is the existence of a 

rotational barrier which splits the K'=2 and K' =3 rotational levels. 

The individual components of K'=3 are 'presumably unresolved, but 

contribute to the line width of the SJ.(l) transition. If this explanation 

were completely correct, the splitting of K' = 2 level is a very sensitive 

measure of the rotational barrier. Determining the barrier from 

the splitting of the K'=2 level and the data given by Devonshire, 19 

the results shown in Table VI arise for the rotational levels. The 

rotational constant has been assumed to remain unchanged in the 

solid. Even within our rather large experimental error, the obser-

vations can not be explained by a rotational barrier alone. In par-

ticular the [Q1 (1)+Q21(1)]- P 1(1) separation for OH is in violent dis-

agreement. 

The much larger solid perturbation in [ Ql.(l)+Q21.(1)] -PJ.(l) for 

OH can be explained by rotation-translation coupling. 20, 3 This 



l::Sl 

results if in the solid the molecule rotates about a point, called the · 

center of iteraction, which does not correspond to the center of 

mass. This leads to a coupling between the constrained translational 

and the rotational motion of the molecule. The coupling depends on 

the difference between the center of mass and the center of iter­

action, which is given by A. Friedmann and Kimel 20 show that the 

energy perturbation on the Kth rotational level, D. E(K), is approxi­

mately given by 

D..E(K) = BmA2 $ 
he 21 [

1
· _ 2.;(K2+K+l)-4K(K+l)Jl 

. (.;-2K) (.;+2K+2) 
( 1) 

Here B is the rotational constant, m is the molecular mass, I the 

moment of inertia, and .; is the translational frequency in units of B 

·of the diatomic in the solid site. The other parameters have either 

been previously defined or have their usual meaning. Employing· 

this perturbation approach, the coupling parameter A can be deter­

mined from the observed [Ql(l)+Q2 l(1)]-Pl(l) separation for OH. 

The other necessary quantity is the translational frequency .; of OR 

in the Ne site. This was estimated by a method suggested by Friedman 

d Ki 120 f , . ' 11 ' d. 1 . an .... me rom a narmoruc-osc1 ator mo e us1ng a Leonard-

Jones (6, 12) interaction potential with parameters for Ne-Ne aDDrox-
~.. . 

imating the OH-Ne parameters. The translational frequency for OH is 

reasonably expected to be roughly the value given in Table VI, which 

is near the Debye maximum for solid Ne. 21 .Given the translational 

frequency and the coupling par-ameter, the relative positions of all the 
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OH and OD rotational levels are in principle calculable from Eq. (1 ). 

The results are presented in Table VI. The impor tant point to note 

is that the large Q 1 (1)-P1 (1) perturbation for OH and at the same time 

the very small perturbation for OD can be readily explained. 

The ~' = 2 rotational level in OD is also only slightly perturbed. 

This level can not be calculated from perturbation theory for OH since 

a near resonance with the translational frequency occurs. Similar 

behavior occurs for OD at K' = 3. It may be that one of the two lines 

observed in the R1 (1) + R21 (1) region corresponds to absorption to the 

level wherein one quantum of the translational motion is excited. 

This mixes with the rotational states by the translation-rotation 

coupling and thereby steals intensity. 
-1 

The lines at 32415 em for 
-1 . . -1 . 

OH and 32506 em for OD are 67 and 72 em , respectively, to high 

energy of the P 1 (1) line and could possibly be the translational quantum. 
-1 . 

This leaves the line at 32486 em as the R1 (1) + R 21 (1 ) line for OD w:b..ich 

then has a very small rotational energy shift from the gas phase. For 
-1 

OH the line at 32455 em is then assigned to RJ.(l) + R21 (1). It is 

presumably perturbed quite strongly by the nearby, but lower lying, 

translational level and is, thus, pushed to higher energy. Although 

the local translational frequency appears closer to the R 1 (1) + R:n (1) 

line for OD, the .translation-rotation coupling is much less fur OD so 

that r esonance interactions do not push the levels apart. A serious 

problem with the above assignment is the relative intensities of the 

various lines in OH and OD. The line that is tentatively assigned to 

the translation is more intense in OD than in OH. 
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Neither of the two mechanisms discussed above need by themselves 

explain the data since both the static crystal-field interaction and the 

dynamic translation-rotation coupling can simultaneously occur. 

Moreover, coupling to lattice phonons can perturb the levels fu rther. 

In summary, it seems that the K'=l, K'=O separation in the A2 L+ 

state can be reasonably explained by rotation-translation coupling. 
I 

However, for K >1 the situation is less clear. ...A .• n "exact" fit of the 

experimental data could possibly be made by treating both the cou-

pling parameter and the translation frequency as parameters and 

diagonalizing the Hamiltonian matrix. 3 ·However, our experimental 

data does not warrant -this at present. 

The author gratefully acknowledges the support and encourag~­

ment given him by Professor G. W. Robinson. He also thanks S. Wei 

for allowing him to examine his unpublished data. 
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TABLE I. A2
"'E+ -rni system of OH in solid neon. 

v', v" Vvac Relative Assignment 
(cm-1) Intensity 

Absorption 0,0 32455 m 
32415 w 
32372 m Ql(l)+Q21(1) 
32348 s 1?1(1) 

1, 0 * 
Emission 0,0 32347 vs Pl(l) 

32310 vw 
32277 vw 
32203 . s P 1, (1) 
32152 w 02~2) 

0, 1 28774 vw P 1 (1) 

* D 11) 
~ 12\ 

1, 0 35317 ms P1(1) 
35245 vw 
35174 m }\, (1) 
35119 vw 02{2) 

1, 1 31745 s P 1 (1) 
31718 vw 
31678 vw 
31597 m "D I~) ..... 1'> ~.!. 

31548 vw 0 2 Z2) 

2,0 38101 w P 1 (1) 
37958 vw D / i ) 

~ 12\.J.. 

* 02(2) 

2,1 34528 lTIS P 1 (1) 
34452 vw 
34383 · m P 1,(l) 

* 02~2) 

2,2 31120 m 1\(1) 
30976 w P 1, (1) 

* 02{2) 

* observed, but not accurately measured. 
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T ABL E ll. A 2 :0+ -rrr. 
1 

system of ODin solid neon. 

v' , v" Z.Vac Relative Assignment 
(em - 1) Intensity 

Absorption 0 , 0 32560 vw. 81(1) 
32506 m 
32486 w 
32449 lll Q1(1)+Q.?)(1) 
32434 s p 1(1. 

1,0 34702 w,b 
34650 w Ql(l)+Q2J.(l) 
34636 m P 1(1) 

2,0 * 
Emiss i on 0,0 32434 vs P 1(1) 

32386 vw 
32282 s p 12(1) 
32246 vw 02(2) 

. 0, 1 overlap with VK 0, 9 1· 

1,0 34634 ms P 1(1) 
34573 vw 
34486 m P 12(1) 
34447 vw 0?(2) 

1,1 32000 s P 1(1) 
overlap with VK 0, 8 

1,2 29450 vw P1(1) 
29298 vvw pl2(1) 

2,0 36733 w Pl(l) 
36580 vw pl2(1) 

2, 1 34101 ms P1(1) 
overlap with VK 0, 7 

2,2 31554 m . .P1 (1) 
31401 mw P 1:/1) 

* 02(2) 

. ' 



TABLE II. (Cont'd. ) 

29092 vw 
28936 vvw 

3,1 

3,2 

overlap with VK 0,. 6 

33555 m 
33406 mw 
33367 vvw 

3,3 * 
32999 vw 
32849 vvw 

4,3 

* Observed, but not accurately measured. 

tVK = Vegard-Kaplan system of N2 • 

P 1(1) 
pl2(1) 

D (~) ...... l .l 
pl2(1) 
02(2) 

D I•) ...... 1\1 
pl2(1) 
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TABLE TIL Molecular constants of OH and ODin solid neon. 
All entries are in em -1.. 

OH OD 

State Gas a Solid Gas a Solid 

Az"Z+ w 3180. 5 3154.5±0.3 2319.9 2295. 1±1. 4 e 
W X e e 94.93 92.6±0.7 52.0 48.5±0.3 

:X:rr. 
l we 3735.2 3735.2±0.4 2720.9 2716. 5±1. 5 

w exe 82.81 81. 2±0. 3 44.2 41. 9:::0. 5 

aRef. 12. 
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TABLE IV. Summary of gas and solid data for 0, 0 band. 

Gas a Solid 

Isotope Transition em-l Relative -l Relative Gas-Solid em 
Intensity Intensity (em -l) 

OH Sl(l) 32643 0.49 

Rl(l)+R2l(l) 32542 4.30 32455 ni 87 
32415 w 127 

Ql(l)+Q2l(l) 32474 10.00 32372 m 102 

Pl(1) 32441 6.18 32348 s 93 

pl2(1) 32314 3.50 32203 m 112 

0 2(2) 32253 0.81 32152 vw 101 

OD Sl(1) 32637 0.70 32560b vvw 77b 

Rl(1)+R2l(1) 32583 4.70 32506 m 77 
32486 w 97 

. Ql(1)+Q2l(l) 32547 10.00 32449 m 98 

Pl(l) 32530 5.97 32434 s 96 

Plz(l) 32399 3.57 32282 m 117 

0 2 (2) 32367 1. 17 32246 w 121 

aOH, Ref. 14; OD, Ref. 15. 

b -l ± 10 em . 



141 

TABLE V. Summary of discussed energy differences. 
All entries in em -1.. 

OH OD 

Gas a Solid Gasb Solid 

P 1 (1)-PJ.2 (1) 126 144 131 152 

Pl.2(1)-02 (2) 61 52 32 38 

QJ.(1)-P1 (1) 33 24 17 16 

RJ.(1)-QJ.(l) 68 43, 83 36 37, 57 

Sl(l)-RJ.(l) 101 54 68, 48 

a Ref. 14. 

bRef. 15. 
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T ABLE VI. Observed structure in the 0, 0 band interpreted in 

ter ms of a static crystal field interaction. 
All entries are in em - l.. 

B . a arr1er Ql(1) - P 1 (1) R~(1)-Q1(1) R~(1)-Q1(1) 

Obs. 24 43 83 
- 97 35 48 88 
+85 34 56 96 

Obs . 16 37 57 
-45 18 30 50 
+41 18 27 47 

aBarrier determined from splitting of K' =2 l evel (R~ -R~) as 
discussed in text. 
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TABLE VII. Observed structure in the 0, 0 band interpreted 

in terms of rotation-translation coupling. All entries 
-1 

are in em , except where noted. 

-'· Q1 (1)-P1 (1) R1 (1) -Q1 (1) 
Translation Ar 
Frequency (A) Calc. Obs. · Calc. Obs. 

OH 58 0.15 24 n. r. 43, 83 

OD 57 0.094 16 16 32 37, 

i"Difference. between the tenter of mass and the center of 
interaction. 

n.r. =near resonance. 

57 



Fig. 1. Microphotometer tracing of a portion of the absorption 

spectra of OH and OD in solid Ne. 
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Fig. 2. Microphotometer tracing of the 0, 0 band of OH and 

OD observed in emission in solid Ne. 
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Geometry: of the Lowest Tri Jlet State of Benzene* 
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ABSTRACT 
~ 

The phosphorescence,. fluorescence and absorption 

spectra of seven isotopic benzenes in a C6D6 host crystal 

were obtained at 4. 2° K. The isotopes having less than 

:Q,3h symmetry show splittings in their phosphorescence 

and singlet absorption spectra. Expected-splittings in the 

fluorescence spectrum have not yet been observed because 

of the greater difficulty in obtaining the required high reso- . 

lution fluorescence spectra. The splittings are interpreted · 

in terms of a distortion, which may arise either from 
l 3 

extrinsic or intrinsic perturbations, in the B2u and B1u 

states of crystalline benzene. This distortion causes 

conformers of isotopic benzenes with less than trigonal 

symmetry to have different zero-point energies and leads . 

to the observed line multl.plicity. The vibronic . 

*Work supported in part by the U. S. Army Research Office . 

. i· t NSF Predoctoral Fellow. Present Address: Department of Chemistry, 
. University of Rochester, Rochester, New York. · A portion of this work 
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the California Institute of Techno~ogy, Pasadena, California, 1965. 

· :!:NASA Trainee. · 

§ Contribution No. 3374. · This section originally appeared in J. Chern. 
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structure of the phosphorescence and fluorescence emis­

sions implies that the magnitude of the distortion is s mall. 

Benzene molecules in the low-symmetry crystalline 

field are not expected to retain a hexagonal shape~ However, 

· the splittings in the fluorescence are only about 1/8 as large 

. as those in the phosphorescence, implying that the distor­

tion in the 
3
Bm state is larger than that in the 1 Bzu state. 

There is therefore some cause to believe that the distortion 

· .in the 3 B1u state l.s partly intrinsic and thus has the signifi­

cance attached to it by theorists. Our experiments, however, 

, cannot actually distinguish between intrinsic and extrinsic 
' . ~; 

· distortions, but certainly give the impression that the distor-

.tion of the 3 B1u s~te of benzene in the crystal is not very 

substantial and is either wholly or partly caused by the effect 

of the crystal field. 

The relative intensities of the components of the 

multiplet structure in the phosphorescence are strongly 

concentration dependent because of trap.-to-trap excitation 

migration in the crystal. At low guest concentrations, where 

little migration can occur, the intensity ratio gives the statis-

. tical weights of the components; at high concentrations a 

Boltzmann intensity ratio is obtained. The interpretation of 

the available optical data can be made to agree with the 

interpretation of ESR results by de Groot, Hesselmann, and 

·van der Waals that a distqrted 3~u benzene is preferentially 

oriented in the site caVity of the solid phase, but the resultL.1g 

r.~icture is not a wholly satisfying one. · 

' . 
. : .. · . 

. '·· ' .. 
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1. INTRODUCTION 
-~ 

Over twenty years ago in the classic paper ·entitled "Phosphorescence 

and the Triplet State" by Lewis and Kasha 1 it was stated " ... there must be 

a peculiar distortion of the benzene molecule in the phosphorescent state." 

. That supposition was based on two·arguments: 1) The weakness of the 0, 0 

band relative to other vibronic components of the spectrum, and 2) an 

energetic argument that predicted no resonance energy in the triplet state. · 

In addition, chemical intuition seemed to dictate a qu~noida+ structure fo:r 

benzene in its lowest triplet state. These .arguments were extended by 

Redlich and Holt. 2 

We know that this line of reasoning would probably not now lead to 

the conclusion that the benzene molecule is distorted in its phosphorescent 

state. It. is now known that the weakness of the 0, 0 band is caused not by 

the Franck-Condon effect operating between a distorted excited state and 

a hexagonal ground state but instead is a manifestation'-of ~he D6h symmetry . .,... 

·selection rules for transitions, 3' 4 which in the absence of external fields 

·or molecUlar distortions would p:redict a zeto ~lectric dipole contribution 
3 1 

. to the 0, 0 band of the B1 u - A1g transition . . In addition, the energetic 

arguments of Lewis and Kasha are now difficult to follow in view of modern 

· knowledge about molecular electronic energy computationsr A loss of 

"resonance energy" in the triplet state would imply a major distortion of · 

the molecule, an effect that does not appear to take place in view of the 

similarity between the vibronic structure in the phosphorescence spectrum 

and the fluorescence spectrum of benzene. This latter point still requires. 
. 3 l 

clarification though a more detail~d study of the B1u - A1g absorption 
. . ~0 -

spectrum, a difficult experi~ent :.considering the -10 oscillator strength0 

for the transition! · 

----- - - ----------·----·---------·-------·-··· 
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Even though the arguments of Lewis and Kasha might not be used 

today, the fact remains that in 1944 the suggestion that a polyatomic molecule 

could completely change its shape on electronic excitation was bold indeed 

· -and would not be proved by spectroscopists to be a common phenomenon among 

polyatomics until fully ten years later. 6 Our intuition, based now on a large 

amount of experimental data, would suggest that there is no general reason to 

expect any excited electronic state to have the same nuclear configuration as 

_the ground state. In particular, excit~tion of an electron into an anti bonding 

orbital might be expected to lead to energy stabilization and molecular dis­

tortion through bond rehybridization. When the change of geometry is subtle, 

as it may be in the benzene triplet, rather more thana casual look at a low 

resolution optical _spectrum may be needed, however, to prove the point for or 

against distortion. 

The present paper begins by giving a brief theoretical background 

to the problem of nonhexagonal benzene. Optical experiments are then 

· described that show the lowest excited states of be,nzene in the crystalline 

state to oe nonhezagona.l •. · :: _._-·::: · .· · .. · 

. ' < 
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2. THEORETICAL BACKGROUND 

More recent interest in the structure of triplet ·benzene was kindled 

by the work of Moffitt and Liehr. A paper by Moffitt 7 on the electronic . 

structure of cyclic polyenes ~aving the general formula C4 v + 2 H4 v + 2 · 

lays the · theoretical ground work for the later calculation by Liehr8 of 

. vibronic interactions in benzene. Moffitt considers the ground state and the 
. . 2 4 3 

four states from the lowest excited configuration (a1 ) (e1 ) ••• (e) (ev + 1). 

Mixing only among the four excited states was taken into account. In benzene, 

v = 1, and it is well known9 that the four excited states in question belong to 

spatial representations B1 u, B2u, and E1u of. the point group Q6h . Triplet 

states were not considered explicitly, but within the framework of Moffitt's 

approximations, the results for singlets and triplets are identical. Moffitt 
. . 

showed that if atomic orbital overlap were neglected in a 2prr basis repre-

sentation, "one-electron perturbations" mixing the four excited states take a 

remark?-ble aad particularly simple form. In the first place, such one -electron 

perturbations do not connect the B1u state with the B2u state nor can they mix 

the components of the do'4-bly degenerate E1u state. Thus a splitting of the Eni 

state will not take place in first orqer; splitting will take place in second order, 

· .. however, since one component of the E1 u state is mixed with B1u and the other 

.component is mixed with B2u: (see Fig • . 1 of. Ref • . 7). 
·. , . . 

·.- ; 

-.: . . "... . . 

. ·. . ~ 

' .. . ... ; . , 

· , ' : . .' 

·' . 
I, • ,~ . • • 
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Moffitt defined~ and odd pe.rturbations, respectively, as those 

which arise :in the perturbation problem by connecting atomic orbital basis 

functions on carbon atom positions whose numbering differs by ev~n (in­

cluding zero) and odd integers. He showed that a purely even one-electron 

perturbation would mix the B2u state with one component of the E1u state, 

and a purely odd one-electron perturbation would mix B1u with the other 

component of E1u. As a first approximation, vibronic interactions can be 

eA.-pressed as a sum of single ~lectron operators, the effects of nuclear 

displacements on electron-electron repulsion. supposedly giving an energy 

contribution in a higher order . . Thus, roughly speaking, vibronic inter­

actions can be considered one-electron perturbations and Moffitt's results 

can be applied. Furthermore, considering C-C stretching vibrations only, 

the vibronic perturbation is "odd", and only the B1u state mixes with the 

E1u state. This means that a vibronic interaction of the type considered 
- . . 1 3 

is expected to be much more effective in perturbing the ' B1u states of 
1 3 . 

benzene than the ' B2u states. Consistent with this theoretical viewpoint 

is the experimental observation4 that a primarily "C-C stretching" vibration 
3 1 

is responsible for intensity in the . B1u - A1g transition but not in the 
1 1 

· B2u - A1g transition. It is presumed here that intensity enhancement 
. . . 3 1 ' 

. depends on vibronic mixing with the respective E1u or E1u state. A 

"carbon bending" vibration would give rise to much smaller odd-type pertur­

bation te.rms and would contain even terms as well. Thus carbon bendi.Ilg 

vibrations can perturb both B1 u and B2u. states, but to a smaller extent 

than the stretching vibrations. Moffitt's general conclusions would therefore 
3 

indicate that the B1u state e>f benzene stands to be distorted to a greater 
. l . 

extent than does the B2u state through coupling of the electrons to C-C 

bond stretching motions. The· larg;er energy denominator for the . 

. · . . 
. .. . . .. . 



156 

singlet (-16, 500 em -
1

)
10 compared with that for the triplet (-6900 em -

1
) 

11 

·would further decrease the e},.,'tent of ElU mixing and distortion of the lowest 

singlet compc:tred with the lowest triplet o~ benzene. 

Extension of Moffitt's theory to include the variation of electronic 

energy with nuclear displacement and the numerical evaluation of the matrix 

elements themselves has been supplied by Liehr. 8 Considering the 
1
B1u 

l 
and E 1u states to be exactly degenerate in the hexagonal configuration, 

instead of being split by around 1 e. v. by interelectronic repulsion as 

they are in the real molecule, Liehr found that the Jahn-Teller depres-
-1 -1 

si on energy for a D2h distortion is 2005 em and 2510 em · , respect-
"' 

ively, depending on whether the molecule .hastwo short bonds in the 1, 2 . 

and 4, 5 positions as in a quinoidal structure, or two long bonds in these . 

positions ("nonquinoidal f>zh structure''). He concluded therefore that 

there was a definite possibility that the molecule is deformed in such a 
. -1 

B1u state. According to this calculation, there is a 505 em barrier for 

pseudo-rotation between the· three possible minima corresponding to the 

low energy structure . . When one takes into account the empirical 1 e. v. 
. 3 3 

energy difference between the B~u and E1u states, .Liehr's vibronic 

· energ~es would have to be approximately doubled to give second-order 

contributions of comparable magnitude as those quoted in his paper. 

A rather serious criticism of Liehr's paper concerns his use of the 

Lennard-Jones or harmonic approximation12 for the estimation of the bond 

length dependence of rr -electron energies. More recent work
13 

has indicated 

that this is a relatively poor approximation. A better one for some purposes 

is an exponential ·dependence used by Longuet-Higgins: and Salem. 
14 

As poiilted 
. 13 

by Hobey and McLachlan, the Lennard-Jones approximation leads to 

a positive valu~ of the second d,erivative of the rr-electron resonance energy 
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with distance, while the Longuet-Higgins and Salem approximation leads to 

a negative value for f3"(r). Robey and McLachlan show that for the negative 

ions of molecules having in their undistorted configuration a 3- or 6 -fold symmetry . 
; . . 

axis (e. g., benzene, coronene, and triphenylene), the total D2h distortion ,..... 

energy consists of two parts: a Jahn-Teller energy depending upon f3'(r) 

and equal in magnitude for the two distorted forms, fu.'1d a contribution 

depending uponf3"(r) which has a positive sign for one distorted configur-. 

ation and a negative sign for the o"t."ler. Thus the nature of the energetically 

lowest configuration depends upon the sign of f3", and the theoretically pre- · 

· .. dieted stable configuration may therefore be different depending upon what 

approximation is used for f3(r). In particular, the Longuet-Higgins and 

Salem approximation favors the quinoidal structure of the benzene ion while 

··the Lennard-Janes approximation favors the nonquinoidal structure~ These 

same arguments can be carried over to the neutral molecule states. 

de Groot and van der Waals15 have considered the theoretical pr<?b­
s 

· lem of conformational isomerism in the benzene B1u state. Using the 

Longuet-Higgins and Salem apprmdmation for f3(r) and assuming D 2h . . . . . . ,... 
. . •l 

distortions, these authors found a stabilization energy of 1520 em 
-l 

for the quinoidal structure and 1000 em for the nonquinoidal D2h struc-,..... 
. -l 

. ture. The 520 em separation between these two forms is in good 

quantitative agreement with the calculation of Liehr except that the stabil­

ization energy is in a11: opposite sense (! ), the quinoidal structure being 

more stable, according to deGroot and van der Waals, than the non.­

quionoidal structure. This is just what one would expect following the 

Hobey and McLachlan arguments. But it is certainly disconcerting to 

the experimentalist who might well conclu.de that the theoretical calcu­

lations thus far have shown the quinoidal and nonquinoidal D2h forms of 
. . "' 

benzene to have the same energy within a rather wide limit of uncertainty. 
. ' 

.. · 
'I . • ' 
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Yet the calculations so far have been relatively crude in the kinds of 

.approximations they have employed. Only C-C bond stretching dis­

tortions have been considered. Bond bending and the out-:of-plane degree 

of freedom might well be considered in future calculations. 

Lacking at the moment these more sophisticated results, one must 

resort to experimentation in order to shed light on the question of the 

structure of benzene in its lowest triplet state. In the next few sections 

results of fluorescence and phosphorescence measurements in isotopic 

. mixed crystals of benzene will be discussed. Some new absorption me as­

urements will be mentioned briefly. These results show that the lowest 

triplet state and, to a lesser extent, the ·lowest excited singlet state of 

· crystalline benzene deviate from the hexagonal form. Afterwards, the 

ESR results o.f deGroot and van ·der Wa~ls15 will be compared with the 

.. optical spectroscopic results. 

3. EXPERIM.ENTAL 
~ 

Spectra . of seven ·partially deuterated benzenes dissolved· as guests 

in a C6D6 host crystal have been photographed at 4. 2° K. The molecules . 

studied are: C6H6 , C6H5D, 1,1,-C6H4D2 , 1, 3-C6H4 D2 , 1, 3-C6H2D4 , 

1, 3, 5-C6H3D3 , and.1, 2, 4-C6H3D3 • Because of zero-point effects (vide 

infra) there is a shift of the 0, 0 transition to lower energy by approxi ... 
. -1 

mately 33 em per hydrogen atom substituted into C6D6 • Thus at 4. 2° K 

more highly protonated species act as effective energy traps from. which 

·emission is observed. To avoid effects caused by trap-to-trap exci­

tation transfer to chemical impurities, 
16 

s9lute concentrations between 

0. 01% and 1. O% were generally used. 

All benzenes were obtained from commercial sources except for 

the 1, 2,4-C6H3D3 which was syntre size~ by one of us (GCN). · The isotopic 
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purity was found to be adequate for all the benzenes since emission from 

isotopic impurities was spectroscopically well resolved and could easily be 

charactel·ized.· Samples of adequate chemical purity were prepared by 

.vacuum sublimation. Further purification with metallic cesium 11 did not 

alter the emission spectra assigned to the isotopes of benzene. 

Crystals having a thickness of 1-10,u. were prepared by freezing the 

liquid mixture between quartz plates, the entire process being carried 

out in a nitrogen atmosphere. Crystils 1-3mm thick were grown from the· 

liquid mixture in a sealed-off quartz cell. The cell was later broken 

open under the liquid helium to achieve good thermal contact with the 

helium bath. Both methods of growing the isotopically mixed crystals 

gave identical emission spectra, but, presumably because of more complete · 

absorption of the exciting light and better degassing, emission from the 

thicker crystals was more intense. 

Most of the phosphorescence spectra were obtained in the second 

or third orders of a 15, 000 line-per-inch grating in a two-meter mount. 

Fluorescence and absorption spectra were taken in third order. A few 

plates, showing better than double this resolutio~, of the phosphorescence 

and the absorption spectra, were obtained ~7. in the ~third· ari"d· fourth. orders of . 

·a Jarrell-Ash 3. 4 meter photographic instrument equipped with a 15, 000 

line/in. grating. Good fluorescence spectra have been more difficult to 

obtain on the higher resolution instrument. Such spectra will be reported 

at. some future time. When more accurate intensity measurements were 

desired, the spectra were studied using a Jarrell-Ash 1. 8 meter phot oelectric 

. scanning·spectrometer. No absorption from chemical impurities was s een 

to the long wavelength side of the benzene cutoff at about 2650 A. Exposure 

·times on the 2-meter spectrograph for the more intense vibro"nic components 

· .. ;· 
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were about five minutes in the thick samples for · both phosphorescnece 

and fluorescence. Because of their sharpness, phosphorescence spectra 

on the larger photographic instrument required only slightly extended 

exposure times. A representative part of a microphotometer trace of the 

lower resolution phosphorescence spectrum of one of the isotopes is 

shown in Fig. 1. Phosphorescence line widths as observed on the large 
. -1 

spectrograph are apparently less than 1 em and may be instrument 

limited . . The best line width that could be obtained with the 2-meter 
-1 -1 . 

spectrograph was around l. ·cm · . Because of the lower em dispersion 

in the fluorescence region, the experimental linewidth was about a 

factor of two greater. 

·., 

. ··. 

. .. . .. . ··· .. ·· . . . · . .. · .. 

I ·. 
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4. VIBRO:t\TIC STRUCTURE OF 

FLUORESCENCE AND PHOSPHORESCENCE 

Be:fore discussing the details· of the observed spectra we will briefly 

describe the general features of benzene phosphorescence and fluorescence 

as observed from isotopic guests in a C6D6 host crystal. A more complete 

description of the spectra will be given in another paper. The lowest triplet 

state of undistorted benzene most likely has B1u symmetry in point group 

D6h and is thus both spin and electronically forbidden. Most of the transition 
"" . 

3 
. probability is thought to arise from vibronic coupling of the B1u state with 

3 l 
the nearby E1u state which in turn is mixed with the E1u state by 

spin-orbit coupling. 18 The proposed reduction of the symmetry of the 

triplet state from J26h does not appear to greatly alter this mixing scheme 

since the phosphorescence spectrum is basically that of a vibrationally-

induced, electronically-forbidden transition. In fact the major vibronic features 

in both the fluorescence and phosphorescence spectra of all isotopic 

modifications are best described on the basis. of an equilibrium nuclear 

configuration of hexagonal shape. That is to say, the vibrations most 

active in inducing the electronic transitions· either have e2 o- symmetry 
0 

or correlate with these same J26h normal coordinate motions for the 

partially deuterated species. 

In a discussion of emission spectra at low temperatures it must 

be remembered that only ground state vibrations appear. The most active · 

vibration in the phosphorescence spectrum of C6H6 is the e2g mode at 
-l . . ."'l 

1595 em . Within the line width of 1 em: , the twofold·: degeneracy of this 

vibration does not appear to be removed by th~ low symmetry of the crystal 

field, i.e. , there is in general no observable site group splitting. 19 

. ·': 

.. .. - -.... :.. ·~ . ... ·: , .· . .. 
\ . .. ·. . · · ··· · . 
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This mode is somewhat complicated by Fermi resonance with the 
-l 

606 + 990 em (e2o· + a10.) vibration. There is .intensity stealing .from 
1:> 1:> 

-l 
the strong 1595 + n ~ 990 em progression by the very weak 60~ + 

~ . ~ . 

(n + 1) x 990 em · progression. The 606. em mode alone is observed 
' . -'l 

to be only --10% as intense as it is when in resonance with the 1595 em 

·modes. This fact is in qualitative agreement :With the previously dis­

cussed conclusions of Moffitt that a primarily odd perturbation, such as 

would arise in a C-C stretching motion, is most effective in vibronic 

interactions between Bm and E1u states. The e 2g CH bending mode at 

1175 em-lis also weakly active. Weaker yet are the b2g 1004 cm-
1 20 

-l -1 . 
and 703 em vibrations and the totally symmetric al,o- 990 em pro-

• . 1:> 

gression. It should be reme:n:1bered at this point that in the crystal 

site, where the only symmetry element is inversion, 23 mixing among 

all of the g_-vibrations can occur to various extents. The presence of 

b2g and a1g vibrations then need not be caused by any intrinsic property 

of the benzene molecule itself but may only be caused by the low sym­

metry of the crystal field in which the molecule resides. The fact that 

the other _g-vibrations are not very intense implies, however, that the 

]?6h ·molecular classification for C6H6 is still approximately valid even 

. in the crystal. 

Deuterium substitution changes the symmetry of the vibrational 

coordinates but. leaves essentially unaltered the molecular electronic sym-

. me try. ·~· For C6H5D the vibrational symmetry is reduced to f 2v , if undistorted, . 

and the doubly-degenerate e2g vibrations of C6H6 correlate with a1 ·and b1 

vibrations of Sv. Thus in place of the 1595 + n x 990 progression for 

C6H8 , there are progressions of nearly equal intensity . based upon the . 
-l . -l . 

1591 em (a1 ) and 1574 em (b1 ) vibrations.. The components of 
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the split 1178 em (e2o-) vibration at 1175 em (a1 ) and 1158 em (b1 ) are 
b . 

-l 
seen, but they are relatively weaker than in C6H6 • The 1175 em component 

is somewhat more intense than the 1158 em -l component._. Very weak 

vibronic transitions are also seen to arise from the b2 vibrations (former 
-l -l 

b2 o·) at 704 em and 995 em as well as from other vibrations riot seen in 
b 

C6H6 • A portion of the C6H5D phosphorescence is shown in Fig. 1. 

For 1, 4 -C6H4 D2 , which has vibrational symmetry D2h in the 
"' 

undistorted molecule, the degenerate e2 o- vibrations of C6H6 are again 
b 

split. The main portion of the phosphorescence again involves the 
-l -l 

1569 (ag) em and 1587 (b1g) em modes, which result from the splitting 
-l . 

of the 1595 em vibration of C6H6 • All expected· vibrations are seen. 

There .is a very strong resemblance between the phosphores­

cence spectra of 1, 3 -C6H4 D2 , 1, 3 -C6H2D4 , and C6H5D, all of which have 

f 2v vibrational symmetry. - For 1,3, 5-C6H3D3 having .f>sh vibrational 

symmetry, the active degenerate modes, just as in C6H6 , show little or 

no site group splitting. · They occur as e' vibrations. The phosphorescence 

spectrum closely resembles that of C6H6 except that Fermi resonance . . 
. ~ ~ 

between thee' vibrations, 1573 em and 593 + 956 em , no longer occurs . 

. The phosphorescence of 1, 2, 4-C6H3D3 with vibrational symmetry S2.,s mostly 

resembles that of the ~2v i~otopes, but is more cluttered with false lines 

because of contamination by isotopic impurities. 

In general the same ground-state vibrations are observed in fluores 

cence and phosphorescence, · but with some intensity changes. While the 
-l 

e2 o- 1595 em mode is the most strongly active in phosphorescence, the 
b . 

-l 
e2 o- 606 em mode is the most active fluorescence vibration. The second 

b . 

-l 
strongest phosphorescence progression, 1175 + n x 990 em . (e2g), is very 

. -1 
weak in the fluorescence spectrum. The totally symmetric 990 ·em progression. 

is slightly more :j.ntense in fluorescence. 
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5. THE ANOMALOUS SPLITTINGS 

Even though, as indicated in the preceding section, the similarities 

in the spectra of the isotopic benzenes can be understood in terms of group 

theory and the changes in the normal co ordinates introduced by. deuterium 

substitution, closer examination of the phosphorescence spectrum reveals 

several anomalies. 

1. The phosphorescence spectra of C6H6 and 1, 3, 5-C6H3 D3 in the 

C6D6 host consist of single lines. However, the phosphorescence spectra 

of C6H5D, 1, 3-C6H4 D2 , 1, 4-C6H4D2 and 1, 3-C6H2D4 , consist of closely 

spaced doublets, one component.:being about twice as intense as the other, 

while that" of 1, 2, 4-C6H3D3 is made up of triplets. This multiplet s t ructure 

is in addition to the splittir .. g of degenerate C6H6 vibrations resulting from 

the reduced vibrational symmetry of partially deuterated benzene. It is 

present on all vibronic lines including the very weak 0, 0. 

2. Under higher resolution17, the most intense (high energy) 

multiplet component of the phosphorescence 0, 0 band of 1, 4-C6H-:.D2 it_self splits 
-1 

into a doublet. The measured splitting is 1. 9 em · .· For the 0, 0 band of 

C6H5D no additional splittings were observed, but the high energy mult iplet 

component is broader than the low energy component. · Distinct splitti ngs 

of 1-3 em ~1 are observed on some of the other vibronic lines for C6H5D. 

One example is seen in the lower resolution spectrum shown in Fig. 1, . 
-l 

where the high .energy multiplet component of the 1175 em band is further 

split by 3 em 
-l 

. I 
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3. The B2u- A1g absorption spectra, insofar as. they have been. 

studiec!., show splittings of a nature qualitatively similar to th0::;(;; in thE: ., 
. phosphorescence spectra but of a magnitude approximately eight times 

smaller. The observed ,line shaped suggest triplets for C
6
H

5
D and 

1, 4-C6H4D2,but the structure is not well resolved. 

4. The magnitudes of the phosphorescence splittings are the same 

within± 1. 0 cm-1 for all vibronic transitions of a particular isotope. The 

magnitudes of these splittings for the various isotopic modifications of 

benzene are shown in Table I. 

5. The relative intensities of the components of the phosphorescence 

multiplets depend on the concentration of solute molecules. In the limit of 

infinite dilution, the relative intensities· of the components in descending 

order of frequency seem to approach 2:1 for C6 H5 D, 1, 4 -C6H4 D2 , and 

1, 3 -C6 H2D4 ; approach 1:2 for 1, 3 -C6:E-4D2 ; andl: 1:1 for 1, 2, 4 -C6 H3D3 • 

This is discussed more completely in Sec. 9. 

6. Within the lower resolution 2 cm-
1 

linewidth, the fluorescence 

spectrum of all isotopic benzenes shows ·no multiplet structure. In view 

of the small splittings observed in the electronic absorption spectrum 

and in theinfrared24 spectrum of isotopic mixed crystals of benzene, 

small spli:ttings should .show up in the fluorescence spectrum at higher 

resolution proViding the intrinsic line widths are sufficiently narrow. 

. 4 : 

-. . ...... ·· ;-

· .. ' . 
. .. 

. . : • . ·.· .. ·· . 
· ... ' ·,._ 

· .. · 
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6. INTERPRETATION OF THE SPECTRA 

These observations can be explained if benzene in the crystalline 

state has an effective symmetry lower than Doh· At low .tempera.tures all 
""' 

phosphorescence emission originates from the zeroth vibrational level of 

·the excited triplet state, and thus the symmetry reduction in the triplet 

state occurs in the vibrationally unexcited level of this state . The loss 

of symmetry is just what is expected when benzene is placed in any envi ­

ronment of low symmetry. The effect seems to be accentuated, however, 
3 

in the B1u state of benzene. 

The symmetry reduction is such that the six carbon atom positions 

are no longer all equivalent. Considering the low resolution spectra first, 

·where further splitting of the doublets into triplets was not accomplished, 

the intensity ratios of the multiplet components in the limit of low guest 

concentration indicate that the carbon positions are divided into two non­

equivalent sets, of four and of two carbon atom positions each (vide infra). 

Using group theory25, it can readily be shown that only five subgroups of · .. · 

J26h are consistent with this structural requirement. These are Q2h, .£>2 , 

c2V (with the c2 perpendiculartothe original molecular plane), and Czh 
"" . ""' 

(with the C~ or C~' through the atoms or through the bonds). Other sym-

metries predict an incorrect number of components. 'In Fig. 2 the statis­

tical weight and the positions of the deuteriums are shown for the distinct 

conformations of a given isotopic benzene assuming a particular D2h 
. .,... 

symmetry. It is not possible from the data to eliminate any o~the possible 

symmetries. 

However, if the extrinsic distortion were sufficiently large, the 

molecular symmetry would be Ci. ·The finer features, which are currently ,.., 

' .. . '• 

: ~ "" ···-- --



being studied in more detail, are undoubtedly the result of placing the 

guest molecule in the C
1
. site of ·the benzene crystal. For a c. distortion 

...... -" l 

of the 
3
B1u state, three lines are predicted for C6H5D, 1; 4 -C6H4 D2 , 1, 3-

C6H4D2, and 1, 3-C6H2D4 ; one line for C6H6 and 1, 3, 5-C6H3D3 ; and six lines 

. for 1, 2, 4-C6H3D3 • The overall splitting is not symmetrically spaced since 

the interactions reflect the n·early .£2h site symmetry. .Furthermore, 

orientation effects on ground state vibrations (see Sec. 8) contribute to the 

. splittings. This is a small contribution, but observable even in the low 

resolution spectra. The measured multiplet splittipgs change reproducibly 

from band to band with an average deviation from the mean splitting of 
-l . 

about ±1 em . The additional splitting into three components is not only 

good spectroscopic support for the crystal structure of b~nzene, but also 

implies that the extrinsic distortion is comparable with or greater than 

any intrinsic distortion! 

7. A MODEL FOR ZERO-POINT ENERGIES 

To see better how the line multiplicity leads to the conclusion of 

a nonhexagonal benzene triplet we consider a . very simple model for the 

explanation of the doublet structure. There is no advantage to be gained 

by extending this sort of model to the discussion of the triplet structure. 

We assume that ·the effect of isotopic substitution · on electronic energies is 

·, · ... - . · ' 
· .. ' ·. 

.··· ::. 

. :·: 

' ; . ~ 
. , 

, .. ·. 
' 

: .. 
. . . . · . .. • .. · .... . 

:: . . 
. . ·. . .... ~ . 

. I . . 

:- .· . 
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much smaller than the observed s plittings in the multiplet line structure. 

This is reasonable since we are dealing here with a 1T .Jl[ * transition 

mostly localized around the carbon frame. Even when the nuclear m as-:­

ses differ by a factor of two as for H and He+, the Rydberg constants are 

the same to within about 0. 05%.26 We can conclude therefore that the 

mass effect on the electronic transition energies arises from zero-point 

vibrations. A quantitative calculation of the total zero-point energy in 

the benzene triplet state is not possible. Even the experimental data for 

the ground electronic state is not sufficiently reliable to calculate total 

zero-point energy to the degree of precision required here. In addition, 

no vibrational data presently exist .for the triplet state. 

The simple model that we use to treat zero-point energies in ben­

zene considers the molecule to be composed of six CH or CD mass points 

that can oscillate independently
27 

in three dhuensions about their equilibrium 

positions. For simplicity, the effect of hydrogen or deuterium vibra.-:-

tions will be ignored for the mom.erit. Let the force constants in the 

. ground electronic state associated with coordinate i = x, y, z at the posi­

tion .of the }h mass point be given by k .. 
0

• The X coordinate at each . lJ 
mass point is defined as pointing outward from the center of the mole-

cule, and the z coordinate .. is perpendicular to the molecular plane. The 
. . 0 

. y coordinate is orthogonal to these.. Because of hexagonal symmetry, kij 

for j = 1, 2 ..• 6 are equal. Assigning reduced masses m1 and m2 to the 
. . . 

CH and CD fragmep.ts, respectively, the zero point :vibrational energy in 
-l . 

em in the ground electronic state is, : 

6 
. . j 1 

. L: (~.o /m )2 
j = 1 J . 

. . . .. 
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·with mj = m 1 m.· m 2 depending on whether the mass at l_ is that of Cl-I· cr CD. 

In the triplet state we assume a lower symmetry in accordance with 

the discus$ion. A cartesian coordinate system centered at each mass 

point is defined in such a way that there are i-wo mass poirlts bound to their 

· equilibrium position by the force constants ki_j, and four mass points 

by the force constants k'!.. This analysis does not restrict the mechanism lJ . 

that leads to differing force constants. The zero point energy (in em -
1

) in the 

· triplet state b<ecomes, 

(47Tc) -
1 L: 

i=x, y, z 
L: 

j = 1, 4 

where the in.dex j = 1, 4 refers to the mass points with force constants kJ" 
. k 

and the index k = 2, 3, 5, 6 refers to mass points with force constants k'j_; 

. each mj or mk takes the value m1 or m 2 whichever is appropriate. . 

Defining, 

K~ = (411' c) -l 6 
le.iX, y, Z 

. with similar definitions forK' and K", the zero-point energy difference 

Z(D') between ground and excited state for monodeutero benzene with the 

deuterium atom in a: primed position is 

For a deuterium atom in a d~uble-primed position, one has 
! . • 

I •' - - _:.. -._ • . . 

I 

\ " 
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· For the excited singlet state; where evidently K' :::::; K", these equat ions show, 

in agreement with observation, that each successive D atom substitution on 

C6H6 contributes a constant contribution to Z equal to 

where K = K' :::::; K11 for the singlet. The_ empirical value of this expression 
-l 

is +33 em 
1 1 

Since m 1 -
2> m2 - 2 , the force constant K in the excited state is 

smaller than that in the ground state, a fact that is theoretically expected, and 

. one that has already been pointed out bY: IIJgold and co-workers, 2 9 For the 

triplet, where K' is not equal to K", but where the difference 21 K' - K" l 
is small compared with I K' + K" - 2.K

0 1.' a similar result obtains. 

Using C6H5D as an example, the difference between the Z's, 
. l l 

.6. Z(C6H5D) = Z(D") - Z(D') = (m1 -
2 - m2 -

2 _) (K' - K") 

for the two nonequivalent. substitutional positions in triplet benzene is the 

quantity equal to the observed doublet splitting in the spectrum. This splitting 
-l 

is measured to be +7 em • The sign of this· quantity is determined from the 

multiplet intensity ratio in the low concentration limit (see Sec . . 9). Fm~ 

CbH5D, the higher frequency com.ponent corresponds to the one with the greater 

statistical weight, namely the C<OP-fponent associated with a deuterium in the 
l 1 

double primed position (Fig . . 2). Since m1 -
2 > m2 -

2 , one sees that K' > K"·. 

This line of reasoning gives a force constant difference between primed and 

double primed positions which is inconsistent with what at first sight would be 

expected for a quinoidal structure, where four of the six mass _points are 

connected to positions having the greatest force constant. · The above analysis 

shows that onlytwo atoms are connected to such positions. However, a 

purely extrinsic perturbation is not necessarily governed by the -rules of 

chemical binding • . ·Therefore, a_ non quinoidal . structure should not be too 

surprising. 
: . 

, . 

- · -·-- ~ _: 
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. The analysis, however, does not necessarily rule out the quinoidal 

structure. It could happen that the force constants for certain hydrogen 

vibrations are such that K:H > K'}p but for carbon vibrations K'c > K' c· 
This l'elationship could result_· In the observed sign _of the splittings for the 

quinoidal structure, providing it is primarily hydrogen vibrations that 

determine the splitting, but primarily low frequency vibrations that determine 

the gross zero-point energy shifts. One cannot rule out the possibility that 

the frequencies of certain hydrogen stretching mod~s increase upon 

excitation into the lowest excited states of benzene, 

between the force constants is possible. 

so such a relationship 

The multiplet splittings iil the other isotopic modifications of 

.. · benzene can readily be determined using the simplified model calculation 

· just used for C6H6D. Defining ~ Z as being determined by subtracting Z . 

of the doublet component having the lower statistical -weight from Z of the 

one with the higher statistical weight, one finds that:~z(l, 4-C6H4 D2 ) = . 

2~Z(C6H5D); AZ(1, 3-C6H4D2 ) = -AZ(C6H5D); and ~Z(l, 3-C6H2D4 ) = ~Z(C6H5D). 

For the 1, 2, 4-C6H3D3 modification, a triplet is predicted with total splitting 

equal to that in 1, 4-C6H4 D2 • :As can be seen from Table 1, these results are 

in exact agreement with the experimental fi~dings at low resolution for both 

. the multiplet splittings and the relative energies of the conformers. 

·a. INTRINSIC OR ENVffiONMENTAL DISTORTION? 

An intrinsic distortion of the lowest benzene triplet has e}..1)erimental 

and theoretical support. However, as stressed earlier, the anisotropy of the 

benzene crystal alone can also give rise extrinsically to an effective symmetry 

lower than f>sh· The site symmetry of the benzene crystal i s .fi· 23 How­

ever, to a fair approximation it is C2h· 30 . Therefore, within this latter 
. . ...... 

approximation, the benzene molecule at a crystalline site has at· 

... _ . . 

\ .··. · 
--'---- .. . 
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most 5(2h symmetry in all electronic states. The magnitude of this sym­

metry reduction may or may not be appreciat?le depending on the streng-th 

of the coupling between the molecule and the crystal field .. In other words, 
. . 

the difference between K' and K" in the model of • Sec~ ·- ~ 7 could arise 

enti1·ely from intermolecular interactions. The distortion l.n general is 

expected to be diffe.rent for different .electronic states of the molecule. 

The strongest argument in support of the distortion being caused 

by the eJ..'i:rinsic perturbation is in the vibronic structure of t.'le phos­

phorescence and fluorescence transitions. · No anomalies whatsoever were 

. . · observed by Leach and Lopez-Delgado 21 in their lower -resolution phos-

phorescence spectrum of C6H6 aild C6D6 in a cyclohexane matrix. On this 

basis they concluded that the triplet state of benzene is hexagonaL Cer­

tainly the apparent absence of ;:my str.ong progression, other than totaily 

symmetric, built on one quantum of a perturbing e2g vibration implies at 

most a small distortion, be. it intrinsic or extrinsic; and it is intuitively 

more attractive to relate .. a small effect to an extrinsic, rather than an 

intrinsic, perturbation. · The multiplet s.'~littings in the phosphorescence 

. do show that some kind of distortion occurs in the 3B~~ state above and 

beyond that which. occurs in the 1 B1 u state, but the experimental data can 

in no way distinguish an intrinsic distortion from one c.aused by external 

perturbations. One must remember that Moffitt's theoretical arguments 

reviewed in Sec. 2 may be· applied to extrinsic as well as intrinsic perturbations. 

In crystalline benzene . some -experimental evidence for a direct 

intermolecular perturbation on the molecular force_ field of the g-round 

electronic state has been o~tained by Bernstein and Robinson32. Using 

. isotopic mixed crystals, . they have observed splittings of nondegenerate 

. , . ------ . 
\ 
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vibrations in the infrared spectrum of isotopic modifications of benzene having 

lower than D3h symmetry. There are just two components observed at the ,... 

resolution available, rather than three~ because of the approximate C
2
h 

' ...... 

site symmetry, and the magnitude of these orientational splittings, when ob-
-1 . 

se1·ved, is around 3 -4 em . The splittings ~ which are of similar magnitude 

as the site group splittings of degenerate vibrations and arise probably from the 

same kind of interaction, are observed primarily on £-Vibrations or those 

·· · viprations that correlate with £-Vibrations. Site group spHttings 

and Ol'ientational Splittings on g_-vibrations appear to be extremely smaH 
17 32 . . 

·in most cases. ' The main points of inte~est here are that only a 

part of the vibrations show orientational· splittings and the magnitude 

of the splittings, when observed, is remarkably insensitive to the 

type of vibration concerned, its effective mass, its amplitude, or its 

infrequency .. 

If these splittings were different in the ground and excited 

electronic states. of benzene, their presence would contribute to a zero-point . 

energy difference for molecules in the different orientations.· · "Electronic 

splittings" of the type observed in this work would result. The main reason · · 

'we do not believe that extrinsic effects of this ·particular type contribute 

a measurable amount to tne phosphorescence splittings is that no such 

splittings have yet been observed in the flP,orescence. spectrum, and even 
. -1 

though they are expected their magnitude must be smaller than the 2 em 

low resolution linewidth. Since we know that orientational splittings exist, 

the lack of observable splittings in fluorescence is, at first sight, 

more rem.arkable than~the presence of them in the phosphorescence spec­

trum. The smallness of .the splittings in fluorescence implies that vibra-

·....:--:.. ·- .. :.. - - -.----~--;--·-77-
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tional orientational splittings in the ground and excited electronic states 

must be tha same to within the expe:imentallinewidth. Of course, one 

could say that there is some kind of cancellation effect in the singlet but 

not in the triplet. However, in view of the apparent insensitivity to vibra-

tion~l state found for the vibrational orientational splittings in the ground 

electronic state, we prefer to believe (with some reservations) that this 
-1 

type of vibrational orientational effect is not important in the ?:;7 em 

splittings discussed in this paper. Rather, we feel that the splittings 

observed in the phosphorescence, but less prominently in the fluorescence, 
3 1 

reveal a real difference in the static geometry of the B1u and B2u states. 
3 

The perturbation that causes the distortion of the B1u state may still be either 

.intrinsic or extrinsic, or it could be an intrinsic effect modified--magnified 

or even demagnified--by the environment. 

The presence of additional (triplet) splitting in high .resolution 

phosphorescence spectra and the orientation effects on ground state vibra­

. ·. tions do show that the crystal-field -guest interaction is not negligible. In 

fact, the optical experiments are best interprete.d in terms of a completely 
. 3 . 

e:>..'trinsic distortion of the B1u state or an in..llerent intrinsic distortion 

· modified by the C. site symmetry of the ci7stal. · 
"'l . . 

In an attempt to distinguish between intrinsic or extrinsic mech­

anisms fo.r distorting the triplet state, the· phosphorescence spectra of 

several isotopic benzenes were obtained in solid rare gas matriGes. 

It was already known5 that the spectrum of .benzene in solid argoJ;l at 4. 2" K 
. -1 . . . 

is sufficiently sharp ( 4 em ) that possible splittings might have been 

observed. No distinct splittings were obs~rved for C6H5D and 1, 4-C.,·H~D2• 
-1 

Line widths, however, increased to about 7 and 10 em respectively. 

This broadening could be associated with a distortion e~fect where the 

expected doublet for some reason is not resolved. · If the broadened line 

\ 

i . 
·~· 

· .. 
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is really caused by such a distortion, and not by some extraneous effect, 

th~ distortion is then similar to what it is in crystalline benzene. This 

observation would then be more in keeping with an intrinsic distortion; 

but the rare-gas results are not very c.onclusive and should be given 

·small weight. Mixed crY:stals of benzene and other substances, such as 

borazole, should be studied to clarify this point. 

\ . . ·· 
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· 9. INTENSITY RATIOS 

There are two limits that need be CC?nsidered in the discussion of 

L."'1tensity ratios of the multiplet components. In the case where the 

l'ate of interconversion among the multiplet components of a nontrigonally 

symmetric isotopic modification of benzene is fast. compared witll tL_e phos-
f 

phm.~escence lifetime (T::::: 10 sec.), the ratio of the emission intensities· 

from the components should be equal to the ratio of their statistically 

weighted Boltzmalli"'1 facto1·s. If interconversion were slow compared with 

the phosphorescence lifetime~ t.~en the intensity ratio should be governed 

only by the probability of excitation of the various conformers. It is 

assumed that this probability is equal to the relative statistical weight of 
- . 

the confor.):ller. 

The mechanism for reaching Boltzmann equilibrium among the 

multiplet c_omponents may be different depending upon whether the inter­

action between the distorted molecule and the crystal field is strong or 

weak. For a strong interaction between molecule and environment, the 

potential surface descri1;>ing interconversion between the conformers is 

·highly unsymmetrical, trigonal symmetry being lost because of the low 

symmetry of the crystal field. As de Groot, Hesselmann, and van der 

Waals'have pointed out, 33 for example, an intrinsically distorted molecule 

may have some highly preferred orientation in the cavity of the crystal. 

One minimum of the potential surface lies to much lower energy than the 

other two. The lowest-lying triplet state of each guest molecule is there­

fore spatially nondegenerate~ the components associated with the other 

potential minima lying much higher. Tunneling among the levels is therefore 

not possible except at fairly high temperatures. Here "multiplet" 

components would be associated with this single low-lying energy in different · 
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molecules, the zero-point energy difference between the components being a 

result of different orientations. of the deuterium positions in the c1-ystal 

field. The excited state orientation of a given molecule is fixed by its ground 

state o1·ientation. There is no way for the conformers to· inter convert 

. at low te'mperatures except by molecular rotation :L."1 the solid, an event 

that cannot occur in nol·mal crystalline benzene at 4. 2°K during the triplet · 

lifetime. 34 Boltzmann equilibrium can therefore be established 

only thl~ough intermolecular exchange of excitation, a process that is 

known16 to take place in isotopic r.o.ixed crystals of benzene at low tem -

peratures. Moreover, · the rate of intermolecular excitation exchange 

is known16 to be concentration dependent, the transfer becoming more 

efficient with increasing concentration of guests . 

If the interaction between the molecule and its environment is 

weak, then, in all probability, any distortion of the benzene molecule in 

.its triplet state would have to be intrinsic. Each benzene molecule pos-

sesses more than one conformation. Unsymmetrical isotopic sub-

stitution causes these conformers to have slightly different zero -point 

energies. Boltzmann equilibrium· among the components is established by . . 

some sort of intramolecular process, thermally activated at very 

low temperatures. · Intermolecular excitation exchange is not necessary for 

thermal equilibrium unless the intramolecular process is too slow. 

The experimental intensities are subject to rather large errors, 

both in measurement and from errors due to effects caused by the presence, 

as impurities, of other isotopic traps. Furthermore; the Franck-Condon 

ei1.velopes are slightly different for the multiplet components. L"1tensity ratios 
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. . integrated over the Franck-Condon envelope35 should therefore be somewhat 

more reliable than line -to-line comparisons. The integration was performed 

by summing pea};: heights rather than areas under the lin<;;s. Fig. 3 shows · 

the concentration dependence of the ratio of the integrated intensities of the 

. upper to lower energy component for C6H5D. For isotopes other than C6H5D 

integrated intensities were obtained at concentrations less than 1% only . 

. Integrated intensity ratios for all the isotopes at s=o. 1% guest are shown 

in Table I. Both photoelectric and photographic intensity measurements 

were used. The measured intensity ratios for both methods agree for iden-

· tical concentrations within 10%. 

As can be seen, the intensity .ratios of the components are defi­

nitely concentration dependent. This fact shows that the dominant 

mechanism for thermal equilibration among the components is inter-

molecular excitation exchange, not intramolecular tunneling. This fact 

therefore· forces us into one of two conclusions. The interaction between · 

> · the molecule and its environment could be weak, but in that case the 

rate of the i;ntramQl?cwa.r t'IJP.Jl?~in,g p;roce$S a,:m,ong the comormers would 

have to be :much slower than the rate of disappearance of the triplet state, 
-l 

-0. 1 sec. . The other possibility is that the interaction between the molecule 

and the crystal field is strong, so that no intramolecular tunneling can occur · 

at low temperatures. More will be said about these possibilities in the 

next section. 

The zero concentration limits shown in Table I give the proba­

. bility ratio for excitation of the multiplet components. ·These ratios 

are therefore associated with the relative statistical weights of the · 

' ·. 

·.· . 

· .. . _, • 
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conforrners. In this way the statistical weight of a conformer can be 

related to its relative energy. In C6H5D, for example, the statistically 

favored conformation is the one at higher energy. In all Gases it is found 

· .· ·that the conforn1a tion with the most deuterium atoms on the double primed 

p~1itions (see the third paragraph of Section 7) lies at highest f:nergy. The 

lowest energy conformation is the one with the most deuteriums at the single · 

primed positions. The observed statistical weights and energy O:i..~dering of 

the conformers are in exact agreement with those expected for a distorted 

benzene, as shown in Fig. 2. In the high concentration limit the intensity ratio 

should approach the Boltzmann ratio, which can be deter_mined frorn the statis­

tical weights and the measured energy differences between the multiplet 

·components. The calculated Boltzmann ratio for the multiplet components of 

C6H5~ is 0. 2 at 4. 2° K and 0. 005 at 1. 7° K. As . shown in Fig. 3, the agreement 

with the experimental data is very good. 

10. COMPARISON WITH ESR RESULTS 

de Groot and van der Waals15 have observed the electron resonance 

$pectrum of triplet benzene in rigid glass solution at 20QK. Their analysis 

indicates the absence of trigonal or greater symmetry in the benzene triplet 

state. In agreement with their theoretical predictions discussed in Section 2, 

the electron resonance spectrum at 20°K 1n glassy sol vents is interpreted in 

terms of a dynamical equilibrium between three isomeric conform~tions with 
. . 10 -l 

an inter-conformer conve.rsio!l ~ate of> 10 . -sec . . 

This interpretation. was extended33 by observing the el~ctron 

resonance spectra of :tnesitylene in a B-trimethylborazole crystal in the 

temperature range 20° K to· ab~ut 13 0° K . . · Over this range of temperature 

.. 

·,· 
. . \ --· ·---- .: 
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the DJ.Yl. = ±1 absorption lines for each crystal orientation remained s1'1arp, 

but they shifted such. that L'le zero-field splittirig parameter Z ren1ained 

nea:rly constant while J X - Y J, with increasing temperature, decreased from 
-1 . -1 . . 

about 0. 050 em to 0. 038 em . This result shows the approach at high 

temperature to trigonal symmetry where I X - Y I = 0. The obsel~vation 

of only two sharp absorptions for e2.ch crystalline direction establishes a 
10 -l > 10 ·sec conformer conversion rat-a. 

The fast tunneling rate implied by the ESR experiments is at . 

first sight inconsistent with the results of the optical eJo...rperiments, which 

give an interconversion rate slow compared with the rate of triplet decay. 
ll 

The two results seem to differ by a facto:r of 10 or more! Differences 

in the experimental conditions of the two experiments of course exist. 

The optical experiments haye been carried out at 4. 2°I~ or below, · whereas ·. 

the ESR experiments were at 20°K, or above; theoptical experim8nts used. 

· crystalline benzene while tlle ESR experiments used mesitylene in B-tri-

methylborazole. 

First, let's see .if the assumption of weak interactions between 

the molecule and its environment is reasonable in the light of the ESR and 

optical experiments. The most probable mechanism for interconversion 

in this case would be intramolecular tunneling among the triad of nearly 

degenerate states of a nontrigonally symmetric isotopic modification of 

benzene. Theoretically,' one would expect a fast tunneling rate.1·5, 36 For 

example, taking a ring distortion corresponding to a carbon atom displace- . 

. ment of 0. 04-0.1 A, tunneling of carbons between conformers would occur 
12 -1 . -l 

at a rate -10 sec for a barrier height of 500 em . In order to bring 

the theoretical tunneling rate into line with the optical experiments, a 
.. . -~ 

, .. ···- -:::·- . 
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distortion of at least 1 A or an nnreasonably high barrier would be required. 

While such a large distortion may be possible, there is no independent 

experimental evidence for it. We therefore conclude~ in agreement with 

the discussion in Sec. 8, that the interaction between the· molecule and the 

crystal field is not negligible. 

If the distortion were purely intrinsic the effect of the crystal 

·field is to present an energetically fa vo1·ed environment for one orientation 

of the distorted molecule. This is the picture given by van der Waals and 

·de Groot. On the other hand, if the distortion were purely extrinsic, the· 

potential surface with a triad of minima does not really exist. Any attempt 
. . 

to rotate the molecule results in distortion and the two things cannot be 

separately treated. In either case, only a single emitting state exists in 

each molecule. The observed splitting is therefore associated with 

zero-point energy differences among different molecules in the crystal 

with different orientations of the deuterium atoms in the fi site symmetry 

of the crystal field. 

If the distortion were intrinsic, emission or absorption studies 

at higher temperatures should reveal states resulting from the higner 

energy conformers. Failure, thus far, to photograph a ny emission from 

the higher energy conformers allows an estimate to be·~made of the minimum · 

energy depression from Boltzmann considerations. For C6H6 in C6D6 a weak 
. -1 

single line has been seen 8 em to higher energy of the 0, 0 line of the C6 H6 

phosphorescence when the latter was heavily exposed on the phot<?graphic plate. 

This has been tentatively assigned to 
13 

C
12 

C5H6 whose 0, 0 line i.s calculatect37 
" 

-l 
to be blue shifted some 15 em from· C6H6 • A complete spectral analysis · 

of the system built in this origin is prevented at this time by the heavy 

background of C6H6 lines. Since its position is roughly where predicted 

and emission fron1 it is expected, we will assume the assignment to 

... 

' . ' . 



182 

13 12 
C C5H6 is correct. No other emission was detected to the high energy 

side of the C6H6 9, 0 line. Thus, it is probable that emission from the 

higher potential minima of the distorted molecule in the fi cage was not 

observed at 4. 2° K. Higher temperature experiments are planned in an 
-2 

attempt to observe these features. Estimating that emission 10 as 

intense as the C6H6 0, 0 line would have been detected, a minimum energy 
-1 

difference of roughly 15. em between the potential minima in th~ crystal 

is necessary. This is the correct order of magnitude fo:r rapic;l conversion 
. -1 

above 20° K where kT ~ 14 em ~ 

-~ Thus, at the present time, the optical experiments can be made · 

consistent with the interpretation of the ESR experiments where an intrinsically 
3 . 

distorted B1u benzene molecule is preferentially oriented in the crystal site 
-l 

such that other orientations are energetically less stable by at least 15 em 

· However, the detection of the relatively large splittings caused by the 

.fi site, the lack of vibronic evidence for distortions, the failure to find any 

optical evidence for the higher confo.rmers, the likelihood of a nonquinoidal 

distortion (even in the C2h site approximation), and the smallness of the zero .. .,... 

point energy effects would seem to be more consistent with a purely extrinsic 

distortion. On the other han¢1, the fact that the distortion appears larger 
3 1 

for the B1u state than for the B2u state, and the agreement between the 

ESR experimental results and their quantitative interpretation on the basis 
3 . . 

of a quinoidal B1u state give weight to the argument in favor of au, __ intrinsic 

distortion •. ·· .. 
. ~ . ' . .. '· 
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Figure 1 

Niicrophotometer tracing of tha phospho~escence of 1. O% C,)-I;:;D in 
-l 

C6D6 host crystal at 4. 2°K sho~;ing the 7 em doublet structure 

in the vibronic tra..."'lsitions. 
· -l -l 

The 1574 em and 1591. em bands 

were traced from a plate exposed a factor of three less. Intensity 

.is in arbitrary units • . · 
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Figure 2 

Conforn.J.ations of an exaggerated D2h .benzene for various isotopic ...... 

modifications. The number in parenthesis is the statistical weight 

of the conformation. The numbers at the bottom of the figure gi-~e 

the number of deuteriums in the apical or single primed positi<?n 

(see teA-t) for the conformers in the column dire_ctly above. · The 

: prefixes .m.,~.§, and,.& denote meta, para, symmetric a...J.d asymmetric 
• , . I . -.~ . . , 

respectively~ > ·> - ., - ~ - · . . . ' . . . . . :: . 
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Figure 3 

The integrated phosphorescence intensity ratio for the high energy 

to low ·energy conformer of C6H5D in C6D6 host crystal as a ~unction 

of guest concentration~ 
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·. Static Crystal Effects on t he Vibronic Structure of the Phos horescence, 

Fluorescence and Absor tion S ec~ra of 

Benzene Isoto ic Mixed Cr stals t 

E. R. BERNSTEIN, S. D. COLSON, D. S. TINTI, and G . . W. ROBINSON 

Gates and Crellin Laboratories of Chem.istry, t 

California Institute of Technology, Pasadena, California 91109 

·(Received ) 

The phosphorescence, fluorescence and absorption 

spectra of the isotopic benzenes C6 H6 , C6 H5D, p-C6~D2 , 

and sym-C 6H3D3 , present as dilute guests in a C6D6 host 

crystal at 4. 2 °K, are obtained with sufficient spectral 

resolution to ascertain the magnitude of the crystalline 

site effects. Two such effects are emphasized: site split­

ting of degenerat"e fundamentals and orientational effects. 

The former can occur for the isotopes C6 H6 and sym-C6 H3 D
3

, 

while the latter is possible only for isotopes with less than 

a molecular three-fold rotation axis. . The observations 

show that both site-splitting and orientational effects do 

occur as a general rule on vibronic and vibrational 

states in benzene isotopic mixed crystals. We conclude, 

therefore, that the site interactions are not negligible. 

t Supported in part by 

tcontribution No. 3546. 
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An empirical correlation of the magnitudes of the site splitting, 

orientation effect and site (gas-to-crystal) shifts for in-plane 

and out-of-plane modes is noted. Our results for the ground 

state vibrations are in good agreement with the findings of 

· Bernstein from infrared spectra in those cases where levels 

can be observed by both techniques. 

In order to characterize completely the above mentioned 

site effects it was necessary to analyze in some detail both the 

emission and absorption spectra of the isotopic guest molecules. 

The phosphorescence of C6H6 and sym-C6 H3D3 has been com­

pletely analyzed out to 0, O-(v8 _+ v1) while for that of C6 HsD, 

the analysis of only the more intense bands near the electronic . 

origin· has been carried <;)lit. . Some ground state vibrations of p-C
6
H

4
D

2 
are 

presented but the phosp.horescence spectrum, complicated 

greatly by both groun~ and excited state orientational effects, 
. , 

is not analyzed in: this present work. The fluorescence of 

. these isotopes was used only to corrobo~ate and supplement 

the conclusions and assignments extracted from the phospho­

rescence. analysis and is not presented in detail. The relative 

vibronic intensities in the fluorescence spectrum are com­

pared to those in the phosphorescence. From the general 

analysis it is possible to conclude that the effect of the 

crystal site on the molecule, while spectroscopically measur­

able, is quite small. 

On heavily exposed photographic plates it has been 

possible to assign the 
13

CC5H6 emission spectra in both the 

pure electronic and a few vibronic bands. Absorption spectra 

of .these mixed crystals have yielded information concerning 
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the orientational effect on the first excited singlet state of 

C6 H5 D and p-C6 I\.D2 as well as site splitting of the v~ 
13 

vibrational levels of C6~. The CC5~-nD 0, 0 absorption . . n 

spectra .have also been identified. New absorptions, in the 

region of the 0, 0 of C6 F.<s and C6 H5D have been tentatively 
13 

assigned to resonance pair lines and C2C4~-nDn on the 

basis of their intensity behavior as a function of guest con­

centration 

I. JNTRODUCTION 

Since the classic work of Halford, 1 Hornig, 2 and Winston and Halford3 

· in the late 1940's, the effect of the crystal.environment on 

molecular spectra has been of much interest. These early works deal in part 

with the effect of the crystal site on the degenerate molecular states. More 

recently, Bernstein 4 and Strizhevsky5 have considered further site inter­

actions not limited only to degenerate states, viz., orientational effects, 4 

gas-to-crystal shifts, 4 and enhanced Fermi resonance4 ' 5 in the solid. For 

experimental as well as historical reasons, most of these investigations 

concern the ground state vibrations observable by means of infrared spec­

troscopy. Since it is of theoretical importance to know whether or not such 

effects are present for all the vibration classes and types, in the present 

work we look for the above effects in the vibronic transitions of C6~ and 

some of its deuterated isotopes: that is, the phosphorescence, fluorescence, 

and absorption spectra of various benzene isotopic mixed crystals. This 

allows us to study site interactions in vibrations which are not seen by 

infrared absorption. 

' . 
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For the case of a C6~ guest in the fi 6 site of a C6 D6 host crystal, the 

molecular~' g classification of guest states is retained, imposing the u ~ g 

dipole selection rule for the C6~ transitions. Thus, in the infrared absorption 

spectra from the g-ground state, only ~-vibrations are observed, while 

vibronic transitions involving ~-excited states can be utilized to study g­

vibrations. The emission spectra also supplement the Vibrational data obtained 

employing the Raman effect . · On the other hand, in an isotope that . 

·.does not have inversion symmetry , the infrared .absorption and 
. . 

the UV emission spectra can involve' the same vi.?rati()n~, ::. and thus 

-the data complement each other. For example, in the case of site 

~ , spl~tting of degener~te fundam~ntals, the infrared and UV .data for C
6
Hs should 

supplement one another due to the u ·~ g selection rule, while for the case of 

sym-C6 HsD3 these data should overlap and check one another. Similarly, for 

the orientation effect, the C6 IfsD data should overlap with both techniques 

while for p-C6 H4D2 , there would be no direCt overlap of data. It was from 

these considerations that .C6 Hs, C6H5 D, p-C6H4D2 , and sym-C6IfsD3 were chosen 
I 

for this work. These were all studied as dilute guests in a C6D6 host crystal 

at 4. 2 °K. By such a study we hope to provide a complete picture of crystal 

effects on vibrations of the benzene molecule for all classes and types and, 

therefore, furnish a good test for theoretical calcuhttions of intramolecular 

and intermolecular force fields and potentials in solid benzene. 

A vibrational analysis of the benzene phosphorescence spectrum in EPA 

at 77 oK was first published by Shull. 7 Sveshnikov and co-workers8 and 

Leach and Lopez-Delgado9 have compared the vibronic structure of phos­

phorescence and fluorescence, again in glasses at 77 °K. Nieman10 and 

Nieman and Tinti (NT)11 have analyzed the benzene phosphorescence under 

low resolution for many benzene isotopes .in a C6D6 host crystal at 4. 2 °K. 

-. . ··.:--
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The benzene emission spectra in amorphous solids do not generally show resolvable 
' ' . 

crystal effects on the ground state yibrations . . While a few of the larger of 

these effects were observed in the lower resolution crystal spectra of NT, 

it is only with the higher resolution employed here that the effects are 

discernible on nearly all vibronic bands as a general occurrence and can be 

quantitatively discussed with confidence. 

II. THEORETICAL CONSIDERATIONS 

OF CRYSTAL EFFECTS ON VIBRATIONS 

Crystal effects on vibrations have been considered in great detail 

previously both in our laboratory and others. We will only discuss the 

general results as needed here, referring the reader to the more detailed · 

work when necessary. Site splitting 1 ' 2 for a molecular energy state 

occurs if this level has a degenerate representation in the group of the 

molecule which maps into one or more nondegenerate representations in 

· the group of the crystal site. Thus, the doubly degenerate vibrations of 

C6l4 and sym-C6HaD3 are mapped into two nondegenerate components in 

the C. site of the benzene crystal. The energy difference between these 
~1 . . 

two components in an "ideal mixed crystal" is defined ~s the site group 

splitting 6 ss. 4 ' 12 The concept of an "ideal mixed crystal" implies the 

absence of all resonance and quasi-resonance intermolecular interactions, 

wh~le all other interactions remain as i~ the pure crystal. Dilu.te ( < 1 %) 
•. . , 

isotopic mixed crystals of benzene have. been shown to be an excellent approxi-
~ ' . . . . 

· mation to the "ideal mixed cr:-ystal" for ground state vil:~rations ~ This is found 

not to be true, however, for the lowest excited singlet state of be~zene.13 

For benzene isotopes without a molecular threefold axis, a diffe r ent 

effect occurs. 4 It is clear that in the c. site there are three possible 
"'1 
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orientations with respect to rotation about the original C6 H6 ~ixfold axis for 

the isotopic molecule that, at least in principle, could have different energies. 

Therefore, a nondegenerate molecular vibration could give rise_ in the spec ­

trum to three lines, each of which is due to differently oriented molecules 

in three physically equivalent but distinct sites. For other site symmetries, 

-in general a different number of physically distinct orientations are possible . 

Thus, the number of lines observed in the spectrum for a given vibration is 

an indication of the effective site symmetry. Table I summarizes the number ·· 

of orientations group theoretically possible for _benzene isotopes in various 

sites. 

The observations of either effect measures the effect 6f the static field 

on the guest molecule . . However, certain interaction terms present in 

·one are absent in' the other~ fu the orientational effect; which involves 

·two or more guest molecules on ~ifferent sites, the ground state terms do 

not necessarily ca."lceL These terms must cancel in transitions to the two 

site split components. Moreover, the two site split components have the 

same symmetry in the crystal site and can interact with each other, 

increasing the first,-order splitting given by interaction with L'1e static 
' . . 

crystal field. This latter interaction can not, of course, occur for mole­

,· cules on widely. separated sites, i.e. for the orientational effecL Because 

.of these differ~nces, a direct comparison of the :respective magnitudes of 

these effects is difficult at best and could be misleading. 

III . . EXPERIMENTAL 

The benzenes were obtained from Merck, Sharp and Dohme, Ltd., of 

Montreal, Canada. The mixed isotopic solutions were purified by the method 

described by Colson and Bernstein1~ and directly vacuum distilled into modi­

fied "Bridgman type" : growing tubes, of tpe type depicted in Fig.l. Two 
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thicknesses of crystal were used: 3 mm and- 20 J..L· The thick crystals were 

grown by lowering the optical cells through a temperature gradient of about 

1 00 o C / c m directly into a liquid N2 cooled chamber at the rate of roughly 

1 em/day. These crystals, which are usually transparent and nearly free 

of cracks, are then cooled to 4. 2 oK with little decrease in quality. This same 

teclmique has been successful in growing crystals up to 3 em in length. The 

thin crystals are grown in the same type tube by suspending the holder in a 

dewar approximately 20 em above the liquid N2 surface and subsequently 

cooling to helium temperatures. Once the crystal holder is completely sub­

merged under the liquid helium, the cell is broken open above the graded 

seal to insure good thermal contact with the coolant. If this is not done, the 

sample temperature has been found to remain well above 4 . 2 °K for some 

length of time and increases when the sample is irradiated. 

The emission spectra of the guest triplet and singlet states were 

excited by absorbing into the C6D6 host singlet exciton band from which the 

excitation energy is rapidly transferred to the lowest excited singlet and 

triplet s'tates of the guest. These lie approximately 30 cm-
1 

to lower energy 

for each hydrogen substituted into C6 D6 • The guests thus serve as effect ive 

energy traps from which emission is observed at low temperatures. Both 

low and high pressure Hg lamps were employed as excitation sources. Order 

sorting, where necessary, was accomplished by liquid Kasha or Corning 

glass filters in conjunction with 0.1 m-atm Cl2 and Br2 filters. When high 

orders were used, a small Bausch and Lomb monochrometer was used as a 

predispersing element or as an order sorter. 

The phosphorescence spectra of the mixed isotopic crystals were 

photographed at 4. 2 oK on a Jarrell-Ash 3. 4 'meter Ebert spectrograph. Two 

gratings were employed. The first had 15000 line/in yielding a plate 
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factor of roughly 1. 62 .A/mm in the third order. Exposure times for the more 

intense vibronic lines were about 5 min with 20 J.l entrance slits. The weaker 

lines required approximately one hour exposures. A second grating was used 

. in the eighteenth order where the plate factor was 0. 32 .A/mm. Only the more 

intense vibronic lines of C6 Hs were photographed, requiring exposure times 

with 40 J.l entrance slits of four hours. 

All fluorescence and some of the survey phosphorescence spectra wer.e 

obtained on a 2. 0 meter Czerny-Turner spectrograph, constructed in our 

laboratory, with a 15000 line/ in grating blazed at 1. 0 J.l· Spectra were taken 

in third order where the dispersions are 2. 4 A/mm and 3. 7 A/mm in the 

phosphorescence and fluorescence regions, respectively. The exposure 

times for 5 J.l slits were roughly 5 min. Some of the very weak phosphores­

cence lines were measured from these plates. 

Absorption spectra were taken on the 3. 4 meter instrument utilizing 

the fourth order of the lower resolution grating which gives a dispersion of 

roughly 1. 23 .A./mm at 2650 .A. A few spectra were also photographed with 

the higher resolution grating. 

IV. EMISSION SPECTRA 

Both fluorescence and phosphorescence emissions have been photo­

graphed for the isotopic guest in a C6 D6 host crystal at 4. 2 °K. Exposure 

times for the more intense features are roughly equal for the two emissions 

at lower dispersions, implying nearly equal quantum .yields for the singlet 

and triplet emissions of the guest molecule for the isotopes studies. Further­

more, the measured phosphorescence lifetime of the guest molecule for C6 Ho , 

C6 H5 D, p-C6~D2, and sym-C6 HsD3 is independent of the isotopic composition 

of the guest and its concentration for less than about 1% guest by weight. 

--- - - · -------------- - --·--·- _________ ... - .. -·-- .. - . --- -·--- . ·- . - ·-- --- - -·· 
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The phosphorescence intensity, followed over the first decade change for 

isolated vibronic lines, decayed exponentially within experimental error 

with an average lifetime of 8. 7 sec. This constant triplet lifetime implies 

that the quantum yields remain approximately constant independent of the 

guest and thus appear to be crystal determined. 

The phosphorescence does have somewhat sharper lines and is thus 

easier to photograph at higher dispersions. Due to this smaller linewidth 

and the greater cm1 dispersion available in the phosphorescence spectral 

region, we have concentrated mainly on the phosphorescence spectrum as a 

means of studying ground state vibrations. The larger of the site splittings 

to be discussed is resolved in both emissions and we have used the fluores-

cence to complement the phosphorescence where possible. 

The narrowest phosphorescence linewidth at the highest resolution 

employed was approximately 0. 1 cm1 and seemed to be limited by the quality 

of the crystal. This linewidth was observed only once iri a very transparent, 

seemingly near perfect, crystal of 0. 04% C6Hs in C6D6 • The linewidth of 

0.1 cm-
1 

was superimposed on a weaker background whose width was approxi-:­

mately 0. 5 cm-1
• This latter width probably corresponds to residual crystal 

imperfections. It should be noted that the narrowest linewidth we obtained 

roughly equals the expected zero-field splitting in the triplet state. Thus, 

the vibronic linewidth which would result from the uncertainty broadening of 
-l 

t.he ground state excited vibrational level may be much less than 0. 1 em , 

implying that the vibrational relaxation time in the ground state is 
-ll 

~ 5 x 10 sec. 

The lowest benzene triplet state most likely has ~u symmetry in point 

group D
6
h. 15 It is thus both spin and electronically forbidden. This double 

"' 
forbiddenness can be formally removed in a second-order perturbation scheme 
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by some combination of spin-orbit and vibronic mixing such that the active 

vibrations must have symmetries contained in rT X r8 X rR where Ii is the 

irreducible representation in point group f?sh of the phosphorescing triplet 

state, the dipole allowed singlet state, and the spin-orbit operator for 

i = T, S, and R, respectively. In this way e2g, b2g, and e1 g vibrations are 

group theoretically predicted to be active in the phosphorescence spectrum 

for the free D6h molecule . .,..._ 

Albrecht16 has analyzed various first- and second-order mechanisms 

for bringing dipole.:.allowed singlet character into the triplet state. From the 

polarized phosphorescence spectrum in solid glass at 77 °K, he concludes 

that the bulk of the transition probability arises from vibronic mixing, 

utilizing the e2 g vibrations v8 and v9 
17 of the lowest triplet with the 

3
E1u 

state which is spin-orbit coupled to the dipole-allowed singlet states 
1 
A2u 

1 
and E1u. Assuming this mixing route and that the lowest excited singlet has 

Bzu symmetry, the vibronic structure of the phosphorescence implies the 

· 3B1u assignment for the lowest triplet state in point-group f?sh· 

For the lowest excited benzene singlet state, 18 B2u symmetry in point­

. group f?6 h has been established with greater certainty than the triplet sym-· 
. 1 . 

metry. The spatial forbiddenness of the transition between the ground A10. 
0 

state and the lowest excited 
1
B2u state can be formally removed by vibronic 

1 1 
mixing with the dipole allowed E1 u and A2u states. The latter route 

requires a b1g fundamental of which benzene has none. However, e2g vibra­

tio.ns can mix a B2u and an E1 u state. Thus, vibrations of species e2 o- are 
0 

group theoretically predicted to be active in the fluorescence and singlet 

absorption spectra. Vibronic calculations19 predict that the e2g vibration 

v 6 should dominate. 

. . . ----- --·-----· --- ·-----------··-···-·-----.----·--· -··-····-··----··-··· ···········- - ·-······· --· ·· -·· ········-· . · ·-- . . - . . .. 
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In the fi site of the C6 D6 host crystal, only the u, g-classification of 

molecular states is retained and, therefore, the above group-theoretical 

arguments are no longer rigorously correct. However, it is found experi­

mentally (vide infra) that the above scheme predicts the dominant features 

of the spectrum, implying that the molecular classification of states is still 

approximately valid. The effect of the site is demonstrated by the appearance 

in both the fluorescence and phosphorescence of a totally symmetric progres- · 

sion built on a relatively weak 0, 0 band. 

One feature common to both emissions is the· activity of a 72 cm-
1 

lattice phonon. This frequency is apparently determined primarily by the 

C6 D6 host, independent of the guest, since the value does ~ot measurably 

change for different isotopic guests. The phonon emission band is quite 

broad (- 5 cm1
) and is usually photographed only for the stronger molecu-

. lar bands. Crystalline C6 D6 does have two observed20 optical phonons in . 

this range with frequencies of 62 and 77 cm-
1 

at 4. 2 °K. ·some unobserved 

optical phonons are also estimated20 to have very similar frequencies so 

that the species of the phonon is not known with certainty. Symmetry 

arguments require that it be a gerade type. 

The more active vibrations in the phosphorescence spectrum of C6 Hs 

in a C6 D6 host are the same as previously assigned in the solid glasses. 

However, the much sharper lines in the mixed crystal allow a more nearly 

complete analysis. For example, some of the fundamentals of 13 C12C5 Hs 

can be assigned (vide infra). C6Hs has four degenerate fundamentals of e2 a 
b 

symmetry in }?6h--v6 , v7 , v8 , and v9 --of which v6 dominates the phosphores­

cance in all solvents, being roughly a factor of five more intense than the 
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next strongest vibronic origin built on v9 • In a C6 D6 host many other weaker 

"false" origins are resolved and assigned. Progressions of the totally sym­

metric 990 cni
1 

(a1 0' , v1 ) quantum are also found built on v 6 , on the two b2 0' 
b . . b 

fundamentals v4 and v5 , the single degenerate e1g fundamental v10 , the 

electronic 0, 0 and combinations and overtones of overall symmet ry e2g, b2g , 

and e1 0' . 
b 

Figure 2 shows a microphotometer tracing of the phosphorescence 
-1 

spectrum of C6 Hs from the 0, 0 to 0, 0 - 2500 em ·. The analysis of the 

C6 Hs phosphorescence is given in Table II for energies greater than · 

0, 0 .- (v8 :. + v1) • . Table ill compares the relative . intensity of the stronger 

· vibronic origins in the C6H6 phosphorescence and fluorescence spectra as .... 

· determined from microphotometer tracings of photographic plates. 

Fig . . 2 and Tables II and ill show th~ general dominance of e2 0' 

b 

vibrations,and in particular of v8 and v9 in activating the triplet emission 

spectrum in qualitative agreement with vibronic theory. 16 ' 19 The almost 

exclusive activation of the benzene phosphorescence by the modes v8 and 

v9 is partially carried over to all the lower symmetry isotopes with an 

increase in the activity of certain other vibrations qualitatively predictable 

from mixing of the normal coordinates in the other isotopes. The only e2 0' 
b 

fundamental not assigned in the phosphorescence is v7 • The fundamental 

v 6 is quite weak. However, when in combination with v 1 it steals intensity 

from lla- by Fermi resonance. The totally symmetric progression built on the 

lllo(elg) origin is the weakestprogression analyzed, being .'\veaker than 

some progressions based on combinations or overtones ·of u-funda~entals 

of overall symmetry e2 g· The only _g_-fundamentals which were not assigned 

in the phosphorescence of C6 Hs are v2 (a1 g), v3 (a2g), and v7 (e2 g). However, 

v2 and v7 are assigned from the fluorescence spectrum . . No u-vibrations 

are seen in either emission. 
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In general the same ground state vibrations are observed in the fluores-

cence spectrum as in the phosphorescence. However, the relative vibronic 

activity is substantially different, as can be seen from Table DJ. . The 

relative intensities in the fluorescence also agree generally with the predic - · 

tion of vibronic theory outlined earlier. In comparing the two emissions the 

following features seem noteworthy. The b2 c:r modes, both fundamentals and 
b 

combinations, are relatively much more intense in the phosphorescence. The 

only b2 o- mode we have assigned in the fluorescence is the fundamental v4 , 
b 

which appears very weakly. No vibrations of species b2g are seen in the gas 

phase 
1
B2u - 1 

A1 g spectrum. 18 However, its intensity is so much less than 

v1 and, therefore, the electronic 0, 0, that it is not J?OSsible to draw definitive 

conclusions from its appearance. The presence of a b2 o- vibronic origin in 
· 0 

the free molecule would support a B 1u assignment for the lowest singlet state, 

but in the crystal the b2 o- origin could easily be due to crystal site interactions. 
. b 

The intensity of the totally symmetric fundamental v1 relative to the 

most intense vibronic origin is much greater in the fluorescence than in the 

phosphorescence. It seems reasonable to attribute this to a greater enhance­

ment of the 0, 0 in the fluorescence since the transition is only sy~metry and 

not spin forbidden. However, the possibility that vibronic mixing by v8 . in the 

phosphorescence is enhanced simultaneously with the 0, 0 in the crystal can 

not be eliminated. 

Site splitting o defined in Sec. II is observed for the degenerate e2 o-ss . b 

-1 -1 -1 
fundamentals v6 , v7 , and v9 amounting to 3.1 em , 5. 5 em , and 0. 54 em , 

respectively. The splitting of v9 is seen only with the highest resolution 
. \ 

employed and is not shown in Table IL Fig. 3 is a densitometer tracing 

of v9 and v8 . with this highest resolution. No distinct splitting is seen in v8 , 

but, as seen in the Fig·:~ ·3, the v8 .. linewidth is roughly equal to the total 
. . 

bandwidth of the split v9 fundamental. v8 • could be much more sensitive to · 
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crystal quality than v9 so that its greater linewidth (0 . 5 cm-1
) need not 

completely represent unresolved site splitting . On the other hand, th e 

absence of a splitting in v8 supports the assignment of the splitting in v9 

as a genuine site splitting rather than a splitting due to different sites in a · 

non-perfect crystal. A very weak line, which has not been assigned, is 
' 

-l . 
. observed ca. 8. 5 em to low energy of the very strong 0, 0 - v9 - nv1 p rogr es-

sion. The intensity ratio of v9 to the unassigned line is > 100 and much 

larger that the intensity ratio (:5 1 0) for the two components of any other 

observed site-split fundamental. We thus feel that this weak feature does 

not represent the other component of v9 • · 

The e1 g fundamental v10 is also split (o ss = 6. 8 cm-1 
). The vibronic 

intensity of the two components is different in the fundamental (see Fig . 2 ), 

but in the observed combinations of v10 with v5 (e1 g x b2g = e2g) and with v9 , 

v8. and v6 + v1 (e1 g X e2g = b1 g + b2g + e1 g) the splitting repeats itself. The 

intensity of the components also tends to equalize in these combinations. 

For the totally symmetric progression built on v10 the intensity difference 

remains·. The mode v10 is not observed in the fluorescence, appa rently 

' since it has e1 0" symmetry in D6h, but the overtone 2v10 (e2 0") is seen very 
b ,.... b . 

weakly and a site splitting of 7 cm1 can be inferred. Thus, even though 

the vibronic intensities of the site split components of v10 in the phospho­

rescence is different, the reported site splitting and the frequencies of the 

components are certainly correct. 

In the combination and overtone vibronic bands, site splitting in many 

u-fundamentals can be inferred. Consider for example the three lines at 

808. 3, 818.1, and 826.8 cm-1 removed from the 0, 0 which are a ssigned as 

2 v16 , (e2u)
2 = e2g + ~g in .!?sh· The observed splitting could a rise by two 

different routes, both yielding three lines. The first mechanism assumes 

I 
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the degenerate fundamental v16 is not split, but that the site and intramolecu-

lar anharmonic terms removes the threefold degeneracy of the overtone 2v
16

• 

If this were the case, the expected splitting w<;:mld be small and the pattern 

not necessarily symmetric. If, however, the fundamental v16 is split in the 

site, then the overtone would be three symmetrically spaced lines for small 

anharmonicities with intensities determined by the binomial coefficients, i.e., 

1 :2:1, for equal vibronic activity among the three components . As seen from 

Fig. 2 and Table ll . the intensities are roughly in this ratio in the phosphores ­

cence and the splitting nearly symmetrical. The fundamentalv16 is thus 

predicted to occur at 404.2 cm-1 and 413. 0 cm-
1 

with a site splitting o of 
ss 

8. 8 cm-1
• In the infrared spectrum of C6 Hs in a C6 D6 host crystal,4a v16 consists 

-1 -1 -1 
of a doublet at 404.8 em and 413.0 em (oss == 8. 2 em ) in excellent agree-

ment with the values inferred from the emission spectra. A small deviation 

is expected both from anharmonicities and from Fermi resonance among the 

trio of lines corresponding to 2v16 each of which rigorously has only sym­

metry a in the C. site. The same band observed in the fluorescence, how-g ...... 1 

ever, does not show this intensity pattern, the high-energy component at 

827 cm-
1 

being more intense relative to the other two. 
: -1 

Similarly, the doublet at 1101.6 and 1110.9 em , which is assigned to 

v11 + v16 , is the combination of v11 with each of the site-split components of 

· v16 • Assuming no anharmonic corrections or resonances, the inferred value 

of v11 is 697. 4 cm-
1 

which compares with 696. 9 observed in the infrared. 
-1 

The quartet assigned to v16 + v17. at about 1390 em yields for the degenerate 
-1 -1 

fundamental v17 the frequencies 978.3 em and 982. 8 em for an inferred 

site splitting of 4. 5 cm-1
• This should be c·ompared with 5. 6 cm_1 .observed 

in the infrared. 

. , · 

' -~ :: ... . : . . 
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· Table IV summarizes the fundamental ground ·state frequencies of C6~ 

in a C6D6 host crystal and the site splittings for the degenerate fundamentals . 

The g_-fundamentals were obtained directly from the emission spectra as false 

origins for totally symmetric progressions. For the u-fundamentals both the 

values inferred in this work from combinations and overtones and the values 

observed directly in the infrared are given. The latter should, of course, be 

taken for the frequencies of the ~-fundamentals. Sixteen of the twenty benzene 

fundamentals are therefore accurately known and the site splitting of eight of 

the ten degenerate fundamentals is established for a crystalline benzene 

~.nvironment. For comparison, Table IV also includes the vapor and liquid 

phase fundamentals. 

2. 

13 
The isotope C i.s present in natural abundance in the amount of 1. 1% . . 

Thus, roughly 6. 6% of any benzene will contain at least. one 
13

C atom. For 

all the partially deuterated benzenes, more than one isomer with the chemical 

formula 
13 

C
12

C5 HnD6 _n exists. The corresponding vibrational frequencies of 

each of these isotopes will be very similar and difficult to resolve. However, 

only one isomer 
13 

C
12 C5~ exists. Electronic spectra provide a means of 

13 12 
obtaining some of the vibrational frequencies of C C5~ as an "impurity" 

· in the C6~ guest in the C6 D6 crystal. This may have a definite advantage 

over a conventional infrared spectrum since in an electronic transition the 

corresponding vibronic lines are separated not by the vibrational energy 

difference, but by the vibrational energy difference plus the zero-point 

energy contribution. Thus, even if a particular vibrational frequency is 

unchanged by introducing 13 C, th~ corresponding vibronic lines will be 

separated in energy by zero-point effects which may be much larger than 

any individual shift in a vibration. In actua.lity, however, the electronic 
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emission spectra have been only of limited usefulness in these mixed crystals 

for several reasons. Although "'6% of the isotopic guest is 13C-benzene, 

the 13C to 12 C phosphorescence intensity ratio is less than 6% since the 

transition energy for 
13

C-benzene lies above that of 
12

C-benzene. Thus, at 

low temperatures excitation energy transfer to the lowest lying trap, i. e. , 

the 
12 

C-benzene, can reduce the relative intensity of emission from the 

13 . t C-1so ope. Definitive assignments of all but the more intense 13C-lines 

are further hampered by the intense background of 
12

C-lines along with 

phonon structure on very heavily exposed plates. 

Since 13C
12 

CnH6 has vibrational symmetry f 2 v, the degenerate 

vibrations of 
12 

C6 HR are split into a and b components. In the C. site 
...-..1 

the vibrations of 
13

C
12

C5 lfs can be further perturbed by orientational effects 

and thus give rise to further apparent splittings or line broadening. However, 

the orientation effects due to one 
13

C-atom should be much smaller than that 

for one D-atom since the guest-host interaction is more sensitive to changes 

on the periphery of theinteracting molecules. The orientation effects for 
12

C6HnD, discussed in a following section, are in general ~ 1 em - 1 and, 

thus, are expected to be vanishingly small for 
13

C
12

CnH6 • Therefore, the 
l2 

only new vibrational structure anticipated is the removal of the C6 H6 

vibrational degeneracies. 

A somewhat surprising result for 
13

C
12

Cnlfs is that the isotope shifts 

from 12C6Ha in the electronic origins of the phosphorescence and fluorescence 

are quite different, contrary to the observations for the deuterium substituted 

isotopes. 21 , 11 These shifts to high energy from the corresponding 
13

C6 H6 

transitions are 3. 7 and 7. 8 cm-
1 

in the 1 B
2
u-

1
A

1
g and 3 Bm-

1
A

1
g 0, 0 

lines, respectively. The electronic origin in the singlet transition, as will 

be discussed in Section V, is determined from the 0, 0 line observed in 
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absorption. The assignment is confirmed by the presence in the fluorescence 

spectrum of a progression built on this origin involving a known funda-

t 122,23 f 13C12 C H · f · Th · d t 1 1 men a - o 5 6 , Vlr· v1 o spec1es a 1 • e miXe crys a va ue 

observed for this fundamental is 982. 0 em -.
1 

compared to .a liquid value22 of 

984 em·?~. 

The other 13C12C5~ fundamentals assigned with some certainty are 

v4 , v5 , v
9
a, and v

9
b. These were obtained from the phosphorescence wherein 

they serve as origins for progressions in vl" The 0, 0 and 0, O-v4 lines are very 

. weak and, thus, were only photographed with the faster, lower resolution spectro­

graph. The bands involving v
9
a b are seen in Fig. 2 as a weak doublet to 
' 

high energy of the very strong 0, O-v9 -nv1 progression of 
12

C6H6 • The pro-

gressions built on v4 and v5 are too weak to see on the exposure correspond­

ing to Fig. 2 as. is the 
13

C
12

C6H6 O, 0. The fundamental frequencies are pre­

sented in Table V. The observed 
13

C-shifts are also tabulated and compared 

with the shift calculated from Whiff en' s24 force field 'employing the modifica­

tions of Albrechto25 The agreement between the predicted and observed 

shifts for the fundamentals v11 v4 , v5 , and v
9
a b is excellent and generally 
' . 

within the experimental error limits of ±0. 3 em - 1
• This range. is imposed 

mainly by the uncertainty in the phosphorescence electronic origino The 

vibronic bands terminating in the ground state fundamentals are nearly as 

sharp as the 12C6H6 lines at the same resolution, confirming our expectations 

of a very small orientation effect for 13C
12

C5Hs. 

Other lines are observed in both emissions which seem due to 
13C-benzene, but the analysis leaves some doubt. For example, lis is 

expected to be stronger than the assigned v1 in the fluorescence (cf. Table 

ID). A single line of about the correct intensity relative to lis of 
12 

C-benzene 

-1 13 0 is seen 599. 5 em from the C-0, . If the v 
6
a b -splitting is greater than 
' about 5 em - 1 .and if the low energy component is the one observed, the other 

. / 



211 

component of . 1.16 would be unresolved from the overexposed v6 band of 
12 

C-benzene. Two very weak lines are seen inthe phosphorescence at 600 

and 606 em - 1 from the 13C-O, 0 and,' thus, seemingly support the assignment 

· to 1.1 aa b· However, this analysis can not be confirmed by a progression of 
' 

1.11 built on v aa . b· Moderately intense lines are seen in the correct spectral 
' 

region in both the fluorescence and phosphorescence emissions, but they 

are not easily assignable to 1.1 aa, b + 1.11 • Because of the different 13C-shifts 

in the phosphorescence and fluorescence electronic origins, the 
13

C-lin.es 

are shifted relative to the 
12

C-lines in the two emissions. Some lines show . 
not 

the correct shift, but a sufficient number do/or are absent, to make an 

analysis difficult. Moreover,· 1.1 sa, b + 1.11 is most likely in Fermi resonance 
. ) 

with 1.1
8 

a, b and possibly also v6a, b + v12 • Therefore, we do not conjecture 

a possible assignment for 1.1
8 

a b' even though in the phosphoresc:ence it is 
' 

expected to be stronger than the assigned v
9
a b' and present the results for 
' 

1.1 sa b only as tentative. 
' For the other 13C

12
C5HnD

6
_n isotopes, which are of course present 

in the other isotopic benzenes, no assignments to 13C-benzene are made. 

However, some of the unassigned weak lines, especially in the spectrum of 
13 12 

sym-C6H3D3 , could easily be due to C C5H3D3 • 

3. sym-C6H3D3 

From the correlation diagram shown in Fig. 4, the active vibrations 

in the phosphorescence of sym-C6H3D3 (point group Q
311

) are predicted to 

have symmetry ~,, e', and e". However, only vibrations which correlate 

directly to the active C6H6 vibrations given in Table ·Ill, Vip. 1.14, v5 , v6 , V 8 J 

and v9 , or are strongly mixed with them in the lower symmetry isotope are 

intense vibronic origins in the phosphorescence • . For the mixing to be strong 

the vibrations must have similar frequencies and the same symmetry in the 

: • ' 

' . 



212 

free molecule. Thus, as shown by the normal coordinate analysis of 

Brodersen and Langseth,26 relatively strong mixing occurs between llo and 

vlB, ll4 and ll11 , and lis and ll19 • Weaker mixing does occur to some extent 

among all vibrations of the same symmetry, and in particular in the c. site 
...... 1 

symmetry among all the vibrations of sym-C6H3D3 • This latter mixing, 

however, does not appear to be very strong since the predicted vibrations 

are the more intense. Figure 5 shows a microphotometer tracing of the 

phosphorescence spectrum of sym-C6H3D3 in crystalline C
6
D

6 
near the elec­

tronic origin. All of the observed fundaments serve as false origins for 

totally symmetric v1 (a{, 955 em - 1
) and ll12 (a{, 1003 em - 1

) progressions. 

The analysis of the sym-C6 H3D3 phosphore~cence out to 0, 0- (ll
8 

+ ll
1

) is 

given in Table VI. Some of the lines shown in Fig. 5 are due to 

m-C6 H4 D2 and m-C6 IlzD4 impurities. These were identified from the 

phosphorescence of the corresponding isotopes in a C
6
D

6 
host. The 

frequencies are not included in Table VI. The possibility that some 

of the unassigned lines might be due to isotopic impurities other than 

the two above has not been investigated. 

The vibrational degeneracies in sym-C6H3D3 , as in C6 H6 , can also 

be removed by the low symmetry crystalline field, giving rise to site split­

tings. Nine of the ten degenerate vibrations have been assigned from the 

phosphorescence and fluorescence spectra. Site splitting is directly observed 

on four e' and two e" (vide infra) fundamentals and inferred for the third 

e" fundamental. v20 was obtained from the fluorescence. · Because of the 

greater linewidth in the fluorescence, the site splitting in ll20 could be as 

large as 3 em -l and not be resolvable. For v19 .the site splitting must be 

< 1 em -l assuming roughly equal intensities for the two components since 

.only one line was observed. The results are summarized in Table VII. 
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None of the three possible a.; vibrations -- v3 , v14 , and v15 -- were assigned 

from the emission. spectra. These were observed in the infrared for 

sym-C6 H3D3 in both C6 H6 and C6 D6 hosts and are reported in Ref. 4 . For 
·--·--· -. -·· --·- -

the ground state fundamentals that are seen both in the infrared spectrum 

and in the electronic emission spectra the agreement is within experimental 

error except for v17 • The site split components of the fundamental v17 in 

the phosphorescence have quite different intensities and the high energy 

component of the vibration is too weak to observe in most combinations. 

The two components are seen only in v17 and in the doublets tentatively assigned 

to v17 + v8 and to v17 .+ v5 ; where the splitting repeats :but the intensities be ­

come more nearly equal. This behavior i.s similar to v10 in both C6 H6 and 

sym-C6 H3D3, but for v17 the intensity difference is greater. The more intense 

component of v17 agrees with one of the infrared values in a C6D6 host, but 

the weaker component differs from the other infrared value by ca. 2 em -l 

which is outside the combined experimental errors. The infrared values 

for this sym-C6 H3D3 vibration in the two hosts C6 H6 and C6D6 show larger 

than usual shifts (ca. 1 em - 1
), but this borders on the reported experiment~! 

error. Considering the weakness of the high energy component in the 

phosphorescence, the assignment to v17 may be questioned, but, if this is 

not the correct assignment and the other component of v17 is unobserved, 

then the vibronic intensities of the two components must be greatly different 

as v17 is seen as a doublet in the mixed crystal infrared spectrum. 

An alternate assignment of the very weak 940.7 cm-1 component would be 

to v1 of either one (or both) of the two I3Cl2C5 H3 D3 species present. 

Brodersen and Langseth have assigned a Raman line at 947 em -l, observed 

in liquid sym-C6 IfsD3, to 13C12C5IfsD3 • If the 13 C-isotope shift in the phosphor­

escence 0, 0 of 13 C12 C5 IfsD3 is roughly equal to the 7. 8 em ~1 13C-shift . seen for 
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-1 -1 
1SC12C5Ifu, then the line at All = 940.7 em becomes All = 948. 5 em based 

on the unobserved 13C-O, 0. This near agreement with the Brodersen and 

Langseth value and the weakness of the vibronic line suggests that perhaps 

the assig11ment to 13C is correct. We choose to report in Table VII a site 

splitting of 4.1 em -1 based on (1) the few tentative combinations involving 

both components of ll17 . in the phosphorescence and (2) the observation of 

a comparable site splitting in the infrared. 

At All~llOO cm-1 the fundament_alll9 (e') is in re~unance with 

the combination ll10 + ll16 (e' +a'+ a{). The strongest two lines in this region, 

which might be assigned to ll9 since this fundamental is expected to be strong 

in the phosphorescence, are degenerate with two of the harmonic values for 

ll10 + ll16• Since six lines are observed, the ll9 .. component of the Fermi · 

multiplet is apparently responsible for two of these lines; however, 

unambiguous assignments can not be made. Similar problems 
-1 

occur 2270 em to the red of the 0, 0. The fundamental ll7 is expected to 

occur in this region, but again overlapping combinations make a unique 

assignment difficult especially from the phosphorescence (see Table VI). How-

:ever, in the sym-C6H~D3 fluorescence, as in that of C6 H6 , the relative vibronic 

· intensity of ll7 is increased and, therefore, the lines assigned to ll7 stanct 

out more clearly. Of course the higher the energy of the ground state 

vibration, i.e., the further it is removed from the 0, 0, the more severe 

these problems become. Furthermore, for all the isotopes the emission 

lines at the same time become broader and an underlying continuum appears. 

Thus, the assignments to ll2 and ll20 in the 3050 em - 1 region are· the least 

certain. As seen by comparing Figs. 3 and 5, the density of lines is less 

in the C6 Ha emissions and th~se complications are not so prevalent. 



215 

C0H5D has vibrational symmetry £2v for a hexagonal carbon 

framework. As seen from the correlation diagram in Fig. 4 , degener­

ate vibrations are split into a and b components in this lower symmetry 

and all vibrations group theoretically can be active in the phosphorescence 

spectrum. However, those vibrations which correlate directly to the 

more intense vibrations in the phosphorescence of ·C6 H6 or are strongly 

mixed with one of these active vibrations 23again dominate. For ex­

ample, the ~ vibrations v11 and IJ17b are mixed with v4 and v5 , respective­

ly. For the b1 vibrations strong mixing occurs among v9b, IJ15, and IJ18b 

and between v3 and v14• Thus, besides the strong vibrations corre­

sponding to those shown in Table III, the vibrations v11, v17b, IJ15 , and 
:"'·-· ·· .-·--- · · ~ . - - . 

v1ab also serve as relatively strong vibronic origins of totally symmetric 

progressions. The 'W.eakness of the remaining vibrations again suggests 

that the molecular symmetry classifications are still approximately 

valid in the 9i site. 

As a result of this mixing, the actual numbering of the funda­

mentals is somewhat arbitrary in a number of cases. We have generally 

followed Brodersen and Langseth, deviating from their labeling scheme 

only in one of the more arbitrary cases where the vibronic activity seemed 

to suggest a different assignment, i. e. , v
9 

b and v15 are interchanged. 

Since there are no degenerate species in point o-broup C sit e 
""'2V' 

· splitting cannot occur. As pointed out in Section II an apparently similar 

and related effect can and does occur. The latter has been termed the 

orientational effect. 4 The expected line pattern is given in Table I for the 

different isotopes for different choices of the effective site symmetry. 
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·· The phosphorescence spectrum near the electronic origin for 0. 5% 

C6 H5D in a C6 D6 host crystal is shown in Fig. 6. Table VIII gives the com­

plete analysis for the measured bands out to 0, 0- (v
8 

a, b + v1 ). The elec­

tronic origin consists of a pair of lines separated by 6. 5 em - 1 and all other 

vibronic bands are doublets or triplets with a total band width of approxi­

mately 7 em - 1
• These general features have been .previously described by 

NT. They assigned the 0, 0 <;ioublet to different orientations of the guest in 

the crystal, the 6. 5 em -l "splitting" ·representing the difference in zero-

point energies among distinct guest molecules with different .orientations of 

the deuterium atoms in the nearly £
2
h site. Thus, based on each member 

of the 0. 0 band vibronic lines a_l)pear with energy separations corresponding 
' 

to vibrational frequencies. · Due to the complications of the reduced molecu-

lar symmetry and of the orientational effect, the overall density of lines is 

greatly increased in the C6 H5D phosphorescence. Therefore, we have 

primarily concentrated on the lower energy fundamentals and the more intense 

combinations. 

For example, consider the doublet assigned to 0, 0- v1 (a1 ) in Fig. 6. 

Each of these represents the subtraction of a quantum of the totally symmetric 
~· --- ---- . - ·---------- . ---- -- - - ... - . - - -- - . .. "'- - ----- - .. 

.. 

mode v1 from its respective 0, 0 line. NT have been able to show from 

concentration studies that for some of the more intense lines, the high (low) 

energy member of a vibronic doubi~t corresponds to the high (low) energy · 

member of ~he 0, 0 band. Therefore, in the analysis for v1 presented in 

Table vm the subtractions are made assuming this correlation holds for all 

vibronic bands. Two values are in this manner obtained for v1 , 979. 0 em -l 

and 979. 4 em - 1 • The difference in these two values results from the inequiva­

lence of the guest-host interactions when two guest molecules undergo the 

same vibration in two physically different crystal direc~ions correspondi:ug 
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to the two different guest orientations. This apparent splitting, namely 

0. 4 em - 1 for v1 , is the orientational effect on this vibration for C6 H5D in a 

C6D6 host crystal. If this vibration were observed in the infrared or by the 

Raman effect with sufficient resolution, it would appear as a close doublet 

with a splitting of 0. 4 em-\ instead of the apparent 6. 9 em - 1 splitting 

observed in the phosphorescence. 

Since the crystallographic site symmetry is £i and not £
2
h , triplets 

are predicted in Table I instead _of the generally observed doublets. In fact, 

triplets are observed for some. bands,. e. g., v
13 

b and v5 in Fig. 6, and 

inferred for many doublets since the high-energy line is broader. From 

, this and the concentration studies of NT, two of the three electronic 

'origins are assigned to the higher· energy component of the 0, 0. 

·In Table VIII this nearly degener<lte pair are designated as 

.0, Ql and 0, 0 2 { the third origin 6. 5 em -1
. to lower energy is 

called 0, 0 3. · 

For the vibronic bands which appear as doublets, the vibrational 

energy qua.ntum corresponding to origins 0, 01 and O, 0
2 

are again nearly 

degenerate. If the vibronic band is a triplet, the two lines at higher energy 

are subtracted from the assumed degenerate electronic origins 0, 01 and 

0, 0
2 

to obtain the respective vibrational quantum for these two guest orienta-

tions. The vibrational energy in the third orientation· is obtained by 

'· 
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subtracting the low-energy line of the triplet vibronic band from 0, 03
• In 

this fashion 7 three different frequencies are generally obtained for a given 

vibrational mode as shown in Table VIII. 

The results are summarized in Table IX which gives all the directly 

observed fundamental frequencies and the orientational effects determined. 

The near equivalence of the 07 0
1 and 0 7 0

2 
orientations is demonstrated by 

the fact that only two of the fifteen observed fundamentals show a triplet 

structure and thus have non-zero entries in column 6 of Table IX. This 

indicates that the effective site symmetry is very nearly C h' However, the 
"'2 

effect on the vibrational energy in these two cases is quite large, amounting 

to 1-3 cm-1
, compared to an average orientation splitting of 0. 7 cm-1 between 

0, 03 and 0, 02
• It should be noted that both positive and negative energy shifts 

are observed for the orientational effect~ Where the fundamentals reported 

here overlap with bands observed directly in the infrared the agreement is 

excellent. No orientation effect has been reported for v
9
a or v

8
b as it is 

. ( 

difficult to conclusively assign all the lines in these regions (1170 and 1575 
1 . 

em- removed from the 07 0 band, respectively). It appears that these funda-

mentals are in Fermi resonance with combinations (see Table VIH). 

Since these orientational effects are all small, it is necessary to 

carefully analyze the sources and the magnitudes of the errors and their 

propagation in obtaining the final result. · The first consideration is, of 

course, the validity of the subtractions. Tnese have been made subject to 

the following restrictions: the concentration studies referred to earlier and 

the fact that where the assignments are unambiguous the orientational effects 

are usually small (vide infra and Ref. 4). These considerations lead to the 

method of subtraction given above. Besides this fundamental problem, 

experimental errors in line frequencies can distort the final result. Such 

an analysis leads to an uncertainty in the orientational effect of ~ 0. 5 em ~1 • 
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This is a consequence mainly to the three differences involved and round-off 

error in the absolute energy of any given vibronic line which is reported 
-1 only to ±0. 1 em . 

For p-C6 H4 D2 , which has vibrational symmetry _f)2 h for a hexagonal 

carbon framework, the correlation diagram in Fig. 4 shows that all the 

g-vibrations a
1
g, b

1
g, and b3 g can group theoretically be active in the 

phosphorescence spectrum. Besides those vibrations which correlate 

directly to the more active .vibrations of C6H6 , a significant activity is also 

seE:m of the vibrations 11
10 

b(b
3
g) and 713 (b2 g) which mix with 714 (b

3
g) and 11

9 
b(b

2
g), 

respectively. As in C6H5D, no degeneracies remain in the vibrational mani­

fold of p-C6~D2 • However, inversion symmetry is preserved in the latter 

isotope so that in general the same fundamentals are not observed in the 

infrared and emission spectra. 

As can be seen from the phosphorescence spectrum of 0. 5% p-Cn~D2 

shown in Fig. 7, the electronic 0, 0 and apparently all other vibronic bands 

are triplets. Because of the complex nature of this spectrum, it was not 

completely analyzed. A partial analysis of the spectrum is .given in the 

figure, where the average band width of the triplets is about 13 em - 1
• The 

origin of the electronic splittings and their relative magnitude for various 

isotopes has been discussed by: NT. Proceeding .as in C6H5 D, in general 

three different frequencies corresponding to ·o, 0\ 0, 0
2

, and 0, 0
3 

are 

observed for each vibrational mode summarized in Table X. These bands 

are the only ones for which an unambiguous assignment of the orientation 

effect could be made. 

\ . 
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ABSORPTION SPECTRA 

The vibronic absorption spectra of the guest in an isotopic mixed 

crystal also provides a useful tool for studying the effects of the crystal en­

vironment on the molecular energy levels. · Not only can some excited state 

·vibrations be studied but the orientational structure of the 0, 0 band can be 

observed directly. Unlike the fluorescence, the guest singlet- singlet 

absorption spectra can be very sharp in properly prepared crystals. Care 

must be exercised to avoid straining the crystal to obtain m;ucimum sharp­

ness. 2 7 In the thicker crystals of C6 H6 in C6 D6 , absorption line widths as 

narrow as 0. 6 em - 1 have been measured. The structure of the guest 0, 0 

absorption bands is given in Table XI for mixed crystals of C6 H6 , C6 H5 D, 

p-C6~J:?2 , and sym-C6H3D3 at ~ 0. 005% in C6D6 at 4. 2 °K. This structure 

represents the differences in the orientational effects of the ground and lowest 

excited singlet states, including both the vibrational contribution to their 

zero-point energies and any electronic effect. That is, if the net contribu­

tion to the energy of the zeroth vibronic level for a given orientation were 

the same for both states and if this were true for all orientations, the 0, 0 

band would consist of one line. From a comparison of Tables VIU, X, and 

XI one can see that this difference for the 1B
2
u -

1 
A

1
g transition is about 

1/5 that of the 
3
B

1
u- 1A

1
g transition, but in both transitions the overall 

splitting for p-C6~D2 is about twice that for C6H5D. For a detailed dis­

cussion of the significance of these differences, see NT. 

The thin crystals ( ....... 20 J.l.) are required to observe the higher vibronic 

guest transitions as such absorptions are completely masked by the host 

absorption in the thick samples . . Such guest lines are usually sharper than 

the fluorescence lines even in these "poorer" crystals. The vibrational 

frequencies obtained from these absorption lines are less significant than 
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those of ground state vibrations as excited state levels are more apt to be 

shifted by interactions with the host. The excitation exchange interactions 

are typically larger for the singlet vibronic bands than for the ground state 

vibrational bands and thus quasiresonance interactions28 with nearby host 

bands could cause a different shift in each vibronic level. A few C6 H6 in 

C6D6 levels are given in Table Xll from which it can be seen that the v~ site 

splitting (2. 1 em - 1
) is less than that of the v~' (3. 1 em - 1

). This splitting 

should not necessarily be the same as that of the v; in a pure C6H6 cry.stal, 

which has been reported29 to: be 9 em-\ since resonance interactions must 

contribute to the splitting in the pure crystal. 

Absorptions due to 13C-containing benzene have also been observed 

(see Table XI). In thick crystals of about' 0. 04% C6 H6 , considerable fine 

structure is seen surrounding the 0, 0 line. The spectrum is shown in Fig. 8 

,,and analyzed in Table XIII. The additional absorptions are tentatively assigned 

to .tsc..,.benzene, 13C2 -benzene, and to pairs of guest molecules in adjacent sites 

("dimers" or "resonance pairs''). The line; at 37856.9 em -l is assigned to 

1SCIZC5 Hs based on the presence of a 982 em ;..1 
(v1 , a1 ) progression built on this 

origin in the 1 B~u - 1A1g emission spectrum, as described earlier, and on its 

.. , : intensity relativ.e to the 12 C6 Hs 0, 0 'absorption at very low concentrations. The 

:13C2 -benzene assignment is made from an\analogy with the cteuterium isotope 

effect;11 ' 21 that ·is, the 1aC2 -line is expect~d· to be shifted twice as much as the 

. .\3C1 -line . Also in .analogy with the deuterium effect, the o-,_ m-, or p-.1.3~-

-shifts are expected to be nearly, equal (within 10% of one another). The assign­

ment of the line. at 37848.6 em-~ to a resonance pair is .made on the basis of its 

concentration dependence; that is,. its intensity decreases more rapidly than that 

of the .C6H6 ''monomer" absorption with decreasing C6 Ha concentration. The line 

at 37851.2 em -l; which may also be due to a dimer on a diffe rent pair of 

. crystalographic sites, has not been shown to have the expected · 
concentration dependence since it is 

' ' . 
' 
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too near the intense monomer absorption. At the highest resolution employed, 

additional absorption lines very near the monomer line are resolved. These 

are given in Table XIII, but are unresolved in the lower resolution spectrum 

shown in Fig. 8. Their concentration dependence and, therefore, their 

definite assignment is unknown. Similar lines were seen for the other deuter­

ated isotopes. The C6 H5D data is also given in . Table XIII; note the cons is-

· tei1cy of the orientational effects. 

It should be pointed out that polarized absorption spectra of pairs of 

molecules in isotopic mixed crystals allow the magnitudes and relative signs 

of pairwise intermolecular excitation exchange interactions to be determined 

directly, and therefore may be quite important in the interpretation of the pure 

crystal spectrum. 'Within the Frenkel limit, ·assuming short range terms 

dominate, these interactions are responsible for exciton mobilities and 

Davydor splittings, as, well as for the full exciton band structures of 

molecular crystals . 3 0 

VI. DISCUSSION AND CONCLUSIONS 

From the results presented in the summary Tables, both site splittings 

and orientational effects are seen to be a general occurrence in the benzene 

crystal. The magnitude of the effects are generally insensitive to isotopic 

substitution, u- or g-symmetry classification, or to the vibrat ion type as 

long as the vibration is either in- or out-of-plane. Even the gas-to-crystal 

frequency shifts (vide infra) follow this general pattern. However, differ-

ences are seen comparing in-plane and out-of-plane vibrations . Apparent 

exceptions for the site shifts are the particular in-plane vibrations v2 , v7 , 

v8 , and v13 • However, the anomalously large gas-to-crystal shift for t hese 

vibrations parallels an anomalously large gas-to-liquid shift, while for the . 

. . 
- -- - -- -- ---------·· ---~--- ------------ .. . - ... - • • -q .... .... . ,_. • • • , . • . •• --~ - - - · ~,.._-,. • • • • , , _ , __ _ · - · · ···-· --·· · · · · · · ·- · · · · · · · . · -··· - ·· ··-~·-·· · · ·- · ·· · 
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other fundamentals the gas-to-liquid shifts are very small. This implies 

that the gas-to-solid shifts for these vibrations are due to environmentally 

induced interactions among the molecular vibrations, rather than, for 

example, repulsive interactions in the solid phase. The average site shift 

for the in-plane vibrations is very nearly zero and certainly V{ithin gas 
- - ·-·· • I 

phase e:h'})erimental error (2-3 em - 1
) for unresolve<:I bands. For the out-of-

plane vibrations the average site shift (solid-gas) is greater than 10 em - 1
• 

This trend is followed in the site splittings (see Tables IV and VII). 

The average site splitting for the -out-of-plane vibrations is r-J 7 cm-1 while 

the in-plane vibrations have an average site splitting of roughly 3 em -1. 

For the orientational effect the distinction. between in-plane and out-of-plane 

bands is less clear and it appears that th~ effect is more dependent on the 

particular vibrational mode . . We note, however, that for v16(Ccf) the 

orientational effect as seen in the infrared4 in C6 H5D and p-C6~D2 is the 

largest observed. Furthermore, the average maximum splitting among the 

orientational components is generally less than site splitting. 

We suggest that the distinction between in-plane and out-of-plane 

modes is probably due to the greater vibrational amplitudes24 for the out­

of-plane displacements. This could imply that interaction with the crystal 

environment is greater and, therefore, larger site shifts, site splittings , 

and orientational effects result for larger vibrational displacements. For 

the lower symmetry isotopes which exhibit orientational effects, the mixing 

among vibrations, especially in the £i site, tends to equalize the vibrational 

amplitudes. Hence, one might not expect a clear distinction into certain 

vibrational classes or types, but rather a general effect larger only for 

certain motions with large vibrational amplitudes. 
-1 The site splitting observed in the fundamental v6 .for C6 H6 is 3. 1 em . 
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is closer to the harmonic value. The site splitting in this progression is 
---- "·-·-: __ . -··--more nearly constant and equals L 7, 1. 9 ' and 1. 5 cm~1 for n ·= 0, 1, and 2 

-l 
respectively. Furthermor~, v'6 Jn sym-C6 H3D3 is split by 1. 0 em . 

Even though the site-split components of a degenerate fundamental · 

usually have very nearly equal vibronic intensities, the fundamentals v10 in 

both C
6
H

6 
and sym-C6H3D3 and v17 in sym-C6H3 D3 are exceptions. Exactly 

how to evaluate this difference in vibronic intensities is not clear at present. 

An unknown amount of mixing and Fermi resonance between the components 

contributes to the site splitting and, if substantial, these interactions would 

tend to equalize the vibronic intensities. Therefore, one might conclude that 

for the bands where significant intensity differences are seen such intra -site 

interactions are small. The inverse, however, need not be true; that is, 

nearly equal intensities does· not necessarily imply strong intra-site inter­

actions. It may just be that in these cases the site-split components are 

equally good "intensity stealers. " In combination and overtone bands the 

relative intensity of the components is variable. For example, the compo­

nents of (v16 + v11) and 2v16 in C6H6 appear as e:h])ected in the phosphorescence 
. . . . . ' 
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_but in the fluorescence 2v16 differs from this intensity pat~ern, wher.eas ' ' 

(v11 + vH,) does not. Other examples are evident both from the approximate 

intensities given in Tables N and VII and Figs. 2 and 5. Some of these have 

been previously discussed. 

One would also expect an increased mixing an<i interaction among 

_different molecular vibrations. These effects are expected to show up most 

.clearly where they are symmetry forbidden or weak in the molecule but 

allowed in the crystal site. For example, for the well known case of 

(v6 + v1 ) + nvJ. interacting with-v8 _ + nv11 as given in Table XIV, crystal 

. effects are not obvious. However, .for sym-C6H3~ v16 + v10 and v9 . (see 

' Fig. 5 and Table .VI) .and v20 and zi2 seem to be examples of crystal site 

induced interactions. A further possible indication of the magnitude of the 

crystal site induced effects can be obtained from anharmonicities. Observing 

nv1 out to n = 5 in the C6H6 fluorescence, the anharmonic effects are small 

in accordance with the above observations. The only other vibrations whose 

overtones are observed are v16 and v10 , ·but in these cases Fermi r esonance 

in the crystal site among the three components of the overtone complicates 

the analysis of the anharmonicities. Similar difficulties are encountered in 

the combination bands. 

The general conclusion from the gross vibrational structure is that 

neither the energies nor the symmetry classifications of the vibrations are 

strongly perturbed by the crystal. This is specifically shown by the-magni­

tude of the site shifts, splittings, and orientational effects and by the domi­

nance of the e
2
g vibrations in the singlet and triplet spectra. The most 

pronounced effect of the crystal is the appearance of the 0, 0 progressions 

in th~ two emissions. · This,· along with the observation of site splitti.ri.gs, 

indicates that the molecular symmetry is not strictly Q6 h, but these 

effects could correspond to -very small molecular distortions. 
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Caption for Fig. l. 

Modified "Bridgman-type" sample cell. · 

.... ; .~·-
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Caption for Fig. ·2 . 

Microphotometer tracing of a lower resolution 
· plate of the C6 Ha phosphorescence. The bands 
labeled "a" are due to lSC12C5 Ha and discussed 
in the text. 
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Caption for Fig. 3 . 

Microphotometer tracing of the 0, 0-vl) . and 0, O-v8 .. 

. C6 Hs phosphorescence lines at the highest 
resolution employed. 
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FIG. 4. Co~relation diagram for the groups of 

benzene isotopesa. 

a;(z) 

e" 

az-axis always perpendicular to the plane of molecule; y-axis 

through ·C1 ; and x-axis between C2 and C3 • 

\ . 

I 
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Caption for Fig. 5 . 

Microphotometer tracing of a lower resolution 
plate of the sym-C6HsD3 phosphorescence. The 

bands labeled "a" are from a plate exposed ~/20 
as long as the rest of the spectrum; "b" denotes 

bands assigned to m-C6 H4 D2 and m-C6~D4 
impurities. 
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Caption for Fig. 6. 

Microphotometer tracing of the stronger bands 
of the C6 H5 D phosphorescence. The 118 a b bands 
are taken from a plate exposed ~i/5 as ldng as 
the rest of the spectrum. Lines under the 
trace indicate assignments . 
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Caption for Fig. 7. 

· Microphotometer tracing of the stronger bands 

of the p-C6 H4 D2 phosphorescence. The 118 _!.'egion 

is taken from a plate exposed 1/5 as long as the 

rest of the spectrum. Lines under the trace 

indicate assignments . 

. . . . . . . 
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Caption for Fig. · 8 . 

Microphotometer tracirig of the C6 Ife electronic 
origin at two concentrations in a 2 mm. thick 
C6D6 host crystal. See Table Xill for the 

frequencies~ 
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TABLE I. Number of possible orientations for benzene 
isotopes in site s of different s ymmetries. 

Molecular Site Symmetry 
Molecule Symmetry cl c . ~2h D .,.... -"l ""2h 

' I 

cs~ 
1 - ~h 1 1 1 

CsDa 

sym-C6H3D3 D ..... sh 2 1 1 1 

p-C6~D~ Q2h 3 3 3 a2 
1 2 

C6H5D :. ~ 

o-C6~D2 
X2V 

3a2 6 3 2 
' m-C6~D2 . ·, 

vic-C6H3D3 

asym-C6H3D3 fs 12 6 6 a 3 
' 

3 

aPlane of the site same as the molecular plane. 
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TABLE III. 

249 

Relative intensity estimates for the stronger . vibronic 

origins in the C6H6 phosphorescence and fluorescence 
spectra. 

3 lA lB lA Symmetry Vibration BlU 
__. __. 

lg 2U lg 

e2g Ve 1 100 

117 .. - 3 

Va 
tl. 100 20 

Zig 25 3 

2vla 1 3 

Z:'li + 1116 < .1 5 

' ' \, .. 
; 

·,. . . 

b20' ~4 >. 1+ . <1 
b 

t ' 

115~: 6 .. -:r .. 

·. · .. ~. v. 

.. 
~hg ··vl :' 1 22 

. • 

... 
1 71 -.2 . 

. ' 

elg V1o.· <1 -

0, 0 1 b 

~ncorrected for Fermi resonance with 116 + v1 • 

bDue to appreciable reabsorption, no relative intensity 

estimate is given. 

' ( ~ · L 

! . ~ 
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TABLE IV. -1 Summary of C6 H6 data (em ). 

.Rsh ·vibration Fundamental frequency 
symmetry number 

gasb liquidc solidd 
Site 

class and typea splitting 

~g v1 (CC) 995.4 (993) 990.5 

(3073) (3062) 3063.3 

~g lls(HII) (1350) 1346 

b2g 
l. (707) (707) 704.9 v4 (C ) 

v6(W) (990) (99.1) . ; 1004.9 

e2g V 6 (C 11
) 608.;0 (606) 606.3, 609.4 3.1 

v7 (CH) . (3056) (3048) 3042. o, 3047. 5 5. 5 

v8 (CC)e (1590) 1586 1584.2 ~0. 3 

v9(H II) (1178) 1177 1174. 34, 1174. 88 0. 54 

elg . 111o(~) (846) 850 862. 5, 869.3 6.8 

. ~u llu(~) 674.0 675 696.9 

[697] 

blU vl2(cll) (1010) 1010 1011. 3 

[1011] 

v13(CH) . · (3057) (3048) 

b2U v14(CC) (1309) 1309 1312.6 

[1313] 
. vl~>(HII) (1146) 1146 1146.9 

[1147] 

l. 398.6 404 404. 8, . 413. 0 8.2 e2u .. Vla(C ) 
[ 404, 413] 

vl7(Ir) (967) 969 978.3, 983.9 5. 6 

[978, 983] 
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TABLE IV. (Cont'd) 

D ""sh Vibration Fundamental frequency 
symmetry number 

gasb liquidc 
Site 

class and typea solid splitting 

e1u vl8 (HII) 1037 1035 1034. 8, 1038.·6 3. 8 

[1034, 1038] 

· v19(CC) 1482 1479 

Zlzo(CH)e 3047 3036 

aThe vibrational numbering for this and the other isotopes 
follows Refs. 17 and 26. 

bTake.n from summa+"y given i~ Ref. 26. ( ) indicates 

calculated values. 

c Ref. 18. 

dThe frequencies of the !!_-fundamentals are from Ref. 4. The 

values inferred from the u. v. spectra, rounded-off to the nearest 

em-\ are given in parentheses. 

eUncorrected for Fermi resonance. 
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TABLE V. Some observed and calculated fundamental 
0 13 12 frequenc1es of C C5H6 • 

13 12 
. C C5H6 fundamental D. ll (12 c - 13 c) 
frequency (em -1) a observed b predicted c 

lll ;982.0 8.5 8.4 

l/4 702.0 2.9 3.5 

lls 1003.8 1.1 1.0 

{1174.6 0.0 0.3 
llga b 

1172.6 2.0 2. 4 ' 

a The experimental error is ±0. 3 em -1
• 

bThe mean of the site-split fundamental v9 oi 12
C6H6 was used 

. _to calculate the All ·observed. 

cSee text . . ·· 
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TABLE VII. Summary of the sym -C6H3D3 data (em -1
) 

l?sh Vibration Fundamental frequency Site symmetry 
gas a liquid a solid b class number splitting 

a' 1 ll1 (956) 955 954.6 

ll2 (3074) (3062) 3046.3 

ll12 (1004) 1003 1002.9 

ll13 . (2294) 2282 2281.4 

a:.' ll4 697 .. 697 703.9 

lis 917 918 927.8 

llu 531 533 546.2 

e' ll6 594 594 591.8 593.5 1.7 

ll7 2282 2274 2269.0 2274 5 

lis 1580 1575 1571. 2 1572. 2 1.0 

llg 1101 1101 FR 

ll18 833 833 831. 5 . 834.6 3. 1 

ll19 1414 1412 1410.8 <1 

ll20 3063 3553 3060.6 <3 

e" ll1o (707) 711 718.2 722.7 4.5 

ll16 (370) 375 [ 378] [ 387] [ 8 . 5] 

lll7 (924) (926) 936.6 940.7 4 .1c 

a Ref. 26. Values in parentheses are calculated. 

bNot corrected f~r possible Fermi resonance (FR). Values in 

brackets are inferred from combinations. 

cSee text. 
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Table XI. 

CaHa 

·. C6 H5D 

2'{0 . 

l l 
B2u- A 1 a- Electronic Transition Energy for Isotopic 

t:> 

Guests in a C6 D6 Host Crystal at 4. 2 °K. 

mixed crystal a (em -r) 

. l2CaHnDa-n 

37853.3 

37885.2 
37884.0 

37915.7 
37912.9 

37947.9 

l3CI2C H D s n a-n 

37856.9 

37888. 8 . 
37887.7 

37951. 4 

b -l gas (em ) 

l2CaHnDa -n 

38086.1 

38124 

38154 

38184 

a uncorrected fpr interaction with the C6 D6 host. 

bThe C6H6 value is from R~f .. 18. For the other isotope,s the 

0, 0 is taken fro,m Ref. : 21. 
. \ 

. . . . 
·. ;,·;·.: ,::. -
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Table XII. Analysis of the B2u- A1 g Absorption Spectrum of 

1% C6H6 in C6 D6 at 4. 2°!(. 

A . 
aJ.r 

2641. 00 

2605.34 

2605.20 

2577.89 

2543.9 

ll 
vac 

37,853.3 

38, 371. 3 

38,373.4 

38,779.8 

39, 297(b) . 

:a 
Ref. 18. 

All 

0 

518.0} 
520.1 

926.5 

1444 

Assignment 

0-0 

Zl ' 6 . 

Z/ I 
l 

. ll; + Z/6 ' 

Ga s 
All 

522.4a 

923b 

~· bF. M. Garforth and C. K. Ingold, J. Chern. Soc., 1948, 417 · 



I 

272 

Table XIII. Structure Observed Near the Electronic Origin for C6 H6 

and C6 H5D at Higher Concentrations in a C6 D6 Host. 

,.!.. 

CHI 
. 6 "i3 

-l -l 
vern I Assignment vern I Assignment 

,.!.. 

·a+ 37,860.9 w ·1sc 12c H I 37,892.5 :J 2 4 6 

b 

' c 

'd 

' e 

.f 

g 

37, 891. 6 

37, 856.; 9 s 13CC H 37,888.8 :J i 5 6 
! 

.. 

·. .37, 887. 7 
' 

-37,854.1 w,sh 
! -

37,853.3 vs ' Monomer 37,885.2 vs} : 

37,884.0 vs 

37,852.3 .. w -; 

' 
37,851.2 w 37,882.7 . w 

37' 881. 8 . 

37,848.6 Resonance 37,880.0 w Pair 

t 0. 04% guest in a"" 2 rom C6D6 host crystal. 
t " 
See Fig. 8. 

w 

w,b 

lsc l2C H D 2 4 5 

13Cl2C H D 
5 5 

Monomer 

Resonance 
Pair 

I 
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Table x:rv.· Change in the 1600 em -1 
118 and 116 + 111 Fermi Couple 

Splitting·with Totally Symmetric n 111 Additions 

n Lla + 111 (v6 + v1 ) + nv1 Site Fermi splitting 
(em -1

) 
-1 splitting (em -1 ) (em ) 

(em - 1
) 

; 

solid a fZ'asb 
0 1584.3 1602.8 1.2 19.1 20 

1604.0 
. 

1 2568.1 . 2594.3 1. 2 26.8 . 26 

. 2595.5 .. 

2 3551. 6 ; 3583.5 1.3 32.5 31 
' . . 

3584.8 
' 

3 4534.1 4571. 5c 37.4 37 

116 606.3 3. 1 

609.4 

aThe mean of the split (116 + 111 ) + nll1 component is used to 

calculate the Fermi splitting. 

:. , bF. M. Garforth, C. K. Ingold and H. G. Poole, 

J. Chern. Soc., 1948, 427. 

cThis band is too weak to observe·any splitting. 
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THE GUEST PHOSPHORESCENCE LIFETIME IN ISOTOPICALLY 

MIXED BENZENE CRYSTALS 

The benzene phosphorescence lifetime has been previously 

measured in glassy media 1 and in low molecular weight condensed 

gases. 2 we*have measured the lifetime of several isotopic benzenes, 

each as a guest in a C6 D6 host crystal at 4. 2 °K. 

All experiments were performed by isolating individual vibronic 

lines with either a 1. 0 or 1. 8 meter Jarrell-Ash spectrometer. In 

general, a minimum of two separate determinations on each of two 

different vibronic lines was performed for each lifetime reported. The 

vacuum-line distilled and degassed samples were prepared as described 

earlier in Part III of this thesis. Purification 3 with metallic cesium 

did not change the phosphorescence lifetime. The exciting light was 

either a low energy xenon flash lamp of 20 J.LSec duration or a 

mechanically shuttered c. w. mercury or high pressure xenon lamp. 

All light sources yielded identical triplet decay times. The phosphorescence 

intensity was monitored from t ~ 0. 1 sec tot ~ 40 sec with an oscil­

loscope and decayed exponentially in all cases. 

As shown in Table I, the triplet lifetimes of the isotopic 

benzene guest in a C6 D6 host crystal are independent of the guest and 

its concentration for less than about 1% guest by weight with a total 

average lifetime T = 8. 7 sec. For higher guest concentrations, the 

triplet lifetime decreases and presumably becomes nonexponential due 

to rapid triplet-triplet annihilation as has been previously reported. 
4 

*The author acknowledges the collaboration of S.D. Colson in this work. 
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Table I. Phosphorescence Lifetimes of Isotopically Mixed Benzene Crystals 

a 
host guest weight% T 

guest (sec) 

CsDs CsHs 0.82 8.7 
0.093 8.5 
0.014 8.7 

', 

CsDs C6 H5D 0. 94. 8.5 
0.15 8. 5 
0~013 8.6 

CsDs p-CsH4D2 0.86 8.6 
0.16 8.9 
0.016 8 .. 9 

CsDs sym-C6 H3 D3 1. 05 8. 7 
0.22 8.3 
0.0088 9.0 

sym-C6 H3 D3 CsHs 0.009 8.4 

a± 0. 2 sec 
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The only other determination at 4. 2°K yielded lifetimes of 16 sec and 

26 sec for C6 H6 and C6 D6 , respectively, when the respective isotope 

was trappe:d in low molecular weight solidified gases. 2 Robinson and 

Frosch 5 have suggested that the phosphorescence lifetime of a perdeutero 

compound is very nearly equal to. the actual radiative lifetime T R, the 

shorter T for the protonated species being attributed to a decreased 

nonradiative lifetime T NR from Franck-Condon arguments. This has 

been confirmed for benzene by the quantum yield measurements of Lim. 6 

The arguments of Robinson and Frosch would predict a monotonic 

dependence of the radiationless rate on the number of deuteriums 

present, which is in agreement with the experimental observations of 

the benzene phosphorescence lifetime in glassy solutions at 77 °K 7 

and of the naphthalene phosphore$cence lifetime in perdeuterated 

durene. 8 Thus, both the magnitude of the benzene triplet lifetime, 

8. 7 sec, and its constancy with partial deuteration suggest anomalous 

behavior in the crystal. 

The results imply that the triplet lifetime is entirely crystal 

determined, either by a shortening of the radiative lifetime or by an 

unknown radiationless mechanism. The usual nonradiative process 

for depopulating triplet states can be eliminated. From the absence 

of a concentration effect and the constancy of the lifetime for different 

excitation conditions and degree of purification, impurity or photo­

product quenching and triplet-triplet annihilation are ruled out as 

possible mechanisms for shortening the lifetime. Appreciable inter­

system crossing to the ground state_ is apparently also eliminated by · 

the absence of a deuterium effect. Moreover, Hirota and Hutchison 8 
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· have found that the naphthalene triplet lifetime generally lengthens 

with complete deuteration of the durene host, which they att ribute to a 

decrease of the intersystem crossing rate. It seems reasonable to 

assume that the C6D6 host behaves similarly. As seen from Table I, 

the phosphorescences lifetime of 0. 01% C6H6 in 1, 3, 5-C6H3 D3 host is 

(8. 4 ± 0. 2)sec, which is equal to the mean lifetime of 8. 7 sec observed 

in the C6D6 host within our ·experimental error. If a host effect is present, 

it appears to be in the correct direction. However, from our data we 

can only conclude that degree of deuteration in the host is also not rate 

determining at 4. 2 °K. If the radiative lifetime is shortened from 

26 sec to 8. 7 sec in the crystal, it is easy to account for the absence 

of a deuterium effect.. Namely, the nonradiative rate is sufficiently 

small relative to the radiative rate even for C6 H6 that a further decrease 

in the nonradiative rate from deuteration does not measurably affect the 

overall triplet lifetime. 

We can not at this time definitively identify the process by which 

. the lifetime becomes "crystal determined". However, it is interesting · 

to note that the ' triplet state in the cry~tal has been shown 9 t~ have 

an effective symmetry lower than Q6h such that the benzene phosphorescence 

is no longer orbitally forbidden. The remaining spin forbiddence can 

be formally removed in the lower symmetry by a direct spin-orbit 

interaction with a dipole allowed singlet state. In addition, other 
' 

vibronic mechanisms group theoretically forbidden for the free molecule 

can occur. Thus, there are reasons one might expect the radiative 

lifetime to be shortened. 
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PROPOSITION I 

Although relatively slow vibrational relaxation in simple 

van der Waals solids has now been established, no quanti­

tative measurement of the kinetics have been obtained. 

We suggest the systems OH and CN in solid matrices for 

further study of vibrational relaxation in excited electronic 

states. 

The work described in Part II of this thesis shows that vibra­

tional relaxation in excited electronic states of diatomic guest molecules 

in solid hosts can be quite slow. However, this work suffers from the 

inadequate manner in which the data can be treated and many questions 

surrounding vibrational relaxation in solids remain unanswered. The 

most obvious are (1) the manner in which the relaxation rate changes 

with vibrational level, (2) the importance of t::.v = 2 transitions, and (3) 

the dependence of the relaxation rate on the vibrational quantum. We 

here suggest two systems wherein these questions may be answerable. 

One of the major difficulties in the earlier work arises from the 

use of X-irradiation to excite the diatomic emission spectrum, since 

the excitation mechanism can be quite complicated. The kinetics for the 

relaxation greatly simplify if only one vibrational. level of the excited 

electronic state is initially populated. This condition can be experi-



280 

mentally chosen in an allowed band system by absorbing directly into 

only one level of the excited state. 

The A
2

"E+ - X
2 f\ system of OH is an allowed transition for which 

emission from v' > 0 is seen in solid Ne at 4. 2 °K. Some preliminary 

work on this system using X-irradiation to excite the emission spectrum . 

is described in this thesis. It is proposed that the intensity of emission 

from various v' in the A
2 

'E+ state be studied as a function of the vibra-

tionallevel initially excited by direct absorption. 'I'he Franck-Condon 

factors 1 for this system are such that v' = 0,1, 2, and perhaps 3 can 

be reasonably populated by absorption from the v" = 0 level. Moreover, 

all strong emission bands, except for the 0, 0 band, occur considerably 

to lower energy. Therefore, filtering problems are minimized. 

A second diatomic, from which emission has not been reported 

in solid matrices, is the cyanogen radical. CN has two well-known 
2 2 + 

allowed band systems which connect with the ground state: A II- X 'E 

and B
2

"E+ - X
2
"E+. 2 Both of these have been seen in absorption in an 

Ar matrix. 3 The red system A -+X lies in a difficult spectral region 
-1 -1 

for this study (v00 = 9114 em ), but the violet system B-+X (v00 = 25798 em ) 

can probably be excited in emission. The latter system involves a very 

small change in intermolecular distance and, therefore, the strong bands 

of the system involve the l::..v = 0 sequence. However, published Franck­

Condon factors 4 suggest that v = 0,1 and perhaps 2 can be reasonably 

populated. A more serious problem is the small change in we between 

the ground and excited states, which means that members of the strong 

D.v = 0 sequence lie close together (- 10 A) and, thus, cause a filtering 

problem. This is much less serious for the red system of CN and for 

OH. 
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The experimental procedure to be employed for either diatomic 

suggested can be generally outlined as follows. ~0 - Ne or HCN­

rare-gas mixtures are deposited onto a liquid helium cooled optical 

window. OH or CN is formed in situ by photolysis with ultraviolet 

light, whose wavelength is chosen to give the products desired: 

.A< 1860 Afor OH 5 and .A< 1810 A for CN. 5 Alternately the system 

can be prepared by photolysis in the gas phase during deposition of 

H2 0 2 or C2 N2 plus matrix gas. This may have the advantage of 

producing only OH md CN, 

-~•~ 2 OH 

--t•~ 2 CN 

D(HO-OH) = 2.12 eV 

D(NC-CN) = 6. 26 eV 

whereas photolysis of H2 0 and HCN in the rare gas solid leads to H­

atoms which may diffuse through the solid. Photolysis of H:z02 or C2 N2 

in situ is expected to be less effective since the OH and CN formed in 

the decomposition may not be able to escape .the matrix cage. A third 

method of producing the radicals would be a microwave discharge. 

A given vibrational level of the upper electronic state is then 

continuously populated by absorption of monochromatic light while 

the steady state intensities of emission bands originating from various 

v' is simultaneously recorded photoelectrically. 

The data obtained can be related to the relative populations of the 

various excited state vibrational levels and, thus, values of the vi-

brational · relaxation rate as a function of vibrational level in 

the excited electronic state determined. The kinetic 
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equations for such a system are discussed earlier in this thesis. In 

brief, by populating the level v' = 1 and measuring the relative intensi­

ties of emission from v' = 1 and v' = 0, the vibrational relaxation rate 

for v' = 1 __. v' = 0 can be determined if the radiative lifetime as a 

function of vibrational level is known. The radiative lifetime of the 

A__. X system of OH 6 and the violet 7 and red 8 systems of CN are 

known for the free molecules. It is a reasonable assumption that these 

are not appreciably perturbed in solids and that they do not vary with 

vibrational level since the transitions are allowed and the internuclear 

distances for the two states are nearly the same. By next exciting v' = 2 

and monitoring the emission from v' = 2,1 and O, the relaxation rates for 

2 -1 and 1 __. 0 are obtained. Clearly the rate for 1 __. 0 must agree in 

the two determinations. If they do not, . multi-quantum jumps are strongly 

suggested. These can be incorporated into the relaxation kinetics and 

their rates determined. 

The big "if" in the proposed investigation is whether emission will 

be seen from lower vibrational levels when excitation is carried out into 

higher vibrational levels. If the vibrational relaxation rate is very slow 

relative to the electronic radiative lifetime only resonance emission 

will be seen and, therefore, only a rough limit to the relaxation rate 

obtained. In this case it may be possible to increase the vibrational 

relaxation rate significantly by changing the solid host. For example, 

by using C02 or other polyatomics for a matrix, near resonances 

between the guest. and host vibrational levels occur and the relaxation 

rate may be greatly incre.ased. 
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PROPOSITION II 

It is proposed to investigate the crystal electronic 

spectrum of_p-benzoquinone and search for either ab­

sorption or emission involving vibronic states arising 

from interaction between the two carbonyl groups. 

Two chromophoric groups or molecules at finite distances can 

interact and, thereby, remove the twofold degeneracy of the excited 

states of the pair. This kind of interaction gives rise to the well­

known Davydov splitting in molecular crystals. 1 As a limiting case 

of a "cry stal with only two molecules", McClure 2 has studied the spectra 

of molecules containing two benzene moities connected by -(CH2)n-

groups (n = 0, 1, and 2). The spectra were explained by considering 

excitation exchange interactions between the benzene rings. 

Similar interactions are expected in smaller molecules which 

contain two identical chromophoric groups. The experimental con­

firmation of this expectation is, however, limited to only one observa­

tion. El-Sayed and Robinson 3 have observed additional absorption 

features to low energy of the 3200 A system of pyrazine at low 

temperatures which they assigned to the symmetry forbidden component 

of the lowest rr * - n transition. Herzberg 4 has questioned this 

interpretation, while Cohen and Goodman 5 have recently employed the 

ordering of states suggested by El-Sayed and Robinson to explain 

radiationless transitions in the diazines. In light of its singular 
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importance, a re-examination of the solid spectrum of the diazines 

is indicated. An alternate approach, although not designed to settle 

the above controversy, is to search for absorption to the two 

components in other similar systems expected to show this type of 

splitting. We, thus, propose to investlgate the absorption spectra 

of £-benzoquinone at low temperatures. 

The pure crystal spectrum of £-benzoquinone has been in­

vestigated previously under low resolution at room temperature 6 

and at 20°K. 7 The strong bands observed by Sidman 7 at 20°K 

correlate well with the recent high resolution analysis of the visible 

spectrum of the free molecule by Hallas. 8 Two transitions are seen 
3 1 0 1 1 0 

in the visible: Au- A1 g at~ 5500 A and B1 g - A1g at- 5000 A. 

* Both are assigned as 1T - n. 

In the simplest approximation, 6 these states arise from the 

following electron configurations: 

(b2u- b2g) 

(bsg- b2g) 

where 1T 5 is the lowest unfilled 7T-orbital and 

= 

are the pair .of n-orbitals resulting from the degenerate nonbonding 

orbitals on the oxygen atoms. Thus, besides the transitions assigned 
3 1 l l 

by Hallas, B- A1g and Au- A1g are expected. The purpose of 

this proposal is to search for these states, which are anticipated to 

be nearly degenerate with the observed states. The degeneracy is presum-
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ably removed by a small interaction between the two equivalent carbonyl 

groups. 
1 1 

Hollas reports no evidence for the A - A1 transitions in 
u g 

the gas. Sidman's crystal spectrum is less clear. Although he does 

not consider this transition, many weak lines in his spectrum are 

unassigned, even in light of the more recent gas phase analysis. 

Moreover, many lines are assigned to phonon additions, some of 

which appear with an intensity greater than the no-phonon line. In 

particular, all phonon addition lines are weaker than the corresponding 

vibronic line except for the two bands near the first false origin. 

This apparent additional absorption may possibly represent unresolved 

' * structure due to the other component of the lowest rr - n singlet 
1 1 

transition, i. e. , Au - A1g. This observation of Sidman's spectrum 

was apparently first made by Hollas, who suggested that this region 
1 1 

of strong absorption may be the region of the A1u- A1g system. 
1 1 

Assuming this to be the origin)a splitting of the B1g and Au states 
-1 1 

of 200-300 em in the crystal is implied with the B1 g state lower in 

energy. 

This conjecture may, however, be in error for the following 
l l 

reasons. The Au - A1g system is forbidden in the free molecule 

and requires b1g, b2 g or b3g vibrations to gain vibronic intensity. 

Although it does become group theoretically allowed in the C . site 9 
"'1 

of the £-benzoquinone crystal, it most likely will still give the 

appearance of a forbidden system made vibronically allowed. Therefore, 

the tentative splitting given above may be too large by the energy of 
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the perturbing vibration and may in fact even invert the energy 

ordering of the two states. 
1 

Another observation by Sidman seems to suggest that the A 
u 

state is at lower energy, viz. , no emission was seen from "crystalline 

_p-benzoquinone at 20°K, or in a glassy solution at 77°K, when illuminated 

with either blue or ultraviolet light." The recent mechanism for 

radiationless transitions in diazines suggested by Cohen ~nd Goodman 
1 

would qualitatively predict this observation if the A1 u state does lie 
1 

beneath the B1g state. However, the emission spectrum should 

certainly be reinvestigated since this could aid in establishing the 

existance or nonexistance of lower lying states. , 

Extension of the above suggested studies to the spectrum of other 

molecules containing two carbonyl groups would also be of interest. 
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PROPOSITION III 

As a means of studying the bonding in alkali halide 

dimers, it is proposed to investigate the infrared spectrum 

of mixed alkali halides. 

In the vapor most of the alkali halides form dimers, and in 

some cases even trimers. 1 The actual structure of the dimers have 

been investigated only for some of the lithium halides where electron 

diffraction measurements indicate a planar rhombic structure with 

.f.>2h symmetry. 2 The structures of the dimers of the other halides is 

not known with certainty, but they are thought to have similar geometries . 1 

Klemperer and Norris 3 have assigned two gas phase infrared 

absorptions to the dimers of the lithium halides, but the vibrational 

frequencies could not be accurately determined because of the large 

bandwidths that result from the high temperatures used to obtain a 

sufficient concentration of dimers in the gas phase. In addition a 

series of workers 4 have investigated the infrared spectra of lithium 

fluoride dimers in matrices at low temperatures. Much sharper 

lines are obtained and a more nearly complete analysis of the spectrum 

in terms of the species present and their geometry is possible. 

However, even in the most recent matrix study the vibrational 

analysis is incomplete since only three vibratimal modes are assigned, 

whereas a tetratomic non linear molecule has six normal modes. The 

reason for this is of ccurse clear if the lithium halide dimers belong 
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to point group Q2 h, namely only the three£ vibrations are infrared 

active . 

The frequencies for the alkali halide dimers have been theoretically 

calculated by Berkowitz 5 on the basis of an ionic model. The agreement 

with the three known frequencies is fair (- 25%), but this is. certainly 

an inadequate test of the potential used. To obtain a better understanding 

of the binding in these dimers, one would like to have more of the 

vibrational frequencies. 

A systematic study of the infrared spectra of mixed alkali halide 

dimers which contain either a common anion or cation is proposed. 

These have not been observed by infrared spectroscopy although it is 

known, for example, that in the LiF-NaF system the vapor consists 

mostly of LiNaF2 when the LiF-NaF composition of the melt is about 

1 :1 . 6 The mixed dimers have lower symmetry than the pure dimer 

and, therefore, an accordingly greater number of infrared active modes. 

Assuming that the planar rhombic-type structure is carried over 

to the mixed dimer, the symmetry is reduced to C2 and all vibrational 
"v 

modes become infrared active. Therefore, a complete vibrational 

analysis is in principle possible, The ionic model of Berkowitz can be 

extended to the mixed dimer and the comparison between observed and 

calculated frequencies for a series of mixed dimers would serve as a 

sensitive test for the model potential. 

As indicated above, two techniques are available for studying the 

infrared frequencies of these molecules, L.!volving two temperature 

extremes. The low temperature trapping technique " is probably required, 

at least as a check, in the proposed work since the bandwidths at high 
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temperatures will be broad and, therefore, it will be difficult to separate 

the features due to different species. A combination of the two tech­

niques is undoubtedly best. Thus, the frequencies and assignments 

obtained from the low temperature study can be compared with the 

unperturbed gas phase spectra. The samples are prepared for low 

temperature infrared investigation as follows. 4 A Knudsen cell 

containing the salt (or salts) is electrically heated to obtain a vapor 

pressure of a few microns. The gases effuse from the cell .and are 

mixed with a matrix gas subsequent to deposition on a low temperature 

infrared window. The gas phase spectra are recorded employing 

phase sensitive detection to reduce the strong infrared emission at 

high temperatures. 3 

The monomer and some dimer frequencies for the alkali halides · 

are known so that the dimer frequencies for some of the mixed halides 

will probably be easily identified. Varying the relative salt concentration 

in the Knudsen cell will aid the identification and, of course, the spectrum 

of the individual halides can be obtained separately for comparison in 

those cases where the pure alkali halide frequencies are unknown. In 

the gas phase monomer and dimer bands can be distinguished using a 

double -oven technique . 3 
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As particular examples, we consider the addition compounds 

formed between halogens and 1, 4-dioxane, 1, 4-dithiane, and 

1, 4-diselenane. The 1, 4-dioxane-Br2 or Cl2 crystal contains "zigzag" 

chains of alternating donor and acceptor molecules and the participation 

of one halogen atom in a bond to the ether oxygen does not appear to 

influence the ability of the other halogen atom to form a similar bond. 

However, in the stronger complexes between the corresponding thio­

and seleno-ethers and 12 , only one iodine atom is bonded to the ether 

and the complexes contain the molecular species in the proportion 

1:2, ~' 1, 4-dithiane· 212 • A similar 1:2 complex results for 

dioxane and ICl with the ether oxygens linked to the iodine. 

To further characterize the nature and the relative strength of 

the bonding in these complexes, the nuclear quadrupole resonance 

spectra of the halogen nuclei would be useful. Examples of the appli­

cation of quadrupole coupling data to investigate intermolecular bonding 

in the solid state are given by Das and Hahn, 4 but these examples all 

relate to neat crystals. A study of complexes involving aromatic 

donors has been reported 5 and interpreted in terms of very weak, if 

any, charge-transfer, as might have been anticipated from the 

crystallographic results for these particular complexes. 6 

On the other hand, the addition compounds of n-donors with 

halogens show strong evidence for intermolecular interactions in the 

solid. It is, therefore, of interest to obtain the halogen coupling 

constants in these complexes and attempt to relate the values for a 

s eries of complexes to the bonding . 
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The pertinent theory will be briefly outlined for the example 

addition compound 1, 4-dioxane· 2ICl. The structural data discussed 

above imply that this is one of the more strongly bound complexes, so 

that the effects should be near maximum. The nuclear quadrupole 

coupling constants for 1271 and for 35Cl are known for ICl both in the 

gas phase 7 and in the pure solid 8 and, therefore, the observed 

frequencies for the complex can be compared to uncomplexed ICl. 

Moreover, the iodine and chlorine resonances are expected to be well 

separated in frequency. The above considerations at least in part 

apply to all interhalogens and point out the advantages of using an inter­

halogen instead of a halogen for a nuclear quadrupole resonance study 

of the 1:2 addition complexes. 

In the complex the atomic grouping 0-I-cl is linear and 

directed in the equatorial direction with respect to the 1, 4-dioxane 

molecule. Considering only the fragment O-I-cl and assuming the 

field is symmetric about the linear axis, the quadrupole energy levels 
4 are 

e2
Qq [ 2 ] 

WM = 41(21-1) 3M -1(1+1) 

Cl35 has a nuclear spin I= ~ and only one line results in the quadrupole 

spectrum at a frequency 

w = 

1 ±~ corresponding to M = ± 2 - 2 · 
Two frequencies are obtained for 
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molecule values. In the full charge separation implied by structure 

(b), the chlorine ion has a completely closed, spherically symmetric 

valence shell and the quadrupole coupling vanishes. Thus, the larger 

the contribution made by structure (b) to the total wavefunction of the 

complex, the greater the lowering of the Cl resonance frequency. 

The 1
127 

coupling in structure (b) would seem to increase from the 

value in ICl due to the larger electronegativity of oxygen compared to 

chlorine and the formal positive charge, if the hybridization about the 

iodine does not change. Structure (c) represents the "dative-bond" 

structure in charge -transfer theory and is intermediate between (a) 

where no bond exists and (b) where the interaction is sufficiently 

strong to form an oxygen-iodine bond. 

Clearly the above discussion is highly qualitative, but it does 

indicate the type of changes expected in the quadrupole coupling with 

intermolecular interactions. By comparing the observed changes in a 

family of related complexes, trends may be ascertained which might 

allow a more quantitative discussion of the bonding. It is, therefore, 

proposed to investigate the nuclear quadrupole resonance speactra of 

the halogen nuclei in the crystalline addition compounds of 1, 4 -dioxane, 

1, 4-dithiane, and 1, 4-diselenane with the interhalogens and halogens. 
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PROPOSITION V 

Recent work has shown that molecules are 

preferentially oriented in deposited solids. It is 

suggested that this be further investigated and applied 

to obtain the electron spin resonance spectra of ceo and 

NCN. 

Recent observations by Kasai, et a1. 1' 2 demonstrate that 

radicals in solid matrices at low temperatures can have preferential 

orientations with respect to the substrate. For example, N02 was 

found from electron spin resonance (ESR) studies to be not rotating 

anq to be oriented mainly parallel to a planar sapphire substrate in a 

Ne matrix. The mechanism where by this occurs is not known. 

Kasai, et al. propose that the thermal gradients at the substrate 

surface might be important, but only minor variations in the experi­

mental conditions are reported. 

If such partially oriented solutes were a general occurr ence in 

matrices, this would aid the ESR study of many molecules which can 

not be incorporated into a single crystal. The technique would be 

especially useful for chemically unstable molecules such as small, 

highly reactive, ground state triplets. It is suggested that the ESR 

spectrum of CCO and NCN be obtained in solid matrices following the 

general experimental technique of Kasai, et al. By extending the study 

to a number of hosts and varying the conditions of sample pre pa r ation, 



300 

optimum conditions for any preferential orientation and the perturbation 

by the environment on the parameters of the triplet state may be 

determined. These systems are considerably different than those 

studied by Kasai in that the radicals are chemically unstable. Preferen­

tial orientation of the precursor may or may not occur more readily 

than the radical. Thus, both in situ photolysis and photolysis during 

deposition should be investigated. 

CCO and NCN are isoelectronic and, therefore, the electronic 

energy levels are expected to be similar. The lowest electronic 

configuration of NCN is 

la~ la~ 2a~ 2a~ 17r ~ l7r; 

which yields 3~~, 1'E;, and 1Ag states. 3 The lowest energy state of 

this configuration is expected to be 3~~ with the 1 Ag and 1 'L; states 

low lying excited states. For the unsymmetrical radical CCO, the 

u, g-classification is of course no longer correct. However, the 

expectation that both of these fourteen electron radicals are linear in 

accordance with theoretical predictions 3' 4 and ground state triplets 

is still valid. 

Herzberg and Travis 5 have examined a portion of the NCN 

spectrum under high resolution and have assigned the observed bands 

to a 3fh -<--- 3~ ~ transition. Moreover, they were able to ascertain the 

spin-spin splitting in the ground 3'E~ state. Wasserman, et al. 6 have 

in addition observed the ESR spectrum of NCN in a fluorocarbon glass 

at 77°K. No ESR studies have been reported for CCO, although there 
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has been considerable interest in photochemical systems involving 

this radical. 7 

A reason for choosing the NCN molecule for further investigation 

is that the zero-field splitting for the free radical is known from the 

analysis of Herzberg and Travis. The zero-field splitting of no other 

polyatomic molecule in a triplet state has been determined both for the 

free molecule and in a condensed sol vent. The results show that for 

NCN in a fluorocarbon glass the zero-field splitting is decreased from 

the gas phase value by about 2%. The extension to other sol vents with 

different molecular properties is, therefore, of interest to establish 

whether this magnitude change is characteristic. The direct confir­

mation of a triplet ground state for ceo relates of course directly to 

its behavior in photochemical systems. The energies of the excited 

states of ceo are similarly of interest and not currently known. 

The ESR spectrum of triplet states of randomly oriented 

molecules in solids has been discussed by Wasserman, Snyder, and 

Yager (WSY). 8 We will present a brief outline of the theory, following 

mainly these authors. The spin Hamiltonian of two electrons in a 

triplet state in the presence of an external magnetic field g may be 

written 

JC = 

where the symbols have their usual meaning. D and E are the experi­

mentally determined zero-field splitting constants. When two of the 

principal axes are equivalent, as in a linear molecule, the third 
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direction corresponds to the z axis and E = 0. The zero-field 

splittings in triplet states of molecules containing mainly light atoms 

arise primarily from the dipolar interaction of the electron spins, but 

in the more general case spin-orbit interactions can also contribute 

to the splitting. 9 

WSY have shown that there is a sharp change in the number of 

molecules which are in resonance at those fields where H is parallel 
rv 

or nearly parallel to one of the principal .axis. This feature gives rise 

to peaks in the ESR spectrum that are centered at these fields. From 

these axial resonance fields and the solutions of the spin Hamiltonian, 

the zero-field splitting constants are obtained. In our case, the axial 

resonance fields are related to the zero-field splitting as follows. 

H~l = Ho (~o - D') 

2 H
0 

(H
0 

+ D') Hxy2 = 

Hzl ;:::: I Ho - D' I 

Hz2 = H
0 

+ D' 

where H = hv/g {3, v is the microwave frequency, D' = D/g {3, and, 
0 

for example, Hzl and Hz2 are the low and high axial fields when ~ 

is parallel to z . 

As seen from the above equations for the axial resonance fields, 

Hxyl and Hzl move to lower fields as D' increases relative to H
0

. 

For D' > H , H 1 no longer occurs and the two z -absorptions are 
0 xy 

then transitions between the same energy levels. 10 The case D'> H
0 
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applies for the radicals CCO and NCN. Whereas typical spectro­

meters employ a microwave quantum of "'0. 3 em -1
, D for NCN equals 

-1 5 ' 
1. 568 em . We reasonably expect ceo to also have D::::::! 1-2 em - 1

• 

This means that the ESR spectrum of NCN or CCO, randomly oriented 

in a solid host, should show absorptions for those radicals that have 

their z -axis perpendicular to the external field at the resonance field 

Hxy2. The absorptions for B II z are much weaker than B 1 z and the 

former have not been observed for cases where n' > H
0

• 

If the radicals preferentially orient with their z -axis parallel to 

a planar substrate, the ESR spectrum can be easily obtained by placing 

the substrate plane perpendicular to the magnetic field. Thus, a 

majority of the molecules have !?; 1 z. Moreover, now the resonance 

for !! II z might also be seen by rotating the substrate perpendicular 

to the magnetic field. This then allows two independent measurements 

of the zero-field splitting. If these do not agree, then the assumption 

made in the above discussion that g equals the free electron value ge 

is not valid. The degree of orientation can be obtained by monitoring 

the intensity of the H 2 absorption as the substrate is rotated relative xy ' 

to H. 
"' 

Precursors that have been used to obtain CCO and NCN are 

carbon suboxide 7 and cyanogen azide . 6 
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