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ABSTRACT

The theoretical and experimental work summarized in this thesis
examine the flow of a vertical jet issuing into a suspension of
particles. For small particle Reynolds numbers, a relative velocity
(between the particle and the bulk suspension) that is a function of
concentration only, and an initially homogeneous suspension, the flow
field divides into regions of pure fluid and suspension, and hence, a
buoyancy force 1is exerted on the 1lighter pure fluid jet. The
governing two-phase flow equations are solved in different
asymptotic limits to show that the jet acquires increasing plume-like
characteristics as it flows downstream. A linear stability analysis
on the plume-like flow solution showed that there is no critical
flow parameter below which this flow is stable. The experimental
work was conducted so that comparisons could be made with the
theoretical predictions. The experimentally measured spreading rates
of the pure fluid region agree quite well with those predicted by the
theory, and verify the effect of the buoyancy force on the jet. As
predicted by the stability analysis, all of the plume-like flows were
unstable., Quantitative comparisons of the experimentally measured
amplification rates with those predicted by the theory were
inconclusive. However, the qualitative effects of buoyancy, initial
Jjet momentum, and particle concentration in the suspension were

observed to be destabilizing, as predicted by the theory.
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CHAPTER 1

Introduction

Suspension flows are very common in industrial and natural
processes. Flow in fluidized beds, sedimentation, and transport of
slurries are but a few examples of flows with particulates dispersed
in a fluid medium. These types of flows are generally more
difficult to model than single phase flows, since the governing
equations for the pure fluid are now coupled to the equations of
motion for the particles through the concentration and velocity
fields. Hence, In addition to the difficulties encountered in
describing the flow of a single phase fluid, the analogous suspension
problem is further complicated by the mathematically more difficult
governing equations, as well as the addition of the particle velocity
and concentration as unknowns.

The standard approach for solving suspension flow problems uses
an averaged form of the Navier-Stokes equations that has removed the
fluctutations in the pressure and velocity which occur over a length
scale comparable to the particle size. This averaging process
introduces terms into the equations which depend on the details of
the flow around the particles, and for which constitutive equations
must be formulated. There are many different averaging approaches,
and disagreement still exists as to the correct form for these
constitutive relations. However, once the governing equations are
formulated, the problem is still difficult to solve because of the

unknown concentration field that must be determined as part of the



solution. As a result of these complexities and confusion, there are
few solutions to the governing equations for suspension flows.
Furthermore, for those suspension flows which can be modeled by
analytical solutions, the concentration field is homogeneous over
much of the flow and can be relatively easily described.

One example of a suspension flow for which a solution has been
found is the stability problem of the state of uniform fluidization.
Jackson (1963) studied the unbounded flow, where the undisturbed
state is represented by a uniform concentration field, constant fluid
velocity, and zero particle velocity. The temporal growth of a
small disturbance in the concentration results in planar, wave-forms
of voidage which propagate both upward and downward from the point
of origin. In solving the linearized disturbance equations, which
were greatly simplified by the constant velocity of the base flow,
he found that the flow is always unstable to small disturbances, and
that the least stable disturbances have an unbounded growth rate as
the wavelength decreases. Anderson and Jackson (1968) investigated
the same problem for the case of a bounded flow in a fluidized bed.
They found that all disturbances are unstable but that there is a
distinct wavelength that has a maximum, but finite, growth rate.
Hence as is the case for pure fluid flows, the effect of the walls
is stabilizing.

Homsy, El-Kaissy, and Didwania (1980) studied this same flow to
quantify a constitutive relation for the solid "phase". This required
the evaluation of material constants from experimental data in order
to describe characteristics of the flow instability (e.g., wave

number, velocity of propagation, etc.). The same constants were then



used to predict these instability characteristics at different flow
conditions, which in general, showed good agreement with the
experimental results. Didwania and Homsy (1982) extended the
analyses of instabilities in a fluidized bed still further, as they
investigated the development of the planar wave disturbances into
more complicated forms. Using the same constitutive relations as
Homsy et al. (op. cit.), they examined the stability of the planar
voidage waves, and estimated the horizontal wavenumbers of the
secondary instabilities. They showed that these predicted values
agreed well with those measured experimentally.

Acrivos and Herbolzheimer (1979) studied the flow of a
suspension with significant spatial variations of the particle
concentration in an examination of the "Boycott effect". They solved
the equations governing the sedimentation of a suspension in an
inclined channel, where the flow field divides into regions of pure
fluid, and suspension at uniform concentrations. Hence, a buoyancy
force is exerted on the pure fluid region by the heavier suspension.
The unknown position of the interface, i.e., the boundary between the
pure fluid and suspension regions, was determined as part of the
solution. Herbolzheimer (1983) later examined the stability of the
interface to small perturbations where he found that the critical
Reynolds number increased for both narrower and more inclined (from
the vertical position) channels. He was able to predict
experimentally observed instabilities quite successfully.

In order to further assess the usefulness of the approach by
Acrivos and Herbolzheimer, this work shall extend their analysis to

the problem of a laminar 1liquid Jjet issuing vertically into a



suspension. Similar to the flow generated during sedimentation in an
inclined channel, the flow field is expected to divide into regions of
pure fluid and suspension, so that buoyancy effects are important.
In addition, the position of the interface is unknown and must be
determined in the solution. However, the jet is assumed to be far
away from any walls so that the flow is essentially unbounded.

A motivation for this study is to understand the effect of
particles on the flow of a pure fluid Jet. The analogous single
phase problem, i.e., a pure fluid jet issuing into an environment of
the same fluid, was first investigated by Schlichting (1933) and
independently, by Bickley (1937). They solved the governing boundary
layer equations (with no pressure term), and found that the drag
force exerted by the surrounding fluid caused the centerline velocity

to decay with axial position like

~1/3
X .

Of course, in the two-phase flow problem, the heavier particles are
expected to cause a buoyancy force to act on the pure fluid.

The analogous, single phase, free boundary layer flow where
buoyancy is important is that of a plume rising above a line source
of heat. In this case, the governing equations are difficult to solve
because the temperature and velocity fields are coupled. However,
assuming that the variation in temperature affects only the buoyancy
force, 1i.e., the Boussinesq approximation, the equations can be
simplified and solved through a similarity transformation. Fujii

(1963) solved the Boussinesq equations at several Prandtl numbers and



found that the centerline velocity increased with axial distance like

Savage and Chan (1970) examined mixed convection effects in the
two-dimensional flow developed by a hot laminar Jet issuing
vertically into a uniform environment of a colder fluid. Based on
physical arguments, they predicted that the flow field is represented
by the pure fluid jet solution near the origin, and the pure fluid
plume solution further downstream. Thus, they assumed a
perturbation expansion of the governing equations of motion at small
and large axial distances, X, where the leading order equations in
these two regions were those for the Jjet and plume, respectively.
However, the expansion parameters, i.e., x*/* and x7', diverge for
large and small values of x, and in order to describe the entire
flow field, a numerical patching procedure was required. Mollendorf
and Gebhart (1973a) studied weak buoyancy effects in the flow of a
round laminar vertical Jjet. They included the buoyancy term in the
momentum equations at a higher order using an expansion paramater
¢ ~ x?, and found that the axial velocity increased in the region of
the thermal boundary layer. Hence, the qualitative effects of
buoyancy on the laminar flow of a pure fluid jet are known.

There has been a significant amount of work (cf. List 1982)
investigating the flow of turbulent buoyant jets and forced plumes,
because of their importance in modelling environmental flow
processes such as those encountered in ocean wastewater disposal or

smoke from chimney stacks. These analyses follow the approach of



Morton, Taylor, and Turner (1956) who examined the flow of a
turbulent plume in an environment of uniform density. They assumed
that: i) the rate of entrainment of fluid into the jet is proportional
to some characteristic velocity at the same height, and is specified
in terms of an entrainment coefficient; ii) the cross sectional
profiles of the velocity and buoyancy are similar at all heights; and
iii) the density differences are significant in the buoyancy terms
only. The equations of conservation of mass, momentum, and buoyancy
flux were then integrated over a cross section of the jet to yield a
set of ordinary differential equations. The solution of these
equations gives general features of the Jet (e.g., centerline
velocity, Jjet width, and flow rate as functions of the axial
distance.) However more detailed information such as the mean
velocity profile, or the entrainment coefficient must be determined
experimentally.

In experimental measurements made on turbulent buoyant jet
flows, Kotsovinos (1975) found that the entrainment coefficient is
not constant over the entire flow region. This is in accord with the
results from studies made on turbulent plumes and jets, where these
flows were both described reasonably well by theoretical models
which used constant, but different, entrainment coefficients (cf.
Ricou and Spalding (1961), and Mih and Hoopes (1972)). This question
of entrainment has not been completely resolved, and a review of the
different assumptions used for the entrainment function is given by
Koh and Brooks (1975). Thus, an accurate description of the

turbulent buoyant jet over the entire flow field is still unknown.



The goal of this thesis is to investigate the effect of the
buoyancy force due to the suspension, on the flow of a laminar jet.
In this theoretical and experimental study, we intend to characterize
the different flow regions of the jet, and the experimental range of
parameters where they are expected to occur. We shall begin this
work in the next section by summarizing the equations governing a
general suspension flow. In Chapter 2 the equations will then be
simplified in appropriate asymptotic limits using scaling arguments,
and solved using analytical techniques. The resulting asymptotic
solutions describe different regions of the Jet flow field, and it
will be shown how these fit together in a sequence of flows.

In order to determine the conditions under which these flows
are observed, their stability to small disturbances is investigated in
Chapter 3. Using the wavelength of the disturbance as the expansion
parameter, the linearized  disturbance equations are solved
analytically in an asymptotic limit that is consistent with that of
the Dbase flow solution. Finally, in Chapter U4, quantitative
comparisons will be made of the experimentally measured interfacial
spreading rates with those predicted by the base flow solutions in
Chapter 2. In addition, the experimentally measured inception
distances, (i.e., the distance from the nozzle where disturbances are
first observed), will be compared to those predicted by the linear

stability analysis.

1.1 Suspension Flow Governing Equations

The first step in studying suspension flows analytically is to

develop a tractable set of equations and boundary conditions



governing the motion of both the fluid and the particles. Although
the exact equations are known (i.e., the Navier-Stokes equations with
no-slip boundary conditions at the surface of each particle together
with Newton's equations of motion for each particle) and could in
principle be solved completely, the large number of particles in any
practical system and the complexity of the flow field around the
particles makes such a detailed calculation impossible. An alternate
approach is to discard the details of the motion on the scale of the
particles and define flow variables averaged over a scale large
compared with the particles but very small compared with that of the
overall suspension. Then, by applying averaging techniques to the
exact governing equations, we can obtain a set of equations governing
these averaged flow variables (e.g. the fluid and particle velocities,
the particle concentration, etc.) as functions of space and time.
This approach is analogous to that used in studying turbulent flows
of pure fluids, or even to that used in obtaining the Navier-Stokes
equations where the motions of the individual molecules are averaged
to yield a continuum description of the fluid. In the suspension
problem, we average over a scale large compared with the particles
instead of large compared with the molecules.

There are many different methods currently in use for obtaining
the averaged governing equations and an extensive literature
examining the subtleties of these approaches continues to flourish.
It now seems safe to say that the basic governing equations are well
established and that the principal difficulty is in determining
constitutive relations for the suspension properties such as the

stress in the suspension and the average force exerted on the



particles due to interactions with the fluid and with the other
particles in the suspension. However, these equations can be recast
in many different forms and for a given flow situation certain
formulations are more convenient than others.

One approach, followed by Anderson and Jackson (1967), Homsy
(1980), and others, is to write the momentum and continuity equations
for both the particle and fluid "phases". Although in some cases,
these equations are very simple, they require a constitutive relation
for the stress in the fluid phase and another for that in the
particlie "phase". Unfortunately, these individual stresses can be
neither determined theoretically nor measured experimentally, except
by parameter estimation through an empirical fit of experimental
data to theoretical predictions for rather complex flows (cf. Homsy
op. cit.). The advantage of this approach is that acceleration of one
phase relative to the other can be included with relative ease using
simple models for the interphase force. However, if the particle
Reynolds number, Rep is small, the relative acceleration of the
phases 1s negligible and it becomes easier to recast the individual
phase momentum equations into one for the overall suspension and
another for the motion of the particles relative to the suspension.
Then the only constitutive relations we need are for the stress of
the suspension, which can be measured in a viscometer, and for the
interphase force, which can be determined from settling experiments.

In this thesis we shall restrict our attention to situations
where the particle Reynolds number is low so let us now consider how
the governing equations simplify in this case. We will restrict the

discussion to suspensions of identical solid spheres in a Newtonian
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incompressible fluid and assume that all non-hydrodynamic interaction
between the particles and the fluid are negligible. We shall write
these equations in terms of a bulk average velocity G* and a relative

. %
velocity up,

- > .3
u” = cup + (1-chf ,

and

where ¢ is the volume fraction of particles, the superscript ¥ refers
to dimensional quantities, and the subscripts p and f refer to the
particle and fluid phases, respectively. The governing dimensional

equations are

>y
Duv) > >
I.jp.b_‘f*. = Vp(pp—-pf)ge + Fp (1.1a)
and
acC > 5% % ¥ ¥
o3 +up * Ve = ~cV s up, (1.1b)

for the particle phase, and
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> %
p*(O)Da* + (pp=pe)c G L S ~v*p*
pe* | PPTPEC TEF r

(1.2a)
AR u*(c)[v*ﬁ* + (v*G*)T} + p¥(e)gé
and
v ed* -0, (1.2b)
for the overall suspension. In (1.1a), Mp and Vp refer to the

-

particle mass and volume, respectively, Fp is the interphase force,
p* is the dimensional pressure and ¢ is the unit vector in the
direction of gravity. In the overall suspension equation, p*(c) is

the volume averaged density of the suspension
*
p'(c) = cpp + (1~C)pf , (1.3)

and the suspension has been assumed to behave as a Newtonian fluld
with an effective shear viscosity, u*(c), that is a function of
concentration only. Measurements of the stress under both steady
and transient conditions have shown this assumption is reasonable for
volume fractions up to about 0.30 (Gadala-Maria, and Acrivos (1980)).

Dimensional analysis shows that for spherical particles settling
in a quiescent fluid under low Reynolds number conditions, the
interphase force is given by the Stokes drag times a function of the

local concentration; i.e.,
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s
fle)

+ %
Up

Fp =

where a is the radius of the particles. Although Lynch (1985) has
shown that when the suspension is undergoing bulk shearing motion
the interphase force may also be a function of the local shear rate
(and possibly shear type) of the suspension, we shall follow previous
investigators and neglect this shear dependence. Then, assuming the

particle Reynolds number 1is small, we c¢an drop the particle

>
Uy = uof(@)e s (T.U)

b

here ug is the Stokes settling velocity of the particles which is

>
[

a2zl to gaz<op"pf)g/uf- Thus, dus to the assumption that the

D
WL

0

- N -
arvicle Reynold

he,

> number is small and that the dependence of the

¢

interphase force on the shear 1s negligible, the particle momentum
equation reduces to the simple result that the relative velocity
between the particles and the suspension is a function of the local
concentration only. Note that f(c) is determined easily by measuring
the sedimentation velocity in a quiescent suspension.

Substituting the expression for the relative velocity (1.4) into

the particle continuity equation (1.1b) gives

3C > % ¥ of = | ox
o D Ve = - ugez== e + Ve . (1.5)

ac
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Hence, if the concentration is initially uniform at ¢ = co and/or
uniform at the flow inlet, it will remain at this value along
particle streamlines (cf., Acrivos and Herbolzheimer 1979). Thus we
can divide the flow domain into regions of pure fluid, regions of
suspension at concentration c,, and regions of accumulated sediment
near the upward-facing surfaces of the vessel containing the
suspension. Hence provided the sediment regions are not important,
the only unknown in the concentration field is the position of the
interface separating the pure fluid and suspension regions.

Now the particle momentum and continuity equations are replaced
by u? = uof(o)é, and ¢ = 0 or c¢g, and the overall suspension

equations are written in the dimensionless form,

N . -
(o) Du , Yo.fp _ Doy St R
ple) Fr + TR e Dﬁf(v)e + f{c)e « VWu| = - Vp
(1.6a)
For(=- - e+ ule) v24
Co Re !
and
veu=0, (1.6b)

where the velocity, length, time, and pressure have been made
dimensionless by dividing by, ue, Le, Le/ue, and pfué, respectively,

so that the Reynolds number is defined by
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peUcle
Re = £

(1.7)
He

Furthermore, the Grashof number, defined by

( Pp~ Pf)cogbo
P UG

Gr =

(1.8)

is a relative measure of the gravitational force to the inertial
forces in the suspension. We define the dimensionless variables p(c)
and p(c) as the suspension density and viscosity, divided by their
respective pure fluid quantities. In addition, the pressure term in
(1.6a) has been redefined by subtracting off the hydrostatic pressure
of a suspension at concentration ¢ = cg

2

PGP = V¥ - pleglge . (1.9)

Consequently, the body force term appears as an effective buoyancy

force with regions with ¢ < ¢y tending to rise, and those with ¢ > cq4
tending to sink.

Of course, these equations must be supplemented with boundary

conditions at the suspension-pure fluid interface. Using the notation

that [ ]j denotes the jump of a quantity across this interface, the

boundary conditions are continuity of velocity,

[G]j -0, (1.10a)
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continuity of stress,

(g - BJJ- -0, (1.10b)

>
3Tt Up V(I-y) =0 at y = I(x,z,t) , (1.10¢)

where y = I(x,z,t) is the equation for the position of the interface.
Equations (1.6) - (1.10) summarize the problem which essentially
is now reduced to single phase flow of two adjacent fluids of
different density and viscosity. At the interface position, which
must be determined as part of the solution, there is a possible
exchange of fluid, but there are no surface tension effects. Note
that in the dilute limit, u(ec) = plc) = 1, and the only effect of the
presence of the particles is in the buoyancy term. This 1is
essentially the Boussinesq approximation. In this case, however,
instead of solving a coupled transport problem for the temperature
field, we need only find the position of the interface separating the

suspension and pure fluid regions.



-16-
CHAPTER 2

The Steady Flow of a Vertical Two-dimensional Jet of Liquid

into a Homogeneous Suspension

2.1 Introduction

Let us now consider the solution of the equations developed in
the last chapter for the steady flow of a two-dimensional jet of
liquid issuing vertically into an unbounded, homogeneous suspension
consisting of, the same liquid as in the Jjet but with spherical
particles dispersed throughout it. As shown in Figure 1, the jet

issues from a slit of width 2bé with an initial momentum given by

o5
Mg = 2pr [u*(0,yH P dy* = zspfu3b§ : (2.1a)
0

where u*(x*,y*) is the dimensional velocity in the x~direction, and

*
e
uj = —¢ u*0,y* ay* , (2.1b)

o
O X
(&)

is the average velocity of the fluid as it leaves the nozzle. The
0(1) constant B accounts for the fact that the velocity profile at
the nozzle may not be uniform. A particle-free region forms and is
separated from the suspension by interfaces located at y* = + b*(x).

As the fluid in this region rises, it drives a flow in the adjoining



_]7_

pure fluid suspension

c=0

c=c,

le
f

M,
b—2b7 —

Figure 1 The jet flow region and definition of coordinate variables.
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suspension by applying a shear stress at the interface between these
regions. This shear stress tends to decelerate the pure fluid
region. However, this effect is counterbalanced by buoyancy, which
tends to accelerate the pure fluid since it is less dense than the
suspension. As we shall see below, only a negligible amount of fluid
crosses the interface between the pure fluid and suspension regions
so continuity requires the width of the pure fluid region to vary
inversely with the average velocity in this region. Hence, when
buoyancy effects are negligible (corresponding to a pure fluid jet)
this region becomes wider with increasing distance from the nozzle,
while when buoyancy effects are important (corresponding to a plume)
this region becomes narrower.

To determine quantitatively the role buoyancy plays in the
mechanics of this flow, we shall solve the equations derived in
Chapter 1 in the limits of large Reynolds and/or Grashof numbers. In
using these equations, we are assuming that: i) the suspension is
composed of identical spherical particles suspended in a Newtonian
fluid; ii) all non-hydrodynamic interactions between the particles
are negligible; and iii) the particle Reynolds number is small. We
shall begin by presenting the mathematical formulation of the
problem. Next, scaling arguments are applied to determine the flow
structure in the important asymptotic limits. Finally, detailed

solutions are obtained for each of the important regimes.
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2.2 Mathematical Formulation

Let us now assume that the concentration in the suspension is
initially uniform and equal to ¢y and that the governing equations
obtained in Chapter 1 apply. In the limit of large Reynolds and/or
Grashof numbers we expect a boundary-layer type flow to develop,
i.e., we expect the region of flow to become slender. We shall
define a coordinate system which has the origin located at the center
of the slit of the nozzle tip with x and u as the axial coordinate
and velocity vrespectively, and y and v as the corresponding
transverse coordinate and velocity. Hence, letting py and uy denote
the normalized suspension density and viscosity, respectively, the
dimensionless two-dimensional flow equations become,

in the pure fluid region

a‘d + é—‘?— = O . (2.2a>
ax 37
Bu, gau _ _ap, Ong Use . UPo a6t ,
“ax T Vg§ R TR N (uc) ucs’Re; gy (Re) > (220)
2
PE_E - 0(62 ] _'—) ] (2'20>
3y Re
and in the suspension region
S as) S
us 8y 8 db dur o (2.3a)
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s § db aus 1 9pS u3bg 3%uS
s s-. 8 4b s = - . 9P7
W 0 r @ W ¥ oo ox ucA™Rej VoFT
(2.3b)
A* Yo
+ O<""’”’ P ’
Re’ ug
S ., A
"é'y“ O(A y R‘g s (2.30)

where the characteristic length is given by the Jjet penetration
length H, the characteristic velocity is given by u, (which will be
specified shortly), uj is the average jet velocity defined in (2.1) and
by 1s the dimensionless slit width. Because there is no physical
length scale In the axial direction, the definition of the Jjet
penetration length H is somewhat arbitrary. We shall see that the
asymptotic 1limits of the various solutions depend on the
dimensionless slit width by = bg/H, and this is interpreted as the
inverse dimensionless characteristic distance from the nozzle in any
flow region of interest. The stretched transverse coordinate and

velocity variables are defined by

v = L - v
y=%- v T (2.4a)
and
¥ =iy -y, v-% (2.4b)
A 1 A ’
for the pure fluid and suspension respectively. Here § = b(x) =

b*(x)/8H is the rescaled equation for the interface position, and the



-21-

scalings 6 and A refer to the respective thicknesses of the pure
fluid and suspension flow regions (cf. Figure 1). The Reynolds and
Grashof numbers defined in (1.7) and (1.8) have been rescaled to give
Rej and Grj since these latter dimensionless groups are specified by

the known parameters at the nozzle, i.e.,

Re: - - =L boRe , (2.5)
and

*
(op=pp)Co8D0 gp g,
GFJ' = Ty = '.6—— ('a'“ N (2.6)
pfuj 0 J

D

The boundary conditions are:

i) symmetry of the flow about the centerline

7===0 at v = 0 ; (2.7a)

Q2
-t

ii) continuity of velocity and stress at the interface, i.e., at § = 0

-
L
<

0

(2.7b)

u = us , (2.7¢)

S 3y Hosy (2.7d)
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p =p%; (2.7e)

iii) decay of the velocity far from the jet
us » 0 as § o o ; (2.71)

and iv) the volumetric constraint

o bau
5 - —o7J
J- u dy = STl (2.7g)

The last condition implies that the volumetric flow rate of the pure
fluid is constant at any cross section downstream from the nozzle.
This can be shown by integrating the continuity equation in the pure
fluid (2.2a) and applying the first symmetry condition in (2.7a) to

determine the transverse velocity at the interface

b
- d - db -
Vv = - ax J u dy + e u at ¥= 0.

0

Substituting in the steady form of the kinematic condition, i.e.,
at § = 0,

gives the rate of change of the volumetric flow rate with respect to

axial distance,
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Hence provided the sedimentation velocity is small compared with the
characteristic convection velocity, the amount of fluid crossing the
interface is negligible. The final boundary condition that we need is
the velocity profile of the fluid as it exits the nozzle. Except in
the entry region very close to the nozzle, the details of this
profile are unimportant and the only feature we must retain is the
initial momentum of the Jjet. Hence, outside of the entry region, the

initial condition is replaced by the macroscopic momentum balance

b o
2 qy + & s)* dy = gﬁ (—%”1)2 ' b(g) dE + ——"M“*mro (2.7n)
us dy + ¥ po . y = by Uo 0 26pruc A

We further see that when H is large (i.e., at large distances from
the nozzle) the initial momentum of the jet 1s negligible in the
momentum balance, and hence all details of the original velocity
profile are unimportant. 1In this case the velocity is large compared

with the jet velocity and the condition in (2.7h) is not needed.

2.3 General Scaling Results

The equations and boundary conditions will be solved in detail
for different asymptotic limits of the dimensionless groups Gr*j, Rej
and by in Section 6. Before doing this, however, we can obtain many

important features of the flow by applying simple scaling arguments.
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Let us begin by developing a few general scaling results which apply

to all of the solutions.
Since the scaled volumetric flow rate in (2.7g) must be an 0(1)

quantity we can pick the characteristic velocity such that

b
J udy = 1. (2.8)
0
With this choice we have
U'C = ujbo/(g . (2-9)

Next, the flow in the suspension region is of the boundary layer
type being driven by the motion of the pure fluid region. We see

from (2.3b) that to retain the viscous terms, the suspension boundary

( Ujbo )1/2

layer thickness must scale as A
ucRej

Using (2.9) this

simplifies to

§ (1/2
A = (¥§;5 (2.10)
which, of course, must be much less than 0(1) if the boundary layer
assumption is valid. We see then from the suspension y-momentum
equation that the pressure change across the boundary layer is

O(é/Rej) and hence the pressure derivative in the x-direction is given

by that far away from the flow region. In this outer region the
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flow is effectively inviscid and driven by the 0(a) entrainment into
the boundary layer. Hence, the pressure in this region is 0(a?).
Thus the x derivative of the pressure is O(S/Rej) everywhere and may
be neglected in equations (2.2b) and (2.3b).

All of the equations and boundary conditions may now be written
in terms of §, the thickness of the pure fluid region, which is the

one remaining unknown scaling. We obtain,

3u . du &2 1 3%u 5
U = + 7 — = Gr: + e == + O(— , %) , (2.11a)
X 57 J gg 6Rej 3y°? Rej
L g, (2.11b)
oX 3'}7
auS - & db sus 3%us 8
S (7S - 2 X 08) 2. = Rl e 5
us — % T G ) 5 Vo5 + 0 Re;) (2.12a)
Jus 3vs 1/2 db sud
—é;? + '”5’3'7" <6R€J> a‘g “5? =0 s (2.72‘D>
with the boundary conditions
- .0 at § -0,  (2.13a)
oy
1/2 __ ~
(a‘SRej) v = 75 at § =0, (2.13b)

u = us at § = 0, (2.13¢)
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du 8 us -

o7 5 Mo 55 at ¥ =0, (2.13d)

us » 0 as ¥ » =, (2.13e)
b

J. udy =1, (2.13f)
0

b ® X
2 m ~1/2 2 . &2 §
u® dy + (5R8j> Po (uS)" d¥ = Gri— b(g) dg + BE“'- (2.13g)
0 0 bo Jo o

The size of ¢ is determined from the leading order balance in the
pure fluid equation provided that all of these terms are scaled
correctly. However, in the limit of a large buoyancy force, the pure
fluid is accelerated, and its thickness § decreases to a value much

less than that of the boundary layer in the suspension. For § << A,

the tangential stress condition (2.13d) requires %@ << 1, which
y

*
implies that the derivative §5¥ is scaled incorrectly. In this case,
y

the change in the velocity across the thin pure fluid layer is small
compared to the characteristic velocity and for scaling purposes, we

redefine

au (2.11)

>|or
|

where the overbar now indicates an 0(1) quantity. While this result
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was derived for the case where § << A, it can be trivially seen to

hold for the case where § ~ A as well. With (2.14), equation (2.11a)

becomes

3 /2 _3u

u ) 82 ) -1/z
Uz + (6Re3) v—a-g; = Grj gg- + (GReJ)

Q2
)
et

(2.15)

N

[o%]
<

where this equation applies for § < A. In those flows where § >> A,
the boundary layer has not grown to a width comparable to that of
the pure fluid region. Hence this case corresponds to the entry flow
near the nozzle which has an inviscid core in the pure fluid region
with thin boundary layers at the pure fluid/suspension interface.
The specific scaling results for the fully developed and entry length

flows will be discussed in the next section.

2.4 Scaling Results for the Various Asymptotic Limits

2.43 Fully Developed Flows

Let us first consider the fully-developed flows which occur at
some distance from the nozzle. As shown in the previous section, for
these flows the thickness of the pure fluid region is smaller than
or comparable to that of the boundary layer in the suspension so

from (2.10) we know that
) 1/2
A= (CSRGJ‘) < 0(1) .

Hence from (2.15), we see that the viscous terms must be retained in
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the leading order balance in the pure fluid momentum equation.
There are then three possible cases: i) the buoyancy and viscous
terms are large and in balance; ii) the buoyancy, viscous, and
momentum terms are all of comparable magnitude; and 1iii) the
buoyancy term is small and the viscous and momentum terms balance.
Let us consider the appropriate scalings and the range of validity

for each of these possibilities.

Case I: Large Buoyancy

In this case, the buoyancy and viscous terms are large and of

comparable magnitude. From (2.15) we see that the balancing of

these terms regquires

2 —
Grj —% - (8Re;) V2 s, (2.16)
O

Solving for § and then using (2.9) and (2.10) to obtain u, and A we

find that
6 2 1/s
§ = (bo/GriRe;) ", (2.17a)
3 3.1/5
A = (bo/Gr‘jRej , (2.17b)
and
Ue = Uj (GrﬁReJ/bO)l/s . (2.17c)

Furthermore, in order for the momentum terms to be neglible we must
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have that (@Rej)‘/2 - -i—« 1, which from (2.17a) requires

1 2 1/3
55 >> (Rej/GFj) . (2.18a)

Finally, for the boundary layer analysis to hold at all, A must be

much smaller than 0(1) which requires that

1 3.~1/3
Bg >> (GrjRej) . (2.18b)

Note that since b, is the slit width divided by H, the jet penetration
distance, these conditions are always satisifed at sufficiently large
distances from the nozzle.

With these scalings, the pure fluid momentum equation (2.11a)

becomes
2. v
é___\_{ = - £ + 52 (u?}:l_ + v—a—‘-‘}-) + 0(62) (2019)
where
T s 2_.1/5
§y _ | PoRej 5
£ = (’A') = [ or < 1. (2.20)

Hence to leading order the velocity in the pure fluid region is a

function of x only.
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Case II: Moderate Buoyancy

In this case all three terms in the pure fluid momentum

equation are 0(1), and the scalings are given by
§=0A= =—, (2.21a)

In order for the buoyancy term to be 0(1), we must have

1 2 1/3
Ei; ~ (RGJ/GFJ) , (2.22a)

while the condition that A << 1 requires

Rey > 1. (2.22b)
Since the scalings for the widths of the pure fluid and suspension
regions are identical, the momentum equation for the pure fluid
region can be written in terms of ¥, the transverse coordinate in the

suspension to give

Ju

db ., su _ 3% ,
u-é-}-(-+(v —d-x*u)-a‘y——‘!*'é?, (2.23)

which is the boundary layer equation with no pressure gradient but

with an additional constant buoyancy term.
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Case III: Negligible Buoyancy
If the buoyancy term is small the scalings in (2.21) still

apply, but the flow occurs in the different asymptotic limit

1 2 1/3
B—(-; <K (Rej/Gr’j) . (2.24)

Hence this case applies closer to the nozzle than the previous cases
(ef. 2.18a, and 2.22a). 1In this limit, the governing equation in the

pure fluid region reduces to that for a pure fluid jet

Q>
o
|
[o%4
-t
Q
N
ot

(2.25)

Q2
>
Q2
<
Q2
<
N

2.4b. Entry Region Flows

The scalings derived in the last subsection apply far enough
from the nozzle that the flow has had sufficient time for the
viscous effects to change the velocity profile leaving the nozzle
into a "fully-developed" profile satisfying the appropriate boundary
layer equations. Closer to the nozzle are entry flow regions in
which the rearrangement of the velocity profile takes place. In this
entry region the flow is characterized by an inviscid core of pure
fluid with thin boundary layers on both sides of the interfaces. The
scalings of both the suspension and pure fluid boundary layers must
be the same, 0(A), in order to satisfy the shear stress condition at
the interface. The thickness of these boundary layers increases with
distance from the nozzle until at some point it becomes comparable

to the width of the inviscid core region. The distance to this point
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is represented by the dimensionless distance ¢ = 2*H and is a
measure of the length of the entry region. Let us now consider the
possible entry flow regimes and the corresponding scalings for &.

In contrast with the flows in Cases I - III, the characteristic
length in the x direction is small, (i.e., 0(2) << 1), and the
equations in (2.11) and (2.12) must be rescaled to give the
appropriate equations in each of three regions:

in the core region

|

a2 () v% - ors -%f g T ol e @t
= % -0 (2.260)

in the pure fluid boundary layer region
;:% v [v - (amej)‘/z %2 ﬁ} -g% = Gry 55% + %;7% + 0(%5 ,  (2.27a)
%‘% . .’gl;. - (samey)'t 2 %— -0 ; (2.27b)

and in the suspension boundary layer region
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aus o 1/2 db 3uS 52,5 59
s S - i = S| == = (
aus | 9vs /2 db duS
S A L (2.28b)

Note that we have used the new rescaled variables

z- X
- %,
T - (L/8)V = —‘é-v _ %\75 , (2.29)
and
u _ A B
5y S oy’

where A ~ (62/Rej)1/2, and (%,¥) and ¥%(X,¥) correspond to the axial
and transverse velocities in the pure fluid boundary layer.

The boundary conditions are essentially the same as those for
the fully developed cases, but with additional matching conditions of
both wvelocities between the pure fluid core and boundary layer
regions. Also, the momentum balance (2.13g) must be replaced by the
initial condition, i.e., matching the velocity profile with that of

the fluid exiting the nozzle. The boundary conditions are then given

by

7 ="2=0 at y =0, (2.30a)
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/2 _

¥ = (6Rej/4) ' as § » -, (2.30Db)
d=u as § » -« , (2.30c)
¥ = S at § =0, (2.30d)
0 = uS at § = 0, (2.30e)
35~ MOy ’ :

us » 0 as § » o, (2.30g)
b

J' udy = 1, (2.30h)
0
and
u = uy(y) at x = 0, (2.301)

where uj(¥) is the the non-dimensional initial veloeity profile. For
small &, (2.26a) shows that to leading order the flow in the core
region is inviscid but possibly accelerated by buoyancy. Hence

applying the initial condition (2.30i) we find that

.5 Lo 2(5
u = by \/ZGPJbO g + ui(y) . (2.31)

Thus depending on the size of the jet Grashof number, the fluid will
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either accelerate with increasing x, or flow unchanged from its
initial velocity profile. Meanwhile the boundary layer thickness
increases with x until it is comparable in size to the core width.

The point where the boundary layers merge defines the entry length.

Cases IVa and b: Large or Moderate Buoyancy

We see from (2.31 that for the asymptotic limit where buoyancy

effects are important

Gry > bo/4 . (2.32)

In order for the scaled velocity in (2.31) to be 0(1), the pure fluid

thickness must scale as

b
5 - (o)t (2.33)
LJ‘SL
Hence in the limit
bO e

i.e., that of Case IVa, the jet is quickly accelerated as it exits the
nozzle and the initial velocity profile is not important, while in the

limit

Grj ~ =, (2.34b)
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i.e., that of Case IVb, the initial jet velocity profile is required.
Since the scalings for both cases are identical, the entry lengths

are the same and are found by equating § ~ A, i.e.,

L~ boRe/Gr)' (2.35a)
where

§ ~ bo(GijeJ-)"l/a , (2.35b)
and

be - ujGrire’” . (2.35¢)

These results are substituted into (2.34) to show that Case IvVa

applies in the asymptotic limit

GrjRej >> 1, (2.36a)

while Case IVb applies in the asymptotic limit

GriRey ~ 1 . (2.36b)

Case V: Negligible Buoyancy

In the asymptotic limit of a small buoyancy force, which is

defined as

bo -~
Gry << T (2.37)

the inviscid core is a plug flow. In this case the scalings for the
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width of the core region and the characteristic velocity are given by

those at the nozzle conditions

§ ~ Do, and Uy =uj . (2.38a)
The width of the boundary layer then scales like
A~ (boz/Rej)l/B , (2.38b)
and the entry length is given by
L~ boRej . (2.39)
Hence this case applies in the asymptotic limit

GrijRej << 1. (2.40)

2.5 Description of the Flow Sequence

A description of the Jjet as it flows downstream can now be
constructed from the different Cases I - V discussed in the previous
section. The pure fluid jet exits the nozzle and flows in an inviscid
core. Small boundary layers grow in the pure fluid and suspension
as the Jjet flows downstream until their widths are of a size
comparable to that of the core region. The pure fluid boundary
layers then merge and a fully developed flow results. The distance
from the nozzle where the boundary layers merge, along with other

scaling results for the entry region flows Cases IV and V, are given
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in Table 1.

The general scaling features of the fully developed flows Cases
I - 11T are summarized in Table 2. The asymptotic limits where the
solutions apply depend on the relative sizes of the dimensionless
distance from the nozzle, H/bé, and the parameter (ReE/Grjf/g.
Hence, the fully developed flow in the pure fluid exhibits i) jet, ii)
mixed plume-jet, and 1iii) plume characteristics for distances from
the nozzle that are i) much less than, ii) of the same order as, and

Y/B. Of course, the pure

iii) much greater than the value of (Re3/Grj
fluld may not exhibit the fully developed mixed plume-jet or Jjet
flows, i.e., Cases II and III depending on the size of the entry
region length. However the buoyancy dominated flow represented by
Case 1 will always apply at large enough distances downstreamn.

There are essentially two different flow sequences which result

for the conditions where GFjRe <« 1, and GrJRej > 1. For the case

s

where Grjﬁej < 1, the entry region flow is represented by the core
Jjet sclution in Case V. The distance over which this solution applies
is much less than that for the mixed plume solution in Case ITa; i.e.,
from (2.39) and (2.22a)
L ~ boRe; << (Rey/Gry'’”
where the inequality results from the assumption that GrjRej << 1.
Thus, when the boundary layers merge at a distance of O(bORej%
the pure fluid jet flow described in Case III results (cf. 2.24). As
the Jet flows downstream, buoyancy effects become increasingly

1/3

important and, at the dimensionless distance H/b} -~ (Re}/Grj) , the
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Figure 2 The pure fluid flow sequence for Gr;Re; <« 1.
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Figure 3 The pure fluid flow sequence for Gr;Re; > 1.
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mixed plume-jet (Case IIa) results. Finally, at still larger
distances the buoyancy force dominates the flow, and causes a plume-
like flow (Case I). This flow sequence is shown schematically in
Figure 2, where the initial velocity profile is assumed to be flat.
The flows with stronger buoyancy (i.e., GrjRey >> 1 and
Grjﬂej ~ 1) are quite similar except that the boundary layers in the
pure fluid merge at a distance from the nozzle of order (ReE/Grjf/s
(cf. 2.352). Hence the flow sequence goes directly from the entry
region solution (given by Case IVa for GrjRej >> 1, and Case IVb for
GrjRej ~ 1) to the fully developed plume solution. This flow

sequence is shown in Figure 3 for a flat initial velocity profile.

2.6 Solutions

The qualitative features of the solutions to the governing
equations for Cases I - V have already been discussed in the previous
two sections. To complete the analysis, we shall determine the
analytical sclutions of these equations, where possible. Solving for
the flow in the pure fluid region is simple, and in most cases a
similarity transformation may be used to simplify the boundary layer
equations describing the flow in the suspension region to a single
(nonlinear) ordinary differential equation. This equation is then
integrated numerically using a standard subroutine. In Cases IIb and
IVb this simplification was not possible. However, since the
solutions of these problems are not expected to yield any additional
insight, full numerical calculations in these cases were not

performed. Also, for convenience, the equations were solved in the
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dilute limit for which yy = pg = 1. Extension to the nondilute case

is straightforward and the solutions are similar.

Case I Large Buoyancy
For the buoyancy dominated flow, the equation governing the

flow in the pure fluid is

N i
—8«-—21—{ = — £ 4+ E?' (u-a'll' + \7?}_’3‘_) + O('E—Z') ] (2')_”)
972 X 3y Rej
where
€ = %ﬂ~ (béReﬁ/Grjf/s . (2.42)

This can be integrated twice and the centerline condition (2.13a)

applied to give

+ 0(e?) . (2.43)

72 32
U = ag(x) - € %? + €? %T ag

The integration constant is then found from the volumetric constraint

(2.13fF)

gS %% + 0(e®) . (2.44)

2
agx) = %»+ € %T + g?

Upon substituting (2.44) into the boundary conditions (2.13), the

equations governing the suspension flow become



Ju - db ous 32usd £
s s~ 890 ''s - £ )2
u + (v eqy US) 55 = VosyE +O(qu , (2.45a)

us pAES db 3us
T 0, (2.45Db)

v =0 at § = 0, (2.46a)

1

S = ¥ o=

u 6] at § =0, (2.46b)

ouS 1 - .

S = - — - 2.

57 o b(x) at ¥ =0, (2.46¢)

usS + 0 as § o> =, (2.464d)

us » 0 as x » 0 . (2.46e)

This problem can be solved using a similarity transformation of the

form

us = E(x) F'(n) ,

where (2.47)

n = y .
Gx)

Taking the necessary derivatives and substituting them into the

governing equations and boundary conditions gives
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VoF''t = (F')2 - 3FF'* = 0, (2.48)
F(O) = O $ (2.1498)
F'(0) = A, (2.49Db)
1 - .__1..—..
F11(0) = ok (2.49¢)
F'(«) =0, (2.494)
where
us = 50 B, (2.50a)
—2/5 v e 1 F'(n)
vS = (5x) [2nF 3F] - ¢ 5% F0) (2.50b)
and
N - _._51275 , (2.50¢)
(5%)

and the constant A must be determined from the numerical solution.
Note that the two boundary conditions (2.46d) and (2.46e) collapse to
(2.49d) as is necessary for application of a similarity solution.
Equation (2.48) is the Falkner-Skan equation except there is no
pressure term and the boundary conditions are different.

This system of equations was solved numerically using a
shooting technique. 1Initial values for the function and its first two
derivatives are specified at the interface. The equations are then

integrated numerically using the canned subroutine MODDEQ, which was
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modified slightly to include double precision variables. The Runge-
Kutta-Gill method is used at the beginning of the integration and
whenever the interval size is changed. The values of the function
and its derivatives that are calculated from this method are then
used as starting values for the iterative Adams-Moulton method.

As mentioned previously, the calculations were performed for
Vo = Hg = 1 only. The results for F'(n), (i.e., the velocity profile
for uS at constant x) in the dilute limit are plotted in Figure 4.
As expected, the suspension velocity quickly decays to zero as the
distance from the interface increases. The computed numerical value

of the constant A = 0.8927 is then used to determine the width of

the pure fluid region

b(x) = .8119 x/° . (2.51)

The flow in the pure fluid region strongly resembles that of a
laminar plume above a line source of heat. Fujii (1963) solved this
problem at several Prandtl numbers using a self-similar solution,
and found that the velocity accelerated with increasing axial

distance according to
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where G is the buoyancy flux (a constant) and is analogous to the jet
Grashof number in this problem. These results can be compared to
those in (2.43), (2.44), and (2.51), and (2.17c) to show that the pure
fluid velocity, and scaling velocity in Case I behave in an identical

manner.

Case II: Moderate Buoyancy

This case divides into two subcases depending on the magnitude
of the parameter Gr*jRej. Substituting the scalings for the pure
fluid thickness and velocity (ef. 2.21a and 2.22a) into the momentum

constraint (2.13g) gives

b ® X
J u? dy + QOJ (Us)2 ay =J b(g) dg + B 7 (2.52)
0 0 0 (Gr’jRej)

For Case Ila where Gr‘jRej >> 1, the initial momentum of the jet is
negligible, (i.e., u » 0 as x » 0), and a solution can be found using
a similarity transformation. However for Case IIb where GrjRej ~ 1,
the initial momentum is important and in this case, no analytical
solution has been found. Hence we shall solve this problem only in

the asymptotic limit of large GrjRej.

Case ITa: GrjRej >> 1
Following the same procedure taken for Case I, we assume

solutions of the form
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i

E(x) £'(n) , (2.53a)

and

<
w
]

E(x) F'(n) , (2.53b)

where the similarity variable is defined as

I
n = 'G*(s—(-}* . (2'53O>

Substitution into the partial differential equations governing the
flow in the pure fluid and suspension (ef. 2.23, 2.11b, and 2.12)

gives the ordinary differential equations

£U— ()2 4 %ff‘" + 120 1<nso0, (2.54a)
and
Vo' = ()7 = 2 R = 0 n>0 . (2.54b)
The boundary counditions in (2.13) are also transformed to
frr(-1) =0, (2.55a)
£(0) = F(0) =0, (2.55b)
£'(0) = F'(0) , (2.55¢)

£1(0) = poF''(0) (2.55d)
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Ft(=) = 0 .

In order for the existence of a self-similar

transformations must be of the form

u= @0 e,

Vo= %'(2X)"1/“ [(n+ D -37],
and

us = (2X)1/2 F'(n) ,

V5 = %‘(QX)"X/“ [(n + DF' - 3F],

where

(2.55¢e)

solution, the

(2.56a)

(2.56b)

(2.56¢)

(2.56d)

(2.56e)

and the functions f'(n) and F'(n) are evaluated numerically. The

velocity profile for the dilute limit case is shown in Figure 5. 1In

comparison with the solution in Case I, the smaller buoyancy force

. . . . 1/2
causes a weaker acceleration in the pure fluid, i.e., x as opposed

to xl/s (where x < 1). In addition, the increased importance of the

drag due to the suspension region causes the pure fluid region to

spread according to
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b ~ x . (2.561)

Case III: Small Buoyancy

For convenience, we rewrite the equations governing the motion
in the suspension in terms of the stretched pure fluid variable ¥.

The governing equations and boundary conditions are then given by

Us— + 7— = — , (2.57a)
% ey ey
ULy (2.57b)
ox ay ! ¢
WS Is) 2,8
93 geln | du (2.58a)
aX oy 37
S 73
3; L8 g (2.58b)
X 337

7 =22 20 at y = 0, (2.59a)
oy

¥ =98 at § = b, (2.59b)

u = us at § =b , (2.59¢)

u %élf’_ at §=b,  (2.59d)

oy 3y
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us » 0 as y » =, (2.5%)

and

b @
J u? dy + poj W) dy = 8 . (2.59¢)
0 b

In the dilute 1limit, these equations and boundary conditions are
identical to those describing the flow of a pure fluid laminar jet
issuing from a line source of momentum. Hence following the
approach used by Bickley (1937), who first solved the laminar jJet
problem, we obtain expressions for the fluid velocities in terms of

analytical functions

u = —g- (%)2/3 x " sech?h , (2.60a)
and
~ Ri1/3 ~2/3 - o o
v o= (3») X [2fisech®n - tanh®*R] , (2.60b)
where
_ _1__ g i/3  §
U = 2 (3) X2/3 . (2-600)

A plot of the axial velocity profile is given in Figure 6. Of course
in the flow of a Jjet in a dilute suspension, the particles mark the

position of the interface which is given by

/ -1/a) )

b(x) ~ x/° tanh  (x (2.60d)

Although this is a complicated function of x, the rate of spreading
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of the pure fluid region asymptotes to

1/3
b ~ X as x » =,

This is faster than the xl/“ spreading rate of Case Ila because there

is no buoyancy force to counteract the viscous drag.

Case IV

As in Case 1II, a similarity solution is not possible if the
initial momentum of the jet is important. Hence only Case IVa, where
GrjRej >> 1, will be considered. The velocity in the core region is

determined by the solution of (2.31) using the scalings from (2.33)

and (2.34) which gives

u = (2x)/2 (2.61a)

and hence the buoyancy force accelerates the pure fluid. Thus, we
find from the volumetric constraint (2.30h) that the width of the

pure fluid must decrease with increasing distance from the nozzle

b= (2%)7 . (2.61b)

Transforming the equations in the pure fluid and suspension boundary

layers using self-similar solutions of the form

u= )Y e, (2.62a)
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7= (2" [nf' - 3F] - = ¢ , (2.62b)
e 2%
and
uS = (22)"77 F1(n) (2.62¢)
58 1 o —1//“ - ' 1 '
75 = = (2%) (nF' - 3F] - — F', (2.62d)
2 2%
where
¥
N = s (2.62e)
(22>1/L.
gives the ordinary differential equations
- (e)7  Sren w1 -0 nso, (2.63a)
and
V1 = (F1)? = 3FFT = 0 n>0, (2.63b)
with the boundary conditions
f'(-=) =1, (2.64a)
£(0) = F(0) =0, (2.64b)

£1(0) = FY(0) , (2.64¢)
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£11(0) = woF'1(0) (2.64d)
Fi'(s) =0 . (2.64¢)

Hence, the axial velocity in the boundary layer increases with
increasing distance from the nozzle. In fact, the dependence of this
velocity on x is identical to that in Case IIa (cf. 2.56 and 2.62).
This supports the result obtained in section 2.5 that the fully
developed flow represented by the solution of Case Ila does not

appear at the dimensionless distance (ReE/Grj)l/3

, and is replaced by
the flow represented in the entry region solution of Case IVa.
Solving the equations (2.63 - 2.64) numerically in the dilute limit

gives the velocity profile shown in Figure 7.

Case V

In this case the velocity profile in the core region is the same

as that exiting the nozzle

u = ui(§) (2.65a)
Since to leading order the axial velocity and the volumetric flow
rate are both independent of the axial coordinate x, the width of the
pure fluid region is a constant

b=1. (2.65b)

Again using a similarity transformation, the solution is represented
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by
u = f‘(n) ’
g = (22)_1/2 [nf* - £1,
and
us = F'(ﬂ) s
s - (20 [nFr - F],
where
¥
n= ——,
(2?)1/2

and the governing equations and boundary conditions reduce to

f‘l!' + f‘f’” - O

vOF"' + FF'' = 0

£i(-o) = 1

£(0) = F(0) =

£1(0) = F'(0)

0

=
A
O

n>0,

(2.66a)

(2.66b)

(2.66¢)

(2.66d)

(2.66e)

(2.67a)

(2.67p)

(2.68a)

(2.68b)

(2.68¢)
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£11(0) = pueF'*(0) (2.68d)

F' (o) =0 . (2.68e)

The velocity profile from the numerical solution for the dilute limit
is given in Figure 8. A comparison of this velocity profile with that
from Case IVa, (cf. Figure 9) shows that the velocity gradients for
Case V are steeper. Hence in addition to accelerating the velocity
in the axial direction, the buoyancy force also flattens the velocity

profile.

The present analysis describes the possible flow sequences
which may develop when a laminar jet of fluid issues vertically into
a homogeneous suspension. By comparing the solutions that we have
just derived with those for the analogous single phase momentum jet
or thermal plume problems, we see that the presence of particles in
the flow field has a dramatic effect on the pure fluid flow.

One obvious effect of the particles is to alter the flow
configuration. For the momentum Jjet or thermal plume, the flow
region is confined to a single boundary layer region where the
driving force for the flow is located at the origin. However, for
the jet in an initially homogeneous suspension at small particle
Reynolds numbers, the pure fluid and suspension phases do not mix
and the flow field divides into the three different flow regions of
the pure fluid jet, the suspension boundary layer driven by the jet,

and an outer nearly stagnant suspension. Consequently additional
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equations which describe the flow in the suspension region, as well
as new boundary conditions at the interface separating the pure fluid
and the suspension must be formulated.

The separation of the flow field into regions of constant
concentration, i.e., ¢ = 0 and ¢ = ¢y, causes a constant buoyancy
force to be exerted on the pure fluid, (provided that the particles
are more dense than the pure fluid). This is in contrast with the
flow of a thermal plume, where the temperature difference between
the plume and the environment decreases with distance from the heat
source. Thus, in a heated jet with a small amount of buoyancy, the
flow resembles that of a momentum jet (Mollendorf and Gebhart
1973a). However, in the analogous suspension flow problem, the
particles have a significant effect on the Jet, as even a small
buoyancy force will eventually cause a transition to a plume-like
flow. This was observed in experiments that we performed where dye
particles which were used for flow visualization purposes (and were
slightly more dense than the pure fluid) caused plume-like flow
characteristics (e.g. slower spreading rate) in the jet. In some of
these experiments, instabilities caused a transition in the flow
before the plume-like solution was attained. Hence, although the
analysis predicts ranges of the parameters Grj, Rej, and H/bé over
which the solutions to Cases I - V apply, we need to restrict these
ranges further when we consider unstable flows. In the next chapter
we shall examine the stability of these flow solutions to small

amplitude disturbances.
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CHAPTER 3

The Stability of a Buoyant Jet in a Homogeneous Suspension

3.1 Introduction

In the previous chapter, asymptotic solutions of the governing
equations of motion were developed to describe the flow of a jJet
issuing into a suspension. Of course, these solutions should
accurately describe the jet only so long as the flow remains stable.
However in several experiments where we observed this jet flow,
particles from the suspension were mixed into the pure fluid region
by a wave~type disturbance of the interface.

For flows at very small values of the jet Grashof number, the
pure fluid issued vertically from the nozzle and sharp interface
boundaries existed between it and the suspension region. Further
downstream, sinusoidal waves appeared at each interface. The waves
on the two interfaces had identical wavelengths and amplitudes but
they were antisymmetric with respect to the centerline of the jet.
The amplitudes of the waves grew with distance, and as they grew, an
increasing number of particles were mixed into the pure fluid region.
Eventually, the pure fluid region could no longer be discerned.

For flows at larger values of the jet Grashof number, the width
of the pure fluid region decreased with distance from the nozzle.
The portion of the Jjet near the nozzle oscillated slightly with a
frequency on the order of 0.005 sec™®, 1In this region, the interfaces
of the jet remained two-dimensional and smooth, i.e., no particles

were mixed in with the pure fluid. Near the tip of the pure fluid
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region, the Jet oscillated with a much larger amplitude, and
frequency (on the order of 0.1 sec™!) which caused the pure fluid
region to bend in a sinuous mode. This resulted in many particles
mixing into the pure fluid region so that it could not be seen.

In order to better understand these instabilities and the
conditions which cause them, we examined the growth of small
disturbances at the interfaces of the asymptotic base flow solutions
developed in Chapter 2. The linearized equations which describe the
growth of small amplitude disturbances in parallel shear flows are
the well-known Orr-Sommerfeld equations. These equations can also
be applied to leading order to describe the growth of small
disturbances in the larger class of nearly parallel flows. In this
case, the errors are due to neglecting the nonparallel terms in the
stability equations, as well as the inaccuracy of the base flow
solution. In the asymptotic limit of some large parameter these
errors are small, and the approximation is a good one. The earlier
stability analyses for both parallel and nearly parallel flows
focused primarily on predicting critical Reynolds or Grashof numbers
above which disturbances would grow. However, more recent analyses
have shown the Iimportance of determining the growth rates and
frequencies of the unstable disturbances as well.

One example out of several nearly parallel flows for which the
stability problem has been extensively examined is boundary layer
flow over a flat plate. The stability of this flow to small
disturbances was first investigated by Tollmein (1929). By
neglecting the nonparallel terms and solving the Orr-Sommerfeld

equations he found a critical Reynolds number of 575. Gaster (1974),
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Smith (1979), and others relaxed the parallel flow assumption and
used perturbation techniques to include nonparallel effects. Gaster
found that including the nonparallel terms of O(Re™!/2) reduced the
critical Reynolds number to approximately 500. Smith used a
multiple scales approach to develop the asymptotic structure of the
nonparallel terms with the disturbance wavelength as the asymptotic
parameter, His analysis also gave a critical Reynolds number of
approximately 500. Although the nonparallel results generally are
in better agreement with the experimentally observed critical
Reynolds number of approximately 400 (cf. Schubauer and Skramstad
(1948)), the differences from the parallel flow results are not
large. This is because the error terms of the equations governing
the disturbed flow, and of the base flow solution, are of order
(Re"'/2).  Thus the error for a critical Reynolds number of 0(500),
(i.e., approximately 0.045) is small, at least in a numerical sense.
In general, free boundary layer flows, such as jets or plumes,
are less stable than semibounded or unbounded flows due to the lack
of disturbance damping at the bounding surfaces. Stability analyses
of these flows characteristically predict very low critical Reynolds
or Grashof numbers. For example, Clenshaw and Elliott (1960) solved
the full Orr-Sommerfeld equations numerically in examining the
stability of the pure fluid, planar Jjet to small amplitude
disturbances and obtained a critical Reynolds number of 3.7. Pera
and Gebhart (1971) investigated the analogous stability problem for a
plume above a line source of heat. Using the quasi-parallel flow
assumption, they solved the Orr-Sommerfeld equations numerically and

found that the plume is unstable at Grashof numbers above 3.5.
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Of course, at very low values of the Reynolds or Grashof
numbers, the quasi-parallel flow assumption is no longer valid.
Recent investigations by Garg (1981), and Wakitani (1985), on the non-
parallel stability of the two-dimensional jet, and plume,
respectively, included at higher order the effects of the transverse
velocity component and of the streamwise variations of the base
flow, disturbance wavenumber, and growth rate. However as first
pointed out by Bouthier (1973), the various disturbance flow
quantities (such as the streamfunction, velocity components,
pressure, etec.) have different growth rates, and these result in
markedly different stability characteristics depending on which
quantity is observed. For the neutral stability curve based on the
disturbance's mean Kkinetic energy, Garg found that the critical
Reynolds number was 21.6, a marked increase over that for the
parallel flow. In the nonparallel stability analysis for the plume,
Wakitani found that the critical Grashof number for the neutral curve
based on the disturbance temperature increased to approximately 6.7.
Hence, in comparisons of the nonparallel theory with the
experimental data for single phase Jjets or plumes, care must be
taken to insure that the amplification rate used is the correct one
for the disturbance quantity that is observed.

Experimental studies by Sato and Sakao (1964) on the plane jet,
and Bill and Gebhart (1975) for the plane plume, indicate that
laminar jets and plumes may be obtained at Reynolds and Grashof
numbers well above the critical values predicted by the linear
theory. This discrepancy may be due to the error terms in the

governing equations for the stability problem. However, a more
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plausible explanation is that the amplification rates were so small
that the disturbances were convected out of the experimental
apparatus, before they could grow to an appreciable size. This was
shown to be the case in the studies conducted by Atherton and Homsy
(1973) on flow down an inclined plane, and by Herbolzheimer (1983) on
sedimentating flow in an inclined channel. The observable onset of
instability correlated well with the spatial growth rates predicted
by the 1linear theory but not with the point where the system
parameters passed through their critical value. Thus, in specifying
the conditions for stability, it is not only important to determine
the sign of the amplification factor but the size as well.

There have been relatively few analyses which examine the
stability of laminar, single phase, buoyant Jets or forced plumes
primarily because of the difficulty in calculating the base flow
solution, Mollendorf and Gebhart (1973b) studied the growth of
small disturbances in a weakly buoyant round Jet, where the
equations for the base flow include the buoyancy force due to a
thermal source at a higher order. Solving the Orr-Sommerfeld
equations numerically, they found that the buoyancy force 1is
destabilizing, as the critical Reynolds number decreased from 32.8
(for a round momentum jet), to 9.4. In the present analysis, we
shall examine the effect of a buoyancy force, due to the particles in
the suspension, on the stability of a two-dimensional Jjet of pure
fluid. This buoyant Jjet flow differs from those in previous
analyses, due to the stronger buoyancy force and the need to
determine the interface position rather than a temperature or

concentration field.
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Stability analyses on flows with an interface have been quite
successful in predicting the flow conditions for instability.
Benjamin (1957) first studied the stability of the flow of a thin
film of fluid down an inclined plane. Yih (1963) later amended this
analysis by 1linearizing the boundary conditions at the fluid-air
interface. Herbolzheimer (1983) extended this approach to buoyancy
driven flows with a pure fluid-suspension interface in his study on
the instability of sedimentation flows in inclined channels. 1In the
following analysis, we will extend this approach still further to
buoyant free boundary layer flows with an interface.

Of the five different base flows presented in the previous
chapter, we shall only examine the stability of that described by
Case I which corresponds to the plume solution. In the dilute limit,
the velocity profile in Case III is identical to that for a pure fluid
Jjet, and hence an analysis of the stability of this sclution would
not be expected to give any new results. The solutions in Cases IVa
and V both describe entry flows and only apply in regions very close
to the nozzle. Furthermore, a stability analyses of these flows, as
well as that in Case Ila, would be difficult because of the numerical
solutions in the boundary layers on both sides of the interface. The
solution technique would involve a numerical integration of the
governing disturbance equations. Although the base flow solution in
the suspension region for Case I is also numerical, we shall see that
only the interfacial values of the suspension velocity and its
derivatives are required.

In the following analysis, we shall first derive the equations

and boundary conditions that govern the growth of small amplitude
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disturbances in both the pure fluid and suspension regions. Two sets
of boundary conditions are derived for the subcases of antisymmetric
and symmetric waves so that these may be analyzed separately. The
governing equations and boundary conditions for both cases are then
solved analytically in the asymptotic limit of small wavelength
disturbances and lead to eigenvalue conditions for the complex
wavenumber. The roots of these conditions are evaluated
numerically, giving the disturbance growth rate as a function of the
disturbance frequency. The magnitude of the amplification factor for
the most unstable disturbance is then calculated to determine an

estimate of the distance where disturbances should first be observed.

3.2 Governing Equations

We begin by deriving the governing equations and boundary
conditions for the spatial amplification of small amplitude
disturbances in the nearly parallel base flow of Case I. The spatial
analysis is chosen over a temporal one because of the instability
behavior observed in the experiments.

Squire (1933) showed that in a temporal stability analysis of a
parallel flow between two walls any three-dimensional disturbance
can be represented as a two-dimensional disturbance at a lower
Reynolds number. Gaster (1962) studied the relationship between
temporal and spatial growth rates and found that to leading order,
these amplification rates were identical near the neutral stability
curve. Hence for spatially amplified waves with small growth rates,
two-dimensional disturbances are less stable than three-~dimensional

disturbances. In this analysis, we assume that this result applies
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at larger amplification rates as well, and consider two-dimensional
disturbances only. Although there is no rigorous Jjustification for
this, in the experiments described in Chapter U4, two-dimensional
disturbances were the first to be observed.

Following the standard approach for a linear stability analysis,
the flow variables are written as the sum of the base flow variable
plus a small perturbation. Of course, the two-dimensional
disturbance velocities may be written in terms of the streamfunction
and we shall denote this as ¥ and ¢ in the pure fluid and suspension
regions respectively. Using the same characteristic velocity and
length scales as the base flow, i.e., Ue and H, the dimensional flow

variables in the pure fluid and suspension are then written as

u” o= uglu + 6\¥y) , v o= ug(v - Wx) , p* = Dfué(p +pY,
and (3.1
u* - ugus ¢ se) V¥ o= ug(vs - 8o, pF o= pwd(p ¢ PO,

where the subscripts on the streamfunctions denote partial
derivatives, and the streamwise disturbance velocity in the pure
fluid, i.e., u' = 6uo‘¥y, is defined so that it is O0(ug) in the
stretched coordinates. Note that we have restricted the analysis
somewhat by assuming that the perturbations occur only in the
velocity and pressure fields, while the concentration remains uniform
throughout both the pure fluid and suspension regions. Substituting
(3.1) into the Navier-Stokes equations, neglecting all quadratic terms
in the disturbance variables, and subtracting out the equations

governing the base flow gives the disturbance equations of motion in



-73-

the pure fluid

, _ , ‘,,lv 6_2
vyt + u?yx + uny uyvx + way =~ 5Py ¥ Rejv Wy , (3.2a)
and
Yoo+ uy.. ~v Y o+ VY o+ VY = lAp' + ~§—V2W
xL XX X'y y X Xy § Yy Rej "X :

The pressure may be eliminated by cross differentiating to give the

fourth~order equation

._("S....‘*/_. 2y 23 . ' .
Rejv ¥ o= ¥ %t + uVv ?X uyyvx + uxyvy

(3.2b)
2y = ;
+ vV vy Vxxvy + vaWX .
The disturbance equations in the suspension are derived in an

analogous fashion to give

I 1
S -
Dotéyt +u ny =

u3V2®y , (3.32)

and

2 EEZV“@ = V29, + uSv?_ - uS ¢+ uS ¢
Rej o £ X yYyx o Xy

(3.3b)

+ VSY29 - S S
y T Vedy Yoy
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The equations (3.2a) and (3.3a) are retained in order to evaluate the
disturbance pressures, which, as we shall see below, are needed in
the normal stress balance.

It turns out to be more convenient to transfer the origin of the
coordinates so that it lies at the position of the unperturbed
interface (see Fig. 10). In addition, the wavelength of the
disturbance, &y, is chosen to be much smaller than the characteristic
distance over which the base flow varies in the streamwise direction.
Thus, disturbance variations in the streamwise direction occur over a
"fast" length scale and do not see the corresponding "slow",
streamwise base flow changes. This establishes the asymptotic
structure through which the higher order terms of the base flow are
introduced. We define the fast variable as & = x/&y and a
corresponding stretched time as T = t/%y . We also define the

rescaled transverse variable®

, (3.4)

and the coordinate transformation may then be represented as,

(x,y,t) » (x,%,7,7) where the derivatives are given by

3 3 13 b'
wow T w Uy

1

G|

*Note that y is not the same variable defined in Chapter 2.
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pure fluid suspension
c=0 C=¢,

&’d!

boundary layer

perturbed interface

—

\ unperturbed interface

Figure 10 Definition of the variables used in the linear stability analysis.
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Using these transformations, the equations may be rewritten in the

new coordinates:

Re:8b?
\P....._..m + 2(‘(‘5"“0")2 \YAA._,.. (—{S"t‘)'”’>“ \y/\f\l\f\ = "‘""J"“'-" [:\y»\.._
yyYyy Ly XXyy Song XXKX L A%
(3.5a)
§byz ‘ b \2 _ z
and
apY )’Z»X , ib‘ 2
3% T Re.oo” }f‘yyy (%) vfo??]
(3.5b)

The equations governing the disturbance flow in the suspension
are derived in the same way as for the pure fluid, the only
difference being that the suspension streamfunction depends on the

Lransverse variable

y~&b

3} = ’
be

where Ly (i.e., the sublayer thickness) is the scaling of the
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suspension region where viscosity is important. These equations are

then given by

2, 2
g b Reslyb
@AAAA + 2( y )2 annn T (""’y"'”' N AAAA = J“Y"""" po @AAA
yyyy Lx XXyy Lx XXXX 8y ol TYY
(3.6a)
()7 S0y + (L2000 - (e | + oL, )
P ) Oagg t W 0hpp ¢ () 0g00) = () uGe% |+ 00 1)
and
s! 824 I )
ag;\' = 2 UO @’\AA + <""’Y"" : @AAA
X Rejlyb® | VY Iy & XX
(3.6b)
T. 2
o5 T Yy
50 pol_é"?ff + U %{? A uycb)? + 0(2y, Qx) .

The boundary conditions require that both components of the

disturbance velocity must vanish far away from the jet, i.e.,

¢, &' >0 as y > + =

However, since the equations are 1linear in the disturbance
streamfunction (and we shall see that this is also true for the
boundary conditions), the solution may be decomposed into a linear
combination of symmetrical and antisymmetrical components. The

boundary conditions at infinity then may be replaced by

¢=9" >0 as y-~» =
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along with the conditions at the centerline

for antisymmetric disturbances

¥r o= Y1 = 0 at ¥ o= -1, (3.7a)

or for symmetric disturbances

¥ o=y =0 at y§ = ~-1. (3.70)

Hence, we only need to consider the positive half plane, i.e., ¥y > 0.

T

D

remaining boundary conditions arise from matching conditions at
the interface. More specifically, at the perturbed position of the
interface, given by § = T, the velocity and stress must be
continuous. However, as is consistent with the linear analysis, it is
more  convenient to  transfer the matching conditions to the
wnperturbed position. For example, continuity of the tangential

ren et Sys
velocity regdires

+ 8Y = uS + & y=1T.
u y y Y

™

This condition is simplified using a Taylor series expansion about

7 = 0 for each term, and linearizing in the perturbation quantities

to give

au = aus -
u +8Y, + —=|oT =uS + & T =
y " yl0 y 7 lo at §=0.

9

Since the base flow tangential velocities are equal at the
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unperturbed interface position, and the derivatives are related by

the base flow shear stress condition (2.17d), this condition further
simplifies to

. 0 § . youS, = o
qy_.’z;cpy«»zx-ﬂuo)——a—i—obr at y=0. (3.7¢)

Continuity of the normal velocity component at the interface requires

T - _§__ - i - (T b' = ATS - 6
&9 i Yo 6[‘:’){ (5+1)F ‘Py] = AV Ty @5\{

5.0 | -
“61‘@X—(y+i§)"b‘®§J at S’=I‘,

e ¥(x,7) and ¥5(x,¥) represent the rescaled base flow velocities

suspension respectively. Transferring this
condition to § =

0 and subtracting out the base flow normal velocity

condition gives

Yo + Qygl¥, - (y+1)b' - g (T, - )T = ¢
Xy b 'y XB?O oy T
Y P? S B - at § = 0
X1 x Ly’ b °§ y =

This may be further simplified by using the base

flow continuity
equation and the result in (3.7c) to give

Yo = &g + 2yx(0, - ¥ ) at §=0. (3.7d)
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The boundary conditions also require that the stress Iis
continuous at the interface. If we represent the disturbance stress
tensor as g¢', and the normal vector to the perturbed interface as

> >
n + n', the normal stress balance may be written as

where [ ]j denotes the jump across the interface. Transferring this

condition to § = 0 in the same way as before, subtracting off the

base flow condition, and linearizing in the disturbance quantities

gives
> -+
n+«>-+*n=290 at y=0,
where
L= o'+ —[oT], >
= . oy J
and
> ab~ >
n cS-é-il + ]

is the normal vector to the unperturbed interface written in terms
of the cartesian coordinate unit vectors. The leading order term Iin

this balance requires that I,, = 0, or equivalently

$ $ 8 ~
1. o _ O - _
[prj + Re j1xD 2(¥go Iy Holge) = 0 + O(mRej) at § =0 . (3.7e)

The fact that the base flow pressure does not contribute to the
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stability problem at leading order (cf. 3.5 - 3.7) reflects the

result found in Chapter 2 that the pressure field is constant, and

the flow is driven by buoyancy.

The tangential stress condition is derived in a similar manner

and to leading order gives

or
& I § .2 I -
\i’{» - (=) @A + U — =) U§~ b\"‘
}, X [SOR i} / y‘v 'y (A) UO yy 4
(3.71)
PR (87 .
- (YA = Unband + 0 = 0 at = 0,
T VTee T Rorgs Yiy Y
Trne finzl boundzry concdition which must be formulated is the
wimerztic condltizn, I the original non-dimensional, coordinate
system, i.e., (X,v,%), this is written as
A . T U -] 3 =
= Ly = &(1+D)] + ju - —=f(e) + 8¥ | — [y - &(1+7)]
¢ (v=55) % [y - 65(1+T)7 = 0 at y = sb(1+T) .

Following the usual steps to transfer this condition to ¥ = 0, and

subtracting out the base flow kinematic condition gives

b[{:c + UI:i] + Wi + O(lx) = O at y = O . (3.78)
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We wish to analyze the growth or decay of infinitesimal
disturbances governed by the set of linear partial differential
equations in (3.5) and (3.6), together with the boundary and matching
conditions in (3.7) for the base flow of Case I. The linearity of the
problem allows any arbitrary disturbance to be expressed as a
superposition of normal mode solutions. Thus, we assume that the

perturbation variables take the form

(T(x,%,7) \ ( -% n(x, T) \
¥(x,%,7,7) V(x,¥)

§ ox,2,9,%) = 4 o0,y 5 explilg(®) - &7} (3.8a)
p'(x,%,7,7) P(x,¥)

\ pS'(x,%,%,7) \ P3(x,9) |

where § is the scaled frequency which is assumed to be real, and the

complex scaled wavenumber, given by

dg A~/ 2
i a(x,7) (3.8b)
is a function of the slow variable only. Hence the imaginary

component of the wavenumber determines whether a disturbance will
grow or decay, where &I > 0 represents a stable wave. The spatial
analysis was chosen over a temporal analysis based on physical
grounds since spatial growth is the true situation observed in

experiments.
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Using the normal mode solution form, the problem is reduced to
an eigenvalue problem for the eigenfunctions ¥ (in the pure fluid)
and ¢ (in the suspension) with & as the complex eigenvalue. The
function n(x,T) represents the unknown position of the perturbed
interface, and is related to the streamfunction ¢ through the

kinematic condition

B &w
n = m . (39)
The functions P and PS in (3.8a) are needed to calculate the
difference in the disturbance pressure at the unperturbed interface

for the normal stress condition. From (3.5b) and (3.6b) we obtain

. x T . 812 5oavz ]
igP! = Rew&'ﬁ'g {»"” - ("QT; (b )W'J
(3.10a)
o L lo-awu + ausul + 000y, o)
b % X7 Ref 5
and
iAPS' _ 622}{ I e L (&‘)2 (bA)z .
¥ T Restub Mol @ Ly o) ¢
Jy
(3.10b)

15 Toanisgr o 3 ausel 8ix
Iy pol(m aus)e' + = uge| + 0(2y, 9«y)

+

The primes on the streamfunctions shall be wused to deniote
derivatives taken with respect to the appropriate transverse

coordinate. In order to simplify the x-dependence of the equations,
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the following variables are defined

N s .
U = 0 U T
(3.11a)
~ b A~
a = bu , W= g R = bugRej = Rej{1 + 0(e)} ,
where
1l . b ,1db
Uy = -b—lj [ -3— € *3"&")‘(‘] (3.11b)

is the base flow velocity at the unperturbed interface. The final
form of the governing equations and boundary conditions is then
determined by substituting (3.8) and (3.11) into equations (3.5) -

(3.7) to give

piv - 2(%)2012\1)" N <§;>“aw - - 1%-3- [m—am(m" - (—9%)20(2\1))
62
+ quyw + O(%x)] + O(T;) s

and

. Ly Ry Riy p . by .o,
oV - 2D et + (gDt = - gt -ug-[mwuu)(@" - (D) o)
(3.13)

By 2 Py
+ () aU%ch o(h,

with the boundary conditions for the antisymmetric disturbance
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pr(-1) ="' (-1) =0, (3.14a)

or for the symmetric disturbance

Y(=1) = y""(-1) =0, (3.14p)

together with the conditions at infinity

b, ' > 0 as y > » (3.14c)

and the matching condtions at § = 0

=9 =1, (3.14d)
Y S iy )2 s \
Y= . AR (1 “O>w-uU37’ (3.14e)
Hv.___@ma 1y ,_§_2 2v_._§_ '
P = <94y> Hoo''' + (Q'X) 3a*(y I Hod")
(3.141)

- «'B}i - TR _§,_ _6_ - S
. [(m a)(y! i 0od') + A (Ho po)ozUy] ,

W S8y - S 2 8 sy - S22 -
T (’@y) Ho¢™) A(U?y AUOUW) (2X> (1~uo)alw-a) , (3.14g)

where the base flow shear stress derivative with the overbar in
(3.14g), has been rescaled so that it is now 0(1). Since any multiple

of an eigenfunction solution is also a solution, the normal velocity



-86 -

condition (3.14d) has been used to set this arbitrary constant.

Finally, the normalized base flow velocities

V- e( %+ y)[bs v e . %2)} £ 0(e?)  (3.152)

and

us _ Eln) o, gee (3.15b)

S = Lo
v Ug F'(o

have been used to evaluate U(Q)

1

Us(0)

i)
-

The governing stability equations for the pure fluid and
suspension for the nearly parallel base flow soluton of Case I have
been rewritten Iin an asymptotic framework using the disturbance
wavelength as the expansion parameter. The leading order equation in
each region is the same as for a parallel flow, i.e., the Orr-
Sommerfeld equation, with the nonparallel error terms of 0(2y). In
the asymptotic 1limit, the error terms are small, and the Orr-
Sommerfeld equation is a good approximation. The problem is now
reduced to an eigenvalue problem for the complex eigenvalue a, and
the eigenfunctions Y and 9. Hence for a given set of physical
properties of the system, i.e., Dg, Rej, Grj, Uo and pg, and for a
disturbance frequency w(x,0), the equations (3.12) - (3.14) can only
be satisfied at certain values of o, and the sign of oy then
determines whether disturbances will locally grow or decay. As we
shall see below, the disturbances with the maximum growth rates, and

consequently the ones of interest to us, lie in the range of

wavelengths that are of the same order of magnitude as the sublayer
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thickness, i.e., &x ~ Qy.

In contrast with the governing equations for the stability of a
pure fluid plume, the jet Reynolds number appears as a parameter of
the problem, and represents the rate at which buoyancy is fed into
the flow. In addition, although the flow is buoyancy driven, there
is no explicit dependence on the jet Grashof number in the governing
equations because of the assumption that there is no perturbation in
the concentration. Instead, it affects the disturbance flow through
the base flow velocity profiles and scalings. In particular, we
shall see that the difference in the shear stress derivatives at the
interface, i.e., Uyy;Q and the asymptotically small scaling ratio of

the thicknesses of the base flow regions, i.e., € = 8 <K 1, are

A

important features of this stability problem which are caused by

buoyancy.

3.3 Solutions to the Disturbance Equations

3.3a Long Wavelength Disturbances

Antisymmetric Disturbances

Let us first investigate the solution to the equations (3.12) -
(3.14) for antisymmetric disturbances with asymptotic wavelengths

that are large compared to the pure fluid thickness, i.e., assume

§ << Ly <K T (3.16a)

and

Rf; (=)' << 1, (3.16b)
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where R ~ O(Rej) is defined in (3.11). In this case, the leading order

disturbance equation for the pure fluid region is purely viscous,

ylv - ( ) 2o ~ 1R—- [(w—al)y" + oaU“\p]

(3.17)

62
Q-;) .

+ IR(Z)T (wmallay -~ (2)"a"y + O(sR,

X Lx
Integrating the homogeneous equation four times and applying the
centerline and normalization conditions (3.14a and d) results in the

solution

p= 1 aaFt e ) - S0 =T @ 39) - T ¢ @), (3.18a)

where Yp(¥) < 0(1) is a particular solution of equation (3.17). The
remaining integration constant is determined from the tangential

velocity condition at the interface and is given by

= <-—)q> (0) + + (1 “O)WUfr[O . (3.18b)

If  the scaling of the derivative of the suspension
streamfunction is such that ¢'(0) < O(Qy/é), and additionally if
(w-a) > 0(8/4), the leading order term in the streamfunction for the
pure fluid disturbance is just a constant ¢ = 1, and hence the
streamwise disturbance velocity in the pure fluid, given by y' ~ a,,

is of a smaller order. Substituting the pure fluid solution (3.18)
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into the shear stress condition (3.14g) gives the eigenvalue

condition,
N 9 U + (T“UO)U§ - —-UOU§N
va LY Wé YM‘; yy at $=0. (3.19)
o' = (=) wod't + — o2(1-yg)
Ly Ly

Note that the eigenvalue o depends on the difference in the
shear stress derivatives of the base flow in the pure fluid and the
suspension. This difference is caused by the buoyancy force and we
shall soon see that it results in the flow becoming unstable for
disturbances in a certain range of wavelengths. At leading order the
elgenvalue is real, and hence the disturbance is neutrally stable.
However, the difference in the Uyy terms at the interface allows
energy to be transferred from the base flow to the disturbance flow

and results in unstable disturbances.

As we shall show below, the sublayer thickness is much smaller

than the boundary layer thickness, i.e.,

)
o1, (3.20)
A

provided &Ly << 1. Thus, if we assume the expansion

@ =ag [T +a, +0, +oou ], (3.21a)

then from (3.19) the leading order eigenvalue is given by
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4 = W (3.21b)

provided that the suspension stream function derivatives are scaled
correctly, and ¢'(0) # 0. Since the frequency w is real, the leading
order disturbance behavior is neutrally stable, and the wave speed of
the disturbance, which is defined in terms of the real component of
the wavenumber, cy = w/ap = 1, is the same as the base flow
interfacial velocity. This is not surprising since in the leading
order equations the base flow velocity is a constant, i.e., 1, and
hence there is no interaction with the disturbance. In other words,
a disturbance placed on a uniform velocity field neither grows nor
decays, but instead, propagates with the flow at the same constant
velocity.

In order to check the assumptions that we made in deriving
these results (ef. 3.20 and 3.16b), we need to determine the
thickness of the sublayer region, i.e., that region in the suspension
where viscous effects are important. Using the scaling result from

the eigenvalue condition (3.19), we set

by — by
(w-a) = - (w-a) = = - why + 0(a) (3.22)
where (w-a) and &, represent O0(1) quantities. In addition, the

suspension base flow velocity in the sublayer 1s represented by a

Taylor series about ¥ = 0. In terms of the sublayer variables this

becomes
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)
s - -y
U 1+AU

[

4
lo §+ %U%io

<

which along with (3.22) is substituted into (3.13), the disturbance
equation for the suspension region, to determine the size of its

leading order inertial term

2 2

% P 2
Y PO aUS) = Y Y5 4 US|F
Rty T 070U = Ryprs o(& + URlof) - (3.23)

Hence for the 1leading order inertial and viscous terms to be

balanced, the sublayer thickness must scale as

A0y .

Voog -~ Re;

by (Voly)/? (3.24a)

where the scalings for A and & are determined in the base flow

solution (ef., 2.17) and

s, i/s
bRe’
e ~ L—wa%} (3.24b)

is an asymptotically small parameter.

The ratio of the sublayer and boundary layer thicknesses can

now be written as
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% 1/3
"EX ~ (\)OQ'X) / ) (3-2“0)

which is small since the analysis applies for asymptotically small
wavelengths. Hence, viscous effects in the disturbance flow in the
suspension are confined to a very small region adjacent to the
interface. We can also use the scaling result in (3.22) to show that
the leading order inertial term in the stability equation for the

pure fluid region is of the order
R*g"" (UJ“CIU)’(,U” -~ ';"('S‘ &1¢)'(O) y
X X

which is small since §/4y << 1 (cf. 3.16a). Hence in this region, the
disturbance flow 1s dominated by viscous forces and the inertial
effects occur at a smaller order ~ o(c’/Rejiy).

The homogeneous solution for ¢ is now specified in terms of the
streamfunction in the suspension ¢. However we need the leading
order term of the particular solution as well, to evaluate the
p'"'(0) term in the normal stress condition. This leading order term

is governed by the equation

- 6 |oz(an 1 X o
wév - ;L;—E; {ga ($'(0) - “mo)&-:U?fxO) + R—-g- lwa,uad (O)} )

for which the solution is given by
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63 I 2 . T R(’O"X> P [X] yw
Yp = g{iza (¢1(0) + ("uo)'g;U}%io) - o lwlied (O)] 57 -

The normal stress condition (3.14f) then becomes

Ly I
ot *I}Vaﬁ‘po)wal*'(§§> @%1“3U04¢'

I 2

3. g Qy 2 2 5118 iy %
- livp(1=pplwd, + (E;J a2(1-1g) oa,U37 =0 + O(QXA) at § =0 .

In order to determine the suspension solution, we first rewrite

the sublayer equation as

& %,
trozzareytY o2 ; ot 5 t_m2 o - Y18
(gprr-az¢'') g% + le%IO<U§;o + y%} (' ~3%¢) 5 1aUyy¢ . (3.26a)
- y

where
_ Ly
a = (E~)a . (3.26b)

X

Substituting in for ¢ and § using

ulz) = ¢" - @o¢ , and z = 2o + MY, (3.27a)



where

- (s s 1/3
- U}§,|o , and m (1walo) ) (3.27b)

transforms equation (3.26a) into the inhomogeneous Airy equation

L
ut - gy = - =Y

A

=15
=

¢ . (3.28a)

It turns out that the leading order imaginary component of the

wavenumber can be determined from the solution of the homogeneous

Airy equation, and this solution is given by

u(z) = B,Ai(z) + B,Bi(z) . (3.28b)

In order for ¢' to decay at infinity, B, must vanish, and of the three

possible values for m (cf. 3.27b) we must choose the one for which

Ai(z) decays as § » =. This requires

m - (L%)l/s be~in/6 | (3.29)

Now that wu(z) is known,

applying the method of variation of
parameters to (3.27a) yields
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¥
e —n B N _
¢ = B + Be®Y + ~—i— {eayj Al(zg+mn) 74N dn

24 0
(3.30)
i
- gmQY Ai(zy+mn) edn dn] .
0
The remaining boundary conditions which must be satisfied are
¢ > 0 as y » @, (3.31a)
$(0) =1, (3.31b)
and the normal stress condition (3.25). Then with ¢ completely

specified, the eigenvalue condition in (3.19) may be evaluated.

In order to apply the boundary condition at infinity, the size of
the wavelength must be known. It turns out that the unstable
disturbances have wavelengths the same size as the sublayer

thickness, i.e., from (3.24a)

a/2
Py ~ by - Vol/z(-R%g) , (3.32)

and the relevant scaling parameters are then given by
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where

I, =.I Ai(zo+mn) e™¥N dn  + O(vo?g;dl/z-
J

Applying the normalization condition gives

Finally, the remaining integration constant is found from the

stress condition and is given by

(T-2up)w® + ivg(1-polwd,
- Holl Ai'(ZO) - [(T“Qllo)wé + iVQ(T"po)walel

) . .
. Uy[o (T=up) + ivg(1-pyluwd,

&1 %mAi'(Zo) - [(1"2}10)(&) + i\)O(T“pO)w&JL *

(3.33a)

(3.33p)

(3.33¢)

(3.33d)

normal

(3.34)

Note that B,, and consequently also ¢'(0), are 0(1) and nonzero. Thus

our earlier assumption that (w-a) is of order Ly/A was justified.

The leading order streamfunctions in the pure

fluid and

suspension are now completely specified (ef. 3.33 and 3.34) and
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substituting them into the eigenvalue condition (3.19) gives

+ DmAi'(zg) = 0’1, = m2J Ai(zg+mn) €N dn . (3.35)
0

In this expression, the complex wavenumber, &,, is expressed as an
implicit function of both the frequency and concentration (since
U%lo = - b*/u(cy)), but there is no dependence on the jet Reynolds
number. Hence any disturbance that grows, will be unstable at all
Reynolds numbers. In addition, since the argument of the Airy
function depends on the wavenumber, (cf. 3.27) this equation must be
solved by an iterative method. In Section 3.4, we shall eliminate
the concentration dependence in the eigenvalue condition by defining
new variables for the wavenumber and frequency. A numerical
solution of the resulting eigenvalue condition then gives the reduced
wavenumber B as a function of the reduced frequency s, only. These

resulte are presented in Section 3.5.

Symmetric Disturbances

The solution procedure for symmetric disturbances follows
analogously from that for the antisymmetric disturbances and hence
will be only briefly summarized. The governing equations are
identical to those for the antisymmetric disturbances, (i.e., 3.17 and
3.26), the only difference occuring in the centerline boundary
conditions. Hence the streamfunction for the pure fluid region is

found by integrating 3.17 four times and applying the centerline and
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normalization conditions (ef. 3.14b and d) to give the solution
T R AR - DA GO S R CLD AT D

The remaining integration constant is determined from the normal

stress condition where

ES

633 = E— po¢‘”(0)
X
(3.36)
T [mm—pomm v =B 300 [(6@) - 51‘"““3"0)}
Rej(volx) 3 vy

We shall see that the particular solution is small in magnitude, and
does not contribute to the leading order amplification factor.

The leading order disturbance streamfunction in the suspension
has the same general form as its antisymmetric counterpart given in
equation (3.30). The boundary conditions which must be satisfied by
the suspension streamfunction for the most unstable waves, 1.e

'

1/2

where Ly ~ vg (~R—Z—7)3/2, are
J

o 0 as y » « ,

$(0) =1,

and
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>1/2 ]j .\ O(ié_?i)l/zJ ‘

O

\Y

oy - ¢ o
$'(0) = (ERej

Substituting from (3.30) into these boundary conditions and solving

for the integration constants gives

o \)O 1/2 1 QR@J 1/::
B, = (WERE?J) [20‘4 + O(""\)‘“"’O ) 4] s

Vo (1/z2 | 1 €Re41/2
B, = (Eﬁ"éj) ]:26[ + O<Tg_) ] ’

B Vo o \1/2 ~m1 ER@J‘ 1/2‘

where I, is given in (3.33c). The homogeneous solution for the
streamfunction in the pure fluid is then completed by substituting

the solution for ¢ into (3.36) to give

eRes| mAi'(z,) eRes /4]
Ihota® - —220) 4 100, (1-p0) + 302(1-pg) + O(d)'/?
\)O T \)o

1

ba, =

and from (3.17), the 1leading order particular solution is of the
order yp =~ O(e:I»‘iej/\)o)z/2 . The solutions for y and ¢ are then
substituted into the tangential stress balance to give the eigenvalue

condition
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Ailzo) + oI, = 0 . (3.37)

As in the antisymmetric case the eigenvalue condition can not be
solved analytically, since the argument of the Airy function depends
on the eigenvalue &,. Hence in Section 3.4, we numerically solve
this equation using an iteration procedure. However we will first
complete this analysis in the next section by removing the long
wavelength assumption in (3.16a) and investigating disturbances with

wavelengths of the same order as the pure fluid thickness.

3.3b Short Wavelength Disturbances

Let us now investigate disturbances with short wavelengths,

In contrast with the long wavelength analysis, the stability equation
for the pure fluid now retains all of the viscous derivatives at

leading order, i.e.,
SLivo 22yt by = - SR 112 _gj._
b Pt + My iR (w=aU)(y''=a?y) + ocUWw] +0 (Rej) .

We find for both antisymmetric and symmetric waves that the leading

order disturbance flow is neutrally stable and that

(w-al) = 0 + e(w-al) .
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Hence the leading order stability equations in the pure fluid and

suspension are both purely viscous, and essentially the same,

PV - 202t ¢ty = -siR[(waU)(d)"*azw) + a%w] + O(ﬁ%}) »  (3.38)

and

1V — 2024 + g% = ~€ivORL(w~aUS)(¢"—a2¢) + EQU%¢J + O(—g—;—;) , (3.39)
-3

with the boundary conditions for antisymmetric disturbances
Pr=1) = p'r(-1) =0, (3.40a)
or for symmetric disturbances

p(=1)

]

vt-1) =0, (3.40D)
together with the conditions at infinity
¢,0' > O as § - =, (3.40c¢)

and the interfacial conditions at ¥ = 0

Y= o+ (1..110)_:%:[@, , (3.40d)
w—a y

P = Pttt + 303 (1) - em[@:&xw'—pow + (uo-po)augj , (3.40e)
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W= st - ==y - el + a(1-u) (3.407)
W=

The solution of this problem requires a considerable amount of
algebra (cf. Appendix A), and hence, we shall only summarize the

important results.

Antisymmetric Disturbances

The solution of these equations and boundary conditions using
the centerline conditions for antisymmetric disturbances (3.40a),

gives an eigenvalue of the form

a = wll + 0y + 0y + oeen), (3.4712)

where the first correction to the eigenvalue is real

a, = € . (3.41b)

Hence to determine whether disturbances will grow, the eigenvalue at

the next order must be determined, and this is given by

Op = Opp *+ iazI , (3.41¢)

where
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1510
dap = €7 S (3.41d)
and
N D°Rej . 9 (1 - e=*w) + _Se_w
1 Bu™ Tbw
(3.41e)

Since the imaginary part of a, is always negative, all antisymmetric
disturbances with wavelengths on the order of the pure fluid
thickness grow. However, the amplification factor decreases to zero

as the wavelength decreases (cf. Appendix A).

Symmetric Disturbances

For symmetric disturbances, the first correction to the

eigenvalue is real

0y = — € ) (3-“261}

and the second correction is complex, with the real and imaginary

components

US|
N S 'A'ALS
2uwew ?

(3.42b)

and
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a - - 62 bSRe_J_' 1 _ 9 (1 = e-—qw) + 5€—qw
21 Bu* 16w I
(3.42¢)

b Llemw 4 pemw) - Zyremaw 4 Y ﬁé“ﬁe*uw} .
2 3 2
As is the case for the antisymmetric disturbances, the imaginary
component of the wavenumber is negative for all frequencies, and
decreases to zero for shorter wavelengths. However, the
amplification factor for the symmetric disturbances is always larger
than that for the antisymmetric disturbances, and hence for the
short wavelength disturbances, the symmetric disturbances are
slightly less stable. Although we have already found in the last
section, that the disturbances with the largest growth rates occur

1/z(e/Rejf/z, the

for the range of wavelengths where 2y ~ by = Vo
short wavelength results are useful for checking the asymptotic
behavior of the long wave solution as the wavelength shrinks to

zero, or equivalently, as w » =,

3.4 Numerical Solution

The major difficulty in solving for the roots of the eigenvalue
conditions in (3.35) and (3.37) arises in calculating the integral I,,
and is primarily due to the lack of a closed form representation of
the Airy function. The Airy function is an analytic, complex-valued
function of a complex variable and is represented by the infinite

series

Ai(z) = ¢, £(z) - ¢, glz) , (3.42)
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where
e, = .355028 ... ,
c, = .258819 ... ,
o 3k
f(Z) = Z 1k '(%W i
k=0 )
- 3k+1
8) - 2 2 T
k=0
and
1 k=0
nk =
n(n+3){n+6) ... (n+3k-1) k=1,2,..

Thus, in evaluating the integral

1, J Ri(zo+mPe~wl df ,
0

the complex value of the Airy function in the integrand must be
calculated for each increment in ¥. To avoid this expensive

procedure, we rewrite the integral in terms of the new variables



= sel/6 (3.43a)

and

’ (3.43b)

to give

I, (w,m,zg) = ;n-[ Ai(zo+t) €75 dt = ;n" f(s;zo) . (3.43¢)
0

Taking 8f/9s and using the Airy equation to substitute for tAi(t)

gives

zof - %g” =[ (zo*t) Ai(zg+t) e7St dt

= = Ai'(zg) - shi(zy) + 8% £(s524) .

The solution of this differential equation for f is easily found to

be

3

5 S (X
fls;20) = e(szo 3 )[f(O;Zo) + Ai'(zo)j e(3 rzo) dr
0

S r?
* Ai(zo)J r e(?”rzo) dr} .
0
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Then from (3.43¢)

o oo ZO
£(0;2p) = J Ai(zg+t) dt = J Ai(Y) dy = %—J Ai(Y) dv ,
0 Zo 0
where we have used the identity
. 1
j’ Al(Y) dy = '3" .
0

Hence the function f(s;zo) now contains the Airy function, its
derivative, and its integral, as functions of the parameter 2z, only,
and these can be calculated from their respective power series.
However, the parameter 2z, depends on the eigenvalue, (ef. 3.27) so
that solving the eigenvalue conditions (3.35) and (3.37) requires an

iteration scheme.

By defining the reduced wavenumber

g - - - 0 ws, (3.44)
S b
U?Io

the eigenvalue conditions can be written as functions of this reduced

wavenumber and the reduced frequency sy only, i.e., the antisymmetric

condition (3.35) becomes

Fi(s0,8) = (B-DAiN(zg) - sof(s;zg)ei™3 =0, (3.452)
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and the symmetric condition (3.37) becomes

Fz(SQ,B) = BAi(ZO) + Sof(s;zo)ei’ﬂ/6 =0, (S.L‘Sb)
where
.2 Z6 s e
L5 3 [N
fls5z0) = =37 B [% ~[ AL(Y) dY + Ai(Zo)J r e( 37 4
0 0
(3.46a)
S r
. Ai'(ZO>J e( 3 TZo) F‘J ’
0
and

H

(is? - —S%>e"iv/6 . (3.46b)

Note from (3.46) that f(s;zg), (and consequently F, and F,), oscillates
in the complex plane where the frequency of oscillation increases
proportionally to sg’. This presents convergence problems for the
iteration scheme, particularly at large values of the dimensionless
frequency where £ oscillates rapidly.

The eigenvalue problems for antisymmetric and symmetric
disturbances are now reduced to finding B as a function of sgy for the
constraints Fj(sg,B) = 0 where i=1 is the antisymmetric condition, and
i=2 is the symmetric condition. The solution procedure for a given
value of s,, takes an initial guess for 8 and evaluates z, (cf.

3.46b). The power series for the Airy function, its derivative and
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integral are then calculated until the absolute error of the last
term, and the corresponding relative error compared to the sum are
less than the tolerance of 107%, The complex-valued exponential
integrals in f(s;zo), (cf. 3.46) are calculated numerically using
Adam's predictor-corrector method in the differential equation-
solving subroutine DGEAR. In evaluating these integrals, the error
relative to the maximum value of the integrand at each step is
required to be less than 1078,

The eigenvalue constraint function Fi is then evaluated, and a
Newton-Raphson iteration procedure is used to make successive
guesses for 8. When the constraint function has converged to zero
within the tolerance 107°% s5 1s incremented slightly, and the
iteration steps are repeated. For small values of s, this iteration
process is quite efficient, usually requiring about four iterations
before converging. However at larger values of the reduced
frequency, the function fluctuates rapidly, which requires the initial
guess for B to be close to the final value in order for the solution
to converge to the correct root. The results from this numerical
scheme give the wavenumber-frequency relationship over the entire
range of frequencies.

Although the eigenvalue conditions for both antisymmetric and
symmetric disturbances can only be solved numerically at moderate
values of the frequency, the asymptotic behaviors of both eigenvalues
can be analytically determined in the limit of large frequency
values. The asymptotic behavior is useful in obtaining general
features of the stability curve, in addition to checking whether the

numerical scheme converges to the correct root. This behavior
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should also match that obtained from the short wavelength analysis.
The expansion and solution of the eigenvalue condition for large
frequencies 1is algebraically very tedious and is summarized in
Appendix C. For the antisymmetric case, the large frequency
asymptotic behavior of the eigenvalue which satisfies the constraint

in (3.3%) is given by

1
16s,°

3.47a)

K
i

o —

For symmetric disturbances, the solution of (3.37) in the 1limit of

large frequencles is given by

. 47p)
16s4° .

Hence both antisymmetric and symmetric disturbances grow, but the
symmetric disturbances are 1less stable. In addition, the most
unstable waves for both types of disturbances occur at smaller
frequency values where numerical solutions of the elgenvalue
conditions are required.

In order to asymptotically match the eigenvalues from the long
and short wavelength analyses, the short wavelength eigenvalue is
rewritten in terms of the long wavelength variables, (i.e., setting
wg = (eRej/vof/zm, and ag = (eRej/vOf/za where wg and ag
respectively refer to the frequency and wavenumber of disturbances

with wavelengths 24 ~ §) and evaluated as w » 0. In terms of the
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variables B and sy the small frequency asymptotic behavior for the

short wavelength antisymmetric eigenvalue in (3.41) is given by

1 .
B =5-1 .
2 1654

The small frequency asymptotic behavior for the symmetric eigenvalue

from the short wavelength in (3.42) is given by

S

Tgsoa )

Hence the long and short wavelength analyses are consistent as the
eigenvalues for both antisymmetric and symmetric disturbances match

asymptotically (cf. 3.47).

The numerical solution of each eigenvalue condition in (3.45),
for disturbances with wavelengths on the order of the sublayer
thickness, yields & stability curve which applies for aill
concentrations and axial distances. The stability curves for
symmetric and antisymmetric disturbances are shown in Figures 1la
and 11b respectively, where the amplification factor (-81) is plotted
versus the reduced frequency sg, and (-87) > 0O corresponds to an
unstable wave. The asymptotic behavior from the short wavelength

(cf. 3.48) is also shown in each figure by a dashed line.
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In Figure 11a, the amplification factor is positive for all
frequencies, and hence all symmeiric disturbances, with wavelengths
on the order of the sublayer thickness, are unstable. The least
stable disturbance has an amplification factor of  0.108,
corresponding to a reduced frequency value of sy = 0.64, For
disturbances with larger reduced frequency values, the amplification
factor drops quickly, and approaches the asymptotic behavior
predicted by the short wavelength analysis.

In contrast with the results for the symmetric disturbance, the
antisymmetric disturbances are stable at small frequencies. Figure
11b shows that the damping factor, i.e., 81, initially increases with
the reduced freguency, and reaches a maximum value of 0.171 at a
reduced frequency of sy = 0.46. Disturbances where s, < 0.89 are
also stable, but the damping factor decreases to zero. Above this
value of the reduced frequency, all disturbances are unstable. The
amplification factor for the unstable disturbances increases to a
maximum value of 0.0175 for waves with a reduced frequency of sg =
1.20. At still larger values of the reduced frequency, the
amplification rate follows the behavior predicted by the short
wavelength analysis, and decreases to zero.

The amplification factors for both symmetric and antisymmetric
disturbances are plotted versus the reduced frequency, sy, in Figure
11e. Thus, the symmetric disturbance is always less stable than the
antisymmetric disturbance, and in determing the conditions under
which disturbance growth will be first observed, it is sufficient to

consider the symmetric disturbances only.
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The real component of the wavenumber B8,, which is plotted
versus Sg in Figures 12a and 12b for the symmetric and antisymmetric
disturbances respectively, represents the deviation of the wave speed

from the interfacial velocity, i.e.,
ey = 1+ vogn) T o UElo -
J

The dotted lines in these figures show the asymptotic behavior
predicted by the short wavelength analysis. Thus for symmetric
waves, the deviation is in the negative direction, and results in a
slower wave velocity compared to the base flow interfacial velocity.
However, for antisymmetric waves, the wave velocity is larger than
that of the base flow interfacial velocity.

Since the stability curve in Figure 17a is independent of Grj and
Rej, there is no critical value for these parameters, i.e., all flows
are unstable. However, it is still possible that stable flows may be
observed experimentally since the amplification rate may be small
enough that disturbances are convected some distance, or even out of
the apparatus, before they can grow to an observable size. Since the
initial amplitude of these small disturbances is unknown, it is very
difficult to make quantitative comparisons of the amplification rates
with the experiments. However qualitative comparisons of the effect
of the jet Reynolds and Grashof numbers, and the concentration on
the amplification rate still can be assessed.

In order to make such comparisons, the amplification rate must

be determined. From (3.8a), the perturbed interface position is given
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by

T = -g. expli{g(®) - 0%} (3.48)

dg - __a :
where il alx) = B 0 L€

X

The magnitude of T is determined from the imaginary component of the

eigenvalue

€ )1/2

QI(X) = (\)O“R"é':}j b3<X) BI(SO> ’

1/2(_&_)3/2

which, upon substituting for 2y ~ Vo e
J

in (3.49) gives

X
- Res 2
IT| = |g] exp | - (—?—‘1)] B1(sg) b (8) dg

In general, this integral can not be evaluated analytically since the
reduced wavenumber By is an implicit function of x. However, since
the argument of the wavenumber is a weak function of x, i.e.,

So(B,%) ~ so(@b7 = sy @x e ~ s,(0)
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the wavenumber is approximately constant. Hence the magnitude of

the interface perturbation becomes

- Res
IT| ~ exp[- 1.089 (-——E—J') BT x3/5}

where X, has been taken as the origin. Since the plume solution

occurs in the asymptotic limit of

3
e PN
€
O

(ef. 2.10 and 2.17), the disturbance is expected to grow to an
appreciable size over a relatively small length. Taking the maximum
amplification factor for symmetric disturbances, i.e., [B;] = 0.108,
and substituting for Rej/e, gives the magnitude of the perturbed

interface for the maximum amplified wave,

= [ GriRe:
|Tm] ~ exp|.1176 («—ﬁ—a——i)‘/s x”*"} . (3.50)
: ,

Thus the dimensionless inception distance Hi/bé, where the amplitude
of the perturbed interface for the maximum amplified disturbance

grows to a size A, is given by

5/3 -1/3 -1

H.
= - (8.5034 %nA) Gry “Rey . (3.51)

bg
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Hence, the effect of increasing the Jet Grashof number is
destabilizing, which is due to the increasing importance of buoyancy
in the flow. An increase in the Jet Reynolds number is also
destabilizing, as this increases the rate at which buoyancy is
introduced into the flow.

The reduced wavenumber and frequency of the maximum amplified
disturbance are both constants. Hence, an increase in the
concentration of the suspension, which increases the Grashof number,
is destabilizing. However, the frequency and wavenumber for the

maximum amplified disturbance, given by
5~ g /%sy)t and &~ 5%y

where s, and B, refer to the reduced frequency and wavenumber for
the maximum amplified disturbance, will decrease to smaller values.
Furthermore, a disturbance of a given frequency will exhibit
different amplification factors if it encounters variations in the
particle concentration, (for example, in a suspension with stably
stratified levels of  particle concentration), where these
amplification factors will depend on the particle concentration, as

well as the frequency of the disturbance.

In order for a disturbance to grow, it must receive energy fron
the base flow. For the base flow described in the Case I solution,
the mechanism for energy transfer is mathematically expressed in the

tangential stress condition at the interface, by the balance of the
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difference in the shear stress derivative of the base flow, with the
disturbance streamfunctions. However the shear stress of the base
flow, and its derivative, are both of order e and do not appear in
the leading order equations. Hence at this order, no energy is
supplied to the disturbance flow, and disturbances of all
wavelengths are neutrally stable and travel with a speed equal to
the base flow interfacial velocity.

At a higher order, energy is supplied to the disturbance flow in
the pure fluid and suspension regions, and the stability of the flow
depends on the relative rate at which energy is transferred, to that
at which it is dissipated by viscosity. The flow region in the pure
fluid is very thin, and the disturbance flow is purely viscous there.
In comparison, the width of the flow region in the suspension is much
larger, and hence viscous dissipation rates there much smaller, than
those in the pure fluid. Thus, the disturbances which are the least
stable occur in the flows where the suspension region cannot fully
dissipate the energy that is supplied by gravity. Of course, the
amount of energy that 1s supplied is a function of the wavelength,
and the type, (i.e., antisymmetric or symmetric), of the disturbance.

For disturbance waves that are antisymmetric with respect to
the centerline, the base flow derivative in the shear stress
condition, i.e., ﬁ;};b, is balanced by the ¢''(0) term and energy is
transferred to the disturbance flow in the pure flow. However when
the wavelength of the disturbance is very 1long, the disturbance
streamfunction in the pure fluid copies the base flow, (i.e., ¥ = U),
which hinders the rate at which energy is transferred to the

disturbance flow. The amount of energy dissipated by viscosity
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balances that which is fed into the pure fluid region and the flow
remains stable. As the wavelength is decreased, the energy is still
transferred to the disturbances in the pure fluid. However, the
streamfunction no longer copies the base flow and the energy that is
supplied is larger than the amount that is dissipated by viscosity.
Thus the disturbance grows, and the flow becomes unstable. For very
short wavelengths, disturbances in both the pure fluid and suspension
regions are excited. However the disturbance flow in both regions
are purely viscous, so that the disturbances are unstable, but their
growth rates are small.

For symmetric disturbances the 1leading order shear stress
condition balances the ﬁ;; and ¢''"(0) terms and hence, energy is
transferred to the disturbance flow in the suspension. The larger
length scale in the suspenion results in less viscous dissipation
than in the pure fluid. Thus for an unstable antisymmetric
disturbance, the corresponding symmetric disturbance at the same
frequency will be less stable.

Although the velocity profiles are similar, the stability
characteristics of the two-phase and pure fluid plume base flows are
quite different. The two-phase plume solution (which applies at
large jet Grashof numbers and hence is expected to be less stable)
has no critical Grashof or Reynolds numbers. In addition, this
analysis does not show the existence of an upper branch to the
neutral stability curve, whereas for pure fluid plume flows, short
waves are stable. However, the amplification factor of the unstable
waves quickly drops to zero, as it is proportional to the inverse

cube of the reduced frequency. Hence it is likely that higher order
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terms in the wavenumber will cause the amplification factor to cross
the BI = 0 axis, thereby giving stable, short wavelength
disturbances. Finally, previous stability analyses for pure fluid
plumes predict that symmetric disturbances are always more stable
than antisymmetric disturbances, whereas for the two-phase plume, we

have shown that the opposite is true.
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CHAPTER 4

Experimental Observations

4.1 Introduction

In Chapter 2, asymptotic solutions were developed which describe
the flow of a Jjet in a suspension. The asymptotic 1limits are
specified in terms of the Jet Grashof and Reynolds numbers, and a
dimensionless distance from the nozzle. For given values of the jet
Grashof and Reynolds numbers, the theory predicts a sequence of flow
solutions as the jet travels downstream. There are essentially two
different flow sequences. For GrjRej << 1 (cf. Figure 2), after a
short entry region the flow evolves into a fully-developed jet and
then, as the distance from the nozzle increases, buoyancy becomes
increasingly important until the flow becomes a pure plume. For
larger values of GrJ-Rej, the fully developed plume-like solution
evolves directly from the entry region flow (cf. Figure 3).

In Chapter 3, the stability of the fully developed plume-like
velocity profile was analyzed using classical linear theory in order
to examine the flow conditions under which disturbances should be
observed. This analysis predicts that the fully developed flow is
unstable at all values of the jet Grashof and Reynolds numbers.
However, as noted in analyses by Atherton & Homsy (1973) and
Herbolzheimer (1983), in some situations the growth rate is small
enough that an unstable disturbance is convected an appreciable
distance before it grows to an observable size. Hence, the magnitude
of the amplification factor, as well as its sign, is important in
determining the conditions under which instabilities are observed.

With this interpretation, the stability analysis predicts a distance
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at which disturbances can be expected to be observed in terms of the
jet Grashof and Reynolds numbers.

The experimental data described in this chapter was collected in
order to make quantitative comparisons with the theoretical
predictions. This required a flow apparatus that produced a two-
dimensional Jjet flow in a uniformly distributed suspension. A
natural choice for this apparatus is a fluidized bed. For a two-
dimensional flow field, the interface (i.e., the boundary separating
the pure fluid and suspension regions) has the same shape throughout
the depth of the flow column, and hence, projects as a single curve
in the plane of flow. This is true even if the flow is perturbed
provided that the disturbances are two-dimensional. Thus, we
obtained the spreading rate of the pure fluid region and the
inception distance where a disturbance is first observed from still
photographs of the flow region using a microfiche reader to provide
an enlarged picture of the film negative. This method allowed
quantitative data to be taken without disturbing the flow field.

Before these quantitative experiments were performed, however,
initial flow visualization experiments were conducted to verify that
the flow in the fluidized bed was two-dimensional and that the
initial suspension concentration was uniform. These were followed by
additional experiments in which qualitative features of the jet flow
were examined,

In the next section, we shall describe the apparatus design, the
flow loop, and the flow materials used in the experiments. Next, we
present  observations made during the flow characterization

experiments. Finally, the quantitative experiments are described,
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and the values of the spreading rate and inception distance measured

experimentally are compared to those predicted by the theory.

4.2 Apparatus and Flow Materials

The experimental apparatus consists of the flow column, its
support structure, and the devices required to produce the necessary
flow (see Figure 13). The flow column is a rectangular chamber made
of lucite, which can be easily dismantled into two sections. The
region of flow is in the upper chamber, where changes in the column
width, flow distributor, and Jjet nozzle can be easily made. As &
consequence of this design, however, there are many joints which must

be sealed to prevent leaks.

4.2a Apparatus

The upper chamber has front and back walls made of 48 x 25.25 x
0.5 in. lucite plates and two sets of side walls made of 48 x 15.24 x
0.75 in. lucite plates (see Figure 14a). The side walls are connected
by threaded steel rods, and adjusting the length of these rods
allows the width of the flow region to be set at 10, 30, 45, or 60
cm.  Both sets of inner and outer side walls have 0.115 in. deep
rectangular grooves cut along their sides. In each groove is a
single cylindrical strip of 1/8 in. diameter neoprene rubber, which
provides a seal in the same fashion as an O-ring. The front and back
walls of the column are clamped along the entire length of the outer
side walls with aluminum angled bars, which are pulled tight with a
series of 4 inch long bolts spaced vertically 6 inches apart.

Although these clamps were sufficlent in sealing any external leaks
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Figure 14a The upper column



-130-

through the outer side walls, there was a leak around the inner side
walls due to hydrostatic pressure causing the front and back plates
to bend. This was undesirable not only because of the leak, but also
because the curvature of the plates (approximately 1/4 in. maximum
displacement) could affect the two-dimensionality of the flow field.
Hence, it was necessary to brace these plates using steel channel
supports placed at the position of the inner side walls. These
supports pushed the front and back plates against the neoprene
strips of the inner side walls, simultaneously eliminating the
bending and leaking problems.

The lower chamber is a rectangular box made of lucite plates
with the inner dimensions 30 x 60 x 6 cm (see Figure 14b)., Since it
was not necessary to dismantle this section, the four walls and the
bottom were glued together. The liquid enters the chamber through
three 1/2 In. diameter ports spaced evenly along the bottom of the
front plate, and is used to fluidize the particles in the upper
chamber. The height of the chamber is chosen large enough to dampen
any turbulence due to entrance effects at the ports.

The fluid from the lower chamber passes through the distributor
and fluidizes the particles in the upper chamber. The main function
of the distributor is to provide a flow with a flat velocity profile
50 that the particles are uniformly fluidized. Medlin, Wong, and
Jackson (1974) performed a linear analysis to determine the effects
of distrubutor width and pressure drop on the stability of uniform
fluidization in beds of finite height. They found that wide
distributors with small pressure drops (relative to the total

pressure drop across the bed) caused growth of small disturbances in
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Figure 14b The lower column
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a uniformly fluidized state. Agarwal, Hudson, and Jackson (1980)
later verified experimentally that circulatory flow patterns (where
particles rise over one portion of the distributor and fall over
another portion) arose for wide distributors with small pressure
drops across them, and that these non-uniformities could be
eliminated by reducing the distributor width or by increasing the
resistance to flow. Specifically, they verified earlier predictions
that very thin distributors with a pressure drop of at least 1/10
that of the total pressure drop across the bed would provide a
stable, uniformly fluidizing flow.

Following a design similar to that used by Agarwal et al., our
distributor consisted of a wire mesh screen supported on a 1/32 in.
thick stainless steel plate (see Figure 14b). The support plate for
each distributor is 26 in. x U4 3/8 in. and has a rectangular hole 1.9
x 6 cm in the center (for the jet nozzle housing) which is framed by
two 1/4 in. wide metal strips. Outside of these strips are two
rectangular holes of identical width, which provide the region for
flow. Hence, the width of these holes is the only variable in the
different distributors (i.e., for the different column widths). The
flow resistance across the holes is provided by a 10 micron wire
mesh screen cloth (Cambridge Wire Cloth Co., Cambridge, MD). A
separate screen cloth covers each of the rectangular holes, and is
soldered to the metal plate frame,

The joint between the upper and lower chambers, which holds the
distributor, is a potential source of leaks. To prevent these leaks,
gaskets made of 1/32 in. thick neoprene were cut and placed both

above and below the distributor plate. Thus, the gaskets seal the
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joint when the flanges of the upper and lower chambers are clamped
together using steel channels with 1/8 in. set screws spaced evenly
apart.

The feed for the nozzle enters a rectangular box which is
constructed from sheet metal and has a cross section of dimensions
1.9 x 6 cm and a length of 16.5 cm. It is sealed to the center hole
of the distributor support using RTV silicone glue (an industrial
sealant) thereby providing a leak proof but removable seal. This
allows one to wuse the same nozzle box for the different
distributors. Flow enters the nozzle box through a 1/2 in. diameter
threaded hole in the base of the nozzle housing. The threaded, brass
tube which passes through the front plate of the lower column into
this hole, has O-ring seals to prevent the system from leaking. The
interior of the nozzle box houses a matrix of cylindrical tubes,
which serves as a flow straightening device to remove any
disturbances caused by the entry port. The Jjet issues out of a
nozzle which is made from a lucite block of the dimensions 4.1 x 2.06
x 6 cm. The inner dimensions (see Figure 14c) were chosen so that
the jet exits the nozzle vertically with a flat velocity profile.
The slit of the nozzle (of width 0.1 cm) was chosen to be small with
respect to the column width so that the jet flow would be unaffected
by the side walls. However we shall see that even for these small
slit widths, the effect of the side walls was sometimes very
significant. The nozzle, which is sealed into the top of the box
with RTV, can be easily removed and replaced.

The column is housed inside a support frame constructed from

steel Unistruts. It sits on a base which is adjusted with three
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leveling screws to keep the system vertical. Variable speed hand
drills are used to raise or lower the upper chamber from the lower
chamber, and a sliding overhead trolley facilitates moving the upper
chamber away, where any necessary modifications may be made. Three
cross bar supports are spaced approximately 12 inches apart on the
front and back of the superstructure. Threaded steel rods brace the
steel channel supports mentioned earlier (i.e., those which prevent
the lucite walls from bending) against these cross bar supports.
Assembling the column so that it would not leak was essentially
a trial and error process. However, once a satisfactory procedure
was established, the column could be repeatedly reassembled without
leaks. In this procedure, the inner side walls are placed at the
appropriate distance from the outer side walls to give the desired
column width, and the threaded steel rods are tightened to hold
these positions rigidly. The vaseline lubricated neoprene strips are
then laid into the side wall grooves and the entire side wall
structure is placed on the front lucite plate. Flanges located at
the top and bottom of the outer side walls butt up against the side
of the lucite plate thereby fixing the position of the inner side
walls, and hence, the width of the flow region. A vernier caliper is
used to insure that the inner column width (i.e., flow region width)
is constant along the entire length of the column. The back plate is
then laid on top of the side walls and the clamps made of the
aluminum angled bars are evenly tightened on both sides. The ends
of the neoprene strips are cut off flush with the base of the side
walls (both inner and outer sets) and sealed into the groove with a

small amount of RTV. A small bead of RTV (approximately 1/8 in.
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wide) is then placed on the bottom of each side wall and when the
upper and lower columns are Joined, these beads spread and seal
against the top distributor gasket.

The upper column is bolted to the overhead trolley and is then
aligned above the lower chamber. The jet nozzle box has already
been sealed to the distributor plate using RTV, and the distributor
lies on the lower column between the neoprene gaskets. The gaskets
are lubricated so that the neoprene material is not kinked or torn by
any shifting of the upper chamber. The wupper column is then
gradually lowered onto the lower chamber with the variable speed
hand drills. When the column comes to rest on the distributor
gasket, the flanges of the upper and lower column are clamped by the
steel channels, and the set screws are gradually tightened. It is
lmportant that these screws are evenly tightened on both sides so
that there is an even pressure on the gasket.

The flow originates from a 26 gal. capacity reservoir tank which
was covered to prevent contamination of the fluid (see Figure 13). A
submersible pump (Little Giant catalogue no. 504902) sends the fluid
to a surge tank where any pulses in the flow are dampened. The flow
then enters an in-line filter with a 5 micron filter cartridge. The
filter is necessary to prevent contaminant particles from clogging
the screen in the distributor, and disturbing the uniform
fluidization. The flow exiting the filter is then split into two
streams. One flow stream is sent to the lower chamber of the
column, and the other stream is sent to the jet nozzle. Both
streams are monitored with needle valve rotameters manufactured by

Cole Parmer, Chicago, IL) so that their flow rates may be varied
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independently.

The flow stream that is sent to the lower chamber first enters
a distributing manifold. This manifold splits the incoming stream
into three exiting streams. Valves located on these exiting streams
allow one to adjust their flow rates until they are all
approximately equal. These streams then feed the three entry ports
of the lower chamber. An additional 1/2 in. ID tube exiting the
manifold tube passes through a gate valve back to the reservoir tank
and serves the dual purpose of draining the fluid from the column,
as well as recirculating the flow back to the reservoir tank. This
last function allows one to remove any air bubbles from the flow
loop, and hence, ensures a two phase flow system. Additional shunt
lines located before each rotameter and the jet nozzle box, serve
this same purpose.

The fluid then enters the lower chamber, passes up through the
distributor, and fluidizes the particles in the upper chamber. The
separate flow source entering the nozzle box issues through the
nozzle slit forming the pure fluid jet. The fluid from the jet and
the distributor exits the upper chamber through an overflow box, and

is then recycled into the reservoir tank through 3/4 in. ID tubing.

4.2b Flow Materials

The 1liquid phase was a mixture of water and a water soluble
synthetic oil (UCON oils 50-HB-2000 and 75-H-90,000 manufactured by
Union Carbide Long Beach, CA). The UCON oils have larger densities
and viscosities than water, so that a wide range of fluid properties,

in this case, viscosity, can be obtained. The viscosity and density
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of the mixtures were measured (with a Cannon-Fenske viscometer and a
Kessler hydrometer, respectively) both before and after each set of
experiments and were found to be constant. The particles were
spherical glass beads (homogenized glass beads from VWR Norwalk, CA)
which were approximately uniform in size with a mean diameter of
105 um (manufacturer specificies that the particle diameters are

within 100 - 110 um) and a density of 2.55 gm/cm®.

4.3 Flow Characterization Experiments

Initial experiments were conducted to verify that the
distributor fluidized the particles uniformly. A  nonuniform
distributor is undesirable since it can cause particles to accumulate
in different regions. A buoyancy force would then be exerted on the
regions of lower particle concentration, which would produce a large
scale circulatory motion in the bed (Agarwal et al. (1980)). The
inhomogenities, which also took the form of a local spouting flow
near the distributor, were best detected by visual observation of the
particles in the bed. Any distributor which produced a spouting
flow, or circulatory motion in the bed was not used. Figures 15a-15¢
(see Plate 1) are pictures of the bed taken during the fluidization
process with a wuniformly fluidizing distributor. Although the
interface is somewhat blurred due to the small distribution in the
particles' sizes, it is still seen to be quite flat.

The qualitative behavior of the flow from the jet nozzle was
observed using dye particles (instead of the glass particles) in the
outer fluid. The flow field was observed to be two-dimensional with

an inner pure fluid region and an outer dyed fluid region. At lower
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jet velocities, the interface between the pure and dyed fluid regions
was smooth, i.e., no disturbances were observed. However, as the
velocity of the Jjet was increased, disturbances in the form of two-
dimensional waves appeared at the interface and grew with increasing
distance from the nozzle. At even larger jet velocities, the flow
became turbulent and the dyed fluid was mixed into the pure fluid
region. Figures 16a-16f (see Plate 2) show a sequence of flows of
the liquid jet in dye where the jet Reynolds number is gradually
increased. Note that although disturbances in the flow field are
visible in Figures 16b and 16c¢, the interface is still well defined.
However for the turbulent jet, the outer dye becomes mixed into the
pure fluid region, and the interface is indistinguishable. In Figures
16d-16f, the onset of turbulence is seen to move closer to the
nozzle as the jet Reynolds number is increased.

In general, a reasonably straight jet issued from the nozzle.
Further downstream, the jet leaned to one side, although the flow
remained two~dimensional. This bend became more pronounced with
time until the jet contacted the wall, where it continued to flow up
the column. Figures 17a-17c¢c (see Plate 3) show a sequence in time
where the jet gradually leans toward a wall. The time has been made
dimensionless using the column width divided by the Jet velocity at
the nozzle. The final position is shown in Figure 17c. For columns
of smaller width, the Jet contacted the wall at shorter distances.
In some flows with larger column widths, the Jet traveled vertically
over the entire region where the dye could be seen, which suggests
that the bending of the jet is caused by interactions with the side

walls.
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Figure 16 Transition of a pure fluid jet to turbulent flow.

PLATE 2
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Figure 17 Attachment of a pure fluid jet to the column wall for

dimensionless time ¢ = w}:}‘i where H is the column width.

(a) (b) ()

Figure 18 Flow visualization of the oscillating jet in a suspension of glass
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Figure 22 An unstable, high velocity
Jet in a dilute suspension :
Gr; = 0.0003 Re; = 80.8

Figure 23 An unstable, bouyant
jet in a suspension :
Gry = 0.083 Re; =1.9

PLATE 5
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This behavior is analogous to the Coanda effect for a turbulent
Jet, where the jet is deflected towards a nearby wall because of a
low pressure region at the surface. Several investigators have
observed this phenomenon and attribute the experimentally verified
low pressure region near the wall to the acceleration of the
entrained fluid there. Pera and Gebhart (1975) observed a similar
phenomenon in their experimental study of heated laminar plumes near
either a side wall or another plume, They found that a plume was
deflected towards a side wall, or another plume of roughly equal or
greater buoyancy, and that the plume would attach itself to the
other body if it was close enough. They attributed this deflection
to the other body's hindrance of the entrainment of fluid into the
plume. Their photographs of this behavior show a remarkable
similarity to those of our deflected jet.

The jet behavior changed dramatically when the glass particles
were added to the column. As in the case of the jet in a dyed fluid,
the flow was two-dimensional and the jet leaned towards one side of
the flow column. However, the denser particles in the suspension
exert a vertical force which counteracts this motion. The Jet
straightens and then leans to the other side of the flow column, and
a steady oscillating motion results, though no particles are mixed
into the pure fluid region by this motion.

The frequency of the oscillatory motion increased for columns
Wwith narrower widths, but it was nearly constant for those columns
with widths greater than 30 cm. Hence, the width of the column was
set at 30 cm so that a minimum quantity of fluid and particles was

required. A similar oscillatory behavior was observed by Forstrum



-146-

and Sparrow (1967) in their experimental study on plumes of heated
air . They took particular care to isolate their system from drafts
and disturbances, but the oscillations still persisted. They
concluded that the oscillations were characteristic of free boundary
plume flows.

The buoyancy force also caused the pure fluid region to narrow
with increasing distance from the nozzle and eventually this region
formed a tip. The tip oscillated at a larger frequency than the
lower portion of the jet, causing the pure fluid region to bend in a
time-dependent, two-dimensional sinuous shape. Although they were
unable to explain it, Fujii, Morioka, and Uehara (1973) observed this
same motion in their experimental study on plumes of heated spindle
oil. Figures 18a-18c (see Plate 3) show a sequence of pictures taken
of the liquid jet in a suspension of glass particles. The whip-like
motion of the tip, which caused particles to mix into the pure fluid
region, was observed even at very small particle concentratons, e.g.
c ~ 0.001. Figures 19a~c (see Plate U4) show a sequence of
experiments where the jet Grashof number was increased by decreasing
the nozzle velocity. For larger jet Grashof numbers and also for
smaller jet Reynolds numbers, the distance to where the tip motion
occurs decreases.

The flow characterization experiments show that a buoyant jet
flow field, which divides into regions of pure fluid and suspension,
can be produced 1in our experimental apparatus. Although the
buoyancy force due to the suspension induces an oscillating motion in
the jet, the flow remains two-dimensional, and no particles are mixed

into the pure fluid region by this motion. Further downstream,
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however, disturbances cause the interface to bend in a sinuous shape,
and particles are mixed into the pure fluid region. Using still
photographs of the experiments, we can make quantitative comparisons
of the interfacial spreading rate (measured with respect to the arc
distance along the centerline) and the inception distance for
instabilities of the jet (i.e., the position of the first bend in the

interface) with those predicted by the theory.

4 i Measurements of Interfacial Spreading Rate

4_4a Experimental Procedure and Flow Conditions

The particles were first fluidized to an initial height
(typically 30cm), which together with the known amount of particles
in the bed was used to determine the particle concentration in the
suspension. In most of the experiments, once the particles were
fluldized to the desired height the distributor was turned off and
the particles were allowed to settle briefly. The jet flowmeter was
then set to a desired flow rate, and 35mm still pictures (ASA 400
film) were taken of the interface between the pure fluid and
suspension regions. The column was backlit with a 250w light source
and the glass particles in the suspension reflected much of this
light so that the interface boundary was sharply defined. The
interfacial spreading rate and the inception distance were measured
from the photograph negatives using a microfiche reader
(magnification 3x). A ruler was placed next to the flow field in
each experiment to account for possible distortion effects due to the
microfiche reader and the camera. In those flows where the jet

oscillated, the values of the interfacial spreading rate and the
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inception distance (measured from a sequence of photographs taken at
different times) were found to be approximately constant in time.
Hence, quantitative comparisons can be made with the predictions from
the steady state theory.

By varying the fluid viscosity, particle concentration, and jet
velocity, a range of experimental flow conditions was obtained. This
was done systematically by performing a series of experiments at a
fixed fluid viscosity and particle concentration over a range of jet
flow rates. For the same fluid, the particle concentration was then
increased by adding more particles to the flow column and new
experiments were performed for the same flow rates. In this way,
the concentration was varied from ¢ ~ 0 to ¢ ~ 0.05. At higher
concentrations, the Instabilities were so strong that the jet
oscillated rapidly and the interface became three dimensional (i.e.,
curved with respect to the depth of the column). This prevented
light from passing through the pure fluid region and no quantitative
measurements could be made using still photographs.

The fluid viscosity was then decreased by diluting the mixture
with water, and the experiments at the various concentrations and
flow rates were repeated. The approximate range of kinematic
viscosities used was from 0.08 to 0.5 stokes. In all of these cases,
the particle Reynolds number (defined in terms of the particle
radius, and Stokes velocity), was 0.01 or lower. For the entire set
of experiments, the flow conditions are summarized in terms of the

parameter GrjRej, where

0 < Gr'jRej < 1.2 .
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The lower range of this parameter occurred for essentially pure
fluid flows, where dye particles marked the interface position.
Although the dye particles were slightly more dense than the pure
fluid, no value for the jet Grashof number could be calculated. No
meaningful data on the spreading rate or inception distance could be
obtained at values of Gr‘jReJ- greater than 1.2 because instabilities
caused particles to mix with the jet very near the nozzle, and the
interface was not observable.

The experiments were grouped in terms of the parameter Gr*J-Rej
so that the interfacial spreading rates could be compared with those
predicted by the analysis in Chapter 2. For a nozzle width of 1 mm,
the entry region described in Chapter 2 (cf. Figures 2 and 3) was
very short. Hence, we shall ignore this region and assume that the

flow exiting the nozzle is fully developed.

4.4b Spreading Rate Results GriRe; << 1

The case where GrjRej is small occurs for pure fluid flows
(with dye particles) and also flows with very small particle
concentrations, ¢ ~ 0.005, The experimentally measured spreading
rates were compared to those predicted by the pure fluid Jet
solution (ef. 2.60) in Case III. A measure of the fit is given by s,

the square root of the variance, where

n
s? = =L D [belx;) - byx)TF
Xi
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n is the number of experimental data points, and bg(xj) and by(xji) are
respectively, the experimentally measured and theoretically predicted
interface positions at the axial distance Xj. The variance is
normalized with respect to the quantity (n-1) (as opposed to the
quantity n) since the data points are only a sample of the total
possible experimental measurements (cf. Kreyszig (1979)). The axial
distances were adjusted by a virtual origin which was chosen to give
the best fit. However for most cases, the change in the variance for
the different virtual origins was small. Some of these comparisons
are shown in Table 3, and in general the theoretical predictions show
an excellent agreement with the experimental measurements
particularly for the flows at large jet Reynolds numbers. However,
for those flows of a Jet in a dilute suspension, the jet does not
travel far downstream before the flow becomes unstable.

For the flows of a pure fluid jet in dye at small Jjet Reynolds
numbers, the fit of the theoretical and experimental spreading rates
is much worse. At small distances from the nozzle the theory
predicts a slower spreading rate than is experimentally observed, and
at larger distances, it predicts a faster spreading rate than is
observed.

The pure fluld jet solution assumes that the transverse velocity
component is negligible at leading order, which is not true at small
jet Reynolds numbers. Hence, the transverse velocity of the
experimental jet causes it to spread faster than the theory predicts.
However, the presence of the dye in the outer fluid causes a small,
but finite buoyancy force to act on the Jjet as it flows downstream.

This accelerating force decreases the spreading rate, and in some
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Table 3

Comparison of Experimental, bg(x),and Theoretical, bg(x),
Spreading Rates for Case III at Different Values of Grj and Rej

Gry Rej X be(x) b (x) s x 108

0.286 0.064 0.062
0.467 0.07M 0.066
1.000 0.079 0.077

0.0002 46.7 2.070 0.087 0.092 0.34
2.762 0.095 0.099
4222 0.103 0.112
5.127 0.111 0.119
0.143 0.064 0.062
0.248 0.071 0.068
0.698 0.079 0.079

0.0003 29.1 0.968 0.087 0.086 0.43
1.543 0.095 0.097 ‘
2.476 0.103 0.110
3.756 0.111 0.125
0.258 0.064 0.063

0.0 84.8 1.152 0.073 0.073 0.16
2.032 0.081 0.081
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Table 3 (continued)

Rej X be(x) by (%) s x 10k

0.413 0.071 0.067
0.716 0.079 0.075
0.984 0.087 0.080
37.9 2.324 0.095 0.100 1.20
2.851 0.103 0.106
4,222 0.111 0.119
5.756 0.119 0.131
8.740 0.127 0.149
0.325 0.089 0.113
0.871 0.107 0.126
1.221 0.125 0.133
1.718 0.143 0.141
13.9 2.136 0.161 0.148 4.3
2.996 0.179 0.160
4.357 0.196 0.175
5.618 0.214 0.188
7.467 0.232 0.203
0.471 0.252 0.219
0.707 0.269 0.226
1.1 2.394 0.286 0.266 14.0
5.626 0.303 0.320
8.896 0.320 0.361
10.495 0.337 0.378
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cases causes the jet to stop spreading (see Figures 20a-20c, Plate
4y, Of course, since the theoretical solution ignores buoyancy
effects, it predicts a spreading rate at large distances from the
nozzle that is faster than what is observed experimentally.

The experimentally observed spreading rate behavior of the
liquid jet in dye is qualitatively predicted by the theory in the flow
sequence where GrjRej << 1 (cf. Figure 2), i.e., where the pure fluid
exhibits mixed plume-jet characteristics as it flows downstream. In
this flow sequence, the jet spreading rate decreases to zero at a
dimensionless distance of order H/bg ~ (ReE/Grj)l/s. The theoretical
flow solutions which apply in this region are Cases Ila and IIb.
However, no solution was obtained for the flow described by Case Ila
(i.e., where the initial momentum of the jet 1is important).
Furthermore, the buoyancy force due to the dye particles could not
be calculated, and as a result, no quantitative comparisons were
made with the theory. The theory predicts that a jet in a suspension
of small particle concentration should also exhibit mixed plume-jet
characteristics as it flows downstream. However, we experimentally
observed that these flows became unstable before the mixed plume-jet

state was reached.

4. Y4¢c Spreading Rate Results GrijRej ~ 1

For the case of larger values of the parameter, GrjRej ~ 1, the
theory predicts that the laminar plume solution will occur
immediately after the entry region flow. As in the Jjet case, the
entry region was ignored (since it occurs over a small distance) and

the flow exiting the nozzle was assumed to be fully developed. In
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the plume solution, the interface position has a simple dependence on

the axial distance given by

~1/5
X / o

In order to compare the experimental measurements with this
prediction, the spreading rate data is plotted in log-log form. A
linear regression analysis is then used to determine the best fitting
line through the transformed data, and the slope of this line gives
the exponent of the power law. The amount of scatter in the data is
measured by the deviation of the correlation coefficient, r, from a
value of 1.0,

A few examples of the log-log plots of the data are given in
Figures ¢£la-21d. The solid 1lines on the graphs represent the
theoretical predictions for the spreading rate. In general, these
predictions agree very well with the experimental results. In each
plot, the slope is approximately equal to the predicted value of
~0.20, and the correlation ccefficients are near 1.0. A summary of
the experimental results is given in Table U4 (see Appendix C). The
slopes range from -0.18 to -0.28 and in general exhibit fairly high

correlation coefficients.

4 l4d Inception Distance Results

The inception distance, where disturbances are first observed,
was measured experimentally at various jet Grashof and jet Reynolds
numbers, and compared to the values predicted by the theory (cf.

3.51). The instabilities were of a wave-type form, and the inception
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distance was measured from the tip of the nozzle to the position of
the first bend in the interface. As the amplitude of the disturbance
grew, an increasing number of particles were mixed into the pure
fluid region until it could no longer be seen. In the jet-like flow,
the growth of the disturbance could be seen for three or more
disturbance wavelengths before the pure fluid region was obscured by
particles (see Figure 22, Plate 5). In the buoyant plume-like flow,
the lower portion of the jet oscillated steadily, but no particles
were mixed into the pure fluid region. However, once disturbance
growth occured, the pure fluid region was quickly obscured by
particles, approximately 1/2 to 1 disturbance wavelengths downstream
from the inception point (see Figure 23, Plate 5).

The linear stability analysis of the base flow solution in Case
I predicts that for a given amplification of a disturbance (e.g. that
at which a disturbance 1is seen) the inception distance, Hi/b;,
multiplied by the quantity Grs/aRej is a constant (cf. 3.51). Hence, a
plot of Grg/sRej Hi/bé versus the flow parameter, GrjRej, should give
a horizontal line. This plot is shown in Figure 24. It appears that
there 1is 1little correlation of the experimental data with the
theoretical prediction. In addition to the large scatter of the data,

the general trend shows that Grfj/

aRej Hi/bé decreases with increasing
GrjRej. The comparison of the data and the theoretical predictions
at small values of Gr‘jRej may be questionable, since the theory
predicts that the base flow solution applies for GrjRej ~ 1. However
in the last section it was found that the theoretically predicted

interfacial spreading rate of the plume solution agreed quite well

with the experimental data, even at values of Gijej = 0.1. At
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larger values of Gr-jRej, where the base flow solution is expected to
apply, there is still a large scatter of the data. Furthermore,

using a typical experimental value for the constant

Hj 1/
¢ = —= Grs Re: = 50,
pE T

the linear stability analysis predicts that the magnitude of the
interface perturbation is only 3.4 times its original size (cf. 3.51).
It appears that the disturbances grow much faster than the theory
predicts, and hence there is a discrepancy.

A plausible explanation for the discrepancy between the results
of the stability theory and the experiments, is that the disturbances
which are observed experimentally are initially finite in size. These
disturbances require a smaller amplification (compared to that for
the infinitesimal disturbance assumed by the linear theory) to reach
a magnitude which can disrupt the flow field. Furthermore, nonlinear
interactions of finite disturbances can cause a larger growth rate
than that predicted by the linear theory. Hence, a finite
disturbance would destabilize the flow at a shorter distance than
that predicted by the linear theory, which is what we observed
experimentally.

These finite amplitude disturbances may result from vibrations
of the experimental apparatus, or more probably, from the
oscillations of the plume. Although the oscillating motion is steady
in the lower portion of the plume, buoyancy (which forces the pure

fluid to flow vertically) causes a whip-like motion at the tip of the
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pure fluid region. This finite amplitude disturbance motion is also
periodic, however, the frequency of oscillation is larger than that
of the lower portion of the plume. Hence, the whip-like motion of
the tip causes a sharp bend in the interface (relative to the lower
portion of the plume) and results in particles mixing into the pure
fluid region. The size of the disturbance motion depends on the size
of the buoyancy force, where the flows at larger jet Grashof numbers
exhibit larger amplitudes in the oscillating motion of the tip. This
qualitatively explains the downward trend observed in Figure 24, as
the flows at larger values of the parameter GrjRej have smaller
inception distances.

In order to quantify the instability region, local Grashof and

Reynolds numbers can be defined as

(pp = pploogx” b*u’get

Gry = , and Rey = ,

R
pf(upl)

where u;l and u?@t are the local velocities at the centerline for

the plume and Jet solutions, respectively. These velocities, along
with the width of the jet flow region, b*, are given by the

expressions

1/s
X 1.2317 (GrReyl) T uy Kt

up 1

, -
Wiy = 0.4543 (béRej)l/3 ujy x* /2

14
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b* - 10.880 (Ef_-\i YA
* Mo )

Hence, the local Grashof and Reynolds numbers are defined in
terms of the dimensional distance, x*, and the experimental data can
then be used to calculate the values of these parameters at which
the flow Dbecomes unstable. A plot of the local Grashof number
versus the local Reynolds number at instability is shown in Figure
25.  Although there is still some scatter in the experimental data,
the regions of stability and instability are fairly well defined.
This figure shows that increasing the Grashof number slightly from
zero results in a large decrease in the local Reynolds number of
transition. Hence, for the laminar flow of a two-dimensional jet, the
presence of the particles in the outer fluid is highly destabilizing,
as the Jjet becomes unstable at much shorter distances than the

corresponding single phase flow.

As predicted by the analysis developed in Chapter 2, the two-
dimensional flow field of a Jjet in a homogeneous suspension divides
into regions of pure fluid and suspension (at uniform concentration),
and because of the heavier particles in the suspension, a constant
buoyancy force is exerted on the pure fluid region. The experimental
results indicate that this buoyancy force has a significant effect on
the laminar flow of a jet.

Based on the experimentally measured interfacial spreading

rates, the theory accurately predicts a variety of flow behaviors for
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the jet, ranging from that of a single phase jet to that of a plume.
The asymptotic limits where the theoretical flow solutions apply are
also in agreement with the experimental conditions, as the jet-like
flow occurs at very small values of the parameter Gr’jRej, while the
plume-like flows occur at larger values of this parameter, where
Geriej > 0.1, In the flows which exhibited mixed plume and jet
characteristics (i.e., the jet in the slightly heavier dyed fluid) no
quantitative comparisons could be made with the theory. However,
the small buoyancy force due to the dye particles was observed to
decrease the interfacial spreading rate to zero. This behavior
indicates that the Jjet flow is extremely sensitive to buoyancy
effects.

A steady oscillating motion was observed in the jet flows with
a significant amount of buoyancy. The oscillations were induced by
interaction forces with the side walls of the apparatus, which tended
to make the Jjet lean to one side, and the buoyancy force, which
tended to make the jet flow vertically. In the flows of the jet in a
dyed fluid, the buoyancy force was not strong enough to cause the
Jet to flow vertically. Hence, the jet contacted the side wall,
where it continued to flow up the column.

The Dbuoyancy force also has a significant effect on the
stability of the two-phase flow. In all of our experiments for
which 0 < GrjRej < 1.2 the flow became unstable at some distance
downstream from the nozzle. For those experiments with GI"J‘R@J'
greater than 1.2, the flow became unstable almost immediately as it
exited the nozzle. Hence, the buoyancy force is highly destabilizing,

as the corresponding single phase flows of a Jjet and a plume are
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stable below critical Reynolds and Grashof numbers of 21.6 and 6.7,
respectively (cf. Garg (1981) and Wakitani (1985)). The destabilizing
effect of the buoyancy force on the Jjet-like flow is evident from
Figure 25, where the Reynolds number of transition decreases
drastically when a few particles are added to the flow. Although
buoyancy is present in both the single phase and two-phase plume-
like flows, the latter is less stable because the buoyancy force is
constant.

For the single phase flow of a plume above a line source of
heat, the buoyancy force, and hence the energy fed to the disturbance
flow, 1is strongest at the origin, and decreases with increasing
distance from the source. Thus, if the source is not strong enough,
the viscous forces will dissipate the energy fed to the disturbance,
and the flow will be stable. However, in the two-phase plume-like
flow, the buoyancy force is constant with increasing distance from
the nozzie. Since the viscous forces in the suspension cannot
dissipate this constant supply of energy, the disturbance grows and
the flow is unstable.

Although the lineary theory was unable to successfully predict
the inception distances that were observed experimentally, we believe
that the discrepancy is due to finite disturbances which were caused
by the oscillating motion of the plume. Qualitatively, the theory
predicts that increases in the jet Grashof number (i.e., the buoyancy
force) and the jet Reynolds number (i.e., the rate at which buoyancy
is fed into the flow) are both destabilizing, which is what we

observed experimentally.
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APPENDIX A

The Stability of Short Wavelength Disturbances

Let us Investigate the stability of the plume-like flow in Case
I to small amplitude disturbance waves with wavelengths that are

approximately the same as the pure fluid width, i.e.,

Iy ~ 6 = Re; (A.1)
where ¢ is an asymptotically small parameter (cf. 2.42). Since the
effects of the disturbance only penetrate a distance comparable to
its wavelength into the suspension, ¢ decays to zero over a very thin
region. On this scale, the leading order base flow velocity appears

to be uniform, as given by the Taylor series expansion about § = 0 .

In terms of the sublayer variables this is written as

A 2 1
loy"("‘A—) '§U

S.la §2 + ...

yy'O y

The sublayer thickness can not be larger than the wavelength of the
disturbance, hence, Ry = §, which implies that § = §. The leading
order pure fluid velocity is also equal to unity (ef. 2.24), and hence

the leading order equations for the pure fluid and suspension

streamfunctions are identical
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(" = a2P' + [iR(w-a) - a?] (Y - a?y) =

(A.2a)

- EiaRtbs(%?z + I - a?y) + %WJ + 0(e?) ,
and

(o' - a%¢)"" + [iR(w-a) - 2] (¢'" - a%¢) =
(A.2b)

- giaR U%IO ? (@” - a2¢) + O(Ez) 3

where the dilute limit has been taken so that pg = py = 1. The

boundary conditions are

Pr=1) =P (-1) =0, (A.3a)
or

p(=1) ="' (-1 =0, (A.3b)

with
¢,9' > O as y » =, (A.3c)
P(0) = ¢(0) = 1, (A.3d)
P'(0) = 4'(0) , (A.3e)
prero) = ¢ (0) (A.31)

and
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(Z-Dypr1(0) + & Ugglo = (5 =1¢"(0) + e VS |, . (A.3g)

<1

Note that in the tangential stress condition (A.3g), the term through
which energy is transferred from the base flow to the disturbance
flow, i.e., Uyy, is of a size 0(e) and hence does not appear in the

leading order balance.

The general solutions for the leading order streamfunctions

have the form

Y, b ~ e~0¥ + 0¥ + o~0F 4 o6
where

8% = a® - iR(w-a) ,

and the solutions for ¢ and ¢ differ only in the integration
constants. However, upon substituting these solutions into the
boundary conditions, we find that the only nontrivial solution occurs

when

_.-_1__ 2 .op2y -
(w-a) = T (o 6%) =0 .
Hence, to leading order the disturbance wave speed is equal to the
base flow interfacial velocity, as is the case for the longer waves.
Setting (w-o) = e(w-a), and ﬁ;§ = b? where the terms with the

overbar term are 0(1), the rescaled equations are
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PV~ 2oyt 4 gty = - eiRL(JT&) + b3(—12~3?2 + P -a?y) - ban (A.4a)

+ 0(e? ,
and
OV - 20%¢ + o' = - eiR{(M) + b3§‘(¢>"-—a2¢)] + 0(e?) . (A.4D)

The general solution to these equations is of the form

£
i

(Ao + AF)e™®T + (4, + AF)e™ + eyp(¥) , (A.5a)

and

-
]

(Bo + B.7)e”®¥ + (B, + By)e + edp(7) , (A.5D)

where f;]p and 25;) are the rescaled particular solutions to (A.4). In
order that the disturbance in the suspension is confined to the
sublayer, both B, and B, must vanish. Applying the centerline
conditions for antisymmetric disturbances, in addition to the
conditions in (A.3d -~ 3f), gives the remaining integration constants

for the homogeneous solution
Ao =1 - € 1zt (A.63)
O W 3

1
Al = £ WA:.; . (A-6b)
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1 1+e7%0

Ay =5 - &~ ~ € %L(a%)%"(%) + a3(3~oc)@1'3(~1)J , (a.6e)

201 +020 o - - 7
ho=- S ve Lo - e %[(amwg'm) - a2<3+a>%<—1>J , (A.60)
Bo = 1, (A.6e)
- 2a(e¥ + ed) {z};;'(—w) ~ a2@£)<~1)} (n.67)

~ 2(el - g~1) "tu(_1 - az_' -1 ] ,
( {wp ) -3 wp( )}
where
Ay = PINTOY = 62 (0) A.6
2 = V) (0) b5 (0) (A.6g)
The remaining boundary condition which must be satisfied is the
shear stress balance. Since the disturbance stream functions in both
the pure fluid and suspension are completely specified, this

condition determines the eigenvalue a as a function of w. Expanding

the eigenvalue in the form

a =aoll +o; +a, +.0]=wl +ed +a,+..], (A7)

gives the eigenvalue condition
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US|
~ _ bt gy'e b? 1+e2
Mt et 2uesw " E 2pelw Lyeliw B 2 7 w)Ay
(A.8)
+ @ {PNO) =~ MO} - e {(w+1) PI(=1) = wi(3+w) P (-1)}] +0(e?) .
p p p p
Hence the first correction to the wavenumber, i.e.,
b3
o, = € m (A.9>

is real and gives a slight correction to the wave speed. However, we
still have no information as to whether these short waves grow or
decay.

At the next order, the inertial terms of the differential
equations governing the disturbance flow In both regions are
important. The particular solutions are of the form

iy - iR(pe~ ¥ + qe®¥] , (A.10a)

and

6 = iR re"9¥ (A.10b)

where p,q, and r are polynomial functions of §. Substituting (A.10)
and the homogeneous solutions for ¢ and ¢ (ef. A.5) into the

governing equations (A.4) gives these polynomials as
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. DA, . (32u)bA,
PV =g V' g Y

(A.10¢)
b, | 2 )
t g 7* L@g + 2w)A, + wh, +-B%(w—a)Ail,
) bohy . (3-2w)bh, _
Q) = - e Yt S y
(A.10d)
o, [ 2
+ ‘gw—z y2 l»("-g" + zw)A3 + U)A] - F@(M“Q)AJ s
and
b’B, BB, T 1 7
FY o % 53 z -
r(§) = ) yo o+ TG N L1 + B—g(w OL)J ' (A.10e)
where the integration constants are given in (A.6). Taking the

appropriate derivatives of the particular solution and substituting
them into the tangential stress condition (A.8) gives the second

correction to the eigenvalue, which is complex

U0 b*Re
e ez Y T 2 J _ 9 PV 5 _~ly
% =& Sele T ° t TBu [1 Tow e e

(A.11a)

~,\2
— % (8“20) - 2e"uw> + %_ w3e"2w + w+(2'w e—u’w] .
The imaginary part of a, 1s always negative, and hence, all
antisymmetric disturbances with wavelengths on the same order as the
pure fluid thickness grow. As the frequency increases, corresponding

to shorter waves, the amplification factor goes to zero like
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D°Rej
QI“‘EZ%T as w > ® , (A.11b)

In the 1limit of longer wavelengths, the imaginary part of «

asymptotes to

bSRGj
O,I”“Ez m‘r as w -~ 0. (A.11¢)

The analysis for symmetric disturbances follows that for the
antisymmetric disturbances, the only difference being the boundary
condition at the centerline. Hence applying the centerline condition
(A.3b) as well as the conditions in (A.3d - 3f) gives the integration

constants for the homogeneous solution

Ao = 1= € qosha (A.12a)
A =€ qeeba (A.120)
A, = ;- - € l—tg%;ﬁ[xa + € %[&I‘)i)‘(*ﬂ + oc(2~cx)\?1p(~1)] , (A.12¢)
A, = 9—?« fe ] "&g&[&g - € %—Z—[@b’(—?) - oc(2+cx)$p(-1)] , (A.12d)
Bo =1, (A.12€)

and
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B, = %(e"o‘ + 1) + ¢ -8]&—5[(9"2(1 - e%® + Ug)A,

(A.12f)
+ 2a%(e™® - e®) {IT)I‘)'FT) - azx'l')p(%)} + Yad(e® + e‘u)@p(—ﬂ] .

Since the governing differential equations for the symmetric and
antisymmetric disturbances are identical, the particular solutions
for the streamfunctions in the pure fluid and suspension are of the
same form as those in (A.10). The difference between the
antisymmetric and symmetric solutions 1is, of course, in the
integration constants for the homogeneous solution (cf. A.6 and A.12).

Substituting the solutions for ¥y and ¢ into (A.3g) gives the

wavenumber-frequency relationship

U§~l beRe -
~ 1 o b? _ ¥¥ [¢] . Rej _ 9 =l
oy, 4+ E Qp = *é"(;é?;; £ —meezw € l""B"(b“g"‘ 1 -—6——1 m ( 1~e )

(A.13)

5 e"'“(&) + ..U_), (8—2(}) + 2e”uw) - __2__ w3e_2w + _w_+2(.02 e“uw .
2 3 2
Thus the first correction to the eigenvalue is real and is given by

ba

= . (A.14)
2welw

(.X1="€

However, the second correction is complex and the imaginary
component is always negative. Hence, all short wavelength symmetric
disturbances will grow. In the limit of very short wavelengths, the
amplification factor for the symmetric disturbances decreases to

zero in the same way as for the antisymmetric disturbances (cf.



A.11b), i.e.,

However, in the

..]77..

, bsRej )
ap ~ - e? s as w > @, (A.15a
limit of large wavelengths, the symmetric

disturbance is less stable than the antisymmetric disturbances (cf.

A11e)

Oy ~ — €

6 .
X 3b ReJ

S (A.15b)

as w > 0.,
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APPENDIX B

The Asymptotic Matching of the Short and Long

Wavelength Stability Solutions

In order to check the results of the numerical solutions in the
long wavelength analysis, the eigenvalues are asymptotically matched
to those from the short wavelength analysis. This requires expanding
and solving the eigenvalue conditions in (3.35) and (3.37) (for the
antisymmetric and symmetric disturbances, respectively) in the limit
as w -~ o, The solutions are then matched to the corresponding
eigenvalues from the short wavelength analysis, which are evaluated
in the limit as w » O.

The small frequency asymptotic behavior of the eigenvalues from

tne short wave analysis is given by

lim ag = wg + € %; + ez( U~~[O - 152?57) (B.1a)
w+0
and
lim ag = wg ~ € L 62@"~U~~!o - li%ggg—) , (B.1b)
w0 2 Tow

(ef. A.11 and A.15), where the subscript s refers to the short
wavelength variables. In the above and the rest of this appendix, we
shall present the antisymmetric and symmetric results
simultaneously, using equation labels a and b to differentiate

between the two. Thus (B.1a) represents the small frequency
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asymptotic behavior of the antisymmetric eigenvalue from the short
wavelength analysis. Similarly, (B.1b) represents the small
frequency behavior of the symmetric¢c eigenvalue. 1In order that the
eigenvalues from the long and short wavelength analyses can be
compared in the same set of variables, we rewrite the short
wavelength wavenumber and frequency in terms of the corresponding

long wavelength variables, i.e.,

cRes
Wg = (‘“\')*O”J')l/z W,
and
eRes
Q'.S = (W\;"'J')l/z a

which gives

3
6= w (voﬁ%)‘” ba(—;- - i-rg-u?) Yo+ o(as/Rey‘/z , (B.2a)
and
3 3
S e e I o<~}§53)1/2 . (B.2b)
j

These expressions are simplified by writing them in terms of the

reduced variables s and 8 (ef. 3.43a and 3.44) to give

1 1
B=-2— * TEsT (B.3a)

and
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3. (B.3b)

The eigenvalues from the short wavelength analyses must match
the solutions of the long wavelength eigenvalue conditions, which are

evaluated in the limit of large frequencies, i.e., we must solve

(B-1)Ai'(z5) ~ 8*f(s,2g5) = 0, (B.4a)
and
BAi(zgy) + sf(s,25) =0, (B. 4p)
where
2. % 5w
fls;z0) = 3(38 g [13- ~J Ai(t) dt + Ai(zO)J m e< 3 mzo) dm
0 0
(B.5)
S m®
+ Ai'(zo)J e( 3 7o) dm} ,
0

in the limit as w » =, (i.e., s, 2o » «). Hence, the asymptotic

behaviors of the Airy function and its derivative are required. These

are given by Abramowitz and Stegun (1964), where for large |z|

. 1 Vo mifn p &
Ri(z) ~ 5 T /2 g=1/% o7 L z (-1)K e\ rK largz| < 7 ,
k=0

and
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Ri'(z) ~ - 4 /2 g/ et 3 (DK g oK argz| < 7 ,
5 k
k=0

where

3/2
z3/%

Y
|
wlro

Cozdo=1,

. P(3k+%) )
K r(k+12—> s5iK 1
b k=1,2,3, ...
6k +1
dk = T BRDT Ck - J

Dividing the two power series, and expanding the coefficients of the

resulting sum gives

Ailzo) = - SAi'(zo) Lw b oir(B - 1)+ o<s-6>J : (B.6)

ol

The major difficulty in expanding the eigenvalue conditions in
(B.4) for large |z| occurs in evaluating the integrals in f(s,zp).
The integral of the Airy function 1is evaluated using the Airy

equation to substitute for Ai(t) and integrating by parts to give

. 1. 1 ’
JzoAl(t) dt ZOAl'(zO) -Z—gAl(Zo> + ZJ %’s‘ Ai(t) dt :
Zo



-182-

The last term can be repeatedly integrated by parts,

expressed in terms of the recurrence relation

J 1 () b - - Ai'(zg) ~ (k+1)Ai(zg)
£k

1 2
Zg Z§+ Zg+

k
zot *3

+ (k+1)(k+2)J 1 ai(t) dt .

Hence, the integral of the Airy function is written as

N Aiv(zs) T ] .
J Ai(t)dt=—~—zo t1+%~+ig+...J

20

and is

(B.7)

In order to evaluate the behavior of the exponential integrals in

(B.5) at large values of s, a saddle point method was used.

first examine the asymptotic behavior of the integral,

S m?
(=--mzq)
I-= j e 3 © dm .
0

This is rewritten using the new variables

We shall

(B.8)
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t = % ’ 8Zq = s? - g ) and s? = ivy™? ’ (8‘9)

to give
1 3
Bt —iY"‘Z(t—E—->
I=2=5 e e 37 dt .
0

This integral is broken up into two parts, where the path of
integration is chosen so that the integrand decreases rapidly away

from the endpoints 0O, and 1, i.e.,

=1 +1,
where
a PR v
Bt ~iY7*(t-=%)
,=s] e e 37 at (B.10)
0
and
1 3
gt ~iY"2(t——E«)
I,=s] e e 37 at . (B.11)
a
We shall first evaluate the integral I,. We determine the
integration path by defining the variable r = - 15— Y72¢, so that the

integrand decays exponentially away from the origin., Then since the
integrand is very small at the other limit of integration, we may let

a > = to give



-18L4-

— {4 2 W
I, =A-isyzj T TEBYIY ) (B.12)
0

The second exponential function in the integrand may be expanded

about r = 0, and integrating the resulting series term by term gives
I, = = isY2 [1 - iBY? - B2Y* - 2Y* + 0(BY®)] (B.13)

where from (B.9), Y ~ 0(s™*/?) and hence is small for large s.

The integral I, is evaluated by redefining the variable t = n+1

to give

e e

. a-1 ) n
Ly ~ap2(141
(B==1iY )J B 1Y 3) an (B 1)

As in the previous case for I,, we define a new variable rel® = n/y
so that the integrand decreases exponentially away from the origin.

This requires 6 to be chosen such that

and hence the solution is 6 = - 3w/4. Thus we set n = YAr where

Ao BTN g , and since the integrand is approximately zero

away from the origin, we extend the other integration 1limit to

infinity to give
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2. ® 3

-=iY™?) -~ L

I, = - AYse(B 3 j e r* eAY(Br 3) dr . (B.15)
0

Expanding the second exponential function in the integrand about the

origin and integrating term by term gives,

'-'-_2__ - 1/2 1 1/2 1 5
I, = -AYse(B 3” ) [£~2~—~ + —Z-AY(B - J?;) + ﬂ2 (oﬂ()z()IB2 - %B + 718)

(B.16)

1 sV os _ a2 . _ 4 . "
+ B'(AY) (EB B B ~9-) oY )} .

The procedure for evaluating the other exponential integral in f

(ef. B.5), i.e.,

follows the identical steps used to evaluate I. Hence the analogous

integral of I, in (B.12), i.e.,

S a2 W
J1=~52Y“J rere(18YP+Y3)dr,
0

is evaluated to give

J, = ~s2Y* [1 - 2i8Y? + 0(Y")] . (B.17)
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Similarly, the analogous integral of I, in (B.15) is

2. ® 3
(B-5iv7?%) - S
J, = sy e 3 J (1enve)e™™ AV = ) g
0

This is evaluated in the same way as I, and gives

J2 = —SzAYe .}2

2. g ,
(R §'1Y ) [ﬁé/ﬂ R AY(%—B . %_) + ]’_ngzYz(Bz + B - __l)

(B.18)

Toaavsr Y oa _ Voo _5 5
+6A\!(-2-8 '2—3 B 9)+O(Y)].

The results from (B.6), (B.13), and (B.16 - 18) are then substituted

into (B.5) and (B.4) and the conditions simplify to

1 1
B = 5 + W s (B.19a)
and
-1 3
B = 5 + TE? . (B.Tgb)

A comparison of (B.19) with the expressions in (B.3) confirms that
both antisymmetric and symmetric eigenvalues match, and hence the

long and short wavelength analyses are consistent.
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APPENDIX C

Summary of the Linear Regression Analyses
of n y vs. &n x Plots with Slope m and
Correlation Coefficient r

Gr Re; m r
0.017 -0.182 0.991
0.035 -0.273 0.967
0.042 -0.220 0.985
0.062 ~-0.225 0.997
0.068 ~-0.181 0.988
0.083 ~0.208 0.994
0.097 -0.198 0.992
0.107 ~0.187 0.990
0.114 -0.200 0.991
0.143 -0.222 0.987
0.230 -0.221 0.996
0.243 -0.280 0.974

0.460 -0.221 0.993




