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Abstract 

Small molecules that bind to any predetermined DNA sequence in the human 

genome are potentially useful tools for molecular biology and human medicine. 

Polyamides containing N-methylimidazole (lm) N-methylpyrrole (Py) are cell permeable 

small molecules that bind DNA according to a set of "pairing rules" with affinities and 

specificities similar to many naturally occurring DNA binding proteins. Py-Im 

polyamides offer a general approach to the chemical regulation of gene expression. We 

demonstrate here that polyamide containing a DNA alkylating moiety seco-CBI can 

specifically direct sequence specific DNA alkylation. We can also control the strand of 

DNA that is alkylated, depending on the enantiomer of seco-CBI used and the orientation 

of the polyamide relative to the alkylation site (Chapter 2). This class of molecules has 

been applied to a gene repair system in collaboration with the Baltimore group at Caltech 

(Chapter 3). Also reported are additional seco-CBI polyamide conjugates synthesized to 

study other systems (HIV -1 and COX-2) (Appendix 1 ). 
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Background 

Expression of Genetic lnformationfrom DNA 

DNA is the universal storage material for genetic information in all living 

organisms. The flow of genetic information starts with DNA, which is transcribed into 

RNA, and the RNA is then translated to proteins. DNA serves as the permanent storage 

material in the cell, while RNA is a transient copy of this genetic information and is 

synthesized as necessary. Proteins serve to perform specific functions such as signaling 

or maintenance in the cell, and like RNA, are often synthesized as needed and then 

degraded. It is remarkable, then, that all the genetic information essential to sustaining 

living organisms is present in the form of DNA and that copies of this DNA are present 

in every living cell. 

Specific protein-DNA interactions are fundamental pieces of cell differentiation. 

For although almost all cells contain identical genetic information, the selective 

transcription of certain genes but not others allows a neural cell in the brain to function 

differently than an epithelial cell in the skin. 1 Transcription factors are DNA binding 

proteins that regulate transcription by recruiting the necessary transcriptional machinery. 

Typically, the promoter region of a gene contains the recognition sites of the required 

transcription factors. Upon binding, the transcription factor recruits a network of more 

than fifty proteins that are required to initiate active transcription. This multi-protein 

complex has a molecular weight of more than two million, and contains all the proteins 

necessary for activated transcription to occur.2 The process of transcription elongation is 

just as complex, as more than 20 protein subunits that comprise RNA polymerase II must 

track along the DNA and synthesize the complementary RNA. Unlike in DNA synthesis, 
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transcription elongation occurs in fits and starts, with elongation factors necessary to start 

the polymerase complex again once it has paused.3.4 

+I 

Transcription Complex 
> 2,000,000 MW 

L. 
Figure 1.1. Model of protein regulation of gene transcription. 

DNA as a paradigm for small molecule recognition 

Because DNA plays a fundamental role in gene expression in the cell, a general 

code for sequence specific DNA recognition is desirable for the design of new drugs that 

manipulate gene expression.5 Much of the work in this field is based on protein:DNA 

interactions which are characterized by hydrogen bonds, van der Waals interactions and 

electrostatic interactions. To date, no all-purpose code of amino acid/DNA recognition 

has been developed due to the diverse recognition and structural motifs found among 

DNA-binding proteins.6 

To develop general rules for sequence specific DNA recognition by small 

molecules, a careful examination of DNA structure is required. Double helical DNA 

consists of two anti parallel strands that fit together in a right-handed helix.7 DNA can be 

characterized as having three domains: the sugar/phosphate backbone, the major groove, 

and the minor groove. The deoxyribose and phosphate esters form a unique charge 

pattern along the helix backbone. Protein side chains often make electrostatic 



interactions with the sugar/phosphate backbone, but such interactions tend not to be 

sequence specific. 
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The nature of DNA helix dictate the characteristic structures of the major and 

minor grooves, the major groove being wider and shallower, and the minor groove being 

narrower and deeper. The edges of the base pairs in the Watson-Crick hydrogen bond 

pairings result in the unique hydrogen bonding faces of the major and minor groove.7 For 

a T• A base pair, in the major groove there is a pattern of hydrogen bond acceptor (lone 

pairs on 04 of thymine), and hydrogen bond donor (NH of exocyclic amine of adenine). 

The minor groove of a T• A base pair forms a pattern of two hydrogen bond acceptors 

(02 of thymine and N3 of adenine). Likewise, for a C•G base pair, the major groove can 

be characterized as having a hydrogen bond donor (NH of exocyclic amine of cytosine) 

and a hydrogen bond acceptor (06 of guanine). The minor groove of a C• G base pair has 

a hydrogen bond acceptor (02 of cytosine), hydrogen bond donor (NH of exocyclic 

amine of guanine) and a hydrogen bond acceptor (N3 of guanine) (Figure 1.3). In the 

minor groove, it is the exocyclic amine of guanine that primarily distinguishes an A•T 

base pair from a G•C base pair. 



3' 5' 

Figure 1.2. B-form double helical DNA. Antiparallel strands arc ind icated in dark and light gray. (left) 
space fill ing CPK model. (right) ribbon representation. 

Major Groove 
3' 5' 

Major Groove 

Minor Groove Minor Groove 

5' 3' 

Figure 1.3. A schematic model for recognition of the minor groove, with hydrogen bond donors 
represented as (H) and hydrogen bond acceptors represented as two dots. 

5 
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Sequence Specific DNA binding by Distamycin and 2-Imidazole Netropsin 

In addition to proteins, there are many classes of natural products that are able to 

bind to DNA in a sequence specific manner. Some examples of such molecules are 

chromomycin, distamycin, actinomycin D, and calicheamicin oligosaccharide (Figure 

1.4).8-
11 These molecules either bind in the minor groove, or intercalate between the base 

pairs. Because of their size they have short DNA recognition sequences, and their 

interactions could be compared to those of protein side chains. 

Chromomycin • 5'-GGCf-3' 

Actinomycin D • 5'-GC-3' Calicheamicin oligosaccharide • 5'-TCCf-3' 

Figure 1.4. Chemical structures of natural products that bind DNA. 

Distamycin is distinct from most DNA binding natural products only by its 

simplicity. It consists of three N-methyl carboxamide units and contains no chiral 

centers. This crescent shaped molecule binds in the minor groove of DNA, preferentially 

at A-T rich regions. The crystal structure of distamycin bound to a DNA duplex showed 

that the carboxamides make specific hydrogen bonds to the bases in the minor groove. 11 

The Dervan group has pursued distamycin as the starting point to base the discovery of 

small molecules that regulate transcription. 12 



7 

An early lead in attempts to generate a general code for DNA recognition was the 

discovery of 2-irnidazole netropsin. It had been suggested that the imidazole ring of this 

compound would make a specific hydrogen bond to a G• C base pair and that 2-imidazole 

netropsin would target the sequence 5'-GWWW-3'. Footprinting experiments showed 

that unexpectedly, 2-imidazole netropsin instead bound the site 5 '-WGWCW-3' . The 

two-fold symmetry of the binding site was puzzling since it suggested that there was not 

a single binding orientation for 2-imidazole netropsin. Earlier studies of 

distamycin!DNA complexes gave an interesting solution to this discrepancy. Distamycin 

was found to have two very distinct binding modes. In the first, a single molecule of 

distamycin binds in the center of the minor groove of A-T rich DNA. The amide 

hydrogens form bifurcated hydrogen bonds to the N3 of adenine and 02 of thymine on 

the floor of the minor groove. In the second binding mode, distamycin binds as an 

anti parallel, side-by-side dimer in the minor groove. Instead of the bifurcated hydrogen 

bonds of the 1:1 complex, each strand of DNA forms hydrogen bonds with one molecule 

of distamycin. Using this 2: 1 binding model for 2-imidazole netropsin explained why its 

preferred binding site is symmetrical (because it binds as a side-by-side antiparallel 

dimer) and does not match the predicted site. 13
•
14 
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I: I Distamycin•DNA Complex 2:1 Distamycin•DNA Complex 

Figure 1.5. A schematic representation of recognition of A,T rich sequences in the minor groove by I: I 
and 2: I complexes of Distamycin. 

The Hairpin Motif of Pyrrole-lmidazole Polyamides 

The affinity of the dimer 2-imidazole netropsin was still modest (micromolar 
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binding constants) in comparison to DNA binding proteins (nanomolar or higher binding 

constants). To decrease the en tropic factors influencing binding, two molecules of 2-

imidazole netropsin were connected in a head to tail fashion with an alkyl linker, y-

amino-butyric acid (y). 15 The resulting 'hairpin' -like structure yielded a compound with 

increased affinity for the binding site 5'-WGWCW -3' of -100 fold. Connecting the two 

distamycin-like components also allowed for the design of heterodimeric polyamides to 

target asymmetric sequences. As an example, the compound ImPyPy-y-PyPyPy was 

found to target the sequence 5'-WGWWW -3'. The hairpin motif for this compound was 

found to increase the binding affinity by 400-fold (Figure 1.6). 



ImPyPy-Dp I PyPyPy • TGTT A 
Ka- 2 X 105 M·1 

Figure 1.6. Example of the hairpin polyamide motif. 

ImPyPy-y-PyPyPy-Dp • TGTT A 
Ka = 8 X 107 M· 1 

Pairing Rules for Pyrrole-Imidazole Polyamides 

The results of 2-imidazole netropsin binding to the site S'WGWCW-3' as an 
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anti parallel dimer and the development of the hairpin motif allowed us to design a set of 

pairing rules for recognition by pyrrole (Py) and imidazole (lm) amino acids16 (Figure 

1.7). A Pyllm pair targets a C• G base pair while an lm/Py pair targets a G• C base 

pair. 17
·
18 The basis for discrimination of a G• C base pair is from the formation of a 

hydrogen bond between imidazole N3 and the exocyclic amine of guanine.19
·
20 A Py/Py 

pair is partially degenerate and recognizes both A•T and T•A base pairs. 13
·
17

·
18

·
2

1.
22 High 

resolution NMR and crystal structures have confirmed that specific hydrogen bonds are 

made from the carboxamide nitrogens to the base pairs and the imidazole nitrogen to 

guanine. 

To address the question of A•TIT• A degeneracy by a Py/Py pair, N-methyl-3-

hydroxypyrrole (Hp) was synthesized and incorporated into a polyamide.23
·
24 Hp places a 
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hydroxy group in the asymmetric cleft between a thymine and adenine base pair. Thus, an 

Hp/Py pair recognizes the sequence T • A and a Py!Hp pair recognizes an A• T base pair 

(Figure 1.7). The binding of Hp has also been confirmed by a high resolution crystal 

structure, and shows that the hydroxy group of Hp binds in the asymmetric cleft as 

designed and also makes two hydrogen bonds to 02 of thymine.25
·
26 

Figure 1.7. Binding model for the complex formed between ImHpPyPyPy-y-ImHpPyPyPy-~-Dp and the 
DNA duplex 5'-TGITACA-3'. Hydrogen bonds are shown as dashed lines. 

Other polyamide motifs 

The development of a solid phase methodology to synthesize Py-Im polyamides 

has greatly facilitated the examination of other motifs and analogues of polyamides.27 

Another modification to the hairpin structures is the use of a chiral turn (Diamino-butyric 

acid, DABA) which influences the binding orientation of the polyamide and increases 

affinity and specificity.28 Extension of the binding site size was achieved by the addition 
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of more Py or Im rings to the hairpin. In order to target sequences of more than six to 

eight base pairs, an aliphatic ~-alanine residue (~) can be used.29
.
32 The crystal structure 

of a Py-Im polyamide shows that the helical pitch of the polyamide is slightly greater 

than the pitch of the DNA helix.20 Thus to target longer sequences, ~is added to 

compensate for these sequence composition effects. Using these modifications, it is 

possible to design polyamides having subnanomolar binding constants, on par with those 

of DNA binding proteins. Examples of other polyamide motifs such as cycles33
·
34

, tandem 

hairpins35
, and cooperative dimers3637 are shown in Figure 1.8. 

5'- T G T A C A- 3' 5'-T G T T A T T G T T A-3' 

~ 
3'- A C A T G T- 5' 3'-A c A A T A A C A A 

6 bp 11 bp 

5'- T G T G A A C A- 3 ' 5'-A G G G A T T c c c T-3' 

~ 
Y-A C A C T T G T-S 3'- T c c c T A A G G G A-5' 

8 bp 11 bp 

S-A G C A G C T G C T-~ 

~~ 
5'-A T A A G C A G c T G c T T T T T-3' 

Y-T C G T C G A C G A-5' 3'-T A T T c G T c G A c G A A A A A-5' 

10 bp 16 bp 

Figure 1.8. Representative motifs for polyamide: DNA recognition. Shaded and unshaded circles represent 
imidazole and pyrrole residues, respectively. ~-alanine and they-turn are represented as a diamond and 
curved line, respectively. The plus sign represents the dimethylaminopropylamide tail or the a-amino-y­
turn. 

Applications of Py-Im Polyamides in Transcription Inhibition and Activation 

As a proof of principle that small molecules can regulate transcription, Py-Im 

polyamides were designed for use in two transcription systems. For the first system, two 

polyamides were designed to inhibit the binding ofT AT A-binding protein (TBP) and 

LEF-1 , two essential transcription factors that bind in the promoter region of HIV -1.29 



Individually, each was shown to inhibit HIV -1 transcription between 60% and 80%. 

However, together the two polyamides showed synergistic effects and reduced HIY -1 

transcription to undetectable levels in cell culture. This experiment showed that Py-Im 

polyamides are cell permeable, and are capable of inhibiting transcription through 

rational design to targeted sequences. 
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A second system used a constructed promoter to see if polyamides were capable 

of activating transcription.38 The polyamide ImPyPyPy-y-PyPyPyPy-~-Dp was coupled to 

a known transcriptional activator peptide. A promoter with six match sites for the 

polyamide-peptide conjugate was placed 40 base pairs upstream from the TAT A box. Up 

to 40-fold activation of transcription was observed over basal levels with these 

conjugates. These experiments show that polyamides can be used to manipulate a variety 

of transcriptional processes, and point the way to other experiments using small 

molecules that sequence specifically bind to DNA. 

Scope of this Work 

Sequence Specific DNA Alkylating Agents 

Py-Im hairpin polyarnides are small molecules that are cell permeable and capable 

of inhibiting transcription in in vivo systems through sequence specific DNA interactions. 

Thus far, the methods explored for transcription inhibition by polyamides have focused 

on preventing the binding of essential transcription factors in the promoter region. In 

unpublished work, we have found that when polyamides are targeted to the coding region 

of specific genes, no inhibition of transcription is observed. The noncovalent interactions 

between the polyamide and DNA are not strong enough to stop the progression of RNA 

polymerase. We were interested in addressing the question of whether bifunctional DNA 
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binding polyamides that covalently interact with the minor groove of DNA could inhibit 

polymerase elongation. The generation of a sequence specific DNA alkylating agent 

would introduce a new class of gene specific 'knockout' agents that would be useful for a 

variety of biological disciplines. 

Chapter 2 describes efforts to develop a sequence specific alkylating agent using a 

hairpin polyamide-seco-CBI conjugate. CBI is an analogue of the natural product CC-

I 065, and alkylates DNA in the minor groove at N3 of adenine. Hairpin polyamides 

modified with seco-CBI off the y-amino-butyric acid turn were synthesized to deliver the 

alkylating moiety to adenines adjacent to the polyamide binding site. Applications of 

these polyamide conjugates are discussed in chapter 3, through the design of polyamide 

conjugates to study gene repair processes. Appendix 1 describes other polyamide-seco-

CBI conjugates that were characterized to study COX-2 and HIV. 

In this work, the function of hairpin polyamides has been extended to include 

sequence specific covalent modification of DNA in the minor groove. The generality of 

the pairing rules and the knowledge at hand concerning transcription elongation and 

DNA repair processes make sequence specific DNA alkylation a useful approach for the 

study of these systems. 
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Strand Selective Cleavage of DNA by Diastereomers of Hairpin 
Polyamide-seco-CBI Conjugates 

The text of this chapter is taken in part from a published paper that was coauthored with 
Prof Peter B. Dervan 

(Chang, A.Y. ; Dervan, P.B. J. Am. Chern. Soc. 2000, L22, 4856-4864) 
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Abstract 

Pyrrole-imidazole polyamides are synthetic ligands that bind predetermined DNA 

sequences with subnanomolar affinity. We report the synthesis and characterization of an 

eight-ring hairpin polyamide conjugated at the tum to both enantiomers of 1-

( chloromethyl)-5-hydroxy-1 ,2-dihydro-3H-benz[e ]indole (seco-CBI), an alkylating 

moiety related to CC-1065. Alkylation yields and specificity were determined on a 

restriction fragment containing six base pair match and mismatch sites. Alkylation was 

observed at a single adenine flanking the polyamide binding site, and strand selective 

cleavage could be achieved based on the enantiomer of seco-CBI chosen. At 1 nM 

concentrations of polyamide-seca-CBI conjugate, near quantitative cleavage was 

observed after 12 hours. These bifunctional molecules could be useful for targeting 

coding regions of genes and inhibition of transcription. 
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Design of Polyamide-CBI Conjugates 

The design of sequence specific DNA alkylating agents requires the integration of 

two separate functional moieties for recognition and reaction. As described in chapter 1, 

hairpin Py-Im polyamides are suitable for DNA recognition due to their high affinity and 

specificity for the minor groove of DNA. The reactive moiety must specifically alkylate 

in the minor groove proximal to the hairpin polyamide target site, with covalent reaction 

yields that are near quantitative. In order to maximize stoichiometric reaction on the 

DNA, the 'electrophilic functionality' must be reactive with DNA at 37 °C, be inert in 

aqueous media and buffer components, and not suffer unimolecular decomposition in 

competition with the desired reaction with DNA. The reactive moiety of the natural 

product ( + )-CC-1 065 and its analogues meets these criteria for our design of bifunctional 

molecules for sequence specific alkylation of DNA. 

CC-1065 and Duocarmycins 

CC-1 065 is part of the family of duocarmycins, natural products derived from 

cultures of Streptomyces zelensis. It consists of three substituted benzopyrrole moieties 

linked by amide bonds. It was discovered to be a potent antitumor antibiotic by Upjohn. 

The mode of action was found to be the reactive cyclopropyl moiety on one of the 

subunits that affords sequence specific DNA alkylation at N3 of adenine. 1 This reactive 

moiety is typical of all members of the duocarmycin family (Figure 2.1). Alkylation at 

this position results in a labile base-sugar bond generating an abasic site that leads to 

DNA cleavage. The duocarmycins target Aff rich sequences of DNA. Unlike the case 

of distamycin, the duocarmycins have no amide protons with which to form hydrogen 

bonds to the DNA bases. Therefore, its sequence selectivity is based primarily on van 
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der Waals interactions that are maximized in the narrower AfT minor groove. CC-1065 

once showed great promise as an antitumor agent for treatment of cancer, but its early 

clinical trials revealed delayed toxicity.v However, its mechanisms of action continue to 

be studied and pursued for the discovery of related anticancer drugs. 

OMe 

(+)- CC-1065 

( + )- Duocarmycin A 

Figure 2.1. CC-I 065 and the family of Duocarmycins. 

Me02C 

H~KVOMe 
(/ I 

0 ~ .b OMe 

OMe 

( + )- Duocarmycin SA 

A debate has lingered for some time concerning the origin of catalysis for the 

alkylation reaction of the duocarmycins at N3 of adenine.4 The Alkylation Site model 

requires that the selectivities of simple and extended analogues of CC-1 065 are derived 

only from the cyclopropyl moiety. Noncovalent interactions are not considered to have 

significant effect on the alkylation selectivity. This model requires acid dependence to 

promote protonation of the C4 carbonyl for alkylation of N3 of adenine to take place 

(Figure 2.2a). 
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Figure 2.2. (a) Alkylation Site modeL Alkylation reaction is driven by protonation of the carbonyl , 
presumably from a protonated phosphate of the DNA backbone. (b) Illustration of vinylagous amide 
stabi lization in duocarmycins. Stability to nuc leophiles in solution is enhanced by the conjugation of the 
rings systems. 

Dale Boger has argued against this model and suggested the Noncovalent Binding 

model based on work in his group. After studying the acid dependence of alkylation and 

finding that the rate change is negligible over physiologically relevant pH 7 and 8, they 

disregard the idea that the alkylation reaction is acid catalyzed.5 Their models suggests 

that the basis for the stability of the duocarmycins is inherent in the vinylogous amide 

stabilization found in all the members of this family. Crystal structures of the 

duocarmycins, as well as many analogues show that these molecules are planar, a 

conformation that maximizes 1t orbital overlap.6 Additional data from NMR structures 

reveal that when bound to DNA, the compounds are now shown to be bent, meaning that 

the vinylogous amide stabilization is lost.?.S Boger's model states that it is not only the 

reactivity of the electrophilic cyclopropane ring that drives the reaction, but also the loss 

of the vinylogous amide stabilization that occurs upon binding to DNA. Upon binding, if 

a nucleophile (N3 of adenine) is present, the alkylation event occurs. The stability of the 



adduct is further reinforced because retroalkylation via spirocyclization is no longer 

favored because of this conformational change (Figure 2.2b).9 
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The target sequences of ( + )-Duocarmycins A and SA are identical in their 

sequence preference with 5'-AAA-3' as the most preferred site (alkylated base 

underlined).' There is also a preference for A or T over G or C to the 5' side, and a weak 

preference of a purine over a pyrimidine at the 3' side. ( + )-CC-1 065 has a similar 

consensus sequence to the (+)-duocarmycins of 5'-(Aff)(Aff)AAA-3'. It has a longer 5 

base pair binding site because of the additional benzopyrrole subunit. The unnatural 

enantiomers of duocarmycins also alkylate DNA, but typically ten times higher 

concentrations are necessary than the natural enantiomers to see comparable amounts of 

DNA cleavage. The consensus sequences are similar, but the binding orientations are 

reversed, due to the chirality of the reactive cyclopropyl moiety. 

Analogues ofCC-1065 

Many analogues of CC-1065 have been synthesized in attempts to minimize the 

delayed toxicity effects while maximizing DNA alkylation efficiency. One of the early 

analogues synthesized in Dale Boger's group was 1 ,2,9,9a-tetrahydrocyclopropa-[c]­

benz[e]indol-4-one (CBI). 10 Despite the rather significant structural change from CC-

1065 to CBI (Figure 2.3), the alkylation properties of CBI were superior to that of CC-

1065. CBI has proven to be more stable at biologically relevant pH and more potent as 

an alkylating agent than CC-1 065. Because of its simplified structure, it is also more 

readily synthesized. Earlier work had also shown that the seco (ring open) agents had 

indistinguishable DNA alkylation selectivities, efficiencies and biological potencies as 

the cyclopropyl derivatives.'' We chose to use the seco-CBI agents to conjugate to the 
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polyamide because of their easier accessibility and longer shelf lives as well as their 

increased reactivity to DNA. In addition we chose to examine both enantiomers of seco-

CBI in order to determine if strand selective alkylation could be achieved by the 

enantiomer chosen. 

L:L ~·r-CI 

HOU/ 
}--~ 

0 

L:lt~ 
OU/ 

}--~ 
0 

CPI CBI seco-CBI 

Figure 2.3. Analogues of CC-I 065. 

Selection of Hairpin Polyamide 

The eight-ring hairpin polyamide of sequence composition ImlmPyPy-(Rt2Ny-

ImPyPyPy-~-Dp (1) (Figure 2.4) was designed as the parent polyamide of this series. 

This polyamide had been previously well characterized and targets the match site 5'-

WGGWCW-3'. Polyamide 1 has been shown to target the sequence 5'-TGGTCA-3 ' 

with a K,. of 1.3 x 1010 M'1.12 We chose polyamide 1 because it has been well 

characterized and also because it targets a non-palindromic sequence. For the early 

members of this series of compounds, we wanted to be able to examine the efficiency of 

cleavage without the concerns of more than one binding orientation of the polyamide. 

The polyamide conjugates 2R and 2S are also shown in Figure 2.4. Glutaric acid links 

seco-CBI to the polyamide via the chiral turn. 13 The control compounds 3R and 3S 

(Figure 2.4) incorporate the seco-CBI subunit and a positive charge for solubility. The 

sequence specificity of the seco-CBI conjugates will be determined by comparing 

alkylation patterns and yields to the control compounds. 
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Figure 2.4. (a) Structures of Parent polyamide 1, CBI-conjugates 2R and 2S, and unlinked control 
compounds 3R and 3S. (b) (top) Hydrogen bond model of the polyamide-DNA complex formed by the 
polyamide ImlmPyPy-ys·CB I >_JmPyPyPy-~-Dp (2S) bound to the minor groove of 5'-TGGTCA-3'. Circles 
with dots represent lone pairs of N3 purines and 0 2 of pyrimidines. Circles containing an H represent the 
N2 hydrogen of G. Putative hydrogen bonds are illustrated by dotted lines. (bottom) Binding model for 
polyamide ImlmPyPy-y5·CBI>_JmPyPyPy-~-Dp (2S) with a 5'-TGGTCA-3' site. Shaded and nonshaded 
circles denote imidazole (lm) and pyrrole (Py) rings, respectively. Diamonds and hatched triangles 
represent ~-alanine(~) and (S)-CBI, respectively. (R)-2,4-diaminobutyric acid (y) and 
dimethylaminopropylamine (Dp) are depicted as a curved line and a plus sign, respectively. 
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Synthesis of Boc-seco-CBI 

Synthesis of Boc protected-seco-CBI 4 was performed according to the 

procedures outlined by Boger in 1995 (Figure 2.5). 14
-

16 Briefly, condensation of ammonia 

and l ,3-dihydroxynaphthalene with subsequent Boc protection of the amine and benzyl 

protection of the alcohol yields the protected naphthalene derivative. Treatment with NIS 

provides the iodonapthylamine derivative. Alkylation with allyl bromide provided a 

substrate for a favorable 5-exo-trig aryl radical-alkene cyclization to occur, using Bu3SnH 

and TEMPO radical trap. Cleavage of the TEMPO trap intermediate occurs upon heating 

with activated Zn powder. Treatment with PPh/CC14 followed by deprotection of the 

benzyl ether gave the desired product 4 in racemic form. 

~OH i, li iii ~NHBOC IV 

~ ----~ -
OH OBn 

. cr5C~ NBOC ... 
IX ~ VIII 

--1 -
A A 

OH NBOC vii 

--
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OBn OBn 

38%yleld 

I~ 
~NBOC 
vy 

OBn 

! vi 

M 
~ SNBOC 

CC1 
OBn 

Figure 2.5. Synthesis of Boc-seco-CBI (4). (i) NH3 (liquid); (ii) Boc anhydride; (iii) benzyl bromide; (iv) 
NIS; (v) allyl bromide, sodium hydride; (vi) TEMPO, Bu1SnH; (vi i) Zn/AcOH; (viii) PPh/CC14 ; (ix) 
HC02NH4, Pd/C. 

Chiral resolution of racemic seco-CBI 4 is accomplished through chiral HPLC 

methods also developed by Boger. 17 Using a semi-preparative column, one can purify 50 

to 100 mg of material over several runs. For the coupling chemistry used for polyamide 

conjugate synthesis, it was found that the secondary amine of 4 (after deprotection) was 

difficult to couple to the polyamide. For this reason, we added a P-a1anine linker which 



couples well to the NHS ester of the polyamide. Synthesis of Boc-(3-ala-seco-CBI 5 is 

illustrated in figure 2.6. Deprotection with HCl/ethyl acetate followed by addition of 

Boc-(3-alanine, HBTU, and DIEA in DMF yields the desired analogue 5. 

4 

4R 

Cl 
I 

cQ·ro'f 
OH 

4S 

ii, iii o§r'&'"""' 
OH 

5R 

Cl 

ii, iii ~"")("''""" 
OH 

55 
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Figure 2.6. Synthesis of Boc-P-alanine-seco-CBI (SR and SS). (i) ChiraiCcl OD; (ii) 3M HCI/EtOAc, 30 
min; (iii) Boc-P-Aianine, HBTU, DIEA, DMF. 

Synthesis of Polyamide-seco-CBI Conjugates and Unlinked Analogues 

The eight-ring hairpin polyamide 1 was prepared by manual solid-phase peptide 

synthesis. 18 After reverse phase HPLC purification, an NHS-activated glutaric acid 

linker was attatched to the a-amino group on they-turn to afford modified polyamide 1-

DSG. 13 After HPLC purification, the appropriate enantiomer of ()-alanine linked seco-

CBI was coupled using DCC/NHS activation to give the corresponding polyamide-seco-

CBI conjugates 2R and 2S (Figure 2.7). The control seco-CBI analogues 3R and 3S with 

the same charge as the polyamide analogues were prepared by coupling the ()-alanine 

derivatives 5R and 5S to N,N-dimethyl-y-amino butyric acid. Purification by reverse 

phase HPLC yields compounds 3R and 3S (Figure 2.8). 
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- ~N~NH,· HCI 

CQ' 0 
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2R 2S 

Figure 2.7. Synthetic scheme for preparation of seca-CBI-polyamide conjugates 2R and 2S. Polyamide 1 
was prepared by already disclosed methods. (i) Disuccinimidyl Glutarate, DMF, 2 H (ii) amine of SR or 
SS, DCC, NHS, DIEA, DMF, 3H. 
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Figure 2.8. Synthesis of unlinked control compound 3R. (i) 3M HCI!EtOAc, 30 min; (ii) 4-
Dimethylamino butyric acid, HBTU, DIEA, DMF. 
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277 bp 
Pv II 

5'-GTACTTTTCCAGGCGG~GGA~TTTTTCCAGGCGGAAG~TTCCAGGAGCTTGGCGTAATC~AGCT-3 ' 
3'-CATGAAAAGGTCCGCC CCTC AAAAAGGTCCGCCTTC~GGTCCTCGAACCGCATTAG~TCGA-5' 

Ma~ M~h 

Figure 2.9. Illustration of the 277 base pair EcoRI/Hindlll restriction fragment with the position of the 
sequence indicated. The binding sites for polyamide I , 5'-AGGACT-3' and 5'-TGGTCA-3' are boxed. A 
single base pair mismatch site is a lso boxed, the mismatch shaded. 

Thermally induced cleavage reactions 

To examine the alkylation specificity and reaction yields of the polyamide-seco-

CBI conjugates 2R and 28, thermally induced cleavage assays were performed on a 277 

base pair restriction fragment containing two match sites, 5' -AGGACT -3' and 5'-

TGGTCA-3' and one mismatch site, 5'-AGGAGT-3' (mismatch underlined), with 

different AfT tracts flanking the 3' side (Figure 2.9). Polyamide 2R at a concentration of 

500 pM alkylates a single adenine on the 3'-labeled (bottom) strand two base pairs to the 

3' side of the match site 5'-AGGACT-3' with a yield of74.5% (Figure 2.10b). At 200 

pM concentrations of polyamide 2R a second cleavage site appears on the same strand at 

a single adenine proximal to the mismatch site 5' -AGGAGT-3'. At 1nM concentrations 

of 2R and 12 hours of equilibration near quantitative cleavage (96%) of the intact DNA is 

observed (Figure 2. 10b). Remarkably, the reaction appears to be strand specific. No 

cleavage appears on the 5'-labeled (top) strand (Figure 2.10a). 

In constrast, polyamide 2S at 50 pM concentrations affords one major cleavage 

site on the 5' -labeled (top) strand corresponding to the adenine two base pairs to the 3' 

side of the polyamide match si te 5 '-TGGTCA-3 '. At 1 nM concentrations of2S cleavage 

yields of 42% are observed (Figure 2. 1 Oa). On the 3' labeled (bottom) strand, only minor 
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Figure 2.10. Thermally induced strand cleavage on the 5'-end labeled and 3'-end labeled 277 base pair 
restriction fragment by lmlmPyPy-·fR·mo-CBJ>_lmPyPyPy-~-Dp (2R) and ImlmPyPy-ys-um-CB J>_JmPyPyPy-~­

Dp (28). Storage phosphor autoradiograms of 8% denaturing polyacrylamide gels used to separate the 
fragments generated by heat induced DNA cleavage at alkylation sites. All lanes contain I 0 kcpm of either 
5' or 3' radiolabeled DNA. Each reaction was equilibrated in TE, pH 7.5 at 37 ·c for 12 H . The unbound 
polyamide was removed by precipitation, and then strand cleavage was induced by heating at 95 ·c for 30 
min. (a) 5'-32P-end labeled restriction fragment. (b) 3'-32P-end labeled restriction fragment. (a-b) lanes I 
and 14, intact DNA; lanes 2-1 I, 15-24 , I pM, 2 pM, 5 pM, I 0 pM, 20 pM, 50 pM, I 00 pM, 200 pM, 500 
pM, I nM respectively of the corresponding polyamide; lanes 12 and 25, A-specific reaction; lanes 13 and 
26, G-specific reaction. (a-b) Match sites 5'-TGGTCA-3' and 5'-AGGACT-3' and single base pair 
mismatch site 5'-AGGAQT-3' arc indicated in bold on the sequence, with arrows indicating cleavage bands. 
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Figure 2.11. Time course experi ment of thermally induced strand cleavage on the 5'-end labeled and 3'­
end labe led 277 base pair restriction fragment by ImlmPyPy-·fR·uco-CBI>_ImPyPyPy-13-Dp (2R) and 
ImlmPyPy-ys-s.co-cs1>-ImPyPyPy-I3-Dp (2S). Storage phosphor autoradiograms of 8% denaturing 
polyacry lamide gels used to separate the fragments generated by heat induced DNA cleavage at alkylation 
sites. All lanes contain I 0 kcpm of either 5' or 3' radiolabeled DNA. Each reaction was equilibrated in 
TE, pH 7.5 at 37 ·c from 0 to I 0 hours. The unbound polyamide was removed by precipitation, and then 
strand cleavage was induced by heating at 95 ·c for 30 min. (a) 5'-32P-end labeled restriction fragment. (b) 
3'-32P-end labeled restriction fragment. (a-b) lanes I and II , intact DNA; lanes 2-8, I nM of corresponding 
polyamide, equilibrations for 0, 15 minutes, 30 minutes, I hour, 2 hours, 5 hours, and I 0 hours, 
respectively; lanes 9 and 19, A-specific reaction; lanes I 0 and 20, G-specific reaction. (a-b) Match sites 5'­
TGGTCA-3' and 5'-AGGACT-3' and single base pair mismatch site 5'-AGGAQT-3' are indicated in bold 
on the sequence, with arrows indicating cleavage bands. 
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alkylation and cleavage is observed at four sites in low yield (Figure 2.l0b). The two 

sites which can be assigned are proximal to a match 5'-AGGACT-3' and mismatch site 5'­

AGGAGT-3', respectively. 

Time Course Experiments 

To examine the time dependence of alkylation, reactions consisting of polyamides 

2R and 2S at 1 nM concentrations were analyzed throughout a period of I 0 hours. For 

the 5' -labeled strand, alkylation by 2S was first detected at 1 hour of incubation at 37 oc. 

After 10 hours, 24% of the DNA was cleaved proximal to the match site, 5'-TGGTCA-

3'. 2R shows no alkylation on this strand (Figure 2.11). However, 2R shows alkylation 

on the 3' -labeled strand after 15 minutes, and at 5 hours, has 76% yield proximal to the 

match site 5'-AGGACT-3', and 13% at the mismatch site 5'-AGGAGT-3' . After 10 

hours, 2S reveals minor cleavage products on the 3' -labeled strand, as described above 

for the titration experiments, each ranging from 1.5%-17% yield (Figure 2.11). 

Comparison of Conjugates to non-linked analogues 

In order to study the ability of polyamides to direct the reactivity of CBI 

analogues, alkylation by the unlinked analogues were analyzed as controls (Figure 2.12). 

Analogue 3R shows virtually no cleavage products at 1 J..LM concentrations, three orders 

of magnitude higher concentrations than that used in the conjugate studies. At 10 J..LM 

concentrations, 3R shows several cleavage products, but with yields only between 1.1 % 

and 5.1% on either strand. 3S is shown to be a more efficient alkylating agent than 3R. 

On the 5' -labeled strand, at 1 J..LM 3S, the majority of the cleavage products are at 1% 

yield or lower. On the 3' -labeled strand, the efficiency ranges from less than 1% to 7.7% 

at the same concentrations. At I 0 J..LM 3S, the experiments show quantitative cleavage of 
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the intact DNA for both strands, and the efficiency of alkylation on all sites increases 

accordingly. The yields range from 2%-25% and 2%-35% on the 3' and 5'-labeled 

strands, respectively. The consensus sequence for both enantiomers of CBI is an adenine 

for alkylation, a >95% preference for an A•T base pair to the 5' side of the adduct, and a 

66% preference for a purine to the 3' side. The alkylation pattern observed for both 3R 

and 3S shows that the AT tracts are particularly reactive sites, but the selectivity is 

difficult to predict (Figure 2.13). 

Discussion 

Strand Selective Cleavage 

One of the striking differences between polyamide-seco-CBI conjugates 2R and 

2S is the strand selectivity of alkylation shown by the respective diastereomers (Figure 

8). This is the result of combining the DNA binding properties of the polyamide and the 

opposite strand alkylation preference for each mirror image of CBI in the minor groove 

of DNA. The data supports a model wherein the hairpin polyamide binds both match and 

mismatch sites and directs the chiral CBI moiety to AfT tracts proximal to the bound 

sites. The electrophilic cyclopropyl carbon of the Rand S-CBI reacts at different rates 

with the N3 of adenine on opposite strands on the floor of the minor groove. The 

specificity of reaction at specific adenines represent the ratios of two unimolecular rate 

constants: the dissociation rate of the polyamide from the minor groove of DNA (koFF) 

and the alkylation rate of CBI at N3 of adenine in the minor groove of DNA (kALK). 

When the polyamide binds to a match site, koFF is expected to be slow relative to 

mismatch sites. Similarly, kALK will be faster for sites which accommodate the orientation 
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Figure 2.12. Thermally induced strand cleavage on the 5 ' -end labeled and 3 '-end labeled 277 base pair 
restriction fragment by lmlmPyPy-yR·stco-csn_lmPyPyPy-~-Dp (2R), lmlmPyPy-ys-.,m-CB I )_ ImPyPyPy-~-Dp 

(2S), (R)-seco-CBI-~-dimethy l-y (3R), (S)-seco-CBI-~-dimethy l -y (38). Storage phosphor autoradiograms 
of 8% denaturing polyacrylamide gels used to separate the fragments generated by heat induced DNA 
cleavage at alkylation sites. All lanes contain 10 kcpm of either 5 ' or 3' radiolabeled DNA. Each reaction 
was equilibrated in TE, pH 7.5 at 37 ·c for 12 H . The unbound polyamide or agent was removed by 
precipitation, and then strand cleavage was induced by heating at 95 ·c for 30 min. (a) 5'-32P-end labeled 
restriction fragment. (b) 3'-32P-end labeled restriction fragment. (a-b) Lane I, intact DNA; lane 2, 2R, 
lnM; Iane3 2S, lnM; Ianes 4-5, 3R, I !1M and 10 !1M, respectively; lanes6-7, 3S, 111M and 101-l-M, 
respectively; lane 8, A-specific reaction; lane 9, G-specific reaction. 
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Figure 2.13. Illustration of the 277 bp restriction fragment with the position of the sequence indicated. 
Cleavage patterns are shown for (a) ImlmPyPy-·r·mo-CBJ>_ymPyPyPy-13-Dp (2R), 500 pM; (b) ImlmPyPy­
y s-s.co-CBJ>_ImPyPyPy-13-Dp (2S), I nM; (c) (R)-seco-CB I-13-dimethyl-y (3R), I 0 J.l.M; and (d) (S)-seco-CBI-
13-dimethyl-y(3S), 10 11M. Match sites 5'-TGGTCA-3' and 5'-AGGACT-3' and single base pair mismatch 
site 5'-AGGAQT-3' are indicated in bold on the sequence, wi th arrows indicating c leavage bands. The 
single base pair mismatch is indicated by a rectangle. The polyamide is colored as in Figure 2.4b, with the 
bold triangle representing (R)-CBI. 
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and sequence preferences of CBI as in pure A!f tracts, and slower for mixed sequences. 

These ratios of koFF/kALK at different DNA sites give the variation in alkylation yields seen 

in these experiments. On the 5'-labeled (top) strand, polyamide 2S has one major 

cleavage site (Figure 2.10a and 2.lla) that is due to the polyamide binding the match site 

5'-TGGTCA-3' (slow koFF) and an adenine in the appropriate position proximal to the 

match site for alkylation (fast kALK). Likewise, on the 3'-labeled (bottom) strand, 

polyamide 2R has a major cleavage site (Figure 2.1 Ob and 2.11 b) due to the polyamide 

binding the match site 5'-AGGACT-3' (slow koFF) and an adenine on the opposite strand 

for alkylation (fast kALK). For the two DNA match sites bound by each diastereomeric 

polyamide-seco-CBI conjugate (2R and 28), koFF rates are expected to be similar. The 

variation in alkylation yields in these two instances most likely results from kALK being 

faster for the sequence proximal to the match site for 2R than for that of 2S. 

Similar comparisons can be made for alkylation seen at mismatch sites. On the 

3'-labeled (bottom) strand, polyamide 2R has a minor cleavage site (Figure 2.10b and 

2. 11 b) due to the polyamide binding the single base pair mismatch site 5'-AGGAGT -3' 

(fast koFF). But, because of favorable sequence contexts kALK is also fast. The alkylation 

at this site results from kALK being competitive with koFF• trapping that particular binding 

event. Also on the 3'-labeled (bottom) strand, polyamide 2S has two minor cleavage sites 

that can be assigned (Figure 2.10b and 2.11 b) . For the alkylation seen adjacent to the 

match site 5'-AGGACT-3', koFF is expected to be slow. In this case, kALK is also expected 

to be slow because the orientation preferences of S-seco-CBI are not optimal at this site. 

However, the binding event can be trapped because kALK may be competitive with koFF in 

this instance. 2S also affords an alkylation product next to the single base pair mismatch 



site 5'-AGGAGT-3'. While k oFF is expected to be faster in this case than for that of a 

match site, it can still be trapped for situations where k ALK is faster than koFF· 
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It has been shown for CC-1 065 and other analogues that the S, or ( + )­

enantiomers, are 10 times more reactive than the R, or (-)-enantiomers.4
·
19

·
20 The data 

shown for the control compounds 3R and 3S support this conclusion (Figure 2.12). It is 

interesting, then, that polyamide conjugate 2R shows higher alkylation efficiency and 

faster rates of alkylation than 2S. Work by Lukhtanov and coworkers have shown that 

when an oligonucleotide-cyclopropapyrroloindole conjugate is hybridized to a variety of 

complementary oligonucleotide hairpins, rates of reaction can be quite rapid, and yields 

can be quantitative.2 1 But the results are sequence dependent. In the case of the 

oligonucleotide conjugates, both enantiomers show fast and efficient alkylation in pure 

Aff tracts (t 112 as fast as 2 minutes), while mixed sequences seem to have slower and 

more unpredictable rates of reactivity. In our studies, the pure Aff tracts flanking the 

polyamide match sites differ and we may simply be observing sequence dependent 

differences in rates of reaction as a result of different adenine reactivities in various 

sequence contexts. 

Comparison with hairpin polyamide Duocarmycin A conjugates 

Previous work by Sugiyama and coworkers has established that Duocarmycin A 

(Duo), an analogue of CC-1065, will alkyl ate a guanine preferentially when bound as a 

heterodimer with distamycin.22 Sugiyama and coworkers have recently described 

pyrrole-imidazole hairpin polyamide conjugates which incorporate the natural enantiomer 

of Duo at the C-terminus.23 These molecules demonstrate the same altered reactivity at 

guanine, and target purines proximal to a hairpin polyamide binding site. Our choice of 
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using both enantiomers of seco-CBI was driven by the orientation preferences of CC-

1065 necessary for alkylation. These orientation preferences suggested that it might be 

possible to target either strand of the DNA duplex, based on the binding orientation of 

seco-CBI at that site. We have shown that the same hairpin polyamide can be used to 

target opposite strands of the DNA depending on the enantiomer of seco-CBI we choose. 

With the 6 ring hairpin polyamide-Duo conjugates, the highest yield Sugiyama and 

coworkers report is 7.4% cleavage at 800 nM polyamide for 7 days at room 

temperature.23 Despite the rather slow reaction kinetics, this compound shows very good 

specificity for its match site. No other cleavage sites are seen for this compound on the 

fragment analyzed. Our 8 ring hairpin polyamide-seco-CBI conjugate shows higher 

yields of alkylation at faster rates and lower concentrations of polyamide, 42% (at a 

single site) for 2S at 1 nM after 12 hours, and 74.5% (at a single site) for 2R at 500 pM 

after 12 hours, both at 3TC. But we do see contributions from mismatch alkylation sites, 

7.4% for 2R at 500 pM after 12 hours at 3TC. Because the two systems are very 

distinct, it is difficult to interpret the differences in the results. It is unclear how 

differences in hairpin polyamide (6 ring versus 8 ring), place of attachment (C-terminus 

versus turn), linker length (amide versus longer methylene), and alkylation conditions 

(time, temperature, ligand concentration, DNA concentration) will affect the overall 

reaction. It is worth noting that both sets of results show alkylation directed by hairpin 

polyamides in a sequence specific fashion . Differences in yields and rates of reaction can 

be a consequence of many factors, which will require more studies for detailed 

understanding. 
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Conclusion. 

Hairpin polyamide-CBI conjugates have been shown to efficiently and selectively 

alkylate a single adenine adjacent to a polyamide match site. Because of the high 

efficiency of alkylation, these molecules should be useful in the design of reagents that 

target a single gene. It has already been shown that triplex forming oligonucleotide­

psoralen and nitrogen mustard conjugates form covalent adducts in the major groove on 

the coding strand to inhibit elongation of transcription.24 It remains to be seen whether 

this class of polyamide-CBI conjugates which react in the minor groove will be useful for 

functional genomics. 

Experimental 

Materials 1H NMR spectra were recorded on a General Electric-QE NMR spectrometer at 

300 MHz and a Varian Inova NMR spectrometer at 500 MHz with chemical shifts 

reported in parts per million relative to residual solvent. UV spectra were measured in 

water on a Hewlett-Packard Model 8452A diode array spectrophotometer. Optical 

rotations were recorded on a JASCO Dip 1000 digital polarimeter. Matrix-assisted, laser 

desorption/ionization time-of-flight mass spectrometry (MALDI-TOF) was performed at 

the Protein and Peptide Microanalytical Facility at the California Institute of Technology. 

High resolution mass spectometry was performed at the mass spectrometry facility at 

University of California at Los Angeles. Preparatory reversed phase HPLC was 

performed on a Beckman HPLC with a Waters DeltaPak 25 x 100 mm, 300 A. Cl8 

column equipped with a guard, 0 .1% (wt/v) TFA, 0.25% acetonitrile/min. 
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Synthesis of CBI-polyamide conjugates 

lmlmPyPy-(R)"zNy-lmPyPyPy-~-Dp (1). ImlmPyPy-(R)H2Ny-ImPyPyPy-~-Pam resin 

was synthesized in a stepwise fashion by Bee-chemistry manual solid phase protocols. 18 

A sample of resin was treated with neat (dimethylamino)-propylamine (2 ml), heated (55 

°C, 24 hours) and purified by reversed phase HPLC. ImlmPyPy-(R) H2Ny-ImPyPyPy-~-

Dp was recovered as a white powder upon lyophilization of the appropriate fraction ( 14.3 

I 
mg, 11.6 mmoles, 4.8% recovery). UV (H20) A.max (E), 312 nm, (66, 600); H NMR (500 

MHz, DMSO-d6): <>=11.009 (s, 1H), 10.325 (s, 1H), 10.073 (s, 1H), 9.947 (s, lH), 9.936 

(s, 1H), 9.870 (s, 1H), 9.07 (s, 1H), 9.23 (br s, 1H, CF3COOH), 8.334 (s, 3H), 8.173 (t, 

1H, 1=6 Hz), 8.040 (t, lH, 1=6 Hz), 8.012 (t, 1H, 1=6 Hz), 7.567 (s, 1H), 7.530 (s, 1H), 

7.457 (s, 1H), 7.270 (s, lH), 7.256 (s, 1H), 7.200 (s, 1H), 7.177 (s, 1H), 7.164 (s, 1H), 

7.155 (s, 1H), 7.142 (s, 1H), 7.071 (m, 2H), 6.964 (s, 1H), 6.876 (s, 1H), 4.002 (m, 6H), 

3.978 (s, 3H), 3.853 (s, 3H), 3.842 (s, 3H), 3.833 (s, 3H), 3.807 (s, 3H), 3.792 (s, 3H), 

3.375 (q, 2H, 1=5.5 Hz), 3.294 (m, 2H, 1=5.5 Hz), 3.106 (q, 2H, 1=6.5 Hz), 2.997 (m, 

3H), 2.735 (s, 3H), 2.725 (s, 3H), 2.343 (t, 2H, 1=7 Hz), 1.738 (m, 2H), 1.633 (m, 2H). 

MALDI-TOF-MS (monoisotopic) [M+H] 1238.83 (calculated 1238.58 for 

C57H72N230 1 0.) 

ImlmPyPy-(R)c1u·NHsy-ImPyPyPy-~-Dp (1-DSG). To a solution of disuccinimidyl 

glutarate (41.9 mg, 120 !Jmoles) in 2.5 ml DMF was added 100 ml of a 14.3 mM solution 

of 1 (15.9 mg, 12.8 !Jmoles) in DMF (800 !Jl) and DIEA (100 !Jl). 100 ml of the solution 

was added every 15 minutes while stirring. Following the completion of the addition of 

1, the reaction was stirred for 2 hours. The reaction was diluted with 0.1% TFA ( 15 ml) 

and the reaction was purified by reversed phase HPLC. ImlmPyPy-(R)Giu-NHsy-
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ImPyPyPy-~-Dp was recovered as a white powder upon lyophilization of the appropriate 

fraction (8.8 mg, 6.1 ~moles, 47.3% recovery). UV (H20) "-max(£), 312nm, (66, 600); 
1
H 

NMR (500 MHz, DMSO-d6 , 25°C): <3=10.320 (s, 1H), 10.242 (s, I H), 10.097 (s, 1H), 

9.930 (s, 2H), 9.872 (s, 1H), 9.740 (s, 1H), 9.23 (br s, IH, CF3COOH), 8.183 (d, lH, 1=8 

Hz), 8.034 (t, lH, 1=5.5 Hz), 8.010 (t, IH, 1=5.5 Hz), 7.946 (t, IH, 1=5.3 Hz), 7.563 (s, 

1H), 7.454 (s, lH), 7.272 (s, 1H), 7.263 (s, IH), 7.215 (s, 1H), 7.181 (s, 1H), 7.144 (m, 

4H), 7.080 (s, 1H), 7.061 (s, 1H), 6.887 (s, 1H), 6.870 (s, 1H), 4.001 (s, 6H), 3.957 (s, 

3H), 3.848 (s, 3H), 3.842 (s, 3H), 3.833 (s, 3H), 3.793 (s, 3H), 3.790 (s, 3H), 3.7-3.9 (br, 

m, 3H), 3.378 (q, 2H, 1=5.5 Hz), 3.228 (m, 2H), 3.107 (q, 2H, 1=6 Hz), 2.998 (m, 2H), 

2.741 (s, 3H), 2.731 (s, 3H), 2.345 (t, 2H, 1=7 Hz), 2.228 (m, 2H), 1.728 (m, 4H). 

MALDI-TOF-MS (monoisotopic) [M+H] 1449.63 (calculated 1449.62 for C66H81N240 15). 

ImlmPyPy-(R)<R>·CBiy-ImPyPyPy-~-Dp (2R). To a solution of 6 (6.9 mg, 4.75 ~moles) 

in dry DMF was added 47.5 ~I of a 1~M solution of DCC (10 equiv.) and 9.5 ~1 of a 0.5 

M solution of N-hydroxysuccinirnide ( 1 equiv.). The solution was stirred for 2 hours. 

Separately, a solution of SR (2 mg, 1 equiv.) was deprotected with 3M HCl/ethyl acetate 

(5 ml) for 30 minutes under argon. The ethyl acetate was then removed by vacuum and 

then coevaporated twice from dichloromethane to yield the amine of SR. The gray solid 

was then dissolved in 50 ml of dry DMF and then added to the polyamide solution. 

DIEA (8 ml, 10 equiv.) was then added and the reaction was stirred for 3 hours under 

argon. Upon completion, the reaction was diluted with 0.1 % TFA (2 ml) and the reaction 

was purified by reversed phase HPLC. ImlmPyPy-CRYR>-CBiy-ImPyPyPy-~-Dp was 

recovered as a white powder upon lyophilization of the appropriate fraction ( 1.4 mg, 

17.8% recovery). UV (H20) "-max(£), 314 nm, (73, 854); 
1
H NMR (500 MHz, DMSO-d6, 
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25°C): ~=10.342 (s, 1H), 10.316 (s, 1H), 10.248 (s, lH), 10.096 (s, 1H), 9.928 (s, 2H), 

9.869 (s, 1 H), 9.691 (s, 1 H), 9.17 (br s, 1 H, CF3COOH), 8. 172 ( d, 1 H, 1=7 .5 Hz), 8.063 

(d, 1H, J=8Hz) 8.029 (t, 1H, 1=6 Hz), 8.008 (t, 1H, 1=5.5 Hz), 7.962 (m, 2H), 7.894 (t, 

1H, J= 5.5 Hz), 7.747 (d, 1H, 1=8 Hz), 7.556 (s, 1H), 7.464 (t, lH, 1=7.5 Hz), 7.449 (s, 

2H), 7.299 (t, 1H, J=7), 7.267 (s, 1H), 7.254 (s, 1H), 7.206 (s, 1H), 7.172 (s, 1H), 7.145 

(m, 3H), 7.059 (s, 2H), 6.892 (s, 1H), 6.870 (s, 1H), 4 .526 (q, 1H, 1=7 Hz), 4.287 (t, 1H, 

1=10.5 Hz), 4.111 (m, 2H), 3.998 (s, 6H), 3.948 (s, 3H), 3.844 (s, 3H), 3.837 (s, 3H), 

3.831 (s, 3H), 3.791 (s, 3H), 3.787 (s, 3H), 3.106 (q, 2H, 1=6.5 Hz), 3.004 (m, 4H), 

2.739 (s, 3H), 2.729 (s, 3H), 2.343 (t, 2H, 1=7.3 Hz), 2.181 (t, 2H, 1=7 Hz), 2.098 (t, 2H, 

1=7.8 Hz), 1.981 (m, 2H), 1.741 (m, 4H), 1.631 (m, 2H), 1.540 (m, 1H). MALDI-TOF­

MS (monoisotopic) [M+H] 1638.72 (calculated 1638.69 for C78H93N250 14). 

lmlmPyPy-(RY5>·CBiy-lmPyPyPy-~-Dp (28). lmlmPyPy-(R)(S>-CB1g-lmPyPyPy-b-Dp 

was prepared from 6 as described for 2R. ( 1.4 mg, 30.4% recovery). UV (H20) Amax (E), 

314nm, (73, 854); 
1
H NMR (DMSO-d6): 

1
H NMR (500 MHz, DMSO-d6, 25°C): 

~=10.343 (s, 1H), 10.316 (s, 1H), 10.248 (s, 1H), 10.095 (s, 1H), 9.929 (s, 2H), 9.870 (s, 

1H), 9.689 (s, 1H), 9.19 (br s, 1H, CF3COOH), 8.173 (d, 1H, 1=7.5 Hz), 8.064 (d, 1H, 

1=8 Hz), 8.029 (m, 2H), d=7.963 (m, 2H, C4-H), 7.895 (t, 1H, 1=5.5 Hz), 7.747 (d, 1H, 

1=8 Hz), 7 .556 (s, 1H), 7.464 (t, 1H, 1=8 Hz), 7.451 (s, 1H), 7.445 (s, 1H), 7.299 (t, 1H, 

1=7.8 Hz), 7.266 (s, 1H), 7.255 (s, 1H), 7.206 (s, 1H), 7.175 (s, 1H), 7.145 (m, 3H), 

7.060 (s, 2H), 6.891 (s, 1H), 6.870 (s, 1H), 4.525 (q, 1H, 1=7 Hz), 4 .285 (t, 1H, 1=10.5 

Hz), 4.111 (d, 2H, 1=8.5 Hz), 3.998 (s, 6H), 3.951 (s, 3H), 3.844 (s, 3H), 3.837 (s, 3H), 

3.831 (s, 3H), 3.792 (s, 3H), 3.787 (s, 3H), 3.105 (q, 2H, 1=6 Hz), 3.000 (m, 4H), 2 .737 

(s, 3H), 2.729 (s, 3H), 2.343 (t, 2H, 1=6.8 Hz), 2.180 (t, 2H, 1=8 Hz), 2.099 (t, 2H, 1=8 
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Hz), 1.997 (m, 2H), 1.727 (m, 2H), 1.631 (m, 2H), 1.540 (m, 1H). MALDI-TOF-MS 

(monoisotopic) [M+H] 1638.71 (calculated 1638.69 for C78H93N250 1.J. 

3-(tert-Butoxycarbonyl)-1-( chloromethyl)-5-hydroxy-1,2-dihydro-3H -benz[ e ]indole 

(seco-CBI-BOC, 4) was synthesized and enantiomers separated by already published 

protoco1s.14
-

16 

Seco-CBI-~-alanine-BOC (SR and SS). 4 (85 mg, .255 mmoles) was deprotected in 3M 

HCI/ethyl acetate (10 rnl) for 30 minutes under argon. After the ethyl acetate was 

removed by evaporation, and the deprotected seco-CBI was coevaporated twice from 

dichloromethane. BOC-b-alanine (96.4 mg, 2 equiv.) and EDC (293.3 mg, 6 equiv.) 

were added with DMF (5 ml). The solution was stirred overnight under argon. After the 

reaction was complete, 15 ml of water was added, and the reaction was extracted 6 times 

with ethyl ether. The ether was washed with brine, and dried with Na2S04 , and purified 

by flash chromatography (5% methanolldichloromethane) to yield 5 as an off-white 

powder (90 mg, 86%). 

(R)-Seca-CBI-~-alanine-BOC (SR): 
1
H NMR (300 MHz, CDCI3, 25.C): 0=9.37 (s, 1H), 

8.27 (m, 2H), 7 .62 (d, 1H, 1=8.1 Hz), 7.52 (t, 1H, 1=6.6 Hz), 7.38 (t, 1H, 1=7.5 Hz), 5.55 

(br t, I H), 4.19 (d, 1H, 1=10.2 Hz), 4.06 (t, I H, 1=9.9 Hz), 3.93 (m, 2H), 3.62 (m, 2H), 

3 .38 (t, 1H, 1=10.5 Hz), 2.75 (m, 2H), 1.44 (s, 9H); [a]29 
0 = +25.8• (c=O.l); HRMS calcd. 

for C21 H25CIN20 4 : 404. 1503; found 404.1496. 

(S)-Seca-CBI-~-alanine-BOC (SS): 
1
H NMR (300 MHz, CDCl3, 25"C): 0=9.37 (s, 1H), 

8.27 (m, 2H), 7.63 (d, lH, 1=8.1 Hz), 7.53 (t, 1H, 1=6.6 Hz), 7.40 (t, lH, 1=7.5 Hz), 5.55 

(br t, I H), 4 .21 (d, 1H, 1=10.2 Hz), 4.06 (t, 1H, 1=9.9 Hz), 3.96 (m, 2H), 3.64 (m, 2H), 
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3.40 (t, IH, 1=10.5 Hz), 2.75 (m, 2H), 1.44 (s, 9H); [af9
0 = -29.4• (c=0.1); HRMS calcd. 

for C2 1 H25CIN20 4 : 404.1503; found 404.1490. 

Seco-CBI-~-alanine-(dimethyl)-y-amino butyric acid (3R and 3S). 5 (5 mg, 12.3 

J..lmoles) was deprotected in 3M HCI/ethyl acetate (5 ml) for 30 minutes under argon. 

The ethyl acetate was removed by evaporation, and the deprotected seco-CBI-~-alanine 

was coevaporated twice from dichloromethane. Separately, a solution of (dimethyl)-y-

aminobutyric acid (4.1 mg, 2 equiv.) in DMF (200 J-11) was stirred in a flame dried flask 

with DCC (25.4 mg, 10 equiv) and N-hydroxysuccinimide (1.4 mg, 1 equiv.) for 1 hour 

under argon. This was added to the deprotected seco-CBI-~-alanine and OlEA (7 J-11, 3 

equiv.) was added. The solution was stirred for 1 hour under argon, and purified by 

reversed phase HPLC. Seco-CBI-~-alanine-(dimethy1)-g-aminobutyric acid was 

recovered as a white powder upon lyophilization of the appropriate fraction. 

(R)-Seco-CBI-~-alanine-(dimethyl)-y-aminobutyric acid (3R): 2.5 mg, 48% (recovery) 

1
H NMR (300 MHz, CD3CN, 25.C): 0=10.9 ( br s, 1H), 8.12 (d, 1H, 1=7.5 Hz), 8.02 (s, 

!H), 7.69 (d, 1H, 1=8.4 Hz), 7.48 (t, 1H, 1=8.4 Hz), 7.33 (t, IH, 1=6.9 Hz), 7.09 (br s, 

1H), 4.15 (m, 2H), 3.93 (d, 3H), 3.63 (t, 2H), 3.51 (m, 2H), 3.04 (m, 4H), 2.71 (s, 6H), 

HRMS calcd. for C22H29CIN30 3 (M+H): 418.1897; found 418.1889. 

(S)- Seco-CBI-~-alanine-(dimethyl)-y-aminobutyric acid (3S): 3.4 mg, 66% (recovery). 

1
H NMR (300 MHz, CD3CN, 25.C): 0=10.9 ( br s, !H), 8.13 (d, I H, 1=8.1 Hz), 8.00 (s, 

1H), 7.74 (d, 1H, 1=8.4 Hz), 7.50 (t, 1H, 1=7.5 Hz), 7.34 (t, IH, 1=7.5 Hz), 7.00 (br s, 

1H), 4.23 (m, 2H), 4.20 (m, I H), 3.93 (d, 2H), 3.67 (t, 2H), 3.51 (m, 2H), 3.04 (t, 2H), 

2.75 (s, 6H). HRMS calcd. for C22H29CIN30 3 (M+H): 418.1897; found 418.1907. 
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DNA Reagents and Materials. Enzymes were purchased from Boehringer-Mannheim 

and used with their supplied buffers. Deoxyadenosine and thymidine 5' -[a-32P] 

triphosphates were obtained from Dupont/New England Nuclear, and deoxyadenosine 5'­

[y-32P] triphosphates were purchased from I.C.N. Sonicated, deproteinized calf thymus 

DNA was acquired from Pharmacia. RNase free water was obtained from USB and used 

for all reactions. All other reagents and materials were used as received. All DNA 

manipulations were performed according to standard protocols. 

Construction of Plasmid DNA. The plasmid pAC 1 was constructed using previously 

described methods. Fluorescent sequencing was performed at the DNA Sequencing 

Facility at the California Institute of Technology and was used to verify the presence of 

the desired insert. Concentration of the prepared plasmid was determined at 260 nm from 

the relationship of 1 OD unit=50 f..lg mL·' duplex DNA. 

PCR Labeling to generate 5'-End-Labeled Restriction Fragments. Two 21 mer 

primers were synthesized for PCR amplification: primer A (labeled)5'-

AATTCGAGCTCGGTACCCGGG-3' and primer B (unlabeled) 5'­

CTGGCACGACAGGTTTCCCGA-3'. Primer A was treated with T4 polynucleotide 

kinase and deoxyadenosine 5'-[y-32P] triphosphate as previously described. PCR 

reactions containing 60 pmol each primer, 10 f..ll PCR buffer (Boehringer-Mannheim), 3.7 

f..ll template (0.003 f..lg/mL) , 2 f..ll dNTP mix (each at 10 mM), 1 f..ll lOOX BSA (New 

England Biolabs) and 83 f..ll water were heated at 70 oc for 5 minutes. Four units of Taq 

Polymerase were added (Boehringer-Mannheim). Thirty amplification cycles were 

performed, each cycle consisting of the following segments: 94 OC for 1 minute, 54 OC 

for 1 minute, and 72 OC for 1.5 minutes. Following the last cycle, 10 minutes of 



extension at 72 ·c completed the reaction. The PCR products were gel purified as 

previously reported for 3' -end labeling protocols. 
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Cleavage Reactions. AJI reactions were carried out in a volume of 50 tJI. A polyamide 

or seca-CBI-dimethyl gaba stock solution or water (for reference lane) was added to an 

assay buffer of TE (pH7 .5) and 20 kcpm of 3'- or 5' -radiolabeled DNA. The solutions 

were aJJowed to equilibrate for 12 hours or the appropriate time (for time course 

reactions) at 37 ·c. The reactions were stopped with 60 tJl of a solution containing 

NaOAc (600 mM), EDTA pH 8.0 (12.5 mM), calf thymus DNA (150 J1M base pair), 

glycogen (0.8 mg rnL-1
), and NaCl (2 M). Ethanol was added to remove unbound 

polyamide and precipitate the products. The reactions were resuspended in 20 fJI of TE 

(pH 7.5) and cleavage was initiated by heating at 95 ·c for 30 minutes. The cleavage 

products were precipitated with 150 tJI ethanol and then resuspended in 100 mM 

trisborate-EDT A/80% formamide loading buffer, and denatured and loaded onto 

polyacrylamide gels as previously reported. The gels were quantitated by the use of 

storage phosphor technology. Yield or efficiency of a lkylation was determined as the 

ratio between the volume integration assigned to the products and the sum of the volumes 

of aJJ the products in the Jane. 
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Abstract 

Pyrrole-Imidazole (Py-lm) polyamides are cell permeable ligands that can be 

targeted to any predetermined DNA sequence. Py-Im polyamide-seco-CBI conjugates 

are capable of cleaving DNA in high yields at targeted adenines proximal to the 

polyamide binding site. Because of the generality of the pairing rules, and polyamides 

demonstrated utility in in vivo systems, these conjugates may be useful for studying the 

effects of this class of DNA binding ligands on homologous recombination and DNA 

repair. Triplex oligonucleotides have previously been shown to influence homologous 

recombination and directed mutagenesis. The effects of other DNA binding ligands on 

these processes have not been established. Described are the design and synthesis of Py­

Im polyamide-seco-CBI conjugates that cleave DNA at a determined site on a specific 

gene. Currently, these compounds are being studied in vivo in hopes that DNA cleavage 

will stimulate a DNA repair event and homologous recombination. If successful, these 

studies could have future applications in the areas of gene therapy. 



Background 

Using DNA-binding Ligands to Study DNA Repair Processes 

Synthetic ligands that can target specific sequences of DNA and bind with high 

affinity are currently studied to manipulate transcription in both in vitro and in vivo 

systems. Previously were described efforts to inhibit or activate transcription by using 

Py-Im polyamides to compete with the binding of required transcription factors.~.2 Other 

endeavors in this regard involve using such ligands to interfere with transcription 

elongation through covalent attachment to the DNA via a reactive moiety linked to the 

DNA-binding ligand. This approach was discussed concerning Py-Im polyamides 

conjugates with seco-CBI.' 
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Another use for the study of molecules that target specific sequences of DNA is in 

the area of gene repair. Researchers often use DNA damaging agents to study how cells 

repair such damage, and how efficient and accurate these repair processes are. One 

problem with the majority of DNA damaging agents is that they have broad sequence 

selectivities, making it difficult to study the effects on a specific gene. There is much 

interest in being able to target a specific gene and study how the cell can repair such 

damage, and if that repair is accurate.4 While the majority of the time accurate repair of 

DNA damage is desirable, there may be instances where an error in DNA repair can yield 

a beneficial result. This idea of directed mutagenesis is one approach to gene therapy. If 

it were possible that a gene specific ligand could induce a favorable mutation during the 

repair process, then the genome of that cell would be permanently altered for the better. 

Understanding the processes that guide and direct DNA repair will ultimately have 

implications in this discipline. 
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Much of the research in using DNA-binding ligands to study DNA repair 

processes has used triplex oligonucleotides.5
·
6 There are well established rules of triplex 

formation and their recognition sequences, and they are easily synthesized and accessible. 

However, triplex oligonucleotides face problems in delivery because they are anionic 

polymers, and in stability because they are subject to degradation by nucleases. The 

recognition sequences are often restricted to purine tracts which limit their use in any 

given gene. The merits of using Py-Im polyamides to study DNA repair are evident in 

the generality of the pairing rules7
, their cell permeabilityi.8, and accessibility through 

solid phase synthesis.9 

To study DNA repair and recombination, we proposed using Py-Im polyamides to 

direct known DNA damaging agents to specific genes. The Jack of sequence specificity 

in traditional DNA alkylating agents such as nitrogen mustards, CC-1065, and mitomycin 

make them unsuitable for a gene specific study of DNA repair. The use of polyamide 

conjugates allows us to control the damage inflicted in order to stimulate repair and 

recombination to the particular gene in study. In collaboration with Dr. Matt Porteus of 

the Baltimore group, experiments were designed to use polyamide conjugates of seco­

CBI, nitrogen mustards (Mr. Nicholas Wurtz of the Dervan group), and camptothecin 

(Mr. Clay Wang of the Dervan group) to stimulate DNA repair and homologous 

recombination. Described here are the efforts in using seco-CBI polyamide conjugates 

for these experiments. 

Experimental Design 

The experimental design was based on observations in the Baltimore group using 

Green Fluorescent Protein (GFP). When a mutant GFP gene with an internal stop codon 
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is expressed, functional GFP is not detected (Figure 3.la). When substrate DNA is added 

containing the wild type gene is added, homologous recombination occurs such that 

functional GFP can be detected for 1 in every 106 cells (Figure 3. lb). If instead of the 

internal stop codon, a site for a rare-cutting restriction enzyme is inserted4
, a double 

strand break can be generated. For the case of homologous recombination with the 

substrate for the double strand break, functional GFP can be detected for 1 in every 500 

cells (Figure 3.1c). Thus these experiments were designed to address the question of 

whether or not polyarnides could be used to incorporate a double strand break, and if so 

could we generate similar results of recombination and mutagenesis (Figure 3.ld). 

STOP 
(a) Mutant GFP 

with internal Stop 
No GFP Expression 

(b) Mutant GFP 
STOP 

with internal Stop 
+ 

Wild Type 
1 in 106 show GFP Expression 

Substrate 

(c) Mutant GFP with Restriction Site 
Restriction Site yielding 

double strand break 

! 
c=J 

+ 
Wild Type 

1 in 500 show GFP Expression 

Substrate 

(d) Mutant GFP with 
Polyamide Binding Site 

Polyamide Binding Site 
yielding double strand break 

! ~ 
c=J 

Wild Type + ·················~ GFP Expression??? 

Substrate 

Figure 3.1. Experimental design for proposed polyamide conjugates. See text for further details. 
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Nick Wurtz of the Dervan group chose three polyamides to examine in these 

experiments (Figure 3.2). Two constructs were designed to incorporate these 

polyamides. The first uses the two hairpin dimers ImPy-~-ImPy-yR>·C81-Py-~-ImimPy-~­

Dp (lR) and Imim-~-Imlm-y-<R>-CBJ_PyPy-~-PyPy-~-Dp (2R ). The second uses the 

homodimer ImlmPyPy-~-PyPyPyPy-~-TA-(S)-CBI (3S). The polyamides selected have 

have been previously characterized and have high binding affinities and good 

specificities to mismatch.1
•
10 The enantiomer of CBI chosen was determined by the insert 

design. Earlier studies showed that the strand selectivity of polyamide-seco-CBI 

conjugates is dependent on the enantiomer chosen. For the dimer insert, polyamides 1 

and 2 are designed in a 5' to 3' orientation from the alkylation site. Thus, for these 

polyamides, the (R)-enantiomer of CBI was chosen. This orientation is consistent with 

that of the parent alkylating agent and as well as with the previous studies of polyamide­

seco-CBI conjugates. For the homodimer insert, each half of the homodimer needs to 

bind in a 3' to 5' orientation from the alkylation site, thus dictating the need for the (S)­

enantiomer of seco-CBI. 

The insert containing the binding sites of the polyamides for each construct 

(dimer and homodimer) was inserted in the middle of the GFP gene (Figure 3.3). The 

insert includes a stop codon so that cells that do not undergo recombination will not 

express functional GFP. In the event of a double strand break, repair processes could 

correct the mutation, which would then be detectable by fluorescence. If the polyamides 

alkylate as designed to do, they will in theory act the same way as a rare-cutting 

endonuclease would, causing a double strand break. It is unclear what the effect of the 

overhang will have on the repair mechanism of the alkylated adduct.4 Rare-cutting 



1R 

2R 

3S 

Figure 3.2. Structures of the polyamide conjugates used for this study. ImPy-P-ImPy-·fR>-CBI_py-P­
ImlmPy-P-Dp (lR), Imlm-P-Imlm-y-1R>-ce1-PyPy-p-PyPy-p-Dp (2R), and ImlmPyPy-p-PyPyPyPy-p-TA­
(S)-CBI (3S). 

endoncleases typically either leave a blunt end or a 2 to 4 base overhang to either the 3' 

or 5' side. In the case of the dimers, the designed overhang will be similar to that of an 

endonuclease. In the case of the homodimers, there is a fairly substantial gap between 

the two cleavage sites of duplex DNA (19 bases). If there are differences observed 

between the two systems, a next generation design might try to incorporate a range of 

overhangs to see if a trend can be established. 
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GFP (1-327) GFP (328-720) 
Insert 

Dimer Insert: 

5 I -A T T A G c c G T A T T T A A A A c c A c c T A A T-3 I 

~~ 
3 1 -T A A T C G G CAT A A AT T T T G G T G GATT A-5 1 

1R 2R 

Homodimer Insert: 

5 1 -T T T T T AG G TAT T A C C T A A A A A-3 1 

....ao-<>-oo-oo<+>~----. 

·. __ .~(+)-<>-0000-<>-00-
3 I -A A A A A T c c A T A A T G G A T T T T T-5 I 

3S 

Figure 3.3. DNA construct of dimer and homodimer inserts for GFP experiments. 

Results 

Synthesis of Polyamide seco-CBI-Conjugates 

The parent unmodified polyamides 1, 2, and 3 were synthesized on solid support 

as previously reported.9 Polyamides 1 and 2 were synthesized with (R)-2,4-
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diaminobutyric acid (DABA) in the tum position.'' A succinimidyl ester was attached to 

the amine of the tum to yield 1-DSG. Subsequent addition of (R)-1)-ala-seco-CBI yielded 

the desired polyamide-seco-CBI conjugate.3 A representative conjugate synthesis is 

shown in Figure 3.4. Polyamide 3 was cleaved from the resin with 3,3' -diamino-N-

methyldipropylamine (triarnine, T A) and the conjugates were then synthesized as 

polyamides 1R and 2R with the (S)-enantiomer of seco-CBI. 12 

Thermally Induced Cleavage Reactions 

Polyamide 1R was analyzed on a 221 base pair fragment of GFP containing the 

designed insert (Figure 3.5a). Analysis of the cleavage reactions reveal that polyamide 

1R aJkylates strongly at the adenine two base pairs removed from the designed match 



1-DSG 

Figure 3.4. Synthesis o f Polyamide-seco-CBI conjugates. ( i) DSG ( I 0 equiv .), ( ii) (R)-seco-CBI-~-a l a. 

a) GFP Dimer Fragment (177 bp+ 44 bp-insert) 

5'-AAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTC 
3'-TTCGTCGTGCTGAAGAAGTTCAGGCGGTACGGGCTTCCGATGCAGGTCCTCGCGTGGTAGAAGAAG 

AAGGACGACGGCAACTACAAGACC- TAAGCTCTCGAGATTAGCCGTATTTAAAACCACCTAATAAGCTT­
TTCCTGCTGCCGTTGATGTTCTGG-ATTCGAGAGCTCTAATCGGCATAAATTTTGGTGGATTATTCGAA-

CGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGAACCGCATCGAGCTGAAGGGCATCGACTTCAAG 
GCGCGGCTCCACTTCAAGCTCCCGCTGTGGGACCACTTGGCGTAGCTCGACTTCCCGTAGCTGAAGTTC 

GAGGACGGCAACATCCTG-3' 
CTCCTGCCGTTGTAGGAC-5' 

b) GFP Homodimer Fragment (177 bp+ 38 bp-insert) 

5'-AAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTC 
3'-TTCGTCGTGCTGAAGAAGTTCAGGCGGTACGGGCTTCCGATGCAGGTCCTCGCGTGGTAGAAGAAG 

AAGGACGACGGCAACTACAAGACC-TAAGCTCTCGAGTTTTTAGGTATTACCTAAAAAAGCTT-CGCGC 
TTCCTGCTGCCGTTGATGTTCTGG-ATTCGAGAGCTCAAAAATCCATAATGGATTTTTTCGAA-GCGCG 

CGAGGTGAAGTTCGAGGGCGACACCCTGGTGAACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGA 
GCTCCACTTCAAGCTCCCGCTGTGGGACCACTTGGCGTAGCTCGACTTCCCGTAGCTGAAGTTCCTCCT 

CGGCAACATCCTG- 3' 
GCCGTTGTAGGAC-5' 

Figure 3.5. GFP fragments used in this study. Insert with polyamide binding sites are between the dashes, 
polyamide binding sites are in bold. (a) dimer construct, (b) homodimcr construct. 
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site, 5 '-AGCCGTA-3' on the bottom strand (Figure 3.6b). At 1 nM concentrations, lR 

cleaves this match site with a yield of 79%. On this strand, excellent specificity is 

shown, as 2 mismatch alkylation sites only begin to appear at 10 nM concentrations. 

These sites correspond to a double base pair mismatch 5' -CGCCGAG-3' (mismatch 

underlined) and a second double base pair mismatch 5' -AGGTGAA-3'which have 

cleavage yields of 13% and 9% respectively at 10 nM concentrations. The opposite 

strand (top strand) of this fragment was also examined to determine if there were 

mismatch alkylation sites on this strand as well (Figure 3.6a). On this strand, polyamide 

lR shows one strong alkylation site at a single base pair mismatch site 5'-TGCCGTC-3' . 

The yield of alkylation at this site is 79% at 3 nM concentrations of polyamide lR. 

Polyamide 2R was examined on the same 221 base pair fragment as polyamide 

lR (Figure 3.5a). On the top strand proximal to the intended match site 5' -AGGTGGT-

3', polyamide 2R shows a strong alkylation site which starts to appear at 30 pM (Figure 

3.7a). At 1 nM concentrations polyamide 2R, the cleavage yield is 86% at this site. On 

the same strand at 3 nM concentrations, alkylation is observed proximal to a double base 

pair mismatch site 5' -AGGTCTT -3' . The cleavage yield at this site is 19% at 3 nM and 

56% at 10 nM concentrations. On the bottom strand, one alkylation site is seen at a single 

base pair mismatch site 5' -AGGTGAA-3'(Figure 3.7b). The alkylation band appears at 3 

nM concentrations and cleaves with 75% yield at 10 nM concentrations. 

Polyamide 3S was assayed on a 215 base pair fragment containing the homodimer 

polyamide match site (Figure 3.5b). Both strands show alkylation at the designed match 

site 5'-AGGTATTACCT-3'. For both strands, alkylation is seen starting at 300 pM 

(Figure 3.8). The top strand alkylation seems more spec ific, which has a cleavage yield 



Figure 3.6. Thermally induced strand cleavage on the 5'-end labeled and 3'-end labeled 221 base pair 
restriction fragment by ImPy-P-ImPy-yR-mo-CBI>_py-P-ImlmPy-P-Dp (lR). Storage phosphor 
autoradiograms of 8% denaturing polyacrylamide gels used to separate the fragments generated by heat 
induced DNA cleavage at alkylation sites. All lanes contain I 0 kcpm of either 5' radio labeled DNA. Each 
reaction was equilibrated in TE, pH 7.5 at 37 ·c for 12 H. The unbound polyamide was removed by 
precipitation, and then strand cleavage was induced by heating at 95 ·c for 30 min. (a) 5"-32P-end labeled 
restriction fragment-top strand. (b) 5'-32P-end labeled restriction fragment-bottom strand. (a-b) lane I, 
intact DNA; lanes 2-8, I 0 pM, 30 pM, I 00 pM, 300 pM, I nM, 3 nM, I 0 nM respectively of the 
corresponding polyamide; lane 9, A-specific reaction; lane 10, G-specific reaction. (a-b) Match site 5'­
AGCCGTA-3' and single base pair mismatch site 5'-QACGGCA-3' are indicated in bold on the sequence, 
with arrows indicating cleavage bands. 
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Figure 3.7 Thermally induced strand cleavage on the 5'-end labeled and 3'-end labeled 221 base pair 
restriction fragment by lmlm-~-Imlm-'fR·mo-cBI>_pyPy-~-PyPy-~-Dp (2R). Storage phosphor 
autoradiograms of 8% denaturing polyacrylamide gels used to separate the fragments generated by heat 
induced DNA cleavage at alkylation sites. All lanes contain I 0 kcpm of either 5' radio labeled DNA. Each 
reaction was equilibrated in TE, pH 7.5 at 37 ·c for 12 H. The unbound polyamide was removed by 
precipitation, and then strand cleavage was induced by heating at 95 ·c for 30 min. (a) 5'-32P-end labeled 
restriction fragment-top strand. (b) 5'-32P-end labeled restriction fragment-bottom strand. (a-b) lane I , 
intact DNA; lanes 2-8, I 0 pM, 30 pM, I 00 pM, 300 pM, I nM, 3 nM, I 0 nM respectively of the 
corresponding polyamide; lane 9, A-specific reaction; lane I 0, G-specific reaction. (a-b) Match site 5'­
AGGTGGT-3' and single base pair mismatch site 5'-AGGTcrT-3' and 5'-AGGTGAA-3' are indicated in 
bold on the sequence, with arrows indicating cleavage bands. 
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Figure 3.8 Thermally induced strand cleavage on the 5' -end labeled and 3' -end labeled 215 base pair 
restriction fragment by ImlmPyPy-p-PyPyPyPy-P-TA-(S)-CBI (38). Storage phosphor autoradiograms of 
8% denaturing polyacrylamide gels used to separate the fragments generated by heat induced DNA 
cleavage at alkylation sites. All lanes contain I 0 kcpm of either 5' radiolabeled DNA. Each reaction was 
equilibrated in TE, pH 7.5 at 37 ·c for 12 H. The unbound polyamide was removed by precipitation, and 
then strand cleavage was induced by heating at 95 ·c for 30 min. (a) 5'-32P-end labeled restriction 
fragment-top strand. (b) 5'-32P-end labeled restriction fragment-bottom strand. (a-b) lane I, A-specific 
reaction; lane 2, G-specific reaction; lane 3, intact DNA lanes 4-10, I 0 pM, 30 pM, I 00 pM, 300 pM, I 
nM, 3 nM, I 0 nM respectively of the corresponding polyamide. (a-b) Match site 5'-AGGTA TTT ACCT-3' 
is indicated in bold on the sequence, with arrows indicating cleavage bands. 
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of69% at the target site at 10 nM concentrations of polyamide 3S (Figure 3.8a). There 

are other alkylation bands on this strand, none of which account for more than 5% of the 

total DNA in the lane. Alkylation on the bottom strand was seen at a lower yield, 30% 

yield at the match site at 10 nM concentrations of polyamide 3S (Figure 3.8b). Other 

mismatch alkylation sites show yields as high as 10%-15% at the same concentrations. 

Polyamide 3S was not as soluble as the hairpin polyamides lR and 2R, which may 

account for the higher concentrations needed to observe alkylation. 
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A summary of the alkylation sites for the dimer and homodimer sites are 

illustrated in Figure 3.9. At 1 nM concentrations of each of the hairpin polyamides lR 

and 2R, the majority of cleavage sites are in the designed region. The use of these two 

polyamides together should afford a double strand break with a three base pair overhang. 

There is also a large contribution from single base pair mismatch alkylation site for lR. 

It is unclear how this alkylation site will affect the in vivo assays. The homodimer 3S 

alkylates fairly specifically at 3 nM concentrations, but at lower yields than the hairpin 

polyamide conjugates. It will be interesting to compare the results of these two systems 

to determine the effects, if any, of the in vitro yields versus in vivo result, issues of 

solubility and permeability, and the nature of the double strand break (a few base 

overhang versus >15 bases). 

Gene Correction Experiments 

Currently, Dr. Matt Porteus of the Baltimore group is working to set up these 

experiments to study the effects of Py-Im polyamides on homologous recombination. It 

was hoped that upon treatment with polyamide-alkylator conjugates, cells that had 

undergone recombination or repair would be detected by expression of GFP. The results 



of these experiments thus far have shown that the polyamide-seco-CBI conjugates were 

toxic to cells at 500 nM and 1 !J.M concentrations. When the levels of RNA production 

are measured, the global levels of RNA are reduced and no gene specific reduction in 

RNA synthesis is observed. 
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In order to further study these phenomena, Dr. Porteus has designed a second 

assay to examine the repair of the DNA damage inflicted by polyamide-alkylator 

conjugates. His second assay uses a p-galactosidase (lacZ) system (Figure 3.10). The 

lacZ gene with an internal frameshift is not catalytically active and thus will not show 

color change upon treatment with X-gal and IPTG. Just by the cellular repair machinery 

alone (without added wild type substrate and recombination events), 1 in every 5000 cells 

will change color, indicating that repair has restored the activity of lacZ. If the 

polyamide-conjugate binding site is placed at the site of the frameshift, upon repair of the 

lesion formed by the polyamide-seco-CBI conjugate, a certain number of the cells should 

show restored lacZ activity. The first experiments will use plasmid DNA incubated with 

polyamide conjugate. The plasmid DNA is then transfected into cells and the cell's own 

repair machinery will repair the lesions, restoring lacZ activity. If these plasmid DNA 

experiments are successful, Dr. Porteus will incorporate the lacZ gene with polyamide 

binding sites into the genomic DNA of the cells, and repeat the previous plasmid 

experiments. The increased sensitivity of this assay to repair will be useful for 

determining the mechanisms used by the cell to repair damage inflicted by polyamide­

alkylator conjugates. 
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(a) Mutant lacZ with 
internal frame shift 

(b) Mutant lacZ with 
Polyamide Binding Site 

yielding double strand break 

frame shift 

Polyamide Binding Site 

Cellular 
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1 in 5000 have 
functional lacZ 
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lacZ Expression??? 

Figure 3.10. LacZ experiments for detecting DNA repair by polyamide-seco-CBI conjugate damaged 
DNA. See text for further details. 

Conclusions 
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The design of Py-Im polyamide conjugates with seco-CBI incorporates the ability 

to target specific DNA sequences and cause a covalent reaction on the DNA in a 

sequence specific fashion. We believe that this class of molecules, in concert with other 

polyamide conjugates with nitrogen mustards1
\ camptothecin, mitomycin, and PNAs, 

will provide powerful tools for studying and manipulating transcription in the cell. The 

results of the forthcoming in vivo experiments, whether positive or negative, will shape 

the design of additional motifs for these classes of compounds and point to new 

directions to apply these molecules to. 

Experimental 

Materials 

1H NMR spectra were recorded on a General Electric-QE NMR spectrometer at 300 MHz 

and a Varian Inova NMR spectrometer at 500 MHz with chemical shifts reported in parts 

per million relative to residual solvent. UV spectra were measured in water on a Hewlett-

Packard Model 8452A diode array spectrophotometer. Matrix-assisted, laser 

desorption/ionization time-of-flight mass spectrometry (MALDI-TOF) was performed at 
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the Protein and Peptide Microanalytical Facility at the California Institute of Technology. 

Preparatory reversed phase HPLC was performed on a Beckman HPLC with a Waters 

DeltaPak 25 x 100 mm, 300 A C18 column equipped with a guard, 0.1% (wt/v) TFA, 

0.25% acetonitrile/min. 

Synthesis of CBI-polyamide conjugates 

lmPy-~-ImPy-(R)"2Ny-Py-~-lmlmPy-~-Dp (1). ImPy-~-ImPy-(R)"2Ny-Py-~-IrnlmPy-~-

Pam resin was synthesized in a stepwise fashion by Boc-chemistry manual solid phase 

protocols. A sample of resin was treated with neat (dimethylarnino)-propylamine (2 ml), 

heated (55 °C, 24 hours) and purified by reversed phase HPLC. ImPy-~-ImPy-(R)"2Ny­

Py-~-ImlmPy-~-Dp was recovered as a white powder upon lyophilization of the 

appropriate fraction ( 14.4 mg, 10.4 1-lmoles, 6.8% recovery). UV (H20) Amax (£), 312 nm, 

(66, 600); MALDI-TOF-MS (monoisotopic) [M+H] 1381.70 (calculated 1380.64 for 

C62HsoN260,2)· 

ImPy-~-ImPy-(R)c'u-NHsy-Py-~-ImlmPy-~-Dp (1-DSG). To a solution of disuccinimidyl 

glutarate (41.9 mg, 120 fJIDOles) in 2.5 ml DMF was added 100 I-ll of a 14.3 mM solution 

of 1 (15.9 mg, 12.8 11moles) in DMF (800 f.ll) and DIEA ( 100 fJl). 100 I-ll of the solution 

was added every 15 minutes while stirring. Following the completion of the addition of 

1, the reaction was stirred for 2 hours. The reaction was diluted with 0.1% TFA ( 15 ml) 

and the reaction was purified by Sep Pak C 18• IrnPy-~-ImPy-(R)G'u -NHsy-Py-~-ImlmPy-~-

Dp was recovered as a white powder upon lyophilization of the appropriate fraction. UV 

(H20) Amax (£), 312nm, (66, 600). 

lmPy-~-lmPy-(R)<R>-cu 1y-Py-~-lmlmPy-~-Dp (1R). To a solution of 1-DSG (1.8 mg, 

1.12 fJmoles) in dry DMA was added 30 111 of a 1f.1M solution of DCC (10 equiv.) in 
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DMA and 6111 of a 0.5 M solution of N-hydroxysuccinimide ( 1 equiv.) in DMA. The 

solution was stirred for 2 hours. Separately, a solution of seco-CBI-Boc-P-ala (0.45 mg, 

1 equiv.) was deprotected with 3M HCI/ethyl acetate (5 ml) for 30 minutes under argon. 

The ethyl acetate was then removed by vacuum and then coevaporated twice from 

dichloromethane to yield seco-CBI-P-ala amine. The gray solid was then dissolved in 50 

J.ll of dry DMF and then added to the polyamide solution. DIEA (2 J.ll , 10 equiv.) was 

then added and the reaction was stirred for 3 hours under argon. Upon completion, the 

reaction was diluted with 0.1 % TFA (2 ml) and the reaction was purified by reversed 

phase HPLC. ImPy-P-ImPy-(R)<R>·CBJy-Py-P-ImlmPy-P-Dp was recovered as a white 

powder upon lyophilization of the appropriate fraction (0.6 mg, 337 nM, 30% recovery). 

UV (H20) A.max (E), 314 nm, (73, 854); MALDI-TOF-MS (monoisotopic) [M+H] 1781.9 

(calculated 1780.76 for C83H 101 CIN280 16). 

Imlm-P-Imlm-(Rt2Ny-PyPy-p-PyPy-p-Dp (2). Imim-P-Imim-(R)H2Ny-PyPy-p-PyPy-p-

Pam resin was synthesized in a stepwise fashion by Soc-chemistry manual solid phase 

protocols. A sample of resin was treated with neat (dimethylamino)-propylamine (2 m1), 

heated (55 °C, 24 hours) and purified by reversed phase HPLC. Imlm-P-Imlm-(Rt2Ny­

PyPy-P-PyPy-p-Dp was recovered as a white powder upon lyophilization of the 

appropriate fraction (12.9 mg, 9.3 J.lmoles, 12.1% recovery). UV (H20) A.max (£), 312 nm, 

(66, 600); MALDI-TOF-MS (monoisotopic) [M+H] 1381.76 (calculated 1380.64 for 

C62HsoN26012). 

lmlm-P-Imlm-(R)c1u·NHsy-PyPy-p-PyPy-p-Dp (2-DSG). 2-DSG was prepared in an 

analogous fashion to 1-DSG from 2. Imlm-P-Imlm-(R)G1u·NHsy-PyPy-p-PyPy-p-Dp was 

recovered as a white powder upon lyophilization of the appropriate fraction. UV (H20) 



A 111ax (£), 312nm, (66, 600). 

Imlm-~-Imlm-(R)<R>·cu•y-PyPy-~-PyPy-~-Dp (2R). 2R was prepared in an analogous 

fashion to lR from 2-DSG. Imlm-~-Imlm-(R)<R>-CBiy-PyPy-~-PyPy-~-Dp was recovered 

as a white powder upon lyophilization of the appropriate fraction (0.8 mg, 457 nmoles, 

12.3 % recovery). UV (H20) A.max (£), 312nm, (73, 854); MALDI-TOF-MS 

(monoisotopic) [M+H] 1781.73 (calculated 1780.76 for C83H 101 ClN280 16). 

ImlmPyPy-~-PyPyPyPy-~-TA (3). ImlmPyPy-~-PyPyPyPy-~-Pam resin was 

synthesized in a stepwise fashion by Bee-chemistry manual solid phase protocols. A 

sample of resin was treated with neat 3,3'-diamino-N-methyldipropylamine (triamine-
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T A) (2 ml), heated (55 °C, 24 hours) and purified by reversed phase HPLC. IrnlmPyPy­

~-PyPyPyPy-~-TA was recovered as a white powder upon lyophilization of the 

appropriate fraction (14.2 mg, 11.4 J..lmoles, 14.8% recovery). UV (H20) ~ •• (E), 312 nm, 

(66, 600) ; MALDI-TOF-MS (monoisotopic) [M+H] 1251.68 (calculated 1250.60 for 

C59H74N2201o). 

ImlmPyPy-~-PyPyPyPy-~-TA-Giu-NHS (3-DSG). 3-DSG was prepared in an 

analogous fashion to 1-DSG from z. ImlmPyPy-~-PyPyPyPy-~-TA-Glu-NHS was 

recovered as a white powder upon lyophilization of the appropriate fraction. UV (H20) 

Amax (E), 312nm, (66, 600). 

ImlmPyPy-~-PyPyPyPy-~-TA-(S)-CBI (38). 3S was prepared in an analogous fashion 

to lR from 3-DSG and (S)-seca-CBI-~-ala. ImlmPyPy-~-PyPyPyPy-~-TA-(S)-CBI was 

recovered as a white powder upon lyophilization of the appropriate fraction (0.74 mg, 

446 nmoles, 9.4% recovery). UV (H20) A.rnax (E) , 312nm, (73 , 854); MALDI-TOF-MS 

(monoisotopic) [M+H] 1651.79 (calculated 1650.71 for C80H95ClN240 14). 



DNA Reagents and Materials. Enzymes were purchased from Boehringer-Mannheim 

and used with their supplied buffers. Deoxyadenosine 5' -[y-32P] triphosphates were 

purchased from I.C.N. Sonicated, deproteinized calf thymus DNA was acquired from 

Pharmacia. RNase free water was obtained from USB and used for all reactions. All 

other reagents and materials were used as received. All DNA manipulations were 

performed according to standard protocols. 
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Construction of Plasmid DNA. The plasmids GFP I and GFP2 were constructed by Dr. 

Matt Porteus. Concentration of the prepared plasmid was determined at 260 nm from the 

relationship of 1 OD unit=50 1-1g rnL-1 duplex DNA. 

PCR Labeling to generate 5'-End-Labeled Restriction Fragments. Two 21 mer 

primers were synthesized for PCR amplification: primer A (top)S'-AAG-CAG-CAC­

GAC-TTC-TTC-AAG-3' and primer B (bottom) 5'-CAG-GAT-GTT-GCC-GTC-CTC­

CTT-3' . To label the top strand, primer A was treated with T4 polynucleotide kinase and 

deoxyadenosine 5 ' -[y-32P] triphosphate as previously described. PCR reactions 

containing 60 pmol each primer, 10 f-11 PCR buffer (Boehringer-Mannheim), 3.7 f-11 

template (0.003 f..lg/rnL), 2 1-11 dNTP mix (each at 10 mM), 1 f-11 lOOX BSA (New England 

Biolabs) and 83 f-11 water were heated at 70 oc for 5 minutes. Four units of Taq 

Polymerase were added (Boehringer-Mannheim). Thirty amplification cycles were 

performed, each cycle consisting of the following segments: 94 OC for 1 minute, 54 OC 

for I minute, and 72 OC for 1.5 minutes. Following the last cycle, I 0 minutes of 

extension at 72 OC completed the reaction. The PCR products were gel purified as 

previously reported for 3 '-end labeling protocols. To label the bottom strand, primer B 

was labeled. 
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Cleavage Reactions. All reactions were carried out in a volume of 50 111. A polyamide 

stock solution or water (for reference lane) was added to an assay buffer ofTE (pH7.5) 

and 20 kcpm of 3'- or 5' -radiolabeled DNA. The solutions were allowed to equilibrate 

for 12 hours or the appropriate time (for time course reactions) at 37 oc. The reactions 

were stopped with 60 111 of a solution containing NaOAc (600 mM), EDTA pH 8.0 (12.5 

mM), calf thymus DNA (150 11M base pair), glycogen (0.8 mg mL. 1
), and NaCl (2M). 

Ethanol was added to remove unbound polyamide and precipitate the products. The 

reactions were resuspended in 20 111 of TE (pH 7 .5) and cleavage was initiated by heating 

at 95 oc for 30 minutes. The cleavage products were precipitated with 150 fll ethanol and 

then resuspended in 100 mM trisborate-EDT N80% formamide loading buffer, and 

denatured and loaded onto polyacrylamide gels as previously reported. The gels were 

quantitated by the use of storage phosphor technology. Yield or efficiency of alkylation 

was determined as the ratio between the volume integration assigned to the products and 

the sum of the volumes of all the products in the lane. 
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Abstract 

Described are the synthesis and characterization for seco-CBI polyamide 

conjugates to study inhibition of transcription elongation of COX-2 and to probe the 

cellular activity of transcription inhibition in HIV -1. Four compounds were studied for 

COX-2: ImPyPy-(R)[lmPylm-(R)HzNy-PyPyPyo]HNyPyPyPy-~-Dp (1), Im-~-ImPyPyPy-

~2N-ImPyPyPy-~-Py-~-Dp (2), ImPy-~-Imlm-~zN_PyPy-~-ImPy-~-Dp (3), ImPy-~­

ImPy-~zN_PyPy-~-ImPy-~-Dp (4). Two were studied for HIV-1 : ImPy-~-ImPy-ys>-CBI_ 

lmPy-~-ImPy-~-Dp (5), and lmlm-~-lmlm-y5>-cs•_pyPy-~-PyPy-~-Dp (6). Examination 

of the alkylation patterns of the polyarnides described offers insights into the design of 

future generations of this class of molecules. Further testing of these compounds in 

cellular assays will be performed shortly. We anticipate that those results will help us 

address new design considerations that may be necessary for future compounds in this 

series. 



Polyamides for Inhibition of COX-2 Transcription Elongation 

Background 
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In an inflammatory response, cyclooxygenase (COX) catalyzes the first 

committed step in arachidonic acid metabolism, eventually resulting in the formation of 

prostaglandins. There are two distinct COX enzymes, COX-I and COX-2. COX-1 is 

expressed in most tissues and is thought to release prostaglandins for the purposes of 

cellular housekeeping for maintaining organ and tissue homeostasis. COX-2 is expressed 

only in certain cells, such as fibroblasts and macrophages. It can be rapidly induced by 

cytokines or other mitogens. Inhibition of COX-2 relieves symptoms of inflammation, 

pain, and fever, while inhibition of COX-1 leads to side effects such as nausea and 

stomach pains. 

NSAIDs (nonsteroidal anti-inflammatory drugs) are inhibitors of COX, and 

include aspirin, ibuprofen, and naproxen. One problem with NSAIDs is a lack of 

specificity between the two COX enzymes. Often they inhibit both enzymes, resulting in 

both the alleviation of some symptoms and the onset of others. The crystal structures of 

COX- 1 and COX-2 show that the two enzymes are extrememly similar in overall 

structure, with an r.m.s deviation of 0.9 A for Ca atoms.' The most significant difference 

in the structures is within the binding pocket. An isoleucine in COX-1 is replaced by a 

valine residue in COX-2. Many of the newer NSAIDs try to take advantage of this larger 

binding pocket in COX-2 by making bulkier substituents which are sterically unable to fit 

in the COX -1 binding site.1.2 
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Experimental Design 

Prof. Harvey Herschman of UCLA was one of the early discoverers of COX-2,3 

and a collaboration with the Dervan group was started to see if Py-Im polyamides would 

be able to inhibit the induction of COX-2 by interfering with required transcription 

factors . We were also interested in looking at Py-Im polyamide conjugates with 

alkylating agents to see if transcription elongation of COX-2 could be inhibited by 

forming a covalent adduct with the DNA. Mr. Nicholas Wurtz from the Dervan group 

had already established a system of polyamide-nitrogen mustard conjugates that were 

promising as sequence specific DNA alkylating agents.4 Together, we designed a series 

of compounds to incorporate both the seco-CBI conjugates and the nitrogen mustard 

conjugates. 

The COX-2 gene is 6938 base pairs long, including the promoter (966 base 

pairs) . It contains ten exons, which comprise the 3985 base pairs of the COX-2 eDNA. 

From the complete gene sequence, we found four target sequences which occurred 

anywhere from twice to thirteen times within the coding region of COX-2, and also had 

an adenine proximal to the binding site (Figure 1). The Herschman group supplied us 

with a plasmid of the COX-2 eDNA, and we used fragments from the eDNA to 

determine the binding affinities of the unmodified parent polyamides. To minimize the 

number of fragments we had to label, we selected two fragments to examine, 198-496 

(numbering from eDNA sequence) and 500-772. Between the two fragments, they 

contain the binding sites of all four parent polyamides (Figure 2). 



(a) 

(b) 

Cox-2 Complete Gene 
6938 base pairs (including promoter) 
Promoter region 1-966 
10 exons 

I I II 
Cox-2 eDNA 
3985 base pairs 

5'-C C A G TAT A A G T G T G A C T-3' 

H3+ 

3 ' -G G T CAT AT T C A C A CT G A-5' 

3'-C C A C ACT T G T T A G-5 ' 

5'-A G T G C T G G A A A A G-3' 

~~+ 
3 ' - T C A C G A C C T T T T C-5' 

5' - A A AT TACT G C T G A- 3 ' 

+H3~ 
3' - T T T A AT G A C G A C T - 5' 
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1 2 sites 
1 site in eDNA 

2 5 sites 
2 sites in eDNA 

3 
8 sites 
2 sites in eDNA 

4 13 sites 
6 sites in eDNA 

Figure 1. (a) Pictorial view of COX-2 gene. (b) Parent polyamides selected for this study, with number of 
sites in the COX-2 gene indicated. 



(a) 198-496: 
5'-ATGTCAhAACCGTGGGGbATGTATGAGCACAGGATTTGAC 
3 ' -TACAGTTTTGGCACCCCTTACATACTCGTGTCCTAAACTG _~~~~~~~-

ATTCTATGGTGAAAACTGTACTACACCTGAATTTCTGACAAGAATCAAA 
TAAGATACCACTTTTGACATGATGTGGACTTAAAGACTGTTCTTAGTTT 

87 

ACTGTACCCGGACTGG 

AAGCCCACCCC 
TTCGGGTGGGG 

'------' 

AAACACAGTGCACTACATCCTGACCCACTTCAAGGGAGTCTGGAACA 
TTTGTGTCACGTGATGTAGGACTGGGTGAAGTTCCCTCAGACCTTGT 

CATCCCCTTCCT 
GTAGGGGAAGGA 

'------' 

GCGAAGTTTAACTATGAAATATGTGCTGACATCCAGATCATATTTGATTGACAGTCCACCTACTTACAA 
CGCTTCAAATTGATACTTTATACACGACTGTAGGTCTAGTATAAACTAACTGTCAGGTGGATGAATGTT 

TGTGCACTATGGTTACAAAAGCT-3' 
ACACGTGATACCbATGTTTTCGA-5' 

(b) 500-772: 
5'-bAGCCTTCTCCbACCTCTCCTACTACACCAGGGCCCTTCCTCCAG 
3'-TTCGGAAGAGGTTGGAGAGGATGATGTGGTCCCGGGAAGGAGGTC 

TGGGTGTGAAGGGAAATAAGGAGCTTCCTGATTCAAAAGAA 
ACCCACACTTCCCTTTATTCCTCGAAGGACTAAGTTTTCTT 

4 

'------' 

.___ __ _, 

ACTGCCCAACTCCCA 
TGACGGGTTGAGGGT 

CCCTGACCCCCAAGGCTCAAATATGATGTTTGCATTCTTTGCCCAGCACTTCACCCATCA 
GGGACTGGGGGTTCCGAGTTTATACTACAAACGTAAGAAACGGGTCGTGAAGTGGGTAGT 

'------' 

GTTTTTCAAGACAGATCATAAGCGAGGACCTGGGTTCACCCGAGGACTGGGCCATGGAGTGGACTTAA-3 ' 
CAAAAAGTTCTGTCTAGTATTCGCTCCTGGACCCAAGTGGGCTCCTGACCCGGTACCTCACCTGAATT-5' 

Figure 2. Fragments of COX-2 eDNA used for this study. (a) 198-496, (b) 500-772. Boxes indicate the 
binding sites of the corresponding polyamide. Underlined sequence corresponds to the primers used for 
labeling studies. 

Results and Discussion 

Synthesis and Footprinting of Parent Polyamides 

Polyamides 1-4 were synthesized according to established solid phase synthesis 

protocols (Figure 3).5 Nicholas Wurtz performed the footprinting on compounds 1 and 

3, and I performed footprinting on 2 and 4. 
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Figure 3. Structures of the parent polyamides used in the COX-2 study. 
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2 

3 

4 

Tandem polyamide 1 lmPyPy-(R)[ImPylm-(R)H2Ny-PyPyPy8]HNyPyPyPy-p-Dp, 

when measured on fragment 198-496 had an affinity of 4.0 x 109 at the site 5'-

AGTATAAGTGT-3.' We had anticipated that this compound would have a higher 

binding affinity, but were unsure of the generality of the tandem motif. When compared 

to the tandem lmPyPy-(R)[ImPyPy-(R)HzNy- PyPyPy8]HNyPyPyPy-p-Dp which bound the 

11 base pair sequence 5'-TGTTATTGTTA-3' with aKa of~ I x l012 M.1
, the affinity of 

polyamide 1 is lower than expected.6 However, the binding affinity should be adequate 

for our purposes. 

Polyamide 2 Im-P-ImPyPyPy-~zN_ImPyPyPy-p-Py-p-Dp when measured on 

fragment 198-496 had an affinity of 2.3 x l010 M.1 at the sequence 5' -TGTGAACA-3. 
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This compares to the K. of~ 2.4 x 1010 M-1
, that was reported for the compound Im-~-

ImPyPyPy-y-IrnPyPyPy-~-Py-~-Dp at the same sequence.7 Polyamides 3 and 4 had 

binding affinities of L8 x 1010 M-1 and Ll x 1010 M-1
, respectively, at the targeted match 

sites of 5' -TGCTGGA-3' for polyamide 3 and 5'-TACTGCT-3' for polyamide 4_ 

Synthesis and Thermal Cleavage Reactions of Polyamide Conjugates 

Because the footprinting experiments revealed that the polyamides bound to the 

designed target sequences, the polyamide seco-CBI conjugates lS and 3S were 

synthesized as previously reported (Figure 4).8 

15 

35 

Figure 4. Chemical structures of the polyamide conjugates used for the COX-2 study. 

Thermal cleavage reactions were performed for compound lS on fragment 198-

496 (Figure 5). Surprisingly, the alkylation gels showed that instead of alkylating 

proximal to the match site 5' -AGT AT AAGTGT -3', a strong alkylation site is observed 

proximal to the mismatch site 5'-TTCTATGGTGA-3 ' (mismatch underlined). The 

sequence requirements of the valerie acid linker have yet to be determined, so the G in 

the valerie acid linker region may or may not be a mismatch. At a minimum, this site is a 
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double base pair mismatch, and possibly a triple base pair mismatch. Alkylation at this 

site has a yield of 79% at 10 nM concentrations. No alkylation is observed at the adenine 

proximal to the match site. In addition to alkylating at a mismatch site, alkylation occurs 

three base pairs removed from the binding site of the polyamide, not the anticipated two 

base pairs. The reasons for this anomalous alkylation pattern shown for lS are unclear. 

One possibility is that the adenine proximal to the intended match site of lS is flanked by 

two G-C base pairs. The mixed sequence is not optimal for alkylation by CBI. However, 

the site that is alkylated by lS is flanked by an A-T tract, which is known to be a 

consensus sequence for the duocarmycins. This may be an instance where korr is slow at 

the match site, but k,1k is slower, resulting in no alkylation. Meanwhile, korr may be fast at 

the mismatch site, but k,1k is faster, yielding a strong cleavage site. 

Polyamide 3S was analyzed on fragment 500-772, and shows alkylation proximal 

to the expected match site 5'-TGCTGGA-3' (Figure 6). At 300 pM concentrations, the 

cleavage yield at this site is 83%. Again, an interesting observation is that the cleavage 

occurs at the adenine three base pairs removed from the binding site instead of two. The 

alkylated adenine is at the 3' side of a short A-T tract. It is known that A-T tracts bend 

toward the minor groove.9 Perhaps the bend in the DNA causes the unexpected 3' shift in 

alkylation. 

Future Work 

Due to problems generating reproducible and reliable results of inhibition of 

transcription initiation, work on this project has slowed. Once assays are available that 

can detect changes in protein or mRNA levels reproducibly, it will be interesting to see 

what polyarnide-alkylator conjugates do when targeted to the coding region. Even 
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without the biological assay results, it is worthy of note that for the two polyamide motifs 

in this study, both generally followed previous patterns of seco-CBI conjugates, and had 

high cleavage yields. 

Polyamide-Alkylator Conjugates that Target the Promoter Region of IDV -1 

Background 

Described previously were successful efforts to use Py-Im polyamides to inhibit 

binding of essential transcription factors to inhibit transcription of HIV -1. Two of the 

compounds used in that study were 5 and 6 (Figure 7a).10 Polyamide 5, ImPy-j3-ImPy-y­

ImPy-j3-IrnPy-j3-Dp, binds to the sequence 5'-WGCWGCW-3' with a Kd of0.05 nM. 

There are two match sites for polyamide 5 flanking the binding site ofT AT A Binding 

Protein (TBP) in the HIV- 1 promoter. Polyamide 6, Imlm-j3-Irnlm-y-PyPy- j3-PyPy- j3-Dp 

serves as a control compound and is a double base pair mismatch for the sequence 5 '-

WGCWGCW-3', and binds that site with a Kct of 5.0 nM. This study reported that 

polyamide 5 could inhibit TBP binding in vitro, while polyamide 6 could not. Inhibition 

of in vitro transcription by 50% was observed at 60 nM concentrations of polyamide 5, 

while no inhibition was observed for polyamide 6. Cell culture experiments indicated 

that polyamide 5 inhibited HIV - 1 viral replication by 80% at 1 j.!M concentrations, and 

polyamide 6 had no effect on viral replication. 



(a) 
5 -G C A A A A A G C A G C T G C T T A T A T G C A G C A T C T G A G-3 

~ 
3 -C G T T T T T C G T C G A C G A A T A T A C G T C G T A G A C T C-5 

5 TBP 5 

5 -G C A A A A A G C~T T A T A T G C A G C A ; C T G A G-3 

3 -C G T T T T T C G T C G A C G A A T A T A C G T C G T A G A C T C-5 

6 TBP 6 

(b) 

5 -G C A A A A A G C A G C T G C T T A T A T G C A G C A T C T G A G-3 

3 -C G T T T T T C G T C G A C G A A T A T A C G T C G T A G A C T C-5 

55 TBP 55 

5 

3 -C G T T T T T C T C-5 

65 TBP 65 

Figure 7. (a) Ball and stick model of the polyamidcs used for inhibition of HIV - I transcription initiation 
which inhibit binding ofTBP. (b) Proposed seco-CB! conjugates to target to HIV- 1 promoter. 
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A derivative of polyamide 5 modified with a nitrogen mustard has already been 

extensively characterized in the Dervan group by Nicholas Wurtz.4 It was found that the 

nitrogen mustard derivatized polyamide was able to alkylate the HIV -LTR promoter with 

good specificity and efficiency. Joel Gottesfeld of The Scripps Research Institute was a 

collaborator on the transcription inhibition studies of polyamides 5 and 6. He was 

interested in studying the nitrogen mustard analogues to confirm that polyamides are able 

to get to the nucleus and target their match sequence. By analyzing the cellular genomic 

DNA, he wanted to analyze the cleaved DNA resulting from the alkylation by the 

nitrogen mustard. To that end, we also designed seco-CBI polyamide conjugates of 
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polyamides 5 and 6 to compare to the results of the nitrogen mustard analogues (Figure 

7b). 

Synthesis and Thermal Cleavage Assays 

Polyamides SS and 6S were synthesized as previously described (Figure 8).5
·
8 

They were analyzed on a 241 base pair fragment containing the HIV-LTR promoter 

(Figure 9) . 

Figure 8. Chemical structures of the seco-CBI polyamide conjugates used for the HIV-1 study. 

pHIV-LTR restriction fragment (241 bp) 

5'-AATTCGAGCTCGGTACCCGGTAACCAGAGAGACCCAGTACAGGCAAAAAGCAGCTGCTTATATGCAGCATCTGAGGGACG 
3' - TTAAGCTCGAGCCATGGGCCATTGGTCTCTCTGGGTCATGTCCGTTTTTCGTCGACGAATATACGTCGTAGACACCCTGC 

CCACTCCCCAGTCCCGCCCCAGGCCACGCCTCCCTGGAAAGTCCCCAGCGGAAAGTCCCTTGTAGAAAGCTCGATGTCAGCAG 
GGTGAGGGGTCAGGGCGGGGTCCGGTGCGGAGGGACCTTTCAGGGGTCGCCTTTCTGGGAACATCTTTCGAGATACAGTCGTC 

TCTTTGTAGTACTCCGGATGCAGCTCTCGGGCCACGTGCTGAAATGCTAGGCGGCTGTCAATCGACCTGCAGGCATGCA-3' 
AGAAACATCATGAGGCCTACGACGAGAGCCCGGTGCACGACTTTACGATCCGCCGACAGTTAGCTGGACGTCCGTACGT-5' 

Figure 9. HIV-LTR restriction fragment used in this s tudy. Polyamide binding sites are underlined and 
TBP binding site is indicated in bold. 
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Polyamide SS shows alkylation proximal to the binding sites flanking the TAT A 

box (Figure 10). At the match site to the right of the TATA box, 5'-TGCAGCA-3 ', 

polyamide SS shows alkylation at two adenines. It is a bit unusual that alkylation is seen 

at adenines so far from the polyamide binding site, but may be explained because the 

TAT A box is known to be bent toward the minor groove.9 The cleavage yield at this site 

is 45% at I nM concentrations of SS. The binding site to the left of the TAT A box is 

actually two overlapping match sites, 5' -AGCAGCTGCT -3'. Here a high yielding 

cleavage site (62% at 10 nM) is observed along an A-T tract. Another alkylation site at 

theTA T A box is observed for another binding mode of the polyamide. This site has a 

lower cleavage yield of 12% at 3 nM concentrations. 

Despite being designed as a mismatch, polyamide 6S cleaves the same fragment 

at almost identical adenines with comparable or higher cleavage yields (Figure 11 ). 

Again, this may be a situation where the equilibration of the polyamide off of a mismatch 

site (k0 rr) is slower than the alkylation reaction of seco-CBI at N3 of adenine (k,1k). The 

A-T tracts that flank the polyamide binding sites are known to be preferred alkylation 

sites for the duocarmycins, so this is a reasonable possibility. 
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Comparison with Nitrogen Mustard Polyamide Conjugates 

Figure 12 compares the alkylation sites seen with the polyamide seco-CBI 

conjugates and the nitrogen mustard conjugates. The nitrogen mustard analogue of 

polyamide 6 showed no alkylation at all on this fragment. Comparing SS and its nitrogen 

mustard counterpart, at the binding site on the left side of theTA T A box (Figure 12a), the 

nitrogen mustard analogue alkylates preferentially at the TAT A box, and shows no 

alkylation at the A-T tract. Meanwhile, SS shows the majority of cleavage at the A-T 

tract. At the binding site to the right side of the TAT A box (Figure 12b ), polyamide SS 

displays DNA cleavage at the TAT A box, as does the nitrogen mustard analogue. The 

nitrogen mustard analogue also shows alkylation at an adenine on the opposite side of the 

TAT A box for the other polyamide binding mode. 

The differences between the nitrogen mustard polyamide conjugates and the seco­

CBI conjugates are noteworthy. As DNA alkylating agents, nitrogen mustards prefer to 

alkylate in the major groove at N7 of guanine, but will react with N3 of adenine in the 

minor groove when directed by a minor groove binding ligand. 11
·
12 Conversely, 

duocarmycins target the N3 of adenine, and react preferentially there. The differences 

observed in the alkylation patterns most likely result from the different reactivity of the 

alkylating agents. The results indicate that at particularly reactive sites for seco-CBI, 

alkylation occurs more quickly than equilibration from a mismatch site. Meanwhile, for 

the nitrogen mustard conjugates, because the reactivity is slower at N3 of adenine, it 

waits for the polyamide to equilibrate to a match site and then alkylates DNA if an 

adenine is available. So, decreased rate of alkylation actually allows for increased 

specificity of alkylation. 



(a) 

5'-AAAAAG 

3'-T T T T T C 

5'-AAAAAG 

3' -T T T T T C 

c T D A TAT G c A G cAT C-3' 

G A A T A T A C G T C G T A G-5' 

t 

(b) 

Figure 12. Ball and stick models that compare the alkylation of seco-CBI polyamide conjugates with 
nitrogen mustard conjugates. Symbols are as described before, with the shaded hexagon representing the 
nitrogen mustard. 

Conclusions 
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Currently, these seco-CBI conjugates have been sent to the Gottesfeld group and 

we look forward to seeing how these molecules react in cells. 

The investigation of seco-CBI conjugated to polyamides of different sequence and 

motif suggests additional factors that influence reactivity of such compounds. When 

designing such compounds to address a particular application, the sequence specificity 

and affinity of the Py-Im polyamide will always be of primary importance. However, the 

kinetics of polyamide binding also affect the specificity of such conjugates, because of 

their fast on rates to DNA, and slow off rates. 13 The sequence context of the binding site 

in question should not be overlooked. In the case of seco-CBI conjugates, it appears that 

flanking sequences and the reactivity of target alkylation sites greatly affect the efficiency 

and predictable nature of DNA alkylation. Those things can be taken into consideration 

for future generations of these compounds. 
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1H NMR spectra were recorded on a General Electric-QE NMR spectrometer at 300 MHz 

with chemical shifts reported in parts per million relative to residual solvent. UV spectra 

were measured in water on a Hewlett-Packard Model 8452A diode array 

spectrophotometer. Matrix-assisted, laser desorption/ionization time-of-flight mass 

spectrometry (MALDI-TOF) was performed at the Protein and Peptide Microanalytical 

Facility at the California Institute of Technology. Preparatory reversed phase HPLC was 

performed on a Beckman HPLC with a Waters DeltaPak 25 x 100 mm, 300 A C18 

column equipped with a guard, 0.1% (wt/v) TFA, 0.25% acetonitrile/min. 

Synthesis of CBI-polyamide conjugates 

ImPyPy-(R)[ImPylm-(R)"2Ny-PyPyPyo]"NyPyPyPy-~-Dp (1). ImPyPy-(R)[ImPylm-

(R)H2Ny-PyPyPyo]HNyPyPyPy-~-Pam resin was synthesized in a stepwise fashion by Soc­

chemistry manual solid phase protocols by Nicholas Wurtz. A sample of resin was treated 

with neat (dimethylamino)-propylamine (2 ml), heated (55 ·c, 24 hours) and purified by 

reversed phase HPLC. lmPyPy-(R)[ImPylm-(R)HzNy-PyPyPyo]"NyPyPyPy-~-Dp was 

recovered as a white powder upon lyophilization of the appropriate fraction. UV (H20) 

Amax (c), 312 nm, (99, 900); MALDI-TOF-MS (monoisotopic) [M+H] 1910.97 (calculated 

1909.97 for C91 H 111N330.6). 

lmPyPy-(R)[ImPylm-(R)c1u.NHsy-PyPyPyo]"NyPyPyPy-~-Dp (1-DSG). 1-DSG was 

prepared by already published methods.8 UV (H20) A.max (c), 312 nm, (99, 900); MALDI­

TOF-MS (monoisotopic) [M+H] 2122.25 (calculated 2120.94 for C99H 12oN340 2 1). 
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ImPyPy-(R)[ImPylm-(RY5>-co•y-pypypyo]HN)'PyPyPy-p-Dp (IS). IS was prepared by 

already published methods.8 UV (H20) A.max (£), 312 nm, ( 107, 154); MALDI-TOF-MS 

(monoisotopic) [M+H] 231 L12 (calculated 2310.01 for C 111 H132ClN350 20). 

Im-P-ImPyPyPy-(R)H2Ny-ImPyPyPy-p-Py-p-Dp (2). 2 was prepared in an analogous 

fashion to I. UV (H20) "-max (E), 312 nm, (83, 250); MALO I-TOF-MS (monoisotopic) 

[M+H] 1624.88 (calculated 1623.75 for C75H93N290 14). 

ImPy-P-Imlm-(R)H2N)'-PyPy-p-ImPy-p-Dp (3). 3 was prepared in an analogous fashion 

to I by Nicholas Wurtz. UV (H20 ) "-max (E), 312 nm, (66, 600); MALDI-TOF-MS 

(monoisotopic) [M+H] 138L75 (calculated 1380.64 for C62H8oN260 12). 

ImPy-p-Imlm-(R)G1u-NHsy-PyPy-p-ImPy-p-Dp (3-DSG). 3-DSG was prepared in an 

analogous fashion to I-DSG from 3. UV (H20) A.max (E), 312 nm, (66, 600); MALDI-

TOF-MS (monoisotopic) [M+H] 1592.75 (calculated 159 L69 for C7 1H89N270 17) . 

ImPy-P-Imlm-(R)<s>-co•y-PyPy-P-ImPy-p-Dp (3S). 3S was prepared in an analogous 

fashion to IS from 3-DSG. UV (H20 ) "-max (E), 312 nm, (73, 854); MALDI-TOF-MS 

(monoisotopic) [M+H] 178L94 (calculated 1780.76 for C83H 10 1ClN280 16). 

ImPy-P-ImPy-(R)H2Ny-PyPy-P-ImPy-p-Dp (4). 4 was prepared in an analogous fashion 

to I. UV (H20 ) "-max (E), 312 nm, (66, 600); MALDI-TOF-MS (monoisotopic) [M+H] 

ImPy-P-ImPy-(R)H2Ny-ImPy-P-ImPy-p-Dp (5). 5 was prepared in an analogous fashion 

to I. UV (H20 ) "-max (E), 312 nm, (66, 600); MALDI-TOF-MS (monoisotopic) [M+H] 

ImPy-P-ImPy-(R)G1u-NHsy-ImPy-p-ImPy-p-Dp (5-DSG). 5-DSG was prepared in an 

analogous fashion to I-DSG from 5. UV (H20 ) "-max (E), 3 12 nm, (66, 600). 
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ImPy-t3-ImPy-(R)"2Ny-ImPy-j3-ImPy-j3-Dp (SS). SS was prepared in an analogous 

fashion to 1S from 5-DSG. UV (H20) A,ax (c:), 312 nm, (73, 854); MALDI-TOF-MS 

(monoisotopic) [M+H] 1781.9 (calculated 1780.76 for C83H 101 ClN280 16). 

Imlm-j3-Imlm-(R)"2Ny-PyPy-j3-PyPy-j3-Dp (6). 6 was prepared in an analogous fashion 

to 1. UV (H20) "-max (£), 312 nm, (66, 600); MALDI-TOF-MS (monoisotopic) [M+H] 

1381.76 (calculated 1380.64 for C62H80N260 12). 

lmlm-j3-Imlm-(R)c1u·NHSy-PyPy-j3-PyPy-j3-Dp (6-DSG). 6-DSG was prepared in an 

analogous fashion to 1-DSG from 6. UV (H20) ~nax (£), 312nm, (66, 600). 

Imlm-j3-Imlm-(R)<sJ-CBty-PyPy-j3-PyPy-j3-Dp (2R). 2R was prepared in an analogous 

fashion to 1S from 6-DSG. UV (H20) "-max (c:), 312nm, (73, 854); MALDI-TOF-MS 

(monoisotopic) [M+H] 1781.73 (calculated 1780.76 for C83H 10 1ClN280 16). 

DNA Reagents and Materials. Enzymes were purchased from Boehringer-Mannheim 

and used with their supplied buffers. Deoxyadenosine 5 ' -[y-32P] triphosphates were 

purchased from I.C.N. Sonicated, deproteinized calf thymus DNA was acquired from 

Pharmacia. RNase free water was obtained from USB and used for all reactions. All 

other reagents and materials were used as received. All DNA manipulations were 

performed according to standard protocols. 

Construction of Plasmid DNA. The eDNA plasmids of COX-2 were provided by the 

Hersch man group of UCLA. The HIV -L TR plasmid was provided by the Gottesfeld 

group at Scripps. The particular plasmid used was prepared by Nicholas Wurtz and 

contains two mutations that differ from the original plasmid (See notebook 9, page 141 

for sequence). Concentration of the prepared plasmid was determined at 260 nm from 

the relationship of 1 00 unit=50 1-1g mL-1 duplex DNA. 
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PCR Labeling to generate 5'-End-Labeled Restriction Fragments. To label COX2-

198-496 fragment, primers 5'-ATGTCAAAACCGTGGGGAATG-3' and 5'­

AGCTTTTGTAACCATAGTGCA-3' were used. For COX-2 fragment 500-772, primers 

5' -AAGCCTTCTCCAACCTCTCCT -3' and 5'-TT AAGTCCACTCCA TGGCCCA-3 ' 

were used. To 5' label the HIV-LTR promoter, primers 5'-AATTCGAGCTCGGTACCC 

GGT-3 ' (labeled) and 5'-TGCATGCCTGCAGGTCGATTG-3' (unlabeled) were used. 

Depending on the strand to be labeled, one primer was treated with T4 polynucleotide 

kinase and deoxyadenosine 5' -[y-32P] triphosphate as previously described. PCR 

reactions containing 60 pmol each primer, 10 f.ll PCR buffer (Boehringer-Mannheim), 3.7 

f.ll template (0.003 f.lg/mL), 2 f.ll dNTP mix (each at 10 mM), 1 f.ll lOOX BSA (New 

England Biolabs) and 83 f.ll water were heated at 70 oc for 5 minutes. Four units of Taq 

Polymerase were added (Boehringer-Mannheim). Thirty amplification cycles were 

performed, each cycle consisting of the following segments: 94 OC for 1 minute, 54 OC 

for 1 minute, and 72 OC for 1.5 minutes. Following the last cycle, l 0 minutes of 

extension at 72 OC completed the reaction. The PCR products were gel purified as 

previously reported for 3' -end labeling protocols. 

Preparation of 3' -End labeled Restriction Fragments. The HIV -LTR plasmid was 

linearized with EcoRI and then treated with Sequenase enzyme, deoxyadenosine 5' -a-

32P-triphosphate, and thymidine triphosphate for 3' labeling. Treatment with Hindlll 

generated the desired 241 base pair fragment which was isolated as previously described. 

Cleavage Reactions. All reactions were carried out in a volume of 50 f.ll. A polyamide 

stock solution or water (for reference lane) was added to an assay buffer ofTE (pH7.5) 

and 20 kcpm of3'- or 5'-radiolabeled DNA. The solutions were allowed to equilibrate 
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for 12 hours or the appropriate time (for time course reactions) at 37 OC. The reactions 

were stopped with 60 fll of a solution containing NaOAc (600 mM), EDTA pH 8.0 (12.5 

mM), calf thymus DNA (150 fJM base pair), glycogen (0.8 mg mL-1
), and NaCl (2M). 

Ethanol was added to remove unbound polyamide and precipitate the products. The 

reactions were resuspended in 20 fll of TE (pH 7 .5) and cleavage was initiated by heating 

at 95 OC for 30 minutes. The cleavage products were precipitated with 150 fll ethanol and 

then resuspended in 100 mM trisborate-EDT A/80% formamide loading buffer, and 

denatured and loaded onto polyacrylamide gels as previously reported. The gels were 

quantitated by the use of storage phosphor technology. Yield or efficiency of alkylation 

was determined as the ratio between the volume integration assigned to the products and 

the sum of the volumes of all the products in the lane. 
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