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Abstract 

A neural network is a highly interconnected set of simple processors. The many 

connections allow information to travel rapidly through the network, and due to their 

simplicity, many processors in one network are feasible. Together these properties 

imply that we can build efficient massively parallel machines using neural networks. 

The primary problem is how do we specify the interconnections in a neural network. 

The various approaches developed so far such as outer product, learning algorithm, 

or energy function suffer from the following deficiencies: long training/ specification 

times; not guaranteed to work on all inputs; requires full connectivity. 

Alternatively we discuss methods of using the topology and constraints of the 

problems themselves to design the topology and connections of the neural solution. 

We define several useful circuits-generalizations of the Winner-Take-All circuit

that allows us to incorporate constraints using feedback in a controlled manner. These 

circuits are proven to be stable, and to only converge on valid states. We use the 

Hopfield electronic model since this is close to an actual implementation. We also 

discuss methods for incorporating these circuits into larger systems, neural and non

neural. By exploiting regularities in our definition, we can construct efficient networks. 

To demonstrate the methods, we look to three problems from communications. 

We first discuss two applications to problems from circuit switching; finding routes 

in large multistage switches, and the call rearrangement problem. These show both, 

how we can use many neurons to build massively parallel machines, and how the 

Winner-Take-All circuits can simplify our designs. 

Next we develop a solution to the contention arbitration problem of high-speed 

packet switches. We define a useful class of switching networks and then design a 

neural network to solve the contention arbitration problem for this class. Various 

aspects of the neural network/switch system are analyzed to measure the queueing 

performance of this method. Using the basic design, a feasible architecture for a 

large (1024-input) ATM packet switch is presented. Using the massive parallelism 

of neural networks, we can consider algorithms that were previously computationally 
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unattainable. These now viable algorithms lead us to new perspectives on switch 

design. 
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Chapter 1 

Introduction: 

Has parallel computing failed us again? 

-W. L. Miranker [1] 

1.1 What is a Neural Network and What Will 
We Show? 

Neural networks are a class of systems that have many simple processors -"neurons"

that are highly interconnected. The function of each neuron is simple, and the be

havior is determined predominantly by the set of interconnections. Thus, a neural 

network is a special form of parallel computer. Although a major impetus for using 

neural networks is that they may be able to "learn" the solution to the problem that 

they are to solve, we argue that another perhaps stronger impetus is that they provide 

a framework for designing massively parallel machines. As a step in this direction, 

we develop techniques which will aid us in our designs. 

The highly interconnected architecture of switching networks suggests similarities 

to neural networks, and indeed, we present three applications in switching in which 

neural networks can solve the problems efficiently. The first two problems come from 

circuit switching: finding routes through large multistage switches and calculating a 

rearrangement that allows a new call to be placed through a rearrangeable switch. 

In this latter problem we show that a computational advantage can be gained by 

using nonuniform time delays in the network. The last application is to high-speed 
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interconnection networks, of relevance to packet switching. Using the computational 

speed of many neural processors working in parallel, we are able to resolve contention 

for paths through the network in the necessary time. We analyze this problem in 

detail to show the applicability of neural systems to real applications. 

1.2 Neural Networks and Parallel Machines 

For applications requiring computational speed beyond what a single processor IS 

capable of, increasing the number of processors can decrease the computation time. 

Standard parallel computing models are all fundamentally equivalent to the Turing 

model of computation. While, in principle, the programming of the multiple nodes 

is a straightforward extension of the programming of a single node, unfortunately, 

complications arise since the processors must spend time communicating intermediate 

results and waiting for other processors to send needed data. The programming and 

even the way that the multiple processors must be connected so that the machine 

isn't bogged down in this interprocessor-communication and scheduling overhead is 

not so well understood. As a result, the increase in speed as a function of the number 

of processors is significantly sublinear. 

We illustrate this phenomenon using data from reference [2]. The time using one 

processor for a given task is less than N times the time spent with N processors. 

Putting this in a comparable form, we define: 

L 
. Effi . 6 N x (time using N processors) - (time using 1 processor) 

oss In ciency = ----~------~~~~------~--~------~--~------~ 
N x (time using N processors) 

Figure 1.1 shows examples of the loss in efficiency as a function of the number of 

processors for some common parallel machines. 

This was from a performance test that allowed the manufacturers to use the fastest 

possible algorithm that they could develop to solve a system of 1000 equations and 

1000 unknowns. This comparison is interesting because these machines have a vari

able number of processors. By comparing only within a single architecture, we can 

control for the differences between machines. The loss in efficiency is significant for 

the architectures in the graph. For example, with just seven processors, the Alliant 
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Figure 1.1: Loss in computational efficiency. 

computer spends almost 25% of each processor's time on this communications over

head. Over the domain of the data given, the loss in efficiency grows linearly with the 

number of processors. The linear increase in the loss in efficiency implies a decreasing 

amount of speedup that, if extended, would ultimately lead to an absolute decrease 

in the computing speed. This does not bode well for systems with many processors. 

Even if the design and programming problems could be solved, a microprocessor 

with its associated memory and support components is a complex and relatively 

expensive computational element, limiting the number of processors. Certainly the 

idea of 1,000,000 microprocessors in a system does not yet seem feasible. 

Alternatively one can consider neural networks. While they don't fit into the von 

Neumann/Turing framework (although some researchers have been able to formulate 

special cases within this framework as feedforward threshold-logic circuits), much 

work has gone into developing their theory. General theorems on their behavior have 
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been derived [3][4]. In digital systems, we typically speak in terms of "0" or "1," 

despite the fact that these symbols only represent real valued voltages and currents 

that exist inside a real system. Furthermore, the logical operation of elements, such 

as the AND gate or the flip flop, also represents more complex underlying behavior. 

There exist similar abstractions that simplify the analysis of neural network sys

tems. Thus, we often can treat the neuron as a simple threshold element whose 

output is either "-1" or "+1." We will also introduce neural network elements that 

will allow us to introduce feedback in a controlled manner. Using these elements as 

building blocks, similar to the use of flip flops, etc., in digital systems, releases us 

from the details of the underlying dynamics. 

Because of the simplicity of the individual neurons and because the connections 

themselves are an integral part of the system's computation, large neural networks 

are feasible and useful. Biological neural systems, such as the brains of mammals, 

show that systems with as many as 1012 neurons are possible. The problem that 

arises is how to configure a network to solve a particular problem. 

1.3 Neural Networks 

Before discussing the details of the neural network model that we use, we describe 

some general principles. The basic unit of an artificial neural network is the neuron. 

Its function is extremely simple, usually just a threshold function on the weighted 

sum of its inputs. The functionality of the network is not derived from the operation 

of the individual neurons, but from the collective properties derived from the many 

connections between the neurons. The problem in any neural network is to define 

these connections so that the network operates as desired. There are three issues that 

anse: 

• Can we determine these connections in a simple manner? It has been shown 

theoretically that in general this problem belongs to a class of "hard" prob

lems [5]. This is true even for simple neural architectures [6]. Empirically it is 

known that the number of iterations needed to converge on a set of connections 
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grows quickly as the size of network grows [7] [8]. Because of this, we cannot 

guarantee that learning algorithms such as "Back-Propagation," or "The Boltz

mann Machine," will find a working set of connections in a reasonable amount 

of time. Furthermore, if we must modify the problem (e.g., go to a larger size), 

does the procedure for specifying the weights have to be repeated all over again. 

• If we have x neurons, then in general a network may have x 2 connections, 

one from every neuron to every other neuron. Most methods of specifying the 

connections require such a so-called fully interconnected network. For large 

networks, this can become prohibitively complex. 

• Does the set of connections found actually find a valid solution for all possible 

inputs? Methods proposed in the literature have been shown to work statisti

cally when the number of desired stable states is small compared to the number 

of neurons [9], or empirically [8] for small problems. These conditions are un

reasonable for most applications. For this reason we can never be sure that 

for the networks found by these methods there isn't some input that will be 

problematic. 

The method that we propose for the applications in this thesis is to simply design 

the set of connections for a problem using direct methods, with sub-networks that 

are already available. 

1.4 Designing Neural Networks 

This idea is analogous to the work of a digital designer. Given a problem, the designer 

doesn't look directly at desired input and output signals and then solder a circuit 

using transistors, resistors, and other components; rather they analyze what they 

know about the problem to formulate a solution using the already available AND 

gates, flip-flops, etc., leading to a circuit design. A good designer will often try to 

produce a solution to the general class of problems, not just the specific instance that 

is at hand. 
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Our approach with neural networks will be similar. Given a problem, analysis can 

yield much information about the problem. We often know the constraints and the 

direct causes of particular elements in the response. It is therefore to our advantage 

to incorporate this knowledge into the neural solution. As research continues on 

neural networks, the number of classes of neural networks which are well understood 

increases. These can help us to incorporate the knowledge we have about the problem. 

The fact that a neural network can assume quite arbitrary topologies is extremely 

useful. The topology of the neural network can be matched to the topology of the 

problem. This obviates the correspondence between the problem and the neural 

solution. Finally, since we know the underlying structure which is producing the 

neural network, we can exploit this structure to simplify the construction. These 

principles will be very important in guiding us to our design solutions. 

To introduce some of the basic ideas, consider the infamous (in neural circles) 

parity check problem: Given N inputs of "-1" or "+1," output a "+1" if the number 

of input "1 's" is odd, otherwise output a "-1." This is often quoted as an unnatural 

and difficult problem for neural networks to solve [10]. General learning algorithms 

have great difficulty in finding a solution to the parity check problem. But it is known 

that there exists a straightforward neural network to solve this for any N; we present 

this network below. 

The way to solve this problem here is to count the number of "+ 1 's" in the input, 

and then to see if this number is odd or even. So we first create N neurons numbered 

1 through N. We connect neuron i so that it only turns on if there are at least i 

"+1's" in the input. We then create an output neuron that uses this regularity to 

only turn on if the number of "+ 1 's" is odd. This clearly works. The network is 

shown in Figure 1.2 [8, p. 334]. 

Once a solution exist for a class of problems, then as the size of the problem 

becomes larger, the many processors in the corresponding network can reduce the 

time of the computation. In the example of the parity problem, all the elements are 

feedforward, and the output is only two stages from the input, independent of N. 

This implies-to a first order approximation-that the time to solve the problem is 
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1 2 3 N 

Figure 1.2: Solution to the parity problem. 

constant for all N. 

One must be a little careful in the solution, though. First, the number of neurons 

and connections must not grow too fast with the problem. Second, the time for the 

network to produce the output must not grow too quickly either. Thus a solution 

to the parity problem using 2N neurons and connections, or in which the number of 

stages between the input and the output is N 2 , for example, would not be acceptable. 

In all of our solutions we will be careful to show that both the component and time 

complexity is reasonable. 

1.5 Saying What We Said 

We argue that neural networks are a significant break from conventional parallel 

computing. Whereas the fundamental problem with conventional parallelism is how 

to program the multiprocessors; with neural networks it is how to determine the 

connections between processors. Most current methods assume that the problem 

is unstructured, unnecessarily ignoring available information. By designing solutions 

using available information, we can produce efficient general neural solutions to whole 

classes of problems. 
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1.6 Thesis Outline 

Chapter 2 will present the core analytical results. We present the basic neural model 

and define three generalizations to the Winner-Take-All neural circuit. Each of these 

generalizations is shown rigorously to be stable and only converge on stable states. A 

certain flexibility is incorporated into these designs. We develop methods for utilizing 

this flexibility for particular applications. By exploiting the regularities in the design, 

we present methods for significantly reducing the connectivity, while still maintaining 

identical functionality. 

Chapters 3 and 4 discuss specific applications of these methods. Chapter 3 con

tains two applications to problems from circuit switching; finding routes in large 

multistage switches, and the call rearrangement problem. These will show both, how 

we can use many neurons to build massively parallel machines, and how the Winner

Take-All circuits can simplify our designs. 

Chapter 4 is a complete development of an application to high-speed packet 

switches. We define a useful class of switching networks and then design a neural 

network to solve the contention arbitration problem for this class. Various aspects of 

the neural network/switch system are analyzed to measure the queueing performance 

of this method. Using the basic design, a feasible architecture for a large (1024-input) 

packet switch is presented. 
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Chapter 2 

Designing with Neural Networks 

It could be that the nonlinear nature of inhibitory feedback is the key 
to building a complex analog processing system with a great deal of gain 
and time delay, and to keeping the entire mess stable. We will know that 
we understand these matters only when we can build such a system-and 
can keep it stable. 

-Carver A. Mead [1] 

2.1 Introduction 

11 

In this chapter we will discuss the neural model which will be the starting point of our 

work. We will then develop a series of increasingly complex neural network classes 

that will lead us to an understanding of how we can build stable complex analog 

processing systems that can be applied to specific problems. 

2.2 Neural Network Model 

We start with the Hopfield continuous model [2], since it is defined in terms of elec

tronic components, and therefore close to an actual implementation. In this model the 

neurons are high-gain amplifiers that are interconnected through resistors as shown 

in Figure 2.1 for a four-neuron network. The amplifiers have both positive and neg

ative outputs. A connection from a positive output is known as excitatory, and a 

connection from a negative output is known as inhibitory. We define W = { W;j }, the 

connection matrix. If R;j is the value of the resistive connection from neuron j to 

neuron i, then we say that the strength of the connection, lw;j I, is 1/ Rij· The sign 



Connection Strength 
I Tijl = 1/Rij 
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12 

Figure 2.1: The electrical model of a neural network showing topology and details of 
a neuron. 
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of Wij is positive or negative depending on whether the connection is excitatory or 

inhibitory. Each neuron can have an external input, I;. A threshold, t;, is subtracted 

from all the inputs, and the result is the net input to the neuron. In a system of 

N neurons, g1ven a neuron i, its state variable, u;, is governed by the differential 

equation: 
du; N 

c·- = -A·u· + """"""w· ·g(u ·) + J.- t· • d ' ' L..J 'J J ' '' 
T j=l 

(2.1) 

where 
N 

A; = L lwij I· 
j=l 

This equation is derived from simple circuit analysis of each neuron. Some researchers 

include the internal resistance of the amplifier. This only adds a positive constant to 

A; that does not significantly change the results, so we will disregard it here. 

The response or output of the neuron is the "sigmoidal" function g. More precisely, 

g(x) = f(tx), where 1 > 0 is the neuron gain and f satisfies: -1 ::; f(x) ::; 1; 

limx-+±oo f(x) = ±1; 0 < f'(x) ::; f'(O) = 1; and f'(O) is continuous. This allows for 

most definitions of a continuous neuron's function. Neurons with outputs close to +1 

and -1 are said to be on and off respectively. We define Ifot to be the sum of the 

last three terms in (2.1): 

N 

I:Ot ~ 'L, Wjjg( Uj) + Ii - tj. (2.2) 
j=l 

We see that Ui evolves as a negative exponential with time constant c;/ Ai, and that it 

decays toward the value Ifot / Aj. In general neuron i is on or off depending on whether 

Ifot is positive or negative. 

Formally, for a fixed g, we define a neural network as a triple (W, t, c) corre

sponding to the matrix of connections, (wij), vector of thresholds, (ti), and vector of 

capacitances, (ci), respectively. The state of the system is the vector, u(r) = (ui(r)). 

The input to the system is u( r = 0) and the vector, I= (Ii), that could be a function 

of time, but we will assume that it is static. 

A neural computation is defined as 
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Neural networks such that the above limit is defined for any input are known as stable. 

Reference [2] shows that a sufficient condition for a network to be stable is that W be 

symmetric. All of the networks that we will define have symmetric W and therefore 

are stable. 

In equation (2.1 ), scaling c; only changes the time scale of the calculation. We also 

note from (2.1) that for any scalar f3 > 0, llf(W,t,c)(I, u(O)) - llfcew,,Bt,,6c)(f3I, u(O)). 

This implies that we can scale the neural network to correspond to any particular 

implementation without affecting the calculation. 

2.3 The Winner-Take-All Circuit 

Now that the neural circuit is better defined, we discuss a neural circuit that we 

will use several times, the Winner-Take-All circuit. As its name implies, it has the 

property that given N neurons all with the same initial internal state (i.e., u;(O) = u0 

for all i), only one (or a one, if more than one exisits) neuron turns on, the one with 

the largest external input. This process of choosing the neuron with the largest input 

is known as a competition. By using external inputs, this circuit provides a method 

for selecting a neuron to turn on. 

A generalization of this circuit is the I<-Winners-Take-All circuit. This has the 

property that not just the neuron with the largest, but the I< neurons with the I< 

largest inputs, turn on. For anN-neuron I<- Winners-Take-All, we define the network 

prototypically as: 
t::. { -1 if i i j 

w·· 
'1 a, JaJ < 1 if i = j 
t· ~ N- 2K + 1, 

(2.3) 
' 

c· ~ c, 
' 

where C is a positive constant. The diagonal element, a, denotes a small amount of 

direct feedback which we allow. We limit the inputs by: 

JaJ < JI;J < (2- JaJ). (2.4) 

Note that in general, if I; < 0, neuron i will be off and out of the competition. The 
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Figure 2.2: Winner-Take-All mutual inhibition circuit. 
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circuit is shown in Figure 2.2a. Using definition (2.3) in (2.1): 

Cdu; = ->.u; +(a+ 1)g(u;)- tg(uj) +I;- (N- 2K + 1), (2.5) 
dr i=l 

where>.= N -1 + Ia I. Analysis in reference [3] shows that with these thresholds and 

connections this circuit has the property that given different initial internal states, 

u;(O), and I; = 1 for all i, the J( neurons with the J( largest initial internal states 

will be on and the rest will be off. As we shall see, this formulation is not as versatile 

as the one above, but in any case, we use the analysis in [3] as a basis for our results. 

The fundamental result appears in Appendix 2.A at the end of this chapter. 

We want the neural network to make a decision based on the inputs. The problem 

is that given a neural calculation it is possible that the final state of one or more of the 

neurons is in the vicinity of zero and even with arbitrarily high gain the output cannot 

be forced to plus one or minus one. Such neurons we call undetermined, otherwise a 

neuron is determined. Appendix 2.A contains a proof of the following theorem: 

Theorem 2.1 Given the neural network defined by (2.3)) the neural network is stable 

and there exist at most one undetermined neuron. 

For any neuron i, if we can bound u; away from zero, then we know from the definition 

of g that with a large enough gain,/, g(ui) can be made arbitrarily close to ±1 and 

neuron i is determined. If Ifot defined in equation (2.2) can be bounded away from 

zero, then since in equilibrium u; = I;at / >., this is sufficient to bound ui away from 

zero. Further, this implies that the sign of !fat determines whether neuron i is on or 

off. 

We now show that the definition of the K-Winners-Take-All is valid. It is slightly 

complicated if fewer than J( neurons have a positive input (i.e., I; > lal), but the 

only effect is that some of the other non-competing neurons may be forced on: 

Theorem 2.2 Given a neural network defined by (2.3)) satisfying (2.4)) and at time 

t = 0 with all of the neurons starting at the same initial state u0 ; let P be the 

number of neurons satisfying ial <I; < (2- Ia I). Given these conditions) the neural 
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computation results in the K' neurons with the K' largest inputs on, where K' = 

{ 

f{ if p > f{ 
f{ _ 1 if p < f{ ; the rest of the neurons are off. 

Proof: Throughout this proof we assume that the gain is large enough so that the 

output of any neuron that is on or off is arbitrarily close to ±1 respectively. We define 

the quantity E =min;( {II;I-ial}, {(2 -Ia I)- Ii} ). This is the closest that any of the 

I; approach any of the limits in (2.4). By Theorem 2.1 we know that the network is 

stable, and that at most there is one undetermined neuron. 

Suppose there exists such an undetermined neuron i. Except for this neuron, all 

of the other neurons are on or off. Let "'i denote the number of other neurons which 

are on. In this case; 

Ifot = (ag(u:) + Ii) + 2(K -1 - K,i). (2.6) 

No matter what the integer "'i is, we still have IIfot I > t, contradicting that neuron i 

is undetermined. Thus all the neurons are determined. 

Equation (2.6) applies equally well to other neurons. If "'i 2:: f{ then Ifot < -E 

and neuron i is off. This implies that K' ::=; K. If instead "'i < f{ - 1 then Ifot > E 

and neuron i is on. This implies f{' 2:: f{ - 1. Finally, if "'i = f{ - 1 then neuron i 

is on or off depending on whether I; > iai or I; < -iai. This implies that K' = f{ 

unless P < f{. 

To see that the neurons that are on are the ones with the K' largest inputs, we 

note: 
d(u·-u·) 

C 'dr 1 = ->.(u;- uj) +(a+ 1)(g(u;)- g(ui)) +(I;- Ij). (2.7) 

If u;(r) = ui(r) at some timer, then the sign of (2.7) is determined by the sign of 

(I;- Ij). Since u;(O) = Uj(O) this implies that if I; > Ij then u;(r) > Uj(r) for all 

r > 0. Thus an ordering on the inputs translates to a corresponding ordering on the 

internal states of the neurons, and in particular on the final state of the neurons. • 
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Figure 2.3: The Multiple Overlapping Winner-Take-All concept. 

2.4 The Multiple Overlapping Winner-Take-All 
Circuit 

We describe an extension to the Winner-Take-All circuit, the Multiple Overlapping 

Winner-Take-All. The idea is that we have a set of neurons, 0, with subsets, S;. These 

subsets represent constraints on the computation. Within each subset we restrict the 

neural computation to having at most one neuron on per subset. The idea is shown 

in Figure 2.3. Note that the subsets are not necessarily disjoint. 

Intuitively, the neural network that will satisfy these constraints is the one in which 

the neurons in each subset are connected in a separate Winner-Take-All network. The 

rest of this section will develop this idea and prove its validity. For a given 0 and 

{S;}, we define the network as follows: Let J; ~ {kj neuron i E Sk}. 

Wij 
!:.. { -Jl; n Jil if i i j 

a, Jaj < 1 if i = j 

i; 
6 I:: Jl; n ljJ, (2.8) 

J#i 

c· !:.. c, 
' 

where C is a positive constant. The connection defined in (2.8) between a neuron 

pair increases by -1 for each subset that the pair is jointly in, matching our intuition 
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Subsets, S; 
1 2 m m+1 

1 1 1 1 1 1 1 
2 1 1 1 1 1 1 
3 1 1 1 

Neurons 1 

1 1 1 1 
1 1 1 1 1 

N 1 1 1 1 1 

Figure 2.4: A set matrix showing the equivalence of the threshold definitions. 

above. Note also that if there is only one subset, S1 = 0, then we reduce to the 

Winner-Take-All. We limit the inputs as in the Winner-Take-All case by: 

Jal < JI;J < (2- JaJ). (2.9) 

It is sometimes easier to define t; alternatively: 

t; = l::(ISjl-1). (2.10) 
jEJ; 

These two definitions of t; are equivalent by the following argument. Suppose that 

we create an incidence matrix where the rows are numbered 1 to N and the columns 

correspond to the subsets. We place a 1 in row i, column kif neuron i is in Sk· Assume 

without loss of generality that we are looking at neuron 1, and that it belongs to the 

first m subsets as shown in Figure 2.4. The definition in (2.8) sums the number of 1 's 

in the first m columns of each row after the first, and the definition in (2.10) sums 

the number of 1 's less one in each of the first m columns. These both count the same 

1 's, so they are equivalent. 

In Appendix 2.A, we prove the following: 

Theorem 2.3 Given the neural network defined by (2.8), the neural network is stable; 

moreover, within each subset, S;, there exist at most one undetermined neuron. 

We use this to show the following: 
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Theorem 2.4 Given a neural network defined by (2.8), and satisfying (2.9), then 

the neural computation results in each subset, S;, having at most one neuron on, the 

rest off. 

Proof: This proof is similar to the one for Theorem 2.2. We assume that the gain is 

sufficiently high so that the outputs of on or off neurons can be considered arbitrarily 

close to ±1 respectively. We define t: = min;({JI;J-JaJ},{(2 -JaJ)- I;}). From 

Theorem 2.3, we know that the network is stable, and that at most there is one 

undetermined neuron in each subset S;. Note that this means that if neuron i is 

undetermined, then it is not connected to any other undetermined neuron, else there 

would be two undetermined neurons in the same subset. For neuron i, we define K,; 

to be the total connection strength between neuron i and all other neurons that are 

on. Note K,; ~ 0. 

Using (2.8) in (2.2), we have 

Jfot = ag( ui) + I; - 2/\,;. (2.11) 

Since K,; is an integer, we have Jifotl > t:, and thus neuron i is determined. Neuron i is 

on or off depending on whether or not K,; = 0. But K,; = 0-and neuron i is on-only 

if no other neurons in the same subset are on. Thus, all neurons are determined, 

and furthermore, they are on if and only if no other neurons belonging to the same 

subsets as neuron i are on, otherwise they are off .• 

Note from the proof that the neural network never chooses the trivial solution of 

all neurons off. 

2.5 The Multiple Overlapping K-Winner-Take-All 
Circuit 

We develop one final generalization to the Winner-Take-All Circuit, the Multiple 

Overlapping K- Winner-Take-All Circuit. This is identical to the Multiple Overlapping 

Winner-Take-All Circuit, except that in certain instances, we can define additional 

subsets, Sf, where not at most one neuron, but at most K; neurons are allowed to 
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turn on per Si. The only limitation on these subsets is that Si and Sj are disjoint for 

all i =f j, that is, each neuron can belong to no more than one set that allows more 

than one neuron to turn on. 

For a given 8 and two sets of constraints { S;} and { (Sf, K;)}, we first define 

a Multiple Overlapping Winner-Take-All Circuit using 8 and {Si} in (2.8). Define 

Kmax ~ maxi{Ki}. We restrict the network slightly in that the diagonal elements, 

a, must satisfy Ia I < ZK~ax. Using this as a basis, we incorporate the additional 

constraints. 

Let Jf ~ { k such that neuron i E S~ 
0 

w~. ~ 
'1 

{ 

1 
Wij- 2KJ' 

a, lal < 2·K~ax 
W;j 

if such a k exists 
otherwise. 

if i =f j, Jf = Jj -I 0, 

if i = j, 
otherwise; 

f 
' 

t; + . . 
{ 

ISJ'I- 2KJ' + 1 

2KJ' 
t; • 

if Jf =f 0, 

otherwise; 

d: 
' 

c;. 

(2.12) 

Comparing this definition with (2.3) we see that we are simply adding a K-Winner

Take-All circuit to each neuron set, Si, that is scaled by a factor of 2J<;. We limit the 

inputs by: 
1 

lal < II;I < (y- -lal), 
max 

(2.13) 

This further reinforces the scaled K-Winner-Take-All concept. We now prove that 

this definition works in two theorems, as in the previous section. 

In Appendix 2.A we prove the following: 

Theorem 2.5 Given the neural network defined by (2.12), the neural network is 

stable; moreover, within any subset S; or Sj, there exist at most one undetermined 

neuron. 

This is used to show the following: 
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Theorem 2.6 Given a neural network defined by (2.12) and satisfying (2.13}, then 

the neural computation results in each subset, S;, having at most one neuron on, and 

each subset, SI, having at most K; neurons on, the rest of the neurons being off. 

Proof: We make the assumption that the gains are all sufficiently large, and define 

t: =min;( {11;1-lal}, {(K~ax -Ia I) -1;} ). From Theorem 2.5, we know that the network 

is stable, and that there is at most one undetermined neuron in each constraint subset. 

For neuron i, we define K; to be the total connection strength between neuron i and 

all other neurons that are on, using only the weights Wij· If J[ =j:. 0, we define Ki to 

be the number of neurons other than neuron i that are on inS~,; otherwise Ki = 0 . . 
Suppose that neuron i is undetermined. By Theorem 2.5 we know that all of 

the other neurons that it is connected to are determined. Using (2.12) in (2.2) and 

defining K 0 = 1, we have 

(2.14) 

Since K; and Ki are both integers, by (2.13), we have l1fotl > t:, contradicting that 

neuron i is undetermined. Thus all neurons are determined. 

Note that if K; :2: 1 then 1fot < -1, and neuron i is off. If K; = 0 then neuron i is 

off whenever Ki > (I(J'- 1). Thus all neurons are determined, and furthermore, no . 
S; has more than one neuron on, and no SI has more than 1(J' neurons on .• . 
2.6 Neuron Gain 

Each of the proofs in this chapter are true only with "high enough gain." This section 

gives upper bounds on the minimum gain sufficient for any of the Winner-Take-All 

networks described. Unlike previous results, this will depend on the actual sigmoid 

function, j, that we use. 

Theorem 2.8, Lemma 4 gives a lower bound. It requires 1 :2: a~l. Recall from (2.1) 

that A; is the total connection strength between neuron i and every neuron in the 

network, and that A = max;{).;}. This lower bound assumes that all of the weights 

have been scaled so that the minimum non-zero weight is one, which for comparison 



23 

purposes we will assume is the case. In Section 2.5, this means multiplying all weights 

by 2I<max· 

Let t: be defined as in the proofs in the preceding as the closest that any I; 

approaches the limits of (2.4), (2.9), or (2.13), as appropriate. Let us focus on the 

effect of the gain on a single neuron, i. Assume, as a worse case, that I; is exactly t: 

away from the nearest limit. The limits on the inputs were set such that in a worst 

case IIfot I = E. For concreteness, assume Ifot > 0 and that neuron i is on. These limits 

were set assuming that all of the neuron outputs were exactly ±1. In fact, since the 

total input to any neuron is finite, the outputs are all some non-zero amount away 

from ±1. 

Suppose that every neuron is no more than 8 away from the nearest of either + 1 

or -1. In the worst case, they are all exactly 8 away and each of these differences 

from the ideal value add up constructively. This implies that I:Ot = t: - >..;8 and 

ui = t:/ >..; - 8. By assumption neuron i is on, implying ui > 0. Thus, we require 

t:/ >..; > 8 > 0. If we put similar requirements on all of the neurons, we find that at 

worst ui = t:/ >.. - 8, and t:/ >.. > 8 > 0. 

Intuitively, if 8 is near zero, since the the inputs are finite and by construction 

bounded below t:, this implies that the gain is large enough to maintain the output 

within 8 of ±1. As we decrease the gain, the smallest 8 such that we can still maintain 

the output within 8 of ±1 increases. At the other extreme, if 8 is near t:/ >.., that is, 

the total input is near zero, then a large gain is necessary to drive the outputs toward 

±1. As we decrease the gain, the largest 8 such that we can still drive the outputs 

to within 8 of ±1 decreases. Eventually the gain will be reduced below a minimum 

so that the smallest 8 of the first case is larger than the largest 8 of the second case, 

and we cannot guarantee the network functionality in the worst case. 

By definition, in this worst case 8 = 1-g(ui) = 1-g(t:/ >..-8). Using g(x) = f(!x) 

and solving for 1, 

J-1(1 - 8) 
I= t:j>..- 8 . (2.15) 

As described in the previous paragraph, when 8 ----* 0 or 8 ----* t:/ >.. the necessary gain 



Table 2.1: Comparison of necessary neuron gains 

Sigmoid N arne f(x) 

-1 if X< -1 
Piecewise Linear X if lxl :S 1 

+1 if X> 1 

e2x -1 
Hyperbolic Tangent 

e2x + 1 

Inverse Tangent ~ tan-1 Gx) 

"Slow" Sigmoid 
X 

1 + lxl 

Upper Bound 
on lfin 

). 
-
f 

). 
-log(4-X) 
f { 

( 2f).) 
2 

( 2f>.) 
2 

24 

approaches infinity. We could find the minimum of (2.15), but this leads to messy 

and non-instructive results. Since any positive 8 < f/ >. in (2.15) produces a large 

enough gain, for simplicity, we use 8 = ~f/ >.: 

(2.16) 

We use Equation (2.16) to calculate a bound on the minimum necessary gain for 

some common sigmoid functions. We use approximations that are upper bounds on 

the right-hand side of (2.16) to put them in a comparable form. Table 2.1 tabulates 

the results. 

The simplicity of the piecewise linear case allows us to find the minimum of (2.15) 

exactly. We include the piecewise linear function even though it technically does not 

satisfy our definition of a sigmoid (e.g., J'(x) = O,x > 1). But, it does serve as a 

lower bound on the sufficient gain of any function. This follows since the piecewise 

linear function approaches the ±1 limits at least as fast as any function constrained 

by J'(x) ::=; 1. Thus, any 1 >max(~, a~l'tfin(~)) is sufficient for the validity of 
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the theorems in this chapter when the node function is f. Note that of the sigmoid 

functions evaluated, the hyperbolic tangent function produces the smallest necessary 

gam. 

2.7 Designing with Winner-Take-All Circuits 

Having defined these Winner-Take-All Circuits, we show how to reduce the connec

tivity of the neural network, and how we can incorporate neural networks into larger 

systems. To reduce the connectivity, we note that two neurons, i and j, have the 

same input except that i does not connect to itself, but connects to j, and vice versa 

for j. Several researchers have noted that we can exploit this regularity [3,4,5]. They 

all fundamentally rely on the same principle. By making a weighted sum of all neu

rons only once for the whole circuit and providing a self connection in each neuron 

to negate the resulting feedback, we reduce the number of connections needed from 

N(N- 1) to 3N for a single Winner-Take-All. This modified circuit is shown in 

Figure 2.2b. We will assume that all mutually inhibitory connections are made in 

this manner and will represent them schematically as shown in Figure 2.2c. 

For the Multiple Overlapping Winner-Take-All, we could connect the network 

using the definition in (2.8). But every neuron is connected to every other neuron 

within each subset. This implies a total of 0(2::; IS; 1
2

) connections. If instead we 

connect each subset in a separate Winner-Take-All as described above, we produce 

a network which is mathematically equivalent to (2.8), but now there are only 3IS;I 

connections per subsetS;. This results in a total of 3 Li IS; I connections in the entire 

network, yielding a significant savings. 

The definitions and analysis of these Winner-Take-All circuits are all for a par

ticular network scale. But as described in Section 2.2, we can scale c arbitrarily, as 

well as W, t, and I. Thus the network can be matched to the particular voltage and 

current levels appropriate for a particular implementation. From (2.1) we see that 

the threshold, t;, and the external input, I;, are fundamentally the same except for 

a change in sign. Since the only dependency on I< in (2.5) occurs in the threshold, 
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by adjusting the external input to all of the neurons we can change the threshold, 

and so use the same circuit as a K-Winners-Take-All for any K. We also note that 

inputs from neurons outside of the Winner-Take-All are equivalent to the input and 

threshold, therefore these can be used to modify the value of either I; or t;. 

The definition of the ]{-Winners-Take-All allows for a range of values for the 

external input, I;, depending on the magnitude of the feedback, lal. These can be 

used to indicate various levels of "priority" of the neurons. The neurons with the 

highest priority will then be the neurons which win the competition. 

The analysis of Section 2.3 relies on initially identical internal states. This requires 

outside circuitry that can reset the network every time new winners must be selected. 

If we relax the requirement that the internal states are all initially identical, an 

inspection of the proof for Theorem 2.2 will show we only lose the ordering on the 

internal states, otherwise the result is the same. We summarize this in a separate 

theorem: 

Theoren'l 2.7 Given a neural network defined by (2.3), satisfying (2.4), let P be the 

number of neurons satisfying lal <I; < (2- lal). Given these conditions, the neural 
1 { ]{ if p ~ ]{ 

computation results in ]{' neurons on, where ]{ = ]{ _ 
1 

if P < ]{ , the rest of 

the neurons off. 

This implies that we can use the K-Winners-Take-All in addition to the Multiple 

Overlapping Winner- Take-All in a completely asynchronous mode as a selector, or 

we can use the ]{-Winners-Take-All circuit as a discriminating selector. By using 

external inputs and neurons outside of the circuit as described previously, we can 

"program" the Winner-Take-All to compute particular functions. The details of how 

we can do this will be the subject of the next chapter. 

2.8 Conclusions 

This chapter defined several useful neural networks that embody constraints on the 

neuron outputs. The networks are all generalizations of the Winner-Take-All circuit. 
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We gave rigorous proofs that these definitions result in stable networks that satisfy 

all of the constraints. We described efficient methods for constructing these networks, 

as well as how they might be incorporated into larger neural systems. 

2.A Appendix: Winner-Take-All Dynamics 

Theorems 2.1, 2.3 and 2.5 follow directly from the following: 

Theorem 2.8 Given a neural network, (W, t, c), with symmetric W such that w;; = 

a Vi, and lal < mini#j{Wij}; given any subset, S, of neurons such that Vi i' j E 

S, Wij i' 0; then the network is stable. Also, with large enough gain, the neural 

computation results in the internal state of at most one neuron in S not being bounded 

away from zero. 

Proof: By reference [2] and the hypothesis that W is symmetric, we know that the 

network is stable. That at most one u; cannot be bounded away from zero follows with 

a small modification to the proof given in [3] for a single Winner-Take-All network. 

That proof is repeated here in detail for completeness and is obtained in four 

lemmas. We assume without loss of generality that mini#j { Wij} = 1 for all Wij. Also 

define A ~max;(.\;). 

Lemma 1 Given any asymptotically stable equilibrium state u*, we always have Vi i' 

j E S: 
, g'(ui) + g'(uj) ja2 (g'(ui)- g'(uj)) 2 + 4g'(ui)g'(uj) 
A>a 2 + 2 . (2.17) 

Proof: System (2.1) can be linearized around any equilibrium state u*: 

d(u- u*) 
dr ~ L(u*)(u- u*), 

where 

L( u*) = W · diag(g'( u~), ... , g'( u;,r)) - diag(A, ... , .\). 



28 

A necessary and sufficient condition for the asymptotic stability of u* is for L(u*) to 

be negative definite. A necessary condition for L( u*) to be negative definite is for all 

2 x 2 matrices L;j(u*) to be negative definite where 

L· ·(u*) ~ ( ag'( ui) - >. w;ig'( uj) ) 
'
1 

- Wj;g'( ui) ag'( uj) - >. ' 

This results from an infinitesimal perturbation of components i and j only. 

Any of these matrices L;j(u*) has two real eigenvalues. Since the larger one has 

to be negative, we obtain: 

~ (ag'(u:)- >. + ag'(uj)- >. + Ja2(g'(ui)- g'(uj))2 + 4w[ig'(ui)g'(uj)) < 0, 

where we use the symmetry w;j = Wji· The left side of the inequality is monotonically 

increasing with wzi. Since wzi 2:: 1\1 i :f j E S, it is also true when wzi = 1. Solving 

for >. proves (2.17) .• 

Lemma 2 If a> -1, and x,y > 0 then 

a a 2(x-y)+2y -+ > 0. 
2 2Ja2(x- y)2 + 4yx 

(2.18) 

Proof: If x 2:: y, then the lemma is true for a 2:: 0. If x < y and a 2:: 0 then it is also 

true since from (2.18) we get: 

~(1 + a(x-y)+2y ) >~(1 + a(x-y) ) =O. 
2 Ja2(x-y)2+4yx 2 }la(x-y)l2 

Finally, let a< 0. For any a with a 2 < 2 (and now -1 <a< 0), the second term in 

(2.18) is positive. Therefore, when a < 0 the lemma is true if 

4 

which is true for lal < 1. Thus for all a> -1 (2.18) holds .• 



Lemma 3 Equation (2.17) implies Vi f. j E S: 

min(g1
( ui), g1

( uj)) < _>._. 
a+1 

Proof: Consider the function h of three variables: 
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(2.19) 

1 
* 

1 
* g1(ui)+g'(uj) Ja2(g 1(ui)-g 1(uj))2+4g'(ui)g'(uj) 

h(a,g(u;),g(uj))=a 
2 

+ 
2 

. 

Differentiating h with respect to g1
( uj), we obtain: 

ah = ~ + a2g1
( uj) + (2- a2)g1

( ui) 

8g1(uj) 2 2Ja2(g1(ui)- g'(uj))2 + 4g'(ui)g1(uj) 

By Lemma 2, this is positive since Ia I < 1. Thus, if g'( ui) :::; g1
( uj) (without loss of 

generality), we have: 

h(a,g1(ui),g 1(uj)) 2:: h(a,g1(ui),g 1(ui)) =(a+ 1)g1(ui) 

This, combined with (2.17), yields: 

'( *) ). g U· < --
' a+ 1' 

which is Lemma 3 .• 

Lemma 4 If the gain 1 2:: a~l, then at most one component in S can not be bounded 

away from zero. 

Proof: At most one u£ in S satisfies: 

g'(ui)) 2:: a~ 1' (2.20) 

since if two u£, uj both satisfy (2.20), then (2.19) would be violated. 

Next, choose 1 > a~l· Since g'(x) = 1f'(!x) and J'(x) :::; J'(O) = 1, we have 

g' ( ui) :::; g' ( 0) = I· Using the fact f' ( u) (and therefore g1 
( u)) is continuous at u = 0, 

any u£ with g' ( ui) < a~l < 1 can be bounded away from zero. Thus, only the at 

most one u£ in S that satisfies (2.20) cannot be bounded away from zero. • 
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Chapter 3 

Controlling Circuit Switching 
Networks 

The price paid for this great increase in combinatory power is the cur
rent difficulty of controlling networks of many stages. This difficulty is 
technological, though, and will decrease as improved circuits are developed. 

-V. E. Benes [1, p. 121] on switching networks. 

3.1 Introduction 
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This chapter will take the principles and theorems developed in the last chapter and 

apply them to problems in switching. In general, switches are composed of many 

highly interconnected simple elements. This topological similarity to neural networks 

will be exploited to design neural network controllers of switch functions. We first 

give relevant background on switching theory before designing two neural network 

solutions to problems from circuit switching. 

3.2 Background on Switches 

This section will introduce some basic concepts of switching theory relevant to our 

applications. More detailed development of switching theory can be found in any of 

several references, [1,2,3]. We abstract a switch as a device that takes a set of N signal 

inputs and reproduces them in any permuted order at the output. We restrict our 

discussion to square switches, where the number of inputs and outputs is the same, 

although the concepts that we develop readily generalize to non-square switches. If 
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the inputs and outputs of the switch are N distinct lines, then we refer to the switch 

as a space switch. Alternatively, the switch could have one line for the input and one 

line for the output. In this case, the inputs and outputs are N distinct blocks of data 

in which the order that the blocks are sent is permuted by the switch. Such a switch 

is referred to as a time switch. Since each time switch is equivalent to some space 

switch, we will restrict our discussion to space switches [2, pp. 114-117]. 

The basic switch is the N x N crossbar switch. Conceptually, it comprises a grid 

of N wires by N wires with a closable contact at each of the crosspoints as shown in 

Figure 3.la (Figure 3.1b shows the schematic representation). A legal call request in 

a general switch is a request for a connection from one unused input to one unused 

output. A call request is blocked if the connection can not be put up through the 

switch. This occurs due to constraints from the architecture of the switch, or by 

available routes being used by calls already put up through the switch. Already put 

up calls that block a call request are identified as blocking calls. A switch is strictly 
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non-blocking if any sequence of call requests, with intervening call disconnects, can 

be put up as each request arrives, no matter what algorithm is used for routing calls. 

The N x N crossbar is the prototypical example of the strictly non-blocking class. 

While such a switch is desirable, unfortunately it is at the expense of N 2 crosspoints. 

The crosspoint count of a switch is often used as a measure of its cost or complexity. 

We desire to reduce the number of crosspoints. Usually this is achieved by building 

larger switches from stages of smaller crossbar switches. Figure 3.2a shows a general 

three-stage example built from smaller r x r and n X n crossbars, while a specific 

example for n = 2, r = 4 is shown in Figure 3.2b. For an appropriate choice of n 

and r, such a multistage switch has a reduced number of crosspoints. Unfortunately, 

multistage switches are often not strictly non-blocking. Yet they may fall into the 

broader class of non-blocking with call rearrangement, or rearrangeable switches. A 

switch is rearmngeable if any sequence of legal call requests can be connected through 

the switch, as long as the routing of calls already in progress can be rearranged. 

Alternatively a switch is rearrangeable if simultaneously given any legal set of calls 

(each input and output used at most once), the switch can put up all of the calls. 

A switch can be blocking in various senses. Yet switches can be designed so that 

statistically the probability that a call is blocked in whatever sense is small, even 

when the call traffic being routed through the switch is high. Typically this requires 

several stages, and the provision of many alternative routes through which a call can 

be put up [3, pp. 526-552]. In the case of rearrangeable switches, however, we are 

not relying on probability, but want to be able to rearrange with certainty. 

Two questions therefore arise. First, given a large multistage switch, a set of calls 

already put up, and a legal call request, which of the many routes can accommodate 

the new call? Second, given a rearrangeable switch, a set of calls already put up, and 

a legal call request, how do we rearrange to accommodate the new call request? We 

address each of these questions separately, and in turn. 
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A multistage switch is shown in Figure 3.3. As mentioned earlier, these switches 

are typically blocking. But, by having a large number of routes available between 

any input and output of the switch, the probability that all these routes are blocked 

simultaneously is very low. The switch shown in Figure 3.3 has 16 different routes 

between any inlet-outlet pair (16 distributions). A practical switch would have more 

and bigger crossbar switches in each stage. This implies many possible routes between 

each stage. The AT&T ESS #4 toll switch, for example, has 1,920 (16 x 120) possible 
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routes between any input and output pair. The problem is that, in such a switch, 

finding an unblocked route from the many possible routes is a time consuming task, 

especially as the switch becomes loaded with calls. The problem can be generalized 

to the case when the outlet stage is not unique, as for toll switches where any one of 

several trunks between two offices would be acceptable. 

An easy way to specify a route is to specify the crossbar switch that it passes 

through at each stage. For example, the path highlighted in Figure 3.3 is (1, 4, 3, 4, 2). 

Most practical switching networks have at most one connection between any two 

crossbar switches, so that this specification is well defined. 

The simplest parallel algorithm to find a route checks all possible routes at the 

same time, and then chooses one unblocked route if it exists. More specifically, we 

search forward to find all the crossbar switches that have an unblocked route to the 

call request's inlet stage. We then use this information to search backward to find all 

the crossbar switches that have an unblocked route to both the call request's outlet 

and inlet stages. If, as we search backward, we order our search so that we limit 

ourselves to choosing a single crossbar in each stage, and subsequently consider only 

routes through this crossbar, then our search will finish with a list of crossbars that 

denote a single unblocked path. 
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Figure 3.4 shows the switch of Figure 3.3 with five calls already put up. A new 

call request arrives at the topmost inlet for the topmost outlet. To start our parallel 

search we mark all switches that have a free path to the first inlet switch. The easiest 

way to do this is to start at the first stage and mark the request's inlet, Switch 1. 

Then go to the second stage and mark all of the switches that have a free connection 

to a marked switch in the previous stage, Switch 1 and 3, continuing this procedure 

until the final stage is reached. This results in all of the shaded switches in Figure 3.4 

being marked. 

Now we do the backward search. Of all the switches that are marked in the last 

stage, Stage L, we choose the one at the call request's outlet, Switch 1, and use it as 

the last switch in our route. If the call request outlet was not marked, then we would 

know that no free connection exists from the outlet to the inlet, and would stop. 

Otherwise, as in this example, we know that there is some route among the marked 

switches; we must choose one. In Stage L - 1, we choose one of the switches that 

is already marked and has a connection to the switch chosen for the route through 
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the next (closer to the outlet) stage. The switch chosen, e.g., Switch 2, is used for 

our route through Stage L - 1. This procedure is continued at Stage L - 2, and 

so on, until the first stage is reached, resulting in an unblocked route through the 

crosshatched switches (1, 1, 1, 2, 1). 

This method of choosing a route will always find one, if it exists. Since we only 

choose among the switches that were marked in the feedforward search, we know 

that every switch chosen for the route always has some connection among the marked 

switches in the remaining unspecified stages to the input. We only need to choose 

switches for our route that have a connection to the switch already chosen in the next 

stage. Simply choosing one of the marked switches in each stage does not work. For 

example, the route (1,1,1,1,1) contains only marked switches, but does not designate 

a free route. 

The procedure described above is exactly the approach taken by our neural net

work algorithm. 

3.4 Finding Routes using Neural Networks 

Figure 3.5 shows the basic neural network topology. We establish a group of neurons 

for each of the crossbar switches that make up the switching network. If two crossbars 

are connected in the switching network, then the corresponding neuron groups are 

connected in the neural network. The connections in the neural network are gated so 

that if the corresponding connection is used in the switching network by an already 

put up call, then that connection is open-circuited in the neural network. The neural 

network has an external connection for each of the inlet and outlet stage switches. The 

neuron group consist of three neurons, a feedforward, a feedback, and a path neuron. 

The feedforward neuron turns on if it is connected to a feedforward neuron in the 

previous stage that is already on. In the first stage, the feedforward neuron turns on 

if there is an excitatory input at this inlet-stage neuron group. From this recursive 

definition, we see that an excitatory signal applied at the input corresponding to the 

desired inlet-stage switch will result in all feedforward neurons that have an unblocked 



Stage 1 
(Inlet) 

Stage 2 Stage 3 

Feed-forward Neuron. 
Feedback Neuron. 

Stage4 Stage 5 
(Outlet) 

1 
Winner-Take-All Circuit 

Figure 3.5: Neural network for switch path search. 

route to this switch turning on. 

38 

The path and feedback neurons work together to do the backward search. They 

operate similar to the feedforward neurons. A feedback neuron turns on if it is 

connected to a path neuron in the subsequent stage that is already on. In the last 

stage, the feedback neuron turns on if there is an excitatory input at this outlet

stage neuron group. The path neurons in each stage are designed as a Winner-Take

All circuit. As described in Section 2. 7, we use the inputs from the feedforward 

and feedback neurons in each group to "program" their associated path neuron. In 

addition to the standard Winner-Take-All definition, within each group we add a +1 

connection from the feedforward to the path neuron and a + 1 connection from the 

feedback to the path neuron. The external input we set as -1.5 for all path neurons. 

The effective external input (external input I; plus connections from neurons outside 

of the Winner-Take-All network) for a path neuron is: 

I~ffective _ . + . _ 1 5 ' - s,rr s,fb . ' 

where s;rr and Sifb are the states of the feedforward and feedback neurons, i.e., +1 if 
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on, -1 if off. Thus, assuming that w;; = 0, a path neuron can only turn on if both the 

feedforward neuron is on (there is an unblocked path to the inlet), and the feedback 

neuron is on (there is an unblocked path to the inlet). 

By simply applying an excitatory input to the desired inlet-outlet pair, the net

work follows the massively parallel algorithm described in the previous section: The 

feedforward neurons search forward; the feedback neurons search backward; and the 

path neurons guarantee that as we search backward we limit ourselves to a single 

crossbar in each stage and subsequently only consider routes through this crossbar. 

Figure 3.6 shows the neural network finding a path for the switch of Figure 3.4. In 

addition to finding point to point routes, the problem of toll switches is solved also. 

An excitatory input can be applied not just to one outlet, but to each eligible outlet. 

The Winner-Take-All in the last stage will guarantee that the call is routed to only 

one outlet. 

This network is a straightforward solution to the path search problem. A switch 

with N input/output lines will haveN connections between each stage. The number 

of crossbars in each stage is not more than N. The network will not settle until the 

signals propagate from the input to the output and back. Therefore, if there are M 

stages in the switch, the number of neurons and connections are both O(N M), and 

the time to produce an output is O(A1). 

3.5 Rearrangeable Switches 

The switch shown in Figure 3.2 is an example of a NxN Slepian rearrangeable 

switch [4]. This is characterized by three stages that we denote as the inlet, cen

ter, and outlet stages. The inlet stage comprises r nxn crossbars. Each of these 

connects to each of n rxr center-stage crossbars that in turn connect to each of the 

r n xn outlet-stage crossbars. Note that N = rn, and that the minimum number 

of crosspoints is obtained when r ~ n ~ -J"N. Conventionally, the inlet and outlet 

switches are numbered from 1 to r, and the center-stage switches labeled A, B, etc. 

M. C. Paull analyzed this switch in detail [5]. He showed that this switch is 
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blocking in the strong sense that, no matter how the calls are put up through the 

switch, there always exists a sequence of call requests with intervening call disconnects 

that can force a block. Although blocking can not be avoided, this switch can put up 

any legal call request if we allow calls-in-progress to be rerouted through the switch 

before we put up a new call request. 

To aid in analyzing the behavior of these switches, we introduce Paull matrices. 

These provide a format for describing the state of the switch. An example is shown in 

Figure 3.7, with the correspondence to the switch given. A symbol Q in entry (i,j) of 

the matrix implies that a call originating from inlet switch i is routed through center 

switch Q to outlet switch j. The switches in each stage have exactly one connection 

to each of the switches in the next stage so that this state description is well defined. 

Since the inlet and outlet switches are composed of strictly non-blocking crossbars, 

we need, and do not distinguish between which of then external connections are used 

on these switches. Calls and call request are therefore denoted simply by ( i, j). 

The structure of the switch limits the Paull matrices that we can have. Each row 

of the matrix represents a specific inlet-stage switch. Since only n calls can be routed 

through this inlet switch, and each must be routed through a different center-stage 

switch, each of the n distinct symbols can appear in a row only once. For the same 

reason and because of the symmetry of the switch, this is also true for the columns 

of the matrix. Multiple symbols can appear in a single entry, representing calls that 

are connected to the same inlet- and outlet-stage switches. A call, (i,j), is blocked if 

every symbol is used in row i and column j together. Figure 3.8 shows an example 

of a blocked call request. 

Paull proved that the following algorithm will always find an unblocked rearrange

ment for a legal call request (i,j): 

1. Choose one symbol, Q, that does not appear in row i. Similarly, choose one 

symbol, R (possibly the same symbol as Q), that does not appear in column 

j. These two symbols must exist or else every connection to the inlet and/ or 

outlet is used and ( i, j) is not a legal call request. Having these two symbols, 

choose one, without loss of generality Q. Define f = i, and c = j (the tildes 
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Figure 3.8: A blocked call request at (2, 3). 

are to distinguish these from the number of inlet/outlet stages r and from the 

neuron capacitances ci). 

2. If there is some symbol (possibly Q) that does not appear in either row f 

or column c, place that symbol in entry ( f, c) and stop; no calls are blocked. 

Otherwise, there is another row, f', such that (f', c) contains a Q. Place Q in 

entry (f, c) of the matrix and remove the Q from (f', c). Go to step 3. 

3. If there is some symbol (possibly R) that does not appear in either row f' or 

column c, place that symbol in entry (f', c) and stop; no calls are blocked. 

Otherwise, there is another column, c', such that (f', c') contains an R. PlaceR 

in entry (f', c) of the matrix and remove the R from (f', c'). Define f = f' and 

c = c' and go to step 2. 

We denote this as Paull's algorithm. Figure 3.9 shows an example of this algorithm 

finding an unblocking rearrangement for the situation in Figure 3.8. Note how a 

blocked call causes a chain of rearrangement steps, alternately replacing A forB, and 

vice versa. Slepian showed that this algorithm uses at most (2r- 2) of these steps [5], 

while later Paull showed that the best algorithm uses at most r - 1. Furthermore, 

Paull showed that situations exist that, even with the best algorithm, require ( r - 1) 

rearrangement steps. 
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The Neural Network Solution to the Rear
rangement Problem 

The key to utilizing the parallelism of a neural network is matching the network 

topology to the problem as closely as possible. We now show that Paull's algorithm 

fits readily into a neural network solution. For each entry in Paull's matrix we create 

n neurons. The neurons are labeled with A, B, etc., corresponding to the labels on 

the center-stage switches. The state of the neurons corresponds to the current state 

of the switch. If neuron Q is on in entry (i,j), then a call from inlet i to outlet j is 

routed through center-stage switch Q, and vice versa. 

A neural computation is initiated when a call request arnves. The inputs are 

changed to "program" the network for the new call, and the network is allowed to 

evolve. The new call assignments are determined from the final state of the network. 
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The state of the network is maintained until the next call arrives, at which time the 

inputs are changed again, and the network evolves to the next state. When a call is 

disconnected, the corresponding neuron in the network is turned off. 

We will concentrate on what happens at call arrivals. The question is how to 

connect the neurons so that the network can properly compute the assignments. From 

the previous section, we see the following constraints are placed on these neurons: 

• In each row of the matrix, no two neurons with the same label may both be on. 

• In each column, no two neurons with the same label may both be on. 

• In each entry, (i,j), only as many neurons may be on as there are calls (i,j). 

These constraints imply that we have a three-dimensional grid of neurons, with each 

axis around a neuron having its own mutual inhibition as shown in Figure 3.10. We 

could in fact design this network according to a Multiple Overlapping K-Winner-Take

All design of Section 2.5. Although this would guarantee a network that is stable and 

never violates the first two constraints, it would not guarantee that every call is put 

up. To achieve this we take a slightly different approach. We view the network as a 

set of Winner-Take-All networks-one for each entry-that communicate their states 

to other Winner-Take-All networks in the same row and column. 

As a convenience we define: 

r; the row in Paull's matrix in which neuron i is located. 

c; the column in Paull's matrix in which neuron i is located. 

Q; the symbol in Paull's matrix that neuron i represents. 

For a switch with r inlet and outlet stages and n center stages, the connection weights 

are; 

w·· I) 

t· I 

c· I 

{ 

-1 iff;= fj, c; = cj, and i i- j, (same entry) 
-0.5 if Q; = Qj, f; = fj, and i i- j, (same row) 
-0.5 if Q; = Qj, c; = cj, and i i- j, (same column) 

0 otherwise; 
r + n -1; 
c, 

(3.1) 



1 

1 

2 

3 

4 

2 3 4 

Inhibitory Connections and 
External Summer 

\ 
A and B Labeled 

Neurons 

+ ~-·,Row Axis 

Inhibition 

Column Axis 
Inhibition 

Figure 3.10: Three-dimensional neuron grid. 

46 

where Cis some positive constant. This is, in fact, the Multiple Overlapping Winner

Take-All implied by Figure 3.10, except that a Winner-Take-All within an entry 

has twice the connection strength of the Winner-Take-All connections along rows 

and columns. This implies that we can sum the inhibition along each axis once, as 

described in Section 2.7, with a resulting savings in connectivity. 

Let K;j be the number of calls from inlet i to outlet j including the new call 

request. Let s; be the state of neuron i before the computation starts, that is, + 1 if 



i is on, -1 if off. For each neuron i, 

I; = 2K:r;c; - 0.5s; + x;, 

where x; is some control input such that lx; I < 0.25. 
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(3.2) 

Recall from Chapter 2 that a neuron is determined if its internal state can be 

bounded away from zero, and thus with high enough gain the neuron output is arbi

trarily close to ±1. 

Theorem 3.1 The network defined in (3.1) with inputs (3.2) is stable and all neurons 

are determined. 

Proof: The results of Appendix 2.A can be applied to show that this network is 

stable and results in at most one undetermined neuron per Winner-Take-All. Let 

"''f be the number of neurons, other than neuron i, that are on and in entry (r;, c;). 

Let "'ic be the number of neurons other than neuron i that are on and correspond to 

symbol Q; in row r; or column c;. Using Equations (3.1) and (3.2) in (2.2): 

Jfot - (r- 1 - K,D - < + (n- 1 - 0.5<c) - 0.5<c +I; - t; 

2K:r;c; - 2"'i- <c- 1 - 0.5s; +X;. (3.3) 

Suppose that the state of neuron i can not be bounded away from zero. Since s; is 

±1, then for any integers K:r;c;, "''f, and tci"c; we have IIfot I ~ 0.25, contradicting that 

it is not determined .• 

This theorem allows us to treat all neurons as either on or off and will greatly simplify 

our subsequent discussions. 

Paull's algorithm consists of a series rearrangement steps (i.e., Steps 2 and 3) 

where one symbol is placed in entry (i,j) and then possibly removed from another 

entry in the same row or column. To perform one of these steps at entry (i,j), we 

require the following: symbols that are on in entry ( i, j) at the beginning of the step 

remain on; the rearrangements are forward, that is, if Q was just removed from entry 

( i, j), it is not immediately placed there again; finally, when possible, place a symbol 
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that does not appear at all in row i or column j, otherwise place a symbol that only 

appears once in row i or column j, and remove the already placed symbol. We assume 

that at the time when we want to place a symbol at ( i, j), the matrix is in a valid 

state-all constraints are met except for one unplaced symbol at ( i, j). 

To aid our discussion we identify four types of neurons, classed according to their 

state and the value of h:rc defined in the proof of Theorem 3.1: 

1. Neurons that are already on. 

2. Neurons that are off and <c = 0 ( Q; not in row i\ or column c;). 

3. Neurons that are off and K£c = 1 (Q; in one of row f; or column c;). 

4. Neurons that are off and h:£"c = 2 (Q; in both row F; and column c;). 

Note that h:£c :::; 2, since K£c > 2 would imply more than one of the same symbol in 

row F; or in column c;, contradicting that the network is in a valid state. 

Theorem 3.2 Given a neural network in a valid state and that we want to place a 

symbol in entry (i,j) as part of Paull's algorithm, then: 

1. The Type 1 neurons at (i,j) will remain on. 

2. The chaining is forward, i.e., a symbol that was removed is not placed again. 

3. If a Type 2 neuron exists, one will turn on, otherwise one Type 3 will turn on 

and the blocking neuron in the same row or column will turn off. 

Proof: By definition of a valid state, if neuron z is on, no other neuron labeled Qz 

in row Fz = i and in column Cz = j is on. Therefore, h::c = 0. From Theorem 2.2 

we know that at most K;j neurons turn on. This implies that as long as neuron z is 

on, h:~ < J(ij· Thus Ifot > 0.25, neuron i will remain on, and the first conclusion is 

proved. 

A symbol will not be removed unless the same symbol was already placed in the 

same row or the same column. Thus a Type 2 neuron can not have just turned off, 
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so its turning on is consistent with forward chaining. A symbol is removed when only 

one of the same symbols was just placed in the same row or column, implying that no 

Type 4 neuron can have just been turned off. Looking at a Type 3 neuron z, we know 

that since none of the Type 1 neurons turn off and that there are at least K;j - 1 of 

these, then K~ :2:: K;j - 1. Using this data in Equation (3.3): 

This implies that if Sz = 1, then neuron z will remain off. But Sz = 1 only if 

neuron z started the rearrangement being on, that is, if it was turned off during the 

rearrangement. Thus no neuron that was just turned off will turn on and the second 

conclusion is shown. 

Suppose neuron y is Type Y, neuron z is Type Z, and 1 < Y < Z. Since in the 

period preceding the competition, one of the Type 3 could have been a Type 1 and 

Iy :2:: Iz, we can assume that Uy :2:: Uz at the start of the competition. During the 

competition, Iy > Iz. It follows directly from the proof of Theorem 2.2 that, with this 

ordering on the external inputs and initial ordering on the internal states, a neuron 

of Type 2 will turn on if it exists. 

Assume that no Type 2 neurons exist. We know from the first step of Paull's 

algorithm that if no Type 2 neurons exist there are at least two Type 3 neurons. In 

the chain of rearrangements, the steps alternately take place along rows, and columns. 

As part of his analysis, Paull showed that each column and each row could be used at 

most once. In particular, only one neuron can turn off per entry per rearrangement. 

This implies that at most one Type 3 in this entry started the rearrangement initially 

on. Thus there is at least one Type 3 neuron which in the initial state was off. If 

none of these neurons turn on, then for every such neuron, z, K~ = I(;j - 1, K~c = 1, 

Sz = -1, and I!ot > 0.25, contradicting that none are on. So, at least one Type 3 

neuron will turn on. Suppose more than one of these neurons turns on, then since all 

of the I<;j -1 Type 1 neurons will remain on, K~ :2:: K;j for all neurons, and I!ot < 0.25. 

This implies all neurons are off, a contradiction. Thus only one neuron turns on, if 

not a Type 2 then certainly a Type 3. 
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Figure 3.11: Additional memory neuron. 

If the neuron that turned on is Type 3, then it is blocked by some neuron z in the 

same row or column. Since neuron z was on before, it is now a Type 3 neuron. Since 

Sz = 1, by (3.4) it will turn off. Thus, the proof of the theorem is complete .• 

We digress at this point to discuss an interesting modification of the neural network 

defined so far. One function that needs to be performed after every calculation is 

the inverting of s; for all neurons corresponding to calls that were rearranged. One 

way to do this automatically is to add to each neuron i in the network a memory 

neuron. Figure 3.11 shows the modified circuit. The connections between a neuron 

and memory neuron pair are chosen so that if the neuron is on, then the memory 

neuron is off, and if the neuron is off, then the memory neuron is on. The memory 

neuron gets its name since ( C I).. )memory ~ ( C I)..), resulting in a much longer time 

constant. Because of this, the memory neuron remains in its state for a long time 

after the primary neuron changes. By making the connection to neuron i from the 

memory +0.5, it serves exactly as s;. This shows how we can use non-uniform time 

constants and exploit them to our advantage. We assume that all of these networks 

incorporate s; in this way. 

The example of a rearrangement from Figure 3.9 is redone using a neural network 

in Figure 3.12. This shows all the basic features of the circuit. The evolution of the 

neural circuit is virtually identical to the algorithm described by Paull. 
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Theorem 3.2 shows that the neural network, as it is defined, follows Paull's algo

rithm exactly, except that it does not alternately rearrange the same two symbols Q 

and R defined in step one of the algorithm. The previous example works, though, 

since there are only two symbols to arrange (i.e., n = 2). In general, for n > 2, this 

exception results in states that violate the constraints. Furthermore, it can result in 

rearrangements involving many more than 2r rearranged calls. The network needs to 

globally communicate the symbols Q and R to alternately rearrange. We are assum

ing that no Type 2 neurons exist at (i,j), otherwise by Theorem 3.2 we know that 

the neural network will behave correctly. 

Figure 3.13 shows the modifications necessary to force the network into following 

the algorithm. The additional circuitry consists of a set of detectors labeled D1, D2, 

and D3. Figure 3.13a shows the D1 detector added to each neuron-memory neuron 

pair. The connections to a D1 are such that it only turns on if both neurons in the 

pair are on. This occurs only if the neuron was off and recently turned on, thus the 

D1 detectors detect neurons that turn on during the course of the rearrangement. 

Figure 3.13b shows the detectors located at the end of each row of the neuron 

grid. A similar set appears at the end of each column. For each symbol, Q, there are 

detectors denoted by D2Q, and D3Q. The D2Q detectors simply collect the outputs 

of all of the D 1 's associated with symbol Q in this row. It turns on if any of these 

neurons turn on. The output of D2Q is a small positive signal fed back to each of 

the neurons labeled Q in every other row. Thus a neuron i turning on causes its D1 

neuron to turn on, which in turn causes the associated D2Q; neuron in row f; to turn 

on, which then feeds a small positive signal back to the neurons labeled Q; in every 

other row. This means that once a symbol is placed, it will be favored over otherwise 

equal symbols in all subsequent rearrangement steps. As a result, the first symbol 

placed chooses the first symbol with which to rearrange. 

We need to choose an appropriate second symbol to rearrange with. For a blocked 

call request at entry (i,j) (i.e., no Type 2 neurons), a sufficient condition for choosing 

symbols Q and R to rearrange is that they can not appear together in row i nor in 

column j. The neuron that turns on will force another neuron either in the same row 
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Figure 3.13: Additional circuitry to force the network to follow Paull's algorithm. 
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or the same column to turn off. Assume that it is in the same row. Since there are 

no Type 2 neurons, any symbol not appearing in row i will be in column j. This 

implies that if the symbol placed in this second rearrangement is not in row i then it 

must be in column j, and will satisfy the conditions for the second symbol chosen to 

rearrange. 

The D3Q neurons guarantee this result, as we now show. A D3Q neuron turns on 

if a neuron Q is on in the same row and one of the other D2R, R =f Q, are on, that 

is, if symbol R was placed in this row and symbol Q is also in this row. The output 

of D3Q is a small negative signal to each of the neurons labeled Q in this row. Thus, 

in the second rearrangement step, neurons corresponding to symbols already placed 

in this row are disfavored. Further, out of the remaining neurons, the neuron that 

turns on will, through its D1 and D2 detectors, favor neurons with the same symbol 

in all further competitions. Thus the network chooses two appropriate symbols to 

rearrange in the first two rearrangement steps, and subsequent steps will favor these 

two symbols. 

Since the detector signals add to all of the neurons in the same row, an efficient 

way to distribute this signal is to add them once to the inhibition summers at the 

end of the row as shown in Figure 3.13. Each neuron receives control signals from up 

to 2(r - 1) D2 and two D3 detectors. To guarantee our previous results, we require 

that the total control signal, x;, from the D2 and D3 detectors never exceeds the limit 

given by lx; I < 0.25. Figure 3.14 shows an example of this network in action. Again 

the neural network follows the algorithm as stated by Paull. 

We check that the solution is reasonable. Table 3.1 tallies the number of neurons 

and connections as a function of the parameters n and r. Under the assumption 

that r ~ n ~ VN, the number of neurons and the number of connections are both 

O(N312
). This is equivalent to the number of crosspoints in the switch. The time to 

find the rearrangement is given by Paull's algorithm and is O(r) = 0( VN). Therefore 

the neural network solution to the switch rearrangement problem is approximately as 

complex as the switch itself, but no more complex, and uses time as fast as the best 

algorithm. 
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Table 3.1: Tally of the neural rearranger size. 

Total Number of 
Type Total Number Connections from 

Neuron r'Ln 6r:ln 
Memory r 2n 2r2n 

D1 r 2n 2r2n 
D2 2rn 2r2 n + 2rn2 

- 4rn 
D3 2rn 2rn 

Total 3r:ln + 4rn llr:ln + 2rn'L - 2rn 

As a conclusion to this section, we describe an interesting application of this 

controller. To reduce the number of crosspoints below the minimum possible in a 

three stage Slepian switch, we can construct each of the center stage switches out of 

a smaller three stage network. This recursive construction, if taken to its limit, leads 

to a switch constructed solely out of 2 X 2 crossbars: N/2 2 x 2 inlet/outlet stages 

connected to two center stage switches that each haveN /4 2 x 2 inlet/outlet switches, 

and so on. This is known as a Benes network [1]. It has a total of O(Nlog(N)) 

crosspoints. How can we find routes through this switch? 

We construct a hierarchical neural network. The first level is the neural network 

of Figure 3.10. The outputs of this network are the on neurons that indicate the 

necessary connections through center-stage switches A or B. But, these requests can 

be used to control the next level, the two smaller controllers for switches A and B. 

Each of these in turn control their own two center stage switches. Continuing in this 

manner until all the center most 2 x 2 switches are reached. Thus we can use the 

neural network to control the many switches that conprise this efficient but difficult 

to control switch design. 

3.7 Conclusion 

This chapter took the design techniques from Chapter 2 and implemented two switch

ing control algorithms using neural networks. In both cases we were able to take a 

circuit with known characteristics, the Winner-Take-All, and utilize its capabilities 
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within a larger neural system. It was a primary means for communicating the many 

constraints of the problems between the neurons in our solutions. 

In large multistage switches, determining the existence of a route through a switch 

and, if possible, determining the route itself is a time consuming problem with conven

tional computer architectures. We defined the simplest brute force search technique 

and designed a massively parallel neural algorithm that was able to implement this 

technique. 

In a three-stage rearrangeable switch, previously placed calls may have to be re

routed before a new call can be put up through the switch. Using a known optimal 

algorithm, we designed a neural network solution that has complexity (in terms of the 

number of nodes and connections) on the same order as the complexity of the switch 

(in terms of the number of crosspoints). By assuming nonuniform time constants in 

the neurons, we showed that the consequent time delays could be used to computa

tional advantage. We discussed a recursive extension to the three-stage rearrangeable 

switch that utilizes the ability of neurons in one network to program the neurons in 

another network. 

In both solutions, one freedom is that the various "programming" neurons (e.g., 

the feedforward neurons in the first problem, and the detectors in the second) could 

easily be implemented with components other than neural networks. For instance, the 

feedforward neurons could be optical components that are ideal for the interconnect 

between stages. The detectors could be standard digital logic. In any case, as long as 

the signals that they introduce are within the limits defined in the neural solutions, 

the system will still function correctly. The neural components can be concentrated 

where they can excel: as highly interconnected feedback elements. 

The solutions described here show that neural networks can be applied to practical 

problems. We emphasize that although each instance of these problems requires a 

different neural network, the solution is well defined, even for large-size problems 

where the parallelism of the neural network is most advantageous. 
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Chapter 4 

Banyan Network Controller 

The distant goal of ''neural networkers" is to understand how to store, 
retrieve, and process data in .neural networksj ultimately to characterize 
the types of data that need to be stored, to know best how to represent 
them, and to see how to design such machines that accomplish it with the 
greatest engineering ease. 

-J. S. Judd [I] 

4.1 Introduction 
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This chapter will develop a neural network design, starting from the original problem 

analysis and formulation, proceeding through the design stage, continuing on to imple

mentation considerations and further applications of the networks developed. Along 

the way we will develop many interesting results related to switching and queueing 

theory, and will finish with a feasible design of a 1024 x 1024 packet switch controller 

based on neural network principles. 

4.2 ATM switching networks 

This section gives a general background to the ATM (Asynchronous Transfer Mode) 

switching environment, and introduces the fundamental problem of blocking and 

queuemg. It also motivates why we need a new approach. 

A Broadband Integrated Services Digital Network (B-ISDN) consists of two major 

parts: optical transmission with a Synchronous Optical Network (SONET) [2], and 

switching with an ATM [3] switch. Although current transmission rates are already 
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several gigabits per second, the ATM switching fabric at present can function at rates 

up to only a few hundred megabits per second. The broadband network research 

community has therefore spent much time and effort on the design of ATM switch 

fabrics. 

One approach in designing ATM switch fabrics is to use interconnection net

works [4] that were originally designed for multiprocessor parallel and distributed 

processing. There are several different interconnection networks; e.g., Banyan, Base

line, Buffered Memory, Delta, and Shuffle Exchange [4,5]. Among them, the Banyan 

network is the most popular to be used as a basic building block in ATM switch fabric 

designs, although Buffered Memory switches are gaining in popularity due to their 

simplicity in concept. 

In an ATM network, unlike the circuit switching of Chapter 3, bursty and contin

uous data are segmented into small fixed-length units called ATM cells. These cells 

will be our basic unit that the ATM switching network processes. The data rates are 

approximately 150Mbs and the cell sizes 53 bytes ( 424 bits) [3]. This implies that 

any cell processing must be completed in less than 2.811-sec. We assume there exist 

some external interface modules that assign each cell entering the switching network 

an output destination address. 

Within every ATM network, blocking must occur due to what is called output 

blocking. If two or more inputs to the network have cells with the same destination 

address, their cells will be routed to the same output at the same time and hence 

collide. This is output blocking. Output blocking cannot be avoided, so blocked 

cells must be buffered somewhere. The location of the buffers affects the queueing 

characteristics of the network. Although not optimal, we will assume that cells are 

buffered at each input since this produces the least complicated network. This will 

be discussed further in the section on queueing. 

A controller is needed to choose which cells to send at an instant and guarantee 

that all the destination addresses are distinct at that instant. The choice of contrail 

algorithm is important. The simplest controller uses first in first out (FIFO) queues, 

and chooses a non-blocking set of cells from the head of the queue. Unfortunately, 
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this scheme suffers from a statistical impediment called "head-of-line" blocking [6] 

that ultimately results in each input transmitting significantly less than one cell per 

time slot. To achieve higher rates, more sophisticated controllers use bypassing. In 

this scheme, cells with different destination addresses further back in the queues are 

transmitted instead, if doing this avoids blocking. While this increases the maximum 

throughput rate over that of the FIFO scheme, many of the proposed bypass control 

schemes still have the problem that the maximum throughput per input is significantly 

less than one cell per time slot [7]. 

The controller is further complicated when the switch can not transmit every pos

sible permutation of the inputs, that is, there are sets of cells with distinct inputs and 

outputs that can collide due to overlapping paths through the switch. This is inter

nal blocking. ATM switches that have no internal blocking (but still the unavoidable 

output blocking) we denote as non-blocking, otherwise they are blocking. We note 

that implicitly most switching networks have a third form of blocking, input blocking: 

only one cell may enter each input per time slot. 

Some control schemes treat the internal and output blocking separately. For ex

ample, to avoid internal blocking within the Banyan network, a so-called Batcher 

sorter network is used to preprocess the incoming cells of the ATM switch fabric [8,7]. 

In this scheme, the cells are first sorted in such a way so that they arrive to the 

Banyan in an order that avoids internal blocking. But this sorting scheme suffers 

from several deficiencies. Foremost among these is that it is even more complex than 

the Banyan network itself. This is true not only in terms of the number of switching 

elements, but also, since these elements must make comparisons between the destina

tion addresses to perform their sort, a precise cell bit alignment must be maintained 

through the sorting network. Furthermore, some output blocking still occurs anyway, 

and queueing and a controller are still required. 

As an alternative to the Batcher network, we combine the processing for both 

internal and output blocking into a single controller. This controller utilizes the state 

of all the input queues in a bypass scheme that increase the throughput of the ATM 

switch as a whole. We define a useful class of switching networks to which this method 
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applies. We also design a neural network implementation of the controller. By using 

the massive parallelism of the neural network, we can complete each computation 

quickly. Before we develop these ideas we digress to discuss a particular ATM switch 

architecture. 

4.3 Banyan Networks 

We base this section on the work of K. H. Liu [9,10]. It is included for completeness, 

and to set up notation for future sections. The Banyan network considered consists of 

n = log2 N stages composed of 2 x 2 non-blocking switching elements (see Figure 4.1). 

The topology of the Banyan network can be generated in a recursive way. AnN X N 

Banyan network can be viewed as a first stage with N /2 switching elements, followed 

by two (N/2) x (N/2) Banyan sub-networks. The connection between the first stage 

and the following blocks is the "Banyan Exchange." This will be defined later. 

The Banyan network has the routing property. Rather than a global router, the 

individual switching elements themselves are able to route cells correctly much as in 

the old step-by-step telephone switches. The routing strategy for a switching element 

in stage k is to look at the kth most significant bit in the destination address of a 

cell and send the cell to the "top" outlet if the bit is 0, and to the "bottom" outlet 

if the bit is 1. Figure 4.1 shows an 8 X 8 Banyan network, and an example of the self 

routing. A cell arrives at input 010 and is destined for 101. In the first-stage switch 

it is routed to the bottom outlet since the first bit of the destination address is 1. In 

the second stage it is routed to the top outlet since the second bit is 0, and in the last 

stage it is routed to the bottom outlet since the last bit of the destination address is 

1. Note how the successive address bits automatically direct the cell to the correct 

output destination, and how the cell would arrive at outlet 101 no matter what inlet 

it started at. 

The topology of the Banyan network can be abstracted and described in terms of 

functions on the input and output addresses of the cells. We assign a label, (I, D), to 

each cell at the input of the network, where I= inin-l ... i1 is the cell's input address 
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Stage 3 

Figure 4.1: An 8 x 8 Banyan switching network showing self routing of cell (010,101). 

and D = dndn-l ... d1 is the cell's output (destination) address; both are written in 

n-bit binary (n = log2 N). As shown in Figure 4.1, we number the inlets and outlets 

to each stage 0 to N - 1 sequentially in n-bit binary. Define L as the locator label 

n-tuple of a cell as it is transmitted through the network. L indicates the address of 

the input or output to the switching stage at which the cell is currently located. 

The Banyan network can be represented as bitwise operations-one corresponding 

to each of the stages of switching elements and to each of the sets of links between 

stages-that transform L from L = I at the input to L = D at the output. This is 

effected by defining a set of topology defining rules [5]. The operation Rk of switching 

stage k is a binary operation, a function of a cell's address at the input to the stage 

and its destination address D: 

This "replacement operator" defines the self-routing of the cells. In Figure 4.1 we 

see how the cell at input 2 (010) of Stage 1 is sent to output 3 (011 ), since the MSB 
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of D is 1. The Banyan Exchange connection between the kth and ( k + 1 )th stage 

switching elements is: 

This operator simply swaps the least and the kth most significant bits. (We use the 

usual convention that axax-l ... ay is null when x < y.) 

Continuing with our example, the Banyan exchange routes the output of the first 

stage at output 3 (011) to the input of the first stage at 6 (110). By concatenating 

these operators together, the Banyan network is represented as: 

Using these operations, we see that the locator label L for our example cell is trans

formed through the sequence (010), (011), (110), (110), (101), thus ending at the 

desired destination ( 101). 

In general, for an n stage Banyan network, we define: 

( 4.1) 

This is the locator label at the outlet of stage k of a cell from inlet I to outlet D. For 

consistency, we define the input as Stage 0, with L 0 (I, D) = I. 

4.4 Blocking Constraints and Deterministic Switches 

In this section, we define a general class of Banyan-like switches that we denote as 

deterministic. For a given switch architecture, let S = {(I, D)} be a set of cells 

such that every cell in this set is mutually blocking, that is, given any two cells in 

S, these cells collide somewhere in the switch. Such a set we call a constraint set. 

For deterministic switches, these constraints are simple to define, and can be used 

to completely define blocking. We will later investigate the blocking for two switch 

architectures from within this class. 

A switch is deterministic if: 
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1. The switch is composed of non-blocking square switch nodes. 

2. The nodes can be arbitrarily interconnected, but any switch input or output 

has only a single link to one of these nodes. 

3. Between each input and output there is exactly one route (defined in terms of 

links and nodes). 

A Banyan network is a deterministic switch composed of stages of 2 x 2 nodes. A 

non-blocking switch is a deterministic switch with a single node-the switch-that 

has links to the inputs and outputs. Omega networks, baseline networks, and flip 

networks are all topologically equivalent to the Banyan network and therefore also 

deterministic switches [5]. 

To define the constraint sets, we note that whenever two cells both attempt to use 

the same link between two switches, there is a collision, and thus blocking. These two 

cells will always collide, since they have only one choice for routes, and both routes 

are through this link. Each of the switching elements are non-blocking, as long as 

only one cell arrives per input and leaves per output. Therefore, none of the cells are 

blocked if and only if there is no link used by more than one cell. 

Let £A= {lj}, be the set of links in a switch with architecture A. Each link, lj, 

in the switch defines a constraint set, 

Si = {(J,D)I the route from inlet I to outlet D uses link li}· 

Using these constraint sets, our definition of non-blocking is clear: 

Definition: A set of cells, C = {(I, D)}, is non-blocking if and only if 

each set, Sj, contains at most one (I, D) E C. 

For the Banyan switch, £Banyan = {lj}, 0 ~ k ~ n, 1 ~ j ~ N, where ZJ is the 

link connected to the jth outlet of the kth stage of switches. In the case of the non

blocking switch, the only links are the input and the output links. In terms of the 

Banyan definition of lj, £NB = {lj}, where k E {O,n}, and 0 ~ j ~ N. 
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From this labeling, we can define the constraint sets using ( 4.1 ): 

These sets have an interesting interpretation. For each k, there are N different Sj, 
since there are N different links between each stage. At any stage, each cell uses only 

one link, so Sj n s; = 0 for all i f- j. Since at any stage a cell must use some link, 

U,%(/ Sj is the set of all possible input-output pairs. Thus we have shown that each 

Lk, 0 :::; k :::; n, partitions the N 2 input-output pairs into N equivalence classes. 

A more graphical interpretation can be gleaned from the following construction. 

Given a set of cells C = {(I, D)}, we create a binary N x N cell matrix by placing 

a 1 at entry (I, D), V(J, D) E C. Using this matrix, Figure 4.2 shows then+ 1 = 4 

different sets of equivalence classes for N = 8. 

Let cA = {C: ICI =Nand cis non-blocking in switch architecture A}. This is 

equivalent to the set of permutations realizable by the switch. From [9,10], we find 

the number of these non-blocking sets for the Banyan (here as before N = 2n): 

( 4.2) 

To compare the Banyan network to a non-blocking network, we note that the Banyan 

network has n + 1 levels of blocking, one for each set of links between stages. The 

non-blocking network has only two levels of blocking; input and output. Since the 

non-blocking network can transmit any permutation, cNB = N!. To get an idea of 

the size of cBanyan relative to the set of all permutation matrices, we use Sterling's 

formula to show cNB = N! ~ .J2i2nN-1.44N+n/2 = ~/21.44N(cBanyan)2. 

Before investigating the implications of these differences further, we discuss some 

background on queueing architectures for switching networks. 

4.5 Queueing 

This section will introduce the queueing model for our system. We will investigate 

other queue control methods that have been proposed for this system, and then 
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Figure 4.3: The queueing model. 

introduce our method, applicable to the class of deterministic switches. We show 

that the method has a throughput per inlet arbitrarily close to one cell per time slot. 

As discussed in the introduction to this chapter, even if a preprocessor removes 

all internal blocking (if any exists) leaving only output blocking, cells must be queued 

to prevent losses. We assume a model as shown in Figure 4.3. The cells arrive at 

an input according to some random process, and each cell is destined for one of the 

outputs according to a second process. Cells that are blocked and can not be sent 

are queued at each input. We assume that the inputs have independent and identical 

arrival processes. 

For the purposes of this chapter we consider two arrival processes. The simplest 

is a Bernoulli process, where one cell arrives at the beginning of each time slot with 

probability a. The second arrival process that we consider is a batch process where 

cells arrive in batches, every cell within a batch destined for the same output [11]. The 

number of cells within each batch is geometrically distributed, with mean batch size 

0, while the number of batches that arrive each time slot is Poisson distributed, with 

mean number of arrivals a/(). In either case, the destination addresses of the cells are 

uniformly distributed, with probability 1/N that a given output is chosen. We can 

view these two cases as extremes in the space of potential arrival traffic processes. 

For a given average number of arrivals, a, the Bernoulli case will spread the arriving 

traffic most evenly across the outputs and across time. The batch arrivals on the 
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other hand will tend to bring sharp concentrations of traffic both across the outputs 

and time. 

Reference [11] analyzes a single deterministic server (a 1-input switch in our ter

minology). That analysis showed the sharp concentrations in time. As an example, 

for an average burst length of e = 10 and average arrival rate of a = 0.8 cells per time 

slot, to have a buffer overflow probability of less than 10-6 requires a buffer length of 

about 600. For the Bernoulli case, this length is only 1 (since the buffer can always 

send one, and at most one arrives). But as we will show, even for a 32-input Banyan 

with the same average number of arrivals, the necessary buffer per input is only about 

30. Note that in the approach we take, the entire batch enters the queue at once, 

unlike other simulations [12] that assume (with reason) an additional external buffer 

that governs the cell arrivals so that at most one cell is transferred per time slot 

from the external buffer to the system. By only counting the cells in the system, the 

external buffer substantially mitigates the effects of the batch concentrations. 

For the case of a non-blocking switch, various queueing strategies are analyzed 

m [6] and [13]. One strategy discussed is output queueing. In this strategy, all cells 

are allowed to pass through the network, and multiple arrivals to an output are then 

queued. While this was found to be the best strategy statistically, it requires the 

switching network to operate at N times the transmit rate. This is undesirable in a 

network that is already operating at very high bit rates. Alternatively, the switching 

network can have multiple copies [12], but this adds undesirable complexity. 

For queueing at the inputs, a strict FIFO and a so called consecutive competition 

scheme were also analyzed in [6]. The consecutive competition strategy starts with 

the first cell in each queue and determines which inputs will transmit, and which 

inputs are blocked. Then it repeats the procedure with the second cells among the 

blocked queues that compete for the remaining unused outputs. This procedure can 

continue up to a depth w into the queue. FIFO is merely the special case of w = 1. 

For finite w it was found that the length of the queues became unstable even for 

arrival rates, a, less than one. For instance, when w = 1, the maximum throughput 

per inlet is less than (2 - .J2) = 0.586 cells per time slot as N -+ CXl. While letting 
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Figure 4.4: The Mapping of the State of the Queues (a) to a Cell Matrix (b). A 1 is 
placed in (i,j) of the matrix if a cell is waiting at input queue ito be sent to output 
address j. 

w---? oo could allow the maximum throughput to approach 1, this algorithm requires 

O(Nw) steps to execute, and is therefore unsatisfactory for large Nand w. 

Here we propose a new approach applicable to the deterministic switches of the 

last section. Given a set C of cells queueing at the inputs of the switch, we map them 

to an N x N cell matrix as described in the previous section, with 1 's in entry (I, D) 

if and only if there exists a cell (I, D) E C as shown in Figure 4.4. The controller 

then uses the blocking constraints on the subsets Sj to choose a subset C' that is 

non-blocking. Exactly how we use these constraints to choose a C' is the subject 

of the next section. Optimally the network controller will choose a C' that has the 

maximal overlap with C. This approach has a maximum throughput of 1, even if the 

controller only randomly chooses a C' E CA, and sends C' n C. The only assumption 

that we make is that cA is symmetric, that is I{ C'I(I, D) E C'} ncA I= I{C'I(I, D') E 

C'} n cA I for all I, D, and D'. By the symmetry of the switch designs, both cBanyan 

and CNB are both symmetric. 

We define the idea of the random queue manager (RQM). Given a set C of cells 

waiting in the queue, a RQM randomly chooses a set C' E CA uniformly and indepen-
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dent of C, and sends C n C'. We also define a controller to be stable if the expected 

size of the queues are finite. When the queues are finite, then the throughput equals 

the average number of cell arrivals. With these facts in mind we show: 

Theorem 4.1 Given a switch with architecture A and symmetric CA, a random queue 

manager is stable for any average arrival rate, a, that satisfies 0 ~ a < 1. 

Each input queue, I, can be decomposed into N separate queues, one for the cells 

waiting to be sent to each output. Focusing on the cells waiting for output D at input 

I, we show that this sub queue is stable under the RQM and thus so is the queue as 

a whole. 

Because the destination addresses are chosen uniformly, an (I, D) arrives every 

time slot with probability af N. The RQM chooses C' uniformly from CA. This 

and the symmetry of CA implies that (I, D) E C' with probability 1/N. Given this 

probability of being sent, a cell (I, D) that arrives at the head of the subqueue has 

an expected service time of N time slots. The utilization factor in this case is 

p ~ (average cell arrival rate) x (average service time) 

(ajN) x N, 

which is stable for any 0 ~ p < 1 [14, p. 19). • 

Since the RQM is stable for any a < 1, then any more sophisticated scheme that 

takes into account C is also stable with such a. 

4.6 The Neural Network Solution 

This section designs a neural network that chooses a set of non-blocking set of cells 

from the queue. The complexity of the design is calculated, and compared with 

another possible neural approach. 

For our problem, we use N 2 neurons arranged in an N x N matrix that corresponds 

to the cell matrix of Figure 4.4. This is our neuron set 0. The input to the problem 

is a particular cell matrix, that is, neuron (I, D) receives a +1 input if a 1 is in entry 
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(I, D) of the cell matrix, -1 otherwise. If at the end of the computation, neuron 

(I, D) is on, then send the cell (I, D). If more than one cell has the same (I, D), then 

send the first (I, D) that arrived in the queue. 

The neural network design follows directly from the constraint sets, S;, defined in 

Section 4.4. Using 8 and {S;}, we design a Multiple Overlapping Winner-Take-All 

according to (2.8). By definition, this has the property that no more than one neuron 

will be on per constraint set. Therefore, the set of neurons that are on at the end of 

the computation will always correspond to a non-blocking set of cells. 

To measure the complexity of this circuit, we count the number of interconnections. 

Using the construction method of Section 2.7, the number of interconnections in the 

network is 0(2:.:; IS; I) connections. In the case of the Banyan network, there are O(N) 

connections for each equivalence class, SJ. There are ( n + 1 )N of these classes, so 

the number of connections in the network is just O(N2 log2 N). For the non-blocking 

switch, there are 2N equivalence classes. The number of classes in this case is just 

O(N2
). We can assume that the minimum circuit in either case would have at least N 2 

connections, one for each neuron in the circuit. Thus, we have a circuit that is defined 

for any N, provably works, and is within a factor of log2 N of the smallest possible 

network. We contrast this with the resulting networks from the energy function 

approach to optimization [15]. Using that approach on the problem of choosing a 

non-blocking set of cells for a non-blocking switch [16], it is seen that the resulting 

network has O(N3
) connections instead of O(N2

), a factor of N more connections, 

and further, the strength of the connections must be experimentally determined for 

every N. 

4.7 Network Prompting 

The neural network gives us some flexibility in processing the cells in the network, 

which allows us to tailor the network to specific applications. More importantly, 

it allows us to modify the network to improve the choice of non-blocking sets and 

improve upon the statistics. 
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The definition of the network allows for inputs, I;, other than ±1. In fact, if we set 

the common diagonal elements, w;; = a, to zero, the network still works with positive 

inputs in the range 0 < I; < 2. If two neurons, i and j, with the same capacitance, 

C, have approximately the same inputs from other neurons and u;(t) ~ Uj(t) at some 

timet, then: 

cd(u;- Uj) = 71 + (J.- I·) 
dt ., • J ' 

(4.3) 

where 1] is the sum of all the differences between the neurons. As long as II;- Ij I > 1"7 I, 
we see from ( 4.3) that the neuron with the higher input will evolve to a higher value. 

For two such neurons in the same constraint set, this implies that the neuron with the 

greater external input will turn on. If a neuron i is in a position where other neurons 

are trying to turn on in each of its constraint sets, and neuron j has only one neuron 

(i.e., neuron i) trying to turn on out of all its constraint sets, then in this case 1] will 

not be small, but will be large and negative, favoring neuron j. This shows that the 

neuron with the largest input will turn on, unless doing so will block an inordinate 

number of other neurons from turning on. All neurons that are receiving a positive 

input are given a basic input I 0
• Under various conditions, a prompting signal 1r can 

be added such that 0 < I 0 + 1r < 2. How can we use this neural network capability? 

We discuss two ideas, priority and smoothing. 

Cells may have different priority levels. For simplicity we consider just two levels, 

high and low. Low priority is considered the normal case, with an input of I 0 • Neurons 

corresponding to cells with high priority, however, receive the prompt 7rH. From the 

previous discussion, we see that this results in a soft priority, i.e., high priority cells 

will be sent first as long as they don't impair throughput significantly by preempting 

a large number of lower priority cells. This should prevent the deadlock behavior for 

low priority cells described in [6]. Further study is necessary to demonstrate this. 

A queue containing one cell for each destination will, depending on the architec

ture, always send a cell. If the queue had N cells for only one destination, the queue 

would be extremely limited. Snapshots of the queue state from the simulations show 

that in fact the latter case is the more prevalent. A simple way to decrease the average 
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queue size is to give a prompting signal 7rM to neurons corresponding to an (I, D) 

that has many cells waiting. This will smooth the number of cells waiting for each 

output destination in a queue, and can significantly reduce the expected queue size. 

These are just two possibilities of prompting; further applications include flow 

control, giving cells that have been waiting in the system a long time a prompt to 

send them along sooner, and balancing for component irregularities or degradation in 

the system, for example, one neuron that is slower than the others receiving a prompt 

to compensate. 

4.8 Simulation Results 

To study the behavior of the queueing system under the neural network controller, 

we ran a series of simulations on a MIPS M/120 computer. We outline the simulation 

method and present graphs of the Banyan and non- blocking switch performance. 

These are used as a basis for comparing with other methods of choosing a non

blocking set of cells, and with other queue control methods. Finally we compare the 

Banyan and the non-blocking switches to each other to show that with a powerful 

controller such as the neural network, these switches have similar performance, i.e., 

the Banyan is almost as good as the non-blocking switches. 

For a given switch architecture and size, N, the simulation set up N input queues, 

N 2 neurons, and defined all the constraint sets and resulting weights; w;; = 0 was 

used. The simulation consisted of a sequence of time slots. Each time slot comprised 

the following steps: 

1. Generate a set of arrivals for each input queue according to the chosen arrival 

process. 

2. Create a cell matrix based on the current state of the queues. 

3. Using the cell matrix, set up the inputs to all of the neurons. 

4. Let the neural network settle on a solution. 
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5. Determine the neurons which are on, and remove the corresponding cells from 

the queue. 

Statistics were recorded on the states of the queues after Step 1, as well as the 

time in the system of cells sent in the last step. Consistency checks were also made 

to guarantee that the the constraints were always met (after debugging, they always 

were). 

The simulation of the neurons deserves further discussion. Step 4 consisted of 

numerically integrating the differential equation in Equation (2.1 ). Several methods 

were tried for this; Euler's method, fourth order Runge-Kutta method with adap

tive step size [17, Sec. 15.2]; and Richardson extrapolation with the Burlirsch-Stoer 

method [17, Sec. 15.4]. Euler's method suffered from always taking too big or too 

small steps. The Burlirsch-Stoer method suffered from trying to extrapolate too much 

information from the highly non-linear neuron functions. The Runge-Kutta method 

was the most satisfactory. At the start of the simulation, the capacitances were as

signed the value ex, where x was chosen uniformly from ( -0.05, 0.05). At the start 

of Step 4 of each time slot, the neuron states were initially set to a small number 

near zero chosen uniformly from ( --' 0~5 , 0 ·~5 ). The exact values here were not impor

tant; they were chosen only to add a small amount of noise to the system to prevent 

instabilities in the simulation. 

Since the inputs, !;, were chosen to be ±1, by (2.11), a neuron which turns on 

('"'; = 0) will have a net input of 1. This implies that the internal state approaches J;. 
For the purposes of timing, the network was considered to have settled when, after 

an initial period, all of the neuron states were more than 
2
l; away from zero. For 

each simulation run, we recorded the maximum, minimum, and average settle times. 

In calculating the derivative, we took advantage of the implementation techniques 

of Section 2. 7. By summing the outputs of all of the neurons in each constraint set 

once and then for each neuron adding the resulting sums from the constraint sets to 

which it belongs, the complexity was reduced by a factor of IS}I = N. The sigmoid 

function used was the hyperbolic tangent function. The gain was always chosen so 

that it was larger than the value in Table 2.1 with t: = 0.5. 
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Figure 4.5: Demonstration of smoothing for simulations of Bernoulli traffic into an 
8-input Banyan network with various controllers. 

In the previous section, we discussed the benefits of smoothing the input. Fig

ure 4.5 shows such a comparison for an 8 x 8 Banyan network, using ] 0 = 1 and 

7rM = 0.3 when two or more cells of the same (I, D) are waiting. The 8 x 8 size was 

chosen so that we could compare it to an optimal controller, i.e. one that exhaustively 

searches all of cBanyan and sends the largest non- blocking set. Figure 4.5 shows that 

the prompting brings the neural network closer to the optimal controller in perfor

mance. Because of this benefit, we will assume that all neural controllers use this 

smoothing. The choice of 7rM = 0.3 followed from testing of various values between 

0.0 and 0.5 in increments of 0.1. Within this range 0.3 was the best, slightly better 

than 0.2 and 0.4 which were significantly better than values larger and smaller. 

Using the computer simulator, we tested the neural network on Banyan and non

blocking networks with 2, 4, 8, 16, and 32 inputs. A simulation consisted of 10,000 
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time steps of cell arrivals at a chosen arrival rate a. The average input queue sizes 

under Bernoulli arrivals are plotted as a function of a in Figure 4.6. These results 

show that high throughput rates can be maintained with only modest queue s1zes, 

even for large switching networks. 

Figure 4.7 show the same graphs, but now with batch arrivals (the extra plots on 

the figure will be discussed later in this section). The average batch size was 0 = 10. 

As expected, because of the more sporadic arrivals, the average queue sizes are much 

larger. The simulations were not as extensive in this case for two reasons. The first is 

that even though we simulated for over 10,000 time steps, the data contained a large 

variance, and was not as informative. This was seen by observing subsamples of the 

data. Increasing to 100,000 time steps only decreased the variance marginally. The 

second reason was that except for at the larger a, the plots were very close, often 

crossing each other several times. Since this is a work-conserving system the average 

wait time, vV (not graphed), of a cell can be calculated in terms of the average queue 

length, L, using Little's formula: W = L/ a [14, p. 17]. 

We compare the neural networks method with two other methods of choosing a 

non-blocking set of cells to send. The simplest method to compare with is a greedy 

algorithm. In this algorithm, we randomly choose one cell to send from each queue, 

throwing out any blocked cells one by one, until the remaining set of cells is non

blocking. The queueing behavior for this method we consider an upper bound. As 

a lower bound, we might consider a simple exhaustive search of all C' E CA to find 

the set with the largest JC' n C J, but this becomes computationally prohibitive for 

switches with more than 16 inputs, where even for the Banyan the possible number 

of non-blocking sets is 2 ";n ~ 4.3 x 109 • In the case of the non-blocking switch, 

the problem of finding a maximal non-blocking set of cells to send reduces to the 

cardinality graph matching problem. This latter problem has a known polynomial 

time algorithm that solves it exactly [18]. 

Given a bipartite graph [19], a set Jl![ of edges is a matching if no two edges 

m Jl![ are incident to the same node. The cardinality matching problem is to find 

the matching with the largest number of edges. The reduction of the maximal non-
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Figure 4.6: Average queue size vs. average number arrivals for simulations of Bernoulli 
traffic into Banyan (a) and non-blocking (b) switches with 2 to 32 inputs. 
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Figure 4.7: Average queue size vs. average number arrivals for simulations of batch 
arrivals into various networks. 

blocking set problem to cardinality matching is simple and direct. Given an N X N 

cell matrix, C, construct a bipartite graph B =(X, Y,E), where X= {x1,x2, ... ,XN} 

andY= {y1 , y2 , ••• , YN} are two sets of vertices, and E = {(x;, Yi)} is the set of edges. 

If (I, D) is 1 in the cell matrix, then (x~, Yn) E E, and vice versa. If (xi, Yn) E M 

then we send cell (I, D). For a matching M C Eon B, (xi, Yn) EM implies this is 

the only edge in the matching incident on node XJ and on node YD· The constraints 

placed on a non-blocking set of cells for a non-blocking switch require no more than 

one cell per input and one cell per output. So the edges in a matching .Af correspond 

to the cells in a non-blocking subset of C. 

Figure 4.8 shows graphs of the average queue size for the greedy, neural network, 

and optimal method on a 32-input non-blocking switches. The results show, we think 

as expected, that the neural network produces results intermediate between the two 
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Figure 4.8: Performance range for simulations of Bernoulli traffic into a 32-input 
non-blocking switch. 

extremes. The range of values is not great, suggesting that we might consider the 

simple greedy algorithm. But even this has O(N2
) time complexity. Assuming that 

the algorithm requires just N 2 machine cycles to find a non-blocking set on some 

serial machine, in order to complete this operation in less than the 2.8ttsec between 

cell transmission times would require a clock speed of over 350MHz for a 32-input 

switch. This rules out this algorithm, and the even longer matching algorithm (time 

complexity O(N512
)), for all but the smallest switches. 

We now compare the neural network with alternative controlling schemes using a 

32-input non-blocking switch. The first scheme is the sequential competition scheme 

described in Section 4.5 (w = oo), while the second is an output queueing scheme 

where all cells are allowed to pass through the switch to the outputs [6, Equation 

(21)]. These are all plotted on the same graph in Figure 4.9 (along with a plot for 
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Figure 4.9: A comparison of different control architectures on 32-input switches with 
Bernoulli arrivals. 

the neural network on the Banyan switch). Of the three, the sequential competition 

scheme, even with this optimal window size, is the worst. The output queueing is the 

best, as little as half the queue of the neural controller, but at the expense of a more 

complicated switch. From our discussion in the introduction, the cost of gaining this 

at best factor of two gain in performance is an N times more complicated switch. For 

large N this can be an expensive trade-off. 

An interesting implication follows when we directly compare the performance of 

the Banyan network to that of a non-blocking network such as the Batcher Banyan 

combination. As discussed already, both will have queueing due to output blocking, 

but the Banyan network has additional internal blocking. For the Banyan we use 

the neural network with prompting as just described. For the Batcher Banyan we 

use the sequential competition scheme and a neural network controller. We compare 
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them using switches with 32 inputs. Results for these three are shown in Figure 4.9. 

This graph shows that the non-blocking network out-performs the Banyan network 

by a factor of two to three. This was for the case of Bernoulli arrivals. In the case of 

Batch arrivals, Figure 4.7 plots both the Banyan with neural network controller and 

the non-blocking switch with optimal matching controller. In this case we see that 

again the difference in performance is a factor of two to three. 

From an engineering standpoint, a more relevant parameter than the average 

queue size is the length of the buffer, B, such that the probability of losing a cell 

due to a saturated buffer is less than a given level, PL. Appendix 4.A derives a 

method for estimating an upper bound on B as a function of PL using data on the 

distribution of the queue size recorded during the simulations. Using this method, 

we construct Table 4.1 of upper bounds on B. With this table as a measure, we see 

that the Banyan network is still within a factor of two to three of the non-blocking 

switch. Note, however, that the necessary buffer size in the case of batch arrivals is 

significantly larger, by a factor of 100 or more. 

Although the non-blocking switches outperform the Banyan network, this better 

performance should be viewed in light of the extra complexity of a non-blocking 

switch. In many cases it would be simpler to use the longer queues with a Banyan 

network than to add the additional hardware necessary to make the network non

blocking. 

4.9 Implementation Considerations 

We show that each input queue can interact with the neural network in an independent 

and efficient manner. We also show that the constraint sets in the case of the Banyan 

network possess a regularity that can simplify the construction of the controller. 

Figure 4.10 shows a schematic of the architecture for a single input queue. It consists 

of the queue itself; the controller logic; the neural network; and a small amount of 

memory to hold a pointer to the first instance and the number of each type of cell. 

Since the memory keeps track of the first instance of each type of cell, all cells sent 
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Table 4.1: The Length of Buffer B Sufficient to Reduce Cell Loss Below PL for Various 
Combinations of Offered Traffic, a, and Switch-Controller Pairs. 

(a) Bernoulli traffic. 

Switch Type: Banyan Non-Blocking 
Controller: Neural Net Matching Neural Net 

PL a= 0.50 0.75 0.90 0.50 0.75 0.90 0.50 0.75 0.90 
8 Input 10 3 5 11 30 4 7 16 4 8 21 
Switch 10-6 8 20 57 6 12 26 7 14 32 

10-9 12 29 84 9 17 37 10 19 44 
32 Input 10 3 7 18 41 3 6 15 4 9 32 
Switch 10-6 12 28 56 6 11 26 7 17 53 

10-9 17 37 70 8 15 36 9 22 74 

(b) Batch arrival traffic. 

Switch Type: Banyan Non-Blocking 
Controller: Neural Net Matching 

PL a= 0.50 0.75 0.90 0.50 0.75 0.90 
8 Input 10-3 210 280 1200 140 230 740 
Switch 10-6 490 470 1500 280 390 1700 

10-9 770 670 1700 440 540 2600 
32 Input 10 3 160 560 870 130 260 680 
Switch 10-6 300 1100 1200 270 510 1300 

10-9 440 1700 1600 400 750 1900 
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Figure 4.10: A schematic of the queue architecture for one of the input queues. 

to the same destination remain in arrival sequence. The following table lists the 

processing algorithm at time step T. 

Initialization Queue Control reads the destination, D New' of newly arriving cell. 
If #DNew = 0 then: Set Pointer for DNew 

Toggle Latch DNew to +. 
Increment #D New 

Concurrent Release neural network. l If Dr-1 was sent last time, 
Processing Read destination address Dr. update pointer to next Dr_1. 

Post Send cell at pointer for Dr. 
Processing Decrement #Dr. 

If #Dr = 0, change latch Dr to -. 

In every time slot, at most one cell can leave, and cells for one destination can 

arrive. Since the latches retain their state from one time slot to the next, at most two 

latches are modified in any time step. For maximum throughput, the three steps in 

this table must be completed in less than one time slot, 2.8 microseconds. We assume 
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that the capacitance, C, is proportional to the number of connections per node, and 

the base capacitance is 2pF. The resistance of a connection we assume is lOOKO. 

This results in a worst case settle time over all simulations of 250 nsec. This allows 

sufficient time for the other processing requirements. The limiting step in this process 

is the updating of the memory about Dr-1· This requires a search of the queue to 

find the next cell destined for Dr-t, which scales with the size of the queue but not 

with the number of inputs, N. This search-time limit can be removed if necessary by 

using a larger pointer memory that stores the location of each successive cell for each 

destination. 

As a final point, we describe an efficient layout of the neurons for the Banyan 

controller. The equivalence classes in Figure 4.2 all occur in contiguous blocks of 

neurons. Note, though, that the numbering of the rows (inlets) is not in sequence. 

We claim that we can always reorder the rows or columns so that the equivalence 

classes are in blocks. Formalizing this notion of blocks, for an N X N matrix of 

neurons, (vrc), a set S of neurons is said to be a block if there exist integers r < r' 

and c ~ c' such that Vim E S if and only if r ~ l ~ r', and c ~ m ~ c'. 

Theorem 4.2 For an N = 2n-input Banyan network, we can always find a single 

permutation of the labels on the rows and columns so that all of the constraint sets 

Sj are blocks. 

Proof: Recall Section 4.3. For a particular Banyan network configuration, the 

switches in stage k replace ixk by dYk. For a column labeled D = dndn_ 1 ... d1 , 

rearrange the order of the bits and label the column instead dy
1 
dy2 ••• dyn· Similarly, 

relabel the rows from I = inin-1 ... i1 to ixnixn_ 1 ••• ix1 • We show that this is the 

desired permutation of the rows and columns. 

After stage k, the locator label, L, of a cell is composed of the bits ixn ixn- 1 ••• ixk+
1 

from the input address and the bits dy1 dy2 ••• dYk from the destination address. For 

simplicity we will assume that L = ixn ixn_1 ••• ixk+
1 
dy1 dy2 ••• dYk. In this case, 
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This set includes all neurons, VJD, such that 

< ixn iXn-l ... ixk+l11 ... 1, 
< dYl dY2 • • · dyk 11 · · · 1. 

But, for the permutations we defined, these correspond to contiguous rows and 

columns and by definition this is a block.• 

The proof is general enough to include all switching networks that are topologically 

equivalent to the Banyan, such as the baseline network. In our case Yk = n- k + 1, 

implying that the columns are unpermuted. For the rows, x1 = 1 with Xk = n- k + 2 

for k > 1. For N = 8, this implies that the most significant two bits are simply 

permuted. The fact that the constraint sets for the Banyan network controller are 

blocks can greatly simplify the layout. 

4.10 Buffered Memory Switches and Large Switch 
Designs 

In this section, we discuss buffered memory switches and show how we can use them 

to design a large ATM switch. A buffered memory switch is simply a high speed 

memory device that reads in all the arriving cells and reads out previously stored 

cells to the appropriate output lines. The memory can operate at ATM rates (;::::::: 150 

Mbs) by first converting the cells from serial to parallel and then sending the cells 

one by one into the memory, gaining a data slow-down factor of 

cell size 424 

number of input lines n 

where 424 is the number of bits in a cell. So far the largest buffered memory switch 

proposed is n = 32 [20]. This results in a manageable internal data rate of 12Mbs. 

The first advantage of these switches is that in effect they are utilizing output 

queueing with the improvement in queueing statistics shown in Figure 4.9. The 

second advantage is that, due to the trunking effect of the shared memory, they have 

a significant reduction in the buffer size per port for a given accepted level of cell 

loss. For n = 32, this is a reduction by a factor of 7 as shown in [20]. For larger 



Buffered Memory 
Switch Stage 

1 

Banyan 
Switch Stage 

1 

Actually two connections: 
one for transmitting cells 

one for passing control information 

Figure 4.11: The buffered-memory Banyan hybrid switch. 
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n, this reduction factor is even larger. Unfortunately, due to the current state of 

technology, the possibility of going to larger n is restricted by memory speeds. One 

way to increase the size of the switch is to build larger switches from stages of the 

buffered memory switches as described in Chapter 2. The problem is that the buffered 

memory switch is an expensive component. 

We propose a hybrid buffered-memory Banyan switch that would have the advan

tage of reduced buffer requirements and reduced blocking over the original Banyan, 

and allow for larger switch sizes than can easily be achieved by a single buffered mem

ory switch. Figure 4.11 shows the architecture. It consists of two stages of switches, 

a first stage of buffered memory switches and a second stage of Banyan switches. 

We show that this hybrid switch can be controlled. The buffered memory switch 

acts simultaneously as a queue and an initial switch stage. The control structure for 

the buffered memory switch is modified slightly. Each output of the buffered memory 

switch is directed to a different Banyan in the next layer. Instead of maintaining a 

queue for each of its outputs, a buffered memory switch must maintain a queue for 
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each of the outputs of the larger switch, that is, a queue for each of its outputs divided 

into subqueues, one for each output of the Banyan that it is connected to. 

The Banyans use one neural network controller for each Banyan. The cells waiting 

at an output of a buffered memory switch are equivalent to the queue in Figure 4.10. 

Thus between each buffered memory switch and Banyan we have two lines: one 

line that transmits the cells and one to send messages about two things, changes 

in the state of the queue (buffered memory to Banyan) and second which cell to 

send (Banyan to buffered memory). Thus, instead of a single large and complex 

controller for the whole switch, we produce a distributed controller with elements 

that corresponds to each of the switches in each stage. 

A 32-input Banyan and its neural controller can each be made on a single VLSI 

chip [21]. The projected 32-input buffered memory switch in [20] requires about 

15 VLSI chips and one printed circuit board. Thus a feasible switch design would 

consist of a layer of thirty-two 32-input buffered memory switches, followed by a 

layer of thirty-two 32-input Banyans, resulting in a 1024-input ATM switch. The 

total hardware requirements would be approximately 550 VLSI chips and 40 circuit 

boards. Recall that this is a system processing information at a rate of 150 Gbs 

(=150Mbsx1024 lines) and it is equivalent in capacity to a small exchange office, so 

the complexity seems acceptable. 

To evaluate the queueing behavior, we can use our previous simulation data. Each 

queue at the output corresponds to one of the input queues of a Banyan. The only 

difference is that now, instead of the independent arrival processes into each queue 

of Figure 4.3, each queue receives 1/ N of the arrivals from each of the N inputs. For 

the Poisson arrival process of the batches, these two models are equivalent. For the 

Bernoulli arrivals we will treat the data from the model in Figure 4.3 as a lower bound 

on the performance expected for the actual hybrid switch. 

The data for average queue size per buffered memory input port can be obtained 

from Figures 4.6 and 4.7. To find the size of the total buffer necessary for a given level 

of loss, we recall that the memory is shared by all of the queues. A given buffered 

memory switch has each output directed to a different Banyan switch. Assuming that 
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Table 4.2: Total buffer size necessary for a given PL in a 32-input buffered memory 
switch when connected to a second stage of either 8 or 32-input Banyans (also buffer 
size per input port). 

Traffic Type: Bernoulli batch arrivals 
PL a= 0.50 0.75 0.90 0.50 0.75 0.90 

8 Input 10-3 51(1.6) 140( 4.4) 370(12) 1300(40) 2900 (91) 12000(360) 
Banyan 10-6 64(2.0) 170(5.2) 430(13) 1800(56) 3700(120) 16000( 480) 
Switch 10-9 78(2.4) 190(6.1) 480(15) 2300(71) 4500(140) 19000(610) 

32 Input 10-3 74(2.3) 290(9.1) 830(26) 1300(40) 5000(160) 12000(370) 
Banyan 10-6 93(2.9) 340(11 ) 900(28) 1700(54) 6300(200) 14000( 450) 
Switch 10-9 110(3.5) 380(12 ) 960(30) 2200(68) 7600(240) 17000(530) 

the inputs to the large switch are uncorrelated, each of the buffers for cells waiting for 

an output are independent of the other buffers within the same switch. Therefore, if 

9r(s) is the generating function of the queue size distribution for an r-input Banyan, 

then (gr(s))n is the distribution of the buffer size within one of the buffered memory 

switches when the second stage is composed of r-input Banyans. Using an empirical 

9r ( s) recorded from the simulations we determine the buffer sizes necessary for various 

traffic and present the results in Table 4.2. These results show a significant reduction 

in the buffer size per input, compared with the results in Table 4.1. 

4.11 Conclusions 

ATM switches require a high-speed controller to prevent cell collisions. We analyzed 

this problem, and showed how it could readily be solved using a neural network with 

our previous results from Chapter 2. We showed how we could actually incorporate 

the neural design into the high-speed ATM switching network; the massively parallel 

neural network provided the required speed to solve the problem. Although we ana

lyzed in detail the performance of the design on non-blocking and Banyan switches, 

the solution method is applicable to a whole class of switches that we denoted as 

deterministic switches. We showed that the controller results in a throughput arbi-
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trarily close to 1. In the case of Bernoulli arrivals, the queue sizes were modest. In 

the case of burst traffic, the queue sizes were much larger, yet still reasonable. 

Using the power of the neural network, an instructive comparison was made be

tween the Banyan and non-blocking switch. This showed that the Banyan is within 

a factor of 2 of the non-blocking switch in performance. As a demonstration of these 

results, we presented a hybrid buffered-memory Banyan switch design, with which 

we were able to show the feasibility and performance of a large (1024-input) ATM 

switch. 

Finally, we conclude by noting that although we concentrated on the stringent 

ATM switching environment, the results that we presented here certainly apply to 

modern packet switches in general. 

4.A Appendix: Estimating the Tails 

In this section we derive a method for producing a (non-rigourous) upper bound 

estimate on the tail of the distribution, and then derive an expression for using the 

parameters of the estimate to calculate an upper bound on the size of buffer B needed 

for a given cell loss rate PL. 

One approach would be to assume a discrete-time Markov chain [14, p. 21]. 

But this assumption is not true. A queue with 10 cells in it may have 10 cells all 

destined for the same output, or 10 cells each destined for a different output. Clearly 

the probability that a cell is sent is a function of the internal distribution of the cells 

among the subqueues. We more simply assume instead that the the probability that i 

cells are in the queue, p;, can be described parametrically by a geometric distribution: 

p;(y, z) = yeiz. ( 4.4) 

For a true geometric distribution, y = 1 - ez so that the probabilities for i > 1 

add to 1. But we will actually assume ( 4.4) only for the tails, so there really are 

two parameters. The simulations recorded the distribution of queue size such as in 

Figure 4.12. This plot is on a logarithmic scale. We see that the second derivative of 
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Figure 4.12: A sample of a queue size distribution. 

this curve is negative. This is expected, since the probability that some cell is sent 

on average increases with the number of cells in the queue. It is apparent that by 

assuming a log-linear form, and fitting this form to these curves, we will certainly, as 

i --+ oo, achieve an upper bound on the probability distribution. 

We want to use the data from our simulations to estimate y and z. The data from 

our simulations is just histogram data, i.e., {m;}, where m; is the number of times, 

out of M total possible times, that the queues had i cells waiting. To estimate the 

tail, we use the vector m = (mn0 ,mno+l• ... ), that is, the histogram data recorded 

for all i greater than or equal to some integer n 0 • To get the estimates of y and z, we 

use a maximum likelihood method. 

First, we introduce some notation. Let au = L~u m;. We let Fu = L~u p; = {~::. 
We assume, reasonably, that the possible m are multinomially distributed: 
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L(y,z) Prob{the histogram data ism, when the probabilities are {p;(y, z)} }, 
M' 00 • ( F: )M-an rr m; --:-( 11-1--------.,.)-,-l -IJ-?0-----:-. I 1 - no 0 

. Pi · 
a no . •=no m,. •=no 

(The middle factor accounts for the probability that is not in the tail.) Taking natural 

logs of both sides, and then, for purposes of finding a maximum, taking the partial 

derivatives with respect to y and z and setting the result to zero, we obtain: 

olog(L(y, z)) 
ay 

olog(L(y,z)) 
oz 

f (m; eiz _ 1\![- O"no eiz) = O, 
P. 1-F i==no ' no 

~ (m; · iz M- O"no · iz) O L......t -ze - v ze = . 
P. 1- ./.'. i=na t no 

Multiplying both equations by yjl\![ and using (4.4), the first is equation is zero when 

O"no 
M = Fno, 

This restricts the sum of the first moments of the tail to being equal. Using this in 

the second equation, we find 

This restricts the sum of the second moments of the tail to being equal. Using (4.4) 

and solving for z andy, we have 

z log ( H'!Ji - no ) ' 
7J- no+ 1 

y = 
H(1 - ez) 

where H = L:~no "£t and H' = L:~no i£f are easily obtained from the simulation data. 

Using these as estimates for y and z, we can calculate estimates for the probability 

that a cell is lost. 
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We can also derive a simple upper bound on the blocking when the buffer is length 

B. We first assume that the buffer is infinite. The total probability flow from all 

states beyond B to states B or below is at most equal to all the probability beyond 

B, that is, FB+l· This must also bound the total flow in the opposite direction, 

i.e., the blocking. When we make the buffer finite, but with FB+l small, then the 

probability flow will remain approximately the same. Thus, we must find the B so 

th t F yez(B+1) p th t • 
a B+l = 1-ez < L, a Is; 

The only question that remains to be addressed is what n 0 to use to estimate y and 

z. We choose the largest n 0 so that O'n 0 I M > 0.01. To provide some indication of the 

robustness, we also did the estimation choosing the largest n 0 so that O'n0 I M > 0.02, 

and so that O'noiM > 0.005. In general, the effect of changing n 0 increased as we 

estimated further into the tails, and with noisier data (e.g., batch arrivals). At worst, 

the variation due to changing the cut-off was less than 20%; more typically less than 

10%. Note that because the distribution tails off at least exponentially fast, dramatic 

refinements to the method only bring about small improvements in the upper bound 

estimates. For example, making certain stronger assumptions, resulting in a lOdB 

reduction in the blocking probability estimate, reduces the bound on the necessary 

buffer size by less than approximately 20%. So, despite our crude methods, the 

bounds that we produce are still useful. 
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Chapter 5 

Epilogue 

In this thesis, we proposed that neural networks have an intrinsic value as a framework 

for designing massively parallel machines. To aid in such designs, we developed three 

generalizations to the Winner-Take-All network and proved that they were stable, 

and only stabilized on valid states. Although the basic model that we use is similar 

to other Winner-Take-all circuits proposed, the formulation that we presented can 

readily be incorporated into larger systems, neural and non-neural. The Multiple 

Overlapping Winner-Take-All generalizations are useful for including many types of 

constraints and restrictions on the possible solution states. It is interesting that other 

than a small issue of gain these results are independent of the details of the underlying 

neurons, reinforcing the folk theorem that the power of a neural network is "in the 

connections." 

These concepts were used to design two solutions to problems from circuit switch

mg. The pathfinder-for-multistage-switches problem demonstrated how the many 

neurons in a network could realize a straightforward parallel algorithm. The neural 

network for rearranging calls provided insights into programming a network using 

external inputs to perform a particular task. The application to the Benes network 

took this idea to an extreme. The external inputs initiated a program which the 

neural network used to compute inputs that programmed a second level of neurons, 

which in turn programmed a third level, and so on. 

The last problem that we investigated was a neural network contention arbitrator 

for packets in a high-speed packet switch. We developed a useful class of switches for 
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which the neural network is a direct consequence of the switch architecture. Using 

the design techniques, we were able to design a neural network with over 1000 highly 

interconnected neurons that not only was stable but only converged on valid states. 

The basic design was extended to include various functionalities including packet 

priority and traffic balancing. Extensive simulations showed that the performance 

of the network compared favorably with that of other techniques, both in terms of 

maximum throughput and queueing performance. The simulations also showed that 

with the massive parallelism of a neural network behind it, the blocking Banyan 

network has queueing performance similar to that of a non-blocking switch. The 

controller was extended to design a large (1024-input) ATM switch and controller 

using a modest number of components. 

Although the neural model that we used is far removed from the biology by which 

artificial neural networks were inspired, it is interesting to note that the interconnec

tions in these circuits and designs are almost exclusively inhibitory, with excitation 

arriving in the form of external inputs. This has many gross similarities to some 

biological neural systems: many local inhibitory connections, with but a few long 

range, often sensory, excitatory connections. The implication is that we may have 

insight into the reason why large biological neural systems are in the form that they 

are. Conversely, the direction in which we are heading can lead to extremely large 

and complex artificial neural systems that are both stable and extremely powerful. 

This biological issue aside, the work in this thesis certainly has implications beyond 

the three problems studied here. It is hoped that it will inspire neural solutions to 

problems from communications and elsewhere. 


