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A Bayesian Probabilistic Approach to Structural 

Health Monitoring 

Abstract 

by 

Michael W. Yanik 

In Partial Fulfillment of the 

Requirements for the Degree of 

Doctor of Philosophy 

A Bayesian probabilistic methodology for on~line structural health monitor

ing which addresses the issue of parameter uncertainty inherent in problem 

is presented. The method uses modal parameters for a limited number of 

modes identified from measurements taken at a restricted number of degrees 

of freedom of a structure as the measured structural data. The application 

presented uses a linear structural model whose stiffness matrix is parameter

ized to develop a class of possible models. Within the Bayesian framework, 

a joint probability density function (PDF) for the model stiffness parameters 

given the measured modal data is determined. Using this PDF, the marginal 

PDF of the stiffness parameter for each substructure given the data can be 

calculated. 

Monitoring the health of a structure using these marginal PDFs involves 

two steps. First, the marginal PDF for each model parameter given modal 

data from the undamaged structure is found. The structure is then periodi

cally monitored and updated marginal PDFs are determined. A measure of 

the difference between the calibrated and current marginal PDFs is used as 
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a means to characterize the health of the structure. A procedure for inter

preting the measure for use by an expert system in on-line monitoring is also 

introduced. 

The probabilistic framework is developed in order to address the model 

parameter uncertainty issue inherent in the health monitoring problem. To 

illustrate this issue, consider a very simplified deterministic structural health 

monitoring method. In such an approach, the model parameters which mini

mize an error measure between the measured and model modal values would 

be used as the "best" model of the structure. Changes between the model 

parameters identified using modal data from the undamaged structure and 

subsequent modal data would be used to find the existence, location and de

gree of damage. Due to measurement noise, limited modal information, and 

model error, the "best" model parameters might vary from one modal dataset 

to the next without any damage present in the structure. Thus, difficulties 

would arise in separating normal variations in the identified model parame

ters based on limitations of the identification method and variations due to 

true change in the structure. The Bayesian framework described in this work 

provides a means to handle this parametric uncertainty. 

The probabilistic health monitoring method is applied to simulated data 

and laboratory data. The results of these tests are presented. 
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Chapter 1 

Introduction 

1.1 A Need For Structural Health Monitoring 

Shortly after 1:00 A.M. on June 28, 1983, a suspended span of the Mianus 

river bridge on Interstate 95 in Connecticut fell to the water below. Several 

cars and trucks followed the span into the river, leading to three deaths and 

three injuries (Levy and Salvadori 1992). A larger tragedy on this highly 

traveled roadway was avoided only because of the early hour of the event. 

The failure of the bridge was due in part to the corrosion of steel support 

members and cyclic loading of the traffic. The key structural failure which is 

suspected to have lead to the collapse may have occurred, "hours or even days" 

before the span actually broke away. Only nine months earlier, the bridge had 

been inspected by the Connecticut Department of Transportation. 

During the January 17, 1994 Northridge earthquake in southern California, 

many structures were shaken and severely damaged. Over 100,000 buildings 

were visually inspected and "tagged" with safety levels roughly according to 

the guidelines set forth in ATC 20-Procedures for Postearthquake Safety Eval

uation of Buildings (Applied Technology Council 1989). The inspections left 

most of the steel moment-frame structures green tagged (i.e. safe for occu

pancy). In the weeks which followed the event, discoveries were made that 
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many of these steel moment-frame structures suffered significant joint damage 

during the earthquake (EERI 1996). These situations were especially difficult 

to diagnose as a result of the steel generally being encased in fireproofing, 

non-structural cladding, and other deterrents to inspection. The reports of 

problems with the steel framed structures grew as anomalies in structures were 

discovered. In one particular structure, the building was found to be leaning to 

the north after occupants kept complaining about operational problems with 

the elevator. As of this writing, more than 100 steel frame structures have 

been found to have steel connections which failed as a result of shaking from 

the Northridge earthquake. 

On April 28,1988, ari Aloha Airlines Boeing 737 suddenly lost an entire 

fuselage section while at 24,000 feet (Ott and O'lone 1988). Sixty-nine passen

gers were injured and one flight attendant was swept from the plane. Inspec

tion of the craft in the aftermath of the accident revealed significant cracking 

in the fuselage. The suspected cause of the cracks was fatigue. Within the 

six months prior to the accident, the plane had been inspected and undergone 

some minor repair work in accordance with the then current FAA and Boeing 

guidelines. 

These are a small sampling of the available examples wherein structural 

failure or potential structural failure arose due to loss of structural integrity. 

They also share a commonality in that all are cases where existing inspection 

regulations and techniques were insufficient to recognize the possible danger in 

a timely and detailed manner. For example, at the time of the Mianus River 

Bridge collapse, the state of Connecticut used six two-man teams to biennially 

inspect over thirty-five hundred bridges in Connecticut. Each team surveyed 

nearly three hundred bridges a year. This created a dangerous situation in 

which the inspection interval was long, and the level of inspection was limited 

to simple observations. Thus, the potential for structural failure of the Mianus 
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River Bridge was missed. 

A tool which is able to monitor the state of a structure in a detailed 

manner and on a more acceptable time scale and warn of potential problems 

would improve structural safety. Establishing the likely location and nature of 

structural weakness would also be an invaluable capability. Such information 

would warn inspectors if the structure may be damaged, where to look for the 

loss of integrity, and what type of loss to expect. Thus enters the concept of 

structural health monitoring. 

1.2 Structural Health Monitoring 

Structural health monitoring, or SHM for short, is the process of establishing 

some knowledge of the current condition of a structure. The ultimate goal is 

to determine the existence, location, and degree of damage in a structure. A 

great deal of research in the past twenty years has been aimed at establishing 

effective methods in different settings. The efforts in the SHM research can 

be separated into two general groups, local SHM and global SHM. In order 

to convey an appreciation for the nature of the research in SHM, this section 

presents a brief description of a few of the techniques developed to detect 

the various forms of damage in both the global and local approaches. As the 

work presented in this paper is a type of global method, the issues relevant to 

related global methods are also discussed. 

This survey is intended to provide a representative picture of some of the 

work being done in SHM. It is not meant to be a complete and in~depth 

exposition on all of the current research. For a more thorough treatment of 

the available SHM methods see Natke and Yao (1988), Agbabian and Masri 

(1988), IMAC (1997), and Masri (1997). 
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1.2.1 Local Structural Health Monitoring 

Local SHM techniques use direct examination of structural members to de

termine the condition of those members. Many methods fall into this class. 

Visual inspection is the most basic form of local SHM. This type of moni

toring is capable of detecting only very obvious structural faults. Any small 

scale defects and problems in inaccessible structural members are difficult to 

detect. In order to assist with detecting small scale faults, non-destructive 

evaluation (NDE) techniques can be employed. Dye penetrant methods aim 

to enhance the visibility of surface cracks through the use of a coating on the 

surface of the structural member. Eddy current and magnetic flux approaches 

look for cracks and delaminations (for composite materials) by monitoring 

impedance changes in a coil placed near the surface of the member. Radiog

raphy uses X-rays or gamma-rays passed through the member to reconstruct 

an image of the member. The image can be studied for flaws. Ultrasonic tech

niques send high frequency sound into a member and measure the backscatter. 

The character of the backscatter will be affected by cracks, delaminations, and 

other defects. Numerous studies applying these methods to civil and aerospace 

applications have been conducted (CRC 1991; Burdekin 1993; Popovics and 

Rose 1994; Zalameda et al. 1994; Jenks et al. 1997). While these NDE meth

ods provide a good picture of the member under consideration, there are a 

few limitations. First, the NDE techniques have the same problem as visual 

inspection in regard to inaccessible members. Also, applying these procedures 

to any more than a few structural members will be quite difficult and expen

sive. Finally, these approaches require an inspector to be present to conduct 

the investigation. This limits the frequency of inspection, which, as in the case 

of the Mianus River bridge, can prove to be fatal. 

Another set of local SHM techniques, which do not require user interaction, 

have also been developed. Such methods address the problems of monitoring 
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difficult-to-access parts of a structure and of increasing the rate of monitoring 

by placing sensors either directly on structural members or embedding them 

in the members and monitoring them remotely. A large contingent of these 

SHM approaches are based on using fiber optic sensors to sense strain or the 

presence of cracks in the members to which the sensors are attached. Some 

applications of fiber optic strain gauges to health monitoring can be found 

in Lyori et al. (1994), Measures et al. (1994), Masri et al. (1994), Measures 

(1996), and deVries et al. (1996). Fan et al. (1995), Leung and Elvin (1996), 

and Chen et al. (1996) show methods for using an optic fiber attached to a 

structural member to directly determine the existence and location of cracks. 

For a more thorough presentation of the developments in these types of SHM 

techniques, Agbabian and Masri (1988), Claus (1991), Udd (1991), and Claus 

(1993) are good sources of information. 

All of these local techniques can give an indication of the location and 

possible degree of damage in the area to which they are applied. By exhaustive 

application to an entire structure, these local methods could provide a very 

complete picture of the current damage state of the structure. For small 

regular structures such as pressure vessels and wing boxes, this might be a 

reasonable application of these local approaches. For structures beyond a 

certain size and complexity, examination of every part of the structure is not 

feasible. These methods are therefore best used to monitor specific parts of a 

structure. 

1.2.2 Global Structural Health Monitoring 

The global SHM approaches attempt to determine the overall damage state of 

a structure through measurement at only a few points in the structure. The 

benefit gained is that the condition of the whole structure can be monitored 

simultaneously. The drawback is that localizing and determining the degree 
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of damage becomes more difficult. The key step in these methods is the use of 

some type of framework to relate changes in the measurements at particular 

points to changes in the overall structure. Different choices for the framework 

and the goals of the specific technique separate the various global methods. 

Direct Methods 

One approach involves using measurements from the structure by themselves 

to detect the existence of damage. In these methods, the following is a typical 

scenario. First, sets of structural data from likely damaged conditions are gen

erated using different configurations of an analytical or experimental model. 

Pattern recognition techniques are then used to establish the existence and 

location of damage by comparing measured data to the pre-established pat

terns. The obvious limitation to these types of methods is that categorizing 

all possible damaged configurations is practically impossible. 

Mazurek and DeWolf (1990) suggest using variations in the modeshapes 

and frequencies as indicators of structural deterioration. They note that in 

order to detect damage through variations in modal parameters, changes due 

to normal operation conditions must be taken into account. Also, if damage 

location is to be found, changes in modal parameters in different failure modes 

must be known. The study presents a series of laboratory tests aimed at 

determining these characteristics for a model bridge girder. 

Hearn and Testa (1991) also present a method for determining damage 

by direct analysis of changes in frequencies. Their method uses an initial 

model of a structure to develop sets of ratios of changes in the frequencies 

for variations in different structural members. They propose using the set 

closest (in a least squares sense) to the observed ratio changes from measured 

data to indicate the existence and location of damage. Some experimental 

tests of the suggested method using a welded steel frame and a wire rope are 
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presented. 

Use of neural networks has been also been considered. In these SHM 

applications, the neural network is trained to recognize patterns of behavior 

in the data which represent expected modes of structural degradation. Gerardi 

and Hickman (1991) present an application to aircraft structures which looks 

for rivet corrosion and ice accretion using the frequency response function as 

input. Mangal et al. (1996) apply a neural network to recognize stiffness loss 

in offshore jacket platforms through changes in the dynamic response. The 

network is trained with output from a finite-element model of the offshore 

platform. Ceravolo and Destefano (1995) use neural networks to determine 

damage in a truss model by examining variations in the modal frequencies. 

Strains are the input in a method developed for analysis of aircraft by Kudva 

et al. (1991). A finite element model under different damage configurations 

provides the training input. 

Structural Model-Based Inverse Methods 

The final type of SHM methods described in this section use variations in 

structural models identified from different measured data, rather than vari

ations in the data itself, to determine the condition of the structure. The 

critical assumption is made that changes in the parameters of the structural 

model imply changes in the parts of the real structure associated with the 

parameters. These model-based SHM approaches rely on structural model 

updating (also known as system identification) methodologies to solve the in

verse problem of determining the parameters of a model given some measured 

data. This is a fundamental difference from the other global methods, wherein 

any structural model is used only to suggest likely data under different dam

aged states. A short discussion of model updating thus is necessary before 

describing the model-based SHM techniques. Model updating is a field unto 
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itself with concerns and applications quite apart from SHM. Only the aspects 

relevant to the SHM problem are considered here. 

Generally, model updating involves choosing the parameters of a model 

to minimize an objective function based on the error between the measured 

data and the corresponding quantities calculated from the model. Motter

shead and Friswell (1993) present a very thorough survey on various model 

updating methods. All the model updating methods have three common as

pects. First, there is noise in the measured data. In this work, "noise" will 

refer to variations of the measured modal data when there are no fundamental 

changes in the underlying structure. The effect of this noise is that model 

parameters identified from different data sets may be different, even if there 

is no change in the underlying structure. Another shared aspect of all the 

methods is that the models only approximate the real systems. No model, 

no matter how refined, is capable of completely duplicating the behavior of 

the structure it models in all loading conditions. Thus, model error is always 

present. Finally, even if there were no model error and no noise, the objective 

function used to compare the measured data and the corresponding quantities 

calculated from the model may be more sensitive to some model parameters 

and less sensitive to others. Small variations in a low sensitivity parameter 

might not significantly change the objective function. Thus, in some sense, 

that parameter is not well characterized by the model updating process. 

The model error, noisy data, and low sensitivity to parameter variation 

combine to create a degree of uncertainty in the identified model parameters. 

If the degree of uncertainty is too large for a given application, then problems 

could arise in using the identified model parameters. As a simple illustration, 

suppose the effects of model error, noisy data and low sensitivity result in a 

degree of uncertainty such that the identified model parameter is very likely 

to have a value between 0.99 and 1.01 but is unlikely to have a value outside 
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this range. If, in some application, knowing the value of the parameter to 

within 0.001 of the true value were critical, the uncertainty in this case would 

be a problem. On the other hand, in an application where the parameter only 

needs to be known to within 0.1 of the true value, the parameter uncertainty 

would not have a significant effect. 

The uncertainty problem carries over into the model-based inverse SHM 

methods, although many methods do not explicitly address it. When the 

structure under consideration is well-characterized by the analytical model, 

many controlled measurements can be taken, and the measurements have very 

low noise levels, no significant uncertainty may be present, and ignoring it 

should not lead to any problems. However, in many cases, such as with civil 

structures, these assumptions do not apply. The analytical models rarely 

capture the full behavior of the structure. Further, the amount of measured 

information is limited. For instance, the modal parameters of only a few of the 

lower modes of a civil structure can generally be determined with confidence. 

Finally, when the measured modal data is available, it tends to show significant 

variation from one measurement to the next. Any SHM method applied in the 

case of civil structures should therefore account for substantial uncertainty in 

the identified model parameters. 

On a very basic level, all of the model-based SHM techniques can be viewed 

as doing the same thing: 

1. Construct a structural model whose parameters have nominal values 

selected by engineering judgment. 

2. Measure data from the structure in an undamaged configuration and use 

a model updating procedure to get better estimates for the undamaged 

model parameters. 

3. Measure data from the structure periodically and generate some metric 
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for the variation with respect to the undamaged state. 

4. Use the measure to detect changes in the structure. 

The methods are differentiated by the structural model used, the type and 

amount of measured data necessary, what metric is used to detect damage, 

and whether or not the parameter uncertainty issue is considered. Restrictions 

on the amount of data will limit the number of parameters in the model that 

can be uniquely identified. Uncertainty in the identified model parameters 

will lead to difficulties in concluding whether changes in the model parameters 

are due to damage or an effect of noisy data, model error, and insensitivity. 

Thus, in order to properly address the SHM problem, a method should take 

into account the realistic situations of limited measurement information and 

parameter uncertainty. 

Kim and Bartkowicz (1993), Kim et al. (1995), and Zimmerman et al. 

(1996) present an on-going effort using a combined modal expansion/model 

reduction approach for updating finite element models. Stiffness matrices 

are identified from different sets of modal data, and a direct comparison is 

made to determine the existence and location of damage. They have applied 

their method to theoretical models, an 8-bay experimental truss, and a 10-

bay experimental truss. Their results have been good, although they do not 

explicitly take the parameter uncertainty issue into account. 

Another method which uses differences in identified stiffnesses 1s given 

in Topole and Stubbs (1995). Although these authors make the claim that 

their method is superior to others because it requires no initial modal data, 

they assume the initial mass and stiffness matrices are perfect matches to the 

structure being studied. Initial data of some type must be used to validate 

this supposition. 

Farhat and Hemez (1993) and Hemez and Farhat (1995) present a method 

which updates the elastic modulus and cross-sectional area of truss members. 
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Changes in these parameters between data sets are used to indicate damage. 

They introduce a criterion to select which parameters should be updated. This 

is a nice feature since detailed models can be maintained. Results are presented 

for an analytical analysis of a lO~bay truss. The performance of the method 

is good when a high density of sensors is used, but worsens as the number of 

sensors is reduced. They note that identified damage will often "spread" to 

neighboring elements which are not in reality damaged. The effects of noise 

in the measured data are not considered. 

In Pandey and Biswas (1994, 1995) an interesting approach to detecting 

damage using updated flexibility matrices, rather than stiffness matrices, is 

proposed and experimentally tested. The authors use the fact that under 

certain restrictions, the flexibility matrix is better characterized than the stiff

ness matrix by the lower modes of vibration. They suggest comparing observed 

changes in the flexibility matrices identified from different data sets with char

acteristic patterns of change for specific damaged configurations derived using 

an initial finite~element model of a structure. Although the results appear 

promising, some of the limitations of the method weigh against them. First, 

the method requires that the modeshapes at a fairly large number of points be 

known. Also, the number of damage patterns which can be saved is limited. 

Finally, the authors make no mention of the effects of noise in the data on 

their results. 

An attempt is made by Baruh and Ratan (1993) to include the effect of 

uncertainties due to model error and measurement noise. They use a residual 

vector based on the eigenequation error as an indicator of damage existence 

and location. They never actually update a model, which is a nice feature. 

The effects of model error and measurement noise on the residual vector are 

studied, although no systematic accounting for these effects is discussed. 

Fares and Maloof (1997) present a method which is philosophically very 
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similar to the one which will be presented in this study. The focus of their 

work is finding cracks in a plate using strain measurements, although the 

method they pose has more general applicability. They acknowledge that 

the measurements will be noisy and the model for the plate inexact. These 

factors are accounted for by framing the problem in a probabilistic manner. 

A procedure for establishing the plausible range of data for a given model 

is introduced. Measured data is compared with the plausible range. When 

the data fall outside of the plausible range a statistically significant number 

of times, an "anomaly" is detected. The method that is developed shows 

promise, and, as the authors themselves note, may benefit from treatment in 

a Bayesian framework. 

Finally, a great deal of investigation in the SHM area has been done by H. 

Natke and J. Yao (Natke and Yao 1988; Natke and Yao 1993; Yao and Natke 

1994). Their collected works both present a general framework for SHM, 

and discuss the important issues associated with SHM such as uncertainty in 

identified parameters. Their papers and books provide excellent guidelines for 

the type of work that is necessary in order to address the problems of SHM. 

1.2.3 Local and Global Method Working Together 

Local and global SHM should be considered as complementary, rather than 

competing approaches. For example, embedded sensors could be used to mon

itor key areas of a structure and provide data to a global SHM algorithm. The 

results of the global analysis could then be used to provide guidance in look

ing for damage in parts of the structure not instrumented with the embedded 

sensors. A local NDE method would be applied at the locations indicated by 

the global method. The use of both types of SHM together helps to partially 

overcome the limits encountered when each are applied alone. The potential 

advantages of joint application need to be considered in research in both areas 
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ofSHM. 

1.3 What Does This Work Present? 

This work presents a methodology for SHM which falls into the class of global 

structure model-based inverse methods. The SHM method described builds 

on and incorporates theoretical development in SHM and system identification 

by J. L. Beck and his current and former students (Beck and Katafygiotis 1992; 

Beck 1991; Beck 1996; Papadimitriou et al. 1995). Efforts by M. B. Levine 

and her colleagues (Levine-West and Milman 1994; Levine-West et al. 1996) 

also provided some inspiration in certain aspects of this work. 

The goals of the method presented in this study are defined in the prob

lem statement in Table 1.1. These goals are accomplished by formulating the 

solution in a Bayesian probabilistic framework. The Bayesian setting facili

tates accounting for uncertainties due to noise1 in the measured modal data 

and modeling error. Also, engineering judgment concerning a number of is

sues can be incorporated in a mathematically formal fashion. Finally, in the 

Bayesian approach, addition of new modal data is treated in a systematic 

fashion. 

One important aspect of the SHM procedure in this work is that measured 

modal data is used to perform health monitoring. This enables the method 

to function, if necessary, using only data available through small-amplitude 

ambient vibration monitoring of structures. Ambient vibration monitoring 

measures the motion of a structure due to constantly occurring events such 

as wind loading, traffic loading and micro-tremors. Methods have been devel

oped to extract modal parameters from this ambient time-domain data (Beck 

et al. 1994; Beck et al. 1995; Rubin 1980; James et al. 1992). The ambient 

1 What is meant by "noise" in the modal data is explained further in Section 2.4.1. 
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• A structure 

• A linear dynamic model of the structure 

• Sets of measured, noisy, incomplete modal data 
from the structure in a known undamaged condi
tion 

• Sets of measured, noisy, incomplete modal mea
surements taken at a periodic interval from the 
structure in an unknown condition 

• Measures which reflect the probability of the ex
istence, location, and degree of damage while 
accounting for the model parameter uncertainty 
which arises due to modeling error and noise in the 
measured modal data. 

• A way to incorporate new data as it is measured 
so that an automated monitoring system can be 
developed. 

Table 1.1 Problem statement for the SHM method developed in 
this study. 
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vibration approach to SHM has several advantages over methods which uti

lize forced vibration response to determine modal parameters. First, for the 

low amplitude excitations typically experienced during ambient motion, most 

structural systems are well characterized with linear models, which are easier 

to treat than nonlinear ones. Also, the danger of further damaging the struc

ture while testing it is reduced. Finally, continuous ambient vibration tests 

can be performed at very low cost. For a permanently instrumented structure, 

this will facilitate the implementation of the SHM method as an automatic 

monitoring system. 

Two key assumptions go into this SHM method. These are 

1. Damage in the structure will affect the measured data to a sufficient 

extent to be able to characterize the damage. 

2. Variations in a model of the structure identified using data from the 

structure in undamaged and damaged states can be taken to infer the 

existence, location and degree of changes in the structural components 

corresponding to the changed model components. 

The first applies to any SHM method, and the second is specific to model~ 

based methods. If either of these statements is not true, then SHM cannot 

be performed with a model~based SHM method which uses measured data. 

·while verifying these assumptions is an important part of validating the use 

of the SHM procedure, to do so properly requires experimental testing on 

full~scale structures. Some such testing has been done (Rubin 1980; Mazurek 

and DeWolf 1990; O'Leary et al. 1992), but to fully discuss these issues is 

beyond the scope of this work. Thus, the SHM method is developed under the 

assumption that these key statements are valid, but will require further work 

in applying it to actual structures for confirmation of the assumptions. 

Chapter 2 presents the approach to SHM taken in this study. First a 
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brief background on Bayesian probability is given in Section 2.2. Section 2.3 

provides an outline of the necessary steps in formulating a Bayesian SHM 

scheme. The details of the method devised for this study are in Sections 2.4 

and 2.5. A summary the Bayesian SHM technique is in Section 2.6. 

The result of testing the capabilities and limitations of the SHM method

ology are presented in Chapter 3. Chapter 3 has examples of application to 

computer-generated data from model buildings. A simple two degree of free

dom shear structure is studied in Section 3.2 in order to explore some of the 

key issues of the SHM method in a fairly exhaustive manner. Section 3.3 con

tains an example of applying the SHM method to a ten degree of freedom shear 

structure. In this case, damage scenarios are considered, and the behavior of 

the SHM technique is analyzed. 

A venues of further investigation are discussed in Section 4.1. Limitations 

of the developed method are mentioned in Section 4.2. Finally, some closing 

remarks on the SHM method developed in this study are made in 4.3. 
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Chapter 2 

Theoretical Development 

2.1 Introduction 

As established in the preceding section, structural health monitoring can be 

a useful tool in maintaining structural safety and performance. However, de

veloping health monitoring methods is not a trivial task due to the associated 

difficulties such as model parameter uncertainty. Consider handling the prob

lem in a simple deterministic framework. In such a setting, an objective func

tion based on an error between the model and measured output is defined and 

the "best" model parameters are those which minimize this chosen function. 

Differences in the "best" model parameters found from different data sets are 

used to infer changes in the structure. Two problems arise in this scheme. 

First, there is no way to find how well the measured data defines the model 

parameters. The objective function could be very peaked, very fiat, or any

where in between around the "best" model parameters. Furthermore, the data 

itself may vary without any changes in the measure structure. These effects 

lead to differences in the "best" model parameters identified from different 

data sets which are not caused by changes in the structure. Thus, performing 

health monitoring would be difficult. A purely deterministic approach does 

not address the problems which arise due to parameter uncertainty. 
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A Bayesian probabilistic framework provides a means by which to handle 

the issue of parameter uncertainty. It can reproduce the results of some of the 

deterministic methods, albeit with a slightly different interpretation. Further, 

it provides the machinery by which a measure of the probability of damage 

can be assessed. In what follows, a general outline of Bayesian structural 

health monitoring is described. Then, the particular method developed for 

this study is detailed. Once the setting is established, some of the implications 

and limitations will be analyzed in Chapter 3 using synthetic test data. 

2.2 Bayesian Probability 

The first step in developing the Bayesian structural health monitoring(SHM) 

method is introducing Bayesian probability. In a Bayesian setting, probability 

is not thought of as relative frequency of events over multiple trials. Rather, 

probability is viewed as the plausibility of one set of statements given another 

set of statements. The relative plausibilities of different statements with re

spect to a common statement can thus be determined. Two good references 

for the philosophy behind Bayesian probability are Jeffreys (1939) and Jaynes 

(1978). Box and Tiao (1992) present some of the mechanics associated with 

using the theory. 

Mathematically, the foundation of Bayesian statistics is Bayes' theorem, 

which is expressed using conditional probabilities. In terms of conditional 

probabilities of statements A, B, and C, Bayes' theorem is 

(2.1) P(AIB C) = P(BjA, C)P(AIC) 
' P(BIC) 

where P(XIY) is the probability of statement X conditional upon statement 

Y, and "Y, Z" denotes the conjunction of two statements, Y and Z. If X and 

Y are statements about the values of random variables, then Bayes' theorem 
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can also be stated in terms of conditional probability density functions (PDFs), 

g1vmg 

(2.2) 
p(bla, c) 

p(alb, c) = p(bic) p(aic). 

Here, p(xiy) is the probability density function (PDF) for x conditional upon 

y where p(xiy) limdx--+O P(x<X<~:dxiY=y). Thus, a,b,c,x, andy are all nu

merical variables. 

In words, Bayes' theorem states that the updated (a posteriori) PDF for 

a conditional on b and c is equal to the PDF for b conditional on a and 

c scaled by an initial (a priori) PDF for a given c and normalized by the 

probability (PDF) of b given c. The updated PDF is used to make inferences 

about a. Any conclusions about a are said to be conditional on b and c. 

From the total probability theorem, 

(2.3) p(bic) = J p(bia, c)p(aic)da = k- 1
. 

Thus, p( blc) is a constant with respect to a which normalizes the integral of 

p(aib, c) over all possible a. Bayes' theorem can then be written as 

(2.4) p(alb, c) = kp(bla, c)p(aic). 

This form of Bayes' theorem will be used throughout the remainder of this 

work. 

The PDF p(bla, c) is chosen to reflect the plausibility of b given a and c. The 

criteria used to select the function depend on the problem under consideration. 

The initial PDF, sometimes called the prior PDF, reflects the initial knowledge 

of the statement a included in c. This function can be non-informative, in 

which case c tells nothing about a and is a constant. Strictly speaking, if the 
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uncertain variable is modeled as unbounded such a function should only be 

flat in a finite region of interest and fall off away from the region so that the 

PDF will have a finite integral over an infinite domain. Such an initial PDF is 

termed locally non-informative. In the case that the initial PDF reflects that 

c provides more information about a, it is called informative. For example, 

if a is the value of some parameter which must be between 0 and 2, then a 

locally non-informative initial PDF would be zero outside of this range and flat 

within the range. A possible informative prior could arise from letting b and c 

include successive data sets and using the updated PDF for a obtained using 

c as the initial PDF when the data set b is considered. In general, the initial 

PDF enables the Bayesian setting to account for the effects of past knowledge, 

based either on data or engineering judgment, in an explicit mathematical 

form. 

2.3 Outline of Bayesian SHM 

The Bayesian probabilistic framework is a tool very well suited to handling the 

SHM problem. As will be shown, a measure of the plausibility of structural 

damage is generated which can be used to make decisions concerning structural 

safety and inspection locations. Also, the Bayesian method developed in this 

work addresses the parameter uncertainty issue. Constructing a Bayesian 

probabilistic approach to solve the SHM problem requires several steps. After 

a brief general description of these steps in this section, the particular decisions 

this study makes and the resulting SHM procedure will be discussed in detail 

in sections 2.4 and 2.5. 

The primary step comes in choosing a structure and determining what 

observable characteristics it possesses which can be used to determine damage. 

The observable quantities, referred to in this study as observable parameters, 
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could consist of modal properties, displacement, velocity, and acceleration time 

histories, strains, or any set of observable structural values which would reflect 

structural damage. Due to uncertainties associated with measurement error, 

unknown loading, and related factors, the observable parameters are treated 

as uncertain variables. ~·hen the observable parameters are measured, the 

resulting values are referred to as measured data or simply data. 

Once the structure and types of observable parameters are determined, a 

class of structural models is formulated. The model class is parameterized by 

the structural model parameters which reside in the structural model parame

ter space. The structural models are chosen so as to be capable of producing 

a set of quantities which is equivalent to, but not necessarily equal to, the 

observable parameters. Suppose there are no uncertainties associated with 

the structural model class or the observable parameters. Further, allow that 

the structural model parameters can be chosen so that the structural model 

provides an exact match to the measured data. Under these conditions, if 

structural model parameters found using different sets of data are different, 

the inference can be made that the structure has changed in some fashion. The 

location and degree of change might even be indicated if the structural model 

parameters correspond to structural quantities such as the elastic modulus or 

cross-sectional area of a specific beam. In reality, uncertainties in both the 

observable and structural model parameters are always present. Uncertainties 

in the structural model parameters arise due to model error, non-ideal mate

rials, unknown boundary conditions, and other factors. Conclusions may still 

be drawn concerning structural changes based on changes in the structural 

model parameters. However, the uncertainties in the observable parameters 

and the structural model parameters must be incorporated. 

The probabilistic aspect of the approach now comes into play. A class of 

probability models, P, is selected. The probability models are parameterized by 
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the probability model parameters which reside in the probability model parame

ter space. The probability models define a PDF for the observable parameters 

given a model from the structural model class. This PDF is conditional on 

the structural model, the structural model class, and the probability model 

class. In the Bayesian setting described in Section 2.2, this PDF is viewed as 

p(bja, c). Thus, in terms of the quantities used in Bayes' theorem defined in 

the preceding section, the structural and probability model parameters cor

respond to a and the observable parameters correspond to b. The structural 

model class and the probability model class together make up c. The struc

tural model parameters and probability model parameters taken together are 

referred to as model parameters. The model parameters reside in the union 

of the structural model parameter space and the probability model parameter 

space, called the model parameter space. 

After measurements have been made on the structure, Bayes' theorem can 

be invoked to determine an updated PDF where model parameters are treated 

as uncertain and the observable parameters are replaced by the measured data. 

Not all of the structural and probability model parameters need to be treated 

as uncertain. For instance, the probability parameters may be assumed known 

while the structural model parameters are not. In this case, the updated PDF 

would be formulated for the structural model parameters alone. In order to 

use Bayes' theorem, the initial PDF on the uncertain model parameters is also 

selected. 

The updated PDF provides a measure of the relative plausibility of the 

various values of the uncertain model parameters. Integrating the updated 

PDF over sets of parameter values in the model parameter space will give a 

measure of the plausibility of those sets of values given the measured data. 

The probabilities derived from different measured data sets can be used to 

establish measures for the plausibility of the existence, degree, and location 
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of damage. Thus, the final step in developing the Bayesian Structural Health 

Monitoring method is choosing how the updated PDF will be used to measure 

the probability of the existence, location, and degree of damage in a structure 

given measured data from the structure. There will necessarily be subjective 

choices which require simulation and experimental testing to investigate the 

limitations. 

This brief description of SHM in a Bayesian setting outlined the key steps 

in a very general manner. Sections 2.4 and 2.5 detail the approach taken in 

this study. 

2.4 Formulating the Updated PDF 

The development of the SHM method follows in a manner which parallels the 

general description given in section 2.3. This section describes the steps taken 

to formulate the updated PDF. Section 2.5 presents the SHM method which 

uses the updated PDF developed in this section. 

2.4.1 Measured Data 

Clearly, changes in the effective stiffness of structural members will effect the 

modal parameters. Thus, these may be used to detect damage. The observ

able parameters for this work therefore comprise the modal parameters of a 

structure for a limited number of modes identified from measurements taken 

at a restricted number of degrees of freedom (DOFs) of the structure. These 

limitations reflect most real-world situations in which there are relatively few 

sensors, noise in the measurement system, and limited dynamic range in the 

excitation of the structure which restrict the number of modes and the num

ber of modeshape components which can be identified. The observable modal 

parameters are quantities that can be determined. The measured values of 
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the observable modal parameters, or simply measured modal parameters, are 

the values of the observable modal parameters when they are determined. 

In general, the observable modal parameters would be identified from mea

sured time-domain data using any of the standard modal parameter identifi

cation methods such as ERA(Juang and Pappa 1985), polyreference(Vold and 

Rocklin 1982), or MODE-ID (Beck 1996). The modal parameters used in this 

study are found using MODE-ID. For a given time-domain data set, the out

put of MODE-ID is an optimal modal estimate for that data set. Throughout 

this work, the implied method for acquiring the modal parameters will be am

bient vibration monitoring. The advantages of ambient vibration monitoring 

are mentioned in Section 1.3. 

As mentioned in Section 1.2.2, any variations in the measured modal pa

rameters which are not a result of changes in the underlying structure are called 

"noise" . For the modal parameters, these variations are caused by a number 

of factors. The measured time-domain data can differ from the true motion 

because of electrical noise, limitations of the transducers, and the quantization 

of the signal. Also, the methods for extracting the modal parameters from the 

time-domain data may make assumptions which are not entirely valid. Such 

effects contribute to the observable modal parameters being uncertain. 

The total number of different measured time-domain data sets is N 8 • The 

nth optimal modal estimate provides a modal model whose output best fits 

the nth measured time-domain data in a least squares sense. The modal 

model can be viewed as the most probable model within a class of linear 

dynamic models based on a superposition of classical normal modes (Beck 

1996). The modal estimate for the nth set of time-domain data comprises Nm 

measured frequencies of vibration, 4(n), and associated measured incomplete 

modeshape vectors, (/J,.(n) E [RNo, where r E 1, ... , Nm, and N 0 represents 

the number of observed degrees of freedom. Since the incomplete modeshapes 
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can be scaled arbitrarily, they are given a unit Euclidean norm. This restricts 

them to lie on the boundary of the N 0 dimensional unit ball, aBNo· In reality, 

therefore, only Nm N 0 independent parameters are available with each set of 

measured modal parameters. For instance, when only one DOF is measured, 

the number of parameters equals the number of frequencies identified since 

the associated modeshapes are all single elements which are set to 1. For 

this study, a simplifying assumption has been made that the same number of 

modal parameters are identified from every time-domain data set. This is not, 

in general, a situation which will always be true. 

All of the measured modal parameters for the nth time-domain data set 

are referred to by i'n. The collection of all such measured data sets is the data, 

DNs· Thus, 

(2.5) 

This study will focus on the case where the modal data consists of some 

data from an initial or undamaged structure and other data from the same 

structure in a potentially damaged state. Suppose the first Nud sets are from 

the undamaged structure, and the remaining N 8 - Nud are from the structure 

after it has been monitored and new data acquired. Even though the structure, 

not the data, is damaged, the terms undamaged data and potentially damaged 

data will be used to describe data from undamaged and potentially damaged 

structures, and will be denoted respectively by 

(2.6) 
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and 

(2.7) 

If damage is positively detected, the measured data sets which come from the 

damaged structure will be differentiated from the other data sets by calling 

them 1Jd. 

Without the "-", the parameters will refer to the observable modal param

eters or observable modes. The set of all the observable modal parameters is 

referred to as Y. 

2.4.2 Structural Model Class 

The structural model class in this study, MNd' consists of Nd degree of free

dom (DOF) linear systems with a known mass matrix which have dynamic 

behavior characterized by the equation of motion: 

(2.8) Mx + C(B)x + K(B)x = j(t) 

with f, x E [RNd, and 11-1, C, K E [RNdxNd. Furthermore, the model class has 

"expanded" modeshapes, which are explained later in this section. 

Defining the Fundamental Model 

The motion of a particular physical structure can be modeled by an equation 

of motion 

(2.9) Mx + Cx + kx = f(t). 

One way to derive this relationship is through the finite-element method to 

model the structure as a multi-degree of freedom linear system possessing 
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classical normal modes of vibration. Each element in the finite-element model 

has a contribution to the mass, damping, and stiffness matrices. The equa

tion could also be formulated by assuming a simple model which consists of 

using discrete masses, damping elements, and linear spring elements to model 

the structure. Like the elements in the finite-element model, each of these 

elements contributes to the overall mass, damping and stiffness matrices. In 

each approach, the elements of the model correspond to structural members. 

The mass matrix, M, derived in this fashion is assumed to be well-known 

and unchanging over time. Thus, models with varying mass are not part of 

the model class. A further fact of importance is that the mass matrix will 

be symmetric and, for the applications considered in this work, positive defi

nite. The damping is assumed to be of a form such that C M-1 K = K M-1c, 
which insures that the model possesses classical normal modes (Caughey and 

O'Kelly 1965). 

The contribution from a finite element or a discrete spring element to the 

overall stiffness matrix, K, is Ki E IRNdxNd. Thus, the stiffness matrix is of 

the form 

Ne 

(2.10) K=Lki 
i=l 

where Ne is the number of elements in the model. A grouping of elements 

is called a substructure. A substructure's stiffness contribution to the overall 

stiffness matrix is given by the sum of the elemental stiffness matrices for the 

elements which make up the substructure. The substructure stiffness contri

butions can be grouped further into those which are considered known and 

those which are uncertain. Thus, the stiffness matrix can be written as 

Ne 

(2.11) K=Ko+ LKi, 
i=l 
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where K 0 is the sum of substructure stiffness contributions from the known 

set, and the Ki are from the uncertain set. 

Parameterizing the Model Class 

The structural model class, M Nd, is defined in part as a set of models pa

rameterized by introducing the vector of non-dimensional structural stiffness 

parameters() E 8 ~ [RNe and defining K(()) in (2.8) as 

Ne 

(2.12) K(()) = Ko + L ()iKi· 
i=l 

The damping matrix, C(()), is of a form such that the system given by (2.8) 

possesses classical normal modes. Since the stiffness parameters must remain 

positive, 8, the structural parameter space, consists of only positive values. 

Furthermore, the material properties and structural geometry could limit the 

range of values for the ()i· These model dependent properties would further 

constrain the parameter space. The model which provides the Ki is called the 

fundamental model. This is essentially the model of the structure formed using 

analytical techniques alone. When () = [1, ... , 1]r, the fundamental model is 

selected from MNd· This fact will be used later in the justification for choosing 

an initial PDF for B. 

The chosen parameterization for the model class preserves the structural 

connectivity of the fundamental model since an element of the fundamental 

stiffness matrix k which is zero remains zero in K(B). This is desirable in 

structural health monitoring since changes in () identified from successive data 

sets can then be related to changes in the real structure. However, unless a 

structural model parameter scales an individual elemental stiffness matrix, a 

change in () reflecting variation only in that element is not part of MNd· In 

fact, a change in the value of ()i could be viewed as an equal change in all of 
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the stiffnesses of the elements constituting the ith substructure. In practice, 

this is seen to produce cases where the correct model parameters change to 

indicate the gross location of damage, but the magnitude of change is less than 

if individual elements were scaled. 

This problem may be addressed with adaptive substructuring, wherein 

substructures suspected of having changed are re-substructured, and those 

whose values have not changed are lumped into the known set of substructures. 

A formal procedure to automatically perform the adaptive substructuring is 

beyond the scope of this work. This is a possible topic for future study in 

the Bayesian setting. Some techniques for adaptive substructuring for use in 

model updating have been developed for deterministic settings (Hjelmstad and 

Shin 1997). 

Another advantage of substructuring is that the number of necessary model 

parameters is reduced. This is beneficial in two ways. First, it decreases the 

computation required when performing calculations to evaluate the parame

ters. Also, if the amount of measured data is limited, the number of parameters 

which can be found without incurring excessive non-uniqueness problems is 

limited. 

The Model Modal Parameters 

As is well known, for classical normal modes, the frequencies, W 8 (0), and mode 

shapes, x 8 (0), for the model are given, respectively, by the eigenvalues and the 

eigenvectors of 

(2.13) [K(O)- w;(o)M] x 8 (0) = 0. 
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The modeshapes are orthogonal with respect to M. Thus, 

(2.14) X8 (Bf M Xt(B) = 68t s, t E 1, ... , Nd 

where 68 t is the Kronecker delta function. Since the scaling on the modeshapes 

is arbitrary, they are taken to be mass normalized. With this scaling, 

(2.15) 

The matrix of all the model modeshapes is a full rank matrix which will be 

called X(B). Using the results just described, 

(2.16) xr(B)MX(B) =I, 

and 

(2.17) 

where 0 2 (B) is a diagonal matrix with the squares of the model frequencies on 

the diagonal. These relationships will be used extensively in the development 

of the updated PDF for the model parameters. Unless needed for clarity, the 

explicit dependence of these quantities on () will be dropped. 

For any given set of measured modal data, Yn, the number of identified 

modes, Nm, is much less than Nd, the number of degrees of freedom of the 

structural model. Also, the number of modeshape components which are iden

tified for each mode, N 0 , is typically much less than Nd because a limited 

number of sensors is employed. The N 0 DOFs of the model corresponding to 

the observable modeshape parameter components are referred to as observed 

degrees of freedom. The observed degrees of freedom are selected from the 

full set of model degrees of freedom by the obser-vation matrix, r E IRNaxNd_ 
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Each row of the observation matrix possesses a single "1" in the appropriate 

location. The remaining components in the row are set to 0. There is one 

such row in r for each observed DOF. 

The Expansion Parameters 

As previously noted, the full set of modeshapes for a model in MNd spans 

the space IRNd. However, because of the mathematical structure built into the 

model, the model modeshapes cannot be arbitrarily chosen. It might therefore 

be possible that no element of MNd can produce modeshapes which match the 

measured modeshapes. In order to address this problem, the structural model 

class is "expanded" by taking linear combinations of the model modeshapes, 

(2.18) 

for each observable mode. The cbr E IRNo are called expanded modeshapes. The 

vector of scalings on the model modeshapes, O:r E IRNd, are expansion vectors. 

All the expansion vectors taken together as a vector are called the expansion 

parameters and given the symbol o:. The expansion parameters o: together 

with the structural parameters ()fully parameterize the model class, MNd· 

For each observable mode, there is a corresponding set of expansion pa

rameters. Therefore, the expanded model class has the potential for matching 

any set of classical normal modes. 

As with the model modeshapes, the expansion vectors are known only to 

within a scaling factor. Thus, they are given a unit Euclidean norm. This 

restricts O:r to lie on the boundary of the Nd dimensional unit ball, oBNd· 

This choice for scaling means that 

(2.19) 



32 

A Simple Model Class 

As an example of a model class, take M 2 to be "The set of two DOF shear 

structure models with known mass." A picture of typical model is shown 

in Figure 2.1. The lumped masses are m1 and m2 . The elemental stiffness 

Figure 2.1 This is a representation of a two DOF shear structure 
model. The spring elements represent resistance to lateral mo
tion between the "floors". The masses are assumed lumped at 
the "floors". 

matrices are 

(2.20) 

Two possibilities exist for substructuring: one or two substructures. In the 

first case, K 1 = K1 + K2 and 

(2.21) 
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(2.22) 

Thus, there are either one or two structural parameters depending on the 

substructuring chosen. Prior knowledge of the properties of the members in 

the structure being modeled could put limits on the achievable stiffnesses, thus 

defining 8. The number of expansion parameters would depend on the number 

of modes measured. If only one mode were measured, a 1 E IR2 would be the 

only expansion vector. If two modes were measured, an additional expansion 

vector, a 2 E IR2
, would be added. This model class is used extensively during 

the simulated data testing in Chapter 3. 

2.4.3 Probability Model Class 

Recall, that the observable modal parameters are unknown quantities. The 

deterministic models in MNd are selected to be capable of producing a set of 

model modal parameters which are equivalent to, but not necessarily equal to, 

the observable modal parameters. If there were no modeling error and no ex

pected noise in the observable parameters when measured, then the observable 

modal parameter could be considered equal to the model modal parameters. 

However, model error is present in anv real situation since no model is ca-
' v 

pable of fully characterizing the behavior of a structure. Also, noise in the 

measured modal parameters will always be present to some degree for reasons 

discussed in Section 2.4.1. Thus, the observable modal parameters can only 

be characterized in a probabilistic sense. 

The Probability Model Class, P, establishes a probability distribution for 

the observable parameters given the structural, expansion and probability pa

rameters. The number of probability parameters depends on the form of the 
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probability models. As mentioned in Section 2.3, the combined set of struc

tural, expansion, and probability parameters is referred to as the model param

eters. The probability distribution is chosen to reflect the potential modeling 

error and the uncertainty in the observable parameters when they are mea

sured. These are subjectively chosen to model a state of incomplete knowl

edge, although there are some guidelines such as the Principle of Maximum 

Entropy (Jaynes 1978) that suggest possible good choices. 

Before defining the PDF for the observable parameters, a few assumptions 

are made. First, the observable parameters are assumed to be independently 

distributed from mode to mode and from frequency to modeshape. Also, the 

components of a given modeshape are not independently distributed from each 

other. These assumptions are equivalent to stating that knowing the value of 

one observable frequency or modeshape does not relate any information about 

the value of another observable frequency or modeshape. 

With these assumptions, the PDF for the modeshape and frequency of 

a single observable mode can be formulated separately. The complete PDF 

will be a product of the individual frequency and modeshape PDFs over all 

the observable modes. The modeshape PDF is considered first. Then the 

frequency PDF is developed. 

Unless noted, all of the PDFs defined will have a conditional dependence 

on the model class, MNd' and the probability model class, P. This conditional 

dependence will be explicitly stated during the first definition of a PDF, but 

dropped thereafter in order to shorten the notation. Also, all norms are Eu

clidean norms unless noted. 
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Modeshape PDF 

Choose as the PDF for ¢r given(), O:r, E7fJr, MNd, and P 

Recall from Section 2.4.1 that 'lj;r is the rth observable modeshape. The PDF1 

can also be expressed in terms of () and ¢r as 

In this PDF, the error between the normalized observed modeshape and a 

scaled version of the corresponding normalized observed expanded modeshape, 

f¢r, has been modeled as a Gaussian distribution with zero mean and a diag

onal covariance matrix with E~r for all of the diagonal elements. The Principle 

of Maximum Entropy (Jaynes 1978) can be used as a justification for this 

choice of a PDF. The analysis which follows shows that the probability pa

rameter E'l/Jr can also be interpreted as a measure of the degree of uncertainty 

in the angle between ¢r and f¢r· This work will not treat E'l/Jr as an uncertain 

parameter. A criterion for its selection is developed in Section 2.4.4. Deter

mining the behavior for unknown E'l/Jr will be briefly mentioned later in this 

section. The scaling on the f¢r can be shown to be the optimal scaling on the 

vector in the sense that it minimizes the norm of the error with respect to the 

scaling. A proof of this statement is presented in appendix A. 

1 Strictly speaking, this second form of the PDF is a different function, jj('I/JrliJ,¢r,E'l/JJ, 
where setting ii =Band ¢r(B,ar) = Xar gives p = p. Such subtleties will not be treated 
in this study. For the remainder of this work, the implicit dependence of functions on 
the expansion parameters when they are written in terms of the expanded modeshapes is 
assumed. 
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By manipulating the algebra in equation 2.24 and using the fact that '1/Jr 

has a unit norm, the conditional PDF for the observable modeshapes can be 

expressed in two different forms. 

(2.25a) 

(2.25b) 

Here, f3r is the angle between 1/Jr and f¢r given by 

(2.26) 

The chosen PDF for the observable modeshape thus depends only on f3r· This 

fact can be used to show that the constant kr does not depend on () or O:r. 

Since kr is the normalizing constant for the PDF, 

(2.27) 

where 8BNo is the surface of the N0 -dimensional unit sphere and dA is an 

area element on this surface. Recall that 1/Jr has been set to have a unit norm. 

On 8BNo' 1/Jr can be expressed in terms of No - 1 angles. For No = 1 this 

means that there is no PDF for the measured modeshapes. This is consistent 

with the fact that with one DOF measured, there is no available modeshape 

information. Let one of the angles be f3n defined previously as the angle 

between 1/Jr and f¢r· This step is allowed since f¢r can be viewed as one 

of the coordinate axes. The integrand does not depend on the N 0 - 2 other 

angles so they may be integrated out. The integral over f3r will be from -n to 

1r. It has a value dependent on E1/Jrl but not() or O:r· Thus, kr does not depend 

on () or O:r. Actually, calculating the value of kr is not necessary since it will 
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be canceled when the updated PDF for 0 and a is formed. 

The dependence of kr on E'I/Jr is complicated in general. However, for values 

of E¢r < 0.2, the dependence of kr on E¢r closely follows the function 2V27i-E¢r. 

This result follows from the fact that the integrand in (2.27) is well approxi

mated by a Gaussian density function in f3r for such values of E¢r. This fact 

may be helpful in the case where the E¢r are treated as uncertain parameters. 

This treatment is left for future work. For the remainder of this work, the 

explicit conditional dependence will be dropped in the notation and left as 

implicit in order to simplify the notation. 

The expression for the observable modeshape PDF given by (2.25b) will 

be useful for computational purposes. Derivations involving this form for the 

PDF will lead to expressions which simplify the computations for the SHM 

method. 

Frequency PDF 

Choosing the PDF for the observable frequencies is more problematic. Like 

the model modeshape, the model frequencies may not precisely correspond to 

observable frequencies. Unlike the observable modeshapes case, taking a lin

ear combination of the model frequencies as a mean frequency and assuming 

a probability distribution using the resulting frequency error between the ob

servable and mean frequencies does not appear to be an obvious step. However, 

there should be some reflection of the weighting represented by O:r in the fre

quency part of the PDF. In order to accomplish this, and to reflect uncertainty 

in the relationship between model frequencies and observable frequencies, the 

PDF for the rth measured frequency is defined as a product of Nd different 

Gaussian distributions on w; with means given by the Nd model eigenvalues, 

standard deviations a w;, and weighting by the square of the corresponding 

component from O:r. The aw;, like the E¢r' will be found in a deterministic 



38 

fashion. The choices of these values is discussed in Section 2.4.4. 

(2.28) 

The function fr(O, ar, crw;) is a normalizing factor so that 

(2.29) 

This choice for the PDF of w; reflects the initial uncertainty concerning which 

model frequencies correspond to which observable frequencies. 

Using the terminology associated with MNd defined in section 2.4.22 , the 

product of exponentials can be transformed into two more convenient and 

informative forms. The details of the algebra involved are in appendix A. 

(2.31) 

2The matrix 0(0) is a diagonal matrix of natural frequencies of the structural model 
given by B. The matrix n is related to the stiffness matrix by 

(2.30) 

where X(B) is the mass normalized(XTMX =I) matrix of model modeshapes. 
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Equations, (2.29) and (2.31) imply that 

\ (2.33) 

and the PDF for w; becomes 

(2.34) 

Here, 

(2.35a) - 2 (B ) ¢; K </Jr 
Wr , CYr, aw;. = ¢'[.' M</Jr 

Nd 

(2.35b) = L a;sw;(B). 
s=l 

Technically, (2.34) gives a non-zero probability that w?, < 0, which cannot 

be true. Generally, however, aw;. is sufficiently small that for all practical 

purposes, the probability volume for w; < 0 is negligible. The term in equa

tion (2.35a) is the Rayleigh quotient for the K -M system using the expanded 

modeshapes as the test vector. This is also seen to be a weighted sum of the 

model eigenvalues. The PDF for the frequencies is therefore a Gaussian distri

bution with a mean given by a weighted sum of the model squared-frequencies 

and a variance given by a 2 
2 • 

WT 

The other form of the PDF, (2.32), possesses a term in the exponential 

which is the eigenvalue equation error with a modeshape given by <Pr and 

frequency given by the observable frequency. The scaling function can also be 

written in terms of K and M(details in appendix A): 
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The term in the exponential in equation (2.36) is also an eigenvalue equation 

error. This second equation error is of the same form as the first, but uses the 

Rayleigh quotient in place of the observable frequency. This term is negative 

semidefinite, achieving zero if and only if c/Jr is an eigenvector for the structural 

model. 

Since the probability parameters are considered known, the conditional 

dependence on them will only be explicitly expressed in the notation when 

necessary for clarification. Otherwise, the dependence will be left implicit. 

The Complete PDF for the Observable Parameters 

The complete PDF for the observable parameters conditional upon the model 

parameters, structural model class and probability model class is the product 

all the individual observable modeshape and frequency PDFs given by (2.24) 

or (2.25b) and (2.32) or (2.34) respectively. The result upon combining terms 

is 

(2.37a) p(YIO, a, E, u, MNd' P) = k(E, u) exp [ -~Q(O, a)] 
(2.37b) k(c,u) [ 1 l 

= f(O, a, u) exp -2R(O, a) 

where 
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In (2.37), the parameters E and a refer to sets of the E'I/Jr and aw;, respectively,for 

all of the Nm modes. 

2.4.4 Updated PDF for the Model Parameters 

Let the structure be monitored over time and N 8 measurements made of the 

observable parameters. Modal data, VNs, is then available. The updated PDF 

based on all of the data is 

(2.40) 

Applying Bayes' Theorem (2.4) gives 

where k is a normalizing constant and p(O, aiTNJ is the conditional initial 

distribution on the model parameters. Using the axiom of probability that 

p(a, blc) = p(alb, c) p(blc), p(VNsiO, a, TN.) can be written as 

(2.42) 

p(VNsiO, a, TNJ = p(YNs IVNs-l' (),a, TNJ p(YNs-liVNs-2, (),a, TNJ ... 

p(Y1IO, a, TNJ 
Ns 

= II p(Yni'Dn-l, 0, a, TN.). 
n=l 

The updated PDF for the model parameters can then be expressed as 

Ns 
(2.43) p(O, aiVNs' TN.) = k p(O, aiTNs) II p(Y(n) I'Dn-1, (),a, TNJ· 

n=l 

The term TNs represents information that the data were derived from the 
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structure at different times and knowledge as to the state of the structure 

with respect to the different measured data sets Yn in DNs· For instance, the 

information may represent that the first Nud measured data sets came from a 

structure without damage, but the condition of the structure for the remaining 

N 8 - Nud sets is unknown. Using TNs' two subsets of DNs could be formed, 

one containing only the undamaged data, Dud, and the other the potentially 

damaged data, Dpd· This situation was also described in Section 2.4.1 and will 

be used in the development of the SHM method in Section 2.5. 

More generally, this concept of forming subsets of the total set of data can 

be used to separate the data from different operational conditions. For exam

ple, a bridge might exhibit varying behavior with changes in traffic patterns, 

temperatures, and wind loading. The measured data taken from a single con

dition would be grouped together with other measured data taken in the same 

condition. This grouping of data could then be used to facilitate tracking of 

normal variations in the structure due to changing environmental influences. 

The general construction suggested here gives a greater degree of flexibility 

than is necessary for the application described in this study. However, it may 

be used in future work to account for the problems associated with monitoring 

time-varying structures mentioned in Section 4.1. While the explicit condi

tional dependence on TNs in expressions is maintained in this section, it will 

be dropped in future sections in order to simplify the notation. 

As a notational aid, the selection function, s(n), n E 1, ... , N 8 is intro

duced. Each subset of DNs has a selection function. The selection function is 

1 for each Y(n) in DNs which is also in the subset, and 0 otherwise. Essen

tially, the selection function is used in the development which follows to write 

expressions with respect to DNs and s(n) rather than writing different ones for 

each subset of DNs· As an example, for the subsets Dud and Dpd, Sud(n) and 
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spd(n) would be defined where 

(2.44) 

and 

(2.45) 

s,.,(n) = { 
1 if n:::; Nud 

0 otherwise, 

{ 

1 if n > Nud 
spd(n) = 

0 otherwise. 

The application of the selection function will be made clearer once it is used 

in the following section. 

The PDF p(Yni'Dn-1 , (),a, TNJ is assumed to be independent of Vn- 1 and 

have the same form as the PDF given in (2.37). The only difference between 

p(Yni'Dn-1, (),a, TN.) and the PDF given in (2..37) is that the former PDF will 

have an additional conditional dependence on ~'Vs. Thus, 

(2.46) 

where p(Ynl(), a, TN.) is given by (2.37). Combining (2.46) and (2.43), the 

PDF on all of the data can be expressed as 

Ns 
(2.47) p((), aiVNs, TNJ = k p((), aiTNJ IT p(Ynl(), a, TNJ. 

n=1 

The updated PDF on all of the data is thus simply product of the updated 

PDFs for each of the measured sets taken individually. Letting Rn((), a) be 

the function given in (2.39) corresponding to the nth measured data set, (2.47) 
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becomes 

(2.48) 

Consider the situation when the PDF based on the data in a subset of VN. 

is needed. Let the selection function for the subset be s(n). The PDF on the 

data in the subset is then given by 

(2.49) 

A 1 [ 1 Ns l p(O,aiVN., TN.)= kp(O,aiTN.) Ns exp --
2 

Ls(n)Rn(O,a) . 
f(o a a)L:n=l s(n) 

' ' n=l 

Clearly, (2.48) is a special case of (2.49). As mentioned when the selection 

function was defined, it is a convenience to aid in simplifying the notation. 

The relation in (2.49) could also have been written as a product in which the 

undesired PDFs where merely dropped. 

Calculating the Probability Parameters 

The information TN. is used to determine a and E for a given subset of VN,. 

Let the selection function for the subset be s(n). The values of aw; and f1/Jr 

for this subset are then 

(2.50) 

and 

(2.51) 
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where w; is the mean of 4 ( n), 

(2.52) 
1 

Ns 

w; = N L s(n)4(n) 
:Z:::n::,l s(n) n=l 

Ew2 is the standard deviation of 4 ( n), 
r 

(2.53) ( N, l ) ts(n)(w;(n) ~ W;) 2 

:Z:::n=l s(n) - 1 n=l 

and -0r is the mean value of ~(n), 

(2.54) 

Ns A 

;;, _ 1 ~ ( ) 1/Jr(n) 
'f/r - N L.....t s n II II :Z:::n::,l s(n) n=l ~(n) 

all taken over the measured data sets specified by s( n). 

For subsets which contain only one measured data set, the Ew2 and fJw2 
r r 

cannot be calculated as above. In this case, the coefficients of variation for 

the single selected data set are taken to be the same as those used for another 

subset. The mean frequencies are simply the values of the new measured 

frequencies. If no data are yet measured, no objective statistics are available 

for selecting the probability parameters. In this case, engineering experience 

and intuition are used to select them. Such choices are not very critical in the 

SHM problem, since the assumption has been made that many measurements 

will be taken on the structure in a "healthy" state before the SHM method is 

fully implemented. 
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Choosing an Initial PDF For a 

The initial PDF can be factored so that 

(2.55) 

where p(aiO, TNJ is the conditional initial PDF for the expansion parameters 

and p(OITNJ is the initial PDF for the model parameters. When no measured 

modeshape data is available, there is no information to indicate how much 

different the model modeshapes are from the observable modeshapes. On these 

grounds, the assumption is made that in the absence of measured modeshape 

data, the most likely ar should be those which give expanded modeshapes 

equal to the model modeshapes (i.e. ar = er where er E [RNd is a vector with 

the rth element equal to one, and all other equal to zero). Without an initial 

distribution on ar, this assumption may not be satisfied by the updated PDF. 

In order to demonstrate this violation, consider modeling a simple physical 

structure using the two-DOF model class case described at the end of Sec

tion 2.4.2. Let the observable parameters consist of only one frequency, w1 , 

measured at a single time. In this case, a = [a1 a2]T, where a1 , a2 E !R. As a 

result of the norm constraint on the expansion parameters, a1 = cos(/3) and 

a2 = sin(f3) with -1r < f3 ::; 1r completely describes the set of possible values 

for a. Let the prior on a be non-informative. The updated PDF as a function 

of a will then simply be a scaled version of the modal PDF which, for a fixed 

choice of structural parameters, is only a function of (3. For this simple case, 

taking e fixed, the updated PDF can be written explicitly as 

(2.56) 
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For a representative choice of e and awr the PDF in (2.56) is plotted as a 

function of (3 in Figure 2.2. This plot displays four sharp peaks. Two of the 

u.. 
Cl 
c.. 
1:1 
Ql 

~ en 

o~----~--~~----~----~ 
-7t -rr./2 0 7t/2 

[3 

Figure 2.2 This is a plot of a scaled updated PDF versus (3 for 
the a two-DOF model class, with one frequency measured and 
a non-informative prior for a. 

peaks correspond to (3's which are 1r variations from the other corresponding 

(3's. Thus, only two different values for a are really represented. Given the 

extremely peaked nature of the plot, the conclusion could be drawn that the 

a1 (/3) and a2 (/3) which correspond to the peaks are the most likely values of 

the expansion parameters. Thus, in the absence of any measured modeshape 

data, not only do the solutions violate the assumption made concerning the 

values of the expansion parameters when no measured modeshape information 

is available, multiple solutions for the expansion parameters exist. By looking 

at (2.37a), these effects can clearly be seen to arise due to the freedom of the 

weighted mean term, Wr. As the example just given shows, in certain cases, 

Or =J. er can be chosen so that Wr = 4. 

In order to correct this situation, assume the Or to be independently dis

tributed from each other, and take as the priors on each of the Or 

(2.57) 
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These initial distributions will remove the function f() from (2.49). Since the 

term in the exponential in fr(see (2.33)) is negative definite, achieving zero if 

and only if the expanded modeshapes correspond to structural model mode

shapes, the PDF on O:r can be seen as reflecting a prior assumption that the 

expanded modeshapes should be the model modeshapes. The function Cr (B) 

is chosen so that the resulting updated PDF is normalized. When this PDF 

is used in the previously discussed two-DOF case, and () is again considered 

fixed, the form of the updated PDF on a expressed in (2.58) is derived. 

(2.58) 

p(o:IB) = k(B) exp ---2 ((~- w~(B)?ai + (~- w~(B)) 2aD [ 
1 1 A A l 
2 a 2 

wl 

= k(B) exp [-~--i- ((~- w~(B)) 2 cos2 (3 + (~- w~(B)) 2 sin2 fJ)l 
2 a 2 

wl 

Taking for() and awi the same choices as in the previous case, the PDF in (2.58) 

is plotted as a function of (3 in Figure 2.3. The plot shows that most of the 
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Figure 2.3 This is a plot of a scaled updated PDF versus f3 for 
the a two-DOF model class, with one frequency measured and 
the informative prior for a given in (2.57). 

probability volume is located near (3 = 0 and (3 = 1r. These correspond to 
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ar = e1 and ar = -e1 respectively. This can be used to infer that the struc

tural model modeshape associated with the first mode is the most probable 

expanded modeshape. 

In general, the following claim can be made concerning the updated PDF 

with the initial PDF on a described in (2.57). 

Claim 2.1 Given the initial PDF on the expansion parameters chosen in (2. 57), 

and the fact that no measured modeshape information is available, each ex

panded modeshape which maximizes the updated PDF will correspond to either 

a single structural model modeshape, or an arbitrary linear combination of a 

fixed set of structural model modeshapes. 

Proof: When no modeshape information is available, the second term in the 

observed modal parameter PDF (2.39) is zero. If (2.49) and (2.57) are com

bined while holding (} fixed, the resulting updated PDF on a is 

(2.59) 

Based on the second form of the frequency PDF in (2.28) and the form given 

in (2.32), 

(2.60) 

Ns s(n) A 2 a:{ (L::~l s(n)(4(n)I- Q2)2) ar 
~ llc/>rllii II (K- 4(n)A1)c/>r IlM-I = a'[.' ar . 

The right~hand side of (2.60) is a Rayleigh quotient. Since all of the matri

ces involved are diagonal, the conclusion can immediately be drawn that the 

minimizing expansion vectors correspond to e8 , where s are location of the 

minimum diagonal values. If the diagonal elements are distinct, then only one 

such minimum exists. The minimizing ar is then e8 , which makes cPr the sth 



50 

structural model modeshape. 

If the diagonal elements are not distinct, and the minimum element is re

peated, then O:r is an arbitrary linear combination of the appropriate e8 • Thus, 

c/Jr is any linear combination of the corresponding structural model modeshape 

vectors. • 
The figures in this section display a characteristic behavior of the updated 

PDF with respect to the expansion parameters. The sharp peaks of the up

dated PDF as a function of the expansion parameters occur over a wide range 

of structural model parameters. This is one justification for the approxima

tion used later in this section to calculate the integral over the expansion 

parameters. 

Choosing an Initial PDF For () 

Before the experimental parameters are observed, any knowledge of the struc

tural parameters is reflected in the initial conditional PDF p(()ITNJ· This 

choice could reflect how confident the analyst is in the finite element modeling 

procedure. A high degree of confidence would lead to an initial PDF that is 

peaked with respect to some region in the structural parameter space. Low 

confidence would be indicated by a non-peaked, or perhaps even a locally fiat, 

initial distribution. 

In this study the choice of a prior is made based on an additional cri

terion. The normalization functions cr(()) introduced by the initial PDFs 

for the expansion parameters present problems because they are difficult to 

determine and lead to a form for the updated PDF that is not desirable. 

Therefore, the initial PDF for the structural parameters is selected to be 

7r(()ITNJ/ TI~:1 cr(e). This PDF cancels the cr(()) terms introduced by the 

selection of the initial distribution for a given in (2.57), and leaves the possi

bility for further selection of a prior on ()through 7r(()ITNJ· 
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In this work, 

(2.61) 

where 

(2.62) 

is a joint Gaussian distribution with mean (}F E IRN8 and a covariance matrix 

S E [RNexNe. The choice for (}F will generally be [1, ... , 1]T which reflects the 

belief that the fundamental model is the most probable model in the absence 

of any data. The individual parameters will be assumed to be independent, 

making S a diagonal matrix of variances: 

(2.63) S= 

The choices for the ai reflect the initial level of uncertainty in the fundamental 

model. Technically, (2.62) gives a non-zero probability that (}i < 0, which can

not be true. To address this problem, for damage detection purposes Beck and 

Katafygiotis (1992) suggest a two-sided initial distribution with a lognormal 

distribution for 0 < (}i ::::; 1 and a Gaussian distribution for (} > 1. The purely 

Gaussian initial distribution will be shown to have a more convenient math-

ematical form than the two-sided distribution, so it is the initial distribution 

chosen. The non-zero problem is addressed by selecting the initial variances 

so that the probability volume for (}i < 0 is negligible. The need for g( 0) is 

explained when the marginal distribution on (} is formed. 



52 

Final Form of the Updated PDF 

The final form of the updated conditional PDF for 0 and a for the subset 

of 'DNs defined by the selection function s(n) is given by combining (2.37b), 

(2.39), (2.43), (2.55), (2.57), (2.61), and (2.62) to get 

Let the modal measure of fit (MMOF), Jr(O, ar), be defined by 

(2.65) 

J (O ) = ~ ( ) [II(K- 4(n)M)¢rll~-1 ¢'[fT (I -1/Jr(n)1j;'[(n)) f¢rl 
r , ar L.....t s n 2 II.J.. 112 + 2 II r .J.. 112 

n=l (J w'f. 'f'r M E'lj;r 'f'r 

This is called the modal measure of fit since it represents a measure of the 

error between measured and structural model modal parameters for a given 

measured mode. Based on the theoretical development thus far, the first term 

in the summation in equation (2.65) can be viewed as a frequency error and 

the second term as a modeshape component error. 

The overall measure of .fit (MOF), J(O, a), will be 

Nm 

(2.66) J(O, a)= (0- Op f s-l (0- Op) + L Jr(O, ar)· 
n=l 

Using this, the updated PDF can be written 
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In the absence of the term g(O), the maxima of the updated PDF are the 

minima of the M 0 F. 

Determining the Marginal Distribution on e 

Since the a are not used in the SHM method which will be developed, only 

the marginal distribution on the (} is needed. The marginal distribution on (} 

is given by integrating (2.64) over all possible a. Performing this integration 

analytically is not possible. Therefore, an asymptotic approximation to the 

integral is made. 

The integration procedure, described in Papadimitriou et al. (1995), takes 

two steps. First, the PDF is approximated by a Gaussian distribution about 

the maximum. Then, Laplace's method of asymptotic expansion is used to 

obtain 

(2.68) 

where La((}) is the Hessian matrix of second derivatives of J(fJ, a) with respect 

to a evaluated at &(e). When the eigenvalues of the Hessian matrix are large, 

as they tend to be for the expansion parameters, this approximation is very 

good. The quantity &((}) is the a that minimizes J(fJ, a) for fixed e. This is 

found by solving 

(2.69) 
f)J(e, a) = 0 

8ar ' 

for r E 1, ... , Nm. The optimal expanded modeshapes, ¢n r E 1, ... , Nm, are 

defined, where 

(2.70) 
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Since the mapping X will always have full rank, 

(2.71) oJ(e, a) = 0 {::} oJ(e, a) = 0. 
oar ocPr 

The function of e introduced in this process, La (e), is removed from the 

marginal distribution by selecting g(e) to be Jdet[La(e)]. This is equivalent 

to choosing part of the initial PDF on e so that the integrand in the PDF 

approximation is a normal Gaussian distribution with respect to a. 

This entire approximation process could be looked at in a different fashion 

which would lead to the same result, but in a less mathematically oriented 

fashion. Recall that the expansion parameters are incorporated in the model 

class so that any set of classical normal modes can be achieved by elements 

of the model class. Thus, for a given e and set of measured data, the a can 

be viewed as providing the proper linear combination of model modeshapes 

so that some measure of the difference between the modal parameters for the 

model and the measured ones is minimized. If the MOF is used as the measure, 

then the same results follow as for the probabilistic framework. 

Using either approach, the marginal updated PDF on e becomes 

(2.72) 

where 

(2.73) J(e) = J(e, &(e)). 

This function, J( e) is also called the measure of fit. For the remainder of 

this chapter, only the marginal distribution will be used. Thus, "updated 

PDF" will be used to mean "marginal updated PDF." Some results relating 

the derivatives of ](e) to those of J(e, &(e)) can be found in Appendix B. 
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The structural model parameters which give the maximum of (2.72) are 

referred to by fJ, and can be viewed as the most probable models given the 

data. Necessarily, fJ also minimize J(B). In a strictly deterministic setting, 

the analysis would end at calculating fJ for a given ](B). Changes in fJ be

tween some reference undamaged state and the current state would be used 

to determine the health of the structure. The additional information on the 

uncertainty in the identified most probable models contained in (2.72) would 

be ignored. The SHM procedure presented in the following section uses this 

information to account for the uncertainties due to noise and modeling error. 

2.5 Bayesian SHM Framework 

This work proposes a measure derived from the marginal distributions on the 

individual structural model parameters using updated PDFs conditional on 

undamaged, Dud, and potentially damaged, Dpd, data sets as an indicator 

of the probability of structural damage. In the development of the damage 

measure which follows, the updated PDFs will be assumed to have unique 

maxima with respect to the model class, MNd. The structural model class in 

this case is termed globally system identifiable. A further case in which there 

are a finite number of maxima of the updated PDF is not considered in this 

work. The structural model class for this second case is referred to as being 

locally system identifiable. When an infinite number of maximizing solutions 

exist, MNd is unidentifiable. This terminology is borrowed from Beck and 

Katafygiotis (1992). 

The question might arise as to why the information given by the marginal 

distributions should be used to determine a measure of the probability of 

damage. The answer is simple. Each marginal distribution derived from an 

updated PDF contains information about the variation of a single parameter 
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without assuming anything concerning the damage state of the remaining pa

rameters. A precursor to the SHM method presented here had the limitation 

that damage was assumed to have occurred in only one substructure, or not 

at all (Beck, Yanik, and Katafygiotis 1994). This restriction has been lifted 

through use of the marginal distributions. As will be demonstrated, this leads 

to a very elegant way to address the general problem of damage in multiple 

substructures. 

Prior to determining the marginal distributions and defining the damage 

measure, the relevant assumptions on the operating conditions and termi

nology for the joint PDFs are outlined. A few general observations on the 

behavior of the marginal PDFs are then made. Next, the damage measure is 

defined and its application to finding the existence and location of damage are 

discussed. Finally, some comments are made on the capability of the defined 

SHM strategy to determine the degree of damage. 

2.5.1 The Undamaged and Potentially Damaged PDFs 

The SHM method which is described in this work assumes that the structure 

under consideration for health monitoring is instrumented and that sets of 

modal parameters can be determined from measured data. Further, the as

sumption is made that the capability exists for the modal parameters to be 

determined on a time scale of the order of a few hours or better. Ambient 

vibration monitoring, described in Section 1.3, is a method which has the po

tential to meet this requirement. The framework can also be used in the case 

when measurements are taken on an irregular basis, such as when monthly or 

yearly inspections of the structure are made. However, this latter application 

does not address the problem of creating an automated monitoring system 

which is a focus of this work, so it is not treated. 

After the structure is initially instrumented, and before the health mon-
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itoring can begin, an initial series of undamaged modal data sets are found 

from measured data. The undamaged measured modal parameter sets are re

ferred to collectively by 'Dud· The assumption is made that the structure does 

not experience any significant changes during this initialization phase so that 

the measured sets well characterize the undamaged state of the structure. 

The undamaged PDF, pud(OI'Dud), is defined as the updated PDF derived 

using a sufficient number of measured modal parameter sets from 'Dud to 

achieve "stability" of the PDF. Thus 

(2.74) 

where p( BI'Dud) is given by (2. 72) In this work, the "stability" of the PDF 

is measured by how much the most probable model values vary as measured 

data sets are added. For the simulated data testing examples in Chapter 3 the 

number of measured modal parameter sets required for stability is determined 

by plotting the most probable parameters as more data is added, and observing 

when the change over a few cycles of added data does not considerably vary 

the parameters. This criterion is extremely subjective and ad hoc, but it 

appears to lead to good results in the simulation testing. Investigating a more 

objective measure of the stability is a possible topic for future work. 

In the development which follows, a damage measure is defined which mea

sures variations with respect to this PDF. During the initialization phase, the 

measured modal parameter sets are also used to form pud(BI'Dud) are used 

to determine how the damage measure varies due to noise when no damage 

is present in the structure. This characterization will enable bounds on the 

damage measure to be established. 

Once the initialization phase is completed, the monitoring phase begins. 

In this phase, measured modal data is used by the SHM algorithm to monitor 

the damage state of the structure. Each measurement is the start of a new 
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monitoring cycle. The monitoring time, tmon, is a discrete parameter which 

indicates the total number of monitoring cycles. The measured modal param

eter sets for the monitoring phase constitute the potentially damaged data, 

Dpd· The term "potentially damaged" is meant to infer that the state of the 

structure is unknown, not that it has necessarily been subjected to some dam

aging event. While Dud is a static set, Dpd changes every time the structure 

is monitored. The number of potentially damaged data sets available is equal 

to tmon- The nth measured modal data set in Dpd is referred to by Yn. 3 As 

a notational convenience, the set Dpd is ordered such that the most recently 

measured modal data sets have the lowest indices. Thus, for a given tmon, Y1 is 

the newest modal parameter set. The measured set Ytmon is always the oldest 

measured set. 

During a given monitoring cycle, let the potentially damaged PDFs be 

h {,_.pd(fJI""' ) k {Nmin Nmax}} h h ,_.pd • t e sequence .Pk Vpd, tmon : E win' ... ' win ' w ere eac Pk IS 

calculated using only the modal data from the k most recent monitoring cycles. 

The potentially damaged PDFs are therefore 

(2.75) 

d A A A 

~ (fJITJpd, tmon) = p(fJI'Y1, l2, · · · , lk) 

= CpdP(fJ) p(Yl, t2, ... 'YklfJ), 

where cpd is a normalizing constant. The sequence of subsets {Vk} of Dpd, 

associated with these PDFs is 

(2.76) 

3 Similar terminology is not necessary for the elements of Dud as they are never explicitly 
referenced. 
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Each subset has a selection function sk such that 

(2.77) 
{ 

1 if n < k 
sk(n) = -

0 otherwise 

Using the assumption discussed in Section 2.4 that the PDFs for the different 

data sets are independent, r)1d can be further written as 

(2.78) 

For each k, r)1d is simply the product of previous PDF in the sequence, r)1~ 1 , 

and the PDF for the data set from the kth prior monitoring cycle, p(YkiO). The 

parameter k is referred to as the monitoring cycle window length or monitoring 

cycle window since it indicates how many data sets from past monitoring cycles 

are used in calculating r}1d(OI'Dpd, tman)· The parameter N~~ determines the 

minimum number of data sets used to form the potentially damaged PDF. It 

will usually be set to 1. The parameter N~~x defines the upper limit on how 

many monitoring cycles worth of measured data sets are selected to create the 

sequence of potentially damaged PDFs. 

The damage measure, defined in a moment, uses changes between the 

potentially damaged PDFs and the undamaged PDF to monitor the state of 

the structure. The sequence of potentially damaged PDFs is used because 

taking only one subset of data from 'Dpd and forming a PDF to be compared 

to the undamaged PDF leads to problems. vVith one measured data set, the 

resulting PDF would be sensitive to variations due to damage and damage 

could theoretically be detected as soon as it occurred. The problem is that 

the PDF would also be sensitive to noise. Thus, damage may be indicated 

when there is none. Consider another case wherein all the data in 'Dpd is used 

to form the PDF for comparison. If tman is sufficiently large, then the effects 
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of noise will be mitigated by the action of many data samples. Thus, false 

indications of damage will be reduced. Also, if the structure is damaged, and 

many samples of damaged modal parameters are in Dpd, then smaller levels 

of damage will be detectable. Unfortunately, if damage occurs, the PDF will 

be strongly biased by the undamaged data already in Dpd so many monitoring 

cycles may pass before the damage is detected. In between these extremes are 

choices which trade-off between sensitivity, noise mitigation, and bias. Rather 

than consider only one such choice, the range of possibilities defined by N 1r;:/;: 
and N:/i,~x are used. The lower limit N:/i,~n, is chosen large enough so that the 

noise effects are reduced to an acceptable level, but not so large as to sacrifice 

sensitivity. In theory, N:/i,~x could be chosen as large as tmon, in which case all 

the data in Dpdwould be used in forming the last PDF in the sequence, {~d}. 

Practical limitations, such as computing time, prevent the use of such a large 

bound. In practice, therefore, the selection of N;;_~x is made based on a trade

off between increased sensitivity to small levels of damage and computation 

time. 

2.5.2 Observations on the Marginal Distributions 

The undamaged marginal PDF and cumulative distribution function (CDF) 

for the ith structural model parameter are fiid(OiiDud) and Cfd(OiiDud)· These 

are derived by integrating the updated PDF pud(fJIDud) in (2.74). The poten

tially damaged marginal PDFs and CDFs for the ith structural model parame

ter are ~t(OiiDpd, tmon) and crt(OiiDpd, tmon)· These are derived by integrating 

the updated PDF ~d(OIDpd, tmon) in (2.75). In the discussion "\vhich follows, 

the arguments of the functions and the subscript "i" will be dropped in order 

to simplify the notation. Keep in mind that the potentially damaged marginal 

quantities all depend on the monitoring time, so they vary as new data is ac

quired. Representative PDFs for pud and ~d are shown in Figures 2.4 and 2.5. 
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These PDFs have been scaled to both have the same maximum value. Since 

jjud is formed using many data sets, it will tend to be more peaked than fl/,d, 

unless k approaches the number of data sets used to form jjud. For the case in 

Figure 2.4, fl/,d is said to be to the "left" of jjud. Figure 2.4, shows a fl/,d which 

is to the "right" of jjud. 

I ' -pud Ill 
I ' u. 

0 I ' -- p~d 
a. I ' ti1 I ' c ·c, I ' ..... 

' ttl I 
:2 I ' "C I ' .!!! 
ttl I , 
(J 

I en 
~' J' '\ 

8; 

Figure 2.4 General PDFs derived 
from different data sets: ilf.:d left 
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Figure 2.5 General PDFs derived 
from different data sets: ilf.:d 
right 

Some helpful qualitative observations can be made concerning the relation

ship between jjud and ~d using (2.78) and the plots in Figures 2.4 and 2.5. 

These observations will be used to qualitatively discuss the behavior of the 

damage measure defined in the next section. 

The result (2. 78) indicates that the sequence of joint distributions ~d 

are related through the product of PDFs derived using individual data sets, 

p(Yj lfJ). For the purpose of illustrating the behavior of the marginal distri

bution ~d as k and tmon vary, the same relationship will be assumed to hold 

between the marginal distributions. Thus, ~d is treated as being related to 

~~1 by taking the product ~~1 jji\ where jji:k is the marginal PDF on f)i 

derived from p(YklfJ). Strictly speaking, this assumption is not true. How

ever, for the qualitative nature of the observations which will be made, the 
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assumption is fine. 

In the absence of damage in the structure, f/r1 will vary as tmon changes 

due to noise in the data. The PDF pud is assumed to have been formed using 

a sufficient number of undamaged PDFs to be the "long-time" or "stabilized" 

PDF. Thus, new pr1 should be to the left of pud as often as they are to the 

right if the structure is undamaged. This means that f/{d should also be to the 

left of pud as often as it is to the right as tmon increases. The PDF pud can be 

viewed as a "mean" PDF for the "distribution" of PDFs which characterize 

the variation in f/id due to noisy data. 

As k increases for a fixed tmon, more pYj are multiplied together to form 

Pf,d. For instance, ~d r-v py1py2 • Recall that py2 for the current monitoring 

cycle, tmon = t, was py1 in the last monitoring cycle, tmon = t - 1. Therefore, 

variations at k = 1 are propagated down the sequence of potentially damaged 

PDFs as tmon increases. 

Based on the observations in the preceding paragraphs, the behavior of 

the sequence fl/,d can be viewed as a random walk about pud. However, as k 

increases, il/,d stabilizes, so the magnitude of the variation attenuates. The 

most variation should therefore be observed for small values of k. These ob-

servations are used when the bounds on the damage measure are discussed. 

2.5.3 Defining the Probability of Variation 

The metric used to measure the difference between the undamaged and poten

tially damaged PDFs is now introduced. Since the the model class is assumed 

to be globally system identifiable, the updated PDFs will have unique maxima 

with respect to the structural parameters. Recall that the structural model 

parameters which give the maximum for a given PDF, e, can be viewed as the 

most probable models given the data. 
~ A d 

Let eud be the most probable model for pud. Take ()~ to be the most 
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probable model for if/. In a deterministic setting, the components of {)ud 

and {)~d would be compared directly to look for changes in the structural 

model parameters based on the most recently measured data. As has been 

noted repeatedly, the uncertainties in the model parameters can lead to some 

difficulty in judging whether or not the structure is damaged based on such a 

direct comparison of individual models from the model class. 

A better approach, and the one taken in this study, is to ask for each sub

structure, "What is the probability that B~t < Bid, where the marginal PDFs for 

the parameters, fJ'td and ~t, are found using the undamaged data, 'Dud, and the 

subset Vk of the currently available measured modal data, Vpd, respectively?" 

This question is answered by solving for the probability of variation from the 

undamaged state, or simply probability of variation for each substructure: 

(2. 79) 

Large values indicate that B~1 < Bid, and small values should indicate that 

B~1 > Bid. Thus, the measure can potentially be used to detect increases 

and decreases in the stiffness parameters of a model. Only the application to 

decreasing model parameters is considered for health monitoring purposes. 

The (tmon, k) appears in (2.79) to explicitly show the dependence on the 

monitoring time and the monitoring cycle window. For a given k, as tmon 

increases, new measured modal data sets are made available and different 

modal parameter sets are used to determine the PDF for B~1. With tmon held 

fixed, Prr(tmon, k) varies with k since different amounts of modal data enter 

in forming the ~d. 

If p(B~t, BidJVud, Vpd) is the joint distribution for B~t and Bid, then the 
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probability of variation is found by solving4 

(2.80) J J p ( e~t' erd IV ud' 1) pd) d(}fd dO~f' 
D 

where D is the area e~t < Oia· This area is depicted in Figure 2.6. 

eud 
z 

Figure 2.6 This plot shows the area, D, over which the joint PDF 
is integrated in order to determine P{O~t < Oidi'Dud, 'Dpd}· 

The Oid and O~f are modeled as independently distributed, with marginal 

PDFs fJid and~~ respectively. This simply reflects that knowing the undam

aged parameters gives no information about the value of the potentially dam

aged parameters. The joint distribution for the parameters is then a product 

of the marginal PDFs: 

(2.81) 

4Strictly speaking, the values of Bf~ and Bid cannot be negative. In all practical ap
plications, most of the probability volume of the joint distribution will lie where both eyd 
and Bff are positive. Thus, the calculations are only performed using positive values of the 
parameters. Maintaining the infinite integral is a mathematical convenience which is used 
later to show that prr(tm0 n, k) =50% when f5'td = Pff. 
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Using (2.81), the integral in (2.80) becomes 

(2.82) !! P-1!-d(e'lfd) ,;::JJd(epd) deud depd 
z z l' kz kz z kz · 

D 

The parameter Ofd is integrated from e~f to oo, giving 

(2.83) 

Equivalently, e~t could be integrated from -oo to Ofd, giving 

(2.84) pvar (t k) = loo Cpd(eud)p-ud(O'Ifd)d eud 
z mon' kz kz z z z · 

-oo 

2.5.4 Considerations in the Use of pvar 

In order to determine the practical possibilities for use of this measure, the 

change in ~var(tmon, k) under different levels of damage and the variation due 

to noise and modeling error when there is no damage must be characterized5 . 

If the variation from parameter uncertainty effects cause pvar to fluctuate 

from 0% to 100%, or the change in pvar for different degrees of damage is 

extremely small, then pvar may not be a useful measure for health monitoring. 

If, however, tight bounds on the variation when no damage is present could be 

set and pvar were very sensitive to damage, pvar would be a practically useful 

indicator of damage. Experience using pvar· with simulated data has shown 

that reality lies between these extremes, and that pvar· can be used to detect 

damage. 

The first step in using pvar for health monitoring is establishing the likely 

fluctuations for each k as the structure is monitored (i.e. tmon increases) when 

no damage is present. Let Pfr:t = fiid. In this case, pvar = 50%. This result is 

5 The subscript and (tman, k) are dropped in future references to the probability of vari
ation in this discussion in order to simplify the notation and make the text more readable. 
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easy to prove: 

(2.85) 

Prr(tmon, k) = /_: (1- Cfd(B1t))j]f,~(B1t)dB1t 

= /_: (1- Cfd(B1f))p~d(B1t)dO~t 

= /_: fJ~d(e~t)d e~t- /_: Cfd(e~t)fJ~d(e~f)d e~f 

= 1- ~~oo d((Cid(e~t))2 dOpd 
2 -oo dO~f k2 

= 1- ~[(Cfd(B1t)) 2]~oo 
1 
-
2 

Noise in the data will cause j]f,f to vary without any damage in the struc

ture. Thus, f;f,f =/=- fJid in general. This will lead to fluctuations in pvar as 

the structure is monitored, even when damage is not present. The fluctua

tions will have the same behavior as fluctuations in f;f,f relative to fJid. Thus, 

Prr(tmon, k) will he expected to look like a random walk about 50% which at

tenuates ask increases. Also, changes introduced in Prr(tmon' k) when k = 1 

and tmon = N will affect Prr(tmon, k) at k = 1 + M when tmon = N + M. 

If limits on the fluctuations could be established, exceeding the limits for 

any k as tmon increases would give a possible indication of damage. Since 

extreme variations of prr(tmon, k) due to "random" extreme data sets are 

always possible, the limits would necessarily be soft, rather than hard. Thus, 

they should be found using probability theory. In order to determine limits in 

an analytical fashion, a likely range of variation for Prr ( tmon, k) as a function 

of the noise in the data would need to be established through another level of 

probability modeling. 

This probabilistically rigorous and conceptually challenging analytical ap

proach is left for future work. Instead, the limits are established empirically in 
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any given application based on the behavior of Prr(tman, k) as the structure 

is monitored during the initialization phase. The mean value of Ptar(tman, k) 

for a fixed k is Pidam ( k). The standard deviation is (J"pvar ( k). Using these 
' 

statistics, a sequence of limits, ~alarm ( k), is chosen to be 

(2.86) 

If Ptlarm(k) exceeds 100% form some value of k, then it is set to be 99% for 

that value of k. This ad hoc fix is implemented so that damage still has the 

possibly of being detected. 

The parameter 1 determines the relative frequency of indicating damage 

when there is none (i.e. a false alarm) and missing damage when it exists (i.e. 

a missed alarm). For instance, suppose Prr(tman, k) could be accurately mod

eled as being Gaussian distributed for each k, with the means and standard 

deviations Pidam(k) and (J"pvar(k). For a choice of 1 = 1 then, prr(tman, k) 
' 

will exceed Ptlarm(k) about 17% of the time. For 1 set to 3, the chance of 

exceeding the bounds should fall to less than 1%. Thus 1 should be set as 

high as possible in order to avoid false alarms. The problem with doing so 

is that the possibility of missing a damage event increases as 1 is increased. 

Choosing 1 to reduce missed alarms increases the possibility of false alarms. 

The effects of different choices of 1 are discussed for the 2-DOF simulation 

example in Section 3.2. The results of this discussion are used to set 1 in the 

10-DOF example in Section 3.3. 

2.5.5 Sounding an Alarm 

During a given monitoring cycle, if Prr(tman, k) exceeds Ptlarm(k) for any k, 

an alarm that the substructure for which the excessive variation occurred may 
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be "damaged" is sounded. Thus, 

(2.87) 
pvar (t k) > p_alarm (k) For Any k ::::} "Damage Alarm" z mon, - z 

< Ptlarm(k) For All k::::} "No Damage." 

Recall that Ptlarm is a soft level rather that a hard level. Hence, an additional 

level of decision making must be added when the damage alarm is set in order 

to determine whether the level was exceeded due to damage, or an extreme 

data set. In addition to the damage criterion in (2.87), therefore, other criteria 

must be considered in order to determine the difference between false and 

true alarms. In practice with simulated data, prr(tmon, k) is found to have 

characteristic behaviors depending on whether the structure is undamaged or 

damaged. Therefore, the behavior of Prr(tmon, k) can be studied by a human 

or an expert system as a function of tmon and k in order to determine the state 

of damage. During the description of the simulation testing in Chapter 3, the 

behaviors of Prr(tmon' k) for a simple structure and some guidelines for use 

in deterimining a true state of damage from a false one are discussed. 

2.5.6 Applying pvar for SHM 

The relationships defined in (2.83) and (2.87), together with ~alarm(k) in (2.86) 

give a measure for damage in a substructure, and a criterion by which to use 

that measure to determine the potential existence of damage. By applying the 

procedure to each of the structural model parameters in turn, Prr(tmon, k), the 

probability of variation for the ith substructure, can be found. The parameters 

for which the probability of variation exceeds ~alarm ( k), the ith alarm function, 

are called the damaged parameters. The remaining parameters are undamaged 

paramders. As mentioned in Section 2.4.2, stiffness variations in the model 

substructures are considered proxies for the variations in the sections of the 
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structure modeled by the substructures. Therefore, Prr(tmon, k), is also taken 

as the probability of variation in the structure in the section corresponding to 

the ith structural parameter. Hence, the structural sections corresponding to 

the damaged parameters are considered damaged. 

In practice, the SHM method would not be applied directly as has been 

described due to practical considerations. Acquiring data could be costly. 

Also, identifying the modal parameters from the measured data may take some 

time. Thus, the rate at which data is taken is constrained and always finding 

measured modal parameters in the shortest time intervals possible may not be 

economically desirable. Finally, calculating every potentially damaged PDF 

in the sequence {~d} for a wide enough range of k to take advantage of the 

sensitivity for low k and noise reduction for high k may not be computationally 

feasible. Different procedures which take these factors into account can be 

established. 

As an example, consider the following procedure. Let many sets of un

damaged data be available and assume that the pialarm(k) have already been 

established. Let the modal parameters from a structure under consideration 

only be regularly monitored every eight hours or when triggered by a severe 

loading event. Suppose, however, that the monitoring system is capable of 

collecting data every fifteen minutes. Rather than evaluate every potentially 

damage PDF in the sequence, only calculate it at enough points to capture 

the whole range. Thus, prr ( tmon, k) would be calculated at only a few points 

in the range of interest. If the damage alarm is not triggered when a sin

gle set of the regularly monitored or load-triggered data is added, then no 

action is taken. If the damage alarm criterion is satisfied for some substruc

tures, but relevant prr(tmon, k) exceed pialarm(k) at only a few k or by not 

very much, rather than sound an immediate alarm. increase the rate at which 

measured data is found. Should the new data increase the degree to which 
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the ~var(tmon, k) are beyond the alarm functions, damage would officially be 

indicated. If the additional data reduces the probabilities of variation which 

triggered the alarm so that they fall below the corresponding limits, then con

sider the alarm a false one. This logic could be implemented in an expert 

system which manages the SHM method. 

Other possibilities exist for implementation methods. These operational 

issues for applying the SHM method are left for future work, since they will 

depend significantly on the application under consideration. 

The proposed SHM method provides a way to establish the existence and 

location of damage in a structure. Furthermore, the ill-conditioning in the 

problem is taken into account through the use of the PDFs to include the 

uncertainty in the measured data and the modeling error in determining the 

probability of damage. The remaining issue is determining the degree of dam

age in a substructure once an alarm is set. 

2.5. 7 Degree of Damage 

Once the existence and location of damage have been found, the final step in 

SHM is determining the degree of damage. Assume that a positive indication 

of damage has been detected through use of the method just described. Group 

the data which corresponds to the damaged state into 'Dd. The most probable 

damaged model, ed, is computed using only J)d' so that the other data does 

not bias the identified model. Let the measure of the degree of damage or 

simply the degree of damage for ()i be 

(2.88) 

If the substructure is itself an element, then the measure will indicate change in 

that element. However, a substructure will generally consist of many elements, 
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so this measure will reflect the damage of elements of a substructure "aver

aged" over an entire substructure. Interpreting what the degree of damage 

indicates is then a function of the substructure. For a very simple substruc

ture consisting of only a few members or elements, a 10% degree of damage 

might not indicate much change in the individual elements. However, an equiv

alent change in a substructure which contains many elements might represent 

a significant level of damage in a number of the elements. In the examples 

in Chapter 3, the degree of damage is compared to the known damage when 

damage is detected and located. However, an extensive study investigating 

the relationship between elemental damage and the degree of damage measure 

for substructure is left for future work. 

2.5.8 Calculating the Cumulative Distributions 

One final step remains before the Bayesian probabilistic SHM method defined 

in this section can be applied: the marginal PDFs and CDFs for the parameters 

must be found. Given an updated PDF for all the structural model parameters, 

p(OID) formed using data D, the conditional CDF for the ith structural model 

parameter, Ci(Oi), is found by integrating the updated PDF over the entire 

possible space for all parameters except for the ith structural model parameter. 

This results in 

(2.89) 

where ei is the set where all the (j vary across their full range, except ei, which 

varies from 0 to ei. 
This integral cannot be evaluated analytically for anything more than a 

one-DOF problem. Numerical integration is feasible only for problems of very 

small dimension. Therefore, the value of the integral must be approximated 
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in some other manner. Two procedures are suggested in this study for ap

proximating the value of the integral. One is easy to calculate, but gives a 

poor approximation when the uncertainty is large. The other takes more time 

to compute, but is a better approximation. Both methods are based on a 

Laplace's method (Bleistein and Handelsman 1986) of asymptotic expansion 

for evaluating integrals. 

Coarse Asymptotic Expansion of the CDF Integral 

Because of its form, the updated PDF (2. 72) lends itself well to approximation 

by a multivariable joint Gaussian distribution function. Let () maximize the 

updated PDF, and assume that only one maximum exists. Approximate ](O) 

about iJ, by 

(2.90) ](O) ~ ](iJ) + ~(0- iJfLo(B)(O- B) 

where L0 (B) is the Hessian matrix of ](O) with respect to () evaluated at iJ. 

The form of the updated PDF (2.72) reveals that using (2.90) in (2.72) will 

produce a Gaussian approximation for the updated PDF. 

Substituting (2.72) and (2.90) into (2.89) leads to 

(2.91) 

Integrals of this type occur often in reliability problems (Madsen, Krenk, and 

Lind 1986). In terms of the terminology from reliability theory, the boundary 

of the region defined by 8i defines a failure surface. The failure surface for 

this problem can be viewed as a hyperplane. In this case, the solution of the 

integral is very simple to express (Madsen, Krenk, and Lind 1986): 

(2.92) 
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where <I> is the cumulative distribution function for a Normally distributed 

random variable of zero mean and unit variance, and 

(2.93) 
TA 

·(()·) _ ()i- ei () 
Pz z - ~========= V ef Le(e)-1ei 

This process can also give an approximation to the PDF for each ()i by eval

uating the normal Gaussian function of zero mean and unit variance at the 

calculated values of p. 

Since this approach is based on approximating the original PDF about its 

maximum by a Gaussian distribution function, the results should only be good 

when the Hessian matrix has large eigenvalues. Increasing eigenvalues in the 

Hessian matrix correspond to smaller variances, and thus less uncertainty. For 

reference, this approach is the coarse approximation. 

The approximation method just described is a specific example of a general 

method for asymptotic approximation of integrals described by Papadimitriou, 

Beck, and Katafygiotis (1995). In order to use this method, the maxima of 

the updated PDF with respect to the model parameters needs to be found. 

Further, the Hessian matrix of J(e) at the maxima must be determined. Ap

pendix B presents the details of these evaluations. 

Fine Asymptotic Expansion of the CDF Integral 

As noted previously, the form of the updated PDF (2. 72) lends itself well to 

approximation by a multivariable joint Gaussian distribution function. In the 

coarse approximation, the PDF was approximated about its maximum with 

respect to all of the parameters and integrated using a result from reliability 

theory. If improved accuracy were necessary, a small change could be made to 

the coarse method, resulting in the fine approximation. 
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Consider the marginal PDF for the ith model parameter. 

(2.94) 

where Oi = [01, ... , Oi-l, Oi+l, ... , 0N0 ]T and 8i is the set where Oi varies across 

its full possible range. For a fixed ei, this integral can be approximated using 

the previously described asymptotic approximation technique. By approxi

mating the integral at different values of ei, an approximation to the marginal 

PDF for ei is derived. This marginal PDF can be numerically integrated to 

find the CDF for ei· 
Difficulties such as missing the maxima and determining what size step to 

take can be easily addressed. First, find the maximum of the PDF with respect 

to all of the structural parameters. This serves as a starting point for the 

calculation of the marginal PDF for each of the structural parameters, and will 

ensure that the maxima are not missed. Also, if the PDF is well-behaved, the 

maxima for the value of ei at which the marginal PDF is to be evaluated will 

be near the maxima for the previous value of ei. This improves the efficiency of 

finding the maximum in each step. An appropriate step size can be determined 

from the marginal PDF found using the coarse approximation. The standard 

deviation for the coarse marginal PDF will indicate a characteristic length of 

the problem, so that a proper initial choice can be made for the necessary 

step size. The step size can be reduced and the PDF recalculated until the 

desired level of convergence is achieved. The number of steps can be found by 

continuing to step until the area added by an additional point is a specified 

fraction of the total area. 

Since the Gaussian distribution function approximation is performed for 

each point ei in the marginal PDF in this method, the results are better than 

for the coarse approximation. The cost for the improved performance is that 

forming the CDF for each ei requires that the PDF be maximized with respect 
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to the remaining parameters for each desired point in the marginal PDF. This 

is a computationally expensive procedure. 

For the results presented in this study, the Hessian matrix of the MOF 

always has large enough eigenvalues that the coarse approximation is suffi

cient for all calculations. Since a study validating the use of the asymptotic 

expansion in this case has already been completed by Papadimitriou, Beck, 

and Katafygiotis (1995), these efforts are not duplicated. The fine approxi

mation is not needed for the application presented here, so exploration of its 

capabilities and an extensive comparison to the coarse approximation is left 

for future work. The coarse approximation is used without further comment. 

2.6 Summary of the SHM Method 

SHM technique has been developed in the Bayesian probabilistic framework. 

The methodology uses frequencies and incomplete modeshapes measured from 

a structure to infer the existence, location, and possible degree of damage in 

the structure. The model parameter uncertainties due to noise in the data 

and modeling error inherent in the SHM problem are taken into account. The 

method is summarized as follows. 

A set of observable modal parameters which can be measured from the 

structure under consideration is determined. The observable modal parame

ters consist of Nm frequencies, Wr, and Nm generally incomplete modeshapes, 

'1/Jr E [RNa determined from measurements on the structure. All the modal pa

rameters from one test are called a set of measure modal data, Y. A collection 

of modal data sets taken at different times is called data, 1). The data from 

a structure in a known undamaged state is undamaged data, Dud· Data from 

the same structure in an unknown state is considered potentially damaged 

data, Vpd· All the data collected together is 1)Ns. 
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One advantage afforded by using modal parameters is that ambient vibra

tion testing can be employed to measure the necessary data. Ambient vibra

tion testing is beneficial in a number of ways. First, for the low amplitude 

excitations typically experienced during ambient motion, most structural sys

tems are well characterized with linear models, which are easier to treat than 

nonlinear ones. Also, the danger of further damaging the structure while test

ing it is reduced. Finally, continuous ambient vibration tests can be performed 

at very low cost. For a permanently instrumented structure, this will facilitate 

the implementation of the SHM method as an automatic monitoring system. 

A set of deterministic models, MNd' which have a dynamic behavior partly 

characterized by the equation of motion: 

(2.95) lvfx + C(O)x + K(O)x = f(t) 

with f, x E IRNd, and J\,1, C, K E IRNdxNd is introduced. The mass matrix 

is assumed known, and the damping matrix iR assumed to be of a form so 

that the models posseRR classical normal modes. The models in MNd are 

defined by the structural parameters, (} E IRNe, and the expansion parameters, 

a = { O!r E IRNd : r = 1' ... 'N m}. The structural parameters parameterize 

K(O) in terms of a linear combination of substructure stiffness matrices, Ki: 

Ne 

(2.96) K(B) = Ko + L OiKi· 
i=l 

The substructure stiffness matrices model the contributions of a portion of 

the structure to the overall stiffness matrix. Expressing the dependence of 

the stiffness matrix on the structural parameters in this form is convenient for 

the mathematical analysis. However, the method which is developed does not 

preclude using a more general parameterization. For the purpose of health 

monitoring, the linear parameterization given is sufficient to enable determi-
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nation of the existence and location of damage. The expansion parameters 

specify linear combinations of the model modeshapes, X ( 0), called expanded 

modeshapes: 

(2.97) 

The model class is supposed to indicate what values the observable modal 

parameters will take. Due to noise in the measured data and modeling er

ror, uncertainties are introduced. These uncertainties are characterized by 

introducing a class of probabilistic models, P, in which the frequencies and 

modeshapes are assumed to be independently distributed from each other and 

from mode to mode. The Principle of Maximum Entropy is invoked to deter

mine the form of the individual PDFs. Probability density functions (PDFs) 

for the observable parameters given a model in MNd are thus developed. In 

formulating the probability models, two parameters, aw;. and E7f;r, are intro

duced. The proposed SHM method determines these parameters directly from 

the measured modal data. The final form of the PDF on the observable modal 

parameters contains one term corresponding to an eigenequation error, and 

another term which represents the modeshape error. 

The observable data are then assumed measured so that N 8 measured 

modal data sets, {t, ... , i'NJ 'DNs are available. Bayes' theorem is used 

to find the probability of the structural and expansion parameters given this 

measured data and the PDF on the observable data. In this process, a choice 

of the initial probability distribution for () and a must be made. This initial 

probability distribution contains prior knowledge of the likely values of() and 

a. When all the necessary choices are made, the final form of the PDF for () 
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and o: conditional on VNs is given as: 

(2.98) 

where 

Nm 

(2.99) J(O, o:) = (0- OFf s-l (0- OF)+ L Jr(O, O:r ), 
n=l 

and 

The marginal distribution on 0 is obtained by integrating this PDF over all 

the possible o:. Due to the complexity of the integrand, the integration is not 

done exactly. Instead, an asymptotic approximation is made to the integral. 

Since the PDF tends to be very peaked as a function of the O:r for a variety 

of different models, the approximation is very good. The resulting marginal 

PDF is 

(2.101) 

where 

(2.102) ](O) = J(O, &(0)), 

and &(0) is the value of o: that maximizes p(O, o:IVNs) for a given 0. 

The marginal distribution on () is further integrated over each of the pa

rameters but one to get the marginal distribution for a single parameter, ()i· 

This process is continued for each parameter so that all the individual marginal 
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distributions are found. As the integration cannot be done analytically, two 

approximation techniques are presented. One is a coarse approximation in 

which p(BI'DN.) is approximated by a Gaussian distribution about its peak, 

and the marginal on Bi is found using results from reliability theory. The 

other approximation is more exact. For each parameter, an asymptotic ex

pansion solution for the integral over the other parameters is obtained at a 

series of discrete values of the non-integrated parameter. In this manner, a 

discrete marginal PDF is formed. This approximation is closer to the true 

distribution than the first approximation. The trade-off is that the second 

method takes much longer to compute. For the cases of interest in this work, 

the coarse approximation is sufficient to evaluate the integrals. Thus, the 

presented results use the coarse approximation. 

A measure for the probability of variation of model parameters from a 

reference state, prr, is defined. The damage measure is calculated based 

on the probability that the structural model parameters found using recently 

measured modal data are less than those parameters found using the reference, 

or undamaged set If p:var exceeds a certain level p.alert an alert is raised that . . ~ ' ~ ' 
the structure may be damaged. Determination of whether the alert is a true 

indication of damage or a false alarm is handled by studying other aspects 

of Prr. Calculating the measure for each substructure and determining if 

the damage alarm has been set provides a way to determine the existence 

and location of damage. A possible measure of the degree of damage is also 

introduced. A manner in which to trade-off between the possibility of false 

and missed alarms is also discussed. 

In practice, the SHM method could be applied as an online automated 

structural health monitoring system through the following procedure. This 

procedure assumes that the structure under consideration has already been 

instrumented, and the model class and probability models for the application 
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have already been determined. 

• During an initialization phase, take as many measurements from the 

structure in the undamaged state as are needed to find a stable reference 

undamaged PDF and reasonable bounds on the variations in prr for 

each substructure when there is no damage in the structure. 

• Start the monitoring phase wherein the structure is measured periodi

cally and Ptar in each substructure is calculated after each measurement. 

• If Prr does not exceed Ptlert, wait for the next set of data. 

• If prr exceeds Ptlert, consult an expert system (human or computer 

encoded logic) about how to proceed. The expert system decides whether 

the alarm appears false, true, or uncertain based on criteria establish 

through previous investigations. If the alarm is determine to be true, 

the appropriate safety measures are implemented immediately. For false 

or uncertain alarms, the rate at which data is taken is increased and the 

additional data used to further determine the validity of the alarm. 

The following chapter reports on the results of testing the method. Com

puter models of two structures, and synthetically generated data are used to 

explore the various features, strengths, and limitations of the SHM method. 
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Chapter 3 

Simulated Data Testing 

3.1 Introduction 

The SHM method developed in Chapter 2 is examined through testing using 

mathematical models of structures. Two models are considered: a 2-DOF 

shear structure in Section 3.2, and a 10-DOF shear structure in Section 3.3. 

The 2-DOF shear structure is a simple example which can be exhaustively ex

plored and used to examine some fundamental behaviors of the SHM method. 

The 10-DOF case adds some of the problems that will be encountered in real 

applications such as limited modeshape information, high-dimensionality, and 

substructuring. Use of mathematical models enables the behavior of the SHM 

method to be analyzed in a controlled way. 

In theory, the damage detection and automatic monitoring goals are sat

isfied by the technique presented in Chapter 2. However, the development 

of the SHM procedure in Chapter 2 followed an analytical and logical line of 

reasoning in which many assumptions were made. Testing of the method is a 

check on the legitimacy of these assumptions. The most critical claim of the 

SHM method developed in this paper is that the suggested damage measure 

can be used to determine the existence and location of damage in the presence 

of the noise and modeling errors. Establishing the validity of this claim is one 
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focus of the testing in this chapter. As one of the intentions of this study was 

to develop a method that will lend itself well to automation, some guidelines 

for potential use by an expert system in interpreting the existence of damage 

are discussed. 

3.1.1 Common Definitions 

Before describing the examples in more detail, some aspects common to all of 

the examples are discussed. 

Noise in the Data 

For each model, the noisy measured modal data is generated by adding ran

dom values chosen from zero-mean Gaussian distributions to the true modal 

parameters of the model. The resulting data is referred to as synthetic data. 

The percent standard deviations (i.e. coefficients of variation) on the frequen

cies and modeshapes used in this study are shown in Table 3.1. In terms of 

the development in Chapter 2, the values in the table are Ew~ and E'I/Jr. These 

Modal Parameter 
w2 '1/J 

2.0% 2.0% 

Table 3.1 The noise levels on the modal parameters 

standard deviations represent expected standard deviations on the measured 

modal data for well-expressed modes based on the author's experience with 

measuring modal data from a laboratory structure and multiple full-scale 

structures (Becket al. 1995). 

In practice, the noise levels generally vary from mode to mode, and worsen 

for higher modes. Also, for a given application, the relationship between the 
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frequency and modeshape noise levels may not be the same as designated in 

Table 3.1. Adding these levels of complexity in not considered necessary in 

this exploratory study. 

Looking back to the modal measure offit (2.65) and relations (2.50) to (2.54) 

for the probability model parameters reveals that level of noise in the modal 

parameters, as determined by Ew; and E7j;r, enters the MMOF in a reciprocal 

squared fashion. Data sets are included in the MMOF through a linear sum

mation. Therefore, in theory, increasing Ew; or E7j;r by a factor of two should 

be effectively offset by having four times as many data sets. Testing with 

simulated data confirmed this behavior. Based on this result, the analyses 

in this work are presented for only the single level of noise described in Ta

ble 3.1. The implied understanding is that results for different noise levels can 

be considered by appropriately scaling the number of measured modal data 

sets. 

Model Class 

The model class in each case uses the corresponding mathematical model as 

the fundamental model. This allowed for different possible substructure con

figurations, although for the 2-DOF model only two such configurations exist. 

In each example, the actual fundamental model and substructuring used to 

generate the model class are described in detail. The parameter values used 

in the underlying fundamental model are included so that results from future 

studies can be properly compared with this one. 

Initial Distribution for (} 

For each case examined, the initial distribution on (} had to be selected. Recall 

that the initial distribution is a joint Gaussian distribution with mean given by 

(}F and a diagonal covariance matrix S ( (2.61) and (2.63)). In this study, all of 
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the ai inS are assumed equal to the same value, a= 0.5. Figure 3.1 shows the 

initial distributions of one structural parameter for a = 1.0, a= 0.5, a = 0.1. 

The distributions for a = 0.1 and a = 1.0 demonstrate low uncertainty and 

0.9 

O.B 
' ' 
' ' 

0.7 
' ' 

' ~0.6 ' a. 
'll 10.5 
~0.4 

0.3 

0.2 

0.1 

0 
0 0.5 1.5 

Figure 3.1 Three possible initial distributions for fh, with a = 0.1, 
a = 0.5, and a = 1.0. 

high uncertainty in the initial modeling. A choice of a = 0.1 hampers health 

monitoring effort for cases with few sets of data since too much weight is put 

on the fundamental model. If a = 1.0, the accepted possible variation in (} 

includes significant amounts of probability volume below zero and for values 

more than twice the fundamental model values. For these reasons, they were 

both unacceptable values of a. The selection of a = 0.5 struck a balance 

between wanting to reflect some initial uncertainty so that the SHM method 

is not insensitive to damage, and maintaining reasonable bounds on the likely 

values for the structural parameters. 

When the noise levels are high and few data sets are available, the initial 

distribution will have a significant impact on the updated distribution. How

ever, as more data sets become available, the choice for the initial distribution 

becomes less important since the data will control the form of the updated 

distribution. Therefore, in all the results, only the distribution with a = 0.5 is 
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considered and variation of the performance of the SHM with changing initial 

distribution is not explored. 

3.1.2 Brief Descriptions of the Examples 

For the 2-DOF example, the dependence of the procedure's performance on 

the alarm function, pialarm(k), the degree and location of damage, and the 

number of identified modes are characterized. The "performance" is analyzed 

in terms of the relative frequency of false alarms for undamaged substructures 

and the ability to detect damage when damage is present. This character

ization demonstrates the typical behaviors of the method. Studying these 

behaviors provides guidelines for how the method should be implemented in 

other more realistic problems. 

In the 10-DOF example, the guidelines suggested by the 2-DOF example 

are used to establish the alarm functions. The avenues of investigation in 

these case are limited by the size of the problems. Thus, only a few represen

tative cases are examined. The locations and degrees of damage, as well as 

the amount of modal data are varied. These cases demonstrate some of the 

strengths and limitations of the SHM method. 

3.1.3 Picturing Damage 

Many of the results in the 2-DOF and 10-DOF examples to be presented are 

explained using a graphical representation of the probability of variation. This 

visualization tool facilitates interpretation of the variations in prr ( tmon, k) 

and helps to demonstrate certain behaviors. A typical plot is in Figure 3.2. 

All the relevant information for the problem is displayed. The probability of 

variation, pvaT, in a given monitoring cycle, tmon = 34, is plotted as a function 

of the monitoring cycle window, k. Fork= 1, only the modal data set taken 

during the current monitoring cycle is used in calculating pvar. As k increases, 
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additional measured modal data sets from past monitoring cycles are used to 

calculate pvar. Recall that since the number of monitoring cycles dictates how 

much past data is available, the maximum for the monitoring cycle window is 

the number of monitoring cycles. Thus, in the probability of variation plots, 

the maximum value on the monitoring cycle window axis can not exceed the 

number of the monitoring cycle, but will oftern be less. 

Monitoring Cycle: 34 
1~--~----~----~----~------~--~ 

0.8 

0.6 

0.4 

0.2 

' ' ,_ - ... ' ' ' ' ' ' ' ' ' ' 

o~--~----~----~----~------~--~ 

5 10 15 20 25 
Monitoring Cycle Window, k 

Figure 3.2 Typical probability of variation plot for a given mon
itoring time 

The dashed line represents the alarm function, pal arm ( k), as defined in ( 2. 86), 

for some choice of r· Recall, this alarm function is determined empirically dur

ing the initialization phase of the SHM application by calculating the mean 

and standard deviation of pvar for each k as tmon varies. The solid curve is 
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the probability of variation curve, and shows pvar as a function of k for this 

monitoring cycle. This "curve" is really a set of discrete points joined by lines, 

but for the purpose of visualization and discussion, it is treated as a curve. 

3.2 Two DOF Shear Structure 

Description of the 2-DOF Model Class 

A 2~DOF shear structure model is considered as both the structure being 

studied, and the fundamental model for the model class. The model class for 

this study, M 2 , is thus "The set of 2~DOF shear structure models with known 

mass." A typical model is pictured in Figure 3.3. The lumped masses are m1 

Figure 3.3 This is a representation of a two DOF shear structure 
model. The spring elements represent resistance to lateral mo
tion between the "floors." The masses are assumed lumped at 
the "floors." 

and m2 . The elemental stiffness matrices are 

(3.1) and 
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Two possibilities existed for substructuring: one or two substructures. In 

the first case, SS1, K 1 = k 1 + K2 and 

(3.2) 

In the second case, SS2, K 1 = K1 , K 2 = k 2 , and 

(3.3) 

Thus, there are either one or two structural parameters depending on the 

substructuring chosen. This model class is the same as described at the end 

of Section 2.4.2. The description has been repeated here for convenience. 

For all of the tests, the masses, m 1 and m2 , are held fixed at the values 

given in Table 3.2. The "undamaged" value of the stiffnesses, k1 and k2 , are 

also shown in Table 3.2. The modal parameters for the undamaged model are 

given in Table 3.3. These values are not obtained by modeling any partie-

Model Parameter ml m2 kl k2 
Value 20 kg 10 kg 1200 N/m 1000 N/m 

Table 3.2 These are the model parameters for the fundamental 
model used in this testing. Units are shown only for complete
ness. They do not represent the values obtained by modeling 
any particular structure. 

ular structure. They are simply chosen to represent a structure with similar 

interstory stiffnesses, and frequencies in the range of typical civil engineering 

structures. In order to add a bit of realism, m1 is chosen to be greater than 

m 2 to reflect that lumping of a structure's mass would put more at an interior 

point in the model. 
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Modal Parameter WI w2 XI X2 

Value 0.93 Hz 2.11 Hz 
0.55 0.60 
0.84 -0.80 

Table 3.3 These are the modal parameters for the fundamental 
model used in this testing. The modeshape vectors XI and x 2 

have unit norm. 

Aims of the 2-DOF Analysis 

The 2~DOF analysis studies the use of the damage measure defined in Chap

ter 2 to determine the existence, location, and degree of damage in the presence 

of noisy data. The effect of variations in the number of identified modes, the 

degree and location of damage, the alarm function, and the substructuring are 

all considered. The small size of the structure in this case allows for this fairly 

exhaustive matrix of different possibilities to be explored. For the modal data, 

the assumption is made that both modeshape components were measured in 

the one and two mode cases. The problem of multiple most probable models 

which occurs when only two frequencies are measured is thus avoided. Also, 

when only one mode is measured, it is the first mode. 

Organization of the 2-DOF Study 

The 2~DOF study is organized in a manner which follows the suggested order 

of application of the SHM method to a real structure. The only difference 

is that a number of different possible operating conditions are considered at 

each stage in order to explore the behavior of the method. The first step taken 

is to determine the number of measured modal data sets required to achieve 

stability of the undamaged PDF. Then, a study of the variation in pvar without 

damage in the structure is conducted. These results demonstrate some of the 

behaviors predicted in Section 2.5.3 with respect to the values of Prr (tman, k) 
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as both tmon and k vary. The effect of the choice of the alarm function, 

Ptlarm ( k), on the relative frequency of false alarms is analyzed. Finally, the 

performance of the method with different degrees and locations of damage is 

considered. Characteristic behavior of pvar when damage occurred is noted, 

and some guidelines for using this behavior to separate a true alarm from a 

false one when an alarm is sounded are established. 

3.2.1 Results of the Testing 

Stabilizing the PDF 

The number of measured modal data sets required to stabilize the most prob

able model parameters, B, for the undamaged PDF is found as follows. First, 

a sequence of noisy measured modal data sets is generated. In a real appli

cation, this data would represent the data measured in the first part of the 

initialization phase. From the noisy data, a sequence of most probable models, 

B(n), is identified using increasing subsequences ofthe measured modal data to 

form the undamaged PDF. These most probable model parameters are plotted 

against the number of undamaged data sets used to form the undamaged PDF 

and the trends are noted. 

The cases considered are summarized in Table 3.4 and the results are shown 

in Figures 3.4 to 3. 7. In each figure, results from four different initial sequences 

are displayed. Although only one set of initial data would be available in a real 

application, four are generated for this 2-DOF study in order to investigate 

the consistency of the results. One important observation made from these 

results is that the 881 cases converged faster than the 882 cases for equivalent 

quantities of modal data. This is not surprising, since in the 881 cases fewer 

parameters are identified, so the relative amount of modal data is greater. 

Having relatively more data pins the parameters values down better. The 

drawback for the enhanced stability is that 881 does not give as accurate a 
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model of the system as SS2, so locating damage is not possible. 

I Test Case I Modal Data I Substructuring 

1 Two Modes SS2 
2 Two Modes SS1 
3 First Mode SS2 
4 First Mode SS1 

Table 3.4 Cases considered in stabilizing the undamaged PDF 

1.05.--~--~-~-~~---, 1.05 .---~--.---~-~~---, 

0.95L--~-~--~-~-___J 

0 20 40 60 80 100 
0.95L--~--~-~--~-_J 

0 20 40 60 80 100 
Number of Undamaged Data Sets Number of Undamaged Data Sets 

(a) Substructure 1 (b) Substructure 2 

Figure 3.4 01 and e2 as functions of the number of modal data 
sets used to form the undamaged PDF: Test Case 1 

For cases 1, 2 and 4, there is a fluctuation of less than 1% when greater than 

thirty undamaged data sets are used to form the undamaged PDF. For case 

3, significantly many more data sets are required to bring the most probable 

parameter of the second substructure within the 1% range. This is an exam

ple of an uncertainty problem caused by relative insensitivity of the MOF to 
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1.05.---~--~--~-~---, 

20 40 60 80 100 
Number of Undamaged Data Sets 

Figure 3.5 01 as function of the number of modal data sets used 
to form the undamaged PDF: Test Case 2 

1.05.---~--~-~--~-----, 1.05rnrr---~----~-----, 

0.95'----~--~-~--~-----l 0.95'------~---~-------l 

0 20 40 60 80 100 0 50 100 150 
Number of Undamaged Data Sets Number of Undamaged Data Sets 

(a) Substructure 1 (b) Substructure 2 

Figure 3.6 01 and 02 as functions of the number of modal data 
sets used to form the undamaged PDF: Test Case 3 
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1.05.----~----~----, 

20 40 60 80 100 
Number of Undamaged Data Sets 

Figure 3. 7 iJ1 as a function of the number of modal data sets used 
to form the undamaged PDF: Test Case 4 

variations in a model parameter. Figure 3.8(a) shows how the first frequency, 

normalized by its nominal value given in Table 3.3, does not have as strong 

a dependence on the second model parameter as it does on the first. The 

steeper curve is the first frequency as a function of the first substructure pa

rameter. The flatter curve is the first frequency as the second substructure 

parameter changes. Thus, as observed, more data sets should be expected to 

be required to pin down the second substructure model parameter than the 

first. The dependence of the second frequency on the parameters is shown in 

Figure 3.8(b) 

The combination of the insensitivity of the first frequency and the small 

size of this 2-DOF example make working with case 3 extremely difficult. Con

sistent results are obtained only by performing many more calculations than 

are needed for the other cases. The exhaustive simulations performed using 

the other cases would have been prohibitively time consuming, and indicated 

little more than the fact that working with insensitive parameters might pose 

some difficulties. Since this is a fact that had already been concluded, only 
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Figure 3.8 Sensitivities of the modal frequencies with variations 
in the model parameters 

cases 1, 2 and 4 are included in the investigation in this work. Based on the 

previous observations, 32 undamaged data sets are chosen to be used to form 

the undamaged PDF in these cases. 

Undamaged Behavior 

The next step in this analysis is determining the behavior of the prr ( tmon, k) 

as k and tmon varied when no damage is present in the structure. This is ac

complished by simulating a large number of monitoring cycles and calculating 

prr(tmon, k) during each monitoring cycle for each substructure. For every 

k, the average and standard deviation of the probability of variation over the 

simulated monitoring cycles is calculated. These are used to determine the 

Ptlarm(k) in the manner described in Section 2.5.4. Rather than choose a sin

gle 1, for this part of the study, 1 is allowed to vary and the number of alarms 

for each choice of 1' is counted. Recall that an alarm is defined to occur in a 



95 

given monitoring cycle any time Prr(tmon, k) > ~alarm(k) for any k. Taking 

the ratio between the number of alarms set and the total number of simulated 

monitoring cycles give a measure of the relative frequency of false alarms. 

The actual calculations are performed with the monitoring cycle window 

varying between N~V: = 1 and N~~x = 41. For all cases, once the undamaged 

PDF is determined using the appropriate number of undamaged data sets, 200 

monitoring cycles are simulated. This number of monitoring cycles is necessary 

to have the alarm function stabilize because the fluctuations in the probability 

of variation with tmon are very large. As will be shown in Section 3.3, the 

alarming functions can be determined with fewer monitoring cycles when the 

variations are not as significant. Simulation of the 200 monitoring cycles is 

performed twice for each case in order to check the consistency of the results. 

The number of calculations required makes performing a more extensive study 

with many more repetitions very difficult. Fortunately, the behavior of the 

alarm functions in each trial of 200 monitoring cycles was very similar. Thus, 

for each test case, only one of the resulting alarm functions is selected for use 

in the monitoring phase of the study. Sample alarming functions for r = 1, 2, 

and 3 for cases 1, 2 and 4 are displayed in Figures 3.9 to 3.11. The plots only 

show the probability of damage for pvar > 0.5 so that the differences in the 

alarm functions between cases are easier to see. When the value of the alarm 

function would have exceeded 1, its value was set to 0.99 so that detecting 

damage would still be possible. 

For small k, pvar shows significant variation from 50%. This fact is demon

strated by the alarm function exceeding 1 for larger values of f. As shown 

in the next section, damage can still be detected in these cases, but distin

guishing false alarms from true alarms becomes difficult. As expected, when 

the monitoring cycle window is increased (more modal data sets are used to 

calculate pvar), the degree of variation decreases. Also, the SS1 cases have 



96 

-- -·- ·---- '!;,'-'-'- '- '-'-'-'-'-' 
... --...... y=3 .... .... 

y=2 .... .. 

0.7 y=1 

0.6 

0.5'----~---~--~----'-' 

10 20 30 40 
Monitoring Cycle Window, k 

(a) Substructure 1 

0.9 

0.8 

0.6 

---·- ·-----... :-I- I- I- I- I- I- I-·- I- I 
.... y=3 .. .. .. .. 

y=2 ...... ...... 

0.5[__--~--~---~--___w 

10 20 30 40 
Monitoring Cycle Window, k 

(b) Substructure 2 

Figure 3.9 Alarm functions for different values of 'Y: Case 1 

0.9 

0.8 

--· .. ·-'- '- '-·- ·- ·- '-'- ·-. -·-'-' 
.... -- y=3 .. .. .. .... 

y=2 .. .. .. .. 

0.5'----~--~---~---'-' 

10 20 30 40 
Monitoring Cycle Window, k 

Figure 3.10 Alarm functions for 
different values of T Case 2 

---·-·--- ..... -'- ·-'- '- ·-' -·-'-' 
- ......... - y=3 .... 

y=2 

0.7 

0.6 

0.5'----~--~---~---'-' 

10 20 30 40 
Monitoring Cycle Window, k 

Figure 3.11 Alarm functions for 
differen values of 'Y: Case 4 



97 

alarm levels which become smaller faster than the alarm levels in the SS2 cases 

as more data is included. As commented on in the previous section, this result 

occurs because relatively more data is available to identify the parameters in 

the SSl cases. 

Figure 3.12 depicts typical probability of variation plots without damage 

present in the structure. Results are shown for every second cycle over mon

itoring cycles 51 though 65. The fixed dashed line is a representative alarm 

function. The vertical axes are pvar and the horizontal axes are the moni

toring cycle window varying from 1 to 41. Many of the axis labels have been 

removed in order to simplify the plots and enable all of them to be contained 

in one figure. The alarm function was chosen so that a false alarm occurred 

during the fifty-seventh cycle (i.e. fourth plot). 

There are three significant observations made from these plots. First, as 

predicted in Section 2.5.4, the attenuated effects of past changes are prop

agated down the sequence of variation probabilities as tmon increases. Also 

noted is that no apparent consistent trends in the probability of variation 

curves are associated with the occurrence of the false alarm. Another way to 

look at this behavior is that when the alarm level is exceeded at one k, there 

is no correlation with exceeding the level at other values of k. In the cases 

considered, these are generally observed characteristics for false alarms. 

Figure 3.12 also revealed one potential problem with the false alarm mea

sure in its current strict definition. Due to the propagation effect, a false alarm 

at k = 1 could be propagated down the sequence as a false alarm in future 

monitoring cycles. Thus, a series of false alarms could be indicated, which 

are, in fact, the effect of one false alarm. This is an aspect of the method 

which would have to be taken into account in the guidelines governing the 

use of the SHM in making decisions. For instance, false alarms set in future 

monitoring cycles by a spurious peak in the present cycle could be ignored, or 
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Figure 3.12 pvar over sixteen monitoring cycles: No damage. 
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the offending data removed from the potentially damaged set. 

Two types of relative frequencies of false alarm are generated. The relative 

frequencies of false alarm shown in Figures 3.13 to 3.15 follow the definition 

of a false alarm in which exceeding the alarm level for any k is a false alarm. 

The plots in Figures 3.16 to 3.18 show the relative frequency of false alarms 

when only excedance at k = 1 is considered an alarm. For reference, a value of 

0.5 would correspond to an alarm in one out of every two monitoring cycles. 

The probability of false alarms falls off nearly linearly as 1 increases for all 

cases considered. This behavior indicates that the variation in prr for each 

k might be well modeled by a uniform distribution. The root cause of this 

behavior has not yet been determined, and is part of the ongoing investigation 

into the use of the SHM method presented in this work. One suggested cause 

for the behavior is the propagation effect described above. However, the plots 

for k = 1 show that the behavior is present even when only the false alarms 

for a single monitoring cycle window are considered. 
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The relative frequency of alarm plots show that for the 882 case, selecting 

"! = 2 for the first parameter, and"!= 2.5 for the second substructure param

eter effectively eliminates false alarms. In the 881 cases, "! = 2 suffices to cut 

down the number of false alarms. These are the values of"! used for the alarm 

function when the behavior of the 8HM method with damage in the structure 

is analyzed. 

Damaged Behavior 

The final step in the analysis is determining how the probability of variation 

changed when there is damage in the structure. Specifically of interest is how 

many monitoring cycles are necessary to detect a given damage condition. For 

this study, damage is considered in each story individually and in both stories 

together. The degree of damage is also varied. 

The results presented in this section are for the cases in Table 3.5. The 

simulated damage in this table represents the percentage reduction from the 

nominal values given in Table 3.2. Values for the simulated damage are cho

sen to exemplify different possible realistic damage scenarios. The case Dl 
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represents a level damage less than the expected variations due to noise of the 

most probable model parameters identified from a single data set. Identify

ing this damage should be difficult when only a few monitoring cycles have 

passed. However, detecting it should be possible by considering large k after 

many monitoring cycles have passed. For D2, the simulated damage is at the 

limits of the variations due to noise for the most probable model parameters 

identified from a single data set. Case D3 has damage significantly more than 

the noise threshold. Case, D4, shows the behavior when damage was in mul

tiple locations. Cases in which only the second story is damaged provided no 

additional insight into the problem beyond the insight gained from the first 

story damage cases, so they are not discussed. 

Damage Damage Simulated Damage 
Case Location b.kl b.k2 

D1 First Story 2% 0% 
D2 First Story 5% 0% 
D3 First Story 10% 0% 
D4 Both Stories 10% 5% 

Table 3.5 Damage cases considered for the 2-DOF example 

The testing is conducted with the SHM monitoring system in the moni

toring phase. The maximum selection parameter, is N";;!x = 41. The effect of 

damage is introduced in monitoring cycle 42 by using the modal parameters 

from the shear model with the damage included to create synthetic data. For 

each combination of test case and damage scenario, a sufficient number of mon-

itoring cycles are then simulated to establish the behavior of the probability of 

variation curves. For damage cases D2 and D3, no more than ten monitoring 

cycles are needed. For D1, since the degree of damage was low, as many as 

thirty monitoring cycles are required. Each set of monitoring simulations is 
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repeated five times in order to determine the consistency of the results. Each 

repeated trial is called a run. 

The number of monitoring cycles after the damaging event when the alarm 

function is first exceeded (first alarm) and the number of additional cycles 

needed to distinguish the alarm from a false one (verify alarm) are shown in 

Tables 3.6 to 3.8. While the first alarm criterion, exceeding the alarm func

tion, is objective, the criteria for verifying an alarm are based on subjectively 

observing how many points exceed the alarm level and how the probability of 

damage curve behaves over successive monitoring cycles. Also shown in the 

Tables 3.6 to 3.8 are the degree of damage measures for the parameter of the 

substructures. Recall that by the definition for the degree of damage given 

in (2.88), a reduction in ()i corresponds to a positive value ofthe degree of dam

age. These are calculated using only the damaged data. The damaged data 

consists of the last kd data sets, where kd is the smallest selection parameter 

value of the selection parameters at which the first alarm was triggered. 

Notice that in case 1, the degree of damage nearly matches the simulated 

damage for Dl and D2, but D3 shows significant variation. This happens 

because the damage is detected in only one cycle in D3. Thus, a single damaged 

data set is being used to calculate the most probable damaged model, so the 

values of the identified model are more sensitive to noise than they would be if 

more data sets had been used. Also, the degree of damage identified in case 2 

tends to be less than the elemental degree of damage. In essence, the damage 

had been "averaged" across the two elements which make up the substructure. 

The results from case 4 might seem a bit confusing at first glance since the 

degree of damage for a given damage case fluctuates about the true damage 

level. Based in the comments made for the case 2, the damage measure might 

be expected to vary about a half of the true damage level. The explanation for 

this behavior is that the substructure stiffness parameter has greater flexibility 
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Test Simulated First Verify Degrees of Damage 
Case Damage Run Alarm Alarm 681 1 6o2 

1 D1 1 17 20 2.0% -1.0% 
2 13 15 2.0% -1.0% 
3 23 30 2.0% 0.0% 
4 13 24 2.0% -1.0% 
5 15 18 3.0% -1.0% 

D2 1 1 6 5.0% -2.0% 
2 2 6 4.0% 0.0% 
3 2 5 4.0% 0.0% 
4 1 5 5.0% 0.0% 
5 2 4 4.0% -3.0% 

D3 1 1 2 11.0% -4.0% 
2 1 2 9.0% -3.0% 
3 1 3 7.0% -2.0% 
4 1 2 12.0% -2.0% 
5 1 2 13.0% -2.0% 

D4 1 1 2 12.0% 2.0% 
2 1 2 10.0% 5.0% 
3 1 2 15.0% 2.0% 
4 1 2 9.0% 4.0% 
5 1 2 8.0% 5.0% 

Table 3.6 Results of 2-DOF damage analysis: Case 1 
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Test Simulated First Verify Degree of Damage 
Case Damage Run Alarm Alarm !:::.01 

2 D1 1 10 25 1.0% 
2 6 10 2.0% 
3 5 8 2.0% 
4 9 9 1.0% 
5 13 13 1.0% 

D2 1 7 9 2.0% 
2 3 6 4.0% 
3 2 5 1.0% 
4 1 7 4.0% 
5 2 10 1.0% 

D3 1 1 3 5.0% 
2 1 4 6.0% 
3 2 4 2.0% 
4 2 4 2.0% 
5 1 3 6.0% 

D4 1 1 2 9.0% 
2 1 3 7.0% 
3 1 3 7.0% 
4 1 2 10.0% 
5 1 3 5.0% 

Table 3. 7 Results of 2-DOF damage analysis: Case 2 
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Test Simulated First Verify Degrees of Damage 
Case Damage Run Alarm Alarm !:::Jh 

4 D1 1 4 16 2.0% 
2 6 8 2.0% 
3 10 30 1.0% 
4 11 23 2.0% 
5 4 9 2.0% 

D2 3 3 5 3.0% 
2 1 4 3.0% 
3 1 6 7.0% 
4 3 5 2.0% 
5 1 5 3.0% 

D3 1 1 2 15.0% 
2 1 2 10.0% 
3 1 2 9.0% 
4 1 2 9.0% 
5 1 2 9.0% 

D4 1 1 2 9.0% 
2 1 2 7.9% 
3 1 2 10.5% 
4 1 2 8.8% 
5 1 2 10.5% 

Table 3.8 Results of 2-DOF damage analysis: Case 4 
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to scale the first interstory stiffness than in case 2. This is because the first 

frequency is relatively insensitive to variations in the stiffness for the second 

story, and no addition constraints were imposed on the second story stiffness 

by other measured modes. 

A final item which needs to be mentioned in regard to the degree of damage 

in case 1 are the negative values for 1::1(}2 in simulated damage cases D1, D2, and 

D3. The negative values reflect that the optimal parameter actually increased 

relative to the undamaged optimal parameter. 

One possible avenue of investigation considered when this study began 

was to determine the relative frequency of missed alarms as a function of 1 

by simulating many damage runs for each damaged condition and counting 

how often damage was not detected. The relative frequency of missed alarms 

could have then been plotted on the same plot as the relative frequency of 

false alarms, and the trade-off in the choice of 1 determined. The results 

presented in Tables 3.6 to 3.8 suggested that such an exercise would only be 

informative for levels of damage which are so low that immediate detection 

may not be critical. In other words, the probability of variation is sensitive 

enough to moderate (5 %) and large (10 %) degrees of damage that setting 1 

to be the minimum needed to achieve a reasonably low relative frequency of 

false alarms is acceptable. 

The true alarms are distinguished from false alarm by considering the be

havior of the probability of variation plots. Figures 3.19 to 3.21 display the 

typical probability of variation plots as the structure is monitored when dam

age has oct:urred in the 42nd monitoring cyde. The fixed dashed line is a 

representative alarm function. The vertical axes are pvar and the horizontal 

axes are the monitoring cycle window varying from 1 to 41. Many of the axis 

labels have been removed in order to simplify the plots and enable all of them 

to be contained in one figure. 
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Figure 3.19 pvar over sixteen monitoring cycles: 2% damage. 
The dashed line is the alarm function for r = 2. 
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Figure 3.21 pvar over eight monitoring cycles: 10% damage. The 
dashed line is the alarm function for 'Y = 2. 



111 

Notice in all these cases that the probability of variation curve had an 

overall increasing trend before and after the alarm function was exceeded. In 

all of the damaged plots studied, this behavior is observed. The trend varies 

depending upon the degree of damage. If the damage is sufficiently strong, 

the probability of variation will be driven to 1 for all k in the monitoring cycle 

in which the damage was first measured. Essentially, the single damaged data 

set overcomes the effects of the undamaged data sets as k increases and past 

undamaged data is included in the evaluation of prr. 

On the other end of the spectrum, small levels of damage may never cause 

the probability variation to exceed the alarm function when k is small. How

ever, after many monitoring cycles, a great many damaged data sets will be 

available. Thus, for large k, where the effects of noise are reduced, the damage 

may be detectable. In this case, the plots would be marked by the probabil

ity of variation curves exceeding the alarm function for large values of k, but 

remaining within the alarm level for small values of k. 

As a consequence of the overall increasing behavior, the alarms for the 

damage events in all cases were triggered by the probability of variation ex

ceeding the alarm function at many values of the monitoring cycle window. 

Since false alarms tend not to show this correlation, the behavior can be used 

as an indication of whether a true or false alarm had occurred. An important 

note is that in only one of the SS2 cases studied did the second substructure 

stiffness ever exceed the alarm level. Using the observation that the move

ment of the probability of variation curve before and after the alarm showed 

no consistent trends, this alarm was correctly categorized as false. 

3.2.2 Observations on the 2-DOF Example 

The results from this study showed many behaviors of the SHM method which 

carry over into more complex cases. When no damage was present, empirically 
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determined alarm functions which effectively eliminated the occurrence of false 

alarms were found. One item of concern is that a moderately large number 

of data samples were needed to create stable alarm functions. Taking fewer 

samples and choosing 1 conservatively high is one way to handle this problem. 

Another way would be to reduce the level of fluctuations in the probability 

of damage for small values of the selection parameter. The variations in the 

sample statistics for the probability of variation would then settle down to an 

acceptable level with a smaller number of undamaged data sets. Investigating 

a reduction in the fluctuations of the probability of variation curves is therefore 

an avenue of future work. 

This study demonstrates that the probability of variation measure defined 

in Chapter 2 can be used to determine if damage has occurred in the structure. 

Also, the method is shown to be flexible enough to detect a wide range of de

grees of damage. As a first line of evaluation, comparison of the probability of 

variation with an alarm function can be used to detect whether or not a darn

aging event may have occurred. In the event that the probability of variation 

is greater than the alarm level, false and true alarms can be distinguished by 

considering the manner in which the level was exceeded and, if necessary, the 

behavior of the probability of variation curves in future monitoring cycles. 

The manner in ~'hich the alarm function is exceeded provides some way 

to distinguish types of damage. For large levels of damage, the probability of 

variation will quickly be driven to 1 for all k. For moderate levels of damage, 

the probability of variation will not shift to 1 immediately, as in the large 

damage case, but will still tend toward 1 for most of the k. Low levels of 

damage will not cause the probability of variation to exceed the alarm level 

for small values of k with few monitoring cycles. However, as more damaged 

data is acquired, the probability of variation should begin to rise above the 

alarm level for large values of k. Alarms when there is no damage should not 



113 

show these behaviors. Thus, recognition of these features can be programmed 

in to an expert system to assist in the verification of an alarm when one is set. 

The 2-DOF example was useful in exhaustively investigating a number of 

different scenarios which could face the SHM method. Behaviors were identi

fied which appeared for this small problem to be characteristic of the method. 

Use of the suggested guidelines and determination of whether the noted trends 

carry over into higher dimensional problems are considered in the following 

sample application of the SHM method to a 10-DOF shear structure model. 

3.3 Ten DOF Shear Structure 

Description of the 10-DOF Model Class 

In this testing, a 10-DOF shear structure model analogous to the 2-DOF 

model studied in Section 3.2 is used as the structure. The model class in this 

case, M 10 , is thus "The set of 10-DOF shear structure models with known 

mass." A typical model has the same form as the 2-DOF model depicted 

in Figure 3.3, except there are ten lumped masses and interstory stiffnesses, 

numbered from the bottom to the top. Thus, mi and ki are the mass and 

stiffness of the ith story. For all of the tests, the masses, m1 , ... , m10 , were 

held fixed at the values given in Table 3.9. The "undamaged" value of the 

stiffnesses, k1 , ... , k 10 are also shown in Table 3.9. As in the 2-DOF example, 

these mass and stiffness values were not obtained by modeling a particular 

structure. 

The fundamental model had ten elemental stiffness matrices of a similar 

form to the 2-DOF stiffness matrices, except that Ki E IR10 x 10 . Many pos

sibilities existed for substructuring. The two which were considered in this 

study are shown in Table 3.10. The same notation is used as in the 2-DOF 

example. 
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Mass Value(kg) Stiffness Value(N/m) 
ml 30 kl 48000 
m2 30 k2 48000 
m3 30 k3 48000 
m4 20 k4 44000 
ms 20 ks 44000 
m6 20 k6 44000 
m7 20 k7 44000 
ms 20 ks 44000 
mg 20 kg 40000 
mlO 10 klO 40000 

Table 3.9 These are the model parameters for the fundamental 
model used in the 10-DOF testing. Units are shown only for 
completeness. They do not represent the values obtained by 
modeling any particular structure. 

I Substructuring I Description I # Parameters I 
881 Every element is a substructure 10 
882 Every two stories is a substructure 5 

Table 3.10 Substructuring possibilities considered for the 10-
DOF example 
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Measured Data and Damage Scenarios 

In this analysis, two different possibilities for the measured data were consid

ered. In the first case, M2, only two modes were measured, but the structure 

was instrumented at all the floors. In the second case, M5, five modes were 

measured, but the structure was only instrumented at floors 3, 6, 8, 10. This 

choice of sensor distribution was made based on looking at the modeshape 

plots and subjectively judging where the measurements would pick up the 

greatest variations in the modeshape components. Other distributions were 

not investigated as this was a study of the SHM method, not optimal sensor 

location. The combination of substructurings and types of available modal 

data lead to four test cases. These are summarized in Table 3.11. Note that 

in both M2 and M5, 20 modal parameters are available. 

I Test Case I Modal Data I Substructuring I 
1 M2 SSl 
2 M5 SSl 
3 M2 SS2 
4 M5 SS2 

Table 3.11 Different test cases considered in 10-DOF example 

The three damage scenarios presented are shown in Table 3.12. Cases D1 

and D2 gave damage below and above, respectively, the expected variations 

due to noise of the most probable model parameters identified from a single 

data set. The third situation, D3, was included in the analysis to see how the 

SHM method performed with damage in multiple locations. 
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Damage Damage Simulated 
Case Location Damage 

D1 Fifth Story /:::,.k5 = 5% 
D2 Fifth Story /:::,.k5 = 15% 
D3 Stories 1, 2, and 3 !:::ik 1 = 10%, l::ik2 = 20%, and l:::ik3 = 15% 

Table 3.12 Damage cases considered for the 10-DOF example 

3.3.1 Initialization Phase 

For the given levels of noise on the modal parameters, stabilization testing indi

cated that about 50 or so undamaged runs were necessary for variations in the 

most probable model parameters of less than 0.5%. For this study, 60 undam

aged data sets were used to calculate the undamaged PDF. The reason for this 

slightly conservative choice is that only one sequence of modal measurements 

was used to establish the necessary number of undamaged measurements. 

The alarm functions were determined from 30 monitoring cycles of undam

aged data. Unlike the 2-DOF alarm functions, the 10-DOF alarm functions 

appear to converge to stable values with fewer monitoring cycles. This was be

lieved to have occurred because the fluctuations in pvar for this case were not 

as large as they were in the 2-DOF example. As mentioned in Section 3.2.2, 

smaller fluctuations in the probability of variation imply that the variations in 

the statistics will settle down to an acceptable level with fewer samples. The 

fluctuations were themselves smaller because more data, both in an absolute 

and a relatively sense, was available than in the 2-DOF case. Four sample 

alarm functions for case 1 are depicted in Figure 3.22. For all of the alarm 

functions, 1 = 2.8 was chosen. This choice reflects a conservative approach 

based on the fact that a small sample set was used to establish the alarm 

levels. 
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Figure 3.22 Alarm functions for four parameters 

3.3.2 Monitoring Phase 

For each of the testing scenarios, the structure was assumed to have been 

monitored for tman = 29 cycles, and damaged at tman = 30. Tables 3.13 

to 3.16 show the number of monitoring cycles taken to sound the alarm for 

damage (not possible in all cases), the number of cycles needed to distinguish 

the alarm from a false one and the degree of damage for every parameter when 

the alarm was first triggered. 

The "*" for the damage case D1 indicates that nothing conclusive could 

be determined in this case. Theoretically, if sufficient data is taken, the effects 

of noise could be reduced to a small enough level that any degree of damage 

would be detectable. The results in testing with the D1 case indicate that 

there may be practical limitations to the applicability of this concept. First, 

the number of cycles needed to reduce the noise level may be unrealistically 

large. Also, in order to make conclusions based on small changes in the prob-
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Test Simulated First Verify Degrees of Damage 
Case Damage Alarm Alarm ~() 

1 D1 * * * 
~()1 4.0 
~()2 -3.0 
~()3 -3.0 
~()4 2.0 

D2 1 7 
~()5 11.0 
~()6 0.0 
.6.()7 2.0 
~()8 4.0 
,6.()g -6.0 
,6.()] 0 21.0 
~()1 9.0 
,6.()2 25.0 
~()3 15.0 
,6.()4 8.0 

D3 1 2 
~()5 -4.0 
,6.()6 -2.0 
.6.fh 3.0 
,6.()8 -3.0 
,6.()g 4.0 
~()10 -12.0 

Table 3.13 Results of 10-DOF damage analysis: Case 1 
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Test Simulated First Verify Degrees of Damage 
Case Damage Alarm Alarm ,6.() 

1 D1 * * * 
£1()1 1.0 
£1()2 -3.0 
,6.()3 -7.0 
,6.()4 1.0 

D2 1 4 
,6.()5 12.0 
,6.()6 -1.0 
,6.()7 -8.0 
,6.()8 7.0 
£1()g -3.0 
,6.()10 1.0 
£1()1 26.0 
£1()2 8.0 
,6.()3 1.0 
,6.()4 5.0 

D3 1 2 
,6.()5 -1.0 
,6.()6 -6.0 
,6.()7 -3.0 
,6.()8 8.0 
£1()g 2.0 
,6.()10 7.0 

Table 3.14 Results of 10-DOF damage analysis: Case 2 
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Test Simulated First Verify Degrees of Damage 
Case Damage Alarm Alarm !::,.() 

1 D1 * * * 
!::,.()1 5.0 
!::.fh -6.0 

D2 1 5 f:l(h 13.0 
!::.f) 4 2.0 
!::.05 9.0 
!::.fh 11.0 
6.02 16.0 

D3 1 2 6.03 -3.5 
6.04 2.0 
6.05 -1.0 

Table 3.15 Results of 10-DOF damage analysis: Case 3 

Test Simulated First Verify Degrees of Damage 
Case Damage Alarm Alarm 6.() 

1 D1 * * * 
6.()1 1.0 
6.()2 0.0 

D2 1 g !::,.()3 8.0 
!::,.() 4 4.0 
!::,.()5 -2.0 
!::,.()1 15.0 
!::,.()2 4.0 

D3 1 2 !::.03 -2.0 
!::,.() 4 -2.0 
6.05 0.0 

Table 3.16 Results of 10-DOF damage analysis: Case 4 
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ability of variation curves, the alarm levels have to be known with enough 

confidence that exceeding them by small levels could be treated as signifi

cant indicators of damage. Finally, some types of "noise" are not introduced 

through the data, so taking more data samples may not help reduce their 

effects. For instance, within the minimization scheme are multiple levels of 

iterative minimization steps which are stopped when certain criteria are met. 

Thus, the exact minimum of the MOF is not actually calculated. This can be 

viewed as a type of noise. This type of noise can have a significant effect on 

parameters for which the MOF is highly insensitive. 

The progressively increasing trend in the pvar associated with the 2-DOF 

damaged substructure was also observed in these examples. Figure 3.23 shows 

an example for the fifth substructure of case 1, with damage D2. In this case, 

the alarm appeared to be false at first, since after two cycles the alarm level was 

no longer exceeded. However, by the seventh cycle, the probability of variation 

curve had grown systematically beyond the alarm level for a sufficient number 

of monitoring cycles that the substructure was declared damaged. 

For test cases 1 and 2, the D2 damage case was positively detected m 

story without indicating damage in any other members. The substructuring 

test cases, 3 and 4, were both able to positively identify damage in the third 

substructure, which corresponded to stories 5 and 6. However, test case 4 also 

gave an alarm for damage in the first story that appeared to be a true alarm. 

Damage case D3 was also successfully detected in all four test cases. Only 

in test cases 2, 3, and 4 was the location determined without error. In test 

case 1, the damage in story 3 was not found. Damage was positively identified 

in story 4, where there was no damage. 
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Figure 3.23 pdam over eight monitoring cycles: Test Case 1, 
Damage Case D2, Fifth Story Substructure Parameter, 'Y = 2.8 
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3.3.3 Concluding Remarks on the 10-DOF Example 

The sample cases presented in this section showed that the behaviors observed 

in the 2-DOF example carry over to the 10-DOF example. The results also 

demonstrated that damage could be successfully detected and located. How

ever, as the size of the problem had increased, some difficulties arose which 

were not a significant problem in the 2-DOF example. For instance, dam

age was detected in locations where there was none. Also, the minimization 

scheme used may have limited the capability of the method to determine very 

low levels of damage. Given that the method appeared to otherwise handle 

the SHM problem quite well, further work in resolving these limitation issues 

is warranted. 
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Chapter 4 

Conclusions and Future Work 

4.1 Future Work 

Throughout this work, phrases similar to, "This matter is left for future work." 

have appeared. This is not an indication of a lack of effort in the development 

of the SHM method which was presented. Rather, it reflects the fact that the 

method discussed in this work is a transitional step from theory to implemen

tation. This SHM method is therefore by no means the end of an old story. On 

the contrary, it is the beginning of a new one. Because of this, the application 

of the technique requires additional testing, and possibilities for improvement 

are numerous. This section summarizes some of the more important suggested 

avenues of further investigation. 

4.1.1 Additional Testing 

The primary focus of future efforts should be on continued testing with more 

realistic simulated structures and experimental structures in order to see how 

well the method will perform in practice. Cases in which different modal 

parameters have different noise levels and the number of available modal pa

rameters in different measurements is allowed to vary are examples of matters 
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which should be considered. Investigating what types of damage in a struc

ture the SHM can realistically detect is also necessary. Thus, determining how 

member damage in the true structure is reflected in the degree of damage in 

the substructure which contains those members should be pursued. This test

ing should continue the exploration into the characteristics of the probability 

of variation function in various scenarios so that more detailed guidelines for 

its use can be developed. In this manner, an interpretive logic for use by an 

expert system or end user can be created. 

Applying the method to time-varying models is another pursuit of interest. 

The most obvious problems to treat would be those in which gradual changes in 

the structure due to diurnal or seasonal variations occur. In such applications, 

a time-varying undamaged PDF based on sets of undamaged data associated 

with different conditions could be used to account for these changes not due to 

damage. Efforts in studying application of the SHM method to the problem 

of systematic change without damage will lead to a more robust monitoring 

method. 

The assumption was made in this paper that the updated PDF had a global 

maximum. Cases can exist wherein multiple local maxima are present. For 

example, in the 2-DOF shear model, if only the two frequencies are measured, 

then there are two local maxima of the PDF. Sufficient modeshape information 

usually mitigates the multiple maxima problem. There are instances, however, 

when either only frequency information is available, or the modeshape infor

mation is so noisy that the frequency measurements control the MOF. Thus, 

research into the application of the method when multiple maxima are present 

will be useful. 

The final item of interest in testing does not pertain to this work alone, but 

speaks of a general need in the SHM community. As the survey in Section 1.2 

demonstrated, many different approaches to global SHM exist. However, un-
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like other more mature fields, SHM does not have a body of benchmark exam

ples by which the different methods can be compared. Such examples would 

be a common reference by which to judge different methods. Also, researchers 

without direct access to experimental facilities could be provided with oppor

tunities to test their methods using experimental data generated by others. 

Establishment of these standard problems is therefore an important step in 

helping to further efforts in the entire SHM field. 

4.1.2 Improving the Method 

A Better Alarm Function 

The alarm function used in this work was found in an empirical fashion. How

ever, knowing that the probability of variation sequence has a random walk 

behavior implies that a methodology for choosing the alarm function which 

possesses some analytical basis could be formulated. Having a better method 

for choosing the alarm function which reduces the number of data measure

ments required in the initialization phase of the SHM technique would be a 

significant improvement. One possible way to handle this further pursuit is by 

formulating another layer of Bayesian analysis in which the plausibility of the 

probability of variation sequences conditional on the undamaged and poten

tial damaged PDFs is determined. w·hatever approach is taken, the empirical 

observations which have already been made can serve as a standard by which 

to judge the approach. 

Refining the Model Class 

The substructuring examples presented in this work showed that substructur

ing can offer some advantages such as reduced computational effort without 

significant loss of sensitivity to damage. However, aside from simulation test-
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ing, no methods exist to suggest the best possible choice for a substructuring 

configuration. Developing criteria for choosing the best substructuring for a 

given structure and a given set of modal parameters would be helpful. In or

der to account for the problems associated with the localization of damage in 

substructures which contain many elements, adaptive substructuring should 

also be investigated. 

One improvement that has not thus far been mentioned in this work is the 

concept of selective updating (Farhat and Hemez 1993). In selective updating, 

some criteria are used to choose a subset of the available structural model 

parameters to analyze. The consequence of employing a method such as this 

is to reduce the number of parameters involved in the calculations. Also, a 

finer substructuring mesh can be maintained since not all of the substructure 

parameters would need to be updated whenever data is acquired. Having 

a finer mesh improves the sensitivity of the SHM method to member level 

damage and thus enhances the ability to localize damage. Some foreseeable 

problems could arise in applying the probabilistic framework developed in this 

work since different reference undamaged PDFs might be needed for different 

sets of selected parameters. However, the potential advantages do warrant 

some investigation in this area. 

Computational Issues 

The underlying computational machinery required to calculate the probability 

of variation involves many approximations and iterative steps which introduce 

error into the problem. Unlike the error due to noise in the data, this error 

cannot be reduced by simply taking more data. Only by improving the method 

of calculation can the error be mitigated. A first step would therefore be to 

investigate the nature and degree of variation which arises due to these compu

tational effects. For example. while the coarse approximation for asymptotic 
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expansion of the probability integrals was determined to be sufficient for the 

examples considered in this work, it may not be in all cases. Thus, a thorough 

study of how well the coarse approximation works in different scenarios should 

be conducted. Other computational issues which should be investigated are 

the improvements in approximation achievable with the fine approximation 

method, and the error introduced by the iterative minimization scheme. 

4.1.3 Automation 

In light of the fact that the ultimate goal of this work is to create a system for 

use on real structures, many operational questions need to be addressed. For 

example, on-line determination of the modal parameters from measured data 

is a fundamental requirement if the SHM system is to be fully automated. Also, 

criteria for setting the maximum size of the monitoring cycle window used in 

determining the sequence of probabilities of variation need to be established. 

Such criteria should consider the trade-off between the increased computation 

and the potentially increased ability to detect low levels of damage by having 

longer windows. As a final matter, the interface between the SHM analysis 

and the end user needs to be considered. 

4.2 Limitations of The SHM Method 

The breadth of the SHM field precludes any single method from covering all 

of the possible aspects of the problem. Thus, a given technique may work well 

at handling some parts of SHM, but not work as well with other parts. Some 

of the strengths of the SHM method which has been introduced are covered 

in Section 4.3. In the present section, some of the limitations are discussed. 

Most of the items mentioned are fundamental difficulties associated with any 

global SHM procedure. Problems which are unique to the presented method 
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are noted as such. 

Types of Damage 

A very basic difficulty in SHM comes from establishing what types of changes 

in a structure can actually be detected. One of the fundamental assumptions 

for performing global SHM, as mentioned in Section 1.3, is that changes in the 

structure will affect some measured data to a sufficient extent to be able to 

characterize the changes. Certain types of changes may not have such effects. 

For instance, plastic deformation due to high loading conditions might be 

considered a type of "damage" that is of importance to detect. However, once 

the high loading event has passed, a plastically deformed structural member 

will behave elastically once again, and quite possibly not alter measurements 

of the dynamic response of the structure. As another example, consider a 

highly redundant structure. If a single structural member is damaged in some 

fashion, the local effect might be significant, but the global effect may not 

be. Unless measurements are made in the specific area of the member, the 

damage could go undetected. Sensing these types of damaging events is a 

serious challenge to a global SHM method since the measured data is not 

significantly effected by the damage. 

Model Problems 

The highly redundant structure example brings up another limitation of global 

model-based SHM methods: The degree to which damage can be located 

depends on the nature of the measured data. The number of measured DOFs 

and significantly expressed modes of vibration in the recorded data dictate 

how many model parameters can be identified without uniqueness problems. 

If very few model parameters can be uniquely identified, the model for the 

structure may not accurately reflect the true behavior. Thus, the second 
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assumption made in Section 1.3 could be violated. That assumption involved 

treating changes in the model identified from different data sets as proxies for 

changes in the real structure. 

The method presented in this work uses substructuring to reduce the num

ber of parameters so that they can he uniquely identified. As shown in Chap

ter 3, substructuring can have the effect of smearing elemental level damage 

over an entire substructure, so the sensitivity to damage may be reduced. 

This is a limitation to the presented method which, as mentioned in Sec

tion 4.1, could be addressed through adaptive suhstructuring (Hjelmstad and 

Shin 1997) or selective parameter updating (Farhat and Hemez 1993). 

Another result of using models with few parameters is that even if the 

existence and location of damage can be found, the degree of damage will be 

extremely difficult to determine. This is a fundamental limitation of global 

SHM methods. The best way to overcome this limitation is to use the global 

SHM to establish existence and possible location of damage, and apply local 

SHM techniques to actually find and determine the extent of the damage. 

Problems From Using Modal Data 

The advantages of using modal parameters in the SHM process have already 

been commented upon in Section 1.3. There are, however, disadvantages. The 

modal parameters themselves are identified using some system identification 

technique to fit the parameters of a modal model to measured data. Thus, 

uncertainties are introduced which were ascribed to "noise" in this work. The 

uncertainties are passed on to the model parameters identified using the modal 

parameters. Suppose a significant portion of the variation in the modal pa

rameters when there is no damage is due to the identification technique and 

not the underlying measured data. Performing SHM using the measured time 

history data directly may then offer some advantages. 
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Fooling a SHM Method 

The final problem with SHM occurs when what appears to be damage may 

not be damage. Following an extreme loading event (e.g. earthquake), many 

concrete structures exhibit a decrease in their frequencies of vibration. This 

effect is believed to be caused by a combination of loosening of the concrete, 

the soil, and the non-structural elements in the structure. Over time, some of 

the frequencies may increase slightly, but they generally stay lower than the 

original values. Any reasonable SHM technique would interpret the change as 

damage and identify the possible damage locations. In reality, however, the 

structure may not be truly damaged. Thus, interpreting damage in concrete 

structures may present difficulties. 

4.3 Conclusions 

The need for a structural health monitoring which took into account the model 

parameter uncertainty in the problem and lent itself well to on-line application 

motivated this work. The results of this study represent the first step in the 

development of a SHM method to meet these two requirements. In order to 

accomplish the tasks, a model-based approach to SHM was taken. 

The method presented in this work departed from traditional determinis

tic model-based SHM techniques by answering a different question in order to 

solve the problem. A traditional deterministic model-based technique essen

tially would solve the SHM problem by answering the question, 

What is the change in the optimal stiffness parameters of a model 

identified u~ing data from a reference undamaged condition and a 

current condition? 

The answer to this question does not take the parameter uncertainty effects 
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into account. This work explicitly considered the uncertainty effects by asking 

the probabilistic question, 

Based on the available data, and acknowledging the uncertainty 

in the problem, what is the probability that the current model 

stiffness parameters are less than some reference undamaged model 

stiffness parameters? 

In order to answer this question, probabilistic descriptions of the model stiff

ness parameters given different data were needed. The Bayesian framework 

handles these types of conditional plausibilities. Therefore, it was the ideal 

setting in which to pose the answer to the question. 

An explicit formulation of the SHM method thus defined was presented in 

Chapter 2. Fundamentally, the discussion in that chapter simply developed 

the necessary probabilistic description for the model parameters given the data 

and showed how the probabilistic SHM question could be answered using those 

descriptions. 

Once the framework was developed, testing on some simple computer

generated structure examples was presented in Chapter 3. The results of the 

testing showed that the measure of damage derived in Chapter 2 had some 

distinguishable characteristic behaviors based on whether the structure was 

damaged or not. Thus, it could be applied to detect damage in a structure. 

Some of the limitations and shortcomings of the method were also pointed 

out. 

Based on the efforts described in this work a number of conclusions can 

be drawn. First, a SHM method which accounts for uncertainty in the SHM 

problem in a structured fashion has been successfully created. Although the 

method was developed to detect reductions in stiffness parameters for linear 

models using modal data, the conceptual framework is not limited by these 

constraints. If the marginal PDFs can be formulated using different model 
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classes and measured data, the fundamental idea behind the method can still 

be applied. In such an extension of the method, there may be an increased 

computational cost. Also, although the probability of variation is used in 

this work to detect reduction in stiffness, it can be more generally applied to 

determine increases in the stiffness parameters as well. Such an application 

could arise in tracking how the properties of a concrete structure change as 

the concrete cures. 

Another contribution of this work is the consideration of issues associated 

with automated application of the SHM method. While the goal of SHM 

should be on-line application, no examples could be found in the literature 

that deal with the issue. Therefore, designing the method to lend itself well to 

automated application and addressing some of the concerns associated with 

on-line monitoring are significant contributions. A considerable advantage is 

gained by considering the problem as one of continually monitoring a structure 

rather that simply performing one-shot measurement and damage detection 

tests. In this framework, small levels of damage can be detected by monitoring 

the structure over long times. This can be useful for detecting structural 

degradation which builds up slowly such as that from corrosion and fatigue. 

Section 4.2 noted when and where the method would have trouble being 

applied. Fortunately, there are plenty of situations for which this SHM method 

is well-suited. Detecting fractures in steel and aluminum framed structures is 

one obvious application. Off-shore oil platforms also present a possible venue 

for use of this SHM method. Finally, going back to the beginning of this work, 

a situation like the Mianus River bridge is ideal example of where this method 

would have performed well. If a SHM system existed and were in place when 

the first key structural failure occurred, the potential danger would have been 

detected, and the loss of life and property would have been prevented. 
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Appendix A 

Probability Model Details 

This appendix presents the details to some of the results presented in sec

tion 2.4. 

Proof of optimal scaling for the modeshape error 

Proposition A.l For x, y E IRN for some N E z+, the value of rJ which 

mznzmzzes 

zs 

(x, y) 
'f] = lTYW' 

Proof: Take the derivative of this function with respect to rJ, set it to zero, 



and solve for TJ. 

This gives 

(A.l) 
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a a 
ary llx- TJYII 2 

= ory (llxll 2
- 2ryxr y + TJ2 IIYII 2

) 

= -2XT y + 2ryyT y 

= -2(x, y) + 2TJIIYII 2 

=0. 

(x, y) 
TJ = liYIP" 

Since the second derivative of f(x, y, TJ) with respect to TJ is clearly positive, 

the TJ given in equation A.l minimizes the norm with respect to TJ. • 

Algebraic Details of Various Steps 

Proposition A.2 Equation (2.25a) is true, that is, 
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Proof: Start with (2.24) and manipulate. 

• 
Proposition A.3 Equation 2.31 is true, that is, 

Proof: Expand the square term on the right side in equation (2.28) and ma

nipulate the result. The fr is multiplied through, and a new function p* fr p 
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is defined in order to simplify the notation. 

(A.3) 

• 
Proposition A.4 Eq'uation 2. 32 is true, that is, 

Proof: The PDF can also be expressed in terms of K, M, and ¢r· Use is made 

of the facts that l\11 and K are symmetric. The fr is multiplied through, and 

a new function p* fr p is defined in order to simplify the notation. Starting 
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with the second line from the proof of Proposition A.3 gives 

• 
Proposition A.5 Equation 2. 36 is true, that is, 
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Proof: Starting with (2.33) and manipulating gives 

(A.5) 

• 
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Appendix B 

Calculating the Minimum and Hessian 

In order to evaluate the probability of damage, pdam, defined by (2.83), the 

marginal distributions for the updated PDF defined by (2.72) need to be de

termined. Due to the difficultly of performing the integration analytically or 

numerically, two asymptotic expansion techniques for evaluating the neces

sary integrals were introduced in Section 2.5.8: the coarse and fine asymptotic 

expansion approximation methods. In order to perform the approximation, 

determining the minimum and Hessian of the measure of fit (MOF), ](B), 

defined using (2.65), (2.66), (2.69), and (2.73), is required. This appendix 

provides the details of the method for finding these used in this study. 

B.l Preliminary Development 

The relevant relations are repeated here for convenience. These are written 

explicitly as functions of(} and c/Yr rather than(} and ar. Recall that c/Yr = X ar. 

Since this mapping between ¢r and ar is full rank, writing in terms of c/Yr rather 

than ar does not introduce any problems. The vector ¢refers to all of the c/Yr 

stacked in a single vector. 
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The modal measure of fit (MMOF) is 

The overall M 0 F is 

Nm 

(B.2) J(B, ¢) = (B- ()F f s-l (B- ()F)+ L lr(B, rPr)· 

The MOF for the marginal distribution on() is 

(B.3) 

where rPr is selected to satisfy 

(B.4) 

for a fixed (). 

](B)= J(B, (/J(B)), 

EJJ(B, ¢) = 0 
EJ¢r 

n=l 

B.l.l Alternate Forms of the MMOF 

Two more compact and convenient forms of (B.l) can be expressed. These 

are 

(B.5a) 

J (() cp ) = [cp';Qlr(B)r/Jr + ¢;Q2rrPr] 
r ' r ¢'{: R1 rPr ¢'{: R2rPr 
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and 

(B.5b) 

J,(O, </J,) = (t, s(n)) or A,( </J, fA,( </J,) 0+ 2 OT A,.( </J, fb,.( </J,) + C,( </J,) 

where 

(B.6) Q,, = t, [ :r; (K(O)- 4(n)M) A.r1 (K(O)- 4(n)M) l 
(B.7) R1 = M 

(B.8) Q2, = t, [ t) r' (1- ,J;.(n),ff(n)) r] 
(B.9) R2 = rrr 

(B.lO) Ar(cPr) =a~; III/>:IIM [M-~Kl¢r · · · M-~KN0 ¢r] 

and 

(B.ll) 

The term Cr ( ¢r) is never actually used in any calculations, so its form is not 

expressed here. 

Using (B.5b), J(O, ¢) can be expressed as 

(B.12) 

J(O, </J) = (0- oF)' s-l (0- eF) + (t, s(n)) O'AT AO + 2 eT ATb + c, 

where 
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and 

The term C is not a function of () and is never explicitly used, so its form is 

not listed. 

B.1.2 Derivatives of J(B, a) 

Using (B.5a) and (B.5b), the partial derivatives of J(O, a) can be determined 

very easily. 

The first partial derivative with respect to () is 

(B.l3) 

The first partial derivative with respect to ¢r is 

(B.l4) 

The second partial derivative with respect to () is 

(B.l5) 

Using (B.l) directly, the second partial derivative with respect to () can also 

be expressed by 
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The second partial derivative with respect to ¢>r is 

(B.17) 

The cross derivatives between different expanded modeshapes are all zero, so 

only the cross derivative between () and ¢>r remains. This cross derivative is 

(B.18) 

where the ith column is given by 

(B.19) 

and 

(B.20) 

Q1r,i 
8~1r = t [s;~) ( (K- 4(n)M) M-1 Ki + KiM-1 (K- 4(n)M) )]. 

z n=1 wi: 

B.1.3 Some Final Notation 

Some useful shorthand for the development to follow is now defined. 

(B.21) 8(-) ---8¢> -
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Also, 

(B.22) 
[

8(.) l 
'lxy() = ~~ . 

With the preliminary material covered, the minimization routine and Hes

sian calculation may be described. 

B.2 Minimizing the MOF 

The minimum of J(O) must be found in order to determine the maxima of 

the updated PDF. The minimum finding procedure developed for this study 

is only a locally minimizing routine. The details of the development, use, and 

extensive testing of the minimizing method are not presented in this study 

since the focus is on the SHM application. Also, any algorithm which finds 

the minimum of the MOF could be used for finding the minimum, so the choice 

of a routine is not critical to the SHM. 

At the minimum of ](0), 

(B.23) 

Since J(O) = J((), (/J(O)), 

(B.24) 

dJ = 0 
d() . 

Recall that (/J(O) is defined such that (B.4) holds. Thus, the minimum of](()) 
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is found by simultaneously solving 

(B.25) 

(B.26) r E 1, ... ,Nm· 

Solving (B.25) and (B.26) simultaneously is not a simple problem since 

there are nonlinear cross terms. However, looking at (B.13) and (B.14) reveals 

that solving ~: = 0 with ¢ fixed and t/r = 0 with e fixed are fairly easy 

problems. 

This fact suggests using an iterative procedure to find the minimum of J, 

given some initial starting point. The procedure derived from this idea can be 

described as follows. 

• Start with an initial set of structural model parameters, e0 . 

• Find the expanded modeshape for which %/r = 0 while holding e fixed 

at eo. 

• Fix the expanded modeshapes at these values and find e such that ~: = 

0. 

• Iterate until a degree of convergence is achieved. 

This process is capable of finding only local minima. Thus, the choice of e0 will 

affect the solution if there is not a global minima of J. This is not a problem 

for the application in this study since the model classes were all assumed to 

be globally identifiable. 

Unfortunately, no proof has been devised which shows that this method will 

actually converge on the local minimum. The only guarantee is that during 

each minimization, the MOF decreases. Extensive use of the method (Beck 

and Yanik 1996) for cases where the minimum was known has indicated that 
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it does approach the local minimum in a very rapid fashion. A possible course 

of future study might be to investigate how well this minimization method 

performs against others that are suited to this problem. 

Minimizing With Respect to (} 

In order to minimize J with respect (}, the (} is found so that ~~ = 0. Recall 

from (B.13) that 

(B.27) 

Using (B.13) in (B.25) and solving for(} gives 

(B.28) 

The term s-l +AT A is always invertible since s is positive definite. There 

might be ill-conditioning problems if AT A is ill-conditioned. If AT A is ill

conditioned, the implication is that an insufficient number of observable pa

rameter are available to identify the number of model parameters. A possible 

future course of study is to see if the reducing the ill-conditioning of AT A for 

a given amount of modal data can be used to set the number of structural 

model parameters and determine optimal substructuring. 

Minimizing With Respect to ¢ 

In this section, only minimization with respect to a single ¢r is considered, 

since there is no dependence on coupled expanded modeshape vectors in the 

MOF. The first derivative of J with respect to ¢r is (B.l4) 

(B.29) 
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By adding and subtracting the term 

2 
c/J'[Q2rc/Jr R1c/Jr 

( ¢'{ R2c/Jr )2 ( ¢'{ R1 c/Jr )2
' 

the derivative can be rewritten as 

Summing the last two terms in the expression above gives lr multiplied by 

-2R1 . After incorporating the normalization constraint on c/Jn the expression 

can be written as 

(B.31) 

where 

(B.32) 

If Ur ( (), c/Jr) were not a function of c/Jr, the solution would be simple, since 

this would be a generalized eigenvalue problem. In order to minimize J, the 

eigenvector corresponding to the smallest eigenvalue would be found. However, 

Ur ( (), c/Jr) is a function of cPr· Therefore, an iterative approach is taken to solving 

the problem. A seed value, c/Jro, is chosen and ¢r1 calculated using Ur(O, c/Jro). 

The c/Jr are iteratively calculated until a subjectively set convergence criteria 

is met. 

As with the minimization iterating scheme, this one is not guaranteed to 

converge to a fixed point. However, experience with the method has shown 
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that it tends to converge to a proper solution. A more rigorous approach to 

proving that this method converges is another topic for future study. 

B.3 Derive the Hessian 

The Hessian of the MOF can be calculated by taking the derivative of (B.24): 

(B.33) 

At the minimum of J, F(\l 04J) = 0, and the remaining term can be written 

as 

(B.34) 

82J 
( &'J r ( a'J r 

8()2 8¢18() 8¢Nm80 
82J 82J 

0 
Lo(e) = W(O, J;) 8¢18() 8¢~ wr(e, ¢). 

82J 
0 

82J 

8¢Nm80 8¢2 Nm 

All of the terms in (B.34) except for dfi can be calculated analytically us

ing (B.15), (B.l7), and (B.l9). 

Terms of the form dfi are found using (B.4). Since (B.4) is true for any(), 

the derivative of (B.4) with respect to () can be taken, giving 

(B.35) 

The system of equations is solved for dfi using the singular value decompo-
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sition. This procedure for finding dfe is simply an application of the implicit 

function theorem (Rudin 1976). 
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