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Abstract 

A general framework for multi-criteria optimal design is presented which is well-suited 

for automated design of structural systems. A systematic computer-aided optimal 

design decision process is developed which allows the designer to rapidly evaluate 

and improve a proposed design by taking into account the major factors of interest 

related to differeent aspects such as design, construction, and operation. 

The proposed optimal design process requires the selection of the most promising 

choice of design parameters taken from a large design space, based on an evaluation 

using specified criteria. The design parameters specify a particular design, and so 

they relate to member sizes, structural configuration, etc. The evaluation of the de­

sign uses performance parameters which may include structural response parameters, 

risks due to uncertain loads and modeling errors, construction and operating costs, 

etc. Preference functions are used to implement the design criteria in a "soft" form. 

These preference functions give a measure of the degree of satisfaction of each design 

criterion. The overall evaluation measure for a design is built up from the individual 

measures for each criterion through a preference combination rule. The goal of the 

optimal design process is to obtain a design that has the highest overall evaluation 

measure - an optimization problem. 

Genetic algorithms are stochastic optimization methods that are based on evo­

lutionary theory. They provide the exploration power necessary to explore high­

dimensional search spaces to seek these optimal solutions. Two special genetic algo­

rithms, hGA and vGA, are presented here for continuous and discrete optimization 

problems, respectively. 

The methodology is demonstrated with several examples involving the design of 

truss and frame systems. These examples are solved by using the proposed hGA and 

vGA. 
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Chapter 1 

Introduction 

1.1 Background and Motivation 

The goal of structural engineers is to design structural systems according to design 

requirements such as the Uniform Building Code. However, in this highly competitive 

world, having a system that just performs the required task satisfactorily is no longer 

sufficient. It is essential that the design be the best or optimal based on the specified 

requirements. An optimal design should be a cost-effective system. To design such 

systems, certain analytical and numerical tools are needed. Optimal design concepts 

and methods provide some of the needed tools. 

Existing optimal design methodologies focus on optimizing a single objective such 

as the cost or weight of the system subject to certain design constraints. While this is 

one possible way of achieving optimal designs, these approaches do not allow multiple 

design objectives. In addition, they are far too "rigid" as the constraints must be 

satisfied even though a "negligible" violation could mean a substantial improvement 

in the objective. Therefore, a new methodology is desirable which would allow speci­

fication of multiple design objectives about the system. Moreover, this methodology 

or framework should allow trade-off between different design objectives and be done 

in a systematic manner using digital computers. 

To develop such a design framework, the following two issues have to be addressed: 

1. Many design requirements are of qualitative nature. So a systematic method 

to characterize these requirements is needed which allows them to be traded-off 
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during the design process. 

2. An optimal design process usually involves optimization over a large number 

of design parameters and traditional optimization techniques tend to perform 

poorly in such high-dimensional spaces. 

1.2 Objectives 

The overall goal of this research is to develop and implement a methodology that uses 

advanced computational techniques which allows the engineer to automate evaluation 

and improvement of a design. To achieve this, two specific objectives are desirable: 

• Develop, investigate and implement a multicriterion optimal design framework. 

• Apply genetic algorithms to solve the structural optimization problems formu­

lated using the framework. 

A multicriterion optimal design framework has recently been developed to address 

some of the issues related to automation of the design process (Beck, Papadimitriou, 

Chan, and Irfanoglu 1996). This framework features the use of preference functions 

to quantify qualitative and code requirements and a strategy to aggregate preferences 

of different criteria to get a single overall design evaluation measure. We will use this 

framework to solve optimal structural design problems. 

An optimal design process then reduces to an optimization problem. To effectively 

solve these problems, especially in high-dimensional spaces, efficient and robust opti­

mization techniques are required to obtain solutions. We will apply genetic algorithms 

to solve the consequent structural optimization problem. In particular, two special 

genetic algorithms are proposed to solve these optimal design problems. 

1.3 Overview of This Dissertation 

This thesis is organized into seven chapters. Below is a brief description of each of 

the remaining six chapters. 
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Chapter 2 is concerned with optimal design methodologies. A review of some of the 

existing optimal design methodologies such as optimality criteria and reliability-based 

optimal design is given. A brief discussion on discrete optimization in optimal design 

is also presented. This chapter continues with a description of a recently-developed 

multicriterion optimal design framework. Relations between this framework and other 

existing approaches, namely optimality criteria and concepts of other multicriterion 

optimization, are discussed. 

In Chapter 3, a class of stochastic optimization methods called genetic algorithms 

(GA) are presented. Since these algorithms are mainly studied in computer science 

related fields and are relatively new to the structural engineering community, this 

chapter provides a basic overview of what genetic algorithms are, how they work 

and why they work. In addition, some issues of applying genetic algorithms are also 

discussed. 

The discussion of genetic algorithms continues in Chapter 4 with a focus on two 

special classes of these algorithms: variable-length genetic algorithms and hybrid 

genetic algorithms. Here, it is explained why simple GAs may not work well for 

certain structural optimization problems. A special variable-length genetic algorithm 

(vGA) is proposed which addresses some of the difficulties. In addition, a hybrid 

genetic algorithm (hGA) is also presented which has a better convergence rate for 

continuous optimization problems than its simple counterparts. Examples are given 

which illustrate why these two proposed GAs are better. 

In Chapter 5, a software application called CODA is presented. This program is 

a software prototype of the multicriterion framework described in Chapter 2. Func­

tionalities of CODA, the theory behind all the computation, together with some of 

the implementation issues of CODA, are presented. 

Chapter 6 consists of three example problems to illustrate the ideas and algorithms 

covered in the early chapters. The first example is a benchmark problem which 

has been studied extensively and provides a good basis for doing comparisons. The 

second example is a three-story frame building under UBC loading. A small study 

is conducted with different design parameters and design criteria. Several interesting 
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conclusions are drawn from this study. The final example is a truss tower with 72 

truss members which are grouped into 16 design parameters. This is a relatively large 

problem compared to the other two examples. Issues concerning the applicability and 

efficiency of both the design framework as well as the proposed genetic algorithms 

are drawn. 

Finally, a summary together with conclusions drawn from this thesis study is 

given in Chapter 7. This chapter ends with some recommendations for possible future 

research in areas of optimal design and genetic algorithms. 
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Chapter 2 

Methodologies for Achieving Optimal 

Design 

2.1 Optimal Design Concepts 

Optimization is concerned with achieving the best possible solution to an objective 

while satisfying all specified requirements. In engineering design, the engineer strives 

to obtain designs that optimize cost, weight or certain other quantities. The for­

mulation of an optimal design problem involves the identification of the following 

quantities: design parameters, objective function and design constraints or design 

requirements. 

The first step of the formulation is to identify a set of parameters, the design 

parameters, which describe the system. Design parameters should be as independent 

of each other as possible. In most cases, different sets of design parameters can be 

used to describe the same system. 

Design parameters may be continuous or discrete. Continuous design parameters 

have a range of values and can take on any value in the range. For instance, length of 

a beam may be taken as a continuous design parameter. Discrete design parameters 

can only take on isolated values, usually from a list of permissible ones. Member 

sizing of a beam selected from AISC steel sections is a good example of a discrete 

design parameter. 

To be able to compare different designs, one must be able to distinguish one design 
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as being better than another. An objective or cost function provides a means of doing 

so. In many design problems, the objective function is the total weight of material 

required. A design problem can have many different objective functions but all the 

objective functions should be influenced by the design parameters. 

Finally, every engineering system must be designed to satisfy the design constraints 

reflecting certain performance requirements or resource limitations. A design is not 

desirable if one or more of the design constraints are violated. All design constraints 

should be expressed in terms of design parameters. Constraints which impose lower or 

upper limits on certain quantities are called inequality constraints. A good example 

of an inequality constraint is the stress limit imposed on a component of a system. In 

some systems, equality constraints are required. A design constraint can be specified 

as a design requirement or design criterion although design criteria can be more 

general than just specifying constraints. 

Once these quantities are identified, the whole design problem reduces to a nu­

merical optimization problem such as the following: 

Optimize f ( 6) 

such that gi( 6) 2: 0, i = 1, ... , n9 

h1(6) = 0, j = 1, ... , nh 

where 6 denotes a vector of n design parameters, n9 and nh are the number of 

inequality and equality constraints, respectively. The inequality constraints gi(6) 

and the equality constraints h1 ( 6) are transformed into the form shown above. 

For the case with no design constraints, the optimization problem is an uncon­

strained optimization problem. Otherwise, it is a constrained one. If there is only 

one objective function, then it is a single objective optimal design problem and most 

optimization techniques can be applied to the problem. For the case of two or more 

objectives, the problem is a multiobjective or multicriterion optimization problem. 

In this case, additional steps must be taken to solve such a problem. 

In the next section, some of the most common optimal design methodologies 

are described. Since we will be focusing on multicriterion optimal design in this 
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dissertation, more attention will be given to the background and existing techniques 

in multicriterion optimal design. 

2.2 Overview of Existing Optimal Design 

Methodologies 

The following optimal design methodologies are discussed: optimality criteria meth­

ods including fully-stressed design, reliability-based approach, and multicriterion de­

sign optimization. In addition, other optimal design problems such as shape or topol­

ogy optimization of engineering systems are described. This section ends with a brief 

overview of existing techniques for discrete optimization problems. 

2.2.1 Optimality Criteria Methods 

Optimality criteria methods (Haftka and Kamat 1985; Kirsch 1981) are based on the 

assumption that certain criteria related to the behavior of a design are satisfied at the 

optimum. These methods involve finding appropriate criteria for the specified design 

requirements and establishing an iterative procedure for finding the final optimal 

design. Typical design criteria involve an objective function together with constraints 

which are based on stresses and displacements. Other criteria can be related to 

buckling, nonlinear behavior, etc. A general formulation of optimality criteria for 

design optimization problems is given below. 

Consider the following Lagrangian function: 

No 

L(O, A) = f(O) + L A;g;(O) (2.1) 
i=l 

where f(O) is the objective function (usually the weight or cost of the system), gi(O) is 

the ith inequality constraint among Nc of them and Ai 's are the Lagrange multipliers. 

Differentiate Equation 2.1 with respect to design parameters (}and set the derivative 
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to zero to obtain the stationary conditions: 

No 

o = \1 of(O) +I: -Xi\1 (}9i(O) 

0 = -gj +t7 

0 = 2.\jtj 

i=l 

j = 1, ... ,n9 

j = 1, ... ,n9 

(2.2) 

Here, tJ is a slack variable which converts the /h inequality constraint to an equality 

one: 

This can be extended to include equality constraints by taking tJ = 0. Equation 2.2 is 

the necessary condition (Kuhn-Tucker criteria) for an optimal design and, therefore, 

provides n optimality criteria. Each Lagrange multiplier Ai can be interpreted as a 

measure of sensitivity of the optimal design to the ith constraint as a weighting factor 

that measures the importance of the ith constraint to the optimal design. Note that 

for inequality constraints, the Lagrange multiplier Ai is zero unless the constraint is 

active at the optimum. 

With the conditions specified in Equation 2.2, a recursive algorithm is formulated 

and applied to solve the optimization problem. Usually, this algorithm involves re­

design rules that modify the set of design parameters. For the ith design parameter 

in the kth iteration, the redesign rule can be written as: 

where :Fik is a multiplier for lif computed based on the optimality criteria. 

While specification of the optimality criteria may be similar in formulation in 

different optimality criteria methods, the actual redesign rules and the numerical 

procedures employed usually differ greatly. For instance, stress criteria are often 

considered (see Fully Stressed Design below) and the numerical algorithms required 
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to compute these criteria are different than those for displacement criteria (often 

times with approximations specific to stress calculations to increase efficiency). In 

many cases, the optimal design is achieved by this approach. However, there are also 

cases where the obtained designs are not optimal even though they may be reasonable 

designs and not too far from optimal. One such situation is mentioned in the following 

discussion of fully stressed design. 

Fully Stressed Design 

The fully stressed design (FSD) technique is probably the most well-known and suc­

cessful optimality criteria method in the literature. It has motivated much of the 

interest in optimality criteria methods. The FSD method can be applied to systems 

which are subject only to stress constraints. 

This method is based on the following optimality criterion (Haftka and Kamat 

1985): 

For the optimum design, each member of the structure is {either) fully 

stressed at least under one of the design load conditions or {or) is at its 

minimum specified gage. 

The redesign rule of the ith design parameter ei in the kth iteration for FSD in the 

case of truss members can be written as: 

where af denotes the actual stress in the members associated with design parameter 

ei in the kth iteration and O'i,a denotes the allowable stress for the ith design parameter. 

The significance of this method is: 

1. Engineering experience indicates that a good design is usually one in which each 

member is subjected to its allowable stress. 

2. FSD can be proved to be optimal under certain conditions. 
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3. FSD methods are fairly efficient computationally compared to other approaches. 

4. FSD is usually a good starting point for other optimal design methods. 

For statically determinate structures with a single load condition, it has been 

shown that this FSD criterion yields optimal designs which are the minimal weight 

designs (Cilley 1900; Michell1904). However, for statically indeterminate structures 

under multiple load conditions the optimum may not be fully stressed (Razani 1965; 

Schmit 1960). One reason for this is that an FSD is not unique. An indeterminate 

structure may have more than one FSD and there is no guarantee that an FSD will 

always converge to the minimum weight FSD. 

Other Optimality Criteria Methods 

Besides fully stressed design, there is an extensive amount of publications on other 

optimality criteria methods. For instance, Rozvany and Zhou (1992) introduced dis­

cretized continuum-based optimality criteria methods (DCOC) for large finite element 

systems with several deflection and stress constraints. For structural optimization of 

tall steel buildings, several optimality criteria methods have been proposed during the 

last few years (Soegiarso and Adeli 1996; Chan, Grierson, and Sherbourne 1995; Chan 

1992) . One of the main reasons for the popularity of optimality criteria methods is 

that the computational effort is primarily dependent on the number of active con­

straints and only weakly dependent on the number of design parameters. Since most 

large scale systems have a large number of design parameters and far fewer design 

criteria, optimality criteria methods are quite efficient for solving such problems. 

2.2.2 Reliability-Based Optimal Design 

The optimal design methodologies described so far all assume no uncertainty in every 

aspect. Using these approaches, optimal designs are found which minimize the cost 

functions without violating any design requirements. However, such designs normally 

leave little redundancy compared with designs that are obtained by using more conser­

vative approaches. Thus, such optimally-designed systems usually have higher failure 
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probabilities than unoptimized systems. To achieve a balance of safety and economy, 

reliability-based design concepts can be introduced into design optimization. 

Reliability-based design optimization covers a lot of different areas: design code 

optimization (Moses 1989), component reliability-based optimization (Moses 1974; 

Moses 1990), system reliability-based optimization (Parimi and Cohn 1978; Fran­

gopol1987), multiobjective reliability-based optimization (Frangopol1991; Becket a!. 

1996) as well as damage and residual-oriented reliability-based optimization (Fran­

gopol and Moses 1994). Since in this study only reliability at the component level is 

considered, only this topic is discussed here. 

Component Reliability-Based Design Optimization 

In this approach, design requirements and criteria are specified for individual elements 

such as beams, columns and connections of a structural system (Moses 1974). This 

ensures that safety requirements for individual component are satisfied. Usually, the 

design procedures involve achieving a certain target element reliability index which 

can be computed from the probability of failure of the components (Moses 1990). 

There are various ways to formulate element reliability-based optimization prob­

lems. Most of them can be formulated as minimization of the total expected cost of 

the element: 

where Gel = total expected cost of the element over lifetime 

C0 el = initial cost of the element , 

Ct,ez= expected cost of failure of element. 

(2.3) 

The term Cf,el is usually expressed as a function of some probability of occurrence 

of the dominant element limit state (or collapse). Examples of Ct,el are: 

1. Ct,ez = Cfd,ezPtd,el (Moses 1974) 
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where Cfd,el = cost of element failure due to occurrence of dominant limit state 

PJd,el = probability of occurrence of the dominant limit state. 

where Cfl,ell Ct2,el = cost of element failure due to occurrence of dominant 

ultimate and serviceability limit states 

Pfl,el, Pf2,el = probability of occurrence of the dominant ultimate 

and serviceability limit states. 

where CJJ,el = cost of element failure due to occurrence of j'h limit state 

Pjj,el =probability of occurrence of the j'h limit state 

m = total number of limit states of the element. 

Besides minimizing the total expected cost, one can also minimize the probability 

of failure. One such formulation for an element reliability-based optimization problem 

is to minimize the probability of occurrence of a specified limit state Pjk,el· 

2.2.3 Multicriterion Design Optimization 

In all the methodologies discussed up to this point, the optimal design problems 

reduce to scalar-valued objective functions subject to constraints. In most cases, 

these functions are the weight of the system. However, in many real-life design prob­

lems, there are several conflicting and noncommensurable criteria and these single 

objective approaches do not apply in these cases. Multicriterion design optimization 

(Eschenauer, Koski, and Osyczka 1990; Stadler 1988) provides a flexible and system­

atic way to handle these design problems. It is also known as Pareto optimization, 

vector optimization or multiobjective optimization. 

Using a multicriterion approach in optimal design has certain advantages. First, 

optimal design involving multiple criteria allows a more realistic description or model­

ing of design decision making since most problems in real life are normally composed 
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of multiple criteria (in most cases, conflicting). In addition, with multiple criteria, a 

wider range of alternative designs are usually available. 

A general multicriterion optimization problem can be formulated as follows: 

Optimize j(8) = [!1(8), h(8), ... , !N,(8W 

such that 9;(8) 2': 0, i = 1, ... , n9 

h1(8) = 0, j = 1, ... , nh, 

where 8 denotes a vector of n design parameters, f(8) is the multicriterion objective 

function, j;( 8) is the ith criterion of the Nc individual criteria, and n 9 and nh are the 

number of inequality and equality constraints, g;(8) and h;(8), respectively. 

Solving a multicriterion design optimization problem requires identification of the 

Pareto set which is the set of points in the design space that are Pareto optimal or 

nondominated. A feasible solution iJ is a Pareto optimal or nondominated solution if 

there exists no feasible solution 8 such that 

p.;(8) > p.;(O) for some i=1, .. ,Nc, and 

p.1(8) 2': tJ.J(O) for all j 

Simply put, a feasible solution is Pareto optimal if there exists no other feasible 

solution that will improve one criterion without causing a decrease in at least one 

other criterion. 

Several methods exist to solve these multicriterion optimization problems such as 

linear weighting method (Koski 1985), constraint method (Koski and Silvennoinen 

1987) and simplex method (Balachandran 1996). Generally the difficulty is not with 

the non-existence of Pareto optima but rather the large number of these points, which 

may be hard to identify and handle. Multicriterion optimization has been applied to 

several structural optimization problems (Stadler 1988; Leitmann 1977). 

2.2.4 Other Optimal Design Problems 

Up to this point, we have only considered systems that have fixed configurations. 

When the shape of the system is allowed to change, usually a better design can be 



-14-

found. In shape optimal design problems (Budiman and Rajan 1993), the shape of 

the system is defined by parameters which can vary. For example, nodal coordinates 

of a structure can be taken as design parameters for the problem. One interesting 

point is that even a few design parameters relating to the structural shape can result 

in dramatic changes in the shape. 

A more general problem than shape optimization is topology optimization. For 

instance, the topology of a structural system means not only where the nodes are, 

but also how many nodes there are and how the system is supported. The choice of 

member connectivity and support conditions as design parameters results in a design 

space that is both nonconvex and discrete. Thus, traditional gradient-based optimiza­

tion cannot be applied to these problems. Integer programming and random search 

techniques are suitable for such problems, as well as genetic algorithms discussed 

later. 

Recently, conceptual design has been formulated as an optimal design problem 

(Grierson 1997). Another emerging approach in optimal design research is multidisci­

plinary optimization (Kroo 1995; Braun and Kroo 1995; Wakayama and Kroo 1994). 

Multidisciplinary optimization is a way of finding the "best" solution or design, given 

an objective and a set of constraints, where both the objective and the constraints 

together with the design variables come from a knowledge base representing many 

different disciplines such as quality, cost, value, etc. 

There are two main categories of multidisciplinary optimization. The first cate­

gory, which is also the most recognized one, is quantitative in nature. In this category, 

the objective and the constraints are stated in mathematical form and the optimal 

solution is determined using a numerical or analytical approach to the problem. The 

second category is qualitative in nature. It is sometimes referred to as "experimental" 

or "qualitative" optimization since it comes from the experience of those doing the 

optimization. 
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2.2.5 Discrete Optimization in Optimal Design 

Many design optimization methods assume that design parameters are continuous. 

However, often the components of systems are only available in discrete sizings and 

a simple roundup from the continuous values would most likely result in quite sub­

optimal designs. For instance, optimal design of structural steel buildings are often 

performed using continuous design parameters on member sections and the contin­

uous solutions are then rounded up to the "closest" sections which are often too 

conservative. Also, in some cases, rounded-up solutions may actually be in the in­

feasible region. Therefore, discrete optimization approaches should be employed to 

achieve better designs in the discrete design space. 

Several discrete optimization techniques exist in the literature. One of the most 

popular methods is branch and bound. The solution process involves finding the con­

tinuous optimization and then going through a tree (the branches) to seek the closest 

discrete solution to the continuous counterpart (bounding). The main disadvantage 

of this technique is that it requires high computational effort. 

Simulated annealing is another technique for discrete optimization. Unlike branch 

and bound, simulated annealing is a stochastic method. It operates by randomly 

perturbing the solution to generate candidate solutions that are either accepted or 

rejected. Infeasible candidate solutions are automatically rejected and all feasible 

solutions are accepted even for those with poor objective function values. The idea is 

that poor solutions are accepted in the earlier stages but that in the later stages, the 

method will converge to the global optimum. One important note is that simulated 

annealing normally requires a large number of objective function evaluations which 

can be prohibitive if the function evaluation is computationally expensive. How­

ever, this approach has a reasonable chance of finding the global optimum for some 

nonconvex problems (Thanedar and Vanderplaats 1992). 
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2.3 The Multicriterion Optimal Design Framework 

One of the objectives of this research is to develop a design methodology which 

can assist the designer to make decisions throughout the process of designing an 

engineering system. In this section, a recently developed multicriterion optimal design 

methodology is presented (Beck, Papadimitriou, Chan, and Irfanoglu 1996; Beck, 

Chan, Irfanoglu, Masri, Smith, Vance, and Barroso 1996). 

2.3.1 Overview of the Framework 

The whole optimal design process involves making decisions related to the design of 

a given system. This decision making process begins with a preliminary design and 

then involves an iterative procedure of analysis, evaluation and revision. Figure 2.1 

shows the overview of the optimal design framework. 

In this framework, there are three modules: ANALYZER, EVALUATOR and 

REVISER. These modules are responsible for performing analysis, evaluation and 

revision of the current design respectively. Before we can describe each of these 

modules, a few basic terms need to be defined and reviewed, since the point of view 

taken is different to the traditional approaches to optimal structural design described 

earlier. 

2.3.2 Terminology 

For a given system, the design space consists of all the possible designs this system 

can have. This design space can be expressed in terms of design parameters, denoted 

as (}. Design parameters are quantities the decision maker uses to specify a particular 

design. These parameters can be very general. For instance, they can be related 

to the structural configuration, total material cost, component sizing, etc., and even 

material type. 

Performance parameters, denoted as q( 9), are quantities involved in the evaluation 

of a design. These parameters are usually engineering quantities such as the maximum 
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interstory drift or the peak member stresses of a structure. However, they can also 

include quantities such as the total material cost, liability should the current design 

fail, etc. Moreover, performance parameters may also include some of the design 

parameters. For instance, the geometrical configuration of a structural system can be 

specified as both design and performance parameters if there are any architectural or 

manufacturing constraints on the shape or sizing of the members. 

Finally, a particular design can be judged by specifying a list of design criteria. 

These criteria are usually design requirements that need to be met for any acceptable 

design. Such requirements or restrictions can relate to the allowable stress in any 

member of a structure, the budget for the total construction cost, etc. 

2.3.3 Description of the Framework Modules 

As mentioned earlier, there are three modules in the framework: ANALYZER, EVAL­

UATOR and REVISER. Each of the three modules has its unique role and respon­

sibilities. The following is a detailed description of each of these modules and their 

functionalities. 

ANALYZER 

The role of ANALYZER is to compute performance parameter values q(O) based on 

the specified design parameters 9 (see Figure 2.2). Thus, ANALYZER involves dif­

ferent analysis techniques which depend on the performance parameters specified and 

the nature of the problem at hand. Examples of possible methods for ANALYZER 

are finite element methods for structural or mechanical systems, time history integra­

tion schemes for dynamic analyses, probabilistic analysis tools for random vibration 

and reliability analysis, and costing algorithms for economic calculations. For design 

of civil engineering structures, ANALYZER would usually be a combination of static 

and dynamic finite element analysis, as well as algorithms to compute material and 

construction costs. 

It is clear that the nature of ANALYZER is highly dependent on the type of 
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Figure 2.2: ANALYZER as a blackbox 

systems to be designed and the specified performance parameters. However, the role 

of ANALYZER is the same for different problems: calculate performance parameters 

q(O) from design parameters 0. 

EVALUATOR 

The task of EVALUATOR is to provide an overall design evaluation measure ~t(O) for 

the design specified by the current values of the design parameters 0 (see Figure 2.3). 

The measure Jt( 0) serves as an objective function which REVISER uses to improve 

the current design as well as seek the optimum. 

q(9) 

Performance 
Parameters 

EVALUATOR 

!.!(9) 

Overall Design 
Measure 

Figure 2.3: EVALUATOR as a blackbox 
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To evaluate a particular design, the designer may impose multiple design criteria. 

Under this multicriterion decision methodology, the design is first evaluated on the 

basis of each design criterion, one at a time, and then these numerical values are ag­

gregated into a single design evaluation measure using certain aggregation strategies. 

Furthermore, since the individual design criteria cannot usually all be satisfied in an 

optimal fashion at the same time, trade-off is allowed among the criteria to the degree 

that each of the criteria is satisfied. 

A preference function /li ( q) is used to quantify the degree of satisfaction of ith 

design criterion based on the values of the performance parameters q involved in 

the design criterion. Values of the preference function must lie in the unit interval 

[0,1]. A larger preference value for one performance parameter value compared with 

another implies that the first parameter value is more preferable than the other value. 

An extreme value ft;(q(9)) = 1, or fti(q(9)) = 0, implies that the current design 

specified by 9 perfectly satisfies, or does not satisfy at all, the ith design criterion. 

For example, Figure 2.4 shows a preference function for the design criterion that 

the maximum interstory drift not exceed some code prescribed value. In this case, 

those values of the maximum interstory drift which are less than 90% of the code 

specified drift value are most preferred, since the preference function has its greatest 

possible value (unity) there. On the other hand, the designer prefers least those 

values of the maximum interstory drift which exceed the code specified drift value, 

since the preference function has its least possible value (zero) there. The designer 

has selected a linear fall-off between these extreme preference values for those values 

of the maximum interstory drift which lie between 90% and 100% of the code specified 

drift value. 

Another interpretation is to view the preference function as a membership function 

for the fuzzy set of "acceptable performance" as judged by the ith design criterion. In 

this case, an extreme value fti(q(9)) = 1, or ft;(q(9)) = 0, implies that on the basis 

of the ith design criterion, the current design specified by 9 is definitely acceptable, 

or definitely unacceptable. Intermediate values express the degree to which the user 

feels the design gives "acceptable performance." 
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code 
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Figure 2.4: Example of one type of preference function 

Any constraints directly imposed on the design parameters, such as geometrical 

constraints, are treated as additional design criteria. Each such criterion is expressed 

as a "soft" constraint through a preference function. For example, a preference func­

tion similar to the one shown in Figure 2.4 can be used to express a "soft" upper 

bound on a design parameter. If the designer also wishes to impose a lower bound on 

the parameter, then the two-sided version of the preference function shown in Fig­

ure 2.5 can be used. By treating design parameter constraints in this way, the degree 

to which the constraint is satisfied can be traded off against other design criteria 

during the optimization of the design. 

The final step in the EVALUATOR methodology is to compute an overall de­

sign evaluation measure J.L(O) on the basis of the quantitative evaluations J.Li(q(O)), 

i = 1, ... , Nc of the design for each of the Nc design criteria. This is done by a prefer­

ence aggregation rule which must satisfy certain consistency requirements. Different 

aggregation rules give different design strategies for trading off the design criteria, 

and so they lead to different optimal designs, in general. Also, for a given aggre­

gation rule, the user can give more influence to some design criteria than others by 

assigning them larger values of an importance weight. The choice of the values for 

these weights is subjective. The user can gain experience with respect to their selec­

tion in any design problem by investigating the influence that different values for the 
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Figure 2.5: A preference function for specifying constraints on design parameters 

weights have on the final optimal design and its corresponding preference values for 

each design criterion. 

A preference aggregation rule is simply a functional relationship between the over­

all design evaluation measure and the individual preference values for all of the design 

criteria: J1. = f(JJ.b J1.2 , ... , Jl.Ncl· An optimal design for a given preference aggregation 

rule is therefore given by a design parameter vector (} which maximizes: 

(2.4) 

where it is understood, despite the notation here, that some of the preference functions 

Jl.i may correspond to design parameter constraints and therefore these Jl.i will depend 

directly on the design parameter values. 

The following axioms of consistency are imposed on the preference aggregation 

rule (Otto 1992): 

1. J1. lies in the unit interval [0, 1], with J1. = 1 for a perfectly acceptable design and 

J1. = 0 for a completely unacceptable design. 

2. J1. is a monotonically increasing continuous function of each Jl.i· 

3. JJ.o = f(JJ.o, Jl.o, ... , JJ.o), where Jl.o is some value between 0 and 1. 



-23-

4. f1. = 0 if and only if fl.i = 0 for some i. 

Axiom 1 allows the overall design measure Jl.(O) to have the same scale, fl. E [0, 1], 

as the individual preference values Jl.i(O). The continuity requirement in Axiom 2 

ensures that a small change in preference in one or more of the design criteria results 

only in a small change in the overall design measure. In addition, monotonicity 

guarantees that any improvement in one or more of the criteria yields an improvement 

in the overall design and vice versa. Axiom 3 expresses the following argument: If 

all the preference values Jl.i of the design criteria are equal to f1. 0 , then the overall 

design measure J.1. should also be J.l.o since it would not be rational to give it a higher 

or lower preference. Finally, axiom 4 ensures that if any of the design criteria are not 

satisfied, i.e. Jl.i = 0, for some i, then the design is not acceptable (fl.= 0). Similarly, 

the design is unacceptable only if at least one of the design criteria is not satisfied. 

Various aggregation rules exist which satisfy these axioms. Two such preference 

aggregation rules are: 

• Conservative ("weakest link") strategy: 

_ · ( n1 n2 nNe) fl.- mm J1.1 ,Jl.z , ... ,Jl.Nc , (2.5) 

where ni = w;jmaxj Wj, i = 1, ... , Nc and wi is a positive importance weight 

assigned to the ith design criterion. 

• Multiplicative trade-off strategy: 

, = , m 1 , m2 "N mN, 
,._., rl t-"2 ···r c ' (2.6) 

where mi = wJ2:/;'~1 Wj, i = 1, ... , Nc and wi is a positive importance weight 

assigned to the ith design criterion. 
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Handling of Stochastic Design Criteria 

In order to be able to trade-off reliability of performance and cost of a design in the 

design process, the uncertainties in performance parameters due to the uncertainties 

in system models and uncertainties in loadings must be considered. These uncertain­

ties can be the most influential factors in the design decisions. The proposed optimal 

design framework can be extended to treat these uncertainties. This extension was 

developed by Beck, Papadimitriou, Chan and Irfanoglu (1996) and is included here 

for completeness. 

In the stochastic case, there is no longer a function q( 9) relating the design pa­

rameters 9 to all the performance parameters as assumed in the earlier description 

of the methodology. Some of the performance parameters will be uncertain because 

of the uncertain loads and modeling errors. For example, one of the performance 

parameters qi may be the peak interstory drift over the lifetime of the structure due 

to earthquakes, which is clearly a very uncertain quantity. Parametric uncertainties 

are conveniently modeled by random variables. The probability distribution assigned 

to each random variable specifies the relative plausibility of each possible value of the 

corresponding uncertain parameter. Similarly, uncertain continuous-valued variables 

are modeled by random fields or random processes. This probabilistic description 

of loads and/ or system model necessitates the use of probability tools to calculate 

the uncertain performance parameters. Therefore, in this stochastic case, a proba­

bility density function p(qil9) is calculated rather than the value of the performance 

parameter qi· 

Performance parameters such as the manufacturing cost or structural performance 

parameters from code-based design loads, can be treated as deterministic functions 

of 9. They can be interpreted within the general stochastic framework by simply 

viewing the corresponding probability distributions p(qil9) as delta functions centered 

at qi(9). 

A measure of the reliability of the design 9, as judged by the ith design criterion, 

is the probability that this criterion is satisfied. Since the preference function Jli(qi) 
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for the ith design criterion can also be viewed as a membership function for the fuzzy 

set "acceptable performance" based on this criterion, the desired reliability is the 

probability that qi lies in this fuzzy set: 

(2.7) 

This measure is also seen to be equivalent to the mean preference value for the ith 

design criterion. Figure 2.6 shows graphically the interpretation of the two extremes 

of mean preference value of a typical design criterion. In the special case of no 

uncertainties, for which p(q;jO) is taken as a delta function, fli(O) = f.Li(qi(O)), and so 

the deterministic case described earlier is recovered. 

Using integration by parts, Equation (2.7) gives 

flJO) =- roo d(f.Li(qi)) Fi(qi I O)dqi 
Jo dqi 

(2.8) 
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where 

F;({f 1 e) = P(q; :::; q- 1 e) = [
1 

p(q; 1 e) dq; (2.9) 

is the classical reliability function for the performance parameter q; given e. Using, 

for example, the preference function for the peak lifetime interstory drift shown in 

Figure 2.4, denoting the code value by u; and 90% of the code value by 1!;, Equation 

(2.8) yields 

(2.10) 

which is the average value of the classical reliability over the interval [I!;, u;]. Clearly, 

a high mean preference value Ji; (e) means that the design e has a high fuzzy relia­

bility, or, equivalently, a high average classical reliability, as judged by the ith design 

criterion. 

To generalize the deterministic optimal design methodology described earlier, all 

that remains is to replace each J.t;(e) corresponding to a stochastic design criterion 

by P,;(e) in the preference aggregation rule (2.6). The evaluation ofP,;(e) depends on 

the choice of the user-supplied preference function J.t;(q;) for the ith design criterion, 

and either the probability density function p(q;le) or the reliability function F;(q I e) 

(see Equation 2.7, 2.8). 

REVISER 

Given the current design e and its design measure J.t(q(e)), the role of REVISER is 

to improve this design based on the specified design criteria (see Figure 2.7). 

Similar to ANALYZER, REVISER is problem dependent although to a lesser ex­

tent. Although REVISER would be some optimization technique in most problems, 

the exact method to be employed varies depending on the nature of the design param­

eters of a problem. Examples of possible methods for REVISER are quasi-Newton 
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Figure 2.7: REVISER as a blackbox 

methods for continuous design parameters, stochastic optimization for both continu­

ous and discrete parameters, integer programming methods for discrete variables and 

combinatorial schemes for shape and topological design parameters. 

2.3.4 Discussion of the Optimal Design Framework 

The optimal design framework just presented provides a flexible scheme for the de­

signer to formulate a design problem with several design criteria and be able to make 

design decisions allowing trade-offs among these criteria in a systematic manner. In 

this section, we will look at how this framework is related to existing concepts of 

multicriterion optimization and also how a special case of this methodology reduces 

to an optimality criteria problem which would yield a minimum weight design. 

Relation to Pareto Optimal Set in Multicriterion Optimization 

Recall that a solution or design iJ is nondominated or Pareto optimal if there exists 

no feasible solution or design 9E 8, the set of all feasible designs, such that 

f.ti((}) > f.ti(O) for some i=l, .. ,Nc, and 

P,j(9) ?: P,j(O) for all j 

where Nc is the number of design criteria. 
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Suppose we find an optimal design iJ using the proposed multicriterion optimal 

design framework. We have 

p,( e) ::::; p,( iJ), ve E e. (2.11) 

The equality represents the cases when we have multiple optimal designs. We wish to 

show that the optimal design obtained from this framework lies in the Pareto optimal 

set defined by all the design criteria. 

Suppose the contrary, that is, we can find a design (} such that iJ is dominated: 

with inequality holding for at least one i. By the axioms of consistency imposed on 

the aggregation strategy discussed earlier, we have 

which is a contradiction. Thus, iJ is a nondominated or Pareto optimal solution. 

However, this inequality is true only if we have strict monotonicity in the aggregation 

strategy (see Axiom 2). The trade-off strategy satisfies this condition but the conser­

vative strategy does not. It can be seen, however, that the result also holds for the 

conservative strategy if there exists only a single optimum, that is, inequality holds 

in Equation (2.11). 

Note that this result is true regardless of the choice of importance weights of 

the design criteria, w = [w1 , ... WNcJT. Different values of importance weight w yield 

different optimal designs iJ and hence, different Pareto optima. Thus, one can obtain 

a subset of the set of all Pareto optimal solutions P by varying the importance 

weights. For some convex problems, this subset may actually be the whole set of 

Pareto optimal solutions P. However, for nonconvex problems, the subset is a proper 

subset of P. 
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Relation to Optimality Criteria Design (Minimal Weight) 

Consider the trade-off strategy with Nc design criteria, we have 

No 

11C 9) = II 11?' c q( 9J l 
i=l 

where n; = z::;~: w; , and w; is the importance weights of the ith design criterion. 

Taking the logarithm, we have 

which is a weighted average of the logarithms of the preference functions of each of 

the design criteria. Clearly, in maximizing Jl, or In Jl, with respect to 9, the only 

design criteria "active" at each step are those for which Jli < 1. 

At an extremum, 0 = a;;_", so 

(2.12) 

Let 111 correspond to low steel volume and the preference function (see Figure 2.8a) 

is: 

"
1

( 9)= Vmax-V(9)' V. (9 ) V. 
r min :S V :S max 

Vmax- Vmin 

where Vmin and Vmax are the minimum and maximum allowable steel volumes, re­

spectively. Thus, we have 

Suppose all other Jl; are functions of only one performance parameter q; ( 9) in the 
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form shown in Figure 2.8b, or mathematically, 

f.Li= 

0, q(u) < q· 
' - ' 

Differentiate this expression and multiply with };, yields 

0, 

1 aq, qy) ::; qi ::; q,(u) 
- q;u)_Qi aok' ~ . 

0, q(u) < q· 
' - ' 

Substitute this into Equation 2.12, we have for qi < qi(u), Vi: 

where 

1 &v .:(:., 1 aqi (t) 
0 = -wl v; - v a(} - L.J Wi (u) 8(} H(qi- qi ), Vk, 

max k i=2 qi - Qi k 

{ 

1, X> 0 
H(x) = 

0, X< 0 

(2.13) 

is the Heaviside function and picks up the "active" constraints, i.e. those with qi E 

( 
(l) (u)) 

qi 'qi . 

If% = (}k, i.e. f.LJ is a soft constraint on the design parameter (}k with preference 

function similar to Figure 2.8c, then the /h design criterion term in the sum in 

Equation 2.13 for (}~) < (}k < (}ku) is 

which can be viewed as a penalty term which gets larger as the hard constraints 

(}k = (}kl) or (}k = (}ku) (see Figure 2.8) are approached. 
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Figure 2.8: Various preference functions 
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Note that Equation 2.13 is equivalent to: 

0 = 'i7 f) (wdn(Vmax- V(fJ))) (2.14) 

objective function 
constraints with Lagrange multipliers 

This set of equations is analogous to those which arise in minimizing total weight 

(or total volume) subject to the constraints qi ~ qju) if we identify the Lagrange 

multipliers Ai with Tur-:- in Equation 2.14 and identify the "active" constraints as 
qi -qi 

those for which qi E ( qi(l), qju)], not just qi = qi(u) Thus, with our choice of the 

preference functions f.li 's, we are actually solving a problem analogous to optimality 

criteria approach to structural optimization. 

2.4 Conclusions 

In this chapter, we have looked at several existing optimal design methodologies in 

the literature. A recently-developed optimal design methodology is presented which 

allows automation of the decisions to be made in a design process. Such automation 

is achieved by quantifying satisfaction of each design criterion with a preference ftmc­

tion. Using the trade-off aggregation strategy, these design criteria can be traded off 

with one another in a systematic manner. This optimal design framework allows easy 

incorporation of design criteria from different parties such as the owner, the engineer, 

etc. 

Optimal designs obtained from this framework can be related to those obtained 

using other existing methodologies. For instance, these designs have been shown to 

lie in the Pareto optimal set of the problem. By varying the importance weights 

wi of the design criteria, different Pareto optimal designs are obtained. Furthermore, 

with certain choices of preference function and the trade-off aggregation strategy, this 

method behaves very much like optimality criteria methods. This property is very 

useful as the engineer can compare optimal designs obtained from this framework 

with those obtained from optimality criteria methods. 
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Structural optimization problems are often solved in a continuous parameter space 

where each design parameter can assume any value within its specified range. How­

ever, since components required to build an engineering system normally do not come 

in continuous sizes, design optimization should really be done at the discrete level. In 

this chapter, we have mentioned some of the discrete optimization methods existing 

in the literature. Some of the disadvantages of these existing techniques are that they 

are computational inefficient, conservative, and hard to implement. 

In the next few chapters, we will shift our focus to a newer class of optimization al­

gorithms: genetic algorithms. Genetic algorithms are stochastic optimization schemes 

which have the potential to solve large optimization problems including discrete cases. 

Moreover, the implementation of genetic algorithms is quite straightforward compared 

to other discrete optimization techniques. 
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Chapter 3 

Introduction To Genetic Algorithms 

3.1 Introduction 

Genetic algorithms (GAs) are search methods that are based on evolutionary theory 

which can be used to find an optimum of an objective function. They are part of a 

larger class of evolution-based heuristic search techniques called evolution algorithms 

(EAs), which consist of three main paradigms: genetic algorithms, evolution strate­

gies (ES) and evolution programming (EP). There are also other paradigms such as 

classifier systems, genetic programming etc., but all these can be viewed as variants 

of the three main paradigms. 

Genetic algorithms, which originated in the United States, are by far the most 

common among all the evolution algorithms. Evolution strategies are the next most 

common paradigm and are more popular in Europe (mainly Germany). The main 

differences among the different EA paradigms are the representations of variables and 

the choice of genetic operators. Both evolution strategies and evolution programming 

use mutation as the main operator for exploration in the search space while genetic 

algorithms emphasize crossover as their main search operator. A brief comparison 

among the three paradigms of EAs is given in Table 3.1. A more detailed explanation 

of the differences can be found in Back's book (1996). 

In this study, we will only look at genetic algorithms. Genetic algorithms have 

been successfully applied to a wide range of problems ranging from the traveling 

salesman's problem to image recognition to machine learning. Part of this thesis 
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Table 3.1: Comparisons of different evolutionary algorithms 

II Comparison I ES I EP I GA II 
Representation Real-valued Real-valued Binary or real-

valued 
Selection Deterministic, ex- Probabilistic, Probabilistic, 

tinctive or based extinctive based on 
on preservation preservation 

Recombination Discrete and inter- None n-point crossover, 
mediate, sexual only sexual - main 

operator 
Mutation Gaussian - main Gaussian - only Bit-inversion 

operator operator - background 
operator 

Built-in Con- Arbitrary inequal- None Simple bounds by 
straints Handling ity constraints encoding schemes 
Theory Convergence rate Convergence rate Schema processing 

for special cases for special cases theory, global con-
vergence for elitist 
version 
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research involves applying genetic algorithms to solve discrete structural optimization 

problems, and, in particular, optimal design over a set of available steel sections. 

3.2 A Brief History of Genetic Algorithms 

Applications of simulated evolution can be dated back to the 1960s. Various biologists 

such as Baricelli (1957), Fraser (1960), Martin and Cockerham (1960) performed 

simulations of genetic systems using digital computers. Even though most of these 

studies were not aimed at application to search and optimization, they were not too 

distant from the modern notion of genetic algorithms. 

In 1962, John H. Holland at University of Michigan laid out the foundation for 

applying genetic-like operators to artificial problems (Holland 1962a; Holland 1962b; 

Holland 1962c). Holland recognized the need for selection in these artificial systems 

and chose a population approach instead of a single point-by-point approach common 

in most search algorithms. However, it was not until three years later (Holland 1965) 

that he recognized the importance of crossover or other recombinant genetic operators 

such as mutation. 

Between 1967 and 1975, various applications of then called genetic plans were 

found in theses of several students of Holland's. Bagley (1967) constructed genetic 

algorithms to search for parameter sets in game evaluation functions. His results 

indicated that his genetic algorithms were insensitive to the game nonlinearity and 

performed well over a wide range of environments. Around the same time, Rosen­

berg (1967) simulated a population of single-celled organisms under certain environ­

ments. Despite the biological emphasis of his dissertation, Rosenberg's work was 

important to the subsequent development of genetic algorithms because of its re­

semblance to optimization and root-finding. In that same period of time, Cavich­

hio (1970), Weinberg (1970), and Hollstien (1971) also applied genetic algorithms to 

pattern recognition, cell simulation and function optimization in their dissertations, 

respectively. 

The year 1975 was an important year for genetic algorithms. Holland published 
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his influential book, Adaptation in Natural and Artificial Systems (Holland 1992). 

In this book, Holland explained many important aspects of genetic algorithms, and 

introduced the theory of schemata which allowed questions like why they work and 

how they perform searches in parameter space to be addressed. In that same year, De 

Jong completed his important and pivotal dissertation (DeJong 1975). In his studies, 

De J ong carefully designed a series of numerical experiments in which he considered 

functions which were both continuous and discrete, convex and nonconvex, unimodal 

and multimodal, deterministic and stochastic, etc. He also examined the effect of 

various control parameters of GAs such as population size, crossover and mutation 

probabilities, as well as different reproduction schemes (see next section for definitions 

of these terms). What DeJong achieved was far-reaching: he put genetic algorithms 

on a much firmer foundation. 

Since then, a lot of research effort has been applied to both theory and applications 

of genetic algorithms. Many models that better describe the behavior of genetic 

algorithms have been proposed and many problems in various engineering fields have 

been solved by applying genetic algorithms. However, the field of genetic algorithms 

is still immature and much more research needs to be done before genetic algorithms 

can reach maturity and robustness. 

3.3 Basic Mechanics of Genetic Algorithms 

3.3.1 Terminology 

The goal in any optimization problem is to find the best solution(s) to the problem. 

In order to apply a genetic algorithm, one must choose a suitable data structure to 

represent the possible solutions. Such representations can be viewed as points in the 

search space of all possible solutions to the optimization problem. 

The data structure of genetic algorithms consists of one or more chromosomes. 

Single chromosomes are usually employed and are typically strings of binary bits, and 

so the term string is often used instead. However, genetic algorithms are not restricted 



-38-

to bit-string representations. Various possible representations exist which include real 

numbers (Michalewicz 1994) and high level computer programs (Koza 1992). Variable 

length representations are also possible. A form of variable length representation 

known as Messy Genetic Algorithms (Goldberg, Korb, and Deb 1989; Goldberg, Deb, 

and Korb 1990) is very suitable for solving certain hard optimization problems, often 

referred to as GA-hard problems. Difficult problems for genetic algorithms, such as 

these problems, will be discussed later in this chapter. 

Each string is a concatenation of a number of subcomponents called genes. Genes 

occur at different locations or loci of the chromosomes, and take on certain values or 

alleles. For instance, in binary-string representation, a gene is a bit, a locus is the 

position along the string and an allele is the value of the gene (0 or 1). In biological 

science, the term genotype refers to the overall genetic makeup of an individual and 

is analogous to a structure in genetic algorithms. Also, phenotype refers to external 

characteristics of an individual and is analogous to an actual parameter set such as 

design parameters. 

Consider the following illustrative example of a GA optimization problem: 

f(x) = x2 

where x =integer set of [0,31]. A common representation scheme is to transform the 

integer set into binary strings. In this case, there are 32 possible values of x, which 

requires a binary string of length 5. Thus, the string B = 00000 represents x = 0, 

while B = 11111 represents x = 31. Here, B is the genotype of an individual while x 

is the phenotype. The genotype is a point in the 5-dimensional Hamming space where 

the genetic algorithm searches. The phenotype is a point in the one-dimensional space 

of the decoded variable or the actual parameter. 

To optimize a structure using genetic algorithms, some measure of quality of each 

individual in the search space is necessary. The fitness function is used for this 

purpose. In function optimization, the fitness function is related to the objective 

function. In our example, f ( x) = x2 is the fitness function. 
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3.3.2 Components of a Genetic Algorithm 

A simple genetic algorithm consists of the following components: 

1. representation of the parameter set of possible solutions of the optimization 

problem by a finite length string over some finite alphabet (usually binary) 

2. initial population of strings as starting trial points 

3. genetic operators and their control parameters 

4. positive fitness function. 

As mentioned earlier, genetic algorithms do not operate on the actual parameters 

of the problem. Instead, coding of these parameters as strings is necessary. In many 

existing optimization techniques, a single point is chosen to move in the search space 

and very often these methods would end up locating false peaks or local optimal 

points. Genetic algorithms, on the other hand, work from a population of points in 

the form of strings so they can simultaneously climb many peaks in a form of parallel 

processing. Thus, the probability that genetic algorithms locate false peaks is reduced 

compared to other existing methods. 

Three basic operators are essential to genetic algorithms: 

1. reproduction or selection 

2. crossover 

3. mutation. 

Reproduction is a process in which individual strings are selected based on their 

fitness. Since the optimization goal is to maximize the objective function, strings with 

higher fitness should have a higher probability of contributing one or more offsprings 

in the next generation. Simple GAs perform proportionate selection, which assigns 

each individual string in the population a probability of selection Ps· This selection 

probability Ps(i) of the ith string in the population is simply the ratio of the string 

fitness f ( i) to the overall population fitness: 
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Parents Offsprings 

1-pt crossover 

I 

random crossover point 

Figure 3.1: Illustration of a crossover operation 

(3.1) 

A total of n strings is selected for furthering processing according to the probability 

distribution based on Ps ( i). The simplest implementation of proportionate selection is 

roulette-wheel selection (Goldberg 1989). This selection chooses individuals by simu­

lating n spins of a roulette wheel which has one slot for each string in the population. 

The size of each slot is proportional to the selection probability of the string. 

After reproduction, the n selected strings undergo crossover and mutation. These 

two operators are the basic search mechanisms of genetic algorithms. Crossover and 

mutation operators create new strings from strings which have survived after the 

selection process. Crossover operators take two strings and generate two new individ­

uals based on certain rules. For instance, the simple single-point crossover operator 

take the two parents and generates two offsprings by cutting and splicing. The cut­

ting is performed at a randomly chosen location along the string for each parent with 

some crossover probability Pc, then the end parts are swapped and spliced to each 

initial part (see Figure 3.1). 
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After crossover, mutation takes place. Unlike crossover, mutation operates on 

one string at a time. For each string, mutation changes each element with mutation 

probability Pm· The typical mutation operator is binary mutation. This operator 

flips each bit in every string in the population with probability Pm (Pm < < 1). 

The operators described above are the simplest form of selection, crossover and 

mutation operators, respectively. Other alternatives exist and are usually designed 

for specific purposes. For instance, tournament selection (Goldberg and Deb 1991) 

and elitist selection (DeJong 1975) are two common alternatives to proportionate 

selection. Two-point crossover (Cavicchio 1970) and uniform crossover (Syswerda 

1991) are alternatives to single-point crossover. For mutation, alternatives are non­

uniform mutation (Michalewicz 1994) and arithmetic mutation (Back 1996). 

Figure 3.2 shows the flowchart of a simple genetic algorithm. 

3.3.3 Comparison with Existing Optimization Techniques 

Simple genetic algorithms differ from other conventional optimization schemes in four 

major ways. Genetic algorithms are based on stochastic rules. While there are other 

methods that are based on simple random walks, the stochastic operators of genetic 

algorithms are highly exploitative (via random choice). Although using chance to 

achieve results may seem unusual, nature, an evolutionary process, is a very good 

example of apparent success of random choice. 

Genetic algorithms manipulate the control variables of objective functions at the 

representation level (strings) to exploit similarities among well-fitted strings. Since 

genetic algorithms operate at the coding level, they are more difficult to be disoriented 

even when the function may be difficult for traditional techniques. 

Genetic algorithms search using evolution of a whole population while many ex­

isting methods use only a single point. By maintaining a population of well-adapted 

samples, the probability that genetic algorithms will converge to global optima rather 

than a local optimum is increased. 

Finally, genetic algorithms achieve optimal solutions by ignoring all other infor-
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Figure 3.2: Flowchart of a simple genetic algorithm 
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Figure 3.3: Graph of the function f(x) = x · sin(l01r · x) + 1.0 

mation except the fitness function. Other methods rely on additional information 

such as gradients, and in problems where such information is not available, these 

schemes break down. Genetic algorithms are a general method because they only 

use information available in any search problem, namely, the fitness or the objective 

function values. This means that genetic algorithms have wide applicability. On the 

other hand, when additional information is available, the simple GAs are not able to 

exploit it. 

3.3.4 Illustrative Example 

Consider an oscillatory function to illustrate the explorative power of genetic algo­

rithms. We wish to find x from the range [-1,2] which maximizes the function f 

defined as follows: 

f(x) = x · sin(l01r · x) + 1.0. 

Figure 3.3 shows the graphical representation of the function. Note that this func-
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tion is highly oscillatory and has many local maxima. If gradient-based optimization 

methods are employed to maximize this function, chances are they will converge to 

one of the local maxima and will never get to the global maximum. 

A simple genetic algorithm is used to solve this problem. Binary representation is 

chosen to represent the real values of the variable x. The domain of x has length 3 and 

binary strings of length 22 are selected to give precision of real values of x to around 

10-6 . Thus, the strings (0000000000000000000000) and (1111111111111111111111) 

represent the boundaries of the domain, -1.0 and 2.0, respectively. 

Snapshots of population of several generations are given in Figure 3.4. The initial 

population consisting of 20 strings is intentionally selected to be "far" from the global 

optimum. The probabilities Pc and Pm are taken to be 0.85 and 0.05, respectively. 

After only 10 generations, several genes approach the global optimum and by the 20th 

generation, several genes have found the global optimum. Note that as the population 

grows from generation to generation, much of the population start to converge to the 

neighborhood of the global optimum except a few individuals. Convergence results 

from the optimization run are shown in Figure 3.5. 
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Figure 3.4: Snapshots of population of different generations in a genetic search 
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3.4 Theory of Genetic Algorithms 

A first exposure to the power of genetic algorithms usually leaves the impression that 

they simply improve by random searches via a population of strings. However, genetic 

algorithms efficiently explore search spaces in a different dimension than simply the 

string population. In this section, we examine the inner workings of a simple genetic 

algorithm. The notion of a schema is introduced together with some useful definitions 

for classification of schemata. Using schemata, the schema theorem and the building 

block hypothesis will be presented and questions like why GA works, and how GA 

seeks an optimum, will be answered. 

3.4.1 Schemata 

Genetic algorithms search by processing a population of strings. However, for high 

dimensional problems, it would be impractical, if not impossible, to search every single 

point in the search space. Yet, genetic algorithms have been successfully applied to 

large-scale problems (Unger and Moult 1993; Furuya and Haftka 1993). To explain 

this paradox, the notion of schema is defined. 

A schema (Goldberg 1989; Holland 1992), denoted by H, is a similarity tem­

plate which describes a subset of strings with similarities at certain string loci. It 

is another "string" of the same length as the strings in the population. For binary­

representations, each gene in a schema takes on values of 0, 1, or *, where '*' is a 

wild-card or a "don't care" symbol. Each schema of length l represents the set of all 

strings of length l, whose corresponding loci contain bits identical to the '0' and '1' 

bits of the schema. For example, the schema, 1 **01, represents the set of 5-bit strings 

{10001, 11001, 10101, 11101 }. Any given string in the population can be grouped 

into one or more schema. For binary strings, it can be easily shown that each string of 

length l can be an element in 21 schemata. The concept of schema provides a powerful 

and compact way to talk about all the well-defined similarities among finite-length 

strings over a finite alphabet. 
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3.4.2 Order, Defining Length and Fitness of Schemata 

To describe schemata, two notations are often used in their descriptions: order and 

defining length. The order of a schema H, denoted as o(H), is the number of fixed 

positions present in the template. In a binary alphabet, the order of a schema is 

simply the number of O's and 1's. For example, the order of the schema 1 **01 is 3 or 

symbolically, o(1 **01) = 3. 

The defining length of a schema H, denoted as b(H), is the distance between the 

first and last specified genes. For the schema 1 **01, the defining length b(1 * *01) is 

4. For schemata with only one specific gene such as O****, **1 ** etc., the defining 

length is 0. 

Order and defining length of schema are important notational devices for dis­

cussing and classifying string similarities. Moreover, they provide the means for 

analyzing the effect of reproduction and genetic operators on the population. 

Finally, the fitness of a schema is simply defined as the average fitness of all the 

strings it represents. 

3.4.3 Building Blocks Processing 

Counting the total number of possible schemata is an enlightening process! For binary 

strings of length 5, there are 35 = 243 different similarity templates because at each 

of the five loci, there are three possibilities: 0, 1 or *. So, in general for alphabets of 

cardinality (number of alphabet characters) k, there are (k + 1)1 schemata of length 

l. It may seem as though schemata are making the search more difficult because they 

increase the number of possibilities from k1 of strings to (k + 1)1 schemata. However, 

among all the possible templates, one group of them is of particular importance: the 

building blocks. 

Building blocks are low-order, short defining-length and highly fit schemata (Gold­

berg 1989). Genetic algorithms explore the search space through successive gener­

ations. During each generation, selection, crossover and mutation take place. As 

described earlier, selection chooses individual strings with high fitness for further 
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processing. Hence, strings that are members of highly fit schemata are usually se­

lected more frequently. For crossover operators, schemata with low defining lengths 

are less susceptible to disruption than those with long defining lengths. Similarly, 

mutation, at a low mutation probability, infrequently disrupts low order schemata. 

Therefore, it is easy to see that building blocks which are highly fit and low order 

with short defining lengths are more likely to proliferate from generation to gener­

ation. This is also presented more quantitatively in a later section. Thus, genetic 

algorithms perform searches through processing these useful schemata. 

3.4.4 Implicit Parallelism of Genetic Algorithms 

It is clear that the building block processing is essential to the success of genetic 

algorithms in efficiently seeking optimal solutions. The next logical question to ask 

is how efficiently do genetic algorithms process building blocks? Holland (1992) es­

timates that for a population of n strings, genetic algorithms process on the order 

of n3 building blocks in each generation . Since in each generation, only n function 

evaluations are needed (for fitness calculations), this is a significant processing lever­

age that is apparently unique to genetic algorithms. Since nothing extra is needed 

to achieve this processing "parallelism," Holland calls this phenomenon implicit par­

allelism. For solution of large-scale problems, the existence of implicit parallelism 

means that a larger population has the potential to find the optimal solution(s) in 

polynomially faster time than a smaller population. 

3.4.5 Fundamental Theorem of Genetic Algorithms 

Let m(H, t) be the expected number of instances of schema H present in the popu­

lation at generation t. Thus, m(H, t + 1) represent the expected number of instances 

of schema H in the next generation. Assuming that proportional selection is used, 

we have m(H, t + 1) = m(H, t) · 1j) , where f(H) is the fitness of the schema Hand 

f is the average population fitness. 

The probability that the schema H survives crossover is greater than or equal to 
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the term, 1 - Pc · ~~). The equality provides the lower bound of the probability of 

survival while the inequality takes into account that a disrupted schema may regain 

its composition through crossover with a similar schema. The probability that H 

survives mutation is (1- Pm)o(H), which is approximately (1- o(H) · Pm) for small 

Pm (recall that Pm << 1). Putting all these together, we have: 

f(H) b(H) 
m(H, t + 1) ~ m(H, t) · J · (1- Pc · l _ 

1 
- o(H) · Pm)· (3.2) 

This expression is known as the Schema Theorem or the Fundamental Theorem 

of Genetic Algorithms. Although the above arguments are not a formal proof of the 

theorem, this mathematical expression does provide the expectation of the survival 

of building blocks and its implication is far-reaching and subtle (Goldberg 1989). 

3.5 Issues Concerning Genetic Algorithms as 

Optimizers 

So far in this chapter, we have discussed the basic components of genetic algorithms, 

how GAs work and how they explore the search space. To end this chapter, we will 

look at some of the issues and difficulties in applying GAs to optimization problems. 

We will focus on control parameters of GAs (population size, operator probabilities, 

etc) and importance of GA operators, representation difficulties, scaling of fitness, 

GA-hard and GA-deceptive problems. 

3.5.1 Control Parameters and Importance of Genetic 

Operators 

From the earlier discussions, genetic operators of a standard GA include crossover and 

mutation. These two operators have probabilities of Pc and Pm, respectively. Also, 

there is another parameter which is very important to the success of GA operation: 
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population size. The choice of these parameters can have significant impact on the 

performance. This issue was studied thoroughly by Schauffer and his colleagues (1989) 

and they suggested the following values: 

• Population size: 20-30 

• Crossover probability: 0. 75-0.95 

• Mutation probability: 0.005-0.01. 

Traditionally, mutation in GA has always been considered as the secondary oper­

ator while crossover is the main operator that performs most of the exploration chore. 

However, Schauffer's studies also found that: 

1. mutation plays a stronger role than previously recognized 

2. importance of crossover is overrated 

3. search strategy based on selection and mutation only might be fairly powerful 

even without crossover. 

The question on whether crossover or mutation is more important has been the 

focus of hot arguments. Up till now, no researcher can provide good research evidence 

showing one way or the other although it seems that most applications of GA involve 

both operators. 

3.5.2 Representation Difficulties 

As mentioned earlier, in order to apply a GA to an optimization problem, a repre­

sentation of the parameters of the objective function is required. So far, we have 

only considered binary strings for such a representation. The problem with binary 

representation is that it requires the number of possible values each parameter can 

assume to be some power of 2. One can use alphabets with higher cardinality to rep­

resent other cases. However, if the number of possible values of a parameter is some 
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arbitrary number, chances are there is no alphabet that would provide a one-to-one 

representation between the actual parameter values and the encoded strings. 

In addition, the choice of representation can have significant impact on the per­

formance of the genetic algorithms. In practice, to efficiently solve an optimization 

problem often requires some knowledge of the problem in order to come up with 

a suitable representation. Up to now, there is not a set of guidelines which would 

provide newcomers to genetic algorithms with assistance in choosing representations. 

These two representation issues can hinder the applicability of genetic algorithms to 

various engineering problems. 

To get around these difficulties, Michalewicz advocates bypassing the represen­

tation and have GAs directly work on the parameter set or the phenotype. In his 

book (Michalewicz 1994), he provides various examples of using such an approach to 

solve optimization problems with real-valued parameters. Michalewicz proposes that 

using such a real-value representation, one can achieve at least as good, if not better, 

results than using the more traditional coding schemes such as binary representation. 

Another approach is to pose the problem as a constrained optimization problem. 

To solve this problem one can choose any representation and then apply penalties to 

invalid individuals in the population using some penalty function. However, penalty 

functions can change the landscape of the search space enough to affect the optimal 

solution. Richardson, Palmer, Liepins and Hilliard (1989) suggest certain guidelines 

for using penalty functions with genetic algorithms. 

3.5.3 Fitness Scaling and Tournament Selection 

For genetic algorithms with small populations, control of the number of copies each 

string has is very important. In earlier generations, it is common to have a few 

extraordinary individuals in a population of less than average strings. If the pro­

portional fitness selection (Ps = ~iii) is used, the extraordinary individuals would 

take over a significant proportion of the small population in a few generations and 

this leads to premature convergence to a possibly non-optimal solution. In addition, 
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there is a very different problem in later generations. Late in a GA run, the average 

fitness of the population may be close to the best fitness of the population. Thus, 

average members and the best ones get nearly the same number of copies in future 

generations, and the survival of the fittest necessary for improvement becomes more 

of a random walk among average individuals. 

To address these shortcomings, fitness scaling is often used. The simplest way to 

scale fitness is linear scaling: 

!' = af +b. 

Here, the scaled fitness f' is scaled by using two coefficients a and b such that the 

average scaled fitness f~vg equals to the average of raw fitness favg and the best 

individual !max is scaled down to around 2f~vg· Fitness scaling helps prevent early 

domination of better fitness individuals, and in later generation, it also encourages 

more competition among the population as the best fitness is still around twice the 

average fitness. However, fitness scaling does not work for all populations. 

Another approach is to use a selection with good selection pressure. Selection 

pressure is the degree to which the better individuals are favored. The higher the 

selection, the more the better individuals are favored. However, if the pressure is too 

high, there is an increased chance of premature convergence. On the other hand, if the 

pressure is too low, slow convergence would occur. One such selection scheme is tour­

nament selection (Goldberg and Deb 1991). This selection scheme randomly chooses 

a set of s individuals from the population and picks the best for reproduction. Nor­

mally, a tournament size of s = 2 is used: binary tournament selection. This scheme 

provides a good selection pressure which does not cause premature convergence in 

initial generations and encourages competition in later ones. 

3.5.4 GA-hard and GA-deceptive Problems 

Most existing optimization techniques work well for some functions but do not perform 

well on other type of functions. Genetic algorithms are no different. Since it is 
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a stochastic approach, it is hard to predetermine which types of functions would 

cause difficulties for GAs. In the last 10 years or so, many researchers in the field 

have tried to characterize functions that are most difficult for genetic algorithms to 

optimize (Bethke 1980; Goldberg 1990; Goldberg 1991; Goldberg, Korb, and Deb 

1989; Liepins and Vose 1991; Whitley 1991). 

It is generally recognized that optimization functions that are difficult for GAs to 

solve (or GA-hard problems) have one or more of the following properties: 

1. multiple optima 

2. isolation of optima 

3. misleading sub-optima that lead GAs away from the desired optima 

4. presence of noise. 

Strictly speaking, multimodality is not really a source of hardness since we are 

usually interested in only a single optimum. In addition, the concepts of niching, 

crowding and sharing have been applied to genetic algorithms for multimodal function 

optimization with some success (Goldberg and Richardson 1987). The problem of 

noise can be handled by choosing appropriate population size (Goldberg, Deb, and 

Horn 1992). 

Problems which have both misleading and isolated, desirable optima are called 

deceptive or GA-deceptive problems and are especially hard for a GA to solve. Decep­

tive problems are widely studied examples in the literature (Goldberg 1987; Whitley 

1991). Classic deceptive problems usually have a global optimum and another local 

optimum called the deceptive optimum. The global optimum has a small basin of 

attraction, while the deceptive optimum has a large basin of attraction. Moreover, 

the global and deceptive optima have similar fitness values. 

A well-known example of such deceptive function is shown in Figure 3.6. This is 

a 3 bit function with a global optimal point isolated from the rest of the crowd and 

there are several suboptima which have function values close to the global optimum. 
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From the schema perspective, let's consider the fitness of the following schema: 0**, 

1 **, **O, **1, 00*, 11 *, *OO and *11. 

f(O**) -

!(1 **) 

f(**O) 

!(**1) 

f(OO*) -

!(11 *) 

!(*00) 

!(*11) 

~(!(000) + !(001) + !(010) + f(011)) = ~(28 + 26 + 22 + 0) = 19 

~(!(100) + !(101) + !(110) + !(111)) = ~(14 + 0 + 0 + 30) = 11 

~(!(000) + !(010) + !(100) + !(110)) = ~(28 + 22 + 14 + 0) = 16 

l(f(001) + !(011) + !(101) + f(111)) = l(14 + 0 + 0 + 30) = 11 

~(!(000) + !(001)) = ~(28 + 26) = 27 

~(!(110) + !(111)) = ~(0 + 30) = 15 

~(!(000) + !(100)) = ~(28 + 14) = 21 

~(!(011) + !(111)) = ~(0 + 30) = 15. 

It can be easily seen that the following is true: 

!(1 **) < f(O**) 

!(11 *) < f(OO*) 

!(**1) < f(**O) 

!(*11) < !(*00). 

All schemata consistent with 111 such as 1 **, **1, *11 and 11 * are the ones GA 

needs to obtain the global optimum 111. Since their competitors which are schemata 

associated with 000 (0**, **0, 00*, etc.) have better fitnesses, by the schema theorem, 

the number of strings processed via these schemata will increase with generations. 

Thus, genetic algorithms will tend to converge to 000 instead of 111 because of these 

misleading schemata. 

From the building block viewpoint, deceptive problems are those where low-order 

schemata are misleading, i.e. they tend to lead GAs to the deceptive optimum, just 

like the example. However, it should be noted that deception on its own will not 
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Figure 3.6: Different view of the 3-bit deceptive function 

necessarily stop GAs from reaching the optimal solution. It requires both misleading 

schemata as well as bad linkage among the schemata to make a problem GA-hard. 

Linkage can be loosely measured by the defining length of schemata. It is a mea­

sure of how far apart the important substrings of a schema are in its representation. 

With some knowledge of the problem at hand, one can usually choose a certain rep­

resentation or apply reordering schemes to provide tight linkage among the building 

blocks. 

The existence of deceptive problems and the inability of simple GAs to solve these 

problems is an obstacle that must be overcome. In the next chapter, we will examine 

these deceptive problems in greater detail and we will look at one variant of GAs, 

variable-length genetic algorithms (Goldberg, Korb, and Deb 1989; Goldberg, Deb, 

and Korb 1990), which have the potential to solve these problems without requiring 

much prior knowledge about them. 



-57-

Chapter 4 

Special Classes of Genetic Algorithms 

4.1 Introduction 

In the last chapter, we looked at the basics of genetic algorithms, how they perform 

searches and why they work. In this chapter, we will focus on two special classes of 

genetic algorithms: variable-length genetic algorithms and hybrid genetic algorithms. 

Variable-length GAs have the potential to solve GA-hard problems which require cer­

tain allele combinations to be close together. Such problems may arise when applying 

simple GAs to structural optimization problems over available steel sections. For these 

problems, the use of variable-length representation is recommended and a variable­

length scheme called vGA is proposed. For continuous optimization problems, hybrid 

GAs, which are combinations of hill-climbing methods and genetic algorithms, are 

quite attractive in terms of better convergence rate. A hybrid GA, denoted as hGA, 

is also proposed. 

4.2 Variable-Length Genetic Algorithms 

4.2.1 Motivation 

The success of genetic algorithms depends on the growth of short, low-order and 

highly-fit schemata (building blocks) through successive generations to form optimal 

solutions. In deceptive problems, nonlinearities may prevent these building blocks 
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from forming optimal solutions. In addition, the genetic representation (genotype) 

of a problem may be such that the needed allele combinations are widely apart or 

loosely linked and so, genetic operators such as crossover are likely to disrupt these 

desirable building blocks. One way to overcome this problem is by using a tight 

ordering representation that codes the needed allele combination closely together to 

provide tight linkage. However, such a tight gene ordering in a problem requires prior 

knowledge about the problem which, in most cases, is not usually available. Without 

any knowledge of tight coding, a random coding usually results in low-order building 

blocks which are loosely linked. 

Faced with this coding problem, researchers have come up with the idea of using 

a variable-length representation. Among the different variable-length schemes (Smith 

1980; Shaefer 1987; Cramer 1985) existing in the literature is messy genetic algorithm 

(mGA) developed by Goldberg, Korb and Deb (1989, 1990). Using this new mGA, 

Goldberg and his colleagues successfully found the global solution of a high order 

deceptive problem to global optimality. 

In this section, we will focus on variable-length genetic algorithms. The variable­

length representation and the special operators associated with this coding are pre­

sented. As we will see, variable-length GAs are suitable for solving discrete opti­

mization problems with GA-hardness and such difficulties may arise in structural 

optimization problems over available steel sections. A variable-length GA, denoted 

as vGA, is also proposed here which is based on the messy GA and is specially de­

signed for solving the aforementioned discrete optimal design problems in structural 

engineering. 

4.2.2 Variable Length Representation 

Variable-Length Coding 

A gene in a variable-length chromosome contains information of both its locus and 

the allele. For example, the string 10100 in simple GA can be represented by ( 

(2 0) (1 1) (4 0) (3 1) (5 0) ) or ( (5 0) (3 1) (1 1) (4 0) (2 0) ), where in each 
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duplet, the entries are the locus and the allele of the gene, respectively. Unlike its 

simple GA counterparts, strings in a variable-length GA can be either underspecified 

or overspecified. Thus, the variable-length strings ( (2 0) (1 1) ) and ( (3 1) (1 0) 

(2 1) (1 1) ) are acceptable strings for a 3-bit problem under this variable-length 

coding scheme. Here, the first string is underspecified since gene 3 is missing while 

the second string is overspecified because gene 1 appears twice. Note that a variable­

length string can be both underspecified and overspecified at the same time. As we 

will soon see, this variable-length coding provides the flexibility that allows important 

gene combinations to stay close together even though they may be far apart in the 

fixed representation. However, such flexibility does not come without a price as 

additional effort is required to decode overspecified or underspecified strings. 

Variable-Length Decoding 

To evaluate the fitness of an individual, the full string is required. Since a variable­

length string can be underspecified or overspecified or both, additional effort is needed 

to decode these strings. 

Overspecification can be handled fairly easily as it requires us to choose between 

conflicting genes in the string. A straightforward way is to take the first instance 

of a gene allele using first-come-first-served rule from left to right. For example, the 

second string from the previous discussion, ( ( 3 1) ( 1 0) ( 2 1) ( 1 1)), contains two 

instances of gene 1 and will be decoded as 011 since (1 0) precedes (11) in the string. 

Other decoding possibilities exist such as voting procedure and adaptive precedence 

(Goldberg, Korb, and Deb 1989). 

For underspecification, it is necessary to fill the missing genes in an underspecified 

string. Different techniques can be devised for such purpose. One approach is to 

employ a template and make a given string complete by filling the missing genes of 

the string with the corresponding genes from the template. To illustrate how this 

works, consider our previous underspecified gene, ( (2 0) (1 1) ), and the template 

000. The complete 3-bit string for our string is ( 1 0 0 ), borrowing the third gene 

from the template. 
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Before After 

cut & splice 

Figure 4.1: Illustration of a cut and splice operation 

4.2.3 Operators of a Variable-Length GA 

To handle strings of variable length, both crossover and mutation have to be modified. 

For crossover, a new operator, consisting of two operators, cut and splice (Goldberg, 

Korb, and Deb 1989) is normally used for this purpose. First, the cut operation is 

carried out on two randomly selected strings. Then, the splice operator combines 

the resulting strings to form new offsprings. Figure 4.1 illustrates a cut and splice 

operation. 

For mutation, two operators, allelic mutation and genic mutation, are usually 

employed in a variable-length GA. An allelic mutation operates on allele values by 

flipping the bits with a specified allelic mutation probability, Pam· This is similiar 

to the mutation operator which flips bits along the fixed-length strings in simple 

GA described in the previous chapter. Complementary to the allelic mutation is 

the genic mutation, which swaps one gene with another one with a specified genic 

mutation probability, Pgm· For instance, for the string ( (3 1) (1 0) (2 1) (1 1) ), the 

genic mutation can swap the first and the third genes to form ( (2 1) (1 0) (3 1) (1 

1) ) . This reordering of genes can affect the offsprings created by the cut and splice 

operators. 
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4.2.4 Organization of a Variable-Length GA 

Despite the differences in representation and the operators used, the overall flow 

of a variable-length genetic algorithm is very similiar to their simple counterparts. 

Figure 4.2 shows the overall flowchart of a variable-length GA. The only difference 

here is that the crossover operator in simple GA is replaced by the cut and splice 

operator. 

4.2.5 Proposed vGA for Discrete Structural Optimization 

over Available Steel Sections 

A variable-length genetic algorithm, denoted as vGA, is presented here. This vGA 

is tailored for solving discrete structural optimization problems over available wide 

flange sections (W-shapes). This algorithm follows many of the ideas described ear­

lier in this chapter and the only application-specific information about vGA is: the 

variable-length representation of steel sections and the template used for addressing 

underspecification of strings. 

For the representation, 256 wide flange sections are picked from the AISC manual 

for coding. Thus, an 8-bit string is required for each design variable. For instance, 

the string ( (1 0) (2 0) (3 0) ( 4 0) (5 0) (6 0) (7 0) (8 0) ) represents the smallest W 

section W 4x13. Only 256 of the possible 297 W sections are chosen to allow an easy 

one-to-one mapping between the phenotype (the W-shapes) and the genotype (the 

variable-length strings). 

For underspecification, an initial template of all zero bits is used. After every n 

generations, the current template is updated with information from the best strings. 

By doing so, any underspecified strings will get the good allele combinations from the 

best individuals and therefore, improve the average fitness of the population. 

Recall that a variable-length GA usually employs the following three operators: 

selection, cut and splice, and mutation. For selection, the binary tournament selection 

scheme (Goldberg and Deb 1991) is used to avoid the necessity of function scaling 

and to maintain a reliable selection. In a binary tournament selection, two strings 
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Figure 4.2: Overview of a variable-length genetic algorithm 
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Figure 4.3: Cantilever beam for the illustrative example 

are picked randomly from the population and the best of the two is selected. For a 

population of size n, this tournament is repeated n times to create a new population 

consisting of the winners of these n tournaments. 

The overall flow of vGA is the same as illustrated in Figure 4.2. 

4.2.6 Illustrative Numerical Example 

Background 

A simple cantilever beam design problem is utilized as an example to demonstrate 

various issues involving discrete optimal structural design over available steel sections. 

Consider the simple cantilever beam as illustrated in Figure 4.3. The length of the 

beam is 100 inches. A point load of 5 kips is applied at the far end of the beam. The 

objective is to obtain a design that best satisfies the following two design criteria: 

1. Maximum Bending Stress: Bending stress along the beam should not be greater 

than 40 ksi 

2. Total Steel Volume: The total steel required should be minimized. 
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Table 4.1: Optimization results of the illustrative example 

Criteria 
Stress 
Volume 
Overall 

Final Design 
Section 

Area 
I 

Simple GA 
Value 1-L 

29.10 (ksi) 1.000 
471 (in3

) 0.939 
0.941 

Simple GA 
W12x16 

4.71 (in2
) 

103.0 (in4 ) 

Proposed vGA 
Value 1-L 

33.06 (ksi) 0.798 
416 (in3

) 0.955 
0.949 

Proposed vG A 
W12x14 

4.16 (in2
) 

88.6 (in4
) 

The multicriterion design approach described in Chapter 2 is applied to this prob­

lem. To quantify the above design criteria, two preference functions are defined as 

shown in Figure 4.4. Referring first to the preference function for stress (Figure 4.4a), 

the perfectly acceptable stress range from 0.0 to 36.0 ksi and the upper bound is set to 

the specified limit of 40 ksi. The preference value of unity drops off linearly from 36.0 

ksi and reaches an unacceptable value of zero when it hits 40 ksi. For steel volume, 

a normalized volume is used instead which is defined by: 

Vmax- V 
Vnormalized = V. _ V. . 

max m~n 

where Vmax and Vmin are the specified maximum and minimum volumes. The prefer­

ence function for steel volume is triangular in shape as shown in Figure 4.4b. 

The domain of the search space is the smallest 256 wide flange sections (W sec­

tions) listed in the AISC manual. This problem is solved both with a simple genetic 

algorithm and also the proposed vGA. Since the search space is quite small (only 256 

possible solutions), a relatively small population size of 10 is used for both schemes 

and an initial population is randomly generated. For comparison purpose, this same 

initial population is used for the two GAs. The maximum generation count is limited 

to 30. Optimization results are tabulated in Table 4.1. 
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Figure 4.4: Preference functions for the illustrative example 
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Discussions and Comments 

This optimal design problem actually possesses some of the GA-hardness described in 

Chapter 3. Consider the individual preference values in Figure 4.6. The plot for max­

imum bending stress illustrates a very interesting point. When the AISC sections are 

sorted by area, the corresponding moments of inertia are not monotonically increasing 

with the area and therefore, there are fluctuations from unacceptable to acceptable 

and back to unacceptable as we go from smaller sections to larger sections. Table 4.2 

shows the smallest twenty W sections. Notice how moment of inertia fluctuates as the 

area increases. The relationship of area and moment of inertia is further illustrated 

in Figure 4.5. Steel volume, on the other hand, monotonically increases with area 

and so the preference value monotonically decreases as the section area increases. As 

a result, the overall preference value has the shape as shown in Figure 4.7. Note 

that this function looks very much like the deceptive function described in Chapter 

3, which is hard for simple genetic algorithms to solve. The global optimum is iso­

lated by a "sea" of sections which are totally unacceptable while the the majority of 

the relatively larger sections have reasonably acceptable preference. This property is 

exactly one of the causes for GA-deception. Such deception is reflected in the results 

of the optimization runs since the simple GA settled with one of the suboptimal de­

signs while the vGA converged to the global optimal solution. Note that the same 

GA-deception characteristics will be observed if this problem is solved by sorting the 

members with moment of inertia instead of area. 
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Table 4.2: Properties of the twenty smallest AISC W-sections 

Section Area (in2
) I (in4 ) 

W6X9 2.68 16.4 
W8X10 2.96 30.8 
W10X12 3.54 53.8 
W6X12 3.55 22.1 
W4X13 3.83 11.3 
W8X13 3.84 39.6 
W12X14 4.16 88.6 
W10X15 4.41 68.9 
W6X15 4.43 29.1 
W8X15 4.44 48.0 
W5X16 4.68 21.3 
W12X16 4.71 103.0 
W6X16 4.74 32.1 
W10X17 4.99 81.9 
W8X18 5.26 61.9 
W5X19 5.54 26.2 

W12X19 5.57 130.0 
W10X19 5.62 96.3 
W6X20 5.87 41.4 
W8X21 6.16 75.3 
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Figure 4.5: Scatter plot of AISC sections: moment of inertia vs area 
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Figure 4.6: Individual preference values of stress and volume versus AISC sections 
(sorted by area) 
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Figure 4.7: Overall preference value versus AISC sections (sorted by area) 
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4.3 Hybrid Genetic Algorithms for Continuous 

Optimization 

4.3.1 Motivation 

As discussed in Chapter 3, genetic algorithms are stochastic methods which offer 

several advantages over traditional methods for continuous variables. By using a 

population approach and some probabilistic rules, genetic algorithms seek an optimum 

through exploration of the search space. They are definitely better alternatives than 

traditional methods for continuous-variable optimization problems with numerous 

local optima. Nevertheless, GAs can suffer from slow convergence before providing 

an "accurate" solution primarily due to their lack of exploitation of local topological 

information of the problem. Moreover, the accuracy of the solutions obtained may 

not be very good in terms of digits of accuracy due to the stochastic nature of the 

method. 

On the other hand, traditional methods, mostly hill-climbing, such as quasJ­

N ewton methods, are well known to exploit the local topological information effi­

ciently to provide an optimum in the neighborhood. Usually, a lot of local infor­

mation, such as the gradient vector and Hessian (curvature) matrix, is required to 

achieve this high level of exploitation. If such information is not available, these 

methods are usually not very robust and reliable. However, if an optimum is found, 

the solution is usually very accurate numerically. 

0 bviously, there is a conflict among accuracy, reliability and computational effort 

when searching for the global optimal solution of a complex problem (Renders and 

Flasse 1996). It is generally impossible to reach an accurate and reliable solution with 

little computational effort. This conflict can also be viewed as a tradeoff between 

exploitation and exploration. Genetic algorithms, which can bypass local optima to 

arrive at the global optimal solution, are good at exploration but often suffer from slow 

convergence and a lack of exact solution due to its stochastic nature. Hill-climbing 

methods which are good at exploitation focus on accuracy and efficiency but lack 
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Figure 4. 8: Schematic of a hybrid genetic algorithm 

reliability. Thus, these two classes of optimization can complement each other in 

terms of their strengths and weaknesses. A combination of both the GAs and hill­

climbing methods, known as hybrid genetic algorithms, provides a good balance of 

accuracy, reliability and efficiency. 

4.3.2 Definition of a Hybrid GA 

When problem-specific information is available, it is usually advantageous to consider 

this information during the optimization process. Since genetic algorithms do not 

utilize any specific information other than the objective function value, a hybridization 

of GAs with other schemes that can take into account this additional information 

is needed. Such hybridization is usually a genetic algorithm coupled with a local 

search scheme that utilize local topological information. In this case, the exploration 

power and global perspective of GAs are coupled with the hill-climbing ability of local 

optimization methods and result in a scheme that has the best of both worlds. 

Local optimization of a continuous function is a well-studied area and numerous 

gradient and gradient-less methods are available for finding local optima. To develop 

a hybrid GA, we can simply connect some local search technique with a genetic 

algorithm. One simple implementation of a hybrid scheme is to feed the best solution 

obtained by GA into a local search technique to compute the local optimal. In a 
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Figure 4.9: A parallel implementation of a hybrid genetic algorithm 

sense, the GA finds the hills while the local search method, the hill-climber, climbs 

them (see Figure 4. 8) . 

Since genetic algorithms are population-oriented, a parallel approach to hybrid 

GAs can be achieved in a straightforward way. Figure 4.9 depicts an implementation 

of a parallel hybrid GA. With numerous parallel processors, function evaluations can 

be carried out simultaneously for different strings within a generation. Moreover, 

some of the parallel processors can occasionally perform local searches on the better 

fitness individuals. 

4.3.3 Proposed hGA 

A specialized hybrid genetic algorithm, denoted as hGA, is presented here. This hGA 

is designed specifically for continuous optimization problems. Special characteristics 

of hGA, which are elaborated below, are: 

1. Real-valued representation is used for coding of function variables. 
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2. Genetic operators such as crossover and mutation are borrowed from those of 

evolution strategies, which are always real-valued coded. 

3. Interface with local search methods is done via an operator. 

Real-valued Representation 

Although binary representation is by far the most common coding scheme, one main 

disadvantages for using binary coding for real-valued optimization is that it requires 

a long binary string to achieve accuracy in the solution. Recall that for the single 

variable function in Chapter 3, a binary string of length 20 is required to represent a 

potential solution accurate to the sixth decimal place. For high dimensional problems, 

a much longer binary string is required and such long strings could result in weak 

linkage in building blocks. Moreover, significant computational effort is needed to 

encode and decode each binary string. Therefore, for the proposed method, a floating 

point or real-valued representation is employed. Another advantage for using a real­

valued coding is the ease of passing potential solutions back and forth between GAs 

and hill-climbing techniques. 

In the real-valued representation, each potential solution or chromosome is repre­

sented by a vector of real numbers. For a function of three variables, each chromosome 

is represented by a vector of three real values (i.e. three genes). Each gene within 

the chromosome is enforced to stay within its specified range. 

Genetic Operators 

Since a real-valued representation is used, crossover and mutation operators for bi­

nary representation have to be modified in order for them to work in a similiar way. 

For crossover operations, only crossover between genes are allowed. Two crossover 
' 

operators are used in conjunction: simple crossover (Michalewicz 1994) and arith­

metic crossover (Back 1996). These two operators have probabilities, Psc and Pac, 

respectively. 

Simple crossover is defined very similiar to the one-point crossover for simple GAs. 
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If parents X= (x1 , ... , Xn) andY= (y1 , ... , Yn) are crossed after the k'h position, where 

k is chosen randomly and then crossover occurs with probability Psc, the resulting 

offsprings are X' = (x1, ... , Xk, Yk+b ... , Yn) and Y' = (Yb ... yk, Xk+l, ... , Xn)· However, 

this operator may produce offspring which are infeasible. For this case, a different 

position is picked and crossed again. If the resulting offsprings are still infeasible, the 

parents are then taken as offsprings. 

Arithmetric crossover can be defined as follows: 

where X, Y =parents 

X', Y'= offsprings 

X' 

Y' 

r =random value in (0,1). 

rX+(1-r)Y 

(1-r)X +rY, 

( 4.1) 

(4.2) 

Again, this crossover occurs with probability Pac· Since this operation is basically a 

linear combination of the two parents, the resulting offsprings are always valid for 

convex problems. 

For mutation, a non-uniform mutation operator (Michalewicz 1994) is chosen for 

this method. From a chromosome X = (x1 , ... , xn), this unary operator generates an 

offspring X' = (x1 , ... , x!,, ... , xn) by mutating the k'h gene in X, where 

1 { Xk + o(t, Xk,ub- Xk) if r < 0.5 
xk = 

Xk + o(t, Xk- Xk,tb) if r 2: 0.5 

Here, Xk,tb, xk,ub = lower and upper bounds of variable Xk 

r 

t 

a(t, y) 

=random value in (0,1) 

= generation number 

= y. ( 1- r(l-,,;a.)'). 

The function o(t, y) causes the algorithm to search the space more uniformly initially 
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(when t is small), and very locally as t approaches the maximum generation count 

tmax. This operator has a probability of Pm· 

Local Search or Hill-Climbing Operator 

Many hybrid schemes work by taking solutions from one method (GA) and feeding 

them to another method (local search). However, for the proposed method, a local 

search technique is used as an operator within the genetic algorithm. Because of the 

real-valued representation, the two methods are more integrated and chromosomes, 

which are vectors of real values, can be passed to and from the local search algorithm 

without any encoding or decoding. A quasi-Newton method, which is well-known to 

have second order convergence rate when it is close to the optimum, is used for the 

local search operator. 

The local search operator works as a supplementary operator to the proposed 

method. Local search is performed after every m of generations, the search operator 

performs local searches for certain individuals, usually the best and the worst ones, 

in the population. These individuals are then updated with the solutions obtained 

from the local searches. 

The Overall Picture 

Incorporating all the ideas in the above discussions, the overall flowchart of the pro­

posed hGA is summarized in Figure 4.10. Note that there are two different conver­

gence checks in hGA. The first one is done within the local search algorithm and is 

not shown in the figure. This check is performed in every local search. The second 

convergence check is done at the GA level and is shown at the bottom of the figure. 
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Figure 4.10: Overall flowchart of the proposed hGA 
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4.3.4 Numerical Example 

Background 

Consider a two-variable function f(xb x2) as illustrated in the contour plot in Fig­

ure 4.11. This function arises from model identification of a two degrees of freedom 

shear building. The objective function is to minimize the two-norm of the error 

between the modal frequencies of the predicted model and the actual model. The 

variables x 1 and x2 are scaled values of the interstory stiffness for the first and second 

stories, respectively. Both variables x 1 and x2 have the range of [0, 3]. This function 

has two optimal points: [1.0, l.OjT and [2.0, 0.5]T, as denoted by '*' in the figure. 

However, the basin of attraction of [1.0, l.OJT is much bigger than that of [2.0, 0.5]T 

That is, most initial guess in the domain [0, 3] x [0, 3] will converge to the solution 

[1.0, l.O]T. In addition, this function has the "banana valley" characteristic, which 

may cause traditional hill-climbing methods to have slow convergence if not started 

with a good initial guess. 

The function is solved by a simple genetic algorithm and the proposed hGA. The 

population size is set to 20 for both algorithms. The initial population is generated 

randomly and for comparison purposes, the same initial population is used for the 

two methods. The maximum generation count is limited to 30. Probabilities Psc, Pac 

and Pm are set to 0.85, 0.85 and 0.01, respectively. The convergence histories of both 

methods are shown in Figure 4.12. A snapshot of the initial population is given in 

Figure 4.13 and those of the final populations of hGA and simple GA are presented 

in Figure 4.14 and Figure 4.15, respectively. 

Discussion and Comments 

From the convergence histories, it is obvious that the proposed hGA method has 

a much faster convergence rate than the simple GA. The main reason why this is 

so is because of the presence of the local search operator in hGA. This operator is 

applied every five generations, and in fact, hGA found the optimal solution after the 

5th generation. In contrast, simple GA takes a much slower path to convergence and 
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in fact, at termination after the 30th generation, it only found a fairly close solution 

[0.98, 0.97JT. 

Looking at the snapshots of the initial and final populations of the two methods, an 

interesting observation can be drawn. Notice that with an identical initial population, 

the majority of the final population of the simple GA (see Figure 4.15) converges to 

the solution [1.0, l.OjT, which is expected as the basin of attraction of this solution is 

much larger than that of the other solution [2.0, 0.5]T However, for the hGA, both 

solutions were found within the 30 generations (see Figure 4.14) although most of 

the strings clustered around the solution [1.0, l.OjT . In fact, they were obtained at 

the lOth generation. Thus, with the presence of a local search operator, the proposed 

hGA is capable of locating multiple optimal solutions. Although this property cannot 

be verified mathematically, similiar results were obtained from several independent 

runs. 
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Figure 4.11: Contour plot of objective function for the numerical example 
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Figure 4.13: Snapshot of initial population of both methods 
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Figure 4.14: Snapshot of final population of the proposed hGA 
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4.4 Conclusions 

In this chapter, two special classes of genetic algorithms are presented: variable-length 

GA and hybrid GA. A specially-adapted variable-length GA called vGA is presented 

which can better handle discrete structural optimization problems over available steel 

sections. This method overcomes the difficulties when there is an isolated optimum, 

as illustrated in the example, involving optimization over AISC W-sections. 

A hybrid GA called hGA is also proposed in this chapter for optimization involv­

ing continuous variables. This hybrid scheme differs from others presented in the 

literature in that the hill-climbing method is an operator within a GA, and not some­

thing performed after the GA has converged. This combination works very well with 

faster convergence and better accuracy in the solution, as illustrated in the numerical 

example. 
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Chapter 5 

Software Implementation of Multicriterion 

Optimization with Genetic Algorithms 

5.1 Introduction and Background 

The multicriterion design optimization framework described in Chapter Two was in­

vestigated and implemented as part of the CUREe-Kajima project New Computer 

Tools for Optimal Design Decisions in the Presence of Risk. This project involved a 

collaborative research effort among Caltech, Stanford, and USC to develop an inter­

active computer tool that partially automates the structural analysis, evaluation and 

optimization process so that structural engineers can make better design decisions in 

the presence of uncertain risk. 

A software program developed primarily at Caltech called CODA was imple­

mented as a software prototype of the optimal design framework including the new 

genetic algorithms, vGA and hGA, presented in Chapter 4. CODA is a 32-bit Win­

dows application. Hardware requirements to run the program include the Windows 

95 or NT operating system, 16MB of RAM, and approximately lOMB of available disk 

space. The program was developed primarily using the Microsoft Visual C++ Devel­

opment System for Windows Version 2.0. Much of the programming of the graphical 

interfaces of CODA was facilitated with the use of the Microsoft Foundation Classes. 

CODA is actually the successor of an earlier version called SODA, which was the 

result of a joint development effort by the three universities involved in the CUREe-
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Kajima project. However, existing commercial optimal design software was found to 

have the same acronym SODA. Thus, the new version of our software containing the 

GAs was called CODA. 

In this chapter, the software prototype CODA is described in detail. The system 

architecture of CODA is first introduced which is followed by a description of its 

functionalities. The theory behind how CODA works and its implementation issues 

are also covered. 

5.2 Overview of the CODA System 

The design process in CODA begins with a preliminary design and then involves an 

iterative procedure of analysis, evaluation, and revision. In CODA, there is a software 

module devoted to each of these tasks. Figure 5.1 shows the overall architecture of 

CODA. 

The three main modules in CODA, which have been described in Section 2.3, are: 

• The ANALYZER module uses finite element analysis to compute performance 

parameter values based on a building configuration specified by the user and on 

the current values of the design parameters. 

• The EVALUATOR, a module based on multicriterion decision theory, fuzzy 

logic and structural reliability concepts, determines an overall design evalua­

tion measure, or level of acceptability, of the current design based on multiple 

performance criteria and a treatment of load uncertainties. This is done by ag­

gregating preference values for the current design based on each of the individual 

design criteria, as described in Chapter 2. 

• The REVISER performs revisions of the design to find an optimal design based 

on maximization of the overall design evaluation measure. Several optimization 

algorithms, both deterministic and stochastic, can be chosen, including the vGA 

and hGA algorithms presented in Chapter 4. 
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Figure 5.1: Overall system architecture of CODA 
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In addition, there is an EXECUTIVE module, as shown in Figure 5.1, which has 

a supervisory role with respect to the other modules (the ANALYZER, the EVALU­

ATOR, and the REVISER). The EXECUTIVE module acts as an interface between 

these three modules and the user, assisting in the initialization of the modules, con­

trolling the execution of the different processes, and storing the information associated 

with the analysis, evaluation and optimization so that it is accessible by each of the 

other modules. The EXECUTIVE also allows the user to view the structure under 

consideration in graphical form (see Figure 5.2) and to view tabular listings of the 

structural parameters and analysis results. This centralization of initialization, con­

trol and result presentation in the EXECUTIVE makes CODA more modular, since 

additional features and modifications may be made to the user interface without 

restructuring the entire software system. 

The centralization also facilitates control and monitoring of the numerous pro­

cesses involved in the execution of the program; in particular, error-checking and 

error-recovery can be made at each step of the analysis, evaluation or optimization, 

so that messages can be displayed to the user by the EXECUTNE when problems 

arise and recovery from an error can be made without fatal crashing of the program. 

The EXECUTNE allows initialization of the ANALYZER by prompting the user 

to input the physical configuration of the initial preliminary design, including geomet­

ric information and individual member and connection information. In addition, the 

user must select, from a menu of possibilities, the design and performance parameters 

important for the design decision-making process. These design and performance pa­

rameters are combined with preference functions and weights to express the design 

criteria in a quantitative form. The design parameters, designated by a vector (}, 

are those parameters of the initial design which are selected to be varied during the 

search for an optimal design. In CODA, the design parameters control the geometry 

of the structural members (e.g., flange width or web depth). On the other hand, 

performance parameters, designated by a vector q, represent quantities related to 

the "performance" of the design, and can take the form of conventional structural 

parameters (e.g., stress, deflection, etc.) or other parameters (e.g., material cost of 
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the structural system). 

The principal role of the ANALYZER is to calculate the performance parameters 

q( 8) as a function of the prescribed design parameters, 8. Several types of analyses 

are available for computing these performance parameters (see Figure 5.3). How­

ever, in the case of uncertain loads, the probability density function p( qiO) for the 

corresponding uncertain performance parameters is calculated. 

To evaluate the current design, the EVALUATOR requires a user-supplied pref­

erence function, J.li, for each design criterion (i = 1, ... , Nc), which defines the pref­

erence for the various values of each design parameter or performance parameter 

involved in the criterion. The preference function may simply express a minimum 

and/or maximum (fuzzy) bound on a design quantity, or it may express a more 

complex design criterion. A value J.Li(q(O)) = 1 indicates perfect acceptability of 

the design prescribed by e, as judged by the ith design criterion alone; whereas, 

J.li(q(O)) = 0 indicates absolute unacceptability of the design. Values between 0 and 

1 indicate degrees of acceptability or preference between these extreme cases. In ad­

dition, the user supplies importance factors or weights, Wi, which indicate the relative 

importance of the ith design criterion. A large importance factor for a design crite­

rion gives it more influence in the trade-off which occurs between the various criteria 

during optimization of the design, that is, it indicates that the design should be such 

that the corresponding preference function value is close to unity. Alternatively, if a 

design criterion is given a low importance factor, its associated preference function 

value may be close to zero without greatly affecting the overall design evaluation. All 

these can be specified in CODA using the dialog box shown in Figure 5.4. 

The REVISER takes the overall design evaluation measure, J.L, computed by the 

EVALUATOR from the individual preference function values, J.Li(i = 1, ... , Nc), and 

revises the design to improve it. In the optimization mode of CODA, the ANALYZER, 

EVALUATOR and REVISER are repeatedly called by the EXECUTIVE in order to 

find an optimal design. During the optimization process, a close to real time display 

of the progress is shown via a dialog box as shown in Figure 5.5. 
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Figure 5.4: Screen dump of EVALUATOR preference function dialog 
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Figure 5.5: Screen dump of REVISER with optimization progress view 
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5.3 Functionalities 

Currently, CODA is capable of handling the following types of analysis on structural 

systems: 

• Linear static analysis with wind, gravity and earthquake loadings (equivalent 

static and response spectra methods) from 1994 Uniform Building Code (ICBO 

1994) using finite element methods. 

• Modal analysis using generalized Jacobi transformation method. 

• Time history analysis using Newmark numerical integration techniques. 

CODA is equipped with both the conservative and the trade-off strategies de­

scribed in Chapter 2. For REVISER, optimal design of structures can be done at 

both continuous and discrete design parameter levels with the following algorithms: 

• Continuous parameter optimization using quasi-Newton method, adaptive ran­

dom search and hybrid genetic algorithm (hGA). 

• Discrete parameter optimization over commercially available steel sections using 

varaible--length genetic algorithm (vGA). 

5.4 Theory 

In this section, the theory behind how CODA works is presented. The discussion here 

follows very closely that in the CUREe-Kajima project report (Beck, Chan, Irfanoglu, 

Masri, Smith, Vance, and Barroso 1996). However, some of the lengthy details are 

not covered here and the interested reader is referred to the report. 

5.4.1 The ANALYZER 

The role of the ANALYZER is to compute performance parameter values based on 

the specified design parameters. The performance parameters currently include steel 
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volume, base shear, maximum displacement, maximum drift, and member axial, shear 

and bending stress. Steel volume is computed simply by summing up the volume of 

all the members (member volume = cross-sectional area * length). The remainder 

of the performance parameters currently considered in CODA are computed using 

basic finite element methods. The current version of CODA performs linear static 

and dynamic finite element analyses of planar frames, including earthquake and wind 

analyses. The following sections discuss the theory of the various CODA analysis 

capabilities. 

Linear Static Analysis: Gravity, Wind, and Earthquake Loads 

The equation governing static deformation can be written as: 

Kx=f 

where: K = global stiffness matrix 

x = nodal displacement vector 

f = global force vector. 

(5.1) 

Two types of elements are available for finite element modeling of structural systems 

in CODA: 2D beam-column and 2D truss elements. The stiffness matrix for a 2D 

beam-column element in local coordinates is given by: 

AL2 
0 0 AL2 

0 0 -I- --I-

0 12 6L 0 -12 6L 

Kz = EI 0 6£ 4£2 0 -6£ 2£2 
(5.2) 

' £3 AL2 
0 0 AL2 

0 0 --I- -I-

0 -12 -6L 0 12 -6L 

0 6L 2£2 0 -6£ 4£2 
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where: K~ = ith beam-column element stiffness matrix in local coordinates 

E = modulus of elasticity 

I = moment of inertia 

A = cross-sectional area 

L =length. 

The stiffness matrix for a 2D truss element in local coordinates is given by: 

K~ = Et [ _ ~ -~ ] (5.3) 

The stiffness matrix of the individual elements are first computed in local coordinates 

and then converted to global coordinates by: 

where: Ki = ith beam-column element stiffness matrix in global coordinates 

T = transformation matrix between local and global coordinates 

cose sine 0 0 0 0 

-sinO cose 0 0 0 0 

0 0 1 0 0 0 
T= 

0 0 0 case sine 0 

0 0 0 -sine case 0 

0 0 0 0 0 1 

(5.4) 

(5.5) 

where e is the angle between the local and global coordinate systems. The global 

stiffness matrix of the frame is formed using local destination arrays to combine the 

individual element stiffness matrices. 
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Once the stiffness matrix K is formed, the load vector f is computed based 

on loading input. Currently, gravity loading, wind loading, or earthquake loading 

are included based on the 1994 UBC equivalent static representation. The gravity 

loading is defined as load/unit area; separate values may be specified for both the 

roof and general dead and live loads. The dead and live loads are multiplied by the 

tributary area, which is the product of the beam length and one half of the out-of­

plane dimension, to determine the actual loading values. 

The wind load is based on the 1994 UBC prescribed loading. A wind pressure, P, 

is computed by: 

where Cq = pressure coefficient 

Ce = height, exposure, and gust factor 

q8 = wind speed 

Iw = wind importance factor. 

(5.6) 

The wind pressure P is multiplied by the corresponding tributary area, which is the 

product of the building height and one half of the out-of-plane dimension, to deter­

mine the actual wind loading values. The equivalent static lateral force procedure is 

based on the 1994 UBC prescribed loading pattern, where the design base shear V is 

estimated as follows. 

where Z = seismic zone factor 

I = importance factor 

C = base shear coefficient (function of soil type and building period) 

W = seismically effective weight 

Rw = structural system parameter to account for inelastic behavior. 

(5.7) 
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The design base shear given in Equation (5.7) is then distributed to each floor of the 

building according to the floor height and weight. The distributed base shear forms 

the static load vector which is used to compute the building displacements, member 

stresses, etc. 

After the dead and live loads have been specified, the next step is to solve for 

the nodal displacements. Equation (5.1) is solved using LU Decomposition (Strang 

1988). Once the nodal displacements have been computed, additional results, in­

cluding interstory drift values, base shear, and element forces and stresses, can be 

computed. 

Pseudo-Dynamic Analysis: Response Spectra Method 

The response spectra method determines seismic response based on modal superpo­

sition, calculation of modal participation factors, and the UBC response spectra for 

particular soil types. First, a free vibration analysis is performed on the following 

generalized eigenproblem: 

where: M = lumped mass matrix 

w; = i'h circular natural frequency 

l/J; = i'h mode shape. 

(5.8) 

The above problem is first converted to the standard symmetric eigenvalue prob­

lem utilizing a Cholesky decomposition. The generalized Jacobi method, a classical 

eigensolution transformation method for symmetric eigenvalue problems, is then used 

to solve for the natural frequencies and modes. The procedure consists of repeated 

simultaneous transformation of the system stiffness, K, and mass, M matrices until 

they are both reduced to a diagonal form (Craig 1981). Because this generalized 

Jacobi method is a transformation method, for a finite element model with n degrees 

of freedom, all n of the model's modes and frequencies are calculated. Once the 



- 100-

natural circular frequencies are computed, the natural periods can be determined by 

T; = 27r/Wi. 

Since the response spectra method calculations are based only on the horizontal 

(i.e., lateral) accelerations, only those coefficients corresponding to those degrees of 

freedom in the modal vectors are used in the calculation of the participation factors. 

Thus, the modal participation factors are calculated as follows: 

where f3i = ith modal participation factor 

M1 = ;th diagonal coefficient of the frame mass matrix 

¢Ji = ;th coefficient of the ith mode shape 

(5.9) 

a1 = ;th element of mapping vector for picking only the horizontal degrees 

of freedom 

N = number of degrees of freedom. 

Using the specified soil type information, CODA selects one of the normalized 

UBC response spectra shapes. A spectral acceleration, Sa, is selected for each mode 

based on that mode's natural period, Ti. Story accelerations are then calculated as 

follows: 

(5.10) 

where x1i = acceleration of the ;th coordinate of the ith modal vector. 
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Utilizing the story accelerations, modal lateral forces and base shear are calculated 

utilizing the following: 

Fji XjiMj 

N 

Vo; - LFi; 
j~l 

where Fji = inertial force for jth coordinate of the ith modal vector 

VQ; = base shear for ith mode. 

(5.11) 

(5.12) 

These modal quantities are then combined by taking the square root of the sum 

of the squares (SRSS) over the number of modes, n, specified by the user: 

where Fj = inertial force for lh coordinate 

V0 = base shear 

n = number of modes. 

(5.13) 

(5.14) 

If the calculated base shear for the structure is below the value input by the user, 

then all lateral forces are scaled so as to meet that requirement. 

Dynamic Analysis: Time Domain Integration 

In addition to the equivalent static earthquake analysis capability, CODA can calcu­

late the dynamic seismic response of a linear system by using a time domain integra­

tion technique. The finite element equation of motion for support-excited structures 

can be written as: 
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Mx+Cx+Kx = fx9 , 

where M = lumped mass matrix 

C = damping matrix 

x = nodal acceleration vector 

x = nodal velocity vector 

(5.15) 

f = vector mapping ground acceleration to horizontal degrees of freedom 

x 9 = ground acceleration. 

CODA generates a proportional viscous damping matrix by utilizing Rayleigh 

damping as shown below: 

(5.16) 

where: a0 = coefficient for the mass proportional term 

a1 = coefficient for the stiffness proportional term. 

The required coefficients are calculated utilizing the user-specified critical damping 

ratio for the first two modes, which are assumed to be the same. The relationship 

between these factors and the critical damping ratios is: 

where wi = circular natural frequency of the ith mode 

~i = damping ratio of the ith mode 

(5.17) 

The time domain integration procedure is performed using the full finite element 

model of the building. Either the average or linear acceleration methods of the 
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Newmark-Beta numerical integration procedures can be used to perform the analyses. 

Detailed development of these two methods can be found in most standard structural 

dynamics texts and is not included here (Craig 1981). However, it is important to 

realize that, while the average acceleration method is unconditionally stablethe time 

step size , the linear acceleration method is conditionally stable. Thus, the linear 

acceleration method's ability to converge to an accurate solution will depend on the 

specified time step size, where the condition for stability is given by: 

where l5t = time step size 

T~ natural period of Nth mode (i.e., smallest natural period of modes 

participating in response). 

5.4.2 EVALUATOR 

(5.18) 

The role of the EVALUATOR in CODA is to provide an overall design evaluation 

measure f.l( 0) for the design specified by the current values of the design parameters 

0. As described in Chapter 2, the overall design measure f.l( 0) is computed from a list 

of design criteria specified by the user. Each of the design criteria is associated with a 

preference function f.li and an importance weight wi. Currently, preference functions 

in CODA are limited to function of a single design or performance parameter. The 

computation of f.l( 0) is done by aggregating preference values of the design criteria 

using an aggregation strategy. Two aggregation strategies are available in CODA: 

conservative strategy and multiplicative trade-off strategy. 

CODA can handle both deterministic and stochastic design criteria. Several de­

terministic criteria are available which are based on maximum stresses, interstory 

drift, lateral deflection, base shear, etc. Evaluation of these deterministic criteria can 

be done in a straightforward manner by following the concepts described in Chapter 

2. In the stochastic case, only design criteria involving uncertainties due to seismic 

loads are available at this point although extensions to other types of uncertain loads 
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Figure 5.6: Surface plot of JL( 0) for the conservative strategy 

as well as uncertainties in models is very straightforward. Computation of prefer­

ence values of these criteria is based on the theory of stochastic criteria described in 

Chapter 2. However, the theory behind the exact computational procedure is very 

involved and since seismic reliability and its related design issues are not the main 

thrust of this thesis, they will not be covered here. The interested reader can consult 

(Beck et al. 1996). 

Discussion of the Aggregation Strategies 

Recall that the conservative aggregation strategy can be written as: 

(5.19) 

where ni = w;jmaxj wj, i = 1, ... , Nc and wi is a positive importance weight assigned 

to the ith design criterion. Consider the JL( 0) surface plot shown in Figure 5.6 for this 

strategy. This surface is based on a three-story steel frame example subject to UBC 

wind loading. Two design parameters were chosen for this example: the flange width 

B and the web depth D for all the beams and columns, which are constrained to be 

identical I-beams. 

It can be seen from Figure 5.6 that the surface is characterized by sharp edges 
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and the maximum value of J-L( 9) is at the intersection of these edges. The edges 

correspond to the equality of the preference functions for two design criteria and they 

are transition curves where there is a switch in which design criterion is giving the 

smallest preference value, and so giving the value of the overall design evaluation 

measure. 

These sharp edges in the J-L( 9) can produce numerical difficulties in performing 

numerical optimization. For instance, hill climbing algorithms move from a point on 

the surface corresponding to the initial choice of the design parameters up a sloping 

face until they reach the sharp ridge. After that they are unable to efficiently move 

up the ridge to the peak value of the surface because of the discontinuous slope at the 

ridge. However, stochastic optimization schemes which do not depend on any local 

topological information of the surface can be applied to determine the maximum of 

the surface. 

On the other hand, the multiplicative trade-off strategy, as given by Equation 5.20, 

produces a much smoother J-L(9) surface with no sharp edges (see Figure 5.7). 

(5.20) 

where mi = w;j 2:1 WJ· 

The plotted surface is for the same example as in Figure 5.6 except that the 

trade-off aggregation strategy is used instead of the conservative strategy. Notice 

that the J-L( 9) surface in Figure 5. 7 is very steep near the boundaries which are the 

same fL = 0 as in Figure 5.6. In fact, the slope of the surface at the boundaries is 

theoretically infinite. These steep boundary slopes can cause hill climbing algorithms 

to quickly move towards the interior of the "island" if the algorithms are started near 

the boundary. 

For the case illustrated in Figure 5. 7, the importance weights wi in Equation 5.20 

were set to unity for each design criterion. A more aggressive design as far as reducing 

the total steel volume is concerned, can be achieved by increasing the importance 

weight for this design criterion. Figure 5.8 shows how the J-L( 9) surface changes when 
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Figure 5. 7: Surface plot of p,( (}) for the trade-off strategy with all importance weight 
W; = 1 

the steel volume importance weight is increased to 10 while the other importance 

weights are kept at their original values of unity. A comparison of Figure 5. 7 and 

Figure 5.8 shows that this change in importance weights pushes the peak of the 

surface, and hence the optimal design, towards smaller values of Band D, as desired. 

5.4.3 REVISER 

Given the current design (}, the role of the REVISER in CODA is to improve this 

design based on the specified design criteria. Basically, this involves solving the 

optimization problem of the function p,( (}). This optimization problem is an uncon­

strained one as constraints are specified as design criteria or soft constraints with the 

use of preference functions. Three different optimization techniques are employed in 

CODA: quasi-Newton method with BFGS updating, adaptive random search method 

and genetic algorithms. Below are descriptions of each of these three optimization 

techniques. 
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Figure 5.8: Surface plot of J-1.( 8) for the trade-off strategy with steel volume importance 
weight w; = 10 and all other w; = 1 

Quasi-Newton Method with BFGS updating 

Given the function f(x), the Newton's iterative method for finding the local optimum 

is given by: 

where xk = the parameter vector x in the kth iteration 

(5.21) 

(5.22) 

Hk =the Hessian matrix of f(x), defined by H(x) = [\7\7 f(x)], in the kth 

iteration. 

Note that this method requires both the first and second derivatives of the function 

f. In addition, the inversion of the Hessian matrix must be computed at each step. 

To improve the efficiency, an approximation to the inverse of the Hessian matrix is 

used instead. The Newton's method is modified as follows: 

1. Start by taking 1-1.0 = I, the identity matrix. 
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3. Compute xk+l = xk + ask where a is computed by minimizing f using a line 

search routine along the direction sk. 

4. Update Hk to Jik+l. 

Here, 1i represents the approximation to the inverse of the Hessian matrix or the 

pseudo inverse Hessian. Several procedures exist for updating 1i such as Davidon­

Fletcher-Powell (Fletcher and Powell 1963) and Broyden-Fletcher-Goldfarb-Shannon 

(Broyden 1970; Fletcher 1970; Goldfarb 1970; Shanno 1970), also known as DFP and 

BFGS updating methods. The BFGS updating scheme is chosen in CODA and is 

given by: 

(5.23) 

where rk = 'Vf(xk) 

,sk = -Hk'VJ(xk). 

An overall flowchart of this quasi-Newton method is shown in Figure 5.9. 
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Figure 5.9: Overall flowchart of quasi-Newton method with BFGS updating 
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Adaptive Random Search 

While quasi-Newton methods or any deterministic methods are very efficient in finding 

local optima for optimization problems involving a few parameters, they become 

computationally too demanding for high order systems with many parameters. For 

these problems, random search methods are more appropriate for three major reasons: 

1. The speed of convergence is independent of the dimensionality of the parameter 

space, at least in principle. 

2. The success of the method is largely independent of the degree of nonlinearity 

of the system. 

3. The method can succeed in the presence of multiple minima. 

The basic random search algorithm for the maximization of an objective function 

f(x), where x = (x1 , x2 , ... , xnJT is a vector of unknown parameters, proceeds as 

follows: 

1. An initial point x 0 in the search space is chosen and f(x0 ) is evaluated. 

2. Trial points xi E fix, where fix is the given permissible region in the n­

dimensional parameter space, are selected from an appropriate probability den­

sity function defined over fix. 

3. A successful point xi+1 is one for which f(xi+1
) < f(xi). 

In general, random search algorithms exhibit convergence in probability, i.e., 

P{ixn- xi> c}--+ 0 for n--+ oo 

where x =the optimum of f(x) 

n = the iteration count. 

(5.24) 
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While convergence in probability is a weak form of convergence, it is important 

to note that it applies in the presence of multiple minima and nondifferentiability of 

f(x). 

Rather than using the "pure random search" outlined above, most algorithms are 

based on a "random creep" procedure in which exploratory steps are confined to a 

hypersphere centered about the latest successful point f(xk). However, convergence 

is highly dependent on the size of the hypersphere in relation to the local topology 

of the parameter space. If the steps are too small, convergence may be extremely 

slow; if the steps are too large, overshoot is possible since no allowance is made for 

variations in the nature of the criterion function surface as the search progresses 

toward a minimum. 

In order to circumvent the slow convergence rate of conventional random creep 

procedures, an adaptive random search technique (Masri, Bekey, and Safford 1980) 

is used in CODA. This approach periodically optimizes the variance of the step­

size distribution. By searching over a variance range of many decades, the algorithm 

finds the step-size distribution that yields the best local improvement in the objective 

function. The variance search is then followed by a specified number of iterations of 

local random search where the step-size variance remains fixed. Periodic wide-range 

searches are introduced to ensure that the process does not stop at a local minimum. 

The following list outlines the steps of adaptive random search: 

1. Select initial guess x 0 . 

2. Choose a sequence of k standard deviations, s = { s1, s2, ... , sk}, to cover as wide 

a range as desired. 

3. Start with x = x 0 and cr = s1 , perform N function evaluations of global random 

search, with variance cr2 . 

4. Repeat step (3) successively with cr = s2 , s3 , ... sk. 

5. Determine k* such that random search with cr = Sk• yields best function values. 
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6. Perform M iterations with standard deviation Sk• and store the optimal value 

in x. 

7. Repeat steps (3) to (7) until convergence tolerance is satisfied. 

8. Terminate the search. 

The overall flow of this algorithm is summarized in Figure 5.10. 

Genetic Algorithms 

The last class of optimization schemes implemented in CODA is genetic algorithms. 

Two different GAs are available: vGA for discrete optimization and hGA for contin­

uous optimization. Since we have covered in detail both general concepts of genetic 

algorithms and also those specific to vGA and hGA in the last few chapters, the 

theories behind the two genetic algorithms will not be repeated here. 



-113-

Start 

Select initial value and variances 

Find locally optimal variance 

Perform M iterations of global random 
search with optimal variance 

Converged? 

Yes 

Stop 

No 

Figure 5.10: Overall flowchart of an adaptive random search algorithm 
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5.5 Implementation Issues 

In this section, the implementation aspect of CODA is discussed. In particular, a 

relatively new programming approach called object-oriented programming (OOP) is 

introduced. 

5.5.1 Object-Oriented Programming 

The CODA Optimal Design and Analysis System was developed in C++ following 

an object-oriented programming style. Object-oriented programming (OOP) is a rel­

atively new style of programming that establishes objects to represent and organize 

the information utilized by the program (Dym and Levitt 1991). CODA was imple­

mented in this style to ensure that the code is modular and extendable. Modularity 

allows for easy addition and modification of features in the future without having to 

restructure the software package, which greatly enhances programming efficiency. 

The object-oriented programming paradigm involves developing objects of classes 

to store information. A class may be anything from a physical object such as a 

building or an idea such as optimization. Each class contains certain attributes and 

member functions. Attributes simply refer to the characteristics or data which define 

the corresponding object, while member functions refer to the behavior or actions of 

the object. As an example, a class could be established to represent the Beams in a 

building. The attributes of Beams could include material properties (yield strength 

and modulus of elasticity), location, and section properties (moment of inertia and 

cross-sectional area). Member functions or behaviors associated with the Beams class 

could include Compute Volume and Compute Moment of Inertia. Numerous classes 

were developed specifically for CODA. Each class has an associated header file (*.h) 

and source file (*.cpp). The header file contains the class declaration, the object 

attributes, and the member function declarations. The source file (* .cpp) contains 

the actual code associated with each of the object member functions. Figure 5.11 

shows a typical header file for a class. The classes developed for the separate modules 

(the ANALYZER, EVALUATOR, and REVISER) are discussed in further detail later 



#include <iostream.h> 

class Material { 
double emodulus; 
double mu; 
double Fy; 

}; 

double GetEO; 
double Getmu(); 
double GetFyO; 
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Figure 5.11: A Typical Class Header File - Material Class 

in this section. 

The key concepts which define object-oriented programming are abstraction, en­

capsulation, and inheritance (Lippman 1991). A higher level of abstraction makes 

it possible to ignore many of the details associated with the problem and focus on 

the more important characteristics. A high level of abstraction is obtained by using 

classes to store the data; at first it may seem tedious to develop classes, but once 

created, these classes may be used to develop a more transparent and readable code. 

The high level of abstraction associated with 00 P and classes allows the program­

mer to focus on the function of the program rather than on the details regarding each 

piece of actual data. At the very least, OOP forces the programmer to thoroughly 

consider and organize all aspects of the program in a modular fashion. 

The association of attributes and behaviors with objects is known as encapsu-

lation, another feature of object-oriented programming. By encapsulating both the 

attributes and behaviors of an object, the linear style of conventional computer pro­

grams may be avoided. Rather than having to sequentially call subroutines, the OOP 

paradigm involves "jumping" between different processes by calling the member func­

tions of the appropriate objects. This less constraining style is more flexible and easier 

to maintain. 
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Another feature of object-oriented programming style is inheritance. If two classes 

are closely related they can share or inherit attributes and member functions. Class 

hierarchies are often drawn to show the relationships and inheritances among objects. 

As an example, a Finite Element Model class hierarchy has been developed and is 

shown in Figure 5.12. The finite element model contains two basic classes, Nodes 

and Elements, which store the necessary model information. Two different types of 

finite elements have been implemented: a beam-column and a truss element. In order 

to capture the difference between these two types of elements, the Elements class is 

then refined into a Beam-Column Element class and a Truss Element class. Beam­

column and truss elements have many characteristics in common, but also have certain 

distinct features. As shown in Figure 5.12, common characteristics of both types of 

elements are inherited from the Elements class including locations and the associated 

members. Each of the element types also has certain specific characteristics, however; 

for example, beam-column elements have six degrees of freedom and a 6x6 stiffness 

matrix, while truss elements have four degrees of freedom and a 4x4 stiffness matrix. 

These distinct features are specified at the Beam-Column Element class and Truss 

Element class level. These classes also have similar behavior, such as the need to 

compute their respective stiffness and mass matrices. Though the existence of this 

behavior is defined in the Elements class, the specific algorithm needed for each class 

is specified at the Beam-Column Element class and Truss Element class level. This 

feature allows the user to simply call the function and allow the object to determine 

the algorithm needed. 



Elements 

Attributes: 
ID Number 
Number of Degrees 

of Freedom 
Node i 
Nodej 
Mass matrix 
Stiffness matrix 
Structural Member 

Member Functions: 
Compute_K 
Compute_M 
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Beam-Column 

Attributes: 
ID Number 
Number of Degrees 

of Freedom 
Node i 
Nodej 
Mass matrix 
Stiffness matrix 
Structural Member 

Member Functions: 
Compute K 
Compute_M 

Truss 
Attributes: 

ID Number 
Number of Degrees 

of Freedom 
Node i 
Nodej 
Mass matrix 
Stiffness matrix 
Structural Member 

Member Functions: 
Compute_K 
Compute_M 

Figure 5.12: A simple finite element class hierarchy 
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The prototype CODA is written entirely in C++ code. The program was devel­

oped primarily using the Microsoft Visual C++ Development System for Windows 

Version 2.0. The classes created for the CODA Application were derived from Mi­

crosoft Foundation Classes (MFC). This class library consists of many classes which 

encapsulate a lot of details involved in Windows graphical user interface programming. 

By deriving classes from the MFC library, many features of the program including 

menus, dialog boxes, and graphical views, can be more easily and rapidly generated. 

The tools available in the Microsoft Visual C++ environment also facilitated the de­

velopment of the program. The initial framework of the program was created using 

the App Wizard. Dialog boxes and other resources were then created using the App­

Studio, while classes were created using the Visual Workbench and the Class Wizard. 

The Class Wizard also facilitated the mapping of the variables and controls into actual 

pieces of code. 

Numerous classes have been developed for CODA. The classes and class hierarchies 

associated with each of the three separate modules of the program are discussed briefly 

below. 

5.5.2 Implementation ofthe ANALYZER, EVALUATOR and 

REVISER 

The ANALYZER 

The main class created for the ANALYZER is Analysis. The following information 

is included in the Analysis class: 

• Finite Element Model 

- Elements: Location, Associated Member, Stiffness Matrix, Element Num­

ber, Resulting Displacements, Forces, and Stresses, etc. 

- Nodes: Location, Associated Connection, Node Number, Nodal Loads, etc. 

• Load Vector 

• Stiffness Matrix 
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• Mass Matrix 

• Gravity, Wind and Earthquake Loads 

• Time History Parameters 

• Free Vibration Response 

• Results 

Much of the information above is actually stored as classes within the Analysis class. 

For example, separate classes have been developed to store the Element and Node 

information as well as the Results. The following values are stored in the Results 

class: 

• Steel Volume, 

• Maximum Deflection: Value and Node where the maximum deflection occurs, 

• Maximum Drift: Value and Story in which the maximum drift occurs, 

• Maximum Column Axial, Shear, and Bending Stress: Values and Elements in 

which the maximum stresses occurs, and 

• Maximum Beam Axial, Shear, and Bending Stress: Values and Elements in 

which the maximum stresses occurs. 

In addition to the characteristics listed above, the Analysis class also contains 

member functions which perform the actual finite element analysis. The following 

member functions or subroutines are part of the Analysis class: 

• CreateFEModel(): Create a Finite Element Model based on the Physical Build­

ing Description, 

• Assign_LDA(): Assign Local Destination Array Values to each Element based 

on the Geometric Configuration, 

• Assemble_K(): Assemble the Global Stiffness Matrix for the Frame, 
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• Assemble_M(): Assemble the Global Mass Matrix for the Frame from informa­

tion about applied dead loads, 

• ComputeGravityLoads(): Compute the Nodal Gravity Loads Based on the Dis­

tributed Loads Input by the user, 

• ComputeWindLoads(): Compute the Wind Loading Based on the 1gg4 Uniform 

Building Code, 

• ComputeStaticEqLoads(): Compute the Equivalent Static Earthquake Loads 

Based on the 1gg4 UBC Uniform Building Code, 

• ComputeResSpecEqLoads(): Compute the Pseudo-Dynamic Earthquake Loads 

Based on the 1994 UBC Uniform Building Code Normalized Response Spectra 

Curves, 

• Solve(): Solve for the Nodal Displacements Using LU Decomposition, and 

• ComputeResults(): Compute the Steel Volume, Forces, Stresses, etc. in the 

Frame. 

Details of the ANALYZER classes and their member functions can be found in 

the CUREe-Kajima project report (Becket a!. 1996). 

The EVALUATOR 

The EVALUATOR in CODA is mainly made up of several classes derived from the 

CObject class in the Microsoft Foundation Classes (MFC). Figure 5.13 shows the 

hierarchy of these classes. Theta, Performance, and Criteria classes, which represent 

design parameters, performance parameters and design criteria, are derived from 

the NameObject class. Performance is, in turn, the base class for ReliPerformance. 

Having these classes derived from CObject has the advantage of inheriting capabilities 

such as serialization and runtime information. Besides these classes, three other 

classes, DesignParmList, PerfParmList, and DesignCritList, are defined which are 



Theta Perforrance 

ReliPerformance 
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Criteria 

PrefFunc Aggregate 

Figure 5.13: Object Hierarchy Tree for EVALUATOR 

Evaluate 

container classes for objects of Theta, Performance, Reliperformance and Criteria 

classes. 

The intermediate derived class of CObject is called NameObject and is mainly 

used as the base class of other classes. Attributes such as ID number and description 

of the object and methods to access them are added to the class definition. These 

attributes and methods are common to both design and performance parameters as 

well as design criteria. As such, classes Theta, Performance and Criteria, are derived 

from NameObject to inherit these properties. An instance of the NameObject class 

consists of the following: 

Attributes: 

• ID number (id), 

• description of the object name, 

• initial and current values of the object, 

• object type (Theta, Performance or Criteria), 

Methods: 

• set and get id, 

• set and get name name, 

• set and get initial and current values, 



-122-

CObject 

I 

QnmOpt StochOpt GAOpt 

Figure 5.14: Object Hierarchy Tree for REVISER 

• an assignment operator =, which allows copying one object to another, and 

• serialize (save and retrieve) information of the object. 

The REVISER 

The REVISER module in CODA is mainly made up of four C++ classes: Revise, 

QnmOpt, StochOpt and GAOpt. Figure 5.14 shows the hierarchy of these classes. 

Similar to the Analysis and the Evaluate classes, the Revise class is inherited from 

the CObject class of the Microsoft Foundation Class Library to inherit capabilities 

such as serialization and runtime information. This Revise class is designed as a 

parent class for optimization from which QnmOpt, StochOpt and GAOpt classes are 

derived from. The QnmOpt class is the object-oriented encapsulation of the Quasi­

Newton optimization method, while the StochOpt and GAOpt classes encapsulate 

the two stochastic optimization schemes: adaptive random search and genetic algo­

rithm. Much of the communications between the optimization objects and the rest 

of CODA (mainly the EXECUTIVE) is encapsulated in the Revise class. As such, 

all these optimization classes contain only optimization specific coding with virtually 

no dependence on other parts of the code. Therefore, adapting a new optimization 

scheme to CODA is as simple as inheriting a class from the Revise class and writing 

member functions to perform the necessary optimization procedures. The attributes 

and member functions of the Revise class are listed in the following: 
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Attributes: 

• number of design parameter (or dimension of the design parameter space) 

• current values of (} 

• domain of the design parameter space 

• current overall design measure f.Loverall 

• file objects for output of optimization messages and data (for debugging and 

result checking purposes). 

Methods 

• method to initialize all the attributes, 

• function to communicate with the EXECUTIVE to perform one cycle of analysis 

and evaluation to compute new overall design measure f.Loverall, 

• virtual function Optimize() (explained below) to call the user-selected opti­

mization scheme: quasi-Newton, genetic algorithms or adaptive random search. 

The concept of virtual functions is a powerful one in C++ and object-oriented 

programming. A virtual function is a class member function that is declared within 

a base class and redefined by a derived class, which provides a single interface to 

implement multiple methods. The whole idea behind using virtual functions is rather 

lengthy to explain and therefore, will not be covered here. However, any standard 

C++ reference such as (Lippman 1991) should have detailed coverage on this topic. 

For the Revise class in the REVISER, the virtual function Optimize provides 

CODA with the capability to determine which optimization scheme to call at runtime 

(as selected by the user) without using if-else if statements. This approach has the 

benefit of allowing the addition of new optimization schemes without changing the 

internal structure of the REVISER module (in particular, the Revise class), which is 

an important concept of object-oriented design. 
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Chapter 6 

Applications to Optimal Structural 

Design Problems 

6.1 Introduction 

Three structural design problems are presented in this chapter to illustrate the method­

ologies and algorithms discussed in the four previous chapters. The three examples 

we will look at are: 

1. A simple ten-bar truss structure with static loads. This example serves as a 

benchmark problem which has been studied extensively in the literature and is 

utilized here for comparison between the multicriterion optimal design method­

ology and the minimal weight design (MWD). Also, we will compare the results 

obtained by the two GAs proposed for continuous and discrete optimization 

with some other existing techniques. 

2. A planar three-story steel frame with different UBC earthquake design loads. 

This example is utilized for showing the different analysis capabilities of CODA. 

In addition, we will also study how the optimal design will differ by using differ­

ent earthquake design loadings as well as specifying different design parameters. 

3. A space truss tower with seventy-two members under static loads. This is a 

problem of reasonable size to illustrate the computational viability of both the 
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design methodology and the use of genetic algorithms for solving optimal design 

problems. 

6.2 Simple Ten-Truss Structure: A Benchmark 

Problem 

6.2.1 Problem Description 

A ten-bar truss cantilever structure shown in Figure 6.1 is a classical example which 

is well-studied in structural optimization literature (e.g. Ad eli and Kamal1986). It is 

a two-dimensional truss which is subject to static loads. The structure is 720 inches 

in length and 360 inches in depth. It is pin-supported on the left and free on the 

right. The material used for the members is aluminum (E = 104 ksi). The loading 

on the structure is shown in the figure with two concentrated loads, 100 kips each, 

acting on the two nodes in the bottom side. 

6.2.2 Problem Objective 

The main objective of this example is to utilize this well-studied structure in opti­

mal design as a benchmark problem for comparing different optimization algorithms 

and optimal design approaches. The design parameters for this problem are the 

cross-sectional areas of the truss members. There are ten design parameters which 

correspond to each truss member in the structure. For the multicriterion approach, 

the preference function for these parameters is illustrated in the first figure in Fig­

ure 6.2. Using this preference function, a soft constraint is imposed on the areas such 

that they must be greater than 0.1 square inches and less than 36 square inches with 

most preferred values lying between 0.1 and 35.9 square inches. 

Performance parameters for this example are total volume, maximum deflection 

at the tip and maximum axial stress. The goal is to minimize the total volume 

while keeping the deflection and axial stress within acceptable limits. The preference 
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Figure 6.1: Geometry of the ten-truss structure 
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function for the normalized volume is linear as shown in the second figure in Figure 6.2, 

indicating that the preference for a design decreases linearly as volume increases. 

Total volume is normalized by the maximum and minimum allowable volume, which 

is given by the maximum and minimum permissible member areas. The axial stress 

in each member is required to be less than 25.0 ksi, with greatest preference J1- = 

1 given to stresses which are less than 24.9 ksi. The preference function decreases 

linearly from unity to zero for axial stresses between 24.9 ksi and 25.0 ksi, and J.L = 

0 is assigned to stresses that exceed 25.0 ksi since these are unacceptable (see third 

figure in Figure 6.2). 

For tip deflection, the preference function is defined to be similar to that of axial 

stress. A preference value of unity is given to deflection values under 1.9 inches and 

this value decreases linearly from 1 to 0 as the deflection increases from 1.9 inches 

to 2.0 inches, and stays 0 for deflections greater than 2.0 inches (see last figure in 

Figure 6.2). 

6.2.3 Cases Studied 

Three cases were run based on the truss structure described above. In the first and 

third cases, the design parameters are taken as continuous variables, while in the 

second case, they are treated as discrete variables and the discrete area set is taken 

from the areas of AISC wide flange sections for illustrative purposes, even though the 

material is aluminum. The trade-off strategy is used for all three cases. Below is a 

description of the three cases: 

1. Case 1 - Ten continuous design parameters and three design criteria, total vol­

ume, axial stress and tip deflection. All importance weights are equal and have 

a value of unity. 

2. Case 2 - Same as Case 2 except the design parameters are treated as discrete 

variables with discrete area values as described. 
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1) Cross-sectional Area ::1L • A (in) 
0.0 0.1 35.9 36.0 

2) Total Volume ,,~ 
0.0 '-------~~--..-v 

0.0 1.0 

3) Maximum Axial Stress ''1 ~ o.o '------'---__.:...--• cr (ksi) 
0.0 24.9 25.0 

4) Deflection at Tip "1 ~ 0.0 '-----~-_c..--• defl. (in) 

0.0 1.9 2.0 

Figure 6.2: Preference functions for ten-truss structure 
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3. Case 3 - Minimize total volume with only constraints on member stresses and 

solved as continuous parameter problem by hGA. 

For the continuous cases, the proposed hGA is used to find the optimal solution 

while the proposed vGA is used to compute the solutions for the discrete cases. 
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Table 6.1: Results of MWD and MCD for Case 1 of the ten-bar truss (Continuous) 

MWD MCD 
Design Criteria Values J.l Values J.l 
Member 1 (in2 ) 30.13 1.000 30.85 1.000 
Member 2 (in2 ) 0.10 1.000 0.10 1.000 
Member 3 (in2

) 22.93 1.000 27.37 1.000 
Member 4 (in2 ) 15.39 1.000 17.09 1.000 
Member 5 (in2 ) 0.10 1.000 0.10 1.000 
Member 6 (in2

) 0.10 1.000 0.10 1.000 
Member 7 (in2

) 7.42 1.000 6.99 1.000 
Member 8 (in2 ) 20.75 1.000 19.20 1.000 
Member 9 (in2) 21.77 1.000 24.76 1.000 
Member 10 (in2 ) 0.10 1.000 0.10 1.000 
Total Volume (in3 ) 50229 0.669 53205 0.652 
Max. Axial Stress ( ksi) 25.00 0.000 24.90 1.000 
Tip Deflection (in) 2.00 0.000 1.90 1.000 
Overall - 0.000 - 0.866 

Table 6.2: Results of MWD and MCD for Case 2 of the ten-bar truss (Discrete) 

MWD MCD 
Design Criteria Values J.l Values J.l 
Member 1 (in2 ) 21.57 1.000 31.20 1.000 
Member 2 (in2 ) 10.98 1.000 3.54 1.000 
Member 3 (in2 ) 22.08 1.000 25.90 1.000 
Member 4 (in2 ) 14.95 1.000 15.60 1.000 
Member 5 (in2 ) 2.68 1.000 4.40 1.000 
Member 6 (in2 ) 10.98 1.000 4.40 1.000 
Member 7 (in2 ) 18.91 1.000 16.70 1.000 
Member 8 (in2

) 18.42 1.000 20.80 1.000 
Member 9 (in2

) 18.40 1.000 20.00 1.000 
Member 10 (in2) 13.51 1.000 5.57 1.000 
Total Volume (in3 ) 64289 0.576 62753 0.631 
Max. Axial Stress ( ksi) 10.01 1.000 8.25 1.000 
Tip Deflection (in) 1.99 0.001 1.88 1.000 
Overall - 0.071 - 0.855 
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6.2.4 Discussion of Results 

The results obtained are compared with those from Adeli (1986) and are listed in 

Tables 6.1 and 6.2. In this table, the results from Adeli were obtained by using 

the minimal weight approach and solving the problem with traditional optimization 

methods. These results are denoted as MWD in the tables while MCD represents 

the results obtained from the multicriterion optimal design methodology. For the 

discrete case, the structure is optimized over a list of 128 AISC wide flange sections 

of areas between 2.68 square inches and 35.9 square inches. The following interesting 

observations can be drawn from these numerical results: 

1. From Table 6.1, the optimal design obtained from MWD in Case 1 has smaller 

steel volume than the one using the multicriterion methodology presented. This 

is expected since the objective of MWD is to minimize the volume while MCD 

is geared towards finding a design that best satisfies all the criteria. This can 

be easily verified by computing the overall preference for the MWD optimal 

design (see Table 6.1). Notice that the MWD design better satisfies the volume 

criterion than that of MCD, but the overall design is not acceptable according 

to the prescribed design criteria for MCD. It should be noted however, that 

the MWD optimal solution can be approached arbitrarily closely by the MCD 

optimal solution by taking a sufficiently large importance weight on the total 

volume criterion instead of an importance weight of unity used for Table 6.1 

results 

2. Based on the results obtained in the discrete case (Table 6.2), it is obvious that 

one cannot obtain an optimal discrete solution from a continuous one by simply 

rounding up to the nearest discrete value. In fact, simple round-up of continuous 

solutions often results in a discrete solution that is infeasible. Table 6.3 shows 

the comparison between the continuous solution, a rounded-up solution and the 

one obtained by vGA. 

In terms of computational effort, both hGA and vGA are within an acceptable 

range. The number of function evaluations required to converge to the optimal so-
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Table 6.3: Comparison between rounded-up and vGA discrete solutions for Case 2 of 
the ten-bar truss 

Continuous Rounded-Up vGA 
Design Criteria Values f.l Values f.l Values f.l 
Member 1 (in2

) 30.85 1.000 31.10 1.000 31.20 1.000 
Member 2 (in2

) 0.10 1.000 2.68 1.000 3.54 1.000 
Member 3 (in2

) 27.37 1.000 27.70 1.000 25.90 1.000 
Member 4 (in2

) 17.09 1.000 17.10 1.000 15.60 1.000 
Member 5 (in2

) 0.10 1.000 2.68 1.000 4.40 1.000 
Member 6 (in2

) 0.10 1.000 2.68 1.000 4.40 1.000 
Member 7 (in2

) 6.99 1.000 7.08 1.000 16.70 1.000 
Member 8 (in2 ) 19.20 1.000 19.70 1.000 20.80 1.000 
Member 9 (in2

) 24.76 1.000 24.80 1.000 20.00 1.000 
Member 10 (in2

) 0.10 1.000 2.68 1.000 5.57 1.000 
Total Volume (in3

) 53205 0.652 57843 0.642 62753 0.631 
Max. Axial Stress ( ksi) 24.90 1.000 14.87 1.000 8.25 1.000 
Tip Deflection (in) 1.90 1.000 2.00 0.000 1.88 1.000 
Overall - 0.866 - 0.000 - 0.855 

lutions are around 1500 for continuous optimization using hGA and around 5000 for 

discrete optimization using vGA. The reason why vGA requires more function eval­

uations than hGA is that hGA uses local topological information of the search space 

through the quasi-Newton method. Such information is very important in speeding 

up the convergence rate and this information is simply not available in the discrete 

case. Nevertheless, the required number of function evaluations for vGA is within the 

same ball park as other discrete optimization techniques. Consider that for this prob­

lem, each parameter has 128 possible discrete sections, there are 12810 = 1.18 x 1021 

possibilities. So, 5000 trials are an infinitesimal fraction of the search space size. 

For the continuous case (Case 1), another comparison was carried out between 

hGA and the constrained optimization algorithm that comes with the optimization 

toolbox in MATLAB. Table 6.4 shows the optimal designs obtained by using hGA and 

the constrained optimization method, denoted as COM. Notice that hGA obtained a 

better solution than that of COM. Since COM is a local search method, premature 



-133-

Table 6.4: Comparison between hGA and COM for Case 1 of the ten-bar truss 

COM hGA 
Design Criteria Values p, Values p, 
Member 1 (in2

) 26.07 1.000 30.85 1.000 
Member 2 (in2

) 0.36 1.000 0.10 1.000 
Member 3 (in2

) 25.55 1.000 27.37 1.000 
Member 4 (in2

) 16.54 1.000 17.09 1.000 
Member 5 (in2

) 0.10 1.000 0.10 1.000 
Member 6 (in2

) 0.35 1.000 0.10 1.000 
Member 7 (in2) 13.84 1.000 6.99 1.000 
Member 8 (in2

) 23.85 1.000 19.20 1.000 
Member 9 (in2

) 23.85 1.000 24.76 1.000 
Member 10 (in2

) 0.63 1.000 0.10 1.000 
Total Volume (in3

) 56479 0.627 53205 0.652 
Max. Axial Stress ( ksi) 10.22 1.000 24.90 1.000 
Tip Deflection (in) 1.90 1.000 1.90 1.000 
Overall - 0.856 - 0.866 

convergence may occur when the objective function is fiat near the optimum, as is the 

case here. Without knowing the local topographical information, it is difficult to set 

the gradient tolerance for local search so that it will not converge to a suboptimum 

because of a fiat surface. On the other hand, hG A is stochastic-based and uses 

gradient information only to speed up convergence but does not depend on it for a 

convergence check. In terms of number of function evaluations, COM requires between 

1200 to 1500 evaluations depending on the starting point while hGA takes around 

2000 evaluations. Although hGA requires around 500 more evaluations (about 30-

40% more), the ability to possibly locate the global optimum is well worth the extra 

computational effort. 

Finally, for Case 3, hGA was able to identify two distinct designs (see Table 6.5). 

Although the first design gives a local optimum, it is substantially different in design 

from the global optimal solution. This case illustrates the multimodal solution power 

ofhGA. 



-134-

Table 6.5: Two different designs obtained by hGA for Case 3 

Member Values (in2
) Values (in2

) 

1 4.11 7.90 
2 3.89 0.10 
3 11.89 8.10 
4 0.11 3.90 
5 0.10 0.10 
6 3.89 0.10 
7 11.16 5.80 
8 0.15 5.51 
9 0.10 3.68 
10 5.51 0.14 

Total Volume (in") 17251 14975 
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6.3 Three-Story Steel Frame 

6.3.1 Problem Description 

A three-story, single bay, steel frame is utilized as an example to demonstrate some 

of the capabilities of CODA. A drawing of the frame with in-plane dimensions can 

be seen in Figure 6.3. The out-of-plane tributary width is 120 inches, necessary 

for gravity load calculations. All support conditions are fixed, and beam-column 

connections are moment resisting. All members, both beams and columns, are wide­

flange elements. 

1 2 0 II 

1 2 0 II 

1 2 0 II 

'i:/:: 240 II 
w; 

Figure 6.3: Geometry of the problem 
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The frame was subjected to gravity and earthquake loads. Gravity load values 

were taken as the defaults provided by the program; specifically, 80 lbsjft2 and 20 

lbs/ft2 for the roof dead and live loads respectively, and 100 lbs/ft2 and 50 lbs/ft> 

dead and live load respectively for each floor. 

The earthquake loadings were calculated using two methods available in CODA: 

1. the UBC 1994 equivalent static load 

2. the UBC 1994 normalized response spectra. 

In the code-based analyses, the load parameters are given as follows: 

• zone factor Z = 0.4 (i.e. Zone 4) 

• soil type S = 1 (i.e., rocky or firm soil) 

• importance factor I = 1.0 

• ductility factor Rw = 12. 

In the response spectra analysis, only the first two translational modes were considered 

and their damping ratios were specified as 5% of critical. 

6.3.2 Problem Objective 

The objective of this example is to illustrate the capabilities of CODA and the power 

of vGA for discrete optimization over AISC steel sections. The design parameters for 

this suite of examples are beam and column sections. No constraints were imposed 

on these parameters. 

Performance parameters for the examples are total steel volume, interstory drift 

and member stress, where the goal is to minimize steel volume while keeping the 

drift and the stress within acceptable limits. The preference function for steel volume 

(first figure in Figure 6.4) is triangular in shape, indicating that the preference for 

a design decreases linearly as steel volume increases. Steel volume is normalized by 

the maximum and minimum allowable volume, which is given by the maximum and 
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minimum permissible member dimensions. Member stress is evaluated as a ratio in­

volving allowable stress as specified in the AISC manual (AISC 1986), which includes 

buckling and yielding. Using the bilinear preference function (second figure in Fig­

ure 6.4), the stress ratio is perfectly acceptable if it is less than 0.9 and the preference 

value drops off linearly from 1.0 to 0.0 as it increases from 0.9 to 1.0. It becomes 

totally unacceptable (f..L = 0.0) when the stress ratio is greater than 1.0. Preference 

function for interstory drift is defined as follows: The upper bound is set to the code 

limit (0.04*story height/ Rw for frame with a period less than 0.7sec) and equals 0.4 

inches for the example here. The perfectly acceptable drift range is from 0.00 to 0.18 

inches was based on nonstructural damage considerations (i.e., less than 0.0015*story 

height). The preference function for drift is illustrated in the last figure in Figure 6.4. 

6.3.3 Cases Studied 

Based on the frame model and the design and performance parameters discussed 

above, a total of five example cases (A-E) were run. For the first four cases (A to D), 

a code-based optimal design was sought using equivalent static earthquake loads from 

the 1994 UBC. Importance weights for the design criteria or the design parameters 

were changed in each case to illustrate their effect on the optimal design. 

Besides the cases for the equivalent static earthquake load, another case, E, was 

run using the 1994 UBC design spectrum. The design criteria and the associated 

preference functions for case E are exactly as in Case A. Cases A and E allow com­

parison of the results using the two available earthquake analysis tools within CODA. 

The cases analyzed are summarized as follows: 

• Case A - Design parameters group all beams together and all columns together 

in the structure so that there are only two discrete design parameters: W­

section for the beams and columns, respectively. The performance parameters 

are the steel volume, interstory drift and maximum stress in the members. 

Equal weights are placed on all design criteria. 

• Case B- The importance weight of interstory drift is increased to 10.0 with all 
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Figure 6.4: Preference functions for the 3-story frame 
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the others kept at 1.0 as in case A. 

• Case C - Same as in case A except the total steel volume now has an importance 

weight of 10.0 and the others are unchanged. 

• Case D - The columns and beams for each story are uncoupled, resulting in 

six design parameters (one for each story beam and also one for both columns 

in each story). The design criteria are essentially the same as in case A. All 

importance weights are set to unity. 

• Case E - Same as Case A except a response-spectrum analysis was performed 

using the 1994 UBC design spectrum. 

All the cases considered were solved using the vGA. In addition, Case D was also 

solved by a simple GA. The trade-off strategy is used for all the cases. 



- 140-

6.3.4 Discussion of Results 

Results from the equivalent linear static earthquake analyses (Cases A through D) 

and that of response spectra (Case E) are presented in Table 6.3.4. Referring to this 

table, the following observations on the results of equivalent static analyses can be 

made: 

• Interstory drift requirement governed the optimal design process. Total steel 

volume was generally increased to the point such that the drift preference value 

was right at the corner between constant preference and the linear drop-off in 

the preference function. 

• Member stress requirement did not seem to have much influence on the optimal 

design as the maximum stress ratio is far from the value of 0.9, where the corner 

between constant preference and linear drop-off of preference is located. 

• Beam sections of these optimal designs have much larger moments of inertia 

compared to those of the columns. This is explained by the fact that in most 

cases beams are longer than columns and their stiffnesses have a greater impact 

of the drift. However, this is not consistent with UBC, but the weak-beams­

strong-columns constraint was not enforced. It could, however, be taken into 

account and the results obtained would be more consistent with UBC 

• By comparing the two-parameter and six-parameter cases, it can be seen that 

better results, illustrated by the smaller sections, lower steel volume and the 

increase in overall J.L, were achieved when beam and column sections were allowed 

to vary individually from story to story, as expected. 

Comparing the results of Case A and Case E of Table 6.3.4, it can be seen that 

the final optimal designs for equivalent static and response spectra analyses are some­

what different. In general, the response spectra method called for larger beam sections 

because of the way maximum drifts are approximated from different modes conser­

vatively (such as SRSS), resulting in a larger steel volume. Both methods resulted 
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Table 6.6: Results for equivalent static (Cases A-D) and response spectra (Case E) 

Case Design Criteria Value jJ, 

A All Columns W12x16 (4.71, 103) a -
All Beams W14x22 (6.49, 199) -
Total Steel Volume 8064 0.912 
Interstory Drift 0.1710 1.000 
Max. Member Stress Ratio 0.3123 1.000 
Overall - 0.970 

B All Columns W12x16 (4.71, 103) -
All Beams W14x22 (6.49, 199) -
Total Steel Volume 8064 0.912 
Interstory Drift 0.1710 1.000 
Max. Member Stress Ratio 0.3123 1.000 
Overall - 0.992 

c All Columns W12x14 (4.16, 88.6) -
All Beams W14x22 (6.49, 199) -
Total Steel Volume 7668 0.920 
Interstory Drift 0.1830 0.987 
Max. Member Stress Ratio 0.3624 1.000 
Overall - 0.932 

D Story 1 Columns W12x16 (4.71, 103) -
Story 2 Columns W12x14 (4.16, 88.6) -
Story 3 Columns W10x12 (3.54, 53.8) -
Story 1 Beams W14x22 (6.49, 199) -
Story 2 Beams W14x22 (6.49, 199) -
Story 3 Beams W8x10 (2.96, 30.8) -
Total Steel Volume 6804 0.938 
Interstory Drift 0.1793 1.000 
Max. Member Stress Ratio 0.5863 1.000 
Overall - 0.979 

E All Columns W12x14 (4.16, 88.6) -
All Beams W16x26 (7.68, 301) -
Total Steel Volume 8525 0.903 
Interstory Drift 0.1657 1.000 
Max. Member Stress Ratio 0.3317 1.000 
Overall - 0.966 

a Area (in2 ) and moment of inertia (in4 ), respectively. 
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in perfectly acceptable interstory drift values, although the actual drift values them­

selves are slightly different. In both cases, although interstory drift governed the 

optimization process, the steel volume controlled the overall design preference. The 

interstory drift is reduced until it just reaches a perfectly acceptable preference value 

of 1.00. 

In Case B, the same results were obtained as those in Case A. This is expected 

since the drift was already perfectly acceptable in Case A, so giving more weight to 

drift cannot improve the design. In Case C, a more aggressive design is obtained 

by increasing the importance weight of steel volume. Notice that the drift is pushed 

beyond the corner of the preference function and results in a preference value of 0.987. 

The convergence rate for Case A can be seen in Figure 6.5. From this figure, it 

can be seen that vGA converged to the optimal solution around the 20th generation. 

Since a population size of 30 was used, it found the optimal solution with merely 

600 function evaluations. Granted that this problem is two dimensional, the number 

of possibilities is still 1282 = 16384 and 600 trials represents only 3.6% of the whole 

search space. Once again, vGA displays a good convergence rate. To further illustrate 

its merits, Table 6.7 shows the results obtained by vGA and a simple GA for Case 

D. Both were carried out using population size of 30 for 100 generations. Notice that 

the simple GA was unable to find the optimal solution and therefore resulted in a 

slightly larger steel volume compared to the one obtained by vGA. 

Note that in Case E, columns of the stories 1 and 2 are fairly close (within 15%). 

When building such a frame, it is often more convenient to select the same sections for 

these columns. To ensure the design is still optimal after coupling these columns, one 

can regroup the design parameters to reflect this and recalculate the optimal design. 
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Table 6.7: Results obtained by vGA and simple GA for CaseD 

vGA simple GA 
Design Criteria Values J1 Values J1 
Story 1 Columns W12x16 - W12x16 -
Story 2 Columns W12X14 - W12x16 -
Story 3 Columns W10X12 - W12x14 -
Story 1 Beams W14X22 - W14x22 -
Story 2 Beams W14X22 - W14x22 -
Story 3 Beams W8X10 - W10x12 -
Steel Volume 6804 0.938 7224 0.930 
Interstory Drift 0.1793 1.000 0.1756 1.000 
Max. Stress Ratio 0.5863 1.000 0.5427 1.000 
Overall - 0.979 - 0.964 
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Figure 6.5: Convergence history of vGA for Case A 
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6.4 Three Dimension Seventy-Two Bar '!russ Tower 

6.4.1 Problem Description 

A three-dimensional seventy-two bar truss tower, illustrated in Figure 6.6, is studied 

here and has been investigated by several researchers (Gellatly et al. 1971; Schmit and 

Miura 1976) using different techniques. This truss has four stories and is symmetric 

about the X and Y axes. It is 240 inches tall with equal story heights and has a 

square cross-section of 120 inches by 120 inches. The structure is pin-supported at 

the base. The members are made of aluminum (E = 105 ksi). The loading on this 

structure is as follows: 

Table 6.8: Load cases of the 72-bar truss 

Load case 
A 
B 

Node 
1 
1 

Load Components (kips) 
X Y Z 

5.00 
75.00 

5.00 
75.00 

-5.00 
75.00 

Here, node 1 is the one on the roof along the Z-axis. 

6.4.2 Problem Objective 

The main objective of this problem is to investigate the computational requirement 

of the multicriterion optimal design methodology and the application of genetic al­

gorithms to structural optimization problems. There are 72 axial members in the 

structure which can be divided into four identical substructures, with each substruc­

ture representing a single story. The members are numbered according to the scheme 

in Figure 6.7. The numbering works as follows: starts with the four vertical members 

(1-4), the bracings on the four "walls" (5-12), the horizontal members (13-16) and 

finally, the bracings on the "ceiling" ( 17,18). This cycle repeats for each of the four 

stories to get a total of 72 members. 
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Figure 6.6: Geometry of the 72-truss structure 
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Design parameters for this problem are the cross-sectional areas of the members. 

Since there is a lot of symmetry in this structure, the members are grouped into 

16 design parameters as listed in Table 6.9. The lower and upper bounds on the 

cross-sectional areas are 0.1 in2 and 36.0 in2 and these bounds are specified as "soft" 

constraints by using preference function as shown in the first figure in Figure 6.8. 

Performance parameters for this structure are total material volume, maximum 

axial stress and maximum deflection at the roof. The goal is to minimize the total 

material volume while keeping the roof deflection and member axial stresses within 

acceptable limits. The preference function for total material volume is shown in the 

second figure in Figure 6.8, indicating that the preference of a design decrease linearly 

as total volume increases. The axial stress in members is required to be less than 25.0 

ksi, with the greatest preference value of unity given to stresses under 24.9 ksi. For 

stresses between 24.9 ksi and 25.0 ksi, the preference value decreases linearly from 

unity to zero. A preference value of zero is assigned for stresses above 25.0 ksi (see 

third figure in Figure 6.8). 

For roof deflection, the in-plane displacements along the X and Y directions of 

the four roof nodes are required to be less than 0.25 inches and perfectly acceptable 

if less than 0.24 inches. The preference function for this quantity is defined to be 

similar to that of axial stress (see last figure in Figure 6.8). 

6.4.3 Cases Studied 

Three cases were run based on this truss tower: 

1. Case 1 - Sixteen continuous design parameters and three design criteria, total 

volume, axial stress and roof in-plane deflection. All importance weights are set 

to unity. A different preference function is used for drift in this case. For drift 

less than 0.25 inches, the preference value is perfectly acceptable and becomes 

unacceptable for drift greater than 0.251 inches. Loading Case A is used. hGA 

was used to find the solution. 

2. Case 2- Exactly like Case 1 except Load Case B is used and solved by hGA. 
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3. Case 3 - Exactly like Case 2 except the design parameters are treated as dis­

crete variables with discrete areas taken from AISC steel sections, even though 

material is aluminum (as in the 10-bar truss case). vGA is used for solving this 

problem. 
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Table 6.9: Grouping of design parameters for the 72-bar truss 

Design Parameter Group Members 
1 1-4 
2 5-12 
3 13-16 
4 17-18 
5 19-22 
6 23-30 
7 31-34 
8 35-36 
9 37-40 
10 41-48 
11 49-52 
12 53-54 
13 55-58 
14 59-66 
15 67-70 
16 71-72 

15 

3 

/ 
X 

Figure 6.7: Member numbering of the 72-bar truss structure 
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1) Cross-sectional Area 

~A (in) 

0.0 0.1 35.9 36.0 

2) Total Volume 10~ 
0.0 L...,_ ______ ....:::... __ ..,~ v 

0.0 1.0 

3) Maximum Axial Stress 101 \ 
0.0 L...,_-----'---......:>--+~ cr (ksi) 

0.0 24.9 25.0 

4) Roof In-plane Deflection 1.01 t\ 
0.0 L...,_-----'---......:>--+~ defl. (in) 

0.0 0.24 0.25 

Figure 6.8: Preference functions for the 72-bar truss structure 
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Table 6.10: Results of Case 1 and those from Haftka and Kamat (1985) 

MCD w/hGA MWD 
Design Criteria Values f.-L Values f.-L 
Group 1 (in2

) 0.10 1.000 0.10 1.000 
Group 2 (in2

) 0.52 1.000 0.52 1.000 
Group 3 (in2

) 0.40 1.000 0.40 1.000 
Group 4 (in2

) 0.54 1.000 0.54 1.000 
Group 5 (in2 ) 0.50 1.000 0.50 1.000 
Group 6 (in2

) 0.50 1.000 0.51 1.000 
Group 7 (in2

) 0.10 1.000 0.10 1.000 
Group 8 (in2

) 0.10 1.000 0.10 1.000 
Group 9 (in2

) 1.25 1.000 1.25 1.000 
Group 10 (in2

) 0.50 1.000 0.50 1.000 
Group 11 (in2

) 0.10 1.000 0.10 1.000 
Group 12 (in2

) 0.10 1.000 0.10 1.000 
Group 13 (in2

) 1.86 1.000 1.86 1.000 
Group 14 (in2

) 0.50 1.000 0.50 1.000 
Group 15 (in2

) 0.10 1.000 0.10 1.000 
Group 16 (in2

) 0.10 1.000 0.10 1.000 
Steel Volume (in3 ) 3690 0.966 3696 0.966 
Max. Axial Stress (ksi) 23.86 1.000 23.83 1.000 
Tip Deflection (in) 0.25 1.000 0.25 1.000 
Overall - 0.987 - 0.987 
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Table 6.11: Case 2 and 3 solutions for the 72-bar truss 

Continuous (hGA) Discrete ( vG A) 
Design Criteria Values f1, Values f1, 

Group 1 (in2) 1.71 1.000 2.68 1.000 
Group 2 (in2

) 7.88 1.000 7.34 1.000 
Group 3 (in2 ) 10.27 1.000 11.70 1.000 
Group 4 (in2 ) 9.23 1.000 5.54 1.000 
Group 5 (in2 ) 6.69 1.000 9.71 1.000 
Group 6 (in2

) 7.91 1.000 11.80 1.000 
Group 7 (in2 ) 0.10 1.000 4.68 1.000 
Group 8 (in2 ) 0.95 1.000 2.68 1.000 
Group 9 (in2

) 18.38 1.000 18.30 1.000 
Group 10 (in2) 7.64 1.000 10.00 1.000 
Group 11 (in2

) 0.10 1.000 3.83 1.000 
Group 12 (in2 ) 0.10 1.000 7.06 1.000 
Group 13 (in2

) 27.84 1.000 20.10 1.000 
Group 14 (in2 ) 8.30 1.000 8.79 1.000 
Group 15 (in2 ) 0.10 1.000 3.54 1.000 
Group 16 (in2 ) 0.10 1.000 7.34 1.000 
Steel Volume (in3 ) 55770 0.821 67279 0.764 
Max. Axial Stress (ksi) 24.90 1.000 10.88 1.000 
Tip Deflection (in) 0.24 1.000 0.24 1.000 
Overall - 0.936 - 0.914 
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6.4.4 Discussion of Results 

Results from all three cases are listed in Tables 6.11 and 6.10. In Table 6.10, the 

optimum obtained by using MCD and hGA is almost identical to the results obtained 

by using the minimal weight approach (MWD). Because many of the areas obtained 

in Case 1 are much smaller than those in the discrete member database, a much 

greater loading was used in Cases 2 and 3. In Table 6.11, the continuous and discrete 

solutions are listed. Notice that again the discrete solution does not appear very 

similar to the continuous one, just like the previous examples. 

The convergence histories of the continuous and discrete cases (2 and 3) are il­

lustrated in Figure 6.9. Notice the convergence rate stabilized for hGA after the 

first 150-200 generations and vGA took about almost 300 generations to converge. A 

population size of 30 was used for both cases. Although 9000 function evaluations 

for vGA to obtain a solution seem like a lot, the total possible designs in the search 

space are 12816 = 5.19 x 1033 ! 

Notice that the lower story columns in Cases 1 and 2 have very small cross­

sectional areas. While these tiny member areas may be required for the optimal 

design, such designs may not be practical. To remedy this problem, one can group 

these lower story columns with the upper story ones as a single design parameter or 

imposing a strict preference function that requires a higher minimum area. By doing 

so, the optimal design obtained would be one that is more consistent what we would 

expect. 
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Chapter 7 

Conclusions 

7.1 Summary and Conclusions 

In this work, a recently-developed multicriterion optimal design framework is pre­

sented. This framework is based upon the use of preference functions for design 

criteria which can be used to quantify preference or acceptability of both engineering 

and non-engineering quantities. The notion of design criterion and its associated pref­

erence function allows easy incorporation of different design objectives from different 

parties such as the owner, the engineer, etc. With trade-off aggregation strategies, 

design decisions involving these different design criteria can be automated in a sys­

tematic way using digital computers. 

This framework has been shown to be related to other existing optimal design 

methodologies. In chapter 2, it was shown that for a given multicriterion design 

problem, each optimal design obtained using this framework lies in the Pareto optimal 

set of the problem. Other Pareto optimal designs for the problem can be obtained by 

varying the importance weights of the design criteria. Furthermore, with the choice 

of certain preference functions for different design criteria, it was also shown that this 

framework behaves very much like the fully stressed design method which is one of the 

most popular single objective optimal design methodologies in structural engineering. 

Such a relationship is further verified by the numerical results presented in Chapter 

6. 

Genetic algorithms are presented in this work. GAs are stochastic methods that 
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are based on Darwinian evolution theory. Two special classes of GAs were studied: 

variable-length GAs and hybrid GAs. A variable-length GA, vGA, is presented for 

solving optimal structural design problems over a discrete member database such 

as the AISC steel sections. In Chapter 4, a simple design example was shown to 

illustrate a possible difficulty known as GA-deception that may arise when simple 

genetic algorithms are applied to this problem. vGA was designed to address this 

difficulty. Based on the results presented for the three-story frame in Chapter 6, vGA 

shows its superiority over simple GAs for seeking global optimal solution in discrete 

search space. The numerical results also show that vGA converges quite quickly to 

the solution. Since discrete optimization problems are computationally challenging, 

especially for high dimension systems, vGA provides one viable method. 

A specially-designed hybrid GA, called hGA, is also presented here. hGA is de­

signed for continuous optimization problems. By incorporating a hill-climbing algo­

rithm as an operator within the GA loop, a very efficient and powerful hybrid GA 

is obtained. It is evident from the numerical results presented in Chapter 4, hGA 

has a better convergence rate than simple GA for optimization problems with con­

tinuous parameters. hGA is a global optimization technique and it was able to find 

a global solution that a quasi-Newton method could not because of obstruction by 

a local optimum. Furthermore, although not rigorously proved, hGA has displayed 

multimodal solution capability in the two equivalent stiffness models for the two-story 

shear building and the two optimal designs for the 10-bar truss problem. 

A software prototype of the multicriterion design framework called CODA is pre­

sented in Chapter 6. CODA is a software application for performing an optimal 

structural design based on 1994 UBC wind and earthquake specifications. Although 

the analysis capabilities of CODA are limited to only linear static and dynamic prob­

lems, it can be used to design simple plane structures and it is a good tool for graphical 

illustration of various aspects of the optimal design framework. Moreover, it can be 

used as a research tool for studying how various quantities such as different seismic 

ground motion models can affect the optimal design. Some results using CODA for 

reliability-based optimal structural design were also presented (Becket al. 1996). 
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From the results of the examples presented in Chapter 6, it is clear that designs 

obtained from structural optimization may not be practical and sometimes, even 

inconsistent with standard design codes such as UBC. However, one can remedy such 

shortcomings by specifying design criteria that take into account factors that we 

normally would consider in a design procedure. For instance, by imposing the weak­

beams-strong-columns requirement on the three-story frame example, the optimal 

design obtained would be more consistent with UBC. 

7.2 Future Research 

It is desirable to apply the optimal design framework presented here to multicriterion 

performance-based design. Since reliability theory is incorporated into the framework 

(Becket al. 1996), different levels of performance can be specified with different target 

reliabilities. It will be both interesting and informative to compare how different are 

the optimal designs for various performance levels and reliabilities. 

Another improvement to both the theoretical framework and CODA is to incor­

porate artificial intelligence techniques throughout the design process. For example, 

a knowledge-based expert system can be employed to remove some of the least likely 

candidates for an optimal solution, thus reducing the size of the search space. Fu­

ture research could be focused on development of rules for performing such selections. 

One possible approach is to apply classifier systems which are genetics-based expert 

systems (Goldberg 1989). 

Another interesting topic would be to develop a method to approximate the objec­

tive function of a continuous-variable optimization problems. Since an evaluation of 

the objective function could involve a nonlinear finite element analysis, having such a 

method can drastically reduce the computational requirements. One possibility is to 

use neural networks to approximate the computations of the ANALYZER by training 

them to estimate the topography of the objective function surface. Once the neutral 

network is trained, it can be used to quickly compute the analysis results. In ad­

dition, one can train neural networks with commercial packages such as NASTRAN 
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or ABACUS and then connect them with CODA. Doing so can greatly increase the 

computational capability of CODA. On the other hand, neural networks require a 

large amount of data to be trained and they are not good at extrapolating outside 

the region covered by the training data. 

The multicriterion design framework presented here has been applied to structural 

optimization problems. However, this framework is a very general decision making 

methodology that can be applied to other problems as well. One possible application 

is to employ this framework for optimal design of controllers for structural systems. 

Finally, genetic algorithms can be applied to other engineering problems. In this 

study, special genetic algorithms such as hGA and vGA have been shown to be 

very powerful techniques for solving continuous and discrete structural optimization 

problems. Other problems exist in various structural engineering fields that require 

optimization as well. For instance, in system identification we often have to identify 

multiple equivalent models which require an optimization scheme that can handle 

multimodal problems (Beck and Katafygiotis 1997; Katafygiotis and Beck 1997). 

Since hGA seems to possess the capability to solve these problems, further research 

would be useful to investigate the multimodal capability of hGA. Also, in system 

identification, we are often interested in finding optimal locations for the placement 

of sensors. This problem is a combinatorial optimization one and the search space for 

this problem rapidly grows as the number of sensors and possible locations increases. 

It is desirable to apply genetic algorithms to these problems. 
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