
CALIFORNIA INSTITUTE OF TECHNOLOGY

EARTHQUAKE ENGINEERING RESEARCH LABORATORY

OPTIMAL DESIGN OF BUILDING STRUCTURES

USING GENETIC ALGORITHMS

BY

EDUARDO CHAN

REPORT NO. EERL 97-06

PASADENA, CALIFORNIA

1997

A REPORT ON RESEARCH PARTIALLY SUPPORTED BY THE

KAJIMA-CUREE JOINT RESEARCH PROGRAM AND THE

EARTHQUAKE RESEARCH AFFILIATES PROGRAM OF CAL TECH

UNDER THE SUPERVISION OF JAMES L. BECK

Optimal Design of Building Structures Using

Genetic Algorithms

Thesis by

Eduardo Chan

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

1997

(Submitted June 10, 1997)

-n-

© 1997

Eduardo Chan

All Rights Reserved

-iii-

Acknowledgements

I would like to express my sincere appreciation to Professor James L. Beck for his sup­

port and encouragement throughout my graduate studies here at Caltech. Without

him, the completion of this thesis would not have been possible. I greatly appreciate

all the comments and suggestions given by my thesis committee members to make

my thesis better.

I would also like to thank all the faculty and staff at Thomas building for making

my stay at Caltech a very memorable one. Special gratitude is extended to my fellow

graduate students David Polidori, Scott May, Michael Yanik, Anders Carlson, Mark

Long, C.T. Huang and C.M. Yang for all the good times we spent together.

My deepest appreciation goes to my wife Bessie, who has constantly supported me

throughout my doctoral studies. Despite being away from me for almost four years,

she has demanded the minimum attention a wife would expect from her husband,

which allowed to concentrate more on my research work. For her sacrifice, I would

always be grateful.

Finally, I am deeply indebted to my parents for believing in my dreams. Nine years

ago, they provided me with an opportunity to come the United States to pursue my

college education. Completion of my doctoral studies would not be possible without

the sacrifice they went through to support me through college.

-rv-

Abstract

A general framework for multi-criteria optimal design is presented which is well-suited

for automated design of structural systems. A systematic computer-aided optimal

design decision process is developed which allows the designer to rapidly evaluate

and improve a proposed design by taking into account the major factors of interest

related to differeent aspects such as design, construction, and operation.

The proposed optimal design process requires the selection of the most promising

choice of design parameters taken from a large design space, based on an evaluation

using specified criteria. The design parameters specify a particular design, and so

they relate to member sizes, structural configuration, etc. The evaluation of the de­

sign uses performance parameters which may include structural response parameters,

risks due to uncertain loads and modeling errors, construction and operating costs,

etc. Preference functions are used to implement the design criteria in a "soft" form.

These preference functions give a measure of the degree of satisfaction of each design

criterion. The overall evaluation measure for a design is built up from the individual

measures for each criterion through a preference combination rule. The goal of the

optimal design process is to obtain a design that has the highest overall evaluation

measure - an optimization problem.

Genetic algorithms are stochastic optimization methods that are based on evo­

lutionary theory. They provide the exploration power necessary to explore high­

dimensional search spaces to seek these optimal solutions. Two special genetic algo­

rithms, hGA and vGA, are presented here for continuous and discrete optimization

problems, respectively.

The methodology is demonstrated with several examples involving the design of

truss and frame systems. These examples are solved by using the proposed hGA and

vGA.

-v-

Contents

Acknowledgements

Abstract

1 Introduction

1.1 Background and Motivation

1.2 Objectives

1. 3 Overview of This Dissertation

2 Methodologies for Achieving Optimal Design

2.1 Optimal Design Concepts

2.2 Overview of Existing Optimal Design

Methodologies

2.2.1 Optimality Criteria Methods .

2.2.2 Reliability-Based Optimal Design

2.2.3

2.2.4

2.2.5

Multicriterion Design Optimization

Other Optimal Design Problems . .

Discrete Optimization in Optimal Design

2.3 The Multicriterion Optimal Design Framework .

2.3.1 Overview of the Framework

2.3.2 Terminology

2.3.3 Description of the Framework Modules

2.3.4 Discussion of the Optimal Design Framework

2.4 Conclusions

3 Introduction To Genetic Algorithms

3.1 Introduction

iii

iv

1

1

2

2

5

5

7

7

10

12

13

15

16

16

16

18

27

32

34

34

-VI-

3.2 A Brief History of Genetic Algorithms

3.3 Basic Mechanics of Genetic Algorithms

3.3.1 Terminology

3.3.2 Components of a Genetic Algorithm

3.3.3 Comparison with Existing Optimization Techniques

3.3.4 Illustrative Example

3.4 Theory of Genetic Algorithms

3.4.1 Schemata

3.4.2 Order, Defining Length and Fitness of Schemata .

3.4.3 Building Blocks Processing

3.4.4 Implicit Parallelism of Genetic Algorithms

3.4.5 Fundamental Theorem of Genetic Algorithms

3.5 Issues Concerning Genetic Algorithms as

Optimizers

3.5.1 Control Parameters and Importance of Genetic

Operators

3.5.2 Representation Difficulties

3.5.3 Fitness Scaling and Tournament Selection

3.5.4 GA-hard and GA-deceptive Problems .

4 Special Classes of Genetic Algorithms

4.1 Introduction

4.2 Variable-Length Genetic Algorithms.

4.2.1 Motivation

4.2.2 Variable Length Representation

4.2.3 Operators of a Variable-Length GA

4.2.4 Organization of a Variable-Length GA

4.2.5 Proposed vGA for Discrete Structural Optimization over Avail­

able Steel Sections

4.2.6 Illustrative Numerical Example

36

37

37

39

41

43

47

47

48

48

49

49

50

50

51

52

53

57

57

57

57

58

60

61

61

63

- vn-

4.3 Hybrid Genetic Algorithms for Continuous

Optimization ...

4.3.1 Motivation .

4.3.2 Definition of a Hybrid GA

4.3.3 Proposed hGA ...

4.3.4 Numerical Example .

4.4 Conclusions

5 Software Implementation of Multicriterion Optimization with

Genetic Algorithms

5.1 Introduction and Background

5.2 Overview of the CODA System

5.3 Functionalities .

5.4 Theory

5.4.1 The ANALYZER

5.4.2 EVALUATOR .

5.4.3 REVISER . . .

5.5 Implementation Issues

5.5.1 Object-Oriented Programming .

5.5.2 Implementation of the ANALYZER, EVALUATOR and RE-

VISER

6 Applications to Optimal Structural Design Problems

6.1 Introduction

6.2 Simple Ten-Truss Structure: A Benchmark

Problem

6.2.1 Problem Description

6.2.2 Problem Objective

6.2.3 Cases Studied . . .

6.2.4 Discussion of Results

6.3 Three-Story Steel Frame ..

71

71

72

73

78

85

86

86

87

96

96

96

104

107

115

115

119

125

125

126

126

126

128

132

136

6.3.1

6.3.2

6.3.3

Problem Description

Problem Objective

Cases Studied . . .

6.3.4 Discussion of Results

-viii -

6.4 Three Dimension Seventy-Two Bar Truss Tower

6.4.1

6.4.2

6.4.3

6.4.4

Problem Description

Problem Objective

Cases Studied . . .

Discussion of Results

7 Conclusions

7.1 Summary and Conclusions

7.2 Future Research

136

137

138

141

146

146

146

148

154

156

156

158

-IX-

List of Figures

2.1 Overview of the proposed multicriterion optimal design framework . 17

2.2 ANALYZER as a blackbox . . 19

2.3 EVALUATOR as a blackbox . 19

2.4 Example of one type of preference function 21

2.5 A preference function for specifying constraints on design parameters 22

2.6 Graphical interpretation of mean preference 25

2.7 REVISER as a blackbox . . 27

2.8 Various preference functions 31

3.1 Illustration of a crossover operation 40

3.2 Flowchart of a simple genetic algorithm . 42

3.3 Graph of the function f(x) = x · sin(l01r · x) + 1.0 . 43

3.4 Snapshots of population of different generations in a genetic search 45

3.5 GA optimization results: best and average vs generation 46

3.6 Different view of the 3-bit deceptive function 56

4.1 Illustration of a cut and splice operation . . . 60

4.2 Overview of a variable-length genetic algorithm 62

4.3 Cantilever beam for the illustrative example . . 63

4.4 Preference functions for the illustrative example 65

4.5 Scatter plot of AISC sections: moment of inertia vs area 68

4.6 Individual preference values of stress and volume versus AISC sections

(sorted by area) . 69

4. 7 Overall preference value versus AISC sections (sorted by area)

4.8 Schematic of a hybrid genetic algorithm

4.9 A parallel implementation of a hybrid genetic algorithm .

4.10 Overall flowchart of the proposed hGA

70

72

73

77

-x-

4.11 Contour plot of objective function for the numerical example 80

4.12 Convergence histories of simple GA and hGA . 81

4.13 Snapshot of initial population of both methods . 82

4.14 Snapshot of final population of the proposed hGA 83

4.15 Snapshot of final population of simple GA 84

5.1 Overall system architecture of CODA . . 88

5.2 Screen dump of CODA with FEM view . 90

5.3 Screen dump of ANALYZER menu . . . 92

5.4 Screen dump of EVALUATOR preference function dialog 93

5.5 Screen dump of REVISER with optimization progress view . 95

5.6 Surface plot of J.L((}) for the conservative strategy . . 105

5.7 Surface plot of J.L((}) for the trade-off strategy with all importance

weight w; = 1 . 107

5.8 Surface plot of J.L((}) for the trade-off strategy with steel volume impor-

tance weight w; = 10 and all other w; = 1 108

5.9 Overall flowchart of quasi-Newton method with BFGS updating 110

5.10 Overall flowchart of an adaptive random search algorithm.

5.11 A Typical Class Header File - Material Class .

5.12 A simple finite element class hierarchy .

5.13 Object Hierarchy Tree for EVALUATOR

5.14 Object Hierarchy Tree for REVISER

6.1 Geometry of the ten-truss structure .

6.2 Preference functions for ten-truss structure

6.3 Geometry of the problem

6.4 Preference functions for the 3-story frame .

6.5 Convergence history of vGA for Case A .

6.6 Geometry of the 72-truss structure ...

6.7 Member numbering of the 72-bar truss structure .

6.8 Preference functions for the 72-bar truss structure

114

116

118

122

123

127

129

136

139

145

147

150

151

-xi-

6.9 Convergence histories of continuous and discrete solutions . 155

-XII-

List of Tables

3.1 Comparisons of different evolutionary algorithms .

4.1 Optimization results of the illustrative example .

4.2 Properties of the twenty smallest AISC W-sections

35

64

67

6.1 Results of MWD and MCD for Case 1 of the ten-bar truss (Continuous) 131

6.2 Results of MWD and MCD for Case 2 of the ten-bar truss (Discrete) 131

6.3 Comparison between rounded-up and vGA discrete solutions for Case

2 of the ten-bar truss . 133

6.4 Comparison between hGA and COM for Case 1 of the ten-bar truss 134

6.5 Two different designs obtained by hGA for Case 3 135

6.6 Results for equivalent static (Cases A-D) and response spectra (Case E) 142

6.7 Results obtained by vGA and simple GA for CaseD 144

6.8 Load cases of the 72-bar truss

6.9 Grouping of design parameters for the 72-bar truss

6.10 Results of Case 1 and those from Haftka and Kamat (1985) .

6.11 Case 2 and 3 solutions for the 72-bar truss

146

150

152

153

-1-

Chapter 1

Introduction

1.1 Background and Motivation

The goal of structural engineers is to design structural systems according to design

requirements such as the Uniform Building Code. However, in this highly competitive

world, having a system that just performs the required task satisfactorily is no longer

sufficient. It is essential that the design be the best or optimal based on the specified

requirements. An optimal design should be a cost-effective system. To design such

systems, certain analytical and numerical tools are needed. Optimal design concepts

and methods provide some of the needed tools.

Existing optimal design methodologies focus on optimizing a single objective such

as the cost or weight of the system subject to certain design constraints. While this is

one possible way of achieving optimal designs, these approaches do not allow multiple

design objectives. In addition, they are far too "rigid" as the constraints must be

satisfied even though a "negligible" violation could mean a substantial improvement

in the objective. Therefore, a new methodology is desirable which would allow speci­

fication of multiple design objectives about the system. Moreover, this methodology

or framework should allow trade-off between different design objectives and be done

in a systematic manner using digital computers.

To develop such a design framework, the following two issues have to be addressed:

1. Many design requirements are of qualitative nature. So a systematic method

to characterize these requirements is needed which allows them to be traded-off

-2-

during the design process.

2. An optimal design process usually involves optimization over a large number

of design parameters and traditional optimization techniques tend to perform

poorly in such high-dimensional spaces.

1.2 Objectives

The overall goal of this research is to develop and implement a methodology that uses

advanced computational techniques which allows the engineer to automate evaluation

and improvement of a design. To achieve this, two specific objectives are desirable:

• Develop, investigate and implement a multicriterion optimal design framework.

• Apply genetic algorithms to solve the structural optimization problems formu­

lated using the framework.

A multicriterion optimal design framework has recently been developed to address

some of the issues related to automation of the design process (Beck, Papadimitriou,

Chan, and Irfanoglu 1996). This framework features the use of preference functions

to quantify qualitative and code requirements and a strategy to aggregate preferences

of different criteria to get a single overall design evaluation measure. We will use this

framework to solve optimal structural design problems.

An optimal design process then reduces to an optimization problem. To effectively

solve these problems, especially in high-dimensional spaces, efficient and robust opti­

mization techniques are required to obtain solutions. We will apply genetic algorithms

to solve the consequent structural optimization problem. In particular, two special

genetic algorithms are proposed to solve these optimal design problems.

1.3 Overview of This Dissertation

This thesis is organized into seven chapters. Below is a brief description of each of

the remaining six chapters.

-3-

Chapter 2 is concerned with optimal design methodologies. A review of some of the

existing optimal design methodologies such as optimality criteria and reliability-based

optimal design is given. A brief discussion on discrete optimization in optimal design

is also presented. This chapter continues with a description of a recently-developed

multicriterion optimal design framework. Relations between this framework and other

existing approaches, namely optimality criteria and concepts of other multicriterion

optimization, are discussed.

In Chapter 3, a class of stochastic optimization methods called genetic algorithms

(GA) are presented. Since these algorithms are mainly studied in computer science

related fields and are relatively new to the structural engineering community, this

chapter provides a basic overview of what genetic algorithms are, how they work

and why they work. In addition, some issues of applying genetic algorithms are also

discussed.

The discussion of genetic algorithms continues in Chapter 4 with a focus on two

special classes of these algorithms: variable-length genetic algorithms and hybrid

genetic algorithms. Here, it is explained why simple GAs may not work well for

certain structural optimization problems. A special variable-length genetic algorithm

(vGA) is proposed which addresses some of the difficulties. In addition, a hybrid

genetic algorithm (hGA) is also presented which has a better convergence rate for

continuous optimization problems than its simple counterparts. Examples are given

which illustrate why these two proposed GAs are better.

In Chapter 5, a software application called CODA is presented. This program is

a software prototype of the multicriterion framework described in Chapter 2. Func­

tionalities of CODA, the theory behind all the computation, together with some of

the implementation issues of CODA, are presented.

Chapter 6 consists of three example problems to illustrate the ideas and algorithms

covered in the early chapters. The first example is a benchmark problem which

has been studied extensively and provides a good basis for doing comparisons. The

second example is a three-story frame building under UBC loading. A small study

is conducted with different design parameters and design criteria. Several interesting

-4-

conclusions are drawn from this study. The final example is a truss tower with 72

truss members which are grouped into 16 design parameters. This is a relatively large

problem compared to the other two examples. Issues concerning the applicability and

efficiency of both the design framework as well as the proposed genetic algorithms

are drawn.

Finally, a summary together with conclusions drawn from this thesis study is

given in Chapter 7. This chapter ends with some recommendations for possible future

research in areas of optimal design and genetic algorithms.

-5-

Chapter 2

Methodologies for Achieving Optimal

Design

2.1 Optimal Design Concepts

Optimization is concerned with achieving the best possible solution to an objective

while satisfying all specified requirements. In engineering design, the engineer strives

to obtain designs that optimize cost, weight or certain other quantities. The for­

mulation of an optimal design problem involves the identification of the following

quantities: design parameters, objective function and design constraints or design

requirements.

The first step of the formulation is to identify a set of parameters, the design

parameters, which describe the system. Design parameters should be as independent

of each other as possible. In most cases, different sets of design parameters can be

used to describe the same system.

Design parameters may be continuous or discrete. Continuous design parameters

have a range of values and can take on any value in the range. For instance, length of

a beam may be taken as a continuous design parameter. Discrete design parameters

can only take on isolated values, usually from a list of permissible ones. Member

sizing of a beam selected from AISC steel sections is a good example of a discrete

design parameter.

To be able to compare different designs, one must be able to distinguish one design

-6-

as being better than another. An objective or cost function provides a means of doing

so. In many design problems, the objective function is the total weight of material

required. A design problem can have many different objective functions but all the

objective functions should be influenced by the design parameters.

Finally, every engineering system must be designed to satisfy the design constraints

reflecting certain performance requirements or resource limitations. A design is not

desirable if one or more of the design constraints are violated. All design constraints

should be expressed in terms of design parameters. Constraints which impose lower or

upper limits on certain quantities are called inequality constraints. A good example

of an inequality constraint is the stress limit imposed on a component of a system. In

some systems, equality constraints are required. A design constraint can be specified

as a design requirement or design criterion although design criteria can be more

general than just specifying constraints.

Once these quantities are identified, the whole design problem reduces to a nu­

merical optimization problem such as the following:

Optimize f (6)

such that gi(6) 2: 0, i = 1, ... , n9

h1(6) = 0, j = 1, ... , nh

where 6 denotes a vector of n design parameters, n9 and nh are the number of

inequality and equality constraints, respectively. The inequality constraints gi(6)

and the equality constraints h1 (6) are transformed into the form shown above.

For the case with no design constraints, the optimization problem is an uncon­

strained optimization problem. Otherwise, it is a constrained one. If there is only

one objective function, then it is a single objective optimal design problem and most

optimization techniques can be applied to the problem. For the case of two or more

objectives, the problem is a multiobjective or multicriterion optimization problem.

In this case, additional steps must be taken to solve such a problem.

In the next section, some of the most common optimal design methodologies

are described. Since we will be focusing on multicriterion optimal design in this

-7-

dissertation, more attention will be given to the background and existing techniques

in multicriterion optimal design.

2.2 Overview of Existing Optimal Design

Methodologies

The following optimal design methodologies are discussed: optimality criteria meth­

ods including fully-stressed design, reliability-based approach, and multicriterion de­

sign optimization. In addition, other optimal design problems such as shape or topol­

ogy optimization of engineering systems are described. This section ends with a brief

overview of existing techniques for discrete optimization problems.

2.2.1 Optimality Criteria Methods

Optimality criteria methods (Haftka and Kamat 1985; Kirsch 1981) are based on the

assumption that certain criteria related to the behavior of a design are satisfied at the

optimum. These methods involve finding appropriate criteria for the specified design

requirements and establishing an iterative procedure for finding the final optimal

design. Typical design criteria involve an objective function together with constraints

which are based on stresses and displacements. Other criteria can be related to

buckling, nonlinear behavior, etc. A general formulation of optimality criteria for

design optimization problems is given below.

Consider the following Lagrangian function:

No

L(O, A) = f(O) + L A;g;(O) (2.1)
i=l

where f(O) is the objective function (usually the weight or cost of the system), gi(O) is

the ith inequality constraint among Nc of them and Ai 's are the Lagrange multipliers.

Differentiate Equation 2.1 with respect to design parameters (}and set the derivative

-8-

to zero to obtain the stationary conditions:

No

o = \1 of(O) +I: -Xi\1 (}9i(O)

0 = -gj +t7

0 = 2.\jtj

i=l

j = 1, ... ,n9

j = 1, ... ,n9

(2.2)

Here, tJ is a slack variable which converts the /h inequality constraint to an equality

one:

This can be extended to include equality constraints by taking tJ = 0. Equation 2.2 is

the necessary condition (Kuhn-Tucker criteria) for an optimal design and, therefore,

provides n optimality criteria. Each Lagrange multiplier Ai can be interpreted as a

measure of sensitivity of the optimal design to the ith constraint as a weighting factor

that measures the importance of the ith constraint to the optimal design. Note that

for inequality constraints, the Lagrange multiplier Ai is zero unless the constraint is

active at the optimum.

With the conditions specified in Equation 2.2, a recursive algorithm is formulated

and applied to solve the optimization problem. Usually, this algorithm involves re­

design rules that modify the set of design parameters. For the ith design parameter

in the kth iteration, the redesign rule can be written as:

where :Fik is a multiplier for lif computed based on the optimality criteria.

While specification of the optimality criteria may be similar in formulation in

different optimality criteria methods, the actual redesign rules and the numerical

procedures employed usually differ greatly. For instance, stress criteria are often

considered (see Fully Stressed Design below) and the numerical algorithms required

-9-

to compute these criteria are different than those for displacement criteria (often

times with approximations specific to stress calculations to increase efficiency). In

many cases, the optimal design is achieved by this approach. However, there are also

cases where the obtained designs are not optimal even though they may be reasonable

designs and not too far from optimal. One such situation is mentioned in the following

discussion of fully stressed design.

Fully Stressed Design

The fully stressed design (FSD) technique is probably the most well-known and suc­

cessful optimality criteria method in the literature. It has motivated much of the

interest in optimality criteria methods. The FSD method can be applied to systems

which are subject only to stress constraints.

This method is based on the following optimality criterion (Haftka and Kamat

1985):

For the optimum design, each member of the structure is {either) fully

stressed at least under one of the design load conditions or {or) is at its

minimum specified gage.

The redesign rule of the ith design parameter ei in the kth iteration for FSD in the

case of truss members can be written as:

where af denotes the actual stress in the members associated with design parameter

ei in the kth iteration and O'i,a denotes the allowable stress for the ith design parameter.

The significance of this method is:

1. Engineering experience indicates that a good design is usually one in which each

member is subjected to its allowable stress.

2. FSD can be proved to be optimal under certain conditions.

-10-

3. FSD methods are fairly efficient computationally compared to other approaches.

4. FSD is usually a good starting point for other optimal design methods.

For statically determinate structures with a single load condition, it has been

shown that this FSD criterion yields optimal designs which are the minimal weight

designs (Cilley 1900; Michell1904). However, for statically indeterminate structures

under multiple load conditions the optimum may not be fully stressed (Razani 1965;

Schmit 1960). One reason for this is that an FSD is not unique. An indeterminate

structure may have more than one FSD and there is no guarantee that an FSD will

always converge to the minimum weight FSD.

Other Optimality Criteria Methods

Besides fully stressed design, there is an extensive amount of publications on other

optimality criteria methods. For instance, Rozvany and Zhou (1992) introduced dis­

cretized continuum-based optimality criteria methods (DCOC) for large finite element

systems with several deflection and stress constraints. For structural optimization of

tall steel buildings, several optimality criteria methods have been proposed during the

last few years (Soegiarso and Adeli 1996; Chan, Grierson, and Sherbourne 1995; Chan

1992) . One of the main reasons for the popularity of optimality criteria methods is

that the computational effort is primarily dependent on the number of active con­

straints and only weakly dependent on the number of design parameters. Since most

large scale systems have a large number of design parameters and far fewer design

criteria, optimality criteria methods are quite efficient for solving such problems.

2.2.2 Reliability-Based Optimal Design

The optimal design methodologies described so far all assume no uncertainty in every

aspect. Using these approaches, optimal designs are found which minimize the cost

functions without violating any design requirements. However, such designs normally

leave little redundancy compared with designs that are obtained by using more conser­

vative approaches. Thus, such optimally-designed systems usually have higher failure

-11-

probabilities than unoptimized systems. To achieve a balance of safety and economy,

reliability-based design concepts can be introduced into design optimization.

Reliability-based design optimization covers a lot of different areas: design code

optimization (Moses 1989), component reliability-based optimization (Moses 1974;

Moses 1990), system reliability-based optimization (Parimi and Cohn 1978; Fran­

gopol1987), multiobjective reliability-based optimization (Frangopol1991; Becket a!.

1996) as well as damage and residual-oriented reliability-based optimization (Fran­

gopol and Moses 1994). Since in this study only reliability at the component level is

considered, only this topic is discussed here.

Component Reliability-Based Design Optimization

In this approach, design requirements and criteria are specified for individual elements

such as beams, columns and connections of a structural system (Moses 1974). This

ensures that safety requirements for individual component are satisfied. Usually, the

design procedures involve achieving a certain target element reliability index which

can be computed from the probability of failure of the components (Moses 1990).

There are various ways to formulate element reliability-based optimization prob­

lems. Most of them can be formulated as minimization of the total expected cost of

the element:

where Gel = total expected cost of the element over lifetime

C0 el = initial cost of the element ,

Ct,ez= expected cost of failure of element.

(2.3)

The term Cf,el is usually expressed as a function of some probability of occurrence

of the dominant element limit state (or collapse). Examples of Ct,el are:

1. Ct,ez = Cfd,ezPtd,el (Moses 1974)

-12-

where Cfd,el = cost of element failure due to occurrence of dominant limit state

PJd,el = probability of occurrence of the dominant limit state.

where Cfl,ell Ct2,el = cost of element failure due to occurrence of dominant

ultimate and serviceability limit states

Pfl,el, Pf2,el = probability of occurrence of the dominant ultimate

and serviceability limit states.

where CJJ,el = cost of element failure due to occurrence of j'h limit state

Pjj,el =probability of occurrence of the j'h limit state

m = total number of limit states of the element.

Besides minimizing the total expected cost, one can also minimize the probability

of failure. One such formulation for an element reliability-based optimization problem

is to minimize the probability of occurrence of a specified limit state Pjk,el·

2.2.3 Multicriterion Design Optimization

In all the methodologies discussed up to this point, the optimal design problems

reduce to scalar-valued objective functions subject to constraints. In most cases,

these functions are the weight of the system. However, in many real-life design prob­

lems, there are several conflicting and noncommensurable criteria and these single

objective approaches do not apply in these cases. Multicriterion design optimization

(Eschenauer, Koski, and Osyczka 1990; Stadler 1988) provides a flexible and system­

atic way to handle these design problems. It is also known as Pareto optimization,

vector optimization or multiobjective optimization.

Using a multicriterion approach in optimal design has certain advantages. First,

optimal design involving multiple criteria allows a more realistic description or model­

ing of design decision making since most problems in real life are normally composed

-13-

of multiple criteria (in most cases, conflicting). In addition, with multiple criteria, a

wider range of alternative designs are usually available.

A general multicriterion optimization problem can be formulated as follows:

Optimize j(8) = [!1(8), h(8), ... , !N,(8W

such that 9;(8) 2': 0, i = 1, ... , n9

h1(8) = 0, j = 1, ... , nh,

where 8 denotes a vector of n design parameters, f(8) is the multicriterion objective

function, j;(8) is the ith criterion of the Nc individual criteria, and n 9 and nh are the

number of inequality and equality constraints, g;(8) and h;(8), respectively.

Solving a multicriterion design optimization problem requires identification of the

Pareto set which is the set of points in the design space that are Pareto optimal or

nondominated. A feasible solution iJ is a Pareto optimal or nondominated solution if

there exists no feasible solution 8 such that

p.;(8) > p.;(O) for some i=1, .. ,Nc, and

p.1(8) 2': tJ.J(O) for all j

Simply put, a feasible solution is Pareto optimal if there exists no other feasible

solution that will improve one criterion without causing a decrease in at least one

other criterion.

Several methods exist to solve these multicriterion optimization problems such as

linear weighting method (Koski 1985), constraint method (Koski and Silvennoinen

1987) and simplex method (Balachandran 1996). Generally the difficulty is not with

the non-existence of Pareto optima but rather the large number of these points, which

may be hard to identify and handle. Multicriterion optimization has been applied to

several structural optimization problems (Stadler 1988; Leitmann 1977).

2.2.4 Other Optimal Design Problems

Up to this point, we have only considered systems that have fixed configurations.

When the shape of the system is allowed to change, usually a better design can be

-14-

found. In shape optimal design problems (Budiman and Rajan 1993), the shape of

the system is defined by parameters which can vary. For example, nodal coordinates

of a structure can be taken as design parameters for the problem. One interesting

point is that even a few design parameters relating to the structural shape can result

in dramatic changes in the shape.

A more general problem than shape optimization is topology optimization. For

instance, the topology of a structural system means not only where the nodes are,

but also how many nodes there are and how the system is supported. The choice of

member connectivity and support conditions as design parameters results in a design

space that is both nonconvex and discrete. Thus, traditional gradient-based optimiza­

tion cannot be applied to these problems. Integer programming and random search

techniques are suitable for such problems, as well as genetic algorithms discussed

later.

Recently, conceptual design has been formulated as an optimal design problem

(Grierson 1997). Another emerging approach in optimal design research is multidisci­

plinary optimization (Kroo 1995; Braun and Kroo 1995; Wakayama and Kroo 1994).

Multidisciplinary optimization is a way of finding the "best" solution or design, given

an objective and a set of constraints, where both the objective and the constraints

together with the design variables come from a knowledge base representing many

different disciplines such as quality, cost, value, etc.

There are two main categories of multidisciplinary optimization. The first cate­

gory, which is also the most recognized one, is quantitative in nature. In this category,

the objective and the constraints are stated in mathematical form and the optimal

solution is determined using a numerical or analytical approach to the problem. The

second category is qualitative in nature. It is sometimes referred to as "experimental"

or "qualitative" optimization since it comes from the experience of those doing the

optimization.

-15-

2.2.5 Discrete Optimization in Optimal Design

Many design optimization methods assume that design parameters are continuous.

However, often the components of systems are only available in discrete sizings and

a simple roundup from the continuous values would most likely result in quite sub­

optimal designs. For instance, optimal design of structural steel buildings are often

performed using continuous design parameters on member sections and the contin­

uous solutions are then rounded up to the "closest" sections which are often too

conservative. Also, in some cases, rounded-up solutions may actually be in the in­

feasible region. Therefore, discrete optimization approaches should be employed to

achieve better designs in the discrete design space.

Several discrete optimization techniques exist in the literature. One of the most

popular methods is branch and bound. The solution process involves finding the con­

tinuous optimization and then going through a tree (the branches) to seek the closest

discrete solution to the continuous counterpart (bounding). The main disadvantage

of this technique is that it requires high computational effort.

Simulated annealing is another technique for discrete optimization. Unlike branch

and bound, simulated annealing is a stochastic method. It operates by randomly

perturbing the solution to generate candidate solutions that are either accepted or

rejected. Infeasible candidate solutions are automatically rejected and all feasible

solutions are accepted even for those with poor objective function values. The idea is

that poor solutions are accepted in the earlier stages but that in the later stages, the

method will converge to the global optimum. One important note is that simulated

annealing normally requires a large number of objective function evaluations which

can be prohibitive if the function evaluation is computationally expensive. How­

ever, this approach has a reasonable chance of finding the global optimum for some

nonconvex problems (Thanedar and Vanderplaats 1992).

- 16-

2.3 The Multicriterion Optimal Design Framework

One of the objectives of this research is to develop a design methodology which

can assist the designer to make decisions throughout the process of designing an

engineering system. In this section, a recently developed multicriterion optimal design

methodology is presented (Beck, Papadimitriou, Chan, and Irfanoglu 1996; Beck,

Chan, Irfanoglu, Masri, Smith, Vance, and Barroso 1996).

2.3.1 Overview of the Framework

The whole optimal design process involves making decisions related to the design of

a given system. This decision making process begins with a preliminary design and

then involves an iterative procedure of analysis, evaluation and revision. Figure 2.1

shows the overview of the optimal design framework.

In this framework, there are three modules: ANALYZER, EVALUATOR and

REVISER. These modules are responsible for performing analysis, evaluation and

revision of the current design respectively. Before we can describe each of these

modules, a few basic terms need to be defined and reviewed, since the point of view

taken is different to the traditional approaches to optimal structural design described

earlier.

2.3.2 Terminology

For a given system, the design space consists of all the possible designs this system

can have. This design space can be expressed in terms of design parameters, denoted

as (}. Design parameters are quantities the decision maker uses to specify a particular

design. These parameters can be very general. For instance, they can be related

to the structural configuration, total material cost, component sizing, etc., and even

material type.

Performance parameters, denoted as q(9), are quantities involved in the evaluation

of a design. These parameters are usually engineering quantities such as the maximum

"rj
aq
.:::: ...,
ct>
~'..;)

t-'

0
a; ...,
~

~·
0
1-+,

ct-
p-'
ct>

'0 ...,
0
'0
0
Ul
ct>
p_.

§
~
(";) ...,
ct­
ct> ...,
0
~

0
'0
ct-

§'
~
p_.
ct>
Ul

&q'
~

~

~
~ ...,
::>:;"

Model
Database

~~------~---------/

Design Models
w/ uncertainties

ANALYZER

Performance
Parameters ··-
Database q

Parameters
Database e

Database

Design Loads
w/ uncertainties

Database

Design Requirements w/
preference functions

I •I EVALUATOR

Revised
Design,
8+88

Performance
Parameters, q(8)

REVISER

Optimal Design
and its Evaluation

Preference aggregation
functions and
Importance Weights

Overall System
Performance
Measure, J..L(q(8))

t-'
-:I

I

-18-

interstory drift or the peak member stresses of a structure. However, they can also

include quantities such as the total material cost, liability should the current design

fail, etc. Moreover, performance parameters may also include some of the design

parameters. For instance, the geometrical configuration of a structural system can be

specified as both design and performance parameters if there are any architectural or

manufacturing constraints on the shape or sizing of the members.

Finally, a particular design can be judged by specifying a list of design criteria.

These criteria are usually design requirements that need to be met for any acceptable

design. Such requirements or restrictions can relate to the allowable stress in any

member of a structure, the budget for the total construction cost, etc.

2.3.3 Description of the Framework Modules

As mentioned earlier, there are three modules in the framework: ANALYZER, EVAL­

UATOR and REVISER. Each of the three modules has its unique role and respon­

sibilities. The following is a detailed description of each of these modules and their

functionalities.

ANALYZER

The role of ANALYZER is to compute performance parameter values q(O) based on

the specified design parameters 9 (see Figure 2.2). Thus, ANALYZER involves dif­

ferent analysis techniques which depend on the performance parameters specified and

the nature of the problem at hand. Examples of possible methods for ANALYZER

are finite element methods for structural or mechanical systems, time history integra­

tion schemes for dynamic analyses, probabilistic analysis tools for random vibration

and reliability analysis, and costing algorithms for economic calculations. For design

of civil engineering structures, ANALYZER would usually be a combination of static

and dynamic finite element analysis, as well as algorithms to compute material and

construction costs.

It is clear that the nature of ANALYZER is highly dependent on the type of

e

Design
Parameters

-19-

ANALYZER

q(9)

Performance
Parameters

Figure 2.2: ANALYZER as a blackbox

systems to be designed and the specified performance parameters. However, the role

of ANALYZER is the same for different problems: calculate performance parameters

q(O) from design parameters 0.

EVALUATOR

The task of EVALUATOR is to provide an overall design evaluation measure ~t(O) for

the design specified by the current values of the design parameters 0 (see Figure 2.3).

The measure Jt(0) serves as an objective function which REVISER uses to improve

the current design as well as seek the optimum.

q(9)

Performance
Parameters

EVALUATOR

!.!(9)

Overall Design
Measure

Figure 2.3: EVALUATOR as a blackbox

-20-

To evaluate a particular design, the designer may impose multiple design criteria.

Under this multicriterion decision methodology, the design is first evaluated on the

basis of each design criterion, one at a time, and then these numerical values are ag­

gregated into a single design evaluation measure using certain aggregation strategies.

Furthermore, since the individual design criteria cannot usually all be satisfied in an

optimal fashion at the same time, trade-off is allowed among the criteria to the degree

that each of the criteria is satisfied.

A preference function /li (q) is used to quantify the degree of satisfaction of ith

design criterion based on the values of the performance parameters q involved in

the design criterion. Values of the preference function must lie in the unit interval

[0,1]. A larger preference value for one performance parameter value compared with

another implies that the first parameter value is more preferable than the other value.

An extreme value ft;(q(9)) = 1, or fti(q(9)) = 0, implies that the current design

specified by 9 perfectly satisfies, or does not satisfy at all, the ith design criterion.

For example, Figure 2.4 shows a preference function for the design criterion that

the maximum interstory drift not exceed some code prescribed value. In this case,

those values of the maximum interstory drift which are less than 90% of the code

specified drift value are most preferred, since the preference function has its greatest

possible value (unity) there. On the other hand, the designer prefers least those

values of the maximum interstory drift which exceed the code specified drift value,

since the preference function has its least possible value (zero) there. The designer

has selected a linear fall-off between these extreme preference values for those values

of the maximum interstory drift which lie between 90% and 100% of the code specified

drift value.

Another interpretation is to view the preference function as a membership function

for the fuzzy set of "acceptable performance" as judged by the ith design criterion. In

this case, an extreme value fti(q(9)) = 1, or ft;(q(9)) = 0, implies that on the basis

of the ith design criterion, the current design specified by 9 is definitely acceptable,

or definitely unacceptable. Intermediate values express the degree to which the user

feels the design gives "acceptable performance."

-21-

90% of
code limit

code
limit

lnterstory Drift

Figure 2.4: Example of one type of preference function

Any constraints directly imposed on the design parameters, such as geometrical

constraints, are treated as additional design criteria. Each such criterion is expressed

as a "soft" constraint through a preference function. For example, a preference func­

tion similar to the one shown in Figure 2.4 can be used to express a "soft" upper

bound on a design parameter. If the designer also wishes to impose a lower bound on

the parameter, then the two-sided version of the preference function shown in Fig­

ure 2.5 can be used. By treating design parameter constraints in this way, the degree

to which the constraint is satisfied can be traded off against other design criteria

during the optimization of the design.

The final step in the EVALUATOR methodology is to compute an overall de­

sign evaluation measure J.L(O) on the basis of the quantitative evaluations J.Li(q(O)),

i = 1, ... , Nc of the design for each of the Nc design criteria. This is done by a prefer­

ence aggregation rule which must satisfy certain consistency requirements. Different

aggregation rules give different design strategies for trading off the design criteria,

and so they lead to different optimal designs, in general. Also, for a given aggre­

gation rule, the user can give more influence to some design criteria than others by

assigning them larger values of an importance weight. The choice of the values for

these weights is subjective. The user can gain experience with respect to their selec­

tion in any design problem by investigating the influence that different values for the

1.0

lower
limit

-22-

upper
limit

Member Size

Figure 2.5: A preference function for specifying constraints on design parameters

weights have on the final optimal design and its corresponding preference values for

each design criterion.

A preference aggregation rule is simply a functional relationship between the over­

all design evaluation measure and the individual preference values for all of the design

criteria: J1. = f(JJ.b J1.2 , ... , Jl.Ncl· An optimal design for a given preference aggregation

rule is therefore given by a design parameter vector (} which maximizes:

(2.4)

where it is understood, despite the notation here, that some of the preference functions

Jl.i may correspond to design parameter constraints and therefore these Jl.i will depend

directly on the design parameter values.

The following axioms of consistency are imposed on the preference aggregation

rule (Otto 1992):

1. J1. lies in the unit interval [0, 1], with J1. = 1 for a perfectly acceptable design and

J1. = 0 for a completely unacceptable design.

2. J1. is a monotonically increasing continuous function of each Jl.i·

3. JJ.o = f(JJ.o, Jl.o, ... , JJ.o), where Jl.o is some value between 0 and 1.

-23-

4. f1. = 0 if and only if fl.i = 0 for some i.

Axiom 1 allows the overall design measure Jl.(O) to have the same scale, fl. E [0, 1],

as the individual preference values Jl.i(O). The continuity requirement in Axiom 2

ensures that a small change in preference in one or more of the design criteria results

only in a small change in the overall design measure. In addition, monotonicity

guarantees that any improvement in one or more of the criteria yields an improvement

in the overall design and vice versa. Axiom 3 expresses the following argument: If

all the preference values Jl.i of the design criteria are equal to f1. 0 , then the overall

design measure J.1. should also be J.l.o since it would not be rational to give it a higher

or lower preference. Finally, axiom 4 ensures that if any of the design criteria are not

satisfied, i.e. Jl.i = 0, for some i, then the design is not acceptable (fl.= 0). Similarly,

the design is unacceptable only if at least one of the design criteria is not satisfied.

Various aggregation rules exist which satisfy these axioms. Two such preference

aggregation rules are:

• Conservative ("weakest link") strategy:

_ · (n1 n2 nNe) fl.- mm J1.1 ,Jl.z , ... ,Jl.Nc , (2.5)

where ni = w;jmaxj Wj, i = 1, ... , Nc and wi is a positive importance weight

assigned to the ith design criterion.

• Multiplicative trade-off strategy:

, = , m 1 , m2 "N mN,
,._., rl t-"2 ···r c ' (2.6)

where mi = wJ2:/;'~1 Wj, i = 1, ... , Nc and wi is a positive importance weight

assigned to the ith design criterion.

-24-

Handling of Stochastic Design Criteria

In order to be able to trade-off reliability of performance and cost of a design in the

design process, the uncertainties in performance parameters due to the uncertainties

in system models and uncertainties in loadings must be considered. These uncertain­

ties can be the most influential factors in the design decisions. The proposed optimal

design framework can be extended to treat these uncertainties. This extension was

developed by Beck, Papadimitriou, Chan and Irfanoglu (1996) and is included here

for completeness.

In the stochastic case, there is no longer a function q(9) relating the design pa­

rameters 9 to all the performance parameters as assumed in the earlier description

of the methodology. Some of the performance parameters will be uncertain because

of the uncertain loads and modeling errors. For example, one of the performance

parameters qi may be the peak interstory drift over the lifetime of the structure due

to earthquakes, which is clearly a very uncertain quantity. Parametric uncertainties

are conveniently modeled by random variables. The probability distribution assigned

to each random variable specifies the relative plausibility of each possible value of the

corresponding uncertain parameter. Similarly, uncertain continuous-valued variables

are modeled by random fields or random processes. This probabilistic description

of loads and/ or system model necessitates the use of probability tools to calculate

the uncertain performance parameters. Therefore, in this stochastic case, a proba­

bility density function p(qil9) is calculated rather than the value of the performance

parameter qi·

Performance parameters such as the manufacturing cost or structural performance

parameters from code-based design loads, can be treated as deterministic functions

of 9. They can be interpreted within the general stochastic framework by simply

viewing the corresponding probability distributions p(qil9) as delta functions centered

at qi(9).

A measure of the reliability of the design 9, as judged by the ith design criterion,

is the probability that this criterion is satisfied. Since the preference function Jli(qi)

!-l(q)

I
I

" I \
\

\

Perfect Design
Preference

p(qle)

q

-25-

j.l(q)

Zero Design
Preference

f
I

I
I

" \
\

\

Figure 2.6: Graphical interpretation of mean preference

p(qle)

'
q

for the ith design criterion can also be viewed as a membership function for the fuzzy

set "acceptable performance" based on this criterion, the desired reliability is the

probability that qi lies in this fuzzy set:

(2.7)

This measure is also seen to be equivalent to the mean preference value for the ith

design criterion. Figure 2.6 shows graphically the interpretation of the two extremes

of mean preference value of a typical design criterion. In the special case of no

uncertainties, for which p(q;jO) is taken as a delta function, fli(O) = f.Li(qi(O)), and so

the deterministic case described earlier is recovered.

Using integration by parts, Equation (2.7) gives

flJO) =- roo d(f.Li(qi)) Fi(qi I O)dqi
Jo dqi

(2.8)

~ 26 ~

where

F;({f 1 e) = P(q; :::; q- 1 e) = [
1

p(q; 1 e) dq; (2.9)

is the classical reliability function for the performance parameter q; given e. Using,

for example, the preference function for the peak lifetime interstory drift shown in

Figure 2.4, denoting the code value by u; and 90% of the code value by 1!;, Equation

(2.8) yields

(2.10)

which is the average value of the classical reliability over the interval [I!;, u;]. Clearly,

a high mean preference value Ji; (e) means that the design e has a high fuzzy relia­

bility, or, equivalently, a high average classical reliability, as judged by the ith design

criterion.

To generalize the deterministic optimal design methodology described earlier, all

that remains is to replace each J.t;(e) corresponding to a stochastic design criterion

by P,;(e) in the preference aggregation rule (2.6). The evaluation ofP,;(e) depends on

the choice of the user-supplied preference function J.t;(q;) for the ith design criterion,

and either the probability density function p(q;le) or the reliability function F;(q I e)

(see Equation 2.7, 2.8).

REVISER

Given the current design e and its design measure J.t(q(e)), the role of REVISER is

to improve this design based on the specified design criteria (see Figure 2.7).

Similar to ANALYZER, REVISER is problem dependent although to a lesser ex­

tent. Although REVISER would be some optimization technique in most problems,

the exact method to be employed varies depending on the nature of the design param­

eters of a problem. Examples of possible methods for REVISER are quasi-Newton

e, 11 (e)

Current Design

+
Overall Design

Measure

-27-

REVISER

Improved
Design

Figure 2.7: REVISER as a blackbox

methods for continuous design parameters, stochastic optimization for both continu­

ous and discrete parameters, integer programming methods for discrete variables and

combinatorial schemes for shape and topological design parameters.

2.3.4 Discussion of the Optimal Design Framework

The optimal design framework just presented provides a flexible scheme for the de­

signer to formulate a design problem with several design criteria and be able to make

design decisions allowing trade-offs among these criteria in a systematic manner. In

this section, we will look at how this framework is related to existing concepts of

multicriterion optimization and also how a special case of this methodology reduces

to an optimality criteria problem which would yield a minimum weight design.

Relation to Pareto Optimal Set in Multicriterion Optimization

Recall that a solution or design iJ is nondominated or Pareto optimal if there exists

no feasible solution or design 9E 8, the set of all feasible designs, such that

f.ti((}) > f.ti(O) for some i=l, .. ,Nc, and

P,j(9) ?: P,j(O) for all j

where Nc is the number of design criteria.

-28-

Suppose we find an optimal design iJ using the proposed multicriterion optimal

design framework. We have

p,(e) ::::; p,(iJ), ve E e. (2.11)

The equality represents the cases when we have multiple optimal designs. We wish to

show that the optimal design obtained from this framework lies in the Pareto optimal

set defined by all the design criteria.

Suppose the contrary, that is, we can find a design (} such that iJ is dominated:

with inequality holding for at least one i. By the axioms of consistency imposed on

the aggregation strategy discussed earlier, we have

which is a contradiction. Thus, iJ is a nondominated or Pareto optimal solution.

However, this inequality is true only if we have strict monotonicity in the aggregation

strategy (see Axiom 2). The trade-off strategy satisfies this condition but the conser­

vative strategy does not. It can be seen, however, that the result also holds for the

conservative strategy if there exists only a single optimum, that is, inequality holds

in Equation (2.11).

Note that this result is true regardless of the choice of importance weights of

the design criteria, w = [w1 , ... WNcJT. Different values of importance weight w yield

different optimal designs iJ and hence, different Pareto optima. Thus, one can obtain

a subset of the set of all Pareto optimal solutions P by varying the importance

weights. For some convex problems, this subset may actually be the whole set of

Pareto optimal solutions P. However, for nonconvex problems, the subset is a proper

subset of P.

-29-

Relation to Optimality Criteria Design (Minimal Weight)

Consider the trade-off strategy with Nc design criteria, we have

No

11C 9) = II 11?' c q(9J l
i=l

where n; = z::;~: w; , and w; is the importance weights of the ith design criterion.

Taking the logarithm, we have

which is a weighted average of the logarithms of the preference functions of each of

the design criteria. Clearly, in maximizing Jl, or In Jl, with respect to 9, the only

design criteria "active" at each step are those for which Jli < 1.

At an extremum, 0 = a;;_", so

(2.12)

Let 111 correspond to low steel volume and the preference function (see Figure 2.8a)

is:

"
1

(9)= Vmax-V(9)' V. (9) V.
r min :S V :S max

Vmax- Vmin

where Vmin and Vmax are the minimum and maximum allowable steel volumes, re­

spectively. Thus, we have

Suppose all other Jl; are functions of only one performance parameter q; (9) in the

-30-

form shown in Figure 2.8b, or mathematically,

f.Li=

0, q(u) < q·
' - '

Differentiate this expression and multiply with };, yields

0,

1 aq, qy) ::; qi ::; q,(u)
- q;u)_Qi aok' ~ .

0, q(u) < q·
' - '

Substitute this into Equation 2.12, we have for qi < qi(u), Vi:

where

1 &v .:(:., 1 aqi (t)
0 = -wl v; - v a(} - L.J Wi (u) 8(} H(qi- qi), Vk,

max k i=2 qi - Qi k

{

1, X> 0
H(x) =

0, X< 0

(2.13)

is the Heaviside function and picks up the "active" constraints, i.e. those with qi E

(
(l) (u))

qi 'qi .

If% = (}k, i.e. f.LJ is a soft constraint on the design parameter (}k with preference

function similar to Figure 2.8c, then the /h design criterion term in the sum in

Equation 2.13 for (}~) < (}k < (}ku) is

which can be viewed as a penalty term which gets larger as the hard constraints

(}k = (}kl) or (}k = (}ku) (see Figure 2.8) are approached.

!l(q)

!l(q)

!l(q)

e (I) e (I')
k k

-31-

(a)

(b)

(c)

e (u')
k

e (u)
k

q

q

q=S

Figure 2.8: Various preference functions

-32-

Note that Equation 2.13 is equivalent to:

0 = 'i7 f) (wdn(Vmax- V(fJ))) (2.14)

objective function
constraints with Lagrange multipliers

This set of equations is analogous to those which arise in minimizing total weight

(or total volume) subject to the constraints qi ~ qju) if we identify the Lagrange

multipliers Ai with Tur-:- in Equation 2.14 and identify the "active" constraints as
qi -qi

those for which qi E (qi(l), qju)], not just qi = qi(u) Thus, with our choice of the

preference functions f.li 's, we are actually solving a problem analogous to optimality

criteria approach to structural optimization.

2.4 Conclusions

In this chapter, we have looked at several existing optimal design methodologies in

the literature. A recently-developed optimal design methodology is presented which

allows automation of the decisions to be made in a design process. Such automation

is achieved by quantifying satisfaction of each design criterion with a preference ftmc­

tion. Using the trade-off aggregation strategy, these design criteria can be traded off

with one another in a systematic manner. This optimal design framework allows easy

incorporation of design criteria from different parties such as the owner, the engineer,

etc.

Optimal designs obtained from this framework can be related to those obtained

using other existing methodologies. For instance, these designs have been shown to

lie in the Pareto optimal set of the problem. By varying the importance weights

wi of the design criteria, different Pareto optimal designs are obtained. Furthermore,

with certain choices of preference function and the trade-off aggregation strategy, this

method behaves very much like optimality criteria methods. This property is very

useful as the engineer can compare optimal designs obtained from this framework

with those obtained from optimality criteria methods.

-33-

Structural optimization problems are often solved in a continuous parameter space

where each design parameter can assume any value within its specified range. How­

ever, since components required to build an engineering system normally do not come

in continuous sizes, design optimization should really be done at the discrete level. In

this chapter, we have mentioned some of the discrete optimization methods existing

in the literature. Some of the disadvantages of these existing techniques are that they

are computational inefficient, conservative, and hard to implement.

In the next few chapters, we will shift our focus to a newer class of optimization al­

gorithms: genetic algorithms. Genetic algorithms are stochastic optimization schemes

which have the potential to solve large optimization problems including discrete cases.

Moreover, the implementation of genetic algorithms is quite straightforward compared

to other discrete optimization techniques.

-34-

Chapter 3

Introduction To Genetic Algorithms

3.1 Introduction

Genetic algorithms (GAs) are search methods that are based on evolutionary theory

which can be used to find an optimum of an objective function. They are part of a

larger class of evolution-based heuristic search techniques called evolution algorithms

(EAs), which consist of three main paradigms: genetic algorithms, evolution strate­

gies (ES) and evolution programming (EP). There are also other paradigms such as

classifier systems, genetic programming etc., but all these can be viewed as variants

of the three main paradigms.

Genetic algorithms, which originated in the United States, are by far the most

common among all the evolution algorithms. Evolution strategies are the next most

common paradigm and are more popular in Europe (mainly Germany). The main

differences among the different EA paradigms are the representations of variables and

the choice of genetic operators. Both evolution strategies and evolution programming

use mutation as the main operator for exploration in the search space while genetic

algorithms emphasize crossover as their main search operator. A brief comparison

among the three paradigms of EAs is given in Table 3.1. A more detailed explanation

of the differences can be found in Back's book (1996).

In this study, we will only look at genetic algorithms. Genetic algorithms have

been successfully applied to a wide range of problems ranging from the traveling

salesman's problem to image recognition to machine learning. Part of this thesis

-35-

Table 3.1: Comparisons of different evolutionary algorithms

II Comparison I ES I EP I GA II
Representation Real-valued Real-valued Binary or real-

valued
Selection Deterministic, ex- Probabilistic, Probabilistic,

tinctive or based extinctive based on
on preservation preservation

Recombination Discrete and inter- None n-point crossover,
mediate, sexual only sexual - main

operator
Mutation Gaussian - main Gaussian - only Bit-inversion

operator operator - background
operator

Built-in Con- Arbitrary inequal- None Simple bounds by
straints Handling ity constraints encoding schemes
Theory Convergence rate Convergence rate Schema processing

for special cases for special cases theory, global con-
vergence for elitist
version

-36-

research involves applying genetic algorithms to solve discrete structural optimization

problems, and, in particular, optimal design over a set of available steel sections.

3.2 A Brief History of Genetic Algorithms

Applications of simulated evolution can be dated back to the 1960s. Various biologists

such as Baricelli (1957), Fraser (1960), Martin and Cockerham (1960) performed

simulations of genetic systems using digital computers. Even though most of these

studies were not aimed at application to search and optimization, they were not too

distant from the modern notion of genetic algorithms.

In 1962, John H. Holland at University of Michigan laid out the foundation for

applying genetic-like operators to artificial problems (Holland 1962a; Holland 1962b;

Holland 1962c). Holland recognized the need for selection in these artificial systems

and chose a population approach instead of a single point-by-point approach common

in most search algorithms. However, it was not until three years later (Holland 1965)

that he recognized the importance of crossover or other recombinant genetic operators

such as mutation.

Between 1967 and 1975, various applications of then called genetic plans were

found in theses of several students of Holland's. Bagley (1967) constructed genetic

algorithms to search for parameter sets in game evaluation functions. His results

indicated that his genetic algorithms were insensitive to the game nonlinearity and

performed well over a wide range of environments. Around the same time, Rosen­

berg (1967) simulated a population of single-celled organisms under certain environ­

ments. Despite the biological emphasis of his dissertation, Rosenberg's work was

important to the subsequent development of genetic algorithms because of its re­

semblance to optimization and root-finding. In that same period of time, Cavich­

hio (1970), Weinberg (1970), and Hollstien (1971) also applied genetic algorithms to

pattern recognition, cell simulation and function optimization in their dissertations,

respectively.

The year 1975 was an important year for genetic algorithms. Holland published

-37-

his influential book, Adaptation in Natural and Artificial Systems (Holland 1992).

In this book, Holland explained many important aspects of genetic algorithms, and

introduced the theory of schemata which allowed questions like why they work and

how they perform searches in parameter space to be addressed. In that same year, De

Jong completed his important and pivotal dissertation (DeJong 1975). In his studies,

De J ong carefully designed a series of numerical experiments in which he considered

functions which were both continuous and discrete, convex and nonconvex, unimodal

and multimodal, deterministic and stochastic, etc. He also examined the effect of

various control parameters of GAs such as population size, crossover and mutation

probabilities, as well as different reproduction schemes (see next section for definitions

of these terms). What DeJong achieved was far-reaching: he put genetic algorithms

on a much firmer foundation.

Since then, a lot of research effort has been applied to both theory and applications

of genetic algorithms. Many models that better describe the behavior of genetic

algorithms have been proposed and many problems in various engineering fields have

been solved by applying genetic algorithms. However, the field of genetic algorithms

is still immature and much more research needs to be done before genetic algorithms

can reach maturity and robustness.

3.3 Basic Mechanics of Genetic Algorithms

3.3.1 Terminology

The goal in any optimization problem is to find the best solution(s) to the problem.

In order to apply a genetic algorithm, one must choose a suitable data structure to

represent the possible solutions. Such representations can be viewed as points in the

search space of all possible solutions to the optimization problem.

The data structure of genetic algorithms consists of one or more chromosomes.

Single chromosomes are usually employed and are typically strings of binary bits, and

so the term string is often used instead. However, genetic algorithms are not restricted

-38-

to bit-string representations. Various possible representations exist which include real

numbers (Michalewicz 1994) and high level computer programs (Koza 1992). Variable

length representations are also possible. A form of variable length representation

known as Messy Genetic Algorithms (Goldberg, Korb, and Deb 1989; Goldberg, Deb,

and Korb 1990) is very suitable for solving certain hard optimization problems, often

referred to as GA-hard problems. Difficult problems for genetic algorithms, such as

these problems, will be discussed later in this chapter.

Each string is a concatenation of a number of subcomponents called genes. Genes

occur at different locations or loci of the chromosomes, and take on certain values or

alleles. For instance, in binary-string representation, a gene is a bit, a locus is the

position along the string and an allele is the value of the gene (0 or 1). In biological

science, the term genotype refers to the overall genetic makeup of an individual and

is analogous to a structure in genetic algorithms. Also, phenotype refers to external

characteristics of an individual and is analogous to an actual parameter set such as

design parameters.

Consider the following illustrative example of a GA optimization problem:

f(x) = x2

where x =integer set of [0,31]. A common representation scheme is to transform the

integer set into binary strings. In this case, there are 32 possible values of x, which

requires a binary string of length 5. Thus, the string B = 00000 represents x = 0,

while B = 11111 represents x = 31. Here, B is the genotype of an individual while x

is the phenotype. The genotype is a point in the 5-dimensional Hamming space where

the genetic algorithm searches. The phenotype is a point in the one-dimensional space

of the decoded variable or the actual parameter.

To optimize a structure using genetic algorithms, some measure of quality of each

individual in the search space is necessary. The fitness function is used for this

purpose. In function optimization, the fitness function is related to the objective

function. In our example, f (x) = x2 is the fitness function.

-39-

3.3.2 Components of a Genetic Algorithm

A simple genetic algorithm consists of the following components:

1. representation of the parameter set of possible solutions of the optimization

problem by a finite length string over some finite alphabet (usually binary)

2. initial population of strings as starting trial points

3. genetic operators and their control parameters

4. positive fitness function.

As mentioned earlier, genetic algorithms do not operate on the actual parameters

of the problem. Instead, coding of these parameters as strings is necessary. In many

existing optimization techniques, a single point is chosen to move in the search space

and very often these methods would end up locating false peaks or local optimal

points. Genetic algorithms, on the other hand, work from a population of points in

the form of strings so they can simultaneously climb many peaks in a form of parallel

processing. Thus, the probability that genetic algorithms locate false peaks is reduced

compared to other existing methods.

Three basic operators are essential to genetic algorithms:

1. reproduction or selection

2. crossover

3. mutation.

Reproduction is a process in which individual strings are selected based on their

fitness. Since the optimization goal is to maximize the objective function, strings with

higher fitness should have a higher probability of contributing one or more offsprings

in the next generation. Simple GAs perform proportionate selection, which assigns

each individual string in the population a probability of selection Ps· This selection

probability Ps(i) of the ith string in the population is simply the ratio of the string

fitness f (i) to the overall population fitness:

-40-

Parents Offsprings

1-pt crossover

I

random crossover point

Figure 3.1: Illustration of a crossover operation

(3.1)

A total of n strings is selected for furthering processing according to the probability

distribution based on Ps (i). The simplest implementation of proportionate selection is

roulette-wheel selection (Goldberg 1989). This selection chooses individuals by simu­

lating n spins of a roulette wheel which has one slot for each string in the population.

The size of each slot is proportional to the selection probability of the string.

After reproduction, the n selected strings undergo crossover and mutation. These

two operators are the basic search mechanisms of genetic algorithms. Crossover and

mutation operators create new strings from strings which have survived after the

selection process. Crossover operators take two strings and generate two new individ­

uals based on certain rules. For instance, the simple single-point crossover operator

take the two parents and generates two offsprings by cutting and splicing. The cut­

ting is performed at a randomly chosen location along the string for each parent with

some crossover probability Pc, then the end parts are swapped and spliced to each

initial part (see Figure 3.1).

-41-

After crossover, mutation takes place. Unlike crossover, mutation operates on

one string at a time. For each string, mutation changes each element with mutation

probability Pm· The typical mutation operator is binary mutation. This operator

flips each bit in every string in the population with probability Pm (Pm < < 1).

The operators described above are the simplest form of selection, crossover and

mutation operators, respectively. Other alternatives exist and are usually designed

for specific purposes. For instance, tournament selection (Goldberg and Deb 1991)

and elitist selection (DeJong 1975) are two common alternatives to proportionate

selection. Two-point crossover (Cavicchio 1970) and uniform crossover (Syswerda

1991) are alternatives to single-point crossover. For mutation, alternatives are non­

uniform mutation (Michalewicz 1994) and arithmetic mutation (Back 1996).

Figure 3.2 shows the flowchart of a simple genetic algorithm.

3.3.3 Comparison with Existing Optimization Techniques

Simple genetic algorithms differ from other conventional optimization schemes in four

major ways. Genetic algorithms are based on stochastic rules. While there are other

methods that are based on simple random walks, the stochastic operators of genetic

algorithms are highly exploitative (via random choice). Although using chance to

achieve results may seem unusual, nature, an evolutionary process, is a very good

example of apparent success of random choice.

Genetic algorithms manipulate the control variables of objective functions at the

representation level (strings) to exploit similarities among well-fitted strings. Since

genetic algorithms operate at the coding level, they are more difficult to be disoriented

even when the function may be difficult for traditional techniques.

Genetic algorithms search using evolution of a whole population while many ex­

isting methods use only a single point. By maintaining a population of well-adapted

samples, the probability that genetic algorithms will converge to global optima rather

than a local optimum is increased.

Finally, genetic algorithms achieve optimal solutions by ignoring all other infor-

no

-42-

START

INITIAL POPULATION

FITNESS
EVALUATION

SELECTION

CROSSOVER

MUTATION

yes

FINISH

Figure 3.2: Flowchart of a simple genetic algorithm

-43-

-0.5

-1L_----~----~-----L-----L----~----~
-1 -0.5 0 0.5

X
1.5 2

Figure 3.3: Graph of the function f(x) = x · sin(l01r · x) + 1.0

mation except the fitness function. Other methods rely on additional information

such as gradients, and in problems where such information is not available, these

schemes break down. Genetic algorithms are a general method because they only

use information available in any search problem, namely, the fitness or the objective

function values. This means that genetic algorithms have wide applicability. On the

other hand, when additional information is available, the simple GAs are not able to

exploit it.

3.3.4 Illustrative Example

Consider an oscillatory function to illustrate the explorative power of genetic algo­

rithms. We wish to find x from the range [-1,2] which maximizes the function f

defined as follows:

f(x) = x · sin(l01r · x) + 1.0.

Figure 3.3 shows the graphical representation of the function. Note that this func-

-44-

tion is highly oscillatory and has many local maxima. If gradient-based optimization

methods are employed to maximize this function, chances are they will converge to

one of the local maxima and will never get to the global maximum.

A simple genetic algorithm is used to solve this problem. Binary representation is

chosen to represent the real values of the variable x. The domain of x has length 3 and

binary strings of length 22 are selected to give precision of real values of x to around

10-6 . Thus, the strings (0000000000000000000000) and (1111111111111111111111)

represent the boundaries of the domain, -1.0 and 2.0, respectively.

Snapshots of population of several generations are given in Figure 3.4. The initial

population consisting of 20 strings is intentionally selected to be "far" from the global

optimum. The probabilities Pc and Pm are taken to be 0.85 and 0.05, respectively.

After only 10 generations, several genes approach the global optimum and by the 20th

generation, several genes have found the global optimum. Note that as the population

grows from generation to generation, much of the population start to converge to the

neighborhood of the global optimum except a few individuals. Convergence results

from the optimization run are shown in Figure 3.5.

-X -....

-X -....

-X -....

-45-

Initial Generation

2

0

-2~----~----~--~

-1 0 1 2
Generation 20

4~----~----~--~

-2~----~----~----

-1 0 1 2
Generation 40

4~----~----~--~

-2~----~----~--~

-1 0 1 2
X

-X -....

-X -....

-X -....

Generation 1 0
4~----~----~----

-2~----~----~--~

-1 0 1 2
Generation 30

4~----~----~----

-2~----~----~--~

-1 0 1 2
Generation 50

4~----~--------~

-2~----~----~--~

-1 0 1 2
X

Figure 3.4: Snapshots of population of different generations in a genetic search

-46-

3.----.-----r----.-----.----,-----.----.-----.----,.----,

I

2
~ I / I

I
I

\ /

\ /\I
I

~
I II /\

II I \/
I \ .

I \ I \ I I I I \

I \ /\ \ I I
\ I

I I \ I \

I \ I ' \I

\ I I \

...-I I I I I \ I /I
c) \

I-., I I
,.

I I
\I I I /

I

-Best

-- Average

0 5 10 15 20 25 30 35 40 45 50
Generation #

Figure 3.5: GA optimization results: best and average vs generation

-47-

3.4 Theory of Genetic Algorithms

A first exposure to the power of genetic algorithms usually leaves the impression that

they simply improve by random searches via a population of strings. However, genetic

algorithms efficiently explore search spaces in a different dimension than simply the

string population. In this section, we examine the inner workings of a simple genetic

algorithm. The notion of a schema is introduced together with some useful definitions

for classification of schemata. Using schemata, the schema theorem and the building

block hypothesis will be presented and questions like why GA works, and how GA

seeks an optimum, will be answered.

3.4.1 Schemata

Genetic algorithms search by processing a population of strings. However, for high

dimensional problems, it would be impractical, if not impossible, to search every single

point in the search space. Yet, genetic algorithms have been successfully applied to

large-scale problems (Unger and Moult 1993; Furuya and Haftka 1993). To explain

this paradox, the notion of schema is defined.

A schema (Goldberg 1989; Holland 1992), denoted by H, is a similarity tem­

plate which describes a subset of strings with similarities at certain string loci. It

is another "string" of the same length as the strings in the population. For binary­

representations, each gene in a schema takes on values of 0, 1, or *, where '*' is a

wild-card or a "don't care" symbol. Each schema of length l represents the set of all

strings of length l, whose corresponding loci contain bits identical to the '0' and '1'

bits of the schema. For example, the schema, 1 **01, represents the set of 5-bit strings

{10001, 11001, 10101, 11101 }. Any given string in the population can be grouped

into one or more schema. For binary strings, it can be easily shown that each string of

length l can be an element in 21 schemata. The concept of schema provides a powerful

and compact way to talk about all the well-defined similarities among finite-length

strings over a finite alphabet.

-48-

3.4.2 Order, Defining Length and Fitness of Schemata

To describe schemata, two notations are often used in their descriptions: order and

defining length. The order of a schema H, denoted as o(H), is the number of fixed

positions present in the template. In a binary alphabet, the order of a schema is

simply the number of O's and 1's. For example, the order of the schema 1 **01 is 3 or

symbolically, o(1 **01) = 3.

The defining length of a schema H, denoted as b(H), is the distance between the

first and last specified genes. For the schema 1 **01, the defining length b(1 * *01) is

4. For schemata with only one specific gene such as O****, **1 ** etc., the defining

length is 0.

Order and defining length of schema are important notational devices for dis­

cussing and classifying string similarities. Moreover, they provide the means for

analyzing the effect of reproduction and genetic operators on the population.

Finally, the fitness of a schema is simply defined as the average fitness of all the

strings it represents.

3.4.3 Building Blocks Processing

Counting the total number of possible schemata is an enlightening process! For binary

strings of length 5, there are 35 = 243 different similarity templates because at each

of the five loci, there are three possibilities: 0, 1 or *. So, in general for alphabets of

cardinality (number of alphabet characters) k, there are (k + 1)1 schemata of length

l. It may seem as though schemata are making the search more difficult because they

increase the number of possibilities from k1 of strings to (k + 1)1 schemata. However,

among all the possible templates, one group of them is of particular importance: the

building blocks.

Building blocks are low-order, short defining-length and highly fit schemata (Gold­

berg 1989). Genetic algorithms explore the search space through successive gener­

ations. During each generation, selection, crossover and mutation take place. As

described earlier, selection chooses individual strings with high fitness for further

-49-

processing. Hence, strings that are members of highly fit schemata are usually se­

lected more frequently. For crossover operators, schemata with low defining lengths

are less susceptible to disruption than those with long defining lengths. Similarly,

mutation, at a low mutation probability, infrequently disrupts low order schemata.

Therefore, it is easy to see that building blocks which are highly fit and low order

with short defining lengths are more likely to proliferate from generation to gener­

ation. This is also presented more quantitatively in a later section. Thus, genetic

algorithms perform searches through processing these useful schemata.

3.4.4 Implicit Parallelism of Genetic Algorithms

It is clear that the building block processing is essential to the success of genetic

algorithms in efficiently seeking optimal solutions. The next logical question to ask

is how efficiently do genetic algorithms process building blocks? Holland (1992) es­

timates that for a population of n strings, genetic algorithms process on the order

of n3 building blocks in each generation . Since in each generation, only n function

evaluations are needed (for fitness calculations), this is a significant processing lever­

age that is apparently unique to genetic algorithms. Since nothing extra is needed

to achieve this processing "parallelism," Holland calls this phenomenon implicit par­

allelism. For solution of large-scale problems, the existence of implicit parallelism

means that a larger population has the potential to find the optimal solution(s) in

polynomially faster time than a smaller population.

3.4.5 Fundamental Theorem of Genetic Algorithms

Let m(H, t) be the expected number of instances of schema H present in the popu­

lation at generation t. Thus, m(H, t + 1) represent the expected number of instances

of schema H in the next generation. Assuming that proportional selection is used,

we have m(H, t + 1) = m(H, t) · 1j) , where f(H) is the fitness of the schema Hand

f is the average population fitness.

The probability that the schema H survives crossover is greater than or equal to

50-

the term, 1 - Pc · ~~). The equality provides the lower bound of the probability of

survival while the inequality takes into account that a disrupted schema may regain

its composition through crossover with a similar schema. The probability that H

survives mutation is (1- Pm)o(H), which is approximately (1- o(H) · Pm) for small

Pm (recall that Pm << 1). Putting all these together, we have:

f(H) b(H)
m(H, t + 1) ~ m(H, t) · J · (1- Pc · l _

1
- o(H) · Pm)· (3.2)

This expression is known as the Schema Theorem or the Fundamental Theorem

of Genetic Algorithms. Although the above arguments are not a formal proof of the

theorem, this mathematical expression does provide the expectation of the survival

of building blocks and its implication is far-reaching and subtle (Goldberg 1989).

3.5 Issues Concerning Genetic Algorithms as

Optimizers

So far in this chapter, we have discussed the basic components of genetic algorithms,

how GAs work and how they explore the search space. To end this chapter, we will

look at some of the issues and difficulties in applying GAs to optimization problems.

We will focus on control parameters of GAs (population size, operator probabilities,

etc) and importance of GA operators, representation difficulties, scaling of fitness,

GA-hard and GA-deceptive problems.

3.5.1 Control Parameters and Importance of Genetic

Operators

From the earlier discussions, genetic operators of a standard GA include crossover and

mutation. These two operators have probabilities of Pc and Pm, respectively. Also,

there is another parameter which is very important to the success of GA operation:

-51-

population size. The choice of these parameters can have significant impact on the

performance. This issue was studied thoroughly by Schauffer and his colleagues (1989)

and they suggested the following values:

• Population size: 20-30

• Crossover probability: 0. 75-0.95

• Mutation probability: 0.005-0.01.

Traditionally, mutation in GA has always been considered as the secondary oper­

ator while crossover is the main operator that performs most of the exploration chore.

However, Schauffer's studies also found that:

1. mutation plays a stronger role than previously recognized

2. importance of crossover is overrated

3. search strategy based on selection and mutation only might be fairly powerful

even without crossover.

The question on whether crossover or mutation is more important has been the

focus of hot arguments. Up till now, no researcher can provide good research evidence

showing one way or the other although it seems that most applications of GA involve

both operators.

3.5.2 Representation Difficulties

As mentioned earlier, in order to apply a GA to an optimization problem, a repre­

sentation of the parameters of the objective function is required. So far, we have

only considered binary strings for such a representation. The problem with binary

representation is that it requires the number of possible values each parameter can

assume to be some power of 2. One can use alphabets with higher cardinality to rep­

resent other cases. However, if the number of possible values of a parameter is some

-52-

arbitrary number, chances are there is no alphabet that would provide a one-to-one

representation between the actual parameter values and the encoded strings.

In addition, the choice of representation can have significant impact on the per­

formance of the genetic algorithms. In practice, to efficiently solve an optimization

problem often requires some knowledge of the problem in order to come up with

a suitable representation. Up to now, there is not a set of guidelines which would

provide newcomers to genetic algorithms with assistance in choosing representations.

These two representation issues can hinder the applicability of genetic algorithms to

various engineering problems.

To get around these difficulties, Michalewicz advocates bypassing the represen­

tation and have GAs directly work on the parameter set or the phenotype. In his

book (Michalewicz 1994), he provides various examples of using such an approach to

solve optimization problems with real-valued parameters. Michalewicz proposes that

using such a real-value representation, one can achieve at least as good, if not better,

results than using the more traditional coding schemes such as binary representation.

Another approach is to pose the problem as a constrained optimization problem.

To solve this problem one can choose any representation and then apply penalties to

invalid individuals in the population using some penalty function. However, penalty

functions can change the landscape of the search space enough to affect the optimal

solution. Richardson, Palmer, Liepins and Hilliard (1989) suggest certain guidelines

for using penalty functions with genetic algorithms.

3.5.3 Fitness Scaling and Tournament Selection

For genetic algorithms with small populations, control of the number of copies each

string has is very important. In earlier generations, it is common to have a few

extraordinary individuals in a population of less than average strings. If the pro­

portional fitness selection (Ps = ~iii) is used, the extraordinary individuals would

take over a significant proportion of the small population in a few generations and

this leads to premature convergence to a possibly non-optimal solution. In addition,

-53-

there is a very different problem in later generations. Late in a GA run, the average

fitness of the population may be close to the best fitness of the population. Thus,

average members and the best ones get nearly the same number of copies in future

generations, and the survival of the fittest necessary for improvement becomes more

of a random walk among average individuals.

To address these shortcomings, fitness scaling is often used. The simplest way to

scale fitness is linear scaling:

!' = af +b.

Here, the scaled fitness f' is scaled by using two coefficients a and b such that the

average scaled fitness f~vg equals to the average of raw fitness favg and the best

individual !max is scaled down to around 2f~vg· Fitness scaling helps prevent early

domination of better fitness individuals, and in later generation, it also encourages

more competition among the population as the best fitness is still around twice the

average fitness. However, fitness scaling does not work for all populations.

Another approach is to use a selection with good selection pressure. Selection

pressure is the degree to which the better individuals are favored. The higher the

selection, the more the better individuals are favored. However, if the pressure is too

high, there is an increased chance of premature convergence. On the other hand, if the

pressure is too low, slow convergence would occur. One such selection scheme is tour­

nament selection (Goldberg and Deb 1991). This selection scheme randomly chooses

a set of s individuals from the population and picks the best for reproduction. Nor­

mally, a tournament size of s = 2 is used: binary tournament selection. This scheme

provides a good selection pressure which does not cause premature convergence in

initial generations and encourages competition in later ones.

3.5.4 GA-hard and GA-deceptive Problems

Most existing optimization techniques work well for some functions but do not perform

well on other type of functions. Genetic algorithms are no different. Since it is

-54-

a stochastic approach, it is hard to predetermine which types of functions would

cause difficulties for GAs. In the last 10 years or so, many researchers in the field

have tried to characterize functions that are most difficult for genetic algorithms to

optimize (Bethke 1980; Goldberg 1990; Goldberg 1991; Goldberg, Korb, and Deb

1989; Liepins and Vose 1991; Whitley 1991).

It is generally recognized that optimization functions that are difficult for GAs to

solve (or GA-hard problems) have one or more of the following properties:

1. multiple optima

2. isolation of optima

3. misleading sub-optima that lead GAs away from the desired optima

4. presence of noise.

Strictly speaking, multimodality is not really a source of hardness since we are

usually interested in only a single optimum. In addition, the concepts of niching,

crowding and sharing have been applied to genetic algorithms for multimodal function

optimization with some success (Goldberg and Richardson 1987). The problem of

noise can be handled by choosing appropriate population size (Goldberg, Deb, and

Horn 1992).

Problems which have both misleading and isolated, desirable optima are called

deceptive or GA-deceptive problems and are especially hard for a GA to solve. Decep­

tive problems are widely studied examples in the literature (Goldberg 1987; Whitley

1991). Classic deceptive problems usually have a global optimum and another local

optimum called the deceptive optimum. The global optimum has a small basin of

attraction, while the deceptive optimum has a large basin of attraction. Moreover,

the global and deceptive optima have similar fitness values.

A well-known example of such deceptive function is shown in Figure 3.6. This is

a 3 bit function with a global optimal point isolated from the rest of the crowd and

there are several suboptima which have function values close to the global optimum.

-55-

From the schema perspective, let's consider the fitness of the following schema: 0**,

1 **, **O, **1, 00*, 11 *, *OO and *11.

f(O**) -

!(1 **)

f(**O)

!(**1)

f(OO*) -

!(11 *)

!(*00)

!(*11)

~(!(000) + !(001) + !(010) + f(011)) = ~(28 + 26 + 22 + 0) = 19

~(!(100) + !(101) + !(110) + !(111)) = ~(14 + 0 + 0 + 30) = 11

~(!(000) + !(010) + !(100) + !(110)) = ~(28 + 22 + 14 + 0) = 16

l(f(001) + !(011) + !(101) + f(111)) = l(14 + 0 + 0 + 30) = 11

~(!(000) + !(001)) = ~(28 + 26) = 27

~(!(110) + !(111)) = ~(0 + 30) = 15

~(!(000) + !(100)) = ~(28 + 14) = 21

~(!(011) + !(111)) = ~(0 + 30) = 15.

It can be easily seen that the following is true:

!(1 **) < f(O**)

!(11 *) < f(OO*)

!(**1) < f(**O)

!(*11) < !(*00).

All schemata consistent with 111 such as 1 **, **1, *11 and 11 * are the ones GA

needs to obtain the global optimum 111. Since their competitors which are schemata

associated with 000 (0**, **0, 00*, etc.) have better fitnesses, by the schema theorem,

the number of strings processed via these schemata will increase with generations.

Thus, genetic algorithms will tend to converge to 000 instead of 111 because of these

misleading schemata.

From the building block viewpoint, deceptive problems are those where low-order

schemata are misleading, i.e. they tend to lead GAs to the deceptive optimum, just

like the example. However, it should be noted that deception on its own will not

-56-

30 Global optimum: 111

\,_----,
25

20

8
.... 15

10

5

OL--L----~----~----L-----L---~----~----~~

000 001 010 011 100 101 110 111
X

Figure 3.6: Different view of the 3-bit deceptive function

necessarily stop GAs from reaching the optimal solution. It requires both misleading

schemata as well as bad linkage among the schemata to make a problem GA-hard.

Linkage can be loosely measured by the defining length of schemata. It is a mea­

sure of how far apart the important substrings of a schema are in its representation.

With some knowledge of the problem at hand, one can usually choose a certain rep­

resentation or apply reordering schemes to provide tight linkage among the building

blocks.

The existence of deceptive problems and the inability of simple GAs to solve these

problems is an obstacle that must be overcome. In the next chapter, we will examine

these deceptive problems in greater detail and we will look at one variant of GAs,

variable-length genetic algorithms (Goldberg, Korb, and Deb 1989; Goldberg, Deb,

and Korb 1990), which have the potential to solve these problems without requiring

much prior knowledge about them.

-57-

Chapter 4

Special Classes of Genetic Algorithms

4.1 Introduction

In the last chapter, we looked at the basics of genetic algorithms, how they perform

searches and why they work. In this chapter, we will focus on two special classes of

genetic algorithms: variable-length genetic algorithms and hybrid genetic algorithms.

Variable-length GAs have the potential to solve GA-hard problems which require cer­

tain allele combinations to be close together. Such problems may arise when applying

simple GAs to structural optimization problems over available steel sections. For these

problems, the use of variable-length representation is recommended and a variable­

length scheme called vGA is proposed. For continuous optimization problems, hybrid

GAs, which are combinations of hill-climbing methods and genetic algorithms, are

quite attractive in terms of better convergence rate. A hybrid GA, denoted as hGA,

is also proposed.

4.2 Variable-Length Genetic Algorithms

4.2.1 Motivation

The success of genetic algorithms depends on the growth of short, low-order and

highly-fit schemata (building blocks) through successive generations to form optimal

solutions. In deceptive problems, nonlinearities may prevent these building blocks

-58-

from forming optimal solutions. In addition, the genetic representation (genotype)

of a problem may be such that the needed allele combinations are widely apart or

loosely linked and so, genetic operators such as crossover are likely to disrupt these

desirable building blocks. One way to overcome this problem is by using a tight

ordering representation that codes the needed allele combination closely together to

provide tight linkage. However, such a tight gene ordering in a problem requires prior

knowledge about the problem which, in most cases, is not usually available. Without

any knowledge of tight coding, a random coding usually results in low-order building

blocks which are loosely linked.

Faced with this coding problem, researchers have come up with the idea of using

a variable-length representation. Among the different variable-length schemes (Smith

1980; Shaefer 1987; Cramer 1985) existing in the literature is messy genetic algorithm

(mGA) developed by Goldberg, Korb and Deb (1989, 1990). Using this new mGA,

Goldberg and his colleagues successfully found the global solution of a high order

deceptive problem to global optimality.

In this section, we will focus on variable-length genetic algorithms. The variable­

length representation and the special operators associated with this coding are pre­

sented. As we will see, variable-length GAs are suitable for solving discrete opti­

mization problems with GA-hardness and such difficulties may arise in structural

optimization problems over available steel sections. A variable-length GA, denoted

as vGA, is also proposed here which is based on the messy GA and is specially de­

signed for solving the aforementioned discrete optimal design problems in structural

engineering.

4.2.2 Variable Length Representation

Variable-Length Coding

A gene in a variable-length chromosome contains information of both its locus and

the allele. For example, the string 10100 in simple GA can be represented by (

(2 0) (1 1) (4 0) (3 1) (5 0)) or ((5 0) (3 1) (1 1) (4 0) (2 0)), where in each

-59-

duplet, the entries are the locus and the allele of the gene, respectively. Unlike its

simple GA counterparts, strings in a variable-length GA can be either underspecified

or overspecified. Thus, the variable-length strings ((2 0) (1 1)) and ((3 1) (1 0)

(2 1) (1 1)) are acceptable strings for a 3-bit problem under this variable-length

coding scheme. Here, the first string is underspecified since gene 3 is missing while

the second string is overspecified because gene 1 appears twice. Note that a variable­

length string can be both underspecified and overspecified at the same time. As we

will soon see, this variable-length coding provides the flexibility that allows important

gene combinations to stay close together even though they may be far apart in the

fixed representation. However, such flexibility does not come without a price as

additional effort is required to decode overspecified or underspecified strings.

Variable-Length Decoding

To evaluate the fitness of an individual, the full string is required. Since a variable­

length string can be underspecified or overspecified or both, additional effort is needed

to decode these strings.

Overspecification can be handled fairly easily as it requires us to choose between

conflicting genes in the string. A straightforward way is to take the first instance

of a gene allele using first-come-first-served rule from left to right. For example, the

second string from the previous discussion, ((3 1) (1 0) (2 1) (1 1)), contains two

instances of gene 1 and will be decoded as 011 since (1 0) precedes (11) in the string.

Other decoding possibilities exist such as voting procedure and adaptive precedence

(Goldberg, Korb, and Deb 1989).

For underspecification, it is necessary to fill the missing genes in an underspecified

string. Different techniques can be devised for such purpose. One approach is to

employ a template and make a given string complete by filling the missing genes of

the string with the corresponding genes from the template. To illustrate how this

works, consider our previous underspecified gene, ((2 0) (1 1)), and the template

000. The complete 3-bit string for our string is (1 0 0), borrowing the third gene

from the template.

-60-

Before After

cut & splice

Figure 4.1: Illustration of a cut and splice operation

4.2.3 Operators of a Variable-Length GA

To handle strings of variable length, both crossover and mutation have to be modified.

For crossover, a new operator, consisting of two operators, cut and splice (Goldberg,

Korb, and Deb 1989) is normally used for this purpose. First, the cut operation is

carried out on two randomly selected strings. Then, the splice operator combines

the resulting strings to form new offsprings. Figure 4.1 illustrates a cut and splice

operation.

For mutation, two operators, allelic mutation and genic mutation, are usually

employed in a variable-length GA. An allelic mutation operates on allele values by

flipping the bits with a specified allelic mutation probability, Pam· This is similiar

to the mutation operator which flips bits along the fixed-length strings in simple

GA described in the previous chapter. Complementary to the allelic mutation is

the genic mutation, which swaps one gene with another one with a specified genic

mutation probability, Pgm· For instance, for the string ((3 1) (1 0) (2 1) (1 1)), the

genic mutation can swap the first and the third genes to form ((2 1) (1 0) (3 1) (1

1)) . This reordering of genes can affect the offsprings created by the cut and splice

operators.

-61-

4.2.4 Organization of a Variable-Length GA

Despite the differences in representation and the operators used, the overall flow

of a variable-length genetic algorithm is very similiar to their simple counterparts.

Figure 4.2 shows the overall flowchart of a variable-length GA. The only difference

here is that the crossover operator in simple GA is replaced by the cut and splice

operator.

4.2.5 Proposed vGA for Discrete Structural Optimization

over Available Steel Sections

A variable-length genetic algorithm, denoted as vGA, is presented here. This vGA

is tailored for solving discrete structural optimization problems over available wide

flange sections (W-shapes). This algorithm follows many of the ideas described ear­

lier in this chapter and the only application-specific information about vGA is: the

variable-length representation of steel sections and the template used for addressing

underspecification of strings.

For the representation, 256 wide flange sections are picked from the AISC manual

for coding. Thus, an 8-bit string is required for each design variable. For instance,

the string ((1 0) (2 0) (3 0) (4 0) (5 0) (6 0) (7 0) (8 0)) represents the smallest W

section W 4x13. Only 256 of the possible 297 W sections are chosen to allow an easy

one-to-one mapping between the phenotype (the W-shapes) and the genotype (the

variable-length strings).

For underspecification, an initial template of all zero bits is used. After every n

generations, the current template is updated with information from the best strings.

By doing so, any underspecified strings will get the good allele combinations from the

best individuals and therefore, improve the average fitness of the population.

Recall that a variable-length GA usually employs the following three operators:

selection, cut and splice, and mutation. For selection, the binary tournament selection

scheme (Goldberg and Deb 1991) is used to avoid the necessity of function scaling

and to maintain a reliable selection. In a binary tournament selection, two strings

no

-62-

START

INITIAL POPULATION

FITNESS
EVALUATION

SELECTION

CUT & SPLICE

MUTATION

yes

FINISH

Figure 4.2: Overview of a variable-length genetic algorithm

-63-

5 kips

1
E,A, I

~----------100inches

Figure 4.3: Cantilever beam for the illustrative example

are picked randomly from the population and the best of the two is selected. For a

population of size n, this tournament is repeated n times to create a new population

consisting of the winners of these n tournaments.

The overall flow of vGA is the same as illustrated in Figure 4.2.

4.2.6 Illustrative Numerical Example

Background

A simple cantilever beam design problem is utilized as an example to demonstrate

various issues involving discrete optimal structural design over available steel sections.

Consider the simple cantilever beam as illustrated in Figure 4.3. The length of the

beam is 100 inches. A point load of 5 kips is applied at the far end of the beam. The

objective is to obtain a design that best satisfies the following two design criteria:

1. Maximum Bending Stress: Bending stress along the beam should not be greater

than 40 ksi

2. Total Steel Volume: The total steel required should be minimized.

-64-

Table 4.1: Optimization results of the illustrative example

Criteria
Stress
Volume
Overall

Final Design
Section

Area
I

Simple GA
Value 1-L

29.10 (ksi) 1.000
471 (in3

) 0.939
0.941

Simple GA
W12x16

4.71 (in2
)

103.0 (in4)

Proposed vGA
Value 1-L

33.06 (ksi) 0.798
416 (in3

) 0.955
0.949

Proposed vG A
W12x14

4.16 (in2
)

88.6 (in4
)

The multicriterion design approach described in Chapter 2 is applied to this prob­

lem. To quantify the above design criteria, two preference functions are defined as

shown in Figure 4.4. Referring first to the preference function for stress (Figure 4.4a),

the perfectly acceptable stress range from 0.0 to 36.0 ksi and the upper bound is set to

the specified limit of 40 ksi. The preference value of unity drops off linearly from 36.0

ksi and reaches an unacceptable value of zero when it hits 40 ksi. For steel volume,

a normalized volume is used instead which is defined by:

Vmax- V
Vnormalized = V. _ V. .

max m~n

where Vmax and Vmin are the specified maximum and minimum volumes. The prefer­

ence function for steel volume is triangular in shape as shown in Figure 4.4b.

The domain of the search space is the smallest 256 wide flange sections (W sec­

tions) listed in the AISC manual. This problem is solved both with a simple genetic

algorithm and also the proposed vGA. Since the search space is quite small (only 256

possible solutions), a relatively small population size of 10 is used for both schemes

and an initial population is randomly generated. For comparison purpose, this same

initial population is used for the two GAs. The maximum generation count is limited

to 30. Optimization results are tabulated in Table 4.1.

-65-

J.L(q)

q
36 ksi 40 ksi

(a)

J.L(q)

1.0

q
1.0

(b)

Figure 4.4: Preference functions for the illustrative example

-66-

Discussions and Comments

This optimal design problem actually possesses some of the GA-hardness described in

Chapter 3. Consider the individual preference values in Figure 4.6. The plot for max­

imum bending stress illustrates a very interesting point. When the AISC sections are

sorted by area, the corresponding moments of inertia are not monotonically increasing

with the area and therefore, there are fluctuations from unacceptable to acceptable

and back to unacceptable as we go from smaller sections to larger sections. Table 4.2

shows the smallest twenty W sections. Notice how moment of inertia fluctuates as the

area increases. The relationship of area and moment of inertia is further illustrated

in Figure 4.5. Steel volume, on the other hand, monotonically increases with area

and so the preference value monotonically decreases as the section area increases. As

a result, the overall preference value has the shape as shown in Figure 4.7. Note

that this function looks very much like the deceptive function described in Chapter

3, which is hard for simple genetic algorithms to solve. The global optimum is iso­

lated by a "sea" of sections which are totally unacceptable while the the majority of

the relatively larger sections have reasonably acceptable preference. This property is

exactly one of the causes for GA-deception. Such deception is reflected in the results

of the optimization runs since the simple GA settled with one of the suboptimal de­

signs while the vGA converged to the global optimal solution. Note that the same

GA-deception characteristics will be observed if this problem is solved by sorting the

members with moment of inertia instead of area.

-67-

Table 4.2: Properties of the twenty smallest AISC W-sections

Section Area (in2
) I (in4)

W6X9 2.68 16.4
W8X10 2.96 30.8
W10X12 3.54 53.8
W6X12 3.55 22.1
W4X13 3.83 11.3
W8X13 3.84 39.6
W12X14 4.16 88.6
W10X15 4.41 68.9
W6X15 4.43 29.1
W8X15 4.44 48.0
W5X16 4.68 21.3
W12X16 4.71 103.0
W6X16 4.74 32.1
W10X17 4.99 81.9
W8X18 5.26 61.9
W5X19 5.54 26.2

W12X19 5.57 130.0
W10X19 5.62 96.3
W6X20 5.87 41.4
W8X21 6.16 75.3

-68-

X 10
4

7.-----------.-----------.-----------.------------.-----------,

6

5

~4
Q)
c

2

1

. . .
.. .

. . .
. : :. :-: : :

. · . . .

. ·:·,::-.: : : :
~)·:i;.; · .· .

o~.-~~--_L __________ L_ ________ _L __________ L_ ________ ~

0 50 100 150 200 250
Area (inA2)

Figure 4.5: Scatter plot of AISC sections: moment of inertia vs area

Q)
::I

0.

0.

0.

~0.
Q)

g 0.
~
Q)

'§ 0.
a..

0.

0.

0.

1

9

8

7

6

5

4

3

2

1

v·

0.9

0.8

0.7
Q)
::I

~ 0.6
Q)
(.)

~ 0.5
Q)

'§ 0.4
a..

0.3

0.2

0.1

-69-

Maximum Bending Stress
~~

5 10 15 20 25 30 35 40 45 50
Section#

Total Steel Volume

0~--~----~----~----~----~----~----~----~----~----~

5 10 15 20 25
Section#

30 35 40 45 50

Figure 4.6: Individual preference values of stress and volume versus AISC sections
(sorted by area)

-70-

1 dpt1mum

0.
(~

~ (~
9 ~~

~ 8
'e-&9.

0.

7 ~D
6

5

4

3

0. 2

0. 1

() ~~

5 10 15 20 25 30 35 40 45 50
Section#

Figure 4.7: Overall preference value versus AISC sections (sorted by area)

-71-

4.3 Hybrid Genetic Algorithms for Continuous

Optimization

4.3.1 Motivation

As discussed in Chapter 3, genetic algorithms are stochastic methods which offer

several advantages over traditional methods for continuous variables. By using a

population approach and some probabilistic rules, genetic algorithms seek an optimum

through exploration of the search space. They are definitely better alternatives than

traditional methods for continuous-variable optimization problems with numerous

local optima. Nevertheless, GAs can suffer from slow convergence before providing

an "accurate" solution primarily due to their lack of exploitation of local topological

information of the problem. Moreover, the accuracy of the solutions obtained may

not be very good in terms of digits of accuracy due to the stochastic nature of the

method.

On the other hand, traditional methods, mostly hill-climbing, such as quasJ­

N ewton methods, are well known to exploit the local topological information effi­

ciently to provide an optimum in the neighborhood. Usually, a lot of local infor­

mation, such as the gradient vector and Hessian (curvature) matrix, is required to

achieve this high level of exploitation. If such information is not available, these

methods are usually not very robust and reliable. However, if an optimum is found,

the solution is usually very accurate numerically.

0 bviously, there is a conflict among accuracy, reliability and computational effort

when searching for the global optimal solution of a complex problem (Renders and

Flasse 1996). It is generally impossible to reach an accurate and reliable solution with

little computational effort. This conflict can also be viewed as a tradeoff between

exploitation and exploration. Genetic algorithms, which can bypass local optima to

arrive at the global optimal solution, are good at exploration but often suffer from slow

convergence and a lack of exact solution due to its stochastic nature. Hill-climbing

methods which are good at exploitation focus on accuracy and efficiency but lack

Genetic
Algorithm
(hill-finder)

-72-

Best Individual

Local Search
(hill-climber)

Optimal Solution

Figure 4. 8: Schematic of a hybrid genetic algorithm

reliability. Thus, these two classes of optimization can complement each other in

terms of their strengths and weaknesses. A combination of both the GAs and hill­

climbing methods, known as hybrid genetic algorithms, provides a good balance of

accuracy, reliability and efficiency.

4.3.2 Definition of a Hybrid GA

When problem-specific information is available, it is usually advantageous to consider

this information during the optimization process. Since genetic algorithms do not

utilize any specific information other than the objective function value, a hybridization

of GAs with other schemes that can take into account this additional information

is needed. Such hybridization is usually a genetic algorithm coupled with a local

search scheme that utilize local topological information. In this case, the exploration

power and global perspective of GAs are coupled with the hill-climbing ability of local

optimization methods and result in a scheme that has the best of both worlds.

Local optimization of a continuous function is a well-studied area and numerous

gradient and gradient-less methods are available for finding local optima. To develop

a hybrid GA, we can simply connect some local search technique with a genetic

algorithm. One simple implementation of a hybrid scheme is to feed the best solution

obtained by GA into a local search technique to compute the local optimal. In a

-73-

t \
Genetic -" Local Search

Algorithm
ll>. Local Search

4

"'

""'
I>

Local Search

Figure 4.9: A parallel implementation of a hybrid genetic algorithm

sense, the GA finds the hills while the local search method, the hill-climber, climbs

them (see Figure 4. 8) .

Since genetic algorithms are population-oriented, a parallel approach to hybrid

GAs can be achieved in a straightforward way. Figure 4.9 depicts an implementation

of a parallel hybrid GA. With numerous parallel processors, function evaluations can

be carried out simultaneously for different strings within a generation. Moreover,

some of the parallel processors can occasionally perform local searches on the better

fitness individuals.

4.3.3 Proposed hGA

A specialized hybrid genetic algorithm, denoted as hGA, is presented here. This hGA

is designed specifically for continuous optimization problems. Special characteristics

of hGA, which are elaborated below, are:

1. Real-valued representation is used for coding of function variables.

-74-

2. Genetic operators such as crossover and mutation are borrowed from those of

evolution strategies, which are always real-valued coded.

3. Interface with local search methods is done via an operator.

Real-valued Representation

Although binary representation is by far the most common coding scheme, one main

disadvantages for using binary coding for real-valued optimization is that it requires

a long binary string to achieve accuracy in the solution. Recall that for the single

variable function in Chapter 3, a binary string of length 20 is required to represent a

potential solution accurate to the sixth decimal place. For high dimensional problems,

a much longer binary string is required and such long strings could result in weak

linkage in building blocks. Moreover, significant computational effort is needed to

encode and decode each binary string. Therefore, for the proposed method, a floating

point or real-valued representation is employed. Another advantage for using a real­

valued coding is the ease of passing potential solutions back and forth between GAs

and hill-climbing techniques.

In the real-valued representation, each potential solution or chromosome is repre­

sented by a vector of real numbers. For a function of three variables, each chromosome

is represented by a vector of three real values (i.e. three genes). Each gene within

the chromosome is enforced to stay within its specified range.

Genetic Operators

Since a real-valued representation is used, crossover and mutation operators for bi­

nary representation have to be modified in order for them to work in a similiar way.

For crossover operations, only crossover between genes are allowed. Two crossover
'

operators are used in conjunction: simple crossover (Michalewicz 1994) and arith­

metic crossover (Back 1996). These two operators have probabilities, Psc and Pac,

respectively.

Simple crossover is defined very similiar to the one-point crossover for simple GAs.

-75-

If parents X= (x1 , ... , Xn) andY= (y1 , ... , Yn) are crossed after the k'h position, where

k is chosen randomly and then crossover occurs with probability Psc, the resulting

offsprings are X' = (x1, ... , Xk, Yk+b ... , Yn) and Y' = (Yb ... yk, Xk+l, ... , Xn)· However,

this operator may produce offspring which are infeasible. For this case, a different

position is picked and crossed again. If the resulting offsprings are still infeasible, the

parents are then taken as offsprings.

Arithmetric crossover can be defined as follows:

where X, Y =parents

X', Y'= offsprings

X'

Y'

r =random value in (0,1).

rX+(1-r)Y

(1-r)X +rY,

(4.1)

(4.2)

Again, this crossover occurs with probability Pac· Since this operation is basically a

linear combination of the two parents, the resulting offsprings are always valid for

convex problems.

For mutation, a non-uniform mutation operator (Michalewicz 1994) is chosen for

this method. From a chromosome X = (x1 , ... , xn), this unary operator generates an

offspring X' = (x1 , ... , x!,, ... , xn) by mutating the k'h gene in X, where

1 { Xk + o(t, Xk,ub- Xk) if r < 0.5
xk =

Xk + o(t, Xk- Xk,tb) if r 2: 0.5

Here, Xk,tb, xk,ub = lower and upper bounds of variable Xk

r

t

a(t, y)

=random value in (0,1)

= generation number

= y. (1- r(l-,,;a.)').

The function o(t, y) causes the algorithm to search the space more uniformly initially

-76-

(when t is small), and very locally as t approaches the maximum generation count

tmax. This operator has a probability of Pm·

Local Search or Hill-Climbing Operator

Many hybrid schemes work by taking solutions from one method (GA) and feeding

them to another method (local search). However, for the proposed method, a local

search technique is used as an operator within the genetic algorithm. Because of the

real-valued representation, the two methods are more integrated and chromosomes,

which are vectors of real values, can be passed to and from the local search algorithm

without any encoding or decoding. A quasi-Newton method, which is well-known to

have second order convergence rate when it is close to the optimum, is used for the

local search operator.

The local search operator works as a supplementary operator to the proposed

method. Local search is performed after every m of generations, the search operator

performs local searches for certain individuals, usually the best and the worst ones,

in the population. These individuals are then updated with the solutions obtained

from the local searches.

The Overall Picture

Incorporating all the ideas in the above discussions, the overall flowchart of the pro­

posed hGA is summarized in Figure 4.10. Note that there are two different conver­

gence checks in hGA. The first one is done within the local search algorithm and is

not shown in the figure. This check is performed in every local search. The second

convergence check is done at the GA level and is shown at the bottom of the figure.

no

~ 77 ~

INITIAL POPULATION

FITNESS
EVALUATION

SELECTION

CROSSOVER

MUTATION

LOCAL SEARCH

FINISH

Figure 4.10: Overall flowchart of the proposed hGA

-78-

4.3.4 Numerical Example

Background

Consider a two-variable function f(xb x2) as illustrated in the contour plot in Fig­

ure 4.11. This function arises from model identification of a two degrees of freedom

shear building. The objective function is to minimize the two-norm of the error

between the modal frequencies of the predicted model and the actual model. The

variables x 1 and x2 are scaled values of the interstory stiffness for the first and second

stories, respectively. Both variables x 1 and x2 have the range of [0, 3]. This function

has two optimal points: [1.0, l.OjT and [2.0, 0.5]T, as denoted by '*' in the figure.

However, the basin of attraction of [1.0, l.OJT is much bigger than that of [2.0, 0.5]T

That is, most initial guess in the domain [0, 3] x [0, 3] will converge to the solution

[1.0, l.O]T. In addition, this function has the "banana valley" characteristic, which

may cause traditional hill-climbing methods to have slow convergence if not started

with a good initial guess.

The function is solved by a simple genetic algorithm and the proposed hGA. The

population size is set to 20 for both algorithms. The initial population is generated

randomly and for comparison purposes, the same initial population is used for the

two methods. The maximum generation count is limited to 30. Probabilities Psc, Pac

and Pm are set to 0.85, 0.85 and 0.01, respectively. The convergence histories of both

methods are shown in Figure 4.12. A snapshot of the initial population is given in

Figure 4.13 and those of the final populations of hGA and simple GA are presented

in Figure 4.14 and Figure 4.15, respectively.

Discussion and Comments

From the convergence histories, it is obvious that the proposed hGA method has

a much faster convergence rate than the simple GA. The main reason why this is

so is because of the presence of the local search operator in hGA. This operator is

applied every five generations, and in fact, hGA found the optimal solution after the

5th generation. In contrast, simple GA takes a much slower path to convergence and

-79-

in fact, at termination after the 30th generation, it only found a fairly close solution

[0.98, 0.97JT.

Looking at the snapshots of the initial and final populations of the two methods, an

interesting observation can be drawn. Notice that with an identical initial population,

the majority of the final population of the simple GA (see Figure 4.15) converges to

the solution [1.0, l.OjT, which is expected as the basin of attraction of this solution is

much larger than that of the other solution [2.0, 0.5]T However, for the hGA, both

solutions were found within the 30 generations (see Figure 4.14) although most of

the strings clustered around the solution [1.0, l.OjT . In fact, they were obtained at

the lOth generation. Thus, with the presence of a local search operator, the proposed

hGA is capable of locating multiple optimal solutions. Although this property cannot

be verified mathematically, similiar results were obtained from several independent

runs.

-80-

Figure 4.11: Contour plot of objective function for the numerical example

rn
rn

-0.15

-o.2r-

i!! -0.25
"" lL

-0.3

-0.35

-0.4

-0.45

-81-

-hGA

-- simple GA

-0.5L_----~--------~------~--------~------~'L-------~
5 10 15

Generation #
20 25

Figure 4.12: Convergence histories of simple GA and hGA

30

';;! 1.5

1

0.5 1

-82-

1.5
x1

2 2.5

Figure 4.13: Snapshot of initial population of both methods

3

~ 1.5

1

0.5

-83-

0~

1 1.5
x1

2 2.5

Figure 4.14: Snapshot of final population of the proposed hGA

3

~ 1.5

1

0.5 1

-84-

1.5
x1

2 2.5

Figure 4.15: Snapshot of final population of simple GA

3

-85-

4.4 Conclusions

In this chapter, two special classes of genetic algorithms are presented: variable-length

GA and hybrid GA. A specially-adapted variable-length GA called vGA is presented

which can better handle discrete structural optimization problems over available steel

sections. This method overcomes the difficulties when there is an isolated optimum,

as illustrated in the example, involving optimization over AISC W-sections.

A hybrid GA called hGA is also proposed in this chapter for optimization involv­

ing continuous variables. This hybrid scheme differs from others presented in the

literature in that the hill-climbing method is an operator within a GA, and not some­

thing performed after the GA has converged. This combination works very well with

faster convergence and better accuracy in the solution, as illustrated in the numerical

example.

-86-

Chapter 5

Software Implementation of Multicriterion

Optimization with Genetic Algorithms

5.1 Introduction and Background

The multicriterion design optimization framework described in Chapter Two was in­

vestigated and implemented as part of the CUREe-Kajima project New Computer

Tools for Optimal Design Decisions in the Presence of Risk. This project involved a

collaborative research effort among Caltech, Stanford, and USC to develop an inter­

active computer tool that partially automates the structural analysis, evaluation and

optimization process so that structural engineers can make better design decisions in

the presence of uncertain risk.

A software program developed primarily at Caltech called CODA was imple­

mented as a software prototype of the optimal design framework including the new

genetic algorithms, vGA and hGA, presented in Chapter 4. CODA is a 32-bit Win­

dows application. Hardware requirements to run the program include the Windows

95 or NT operating system, 16MB of RAM, and approximately lOMB of available disk

space. The program was developed primarily using the Microsoft Visual C++ Devel­

opment System for Windows Version 2.0. Much of the programming of the graphical

interfaces of CODA was facilitated with the use of the Microsoft Foundation Classes.

CODA is actually the successor of an earlier version called SODA, which was the

result of a joint development effort by the three universities involved in the CUREe-

-87-

Kajima project. However, existing commercial optimal design software was found to

have the same acronym SODA. Thus, the new version of our software containing the

GAs was called CODA.

In this chapter, the software prototype CODA is described in detail. The system

architecture of CODA is first introduced which is followed by a description of its

functionalities. The theory behind how CODA works and its implementation issues

are also covered.

5.2 Overview of the CODA System

The design process in CODA begins with a preliminary design and then involves an

iterative procedure of analysis, evaluation, and revision. In CODA, there is a software

module devoted to each of these tasks. Figure 5.1 shows the overall architecture of

CODA.

The three main modules in CODA, which have been described in Section 2.3, are:

• The ANALYZER module uses finite element analysis to compute performance

parameter values based on a building configuration specified by the user and on

the current values of the design parameters.

• The EVALUATOR, a module based on multicriterion decision theory, fuzzy

logic and structural reliability concepts, determines an overall design evalua­

tion measure, or level of acceptability, of the current design based on multiple

performance criteria and a treatment of load uncertainties. This is done by ag­

gregating preference values for the current design based on each of the individual

design criteria, as described in Chapter 2.

• The REVISER performs revisions of the design to find an optimal design based

on maximization of the overall design evaluation measure. Several optimization

algorithms, both deterministic and stochastic, can be chosen, including the vGA

and hGA algorithms presented in Chapter 4.

Finite Element

-88-

Agregalion of the

design criteria

preference

and weights

Deterministic

and Stochastic

0 ptimization

Figure 5.1: Overall system architecture of CODA

-89-

In addition, there is an EXECUTIVE module, as shown in Figure 5.1, which has

a supervisory role with respect to the other modules (the ANALYZER, the EVALU­

ATOR, and the REVISER). The EXECUTIVE module acts as an interface between

these three modules and the user, assisting in the initialization of the modules, con­

trolling the execution of the different processes, and storing the information associated

with the analysis, evaluation and optimization so that it is accessible by each of the

other modules. The EXECUTIVE also allows the user to view the structure under

consideration in graphical form (see Figure 5.2) and to view tabular listings of the

structural parameters and analysis results. This centralization of initialization, con­

trol and result presentation in the EXECUTIVE makes CODA more modular, since

additional features and modifications may be made to the user interface without

restructuring the entire software system.

The centralization also facilitates control and monitoring of the numerous pro­

cesses involved in the execution of the program; in particular, error-checking and

error-recovery can be made at each step of the analysis, evaluation or optimization,

so that messages can be displayed to the user by the EXECUTNE when problems

arise and recovery from an error can be made without fatal crashing of the program.

The EXECUTNE allows initialization of the ANALYZER by prompting the user

to input the physical configuration of the initial preliminary design, including geomet­

ric information and individual member and connection information. In addition, the

user must select, from a menu of possibilities, the design and performance parameters

important for the design decision-making process. These design and performance pa­

rameters are combined with preference functions and weights to express the design

criteria in a quantitative form. The design parameters, designated by a vector (},

are those parameters of the initial design which are selected to be varied during the

search for an optimal design. In CODA, the design parameters control the geometry

of the structural members (e.g., flange width or web depth). On the other hand,

performance parameters, designated by a vector q, represent quantities related to

the "performance" of the design, and can take the form of conventional structural

parameters (e.g., stress, deflection, etc.) or other parameters (e.g., material cost of

-90-

../~tatus Bar
9

5

8

7

2

Hode..f

Parameters

Figure 5.2: Screen dump of CODA with FEM view

-91-

the structural system).

The principal role of the ANALYZER is to calculate the performance parameters

q(8) as a function of the prescribed design parameters, 8. Several types of analyses

are available for computing these performance parameters (see Figure 5.3). How­

ever, in the case of uncertain loads, the probability density function p(qiO) for the

corresponding uncertain performance parameters is calculated.

To evaluate the current design, the EVALUATOR requires a user-supplied pref­

erence function, J.li, for each design criterion (i = 1, ... , Nc), which defines the pref­

erence for the various values of each design parameter or performance parameter

involved in the criterion. The preference function may simply express a minimum

and/or maximum (fuzzy) bound on a design quantity, or it may express a more

complex design criterion. A value J.Li(q(O)) = 1 indicates perfect acceptability of

the design prescribed by e, as judged by the ith design criterion alone; whereas,

J.li(q(O)) = 0 indicates absolute unacceptability of the design. Values between 0 and

1 indicate degrees of acceptability or preference between these extreme cases. In ad­

dition, the user supplies importance factors or weights, Wi, which indicate the relative

importance of the ith design criterion. A large importance factor for a design crite­

rion gives it more influence in the trade-off which occurs between the various criteria

during optimization of the design, that is, it indicates that the design should be such

that the corresponding preference function value is close to unity. Alternatively, if a

design criterion is given a low importance factor, its associated preference function

value may be close to zero without greatly affecting the overall design evaluation. All

these can be specified in CODA using the dialog box shown in Figure 5.4.

The REVISER takes the overall design evaluation measure, J.L, computed by the

EVALUATOR from the individual preference function values, J.Li(i = 1, ... , Nc), and

revises the design to improve it. In the optimization mode of CODA, the ANALYZER,

EVALUATOR and REVISER are repeatedly called by the EXECUTIVE in order to

find an optimal design. During the optimization process, a close to real time display

of the progress is shown via a dialog box as shown in Figure 5.5.

-92-

Define .Loads
Qefine Design Parameters
Bun An is

·.

liii@ii@M

Figure 5.3: Screen dump of ANALYZER menu

-93-

Figure 5.4: Screen dump of EVALUATOR preference function dialog

-94-

Figure 5.5: Screen dump of REVISER with optimization progress view

-95-

5.3 Functionalities

Currently, CODA is capable of handling the following types of analysis on structural

systems:

• Linear static analysis with wind, gravity and earthquake loadings (equivalent

static and response spectra methods) from 1994 Uniform Building Code (ICBO

1994) using finite element methods.

• Modal analysis using generalized Jacobi transformation method.

• Time history analysis using Newmark numerical integration techniques.

CODA is equipped with both the conservative and the trade-off strategies de­

scribed in Chapter 2. For REVISER, optimal design of structures can be done at

both continuous and discrete design parameter levels with the following algorithms:

• Continuous parameter optimization using quasi-Newton method, adaptive ran­

dom search and hybrid genetic algorithm (hGA).

• Discrete parameter optimization over commercially available steel sections using

varaible--length genetic algorithm (vGA).

5.4 Theory

In this section, the theory behind how CODA works is presented. The discussion here

follows very closely that in the CUREe-Kajima project report (Beck, Chan, Irfanoglu,

Masri, Smith, Vance, and Barroso 1996). However, some of the lengthy details are

not covered here and the interested reader is referred to the report.

5.4.1 The ANALYZER

The role of the ANALYZER is to compute performance parameter values based on

the specified design parameters. The performance parameters currently include steel

-96-

volume, base shear, maximum displacement, maximum drift, and member axial, shear

and bending stress. Steel volume is computed simply by summing up the volume of

all the members (member volume = cross-sectional area * length). The remainder

of the performance parameters currently considered in CODA are computed using

basic finite element methods. The current version of CODA performs linear static

and dynamic finite element analyses of planar frames, including earthquake and wind

analyses. The following sections discuss the theory of the various CODA analysis

capabilities.

Linear Static Analysis: Gravity, Wind, and Earthquake Loads

The equation governing static deformation can be written as:

Kx=f

where: K = global stiffness matrix

x = nodal displacement vector

f = global force vector.

(5.1)

Two types of elements are available for finite element modeling of structural systems

in CODA: 2D beam-column and 2D truss elements. The stiffness matrix for a 2D

beam-column element in local coordinates is given by:

AL2
0 0 AL2

0 0 -I- --I-

0 12 6L 0 -12 6L

Kz = EI 0 6£ 4£2 0 -6£ 2£2
(5.2)

' £3 AL2
0 0 AL2

0 0 --I- -I-

0 -12 -6L 0 12 -6L

0 6L 2£2 0 -6£ 4£2

-97-

where: K~ = ith beam-column element stiffness matrix in local coordinates

E = modulus of elasticity

I = moment of inertia

A = cross-sectional area

L =length.

The stiffness matrix for a 2D truss element in local coordinates is given by:

K~ = Et [_ ~ -~] (5.3)

The stiffness matrix of the individual elements are first computed in local coordinates

and then converted to global coordinates by:

where: Ki = ith beam-column element stiffness matrix in global coordinates

T = transformation matrix between local and global coordinates

cose sine 0 0 0 0

-sinO cose 0 0 0 0

0 0 1 0 0 0
T=

0 0 0 case sine 0

0 0 0 -sine case 0

0 0 0 0 0 1

(5.4)

(5.5)

where e is the angle between the local and global coordinate systems. The global

stiffness matrix of the frame is formed using local destination arrays to combine the

individual element stiffness matrices.

-98-

Once the stiffness matrix K is formed, the load vector f is computed based

on loading input. Currently, gravity loading, wind loading, or earthquake loading

are included based on the 1994 UBC equivalent static representation. The gravity

loading is defined as load/unit area; separate values may be specified for both the

roof and general dead and live loads. The dead and live loads are multiplied by the

tributary area, which is the product of the beam length and one half of the out-of­

plane dimension, to determine the actual loading values.

The wind load is based on the 1994 UBC prescribed loading. A wind pressure, P,

is computed by:

where Cq = pressure coefficient

Ce = height, exposure, and gust factor

q8 = wind speed

Iw = wind importance factor.

(5.6)

The wind pressure P is multiplied by the corresponding tributary area, which is the

product of the building height and one half of the out-of-plane dimension, to deter­

mine the actual wind loading values. The equivalent static lateral force procedure is

based on the 1994 UBC prescribed loading pattern, where the design base shear V is

estimated as follows.

where Z = seismic zone factor

I = importance factor

C = base shear coefficient (function of soil type and building period)

W = seismically effective weight

Rw = structural system parameter to account for inelastic behavior.

(5.7)

-99-

The design base shear given in Equation (5.7) is then distributed to each floor of the

building according to the floor height and weight. The distributed base shear forms

the static load vector which is used to compute the building displacements, member

stresses, etc.

After the dead and live loads have been specified, the next step is to solve for

the nodal displacements. Equation (5.1) is solved using LU Decomposition (Strang

1988). Once the nodal displacements have been computed, additional results, in­

cluding interstory drift values, base shear, and element forces and stresses, can be

computed.

Pseudo-Dynamic Analysis: Response Spectra Method

The response spectra method determines seismic response based on modal superpo­

sition, calculation of modal participation factors, and the UBC response spectra for

particular soil types. First, a free vibration analysis is performed on the following

generalized eigenproblem:

where: M = lumped mass matrix

w; = i'h circular natural frequency

l/J; = i'h mode shape.

(5.8)

The above problem is first converted to the standard symmetric eigenvalue prob­

lem utilizing a Cholesky decomposition. The generalized Jacobi method, a classical

eigensolution transformation method for symmetric eigenvalue problems, is then used

to solve for the natural frequencies and modes. The procedure consists of repeated

simultaneous transformation of the system stiffness, K, and mass, M matrices until

they are both reduced to a diagonal form (Craig 1981). Because this generalized

Jacobi method is a transformation method, for a finite element model with n degrees

of freedom, all n of the model's modes and frequencies are calculated. Once the

- 100-

natural circular frequencies are computed, the natural periods can be determined by

T; = 27r/Wi.

Since the response spectra method calculations are based only on the horizontal

(i.e., lateral) accelerations, only those coefficients corresponding to those degrees of

freedom in the modal vectors are used in the calculation of the participation factors.

Thus, the modal participation factors are calculated as follows:

where f3i = ith modal participation factor

M1 = ;th diagonal coefficient of the frame mass matrix

¢Ji = ;th coefficient of the ith mode shape

(5.9)

a1 = ;th element of mapping vector for picking only the horizontal degrees

of freedom

N = number of degrees of freedom.

Using the specified soil type information, CODA selects one of the normalized

UBC response spectra shapes. A spectral acceleration, Sa, is selected for each mode

based on that mode's natural period, Ti. Story accelerations are then calculated as

follows:

(5.10)

where x1i = acceleration of the ;th coordinate of the ith modal vector.

- 101-

Utilizing the story accelerations, modal lateral forces and base shear are calculated

utilizing the following:

Fji XjiMj

N

Vo; - LFi;
j~l

where Fji = inertial force for jth coordinate of the ith modal vector

VQ; = base shear for ith mode.

(5.11)

(5.12)

These modal quantities are then combined by taking the square root of the sum

of the squares (SRSS) over the number of modes, n, specified by the user:

where Fj = inertial force for lh coordinate

V0 = base shear

n = number of modes.

(5.13)

(5.14)

If the calculated base shear for the structure is below the value input by the user,

then all lateral forces are scaled so as to meet that requirement.

Dynamic Analysis: Time Domain Integration

In addition to the equivalent static earthquake analysis capability, CODA can calcu­

late the dynamic seismic response of a linear system by using a time domain integra­

tion technique. The finite element equation of motion for support-excited structures

can be written as:

-102-

Mx+Cx+Kx = fx9 ,

where M = lumped mass matrix

C = damping matrix

x = nodal acceleration vector

x = nodal velocity vector

(5.15)

f = vector mapping ground acceleration to horizontal degrees of freedom

x 9 = ground acceleration.

CODA generates a proportional viscous damping matrix by utilizing Rayleigh

damping as shown below:

(5.16)

where: a0 = coefficient for the mass proportional term

a1 = coefficient for the stiffness proportional term.

The required coefficients are calculated utilizing the user-specified critical damping

ratio for the first two modes, which are assumed to be the same. The relationship

between these factors and the critical damping ratios is:

where wi = circular natural frequency of the ith mode

~i = damping ratio of the ith mode

(5.17)

The time domain integration procedure is performed using the full finite element

model of the building. Either the average or linear acceleration methods of the

-103-

Newmark-Beta numerical integration procedures can be used to perform the analyses.

Detailed development of these two methods can be found in most standard structural

dynamics texts and is not included here (Craig 1981). However, it is important to

realize that, while the average acceleration method is unconditionally stablethe time

step size , the linear acceleration method is conditionally stable. Thus, the linear

acceleration method's ability to converge to an accurate solution will depend on the

specified time step size, where the condition for stability is given by:

where l5t = time step size

T~ natural period of Nth mode (i.e., smallest natural period of modes

participating in response).

5.4.2 EVALUATOR

(5.18)

The role of the EVALUATOR in CODA is to provide an overall design evaluation

measure f.l(0) for the design specified by the current values of the design parameters

0. As described in Chapter 2, the overall design measure f.l(0) is computed from a list

of design criteria specified by the user. Each of the design criteria is associated with a

preference function f.li and an importance weight wi. Currently, preference functions

in CODA are limited to function of a single design or performance parameter. The

computation of f.l(0) is done by aggregating preference values of the design criteria

using an aggregation strategy. Two aggregation strategies are available in CODA:

conservative strategy and multiplicative trade-off strategy.

CODA can handle both deterministic and stochastic design criteria. Several de­

terministic criteria are available which are based on maximum stresses, interstory

drift, lateral deflection, base shear, etc. Evaluation of these deterministic criteria can

be done in a straightforward manner by following the concepts described in Chapter

2. In the stochastic case, only design criteria involving uncertainties due to seismic

loads are available at this point although extensions to other types of uncertain loads

~ 104~

J1. total

J1. total

Figure 5.6: Surface plot of JL(0) for the conservative strategy

as well as uncertainties in models is very straightforward. Computation of prefer­

ence values of these criteria is based on the theory of stochastic criteria described in

Chapter 2. However, the theory behind the exact computational procedure is very

involved and since seismic reliability and its related design issues are not the main

thrust of this thesis, they will not be covered here. The interested reader can consult

(Beck et al. 1996).

Discussion of the Aggregation Strategies

Recall that the conservative aggregation strategy can be written as:

(5.19)

where ni = w;jmaxj wj, i = 1, ... , Nc and wi is a positive importance weight assigned

to the ith design criterion. Consider the JL(0) surface plot shown in Figure 5.6 for this

strategy. This surface is based on a three-story steel frame example subject to UBC

wind loading. Two design parameters were chosen for this example: the flange width

B and the web depth D for all the beams and columns, which are constrained to be

identical I-beams.

It can be seen from Figure 5.6 that the surface is characterized by sharp edges

-105-

and the maximum value of J-L(9) is at the intersection of these edges. The edges

correspond to the equality of the preference functions for two design criteria and they

are transition curves where there is a switch in which design criterion is giving the

smallest preference value, and so giving the value of the overall design evaluation

measure.

These sharp edges in the J-L(9) can produce numerical difficulties in performing

numerical optimization. For instance, hill climbing algorithms move from a point on

the surface corresponding to the initial choice of the design parameters up a sloping

face until they reach the sharp ridge. After that they are unable to efficiently move

up the ridge to the peak value of the surface because of the discontinuous slope at the

ridge. However, stochastic optimization schemes which do not depend on any local

topological information of the surface can be applied to determine the maximum of

the surface.

On the other hand, the multiplicative trade-off strategy, as given by Equation 5.20,

produces a much smoother J-L(9) surface with no sharp edges (see Figure 5.7).

(5.20)

where mi = w;j 2:1 WJ·

The plotted surface is for the same example as in Figure 5.6 except that the

trade-off aggregation strategy is used instead of the conservative strategy. Notice

that the J-L(9) surface in Figure 5. 7 is very steep near the boundaries which are the

same fL = 0 as in Figure 5.6. In fact, the slope of the surface at the boundaries is

theoretically infinite. These steep boundary slopes can cause hill climbing algorithms

to quickly move towards the interior of the "island" if the algorithms are started near

the boundary.

For the case illustrated in Figure 5. 7, the importance weights wi in Equation 5.20

were set to unity for each design criterion. A more aggressive design as far as reducing

the total steel volume is concerned, can be achieved by increasing the importance

weight for this design criterion. Figure 5.8 shows how the J-L(9) surface changes when

-106-

.748

J.l total

J.l total

Figure 5. 7: Surface plot of p,((}) for the trade-off strategy with all importance weight
W; = 1

the steel volume importance weight is increased to 10 while the other importance

weights are kept at their original values of unity. A comparison of Figure 5. 7 and

Figure 5.8 shows that this change in importance weights pushes the peak of the

surface, and hence the optimal design, towards smaller values of Band D, as desired.

5.4.3 REVISER

Given the current design (}, the role of the REVISER in CODA is to improve this

design based on the specified design criteria. Basically, this involves solving the

optimization problem of the function p,((}). This optimization problem is an uncon­

strained one as constraints are specified as design criteria or soft constraints with the

use of preference functions. Three different optimization techniques are employed in

CODA: quasi-Newton method with BFGS updating, adaptive random search method

and genetic algorithms. Below are descriptions of each of these three optimization

techniques.

-107-

Jl. total
JI. total

Figure 5.8: Surface plot of J-1.(8) for the trade-off strategy with steel volume importance
weight w; = 10 and all other w; = 1

Quasi-Newton Method with BFGS updating

Given the function f(x), the Newton's iterative method for finding the local optimum

is given by:

where xk = the parameter vector x in the kth iteration

(5.21)

(5.22)

Hk =the Hessian matrix of f(x), defined by H(x) = [\7\7 f(x)], in the kth

iteration.

Note that this method requires both the first and second derivatives of the function

f. In addition, the inversion of the Hessian matrix must be computed at each step.

To improve the efficiency, an approximation to the inverse of the Hessian matrix is

used instead. The Newton's method is modified as follows:

1. Start by taking 1-1.0 = I, the identity matrix.

-108-

3. Compute xk+l = xk + ask where a is computed by minimizing f using a line

search routine along the direction sk.

4. Update Hk to Jik+l.

Here, 1i represents the approximation to the inverse of the Hessian matrix or the

pseudo inverse Hessian. Several procedures exist for updating 1i such as Davidon­

Fletcher-Powell (Fletcher and Powell 1963) and Broyden-Fletcher-Goldfarb-Shannon

(Broyden 1970; Fletcher 1970; Goldfarb 1970; Shanno 1970), also known as DFP and

BFGS updating methods. The BFGS updating scheme is chosen in CODA and is

given by:

(5.23)

where rk = 'Vf(xk)

,sk = -Hk'VJ(xk).

An overall flowchart of this quasi-Newton method is shown in Figure 5.9.

-109-

Select initial value x 0 and set H' = I

Compute s'

Compute xk+1

Update H

No

Converged?

Yes

Stop

Figure 5.9: Overall flowchart of quasi-Newton method with BFGS updating

- llO-

Adaptive Random Search

While quasi-Newton methods or any deterministic methods are very efficient in finding

local optima for optimization problems involving a few parameters, they become

computationally too demanding for high order systems with many parameters. For

these problems, random search methods are more appropriate for three major reasons:

1. The speed of convergence is independent of the dimensionality of the parameter

space, at least in principle.

2. The success of the method is largely independent of the degree of nonlinearity

of the system.

3. The method can succeed in the presence of multiple minima.

The basic random search algorithm for the maximization of an objective function

f(x), where x = (x1 , x2 , ... , xnJT is a vector of unknown parameters, proceeds as

follows:

1. An initial point x 0 in the search space is chosen and f(x0) is evaluated.

2. Trial points xi E fix, where fix is the given permissible region in the n­

dimensional parameter space, are selected from an appropriate probability den­

sity function defined over fix.

3. A successful point xi+1 is one for which f(xi+1
) < f(xi).

In general, random search algorithms exhibit convergence in probability, i.e.,

P{ixn- xi> c}--+ 0 for n--+ oo

where x =the optimum of f(x)

n = the iteration count.

(5.24)

-111-

While convergence in probability is a weak form of convergence, it is important

to note that it applies in the presence of multiple minima and nondifferentiability of

f(x).

Rather than using the "pure random search" outlined above, most algorithms are

based on a "random creep" procedure in which exploratory steps are confined to a

hypersphere centered about the latest successful point f(xk). However, convergence

is highly dependent on the size of the hypersphere in relation to the local topology

of the parameter space. If the steps are too small, convergence may be extremely

slow; if the steps are too large, overshoot is possible since no allowance is made for

variations in the nature of the criterion function surface as the search progresses

toward a minimum.

In order to circumvent the slow convergence rate of conventional random creep

procedures, an adaptive random search technique (Masri, Bekey, and Safford 1980)

is used in CODA. This approach periodically optimizes the variance of the step­

size distribution. By searching over a variance range of many decades, the algorithm

finds the step-size distribution that yields the best local improvement in the objective

function. The variance search is then followed by a specified number of iterations of

local random search where the step-size variance remains fixed. Periodic wide-range

searches are introduced to ensure that the process does not stop at a local minimum.

The following list outlines the steps of adaptive random search:

1. Select initial guess x 0 .

2. Choose a sequence of k standard deviations, s = { s1, s2, ... , sk}, to cover as wide

a range as desired.

3. Start with x = x 0 and cr = s1 , perform N function evaluations of global random

search, with variance cr2 .

4. Repeat step (3) successively with cr = s2 , s3 , ... sk.

5. Determine k* such that random search with cr = Sk• yields best function values.

-112-

6. Perform M iterations with standard deviation Sk• and store the optimal value

in x.

7. Repeat steps (3) to (7) until convergence tolerance is satisfied.

8. Terminate the search.

The overall flow of this algorithm is summarized in Figure 5.10.

Genetic Algorithms

The last class of optimization schemes implemented in CODA is genetic algorithms.

Two different GAs are available: vGA for discrete optimization and hGA for contin­

uous optimization. Since we have covered in detail both general concepts of genetic

algorithms and also those specific to vGA and hGA in the last few chapters, the

theories behind the two genetic algorithms will not be repeated here.

-113-

Start

Select initial value and variances

Find locally optimal variance

Perform M iterations of global random
search with optimal variance

Converged?

Yes

Stop

No

Figure 5.10: Overall flowchart of an adaptive random search algorithm

-114-

5.5 Implementation Issues

In this section, the implementation aspect of CODA is discussed. In particular, a

relatively new programming approach called object-oriented programming (OOP) is

introduced.

5.5.1 Object-Oriented Programming

The CODA Optimal Design and Analysis System was developed in C++ following

an object-oriented programming style. Object-oriented programming (OOP) is a rel­

atively new style of programming that establishes objects to represent and organize

the information utilized by the program (Dym and Levitt 1991). CODA was imple­

mented in this style to ensure that the code is modular and extendable. Modularity

allows for easy addition and modification of features in the future without having to

restructure the software package, which greatly enhances programming efficiency.

The object-oriented programming paradigm involves developing objects of classes

to store information. A class may be anything from a physical object such as a

building or an idea such as optimization. Each class contains certain attributes and

member functions. Attributes simply refer to the characteristics or data which define

the corresponding object, while member functions refer to the behavior or actions of

the object. As an example, a class could be established to represent the Beams in a

building. The attributes of Beams could include material properties (yield strength

and modulus of elasticity), location, and section properties (moment of inertia and

cross-sectional area). Member functions or behaviors associated with the Beams class

could include Compute Volume and Compute Moment of Inertia. Numerous classes

were developed specifically for CODA. Each class has an associated header file (*.h)

and source file (*.cpp). The header file contains the class declaration, the object

attributes, and the member function declarations. The source file (* .cpp) contains

the actual code associated with each of the object member functions. Figure 5.11

shows a typical header file for a class. The classes developed for the separate modules

(the ANALYZER, EVALUATOR, and REVISER) are discussed in further detail later

#include <iostream.h>

class Material {
double emodulus;
double mu;
double Fy;

};

double GetEO;
double Getmu();
double GetFyO;

-115-

Figure 5.11: A Typical Class Header File - Material Class

in this section.

The key concepts which define object-oriented programming are abstraction, en­

capsulation, and inheritance (Lippman 1991). A higher level of abstraction makes

it possible to ignore many of the details associated with the problem and focus on

the more important characteristics. A high level of abstraction is obtained by using

classes to store the data; at first it may seem tedious to develop classes, but once

created, these classes may be used to develop a more transparent and readable code.

The high level of abstraction associated with 00 P and classes allows the program­

mer to focus on the function of the program rather than on the details regarding each

piece of actual data. At the very least, OOP forces the programmer to thoroughly

consider and organize all aspects of the program in a modular fashion.

The association of attributes and behaviors with objects is known as encapsu-

lation, another feature of object-oriented programming. By encapsulating both the

attributes and behaviors of an object, the linear style of conventional computer pro­

grams may be avoided. Rather than having to sequentially call subroutines, the OOP

paradigm involves "jumping" between different processes by calling the member func­

tions of the appropriate objects. This less constraining style is more flexible and easier

to maintain.

-116-

Another feature of object-oriented programming style is inheritance. If two classes

are closely related they can share or inherit attributes and member functions. Class

hierarchies are often drawn to show the relationships and inheritances among objects.

As an example, a Finite Element Model class hierarchy has been developed and is

shown in Figure 5.12. The finite element model contains two basic classes, Nodes

and Elements, which store the necessary model information. Two different types of

finite elements have been implemented: a beam-column and a truss element. In order

to capture the difference between these two types of elements, the Elements class is

then refined into a Beam-Column Element class and a Truss Element class. Beam­

column and truss elements have many characteristics in common, but also have certain

distinct features. As shown in Figure 5.12, common characteristics of both types of

elements are inherited from the Elements class including locations and the associated

members. Each of the element types also has certain specific characteristics, however;

for example, beam-column elements have six degrees of freedom and a 6x6 stiffness

matrix, while truss elements have four degrees of freedom and a 4x4 stiffness matrix.

These distinct features are specified at the Beam-Column Element class and Truss

Element class level. These classes also have similar behavior, such as the need to

compute their respective stiffness and mass matrices. Though the existence of this

behavior is defined in the Elements class, the specific algorithm needed for each class

is specified at the Beam-Column Element class and Truss Element class level. This

feature allows the user to simply call the function and allow the object to determine

the algorithm needed.

Elements

Attributes:
ID Number
Number of Degrees

of Freedom
Node i
Nodej
Mass matrix
Stiffness matrix
Structural Member

Member Functions:
Compute_K
Compute_M

-117-

Beam-Column

Attributes:
ID Number
Number of Degrees

of Freedom
Node i
Nodej
Mass matrix
Stiffness matrix
Structural Member

Member Functions:
Compute K
Compute_M

Truss
Attributes:

ID Number
Number of Degrees

of Freedom
Node i
Nodej
Mass matrix
Stiffness matrix
Structural Member

Member Functions:
Compute_K
Compute_M

Figure 5.12: A simple finite element class hierarchy

-118-

The prototype CODA is written entirely in C++ code. The program was devel­

oped primarily using the Microsoft Visual C++ Development System for Windows

Version 2.0. The classes created for the CODA Application were derived from Mi­

crosoft Foundation Classes (MFC). This class library consists of many classes which

encapsulate a lot of details involved in Windows graphical user interface programming.

By deriving classes from the MFC library, many features of the program including

menus, dialog boxes, and graphical views, can be more easily and rapidly generated.

The tools available in the Microsoft Visual C++ environment also facilitated the de­

velopment of the program. The initial framework of the program was created using

the App Wizard. Dialog boxes and other resources were then created using the App­

Studio, while classes were created using the Visual Workbench and the Class Wizard.

The Class Wizard also facilitated the mapping of the variables and controls into actual

pieces of code.

Numerous classes have been developed for CODA. The classes and class hierarchies

associated with each of the three separate modules of the program are discussed briefly

below.

5.5.2 Implementation ofthe ANALYZER, EVALUATOR and

REVISER

The ANALYZER

The main class created for the ANALYZER is Analysis. The following information

is included in the Analysis class:

• Finite Element Model

- Elements: Location, Associated Member, Stiffness Matrix, Element Num­

ber, Resulting Displacements, Forces, and Stresses, etc.

- Nodes: Location, Associated Connection, Node Number, Nodal Loads, etc.

• Load Vector

• Stiffness Matrix

- 119-

• Mass Matrix

• Gravity, Wind and Earthquake Loads

• Time History Parameters

• Free Vibration Response

• Results

Much of the information above is actually stored as classes within the Analysis class.

For example, separate classes have been developed to store the Element and Node

information as well as the Results. The following values are stored in the Results

class:

• Steel Volume,

• Maximum Deflection: Value and Node where the maximum deflection occurs,

• Maximum Drift: Value and Story in which the maximum drift occurs,

• Maximum Column Axial, Shear, and Bending Stress: Values and Elements in

which the maximum stresses occurs, and

• Maximum Beam Axial, Shear, and Bending Stress: Values and Elements in

which the maximum stresses occurs.

In addition to the characteristics listed above, the Analysis class also contains

member functions which perform the actual finite element analysis. The following

member functions or subroutines are part of the Analysis class:

• CreateFEModel(): Create a Finite Element Model based on the Physical Build­

ing Description,

• Assign_LDA(): Assign Local Destination Array Values to each Element based

on the Geometric Configuration,

• Assemble_K(): Assemble the Global Stiffness Matrix for the Frame,

- 120-

• Assemble_M(): Assemble the Global Mass Matrix for the Frame from informa­

tion about applied dead loads,

• ComputeGravityLoads(): Compute the Nodal Gravity Loads Based on the Dis­

tributed Loads Input by the user,

• ComputeWindLoads(): Compute the Wind Loading Based on the 1gg4 Uniform

Building Code,

• ComputeStaticEqLoads(): Compute the Equivalent Static Earthquake Loads

Based on the 1gg4 UBC Uniform Building Code,

• ComputeResSpecEqLoads(): Compute the Pseudo-Dynamic Earthquake Loads

Based on the 1994 UBC Uniform Building Code Normalized Response Spectra

Curves,

• Solve(): Solve for the Nodal Displacements Using LU Decomposition, and

• ComputeResults(): Compute the Steel Volume, Forces, Stresses, etc. in the

Frame.

Details of the ANALYZER classes and their member functions can be found in

the CUREe-Kajima project report (Becket a!. 1996).

The EVALUATOR

The EVALUATOR in CODA is mainly made up of several classes derived from the

CObject class in the Microsoft Foundation Classes (MFC). Figure 5.13 shows the

hierarchy of these classes. Theta, Performance, and Criteria classes, which represent

design parameters, performance parameters and design criteria, are derived from

the NameObject class. Performance is, in turn, the base class for ReliPerformance.

Having these classes derived from CObject has the advantage of inheriting capabilities

such as serialization and runtime information. Besides these classes, three other

classes, DesignParmList, PerfParmList, and DesignCritList, are defined which are

Theta Perforrance

ReliPerformance

- 121-

Criteria

PrefFunc Aggregate

Figure 5.13: Object Hierarchy Tree for EVALUATOR

Evaluate

container classes for objects of Theta, Performance, Reliperformance and Criteria

classes.

The intermediate derived class of CObject is called NameObject and is mainly

used as the base class of other classes. Attributes such as ID number and description

of the object and methods to access them are added to the class definition. These

attributes and methods are common to both design and performance parameters as

well as design criteria. As such, classes Theta, Performance and Criteria, are derived

from NameObject to inherit these properties. An instance of the NameObject class

consists of the following:

Attributes:

• ID number (id),

• description of the object name,

• initial and current values of the object,

• object type (Theta, Performance or Criteria),

Methods:

• set and get id,

• set and get name name,

• set and get initial and current values,

-122-

CObject

I

QnmOpt StochOpt GAOpt

Figure 5.14: Object Hierarchy Tree for REVISER

• an assignment operator =, which allows copying one object to another, and

• serialize (save and retrieve) information of the object.

The REVISER

The REVISER module in CODA is mainly made up of four C++ classes: Revise,

QnmOpt, StochOpt and GAOpt. Figure 5.14 shows the hierarchy of these classes.

Similar to the Analysis and the Evaluate classes, the Revise class is inherited from

the CObject class of the Microsoft Foundation Class Library to inherit capabilities

such as serialization and runtime information. This Revise class is designed as a

parent class for optimization from which QnmOpt, StochOpt and GAOpt classes are

derived from. The QnmOpt class is the object-oriented encapsulation of the Quasi­

Newton optimization method, while the StochOpt and GAOpt classes encapsulate

the two stochastic optimization schemes: adaptive random search and genetic algo­

rithm. Much of the communications between the optimization objects and the rest

of CODA (mainly the EXECUTIVE) is encapsulated in the Revise class. As such,

all these optimization classes contain only optimization specific coding with virtually

no dependence on other parts of the code. Therefore, adapting a new optimization

scheme to CODA is as simple as inheriting a class from the Revise class and writing

member functions to perform the necessary optimization procedures. The attributes

and member functions of the Revise class are listed in the following:

-123-

Attributes:

• number of design parameter (or dimension of the design parameter space)

• current values of (}

• domain of the design parameter space

• current overall design measure f.Loverall

• file objects for output of optimization messages and data (for debugging and

result checking purposes).

Methods

• method to initialize all the attributes,

• function to communicate with the EXECUTIVE to perform one cycle of analysis

and evaluation to compute new overall design measure f.Loverall,

• virtual function Optimize() (explained below) to call the user-selected opti­

mization scheme: quasi-Newton, genetic algorithms or adaptive random search.

The concept of virtual functions is a powerful one in C++ and object-oriented

programming. A virtual function is a class member function that is declared within

a base class and redefined by a derived class, which provides a single interface to

implement multiple methods. The whole idea behind using virtual functions is rather

lengthy to explain and therefore, will not be covered here. However, any standard

C++ reference such as (Lippman 1991) should have detailed coverage on this topic.

For the Revise class in the REVISER, the virtual function Optimize provides

CODA with the capability to determine which optimization scheme to call at runtime

(as selected by the user) without using if-else if statements. This approach has the

benefit of allowing the addition of new optimization schemes without changing the

internal structure of the REVISER module (in particular, the Revise class), which is

an important concept of object-oriented design.

-124-

Chapter 6

Applications to Optimal Structural

Design Problems

6.1 Introduction

Three structural design problems are presented in this chapter to illustrate the method­

ologies and algorithms discussed in the four previous chapters. The three examples

we will look at are:

1. A simple ten-bar truss structure with static loads. This example serves as a

benchmark problem which has been studied extensively in the literature and is

utilized here for comparison between the multicriterion optimal design method­

ology and the minimal weight design (MWD). Also, we will compare the results

obtained by the two GAs proposed for continuous and discrete optimization

with some other existing techniques.

2. A planar three-story steel frame with different UBC earthquake design loads.

This example is utilized for showing the different analysis capabilities of CODA.

In addition, we will also study how the optimal design will differ by using differ­

ent earthquake design loadings as well as specifying different design parameters.

3. A space truss tower with seventy-two members under static loads. This is a

problem of reasonable size to illustrate the computational viability of both the

- 125-

design methodology and the use of genetic algorithms for solving optimal design

problems.

6.2 Simple Ten-Truss Structure: A Benchmark

Problem

6.2.1 Problem Description

A ten-bar truss cantilever structure shown in Figure 6.1 is a classical example which

is well-studied in structural optimization literature (e.g. Ad eli and Kamal1986). It is

a two-dimensional truss which is subject to static loads. The structure is 720 inches

in length and 360 inches in depth. It is pin-supported on the left and free on the

right. The material used for the members is aluminum (E = 104 ksi). The loading

on the structure is shown in the figure with two concentrated loads, 100 kips each,

acting on the two nodes in the bottom side.

6.2.2 Problem Objective

The main objective of this example is to utilize this well-studied structure in opti­

mal design as a benchmark problem for comparing different optimization algorithms

and optimal design approaches. The design parameters for this problem are the

cross-sectional areas of the truss members. There are ten design parameters which

correspond to each truss member in the structure. For the multicriterion approach,

the preference function for these parameters is illustrated in the first figure in Fig­

ure 6.2. Using this preference function, a soft constraint is imposed on the areas such

that they must be greater than 0.1 square inches and less than 36 square inches with

most preferred values lying between 0.1 and 35.9 square inches.

Performance parameters for this example are total volume, maximum deflection

at the tip and maximum axial stress. The goal is to minimize the total volume

while keeping the deflection and axial stress within acceptable limits. The preference

-126-

Figure 6.1: Geometry of the ten-truss structure

-127-

function for the normalized volume is linear as shown in the second figure in Figure 6.2,

indicating that the preference for a design decreases linearly as volume increases.

Total volume is normalized by the maximum and minimum allowable volume, which

is given by the maximum and minimum permissible member areas. The axial stress

in each member is required to be less than 25.0 ksi, with greatest preference J1- =

1 given to stresses which are less than 24.9 ksi. The preference function decreases

linearly from unity to zero for axial stresses between 24.9 ksi and 25.0 ksi, and J.L =

0 is assigned to stresses that exceed 25.0 ksi since these are unacceptable (see third

figure in Figure 6.2).

For tip deflection, the preference function is defined to be similar to that of axial

stress. A preference value of unity is given to deflection values under 1.9 inches and

this value decreases linearly from 1 to 0 as the deflection increases from 1.9 inches

to 2.0 inches, and stays 0 for deflections greater than 2.0 inches (see last figure in

Figure 6.2).

6.2.3 Cases Studied

Three cases were run based on the truss structure described above. In the first and

third cases, the design parameters are taken as continuous variables, while in the

second case, they are treated as discrete variables and the discrete area set is taken

from the areas of AISC wide flange sections for illustrative purposes, even though the

material is aluminum. The trade-off strategy is used for all three cases. Below is a

description of the three cases:

1. Case 1 - Ten continuous design parameters and three design criteria, total vol­

ume, axial stress and tip deflection. All importance weights are equal and have

a value of unity.

2. Case 2 - Same as Case 2 except the design parameters are treated as discrete

variables with discrete area values as described.

-128-

1) Cross-sectional Area ::1L • A (in)
0.0 0.1 35.9 36.0

2) Total Volume ,,~
0.0 '-------~~--..-v

0.0 1.0

3) Maximum Axial Stress ''1 ~ o.o '------'---__.:...--• cr (ksi)
0.0 24.9 25.0

4) Deflection at Tip "1 ~ 0.0 '-----~-_c..--• defl. (in)

0.0 1.9 2.0

Figure 6.2: Preference functions for ten-truss structure

-129-

3. Case 3 - Minimize total volume with only constraints on member stresses and

solved as continuous parameter problem by hGA.

For the continuous cases, the proposed hGA is used to find the optimal solution

while the proposed vGA is used to compute the solutions for the discrete cases.

- 130-

Table 6.1: Results of MWD and MCD for Case 1 of the ten-bar truss (Continuous)

MWD MCD
Design Criteria Values J.l Values J.l
Member 1 (in2) 30.13 1.000 30.85 1.000
Member 2 (in2) 0.10 1.000 0.10 1.000
Member 3 (in2

) 22.93 1.000 27.37 1.000
Member 4 (in2) 15.39 1.000 17.09 1.000
Member 5 (in2) 0.10 1.000 0.10 1.000
Member 6 (in2

) 0.10 1.000 0.10 1.000
Member 7 (in2

) 7.42 1.000 6.99 1.000
Member 8 (in2) 20.75 1.000 19.20 1.000
Member 9 (in2) 21.77 1.000 24.76 1.000
Member 10 (in2) 0.10 1.000 0.10 1.000
Total Volume (in3) 50229 0.669 53205 0.652
Max. Axial Stress (ksi) 25.00 0.000 24.90 1.000
Tip Deflection (in) 2.00 0.000 1.90 1.000
Overall - 0.000 - 0.866

Table 6.2: Results of MWD and MCD for Case 2 of the ten-bar truss (Discrete)

MWD MCD
Design Criteria Values J.l Values J.l
Member 1 (in2) 21.57 1.000 31.20 1.000
Member 2 (in2) 10.98 1.000 3.54 1.000
Member 3 (in2) 22.08 1.000 25.90 1.000
Member 4 (in2) 14.95 1.000 15.60 1.000
Member 5 (in2) 2.68 1.000 4.40 1.000
Member 6 (in2) 10.98 1.000 4.40 1.000
Member 7 (in2) 18.91 1.000 16.70 1.000
Member 8 (in2

) 18.42 1.000 20.80 1.000
Member 9 (in2

) 18.40 1.000 20.00 1.000
Member 10 (in2) 13.51 1.000 5.57 1.000
Total Volume (in3) 64289 0.576 62753 0.631
Max. Axial Stress (ksi) 10.01 1.000 8.25 1.000
Tip Deflection (in) 1.99 0.001 1.88 1.000
Overall - 0.071 - 0.855

- 131-

6.2.4 Discussion of Results

The results obtained are compared with those from Adeli (1986) and are listed in

Tables 6.1 and 6.2. In this table, the results from Adeli were obtained by using

the minimal weight approach and solving the problem with traditional optimization

methods. These results are denoted as MWD in the tables while MCD represents

the results obtained from the multicriterion optimal design methodology. For the

discrete case, the structure is optimized over a list of 128 AISC wide flange sections

of areas between 2.68 square inches and 35.9 square inches. The following interesting

observations can be drawn from these numerical results:

1. From Table 6.1, the optimal design obtained from MWD in Case 1 has smaller

steel volume than the one using the multicriterion methodology presented. This

is expected since the objective of MWD is to minimize the volume while MCD

is geared towards finding a design that best satisfies all the criteria. This can

be easily verified by computing the overall preference for the MWD optimal

design (see Table 6.1). Notice that the MWD design better satisfies the volume

criterion than that of MCD, but the overall design is not acceptable according

to the prescribed design criteria for MCD. It should be noted however, that

the MWD optimal solution can be approached arbitrarily closely by the MCD

optimal solution by taking a sufficiently large importance weight on the total

volume criterion instead of an importance weight of unity used for Table 6.1

results

2. Based on the results obtained in the discrete case (Table 6.2), it is obvious that

one cannot obtain an optimal discrete solution from a continuous one by simply

rounding up to the nearest discrete value. In fact, simple round-up of continuous

solutions often results in a discrete solution that is infeasible. Table 6.3 shows

the comparison between the continuous solution, a rounded-up solution and the

one obtained by vGA.

In terms of computational effort, both hGA and vGA are within an acceptable

range. The number of function evaluations required to converge to the optimal so-

- 132-

Table 6.3: Comparison between rounded-up and vGA discrete solutions for Case 2 of
the ten-bar truss

Continuous Rounded-Up vGA
Design Criteria Values f.l Values f.l Values f.l
Member 1 (in2

) 30.85 1.000 31.10 1.000 31.20 1.000
Member 2 (in2

) 0.10 1.000 2.68 1.000 3.54 1.000
Member 3 (in2

) 27.37 1.000 27.70 1.000 25.90 1.000
Member 4 (in2

) 17.09 1.000 17.10 1.000 15.60 1.000
Member 5 (in2

) 0.10 1.000 2.68 1.000 4.40 1.000
Member 6 (in2

) 0.10 1.000 2.68 1.000 4.40 1.000
Member 7 (in2

) 6.99 1.000 7.08 1.000 16.70 1.000
Member 8 (in2) 19.20 1.000 19.70 1.000 20.80 1.000
Member 9 (in2

) 24.76 1.000 24.80 1.000 20.00 1.000
Member 10 (in2

) 0.10 1.000 2.68 1.000 5.57 1.000
Total Volume (in3

) 53205 0.652 57843 0.642 62753 0.631
Max. Axial Stress (ksi) 24.90 1.000 14.87 1.000 8.25 1.000
Tip Deflection (in) 1.90 1.000 2.00 0.000 1.88 1.000
Overall - 0.866 - 0.000 - 0.855

lutions are around 1500 for continuous optimization using hGA and around 5000 for

discrete optimization using vGA. The reason why vGA requires more function eval­

uations than hGA is that hGA uses local topological information of the search space

through the quasi-Newton method. Such information is very important in speeding

up the convergence rate and this information is simply not available in the discrete

case. Nevertheless, the required number of function evaluations for vGA is within the

same ball park as other discrete optimization techniques. Consider that for this prob­

lem, each parameter has 128 possible discrete sections, there are 12810 = 1.18 x 1021

possibilities. So, 5000 trials are an infinitesimal fraction of the search space size.

For the continuous case (Case 1), another comparison was carried out between

hGA and the constrained optimization algorithm that comes with the optimization

toolbox in MATLAB. Table 6.4 shows the optimal designs obtained by using hGA and

the constrained optimization method, denoted as COM. Notice that hGA obtained a

better solution than that of COM. Since COM is a local search method, premature

-133-

Table 6.4: Comparison between hGA and COM for Case 1 of the ten-bar truss

COM hGA
Design Criteria Values p, Values p,
Member 1 (in2

) 26.07 1.000 30.85 1.000
Member 2 (in2

) 0.36 1.000 0.10 1.000
Member 3 (in2

) 25.55 1.000 27.37 1.000
Member 4 (in2

) 16.54 1.000 17.09 1.000
Member 5 (in2

) 0.10 1.000 0.10 1.000
Member 6 (in2

) 0.35 1.000 0.10 1.000
Member 7 (in2) 13.84 1.000 6.99 1.000
Member 8 (in2

) 23.85 1.000 19.20 1.000
Member 9 (in2

) 23.85 1.000 24.76 1.000
Member 10 (in2

) 0.63 1.000 0.10 1.000
Total Volume (in3

) 56479 0.627 53205 0.652
Max. Axial Stress (ksi) 10.22 1.000 24.90 1.000
Tip Deflection (in) 1.90 1.000 1.90 1.000
Overall - 0.856 - 0.866

convergence may occur when the objective function is fiat near the optimum, as is the

case here. Without knowing the local topographical information, it is difficult to set

the gradient tolerance for local search so that it will not converge to a suboptimum

because of a fiat surface. On the other hand, hG A is stochastic-based and uses

gradient information only to speed up convergence but does not depend on it for a

convergence check. In terms of number of function evaluations, COM requires between

1200 to 1500 evaluations depending on the starting point while hGA takes around

2000 evaluations. Although hGA requires around 500 more evaluations (about 30-

40% more), the ability to possibly locate the global optimum is well worth the extra

computational effort.

Finally, for Case 3, hGA was able to identify two distinct designs (see Table 6.5).

Although the first design gives a local optimum, it is substantially different in design

from the global optimal solution. This case illustrates the multimodal solution power

ofhGA.

-134-

Table 6.5: Two different designs obtained by hGA for Case 3

Member Values (in2
) Values (in2

)

1 4.11 7.90
2 3.89 0.10
3 11.89 8.10
4 0.11 3.90
5 0.10 0.10
6 3.89 0.10
7 11.16 5.80
8 0.15 5.51
9 0.10 3.68
10 5.51 0.14

Total Volume (in") 17251 14975

- 135-

6.3 Three-Story Steel Frame

6.3.1 Problem Description

A three-story, single bay, steel frame is utilized as an example to demonstrate some

of the capabilities of CODA. A drawing of the frame with in-plane dimensions can

be seen in Figure 6.3. The out-of-plane tributary width is 120 inches, necessary

for gravity load calculations. All support conditions are fixed, and beam-column

connections are moment resisting. All members, both beams and columns, are wide­

flange elements.

1 2 0 II

1 2 0 II

1 2 0 II

'i:/:: 240 II
w;

Figure 6.3: Geometry of the problem

- 136-

The frame was subjected to gravity and earthquake loads. Gravity load values

were taken as the defaults provided by the program; specifically, 80 lbsjft2 and 20

lbs/ft2 for the roof dead and live loads respectively, and 100 lbs/ft2 and 50 lbs/ft>

dead and live load respectively for each floor.

The earthquake loadings were calculated using two methods available in CODA:

1. the UBC 1994 equivalent static load

2. the UBC 1994 normalized response spectra.

In the code-based analyses, the load parameters are given as follows:

• zone factor Z = 0.4 (i.e. Zone 4)

• soil type S = 1 (i.e., rocky or firm soil)

• importance factor I = 1.0

• ductility factor Rw = 12.

In the response spectra analysis, only the first two translational modes were considered

and their damping ratios were specified as 5% of critical.

6.3.2 Problem Objective

The objective of this example is to illustrate the capabilities of CODA and the power

of vGA for discrete optimization over AISC steel sections. The design parameters for

this suite of examples are beam and column sections. No constraints were imposed

on these parameters.

Performance parameters for the examples are total steel volume, interstory drift

and member stress, where the goal is to minimize steel volume while keeping the

drift and the stress within acceptable limits. The preference function for steel volume

(first figure in Figure 6.4) is triangular in shape, indicating that the preference for

a design decreases linearly as steel volume increases. Steel volume is normalized by

the maximum and minimum allowable volume, which is given by the maximum and

- 137-

minimum permissible member dimensions. Member stress is evaluated as a ratio in­

volving allowable stress as specified in the AISC manual (AISC 1986), which includes

buckling and yielding. Using the bilinear preference function (second figure in Fig­

ure 6.4), the stress ratio is perfectly acceptable if it is less than 0.9 and the preference

value drops off linearly from 1.0 to 0.0 as it increases from 0.9 to 1.0. It becomes

totally unacceptable (f..L = 0.0) when the stress ratio is greater than 1.0. Preference

function for interstory drift is defined as follows: The upper bound is set to the code

limit (0.04*story height/ Rw for frame with a period less than 0.7sec) and equals 0.4

inches for the example here. The perfectly acceptable drift range is from 0.00 to 0.18

inches was based on nonstructural damage considerations (i.e., less than 0.0015*story

height). The preference function for drift is illustrated in the last figure in Figure 6.4.

6.3.3 Cases Studied

Based on the frame model and the design and performance parameters discussed

above, a total of five example cases (A-E) were run. For the first four cases (A to D),

a code-based optimal design was sought using equivalent static earthquake loads from

the 1994 UBC. Importance weights for the design criteria or the design parameters

were changed in each case to illustrate their effect on the optimal design.

Besides the cases for the equivalent static earthquake load, another case, E, was

run using the 1994 UBC design spectrum. The design criteria and the associated

preference functions for case E are exactly as in Case A. Cases A and E allow com­

parison of the results using the two available earthquake analysis tools within CODA.

The cases analyzed are summarized as follows:

• Case A - Design parameters group all beams together and all columns together

in the structure so that there are only two discrete design parameters: W­

section for the beams and columns, respectively. The performance parameters

are the steel volume, interstory drift and maximum stress in the members.

Equal weights are placed on all design criteria.

• Case B- The importance weight of interstory drift is increased to 10.0 with all

- 138-

1.0

1) Steel Volume

o.o '--------"'---•v
0.0 1.0

1.0 f---------,.
2) Member Stress Ratio

0.0 ,_ ____ j___--'---

0.0 0.9 1.0

3) Maximum lnterstory Drift 1.0 f----------,..1~

o.o L-------'------'~--.d"'' (in)
0.0 0.18 0.40

Figure 6.4: Preference functions for the 3-story frame

- 139-

the others kept at 1.0 as in case A.

• Case C - Same as in case A except the total steel volume now has an importance

weight of 10.0 and the others are unchanged.

• Case D - The columns and beams for each story are uncoupled, resulting in

six design parameters (one for each story beam and also one for both columns

in each story). The design criteria are essentially the same as in case A. All

importance weights are set to unity.

• Case E - Same as Case A except a response-spectrum analysis was performed

using the 1994 UBC design spectrum.

All the cases considered were solved using the vGA. In addition, Case D was also

solved by a simple GA. The trade-off strategy is used for all the cases.

- 140-

6.3.4 Discussion of Results

Results from the equivalent linear static earthquake analyses (Cases A through D)

and that of response spectra (Case E) are presented in Table 6.3.4. Referring to this

table, the following observations on the results of equivalent static analyses can be

made:

• Interstory drift requirement governed the optimal design process. Total steel

volume was generally increased to the point such that the drift preference value

was right at the corner between constant preference and the linear drop-off in

the preference function.

• Member stress requirement did not seem to have much influence on the optimal

design as the maximum stress ratio is far from the value of 0.9, where the corner

between constant preference and linear drop-off of preference is located.

• Beam sections of these optimal designs have much larger moments of inertia

compared to those of the columns. This is explained by the fact that in most

cases beams are longer than columns and their stiffnesses have a greater impact

of the drift. However, this is not consistent with UBC, but the weak-beams­

strong-columns constraint was not enforced. It could, however, be taken into

account and the results obtained would be more consistent with UBC

• By comparing the two-parameter and six-parameter cases, it can be seen that

better results, illustrated by the smaller sections, lower steel volume and the

increase in overall J.L, were achieved when beam and column sections were allowed

to vary individually from story to story, as expected.

Comparing the results of Case A and Case E of Table 6.3.4, it can be seen that

the final optimal designs for equivalent static and response spectra analyses are some­

what different. In general, the response spectra method called for larger beam sections

because of the way maximum drifts are approximated from different modes conser­

vatively (such as SRSS), resulting in a larger steel volume. Both methods resulted

-141-

Table 6.6: Results for equivalent static (Cases A-D) and response spectra (Case E)

Case Design Criteria Value jJ,

A All Columns W12x16 (4.71, 103) a -
All Beams W14x22 (6.49, 199) -
Total Steel Volume 8064 0.912
Interstory Drift 0.1710 1.000
Max. Member Stress Ratio 0.3123 1.000
Overall - 0.970

B All Columns W12x16 (4.71, 103) -
All Beams W14x22 (6.49, 199) -
Total Steel Volume 8064 0.912
Interstory Drift 0.1710 1.000
Max. Member Stress Ratio 0.3123 1.000
Overall - 0.992

c All Columns W12x14 (4.16, 88.6) -
All Beams W14x22 (6.49, 199) -
Total Steel Volume 7668 0.920
Interstory Drift 0.1830 0.987
Max. Member Stress Ratio 0.3624 1.000
Overall - 0.932

D Story 1 Columns W12x16 (4.71, 103) -
Story 2 Columns W12x14 (4.16, 88.6) -
Story 3 Columns W10x12 (3.54, 53.8) -
Story 1 Beams W14x22 (6.49, 199) -
Story 2 Beams W14x22 (6.49, 199) -
Story 3 Beams W8x10 (2.96, 30.8) -
Total Steel Volume 6804 0.938
Interstory Drift 0.1793 1.000
Max. Member Stress Ratio 0.5863 1.000
Overall - 0.979

E All Columns W12x14 (4.16, 88.6) -
All Beams W16x26 (7.68, 301) -
Total Steel Volume 8525 0.903
Interstory Drift 0.1657 1.000
Max. Member Stress Ratio 0.3317 1.000
Overall - 0.966

a Area (in2) and moment of inertia (in4), respectively.

-142-

in perfectly acceptable interstory drift values, although the actual drift values them­

selves are slightly different. In both cases, although interstory drift governed the

optimization process, the steel volume controlled the overall design preference. The

interstory drift is reduced until it just reaches a perfectly acceptable preference value

of 1.00.

In Case B, the same results were obtained as those in Case A. This is expected

since the drift was already perfectly acceptable in Case A, so giving more weight to

drift cannot improve the design. In Case C, a more aggressive design is obtained

by increasing the importance weight of steel volume. Notice that the drift is pushed

beyond the corner of the preference function and results in a preference value of 0.987.

The convergence rate for Case A can be seen in Figure 6.5. From this figure, it

can be seen that vGA converged to the optimal solution around the 20th generation.

Since a population size of 30 was used, it found the optimal solution with merely

600 function evaluations. Granted that this problem is two dimensional, the number

of possibilities is still 1282 = 16384 and 600 trials represents only 3.6% of the whole

search space. Once again, vGA displays a good convergence rate. To further illustrate

its merits, Table 6.7 shows the results obtained by vGA and a simple GA for Case

D. Both were carried out using population size of 30 for 100 generations. Notice that

the simple GA was unable to find the optimal solution and therefore resulted in a

slightly larger steel volume compared to the one obtained by vGA.

Note that in Case E, columns of the stories 1 and 2 are fairly close (within 15%).

When building such a frame, it is often more convenient to select the same sections for

these columns. To ensure the design is still optimal after coupling these columns, one

can regroup the design parameters to reflect this and recalculate the optimal design.

-143-

Table 6.7: Results obtained by vGA and simple GA for CaseD

vGA simple GA
Design Criteria Values J1 Values J1
Story 1 Columns W12x16 - W12x16 -
Story 2 Columns W12X14 - W12x16 -
Story 3 Columns W10X12 - W12x14 -
Story 1 Beams W14X22 - W14x22 -
Story 2 Beams W14X22 - W14x22 -
Story 3 Beams W8X10 - W10x12 -
Steel Volume 6804 0.938 7224 0.930
Interstory Drift 0.1793 1.000 0.1756 1.000
Max. Stress Ratio 0.5863 1.000 0.5427 1.000
Overall - 0.979 - 0.964

-144

0.96.---~-----.----.-----~--~----~----~--~~--~----~

0.95

~ 0.94
:::::J
Cll
CiS
Q)

::2::
c
-~0.93
Q)

Cl

Cii
~ ,--'

00.92

0.91 -;

o.9L---~-----L----~----L---~-----L----~----L---~-----

o 1 0 20 30 40 50 60 70 80 90 1 00
Generation #

Figure 6.5: Convergence history of vGA for Case A

-145-

6.4 Three Dimension Seventy-Two Bar '!russ Tower

6.4.1 Problem Description

A three-dimensional seventy-two bar truss tower, illustrated in Figure 6.6, is studied

here and has been investigated by several researchers (Gellatly et al. 1971; Schmit and

Miura 1976) using different techniques. This truss has four stories and is symmetric

about the X and Y axes. It is 240 inches tall with equal story heights and has a

square cross-section of 120 inches by 120 inches. The structure is pin-supported at

the base. The members are made of aluminum (E = 105 ksi). The loading on this

structure is as follows:

Table 6.8: Load cases of the 72-bar truss

Load case
A
B

Node
1
1

Load Components (kips)
X Y Z

5.00
75.00

5.00
75.00

-5.00
75.00

Here, node 1 is the one on the roof along the Z-axis.

6.4.2 Problem Objective

The main objective of this problem is to investigate the computational requirement

of the multicriterion optimal design methodology and the application of genetic al­

gorithms to structural optimization problems. There are 72 axial members in the

structure which can be divided into four identical substructures, with each substruc­

ture representing a single story. The members are numbered according to the scheme

in Figure 6.7. The numbering works as follows: starts with the four vertical members

(1-4), the bracings on the four "walls" (5-12), the horizontal members (13-16) and

finally, the bracings on the "ceiling" (17,18). This cycle repeats for each of the four

stories to get a total of 72 members.

... 120in ~

l
120in

l
X-Y Plane

240in

/

X-Z, Y-Z Planes

- 146-

z
y

/

3D View

Note: For clarity, not all members
are shown in this view

Figure 6.6: Geometry of the 72-truss structure

240in

X

- 147-

Design parameters for this problem are the cross-sectional areas of the members.

Since there is a lot of symmetry in this structure, the members are grouped into

16 design parameters as listed in Table 6.9. The lower and upper bounds on the

cross-sectional areas are 0.1 in2 and 36.0 in2 and these bounds are specified as "soft"

constraints by using preference function as shown in the first figure in Figure 6.8.

Performance parameters for this structure are total material volume, maximum

axial stress and maximum deflection at the roof. The goal is to minimize the total

material volume while keeping the roof deflection and member axial stresses within

acceptable limits. The preference function for total material volume is shown in the

second figure in Figure 6.8, indicating that the preference of a design decrease linearly

as total volume increases. The axial stress in members is required to be less than 25.0

ksi, with the greatest preference value of unity given to stresses under 24.9 ksi. For

stresses between 24.9 ksi and 25.0 ksi, the preference value decreases linearly from

unity to zero. A preference value of zero is assigned for stresses above 25.0 ksi (see

third figure in Figure 6.8).

For roof deflection, the in-plane displacements along the X and Y directions of

the four roof nodes are required to be less than 0.25 inches and perfectly acceptable

if less than 0.24 inches. The preference function for this quantity is defined to be

similar to that of axial stress (see last figure in Figure 6.8).

6.4.3 Cases Studied

Three cases were run based on this truss tower:

1. Case 1 - Sixteen continuous design parameters and three design criteria, total

volume, axial stress and roof in-plane deflection. All importance weights are set

to unity. A different preference function is used for drift in this case. For drift

less than 0.25 inches, the preference value is perfectly acceptable and becomes

unacceptable for drift greater than 0.251 inches. Loading Case A is used. hGA

was used to find the solution.

2. Case 2- Exactly like Case 1 except Load Case B is used and solved by hGA.

-148-

3. Case 3 - Exactly like Case 2 except the design parameters are treated as dis­

crete variables with discrete areas taken from AISC steel sections, even though

material is aluminum (as in the 10-bar truss case). vGA is used for solving this

problem.

-149-

Table 6.9: Grouping of design parameters for the 72-bar truss

Design Parameter Group Members
1 1-4
2 5-12
3 13-16
4 17-18
5 19-22
6 23-30
7 31-34
8 35-36
9 37-40
10 41-48
11 49-52
12 53-54
13 55-58
14 59-66
15 67-70
16 71-72

15

3

/
X

Figure 6.7: Member numbering of the 72-bar truss structure

-150-

1) Cross-sectional Area

~A (in)

0.0 0.1 35.9 36.0

2) Total Volume 10~
0.0 L...,_ ______:::... __ ..,~ v

0.0 1.0

3) Maximum Axial Stress 101 \
0.0 L...,_-----'---......:>--+~ cr (ksi)

0.0 24.9 25.0

4) Roof In-plane Deflection 1.01 t\
0.0 L...,_-----'---......:>--+~ defl. (in)

0.0 0.24 0.25

Figure 6.8: Preference functions for the 72-bar truss structure

- 151-

Table 6.10: Results of Case 1 and those from Haftka and Kamat (1985)

MCD w/hGA MWD
Design Criteria Values f.-L Values f.-L
Group 1 (in2

) 0.10 1.000 0.10 1.000
Group 2 (in2

) 0.52 1.000 0.52 1.000
Group 3 (in2

) 0.40 1.000 0.40 1.000
Group 4 (in2

) 0.54 1.000 0.54 1.000
Group 5 (in2) 0.50 1.000 0.50 1.000
Group 6 (in2

) 0.50 1.000 0.51 1.000
Group 7 (in2

) 0.10 1.000 0.10 1.000
Group 8 (in2

) 0.10 1.000 0.10 1.000
Group 9 (in2

) 1.25 1.000 1.25 1.000
Group 10 (in2

) 0.50 1.000 0.50 1.000
Group 11 (in2

) 0.10 1.000 0.10 1.000
Group 12 (in2

) 0.10 1.000 0.10 1.000
Group 13 (in2

) 1.86 1.000 1.86 1.000
Group 14 (in2

) 0.50 1.000 0.50 1.000
Group 15 (in2

) 0.10 1.000 0.10 1.000
Group 16 (in2

) 0.10 1.000 0.10 1.000
Steel Volume (in3) 3690 0.966 3696 0.966
Max. Axial Stress (ksi) 23.86 1.000 23.83 1.000
Tip Deflection (in) 0.25 1.000 0.25 1.000
Overall - 0.987 - 0.987

-152-

Table 6.11: Case 2 and 3 solutions for the 72-bar truss

Continuous (hGA) Discrete (vG A)
Design Criteria Values f1, Values f1,

Group 1 (in2) 1.71 1.000 2.68 1.000
Group 2 (in2

) 7.88 1.000 7.34 1.000
Group 3 (in2) 10.27 1.000 11.70 1.000
Group 4 (in2) 9.23 1.000 5.54 1.000
Group 5 (in2) 6.69 1.000 9.71 1.000
Group 6 (in2

) 7.91 1.000 11.80 1.000
Group 7 (in2) 0.10 1.000 4.68 1.000
Group 8 (in2) 0.95 1.000 2.68 1.000
Group 9 (in2

) 18.38 1.000 18.30 1.000
Group 10 (in2) 7.64 1.000 10.00 1.000
Group 11 (in2

) 0.10 1.000 3.83 1.000
Group 12 (in2) 0.10 1.000 7.06 1.000
Group 13 (in2

) 27.84 1.000 20.10 1.000
Group 14 (in2) 8.30 1.000 8.79 1.000
Group 15 (in2) 0.10 1.000 3.54 1.000
Group 16 (in2) 0.10 1.000 7.34 1.000
Steel Volume (in3) 55770 0.821 67279 0.764
Max. Axial Stress (ksi) 24.90 1.000 10.88 1.000
Tip Deflection (in) 0.24 1.000 0.24 1.000
Overall - 0.936 - 0.914

-153-

6.4.4 Discussion of Results

Results from all three cases are listed in Tables 6.11 and 6.10. In Table 6.10, the

optimum obtained by using MCD and hGA is almost identical to the results obtained

by using the minimal weight approach (MWD). Because many of the areas obtained

in Case 1 are much smaller than those in the discrete member database, a much

greater loading was used in Cases 2 and 3. In Table 6.11, the continuous and discrete

solutions are listed. Notice that again the discrete solution does not appear very

similar to the continuous one, just like the previous examples.

The convergence histories of the continuous and discrete cases (2 and 3) are il­

lustrated in Figure 6.9. Notice the convergence rate stabilized for hGA after the

first 150-200 generations and vGA took about almost 300 generations to converge. A

population size of 30 was used for both cases. Although 9000 function evaluations

for vGA to obtain a solution seem like a lot, the total possible designs in the search

space are 12816 = 5.19 x 1033 !

Notice that the lower story columns in Cases 1 and 2 have very small cross­

sectional areas. While these tiny member areas may be required for the optimal

design, such designs may not be practical. To remedy this problem, one can group

these lower story columns with the upper story ones as a single design parameter or

imposing a strict preference function that requires a higher minimum area. By doing

so, the optimal design obtained would be one that is more consistent what we would

expect.

-154-

1.------.------.------.------.-------.------.------.------.

0.9-r-~

0.8

0.7

Q)

~0.6
>
Q)

g 0.5
~
Q)
(5
0::: 0.4

0.3

0.2

0.1

- Continuous (hGA)

- - Discrete (vGA)

QL------L------~----~------~------L------L------~----~

0 50 100 150 200
Generation #

250 300 350

Figure 6.9: Convergence histories of continuous and discrete solutions

400

-155-

Chapter 7

Conclusions

7.1 Summary and Conclusions

In this work, a recently-developed multicriterion optimal design framework is pre­

sented. This framework is based upon the use of preference functions for design

criteria which can be used to quantify preference or acceptability of both engineering

and non-engineering quantities. The notion of design criterion and its associated pref­

erence function allows easy incorporation of different design objectives from different

parties such as the owner, the engineer, etc. With trade-off aggregation strategies,

design decisions involving these different design criteria can be automated in a sys­

tematic way using digital computers.

This framework has been shown to be related to other existing optimal design

methodologies. In chapter 2, it was shown that for a given multicriterion design

problem, each optimal design obtained using this framework lies in the Pareto optimal

set of the problem. Other Pareto optimal designs for the problem can be obtained by

varying the importance weights of the design criteria. Furthermore, with the choice

of certain preference functions for different design criteria, it was also shown that this

framework behaves very much like the fully stressed design method which is one of the

most popular single objective optimal design methodologies in structural engineering.

Such a relationship is further verified by the numerical results presented in Chapter

6.

Genetic algorithms are presented in this work. GAs are stochastic methods that

-156-

are based on Darwinian evolution theory. Two special classes of GAs were studied:

variable-length GAs and hybrid GAs. A variable-length GA, vGA, is presented for

solving optimal structural design problems over a discrete member database such

as the AISC steel sections. In Chapter 4, a simple design example was shown to

illustrate a possible difficulty known as GA-deception that may arise when simple

genetic algorithms are applied to this problem. vGA was designed to address this

difficulty. Based on the results presented for the three-story frame in Chapter 6, vGA

shows its superiority over simple GAs for seeking global optimal solution in discrete

search space. The numerical results also show that vGA converges quite quickly to

the solution. Since discrete optimization problems are computationally challenging,

especially for high dimension systems, vGA provides one viable method.

A specially-designed hybrid GA, called hGA, is also presented here. hGA is de­

signed for continuous optimization problems. By incorporating a hill-climbing algo­

rithm as an operator within the GA loop, a very efficient and powerful hybrid GA

is obtained. It is evident from the numerical results presented in Chapter 4, hGA

has a better convergence rate than simple GA for optimization problems with con­

tinuous parameters. hGA is a global optimization technique and it was able to find

a global solution that a quasi-Newton method could not because of obstruction by

a local optimum. Furthermore, although not rigorously proved, hGA has displayed

multimodal solution capability in the two equivalent stiffness models for the two-story

shear building and the two optimal designs for the 10-bar truss problem.

A software prototype of the multicriterion design framework called CODA is pre­

sented in Chapter 6. CODA is a software application for performing an optimal

structural design based on 1994 UBC wind and earthquake specifications. Although

the analysis capabilities of CODA are limited to only linear static and dynamic prob­

lems, it can be used to design simple plane structures and it is a good tool for graphical

illustration of various aspects of the optimal design framework. Moreover, it can be

used as a research tool for studying how various quantities such as different seismic

ground motion models can affect the optimal design. Some results using CODA for

reliability-based optimal structural design were also presented (Becket al. 1996).

-157-

From the results of the examples presented in Chapter 6, it is clear that designs

obtained from structural optimization may not be practical and sometimes, even

inconsistent with standard design codes such as UBC. However, one can remedy such

shortcomings by specifying design criteria that take into account factors that we

normally would consider in a design procedure. For instance, by imposing the weak­

beams-strong-columns requirement on the three-story frame example, the optimal

design obtained would be more consistent with UBC.

7.2 Future Research

It is desirable to apply the optimal design framework presented here to multicriterion

performance-based design. Since reliability theory is incorporated into the framework

(Becket al. 1996), different levels of performance can be specified with different target

reliabilities. It will be both interesting and informative to compare how different are

the optimal designs for various performance levels and reliabilities.

Another improvement to both the theoretical framework and CODA is to incor­

porate artificial intelligence techniques throughout the design process. For example,

a knowledge-based expert system can be employed to remove some of the least likely

candidates for an optimal solution, thus reducing the size of the search space. Fu­

ture research could be focused on development of rules for performing such selections.

One possible approach is to apply classifier systems which are genetics-based expert

systems (Goldberg 1989).

Another interesting topic would be to develop a method to approximate the objec­

tive function of a continuous-variable optimization problems. Since an evaluation of

the objective function could involve a nonlinear finite element analysis, having such a

method can drastically reduce the computational requirements. One possibility is to

use neural networks to approximate the computations of the ANALYZER by training

them to estimate the topography of the objective function surface. Once the neutral

network is trained, it can be used to quickly compute the analysis results. In ad­

dition, one can train neural networks with commercial packages such as NASTRAN

-158-

or ABACUS and then connect them with CODA. Doing so can greatly increase the

computational capability of CODA. On the other hand, neural networks require a

large amount of data to be trained and they are not good at extrapolating outside

the region covered by the training data.

The multicriterion design framework presented here has been applied to structural

optimization problems. However, this framework is a very general decision making

methodology that can be applied to other problems as well. One possible application

is to employ this framework for optimal design of controllers for structural systems.

Finally, genetic algorithms can be applied to other engineering problems. In this

study, special genetic algorithms such as hGA and vGA have been shown to be

very powerful techniques for solving continuous and discrete structural optimization

problems. Other problems exist in various structural engineering fields that require

optimization as well. For instance, in system identification we often have to identify

multiple equivalent models which require an optimization scheme that can handle

multimodal problems (Beck and Katafygiotis 1997; Katafygiotis and Beck 1997).

Since hGA seems to possess the capability to solve these problems, further research

would be useful to investigate the multimodal capability of hGA. Also, in system

identification, we are often interested in finding optimal locations for the placement

of sensors. This problem is a combinatorial optimization one and the search space for

this problem rapidly grows as the number of sensors and possible locations increases.

It is desirable to apply genetic algorithms to these problems.

-159-

Bibliography

Adeli, H. and 0. Kamal (1986). Efficient optimization of space trusses. Computers

and Structures, 501-511.

AISC (1986). Manual of steel construction. Chicago, Illinois: American Institute of

Steel Constructions.

Back, T. (1996). Evolutionary algorithms in theory and practice. Oxford: Oxford

University Press.

Bagley, J. D. (1967). The behavior of adaptive systems which employ genetic and

correlation algorithms. Ph. D. thesis, University of Michigan.

Balachandran, M. (1996). Knowledge-based optimum design. Topics in Engineering.

(10).CMP.

Barricelli, N. A. (1957). Symbiogenetic evolution processes realized by artificial

methods. Methodos 9, 143-182.

Beck, J., E. Chan, A. Irfanoglu, S. Masri, H. Smith, V. Vance, and L. Barroso

(1996). New computer tools for optimal design decisions in the presence of risk.

Final report on CUREe-Kajima Project, Caltech-USC-Stanford. Caltech-USC­

Stanford, CA, USA.

Beck, J. and L. Katafygiotis (1997). Updating structural dynamic models and their

uncertainties: statistical system identification. ASCE Journal of Engineering

Mechanics. to appear.

Beck, J., C. Papadimitriou, E. Chan, and A. Irfanoglu (1996). Reliability-based

optimal design decisions in the presence of seismic risk. In Proceedings of 11th

World Conf. on Earthquake Engineering: Paper No. 1058. Elsevier Science Ltd.

Bethke, A. D. (1980). Genetic algorithms as function optimizers. Ph. D. thesis,

University of Michigan.

- 160-

Braun, R. and I. Kroo (1995). Development and application of the collaborative op­

timization architecture in a multidisciplinary design environment. InN. Alexan­

drov and M. Hussaini (Eds.), Multidisciplinary design optimization: state-of­

the-art. SIAM.

Broyden, C. (1970). The convergence of a class of double rank minimization algo­

rithms, parts I and II. Jnl. Inst.Math. Applns. 6, 76-90,222-231.

Budiman, J. and S. Rajan (1993). Shape optimal design methodology - the hy­

brid natural approach. In Proceedings of 31rd AIAA/ASME/ASCE/AHS/ASC

Structures, Structural Dynamics and Materials Conference, New York, NY, pp.

554-554.

Cavicchio, D. J. (1970). Adaptive search using simulated evolution. Ph. D. thesis,

University of Michigan.

Chan, C. (1992). An optimality criteria algorithm for tall steel building design

using commercial standard sections. Structural Optimization 5, 26-29.

Chan, C., D. E. Grierson, and A. Sherbourne (1995). Automatic optimal design of

tall steel building frameworks. ASCE Journal of Structural Engineering 121 (5),

838-847.

Cilley, F. (1900). The exact design of statically determinate frameworks, and ex­

position of its possibility, but futility. Trans. ASCE 43, 353-407.

Craig, R. R. (1981). Structural Dynamics. New York: Wiley.

Cramer, N. (1985). A representation for the adaptive generation of simple sequential

programs. In Proceedings of International Conference on Genetic Algorithms

and Their Applications, pp. 183-187.

DeJong, K. A. (1975). An Analysis of the Behavior of a Class of Genetic Adaptive

Systems. Ph. D. thesis, University of Michigan.

Dym, C. L. and R. E. Levitt (1991). Knowledge-Based Systems in Engineering.

New York: McGraw-Hill.

-161-

Eschenauer, H., J. Koski, and A. Osyczka (Eds.) (1990). Multicriteria design opti­

mization - Procedures and applications, Berlin. Springer.

Fletcher, R. (1970). A new approach to variable metric algorithms. Computer J. 13,

317-322.

Fletcher, R. and M. Powell (1963). A rapidly convergent descent method for mini­

mization. Computer J. 6, 163-168.

Frangopol, D. (1987). Unified approach to reliability-based structural optimization.

In J. Roesset (Ed.), Dynamics of Structures, pp. 156-167. New York: ASCE.

Frangopol, D. (1991). Multiobjective decision support spaces for optimum design

of nondeterministic structural systems. In G. Apostolakis (Ed.), Probabilistic

Safety Assessment and Management, Volume 2, pp. 977-982. Amsterdam: El­

sevier.

Frangopol, D. and F. Moses (1994). Reliability-based structural optimization. In

H. Adeli (Ed.), Advances in Design Optimization, pp. 492-570. New York:

Chapman and Hall.

Fraser, A. (1960). Simulation of genetic systems by automatic digital computers. 5-

linkage, dominance and epistasis. In 0. Kempthorne (Ed.), Biometrical genetics,

New York, pp. 70-83. Macmillian.

Furuya, H. and R. Haftka (1993). Genetic algorithsm for placing actuators on

space structures. InS. Forrest (Ed.), Genetic algorithms and their applications:

Proceedings of the Fifth International Conference on Genetic Algorithms, Los

Altos, CA, pp. 536-542. Morgan Kaufmann Publishers.

Gellatly, R., L. Berke, and W. Gibson (1971). The use of optimality criteria in

automated structural design. affdel. In Proceedings of 3rd on Matrix Methods

in Structural Analysis.

Goldberg, D. E. (1987). Simple genetic algorithms and the minimal, deceptive prob­

lems. In L. Davis (Ed.), Genetic Algorithms and Simulated Annealing, London.,

pp. 74-88. Pitman.

-162-

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and Machine

Learning. Reading, MA: Addison Wesley.

Goldberg, D. E. (1990). A note on boltzmann tournament selection for genetic

algorithms and population-oriented simulated annealing. Complex Systems (4),

445-460.

Goldberg, D. E. (1991). Real-coded genetic algorithms, virtual alphabets, and

blocking. Complex Systems (5), 139-167.

Goldberg, D. E. and K. Deb (1991). A comparative analysis of selection schemes

used in genetic algorithms. In G. Rawlins (Ed.), Foundations of Genetic Algo­

rithms, San Mateo, CA, pp. 69-93. Morgan Kaufmann Publishers.

Goldberg, D. E., K. Deb, and J. Horn (1992). Genetic algorithms, noise and the

sizing of populations. Complex Systems (6), 333-362.

Goldberg, D. E., K. Deb, and B. Korb (1990). Messy genetic algorithms revisited:

Studies in mixed size and scale. Complex Systems 4, 415-444.

Goldberg, D. E., B. Korb, and K. Deb (1989). Messy genetic algorithms: Motiva­

tion, analysis, and first results. Complex Systems 3, 493-530.

Goldberg, D. E. and J. Richardson (1987). Genetic algorithms with sharing for mul­

timodal function optimization. In J. J. Grefenstette (Ed.), Genetic algorithms

and thier applications: Proceedings of the Second International Conference on

Genetic Algorithms, Hillsdale, NJ, pp. 59-68. Lawrence Erlbaum Associates,

Publishers.

Goldfarb, D. (1970). A family of variable metric methods derived by variational

means. Maths. Comput. 24, 23-26.

Haftka, R. T. and M. P. Kamat (1985). Elements of structural optimization. Dor­

drecht: Martinus Nijhoff Publishers.

Holland, J. H. (1962a). Concerning efficient adaptive systems. In M. C. Yovits,

G. T. Jacobi, and G. D. Goldstein (Eds.), Self-organizing systems, Washington,

D.C., pp. 215-230. Spartan Books.

- 163-

Holland, J. H. (1962b). Information processing in adaptive systems. Information

Processing in the Nervous System, Proceedings of the International Union of

Physiological Sciences 3, 330-339.

Holland, J. H. (1962c). Outline for a logical theory of adaptive systems. Journal of

the Association for Computing Machinery 3, 297-314.

Holland, J. H. (1965). Some practical aspects of adaptive systems theory. In A. Kent

and E. Taulbee (Eds.), Electronic Information Handling, Washington, D.C., pp.

209-217. Spartan Books.

Holland, J. H. (1992). Adaptation in Natural and Artificial Systems, 2nd Edition.

Cambridge, MA: The MIT Press. First Edition, 1975.

Hollstien, R. B. (1971). Artificial genetic adaptation in computer control systems.

Ph. D. thesis, University of Michigan.

ICBO (1994). Uniform Building Code. Whittier, California: International Confer­

ence of Building Officials.

Katafygiotis, L. and J. Beck (1997). Updating structural dynamic models and their

uncertainties: model identifiability. ASCE Journal of Engineering Mechanics.

to appear.

Kirsch, U. (1981). Optimal structural design. New York: McGraw-Hill.

Koski, J. (1985). Defectiveness of weighting method in multicriterion optimization

of structures. Communications of Applied Numerical Methods 1, 333-336.

Koski, J. and R. Silvennoinen (1987). Multicriteria design of ceramic piston crown.

International Journal for Numerical Methods in Engineering 24, 1101-1121.

Koza, J. (1992). Genetic Progamming: On the programming of computers by means

of natural selection. Cambridge, MA: MIT Press.

Kroo, I. (1995). Decomposition and collaborative optimization for large-scale

aerospace design programs. In N. Alexandrov and M. Hussaini (Eds.), Mul­

tidisciplinary design optimization: state-of-the-art. SIAM.

-164-

Leitmann, G. (1977). Some problems of scalar and vector-valued optimization in

linear viscoelasticity. Journal of Optimization Theory and Applications 28, 93-

99.

Liepins, G. and M. Vose (1991). Deceptiveness and genetic algorithm dynamics.

In G. Rawlins (Ed.), Foundations of Genetic Algorithms, San Mateo, CA, pp.

36-50. Morgan Kaufmann Publishers.

Lippman, S. (1991). C++ Primer (2 ed.). Reading, Massachusetts: Addison­

Wesley.

Martin, F. G. and C. C. Cockerham (1960). High speed selection studies. In

0. Kempthorne (Ed.), Biometrical genetics, London, pp. 35-45. Pergamon

Press.

Masri, S., G. Bekey, and F. Safford (1980). An adaptive random search method

for identification of large scale nonlinear systems. Applied Mathematics and

Computation 7, 353-375.

Michalewicz, Z. (1994). Genetic Algorithms + Data Structures = Evolution Pro­

grams, 2nd Edition. New York: Springer-Verlag.

Michell, A. (1904). The limits of economy of material in framed structures. Phil.

Mag 6, 589-597.

Moses, F. (1974). Reliability of structural systems. Journal of the Structural Divi­

sion, ASCE 100, 1813-1820.

Moses, F. (1989, 4). Calibration of bridge-strength evaluation code. Journal of

Engineering Mechanics, ASCE 115, 1538-1554.

Moses, F. (1990). New directions and research needs in system reliability search.

Structural Safety 7, 93-100.

Otto, K. N. (1992). A formal Representational Theory for Engineering Design. Ph.

D. thesis, California Institute of Technology, Pasadena, California.

Parimi, S. and M. Cohn (1978, 1). Optimum solutions in probabilistic structural

design. Journal of Applied Mechanics 2, 47-92.

-165-

Razani, R. (1965). The behaviour of the fully stressed design of structures and its

relationship to minimum weight design. AIAA J. 3, 2262-2268.

Renders, J.-M. and S. P. Flasse (1996). Hybrid methods using genetic algorithms

for global optimization. IEEE Trans on Systems, Man and Cybernetics 2, 243-

258.

Richardson, J. T., M. R. Palmer, G. Liepins, and M. Hilliard (1989). Some guide­

lines for genetic algorithms with penalty functions. In J. D. Schaffer (Ed.),

Genetic algorithms and their applications: Proceedings of the Third Interna­

tional Conference on Genetic Algorithms, Los Altos, CA, pp. 191-197. Morgan

Kaufmann Publishers.

Rosenberg, R. S. (1967). Simulation of genetic populations with biochemical prop­

erties. Ph. D. thesis, University of Michigan.

Schaffer, J., R. Caruana, L. Eshelman, and R. Das (1989). A study of control

parameters affecting online performance of genetic algorithms for function op­

timization. In J. D. Schaffer (Ed.), Genetic algorithms and their applications:

Proceedings of the Third International Conference on Genetic Algorithms, Los

Altos, CA, pp. 51-60. Morgan Kaufmann Publishers.

Schmit, L. (1960). Structural design by systematic synthesis. In Proceedings of the

2nd ASCE Conference on Electronic Computation, pp. 105-132.

Schmit, L. and H. Miura (1976). A new structural analysis/synthesis capability­

access 1. AIAA J. 14, 661-671.

Shaefer, C. (1987). The argot strategy: Adaptive representation genetic optimizer

technique. In Genetic Algorithms and Their Applications: Proceedings of Second

International Conference on Genetic Algorithms, pp. 50-58.

Shanno, D. (1970). Conditioning of quasi-Newton methods for function minimiza­

tion. Maths. Comput. 24, 647-656.

Smith, S. (1980). A learning system based on genetic adaptive algorithms. Ph. D.

thesis, University of Pittsburgh.

-166-

Soegiarso, R. and H. Adeli (1996). Optimization of large steel truss structures using

standard cross sections. AISC Engineering Journal, 3rd Quarter, 83-94.

Stadler, W. (1988). Multicriteria optimization in engineering and in the sciences,

Volume 37 of Mathematical Concepts and Methods in Science and Engineering.

New York: Plenum.

Strang, G. (1988). Linear Algebra and its Application - 3rd Edition. San Diego:

Harcourt Brace Jovanovich, Publishers.

Syswerda, G. (1991). A study of reproduction in generational and steady-state

genetic algorithms. In G. Rawlins (Ed.), Foundations of Genetic Algorithms,

San Mateo, CA, pp. 94-101. Morgan Kaufmann Publishers.

Thanedar, P. and G. Vanderplaats (1992). Survey of discrete variable optimization

for structural design. ASCE Journal of Structural Engineering 121 (2), 301-306.

Unger, R. and J. Moult (1993). Genetic algorithm for 3d protein folding simulations.

In S. Forrest (Ed.), Genetic algorithms and their applications: Proceedings of

the Fifth International Conference on Genetic Algorithms, Los Altos, CA, pp.

581-588. Morgan Kaufmann Publishers.

Wakayama, S. and I. Kroo (1994). Subsonic wing design using multidisciplinary op­

timization. In Proceedings of the 5th AIAA/USAF/NASA/ISSMO Symposium

on multidisciplinary analysis and optimization, AIAA-94-4409.

Weinberg, R. (1970). Computer simulation of a living cell. Ph. D. thesis, University

of Michigan.

Whitley, D. (1991). Fundamental principles of deception in genetic search. In

G. Rawlins (Ed.), Foundations of Genetic Algorithms, San Mateo, CA, pp.

221-241. Morgan Kaufmann Publishers.

Zhou, M. and G. Rozvany (1992). A new discretized optimality cn­

teria method in structural optimization. In Proceedings of 33rd

AIAA/ ASME/ ASCE/ AHS/ ASC Structures, Structural Dynamics and Materi­

als Conference, Dallas, TX, Washington, DC, pp. 3106-20.

