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ABSTRACT

This thesis is divided into two parts. The first part is a study of the decoder error
probability of linear mazimum distance separable (MDS) codes. An exact formula
for the decoder error probability of linear MDS codes is derived. The random
characteristic of this class of codes is analyzed, and a lower bound for the decoder
error probability is given. The second part is a study of error-correction coding
in data storage systems, particularly in tape machines. The helical interleaving
scheme is generalized from single channel to n parallel channels. A new code, which
is specially designed for tape machines, is introduced. This code corrects more error
patterns than the AXP code, and it possesses a simple hardware structure. Lastly,
a class of error-correcting DC free trellis code, and a class of error-correcting RLL

code are introduced.
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CHAPTER 1

WEIGHT DISTRIBUTION FORMULA FOR DECODABLE
WORDS IN A LINEAR MDS CODE |

1. Introduction

We begin with the following definitions. Let ¢ be a positive power of a prime.
Let C be a linear code of length n, dimension k, and minimum distance d. A (n,k,d)
linear code C over GF(q) is mazimum distance separable (MDS) if the Singleton
bound is achieved; that is, d = n — k + 1. An MDS code is t-error correcting if for

some integer t, 2t < d — 1.

The class of Reed-Solomon (RS) codes is a subclass of the MDS code. Reed-
Solomon codes are the most widely used block codes today. Some examples are
the (255,223) 16-error correcting RS code ( the NASA code ) in deep space com-
munications, the (31,15) 8-error correcting RS code (the JTIDS code ) in military
communications, and the Cyclic Interleaving RS Code (CIRC) in compact disc in-
dustry. A detailed treatment of MDS codes, their properties and open questions
about them is given in [1]. The weiéht distribution of a linear MDS code with the
parameters n, k, d, t, and ¢ was independently found by three groups of researchers:

Assmus, Mattson and Turyn[2], Forney(3] and Kasami, Lin and Peterson[4].

In this chapter, we rederive the weight distribution formula for a linear MDS
code by using the principle of inclusion and exclusion, and then extend this method

to obtain the exact weight distribution formula for “decodable words” in any linear
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MDS code. By decodable words, we mean all the words that are lying within
distance ¢ from a codeword. If we assume the decoder to be a bounded distance
decoder, then the weight distribution formula for the decodable words can be used
to find the undetected error probability for linear MDS codes. This will be discussed

in detail in Chapters II and III.

This chapter is divided into 5 sections. Section 1 is a brief introduction. In
Section 2, we review some basic mathematical tools that are needed to derive the
formulae. In Section 3, we first derive the weight distribution formula for the number
of codewords in a linear MDS code, and then we derive the weight distribution
formula for the number of decodable words in a linear MDS code. In Section 4, we
give some numerical examples and finally, in Section 5, we end this chapter with

some concluding remarks.

2. Some Basic Tools

In this section, we review the basic tools that are required to derive the weight
distribution formulae for the number of codewords in a linear MDS code and for

the number of decodable words in a linear MDS code.

Let C be an (n, k) code over GF(g), not necessarily linear. If we examine any set
of k-1 components of the codewords, we find that there are only ¢*~! possibilities for
the ¢* codewords. Thus, there must be a pair of codewords thaf agree on these k-1
components, and so the minimum distance d of the code must satisfy d < n —k + 1.

This upper bound on d is known as the Singleton bound, and a code for which
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d =n—k+1 is called an MDS code. RS codes and cosets of RS codes are examples
of MDS codes.

One important tool that we need is the basic combinatoric property of the
MDS code. Let K be a subset of k coordinate positions of an MDS code. If two
codewords were equal on K, the distance between them would be at most n — k.
This contradicts the fact that d = n — k4 1. Thus, all ¢* codewords are different in
K. Let o = (@3, 03,...,0;) be a k-tuple of elements from GF(g). From the above
argument, there exists a unique codeword whose k coordinates in K equal the k

components in a. We call this important fact the basic combinatorial property of

MDS codes.

Another important tool that we need is the principle of inclusion and exclusion
[5]. Suppose we have N objects and a number of properties P(1),...,P(n). Let
N; be the number of objects with property P(¢), and Ny, ;, ; be the number of
objects with prorperties P(71), P(32), ..., P(7,). The number of objects N(0) with
none of the properties is given by the following formula :
(1) NO)=N=3 N+ Ni+...4(=1) > Niipoi,+-o ot (=1)"Nizg_p.
i i1<iz i1 <is...<i,

The proof can be found in [5].

The basic combinatorial property of MDS codes and the principle of inclusion

and exclusion will be referred to in the proofs in later sections.



3. Derivation of Formulae

This section is divided into three parts. In Part (a), we derive the formula for
the number of codewords of weight u in a linear MDS code, using the principle
of inclusion and exclusion. In Part (b), we extend this idea by deriving a general
formula for the number of decodable words of weight u. Last of all, in Part (c), we

simplify the key formula by using some combinatoric identities.

Part a :

Let ¢ be some codeword of C. Let ¢ have a H@mming weight u, v > d. Let
the coordinates of codeword ¢ be indexed by {0,1,2,...,n — 1}. Define v = n — u.
Then ¢ has v zeros. We now want to find the number of codewords of weight u
in C having exactly v zeros at some particular v coordinates where v = n(u = 0)
orv<n-—d=k—1(u > d). Obviously the number of codewords of weight zero
(u = 0) is one — the all zero codeword. The following discussion applies only to

codewords with weight © > d.

Let Vbe a set of v coordinates, |V| = v. Let {1,72,...,7;} C {1,2,...,n} —V be
a set of coordinaﬁes. Define S(¢1,12,...,1;) = {¢: ¢ € C and ¢ has zeros in V and
{t1,72,...,%;}}. For j < k—w, the number of zeros in a codeword in S(i1,12,...,%;)
isatleast j+v <k (j+v <k). By using the basic combinatorial property of MDS
code, for each particular choice of {i;,72,...,7;} we can specify ¢! ™77 codewords

having zeros at V and {71,1s,...,7;}. So

(2) S (11,02, oy 5) | = ¢ 0<)<k—w
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For j > k — v + 1, the number of zeros in a codeword is j + v > k + 1. This implies

that the weight of the codeword is less than d, so S(71,1,,...,7;) = {0}. That is,
(3) 1S (21, 22,...,%;)| =1 Ek—v+1<j3<u.
Note that we choose 1;,1;,...,%; from a set of u = n — v coordinates so that for

every choice of 7, we have (;‘) S(t1,22,--.,25)s.

By the principle of inclusion and exclusion, the number of codewords with ex-

actly v zeros at V equals

SO = SISE + -+ (~1)*IS(iny s - 50)]

-Eer(o oo
- S (f) -

We have (:) = <Z> ways to choose v zeros from {0,1,2,...,n — 1}. Thus, the
number of codewords of weight u, which is denoted by 4., is given by the following

expression :

J

(4) Ay = (Z) g(q)"(?) (@41 —1)  d<u<n.

After deriving this relatively simple formula for the number of codewords of
weight v in a linear MDS code, we proceed to derive the more complicated formula

for the number of decodable words of weight u in a linear MDS code.
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Part b:

Let D be the set of decodable words in an MDS code. Let V bea set of v coor-
dinates, |V| = v. Let {i1,%,,...,7,;} be a set of j coordinates, where {iy,1,... 205}
C {0,1,2,...,n —1} — V. Define S(¢1,%,...,7;) = {d : d € D and d has zeros in V
and {71,%2,...,7;}}. We proceed to derive the weight distribution formula for the
number of decodable words of weight v in a linear MDS code by using the principle
of inclusion and exclusion. Our problem is now reduced to finding the cardinality
of S(i1,%2,...,%;) for all j subjected to a given V. This problem is solved with the

help of the following theorems.

Theorem 1.1:

(5) 1S (11,02, .- 55)| = ¢ IVL(E)  0<j<u—d
where V,(t) = 3¢, (:‘) (¢ —1).

Proof:

The argument here is similar to the derivation given in Part a. We note that
each coset of a linear MDS code is also an MDS code. Also, since all words lying
within the Hamming spheres (with volume V,(¢)) that surround codewords are
decodable words, we ha‘ve Va(t) disjoint cosets that contain decodable words.
From the basic combinatorial property of the MDS code we can, for each par-
ticular choice of {iy,7s,...,7;}, specify ¢*7 77 = ¢“~4*17J decodable words to
each of these cosets. Thus, we have altogether ¢*~**'=7V, (t) decodable words

having zeros at V and {i,7,...,7;}. This completes the proof. n



Theorem 1.2

(6) Slinsingr i) = 3 (n e j) w_%u—j(—l)"(“.’) (qu-dteimitt _q)
<2 (M- pa s (M -y

?

for u—d+1<j3<u—-d+t

Proof :

Foru —d+1 =%k~ v <, the number of zeros in a decodable word is equal
to v+ 7 > k. Since d is a decodable word, d can be uniquely decomposed into a
codeword ¢ and an error pattern € with weight that is less than or equal to ¢. If
we “project” € onto V U {21,72,...,7;}, then the result will be a certain (v + 7, k)
code. Since the parent code has a minimum distance d = n — k + 1, the new code
must have a minimum distance d' > d - (n —v —j) = (v+J) — k + 1. Since it is
impossible for d' of the (v + j, k) code to be greater than (v + j) — k + 1 (because

of the Singleton bound), d' must be equaltod —(n —v—7j) = (v+j) — k+ L

If ¢ + € vanishes on V U {11, 13,...,1;}, then € must have weight that is less than
or equal to ¢t on V U {1y,1s,...,%;}. Let w be the weight of € on V U {14,%,...,7;}.
From the above argument we also know that C, when restricted to V U{¢1,1s,...,1;},
is a linear (v+y, k) MDS code with a minimum distance d—(n—v—j) = (v+7)—k+1.
Thus, w is either O (in the case of the all-zero codeword) or is between d — u +
and t. So the number of codewords of weight w in the (v + j,k) MDS code is (by

using Equation (4))

N\ w-(d=(u=3))
n-—-u-+] (WY we(d—(u—j))-1
( w ) : 1) <)(q e -
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ford—uv+j7 < w < tand 1 for w=0. For each codeword ¢ with weight w in
VU{i1,ig,...,%;}, whered <w <t (d =v+j—k+ 1), we must count the number
of &’s such that ¢+ vanishes on VU{iy,1,.. ., ¢;}. Suppose that & has weight s > w.
€ must match ¢ exactly on VU{¢y,1,...,7;}, but the s—w other nonzero components
can be arbitrarily placed outside V U {iy,4,,...,7;}. Then the total number of &’s
for a given ¢ of weight w on V U {1;,15,...,4;} is _, (::;;’I)(q — 1)*"*. When
w=0, all components of &€ must lie outside the set V U {iy,1,,... ,%;}. So there are |

o (":j) (¢—1)* &s for the case w=0. Combining the above results, we obtain the

theorem. (]

Theorem 1.3:

t o )
(7) |S(i1,i2,...,ij)|=2(u .J)(q—l)’ for u—-d+t+1<5j<u—t-1
12

i=0
Proof :

For k—v+t <j < u—t—1, the number of zeros in a decodable word is greater
than or equal to k + ¢ but less than or equal to n — ¢ — 1. Thus any decodable
words in S(¢1,7,,...,1;) have weight that is less than or equal to d — ¢ — 1. It is not
hard to see that the elemenf of S(71,%2,...,1;) cannot be decoded into a codeword
of weight other than 0. Therefore, S(i1,%2,...,1;) contains all words of weight that
is less than or equal to ¢ in the coordinates {0,1,..n — 1} - (V U {i},14s,...,7,}).

This completes the proof. n
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Theorem 1.4:

(8) 1S (51,72, ..,3) | =¢*7 u—t<j<u

Proof :

Since j is greater than or equal to u — ¢, the number of zeros is equal to v + J

and is greater than or equal to n —t. Therefore, the number of nonzero components

is less than or equal to t. Thus, all words with zeros on V U {41,12,...,7;} are
decodable and this completes the proof. [
As in Part a, we choose 11,13, ...,¢; from v = n = u coordinates. Thus, for every

choice of j, we have <';) S(71,%2,-..,1;)’s. Denote N; = ('J‘) 1S (21,72, .--,%;)| Again,
by the principle of inclusion and exclusion, we see that the number of decodable
words which have exactly v = n — u zeros at V equals Z;zo(—l)ij. However, we
have (Z) = <:‘) ways to choose v zeros from 0,1,...,n — 1. Thus, the number of

decodable words of weight u is given by

(9) D, = (n) > (=1)7N; for d—t<u<n
u) 5
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Part e:

The weight enumerator formula that we have just derived is c;mplicated and

clumsy. There are four different expressions for N,’s, and these expressions are

combined together by the inclusion and exclusion formula. The following theorem

will show that the weight distribution formula for the number of decodable words

in a linear MDS code can be simplified, and there are only two expressions for the

?
N;’s.

Theorem 1.5:

= S ol j
()R e () 2 (e
- S a-r S (1) (¢ e
@ te S-S () (Y

Notice that (’J‘) (”;j)

(5)(4}7) and T2 () (=1)7 = 0, then

()= (505

Thus, A = 0 and the theorem is proved.

N
i
)

+
[a—y

IA

IA
I~

I
et
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With Theorem 1.5 and equation (5), (6), (7), (8) and (9), the weight enumerator

formula can be simplified as follows :

09w = (0 (M) (e oy

1=0 t

+
t oy ) ‘
> (g—1)"] for u—d+1<j<u-—d+t.
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4. . Examples

Ezample 1 (4,2) MDS code over GF(5) with t=1.

Weight # of decodable words Upper bound|6]
0 1 -
1 16 -
2 48 48
3 192 272
4 168 272

Total number of decodable words = ¢*V,, (¢) = 425.

Table 1

Ezample 2 (6,3) MDS code over GF(4) with ¢t=1.

Weight # of decodable words Upper bound[6]

0 1 -

1 18 -

2 0 -

3 180 180

4 405 855

5 378 1026

6 234 513

Total number of decodable words = ¢*V,(¢) = 1216.

Table 2
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5. Remarks

The formula for the number of decodable words of weight u, where d—t < u < n,
is derived in the previous sections. If we set t=0, then we get back the weight

enumerator for linear MDS code — Equation (4). In the case of u = d — ¢, for

o) (o

and the answer is consistent with the result derived in [6].

example, we have

The formula is a bit clumsy, but can be easily implemented by computer pro-
gram. We include in the appendix a source listing of the computer program that
calculates the number of decodable words and the decoder error probability for a

linear MDS code.
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CHAPTER 11

DECODER ERROR PROBABILITY
OF A LINEAR MDS CODE

1. Number of Decodable Words vs. Decoder Error Probability

Let C be an (n, k, d) linear code capable of correcting ¢ errors. When a codeword
¢ € C is transmitted over a communication channel, channel noise may corrupt the
transmitted signals. As a result, the receiver receives the corrupted version of the
transmitted codeword ¢ + €, where € is an error pattern of weight u. If v < t, then
the decoder on the receiver’s end detects and corrects the error € and recovers ¢. If

u > t, then the decoder fails and it either
i) detects the presence of the error pattern but is unable to correct it, or

ii) misinterprets (miscorrects) the received pattern ¢ + & for some other codeword

¢’ if the received pattern falls into the Hamming sphere of ¢

Case (ii) is, in most cases, more castastrophic than case (i). This can occur
(with a nonzero probability) when an error pattern € is of weight u > d —t. Let us
further assume that all error patterns of weight u are equally probable, and let us
denote the decoder error probability given that an error pattern of weight u occurs
by Pg(u){7]. It is not hard to see that Pgr(u) is given by the following expression:

D,

() (g — 1)

(1) Pg(u) = d—t<u<n.



16—

That is, Pg(u) is the ratio of the number of decodable words of weight u to
the number of words of weight u in the whole vector space. Thus, the problem
of finding the Pg(u)’s is essentially the same as the problem of finding the weightr
distribution of the set of decodable words. Equations (11), (12) and (13) of Chapter
I and Equation (1) of this chapter together enable us to find the exact decoder error

probability of a linear MDS code.

Let the probability that a completely random error pattern will cause decoder
error be denoted by @. It is the ratio of the number of decodable words to the

cardinality of the whole vector space. That is,

@) Q- (—q—‘—})—vﬂ ~ V(1))

where r = n—k is the code’s redundancy and V,,(t) = ¢, (?) (¢—1)* is the volume

of a Hamming sphere of radius ¢. It is shown in the next section that if ¢ > n,

which is generally true, then Pg(u) approaches @ very rapidly as u increases.
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2. Eiamples and Observations

Two well-known examples of linear MDS codes — the NASA code and the
JTIDS code — are tabulated in Table 1 and Table 2, respectively. From the above
two examples, we observe that Pg(u) approaches the constant Q as u increases. In
fact, Pgp(u) approaches @ rapidly for u < n. In the case of large ¢ and ¢ > n,
Pg(u) approaches Q even for u < d. The Pg({u) and Q of the NASA code agree
to eight significant digits for v > 26 < d = 33. If Pg(u) and Q are interpreted

combinatorically as ratios, then we have the following relationship:

# of decodable words of weight u # of decodable words
g -
# of vectors of weight u # of words in vector space

This astonishing relationship cited above infers that a linear MDS code, which
possesses rigid algebraic and combinatoric structures, behaves (in some sense) like
a random code with no structure at all. Some laws of large number somehow come
into play.

In order to describe analytically how fast Pg(u) approaches Q when u is large,

PE(U)
Q

This upper bound is denoted by U(u), where v > d. It will be shown that U(u)

an upper bound of the expression | — 1| is derived in the following paragraphs.

approaches € as u increases, where ¢ is a very small number close to 0.

As in Chapter I, let D, denote the exact number of decodable words of weight
u. Let N;’s be the corresponding terms in the inclusion and exclusion formula of
D, as expressed in Equations (11), (12) and (13) of Chapter I. Let D, denote the
estimated number of decodable words of weight u. Let Nj’s be the corresponding
terms in the inclusion and exclusion formula of D,,. The expression of NJ-, 0<y <u,

is constructed by extrapolating the first term on the right-hand side of Equation
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(12) of Chapter I from 0 < j < u —d to 0 < 7 < u. We now have the following

equations for D, and Nj:

(3) D, = (") zu:(—1)f1\7]~ d—t<u<n

() B= (e osi<u
J

Now we want to find an upper bound, denoted by Uj, for N; in Equation (13)

of Chapter Iforu—-d+1<j3<u—d+1t.

w—d+tu—j

) :

B D SR vl [T I SIEY G P Dol (A IO e
| |
)

Y

1=0

t
4 q _1{u n-—u-+} w —J s—w
G) 2 (e e (e
u-j-d+1; 9 -1 U : s 2 n—u+jg\fu—7
= g" T )7 (¢-1)° >
g—1 V) s=auts w=d—u+j w sTw
—j— 9 iU
Squ j—d+1 ()Vnt
L ()
q —1 3 def
::(q__ l)t N; = U;

Note that (?)q“_dﬂ_jVn(t) = N; < U;, and so U; > max{N;,N;}. Also, with
the additional assumption that ¢ > n, which is generally true, U; is a descending

function of j.



P5(17)
P (18)
P5(19)
Pg(20)
P (21)
P (22)
Pg(23)
Pp(24)
Py (25)
Pg(26)
Pg(27)
Py (28)
Pg(29)

Pi(30)

NASA Code

etc.

9.4641648

1.9130119

2.4010995

2.6598044

2.6017177

2.6076401

2.6087596

2.6088773

2.6088880

2.6088888

2.6088888

2.6088888

2.6088888

2.6088888

(

(255,223)

10—15
| 10—14
10-14
10—14
10—14
10—14
10—14
10—14
10—14
10—14
10—14
10—14
10—14

10—14
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RS code.

Table 1

qg = 256

t =16



JTIDS Code

etc.

3.7493431

1.4392257

2.9507015

4.3287703

5.1888955

5.5466000

5.6291887

5.6296979

5.6255686

5.6256673

5.6259065

5.6258313

5.6258455

5.6258434

5.6258437

5.6258437

(31, 15)

1077
10°¢
107¢
107¢
10~°
10~°
10~¢
107¢
10~¢
107°
10~¢
1076
1076
1078
10~

107°¢

—20—

RS code.

Table 2
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Now let us consider the second term on the right-hand side of Equation (12) of

Chapter I, and denote it by ©(u). We want to find an upper bound for O(u).

where V' (¢) = 3¢, (“) (1)e.

7

We then want to find an upper bound of | D, — f)u|, where d < u < n. We have

D= 1) 5 o - Sy
()0 'S com- 3 cadiren
_ (Z) Hréﬂ(—w(m — R+ 0] (set Ny=0foru—d+1+1<j<u)
()L =R
< (1) X max{, ) + 0(u)
<) 3 vrow)
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< (n) [AUy—g41 + O(u)) (U; is a descending function)
u

NGRSy —

We are finally ready to derive an upper bound for I?%(ﬂ — 1|. By the definition

of D, in Equations (3) and (4), it is not hard to see that

D, = (Z) i(—w’ (;‘) ¢TIV

- (I)mr -y
Now for d < u < n,
Pe(u) . _ ¢"D. _
I 0 1] =| (Z) (q - BAD 1]
— I qn(Du - Du) l
() (g — )¢ V(1)
qn[Du - Du’

(2)(q — 1)¢*Va(2)

q t—1qd_1(dg1)d g2 Vo (1) aer
P L P R e | TR A ORI

where V,(t) = Y, (’:) (¢—1)" and V;(t) = 3L, (u) (q‘;”l)i'

Thus, the upper bound U(u) of i%ﬁﬂ —1}{, which is a function of u for d < u < n,

is given by the following equation:

d-1{ u w1
Po(v) g 8 ) gt v

(5) 0 P P R B AT

= U(u).

The upper bounds of ]5’37("1 — 1] of the NASA code and the JTIDS code are

tabulated in Table 3 and Table 4 respectively.
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NASA Code (255,223) RS Code. q=256 t=16

u: 33 34 35 36 37
U(u): 5.133 0.3422 00157  5.526x10741.512x1075...
Table 3

JTIDS Code (31,15) RS Code. ¢q=32 t=8

w17 18 19 20 21

U(u): 19.35 5.618 1.148 0.1851 0.02508

Table 4
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3. Rernarks

With the assumptions that ¢ is greater than or equal to n and v is considerably
large, Equation (5) shows that the upper bound of |@é—'ﬂ — 1| is dominated by the
denominator term (¢ — 1)¥. Thus, the upper bound of If%(”l — 1| decays nearly
exponentially as a function of u. This upper bound is not a very tight bound, but
it is sufficient to illustrate the point that Pg(u) approaches @ very rapidly as u

increases.
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CHAPTER III

A LOWER BOUND FOR DECODER ERROR
PROBABILITY OF THE LINEAR MDS CODE

1. Introduction

In Chapter I, by repeated use of the inclusion and exclusion principle, we derive
an exact expression for D,. In Chapter II, by using the results in Chapter I, we
evaluate the exact decoding error probability Pr(u) of a linear MDS code. However,
the formulae derived in Chapters I and II are complicated and clumsy, and offer
no mathematical insight. In this chapter, by assuming that ¢ > n, we derive the
lower bound of Pg(u) (and D(u)) from a completely different approach — simply
by counting the dominant types of decodable words around codewords. In Sections
2 and 3 we show that the lower bound derived in this paper is similar in form, and
close numerically to the upper bound derived in |7]. In Section 4 we show that with
the assumption that ¢ > n, the lower bound of Pg(u) as a function of v achieves
its minimum value at v = d — t. Thus, the lower bound for u = d — ¢ is the overall
lower bound of Pg(u). For ¢ < n, this may not be true. The (6,4) MDS code over

GF(4) with t = 1 provides a counterexample.
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2. Lower Bound of the Number of Codewords of Weight w

Let A, denote the number of codewords of weight w. A lower bound of 4, is

given by the following theorem.

Theorem 8.1:

n
w

(1) AwZC( )q‘d“(q—l)“’ d<w<n,

where C =1 — —T(g)qd_2
- (g-1)< *

Proof:

From Chapter I, A, is given by the following expression:

:<Z)(q—1>q“’“[(q~1)‘“— 5 (—1)f(w;1)qw—1-f}.

t=w~d+1
Consider the second term of the above expression. Since ¢ > n, (w?) gvlimt >
(g:;) I lford<w<nand w—d+1<i<w-—1. It is not hard to see that

we can get the following inequalities.

( w—1 )qd-2
q—d+1(qb1)w{1+__w___d+17] w:d’d—{—z,d—f—‘l

g Wi

(g 1) w=d+1,d+ 3,d+5...
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Consider the bracketed term in Equation (5). Since ¢ > n, it is an ascending

function of w. So if we denote -

d\ d—2
1 (2)‘1
(¢—1)%’
we have
Ay > C(n) g (g — 1)* d<w<mn,
w

where C is a scaling factor very close to 1. m
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3. Derivation of Lower Bound of Pg(u)

Let d be a decodable word. Then d can be expressed uniquely as a sum ¢ + ¢,
where ¢ is a codeword and € is an error pattern of weight less than ¢t. Let d have
weight u and € have weight s. The weight of ¢ is then confined within a certain set
of values, depending on the value of u and s. The main idea of deriving the lower
bound of the number of decodable words of weight u is to count a certain “dominant”
subset of codewords such that when added to appropriate error patterns, codewords

in this subset give rise to decodable words of weight u. Let us define

B, . = {w: w is the weight of a codeword that is at a distance s (s < t)

from a decodable word of weight u}

We then have the following expression for B, ,;, depending on the value of u

and s:
ijd-—t<u<d-1
By,;={w:d<w<u+s}
i) d<u<d+t—1
By;={w:d<w<u+s}
i) d+t<u<n-—t
By,={w:v—s<w<u+s}
v)n—t+1<u<n
Bys={w:vu—s<w<u+s} fu+s<n

Bys={w:u—-s<w<n} ifu+s>n.
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We can then express D, as follows:

(6) Dy=>_ > A, x {# of error patterns of weight s that give rise
s weB,,s
to a decodable word of weight u from

a codeword of weight w }.

We see that in the case d —t < uw < d — 1, an allowable error pattern must be of
weight s € {d — u,...t} C {0,1,...t}. In the case d < u < n, an allowable error

pattern must be of weight s € {0,1,...t}.
We also observe that for a linear MDS code, if ¢ > n and ¢ is large, then

w

Aw—l

>1 for most d < w < n.

Thus, for the sole purpose of finding a lower bound of D,,, we do not need to consider
allw € B, ;. We need only to count those w’s that give rise to most decodable words
of weight u. It is then logical to consider only those w € B;’s C B, ,, where BL,s is
a subset of B, ; (B, , consists of the larger numbers in B, ,), instead of all w € B,,.

We now define B’ . as follows:

)d—t<u<d-1
B,,={w:d<w< u+s}

i) d<u<d+t—1
B,,={w:u<w<u+s}

i) d 4t <u<n-—t
B,,={w:u<w<u+s}

wv)yn—t+1<u<n
B,,={w:u<w<u+s} futs<n

B,,={w:u<w<n}if u+s>n.
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Before we proceed, we want to categorize the decodable words according to the

following definition. -

Definition 3.1:

Let d be a decodable word such that it can be expressed in the form d = ¢ + &.
Let T; denote the set of nonzero coordinates of ¢ and T} denote the set of nonzero

coordinates of e.
a) d is defined to be of type-A iff T} C Ty

b) d is defined to be of type-B iff it is not of type-A.

It can be shown that for a given u, the number of type-A decodable words of
weight u is usually much greater than the number of type-B decodable words of
weight u for most u. However, an explanation of the above claim is complicated
and clumsy, and it is very hard to present a formal proof. A crude and oversim-
plified explanation is that type-A decodable words lie within Hamming spheres of
codewords of weights up to u + ¢, whereas type-B decodable words lie in the Ham-
ming sphere of codewords of weights only up to u+¢—2. As was mentioned before,
Ay > A,y for most w. This explains partly why the number of type-A decodable

words is much greater than the number of type-B decodable words of weight u.

Summing up the above results, a lower bound of the number of decodable words
of weight u is given by the following expression.

(7) D, > Z Z Ay x {# of error patterns of weight s that give rise
s weBl ,

to a type-A decodable word of weight v from

a codeword of weight w }
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We have four cases to consider, depending on the value of .

)d-t<u<d-1 -
In this case, s € {d ~ u,..t} and w € B, = {d,d + 1,..u + s}. There are
(’f) ways of choosing s coordinates that give rise to type-A decodable words.
But in order to have a type-A decodable word of weight u, the w — u nonzero
coordinates in € must match with the corresponding w—u nonzero coordinates in
€ to give w—u zeros in these coordinates. The remaining s —(w —u) coordinates
of € must also match the corresponding s — (w — u) coordinates of ¢ to give a
nonzero value in each of the s — (n — w) coordinates. There are (g — 2)*~(v~¥)

ways to do so.

Thus, the number of decodable words of weight u, where d —t < u <d -1, is
lower bounded as follows:

| e

s=d—uweEB!

w8

We then substitute the lower bound of A4, in Equation (1) for the above expression,

and we have a lower bound of D, as follows:

e § Bt ) Jooors

s=d—u w=d w—1u

We see that ( )(w) (wiu) can be expressed as (") ("”“)( ” ) Let A = w — w.

n
w/ \s v/ \w—u/ \s—{w—-u)

The above expression can be rewritten as

8

D>y Y ot d~1(q‘2)s_w+u(n) (n;u) (sﬁA>(q_1)u+s—dH'

t
s=d—u A=d—u q q— 1 u

Next, it is not hard to see that for the given ranges of u, s and w, (g—:—%)s”w“‘ >

(g:—f)’ Also, for the purpose of consistency with the equations that follow, the lower
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limit of the first summation on RHS of the above expression can be replaced with

0 and thus our final expression is

where C =1 —

ii)

iii)

D> o =2y (M- 3 ("‘“)(sz)(q—l)%

q s=0 A=d—u

(dqdz

(¢-1)

d<u<d+t

In this case s € {0,1,...t} and w € {u,u + 1,...u + s}. The derivation of lower
bound of the number of decodable words of weight u is very similar to case
(i), and the details of derivation are omitted. Since the smallest value of the
codeword weights that are involved in counting is u, the scaling factor of the
lower bound is now C' =1 — LE"Z—(I,T: which is closer to 1 than C. The lower

(g-1)
bound of D, is then given by

Duzcwq‘l)d-l(q”)f(") - “‘“ZZ( )(SQ)W—US

q q_l 8=0 =0

The lower bound can again be simplified by recalling the famous combinatoric

2 (5) =)

and the final expression for this case is

Duzc'(ﬁli)d-l(ﬁf(”) - ““Z()q—l

q g—1 U

identity

p— C’(g.:_l_)d—l(g)t (n) (q . 1)u—d+1Vn(t) d S u S d + .
q g—1" \u

d+t+1<u<n—t
In this case, s € {0,...t} and w € {u,...u + s}. The derivation is exactly the
same as in case (ii), and the lower bound is given by

—1 -2
Dy, > c'(L)d'l(q—l)‘<”> (@1 “Wo(t) d+t+1<u<n-—t
q q-—- u



iv) n—t+1<u<n
In this case, if u+s < nthen w € {u,...u+s},and if u+s > n then w € {u,...n}.
The derivation of the lower bound is slightly different from those of cases (ii)

and (iii), but the final expression turns out to be the same. That is,

q 1 d-179 2 e[n u—d+1
D, > (' -1 V. n—t- <u<n.
u ( q ) (q 1) (q ) n(t) t 1 -~ =

In summary, the lower bound of the number of decodable words is given by the

following equations:

0.2 (R E R (M- v (1) )y

q u ¢=0A=d—u

d—t<u<d-1

-1 — 2
(9) D, > ¢'(L==)%( ") t(”) YL () n—t+1<u<n,
q q_

d—2 - d—~2
where C =1 - qud—andc =1- "d“)q .

(¢-1) (g-1)*~
We have shown in Chapter II that the decoder error probability is related to the
number of decodable words via Equation (2) and thus the decoder error probability

Pg(u) is lower bounded as follows:

—_ q 2t t i n-—u u s
1) Pe(w) > Ca (Y ( ( )<q—1)
q—l 3=0A=d-u A _A
d—t<u<d-1
(1) Palu) > C'q —d+1(%)tvn(t) d<u<n,
q_

_ (2)a* 7 " (uai)e" 2
whereC—1~WandC —1—(—q_+i)—ujr—~



—34—
4. Overall Lower Bound of Pg(u)

In this section, an overall lower bound of Pg(u) for all u is given by the following

theorem and corollary.

Theorem 3.2:

The lower bound of Pg(u) in Equations (10) and (11) is smallest for u = d — t.
Proof:

First of all, it is not hard to see that the lower bound in Equation (10) is always
smaller than the lower bound in Equation (11) because (':) is always greater
than the incomplete Vandermonde convolution Y%_, . (";“) (t:‘)\). Also, the
scaling factor C' in Equation (11) is always greater than the scaling factor C in
Equation (10). Thus, to prove the theorem, we need only to consider the lower
bound of Pg(u) for d —¢ < u < d — 1. It is not hard to see that a sufficient
condit'ion is to show that

Z Z (n_u><s$>(q—1)32(n_f+t)(q—1)t d—t<u<d-1

$s=0A=d—u

It is obvious that

22 e e (1) e

We now proceed to show that >5_, | (";”) (ti‘,\)(q ~ 1)t > ("'g“)(q - 1)4

Let l=t—d+uand m =t — A; we have

E T [N R i [ e
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Sinced>2t+1and0<I<t-1,

RO

£ e B e
_ (n—;i—l't)(q_l)t’

and the theorem is proved.

Corollary
An overall lower bound of Pg(u) for all u is

—1

q—2,,.4 d-1
Pg(u) < C(q—_l) (T) Pg(d —t)
= C(g:_;%)tq—d-kl ("—;H‘t) (g — 1),

dy d—2

— 1 _ \2)4
where C =1 (=) -

Proof:

A direct result from Theorem 3.2.
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5. Remarks

For ¢ > n, the upper bound and lower bound of Pg(u) give a good estimation
of Pg(u). The upper bounds|7], lower bounds and exact values of the Pg (u)’s of the
NASA code and the JTIDS code are tabulated in Table 1 and Table 2, respectively.
We observe that the estimated values (upper bound and lower bound) are more or

less of the same order of magnitude as the exact value in each case.

Also, we have shown that with the assumption that ¢ > n, an overall lower

bound of Pg(u) (for all ) is given by C(g—:—i)tPE(d —t). For ¢ < n, this may not

be true. The MDS code in example 2 of 1.4 gives a counterexample.



NASA Code

Weight

17
18
19
20
21
22

37

JTIDS Code

Weight

9

10
11
12
13
14

25

(255,223)

(31, 15)

Lower bound

—37-

RS Code.

g=256 t=16

Actual Value

7.769 x10~15 9.464x10™ 14
1.665x10" % 1.913x10°4
2.171x10~ 14 2.401x10~14
2.361x10~ 14 2.660x10~ 14
2.414x107 14 2.602x10~14
2.425x107 14 2.608x10~14
2.450x10~ 14 2.600x10"14
Table 1
RS Code. g=32 t=28

Lower bound

1.340x107¢
5.741x107°
1.310x10~¢
2.123x10°¢
2.767x107¢
3.140x10°¢

4.328x107¢

Actual Value

3.750x107¢
1.439x107°
2.951x10°¢
4.329x10°°
5.189x1076
5.547x10°6

5.626x107°

Table 2

Upper bound

2.956x10"14
2.957x10714
2.957x10714
2.957x10714
2.957x10714
2.957x107

2.957x107 14

Upper bound

9.250%x 1076
9.349x10°°
9.350x107¢
9.350x10~°
9.350%x10°¢
9.350x10°¢

9.350%x10°¢
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PART TWO

ERROR-CORRECTION CODING
IN
DATA STORAGE SYSTEMS
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CHAPTER IV

GENERALIZATION OF HELICAL INTERLEAVING
TO N PARALLEL CHANNELS

1. Introduction

Noise bursts are common in many different channels. They arise from numer-
ous causes, including multipath, interference, jamming, and fading. The duration of
noise bursts ranges from a few bits to billions of bits, depending on the characteris-
tics of channels. Interleaving is the common strategy for enhancing the performance

of error-correcting codes in the presence of noise bursts.

Errors and erasures in magnetic tape recording are primarily caused by defects
on the magnetic media or by variations in head-media separation in the presence of
dust particles. These errors and erasures often come in bursts, and they can affect

as many as 100 bits at a time.

A block interleaving scheme is now being used in many tape machines. For ex-
ample, in the IBM 3850 Mass Storage System (MSS), the codewords of the (15,13)
BCH code over GF(2?) are block-interleaved to a depth of 16. The block interleav-
ing scheme has a rather straightforward and simple hardware implementation, and
1t imposes no constraint on the interleaving depth. However, block interleaving re-
quires substantial memory and causes a long interleaving delay in the transmission

of data.
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In an unpublished paper by Berlekamp and Tong|[1], a novel interleaving scheme
called helical interleaving was presented and was shown to have several advantages
over block interleaving. For the same code length and interleaving depth, memory
required in helical interleaving is one-half that of block interleaving, and interleav-
ing delay in helical interleaving is one-half that of block interleaving. Also, helical
interleaving allows burst forecasting strategy, which enhances the error-correcting
capability of the code. Moreover, Berlekamp has shown that helical interleaving
offers a one RAM implementation as shown in Figure 1. The transmitter’s inter-
leaver and the receiver’s deinterleaver are identical, and the addressing sequence

has a period that is about twice the RAM’s memory size.

A One-RAM Implementation

Address Sequencer

|

data in— RAM — data out

Figure 1

In Berlekamp’s paper, only a single channel was considered. In a magnetic tape
environment, data are written on parallel tracks along the length of the tape. If
a helical interleaving scheme is to be used in a magnetic tape with n tracks, n
sets of interleaver/deinterleaver hardware will be required. However, we found that
with only slight modification on the interleaving scheme, we could apply helical
interleaving to n parallel tracks (n is a number which divides the length of the

codeword), using only a single RAM chip (with memory size the same as that
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required of a single channel) but preserving the same interleaving depth in each

channel. _

<

The following discussion is mainly a generalization of the idea of helical inter-
leaving, together with some modifications and comments on Berlekamp’s paper. In
Section 2, we describe the general idea of interleaving. In Section 3, we present
simple algorithms to construct the addressing sequences of the one RAM imple-
mentation and the optimal one RAM implementation of helical interleaving. In
Section 4, we give the advantages of helical interleaving over block interleaving. In
Section 5, we discuss another type of interleaver called deep-staggered interleaver,
which is formed by concatenating block and helical interleavers. In Section 6, we
give modifications on Berlekamp’s helical interleaving scheme, which generalizes the
scheme from one channel to n channels. Last of all in Section 7, we give a conclusion

to this chapter.

2. Interleaving

Interleaving is a common strategy for enhancing the performance of an error-
correcting code in the presence of bursty noise. The logical position of an interleaver
in a typical communication system is shown in Figure 2. The transmitter’s inter-
leaver lies between the encoder and the channel; the receiver’s deinterleaver lies

between the channel and the decoder.

An interleaver is nothing more than a buffer that accepts incoming data from
the encoder, stores the data, and reads the data out to the channel at appropriate

instants. The characters in the data stream, when read out to the channel, are
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shuffled in such a way that any two characters from the same codeword are separated
from each other by at least 7 characters from other codewords. . We call ¢ the
interleaving depth. When a noise burst occurs, it is hoped that the burst will
corrupt no more than it characters in the data stream where t is the number of
errors the code can correct. The decoder will thus be able to recover the data from

the corrupted data stream.

Logical Position of Interleavers in a Communication System

TRANSMITTER:

Source — Encoder — Interleaver — Channel

RECEIVER:

Channel —— Deinterleaver — Decoder — User

Figure 2

The operation of an interleaver is best depicted by the following example in
Figure 3. It is a schematic diagram of a conventional block interleaver. It shows
a code of length 4 block-interleaved to depth 3. The codewords occupy positions
labeled ABCD, EFGH, IJKL, MNOP,....etc. In this figure, codeword characters are
read into the interleaver column by column from top to bottom; the characters are

transmitted across the channel row by row from left to right.
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Block Interleaver of Length 4 and Depth 8

A E I
B F J
C G K
D H L
M Q U
N R A%
O S w
P T X
Y

Z 0

o €

g

Figure 3

At any instant of time, exactly two of the characters shown in Figure 3 are
visible at the interfaces between the boxes in Figure 2. One character is entering
the interleaver from the encoder; another is coming out of the interleaver across the
channel and into the deinterleaver. For example, there may be an instant of time
at which the character labelled Z in Figure 3 is entering the interleaver, while the

character labelled Q is going across the channel.

The operation of a deinterleaver is similar to that of an interleaver. A dein-
terleaver receives the scrambled and corrupted data from the channel, unscrambles

the data, and sends the data to the decoder.

Since “variable delays” is the essence of interleaving, an interleaver can be

viewed as a collection of delay lines of various lengths with multiplexers shuffling
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data through successively different routes. This is the viewpoint expounded in the
classical papers by Ramsey (1970) and Forney (1971). The work of Clark and Cain

(1981) also contains an excellent discussion on the present state of art of the subject.

In an unpublished paper by Berlekamp and Tong{1], a novel interleaving scheme,
called helical interleaving, was introduced. A schematic diagram of a helical inter-
leaver is shown in Figure 4. It shows a code of length 4 helically interleaved to depth
3. The codewords are read into the interleaver to occupy positions labelled ABfa,
CDbc, EFde,...,etc. The characters are read out horizontally from left to right from
positions labelled abFA, ¢cdBC, efDE,... etc.

Helical Interleaver of Length 4 and Depth 8

ja

SHRS S
m&“qtq,m&"qmlm&

a\mhﬂ

Qle = O

o o

Figure 4
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In a block interleaver, interleaving depth is arbitary and is not constrained by
codeword length. However, it was shown in [1] that interleaving depth of a helical
interleaver must be equal to the codeword length minus one. In the case of a
deep-staggered interleaver (Section 5), the interleaving depth must be a multiple of

codeword length minus one.

3. One RAM Implementation

It was pointed out in [1] that a helical interleaving scheme allows one RAM
implementation, which is composed of one RAM chip and an address sequencer.
A schematic diagram of a one-RAM implementation is shown in F igure 1. In
Berlekamp’s paper[1] some examples of optimal one-RAM implementation are con-
structed, but the methodology is complicated and hard to comprehend. Here a
simple algorithm for the construction of an addressing sequence is presented. Let [

be the codeword length and { — 1 be the interleaving depth.

One RAM Implementation:

1. Construct al —1 x 1 — 1 symmetric matriz M such that the entries along the

diagonal and those on the left (or right) side of the diagonals are all different.
2. “Duplicate” the diagonal to obtain an { x { — 1 matrix.

3. Read out the addressing sequence from the matrix column by column from

column 1 to column [ — 1. At column ¢, 1 < ¢ <[ —1, read out the character at
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position (¢ + 1,7) first, then (¢ + 2,1),...,({,),(1,%),...,and finally (7,7).

The above algorithm is illustrated by an example in Figure 5 in which a code
of length 4 is helically interleaved to depth 3. The addressing sequence is periodic

modulo 12:

ABFACDBCEFDEABFA...

The memory size required in a one-RAM implementation is (;), and the ad-

dressing sequence is periodic modulo (I — 1).

Algorithm for One-RAM Implementation

A B F 4 B F
ASC D

B C D —— S

F D E B CONE
F D E

Figure 5

Optimal One-RAM Implementation:

1. Construct an [ — 1 x| — 1 symmetric matriz M such that the entries along the
diagonal are the same and those on the left (or right) side of the diagonals are

all different from each other and also different from the diagonal entries.
2. “Duplicate” the diagonal to obtain an [ x { — 1 matrix.

3. Read out the addressing sequence from the matrix column by column from
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column 1 to column ! — 1. At column s,1 <7< — 1, read out the character
at position (z,1) first, then (¢ + 1,1),...,(I,4),(1,¢),..., until all colurnn entries are

exhausted.

The above algorithm is illustrated by an example in F igure 6 in which a code
of length 4 is helically interleaved to depth 3. The addressing sequence is periodic

modulo 12 :

AABCAADBAACDAABC...

The memory size required in an optimal one-RAM implementation is (;) —1+2

and the addressing sequence is periodic modulo (I — 1).

Algorithm for Optimal One-RAM Implementation

A B C 4 8B ¢
AN4A D
B A D — ~
C D 4 boAsA
C D A4
Figure 6

4. Advantages

It was pointed out in [1] that for a given codeword length { and an interleaving

depth 1, helical interleaving is better than block interleaving in several aspects :
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Memory—memory required by helical interleaving is less than (;), which is
equal to one-half of 7, whereas for block interleaving the memory size is l1.

Interleaving Delay—interleaving delay in helical interleaving is [7, whereas for

block interleaving the delay is 2!:.

Burst Forecasting Strategy— In [1] Berlekamp suggested putting a synchroniza-
tion character at the end of each codeward. This character, besides being used
for the purpose of sychronization, can be used as an erasure indicator, which
indicates the beginning of an error burst. The burst forecasting strategy is not

applicable in block interleaving. The difficulty is to get started.

Other Types of Interleavers

In [1] different types of interleaver like deep-staggered interleaver, shallow-

staggered interleaver, and helical-helical interleaver were constructed by concate-

nating block and helical interleavers. In the magnetic tape environment, only he-

lical and deep-staggered interleavers are of interest. The construction of helical

interleaver is given in above sections. Deep-staggered interleaver is constructed by

concatenating a block interleaver and a helical interleaver as shown in figure 7. Each

row of output of the block interleaver is treated as a single “super character” by

the helical interleaver. If the code length is | characters and the block interleaver

has depth ¢, then the depth of the deep-staggered interleaver is ({ —1)7 where 7 can

be any positive integer. This provides more freedom in the choice of interleaving

depth. Figure 8 shows the overall effect of the deep-staggered interleaving system

= 4,7 = 3) on the codewords.
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Deep-staggered Interleavers in a Communication System

TRANSMITTER:

Source — Encoder — Block Interleaver — Helical Interleaver — Channel

RECEIVER:

Channel — Helical Deinterleaver — Block Deinterleaver — Decoder — User

Figure 7

Overall Effect of Deep-Staggered Interleaver

Figure 8
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6. Generalization

In Berlekamp’s paper[1] on interleaving, only the single channel is being consid-
ered. However, in many tape machines, parallel tracks of data are written across

the length of the tape. Each track is a bursty channel of the kind mentioned in [1].

In order to apply helical interleaving to this parallel bursty channel environment
(say n tracks), it seems that n sets of interleaver/deinterleaver would be required.
It would mean a substantial increase in memory size and hardware complexity, par-
ticularly when n is large. In this section, we want to present a modified scheme
on helical interleaving, which generalizes the scheme from one channel to n par-
allel channels. It can be shown that by imposing a constraint on the codeword
length—number of tracks relatively prime to interleaving depth, we can apply he-
lical interleaving or deep-staggered interleaving to n parallel tracks, using only a
single RAM chip ( with memory size the same as that required for a single channel)
but preserving the same interleaving depth in each track. The modified scheme re-
quires only a multiplexer ( 1 to n ) on the write side and a demultiplexer (n to 1) on
the read side in addition to a single set of helical interleaver /deinterleaver hardware.
The modified scheme is depicted in Figure 9. However, with the above constraint
on codeword length alone, although interleaving depth is preserved, characters of
same codeword are often distributed on the tape in an unorganized manner, mak-
ing sychronization rather difficult. This difficulty can be overcome if we put further

restriction on codeword length, namely,

a) the number of tracks n divides the length of codeword ! in the case of helical

interleaving, and
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b) the number of tracks n divides the length of codeword I, and n is relatively
prime to ¢ (depth of block interleaver in deep-staggered interleaving system) in

the case of deep-staggered interleaving.

Theorem 4.1 will prove the above assertion.

lock Diagram of Generali lical Interleavin h

Address
Sequencer

dat * [ *
i"aa RAM __./ ! Tape with n Tracks . \ data

RAM {—out

interleaver : ) deinterleaver

Address
Sequencer

ua
alsi

Write Heads Read Heads

Figure 9

By imposing the above constraint on codeword length, characters of the same
codeword are then written on the tape in regular “zigzag” patterns (as shown in
Figures 10, 11, 12, 13) such that the beginnings and ends of codewords can be easily

tracked. This makes sychronization much easier to obtain.

The modified interleaving scheme works as follows: During the writing process,
data are first helically interleaved by the interleaver, and are then distributed by
the multiplexer to the n write heads, which write the data along the length of the
tape in n parallel tracks. During the reading process, data are first concentrated to

a single data stream by the demultiplexer, and are then deinterleaved by the helical

deinterleaver.
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Theorem 4.1:

a.) Given that the number of tracks n divides the length of codeword , the modified
helical interleaving scheme gives the same interleaving depth on each track as

the unmodified scheme of the same memory size.

b.) Given that the number of tracks n divides length of codeword [ and is relatively
prime to ¢ ( depth of block interleaver in deep-staggered interleaver), the mod-
ified deep-staggered interleaving scheme gives the same interleaving depth on

each track as the unmodified scheme of same memory size.
Proof:

a.) The proof of the helical interleaving case is as follows. The interleaving depth
in helical interleaving is / — 1. Given that n divides I, let I = nk, where k is
an integer greater than or equal to one. Let the tape be labelled vertically and
horizontally as shown in Figure 9. The multiplexer distributes the characters
from the helical interleaver to the n write heads in the order 1, 2,...n, 1, 2,....n
,-.-etc. The demultiplexer, on the other end, concentrates the data from the n
read heads to a single data stream in the order 1, 2,....n ,1,....n ,...etc. Consider
a codeword € = (cq, ¢g, ..., ...¢;). Without loss of generality, let ¢; be written on
(n,1). Since the interleaving depth is | — 1 = nk — 1 = —1mod n, by following
the writing procedure of the modified scheme, ¢, is then written on the n—1 row
and on the k£ + 1 column (on coordinate (n ~ 1,k 4 1)). This process continues
for ¢, ¢4, ..., and ¢, is written on (1, (n — 1)k + 1). The next character ¢, is
then written on the nth row and the nkth column. This is the first time that a
character of the same codeword is written on the nth row again. The separation
between these two characters on the nth row is nk — 1 = [ — 1, which is the

interleaving depth. A similar argument holds for characters in other rows, and



54—
the theorem is proved in the case of helical interleaving. Figure 10 and Figure
11 are examples of generalized helical interleaving applying to a tape with 4

tracks. -

The proof of part (b) is similar to that of part (a). Given that n divides [, let
I = nk, where k is a positive integer. Consider a codeword ¢ = {¢y, ¢z, ... ,C1)-
We note that ¢; and ¢;11, 1 < j <1, are separated from each other by i(nk — 1)
positions in the data stream. Without loss of generality, let ¢; be written on
(1,1). Since n is relatively prime to ¢ and nk — 1, n is relative prime to the
interleaving depth i(nk — 1). Thus, the characters ¢,, cs,...,c, would not be
written on row 1. The next character c,.;, which is separated from ¢; by
ni(nk — 1) positions in the data stream, is then written onto row 1. This is
the first time that a character of the same codeword is written on row one
again. The separation between ¢; and ¢,,; on row 1 is t(nk — 1), which is the
interleaving depth. A similar argument holds for characters in other rows and
the theorem is proved. Figure 12 and Figure 13 are examples of deep-staggered

interleaving, applying to a 4-track tape. »
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Data Format along a Tape with Four tracks

j

bu:na\mh:l.

o =g Qles o=
o &y lgle &y e a

o

(a) Helical Interleaving Scheme
codeword length = 4
interleaving depth = 3

a C € @ Cc € a

b d @ b 4 f b

F D F B D F

A ¢ E A ¢ E 4
_—

length of tape

(b) Data Format

Figure 10
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Helical Interleaving Scheme on a Tape with Four tracks

ZznpsvaZEstvMT

RX~o . 3ldhiRrX~o 3nn

New o ofrEn N e s oo n

dg.]mMNOPdg;JmMNOP
N L T W I I S O S e I S
o VRO 8 b oA DD 8 b

SITNAMOA - 3 v ICTAMOAQ ~ 3

(a) Helical Interleaving Scheme

codeword length = 8

interleaving depth = 7

length of tape

(b) Data Format on tape

Figure 11
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Deep-staggered Interleaving Scheme on a Tape with Four tracks

A B C
A B C D E F
A B C D E F G H I
A B C D E F G H I
1 2 3|D E F G H I
1 2 3 4 5 6|G H I
1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 T 8 9
A B C'l4 5 6 7 8 9
A B C D E Fl17 8 9
A B C D E F G H T
A B C D E F G H T
D E F G H T
G' H T

(a) Deep-staggered Interleaving Scheme

codeword length = 4
interleaving depth = 9

QO E I 4 H 3 7 26 4 5 9
2 F OS5 I 4 8 317 B 6 A
3 G 2 6 ()5 948 C 7 B
D H 3 G 2 605 9 4 8 C
—_—

length of tape

(b) Data Format on tape

Figure 12
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FI
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AI
BI
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FI
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Deep-staggered Interleaving Scheme on a Tape with Four tracks

A B C

A B C D E F

A B C D E F G H I

A B ¢C D EF G H I J K L

A B C D EVF G H I J KL MTN O

A B C¢C D EVF G H I J KLMNOUP Q R

A B CDEVF G HTI J KTILMNG OZPOGQZRISTU
A B C D EVF G HIJ KUILMNOUPU QR S T U
1 2 3\D E F G H I J KL MN O P QU RS TU
1 2 3 4 5 6\¢ H I J K L M N O P QR S T U
1 2 3 4 5 6 7 8 9/J K L M N O P Q R S T U
1 2 3 4 5 6 7 8 9 M N O P QR S T U
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15| P R S T U
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18| S T U
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 10 20 21
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
A B C 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
A B C D E F T 8 9 10 11 12 13 14 15 16 17 18 19 20 21
A B C D E F G H I 10 11 12 13 14 15 16 17 18 19 20 21
A B C D E F & H I'J K I[' 13 14 15 16 17 18 19 20 21

16 17 18 19 20 21
19 20 21

(a) Deep-staggered Interleaving Scheme
codeword length = 8
interleaving depth = 21

T37TKOS2610NRD5913QU481216T3 7 1115
U48 L PT37110 5261014 R(D5 9 1317U 4 8 1216
@D59MQU4812PT3711155 261014 18(D5 9 13 17
26J NRQD59M QU4812 P T 371115 S 2 61014 18(1)

Q=
O~

length of tape

(b) Data Format on tape

Figure 13
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7. Conclusion

Berlekamp has introduced a new interleaving scheme called helical interleaving,
which can be applied to a single bursty channel. In this paper we generalize this
idea to n parallel channels. Apparently, this scheme is particularly applicable to

the bursty parallel tracks environment of magnetic tape.

In addition to the advantages mentioned in the previous sections, helical inter-
leaving also serves to interleave a codeword in different tracks as well as along the
length of tracks. The characters of each codeword in adjacent tracks are offset by at
least one position (k positions in the case of helical interleaving and k¢ positions in
the case of deep-staggered interleaving), and this can help to prevent intersymbol

interference of characters of the same codeword in adjacent tracks.
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CHAPTER V

HYBRID CODE

1. Introduction

Magnetic tape is today’s most popular means of computer data storage. In
order to increase data storage capacity and data delivery rate, data density on
the tape has to be made very high. This makes the magnetic tape environment
very vulnerable to different types of noises. The most common kinds of errors on
magnetic tape are random bit errors caused by electric noise, two-consecutive-bit
errors caused by a bit shift phenomenon, and long tracks of errors caused by defects

on magnetic media or variations in head-media separation due to dust particles.

Error correction coding has long been used in the magnetic tape environment
to guarantee reliable delivery of data. The IBM 3420 tape machine uses an error
correction scheme[2], which provides on-the-fly correction of two erased tracks out
of nine recorded tracks. The IBM 3850 Mass Storage System uses a (15,13) 1-error
correcting BCH code interleaved to depth 16 to correct up to two 16-byte sections
in each segment of 240 bytes of serial data[3]. Recently, the IBM 4850 Magnetic
Tape Subsystem introduced a tape cartridge with an 18-track data format that
uses a new coding scheme called adaptive cross-parity (AXP) code[4]. In the IBM
4850 system, the 18 tracks are divided into two interleaved sets of nine tracks. The
AXP code is convolutional in nature. By adaptive use of the checks in the two

interleaved sets, the new scheme corrects up to three erased tracks in any one set
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of nine tracks and up to four erased tracks in the two sets together. The code is
simple in hardware implementation, but it cannot correct all patterns of two track

errors and all patterns of four track erasures.

In this paper a new code called the hybrid code, which is specially designed
for the parallel track magnetic tape environment, is introduced. This code is a
hybrid of block and convolutional code. The choice of the block code is arbitary,
but the simple one-error correcting Reed-Solomon (RS) code or BCH code is more
preferable. The data are encoded along different directions ( except along the length
of the tracks ) with the chosen block code. The codewords of this block code are
grouped together by a convolutional structure that integrates the error correcting
capabilities of the codewords. By following a proper decoding algorithm, multiple
track errors can be corrected. This code preserves the advantage of simple hardware
implementation as in the AXP code, but it can correct more error patterns than

the AXP code.

The following discussion of the code is based on a specific example of a 17-track
tape. The data are encoded on the tape in two directions—diagonal (lower left
to upper right) and vertical. The block code used is a (15,13) 1l-error correcting
BCH code ( the same code used in the IBM 3850 Mass Storage System [2]). The
data format is shown in Figure 1. Tracks 15,16 are the parity tracks of the vertical
code, and tracks 0,1 are the parity tracks of the diagonal code. It is shown in later
sections that by following a simple decoding algorithm, this code can correct any

combination of :
1) two track errors or less,
2) one track error and two track erasures or less, or

3) four track erasures or less.
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The block code chosen in this hybrid code makes the code highly effective against

random bit errors and 2-consecutive bit errors, which are the most common kinds
of random errors in a magnetic tape environment. The code is also very efficient in

preventing miscorrection.

We discuss the block code in this hybrid code (the (15,13) BCH code) in great
detail in Section 2. We describe the encoding process in Section 3 and the decoding

process in Section 4. Last of all, we give the conclusion and generalization in Section

5.
ri in n 17-track

diagonal

- parity tracks

/]
data
tracks

N
i-1 1 i+1 e e e i+é . . . i+10 P i+l6

vertical

parity tracks

Figure 1
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2. The Block Code

As shown in Figure 1, there are 17 parallel tracks recorded along the length
of the tape. The data are encoded in diagonal and vertical directions. The block
code used is the (15,13) 1-error correcting BCH code over GF(2%)[2]. This code
is a mazimum distance separable (MDS) code. Each character is 8 bits wide. It
was shown in [2] that the code is very simple in hardware implementation. It
was also shown in [2] that the code can correct one error or two erasures, and
it can prevent miscorrection of two 1-bit errors in the same codeword. However,
in [2] the choice of a primitive polynomial for generating elements in GF (28) is
arbitary. We found that with the proper choice of a primitive polynomial, the code
can prevent miscorrections of one 1-bit error and one 2-consecutive-bit error in the
same codeword, and can also prevent miscorrection of two 2-consecutive-bit errors

in the same codeword. The above assertion is proved by the following theorem :

Theorem 5.1:
Let A be a primitive element of GF(2%). Let a = A € GF(2%).

a) The code can prevent miscorrection of two 2-consecutive-bit errors in the same

codeword for any choice of primitive polynomial.

b) If the primitive polynomial is chosen such that 1 + A = )\ and z € A = {8, 9,
10, 25, 26, 27, 42, 43, 44, 59, 60, 61, 79, 80, 81, 93, 94, 95, 110, 111, 112, 127,
128, 129, 144, 145, 146, 161, 162, 163, 178, 179, 180, 195, 196, 197, 212, 213,
214, 229, 230, 231, 246, 247, 248 }, then the code can prevent miscorrection of

one 1-bit error and one 2-consecutive-bit error in the same codeword.
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The proof of the above theorem is given in the appendix. From the above
theorem we found that the primitive polynomial used in the 3850 system|2] is not a
“good” polynomial (z = 96). If the polynomial 1+ z + 23 + z° + 28 is used (z = 25),
additional error correcting capabilities depicted in theorem 5.1 can be obtained. Let
us denote the decoder error probability by Pg(u), where u is the weight of the error
pattern. In general, even if the error pattern is completely random the Pg(u) of the
(15,13) BCH code over GF(2?) does not exceed 0.06 as shown in [5]. The decoder
error probability Pg(u)’s of the (15,13) BCH code over GF(2™) are tabulated in

Figure 2.

Another obvious fact about the (15, 13) BCH code, which is essential in later

discussion, is given in the following theorem :
Theorem 5.2:

The (15,13) BCH code does not miscorrect any combination of one error character

and one erasure character in a codeword.

Proof:

Let 7=(ro,71,...,714) be the received pattern. Suppose that an error character e
occurs at position z (unknown) and an erasure character e' occurs at position y

(known), z # y. We have the following syndrome equations:
So=ro+r1+...4+ 14

(1) et

14
Slzro+aT1+...+a T14

(2) = o + oVe’.
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Since the code is 1-error-correcting, it assumes only the existence of an erasure
character at position y. If miscorrection does occur, the sydromes S; and S; must

satisfy the equation:

(3) aySo = Sl.

But if we substitute the expressions S, and S; of Equations (1) and (2) into (3),
we get £ = y. This contradicts.the fact that the error character e and the erasure

character €' are in different positions. m
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3. Encoding Process

The data are encoded in two directions—diagonal and vertical—as shown in
Figure 1. Tracks O and 1 are parity tracks for the diagonal code and tracks 15 and
16 are parity tracks for the vertical code. Let C;(m) be a byte on the 7th column and
on the mth track. At the beginning of each encoding process, zeros are appended to
the first 14 columns in a manner as shown in Figure 4a. Similarly, at the end of each
encoding process, zeros are appended to the last 14 columns as shown in Figure 4b.
The introduction of these redundant bytes serves to indicate the beginning and the

end of a data block, and this facilitates the encoding and decoding processes.

The block diagram of the encoding process is depicted as shown in Figure 3.
Encoders A and B are block encoders for the (15,13) BCH code as described in [2].
The data are first encoded by encoder A, and are then fed into the buffer. The buffer
introduces variable delays on different tracks so that characters of each codeword
can be written diagonally across the tape ( diagonal encoding ) as shown in Figure
1. Encoder B carries out vertical encoding, and the parity bytes are written on

tracks 15 and 16.

Encoder A produces diagonal codeword C*=(Cy;14(0), Cit13(1),...,C;(14)) in

diagonal encoding such that

(4) Cis14(0) + Cigrs(1) + .. + C;(14) = 0

(5) Cit14(0) + aCiyya(1) + ...aCi(14) = 0,

where « is a primitive element of a subfield GF(2*) of GF(2%).
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Similarly encoder B produces the vertical codeword C*=(C;(16), C;(15),...Ci(2))

in vertical encoding such that

(6) C,'(IG) + C.'(15) + ...+ C,~(2) =0

(1) Ci(16) + aCi(15) + ...a™C;(2) =0,

where « is a primitive element of a subfield GF(2*) of GF(28).

Schematic Diagram for Hybrid Code Encoder

parity bytes from encoder A

? T4 delays 4 0
2 13 delays é
8 — 3
Encodern .
A Encoden
" Buffer . B
14

14— 0 delays
—15
16

parity bytes from encoder B

Figure 3
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Form n ! /

O's

i-2 i . e . 145 ., . . i+9 ... 1415

(a) Beginning of a Data Block

i-1 1 441 [N i+6 . . . 1410 “ e . 1416

(b) End of a Data Blocks

Figure 4
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4. Decoding Process

When data are read out from the tape, the read data are checked for errors
by means of the coding Equations (4) and (5) and Equations (6) and (7). Let the
received character be denoted by é,-(m) = C;(m) + E;(m), where E;(m) is an 8-bit
error byte or erasure byte on the sth column and on the mth track of the tape. Let
a be a primitive element of GF(2*), where GF(2?) is a subfield of GF(2%). There

are two types of syndromes.

a) Diagonal syndromes :

(8) 58 = Cit14(0) + Citrs(1) + ... + Ci(14)
(9) S8 = Ci14(0) + aCiyra(1) + ... + o' Ci(14)

b) Vertical syndromes :

(10) 52 = Ci(16) + Ci(15) + ... + Ci(2)
(11) 87, = Ci(16) + aCi(15) + ... + &M Ci(2)

By comparing (8),(9) with (4), (5) we get

(12) 580 = Eix14(0) + Eipas(1) + ... + Fi(14)

(13) Sﬁl = Eiy14(0) + aEiy13(1) + ... + o™ E;(14)

Also by comparing (10),(11) with (6), (7) we get
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(14) S¥y = E:(16) + E;(15) + ... + Ei(2)

(15) 871 = E;(16) + aE;(15) + ... + o™ E;(2).

The decoding algorithm is a set of rules that integrates the error-correcting
capabilities of the diagonal and vertical codes, which are both 1-error correcting
codes, to form a two-dimensional code that can correct multi-track errors and/or
erasures along the length of the tape. The decoding proceeds column by column,
with the assumption that all data bytes in previous columns are correctly decoded.
In some cases parity bytes along tracks 0,1,16 and 17 are left uncorrected. It
is shown later in this section that under normal circumstances (the number of
erroneous tracks does not exceed the code’s capability), these uncorrected parity

bytes would not affect the code’s error-correcting capability on the data tracks.

Suppose that the decoder starts to decode column 7 on the tape. The decoder
first examines (in a specific order) the 15 diagonal syndrome pairs associated with
the 15 diagonal received patterns, each of which shares a character with the vertical
received pattern in column :. When a nonzero diagonal syndrome pair is detected,
diagonal decoding corrects the first error or the first two erasures in that column. In
the case of erasure decoding (during diagonal decoding), erasures in later columns
are sometimes decoded. The detailed diagonal decoding process is described later
in this section. After diagonal decoding, the decoder switches to vertical decoding,
during which the decoder clears up the remaining error or erasures in that column.
This switching from diagonal decoding to vertical decoding takes place when one of

the following conditions is met:

1) A received pattern with a single error is detected and corrected in diagonal

decoding.
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2) A received pattern with two erasures is detected and corrected in diagonal

decoding.

3) A received pattern with uncorrectable error(s) and/or erasure(s) is detected in

diagonal decoding.

If none of the above conditions is satisfied during diagonal decoding of the 15
diagonal received patterns associated with column 7, the decoder will skip vertical
decoding of column ¢ and proceed to decode the next column. Another important
point about this hybrid code is that each error/erasure decoding by the block code is
followed by syndrome updating. The decoding algorithm is not a rigid set of rules.
Some minor variations are allowed, depending on the tradeoff between decoding

complexity and error-correcting capability.

As in the AXP code, error forecasting strategy[6] may be employed. Once an
internal or external track-error pointer is generated, it may be kept on for the entire
remaining length of the record. Similarly, any track-error pointer may be turned
off at an appropriate byte position in a record, if the error patterns corresponding
to the indicated track turn out to be zero consistently for a significant length of the

record—thus confirming that the track is error-free.

The following is a detailed discussion on a simple decoding algorithm that can
correct the following error/erasure configurations :
1) two track errors or less,
2) four track erasures or less, or
2

3) one track error and two track erasures or less.

Note that in each block decoding (diagonal or vertical) of the (15,13) BCH

code, the decoder encounters one of three possible states :
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a) no erasure state,
b) one erasure state, and _
¢) two erasures state.

Assuming that the ith column is being decoded. The decoder is first informed
by an external indicator on the current erasure track distribution. The diagonal
syndromes S, and S¢, are evaluated as in Equations (8) and (9). The diagonal
syndrome pairs (S 140558 141)> (S 150> St 13,1) - are then examined in this order
until a nonzero pair is detected. With the information supplied by the external
indicator, the decoder proceeds to decode—diagonal then vertical—according to the
decoding algorithm as shown in the flow chart in Figure 5. The decoding algorithm

is simple but it can correct error configurations (1), (2) and (3) mentioned above.

a) Two unknown error tracks or less

The decoder corrects the error(s) in column ¢ only. We have three different

cases to consider.

i. Tracks 0,1 are not both error tracks and tracks 15,16 are not both error

tracks.

The error configuration is shown in Figure 6. Assume that track j and track
k are error tracks, j < k. The presence of the first error byte F;(7) in column
¢ is indicated by the nonzero diagonal syndrome pair (S 410, 5% 144;1)-
The decoder first checks to see if the first error is on column ¢ by the following

equation:

d _ jod
(16) Si~l4+j,1 = Si~14+j,0'
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If (11) is satisfied, the decoder corrects the error by the following equations:

(17) Ei(5) = Sid—14+j,o
(18) Ci(7) = C:(5) + E:(5).

The syndromes S%,,, ., and Sid—14+j,1 are updated as follows:

(19) Sz'd— 14450 = Sid—14+j,0 + E; (])

(20) Sid——14+j,1 = Sid—14+j,1 + ' E; (7)-

The decoder then switches to vertical decoding. The vertical syndromes S, 581
are evaluated as in Equations (10) and (11). The location of the second error E; (k)

— the index k£ — is found by the following equation (k is unknown):

(21) St = oS,

1

This involves at most 15 shift-and-compare operations|2|. The error is then cor-

rected as follows:

(22) Ei(k) = Si?o

A

(23) | Ci(k) = Ci(k) + Ei(k).

The diagonal syndromes Sz'd—14+k,0 and S,-d_14+k’1 are updated by the following equa-

tions:

(24) S:'d—14+k,0 = Sid—14+k,0 + (k)

(25) Sid~14+k,1 = Sid—l4+k,1 + akEz-(k)
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ii. Track 0 and track 1 are error tracks

The error configuration is shown in Figure 7. During &iagonal decod-
ing of column ¢, the decoder first detects the nonzero syndrome pair
(51405 S 141)- Tt then finds that Equation (16) is not satisfied (Siy41 #
S 140). The decoder marks the character in the diagonal codeword (cor-
responding to the syndromes S{,,, and SZ, ) in column 7 as an erasure

before it switches to vertical decoding.
iii. Track 16 and track 17 are error tracks

The error configuration is shown in Figure 8. The decoder first detects that
all 15 diagonal syndrome pairs are zeros. The decoder then skips vertical

decoding and moves to decode the next column.

b) Four erasure tracks or less

The error configuration is shown in Figure 9. The diagonal decoding involves
the corrections of single erasures in a number of diagonal codewords (era-
sures are not required to be in column ¢), and the correction of dou'ble era-
sures in a diagonal codeword (one of the erasures Is required to be in col-
umn z). Without lost of generality, assume that the erasures are on tracks
J, k, 1 and m, where j < k < Il < m. The presence of first erasure E(7)
is indicated by the nonzero syndrome pair (Sid—14+j,0>Sid—14+j,1) and the exter-
nal erasure indicator. The decoder first checks the decodability of the diag-
onal codeword containing this erasure by Equation (16) in Part (a). That
is, the decoder checks to see if the right-hand-side and the left-hand-side of
Equation (16) are equal. Notice that in this case S 4500 S{ 1441 and J

(erasure location given by external erasure indicator) are known quantities.
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If Equation (16) is satisfied the decoder proceeds to correct E;(7) by Equa-
tions (17) and (18), and the syndromes S “144j0 and S ..., are updated
as in Equations (19) and (20) of Part (a). The decoder continues to correct
erasures Eiy1(5), Eir2(5), . Eiye—j-1(7) and updates the diagonal syndrome
pairs (Sid—13+j,0’Sid—13+j,1)’ (Sid—12+j,0’Szd—12+j,1)7'°'7(Sia-l—15+k,0’si{15+k,1) in a simi-
lar manner as above. It then encounters a diagonal received pattern with two
erasures—E;;;;(7) and E;(k). The decoder first checks to see if one of the
erasures is on column ¢ (with information supplied by the external erasurer in-
dicator). If the check is positive, the decoder corrects erasures Eitv-;(7) and

E;(k) by the following equations:

= [1+ o* 77157 “144k0 T OO s L 14tk )

The diagonal syndromes are then updated as in the following equations:

(28) S tarno = S 14+k0 + Eivk—3(7) + Ei(k)
(29) St rarkn = S g + & By )+ o Ei(k).
The decoder then switches to vertical decoding. The remaining two erasure

bytes (E;(l) and E;(m)) on column 7 are then corrected. The diagonal syndromes

affected by E;(!) and E,-(m) are updated as follows:

(30) Sid—M-H,O = Sid—14+z,o + E; (1)
(31) Sd 14+11“Sd 14+11+aE(l)
(32) Sd 14+m,0 — S “144mo T E; (m)

(33) Sd 14+m,1 Szd l4t4m,1 T amE,-(m).
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c) One error track and two erasure tracks or less

We have five cases to consider: -

i.

ii.

ii.

One error track and one erasure track in diagonal parity tracks

The error configuration is shown in Figure 10. Let an error track be on
track 7, 2 < 7 < 16, in addition to the two erroneous tracks in the diagonal
parity tracks. During diagonal decoding of column 7, the decoder finds that
(S,.d_u’o, Sid—14,1) is a nonzero syndrome pair, but the diagonal codeword asso-
ciated with this syndrome pair is uncorrectable. The decoder then switches
to vertical decoding to correct the remaining erasure E; (7) in column 7. The
diagonal syndromes affected by E;(7) are then updated and the decoder pro-

ceeds to decode the next column.

An error track and an erasure track in the vertical parity tracks

The error configuration is shown in Figure 11. As in Part (i) we assume the
existence of an erasure track along track j in addition to an error track and
an erasure track in the vertical parity tracks. During diagonal decoding, the
decoder first corrects erasures E;(5), Ei11(y), .. -, FEi114-;(7) as in Equations
(23) and (24) in Part (b). The syndromes that are affected by these erasures
are then updated as in Equations (25) and (26). Since no unknown error,
uncorrectable error or double erasures are detected in the process of diagonal
decoding, the decoder skips vertical decoding and proceeds to decode the

next column.

An error track between two erasure tracks (other than case i. and ii.)

The error configuration is shown in Figure 12. During diagonal decoding

the decoder corrects erasures E;(7), Eir1(5), -, Fiyr_;-1(7) as in Equations
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(16), (17) and (18) in Part (a). The syndromes affected by these erasures
are updated as in Equations (19) and (20). The decoder then proceeds to
examine the diagonal syndromes S2 ,, +ko and SE ., k1 an::'l it would find
that the received pattern associated with the syndromes is uncorrectable
(Theorem 5.2). The decoder thus detects the presence of error byte in
Cy(k) and marks Ci(k) as an erasure character. It then switches to vertical

decoding and corrects erasures E;(k) and E;(I). The diagonal syndromes

affected by E;(k) and E;(l) are then updated.

One error track above two erasure tracks (other than case i. and ii.)

The error configuration is shown in Figure 13. During diagonal decoding the
decoder corrects the first error E;(j) and updates the diagonal syndfomes
affected by E;(7) as in case (a). The decoder then switches to vertical decod-
ing to correct erasures E;(k) and E;(l) and updates the diagonal syndromes

affected by E;(k) and E;(l).

An error track below two erasure tracks (other than case i. and ii.)

The error configuration is shown in Figure 14. As in case (b), during diago-
nal decoding the decoder first corrects erasures E;(3), ..., E;r—;-1(7) along
track 7 and updates the affected syndromes. The decoder proceeds to cor-
rect the diagonal received pattern with two erasures E;(k) and Eiivv—(7).
The syndromes affected by F;(k) and E;,;_;(j) are then updated. The
decoder then switches to vertical decoding to correct the error E;(l) and

updates the diagonal syndromes affected by E;(!).

If no uncorrectable error is detected after vertical decoding, then the decoder

updates the 14 pairs of syndromes as follows :

(34)

(35)

d - od
Si—14+j,0 - Si—13+j,0

d __ cod
Si—l4+j,l - Si—13+j,1
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for 0 < 5y < 13. ¢ is then incremented by one. If the End-of-File is not detected,
then the decoding proceeds for the next column. If the uncorrectable error is de-
tected in vertical decoding, then the decoding process stops. The above algorithm
requires only two syndrome calculations (one in vertical decoding and one in di-
agonal decoding), and requires on the average at most two single-error corrections
( for a simple one-error correcting code ) in each column decoding. The number
of calculations involved in hybrid code decoding is much less than the number of

calculations in the case of using a double error correcting code in each column.

In some cases, errors on the parity tracks may not be recovered. This is because
each character of the four parity tracks is included only in one single-error correcting
code, whereas each character of the data tracks is protected by two block codes—
the vertical code and the diagonal code. Thus, the information region of the tape
receives more protection than the parity region. A more detailed study of the hybrid
code shows that this code can correct some error patterns (in the information region)
that cannot be corrected by a simple 2-error correcting code. In other words, this
code enhances the error-correcting power in the information region at the expense

of the error-correcting power in the parity region.
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5. Conclusion and Generalization

In this paper a new code, which is a hybrid of the block code and the convolution
code, is presented. This hybrid code is particularly designed for error correction
in a parallel track magnetic tape environment, in which the common types of er-
rors are long tracks of errors and erasures, together with random bit errors and
2-consecutive-bit errors. This code integrates the error-correcting capabilities of
simple block codes in different directions by a convolutional structure. This pro-
vides the required error correcting capability without a corresponding increase in
redundancy or complexity. The use of (15,13) BCH code as a block code makes the

code very efficient in preventing miscorrection.

The data format of this code is not confined just to the one shown in Figure 1.
Instead of orienting the block codes in a vertical direction (with slope = oo) and
a diagonal direction (with slope = 1) as shown in Figure 1, the two block codes
can both be in diagonal directions with slopes 1 and -1. In this case, the geometric
configuration of the code offers protection against intersymbol interference between
tracks. The concept of integrating the error-correcting capability of simple block
codes in directions by a convolutional structure can be easily generalized to multi-

error correction schemes.
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CHAPTER VI

A NEW LABELLING PROCEDURE
FOR TRELLIS CODES

1. Introduction

We start with the following definition:

Definition 6.1:

An (n, k,m) trellis code on a c-connected state diagram is a code with the following

properties:
a) The code has rate £.
b) Its operation can be represented by a state diagram with 2™ states.

c¢) There are 2° (¢ < m) branches going into each state, and 2° branches going out

of each state.

d) Each branch of the state diagram is associated with a code (codeword length =

n and code size = 2¥7°), and any two different codes associated with different

branches are disjoint.

It was shown in [7] that an (n,k,m) trellis code [6] on a m-connected state
diagram (completely connected) requires at least 2™+ labels. Also, a simple method
to define such labels has been suggested in [7]. In this memo a new method to define

the labels using shift registers is presented. This new method is particularly suitable
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for simple hardware implementation since it simplifies the encoder structure. This
method can also be applied to the labelling of a state diagram that is not completely

connected to obtain a trellis code with larger free distance.

2.  Preliminary

We first review some important results in the theory of convolutional codes.

These results would be referred to in the proofs in later sections.

A typical encoder of a (ny, c, m) convolutional code consists of a linear sequential
circuit (with ¢ shift registers) that accepts ¢ input bits and outputs n; bits. It is

well known that the operation of the encoder can be represented by :

1) a state diagram with 2™ states and 2° branches going into each state and 2¢

branches going out of each state, or

2) ac¢xny transfer function matrix (denoted by G(D)) such that the entries of the

matrix are polynomials in D, representing the generator sequences of the code.

In order to avoid catastrophic error propagation, the transfer function matrix
must satisfy Massey and Sain’s condition [8] (a necessary and sufficient condition)

on non-catastrophic codes:

(1) GCD|A{(D), i= 1,2,...(’}‘:)] = D'

for some [ > 0. A;(D),7=1,2,..., (";), are the determinants of the ("C‘) distinct

¢ X ¢ submatrices of the transfer function matrix G(D).
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3.  Generation of Labels by Shift Register

Trellis code encoders have structural properties very similar to those of convo-
lutional encoders, and the operation can be described by a state diagram. In the
case of a convolutional code, each branch of the state diagram is labelled by an
ni-bit output sequence, whereas in the case of a trellis code each branch is labelled
by a code, not necessarily linear. Any two different codes associated with different
branches must be disjoint. Because of the similarities between the convolutional
code and the trellis code, we would expect that much of the theory on structural

properties of convolutional codes would be applicable to trellis codes.

In order to guarantee a noncatastrophic trellis code with good distance prop-
erties, the labelling of the branches of the state diagram must satisfy the following

conditions[6][7]:

1) different labels out of each state,

2) different labels into each state, and

3) no paths with identical labels that remain unmerged indefinitely.

Now we want to suggest a method to define the labels of the state diagram
of a trellis code by using the linear sequential circuit (with shift registers) of a

noncatastrophic (ny,c,m) convolutional code. Let the ¢ shift registers have lengths

li,ly,..0; and I} + 1,... + I, = m. The pth row of the corresponding ¢ X n; transfer
function matrix thus consists of polynomials in D of degree no greater than [, for
1 < p < c. The state diagram of the convolutional code consists of 2™ states
(each state is defined by the shift register content); also, there are 2¢ branches
going into each state and 2¢ branches going out of each state. Each branch in the

state diagram is assigned an n;-bit sequence by, by, ...bn, —1, which consists of the n;
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output bits of the shift registers. Let’s assign to the branches of the state diagram,
which are associated with the n;-bit sequence bg, by, ...b,,_1, the label 7 such that
t=by+2by+...4+2"1b, _;. Each of these labels represents one of the disjoint codes.
There are 2™ of them. We use this modified state diagram of the convolutional code

as the state diagram of an (n,k,m) trellis code on a c-connected state diagram.

Now we are in a position to show the way to construct a shift register circuit
that generates the state diagram of a trellis code that satisfies conditions (1), (2)
and (3). It is not hard to see that condition (1) is satisfied, if for a fixed shift register
content, different inputs to the shift registers produce different outputs. This can
be achieved if there exists at least one ¢ x ¢ submatrix Q;(D) of the transfer function
matrix G(D), 1 = 1,2, ("c‘), such that the term “1” appears exactly once in each
row and in each column of (;(D). Similarly, condition (2) is satisfied if, for a
fixed input, different shift register contents produce different outputs. This can be
achieved if there exists at least one ¢ X ¢ submatrix Q;(D), 7 = 1,2, ('zc‘), such
that the term D% representing the last shift register stage of the pth shift register

appears exactly once in row p for 1 < p < ¢, and each of these D't, D2 ... D' terms

appears in different columns of (;(D).

The following theorem will show that if the (ni,c,m) convolutional code that
generates the state diagram of the trellis code is noncatastrophic, then the state
diagram also satisfies condition (3). Thus, we require that the ¢xn, transfer function
matrix G(D) of the convolutional code must satisfy Massey and Sain’s condition [8]
on noncatastrophic convolutional codes. An example of the construction of a trellis
code state diagram that satisfies condition (1), (2), and (3) is given in Figure 1 and

Figure 2.
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Theorem 6.1:

If the (ny,¢,m) convolutional code that generates the state diagram of the trellis
code is noncatastrophic, then the state diagram of the corresponding trellis code

satisfies condition (3).

Proof:

Suppose that condition (3) is not satisfied. Then there exist two paths p and ¢
with identical labels that remain unmerged indefinitely in the trellis diagram as
shown in Figure 3. Let ly,l3,...,l, be the lengths of the ¢ shift registers of the
(n1,¢,m) convolutional encoder that gives rise to the state diagram of the trellis
code. Let L = max;<;<.{l;}. Let p; and ¢; represent the shift register states (at
time 7) along paths p and g, respectively, as shown in Figure 3. Let a;/A; denote
the transition from state p; to state p;,; along p, where q; is a block of ¢ input bits
to the convolutional encoder and A; is the corresponding block of n; output bits.
Similarly, b;/ B; denotes the transition from state g; to state ¢;11 along ¢, where b; is
a block of ¢ input bits to the encoder and B; is the corresponding block of n; output
bits. Notice that A; and B; represent the labels associated with the branches of the
state diagram of the trellis code. Since by assumption the branch labels along p and
g are identical, the corresponding convolutional encoder outputs A; along p and B;
along ¢ must be the same. Again, by assumption, paths p and ¢ remain unmerged
indefinitely, p; and ¢; must be different for all 7. Since shift register content is made
up of input bits from previous times, it requires that for every L transitions along
p and g, there exists at least one a; that is different from its counterpart b;. If p
is the correct path, a finite number of channel errors that divert the decoding to
path ¢ will cause at least one decoder bit error in every L transitions, even when
no error is present in the channel bit stream thereafter. This implies that a finite
number of channel errors can cause an infinite number of decoding errors and that
the (ny, ¢, m) convolutional code is catastrophic. This contradicts our hypothesis.
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Two Disjoint Paths in the Trellis Diagram

i i+1

4. Properties

Based on the above labelling procedure by shift register, which is a linear se-
quential circuit, the trellis code possesses a mathematical structure that facilitates
encoding/decoding and simplifies hardware implementation. Also, this labelling
procedure is applicable to the construction of trellis codes with incompletely con-
nected state diagrams to obtain larger free distance. Figure 4 and Figure 5 are

simulation results of some trellis codes with incompletely connected state diagrams.
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Definition 6.2:

Let N be the number of states of a trellis code. A labelling matrix L is defined to

be an N x N matrix, where L(¢, j) denotes the label from state 7 to state 7.

Let @ = (u1,us,...,u,) represents the ¢ input bits to the convolutional encoder.
Let D = (Dy, Dy,...,D,) represents the ¢ last shift register stages of the convolu-
tional encoder. That is, D, represents the term D' in row pfor 1 < p < e¢. With the
following theorems, we would like to reveal some properties of trellis codes which

use the new labelling procedure.

Theorem 6.2:

For a completely connected graph with 2™ states, we need at least 2™*! labels. For
an incomplete graph with 2° branches going into each state and 2¢ branches going

out of each state, ¢ < m, we need at least 2°*! labels.
Proof:

We give the proof for the case of the incomplete graph and the proof for the complete
graph will follow by setting ¢ = m. Suppose that 2°¢ labels suffice. The transfer
function matrix M of the convolution code that generates the state diagram of the
trellis code is then a ¢ X ¢ matrix. By condition (1), since different labels are coming

out of each state, the ¢ output bits can be written as
aA +d,

where A is a ¢ X ¢ nonsingular matrix and d is a constant binary c-tuple which
depends upon the shift register contents of the encoder. Thus, |A| = «, where « is

a nonzero integer. Thus, we have the term « in the expression of IM|. Similarly by
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condition (2), since different labels are going into each state, the ¢ output bits can
be written as

DB + e,
where B is a ¢ X ¢ nonsingular matrix and € is a constant binary c-tuple, depending
upon the input bits and the shift register contents other than Dy,...,D,. Again,
|B| = f for some nonzero integer 8 . We therefore have B D™ = Dht+h terms in
the expression of [M|. Thus, [M| = 8D™+...+a and |M] is not of the form D' for
some [ > 0. This violates Massey and Sain’s condition on the noncatastrophic code.
Thus, the convolutional code is catastrophic. By theorem 6.1 the state diagram
generated by this convolutional encoder is catastrophic and thus we need at least
¢ + 1 output bits for the convolutional encoder. This implies that we need at least

2°"1 labels in the state diagram. ]

In fact, ¢ + 1 output bits are sufficient to guarantee noncatastrophe of the
convolutional code. In Section 4 we give several examples on the construction of
convolution encoders with ¢ input bits and ¢ + 1 output bits. It can be shown that
the state diagrams of the trellis codes generated by these convolutional encoders

also satisfy conditions (1), (2), and (3).

Theorem 6.8:

All entries of a given row (or column) of a labelling matrix L are different.

Proof:

This is a direct consequence of conditions (1) and (2). ]
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Theorem 6.4:

Row ¢ and row j (column 7 and column j), 7 # j, of a labelling matrix L have either

the same set of labels or a completely different set of labels.

Proof:

The state of the convolutional encoder that generates the required state diagram
of the trellis code is defined as the shift register contents of the encoder. For an
(n1,¢,m) convolutional code, let the binary m-tuple [Dy, ..., D,,] denotes the state
that corresponds to the shift register stages D;,...,D,, of the encoder. Notice
that the encoder is constructed in such a way that for a fixed state [Dy,..., Dy,
different inputs to the shift registers produce different outputs (condition(1)). If
we fixed [Dy,...,Dp] = [0,...,0], the set of all possible binary n;-tuples (labels)
that represent the output bits of the encoder form a c-dimension subspace K of
an n;-dimension vector space over GF(2) (because the encoder is a linear sequen-
tial circuit). This set K is isomorphic to the row of the labelling matrix L that
corresponds to the state [0,...,0]. Now, if we fix [Dy,...,D,] # [0,...,0], then
it is not hard to see that the set of all possible output binary n;-tuples (output
bits of the encoder) is of the form K + €, where € is a binary n;-tuple (constant)
determined by [Dy,...,D,,]. If ¢ ¢ K, then K and K + € are disjoint (since K is a
c-dimension subspace in an n;-dimension vector space). If € € K, then K = K + &.
A similar argument holds for the case of K + &, and K + &,, where € and &, are
binary n;-tuples determined by different [Dy,...,D,]’s. That is, if & ¢ K + &,
then K + €, and K + é; are disjoint. If & € K + &, then K + & = K + &,. This
proves that any two rows of a labelling matrix L have either the same set of labels
or a completely different sets of labels. The proof for the case of the columns is

similar to the one above. =



—06—

5. Examples

This section gives some examples of constructing shift registers used for labelling

the state diagram (completely connected and incompletely connected).

Example 1: complete graph 4 states 8 labels

G(D) = (11) 11) (1)) ds = 2 branches

Example 2: complete graph 16 states 32 labels

1 0 1

D 0 0
G(D) = 0 ) 0 d; = 2 branches
0 D 0

o= o

Example 3: incomplete graph 16 states 4 input/output 8 labels

2
G(D) = (Dlz Ii é) d; =2 branches

2
G(D)z(ll—;zD lljD é) df =3 branches

Example 4: incomplete graph 64 states 4 input/output 8 labels
1+ D+ D? D? 1 B
G(D) = ( 5% L+ D+ D 0) d; =3 branches
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CHAPTER VII

ON TWO CLASSES OF CODES
FOR MAGNETIC RECORDING

1. Introduction

In a magnetic recording channel, a concatenation of an error-correcting code
and a DC free code, or a concatenation of an error-correcting code and a runlength
limited code is usually used. It would then be desirable to have a single code that
possesses the properties of error-correction and DC freeness at the same time, or a
code that possesses error-correcting and runlength limited properties at the same

time. In this chapter we present two classes of codes that achieve the above goals:
1) an error-correcting DC free charge-constrained trellis code, and
2) an error-correcting runlength limited trellis code.

The two classes of codes mentioned above are trellis codes in structure, and the
encoding and decoding operations can be described by means of state diagrams.
These codes allow soft-decision decoding and thus possess high error-correcting

capability.

We shall use the following definitions on these two classes of codes:

Definution 7.1:

An (m,s, %,l,c, ds) DC free error-correcting trellis code (binary) is a code with

the following properties:
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There are 2™ states in the state diagram of the encoder.

There are 2° branches going into each state, and 2° branches going out of

each state (s < m).

Each branch in the state diagram depicts a transition from one state to
another. Each transition represents an input of b information bits and an

output of n channel bits.
Maximum runlength of a symbol (0 or 1) is L.
Maximum accumulation charge is ¢.

Free distance is dy.

Definution 7.2:

An (m,s, %, d,k,d;) error-correcting runlength limited trellis code (binary) is a

code with the following properties:

a)

b)

There are 2™ states in the state diagram of the encoder.

There are 2° branches going into each state, and 2° branches coming out of

each state (s < m).

Each branch in the state diagram depicts a transition from one state to
another. Each transition represents an input of b information bits and an

output of n channel bits.
Minimum number of 0 between two 1’s is d.
Maximum number of 0 between two 1’s is k.

Free distance is dy.
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2.  Error-correcting DC Free Trellis Code

We now present a (4,2, £,4,2,6) error-correcting DC free code as follows:

Consider all binary 6-tuples with an equal number of 0’s and 1’s. There are
(g) = 20 of them. Divide them into 10 groups such that each group contains a word

and its complement. Label the groups from 0 to 9 as follows.

001110 0 100110 .
110001 011001
011100 1 01 1
{100011}1 {1 1 1}6
01011 . 11 1 .
110100 110 1
0 1 110 1 1 0 1
{1 1001}3 {11010}8
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It was shown in [9] that the state diagram of a trellis code can be generated by
a convolutional encoder. Let us consider the state diagram generated by the shift

register with a transfer function matrix
(1 +D D? 1)
D? 1+D 0)°

The state diagram has 16 states and 4 branches going into each state and 4 branches
going out of each state. Map group 7,0 < ¢ < 7, to the branches in the state diagram
labelled by bo, b1, b; (the output bits of the shift register) such that ¢ = by + 2b; + 4b,.
According to the theory of trellis codes|[6][7][9], we can construct a noncatastrophic
trellis code for which there are at least 3 branch differences for any two paths to
diverge from one state and remerge later. Now the distance between words in the
same group, denoted by d,, is 6 and the distance between words in a different group,
denoted by d, is 2. Thus, d; = min(dy,3d;) = 6. DC freeness is achieved because

of an equal number of 0’s and 1’s in each block of 6 output bits. The values of [

and ¢ can be easily justified from the above construction.

Now we want to give the encoding and decoding schemes. For each transition
from one state to another, we need two bits to decide the destination state and
one bit to specify which word to use in each group. We therefore have a g code.
Soft-decision decoding can bé done by using hard-quantized Viterbi decoder, which
computes the branch metrics by comparing 8 adversaries per state. Figure 1 and

Figure 2 are the bit error probability and symbol error probability of the code when

applied to an additive white Gaussian noise (AWGN) channel.
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Error-correcting RLL Trellis Code

3.

3,18,4) runlength limited trellis code as follows:

4
16°

We shall now present a (2, 2,

Consider all binary 16-tuples with weight 2 such that there are at least 3 0’s

between the two 1’s, and there are at least 3 zeros at the end of the word. There

are 45 words altogether. Choose 32 of them and put them into 8 groups as shown

below, and label each group by a number from 0 to 7.

o
o O o O
o O O O
OO OO
o O O O
o O O O
O O O O
o O O O
o O o O
S O O~
O O = O
o - O O
- o O O
S C O
QO —~= O
O = O O
- O O O

il
o o oo
o oo
o O O O
o O OO
S O OO
S O O O
O O C O
S OO
OO~ O
O - O O
- O O O
O O O C
S O O~
O O H O
O - OO
- O O O

N
o O O O
o O O O
o C OO
o O O o
o O OO
S OC O
o O O~
S C +H O
o~ O O
- O O O
o O oo
oo O O
S O O~
S O~ O
o = O O
- O O O

o O O o

S O OO

100 0 0 0O01O0O0O0TO0OTO
01 0000 O0OT1O0O0OO0OTO
1 0 0 O
1 0

0 01 000 0 O0@O
0 001 00 0 O0O00

00000]4
1 0 0 0 0

0 0 00 00

1000 00 0O01O0O0O0O0OTUO0T OO
01 00 0 0 O0O0OO0O 1
0 01 0 000 O0O0OO0O'1
6 001 000 0000

|
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1 00 00O0OO0OOOT1O0TU0TUO0OUO0OTGO0O0

01 000O0OO0OODOOT1O0O0OGO0OTGO0ODO :
0 01 00 00O0O0OO0ODO0OT1IO0O0O0O > -
0 0601 00O0OOO0OOOOT1O0TUG0O

0 00010001 O0O0O0O0O0OTQO0OTO
0000O01O0O0OO0OT1ITO0O0OO0OGUO0OGO0O 6
0 6000 O010O0O0OT1O0O0O0OTO0TO

0 000O0OOCOT11 0O0OO0OT1O0OO0OO0O

0 0001 0O0O0OO0OTI1IO0O0OO0OUO0OO OO
000 0O0O0O1O0O0O0OO0ODTI1O0TGCOO OO 7
0 000 0O010O0O0OOT1O0OGO0CO0O

0 00 00OO0OGCTI1I 00O0OOT1UO0TUO0OO

Now consider the state diagram generated by the shift register with the transfer

1 D1
D 1 o0/

We have a completely connected graph. There are 4 states in the graph and

function matrix

there are 4 branches going into each state and 4 branches going out of each state.
As in Part I map group 7, 0 < ¢ < 7, to the branches in the state diagram labelled
bo, b1,b: (output bits of the shift register) such that ¢ = by + 2b; + 4b,.

According to the theory of the trellis code[6][7][9], we now have a noncatas-
trophic trellis diagram for which there are at least 2 branch differences for any two
paths to diverge from one state and remerge later. In this case, dy is 4 and d; is 2.

Thus, d; = min(d;, 2d;) = 4. This code has a density ratio of DR:%(d +1) = 1.

In the encoding and decoding, we need 2 bits to decide the destination state
and 2 bits to specify which word to use in each group. We thus have a 1473 code,
This code can be decoded using soft-decision viterbi decoding as in the case of the

DC free error-correcting trellis code.
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4. Conclusion and Generalization

Although we give only two specific code constructions in the above discussion,
the main purpose of this chapter is to illustrate the idea of imposing DC free and
runlength limited properties in a trellis code structure to obtain an error-correcting
code with the desired properties (DC freeness and RLL) for magnetic recording.
This paper is just a preliminary stage of this aspect of research. This idea can be
easily modified, extended, and generalized to obtain other DC free error-correcting

codes and runlength limited error-correcting codes.
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APPENDIX A: A PROGRAM LISTING

Program MDS1; -

var

N,X,9,7,D,N1,U,J1,02,J33,J4,35,J6,J,0PTION,ALPHA,M :integer;
TOTAL,LGNU,LGDN,LGX,A :real;

function lchose(n,r :integer):real;

var

i,p :integer;

lchosel :real;

begin

if r=0 then lchosel := 0.0

else

begin

lchosel := 0.0;

p := r-1;

for i:=0 to p do

lchosel := lchosel+ln(n-i)-ln(r—i);
end; .

lchose := lchosel;

end { lchose };

function power(q,l:integer):real;
var

i :integer;

X :real;

begin

x :=1.0;

if 1<>0 then

for i := 1 to 1 do

X:=xX*q;

power := Xj;

end;

procedure procedl(var u,q,%k,n,j,t :integer; var a,lgx :real);
var

Inj,1x,1x1,sum :real;

i :integer;

begin
sum := 0.0;
1nj := (k+tu-n-j)*1n(q);

for i:=0 to t do

begin

1x := Inj+lchose(n,i)+i*1ln(g-1)+1gx;
if 1x<=-85.0 then 1x1 := 1.1E-38
else 1x1 := exp(lx);

sum := sum+lxl;
end;
a := sum;

end { procedl };

procedure proced2 (var u,q,n,j,t,d :integer; var a,lgx :real);
const ,
lcorl: Real
lcor2: Real
var
%x,k1,w,k2,i,s,m,p :integer;

b
o
o

100.0;
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sum, sum2, sum3,1x,1x1,1y,1yl,1z,1z1,1w,1wl, 1pw,1gxl
begin

if u <= 28 then 1lgxl:=lcorl

else 1gxl := lgx+lcor2;

sum := 0.0;

X := u-j;

k1 := d—x;

for w:=k1l to t do
begin

sum2 := 0.0;

k2 := w-kl;

for i:=0 tc k2 do
begin

sum3 := 0.0;

for s:=w to t do
begin

1x := lchose(u-j,s-w)+(s-w)*1ln(g-1)+1gxl;
if 1x>=-85.0 then

begin

1x1 := exp(lx);

sum3 := sum3+1x1;

end;

end;

if odd(i) then m := -1

else m :=1;

if (k2-i+1l) >= 5 then lpw := (k2-i+1)*1n(q)
else lpw := ln{(power(q,k2-i+1)-1);

ly := lchose(w,i)+lpw+ln(sum3);

if 1y >= -85.0 then

begin

1yl := exp(ly);

sum2 := sum2+lyl#*m;

end;

end;

lz := lchose(n-x,w)+iIn(sum2);
if u <= 28 then 1z := lz+lgx—-lcorl
else lz := lz-lcor2;

if 1z >= -85.0 then

begin

1z1 := exp(lz);

sum := sum+lzl;

end;

end;

for p:=0 to t do

begin

1w := lchose(x,p)+p*1ln(g-1)+1gx;
if 1w >= —-85.0 then

begin

1wl := exp(lw);

sum := sumt+lwl;

end;

end;

a := sum;

end;

:real;
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procedure proced3(var u,j,q :integer;
var

i :integer;

sum,1x,1x1 :real;

var a,lgx :rea});

begin

sum := 0.0;

for i:=0 to t do

begin

1x := lchose(u-j,i)+i*ln(qg-1)+1gx;
if 1x <= -85.0 then 1x1 := 1.1E-38
else 1x1 := exp(lx);

sum := sum+lxl;

end;

a:=sum;

end;

procedure proced4(var u,j,q :integer;var a,lgx :real);
var

1x,1x1,sum :real;

begin

1x := (u—j)*ln(q)+1lgx;

if 1x >= -85.0 then 1x1 :=
a := 1x1;

end;

begin

writeln ('what is
readln (n);
writeln ('what is
readln (k);
writeln ('what is
readln (q);
writeln ('what is
readln (t);
writeln ('want Du
readln (option);
writeln;

writeln;

writeln;

writeln (lst);
writeln (lst);
writeln (1lst);
writeln ('( ',n:3,',',k:3,"

exp(1x);

n?');
k?');
q?');
)y

or Pe ? Du =90 Pe

]

1');

writeln ('-———————o—_— "y,

writeln
writeln
writeln;
writeln;
writeln (lst);
writeln (1lst);

d := n-k+1;

nl := d-t;

for u:=nl to n do

begin

a := 0.0;

lgdn := lchose(n,u)+u*ln(g-1);
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jl := k+u-n-1;

j2 = jl+1; -
33 = j2+t-1;

J4 = §3+1;

j5 = u-t-1;

36 := j5+1;

total := 0.0;
for j:=0 to u do

lgnu := lchose(u,j)+lchose(n,u);

if option=0 then 1lgx := lgnu

else 1gx := lgnu—lgdn;

if (j>=0) and (j<=jl1) then procedl(u,q,k,n,j,t,a,1lgx);
if (j>=3j2) and (j<=j3) then proced2(u,q,n,j,t,d,a,lgx);
if (j>=j4) and (j<=3j5) then proced3(u,j,q,a,lgx);
if (j>=j6) and (j<=u) then proced4(u,j,q,a,lgx);
if odd(j) then alpha := -1

else alpha :=1;

total := total+a*alpha;

end;

if option=1 then

begin

writeln ('Pe(',u:4,')="',total);

writeln (1st,'Pe(',u:4,')="',total);

end

else

begin

writeln ('D(',u:4,')=',total);

writeln (lst,'D(',u:4,')="',total);

end;

end;

writeln;

writeln;

writeln (1st);

writeln (lst);

end.
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APPENDIX B: PROOF OF THEOREM 5.1

Let A be a primitive element of GF(28) such that A7 = ¢.

a) Let e;; and eg; be the two 2-consecutive-bit error. Let z and y denote the

location of e;; and ess, respectively. The syndrome expressions are

(A1) So = €11 + eg2

(AZ) Sl = a’en + a"en T 7& v .
The syndrome expressions for a single-byte error are

(A3) So=¢e

(A4) Sl = OLZC,

where e is the byte error and z is the location of this error.

A miscorrection of two 2-consecutive-bit errors implies that e = e;; + e32. We

therefore get the following equation.

(A5) a’(e11 + ez2) = a®eyy + a¥eyy
(A5) can be rewritten as

(A86). [ 4+ ¥ 7Y a® + oFlens = egs.

Now since o = A7, and by using the closure property of the subfield elements we

have

(AT) M™e = ey, for some m # 0 .
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However, e1; and ez, are 2-consecutive-bit errors. When they are expressed as
powers of A, their power indices would not differ from the other by more than 6.

So Equation (A7) gives a contradiction. n

b) Let e; be a 1-bit error and e;; be a 2-consecutive-bit error. e; and e;; can be
expressed as a power of A. Let e; be denoted by A*, where 0 < k < 7, and let
e11 be denoted by A, As in the proof of (a), if a miscorrection occurs, then e,

and e;; are related by the following equation :
(A8) A™me, = e;; for some m # 0 .

If the primitive polynomial is chosen such that the element 1 + A (11000000)
equals A%, then ! can be expressed as z + ¢, where 0 < 7 < 6. Substituting the

expressions of e; and e;; into (A8}, we get

(Ag) )\17m+k — /\z—H-
That is,
(A10) z=1Tm — 1+ k,

where m # 0,0 <7< 6,and 0 < k < 7. It is easy to see that if z € A, then

Equation (A10) gives a contradiction. =
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