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ABSTRACT 

This study addresses the problem of obtaining reliable velocities and displace­

ments from accelerograms, a concern which often arises in earthquake engineering. 

A closed-form acceleration expression with random parameters is developed to test 

any strong-motion accelerogram processing method. Integration of this analytical 

time history yields the exact velocities, displacements and Fourier spectra. Noise 

and truncation can also be added. A two-step testing procedure is proposed and 

the original Volume II routine is used as an illustration. The main sources of error 

are identified and discussed. Although these errors may be reduced, it is impossible 

to extract the true time histories from an analog or digital accelerogram because of 

the uncertain noise level and missing data. Based on these uncertainties, a prob­

abilistic approach is proposed as a new accelerogram processing method. A most 

probable record is presented as well as a reliability interval which reflects the level 

of error-uncertainty introduced by the recording and digitization process. The data 

is processed in the frequency domain, under assumptions governing either the initial 

value or the temporal mean of the time histories. This new processing approach 

is tested on synthetic records. It induces little error and the digitization noise is 

adequately bounded. Filtering is intended to be kept to a minimum and two op­

timal error-reduction methods are proposed. The "noise filters" reduce the noise 

level at each harmonic of the spectrum as a function of the signal-to-noise ratio. 

However, the correction at low frequencies is not sufficient to significantly reduce 

the drifts in the integrated time histories. The "spectral substitution method" uses 

optimization techniques to fit spectral models of near-field, far-field or structural 

motions to the amplitude spectrum of the measured data. The extremes of the 

spectrum of the recorded data where noise and error prevail are then partly altered, 

but not removed, and statistical criteria provide the choice of the appropriate cut­

off frequencies. This correction method has been applied to existing strong-motion 

far-field, near-field and structural data with promising results. Since this correction 

method maintains the whole frequency range of the record, it should prove to be 

very useful in studying the long-period dynamics of local geology and structures. 
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Chapter 1 

INTRODUCTION 

Strong-motion accelerograph records are an important source of data in earth­

quake engineering, be it for research or design. It is crucial that the information 

retrieved from these records be as faithful as possible to the actual motions occurring 

at the site during the seismic event. The transducer in a strong-motion accelero­

graph can usually be modelled as a single-degree-of-freedom oscillator which records 

the relative displacement, due to the acceleration at the site, between the transducer 

and the instrument housing. Typically these motions are recorded on an analog pho­

tographic film trace, which means that the data must be digitized and interpolated 

at equal time intervals before any processing can be done. This process gives rise 

to errors and it is desirable to correct for these. In recent years strong-motion ac­

celerographs with digital recorders have been developed. But as yet, there are far 

less digitally recorded earthquake data available compared to the extensive number 

of analog records. The nature of the problems involved with processing the two 

types of data are mathematically quite similar, arising from digitization noise and 

error in the baseline of the signals. The processing methodology proposed herein 

can be applied to both analog and digital accelerograph records. However, for ana­

log records the problems are more acute because of larger error levels. They should 

provide a better test for the validity of the proposed processing technique. Thus, 

the following discussion will emphasize analog earthquake records, although most 

of the theory presented applies equally well to data from digital accelerographs. 

Over the years, many signal processing methods have been proposed for analog 

earthquake records, the most popular one being the one developed by Trifunac 

& Lee at Caltech [1973]. The Volume II routine within this method performs 

all the processing in the time domain, integrates the acceleration data with the 
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trapezoidal rule, and uses the Ormsby filter as its main tool to correct for both high­

frequency and low-frequency errors. However, the original Volume II processing 

routine has been shown to have certain deficiencies, which have been corrected 

for in various ways. This has yielded many versions, such as those used by the 

California Division of Mines and Geology (CDMG) [Porter, 1982], and by the 

U.S. Geological Survey (USGS) [Converse et al., 1984]. Other processing methods 

have also been developed. The one proposed by Sunder & Connor [1982], which 

also corrects the signal in the time domain, uses the Schuessler-Ibler integration rule 

and an elliptic high-pass filter with an infinite impulse response and nonlinear phase 

distortion. Khemici & Chiang [1984] suggested a method which is very similar to 

the Volume II processing routine, except that all the operations are done in the 

frequency domain, thus replacing the equivalent convolution integral operation by 

a simple multiplication. However, since the original Volume II routine remains the 

one that has been the most widely used and studied, it is chosen in Ch. 2 as an 

example for applying a procedure for testing of earthquake accelerogram correction 

and integration methods. Also, a discussion of how the other methods, as well as 

the improvements made on the original Volume II routine, change the processed 

data is included at the end of the chapter. 

Up to now, most methods have been tested by either processing a given earth­

quake signal, such as El Centro 1940, or a digitized straight line [Trifunac et al., 

1973]. Neither of these is completely satisfactory since in the first case the actual 

velocity and displacement are not known accurately, and in the second case the pro­

cessing routine may behave differently when used for an earthquake signal, which 

has the appearance of a highly erratic time series. Some methods are even tested 

by comparing the obtained results with those of another processing routine, which 

may itself have some flaws [Khemici & Chiang, 1984]. It is the purpose of Ch. 2 to 

suggest a systematic and unbiased method to study processing-induced errors by 

proposing an analytical expression for the acceleration, which has the main charac­

teristics expected from an earthquake, and which can be integrated exactly to yield 

a closed-form expression for the velocity and displacement. The exact signals are 

then compared to those obtained through the earthquake processing methods to 

test their reliability in certain situations such as when noise is included to simulate 
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recording and digitization errors, or when the start of the record is truncated to 

model the trigger and start-up time of an analog accelerograph. Another effect 

that can be studied is the way the processing routine deals with cases where final 

displacements are expected, as along a fault or in a partially collapsed structure. It 

is shown that errors imparted by the processing techniques may in some ways be 

improved by careful inspection of their corresponding mathematical representation, 

for example, continuous filters which must be discretized to be used in computer 

codes. It is also shown that the errors found in the time histories are mostly due 

to digitization and processing noise and uncertainties in the acceleration baseline 

because of trigger cut-offs. These errors contaminate the whole spectrum of the 

signals, and not just the lower and upper frequencies. 

Because these errors are uncertain, it is impossible to retrieve the exact motions 

at the time of the event from the contaminated signal. So, regardless of the level of 

sophistication of the processing method, the corrected signal will still contain errors. 

Also, the degree of inaccuracy of the corrected data, especially the displacements 

which are obtained after double integration, and other data massaging methods, 

may not be well understood by users unfamiliar with the limitations of digital signal 

processing. In view of these arguments, a novel approach to accelerogram processing 

is presented inCh. 3, in which the integration is performed in the frequency domain 

without the use of any filters. The measured and recorded acceleration is treated 

as a signal contaminated with random noise and which has a random number of 

points removed. These random sources of error are modelled by probabilistic laws 

which can be incorporated into the integration scheme to produce the most probable 

acceleration, velocity and displacement. So that the user is aware of the margin 

of confidence with which these signals can be used, the corrected time histories, 

which are also the most probable ones, are presented with their respective standard 

deviations. Accounting for uncertainties in records of either ground or structural 

motions should prove to be particularly useful for future research. 

As is shown in the results presented inCh. 3, the range in which the unfiltered 

acceleration and velocity may depart from the most probable value is very small; 
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meaning that the time history presented as the best estimate is indeed a good rep­

resentation of the motion at the site. The unfiltered displacements, however, show 

a very large degree of uncertainty. This implies that the true displacement is very 

difficult to recover, as is well known, and that the proposed displacement record 

may not be an adequate representation of the actual motion, although mathemat­

ically it is the most probable on the basis of the information used. Hence, the 

processed displacement data turns out to be of little use for analysis of structures 

or for extraction of seismic information. In general, the expected value of the dis­

placements exhibits a parabolic drift due to low-frequency errors. The traditional 

method of dealing with this problem is to completely remove the low-frequency end 

of the signal, below some frequency cut-off value, through the use of filters. As 

demonstrated in Ch. 2, one of the inconveniencies of this approach lies in the fact 

that digital filters do not always remove frequency contributions properly within the 

rejection band, sometimes even increasing the amplitude at the cut-off. Two other 

frequently-voiced complaints against this approach are the arbitrary way the cut­

off frequency is chosen, and the possibility that important structural and seismic 

information is lost within the rejection band. 

Ch. 4 investigates two new approaches to error correction that reduces these 

three previously mentioned sources of error arising in a band-pass filtering approach. 

The first method is one that was initially suggested by Wiener [1950]. It uses 

a probabilistic approach and prior information on the true signal and the noise 

level, to produce the optimal noise filter for the measured signal. Although this 

method seems promising, and can be applied to the probabilistic description of 

the noisy signal given in Ch. 3, it assumes that the necessary prior information 

is known and available. Unfortunately, this is not often the case when processing 

earthquake records. Applying Wiener's mathematical derivation to compute a noise 

filter, based on the measured data and prior information about the noise level, 

results in a transfer function equal to unity (thus proving that the optimal way of 

removing noise from the accelerogram is not to use a filter at all!). However, some 

hybrid versions of the optimal noise filter Wiener originally intended are used on the 

synthetic records. It will be shown that these filters are effective on signals which 

have a low signal-to-noise ratio, but do not remove enough noise within the spectrum 
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of signals with large signal-to-noise ratios to make a significant improvement on the 

corrupted record. 

Traditional digital filtering methods (i.e., infinite and finite impulse response 

filters) and optimal methods (i.e., Wiener) treat the recorded and digitized accelero­

gram as it would any other signal. The second approach, studied in Ch. 4, uses 

the particular characteristics that make up the signature of an earthquake accelero­

gram to correct, but not completely remove, the noise-contaminated portions of the 

record. Using the Bayesian formulation applied to system identification techniques 

[Beck, 1989], a model for the seismic source or structural spectrum is fitted to the 

recorded data to obtain the model parameters. One of these parameters is the 

d.c. value of the velocity spectrum, which, if properly identified, can capture any 

possible final displacement offset. 

The general methodology and analytical derivation used to perform accelero­

gram processing, inferred by the spectral minimization of the source and structural 

parameters, is presented in detail in Sec. 4.3.1. The data are replaced by the best 

fit model in the upper and lower ranges of the spectrum, where the signal-to-noise 

ratio appears to be small. The probability density function of the error between 

the data and the model is used to define the proper cut-off frequencies at which the 

substitution occurs. Hence, this new approach to accelerogram processing offers the 

extra advantages of incorporating the whole spectral range of the corrected signal, 

as well as a systematic criterion for choosing the appropriate cut-off frequencies for 

correction. 

Within the last twenty years, substantial advances have been made in earth­

quake source modelling of body wave spectra. These waves provide the main con­

tribution to the signals recorded by the strong-motion accelerograph. There is still 

heated debate among seismologists about the proper seismic source spectrum, espe­

cially regarding the high-frequency decay for near-field and far-field records [Joyner 

& Boore, 1988]. However, most agree on the behavior of the displacement spec­

tra at low frequencies. A general review of the existing models is presented in 

Sec. 4.3.2; the first one of which was initially suggested by Brune [1970]. So that 

an appropriate model characterization is available for both free-field and structural 
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records, two different types of model spectrum are chosen for the identification of 

the parameters from the accelerogram. One is meant to be a general representation 

of strong ground motion, and the other models structural response. 

In Sees. 4.3.4 and 4.3.5 , the spectral substitution method is applied to ground 

motion and structural response records obtained during the 1979 Imperial Val­

ley earthquake. The records from the severely damaged Imperial County Services 

Building (ICSB), and the strong ground motion array which crosses the Imperial 

fault, prove to be a good test for the validity of both the proposed correction method 

and the spectral models used for the system identification. 

A case study is presented in Ch. 5. Trace 3 of the ICSB records obtained 

during the October 15, 1979 Imperial Valley earthquake is taken as an example 

of complete processing with this new probabilistic method. This particular record 

measured the northern component of motion at the west end of the roof of the 

ICSB. The results which are presented show the most probable value of the accel­

eration, velocity and displacement, with and without spectral corrections, as well 

as their respective levels of uncertainty, as described in Chs. 3 and 4. The results 

of the probabilistically processed record are then compared to those provided by 

CDMG in Volume II. 

Finally, a general analysis of the advantages and disadvantages of the new 

correction and integration method is presented in Ch. 6, as well as recommendations 

for future research to improve the present version of the processing method. 
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Chapter 2 

TESTING OF EARTHQUAKE ACCELEROGRAM PROCESSING 
AND INTEGRATION METHODS WITH SYNTHETIC RECORDS 

2.1 Errors in Data Processing of Analog Accelerograms 

When acceleration data recorded on a photographic film is to be analyzed, 

the first step that is performed is digitization of the signal. This leads to both 

high-frequency errors from digitizing a point not exactly at the center of the actual 

signal trace and from interpolation of the data at equally spaced time intervals, 

and low-frequency errors which occur when the baseline of the signal is shifted. 

These digitization errors have been extensively studied by Trifunac et al. [1973], 

Hudson [1979], Shakal & Ragsdale [1984], and others. The contribution from the 

high-frequency digitization noise decreases with integration, so that the velocity and 

the displacement data obtained by integrating the acceleration will not be affected 

much by this type of noise. However, velocities and especially displacements are 

sensitive to low-frequency errors in the acceleration. 

It has been shown that the noise spectrum of such errors can be modelled 

for accelerograms as a constant over a wide frequency range and corresponds to 

stationary white noise with standard deviation of the order of a thousandth of a g. 

When a strong-motion accelerograph is triggered, it not only records the earthquake 

signal but also a straight line which is used as a reference for the digitization, so 

that it can be assumed that the baseline of the digitized acceleration is only off by a 

constant amount. However, a constant mean error of only 0.001 gin the acceleration, 

after double integration over a 20 sec time span, leads to a parabolically increasing 

error of 198 em in the displacement, which is clearly unacceptable and makes it 

difficult to determine the final displacement that can be expected in certain cases. 
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For this reason, most processing methods focus mainly on ways to filter out longer­

period errors in the acceleration. How well these filters perform can be studied 

using the analytical earthquake formulation proposed in this chapter. 

The signal that is digitized is that of the relative displacement, x(t), of the 

transducer with respect to the instrument housing, but which is calibrated as an ac­

celeration. The accelerometer can usually be modelled as a single-degree-of-freedom 

oscillator, whose characteristic frequency and damping are found from calibration 

tests. The absolute ground acceleration, a(t), can be obtained from the application 

of the equation of motion of the transducer: 

x(t) + 2~wox(t) + w~x(t) = -a(t) ' (2.1.1) 

where the relative velocity, x( t), and relative acceleration, x( t), could be found by 

numerical differentiation of x(t). Also, since the accelerometer only gives reliable 

records up to frequencies of the order of the natural frequency, the data must be 

low-pass filtered; typically for the standard analog strong-motion instrument in the 

U.S., the cut-off frequency is chosen near 25Hz. The above process is called instru­

ment or transducer correction. Because this step of the earthquake processing uses 

a well-defined equation, it is assumed that little error is introduced in the record, 

except maybe for some high-frequency noise introduced by the low-pass filter and 

the numerical differentiation, to which the integrated velocity and displacement are 

not very sensitive. However, filter errors can be studied in other steps of the pro­

cessing method. Thus, the analytical earthquake equation proposed in this report 

is assumed to represent the absolute instrument-corrected acceleration. In future 

work, small modifications to the testing procedures can be made to study the effects 

of instrument corrections on the data. 

Another problem that arises in the integration of the earthquake signal is that 

of the unknown initial conditions to use for the velocity and displacement. Typically, 

an accelerometer triggers for signals higher than a hundredth of a g, by which time 

the initial velocity and displacement are no longer exactly zero, even though they 

should still be very small. The Volume II processing routine treats this problem 

by performing least square fitting of straight lines to the acceleration, velocity and 
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displacement, from which it indirectly assigns initial values to the integrated data. 

The original Volume II processing method is explained in more detail in Sec. 2.3, 

and how well it estimates these initial quantities is discussed in Sec. 2.4. 

In Sec. 2.4, a new method of studying the errors induced in accelerograms 

is presented. This method uses synthetic accelerograms generated by closed-form 

expressions for the accelerations, which can be exactly integrated to produce the 

corresponding velocities and displacements, and spectra. The derived analytical 

expression of the acceleration does not attempt to reproduce exactly the motion of 

any specific earthquake, but is intended to be general enough to capture the fea­

tures common to most strong-motion accelerograms. The equation for the synthetic 

acceleration calls for parameters that are randomly chosen within specified bounds. 

This allows the generation of a multitude of different sorts of earthquake-like ac­

celeration signals. The accelerogram processing and integration methods can then 

be tested with the synthetic records, and comparison of the differences between the 

processed and analytical solutions can help detect and confirm the source of the 

processing-induced errors. 

2.2 Synthetic Earthquake Accelerograms 

2.2.1 Earthquake Characteristics 

As is illustrated in Fig. 2.1 [Hudson, 1979], earthquake ground ac­

celerations come in all shapes and sizes, and further differences occur when the 

records are those from vibrating structures. Some are of short duration, such as the 

M =5.3 San Francisco earthquake of 1957, or the M =5.4 Lytle Creek earthquake 

of 1970. Others are longer in duration with uniform acceleration levels such as the 

M =6. 7 El Centro earthquake of 1940. Some records have sharp peaks such as 

theM =4.6 Stone Canyon earthquake of 1972, or have very strong shaking levels 

and fast decay as the M =6.4 San Fernando earthquake of 1971. The frequency 

content of the earthquakes also varies; the M =6.5 Koyna earthquake of 1967 has 

a very high-frequency content, but the near-field records from the 1966 M =5.6 

Parkfield earthquake shows a low-frequency component, and of course earthquake 

acceleration responses of tall buildings are predominantly composed of long-period 

harmonics. Even though these accelerograms all have distinct features, they do 
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have some common characteristics: they start initially at zero, and decay down to 

zero after a certain amount of time, they can be represented as a sum of sinusoidal 

functions with various frequencies and phases, and they have zero temporal mean 

since the corresponding velocity end conditions are zero. The analytical expression 

for the accelerogram must also take into account the fact that the integrated veloc­

ity and displacement start at zero and the velocity must also decay to zero when the 

earthquake is over. If the constraint of having zero mean velocity is added then this 

automatically assures that the final displacement is zero. In some cases however, 

when the instrument is located along a fault or in a damaged structure for instance, 

some final offset is expected, thus making the final displacement non-zero. 

2.2.2 Existing Earthquake Accelerogram Models 

Synthetic accelerograms can be generated by using a time series rep­

resentation. For instance, a Fourier series with an exponential decay could be 

constructed to simulate the accelerations such that: 

n 

x(t) = Cte-at L ak cos(wkt + <l>k) ' (2.2.1) 
k=l 

where Wk and <l>k are the discrete frequency and phase of the n harmonics of the 

model. C is a scaling factor. The amplitudes ak could be computed to represent 

the spectral amplitude model of the seismic source. One such model is proposed by 

Brune [1970], and is of the form: 

(2.2.2) 

where f3 is the shear wave velocity, We is the corner frequency and R is the wave 

attenuation factor. It should be noted that the envelope function in Eq. 2.2.1 does 

alter the low-frequency content somewhat from that given in Eq. 2.2.2. Trifunac 

[1974] proposed a spectral model where the amplitude of the kth harmonic is given 

by: 

ak = ~u exp (-;;~) , (2.2.3) 

and where ~u is the stress drop along the fault and D the distance from the source. 
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These previous models may be suitable to reproduce the ground acceleration 

near the earthquake epicenter. However, to test accelerogram processing methods, 

the analytical expression does not have to specifically simulate the source mecha­

nism. For example, a more general model has already been proposed by Brady & 

Mork [1984], who suggested a displacement equation of the form: 

n 

x(t) = L akt2e-ar.tz sin(wkt) 
k=l 

(2.2.4) 

where the amplitudes ak and frequencies Wk are chosen arbitrarily, and the envelope 

parameters ak assigned for each of the harmonics are a function of the time at which 

the peak value occurs. Expressions for the velocity and acceleration are obtained 

by differentiating Eq. 2.2.4. Such an approach is not completely satisfactory since 

it assumes a shape for the displacement signal, of which, in fact, less is known. It 

is preferable to assume an expression for the acceleration, and derive the velocity 

and displacement equations by integration assuming zero initial conditions. The 

model proposed by Brady & Mork forces the displacement to decay to zero, which 

physically is not always the case, as was mentioned above. Their model also allows 

for phase shifts in the harmonics by selecting different start times for each of the 

frequency components, and by using trial and error to generate earthquake-like 

motions. This makes it tedious to generate many signals at a time. 

Schiff & Bogdanoff [1967] suggested an analytical expression for the acceleration 

of the form: 
n 

x(t) = I: te-a,.t cos(wkt + <t>k) , (2.2.5) 
k=l 

where the amplitude of the signal is constant and equal to 1, ak are positive arbitrary 

constants in the range 0.35 to 0.50, wk are the equally spaced angular frequencies 

chosen between the bounds 6 to 40 radfsec (1.9 to 12.7 Hz), ¢k are the indepen­

dent random phase variables uniformly distributed over the interval 0 to 27r, and 

the number of harmonics is arbitrarily set to 40. The analytic expression for the 

acceleration given by Eq. 2.2.5 can be integrated to obtain closed-form solutions 

for the velocity and displacement in which the constants of integration are set to 

obtain zero initial conditions. The acceleration time history that is generated by 
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such a procedure does not generally have zero temporal mean. This implies that 

the integrated time histories may not behave as expected from earthquake motions. 

The same is also true for the formulation in Eq. 2.2.1. 

In the following, a formulation and methodology is proposed which automat­

ically generates time histories without using trial and error methods, and which 

have most of the features expected from earthquake motions. 

2.2.3 Proposed Analytical Earthquake Accelerogram Model 

Any of the above models could have been chosen for the synthetic ac­

celerograms, but the following form is based on the Schiff & Bogdanoff model. The 

analytical expression for the acceleration is very similar to the one in Eq. 2.2.5, with 

the exception that each harmonic is allowed to have a different amplitude ak, and 

the envelope ak is chosen such that it follows the decay expected in accelerograms. 

The parameters are now chosen randomly in such a way that certain characteristics 

required for an earthquake are respected, as explained below. Hence, this approach 

is different from all those mentioned previously in that the parameters are not com­

puted using seismic source properties, or are not selected using trial-and-error. It 

is stressed that the intent is to generate analytical time histories which have similar 

general characteristics to real earthquake motions, and not to model any particular 

event. 

Eq. 2.2.5 can be rewritten as the sum of n acceleration harmonics xk(t) such 

that: 

n 

x(t) = L xk(t) , (2.2.6) 
k=l 

and, 

(2.2.7) 

The acceleration boundary conditions are satisfied since xk(O) is equal to zero, 

and Xk(t) decays to zero as t goes to infinity. Each harmonic k is assigned an 

individual amplitude ak which is randomly chosen in the range 0 to 1, as is the 

phase ¢>k between -~ and +l The frequencies Wk are equally spaced between 

any prescribed bounds for any given number of harmonics n. The added condition 
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that the mean acceleration is zero selects what values to choose for the harmonic 

envelope parameters ak. Indeed, assuming zero mean acceleration is equivalent to 

forcing the d.c. component of the acceleration Fourier transform X(w=O) to also 

be zero. The expression for the acceleration Fourier transform can also be put in 

closed form: 

{2.2.8) 

which reduces to, 

(2.2.9) 

Applying the condition that Xk(O) = 0, leads to 

{2.2.10) 

where ak must always be positive for the envelope to decay. From physical consid­

erations of earthquakes, other conditions must be applied to determine the bounds 

for ak. The envelope function of the kth harmonic, t exp( -akt), reaches its maxi­

mum value at time t = ...L. Typically these peak values are reached after at least 
ar. 

1 sec of excitation, so that ak should be less than or equal to 1. For harmonics to 

decay fast enough the lower bound for ak is arbitrarily set to 0.4. This constraint 

forces the records to be of short duration, to limit the amount of data to be stored. 

Synthetic records of longer duration could easily be generated by allowing ak to 

become smaller. Also, to limit the effects of very high or very low frequencies, the 

following bounds are used for ak instead of 0.4 and 1.0: 

wk:::; 0.25 Hz, 
0.25 0.25 

0.4 X -- :::; ak :::; 1.0 X --
Wk Wk 

Wk ;:::: 10.0 Hz , 

Analytical formulations for the velocity and displacement are obtained by inte­

gration of Eq. 2.2. 7 where the integration constants are found by setting the initial 
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conditions to be zero. Thus, 

n n {t 
x(t) = L Xk(t) = L lo Xk(t)dt' 

k=O k=O O 

(2.2.11) 

where, 

-a~ot 

xk(t) = -Vk + ak e f3'f. [(wkf3kt + 2akwk) sin(wkt + ¢k) 

(2.2.12) 

vk = - ;i ( 2akwk sin 4>k + "Yk cos 4>k) ' (2.2.13) 

and f3k and "Yk are defined below in Eq. 2.2.17 and Eq. 2.2.18 respectively. Also, 

n n {t 
x(t) = L xk(t) = L }(I Xk(t)dt , 

k=O k=O 0 

where, 

-a,.t 

xk(t) = -ak e f3Z { (2akwktf3k + 2"'fkWk + 4a~wk) sin(wkt + 4>k) 

and, 

- ( a~tf3k + 2"'{kO:k - w~f3kt - 4akw~) 

cos(wkt + 4>k)} - Vkt- Dk , 

f3k = ar + w~' 
2 2 "Yk = ak - wk · 

(2.2.14) 

(2.2.15) 

(2.2.16) 

(2.2.17) 

(2.2.18) 

The program which generates the synthetic accelerograms (Fig. 2.2) automati­

cally computes the values of the equally spaced frequencies according to the number 

of harmonics and bounds prescribed. Then it randomly selects the amplitude and 
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phase for each of the components, and computes the corresponding envelope param­

eter. If the latter does not fall within the bounds defined above, then other values 

for the phase <!>k are randomly chosen until a proper ak is found. The algorithm 

then computes the acceleration, velocity and displacement by summing up all the 

harmonics for each time step using the appropriate analytic expression, as given 

in Eqs. 2.2.6, 2.2.7 and 2.2.11 through 2.2.18. It is also possible to obtain the an­

alytically generated Fourier amplitude spectrum of the acceleration to check the 

frequency content of the signal. 

The analytic velocity, given by Eqs. 2.2.11 through 2.2.13, does not assume 

that the velocity has mean zero, so the displacement time history obtained from 

Eqs. 2.2.14 through 2.2.16 is expected to have a final offset. However, if required, 

a corrective term can be added to the velocity equation to remove the mean and 

impose the final displacement to be zero. This is done by fitting a sinusoidal function 

to the velocity. Define x(t) and :i:(t) as the quantities obtained with no correction 

for the mean velocity, and y(t) and y(t) as the mean corrected signal, such that: 

y(t) = x(t) + pte-aot sinwot' (2.2.19) 

where the frequency wo is a function of the total duration td of the record at which 

no more excitation is occurring, such that: 

(2.2.20) 

In practice, td is selected as the time at which the digitized synthetic accelerograms 

are zero within the data storage precision. As will be seen in Ch. 3, this causes 

errors in the temporal mean of the acceleration of the order of the data precision. 

The envelope parameter a0 is associated with w0 and a phase angle of 1r /2, and the 

constant p is a function of the final displacement C = x( td) and is given by: 

c 
(2.2.21) p = roo t • dt ' Jo te-ao sm w0 

which reduces to: 
C(a2 + w2)2 

p = 0 0 
2aowo 

(2.2.22) 
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This added corrective term changes the analytical expression for each of the quan­

tities in the following way: 

I 
and, 

and, 

y(t) = x(t) + pe-aot (sin Wot- aot sinwot +two cos(wot)) , 

e-aot { ( o:o) 
y(t) = x(t) - p Ps aot + Po sin(wot) 

( 
2aowo) } + wot + Po cos(w0 t) + C , 

Yi ( ) 
_ X ( ) . 2pwwo ( o:o + iw) 

kW- kW+t 2' 
[(o:o + iw)2 + w5] 

(2.2.23) 

(2.2.24) 

(2.2.25) 

where Po and /o are given by Eqs. 2.2.17 and 2.2.18 for frequency wo and constant 

o:o . 

The process for generating earthquake signals is summarized in Fig. 2.2. Ex­

amples of the type of records generated by this model are given in Figs. 2.3 through 

2.8. Fig. 2.3 illustrates one of the analytically obtained earthquake signals, Q1 U, 

for the acceleration, velocity, displacement and acceleration Fourier amplitude spec­

trum. Q1 U was generated by randomly choosing O:k, ak and ¢k for 200 frequencies 

equally spaced within the range 0.05 Hz to 25.0 Hz. The main characteristics sought 

in an earthquake record are respected: initial conditions are zero, acceleration and 

velocity decay down to zero after 20 sec (within the three decimal points of the 

storage precision), the frequency content of the acceleration is mainly within the 

range 0.1 Hz to 10 Hz, and the final displacement is nonzero. The signal can be 

scaled to any size. For instance in Fig. 2.3, Q1 U has a peak acceleration of about 

5.0, which can be interpreted as 5 mjsec2 (approximately 50% g) for a large earth­

quake, and thus the peak velocity is 0.40 mjsec and the peak displacement is 0.35 m 

with a final offset of 0.20 m. However, Q1 U can also be scaled down to a small 

earthquake level, in which case the peak acceleration is 0.5 mjsec2 (approximately 

5% g), the peak velocity is 0.040 mjsec, with a peak displacement of 0.035 m and 

a final offset of 0.02 m. The concept of earthquake size is important in defining 
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signal-to-noise ratios and instrument trigger levels; this will be discussed in more 

detail in Sec. 2.2.4. 

Fig. 2.4 represents the analytically generated earthquake Q1 G, which has the 

same characteristics as Q1 U (Fig. 2.3), except that the mean is removed from the 

velocity, forcing the final displacement to be zero. The overall form of the signal 

is unaltered, which implies that the corrective term has little effect other than 

removing the final displacement offset. However slight changes can be observed, 

such as small variations in the amplitudes of the peak velocity and displacement. 

Also, the Q1G acceleration spectrum has a slightly higher peak at 0.05 Hz, which 

corresponds to the frequency of the corrective term for the 20 sec record. In the 

following discussion the letter "U" will always refer to an uncorrected signal (i.e., 

nonzero final displacement), and the letter "G" will always stand for a mean-velocity 

corrected signal (i.e., zero final displacement). 

Figs. 2.5 and 2.6 show the uncorrected and mean-velocity corrected signals of 

another analytically simulated earthquake, Q2U and Q2G. Even though both Q1 

and Q2 have been generated using the same number of frequencies over the same 

frequency range, they do not have the same characteristics because cPk, ak and 

ak are chosen randomly. The simulated earthquake Q2 (Figs. 2.5 and 2.6) decays 

faster than Q1 (Figs. 2.3 and 2.4), however Q2 has a very pronounced peak in 

the acceleration record, and has higher peak velocities and displacements than Q1. 

This type of behavior can be expected in an earthquake, as can be seen in the 1972 

Stone Canyon ground acceleration in Fig. 2.1. 

The simulated earthquake signal QBG, illustrated in Fig. 2.7, is composed of200 

harmonics within the frequency range 0.4 Hz and 25.0 Hz. Hence, it differs from the 

two previous signals Q1 and Q2 since it does not have harmonics between 0.05 Hz 

and 0.4 Hz. The velocity and displacement have a very pronounced 2.5 sec period, 

which could be expected in the response of a tall building. Thus, the analytical 

approach that is proposed in this report to simulate earthquakes is general enough 

to generate a wide range of signals, yet the formulation still complies with most of 

the important features common to seismic records. This is useful to test the effects 

of processing methods on a large number of different accelerograms. 
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Also, to study the effect of the processing routine on each individual harmonic 

of the earthquake, a signal is created which contains a modulated harmonic at 

frequency 1Hz, and which still has the required characteristics. This signal, SIN1G, 

illustrated in Fig. 2.8, will be very useful in detecting how each harmonic is modified 

or affected by the correction and integration method. 

2.2.4 Simulation of Noise and Instrument Trigger 

Trifunac & Lee [1973] studied the noise due to digitization of straight 

lines and concluded that it could be modelled as Gaussian distributed white noise, 

with zero mean and standard deviation of about a thousandth of a g. Thus, to 

simulate the noise obtained after digitization of a true earthquake accelerogram, 

Gaussian distributed white noise, with zero mean and standard deviation of a thou­

sandth of a g is added to the synthetic accelerogram. The signal-to-noise ratio of the 

record will depend on the size of the seismic event. As mentioned above, two earth­

quake sizes are considered here. If on the acceleration scale of Figs. 2.3 through 

2.7, the value 5 represents 5 mjsec2 , or approximately 50% g, then the signal is 

said to represent that of a large earthquake, however if 5 represents 0.5 m/sec2 , or 

approximately 5% g, then the record is said to be that of a small earthquake. The 

synthetic signal, modelled both as a small and large record, is contaminated with 

the same noise sample which is scaled to the simulation size. Hence, there will be 10 

times larger noise-to-signal in the accelerogram of a small event than that of a large 

one, as can be observed in the plots of the acceleration noise and in the tail-portion 

of the acceleration time histories (Fig. 2.9). Also, the approximate noise-to-signal 

ratio for this particular example is 0.4% for large event simulations, and 4% for 

small event simulations. 

Typical strong motion analog accelerographs will trigger at levels of a hun­

dredth of a g. To reproduce the effect of the transducer start-up time, the ana­

lytically generated accelerogram is truncated at the beginning of the record until 

the trigger level is reached, so that for small events a longer portion of the record 

will be missing than for a larger earthquake. Typically results from the synthetic 

records show that instruments are triggered for large events at the very first data 

point, whereas for small events over 10 points may go by unrecorded. Hence, it can 
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be assumed that for large events, the instruments are modelled to trigger at the 

first arrival of the P waves. 

The type and amount of recording and digitization errors suggested above apply 

primarily to records obtained from analog accelerographs. Synthetic accelerograms 

can also be corrupted to simulate errors commonly found in records obtained from 

digital accelerographs. In this latter case however, data missing due to trigger 

truncation does not apply because of the pre-event memory, and the amount of 

quantization noise will depend on the digitization precision. 

These analytical records, in which noise is added and the first few data points 

are truncated, will be used to study how well the processing methods remove noise 

and estimate initial conditions. Since the noise-to-signal ratio and the truncation 

are larger in the small level earthquakes, it is expected that they will be harder to 

correct and integrate accurately than larger level accelerograms. Thus, the small 

analytic earthquakes will be very useful in determining the types of errors that are 

induced by the processing routines. 

It should be noted that the errors modelled above are those that are most 

commonly found in earthquake accelerograms. Other sources of errors that may 

occur, such as loosening of the instrument housing during the event, or instrument 

malfunction are not considered here. 

2.3 The Original Volume II Processing Routine 

Before testing any earthquake accelerogram correction and integration tech­

nique, it is very important to understand how the processing changes the signal and 

at which steps errors might be introduced. In the following, the original Volume 

II routine developed at Caltech by Trifunac & Lee [1973] is used as an example of 

how processing methods can be tested with the use of the synthetic accelerograms 

developed in Sec. 2.2. This processing method was chosen because it has been the 

most extensively used and studied, and also because its computer code was readily 

available, but the methodology applied hereafter can be used on any other kind of 

digital processing and correction method. 
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Some of the sources of the Volume II processmg errors have already been 

reported in several papers [Fletcher et al., 1980; Converse et al., 1984; Joyner & 

Boore, 1988; and others] and improvements have already been proposed to reduce 

the level of these errors. However, the purpose of the following chapter is to show 

how it is theoretically possible, but tedious, to investigate the errors in each process­

ing step by an equivalent mathematical formulation, and how, on the other hand, 

these same processing-induced errors can be identified by simple visual inspection 

through the use of the synthetic accelograms, using only a limited knowledge of 

digital signal processing techniques. The artificial record testing method has the 

added advantage that it can also be used to study how the correction routine han­

dles uncertainties such as trigger truncation and digitization noise, which cannot 

be described by a deterministic equation. 

The original Caltech processing routine is separated into four different parts. 

The first one, refered to as Volume I, performs the interpolation to equal time steps 

and the instrument calibration of the raw, or uncorrected, acceleration data as 

digitized from the photographic film. In Volume II the raw data is first instrument 

corrected, and then filtered and integrated, to produce the corrected acceleration, 

velocity and displacement. This is the section of the Caltech routine that is studied 

in depth within this chapter. The response spectra and the Fourier spectra are 

computed in Volume III and Volume IV, respectively. All the operations within the 

processing program are performed in the time domain. 

Volume II, the part of the original Caltech processing routine which performs 

the high-pass filtering and integration of the raw acceleration, is schematically rep­

resented in Fig. 2.10 [Hudson, 1979]. Each of the steps are numbered. It is assumed 

that the data has already been digitized, interpolated at 0.02 sec intervals, instru­

ment corrected, and that the high frequencies have been filtered out. Each step is 

explained in the following sections. 

2.3.1 Linear Trend Removal 

In step 1, the ~cceleration, a(t), is least square fitted to a straight line 

to remove the mean and any linear trend that might be in the signal. The linearly 

corrected acceleration at(t) is then integrated using the trapezoidal rule to obtain 
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the velocity v1(t), assuming zero initial conditions. The velocity v!(t) is in turn least 

square fitted to a straight line in step 3. This will impose the final displacement to 

be zero, if the initial displacement is also zero. Thus, this step makes it impossible 

to obtain any final offset in the displacement record. The linear velocity corrective 

term a 1 , is then added in step 4 to the linearly corrected acceleration a 1 ( t) to yield 

a new acceleration signal a2 ( t). 

2.3.2 Low-Pass Running-Mean Filter and Decimation 

The baseline-corrected acceleration data, a2 ( t), is then low-pass filtered 

in the time domain using convolution, which implies that the data must be extended 

both at the beginning and at the end of the record by the width of the filter window, 

as is done in step 5. To reduce the computational effort, Volume II decimates the 

data in step 7 by saving every tenth point, so that the new time increment is 

increased from 0.02 sec to 0.2 sec, and the Nyquist frequency is thus reduced from 

25 Hz to 2.5 Hz. Because of the change in the Nyquist frequency, decimation of 

the data creates aliasing, and all the frequencies in the signal between 2.5 Hz and 

25 Hz are wrapped around, and appear as frequencies between 0 Hz and 2.5 Hz, 

thus changing the low-frequency content of the signal. To minimize the aliasing 

effect of the decimation, the data must first be low-pass filtered to remove any 

frequencies beyond 2.5 Hz. In Volume II this is done in step 6 with an equal­

weight running-mean filter h 1 ( t) of width Tw equal to 0.4 sec which has the transfer 

function Hi(!) illustrated in Fig. 2.11. Up to 0.1 Hz this filter has an amplitude 

equal approximately to 1, leaving the signal unaltered in that range, but it decreases 

in amplitude between 0.1 Hz and 2.5 Hz, thus changing the low-frequency content 

of the record. Also, it does not remove all the frequencies beyond 2.5 Hz, so that 

some aliasing still occurs when the data is decimated. It should be noted that the 

remaining frequency content between 2.5 Hz and 5 Hz, 7.5 Hz and 10 Hz, and so 

on, will have a 180° phase shift relative to the unfiltered data. 

2.3.3 Low-Pass Ormsby Filter 

To high-pass filter the accelerogram, the Volume II processing routine 

first subjects the data to a low-pass filter, and then substracts the long-period 

components of the earthquake record from the unfiltered data. The ideal low-pass 
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filter is the boxcar filter illustrated as a dashed line in Fig. 2.12.b. It should remove 

from the data all frequencies beyond a specified cut-off value fc· In the time domain, 

this nonrecursive filter is defined by: 

+oo 
Yn = L hkXn-k , 

k=-oo 

(2.3.1) 

where Xk and Yk are, respectively, the unfiltered and filtered data array, and hk are 

the discrete symmetric filter weights (Fig. 2.12.a). Equivalently, the boxcar function 

is described exactly in the frequency domain by the discrete infinite Fourier series: 

+oo ( · kf) 
H(f) = k~oo hk exp z;N , (2.3.2) 

where IN is the Nyquist frequency of the digitized signal. Because of numerical 

limitations however, this filter cannot be represented as an infinite sum in the 

time domain, and hence the series must be truncated and the discontinuity of the 

transfer function at the cut-off frequency cannot be captured properly. The failure 

of the truncated series to converge at the discontinuity produces a ringing effect 

both before and after the cut-off frequency. This effect is also known as the Gibbs 

phenomenon, and is illustrated in Fig. 2.12.b. Increasing the number of weights in 

the filter will decrease the width of the ringing in the transfer function, however 

the amplitude of the error does not decrease by the same proportions. Hence, as 

the number of terms in the series, given by Eq. 2.3.2, goes to infinity, the Gibbs 

phenomenon appears as a sharp overshoot above and below the discontinuity. 

One way to reduce the error due to the Gibbs phenomenon is to decrease the 

order of the discontinuity at the cut-off frequency. One such filter is the Ormsby 

filter, which is used in the Volume II processing routine to indirectly remove low­

frequency errors from the data. The low-pass Ormsby filter transfer function, H2(f), 

has a linear ramp between its roll-off and cut-off frequencies, fr and /c, as illustrated 

in Fig. 2.13.a. As is the case for the ideal filter, the Ormsby filter is a nonrecursive 

filter, and it is given in its ideal form by: 

+oo 
Yn = L h2kXn-k , 

k=-oo 
(2.3.3) 
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where h2k are the discrete symmetric filter weights defined as: 

(2.3.4) 

The equivalent transfer function for the ideal Ormsby filter with an infinite number 

of weights is illustrated in Fig. 2.13.a. However, because of numerical limitations, 

only a finite number of filter weights can be used to define the Ormsby filter in the 

time domain. Thus, the digital filter will exhibit the Gibbs phenomenon both before 

and after the discontinuity (Fig. 2.13.a). For this type of filter the overshoot or ripple 

error is not only a function of the number of weights, M, but also of the steepness of 

the slope between the cut-off and roll-off frequencies. As the slope becomes steeper, 

the discontinuities at fr and fc become sharper, and the amplitudes of the Gibbs 

overshoot increase. Ormsby suggests that the upper-bound error in the digital filter 

transfer function is [Trifunac, 1970]: 

0.012 
E= AM' 

r 
(2.3.5) 

where the size of the transition region, represented by constant An is given by: 

(2.3.6) 

The Volume II method chooses the number of weights M to be equal to: 

1 
M = A;:-l = (/r- fc)flt . (2.3.7) 

Hence, whatever the order of decimation, or the roll-off to cut-off frequency interval, 

the program chooses the number of weights such that the error in the discontinuity 

is constant and bounded above by 1.2%. Therefore, for the same number of filter 

weights the amount of expected error remains less than that of the boxcar filter 

mentioned previously. As the number of Ormsby filter weights are increased, the 

errors are concentrated over a narrower frequency range, but this also requires more 

computation time for the convolution. This is why the data is decimated before 

it is filtered, so that larger time steps ilt can be used. Nevertheless, the Ormsby 

filter remains appropriate for the Volume II earthquake processing method since 

it does not change the phase of the signal. This is a property of all nonrecursive 
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symmetric filters. To remove long-period errors due to uncertainties in the velocity 

and displacement initial values, these integrated time histories must also be filtered, 

and it is important that the phase difference between the acceleration, velocity and 

displacement be respected. 

2.3.4 Interpolation 

Once the acceleration is low-pass filtered as part of the high-pass filter­

ing steps 5 through 10 (Fig. 2.10), it is interpolated back to the original time interval 

( ~t =0.02 sec), from the decimated time interval ( ~T = 0.2 sec). Hence, the order 

of the decimation pis 10, with ~T = p~t, and M = p N, where m = 0, 1, ... ,M 

is the index of the data points for the record interpolated at t:l.t = 0.02 sec, and 

n = 0, 1, ... , N is the index for the decimated signal at ~T = 0.2 sec. The linearly 

interpolated data, Yrn, can be reconstructed from the decimated data, Xn, using the 

following equation: 
Xn+1- Xn 

Yrn = Xn+ K, 
p 

(2.3.8) 

where K is an integer which takes values between 0 and (p- 1), and relates the 

indices m and n such that: 

m=np+K. (2.3.9) 

For discrete band-limited waveforms and for even values of p, the transfer function 

of this interpolation filter can be shown to be expressed by: 

1 [ v-
1 (2 Kk)] H3k = H3(wk) = P2 p + ~1 2(p- K) cos ~ . (2.3.10) 

This tranfer function is illustrated in Fig. 2.14 for order of decimation p equal to 

10. This filter unfolds the decimated signal over p times its Nyquist frequency with 

decreasing amplitudes, thus creating spurious frequency components into the signal. 

2.3.5 Numerical Example of Low-Pass Filter Errors 

In effect the original acceleration signal has been low-pass filtered four 

times, once through the running-mean filter in step 6, once through the decimation 

in step 7, once through the Ormsby filter in step 8, and finally once through the 

interpolation in step 9. Each of these steps changes the low-frequency content of the 
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data, and in extreme cases can alter it to a point where it is considerably different 

from the original input signal. 

The changes in the input signal as it is processed by each of these steps can be 

worked out analytically. As an illustration of this, consider a signal composed of 4 

harmonics, at 0.05 Hz and 0.1 Hz with amplitude 0.1, and at 5.05 Hz and 5.10 Hz 

with amplitude 10.0. The time domain equivalent of this signal is composed of 4 

pure sine functions with no decay term, and thus cannot be compared directly to an 

earthquake signal. However, it can still be used as a first approximation to locate 

the problems in the processing method. The input is assumed to be interpolated 

at a 0.02 sec interval, over a 20 sec time span. The running-mean filter has a time 

window of width Tw equal to 0.4 sec. The Ormsby low-pass filter uses 250 weights, 

has a cut-off frequency of 0.05 Hz and a roll-off frequency of 0.1 Hz. The decimation 

order pis equal to 10. These correspond to the typical values used when processing 

earthquake data with the Volume II routine. The numerical results are summarized 

in Table 2.1. 

The running-mean filter has little effect on the long-period end of the spectrum, 

yet it reduces the amplitudes of the higher frequencies by one to two orders of 

magnitude. Ideally, the magnitudes of these high-frequency components, at 5.05 Hz 

and 5.10 Hz, should have been zero, but after application of the running-mean filter 

are now comparable in size to the 0.1 Hz and 0.05 Hz harmonics. 

In the next step, because of aliasing due to decimation, the 5.05 Hz component 

will appear to have a frequency of 0.05 Hz, and the 5.1 Hz harmonic will wrap 

around as a 0.1 Hz signal, since the Nyquist frequency has gone down from 25Hz 

to 2.5 Hz. At this point of the processing, which corresponds to step 7 of the Volume 

II routine, both high-frequency components have disappeared from the signal, but 

the low-frequency harmonic 0.05 Hz has doubled in amplitude, whereas the 0.1 Hz 

harmonic has nearly tripled. 

These two components are now used as input to the Ormsby low-pass filter. 

It is assumed that because of the Gibbs phenomenon, the amplitude error at the 

cut-off frequency, 0.05 Hz, and at the roll-off frequency, 0.1 Hz, are about 1.2% 

of the input (this evaluation of the error percentage comes from Eq. 2.3.5, and 
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from numerical tests performed on the filter). Thus, after step 8, the signal is now 

composed of a 0.05 Hz harmonic with twice the amplitude of the original one, and 

a 0.1 Hz component for which the amplitude is reduced by two orders of magnitude 

but with reverse sign, meaning that this component is now 180° out-of-phase with 

the original input. 

Finally in step 9, the data is interpolated back to its original time interval. It 

has been shown above, that in the frequency domain the harmonics must be "un­

wrapped" from the 2.5 Hz, to the 25 Hz Nyquist frequency, by applying the transfer 

function given in Eq. 2.3.10. Numerically, the 0.05 Hz component is reproduced 

into 4.95 Hz, 5.05 Hz, 9.95 Hz, ... harmonics, and the 0.1 Hz component is period­

ically extended into 4.9 Hz, 5.1 Hz, 9.9 Hz,... harmonics, as shown in Table 2.1. 

Applying the interpolation transfer function does not have much effect on the low­

frequency components, however it generates noise at the aliased frequencies which 

did not exist in the original input signal. In this particular example, the aliased 

frequencies were close to the zeroes of the interpolation transfer function, which for 

a time interval of 0.2 sec are located at 5 Hz, 10Hz, 15 Hz, 20 Hz and 25 Hz. The 

noise level would have been much higher had the aliased frequencies coincided with 

the maxima of the function. 

Thus, the final low-passed signal no longer has much in common with the 

input acceleration data, since the amplitude of the 0.05 Hz harmonic has doubled, 

the amplitude of the 0.1 Hz component is reduced to 3.5% of its original value, but 

with a 180° phase shift, and the new low-passed data now contains higher frequency 

noise generated by the interpolation. 

2.3.6 High-Pass Ormsby Filter 

After the interpolation back to the original time interval is performed, 

the data is high-pass filtered by subtracting out the low-frequency content obtained 

in step 9, from the unfiltered signal in step 4. Using the low-pass Ormsby filter 

and substraction to get a high-passed acceleration, is equivalent to using a filter for 

which the transfer function is equal to (1- H 2 (f)), as is illustrated in Fig. 2.13.b. 

Because of the Gibbs phenomenon, the amplitude at the roll-off frequency fr is 
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increased by 1.2% with respect to the original input data. Hence, this filter ampli­

fies the content of the record at that frequency, in the same way as the low-pass 

Ormsby filter described previously. Thus conceivably, the Volume II processing 

method may disproportionatly amplify a low-frequency component within the sig­

nal, which, after applying step 10 and obtaining the "high-passed" acceleration, 

could be misinterpreted as a true phenomenon at the recording site. 

Returning to the example in Table 2.2, the 0.05 Hz component, which corre­

sponds to the cut-off frequency of the Ormsby filter, is still present in the data but 

with a small amplitude and a 180° phase shift. The amplitude of the signal at the 

low-pass Ormsby filter roll-off frequency of 0.1 Hz, has increased by 3.5%. How­

ever the higher frequencies remain almost unchanged except for the aliased noise 

introduced by the interpolation step. The errors in the low-frequency content will 

become even more important when the acceleration data is integrated to obtain the 

velocity and displacement. 

2.3. 7 Velocity and Displacement Corrections 

After integration of the high-passed acceleration obtained in step 10, 

the velocity may no longer have zero mean. To avoid the velocity from drifting off, 

the process applied in steps 1 through 3 is used a second time in steps 10 through 

13, which will force the integrated displacement to have zero final displacement, 

since zero initial conditions are assumed. Again this step makes it impossible to 

detect any final offset that may have occured after the earthquake. 

In step 11 the acceleration signal is integrated using the trapezoidal rule, which 

can be considered as the convolution with a digital filter defined by the finite-impulse 

response equation: 
!:1t 

Yn = Yn-1 + T(Xn-1 + Xn) • (2.3.11) 

In the frequency domain, this digital filter has transfer function, H 4 : 

!:1t 

(2.3.12) 
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The exact integration transfer function, He is: 

(2.3.13) 

Comparison of Eqs. 2.3.12 and 2.3.13 shows that the trapezoidal rule integrates 

data digitized at 0.02 sec accurately to about 10 Hz, after that the error grows 

rapidly up to the Nyquist frequency. However, the high-frequency errors introduced 

by the trapezoidal rule integration scheme into the velocity and displacement output 

signals remain small compared to those due to any pre-existing low-frequency error 

in the acceleration. Indeed, after exact integration, low-frequency errors in the 

acceleration are increased as w- 1 in the velocity, and as w-2 in the displacement. 

To decrease the effect of long-period errors after integration of the acceleration -

which errors it must be noted are either due to the digitization process or added 

in by the "high-pass" filtering steps of the processing routine - the velocity is also 

high-pass filtered using the equivalent low-pass Ormsby filter in steps 14 and 17. 

As was the case for the acceleration in step 8, this filter spuriously enhances the 

component of the roll-off frequency yet another time. 

To make the velocity signal exactly obtainable by integration of the accelera­

tion, the low-frequency error removed from the velocity is also removed from the 

acceleration. Even though differentiation reduces the effect of long-period com­

ponents, step 15 will still add more low-frequency error from the Ormsby filtered 

velocity into the acceleration signal. Continuing the example of Table 2.1, the final 

"corrected" acceleration signal, as would be obtained in step 16, has a 0.1 Hz com­

ponent whose amplitude is 4.8% higher than expected. Because the low-frequency 

errors of the velocity are also removed from the acceleration in steps 14 and 15 this 

signal has a very small, but negative, amplitude at the 0.05 Hz component. Hence, 

the high-passed acceleration still contains low-frequency information with negative 

phase, and high-frequency noise has been introduced by the process. 

The amplitudes for each of the harmonics for both the exact and the filtered ve­

locity and displacement signals could also be worked out numerically. In the Volume 

II routine the displacements are obtained from the integration of the high-passed 
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velocity, and are in turn also high-passed using the equivalent low-pass Ormsby fil­

ter with the same characteristics as for the acceleration and velocity filtering. Thus, 

the error due to the high-pass Ormsby filter is entered twice into the processing of 

the velocity data, and three times for the displacement data which also includes er­

ror due to double integration of the acceleration using the trapezoidal rule. Finally 

the "corrected" velocity has approximately a +5% amplitude error compared to 

the exact value for the 0.1 Hz harmonic, and the displacement has about a +5.8% 

amplitude error at that frequency. 

When using the Volume II routine, the velocity and displacement traces are 

also decimated before being Ormsby low-pass filtered, as was the acceleration. After 

the low-pass filter is applied, the integrated signals are also interpolated, which, as 

in step 9, generates high-frequency noise at the aliased frequencies. This effect is 

expected to be minimal for the velocity and displacement, since integration greatly 

decreases the energy of the high-frequency components. However, this will have an 

effect on the acceleration, since the velocity high-frequency noise is differentiated 

in step 15, thus increasing the noise proportionally to the aliased frequency value 

before being injected back into the acceleration data, in step 16. Hence, the Volume 

II processing routine adds high-frequency noise in the acceleration at two different 

steps. 

2.3.8 Limitations of Analytical Testing Methods 

Theoretically, missing data at the beginning and at the end of the ac­

celerogram changes the mean of the signal. The estimate of the initial values after 

triggering depend on how this uncertain value of the mean is treated. In the case 

of Volume II, it is impossible to estimate how well the routine evaluates the initial 

conditions, since the mean of the signal is removed and altered in several steps, by 

adding or subtracting out constants and low-frequency components of the data in 

the acceleration, velocity and displacement signals. Thus the initial values, which 

are estimated in an indirect way, depend more on the nature of the input accelero­

gram, and the amount of missing data, than on the processing method itself. The 

only way to judge how well the Volume II routine evaluates the initial conditions is 
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to test it with data for which the initial conditions are known. This is one of the 

applications of the synthetic accelerogram to test earthquake correction procedures. 

The example worked out above illustrates how some errors introduced by the 

Volume II processing method can be identified and measured. The example case was 

a relatively simple one, with only four frequency components and no modulation, 

yet the testing procedure was somewhat long and tedious, involving mathematical 

derivations of the transfer functions, and careful bookkeeping of the changes occur­

ring at each of the frequencies. Such an analytical approach would become very 

difficult to implement in practice for cases where many harmonics with exponential 

decays are summed up to simulate earthquake motions. Also, the analytical testing 

method is not suitable to study how well random noise (which does not have a 

deterministic representation) is removed from the original signal, and how it affects 

the integrated velocity and displacement, since, in those cases, errors due to the 

modelled digitization noise and those induced by the processing routine become 

indistinguishable. 

The simplified transfer function testing approach described above is useful in 

providing a better understanding of how the accelerogram processing routine works, 

and where problems are to be expected. Thus, it should be used as a quick pre­

liminary step to a more detailed investigation of the processing method, in which 

the synthetic test signal used now contains most of the features expected in an 

accelerogram, as will be done in the next section. 

2.4 Analysis of the Original Volume II Method using Synthetic 
Signals 

2.4.1 Analysis Procedure 

The synthetic accelerograms developed in Sec. 2.2 can also be used to 

test problems expected to occur in processing and integration methods for either 

analog or digital records. The methodology described below is intended to be gen­

eral enough to be applicable to a wide variety of processing methods. The original 

Volume II routine is used as an example for testing procedures. 

A processing method may be judged through two different criteria. The first 

question is: how much distortion or error does the correction method add into 
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the input signal and its integrals, when the continuous, time-limited, and complete 

signal is quantized and sampled at tl.t? This can be defined as a measure of the 

"internal performance" of the method, and can be studied either analytically as 

in Sec. 2.3, or numerically with the synthetic signals as described below. The 

second question is: how well does the processing method correct the errors of the 

input signal, which errors are often of an uncertain nature (i.e., digitization noise, 

missing data, etc)? Or equivalently, how well does the processing algorithm extract 

a continuous signal and its integrals from a sampled, noise-corrupted and truncated 

version? This is a measure of the "correction effectiveness" of the method, and 

it can only be studied by applying the processing method to signals containing 

accelerogram-like features. It should be noted that, a priori, there is no reason why a 

method could not have poor correction effectiveness but good internal performance, 

or vzce versa. 

When synthetic signals are used, the answer to the first question (i.e., what is 

the internal performance of the routine?) requires only a basic understanding of 

how the processing method works, and where problems may be expected to occur, 

as opposed to the analytical approach described in Sec. 2.3, which required lengthy 

derivation of the equivalent transfer functions and careful numerical bookkeeping. 

In the case of Volume II, as is shown in the flowchart Fig. 2.10, the processing can 

be separated into two main subroutines. The first one, BAS (steps 1-10), performs 

the linear correction, decimation and filtering for the acceleration. The second 

one, HYPSVD (steps 11-20), performs the integration to obtain the velocity and 

displacement, and also uses BAS for filtering and correction. Each of the functions 

of the subroutine can be isolated and tested, either by altering the program to 

monitor the signals before and after the step that is being studied, or by adjusting 

the processing parameters to activate only one of the steps at a time. The second 

alternative is easier to implement since it does not require an in-depth understanding 

of the way the program is written. 

The next step is to choose a set of reference values for the variables of the 

processing method which are to be used for the correction of the synthetic signals. 

These processing parameters are then altered one at a time, and the change in the 
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output result is monitored. This part of the analysis identifies the errors added 

into the original input signal after recording and digitization by the correction 

scheme, and therefore evaluates the internal performance of the processing method. 

Testing should be performed on a reference signal, that is, one of the analytically 

generated accelerograms which has zero final displacement, no noise, and no trigger 

truncation. The results of this part of the analysis are of the same type as those 

arrived at analytically in Sec. 2.3. 

In the case of the Volume II method, the steps that are expected to create errors 

within the processing routine are the decimation, interpolation, and integration 

schemes, and the application of the running-mean and the Ormsby filters. The effect 

of each of these steps on the signal can be studied independently. The parameter 

describing the decimation and interpolation steps is the order p. When p is set 

equal to one, the input signal is kept at its original time increment, and so there 

is no decimation or interpolation error in the output signal. However, when p is 

varied, and all other variables are kept at the reference values, the change in the 

amount of error in the output result can be attributed to the decimation step. In 

the same manner, the effect of the running-mean filter can be studied by varying the 

width Tw of the window, and that of the Ormsby filter by changing the number of 

filter weights, and the values of the cut-off and roll-off frequencies. The errors due 

to the repeated BAS subroutine corrections of the acceleration and the integrated 

velocity and displacement, can be separated out, either by skipping BAS (steps 1-

10, Fig. 2.10) and using the "uncorrected" acceleration as input to HYPSVD(steps 

11-20), or by bypassing BAS within the integration steps of HYPSVD. 

It is advisable to first test the method with a simple synthetic "accelerogram," 

such as SIN1 C (Fig. 2.8), which is composed of a modulated harmonic at 1 Hz. Any 

change in the modulated 1Hz component or any other existing components outside 

of the modulation bandwidth obtained after "correction" must then be attributed 

to one of the steps of the processing method. The errors imparted to each of the 

steps can then be identified by the procedure described above. Narrow-band signals, 

such as SIN1 C, are useful in studying which of the steps of the processing routine 

introduce errors, and by what amount. These types of signals are certainly the 
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best to use in the study of the internal performance of the processing method, but 

accelerogram-like data remains useful to observe how each type of error combines 

in a multi-harmonic signal. 

Signals which have all the features of a digitized accelerogram must be used to 

answer the second question, that is, how does the processing method correct the 

errors that exist within the input signal, or alternatively how correction-effective is 

it? This is where the synthetic accelerogram with added noise to model digitization, 

with missing data to simulate instrument trigger, and with or without any final 

displacement offset, becomes particularly useful. The synthetic accelerogram is then 

put through the processing routine. The correction is judged to be effective if it 

significantly reduces the amount of noise, and estimates other parameters properly, 

such as the initial conditions and the final displacement. Because the method in 

which earthquake motions are modelled, as described in Sec. 2.2, is very flexible, 

a multitude of signals can be created. The uncertain features of the accelerogram 

can then be added separately to the original synthetic signal to study how well the 

processing routine corrects for each source of error. 

The testing of the internal performance and the correction effectiveness of the 

processing routine is accomplished by comparing the "corrected" signal at the out­

put of the program, to its corresponding exact analytical representation. Hence, the 

quantities of interest for the study are the errors between the processed and ana­

lytical acceleration, velocity, and displacement at each step. The Fourier transform 

of these errors can also be used to identify the specific frequencies where errors are 

introduced. 

Both internal performance and correction effectiveness have been extensively 

studied on many test cases. The results from only a few significant examples will 

be presented below in Sees. 2.4.2 and 2.4.3. 

2.4.2 Internal Performance of the Original Volume II Method 

Only the two main sources of error induced by the original Volume II 

processing method will be analyzed below. These are the aliasing introduced by 

the decimation-interpolation process, and the effect of the Ormsby filter. The other 
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errors such as those introduced by the trapezoidal integration rule, the repeated 

removal of the mean in the signal, and digit truncation of the stored data will be 

pointed out in some of the figures, but will not be analyzed in detail. 

2.4.2.1 Aliasing 

A preliminary analysis of the Volume II processing method would 

show that aliased frequency components are introduced by the steps involving the 

running-mean filter, the decimation and the interpolation (steps 5, 6, 7 and 9 in 

Fig. 2.10). As mentioned earlier, each of these steps are described by different 

parameters: the width Tw, the decimation step size, and the interpolation step size, 

respectively. It is theoretically possible to study the effect on the output signal 

of each of these parameters taken individually. However, in the original Volume 

II routine, these three steps form a whole, and cannot be separated. That is, 

the running-mean filter width is chosen as a function of the new Nyquist period 

after decimation, which is itself a function of the decimation step size. Then, the 

interpolation step restores the decimated data back to its original time step. This 

reduces the analysis of the aliasing effect to the variation of a single parameter: the 

decimation step size. 

To study the aliasing problem due to decimation, the synthetic signal SIN1 C 

(Fig. 2.8), which is composed of a single modulated harmonic with frequency 1 Hz, 

is subjected to the Volume II routine. The program normally sets the decimation 

order to be 10 throughout the whole processing routine. However, it has been altered 

to allow for specified decimation orders in the acceleration (variable NSKIPA), in 

the velocity (variable NSKIPV), and in the displacement (variable NSKIPD). Also, 

the subroutine BAS, which performs the acceleration corrections in steps 1 through 

10 (Fig. 2.10), can be bypassed in order to study the effect of the velocity and 

displacement correction separately. When subroutine BAS of the program is not 

used, the acceleration that is input at steps 11 and 13 is that of the exact synthetic 

signal in which no correction has been made. 

In the following figures, the titles AN, VN, DN refer to the Volume II-corrected 

acceleration, velocity and displacement signals; ERA, ERV, ERD are the error be­

tween the exact and Volume II-corrected accelerations, velocities and displacements; 
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FFT ERA, FFT ERV, FFT ERD refer to the plots of the fast Fourier transform of 

the acceleration, velocity and displacement errors. These will help locate at which 

frequencies the processing adds errors into the signal. Note that for each of the 

following figures, the scales are altered as to permit the best observation of the 

errors. In the figures, the captions also indicate how many Ormsby filter weights 

are used, and what the cut-off frequency, fc, and roll-off frequency, fn of the filter 

are. 

The effects of the decimation aliasing are shown in the four cases illustrated in 

Figs. 2.15 through 2.18. Each figure represents the Volume II-corrected output (AN, 

VN, D N), the error (ERA, ERV, ERD), and the frequency content of the error (FFT 

ERA, FFT ERV, FFT ERD) for the acceleration, velocity and displacement signals 

respectively. The Ormsby filter characteristics are kept constant for all four cases, 

so that only the differences due to the decimation are observed. All the synthetic 

records used in the study of Volume II are stored with a precision of six decimal 

digits and at constant time increments of 0.02 sec, with the exception of Q1C which 

is stored with a precision of three decimal points to duplicate accelerogram-like 

conditions. 

The reference test, Case 1, is that of SIN1 C subjected to the Volume II pro­

cessing method in its usual operating mode: the acceleration correction step, BAS, 

is not bypassed and all three decimation orders are equal to 10. This increases the 

time increment between two data points from 0.02 sec to 0.2 sec, or alternatively 

decreases the Nyquist frequency from 25 Hz to 2.5 Hz, in all three of the quantities 

- acceleration, velocity and displacement. Fig. 2.15, which represents plots of the 

acceleration quantities AN, ERA, and FFT ERA, for Case 1, show that the error 

ERA induced by the Volume II routine is about a thousandth of the maximum ac­

celeration AN. Thus, it is well within the expected noise level of a real accelerogram. 

However, SIN1 C is only composed of one harmonic; in an earthquake-like signal the 

acceleration is made up of many harmonics, at each of which errors are introduced 

by the program, thus making the error level larger as will be seen later in Fig. 2.19, 

when the effect of processing realistic synthetic seismic records is discussed. In the 

FFT ERA plot (Fig. 2.15) the aliasing error due to the decimation really stands 
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out. In this plot, the first peak is located at about 0.12 Hz, which coincides with the 

roll-off frequency of the Ormsby filter, this effect will be discussed in Sec. 2.4.2.2. 

The other peaks are at frequencies 1 Hz, 4 Hz, 6 Hz, 9 Hz, 11 Hz, 14 Hz, 16 Hz, 

19 Hz, 21 Hz, and 24 Hz. These correspond to the original and aliased frequencies 

of 1 Hz for a signal that has a 2.5 Hz Nyquist frequency, which is the case here 

since NSKIP A is equal to 10. The errors introduced by the aliased 1 Hz frequency 

is apparent in ERA (Fig. 2.15) where the error signal exhibits contributions from 

higher frequencies. As has been studied in the example of Sec. 2.3, a dominant error 

is located at the signal harmonic frequency, which is 1 Hz for SIN1 C, and the error 

at the corresponding aliased components decreases as the value of the frequency in­

creases. Also as expected, the corresponding error at the aliased frequencies in the 

velocity, FFT ERV, and in the displacement, FFT ERD, have almost disappeared. 

The aliasing error in the acceleration is a mirror image of the signal AN, as seen in 

the time domain ERA plot. This effect is still apparent in ERV, but has completely 

disappeared in ERD. The main source of error in these integrated signals arises 

from the low-pass Ormsby filter. The errors found in the velocity, ERV, are mainly 

that of the Ormsby filter at 0.125 Hz which are twice as large as the decimation 

error at 1 Hz. Also, the predominant error in the displacement signal, ERD, is by 

far due to the Ormsby filter, which gives some insight as to how this filter can alter 

the signal, and how it could become difficult to distinguish this type of error from 

the signal itself. 

In Case 2, illustrated in Fig. 2.16, no decimation is required for the velocity and 

displacement corrections (NSKIPV = 1, NSKIPD = 1), however NSKIPA remains 

equal to 10. The case shows what happens to the signals when decimation is only 

applied to the acceleration, and no such error can be introduced by the velocity 

or displacement correction back into the acceleration (step 15, Fig. 2.10). The 

final corrected acceleration still displays proof of aliasing, but beyond 4 Hz the 

frequency content of the error is negligible compared to the error at 1 Hz (ERA, 

Fig. 2.16), which is almost two times greater than for the previous case (ERA, 

Fig. 2.15). The error in the velocity (ERV, Fig. 2.16) and in the displacement 

(ERD, Fig. 2.16) are again mainly due to the Ormsby filter, with some contribution 

from the 1 Hz component which comes from the integration of the acceleration 
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error. Also, the velocity signal in this case contains no directly aliased frequencies 

(FFT ERV, Fig. 2.16) since no decimation is performed. 

In Case 3, illustrated in Fig. 2.17 the acceleration used to produce the velocity 

and the displacement is not corrected, since the BAS subroutine is bypassed (i.e., 

NSKIPA = 0), and the velocity and displacement are decimated with order 10 (i.e., 

NSKIPV = 10, NSKIPD = 10). This case can be viewed as the complement of Case 

2 to Case 1, the reference test case. Even though the acceleration is not corrected 

initially, some changes are made in that signal through the velocity correction terms 

in step 15 (Fig. 2.10); thus the acceleration errors apparent in Fig. 2.17 come from 

the velocity processing only. The two main errors are at 1 Hz and 4 Hz, with 

almost no error due to the Ormsby filter at 0.125 Hz. In the ERA plot (Fig. 2.17), 

the error has a step function appearance which can be attributed to quantization 

error when the velocity corrective term is added into the acceleration. This step 

is also responsible for the 1 Hz aliasing error, and could be investigated in more 

detail. In Case 4 no decimation is used, but BAS is implemented (i.e., NSKIPA = 1, 

NSKIPV = 1, NSKIPD = 1) (Fig. 2.18). The aliasing error arising from decimation 

has disappeared, and the dominant source of error in the processed and integrated 

time histories are induced by the Ormsby filter. Thus, it can be concluded that the 

predominant acceleration aliasing seen in Fig. 2.15 is produced by the decimation of 

the acceleration and by the differentiation of the decimated velocity, which is added 

into the acceleration trace in step 15 of the processing. Proof of this statement can 

be further confirmed by studying other cases where the decimation steps are varied. 

Studying the effect of aliasing on SIN1 C, which is composed of only one modu­

lated harmonic, helps in better understanding and separating the errors observed in 

an earthquake-like synthetic signal such as Q1C which is made up of a combination 

of 200 frequencies between 0.05 Hz and 25 Hz. In Fig. 2.19, Q1C is subjected to 

the Volume II routine with the same parameters as SIN1C in Case 1 (Fig. 2.15): 

the decimation orders are set at 10 for all quantities, the acceleration is filtered in 

BAS, and the Ormsby filter characteristics are the same. In Fig. 2.19, the ERA 

plot of the acceleration for Q1 C shows that the error is of the order the noise level 

expected in accelerograms of large events (Fig. 2.9), and that most of it comes from 
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the Ormsby filter roll-off frequency, with evidence of some high-frequency noise and 

aliasing from the velocity decimation superimposed over it. In this case, the step­

like error at the end of the signal must be attributed to digit truncation of the stored 

data. In the ERV plot (Fig. 2.19), the error is again mainly due to the Ormsby 

filter, and represents about 5% of the velocity signal maximum amplitude. The 

high-frequency velocity error which is superimposed on the long-period error is due 

to the trapezoidal rule, as will be explained later on in this section. The long-period 

error becomes very predominant in the displacement (25% of the maximum), since 

integration diminishes the contribution of high-frequency components, and because 

the Ormsby filter error is added into the signal at three different steps before the 

displacement is obtained. 

In the results for SIN1 G signal processing, the corrected acceleration, velocity 

and displacement contain errors, but these are very small and the aliased frequencies 

are well separated without having any influence on other existing harmonics. Thus 

the overall shape of the new signals are practically unchanged from their original 

form. However, when many harmonics are used to model the signal as in Q1G, the 

processing method, through the filtering and decimation steps, completely change 

the content at each of the components which correspond to an aliased frequency, 

thus altering the overall appearance of the "corrected" signal. Indeed, the differ­

ences between the exact integrated signals (Fig. 2.4) and the processed integrated 

signals (Fig. 2.19) are apparent to the "naked eye." In the velocity and displacement 

signals, the long-period drift is clearly visible, the initial values have substantial er­

rors (they should be zero), and the peak values are slightly different. These same 

remarks hold for a wide range of synthetic accelerograms tested on the original 

Volume II processing method. 

2.4.2.2 The Ormsby Filter 

Comparison of various plots and cases shows that the main source 

of the processing-induced error comes from the Ormsby low-pass filter. To help 

identify more clearly the key sources of errors, preliminary analysis is performed of 

the errors induced by the Ormsby filter on a narrow-banded signal such as SIN1G. 
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More complex earthquake-like signals can subsequently be used to investigate the 

combined effect of filter errors on the accelerograms. 

As discussed in Sec. 2.3, the largest source of error is induced by the rippling 

of the Ormsby filter at the cut-off and roll-off frequencies, due to the Gibbs phe­

nomenon (i.e., the inability of a truncated Fourier series to represent a discontinuity 

in the frequency domain). The nature and size of the rippling is controlled by the 

order of the discontinuity and by the number of filter weights taken to compute the 

time series. When applied to the Ormsby filter, this translates into a study of the 

changes in the ripples due to variations in the roll-off to cut-off frequency interval, 

and the number of weights used to describe the filter in the time domain. These 

changes can be directly observed by plotting the transfer function of the filter as it 

is actually implemented within Volume II. The following concern is then to inspect 

what effect the changes in the ripples have on the output signal. 

In the examples discussed previously, Cases 1 through 4 of SIN1 C, the roll-off 

and cut-off frequencies of the filter have been kept the same for all cases. The 

number of weights were computed as a function of the difference between these two 

frequencies and the order of decimation, and is meant to give a maximum overshoot 

of the Ormsby filter due to the Gibbs phenomenon of 1.2% at the cut-off and roll-off 

frequencies (Eq. 2.3.5). Thus, for fc = 0.105 Hz and fr = 0.125 Hz, the filter is 

computed with 250 weights if the order of decimation p is equal to 10 ( f}.t = 0.2 sec), 

or with 2500 weights if the pis equal to 1 (f}.t = 0.02 sec). Comparison of the plots 

FFT ERA for p = 10 (Fig. 2.15), and for p = 1 (Fig. 2.18), shows that the error 

in the acceleration that occurs at the filter roll-off frequency is approximately the 

same. This proves that the way the number of weights is computed does keep the 

ripple error within the same order of magnitude, when the number of filter weights 

are modified to comply with the decimation step. 

But why does the error show up at the roll-off frequency fr of the low-pass 

Ormsby filter (Fig. 2.13)? There is further evidence of this behavior when SIN1C 

is tested for other values of the cut-off frequency. In the following two cases, Case 6, 

fc = 0.23 Hz, and Case 8, fc = 0.15 Hz, the data is decimated with order p = 10, the 

roll-off frequency fr is kept at 0.25 Hz, and the number of filter weights are estimated 
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as to conserve a 1.2 % Gibbs's phenomenon overshoot at the discontinuities of the 

Ormsby filter. The respective Fourier transforms of the error in the output records, 

FFT ERA, FFT ERV, and FFT ERD, are shown in Figs. 2.20 and 2.21. All the plots 

consistently indicate a sharp peak at frequency 0.25 Hz, which coincides exactly with 

the chosen roll-off frequency, regardless of the value of the cut-off frequency. 

Insight into this observation can be gained by considering not just the transfer 

function of the Ormsby filter, but that of the complete input-to-output relationship. 

Indeed, as was described in Sec. 2.3, each time-domain operation of the Volume II 

processing method can be represented by a transfer function. These steps are the 

application of the running-mean filter, the decimation, the low-pass Ormsby filter, 

the interpolation and the removal of this low-passed signal from the original input to 

obtain a high-pass filtered record. In the frequency domain, this succession of steps 

is analytically represented by the combined product of each of the corresponding 

transfer functions. In particular, one must consider the product of the running-mean 

filter transfer function H1 (!) for Tw = 0.4 sec (Fig. 2.11), and that of the Ormsby 

filter H2(!), for fc = 0.23 Hz and f,. = 0.25 Hz (Fig. 2.13.a). Fig. 2.22 shows H2(!), 

as well as the blown-up views of the behavior of the resulting transfer function 

Ht(f) * H2 (F) at the cut-off and roll-off frequencies. These figures illustrate the 

transfer functions governing the output signals obtained in Case 6. The runnning­

mean filter transfer function (Fig. 2.11) decreases by about 1.5%, from 1 at d.c., 

to 0.985 at 0.25 Hz, and the amount of error induced by the Gibbs phenomenon 

at /,. and fc in the Ormsby filter is approximately 1.2%. When both filters are 

multiplied, the resulting transfer function (Fig. 2.22) is always less than 1, except 

at d. c.. In particular, the ripples at the cut-off frequency are always below 1, with 

a maximum overshoot error close to 1, and after the roll-off frequency the ripples 

oscillate about the zero axis and are either negative or positive, with a maximum 

overshoot error of about -1.1 %. When this resulting low-pass filter is tranformed 

into a high-pass filter, by subtracting 1 from the product of the transfer functions 

(Fig. 2.13.b), the amplitude at the cut-off frequency fc is nearly zero, hence no 

error is introduced, but that at the roll-off frequency is now equal to 1.011, which 

increases the contribution of the aliased frequencies by 1.1%. Similar conclusions 

can be reached from the study of the transfer function for Case 8 (Fig. 2.23) for 
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fc = 0.15 Hz with 50 filter weights. In Case 8, it can also be seen that the value of 

the combined transfer function H1 * H2 is slightly greater than 1 at fc· When the 

high-pass filtering step is implemented (i.e., 1- H1 * H2 ), Volume II will generate 

an error at fc with negative phase. Hence, in general the original Volume II routine 

will spuriously increase the component at the roll-off frequency regardless of the 

cut-off frequency fc, and, for low enough values of fc, components with negative 

phase can be generated. The resulting errors in the output signal are a function of 

the Gibbs overshoot and the value of the running-mean filter's transfer function at 

the roll-off and cut-off frequencies. 

In Case 6 and 8 (Figs. 2.20 and 2.21) the interval between the roll-off and cut­

off frequencies have been increased from 0.02 Hz to 0.10 Hz, thus decreasing the 

number of weights from 250 to 50, to maintain a maximum ripple overshoot of 1.2% 

in the Ormsby filter transfer function. However, these plots show that the errors in 

the acceleration, velocity and displacement are decreased as the width of the ramp 

is increased. The error in the acceleration, FFT ERA, at the roll-off frequency is 

0.0038 when fl./= 0.02 Hz (Case 6, Fig. 2.20), and .0017 when fl./= 0.1 Hz (Case 

8, Fig. 2.21). 

The latter phenomenon can be partly explained by the fact the amplitude of 

the transfer function for the running-mean filter H 1 (f) becomes closer to 1 as fc 

becomes smaller. Comparison of the behavior of the combined transfer functions 

H 1 (f) *H2 (1) near the cut-off and roll-off frequencies for each of the cases (Figs. 2.22 

and 2.23) shows that the amplitude of the overshoots at /r and fc are reduced, 

although the maximum errors in the Ormsby filter at both fr and fc are still of 

the order of 1.2%. Also, the ripple interval of the Gibbs phenomenon at the roll-off 

frequency increases in almost the same proportions as the number of filter weights 

and the width of the filter ramp. For large transition bands, the ripples at the cut-off 

frequency have virtually disappeared and have been replaced by a slowly increasing 

ramp with a smooth transition at /c (Fig. 2.23). Although Eq. 2.3.7 appears to 

provide an adequate estimate of the amplitude of the maximum overshoot error at 

the discontinuity of the Ormsby filter H2 (1), it does not reflect how spread out 



-42-

the rippling of the error is, what frequency range is affected by it, and what the 

amplitude of the error of the combined filter H1(!) * H2(f) is. 

Another source of error which has been studied is the repeated filtering of the 

acceleration, velocity and displacement, to produce the "corrected" signals. It was 

concluded that the errors in the velocity time history increase with the number of 

times the Ormsby filter is implemented in the routine. Such a conclusion could 

not be made for the displacement signals. It appeared that the main source of 

error arises from the correction in the temporal means. As will be seen in Sec. 4.3, 

forcing the unknown temporal mean of a truncated accelerogram to be zero creates 

a discontinuity at the ends of the time histories. This appears as a si/ Ltype error 

in the spectrum, which is centered at d.c. This error in the d.c. of the spectrum 

increases as the discontinuity becomes larger. 

Using the narrow-banded signal SIN1C has helped to pinpoint the sources of 

errors within the processing method by comparing the spurious frequencies as a 

function of the characteristics of the Ormsby filter. It is also possible to use a 

synthetic signal such as Q8C (Fig. 2. 7) to study the errors induced by the Ormsby 

filter. Recall that this signal was generated by combining 200 harmonics between 

0.4 Hz and 25.0 Hz. As an example, this synthetic accelerogram is processed with 

Volume II, in its normal operating mode, for two different locations of the low-pass 

filter ramp. The output displacement results, as well as the error with the exact 

analytical displacement signal, are illustrated in Fig. 2.24. In the first case, shown 

on the left of the figure, the roll-off frequency of the Ormsby filter fr = 0.125 Hz and 

the cut-off frequency fc = 0.105 Hz. In the second case, shown on the right of of the 

figure, fc = 0.18 Hz and fr = 0.20 Hz. Since the cut-off ramps, which are of equal 

width, are located far below the smallest modulated harmonic present in Q8C at 

0.4 Hz, there should be very little difference in the signal after processing. However, 

as can be seen in Fig. 2.24, this is not the case. The error in the displacement varies 

between 8% to 11% of the maximum, depending on the location of the cut-off ramp 

and the amount of aliasing induced by the decimation steps at that location. In 

both examples, the source of the error is clearly a sine-like function, with a period 

in the range of the selected Ormsby filter transition band. This is also a good 
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illustration of how a spurious harmonic can be added without altering the "look" of 

a signal, and how it might result in misleading conclusions. In the example on the 

left of Fig. 2.24, it is rather obvious that the behavior at the end of the record is not 

physically possible, and that it must be due to some error induced by the processing 

method. But in the example on the right, the displacement record decays properly, 

even though the filter added an erroneous component at the roll-off frequency with 

an amplitude equivalent to about 10% of the maximum. An engineer, not familiar 

with processing-induced errors in the accelerations, might be tempted to conclude 

that this strong component may be due to the response of a structure or of the 

underlying soil at resonance. 

Separating the true harmonic composition of a record from the error added in 

by the Ormsby filter becomes even more difficult when the cut-off ramp coincides 

with frequencies existing within the signal. Synthetic record Q1 C, represented in 

Fig. 2.4, is used to illustrate this case. Q1 C is composed of 200 harmonic compo­

nents between 0.05 Hz and 25 Hz. It is subjected to the original Volume II routine, in 

its normal operating mode. The Ormsby filter roll-off frequency is equal to 0.125 Hz, 

and the ramp is 0.02 Hz wide for the high-pass filtering. The results, presented in 

Fig. 2.19, show the output acceleration, velocity and displacement, as well as the 

error with the corresponding exact analytical signals. The error in the processed 

acceleration represents less than 0.5% of the maximum and is mainly composed of 

a combination of the filter error and digital storage truncation error. Most of the 

synthetic signals processed with Volume II showed that the method-induced errors 

in the acceleration were comparable or below the normal noise level found in real 

analog accelerograms. Hence, the corrected accelerations obtained with the original 

version of Volume II can be used with confidence. 

This is not always the case with the processed velocity and displacement. The 

difference between the processed and the exact signals are clearly visible, and the 

error plots for the velocity and the displacement confirm that the difference is a sine­

like function that has a period which coincides with the Ormsby filter transition 

band. In real accelerograms, the processed signal could be misinterpreted as having 

a predominant resonant frequency in that range. 
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The values of the peak velocity and displacement of the "corrected" signal are 

inaccurate. This results from the uncertain manner in which the processing errors 

and the uncorrected accelerogram combine, and depends on the frequency content 

of the seismic event. For instance in Fig. 2.19, the error in the acceleration of 

Q1C represents about 0.5% of the maximum, the error in the velocity about 5%, 

and in the displacement about 25%. These numbers were more or less consistent 

for a large number of tested cases with signals that did not simulate digitizing 

noise, trigger truncation or expected final offsets in the displacements. The latter 

sources of uncertainties are expected to increase the errors in the final output, as 

will be shown when the processing method is tested for its correction effectiveness in 

Sec. 2.4.3. Hence, as has been speculated previously, the amount of processing error 

increases as the signal becomes more complex, but the amount of error that is added 

into an input accelerogram by the processing method varies from one case to the 

next, and cannot be exactly quantified. However, application of many analytically 

generated accelerograms to the processing routine can help get a better feel for the 

internal performance of the method. 

The way the processing-induced errors contaminate the input signal may also 

have significant implications on the choice of the high-pass filter cut-off frequency. 

Earthquake engineers traditionally emphasize the contamination of accelerogram 

by long-period noise. Their emphasis is motivated by the observations of many 

processed velocity and displacement records which exhibit long-period drifts. They 

rely on high-pass filters to remove these errors, and they choose the cut-off in such a 

way that the long-period behavior is no longer apparent in the processed records. In 

view of the previous discussions, this can compound the problem. Indeed, as shown, 

the largest source of long-period error when using the original Volume II method 

may not be the one contained in the recorded accelerogram, but that introduced 

by the Ormsby filter at the cut-off and roll-off frequencies. In the process, actual 

low-frequency information of significant scientific importance may also have been 

removed. 
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Another source of error that can be observed in the velocity (Fig. 2.19) is 

high-frequency noise, which is strongest at the beginning of the signal, but de­

cays rapidly. This high-frequency error is almost nonexistent in the displacement 

record, compared to the level of the filter-induced error. This processing noise is 

produced by the trapezoidal integration rule, which cannot integrate properly at 

high frequencies, as is shown in the comparison of its transfer function to the exact 

integration (Eqs. 2.3.12 and 2.3.13). Because of the initial arrival of the P waves 

in the accelerogram, or because of the faster decay of the high-frequency harmonics 

in the synthetic records, the acceleration usually exhibits high-frequency motions 

mostly at the beginning. Hence, after using the trapezoidal rule to integrate the 

acceleration into the velocity, the error is expected to be greatest at the beginning 

of the signal, as is shown in Fig. 2.19. Integration emphasizes the contribution of 

the lower frequency components over the higher frequencies. Hence, integration 

from velocity to displacement with the trapezoidal rule creates a lesser amount of 

error, as shown in Fig. 2.19. 

In summary, this section illustrated the versatility of the synthetic records in 

identifying the errors induced by a processing method and in evaluating its inter­

nal performance. This approach can be used on any processing method, without 

requiring expertise in digital signal processing, to pinpoint the exact source of the 

error, as well as the added amount it contributes to the input signal. The synthetic 

signals also prove to be quite useful in showing how the procesing errors and the 

input signals could combine to produce errors in the output signal which could have 

gone by unnoticed, had it not been for the comparison with the exact analytical 

counterpart. Synthetic signals are next shown to be even more useful in evaluating 

the correction effectiveness of a processing method. 

2.4.3 Correction Effectiveness of the Original Volume II 
Method 

A processing method is defined to have perfect correction effectiveness 

if it is capable of reproducing the exact acceleration, velocity and displacement at 

the recording site. This implies that the method can remove all the digitizing noise 

from the raw data, identify the missing initial conditions due to instrument trigger, 

and cope with the final displacements that may occur along a fault or within a 
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damaged structure. Although this ideal can never be achieved, it is possible for one 

processing method to correct better than others the errors in the input signal. 

Some aspects of the correction effectiveness of a method have been tested by 

monitoring both the acceleration and the displacement produced on a shaking table, 

and comparing the measured displacement with the one obtained after process­

ing and integration of the acceleration [Trifunac et al., 1973; Khemici & Chiang, 

1984]. These tests can only provide information on the processing method's ca­

pacity to identify final displacements, and possibly initial conditions, but are not 

flexible enough to measure and vary the noise level within the acceleration. This 

manner of testing a processing method's correction effectiveness is not only very 

time-consuming, but it also requires an elaborate and expensive laboratory setup. 

It is the purpose of this section to show how the correction effectiveness can be 

tested very simply and thoroughly with the synthetic accelerograms. 

In Sec. 2.3 an analytic expression was derived to describe an earthquake ac­

celerogram with or without final displacements. Methods to simulate the missing 

initial points due to trigger and added digitizing noise, for various earthquake sizes, 

were also presented. Each of these features: final displacement, initial truncation 

of the data, and digitizing noise, can be incorporated one at a time into the ex­

act synthetic acceleration. These can model accelerogram records for either large 

events (e.g., 0.5 g maximum acceleration) or small events (e.g., 0.05 g maximum 

acceleration). Separating the sources of error in the input will help to evaluate the 

correction effectiveness of the processing method in each of the cases. The correc­

tion effectiveness of the processing method can also be studied on the synthetic 

records contaminated with combined sources of error. Also, because of the ease 

with which the synthetic signals can be generated, the processing method can be 

tested with many different accelerograms. 

The following conclusions of the analysis are illustrated through the results 

obtained for only one of the synthetic signals, Q1. In the previous section, this same 

synthetic signal was used in its "simplest" form to study the internal performance 

of the Volume II method: it contained no noise to simulate the digitization process, 

it did not have missing initial points to model trigger truncation, and the final 
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displacement was zero. This signal is refered to as Q1 C. To distinguish it from the 

other forms of the signal the following notation convention is used. The added letter 

"N" means that the signal has added noise, "T" means that the initial points have 

been removed to simulate trigger effects, "U" means that the final displacement is 

nonzero, as opposed to "C" which corresponds to the case where there is no offset 

in the final displacement. The levels at which these effects are incorporated into the 

synthetic signal are denoted by letter "L" for a large earthquake and "S" for a small 

earthquake. For example Q1 UNTS is the synthetic signal Q1, which has nonzero 

final displacement, with added noise and initial trigger truncation to simulate small 

seismic events. 

Figs. 2.25 through 2.28 show the output acceleration, velocity and displace­

ment, as well as their respective errors based on the exact "uncontaminated" ana­

lytical values. All the signals are processed with the original Volume II method, in its 

normal operating mode. Unless it is mentioned otherwise, the low-pass Ormsby fil­

ter that is used in the high-pass filtering stages has a cut-off frequency fc = 0.105 Hz 

and a roll-off frequency fr = 0.125 Hz. The input signals used to illustrate this 

study of the Volume II method are, in the same order as the figures, Q1 U, Q1 CNL, 

Q1 CNS, Q1 UNTS. The conclusions obtained from each of these tests are described 

below. 

2.4.3.1 Effects of Final Displacement Offsets 

The way Volume II processes a record, which exhibits a final dis­

placement offset, is illustrated by the processing of synthetic signal Q1U (Fig. 2.25); 

the exact analytical data is shown in Fig. 2.3. As expected, because of the mul­

tiple linear correction steps within Volume II, the final offset cannot be recovered. 

Comparisons with the processing results of Q1C (Fig. 2.19), also show that the two 

signals produce very similar output records, providing no clue as to the possibility 

of a final offset. This could have been predicted since the only difference between 

a signal that has an offset in the displacement and one that does not, lies in the 

difference in the mean of the velocity. It is a nonzero mean in the velocity that 

produces a final offset in the displacement, when the initial value is equal to zero. 

Hence, removing the mean in the velocity, as is done in Volume II, regardless of 
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whether a final offset is expected or not, should indeed produce approximately the 

same displacement after integration. Consequently, this processing method cannot 

be used to study possible final displacement offsets, such as would be expected for 

motions recorded along a fault or within a damaged structure. 

The inability of Volume II to cope with permanent offsets can create other very 

large errors within the displacement signals. Comparison of the exact displacement 

Q1 U (Fig. 2.3), and its processed and integrated counterpart (Fig. 2.25), shows how 

much the processing has altered the signal. The most noticeable error occurs at the 

maximum of the record, which is decreased from its true value of 0.35, down to 

0.16. This is an error of over 90% at the peak. This is a particularly good example 

of how a processing method can significantly alter a signal to such an extent that 

it is no longer even an approximate representation of the actual motions. 

The large error in the displacement, due to the method's inability to recover 

permanent offsets, also produces additional errors in the processed acceleration and 

velocity. This is due to the steps within Volume II which adjust the velocity by a 

constant obtained from the least squares fit of the displacement, and subsequently 

to the equivalent steps which correct the acceleration from the velocity, as shown 

steps 11, 12 and 13 of Fig. 2.10. Compare the results obtained after processing of 

Q1G (Fig. 2.19) and Q1U (Fig. 2.25). The error in the velocity, which in both 

cases is a maximum at the initial value, has more than tripled from Q1G to Q1 U, 

increasing from 0.020 which represents 5% of the peak value, to 0.070 which is 18% 

of the peak. The high-frequency error at the beginning of the record, due to the 

trapezoidal integration rule, is still noticeable in the error of Q1 U. In Q1 G, the 

integration-induced error is of the same order as that resulting from the Ormsby 

filter (i.e., 5%). However, in Q1U, the trapezoidal rule error in the velocity is still 

5%, and contributes much less to the overall 18% error than does the long-period 

oscillation about the Ormsby filter transition frequency band. Similarly, comparison 

of the acceleration errors show that the level has more than doubled from Q1 G to 

Q1 U. This trend is noticeable in other synthetic traces. This is due to the way 

the signal must adjust itself to comply with the zero mean velocity requirement, in 

combination with the added filter error due to the Gibbs phenomenon. 
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It must then be concluded that, as expected, the original Volume II method 

is very ineffective in correcting signals which have a nonzero final offset in the 

displacement, since these cannot be identified or reproduced. It has also been 

shown that the error levels in the processed acceleration, velocity, and displacement 

are greatly increased in recorded signals which yield final displacement offsets. This 

could be particularly troublesome as it is often impossible to predict whether an 

actual accelerogram should exhibit a final displacement offset or not. Also the 

records from which an offset is expected are often those that are produced by very 

large levels of shaking, and hence of greatest scientific interest, and yet they turn 

out to be those in which the processing method generates large amount of error. 

2.4.3.2 Effects of Digitizing Noise 

To simulate the digitization process on an accelerogram, white 

noise is added onto synthetic signal Q1 C, as described in Sec. 2.2.4. Q1 CNL models 

the digitization noise level of a large event with peak acceleration of approximately 

50% g, with a signal-to-noise ratio equal to 500. Q1CNS models the digitization 

noise level of a small event with peak accelerations of about 5% g, with a signal­

to-noise ratio equal to 50. Hence, Q1 CNS is the synthetic signal Q1 C which is 

contaminated by 10 times more noise than Q1 CNL. The results of the processing 

by the original Volume II method on the noise-free synthetic signal Q1C (Fig. 2.19), 

and on the noise-contaminated signals Q1CNL (Fig. 2.26) and Q1CNS (Fig. 2.27) 

are compared to study how the increasing noise levels alter the corrected accelera­

tion, velocity and displacement. 

Adding noise in the acceleration changes its mean, and hence creates a linear 

drift in the velocity and a parabolic drift in the displacement. The only feature 

within Volume II which corrects this aspect of noise-induced errors are the repeated 

linear-trend corrections, which remove the mean in the acceleration, velocity and 

displacement. This, however, also makes it impossible to recover any possible final 

offset in the displacement, and can produce significant errors in the output signals, 

as was discussed in the previous section. Also, because laboratory tests have shown 

that the digitization process can be modelled as white noise, the error level due 

to this type of noise is equally shared on the average among all the frequencies of 
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the signal's spectrum. Volume II only removes the digitization noise outside the 

band-pass filter's roll-offs, but does not alter it, let alone decrease or remove it, 

within the frequency range defined by the the band-pass. 

A preliminary analysis has shown that the simulated digitization noise is still 

present in the processed accelerations. To examine more thoroughly how much of 

the noise is removed from the acceleration, and to identify the underlying errors, the 

ERA plots shown in Figs. 2.26 to 2.28 represent the errors between the noisy input 

acceleration and the noisy processed acceleration. The ERV and ERD plots in those 

figures represent the errors between the exact noise-free synthetic velocities and 

displacements and the noise-contaminated processed and integrated counterparts. 

Comparison of the plots of the corrected accelerations show that there is very little 

perceptible difference between the processed results of Q1C (ERA, Fig. 2.19) and 

Q1 CNL (ERA, Fig. 2.26). Since the ERA plots in these two figures are almost 

identical, it can be concluded that the simulated digitization noise affected the 

noise-contaminated acceleration in an identical manner before and after processing. 

The same remarks and conclusion apply for the noise-contaminated simulation of 

a small event such as Q1 CNS (ERA, Fig. 2.27). Hence, Volume II does not alter 

the nature and the level noise present in the signal, and has very poor correction 

effectiveness with regard to digitization noise. 

For large event simulations, the noise level is of the order of 10-2 (Fig. 2.9), and 

is comparable in magnitude to the processing-induced errors. The underlying error 

(i.e., without the digitization noise) in the acceleration after processing is greater 

by 1% when noise is added to simulate conditions for large events, than when there 

is no noise at all (ERA, Figs. 2.19 and 2.26). The errors in the velocity and the 

displacement are also of that same order. In the processed velocity, the digitization 

noise is still present, but it produces errors which are of the same magnitude as 

the trapezoidal integration rule, and are smaller than the filter-induced error. The 

same comments that were made on the processing errors due to Volume II on Q1C 

still hold for Q1 CNL, namely that a dominant source of error is the Ormsby filter, 

even after noise is added into the signal. This could have been predicted, since the 

error in the acceleration due to the filter internal performance is of the same order 
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as the noise level for large event simulations. Thus, for large events, the internal 

performance error due to the processing is of the same order of magnitude as the 

error due to digitization noise. 

The additional digitization noise would be expected to produce linear and 

parabolic drifts in the integrated records, due to the change in the mean accel­

eration. These differences are not apparent in Q1CNL (ERV and ERD, Fig. 2.26) 

since Volume II performs multiple linear-trend corrections to remove the temporal 

means of the acceleration, velocity and displacement, and the errors in the temporal 

means are an order of magnitude lower than the filter-induced error. Therefore, the 

processing method is correction effective in removing the errors in the mean due to 

the noise for untruncated large events, but the errors due to the poor internal per­

formance of the filter overshadow the possible differences in the processing results 

between the clean and noise-contaminated signals. 

When the noise level is increased to simulate small events, as in Q1 CNS (Fig. 

2.27), the differences in the processing errors of a clean and a noise-contaminated 

signal are more apparent. This is especially true in the plot of the processed and 

filtered acceleration (AN), which still exhibits high-frequency noise throughout the 

signal of the order of 10- 1 • This is a clear indication that Volume II does not remove 

digitization noise properly. For small event simulations, the errors in the corrected 

acceleration due to the digitization noise are one order of magnitude larger than the 

errors attributed to the processing method. Nevertheless, after processing of Q1CNS 

(Fig. 2.27), the errors in the velocity and displacement are comparable in magnitude 

to the errors found after processing of Q1C (Fig. 2.19). The largest difference 

between digitization noise simulation of large and small accelerograms is noticeable 

in the output error of the processed velocity. It appears to be a combination of 

the filter-induced effects, and the high-frequency digitization noise, which for small 

events significantly contributes to a change in the mean acceleration, and hence 

alters the way the velocity must adjust itself to comply with the zero mean velocity 

criteria imposed by the processing method. Because integration greatly reduces the 

contribution of the higher frequencies, the error in the displacement is still mainly 

that of the low-pass Ormsby filter used in the high-pass filtering stages. The errors 
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due to the change in the mean acceleration by the digitization noise are properly 

corrected for in this case since neither the velocity or the displacement drift away. 

One of the most noticeable features of the study of noise effects on the Volume 

II method is that, regardless of the noise level, the processing produces very similar 

accelerations, velocities and displacements, as can be seen in the comparisons of 

Q1 C, Q1 CNL, Q1 CNS. Hence, although the original Volume II method exhibits 

poor internal performance, because of its use of the Ormsby filter, and is relatively 

ineffective in removing the noise within the data, it is nevertheless consistent in 

producing similar signals over a wide range of noise levels. 

2.4.3.3 Effects of Initial Trigger Truncation 

The original Volume II processing method does not explicitly try 

to obtain the true value of the signal at the time of trigger. Indeed, the initial 

value comes up indirectly as a result of the removal of the linear trend in the 

acceleration, velocity and displacement, after the filtering and integration steps 

have been performed. It may have been presumed that the initial values obtained 

by the processing method are a close representation of the actual quantities. The 

synthetic accelerograms are used to show that, in fact, this is not always the case. 

There was no simulation of trigger effects in any of the previously studied cases 

(i.e., Q1C, Q1CNL, Q1CNS and Q1U), and the true initial acceleration, velocity 

and displacement are equal to zero for all of them. However, after processing with 

Volume II, the results show a great disparity in the evaluation of the initial con­

ditions. For Q1C (Fig. 2.19), the initial acceleration is estimated to be equal to 

0.02, which is the largest error in the signal at 0.5% of the peak; the initial velocity 

is -0.02, which is also the largest error in the record at 5% of the peak, and the 

same holds for the initial displacement at 0.05, which is equivalent to 25% of the 

peak. Thus, the relative error in the estimate of the initial data point is increased 

by about one order of magnitude for each successive integration step within Vol­

ume II. The error in the initial acceleration is very small, the error in the initial 

velocity is significant enough to be noticeable and could be easily misinterpreted 

as an actual truncation effect, but the error in the initial displacement is too large 

to be representative of any kind of earthquake-induced motion. Indeed, physically, 
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the first arrival of the high-frequency waves at the time of trigger is not expected 

to generate such large displacements. On the contrary, the displacements at the 

beginning of the event should be close to zero, and they should pick up with the 

arrival of the longer period waves. The error in the initial acceleration estimate 

increases to accomodate the additional digitizing-induced error when noise is added 

to the signal to simulate either a large or a small event, as is shown in the plotted 

results of Q1 GNL (Fig. 2.26) and of Q1 GNS (Fig. 2.27). However, the initial esti­

mate of the velocity and the displacement do not change much when noise is added. 

For Q1 U, the relative error in the initial conditions change slighty because of the 

improper handling of the final displacement offset. This causes the error in the 

initial velocity to be greatly increased from 5% to 20% of the peak, even though the 

errors in the initial acceleration and displacement do not vary much. The variations 

in the estimate of the initial values can be attributed to changes in the temporal 

means of the time histories induced by the digitization noise and the removal of the 

final displacement offset. 

The test cases show that the errors in the estimates of the initial conditions are 

usually the largest errors to be found within the processed signals. However, there 

is no definite pattern between the error of the initial estimate at the time of trigger, 

and the amount of missing data. Comparison of the processing-induced errors 

on many different synthetic accelerograms modelled for trigger truncation shows 

that the estimate of the initial acceleration is fairly reliable (0.5% error relative 

to the peak), the estimate of the initial velocity is often questionable (about 5% 

of the peak), but the estimate of the initial displacement is very uncertain (up to 

50% of the peak). Again, the errors in the estimate of the first data point after 

trigger increases by about one order of magnitude for each integration step. This 

significant increase in the relative amount of error is due to the combination of the 

triple filtering and correction of the signal, and the increase in the long-period error 

due to integration. 

It is interesting to note that the error level of the untruncated synthetic signals, 

with or without added noise modelled for small and large events, are approximately 

the same. The study of the correction effectiveness of Volume II with truncated 
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synthetic signals also produced very similar output results for any amount of trigger 

truncation. This implies that, as for the case of the noise-contaminated signals, the 

processing method handles trigger truncation in a consistent manner regardless of 

the extent of the missing data, and that it is the poor internal performance of the 

high-pass filter steps that largely dominate the errors. 

2.4.3.4 Effects of Combined Error Sources 

Noise, truncation and final displacement offsets can also be com­

bined in synthetic signals, and processed with the original Volume II method. An 

extensive study showed that regardless of the amount or nature of the input error, 

and regardless of the true temporal mean value of the signal, Volume II will always 

make the means of the acceleration, velocity and displacement zero. This in turn 

implies that, for any type of input error added to a particular synthetic record, the 

output signal will always be approximately the same, and the error in the output 

signal will usually be of the same order of magnitude. Thus, it is not the level of 

recording and digitization noise, but rather the poor internal performance of the 

processing method that governs the amount of error measured in the output records. 

The highest degree of combined input error is found in synthetic signals such 

as Q1 UNTS, which model digitization noise, start-up truncation (11 initial data 

points are dropped) and nonzero final displacement offsets for small events. Though 

a small earthquake is physically not expected to generate significant final offsets in 

the displacement, Q1 UNTS can be used as the more severe test case to study the 

correction effectiveness of the processing method. In that respect, Q1 G is the most 

favorable case to test the correction effectiveness of the processing method, since it 

contains none of the recording and digitization-induced input errors. 

The output acceleration, velocity and displacement obtained for Q1 UNTS with 

Volume II, as well as the respective errors are shown in Fig. 2.28. Disregarding the 

digitization error, the output error in the acceleration for Q1 UNTS is very similar 

to the results obtained for Q1 U, the corresponding synthetic signal which contains 

no noise or no truncation (Fig. 2.3). The maximum acceleration error relative to 

the peak is of the order of 0.5% in both cases. The main difference lies in the 

digitization noise which is still apparent in the processed and corrected output 
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acceleration of the noisy signal AN, indicating once again that Volume II is not 

correction effective in removing noise within the usable frequency band of the filter, 

as expected. There is still some evidence of digitization noise within the output 

velocity record VN, but the greatest share of the error comes from the long periods 

induced by the overshoot at the Orsmby filter cut-off and roll-off frequencies, and by 

the way the noise-corrupted velocity must comply to the zero mean criteria of the 

Volume II processing routine. In this case of course, the true mean velocity is not 

zero, since final displacement offsets are expected, which implies that the processing 

method induces even more error when making the temporal mean velocity zero. This 

explains why the relative error in the output velocity has gone up from about 5% 

for Q1 G, to about 20% for both Q1 U and Q1 UNTS. Hence, the error due to the 

non-identified final displacement offset seems to overshadow the errors that could 

have been induced by the digitization and recording processes. 

Once again, however, the output records of Q1 UNTS produced by the Volume 

II processing method are very similar to the output records of any of the other 

related signals generated by Q1, regardless of the sources or sizes of the input 

errors, for the same reasons that were explained before. In agreement with the 

previously studied signals, the error in the initial estimates is disparate and follows 

no specific trend. It is off by a factor of 50 in the acceleration, which represents 

however an error of only 0.1% of the peak value. The initial velocity is off by about 

a factor of 20, at a level comparable to 5% of the peak, and similarly the initial 

displacement is off by a factor of 40 which represents about a 6% error relative to 

the peak. 

2.4.4 Concluding Remarks 

In the study of the correction effectiveness of the processing method, it 

has been shown that there is very little variation in the results of the output records 

between Q1UNTS (Fig. 2.28), the worst scenario case, and Q1G (Fig. 2.19), the 

most favorable case. It was shown that the original Volume II processing method 

is ineffective in removing the digitization noise within the acceleration, in estimat­

ing initial values at the time of trigger, especially in the displacement, and it is 

completely incapable of recovering final displacement offsets, as may occur along a 
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fault or within a damaged structure. However, because the major effect of each of 

these sources of errors is to alter the mean of the signal, and because the processing 

method repeatedly removes the d.c. of the acceleration, velocity and displacement, 

the output signals will always be approximately the same regardless of the input 

errors, or the true value of the mean of the signals. In that respect, Volume II can 

be said to be consistent. 

It was also shown that Volume II is insensitive to digitization noise and trun­

cation because it is the internal performance of the method which dominates the 

error in the output signal. The error level is about 0.5% in the acceleration, 5% to 

10% in the velocity and 25% or more in the displacement. When the true record is 

one which should produce a nonzero final offset, the error in the processed velocity 

may increase up to 20%, and may exceed 75% in the displacement. 

In the case of the Volume II method, it was concluded that the poor internal 

performance is a result of the multiple use of the low-pass Ormsby filter used in 

the high-pass filtering stages, and the decimation and the mean removal from the 

acceleration, velocity and displacement. Also, Volume II did not have good correc­

tion effectiveness since it did not remove the digitization noise, nor did it properly 

estimate the true value of the signals at the time of trigger or recover existing final 

displacement offsets. Some of these sources of errors have been identified in the 

past, as will be discussed further in the next section; however, the testing proce­

dure proposed in this chapter presents a thorough and systematic way to quantify 

the amount of error induced by a correction method, as well as the amount of noise 

removed from an accelerogram-like signal. 

The purpose of Sec. 2.4 is to demonstrate the testing procedure rather than 

showing the specific problems of the original Volume II method. The latter was used 

because its computer code was readily available. It was widely distributed and used 

for accelerogram processing in the seventies. We stress that some of the sources of 

errors have been detected and corrected by various researchers in the 1980's. In the 

United States, at least, this version of the Volume II routine is no longer in use, and 

has been replaced by various corrected versions. It must be noted nevertheless, that 
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when it was first proposed in the early seventies, the original Volume II method was 

by far the best accelerogram processing method available at the time. 

2.5 Discussion of Other Processing Methods 

The previous analyses have shown how the versatility of the synthetic signal 

proved to be a valuable tool which permitted an in-depth study of the internal per­

formance and the correction effectiveness of the original Volume II method. Though 

some of the conclusions that resulted from the study have already been published 

by other researchers, the novelty of this approach lies in the systematic way any 

source of error can be measured and identified. The methodology that was used to 

study the original Volume II method is general enough to be applied to any other of 

the existing accelerogram processing methods, be it records from analog or digital 

accelerographs. 

In the last several years, many attempts have been made to improve what is 

defined herein as the internal performance and correction effectiveness of the orig­

inal Volume II processing method. The aliasing error induced by the decimation 

step has been identified by Fletcher, et al. [1980], and this step is no longer imple­

mented in most current processing methods. Because of the development of better 

digitization techniques, accelerograms are now routinely discretized at 0.01 sec, 

thus increasing the Nyquist frequency up to 50 Hz, and reducing the effects of high­

frequency aliasing. To limit the errors induced by the Ormsby filter, guidelines are 

now used to choose the high-pass cut-off frequency and ramp; these are selected 

on the basis of the low-frequency noise limitations of the instrument, the record 

length, and the faulting duration [Basili & Brady, 1978; Shakal & Ragsdale, 1984]. 

Nonetheless, errors due to the Ormsby filter are still expected to contaminate the 

processed accelerograms. The U.S. Geological Survey has substituted the nonre­

cursive Ormsby filter by the recursive Butterworth filter to decrease the amount 

of error induced at the low-frequency cut-off [Converse, et al. 1984]. However, re­

cursive filters distort the phase of the original signal, and an extra correction step 

is necessary to reestablish the proper phase of the accelerogram. Similarly, Shyam 

Sunder & Connor [1982] have proposed a recursive elliptical band-pass filter, which 
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will also induce some phase distortion. They also suggest the use of the Schuessler­

Ibler integration rule to decrease the errors induced by the trapezoidal integration 

rule. Khemici & Chiang [1984] propose a frequency-domain approach in which in­

strument correction, integration, and filtering with the Ormsby filter is performed 

in a single step. However, they assume that the temporal mean of the acceleration, 

velocity and displacement are zero, thus making it impossible to recover any final 

displacement offsets, and creating errors at and about d.c. Sunder & Connor [1982] 

suggest that the integration of the acceleration in the time domain should be per­

formed under the assumptions that the initial velocity and displacement are zero; 

this may also alter the temporal mean of the velocity and displacement if baseline 

correction is done by a simple offset. Converse, et al. [1984] propose to correct the 

error in the temporal mean of the acceleration by fitting a straight line through the 

final portion of the velocity. This assumes that the data has a relatively high signal­

to-noise ratio, and that no sources of error other than a shift in the acceleration 

baseline is responsible for the drift in the integrated velocity. 

Although all the changes suggested above are expected to improve somewhat 

the internal performance of the original Volume II processing method, these have 

not been thoroughly tested on earthquake-like signals for their effectiveness in de­

creasing the recording and processing errors, and in reproducing the exact motions 

of the event. Such an investigation can be easily accomplished by using the syn­

thetic accelerograms developed in Sec. 2.2, and the testing procedure described in 

Sec. 2.4, on any of the aforementioned accelerogram processing methods, as was 

done in this chapter for the original Volume II method. 

It would appear from such investigations that an ideal filter and integration 

scheme cannot be implemented in the time domain. Regardless of the amount of 

sophistication of the processing method, the internal performance of time-domain 

approaches will always be limited by the internal performance of the filters. These 

limitations can be reduced for methods that perform the filtering and the integra­

tion in the frequency domain. Also, a frequency-domain approach should require 

less computing time, since all of the correction steps can be performed through 
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multiplication by a single transfer function incorporating instrument correction, fil­

tering and integration, instead of the multiple convolution operations required by 

the time-domain approach. A frequency-domain accelerogram processing method 

is proposed in Sec. 3.3. 

Testing of the correction effectiveness of these processing methods would also 

show that, because of the uncertainties involved in the recording and digitization 

processes (i.e., missing data, added noise), it is impossible to retrieve the exact 

signal from the measured accelerogram. In other words, a deterministic solution 

for this problem does not exist; however, a most probable solution and its level 

of reliability can be found by describing the errors statistically, as will be seen in 

Ch. 3. Such a probabilistic approach to accelerogram processing would prevent 

engineers from being mislead in their studies about the degree of accuracy of the 

"corrected" records, particularly in the displacement histories. 



Input Running-Mean Decimation Ormsby Periodic Interpolation High-Pass 

F:req. Signal Filter (Hd and Low-Pass (H2 ) Extension (p = 10) Output 

Am pl. Tw = 0.4 sec Aliasing (0.05-D.l Hz) Low-Pass Output (step 10) 

0.05 0.10 0.099934 0.19888 0.20127 0.20127 0.20127 -0.10127 

0.10 0.10 0.099737 0.29530 -0.00354 -0.00354 -0.00353 0.10353 

4.90 - - - - -0.00354 -1.52 10-6 1.52 10-6 

4.95 - - - - 0.20127 2.09 10-5 -2.0910-5 

5.05 10.0 0.098945 0 - 0.20127 2.01 10-5 9.99998 

5.10 10.0 0.195563 0 - -0.00354 -1.4110-6 10.00000 

9.90 - - - - -0.00354 -4.1110-7 4.1110-6 

9.95 - - - - 0.20127 5.73 10-6 -5.73 10-6 

10.05 - - - - 0.20127 5.63 10-6 -5.63 10-6 

10.01 - - - - -0.00354 -3.97 10-7 3.97 10-7 

14.90 - - - - -0.00354 -2.15 10-7 2.15 10-7 

14.95 - - - - 0.20127 3.0110-6 -3.0110-6 

Table 2-1. Numerical analysis of the errors in a simple signal due to the high-pass filtering process in Volume TI. 
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ACCELERATION 
n 

x(t) = L:xk(t) 
k=l 

VELOCITY 
n 

.±(t) = l:±k(t) 
k=l 

xk(t) = fok xk(t)dt 

DISPLACEMENT 
n 

x(t) = I:xk(t) 
k=l 

Xk(t) =lot Xk(t)dt 

FOURIER AMPLITUDE SPECTRUM 
n 

X(w) = L:xk(w) 
k=l 

Xk(w) = fooo Xk(t)e-iwtdt 

CORRECTIVE TERM (0 MEAN VEL.) 
y(t) = x(t) + pte-aot sinwot 

ii(t) = ft(u(t)) 

y(t) =lot y(t)dt 

Yk(w) = fooo Yk(t)e-iwtdt 

Boundary Conditions 

ii(O) = ii(oo) = 0 

y(O) = y(oo) = 0 

y(O) = y(oo) = 0 

Yk(O) = Yk(O) = 0 

Figure 2.2. Process for generating analytic earthquake signals. 
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Figure 2-13. Ormsby filter transfer function with cut-off fc and roll-off fr. 
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Figure 2-14. Transfer function of the interpolation filter 
for decimation order P = 10 (M = 10 · N) · 
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Figure 2-15. Synthetic signal SIN1C processed with Volume II. 
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Figure 2-16. Synthetic signal SIN1C processed with Volume II. 
Case 2: NSKIPA = 10, NSKIPV = 1, NSKIPD = 1 

fc = 0.105 Hz, fr = 0.125 Hz 250 filter weights. 
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Figure 2-17. Synthetic signal SIN I C processed with Volume II. 
Case 3: NSKIPA = 0, NSKIPV = 10, NSKIPD = 10 

fc = 0.105 Hz, fr = 0.125 Hz 250 filter weights. 
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Figure 2-18. Synthetic signal SIN1C processed with Volume II. 
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Figure 2-19. Synthetic signal Q1C processed with Volume II. 
NSKIPA = 10, NSKIPV = 10, NSKIPD = 10 
fc = 0.105 Hz, fr = 0.125 Hz, 250 filter weights. 
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Figure 2-25. Synthetic signal Q1U processed with Volume II. 
NSKIPA = 10, NSKIPV = 10, NSKIPD = 10 
fc = 0.105 Hz, fr = 0.125 Hz, 250 filter weights. 
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Figure 2-26. Synthetic signal Q1CNL processed with Volume ll. 
NSKIPA = 10, NSKIPV = 10, NSKIPD = 10 
fc = 0.105 Hz, fr = 0.125 Hz, 250 filter weights. 
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Figure 2-27. Synthetic signal Q1CNS processed with Volume II. 
NSKIPA = 10, NSKIPV = 10, NSKIPD = 10 
fc = 0.105 Hz, fr = 0.125 Hz, 250 filter weights. 
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Figure 2-28. Synthetic signal QIUNTS processed with Volume II. 
NSKIP A = 10, NSKIPV = 10, NSKIPD = 10 
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Chapter 3 

PROCESSING OF ACCELEROGRAMS 
USING RELIABILITY BOUNDS 

3.1 Motivation and Methodology 

In view of the results obtained from the analyses of accelerogram filtering 

and integration methods performed on synthetic records, it is the purpose of this 

chapter to propose a novel, and possibly more appropriate, approach to processing 

of seismic data. 

As has been hinted by some of the new accelerogram processing methods, the 

advent of faster computers now makes it possible to perform all the processing 

and corrections in the frequency domain, without having to resort to convolution 

with finite sums and decimation in the time domain which are two of the largest 

sources of error in the Volume II method. In the frequency domain, the instrument 

correction, integration and possible high-pass filtering steps, which involve lengthy 

and separate convolution operations when a time domain procedure is adopted, can 

be replaced by a single multiplication representing the combined transfer function of 

each step. This also has the advantage of giving a much better internal performance, 

although there still are errors involved in computing the Fourier transforms of the 

accelerograms, as will be explained in more detail within this chapter. Moreover, 

it is common practice in most accelerogram processing methods to compute and 

plot the Fourier transform of the record. In standard processing methods this is 

done in the section called Volume IV. Thus, since the Fourier transform of the 

signal is to be computed anyway, there is not much more work involved in using a 

frequency domain approach. Actually, it may even prove to be more time efficient 

although it is necessary to obtain the inverse transform. Hence, in view of the 

preceding comments, it appears that a frequency domain procedure for integrating 

and correcting earthquake accelerograms is the better approach. 
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It has been shown that high-pass filters are a major source of error within 

the processed output records, because they alter certain frequency components by 

changing the amplitude (i.e., the Gibbs phenomenon in nonrecursive filters) or by 

changing the phase (i.e., recursive filters). So why are high-pass filters implemented? 

Mostly to remove the linear drift in the velocity and the parabolic drift in the dis­

placement due to a false estimate of the mean acceleration, and to remove the 

noise-contaminated long-period components of the acceleration which are substan­

tially increased after double integration. The analysis of the internal performance 

of the original Volume II method has proved that the errors induced by the fil­

ters were often greater than those due to digitization noise and trigger truncation 

of the original accelerogram. Moreover, these latter errors are still present in the 

"corrected" output records, indicating that the filters cannot properly perform the 

tasks they were intended to do. High-pass filters only partially remove the noise, 

and delete low-frequency information which could be of scientific interest. It has 

also been seen in Ch. 2 that the choice of the high-pass filter cut-off and roll-off 

frequencies made significant changes in the processed signals, and that to date there 

are no satisfactory physically-based criteria for the selection of these filter param­

eters. Since high-pass filters are a major source of internal processing error, and do 

not contribute much to the overall correction effectiveness of the method, the new 

processing procedure described within this chapter does not recommend the use of 

any high-pass filter. However, they can be easily incorporated and implemented 

within the program's structure if filtering is wanted. Also, filters can be used that 

do not change the phase or delete complete bands of the spectrum, and do not 

require an arbitrary choice of the filter parameters. These are the optimal filters, 

described in Ch. 4. If it is decided to use a filter to process the data, the procedure 

should be performed only once, as opposed to the multiple filtering which occurs 

within the Volume II routine for example. In effect, viewed from the perspective of 

the frequency domain, and after the integration process is completed, the deriva­

tion of the velocity and the displacement have involved the square and the cube 

respectively of the transfer function. As was seen in Ch. 2, multiple filtering of 

records increases the internal performance error in the processed signal, without 

significantly decreasing the error found in the input accelerogram. 
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Most processing methods make the temporal mean of the accelerogram zero. 

This is based on the fact that the mean of the total acceleration produced by an 

earthquake is indeed zero, since the velocity must start and end at zero. The miss­

ing data and digitizing noise alter the true temporal mean however, and there is 

no reason for this contaminated accelerogram to actually have zero mean. Thus, 

the drifts in the velocity and displacement in most processing methods are in part 

created by the method itself when it forces the accelerogram to have zero tempo­

ral mean. On the other hand, it is not possible to identify the exact mean of the 

recorded signal because of the unknown missing data and the uncertain amount of 

noise. Some methods also force zero mean both in the velocity and the displace­

ment, but this does not help to solve the problem since it may spuriously alter the 

lower frequencies, which in turn may increase the need to implement a high-pass 

filter. Systematically forcing the temporal mean in the velocity and displacement 

to be zero also makes it impossible to retrieve possible final displacement offsets. 

Although there may be some physical justification in forcing a zero temporal mean 

acceleration, as well as a zero mean velocity in certain cases, there is none regarding 

a zero mean displacement. Some exceptions in the velocity are for earthquakes that 

produce small levels of shaking, or for far-field records, since they are not expected 

to display final displacement offsets. In these cases, removing the temporal mean 

from the velocity is justifiable if data truncation effects are not substantial. The 

processing method proposed hereafter only forces the acceleration mean to be zero, 

without altering that of the integrated velocity or displacement, except in certain 

cases involving small seismic events and far-field records, and which are specified 

by the user of the method. 

In fact, because the original errors in the accelerogram (i.e., digitization noise 

and start-up truncation) are uncertain, there is no deterministic solution to this 

problem, contrary to what most processing methods seem to imply. However, it 

is feasible to determine from laboratory experiments the range of possible values 

these uncertain parameters can take, and assign a probability distribution to each 

of them. Therefore, it appears to be more suitable to produce the most proba­

ble acceleration, velocity and displacement, as well as their respective intervals of 
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confidence, computed on the assumption of probability distributions for the uncer­

tain parameters. Such an approach will make it possible to obtain accelerations, 

velocities and displacements which are the most likely to have occured during the 

seismic event based on the measured accelerogram and the most probable trigger 

truncation and digitization noise levels. 

In summary, this new approach to earthquake accelerogram processing proposes 

to treat explicitly the uncertainty in the mean acceleration and in the recording and 

digitization noise. The signal is then integrated twice, assuming probability distri­

butions for the initial velocity and displacement. The standard deviations of the 

acceleration, velocity and displacement are computed separately as a function of the 

digitization noise and the trigger level uncertainties, using the probability distribu­

tions assumed for the mean acceleration, initial velocity and initial displacement. 

Finally, the procedure produces plots which represent the most probable value of the 

processed signal, along with the corresponding standard deviations. In this chapter, 

filters are not implemented to process the data. However, alternatives to traditional 

high-pass filtering methods are discussed in detail inCh. 4. In this chapter, it is also 

assumed that the accelerogram that is being processed is the one obtained directly 

from the transducer without instrument correction. This assumption is reasonable 

since most transducers are calibrated for accelerations. For analog records digitized 

at 0.02 sec and obtained from instruments which have a 25 Hz natural frequency 

(i.e., SMA's), or for analog and digital records digitized at 0.01 sec and obtained 

from instruments which have a 50 Hz natural frequency (i.e., FBA's), the errors at 

the higher frequencies due to noninstrument correction are small and can be ne­

glected. Instrument correction can always be done as an initial step of the procedure 

if necessary. 

The acceleration mean-correction and integration, as well as the computation 

of the standard deviation levels for the acceleration, velocity and displacement will 

first be derived in the time domain (Sec. 3.2). This processing method is then tested 

using the synthetic signal approach presented inCh. 2. The equivalent formulation 

of the processing method is then derived in the frequency domain (Sec. 3.3) and 

is also tested for its correction effectiveness and internal performance. All of the 
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following theoretical derivations apply equally well to analog and digital records. 

Differences only arise in the value of certain parameters, as will be pointed out in 

the next section. 

3.2 Time Domain Formulation and Applications 

3.2.1 Assumptions and Definitions 

If Xn is the quantized sampled instrument signal at time tn = nllt (i.e., 

measured signal), fin is the true instrument signal at time tn (i.e., true acceleration 

at the site altered by the transfer function of the instrument), and en are the errors 

introduced in measuring and digitizing the signal fin, then: 

n=1, ... ,N. (3.1) 

The en arise from the quantization due to finite precision storage, from electrical 

noise for digital accelerographs or from uncertainty in the exact center of the optical 

trace for analog accelerographs, and from the unknown offset in the baseline. Some 

researchers have assumed in the past that the offset error is a linear drift. However, 

for analog accelerograph a straight trace is usually recorded along with the signal, 

and for digital accelerographs the drift is very nearly constant over the duration of 

the recording. Thus, the offset can be assumed to be constant in both cases. Define: 

N .. " 1""' .. 
Zn = Xn - N L- Xk , 

k=l 

n = 1, ... ,N, (3.2) 

where Zn is the baseline-corrected measured signal at time tn and, 

N 
.. ("" 1 """ .. ) hn = - en - N L- ek , 

k=l 

n=1, ... ,N. (3.3) 

Then, Eq. 3.2 can be rewritten using Eqs. 3.1 and 3.3: 

n = 1, ... ,N, (3.4) 

where, 
N N 

M 1 """("" .. ) 1 """ .. = N L- Xk - ek = N L- Yk . 
k=l k=l 

(3.5) 
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Thus, in Eq. 3.4, M is the unknown constant temporal mean of the signal fin, 

n = 1, ... , N, Zn is the zero-mean corrected data, and 6n is an uncertain error with 

a zero temporal mean. 

The goal is to estimate the unknown fin from the known Zn· The estimated 

fin can then be instrument-corrected by deconvolution to get an estimate of the 

actual acceleration at the location of the instrument, if instrument correction was 

felt necessary. Since M and the 6n are uncertain, they are described by probability 

laws which allow the uncertainty in the fin to be analyzed. For this purpose, en 
and M are modelled as independent Gaussian random variables with most probable 

value zero and variance ~1 a2 and d2 respectively. Also, en and em, for n =/= m, 

are modelled as independent random variables. It follows from Eq. 3.3 that the 6n's 

are Gaussian variables with most probable value zero and variance a2 , independent 

of M. Also, it will always be assumed that N is large, so the 6n 's can be treated 
" " 2 

as independent since for n =/= m, E[8n8m] = - Na_ 1 is almost zero. Hence, from 

Eq. 3.4, given the data Zn, n = 1, ... , N, the true accelerations are described by a 

Gaussian distribution such that: 

,n = 1, ... ,N. (3.6) 

A rationale for the choice of probability laws starts as follows. According to 

Eq. 3.5, M represents the temporal mean of the true signal fin, for the recorded 

points n = 1, ... , N. The temporal mean of the entire and true acceleration time 

history, from the beginning of the event up to its very end, is identically zero. 

Thus, -M represents the temporal mean of the missing and unrecorded signal. 

The error due to missing data can itself be separated into two categories: that 

missing at the beginning due to instrument trigger being induced by the shaking 

(i.e., analog instruments), and also possibly that missing at the end of the record due 

to premature instrument shut-off or lack of complete digitization. The truncated 

data at the beginning affects both the estimate of the true mean acceleration and 

the initial conditions for integration, whereas that at the end only changes the 

mean of the acceleration. To avoid complications due to cross-correlated terms in 
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the standard deviations of the integrated signal, the missing data at the beginning 

and at the end must be seperated in the expression of the temporal mean. 

Trigger truncation mainly applies to analog instruments, since digital recorders 

have a pre-event memory. Simulations on the truncated synthetic records suggest 

that whatever the earthquake size, the initial velocity and displacement are small. 

Thus, it will be assumed for integration purposes that the instrument triggered 

within the time span 2~t prior to the first recorded point and that there is at the 

most one point, iio, missing at the beginning of the record (Fig. 3.1). If there is 

more than one point missing due to instrument trigger, it should not be of great 

consequence for the estimate of the initial velocity and displacement, and the error 

that it causes in the total mean acceleration can be absorbed within the temporal 

mean error due to missing data at the end. Hence, the temporal mean of the 

recorded portion of the event, M, can be defined as a function of the missing initial 

point, y0 , and the sum T of the P missing end points defined by: 

N+P 

T = L Yv' (3.7) 

such that: 

M 1 ~ .. (iio T) = N L....t Yk = - N + N . 
k=l 

(3.8) 

In terms of these new variables, the true and uncertain acceleration can be written 

as: 
.. .. .. 1 ( .. ) 
Yn = Zn + 8n - N Yo + T , n = 1, ... ,N. (3.9) 

These equations imply that the uncertain acceleration iin is statistically de­

scribed by three random variables: Jn for the digitization noise, iio for the trigger 

truncation, and T for the shut-off truncation. As will be justified in Sec. 3.2.2, 

all three of these random variables can be assumed to be independent stationary 

processes described by a zero-mean Gaussian distribution, with respective variance 

a2 , b2 , c2 , or equivalently: 

E(Jn) = 0 

E(iio) = 0 

E(T) = 0 

u 2 (Jn) = a2 

2( .. ) - b2 u Yo -

u2 (T) = c2
. 

,n=1, ... ,N 

(3.10) 
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Others have shown that the above Gaussian model is appropriate for digitization 

noise in analog accelerograms [Trifunac et al., 1973]. Figs. 3.8 and 3.10 show that 

M is described by a Gaussian distribution such that: 

E(M) = 0 (3.11) 

Hence, the only parameters necessary to define the Gaussian distribution of the 

true acceleration fin are a2 , b2 and c2 , as described in Fig. 3.1, and as given by: 

b2 2 
2("" ) 2 c a Yn = a + N2 + N2 . (3.12) 

Integration of the discrete acceleration is performed with the trapezoidal rule. 

The uncertain velocity fin is given by the following equation: 

n-1 

Yn = Yo~t + ~t L Yk + ~Yn~t , 
k=1 

n = 1, ... ,N. (3.13) 

It is found to have a Gaussian distribution with most probable value, 

(3.14) 

and variance, 

2 ( • ) A 2 [ ( 2N - 2n + 1) 2 

b2 ( 3) 2 ( 2n - 1) 2 
2 ] a Yn = u.t 2N + n - 4 a + 2N c (3.15) 

These results are obtained by factoring out each term in Eq. 3.13 as a function 

of the independent variables fj0 , hn and T, which have the distributions given in 

Eq. 3.10. 

Similarly, double integration of the acceleration with the trapezoidal rule yields 

the following equation for the uncertain displacement Yn: 

n-1 2 

Yn = fion~t2 + ~t2 L [(n- k)ih] + ~: Yn , 
k=1 

n=1, ... ,N. (3.16) 
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The probability distribution of the displacement is also Gaussian, with most prob­

able value, 
n-1 2 

E(Yn) = fl.t2 I)n- k)zk + fl.: Zn, 
k=l 

(3.17) 

and variance, 

2 ( ) A 4 [ ( 2n
2

- 2n + 1) 2 
b2 (n3 

n
2 

n 1 ) 2 u y =i..l.t n - + - - - + - + - a 
n 4N 3 2 6 16 

+ en• ~~n+ 1 r c•] 
(3.18) 

The variances of the acceleration, velocity and displacement given in Eqs. 3.12, 

3.15, and 3.18, could be simplified under the assumption that N and n are large. 

Therefore, 

(3.19) 

(3.20) 

(3.21) 

Hence, the error in the acceleration is very small, and is a constant approx­

imately equal to the standard deviation of the digitizing noise a, which is small 

(Eq. 3.19). This implies that the most probable value of the acceleration as given 

by removing the mean from the recorded portion of the seismic event is a fairly good 

estimate. The standard deviation of the velocity (Eq. 3.20) increases as .Jn for the 

digitization noise and as ; for the end truncation, but decreases as 1 - ; for the 

missing initial point. In this latter contribution, it can be shown that b2 contributes 

both as a constant for the uncertainty in the initial velocity y0 , and as (;)2 (also a 

coefficient for c2 ) for the uncertainty in the temporal mean M. The cross-product 

-2; in the first term of Eq. 3.20 describes the correlation between the missing 

initial data and the uncertain temporal mean. Therefore, near the beginning of the 

record, it is the trigger truncation that dominates the error in the velocity; however, 
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this error is small since it is of the order of bl:l.t. But as n approaches N, the error 

is mostly induced by the digitization noise and the mean of the missing end points. 

The relative importance of these last two terms depends on how the product N a2 

compares to c2 • However, it can be concluded that in the limit for very large N, the 

uncertainty in the velocity is mainly due to the noise and increases as the square 

root of time. 

The standard deviation of the displacement (Eq. 3.21) increases as n for the 

trigger effect, which is also the dominant source of error near the beginning of 

the record, although small. However, as n approaches N the uncertainty becomes 

dominated by both the digitization noise, as Jn3, and the unknown temporal mean, 
2 

as ~. Again the relative contribution of these terms depends on how a2 and N 

compare to b2 and c2 • But in the limit for very large N, the uncertainty due to 

the noise will be quite large since it increases approximately as Jn3. Hence, for 

the acceleration, velocity and displacement, the error in the signal is dominated 

by the noise, and the assumption on the missing initial point. Also, the standard 

deviations are independent of the integrated time histories and only depend on the 

time, and the noise and truncation levels as defined by a, b, and c. Thus, for a set 

of records obtained under similar conditions, the standard deviations of the time 

histories need only be computed once. 

It is also possible to assign probability laws to the missing initial velocity and 

displacement. These laws will depend on the assumptions made on the missing 

initial acceleration, and can be generally assumed to be Gaussian, with certain 

means and variances: E(y0 ), u 2 (y0 ), E(y0 ), u 2 (y0 ). It was assumed earlier in this 

section that the instrument triggered within the time 2l:l.t prior to the the first 

recorded point; thus, the missing initial velocity and displacement are given by the 

trapezoidal rule: 

and, 

. .. l:l.t 
Yo= Yo2, 

.. l:l.t2 
Yo =Yo4 · 

(3.22) 

(3.23) 
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Thus, according to Eq. 3.10, they are described by a Gaussian distribution such 

that: 

E(ilo) = 0 

for the initial velocity, and 

E(yo) = 0 

2(. ) ~t2 2 u Yo = --b 
4 

2( ) - ~t4b2 u Yo ---
16 

(3.24) 

(3.25) 

for the initial displacement. The variances obtained for y0 , y0 , and y0 show that 

with each integration, the error in assuming zero initial conditions becomes smaller 

by ~t. This confirms the remarks that were made in Ch. 2 regarding the low 

probability of having large initial displacements such as those produced by the 

Volume II processing method. 

From tests performed on analog and digital instruments located side by side, 

it would appear that triggering of the analog instruments for strong shaking often 

occurs within the time span ~t prior to the first recorded point [Iwan et al., 1984], 

and for such cases the "missing" initial acceleration, velocity and displacement are 

exactly zero. This is a less conservative condition than the one adopted in the 

previous analysis, for which it was assumed that the instrument triggered within 

the time span 2~t prior to the first recorded point. For small events it could 

be possible for more than one point to be unrecorded initially. In such cases the 

error in the acceleration temporal mean due to the missing initial points can be 

incorporated into the error in the temporal mean due to the missing end points 

without significantly affecting the reliability bounds of the time histories. 

An approach similar to the one used to compute Eqs. 3.12 to 3.18 could be used 

to obtain the most probable time histories and standard deviations for instrument­

corrected accelerograms. In this case, the measured, discretized and baseline cor­

rected fin (Eq. 3.9) must be convolved with the impulse response function of the 

instrument. The probabililistic description of the acceleration, velocity and displace­

ment corresponding to Eqs. 3.11 to 3.18 must be recomputed accordingly. These 

derivations can become intricate and messy. In the expressions for the standard 

deviations, they are only expected to alter the uncertainties arising from errors at 

the higher frequencies of the recorded accelerogram, which affect the acceleration 



-100-

time history to a small extent, but have little influence on the velocity and displace­

ment. Hence, the effect of instrument correction on the standard deviations can be 

neglected, and Eqs. 3.12, 3.15 and 3.18 can be used as a close approximation for the 

uncertainties in the instrument-corrected acceleration, velocity and displacement as 

well. 

The most probable values and the uncertainties for the integrated velocity and 

displacement in Eqs. 3.13 and 3.18 were computed under the zero initial velocity 

assumption. As will be seen in the Sec. 3.2.3, to avoid unrealistic drifts in the dis­

placement time histories of small or far-field events due to noise and truncation, the 

velocity could be assumed to have zero temporal mean. For such cases, the tem­

poral mean velocity term, Jv 2:~1 Yi, should be removed from Eq. 3.13, and the 

integrations and uncertainties computed accordingly. It is expected that the result­

ing displacement standard deviation initially behaves as in Eq. 3.18, but approaches 

zero near the end of the event mainly as a function of the P missing and uncertain 

end points. Unfortunately, because little is known about the missing end data, as 

will be explained in Sec. 3.2.2, a reasonable estimate of the standard deviations 

computed under the zero temporal mean velocity condition cannot be obtained. 

Hence, Eqs. 3.15 and 3.18 will be used although they may be too conservative. 

Eqs. 3.9 to 3.25 describe the probabilistic behavior of the acceleration, velocity 

and displacement in its most general form, as a function of only three variables: 

a, b, and c, representing the standard deviations of the sources of error. In the 

following section numerical values for a, b and c are suggested which are appropriate 

for some analog accelerographs, and their effect on the standard deviations of the 

acceleration, velocity and displacement are discussed. 

3.2.2 Description of the Uncertainties 

The variances of the digitization noise, a2 , and of the initial missing 

point due to trigger b2 , can be easily quantified. Laboratory tests on several analog 

accelerograms have shown that the digitization noise can indeed be modelled as 

Gaussian white noise with a most probable value of zero, and standard deviation 

a =0.001 g (Ch. 2). The value of b can be obtained by considering the trigger 

mechanism of analog accelerographs. Since the instrument starts recording as soon 
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as an acceleration greater than approximately 0.01 g is detected, according to the 

assumptions the event must have occured within only one tit prior to the first point, 

or equivalently somewhere between iio and Yl· Hence, the missing initial point of 

the record, iio, should be less than approximately 0.01 g. Assuming that b is equal 

to one-third of the nominal trigger level, or 0.0033 g, for a Gaussian distribution, 

implies that there is a 99.8% probability that the missing data point is below 0.01 

g. This is consistent with the expected behavior of the trigger mechanism. If these 

two values are adopted for the standard deviations of both the digitizing noise and 

the trigger truncation error, then the following ratio is established: 

10 
b= -a. 

3 
(3.26) 

On the other hand, assigning a value for the standard deviation, c, to the un­

known end mean, T, is a much more subjective problem. It should be theoretically 

possible to perform many experiments in which earthquake-like signals are recorded 

with standard analog accelerographs which shut off automatically, and then mea­

sure the error induced by the missing end portion of the motion. Based on the 

results of these experiments, a probability distribution could then be defined for 

T. Unfortunately, no such experiments have been performed to date, and it will be 

necessary to rely on judgement to evaluate c. 

The standard deviation c depends on the standard deviations of each of the 

P missing end points iiv, for p = N + 1, ... , N + P, which have a nonstationary 

behavior as the signal decays down to rest. Nevertheless, it may be possible to 

assign bounds to the combined uncertainty c arising from the missing end points. 

In the most favorable case, it can be assumed that the data missing at the end is so 

small that its trace on the film would have been a straight line, and thus it would 

have a constant standard deviation u(iip) equal to that of the digitizing noise a. So 

under this assumption, the lower-bound estimate of the variance ofT is : 

(3.27) 

According to the shut-off mechanism, analog instruments stop recording several 

seconds after the passage of the last acceleration greater than approximately 0.01 
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g. So, if the recorded data has been digitized to the end, there is a very low 

probability that the missing portion of the signal contains data greater than 0.01 g. 

Hence, even though the signal comes down to rest at the end of the event, the least 

favorable case is to assume that the missing end data is stationary with a constant 

variance equal to one third of the nominal shut-off level, or 0.0033 g. This is also 

the value assigned to b to describe the error due to instrument trigger. Hence, from 

Eq. 3.26 the upper-bound estimate of the variance of T is: 

(3.28) 

However, a more realistic description of the problem is to assume that on the aver­

age, after instrument shut-off, the level of the signal decays linearly down to rest. 

This implies that the variance ofT is: 

(3.29) 

It remains nevertheless, that these expressions for c2 are given as a function of the 

number of missing end points P, which is itself an unknown. It might be possible to 

avoid dealing with the estimate of c2 altogether, if it can be proved that in certain 

cases the missing end data does not contribute much to the total error. This involves 

studying the range that P can take in the expressions for a 2 (yn) (Eq. 3.15) and 

a 2 (Yn) (Eq. 3.18) so that the terms containing care small and can be neglected with 

respect to the terms describing the uncertainty of the digitization noise, a, and the 

trigger truncation, b. As n approaches N, the c terms in those equations would in 

practice remain negligible as long as they are one order of magnitude smaller than 

the leading term in a, or equivalently as long as the following condition is met: 

(3.30) 

Hence, for c2 to satisfy the condition in Eq. 3.30, there must be a trade-off between 

the number of missing end points and the level of uncertainty assigned to each of 

them. Or in other words, the more data points are missing, the smaller the level of 

the missing signal must be. However, the above condition would be easier to satisfy 

if the number of digitized points, N, is large. 
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According to the condition in Eq. 3.30 and under the most favorable assump­

tion that the missing end data produces the same level of error as the digitization 

noise, as expressed in Eq. 3.27, up to 10% of the earthquake could be unrecorded 

or undigitized without significantly affecting the confidence intervals of the accel­

eration, velocity and displacement. Similarly, under the worst case (Eq. 3.28), if 

less than 1% of the data is missing then the effect of the missing end data can be 

neglected. Most realistically however, according to Eq. 3.29, this number can be 

safely increased to 3%. Such an assumption can be acceptable, under the condition 

that the recorded data has been fully digitized up to the very end of the record. 

This can be easily accomplished with modern digitizers, and digital recorders, and 

should become common practice. If portions of the recorded data are not digitized, 

then values that must be assigned to the variance of T will have to be larger than 

b because the instrument had not yet been automatically shut-off. This in turn im­

plies that the number of missing points P would represent an even larger proportion 

of the total record, and thus according to Eqs. 3.15 and 3.18, would unnecessarily 

and significantly increase the level of error in the velocity and in the displacement. 

For digital accelerographs the value of the uncertainties are typically smaller 

than those suggested above for analog instruments. Because of the pre-event mem­

ory, there are no missing points in the initial portion of the record. Hence, for 

accelerograms obtained from digital recorders, the first data point fj0 is at rest with 

an "uncertainty" b = 0. Similarly there should be no error due to missing data at 

the end of the event, and according to the previous paragraphs the c terms can be 

neglected in the equations describing the standard deviations of the acceleration, 

velocity and displacement. The uncertainty due to the noise, a, is primarily gov­

erned by the quantization of data at 12 bits or 16 bits, and may be smaller than 

for analog accelerographs. 

The errors that are modelled above in the treatment of the uncertainties are 

those that are the most commonly found in records obtained from analog and digital 

accelerographs. Rare errors such as instrument malfunction and loosening of the 

instrument housing are not considered here. It would be difficult to explicitely 
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treat the uncertainties of such errors, since it is hard to assign probabilities to their 

existence within the records. 

In the following section, the time domain approach using the probabilistic de­

scription of the uncertainties for digitization noise and signal truncation is tested on 

the synthetic records. It will be assumed that the contribution of the end truncation 

can be neglected under the conditions described by Eq. 3.30. 

3.2.3 Application to Synthetic Records 

The internal performance and the correction effectiveness of the time 

domain processing method with treatment of the uncertainties have been tested 

with three different synthetic signals with and without final displacement offset, and 

with various levels and combination of noise and trigger truncation. The following 

analyses and conclusions apply for all the tested cases, but are illustrated with the 

results obtained for synthetic signal Q11 only. 

From the nomenclature convention used in Ch. 2, recall that the initial "C" 

stands for a signal whose displacement decays down to zero, "U" is for one that has 

a nonzero final offset, "T" is a record that is truncated at the beginning to simu­

late instrument start-up, "N" is for a signal that contains digitizing noise. These 

uncertainties are modelled for two levels of shaking; "L" is for a large event which 

has a maximum acceleration of the order of 50% g, and "S" is for a small event 

which has a maximum acceleration of the order of 5% g. Each of these versions 

of the record, Q11C, Q11GNL, Q11GNS, Q11GTL, Q11GTS, Q11U, Q11CNTL, 

Q11GNTS, Q11UNTL and Q11UNTS are shown in Figs. 3.2 through 3.11 respec­

tively. In all of the plots for large events ( "L") 1 unit on the y-axis of the acceler­

ation velocity and displacement represents lm/sec2 , 1m/sec, and lm respectively. 

For small events ("S"), 1 unit on the y-axis represents O.lmjsec2 , O.lmjsec, and 

O.lm respectively. These plots show on the left-hand side the processed and most 

probable acceleration, velocity and displacement (solid line) as well as their ex­

act analytic counterparts (dotted line). On the right-hand side is shown the error 

between the exact and processed signals for each of the output records. 
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Signal Q11 is composed of 250 frequencies between 0.05 Hz and 25 Hz, and 

is generated at time intervals of 0.01 sec, as described in Sec. 2.2. The synthetic 

acceleration time history is assumed to be nearly zero after 20 sec, and is stored at 

a precision of six decimal points. As explained in Ch. 2, errors in the acceleration 

temporal mean of 10-6 are thus expected, as well as quantization errors of the order 

of 10-7 • 

3.2.3.1 Assessment of the Internal Performance 

The internal performance of the time domain processing method only 

depends on the trapezoidal-rule integration method, which is the only step within 

the program that could generate error in computing the most probable velocity and 

displacement. The trapezoidal rule is simply tested by integrating the noise-free 

and untruncated signal Q11C, and by comparing the error between the processed 

and the exact record, as shown in Fig. 3.2. With this method the processed signals 

are the most probable ones, and are computed with the assumption that the most 

probable temporal mean of the acceleration is zero. There is no visible difference 

between the exact and the processed records on the left of Fig. 3.2, but the error 

plots on the right help in better identifying the errors induced by the processing 

method. The acceleration error plot, shows that there is a constant error in the 

mean equal to -2.6 10-6 • This error comes from the step within the routine which 

removes the temporal mean in the acceleration to produce the most probable value 

of the signal. The difference between the processed and the exact signal reflects 

the change in the mean due to the record truncation at 20 sec and the quantization 

accuracy. This error is very small and is barely noticeable in the velocity error, 

but it is partly responsible for the parabolic drift in the displacement, although it 

remains quite small. 

The error in the velocity is predominantly that of the trapezoidal rule, which 

cannot properly integrate signals with high-frequency content. As was mentioned in 

Ch. 2, the error is greatest at the beginning of the synthetic signal because the high 

frequencies have not significantly decayed. In real accelerograms, the same error 

would also exist because of the first arrival of the P waves. The maximum error 

it creates is small however, and represents less than 1% of the maximum velocity. 
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The trapezoidal-rule error at high frequencies is still apparent at the beginning of 

the displacement record, at levels equivalent to less than 0.1% of the maximum. 

The drifting problem in the displacement is due to truncation of Q11C at 20 sec 

and to quantization accuracy of the acceleration data, and shows up at the end as 

a parabolic function. The combined sources of error represent about 0.1% of the 

maximum displacement. 

The processing method is also capable of capturing a nonzero final displacement 

in a signal which contains no digitizing noise or instrument start-up simulations, 

as illustrated with Q11 U in Fig. 3.7. The displacement record shows that there 

is no observable difference between the exact and the processed signals, and that 

the behavior of the record as it decays down to rest is properly replicated. As was 

discussed for Q11 C (Fig. 3.2), the greatest source of error remains the change in 

the mean acceleration due to finite precision and truncation of Q11 U at 20 sec, and 

is of the order of -2.4 10-6 • This produces an error in the displacement which is 

less than 0.1% of the exact maximum, and is negligible in practice. 

Hence, it can be concluded that the internal performance of the time domain 

processing method is good since it adds relative errors of less than 1% to the output 

records, which are solely due to the trapezoidal integration rule. The other errors 

observed in the processed signals arise from errors in the temporal mean acceleration 

which existed before processing, and are not a reflection of the internal performance 

of the correction and integration method. 

3.2.3.2 Assessment of the Correction Effectiveness 

As for the original Volume II method described in Ch. 2, the correction 

effectiveness is tested by studying how well the processing method is capable of 

removing digitization noise and of coping with missing initial data. The effect 

of digitizing noise alone is shown in the plots of the processed results, for large 

and small event simulations, in Fig. 3.3 for Q11 CNL and Fig. 3.4 for Q11 CNS 

respectively. In each of these records, the same noise sample is used to contaminate 

the synthetic signal Q11 C, but it is scaled for either small event or large event 

simulations. 
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The processing method presented in Sec. 3.2.1 does not attempt to remove the 

digitizing noise within the recorded data. The digitizing noise, modelled as white 

noise, affects the whole frequency range of the signal including the d. c. component. 

Since the data is processed with the assumption that the most probable temporal 

mean of the acceleration is zero, the error that appears as drifts after integration 

is due to the changes in the temporal mean of the acceleration induced by the 

added digitization noise. Furthermore, the error in the mean acceleration is larger 

as the relative noise level becomes more important. For the large event Q11 GNL 

(Fig. 3.3) the maximum acceleration is of the order of 30% g, and the noise adds an 

error at each data point of about one thousandth of a g, which represents 0.3% of 

the peak. Similarly for the small event Q11GNS (Fig. 3.4), the maximum acceler­

ation is approximately 3% g and the noise-to-signal level which is ten times larger 

corresponds to about 3% of the peak. This difference in the noise level between the 

large and small event simulations is observable in the tail end of the acceleration, 

where the digitizing noise is much more predominant in Q11 GNS (Fig. 3.4) than 

it is in Q11 GNL (Fig. 3.3). As a result of the digitization noise, the mean in the 

acceleration has increased by 0.0001 for Q11 GNL and by 0.001 for Q11 GNS. 

The combination of having a noise-contaminated signal and of removing its 

temporal mean creates a shift in the acceleration which forces the velocity record 

to assume a parabolic shape with zero final value. This phenomenon is particularly 

noticeable in Fig. 3.4 for the small event simulation, in which the shift in the mean 

is greatest and is responsible for an error in the velocity equivalent to 12% of the 

exact maximum. For large events (Fig. 3.3), the error in the velocity due to the 

shift in the acceleration mean represents 1.2% of the maximum, and is at about 

the same level as the high-frequency error from the trapezoidal integration rule. 

Hence, when the digitizing noise in the acceleration is increased tenfold, so is the 

error it produces in the velocity, as expected. It is also interesting to note that, 

apart from the difference in scales, both the large event model ( Q11 GNL, Fig. 3.3) 

and the small event model (Q11GNS, Fig. 3.4) alter the velocity in very much the 

same way to conform to the assumptions, as is seen in the error plots. 
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The departure of the processed velocity from its true zero temporal mean value 

creates a drift in the displacement which is greater as the noise level is increased. 

The error in the displacement is a combination of a parabolic function due to the 

shift in the mean acceleration, and a linear function due to the change in the mean 

velocity imposed by the method. This is seen in both the displacement error plots 

for Q11GNL and Q11GNS, in which the error first appears as a linear slope, before 

tapering off at the end of the signal. Again, both event sizes exhibit exactly the 

same shape for the displacement error, except that the one for the small event 

is ten times larger than that of the large event, and represents a 250% difference 

relative to the maximum. Hence, the digitization and processing errors are treated 

as expected, since the noise sample for the small event is ten times larger than that 

for the large event. The processing method as presented so far does not try to 

correct for the displacement drifts created by uncertain sources such as digitization 

noise, but as will be discussed later the standard deviations will properly describe 

bounds for these errors. 

The effect of simulated start-up truncation is discussed next. Figs. 3.5 and 

3.6 show the processed results of synthetic signals Q11 GTL for large events, and 

Q11 GTS for small events, respectively. To comply with the model of the start-up 

mechanism, 3 data points, or 0.03 seconds, have been removed from the beginning 

of Q11GTL, and 29 data points, equivalent to 0.3 sec, have been truncated from 

the beginning of signal Q11 GTS. These synthetic signals are not corrupted by 

digitization noise. Removing the initial points in the acceleration is expected to 

change its temporal mean, as is seen in the error plots of the acceleration. For large 

events the error is about -2.0 w-5 , and for small events it is about one hundred times 

larger than that at 1.2 w- 3 . After integration, the error in the velocity appears as 

a linear drift, where the slope is equal to the error in the mean acceleration. For 

large events ( Q11 GNL, Fig. 3.5), the error in the velocity is very small compared 

to the trapezoidal-rule errors at high frequencies. The combination of these two 

errors represent a total of less than 1% of the maximum velocity, and are minute 

enough not to cause an observable difference between the processed most probable 

signal and its exact synthetic counterpart. However, in small events, the error 

in the velocity reaches up to 7% of the maximum and is predominantly induced 
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by the error in the mean acceleration due to trigger truncation. The difference 

between the exact and processed velocity for small event models is clearly visible 

(Q11GTS, Fig. 3.6). Nevertheless, it is the processed displacement record that is 

the most affected by the trigger truncation. For the same reasons as for the noise 

simulation, the errors in the temporal means of the acceleration creates a drift in the 

displacement error which is parabolic in shape. This produces only a small error at 

the end of the displacement for Q11CTL (2% of the exact maximum), but the error 

is more important for Q11 GTS, and represents 200% of the peak displacement. 

However, the processing method takes these errors into account, as will be seen 

when reliability intervals are discussed. 

The synthetic signals can also be used to study the evaluation of the first ac­

celeration, velocity and displacement point after trigger. The processing method 

makes the assumption that the event started within the two time steps prior to 

the first recorded point. Hence, only one point is uncertain, since the first point is 

assumed to be exactly zero for integration purposes. Forcing the temporal mean 

of the signal to be zero affects the evaluation of the most probable initial accel­

eration, velocity and displacement. The error plots of Q11 CTL (Fig. 3.5) and 

Q11CTS (Fig. 3.6) show that the inital estimates differ from the exact value by 

only a small amount. The largest error is found for the initial estimate of the ve­

locity in Q11 CTS, but represents only an error of 7% relative to the peak, even 

though a total of 29 points are missing because of trigger simulation. Nevertheless, 

the assumptions of the processing method produce excellent estimates for the most 

probable initial displacements regardless of the truncation level, as well as estimates 

for the most probable initial accelerations which only differ by the change in the 

temporal mean. 

In summary, the truncation of the synthetic signal at 20 sec and quantization 

accuracy are responsible for an error of the order of 10-6 in the acceleration, while 

the trapezoidal-rule integration scheme produces errors of the order of 10-3 in the 

velocity. The combination of these two errors results in changes in the displacement 

of the order of 10-3 . For large event simulations, the digitizing noise alters the 

velocity by 10-3 and the displacement by 10-2 • For such events the instrument 
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start-up is responsible for changes in the temporal mean acceleration of 10-5 , which 

is one order of magnitude greater than the truncation after 20 sec and quantization 

effects. The velocity is still dominated by the trapezoidal integration rule errors at 

10-3 , and combined with the start-up truncation effects amounts to an error of 10-3 

in the displacement. Hence, for large events, it is the noise that is the predominant 

source of error. For small event simulations, the digitization noise creates an error 

of the order of 10-2 in the velocity, and 10- 1 in the displacement. Initial instrument 

truncation changes the mean of the acceleration by 10-3 , producing an error of order 

10-2 in the velocity and 10- 1 in the displacement, but at only half the amount of 

that due to digitization noise. Hence, for small events, the digitization noise is 

also expected to be the dominant source of error in the processed signals, but the 

instrument start-up truncation effects are no longer negligible. The combination of 

these latter errors are several orders of magnitude larger than the errors induced 

by the trapezoidal integration rule. As will be seen in Sec. 3.3.3, these levels of 

errors will be significantly increased when the synthetic records are tested for end 

truncation effects. 

The next four figures, Figs. 3.8 through 3.11, show how well the processing 

method handles cases where digitization noise, trigger truncation and final displace­

ment offsets are combined together and modelled for both large and small seismic 

events. Q11 CNTL (Fig. 3.8) is the synthetic signal which best models an accelero­

gram obtained from a large seismic event with no final displacement. As predicted 

in the previous paragraph, the error in the processed signal is predominantly due to 

the digitizing noise. Indeed, there are only slight differences between the error plots 

of Q11 CNL, the signal with no instrument truncation effects (Fig. 3.3), and their 

respective counterparts in Q11 CNTL (Fig. 3.8) which has 3 data points missing at 

the beginning. For small event simulations, as illustrated by Q11CNTS (Fig. 3.9), 

the output errors in the velocity and displacement have increased by 50% from 

the case where no instrument truncation effects are included (Q11CNS, Fig. 3.4), 

although there is little change in the shape of the error. This difference between the 

two cases corresponds almost exactly to the error introduced in the output signals 

by start-up truncation alone ( Q11 CTS, Fig. 3.6). Hence, this suggests that the un­

certainties produce additive errors in the processed output records. This result also 
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follows mathematically from the fact that the noise and truncation lead to additive 

uncertainties in the mean acceleration, and noise in the acceleration is additive by 

definition. 

The final displacement offsets are modelled along with digitization noise and 

instrument truncation in synthetic record Q11 UNTL (Fig. 3.10) for large events, 

and in Q11 UNTS (Fig. 3.11) for small events. It should be noted that it is very 

unlikely that a small earthquake produces a final offset in the displacement at 

the Earth's surface, and hence the synthetic signal Q11 UNTS is unlikely to be 

representative of a seismic event. Nevertheless, it can be a good approximation of 

the worst kind of signal the processing method is expected to correct and represents 

a bound for the correction effectiveness. It turns out, however, that the errors in 

the acceleration, velocity and displacement after processing are nearly identical to 

those obtained previously for Q11CNTL and Q11CNTS. The remarks that were 

made in the previous paragraph then also apply to signals with final displacement 

offsets, and it is concluded that final displacement offsets do not affect the correction 

effectiveness of the processing method. 

From the processing examples illustrated in the previous plots, it was shown 

that the largest errors were produced in the displacement time history of small 

event simulations by the relatively high levels of noise and truncation. The large 

drifts in the displacements result from the fact that the acceleration is assumed to 

have zero temporal mean, although the mean can be significantly altered by noise 

and missing data. Also, the initial velocity is assumed to be zero, which imposes 

the final velocity to be zero. This creates a spurious nonzero mean in the velocity 

time history which is reflected by drifts in the displacement time history with zero 

initial value. 

When using this processing method on real accelerograms, the error in the 

displacement records can be reduced for small levels of shaking (i.e., far-field record 

or small event) by considering the physical constraint that such earthquakes do 

not produce nonzero final displacement offsets. This constraint is implemented by 

imposing that the temporal mean velocity is equal to zero, which reduces the drifts 

from the displacement signal by forcing the final displacement to be zero when the 
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initial displacement is assumed to be zero also. This correction step significantly 

reduces the error between the exact and the processed displacement records of small 

events, as is shown in Fig. 3.12 where Q11GNTS is processed using the zero mean 

velocity assumption. Removing the mean from the velocity creates an offset in 

that signal which can no longer start and decay about zero, as could be expected. 

The more data is missing due to truncation, the larger the shift in the velocity is 

expected to be. In extreme cases, forcing the temporal mean of the velocity to be 

zero could result in unrealistic initial velocities for far-field or small seismic events. 

In Ch. 4, optimal methods are used to correct the d.c. and low-frequency errors in 

accelerograms. It will be shown that the unrealistic shifts in the velocity temporal 

mean are significantly reduced when optimal correction methods are applied. 

Even though the displacement corresponding to the zero mean velocity condi­

tion (Fig. 3.12) must now take an unrealistic parabolic shape to come to zero at the 

end of the record, the initial portion matches the exact motions much better than 

it does without the velocity mean correction ( Q11 GNTS, Fig. 3.9). Also, the max­

imum error for the displacement in Fig. 3.12 is reduced sevenfold from the one in 

Fig. 3.9. Hence, using the zero mean velocity criteria for small events improves the 

fit of the processed displacement at the beginning of the record, and significantly 

reduces the amount of processing error. It will be shown that these new sources 

of error can be bounded more properly by the standard deviations than the drifts 

in Fig. 3.9. The optimal methods used in Ch. 4 will also prove to be effective in 

reducing such parabolic errors in the displacements. 

Hence, assuming that the final displacement is zero for small events consid­

erably improves the correction effectiveness of the processing method. For large 

events,it was shown that the error introduced by the uncertain initial conditions 

and digitizing noise were relatively small, and did not affect the processed results 

much. Thus, the time domain method produces good estimates for the most prob­

able acceleration, velocity and displacement for large seismic accelerograms, and 

could be made more correction effective for small events by taking into considera­

tion certain physical constraints, as mentioned earlier. 
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3.2.3.3 Reliability Bounds for Signals 

Contrary to most earthquake processing techniques, the errors in­

duced by the uncertain initial conditions and the digitizing noise are not dealt with 

directly, in the sense that there are no steps within the program that remove or 

filter out the effects of these sources of error. Nevertheless, the processing method 

presents the most probable values of the processed records; these are the best es­

timate to the real event that can be achieved under the circumstances, unless ad­

ditional information could be made available. The standard deviations, however, 

can help account for any source of error uncertainty by assigning reliability bounds 

within which the true motion is expected to have occurred. The variances of the 

acceleration, velocity and displacement as a function of the digitizing noise variance 

a2 , and the instrument trigger variance b2 were derived in Eqs. 3.15, 3.21 and 3.27 

respectively. The square root of these quantities define the standard deviations for 

each signal. Since the true, but uncertain acceleration, velocity and displacement 

are described by a Gaussian distribution, there is a probability of 84% that the true 

signal falls within one standard deviation of the most probable estimate, a prob­

ability of 97.7% for two standard deviations, and a probability of 99.9% for three 

standard deviations. 

The smallest error between the most probable estimates and the exact records 

were shown to occur for signals of large events with or without final displacement 

offsets, such as Q11GNTL (Fig. 3.8). Fig. 3.13 shows the processed and most prob­

able velocity and displacement (solid line) for signal Q11 GNTL, bounded from top 

to bottom by one, two and three standard deviations (dashed line). In each figure 

the dotted line represents the exact value of the synthetic record. The velocity plots 

on the left of the figure show that the errors create very small levels of uncertainty 

about the most probable estimate, even at three standard deviations. The uncer­

tainty bounds are much more spread out in the displacement plots, on the right of 

Fig. 3.13, and reflect the fact that the evaluation of reliable displacements from an 

error-contaminated accelerogram is a difficult task, as is well known. Nevertheless, 

the standard deviations about the most probable displacement do properly contain 

the exact signal. In this case, the true motion is completely bounded within the two 
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standard deviations of the most probable record. Fig. 3.14 shows the bounds for 

one, two and three standard deviations about the most probable acceleration. The 

uncertainties are extremely small, and there is little observable difference between 

the three cases. This is expected since the signal is a simulation of a large event 

for which the signal-to-noise ratio is very high. The noise-contaminated synthetic 

accelerograms will always be properly bounded by the standard deviations defined 

by Eq. 3.15, since by construction the noise is added onto the signals assuming a 

Gaussian distribution with most probable value zero, and variance a2 • 

Simulations of large earthquakes with final displacement offsets are illustrated 

with Q11 UNTL in Fig. 3.15. This figure shows the most probable velocity and 

displacement, as obtained by the processing method, which is bounded by one, two 

and three standard deviations, respectively, from top to bottom. It was shown 

that the time domain method could properly identify final displacement offsets. 

Also, the offset is not a parameter entering the description of the uncertainties. 

Hence, the reliability of such events are the same as those that exhibit zero final 

displacement for the same level of shaking. Thus, as for the previous case, the 

uncertainties in the processed velocities are very small, indicating that the most 

probable value is a good estimate. The estimate of the most probable displacement 

proves to be more uncertain, since the reliability interval is much larger than for 

the velocity. Nevertheless, the final displacement offset is properly captured by 

the standard deviation bounds as defined by the Gaussian distribution, and two 

standard deviations about the most probable estimate prove to be sufficient to 

include the complete signal. 

Simulations of small events with no final displacements are illustrated with 

synthetic signal Q11 GNTS, in Fig. 3.16. The reliability bounds about the most 

probable values are much wider in this case, since the signal-to-noise ratio is rel­

atively small. The standard deviations about the most probable velocity remain 

small enough, however, to show that the processing method reproduces the exact 

velocity relatively well. On the other hand, the standard deviations about the most 

probable displacement are extremely large, indicating that it cannot be considered a 

reliable estimate of the exact motion. This confirms the fact that the error between 
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the processed and the exact displacement signal is expected to be very large for 

small seismic events, as was noted for Fig. 3.9. In particular, Fig. 3.16 shows that 

at the very beginning of the displacement record three standard deviations about 

the most probable are required to properly enclose the exact signal. This is a result 

of the large number of missing initial points, 29 in the case of Q11 CNTS, for which 

the assumption of only one truncated point with variance b2 is not fully satisfactory. 

The effect of having an uncertain number of points missing at the beginning on the 

variance of the initial point is equivalent to the problem discussed for the variance 

of the missing end data. Thus, when many points are missing, each with a variance 

lesser than b2 , the sum produces an error bound for the first recorded point which 

may be greater than b. Nevertheless, the error in the initial portion of the displace­

ment time history is extremely small. Hence, the probabilistic description of the 

displacement bounds given by Eq. 3.24 remains acceptable since the digitization 

noise dominates the error in most cases, compared to the initial truncation effect. 

In practice, the results of Q11 CNTS (Fig. 3.16) show that the assumption proposed 

in Sec. 3.2.1 is valid since three standard deviations about the most probable value 

of the displacement completely enclose the exact record. 

A better description of the initial displacement behavior can be achieved by 

either increasing the value of b to account for the larger number of missing points 

due to instrument start-up, or by assuming that small earthquakes cannot produce 

nonzero final displacement offsets. The first option improves the description of the 

uncertainty, the second improves the estimate of the most probable value. When 

the mean is removed from the velocity, the initial portion of the signal fits the exact 

record well, and the standard deviations provide adequate bounds for the uncertain­

ties. This is illustrated for the synthetic record Q11CNTS in Fig. 3.17. Although 

the most probable velocity no longer decays down to zero after the temporal mean 

is removed, the exact signal is still contained within one standard deviation. Hence, 

the velocity error is properly described by the probablistic assumptions. As for the 

displacement signal, its reliability is considerably increased by assuming that the 

velocity has zero temporal mean. Indeed, Fig. 3.17 shows that the processed dis­

placement differs from the exact record by much less than one standard deviation. 

Hence, the processing of the synthetic signals have shown that for small events, 
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the estimates of the most probable velocities and displacement are considerably 

improved by assuming that the temporal mean of the velocity is zero. The errors 

induced by this assumption, namely nonzero final velocity and spurious parabolic 

shape in the displacement, are conservatively accounted for by the uncertainty pre­

scribed by the probabilistic approach. As was mentioned previously, better reliabil­

ity bounds for small events which are assumed to have no final displacement could 

be computed, but this requires information on the missing end points of which, in 

fact, little is known. 

The reliability of the most probable acceleration for simulations of small seis­

mic events, is illustrated with Q11CNTS in Fig. 3.18. Compared with the results 

for large events (Fig. 3.14) the scatter about the most probable value is greater. For 

the particular synthetic signal Q11 CNTS, three standard deviations represents ap­

proximately 10% of the peak, which properly provides bounds to include the exact 

signal as seen more clearly from the acceleration error plot shown in Fig. 3.9. 

As was mentioned previously, Q11 UNTS, the synthetic signal which models 

small events with a nonzero final displacement, provides a bound for the testing of 

the correction effectiveness, since it represents a worst case that any accelerogram 

processing method should have to correct. The results of the most probable esti­

mates of the velocity and displacement (Fig. 3.19) shows that even in this extreme 

case, and despite the optimistic assumption of only one missing initial point, the 

processing method has good internal performance, and the reliabilty bounds defined 

by three standard deviations about the most probable signal do include the exact 

time histories. 

3.2.4 Concluding Remarks 

In summary, the time domain processing method has good internal per­

formance, in the sense that the only source of output error is introduced at high 

frequencies by the trapezoidal integration rule. These errors remain small and have 

been shown to be negligible compared to the effects of digitization noise, even for 

simulations of large events. The processing method does not have perfect correc­

tion effectiveness, since the noise is not removed, and the integrated velocities and 

displacements are allowed to drift due to various sources of errors affecting the 
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temporal means. However, the testing results suggest that the method provides 

reliabilty bounds about the most probable estimate of the signal which adequately 

describe the interval within which the exact signal should lie. This study has also 

shown that as the size of the earthquake increases, the relative amount of pro­

cessing error decreases; implying that the most probable estimates of the motion, 

as provided by the processing method, also become more reliable. This is usually 

expected, but in Ch. 2 it was shown that for the original Volume II processing 

method such was not the case. Simulations of the processing of small accelero­

grams suggest that the accelerations and velocities are fairly accurate, but that the 

amount of error in the displacement is very large. The most probable estimate of 

the displacement could be made more accurate by assuming that small events have 

zero temporal mean in the velocity. It was shown, however, that even in the worst 

case, and without the implementation of the zero mean velocity criteria, the prob­

abilistic formulation adequately assigns bounds to the estimates. Hence, the time 

domain processing method can be said to have both good correction effectiveness 

and internal performance. 

The previous analysis of the correction effectiveness was based on synthetic sig­

nals corrupted for analog instrument trigger and digitization noise levels. A similar 

analysis could also have been performed for synthetic signals corrupted for digital 

instruments. In the latter case it is expected that truncation effects are negligible. 

The noise, however, is still present in the signal, although it is much smaller de­

pending on 12-bit or 16-bit digitization. The analysis would show that because of 

the low error levels in the acceleration, there is very little difference between the 

processed and the exact signals. Nevertheless, as for the analog instrument study 

with Q11GNL and Q11 UNL, the errors from the time domain processing method 

will depend on the noise level in the signal. 

3.3 Frequency Domain Formulation and Results 

In the previous section, the accelerogram processing method was derived in the 

time domain, and was shown to have good internal performance. But for reasons 

that were mentioned at the beginning of the chapter, performing the processing 

in the frequency domain remains the more logical choice. The assumptions and 
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the processing method for the frequency domain approach are presented below in 

Sec. 3.3.1, and the test results with the synthetic records are presented in Sec. 3.3.3. 

3.3.1 Assumptions and Definitions 

The assumptions that were made in Sec. 3.2.1 for the time domain 

approach are still valid for the frequency domain method, namely that each data 

point of the accelerogram is corrupted by white noise due to the digitization process, 

with most probable value zero and standard deviation a, that only one point is 

missing because of instrument trigger with most probable value zero and standard 

deviation b, and that the baseline of the accelerogram is offset by some constant, but 

uncertain, amount. Hence, Eq. 3.9 still holds, and Zn represents the most probable 

value of the true acceleration time history Yn· The frequency domain is only used 

as a tool for processing Zn to obtain the most probable acceleration, velocity and 

displacement, and does not affect the probabilistic description of the uncertainties in 

the final time histories. Thus, the standard deviations derived for the acceleration, 

velocity and displacement in Sec. 3.2 are still valid. 

Actually, the probability distributions for the acceleration, velocity and dis­

placement derived earlier, can also be derived in the frequency domain. When the 

N measured points of discrete data are used to estimate the true motions, the 

discrete Fourier transform pair is given by: 

Y... 1 ~ •• ( . 211" ) 
m = N L- Yn exp -t N mn 

n=O 

(3.31) 

N/2 

.. '"""" Y... ( . 211" ) Yn = L- = exp ~ N mn 
==-N/2+1 

n = 0, ... ,N -1. (3.32) 

In the frequency domain, Eq. 3.9 is thus given by: 

m = 1, ... , ~ 
(3.33) 

Eq. 3.33 provides the most general description of the problem in the frequency 

domain, where Y =' Z=, .6.= are respectively the Fourier transforms of the uncertain 

but true acceleration iin, of the measured acceleration from which the mean has been 
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removed Zn, and of the uncertain digitization noise Sn. Because the accelerogram 

is given by a real set of numbers of dimension N in the time domain, the spectrum 

is given by a complex set of numbers of dimension ~ symmetric about zero in the 

frequency domain. In the time domain, the uncertain mean acceleration M of the N 

measured points of discrete data was shown to be due to a combination of missing 

points both at the beginning and at the end of the signal (Eq. 3.8), and was split 

up as such to provide an easier derivation of the probabilistic parameters. In the 

frequency domain, the error due to M only appears in the d.c. component of the 

spectrum, that is Y0 • 

Using Eq. 3.31, it can be shown that since the noise On is described by a 

Gaussian distribution with most probable value zero and variance a2 in the time 

domain, then Lim. is also described by a Gaussian distribution in the frequency 

domain such that: 

and 
N 

m=1, ... , 2 . (3.34) 

The distribution for the d.c. component is also Gaussian as described by Eq. 3.11. 
" " 

Furthermore, it can be shown since On and ok, n i= k, are independent for large N, 

so are Lim. and Liv, m i= p, and therefore Y m. and Yv, m i= p, are also independent, 

given Zm. and Zp. 

Applying the above result to Eq. 3.33 leads to the conclusion that the Fourier 

transform of the true accelerogram is described by a Gaussian distribution such 

that: 

E[Yo] =0 and (3.35) 

and, 

and 
N 

m= 1, ... , 2 . (3.36) 

Hence, according to Eq. 3.36, the uncertainties in the Fourier coefficients of the true 

accelerogram are only a function of the digitization and processing noise, and are 

quite small. Thus, the Fourier transform of the N discrete points of measured data 

provides a good estimate of the true frequency content Y m.' m i= 0. The largest 
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uncertainty appears in the estimate of the d.c. and is a function of the uncertainty 

associated with the missing data, both at the beginning and the end of the signal. It 

will be seen later that an error near d.c. is also induced by numerical limitations of 

the discrete Fourier transform, implemented with a fast Fourier transform algorithm 

for which zeroes must usually be added to theN discrete points of measured data. 

Integration in the frequency domain from acceleration to velocity and displace­

ment is simply achieved by dividing the Fourier coefficients respectively by iwm 

and -w~, where Wm is the corresponding frequency of the harmonic component. 

This can be proved by representing the original continuous time history by a har­

monic series for which the coefficients are given by the discrete Fourier transform 

(to within the aliasing caused by the discrete time sampling). Hence, 

· Ym N 
(3.37) Ym= -.- m=1, ... , 2 ZWm 

and, 

Ym N 
(3.38) Ym= --' m= 1, ... , 2 w2 m 

where, 
2?r N 

(3.39) Wm = mND..t' m= 1, ... , 2 . 

The d.c. is handled separately, as seen later. Hence, according to Eqs. 3.35 and 

3.36, the spectral coefficients of the velocity and displacement are also described by 

Gaussian distributions such that: 

and (3.40) 

and, 

E[Ym] =- (ND..t)2 Zm 
2n m 2 and (3.41) 

These two last equations confirm that the most probable velocity and displacement 

spectra are computed directly from the most probable acceleration spectrum Zm, 

which is itself obtained by forward transformation of the most probable acceleration 

time history Zn with zero mean. These equations also imply that the uncertainties 
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u[Y m] and u[Y m] in the estimate of the spectra are only a function of the digitization 

and processing noise a, and decrease inversely proportional to the frequency for the 

velocity, and to the square of the frequency for the displacement. 

The frequency domain approach can be made consistent with the probabilis­

tic description of the data which assumes that, at the most, one data point iio is 

missing due to trigger truncation with most probable value zero and variance b2 

(Fig. 3.1). This missing initial data point is accounted for in the Fourier transfor­

mation by adding an extra point, with value zero (i.e., z0 = 0), at the beginning of 

the measured and discretized accelerogram Zn with zero temporal mean. 

The processing procedure for the frequency domain method is summarized in 

the flowchart of Fig. 3.20. The measured, digitized and baseline corrected accelero­

gram is described by the time history Zn of dimension N. When using the fast 

Fourier transform (FFT) algorithm to compute the spectrum, in general zeroes 

have to be added at the end of Zn· In the implemented FFT algorithm [Hall, 1982], 

a total record length which is either a power of 2, or 3 times that, can be used. The 

spectral coefficients of the acceleration with zero d.c. can be adjusted for instrument 

correction and filtering, if desired, to obtain the most probable acceleration spec­

trum Zm, form= 1, ... , ~. The most probable acceleration time history with zero 

temporal mean Zon is then obtained by inverse Fourier transformation of Zm, with 

Z0 = 0. The notation Zon is used for the acceleration time history with zero tem­

poral mean obtained after inverse Fourier transformation, to distinguish it from the 

baseline-corrected discretized measured acceleration Zn prior to processing. When 

no filtering is performed in the frequency domain Zn and Zon are equal, within 

numerical round-off limitations. 

The acceleration can be integrated by dividing Zm by iwm and -w!. to produce 

the most probable velocity spectrum Zm and displacement spectrum Zm, where 

at d.c. Z0 = 0 and Z0 = 0. Inverse transformation of these spectra generates the 

velocity time history Vn and displacement time history dn which have zero temporal 

means and nonzero initial values v0 and d0 at trigger. From the arguments presented 

in the previous section, it was concluded that for small events or for far-field records, 

where no final displacement offset is expected, the most probable displacement has 
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zero initial and final value and corresponds to a zero temporal mean velocity. Thus, 

in this case, the most probable velocity with zero temporal mean ion is equal to 

Vn, and the most probable displacement Zon is obtained by removing d0 from all 

the dn. For near-field records of large events, final displacement offsets can be 

expected. The most probable displacement must allow for this, and can only exist 

if the most probable velocity has nonzero temporal mean. Hence, in this case, 

the most probable velocity Zn is chosen to have zero initial value and is obtained 

by removing v0 from all the Vn, and the most probable displacement Zn has a 

linear corrective term depending on v0 and d0 • The assumptions and equations are 

summarized in Fig. 3.20. 

Finally the standard deviations corresponding to the most probable accelera­

tion, velocity and displacement are computed in the time domain using respectively 

Eqs. 3.12, 3.15 and 3.18. 

3.3.2 Internal Performance of the Frequency Domain Method 

The internal performance of this processing method is dependent on 

the internal performance of the discrete Fourier transform implemented with a fast 

Fourier transform algorithm. Along with the initial baseline correction of the signal, 

it is the only step within the procedure which can induce errors into the original 

signal. Indeed, the other steps, which include instrument correction and integration, 

are performed in the frequency domain using exact transfer functions. 

The study of the errors created by the forward and inverse Fourier transfor­

mation of discrete signals is a topic which has been widely investigated. The main 

sources of error are summarized in Fig. 3.21, and are briefly explained in the next 

paragraphs. For more detail, the reader should consult text books on digital signal 

processing and Fourier transform techniques such as Oppenheim & Schaffer [1975], 

Rabiner & Gold [1975], Bendat & Piersol [1986], or Brigham [1974]. 

The two main sources of frequency domain errors induced by the processing of 

accelerograms are the result of sampling a continuous signal into a discrete form, and 

of truncating the record in the time domain. The first source of error leads to high­

frequency aliasing which may contaminate the integrated time histories. The second 
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source of error leads to spectral rippling through out the whole frequency range, 

but this does not significantly affect the integrated time histories. However, baseline 

correction of a truncated acceleration signal forces zero temporal mean which can 

induce long-period errors in the time histories when zeroes are added to implement 

the FFT algorithm. Because errors arising from the uncertain acceleration d.c. 

can be separated from errors arising from aliasing and truncation (Eq. 3.33), the 

internal performance of the processing method for errors resulting from a nonzero 

temporal acceleration mean is studied separately at the end of this section. 

The way the discrete Fourier transform generates and exhibits errors in signals 

with no baseline error can be decomposed into five steps, as shown in Fig. 3.21 

[Brigham, 1974]. For each of the steps, the Fourier transform pair is shown, with 

the time domain representation to the left of the figure, and the frequency domain 

equivalent to the right. The signal used to illustrate this figure is that of a general 

waveform, which is neither periodic, time-limited or band-limited. As is the case 

for accelerograms, the time history is real, and hence the spectrum is symmetric 

about the origin. 

Fig. 3.21(a) shows the exact Fourier transform pair for the continuous sig­

nals h(t) and H(f). When computing the discrete Fourier transform, the con­

tinuous time history must first be sampled at intervals ofT (= D.t used earlier) 

(Fig. 3.21(b)). This is equivalent to multiplying h(t) with the time domain sam­

pling function 80 (t) such that: 

+oo 
So(t) = L S(t- kT) . (3.52) 

k=-oo 

The time domain sampling function is equivalent in the frequency domain to another 

sampling function .6.0 (f) of interval ~,as shown in Fig. 3.21 (b), and such that: 

+oo 

D.o(f) = L 8 (1-;) (3.53) 
n=-oo 

Because multipl~cation in the time domain is equivalent to convolution in the 

frequency domain, discretizing the continuous time history h(t) at intervals ofT is 
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equivalent to reproducing the continuous spectrum !H(f) I at intervals of~' where 

2~ is the Nyquist frequency (Fig. 3.21(c)). Since the signal is not band-limited, 

aliasing will occur about frequencies ± 2~, ± 2;,, ± 2~, ••• , where the duplicated 

spectra overlap. However, the effects of aliasing can be substantially reduced by 

choosing an interval T which is small enough to insure that the spectrum has sig­

nificantly decreased in amplitude in the vicinity of the Nyquist frequency. Also, 

it can be proved by representing the original continuous acceleration time history 

by a harmonic series for which the coefficients are given by the discrete Fourier 

transform, that the acceleration aliasing error at each discrete tn = nT is zero, 

although it is nonzero in between these times. Spectra of earthquake accelerograms 

have little activity beyond 50 Hz. Hence, a discretization interval of T = 0.01 sec is 

usually sufficient to substantially limit the effects of high-frequency aliasing in the 

acceleration spectrum. Often after integration, most signs of the high-frequency 

aliasing have disappeared from the velocity and displacement spectra. However, it 

can be shown, by comparing the harmonic series described above and the Fourier 

series of a continuous acceleration signal, that aliasing errors due to discretization 

are expected to affect the integrated velocity and displacement time histories at 

each tn = nT to a small extent. 

The second source of error is a direct result of truncating the infinite wave­

form. Although accelerograms are theoretically time-limited, they are nevertheless 

truncated either because of instrument trigger or shut-off mechanisms, or because 

of nondigitization of the final portion of the record. As is illustrated in Figs. 3.21(d) 

and (e), truncating a time history at time To is equivalent to multiplying the infinite 

signal by a rectangular window x(t) of width T0 • The Fourier transform of the unit 

boxcar function x(t) is given by: 

(3.54} 

Hence, in the frequency domain the truncation operation is equivalent to convolving 

X(f) with the signal's spectrum. The result of this operation is called leakage. It 

can be shown that truncation does not induce leakage error in the discrete spectrum 

of periodic signals if the width of the rectangular window, To, is equal to exactly 

one complete cycle of the time history. Unfortunately, since earthquake motions are 
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not periodic in nature, leakage will occur in the spectra if the complete motion is 

not available. Because they introduce high frequencies, such leakage errors may also 

induce aliasing errors in the frequency domain for the sampled discrete time signal. 

These aliasing errors are expected to contaminate the integrated time histories after 

inverse transformation. 

In Fig. 3.21(f), the final step of the discrete Fourier transform requires that the 

continuous spectrum be discretized at a frequency sampling which is the reciprocal 

of the truncation window width T0 • Hence, the spectrum is sampled at intervals 

which coincide exactly with the zeroes of X (f), and the values of the spectrum 

given at the discrete frequencies will not be affected by the truncation process. 

Unfortunately, when an FFT algorithm is used to compute the discrete Fourier 

transform, zeroes must often be appended at the end of the truncated signal, so that 

the total record length T1 which is used, is larger than T0 , the truncated duration. 

In effect, the spectrum is convolved by the window function which has zeroes at 

multiples of A, and is discretized at intervals of 1::1/ = A. Hence, the values 

of the spectrum obtained at the discrete frequencies will reflect rippling from the 

leakage error due to the truncation of the time history. Although leakage is usually 

described as an error, this depends on the context. In this section, the frequency 

domain is used to carry out desired time domain operations, such as integration. 

It can be proved, by representing the original continuous acceleration time history 

by a harmonic series for which the coefficients are given by the discrete Fourier 

transform, that leakage does not produce errors in the processed and integrated 

time histories, except for possible aliasing of higher frequency noise. However in 

Sec. 4.3, the spectra are used for optimization purposes, and leakage errors should 

be considered. 

Finally, as for step (b) of Fig. 3.21, discretizing in the frequency domain at 

intervals of A, is equivalent to reproducing periodically the time history at intervals 

of T0 (Fig. 3.21(g)). Hence, the resulting time history is the discrete and truncated 

version of the continuous signal, which is periodically repeated at intervals of To 

(T1 for signals with added zeroes), and is corrupted by aliasing. Although the 

truncation window width To and the duration of the transformed signal with the 
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appended zeroes Tt may not coincide, the resulting discrete time history between 

0 and T0 is not corrupted by leakage error, other than high-frequency aliasing, as 

will be shown in the next section. 

Before computing the Fourier transform, the processing method performs a 

baseline correction on the accelerogram. For infinite signals the shift in the temporal 

mean appears in the spectrum at d.c. only. However, because zeroes must usually be 

added at the end of the signal for the FFT, such an operation is equivalent to adding 

a boxcar function of amplitude equal to the shift in the mean over the entire record 

length To, and equal to zero between To and Tt. Hence, in the frequency domain, 

the shift in the temporal mean creates an additive error which is proportional to 

the error at d.c. This error behaves as an X(!) (Eq. 3.54) with zeroes at multiples 

of ,f.o and will only appear in the discrete Fourier amplitude spectrum at multiples 

of D..f = ,A. Also, the errors are spread over the entire frequency domain, although 

they are largest at and near d.c. These errors significantly decrease beyond ± ,f.o 
because of the smaller side lobes of X (f), but will still cause some aliasing because 

they are not strictly zero above the Nyquist frequency. Nevertheless, the low­

frequency errors are amplified by integration, and greatly affect the resulting time 

histories, whereas the high-frequency errors are negligible in these integrated time 

histories. 

In summary, truncation of accelerograms produces leakage, a convolutive error 

in the spectrum affecting the entire frequency range. However, the time histories 

obtained after inverse transformation should not be affected by leakage other than 

for some possible high-frequency aliasing. Baseline correction of the accelerogram 

creates an additive error in the spectrum which is dominant at lower frequencies. 

These long-period errors affect the time histories and are amplified by integration. 

The time domain processing of the synthetic accelerograms showed that shifts in the 

temporal mean, such as those resulting from missing data, are almost exclusively 

responsible for the long-period errors in the displacement time histories. 

3.3.3 Application to Synthetic Records 

The synthetic signals are used to test the internal performance of the 

frequency domain processing approach. In particular, the errors induced by the 
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FFT algorithm and the baseline correction are studied. Based on the previous 

paragraphs, the internal performance errors could arise mainly from the choice of 

the frequency sampling rate (which depends on the number of appended zeroes) 

and the truncation interval. The errors induced by the choice of the frequency 

sampling rate can be observed by processing an untruncated and noise-free synthetic 

accelerogram padded with zeroes of various durations. The synthetic signal used in 

the study of the internal performance of the frequency domain processing method is 

Q11 G, the same as was used for the study of the internal performance of the time 

domain approach. This choice of the synthetic record allows direct comparison 

with the amount of error generated by each of the processing methods. In all 

of the following figures (Figs. 3.22 to 3.32), the Fourier amplitude spectra of the 

acceleration, velocity and displacement are shown with zero d. c. The correction to 

the temporal mean to obtain zero initial velocity and displacement is performed in 

the time domain after inverse Fourier transformation. The plots of the errors in the 

frequency domain reflect the initial value correction. Also, to produce the plots of 

the errors in the frequency domain it is necessary to have the same A/ for both the 

processed and the exact signal. Hence, in the time domain both signals must be of 

the same length, which is achieved by adding zeroes. 

The complete synthetic signal Q11 G is generated and discretized into 2001 

points at intervals of 0.01 sec, for a total time span of 20 sec. Hence, the Nyquist 

frequency is 50 Hz. Q11 G is generated for 250 harmonics at intervals of about 

0.1 Hz between 0.05 and 25 Hz, which is far below the Nyquist frequency. Thus, 

the discrete Fourier transform should not induce high-frequency aliasing errors into 

the spectrum of Q11G (to within the accuracy of the quantization of the data). 

Also, any harmonic below 0.05 Hz apparent in the spectrum after processing, which 

has an amplitude larger than that expected from the exponential modulation of the 

synthetic accelerogram model, could be erroneous. Since the FFT algorithm which 

is used requires the total number of data points to be a power of 2, or 3 times 

that, zeroes must be added to the end of Q11G. The next highest number after 

2001 (i.e., T0 = 20.0 sec) that satisfies this condition is 2048 (i.e., T1 = 20.48 sec), 

and thus 47 zeroes are appended to Q11G. The frequency sampling interval is thus 

approximately 0.0488 Hz. The synthetic accelerogram is then processed according 
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to the frequency domain approach described in Sec. 3.2. In this case, the only 

difference between the two sets of results is that the "processed" acceleration is 

baseline corrected, and the "exact" acceleration is not. Hence, the errors can only 

be attributed to the baseline correction. Synthetic signal Q11 G is analytically 

generated with zero temporal means for the acceleration and velocity over [0, oo). 

However, because of quantization and truncation of the signal to [0, 20], the means 

may not be exactly zero, and so the "baseline correction" produces a slight offset 

in the acceleration. 

The results are shown in Figs. 3.22 and 3.23. In Fig. 3.22, the time histories 

and the amplitude spectra of the processed and exact acceleration, velocity and 

displacement are overlaid on top of each other. The time histories are shown to 

the left of the figure, and the amplitude spectra are shown to the right. The solid 

line represents the processed data, and the dotted line represents the exact data. 

However, the difference between these two sets of data is indistinguishable in any 

of the plots. A more detailed analysis of the internal performance of the frequency 

domain approach can be achieved by studying the errors between the processed and 

the exact data for each of the quantities illustrated in Fig. 3.22. These errors are 

presented in Fig. 3.23, with a smaller frequency scale. The plots to the left represent 

the errors in the processed time histories, and the plots to the right represent the 

Fourier transform of the these time domain errors. 

The only error present in the acceleration time history is a shift in the temporal 

mean of -2.7 w-6 induced by the quantization accuracy of the discrete data, which 

is stored to a precision of 6 decimal points, and the truncation of the synthetic 

signal at 20 sec. The error in the acceleration spectrum is only due to the shift in 

the mean and is composed of a spike at d.c., and of a much smaller rippling error 

of an approximate period of 2 Hz (i.e., interval for which multiples of ·A and A 
coincide). The temporal-mean error in the acceleration appears in the final portion 

of the velocity-error plot as a line with slope -2.7 w-6 • A second error is observable 

in the initial portion of the velocity-error plot. According to the spectral-error plot, 

it arises from the integration of the ripples due to the shift in the temporal mean 

acceleration. In particular, the error at the first harmonic is larger than the error 
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at d.c. which incorporates the time domain correction for zero initial velocity. In 

the time domain, the error at the initial velocity is zero, although it is hard to see 

in the velocity-error plot. The high-frequency noise arises from digit truncation of 

the stored exact velocity; it is approximately 2 orders of magnitude less than the 

other errors, and can be neglected. The displacement errors are predominantly those 

induced by the shift in the temporal mean acceleration, and, as seen in the error plot 

of the displacement in the frequency domain in Fig. 3.23 (which shows only d.c. to 

1Hz), integration greatly increases the error in the low-frequency harmonics affected 

by the shift. Overall, these errors remain small, and represent only w-4 % of the 

peak acceleration, 5x10-3 % of the peak velocity, and 0.1% of the peak displacement. 

Figs. 3.24 and 3.25 show the processing errors in the time domain and in the 

frequency domain when the nominally untruncated and noise-free synthetic signal 

Q11C (i.e., To = 20.0 sec) is appended with zeroes up to 3072 (i.e., TJ = 30.72 sec) 

and 4096 data points (i.e., T1 = 40.96 sec) respectively. Compared to the results 

in Fig. 3.23 for 2048 data points, it can be seen that the time domain errors are 

practically identical. In all three cases, these are due to the same shift in the tem­

poral mean of the acceleration of -2.7 10-6 induced by the finite precision and end 

truncation of the stored data. The errors in the frequency domain appear to be 

different, but one must not forget that increasing the length of the data in the 

time domain also increases the frequency sampling rate by the same amount. The 

spectra of Figs. 3.23, 3.24. and 3.25 correspond to frequency intervals of 0.0488 Hz, 

0.0325 Hz, and 0.0244 Hz respectively, and thus, increasing the number of zeroes 

at the end of the record, decreases the apparent period of the ripples due to the 

shift in the baseline. However, the harmonics that correspond to the same fre­

quency have exactly the same spectral value in all of the above three cases, and 

the smaller sampling interval just provides a better description of the underlying 

spectrum at intermediate frequencies. Nonetheless, when tested on the synthetic 

record, decreasing the frequency sampling interval did not significantly affect the 

time histories, since the errors in the time domain are the same in all three cases. 

Thus, the errors induced by the frequency domain accelerogram processing method 

on a nominally untruncated signal are insensitive to the number of added zeroes, 

or equivalently, to the choice of the frequency sampling rate. The predominant 
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source of error remains the acceleration d.c. shift after baseline correction, arising 

from finite precision and end truncation of the stored data; this is not an internal 

performance error. 

The frequency domain processed time histories of Q11 C in Fig. 3.22, and the 

time-history error plots in Fig. 3.23, can be compared to the time domain processing 

results shown in Fig. 3.2. In both cases, the visual match between the processed and 

the exact time histories is excellent. The error in the estimate of the temporal mean 

acceleration is the same, but the error in the velocity for the time domain method 

is at least 2 orders of magnitude larger than for the frequency domain result, and is 

governed by the error induced by the trapezoidal rule for integration. There is no 

integration error in the frequency domain method, since an exact transfer function is 

used to compute the velocity and displacement. The errors in the displacement time 

history are almost identical for both processing methods, and are dominated by the 

effect of the acceleration d.c. shift. But the error in the displacement obtained with 

the time domain method still displays high-frequency errors due the trapezoidal rule. 

This comparison of the time and frequency domain processing methods shows that 

both produce almost exactly the same error from the shift in the temporal mean 

acceleration. However, the overall error level is lower for the frequency domain 

method since integration is exact. In particular, this is responsible for a decrease in 

the velocity error of 2 orders of magnitude. Hence, the frequency domain processing 

method has an even better internal performance than does the time domain method. 

The correction effectiveness of the processing method for shifts in the temporal 

mean, resulting from substantial premature end truncation, is tested on synthetic 

signal Q11 C. Errors due to shifts in the temporal mean alone can be separated 

from errors arising from adding zeroes for the FFT. An "exact" time history with 

nonzero temporal mean acceleration described by a number of points equal to a 

power of 2, or 3 times that, is compared to a "processed" time history of same 

length (i.e., T0 = T1). This condition is respected when synthetic signal Q11 C is 

truncated at 1536 data points. In this case, the only difference between the exact 

and the processed signal arise from the shift in the baseline, and does not include 

zero-padding effects. The errors in the time domain and in the frequency domain 
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are illustrated in Fig. 3.26, in which the scale for the displacement-error spectrum is 

expanded. The error in the acceleration temporal mean is equal to 3.2 10-5 , and is 

an order of magnitude larger than that due to quantization error and truncation of 

Q11Cto the first 20 sec (Fig. 3.23). The error in the velocity time history is almost 

perfectly linear with a slope equal to 3.2 10-5 , and that in the displacement time 

history is parabolic. Both these results are what is expected theoretically. Since 

To = TJ, multiples of the frequency sampling !:J.f coincide with the zeroes of X (f) 

(Eq. 3.54), and the side lobes due to shifting of the baseline and truncation (i.e., 

leakage) will not appear in the discretized Fourier amplitude spectrum. Indeed, the 

plots of the error in the frequency domain (Fig. 3.26) shows that the only error in 

the acceleration spectrum is at d.c. The spectrum of the errors in the velocity and 

the displacement represent the decomposition of a straight line and a parabola in 

the frequency domain, without any other sources of error, and are the largest at 

and near d.c. 

Next, the unprocessed and nominally untruncated record Q11C padded with 

zeroes up to 2048 points is compared to the processed and truncated signal with 

1536 points and padded with zeroes up to 2048 points (i.e., T0 = 15.36 sec and 

T1 = 20.48 sec). In this case, the two signals differ by a shift in the temporal mean 

and by end truncation of the data. The errors are illustrated in Fig. 3.27 (note the 

change of frequency scale on the different spectra plots). The time domain errors 

are only due to the shift in the acceleration temporal mean, although the errors 

in the acceleration Fourier amplitude spectrum are strongly dominated by leakage 

errors. Recall that these leakage errors are produced by the convolution of the 

signal spectrum with X(!) (Eq. 3.54). Hence, it is expected that the errors are the 

greatest in the frequency range where the signal is large, as illustrated in Fig. 3.27. 

A high-frequency error is superimposed over the leakage error, and is attributed to 

aliasing, as explained in Sec. 3.3.2. After integration, leakage errors still affect the 

velocity spectrum, but have virtually disappeared in the displacement spectrum; 

in both spectra, the errors near d.c. are dominated by effects of the acceleration 

baseline shift. 
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To investigate trends in the way the processing method treats errors due to 

end truncation, Q11 C is truncated at To equal to 15 sec, 12 sec, and 10 sec, and 

is processed with the frequency domain approach. In all 3 cases, the truncated 

signals are appended with zeroes to give 2048 data points (i.e., TJ = 20.48 sec). 

The time domain results are plotted out in Figs. 3.28, 3.29, and 3.30 respectively. 

In these figures, the plots to the left are the overlaid time histories, where the solid 

line represents the processed signal and the dotted line the exact signal. The plots 

to the right represent the error in the time histories between the exact and the 

processed signals. Comparison of these figures with those of the untruncated signal 

(Figs. 3.22 and 3.23) show that, as expected, end truncation affects the temporal 

mean of the acceleration, and the error in the baseline increases as more data is 

missing. Nevertheless, this may not always be necessarily so; it is possible for a 

signal to be truncated by a large amount but to have a temporal mean close to 

zero. In all of the tested cases, the error in the acceleration remains extremely 

small however, and represents no more than 0.01% of the peak. The linear error 

this induces on the velocity time histories is still acceptable, and does not exceed 

1% of the peak. However, the parabolic error in the displacement time histories at 

the time of truncation represents up to 20% of the peak when the last half of the 

acceleration is missing, even though the missing acceleration data has very small 

amplitudes. This type of error may be important with real earthquake records, since 

it is common to find velocity levels at the time of end truncation that are higher than 

the ones shown in Fig. 3.30. Similarly, although there is very little motion left in the 

acceleration and velocity when the last quarter of the record is missing (Fig. 3.28), 

the error in the temporal mean due to end truncation is responsible for a drift 

in the displacement representing 10% of the peak. This stresses the importance of 

digitizing the earthquake accelerogram to its full extent up to the time of instrument 

shut-off. In any event, this drift in the displacement time histories can be properly 

bounded by the standard deviations if an appropriate estimate for the variance of 

the missing data, c2 (Eq. 3.10), is used. Under this condition, the frequency domain 

method has good correction effectiveness. 

The frequency domain errors in the acceleration and displacement of the trun­

cated signal for T0 equal to 15 sec, 12 sec, and 10 sec, corresponding to the above 
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three cases, are shown in Fig. 3.31 (note the change of scale). As was the case 

for To = 15.36 sec (Fig. 3.27), the acceleration spectra are contaminated by leakage 

error, and the amplitudes of the errors increase as more of the data is missing. How­

ever, it is always restricted to the frequency range where the signal is the strongest. 

Although errors arising from data truncation are large in the frequency domain, 

they do not affect the time domain results (Figs. 3.28, 2.29, 3.30). After double 

integration, it is the baseline shift which dominates the error in the displacement 

Fourier amplitude spectrum, and so leakage is not a significant source of error even 

in the frequency domain. Shifting of the baseline creates an error which is largest 

at and near d.c. This is the source of the error observable in the time histories. As 

was explained in Sec. 3.3.2, in the frequency domain, the additive errors due to a 

shift in the baseline of a signal, truncated at time T0 , sharply decrease beyond A 
because of the smaller side lobes of X(!) (Eq. 3.54). This is apparent in the errors 

of the displacement spectra shown in Fig. 3.31. Hence, baseline errors are greatest 

in the displacement spectrum below A , but the remainder of the spectrum is rela­

tively unaffected by truncation. Also, the error in the acceleration spectrum due to 

truncation is the greatest in the range where the signal-to-noise ratio is the smallest; 

it represents an error in the spectral amplitudes of less than 5% even in the worst 

of cases (Figs. 3.22 and 3.31). These facts will be particularly useful inCh. 4, when 

system identification techniques are implemented to correct the spectrum near d.c. 

and to reduce the long-period errors in the time histories. Such methods can greatly 

improve the correction effectiveness of the processing method for truncated data. 

The correction effectiveness of the frequency domain method could also be 

tested with the noise-corrupted and trigger-truncated synthetic records. Trigger 

truncation affects the temporal mean of the acceleration in the same way as end 

truncation, and has been investigated in detail in the preceeding paragraphs. The 

effects in the frequency domain of processing a truncated and noise-contaminated 

signal are illustrated in Fig. 3.32. In this figure, the frequency domain errors in 

the processed acceleration and displacement are represented in a log-log scale to 

emphasize the behavior near d.c. Fig 3.32(a) shows the spectral errors when Q11C 

is neither truncated or contaminated by noise. This is the reference case which is 

also illustrated in Figs. 3.22 and 3.23. As explained earlier, the errors arise from 



-134-

the quantization of the data and the truncation of Q11 G at 20 sec, and create 

a slight offset in the discretized version of the record. The errors are small, and 

behave as the X(/) function with zeroes at frequencies where multiples of .]
1 

and 

io coincide. This is the best the processing method can achieve. In Fig. 3.32(b), 

the synthetic signal modelled as a large event is contaminated with relatively small 

levels of white noise (i.e., Q11GNL). As expected, the error produced by the noise in 

the acceleration spectrum remains constant on the average, and in this case is nearly 

3 orders of magnitude smaller than the spectral amplitude of the signal (Fig. 3.22). 

The corresponding effect in the displacement spectrum is dominated by a large error 

near d.c., which represents approximately 100% of the signal's amplitude. When 

noise and end truncation are modelled in the synthetic signal (Fig. 3.32( c)), the noise 

dominates the error in the acceleration spectrum, although close inspection reveals 

some leakage error in the frequency range where the signal-to-noise ratio is large, 

between 1 Hz and 10 Hz. This leakage error remains negligible in the acceleration 

spectrum, and has very little effect on the displacement spectrum, which still has 

its largest errors near d.c. The level of these displacement errors remain about 

the same as in the case without truncation. Hence, in the acceleration spectrum, 

digitization and recording noise are much larger than leakage errors induced by 

truncation, and contaminate the whole frequency range. The noise error also affects 

the displacement spectrum more than the truncation error, but mostly in the very 

low frequency range, and presumably because the noise alters the temporal mean; 

the higher frequencies are not significantly perturbed by either of these sources of 

errors. 

3.3.4 Concluding Remarks 

The time histories obtained from the time domain and the frequency 

domain processing methods only differ in that the former uses the trapezoidal in­

tegration rule, whereas the latter relies on the discrete Fourier transform. As was 

shown in this section, the difference in the integration scheme alone is responsible 

for a decrease in the processing error of up to two orders of magnitude in the ve­

locity when the frequency domain approach is used. Nonetheless, these differences 
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relate to the internal performance of the methods and not to their correction effec­

tiveness. It has been shown in Sees. 3.2.1 and 3.3.1 that both approaches use the 

same assumptions to obtain the most probable estimates for the time histories. It is 

these assumptions which govern the correction effectiveness of the processing meth­

ods. Since both processing methods display good internal performance and induce 

errors into the accelerogram which are several orders of magnitude lower than the 

digitization and processing errors, they have equal correction effectiveness. Hence, 

the results and conclusions presented in Sec. 3.2.2 for the correction effectiveness of 

the time domain approach also apply to the correction effectiveness of the frequency 

domain method, and need not be reiterated. 

In summary, adding zeroes to the end of a signal does not alter the time domain 

results, and provides a better description of the spectra by decreasing tl.f. When 

the width of the truncation window is equal to the exact number of points required 

for the FFT, the only error that appears in the spectra are due to the baseline shift. 

Also, leakage errors, arising from data truncation and zero padding, do not affect 

the time histories. They are important in the acceleration spectrum through out 

most of the frequency range of motion and can lead to aliasing, but become much 

less important in the velocity and displacement spectra which are dominated by 

the baseline-shift error. The uncertain baseline errors which create large parabolic 

drifts in the displacement time histories, are mainly restricted to the harmonics 

in the displacement spectrum below the frequency corresponding to the truncation 

length, even in the presence of digitizing and processing noise. Theoretically, errors 

due to shifts in the uncertain baseline could be completely avoided if the exact value 

of the temporal mean of the signal at the time of truncation is known. In practice, 

this is impossible of course and setting the baseline of the recorded accelerogram 

to give zero temporal mean remains the best option. In Ch. 4, the results of this 

section are used with system identification techniques to decrease the long-period 

errors due to the uncertain baseline, and to decrease high-frequency noise arising 

from digitization and processing. 
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Figure 3-1. Representation of the assumptions used for the probabilistic 
processing of earthquake accelerograms. 
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Figure 3-2. Time domain processing for synthetic record QllC. 
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Figure 3-3. Time domain processing for synthetic record QllCNL. , 
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Figure 3-5. Time domain processing for synthetic record QUCTL. 
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Figure 3-6. Time domain processing for synthetic record QUCTS. 
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Figure 3-7. Time domain processing for synthetic record Q 11 U. 
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Figure 3-8. Time domain processing for synthetic record QUCNTL. 
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Figure 3-9. Time domain processing for synthetic record QllCNTS. 
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Figure 3-10. Time domain processing for synthetic record Qll UNTL .. 
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Figure 3-11. Time domain processing for synthetic record Qll UNTS. 
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Figure 3-13. Reliability bounds for the time domain processing of 
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( __ most probable; ..... exact; -----deviations). 
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Figure 3-16. Reliability bounds for the time domain processing of 
synthetic signal QUCNTS. 
( __ most probable; ..... exact; -----deviations). 
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Figure 3-17. Reliability bounds for the time domain processing of synthetic 
signal QllCNTS, with zero mean velocity. 
( __ most probable; ..... exact; -----deviations). 
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Figure 3-18. Reliability bounds for the most probable acceleration of 
synthetic signal QllCNTS. ·--~ 
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Figure 3-19. Reliability bounds for the time domain processing of 
synthetic signal QU UNTS. 
( __ most probable; .. exact; ----- deviations). 
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Figure 3-20. Flowchart of the probabilistic frequency domain processing method, 

[implemented without the spectral substitution method (Ch.4)]. 
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Figure 3-21. Discrete Fourier transform of a general waveform [Brigham, 1974] 
Description of main steps: (a) continuous signal; (b) sampling in 
time domain; (c) aliasing; (d) time windowing; (e) leakage; 
(f) sampling in frequency domain; and (g) discrete signal. 
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Figure 3-22. Time histories and Fourier amplitude spectra of the complete 
synthetic signal QllC (200 harmonics between 0.015 Hz and 25Hz; 
2001 points at D.t = 0.01 sec) processed with the frequency domain 
method and 4 7 zeroes appended for FFT. 
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Processed (2001 points + 47 zeroes)· 
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processed with the frequency domain method. 
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Chapter 4 

ERROR REDUCTION BY OPTIMAL METHODS 

4.1 Introduction 

So far we have presented a new probabilistic approach to earthquake accelero­

gram processing which performs integration in either the time domain or the fre­

quency domain, and uses no filter to remove possible errors at the high and low 

frequency ends of the signal. Assumptions were made on the values of either the 

initial motion at start-up time, or the total mean of the signal, thus producing the 

most probable time histories given those assumptions. The variances of the start­

up and noise levels were used to compute the confidence intervals about the most 

probable value of the signal. It was shown that the standard deviations of the ac­

celeration and the velocity produce only slight departures from the most probable 

signals, but that the error levels associated with the displacement time histories 

were so large as to make these signals almost unusable. These large displacement 

errors, due to long-period drifts, are the main motivation behind the myriad of 

correction methods, all involving classical digital band-pass filters, that have been 

proposed. However, it was shown inCh. 2 that these filters not only discard record­

ing and digitization noise outside the cut-off bands, along with other information of 

possible physical importance, but they may also induce additional error in the signal 

due to poor internal performance. These methods usually produce "good" looking 

displacement signals which are often not a close representation of the actual motion 

at the recording site. Recovering these exact displacements may unfortunately be 

an impossible task, but the purpose of this chapter is to propose a better method 

to correct for the long-period errors. 

The sources of the error in recorded accelerograms were shown to be due to both 

the digitization noise and the unknown offset in the acceleration which can arise 
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from missing data at the beginning as well as at the end of the event (e.g., analog 

accelerograph), or from a drift in the zero baseline (e.g., digital accelerograph). The 

missing data leads to uncertainties in the acceleration d.c. which would be zero if 

the complete time history was available. The digitizing and recording noise affect 

each harmonic of the spectrum including d. c., but the signal-to-noise level is worse 

at the low- and high-frequency ends of the spectrum. In most recorded earthquake 

accelerograms obtained from analog instruments, the error at and near d.c. resulting 

from the uncertainty in the temporal mean is much larger than the error due to the 

digitization noise. 

The following two approaches will attempt to correct each of these sources of 

error separately. The first one, referred to as the Wiener optimal noise filter, finds 

the signal-dependent filter which attempts to remove only the noise, and not the 

signal, throughout the whole frequency range as a function of the signal-to-noise 

ratio. It will be shown that if based on the information available from the recorded 

accelerogram, such an optimal filter would always have a transfer function equal to 

unity. This implies that the approach proposed in Ch. 3, which does not use any 

filtering, is consistent as being the optimal way to process the signal based on the 

information in the data, but of course this does not help to solve the long-period 

drift problem in the displacement. Also, hybrid versions of the Wiener noise filters, 

which are no longer optimal, are tested and presented. The second method proposed 

in this chapter corrects the error-corrupted ends of the signal's spectrum, especially 

near d.c. where baseline errors are predominant, by using other information in 

addition to the data. It is based on the optimization of earthquake spectral models 

for free-field records and structural spectral models for in-structure records. The 

intent is to replace the spurious frequency components by their most probable value 

as defined by the optimization scheme. The advantages of this second approach 

include the substantial reduction of the low-frequency error due to shifts in the 

acceleration baseline, the possible recovery of any nonzero final displacements, and 

identification of important seismological and structural parameters. 
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4.2 Noise Filters 

4.2.1 Wiener Optimal Noise Filter 

The topic of retrieving a signal from noise-contaminated data is one 

that has been of great concern to electrical and communication engineers for many 

years [Whalen, 1971]. However, their problems and their needs are somewhat dif­

ferent than the ones faced in the processing of strong-motion records. 

Wiener [1950] first suggested the notion of opt£mal linear filter, ¢(t), which 

can be used to decrease the noise level in measured data. The objective of his 

approach is to find a linear transformation which provides the best estimate y(t) 

of a stationary infinite continuous stochastic process y(t) (i.e., the true signal) in 

terms of some known statistics of y(t) and of a measured stationary process z(t) 

related to y(t) [Papoulis, 1965]. Equivalently, this optimal filter ¢(t) has an impulse 

response function which minimizes the mean-square error E: 

E = E [jy(t) - y(t) j2) , (4.2.1) 

where, 

!
+oo 

y(t) = -oo z(t- r)¢(r)dr. (4.2.2) 

E is the expectation operator involving the prior joint probability distribution of 

y(t) and z(t). In its most general form, the solution to Eqs. 4.2.1 and 4.2.2 leads 

to the Weiner-Hopf equation, which for zero-mean processes implies that the filter 

has a transfer function of the form: 

(4.2.3) 

where Bzz is the power spectrum of the process z ( t), and Syz is the cross-spectrum of 

processes y(t) and z(t). Here, the cross-spectrum is defined as the Fourier transform 

of the cross-correlation function Ryz, where: 

(4.2.4) 
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Hence, obtaining the best estimate y(t) of the true signal y(t) from another process 

z(t), only requires the knowledge of either the auto- and cross-correlation functions 

or the auto- and cross-power spectra of the two processes. 

In many signal-processing applications, Yn = y(n~t) is a discrete-time Gaus­

sian process with known autocorrelation function or power spectral density, which is 

contaminated with uncorrelated zero-mean white noise bn, and Zn = Yn + bn [Press 

et al., 1986]. For such cases, the discrete optimal filter is given at the discrete 

frequencies Wrn by: 

(4.2.5) 

where Y rn, Zrn and ~= are the discrete Fourier transform of Yn, Zn and On respec­

tively. This expression for ~= assumes that the power spectra of the true signal 

and of the noise are known. The denominator of Eq. 4.2.5 is the power spectral 

density of the stochastic process Zn which is to be measured. 

When the signal to be measured is obtained from a linear transformation of 

the true signal (e.g., signal measured at the output of a transducer), so that: 

(4.2.6) 

where Hrn is the discrete transfer function of the linear system and H:n_ its complex 

conjugate, then the best estimate Y = of the true signal Y = is obtained for the 

optimal filter ~= such that: 

~ _ H:n_·E[IYrnl 2
] 

=- 1Hrnl 2 
• E [1Yrnl 2 + E [1~=1 2] ' 

(4.2.7) 

According to Eq. 4.2.5, the optimal noise filter in this case is always positive 

and real. This implies that the best estimate Y = of the true signal involves no 

phase change in the noise reduction process. Also, the value of~=' which always lies 

between zero and unity, is a function of the signal-to-noise ratio at any given spectral 

point. Indeed, as the noise dominates the signal, or equivalently as the signal-to­

noise ratio becomes small, the optimal filter ~= approaches zero. Inversely, as the 

signal-to-noise increases, ~= approaches unity. 
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The above derivation assumes a prior and complete knowledge of the power 

spectrum of the true signal. In the case of earthquake ground-motion accelerograms, 

Brune's spectrum [Brune, 1970] could provide a model for the spectral amplitude of 

the true signal. However, Brune's source spectrum is only valid at low frequencies, 

and cannot properly represent effects such as propagation and local site response. 

Even if Brune's spectrum were a valid model over the whole frequency range, the 

optimal filter approach of Eq. 4.2.5 would also require the knowledge of all the 

parameters defining the spectrum such as the corner frequency and the seismic 

moment. In practice, this knowledge is not always available. An approach using 

Brune's model which does not have this deficiency is introduced later. 

The above analysis applies to a situation where the optimality is based on in­

formation prior to the use of the measured data, so q>(J) in Eq. 4.2.3 would best 

be called the "prior optimal linear filter." For optimality based on the measured 

data z(t) as well, the expectation operator E in Eq. 4.2.1 should involve the condi­

tional probability distribution of the jj(t) given z(t). In this case, applying Wiener's 

concept of finding the best approximation Y (f) to a true earthquake signal, the 

optimal filter is still defined by Eq. 4.2.3, but this now leads to the result that the 

optimal q> (f) is equal to unity throughout the whole spectrum. This implies that 

for discretized earthquake accelerograms, the best approximation fin is given by the 

measured, baseline-corrected and unfiltered data Zn· This is consistent with the 

approach adopted inCh. 3, by which the most probable motions based on the data 

are defined to be the ones that are actually measured. 

4.2.2 Hybrid Noise Filters 

Noise filters which decrease the amplitude of the spectrum at points 

where the signal-to-noise ratio is low can be constructed using a formula analogous 

to the results of Wiener's approach. However, these filters are no longer optimal 

in the statistical sense. To avoid phase changes in the signal, such filters should 

have positive real transfer function. Also, these must have amplitudes in the range 

of zero to one which increase as a function of the signal-to-noise ratio. Several 

possibilities are suggested below, and tested on the noise-contaminated synthetic 

signals for their correction effectiveness. 
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A modified version of Wiener's optimal noise filter is defined by the transfer 

function: 
N 

mE[O,z], (4.2.8) 

where the frequency range is d.c. to the Nyquist frequency corresponding to the 

discrete time signal, and where )Zrn) is the Fourier amplitude spectrum of the mea­

sured data assuming instrument correction is not required, similar to Eq. 4.2.5. If 

the measured data needs to be instrument-corrected, the noise filter should have a 

transfer function similar to Eq. 4.2.7, where Hrn is the instrument transfer function. 

The power spectral density of the noise, E[l~rn)2 ], is that of the digitization and 

recording error. As has been previously discussed in Chs. 2 and 3, such noise can 

be assumed to be Gaussian-distributed white noise with most probable value zero 

and standard deviation a, usually of the order of 0.001 g for analog accelerographs. 

It can be shown that the power spectral density of the noise is then constant over 

the whole frequency range of the spectrum and is defined by: 

(4.2.9) 

where N is the number of data points in the discrete time signal. 

Alternatively, the power spectral density of the noise can be extracted from the 

spectrum of the measured data. Typically, accelerograms are discretized at intervals 

of 0.01 sec, giving a Nyquist frequency of 50 Hz, but analog accelerographs have 

natural frequencies of about 25 Hz beyond which their response decreases sharply. 

Also, ground motion spectra are usually very small above 25 Hz. Hence, it can be 

argued that between 25 Hz and 50 Hz the spectrum of the measured data primarily 

reflects the digitizing and recording noise. Since Gaussian white noise has a constant 

power spectral density, the average value of the power spectrum between 25 Hz and 

50 Hz could be defined to be the proper estimate for E[)Llrn) 2 ] through out the 

whole frequency range of the data between d. c. and 50 Hz. Thus, 

1 
p 

N/2 

I: 
p=N/2-P+l 

where Wp is approximately 25Hz. 

Vm E [l,N/2], (4.2.10) 
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The correction effectiveness of the modified Wiener noise filter is tested on 

signal Q11 CNS, which is the noise-corrupted version of synthetic signal Q11 C scaled 

as a small earthquake (i.e., the level of noise is large with respect to the signal). No 

other sources of error exist in the signal to be processed. This signal is composed 

of 200 modulated frequencies between 0.05 Hz and 25 Hz, and hence all frequency 

content in the spectrum of the noise-contaminated signal between 25 Hz and 50 Hz 

is due primarily to the added Gaussian white noise. Eq. 4.2.10 is used to estimate 

the power spectral density function of the noise. The value of the noise variance a2 

inferred by equating Eq. 4.2.9 and Eq. 4.2.10 is almost identical to the one used to 

generate the noise in the uncorrupted synthetic signal. Hence, under the assumption 

that the noise is Gaussian and white, then Eq. 4.2.10 can provide good estimates 

of the power spectral density function of the noise. 

The normalized measure-of-error J is used to examine how well the modified 

Wiener filter reduces the noise in the signal, where: 

(4.2.11) 

In this equation, Zi is the noise-contaminated and filtered acceleration, velocity or 

displacement, and Yi is the exact counterpart. Although in the following discus­

sion J is computed using the time-domain results, because of Parseval's identity, 

Eq. 4.2.11 could be equally viewed as comparing the change in the noise level in the 

frequency domain. 

The values of J for the error in the acceleration, velocity and displacement, 

in the cases where no filter or the modified Wiener filter are implemented, are 

summarized in Table 4.2.1. These results indicate that the modified Wiener filter is 

capable of reducing the error in the acceleration by 35%, in the velocity by 60%, and 

in the displacement also by 60%. The differences in the time histories between the 

unfiltered and the filtered cases can be observed in Figs. 3.4 and 4.2.1 respectively. 

The plots of the error in the acceleration between the exact and the processed 

signals (top-right figure), show that the Wiener filter reduced the level of the white 

noise throughout the time history. Similarly, although the shape of the error in the 

velocity and the displacement have not changed much after implementation of the 
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noise filter, they have significantly decreased in amplitude. In particular, the drift 

in the displacement has decreased by 40%. The improvement in the displacement 

accuracy is primarily due to the low-frequency correction of the modified Weiner 

filter. The changes made elsewhere in the frequency domain where the filter varies 

erratically have little effect. Hence, the modified Wiener filter is capable of reducing 

the noise level in the time histories without affecting the predominant harmonics 

of the signal. The long-period errors primarily due to the shift in the acceleration 

temporal mean are still present, but have decreased in amplitude. 

The modified Wiener filter obtained for signal Q11 CNS is illustrated in Fig. 

4.2.2.a. It is not a traditional type of filter, in the sense that it depends on the signal­

to-noise ratio of the spectrum, and hence will be highly erratic in the frequency 

domain and different from one signal to the next. However, this figure illustrates 

the concept that the transfer function is close to unity in the region where the 

signal-to-noise ratio is large (i.e., below 25 Hz), and is close to zero in the region 

where the ratio is small (i.e., above 25 Hz). In particular, the filter decreases the 

high-frequency noise above 25 Hz by an average of 60%. Although the transfer 

function of the filter has an unusual form, the time-domain results (Figs. 3.4 and 

4.2.1) prove that such a filter does reduce the error level. 

Using the philosophy behind the modified Wiener noise filter, another class of 

noise filters can be defined. These are called exponential noise filters and are of the 

form: 

'Vm E (l,N/2]. (4.2.12) 

Just like the modified Wiener filter defined in Eq. 4.2.8, the exponential noise filters 

are signal-dependent, and decrease the noise as a function of the signal-to-noise 

ratio. However, they differ in that they approach zero faster as the ratio decreases, 

and approach unity faster as the ratio increases. The rate at which these filters 

approach zero or unity is controlled by the parameters a and (3. 

For comparison, the exponential noise filters were also tested on synthetic signal 

Q11CNS for different values of a and (3. The values of the measure-of-error J for 
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the acceleration, velocity and displacement, and for different combinations of a and 

f3 are listed in Table 4.2.1. It must first be noted that for most combinations of 

a and f3 listed in this table, J has substantially decreased from the case where no 

noise filter is implemented; there is up to 60% improvement in the acceleration, 

86% in the velocity and 93% in the displacement. In general, the exponential filters 

were more effective than the modified Wiener filter in decreasing the error levels in 

the time histories. 

Table 4.2.1 indicates that there is a trade-off between the role of a and f3 
and their effect on the measures-of-error. For a constant value of a and increasing 

values of f3, the measure-of-error J in the displacement decreases and that in the 

acceleration increases. Conversely, for a constant value of f3 and increasing values 

of a, the measures-of-error in the acceleration, velocity and displacement seem to 

decrease initially before increasing again. The relationship between the variations 

in a and {3, and in the J's, does not appear to be a simple one, but it can be 

noticed that as f3 becomes large the value of the J's remains more or less constant 

regardless of the value assigned to a. More insight into the interaction between 

a and (3 can be gained by examining the transfer functions of the exponential 

noise filter obtained with Q11CNS for some of the cases listed in Table 4.2.1 and 

Fig. 4.2.2. The transfer function of the exponential noise filter for a= 1 and f3 = 1 

(Fig. 4.2.2.b) is very similar to that of the Wiener filter (Fig. 4.2.2.a), with the 

exception that the exponential filter decreases on the average more of the high­

frequency noise, as corroborated by the slight drop in the J's. For a = 10 and 

f3 = 1 (Fig. 4.2.2.e), most of the harmonics which have a high proportion of noise 

are removed, and in the process the amplitude of the harmonics where the signal­

to-noise ratio is average are also significantly decreased. This alters the shape of the 

time histories and creates errors, as is reflected in the large values of J in Table 4.2.1. 

Conversely, for a = 1 and f3 = 10 (Fig. 4.2.2.d), the filter has a transfer function 

that is equal to unity almost everywhere except at the harmonics which have a very 

small signal-to- noise ratio, in which cases it is equal to zero. 

In effect, increasing a significantly decreases the amplitudes of all of the har­

monics which do not have a very high signal-to-noise ratio. Whereas, increasing (3 



-177-

selectively removes all the harmonics which have an extremely small signal-to-noise 

ratio, and leaves all other harmonics unchanged although they may be contaminated 

by noise. A parametric study of the J's has shown that the combination a = 2 and 

f3 = 4 offers the best compromise between the two effects. The transfer function 

of this case is illustrated in Fig. 4.2.2.e for synthetic signal Q11 CNS. Compared to 

the transfer function of the Wiener filter (Fig. 4.2.2.a), the chosen exponential filter 

retains more of the spectrum below 25 Hz, in the range where the signal predom­

inates, but removes on the average about the same amount of the high-frequency 

noise above 25 Hz. This is also reflected in the changes in J listed in Table 4.2.1. 

The measure-of-error in the acceleration is approximately the same for both types of 

noise filters, yet the error in the displacement from the exponential filter dropped 

by an extra 80%. Hence, when the proper combination for a and f3 is selected, 

the exponential noise filter significantly improves the correction effectiveness of the 

frequency-domain accelerogram processing method. In particular, for Q11CNS it 

decreases the noise-induced error in the acceleration by 25%, in the velocity by 85% 

and in the displacement by 90%. 

The time histories for Q11 CNS produced by implementation of the exponential 

filter with a = 2 and f3 = 4 are shown in Fig. 4.2.3. Compared to the correspond­

ing results obtained when no noise filter is implemented (Fig. 3.4), and when the 

modified Wiener filter is used {Fig. 4.2.1), the exponential noise filter considerably 

decreases the error in the processed time histories. However, according to the plots 

depicting the error between the noise-contaminated filtered signal and the exact 

signal, the exponential filter does not thoroughly remove the noise in the accelera­

tion, which along with the shift in the temporal mean, still contributes to significant 

long-period errors in the displacement. 

In the above, the noise filters are signal-dependent. Thus, the improvement in 

the correction effectiveness of the filter is in direct relation to the signal-to-noise ratio 

of the signal. For small events, in which the signal-to-noise ratio is relatively small, 

the noise filters have just shown to be useful in significantly decreasing the noise­

induced errors. However, when large events are tested with the noise filters, the 

correction effectiveness of the processing procedure shows very little improvement. 
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This is expected for large events, since in this case the processing and digitization 

errors have a minimal effect on the time histories, and the transfer function of the 

noise filter is approximately unity. For instance, the measures-of-error J for the 

unfiltered large event simulation Q11CNL contaminated with noise are two orders 

of magnitude smaller than the values listed for the unfiltered signal Q11CNS in 

Table 4.2.1. Hence, there is very little room for improvement. 

In the next section, a different and complementary approach to filtering is 

investigated. It will be shown to correct the long-period drifts in the time histories 

without affecting the harmonics that have a reasonable signal-to-noise ratio. If 

such an approach is adopted, then the noise filters presented in this section would 

only be useful in correcting the high-frequency errors which are prevalent mainly in 

the acceleration time histories. The high-frequency errors induced by digitization 

and processing are mostly of concern for small seismic events, and are not greatly 

reduced by the noise filters for large seismic events. Under such conditions, the 

noise filters described in this section are not part of the standard probabilistic 

frequency-domain processing method, but they could be implemented as an option 

if desired. 

4.3 Spectral Substitution Method 

4.3.1 Motivation and Methodology 

It has been shown that the unknown offset in the acceleration, because 

of missing initial and final data points or baseline drift, together with digitization 

errors, is the largest source of long-period error in the velocity and displacement 

signals. In the frequency domain, this appears as unusually high values of the signal 

spectra at low frequencies. Indeed, the low-frequency error due to the unknown 

acceleration offset is expected to behave as the spectrum of the integrated boxcar 

function, centered at d.c., as explained in Sec. 3.3. Also, the signal is particularly 

affected by the digitization noise at high frequencies, where the amplitude is small. 

The signal-to-noise ratio remains good in the intermediate frequency range, as has 

been shown in the previous section, so spectral correction is only necessary at low 

and high frequencies. 
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Standard earthquake accelerogram filtering and processing methods in use to 

date deal with the error-contaminated regions of the spectra by simply removing 

them. However, spectral models have been developed from extensive studies per­

formed on earthquake ground and structural response, and this information could 

be used to process accelerograms. The following correction method proposes to 

optimize models of source and structural spectra in the reliable frequency range of 

the signal, in order to extrapolate estimates for the regions where noise and error 

prevail. In other words, the upper and lower frequency bands where the recorded 

data proves to be unreliable are reconstructed according to the optimized model. 

Using an output-error approach [Beck, 1989] the model amplitude spectrum, 

I iJ ( w, ~)I, as a function of the parameters ~ , is fitted to the instrument-corrected 

amplitude spectrum of the measured data I Z ( w) I where w ranges over the discrete 

FFT frequencies. One approach would be to make the assumption that the un­

certain error In in the model spectrum is additive and is described by a Gaussian 

distribution, that is: 

(4.3.1) 

for each FFT frequency Wn· One problem with this approach is that the right-hand 

side has a nonzero probability of becoming negative, but the left-hand side is always 

nonnegative. However, ignoring this difficulty for the moment, then according to a 

Bayesian probability approach [Beck, 1989], the most probable set of variables ~ is 

the one that optimizes the output-error function: 

N 

J(~) = ~I: [lz(wn)I-I.B(wn, ~)lr 
n=l 

(4.3.2) 

Testing of this procedure on real earthquake records proved that these assumptions 

led to convergence problems and poor fits of the model to the data. These prob­

lems mainly occured because such a formulation produces shallow valleys for the 

error function within which nonlinear optimization schemes cannot easily converge. 

Thus, the additive-error assumption suffers from several problems and is not a good 

approach to use. 

Another approach is to assume that the uncertain output error is multiplicative 

and is described by a Log-Normal distribution, i.e., the logarithm of the error has a 
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Gaussian distribution with zero mean and variance a2 , say. Thus the output-error 

equation is given by: 

(4.3.3) 

where En is the logarithm of the uncertain multiplicative error at frequency Wn, and 

the logarithm to base e is used. The most probable set of variables 0 is now the 

one that minimizes the following output-error function: 

N 

JL(!!_) = ~ L [Log jz(wn)l- Log j.B(wn, ~)jr 
n=l 

(4.3.4) 

This approach does not suffer from the problems arising when using an additive 

error. Indeed, it is observed to converge fast and to give model spectra which are 

good fits to the data. 

The value J L( 0) can be shown to be the most probable estimate of the variance 

a2 of the uncertain output error En defined in Eq. 4.3.3 [Beck, 1989]. If En is defined 

as the departure of the recorded spectrum from its most probable value at each 

frequency Wn based on the spectral model: 

(4.3.5) 

then comparison of in to a = V J L( ~) provides a measure of the reliability of the 

data at frequency Wn· For instance, according to the error distribution, there is 

a 84.1% probability that the logarithm of the data amplitude spectrum will not 

exceed a about the most probable value of the logarithm of the model spectrum. 

Hence, if En is greater than a, then it is very likely that the measured I Z ( wn) j is 

being controlled by noise. At that frequency, the amplitude of the measured data, 

jZ(wn) j, could be replaced by the most probable value of the amplitude, jB(wn, ~) j, 
obtained from the optimization. Since the model does not provide an estimate 

of the true phases at the noise-contaminated harmonics, only the amplitudes are 

substituted at the noise-controlled frequencies while the phases are kept at their 

original values. 
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Through this approach, it is no longer necessary to guess which harmonics 

must be discarded because of a small signal-to-noise ratio. The proposed statistical 

methodology provides both a measure for the reliability of the recorded data spec­

trum as well as a most probable estimate for the amplitude of the spectrum at each 

harmonic which is dominated by noise. 

The purpose of this correction method is mainly to obtain a better estimate 

of the spectral shape near d. c. and above the natural frequency of the instrument, 

which are the regions where recording and digitizing noise are dominant. The mod­

els used for the optimization are defined accordingly, as explained in more detail in 

the following sections. Within the intermediate frequency band, typically between 

about 1 Hz and 25 Hz, it is assumed that the effect of digitizing and processing 

noise are minimal. Although in the intermediate frequency range the model pro­

vides a description of the spectral shape which is good on the average, it cannot 

reproduce the contributions from phenomena other than the source mechanism at 

low frequencies and the decay rate at high frequencies, since only the variables that 

adequately describe the high and low frequency behavior of the spectra are used 

to perform the optimizations. Thus, it is suggested that no corrections be made 

in the intermediate range up to the instrument's natural frequency, and so only 

the harmonics at the two extreme regions of the spectra are altered following the 

methodology described above. 

The low frequency cut-off is selected as the first data point for which the magni­

tude of the difference between the measured and the most probable model spectrum 

is less than one standard deviation, as given by Eq. 4.3.5. Testing of this procedure 

on recorded accelerograms demonstrated that the cut-off frequency is usually below 

0.06 Hz. Other criteria for the low frequency cut-off levels can be chosen, if desired, 

such as two or three standard deviations. However, it must be taken into account 

that the value given for the variance after minimization is relatively high since the 

fit of the spectral model in the intermediate frequency range between 1 Hz and 

20 Hz is only approximate. The variance, which is described by parameter 8-, will 

decrease as the model becomes a closer representation of the measured spectrum 

throughout the whole frequency range. This, however, implies that the spectral 
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model needs to be described by more variables. Although such a model could easily 

be implemented, the extra variables would mainly affect the fit within the interme­

diate frequency band without providing significantly better estimates for the upper 

and lower ranges. It would also unnecessarily make the convergence to the mini­

mum more difficult, and significantly increase the computing time. Identification of 

these extra parameters remains outside the scope of this study. 

The nonlinear minimization scheme utilized is a combination of the steepest 

descent method and Newton's method [Gill et al., 1981]. The first method exhibits 

fast convergence to the neighborhood of the minimum, but the second method 

provides a better convergence rate once the neighborhood of the minimum is found. 

In the minimization algorithm, the two methods are alternatively used until the 

minimum is reached. The user must provide initial estimates for the variables 

which should be in the region of the global minimum to ensure proper convergence. 

Testing using the recorded accelerograms showed that the convergence rate 

also improved as the model provided a better description throughout the whole 

spectrum, and as less of the noise-corrupted data at the extremes of the spectrum 

were used in Eq. 4.3.4. Thus, to improve the convergence rate and the spectral 

fit, several models are proposed depending on the nature of the recorded motions. 

Also, from the conclusions reached in Sec. 3.3, the following rule of thumb is used 

to select the bandwidth within which the minimization is performed, and where the 

signal-to-noise ratio is thought to be relatively large. If the accelerogram has been 

digitized up to T0 sec, then the portion of the measured data used for minimization is 

selected between the next harmonic after frequency T0-
1 Hz up to the instrument's 

natural frequency. This choice of the bandwidth for the minimization is based 

on the fact that the largest long-period error is due to the unknown shift in the 

acceleration. As has been studied in Sec. 3.3, after processing and double integration 

of the acceleration, this error shows up the most at T0-
1 Hz. Although many zeroes 

are often required to be padded onto the digitized accelerogram to use the FFT 

algorithm, which artificially increases the length of the record, the extra information 

it provides for the first harmonic of the spectrum is not reliable. Hence, the proper 
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record length To to consider is the one corresponding to the number of digitized 

points, and not the one obtained after zeroes have been padded. 

If not enough points are digitized from the accelerogram, then there is not 

a sufficient spectral resolution at low frequencies for the minimization scheme to 

converge properly. To allow proper convergence of the correction scheme, it is 

imperative to digitize the accelerogram up to the time of the instrument's automatic 

shut-off. This also provides smaller estimates for the standard deviation of the time 

histories, as described inCh. 3. 

4.3.2 Spectral Models 

As for any model optimization problem, the results are strongly depen­

dent on how well the data is represented by the model. In the case of strong-motion 

earthquake accelerogram spectra, the problem of defining a proper model is a com­

plex one. Many seismologists have tackled this problem [Brune, 1970; Hanks, 1982; 

Papageorgiou, 1988]. All agree that the recorded strong-motion displacement ampli­

tude spectra B(f), which mainly reflects the body wave behavior, can be described 

by the following decomposition [Joyner&Boore, 1988]: 

B(f) = C S(f) A(!) D(f) . (4.3.6) 

C is a scaling constant which depends on the radiation pattern, the free surface 

effects, the geometric spreading, and the medium density and shear velocity. S(f) 

is the source spectrum. Its effect typically dominates the low-frequency portion of 

the accelerogram below 1 Hz, and is given for far-field body waves by Brune (1970] 

to be 
Mo 

s (f) = -=---[ 1+-(-fo )......,-:-l (4.3.7) 

where M 0 is the seismic moment, and fo is the corner frequency which can be 

defined as a function of the body wave velocity, the stress drop along the fault 

and the seismic moment. Alternatively, fo can be infered from information on the 

fault dimensions. Other expressions for S(f) have been proposed [Papageorgiou & 

Aki, 1983; Joyner & Boore, 1988], but these are more complex and require more 
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parameters. It will be shown for "far-field" records that Eq. 4.3.7. provides an 

adequate representation of the low-frequency behavior of the spectrum with a min­

imum number of parameters, and that a more complicated model is not necessary 

for accelerogram correction purposes. However a correction should be made for 

"near-field" records as described later. A(!) is the amplification factor, it describes 

the frequency-dependent wave propagation effects as a function of the surrounding 

medium properties both at the source and at the recording site. The main contri­

bution of A(!) in the accelerogram spectrum is to provide a better description of 

the motions at intermediate frequencies, typically within the 1 Hz to 15 Hz range. 

Since the recorded motions in that frequency band are fairly accurate because of 

the high signal-to-noise ratio; no model corrections are necessary and so expressions 

for A(!) will not be incorporated in the equation for the model. 

D(f) is called the diminution factor. It describes the frequency-dependent 

attenuation as a function of the hypocentral distance. There is still debate as 

to what a proper form for D(f) should be [Papageorgiou, 1988; Hanks, 1982], 

especially regarding the high-frequency decay rate beyond 25Hz, but it is generally 

given as a function of the "material" attenuation Q(f), the hypocentral distance 

r, the S-wave propagation velocity {3, and the frequency fH at which the spectrum 

sharply decreases [Hanks, 1982; Joyner & Boore, 1988]. Anderson and Hough [1984] 

suggested an expression of the form: 

D(f) =exp [- Q(~){J]·exp [- LJ (4.3.8) 

According to this last equation, the high-frequency decay can be separated into two 

exponential terms. The first one is a function of distance, and Q(f) is often taken 

as a constant. The second one is a function of frequency f H which controls the 

high-frequency decay. An instrument-correction term is often added to Eq. 4.3.6. 

However, since the model spectrum is fitted to the instrument-corrected amplitude 

spectrum of the measured data such a term is not necessary in this case. 

From the above discussion, the model for the acceleration amplitude spectrum 

of strong ground motions can be simplified to the following expression: 

D 
2 2 [ l - ow0 w w 

B ( w) = [ 2 2) • R ( w) · exp -- . 
w0 + W WH 

(4.3.9) 
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According to Eq. 4.3.6 and 4.3.7, the constant Do incorporates into a single param­

eter the seismic moment, the stress drop, the radiation pattern, the medium density 

and shear velocity in the region of the source, as well as local site amplifications to 

some degree. The expression for R(w), which does not involve parameters, depends 

on whether the record to be processed is obtained in the near-field or in the far-field, 

as will be discussed in the following sections. Thus, the optimization of the model 

spectrum for ground acceleration correction can be reduced to the identification of 

only 3 variables: Do, the d.c. value of the displacement spectrum, w0 , the corner 

frequency and w H, a high-frequency decay parameter. 

So far only ground motions have been discussed, however accelerograms are 

also obtained for structural motions. The same approach can be applied to cor­

rect structural records, and Eq. 4.3.9 can be used to define an appropriate model 

spectrum for structural response, as will be discussed in Sec. 4.3.2.3. 

4.3.2.1 Far-field Ground Motions 

Far-field ground motions (i.e., those that are far enough away 

from the fault that there is no permanent displacement from tectonic deformation 

produced by the earthquake) are the most common type of accelerogram records 

obtained during seismic events. It is known that unless there are substantial lo­

cal site effects which produce permanent displacements, such as soil liquefaction 

or subsidence, the recorded spectrum should on the average behave as described 

schematically by Fig. 4.3.1. The acceleration amplitude spectrum increases as w2 

up to the corner frequency wo, where it levels off until it reaches WH and starts 

decaying exponentially. Equivalently, the corresponding displacement spectrum is 

flat and equal to constant Do until it reaches the corner frequency w0 • Such a model 

is described by Eq. 4.3.9 provided that the distance function R is set to unity. Hence, 

the acceleration amplitude spectrum model for far-field ground motions is defined 

to be: 
.. Dow5w

2 
[ w l B(w) = [ 2 2 ] • exp -- . 

Wo + W WH 
(4.3.10) 

The spectral model defined in Eq. 4.3.10 is optimized for the set of variables: 

(4.3.11) 
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Eq. 4.3.10 implies that the temporal mean of the complete acceleration and 

velocity histories is zero, since the d. c. of the acceleration and velocity amplitude 

spectra of the model are zero. Also, Do represents the d. c. value of the displacement, 

and can be related to the temporal mean of the complete displacement time history 

of the event. Since the temporal mean in the velocity is zero, and the displacement 

time history starts at zero in theory, the far-field spectral model given in Eq. 4.3.10 

implies that the final value of the complete displacement time history is zero. This 

is the behavior which is theoretically expected. However, in practice the recorded 

time histories are not complete, because of missing data at the beginning and at the 

end. Thus, certain corrections are necessary to obtain the far-field records (Sees. 3.3 

and 4.3.3). 

4.3.2.2 Near-field Ground Motions 

In the near-field, the displacement time history is expected to 

have a nonzero final offset, thus implying that the velocity has a nonzero temporal 

mean. In fact, it is easy to show that the value of the final displacement is equal 

to the product of the duration and the temporal mean of the velocity, under the 

assumption that the initial displacement is zero. In the frequency domain, there 

will be a finite nonzero value for the d. c. component of the velocity spectrum, but 

an infinite value for the d.c. component of the displacement spectrum. Eq 4.3.9 

can be used in the near-field by taking: 

1 
R(w) =-. 

w 
(4.3.12) 

Hence, the model for the acceleration amplitude spectrum of near-field ground 

motions is defined by: 

·· Dow5w [ w ] B ( w) = [ 2 2] • exp -- , 
W0 + W WH 

(4.3.13) 

where the set of variables ~ used for the optimization of the model is the same as 

that defined for the far-field case in Eq. 4.3.11. For all the altered harmonics, the 

amplitude is given by the optimized spectral model, but no correction is performed 

on the value of the corresponding phase. The estimated value of Do gives the 

amplitude of the spectral component of the complete velocity history at d. c., which 



- 187-

also turns out to be the value of the absolute final displacement offset. However, 

this does not provide information for the sign of the d. c., and it is important to 

know whether the d.c. value of the velocity is +Do or -Do, or, equivalently, if 

the final displacement offset is +Do or -Do respectively. Such information can be 

obtained , for example, from geomorphological studies of the fault's rupture pattern. 

For instance, along a strike-slip fault it should be easy to determine which of the 

records in the direction of the fault's strike should have a positive or negative final 

displacement. 

The near-field ground spectrum described by Eq. 4.3.13 is consistent with the 

theory of crack propagation and stress relaxation along a finite length fault, for 

which the final dislocation is related to the fault geometry and the stress drop [Aki 

& Richards, 1980]. Theoretical derivation of the problem also demonstrates that the 

far-field motions are obtained by differentiation of the near-field equations, which 

is the reason for the choice of R(w) in Eq. 4.3.12. 

4.3.2.3 Structural Response Motions 

The measured structural data x3(t), as recorded on strong-motion 

accelerograms, represents the absolute acceleration of the structure at location;". 

It can be decomposed as the sum of the input ground acceleration z(t), and the 

relative acceleration of the structure at that location Yi(t), under the assumption 

of planar motion: 

(4.3.14) 

The relative acceleration of the structure, modelled as a linear multi-degree-of­

freedom oscillator, can itself be decomposed into a linear combination of the modal 

accelerations .:Yr(t) over all contributing modes r, and where .:Yr(t) is subject to the 

equation of motion of the rth mode: 

(4.3.15) 

~r is the modal damping, Wr is the modal frequency and O:r is the modal participation 

factor. 
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l:p. the frequency domain, Eq. 4.3.15 is equivalent to: 

(4.3.16) 

The relative response at the location J. is given by: 

N 

Y3(w) = L f r(w)r/>rj , (4.3.17) 
r=l 

where N is the number of modes contributing substantially to y3, and rPri is the 

mode shape component of the rth mode at the location y'. 

Combining Eqs. 4.3.14, 4.3.16, and 4.3.17, the absolute response of the structure 

in the frequency domain, at any location y', is given by: 

(4.3.18) 

Thus the absolute acceleration of the structure at location i can be expressed by 

the product of the ground motion spectrum, as defined in either Sees. 4.3.2.1 for the 

far-field, or 4.3.2.2 for the near-field, and a structural response term as a function 

of the modal properties of the structure. 

The purpose of this derivation is to find an appropriate model to fit to the 

measured structural data in order to replace the noise-contaminated portions of 

the spectrum near d. c. and at high frequencies by their most probable values. As 

was the case for the models proposed for the ground-motion spectra, it is not of 

concern to model exactly the intermediate-frequency range of the spectrum. The 

dominant structural response term in Eq. 4.3.18 is usually the absolute acceleration 

contribution of the first mode. Under the assumption that 

N 

L CXrrPrj ~ 1 ' 
r=l 

the equation for the spectral model of the absolute acceleration of the structure 

could be simplified to: 

(4.3.19) 
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The model of Eq. 4.3.19 assumes that the building responds in its first mode 

only, and does not allow higher mode contributions. By incorporating the vari­

able al<f>li into the variable Do describing the behavior of the ground spectrum at 

d. c. (Eq. 4.3.10 or 4.3.13), the model as defined in 4.3.19 can be described by the 

following five variables forming the set ~: 

(4.3.20) 

The minimization scheme displayed serious convergence problems when it was 

tested on recorded structural data using Eq. 4.3.19 as the model and Eq. 4.3.20 

as the set of variables. The principal problem was that it could not converge on a 

proper value for the high-frequency decay variable as defined by w H. Hence, the 

w H term is unnecessary for structural records. Furthermore, the model described 

by Eq. 4.3.19 only includes the first mode effects. Hence, the decay due to higher­

frequency modes is impossible to observe correctly, which may partly explain the 

observed convergence problems for the structural damping term 2s"w 1 . Also, this 

variable representing the first mode damping effects, appears both in the numerator 

and denominator of Eq. 4.3.19. Hence, the model may not be flexible enough to 

allow for contributions from other modes, especially regarding the high-frequency 

decay as mentioned above. In view of these comments, an alternate expression for 

the far-field structural spectrum is proposed: 

wr +cw 
(4.3.21) 

(w1- w) 2 + dw ' 

with corresponding set of variables: 

(4.3.22) 

Eq. 4.3.21 does not include the exponential WH decay term, and allows more flexi­

bility in identifying the decay behavior due to structural damping. The variables c 

and d do not represent any particular physical quantity, other than maybe a gen­

eral description of the damping and of the higher mode effects. At low frequencies, 

where the spectral substitution is implemented, the absolute displacement of the 
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structure is governed by the ground motion, as expected. A trial-and-error ap­

proach was used to obtain this equation for the structural model. It was found to 

provide the best convergence and fit when tested on strong-motion records obtained 

at different buildings. 

Eq. 4.3.21 is valid for far-field structural motions, but it can be adjusted for 

near-field records by dividing by w (Eq. 4.3.12). Although in practice it is rare to find 

instrumented structures built very near a significant fault, the w- 1 correction term 

might still be necessary to observe nonzero final ground displacements. However, 

Eq. 4.3.21 may not be appropriate to observe in-structure permanent offsets. 

4.3.3 Processing Procedure 

The processing procedure for the spectral substitution method is very 

similar to that described for the frequency-domain approach presented in Sec. 3.3.1. 

Typically, for analog accelerograms, the uncorrected digitized accelerogram is lin­

early interpolated to flt =0.01 sec. For digital records, flt may be even smaller. 

The temporal mean of the N digitized points is forced to zero. The data is then 

padded with zeroes at the end, so that there is the necessary number of points, 

NT, to perform the Fourier transform with the FFT algorithm. The data is then 

instrument-corrected in the frequency domain. The appropriate spectral model 

(Eq. 4.3.10, 4.3.13 or 4.3.21) is then fitted to the logarithm of the acceleration 

spectrum of the measured data. 

In the cases where judgement is not sufficient to determine which of the near­

field or far-field spectral models is appropriate, the answer is usually given by the 

minimization algorithm itself. Indeed, application to recorded ground motion ac­

celerograms has shown that the minimization algorithm does not converge when the 

spectral model is not proper. The goodness-of-fit and the speed of convergence are 

also a measure of how well the spectral model represents the measured data. Once 

the minimization is performed and a most probable model is found, the error be­

tween the logarithm of the measured data spectrum and the logarithm of the model 

spectrum is then computed according to Eq. 4.3.5. The last low-frequency point 

whose error is more than the one standard deviation defined by±& (from Eq. 4.3.4 
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with the optimal parameter 0), is selected as the cut-off for the low-frequency cor­

rection. All points of the spectrum below, and including the cut-off frequency, are 

substituted by the amplitudes provided by the optimized spectrum, but the phases 

are not changed. The high-frequency cut-off is less critical since it mainly affects the 

acceleration time histories for which the signal-to-noise ratio is usually high. Thus, 

this cut-off can be set to any reasonable value, but could also be selected according 

to the same criteria as for the low-frequency cut-off. The amplitudes above the 

high-frequency cut-off are then substituted by the optimized values of the model, 

and the phases are kept unchanged. All points of the accelerogram spectrum from, 

but not including, the low-frequency cut-off up to the high-frequency cut-off are not 

altered. This spectral correction produces accelerograms which are consistent with 

the physics of the underlying motions and for which changes have been made only 

in those parts of the spectrum where truncation error and noise are dominant. 

The most probable acceleration time history .Zon with zero temporal mean is 

obtained by inverting the corrected Fourier spectrum. The acceleration spectrum is 

also divided by iw and -w2 to obtain the velocity and displacement spectra, except 

for their d.c. values which are set to zero. The procedure to obtain the velocity 

and the displacement time histories are slightly different depending on the nature 

of the record, as described in Ch. 3, and illustrated in Fig. 3.20. Implementation of 

the spectral substitution method changes the processing procedure in the following 

way. 

In Eq. 4.3.10, for far-field records, the variable Do represents the d.c. value 

of the complete displacement. D 0 does not affect the d.c. of the velocity or the 

acceleration, although it controls the substituted amplitude of the spectra at the 

corrected frequencies. Hence, the spectral substitution method has changed the 

inverse Fourier transforms of the signals Zn, Vn and dn (Fig. 3.20), but the most 

probable acceleration and velocity time histories in the far-field remain those that 

have zero temporal mean and are defined by Zon and Zon. 

In theory, the identification of the d. c. of the signal could be used to set the 

temporal mean of the displacement time history to its most probable value, and 

to correct the errors in the displacement induced by the uncertain initial velocity 
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or the uncertain temporal mean of the truncated velocity time history. However, 

this requires that the earthquake be recorded and digitized in most of its entirety. 

Because in practice many data points are missing at the beginning or at the end of 

the record, it is impossible to estimate the temporal mean of the truncated displace­

ment time history. Thus, for far-field records, it is still more accurate to impose 

a zero initial value for the displacement than it is to impose a d.c. value of D 0 • 

Although the estimated parameter Do is of no help in resetting the proper temporal 

mean of the truncated displacement time histories in the far-field, it is instrumental 

in defining the amplitudes of the low frequency harmonics that need to be substi­

tuted (Eqs. 4.3.10 and 4.3.21). The most probable displacement time history for 

far-field records corrected with the spectral substitution method is defined by Zon 

(Fig. 3.20), and it has zero initial and final value (since it corresponds to the zero 

velocity temporal mean condition). 

As was mentioned in Sec. 3.3, imposing a zero temporal mean velocity condition 

on a severely truncated record, may create unrealistic shifts in the initial portion 

of the velocity time history. In such cases, it may be advisable to produce the most 

probable velocity time history on the basis of a zero initial velocity condition Zn, 

since it is a more realistic assumption. The corresponding displacement is then Zn 

as defined in Fig. 3.20, but it usually exhibits large and unrealistic drifts. However, 

instances where Zn and Zn were more appropriate rarely occurred when the spectral 

substitution method was tested on analog records, as will be seen in the next section. 

In summary, for records where no final displacements are expected (i.e., far­

field or undamaged structure) the most probable set of time histories from the 

spectral substitution method are given by Zom the acceleration with zero temporal 

mean, zon the velocity with zero temporal mean, and zon the displacement with 

zero initial condition obtained from Zon· For far-field records processed with the 

spectral substitution method, the equations presented in Fig. 3.20 still apply. 

In the near-field, the d. c. corresponding to the complete velocity time history is 

theoretically given by the estimated value of the variable D 0 in Eq. 4.3.13. Altering 

the d. c. of the velocity does not alter the acceleration time history in any way. 

Hence, the most probable acceleration time history for near-field records remains 
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the one with zero temporal mean Zon, as in the far-field case, but now Z(O) = Do 

(Fig. 3.20). 

Inversion of the velocity spectrum with a d.c. value Do produces the velocity 

time history Zon· However, as for the far-field case, Do which is the d.c. correspond­

ing to the complete velocity time history, may induce shifts in the initial portion of 

the truncated velocity time history which are not compatible with seismic motions. 

In this case, it may be preferable to use the velocity time history with zero initial 

value Zn, as defined in Fig 3.20, although application of the spectral substitution 

method to analog accelerograms obtained in the near-field has not found this to be 

necessary so far. 

In the previous section, it was shown that for near-field records Do represented 

both the d. c. of the velocity spectrum, and the final value of the complete displace­

ment time history. Fault motions are expected to approach the final displacement 

offset value soon after the onset of the rupture, and hence Do should be a good 

approximation of the final displacement even for near-field records which suffered 

significant end truncation. In the near-field, the most probable value of the initial 

displacement is still assumed to be zero. To account for the Do d. c. value of the 

velocity, a linear correction term must be added to the displacement time history 

dn, which is obtained after spectral substitution for Z(O) = 0 and produced after 

Fourier inversion (Fig. 3.20): 

n= l, ... ,N (4.3.23) 

Hence, for near-field records processed with the spectral substitution method, the 

definition of the time history Zon differs from the one given in Fig. 3.20. 

As was the case for far-field records, a near-field displacement signal Zn could 

be obtained to correspond to the zero initial velocity condition, in instances where 

imposing a Do d. c in the velocity creates unrealistic large shifts in the initial portion 

of the severly truncated velocity time history. However, as will be seen in the next 

section, such cases seldomly seem to occur when the spectral substitution method 

is used. Also, the displacement time histories Zn, corresponding to the zero initial 

velocity condition, both in the far-field and the near-field, usually display large drifts 
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which are unrealistic. Hence, there is a trade-off between the two assumptions, and 

employing the zero temporal mean velocity in the far-field, or Do temporal mean 

velocity in the near-field, instead of zero initial velocity, remains the better option. 

To summarize, the set of records which should best describe the event in the 

near-field for which final displacement offsets are expected, is given by zon, the 

acceleration time history with zero temporal mean; Zon, the velocity time history 

with d.c. value Do, and Zon, the displacement time history with zero initial value 

corresponding to a value Do for the d. c. of the velocity. When processing near-field 

records with the spectral substitution method, the flowchart of the algorithm in 

Fig. 3.20 must be modified such that Z(O) = D 0 , and Zon is given by Eq. 4.3.23. 

4.3.4 Application to Ground Motion Records: 1979 Imperial 
Valley Earthquake 

The synthetic accelerogram formulation presented in Sec. 2.2 cannot be 

used to test the performance of the spectral substitution method described in Sees. 

4.3.1 and 4.3.2, since the synthetic record formulation does not explicitly behave 

according to Brune's spectrum at low frequencies, and does not have an exponential 

decay for high frequencies. Hence, the minimization algorithm would probably not 

converge when applied to the synthetic records. 

However, accelerogram correction using the spectral substitution method has 

been tested on a large number of records obtained from a strong-motion array 

triggered by the Imperial Valley earthquake of October 15, 1979 (ML = 6.6). Both 

the Imperial fault and the Brawley fault ruptured during this event. The Imperial 

fault is a strike-slip fault which ruptured over a 30.5 km length with right lateral 

motions. Geological surveys performed just after the event reported maximum 

surface offsets across the fault of about 60 em at a distance of 5 to 10 km north-west 

of the epicenter [Sharp et al., 1982]. The amount of displacement offset decreased 

moving north-west along the fault. In the vicinity where the strong-motion array 

crosses the Imperial fault, right lateral offsets of the order of 30 em were reported 

(Fig. 4.3.2.). The Brawley fault runs north-south and is located to the north-east of 

the Imperial fault. The Brawley fault is primarily a normal fault, which ruptured 

over a 13 km extent during the event, with downward surface offsets of up to 17 em 
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west of the fault. In the vicinity where the Brawley fault intersects with the Imperial 

fault, the survey also reports a number of surface breaks along secondary faults with 

both normal and right or left lateral strike-slip features. 

The crustal structure of the Imperial valley was extensively studied by Fuis et 

al. [1982]. They reported a sedimentary layer of depth 4 km to 5 km; the linear 

P wave velocity gradient increases from approximately 2 km/sec at the surface, to 

5 km/sec at the bottom of the sedimentary layer. Hartzell and Heimberger [1982] 

inferred an S-wave velocity gradient which increases from 1 km/sec at the surface 

up to 3 km/sec at the bottom of the layer. Using a shear beam model, under 

the simplifying assumptions that the velocity structure of the sedimentary layer, 

of average depth 4.5 km, is constant, with average S-wave velocity 2 kmjsec, and 

that the lateral boundary effects can be neglected, the predominant period of the 

valley excited by the vertically incident S H -waves is approximately 9 sec (it could 

be greater because of the softer surface layer). Similarly, that due to the P-waves 

is approximately 5 sec, based on an average velocity of 3.5 kmjsec. 

Thirteen analog strong motion instruments, operated by the U.S. Geological 

Survey, are installed symmetrically across the Imperial fault in an array perpen­

dicular to the its direction (Fig. 4.3.2). The triaxial instruments are SMA-1 T's; 

they record the strong motions in three directions (clockwise from the north): 140°, 

which is parallel to the strike, up, and 230°, which is perpendicular to the strike. 

Because the Imperial fault has a strike-slip rupture mechanism, the records obtained 

for the 230° component (i.e., perpendicular to the fault) should be dominated by 

SH wave motions, whereas the vertical and the 140° components should be domi­

nated by the P and SV wave motions [Hartzell and Heimberger, 1982]. The array 

is located approximately 27 km away from the epicenter, and in the vicinity of the 

intersection between the Imperial and the Brawley faults, as shown in Fig. 4.3.2 

[Brady et al., 1980; Porcella et al., 1979]. Because of the close proximity of each of 

the instruments in the array, neighboring records can be corrected with the spectral 

substitution method and compared to verify the consistency of the results. Records 

have also been obtained near the epicenter and along the fault line. These pro­

vide an excellent opportunity to test whether the near-field model of the spectral 
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substitution method can provide an adequate static and dynamic description of 

the event and if it can approximately predict final offsets in the displacement time 

history. The intent of this section is to test the processing method and to prove 

that it yields physically plausible results. It is not the purpose here to provide an 

in-depth analysis and description of the static and dynamic behavior of the Imperial 

Valley earthquake of October 15, 1979, although such an analysis using the records 

processed with the spectral substitution method would be a useful follow-up study. 

A selection of far-field and near-field records from the Imperial Valley strong 

motion array that have been processed with the spectral substitution method is 

now presented. 

4.3.4.1 Far-field Records: Stations 2 and 3 

Records in all three directions at Station 2 (Keystone Rd.) and Sta­

tion 3 (Pine Union School) are processed according to the procedure for far-field 

records described in Sec. 4.3.3 and the results are shown for comparison. These 

two stations are less than 3 km away from each other. In particular, this analysis 

will show that the ground motion time histories from both stations in the same 

direction exhibit similar features suggesting that the spectral substitution method 

is capable of producing consistent results for the time histories. Stations 2 and 3 

are located respectively at a distance of 16 km and 13 km away from the fault and 

about 30 km from the epicenter. These stations can be considered to be located in 

the far-field, so Eq. 4.3.10 is used as the model for the earthquake spectrum. 

The 230° component of Station 2 was only digitized up to 39.63 sec, although 

the motions have not significantly decayed by that time (Fig. 4.3.4). This comment 

also applies to all subsequent records discussed herein. The data, which is linearly 

interpolated to intervals of 0.01 sec, is padded with zeroes up to 40.95 sec (i.e., 

4096 data points) to have the correct number of points to perform the FFT. The 

resulting discrete spectrum is provided at frequency intervals of 0.0244 Hz, between 

d.c. and the Nyquist frequency 50 Hz. Spectral optimization using the far-field 

model (Eq. 4.3.10) converged to the following values for the variables: 

D 0 = 138.0 cm.sec , fo = 0.101 Hz , f H = 8.37 Hz . 
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Fig. 4.3.3 represents the spectral fit of the optimization model for the 230° 

component of Station 2. The optimized spectrum is plotted as a dashed line in 

Fig. 4.3.3(a) and (b) for the acceleration spectrum and the displacement spectrum 

respectively, using a log-log scale. In these two plots the solid lines represent the 

spectra of the measured data, and it can be seen that the model fit is relatively good 

at high and low frequencies, but it is only average within the intermediate frequency 

range (0.5 Hz-10 Hz). This is expected since, as was mentioned in Sec. 4.3.2, the 

model spectrum is simplified only to represent the contributions of the high and low­

frequency behaviors of the event, and it is not formulated to include effects such 

as local site conditions that mainly alter the spectrum at intermediate frequencies. 

In Fig. 4.3.3(c) the solid line represents the most probable error En as defined by 

Eq. 4.3.5, and the dashed lines represent from bottom to top +la, +2a, and +3a 

as given by Eq. 4.3.4, where a is the standard deviation about the most probable 

value of the error between the log-acceleration of the optimized model spectrum 

and the measured spectrum. Because the logarithm of the acceleration spectrum is 

used for the minimization, a is the same for either the acceleration or displacement 

fit since the "integration" terms log(w2 ) cancel out in Eq. 4.3.4. The error plot of 

Fig. 4.3.3(c) shows that only the first spectral amplitude, excluding d.c., is above 

the one standard deviation level. Hence, both d.c. and the first harmonic are 

substituted by the amplitudes of the optimized spectral model. The fit at high 

frequencies becomes poor above 35 Hz. Thus, for this record the low-frequency 

cut-off is selected as 0.0244 Hz and the high-frequency cut-off is 35 Hz. 

The time histories obtained after using the spectral substitution method on 

the 230° component of Station 2 for the 4096 point accelerogram are shown in 

Figs. 4.3.4 through 4.3.7 for substitutions from d.c. up to 0.0732 Hz respectively. 

In these figures, and in all the subsequent ones representing time histories, the top 

figure, labeled "acceleratz'on," represents the most probable corrected acceleration 

Zon· In the middle row, the figure to the left, labeled "velocity," represents the 

velocity time history Zn which has zero initial value (Fig. 3.20), and to the right is 

the velocity time history Zom labeled "zero mean velocity" or "Do mean velocity," 

which has zero temporal mean for far-field records or Do velocity d. c. for near-field 

records. In the bottom row are shown the displacement time histories with zero 
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initial value; the record to the left, Zn, labeled "displacement," corresponds to the 

zero initial velocity condition, and the one to the right, zon, labeled "dz"splacement[O 

mean vel/' or "displacement[Do mean vel}," corresponds to a zero velocity d.c. in 

the far-field (Fig. 3.20) or to a Do velocity d.c. in the near-field (Eq. 4.3.23). From 

the arguments presented in the previous section the most probable set of records 

is shown in the plots on the right of the figures. The other plots to the left of 

the figures correspond to the zero intial velocity condition, and are provided for 

comparison. 

Fig. 4.3.4 represents the time histories obtained when no spectral substitution 

is performed. In other words, these are the "uncorrected" time histories. The most 

probable acceleration zon does not show any particular problem. However, the most 

probable velocity Zon, with zero temporal mean has a large initial value which is 

unrealistic. Also, the most probable displacement Zon, obtained by removing the 

temporal mean from the velocity, exhibits a very large long-period error. This 

parabolic shape is a result of imposing a zero temporal mean in the velocity which 

forces the displacement with zero initial condition to also end at zero. In this case, 

it is clear from the velocity time histories that the record has been truncated before 

the end of the event, although the acceleration time history is quite small. In theory, 

the temporal mean velocity of the complete record should be zero, but missing data 

at the beginning and at the end of the record will create a shift in the temporal 

mean of the acceleration and the velocity. The error in the initial value of the most 

probable velocity and in the time history of the most probable displacement will 

become greater as more data is missing from the digitized record. When the zero 

initial velocity criteria is used, the velocity time history Zn behaves more properly 

in the beginning, but the displacement Zn drifts parabolically with time, as shown 

on the left-hand plots of Fig. 4.3.4. 

According to the error plot shown in Fig. 4.3.3(c), the amplitude of the first 

harmonic at 0.0244 Hz is unreliable and should be substituted by the corresponding 

amplitude of the optimized far-field model, shown in Fig. 4.3.3(a) for the accelera­

tion spectrum or Fig. 4.3.3(b) for the displacement spectrum. This is referred to as 

a "1-point" correction, and the resulting time histories are illustrated in Fig. 4.3.5. 
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There is littl~ perceptible change in the most probable acceleration Zon between 

the uncorrected and the 1-point corrected records. Indeed, the values of the peak 

accelerations are almost identical in both cases. The most probable velocity Zon 

has been shifted down by about 5 em/sec, but still displays a dominant 8-second 

period. The greatest change occurs in the most probable displacement zon, in which 

the large parabolic error has virtually disappeared after the 1-point substitution. 

The displacement signal now shows that the valley initially moved with a strong 

8-second pulse, and then resonated with a long-period motion. 

Although the error plot (Fig. 4.3.3(c)) indicates that only the first point should 

be substituted, it can be argued that the standard deviation is abnormally high in 

these records because the simple spectral model used for the optimization is not 

capable of capturing the complex behavior of the local site effects in the Imperial 

Valley at the intermediate frequencies. Thus, the large value of the standard devi­

ation in this case is more representative of the poor fit at intermediate frequencies, 

than it is at low frequencies. Hence, the standard deviation of the digitizing and 

recording noise alone would be smaller if did not include the model error in the 

intermediate frequency range. This would imply that more than one point in the 

data spectrum should be substituted. 

The advantage of the spectral correction method is that increasing the value of 

the cut-off frequency does not completely remove all contributions from the harmon­

ics located below. It only resets the amplitudes of the harmonics below the cut-off 

frequency to their most probable value as defined by the optimization results. As 

the substituted amplitude of the measured spectrum becomes closer to the most 

probable amplitude of the model spectrum, the changes in the resulting time histo­

ries due to the correction become smaller. However, since the model spectrum does 

not properly represent the behavior of the signal at intermediate frequencies, and to 

avoid introducing processing error into the signal, the cut-off frequency should not 

be increased beyond the estimated value of the corner frequency f 0 , above which 

the optimal model is less reliable. Thus, increasing the cut-off frequency up to the 

corner frequency should not alter the predominant low-frequency features of the 

time histories that conform to the source-spectrum model. 
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In Fig. 4.3.6, the 230° component of Station 2 is processed with a 2-point 

substitution for which the cut-off frequency is 0.0488 Hz. This point is located 

right below the level defining one standard deviation, but because of the arguments 

presented above, substituting this amplitude may be justified. Again, compared to 

the uncorrected and the 1-point corrected signals, there is no significant change in 

the most probable acceleration time history. The most probable velocity with zero 

temporal mean, ion illustrated on the right of the figure, now starts near zero and 

is approximately flat over the first 3 sec. This behavior is the one that is normally 

expected from far-field velocity time histories. Although there is a slight decrease in 

the maximum velocity time history, the peak-to-peak amplitude remains the same. 

The displacement time history now shows a dominant 8-second period wave through 

out the whole record, and the most probable displacement Zon is initially flat and 

does not drift, as expected in the far-field. The 2-point substitution yields results 

for the time histories which seem to be the proper representation of the motions at 

the recording site. 

The displacement time history of the 230° component of Station 2 corrected 

with a 2-point spectral substitution is compared to the displacement time history 

processed by USGS with an improved version of Volume II and which is band-pass 

filtered between 0.17 Hz and 23 Hz. (Fig. 4.3. 7). The peaks of both displacement 

records are perfectly in phase, and the underlying features are very similar. How­

ever, the USGS record has a dubious initial behavior, whereas the displacement 

record obtained with the spectral substitution method is flat as expected. Also, 

because of the repeated linear trend removal in Volume IT, the USGS displacement 

record is evenly balanced about the zero baseline. In comparison, the displace­

ment time history obtained with the 2-point spectral substitution is skewed to one 

side, which could be physically possible. Finally, because the spectral substitution 

method does not remove the low frequency components of the records, as does 

Volume II, longer-period motions are observable in the displacement time history 

corrected the spectral substitution method, than with the Volume II method. 

The same accelerogram is also processed with a 3-point substitution, for which 

the cut-off frequency is 0.0732 Hz, and the error (Fig. 4.3.3(c)) is close to, but above, 
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-1 standard deviation. The time histories defining the most probable acceleration, 

velocity and displacement for the 3-point substitution are almost identical to the 

2-point substitution results. In particular, the displacement still features the dom­

inant 8-second period wave. The time histories are still approximately the same 

when the cut-off is increased up to 0.0976 Hz for the 4-point correction. This could 

have been expected since for this record the amplitude of the measured data coin­

cides almost exactly with the optimal model at 0.0976 Hz (i.e., the error is almost 

zero at this frequency (Fig. 4.3.3(c)). However, when the cut-off is increased up to 

the next increment at 0.1221 Hz, which is beyond the minimized value of the corner 

frequency (!0 = 0.101 Hz), the corrected time histories show significant changes 

(Fig. 4.3.8). In particular the "most probable" velocity Zon now starts off with a 

dubious looking 7-second period wave, and seems to be drifting away near the end. 

Also, it appears that the velocity is now mainly composed of a smaller period wave 

of 3 to 4 sec. The "most probable" displacement Zon has also changed significantly 

after this correction, and no longer seems to be representative of the kind of beha­

vior expected from a seismic displacement time history. Thus, the processing of 

this record confirms that as long as the cut-off frequency is selected between the 

frequency obtained from the probabilistic criterion and the corner frequency, the 

corrected time histories are not sensitive to the precise cut-off. 

To prove that zero padding does not influence the minimization and correc­

tion method results, the same record (Station 2, 230° component) is now tested by 

padding more zeroes at the end of the accelerogram. The total record length is in­

creased from the previous 4096 data points to 6144 data points. Thus, the spectrum 

is now discretized at intervals of 0.0163 Hz compared with the previous interval of 

0.0244 Hz. Since the frequency increments are smaller, there are more points in the 

low-frequency portion of the measured spectrum (Fig. 4.39) to identify the spectral 

behavior during the minimization and substitution steps. But the spectrum itself 

has not altered much, and the frequencies that coincide with the previous case still 

have the same amplitudes. 
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This longer version of the record is processed in exactly the same way as was 

done previously. The minimization results using the far-field spectral model are: 

Do= 126.7 cm.sec, fo = 0.114 Hz, !H = 7.54 Hz. 

Although these values are slightly different from the ones obtained previously, com­

parison of the plotted spectral fits for the 40.95 sec case (Fig. 4.3.3) and the 61.43 sec 

case (Fig. 4.3.9) shows very little difference. According to the correction criteria, the 

plot of the error shows that 2 points should be substituted with a cut-off frequency 

of0.0326 Hz (Fig. 4.3.9(c)). The first point that does not require substitution at low 

frequencies is the harmonic at 0.0488 Hz. This coincides exactly with the results 

obtained when the data was padded with zeroes only up to 40.95 sec. 

Fig. 4.3.10 shows the "uncorrected" time histories of the extended 61.43 sec 

record. Increasing the length of the record by padding the accelerogram with zeroes 

alters the temporal mean of the velocity, the effect of which is observable in the 

uncorrected time histories (Fig. 4.3.10). The time histories of the longer record 

only differ slightly from those of the shorter record (Fig. 4.3.4) in the signals from 

which a temporal mean correction is applied (i.e., Zon, Zon and zon). The difference 

is the greatest in the displacement, but is negligible for the acceleration and velocity 

time histories. However, the signals that are obtained with the zero initial value 

assumption are identical (i.e., Zn and Zn). 

In Fig. 4.3.11, the record which is padded with zeroes up to 61.43 sec is pro­

cessed with a 2-point spectral substitution. This corresponds to the optimal low­

frequency cut-off of 0.0326 Hz as dictated by the standard deviation level in the 

error plot (Fig. 4.3.9). The results for the most probable time histories are almost 

identical to those obtained for the shorter signal at its optimal cut-off frequency 

of 0.0244 Hz (Fig. 4.3.5), except for a 1% to 2% error in the peak values and a 

different behavior at the end of zon due to the imposed correction in the temporal 

mean velocity. Similarly, if a 3-point spectral substitution had been done, the most 

probable time histories would have been almost identical to the results shown in 

Fig 4.3.6. Hence, the spectral correction method seems to be consistent in choos­

ing an optimal low frequency cut-off and produces similar processed time histories 

regardless of the number of zeroes padded to the accelerogram. 
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The next point to investigate is whether the spectral substitution method is 

consistent and effective in its removal of the low-frequency noise. This can be exa­

mined by verifying that records obtained at adjacent sites can produce comparable 

time histories. In particular, the predominant long periods composing the velocity 

and displacement records should be the same at both sites. For this purpose, the 

results of the previous record (Station 2, 230°) are compared to those of Station 3 

(230°). These two records are aligned, at a direction perpendicular to the fault, 

and are less than 3 km apart. Hence, the corrected time histories should in theory 

exhibit the same predominant features of the outgoing SH -wave. 

The accelerogram of Station 3 (230°) was originally digitized up to 39.63 sec, as 

was the 230° component of Station 2, so it was padded with zeroes up to 40.95 sec. It 

was processed in exactly the same manner as the 230° component of Station 2 using 

a far-field spectral model. The minimization results are illustrated in Fig. 4.3.12. 

The optimal parameters are: 

Do= 172.2 cm.sec, fo = 0.086 Hz, f = 7.29 Hz. 

These values are close to the ones obtained for the Station 2 record. The fit at 

intermediate frequencies appears to be better than for Station 2, and may be due 

to a lesser amount of local site response at Station 3. 

The error plot (Fig. 4.3;12(c)) shows that only the two first points lie outside 

the one standard deviation interval, and hence the optimal low-frequency cut-off 

is 0.0488 Hz. Fig. 4.3.13 shows the time histories of the uncorrected record, and 

Fig. 4.3.14 those of the 2-point corrected record with the optimal cut-off. In this 

case, the substitution of the first harmonic has not altered the signal much from 

the uncorrected time histories. As is shown in the error plot, this is because the 

point which is substituted at 0.0488 Hz is very close to the one standard deviation 

level, i.e., it is believable in the statistical sense. 

The most probable time histories for the 230° component of Stations 2 and 

3 (Figs. 4.3.6 and 4.3.14) can be compared. These records are processed with 

the spectral substitution method at their optimal low-frequency cut-off. The most 

probable accelerations have different behaviors, especially between 8 and 10 sec, as 
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expected, since they are dominated by high frequencies which will not propagate 

coherently over 2 to 3 kms. However, the most probable velocity and displacement 

exhibit very similar characteristics, especially in the initial portion of the records. In 

particular, the most probable displacement at both recording sites display the same 

initial rise, followed by a large 8-second pulse and by similar long-period waves. 

The difference in the peak values is expected since Station 3 is closer to the fault 

than Station 2. 

So far it has been shown that the spectral optimization method produces time 

histories with similar features for two components in the same direction from adja­

cent sites. For instance, the processing of the displacement time histories showed 

that in the direction perpendicular to the fault the motions are very similar and 

the valley appears to be excited with a dominant period of around 8 sec. 

The accelerogram of the 140° component of Station 2 is digitized up to 39.64 sec 

at intervals of 0.01 sec, so it was padded with zeroes for a total record length of 

4096 data points. Fig. 4.3.15 illustrates the results for the spectral fit of this record. 

Both the acceleration and displacement fits are good, as shown in Fig. 4.3.15(a) 

and (b) respectively. The parameters of the optimized model are: 

Do= 93.58 cm.sec, fo = 0.129 Hz, !H = 7.59 Hz. 

The error plot in Fig. 4.3.15(c) indicates that only the amplitude at 0.0244 Hz needs 

to be substituted by the model. The time history results of the 1-point substitution 

for the 140° component of Station 2 are shown in Fig. 4.3.16. 

Similarly, the data of the 140° component of Station 3 is digitized up to 

39.62 sec at intervals of 0.01 sec, so it was also padded with zeroes for a total 

record length of 4096 points. Fig. 4.3.17 illustrates the spectral fit of this record, 

for which the parameter of the minimized model are: 

Do= 107.8 cm.sec, fo = 0.121 Hz, !H = 7.05 Hz. 

The error plot indicates that only one point at 0.0244 Hz lies above the one standard 

deviation level and needs to be substituted. The time history results of this 1-point 

substitution for the 140° component of Station 3 are given in Fig. 4.3.18. 
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Comparison of the corrected time histories for the 140° components of Station 2 

and 3 shows again that the acceleration for both sites are similar, except between 

8 and 12 sec. In this range, the peaks are much higher for Station 2, perhaps 

because of a greater contribution of local site conditions (Figs. 4.3.16 and 4.3.18). 

Nevertheless, the most probable velocity and displacement time histories at both 

stations display very similar features. In particular, the predominant period in the 

most probable displacement is approximately 8 sec for both the 230° and the 140° 

components, as expected if the valley was amplifying the motions at this period. 

Note also that the components in the same direction from Stations 2 and 3 are more 

similar than the 140° and 230° component obtained at each station. 

The vertical (up) components of Stations 2 and 3 have also been processed and 

corrected with the spectral substitution method. These records have been digitized 

up to 39.54 sec and 39.59 sec respectively, at intervals of 0.01 sec. They are both 

padded with zeroes for a total record length of 40.95 sec. The spectral fits and 

error plots for the vertical records of Stations 2 and 3 are shown in Figs. 4.3.19 and 

4.3.21 respectively. In both cases, the far-field model provides a good fit to the data 

except at very low frequencies. The poor fit in the spectral amplitudes near d.c. is 

attributed to the large error in the temporal mean of the measured acceleration due 

to the large amount of missing data from instrument trigger at the beginning and 

to premature digitization cut-off at the end, as is shown in the acceleration time 

histories of Figs. 4.3.20 and 4.3.22. For Station 2, the values of the parameters for 

the optimized model are: 

Do = 71.54 cm.sec , fo = 0.081 Hz , f H = 23.5 Hz . 

and for Station 3 : 

Do = 49.28 cm.sec , fo = 0.106 Hz , !H = 15.56 Hz . 

The error plots show that the most probable set of time histories for Stations 2 

and 3 are obtained by a 2-point spectral substitution up to 0.0488 Hz (Figs. 4.3.19(c) 

and 4.3.21(c)). The corresponding time histories are presented in Figs. 4.3.20 and 

4.3.22 respectively. Comparison of these figures shows that once again the records 
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at both sites display the same prevailing features, but are very much different from 

the time histories obtained for the 230° and 140° components, as expected since 

the latter are horizontal motions. In particular, the predominant period for the 

vertical motions is approximately 4 sec, whereas that for the 230° and the 140° 

components were 8 sec. The most probable vertical displacement time histories, 

obtained by removing the temporal mean of the velocity, also seem to be composed 

of a longer 20- to 30-second period wave. Because of the large amount of missing 

data points, this long period behavior is more likely to be attributed to an error 

in the estimate of the acceleration mean than to be a representation of the ground 

motions. Nevertheless, these displacement time histories remain the most probable 

ones in the absence of information about the true value of the missing data. 

The preceding examples demonstrate that the spectral substitution method is 

capable of producing similar types of records for accelerograms obtained at adjoin­

ing sites in the far-field. It is thus consistent and effective in correcting the noise 

introduced in the spectrum by the recording and digitization processes at low fre­

quencies, without removing the characteristics expected from an earthquake signal. 

It was also demonstrated that the low-frequency cut-off is not a sensitive parameter 

as long as the harmonics below the cut-off are represented in the processed signal 

according to the most probable value of the model's spectral amplitude. It was 

also shown that the Imperial Valley responded strongly with a 8-second period in 

the horizontal directions, and a 4-second period in the vertical direction. These 

dominant periods are assumed to be properties of the whole valley, since they are 

consistent with the results inferred from the velocity structure, as explained at the 

beginning of this section. The 8-second period would not be noticed in the strong­

motion records processed with current correction methods because high-pass filters 

remove all contributions from harmonics below the cut-off frequency, which for this 

particular event was chosen by USGS as 0.17 Hz (6 sec) [Brady, Perez & Mork, 

1982]. 

4.3.4.2 Near-field Records: Stations 6 and 7, and Bond's Corner 

The spectral substitution method is next tested on near-field records, 

for which the model to be optimized is given by Eq. 4.3.13. In this case, the variable 
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Do represents the most probable mean in the velocity. Since the most probable 

displacement time history zon is produced under the assumption that the initial 

displacement is zero, Do also represents the final displacement offset. When using 

far-field records it was shown that Do represented the temporal mean in the dis­

placement. It was also previously mentioned that either the initial value at trigger 

or the temporal mean of the motion could be prescribed, but imposing a condition 

on both the initial value and the temporal mean at the same time is not feasible 

mathematically if only constant offsets are allowed. Because the most probable dis­

placement time histories are generated under the assumption that the initial value 

is zero, this automatically forces a corresponding d. c. value for the far-field dis­

placement spectrum. For near-field records, the most probable displacement time 

histories Zon are produced by the velocity time history Zon with a prescribed tempo­

ral mean D0 • Hence, for near-field records, making a substitution at the d. c. of the 

velocity spectrum only, while keeping all higher spectral amplitudes unchanged, will 

produce a correction in the displacement signal according to Eq. 4.3.23. The sign 

of the velocity temporal mean correction is chosen to be consistent with the fault's 

displacement pattern, as explained in Sec. 4.3.1. For near-field records, substitution 

of the velocity spectrum at d. c. alone is referred to as a "d. c. correction." 

To illustrate the correction of near-field ground motions, two of the records 

obtained from the Imperial Valley earthquake of October 15, 1979, are used. The 

first example is the 140° component of Station 7 from the strong-motion array 

(Fig. 4.3.2). This station is located just 1 km west of the fault, but at a distance of 

27 km from the epicenter. The 140° component, which is parallel to the strike of 

the fault, should display final displacement offsets. According to geologic surveys 

performed just after the event, right-lateral dislocations of the order of 30 em were 

measured in this region of the fault [Sharp et al., 1982]. Because Station 7 is located 

on the west side of the fault and the 140° component is directed southeastward 

along the strike, final displacement offsets consistent with right-lateral fault motions 

should be obtained for a negative value of the velocity temporal mean. The results 

of the spectral optimization with the near-field model (Eq. 4.3.13) for the 140° 

component of Station 7 are shown in Fig. 4.3.23. These figures show that the near­

field spectral model can provide an adequate fit through most of the spectrum, 
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but that at low frequencies, the d.c. and the first three harmonics need to be 

substituted. The values of the estimated parameters are: 

Do = -64.91 em , fo = 0.53 Hz , !H = 23.76 Hz . 

Compared to the results obtained at Stations 2 and 3 for the same 140° com­

ponent, the identified value of fH for the near-field record is 3 times larger. As 

the body waves travel away from the epicenter, the higher frequencies decay faster, 

thus making fH decrease to smaller frequencies. The change in fo from 0.12 Hz 

to 0.5 Hz suggests that this parameter is not exclusively a source property. The 

most probable time histories obtained by performing a 3-point spectral substitution 

with negative final displacement offset are shown in Fig. 4.3.24. The velocity time 

history with Do temporal mean, Zon, starts-off flat, as expected, although the initial 

value is shifted by a large amount. As was mentioned in Sec. 4.3.2, this could be 

an indication of severe data truncation in the processed accelerogram, for which 

the estimated temporal mean of the complete velocity time history, Do, is not a 

good approximation. The most probable displacement zon behaves statically and 

dynamically as could be expected from a near-field record: initially, the ground slips 

along with the fault before oscillating about the final offset value. However, because 

of the large uncertainty caused by the missing data in the accelerogram, the value 

of the final displacement offset, as given by the processing method, should not be 

assigned a high reliability. Nevertheless, given the available information, these time 

histories are the most probable ones, and the standard deviations defined in Ch. 3 

are expected to provide conservative bounds for their reliability, regardless of the 

error in the displacement, as will be seen in Ch. 5. 

To verify that the spectral substitution method produces final displacement 

offsets consistent with the measured 30 em total right-lateral dislocation, the 140° 

component of Station 6 is also processed. This station is located just across the fault 

from the previous Station 7, and in the vicinity of the intersection with the Brawley 

fault. Site inspections have shown that in this general area the geology is complex. 

Many smaller faults were triggered by the earthquake, some of which exhibited 

reverse left-lateral and normal motions. Under these conditions it is difficult to 
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make an estimate for the proper sign of the final displacement offset. The results 

of the spectral optimization with the near-field model are illustrated in Fig. 4.3.25. 

The values of the estimated parameters for the 140° component of Station 6 are: 

Do= 31.47 em, fo = 1.15 Hz, !H = 35.23 Hz. 

The fit of the model to the measured spectrum is "good," and only the d.c. 

must be substituted. The record is first processed under the assumption that the 

final displacement at that location is positive to be consistent with right-lateral 

dislocations along the Imperial fault. This is illustrated in Fig. 4.3.26. The most 

probable displacement time history does not behave statically as would be expected 

from a dislocating fault. In particular, it is somewhat unlikely that halfway during 

the event the static motions reverse from a negative direction to a positive one. 

Hence, assuming that the d.c. is positive may not be correct. The same record is 

thus processed with a spectral substitution at d.c for negative final displacements, 

as shown in Fig. 4.3.27. There is no difference in the most probable acceleration 

zon· The most probable velocity Zon with -Do temporal mean now starts off flat 

with initial values close to zero, which is the expected behavior. The most probable 

displacement zon now appears to behave statically as expected from a dislocating 

strike-slip fault. Hence, the assumption of a negative final displacement does in­

deed appear to be the better solution. A left-lateral dislocation at Station 6 may 

be possible, since the recording site is located at the intersection of the Imperial 

and Brawley faults, where field explorations performed just after the event showed 

very complex sub-faulting patterns [Sharp, et al., 1982]. Thus, in cases where the 

fault mechanism is uncertain, the proper sign of the velocity d.c. for near-field 

models may sometimes be determined by inspection of the behavior of the displace­

ment time history after correction. Also, near-field records which are expected to 

generate displacement offsets have a large signal-to-noise ratio. Hence, if the ac­

celerogram is digitized up to the time of instrument shut-off, the static behavior of 

the displacement processed with no temporal mean velocity correction, Zn, should 

be reliable enough to properly indicate the direction of the final displacement offset, 

and the sign of the spectral substitution at d. c. 
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Comparison of the most probable final displacement offsets at the 140° compo­

nents of Station 7 (Fig. 4.3.24) and Station 6 (Fig. 4.3.27) indicates that the overall 

dislocation across this section of the fault is right-lateral with a relative offset of the 

order of 20 em. This result agrees with the results of the on-site measurements of 

30 em, demonstrating that the spectral substitution processing method is capable 

of giving a reasonable estimate for the displacement offset from near-field analog 

records. In particular, it might be concluded that both sites on either side of the 

fault moved northward. Since Station 6 is located at the intersection of the Brawley 

and Imperial faults, where the ground is highly fractured, it is physically possible 

that the motions at this site were northward and in the opposite direction expected 

from a right-lateral fault rupture. Also, according to the processed time histories, 

the absolute dislocation at Station 7, on the west side, was of the order of 50 em, 

whereas that at Station 6 on the east side was only 30 em. 

The 140° component at Bond's Corner (Fig. 4.3.2) was processed next with 

the spectral substitution method for near-field records. This site is located to the 

east of the fault at an epicentral distance of only 6 km. When using the near-field 

model given by Eq. 4.3.13, the optimization algorithm could not converge on a value 

for the cut-off of the high-frequency exponential decay. For sites located very near 

the epicenter, it is expected that the high-frequency content of the earthquake has 

not significantly decreased, and hence an exponential decay behavior may not be 

appropriate. To conform to the high-frequency behavior of records obtained very 

close to the epicenter, the near-field model of Eq. 4.3.13 is used, but fH is fixed at an 

arbitrarily large value, and the optimization is only performed on the two variables 

D0 and / 0 • The minimization results of this model for the 140° component at Bond's 

Corner, in which fH is fixed at an arbitrarily large value of 107 Hz, are illustrated 

in Fig. 4.3.28. These figures show that the two variables are sufficient to provide an 

adequate description of the acceleration and displacement spectrum throughout the 

whole frequency range, and that only the d.c. and the first harmonic at 0.0244 Hz 

need to be spectrally substituted. The values of the estimated parameters are: 

Do = 34.99 cm.sec, fo = 1.113 Hz . 
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The value of the identified corner frequency fa is very close to the value obtained 

for the 140° component of Station 6 located 1 km away from the fault. Hence, the 

optimization algorithm has produced consistent results although the high-frequency 

behavior at the two sites was quite different. 

The most probable time histories for the 140° component of Bond's Corner ob­

tained for a 1-point substitution up to 0.0244 Hz are shown in Fig. 4.3.29. Because 

this recording site is located to the east of the fault, right-lateral motions should 

yield a positive value for the final displacement offset. The static and dynamic 

behavior shown in the plot of the most probable displacement time history is con­

sistent with the motions in the near-field in the direction of the strike of the fault. 

In this area, geologic surveys have measured total dislocation along the fault of 60 

to 70 em [Sharp et al., 1982]. Although Bond's Corner is approximately 6 km away 

from the rupture of the fault, nonzero dislocations are still expected. The most 

probable displacement time history, Zon, for a Do temporal mean velocity indicates 

that the final offset after the event may be of the order of 30 em, which could be 

physically possible. The corresponding most probable velocity, Zon, also appears 

to behave correctly, although the initial values are slightly higher than expected. 

This may be an indication that the accelerogram has been truncated prematurely, 

and that Do overestimates the temporal mean of the truncated velocity time his­

tory. Under these conditions, the final displacement offset in Zon might be slightly 

overestimated as well, and should not be assigned a high reliability. However, the 

spectral substitution method generates time histories which are the best estimate 

of the motion given the information available, and uncertainties due to digitization 

and recording errors are conservatively accounted for by the reliability bounds. 

Application of the correction method to recorded earthquake accelerograms and 

the tests of the synthetic accelerograms have demonstrated that a significant source 

of long-period error is the offset in the temporal mean of the accelerogram due 

to missing and undigitized data. This source of long-period error is unnecessarily 

aggravated by the previous practice of sometimes not providing the fully digitized 

records up to the time of instrument shut-off. However, the spectral substitution 

method has just proven to be particularly useful in partially recovering the most 
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probable static and long-period ground motions within the portion of the spectrum 

which is the most affected by the end truncation. This correction method pro­

duces most probable time histories which appear to be compatible with local static 

and dynamic ground behavior due to earthquakes. Because long-period motions are 

not removed with the spectral substitution method, strong-motion ground accelero­

grams, even from analog accelerographs, can now be used to perform more complete 

studies of source mechanisms and local site response. This is believed to be the first 

time that reasonable permanent displacement offsets have been determined from 

records from analog accelerographs. Iwan et al. [1984] have previously done this 

for digital accelerograph records. 

4.3.5 Application to Structural Records: 1919 Imperial Valley 
Earthquake 

The spectral substitution method is now used to correct structural 

records. The following example uses two of the accelerograms obtained at the 

Imperial County Services building during the Imperial Valley earthquake of Octo­

ber 15, 1979 (Fig. 4.3.2). At the time of the event, the building was instrumented 

with an analog 13-channel central recording accelerograph system (CRA-1). The 

structure is a six-story reinforced concrete building with discontinuous shear walls 

at the first story along the north-south (i.e., transverse) directions. It is located 

approximately 8 km southwest of the Imperial fault trace, and 27 km away from 

the earthquake's epicenter. The first floor columns at the east end of the building 

suffered severe damage during the event, and were shortened by 23 em. The instru­

mentation and the behavior of the building during the earthquake have been greatly 

reported and studied [for example, Rojahn & Mork, 1982]. During the event, the 

building's natural period in the east-west (i.e., longitudinal) direction is reported 

to have increased from approximately 1.0 sec up to 1. 7 sec. The dominant period 

in the recorded motions for the north-south direction elongated from 0.6 sec up to 

0.8 sec at the west end of the building, and up to 1.2 sec at the east end where the 

columns failed. 

Spectral substitution is performed on the record which measured the transverse 

north-south motions of the building along the west end of the roof (trace 3). The 
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corresponding record obtained at the ground floor (trace 11) is also spectrally cor­

rected for comparison. These records are linearly interpolated at 0.01 sec intervals 

up to 58.08 sec, and are obtained from FBA-1 accelerometers which have natural 

frequencies of about 55 Hz. Hence, no high-frequency correction is necessary. The 

low frequencies are corrected according to the spectral substitution method. Zeroes 

are padded up to 61.43 sec for the implementation of the discrete Fourier trans­

form algorithm, and the spectral model used in the minimization process is given 

by Eq. 4.3.21. Because the epicenter and the fault are a fair distance away, the 

far-field spectrum is used as the model for the input ground motion. The spectral 

fit and error for the roof record are shown in Fig. 4.3.30. The 5 optimized variables 

describing the model spectra of absolute structural motions are: 

Do = 68.68 cm.sec , lo = 0.150 Hz , 

In = 2.00 Hz , d = 4.44 , c = 3.14 . 

The error plot (Fig. 4.3.30) indicates that d. c. and the 2 points up to 0.0326 Hz need 

to be spectrally substituted. The corrected time histories are shown in Fig. 4.3.31. 

The most probable displacement record shows that at the west end of the 

building the absolute motion at the roof was dominanted by an 8-second period. 

An apparent 18-second period occurs approximately 20 sec after the beginning of 

the event, however, there is no evidence of this period in the spectra (Fig. 4.3.30). 

A much smaller period of about 0.8 sec is superimposed on these. According to 

the studies performed on the structure, this 0.8-second period is the fundamental 

north-south period of the building during the larger amplitude motions. 

The north-south record at the west end ground floor is also spectrally corrected 

(Fig. 4.3.32). The optimization results for the 5 parameter structural model are: 

Do = 69.17 cm.sec , lo = 0.137 Hz , 

In= 3.42 Hz, d = 12.42 c = -0.735. 

The parameters Do and lo are approximately the same at the roof and at the 

ground floor. However, the parameters In, d and c, have changed. At the roof 
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level, these parameters reflect the dominant fundamental behavior of the building, 

where fn = 2.00 Hz (0.5 sec) corresponds approximately to the natural period in the 

early stages of the earthquake, whereas at the ground level, these parameters are 

probably controlled by the ground motion and not by the dynamics of the structural 

system. In fact, since this is a ground floor record, it is strictly neither structural 

nor free-field motion. However, all three classes of models (structural, far-field and 

near-field) were tested, and the structural model gave by far the better fit to the 

data. 

According to the error plot (Fig. 4.3.32(c)), the ground floor record should be 

spectrally corrected from d.c. up to 0.0651 Hz, for a 4-point spectral substitution. 

The corrected time histories are presented in Fig. 4.3.33. It is interesting to note that 

the most probable displacements at the roof (Fig. 4.3.31) and at the ground floor 

display very similar motions. In particular, for both sets of processed time histories, 

the most probable velocity zon starts off flat with initial value approximately zero. 

The corresponding displacements Zon, which are overlaid in Fig. 4.3.34 for better 

comparison, are both skewed in the same direction with a small offset of the order 

of 2 em. This might be due to residual dislocation from the Imperial fault, or to 

a local ground failure, or to an error from noise and truncation. Also, both sets of 

displacement records are in phase and are mainly composed of an 8-second wave. Of 

course, the ground floor displacement does not show much of the structural 0.8 sec 

fundamental period. 

Hence, the processing of these two records produced consistent results. Pre­

sumably, the 8-second period motion observed in both the roof and the ground floor 

processed time histories are due to the valley amplification observed in the free-field 

records described previously. These long-period motions could not be properly ob­

served in the CDMG versions using the standard filtering process with a band-pass 

range of 0.17 Hz up to 23 Hz [Porter, 1982]. The spectral substitution method 

should thus prove to be a useful tool for the study of long-period soil-foundation­

structure response motions. 
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NOISE MEASURE-OF-ERROR, .J 

FILTER Acceleration Velocity Displacement 

</>rn 
None 0.0200 0.1525 101.65 

Modified 0.0132 0.0621 41.06 

Wiener 

Exponential 

a (3 

1 1 0.0125 0.0414 25.57 

1 2 0.0140 0.0231 9.77 

1 4 0.0155 0.0207 7.32 

1 10 0.0167 0.0207 7.31 

2 1 0.0117 0.0451 28.98 

4 1 0.0139 0.0722 49.19 

10 1 0.0257 0.1430 96.90 

2 4 0.0147 0.0208 7.37 

5 10 0.0159 0.0207 7.30 

10 10 0.0155 0.0207 7.25 

10 20 0.0165 0.0208 7.37 

20 20 0.0163 0.0208 7.38 

Table 4.2.1 Comparison of the acceleration, velocity and displacement measure­

of-error J for no filter, the modified Weiner noise filter, and the expo­
nential noise filter as a function of a and (3. 
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Figure 4-3-1. Schematic representation of the acceleration and displacement 
spectra for far-field ground motions. 
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Figure 4-3-3. Imperial Valley earthquake (10/15/79). Station 2 (230°) extended 

to 4096 points. Spectral minimization results with the far-field 
model: Do= 138.0 cm.sec, fo = 0.101 Hz, fH = 8.37 Hz. 
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to 4096 points. Far-field model processed with spectral substitution 
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Figure 4-3-9. Imperial Valley earthquake (10/15/79). Station 2 (230°) extended 
to 6144 points. Spectral minimization results with the far-field 
model: Do= 126.7 cm.sec, fo = 0.114 Hz, !H = 7.54 Hz. 
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Figure 4-3-12. Imperial Valley earthquake (10/15/79). Station 3 (230°) extended 
to 4094 points. Spectral minimization results with the far-field 
model: Do= 172.2 cm.sec, /o = 0.086 Hz, !H = 7.29 Hz. 
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Figure 4-3-13. Imperial Valley earthquake (10/15/79). Station 3 (230°) extended 
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Figure 4-3-14. Imperial Valley earthquake (10/15/79). Station 3 (230°) extended 
to 4096 points. Far-field model processed with spectral substitution 
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Figure 4-3-15. Imperial Valley earthquake (10/15/79). Station 2 (140°) extended 
to 4096 points. Spectral minimization results with the far-field 
model: Do= 93.58 cm.sec, fo = 0.129 Hz, !H = 7.59 Hz. 
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Figure 4-3-16. Imperial Valley earthquake (10/15/79). Station 2 (140°) extended 
to 4096 points. Far-field model processed with spectral substitution 
up to 0.0244 Hz (1 point). 
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Figure 4-3-18. Imperial Valley earthquake {10/15/79). Station 3 {140°) extended 
to 4096 points. Far-field model processed with spectral substitution 
up to 0.0244 Hz (1 point). 
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Figure 4-3-19. Imperial Valley earthquake (10/15/79). Station 2 (up) extended to 
4096 points. Spectral minimization results with the far-field model: 
Do = 71.54 cm .. sec, fo = 0.081 Hz, fH = 23.5 Hz • 
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Figure 4-3-20. Imperial Valley earthquake (10/15/79). Station 2 (up) extended to 
4096 points. Far-field model processed with spectral substitution up 
to 0.0488 Hz (2 points)• 
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Figure 4-3-21. Imperial Valley earthquake (10/15/79). Station 3 (up) extended to 
4096 points. Spectral minimization results with the far-field model: 
Do= 49.28 em, sec, / 0 = 0.106 Hz, !H = 15.56 Hz • 
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Figure 4-3-23. Imperial Valley earthquake (10/15/79). Station 7 (140°) extended 
to 4096 points. Spectral minimization results with the near-field 
model: Do = 64.91 em, fo = 0.530 Hz, I H = 23.76 Hz. 
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Figure 4-3-24. Imperial Valley earthquake (10/15/79). Station 7 (140°) 
extended to 4096 points. Near-field model processed with spectral 
substitution up to 0.0732 Hz with negative final displacement offset 
(3 points)• 
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Figure 4-3-25. Imperial Valley earthquake (10/15/79). Station 6 {140°) extended 
to 4096 points. Spectral minimization results with the near-field 
model: Do = 31.47 em, /o = 1.149 Hz, I H = 35.23 Hz. 
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Figure 4-3-26. Imperial Valley earthquake (10/15/79). Station 6 (140°) 
extended to 4096 points. Near-field model processed with spectral 
substitution at d.c. for positive final displacement offset (0 point). 
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Figure 4-3-27. Imperial Valley earthquake (10/15/79). Station 6 (140°) 
extended to 4096 points. Near-field model processed with spectral 
substitution at d.c. for negative final displacement offset (0 point). 
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Figure 4-3-28. Imperial Valley earthquake (10/15/79). Bond's Corner (140°) 
extended to 4096 points. Spectral minimization results with the 
near-field model: Do = 34.99 em, fo = 1.113 Hz, f H = 107 Hz. 
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Figure 4-3-29. Imperial Valley earthquake (10/15/79). Bond's Corner (140°) 
extended to 4096 points. Near-field model processed with spectral 
substitution up to 0.0244 Hz for positive final displacement offset (1 
point)• 
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Figure 4-3-30. Imperial Valley earthquake (10/15/79). Imperial County Services 
building (north component, roof/W. end). Spectral minimization 
results with structural model: Do = 68.68 cm.sec, fo = 0.15 Hz, 
fn = 2.00 Hz, d = 4.44, c = 3.14. 
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Figure 4-3-31. Imperial Valley earthquake (10/15/79). Imperial County Services 
building (north component, roofjW. end). Structural model 
processed with spectral substitution up to 0.0326 Hz (2 points). 
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Figure 4-3-32. Imperial Valley earthquake (10/15/79). Imperial County 
Services building (north component, 1st floor /W. end). Spectral 
minimization results with structural model: Do = 69.17 cm.sec, 
fo = 0.137 Hz, In = 3.42 Hz, d = 12.42, c = 0.735. 
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Figure 4-3-33. Imperial Valley earthquake (10/15/79). Imperial County Services 
building (north component, 1st fl.oor/W. end). Structural model 
processed with spectral substitution up to 0.0651 Hz (4 points). 
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corrected with the spectral substitution method. 
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Chapter 5 

CASE STUDY: FULL PROCESSING OF AN ACCELEROGRAM 

In this chapter, a selected accelerogram is fully processed with the probabilistic 

frequency-domain approach described in Ch. 3, and corrected according to the spec­

tral substitution method described in Sec. 4.3. The time histories obtained from 

this processing method are then compared to those provided by a conventional 

processing method. 

The processing procedure is illustrated in the flowchart of Fig. 3.20. In sum­

mary, the uncorrected accelerogram is first linearly interpolated to equal time steps 

of 0.01 sec. The temporal mean of this record is then removed in the time domain. 

To use the fast Fourier transform algorithm, zeroes are then added at the end of the 

signal to give a power of 2, or 3 times that, whichever is smaller. In the frequency 

domain, if necessary, the signal is instrument-corrected according to the information 

provided concerning the instrument's natural period and damping. 

The Fourier amplitude spectrum of the acceleration is then used to perform the 

optimization step of the spectral substitution method with the appropriate spectral 

model (near-field, far-field or structural), as described in Sec. 4.3.2. The optimal 

parameters describing the model are obtained, and the standard deviation of the 

error between the logarithm of the optimal spectral model and the logarithm of 

the amplitude spectrum of the measured data is computed. Overlaid plots of the 

optimal model spectrum and the accelerogram displacement amplitude spectrum 

are produced for visual inspection, as well as the error plot with the standard 

deviation levels. From the low-frequency portion of the error plot, the last data 

point to fall above the one standard deviation level is selected as the cut-off for the 

spectral substitution. All points of the acceleration amplitude spectrum between 

d.c. and the cut-off frequency inclusive are replaced by the amplitude spectrum of 
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the optimized model; the phases are left unchanged. The same procedure is used for 

the high-frequency correction, for which the cut-off can be selected with the above 

probabilistic criterion or imposed based on the instrument's natural frequency. 

As an alternative to the spectral substitution method, the acceleration ampli­

tude spectrum could be corrected with one of the noise filters described in Sec. 4.2, 

which reduce the level of noise throughout the whole spectrum. The signal could 

also be corrected with any standard band-pass filter (i.e., Ormsby, Butterworth, 

etc.) by multiplying the acceleration spectrum by the filter's transfer function. The 

signal may also be processed without implementing any of the "filter" methods; such 

signals will be referred to as "uncorrected" although they are possibly instrument­

corrected, and will be shown later for comparison purposes. In general, the user 

must decide which correction method option to choose. In the software which has 

been developed, the default option produces both the uncorrected time histories, as 

well as those obtained with the spectral substitution method. 

The acceleration Fourier spectra of the uncorrected and spectrally-corrected 

signals are then converted into the velocity and the displacement spectra, by divid­

ing by iw and -w2 respectively. At d.c., for all but the near-field records corrected 

with the spectral substitution method, the acceleration, velocity and displacement 

spectra are set to zero. For near-field records corrected with the spectral substi­

tution method, the d.c. of the velocity spectrum is set to the estimated value D0 • 

The correction for the temporal mean or initial value of the signals is performed 

later on in the time domain. 

The spectra of the uncorrected spectrally-corrected signals are then converted 

back into the time domain using the inverse fast Fourier transform. For far-field 

records, this yields time histories which have zero temporal mean. According to 

the developments presented in Ch. 3, the most probable acceleration and velocity 

have zero temporal mean, and the most probable displacement has zero initial value 

and is obtained from the zero temporal mean velocity. Hence, after inverse Fourier 

transformation, no further correction is necessary to produce the most probable 

acceleration or velocity. The most probable displacement is obtained by subtracting 

the initial value of the inverse transformed displacement time history from each 
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point. For near-field records corrected with the spectral substitution method, the 

most probable velocity has temporal mean Do after inverse Fourier transformation, 

and no other correction is then necessary. However, the most probable displacement 

time history must be adjusted for the Do temporal mean of the velocity (Eq. 4.3.23). 

Once the most probable time histories are obtained, their respective standard 

deviations are computed according to the Eq. 3.15 for the acceleration, Eq. 3.21 for 

the velocity and Eq. 3.24 for the displacement. The variances for the digitization 

and processing noise a2 , the start-up truncation b2 , and the end truncation c2 

are assigned by the operator. Finally, plots of the uncorrected and corrected time 

histories are produced, and are presented bounded by one, two or three standard 

deviations. 

The accelerogram chosen as an example is one of the structural records obtained 

during the Imperial Valley earthquake of October 15, 1979, at the Imperial County 

Services building. Description of the seismic event and of the building are given 

in Sees. 4.3.4 and 4.3.5. This particular accelerogram recorded the north-south 

motions at the west end of the roof. It has already been used in Sec. 4.3.5 as an 

illustration of the spectral substitution method applied to structural records. 

The accelerogram was originally digitized up to 58.04 sec at unequal time in­

crements. The record is linearly interpolated to equal time increments of 0.01 sec, 

and is padded at the end with 339 zeroes for a total record length of 61.43 sec. 

After Fourier transformation into the frequency domain, the record is instrument­

corrected using the instrument's natural frequency of 55.55 Hz and damping factor 

of 0.66. Optimization of the five-parameter structural model (Eq. 4.3.21) is per­

formed on the Fourier amplitude spectrum of the instrument-corrected acceleration. 

The estimated ground motion parameters are: 

Do = 68.68 cm.sec, fo = 0.15 Hz, 

and the estimated structural parameters are: 

fn = 2.00 Hz, d = 4.44, c = 3.14. 

Rojahn & Mork [1982] reported that the fundamental period at the west end 

of the building in the north-south direction elongated from 0.5 sec, at the beginning 

of the earthquake, to 0.8 sec after the earthquake where the structure was in a 
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damaged condition. This corresponds approximately to the value estimated for fn 

by the optimization scheme. 

Overlaid plots of the measured and the minimized model amplitude spectra 

for the acceleration and the displacement are presented in Fig. 4.3.30(a) and (b) 

respectively. The error plot of Fig. 4.3.30(c) indicates that a 2-point correction at 

low frequencies up to 0.0326 Hz is necessary. The error plot also shows that at high 

frequencies the measured data conforms well to the optimal model, and that no 

correction for the digitization and processing noise is necessary at that end of the 

spectrum. Hence, the record is only corrected at low frequencies. 

According to the arguments presented in Chs. 2 and 3, the time history stan­

dard deviations are computed on the basis that for the digitization noise a = O.OOlg, 

and for the start-up truncation b = 0.033g. It was also argued in Sec. 3.2 that the 

errors induced by the end truncation could be neglected as long as the accelerogram 

is fully digitized up to the time of instrument shut-off. Unfortunately, this has not 

been a common practice for older records. In particular, for the present record, the 

motions are still significant at 58.04 sec; at that time the accelerations are approx­

imately ten times larger than in the initial portion just after triggering occurred. 

In the absence of any other information, the standard deviation c for the end trun­

cation is tentatively set equal to ten times that of the instrument start-up b. If the 

probabilistic method is implemented as part of a standard accelerogram process­

ing method, only fully digitized records should be used to avoid these unnecessary 

uncertainties. 

The most probable uncorrected acceleration Zon, velocity Zon, and displace­

ment Zon are far-field records computed according to the flowchart of Fig 3.20. 

These time histories are obtained without any filtering, and are only altered in 

the time domain to obtain zero initial displacement. Hence, they represent the 

structural motion given by the data as recorded and measured. The most probable 

time histories (solid line) are presented bounded by one, two, and three standard 

deviations (dotted lines) in Figs. 5.1, 5.2, 5.3 respectively. The most probable ac­

celeration and velocity time histories appear to behave properly and the plots show 

that the associated uncertainties are very low even at the three standard deviation 
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level. The most probable uncorrected displacement time history on the other hand 

displays an unrealistic long-period component, so that it would be doubtful that the 

true displacement would be bounded by the three standard deviation uncertainty 

level. It has been shown in Chs. 3 and 4 that this long-period error is dominantly 

due to the premature end truncation of the digitization process which creates a 

large shift in the temporal mean of the acceleration and velocity. It was observed 

that in the frequency domain, this created large errors in the estimate of the first 

few components of the spectrum. Relative to the size of the measured spectrum, 

these errors remain minimal for the acceleration, and are acceptable for the veloc­

ity, but become clearly predominant for the displacement after double integration. 

Such a source of displacement error could be greatly reduced if the full length of the 

recorded and digitized accelerogram was provided. As it stands, the time histories 

that are presented in Figs. 5.1 through 5.3 remain the most probable, although it is 

certain that better estimates could be achieved if the full length of the accelerogram 

could be used in the processing procedure. 

The values used for a2 and b2 are based on laboratory tests and measurements, 

and should be representative. It was also shown in Ch. 3 that these values provided 

proper bounds to the noise-corrupted and start-up truncated synthetic accelero­

grams. Hence, the fact that the three standard deviation level does not appear to 

provide sufficient bounds for the most probable uncorrected displacement is indica­

tive that the variance c2 assigned to the uncertainty in the acceleration from end 

truncation is still not large enough. This is quite surprising since the value used for 

c2 is 100 times larger than b2 for the instrument trigger, and is 1000 times larger 

than a2 for the digitization and processing noise. Apparently for this accelerogram, 

the source of error of greatest concern is not the digitization and processing noise, 

nor the missing initial points, but the error in the acceleration temporal mean due 

to undigitized data at the end of the original analog record. Fortunately, this source 

of error is well corrected for by the spectral substitution method. 

The most probable acceleration, velocity and displacement corrected with a 

2-point spectral substitution up to 0.0326 Hz are presented by the solid line in 

Figs. 5.4, 5.5., 5.6 and are bounded respectively by one, two and three standard 
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deviations represented by the dotted lines. There are practically no changes in the 

most probable acceleration and velocity compared to the uncorrected results, and 

the standard deviations still appear to provide small but proper bounds. How­

ever, the most probable displacement obtained after spectral substitution no longer 

displays the long-period error observed in the uncorrected time history. The dis­

placement standard deviations that bound these records are still computed with the 

same assumptions on c2 as given for the uncorrected results. It would now appear 

that this is too conservative an assumption since only one standard deviation seems 

to provide sufficient bounds about the most probable displacement, whereas for 

the three standard deviation level the uncertainty at the end of the displacement 

signal is almost three times larger than the peak value. This is expected, since 

the spectral substitution method removes some of the error-dominated harmon­

ics at low frequencies which govern the errors in the displacement time histories. 

Hence, when using the spectral substitution method, the standard deviations should 

be decreased. However, in the absence of any further information concerning the 

undigitized data at the end of the accelerogram and of a more elaborate approach 

which incorporates the error-reduction from the spectral substitution method, the 

standard deviations can only be roughly estimated. 

Next the time histories obtained by the 2-point spectral substitution method 

up to 0.0326 Hz are compared to the those provided by the California Divisions of 

Mines and Geology (CDMG) in Volume II. The records from the Imperial Valley 

earthquake of October 15, 1979 obtained at the Imperial County Services build­

ing were processed by using a standardized package maintained at the Lawrence 

Berkeley Laboratory of the University of California. The processing method is sim­

ilar to the one used in the late seventies by the USGS and is an improved version 

of the time-domain processing method presented in Sec. 2.5. The high-pass and 

low-pass Ormsby filters had transition bandwidths of 0.03-0.17 Hz and 23.0-25.0 Hz 

[Porter, 1982]. Hence, only the signal in the 0.17-23.0 Hz range should be unchanged 

from the measured data. This is observable in Fig. 5. 7 which represents the overlaid 

plots of the Fourier amplitude spectrum of the processed displacements with the 

2-point spectral substitution as a solid line and the CDMG Volume II method as 

a dashed line. There is a significant difference between the two processing method 
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at low frequencies below 0.17 Hz. The amplitudes near d.c. are 100 times smaller 

with Volume II, and are still quite small up to approximately 0.1 Hz. The spectral 

substitution method provides information on periods in the time histories above 

6 sec without creating any long-period drift in the displacement. 

At high frequencies, Volume II uses the Ormsby filter to remove all contribu­

tions above 25 Hz. The probabilistic method indicated that no correction is re­

quired, so none was implemented. But surprisingly enough Fig. 5.'7 shows that the 

time history obtained with the spectral substitution method with no high-frequency 

correction has significantly less high-frequency content, by two orders of magnitude, 

above 10 Hz than does the one obtained with Volume II which implements a high­

frequency filter. Furthermore, the fall-off at high-frequencies in the most probable 

displacement appears to have a reasonable behavior [Anderson & Hough, 1984]. As 

has been studied in Ch. 2, part of this high-frequency error found in the Volume II 

processing could be attributed to the trapezoidal integration rule, and the repeated 

filtering of the acceleration, velocity and displacement with the Ormsby filter. The 

inference is that the frequency-domain processing method provides better estimates 

for the high-frequency behavior of the recorded accelerogram than does the standard 

Volume II method. 

Comparison of the time history results for the two methods is presented in 

Fig. 5.8, on the left of which are overlaid plots of the processed acceleration, veloc­

ity, and displacement where the solid line is the spectrally-substituted signal, and 

the dotted line is the Volume II corrected signal. On the right of Fig. 5.8 are plots 

representing the difference between the respective time histories. The difference in 

the acceleration time histories is barely visible, but the plot of the difference shows 

the two methods disagree mainly at high frequencies for the reasons explained in 

the previous paragraph and illustrated in Fig. 5.7. The difference in the treatment 

of the high-frequency portion of the spectrum leads to disagreements in the accel­

eration of the order of 10% of the peak. The velocity time histories also only differ 

slightly, and the dominant difference is an 8-second period representing amplitudes 

of about 10% of the peak. From the analysis performed in Ch. 4 on the free-field 

records, it was seen that 8 sec may correspond to a resonant period of the Imperial 
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Valley. This 8-second period cannot be observed in the time histories processed 

with Volume II, since it filters out all frequencies below 0.17 Hz. This difference at 

the 8-second period is emphasized in the displacement time histories and is respon­

sible for differences in the peaks of close to 50% in the strong shaking portion of 

the record, although the overall motions are in phase and follow the same trends. 

Although it has no physical justification, Volume II forces the displacement time 

histories to have zero temporal mean. This can be observed in Fig. 5.8 where the 

Volume II displacement oscillates about the zero baseline. The displacement ob­

tained with the 2-point spectral substitution method has a bias towards positive 

displacements due to a non-zero temporal mean, which is expected in theory. This 

same behavior was observed in the corresponding first-floor record (Fig. 4.3.33), and 

can be attributed to the influence of the source mechanism on the ground motion. 

The comparison of the processed time histories obtained with these two meth­

ods shows among other things that there can be large differences due to the nature 

of the correction procedure. The frequency-domain processing method, in con­

junction with the spectral substitution correction at low frequencies, has shown to 

produce satisfactory results with only a minimal amount of correction. This method 

has the advantage of preserving most of the recorded accelerogram unaltered. The 

low-frequency harmonics that are statistically determined to have a small signal-to­

noise ratio are not discarded, but simply set back to their most probable value. The 

corrected acceleration, velocity and displacement are presented bounded by several 

levels of standard deviations to depict the uncertainties associated with each of the 

time histories due to digitization and processing noise, as well as errors in the esti­

mate of the acceleration temporal mean from missing data at the beginning and the 

end of the record. The frequency-domain method, in conjunction with the spectral 

substitution method, is a better option for processing of accelerograms. 
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Figure 5-l. Imperial Valley earthquake (10/15/79). Imperial County Services 
building (north component, roof/W. end). Processed with the 
frequency domain method for 1 standard deviation reliability bound 
and no spectral substitution. 
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Figure 5-2. Imperial Valley earthquake (10/15/79). Imperial County Services 
building (north component, roof/W. end). Processed with the 
frequency domain method for 2 standard deviation reliability bound 
and no spectral substitution. 



-263-

UNCORRECTED -s S.D ...... Record : ICSB5 

Time( sec) 

UNCORRECTED -3 S.D ...... Record: ICSBS 
70,..-----.-----,..----.----.----~----, 

.. 

.. 
" 

Time( sec) 

UNCORRECTED- 3 S.D ..... Record : ICSBS 
~r--~--~---.----~---~-~ 
70 

.... .. 
E ,. 
!:!. "' 

~ 
E 
3 
!! ·20 

g. ... 
iS .... 

·•0 
·70 .•. 
·00 

\ .... 

....... ·····' 

, .............. / 
l 

.. 
........ 

,/ 

······ ....................................................... . 
., .. b----tr----ior----:~~r---m----m-----J. 

Time( sec) 

Figure 5 .. 3, Imperial Valley earthquake (10/15/79). Imperial County Services 
building (north component, roofjW. end). Processed with the 
frequency domain method for 3 standard deviation reliability bound 
and no spectral substitution. 
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Figure 5-4. Imperial Valley earthquake (10/15/79). Imperial County Services 
building (north component, roof/W. end). Processed with the 
frequency domain method for 1 standard deviation reliability bound 
and 2-point spectral substitution. 
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Figure 5-5. Imperial Valley earthquake (10/15/79). Imperial County Services 
building (north component, roof/W. end). Processed with the 
frequency ·domain method for 2 standard deviation reliability bound 
and 2-point spectral substitution. 
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Figure 5-6. Imperial Valley earthquake (10/15/79). Imperial County Services 
building (north component, roof/W. end). Processed with the 
frequency domain method for 3 standard deviation reliability bound 
and 2-point spectral substitution. 
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Figure 5-8. Imperial Valley earthquake (10/15/79). Imperial County Services 
building (north component, roof/W. end). Corrected time histories 
and errors. 

( 
__ : 2-point spectral substitution up to 0.0326 Hz ) 
- - - : Volume II correction, filter, 0.03-0.17 - 23.0-25.0 Hz 
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Chapter 6 

CONCLUSIONS AND RECOMMENDATIONS 

In Ch. 2 a systematic approach to the study of errors found in processed ac­

celerograms was proposed. This method used synthetic accelerograms generated 

by closed-form expressions for the accelerations, which could be exactly integrated 

to produce the corresponding velocities, displacements and spectra. The proposed 

analytical expression of the acceleration did not attempt to reproduce exactly the 

motion of a specific earthquake, but has proven to be general enough to capture 

most of the features expected from strong-motion records. The equation for the 

synthetic acceleration called for parameters which were randomly chosen within 

pre-specified bounds. This allowed the generation of a multitude of earthquake-like 

acceleration signals. These synthetic accelerograms were also contaminated with 

added Gaussian white noise to simulate processing and digitization noise, and were 

truncated at the beginning and at the end of the record to simulate instrument 

trigger and shut-off mechanisms. These effects were scaled to model accelerograms 

of large events (i.e., 50% g) or of small events (i.e., 5% g). 

The testing methodology is applicable to a wide variety of processing methods 

for either digital or analog accelerograms. It was shown that the study of the errors 

found in processed accelerograms could be separated into the study of the z'nternal 

performance and that of the correction effectz'veness. The first judges how much er­

ror or distortion the correction method adds into a noise-free continuous-time input 

signal and its integrals. The latter is a measure of how well the processing method 

can correct the errors in a corrupted input signal, which are often of an uncertain 

nature. The versatility of the synthetic records proved to be a valuable tool which 

permitted an in-depth study of the internal performance and the correction effec­

tiveness of processing methods by comparing the exact analytical time history to 

its processed and noise-corrupted counterpart. 
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The original Volume II processing method was used to illustrate the testing 

methodology. It was first shown how the internal performance could be assessed 

by analytically deriving the equivalent transfer functions of each of the steps of the 

processing routine, which may sometimes be a nontrivial problem. Although this 

approach proved to be somewhat useful in identifying the sources of the processing 

errors, it required lengthy and tedious numerical computations, careful bookkeep­

ing, and in practice, could mainly be applied to simple sinusoidal signals composed 

of a few harmonics. It was shown that such disadvantages did not exist when noise­

free synthetic accelerograms are used to study the processing method's internal 

performance. It was demonstrated that the sources of errors within the processing 

routine could be isolated by either bypassing certain steps of the program or by pro­

cessing synthetic signals which did not contain harmonics within certain frequency 

ranges. In this manner, it was possible to identify the type and amount of error 

induced by each of the steps of the processing routine. 

Testing of the correction effectiveness of a processing method requires that the 

processed input signal be corrupted by the type of error most likely to occur. In the 

case of earthquake accelerograms, these errors are of an uncertain nature (e.g., miss­

ing data and digitization noise), and analytical methods cannot be used to verify 

how well the processing method corrects them. But it was shown that these errors 

could be modelled and incorporated in the synthetic records by simulations, which 

could then be used to test the correction effectiveness of the processing method. 

This was achieved by fixing the processing and filtering parameters of the accelero­

gram processing program, and by isolating or combining each of the input errors 

for different earthquake sizes. A large number of error-contaminated synthetic ac­

celerograms were tested, and comparison of the processed output signals enabled 

an evaluation of how well the errors had been corrected on the average. 

It was concluded that in general the Volume II processed and corrected acceler­

ation time histories exhibited a very low output-error level regardless of the added 

error in the input accelerogram, and hence could be used with confidence. However, 

the errors in the processed velocity were large enough to warrant caution, and those 

in the processed displacement could be so big as to make the signal unreliable. It 
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was shown that Volume II is not capable of greatly reducing digitization noise in 

the input accelerogram, nor can it properly estimate the true value of the signals 

at the time of trigger or recover existing final displacement offsets. Thus, it does 

not have good correction effectiveness. However, it can be deemed insensitive or 

consistent, in the sense that regardless of the amount or nature of the error in the 

input of a given record, it will always produce nearly the same output for a fixed 

set of Ormsby filter parameters. As the cut-off and roll-off frequencies of the filter 

are changed, so are the output errors and the shape of the processed time histories. 

The main sources of error within the original Volume II method were found to be 

the Ormsby filter used in the high-pass filtering, the time-domain integration with 

the trapezoidal rule, and the repeated filtering, decimation and mean removal of 

the acceleration, velocity and displacement. It was concluded that it is the poor 

internal performance of the Volume II processing method, and not the errors in the 

input accelerogram, which is the dominant factor controlling the amount of output 

error. Although some of these sources of errors have already been identified in the 

past, the novelty of this approach lies in the systematic way the internal perfor­

mance and the correction effectiveness of the processing routine can be identified 

and tested for any source and type of errors, even those which are uncertain. 

Only the original Volume II method has been tested [Trifunac & Lee, 1973]. 

However, the same methodology should be applied to any of the improved and 

more recent processing methods to assess their internal performance and correction 

effectiveness. Because of the uncertainties involved in the recording and digitization 

process (i.e., missing data, added noise), it is clear that it is impossible to retrieve 

the exact signal from the measured accelerogram. A deterministic solution to this 

problem does not exist. However, from laboratory experiments, it is feasible to 

determine the range of possible values that the uncertain parameters can take, 

and assign a probability distribution to each of them. In Ch. 3, a method for 

obtaining the most probable acceleration, velocity and displacement, as well as 

their respective levels of uncertainty, has been proposed by describing the true 

signal and the error statistically. Such an approach makes it possible to obtain 

the accelerations, velocities and displacements which are the most likely to have 
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occurred during the seismic event based on the measured accelerogram and the 

most probable instrument truncation and digitization noise levels. 

The proposed probabilistic processing method can apply equally well to analog 

or digital accelerograms. In Ch. 3, the processing method is first described in the 

time domain, using the trapezoidal rule as the integration scheme. It was shown 

that the true signal could be written as a function of the measured accelerogram 

data, the uncertain missing data, and the digitization noise. These errors are the 

source of the uncertain shift in the acceleration baseline, and are responsible for the 

long-period displacement errors. The accelerograms are corrected and integrated 

under the assumption that the most probable temporal mean acceleration is zero, 

and that only one point with most probable value zero is missing at the beginning 

of the record due to trigger start-up. For cases where final displacement offsets are 

expected, such as in the near-field along a fault, or in a damaged structure, the most 

probable initial velocity and displacement were also assumed to be zero. For far­

field or small event records, which are not expected to produce final displacement 

offsets, the temporal mean velocity is assumed to be zero, and the corresponding 

displacement time history is integrated for zero initial value. These were shown to 

be reasonable assumptions. The standard deviations of the acceleration, velocity 

and displacement were then derived as a function of the standard deviation of the 

digitization noise, a, of the missing initial acceleration point, b, and of the missing 

end data, c. Values for a, b, and c can be found from laboratory experiments or 

judgement. It was shown that high-pass filters can be a major source of internal 

performance error, and in general do not contribute much to the overall correction 

effectiveness of the method. Thus, the new processing procedure described in Ch. 3 

does not recommend the use of any high-pass filter. However, they could be easily 

implemented within the program's structure if necessary, and alternatives to tra­

ditional high-pass filtering methods are proposed in Ch. 4. Finally, the procedure 

produces plots which represents the most probable value of the processed signal, 

along with its uncertainty level of one, two or three standard deviations. 

The time-domain probabilistic processing method is tested with the synthetic 

signals for its internal performance and its correction effectiveness. It was shown 
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that the method has good internal performance, in the sense that the only significant 

source of output error is introduced at high frequencies by the trapezoidal rule. 

These errors mainly affected the velocity time history, and were shown to be small 

and negligible compared to the effects of digitization noise, even for simulations of 

large events. The probabilistic processing method does not remove the noise, and 

allows the integrated velocities and displacements to drift due to various sources of 

errors affecting the temporal means. However, the probabilistic processing method 

was shown to have good correction effectiveness, in the sense that the uncertainty 

bounds about the estimated most probable time histories did enclose the exact 

signal. Contrary to the conclusions reached after testing Volume II, the study of 

the probabilistic processing method showed that, as expected, the relative amount 

of processing error decreased as the size of the earthquake increased. This implies 

that the most probable estimates of the time histories, as provided by the processing 

method, also become more reliable as the size of the earthquake increases. 

A frequency-domain probabilistic accelerogram processing method was also 

proposed. The assumptions to obtain the most probable time histories are the 

same as for the time-domain method. Integration is performed in the frequency 

domain with zero d.c., and any necessary corrections to the initial value are per­

formed in the time domain after inverse transformation. The expressions for the 

standard deviations corresponding to the most probable acceleration, velocity and 

displacement are the same as the ones derived in the time domain if no filtering is 

done. The synthetic signals are used to evaluate the internal performance of the 

frequency-domain method, which implements a fast Fourier transform algorithm 

to compute the discrete Fourier transform. It was shown that adding zeroes to a 

truncated accelerogram produces leakage, a convolutive error in the spectrum af­

fecting the entire frequency range. However, leakage did not induce errors in the 

processed and integrated time histories, except for possible aliasing of higher fre­

quency components created by the leakage. It was also shown that the baseline 

correction of the accelerogram creates an additive error in the spectrum which is 

dominant at lower frequencies. These long-period errors affect the time histories 

and are amplified by integration. Equivalently, testing of the internal performance 

of the time-domain processing method showed that shifts in the temporal mean, 
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such as those resulting from missing data, are almost exclusively responsible for 

long-period errors in the integrated time histories. The internal performance of the 

time-domain method proved to be worse because integration is performed with the 

trapezoidal rule, compared to integration in the frequency domain which reduced 

the error level in the processed time histories by about two orders of magnitude. 

It was also shown that both the frequency-domain method and the time-domain 

method had similar correction effectiveness. Since it reduces integration errors and 

may be more time efficient, as was discussed inCh. 3, the frequency-domain method 

is a better approach, and is the method implemented in the proposed standard pro­

cessing routine. 

The study of the correction effectiveness of the probabilistic processing method, 

in either the time domain or the frequency domain, showed that the dominant 

sources of errors arose from the unknown offset in the accelerogram baseline, and 

the digitization noise. These errors have been shown to be properly accounted for 

by the reliability bounds. Nevertheless, the level of these errors can be reduced, 

and two new approaches to accelerogram correction are proposed in Ch. 4. The 

first approach is based on the Wiener optimal noise filter. It is signal-dependent, 

and attempts to estimate the best approximation to the true signal from noise­

contaminated measured data. In effect, this filter reduces the noise throughout 

the whole spectrum as a function of the signal-to-noise ratio at each frequency of 

the record. The optimality of the filter requires the prior knowledge of the power 

spectral density of the true signal and of the noise. Applying Wiener's concept to 

cases where such prior information is not available (e.g., earthquake accelerograms), 

and only the signal itself can be used, led to the conclusion that such an optimal 

filter is equal to unity throughout the whole spectrum. Or in other words, it is best 

not to use a filter at all! However, noise filters which decrease the amplitude of the 

spectrum where the signal-to-noise ratio is low were proposed. Tests performed on 

noise-contaminated synthetic records showed that these noise filters are correction­

effective for records of small events, since they are capable of partially reducing 

the low-frequency errors which result in linear and parabolic drifts in the time 

histories after integration. At high frequencies, the noise filters reduced the level 

of the error, although not significantly. For simulations of large events, the noise 
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filters proved to be less effective since the signal-to-noise is high throughout most 

of the spectrum. Such a noise-correction method is not included in the standard 

probabilistic frequency-domain processing routine, but could be implemented as an 

option if desired. 

The second correction technique, called the spectral substitution method, cor­

rects the error-corrupted ends of the accelerogram's spectrum, especially near d.c .. 

It is based on the optimization of spectral models for far-field or near-field earth­

quake ground motions, or for structural motions. The spectral models are formu­

lated to adequately represent the behavior of the measured spectra at high and 

low frequencies where the error and noise prevail. However, these models are not 

intended to provide an accurate match at intermediate frequencies where the signal­

to-noise ratio is high, and where no correction is necessary. Do, one of the param­

eters which define the spectral models, is the d.c. value of the displacement spectrum 

in the far-field, and of the velocity spectrum in the near-field. Hence, for near-field 

records, D0 is also an estimate of the final displacement offset. The error between 

the optimized model and the amplitude spectrum of the measured data is used 

as a statistical criterion for the spectral substitution. The low-frequency spectral 

amplitudes that lie outside one standard deviation about the most probable values 

are substituted by the amplitudes of the optimized model. The phases are kept 

unchanged. In this manner, the long-period motions in the measured accelerogram 

are not completely removed from the signal, they are simply replaced by their most 

probable value based on the data and the class of spectral models. The same cor­

rection technique can also be applied to the high-frequency end of the spectrum. 

The spectral substitution method was applied to a set of analog accelerograms 

obtained during the October 15, 1979 Imperial Valley earthquake (ML =6.6). The 

method was tested successfully on ground motion records obtained both in the 

near-field and in the far-field. It was found that the correction method produced 

consistent results for records obtained at adjacent sites for components along the 

same direction. It was thus concluded that the long-period motions that were 

observed in the processed and corrected time histories could be attributed to true 

ground response, and not just to errors in the digitization process. In particular, 



-276-

it was found that the dominant horizontal period of motion of the Imperial Valley 

was 8 sec, and vertically the dominant period was of the order of 4 sec. Using a 

simplified shear-beam model of the Imperial Valley, it was shown that such periods 

could be possible in the valley. The corrected near-field displacement time histories 

also displayed final offsets that were reasonably consistent with those measured on­

site after the seismic event. Because the low-frequency portion of the spectrum 

is not completely removed, contrary to current processing and correction methods 

which use standard filtering techniques, long-period motions beyond 8 sec and final 

displacement offsets were observed, for what is believed to be the first time, in time 

histories obtained from analog records. 

When applied to accelerograms obtained during the same earthquake at the 

Imperial County Services building, the spectral substitution method implemented 

for structural models produced consistent results as well. For near-field and far­

field records, the spectral models used for the optimization are consistent with the 

physics of earthquake source and propagation effects, and have shown to provide 

good matches to the measured data. Although it also provides good fits to the 

data, the spectral model that is used in the optimization of structural records was 

eventually obtained by trial and error. More research is desirable to explore this 

model and perhaps to suggest improved formulations. 

In Ch. 5, one of the records obtained at the roof of the Imperial County Ser­

vices building is used as an example of the complete processing procedure for the 

probabilistic frequency-domain method, with and without the spectral substitution 

method. Plots of the corresponding most probable time histories with their reliabil­

ity bounds were provided. The standard deviations of the most probable time his­

tories given in Ch. 3 are derived for records processed without spectral substitution. 

When using the spectral substitution method, the error levels should significantly 

decrease, especially in the displacement. Although still correct, the aforementioned 

reliability bounds are expected to be too conservative when the records are spec­

trally corrected. In future work, the effects of the spectral substitution correction 

on the statistical description of the error could be incorporated, in order to provide 

more adequate reliability bounds. The resulting time histories are also compared to 
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those processed by CDMG using a standard processing technique. The probabilisitic 

frequency-domain approach with low-frequency substitution produced satisfactory 

results with only a minimal amount of correction. 

The frequency-domain method, in conjunction with the spectral substitution 

method, is felt to be a better option for processing of accelerograms. It tampers 

with the data much less than other processing methods, and does not completely 

remove the low-frequency portion of the accelerogram which could be of scientific 

interest, while still providing reasonable estimates for the time histories. Using the 

probabilistic framework, these time histories are the most probable ones based on 

the information available, and they can be assigned uncertainty levels to describe 

their reliability. As an extension to this work, probabilistic methods could also 

be applied to compute the response spectra. Also, since testing of this method 

on synthetic and true accelerograms has produced very satisfactory results, this 

accelerogram processing method could be used on a large number of existing strong­

motion records to study the long-period dynamics of local geology and of structures, 

both in the near-field and in the far-field. 
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