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Abstract 

This thesis presents a study of the dynamical stability of nascent neutron stars result ing from t he 

accretion induced collapse of rapidly rotating white dwarfs. 

Chapter 2 and part of Chapter 3 study the equilibrium models for these neutron stars. They are 

constructed by assuming that the neutron stars have the same masses, angular momenta, and specific 

angular momentum distributions as the pre-collapse white dwarfs. If the pre-collapse white dwarf is 

rapidly rotating, the collapsed object will contain a high density central core of size about 20 km, 

surrounded by a massive accretion torus extending t o hundreds of kilometers from the rot ation axis. 

The ratio of t he rotat ional kinetic energy to gravitational binding energy, (3, of these neutron stars 

is all found to be less than 0.27. 

Chapter 3 studies the dynamical stability of these neutron stars by numerically evolving the 

linearized hydrodynamical equat ions. A dynamical bar-mode instability is observed when the (3 of 

the star is greater t han the critical value f3d ~ 0.25. It is expected that t he unstable mode will 

persist until a substantial amount of angular momentum is carried away by gravitational radiation. 

The detectability of these sources is studied and it is estimat ed that LIGO II is unlikely to detect 

them unless t he event rate is greater than 10-6 /year/galaxy. 

All the calculations on the structure and stability of the neutron stars in Chapters 2 and 3 

are carried out using Newtonian hydrodynamics and gr avity. Chapter 4 studies the relativistic 

effects on the structure of these neutron stars. New t echniques are developed and used to construct 

neutron star models to the first post-Newtonian (lPN) order. The structures of the lPN models 

are qualitatively similar to the corresponding Newtonian models, but t he values of (3 are somewhat 

sm aller. The maximum (3 for these lPN neut ron stars is found to be 0.24, which is 8% smaller t han 

the Newtonian result (0.26). However, relativistic effects will also ch ange the critical value f3d· A 

det ailed post-Newtonian stability analysis has yet to be carried out to study the relativistic effects 

on the dynamical stability of t hese neutron stars. 
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Chapter 1 

Introduction and Summary 

1.1 Accretion induced collapse 

White dwarfs, stars that are mainly supported by degenerate electron pressure, are one of the 

end products of stellar evolution . Most white dwarfs are made of carbon and oxygen (C-0 white 

dwarfs), while a small fraction of them are made of oxygen, neon and magnesium (0-Ne-Mg white 

dwarfs) . The C-0 white dwarfs are formed when main sequence stars of masses M :S 6M0 exhaust 

their nuclear fuel , whereas 0 -Ne-Mg white dwarfs are formed from stars with initial masses of 

8M0 - 12M0 in close binaries (see [1] for a review). 

An isolated white dwarf simply cools and radiates away its residual thermal energy and quietly 

turns into a dark star. A white dwarf in a binary system may evolve differently, because it could 

accrete matter from its companion. The mass, central density and angular momentum of t he white 

dwarf could increase as a result of this accretion. If the mass of the accreting white dwarf is close 

to the Chandrasekhar limit, the accretion may eventually make it massive enough that it can no 

longer maintain hydrodynamic equilibrium. The star will either explode as a Type Ia supernova or 

collapse to a neutron star (see Sections 1.3 and 2.2 for detail). 

An accreting white dwarf can easily be spun up to rapid rotation by the accretion material [18]. 

Hence the massive white dwarf usually rotates rapidly before it becomes unstable. If collapse results, 

conservation of angular momentum implies t hat the new-born neutron star formed from this accretion 

induced collapse (AIC) must rotate rapidly, and a significant portion of the stellar material would 

be hung up by the centrifugal force. The collapsed object would contain a relatively high density 

neutron core surrounded by a highly flattened, centrifugally supported disk. This rapidly rotat ing 

star may develop a non-axisymmetric instability which typically has the shape of a bar. It has 

been suggested [2] that t his unstable "bar" mode could emit a substantial amount of gravitational 
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radiation t hat might be detectable by gravitational wave interferometers, such as LIGO, VIRGO, 

GEO and TAMA. 

The objectives of this thesis are 

• to build equilibrium models of the new-born neutron stars produced by AIC and study t heir 

properties; 

• to det ermine under what circumstance these neutron stars could develop a dynamical insta­

bility; 

• to estimate the strength and signal-to-noise ratio of the gravitational ra dia tion emitted by 

neutron stars undergoing this instability; 

• to study the effects of general relativity on the equilibrium structure of t hese neutron stars. 

The structure of this thesis is as follows. In this chapter , we give a general introduction to 

the main issues and summarize all the important results. In Chapter 2, we describe in detail t he 

techniques we use to construct the equilibrium models. Next we build three of the most rapidly 

rotating models using both hot and cold equations of state and study the stars' properties. In 

Chapter 3 , we study the stability of these neutron stars and determine under what condition a 

neutron star could be dynamically unstable. To do this, we first construct a number of equilibrium 

neutron star models with different amounts of rota tion using the method described in Chapter 2. 

Next we analyze the stability of each of the models . Finally, we estimate t he strength and sign al-to­

noise ratio of the gravitational radiation emitted by neutron stars undergoing the instability. All the 

computations in Chapters 2 and 3 were done using Newtonian hydrodynamics and gravity. Neutron 

stars are compact , and relativistic effects play a significant role in the equilibrium structure as well as 

their st ability. So in Chapter 4, we develop new techniques and construct the equilibrium models of 

the nascent neutron stars that include first post-Newtonian effects. We t hen compare the relativistic 

models with the Newtonian ones. 

Most of the work presented in this thesis was done independently by the author under the 

supervision of Lee Lindblom. P art of the work on the const ruction of equilibrium models in Chapter 2 

was done in collaboration with Lee Lindblom. 
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1.2 Dynamical instabilities of a rapidly rotating star 

As mentioned in the previous Section, the new-born neutron star resulting from the AIC of a rapidly 

rotating white dwarf, or from the collapse of a rapidly rotating massive stellar core, could develop a 

non-axisymmetric instability. We shall describe this type of instability in this Section. 

Rotational instabilities arise from non-axisymmetric perturbations having angular dependence 

eim<p, where t.p is the azimuthal angle. The m = 2 mode is called the bar mode, and is usually the 

strongest mode for stars undergoing this type of instability. There are two types of instabilities. 

A dynamical instability is driven by hydrodynamics and gr avity, and it develops on a dynamical 

timescale, e.g., the timescale for a sound wave to travel across the star. A secular instability, on 

the other hand, is driven by viscosity or gravitational radiation reaction, and its growth t ime is 

determined by the relevant dissipative timescale . These secular timescales are usually much longer 

than the dynamical timescale of the system. This thesis only studies t he dynamical instabilit ies, 

because they are much stronger and so are unlikely to be strongly affected dynamically by viscosity, 

magnetic fields or other dissipative processes. 

These non-axisymmetric dynamical instabilit ies occur only for rapidly rotating stars . A useful 

parameter to characterize the rotation of a star is /3 = T / IW I, wh ere T and Ware the rotational 

kinetic energy and gravitational potential energy, respectively. It is well known that t here is a 

crit ical value /3d such that a star will be dynamically unst able if /3 > f3d· For a uniform density 

and rigidly rotating star, a Maclaurin spheroid, the critical value is determined to be f3d ::::J 0 .27 [3]. 

Many numerical simulations using Newtonian gravity show that /3d remains roughly the same for 

differentia lly rotating polytropes h aving the same specific angular momentum distribution as the 

Maclaurin spheroids [4, 5 , 6, 7 , 8, 9, 10, 11 , 12]. However, /3d can take values between 0.14 and 0.27 

for other angular momentum distribut ions [13, 10, 14] (the lower limit /3d = 0.14 is observed only for 

a star having a toroidal density distribut ion, i.e., the maximum density occurs off the center [14]) . 

Numerical simulations using full general relativity and post-Newtonian approximations suggest that 

relativistic corrections to Newtonian gravity cause !3d to decrease slightly [15, 16, 17]. 

Most of the stability analyses to date have been carried out by assuming that the star rotates 

with an ad hoc rotation law or using simplified equ ations of state. The results of these analyses 

might not be applicable to th e new-born neutron stars resulting from AIC. Recent ly, Fryer, Holz 

and Hughes [18] carried out an AIC simulation using a realistic rotation law and a realistic equation 

of state. Their pre-collapse white dwarf has an angular momentum J = 104 9 g cm2 s-1 . After the 

collapse, the neutron star has /3 less than 0.06, which is too small for t he star to be dynamically 
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unstable. However, they point out that if the pre-collapse white dwarf spins faster, the resulting 

neutron star could have high enough (3 to trigger a dynamical instability. They also point out that 

a pre-collapse white dwarf could easily be spun up to rapid rotation by accretion. The spin of an 

accreting white dwarf before collapse depends on its initial mass, its magnetic field strength, its 

accretion rate, etc. [19]. 

One of the purposes of this thesis is to carry out more realistic analyses of the stability of the 

nascent neutron stars resulting from AIC. The strategy is as follows. First , build equilibrium neutron 

star models. Second, perturb these stars by adding small density and velocity perturbations to the 

equilibrium models. Third, numerically evolve the linearized hydrodynamical equations and see if 

the perturbations grow with time. Fourth, extract the growth rate from the evolution data. Finally, 

determine the critical value !3d for the onset of the dynamical instability. 

1.3 Equilibrium models 

The proper way to construct the equilibrium neutron star model is to numerically follow the col­

lapse of the white dwarf and wait for the final collapsed object to settle down into hydrodynamic 

equilibrium. Such a realistic simulation has been done by Fryer et al. [18] for a slowly rotating 

pre-collapse white dwarf. Simulations for the collapse of massive stellar cores were also performed 

by several authors [20, 21, 22, 23, 24]. This kind of simulation is computational expensive, so we 

adopt a simpler approach: build the equilibrium neutron star model which has the same total mass, 

angular momentum and specific angular momentum distribution j (mro) as the pre-collapse white 

dwarf. Here mro is the mass fraction interior to a cylindrical surface. 

This method is justified if the following assumptions are correct: 

1. the collapse is axisymmetric; 

2. viscosity can be neglected ; 

3. there is no meridional circulation in the final state of the neutron star; 

4. the neutron star are described by a barotropic equation of state, i.e., the pressure P is a 

function of density p only; 

5. no material is ejected during the collapse. 

Assumption 3 is probably the most controversial one. However, such a rotational profile was observed 

in some collapse simulat ions [21, 22, 25]. 
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In order to build the neutron star models by the above method, we first have to build the models 

of pre-collapse white dwarfs, calculate in each model t he star's total mass M, angular momentum 

J and specific angular momentum j as a function of the cylindrical mass fraction m"" . These are 

the parameters necessary to build a mapping b etween a pre-collapse white dwarf and the result ing 

neutron st ar. 

1 .3. 1 Models of pre-collapse white dwarfs 

When a C-0 white dwarf is accreting material , the star compresses and releases gravitational energy. 

P art of the gravitational energy is used to raise the Fermi energy of the degenerate electrons, and t he 

rest turns into heat (compressional heating) [26] . The evolution of t he temperature of the white dwarf 

depends on the balance between the cooling and compressional heating. When t he central density 

and/or temperature is high enough , carbon will ignite explosively. While t he carbon combustion 

front propagates outward, electron captures behind the front soften the equat ion of state (EOS) 

and make the star unstable. There are two possible outcomes. The white dwarf will either be torn 

apart by the runaway carbon burning or collapse to a neutron star. Which path the white dwarf 

takes depends on the competition between t he carbon burning and electron captures [27]. Electron 

captures happ en only at high density where the Fermi energy of the electrons is high enough to 

trigger inverse beta decay. Numerical simulations [29, 30] suggest that if carbon ignition occurs at a 

central density Pc in the range 6 x 109 g cm - 3 ,:S Pc ,:S 1010 g cm-3 , electron captures take over and 

t he star will collapse to a neutron star. The density at which carbon ignites depends on the entire 

accretion history of the white dwarf. The fate of an accreting C-0 white dwarf as a function of its 

initial mass and accretion rate is summarized in a diagram in Ref. (27] (see also [28]). 

An 0-Ne-Mg white dwarf becomes unstable when the central density reaches 4 x 109 g cm-3 . 

At this density, electron captures by 24 Mg occur and soften t he EOS and induce collapse. The star 

will most likely collapse to a neutron star in t his case. A more detailed discussion on the onset of 

t he instability of a massive white dwarf is given in Section 2.2.1. 

In Chapter 2, we compute three rapidly rotating pre-collapse white dwarf models using the 

numerical method developed by Hachisu [31] (see Section 2.2.2 for a brief review). Two of the 

models are for C-0 white dwarfs with central densities Pc = 6 x 109 g cm - 3 and 1010 g cm- 3 . The 

other one is for an 0 -Ne-Mg white dwarf with Pc = 4 x 109 g cm-3 . These white dwarfs are rotat ing 

at the fastest possible frequency before mass shedding occurs at the equatorial surfaces. The m asses, 

angular momenta and j(mro ) distributions are computed in Section 2.2.3. These parameters are then 
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used to build the neutron star models corresponding to the collapse of these white dwarfs. 

In order to determine the onset of dynamical instability, it is necessary to build more equilibrium 

models. So in Chapter 3, we compute sequences of rigidly rotating white dwarf models wit h different 

amounts of rotation. All the white dwarf models computed in this thesis are rigidly rotating, because 

the timescale for a magnetic field to suppress differential rotation is much shorter t han the accretion 

t imescale. 

1.3.2 Models of nascent neutron stars 

The gravitat ional collapse of a massive white dwarf is halted when the central density reaches nuclear 

density where t he E OS becomes stiff. The core bounces back and within a few milliseconds, a hot 

(T ~ 20 Mev) , lepton rich protoneutron star set t les into hydrodynamic equilibrium. During the so­

called Kelvin-Helmholtz cooling phase, the temperature and lepton number decrease due to neutrino 

emission and the protoneutron star cools to a cold neutron st ar with temperature T < 1 Mev after 

several minutes. Since the cooling timescale is much longer t han the hydrodynamical timescale, the 

protoneutron star can be regarded as in quasi-equilibrium. 

In Chapter 2, we construct neutron star models using two sets of EOS's. One EOS is for t he hot 

protoneutron stars and the other is one of the standard cold EOS's. 

Equilibrium models are computed in Section 2.3.3 for the neutron stars corresponding to the 

collapse of the three white dwarfs in Section 2.2.3. They all consist of a high density central core of 

size about 20 km, surrounded by a massive accretion torus extending over 1000 km from the rotation 

axis. The stars are centrally condensed. More than 90% of the stellar mass is contained in the core 

and core-torus transition region, which is within about 100 km from the rotation axis. The structure 

of t he hot protoneutron star models is very different from the cold models. The cold models are 

more compact, rotate faster and have a higher value of (3 = T /IWI, where Tis the rotational kinetic 

energy and IWI is the gravitational binding energy. The central densities of the hot protoneutron 

stars range from 3 x 1013 g cm- 3 to 101'1 g cm - 3 . The central densities of the t hree cold models are 

about the same: Pc ;:::; 3.5 x 1014 g cm- 3 . The values of (3 of the three cold models range from 0.23 

to 0.26, whereas those of the hot models are (3 = 0.13 - 0.14. Up to this point, it is still not certain 

whether or not the cold models are dynamically unstable, but it is very likely that the hot models 

are stable. So we expect t hat when a white dwarf undergoes AIC, the collapsed star will first settle 

down in the quasi-equilibrium, hot protoneutron star phase. After about 20 s, the star cools down, 

increases its rotation rate and may be able to develop a dynamical instability. 
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More equilibrium neutron star models are computed in Chapter 3, Section 3.2.2. The objective 

of that chapter is to determine the onset of dynamical stability, so only cold models are computed 

there. The structure of the rapidly rotating neutron stars is qualitatively the same as t hat of 

the cold models described in the previous paragraph. All neutron stars resulting from AIC have 

(3 :S 0.26, which is slightly less than the critical value f3d for the onset of a dynamical instability in 

the Maclaurin spheroids. Hence, a detailed stability analysis has to be carried out on these neutron 

stars. 

1.4 Stability analysis 

The motion of fluid inside a star, in the Newtonian approximation, is described by the hydrodynam-

ical equations: 

ap - + V · (pv) at 
av 
-+v·V"v at 

0, 

V"P 
= ---- V<I> , 

p 

47rGp, 

(1.1) 

(1.2) 

(1.3) 

where p is density; v is the fluid 's velocity; P is the pressure and <I> is the gravitational potentia l. 

To study the stability of the fluid's motion, we perturb the density p and velocity v away from their 

equilibrium values, p0 and v 0 , by small quantities: 

p(x,t) 

v(x ,t) 

Po(x) + 6p(x, t) , 

vo(x) + 5v(x, t) . 

(1.4) 

(1.5) 

The stability can be determined by numerically evolving 6p and 5v and seeing if they grow wit h 

time. To find the onset of the instability, it is necessary to evolve only the linearized equations. This 

idea and numerical techniques were first proposed by Toman et al. [32). 

Consider the angular Fourier decomposition of any perturbed quantity 6q: 

00 

6q(x , t) = L 6ijm(-r::v, z, t)eim<p , (1.6) 
7n= - oo 

where -r::v is the cylindrical radius from the rota tion axis and r.p is the azimuthal angle. It is easy 

to prove that the m -modes decouple in the linearized hydrodynamical equations because of the 
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axisymmetry of the equilibrium configuration. Hence each m-mode can be evolved independently 

and the 3+1 simulation is reduced to many 2+1 simulations. 

In Chapter 3, we evolve the perturbations op and ov by solving the linearized hydrodynamical 

equations and find that a bar-mode (m = 2) instability develops for stars with /3 2: f3d ~ 0.25. No 

other unstable m-modes are observed. We find that all the neutron stars corresponding to the AIC 

of C-0 white dwarfs are dynamically stable. Their /3's are all less than the critical value /3d- Only 

the cold neutron stars resulting from the collapse of the 0-Ne-Mg white dwarfs which rotate more 

than 93% of the maximum frequency can have /3 > f3d · The frequency of the unstable mode is 

f ~ 450 Hz and its growth rate is about 8 ms for the most rapidly rotation model (/3 = 0.26). As a 

comparison, the rotational frequency at the center of the star is 700 Hz. 

1.5 Gravitational radiation 

According to general relativity, time varying mass and current multipole moments (higher than the 

dipole) generate gravitational waves. Since a rapidly rotating neutron star could be unstable to 

the bar mode, the amplitude of the mode could become very large, providing a large amplitude of 

time changing multipole moments and emitting a substantial amount of gravitational waves. R ecent 

full hydrodynamical simulations on the bar-mode instability [12, 33] show that the mode saturates 

when the density perturbation is comparable to the equilibrium density. In these simulations, the 

mode pattern persists after the saturation. It is possible that the mode will not be suppressed until 

gravitational waves remove a substantial amount of angular momentum from the star. The complete 

waveforms and strength of the gravitational waves emitted by this bar-mode instability depend on 

the unknown detailed nonlinear evolution of the mode. However, we can estimate the strength 

and detectability of the signals from the results of the linearized hydrodynamical evolutions. The 

detailed analysis is presented in Section 3.4. Here we summarize the results . 

Simple analysis shows that the gravitational radiation emitted by these sources is dominated by 

the time changing mass quadrupole moments. The gravitational wave strength h is estimated to be 

(1. 7) 

where a is a dimensionless amplitude of the bar mode and D is the distance between the source 

and detector. The optimal signal-to-noise ratio for detecting this type of signal by the LIGO-II 
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broad-band interferometers is estimated to be 

S (20 Mpc ) ( 6..1 ) 
1
1

2 
( f ) -

1
/

2 

N = 
15 D 5 x 1048 g cm2 s-1 450 Hz x 

Jsh(f) 
( ) 

-1 

(1.8) 

where f is the oscillation frequency of the mode; 6..1 is the total amount of angular momentum 

emitted by the gravitational waves and Sh(f) is the spectral density of the gravitational wave 

detectors. The value 5 x 1048 g cm2 s-1 is t he estimated maximum amount of 6..1. 

The detectability of this type of source a lso depends on the event rate. The event rate for AIC 

is estimated to be between 10- 5 and 10- 8 per galaxy per year (34, 35]. Of all the AIC events, only 

those corresponding to the collapse of rapidly rotating 0-Ne-Mg white dwarfs can end up in the 

bar-mode instability, and the fraction of these is unknown. If a signal-to-noise ratio of 5 is required 

to detect the source, an event rate of at least 10-6 /galaxy/year is required for such a source to occur 

at a detectable distance per year. Hence these sources will not be promising for LIGO II if the event 

rate is much less than 10-6 per year per galaxy. 

The event rate of the core collapse of massive stars is much higher than that of AI C . The structure 

of a pre-supernova core is very similar to that of a pre-collapse white dwarf, so our results might 

be applicable to the neutron stars produced by the core collapse. If the core is rapidly rotating, 

the resulting neutron star might be able to develop a bar-mode instability. If a significant fraction 

of the pre-supernova cores are rapidly rotating, the chance of detecting the gravitational radiation 

from the bar-mode instability might be much higher than expected. 

1.6 Relativistic effects 

All the neutron star calculations discussed in Sections 1.3-1.4 have been done with Newtonian 

hydrodynamics and gravity. However, neutron stars are compact objects and general relativistic 

effects have a significant influence on both the structure and dynamical stability of the stars. R ecent 

numerical simulations by Shibata, Baumgarte, Shapiro and Saijo show that as the star becomes more 

compact, the critical value !3d for the onset of the dynamical instability slightly decreases from the 

Newtonian value 0.26 to 0.24 for a specific EOS and rotation law (16, 17]. It is not clear, however, 

whether their result suggests t hat the relativistic effects would destabilize the stars we are studying, 

for the equilibrium structure of the st ar will also be changed by the relativistic effects. The value 

of {3 of a relativistic star will not be t he same as that of a Newtonian star with the same baryon 

mass and total angular momentum. In Chapter 4, we compute the equilibrium models of neutron 
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stars to the first post-Newtonian (lPN) order and compare them with the corresponding Newtonian 

models (in Section 3.2.2). We only compute the neutron star models corresponding to the collapse 

of 0-Ne-Mg white dwarfs since they are the only models that can be dynamically unstable in the 

Newtonian case. 

We make the same assumptions in the construction of equilibrium models as we do in the New­

tonian calculations. We compute models with the same baryon mass M0 , total angular momentum 

J and specific angular momentum distribution j(mw) as the pre-collapse white dwarfs. However, 

none of t he existing methods in the literature for constructing post-Newtonian models, as far as 

we know, are designed to build models with a specified j(mw) · We formulate a new version of the 

equilibrium equations t hat are accurate to lPN order and generalize Smith and Centrella's version 

of the self-consistent field method [36] , so that it can be used to build models with a specified j ( mw). 

The details are presented in Sections 4.2 and 4.3. 

The lPN models are presented in Section 4.4. We find t hat the structures of these lPN models 

are qualitatively the same as the Newtonian models having the same baryon masses and angular 

momenta. However, they are more compact, rotate faster, and have smaller values of j3 than their 

Newtonian counterparts. The highest value of j3 the neutron star can achieve is 0.24, which is 8% 

smaller than the Newtonian case. We estimate that the fractional error due to our neglecting higher 

order post-Newtonian terms is about 3%. 

We demonstrate in Chapter 4 that the relativistic effects lower the value of j3 of a star. Shibata, 

Baumgarte, Shapiro and Saijo demonstrated that the relativistic effects also lower the critical value 

f3d for the dynamical instability by a similar amount . Hence, it is not clear at this point whether 

relativistic effects destabilize the star. Numerical stability analyses have to be carried out to settle 

this issue, but these are beyond the scope of this thesis. 
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Chapter 2 

Models of Rapidly Rotating 
Neutron Stars: Remnants of 
Accretion Induced Collapse 

Coauthored with Lee Lindblom; published in Monthly Notices of the Royal Astronomical Society 

[Mon. Not. Roy. Astro. Soc. 324, 1063 (2001)]. 

A bst ract 

Equilibrium models of differentially rotating nascent neutron stars are constructed, which rep­

resent the result of the accretion induced collapse of rapidly rotating white dwarfs. The models are 

built in a two-step procedure: (1) a rapidly rotating pre-collapse white dwarf model is constructed; 

(2) a stationary axisymmetric neutron star having the same total mass and angular momentum dis­

tribution as the white dwarf is constructed. The resulting collapsed objects consist of a high density 

central core of size roughly 20 km, surrounded by a massive accretion torus extending over 1000 km 

from the rotation axis. The ratio of the rotational kinetic energy to the gravitational potential 

energy of these neutron stars ranges from 0.13 to 0.26, suggesting that some of t hese objects may 

have a non-axisymmetric dynamical instability that could emit a significant amount of gravitational 

radiation. 

2.1 Introduction 

The accretion induced collapse of a rapidly rotating white dwarf can result in the formation of a 

rapidly and differentially rotating compact object. It has been suggested that such rapidly rotating 

objects could emit a substantial amount of gravitational radiation [53], which might be observable 
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by the gravitational wave observatories, such as LIGO, VIRGO and GEO. It has been demonstrated 

that if the collapse is axisymmetric, the energy emitted by gravitational waves is rather small [34, 

12, 32, 58]. However , if the collapsed object rotates rapidly enough to develop a non-axisymmetric 

"bar" instability, the total energy released by gravitational waves could be 104 times greater than 

the axisymmetric case (20, 19, 49, 18]. 

Rotational instabilities of rotating stars arise from non-axisymmetric perturbations of the form 

eimcp, where cp is the azimuthal angle. The m = 2 mode is known as the bar mode, which is often 

the fastest growing unstable mode. There are two kinds of instabilities . A dynamical instability 

is driven by hydrodynamics and gravity, and develops on a dynamical timescale, e.g., the time for 

sound waves to travel across the star. A secular instability is driven by dissipative processes, such 

as viscosity or gravitational radiation reaction, and the growth time is determined by t he dissipative 

timescale. These secular timescales are usually much longer than the dynamical timescale of the 

system. An interesting class of secular and dynamical instabilities only occur in rapidly rotating 

stars. One convenient measure of the rotation of a star is the parameter fJ = Trot/IWI, where Trot 

is the rotational kinetic energy and W is the gravitational potential energy. Dynamical and secular 

instabilities set in when (3 exceeds the critical values fJd and (3. respectively. It is well known that 

fJd :::::J 0.27 and (3. :::::J 0.14 for uniformly rotating, constant density and incompressible stars, the 

Maclaurin spheroids [8]. Numerous numerical simulations in Newtonian theory show that fJd and (3 5 

have roughly these same values for differentially rotating polytropes with the same specific angular 

momentum distribution as the Maclaurin spheroids [56, 10, 57, 20, 49, 19, 40, 18, 35]. However, 

the critical values of fJ are smaller for polytropes with some other angular momentum distributions 

[21, 40, 7] . And general relativistic simulations also suggest that the critical values of (3 are smaller 

t han the classical Maclaurin spheroid values [50, 47, 42]. 

Most of the stability analyses to date have been carried out on stars having simple ad hoc rotation 

laws. It is not clear whether these rotation laws are appropriate for the nascent neutron stars formed 

from the accretion induced collapse of rotating white dwarfs. 

New-born neutron stars resulting from the core collapse of massive stars with realistic rotation 

laws were studied by Monchmeyer, Janka and Muller (31, 24, 25], and Zwerger and Muller (58]. The 

study of Monchmeyer et al. shows that the resulting neutron stars have (3 < 0.14. Zwerger and 

Muller carried out simulations of 78 models using simplified analytical equations of state (EOS). 

They found only one model having (3 > 0.27 near core bounce. However, (3 remains larger than 0.27 

for only about one millisecond, because t he core re-expands after bounce and slows down. The pre-
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collapse core of that model is the most extreme one in their large sample: it is the most rapidly and 

most differentially rotating model, and it has the softest EOS. In addition, they found three models 

with 0.14 < /3 < 0.27. Rampp, Muller and Ruffert [41] subsequently p erformed 3-D simulations of 

three of these models. They found that the model with f3 > 0.27 shows a nonlinear growth of a non­

axisymmetric dynamical instability dominated by the bar mode (m = 2). However, no instability 

is observed for the other two models during their simulated time interval of tens of milliseconds, 

suggesting that they are dynamically stable. Their analysis does not rule out the possibility that 

these models have non-axisymmetric secular instabilities, because the secular timescale is expected 

to range from hundreds of milliseconds to few minutes, much longer than their simulation time. 

The aim of this chapter is to improve Zwerger and Muller's study by using realistic EOS for both 

the pre-collapse white dwarfs and the collapsed stars. For the pre-collapse white dwarfs, we use the 

EOS of a zero-temperature degenerate electron gas with electrostatic corrections. A hot, lepton rich 

protoneutron star is formed as a result of the collapse. This protoneutron star cools down to a cold 

neutron star in about 20 s (see, e.g., [6]), which is much longer than the dynamical timescale. So 

we adopt two EOS for the collapsed stars: one is suitable for protoneutron stars; the other is one of 

the standard cold neutron-star EOS. 

Instead of performing the complicated hydrodynamic simulations, however, we adopt a much 

simpler method. We assume (1) the collapsed stars are in rotational equilibrium with no meridional 

circulation, (2) any ejected material during the collapse carries a negligible amount of mass and an­

gular momentum, and (3) the neutron stars have the same specific angular momentum distributions 

as those of the pre-collapse white dwarfs. The justifications of these assumptions will be discussed 

in Section 2.3. Our strategy is as follows. First we build the equilibrium pre-collapse rotating white 

dwarf models and calculate their specific angular momentum distributions. Then we construct the 

resulting collapsed stars having the same masses, total angular momenta and specific angular mo­

mentum distributions as those of the pre-collapse white dwarfs. All computations in this chapter 

are purely Newtonian. In the real situation, if a dynamical instability occurs, the star will never 

achieve equilibrium. However, our study here can still give a useful clue to the instability issue. 

This Chapter is organized as follows. In the next section we present equilibrium models of pre­

collapse, rapidly and rigidly rotating white dwarfs. In Section 2.3, we construct the equilibrium 

models corresponding to the collapse of these white dwarfs. The stabilities of the collapsed objects 

are discussed in Section 2.4. Finally, we summarize our conclusions in Section 2.5. 
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2.2 Pre-collapse white dwarf models 

2.2.1 Collapse mechanism 

As mass is accreted onto a white dwarf, the matter in the white dwarf's interior is compressed to 

higher densities. Compression releases gravitational energy and some of the energy goes into heat 

[36]. If the accretion rate is high enough, the rate of heat generated by this compressional heating 

is greater than the cooling rate and the central temperature of the accreting white dwarf in creases 

with time. 

The inner core of a carbon-oxygen (C-O) white dwarf becomes unstable when the central density 

or temperature becomes sufficiently high to ignite explosive carbon burning. Carbon defl.agration 

releases nuclear energy and causes the pressure to increase. However, electron capture behind t he 

carbon defl.agration front reduces the temperature and pressure and triggers collapse. Such a white 

dwarf will either explode as a Type Ia supernova or collapse to a neutron star. Which path t he white 

dwarf takes depends on the competition between t he nuclear energy release and electron capture 

(37] . If the density at which carbon ignites is higher than a critical density of about 9 x 109 g cm-3 

(54], electron capture takes over and the white dwarf will collapse to a neutron star . However , if the 

ignition density is lower than the critical density, carbon defl.agration will lead to a total disrupt ion 

of the whole star , leaving no remnant at all. More recent calculations by Bravo and Garcia-Senz 

(4], taking into account t he Coulomb corrections to t he EOS, suggest that t his critical density is 

somewhat lower: 6 x 109 g em - 3 . The density at which carbon ignites dep ends on the central 

t emperature. The central temperature is determined by t he balance between t he compressional 

heating and the cooling and so strongly depends on t he accretion rate and accretion time. For 

zero-temperature C-0 white dwarfs, carbon ignites at a density of about 1010 g cm-3 [44, 39], which 

is higher th an t he above critical density. If the accreting white dwarf can somehow maintain a low 

central temperature during the whole accretion process , carbon will ignite at a density high er than 

the critical density, and the white dwarf will collapse to a neutron star. The fate of an accreting 

white dwarf as a function of the accretion ra te and the white dwarf's initia l mass is summarized 

in two diagrams in the paper of Nomoto [37] (see a lso (38]). Roughly speaking, low accretion rates 

(NI,:::; IQ- 8 M 0 yc1 ) and high initial mass of the white dwarf (M ~ 1.1 M0), or very high accretion 

rates (near the Eddington limit) lead to collapse rather than explosion. 

Under certain conditions, an accreting oxygen-neon-magnesium (0-Ne-Mg) white dwarf can also 

collapse to a neutron star [37, 38] . The collapse is t riggered by t he electron captures of 24 Mg 
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and 20 Ne at a density of 4 x 109 g em - 3 . Electron captures not only soften the EOS and induce 

collapse, but also generate heat by 1-ray emission. When the star is collapsed to a central density 

of 1010 g cm- 3 , oxygen ignites [38]. At such a high density, however, electron captures occur at a 

faster r ate than the oxygen burning and the white dwarf collapses a ll the way to a neutron star. 

In this section, we explore a range of possible pre-collapse white dwarf models. We assume 

that the white dwarfs are rigidly rotating. This is just ified by t he fact that the timescale for 

a magnetic field to suppress any differential rotation, TB , is short compared with t he accretion 

timescale. For example, TB ~ 103 years if the massive white dwarf has a magnetic field B ~ lOOG. 

We construct three white dwarf models using the EOS of a zero-temperature degenerate electron gas 

with Coulomb corrections derived by Salpeter [43]. All three white dwarfs are rigidly rotating at the 

maximum possible angular velocities . Model I represents a C-0 white dwarf with a central density 

of Pc = 1010 g em - 3
, the highest Pc a C-0 white dwarf can h ave before carbon ignition induces 

collapse. Model II is also a C-0 white dwarf but h as a lower central density, Pc = 6 x 109 g cm - 3 . 

This is the lowest central density for which a white dwarf can still collapse t o a neutron star after 

carbon ignition. Model III is an 0-Ne-Mg white dwarf with Pc = 4 x 109 g cm-3 , that is the density 

at which electron captures occur and induce t he collapse. Since t he densities are very high, the 

pressure is dominated by t he ideal degenerate Fermi gas with electron fraction Z /A = 1/2 that is 

suitable for both C-0 and 0-Ne-Mg white dwarfs. Coulomb corrections, which depend on the white 

dwarf composition t hrough t he atomic number Z, contribute only a few per cent to the EOS at high 

densit ies, so the three white dwarfs are basically described by the same EOS. 

2.2.2 Numerical method 

We treat t he equilibrium rotating white dwarfs as rigidly rotating, axisymmetric, and having no 

internal motion other than the motion due to rotation. The Lichtenstein theorem (see, e.g. , [52]) 

guarantees that a rigidly rotating star h as reflection symmetry about t he equatorial plane. We 

also neglect viscosity and assume Newtonian gravity. Under t hese assumptions the equilibrium 

configuration is described by the static Euler equation: 

VP 
v · V v = --- - V<P , 

p 
(2.1) 

where Pis pressure; pis density; <Pis the gravitational potential, which satisfies the Poisson equation 

\72 <P = 41rGp , (2.2) 
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where G is the gravitational constant. The fluid's velocity v is related to the rotational angular 

frequency D by v = Dwe,p , where w is the distance from the rotation axis and e,p is the unit vector 

along the azimuthal direction. The EOS we use is barotropic, i.e., P = P(p), so the Euler equation 

can be integrated to give 

where C is a constant. The enthalpy (per mass) h is given by 

h = rp dP , 
lo P 

and is defined only inside the star. The boundary of the star is the surface with h = 0. 

(2.3) 

(2.4) 

The equilibrium configuration is determined by Hachisu's self-consistent field method [15]: given 

an enthalpy distribution hi, we calculate the density distribution p; from the inverse of equation 

(2.4) and from the EOS. Next we calculate the gravitational potential <I>; everywhere by solving the 

Poisson equation (2.2). Then t he enthalpy is updated by 

(2.5) 

with Ci+1 and Dr+1 determined by two boundary conditions. In Hachisu's paper [15], the axis r atio , 

i.e ., the ratio of polar to equatorial radii , and the maximum density are fixed to determine Ci+1 and 

n;H. However , we find it more convenient in our case to fix the equatorial radius R e and central 

enthalpy he, so that 

h e + <I>; (0) 

2 
- R 2 [CiH - <I>;(A)] 

e 

(2.6) 

(2.7) 

where <I>;(O) and <I>; (A ) are the gravitational potential at the center and at the star's equatorial 

surface, respectively. The procedure is repeated until the enthalpy and density distribution converge 

to the desired degree of accuracy. 

'Ve used a spherical grid with L radial spokes and N evenly spaced grid points along each radial 

spoke. The spokes are located at angles 8; in such a way that cos 8; correspond to the zeros of the 

Legendre polynomial of order 2L -1: P2L-l (cos 8;) = 0. Because of the reflection symmetry, we only 

need t o consider spokes lying in the first quadrant . Poisson 's equation is solved using t he technique 

described by Ipser and Lindblom (23] . T he special choice of the angular positions of the radial 
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spokes and the finite difference scheme make our numerical solution equivalent to an expansion in 

Legendre polynomials through order l = 2L- 2 (23]. Although the white dwarfs we consider here 

are rapidly rotating, the equilibrium configurations are close to spherical, as demonstrated in the 

next subsection. So a relatively small number of radial spokes are adequate to describe the stellar 

models accurately. We compare the results of (L, N) = (10, 3000) with (L, N) = (20, 5000) and find 

agreement to an accuracy of 10-5
. The accuracy of the model can also be measured by the Virial 

theorem, which states that 2Trot + W + 3TI = 0 for any equilibrium star (see, e.g., (52]). Here Trot is 

the rotational kinetic energy; W is the gravitational potential energy and II= J P d3x. We define 

(2.8) 

All models constructed in this section have E ~ 10-7 . 

2.2.3 Results 

We constructed three models of rigidly rotating white dwarfs. All of them are maximally rotating: 

material at the star's equatorial surface rotates at the local orbital frequency. Models I and II are 

C-0 white dwarfs with central densities Pc = 1010 g cm-3 and Pc = 6 x 109 g cm- 3 , respectively; 

Model III is an 0-Ne-Mg white dwarf with Pc = 4 x 109 g cm- 3 . The properties of these white dwarfs 

are summarized in Table 2.1. We see that the angular momentum J decreases as the central density 

Pc increases, because the white dwarf becomes smaller and more centrally condensed. Although Trot 

increases with Pc, IWI increases at a faster rate so that f3 = Trot/IWI decreases with increasing Pc· 

We also notice that the mass does not change much with increasing Pc· The reason is that massive 

white dwarfs are centrally condensed so their masses a re determined primarily by the high density 

central core. Here the degenerate electron gas becomes highly relativistic and the Coulomb effects 

are negligible, so the composition difference is irrelevant. Hence the white dwarf behaves like an 

n = 3 polytrope, whose mass in the non-rotating case is independent of the central density. 

The masses of our three models are all greater than the Chandrasekhar limit for non-rotating 

white dwarfs. A non-rotating C-0 white dwarf with Pc = 1010 g cm- 3 has a radius R = 1300 km 

and a mass M = 1.40M0 . When this white dwarf is spun up to maximum rotation while keeping its 

mass fixed, the star puffs up to an oblate figure of equatorial radius Re = 4100 km and polar radius 

Rp = 2700 km, and its central density drops to Pc = 5.5 x 108 g cm- 3
. This peculiar behavior is 

caused by the soft EOS of relativistic degenerate electrons, which makes the star highly compressible 

and also highly expansible. When the angular velocity of the star is increased, the centrifugal force 
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Table 2.1: The central density Pc, mass M, angular momentum J, rotational frequency n, rotational 
kinetic energy Trot, the ratio of rotational kinetic to gravitational energies {J, equatorial radius Re 
and polar radius Rp of three rigidly and maximally rotating white dwarfs. 

Model I 
Model II 
Model III 

Pc M J D Trot /3 
g cm-3 M 0 g cm2 s- 1 rad s - 1 erg 

1010 1.47 3.12 X 1049 5.37 8.38 X 1049 

6 X 109 1.46 3.51 X 1049 4.32 7.57 X 1049 

4 X 109 1.45 3.80 X 1049 3.65 6.94 X 1049 
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Figure 2.1: Meridional density contours of the rotating white dwarf of Model I. The contours, from 
inward to outward, correspond to densities PI Pc =0.8, 0.6, 0.4, 0.2, 0 .1, 10-2 ) 10- 3 ) 10- 4 ) 10- 5 and 
zero. 

causes a large reduction in central density, resulting in a dramatic increase in the overall size of the 

star. 

Figures 2.1-2.3 display the density contours of our three models. The contours in the high density 

region remain more or less spherical even though our models represent the most rapidly rotating 

cases. The effect of rotation is only to flatten the density contours of the outer region in which the 

density is relatively low. This suggests that the white dwarfs are centrally condensed, and is clearly 

demonstrated in Figure 2.4, where the cylindrical mass fraction 

27f 1"' 1 1 ! OO 1 1 1 m w = 1\cf dw w dz p( w , z ) 
1 0 - oo 

(2.9) 

is plotted. In all of our three models, more than half of the mass is concentra ted inside the cylinder 

with w ~ 0.2Re. 
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Table 2.2: The outer layers of Model I white dwarf. Jw is the angular momentum of the material 
inside the cylinder of radius r:v . 

r:v IRe 1- mw 1 - JwiJ j(mw)lj(1) 
0.83 7.5 X 10 5 100 X 10 5 0.69 
0.86 3.5 X 10- 5 49 X 10-5 0.73 
0.90 0.65 X 10- 5 9.8 X 10- 5 0.81 
0.95 0.027 X 10- 5 0.45 X 10- 5 0.90 

Figure 2.5 shows the specific angular momentum j as a function of the cylindrical mass fraction 

m w, normalized so that J; j(mw) dmw = 1. The j(mw)-curves for the three models a re almost 

indistinguishable except in the region where ml:V ~ 1. The spike of the curve near mw = 1 can 

be understood from Figure 2.4, where we see that mw ~ 1 when r:viRe .2: 0.6. However, j = 

(MIJ)D.r:v2 ex: r:v2 • These two make the values of j in the interval 0.62 ~ j/j(mw = 1) :::; 1 squeeze 

to the region m ~ 1, and t he spike results. We shall point out in the next section that this spike 

causes a serious numerical problem in the construction of the equilibrium models of the collapsed 

objects. The problem can be solved by truncating the upper part of the j(mw) curve. The physical 

justification is that t he material in the outer region contributes only a very small fraction of t he 

total mass and angular momentum of the star, as illustrated in Table 2.2 for Modell. The situations 

for the other two models are very similar and so are not shown. We see that material in the region 

where wiRe > 0.9 (j(mw)/J(1) > 0.81] contributes less t han 10-5 of the total mass and 10- 4 of 

the total angular momentum. So the upper 19% of t he j(mw)-curve has little influence to the inner 

structure of the collapsed star. While t his region is important for the structure of the star's outer 

layers, that part of the star is not of our primary interest since the mass there is too small to develop 

any instability that can produce a substantial amount of gravitational radiation. 

2 .3 Collapsed objects 

In this section , we present the equilibrium new-born neutron-star models that may result from 

the collapse of the three white dwarfs computed in t he previous section . Instead of performing 

hydrodynamic simulations, we adopt a simpler approach. 

F irst, we assume the collapsed stars are axisymmetric and are in rotational equilibrium with no 

meridional circulation. Second, we assume the EOS is barotropic, P = P(p). T hese two assumptions 

imply that (1) t he angular velocity D. is a function of r:v only, i.e. fJD.IfJz = 0, and (2) the Solberg 

condition is satisfied, which states that dj I dr:v > 0 for stable barotropic stars in rotational equilibrium 
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(see, e.g., Tassoul1978). The angular velocity profile (8Dj8z = 0) is observed in the simulations of 

Monchmeyer, Janka and Muller (Mi:inchmeyer and Muller 1988; Janka and Monchmeyer 1989ab). 

Third, we are only interested in the structure of the neutron stars within a few minutes after core 

bounce. The timescale is much shorter than any of the viscous timescales, so viscosity does not have 

time to change the angular momentum of a fluid particle [9, 45, 28, 17, 14]. Finally, we assume no 

material is ejected during the collapse. It follows, from the conservation of j and the fact that j 

is a function of w only before and after collapse, that all particles initially located on a cylindrical 

surface of radius WI from the rotation axis will end up being on a new cylindrical surface of radius 

w 2 • And the Solberg condition ensures that all particles initially inside the cylinder of radius WI will 

collapse to the region inside the new cylinder of radius w 2 • Hence the specific angular momentum 

distribution j ( m,) of the new equilibrium configuration is the same as that of the pre-collapse white 

dwarf; here mro is the cylindrical mass fraction defined by equation (2.9). 

Based on these assumptions, we constructed equilibrium models of the collapsed objects with 

the same masses, total angular momenta and j(mro) as the pre-collapse white dwarfs. 

2.3.1 Equations of state 

The gravitational collapse of a massive white dwarf is halted when the central density reaches nuclear 

density where the EOS becomes stiff. The core bounces back, and within a few milliseconds, a hot 

(T ,;::: 20 Mev), lepton rich protoneutron star settles into hydrodynamic equilibrium. During the so­

called Kelvin-Helmholtz cooling phase, the temperature and lepton number decrease due to neutrino 

emission and the protoneutron star cools to a cold neutron star with temperature T < 1 Mev after 

several minutes. Since the cooling timescale is much longer than the hydrodynamical timescale, the 

protoneutron star can be regarded as in quasi-equilibrium. 

The EOS of a protoneutron star is expressed in the form P = P(p; s, Ye), where sand Ye are the 

entropy per baryon and lepton fraction, respectively. As pointed out by St robel, Scraab and Weigel 

[51], the structure of a protoneutron star can be approximated by a constant s and Ye throughout 

the star, resulting in an effectively barotropic EOS. 

We used two different EOS for densities above 10I0 g cm- 3 . The first is one of the standard EOS 

for cold neutron stars. We adopt the Bethe-Johnson EOS [2] for densities above 10I4 g em - 3
, and 

BBP EOS [1] for densities in the region 1011 g cm-3 - 10I4 g cm- 3
. It turns out that the densities 

of these collapsed stars are lower than 4 x 10I4 g cm-3 , and ideas about the EOSin this range have 
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not changed very much since 1970's. The second is the EOS LPNS~Lo4 of Strobel et aL [51]1. This 

corresponds to a protoneutron star 0 .5~1 s after core bounce. It has an entropy per baryons= 2kB 

and a lepton fraction Ye = 0.4, where kB is Boltzmann's constant. We join both EOS to that of the 

pre-collapse white dwarf for densities below 1010 g em ~3 . Hereafter, we shall call the first EOS the 

cold EOS, and the second one, the hot EOS. 

2.3.2 Numerical method 

We compute the equilibrium structure by Hachisu's self-consistent field method modified so that 

j(mw) can be specified (48]. The iteration scheme is based on the integrated static Euler equa­

tion (2.1) written in the form 

(2.10) 

where C is the integration constant, and M and J are the total mass and angular momentum of 

the star respectively. Given an enthalpy distribution h i everywhere, the density distribution Pi 

is calculated by the EOS and the inverse of equation (2.4). Next we compute the mass Mi and 

cylindrical mass fraction mw,i by 

(2.11) 

and solve the Poisson equation V 2 <I>; = 4-rrGp; to obtain the gravitational potential <I>i- We then 

update the enthalpy by equation (2.10): 

( 
J 

) 
2

1
w -2( ) 

i+I ,J m-w',i 
hi+! (w, z) = ci+l - <I>;(w, z) + --;;-;--1 dw 13 ' 

m i+I 0 1:V 
(2.12) 

with the parameters Ci+1 and CJi+I/ lvfi+I) 2 determined by specifying the central density Pc and 

equatorial radius Re. The procedure is repeated until the enth alpy and density distribution converge 

t o the desired degree of accuracy. 

To construct the equilibrium configuration with the same total mass and angular momentum as 

a pre-collapse white dwarf, we first compute a model of a non-rotating spherical neutron star, use 

its enthalpy distribution as an initial guess for the iteration scheme described above and build a 

!The tabulated E OS is obtained from http://www.physik.uni-muenchen.de/sektionfsuessmannfastrofeosf. 
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configuration with slightly different Pe or R e· Then the parameters Pe andRe are adjusted until we 

end up with a configuration having the correct total mass and angular momentum. 

Two numerical problems were encountered in this procedure. The first problem is that when 

the angular momentum J is increased , the star becomes flattened, and the iteration often oscillates 

among two or more states without converging. This problem can be solved by using a revised 

iteration scheme suggested by Pickett, Durisen and Davis (40], in which only a fraction of the revised 

enthalpy hi+1 , hi+l = (1- b)hi+1 + bhi, is used for the next iteration. Here <5 < 1 is a parameter 

controlling the change of enthalpy. We need to use <5 > 0.95 for very flattened configurations, and it 

takes 100- 200 iterations for the enthalpy and density distributions to converge. 

The second problem has to do with the spike of the j(mw)-curve near mw = 1 (see Figure 2.5) . 

The slope is so steep that it makes the iteration unstable. As discussed in Section 2.2.3, the material 

in the region very close to mw = 1 contains a very small amount of mass and angular momentum, so 

we can truncate the last part of the j(mw)-curve without introducing much error. Specifically, we 

set a parameter Je < j(mw = 1), compute a quantity me which satisfies j(me) = Je· Then we use the 

specific angular momentum distribution ](mw) = j(mw m e) instead of j(mw). Typically, we choose 

]e/J(1) = 0.81 so that 1 - me ~ 10-s (see Table 2.2). Hence the distributions ](mw) and j(mw) are 

basically the same except in the star's outermost region, which is unimportant to the inner structure 

the star, and presumably also unimportant for t he star's dynamical and secular stabilities. We also 

tried several different values of Je and found that the change of physical properties of the collapsed 

object s (e.g., t he quantit ies in Table 2.3) are within the error due to our finite-size grid. Thus the 

truncation is also justified numerically. 

We evaluate these stellar models on a cylindrical grid. This allows us to compute the integrals 

in equations (2.11) and (2.12) easily. We find it more convenient however, to solve the the Poisson 

equation for the gravitational potential on a spherical grid using t he method described by Ipser 

and Lindblom (23]. We have verified that the potential obtained in this way agrees wit h the result 

obtained with a cylindrical multi-grid solver to within 0.5%. However, the spherical grid solver 

(including the needed transformation from one grid to the other) is much faster than the cylindrical 

grid solver. The accuracy of our final equilibrium models can also be measured by the qua ntity E 

defined in equation (2.8). T he values of € for models computed in this section are few t imes 10- 4
. 
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Table 2.3: The central density Pc, radius of gyration R 9 , characteristic radius R. and ratio of 
rotational kinetic energy to gravitational energy (J of the collapsed objects with the cold and the hot 
EOS. 

Pc Rg R. (J 
g cm-3 km km 

Model I (cold EOS) 3.7 X 1014 63 670 0.230 
Model I (hot EOS) 1.4 X 1014 67 650 0.139 

Model II (cold EOS) 3.5 X 1014 78 800 0.246 
Model II (hot EOS) 0.79 X 1014 85 800 0.137 

Model III (cold EOS) 3.2 X 1014 94 940 0.261 
Model III (hot EOS) 0.27 X 1014 110 940 0.127 

2.3.3 Results 

Table 2.3 shows some properties of the collapsed objects resulting from the collapse of the three 

white dwarfs in Section 2.2. We define the radius of gyration, R 9 , and the characteristic radius, R., 

of the star by 

(2.13) 

(2.14) 

We see that R 9 and R. that result from the same initial white dwarfs are insensitive to the neutron­

star EOS, while there is a dramatic difference in the central density Pc and the ratio of rotational 

kinetic energy to gravitational potential energy (J. The collapsed stars with the hot EOS have 

smaller Pc and (J than those with the cold EOS. In fact , the central densities of these hot stars are 

less than nuclear density. It is well known that a non-rota ting star cannot have a central density 

in the subnuclear density regime (4 x lOll g cm-3 ~ p ~ 2 x 1014 g cm- 3 ) because the EOS is too 

soft to render the star stable against gravitational collapse. It has been suggested that if rotation 

is taken into account, a star with a central density in this regime can exist. Such stars are termed 

"fizzlers" in the literature (46, 55, 11, 33, 16, 22]. However, these so-called fizzlers in our case can 

exist for only about 20 s before evolving to rotating cold neutron stars. In order to build a st able 

cold model in the subnuclear density regime, the collapsed star has to rotate much faster, which is 

impossible unless the pre-collapse white dwarf is highly differentially rotating. 

We mention in Section 2.1 that Zwerger and Muller (58] p erformed 2-D hydrodynamic simulations 

of axisymmetric rotational core collapse. Their pre-collapse models are rotating stars with n = 3 

polytropic EOS, which is close to the real EOS of a massive white dwarf. All of their p re-collapse 
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Figure 2.6: Meridional density contours of the neutron stars resulting from the collapse of Model I 
white dwarf. The left graphs correspond to the cold EOS, and t he right graphs, the hot EOS. The 
contours in the upper graphs denote, from inward to outward, pj Pc = 10- 3 , 10-4 , 10- 5 , 10- 6 , and 
10-7

. The contours in the lower graphs denote, from inward to outward, pj Pc =0.8, 0.6, 0 .4, 0.2, 
0.1 , 10-2 , 10-3 and 10-4 . 

models have a central density of 1010 g cm-3 (see their Table 1) . The model A1B3 in their paper is 

the fastest (almost) rigidly rotat ing star, but its total angular momentum J and (3 are respectively 

22% and 40% less than those of our Model I of the pre-collapse white dwarf, though both have 

the same central density. This suggests that the structure of a massive white dwarf is sensitive 

to the EOS. Zwerger and Muller state in their paper that no equilibrium configuration exists that 

has (3 > 0.01 for the (almost) rigidly rotating case. This assertion is confirmed by our numerical 

code. Zwerger and Muller adopt a simplified analytical EOS for the collapsing core. At the end 

of their simulations, the models A1B3G 1-A1B3G5, corresponding to the collapsed models of A1B3, 

have values of (3 less than 0 .07, far smaller th an the (J's of our collapsed model I (see Table 2.3), 

indicating that the EOS of the collapsed objects a lso play an important role on t he final equilibrium 

configurations (or that their analysis viola tes one of our assumptions) . 

Figures 2.6-2.8 show the density contours of the collapsed objects. We see that the contours of 

the dense central region look like the contours of a typical rotating st ar. As we go out to the low 

density region, the shapes of t he contours become more and more disk-like. Eventually, t he contours 

turn into torus-like shapes for densities lower than 10-4 Pc· In all cases, the objects contain two 

regions: a dense cent ral core of size about 20 km and a low density torus-like envelope extending 



29 

Model II (cold EOS) ~ lodcl II (hot EOS) 

300 300 

z/km 0 z/km 0 

-300 - 300 
0 400 800 0 400 800 

w/km w/km 

50 50 

z/km 0 z/km 0 

-50 . 
0 50 100 150 50 100 150 

w/km w/km 

Figure 2.7: Same as Figure 2.6 but for Model II. 
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Figure 2.8: Same as F igure 2.6 but for Model III. 
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F igure 2.9: Rotational frequency f as a funct ion w for t he cold models (upper graph) and t he hot 
models (lower graph) . The inset in each graph shows f in linear scale in the central region. 

out t o 1000 km from the rotat ion axis. Since we truncate t he j(mw)-curve, we cannot determine 

accurately the actual boundary of t he stars. The contours shown in t hese figures have been ch ecked 

to move less t han one per cent as the cutoff jcfj( l ) is changed from 0.7 to 0.9. This little change is 

hardly visible at t he displayed scales. 

F igure 2.9 shows the rotational frequency f ::::::: Oj21r as a function of w, the distance from the 

rotation axis . We see that the cores of t he cold models are close to rigid rotation . The rotation 

periods of the cores of the cold neutron stars a re a ll about 1.4 ms, slight ly less than the period of 

the fastest observed millisecond pulsar (1.56 ms) . A further analysis reveals that f <X w-« in the 

region w,:;: 100 km, where a~ 1.5 for t he cold models and a ~ 1.4 for the hot models . 

To gain an insight into t he structure of the envelope, we define the Kepler frequency OK at a given 

point on the equator as the angular frequency required for a particle to be completely su pported by 

centrifugal force, i .e ., OJ< satisfies the equation OJ<w = g, where g is the magnitude of gravitational 
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acceleration at that point. Figure 2.10 plots fl/D.K as a function of w along the equator. For the 

cold models, the curves increase from 0.5 at the center to a maximum of about 0.95 at w ~ 35 km, 

then decrease to a local minimum of about 0.8, and then gradually increase in the outer region. The 

curves of the hot models, on the other hand, increase monotonically from about 0.4 at the center to 

over 0.7 in the outer region. In all cases, centrifugal force plays an important role in the structure 

of the stars, especially in the low density region. 

Figure 2.11 plots the cylindrical mass fraction m"" as a function of w . In all cases the cores 

contain most of the stars' mass. Material in the region w ~ 200 km occupies only a few per cent of 

the total mass, but it is massive enough that its self-gravity cannot be neglected in order to compute 

the structure of the envelope accurately. The envelope can be regarded as a massive, self-gravitating 

accretion torus. The same structure is also observed in the core collapse simulations of Janka and 

Monchmeyer [25] and Fryer and Heger (private communication with Fryer) . 
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Figure 2.12 shows fJro = Trot(w)/IW(cv)l as a function of cv, where Trot (cv) and W(cv) are the 

rotational kinetic energy and gravitational potentia l energy inside the cylinder of radius cv, i.e., 

Trot(w) 27r 1w dcv'cv'(Ocv') 2 100 

dz' p(cv' , z') (2.15) 

W(cv) 21r 1w dcv'cv' 100 

dz'p(w', z')<I>(cv', z'). (2.16) 

T he values of fJro approach (J when w ~ 40 km for the cold EOS models and when w ~ 100 km 

for the hot EOS models. This suggests that material in the region w ~ 100 km contains negligible 

amount of kinetic energy, and any instability developed in this region could not produce strong 

gravitational waves. 

2.4 Stability of the collapsed objects 

We first consider axisymmetric instabilities , i.e., axisymmetric collapse. This stability is verified 

when we construct the models. Recall that we start from the model of a non-rotating spherical star 

which is stable. Then we use it as an initia l guess to build a sequence of rotating stellar models with 

the same specific angular momentum distribution but different total masses and angular momenta. 

If t he final model we end up with is unstable against axisymmetric perturbations, there must be at 

least one model in the sequence such that 

(2.17) 

which signals the onset of instability (3]. Here M is the total mass and Pc is the central density. 

The partial derivative is evaluated by keeping the total angular momentum J and specific angular 

momentum distribution j ( mw) fixed. We have verified that all of our equilibrium models in the 

sequences satisfy q > 0. Hence they are all stable against axisymmetric perturbations. 

We next consider non-axisymmetric instabilit ies. We have fJ = 0.23 - 0.26 for the cold EOS 

models and (J = 0.13 - 0.14 for the hot EOS models (Table 2.3). The hot models are probably 

dynamically stable but may be secularly unstable. However, since they are evolving to cold neutron 

stars in about 20 s and t heir structures are continually changing on times comparable to the secular 

timescale , we shall not d iscuss secular instabilities of these hot models here. 

The values of (J for the three cold neutron stars are slightly less than the traditional critical 

value for dynamical instability, fJc~ ~ 0.27. This critical value is based on simulations of different ially 
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rotating polytropes having the j(mw)-distribution of Maclaurin spheroids. However, recent simu­

lations demonstrate that differentially rotating polytropes having other j(mro)-distributions can be 

dynamically unstable for values of (3 as low as 0.14 [40, 7] . The equilibrium configurations of some of 

those unstable stars also contain a low density accretion disk like structure in the stars' outer layers. 

This feature is very similar to the equilibrium structure of our models. Hence a more detailed study 

has to be carried out to determine whether the cold models are dynamically stable. 

The subsequent evolution of a bar-unstable object has been studied for the past 15 years [10, 

57, 19, 40, 49, 18, 35, 22, 5]. It is found that a bar-like structure develops in a dynamical timescale. 

However, it is still not certain whether the bar structure would be persistent, giving rise to a long­

lived gravitational wave signal, or material would be shed from the ends of the bar after tens of 

rotation periods, leaving an axisymmetric, dynamically bar-stable central star. 

Even if the cold neutron stars are dynamically stable, they are subject to various secular in­

stabilities. The timescale of the gravitational-wave-driven bar-mode instability can be estimated 

by [13] 

( 
R ) -5 ( n ) -6 ( (3 _ f3s) -5 

Tbar = 0·1 s 35 km 4000 rad s- 1 ~ · 
(2.18) 

In our case, R ~ 35 km (see Figure 2.12), n ~ 4000 rad s- 1 and (3 ~ 0.24, so Tbar ~ 0.1 s. 

Gravitational waves may also drive the r-mode instability [29]. The timescale is estimated by 

Tr = 7.3 S p 
( 

- ) 3 ( n ) -6 

1014 g cm-3 4000 rad s- 1 (2.19) 

for the l = 2 r-mode at low temperatures [30], where p is the average density. Inserting p for the 

inner 20 km cores of the cold stars, we have Tr ~ 10 s » Tbar· The evolution of the bar-mode secular 

instability has only been studied in detail for the Maclaurin spheroids. These objects evolve through 

a sequence of deformed non-axisymmetric configurations eventually to settle down as a more slowly 

rotating stable axisymmetric star [27, 26]. It is generally expected that stars having more realistic 

EOS will behave similarly. 

2.5 Conclusions 

We have constructed equilibrium models of differentially rotating neutron stars which model the 

end products of the accretion induced collapse of rapidly rotating white dwarfs. We considered 

three models for the pre-collapse white dwarfs . All of them are rigidly rotating at the maximum 



36 

possible angular velocities. The white dwarfs are described by the EOS of degenerate electrons at 

zero temperature with Coulomb corrections derived by Salpeter (43]. 

We assumed that (1) the collapsed objects are axisymmetric and are in rotational equilibrium 

with no meridional circulation, (2) the EOS is barotropic, (3) viscosity can be neglected, and (4) 

any ejected material carries negligible amounts of mass and angular momentum. We then built the 

equilibrium models of the collapsed stars based on the fact that their final configurations must have 

the same masses , total angular momenta and specific angular momentum distributions, j(mw), as 

the pre-collapse white dwarfs . 

Two EOS have been used for the collapsed objects. One of them is one of the standard cold 

neutron-star EOS. The other is a hot EOS suitable for protoneutron stars, which are characterized 

by their high temperature and high lepton fraction. 

The equilibrium structure of the collapsed objects in all of our models consists of a high density 

central core of size about 20 km, surrounded by a massive accretion torus extending over 1000 km 

from the rotation axis. More than 90% of the stellar mass is contained in the core and core-torus 

transition region, which is within about 100 km from the rotation axis (see Figure 2.11) . The central 

densities of the hot protoneutron stars are in the subnuclear density regime (4 x 1011 g cm-3 :S p :S 

2 x 1014 g cm- 3 ). The structures of these protoneutron stars are very different from those of the 

cold neutron stars, which the protoneutron stars will evolve to in roughly 20 s. The protoneutron 

stars have lower central densities, rotate less rapidly, and have smaller values of /3 . On the other 

hand, the structures of the three cold neutron stars are similar. Their central densities are around 

3.5 x 1014 g cm- 3 and their central cores are nearly rigidly rotating with periods of about 1.4 ms, 

slightly less than the fastest observed millisecond pulsar (1.56 ms). 

Zwerger and Miiller [58] performed 2-D simulations of the core collapse of massive stars. The 

major difference between their models and ours is that they used rather simplified EOS for both the 

pre-collapse and the collapsed models. When compared with their fastest rigidly rotating model, 

AIB3, we found their pre-collapse star has less total angular momentum and smaller j3 than the pre­

collapse white dwarf of our Model I, although both have the same central density. The differences 

between their final collapsed models (A1B3G1-A1B3G5) and ours are even more significant. The 

values of j3 of our collapsed objects are much larger than theirs, suggesting that the EOS plays 

an important role in the equilibrium configurations of both the pre-collapse white dwarfs and the 

resulting collapsed stars. 

The values of j3 of the cold neutron stars are only slightly less than the traditional critical value 
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of dynamical instability, 0.27, frequently quoted in the literature. The cold neutron stars may 

still be dynamically unstable and a detailed study is required to settle the issue. Even if they are 

dynamically stable, they are still subject to various kinds of secular instabilities. A rough estimate 

suggests that the gravitational-wave driven bar-mode instability dominates. The timescale of this 

instability is about 0.1 s . 
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Chapter 3 

Dynamical Instability of New-born 
Neutron Stars as Sources of 
Gravitational Radiation 

Accepted for publication by Physical Review D. 

Abst ract 

The dynamical instability of new-born neutron stars is studied by evolving the linearized hy­

drodynamical equations . The neutron stars considered in this chapter are those produced by the 

accretion induced collapse of rigidly rotating white dwarfs. A dynamical b ar-mode (m = 2) in­

stability is observed when the ratio of rotational kinetic energy to gravitational potentia l energy 

f3 of the neutron star is greater than the critical value f3d ~ 0.25. This bar-mode instability leads 

to the emission of gravitational radiation that could be detected by gravitational wave detectors . 

However, these sources are unlikely to be det ected by LIGO II interferometers if the event rate is 

less than 10- 6 per year per galaxy. Nevertheless, if a significant fraction of the pre-supernova cores 

are rapidly rotating, there would be a subst antial number of neutron stars produced by the core 

collapse undergoing bar-mode insta bility. This would greatly increase t he chance of detectin g the 

gravitational radiation. 

3.1 Introduction 

Neutron stars are believed to form from the core collapse of massive stars and the accretion induced 

collapse of massive white dwarfs. If t he stellar core or white dwarf is rotating, conservation of angular 

momentum implies that the resulting neutron star must rotate very rapidly. It has been suggested [1] 
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that such a rapidly rotating star may develop a non-axisymmetric dynamical instability, emitting 

a substantial amount of gravitational radiation which might be detectable by gravitational wave 

observatories, such as LIGO, VIRGO, GEO and TAMA. 

Rotational instabilities arise from non-axisymmetric perturbations having angular dependence 

eim<p, where <p is the azimuthal angle. The m = 2 mode is called the bar mode, which is usually the 

strongest mode for stars undergoing instabilities. There are two types of instabilities. A dynamical 

instability is driven by hydrodynamics and gravity, and it develops on a dynamical timescale, e.g., 

the timescale for a sound wave to travel across the star. A secular instability, on the other hand, 

is driven by viscosity or gravitational radiation reaction, and its growth time is determined by the 

relevant dissipative timescale. These secular timescales are usually much longer than the dynamical 

timescale of the system. 

In this chapter, we focus on the dynamical instabilities resulting from the new-born neutron 

stars formed from accretion induced collapse (AIC) of white dwarfs. These instabilities occur only 

for rapidly rotating stars. A useful parameter to characterize the rotation of a star is f3 = T/IWI , 

where T and W are the rotational kinetic energy and gravitational potential energy, respectively. 

It is well known that there is a critical value f3d so that a star will be dynamically unstable if its 

f3 > f3d · For a uniform density and rigidly rotating star, the Maclaurin spheroid, the critical value 

is determined to be !3d :::::; 0.27 [2]. Numerous numerical simulations using Newtonian gravity show 

that f3d remains roughly the same for differentially rotating polytropes having the same specific 

angular momentum distribution as the Maclaurin spheroids [3, 4, 5, 6 , 7, 8, 9, 10, 11]. However, 

f3d can take values between 0.14 and 0.27 for other angular momentum distributions [12, 9, 13] (the 

lower limit !3d = 0.14 is observed only for a star having a toroidal density distribution, i.e., the 

maximum density occurs off center [13]). Numerical simulations using full general relativity and 

post-Newtonian approximations suggest that relativistic corrections to Newtonian gravity cause f3d 

to decrease slightly [14, 15, 16]. 

Most of the stability analyses to date have been carried out by assuming that the star rotates 

with an ad hoc rotation law or using simplified equations of state. The results of these analyses 

might not be applicable to the new-born neutron stars resulting from AIC. Recently, Fryer , Holz 

and Hughes [17] carried out an AIC simulation using a realistic rotation law and a realistic equation 

of state. Their pre-collapse white dwarf has an angular momentum J = 1049 g cm2 s- 1 . After the 

collapse, the neutron star h as f3 less than 0.06, which is too small for the star to be dynamically 

unstable. However, they point out that if the pre-collapse white dwarf spins fast er, the resulting 
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neutron star could have high enough /3 to trigger a dynamical instability. They a lso point out that 

a pre-collapse white dwarf could easily be spun up to rapid rotation by accretion. The spin of an 

accreting white dwarf before collapse depends on its initial mass, its magnetic field strength , its 

accretion rate, etc. (18]. 

In Chapter 2, we construct equilibrium models of new-born neutron stars resulting from AIC 

based on conservation of specific angular momentum. We show that if the pre-collapse white dwarfs 

are rapidly rotating, the resulting neutron stars could have /3 as la rge as 0.26, which is slightly 

smaller than the critical value /3d for Maclaurin spheroids. However, the specific angular momentum 

distributions of those neutron stars are very different from that of Maclaurin spheroids. So there is 

no reason to believe that the traditional value !3d = 0.27 can be applied to those models. 

The purpose of this chapter is first to determine the critical value /3d for the new-born neu­

tron stars resulting from AIC, and then estimate the signal-to-noise ratio and detectability of the 

gravitational waves emitted as a result of the instability. We do not intend to provide an accurate 

number for the signal-to-noise ratio, which requires a detailed nonlinear evolution of the dynamical 

instability. Inst ead, we use Newtonian gravitation theory to compute the structure of new-born neu­

tron stars. Then we evolve the linearized Newtonian hydrodynamical equations to study the star 's 

stability and determine the critical value !3d· Relativistic effects are expected to give a correction of 

order ( v f c)2 , which is about 8% for the rapidly rotating neutron stars studied in this chapter. Here 

v is a typical sound speed inside the star and c is the speed of light. 

This chapter is organized as follows. In Sec. 3.2, we apply t he method described in Chapter 2 

to construct a number of equilibrium neutron star models with different values of /3 . In Sec. 3.3, we 

study the stability of these models by adding small density and velocity perturbations to the equi­

librium models . Then we evolve the perturbations by solving linearized hydrodynamical equations 

proposed by Toman et a!. (28]. From the simulations, we can find out whether the star is stable and 

determine the critical value f3d · In Sec. 3.4, we estimate the strength and signal-to-noise ratio of the 

gravitational waves emitted by this instability. In Sec. 3.5, we estimate the effects of a magnetic 

field on the stability results. Finally, we summarize and discuss our results in Sec. 3.6. 

3.2 Equilibrium models 

In this section, we describ e briefly how we construct new-born neutron star models from the pre­

collapse white dwarfs. A more detailed description is given in Chapt er 2. 
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3.2.1 Pre-collapse white dwarf models 

We consider two types of pre-collapse white dwarfs: those made of carbon-oxygen (C-O) and those 

made of oxygen-neon-magnesium (0-Ne-Mg). The collapse of a massive C-0 white dwarf is triggered 

by the explosive carbon burning near the center of the star [19, 20]. The central density of the pre­

collapse C-0 white dwarf must be in the range 6 x 109 g cm-3 :S Pc :S 1010 g cm-3 in order for the 

collapse to result in a neutron star, rather than exploding as a Type Ia supernova [21]. The collapse 

of a massive 0-Ne-Mg white dwarf, on the other hand, is triggered by electron captures by 24Mg 

and 20 Ne when the central density reaches 4 x 109 g cm-3 [19, 20] . 

We construct three sequences of pre-collapse white dwarfs, with models in each sequence h aving 

different amounts of rotation. Sequences I and II correspond to C-0 white dwarfs with central 

densities Pc = 1010 g cm-3 and Pc = 6 x 109 g cm- 3 respectively. Sequence III is for 0-Ne-Mg 

white dwarfs with Pc = 4 x 109 g cm-3 . All white dwarfs are assumed to rotate rigidly, because the 

t imescale for a magnetic field to suppress differential rotation is much shorter than the accretion 

timescale (see Sec. 3.6). 

The pre-collapse white dwarfs const ructed in this section are described by the equation of state 

(EOS) of a zero-temperature ideal degenerate electron gas with electrostatic corrections derived by 

Salpeter [22]. At high density, the pressure is dominated by the ideal degenerat e Fermi gas with 

electron fraction Z /A = 0.5 that is suitable for both C-0 and 0-Ne-Mg white dwarfs. Electrostatic 

corrections, which depend on the white dwarf composition through the atomic number Z, contribute 

only a few p ercent to the EOS for the high density whit e dwarfs considered here. 

Equilibrium models are computed by Hachisu 's self-consistent field method [23], which is an 

iteration scheme based on the integrat ed Euler equation for hydrostatic equilibrium: 

wz 2 
h+<I> - - n =C, 

2 
(3.1) 

where n is the rotational angular frequency of the star; C is a constant ; w is the radius from t he 

rotation axis; h is the specific enthalpy, which is related to the density p and pressure P by 

h = rp dP. 
lo P 

The gravitational potential <I> satisfies the Poisson equation 

(3.2) 

(3.3) 
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Table 3.1: Properties of pre-collapse white dwarfs. Here n is the rotational angular frequency; 
Dm is the maximum rotational angular frequency of the white dwarf in the sequence without mass 
shedding; Re, Rp, Jvf, J and /3 are, respectively, the equatorial radius, polar radius, mass, angular 
momentum and the ratio of rotational kinetic to gravitational potential energies. 

Sequence I: C-0 white dwarfs with Pc = 1010 g cm-3 

n;nm Re Re/Rp MjM0 J /3 
(km) (g cm2 s-1 ) 

0 .20 1310 1.01 1.40 5.14 X 1048 5.36 X 10 4 

0.65 1400 1.09 1.42 1.81 X 1049 6.08 x w- 3 

0.84 1500 1.19 1.44 2.43 X 1049 1.03 x w- 2 

0.93 1600 1.27 1.46 2.80 X 1049 1.30 x 10-2 

1.00 1895 1.52 1.47 3.12 X 1049 1.55 x w- 2 

Sequence II: C-0 white dwarfs with Pc = 6 x 1010 g em - 3 

n;nm Re R./Rp MfM0 J /3 
(km) (g cm2 s- 1 ) 

0.23 1517 1.01 1.39 3.31 X 1048 7.73 X 10 4 

0.64 1610 1.09 1.42 1.95 X 1049 6.11 x w-3 

0.84 1740 1.19 1.44 2.75 X 1049 1.12 x w- 2 

0.93 1847 1.28 1.45 3.13 X 1049 1.39 x w- 2 

1.00 2189 1.52 1.46 3.51 X 1049 1.66 x w-2 

Sequence III: 0-Ne-Mg white dwarfs with Pc = 4 x 1010 g cm-3 

n;nm Re R e/Rp MjM0 J /3 
(km) (g cm2 s-1 ) 

0.23 1692 1.01 1.38 7.01 X 1048 7.90 x w-4 

0.62 1791 1.09 1.40 2.05 X 1049 6.23 x 10- 3 

0.86 1956 1.20 1.42 3.03 X 1049 1.23 x w-2 

0.96 2156 1.34 1.44 3.59 X 1049 1.62 x w-2 

1.00 2441 1.52 1.45 3.80 X 1049 1.77 x 10-2 

where G is the gravitational constant. The self-consistent field method determines the structure 

of the star for fixed values of two adjustable parameters. In Ref. [23], the maximum density and 

axis ratio (the ratio of polar to equatorial radii) are the chosen parameters. However, it is more 

convenient to choose the central density Pc and equatorial radius Re as the two parameters for the 

models studied here. 

The accuracy of the equilibrium models can be measured by the quantity 

= 12T + w + 3II I 
€ w , (3.4) 

which should be equal to zero according to the Virial theorem (see e.g. [24]). Here Tis the rota tional 

kinetic energy; W is the gravitational potential energy and II= J Pd3 x . The values of E a re of order 

10-7 for all the pre-collapse white dwarf models calculated in this section. Table 3.1 shows some 
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10 

j 

5 

Figure 3.1: The normalized specific angular momentum j as a function of the cylindrical mass 
fraction m, for the white dwarf model in sequence III with D/D-m = 0.964. 

properties of several pre-collapse white dwarfs in the three sequences. Each sequence terminates 

when the rotational angular frequency n of the white dwarf reaches a critical value nm so that the 

mass shedding occurs on the equatorial surface of the star. The values of nm are 5.37 rad s-1 for 

Sequence I, 4.32 rad s-1 for Sequence II, and 3.65 rad s- 1 for Sequence III. 

Figure 3.1 shows the normalized specific angular momentum 

(3.5) 

as a function of the cylindrical mass fraction 

21r 1"" I I ! OO I I I m , = Jvf dr;v r;v dz p(r;v, z) 
0 - oo 

(3.6) 

for a typical pre-collapse model. Here Ivf and J are the total mass and angular momentum of 

the star, respectively. The specific angular momentum defined in Eq. (3.5) is normalized so that 

f
0

1 j(m,) dm, = 1. The curves for other models are similar. The spike near m, = 1 is due to the 

high degree of central condensation of the white dwarf density (see Section 2.2.3). 

3.2.2 Collapsed objects 

The gravitational collapse of a massive white dwarf is halted when the core density reaches nuclear 

density. The core bounces back and settles down into hydrodynamical equilibrium in a few millisec-
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onds. A hot (T .::': 20 MeV) and lepton-rich protoneutron star is formed. After about 20 s, neutrinos 

carry away most of the energy and the star cools down to a cold neutron star. The hot protoneutron 

stars are less compact and have f3 smaller than 0.14 (see Chapter 2) . They are thus expected to be 

dynamically stable. Hence in this chapter, we focus on the stability of the cold neutron stars shortly 

after the cooling. 

We assume that (1) the neutron stars are axisymmetric and are in rotational equilibrium with no 

meridional circulation; (2) viscosity can be neglected; (3) no material is ejected during the collapse. 

Under these assumptions, it is easy to prove that the specific angular momentum j of the collapsed 

star as a function of cylindrical mass fraction mw is the same as the pre-collapse white dwarf. Hence 

the structure of the new-born neutron stars can be constructed by computing models with the same 

masses, angular momenta and j(mw)-distributions as the pre-collapse white dwarfs. 

We adopt the Bethe-Johnson EOS (25] for densities above 1014 g cm-3 , and BBP EOS (26] for 

densities in the range lOll - 1014 g cm-3 . The EOS for densities below lOll g cm-3 is joined by 

that of the pre-collapse white dwarfs. 

We construct the equilibrium models by the numerical method proposed by Smith and Cen­

trella (27], which is a modified version of Hachisu's self-consistent field method so that j(mro ) can 

be specified. The iteration scheme is based on the integrated Euler equation (3.1) written in the 

form 

(3.7) 

where J and Mare the total angular momentum and mass of the star, respectively. As before, two 

parameters have to be fixed in the iteration procedure. We choose to fix the central density Pc and 

equatorial radius R • . Since the correct Pc andRe are not known beforehand, we have to vary these 

two quantities until the equilibrium model has the same J and M as the pre-collapse white dwarf. 

The standard iteration algorithm described in Refs. [23] and [27] fails to converge when the 

star becomes very flattened. This problem is fixed by a modified scheme proposed by Pickett, 

Durisen and Davis [9], in which only a fraction of the revised density (or enthalpy) Pi+l, i.e. p~+1 = 

(1- ()pi+1 +(pi, is used for the next iteration. Here ( < 1 is a parameter controlling the change of 

density. A value of ( > 0.95 has to be used for very flattened configurations, and it takes 100- 200 

iterations for the density and enthalpy distributions to converge. 

Chapter 2 mentions another numerical difficulty which has to do with the spike of the j(mro ) 

curve near m ro = 1. We have to truncate a small portion of the j(mro ) curve in order to make the 

iteration converge. We also demonstrate that this truncation does not affect the inner structure of 
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Figure 3.2: The values of f3 of the resulting neutron stars as a function of f'l/f'lm of the pre-collapse 
white dwarfs. 

the star. It turns out that, for reasons still to be understood, the numerical instability associated 

with the j(mw) curve only occurs for the most rapidly rotating models (i.e., those models where the 

pre-collapse white dwarfs have f'l/f'lm = 1) . Hence, the truncation is not necessary for all the other 

cases. 

As in the case of pre-collapse white dwarfs , we measure the accuracy of the equilibrium models 

by the quantity E defined in Eq. (3.4). The models computed in this subsection have E ranges from 

about 10-6 (for slowly rotating stars) to 10- 4 (for rapidly rotating stars). We construct a number of 

neutron star models resulting from the collapse of the three sequences of pre-collapse white dwarfs 

in the previous subsection. The ratio of rotational kinetic energy to gravitational potential energy, 

/3, of the neutron stars is plotted in Fig. 3.2 as a function of f'l/f'lm of the pre-collapse white dwarf. 

The values of f3 for all the neutron star models are smaller than 0.27, the critical value of f3 for the 

dynamical instability of rigidly rotating Maclaurin spheroids. 

The structure of the neutron stars with /3 2 0.1 are all similar: they contain a high-density central 

core of size about 20 km, surrounded by a low-density torus-like envelope. The size of the envelope 

depends on the amount of rotation of the star, which can be measured by /3 . The size ranges from 

100 km (for f3"" 0.1) to over 500 km (for f3 2 0.2) . Figure 3.3 shows the density contours of a typical 

model. This model corresponds to the collapse of an 0-Ne-Mg white dwarf with f'l/f'lm = 0.964. 

The resulting neutron star has /3 = 0.255. The envelope extends t o about 1530 km in this case. As 

a comparison, the equatorial radius of the pre-collapse white dwarf is 2156 km. 
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Figure 3.3: Meridional density contours of the neutron star resulting from the AIC of a rigidly 
rotating 0-Ne-Mg white dwarf with D/Dm = 0.964. This neutron star has f3 = 0.255. The contours 
in the upper graph denote, from inward to outward, pj Pc = 10-4, 10- 5 , 10- 6 , 10- 7 , 10- 8 , 10-9 and 
0. The contours in the lower graph denote, from inward to outward, pj Pc = 0.8, 0.6, 0.4, 0.2, 0.1, 
10- 2 , 10-3 and 10- 4 . The central density of the star is Pc = 3.3 x 1014 g cm-3 . 

6000 

5000 

4000 
...-.. 
I 
en 
"0 3000 
(I) 

.t:.. 
Cl 2000 

1000 

0 
0 10 20 30 40 50 60 

m (km) 

Figure 3.4: The distribution of rotational angular velocity n as a function of r;:; for r;:; < 60 km. 
These are models for sequence III with f3's of the resulting neutron stars equal to (a) 0.0106, (b) 
0.0555, (c) 0.0860, (d) 0.124, (e) 0.169, (f) 0.208, (g) 0.238 and (h) 0.261. The equatorial radii of 
the neutron stars in cases (a) and (b) a re smaller than 60 km, and their frequency curves t erminate 
at their equatorial radii. 
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Figure 3.5: The cylindrical mass fraction m , as a function of w for neutron star models in Fig. 3.4. 
The curves and their corresponding models are identified by the degree of central condensation: the 
higher the degree of central condensation, the lower the value of (3 . 
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Figure 3.6: The value of (3, as a function of w for the neutron st ar models in Fig. 3.4. The curves 
for models (a)- (g) terminate at the equatorial radii of the stars. 
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Figure 3.4 shows the rotational angular velocity D as a function of radius w for neutron star 

models corresponding to the collapse of sequence III white dwarfs . The cases for sequences I and II 

are similar. We see that stars with small (3 show strong differential rotation. However, t he rotation 

in the core region (w ~ 20 km) becomes more and more rigidly rotating as (3 increases. The most 

rapidly rotating case ((3 = 0.261) has D ~ 4400 rad s-1 in the core. This corresponds to a rotation 

period of 1.4 ms, slightly less than the period of the fastest observed millisecond pulsar (1.56 ms). 

Further analysis reveals that the rotation curve in the envelope region roughly follows the Kepler 

law n <X w-3 / 2 . 

Figure 3.5 shows the cylindrical mass fraction mro as a function of w for the same models as in 

Fig. 3.4. As expected, the degree of central concentration decreases with increasing (3. However, 

more than 80% of the mass is still concentrated inside a radius w = 30 km, even for the most rapidly 

rotating case. The collapsed object can be regarded as a rotating neutron star surrounded by an 

accretion torus. 

Numerous numerical studies demonstrate that the quantity (3 is an important parameter for the 

dynamical stability of a rotating star. It is then useful to define a function f3r:o as 

(3 _ foro dw' w' f~oo dz' [w'D(w')F p( w', z') 

ro - I J0"' dw' w' f~oo dz' p(w', z')il>(w', z ')i ' 
(3.8) 

which is a measure of (3 for the material inside a cylinder of radius w from the rotation axis. 

Figure 3.6 plots f3r:o as a function of w for the same neutron star models as in Fig. 3.4. We see 

that the curves level off when w ~ 20- 100 km for all rapidly rotating models , suggesting that the 

material outside 100 km is probably unimportant for dynamical stability. It should also be noticed 

that the major contribution to (3 is from the region 10 km :S w ~ 50 km. Hence we expect that the 

material in this region plays an important role on the dynamical stability of the star. 

3.3 Stability of the collapsed objects 

In this section, we study the dynamical stabilities of the neutron star models computed in Sec. 3.2.2 

using the technique of the linear stability analysis developed by Toman et al. [28] . This technique 

is briefly reviewed in Sec. 3.3.1. We then report the stability results in Sec. 3.3.2. 
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3.3.1 Linear stability analysis 

The motion of fluid inside t he star is described by the hydrodynamical equations: 

(3.9) 

(3.10) 

(3.11) 

where the summation convention is assumed, and \l a denotes the covariant derivative compatible 

with 3-D flat-space met ric. To study the stability, we pert urb t he density p and velocity va away 

from t heir equilibrium values by small quantities: 

p(xb , t) (3.12) 

(3.13) 

where e~ is t he unit vector along the azimut hal direction. The Lagrangian pressure perturbation 

D..P is related to the Lagrangian density perturbation D..p by 

p 
D..P = 'Yp- D..p , 

p 
(3.14) 

where for simplicity, the subscript "0" is suppressed, and hereafter in this section, p and P denote 

the equilibrium density and pressure, respectively. T he quantity 

(
dlog P) 

/p = d log p P 
(3.15) 

is the adiabatic index for pulsation. The relation between the Eulerian perturbations oP and op 
can be easily deduced from t he transformation between the Lagrangian and Eulerian perturbations. 

T he result is 

(3.16) 

where 

(
dlog P) 

/ eq = d log p e q 
(3 .17) 
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is the adiabatic index computed from the equilibrium EOS. The Lagrangian displacement ~a satisfies 

the equation 

(3.18) 

The Eulerian change of the gravitational potential 8<1> satisfies the Poisson equation 

(3.19) 

We find it useful to introduce a quantity 8h = 8P / p, which is related to 8p by 

(3.20) 

In the region where 'Yp = 'Yeq, 8h is the Eulerian change of the enthalpy. 

If the system is unstable, the perturbed quantities will grow in time. Instead of solving the 

fully nonlinear equations (3.9)-(3.11) , however, Toman et al. (28] develop a more efficient approach: 

expand Eqs. (3.9)-(3.11) to linear order of the perturbations and evolve the linearized equations. 

Consider the angular Fourier decomposition of any perturbed quantity 8q: 

00 

8q(xb ,t) = L 8iim(w,z,t)eimcp . (3.21) 
m==-oo 

It can be easily proved that each m -mode decouples in the linearized hydrodynamical equations be-

cause of the axisymmetry of the equilibrium configuration. In addition , the fact that the equilibrium 

configuration is symmetric under reflection about the equatorial plane (z --* -z) implies the modes 

with even and odd parity under the transformation z --* - z also decouple. Hence each m-mode with 

a definite parity can be evolved separa t ely and the 3+ 1 simulation is reduced to a 2+ 1 simulation, 

which saves a lot of computation time. Hereafter, a ll perturbed quantities will be assumed to have 

angular dependence eimcp. 

In Ref. [28], Toman et a l. choose to evolve the variables 8 p and 8va. However, we find it more 

convenient and numerically stable in our case to evolve the variables 8h and 8pa = p8va. The reason 

b eing that the simulations are performed on a discret e grid, and it is preferable to use variables that 

change smoothly to ensure accuracy. However , the background density p decreases abruptly outside 

the core region, and the perturbation 8p is expected to behave similarly. On the other hand, h, and 

presumably 8h, change much more smoothly even near the boundary of the star . In the case where 

'Yp =/; 'Yeq, we also need to evolve the scalar function 'fJ = r;_b\hh. In terms of the new variables, the 
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linearized equations become 

(3.22) 

(3.23) 

(3.24) 

(3.25) 

It follows from Eqs. (3.22)-(3.25) that if (oh, opa) is a solution for an m-mode, the complex conjugate 

(oh*, opa*) is a solution for the -m-mode. We can then define the physical "enthalpy" perturbation 

oii = oh+oh*, and similarly for the physical density op and velocity ova perturbations of an m-mode. 

We use a uniform cylindrical grid to perform the simulations. We have checked that the code is 

able to reproduce the results in Ref. [28]. However, unlike the case in Ref. [28] , the collapsed objects 

studied here have a large envelope extending beyond 1000 km when the stars under consideration 

are rapidly rotating. This numerical difficulty can be circumvented by a suitable truncation scheme. 

As pointed out in Sec. 3.2.2, we expect the outer envelope will not influence the dynamical 

stability in any significant way. Hence it is necessary to evolve the perturbations only in the dy­

namically interesting region. This is done by introducing a radius Rm and a minimum density 

Pmin = p(Rm , 0). The perturbations are set to zero wherever the equilibrium density p(r:.v, z) < Pmin· 

If Rm is sufficiently large, increasing its value will not change the evolution result. We find that a 

value of Rm ~ 200 km is needed to ensure that the results converge, and we use a cylindrical grid 

with 400 x 400 grid points to achieve a resolution of 0.5 km. 

In general, the two adiabatic indices "/p and "/eq a re not equal. They coincide only if the pulsation 

timescale is much longer than all the reaction timescales for the different species of particles in the 

fluid to achieve equilibrium. This is the case for densities below neutron drip (p ;S 4 x 1011 g cm-3 ) 

and above about 1013 g cm - 3 . However, in the density range 4 x 1011 g cm-3 ;S p ;S 1013 g cm- 3 , 

the matter is a mixture of electrons, neutrons and nuclei in equilibrium. Some of the reactions 

required to achieve equilibrium involve weak interactions, which have t imescales much longer than 

the pulsation timescale. Hence equilibrium is not achieved during pulsation, and "/p f= "/eq in that 

density range [29, 30]. Most people studying neutron star pulsations neglect the difference of "/p and 

"/eq and use "/eq in their calculations. It has been demonstrated (see, e.g. [32]) that this treatment has 
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Figure 3.7: The values of 'Yeq (solid line) and '/'p (dashed line) as a function of log10 p. The two 
curves coincide when p < Pd and p > Pe. 

no significant effect on the final result, because the matter in that density range occupies only a tiny 

fraction of neutron star. However, it may have an important effect on the stability of the new-born 

neutron stars studied here. The reason is that the dynamically important region, as pointed out 

in Sec. 3.2.2, is 10 km ;S w ;S 50 km. This region contains a significant amount of matter in that 

density range (see Fig. 3.3). Our numerical simulations indicate that this is indeed the case. The 

critical value fJd for the dynamical instability drops from about 0.25 to 0.23 if 'Yeq is used for the 

adiabatic index of pulsation. 

The appropriate '/'p remains roughly constant from the density of neut ron drip Pd = 4 x 

lOll g cm-3 to the density above which '/'eq = ')'p around Pe = 1013 g cm-3 [29, 30]. To pro­

vide a reasonable value of '/'p which mimics the curve in Refs . [29, 30] and which is compatible with 

the EOS used here, we take '/'p in the density range Pd < p < Pe to be (also see Fig. 3.7) 

(3.26) 

Under some circumstances it is possible to have a region of the star where the mode is stationary 

in the fluid's co-rotating frame. In this case, we should use 'Yeq for the adiabatic index of pulsation 

in the region where lw'l = lw +mill « 27r/tr. Here w is the angular frequency of an m-mode that 

has dependence exp[i(wt + m<p)] in the inertial frame; w' = w +mil is the angular frequency of the 

mode in the fluid's co-rotating frame; and tr ~ 1 s is the timescale for different species of particles 
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to achieve /3-equilibrium in the density range Pd < p < Pe· It turns out (see the next subsection) 

that rapidly rotating neutron stars have an unstable bar mode (m = 2) with w ~ -3000 rad s-1 . 

There is indeed a radius at which w' = 0. This radius is at r;:; = r;:;c ~ 40 km for stars with (3 > 0.23. 

The density on the equator of t he stars is p ~ 101 2 g cm-3 , well within t he questionable density 

range. However, the width of this "co-rotating region," which satisfies lw'l < 27r/tr, is 

The material in the region cont ains only 10- 4 of total mass and angular moment um of the star. Hence 

this thin co-rotating layer is not expected to have a significant influence on the overall stability of 

the stars. 

3.3.2 Results 

We perform a number of simulations on neutron star models computed by the method described in 

Sec. 3.2.2. The simulations are terminated either when an instability is fully developed or when the 

simulation time reaches 60 ms, corresponding to 40 rotation periods of the material at t he center 

of the star. We regard a star as dynamically unstable if the density perturbation shows evidence 

of exponential growth and increases its amplitude by at least a factor of fifteen by t he end of the 

simulation. In our simulations, no inst ability is observed for neutron star models in sequences I and 

II. A bar-mode (m = 2) instability develops for sequence III models when the star's (3 is greater than 

a critical value f3d ~ 0.25. The unstable mode h as even parity under reflection about the equatorial 

plane. This f3d is slight ly less t han the critical value 0.27 for the Maclaurin spheroids. It should be 

pointed out that all the stars in sequences I and II have (3's smaller than this f3d - Hence we believe 

that t hey are stable simply because their (3's are not high enough. 

Some other simulations (9, 13] show that in the cases where f3d < 0.27, the instability is dominated 

by them = 1 mode for stars with (3 close to f3d · However, we do not observe any sign of an unstable 

m = 1 mode in our case. We also performed simulations using 'Yeq (the solid curve in Fig. 3.7) as 

the adiabatic index for pulsation instead of 'Yv (the dashed curve in F ig. 3.7). We find that f3d drops 

to about 0.23, showing that matter in t he density region Pd < p < Pe plays an important role on the 

instability. 
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Figure 3.8: The relative amplitude ar as a function of time. The equilibrium star has {3 = 0.261, 
the most rapidly rotating model. 

To visualize the instability, we define an amplitude 

(3.27) 

for the density perturbation. Since we evolve the perturbations using linearized equations, it is more 

convenient to work with the relative amplitude ar: 

ar(t) = a(t)/a(O) . (3.28) 

This relative amplitude is defined so that it is equal to one at t = 0. Figure 3.8 shows the time 

evolution of ar for the most rapidly rotating star ({3 = 0.261). We see that after about 10 ms, an 

instability develops and ar grows exponentially. The e-folding time of the growth T is found, by 

least squares fit, to be 7.8 ms. 

The unstable mode can also be characterized by a complex angular frequency defined as 

where 

b22 
wzz = -:---D , 

t 22 
(3.29) 

(3.30) 
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Figure 3.9: The time evolution of the angular frequency w22 for the most rapidly rotating star 
((3 = 0.261). 

is the mass quadrupole moment, and the spherical harmonic function 

y; _ 1 fl5 . 2 B 2i10 
22- "4V ~ sm e . 

The time derivative of D 22 is evaluated by the formula [31] 

(3.31) 

where we have used the continuity equation (3.9) and integrated by parts . 

Let w be the complex frequency of the most unstable mode. The e-folding time is related to 

the imaginary part of w by Im(w) = - 1/r. At late time, the density perturbation is dominated by 

the most unstable mode, which means that both op and D 22 go approximately as exp(iwt). Hence 

w22 ~ w. Figure 3.9 plots w22 as a function of time for the evolution of the most rapidly rotating star. 

We see that at late t ime, w22 is approximat ely a const ant , indicating that the perturbation is indeed 

dominated by the most unst able mode. The frequency of the unstable mode is then determined 

to be w ~ ( - 2890 - 130i) rad s- 1 . Note that the imaginary part agrees with the e-folding time 

determined above. 

Figure 3 .10 shows the magnitude of t he density perturbation lopl of the unstable bar mode of 

the most rapidly rotating star ((3 = 0.261) on the equatorial plane. We see that lopl has a peak at 

r;:; ~ 20 km, which is in the transit ion region between the neutron star core and the tenuous outer 
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Figure 3.10: The magnitude of the density perturbation lopl of the unstable bar mode of the most 
rapidly rotating star ({3 = 0.261) on the equatorial plane. The magnitude is normalized so that the 
maximum value is one. 

layers (see Fig. 3.3). There is a small, secondary peak at r:v = 44 km, which is the co-rotation radius 

at which Re(w) + 2!1 = 0 for this neutron star. This secondary peak is caused by the resonant 

response of the fluid being driven by the mode co-rotating with it (see Section 3.7). 

Figures 3.11 and 3.12 show the eigenfunctions of the physical perturbations op and ova on t he 

equatorial plane. Note that our grid extends out to 200 km from the center, but the dynamically 

interesting region is concentrated within 60 km from the center. Since the time dependence of the 

perturbations goes as exp[i(wt + mcp)], Re(w) < 0 means the pattern rotates in prograde (counter­

clockwise) direction. The density perturbation is bar-like in the inner region and becomes trailing 

spirals in the outer region. Similar structure is also observed in other numerical simulations on the 

bar-mode instability [9, 28, 8, 10, 11, 7, 33] . The secondary peak of op appears as two small arcs 

in Fig. 3.11 just inside the 0.1 contours. Figure 3.12 shows that ova is almost parallel to the cp 

direction at the co-rotation radius, which is also a result of resonance (see Section 3.7). Since ova 

changes abruptly near the co-rotation radius, it is very possible that shocks will develop there when 

the perturbations become large. This might have significant influence on the nonlinear evolution of 

the bar mode. 

The eigenfunctions of the most unstable bar mode for the other unstable equilibrium neutron 

stars are similar to t hose displayed above. Table 3.2 summarizes the oscillation frequencies [! = 

1Re(w)l/(27r)] and e-folding time T of the unstable models we have studied. The table also shows 

the ratio of the rotational frequency of the pre-collapse white dwarfs to the maximum frequency Om 

of the white dwarf in the sequence. We find that the oscillation frequencies are almost the same 
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Figure 3.11: The eigenfunction of the physical density perturbation ofj on the equatorial plane for the 
bar mode of the most rapidly rotating star (/3 = 0.261). The density perturbations are normalized 
so that the maximum value is one. Only positive density regions of the eigenfunction are shown. 
The negative structure of the eigenfunction can be inferred from the sinusoidal structure of the 
eigenfunction. The contour levels are, from inward to outward, 0.8, 0.6, 0.4, 0 .2, 0.1 and 0.01. The 
small arcs inside the 0.1 contours are additional contours of 0.2, corresponding to the secondary 
peal<: in Fig. 3 .10. 

Table 3.2: The oscillation frequency f and e-folding timeT of the most unstable bar mode for several 
unstable n eutron stars. Here 0 is the rotational frequency of the pre--collapse white dwarf, and Om 
is the maximum frequency of the white dwarf in Sequence III. 

(0/0m)wD /3 Re(-w) f T 

rad s-1 Hz ms 
0.934 0.251 2800 445 20 
0.964 0.255 2850 450 12 
0 .989 0.258 2850 450 8.9 
1.000 0.261 2890 460 7.8 
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Figure 3.12: The eigenfunction of t he physical velocity perturbation ova on the equatoria l plane for 
the bar mode of the most rapidly rotating star ((3 = 0.261). 

(~ 450 Hz) for all the cases. We do not observe any instability in our simulations for stars with 

(3 ~ 0.241. Hence we conclude that !3d is somewhere between 0.241 and 0.251 , and the pre-collapse 

white dwarf has to have D ~ 0.93Dm in order for the collapsed star to develop a dynamical instability. 

3.4 Gravitational radiation 

In this section, we estimate the strength of the gravitational radiation emitted by neutron stars 

undergoing a dynamical instability. We also estimate the signal-to-noise ratio and discuss the de­

tectability of these sources. 

The rms amplitude of a gravitational wave strain, h(t) , depends on the orientation of the source 

and its location on the detector's sky. When averaged over these angles , its value is given by (35) 

(3.32) 

where h+(t) and hx (t) are the rms amplitudes of the plus and cross polarizations of the wave 

respectively, and ( ... ) denotes an average over the orientation of the source and its location on the 

detector's sky. 
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In the presence of perturbations, the density and velocity of fluid inside the star become 

00 

p(x , t) Po (w, z) + l: Opm(X, t) (3.33) 
m=-oo 

00 

v(x , t) wD(w)ec,a + l: OVm(X, t) , (3.34) 
m=- oo 

where the perturbation functions OPm and OVm have angular dependence eim<p. The amplitude of the 

gravitational waves produced by time varying mass and current multipole moments can be derived 

from Ref. [36]. T he result is 

oo I G2 
2 _ 1 '""' '""' 4 [I uJ 12 I (IJ 2] h - D2 L..- L..- 5c21+4 Nt Dim + slm I ' 

1=2 m=-l 
(3.35) 

where D is the distance between the source and detector; c is the speed of light, and 

N 1 = 
47r(l + 1) (l + 2) 

(3.36) 
l(l- 1)[(2l + 1)!!)2 

D(l) dl 
(3.37) lm dt1Dim; 

s<lJ dl 
(3.38) lm dtiSlm . 

For a Newtonian source, the mass moments Dtm and current moments Stm are given by 

(3.39) 

(3.40) 

where ¥;! = x x VYim/ .,}l(l + 1) are t he magnetic type vector spherical harmonics. The functions 

D1m and Stm have the property t hat Dim = (-1)mDI-m and Stm = (-1)mSI -m· Hence it is 

sufficient to consider only positive values of m and Eq. (3.35) becomes 

oo t G2 
h2 = _!__ '""' '""' -8

-N [ID(l) 12 + IS(l) 12 ] D 2 L..- L..- 5c21+4 I lm lm 
1=2 m = O 

(3.41) 

T he energy and angular momentum carried by the gravitational waves can also be derived 
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00 l 

" " __£_ 2N [ID{l+l) 12 + IS(I+l ) 12] . 6 6 c21+1 l lm lm ' 
1=2 m=O 
00 l 

" " __£_ 2 · N [nUl• nC!+l) + s<LJ• s<~+ll ) 6 6 c21+1 tm l lm lm lm lm 
1=2 m=O 

where the overline denotes time average over several periods. 

(3.42) 

(3.43) 

When a neutron star develops a dynamical instability and the bar mode (m = 2) is the only 

unstable mode, the values of h, E and j will be dominated by the term involving D 22 . Since the 

unstable bar mode has even parity under reflection about the equatorial plane, D 32 = S22 = 0 and 

the next leading term will involve S32 and D 42 . These terms are expected to be smaller than the D 22 

term by a factor of (v/c)4 forE and j, and a factor of (v/c)2 for h. In our models, vjc < 0.28, so the 

contribution of higher order mass and current multipole moments are small and will be neglected. 

Strictly speaking, the above analysis only applies when the amplitudes of the perturbations are 

small. When the amplitudes are large, however, the fluid motion does not separate neatly into 

decoupled Fourier components, so all Dtm and S1m will contribute. However , it is expected that 

the D 22 term will still be the most important term. Since the detailed nonlinear evolution of the 

dynamical instability is not known, the aim of this section is to provide an order of magnitude 

estimate of the gravitational radiation from these sources. Hence we shall only consider the effect of 

the mass quadrupole moment and assume D 22 can be approximated by the bar-mode eigenfunctions 

computed in Sec. 3.3.2. In this approximation, Eqs. (3.41)- (3.43) become 

h 32?r
2

G 2 ~ 
5c4D f ID221 15 ; (3.44) 

E 10247r7G f61D 12 . 
75c5 22 ' (3.45) 

j 10247r6G ! 5ID 12 
75c5 22 ' (3.46) 

where f = IRe(w)l/(27r) is the oscillation frequency of the bar mode. 

Substituting the bar-mode eigenfunctions (from Sec. 3.3.2) into Eq. (3.39), we find that 

(3.47) 

for all the unstable models we have studied. Here a is the amplitude of the bar mode defined in 

Eq. (3.27). The mass quadrupole moment D 22 has a time dependence exp(iwt), where w is the 
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angular frequency of the mode. Hence the time derivative D~~ = ( iw )1 D 22 and we obtain 

h ~ a 7 X 10-23 (20 ~pC) (3.48) 

E ~ a 2 9 x 1052 erg s-1 ; (3.49) 

j ~ a 2 6 x 1049 g cm2 s-2 (3.50) 

The signal-to-noise ratio of these sources depends on the detailed evolution of the bar mode when 

the density perturbation reaches a large amplitude and nonlinear effects take over. Recently, New, 

Centrella and Tohline [11] a nd Brown (34] performed long-duration simulations of the bar-mode 

instability. They found that the mode saturates when the density perturbation is comparable to 

the equilibrium density, and the mode pattern persists, giving a long-lived gravitational wave signal. 

Here we assume that this is the case, and that the mode dies out only after a substantial amount 

of angular momentum is removed from the system by gravitational radiation. We then follow the 

method described in Refs. (37, 38] to estimate the signal-to-noise ratio. 

In the stationary phrase approximation, the gravitational wave in the frequency domain h(f) is 

related to h(t) by 

(3.51) 

Combining Eqs. (3.44), (3.46) and (3.51), we obtain 

- 2 G j 
lh(f) I = c3 57r f li iD 2 

(3.52) 

The signal-to-noise ratio is given by 

(§_) 2 
_ (

00 lliUW 
N - 2 

} o S h (!) df ' (3.53) 

where Sh (!) is t he spectral density of the detector's noise. If we assume t hat the oscillation frequency 

remains constant in the entire evolution, we obtain (39] 

s 
N 

1 

D 

2G 6..J 
(3.54) 

where 6..J is the total amount of angular momentum emitted by gravitational waves. To estimate 

6..J, we assume that the mode dies out when the angular momentum of the star decreases to 

Jd ~ 3.3 x 104 9 g cm2 s- 1 , which is the angular momentum of the marginally bar-unstable star. 
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Then we have !:l.J _::: 5 x 104 8 g cm2 s-1 for all the unstable stars, and the signal-to-noise ratio for 

LIGO-II broad-band interferometers [40] is 

s 
N 

15 (20 Mpc) ( !:l.J ) 1/2 

D 5 x 1048 cgs x 

( 
f ) -1/2 ( vs;:m ) - 1 

450 Hz 2 x lQ-24 Hz-112 

The timescale of the gravitational wave emission can be estimated by the equation 

TGW 
t::.J 
j 

7 s (;~) -
2 (5 x 1~~8 cgs ) 

(3.55) 

(3.56) 

where a. is the amplitude a of the density perturbation at which the mode saturates. We have used 

Eqs. (3.46) and (3.47) to calculate the numerical value in the last equation. 

The detectability of this type of sources also depends on the event rate. The event rate for the 

AIC in a galaxy is estimated to be between w-s and w-s per year [41, 42] . Of all the AIC events, 

only those corresponding to the collapse of rapidly rotating 0-Ne-Mg white dwarfs can end up in the 

bar-mode instability, and the fraction of which is unknown. If a signal-to-noise ratio of 5 is required 

to detect the source, an event rate of at least 10- 6 / galaxy /year is required for such a source to occur 

at a detectable distance per year. Hence these sources will not be promising for LIGO II if the event 

rate is much less than w-6 per year per galaxy. 

The event rate of the core collapse of massive stars is much higher than t hat of the AIC. The 

structure of a pre-supernova core is very similar to that of a pre-collapse white dwarf, so our results 

might be applicable to the neutron stars produced by the core collapse. If the core is rapidly rotating, 

the resulting neutron star might be able to develop a bar-mode instability. If a significant fraction 

of the pre-supernova cores are rapidly rotating, the chance of detecting the gravitational radiation 

from the bar-mode instability might be much higher than expected. 

3.5 Magnetic field effects 

As mentioned in Sec. 3.2.2, a new-born hot protoneutron star is dynamically stable because its (3 

is too small. It takes about 20 s for the protoneutron star to cool down and evolve into a cold 

neutron star, which may have high enough (3 to trigger a dynamical instability. The protoneutron 

stars, as well as the cold neutron stars computed in Sec. 3.2.2, show strong differential rotation (see 
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Chapter 2). This differential rotation will cause a frozen-in magnetic field to wind up, creating strong 

toroidal fields. This process will result in a re-distribution of angular momentum and destroy the 

differential rotation. If the t imescale of this magnetic braking is shorter than the cooling timescale, 

the star may not be able to develop t he dynamical instability discussed in Sees. 3.3 and 3.4. In this 

section, we estimate the timescale of this magnetic braking. 

In the ideal magnetohydrodynamics limit, the magnetic field lines are frozen into the moving 

fluid. The evolution of magnetic field B is governed by the induction equation 

(3.57) 

In our equilibrium models, vb = roD(ro)e~. Hence \hvb = 0 and Eq. (3.57) becomes 

dBa - Bb-n a 
dt - v bV , (3.58) 

where djdt = 8j8t + vb'Vb is the t ime derivative in t he fluid 's co-moving frame. Equation (3.58) 

can be integrated analytically (see, e.g., Appendix B of [43]). The magnetic field Bi (x, t) at the 

position x of a fluid element at t imet is related to the magnetic field Bk(x0 , t 0 ) at the position x 0 

of the same fluid at time t0 by 

B i( ) - Bk( ) fJxi x , t - xo, to 
0 

k , 
Xo 

(3.59) 

where fJxi fax~ is the coordinate strain between t 0 and t. With va = roD(ro)e~, it is easy to show 

that the induced magnetic field has components only in the e~ direction. Its magnitude Bi, after a 

t ime t, is easy to compute from Eq. (3.59). The result is 

Bi (t) = BotwlfJ,.DI , (3.60) 

where Bo is the component of magnetic field in the e, direction. The induced magnetic field 

will significantly change the equilibrium velocity field when the energy density of magnetic field 

f.B = B'f j(81r) is comparable to the rotational kinetic energy density ER = pro2 D2 /2. This will occur 

in a timescale TB set by EB = ER· Using Eq. (3.60), we obtain 

n y'47rp L 
TB=---- =- ' 

lfJ,DI Bo VA 
(3.61) 

where L = D/18,!11 is the length scale of differential rotation, and VA = Bo fy'47rp is the speed of 
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AlfvEm waves. 

Observational data suggest that the magnetic fields of most white dwarfs are smaller than 105 G, 

although a small fraction of "magnetic white dwarfs" can have fields in the range 106-109 G . As­

suming flux conservation, the magnetic fields of the hot protoneutron stars just after collapse would 

be Eo ,....., 109 G for those 105 G white dwarfs. Using the angular velocity distribution in Chapter 2 

for the hot protoneutron star, we find that the magnetic timescale in the dynamically important 

region (ro :S 100 km) is 

(3.62) 

which is much longer than the neutrino cooling timescale(,....., 20 s). Hence the angular momentum 

transport caused by the magnetic field is negligible during the cooling period. The magnetic timescale 

for the cold neutron stars can be calculated from the angular frequency distribution computed in 

Sec. 3.2.2. We find that TB for the cold models is about half of that given by Eq. (3.62), which is still 

much longer than the timescale of gravitational waves Taw calculated in the previous Section. The 

instability results presented in the previous two sections remain unchanged unless the neutron star's 

initial magnetic field Eo is greater than 1012 G. In that case, a detailed magnetohydrodynamical 

simulation has to be carried out to compute the angular momentum transport. 

The magnetic timescale for these nascent neutron stars is significantly different from that es­

timated by Baumgarte, Shapiro and Shibata [44] and Shapiro [45]. They consider differentially 

rotating "hypermassive" neutron stars, which could be the remnants of the coalescence of binary 

neutron stars. Those neutron stars are very massive (M ,....., 3M0 ) and have much higher densities 

than the new-born neutron stars studied in this chapter. They also use a seed magnetic field of 

strength Eo ,....., 1012 G, which is much larger than our estimate. These two differences combined 

make our magnetic braking timescale two orders of magnitude larger than theirs. It should be 

noted that it is the magnetic field just after the collapse that is relevant to our analysis here. The 

strong differential rotation of the neutron star will eventually generate a very strong toroidal field 

(Ei ,....., 1016 G) and destroy the differential rotation. The final state of the neutron star will be 

in rigid rotation, and its magnetic field will be completely different from the initial field. For this 

reason, the field strength E ,....., 1012 G observed in a typical pulsar is probably not relevant here. 
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3.6 Summary and discussion 

We have applied linear stability analysis to study the dynamical st ability of new-born neutron stars 

formed by AIC. We find that a neutron star has a dynamically unstable bar mode if its /3 is greater 

than the critical value /3d ;:::; 0.25. In order for the neutron star to have /3 > !3d, the pre-collapse 

white dwarf must be composed of oxygen, neon, magnesium and have a rotational angular frequency 

0 2: 3.4 rad s-1 , corresponding to 93% of the maximum rotational frequency the white dwarf can 

have without mass shedding. 

The eigenfunction of the most unstable bar mode is concentrated within a radius tv .:S 60 km. 

The oscillation frequency of the mode is f ;:::; 450 Hz. When the amplitude of the mode is small, it 

grows exponentially with an e-folding timer;:::; 8 ms for the most rapidly rotating star (/3 = 0.261), 

which is about 5.5 rotation periods at the center of the star. 

The signal-to-noise ratio of the gravitational waves emitted by this instability is estimated to be 

15 for LIGO-II broad-band interferometers if the source is located in the Virgo cluster of galaxies 

(D = 20 Mpc). The detectability of these sources also depends on the event rate. The event 

rate of AIC is between 10- 5 and w-s /galaxy /year . Only those AIC events corresponding to the 

collapse of rapidly rotating 0-Ne-Mg white dwarfs can end up in the bar-mode instability. While it 

is likely that the white dwarfs would be spun up to rapidly rotation by the accretion gas prior to 

collapse [17], it is not clear how many of the AIC events are related to t he 0-Ne-Mg white dwarfs. If 

the event rate is less than 10- 6 /galaxy /year, it is not likely that LIGO II will detect these sources. 

However, the event rate of the core collapse of m assive stars is much higher than that of the AIC. 

A bar-mode instability could develop for neutron stars formed from t he collapse of rapidly rotating 

pre-supernova cores. If a significant fraction of the cores are rapidly rotating, the chance of detecting 

the gravitational radiation from bar-mode instability would be much higher. 

If the pre-collapse white dwarf is differentially rotating, t he result ing neutron star can have a 

higher value of {3 . The bar-mode instability is then expected to last for a longer t ime. However, 

any differential rotation will be destroyed by magnetic fields in a timescale TB ~ R/vA, where R is 

the size of t he white dwarf and VA = B/V4-ffP ~ B)R3 /(3M). For a massive white dwarf wit h 

M = 1.4M0, 

(
105G)( R ) -

1
1

2 

TB ~ 2 yrs - B- 1500 km ' (3.63) 

which is much shor ter than the accretion timescale. Hence rigid rotation is a good approximation 

for pre-collapse white dwarfs. 
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The magnetic field of a neutron star is much stronger than that of a white dwarf. The timescale 

for a magnetic field to suppress differential rotation depends on the initial magnetic field B 0 of the 

protoneutron star. If the magnetic field of the pre-collapse white dwarf is of order 105 G, the initial 

field will be B 0 ,....., 109 G according to conservation of magnetic flux. In this case, the magnetic 

timescale is TB ,....., 104 s. This timescale is much longer than the time required for a hot protoneutron 

star to cool down and turn into a cold neutron star, and go through the whole dynamical instability 

phase. If B 0 .G 1012 G, a significant amount of angular momentum transport will take place during 

the cooling phase. A detailed magnetohydrodynamical simulation has to be carried out to study the 

transport process in this case. However, such a strong initial magnetic field is possible only if the 

pre-collapse white dwarf has a magnetic field B .G 108 G . 

Finally, we want to point out that the collapse of white dwarfs will certainly produce asymmetric 

shocks and may eject a small portion of t he mass. We expect that our neutron star models describe 

fairly well the inner cores of the stars but not the tenuous outer layers. Our stability results are 

sensitive to the region with r:v .:5 100 km. The results could change considerably if the structure in 

this region is very different from that of our models. This issue will hopefully be resolved by t he 

future full 3-D AIC simulations. 
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3. 7 Appendix: Resonance at the co-rotation radius 

We see from Figs. 3.10-3.12 that the bar-mode eigenfunction has peculiar structures at t he co­

rotation radius (r:v >:::; 40 km) at which w + 20 >:::; 0. The density perturbation has a small peak and 

the velocity perturbation is almost parallel to the r.p direction. In this section, we shall show that 

these are caused by the resonance of the fluid driven by the mode. 

For simplicity, we only consider the fluid's motion on the equatorial plane. Assume that the 

perturbations are dominated by a mode that goes as exp(iwt + imr.p). We also assume that this 

mode is even under the reflection z --+ - z. Hence we have e = 0 and ovz = 0. In cylindrical 
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coordinates, the linearized Euler equation takes the form 

i(w + mD)6v"" = (3.64) 

i(w + mD)6v<P (3.65) 

The density perturbation 6p is related to the pressure perturbation 6P by 

(3.66) 

The ro-component of t he Lagrangian displacement is given by 

~"" = 6v"" 
i(w + mD) 

(3.67) 

Our numerical simulations show that 6P is well behaved and smooth near the co-rotation radius 

at which w + mD ~ 0 . The perturbed gravitational potential 6~ is expected (and is confirmed by 

our numerical simulations) to be smooth since it depends on the overall distribution of the density 

perturbation. We can then use Eqs. (3.64)-(3.67) to express all the other perturbed quantities in 

terms of 6P and 6~. Near the co-rotation radius, the expressions are: 

6p __p_6p _ ( 1 _ '/'eq) 6v"" OroP 
')'pP '/'p i(w + mD) 

(3.68) 

6v"" ~ 
- 2imD ( 6P + 6~) 

ro(/-\;2 +B) p ' 
(3.69) 

6v<P i [ ~6v"" + im cp + 6~)] 
w +mD 2!1 ro p 

(3.70) 

/-\;2 ro8roD2 + 4!12 
, (3.71) 

B BroPBro P ( 1 _ '/'eq) 
p2 '/'p 

(3.72) 

It follows from Eqs. (3.67) and (3.66) that if 16v"' I is not of order (w + mD) near the co-rotation 

radius, both 1 ~"" 1 and l6pl will be large. The large magnitude of the Lagrangian displacement is 

caused by the fluid being driven in resonance by the mode. The large displacement of the fluid 

causes l6pl to be large due to the second term of Eq. (3.66). This term arises because of the 

different compressibilities of stationary and oscillating fluid (i.e., '/'eq I= '/'p) · In the case of the bar 

mode (m = 2), the co-rotation radius is located at We ~ 40 km. The equilibrium density on the 

equator p(roc, O) ~ 1012 g cm - 3 and the stationary fluid is very compressible ('/'eq ~ 0.7) . The high 



71 

compressibility of the stationary fluid make the background equilibrium density p drop rapidly as r:v 

increases, i.e., 18,pl is large. The oscillating fluid is far less compressible ('yp = 1.35). As a result, 

when the oscillating fluid moves to a new location, it does not expand or compress to an ext ent that 

can compensate for the difference between the background densities at the old and new locations. 

Since both IC'"I and 18,pl are large, 8p is dominated by the second term of Eq. (3.66) near the 

co-rotation radius. This explains the narrow secondary peak of 8p seen in Fig. 3.10. We see from 

Eq. (3. 70) that l8v<P I » 18v"' I and 8v<P changes rapidly near the co-rotation radius, which explains 

t he flow pattern seen in Fig. 3.12. 
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Chapter 4 

Post-Newtonian Structures of 
Differentially Rotating Neutron 
Stars 

To be submitted to Physical Review D. 

Abstract A self-consistent field method is developed, which can be used to construct models 

of differentially rotating stars to first post-Newtonian order. The rotation law is specified by the 

specific angular momentum distribution j(mw), where mw is the baryonic mass fraction inside the 

surface of constant specific angular momentum. The method is t hen used to compute models of the 

nascent neutron stars resulting from the accretion induced collapse of white dwarfs. The ratios of 

kinetic energy to gravitational binding energy, (3, of the relativistic models are found to be slightly 

smaller than the corresponding values of the Newtonian models. 

4.1 Introduction 

We have demonstrated in Chapter 3 t hat the accretion induced collapse (AIC) of a rapidly rotating 

white dwarf can result in a rapidly rotating neutron star that is dynamically unstable to the bar­

mode instability. This instability could emit a substantial amount of gravitational radiation that 

could be detectable by gravitational wave interferometers, such as LIGO, VIRGO, GEO and TAMA. 

However, for this instability to occur, the neutron star must have a (3 = T/IWI greater than a 

critical value f3d ~ 0.25. Here T is the rotational kinetic energy and IWI is the gravitational binding 

energy. Only the AIC of 0-Ne-Mg white dwarfs wit h n > 0.930m can produce neutron stars with 

such a high value of (3 . Here n is the angular velocity of the white dwarf and Om is the angular 
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velocity at which mass shedding occurs on the equatorial surface. This type of source will not be 

promising for LIGO II because its event rate is not very high. 

Neutron stars are compact objects and general relativistic effects have a significant influence on 

both the structure and dynamical stability of the stars. Recently, Shibata, Baumgarte, Saijo and 

Shapiro studied the dynamical stability of differentially rotating polytropes in full general relativ­

ity [1] and in the post-Newtonian approximation [2]. They performed numerical simulations on the 

differentially rotating polytropes with some specified rotation law. They found that as the star 

becomes more compact , the critical value fJd slightly decreases from the Newtonian value 0 .26 to 

0.24 for their chosen rotation law. It is not clear , however, whether their result implies that t he 

relativistic effects would destabilize the stars we are studying, for the equilibrium structure of the 

star will also be changed by the relativistic effects. The value of fJ of a relativistic star will not be 

the same as that of a Newtonian star with the same baryon mass and total angular momentum. The 

objective of this chapter is first to develop a new numerical technique which can be used to construct 

the equilibrium structure of a rotating star with a specified specific angular momentum distribution 

to first post-Newtonian (1PN) order [i .e., including terms of order c- 2 higher than the Newtonian 

terms in t he equations of motion] . Then we construct models of neutron stars corresponding to 

the collapse of the white dwarfs we studied in Sections 2.2 and 3.2.1 and compare them with t he 

Newtonian models. 

Equilibrium models of neutron stars in full general relativity have been built by many authors [3, 

4, 5, 6, 7, 8, 9] . The neutron stars studied in the literature are eit her rigidly rotating or rotating 

with an ad hoc rotation law. New-born neutron stars resulting from core collapse of massive stars 

or accretion induced collapse of massive white dwarfs are different ially rotating (10, 11, 12] (see 

also Sections 2.3 and 3.2.2). It seems plausible that the rotation laws of these neutron stars could 

be approximated by the specific angular momentum dist ribution j(mw) of the pre-collapse st ars 

(see Sections 2.3 and 4.2.1). Herem, is the baryonic mass fraction inside the surface of constant 

specific angular momentum. Equilibrium models of Newtonian stars with a specified j(m=) have 

been constructed by many authors (13, 14, 15, 16]. However , none of these studies, to our knowledge, 

has been generalized to include the relativistic effects. 

If a rotating axisymmetric star is described by a barotropic equation of state, i.e., the total 

energy density f is a function of pressure only, then there is a const raint on the rotation law (see 

Section 4.2.1). This rotational constraint is usually written in t he form u 0 u'P = F(D) (17, 6], where 

F is an arbitrary function. Here D is the angular velocity of the fluid with respect to an inertial 
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observer at infinity; u 0 is the time component of the four-velocity and u., = u~-'t.p~-', where t.pa is 

t he axial Killing vector field of the spacetime. In the Newtonian limit, this constraint reduces to 

the well-known result that n is constant in the direction parallel to the rotation axis. The major 

obstacle in the construction of differentially rotating relativistic stars is t hat it is not clear what 

function F should be used that will produce the desired specific angular momentum distribution 

j(mro) · In the next section, we will reformulate the rotational constraint in a way that can be used 

to impose the rotation law j(mro), at least in the 1PN calculations. 

The structure of this chapter is as follows. In Section 4.2, we give a brief review on the full 

relativistic treatment of rotating relativistic stars and then reformulate t he rotational constraint 

imposed by the barotropic equation of state. Next, we use the standard 1PN metric and show 

that the rotational constraint can be solved analytically. We then derive t he equations of motion 

determining the structure of a star to 1PN order. In Section 4.3, we generalize the self-consistent 

field method of Smith and Centrella [22], which can be used to compute the structure of a star to 

lPN order. In Section 4.4, we apply the numerical method to construct neutron star models resulting 

from the collapse of the 0-Ne-Mg white dwarfs we studied in Section 3.2.1 and compare t hem with 

the corresponding Newtonian models. Finally, we summarize our conclusions in Section 4.5. 

4.2 Formalism 

In this Section, we first give a brief review on the full relativistic treatment of rotating relativistic 

stars and then reformulate the rotational constraint imposed by the barotropic equation of state 

(EOS) in Section 4.2.1. Then we derive the equations of motion determining the equilibrium struc­

ture of a rotating star to 1PN order in Section 4.2.2. Throughout this chapter, we use the convention 

that Greek indices run from 0 to 4, 0 being the time component; whereas Latin indices run from 1 

to 3 only. A sum over repeated indexes is assumed unless stated otherwise. The signature of the 

metr ic is (- + ++ ). 

4 .2.1 Full relativistic consideration 

We want to construct the nascent neutron stars resulting from the AIC of rotating white dwarfs. As 

in Sec. 2.2, we make the following assumptions on the AIC and the collapsed stars. 

First, we assume the collapse is axisymmetric. Hence the spacetime, albeit dynamical, has an 

axial Killing vector field t.pa . Second, we neglect viscosity and assume a perfect fluid stress-energy 
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tensor 

(4.1) 

where € is the energy density in the fluid's rest frame; Pis pressure and u~-' is the fluid's four-velocity, 

normalized so that u"'ua = -1. Third, we assume that the collapsed objects can be described by a 

barotropic EOS, i.e. E = E(P). Fourth, we assume there is no meridional circulation in the equilibrium 

state of the collapsed objects. In other words, the fluid's four-velocity can be written as 

(4.2) 

where t"' is the timelike Killing vector field of the spacetime of the collapsed star; c is the speed of 

light; n is the rotational angular velocity and u0 is the time component of the four-velocity. Finally, 

we assume that no material is ejected from the star during and after the collapse. Hence the total 

baryon rest mass M 0 and the total angular momentum J are conserved. 

Let n denote the baryon number density in the fluid's rest frame. It follows from the baryon 

number conservation law V' v(nuv) = 0 and conservation of energy-momentum V' vT~-'v = 0 that (see, 

e.g., [21]) 
d€ 

dn n 

Given a barotropic EOS, the above equation can be integrated, giving 

(4.3) 

(4.4) 

We define the baryonic rest mass density p = nmB. Here ffiB is the average baryon mass, defined 

so that 

lim-;.= 1 . 
<-+D pc 

( 4.5) 

It follows [17] from the conservation of baryon number 'Vv(nuv) = 0, conservation of energy­

momentum V' vT~-'v = 0, and the existence of an axial Killing vector t.p"' that 

{3 " . dj 0 
u v f3J = dr = ' 

where r is the proper time along the fluid particle's worldline and 

. E+ P 
J = --2-u'P . 

pc 

(4.6) 

(4.7) 
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Here uc,o = U a<pa. In the Newtonian limit, j = Ow2
, which is the Newtonian expression of the 

specific angular momentum along the rotation axis. Here w is the distance from the rotation axis. 

To generalize the Newtonian results in Section 2.3, we shall build neutron star models with the 

same baryon mass M 0 , total angular momentum J , and specific angular momentum distribution 

j(mro) as the pre-collapse white dwarfs. Here mro is t he baryonic mass fraction inside the surface 

of constant j. 

In the stationary and axisymmetric spacetime of a relat ivistic star , the Euler equation takes the 

form [17] 

"il aP /3 ( 0) 0 "il aD 
€ + p = -u "i7 f3 Ua = "i7 a ln U - u Ucp - c- . (4.8) 

Since the EOS is barotropic, the left side of Eq. ( 4.8) is a total differential. This imposes a constraint 

on the rotation law: the integrability condition for Eq. ( 4.8) is that the rotation law must have the 

form u0 uc,o = F(O) [17, 6], where F is an arbitrary function. In the Newtonian limit, this rotational 

const raint means t hat n is constant in the direction parallel to t he rotation axis. The constraint 

written in this form is not convenient for our purpose, as our rotation laws are specified by t he 

function j(mro) · Hence, we formulate the constraint in another way: the integrability condition is 

that u0 uc,o "i7 a D is an exact differential. In t he language of differential forms, we require that u 0 uc,odD 

be an exact form. This implies that its exterior derivative vanishes: 

(4.9) 

4.2.2 Post-Newtonian approximation 

In this chapter, we calculate the structure of neutron st ars to the first post-Newtonian order. We 

split the energy density into two terms [18]: 

(4.10) 

We adopt the 1PN metric (in Cartesian coordinates) developed by Chandrasekhar, and Blanchet, 

Damour and Schafer [18, 19, 20]: 

9oo (4.11) 

90i (4.12) 
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9ij = ( 1- ~~) 8ij + O(c- 4
) . 

The metric components satisfy the gauge condition 

In this metric, the components of the four-velocity are 

where vi = cui ju0 and v2 = dijvivi . The potentials U and Ai satisfy the elliptic equations 

D i D ·U + 81rGpU 
J c2 47rG p [ 1 + ~ (II + 2v

2 + 
3
:)] 

D i D jAi 161rGp8ikvk , 

(4.13) 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

(4.18) 

( 4.19) 

where Dj denotes the covariant derivative compatible with the three dimensional flat-space metric, 

and G is the gravitational constant . 

We introduce cylindrical coordinates ( fD, cp, z) wit h a I 8 cp being the axial Killing vector, and 

m = .J x2 + y 2 . In this coordinate system, the velocity vector potential Ai has only one component: 

Acp = xAy - yAx . Let Q = Acpjm. Then Q satisfies the equation 

To 1PN order, we have 

where 

0 2 ( ]{) 
CU Ucp = fD f1 1 + C2 , 

K = v2 - 4U + Q. 
v 

(4.20) 

( 4.21) 

( 4.22) 
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Since u 0 u'P \7 aD is an exact differential, we can write 

(4.23) 

where f is a scalar function. The rotational constraint (4.9) gives only one nontrivial equation for 

n because the spacetime is stationary and axisymmetric. To lPN order, this equation can be solved 

analytically, giving 

(4.24) 

where 0 0 (w) = O(w,O) and K0 (w) = K(w, O). Eq. (4.23) can then be integrated and we obtain, 

up to an arbitrary additive constant, 

f(w, z) 

(4.25) 

where 

w8, f2o 
2 

(K(w, z)- Ko(w)) , (4.26) 

1"" dw' 06(w') [w'Ko(w') + w;2 

8mKo(w')] (4.27) 

It is convenient to define an auxiliary function 

h = c2 1P dP' 

0 ~:(P') + P' 
(4.28) 

This quantity is defined only inside t he star. The boundary of the star is given by the surface h = 0. 

In the Newtonian limit , h reduces to the specific enthalpy. The E uler equation (4.8), to lPN order, 

can be written in integral form: 

h(w, z) 

(4.29) 

where Cis a constant and all quantities outside the integral are evaluated at (w, z). 

The structure of the star is determined once a rotation law is given. The rotation law we want is 

specified by the specific angular momentum distribution function j(mro ), which is determined by the 
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pre-collapse white dwarf (see Section 2.2.3) . Straightforward calculations using Eqs. (4.7), (4.10) , 

(4.11), (4.12), (4.13), (4.16) , (4.17), (4.24) and (4.26) give 

. 2 [ 1 (v2 
P n1 Q)] J = w no 1 + - - - 3U + ll + - + - + -

c2 2 p no v 
(4.30) 

To compute m,.,, the baryonic mass fraction inside the surface of constant j, we first need to 

determine the surfaces on which j is constant. In the Newtonian case, the surfaces of constant j are 

cylinders. This is not true in general in the relativistic case (at least not in the coordinate system 

we are using). Let (r;;; + TJ(w, z)fc2
, z) denote the surface of constant j that intersect s the equatorial 

plane at cylindrical coordinate radius w. Hence we have 

j(w + TJ(w, z )jc2
, z) j(w, 0) , 

TJ(w,O) = 0. 

Expanding the left side of Eq. (4.31) to O(c-2), we obtain 

( ) 
_ 2 j(w, z)- io(w) 

TJ r;:;, z - -c 0 . ( ) , 
ro ]O r;:; 

where j 0 (w) = j(w, 0). Using Eq. (4.30), we obtain 

(4.31) 

(4.32) 

(4.33) 

( 4.34) 

where £(q) = q(w, z)- q(w, 0). The baryon mass M,., inside the volume V,., bounded by the surface 

of constant j is given by 

( 4.35) 

( 4.36) 

where nJJ. is the unit vector orthogonal to the surface of const ant t; dV is the proper volume element 

in the constant t hypersurface, and 

( 4.37) 



83 

The baryonic mass fraction is then given by 

(4.38) 

where M0 is simply the value of Mro at w = Re, the equatorial radius of the star. It is convenient 

to define the normalized specific angular momentum 

(4.39) 

Straightforward calculations from Eq. (4.30) give 

(4.40) 

where .>.. = J / M 0 and the subscript "0" in the above equation means that the quantity is evaltmted 

at (w,O). The integrated Euler Eq. (4.29) becomes 

2 1 (v4 2 1 2 ) h=.X.'¢-U+C+- - -2Uv +Qv--vK0 +I2 c2 4 2 
( 4.41) 

Here 

'f/;(w) ( 4.42) 

(4.43) 

where all the quantities in the integrands are evaluated at w = w'. 

The rotational kinetic energy T and gravitation potential energy W of a relativistic star are given 

by (see, e.g., [9]) 

T ~ J DdJ = ;c J DTJl.vn~'-<pv dV, 

W = - [(Mv - M)c2 +T], 

where the proper mass lvfv and gravitational mass M are 

(4.44) 

( 4.45) 

( 4.46) 
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M -~ j ( Tat3- ~T; gat3 ) t<>nt3 dV . (4.47) 

The expressions for T and W to 1PN order are 

T (4.48) 

w = 

(4.49) 

where d3 x = wdwdzdcp. 

Given the total baryon mass M 0 , total angular momentum J, normalized specific angular momen-

tum distribution in(mro), and the EOS, we have to solve Eqs. (4.18), (4.20), (4.41), (4.30), and (4.38) 

consistently to determine the structure of the differentially rotating star. We shall discuss how these 

equations can be solved numerically in the next Section. 

4.3 Numerical method 

In this section, we develop a self-consistent field t echnique to calculate the structure of a relativistic 

star with the rotation law specified by the normalized specific angular momentum distribution 

in(mro)· Our method is a generalization of the one used by Smith and Centrella [22), which is a 

modified version of Hachisu's self-consist ent field method [23]. 

The self-consistent field method is an iteration procedure. Suppose in a certain iteration step, 

we have h(w, z) and no(ro) in a cylindrical grid, we first evaluate the quantities p, P and II from the 

EOS. Then we compute the potentials U and Q by solving the elliptic equations (4.18) and (4.20). 

Since the velocity potential Q always appears in the 1PN terms of t he equations of motion, we can 

replace n on the right side of Eq. ( 4.20) by no. The angular velocity n, as well as v = ron, outside 

the equatorial plane are determined by Eqs. (4.22) and (4.24). Next, we compute the baryonic 

mass fraction m ro using Eqs. (4.34), (4.36), (4.37) and (4.38). The function 'ljJ is then calculated by 

Eq. (4.42). During each iteration, we fix two parameters, which we choose to be the central energy 

density Ec [or equivalently, he = h(O, 0)] and the equatorial radius Re. The constants C and >.2 in 

Eq. (4.41) are then given by 

c (4.50) 
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- U - C- - - - 2v2 U + Qv - --0 + h 1 [ 1 ( v4 v2 K, ) ] 
~ c2 4 2 

(4.51) 

where Uc = U(O, 0) and all the quantities in the second equation are evaluated at the equatorial 

surface of the star. Finally, we update h by Eq. (4.41) and update Do by solving Eq. (4.40). We 

repeat the procedure until h and Do converge to the desired accuracy. 

When the star becomes flattened, the iteration scheme described above does not converge. This 

is fixed by the modified scheme suggested in Ref. [15}: the variables h and Do in the (i + 1)-th 

iteration, hi+! and (!1o)H1 are changed to 

h;b+h'(1-b)' 

(Do)Hl = (Do);b + D~(1 -b) , 

(4.52) 

( 4.53) 

where h' and D0 are t he quantities determined by Eqs. (4.41) and (4.40). The parameter b (0 ~ b < 1) 

is used to control the changes of h and Do in an iteration step. For a very flattened configuration, 

we need to use b > 0.9 to ensure convergence, and it takes more than 100 iterations for the models 

to converge to a fractional accuracy of 10- 5 . In the standard self-consistent field method, one 

only needs to solve for the density distribution p (or equivalently, the enthalpy distribution h) self­

consistently. In our self-consistent field method, we also need to solve for the equatorial angular 

velocity distribution Do self-consistently. This is the main difference between the standard scheme 

and our proposed scheme, apart from the fact that the equations of motion in the 1PN case are 

more complicated. 

The self-consistent field method described above computes stars with a given central energy 

density tc and equatorial radius R e. However, what we want is to construct a star with a given 

total baryon mass M 0 and total angular momentum J. To do this, we first compute a model of 

nonrotating spherical star by solving the 1PN TOV equations in isotropic coordinates. We use the 

density distribution as an initial guess to construct a model with slightly different Ec and Re. We 

then build models with different values of tc and Re until we end up with the model having the 

desired baryon mass and angular momentum. 

For a rapidly rotating configuration, the equatorial radius extends to R e > 1000 km and the 

polar radius is approximately Rp ~ 10 km in our coordinate system. Hence we use a nonuniform 

cylindrical grid to perform most of the computations. The resolution near the center of the star is 

about 0.4 km, whereas the resolution is about 6.5 km near the equatorial surface of the star. We 
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double the resolution to check the convergence. For a given Ec andRe , the fractional differences of 

the baryon mass M 0 and angular momentum J between the two resolution grids are less than 10-5 

even for the rapidly rotating cases. 

We adopt the Bethe-Johnson EOS [24] for densities above 1014 g cm-3 , and BBP EOS [25] for 

densities in t he range 1011 - 1014 g cm-3 . The EOS for densities below 1011 g cm-3 is joined 

by that of the pre-collapse white dwarfs, which is the EOS of a zero-temperature ideal degenerate 

electron gas with electrostatic corrections derived by Salpeter [26]. We are mainly interested in the 

structure of the most rapidly rotating neutron stars. The central densities of t hese stars are around 

4 x 1014 g cm-3 (see the next section), and ideas about the EOSin this relatively low density region 

have not changed very much since 1970's. 

The baryon masses of the neutron stars we compute in this chapter are around 1.4M0 . For a non­

rotating spherical star of this baryon mass, c2 R/GM :::::::: 6 for the EOS we adopt. HereM:::::::: 1.3M0 is 

the gravitat ional mass and R ::=::::: 12 km is the circumferential radius of t he star. Hence we expect that 

the second and higher order post-Newtonian terms will give about 3% corrections to our models. 

4.4 Results 

We only construct neutron star models corresponding to the collapse of 0 -Ne-Mg white dwarfs (i.e., 

the Sequence III white dwarfs in Section 3.2.1), because these neutron stars are the most likely to 

undergo a dynamical instability and emit strong gravitational waves. 

Figure 4.1 shows the central densities t:c/c2 of t he resulting neutron stars as a function of D./D.m, 

where D. is the angular frequency of the pre-collapse white dwarf, and D.m is the angular frequency 

of the maximally rotating white dwarf in the sequence. Both Newtonian and IPN results are shown. 

We see that the central energy densities for the I PN models are higher than the Newtonian models. 

This is expected because relativistic effects tend to make the stars more compact. The difference in 

Ec decreases as the star becomes more rapidly rotating. 

Figure 4.2 shows the value of /3 = T/IWI of the neutron stars as a function of D./D.m. We see 

that the relativistic correction lowers the value of /3 for stars of given N/0 and J. The maximum /3 

of these neutron stars is 0.24, which is 8% lower than the Newtonian case (0.26). 

The structure of the neutron stars is not much different from the Newtonian models. Stars with 

f3 ,::: 0.1 all contain a high-density central core of size about 20 km, surrounded by a low-density 

torus-like envelope. The size of the envelope ranges from 100 km (for stars with /3 ~ 0.1) to over 

500 km (for /3 .':: 0.2). Figure 4.3 shows the density contour of a typical rapidly rotating neutron 
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Figure 4.1 : The central densities £.c/c2 of differentially rotating neutron stars as a function of D./Dm 
of the pre-collapse white dwarfs. Both Newtonian and lPN results are shown for stars having the 
same M0 and J . 
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Figure 4.2: The value of /3 of the resulting neutron stars as a function of D/Dm of the pre-collapse 
white dwarfs . 
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Figure 4.3: Meridional density contours of the neutron star resulting from the AIC of a rigidly 
rotating 0-Ne-Mg white dwarf with D.ID.m = 0.964. This neutron star h as {3 = 0.238. The contours 
in the upper graph denote, from inward to outward, PI Pc = 10- 4

, 10- 5 , 10- 6 , 10- 7 , 10-s, 10-9 and 
0. The contours in the lower graph denote, from inward to outward, PI Pc= 0.8, 0.6 , 0.4, 0.2, 0.1, 
10- 2 , 10-3 and 10- 4 . The central density of the star is Pc = 3.8 x 1014 g cm- 3 . 



89 

5000 

---------------------.... , I= M:~tonian I 4000 
' ' ' 

' 
"7~ 3000 ' ' 
"' ' ' "0 ' 
"' ' -:::.. ' ' Cl 2000 ' 

' 
\\ 

1000 \ 

01 10 100 1000 
U1 (km) 

Figure 4.4: The equatorial angular velocity Do( tv) of the neutron st ar in Fig. 4.3. 

star. This figure looks basically the same as Fig. 3.3, which shows the density contours of the same 

star computed with Newtonian gravity. The (3 of this star is 0.238, which is somewhat smaller than 

the Newtonian value 0.255. 

F igure 4.4 shows the equatorial angular velocity distribution D0 (ro) of the same star. We see 

that the angular velocity in the inner core of the star (tv :S 20 km) in the lPN model is s lightly 

la rger t han that of the corresp onding Newtonian model. This is expected because relativistic effects 

m ake t he st ar more compact . The m ateria l is compressed more in t he lPN model, and should 

rot ate faster due to the conservation of angular momentum. Figure 4.5 shows the distribution of 

rot ational kinetic energy T and gravitation al binding energy IWI of the mat eria l contained within 

cylindrical radius tv. The two quant ities approach their asymptotic values a t ro ~ 30 km. This is 

due t o the high central condensation of the st a r. Both T and IWI in the lPN model are larger than 

the corresponding Newtonian model. The kinetic energy Tis la rger because the st ar rotates faster . 

However , the difference between t he two T -curves decreases as we move away from the rotation axis. 

This is because most of the kinetic energy of the st a r is from the region 10 km :S ro :S 30 km, in 

which rela tivistic effects are less important. On the other hand, t he gravitational binding energy of 

t he star is mainly cont ributed from the material in the inner region ro :S 20 km, in which relat ivist ic 

effects are important. As a result , the T / I WI value of the rela tivistic model is somewhat less than 

in the corresponding Newtonian model. 

Figure 4.6 shows the equat orial angular velocity !10 for several selected models in the central 

region near t he rot a tion axis. The shap e of t he curves are very similar t o those of the Newtonian 
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Figure 4.5: The distribution of the rotational kinetic energy T and gravitational binding energy \WI 
of the material inside the radius w, for the neutron star in Fig. 4.3. 
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Figure 4.6: The equatorial rotational angular velocity Oo as a function of w for w < 60 km. These 
neutron stars result from the AIC of the pre-collapse white dwarfs with 0/0m equal to (a) 0.090, 
(b) 0.23, (c) 0.30, (d) 0.41, (e) 0.55, (f) 0.71 , (g) 0.86 and (h) 1.00. 
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Figure 4.7: The cylindrical mass fraction mro as a function of w for the neutron star models 
in Fig. 4.6. The curves and the corresponding models are identified by the degrees of central 
condensation: the higher the degree of central condensation, the lower the value of D/Dm. 
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Figure 4.8: The value of f3w as a function of w for the neutron star models in Fig. 4.6. 
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models (see Fig. 3.4). However, the angular velocities in the lPN models are all slightly larger than 

the Newtonian models in the inner core. 

Figure 4.7 shows the baryonic mass fraction m, verses r:v for the selected models in F ig. 4.6. As 

in the Newtonian case (see Fig. 3.5), the mass is highly concentrated in the inner core of the star. 

The degree of central condensation decreases as the star rotates faster. However, more than 80% of 

the mass is contained within a 30 km radius even for the most rapidly rotating star, where the outer 

envelope extends to over 1000 km. The collapsed object can be regarded as a neutron star of size 

about 20 km surrounded by an accretion torus. 

Figure 4.8 shows f3a, the T/IWI of the material inside the surface of constant r:v, for the selected 

models in Fig. 4.6. The shape of the curves are qualitatively the same as those in the Newtonian 

models ( see Fig. 3.6), although the values of (3r;:] are slightly smaller. All the curves level off at 

r:v ;::: 30 - 50 km, suggesting that the material in the outer layers does not have much influence on 

the overall dynamical stability of the star. 

4.5 Conclusions 

We have generalized the self-consistent field method which can be used to compute models of dif­

ferentially rotating stars to lPN order with a specified angular momentum distribution j(mro) · We 

also applied this new method to construct models of nascent neutron stars resulting from the col­

lapse of massive 0 -Ne-Mg white dwarfs in Section 3.2.1 and compare them with the corresponding 

Newtonian models. 

We found that the l PN models are more compact, rotate faster, and have a smaller values of (3's 

than the corresponding Newtonian models. The highest value of (3 these neutron stars can achieve 

is 0.24, which is 8% smaller than the Newtonian case. We estimate that the fractional error due to 

our neglecting higher order post-Newtonian terms is about 3%. 

We have demonstrated that relativistic effects lower t he value of (3 of a star with a given baryon 

mass .N/0 and angular momentum J. Shibata, Baumgarte, Shapiro and Saijo demonstrated that the 

relativistic effects also lower the critical value f3d for the dynamical instability by a similar amount. 

It will be interesting to find out which of these two effects is more important. Careful numerical lPN 

stability analyses must be carried out to determine whether or not relativistic effects destabilize the 

stars. 



93 

Bibliography 

[1] M. Shibata, T. W. Baumgarte and S. L. Shapiro, Astrophys. J. , 542, 453 (2000). 

[2] M. Saijo, M. Shibata, T. W. Baumgarte and S. L. Shapiro, Astrophys. J ., 548, 919 (2000). 

[3] J. R. Wilson, Astrophys. J., 176, 195 (1972). 

[4] S. Bonazzola and J . Schneider, Astrophys. J., 191, 273 (1974). 

[5] I. M. Butterworth and J. R. lpser, Astrophys. J. Lett ., 200, 103 (1976); 

[6] I. M. Butterworth and J. R. lpser, Astrophys. J., 204, 200 (1976). 

[7] I. M. Butterworth, Astrophys. J., 204, 561 (1976); I. M. Butterworth, Astrophys. J., 231 , 219 

(1979). 

[8] J. F. Friedman, J. R. Ipser and L. Parker, Astrophys. J., 304, 115 (1986). 

[9] H. Komatsu, Y. Eriguchi and I. Hachisu, Mon. Not. R. Astra. Soc., 237, 355 (1989) ; H. Ko­

matsu, Y. Eriguchi and I. Hachisu, Mon. Not. R. Astra. Soc., 239, 153 (1989). 

[10] R. Monchmeyer and E. Muller, in NATO ASI on Timing Neutron Stars, ed. Ogelman H., D . 

Reidel Publ. Comp., Dordrecht 1988. 

[11] H.-Th. Janka, R. Monchmeyer, Astra. & Astrophys., 209, L5 (1989); H.-Th. Janka, R. 

Monchmeyer, Astra. & Astrophys., 226, 69 (1989). 

[12] C. L. Fryer, D. E. Holz and S. A. Hughes, to appear in Astrophys. J., astro-ph/0106113 (2001). 

[13] J. P. Ostriker and J. W-K. Mark, Astrophys. J., 151, 1075 (1968); J. P. Ostriker and P. 

Bodeneimer, Astrophys. J. , 151, 1089 (1968). 

[14] P. Bodeneimer and J.P. Ostriker, Astrophys. J. , 180, 159 (1973). 

[15] B. K. Pickett, R. H. Durisen and R. H. Davis, Astrophys. J ., 458, 714 (1996). 



94 

[16) K. C. B. New and S. Shapiro, Astrophys. J., 548, 439 (2001). 

[17] J. M. Bardeen, Astrophys. J., 162, 71 (1970). 

[18] S. Chandrasekhar, Astrophys. J., 142, 1488 (1965). 

[19] L. Blanchet, T. Damour and G . Schaafer, Mon. Not. Roy. Astra. Soc., 242 , 289 (1990). 

[20) C. Cutler, Astrophys. J ., 374, 248 (1991). 

[21) C. W . Misner, K. S. Thorne and J. A. Wheeler, Gravitation (Freeman and Company 1973). 

[22] S. Smith, J. M. Centrella, in Approaches to Numerical Relativity, ed. R.d'lnverno. (Cambridge 

Univ. Press, New York 1992). 

[23] I. Hachisu, Astrophys. J. Supp., 61, 479 (1986). 

[24) H. A. Bethe and M. B. Johnson, Nucl. Phys. A, 230, 1 (1974). 

[25] G. Baym, H. A. Bethe and C. J. Pethick, Nucl. Phys. A, 175, 225 (1971). 

[26] E . E. Salpeter, Astrophys. J., 134, 669 (1961). 




