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Abstract

Vertex- and face-based subdivision schemes are now routinely used in geometric modeling

and computational science, and their primal/dual relationships are well studied. In this

thesis we interpret these schemes as defining bases for discrete differential 0- resp. 2-

forms, and present a novel subdivision-based method of constructing smooth differential

forms on simplicial surfaces. It completes the picture of classic primal/dual subdivision

by introducing a new concept named r-cochain subdivision. Such subdivision schemes map

scalar coefficients on r-simplexes from the coarse to the refined mesh and converge to r-forms

on the mesh. We perform convergence and smoothness analysis in an arbitrary topology

setting by utilizing the techniques of matrix subdivision and the subdivision differential

structure.

The other significance of our method is its preserving exactness of differential forms.

We prove that exactness preserving is equivalent to the commutative relations between the

subdivision schemes and the topological exterior derivative. Our construction is based on

treating r- and (r+1)-cochain subdivision schemes as a pair and enforcing the commutative

relations. As a result, our low-order construction recovers classic Whitney forms, while the

high-order construction yields a new class of high order Whitney forms. The 1-form bases are

C1, except at irregular vertices where they are C0. We also demonstrate extensions to three-

dimensional subdivision schemes and nonsimplicial meshes as well, such as quadrilaterals

and octahedra.

Our construction is seamlessly integrated with surface subdivision. Once a metric is

supplied, the scalar 1-form coefficients define a smooth tangent vector filed on the underlying

subdivision surface. Design of tangent vector fields is made particularly easy with this

machinery as we demonstrate. The subdivision r-forms can also be used as finite element

bases for physical simulations on curved surfaces. We demonstrate the optimal rate of

convergence in solving the Laplace and bi-Laplace equations of 1-forms.
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Chapter 1

Introduction

Geometric objects (curves, surfaces and volumes) in the physical world are inevitably rep-

resented as discrete meshes in computers. The discrete differential modeling approach to

computations has been studied in the literature of DEC (Discrete Exterior Calculus) by

many researchers [Hirani 2003; Desbrun et al. 2005a; Elcott et al. 2007]. Those models re-

spect intrinsic geometry of the discrete mesh, and as a result, they exhibit great advantages

in conserving structures (symmetry, invariants). Further discrete differential modeling is

often much easier to implement than its continuous counterpart, which makes it well suited

to dealing with computations on complicated geometry.

One of the building blocks of DEC is to use differential forms or simply forms as the

intrinsic representations for continuous objects. Physical quantities often have their geo-

metrical meanings. For instance, an electronic field E is physically measured by the amount

of work of moving a charged particle along a particular curve in that field. Therefore the

intrinsic discrete representation for E is by no means pointwise. Rather they are integral

quantities associated with edges of the mesh primitives. In the language of differential

geometry, the field E is represented by 1-forms which are ready to be integrated along

one-dimensional curves. From this point of view, differential forms are just coordinate

free objects ready to be integrated. Generally speaking, r-forms live on r-manifolds and

they associate a scalar (we call it a measurement) with each r-submanifold. Obviously,

measurements associated with r-manifolds are the discrete counterparts of r-forms and are

called discrete differential r-forms, or discrete r-forms for short. While discrete forms are

the premises of DEC, we often need to reconstruct the underlying field from the given

measurements through differential form bases.
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Some properties of such differential form bases are preferred. First we want to perform

the usual vector calculus operations simply through local operations on discrete measure-

ments and keep some of the identities of operations on the discrete level, such as ∇×∇ = 0.

Further such bases need to have enough pointwise smoothness in continuum sense so that

one can control the error of approximation when the underlying object is smooth. In solving

second- or higher-order partial differential equations, certain regularity of the finite element

bases is also required by the Galerkin method. Moreover, we want to preserve cohomology

groups as mapping measurements to forms. That is to say, exact discrete r-forms should

be mapped to exact r-forms.

The goal of this thesis is to initiate a subdivision approach to the construction of smooth

form bases, which have the desirable properties listed above. To our knowledge this con-

struction is the first attempt to bridge the subdivision theory with the construction of

differential forms. We build required differential structures into the subdivision schemes,

and the techniques of matrix subdivision enable us to prove convergence and smoothness

of form bases.

In the following sections, we overview the main ideas of discrete differential modeling as

well as the main results of this thesis.

1.1 Discrete Differential Geometry

In this section we briefly introduce the main concepts from DEC as needed later in this

thesis. We focus on the two-dimensional case only to get the idea across. A more complete

introduction can be found in [Hirani 2003; Desbrun et al. 2005a].

Instead of smooth surfaces, the underlying domain of DEC is a discrete triangle meshe, or

more precisely, a simplicial complex which is a two-manifold and orientable. Abstracly, such

a complexK = (V,E, T ) is a collection of vertices V = {vi|i = 1, . . . , n} (0-simplexes), edges

E = {eij |i, j ∈ V } (1-simplexes) and triangles T = {tijk|eij , ejk, eki ∈ E} (2-simplexes). Re-

call that integration of a differential r-form represents its measurement over an r-manifold.

So it is natural to associate discrete 0-forms with pointwise measurements at vertices. Dis-

crete 1-forms are measurements along edges and so they are coefficients stored on edges.

Finally discrete 2-forms are measurements over triangles, and they are naturally associated

with coefficients living at triangles. Notice we have defined discrete forms without referring
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to local coordinates or metric of the domain K. This is what we expected since differential

forms are metric independent.

DEC introduces a discrete exterior derivative operator, or discrete differential, d on K.

Its definition is based on Stokes’ theorem, which says that the measurement of a form ω

on the boundary of a simplex σ is the same as the measurement of the continuous exterior

derivative d of this form on the simplex itself

∫
σ

dω =
∫
∂σ
ω. (1.1)

So the discrete differential operator can be seen as the transpose of the boundary operator

and we will use this as the definition of the discrete differential. For a simplicial complex,

the boundary operator is given by the oriented incidence matrices. For example, consider

the incidence matrix of edges on triangles. Each triangle has a column with 3 nonzero

entries, either +1 or −1, depending on whether a boundary edge is oriented the same way

or opposite to the triangle. With these matrices d0 = ∂T1 maps 0-forms to 1-forms while

d1 = ∂T2 maps 1-forms to 2-forms. We will generally neglect the subscripts as the type of

d is implied by its argument. Since ∂ ◦ ∂ = 0 (the boundary of a boundary is empty) we

immediately get d ◦ d = 0, as is the case in the standard smooth exterior calculus setting.

So far we have only spoken of discrete r-forms which are scalars associated with r-

simplexes, and used mesh topology only to bring in the discrete differential d. The metric

comes in through the Hodge-? operator. In the smooth setting, the Laplace operator on a

2-manifold can be represented by d and ?,

∆ = −(?d ? d + d ? d?). (1.2)

We will discuss Hodge-? in details in Chapter 5. For now we only need to know that, the

definition of Hodge-? operator on K is induced by a Riemannian metric on K. While the

discrete differential d is determined by the mesh topology, the discrete Hodge-? is induced

by a discrete metric on K. Evidently, piecewise linear imbedding of K into an ambient

space locally defines a isomorphism to R2 under which the barycentric coordinates of points

within each triangle are invariant. We call it an affine atlas of K. The resulting metric of

K induced by the embedding are piecewise uniform. A diagonal discrete Hodge-? operator
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is constructed through the dual complex of K. The interested reader is referred to [Bossavit

2001; Desbrun et al. 2005a]. Due to its simplicity and flexibility, such PL imbedding has

been widely used for modeling and computing in spite of its low approximation order.

Instead we will introduce in the following a smooth atlas on K through subdivision.

1.2 Subdivision Differential Structure

Recall that a Cr-atlas on a 2-manifold M is a collection {(Uα, ψα), ψα : Uα → R2} of

coordinate systems on M such that the coordinate neighborhoods {Uα} cover M , and for

any pair (U1, ψ1) and (U2, ψ2) of coordinate systems, the transition function ψ1 ◦ ψ−1
2 is a

Cr-diffeomorphism. There are two reasons why a smooth atlas on the simplicial complex

K is preferred.

First, Galerkin’s method for solving partial differential equations often requires certain

regularity for the finite element bases. For example, the Laplace operator (1.2) is metric

dependent. The PL 0-form basis is capable of solving Laplace’s equation of scalar fields, but

not enough to solve the bi-Laplace equation.

Second, splines together with subdivision schemes have become the major tool for accu-

rate surface modeling through coarse control meshes. Subdivision surfaces are very flexible

and easily accommodate the construction of smooth surfaces of arbitrary topology. For

example, Loop’s subdivision scheme, as described in the following, generates a specific class

of subdivision surfaces. These surfaces are C2, except at a finite set of points where they

are C1 (see Figure 1.1). As the physical domain is represented by subdivision surfaces over

which computation is carried out, for instance, simulations of flows over an aerofoil defined

by subdivision surfaces, using the smooth structure induced by subdivision to maintain the

approximation order is just a natural choice.

Loop’s subdivision scheme generalizes quartic box splines to irregular meshes. Recall

that a quartic box spline is generated by convolving a PL hat function on regular triangle

meshes along the three principal directions. Such splines are C2 functions on R2 that

are piecewise degree-four polynomials. Further, they are refinable and therefore admit

subdivision schemes on coefficients associated with vertices (see Figure 1.2, left and middle).

Basically, a subdivision scheme consists of the splitting step that refines the mesh followed

by the averaging step that calculates coefficients at the refined level through local linear
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Figure 1.1: Surface generated by Loop’s subdivision scheme. From left to right: initial mesh;

subdivision level 1; subdivision level 2; limit surface.

combinations of coefficients at the coarser level. Loop generalized subdivision schemes of

quartic box splines to irregular setting in his master’s thesis [1987] (see Figure 1.2, right). We

denote by φv the basis function generated by Loop’s scheme by setting a single coefficient

one at the vertex v and zero at other vertices. What is important to us is that Loop’s

subdivision scheme defines a C2 atlas {(|N1(v,K)|, φv : |N1(v,K)| → R2} on K, where

|N1(v,K)| denotes the 1-ring of triangles of K sharing vertex v.

11

11

1

10 3 3

1

1

×1/16 ×1/81

α

1-αn α

α

α

α α
evenoddeven

Figure 1.2: Subdivision stencils of quartic box splines: even stencils at valence 6 vertices

(left); odd stencils (middle). Stencils of Loop’s scheme at irregular vertices of valence n

(right).

While Loop’s subdivision scheme is concerned with data at vertices, the other class of

subdivision schemes, called dual subdivision schemes, map coefficients at triangles from the

coarser level to the refined level. Both of them have been widely used for surface modeling as

well as physical modeling of scalar fields. The natural question to ask is: what about 1-forms

on surfaces? In the following section, we introduce a new class of edge-based subdivision

schemes which can be used to construct 1-forms on K.
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1.3 Contribution: Subdivision Construction of Smooth Forms

The major contribution of this thesis is to extend the method of subdivision to the con-

struction of smooth differential forms on simplicial complex K. Our work is motivated by

the construction of Whitney forms on simplicial complexes (see [Whitney 1957]), which was

originally used to build homomorphism between cohomology groups. In the 1970s, Whit-

ney elements were rediscovered in the finite element literature as certain types of mix finite

elements. Their connection to Whitney’s work were first realized by Bossavit [1988].

On a triangle mesh K, Whitney 0-forms φv are piecewise linear functions φi associated

with each vertex vi, and Whitney 2-forms φt are simply piecewise constants associated with

triangle tijk. Whitney 1-form basis φe associated with edge eij is given by

φij = φidφj − φjdφi. (1.3)

As mappings from coefficients on r-simplexes to r-forms, Whitney forms satisfy the following

commutative relations:

dφv = φed, dφe = φtd. (1.4)

The commutative relations (1.4) assures that exact discrete r-forms get mapped to exact

r-forms. This property is essential for preserving the structure of the cohomology groups

on K. For computational purpose, preserving exactness of mix finite element bases is

crucial for annihilating spurious modes (see [Bossavit 1990]). Note that φij is linear within

each triangle but has only tangential continuity across the boundary. How to get 1-form

bases of higher order of smoothness? Naively we could replace the 0-form basis φi in (1.3)

by a smoother 0-form basis, say the basis generated by Loop’s scheme. Unfortunately this

approach does not quite work because it does not assure the commutative relations. Neither

does it admit a subdivision scheme.

The key step in our construction is to notice the refinability of Whitney 1-forms. It is

well known that both PL hat functions and piecewise constant functions are refinable. It

turns out that Whitney 1-forms are refinable as well. We observed the following two-scale

refinement equation for the Whitney 1-form associated with the edge eij (see Figure 3.2,

left):

φij =
1
2
φip +

1
2
φpj +

1
4
φmn +

1
4
φrq −

1
4
φpm −

1
4
φnp −

1
4
φpr −

1
4
φqp. (1.5)
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Written in matrix notations

Φe = φeSW1 , (1.6)

where Φe represents a row vector of Whitney 1-forms on the coarse mesh and φe the corre-

sponding row vector of Whitney 1-forms on the refined mesh. The refinement coefficients

are written as entries of the subdivision matrix SW1 . As in the refinable scalar functions,

these refinement coefficients of Whitney 1-forms naturally defined a subdivision scheme

based on edges (see Figure 3.2, middle and right).

i jp

n

r q

m

1/2

evenodd

1/4

-1/4 -1/4

Figure 1.3: Left: Support of Whitney 1-form associated with the central edge ij; Right: the

edge-based subdivision scheme for Whitney 1-forms.

Staring with SW1 , we build edge subdivision scheme S1 for smooth 1-forms by utilizing

the convolution arguments of constructing B-splines. We prove that S1 is C1 on regular

meshes and satisfies the commutative relations with the subdivision schemes S0 (quartic

box spline) and S2 (half-box spline scaled by 1
4)

dS0 = S1d, dS1 = S2d. (1.7)

We also prove that, the commutative relations (1.7) is equivalent to exactness preserving

of S1. We use (1.7) as the guiding principle to extend S1 to arbitrary topology setting. We

prove that S1 is C0 at irregular vertices. Therefore, Sr (r = 0, 1, 2) generate a smooth de

Rham complex on simplicial surfaces.

Our method can be naturally extended to three-dimensional subdivision schemes on

tetrahedra meshes. We consider subdivision of the uniform mesh consisting of tetrahedra

and octahedra, as proposed by [Schaefer et al. 2004]. Such mesh structure allows for refine-

ment equations. Again our construction recovers classic Whitney forms on tetrahedra. At

the same time, it yields a new class of Whitney forms on octahedra.
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1.4 Related Work

Matrix subdivision The theory of matrix subdivision schemes have been studied in the

literature of multiwavelets as well as surface modeling [Cohen et al. 1995; Heil & Colella

1996; Jiang & Oswald 2003; Charina et al. 2005]. We interpret subdivision schemes of

r-forms as matrix subdivision schemes. As a result, the theory and techniques of ma-

trix subdivision can be used for convergence and regularity analysis of limit r-forms. Our

demonstration has initiated a new category of applications of matrix subdivision.

High order Whitney Forms and Mixed Finite Elements As an extension of Whit-

ney forms which is only PL linear, construction of high order polynomial forms were studied

by many researchers (see [Cendes 1991; Hiptmair 1999, 2001; Bossavit 2002; Arnold et al.

2006a]). Their constructions are mainly concerned with non-conforming mixed finite ele-

ments in the sense that compatibility conditions are imposed on element boundaries while

smoothness across boundaries is not assured. They are not mappings from discrete r-forms

to r-forms but Whitney forms are. No analogs to the commutative relations are presented

in their constructions.

In contrast our construction of high order Whitney forms satisfies the following prop-

erties: (a) Linear mappings from discrete r-forms to r-forms; (b) Respect for the commu-

tative relations (1.4); (c) Smooth across boundaries of elements; (d) Admitting subdivision

schemes.

The immediate consequence of property (b) and (c) is that our method leads to smooth

mixed finite element bases that admit the exact sequences of de Rham complex. The exact

sequences of de Rham complex are crucial to the stability of mixed finite elements for

electromagnetism and elasticity, e.g. [Bossavit 1990; Arnold et al. 2006b].

Simulations on Surfaces of Arbitrary Topology In order to perform simulations of

vector fields on surfaces of arbitrary topology, one way is to track the local coordinate in-

duced by each surface patch and impose continuity across the patch boundaries (e.g. [Stam

2003]). On the other hand, discrete differential modeling through Whitney forms has the

advantage that it is coordinate free and intrinsic to the mesh structure. For instance, simula-

tions of simplicial fluids were demonstrated by [Elcott et al. 2007], where tangential/normal

continuity is assured by Whitney form bases and the diagonal discrete Hodge-? operator is
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used. Our construction supplies a new smooth 1-form basis which has higher approximation

order and implies a discrete Hodge-? operator with larger support. At the same time it

inherits the advantages of discrete differential modeling. We demonstrate a 1-form Laplace

solver using our 1-form bases and verify its optimal rate of convergence in the energy norm.

1.5 Overview

This thesis is organized as follows. In Chapter 2 we detail the subdivision differential struc-

ture of simplicial surfaces. We introduce the concept of r-cochain subdivision. In Chapter

3 we build the theory of subdivision forms. We establish convergence and regularity of

r-cochain subdivision schemes. We prove that commutative relations are equivalent to ex-

actness preserving of 1-cochain subdivision schemes. In Chapter 4 we design particular

subdivision schemes of r-forms following the theory in Chapter 3. We also show the ap-

plications of the 1-form scheme to tangential vector field design. In Chapter 5 we solve

the Laplace and bi-Laplace equations of 1-forms on Riemannian surfaces using our smooth

1-form bases. In Chapter 6 we extend our method to three-dimensional subdivision on

tetrahedra meshes. The conclusion is given in Chapter 7 and the future work is discussed

there.
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Chapter 2

Subdivision Differential Structures of Simplicial

Surfaces

In this chapter we describe the fundamentals of subdivision theory on simplicial surfaces

and the differential structures indorsed by subdivision functions. Subdivision schemes are

widely used in all areas of geometric modeling and computer graphics [Zorin & Schröder

2000; Warren & Weimer 2001]. Their foremost benefit is the ease with which they accommo-

date the construction of smooth surfaces in the arbitrary topology setting of meshes. They

also offer many favorable computational properties for applications ranging from surface

compression to physical modeling [Khodakovsky et al. 2000; Grinspun et al. 2002]. Their

mathematical properties are well understood [Reif 1995, 1999; Zorin 2000a,b]. A large vari-

ety of subdivision schemes and extensions have been developed since the 1970s. Generally,

subdivision schemes are classified as either primal (e.g., Catmull-Clark [1978], Loop [1987],

and
√

3 [Kobbelt 2000]) with data being stored at vertices, or dual (e.g., Doo-Sabin [1978]

and dual-
√

3 [Oswald & Schröder 2003] with data being stored at faces.

In DEC the underlying domain is given in the form of discrete manifold. In general, a

two-dimensional discrete manifold M, or 2-manifold for simplicity, is a simplicial surface

that admits local isomorphism to R2. A 2-manifold has no isolated edges or isolated ver-

tices, and each of their edges is adjacent to two triangles (except for the boundary where the

edge is adjacent to only one triangle). We presume that all simplicial surfaces discussed in

this thesis are 2-manifolds. In the context of geometric modeling or finite element methods

we approximate or discretize a continuous surface by a simplicial surface embedded into

3D which naturally induces a piecewise linear isomorphism. This isomorphism identifies
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each triangle of the mesh with a region on R2 under which the barycentric coordinates of

points within each triangle are invariant. However, the resulting atlas formed by the piece-

wise linear isomorphism is not differentiable across boundaries of triangles. While higher

smoothness of a basis function is easy to achieve within triangles, it is highly nontrivial

to maintain their smoothness across boundaries of triangles when the mesh topology is

complicated. In this chapter we will see that a Cr subdivision scheme naturally induces a

Cr atlas on a 2-manifold. As an application, a new paradigm for thin-shell modeling was

proposed in [Cirak et al. 2000] in which subdivision functions served as H2 elements needed

for a finite Kirchhoff-Love energy. For the purpose of this thesis, the differential structure

induced by subdivision paves the way for the construction of smooth differential forms on

2-manifolds.

2.1 Exterior Calculus on Simplicial Complexes

2.1.1 Simplicial Complexes

We review some basics of simplicial complexes. The reader is invited to refer to [Spanier

1989; Wallace 1970; Whitney 1957] for details.

A simplex σ in an affine space E is a set of points expressible in the form

p = λ0v0 + · · ·+ λrvr, with λi ≥ 0 and
r∑
i=0

λi = 1, (2.1)

the vi being independent vertices. Then dim(σ) = r and σ is called r-simplex. The µi are

the barycentric coordinates of p in terms of vi. We write σ = v0 . . . vr. Then the simplexes

vn0 . . . vnk
are the faces of σ, and the vi are its vertices.

By the oriented simplex σ = v0 . . . vr, we mean the simplex σ oriented by the set of

vectors {v1 − v0, . . . , vr − v0}, or equivalently, {v1 − v0, . . . , vr − vr−1}. For any permuta-

tion {n0, . . . , nr} of {0, . . . , r}, vn0 . . . vnr has the same or opposite orientation as v0 . . . vr,

according as the permutation is even or odd. We define the boundary operator as follows:

∂v0 . . . vr =
r∑
j=0

(−1)jv0 . . . v̂j . . . vr, (2.2)

where v̂j indicates that vj is removed from the sequence.
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Recall that a simplicial complex K is a subspace of an affine space E, consisting of a

set of simplexes such that the intersection of any two is a face of each. The dimension

of K is the largest of the dimensions of the simplexes making up K. A two-dimensional

simplicial complex K is also called simplicial surface. The 0-simplexes in K form a set called

Vertex(K). The sets of 1- and 2-simplexes are called Edge(K) and Face(K), respectively.

A subcomplex L of a simplicial complex K, denoted by L ⊂ K, is a subset of K that

is a simplicial complex. Given any simplex σ ∈ K, let σ̄ ⊂ K denotes the subcomplex

containing σ and all of its subsets. For any subcomplex L ⊂ K we define its 1-neighborhood

N1(L,K) by

N1(L,K) =
⋃
σ̄, where σ ∈ K and σ̄ ∩ L 6= ∅.

Larger neighborhoods of L are defined recursively by Nj(L,K) = N1(Nj−1(L,K)). We

simplify the notation to Nj(L) when the ambient complex K is clear from the context.

Given a simplicial complex K, we can form its topological realization |K| in Rm by

identifying the vertices 1, . . . ,m with the standard basis vectors e1, . . . , em of Rm. For each

simplex s ∈ K let |s| denote the convex hull of its vertices in Rm, and let |K| =
⋃
s∈K |s|.

Then any point p ∈ |K| can be represented as a convex combination of vertices of K:

p =
∑
v∈K

λvv, with λv ≥ 0 and
∑
v∈K

λv = 1.

Next we define piecewise linear maps on K. A piecewise linear map f : |K| → Rn is

given by

f(p) =
∑

v∈Vertex(K)

pvf(v) for all p ∈ |K|.

An injective piecewise linear map from |K| into Rn is called a geometric realization of K.

Notice that a piecewise linear map is completely determined by its values on Vertex(K).

A subdivision function, which will be introduced later, is also determined by functions on

Vertex(K), which we call control nets. The space of all control nets on K is denoted by

CN(K) = {u : Vertex(K) → R}. (2.3)

While control nets are functions on Vertex(K), we can define functions on Edge(K) and

Face(K) as well. They can all be unified with the concept of cochains, which will be
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discussed in the next section.

2.1.2 Cochains and Forms

In this section we briefly introduce the concept of Geometric Integration on simplicial com-

plexes. For more details the reader is referred to [Whitney 1957]. We let K be a complex,

and let its simplexes be oriented. An (algebraic) r-chain of K is an expression of the form

A =
∑
aiσ

r
i , the ai being real numbers. We write dim(A) = r. Two chains are added

by adding corresponding coefficients; to multiply a chain by a real number, multiply each

coefficient by that number. Thus the set of r-chains becomes a linear space Cr = Cr(K).

The dimension of this space is the number of r-simplexes of K.

An (algebraic) r-cochain X of K is an element of the conjugate space Cr = C̄r of Cr.

We write X ·A in place of X(A). Set Xi = X · σri . If we let σri denote not only an oriented

simplex or a chain, but also the cochain defined by σri · σrj = δji , then the σri form also a

base for the r-cochains; for any X as above, clearly X =
∑
Xiσ

r
i .

Remark 2.1. As functions on the vertices of a simplicial surface K, 0-cochains are equivalent

to the control nets defined as (2.3). Similarly 2-cochains are equivalent to the control nets

defined on triangles. While classic primal/dual subdivision schemes are defined as linear

mappings on vertex/face control nets, in Section 2.2 we will generalize subdivision schemes

to linear mappings on r-cochains for r = 0, 1 or 2.

The boundary operator on a simplex is defined as (2.2). Given an r-chain A =
∑

i aiσ
r
i ,

the boundary ∂A is an (r − 1)-chain defined as

∂
∑
i

aiσ
r
i =

∑
i

ai∂σ
r
i .

The operation ∂ is a linear mapping of Cr(K) → Cr−1(K), for each r ≥ 1. It follows

from (2.2) that

∂∂A = 0, for all chains A. (2.4)

The coboundary dX of the r-cochain X of K is defined by

dX ·A = X · ∂A, (2.5)
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dX being an (r + 1)-cochain of K. Because of (2.4), we have

ddX = 0, for all cochains X. (2.6)

Recall that a differential r-form ω, or r-form for short, in the set Q ⊂ Rn, is a function

defined in Q, whose values are r-covectors; r is the degree of ω. We say ω is s-smooth if,

for each r-vector α, ω(p) · α is s-smooth.

A convex polyhedral cell (or cell for short) σ in an affine space E is a non-empty bounded

subset of E expressible as the intersection of a finite set of closed half spaces. We call the

cell an r-cell if dim(σ) = r. Note that r-simplex is also an r-cell.

Given a r-form ω, we can define the integration of ω, denoted by
∫
σ ω, for any oriented r-

cell, ω being defined and continuous in σ. The definition is based on simplicial subdivisions

of σ and the uniform continuity of ω [Whitney 1957, Chapter 3]. Integration of the r-form

ω on cellular r-chains
∑
aiσ

r
i , ai being real coefficients, follows from linearity of integration:

∫
P

i aiσr
i

ω =
∑
i

ai

∫
σr

i

ω.

An r-form ω in the open set Q ⊂ Rn is regular if it is continuous there, and there is a

continuous (r + 1)-form ω′ in Q such that

∫
∂σ
ω =

∫
σ
ω′, for all (r + 1)-simplexes σ ⊂ Q. (2.7)

Then ω′ is uniquely determined due to [Whitney 1957, Lemma 16a]. We call ω′ the derived

form dω of ω. If ω is smooth, the operation d is the usual exterior differential. Note we

used boldfaced d for derivative as it should be distinguished from the coboundary operator

d. Given a regular r-form ω, Stokes’ Theorem follows from the definition of d

∫
∂σ
ω =

∫
σ

dω, all (r + 1)-cells σ. (2.8)

Remark 2.2. Cochains are the discrete counterparts of differential forms in the sense that

they are both defined as mappings from chains to real numbers. This analogy has its physical

relevance as well. As physical objects are represented by differential forms, the natural way

to measure them through sensors is to detect their integrations on manifolds with the same
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degree, that is to say, r-forms should be integrated on r-manifolds. When the domain is a

simplicial complex, the measurements of forms are represented as cochains.

2.2 Subdivision Schemes on Simplicial Surfaces

2.2.1 Subdivisions of Simplicial Surfaces

Now we focus on two-dimensional simplicial complexes, or simplicial surface for short.

Throughout we let K denote a simplicial surface without boundary. Recall that there

are three collections of simplexes in K: Vertex(K), Edge(K) and Face(K). The valence of

a vertex is the number of edges incident to the vertex. We define the “4 to 1” subdivision

of K, denoted by D(K), as follows. For each edge e of K, let m(e) be the middle point of

|e|. We insert m(e) as a vertex of D(K), called a E-type vertex, and let

EV =
⋃

e∈Edge(K)

m(e).

The vertices of D(K) consist of the vertices of K, called V-type vertices, and the E-type

vertices:

Vertex(D(K)) = Vertex(K)
⋃
EV.

Now each E-type vertex split each edge of K into two edges. We split each face of K into

four faces by connecting the three E-type vertices at its edges. It is easy to verify that D(K)

is a simplicial complex. By repeating the process, we can define the subdivision sequences

of K recursively by letting Kj = D(Kj−1), for j ≥ 1 and K0 = K.

2.2.2 Cochain Subdivision Schemes

Subdivision schemes are generally classified into two categories. A primal subdivision

scheme S is the linear mapping of coefficients (or control nets) at vertices: S : CN(K) →

CN(D(K)). Similarly, a dual subdivision scheme is the linear mapping of coefficients at

faces. Primal/dual subdivision schemes can be unified as r-cochain subdivision schemes,

defined as

Sr : Cr(K) → Cr(D(K)) r = 0, 1, 2. (2.9)
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From now on the notation Sr is reserved for r-cochain subdivision schemes. We may simply

say subdivision scheme S when the dimension of underlying cochains is unimportant or clear

from the context.

Fix the simplicial surface K. Given an r-cochain X we can represent the operation of

Sr by its mask a

(SrX) · σ = aστX · τ for all r-simplexes σ. (2.10)

Given an integer m > 0 and any simplex σ of D(K), we define the undivided-m-

neighborhood, which is a generalization of [Arden 2001, Definition 5], by

Um(σ,K) = {s ∈ K : |s| ⊂ Nm(σ,D(K))}. (2.11)

Definition 2.3. A cochain subdivision scheme Sr is local if there is an integer mw > 0,

called the mask width, such that for any pair K and K̃ of simplicial surfaces without

boundary, any simplex σ ∈ D(K), and any embedding ρ : Umw(σ,K) → K̃, we have

aστ =


aρ(σ)ρ(τ) for all τ ∈ Umw(σ,K),

0 otherwise.

2.2.3 The n-Regular Complex Kn

All the new vertices introduced by the 4-to-1 subdivision are valence 6, while the original

vertices remain the same valence. The n-regular complex is an infinite simplicial surface

with a single vertex of valence n surrounded the vertices of valence 6, consisting of n rotated

wedges W (Figure 2.1).

Let e1 ≡ (0, 1) and e2 ≡ (1, 0). A wedge W (Figure 2.1, left) is an infinite oriented

simplicial complex defined as

Vertex(W ) = {m = (m1,m2) : m ∈ Z2 and m1 ≥ 0,m2 ≥ 0},

Edge(W ) =
{
{m,m+ e1}, {m,m+ e2}, {m+ e1,m+ e2} : m ∈ Vertex(W )

}
,

Face(W ) =
{
{m,m+ e1,m+ e2}, {m+ e1,m+ e1 + e2,m+ e2} : m ∈ Vertex(W )

}
.

For each valence n ≥ 3, we defined the n-regular complexKn as follows: Let {Wi, i ∈ Zn}

denote n disjoint copies of W , and denote the vertices of Wi by (i, j) for i ∈ Zn and



17

1m

2m

1 2 3 4

1

2

3

4

0

Figure 2.1: Left: A wedge W with oriented edges and triangles (orientations indicated by

arrows); right: the n-regular complex Kn generated from n copies of W (n = 5).

j ∈ Vertex(W ), where Zn is the group of integers modulo n. We then identify vertices by

the equivalence relation

(i, (j, 0)) ≡ (i− 1, (0, j)) for all j ≥ 0 and i ∈ Zn, (2.12)

the substraction being taken modulo n. The resulting complex Kn is a simplicial surface

without boundary (Figure 2.1, right). The central vertex, denoted by v0, has valence n

and all other vertices have valence 6.

The n-regular complex is self-similar under subdivision. We first define the contraction

map on the wedge W . The vertices of W are points of R2 that define a geometric realization

of W , and therefore we have a geometric realization of D(W ). The map c0 : Vertex(W ) →

Vertex(D(W )) given, in terms of this realization, by

c0(x) =
x

2

is a simplicial isomorphism. We can extend the definition of contraction map to r-simplexes

of W as follows

cr(v1 . . . vr) = c0(v1) . . . cr(vr) r = 1 or 2.

We simply denote the contraction map cr of r-simplexes by c since the dimension r is clear

from the argument.
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Applying c to each wedge Wi of Kn extends c to a simplicial isomorphism

c : Kn → D(Kn),

which we call the contraction map. Contraction induces a piecewise linear homeomorphism

|c| : |Kn| → |D(Kn)|, which when composed with the identification induced by subdivision

ı : |D(Kn)| → |Kn|, results in a piecewise linear homeomorphism on |Kn|, also denoted by

c,

c : |Kn| → |Kn|. (2.13)

2.2.4 The Subdivision Map

The subdivision map represents the operation of stationary 0-cochain subdivision near an

extraordinary vertex v0. Let S be a local subdivision scheme with mask width mw. For any

m ≥ mw we define the the r-cochain subdivision map Sn,m as the linear transformation

Sn,m,r = c∗Sr : Cr(Nm(v0,Kn)) → Cr(Nm(v0,Kn)).

We are mainly interested in the special case Sn,mw,r, denoted by Sn,r for simplicity. The

action of Sn,m,r is completely determined by Sn,r [Arden 2001, Theorem 11]1.

2.2.5 Subdivision Functions

The 0-cochain subdivision schemes have been the major interests of the classic subdivision

theory. We review some basics about 0-cochain schemes.

Definition 2.4. A 0-cochain subdivision scheme S0 is said to be convergent if for any

simplicial surface K and 0-chain X ∈ C0(K) there exists a continuous function on |K|,

denoted by S∞0 X, such that

sup
v∈Vertex(Kj)

∣∣(Sj0X)v − S∞X(v)
∣∣→ 0, as j →∞.

We call the limit function S∞X a subdivision function. S0 is said to be affine invariant if

the mask avw defined as (2.10) satisfy
∑

w avw = 1 for every v ∈ Vertex(D(K)). A local and

1The proof is for 0-cochain subdivision map only. But it can be easily generalized to the case of r-cochains.
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affine 0-cochain scheme is called stationary. A convergent 0-cochain scheme is necessarily

affine invariant [Cavaretta et al. 1991].

Remark 2.5. To define the convergence of 0-cochain scheme, we only needed the topological

structure on |K| since continuity can be defined on a given topology. To define the limit of

a r-cochain scheme as a differential r-form on |K|, the first step is to build a smooth atlas

on |K| under which smoothness of r-forms is analyzed. We will utilize subdivision functions

to build such atlas.

2.3 The Subdivision Smooth Structure

We first recall the definition of coordinate charts and atlas on a manifold.

Definition 2.6. A coordinate system on an n-dimensional manifold M is a pair (U, φ),

where U is an open subset of M and φ : U → Rn is continuous and injective. A Cr-atlas on

a manifoldM is a collection {(Uα, ψα)} of coordinate systems onM such that the coordinate

neighborhoods {Uα} cover M , and for any pair (U1, ψ1) and (U2, ψ2) of coordinate systems,

the transition function ψ1 ◦ ψ−1
2 is a Cr-diffeomorphism.

We are going to construct the affine atlas and the Cr atlas on |K| by utilizing Cr

subdivision functions on |K|. We will follow the construction in [Arden 2001].

2.3.1 The Affine Coordinates

The vertices of valence other than 6 in a simplicial surface K are called extraordinary

vertices. We denote the set of such vertices Ext(K). The regular complex, denoted by K6,

is an infinite simplicial surface whose vertices can be identified with Z2. Each vertex of

K6 is of valence 6 and hence the notation. We first construct an atlas of coordinate charts

on |K| \ Ext(K). Let ι: L → K6 be an embedding of a simplicial subsurface L ⊂ K into

the regular complex, and let ψ : |K6| → R2 be a regular realization of K6. Then the

composition

x : |L|◦ ι−→ |K6|
ψ−→ R2.

is a coordinate chart on the coordinate neighborhood |L|◦, where |L|◦ denotes the interior

of |L|. The collection of all such charts forms a C∞-atlas on |K|\Ext(K), called the affine

atlas. Moreover, the transition functions are affine maps.
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2.3.2 The Characteristic Map

The characteristic map, first introduced by [Reif 1995], plays a pivotal role in the subdivision

theory. We adopted the definition in [Arden 2001]:

Definition 2.7. Suppose Sn is a convergent 0-cochain subdivision scheme: C0(Kn) →

C0(D(Kn)). For a fixed valence n, suppose the distinct eigenvalues of the subdivision map

λ0, λ1, . . . , λN , ordered by non-increasing magnitude, satisfy the following conditions:

1. The dominant eigenvalue λ0 is one, and is an algebraically simple eigenvalue.

2. The sub-dominant eigenvalue λ1 is real and positive, and is of geometric and algebraic

multiplicity 2.

3. The other eigenvalues, λj for j > 1, are of magnitude strictly less than λ1.

Let u1, u2 ∈ C0(Nmw(Kn)) be linearly independent λ1-eigenvectors of Sn. Then the R2-

valued control net u = (u1, u2) defines a continuous map

S∞n u : |N1(v0,Kn)| → R2,

called a characteristic map.

2.3.3 The Cr-atlas

Now we are ready to introduce the Cr smooth atlas on |K|. Let ιv be an identification

between N1(v,K) and N1(v0,Kn). Let χ : |N1(v0,Kn)| → R2 be a characteristic map. The

composition ψv = χ ◦ ιv : |N1(v)|◦ → R2 is a characteristic coordinate chart,

ψv : |N1(v)|◦
ιv−→ |N1(v0,Kn)|

χ−→ R2.

The following result was proved by [Arden 2001, Proposition 15].

Theorem 2.8. Suppose S is a stationary 0-cochain subdivision scheme such that: (i) subdi-

vision functions are Cr-away-from-extraordinary-verticies and (ii) there are characteristic

maps which are injective and regular on |K|\Ext(K). Then for any simplicial surface K

without boundary, the collection of characteristic charts {(|N1(v)|◦, ψv)} for v ∈ Vertex(K)
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is a Cr-atlas on |K|. Furthermore, the atlas is Cr-compatible with the affine coordinate

charts and with the subdivision smooth structure of D(K).

The Cr-atlas of characteristics charts {(|N1(v)|◦, ψv)} on a simplicial surface K without

boundary is called the subdivision smooth structure on |K|. We will prove our main results

in the following by using such coordinate charts.
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Chapter 3

Theory of Subdivision Forms on Simplicial

Surfaces

This chapter builds the theoretical foundation of our subdivision construction of smooth

forms. In Section 3.1 we introduce Whitney forms as mappings from cochains to forms.

In Section 3.2 we introduce the refinement equations of Whitney forms and point out the

connection with matrix subdivision schemes. In Section 3.3 we prove convergence criteria

for r-cochain subdivision schemes. In Section 3.4 we prove that commutative relations are

equivalent to exactness preserving of 1-cochain subdivision schemes and we will use them

as the guiding principle for our construction of subdivision schemes. In Section 3.5 we

construct a particular smooth subdivision 1-form in arbitrary topology setting and perform

regularity analysis.

3.1 Whitney Forms

3.1.1 Definition

Given a simplicial complex K, we let Ωr(K) denote the space of r-forms on |K|. We can

integrate an r-form ω on any r-chain A of K. The integration
∫
A ω is a linear function of

r-chains. We define de Rham map map R : Ωr → Cr(K) such that, for every ω ∈ Ωr(K)

Rω ·A =
∫
A
ω all r-cochains A of K. (3.1)
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Due to Stokes’ Theorem, for an (r + 1)-chain B, we have

Rdω ·B =
∫
B

dω =
∫
∂B
ω = Rω · ∂B = dRω ·B,

and hence

Rdω = dRω.

The converse is to define an embedding of Cr(K) into Ωr(K). The embedding introduced

below was first proposed by Whitney [1957, Chapter 5 §11]. Since the dimension of the r-

chain space Cr(K) is finite and Cr(K) is its dual space, we may identify the chains with the

cochains of K. We denote by λi the barycentric coordinate corresponding to the vertex vi

of K.

Definition 3.1. We define the linear mapping W : Cr(K) → Ωr(K) such that, for each

r-simplex σ = vi0 . . . vir of K,

Wσ = r!
∑

j=0,...,r

(−1)jλijdλi0∧. . .∧d̂λij∧. . .∧dλir . (3.2)

We call W the Whitney map and call Wσ the Whitney form of σ. Further we let Wr(K)

be the space of Whitney r-forms on K.

Note that the barycentric coordinates λi are C∞ on the interior of any r-simplex |σ|

of K while they are not C1 across ∂σ. Hence, Wσ is continuous on the interior of |σ| but

discontinuous across ∂σ. What’s important for Whitney forms is that, for each r-cell s of

|K|, the integration
∫
sWσ is well defined. Some properties of Whitney forms are listed

below. See [Whitney 1957; Dodziuk 1976; Dodziuk & Patodi 1976] for details.

Theorem 3.2. Given an r-simplex σ of K, for each r-cochain X, the Whitney form Wσ

has the following properties

Wσ = 0 outside N1(σ,K), (3.3)

WdX = dWX, (3.4)

RWX = X, (3.5)

WI0 = 1, (3.6)
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I0 being the unit 0-cochain of K and 1 being the unit function on |K|.

Whitney forms were used in [Whitney 1957] to build isomorphism between the coho-

mology groups of algebraic cochains and the cohomology groups of differential forms on

K. The most remarkable property of Whitney forms is the commutative relations given

by (3.4). The commutative relations ensure that the Whitney form of a closed cochain X,

that is dX = 0, is a closed form. Further, an exact (r + 1)-cochain X, that is X = dY

for some r-cochain Y , r ≥ 0, is mapped to an exact r-form. In Section 3.4 we will exploit

the commutative relations in depth. We will see that the commutative relations uniquely

determine the Whitney map on simplicial surfaces.

We have the following de Rham complex of Whitney forms

R ↪→W0(K) d−→W1(K) d−→ · · · d−→Wn → 0. (3.7)

If the manifold K is contractible, this complex is exact in the sense that the cohomology

spaces all vanish, that is to say, the range of each map d is precisely equal to (and not just

contained in) the null space of the succeeding map.

As the converse of (3.5), Dodziuk & Patodi [1976] proved the approximation property

of W stating that WR is approximately identity.

3.1.2 Whitney Forms on Simplicial Surfaces

We now focus on the Whitney forms on a simplicial surface K. For each vertex vi of K,

we use φi to denote the Whitney 0-form associated with that vertex. φi is simply the

barycentric coordinate corresponding to the vertex vi of K. Similarly, we denote by φij the

Whitney 1-form associated with the edge eij = vivj , and φijk the Whitney 2-form associated

with the triangle tijk = vivjvk. We have

φij = φidφj − φjdφi, (3.8)

φijk = 2dφi ∧ dφj . (3.9)

As an example, we verify some properties of φij . It is easy to see that
∫
eij
φij = 1

while its integration over any other edge yields zero. Furthermore, the Whitney 1-form is

supported on the two triangles incident to edge eij and varies linearly over each triangle.
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If we fix a metric we may associate the 1-form with a vector field (see Figure 3.1). Note

that the vector field is not continuous across the shared edge while its tangential component

along the edge is continuous. To see that this definition does indeed admit an expression

for the differential of any PL function f in terms of coefficients associated with edges under

the commutative relations (3.4), we consider the differential df over a single triangle tijk,

d(fiφi + fjφj + fkφk) = (fj − fi)(φidφj − φjdφi)

+ (fk − fj)(φjdφk − φkdφj)

+ (fi − fk)(φkdφi − φidφk)

= (fj − fi)φij + (fk − fj)φjk + (fi − fk)φki,

where we used the fact that φi + φj + φk = 1 and dφi + dφj + dφk = 0. The coefficients

associated with the φij,jk,ki are the differences (signed sums) of fi,j,k coefficients at the end

points of the respective edges, verifying that the coboundary operator d does transform

coefficient vectors of 0-forms (with respect to the 0-form basis) into the corresponding

coefficient vectors of 1-forms (with respect to the Whitney 1-form basis). In particular

Whitney 2-forms are constant forms on each triangle.

Figure 3.1: Visualization of Whitney 0-, 1-, and 2-forms. The 0-forms correspond to the

usual PL hat functions (left), while 2-forms are piecewise constant over each triangle (right).

The 1-forms can be visualized as vector fields if we choose a metric (middle).

Each triangle of K can be identified with a region in R2 under the affine coordinate,

and hence is equipped with Euclidian metric of R2 under which we can identify forms with

functions and vector fields. The de Rham complex of Whitney forms can be written in

terms of operations of vector calculus

R ↪→W0(K) ∇−→W1(K) ∇×−−→W2(K) → 0. (3.10)
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On a three-dimensional simplicial complex imbedded into R3, the corresponding de

Rham complex is

R ↪→W0(K) ∇−→W1(K) ∇×−−→W2(K) ∇·−→W3(K) → 0. (3.11)

3.1.3 Comparison with Mixed Finite Elements

Whitney forms on 2D and three-dimensional simplicial complexes have been rediscovered

in the literature of mixed finite element methods since around 1974. The earliest paper by

far pointing out this connection is due to [Bossavit 1988]. For instance the face elements

proposed by Raviart & Thomas [1977] are Whitney 2-forms of space-dimension 2. The

edge elements proposed by Nédélec [1980] are equivalent to Whitney 1-forms on a tetrahe-

dron. Mixed finite element methods have extensive applications in electromagnetism and

elasticity (e.g., [Bossavit 1998; Arnold et al. 2006a]). As an extension of Whitney forms

which is only PL linear, construction of high-order polynomial forms were studied by many

researchers (e.g., [Cendes 1991; Hiptmair 1999, 2001; Bossavit 2002; Arnold et al. 2006a]).

Their constructions are mainly concerned with non-conforming mixed finite elements in the

sense that compatibility conditions are imposed on element boundaries while smoothness

across boundaries is not assured. Recall that Whitney forms (3.2) define mappings from

cochains to forms. Their constructions of mix finite elements are not mappings of cochains.

No analogs to the commutative relations are there in their constructions.

In contrast our construction of high-order Whitney forms through r-cochain subdivision

schemes (2.9) satisfies the following properties,

1. Linear mappings from cochains to forms;

2. Respect the commutative relations (3.4);

3. Smooth across boundaries of elements;

4. Admit r-cochain subdivision schemes.

Precisely, given an r-cochains X as input, the r-cochain subdivision scheme generates an

r-form ω which is finitely supported on |K| and has partition of unity (3.6) if r = 0. The

interpolating property (3.5) is generally not held by the subdivision schemes. Rather they

are approximation schemes.
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The immediate consequence of property (b) and (c) is that our method leads to smooth

mixed finite element bases that admit the exact sequences of de Rham complex give

by (3.10). The exact sequences of de Rham complex are crucial to the stability of mixed

finite elements for electromagnetism and elasticity, e.g., [Bossavit 1990; Arnold et al. 2006b].

3.2 Refinement Equations of Differential Forms

The first step of our construction is to notice refinement equations of Whitney forms. In

general, a function f(x) on R2 is said to be refinable if it is a solution of the refinement

equation

f(x) =
∑
α∈Z2

cαf(2x− α), x ∈ R2. (3.12)

where cα are scalar coefficients. In words, in the case of the 4-to-1 subdivision of meshes,

f(x) at the coarser scale equals the linear combination of its translated versions on the finer

scale. The refinement equation is the key to build hierarchies of refinable functions from

coarse to fine, and it plays an important role in the theory of subdivision and wavelets.

In this section we will build similar refinement equations for differential forms as well.

The consequence of this is twofold. First, it enables us to construct differential forms

on simplicial surfaces through subdivision. Second, the subdivision schemes of differential

forms can be formally represented as the matrix subdivision which will be discussed in

Sections 3.2.2 and 3.2.3 in detail. The theory of matrix subdivision has been extensively

studied in the literature of multiwavelets but, to my knowledge, no geometric applications

of matrix subdivision have been reported. Our construction presents an example with

geometric meaning.

3.2.1 Refinement Equations of Whitney Forms

It is well known that, in the regular setting, the Whitney 0-form satisfies a simple linear

two-scale relation that yields the piecewise linear interpolation. We note that the definition

of Whitney k-forms relies on that of (k − 1)-forms. Therefore we have a built-in two-scale

refinement equation for Whitney 1-forms which is inherited from that of PL functions and

leads to PL interpolating of vectors valued at vertices. However this refinement equation

may not be satisfying since it is essentially a subdivision scheme of vector fields and we
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should not expect it to respect geometry of differential forms (it obviously depends on

coordinate systems). Recall the refinement equation (3.12) for 0-forms only involves itself

in a recursive way and the topological structure of the mesh. We are therefore seeking a

similar refinement equation for 1-forms which only depends on the topological structure of

|K|.

The domain where a Whitney 1-form lives upon can be set to be one pair of adjacent

triangles, which can be embedded into R2 through an affine transformation. The 4-to-1

subdivision splits one triangle of |K| into 4 sub-triangles by connecting the middle points of

each triangle side. We observed the following two-scale refinement equation for the Whitney

1-form associated with the edge ij (see Figure 3.2):

φij =
1
2
φip +

1
2
φpj +

1
4
φmn +

1
4
φrq −

1
4
φpm −

1
4
φnp −

1
4
φpr −

1
4
φqp (3.13)

i jp

n

r q

m

1/2

evenodd

1/4

-1/4 -1/4

Figure 3.2: Support of Whitney 1-form associated with the central edge eij (left). The edge-

based subdivision scheme for Whitney 1-forms (middle and right). The two children edges

are highlighted. The coefficients at the refined edges are obtained by averaging the coarse

edge coefficients with the odd or even stencils. Edge orientations are indicated by arrows.

Written in matrix notations

Φe = φeSW1 , (3.14)

where Φe represents a row vector of Whitney 1-forms on the coarse mesh and φe the corre-

sponding row vector of Whitney 1-forms on the refined mesh. The refinement coefficients

are written as entries of the subdivision matrix SW1 . Similarly the refinement relations of

Whitney 0- and 2-forms can be written as

Φv = φvSW0 , (3.15)
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Φ1(x-e1)Φ1(x)

Φ2(x)

Φ2(x-e2)

Φ3(x) Φ3(x-e1)

Φ3(x-e2)

Φ1(x-e2)
Φ2(x)

Φ2(x-e2)

Φ2(x-e1)

Φ1(x-e2)

Φ1(x-e1)Φ1(x)
e2

e1

e3
Φ2(x-e1)

Figure 3.3: Translations of 1-forms associated with 3 types of edges (left). Translations of

2-forms associated with 2 types of triangles (right).

Φt = φtSW2 . (3.16)

As in the refinable scalar functions, these refinement coefficients of Whitney forms naturally

defined subdivision schemes on coefficients associated with vertices, edges and triangles.

They all fall into the category of r-cochain subdivision schemes. While the vertex- and

triangle-based subdivision schemes are well known as primal and dual subdivision schemes,

respectively, the edge-based subdivision scheme is new (see Figure 3.2).

3.2.2 Matrix Refinement Equations for r-Forms

We will build the refinement equation for differential r-forms on R2. We consider the

geometric realization of the regular complex K6. The vertices of K6 are identified with

Z2. The oriented edges of K6 are obtained by translating the three edges denoted by ei

(see Figure 3.3). While the refinement coefficients cα in (3.12) are associated with vertices,

those for r-forms shall be associated with r-simplexes. We have seen in (3.13) that Whitney

1-forms on the coarser mesh are linear combinations of its scaled and translated version

associated with refined edges. The same is true with Whitney 2-forms.

Let Φe
i (x−α) denote the translations of a 1-form associated with the edge aligned with

ei. We can group three types of 1-forms into a 3-vector Φe(x) ≡ (Φe
1(x),Φe

2(x),Φe
3(x))T and

its translations are illustrated in Figure 3.3 (left). We consider matrix refinement equations

by extending the scalar coefficients cj in (3.12) to matrices. Formally we have the following.

Definition 3.3. A 1-form Φe is said to be refinable if there exist 3 × 3 matrices P eα such
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that

Φe(x) =
∑
α∈Z2

P eαΦe(2x− α). (3.17)

The coefficients {P eα} yield a matrix subdivision scheme Se. The definition of matrix sub-

division schemes is given by (3.24). The characteristic polynomial, or symbol of the 1-form

refinement equation is defined as

Se(z) ≡
∑
α∈Z2

P eαzα, z = (z1, z2). (3.18)

Here, by a slight abuse of notations, we use S(z) to denote the symbol of subdivision

scheme S. Similarly, we can group 2-forms into a 2-vector Φt(x) ≡ (Φt
1(x),Φt

2(x))T with two

components being 2-forms associated the down (gray) and up (white) triangles (Figure 3.3,

right).

Definition 3.4. A 2-form Φt is said to be refinable if there exist 2 × 2 matrices P tα such

that

Φt(x) =
∑
α∈Z2

P tαΦt(2x− α). (3.19)

The symbol of the 2-form refinement equation is defined in a similar way

St(z) ≡
∑
α∈Z2

P tαzα. (3.20)

Finally the symbols of the coboundary operators are given by

d0(z) =


−1 + z−1

1

−1 + z−1
2

−z−1
1 + z−1

2

 and d1(z) =

 1 −1 1

−z−1
2 z−1

1 −1

 . (3.21)

Each component Φe
i of the 3-vector Φe(x) represents a 1-form instead of a scalar function.

Given the global coordinates {dx, dy} on R2, Φe
i can be represented by its component

functions:

Φe
i (x, y) = ξi(x, y)dx+ ηi(x, y)dy.

By identifying each Φe
i with its vector field proxy (ξi(x, y), ηi(x, y))T , the refinement equa-



31

tion (3.17) can be written as

ξ(x) =
∑
α∈Z2

2P eαξ(2x− α), (3.22)

η(x) =
∑
α∈Z2

2P eαη(2x− α), (3.23)

where ξ = (ξ1, ξ2, ξ3)T and η = (η1, η2, η3)T . The component functions of the vector field

proxy satisfy the refinement equation with normalized coefficients P̃ eα = 2P eα. It is important

not to confuse the edge coefficients with the vector field coordinates. We will see that the

edge coefficients are integral quantities representing circulations of the vector field proxy.

Remark 3.5. From (3.22) and (3.23) we see that the refinement equation (3.17) admits a

1-form solution only if the normalized matrix coefficients {P̃ eα : α ∈ Z2} admit a vector

function solution.

3.2.3 Convergence of Matrix Subdivision Schemes

The material in this section is based on [Cohen et al. 1995; Heil & Colella 1996]. We consider

a uniform stationary matrix subdivision scheme defined by finite number of n × n matrix

coefficients {Pα : α ∈ Z2}. Given n × 1 control vectors at level j f j ≡ {f jα : α ∈ Z2}, the

control vectors at level j + 1 are recursively generated by f j+1 = Sf j :

f j+1
α =

∑
β∈Z2

Pα−2βf
j
β, α ∈ Z2. (3.24)

The matrix subdivision scheme S is convergent if for every set of control vectors f0 ∈

Rn × Z there is a continuous vector function f : R2 → Rn such that

lim
j→∞

sup
α∈Z2

∥∥(Sjf0)α − f(2−jα)
∥∥ = 0, (3.25)

and f 6= 0 for at least one initial datum f0. We denote the limit function f by S∞f0. If

S∞f0 ∈ C l for all initial data f0, we say that S is C l.

Many applications need weaker types of convergence. We interpolate control points

{f jα : α ∈ Z2} by constant test functions {χ(2jx − α) : α ∈ Z2} where χ denotes the char-

acteristic functions of [0, 1]2. We say that S is convergent in Lp (1 ≤ p ≤ ∞) if there exists
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f ∈ Lp such that

lim
j→∞

∥∥f − ∑
α∈Z2

(Sjf0)αχ(2jx− α)
∥∥
p

= 0. (3.26)

It is convenient to consider the n×nmatrix function Φ ≡ S∞∆0 where ∆i = {δj,iIn×n, j ∈

Z2}. As in scalar subdivision schemes, the matrix function Φ satisfies the MRE

Φ(x) =
∑
α∈Z2

PαΦ(2x− α). (3.27)

Transform of both sides of (3.27) gives the following equivalent equation in the Fourier

space:

Φ̂(γ) = P (
γ

2
)Φ̂(

γ

2
), (3.28)

where P (γ), called Fourier transform of the matrix subdivision scheme S, is the trigono-

metric polynomial

P (γ) =
1
4

∑
α∈Z2

Pαe
−iα·γ , (3.29)

where 1/4 is the dimensional factor. Iterating (3.28) generates

Φ̂(γ) =
n∏
j=1

P (2−jγ)Φ̂(2−nγ) ≡ Pn(γ)Φ̂(2−nγ). (3.30)

We let the infinite product

P∞(γ) ≡ lim
n→∞

Pn(γ).

If P∞(γ) converges for every γ, it is clear that any distributional solution of (3.27) whose

Fourier transform is a continuous function must have the form

Φ̂(γ) = P∞(γ)V (3.31)

for some vector V . The convergence of P∞(γ) is determined by the matrix

∆ = P (0) =
1
4

∑
α∈Z2

Pα. (3.32)

Let

∆∞ ≡ lim
j→∞

∆j .
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We have the following convergence result from [Heil & Colella 1996, Theorem 3.3].

Theorem 3.6. The infinite produce P∞(γ) converges (uniformly on compact sets) if and

only if ∆∞ exits and is nontrivial. In this case, the mapping V 7→ Φ induced by (3.31)

is a linear map of Cr onto the set of all compactly supported distributional solution to

the MRE (3.27). Its kernel is the kernel of ∆∞. It is a bijection when restricted to the

1-eigenspace of ∆. In particular, each nontrivial compactly supported solution satisfies

Φ̂(0) 6= 0, and there exist exactly s independent solutions of the MRE, where s is the

multiplicity of the eigenvalue 1 for ∆.

As an example, the Fourier transforms P e(γ) and P t(γ) of the matrix subdivision

schemes of Whitney 1- and 2-forms respectively, after normalization, have the Jordan nor-

mal forms

2P e(0) ∼


1 0 0

0 1 0

0 0 1/4

 and 4P t(0) ∼

1 0

0 1/2

 .

3.3 Convergence of r-Cochain Subdivision Schemes

In this section we will establish the sufficient and necessary conditions for an r-cochain subdi-

vision scheme to converge to a limit r-form on R2. We triangulate R2 by the regular complex

K6. In particular, we use the standard realization of K6 described in Section 3.2.2. Since

0-cochain subdivision schemes have been studied in the literature of scalar (primal/dual)

subdivision, our main interest will be focused on 1- and 2-cochain subdivision schemes.

3.3.1 Definition of Convergence for 1-Cochain Schemes

We only consider edge subdivision schemes that are invariant under the symmetry group

of regular meshes. Therefore the manner we identify edges will not affect the convergence

analysis. In particular we set the edge directions (e1, e2) (Figure 3.3) to be the standard

bases of R2. By grouping coefficients on edges into 3-vectors {fα ≡ (uα, vα, wα)T : α ∈ Z2}

(Figure 3.4), we can treat an edge subdivision scheme as a matrix subdivision scheme defined

as (3.24).

Instead of interpolating coefficients by χ as in the functional setting, we need to properly

interpolate coefficients on edges into a vector field V (x) = (ξ(x), η(x))T on R2 so that we
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j

pα
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qα
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j
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j

Figure 3.4: Left: Numbering of edge coefficients {fα : α ∈ Z2} at level j. Right: coefficients

on triangles by applying d to fα: pjα = ujα − vjα + wjα, q
j
α = −ujα+ε2 + vjα+ε1 − wjα where

ε1 ≡ (1, 0), ε2 ≡ (0, 1).

can define the corresponding 1-form ω(x) = ξdx + ηdy under the standard bases of R2.

In order for the integration of ω on each 1-cell σ of |K| to be well defined, we require the

tangential component of V (x) along σ to be continuous when approaching to σ from either

side. Interpolation by Whitney 1-forms meets this requirement. Precisely, given vertex

positions a, b, c of the three corners of a triangle together with the scalar coefficients a, b,

c on the edges opposite a, b, c, Whitney 1-forms produces a vector field at any point inside

the triangle. Given barycentric coordinates λa,λb, λc, we have the restriction of V to the

triangle

V (x)|abc =
1

2 Area(abc)

{
[λb(a+ b+ c)− b]ab⊥ + [λc(a+ b+ c)− c]ac⊥

}
, (3.33)

where ⊥ indicates a CCW rotation by 90◦ in the plane of the triangle. Note that the normal

(to the edge of K) component of V is discontinuous across the edge while its tangential

component is continuous. V is C∞ within each triangle of K. As a result, we will only be

concerned with the piecewise continuous 1-forms whose vector filed proxy has continuous

tangential component along the edges of K. Further the vector filed proxy is uniform

continuous on the compact set T for each triangle T ∈ K.

Definition 3.7. Given the triangulation K of R2 and the standard bases {dx, dy}, the

space Fm(K) consists of 1-forms ω = ξ(x, y)dx+ η(x, y)dy such that

1. ξ and η are continuous on T for each triangle T ∈ K;

2. the tangential component of (ξ, η)T along edges of K is continuous;
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3. ξ and η are Cm-continuous functions on |K|.

We let m = −1 if the normal component of (ξ, η)T to the edges of K is discontinuous

According to Definition 3.7, the piecewise linear interpolation by Whitney 1-forms yields

a vector field V ∈ F−1(K).

The following lemma shows that a 1-form in Fm is uniquely determined by its integral

over 1-cells. It is a modification of [Whitney 1957, Lemma 16a].

Lemma 3.8. Let ω1 and ω2 be 1-forms in Fm for some m. Suppose
∫
σ ω1 =

∫
σ ω2 for all

oriented 1-cells in |K|. Then ω1 = ω2.

Proof. For given triangle T ∈ K, take any p ∈ int(T ), and any 1-direction α. There

is a sequence of oriented 1-cells σi in int(T ), with 1-directions α = {σi}/|σi|, such that

σi ∈ Uρi(p), where Uρi(p) denotes the ρi-neighborhood of p and ρi → 0. We have

1
|σi|

∫
σi

ω − ω(p) · α =
1
|σi|

∫
σi

(
ω(q)− ω(p)

)
dq → 0.

Therefore

ω(p) · α = lim
i→∞

1
|σi|

∫
σi

ω. (3.34)

Applying this to ω1 and ω2 shows that ω1(p) · α = ω2(p) · α for all 1-directions α; hence

ω1(p) = ω2(p) for any p ∈ int(T ).

In the case that p ∈ ∂T , we divide it into two cases according to the given 1-direction

α. If α = {σi}/|σi| with σi being subdivided 1-cells of edges of K, ω(p) · α is defined

by (3.34). The result immediately follows. If otherwise σi are 1-cells in int(T ′) for the

triangle T ′ ∈ N1(T ), we can find a sequence pi ∈ int(T ′), pi → p, and ω(pi) · α is well

defined by (3.34). Due to continuity of ω on T ′, we can now define

ω(p) · α = lim
i→∞

ω(pi) · α.

Therefore, ω1(p) = ω2(p) provided that ω1(pi) · α = ω2(pi) · α for all pi.

Given an initial 1-cochain X on K, we apply the 1-cochain subdivision S1 to get Xj =

Sj1X at level j, and then interpolate Xj by Whitney 1-forms at level j to get

V j(x) = WXj = ξjdx+ ηjdy.
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We consider the limit of the sequence {V j}.

Definition 3.9. A 1-cochain subdivision scheme S1 is convergent on |K| if, for any 1-

cochain X, there exists a 1-form ω ∈ Fm(K) such that

lim
j→∞

sup
σ∈Edge(Kj)

∣∣∣∣ 1
|σ|

(Sj1X) · σ − 1
|σ|

∫
σ
ω

∣∣∣∣ = 0.

We denote the limit 1-form by ω = S∞1 X.

Lemma 3.10. If a 1-cochain subdivision scheme S1 is convergent, then the limit 1-form

S∞1 X is unique.

Proof. We need to show that, if a 1-form ω ∈ Fm(K) vanishes on all edges of Kj as

j →∞, then ω itself vanishes. More precisely, we want to establish

lim
j→∞

sup
σ∈Edge(Kj)

1
|σ|

∫
σ
ω → 0 =⇒ ω = 0.

Given any point p ∈ |K| and 1-direction α, there exist vertex sequence vj ∈ Kj such that

|vj − p| → 0. Given any ε > 0, choose vj0 such that |ω(p) · α − ω(vj0) · α| < ε due to

continuity of ω. The 1-direction α can be written in terms of edge directions αi, i = 1, 2,

α = c1α1 + c2α2, where αi = {ei}/|ei| and ei are edges in Kj0 incident to vj0 . Take large

enough j0 and use the fact that |ω(vj0) ·αi| < ε, we have |ω(vj0) ·α| < Nε for some constant

N . Here we assumed that the coefficients c1 and c2 are uniformly bounded by a constant.

It is indeed the case if the minimal angle of triangles are greater than a positive constant.

Finally we have

ω(p) · α < |ω(p) · α− ω(vj0) · α|+ |ω(vj0) · α| < (N + 1)ε.

This finishes the proof by letting ε→ 0.

Definition 3.11. Given a 1-form ω = ξ(x, y)dx+ η(x, y)dy, its L∞ norm is defined as

‖ω‖∞ = max(‖ξ‖∞, ‖η‖∞).
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Let dω = f(x, y)dx∧dy. The flat norm of ω is defined as

‖ω‖[ = max(‖ω‖∞, ‖f‖∞).

A 1-form ω on R2 is called flat if ‖ω‖[ <∞.

Definition 3.12. A flat 1-form ω is called F-regular, or regular for short, if ω ∈ Fm(K)

and dω = f(x, y)dx∧dy with f(x, y) being uniform continuous on each triangle T ∈ K.

Remark 3.13. In abstract geometric integration theory, the flat norm is a pivotal concept.

Discussion on flat forms is beyond the scope of this thesis. The interested reader is referred

to [Whitney 1957] for details. Instead we are mainly interested in a regular form ω whose

finite flat norm simply means that both ω and dω are uniformly bounded under the maximal

norm.

The following lemma shows that S∞1 X is determined by the sequence {WXj}.

Lemma 3.14. Given any 1-cochain X, let WXj be the Whitney map of the cochains

Xj = Sj1X. On any compact subset A of |K|,

lim
j→∞

∥∥WXj − S∞1 X
∥∥
∞,A

= 0. (3.35)

Proof. As ω = S∞1 X is uniformly continuous on A, for any ε > 0, there exists δ > 0 such

that for any p, q satisfying |p− q| < δ, |ω(p)− ω(q)| < ε. As the maximal distance between

points of |T | for a triangle T of Kj is
√

2
2j , then for any ε > 0 there is j1 such that for all

triangles T of Kj , j > j1, for any p, q ∈ |T |, |ω(p)− ω(q)| < ε. Since A only intersects with

finite number of triangles of K, we only need to prove (3.35) on each T .

Take any point p ∈ |T |, we freeze ω on T by ω(p) = f1dx + f2dy where f1 and f2 are

constants on |T |. Let e1 and e2 be the edges of T parallel with dx and dy, respectively, and

µ = |e1| = |e2|. Hence |e3| =
√

2µ. Let ai =
∫
ei

(f1dx+ f2dy), i = 1, 2, 3. Clearly
∑

i ai = 0

due to Stokes’ Theorem. Then, for j > j1,∣∣∣∣ai − ∫
ei

ω

∣∣∣∣ ≤ C1εµ, i = 1, 2, 3.
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As S1 is convergent, there exists an integer j2 such that, for all j > j2,∣∣∣∣Xj · ei −
∫
ei

ω

∣∣∣∣ ≤ C2εµ.

Hence, for j > max(j1, j2), we have

∣∣Xj · ei − ai
∣∣ ≤ ∣∣∣∣ai − ∫

ei

ω

∣∣∣∣+ ∣∣∣∣Xj · ei −
∫
ei

ω

∣∣∣∣ ≤ C3εµ.

By applying the expression (3.33), we have

∣∣WXj − ω(p)
∣∣ ≤ C4ε, on T ,

and hence ∥∥WXj − ω
∥∥
∞,T

≤ C5ε, for j > max(j1, j2).

We finish the proof by letting ε→ 0.

3.3.2 Convergence Criteria for 1-Cochain Schemes

We have seen in Section 3.3.1 that, 1-cochain subdivision schemes can be formally repre-

sented as matrix subdivision schemes. However, the definitions of convergence under the

two circumstances are different. In this section we present the conditions under which the

1-form sequence WXj = Sj1X converge to the limit of the corresponding matrix subdivision

scheme.

We denote by V j the vector field proxy of WXj on R2, given the regular triangulation

K of R2 and standard bases {dx, dy}. Notice that V j is not uniquely defined at vertices or

along edges. We define a reference vector Uα at each vertex location α which is obtained by

interpolating coefficients fα at that location. At level j, formula (3.33) immediately implies

U j
α = 2ujαe1 + 2vjαe2. (3.36)

We define a vector field U j(x) in R2 interpolating Uα by box functions

U j(x) =
∑
α∈Z2

U j
αχ(2jx− α). (3.37)
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Let χ4 denote the characteristic function of set T = {(x, y) ∈ [0, 1)2, x ≤ y} and χ5 denote

the characteristic function of [0, 1)2 \ T . At each vertex α, let

∇2uα ≡ uα+ε2 − uα, ∇1vα ≡ vα+ε1 − vα,

and the piecewise constant functions

∇2u
j(x) ≡

∑
α

∇2(u)jαχ(2jx− α),

∇1v
j(x) ≡

∑
α

∇1(v)jαχ(2jx− α),

pj(x) ≡
∑
α

pjαχ4(2jx− α),

qj(x) ≡
∑
α

qjαχ5(2jx− α).

Theorem 3.15. Suppose U j(x) uniformly converge to U(x) ∈ Fm on |T | for each triangle

of K. Then V j(x) uniformly converge to U(x) on any compact set A ⊂ int(|T |) if

lim
j→∞

2j |pj |∞,A = 0. (3.38)

Proof. Give vertex location α, we have

‖(V j −U j)χ4(2jx− α)‖∞ = 2j |pjα|,

‖(V j −U j)χ5(2jx− α)‖∞ ≤ 2j(|qjα|+ |∇2u
j
α|+ |∇1v

j
α|),

|2jqjα| ≤ 2j |∇2u
j
α −∇1v

j
α|+ |2jpjα|.

Since U(x) is uniform continuous on A, for any ε >, there is an integer N > 0 such that

for any j > N ,

2j(|∇2u
j |∞,A + |∇1v

j |∞,A) < ε and |2jpj |∞,A ≤ ε.
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Moreover,

|2jqj |∞,A ≤ 2j(|∇2u
j |∞,A + |∇1v

j |∞,A + |pj |∞,A) ≤ 2ε.

Therefore

‖V j −U j‖∞,A ≤ 2j(|pj |∞,A + |qj |∞,A + |∇2u
j |∞,A + |∇1v

j |∞),A

≤ 4ε

for all j > N . This completes the proof by letting ε→ 0.

While Theorem 3.15 gives a sufficient condition for convergence to a 1-form ω ∈ Fm,

we have the following sufficient and necessary conditions for converging to a regular 1-form

under the flat norm.

Theorem 3.16. Suppose the sequence U j(x) converge to ω ∈ Fm on |T | for any triangle T

of K. Further, suppose that ω is a regular 1-form with dω = f(x)dx∧dy being continuous

2-form on |T |. Then the sequence V j(x) uniformly converge to ω on any compact set

A ⊂ int(T ) under the flat norm if and only if

lim
j→∞

∥∥∥f(x)−
∑
α

(
4jpjαχ4(2jx− α) + 4jqjαχ5(2jx− α)

)∥∥∥
∞,A

= 0. (3.39)

Proof. In order to prove convergence under the flat norm, it is equivalent to show

lim
j→∞

∥∥V j − ω
∥∥
∞,A

= 0, (3.40)

lim
j→∞

∥∥dV j − dω
∥∥
∞,A

= 0. (3.41)

By applying the standard Lebesgue theory (e.g., [Whitney 1957, Chapter 9]), the 2-form

dω(x) can be identified with the uniformly continuous function f(x) on A. Recall that

V (x) is piecewise linear. We have

dV (x) =
∑
α

(
4jpjαχ4(2jx− α) + 4jqjαχ5(2jx− α)

)
. (3.42)

Therefore (3.41) is equivalent to (3.39). It is clear that (3.39) implies there exists constant

M and integer N such that 4j |pj |∞,A < M for j > N . Therefore the condition (3.38) is

satisfied and (3.40) follows from Theorem 3.15. The necessity is obvious.
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Theorem 3.16 implies the following property of refinement symbols of edge subdivision

schemes:

Proposition 3.17. Suppose the edge MRE (3.17) admits a convergent 1-cochain subdivision

scheme S1 ∈ F1(K) under the flat norm and the 3× 3 matrix P e(z) denotes the symbol of

refinement coefficients. Then P e(0) has the Jordan normal form


1/2 0 0

0 1/2 0

0 0 ρ

 (3.43)

with ρ < 1/4. Furthermore, P e(0) has two 1/2-eigenvectors µi = (ui, vi, wi)T (i = 1, 2) with

the constraints:

ui + vi − wi = 0, for i = 1, 2. (3.44)

Proof. C1-smoothness of S1 implies that, the two linearly independent constant 1-cochains

corresponding to the de Rham map of {dx, dy} must be the two 1/2-eigenvectors of S1 [Cha-

rina et al. 2005, Lemma 2], and hence they must also be the two 1/2-eigenvectors of

P e(0). The Jordan normal follows form (3.43) [Heil & Colella 1996, Theorem 3.3]. Suppose

(u, v, w)T is one of the 1/2-eigenvector of P e(0). Theorem 3.16 shows that 4j(u + v + w)

must be bounded as j → ∞. Therefore u + v + w = 0, and it indeed admits two linearly

independent solutions of (u, v, w). The condition ρ < 1/4 follows from C1-smoothness of

S1 and Theorem 5.4 by Cohen et al. [1995].

Remark 3.18. In the proof of Proposition 3.17, C1-smoothness is sufficient for S1 to have the

Jordan normal form (3.43). We will see in the future that C1-smoothness is not a necessary

condition. For instance, the subdivision scheme of Whitney 1-forms is not continuous, but

it still has the Jordan normal form (3.43). The key property is the commutative relations

held by Whitney forms, which we will discuss in detail in Section 3.4.

3.3.3 Convergence Criteria for 2-Cochain Schemes

We can identify a 2-form ω = f(x, y)dx∧dy on R2 with the function f(x, y). Therefore

convergence analysis of 2-cochain subdivision schemes is straightforward. Given 2-cochain

X ∈ C2(K), we interpolate Xj = Sj2X by Whitney 2-forms to yield a piecewise constant
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function on Kj . Following the notations in Section 3.3.2, we group coefficients on triangles

into 2-vectors {f jα ≡ (pjα, q
j
α)T , α ∈ Z2} (see Figure 3.4). We have

WXj =
∑
α

(
4jpjαχ4(2jx− α) + 4jqjαχ5(2jx− α)

)
. (3.45)

Definition 3.19. A 2-cochain subdivision scheme S2 is convergent on |K| if, for any 2-

cochain X, there exists a 2-form ω = f(x, y)dx∧dy such that f(x, y) is continuous on each

triangle T ∈ K and

lim
j→∞

sup
σ∈Face(Kj)

∣∣∣∣ 1
|σ|

(Sj2X) · σ − 1
|σ|

∫
σ
ω

∣∣∣∣ = 0.

We denote the limit 2-form by ω = S∞2 X.

Lemma 3.20. If a 2-cochain subdivision scheme S2 is convergent, then the limit 2-form

S∞2 X is unique, and on any compact subset A ⊂ |K|,

lim
j→∞

∥∥WXj − S∞2 X
∥∥
∞,A

= 0.

Proof. It is analogous to the proof of the results for 1-cochains.

Lemma 3.20 shows that the convergence of S2 to a piecewise continuous 2-form is equiv-

alent to the convergence of the matrix subdivision sequence {f jα} to a piecewise continuous

function. It follows from [Heil & Colella 1996, Theorem 3.3] that the symbol of S2 has the

Jordan normal form of
( 1/4 0

0 ρ

)
with ρ < 1/4.

3.4 Commutative Relations of Subdivision Schemes

3.4.1 Whitney Forms

We have defined the convergence and uniqueness of a r-form subdivision scheme. In addition

to the Whitney 1-form subdivision scheme, the well-known barycentric interpolation and

piecewise constant dual scheme can be naturally reinterpreted as 0- and 2-form subdivision

schemes, respectively. We have now a triple of subdivision schemes SW0 , SW1 and SW2

(Figure 3.5), based on vertices, edges and triangles, respectively. They converge to the

corresponding linear Whitney forms.
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Figure 3.5: Left: 0-form scheme SW0 ; middle: 1-form scheme SW1 ; right: 2-form scheme

SW2 .

Lemma 3.21. Whitney forms are linearly independent, i.e., if WX = 0 then X = 0.

Proof. This is a straightforward result from (3.5). Let R be the de Rham map. We have

RWX = X for any r-cochain X. It is easy to see that R0 = 0. Hence WX = 0 implies

X = 0.

Recall the commutative relations (3.4). The remarkable property of the triple subdivi-

sion schemes is that they are linked by discrete commutative relations through the discrete

exterior differential operator d.

Proposition 3.22. The Whitney subdivision schemes SW0 , SW1 , SW2 satisfy commutative

relations:

dSW0 = SW1 d, (3.46)

dSW1 = SW2 d. (3.47)

Proof. The refinement equations for basis forms at the coarser (Φ) and finer (φ) levels

follow as

Φv = φvSW0 , Φe = φeSW1 , and Φt = φtSW2 . (3.48)

Using (3.48) together with (3.4) we can now prove that the associated subdivision operators

satisfy the following relations

φedSW0 X = d(φvSW0 X) = d(ΦvX) = ΦedX = φeSW1 dX

for any 0-cochain X. Now φe(dSW0 X − SW1 dX) = 0 implies dSW0 X = SW1 dX due to linear
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independence of Whitney 1-forms (see Lemma 3.21). Hence we have proved dSW0 = SW1 d

for SW0 and SW1 . The proof is entirely analogously for SW1 and SW2 .

The 1-cochain subdivision scheme S1 satisfying (3.46) and (3.47) has the property that

it maps an exact 1-cochain to another exact 1-cochain, and it maps a closed 1-cochain to

another closed 1-cochain. Recall that a cochain subdivision map is defined on the n-regular

complex Kn which is a contractible manifold. Poincaré Lemma says that, on a contractible

manifold, every closed form is also exact. The discrete Poincaré Lemma generalizes the same

result to discrete manifold and algebraic cochains (e.g., [Desbrun et al. 2005b]). Hence the

r-cochain subdivision schemes that map exact cochains to exact cochains are of particular

interest.

In the context of primal subdivision theory, the property (3.6) is called affine invariant

property, that is to say, the unit 0-cochain on K is invariant under the 0-cochain subdivision

map S01 = 1. Affine invariance is necessary for a 0-cochain subdivision scheme to converge

(e.g., [Cavaretta et al. 1991; Warren 1994]). On Kn the unit 0-cochain 1 is the unique (up

to a multiplier) closed 0-cochain. Therefore we reinterpret affine invariance as preserving

exact cochains, and generalize this property to 1-cochains in the next section. We will also

see that the discrete commutative relations uniquely determine the Whitney 1-form.

3.4.2 1-Cochain Subdivision Schemes Preserving Exactness

We consider a finite portion of the infinite simplicial complex Kn. We define Wl as follows

Vertex(Wl) = {m = (m1,m2) : m ∈ Z2 and 0 ≤ m1 +m2 ≤ l},

Edge(Wl) =
{
{m,m+ e1}, {m,m+ e2}, {m+ e1,m+ e2} : m ∈ Vertex(Wl)

}
,

Face(Wl) =
{
{m,m+ e1,m+ e2}, {m+ e1,m+ e1 + e2,m+ e2} : m ∈ Vertex(Wl)

}
.

The finite simplicial complex of Kn,l is generated from n copies of Wl in the same manner

as Kn is from W , by the equivalence relation

(i, (j, 0)) ≡ (i = 1, (0, j)) for all 0 ≤ j ≤ l and i ∈ Zn, (3.49)

Kn,l is a finite simplicial complex with boundaries (see Figure 3.6).
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Figure 3.6: Left: A wedge Wl with oriented edges and triangles (orientations indicated by

arrows); right: the n-regular complex Kn,l generated from n copies of W (n = 5).

We consider the subdivision of Kn,l:

D : Kn,l → Kn,2l.

Here we abused the notation D which also refers to the subdivision of Kn. The difference

is that D(Kn,l) is not a simplicial isomorphism of Kn,l.

We have the discrete Poincaré Lemma on the complex Kn:

Lemma 3.23. Given a closed 1-cochain X on Kn, that is dX = 0, there exists a 0-cochain

Y on Kn such that dY = X.

Proof. The proof is elementary. We first assign a real number c0 to the central vertex

v0 of Kn. It is straightforward to integrate X on each wedge Wi for i ∈ Zn. The resulting

0-cochain Yi is defined on Wi and dYi = X on Wi for i ∈ Zn. Notice that Yi is uniquely

determined by c0 and X. We only need to show that Yi’s coincide along the shared bound-

aries of two adjacent wedges. This is obvious because we have the equivalence relations

(3.49) of vertices and the same initial value c0 for integration. Therefore we have obtained

a 0-cochain Y such that Y ≡ Yi on Wi and dY = X on Kn. Furthermore, Y is unique up

to a constant.

Remark 3.24. While it is straightforward to prove the discrete Poincareé Lemma on the finite

n-regular complex Kn,l, to prove it on more general discrete manifold is more involving. The

interested reader is referred to [Desbrun et al. 2005b] for details.
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Proposition 3.25. Let Crl denote the r-cochain space on Kn,l. We have

dim C0
l =

n(l2 + l)
2

+ 1, dim C1
l =

n(3l2 + l)
2

, dim C2
l = nl2. (3.50)

Therefore

dim C1
l = dim C0

l + dim C2
l − 1. (3.51)

Furthermore

Ker d1 = d0C0
l , dim Ker d1 = dim C0

l − 1 (3.52)

Im d1 = C2
l , dim Im d1 = dim C2

1 . (3.53)

Proof. It is trivial to verify (3.50) by counting the number of vertices, edges and faces

in Kn,l. Since d1 ◦ d0 = 0, we have dC0
l ⊂ Ker d1 and hence Ker d1 ≥ dim d0C0

1 . Lemma

3.23 shows that Ker d1 ⊂ dC0
1 and Ker d1 ≤ dim d0C0

1 . Therefore Ker d1 = dC0
1 and Ker d1 =

dim d0C0
l = dim C0

l − 1 since d01 = 0. The classic theory of algebra tells us that dim C1
l =

dim Ker d1 + dim Im d1. It follows from (3.51) that dim Im d1 = dim C2
l . Since Im d1 ⊂ C2

l ,

we have Im d1 = C2
l .

Remark 3.26. The Proposition 3.25 is an immediate conclusion from the fact that, the de

Rham complex of algebraic cochains on a contractible manifold is exact.

The stationary k-cochain subdivision operator Sk with finite support can now be de-

scribed as a mapping

Sr : Cr(Kn,l) → Cr(Kn,l) for l ≥ mw − 1,

where mw is the mask width of Sr. We call Kn,l an invariant neighborhood of Sr. Therefore

Sr is fully determined by its action on its minimal invariant neighborhood Kn,mw and it can

be reduced to a finite subdivision matrix. In all that follows we assume that Sr represents

a stationary r-cochain subdivision operator with invariant neighborhood Kn,l.

Theorem 3.27. Given a 1-cochain subdivision matrix S1 and its invariant neighborhood

Kn,l. Ker d1 is an invariant subspace of S1 if and only if there exists a 0-cochain subdivision
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matrix S0 with invariant neighborhood Kn,l such that the commutative diagram holds

d0S0 = S1d
0. (3.54)

Proof. The proof of sufficiency is straightforward. Given a 1-cochain X such that dX = 0.

Lemma 3.23 implies that there exists a 0-cochain Y such that X = dY . We have S1X =

S1dY = dS0Y provided the commutative diagram (3.54). Therefore dS1X = d ◦ dS0Y = 0

and Ker d1 is an invariant subspace of S1.

We will use a constructive approach to prove necessity. Given any 0-cochain X and the

exact 1-cochain Y = d0X ∈ Ker d1. Since Ker d1 is an invariant subspace of S1 we have

S1Y ∈ Ker d1 and

S1d
0X = d0Z for some Z ∈ C0

l (3.55)

due to Lemma 3.23. Recall that Ker d0 is a one-dimensional space consisting of all constant

0-cochains on Kn,l. Therefore (3.55) defines a unique, up to a constant, 0-cochain Z ≡ S0X

for any given X ∈ C0
l . Plugging it back into (3.55), we have reached d0S0 = S1d

0. We can

fix the constant by requiring S0 to preserve constant 0-cochains, i.e.S01 = 1.

Corollary 3.28. Given a 1-cochain subdivision scheme S1 with invariant neighborhood

Kn,l. If Ker d1 is an invariant subspace of S1, then there exists a unique 0-cochain scheme

S0 satisfying S01 = 1, and a unique 2-cochain scheme S2, both with invariant neighborhood

Kn,l, such that the following commutative diagrams hold:

d0S0 = S1d
0, d1S1 = S2d

1. (3.56)

Proof. The first commutative diagram is directly from Theorem 3.27. We only need

to show the second one. Let the 2-cochain scheme S2 be defined as follows. Given any

2-cochain X ∈ C2
l , there must exist a 1-cochain Y ∈ C1

l satisfying d1Y = X due to (3.53).

If we define S2 such that S2X = d1S1Y , then we have S2d
1 = d1S1. We need to show that

S2X is well defined. If there exists another 1-cochain Z ∈ C1
l such that d1Z = X, then

Z − Y ∈ Ker d1. Since Ker d1 is an invariant subspace of S1, we have d1S1(Z − Y ) = 0.

Therefore d1S1Z = d1S1Y . This proves the uniqueness of S2X for any given X.

Remark 3.29. Given the 0- and 2-cochain subdivision schemes at the two ends, the 1-cochain

subdivision scheme satisfying the commutative diagrams is not necessarily unique. However,
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we find that we do have a unique 1-cochain subdivision scheme solving the commutative

relations in most of the cases we considered.

even

odd

even

odd

a

1/2 1/2

1

even

odd

1/4

1/4
c

b b

Figure 3.7: The barycentric interpolation works as S0 (left); the fully parameterized mask

of S1 (middle); S2 is the piecewise constant down sampling (right). The unique solution

for the commutative relations is a = 1/2, b = −1/4 and c = 1/4 which rediscovers the

refinement masks of Whitney 1-form.

Corollary 3.30. Given the barycentric subdivision scheme S0 and the piecewise constant

dual subdivision scheme S2. The subdivision scheme of Whitney 1-form is the only edge

subdivision scheme S1 satisfying the commutative diagrams.

Proof. The commutative diagrams add constraints to the size of support of potential

edge subdivision schemes. Therefore the mask of S1 can be fully parameterized by a, b

and c by symmetry, as is shown in Figure 3.7 . Due to linearity we only need to verify the

commutative diagrams with the initial dirac, i.e., a single coefficient 1 at a vertex or edge.

Algebraic calculations give the unique solution of the commutative diagrams

a =
1
2
, b = −1

4
, c =

1
4
.

This is exactly the mask of Whitney 1-forms.

The consequence of Theorem 3.27 and Corollary 3.28 implies that we can design an ex-

actness preserving 1-form scheme by imposing the commutative relations. Indeed Corollary

3.30 shows that the commutative relations uniquely characterized Whitney forms in the

two-dimensional case. Since scalar subdivision schemes (primal and dual) are extensively

studied, this new viewpoint allows us to discover 1-form schemes simply by solving commu-

tative relations. We will show how to construct generalized Whitney forms of higher order
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of smoothness in Section 3.5.

Proposition 3.31. Given the 1-cochain subdivision scheme S1 satisfying the commuta-

tive relations with S0 and S2. Consider the triangulation K6 of R2 under the coordinates

{dx, dy}. Suppose that S0 has linear precision, that is to say, it admits the 0-cochains of

{x, y} as its two 1/2-eigenvectors. Further, suppose that S2 admits the constant 2-cochain

as its dominant 1/4-eigenvector. Then the Jordan normal forms of P e(0) and P t(0) are

P e(0) ∼


1/2 0 0

0 1/2 0

0 0 ρ

 and P t(0) ∼

1/4 0

0 ρ

 , ρ < 1/4. (3.57)

Moreover, the ρ-eigenvector of P t(0) is (1,−1)T .

Proof. The commutative relations can be written in symbols

d(z)S0(z) = S1(z)d(z), d(z)S1(z) = S2(z)d(z). (3.58)

Since

S0x = 1/2x,

S0y = 1/2y,

we have

dS0x = S1dx = 1/2dx,

dS0y = S1dy = 1/2dy.

Here we used x, y, dx and dy to represent the cochains corresponding to the de Rham map

of x, y, dx and dy, respectively. Hence S1 admits 1-cochains {dx, dy} as its 1/2-eigenvectors.

It follows that P e(0) has the Jordan normal form (3.57), and there exists 3 × 3 matrix V
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consists of columns of {dx, dy} and the ρ-eigenvector, such that

V −1P e(0)V =


1/2 0 0

0 1/2 0

0 0 ρ

 .

Recall the symbol of coboundary operator

d1(z) =

 1 −1 1

−z−1
2 z−1

1 −1

 .

Note that

d1(0)V =

0 0 γ

0 0 −γ


where γ is a real number. Here we abused notation d1 to denote the Fourier transform of

symbol d1(z). Therefore (3.58) implies that

0 0 γ

0 0 −γ




1/2 0 0

0 1/2 0

0 0 ρ

 = P t(0)

0 0 γ

0 0 −γ

 .

By compacting those zero blocks, we get

P e(0)

 γ

−γ

 = ρ

 γ

−γ

 .

Since the dominant 1/4-eigenvector of P t(0) is (1, 1)T , the ρ-eigenvector (γ,−γ)T of P t(0)

cannot be the dominant 1/4-eigenvector. Therefore we must have ρ < 1/4.

3.4.3 Eigenstructures of Subdivision Matrix

Suppose subdivision matrix S0, S1 and S2 satisfy the commutative relations on Kn. Let λki

(1 ≤ i ≤ Jk) be different eigenvalues of the subdivision matrix Sk. Specifically we reserver

λ0
0 for the eigenvalue 1 of S0. We assume that λ0

i are in the order of nonincreasing magnitude

and so are λ2
i . We will describe how to order λ1

i in the following.

For λki , let Jkij , j = 1 . . . P ki be the complex cyclic subspaces corresponding to this
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eigenvalue.

Let nkij be the orders of these cyclic subspaces; the order of a cyclic subspace is equal to

its size minus one.

Let bkijr, r = 0 . . . nkij be the complex generalized eigenvectors corresponding to the cyclic

subspace Jkij .

Lemma 3.32. If b0ijr 6= 1, then d0b0ijr is a generalized eigenvector of S1; if d1b1ijr 6= 0, then

d1b1ijr is a generalized eigenvector of S2. Furthermore we can enumerate J1
ij such that

d0J0
ij = J1

ij , for i = 1, . . . , J0,

d1J1
i′j = J2

ij , for i′ ≡ i+ J0 and i = 1, . . . , J2.

Proof. The vectors b0ijr satisfy

S0b
0
ijr = λ0

i b
0
ijr + b0ijr−1 if r > 0,

S0b
0
ij0 = λ0

i b
0
ij0.

Applying d0 to the equations above, we have from the commutative relations

d0S0b
0
ijr = S1d

0b0ijr = λ0
i d

0b0ijr + d0b0ijr−1 if r > 0,

d0S0b
0
ij0 = S1d

0b0ij0 = λ0
i d

0b0ij0.

We claim that d0J0
ij is a cyclic subspace of S1 corresponding to the eigenvalue λ1

i′ = λ0
i due

to the uniqueness of Jordan decomposition on the complex domain. We can re-order λ1
i

such that λ1
i = λ0

i for i = 1, . . . , J0. Therefore we have dJ0
ij = J1

ij and

⊕
ij

d0J0
ij =

⊕
ij

J1
ij .

Repeat the same procedure as above, we can show that d1J1
i′j is a cyclic subspace of S2

corresponding to the eigenvalue λ1
i′ = λ2

i where i′ ≡ i+ J0. Therefore d1J1
i′j = J2

ij for some

1 ≤ i ≤ J2. i = 1, . . . , J2. At the same time the dimensionality relation (3.51) shows that
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dim Im d1 =
∑

ij dim J2
ij . Therefore we have

⊕
i′j

d1J1
i′j =

⊕
ij

J2
ij .

Lemma 3.32 is general enough to deal with complex eigenvectors, but we will only be

interested in the spectrum of Loop’s scheme for S0. It is well known that Loop’s scheme is

C1 on the atlas given by the characteristic map. While the convergence criteria of S0 only

needs the affine structure, we do need a metric to discuss convergence and regularity of S1

and S2. Throughout this thesis we will use the metric induced by the characteristic map.

Due to its cyclic structure, we can apply Discrete Fourier Transformation (DFT) to the

control coefficients. In our cases, the 0-cochain subdivision can be written as

Xj+1 = S0X
j , Xj ≡ [. . . , Ajm, B

j
m, C

j
m, . . . ]

′ ∈ R3×n.

The Fourier coefficients of {Ajm}, m = 0, . . . , n− 1 ({Bj
m} and {Cjm} etc.) are given by

Âjk =
n−1∑
m=0

Ajm exp(2π
√
−1mk/n).

Let X̂j
k ≡ [Âjk, B̂

j
k, Ĉ

j
k]
′ for k = 0, . . . , n − 1. Therefore the action of S0 can be represented

as a matrix whose diagonal blocks are matrices Ŝ0,k, k = 0, . . . , n− 1:

X̂j+1
k = Ŝ0,kX̂

j
k.

Similarly, in the Fourier domain S1 and S2 can be diagonalized to S1,k and S2,k for k =

0, . . . , n − 1, respectively. The commutative relations in terms of Fourier coefficients are

written as

d̂0Ŝ0,k = Ŝ1,kd̂
0, d̂1Ŝ1,k = Ŝ2,kd̂

1, k = 0, . . . n− 1,

where d̂ denotes the matrix representation of d in the Fourier domain. It is easy to see

that the proof of Lemma 3.32 can be repeated line by line if the cyclic subspace Jkij of Sk

is replaced by the cyclic subspace Ĵkij of Ŝk. Formally we have the following.

Lemma 3.33. Fix the Fourier mode k. If b̂0ijr 6= 1, then d̂0b̂0ijr is a generalized eigenvector
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of Ŝ1,k; if d̂1b̂1ijr 6= 0, then d̂1b̂1ijr is a generalized eigenvector of Ŝ2,k. Furthermore we can

enumerate Ĵ1
ij such that

d̂0Ĵ0
ij = Ĵ1

ij , for i = 1, . . . , J0,

d̂1Ĵ1
i′j = Ĵ2

ij , for i′ ≡ i+ J0 and i = 1, . . . , J2.

Proof. The proof is essentially the same as that of Lemma 3.32.

3.5 Construction of Smooth Subdivision Forms

3.5.1 The Regular Setting

A well-known fact from subdivision [Warren & Weimer 2001] states that, in the regular

setting, a given subdivision scheme can be transformed into a subdivision scheme of higher

regularity through convolution. Since we are working with triangle meshes, convolution

along the three principal directions is appropriate and we denote its discrete representation

with C. With such an additional convolution Whitney 0-forms yield quartic box splines

(with subdivision operator SL0 = CSW0 ) while Whitney 2-forms, after normalization by

factor 4, give rise to half-box splines (SH2 = CSW2 ). A quartic box spline basis is supported

on 2-ring of triangles around the the central vertex while a half-box spline basis is supported

on 1-ring of triangles around the central triangle (see Figure 3.8, top). Convolution of the

Whitney 1-forms gives a new, smooth 1-form basis with subdivision scheme

SE1 := CSW1 . (3.59)

However, the above definition of S1 is merely a formal definition before we know how

to convolve a 1-form in practice. Metric will come into play in the first place but the final

definition has no need for metric, as expected. We first fix a uniform geometric realization of

K6 on R2, which is equivalent to have the three principal directions, e1, e2 and e3 = e2−e1

(see Figure 3.3). The vector field proxy V (x) of Whitney 1-form basis associated with edge

σ is supported on the two triangles incident to σ, and is linear within each triangle. It is

now straightforward to convolve V (x) along the three principal directions to get a smoother

vector field denoted by Ṽ (x) (see Figure 3.8, bottom). The component functions of Ṽ (x)
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satisfy a matrix refinement equation (MRE) and the refinement coefficients are given by the

symbol SE1 in (3.59). Notice that the refinement coefficients do not depend on the current

coordinate system {e1, e2, e3} although Ṽ (x) itself does (see the Bézier representation in

the appendix). Hence a MRE of 1-form is well defined through the symbol SE1 . After

a metric is fixed, this MRE admits component functions of the vector field Ṽ (x) as its

solution. The support of the smooth 1-form basis is now contained in N1(σ), the 1-ring of

triangles around the two triangles incident to σ. Over this support the 1-form is piecewise

polynomial (quartic) in terms of barycentric coordinates. The Bézier representation of

polynomial patches can be found in the appendix. The subdivision stencils for SL0 , SE1 , and

SH2 (in the regular setting) are summarized in Figure 3.9.

Figure 3.8: Smooth bases of 0-, 1- and 2-forms. Bases of quartic box splines (top left) and

half-box splines (top right). Visualization (x resp. y component of vector proxy) of smooth

1-form bases under the affine atlas (bottom).

To check that the new subdivision schemes still satisfy the commutative relations (3.56)

we consider the subdivision process in the Fourier domain over the Z2 lattice with diagonals.
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Figure 3.9: Even (top) and odd (bottom) stencils (regular setting) for smooth 0-, 1-, and

2-forms for 3-direction convolved Whitney forms.

For z = (z1, z2) let S(z) denote the symbol of the subdivision scheme S as usual. Recall

that the symbols of the co-boundary operators are given by (3.21):

d0(z) =


−1 + z−1

1

−1 + z−1
2

−z−1
1 + z−1

2

 and d1(z) =

 1 −1 1

−z−1
2 z−1

1 −1

 .

The symbol of three direction convolution is C(z) = 1/8(1 + z1)(1 + z2)(1 + z1z2). While

S0(z) is a scalar polynomial, S1(z) is a 3 × 3 matrix valued polynomial, grouping the

coefficients associated with the three edge types into a 3-vector, and S2(z) is a 2×2 matrix

valued polynomial, with coefficients of “up”/“down” triangles gathered into a 2-vector.

Importantly, C(z) is scalar and thus “pulls through” the relevant products in the Fourier

domain

d0(z)SL0 (z) = d0(z)C(z)SW0 (z) = C(z)d0(z)SW0 (z)

= C(z)SW1 (z)d0(z) = SE1 (z)d0(z).

An entirely analogous calculation shows that the commutative relation between SE1 and SH2

holds as well (with respect to d1). Hence we have

dSL0 = SE1 d, dSE1 = SH2 d. (3.60)

Suppose f(x) is a function on R, we have the simple expression for the derivative of its
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convolution f̃(x) with the box function B(x) supported on the interval [0, 1]:

d

dx
f̃(x) =

d

dx

∫ ∞

−∞
f(x− u)B(u)du =

∫ ∞

−∞

d

dx
f(x− u)B(u)du. (3.61)

In words, the above equation shows that derivative operation commutes with convolution

operator. This is also true for partial derivatives and multiconvolution. If we denote by ΦL,

ΦE and ΦH the solutions of the refinement equations obtained by convolving Whitney 0-,

1- and 2-form basis, respectively, we have

dΦL = ΦEd, dΦE = ΦHd. (3.62)

due to the commutative relations (3.4) of Whitney forms and (3.61).

It is well known that that SL0 and 4SH2 are convergent C2 and C1 subdivision scheme

respectively on a regular triangle mesh. The following theorem shows that SE1 is convergent

C1 1-cochain subdivision scheme. We will suppress the subscripts for simplicity and use

notation Sr only.

Theorem 3.34. Given arbitrary 1-cochain X, WSj1X converge to a smooth 1-form ω ∈

F1(K) under flat norm:

‖WSj1X − ω‖∞ → 0,

‖dWSj1X − dω‖∞ → 0,

as j →∞. Moreover, ω is a linear combination of the 1-form basis ΦE in (3.62).

Proof. Recall that the symbol of S1 is given by

S1(z) = 1/8(1 + z1)(1 + z2)(1 + z1z2)SW1 (z),

where SW1 (z) denotes the symbol of Whitney 1-form subdivision scheme. We have the

difference schemes with respect to direction e1 and e2, respectively,

∇1S1(z) = 1/4(1 + z2)(1 + z1z2)SW1 (z),

∇2S1(z) = 1/4(1 + z1)(1 + z1z2)SW1 (z).
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A 1-cochain scheme can be considered as a matrix subdivision scheme whose subdivision

sequence are given by (3.37). Since WSW,j1 X = WX for any j, SW1 has bounded spectral

radius, i.e.,

ρ∞(SW1 ) := lim
r→∞

sup‖SW,r1 ‖
1
r∞ <∞.

It follows from [Charina et al. 2005, Theorem 4] that ∇1S1 and ∇2S1 are both continuous

difference subdivision schemes. Hence S1 is a C1 matrix subdivision scheme. Further

dS1 = S2d and the convergence of 4S2 implies that condition (3.39) holds. It follows from

Theorem 3.16 that WSjX converge to a C1 1-form ω under flat norm. It is clear that S1

is the average scheme of SW1 . Given an edge σ, Sj1σ converge to the convolution ΦE of the

Whitney 1-form Wσ. Therefore ω is a linear combination of ΦE .

3.5.2 Irregular Setting: The Subdivision Metric

In the following sections, we generalize the 1- and 2-cochain subdivision scheme SE1 and SH2

to irregular meshes. The generalization of SL0 is well known as Loop’s scheme. Throughout

this section we will use S0, S1 and S2 to denote SL0 , S
E
1 and SH2 , respectively. A generalized

half-box spline in irregular setting was proposed in [Oswald & Schröder 2003], and it was

used for the schemes in [Wang et al. 2006]. However we realized that a variant of the

generalization is needed to get highest regularity in the irregular setting. Recall that in the

regular setting, 4S2 is a C1 dual subdivision scheme where the factor 4 is reciprocal of the

rate that triangle areas shrink along with subdivision. This factor is uniform in the regular

setting thanks to the affine atlas where area of each triangle is reduced by 1/4. Therefore

we first need to introduce the metric under which the regularity of 1-cochain scheme will

be established.

We are only concerned with the 1-cochain subdivision map S1 that has closed 1-cochains

as its invariant subspace. Theorem 3.27 and Corollary 3.28 shows that there must exists

a unique 0-cochain scheme S0 such that dS0 = S1d. Suppose we have a Cr-atlas {Uα} on

|K|. Fix a chart Uα ⊂ R2 with the coordinates {dx,dy}. Further we assume S1 reproduces

constant 1-forms dx,dy on the chart Uα, that is to say, there exists 0-cochains X and Y

such that

S∞1 dX = dx, S∞1 dY = dy on Uα.
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Due to the commutative relations we have

dS∞0 X = dx, dS∞0 Y = dy on Uα.

This is equivalent to

S∞0 X = x+ constant, S∞0 Y = y + constant, on Uα

since each Uα is a contractible region. Therefore we have the following result

Proposition 3.35. Suppose S1 is an exactness-preserving 1-cochain subdivision map. If

{Uα} is the Cr-atlas under which S1 reproduces the constant 1-form {dx,dy} on each chart

Uα, then Uα must be induced by the unique 0-cochain scheme S0 such that dS0 = S1d.

We use the C2 atlas {(|N1(v)|◦, ψv)} induced by the characteristic map of S0. In what

follows we assume that S1 commutes with S0 and S2 through the coboundary operator.

3.5.3 Some Geometric Properties of Characteristic Map

In this section we study convergence of the r-cochain subdivision schemes S0, S1 and S2

on the n-regular simplex Kn. In what follows we assume that Sr converges in the regular

setting. The scalar subdivision scheme Sv has been extensively studied for the constructions

of smooth subdivision surfaces. In our setting S0 equips Kn with a differential structure as

introduced in Chapter 2. The convergence of subdivision operators on 1- and 2-cochains will

be performed on this differential structure. The key concept for the subdivision differential

structure is the characteristic map. We adopted the definition in [Arden 2001]:

Definition 3.36. Suppose S0 is a stationary scalar subdivision scheme: C0(Kn) → C0(D(Kn)).

For a fixed valence n, suppose the distinct eigenvalues of the subdivision map λ0, λ1, . . . , λN ,

ordered by non-increasing magnitude, satisfy the following conditions:

1. The dominant eigenvalue λ0 is one, and is an algebraically simple eigenvalue.

2. The sub-dominant eigenvalue λ1 is real and positive, and is of geometric and algebraic

multiplicity 2.

3. The other eigenvalues, λj for j > 1, are of magnitude strictly less than λ1.
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Let u1, u2 ∈ C0(Nmw(v0,Kn)) be linearly independent λ1-eigenvectors of Sv. Then the

R2-valued control net u = (u1, u2) defines a continuous map

S∞v u : |N1(v0,Kn)| → R2,

called a characteristic map.

As given in [Arden 2001], we define the fundamental annular simplicial surface Ω0 ⊂ Kn

by

Ω0 = N2(v0,Kn) \N1(v0,Kn).

The region |Ω0| is shown in Figure 3.10.

Ω0

Ω1

Ω2

Figure 3.10: Kn \ v0 is decomposed into annuli.

Recall that the contraction map induces a piecewise linear homeomorphism |c| : |Kn| →

|D(Kn)|, which when composed with the identification induced by subdivision ı : |D(Kn)| →

|Kn|, results in a piecewise linear homeomorphism on |Kn|, which is also denoted by c in

an abuse of notations

c : |Kn| → |Kn|.

Let Ωj = cjΩ0 ⊂ Kj
n for j ≥ 0. For each face T ∈ Kk

n, we let jT be the unique integer of

j satisfying |T | ⊂ |Ωj |, and if T ∈ N1(v0,Kk
n), we let jT = k. Notice we have the identity

jT ≤ k. For instance, in Figure 3.10, given any triangle T ∈ K2
n, jT = 2 for |T | ⊂ |Ω2| and

jT = 0 for |T | ⊂ |Ω0|. We recap the geometric properties in the neighborhood of v0 under

the characteristic map. The following is an outline of Section 2.7 of [Arden 2001]. We will

need those technical results.

For each valence n, we fix a characteristic map y : |Kn| → R2, and use it as a global
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Figure 3.11: Left: the n-regular complex K9 ⊂ R2; right: the image of K9 under the

characteristic map of S0.

chart on Kn. Let λ be the sub-dominant eigenvalue of the subdivision matrix of valence n.

We denote, by the subscript Λ, geometric properties of domains in Kn with respect to the

Euclidean metric in characteristic coordinates. For example, we define the diameter of a

set Ω ⊂ |Kn| by diamΛΩ = sup{|y(p)− y(q)| : p, q ∈ Ω}.

Proposition 3.37. For an fixed integer d ≥ 0, there exists constants C0 through C3 such

that for any T ∈ Face(Kk
n) and k ≥ 0 we have

C0λ
2jT
(1

2

)2(k−jT )
≤ areaΛ|NdT | ≤ C1λ

2jT
(1

2

)2(k−jT )

and

C0λ
2jT
(1

2

)k−jT
≤ diamΛ|NdT | ≤ C1λ

2jT
(1

2

)k−jT
Proof. See [Arden 2001, Proposition 26].

Proposition 3.37 provides guideline on constructing convergent S2 on the characteristic

atlas. We define the curved simplicial surface Kj
n,Λ to be the image of Kj

n under the

characteristic map and accordingly Ωj,Λ be the image of Ωj (see Figure 3.11). For instance, a

triangle T = {a, b, c} ∈ Kj
n is mapped to the curved triangle TΛ = {y(a), y(b), y(c)} ∈ Kj

n,Λ.

Similarly an edge E = {a, b} ∈ Kj
n is mapped to the curved edge EΛ = {y(a), y(b)}. In

characteristic coordinates, the contraction map c can be written as

c(y) = λy. (3.63)

Given an r-cochain X on |Kn|, let Xj = SjrX be the r-cochain on |Kj
n|. The r-cochain
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Xj
Λ on Kj

n,Λ is defined by the pull-back,

Xj
Λ · σΛ = Xj · σ for any r-simplex σ ∈ Kj

n.

where σΛ denotes the image of σ under the characteristic map. We let r-form ωj = WXj

on |Kj
n| be the interpolation of Xj by Whitney r-forms. The corresponding r-form ωjΛ on

Kj
n,Λ is defined through the pull-back

ωjΛ · αΛ = ωj · α for any r-vector α on |Kj
n|.

Let ωΛ = S∞r X be the limit r-form on the characteristic domain. It follows from Lemma 3.14

and Lemma 3.20 that

ωΛ = lim
j→∞

WXj
Λ = lim

j→∞
ωjΛ.

Suppose that X is an eigenvector of Sr with eigenvalue µ. It is easy to see that

ωj+1
Λ (λy) =

µ

λr
ωjΛ(y). (3.64)

Letting j →∞, we have the following contraction identity for ω

ωΛ(λy) =
µ

λr
ωΛ(y). (3.65)

Given the bases {dy1, dy2} of the characteristic coordinates, the subdivision 2-form ωjΛ

can be written as

ωjΛ = f j(y)dy1∧dy2,

where f j is a piecewise constant function on each curved triangle TΛ ∈ Kj
n,Λ such that

∫
TΛ

ωjΛ = Xj
Λ · TΛ.

If ωjΛ is uniformly bounded, that is to say, there exists a constant M > 0 such that
∫
TΛ
ωjΛ ≤

M |TΛ| for all j, then we have from Proposition 3.37 that

Xj · TΛ ≤M1λ
2j ,
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for TΛ ∈ Kj
n,Λ ∩ Ωj,Λ, and

Xj · TΛ ≤M2

(1
4

)j
,

for fixed jT ≤ j and TΛ ∈ Kj
n,Λ ∩ ΩjT ,Λ. We summarize the observation above as follows.

Lemma 3.38. Assume that S2 converges on the regular complex. Then S2 is a continuous

and non-flat (nonzero at the central vertex v0) 2-cochain scheme under the characteristic

coordinate only if λ = 1/2.

Proof. With no loss of generality, we assume that X is the eigenvector of S2 with dominant

eigenvalue µ. For T jΛ ∈ K
j
n,Λ ∩Ωj,Λ, we have Xj · T jΛ = µjX · TΛ ≤M1λ

2j as j →∞, which

implies µ ≤ λ2. Non-flatness at v0 implies Xj ·T j ≥ C1λ
2j for some constant C1. Hence we

must have µ = λ2.

For T jΛ ∈ K
j
n,Λ ∩ΩjT ,Λ with fixed jT and j →∞, we can use the local affine coordinate

A which contains T jΛ for all j ≥ J . It is known that Xj converge to a continuous 2-form

under the affine coordinate A if and only if the constant 2-cochain 1 is the eigenvector

with dominant eigenvalue µ. Assume Xj = µjWSj21. We have C24−j ≤ µj ≤ C34j from

Proposition 3.37. Hence µ = 1/4. Finally we conclude that λ2 = µ = 1/4 and therefore

λ = 1/2.

3.5.4 Smoothness Analysis of S1 and S2

We assume in what follows that S0 has the dominant eigenvalue λ = 1/2. The following

Lemma gives a sufficient condition for S2 to be convergent.

Lemma 3.39. Suppose S2 has dominant eigenvalue 1/4. The normalized scheme Q2 = 4S2

can be reinterpreted as a dual scheme. If Q2 is a C1 scheme with an injective and regular

characteristic map, then for arbitrary initial 2-cochain X, WSj2X converge to a continuous

2-form ω = f(y)dy1∧dy2 under the characteristic coordinates {dy1, dy2} induced by S0.

Further, f(y) is C1 away from the irregular vertex v0 and ∂yif(y) are uniformly bounded

on N1(v0,Kn) provided that Q2 has subdominant eigenvalue µ = 1/2.

Proof. The characteristic map of S0 induces the coordinate system

χ : |N1(v0)| → R2,
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U
∞

=

Ω
0

)(
i

iχ)( 0Ωχ

Figure 3.12: Left: Representation of annulus Ω0 by the charactersitic map; right: a charac-

teristic chart is represented by
⋃∞
i=1 χ(Ωi).

and the characteristic map of Q2 induces another coordinate system

χQ : |N1(v0)| → R2.

The action of χ or χQ can be decomposed into their actions on annuli (see Figure 3.12):

χ(N1) =
∞⋃
i=1

χ(Ω0) ∪ χ(v0),

χQ(N1) =
∞⋃
i=1

χQ(Ω0) ∪ χQ(v0).

Each surface layer Ω̂i ≡ χ(Ωi) consists of smoothly joined patches. The scaling relation

reads

χ(c(z)) = λχ(z), χQ(c(z)) = µχQ(z), for all z ∈ |N2(v0,Kn)|, (3.66)

where c(z) is the contraction map. Therefore Ω̂i joined smoothly since we can regard any

finite number of layers of patches as a single layer of macro patches. Similarly we can define

Ω̂Q,i ≡ χQ(Ωi), and Ω̂Q,i are smoothly joined patches as well. If both χ and χQ are injective

and regular, we consider the composition

q(y) ≡ χQ ◦ χ−1(y) : Ω̂0 → Ω̂Q,0.
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For any C1 function q(y), we have

F (q) = F (χQ ◦ χ−1(y)) = f(y).

From the chain rule we have ∂yf(y) = ∂q/∂y · ∂F (q)/∂q. Notice that

∂q/∂y = ∂u/∂χ · ∂χQ(u)/∂u

is continuously defined on Ω̂0 due to the Inverse Function Theorem. Here u denotes the

affine coordinate defined on each triangle T ∈ Ω0. Therefore f(y) is C1 with respect to y

provided that F (q) is C1 with respect to q. Let D denote the Jacobi matrix. We have the

following scaling relations

Dχ(u/2) = 2λDχ(u), DχQ(u/2) = 2µDχQ(u).

Therefore

∂χQ/∂χ(y/2) = ∂u/∂χ · ∂χQ/∂u =
µ

λ
∂χQ/∂χ(y).

Since µ = λ = 1/2, we have the recurrence

∂χQ/∂χ(y/2) = ∂χQ/∂χ(y). (3.67)

Notice that ∂χQ/∂χ is continuous on
⋃
i Ω̂i and uniformly bounded on |N1(v0)| due the

recurrence (3.67). Therefore ∂χQ/∂χ is continuous at v0 only if it is a constant [Warren

1994, 7.2.3 Lemma 2], which implies that χQ is up to a linear transformation of χ. This

condition, however, does not hold in general. For instance, it is certainly not the case

when χQ and χ consist of cubic and quartic polynomial patches, respectively. As a result,

∂χQ/∂χ is not continuous at v0. Therefore f(y) is C1 away from v0, and its derivatives are

uniformly bounded due to the chain rule.

Theorem 3.40. Suppose the cochain subdivision schemes S0, S1 and S2 satisfy the com-

mutative relations (3.56). Suppose they are Cr (r ≥ 1) on the regular complex, and the

characteristic maps of S0 and S2 are regular and injective with subdominant eigenvalue

1/2. Let {Uα} be the Cr-atlas induced by the characteristic map of S0. Then, on each chart

Uα that contains an irregular vertex v0, S1 and S2 are continuous at v0. Further the subdi-



65

vision 1-forms are H1, and the coordinate derivatives of subdivision 2-forms are uniformly

bounded.

Proof. We only need to prove that S1 is continuous and belongs to H1. Given an eigen

1-cochain X of S1, we have either X = dα0 with α0 being an eigen 0-cochain of S0, or

dX = β2 with β2 being an eigen 2-form of S2, according to Lemma 3.32. For the former

case, we have ω = ∇yα with α being a subdivision function generated by S0 and hence

ω is C0 at v0 provided that S0 is C1 at v0. It follows from [Reif & Schröder 2001] that

ω ∈ H1. For the latter case, we assume that, with no loss of generality, dX is the dominant

eigenvector of S2 with eigenvalue 1/4. It follows from Lemma 3.32 that X is is the dominant

eigenvector among all non-exact eigenvectors of S1. From the contraction identity (3.65)

and λ = 1/2, we have

Dω(λy) =
1

4λ2
Dω(y) = Dω(y).

Therefore Dω is uniformly bounded on Uα, and hence ω ∈ H1.

Remark 3.41. Recall that 0- and 2-forms both represent scalar fields on manifolds. S0 and S2

are C1 on their own characteristic coordinates. However, represented by the characteristic

coordinate y of S0, S2 is only C0. Instead we can use the characteristic coordinate q induced

by S2 so that S2 becomes C1. Accordingly S0 becomes C0 under coordinate q and hence

has less regularity than under coordinate y. As a result of commutative relations which link

S1 with S0 and S2 through dS0 = S1d, dS1 = S2d, it is clear that S1 has less regularity too.
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Chapter 4

Designing Subdivision Schemes of r-Forms

The next question is how to design S0, S1 and S2 according to the conditions in Theo-

rem 3.40. With slight abuse of notations, we use S2 to denote both the 2-cochain subdivi-

sion scheme with dominant eigenvalue 1/4 and the dual subdivision scheme with dominant

eigenvalue 1, up to a multiplier 1/4. Our design strategy is to first find the proper S0 and

S2, then solve the commutative relations (3.56) for the mask of S1. On the regular mesh,

they are given by SL0 , SE1 and SH2 , known as schemes for quartic box splines, quartic edge

splines and cubic half box splines. We modify the stencils surrounding an irregular vertex

so that conditions in Theorem 3.40 still hold.

4.1 Weight Modification for S0 and S2

For the choice of S0 surrounding irregular vertices, we follow the modification of Loop’s sub-

division scheme proposed by [Biermann et al. 2000; Zorin & Schröder 2000] (see Figure 4.1).

The odd stencil for edges adjacent to an irregular vertex is modified by ε which is indepen-

dent of the valence n. The even stencil for irregular vertices is the same as Loop’s scheme.

The subdivision matrix S0 is similar to the block-diagonal matrix {Ŝ0,k : k = 0, 1, . . . , n−1}

under Discrete Fourier Transform. The resulting subdominant eigenvalue of Ŝ0,1 is given

by

λ =
3
8

+
1
4

cos(2π/n) + ε.
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We take α = −8λ2+8ε+5
8n according to [Loop 1987] so that the 0th block Ŝ0,0 has eigenvalue

λ2. Theorem 3.40 requires λ = 1/2, and hence

ε =
1
8
− 1

4
cos(2π/n).

Rigorous verifications of injectivity and regularity of characteristic maps are the impor-

tant topic in the theory of subdivision and have been extensively studied in the literature,

e.g., [Reif 1995; Peters & Reif 1998; Zorin 1998; Umlauf 2000]. Discussions on those methods

are beyond the scope of this thesis. Instead, we only visually check linear approximations of

characteristic maps after certain steps of subdivisions. Figure 4.2 shows characteristic maps

of modified Loop’s subdivision scheme surrounding irregular vertices of different valences.

We assume they are all regular and injective.

α

1-αn
α

α

α

α α
odd

3/8−ε 3/8+ε

1/8

1/8

even

Figure 4.1: Modified Loop’s scheme: the even stencil is the same as Loop’s scheme (left);

the odd stencil (right) is modified by ε, where the irregular vertex is marked in black.

A generalized half-box spline is proposed in [Oswald & Schröder 2003] and was used

as the dual scheme in [Wang et al. 2006]. In that case, at most five triangles adjacent

to the irregular vertex have nonzero weights. This type of scheme appears simpler but is

not able to make the subdominant eigenvalue of S2 to be 1/2 for all valences at irregular

vertices. Besides, odd children triangles depending on a few parent triangles only in the

central 1-ring does not seem right in high valence case. Due to Theorem 3.40, subdominant

1/2-eigenvalue is also required for S2. Therefore, we assume the following parameterized

stencils for S2 surrounding irregular vertices (see Figure 4.3).

On the invariant neighborhood (Figure 4.3, right), S2 is similar to the block-diagonal

matrix {Ŝ2,k : k = 0, . . . , n− 1} under DFT. Let {β̂k : k = 0, . . . , n− 1} denote the discrete
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n = 3 n = 4

n = 5 n = 7

n = 9 n = 16

Figure 4.2: Modified Loop’s scheme S0: characteristic maps surrounding irregular vertices

of different valences n.
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β0

β1

β2

βn-1

βn-2

1
2

3

4

Figure 4.3: Modified stencil for S2 at irregular vertices (left). Invariant neighborhood num-

bering (right).

Fourier modes of {βj : j = 0, . . . , n− 1}:

β̂k =
n−1∑
j=0

βje
2πikj/n.

We have

Ŝ2,k =


β̂k 0 0 0

1
4

(
z + 1 + 1

z

)
1
4 0 0

1
2 + 1

8z
1
8

(
1 + 1

z

)
1
8 0

z
8 + 1

2
z+1
8 0 1

8

 , z = e2πik/n. (4.1)

Evidently, the four eigenvalues of each submatrix Ŝ2,k are

{
β̂k,

1
4
,

1
8
,

1
8

}
.

We choose the eigenvalues β̂k such that the subdominant eigenvalue 1
2 is of multiplicity 2:

β̂k = β̂n−k = 2−k, k = 0, . . . ,
⌊n

2

⌋
,

and, for consistence with the regular case, β̂n
2

= 1/2 for n = 6. The resulting weights are

βj =
1
n

(
1 + 2

bn
2
c∑

k=1

cos(2πkj/n)β̂k
)

for n odd, (4.2)

βj =
1
n

(
1 + cos(πj)β̂n

2
+ 2

n
2
−1∑

k=1

cos(2πkj/n)β̂k
)

for n even. (4.3)

The characteristic maps of S2 surrounding irregular vertices of different valences are visu-
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alized in Figure 4.4. Evidently, injectivity fails for valence n = 3 and 4. Notice that in

these two cases, our choices of irregular stencils coincide the stencils proposed by [Oswald

& Schröder 2003]. Further investigation on the structure of matrix (4.1) shows that we

need to modify other weights except for the weights for children triangles of the first 1-ring.

While failure of injectivity of S2 may yield 2-forms of less smoothness, it does not violate

the conditions that assure H1 regularity of S1 as given in Theorem 3.40.

4.2 Designing S1 via Commutative Relations

Given S0 and S1 as defined in the previous section, it is now straightforward to get S1

that satisfies commutative relations with S0 and S1. We set fully parameterized stencils

surrounding irregular vertices (see Figure 4.5) by assuming size of stencils as well as sym-

metries. We also assume that irregular vertices are separated such that each edge has at

most one irregular endpoint. Solving the commutative relations uniquely determines those

stencils. The resulting weights that are the same as regular weights are marked in Fig-

ure 4.5. Those weights that differ from regular ones are given by equations (4.4)–(4.13).

The resulting 1-form bases of different vertex valences are visualized in Figures 4.6–4.7,

γ0 = − 3
32

+
β0

8
, (4.4)

γj = −1
8

+
β0

8
+

1
4

j∑
k=1

βk, for 0 ≤ j ≤
⌊n

2

⌋
, (4.5)

γj = −γn−j−1, for
⌊n

2

⌋
+ 1 ≤ j ≤ n− 1, (4.6)

σ0 =
3
8
− α+ 2γ0 + ε, (4.7)

σ1 =
3
32
− α+

1
4
β1, (4.8)

σj = −α+
1
4
βj for 2 ≤ j ≤

⌊n
2

⌋
, (4.9)

σj = σn−j−1 for
⌊n

2

⌋
+ 1 ≤ j ≤ n− 1, (4.10)

θ =
1
4
− ε, (4.11)

η = − 3
32
− ε, (4.12)

ξ = − 3
32

+ ε. (4.13)
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n = 3 n = 4

n = 5 n = 7

n = 9 n = 16

Figure 4.4: Characteristic maps of S2 surrounding irregular vertices of different valences n.
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γk-1

γ0

γ1

σ1
σ0

σk-1

σ2

γk-2

σk-2

-1 -1

-1

1

1

-2

-2

2θ

×1/32
-1

-1 -1

3 3

6 ×1/32

η η -1 -1

3 3

6 ×1/32

ξ -3

Figure 4.5: Stencils surrounding irregular vertices. The irregular vertices are marked in

black dots.
4.3 Computational Tools

We discuss in this section some of the computational tools necessary for the application of 1-

forms and in particular their use in the intrinsic design of vector fields. Our implementation

of the proposed subdivision schemes is based on CGAL and extends the polyhedron example

code [Shiue et al. 2005]. The use of a half-edge data structure is advantageous since the

direction of edges and orientation of faces matters in terms of the meaning of 1- and 2-form

coefficients as they change sign under orientation reversal.

4.3.1 Evaluation

Exact Evaluation Since our triple of subdivision schemes produces piecewise polynomial

splines in the regular setting one can use these to implement exact evaluation of all quantities

at arbitrary parameter locations in the regular setting, and with suitable eigen decomposi-

tions, in the irregular setting (for details see [Zorin & Kristjansson 2002] and [Stam 1998]).

As these ideas are by now well understood we focus here only on the evaluation of vector

field proxies of 1-forms. Due to the support of the 1-form edge bases, evaluation anywhere

within a triangle requires the coefficients on all edges within a 1-ring of the triangle. Using

these coefficients, one can use a Bézier representation (in the regular setting, or the eigen

representation in the irregular setting) to compute a 2-vector value at the desired paramet-

http://www.cgal.org/
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Figure 4.6: Visualization (x resp. y component of vector proxy) of 1-form bases. Left

column: x-component; right column: y-component. From top to bottom: n = 3, 4, 5.
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Figure 4.7: Visualization (x resp. y component of vector proxy) of 1-form bases. Left

column: x-component; right column: y-component. From top to bottom: n = 7, 9, 16.
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ric location. This 2-vector represents a tangent vector in the domain, which must now be

pushed forward into the tangent space induced by the underlying 0-form at that parametric

location. This requires evaluation of the parametric derivatives of the underlying 0-form

data (the Loop surface in our case) at that point. Given such a tangent space basis the

final tangent vector is given as the linear combination of the basis covectors {dx, dy} with

the coefficients from the 1-form evaluation.

Fast Evaluation In practice, for visualization especially, we have found far simpler to

just employ the subdivision method itself to refine the mesh to a suitable level. In this

scenario we refine the mesh through quadrisection and apply 0-form subdivision to the vertex

positions and 1-form subdivision to the edge data. The 0-form data are then displayed

through piecewise linear interpolation over each triangle, in effect using the Whitney 0-

forms. This is the mesh as usually visualized in subdivision algorithms for surfaces. The

1-form data are similarly interpolated over each triangle piecewise linearly with the Whitney

1-forms. The advantage of this approach is that there is no need to explicitly push tangent

vectors forward from the domain to the surface. In effect the underlying metric is “pulled

along” through the subdivision of the 0-form data. Given vertex positions a, b, c of the

three corners of a refined triangle together with the scalar coefficients a, b, c on the edges

opposite a, b, c produces a vector field at any point inside the triangle. Given barycentric

coordinates u, v, w we get

V (u, v, w) = 1
2A{[v(a+ b+ c)− b]

−→
ab⊥ + [w(a+ b+ c)− c]−→ac⊥},

where A denotes the area of triangle abc and ⊥ indicates a CCW rotation by 90◦ in the

plane of the triangle. This method of evaluation is used throughout our examples. We

typically draw a single (3D embedded) arrow at the centroid of each triangle (see Fig-

ures 4.8, 4.9, 4.10, 4.11 and 4.12).

Limit Circulation Stencil For 0-form subdivision one typically requires a limit stencil

to move vertices to the limit surface. Since 1-forms are treated as quantities integrated along

curves the corresponding notion is that of a limit circulation stencil, i.e., the computation

of the circulation of the limit vector field on the limit edge of the surface. These can

be computed analytically using the Bézier representation for a regular edge [Wang 2006]
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Figure 4.8: Gallery of vector fields. Top: tetrahedron with 3 edges incident to a vertex set

to +1 (left) resp. 3 edges incident on a face set to +1 (right); torus with 2 vortices and an

open surface with 1 vortex.

and extended to the irregular setting through a geometric series argument [Halstead et al.

1993]. Just as 0-form limit stencils are useful for approximation of a given surface with

a subdivision surface (see for example [Litke et al. 2001]) the limit circulation stencils are

useful for the approximation of given vector fields over a surface.

4.3.2 Design of Vector Fields

In surface modeling one manipulates control points to change the shape of the surface.

To model a desired tangent vector field (over the underlying surface), one now manipulates

control coefficients on edges. These coefficients have rather intuitive meaning, making design

of a desired field simple. Placing a single coefficients of 1 on a given oriented edge produces

a smooth vector field whose overall direction is roughly aligned with this edge and which

decays smoothly to zero over the 1-ring of the two triangles incident to the edge. The

magnitude of the vectors is directly controlled by the magnitude of the coefficient. Similarly,

typical tasks in vector field design such as the placement of sinks, sources, and vortices

becomes extremely easy. Sinks (and sources) at a vertex are where the divergence of a

1-form has negative (sink) or positive (source) value at the selected vertex. Vortices are

similarly characterized by a positive (CW vortex) or negative (CCW vortex) curl (valued

at a face) of a 1-form (see Figure 4.8).

However, setting only a few non-zero coefficients creates tangent vector fields that vanish
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Figure 4.9: 1-form basis forms on an open surface near the boundary.

over large parts of the surface since the basis 1-forms have finite support. In many scenarios

one would like to place only a few select sources/sinks and/or CCW/CW vortices and then

directly find a global vector field which satisfies these sparse features. This problem can

be seen as the converse of the traditional Hodge decomposition of vector fields [Tong et al.

2003; Desbrun et al. 2005a].

Figure 4.10: Vector fields resulting from sparse interpolation. Top left: placing ±1 at two

opposing vertices results in a global (curl-free) vector field with a single source and sink.

Placing ±1 at selected faces results in a global (divergence-free) vector field with two opposing

CCW/CW vortices. To produce a nontrival harmonic field on a higher genus surface (here,

a torus), selected edge coefficients were set to +1 (right).

Hodge Composition A simple design tool that we have employed proceeds as follows.

Given the coarse control mesh of a surface (assumed genus-0 for now), the user places

sources and sinks at some chosen vertices (and implicitly zeros at all other vertices). A

0-form is then solved for by using this data as the right hand side of Laplace’s equation
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over the vertices. CCW and CW vortices are placed at selected faces (and implied zeros at

all other faces). Using Laplace’s equation for 2-forms with the given data as rhs we get a

corresponding global 2-form. (Any other sparse interpolation technique could of course be

used as well.) If boundaries are present one may also supply Dirichlet or Neumann data

there to enforce tangential or normal vector fields (or a mixture) at the boundary. Once 0-

form (cv) and 2-form data (ct) are defined on all 0- respectively 2-simplices the final 1-form

data ce for all edges eij are set as

ce = d0cv + δ2ct.

Here δ2 is the co-differential defined as follows. Letting tijk and tijl be the two triangles

(with areas Aijk and Aijl) incident to eij and angles k̂ and l̂ at vk and vl we get

(δ2ct)ij = (ctijk
/Aijk + ctijl

/Aijl)/(cot k̂ + cot l̂).

Figures 4.10 and 4.11 demonstrate examples of this approach. Here we only used a low-

order approximation of the Laplace operator since it is sufficient for our experiments. For

applications requiring high accuracy (e.g., physical modeling) one can use exact Laplace

stencils with wider support [Wang 2006].

While this approach allows for the flexible placement of sources, sinks, and vortices,

some vector fields, in particular when the surface has non-trivial topology, are neither the

differential of a 0-form nor the co-differential of a 2-form. Figure 4.10 (right) shows such an

example, a non-vanishing harmonic vector field which is specified by setting edge coefficients

directly. Importantly, for arbitrary topology surfaces any vector field can be specified with

a combination of 0-, 1-, and 2-form data placed at the appropriate simplices.
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Figure 4.11: Fun with the mannequin head. Two vortices were placed on the head and a

global vector field interpolated on the dual graph with zero Neumann boundary conditions.

Note in the close ups the smooth variation of the vector field even in the presence of irregular

vertices.
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Figure 4.12: Example of vector field design for use in a fur shader. The user marks selected

vertices as sources (red) and sinks (blue) on the control mesh. Loop subdivision together

with our novel 1-form subdivision results in a tangent vector field which interpolates the

given sparse constraints over the subdivision surface (visualized on the bottom right). Such

fields can be used directly to control standard fur shaders (here using Autodesk Maya).



81

Chapter 5

Laplace and Bi-Laplace Equations of 1-Forms on

Riemannian Surfaces

In this chapter, we demonstrate a numerical solver of Laplace and bi-Laplace equations of

1-forms on a simplicial surface M (with or without boundary) with a Riemannian metric.

Recall that M becomes a C2 differential manifold when it is equipped with the C2-atlas

{Uα : |N1(vα)| → R2} induced by Loop’s subdivision scheme. Under {Uα} the subdivision

1-form basis is C1 everywhere except irregular vertices at which only continuity is ensured.

Therefor Dirichlet energy of the 1-form bases are finite which makes them a proper finite

element space. Throughout we will be only concerned with such an atlas. The metric,

however, is not necessarily generated by the subdivision scheme used for the atlas. It can

be any admissible function which has the required regularity under the choice of atlas.

This chapter is organized as follows. Section 5.1 introduces the Hodge ? operator on

M . As a result, the generalized Laplace operator of differential forms can be written as

composition of the coboundary operator d and ?. In Section 5.2 we set up the framework of

finite element solutions for 1-form Laplace equations. Section 5.3 demonstrates convergence

rate of the subdivision 1-form bases. We discuss applications of the subdivision 1-form bases

to bi-Laplace equations in Section 5.4.

5.1 The Hodge Laplace Operator

We briefly review some elementary definitions. Let M be a closed oriented Riemannian

n-manifold. We avoid technical discussions regarding the boundary. The reader is referred

to [Morrey 1966; Spivak 1975] for details. A Riemannian metric tensor g is represented by
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gij(u)dui ⊗ duj under any admissible coordinate system {u}. The metric g determines

an inner product on Vp ≡ T ∗pM for all p ∈ M , and hence an inner product (, )p for each r

on V r
p ≡

∧r T ∗pM . Precisely, let r-forms ω and η given by

ω =
∑

i1<···<ir

ωi1...ir(u)dui1∧. . .∧duir , η =
∑

j1<···<jr

ηj1...jr(u)duj1∧. . .∧dujr .

Then

(ω, η)p =
∑

i1<···<ik
j1<···<jk

∣∣∣∣∣∣g
i1j1(u) . . . gi1jk(u)

gikj1(u) . . . gikjk(u)

∣∣∣∣∣∣ωi1...ik(u)ηj1...jk(u).

where the gij matrix denotes the inverse of the matrix gij and |·| is the determinant. The

unit volume form associated with the metric is Vol(g) =
√
|g|du1∧. . .∧dur. Here |g| denotes

det(gij). Given ω ∈ V r
p , we obtain a linear map Lω : V n−r

p → R, by composing the map

η 7→ ω ∧ η with the canonical isomorphism of V n
p onto R (given by cVol(g) 7→ c). By the

Riesz representation theorem, there exists an element ?ω ∈ V n−r
p such that Lω(η) = (?ω, η)p

(see [Arnold et al. 2006a]). In other words, we have the following.

Definition 5.1. The Hodge start operator ? : V r
p → V n−r

p is defined by

(?ω, η)pVol(g) = ω ∧ η, ω ∈ V r
p , η ∈ V n−r

p , (5.1)

or equivalently,

(ω, η)pVol(g) = ω ∧ ?η = η ∧ ?ω, ω ∈ V r
p , η ∈ V n−r

p . (5.2)

We define the inner product 〈, 〉 on Ωr(M) by the integration

〈?ω, η〉 =
∫
M

(?ω, η)pVol(g) =
∫
M
ω ∧ η. (5.3)

Definition 5.2. The adjoint of d, denoted by δ, is defined by

〈δω, η〉 = 〈ω,dη〉. (5.4)

Note that δ : Ωr(M) → Ωr−1(M). The following relations hold among ?, d and δ. See

[Spivak 1975; Wilson 2005].



83

Theorem 5.3. As maps from Ωr to their respective ranges:

? d = (−1)r+1δ?,

? δ = (−1)rd?,

δ = (−1)n(r+1)+1 ? d?,

? ? = (−1)r(n−r)Id.

Definition 5.4. The Laplacian is defined to be ∆ = δd + dδ.

Finally, we state the Hodge decomposition theorem for Ω(M). Let Hr(M) = {ω ∈

Ωr(M)|∆ω = dω = δω = 0} be the space of harmonic k-forms.

Theorem 5.5. There is an orthogonal direct sum decomposition

Ωr(M) ∼= dΩr−1(M)⊕Hr(M)⊕ δΩr+1(M),

and Hr(M) ∼= Hr
DR(M), the de Rham cohomology of M in degree r.

In what follows, we assume that M is a two-dimensional simplicial surface equipped with

the C2 atlas {Uα : |N1(vα)| → R2} induced by Loop’s scheme S0. We assume two initial

subdivision steps so that the surface can be treated as the union of patches parameterized

over triangle faces with at most one irregular vertex incident on each face. We assume a

local parametrization of a surface patch x : T → R3:

x(u) = x(u1, u2) =
(
x1(u1, u2), x2(u1, u2), x3(u1, u2)

)T
,

where

T =
{
u = (u1, u2) ∈ [0, 1]2 : u1 + u2 ≤ 1

}
.

We emphasize that the component functions xi(u) may or may not be subdivision functions

generated by S0. The only requirement is that M is at least C1 under the atlas Uα. The

metric tensor g(u1, u2) =
∑

ij gij(u1, u2)du1 ⊗ du2 can be written as

gij(u1, u2) =
3∑

k=1

∂ixk(u1, u2)∂jxk(u1, u2). (5.5)
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We list some technical results which will be used for numerical computation. Given

0-forms ω and η on M , their inner product reads as

〈ω, η〉 =
∑
T

∫
T
ω(u)η(u)

√
|g|du1∧du2. (5.6)

Similarly, for 1-forms ω = ω1du1 + ω2du2 and η = η1du1 + η2du2 we have

〈ω, η〉 =
∑
T

∫
T

(
g11ω1η1 + g22ω2η2 + g12ω1η2 + g21ω2η1

)√
|g|du1∧du2. (5.7)

and, for 2-forms ω = ω12du1∧du2 and η = η12du1∧du2, we have

〈ω, η〉 =
∑
T

∫
T
ω12(u)η12(u)

1√
|g|
du1∧du2. (5.8)

In terms of the coordinate system, the Hodge star operator reads as

?1 =
√
|g|du1∧du2, (5.9)

?du1 =
√
|g|(−g12du1 + g11du2), (5.10)

?du2 =
√
|g|(−g22du1 + g21du2), (5.11)

?(du1∧du2) =
1√
|g|
. (5.12)

As a result, we have the following expressions:

?ω =
√
|g|
(
(−ω1g

12 − ω2g
22)du1 + (ω1g

11 + ω2g
21)du2

)
, (5.13)

dω = (∂u1ω2 − ∂u2ω1)du1∧du2, (5.14)

δω = − ? d ? ω

= − 1√
|g|
{
∂u1 [

√
|g|(ω1g

11 + ω2g
21)] + ∂u2 [

√
|g|(ω1g

12 + ω2g
22)]
}
. (5.15)

5.2 Finite Element Solutions for 1-Form Laplace Equations

We consider the Laplace equation ∆ω = f for r-form ω on M under boundary constraints.

For r = 0, 2, the Laplace equation is a second-order elliptic equation of scalar fields on M

whose finite element solutions have been extensively studied. Meanwhile relatively fewer
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attempts have been made to solve 1-form Laplace equations. A formula based on mixed

finite element is discussed in [Arnold et al. 2006a]. As an alternative we present a finite

element solver based on the smooth 1-form bases developed in the previous chapter. Our

approach has several advantages. Firstly it has no need for the mixed formula which leads

to a larger indefinite system. Secondly the 1-form bases are C1 on regular mesh and have

higher approximation order. Therefore we expect higher rate of convergence.

The Dirichlet energy is defined as

D(ωh) = 〈dω,dω〉+ 〈δω, δω〉. (5.16)

Now consider the constrained minimization problem

min
ω∈Ω1(M)

1
2
D(ω) + 〈f, ω〉 subject to (5.17)

tω = tη, nω = nη on ∂M, (5.18)

where tω and nω denotes the tangential and normal components along the boundary, re-

spectively, and η is a given 1-form on ∂M . By the variational principle, the Euler-Lagrange

equation of (5.17) and (5.18) is the boundary-value problem consisting of

(δd + dδ)ω = f in M, (5.19)

together with the Dirichlet boundary conditions (5.18). Existence and uniqueness of the

boundary-value problem (5.18)–(5.19) are proved in [Morrey 1966].

First we need to choose a finite element basis to represent 1-form ω. The obvious way

is through the coordinate system {du1, du2}. One can use scalar finite element basis to

represent its two component functions ω1 and ω2 under the coordinates and, for instance,

we can associate the DoFs with coefficients at vertices. However, when the metric of M

changes, in order to represent the same ω, the coefficients have to be changed accordingly.

Indeed, the Hodge star operator and hence δ are metric dependent. But representations

of differential 1-forms should be metric independent, as is expected. Therefore it is more

appropriate to use the subdivision 1-form basis {Φe} developed in the previous chapter,

where the DoFs are associated with coefficients on edges of the triangle mesh and are
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independent of the metric on M .

The second question is why Whitney 1-forms cannot be used in the minimization prob-

lem (5.17). Recall that the vector field proxy of Whitney 1-form ΦW is discontinuous along

the normal of element boundary. As a result, δΦW is not square integrable and hence

D(ΦW ) is not finite1. On the other hand, our smooth subdivision 1-form basis {Φe} is C1

on regular mesh and C0 at irregular vertices, D(Φe) is well defined.

Let {Φi} be the subdivision 1-form basis and assume the approximation of 1-form ω ∈

Ω1(M):

ωh =
∑

i∈Edge(M)

ciΦi. (5.20)

The Dirichlet energy of ωh is then given by

Dh(ω) =
∑

i,j∈Edge(M)

{〈dΦi,dΦj〉+ 〈δΦi, δΦj〉}cicj . (5.21)

And the linear term

〈f, ωh〉 =
∑

i∈Edge(M)

〈f,Φi〉ci. (5.22)

Hence the Ritz approximation of the variational problem (5.17)–(5.18)

min
ωh

1
2
ωt
hDhωh + fhωh subject to (5.23)

Thωh = ηh, Nhωh = η⊥h , (5.24)

where, by a slight abuse of notations, here we take ωh to denote the array of DoFs {ci},

Dij
h = 〈dΦi,dΦj〉 + 〈δΦi, δΦj〉 is the stiffness matrix, and fh is the array with entries

〈f,Φi〉. The entries of matrix T and N are the contributions to the tangential and normal

integration along ∂M . Precisely, they are given by

Tij
h =

∫
ei

Φj , Nij
h =

∫
ei

?Φj , (5.25)

ηih =
∫
ei

η, η⊥,ih =
∫
ei

?η. (5.26)

1Whitney forms can still be used to solve the 1-form Laplace equation, however, under the formula of

mixed finite element methods.
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The computation of element arrays requires the evaluation of integrals on the domain

of each element. We need numerical quadrature rules to efficiently compute those integrals

without compromising the order of convergence. Numerical experiments showed that a 1-

point quadrature rule or trapezoid rule is not enough for the stability and convergence of the

finite element solution. Therefore we have chosen the 4-point quadrature rule on triangles

for the numerical demonstration. The barycentric coordinates ξi and the corresponding

weights wi of the quadrature points are (e.g., [Carey & Oden 1984]),

ξ1 =
1
3
(1, 1, 1), w1 = −27/48

ξ2 =
1
5
(3, 1, 1), w2 = 25/48

ξ3 =
1
5
(1, 3, 1), w3 = 25/48

ξ4 =
1
5
(1, 1, 3), w4 = 25/48.

As for numerical integration on the boundary, we adopt the two-point Legendre–Gauss

quadrature formula (the interval is scaled into [−1, 1]):

ξ1 = −
√

3
3
, w1 = 1, ξ2 =

√
3

3
, w2 = 1.

By applying the expressions (5.5)–(5.15) together with the choice of quadrature rule,

we can fully discretize the Ritz approximation (5.23)–(5.24) for the given metric (gij).

In order to get full approximation order on the boundary, artificial edges are introduced

within one layer of triangles outside the boundary. The boundary constraints are imposed

by the penalty method, with a penalty stiffness equal to 100 times the maximum diagonal

component of the stiffness matrix [Carey & Oden 1984].

5.3 Numerical Demonstration

5.3.1 Rate of Convergence on Regular Mesh

We consider a regular triangle mesh with regular boundary. In particular, we consider the

uniform regular triangulation of [0, 1] × [0, 1] with Cartesian coordinate system {dx, dy}.
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The matrix gij of metric is identity. In test problem I, we take

f = 4π2(cos(2πx)− 4 sin(4πy))dx+ 4π2(cos(2πx) + 4 sin(4πx))dy (5.27)

in (5.19). The exact solution is

ω = (− sin(4πy) + cos(2πx))dx+ (sin(4πx) + cos(2πx))dy. (5.28)

As shown in Figures 5.1–5.3, we observed that the rate of convergence in the L2 norm

and the strain energy norm is h3 and respectively h2, where h represents the side length

of elements. Notice that, on a regular triangular mesh, our smooth 1-form bases span all

linear and quadratic 1-forms. It is well known that a finite element space that contains the

complete quadratic polynomials satisfies the error bound [Strang & Fix 1973]:

‖ω − ωh‖1 ≤ Ch2‖ω‖3, (5.29)

where ‖·‖s denotes the norm over Hs. Therefore the optimal rate of convergence in the

strain energy norm is h2 and it is attained in the experiments we performed.

For test problem II, we take

f = 16π2 sin(4πx)dx+ 4π2 cos(2πy − π)dy, (5.30)

with the exact solution being

ω = sin(4πx)dx+ cos(2πy − π)dy. (5.31)

The finite element solution ωh is visualized in Figure 5.4. The same rate of convergence as

shown in Figure 5.1 is observed.

Next we consider a smooth non-identity metric on M which is induced by a one-to-one

regular mapping F : [0, 1]2 → R2. For instance, we can take

F (x, y) =

F1

F2

 =

x+ y + 1
4π sin(πy)

y + 1
4π sin(πx)

 . (5.32)
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ω ω

ω ω

Figure 5.1: Rate of convergence in L2 norm and H1 norm for the finite element approxi-

mation of Laplace equations.
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Figure 5.2: Deformation under the injective and regular mapping F (x, y).

Figure 5.2 shows the deformation of a square under the mapping F (x, y). The metric gij

induced by F is given by

gij =
2∑

k=1

∂Fk
∂xi

∂Fk
∂xj

.

We take ω in test problem I as the exact solution and let f = −∆ω be the right

side of the Laplace equation with metric (gij). The optimal rate of convergence shown in

Figure 5.1 is attained. Figure 5.5 shows the vector field proxy of ωh under deformation of

metric (gij). Note that ωh here approximates the same 1-form as test problem II, and hence

their solutions of edge coefficients share the same value, up to the order of approximation.

5.3.2 Degradation of Convergence Rate on L-Shaped Domain

It is interesting to consider the performance of 1-form basis over a domain with singularities.

We consider an L-shaped domain Ω with a concave corner P . Our numerical experiments

showed that, if a smooth solution exists, our method is able to capture it with the optimal

rate of convergence. Figure 5.6 visualizes one of the component functions of the smooth

1-form which solves the Laplace equation on Ω.

It is well known that, the following boundary value problem,

∆ω = −1, in Ω, ω = 0 on ∂Ω

has a singularity at the point P . In terms of polar coordinate (r, θ) centered at P , the

dominant term in the singularity is r2/3 sin 2
3θ. Singular functions need to be included

into the finite element space to maintain optimal rate of convergence. In our numerical

experiment with the 1-form basis, the rate of convergence in the L2-norm is degraded to
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h (Figure 5.7). It shows that the 1-form basis is too smooth to handle the singularity

efficiently.

Figure 5.3: Finite element approximation of problem I. The component functions of ωh are

visualized as a vector field. Rotations are well captured.

5.4 Applications to Bi-Laplace Equations

The bi-Laplace equation of r-form on M is defined as

∆∆ω = f on M, (5.33)

subject to certain boundary constraints along ∂M . For example, we consider the Dirichlet

boundary condition,

ω = η and ∂nω = θ on ∂M, (5.34)

where η and θ are 1-forms defined on the boundary. Here ω = η has the same meaning

as (5.18) (i.e., the normal and tangential components are equal respectively), and ∂nω

denotes the normal derivative of the normal and tangential components of ω along ∂M .

The variational principle shows that the solution of (5.33) subject to (5.34) is the minimizer
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Figure 5.4: Finite element approximation of problem II. The component functions of ωh are

visualized as a vector field. Sinks and sources are well captured.

of following constrained minimization problem

min
ω∈Ω1(M)

1
2
B(ω)− 〈f, ω〉, (5.35)

subject to the boundary constraint (5.34). Here the energy functional B(ω) is defined as

B(ω) = 〈δdω, δdω〉+ 〈dδω,dδω〉. (5.36)

For the finite element approximation, we assume the approximation (5.20) of ω in the

finite element space spanned by {Φi}. The energy functional B(ω) is therefore given by

Bh(ωh) =
∑

i,j∈Edge(M)

{〈δdΦi, δdΦj〉+ 〈dδΦi,dδΦj〉}cicj . (5.37)

All that follows is completely analogous to the Ritz approximation of the Laplace equation.

According to the approximation theory of finite element method [Strang & Fix 1973], the

error estimate for solving the bi-Laplace equation on a regular triangle mesh is give by

‖ω − ωh‖2 ≤ Ch‖ω‖3, (5.38)

due to the fact that the subdivision 1-form bases span all quadratic 1-forms on the regular
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Figure 5.5: Finite element approximation of problem I with deformed metric induced by

F (x, y). Component functions of ωh are visualized under the deformed metric.

mesh. Therefore the optimal rate of convergence in H2 norm is linear.

As an example, we consider the uniform regular triangulation of [0, 1]× [0, 1], and take

the exact solution to be

ω = sin(πx) ∗ sin(πy)dx+ sin(2πx) sin(πy)dy. (5.39)

We let f = ∆∆ω and let the boundary conditions coincide with the boundary values of

ω and ∂nω. The finite element approximation of ω using the subdivision 1-form bases is

visualized in Figure 5.8. The linear convergence rate in H2 norm is verified in this example

(see Figure 5.9).
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Figure 5.6: Smooth solution is well captured on an L-shaped domain. One component

function is visualized.

Figure 5.7: Approximation to singular solution on an L-shaped domain. Rate of convergence

in the L2 norm is degraded to h.
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Figure 5.8: Finite element approximation ωh of the bi-Laplace equation with the exact so-

lution being (5.39). The vector field proxy is visualized.

ω ω

ω ω

Figure 5.9: Rate of convergence in L2 norm and H2 norm for the finite element approxi-

mation of bi-Laplace equations.
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Chapter 6

Extension to 3-D Subdivision

The subdivision approach we proposed in this thesis built a connection between Whitney

forms and the theory of subdivision. As a result, edge-based subdivision schemes are con-

structed as a natural extension of classic primal and dual subdivision schemes, and they

converge to a limit 1-form. Abstractly there are two essential ingredients in this approach.

The first one is the recursive refinement of mesh primitives which maps the mesh from coarse

level to fine level (e.g., the 4-to-1 quadrisection for triangle meshes). Second, the commu-

tative relations links subdivision schemes of r-cells and r + 1-cells through the coboundary

operator:

dSr = Sr+1d, r = 0, 1, . . . , n− 1, (6.1)

where n is the mesh dimension. While the previous chapters are mainly devoted to two-

dimensional simplicial meshes, this framework is general enough to handle higher-dimensional

or non-simplicial cases. Its applications on quadrilateral mesh can be found in the appendix.

In this chapter we will show its extension to the octet mesh which consists of tetrahedra

and octahedra.

In Section 6.1 we will introduce the tetrahedral subdivision scheme proposed by [Schaefer

et al. 2004], which avoids the choice of a preferred diagonal in splitting octahedra into

tetrahedra. Following this line, vertices of the mesh are identified with the well-known

face-centered cubic (FCC) lattice. In order to perform convolution process to get smoother

schemes, we regard FCC lattice as a sheared Z3 lattice. Section 6.2 is devoted to technical

calculations on constructing linear subdivision schemes of Whitney r-forms on octet meshes

by solving the commutative relations (6.1). The resulting schemes are uniquely determined

up to one parameter. In Section 6.3 we perform spectrum analysis to optimize the choice
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Figure 6.1: A tetrahedron is split into four tetrahedra and an octahedron (top). An octahe-

dron is split into six octahedra and eight tetrahedra (bottom).

of this parameter. Finally Section 7.2 shows how to get smoother schemes by convolving

the linear schemes obtained in Section 6.2.

6.1 Tetrahedral Subdivision Scheme

To perform linear subdivision on a tetrahedral mesh, we need to define a split on a single

tetrahedron, which is then applied to all tetrahedra in the mesh. The split we will be de-

scribing is proposed in [Schaefer et al. 2004]. Given a tetrahedron, we insert new vertices at

the midpoints of each edge followed by connecting them within each face of the tetrahedron.

Four new tetrahedra are formed at the corners of the original tetrahedron. Chopping these

four children off the parent tetrahedron leaves an octahedron (see Figure 6.1, top). We then

face two choices of splitting the resulting octahedron.

One choice is to split the octahedron into four tetrahedra by cutting through two of its

three diagonal planes. This is equivalent to choose a preferred diagonal for the octahedra.

This choice of diagonal causes the resulting tetrahedral mesh to contain a preferred direction

associated with the choice of diagonal. More crucially, each tetrahedron in the base mesh

must be assigned such a diagonal. As a result, it leads to substantial complications in

smoothness analysis of associated subdivision schemes.

The other choice is to leave the octahedron alone and develop a linear subdivision for
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octahedra. We split a tetrahedron into four new tetrahedra and an octahedron (Figure 6.1).

To refine an octahedron, we insert vertices at the middle points of each edge on the oc-

tahedron called edge vertices, and at the centroid of the octahedron, which is the average

of the six vertices of the octahedron. Next we connect the centroid vertex with each edge

vertex, and connect edge vertices within each face of the original octahedron. This way we

formed six new children octahedra at the six corner of the parent octahedron, and eight

new tetrahedra corresponding to the eight faces of the original octahedron. Together with

the split of a tetrahedron, we obtained a refinement process for octet meshes (Figure 6.1).

6.2 Construction of Whitney Forms on Uniform Octet Meshes

6.2.1 Numeration of Vertices, Edges, Triangles, and Volumes

Our objective is to construct r-cell subdivision schemes on octet meshes for r = 0, 1, 2, 3.

First we need to label each r-cell of the mesh such that a subdivision scheme can be repre-

sented by its symbol, as a common practice in surface subdivision. Starting with a regular

base tetrahedron (octahedron), the octet refinement rule (Figure 6.1) generates a uniformly

structured mesh, called uniform octet mesh, in the interior of the base tetrahedron (octahe-

dron) (see Figure 6.2). And each triangle of the mesh is the common face of a tetrahedron

and an octahedron. Each edge of the mesh is shared by two tetrahedra and two octahedra.

Each vertex is surrounded by eight tetrahedra and six octahedra. This structure can be

identified with the well-known face-centered cubic lattice. FCC lattice is a common crys-

tal structure, which can be generated in the following way. Given a regular cubic mesh

with vertices being identified with Z3 lattice, we insert new vertices at the centroid of each

square of the mesh, called centroid vertices. Next we connect each vertex with all of its

neighboring vertices of distance
√

2
2 to the vertex. The FCC lattice consists of Z3 vertices,

centroid vertices and edges of length
√

2
2 . Furthermore, the vertices of the FCC lattice can

again be identified with a sheared Z3 lattice (see Figure 6.3).

We demonstrate a consistent way of numerating all edges, triangles and volumes (tetra-

hedra and octahedra) of the uniform octet mesh. As shown in Figure 6.4, given a base

vertex marked with grey circle, six edges that emanate from the base vertex are grouped

together and attached to that vertex. Similarly, eight triangles that are adjacent to the

base vertex are grouped together and attached to that vertex. Finally two tetrahedra and
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Figure 6.2: Zoom view into the interior of a regular base octahedron after a number of octet

subdivisions. The screenshot is generated by jReality Viewer.

Figure 6.3: Vertices of a uniform octet mesh, marked with grey circles, can be identified

with a sheared Z3 lattice (left). Building block of the sheared Z3 lattice with x, y, z axes

being highlighted (right).
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one octahedron are grouped together and attached to the base vertex. By traversal over all

vertices followed by counting components in group associated with each vertex, each r-cell

of the uniform mesh get counted once and only once. Orientations of edges are indicated

by arrows. Notice that parallel edges receive the same orientation. Since each triangle is

the common face a tetrahedron and an octahedron, we define a positive direction on each

triangle as the direction pointing from the octahedron to the tetrahedron. All tetrahedrons

and octahedrons receive positive orientation.

Under the convention of Figure 6.4, 0-, 1-, 2- and 3-cochains on the octet mesh can be

interpreted as scalar, 6-, 8- and 3-vectors on the Z3 lattice. Therefore the theory of matrix

subdivision applies.

1

23

Figure 6.4: Numeration of oriented r-cells of the uniform octet mesh. Edges are grouped

as 6-vectors (left), triangles are grouped as 8-vectors (middle) and volumes are grouped as

3-vectors.

6.2.2 Solving Commutative Relations

There are four types of cochain subdivision schemes on a uniform octet mesh, Sr for r-

cochains, r = 0, 1, 2, 3. To construct Whitney forms on a uniform octet mesh, we solve for

linear subdivision schemes Sr that satisfy (6.1) under two assumptions. First we assume

that, given dimension r, Sr has different actions on splitting a tetrahedron than a octahe-

dron while the common face shared by tetrahedra and octahedra must receives the same

coefficient. The second assumption is that, when restricted on a triangle, Sr must coincide

with the subdivision schemes of Whitney forms on triangles. Recall that Whitney forms on

a tetrahedron is given by the formula (3.2) and they satisfy (6.1). We emphasize that we

do not presume formula (3.2) in our construction.

Consider the splitting rule of a tetrahedron. Let S0 be the linear subdivision scheme

on the tetrahedron and S3 the constant volumetric subdivision. That is to say, a child
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tetrahedron is weighted by 1
8 from its parent octahedron, and a child octahedron is weighted

by 1
2 . Actions of S1 and S2 on boundary of the tetrahedron are determined by 1- and 2-

cochain subdivision schemes of Whitney forms on triangles, respectively. Weights for the

interior child triangle are uniquely determined by the commutative relations (see Figure 6.5).

The resulting weights, h1 = 1/8 and h2 = −1/8, agree with the formula (3.2) of Whitney

forms on tetrahedra. Therefore actions of Sr on splitting a tetrahedron are completely

determined.

h2

h1

h2

h2

Figure 6.5: Weights for the interior child triangle in splitting of a tetrahedron, with triangle

orientation pointing inwards to tetrahedra, h1 = 1/8, h2 = −1/8.

Actions of Sr on splitting an octahedron are more subtle. S0 is simply the linear sub-

division scheme proposed by [Schaefer et al. 2004]. The centroid of the octahedron is the

average of its six vertices with weight 1
6 . We also assume constant volumetric subdivision

for S3. That is to say, a child octahedron is weighted by 1
8 from its parent octahedron,

and a child tetrahedron is weighted by 1
32 . Taking into account symmetry, we assume fully

parameterized masks for S1 and S2 (see Figure 6.6). Solving the commutative relations

yields the following one parameter solution where c is to be determined:

a1 = − c

48
− 1

48
, a2 = 0, a3 =

c

96
+

17
96
, a4 =

c

96
+

3
32
, (6.2)

f1 =
7
96
, f2 =

c

96
, f3 = − c

48
− 19

96
, (6.3)

f4 = − c

48
− 1

32
, f5 =

c

96
+

1
12
, f6 = − 1

96
. (6.4)

Remark 6.1. We start with a base tetrahedron and apply Sr to get sequences of r-cochains

in the interior of the tetrahedron at arbitrarily refined level. It can be verified that the

sequences of r-cochains are independent of the free parameter c, and coincide with the

interpolation by the formula of Whitney forms on tetrahedra. Therefore actions of S1 and

S2 on a base tetrahedron is uniquely determined by the commutative relations and the

choice of S0 and S3.



102

f1f2

f2f3 f5

f4

f6

f5

a3 a3 -a4-a4

a1

a1
a2

a2

a4
a4-a3-a3

Figure 6.6: Mask parameters of S1 for the child edge pointing from middle point of one edge

to the centroid of the octahedron (left). Mask parameters of S2 for the shaded child triangle

(right).

Remark 6.2. The equations (6.2)–(6.4) together with the choice of S0 and S2 define subdi-

vision schemes Sr of Whitney r-forms on an octahedron, up to choices of parameter c. Sine

Sr agree with Whitney r-forms on a base tetrahedron, the limit r-cochain generated by Sr

on a base octahedron can be represented as linear combination of infinitely many Whitney

r-cochains on all subdivided tetrahedra contained in the base octahedron.

Remark 6.3. Our construction can be extended to pyramids/tetrahedra with the choice of

a preferred diagonal through which an octahedron is split. For the same reason as above,

the resulting limit r-cochains on a base pyramid is represented as infinite sum of Whitney

r-cochains on subdivided tetrahedra contained in the base pyramid. Gradinaru & Hiptmair

[1999] proposed explicit formulae of Whitney elements on pyramids. They are not linear in

any tetrahedra that are contained in the base pyramid, and hence do not admit a subdivision

scheme Sr. In other words, the Whitney forms proposed by Gradinaru & Hiptmair are not

refinable on pyramids/tetrahedra mesh.

6.3 Fixing c by Spectrum Analysis of Sr

We need to choose the parameter c for r-cochain subdivision schemes Sr on a uniform

octet mesh. Theoretically, the parameter has no influence upon the interior of a base

tetrahedron. However, the choice of c may affect stability of the subdivision algorithm

since an octahedron within the base tetrahedron may not receive the exact coefficients as

they should be due to round-off error. The difference will mimic the actions of Sr on
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a base octahedron. Should Sr have unstable eigenvectors, they will eventually grow up

and deteriorate numerical results. Second, Sr are newly discovered r-cochain subdivision

schemes of Whitney forms on octahedra, and hence deserve further investigation to have as

high regularity as possible through the choice of c.

Recall that r-cochains on an octet mesh at level j can be regarded as vectors f j ≡

{f jα : α ∈ Z3} (see Figure 6.4), and r-cochains at level j + 1 are recursively generated by

f j+1 = Srf
j :

f j+1
α =

∑
β∈Z3

P rα−2βf
k
β , α ∈ Z3. (6.5)

See Section 3.2.3 for details of matrix subdivision. As before, the symbol of the matrix

refinement equation of Sr is defined as, thanks to Z3 lattice,

P r(γ) =
1
8

∑
α∈Z3

P rαe
−iα·γ . (6.6)

The convergence of Sr in the distributional sense is determined by the matrix

∆r = P r(0) =
1
8

∑
α∈Z3

P rα. (6.7)

Subdivision schemes S0 and S3 generate a scalar functional space that include constant func-

tions while S1 and S2 generate a cochain space that include the coordinate basis {dx, dy, dz}

of R3. Due to Theorem 3.6, ∆0 must have dominant eigenvalue 1 of multiplicity 1, ∆1 dom-

inant eigenvalue 1/2 of multiplicity 3, ∆2 dominant eigenvalue 1/4 of multiplicity 3 and ∆3

dominant eigenvalue 1/8 of multiplicity 1. Let Λr be the vector of eigenvalues of ∆r. We

have

Λ0 = {1} ,

Λ1 =
{

1
2
,

1
2
,

1
2
, − 1

48
(c+ 1), − 1

48
(c+ 1), − 1

48
(c+ 1)

}
,

Λ2 =
{

1
4
,

1
4
,

1
4
,

1
16
,

1
32
, − 1

48
(c+ 1), − 1

48
(c+ 1), − 1

48
(c+ 1)

}
,

Λ3 =
{

1
8
,

1
16
,

1
32

}
.
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Theorem 3.6 requires that
|−c− 1|

48
<

1
4
. (6.8)

The commutative relations can be written in symbols

d0(z)P 0(z) = P 1(z)d0(z),

d1(z)P 1(z) = P 2(z)d1(z),

d2(z)P 2(z) = P 3(z)d2(z).

for z ≡ exp(−iγ). Based on the same argument of Proposition 3.31, we have a similar

condition on c:
|−c− 1|

48
<

1
8
. (6.9)

The invariant neighborhood of Sr at vertex v consists of six octahedra and eight tetrahedra

that share vertex v. We can write down the subdivision map of Sr on the invariant neighbor-

hood. We claim that similar eigenstructures of the subdivision maps as given by Lemma 3.32

also hold in octet subdivision. Calculation shows that S1 has eigenvalue − 1
24(c+ 5) and it

is passed to S2 through the commutation relation. To assure dominance of eigenvalue 1/2

for S1, eigenvalue 1/4 for S2 and eigenvalue 1/8 for S3 (see proof of Proposition 3.31), we

must have
|−c− 5|

24
<

1
8
. (6.10)

Further we want to avoid negative eigenvalues which means

− c− 1 ≥ 0 and − c− 5 ≥ 0. (6.11)

Putting conditions (6.8)–(6.11) together, we have

− 7 < c ≤ −5. (6.12)

In practice we took c = −5 to get numerical results (see Figure 6.7). It is important to

notice that coefficients are uniformly bounded at all subdivision levels.
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Figure 6.7: One component of 8-vectors at uniform grids generated by S2 with initial data

being a single nonzero coefficient on a base octahedron. Visualized is a volumetric slice plot.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

We presented in this thesis a novel subdivision method of constructing smooth differential

forms on simplicial complexes. We have the following conclusions:

(a) The r-cochain subdivision schemes we introduced in this thesis generalizes classic

primal/dual subdivision schemes to subdivision schemes based on r-simplexes. The limit of

an r-cochain subdivision corresponds to a differential r-form on the mesh.

(b) On a regular mesh, we established the convergence and regularity criteria for r-

cochain subdivision schemes by utilizing the theory and techniques of matrix subdivision

schemes.

(c) We proved that exactness preserving of the mappings from r-cochains to forms is

equivalent to the commutative relations between r-cochain subdivision schemes and the

discrete exterior derivative d. Using the commutative relations as a guiding principle we

extended our construction to arbitrary topology. we treat r- and (r+1)-cochain subdivision

schemes as a pair and enforce the commutative relations. Convergence and regularity

analysis surrounding irregular vertices are established under the characteristic atlas. As

a result, our low-order construction recovers classic Whitney forms, while the high-order

construction yields a new class of high-order Whitney forms which form a smooth de Rham

complex. In practice, this means that one can do usual vector calculus operations simply

through local operations on coefficients associated with simplexes.

(e) We presented a concrete construction of smooth 1-form bases on simplicial surfaces

through the edge subdivision scheme. Design of tangent vector fields on a subdivision surface
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is now as simple as choosing coefficients on edges without having to worry about coordinate

frames. As finite element bases, such 1-form bases exhibit optimal rate of convergence in

solving Laplace equations of 1-forms on Riemannian surfaces.

(f) Our method is general enough to accommodate three-dimensional subdivision as well

as non-simplicial meshes, such as quadrilaterals and octahedra.

7.2 Further Work: Smooth 3D Schemes

With the linear r-cochain subdivision schemes Sr at hand, it is now straightforward to

generate smooth r-cochain subdivision schemes on a uniform octet mesh. As proposed

by [Schaefer et al. 2004], the smooth 0-cochain scheme S̃0 is obtained by convolving S0 with

itself. Written in symbols, we have

P̃ 0(z) = P 0(z)P 0(z), z ∈ Z3.

Let P̃ r ≡ P 0(z)P r(z). Since P 0(z) is a scalar polynomial, it commutates with the cobound-

ary operator d(z). Therefore we have

dr(z)P̃ r(z) = P̃ r+1(z)dr(z), for r=0,1,2. (7.1)

It is also shown that, in the interior of a base tetrahedron, the resulting S̃0 is C2. As a

result, we can expect C1 smoothness for S̃r, for r = 1, 2, 3. The following subjects may be

worthwhile to pursue as future work.

7.2.1 Regularity Analysis of Sr on Uniform Octet Meshes

On a base octahedron, the traditional criteria for continuity will not work directly for S0

since its symbol P 0(z) has no factors of (1+zi) for i = 1, 2, 3. Regularity analysis in Sobolev

spaces is involved and more advanced tools for analyzing regularities of matrix subdivision

schemes are needed (e.g., [Jiang & Oswald 2003]). Unfortunately, software that works for

three-dimensional domains is not well developed yet. When proper tools are available, we

can perform further investigation on Sr on uniform octet meshes to get optimal Sobolev

regularity by varying parameter c.
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7.2.2 Design of Schemes on Irregular Tetrahedra Meshes

As demonstrated by [Schaefer et al. 2004], smoothness analysis of S̃0 on the faces of the

base tetrahedra mesh can be accomplished by joint spectral radius test. And it already

becomes challenging to analyze S̃0 on edges, or surrounding vertices of the base mesh. In

construction of S̃r on irregular meshes, the commutative relations must be respected. How

should one design S̃r on irregular configurations with appearance of commutative relations

so as to get optimal regularity there?

7.2.3 3D Simulations and Vector Field Design with Smooth Form Bases

We have demonstrated some promising properties of smooth form bases in simulations on

surfaces. Such form bases respect geometry of physical quantities, and at the same time

can achieve optimal rate of convergence. Therefore we expect interesting applications when

smooth three-dimensional form bases developed above come into use. In particular, design

of vector fields in a volume will become more pleasant with our smooth subdivision based

on coefficients on edges (triangles).
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Appendix A

Bézier Representations

A.1 Bézier Representations

In the regular setting all basis forms have explicit piecewise polynomial representations

which we give here. Together with an eigen decomposition around irregular vertices these

can be used to implement exact evaluation at arbitrary parameter values in the arbitrary

topology setting following the ideas demonstrated by Stam [1998] and Zorin & Kristjansson

[2002].

g1

g3 g4 g5

g0

g6

g2

g7

g9

g12g15 g14 g13 g11

g10 g8

a b

c

u=1 v=1

w=1

w=1

e1

e3 e2

-6 -6

5 5

-13
8 844

-13

-1 -1

-6 -6

5 5

-13 -13

-1 -1

0

0

0

0

0
0

0

0

0

0

×1/120

Figure A.1: Notation and regular limit circulation stencil (right).

To give the Bézier coefficients we must fix a reference configuration. Let a,b, c ∈ R2 be

the vertices of a reference triangle and define the edge vectors

e1 ≡ b− a, e2 ≡ c− b, e3 ≡ a− c, ēi ≡ ei/|ei|

as well as parameters θ, η and ζ

θ ≡ 〈ē1, e2〉, η ≡ 〈ē1, e3〉, ζ ≡ 2A/|e1|,
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where A ≡ Area(4abc). The restriction gk to patch k of the C1 vector field proxy of the

smooth 1-form basis is then given by:

gk =
1

2A

(
gk,1(u, v, w)ē1 + gk,2(u, v, w)ē⊥1 ,

)
where gk,t(u, v, w) ≡ 1

24

∑
i≥0,j≥0,i+j≤4

mij
k,tu

ivjw4−i−j are functions supported on patch k

and (u, v, w) are the barycentric coordinates (see Figure A.1). Due to symmetry we have

gk+8(u, v, w) = gk(v, u, w). The values of mij
k,t are listed below (with trailing rows and

columns of all zeros elided for brevity), where Mk ≡
((

mij
k,1

)(
mij

k,2

)):

M0 =


( 0 0 0 0 2ζ

0 0 0 8ζ 0
0 0 6ζ 0 0

)
( 0 0 0 0 η−θ

0 0 0 4(η−θ) 0
0 0 −6θ 0 0

)
 , M1 =

( (
2ζ
)(

η−θ
)) ,

M2 =



( 0 0 0
0 0 0
0 0 6ζ
0 8ζ 0
2ζ 0 0

)
( 0 0 0

0 0 0
0 0 6η
0 4(η−θ) 0

η−θ 0 0

)
 ,M3 =


(

0 0 6ζ 16ζ 6ζ
0 0 12ζ 8ζ 0

)
(

0 0 −6θ 8(η−θ) 3(η−θ)
0 0 −12θ 4(η−θ) 0

)
 ,

M4 =


( 6ζ 32ζ 42ζ 16ζ 2ζ

16ζ 48ζ 36ζ 8ζ 0
6ζ 12ζ 6ζ 0 0

)
( 3(η−θ) 16(η−θ) 18η−24θ 8(η−θ) η−θ

8(η−θ) 24(η−θ) 12η−24θ 4(η−θ) 0
6η 12η 6η 0 0

)
 ,

M5 =



( 2ζ 16ζ 42ζ 32ζ 6ζ
16ζ 96ζ 132ζ 40ζ 0
42ζ 132ζ 72ζ 0 0
32ζ 40ζ 0 0 0
6ζ 0 0 0 0

)
( η−θ 8(η−θ) 24η−18θ 16(η−θ) 3(η−θ)

8(η−θ) 48(η−θ) 72η−60θ 20(η−θ) 0
18η−24θ 60η−72θ 36(η−θ) 0 0
16(η−θ) 20(η−θ) 0 0 0
3(η−θ) 0 0 0 0

)

,

M6 =



( 6ζ 16ζ 6ζ
32ζ 48ζ 12ζ
42ζ 36ζ 6ζ
16ζ 8ζ 0
2ζ 0 0

)
( 3(η−θ) 8(η−θ) 6η

16(η−θ) 24(η−θ) 12η
24η−18θ 24η−12θ 6η
8(η−θ) 4(η−θ) 0
η−θ 0 0

)

,M7 =



( 0 0
0 0
6ζ 12ζ
16ζ 8ζ
6ζ 0

)
( 0 0

0 0
6η 12η

8(η−θ) 4(η−θ)
3(η−θ) 0

)
 .
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A.2 Limit Circulations

Evaluation of the limiting positions of vertices of the initial mesh can be written as a linear

operator which takes the control points can returns their limiting positions on the subdi-

vision surface. This is the basic operator to interpolate/approximate data by subdivision

surfaces.

Using the Bézier representations of the 1-form proxy, we consider projections of gk to

unit reference vectors ēi, i = 1, 2, 3:

Ck,1(u, v, w) ≡ 〈gk, ē1〉 =
1

2A|e1|
(−θ − η)gk,1,

Ck,2(u, v, w) ≡ 〈gk, ē2〉 =
1

2A|e2|
(θgk,1 + ζgk,2),

Ck,3(u, v, w) ≡ 〈gk, ē3〉 =
1

2A|e3|
(ηgk,1 − ζgk,2).

With a straightforward but tedious computation one can verify that Ck,i(u, v, w)|ei| is in-

dependent of the parameters θ, η, ζ and A, as expected. This shows that circulations of

gk on triangle edges aligned with reference vectors (e1, e2, e3) are invariant under affine

transforms. Circulation on, for instance, the center edge is calculated by the formula

∫ 1

0
C5,1(1− t, t, 0)|e1|dt =

11
30
.

Circulations on other edges are calculated in a similar manner and their values are listed in

Figure A.1 (right). (It is clear that all circulations vanish on the boundary of the support.)

We can also obtain the limit circulations in regular setting simply through the refinement

mask of the 1-form basis. Consider the limit circulation operator I. Due to the symmetry

of edges, I is completely determined by 6 coefficients which are circulations on the 6 edges

in the northeast by putting a single 1 on the central edge (see Figure A.1). Given the 1-form

subdivision matrix S1, we have the following relation

RIS1 = I,

where R takes the sum along the two fine pieces of a coarse edge. Therefore the operator I

can be seen as an eigenvector, with eigenvalue 1, of the linear operator F defined through
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F (I) ≡ RIS1. Computation shows that F has a simple eigenvalue 1 and the associated

eigenvector {44, 8,−13,−6, 5,−1} which exactly recovers, up to a constant scaling factor,

the circulations in Figure A.1. To fix this constant factor, we consider the coefficients on

coarse edges given by dx where x is the 0-form data that lead to the linear coordinate

function on R2. Edge subdivision of dx yields a constant vector field parallel to the x-axis

and its circulations on coarse edges can be easily calculated. Fixing this constant factor,

we end up with the same limit circulation operator as given by Bézier representations.

To compute circulations near irregular vertices one may follow the treatment of Halstead

et al. [1993] essentially verbatim and we will not repeat it here.
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Appendix B

Boundary Rules

The design of suitable boundary rules is more subtle since the boundary rules of Loop

subdivision are fixed so that the boundary curve depends only on the boundary data.

Additionally the cross boundary second derivative vanishes. Consequently we expect a

reduced approximation power of the 1-forms near the boundary. To use the commutative

relations (3.56), we also need to fix suitable boundary rules for the 2-form scheme.

In what follows, k is used to denote the number of triangles adjacent to vertex v on the

boundary. We call a boundary vertex v regular when k = 3, irregular otherwise. Boundary

vertices are marked in black while interior vertices are marked in white. Vertices without

markers may or may not be on the boundary.

1/2 1/2
1/8

1/8
3/4-γ

γ 1/8 3/4 1/8
1/83/8

Figure B.1: Odd stencil for interior edges adjacent to irregular boundary vertices (left) and

the even/odd boundary rules for 0-forms (middle). On the right the 1-form boundary stencil.

B.1 0- and 2-Form Boundary Rules

For the boundary 0-form rules we follow Biermann et al. [2000]. In particular we assume

the γ modified odd rules for interior edges incident on boundary irregular vertices (see

Figure B.1, left). To design boundary rules for 2-forms, we wish to preserve the maximal size

of the odd stencil. This simple constraint results in a 7-parameter family of 2-form stencils



114

(with A,B,C,D, F0, F1, F2 as parameters) near the boundary as shown in Figure B.2 (here

we consider only k ≥ 3).

C

D

1-C-D

F0

F1
1-F0
-F1-F2

F2 1/8
1/2

1/8
1/8
1/8

B

1/2-B/2 1/2-B/2

k ≥ 3

k ≥ 4 k ≥ 5

k = 3

A

1/2-A/2 1/2-A/2

Figure B.2: Fixing the 2-form stencil support near the boundary we have four cases for odd

children (left) and a single case for the even child (right).

B.2 1-Forms Near the Boundary

The even 1-form boundary rules are simple as they must commute with the 0-form boundary

rules which reproduce cubic splines along the boundary. Consequently even 1-form stencils

along the boundary are the rules for quadratic splines up to a factor of 1/2 (see Figure B.1,

right). With these fixed, and a fully parameterized set of 1-form stencils near the boundary,

we can solve the commutative relations. If we require that the even 2-form stencil near the

boundary does not depend on the valence of either boundary vertex we find thatB,F0, F1, F2

become linear functions of C and D only, giving us a 2-parameter family of stencils overall.

To tie down a particular choice for C and D we ask for a “nice” spectrum for the 2-

form near the boundary. In the regular case (k = 3) the spectrum consists of a single one,

three quarters, four eighths and the remaining eigen values {1 − 3D, 1 − C − D, 1 − C −

D,−1 + 2C + D}. Choosing C = 2/3 and D = 1/6 yields the particularly nice spectrum

{1, 1/2, 1/2, 1/4, 1/4, 1/4, 1/6, 1/6, 1/8, 1/8, 1/8, 1/8} and weights

A = 1
2 , B = 2

3 , C = 2
3 , D = 1

6 , F0 = 5
24 , F1 = 7

12 , F2 = 1
12 .

The corresponding 1-form stencils are depicted in Figure B.3 and Figure B.4 visualizes

representative basis forms on the boundary.



115

5

1

73
-5

67

1

3

9-32γ-9+32γ

1-1 -3
6

-3 3
15-32γ

6

-3
1

3
1

-6+32γ
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-3

-4/3 -1/3
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1-1

-1

20-32γ

1

1
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1
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1

1

2
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-4

-1
-1 1

1

-4 -4
4 1

41

-2+32γ
-1 -1 1

1

Figure B.3: 1-form stencils (times 32) near the boundary derived from the γ modified bound-

ary rules from [Biermann et al. 2000].

Figure B.4: Vector proxy visualization of 1-form bases at the boundary. Top: regular (k =

3), x & y; bottom: irregular (k = 7), x & −y.
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Appendix C

Extension to Quads

Our approach to the construction of smooth differential 1-forms on triangle meshes extends

naturally to quad meshes. (In fact it is simpler: quad meshes have only two preferred

directions rather than three.) We fix the 0-forms on quads to be bilinear functions and

2-forms to be piecewise constant. To find the missing 1-forms in the middle, we simply

construct an edge subdivision scheme satisfying the commutative relations. Taking into

account the size of support, we assume fully parameterized 1-form stencils. Solving for the

commutative relations uniquely determines those stencils (see Figure C.1):

1/4

1/41/4

1/4

face vertex edge vertex odd

1/4

1/41/2 1/2

1

even even

1i j

m n

q

p

r

s

t

1/2

Figure C.1: Stencils for Whitney 0-, 1-, and 2-forms on quads.

This gives the following refinement equation for Whitney 1-forms on quad meshes:

φij =
1
2
(φip + φpj) +

1
4
(φms + φsn + φrt + φtq).

(recalling the edge elements proposed in Welij [1985]). We consider the quad in 2D to be the

image of the unit square under a bilinear transform x(s) where x and s are two-dimensional
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vectors. Restricted to the quad the inverse mapping exists as well. Assuming edge ij is the

image of interval {s2 = 0, 0 ≤ s1 ≤ 1}, the edge element for ij is defined as

φij = (1− s2)ds1. (C.1)

Applying this formula to parallelogram meshes which are affine transforms of the Z2 lattice,

it is easy to see that φij satisfies the above refinement equations.

We now increase the smoothness of 0-, 1-, and 2-forms in the regular setting by twofold

convolution along two principal directions. This results in bicubic and biquadratic splines

for 0- and 2-forms, respectively. For the arbitrary topology setting, we require our 1-form

schemes to commute with Catmull-Clark and Doo-Sabin schemes according to the commu-

tative relations. Given the parameters in the Catmull-Clark and Doo-Sabin subdivision

even even

1−β−γ

β/k
γ/k

β/k

β/k

β/k

γ/k

γ/k

σ0

σ1

σk-1

σ2

ξ0

ξk-1

ξk-2

ξ2

ξ1

ηk-1

ηk-2

η2

η1

η0

σk-2

face vertex edge vertex odd

1/4

1/41/4

1/4 1/16

1/16

3/16

3/161/161/16

1/161/16

3/8

3/8

Figure C.2: Stencils for 0-forms (Catmull-Clark) subdivision (left) and stencils for smooth

1-forms (right).

schemes β, γ and αi, we list here the unique solution for parameters of the smooth 1-form
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α0

α1α2

αk-1
αk-2

3/16

3/16

1/16

9/16

Figure C.3: Stencils for 2-form (Doo-Sabin) subdivision.

subdivision scheme (see Figures C.2 and C.3):

ξ0 = − 1
16
− γ

2k
+
α0

8
,

ξm = −1
8
− γ

2k
+
α0

8
+

1
4

m∑
j=1

αj , 1 ≤ m ≤ k − 2,

ξk−1 = ξk−2 +
1
4
α1,

ηm = ξk−m−1, 0 ≤ m ≤ k − 1,

σ0 =
3
8
− β

k
+ 2ξ0,

σ1 =
1
16
− β

k
+ ξ1 + ξk−1,

σm = −β
k

+ ξm + ξk−m, 2 ≤ m ≤ k − 2,

σk−1 = σ1.

To get numerical results, we fix the parameters to be:

β =
3
2k
, γ =

1
4k
,

α0 =
1
2

+
1
4k
, α1 = αk−1 =

1
8

+
1
4k
, αj =

1
4k
, j = 2, · · · , k − 2,

and visualize in the following the smooth 1-form in the image domain of the characteristic

map. Given 4 edge values of a quad, we compute the vector at its centroid (s1 = s2 = 1/2)

using (C.1) (see Figure C.4).

Corresponding boundary rules can be derived similar to the case for triangle meshes.
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Figure C.4: Visualization (x resp. y-component of vector proxy) of 1-form bases in the

regular (k = 4, top; here the y component is identically zero) and irregular (k = 3, middle;

k = 8, bottom) setting. A single edge coefficient incident to the (ir-)regular vertex is set to

1. The edge is aligned with the x-axis.



120

Bibliography

Arden, G. (2001). Approximation Properties of Subdivision Surfaces. Ph.D. thesis, Univer-

sity of Washington.

Arnold, D.N., Falk, R.S. & Winther, R. (2006a). Finite Element Exterior Calculus, Homo-

logical Techniques, and Applications. Acta Numerica, 15.

Arnold, D.N., Falk, R.S. & Winther, R. (2006b). Differential complexes and stability of

finite element methods. I. The de Rham complex. The IMA Volumes in Mathematics and

its Applications, 142, 23–46.

Biermann, H., Levin, A. & Zorin, D. (2000). Piecewise Smooth Subdivision Surfaces with

Normal Control. Comp. Graphics (ACM/SIGGRAPH Proc.), 113–120.

Bossavit, A. (1988). Whitney forms: a class of finite elements for three-dimensional com-

putations in the electromagnetism. vol. 135, 493–500.

Bossavit, A. (1990). Solving Maxwell’s Equations in a Closed Cavity and the Question of

Spurious Modes. IEEE Trans. Mag., 26, 702–705.

Bossavit, A. (1998). Computational Electromagnetism. Academic Press, Boston.

Bossavit, A. (2001). ’Generalized Finite Differences’ in Computational Electromagnetics.

Progress in Electromagnetics Research, PIER 32, 45–64.

Bossavit, A. (2002). Generating Whitney Forms of Polynomial Degree One and Higher.

IEEE Transactions on Magnetics, 38, 341–344.

Carey, G.F. & Oden, J.T. (1984). Finite Elements–Computational Aspects, vol. III. Prentice-

Hall, Inc., Englewood Cliffs, N.J.

http://www.math.washington.edu/~duchamp/preprints/arden-thesis.pdf
http://ima.umn.edu/~arnold/papers/acta.pdf
http://ima.umn.edu/~arnold/papers/acta.pdf
http://www.ima.umn.edu/~arnold/papers/nacomplexes.pdf
http://www.ima.umn.edu/~arnold/papers/nacomplexes.pdf
http://www.mrl.nyu.edu/publications/piecewise-smooth/
http://www.mrl.nyu.edu/publications/piecewise-smooth/
http://ieeexplore.ieee.org/iel1/2201/310/00006288.pdf?arnumber=6288
http://ieeexplore.ieee.org/iel1/2201/310/00006288.pdf?arnumber=6288
http://www.em.tut.fi/~bossavit/Papers/Compumag89.pdf
http://www.em.tut.fi/~bossavit/Papers/Compumag89.pdf
http://www.lgep.supelec.fr/mse/perso/ab/01Contents.pdf
http://www.em.tut.fi/~bossavit/Papers/PIER01.pdf
http://ieeexplore.ieee.org/iel5/20/21500/00996092.pdf?arnumber=996092


121

Catmull, E. & Clark, J. (1978). Recursively Generated B-Spline Surfaces on Arbitrary

Topological Meshes. Comp. Aid. Des., 10, 350–355.

Cavaretta, A.S., Dahmen, W. & Micchelli, C.A. (1991). Stationary subdivision. Memoirs

of the American Mathematical Society , 93.

Cendes, Z.J. (1991). Vector Finite Elements for Electromagnetic Field Computation. IEEE

Transactions on Magnetics, 27, 3958–3966.

Charina, M., Conti, C. & Sauer, T. (2005). Regularity of Multivariate Vector Subdivision

Schemes. Numerical Algorithms, 39, 97–113.
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