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ABSTRACT 

Assembling a nervous system requires exquisite specificity in the construction of 

neuronal connectivity. One method by which such specificity is implemented is 

the presence of chemical cues within the tissues, differentiating one region from 

another, and the presence of receptors for those cues on the surface of neurons 

and their axons that are navigating within this cellular environment. 

Connections from one part of the nervous system to another often take the form 

of a topographic mapping. One widely studied model system that involves such 

a mapping is the vertebrate retinotectal projection-the set of connections 

between the eye and the optic tectum of the midbrain, which is the primary 

visual center in non-mammals and is homologous to the superior colliculus in 

mammals. In this projection the two-dimensional surface of the retina is mapped 

smoothly onto the two-dimensional surface of the tectum, such that light from 

neighboring points in visual space excites neighboring cells in the brain. This 

mapping is implemented at least in part via differential chemical cues in 

different regions of the tectum. 

The Eph family of receptor tyrosine kinases and their cell-surface ligands, the 

ephrins, have been implicated in a wide variety of processes, generally involving 

cellular movement in response to extracellular cues. In particular, they possess 

expression patterns-i.e., complementary gradients of receptor in retina and 

ligand in tectum- and in vitro and in vivo activities and phenotypes-i.e., 

repulsive guidance of axons and defective mapping in mutants, 
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respectively-consistent with the long-sought retinotectal chemical mapping 

cues. 

The tadpole of Xenopus laevis, the South African clawed frog, is advantageous 

for in vivo retinotectal studies because of its transparency and manipulability. 

However, neither the expression patterns nor the retinotectal roles of these 

proteins have been well characterized in this system. We report here 

comprehensive descriptions in swimming stage tadpoles of the messenger RNA 

expression patterns of eleven known Xenopus Eph and ephrin genes, including 

xephrin-A3, which is novel, and xEphB2, whose expression pattern has not 

previously been published in detail. We also report the results of in vivo protein 

injection perturbation studies on Xenopus retinotectal topography, which were 

negative, and of in vitro axonal guidance assays, which suggest a previously 

unrecognized attractive activity of ephrins at low concentrations on retinal 

ganglion cell axons. This raises the possibility that these axons find their correct 

targets in part by seeking out a preferred concentration of ligands appropriate to 

their individual receptor expression levels, rather than by being repelled to 

greater or lesser degrees by the ephrins but attracted by some as-yet-unknown 

cue(s). 
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Chapter I 

INTRODUCTION 

Specificity of neuronal connectivity 

The marvelously complex functionality of the nervous system is made possible 

by exquisite specificity in the neuronal connections within it. Some of these 

connections, such as the vertical connections between cells in various laminae of 

the cerebral cortex, take place within a local neighborhood. Others, however, 

involve long-range projections in which a large number of cells in one discrete 

region send axons to another region. 

Many of these projections exhibit an orderly mapping, such that cells from one 

sublocation within the source region reliably project to a given sublocation 

within the target. This is true in several familiar sensory projections from the 

PNS to the CNS; for example, in the sense of touch, there is a mapping from the 

surface of the skin to the surface of the somatosensory cortex. Similarly, in the 

sense of hearing, cells which are arranged along the length of the cochlea from 

low-frequency-response to high-frequency map linearly onto the primary 

auditory cortex. 
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One of the best-studied examples of such a sensory projection is the retinotectal 

projection (reviewed in Holt and Harris, 1993). This is the connection between 

the eye and the optic tectum-the roof of the midbrain, which is the primary 

visual center in non-mammalian vertebrates. Its homolog in vertebrates is 

usually called the superior colliculus. In mammals the primary visual center is in 

the forebrain, and the superior colliculus has been relegated to lower-level visual 

processes such as integration of visual and auditory stimuli and control of eye 

movements. However, it retains a similar topographic organization and is 

similarly useful as a model system. In this paper "retinotectal" will be used in 

the general sense to refer to both the retinotectal and retinocollicular projections. 

In the retinotectal system, retinal ganglion cells constituting the output layer of 

the retina send axons out the optic nerve to the contralateral tectum. 

Topologically the retina and tectum are both organized as two-dimensional 

sheets of cells, and there is a smooth mapping from one to the other. Thus 

neighboring cells in the retina, which receive input from neighboring points in 

visual space, send their output to neighboring points in the tectum. Specifically, 

cells from the nasal (medial or anterior, depending on whether the eyes face front 

or to the side) wire up to the caudal tectum, while cells from the temporal (lateral 

or posterior) retina wire up to the rostral tectum. In the orthogonal axis, cells 

from dorsal retina connect to ventral (or equiv alently, lateral) tectum, and those 

from ventral retina to dorsal (medial) tectum. 

Sensory systems make such good examples of orderly projections, and are as 

well understood as they are, partly because we know the nature of the input 
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data. We can thus manipulate that input experimentally-for example, by 

shining light on a small region of the eye-and observe the output via standard 

electrophysiological techniques. Furthermore, knowing the nature of the input 

allows us to make educated guesses as to the functional significance of the 

connections. In order to detect edge and motion, for example, it is necessary to 

compare data from neighboring points in visual space. Such a computation is 

facilitated by the location adjacent to each other in the visual cortex of cells 

carrying this data. 

But orderly anatomical projections are a more general feature of the nervous 

system. For example, there is a topographic projection from the hippocampus to 

the lateral septum in the forebrain: medial hippocampus projects to dorsal lateral 

septum, and lateral hippocampus projects to ventral lateral septum. We do not 

yet know what function this mapping subserves, but it is likely to be important. 

And furthermore, anatomically ordered projections are themselves only a subset 

of orderly projections. The connections formed may still require exact specificity, 

even when the mapping is not contiguous in space and is thus not apparent by 

anatomical inspection. The olfactory system is a case in point: the map in 

question is an abstract one, in which neurons scattered across the nasal 

epithelium but which happen to express the same chemoreceptor as one another 

converge on the same glomerulus in the olfactory bulb in the brain. But because 

there is no obvious anatomical order, the nature of the map or even its very 

existence was not elucidated until relatively recently (reviewed in O'Leary, 1999). 
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Thus, study of the retinotectal system is valuable not just because of what it 

teaches us about vision, but because it is a highly accessible model system in 

which we can study the mechanisms by which specificity in neuronal 

connectivity is achieved. The lessons learned will in general have much wider 

significance for how the brain as a whole is constructed. 

Specificity in the retinotectal system 

What mechanisms are used to achieve such specificity? A priori one could 

imagine many possibilities: 

Coherence of original order in axon tracts 

Order of arrival-the "land rush" model 

Activity-dependent sorting- "neurons that fire together wire together" 

Chemoaffinity-the differential presence of molecular cues 

Modelling studies have shown that various mechanisms are in principle capable 

of producing the normal topography. No one mechanism, however, suffices to 

explain the wide variety of behaviors that are seen under various classical 

embryological perturbations, such as ablating portions of the retina or tectum, 

grafting eye halves together to form "double nasal" or "double temporal" retinae 

(Fraser and Perkel, 1990); (for reviews see Edds et al., 1979; Goodhill and 

Richards, 1999). This suggests that multiple, partially redundant mechanisms 

are at work in vivo. The various, sometimes conflicting results of embryological 

experiments in a different systems can thus be taken as indicating the relative 
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importance of a particular mechanism in a particular system which has been 

subjected to a particular pathological situation. 

In the retinotectal system, the weight of evidence supports a model in which an 

initial, sometimes relatively crude map is established by chemoaffinity, and is 

then refined by activity-dependent sorting (reviewed in Holt and Harris, 1993; 

O'Leary, 1999). In our work we have focused on the chemoaffinity mechanism. 

regrowth into tectum 

' 

., 
retinal ablation 

Figure 1.1: Evidence for chemoaffinity in the goldfish visual system (taken 

from Sperry, 1963). The optic nerve of an adult goldfish was cut and half of the 

retina (indicated by the blank area) ablated. Axons growing back onto the 

tectum grew to the topographically correct region-ventral retina to medial 

tectum, etc.-indicating that there must be some property innate to that region 



6 

that was sensed by the axons. A = anterior, P = posterior, D = dorsal, V = 

ventral, M = medial, L = lateral 

Figure 1.1 shows some of the original work by Roger Sperry and colleagues that 

implied the existence of such a mechanism (Attardi and Sperry, 1963). Via 

various ablation experiments, it was shown that retinal ganglion cell axons have 

innate preferences for target regions within the tectum that are appropriate to 

their sites of origin within the retina. This was proposed to be due to differences 

in the chemical cues present in different tectal regions, and corresponding 

differences in the preference for these cues in axons from different retinal 

regions. 

In principle such cues could be either discrete or continuous-a "digital" system 

involving individual tags or a combinatorial code of tags, or an "analog" system 

involving gradients of molecules in the retina and tectum. Individual tags would 

appear to require too many distinct proteins to be encodable given the actual size 

of a vertebrate genome. A combinatorial code has not been ruled out, but 

functional evidence for a molecular substrate has not yet been found. Candidate 

gradient molecules, however, have been found, and are the focus of the present 

work. In principle a gradient interaction could involve either homophilic or 

heterophilic interactions, and could be either attractive or repulsive. Evidence 

for a repulsive guidance cue came from in vitro axonal guidance studies in which 

axons from temporal retinal ganglion cells prefer to grow on membranes from 

ros tral tectum. It w as found that h eat-inactivating the caudal membranes 
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abolished this effect, while heat-inactivating the rostral did not, thus suggesting 

that the former contained a differential repulsive activity rather than the latter an 

attractive (Walter et al., 1987). A schema for establishing retinotectal topography 

via such a repulsive gradient is shown in Fig. I.4. 

Xenopus as a model organism 

The tadpole of the African clawed frog, Xenopus laevis, has long been a favorite 

model system for many types of studies, including those on the visual system. 

One of its chief advantages it that it is nearly transparent. The surface of the 

brain is visible immediately below the skin on top of the head, and is readily 

accessible for in vivo imaging. This makes it possible to trace axonal connections 

in the living animal and follow them over time as they change. For example, 

fluorescent anterograde tracers injected into the retina will label retinal ganglion 

cells and their terminal arbors in the tectum. In fact, with a tiny focal dye 

injection it is possible to label a single retinal ganglion cell in this manner. The 

arbor behavior under normal conditions or after various perturbations, such as 

the injection of pharmacological agents, can then be recorded with timelapse 

video microscopy in an anaesthetized animal (Cohen-Cory and Fraser, 1995; 

O'Rourke et al., 1994; O'Rourke and Fraser, 1990). 

This experimental paradigm has been profitably used to study the effect of 

exogenous neurotrophins on retinal ganglion cell behavior (Cohen-Cory and 

Fraser, 1995). In these studies it was found that brain-derived n eurotrophic 

factor (BDNF) greatly increased the branching of individual arbors during the 
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time period when they are searching out appropriate connection sites in the 

tectum-a phenomenon that would have been difficult or impossible to detect 

without following their behavior over time rather than just examining a single 

timepoint in fixed tissues. Some important insights have come out of such in vivo 

studies. For example, it has been found that exploration by the terminal arbor is 

highly dynamic, w ith branches at least 10 p.m long growing or retracting in as 

little as three minutes (Witte et al., 1996). This finding raises the possibility that 

such large-scale remodelling could be capable of playing a role in short-term 

synaptic plasticity in a variety of systems, such as those involved in learning and 

memory. 

We were interested in studying the role of the Eph family of receptor tyrosine 

kinases in retinotectal mapping (see below), both in order to take advantage of 

Xenopus as a model system and in order to explore the extent to which the 

developmental mechanisms involved are or are not conserved. Studies to date 

implicating the Eph and ephrin families in the establishment of retinotectal 

topography have been performed in other vertebrate classes, including birds 

(Diitting et al., 1999; Hornberger et al., 1999; Nakamoto et al., 1996) and 

mammals (Brown et al., 2000; Feldheim et al., 2000), but not to our knowledge in 

amphibians. Little data is available on the expression of these genes or proteins 

in Xenopus at the relevant stages, because most expression studies (referenced 

individually in Chapter II) have focused on embryogenesis, whereas retinotectal 

topographic ordering does not begin to emerge until the swimming tadpole stage 

(Holt and Harris, 1983; O'Rourke and Fraser, 1990; Sakaguchi and Murphey, 

1985). It is known, however, that EphB receptors are present on Xenopus retinal 
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ganglion cell axons and act in vivo to regulate their navigation at least one 

decision point: decussation at the optic chiasm (Nakagawa et al., 2000). 

The Eph receptor tyrosine kinases and their ligands, the ephrins 

The prototypical Eph family receptor tyrosine kinase was cloned as an orphan 

receptor from an grythropoietin-12-roducing hepatocellular carcinoma cell line 

(Hirai et al., 1987). Many homologs soon followed, but ligands were not 

identified for them until1994 (Beckmann et al., 1994; Bennett et al., 1994; Cheng 

and Flanagan, 1994; Davis et al., 1994; Fletcher et al., 1994; Shao et al., 1994). 

The ephrins come in two subclasses, termed A and B (Eph Nomenclature 

Committee, 1997). Both are membrane-bound, but the A class ephrins are 

attached via a glycosylphosphatidylinositol (GPI) linkage to a lipid molecule 

which is inserted into the outer leaflet of the membrane and thus have no 

intracellular domain, whereas B class are attached via a transmembrane domain 

and have a highly conserved intracellular domain. Based on sequence homology 

each of these subclasses represents a separate clade. The Eph receptors also 

come in A and B subclasses; for the most part, the EphA receptors bind 

promiscuously to the ephrin-A ligands, and the EphB's to ephrin-B's. The 

receptor A and B subclasses are distinguished by sequence homology as well as 

by binding affinity, although EphA1 appears to be no more related to the other 

EphA's than to the B's, and in some phylogenetic trees (such as that below) the 

position of EphA2 is ambiguous in this regard as well. 
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rl EphA1 
EphA2 . ephrin~A1 

EphA8 ephrin-A3 
EphA7 . 

EphA3 ephrin-A4 
rl EphAE) ephrin~As 

y EphA5 .· ~ 

EphA4 ephrin-A2 
.. 

·Eph81 
rl ephrin-82 

Eph82 ...._ 
r--

Eph83 ·ephrin-81 

I Eph85 
ephrin-83 ... . I ·Eph86 

· EphB4. 

Figure 1.2: Phylogenetic trees of Eph's and ephrins. Ad apted from (Eph 

Nomen clature Com mittee, 1997). The colored b oxes correspond to the colored 

lettering in Figure !.3. 

At least 14 different receptors are present in humans, eight of them A-subclass 

and six B; an d n ine ephrins, six A and three B. (For convenience in reading the 

older literature, a table listing the names of homologs in each species published 

prior to the unified nomenclature (Eph N om enclature Committee, 1997) is given 

in the Appendix, Table A.l.) Almost all of the genes cloned from other amniote 

sp ecies have fallen neatly into place as a conserved ortholog of one of the h uman 
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genes, with no more than one ortholog for each protein in each species. The one 

exception is a kinase domain fragment from mouse (Hebert et al., 1994) that may 

represent a 15th receptor class. It is not identical to any of the known mouse 

proteins, and not particularly high in sequence homology to EphBS, the one 

ortholog that has not yet been cloned in mouse. The pace of cloning novel 

orthologs has slowed considerably in recent years and it seems likely that most 

of them have been found, although a novel ephrin cloned from chick has been 

published just this year (Menzel et al., 2001). 

The genes cloned from Xenopus have also fallen fairly well into place as orthologs 

as well, although there are two copies of several of the genes due to the recent 

genome duplication in Xenopus. These are termed pseudoalleles and generally 

have about 96% nucleic acid sequence identity to one another. 

The genes cloned from zebrafish are somewhat more divergent from the tetrapod 

orthologs. The teleost fish genome is thought to have undergone a duplication 

event after divergence from the tetrapod lineage, such that many tetrapod genes 

are represented in zebrafish by two related copies (Posthlethwait et al., 1999). In 

some cases the zebrafish clones can readily be classified as up to two orthologs of 

the known human genes (see Table A.1). In others the affiliation of certain 

receptors is unclear. Since the fish genomic duplication event is much more 

ancient than the frog, the two original orthologs have had enough time to 

diverge functionally from one another. There is at least one clearcut case in 

which the zebrafish expression pattern of one member of the pair is very similar 

to that in tetrapods, while the other is very different, suggesting that one member 
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of the pair has retained an ancient role or roles while the other has taken on a 

derived one (see EphA4 in Chapter II.) 

There are some exceptions to the rule that A receptors bind A ligands and B bind 

B. In instances of cross-class binding (shown in blue in table 1.1), EphA4 has 

been reported to bind to ephrin-B2 with appreciable affinity (Gale et al., 1996b). 

So has EphA3, with only three-fold lower affinity (Cerretti et al., 1995). Finally, 

EphB1 has been reported to bind to ephrin-A1, -A3, and -A4 with high affinity, 

and EphB2 has been reported to bind to ephrin-AS and the newly cloned 

ephrin-A6 with appreciable affinity. None of the other B-class receptors have 

been tested against any of the A-class ligands, with the exception of ephrin-A2 

(which failed to bind any of them). 

Binding within each class is also exhibits some additional restrictions, shown in 

red in Table 1.1. EphA1, while the first of the receptors cloned, is the most 

divergent in sequence, and somewhat of an orphan. Its only known binding 

partner is ephrin-Al. Within the B subclass, EphB1 does not bind ephrin-B3, the 

only one of the three ligands that binds to EphB4 is ephrin-B2, and EphBS does 

not bind to any of the known B-class ligands. 
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Table 1.1: Dissociation constants for Eph-ephrin interactions. Adapted and 

updated from (Flanagan and Vanderhaeghen, 1998). NBD =no binding detected; 

+ indicates binding detected, but Kd not measured. References: c (Bartley et al., 

1994), d (Beckmann et al., 1994), e (Cheng and Flanagan, 1994), f (Davis et al., 1994), 

g (Bennett et al., 1995), h (Bergemann et al., 1995), i (Brambilla et al., 1995), 

i (Cerretti et al., 1995), k (Kozlosky et al., 1995), 1 (Gale et al., 1996a), m (Gale et al., 

1996b), n(Brambilla et al., 1996), 0 (Sakano et al., 1996), P(Monschau et al., 1997), 

q (Park and Sanchez, 1997), r (Bergemann et al., 1998), 5 (Ciossek and Ullrich, 1997), 

t (Lackmann et al., 1997), u (Munthe et al., 2000), v (Oates et al., 1999), w (Menzel et 

al., 2001) 

The diagram in Figure !.3 (following) summarizes these data. These affinities are 

important to keep in mind when comparing expression patterns because they 

give some idea as to which interactions are likely to be relevant. 
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EphA1} .... ----
EphA2 ------u 
EphA3 
EphA4 
EphAS 
EphA6 
EphA7 
EphAS 
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EphB3 
EphB4} 
Eph85 
EphB6 

ephrin-A2 
ephrin-A3 
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ephrin-A6 

ephrin-81 

>-<111111----..... ~~ephrin-82 
ephrin-83 

Figure 1.3: Eph-ephrin binding interactions. Data taken from Table I.l. The 

heavy arrows denote the main canonical intra-subclass interactions; the light 

arrows denote additional high- or moderate-affinity interactions. Colors match 

the boxes in the cladogram in Figure I.2. 

Eph receptors are proteins of about 120 Kd, consisting of anN-terminal cys teine-

rich domain that binds ephrins (Labrador et al., 1997), two fibronectin type III 

repeats that may be involved in other protein-protein interactions, a 

transmembrane domain, an intracellular juxtamembrane region that contains 

conserved sites for tyrosine phosphorylation, a protein tyrosine kinase domain, 

and a C-terminal SAM (Sterile Alpha Motif) domain that may be involved in 

oligomerization . 
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Receptor tyrosine kinase signalling is initiated when the binding of extracellular 

ligand brings about dimerization of receptors in the plane of the membrane, thus 

enabling the intracellular tyrosine kinase domains to trans-autophosphorylate 

each other; this phosphorylation both a) boosts the intrinsic activity of the kinase 

domain towards downstream substrates and b) creates binding sites for SH2-

and PTB-domain-containing proteins, promoting the assembly of multi-protein 

signalling complexes. Most other receptor tyrosine kinase families have soluble 

ligands that are either themselves dimeric, thus serving to crosslink two receptor 

molecules, or form complexes with their receptors that then readily dimerize 

(reviewed in Ullrich and Schlessinger, 1990). It is not yet entirely clear how this 

mechanism translates to the case of the Eph family, since its ligands are 

themselves membrane-bound and have not been shown to exist as dimers. There 

has been at least one report of soluble monomeric ligand promoting tyrosine 

phosphorylation of the receptor (Bohme et al., 1996). However, monomeric 

soluble ligand can be ineffective at promoting Eph receptor autophosphorylation 

where either membrane bound ligand or dimeric soluble ligand is effective 

(Davis et al., 1994), and this seems to be the more usual case. 

It has further been shown that tetrameric soluble ephrin, which can be produced 

by crosslinking the Fe moiety of a heterologously expressed Fe fusion protein via 

the two arms of an anti-Fc antibody, is more effective at signalling than dimeric 

in some cases. In P19 mouse embryonal carcinoma cells, ephrin-B1 tetramers 

induce not only receptor autophosphorylation but also additional biochemical 
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and cell behavioral changes, whereas dimers induce receptor autophosphoryl­

ation (as expected), but not these other events (Stein et al., 1998b). 

Because clustering into dimers or higher-order oligomers is predicted to play a 

key role in signal transduction by these proteins, some attention has been 

focused on the SAM domain. This motif has been found in a wide variety of 

other proteins and is believed to mediate both homo- and hetero-oligomerization 

(Schultz et al., 1997). Three different X-ray crystallographic structures have been 

obtained for Eph-family SAM domains, two from EphB2 and the other from 

EphA4. Curiously, the three folds arrived at show fundamental differences from 

one another. One EphB2 structure was predicted to dimerize "head to tail," thus 

being capable of forming continuous ribbonlike higher-order oligomers (Thanos 

et al., 1999b); the EphA4 structure was predicted to dimerize "head to head," 

thus forming isolated dimers (Stapleton et al., 1999); and the other EphB2 was 

predicted to exist as a monomer, with no significant homomultimeric contacts 

(Thanos et al., 1999a). A solution (NMR) structure has also been determined for 

the EphB2 domain, which matched the oligomerizing form (Smalla et al., 1999). 

It is not clear at this point whether these discrepancies reflects a genuine, 

biologically relevant difference in the EphA4 and EphB2 domains, whether any 

of the structures is an artifact of crystallization, or whether either or both 

sequences can assume more than one of the structural forms in vivo. The last 

possibility is particularly interesting, since it could constitute a regulatory 

mechanism. In another surprising turn of events, it has since been found that 

mice engineered to lack the EphA4 SAM domain appear perfectly normal, even 
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though ones lacking the kinase domain exhibit a gross motor phenotype due to 

the misrouting of corticospinal tract axons (Kullander et al., 2001b ). The SAM 

domain therefore appears to be dispensable for this signalling activity, while the 

kinase domain is essential. 

Significant progress has been made in recent years in elucidating the signalling 

apparatus downstream of Eph receptors (reviewed in Mellitzer et al., 2000). A 

common element in most of the many functions attributable to Eph family 

proteins (see below) is cytoskeletal rearrangement. And with the identification 

of certain SH2-domain-containing proteins that bound to phosphotyrosines on 

the EphB2 intracellular domain, it became possible to trace at least a hypothetical 

pathway from the receptor to the actin cytoskeleton (Holland et al., 1997). 

Numerous other proteins have been identified that bind to or are phosphorylated 

by the intracellular receptor domains, including various adaptor molecules 

(Pandey et al., 1995a; Stein et al., 1996; Stein and Daniel, 1995; Stein et al., 1998a; 

Torres et al., 1998), intracellular protein tyrosine kinases and phosphatases (Choi 

and Park, 1999; Ellis et al., 1996; Erdmann et al., 1999; Stein et al., 1998a), and 

other cell adhesion molecules, neurotransmitter receptors, and signalling 

pathway components (Dalva et al., 2000; Dodelet et al., 1999; Pandey et al., 1994; 

Zantek et al., 1999; Zisch et al., 1997). There have been several reports of links to 

integrins, but some controversy over their nature; some researchers have found 

an upregulation of integrin function, others a downregulation (Davy and 

Robbins, 2000; Huai and Drescher, 2000; Huynh-Do et al., 1999; Miao et al., 2000; 

Zou et al., 1999). 



19 

Because the receptors and their ligands are membrane-bound, it is important to 

consider the nature of protein distribution and behavior in the context of the cell 

membrane. Both ephrin-A's and ephrin-B's can be localized to sphingolipid­

enriched membrane microdomains or known as rafts-the former attributable to 

the intrinsic properties of its lipid GPI tail, the latter by unknown means. These 

domains contain high concentrations of signal transduction proteins, and have 

been suggested to act as "receptosome" organelles, brining into close proximity 

proteins involved in these processes (reviewed in Hooper, 1999). Thus any 

attempt to under stand their propensity for clustering and its role in signalling 

must take into account this subcellular distribution. 

While the Eph's are generally termed "receptors" and the ephrins "ligands," and 

that terminology will be used for convenience herein, evidence first from genetic 

studies (Gerety et al., 1999; Henkemeyer et al., 1996) and then from biochemical 

and functional studies (Bruckner et al., 1997; Holland et al., 1996; Mellitzer et al., 

1999) has indicated that ephrin-B ligands are capable of transducing signals into 

the cells that express them ("reverse signalling"), as well as of presenting signals 

to surrounding cells which express receptors ("forward signalling"). Recently, 

with the identification of a cytoplasmic PDZ-domain containing protein that 

binds to an ephrin-B and also contains a regulator of heterotrimeric G-protein 

signalling (RGS) domain (Lu et al., 2001), the downstream pathway by which 

ephrin-B proteins transduce signals has begun to be elucidated. Furthermore, 

GPI-linked proteins have long been know to be competent to act as receptors via 

interactions with transmembrane proteins in the plane of their own membrane 

(reviewed in Vaughan, 1996), and evidence for such a phenomenon has in fact 
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now been found for ephrin-A ligands (Davy et al., 1999; Huai and Drescher, 

2000). 

Alternatively spliced isoforms exist for many members of both Eph and ephrin 

families, including forms that alter the juxtamembrane region containing key 

tyrosine phosphorylation sites, omit the kinase domain, or are predicted to be 

secreted. In addition, one of the EphB receptors is constitutively lacking in 

tyrosine kinase activity (Matsuoka et al., 1997). These variants suggest 

sophisticated modulation of the biological activities of these proteins, including 

the potential for dominant negative mechanisms-thus diversifying and 

regulating their potential for signalling. In most cases the functional 

consequences of these variations have not been explored; however, coexpression 

of the tyrosine-kinase-negative isoform of EphA7 with the full-length form has 

been found to switch the cellular response of neural tube cells from repulsion to 

attraction, and may mediate neural tube closure (Holmberg et al., 2000). 

While the Eph and ephrin genes were originally cloned from vertebrates and 

appear to have undergone great diversification in that phylum, at least one Eph 

receptor homolog is present in Drosophila (Scully et al., 1999), and the genome of 

the nematode Caenorhabditis elegans contains one Eph receptor and four ephrins 

(Wang et al., 1999). This is thus an ancient and highly conserved cell signalling 

pathway. Furthermore, the phenotypes of C. elegans mutants suggest that the 

types of roles played by these genes have been conserved as well. These 

phenotypes include defects epithelial morphogenetic movements (Chin-Sang et 

al., 1999; George et al., 1998) and axonal guidance- most specifically, guidance of 
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commissural axons and restriction of crossing at the midline (Zallen et al., 1999), 

both of which are affected in mutant mice as well (Henkemeyer et al., 1996; 

Kullander et al., 2001a; Orioli et al., 1996; Yokoyama et al., 2001). 

The Eph family of receptor tyrosine kinases and the ephrins have been 

implicated in a wide variety of other developmental processes in vertebrates. 

These include regionalization and boundary formation in the early forebrain, 

hindbrain, and somites (Cooke et al., 2001; Durbin et al., 1998; Durbin et al., 2000; 

Mellitzer et al., 1999; Oates et al., 1999; Xu et al., 1995; Xu et al., 1996); formation 

of the palate (Orioli et al., 1996); angiogenesis, early d istinction between arteries 

and veins, and guidance of blood vessel growth (Abrahamson et al., 1998; Adams 

et al., 1999; Helbling et al., 2000; Pandey et al., 1995b; Wang et al., 1998); guidance 

of motor neurons in the periphery and control of their rostrocaudal mapping 

(Feng et al., 2000; Iwamasa et al., 1999; Kilpatrick et al., 1996; Ohta et al., 1997; 

Ohta et al., 1996; Wang and Anderson, 1997); guidance of cranial and trunk 

neural crest (Adams et al., 2001; Helbling et al., 1998; Koblar et al., 2000; Krull et 

al., 1997; Wang and Anderson, 1997); guidance of various axonal projections in 

the CNS (Cowan et al., 2000; Dottori et al., 1998; Henkemeyer et al., 1996; Knoll et 

al., 2001; Kullander et al., 2001a; Kullander et al., 2001b; Orioli et al., 1996; Park et 

al., 1997; Yokoyama et al., 2001); and various roles within the forebrain such as 

topographic targeting in the hippocamposeptal projection, laminar and regional 

targeting in entorhinal-hippocampal, thalamocortical, and intracortical 

connections, guidance or growth cone collapse of axons from specific cell types 

or regions, synaptic plasticity, and hippocampal neurite outgrowth and pruning 

(Brownlee et al., 2000; Castellani et al., 1998; Gao et al., 1999; Gao et al., 1998a; 
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Gao et al., 1996; Gao et al., 1998b; Meima et al., 1997a; Meima et al., 1997b; Stein 

et al., 1999). 

Last but not least, the Eph family has been implicated in axonal guidance 

(Nakagawa et al., 2000) and topographic specificity in the visual system 

(reviewed in Drescher et al., 1997). There are various lines of evidence, both 

circumstantial and direct, for involvement in of the Eph family in retinotectal 

topography. First of all, there are expression studies that place them at the scene, 

and indicate that some of them are expressed in gradients consistent with those 

predicted by theory for topographic labels. In fact, members of both A and B 

subclasses of both Eph's and ephrins exhibit expression gradients in both retina 

and tectum. In general, A-subclass proteins are modulated along the 

nasotemporal axis of the retina and rostrocaudal axis of the tectum, while B­

subclass are modulated along the dorsoventral axes (Braisted et al., 1997; Cheng 

et al., 1995; Connor et al., 1998; Holash and Pasquale, 1995; Kenny et al., 1995; 

Marcus et al., 1996; Menzel et al., 2001; Sefton et al., 1997). 

The role of the B-class proteins is not clear at present, but that of the A class is 

better understood. Ephrin-A2 and AS are expressed at high levels in the caudal 

tectum and in the ventral portions of the dorsal and ventral compartments of the 

lateral geniculate nucleus (the main target of retinal ganglion cell axons in the 

forebrain). These regions receive input from the nasal retinal, which expresses 

low levels of the EphA3 receptor. Conversely, the rostral tectum and dorsal 

portions of the lateral geniculate compartments express low levels of ephrin-A 
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ligand and receives input from the temporal retina, which expresses high levels 

of EphA receptor (see Figure 1.4). 

N 

'Retina 

D 

v 

Tectum 

D/M 

V/L 

c 

Figure 1.4: Schematic representation of gradients in the retinotectal system. 

EphA3 expression in the retina is shown in red, and ephrin-A2 expression in the 

tectum in blue. Retinal ganglion cell axons bearing high levels of receptor are 

more sensitive to repulsion, and avoid regions of the tectum bearing high levels 

of ligand. 

These expression gradients are what would be expected of a graded repulsive 

interaction capable of setting up a topographic projection. And, in fact, a variety 

of functional assays have shown such a repulsive interaction both in vitro and in 

vivo (Brennan et al., 1997; Brown et al., 2000; Davenport et al., 1998; Drescher et 
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al., 1995; Friedman and O'Leary, 1996; Monschau et al., 1997; Rosentreter et al., 

1998). For example, when ephrin-A2 is retrovirally expressed ectopically in 

patches of rostral chick tectum at levels roughly equal to physiological levels in 

normal caudal tectum, temporal retinal ganglion cell axons avoid those patches 

(Nakamoto et al., 1996). And competition from soluble ephrin or Eph protein at 

low nanomolar levelsin vitro abolishes guidance on tectal membrane carpets 

(Ciossek et al., 1998), which is suggestive of a role at physiological 

concentrations. Similarly, dominant negative expression and neutralizing 

antibodies targeting the EphA4 receptor abolish guidance in vitro (Walkenhorst 

et al., 2000). Furthermore, the absence of ephrins in vivo leads to defective 

retinotectal topography. Single null mutations in either ephrin-A2 or ephrin-A5 

cause defects in nasotemporal retinotectal mapping in mice, and double null 

mutation of the two genes almost completely abolishes the normal nasotemporal 

mapping. The double null mutants also show defects in retinogeniculate 

mapping, showing that the same pair of ephrins is involved in mapping at 

multiple target sites, and in dorsoventral retinotectal mapping, showing that 

dorsoventral and anteroposterior mapping are not independent and suggesting 

that these ephrin-A's may play a role in both (Feldheim et al., 2000; Feldheim et 

al., 1998b; Frisen et al., 1998). Thus these proteins are under particular 

circumstances both necessary and sufficient for topographic mapping. 

An additional layer of modulation appears to be furnished by the expression of 

ephrins in the retina itself (Becker and Becker, 2000; Braisted et al., 1997; Connor 

et al., 1998; Holash et al., 1997; Marcus et al., 1996; Menzel et al., 2001). Retinal 

expression of B-class ephrins affects intraretinal pathfinding of retinal ganglion 
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cell axons to the optic nerve exit; mice doubly null mutant for their EphB2 and 

EphB3 receptors show deficits in such pathfinding (Birgbauer et al., 2000). 

Retinal expression of ligands is likely to have a physiological role in retinotectal 

mapping as well. A-class ligands are expressed in a high-nasal to low-temporal 

gradient in retinal ganglion cells themselves, complementary to the EphA 

receptor gradient in these same cells (Connor et al., 1998; Marcus et al., 1996; 

Menzel et al., 2001). And the coexpression of ligands appears to desensitize the 

activity of the receptors, thus steepening the effective gradient of receptor 

activity; ectopically expressing ligands on retinal ganglion cell axons renders 

normally sensitive temporal axons insensitive to repulsion by ephrins in vitro, 

while removing them via cleavage of their GPI linkage renders normally 

insensitive nasal axons sensitive (Hornberger et al., 1999). Furthermore, ectopic 

expression of ephrins in retinal ganglion cells causes mapping errors in vivo 

(D-utting et al., 1999; Hornberger et al., 1999). 

The present work 

Taken together, the value of the retinotectal system as a model for neural 

development, the value of Xenopus as an experimental animal for the study of the 

retinotectal system, the importance of studying diverse organisms in order to 

understand the evolution of developmental mechanisms, and the current 

evidence for the involvement of the Eph family in the retinotectal system of other 

vertebrate classes motivated us to undertake the present project. We therefore 

set out to do the following: 
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a) characterize the expression of Eph and ephrin family members in the Xenopus 

visual system at the mRNA (Chapter II) and protein (Chapter III) levels, since 

almost no data were available for the relevant stages; 

b) study the effects of applying exogenous proteins on retinotectal topography in 

vivo (Chapter IV), taking advantage of the opportunity for in vivo imaging to 

allow us to observe the behavior of retinal ganglion cell axons over time; and 

c) perform in vitro assays with Xenopus retinal ganglion cells, as well as with 

chick retinal ganglion cells as a positive control, to better isolate and characterize 

the effects of particular proteins and conditions (Chapter V). 
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Chapter II 

GENE EXPRESSION PATTERNS 

We performed mRNA in situ hybridizations on wholemount Xenopus laevis 

tadpoles and tadpole brains from stages 46-52. We also performed 

hybridizations on transverse and sagittal sections from st. 44-48 tadpoles. The 

genes studied include all known Xenopus Eph and ephrin family members, with 

the exception of EphA6; an EphA6 ortholog is present in Xenopus, but the only 

clone available thus far is a short PCR fragment that does not give good results 

as in situ probe (Bdindli and Kirschner, 1995). For ephrin-A3, whose expression 

patterns at earlier stages have not been published elsewhere, we also included 

wholemounts from st. 23-38. 

Table 11.1: Expression levels (following page). The following table summarizes 

semiquantitatively the expression of these genes in various tissues or regions. 

Where expression differs within a region spatially or temporally, the maximal 

expression seen in any subregion or stage has been indicated. 
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From comparisons with sense negative control probes it is clear that many of 

these genes exhibit widespread low-level expression in addition to their mote 

localized domains of higher-level expression. The latter is easier to 

unambiguously distinguish from background staining artifacts, and is always 

included in our descriptions. Where there clearly exists ubiquitous expression 

this has also been noted, but there are undoubtedly additional tissues or regions 

that do express at low levels-levels that might nevertheless by physiologically 

relevant-but are not explicitly mentioned. 

Consistent false positives were noted in the cement gland, gut contents, some of 

the skeletal muscles (such as the jaw muscles and the lateral part of the axial 

body muscles), the skin (particularly at earlier stages) and to a lesser extent the 

lens, olfactory pits (particularly the vomeronasal organ), pineal, and gill and 

pharyngeal linings. Some of these tissues are inherently sticky or high in surface 

area, while others may have high endogenous phosphatase activity. We w ere 

therefore not always able to accurately determine expression in these tissues, but 

staining that was clearly at higher levels than sense control probes was deemed 

positive. 

RESULTS AND DISCUSSION 

EphA2: Results 

EphA2 is strongly expressed in restricted regions of the brain, including the 

olfactory bulbs, p eriventricular telencephalon, and each rhombomere in the 
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hindbrain. The olfactory pits, enteric nervous system, mesonephros, and limb 

bud are other prominent sites of expression. 

Forebrain 

EphA2 shows strong expression in the olfactory bulb and in a broad but well 

delimited periventricular band in the entire telencephalon (Fig. ll.1A-C, E-G, J). 

There is reduced expression, however, in the dorsal septum and dorsomedial 

telencephalon (Fig. II.1G, J). The olfactory bulb staining is strongest in 

periventricular cells (Fig. II.1E-G, J), although staining is also seen in some of the 

cells adjacent to the neuropil of the accessory olfactory bulb (Fig. II.1A, D). At 

the telencephalon-diencephalon boundary there are three domains of expression 

radiating laterally from the ventricular zone to the pial surface: a lateral one on 

each side and a ventral one in the center (Fig. II.1B, E). Viewed from the ventral 

aspect at st. 51, the central one describes a tiny ring of strong expression near the 

optic chiasm (Fig. II.1B). Periventricular expression continues in the thalamus 

along the lateral wall, and in a somewhat narrower band along the floor (not 

shown). Light staining extends along the diencephalic ventricular zone into the 

hypothalamus (Fig. II.1E). The lateral posterior hypothalamic ventricular zone is 

strongly positive (Fig. II.1F), with expression localized to two sulci (Fig. II.1D). 

At st. 51 the lateral hypothalamus viewed from below thus displays two 

chevron-shaped markings, a lighter rostral one and a stronger caudal one (Fig. 

II.1B). 
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Midbrain 

There is marked expression of EphA2 in the midbrain floorplate (Fig. II.lB and 

data not shown). The ventricular surface throughout the tegmentum shows light 

expression (Fig. II.lD-F), which is generally stronger at sulci than around the 

open lumen. The one exception is the ventral sulcus, which although it is 

positive throughout most of its length shows a gap in staining at its dorsal end 

just below the lumen (not shown). The bulk of the dorsal tegmentum and the 

tectum show light, diffuse staining (Fig. II.lE). 

Hindbrain 

The ventral and caudal cerebellum and the border between the cerebellum and 

the underlying pons are positive for EphA2 mRNA (Fig. II.lH). At the midline, 

staining is also present in the ventricular zone at the midbrain-pons border (Fig. 

II.lD, E) and in the floorplate of the pons (Fig. Il.lB). The immediate ventricular 

zone of the rest of the hindbrain shows a low basal level of expression 

throughout (Fig. Il.lE), but has zones of much higher expression. These are 

segmentally restricted, being centered on each rhombomeric furrow (Fig. II.lF), 

but are fairly broad and at st. 44 are nearly touching each other (Fig. II.lD). 

Caudal to the fourth ventricle the dorsal hindbrain (R7) is also positive. The 

high-level rhombomeric expression is not uniform across the width of the brain, 

but rather is sharply restricted to the dorsolateral margins and (to a lesser extent) 

the midline (Fig. II.lK). Expression at the first two stripes (R2 and R3) is 

confined to a relatively shallow periventricular band, but at R4-6 and the rostral 

end of R7 it extends more deeply and further laterally (Fig. II.lA, D). On sections 
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positive spots are observed in the caudolateral hindbrain; these may be 

continuous with the ventricular zone staining or may represent discrete nuclei 

(not shown). 

Other nervous system regions 

The roofplate of the spinal cord expresses EphA2 at low levels (not shown). In 

the main but not accessory olfactory pits it is found at high levels (Fig. ll.lJ, D). 

Staining in the ear is weak at best, but there appears to be some rostromedially at 

st. 44. There is also faint staining at the ciliary margin of the eye (not shown). 

The meninges are positive. Substantial expression is found in condensations of 

cells in the outer part of the stomach wall consistent with enteric nervous system 

ganglia (Fig. II.ll). This expression is specific to stomach and not seen in the 

intestine. However, light, diffuse staining is seen occasionally in the intestine. 

Non-neural tissues 

Intense EphA2 staining is found at the posterior tip of the mesonephros; indeed, 

this is the strongest expression seen in the entire animal (Fig. II.ll). It is highly 

localized, but more moderate expression extends anteriorly along the outer 

layers. There is light staining in the esophagus, the stomach (in addition to the 

stronger neural expression), the liver (Fig. II.ll), and the pancreas (not shown). 

An interesting pattern is also found in the limb buds. At early stages (st. 47 

forelimb) the entire structure is positive, but proximally it is clearly at higher 

levels in the lateral flanks than in the central condensation (Fig. ll.lL). At later 

stages (st. 51-late 52 hindlimb) only the edges (lateral as well as apical) are 
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positive (Fig. II.lM and data not shown). The epithelial lining of the gills is 

positive (Fig. Il.lF), as are the midline folds of the pharyngo-branchial tract 

forming the floor of the pharynx (Fig. ll.lH, D). Expression is also present in the 

notochord (Fig. II.lK) and the periesophageal cartilage (not shown). 

dorsal - brain, st 5 1 ventral - brain, st 51 
amb 

lateral - brain, st 51 
cer 

sagittal - lateral, st 44 midsagittal- s t 44 

g .. . 
sagittal - latera l, st 47 

transverse - telencepha lon, st 46 transv - tecturnlhypothal, s t 44 sagitta l - viscera, st 44 

._...,._..·.-........ ., 
transv - telencephalon/olfactory pits, st 44 transverse- hindbrain, st 44 sag- forelimb bud, s t 47 !at- hindlimb, st 50 
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Figure 11.1: EphA2 mRNA in situ hybridization. Rostral is to the left and dorsal 

to the top (wherever applicable), unless otherwise noted. Scalebars represent 

500 p.m in all wholemounts and 100 p.m in all sections. Red lines show the 

approximate planes of section for the indicated panels. Boundaries and other 

landmarks are labeled in purple. (Exp) indicates an experimental specimen 

labeled with an antisense probe; (ctl) indicates a specimen labeled with the 

negative control probe specified individually below. 

(A-C) Wholemount brains, st. 51. Control brains are hybridized with an EphA2 

sense-strand probe. (A) Dorsal view, with the choroid plexus peeled back to 

reveal the hindbrain staining; (B) ventral view; and (C) lateral. Staining is seen in 

the olfactory bulb; surrounding the ventricular zone (vz) within the 

telencephalon; at the telencephalon/ diencephalon boundary (t/ d), including the 

region of the optic chiasm (oc); in restricted regions of the hypothalamus (hyp); 

in the floorplates of the midbrain (mfp) and pons (pfp), and in stripes at each 

rhombomere in the hindbrain (e.g., r2 and r4), with stronger expression seen in 

r4-r7 than in r2 and r3. The location of the telencephalon/ diencephalon 

boundary (t/ d) is indicated in (A-C), the midbrain/ hindbrain (m/ h) boundary in 

(A), and the olfactory bulb/telencephalic cortex (o/ t) in (B). 

(D-F) Sagittal sections through the brain. (D) Section through the olfactory pit 

and lateral brain at st. 44. The main olfactory pit (op) is more strongly stained 

than the vomeronasal organ (vno). Staining is seen in the olfactory bulb (ob), 

around the telencephalon/ diencephalon boundary (t/ d), at two sulci in the 

posterior hypothalamus (hyp), along the m idbrain side of the 
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midbrain/hindbrain boundary (m/h), in the ventral cerebellum (cer) and along 

its boundary (c/p) with the pons, in three posterior rhombomeres starting with 

r4, and in the dorsal posterior hindbrain. Staining is also seen in and around 

parts of the pharyngobranchial tract (pbt) and esophagus (es). (E) Midsagittal 

section through the brain at st. 44. Strong staining is seen in the rostral and 

ventral ventricular zone of the telencephalon and at the ventral 

telencephalon/ diencephalon boundary. The plane of section also catches strong 

staining at the midline in the ventral diencephalic ventricular zone, the floorplate 

of the midbrain, and the pons. Lighter staining is seen in the dorsal anterior 

midbrain, tegmentum, and cerebellum. Some staining is seen in the hindbrain 

(hb ), but the plane of section falls mainly in the negative zone between the 

midline and lateral expression domains. (F) Section through the brain at st. 47, 

more medial than that in (D). Strong staining is seen in the entire telencephalic 

ventricular zone (tel vz) and each of the rhombomeric furrows in r2-6. Staining 

is also visible in the olfactory bulb ( ob ), the telencephalon/ diencephalon 

boundary (t/ d), the posterior hypothalamus (hyp ), the ventricular zone of the 

midbrain (mb), and the epithelia of the gills (g). 

(G, H, J, K) Transverse sections. (G) The rostral telencephalon (tel) at st. 46. 

Strong staining is seen at the ventrolateral pial surface and the ventricular zone. 

Reduced expression, however, is seen around the midline, particularly in the 

dorsal septum. (H) A section through the central brain at st. 44, showing (from 

top to bottom) the optic tectum, cerebellum, pons, and hypothalamus. Light 

staining is seen in the lateral posterior optic tectum (ot) and cerebellum. Stronger 

staining is seen at the cerebellum/ pons boundary, in the floorplate of the pons, 
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and in the lateral ventricular zone of the hypothalamus. Localized expression is 

also seen in the median folds of the pharyngobranchial tract forming the floor of 

the pharynx. U> A section at st. 44 showing the telencephalon and olfactory pits. 

The telencephalic ventricular zone is strongly stained, except for the roof. The 

olfactory pits are strongly stained throughout. (K) The hindbrain at st. 44, 

showing the mediolateral distribution of the rhombomeric staining. 

(I) A sagittal section through the viscera at st. 44. Intense staining is seen at the 

posterior tip of the mesonephros (mn), with lighter staining extending anteriorly 

in the outer layer. Strong staining is also seen in condensations in the stomach 

(st) consistent with enteric nervous system ganglia (ens). Lighter staining 

continues rostrally along the esophagus (es), and is also present in the liver (liv). 

The outer edge of the intestine (int), which at this stage is composed mainly of 

large, yolk-filled endodermal cells, is also positive. 

(L, M) Limb buds. (L) Sagittal section at st. 47, showing the forelimb bud (flb) 

attached to the first myotome (myo). Stronger staining is present in the anterior 

and posterior flanks than the central condensation. Staining in the esophagus 

(es) is also visible. (M) Lateral wholemount views showing the hindlimb bud 

(hlb) at st. 50. Specific staining is seen at the edges of the limb bud and in the fin. 

Dorsal is towards the top of the panel for the top animal ( exp), towards the 

bottom for the bottom one (ctl). Negative control (ctl) was hybridized with an 

EphA2 sense probe. 
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EphA2: Discussion 

I. Expression in Xenopus 

Hindbrain expression of EphA2 mRNA at neurula and tailbud stages is found in 

a single rhombomere, R4. (Helbling et al., 1998; Weinstein et al., 1996). This is in 

marked contrast to the widespread expression at the tadpole stage, where it is 

found in each of the rhombomeric derivatives. Some vestige of the earlier 

difference between rhombomeres may persist, however, as the expression 

domain is broader in R4-7 than in R2 and R3. 

Neural crest cells from R4 migrating into branchial arch 2 were seen to express 

EphA2 mRNA (Brandli and Kirschner, 1995; Weinstein et al., 1996). (For the sake 

of interspecies consistency in nomenclature, "branchial arch" will be used 

instead of "visceral arch" to refer to all six arches in Xenopus.) In addition, 

EphA2 transcripts were found in the ventral mesenchyme of branchial arches 3 

and 4, including both mesoderm and migrating cranial neural crest (Helbling et 

al., 1998). We observed staining in neural crest derivatives in the gastric enteric 

nervous system. However, in other vertebrates where the process has been 

characterized in more detail, the enteric nervous system is derived chiefly from 

vagal crest (trunk somites 1-7); a contribution to the enteric nervous system from 

cranial crest has not been observed (Burns and Le Douarin, 2001; Schuchardt et 

al., 1994). In Xenopus a contribution from trunk is definitely known to exist 

(Collazo et al., 1993), but a contribution from cranial crest has not been ruled out. 

Expression of EphA2 in trunk neural crest has not been described, but the bulk of 
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truncal migration occurs at st. 30-40 and thus may have occurred in the window 

of time after the stages studied previously and before those studied here. We 

find that EphA2 is expressed at low levels in the roofplate of the spinal cord at st. 

44, which would be consistent with earlier expression in emigrating neural crest. 

And indeed, if this hypothetical earlier expression were at similarly low levels 

(rather than at higher levels that were subsequently downregulated) then the 

weak expression might have been an additional barrier to detection at tailbud 

stages. At this point it is thus not clear whether the enteric expression we 

observe is derived from the cranial crest that is known to express EphA2, 

whether it is derived from as-yet-unobserved trunk crest that expresses EphA2, 

or whether it upregulates EphA2 de novo at later stages. 

It is also interesting that high-level EphA2 staining appears in the stomach but 

not the intestine. It is not known what rostrocaudal level(s) of neural crest 

contribute to the enteric nervous system in Xenopus. In other vertebrates the 

stomach and small intestine are both populated chiefly by vagal crest; the colon 

also receives a contribution from sacral crest (Bums and Le Douarin, 2001; 

Schuchardt et al., 1994). It is possible that the EphA2 expression is a specific 

marker for crest derivatives from a novel crest population that colonizes stomach 

but not intestine. It is also possible, however, that EphA2 is upregulated de novo 

in those cells that populate the stomach. In either case, that would indicate a 

clear molecular difference between the gastric and intestinal enteric nervous 

systems at this stage. A third possibility, which cannot be excluded, is that the 

absence of staining in the small intestine and colon is an artifact of mRNA 

destruction by digestive nucleases during processing. Finally, it is formally 
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possible that there is transient expression in all regions of the gut and the 

difference we observe is a function of different maturation rates. However, our 

observations were consistent between st. 44 and 47, during which time active 

feeding has commenced and the gut has progressed from a single coil still 

containing large amounts of yolk to 3.5 coils with little yolk remaining 

(Nieuwkoop and Faber, 1994). 

We observed a high level of EphA2 expression in the mesonephros. Eph-family 

genes are expressed in a wide variety of tissues and by no means confined to 

neural derivatives. However, it is perhaps worth mentioning that the pronephric 

ducts, which are derived from the splanchnic mesoderm adjacent to the 

mesonephros and are subsequently connected to it, are known to receive a 

contribution from truncal neural crest in Xenopus (Collazo et al., 1993). The 

posterior tip of the mesonephros is the earliest to mature, and thus the gradient 

of expression we see from posterior to anterior coincides with the gradient of 

maturation (Nieuwkoop and Faber, 1994). We did not detect differences 

between st. 44 and 47 in the overall intensity or anteroposterior extent of 

staining. However, the maturation of the mesonephros over this span may not 

be as significant as that of the gut. At st. 44, the mesonephric anlage has only 

recently formed. At st. 47, a lumen is present and glomerular anlagen are 

beginning to appear, but the organ has not yet begun to function. 

One common feature of CNS expression between the earliest stages of 

neurulation and the tadpole stages is expression at the ventral midline. 

Expression was observed in the midline of the neural plate overlying the 
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notochord at late gastrula stages (Weinstein et al., 1996), while at tadpole stages 

it is seen in the floorplate of the midbrain and rostral hindbrain. However, 

ventral midline expression in the considerable interval between these two stages 

is not necessarily continuous. 

EphA2 expression was seen at embryonic stages in the eyebud and at tadpole 

stages in the ciliary margin of the eye. Similarly, expression was seen in the 

embryo in the rostral otic vesicle and in the tadpole in the rostromedial ear. 

Expression in both of these sensory structures was comparatively weak at the 

tadpole stages, but definitely present. Finally, the notochord was positive in the 

embryo, particularly towards the posterior, and some notochord expression was 

seen at tadpole stages as well. 

II. Comparison to EphA2 in other species 

EphA2 expression has been well characterized in the mouse embryo at the 

mRNA (Becker et al., 1994; Ruiz and Robertson, 1994; Shao et al., 1995) and 

protein (Ganju et al., 1994) levels, as well as via reporter gene (Chen et al., 1996). 

It shows at least four distinct phases of expression. First, it is expressed at high 

levels in ES cells and downregulated upon differentiation into embryoid bodies 

(Chen et al., 1996; Lickliter et al., 1996). Second, it is expressed throughout E3.5 

blastocysts (Chen et al., 1996), and during gastrulation becomes progressively 

confined to the primitive streak and the node. It regresses with the node as 

gastrulation proceeds, eventually becoming confined to the posterior neuropore 

and tailbud. Third, it appears starting at headfold stage in a new, dynamically 
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evolving domain during early brain and branchial arch development. This 

domain is centered around the presumptive R4 in the hindbrain, and at various 

times includes neurectoderm, mesoderm, mesenchyme, cranial ganglia, and 

surface ectoderm. The mesodermal/ mesenchymal domain initially includes 

regions underlying and lateral to R4 and RS, and at later stages regions adjacent 

toRS and R6 and putative neural crest migrating into BA3, but not crest from R4 

itself migrating into BA2 (Becker et al., 1994; Chen et al., 1996; Ganju et al., 1994; 

Ruiz and Robertson, 1994). Fourth and lastly, expression is present in later 

development in a veritable laundry list of tissues. These include epithelia in the 

bronchi, salivary gland, kidney, and gut, as well as various sites in cartilage, 

ossification centers, and tooth primordia. At E11.5 there is expression in the 

ependymal layers of the forebrain and hindbrain, but none in the midbrain. CNS 

expression is much weaker at later stages, but persists into adulthood in the 

hippocampus and cerebellum. Finally, there is expression in the distal 

mesenchyme of the limb bud at E10.5, which continues at E11.5 in the hand and 

foot plates (Ganju et al., 1994; Mori et al., 1995b; Shao et al., 1995). 

EphA2 expression in the adult rat appears to be similar though not identical to 

the later embryonic expression in mouse. High levels of protein are found at 

sites including epithelia in the bronchioles and the convoluted tubules of the 

kidney. Lower levels are found in several organs, including the liver (Lindberg 

and Hunter, 1990). Protein is also seen throughout the axon tracts of the E15 rat 

spinal cord (Magal et al., 1996). 
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Xenopus EphA2 expression shares the essential features of at least the second, 

third, and fourth aforementioned stages in mouse. There is expression in the 

posterior of the late gastrula, which gradually becomes confined to the tailbud. 

There is an early period in brain and branchial arch morphogenesis during which 

the gene is expressed in R4 and in a complex pattern of neural crest, mesodermal, 

and surface ectodermal tissues in the adjacent tissues and branchial arches. Then 

there is a later period of specific expression in a wide variety of miscellaneous 

tissues. 

Some of the details, however, do vary. In frog the tailbud expression is found in 

the notochord and surface ectoderm (Helbling et al., 1998), whereas in mouse it is 

found in the early neurepithelium, the roofplate of the neural tube, and the early 

axial mesoderm and condensing notochordal plate, but not the definitive 

notochord (Ruiz and Robertson, 1994). In frog EphA2 is found in the second and 

third branchial arches, whereas in mouse it is found only in the third branchial 

arch. It is rather curious that in mouse R4 expresses the gene, but only non-R4-

derived neural crest migrating into the branchial arches seems to do so. It is 

possible that the frog situation represents an ancestral state and the mouse a 

derived one in which additional restrictions on the expression domain have been 

imposed, or the expression domain outside the neural tube has shifted 

posteriorly. The latter could represent a homeotic alteration brought about either 

by changes in the underlying Hox code or by changes in the downstream 

phenotypic readout of the Hox code. 
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There is a significant overlap in the rodent and frog tissues expressing EphA2 in 

later development. The CNS expression is quite similar, with substantial 

transcription being noted not only in the same segments (all except 

mesencephalon) but also in the same layers (primarily periventricular) (Mori et 

al., 1995b). Hindbrain segmental restriction, however, was not seen in the mouse 

at this stage (E11.5), although there was a marked distinction between high-level 

expression in the myelencephalon (R4-7) and lighter transcription in the more 

rostral rhombencephalon. This pattern may be reflected in the much more subtle 

difference in Xenopus between R2-3 and R4-7. 

Both species show EphA2 expression in the esophagus and strong expression in 

the gut epithelium, and the clustered appearance of the signal in mouse (see Shao 

et al., 1995, Fig. 2F) is consistent with the enteric nervous system signal we 

observe in Xenopus . High-level expression is found in the kidney in mouse (Mori 

et al., 1995b) and rat (Lindberg and Hunter, 1990), and in the mesonephros in 

Xenopus. While these organs are analogous rather than homologous (the 

metanephric kidney in post-metamorphic frog is the homolog of the mammalian 

kidney), they share a common function and common embryological origin in the 

splanchnic mesoderm. The gene expression may thus reflect similar pathways 

and/ or endpoints of differentiation in the two organs. Low-level expression in 

the liver was noted in both rat (Lindberg and Hunter, 1990) and Xenopus, 

although not in mouse. 

Expression in the limbbud also appears to be similar b etween mouse and frog. 

In mouse expression is found in the distal mesenchyme of the early limb bud, 
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and in the epithelium later in embyrogenesis (Ganju et al., 1994). Either or both 

of these are is consistent with the appearance in Xenopus. 

Zebrafish is the exception to the strong conservation of EphA2 expression 

pattern seen across vertebrate classes. A zebrafish gene, rtk-6, has been cloned 

that by homology criteria appears closely enough related to EphA2 to constitute 

a bona fide ortholog (Cooke et al., 1997). However, the expression pattern of this 

gene is wildly divergent. In the early hindbrain, for example, it is expressed in 

R3 and RS. While some parallels in other features of the respective expression 

patterns in mouse and fish could conceivably be drawn, they would be forced at 

best. It is possible that rtk-6 diverged functionally after the ancient teleost 

genomic duplication, while another as-yet-unidentified copy of the gene has 

retained the canonical EphA2 expression pattern. There is precedent among the 

Eph family for such a phenomenon, as it appears to be the case for EphA4 (see 

below). On the other hand, it is possible that developmental expression of these 

genes in teleost fish is divergent from that in tetrapods and does not include a 

close functional homolog of EphA2. 

Overall, the degree conservation of EphA2 expression between mammal and 

amphibian is quite remarkable, encompassing not just a single phase of 

developmental expression but three distinct phases corresponding to the periods 

of gastrulation, regionalization, and organogenesis. It suggests highly conserved 

functions for this gene. Furthermore, EphA2 does not seem to be functionally 

interchangeable to any great extent with other EphA family genes, since it does 

not exhibit expression pattern substitution like that occasionally seen between 



45 

other Eph's and ephrins within a subclass (e.g., that in trunk neural crest 

guidance; Krull et al., 1997; Wang and Anderson, 1997). Such uniqueness may be 

conferred either by the precise profile of affinities for different ligands or by 

differences in the downstream nature of the signals transduced. 

EphA4: Results 

Forebrain 

In the brain EphA4 is expressed prominently in the dorsal and ventrolateral 

central telencephalon (Fig. II.2A-E). High-level expression does not extend 

rostrally into the olfactory bulb, but rather cuts off abruptly at the border. It also 

does not extend into the ventrocaudal telencephalon (Fig. II.2A). However, low­

level expression is more widespread and includes the latter regions. The dorsal 

domain is strongest medially, adjacent to the septum (the septum itself shows 

much less expression), and tapers off laterally (Fig. II.2B). Much of the staining is 

periventricular; the dorsomedial domain extends the full width of the cortex in 

places. However, there is in some areas a shift to preferential expression in the 

superficial layers at later stages (st. 47 and on). This includes the rostromedial 

extreme, where at st. 47 the positive nonventricular region extends from dorsal 

around the rostral edge of the domain to ventral (data not shown). 

Looking caudally, the lateral periventricular thalamus is the next site of strong 

EphA4 expression. Expression spreads laterally out from the ventricular surface, 

and from the dorsal aspect appears as staining of the dorsolateral shoulder of the 
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diencephalon (Fig. ll.2B). It does extend ventrally along the lumen as well_ but is 

strongest at the dorsolateral ventricular sulcus (data not shown). There is much 

fainter expression dorsomedial to the sulcus at the dorsal surface of the lumen 

and in the roofplate (Fig. ll.2G). At the rostral end there is a light, discrete stripe 

of expression at the telencephalon-diencephalon boundary (Fig. ll.2A), including 

the vicinity of the optic chiasm (Fig. ll.2C). The choroid plexus (Fig. ll.2B) and 

pineal are also lightly stained. Towards the caudal end of the ventricle the main 

domain resolves into two zones: a diffuse dorsolateral one and a stronger, more 

sharply defined ventrolateral stripe (Fig. 11.2G). In the anterior hypothalamus 

expression continues along the ventricular zone, although at lower levels (Fig. 

ll.2C). It includes the dorsal anterior hypothalamus and is strongest in the lateral 

posterior (Fig. ll.2H). The pituitary also expresses at low levels (Fig. ll.2H). 

Midbrain 

The diencephalic ventricular zone expression of EphA4 is continuous with 

intense expression in the midbrain floorplate (Fig. ll.2H, E, C). In the tegmentum 

there is also light periventricular expression (Fig. 11.2H), which rostrally is found 

more towards the ventral end and caudally has shifted to the dorsal region 

around the lumen of the tectal ventricle. At st. 44 this expression is generally 

diffuse, but is somewhat more condensed in the caudal ventrolateral region. At 

st. 46 the pattern has evolved into two light but distinct domains of expression: a 

dorsal one which is starts at the lateral sulcus of the ventricular zone rostrally but 

diverges laterally from it more caudally, and a ventral one flanking the floorplate 

towards its caudal end (data not shown). The midbrain-hindbrain boundary is 
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positive (Fig. II.2D), connecting the midbrain floorplate domain to a cerebellar 

domain. 

Hindbrain 

EphA4 originally came to attention by virtue of its segmentally restricted 

expression in the mouse hindbrain, and in the Xenopus hindbrain it is similarly 

patterned. Dorsally it appears in four distinct domains: strong expression in the 

cerebellum; even more intense in two rhombencephalic stripes consistent with 

R3 and RS; and light and diffuse in the dorsocaudal hindbrain immediately 

posterior to the choroid plexus (Fig. ll.2A). The cerebellar expression is strongest 

at the dorsal and medial surface, which corresponds to the external granule cell 

layer (Fig. ll.21). There is also light expression in the pons (stronger in discrete 

nuclei; Fig. ll.2J), and longitudinally along the dorsal lip of the hindbrain (Fig. 

11.2A). There is light localized expression in the spinal cord, confined to the 

medial region and excluding the roof- and floorplates (data not shown). At st. 50 

the hindbrain stripes are still present, but have been significantly downregulated 

relative to the forebrain staining (data not shown). 

Within the R3 and RS stripes there is some interesting substructure: at st. 44 it 

can be seen in sagittal sections that each of the EphA4 expression domains is 

strongest centered around a rhombomeric furrow and extends more deeply into 

the ventral part of the brain at the rostrocaudal midpoint of the furrow, forming 

a V shape (Fig. 11.2D). At st. 47 each of the furrows has grown into a deep 

groove, and expression of the gene is seen surrounding the groove and extending 
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down until it abuts the floorplate. Expression is strongest, however, not at the 

luminal surface of the groove but a short distance interior (Fig. II.2E). On 

wholemounts this leads to the appearance of bifurcation into two narrow stripes 

at the rostral and caudal boundaries of the rhombomere, with a lighter region in 

between (Fig. 11.2B). By st. 49 this bifurcation is quite marked (data not shown; 

but see Chapter III). 

Other nervous system regions 

EphA4 is expressed at low levels in the retinal ganglion cell layer of the eye from 

st. 37-48 (Fig. 11.2L); weak, patchy staining is sometimes seen in the inner nuclear 

layer. Expression levels are not graded in the dorsoventral axis; they do not 

appear to be graded in the nasotemporal axis, but our data are not definitive 

(data not shown). In the ear it is expressed in discrete regions, including the 

anterolateral wall. The flanks but not the central part of the macula are 

positive-the dorsal (including the septum between utricle and saccule) and 

caudal quite strongly so, the ventral and rostral weakly (Fig. II.2F, K, M). At the 

caudal end of the ear the medial positive zone wraps around along the ventral 

half to the posterior ventrolateral wall at st. 44. At st. 46 this positive region now 

forms the dorsal wall of the sacculus (data not shown). Expression in the cranial 

ganglia is markedly differential, with zones of strong expression only at the 

posterior and anteromedial regions of the medial ganglia adjacent to the ear (Fig. 

11.21-K vs. 11.2M). 
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Non-neural tissues 

EphA4 also exhibits interesting regionalization outside the nervous system. In 

the gills it is expressed in the dorsal but not ventral portion of each of the four 

vertical branchial plates, with an abrupt transition midway. The epithelial lining 

and the underlying cartilage are both positive, but the latter usually moreso (Fig. 

11.2F). In the heart there is prominent expression in a sharply restricted zone 

including the atrio-ventricular valve and adjacent tissues, with variable, lower­

level expression in other regions (Fig. 11.2N). In the outflow tracts expression is 

seen in an anteriorly directed aortic arch but not a more posterior one. The 

thymus is positive. There is a zone of slightly increased expression in the 

esophagus, and moderate expression in the serosal layer of the stomach, a fair 

length of the proximal small intestine, and some dorsal mesentery (stronger at st. 

44 than st. 46-47; data not shown). This expression is relatively uniform, unlike 

the deeper condensations of enteric nervous system ganglia that are positive for 

EphA2. Like EphA2, EphA4 is expressed in the mesonephros (Fig. 11.2D). 

EphA4 seems to be expressed at more moderate levels, but at st. 44 extends 

further anteriorly and covers the full length of the mesonephric sinus. The outer 

layer is positive, the inner negative (Fig. 11.2D). At st. 46 staining is seen only at 

the posterior tip. Finally, in the pronephros there is expression in a small 

segment at the anterior end. Staining is conspicuously absent in the forelimb and 

hindlimb buds at st. 47 and 50 respectively, although some distal staining may be 

present in the hindlimb at st. 51 (data not shown). 
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(A-C) Wholemount brains, st. 48. (A) Lateral view. Staining is seen in the central 

telencephalon, anterior and lateral thalamus (th), hypothalamus, cerebellum 

(cer), rhombomeres 3 and 5 (r3 and rS), and the dorsal posterior hindbrain (dhb). 

The boundary of the olfactory bulb with the main telencephalic cortex (o/ t) is 

marked; note that high-level expression stops at this line. Negative control brain 

(ctl) was hybridized with a xenospecific probe. (B) Dorsal and (C) ventral views 

of the same specimen. Expression can be seen in the choroid plexus of the third 

ventricle (cp), in the vicinity of the optic chiasm (oc), and in the midbrain 

floorplate (mfp). The boundaries between the olfactory bulb and the main 

telencephalic cortex (o/ t) and between the forebrain and the midbrain (f/m) are 

marked; note the expression domains that respect both of these boundaries. The 

strong dorsal telencephalic staining overlies the v entricular zone, whereas the 

strong ventral domain is more laterally situated. 

(D-F) Sagittal sections. (D) Section showing the brain at st. 44. Staining is present 

in the dorsal ventricular zone of the telencephalon (tel), in the thalamus (th), at 

the midbrain-hindbrain border (m/ h), and in the cerebellum (cer), rhombomere 

3 (R3), and rhombomere 5 (rS). The outer layer of the mesonephros is also 

positive. (E) Midsagittal section showing the brain at st. 47. The midbrain 

floorplate (mfp) is evident in this plane of section. Note that there is a sharp 

boundary in each of the rhombomeres between expressing and non-expressing 

cells at both the transverse boundaries and the boundary with the floorplate (fp ), 

the floorplate itself being negative. (*)indicates a displaced epithelium overlying 

the tissue section. (F) St. 44 animal showing the medial ear (ear) and gills (g). 

Strong staining is present in the caudal ear and in the dorsal but not ventral 
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portion of the vertical branchial plates making up the gills. Both the epithelium 

and the underlying cartilage of the gills are positive. 

(G-K) Transverse sections through a st. 46 brain. (G) The caudal thalamus. Two 

zones of staining are seen, both radiating out from the ventricular zone: a lighter 

one dorsal to the ventricular sulcus and a darker one ventral to it. (H) Rostral 

midbrain and caudal hypothalamus. Intense staining is present in the midbrain 

floorplate (mfp). Moderate staining is seen at the midbrain (mb) and lateral 

hypothalamic (hyp) ventricular surfaces and diffusely distributed throughout the 

midbrain. Light staining is seen in the pituitary (pit). (I) The cerebellum. Strong 

staining is seen in the superficial layer, strongest medially. Light staining is 

distributed throughout the cerebellum (cer) but not the pons (p); the boundary 

(c/ p) is indicated. Little staining is seen in the choroid plexus (cp). The cranial 

ganglia (erg) in this plane of section are negative. (J) A slightly more caudal 

section to the one in (K). The posterior cerebellum is still visible. In addition, 

there is focal staining in the ventral hindbrain (hb). (K) Section at the level of 

rhombomere 3, showing intense staining in the ventricular zone. The dorsal 

flanks of the maculae are also positive. The cranial ganglia (erg) here, however, 

show little or no staining. 

(L-N) Other transverse sections. (L) Sections through the eye at st. 48. The color 

was developed for a longer period than the other panels in this figure. Staining 

is seen fairly uniformly throughout the retinal ganglion cell layer (rgl), as well as 

at the ciliary margins and to a lesser extent in the inner nuclear layer (inl). (1) 

indicates the lens. The control (ctl) section was hybridized with a xenospecific 
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probe. (M) The caudal ear and the hindbrain (hb). Staining is again seen in the 

dorsal macula. The cranial ganglion here, unlike those in (1-K), is intensely 

stained. Little signal is seen in the hindbrain (hb). (N) The heart. Strong staining 

is seen in and surrounding the valve (avv) between atrium (at) and ventricle (v). 

Blood cells (bl) are present within the atrial lumen. 

EphA4: Discussion 

I. Expression in Xenopus 

EphA4, unlike EphA2, retains into tadpole stages the major features of its 

embryonic segmental pattern of expression in the hindbrain. Expression in 

presumptive R3 and RS is first seen around st. 14. By st. 33 this early expression 

has been joined by a domain in dorsal Rl, the presumptive cerebellum (Winning 

and Sargent, 1994; Xu et al., 1995). At st. 44 we observe expression at all three of 

these sites, plus a fourth domain of expression in the caudal hindbrain consistent 

with R7 (Fig. 11.2A). Thus it seems that the pattern that emerges by feeding 

tadpole stages is consistent with expression in each of the odd-numbered 

rhombomeres. The dorsoventral extent of these domains also remains 

remarkably similar to the form they have adopted by st. 37 (Winning and 

Sargent, 1994): the cerebellar expression is strongest dorsally (Fig. 11.21), and the 

R3 and RS stripes form a sharply defined band in the ventricular zone and do not 

involve the floorplate (Fig. 11.2E). The EphA4 hindbrain stripes are broader 

rostral to caudal than several of the other genes described herein; it is the only 
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gene which we saw expressed over the full rostrocaudal extent of the somite, 

with a sharp dividing line between stained and unstained somites. EphA4 is also 

found not just medially, but extending the full width of the hindbrain to the 

dorsolateral surface. It is thus very visible on wholemounts, whereas the 

periodic patterns of some of the others are seen only on sections. 

The other site of strong EphA4 expression in the embryonic central nervous 

system is the forebrain. This staining is present very early (st. 14-14.5; Winning 

and Sargent, 1994; Xu et al., 1995), and by st. 37 has become confined to the 

ventricular layer of the forebrain (Winning and Sargent, 1994). This is essentially 

the same pattern as is seen at the tadpole stage, although the latter displays 

various elaborations (Fig. II.2A-E). The one area of the brain that appears to have 

initiated high-level expression de novo in the tadpole is the floorplate of the 

midbrain, staining in which was not noted in the earlier studies but was quite 

intense by st. 44 (Fig. 11.2H). 

In the embryo EphA4 is expressed in neural crest migrating away from R5 into 

branchial arch 3 (Smith et al., 1997; Winning and Sargent, 1994; Xu et al., 1995), as 

well as in the visceral mesoderm (Smith et al., 1997; Winning and Sargent, 1994) 

and endoderm (Smith et al., 1997) in this same region. Certain features of the 

later expression may reflect this early patterning. In particular, expression is 

seen portions of the tadpole heart, which forms from the above r egion (Fig. 

11.2N). The expressing cells might derive either from the mesoderm or from 

cardiac neural crest. Expression is also seen in both the cartilage and the 

epithelium of the gill structure, which are derived from the m esoderm and 
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endoderm respectively (Fig. 11.2F). Finally, expression is seen in a subset of the 

crest-derived cranial ganglia (Fig. 11.21-K vs. 11.2M). It is not known whether this 

subset is derived from the EphA4-positive neural crest cells. 

At st. 26, xEphA4 was expressed robustly in the pronephros and the dorsal otic 

vesicle. By st. 37 both of these domains were no longer detected (Winning and 

Sargent, 1994). At st. 44 we observed faint staining at the anterior end of the 

pronephros, which could be a vestige of the earlier expression. We also observed 

fairly strong staining in the dorsomedial ear (Fig. 11.2M). Since expression in ear 

was not seen at all at st. 37, this suggests that the otic expression is 

downregulated after neurula stages and then upregulated again during later 

organogenesis. 

II. Comparison to EphA4 in other species 

Embryonic CNS expression of EphA4 in R3, R5, and the forebrain is universal 

among mouse (Irving et al., 1996; Nieto et al., 1992), chick (Hirano et al., 1998; 

Irving et al., 1996), zebrafish (Bovenkamp and Greer, 1997; Cooke et al., 1997), 

and Xenopus. Gradual refinement of expression in R3 and R5, with transient or 

low-level expression seen to a certain extent in adjacent rhombomeres, is also a 

common trait, although the exact details of the unfolding pattern differ among 

species. In post-embryonic stages, however, xEphA4 retains its characteristic 

segmental expression, while the R3 / R5 expression of mouse EphA4 was 

downregulated after E9.5 (Nieto et al., 1992) and strong but nonsegmental 

expression was observed at ElLS (Mori et al., 1995b). It thus appears that in 
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EphA4 in mouse exhibits distinct phases of developmental expression in which it 

is likely to play different roles, much as EphA2 does in mouse, chick, and 

Xenopus. In contrast, Xenopus EphA4 retains its early pattem of expression, and 

by inference its early function(s), at least into mid-larval stages. It is still possible 

that a shift occurs later, as we observed downregulation in the hindbrain stripes 

occurring at st. 50. This change could conceivably be analogous to the 

downregulation seen in the mouse after E9.5, although it comes at a much later 

developmental stage. 

In the forebrain, like the hindbrain, expression tends to start in a broad domain 

that is refined over time. In mouse, for example, expression initially appears in 

the entire forebrain, then is restricted to the telencephalon and dorsal 

diencephalon, then to the telencephalic cortex, basal telencephalon, and thalamus 

(Mori et al., 1995b). Later expression in both Xenopus and mouse avoids the 

olfactory bulb. In the primate EphA4 also shows dynamic restricted expression 

in the telencephalon (Donoghue and Rakic, 1999). 

In Xenopus prominent expression is later seen in tadpole-stage animals in the 

cerebellum (mainly in the external granule cell layer; Fig. II.2K) and the 

dorsocaudal hindbrain (R7 I Fig. II.2A-B). In other species the latter has not been 

reported and the former appears to be less well conserved than the R3 and R5 

domains, although expression has been reported in the mouse cerebellum at 

E15.5, Purkinje cells and cerebellar deep nuclei at P7, and weakly in the granule 

cells in the adult (Mori et al., 1995b); in the adult rat in Purkinje cells and w eakly 

in other cell types (Martone et al., 1997); and in the Purkinje cells of E14 (Lin and 
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Cepko, 1998) and adult (Bayardo et al., 1994) chicken. In zebrafish, expression of 

one EphA4 ortholog is seen in caudal Rl, in R3, and in RS (Bovenkamp and 

Greer, 1997); the other is present throughout the hindbrain, but strongest first in 

R3 and RS at 16.5 hr, then in RS and R6 at 24 hr, and finally in the cerebellum, RS, 

R6, and ventrolateral R7 at 48 hr. The former thus seems to have retained an 

ancestral expression pattern, whereas the other has evolved into a rather 

different one. 

Elsewhere in the CNS, EphA4 is expressed strongly in the ventral spinal cord 

and ventral motor horns in mouse (Mori et al., 1995b; Nieto et al., 1992) and chick 

(Hirano et al., 1998; Ohta et al., 1996; Soans et al., 1994). We observed light 

expression in the medial spinal cord, but none specific to the ventral region that 

seems to match that in mouse and chick. 

Another major discrepancy between Xenopus and mouse / chick is dynamic 

expression in the condensing somites. Mouse and chick both show dramatic 

upregulation in EphA4 in a segmental pattern during somitogenesis (Hirano et 

al., 1998; Irving et al., 1996). No such domain has been reported in Xenopus, 

however (Smith et al., 1997; Winning and Sargent, 1994; Xu et al., 1995) or 

zebrafish (Cooke et al., 1997). Prominent expression of EphA4 has also been 

reported in both early and late limb buds in mouse (Mori et al., 1995a) and chick 

(Hirano et al., 1998), whereas we observed no staining at all in the early limb bud 

and only weak staining later. 
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EphBl: Results 

EphBl appears to be expressed at low levels throughout the brain. It is 

prominent in the hypothalamus, optic tectum, and ventral hindbrain. Parts of 

the ears are also strongly stained. 

Brain 

At st. 44-47, there is some EphBl expression in the telencephalon near the ventral 

posterior boundary and in the olfactory bulb (Fig. TI.3B, D and data not shown). 

In the diencephalon there is moderate to strong expression in the hypothalamus 

and in restricted internal and ventral regions of the thalamus, including in the 

rostral portion a broad region that extends laterally from the lateral ventricular 

surface and is continuous with the hypothalamic expression domain (Fig. TI.3B, 

D). In the caudal portion there is a strong, sharp stripe running longitudinally 

through the ventrolateral thalamus (Fig. II.3E). There is light expression in the 

vicinity of the optic chiasm (Fig. 11.3B). There is also strong, tightly restricted 

expression in the choroid plexus of the third ventricle (data not shown). 

EphBl is expressed very strongly in the dorsal midbrain in a horseshoe shape on 

either side extending from the lateral tectum (the site of strongest expression) 

rostrally to the lateral anterior midbrain (Fig. II.3A, D, F). At the caudal end of 

the midbrain the expression begins to wrap around instead to the ventral tectum 

or tegmentum, leaving very little expression in the posterior-most tectum. This 

strong ventral expression then cuts off abruptly slightly anterior to the midbrain-
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hindbrain boundary (Fig. 11.3A, D). There is expression throughout the 

hindbrain, particularly the dorsal hindbrain and the pons, as well as in the spinal 

cord (Fig. 11.3D). 

A salient feature of throughout the entire brain is markedly lower expression of 

EphBl mRNA at the midline, especially the ventral midline (Fig. IT.3B). While 

the exclusion is not universal (for example the dorsal horseshoe domains do meet 

each other at the isthmus of the midbrain; (data not shown) it is nonetheless 

quite striking. There is a similar phenomenon at the transverse forebrain­

midbrain and midbrain-hindbrain boundaries, which are likewise low in 

expression (Fig. 11.3A, D). 

At st. 51, the expression pattern in the brain is rather different. Expression is still 

strongest in the lateral tectum and still markedly lower at the midline and at the 

transverse boundaries. However it is now found chiefly in the superficial layers 

and is more uniformly distributed across much of the brain, particularly the 

forebrain, midbrain, and caudal hindbrain. The choroid plexus and cranial 

ganglia are also positive (data not shown). 

Other nervous system regions 

The strongest EphBl staining noted outside of the brain is in the developing ears, 

which exhibit sharply restricted positive zones in the walls and septa 

corresponding to the anlagen of the sensory organs and endolymphatic ducts. 

This staining is present at st. 44 but more intense at st. 46-47. The eyes also 
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appear to exhibit some light localized staining, particularly at the ciliary margin 

(data not shown). 

Non-neural tissues 

The gills exhibit some localized EphBl staining in both the cartilage and the 

overlying epithelium. While it is not particularly strong, it is interesting in that it 

seems to be differential, with the dorsolateral portions stronger than the 

ventromedial. There is also some increased expression seen at the ventral 

midline in the cartilage of the jaw and the overlying ventral midline epithelium 

of the pharynx (data not shown). At st. 51, substantial staining is seen in the 

apical portion of the limb buds. The fins are also positive (Fig. II.3C). 

vcntt·al - bra in, st 4 7 

sagittal - brain, st 47 t ra nsv- anterior transv- tectum, s t 44 
midbra in, s t 44 

Figure 11.3: EphBl mRNA in situ hybridization. See Fig. ll.l for key. 
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(A-C) Wholemounts. (A) Dorsal view of the brain, st. 47. Staining is strongest in 

the lateral tectum, and extends forward to the anterior boundary (f/m) of the 

dorsal midbrain (amb). Reduced staining is seen at the posterior margin of the 

optic tectum (pot). The dorsal hindbrain is positive. Some false positive staining 

(*) is seen in the control brain ( ctl) surrounding the olfactory nerve where the 

tissue was damaged during dissection. (B) Ventral brain, st. 47. Staining is seen 

in the hypothalamus (hyp) and in the ventral tegmentum (tg) and pons (p ). Note 

the reduced staining at the midline (mid). (C) Lateral view of hindlimb buds, st. 

50 pigmented (exp) and st. 51 albino (ctl). Negative control (ctl) was hybridized 

with an ephrin-B3 sense strand probe. Staining is seen in the distal hindlimb bud 

(hlb) and in the fins. 

(D) Sagittal section through a st. 47 brain. The strongest staining is present in the 

optic tectum (ot); dorsal hypothalamus (hyp); and ventral hindbrain, including 

the pons (p ). Staining is also seen around the ventral telencephalon/ 

diencephalon boundary (t/ d), in the thalamus (th) and the remainder of the 

hypothalamus, in the ventral midbrain, and in the dorsal posterior hindbrain. 

Little or no staining is seen in the posterior margin of the optic tectum (pot). 

(E, F) Transverse sections through a st. 44 brain. (E) A section at the level of the 

anterior midbrain and anterior hypothalamus. Focal labeling is seen in the 

central midbrain (mb) and the lateral hypothalamus (hyp). Widespread diffuse 

staining is also present. (F) A section at the level of the optic tectum and 

posterior hypothalamus. The optic tectum is positive, the dorsal midline 

negative. 
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EphBl: Discussion 

I. Expression in Xenopus 

At st. 32 (Scales et al., 1995) and st. 37 Gones et al., 1995), xEphB1 mRNA exhibits 

widespread expression in the brain and spinal cord, particularly at the forebrain­

midbrain and midbrain-hindbrain boundaries and the ventral brain. 

Interestingly, we observe strong localized expression near the boundaries-in 

some cases on both sides of them-but not at the boundaries themselves. It may 

be that as the brain develops the single expression domain seen at each boundary 

bifurcates. It may also be that the more rostral of the two st. 32 dorsal expression 

domains contracts leaving the choroid expression seen at later stages, while the 

more caudal evolves into the strong dorsal midbrain expression. The retinal 

ganglion cell layer of the eye shows light expression at st. 37, which is consistent 

with the expression we observe at later stages. Expression in cranial ganglia is 

also noted at both stages. 

The caudal edge of the tectum at tadpole stages is the proliferative zone in which 

new tectal neurons are continually being bom. The tectum grows in size until 

adulthood via addition of cells at this margin (Straznicky and Gaze, 1972). As 

these neurons differentiate, they make appropriate connections with retinal 

ganglion cell afferents from the nasal extreme of the retina. Since the retina adds 

neurons at the ciliary margin symmetrically around its whole circumference 
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(Straznicky and Gaze, 1971), the entire retinotectal projection slowly "crawls" 

posterior-ward as the animal grows (Fraser, 1983). Not only EphB1 but also 

EphB3 and EphB4 show a sharp cutoff of their expression domain just rostral to 

the posterior tectal margin. This suggests that they are not expressed in 

undifferentiated neurepithelium, but are sharply upregulated upon 

differentiation. EphB2, on the other hand, shows very strong expression right up 

to the caudal edge of the tectum. Since the caudolateral tectum is the site of 

strongest expression for EphB1, it also suggests that as these neurons slowly age 

and become more rostrally situated EphB1 transcription is downregulated 

somewhat. Our data did not permit us to determine whether EphB3 and EphB4 

also exhibit such a gradation; both of these genes gave considerably weaker 

signal than EphB1, probably reflecting lower transcription rates. EphB2, 

however, was clearly expressed most strongly in the caudal and medial tectum. 

EphB1 is expressed in both neural crest and/ or mesoderm in the third and fourth 

branchial arches, and has been shown to affect the targeting of neural crest cells 

to the correct arches (Smith et al., 1997). The light staining we observe in the gills 

and jaw cartilage may be a remnant of this earlier expression. 

II. Comparison to EphBl in other species 

In the mouse embryonic CNS EphB1 is regulated highly dynamically. At E11.5 it 

is transcribed throughout the CNS, with the strongest site of expression being the 

diencephalon. At E13.5 it has been restricted to the basal telencephalon, 

diencephalon and rhombencephalon, while at E15.5 it shows strong expression 



64 

in the marginal zone of the cerebral cortex and striatum, and moderate 

expression in the hippocampus, thalamus, inferior colliculus, cerebellum, and 

spinal cord. At P7 it is most strongly expressed in the cerebellar granule cells, 

and more moderately in the cerebral cortex, striatum, and hippocampus, while in 

the adult it shows only weak expression in the cerebellar granule cells and 

hippocampus (Mori et al., 1995b). Transcripts are also found in the El2.5 

hindbrain in the R4 floorplate and flanking regions (Cowan et al., 2000), in the 

P2-7 midbrain in the substantia nigra (Yue et al., 1999b) and in the adult in the 

subventricular zone of the lateral cerebral cortex (Conover et al., 2000). 

This pattern of expression is quite divergent from that seen in Xenopus. Xenopus 

shows expression of EphBl in the olfactory bulb, which was not noted in mouse. 

Both species do show restricted expression in the telencephalon in patterns that 

might be analogous (early expression in basal telencephalon in mouse, ventral 

posterior telencephalon in Xenopus; later throughout the telencephalic cortex in 

both), but these structures are sufficiently divergent between frog and mammal 

that it is difficult to compare. Both species also show expression in parts of the 

thalamus, but again, comparison is difficult. The hypothalamus exhibited strong 

expression in Xenopus, but none was seen in mouse. The midbrain is even more 

obviously discrepant. The dorsal midbrain, including optic tectum (homologous 

to the mouse superior colliculus), was the strongest site of expression in the 

tadpole. The mouse, on the other hand, showed only limited expression in the 

midbrain: a brief time window of expression in the inferior colliculus (Mori et al., 

1995b) and some postnatal transcription in the substantia nigra (Yue et al., 

1999b). In the hindbrain, non-midline expression was seen in at least some 
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places in both species. However, mouse also showed strong expression in the 

hindbrain floorplate (Cowan et al., 2000), whereas we observed reduced or 

absent expression in the Xenopus floorplate. 

One possibility given such a divergence in expression pattern between frog and 

mouse is that other EphB gene(s) are able to substitute for EphBl. Some of our 

data are consistent with this possibility. For example, we did observe expression 

of EphB3 in the hindbrain floorplate. And indeed, mammalian EphBl, EphB2, 

and EphB3 all have similar (although not identical) profiles of affinities for the 

three known ephrin-B ligands (see table in Flanagan and Vanderhaeghen, 1998), 

so a functional substitution might be evolutionarily feasible. On the other hand, 

it is also possible that the interspecies differences in EphBl expression reflect 

substantive differences between the organisms. There are, after all, rather a lot of 

differences between a frog brain and a mouse brain. In support of this possibility 

as regards the floorplate example, we note that EphB expression in the Xenopus 

hindbrain floorplate is generally lacking. Of the five ephrin-B-binding genes 

studied, only EphB3 and possibly EphB2 are expressed, and those only at low 

levels. In the mouse, on the other hand, EphA4, EphBl, and EphB2 are all 

expressed strongly, and additionally EphB4 and EphB6 are present at low levels 

(Cowan et al., 2000). Perhaps the mouse brainstem (at least in the auditory 

region where the floorplate expression was seen) has commissural connections 

that are regulated more selectively, and perhaps repulsive guidance by EphBl in 

the floorplate plays a role in this putative selectivity. A third possibility, of 

course, is that the protein is simply dispensable for certain functions in the 

species that lack corresponding expression domains. 



66 

Expression of EphB1 in the chick midbrain is much more congruent with that in 

Xenopus. In the embryonic chick tectum EphB1 is strongly expressed in the 

stratum griseum centrale and the subventricular zone (Connor et al., 1998). 

These are postrnitotic populations, the subventricular zone most recently so. The 

chick tectum is much more highly stratified than the tadpole tectum, and the 

ventricular zone is comprised of proliferative cells, while the outer cortical layers 

contain differentiating cell types. EphB1 is expressed at high levels in the latter, 

but not seen in the former. It may be that this laminar modulation in chick is 

analogous to the caudal-to-rostral modulation in Xenopus: in both cases the 

proliferative neurepithelium is negative, while the immediately adjacent 

postrnitotic cells are strongly positive. 

In chick (Connor et al., 1998) and mouse (Birgbauer et al., 2000) embryos the 

retinal ganglion cells also transcribe EphB1, with a uniform distribution 

throughout the retina. While we observed some EphB1 expression in the 

Xenopus retina, it was confined to the ciliary margin and was relatively light. It is 

thus unclear whether the retinal expression could represent a truly conserved 

functional domain between amniotes and Xenopus. 

Neonatal rodents express EphB1 protein in restricted regions of the developing 

ear and in the associated ganglia (Bianchi and Gale, 1998); the same is true of 

Xenopus tadpoles. Expression is also found in the developing and adult mouse 

metanephric kidney (Abrahamson et al., 1998); however, we did not observe 

expression in the pronephros or mesonephros. Neither did we observe high-
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level expression in the heart, as was seen in adult chicken (Sajjadi and Pasquale, 

1993). A common site of expression between mouse and frog was the branchial 

arches. EphB1 is variously expressed in migrating neural crest and mesoderm in 

branchial arches two and three of embryonic Xenopus (Smith et al., 1997), and 

weakly but detectably in arches one, two, and three of mouse (Adams et al., 

2001). 

EphB2: Results 

EphB2 shows widespread expression throughout the CNS. It is generally 

expressed most strongly near the ventricular surface. The eye exhibits a marked 

ventral-to-dorsal gradient. 

Forebrain 

There is moderate expression of EphB2 in several discrete zones of the 

telencephalon. The overall pattern includes staining at the caudal but not rostral 

end of the olfactory bulb, then a gap, then staining at the caudal end of the 

telencephalon (Fig. 11.4A-C). There is a narrow zone at the ventricular surface 

that is positive throughout (Fig. ll.4B). In the broader domain at the caudal end 

the olfactory bulb this ventricular staining extends to the pial surface 

dorsomedially, laterally, and ventrolaterally at st. 44-47. Similarly towards the 

caudal end of the telencephalon and at the telencephalon-diencephalon 

boundary there is expression radiating out to the pial surface (Fig. 11.4C and data 

not shown). At st. 44 the expression at the caudal ventricular zone itself is 
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relatively light, and the strongest staining is found at the dorsal, lateral, and 

ventral pial surfaces. By st. 48 the telencephalic ventricular zone is more 

uniformly positive, and the entire thickness of the caudal telencephalon is 

positive as well, with the dorsal region being strongest (data not shown). At st. 

50 expression is more restricted, with staining in the olfactory bulb being present 

at the dorsomedial tip and lateral posterior. The ventricular zone remains 

positive throughout (Fig. II.4B, C). 

At the telencephalon-diencephalon boundary a broad band at the ventricular 

surface is strongly stained and there are distinct rays extending from it to the 

lateral, ventrolateral, and ventral pial surfaces. At st. 50 the staining at the ventral 

pial surface appears in two sharply defined zones: a horseshoe at the boundary 

itself and immediately caudal to it in the vicinity of the optic chiasm (Fig. 11.4C, 

D). 

In the diencephalon strong EphB2 expression continues at or near the lateral and 

ventral thalamic ventricular zone, with more moderate expression surrounding 

(Fig. 11.4D). There is markedly lower expression dorsally, although towards the 

caudal end some expression does extend mediad at the pial surface. At st. 44 

expression in the hypothalamus is relatively light (data not shown). At st. 47 

there is strong anteromedial hypothalamic staining, especially at the ventricular 

surface, with more moderate lateral and posterior expression (Fig. II.4F and data 

not shown). At st. 50, by contrast, there is stronger staining anterolaterally than 

medially (Fig. 11.4C). At st. 50 there is also downregulation of the staining in the 

ventral anterior thalamus; at earlier stages the entire border with the 



69 

telencephalon is positive, but at st. 50 only the staining in the dorsal thalamus 

remains strong (Fig. II.4C). 

Midbrain 

The dorsal midbrain exhibits the most intense EphB2 expression. It is strongest 

at the caudal edge of the tectum and extending rostrally from there on either side 

of the midline. The midline itself, however, is light or negative, except for a 

small region at the rostral extreme of the domain (Fig. II.4A, B). The most 

prominent tectal staining occurs at the ventricular surface, but the entire 

thickness expresses strongly, and there is also elevated expression at the pial 

surface caudally (Fig. II.4F). Where the tectal cortex is folded over the dorsal 

expression is more intense than the ventral, but the latter is still prominent. At st. 

44 the dorsal and the posterior ventral tegmentum is moderately positive, but the 

anterior ventral portion shows only light expression (data not shown). 

Expression throughout the entire tegmentum at st. 46-48 is generally moderate 

with strong staining at the ventricular surface, except that the floorplate, like the 

roofplate (although to a lesser degree), shows lighter expression than the 

surroundings (Fig. II.4F). The dorsal half of the tegmentum still tends to be 

somewhat darker than the ventral. At st. 50 ventral expression is once again 

downregulated and appears fairly light (Fig. II.4C). 

Hindbrain 

The cerebellum shows light EphB2 staining (Fig. II.4A). Much of the remainder 

of the hindbrain, especially the ventromedial pons, is positive at moderate levels, 
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with stronger, often spotty staining at or near the ventricular surface. In 

transverse sections a small region is seen at the ventricular surface, near or at the 

dorsolateral extreme, which exhibits much lower expression levels (Fig. II.4I). 

The hindbrain floorplate also shows much less staining. There appears to be a 

zone of decreased expression at the approximate level of R2 (data not shown). In 

addition, there is some weak segmental periodicity to the staining, most 

apparent at the dorsolateral edge in wholemount (Fig. II.4A). In st. 50 

wholemounts there are two nested longitudinal stripes at the dorsocaudal 

surface of the hindbrain, one near but not at the dorsal lip, and one more laterally 

situated which corresponds to more ventral cells near the pial surface (Fig. II.4B). 

The more medial stripe extends rostrally throughout the length of the post­

cerebellar hindbrain, although it is most visible around the caudal end of the 

choroid plexus. 

Other nervous system regions 

The hindbrain EphB2 staining extends into the spinal cord; at stage 44 it is found 

at lower levels in the latter, but by st. 47 the staining appears more equal (Fig. 

II.4B, C). The roofplate and floorplate of the spinal cord exhibit much lower 

levels of expression than their surroundings at all stages; this is also true to some 

extent of the rest of the ventricular zone (Fig. II.4G). 

In the eye EphB2 is expressed at moderate to high levels, with interesting 

gradations of expression in the retinal ganglion cell and inner nuclear layers (Fig. 

II.4J). At st. 44-47 the gene is most strongly expressed at the ciliary margin, and 
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falls off more centrally (data not shown). In addition there is a marked ventral 

high- dorsal low gradient of expression (except at the ciliary margin itself, where 

expression is strong throughout). At st. 48, the distribution of staining is 

somewhat more uniform. However, there still remains stronger staining at the 

ventral ciliary margin and into the adjacent regions of the retinal ganglion cell 

and inner nuclear cell layers, especially the inner (amacrine cell) portion of the 

latter (Fig. II.4J). No differential expression is seen across the nasotemporal axis 

(data not shown). Expression in much of the retina is approximately equal across 

the above retinal layers. However, the amacrine cells comprising the inner part 

of the inner nuclear layer sometimes show stronger staining than the other cell 

types in the ventral retina (Fig. II.4J). 

There is sharply differential expression in the cranial ganglia. Some areas, such 

as the lateral and posterior regions of the ganglia adjacent to the anteromedial 

ear and much of the ganglion near the posterior end of the ear, are moderately 

stained (Fig. II.4F). Others are light or negative, as is the ear itself (data not 

shown). 

Non-neural tissues 

Among non-neural tissues there is significant EphB2 signal in the cartilage at st. 

44-47 (Fig. II.4F), but much less at st. 48 (data not shown). There is staining in the 

esophagus, which is continuous with light staining throughout the serosal 

surface of the gastrointestinal tract. The bulk of the liver and pancreas are 

negative, but there is staining of the main pancreatic duct and a focal region 
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contiguous with it in the pancreas and/ or the liver that may represent smaller 

collecting ducts. The thymus is also positive (Fig. II.4K). There is staining in the 

mesonephric sinus and the inner layer of the posterior mesonephros (Fig. II.4H, 

K). The outflow tracts of the heart are positive, and there is light staining in the 

lateral but not medial pronephros (data not shown). 
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Figure 11.4: EphB2 mRNA in situ hybridization. See Fig. 11.1 for key. 
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(A-C) Wholemount brains. (A) Dorsolateral view, st. 48. Negative control brain 

(ctl) was hybridized with a xenospecific mRNA probe. Staining is present in the 

telencephalon (tel), where a rostral and a caudal domain can be seen. Strong 

staining is present in the dorsal and rostral thalamus (th) and hypothalamus 

(hyp). Even stronger signal is seen in the optic tectum (ot). There is light 

staining in the dorsal hindbrain and stronger staining caudally. The positions of 

the telencephalon/ diencephalon (t / d), forebrain / midbrain (f/m), and 

midbrain/hindbrain (m/h) boundaries are indicated. Brown spots are 

melanocytes (mel) in fragments of leptomeninges remaining attached to the 

brain. (B) Dorsal and (C) ventral views of st. 50 (exp) and 51 (ctl) brains. The 

negative control brain (ctl) was hybridized with an ephrin-A3 sense strand 

probe. Strong staining is seen in the dorsal thalamus (th), optic tectum (ot), 

dorsocaudal hindbrain (hb), and spinal cord (s). The lateral hypothalamus (hyp) 

is strongly stained, the medial more moderately. There is also strong staining at 

the ventromedial telencephalon/ diencephalon boundary (t/ d), including the 

vicinity of the optic chiasm (oc). Staining in the telencephalon is localized to two 

domains, one at the caudolateral edge of the olfactory bulb (ob) and the other 

internal along the entire length of the ventricular zone (vz). The position of the 

olfactory bulb/main telencephalic cortex boundary (o/ t) is marked in (C). 

(D-F, I) Transverse sections through the brain at st. 47. (D) Section at the level of 

the telencephalon/ diencephalon boundary. Strong signal is seen in the lateral 

thalamus and extending to the v entral pial surface. (E) Section through the 

anterior midbrain. Strong staining is present at the dorsomedial surface and 

extending down along the ventricular surface. Much of the thickness of the 
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surrounding brain is positive, with the signal fading out laterally and ventrally. 

(F) Oblique section. The left side is more caudal and shows strong staining 

throughout the optic tectum (ot), with the most intense signal being found at the 

ventricular surface. The right side is more rostral and shows strong staining in 

the lateral hypothalamus (hyp). The cranial ganglia (erg) are also positive, with 

stronger staining in some parts than others. Staining is also seen in cartilage cells 

(c). Melanocytes (mel) are normally found occasionally within the ventricles of 

the Xenopus brain. (I) Oblique section through the hindbrain. Strong staining is 

seen throughout, with intense signal found in one of two places: either at the 

ventricular surface (vz) or a short distance interior to it. 

(G, H, J, K) Other transverse sections. (G) St. 47 spinal cord. Note the lack of 

staining the round roofplate (rp) and in the floorplate (fp), as well as reduced 

staining along remainder of the ventricular zone. (H) The caudal end of st. 44 

mesonephroi. Strong staining is seen in the interior but not in the outer layer. 0) 

Eyes at st 48 (exp) or 47 (ctl). Negative control was hybridized with a 

xenospecific probe. Intense signal is seen at the ciliary margins, both dorsal and 

ventral. The dorsal area is small, however, while the ventral staining falls off 

much more gradually, giving a ventral to dorsal gradient across approximately 

the ventral half of the retina. Moderate expression is seen throughout the dorsal 

half. Both the retinal ganglion cell layer (rgl) and the inner nuclear layer (inl) are 

positive, but the staining in the latter is stronger and the gradient more 

pronounced. The amacrine cell layer (ad) comprising the inner part of the inner 

nuclear layer is more strongly stained than the outer. (1) indicates the lens. Color 

in the rod outer segments (ros) is due to their iridescence under Nomarski optics. 
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(K) Oblique section showing the viscera. The left side is more caudal, and shows 

staining at the serosal surface of the small intestine (si), as well as staining 

around the pancreatic duct (pd) and adjacent tissue in the pancreas and/ or liver. 

Serosal staining is seen in the esophagus (es) as well. Staining is also seen in the 

paired mesonephroi (mn) and pronephric ducts (pnd); this plane of section is 

rostral to that in (H), and the mesonephric staining is thus lighter and less 

organized. The right side of the section is more rostral, and reveals strong 

staining in the thymus (thy). 

EphB2: Discussion 

I. Expression in Xenopus 

The expression pattern has not been previously published in detail for xEphB2. 

However, at st. 34 EphB2 transcripts were noted in the brain and spinal cord, 

branchial arch 2, and the pronephric region (Helbling et al., 2000). Expression 

localized to the midbrain and hindbrain was already apparent, presaging the 

strong expression we observed in the midbrain and moderate expression in the 

hindbrain at st. 44. Pronephric expression was prominent at st. 34; at st. 44 this 

expression had clearly been substantially downregulated but was still detectable 

in the lateral pronephros. 
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The tectal EphB2 expression domain we observed extends all the way to the 

caudal margin of the tectum, thus including the proliferative zone. This is unlike 

the other three EphB's (see discussion above under EphB1), 

II. Comparison to EphB2 in other species 

Avian embryos, like Xenopus tadpoles, show strong expression of EphB2 in the 

developing tectum (Connor et al., 1998; Holash and Pasquale, 1995; Holash et al., 

1997; Kenny et al., 1995). In both cases transcription is strongest in the immature 

neurepithelial cells of the ventricular zone, but also prominent throughout the 

rest of the thickness of the tissue. No dorsoventral gradient was seen in birds. 

Conflicting reports exist, however, on the avian rostrocaudal distribution. 

(Kenny et al., 1995) found transcription in the E9 quail to be distributed in a high 

caudal - low rostral gradient, which is similar to what we see in frog, whereas 

(Connor et al., 1998) found no rostrocaudal modulation in the E8 chicken. It is 

not known whether this discrepancy is attributable to different developmental 

stages studied, to interspecies differences, or simply to technical issues. 

Mouse embryos, on the other hand, do not express EphB2 in the tectum. Instead, 

they show strong expression in the early ventral midbrain (Becker et al., 1994; 

Henkemeyer et al., 1994). While Xenopus tadpoles also show some expression in 

the ventral midbrain, it exhibits a high dorsal -low ventral gradient, whereas the 

mouse exhibits the opposite gradient. Since these are very different 

developmental stages in the two species and the details of the expression pattern 



77 

are not in accord, it seems unlikely that the coincident expression in the ventral 

midbrain is due to a conserved common function. 

Expression in the hindbrain and spinal cord differs considerably between frog 

and both chick and mouse. The strongest expression seen in the chick embryo 

occurs in the cerebellum, and it persists well into postnatal life (Pasquale et al., 

1992), whereas the Xenopus tadpole displays only light cerebellar expression. In 

this respect mouse, where strong cerebellar expression has not been seen (Becker 

et al., 1994; Henkemeyer et al., 1994; Henkemeyer et al., 1996), is more similar to 

Xenopus. The early mouse embryo does show specific expression in 

rhombomeres 2, 3, and 5, but this expression is downregulated later in 

development (Becker et al., 1994; Henkemeyer et al., 1994; Henkemeyer et al., 

1996), and data are not available for comparable stages in Xenopus. Like EphB1, 

EphB2 shows strong expression in the hindbrain floorplate in mouse (Cowan et 

al., 2000; Henkemeyer et al., 1994), but little or none in Xenopus. This major 

difference is discussed above under EphBl. Finally, both mouse (Becker et al., 

1994; Henkemeyer et al., 1996) and Xenopus show expression in the spinal cord. 

However, the mouse expression, which was seen at relatively early stages, was 

strongest ventrally (Becker et al., 1994) and the protein was seen in spinal motor 

axons (Henkemeyer et al., 1994), while the frog expression we observed was 

stronger dorsally. 

EphB2 expression in the forebrain and olfactory system shares several common 

elements between mouse (Becker et al., 1994; Henkemeyer et al., 1994; 

Henkemeyer et al., 1996), chick (Pasquale et al., 1992), and frog. Expression in 
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the parts of the telencephalon (particularly the ventral posterior telencephalon), 

ventral thalamus (including the chiasmatic region), and hypothalamus has been 

noted in all three species. In the developing rat olfactory system, EphB2 is 

expressed in the nasal olfactory epithelium and in the mitral and granule cells in 

the olfactory bulb. We observed light staining in the olfactory pit that might be 

similar to that in rat, but it was not at sufficiently high levels for us to score 

reliably (data not shown). In the frog olfactory bulb, however, we observed 

strong expression in restricted regions (see discussion below under Olfactory 

System). 

A gradient of EphB2 expression in the developing retina is conserved among 

mouse (Becker et al., 1994; Birgbauer et al., 2000; Henkerneyer et al., 1996), bird 

(Connor et al., 1998; Holash and Pasquale, 1995; Holash et al., 1997; Kenny et al., 

1995; Pasquale et al., 1994), and frog. In all three taxa rnRNA or protein has been 

found in essentially a high-ventral to low-dorsal gradient. (In both early mouse 

(Becker et al., 1994) and late quail (Kenny et al., 1995) retinal development this 

gradient is actually biased towards the ventroternporal rather than due ventral; 

in fact, in mouse it appears to start in the temporal optic vesicle and then move 

towards the ventroternporal. We did not observe such a bias in Xenopus, but it is 

subtle and much of our data carne from transverse sections, so we do not rule it 

out.) 

The retinal laminar restriction is also similar in all three taxa. In mouse, 

transcripts are seen in both the retinal ganglion cell layer and the relatively 

undifferentiated outer retina (Birgbauer et al., 2000). In chick at E9 they are seen 
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at high levels in the retinal ganglion cell layer and the inner portion of the inner 

nuclear layer (the amacrine cells), and much lower levels in the outer portion of 

the inner nuclear layer (the bipolar and horizontal cells) (Kenny et al., 1995). In 

Xenopus the pattern is similar to that in chick; however, the bias towards the 

amacrine portion of the inner nuclear layer is subtler, at least at the stages we 

studied. 

Although EphB2 expression in the Xenopus retina is similar to mouse and bird in 

the dorsal-ventral and radial axes, it is opposite to them in the central-peripheral 

axis. In mouse (Birgbauer et al., 2000; Henkemeyer et al., 1996) and chick (Kenny 

et al., 1995) the protein was found at higher levels centrally than peripherally. In 

the Xenopus tadpole, on the other hand, transcription was strongest at the 

periphery, with much lower levels elsewhere. This difference presumably 

reflects the high rate of ongoing neurogenesis at the ciliary margin in Xenopus. 

In the mouse, EphB2 protein is expressed in the vestibule-acoustic (VIIIth) 

ganglion axons and facial (VW) ganglion motor axons. This is consistent with 

the selective expression we see in the periotic cranial ganglia. It is also expressed 

in the early mouse endolymphatic duct anlage and later in nonsensory epithelia 

adjacent to sensory structures in various parts of the ear (Cowan et al., 2000; 

Henkemeyer et al., 1994). We did not observe high-level expression in the ear 

itself. It is possible that significant expression would have been revealed by a 

longer color development reaction. However, the nonsensory expression of 

EphB2 in mouse is reminiscent of the expression of Xenopus EphA4 flanking the 
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macula. EphA4 is also capable of binding ephrin-B ligands, so it is possible that 

EphA4 and EphB2 could be functionally interchangeable in this instance. 

Expression has been seen in various embryonic mesenchymal and mesodermal 

tissues in other species (references above; also Adams et al., 1999; Orioli et al., 

1996). The most noticeable related expression in the Xenopus tadpole was in 

cartilage throughout the head. Expression was also seen in the metanephric 

kidney in adult human (Ikegaki et al., 1995) and embryonic chick (Pasquale, 

1991), and in the mesonephros in Xenopus. Furthermore, these latter studies 

found expression in the human pancreas and liver and the chick intestine and 

liver, and it was also seen in the embryonic mouse foregut (Becker et al., 1994), 

which would all be consistent with the low-level expression we saw in the 

Xenopus esophagus, small intestine, and pancreas/ liver. The heart was another 

site of expression in other species (Henkemeyer et al., 1996; Ikegaki et al., 1995; 

Pasquale, 1991). We did not observe substantial expression in the heart itself, but 

some signal was seen in its outflow tracts. 

EphB3: Results 

Forebrain 

EphB3 exhibits low-level specific expression in the lateral ventricular zone of the 

telencephalon, particularly towards the caudal end (Fig. 11.5A, D). The dorsal 

thalamus and midbrain are positive, the posterolateral tectum being the site of 

most intense expression (Fig. 11.5A, C). In the midbrain the expression is 
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superficial, whereas in the thalamus it is deeper, lateral to the ventricle (Fig. II.SD 

and data not shown). The hypothalamus is also positive, the strongest 

expression again being found in the lateral ventricular zone (Fig. II.SB, C, F). By 

st. 46 the lateral thalamic expression has been joined by strong expression in the 

ventrolateral ventricular zone and floorplate. The anterior pineal is positive 

(data not shown). 

Midbrain 

Around the diencephalic-mesencephalic isthmus the ventricular zone is mainly 

negative for EphB3, although some dorsal expression persists. Further caudally, 

however, the entire ventricular zone is once again positive, with particularly 

strong expression adjacent to but not in the floorplate and roofplate (Fig. II.SF). 

The floorplate and roofplate themselves exhibit markedly less staining. 

Prominent expression is seen in the tectum (Fig. II.SA-E); towards the caudal end 

this expression domain wraps around to the ventral tectum and the tegmentum, 

and the posterior-most margin of the tectum shows little or no expression (Fig. 

II.SD, E). 

Hindbrain 

The dorsal cerebellum exhibits low-level EphB3 expression (Fig. II.SD). The 

dorsal surface of the rest of the hindbrain expresses at uniform, moderate levels 

at earlier stages (Fig. II.SA). In the ventricular zone there are at least three thin 

transverse stripes of expression (Fig. II.SG) with little or no expression in 

between. At st. 51 there are two longitudinal stripes running along the dorsal 
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surface of the caudal hindbrain in wholemount (presumably reflecting 

ventricular zone staining), one along the dorsal lip and the other more lateral. 

There is weak expression in the pons floorplate (data not shown). 

Other nervous system regions 

Outside of the CNS, the cranial ganglia are positive for EphB3 (Fig. II.SE, G) . 

There may be some faint staining present at the ciliary margin of the eye, 

particularly on the ventral side. There may also be some faint staining in the 

photoreceptor layer, which seems to be stronger dorsally. In the ear the various 

anlagen are positive (Fig. II.SG and data not shown), as is the septum dividing 

utricle from saccule. 

Non-neural tissues 

EphB3 is expressed in the thymus, and in the inner layer of the mesonephros. 

There is staining in parts of the serosal layer of the gut in places, and occasionally 

deeper within the gut wall. At st. 46 (perhaps also at st. 44, although to a lesser 

extent), the ventricle of the heart stains more darkly than the atrium. The gills 

also show some staining (data not shown). 
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Figure 11.5: EphB3 mRNA in situ hybridization. See Fig. ILl for key. 

(A-C) Wholemount brains, st. 48. Negative controls (ctl) are hybridized with a 

xenospecific mRNA probe. (A) Dorsal view, (B) ventral (slightly ventrolateral), 

(C) lateral. Staining is seen in the thalamus (th), hypothalamus (hyp), optic 

tectum (ot), tegmentum (tg), and hindbrain (particularly the ventral posterior 

hindbrain, vhb). The locations of the telencephalon/ diencephalon (t/ d) and 

midbrain/hindbrain (m/h) boundaries are indicated in (C). 

(D, E) Sagittal sections of st. 44 brains. (D) Medial forebrain and midbrain, 

showing strong staining in the thalamus (th), optic tectum (ot), and along the 

midbrain side of the midbrain/hindbrain boundary (m/h). Note the reduced 

staining at the posterior edge of the optic tectum (pot). Staining is also seen in 
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the hypothalamus (hyp), cerebellum (cer), and at the boundary between pons (p) 

and cerebellum. The plane of section catches the lateral corner of the tectal 

ventricle, which is partially obscured by blood. (E) Lateral midbrain and 

hindbrain, showing staining in the optic tectum (ot), dorsal hindbrain (dhb), 

ventral posterior hindbrain (vhb), and adjacent cranial ganglia (erg). The 

position of the midbrain/ hindbrain boundary (m/ h) is marked; note once again 

the reduced staining in the posterior margin of the tectum (pot). Reaction 

product(*) in the myotomes (myo) resembles nonspecific signal seen in negative 

controls (not shown). 

(F, G) Transverse sections of st. 44 brains. (F) Section through the hypothalamus 

and midbrain, showing strong staining in the ventricular zone (vz) of the 

midbrain (mb) and lighter staining in the ventricular zone of the hypothalamus 

(hyp). Note the relative lack of staining in the round floorplate (fp) of the 

midbrain. The lumen of the third ventricle (3v) is partially filled by clotted blood 

cells (bl). (G) Section through the hindbrain (hb) and ears, showing staining in 

the ventricular zone of the hindbrain and in the dorsal part of the macula (mac). 

EphB3: Discussion 

I. Expression in Xenopus 

At st. 30, EphB3 transcripts were observed in the CNS only in the ventral 

midbrain (Scales et al., 1995), a pattern quite different from the substantial 
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localized expression in many regions of the brain that we observed at st. 44. By 

st. 34, however, transcripts were apparent in both the midbrain and forebrain 

(Helbling et al., 2000). The other major sites of expression at st. 30 were the 

cement gland and specific, dynamic expression in the presomitic mesoderm and 

newly formed somites (Scales et al., 1995). At st. 34, expression was noted in the 

somites in general and was still present in the cement gland. Unfortunately we 

were not able to obtain good data in these tissues at later stages due to technical 

considerations. It was also seen in the otic v esicle, consistent with the later 

expression we observed in restricted regions of the ear, and in the eye, where we 

observed some faint staining. The pronephric region was positive at st. 34; in 

contrast, we did not observe any signal at st. 44. Finally, light, variable staining 

was noted at st. 30 in the branchial arches (Scales et al., 1995) and substantial 

staining was noted in the head mesenchyme at st. 34 (Helbling et al., 2000). At st. 

44 we observed light staining in certain derivatives of this region, including the 

heart and the gills. 

The expression pattern of EphB3 is in many respects similar to that of EphBl. In 

addition to the specific sites of expression listed mentioned, it also shares the 

diminished expression at the transverse boundaries between telencephalon and 

diencephalon and between midbrain and hindbrain. EphB3 shows increased 

expression at the midline in places, in sharp contrast to the decreased expression 

seen with EphBl. However, the sites of strong midline expression abut but do 

not include the roofplate and floorplate . 
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II. Comparison to EphB3 in other species 

In the forebrain both mouse (Orioli et al., 1996) and Xenopus show EphB3 

transcription in restricted regions. In the mouse it is found throughout the 

ventricular zone and intermediate zone at E13.5, and in the ventricular zone, 

subventricular zone, and cortex at E16.5. It is strongest in the hippocampus and 

in the ventral midline preoptic area of the diencephalon. The latter is 

reminiscent of the diencephalic ventral midline expression we observed at st. 46. 

The overall pattern of laminar restriction also seems similar, to the extent that the 

architectonics of the two species permit comparison, since the forebrain 

expression in frog is also concentrated in the ventricular zone. 

Like EphB1 and EphB4, EphB3 is expressed strongly in most of the Xenopus 

tectum, but not in the proliferative zone at the caudal margin. We noted above 

that the chick tectum, like the Xenopus tectum, shows strong EphB1 expression in 

recently postmitotic cells but not in proliferative ones, although in the case of 

chick the proliferative zone consists of a different lamina (the ventricular zone 

neurepithelium) rather than a different rostrocaudal level. This congruence, 

however, does not hold between chick and Xenopus EphB3. Chick EphB3 mRNA 

is expressed at moderate levels in the postmitotic cells of the tectal stratum 

griseum centrale, but at even higher levels in the proliferative ventricular zone 

(Connor et al., 1998), whereas Xenopus EphB3 shows reduced expression in the 

proliferative zone. Expression in the late mouse embryo is even more divergent. 

Transcripts in the midbrain were seen only in the proliferative zone, the 

innermost epithelial lining of the ventricles (Ciossek et al., 1995). 
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EphB3 expression in the Xenopus hindbrain and spinal cord also seems to differ 

from that in mouse. In the late embryonic mouse transcripts were seen in the 

mantle layer of the medulla and spinal cord (Ciossek et al., 1995). This hindbrain 

expression does not seem consistent with that which we observed in frog, which 

was found either at the dorsal surface or in transverse stripes in the 

rhombomeres, and we did not observe expression in the spinal cord at all. 

The mouse shows faint EphB3 transcription in the retinal ganglion cell layer of 

the eye (Becker et al., 1994), as does Xenopus. In mouse there was no dorsal­

ventral difference seen, however, whereas in Xenopus we found the ventral 

expression to be stronger. In this respect Xenopus appears to be more similar to 

the chick, which shows substantially higher mRNA levels ventrally than dorsally 

(Connor et al., 1998). The chick also shows expression throughout all layers of 

the retina, while we detected Xenopus expression in the retinal ganglion cell and 

photoreceptor layers. 

Transcription was seen in the outer part of the trigeminal ganglion in the mouse 

embryo (Adams et al., 2001), which is consistent with the expression in cranial 

ganglia that we observed. Expression has also been reported in migrating mouse 

cranial neural crest in branchial arches 1-3 (Adams et al., 2001) and chick truncal 

neural crest (Krull et al., 1997), as well as in non-crest tissues in these regions. 

Low-level branchial arch expression was also seen in the Xenopus embryo (Scales 

et al., 1995); beyond that observation, there is little basis for comparison. 
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A different receptor, EphA4, exhibits striking, dynamically regulated segmental 

expression in the condensing somites in mouse (Irving et al., 1996; Nieto et al., 

1992) and chick (Irving et al., 1996). EphA4 is also expressed similarly in 

zebrafish, along with two ligands, one A-class and one B-class. Furthermore, 

injections of mRNA' s encoding various forms of each of these three proteins into 

zebrafish blastomeres perturbed normal somitogenesis, establishing an 

important functional role for Eph-family signalling in this process (Durbin et al., 

1998). In contrast, such expression of Xenopus EphA4 has not been reported 

(Winning and Sargent, 1994). EphB3, however, does show similar dynamic 

somitic expression (Scales et al., 1995). It is tempting to speculate that EphB3 

plays a role in Xenopus somitogenesis similar to that of EphA4 in other species, 

with the caveat that there is only a partial overlap in binding specificities. EphA4 

binds both ephrin-A's and ephrin-B's with relatively high affinity, whereas 

EphB3 has not been found to bind appreciably to ephrin-A's, although it has only 

been tested against ephrin-A2 (Bergemann et al., 1995; Brambilla et al., 1996). 

Somitic expression of EphB3 itself in other species varies somewhat. In mouse it 

is transcribed in somites, at highest levels in those most recently formed (Becker 

et al., 1994). In chick, on the other hand, it is not expressed in the five most 

newly formed somites, but is found in the dermomyotome and rostral 

sclerotome of more mature ones, where it plays a role in the exclusion of 

migrating neural crest cells from these regions (Krull et al., 1997). The chick 

pattern is thus not consistent with a role in early somitogenesis, and this role 

might conceivably be played solely by EphA4. The mouse pattern, on the other 

hand, could be consistent with both the early and the late roles. Nevertheless, it 
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is clear from the chick example that EphB3 is not universally required in early 

somitogenesis, lending credence to the theory that EphA4 and EphB3 might have 

overlapping functions in this process. Thus EphB3, alone or in combination with 

other, as-yet-undetermined EphA or EphB receptors, could be important for this 

role in frog. 

EphB3 rnRNA expression in miscellaneous non-neural tissues shows significant 

similarities between the Xenopus tadpole and the late mouse embryo. In mouse, 

as in Xenopus, it was seen in the serosal layer of the gut and in the thymus 

(Ciossek et al., 1995). The mouse shows glomerular expression in the 

metanephric kidney (Ciossek et al., 1995), while Xenopus shows expression in the 

inner layer of the mesonephros. Finally, the mouse shows expression in the 

ventricle of the heart (Ciossek et al., 1995; Ruiz et al., 1994), as does Xenopus. 

EphB4: Results 

Brain 

EphB4 is expressed weakly in the telencephalon at the ventricular surface, 

especially in the olfactory bulb. It is expressed in the thalamus, still at low levels 

and starting at the ventricular surface but covering a broader region, strongest 

just ventral to the lumen (Fig. II.6A and data not shown). There are additional 

regions of moderate expression in the hypothalamus and the tectum (Fig. II.6C), 

and in the dorsolateral ventricular zone of the caudal tegmentum (data not 



90 

shown). Finally, there is tightly delimited expression in the floorplate of the 

midbrain (Fig. II.6D) 

The most striking aspect of EphB4 expression, however, is a set of three strong 

transverse stripes in the hindbrain (Fig. II.6B). These are found at the furrows of 

alternate rhombomeres, consistent with expression in even-numbered 

rhombomeres: the first is immediately adjacent to the cerebellum, the second two 

rhombomeres further caudal, and the third another two rhombomeres away. At 

the intervening furrows there are also stripes present, but they are far weaker. 

The cerebellum itself shows some staining as well, and the dorsal hindbrain is 

positive, particularly at the caudal end (Fig. II.6A, B). 

Other regions 

The cranial ganglia are positive for EphB4 (Fig. Il.6C, E). The ears exhibit strong 

staining in the dorsal part of the macula (Fig. II.6E); other ear regions are positive 

as well, including the anterior ventrolateral. The heart is weakly stained around 

the atrio-ventricular valve (data not shown). There is also some staining in 

cartilage, both in the gills and elsewhere (Fig. 11.6E). 
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Figure 11.6: EphB4 mRNA in situ hybridization. See Fig. Ill for key. 

(A) Wholemount brains, st. 48, lateral view; see Fig. 11.4A for anatomical 

landmarks. Negative control (ctl) is hybridized with a xenospecific mRNA 

probe. Widespread staining is seen throughout the brain. 

(B) Sagittal section near the midline of a st. 47 animal showing the hindbrain and 

posterior midbrain. Staining is seen at the ventricular surface in the furrows of 

rhombomeres 4, 6, and the cerebellum/ rhombomere 2 border. (C) Sagittal 

section through a st. 44 animal near the lateral edge of brain, showing most of the 

length of the brain (cut off are the rostral telencephalon and caudal tip of the 

hindbrain). The midbrain/ hindbrain (m/ h) and telencephalon/ diencephalon 

(t/ d) boundaries are indicated. Strong staining is seen in the hypothalamus 

(hyp) and the optic tectum (ot), except at its posterior margin (pot). Light 

staining is present in other regions of the brain and a cranial ganglion (erg) . 

(D, E) Transverse sections at st. 44. (D) Section through the midbrain, showing 

staining in the floorplate. (E) Transverse section through R4 of the hindbrain and 

through the ears, showing strong staining in the ventricular zone of the 

hindbrain and in the dorsal part of the maculae (mac). Some staining is also seen 

in the cranial ganglia and gills. 
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EphB4: Discussion 

I. Expression in Xenopus 

EphB4 expression has been described at early tailbud stages plus st. 30 (Scales et 

al., 1995) and at st. 23-39 (Helbling et al., 1999). At st. 26-30 EphB4 transcripts 

were seen throughout the head region, with increased local expression in the 

developing forebrain, in the midbrain (st. 26), at the midbrain-hindbrain 

boundary (st. 28-30), in the branchial arches, and in or near the otic vesicle. Faint 

expression was also seen in R4 and R6. By st. 34, however, the only signal that 

was still detected in the brain was faint staining in the midbrain, R4, and R6. 

Although we did observe specific staining in the forebrain and midbrain at st. 44-

47, it was fairly weak. The hindbrain staining, however, was quite strong, not 
I 

only in R4 and R6 but also in a new domain in R2 (Fig. 11.6B). The staining that 

we observed in the forebrain would appear to be different from that which did 

appear at st. 39, as the former was reported to be present preferentially in the 

olfactory bulb, whereas the latter avoided it. 

EphB4 expression was noted in or surrounding the otic vesicle at st. 28-30; we 

observed regions of strong expression in the ear at st. 44. However, expression 

was not detected in the heart at the earlier stages, whereas we did observe low-

level expression later. The early expression in the branchial arches, on the other 

hand, may be related to the later cardiac expression, as well as to the expression 

in branchial and other cartilages. 
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II. Comparison to EphB4 in other species 

In the late mouse embryo (E16.5), EphB4 mRNA was seen in the inner lining of 

the brain in the telencephalon, diencephalon, midbrain, and medulla. In the 

midbrain roof projections believed to be blood vessels also extended deeper into 

the brain (Ciossek et al., 1995). This pattern is reasonably consistent with the 

expression we observed in the ventricular zone of the frog forebrain and 

midbrain. However, the domains in the frog optic tectum and midbrain 

floorplate do not appear to have analogs in mouse (although a floorplate domain 

might have been difficult to see in the sagittal sections used in the mouse study). 

In the hindbrain Xenopus showed strong expression tightly restricted to 

rhombomeric furrows, whereas mouse showed uniform expression in the above 

study. Additional data for the mouse hindbrain earlier in development (E12.5) 

comes from (Cowan et al., 2000), which shows low-level protein expression at the 

level of r4 in scattered cells in the interior of the hindbrain and in the floorplate. 

However, it is unknown whether this expression is segmentally restricted. 

Outside of the brain the only common elements we note in the mouse and 

Xenopus EphB4 expression patterns are in the heart and in cartilage. There is 

strong cardiac expression in mouse, especially in the ventricle (Ciossek et al., 

1995), while there is light expression in frog around the atrioventricular valve. 

Various specific sites of expression were seen in cartilage in each species, such as 

joint tissue and outer ears in the mouse (Ciossek et al., 1995) and gills in frog. 

There are various other expression domains seen in mouse in the above study, 

such as gut epithelium, thymus, kidney, and nasal and oral epithelia, that do not 
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seem to be present in Xenopus, but we did not obtain a strong signal for this gene 

in our experiments, and it is not known whether the disparity reflects a true 

difference between the species or simply the greater sensitivity of the radioactive 

in situ method employed in the mouse study. 

In the zebrafish two possible EphB4 orthologs have been found, EphB4a/ rtkS 

and EphB4b/rtk8. Both of these are dynamically regulated in the early 

embryonic central nervous system. At 24-48 hr, EphB4a is expressed in parts of 

the telencephalon, the dorsal diencephalon, the caudal midbrain, the hindbrain 

(at low levels), cranial neural crest, branchial arches, the lateral line, and the 

pectoral fin buds. EphB4b, meanwhile, is expressed in the rostral and ventral 

telencephalon, diencephalon, ventral midbrain, hindbrain (including transverse 

stripes corresponding to rhombomeres), branchial arches, anteromedial and 

ventral otic vesicle, posterior-most somites, and pectoral fin buds (Cooke et al., 

1997). Neither of these patterns appears to be particularly similar to Xenopus 

EphB4, with the possible exception of the domains in the diencephalon, 

midbrain, otic vesicle, and branchial arches. It is interesting that fish EphB4b 

undergoes a shift from early expression in specific rhombomeres consistent with 

a role in hindbrain regionalization to later expression within several 

rhombomeres consistent with a role in cell type specialization, as do some of the 

Xenopus genes studied here (e.g., EphA2). Xenopus EphB4, however, retains its 

embryonic expression in alternate rhombomeres into larval life. 
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Ephrin-Al: Results 

Brain 

Ephrin-Al is expressed at moderate levels in the telencephalic ventricular zone. 

At st. 47 this expression is strongest in the dorsocaudal telencephalon (Fig. II.7 A), 

whereas at st. 44 it is more uniform. In the thalamus expression is seen in a 

broad region extending laterally from the ventricular surface (data not shown), 

especially at the rostral margin (Fig. II.7 A). The pial surface of the ventral 

thalamus, including the vicinity of the optic chiasm, is positive (Fig. II.7B). The 

medial hypothalamus shows relatively strong expression (data not shown), while 

the lateral expresses at more modest levels (Fig. II.7B). The entire dorsal 

midbrain is positive, starting from its rostral limit (Fig. II.7 A). The tectum is a 

site of comparatively strong expression at st. 44 (data not shown), but at st. 46 

staining this domain is weaker and does not extend as far laterally (Fig. II.7 A). 

At st. 46 the tegmentum also is positive (Fig. II.7B, C), and highest levels in the 

midbrain are seen ventrally and along the full extent of the caudal margin (Fig. 

II.7C). The dorsal (Fig. II.7 A) and periventricular (data not shown) hindbrain, 

including the cerebellum, are positive at both stages, and transverse stripes of 

stronger expression are noted (data not shown). The hindbrain floorplate is also 

positive, especially in the pons (Fig. II.7B, C). There is additional staining in the 

pons (Fig. II.7B, C). Light staining is noted in the choroid plexus (Fig. II.7 A). 
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Other regions 

Some strong ephrin-Al staining is seen in the spinal cord, particularly dorsally 

(Fig. II.7 A-C). Light expression is noted in the ciliary margin of the eye, the 

medial ear, and the cranial ganglia. Staining greater than control levels is also 

seen in the pineal and the olfactory pits (data not shown) . 
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Figure 11.7. ephrin-Al mRNA in situ hybridization. See Fig. II.l for key. 

(A-C) Wholemount brains, st. 47. Negative control (ctl) was hybridized with a 

xenospecific mRNA probe. (A) Dorsal, (B) ventral, and (C) lateral views. Light 

staining is present in the telencephalon (strongest caudally) and hindbrain. 

Staining occurs in the diencephalon in the hypothalamus and in the dorsal and 

ventral anterior thalamus (th), including strong staining in the vicinity of the 

optic chiasm (oc). The telencephalon/ diencephalon (t/ d) and 

forebrain/ midbrain (f/ m) boundaries are indicated. Strong staining is seen 

throughout the dorsal midbrain. The optic tectum (ot) is positive mainly at its 

posterior margin (pot) and medially. The ventral tegmentum (tg) and pons (p) 

are strongly labeled. A strong stripe of expression also extends along the 

midbrain/hindbrain boundary (m/h). The choroid plexus (cp) is positive, as is 
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the hindbrain floorplate (hfp), particularly the pontine portion (pfp). Strong 

staining is also seen in the dorsal spinal cord. Brown spots are melanocytes (mel) 

in fragments of leptomeninges remaining attached to the brain. 

Ephrin-Al: Discussion 

I. Expression in Xenopus 

At the neural plate stage ephrin-A1 is expressed in the notochord and in two 

transverse stripes in the presumptive brain, one at the level of the midbrain­

hindbrain boundary and the other at the level of the forebrain (Weinstein et al., 

1996). At st. 47, expression at the midbrain-hindbrain boundary is still a 

prominent feature (Fig. II.7C); expression has also appeared or evolved in 

various other regions of the brain, particularly the dorsal midbrain (Fig. 11.7 A). 

Strong staining the anterior spinal cord and the eye has appeared by the late 

neurula; the staining in the eye remains strong at least through tailbud stage (-st. 

28) (Weinstein et al., 1996). We observed staining in the eye at st. 44-47, but it 

was relatively weak (data not shown). The anterior spinal cord, on the other 

hand, was robustly stained at st. 47 (Fig. II.7 A-C). 

II. Comparison to ephrin-Al in other species 

Conflicting data exist on ephrin-A1 expression in the rodent CNS. (Carpenter et 

al., 1995) performed Northern blots on various regions of the rat brain and found 

ephrin-A1 mRNA in all of them at E18 and P1, most abundantly in the olfactory 
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bulb. And scattered expression in the CNS was noted by (Shao et al., 1995) using 

in situ hybridization to E19 mouse brain sections, but not described in further 

detail. However, CNS expression was not noted by (Takahashi and Ikeda, 1995) 

using in situ hybridization to sections from the embryonic and postnatal rat, nor 

by (Flenniken et al., 1996) using wholemount in situ hybridization to the 

embryonic mouse. The rodent spinal cord (Yue et al., 1999a) and inner ear 

(Bianchi and Gale, 1998), both sites of expression in Xenopus, were each found to 

be negative. 

Rat and mouse instead exhibit prominent ephrin-A1 expression in a wide variety 

of non-neural tissues, chiefly epithelial or endothelial in nature or involving 

cartilage, bone, or muscle formation (references above; (Feng et al., 2000; 

McBride and Ruiz, 1998). In contrast, we did not observe any non-neural 

expression of this gene. This of course does not exclude the possibility of such 

expression involving levels, tissues, or developmental stages that were not 

addressed in the present study. However, we can certainly say that non-neural 

expression was much more prominent than neural in rodent, and vice versa in 

Xenopus. This suggests that ephrin-A1 is playing very different developmental 

roles in these species. 
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Ephrin-A3: Results 

Embryo 

Ephrin-A3 exhibits widespread diffuse, low-level expression at all stages studied. 

At tailbud and early tadpole stages the only localized expression seen in 

wholemount was at the blastopore. This staining was strong at st. 23, light at st. 

28, and gone by st. 33 (data not shown). 

Brain 

At st. 44-51, much of the ephrin-A3 expression in the brain occurs in the 

ventricular zone and surroundings. This includes moderate expression in the 

olfactory bulb (Fig. II.8A-C) and somewhat lighter expression in the ventral 

posterior telencephalon (Fig. II. SA, C) and the lateral thalamus (Fig. II.8B-D). 

Some staining is present in the pineal (Fig. II.8D). 

At st. 44-51 there is a gradient of expression in the tectum, with strong caudal 

expression tapering off to a lower rostral level. Expression is also stronger 

medially and tapers off laterally (Fig. II.8E). Relatively strong staining extends 

rostrally in the medial tectum, moreso at earlier stages (st. 47; data not shown), 

and includes the anterior margin of the dorsal midbrain (Fig. ll.8A). The cell 

bodies of cells showing expression in the tectum, expression, like those in the 

forebrain, are confined chiefly to the ventricular zone rather than the superficial 

layer. The positive zone excludes the midline roofplate, except for light 

expression at the rostral extreme of the domain. The posterior margin of the 
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tectum sometimes shows reduced staining compared to rostrally adjacent 

regions, especially at earlier stages (st. 44-47; Fig. II.8B). The ventral tectum and 

tegmentum are also positive, although at lower levels than the main portion of 

the tectum. In the ventral midbrain the floorplate shows marked expression at st. 

44 (Fig. II.8E). At st. 46 it is weaker rostrally and dies out completely in the 

central midbrain, but as it does so it is replaced for a short distance by light 

staining around the ventrolateral ventricular zone (data not shown). 

There is moderate, uniform ephrin-A3 expression throughout the dorsolateral 

hindbrain and ventricular zone (Fig. 11.8A). In addition, there is sharp 

ventricular zone expression in the medial posterior cerebellum and at the 

rhombomeric furrows, especially around the midline. The stripes at the furrows 

are generally quite narrow (-10 pm). The lateral choroid plexus shows some 

light staining (Fig. II.8B, F, G). 

Ephrin-A3 exhibits decreased expression surrounding the midline in the dorsal 

forebrain (Fig. II.8D) and midbrain (Fig. 11.8E), as well as around the 

telencephalon-diencephalon and midbrain-hindbrain boundaries (Fig. II.8C), and 

in the hindbrain floorplate (Fig. II.8G). 

Other regions 

Uniform, light expression of ephrin-A3 is seen at the ciliary margin of the retina, 

with no detectable nasal-temporal or dorsal-ventral gradient (data not shown). 

The developing ear exhibits zones of strong, sharply localized expression, 
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including the dorsal flank of the macula, part of the dorsolateral wall, the 

ventroposterior, and the invaginating tissue forming the septal ridge of the 

horizontal semicircular canal. Light staining is present in the cranial ganglia 

(Fig. ll.8F). 

dorsal - brain, st 50 

tg 

~------ 0 . ·-
transverse - a nterior tectum, st 44 

... l. 
sagittal- fore/midbrain, st 47 

t ransverse -ear, hindbrain, st 44 

tra nsverse - t ha lamus , st 44 

transverse - hindbrain, s t 46 

Figure 11.8. ephrin-A3 mRNA in situ hybridization. See Fig. ll.1 for key. 

(A) St. 50 wholemount brain, dorsal view. Staining can be seen in the optic 

tectum (ot), strongest caudally and medially . The anterior midbrain (amb), 

anterior olfactory bulb (ob), dorsocaudal hindbrain (hb), and spinal cord are also 

strongly stained. Lighter staining is seen in the caudal telencephalon (tel) and 

the more rostral hindbrain. Negative control (ctl) was hybridized with an 

ephrin-A3 sense strand probe. 
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(B, C) Sagittal sections through the lateral brain. (B) St. 44. Signal in the forebrain 

is seen in the olfactory bulb (ob) and the thalamic ventricular zone (th vz). In the 

optic tectum, strong staining is seen near but not at the midbrain/ hindbrain 

boundary (m/ h). Staining in the posterior margin of the tectum (pot) is lighter. 

Periodic staining can be seen in the hindbrain at each of the rhombomeres (r's). 

(C) St. 47. Strong staining is seen in the olfactory bulb (ob), thalamus (th), and 

tectum (ot), particularly in the ventricular zone. The lumina of the lateral (lv) 

and tectal (tv) ventricles are identified; the thalamic ventricle does not present an 

open lumen in this plane of section, but the ventricular zone at its sulcus is 

indicated (vz). Decreased staining is seen surrounding the telencephalon/ 

diencephalon (t/ d) and midbrain/ hindbrain (m/ h) boundaries. 

(D-G) Transverse sections. (D) Section through the anterior thalamus (th) at st. 

44. Staining is seen laterally, and is strongest at the sulci. The pineal (pin) shows 

light staining. (E) Section through the anterior tectum (ot) at st. 44. Staining here 

is not as strong as it is further caudal (not shown). The plane of section is slightly 

oblique, with the left side being more rostral than the right. Note that the left 

side shows lighter staining, demonstrating the caudal to rostral gradient. Note 

also that there is a medial to lateral gradient as well. Strong staining is also seen 

in the midbrain floorplate (mfp ), with light staining in the surrounding 

tegmentum (tg). (F) Section through the hindbrain and ear at st. 44. Staining is 

seen throughout much of the interior of the hindbrain, strongest at the midline. 

The plane of section is once again slightly oblique; the right side is closer to the 

center of a rhombomeric stripe and is thus more darkly stained than the left. The 

ear shows staining in the dorsal flank of the macula (mac) and the beginning of 
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the upper septal ridge of the horizontal semicircular canal (sep). Less staining is 

present in the endolymphatic duct (eld) anlage. Light staining is seen in the 

adjacent cranial ganglia (erg). (G) Hindbrain (hb), st. 46. Strong staining is seen 

at the midline; based on staining in adjacent sections (not shown) the positive 

region is only -10p.m thick. The lumen of the fourth ventricle (4v) is indicated. 

Ephrin-A3: Discussion 

Comparison to ephrin-A3 in other species 

Human ephrin-A3 is transcribed in a wide variety of both adult and fetal tissues, 

with the strongest expression being in the brain (Kozlosky et al., 1995). Most 

attention has been focused on the mammalian forebrain, where ephrin-A3 may 

play roles in the primary olfactory (Zhang et al., 1996) and hippocamposeptal 

(Stein et al., 1999) projections and the development of the neocortex (Donoghue 

and Rakic, 1999; Mackarehtschian et al., 1999). Of these the primary olfactory 

projection is the only one with an obvious homolog in the tadpole. In the mouse, 

ephrin-A3 is expressed on a large subset of sensory neurons in the nasal olfactory 

epithelium, and EphAS is expressed in the olfactory bulb in a subset of their 

mitral cell targets. This could be consistent with either a role in targeting of the 

mitral cell dendrites to particular glomeruli or a role in targeting the nasal axons 

to glomeruli via "reverse" signalling. Ephrin-A3 does not appear to be expressed 

at substantial levels in the Xenopus olfactory pit, however, so regardless of what 
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precise role(s) it plays in the mouse olfactory system, it would seem not to play 

similar roles in frog. 

Ephrin-Bl: Results 

The most prominent sites of ephrin-Bl expression are the olfactory bulb, 

periventricular telencephalon, lateral hypothalamus, midbrain roofplate, 

hindbrain floorplate, rhombomeric furrows, and serosal surface of the viscera. 

There is a high-dorsal to low-ventral gradient in the eye, with the strongest 

expression being at the ciliary margin and in the horizontal/bipolar cells. 

Forebrain 

Ephrin-Bl is expressed strongly throughout the periventricular telencephalon, 

with higher levels dorsally than ventrally (Fig. II.9A-C, E, F, J). In the olfactory 

bulb there are two regions of very strong expression: one at the rostral tip, 

including cells whose location at and medial to the ventricular surface is 

consistent with granule cells (Fig. II.9F); and the other at the caudolateral edge 

surrounding the neuropil of the accessory olfactory bulb (Fig. II.9A, B). 

Expression is also noted at the ventromedial telencephalon/ diencephalon 

boundary (Fig. ll.9B, E). 

The pineal exhibits strong ephrin-Bl staining, and there is light, diffuse 

expression in the lateral thalamus at st. 44 (data not shown). At later stages this 

expression expands laterally, and by st. 47 there is marked staining in the 
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dorsolateral shoulder of the diencephalon (Fig. II.9A, st. 51). There is also 

expression surrounding the ventral diencephalic sulcus (Fig. II.9F). At st. 44 it 

begins towards the posterior ventral thalamus and is relatively diffuse, whereas 

at st. 46 it begins at the anterior end of the thalamus and is well localized to the 

ventricular surface. As the ventral lumen of the third ventricle opens up, this 

domain continues in the dorsal and lateral ventricular zone of the hypothalamus. 

The lateral hypothalamus is prominently stained (Fig. II.9B). 

Midbrain 

The roofplate of the rostral midbrain is positive for ephrin-B1 at st. 44-46 from 

the caudal portion of the third ventricle until the start of the tectal lobes (Fig. 

II.9F and data not shown). This pattern is also seen at st. 51, with high-level 

expression in the rostral midbrain roofplate, strongest at the forebrain/ midbrain 

boundary and tapering off caudally (Fig. II.9A). The floorplate of the midbrain, 

like the roofplate, exhibits strong, sharply delimited expression (Fig. II.9F and 

data not shown). 

Hindbrain and spinal cord 

Ephrin-B1 is expressed at low to moderate levels in the cerebellum (Fig. II.9A, F­

H). In the dorsolateral lip of the medulla it exhibits fairly uniform expression 

(Fig. II.9A). More medially there is expression at the luminal surface in six 

transverse stripes, one at each rhombomeric furrow. The first five are quite 

strong; the caudalmost is lighter and more elongated (Fig. II.9G). Those at R3 and 

R5 extend further laterally than the neighboring ones (Fig. II.9E). Floorplate 
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expression extends along the entire length of the hindbrain, but is strongest in 

the pons, where the surrounding medial tissue also shows some staining (Fig. 

11.9B, F). It extends into the spinal cord as well, although at lower levels. The 

spinal cord also shows expression dorsal to the floorplate in the ventricular zone 

of the central canal (Fig. II.9D). 

At st. 44, ephrin-Bl is expressed in the retina in a high-dorsal to low-ventral 

gradient (Fig. 11.9K). This expression is at relatively low levels, but unmistakable. 

It is mainly confined to the ciliary margin, but extends partway into the inner 

nuclear layer and to a lesser extent into the retinal ganglion cell layer. Within the 

inner nuclear layer the outer portion (bipolar and horizontal cells) exhibits 

stronger expression than the inner (amacrine cells; Fig. 11.9K). Transcription in 

the eye is still seen at st. 46-47, but at significantly lower levels (data not shown). 

There is expression in parts of the ear, including by st. 46 the anterolateral 

sensory anlage and dorsal and caudal regions of the macula (Fig. 11.9L and data 

not shown). The nearby cranial ganglia show strikingly differential expression, 

with moderate- to high-level expression in some parts and little or none in others 

(Fig. 11.9H). The olfactory pits are positive, with the main olfactory pit showing 

stronger staining than the vomeronasal organ at st. 44 (Fig. 11.9C and data not 

shown). The leptomeninges are positive; this is most easily seen in wholemount 

(data not shown). 
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Non-neural tissues 

The thymus is positive for ephrin-Bl (data not shown). Light, variable staining 

was seen in the heart and its outflow tracts (Fig. II.9E), including the ventral 

walls of the atrium surrounding the atrioventricular valve (Fig. 11.9M). 

Expression was not detected in the limb buds at st. 50, but at st. 51 light staining 

was observed in the hindlimbs in two diffuse transverse bands, one at about one 

quarter of the way along the proximodistal axis and the other at about two 

thirds. Analogous staining may also be present in the forelimb buds (data not 

shown). There is light staining in the gall bladder (data not shown) and the 

serosal surface of the esophagus, gut, mesentery, and posterior mesonephros 

(Fig. 11.9£). Finally, at st. 44 there is expression in the anterior of the palate­

rostral bar cartilage and Meckel's cartilage (the anterior skeletal elements of the 

upper and lower jaws, respectively) and in the basihyal-basibranchial cartilage 

(the longitudinal midline cartilage of the lower jaw) (Fig. 11.9J). This last is 

interesting in that it is tightly confined to the midline condensation but not the 

flanking hyomandibular plate, and also tightly confined to the anterior but not 

posterior portion. 
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Figure 11.9. ephrin-Bl mRNA in situ hybridization. See Fig. ll.l for key. 

(A, B) Wholemount brains, st. 51 (exp) and 50 (ctl). Negative control (ctl) was 

hybridized with an ephrin-Bl sense strand probe. (A) Dorsal and (B) ventral 
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views. Strong staining is seen in the midbrain roofplate (mrp) and restricted 

regions of the telencephalon (tel). These include the medial olfactory bulb ( ob ), 

the caudal ventrolateral olfactory bulb surrounding the lateral neuropil of the 

accessory olfactory bulb, and the ventricular (vz) zone of the entire 

telencephalon. The caudal boundary of the olfactory bulb (o/ t) is indicated. 

Staining is also seen in the lateral thalamus (th), cerebellum (cer}, dorsal 

hindbrain (hb ), lateral hypothalamus (hyp ), and hindbrain floorplate (hfp ). 

Staining is present at the ventromedial telencephalon/ diencephalon boundary 

(t/ d), but not just caudal to it at the optic chiasm (oc). 

(C) Transverse section through the olfactory pits and telencephalon just caudal to 

the olfactory bulb at st. 44. Strong staining is present in the telencephalic 

ventricular zone. Moderate staining is present in the olfactory pits. 

(D-G) Sagittal sections through the brain at st. 44. (D) Midsagittal section 

through the caudal brain and spinal cord, showing staining in the spinal cord 

floorplate (fp) and the ventricular zone of the central canal (vz). Reaction 

product(*) in the myotomes (myo) resembles nonspecific signal seen in negative 

controls (not shown). (E) Plane of section through the lateral brain, showing 

staining in the dorsal telencephalon (tel), at the telencephalon/ diencephalon 

boundary (t/ d), in the outer layer of the esophagus (es) and intestine (int), and in 

aortic arches (aa) leaving the heart. In the hindbrain stripes are present in the 

rhombomeres; those at r3 and rS, whose expression domains extend further 

laterally, are stronger in this section. (*) indicates a staining artifact. (F) 

Midsagittal section through the brain. Strong staining is seen in the olfactory 
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bulb, and lighter staining in the adjacent dorsal telencephalon. Light staining is 

also present in the thalamus (th) and cerebellum (cer), and strong staining in the 

hindbrain floorplate (hfp). The plane of section passes glancingly through the 

midline expression domains in the midbrain roofplate (mrp ), midbrain floorplate 

(mfp), and ventral thalamus (th). (G) Section through the medial brain. Staining 

can be seen in stripes in the cerebellum and at each of the furrows corresponding 

to rhombomeres 2-6 (r2 etc), with the exception of r4, which is not well labeled in 

this section. Slightly more diffuse staining is also seen in the dorsal caudal 

hindbrain in a position consistent with r7. 

(H, I) Oblique transverse sections through the brain at st. 46. (H) The medial ear 

and cerebellum are seen on the left, the tectum and a tangential slice through the 

anterior end of the ear on the right. Light, diffuse staining is present in the 

cerebellum, with stronger staining at the adjacent sulci. Staining is also seen in 

the hindbrain floorplate (hfp) and the macula of the ear (mac). Note the 

differential staining in the cranial ganglia: little or none on the left, moderate in 

the central portion on the right, and strong in the dorsal and ventral portions. (I) 

Section through the medial ear (left) and hindbrain. Staining in the ear is seen in 

the endolymphatic duct (eld). The plane of section is oblique, showing the 

contrast between the staining in the dorsal ventricular zone (vz) of one of the 

rhombomeric stripes on the left side and the lack of staining in the nearby 

inters tripe on the right. The floorplate (hfp) is also positive, and moderate 

staining is seen in the cranial ganglia (erg). 
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(J) Midsagittal section through the head at st. 44. Signal is seen in Meckel's 

cartilage (Me) and the palato-rostral bar, the transverse cartilages of the lower 

and upper jaw respectively. Signal is also seen in the rostral part of the 

longitudinal basihyal-basibranchial cartilage (bbc) in the lower jaw. Note the 

sharp cutoff in expression between rostral and caudal regions. Neighboring 

sections confirm that this cutoff is seen at all levels in the mediolateral axis, and 

is not simply due to tilting of the plane of section (data not shown). Finally, 

staining is present in the ventricular zone (vz) of the lateral olfactory bulb (ob). 

Reaction product (*) in the cement gland (cg) resembles strong nonspecific 

staining seen in this tissue in negative controls (not shown). 

(K-M) Transverse sections. (K) Near the ciliary margin at the anterior of a st. 44 

eye. A pronounced dorsal to ventral gradient is present. Expression is strongest 

in the inner nuclear layer (inl), and is confined mainly to the outer portion of that 

layer, which is the bipolar / horizontal cell layer (bel). Color in the rod outer 

segments (ros) is due to their iridescence under Nomarski optics. (L) The ear at 

st. 46. Strong staining is seen in the macula (mac). (M) The heart at st. 46. 

Substantial staining is seen in the ventral atrium surrounding the atrioventricular 

valve (avv), but not in the valve itself or in the ventricle (v). 

Ephrin-Bl: Discussion 

I. Expression in Xenopus 
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At and prior to st. 41, prominent expression of ephrin-B1 in the olfactory 

epithelium-like that which we observed at st. 44-47-was seen (Jones et al., 

1997; Helbling, 1999 #958). High-level expression was also seen in the forebrain 

and hindbrain up - to st. 41, again similar to that which we observed. 

Segmental expression in the hindbrain was not noted, however. At st. 41, 

expression at the midbrain-hindbrain border was noted. The caudal portion of 

this domain appears to be in the cerebellum, where we continued to see 

expression at st. 44. The rostral portion, however, appears to be in the posterior 

tectum, a site where we did not detect expression. This tectal expression, then, 

either was downregulated between st. 41 and 44 or was at lower levels than we 

were able to detect. 

Ephrin-B1 expression in the eyes at st. 41 was strong, whereas at st. 44 we 

deemed it relatively weak. Although the data are not directly comparable, this 

suggests that expression levels in the eyes may also have diminished in the 

interval. Consistent with this possibility, the retinal expression we observed at 

st. 46 was even weaker than that at st. 44. The geniculate ganglion was positive 

at st. 41, and was one of the sites where we saw strong ganglionar expression at 

st. 46; additional expression surrounding the otic vesicle and in the vesicle itself 

was also common to both st. 41 and the later stages. Expression was noted in the 

branchial arches at st. 41, which may be correlated with the expression we 

observed in various cartilaginous structures. Expression was also noted in the 

heart anlage at st. 24, and light expression in the heart and outflow tracts at st. 44. 

One significant difference between the data sets is that punctate staining 
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consistent with myenteric plexus was seen in the gut and pronephros at st. 41, 

whereas we did not detect such expression at later stages. 

II. Comparison to ephrin-Bl in other species 

Expression of ephrin-B1 mRNA in the CNS is fairly similar between the mid­

gestation mouse embryo (Bouillet et al., 1995) and the Xenopus tadpole. In both 

cases expression is widespread throughout the neuraxis, is strongest at the 

ventricular surface, and is strongest in the telencephalon. Differences arise in the 

midbrain and hindbrain, wherein the mouse shows continuous expression as 

described above, while Xenopus departs from this pattern. The Xenopus tadpole 

midbrain instead shows high-level expression only in the roofplate and 

floorplate, and the hindbrain shows transverse segmental stripes. As concerns 

the hindbrain, the tailbud and early tadpole stages in Xenopus Gones et al., 1997, 

Helbling, 1999 #958) may be more similar to the mouse embryo. The mouse 

spinal cord at E13.5 expresses ephrin-B1 in both the floorplate and the dorsal half 

of the ependymal layer (Bouillet et al., 1995); dorsal expression is also seen at 

E9.5 (Flenniken et al., 1996). The floorplate expression is clearly conserved 

between mouse and frog; the divergence in the dorsal domain may be due either 

to interspecies or developmental stage differences. 

Chick embryos, like mouse but unlike the Xenopus stages studied here (Fig. 

II.9A), do express ephrin-B1 in the optic tectum. The chick tectal expression is at 

lower levels than that in the retina (see below), and conflicting data exist on 

whether it is distributed in a gradient; neither (Holash et al., 1997) nor (Sefton 
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and Nieto, 1997) observed one, but (Braisted et al., 1997) found it to be stronger 

dorsally and caudally, consistent with a potential role in retinotectal topographic 

mapping in either or both axes. 

In the EB-14 embryonic chick retina, ephrin-B1 mRNA is expressed in a high­

dorsal to low-ventral gradient in the retinal ganglion cell and inner nuclear 

layers. In the latter it is stronger in the inner (amacrine cell) portion (Braisted et 

al., 1997). In the mouse, on the other hand, it is expressed prominently at E16 in 

the retinal ganglion cell layer, but is uniform in the dorsoventral axis and is not 

seen in the outer retina (Birgbauer et al., 2000). Xenopus expression is similar to 

that in chick in that it is present in a high-dorsal to low-ventral gradient and is 

found in both the retinal ganglion cell and inner nuclear layers. However, it is 

opposite in one respect: in Xenopus the outer portion of the inner nuclear layer 

(bipolar / horizontal cells) expresses much more strongly than the inner (Fig. 

II.9K). 

Ephrin-B1 is expressed in parts of the developing ear, including sensory 

structure primordia, in both gerbil (Bianchi and Gale, 1998) and Xenopus. It is 

also present in adjacent cranial ganglia in both species, although in the gerbil 

statoacoustic ganglion does not appear to display the variable expression seen in 

Xenopus. 

In the olfactory system too, expression patterns have intriguing parallels between 

developing rat (St. John and Key, 2001) and tadpole. Expression is seen in 

primary olfactory neurons of rat (both main and vomeronasal) and the olfactory 
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pits of Xenopus (both main and vomeronasal). It is also seen in granule cells in 

rat, and in periventricular cells in Xenopus whose location is highly consistent 

with granule cells (Nezlin, 2000). Finally, it is seen a subset of mitral cells in the 

rat main olfactory bulb and of projection neurons in the accessory olfactory bulb. 

The correspondence here is less clear, although there are positive cells in Xenopus 

whose location adjacent to the accessory olfactory bulb neuropil could be 

consistent with mitral cells of the accessory olfactory bulb (see discussion under 

Olfactory System below). 

In the avian embryo, ephrin-B1 is expressed in the dermomyotome and the 

caudal half of the sclerotome in each somite, and plays a role in segmental 

restriction of migrating trunk neural crest cells (Krull et al., 1997). In the rat, by 

contrast, ephrin-B1 is expressed in the dermomyotome but not in the sclerotome, 

and it is ephrin-B2 that is expressed in the caudal half-sclerotome (Wang and 

Anderson, 1997). It thus appears that ephrin-B1 is responsible for neural crest 

guidance in the avian sclerotome, whereas ephrin-B2 is responsible in mouse. In 

Xenopus both ephrin-B1 and -B2 are expressed in the somites (Helbling et al., 

1999; Jones et al., 1997), and is thus potentially in a position to play roles in the 

frog in somitogenesis and/ or metameric patteming of migrating neural crest. 

This is discussed further under ephrin-B2 below. 

Specific serosal expression of ephrin-B2 has not to the best of our knowledge 

been reported in other species, although expression is seen in the early gut 

mesenchyme in mouse (Bouillet et al., 1995) and via Northern blot in the 

embryonic and adult rat gut (Fletcher et al., 1994). Expression is also present in 
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other rat tissues, with a profile consistent with that in frog (in those organs for 

which we have relevant data): the heart and thymus were both positive. The one 

exception is the liver, which is positive in the rat blots but not in frog in situ 

hybridization. However, it was present at levels in rat far lower than those in 

any other tissue; if it were present at proportional levels in frog liver we would 

certainly not have detected it. Expression has also been seen in mouse 

endothelial cells, both arterial and venous, including the primordia of all major 

blood vessels (Adams et al., 1999), although a similar study reported it to be 

negative (Wang et al., 1998). We observed light staining in the aortic arches at 

these stages in tadpole, which is in accord with the former. 

Ephrin-B1 is expressed prominently in the mouse limb bud (Flenniken et al., 

1996). While we did not obtain strong staining in the limb buds, at least some 

was present. Furthermore, its location- two domains, one distal but short of the 

tip, the other proximal-is consistent with that seen in mouse. Expression is seen 

in the mesonephros in mouse (Bouillet et al., 1995), as in frog, and in the 

metanephric kidney as well (Abrahamson et al., 1998). The mouse embryo also 

displays expression in a variety of mesenchymal tissues. Interestingly, restricted 

expression is seen in certain cartilages, possibly limited to a particular stage of 

chondrogenesis (Bouillet et al., 1995). This might be analogous to the restricted 

expression we saw in Xenopus cartilage, and it is possible that the positive 

regions in frog were at a particular stage of chon~rogenesis. Furthermore, 

among the sites in mouse displaying mesenchymal expression is the mandible, 

which is where we observed the most notable staining in cartilage. 
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Ephrin-B2: Results 

Forebrain 

At st. 46-47, ephrin-B2 is expressed very strongly in the dorsomedial olfactory 

bulb, the caudolateral olfactory bulb, and a separate domain at the posterior end 

of the dorsal telencephalon. There is low-level expression in the remainder of the 

telencephalon, predominantly found dorsally (Fig. II. lOA, B, E, F). The pineal is 

positive (data not shown). At st. 50 telencephalic expression remains similar, 

except that the staining at the dorsal posterior is now more dorsolaterally 

situated, and the remainder of the telencephalon expresses at slightly higher 

levels (Fig. II.lOA, B). At the telencephalon-diencephalon border there is also 

strong, highly localized expression on either side of the ventral midline (Fig. 

II. lOB). 

At st. 44-47 there is moderate ephrin-B2 expression at the rostral end of the 

diencephalon, strongest at the surface of the dorsolateral shoulder. There is also 

staining extending along the ventral ventricular zone into the hypothalamus, 

with that in the lateral hypothalamus stronger than the medial. There is light 

staining in the pituitary (data not shown). At st. 50 thalamic expression is seen 

entirely surrounding the dorsal third ventricle, strongest caudomedially (Fig. 

II.lOB). The lateral hypothalamic staining remains strong; the pituitary staining 

is now concentrated towards the anterior (II. lOA, B). 
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Midbrain 

Caudal to the third ventricle light ephrin-B2 staining continues in the floorplate 

of the rostral midbrain, which becomes much stronger more caudally where the 

lumen of the tectal ventricle opens out (data not shown). Staining is also seen in 

the tegmentum (Fig. ll.lOC). The roofplate of the midbrain is positive beginning 

at the rostral end and tapering off as it extends posteriorly (Fig. Il.lOA). The 

caudal tectum shows a complete lack of signal, in contrast to the light, diffuse 

staining seen throughout most of the brain (Fig. ll.lOC). 

Hindbrain 

In the hindbrain there is ephrin-B2 expression in the pons, mainly in and 

surrounding the floorplate (Fig. Il.lOB, C). The cerebellum and the dorsolateral 

surface of the rest of the hindbrain express at moderate levels at st. 44-46. 

Increased staining is seen on both sides of the border of the cerebellum with R2 

and with the pons. Further caudal there are two strong transverse stripes found 

in the medial ventricular zones of alternate rhombomeric furrows corresponding 

to R4 and R6. There is also faint expression elsewhere in the ventricular zone. 

The strongest staining is concentrated not precisely at the furrow but 

immediately rostral and caudal to it (Fig. ll.lOC). It occurs mainly in the dorsal 

region of the ventricular zone (Fig. Il.lOD). At st. 50 the continuous dorsolateral 

expression has been downregulated, leaving strong superficial staining only in 

the cerebellum and caudal to the choroid plexus. Expression continues into the 

spinal cord (Fig. IT. lOA). 



119 

Other regions 

Like ephrin-Bl, ephrin-B2 in the retina exhibits low-level but distinct expression 

in a dorsal high- ventral low gradient (Fig. Il.lOG). Expression is stronger at the 

ciliary margin, particularly at later stages, but at st. 44 is present and distributed 

in a graded fashion in all layers throughout the neural retina. Among the layers 

the inner nuclear layer is the strongest, the photoreceptor layer next, and the 

retinal ganglion cell layer quite faint. Parts of the ear are positive (Fig. Il.lOD). 

The heart and outflow tracts also seem to express ephrin-B2 differentially, albeit 

at low levels (Fig. Il.lOH). Faint staining is seen at the posterior end of the 

mesonephros in the inner layer (data not shown). 
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Figure 11.10. ephrin-B2 mRNA in situ hybridization. See Fig. Il.l for key. 
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(A, B) Wholemount brains, st. 50. Negative control (ctl) was hybridized with an 

ephrin-Bl sense strand probe. (A) Dorsal view. Intense staining is seen in the 

olfactory bulb (ob), particularly in the rostral and caudolateral regions. Strong 

staining is also seen in the caudolateral telencephalon (tel), the dorsal thalamus 

(th), the midbrain roofplate (mrp), and the dorsal caudal hindbrain (hb). 

Moderate staining can be seen in the remainder of the telencephalon, the lateral 

thalamus, and the cerebellum (cer). (B) Ventral view. The strongest staining is in 

the olfactory bulb (ob), particularly surrounding the lateral neuropil of the 

accessory olfactory bulb just rostral to the olfactory bulb I telencephalic cortex 

boundary (o/ t). There is also staining in the rest of the telencephalon, especially 

the lateral region. Strong staining can be seen at the telencephalon/ 

diencephalon border (t/ d), localized to either side of the midline. The lateral 

hypothalamus (hyp) is very dark, the medial hypothalamus and the anterior 

pituitary (pit) somewhat less so. Staining can also be seen in the pons floorplate 

(pfp) and the dorsal spinal cord (sc) where it is curled under the hindbrain. 

(C) Sagittal view of the midbrain and hindbrain, st. 44. Strong signal is present 

in the cerebellum (cer), with elevated expression present at its borders with the 

pons and with r2 on both sides of the border. Slightly elevated staining is also 

seen at the midbrain/ hindbrain boundary (m/ h), with positive ventral domains 

on either side of it in the caudal tegmentum (tg) and pons (p). Strong staining is 

present at the furrows of rhombomeres 4 and 6 (r4 and r6), and is concentrated to 

either side of the furrow itself. Staining is also seen in the dorsal posterior 

hindbrain (dhb). Note the lack of staining in the posterior optic tectum (pot) 

compared with the rest of the brain, which otherwise contains diffuse signal 
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throughout. Staining in the myotomes (*) resembles that seen in negative 

controls (not shown). 

(D) Transverse section through the rostral hindbrain and ears. The plane of 

section passes through the caudal cerebellum, and staining is seen surrounding 

the ventricle, at the dorsolateral surface, and in the ventral pons and pons 

floorplate. In the ears strong staining is seen in the anterior saccule (sac) and the 

crista (cr) of the vertical semicircular canal. Lighter staining is seen in the inner 

septal ridge (sep) of the vertical canal. 

(E, F) Transverse sections through the olfactory bulb at st. 46. (E) In this rostral 

plane, strong staining is seen in a well-delimited dorsomedial region. The cell 

layer adjacent to the main olfactory bulb neuropil (mob), however, is negative. 

(F) In a more caudal plane, strong staining is seen in the ventricular zone (vz) 

lateral to the lateral ventricle (lv), and at the lateral pial surface, which in this 

plane of section is just posterior to the accessory olfactory bulb neuropil. 

(G) Transverse section through a st. 44 eye. Staining occurs in a smooth dorsal to 

ventral gradient, and involves all the retinal layers: retinal ganglion cell (rgl), 

inner nuclear (inl), and outer nuclear (onl), which contains the cell bodies of the 

photoreceptors. Color in the rod outer segments (ros) is due to their iridescence 

under Nomarski optics. Specks(*) in the crystalline lens (1) are commonly seen 

in negative controls (data not shown), as is the signal (*) in the jaw muscles 

(mus). 
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(H) Transverse section through the st. 46 heart. The strongest staining occurs in 

the sinus venosus (sv); lighter staining may be present in the ventricle (v) and 

atrioventricular valve (avv). Blood cells (bl) are present in the lumina of the 

sinus venosus and the atrium (at). 

Ephrin-B2: Discussion 

I. Expression in Xenopus 

At st. 26 ephrin-B2 is expressed in the midbrain, R1, R2, R4, R6, eye, newly 

formed somites, and neural crest and mesoderm of the second branchial arch 

(Helbling et al., 1999; Smith et al., 1997). At st. 31 expression is seen in the 

developing lens. At st. 36 expression is similar, except that it is seen in the 

ventrolateral branchial arches rather than throughout ba2, in the entire 

hindbrain, in the otic vesicle, and in the trunk somites (Helbling et al., 1999). 

The strongest expression we observed at st. 47 was in the telencephalon, which 

did not show strong expression at earlier stages. The midbrain expression we 

observed at st. 44-47 was confined to the roofplate and floorplate, rather than 

more widespread as at earlier stages. The hindbrain expression, however, was 

more similar. We observed expression throughout the dorsolateral hindbrain 

like that seen at st. 36. We also observed stronger segmental expression in R1 

(pons and cerebellum), R2 at its border with the cerebellum, and two stripes in 

the posterior hindbrain consistent with R4 and R6 (Fig. ll.10C). We did observe 
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expression the eye and ear, although not as prominent as that seen at earlier 

stages. Finally, the low-level expression we observed in the heart and aortic 

arches might be a remnant of that seen in the ventral branchial arches. 

II. Comparison to ephrin-B2 in other species 

In the developing rat olfactory system the expression of ephrin-B2 protein has 

been characterized in detail. It was present in deep mitral cells, periglomerular 

cells, and granule cells in the olfactory bulb (St. John and Key, 2001). In the 

mouse embryo ephrin-B2 is also strongly expressed in most of the cells of the 

olfactory bulb, and has been implicated in the guidance of olfactory bulb efferent 

axons through the anterior commissure (Kullander et al., 2001b). We observed 

very high expression levels in parts of the Xenopus olfactory bulb; the 

dorsomedial domain in particular is consistent with mitral cell expression. In the 

adult mouse transcripts were also found via RT-PCR in the olfactory bulb and 

also in the lateral subventricular zone of the telencephalic cortex, the germinal 

zone where new neurons are born (Conover et al., 2000). While we do not know 

precisely which (if any) Xenopus region is analogous at these stages, we did see 

expression throughout the telencephalon. 

Expression of ephrin-B2 was reported in restricted regions of the forebrain and at 

low levels in the midbrain of the early mouse embryo (Bergemann et al., 1995). 

The former might be similar to that which is seen in the Xenopus tadpole but not 

embryo, while the latter is similar to the expression in the Xenopus embryo but 

not tadpole. In the early chick embryo, ephrin-B2 is expressed only at the dorsal 
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midline of the midbrain, much as it is in the Xenopus tadpole. In the later chick 

embryo, it is upregulated in the tectum as well, starting at the anterior and 

spreading progressively towards the posterior. This expression is found in the 

deep retinorecipient laminae of the tectum (Braisted et al., 1997). It thus appears 

that all three species express ephrin-B2 in the tectum at early stages. In the chick 

at least, these stages fall within the time that retinal fibers are invading their 

targets in the tectum. However, in Xenopus, the tectum clearly expresses very 

little ephrin-B2 mRNA during st. 44-50, which includes much of the period when 

retinotectal connectivity is being established. It is thus unclear what retinotectal, 

intratectal and/ or tectal efferent roles the midbrain expression is playing, and 

whether these roles are similar in the various species. 

The hindbrain expression of ephrin-B2 in r1, r2, r4, and r6 is conserved between 

mouse (Bergemann et al., 1995) and Xenopus. In zebrafish, however, expression 

is found in rl, r4, and r7, and disruption of this expression pattern leads to a 

disruption in rhombomere boundary formation (Cooke et al., 2001). This 

suggests that some of the mechanisms of regionalization in the hindbrain differ 

between tetrapods and teleosts. Expression at the hindbrain midline also differs 

between mouse and frog. In the embryonic mouse at the level of r4, ephrin-82 is 

expressed strongly at the midline of the hindbrain, in both the ependymal layer 

and the floorplate (Cowan et al., 2000). In the frog, the only part of the hindbrain 

in which we saw floorplate expression was the pons (r1). This difference is 

similar to that seen for EphB1, and is discussed above. 
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In the embryonic mouse retina, like that of the Xenopus tadpole, ephrin-B2 is 

present in a high dorsal to low ventral gradient, and is present in all layers 

(Marcus et al., 1996). This pattern also holds true in chick at E6. At later stages it 

diverges somewhat; it is lost in the photoreceptor layer, and shows its strongest 

expression in the inner (amacrine) part of the inner nuclear layer (Braisted et al., 

1997). Xenopus, on the other hand, shows comparable expression of ephrin-B1 

between the amacrine and bipolar cell portions. It is instead ephrin-B3 in frog 

that exhibits stronger expression in the amacrine than the bipolar. Ephrin-B1, 

meanwhile, exhibits the exact opposite (see Table 112). 

Somitic expression of ephrin-B2 is found in Xenopus (Helbling et al., 1999), 

zebrafish (Durbin et al., 1998), and rat, but not in chick (Wang and Anderson, 

1997). In zebrafish, ephrin-B2 perturbations disrupted somitogenesis (Durbin et 

al., 1998; Oates et al., 1999), and in rat they disrupted guidance of migrating 

neural crest (Wang and Anderson, 1997). In birds a role in neural crest guidance 

seems to instead be played by ephrin-B1 (Krull et al., 1997). As mentioned 

above, both of these ligands are expressed in Xenopus somites. Zebrafish 

ephrin-B1's have not as yet been cloned, so it is not known whether zebrafish 

expresses (or even possesses) both proteins. It is thus not yet clear which of these 

situations represents an ancestral state and which a derived. Further studies 

addressing the functional roles of these two proteins and the details of their 

expression patterns in Xenopus, or the cloning of orthologs (or evidence of their 

absence) in fish, would help shed light on this question. 



126 

The mouse expresses ephrin-B2 in the arteries, which is consonant with the 

expression we observed in the aortic arches. Furthermore, an important role for 

Eph/ ephrin-B signalling in angiogenesis has been found in both mouse (Adams 

et al., 1999; Wang et al., 1998) and frog (Helbling et al., 2000). The other non­

neural tissues where we observed some expression are the mesonephros and the 

heart, while in Northem blots of mouse and human tissues the metanephric 

kidney and the fetal but not adult heart were positive (Cerretti et al., 1995). It 

thus appears that many features of ephrin-B2 expression are conserved during 

evolution. 

Ephrin-B3: Results 

In the brain ephrin-B3 is broadly expressed at light to moderate levels. The most 

striking feature is the intense staining in the roofplate of the midbrain and 

floorplate of the hindbrain. The olfactory bulb and lateral hypothalamus also 

express at high levels. 

Forebrain 

Ephrin-B3, like ephrin-B2, is expressed at high levels in the olfactory bulb but not 

in the immediately adjacent telencephalon (Fig. Il.llA, B). The most intense 

expression is found at the rostral tip and in a lateral ring surrounding the 

neuropil of the accessory olfactory bulb, particularly at the caudal end of this 

ring (Fig. Il.llE). The rostral domain is consistent with mitral cells of the main 

olfactory bulb (Nezlin, 2000), and a sharp boundary is seen between them and 
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more caudal, much more lightly stained cells whose periventricular location is 

consistent with granule cells (data not shown). The lateral domain, meanwhile, 

is consistent with mitral cells of the accessory olfactory bulb. Another region of 

elevated expression begins medially straddling the ventral midline at the rostral 

fusion of the two hemispheres and tapers off laterally. At st. 44 this expression 

extends the full thickness of the cerebral wall, with the ventricular surface being 

positive. But at later stages the bulk of the expression is found in the ventral part 

of the tissue excluding the ventricular zone (Fig. Il.llF). Finally, there is 

moderate to strong expression along the caudal dorsolateral shoulder of the 

telencephalon (Fig. ll.llA, F) and around the telencephalon-diencephalon 

boundary, including at st. 51 the ventral anterior diencephalon (Fig. Il.llA, B). 

At all stages expression at the lateral and medial edges is generally stronger than 

in the region between. 

The ventral pattern of ephrin-B3 expression in the telencephalon continues into 

the ventral anterior thalamus. The dorsal thalamus shows light to moderate 

expression, the strongest zone being the rostral dorsolateral shoulder (Fig. 

Il.llA). Towards the posterior end of the third ventricle the expression becomes 

more narrowly restricted to the ventricular zone (data not shown). The 

hypothalamus expresses at moderate to high levels medially and very high levels 

laterally, and there is light staining in the pituitary (Fig. Il.llG). 
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Midbrain 

The midbrain exhibits intense, sharply restricted ephrin-B3 staining in the 

roofplate. This domain extends the full length of the midbrain, but is darkest 

towards the anterior (Fig. Il.llA, D, G). There is light to moderate staining of the 

ventricular surface in the tegmentum (Fig. Il.llH), including the floorplate (Fig. 

II.llC). The dorsal tegmentum and the tectum express at moderate levels, the 

strongest signal there being in the lateral tectum (Fig. Il.llA, H). 

Hindbrain 

Even more abundant than the expression in the midbrain roofplate, and equally 

sharply restricted, is the expression in the hindbrain floorplate (Fig. II.llB, H, 1). 

There is also diffuse expression in the lateral cerebellum and dorsolateral 

medulla (Fig. Il.llA). The ventricular zone is positive throughout the medulla. 

In addition, there are narrow (~1 cell thick), regularly spaced transverse stripes 

of stronger expression in the ventricular zone (Fig. Il.111). These stripes occur 

two per rhombomere, one at the rhombomeric furrow and one at the 

interrhombomeric border (Fig. Il.llD). Finally, there is extremely strong 

expression in the spinal cord in both the floorplate (continuous with the 

hindbrain expression) and roofplate (beginning essentially at the caudal end of 

the fourth ventricle, although it is continuous with less intense expression 

continuing rostrally on either side along the dorsal lip of the ventricle) . The 

spinal cord also shows light medial expression throughout (Fig. Il.llJ). 
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Other regions 

Ephrin-B3 is expressed in the eye in a distinctive pattern (Fig. II.llK). Like 

ephrins-Bl and -B2, it is expressed most strongly at the ciliary margin. However, 

there is no obvious dorsoventral gradient. Instead, there is an interesting 

laminar restriction: the main site of expression is the inner half of the inner 

nuclear layer, which constitutes the amacrine cell layer. There is also expression 

at much lower levels extending into the retinal ganglion cell layer. The only non­

neural staining noted was in blood cells that were present in the cerebral 

ventricles (Fig. TI.llG). A comparable negative control specimen with blood cells 

was not available, however, so we do not know whether this staining is specific. 
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Figure 11.11. ephrin-B3 mRNA in situ hybridization. See Fig. II.l for key. 

(A, B) Wholemount brains, st. 50. Negative control (ctl) was hybridized with an 

ephrin-A3 sense strand probe. (A) Dorsolateral view. Strong staining is seen in 

the olfactory bulb {ob), caudolateral telencephalon (tel), lateral thalamus (th), 

midbrain roofplate (mrp), lateral optic tectum (ot), dorsal posterior hindbrain 

{hb), and dorsal spinal cord (sc). (B) Ventral view. Staining is seen in the above 

regions, plus the hindbrain floorplate (hfp) and the ventral telencephalon/ 

diencephalon boundary {t/ d), including the vicinity of the optic chiasm (oc). The 
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location of the boundary between olfactory bulb and main telencephalic cortex 

(o/ t) is also indicated. 

(C, D) Midsagittal sections through the brain at st. 44. (C) This section passes 

through the hindbrain floorplate, showing intense staining therein. Much lighter 

staining is also seen continuing rostral to the midbrain/ hindbrain boundary 

(m/ h) in the midbrain floorplate, and diffuse staining is present in the ventral 

forebrain (fb). (D) This nearby section passes through the midbrain roofplate, 

which is also strongly stained. Diffuse staining is again seen throughout the 

ventral forebrain on both sides of the telencephalon/ diencephalon boundary 

(t/d), including the medial olfactory bulb (ob) and hypothalamus (hyp). Note 

the fine, regularly spaced vertical stripes in the rhombomeres (r's) of the 

hindbrain, one at the central furrow of each rhombomere (rf) and one at the 

boundary (rb). 

(E-F) Transverse sections through the telencephalon at st. 46. (E) The posterior 

part of the olfactory bulb, showing strong staining around the lateral neuropil 

(ln) of the accessory olfactory bulb. (F) A more caudal section. Ventral staining 

is strongest medially and fades out laterally. Staining in the dorsal telencephalon 

is strong at the lateral edges. 

(G-1) Transverse sections through the CNS at st. 44. (G) The midbrain (mb) and 

hypothalamus (hyp). Strong staining is present in the midbrain roofplate (mrp), 

and light staining in the remainder of the ventricular zone (vz) . In the 

hypothalamus strong staining is present laterally, moderate medially. The 
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lumen of the third ventricle (3v) is partially filled by clotted blood (bl). The 

blood itself shows some staining; however, a negative control sample with blood 

present was not available, so we cannot be sure this signal is specific. (H) The 

optic tectum ( ot) shows moderate staining. Staining is also seen in the 

ventricular zone (vz) of the tectal ventricle (tv); the lumen of the ventricle is 

obscured by blood cells. Intense staining is seen in the hindbrain floorplate (hfp). 

(I) The hindbrain. Intense staining is once again seen in the floorplate (hfp). 

This plane of section includes one of the vertical stripes visible in (D), and thus 

strong periventricular staining is also seen. These stripes do cover the full 

mediolateral width of the ventricular zone, but as they are barely one section (6 

p.m) deep rostrocaudally, some parts of this one lie outside the plane of section. 

0) The spinal cord (sc). Strong staining is seen in the roofplate (rp) and 

floorplate (fp ). Lighter staining is more widespread in the medial spinal cord. 

(K) Transverse section through the caudal eye at st. 46. Staining is present in the 

inner nuclear layer (inl) in the inner amacrine cell layer (ad) but not the outer 

bipolar/horizontal cell layer. Lighter staining is present in the retinal ganglion 

cell layer (rgl). No substantial gradation is observed in the dorsal-ventral axis. 

There is slightly darker staining at the periphery, but since the entire section is 

already quite peripheral because it is close to the caudal edge of the eye, this 

difference is not pronounced here. Color in the rod outer segments (ros) is due 

to their iridescence under Nomarski optics. 
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Ephrin-B3: Discussion 

I. Expression in Xenopus 

The expression pattern of ephrin-B3 at st. 44 is dramatically different from that 

seen earlier. At st. 26-36 ephrin-B3 is expressed in the midbrain, R1, R2, R4, R6, 

the optic stalk, and (at st. 36) the ventral visceral arches (Helbling et al., 1999), a 

pattern very similar to that of ephrin-B2. Expression appears to avoid the 

midline. There is no trace of the characteristic later pattern of strong expression 

in the olfactory bulb, parts of the diencephalon, and midline in the midbrain 

roofplate, hindbrain floorplate, and spinal cord. At st. 44, there remains some 

expression in the lateral midbrain and cerebellum. There is no sign, however, of 

the earlier restriction to alternate rhombomeres in the rest of the hindbrain. 

Instead there are two narrow stripes per rhombomere of slightly increased 

expression. The retinal expression also seems to have appeared de novo, as at 

earlier stages expression was noted in the optic stalk but not in the eye itself. 

II. Comparison to ephrin-B3 in other species 

Mouse, like Xenopus, shows intense ephrin-B3 expression at the midline of the 

CNS, and this midline expression has been implicated in guidance of motor 

axons in the spinal cord (Kullander et al., 2001a; Kullander et al., 2001b; 

Yokoyama et al., 2001). Strong expression appears by E8.5 in the floorplate of the 

midbrain and hindbrain (Bergemann et al., 1998). Similar expression in the 

floorplate of the spinal cord is present by E10. By E12.5 the spinal cord roofplate 

likewise demonstrates strong, highly localized expression (Gale et al., 1996a). 
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This expression persists at high levels in the hindbrain through at least E16 

(Bergemann et al., 1998); and in the spinal cord through PO, with somewhat 

lower levels through at least PS. In fact, at postnatal stages, expression is found 

not just in the floorplate and roofplate, but throughout the entire midline 

(Kullander et al., 2001a; Yokoyama et al., 2001). Interestingly, the mouse 

midbrain does not appear to continue the early strong floorplate expression into 

later stages, nor does it appear to show such expression in the roofplate at any 

stage. The floorplate situation is not terribly dissimilar from the Xenopus tadpole; 

although Xenopus does show distinct expression in the midbrain floorplate, it is 

at much lower levels than that in the hindbrain (Fig. Il.llC). The roofplate, 

however, is a complete departure, as Xenopus displays intense expression in the 

midbrain roofplate. The midbrain roofplate is the site of decussation for axons 

forming the tectal interhemispheric commissure; the interspecies difference there 

and the tightly regulated spatiotemporal expression at the midline throughout 

the brain point to a key role of ephrin-B3 in axon guidance at this important 

decision point. 

Expression in the rest of the mouse brain shows a fair bit of similarity to that in 

Xenopus. There is expression in the ventral portion of the mouse forebrain, 

including the olfactory bulb and the septum, which is reminiscent of that seen in 

the Xenopus tadpole (Gale et al., 1996a; Kullander et al., 2001b). Furthermore, the 

laminar restriction of this expression is strikingly similar to that in the older 

tadpole: expression is concentrated outside the ventricular zone, a pattern that is 

comparatively uncommon among the proteins studied here. Expression in the 

diencephalon would appear to be more divergent, as the hypothalamus and 
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dorsal thalamus were not described as sites of expression in mouse. However, 

Figure 2C in (Yokoyama et al., 2001) does show some staining in what appears to 

be the dorsal thalamus. The late mouse embryo also shows expression in the 

midbrain, including the tectum (Gale et al., 1996a). Finally, expression in the 

rhombomeres of the mouse embryo is similar to that in the Xenopus embryo, 

involving R1, 2, 4, and 6 (Bergemann et al., 1998; Gale et al., 1996a). Furthermore, 

the rhombomeric expression in mouse resolves into staining only at the 

boundaries of the rhombomeres, which may be akin to the narrow stripes we see 

at rhombomere boundaries in the Xenopus tadpole. 

The eye is one notable site of divergence: in mouse ephrin-B3 specifically labels 

the retinal ganglion cell layer, with no staining seen elsewhere (Birgbauer et al., 

2000), whereas in Xenopus it labels the amacrine cell layer, with only faint 

staining in the retinal ganglion cell layer. In both cases, however, there is no 

apparent dorsal-ventral modulation-which is seen for ephrin-B1 and -

B2-suggesting a role for ephrin-B3 in laminar organization rather than in 

intraretinal retinal ganglion cell axon guidance or retinotectal mapping. 

Discussion: Comparisons by region 

Primary olfactory system 

Many of these genes exhibit strong, highly localized expression in the olfactory 

bulb. Ephrin-B3 is expressed in cells surrounding the main and accessory 

olfactory bulb glomerular neuropils, a position characteristic of mitral cells 
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(Nezlin, 2000). EphA2 and ephrin-Bl are expressed a pattern complementary to 

ephrin-B3 and the same as each other, in cells whose location in the ventricular 

zone is consistent with granule cells. 

EphA2 and ephrin-Bl also mark caudolateral cells whose identification is 

somewhat more problematic. At least in the case of EphA2, these cells are 

definitely adjacent to the accessory olfactory bulb neuropil, a location more 

consistent with mitral cells. It is thus entirely possible that these genes are 

expressed in both granule and mitral cells, particularly the mitral cells of the 

accessory olfactory bulb. However, the st. 44-47 sections being studied here are 

much younger than the st. 54-56 tadpoles in which the structure of the olfactory 

bulb has been elucidated in detail by axon tracing and immunohistochemistry 

(Nezlin, 2000). It may be that at these early stages the two cell types are not well 

separated into distinct laminae. Alternatively, it may be that the cells we are 

seeing have not yet undergone terminal differentiation into one cell type or the 

other, and are still expressing both markers. Since the population in question 

does seem to show some mosaicism in the expression levels of individual cells 

(Fig. ll.lD), we favor the former hypothesis. It should also be noted that even at 

st. 54-56, when the granule cell and mitral cell layers are distinct, they are less 

well separated from each other in the accessory olfactory bulb than in the main. 

Ephrin-B2 is also expressed in putative granule cells, but is less widely 

distributed than ephrin-Bl. Ephrin-B2 is found in cells immediately lateral to the 

ventricle (Fig. II.lOF). It does not extend caudally beyond the olfactory bulb, as 

does ephrin-Bl (compare Fig. II.9B with Fig. II.lOB). It does show characteristic 
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expression dorsomedially in a layer outside the putative mitral cells of the main 

olfactory bulb (Fig. 11.10E) and caudolaterally around the accessory neuropil. It 

therefore seems likely that ephrin-B2 is a more specific marker for olfactory 

granule cells, while ephrin-B1 is expressed in the ventricular zone throughout the 

telencephalon. 

The functional significance of the complementary expression of ephrin-B3 and 

ephrin-B1/B2 is not known. It is possible that the two sets of ligands are serving 

the same function, each of them being responsible for that function in its 

respective cell type. Ephrin-B3, however, has a much more restricted receptor­

binding profile than ephrin-B1 or B2, and could thus serve to differentiate these 

cell types functionally (see Table 1.1). It binds only with low affinity to EphB1, 

EphB2, and EphA4, and not at all to EphB4 or EphBS (Brambilla et al., 1996; Gale 

et al., 1996a). The only receptor it is known to bind with high affinity is EphB3 

(Bergemann et al., 1998; Gale et al., 1996a). EphB3 is expressed in the 

telencephalic ventricular zone, mainly towards the caudal end. Although it is 

present at low relative levels, it might be the binding partner for ephrin-B3 (as 

well as -B1 and -B2) in this region. It is also expressed at higher levels in regions 

of the thalamus, hypothalamus, and midbrain, which might be receiving 

projections from the olfactory bulb mitral cells. 

Two additional receptors for ephrin-B1 and B2 are present in the olfactory bulb. 

EphB2 is expressed in at moderate levels the rostral and caudolateral olfactory 

bulb, and its appearance in wholemounts is most consistent with expression in 

putative granule cells; however, appropriate sections were not available to 
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confirm this. EphB4 is expressed weakly at the ventricular surface, again 

consistent with granule cell or progenitor expression. These receptors are thus 

most likely expressed in the same regions as their ligands. 

EphA2, meanwhile, does not bind any of the ephrin-B's (Davis et al., 1994; Gale 

et al., 1996a; Gale et al., 1996b), so despite its expression pattern-the same as 

ephrin-B1 and complementary to ephrin-B3-it is unlikely to be interacting with 

these proteins. However, the two ephrin-A ligands studied here are expressed in 

this region, although not as prominently as the ephrin-B's. Ephrin-A1 is 

expressed throughout the telencephalic ventricular zone, and ephrin-A3 is 

expressed specifically in rostral periventricular cells consistent with granule cells 

of the main olfactory bulb (Fig. 11.7C). Both of these ligands, therefore, are again 

expressed in the same regions as their receptor. In many tissues complementary 

expression of Eph-family receptor and ligand is common (Gale et al., 1996b), but 

areas of overlapping expression are not unusual (see, e.g ., Flenniken et al., 1996; 

Helbling et al., 1999). In the olfactory system in particular, the developing rat 

shows overlapping and highly dynamic patterns of protein localization (St. John 

and Key, 2001). 

In the olfactory pits EphA2, ephrin-A1, ephrin-B1, and possibly EphB2 are 

expressed. Primary olfactory neurons expressing these proteins make 

glomerular connections with the mitral cells in the olfactory bulb, which as 

mentioned express ephrin-B3. Further characterization of the Eph family in this 

projection may prove fruitful. 
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Midbrain roofplate 

The Xenopus EphB receptors and ephrin-B ligands exhibit a striking 

complementarity in their midbrain roofplate expression. All three ephrin-B's are 

expressed strongly and specifically in the roofplate, with little or no expression in 

the adjacent tissues. All four EphB' s so far cloned, meanwhile, are expressed in 

adjacent tissues, with sharply reduced or absent expression in the roofplate itself. 

(EphA4, which also binds the ephrin-B's, was seen in neither the adjacent tissues 

nor the roofplate.) Rostral to the tectal ventricle EphB3, in addition to its 

expression lateral to the roofplate (shared with the other EphB's), is also 

expressed at high levels in the ventricular zone immediately ventral to the 

roofplate. In addition to their shared expression in the roofplate, moreover, the 

ligands all share a strong rostral to caudal gradient: they are expressed at high 

levels starting immediately at the thalamus/midbrain boundary, and their level 

of expression declines markedly as they extend caudally. The significance of this 

pattern is not known, and it has not been reported in other species, but we 

predict-based on its apparent triple redundancy, if nothing else-that it is likely 

to be functionally important in frog. Two possible roles might be setting up 

rostral-caudal polarity in this region or selectively allowing axons expressing a 

given receptor concentration to cross the midline at a particular location but not 

further rostrally (or not further caudally, depending respectively on whether the 

interaction is repulsive or attractive). 
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Tectum 

In the tectum, there was generally prominent expression of the EphB receptors 

and ephrin-A ligands, but not the EphA receptors or ephrin-B ligands. In fact, 

there was moderate to strong expression of all four EphB genes and both 

ephrin-A's. By contrast, the only mRNA from the other subfamilies detected was 

ephrin-B3, and that at relatively low levels. 

We were naturally interested in whether any of the proteins were expressed in 

gradients consistent with a role in retinotectal mapping, since there is strong 

evidence for such a role in other vertebrates (see Chapter 1). The Xenopus EphB 

class genes were generally expressed most strongly at the lateral posterior. But 

while they often displayed clear differential expression, it did not take the form 

of a convincing gradient. Ephrin-Al also displayed clear differential expression, 

this time in the caudal and medial tectum, but once again the expression did not 

take the form of a gradient. These proteins are undoubtedly playing important 

roles in either retinotectal, local, or efferent interactions. Ephrin-Al, for one, is 

well positioned to act as a pan-retinal repulsive cue preventing retinal ganglion 

cell axons from overshooting the tectal neuropil. This is also a region of active 

proliferation and differentiation of new tectal neurons, and it could be playing a 

role in these processes as well. But none of the proteins appear to be particularly 

good candidates for governing retinotectal mapping via a gradient model. 

Ephrin-A3 and ephrin-B3, on the other hand, did appear to be expressed in quite 

passable gradients. Ephrin-A3, like ephrin-A2 and ephrin-AS in mouse 
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(Flenniken et al., 1996; Zhang et al., 1996), chick (Cheng et al., 1995; Drescher et 

al., 1995), and zebrafish (Brennan et al., 1997), was expressed most strongly at the 

caudal margin of the tectum and tapered off rostrally. It was also expressed 

somewhat more strongly along the medial edge of the tectum. Ephrin-A2 and 

AS have yet to be cloned in Xenopus, so it is unclear whether ephrin-A3 is 

substituting for them or supplementing them. The expression of ephrin-A3 itself 

in the tectum has not to our knowledge been studied in other species. 

The role of B-class proteins in retinotectal mapping is far less well understood 

than that of A-class. EphA receptors are expressed in a nasotemporal gradient in 

the eye and their ephrin-A ligands are expressed in a well-behaved opposing 

rostrocaudal gradient in the tectum, consistent with a role in map formation via 

repulsive guidance; and functional assays have supported such a role (see 

Chapter 1). In the B class, by contrast, gradients are present (see below), but little 

is known about the implications of these gradients. 

Xenopus ephrin-B3 expression was strongest in the lateral tectum and tapered off 

medially (Fig. Il.llA). This is in contradistinction to the expression of ephrin-B1 

and ephrin-B2 in chick, which have been reported to show a high medial to low 

lateral gradient (Braisted et al., 1997), although conflicting reports exist (Holash 

et al., 1997). EphB receptors, meanwhile, are expressed in a dorsoventral 

gradient in the eye in various species (Holash and Pasquale, 1995; Kenny et al., 

1995; Marcus et al., 1996). It is thus possible that A-class Eph interaction control 

mapping in the nasotemporal axis and B-class in the dorsoventral axis. Indeed, 

this seems such an elegant mechanism that it presents a compelling hypothesis. 



142 

Experimental confirmation, however, has been lacking. For one thing, 

expression of ephrin-B ligands in the tectum is at relatively low levels and 

inconsistent among species-especially given our new data on Xenopus, in which 

the ephrin-B gradient is opposite that reported in chick. For another, 

dorsoventral retinal ganglion cell guidance has not proven amenable to 

reconstitution in vitro-unlike nasotemporal guidance, which can be studied in 

stripe choice assays (Walter et al., 1987; Vielmetter et al., 1990). 

High levels of EphB2 have been consistently found in the ventral retina of several 

species (Fig. ll.4J; Holash and Pasquale, 1995; Kenny et al., 1995; Marcus et al., 

1996), which maps to the medial (dorsal) tectum. While a role for B-class 

proteins in intraretinal guidance of retinal ganglion cell axons to the optic nerve 

exit has been demonstrated using double-knockout mice lacking EphB2 and 

EphB3 (Birgbauer et al., 2000), a role in retinotectal guidance has not yet been 

shown. If B-class proteins were to mediate dorsoventral retinotectal mapping via 

a repulsive interaction, as is the case for A -class proteins in nasotemporal 

mapping, then one would expect that low levels of ligand would be found in the 

medial tectum, which receives ventral retinal fibers expressing high levels of 

receptor, and vice versa. This is indeed what we have found in frog (Fig. II.11A), 

but the opposite of what was seen in chick (Braisted et al., 1997). The chick 

situation would instead be consistent with an attractive interaction. 

This discrepancy may not be as paradoxical as it seems, as both attractive and 

repulsive interactions are well within the realm of possibility. During 

angiogenesis B-class proteins have been shown to mediate both attraction 
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(Pandey et al., 1995b) and repulsion (Helbling et al., 2000). And in the mouse 

olfactory system ephrin-AS, which is expressed at high levels on a subset of 

vomeronasal axons, is necessary for normal targeting of these axons to the 

subregion of the accessory olfactory bulb that expresses high levels of EphA6 

receptor (Knoll et al., 2001). Furthermore, repulsion by ephrin-A ligands has 

been shown to require cleavage of the adherent ligand from the cell surface by a 

metalloprotease; if cleavage is inhibited, the cell surfaces remain stuck together 

and axonal withdrawal is delayed (Hattori et al., 2000). One could certainly 

imagine that in the absence of such cleavage, Eph-ephrin interactions could be 

used to mediate adhesion. A switch between repulsion and attraction could also 

occur at other steps in the signal transduction process, such as cyclic nucleotide 

levels. The response to netrins, which attract some cell types and repel others, 

depends on cAMP levels, with cAMP thus acting as a summation point for 

multiple inputs that influence axonal guidance (Ming et al., 1997). Finally (and 

not mutually exclusively), it is conceivable that Eph-ephrin interactions are 

biphasic, being attractive at low concentrations but repulsive at high; in fact, we 

have obtained some preliminary results consistent with such a possibility (see 

ChapterV). 

It is tempting to speculate that mechanisms of retinotectal mapping in the 

dorsoventral axis may have changed over evolutionary time more than those in 

the nasotemporal axis. If the ephrin-B3 gradient we have described here is in fact 

involved in dorsoventral mapping in frog, perhaps that represents an ancestral 

state. Perhaps the two Eph-family subclasses originally were indeed involved in 

setting up the retinotectal projection via repulsive interactions in their respective 



144 

axes, but in amniotes the dorsoventral mechanism has been supplanted or 

modified beyond our current recognition. Further studies in frog, including 

characterization of Eph- and ephrin-B expression at the protein level and in vivo 

perturbations via expression or injection of wild-type or dominant-negative 

proteins, should help shed light on this question. 

Rhombomeres 

Every gene studied here showed segmentally restricted expression in the 

hindbrain, almost all of them at moderate to high levels. However, some of the 

patterns of expression observed were very different from those seen at neurula 

and tailbud stages. At these earlier stages several of the genes show striking 

restriction to a subset of rhombomeres, whereas in the tadpole it was more 

common to see expression in every rhombomere, but each gene having its own 

characteristic expression pattern within each segment. This would be consistent 

with a shift in function from regionalization of the body plan in early embryos to 

differentiation of various neural cell types in later stages. This is reminiscent of 

the evolving expression patterns seen with transcription factors such as the Hox 

genes, which have been shown to undergo such a shift in roles, being in some 

sense recycled for new functions as embryogenesis progresses. 
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Frog protein CM RGL amacrine bipolar ONL gradient 
EphA2 +I-
EphA4 + + +I- +I-
EphBl +I-
EphB2 ++++ +++ ++++ +++ Vhi- Dlo 
EphB3 +I - +I-
E hB4 
ephrin-Al + 
ephrin-A3 + 
ephrin-Bl ++ + + ++ Dhi- Vlo 
ephrin-B2 +++ + +++ +++ ++ Dhi- Vlo 
ephrin-B3 ++ + ++ 

Table 11.2: Summary of expression in retina. Key is the same as in Table ll.l. 

Abbreviations: CM = ciliary margin; RGL: retinal ganglion cell layer; ONL = outer 

nuclear layer (photoreceptors), V =ventral; D =dorsal. 

Every gene but EphB4 was seen in the retina, but for several of them-EphA2, 

EphBl, EphB3, ephrin-Al, and ephrin-A3-the expression was fairly faint. 

Expression was confined to the ciliary margin for all of these except EphB3, 

which showed some faint additional staining in the outer nuclear layer. 

EphA4 was also expressed at fairly low levels, but was found throughout the 

retinal ganglion cell layer (Fig. 11.2L). It was the only gene that was evenly 

distributed along the central-peripheral axis, rather than preferentially expressed 

at the ciliary margin. It did not appear to be differentially expressed in the 

nasotemporal axis, as would be required for a role in retinotectal mapping, but 

further studies on this point are necessary. Uniform expression of EphA4 would 

be entirely consistent with what has been seen in other species. In the chick and 
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the mouse, EphA4 is uniformly distributed in the retina, while other EphA 

family members are expressed in nasotemporal gradients-in chick EphA3 takes 

on the graded role (Connor et al., 1998), while in mouse EphA5 does so 

(Feldheim et al., 1998a), and EphA3 may do so as well (Cheng et al., 1995; Marcus 

et al., 1996). Neither EphA3 nor EphA5 orthologs have yet been cloned in frog, 

but it would not be surprising to ultimately find that the overall expression 

pattern of the EphA's in the frog retina is similar to that in one or both of these 

other vertebrates. 

Ephrin-A expression in the retina has been implicated in the modulation of EphA 

receptor function, in effect steepening the net gradient of retinal ganglion cell 

axon sensitivity to ephrin cues in the tectum (Diitting et al., 1999; Hornberger et 

al., 1999);(see Chapter 1). The retinal expression of the two ephrin-A's we studied 

in Xenopus was at low levels and did not appear to be differential in the 

nasotemporal axis (although we cannot rule it out); it thus seems unlikely but not 

impossible that they are fulfilling such a role in Xenopus. 

EphB2 and the three ephrin-B ligands showed a much more variegated 

distribution than the Xenopus A-class genes. EphB2 was expressed strongly, and 

was found in a pronounced high-ventral to low-dorsal gradient, consistent with 

roles in intraretinal and/ or retinotectal guidance (see above under Tectum). 

Ephrin-B1 and -B2 were expressed in a complementary high-dorsal to low­

ventral gradient. While the dorsoventral distribution of these proteins is 

suggestive of roles in retinal ganglion cell axon guidance-either intraretinal or 

retinotectal-the laminar distribution (Table 11.2) is suggestive of roles in local 
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intraretinal interactions. Eph82 is expressed in all of the cellular layers, but 

slightly more strongly in the amacrine cells. Ephrin-83 is also highly expressed 

in the amacrine cells. Ephrin-81, on the other hand, is most strongly expressed in 

the other half of the inner nuclear layer, the bipolar/ horizontal cells. Ephrin-82 

is expressed in all layers, making it the only one of these seen in the outer nuclear 

(photoreceptor) layer, but at markedly differential levels-the inner nuclear layer 

(both amacrine and bipolar/ horizontal cells) is strongest, the outer nuclear layer 

next, and the retinal ganglion cells weakest. 

At the ciliary margin new retinal cells are being bom, differentiating into the 

mature cell types of the retina, organizing themselves into the correct laminar 

structure, and forming appropriate synapses with each other. The high 

prevalence of expression of Eph's and ephrins in this region strongly suggests 

roles for them in the many intercellular interactions necessary to carry out the 

above processes in an ordered fashion. 

Limb buds 

Many of the Eph's and ephrins exhibit spatiotemporally restricted expression in 

the limbbuds in other species (Araujo et al., 1998; Araujo et al., 1997; Eberhart et 

al., 2000; Gale et al., 1996b; Ganju et al., 1994; Patel et al., 1996). In Xenopus, the 

only protein that showed strong expression in the limbbud was EphA2, with 

lighter expression of Eph81, ephrin-81, and perhaps EphA4. It is possible that 

Eph family signalling is less important in the Xenopus limb than in various other 

species. Another possibility, given the promiscuity of Eph family interactions, is 
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that a more restricted set of proteins is involved. However, a third possibility, 

which we favor, is that the wholemount in situ hybridization protocol we used 

on older tadpoles was not particularly efficient in the limbbuds. The skin and 

meninges in Xenopus were found to be highly resistant to probe penetration, even 

after extensive protease digestion. Nor was piercing the integument effective; 

wherever it remained apposed to the underlying tissue, it was highly effective at 

blocking reagent access (data not shown). Although pains were taken to pierce 

the overlying skin to allow access to the limbbud (or in some cases the limbbuds 

were dissected free of the body), and the limbbud epithelium itself does not 

appear to have developed into mature tadpole skin at these stages, it is possible 

that the epithelium is nevertheless similarly resistant, at least to some extent. 

Performing in situ hybridization on sections circumvents this problem, but we 

only did these up to stage 47, when the limbbuds are still very young. It is 

therefore possible that in situs on older sections would yield additional useful 

data on expression of these proteins in the developing limb. 

CONCLUSION 

Various genes described herein may prove useful as markers of cell type or 

regionalization at these stages, and provisionally at earlier stages. EphA2, 

ephrin-B2, and ephrin-B3 mRNA all clearly demarcate the border of the olfactory 

bulb, which is not anatomically set apart from the main part of the telencephalon 

in Xenopus. Ephrin-B3 in particular seems to be a specific marker for olfactory 

mitral cells and ephrin-B2 for granule cells, while ephrin-Bl and EphA2 mark 

granule cells and other cells throughout the telencephalic ventricular zone. 
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Ephrin-B3 expression switches abruptly from very high levels in the floorplate of 

the hindbrain to very low levels in the floorplate of the midbrain, while its 

receptor EphA4 is reciprocally expressed-it is present in the midbrain floorplate 

at very high levels but not detected in the hindbrain floorplate. The rostral limit 

of the dorsal midbrain is demarcated by the expression in the midbrain roofplate 

of all three ephrin-Bs. This boundary is also evident based on EphA4 and EphB2, 

which mark dorsal thalamus-again showing reciprocal expression at the 

midline with the ephrin-B's-and based on EphB1, ephrin-A1, and ephrin-A3, 

which mark dorsal midbrain. EphA2 is expressed along the ventral boundary of 

the cerebellum and the rostral boundary of the diencephalon, and also marks 

enteric nervous system ganglia. EphA4 is expressed in cerebellum (particularly 

the external granule cell layer), r3, and rS, while EphB4 is expressed in r2 at its 

border with the cerebellum, r4, and r6. 

MATERIALS AND METHODS 

Animals 

Adult Xenopus laevis were obtained from U.S. commercial suppliers (Xenopus I, 

Ann Arbor, MI; Nasco, Ft. Atkinson, WI), and a colony was maintained at 18° C 

on a 12 hour light/ dark cycle. Females were induced to spawn by injection of 

human chorionic gonadotropin, and eggs fertilized in vitro using minced tissue 

from testes. Embryos and tadpoles were raised in 20% Steinberg's solution or 

equivalent and were staged according to (Nieuwkoop and Faber, 1994). 

Beginning at st. 47, young tadpoles were fed a dilute solution of ground nettle 
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(Herba urticae) tea. Older tadpoles were fed ground frog brittle (Nasco, Ft. 

Atkinson, WI). All procedures were approved by the Institute Animal Use 

Committee. 

Riboprobes 

RNA probes were labelled with digoxigenin-UTP via in vitro transcription with 

T3 or T7 polymerase (Roche) in the presence of human placental RNAse inhibitor 

(Roche). Quality was assessed via agarose gel electrophoresis and by dot 

blotting and/ or Northern blotting followed by antibody binding and color 

development reaction. The following sequences were used for antisense probes: 

EphA2: a 2.9 Kb Xbai-BamHI fragment, a gift from Andre Brandli (Brandli and 

Kirschner, 1995); EphA4: a 3.2 Kb EcoRI fragment, a gift from David Wilkinson 

(Xu et al., 1995); EphB1: a 1.8 Kb EcoRI fragment, gift from David Wilkinson 

(Smith et al., 1997); EphB2: a 2.5 Kb EcoRI fragment, gift from David Wilkinson 

(unpublished); EphB3: a 2.2 Kb fragment, gift from Tom Sargent (Scales et al., 

1995); EphB4: a 1.5 Kb EcoRI fragment, gift from Tom Sargent (Scales et al., 1995); 

ephrin-A1: a 0.65 Kb fragment, gift from Dan Weinstein (Weinstein et al., 1996); 

ephrin-A3: a 0.8 Kb EST clone, gift from Irina Ronko and Deana Pape (Clifton et 

al., 1999); ephrin-Bl: a 0.8 Kb fragment, gift from Ira Daar Gones et al., 1997); 

ephrin-B2: a 0.6 Kb EcoRI fragment, gift from David Wilkinson (Smith et al., 

1997); and ephrin-B3: a 1.8 Kb EcoRI fragment, gift from David Wilkinson 

(Helbling et al., 1999). Sense probes were also prepared for EphA2, ephrin-A3, 

ephrin-B1, and ephrin-B3. These were used in parallel with the antisense probes 
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to control for both their own antisense RNA and others of equal color 

development time and equal or greater length and G/C content. 

Wholemount in situ hybridization 

Wholemount in situ hybridizations were based on the procedure of (Henrique et 

al., 1995); some modifications were based on (Harland, 1991). Unless otherwise 

noted, solutions used before prehybridization were treated with DEPC where 

possible, samples were rotated or agitated gently during incubations, and 

washes were for 5 min. at RT. 

St. 46-52 tadpoles were anaesthetized in 200 p.g/ml tricaine methanesulfonate 

(MS-222) and dissected in non-DEPC-treated PBS plus 2 mM EGTA. The roof of 

the hindbrain was pierced, the brain dissected free of meninges as much as 

possible, and the spinal cord and cranial nerves severed. The ears and the skin 

over the forelimb buds and adjacent to the hindlimb buds were also pierced, or 

in some cases the forelimb and hindlimb buds excised, and tissues plus bodies 

collected on ice. Embryos from earlier stages were added intact. Specimens 

were fixed in 4% paraformaldehyde plus 2 mM EGTA in PBS at RT for 1-2 hr. or 

overnight at 4° C. After washing in 2X PTw they were dehydrated through a 

methanol series and stored at -20° C for 0/N to 1 mo. They were then 

rehydrated into PTw, treated for 30-45 min. with 10 p.g/ml proteinase K (Roche), 

postfixed in 4% PFA plus 0.1% glutaraldehyde (Polysciences) in PTw, and 

washed 4X in PTw. 
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Hyb Buffer consisted of 50% formamide, 1.3X SSC pH 5.0, 5 mM EDT A, 50 

p.g/ml yeast transfer RNA, 0.2% Tween-20 (polyoxyethylene sorbitan 

monolaurate, Sigma), 0.5% CHAPS, and 100 p.g/ml heparin. The formamide 

("OmniPur," EM Science) was stored at 4° C and used within 2 mo. of opening. 

Samples were equilibrated in a 1:1 mixture of PTw and Hyb Buffer, then in 100% 

Hyb Buffer, and prehybridized in Hyb Buffer at 65° C for 6 hr with slight 

rocking. The prehybridization buffer was replaced with preheated Hyb Buffer 

containing 1p.g/ml of riboprobe, and hybridization was carried out under the 

same conditions for 3 days. This long hybridization time was found to give 

greatly increased signal compared to 0/N. 

After hybridization the following were carried out at 65° with preheated 

solutions: 2 rinses and two 30 min. washes in Hyb Buffer and one 10 min. wash 

in a 1:1 mixture of Hyb Buffer and MABT. MABT consists of 100 mM maleic acid 

pH 7.5, 150 mM NaCl, and 0.1% Tween-20. The following were then carried out 

at RT: 2 rinses and one 15 min. wash in MABT, a 1 hr. incubation in MABT 

containing 2% BBR, and a 1 hr. incubation in MABT containing both 2% BBR and 

20% heat-inactivated sheep serum (Antibody Buffer). The samples were then 

incubated 0 / N at 4° C in Antibody Buffer containing a 1:2000 dilution of AP­

conjugated sheep anti-digoxigenin antibody (Roche). 

The following day the samples were rinsed 3X and washed 3X for 1 hr. in MABT. 

They were then washed 2X for 10 min. in an AP Buffer consisting of 100 mM 

NaCl, 100 mM Tris HCl pH 9.5, 2 mM MgC12, and 1% Tween-20. The color 

development reaction was carried out in BM-Purple AP substrate (Roche) for 20 
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min-0/ N as needed, ideally being stopped before any areas were oversaturated 

in order to facilitate semiquantitative comparisons among regions. It was 

stopped with one rinse and two washes in PTw followed by postfixation in 4% 

PFA in PTw containing 0.1% glutaraldehyde. Samples were photographed with 

transillumination and/ or epi-illumination on an agarose dish with a Roche high­

resolution color video camera mounted on a dissecting microscope, and images 

were processed using Adobe Photoshop software. 

In situ hybridization to sections 

In situ hybridization was performed on paraffin sections following a protocol 

from (Etchevers et al., 2001). All solutions used after dewaxing and before 

prehybridization were treated with DEPC where possible, and all surfaces 

cleaned with RNAZap (Ambion). 

Tadpoles were anaesthetized as above and their hindbrains and ears pierced. 

They were fixed in a solution of 6 parts ethanol, 3 parts 37% formaldehyde, and 1 

part glacial acetic acid 0/N at 4° C. They were dehydrated through an ethanol 

series and equilibrated 3X in Histosol (National Diagnostics) and 3X for 1 hr in 

paraffin at 56° C (Paraplast, Oxford Labware), followed by a final incubation 

0/N in paraffin. They were then embedded, allowed to harden 0 / N at RT, 

sectioned at 6 pm, and collected on positively charged glass slides (Superfrost 

Plus, Fisher). 
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Slides were dewaxed in Histosol, rehydrated through an ethanol series into PBS, 

treated with 1pg/ ml proteinase Kat 37° e for 7 min, rinsed in PBS plus 0.2% 

glycine, and postfixed in 4% PFA for 20 min. They were then rinsed first in PBS, 

then in 2X SSC. Slide Hyb Buffer consisted of 50% formamide (see above), 200 

mM Nael, 12 mM Tris Hel, 9.4 mM sodium phosphate buffer, 5 mM EDTA, 1 

mg/ ml yeast tRNA, 1X Denhardt's solution, and 10% dextran sulfate. 

Riboprobes were added to this buffer at 1 pg/ ml, and sections were hybridized 

under coverslips at 65° e for 2-3 days in a chamber humidified with 2X sse, 50% 

formamide. 

After hybridization slides were washed in 50% formamide, 1X SSe, 0.1% Tween-

20 at 65° C once for 15 min. and again for 30 min. They were then equilibrated in 

2 changes of MABT, incubated as before in Antibody Buffer for 1.5 hr. at RT, and 

then incubated in Antibody Buffer containing a 1:2000 dilution of AP-conjugated 

sheep anti-digoxigenin antibody (Roche) 0 / N. 

The following day they were rinsed 5X for 30 min. in an MABT bath on a shaker 

platform and equilibrated in AP Buffer (see above). The color development 

reaction was carried out in BM-Purple under coverslips for 4-72 hr as needed, 

ideally avoiding overdevelopment of any areas. Slides were then rinsed in PTw, 

postfixed for 20 min in 4% PFA in PBS, rinsed in dH20, and coverslipped in 

aqueous mounting medium (GelMount, Biomeda). They were sealed with nail 

polish and photographed with 5X-40X Plan NeoFluar objectives (Zeiss) using a 

high-resolution color video camera (Axiocam, Zeiss; some were also 

photographed using a ProgRes camera, Roche) mounted on an Axioscop or 
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Axioplan microscope (Zeiss) under brightfield or Nomarski optics. Images were 

processed with Photoshop software (Adobe). 

Abbreviations: AP = alkaline phosphatase; BBR = Boehringer Blocking Reagent 

(Roche); CHAPS = 3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesul­

fonate; DEPC = diethylpyrocarbonate; EDTA = ethylene diamine tetraacetate, 

EGTA =ethylene glycol bis(2-aminoethyl ether) tetraacetate; 0 / N = overnight; 

PBS= phosphate buffered saline; PTw =PBS plus 0.1% Tween-20; RT =room 

temperature; SSC = saline sodium citrate; st. = stage; X = times; AP = alkaline 

phosphatase. 
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Chapter III 

PROTEIN AFFINITY EXPRESSION PATTERNS 

INTRODUCTION 

Another means of leaming about expression pattems is in situ protein affinity 

staining, also called receptor-body /ligand-body or receptor affinity probe (RAP). 

In this technique the presence of protein is detected by using as a probe another 

protein which binds strongly to the protein(s) of interest-for example, a 

receptor probe to detect a ligand, or vice versa. Unlike mRNA in situ 

hybridization, this technique can only reveal the presence of a binding partner, 

not its identity; and it can only be performed if an appropriate protein reagent is 

available. However, it has advantages of its own: it reveals the subcellular 

localization of the protein on processes such as axons at a distance from the cell 

bodies, and it constitutes a functional "receptor's eye view" of the ligand 

landscape (or vice versa). This last is particularly valuable in the case of the Eph 

family, which consists of several receptors, each with similar but not necessarily 

identical-in fact, necessarily not identical-affinities for each of the several 

ligands (see Table 1.1). The subtleties of which of the receptors a given cell 

expresses could have a large influence on its behavior, and affinity staining is an 

excellent way to begin to address this factor. Furthermore, it is entirely likely 

that there are members of these families whose genes have not yet been cloned in 
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Xenopus. The protein staining is valuable also because it will detect these as well, 

filling in any gaps in the picture created by the mRNA studies. 

One caveat concerning this procedure is that the presence of ligand in the tissue 

can be masked by endogenous receptor (or vice versa) (Sobieszczuk and 

Wilkinson, 1999). This may be simply because it blocks binding sites and 

prevents the probe from gaining access to them, or it may be because such 

binding in vivo leads to internalization and degradation of the receptor (Galko 

and Tessier-Lavigne, 2000; Hattori et al., 2000). Negative results must therefore 

be interpreted as lack of free protein, rather than simply lack of protein. 

However, this phenomenon may be quite physiologically relevant, since the 

endogenous ligand is likely to act similarly in vivo, serving as an additional 

mechanism of control over signalling levels (see Chapter I). 

We performed wholemount protein affinity staining with at least two proteins 

from each subclass of Eph receptors and ephrin ligands on Xenopus tadpoles 

ranging from st. 45 to st. 50. The tops of the head were dissected open and skin 

and meninges peeled back from the brain, giving good reagent access to the top 

of it. The protein reagents were produced from the extracellular domains of 

genes of mammalian origin, each fused to a human immunoglobulin Fe domain 

(Gale et al., 1996b). They were detected with an alkaline-phosphatase-conjugated 

secondary antibody against the Fe domain. The conservation of mammalian and 

Xenopus orthologs at the amino acid sequence level is very high (Bdindli and 

Kirschner, 1995; Helbling et al., 1999), and mammalian proteins have shown 

functional conservation with their Xenopus and zebrafish counterparts via their 
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activity when injected into blastomeres (Xu et al., 1995). Nevertheless, before 

going ahead with functional studies, we wanted not only to confirm that our 

reagents bound to Xenopus, but also to determine which of them did so most 

strongly. We indeed found in the experiments reported below that we obtained 

strong staining in Xenopus with all but one of these probes. One caveat, however, 

is that it cannot be assumed that the exact relative affinities for different 

members of each subclass are unchanged by the evolutionary distance between 

species. Thus differences in the "receptor's eye view" between two members of 

the same subclass (e.g., ephrin-A1-Fc and ephrin-A4-Fc) must be interpreted with 

caution. 

RESULTS AND DISCUSSION 

In keeping with similar studies (e.g., Gale et al., 1996b; Marcus et al., 1996), we 

found that reagents in the same subclass generally gave similar but not identical 

results to each other (but see above). Results for different stages with a given 

reagent were similar to each other, unless otherwise noted. 

Receptors detected by ephrin-A-Fc ligand reagents 

Ephrin-Al-Fc 

Ephrin-A1-Fc bound to telencephalon, somewhat more strongly in the middle 

and posterior than the anterior. It also bound to the cerebellum and the pons 

(data not shown). 
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Ephrin-A2-Fc 

Ephrin-A2-Fc bound strongly to the dorsal thalamus, and weakly to the tectal 

neuropil. It also bound to the dorsal hindbrain, including the cerebellum. 

Posterior the cerebellum it exhibited a chevron-shaped periodicity in the 

dorsolateral surface or perhaps in the choroid plexus. Ventrally it bound to the 

hindbrain, to the midbrain and rostral hindbrain on either side of the midline, to 

the hypothalamus, and to the region of the optic chiasm (data not shown). 

Ephrin-A4-Fc 

Ephrin-A4-Fc bound to the telencephalon, slightly more strongly caudal to the 

olfactory bulb than to the bulb itself (Fig. IlLlA, B). It bound lightly but 

distinctly to the dorsomedial tectal neuropil (Fig. III.lA, C). In the hindbrain it 

stained the cerebellum and dorsolateral surface. In the ventricular zone it 

exhibited two strong transverse stripes, each bifurcated into a rostral and a 

caudal portion (Fig. III.lA, B). At st. 50 it also stained the olfactory nerve and the 

nerve fiber layer of the olfactory bulb; the intensity in the telencephalon was 

similar to st. 49, but that in the hindbrain was diminished, and little or no 

staining was seen in the tectal neuropil (Fig. ill.lC). 

We also included younger stages in the ephrin-A4-Fc studies. At st. 32 staining 

was seen in two transverse stripes in the hindbrain, a region ventral to the caudal 

stripe consistent with migrating neural crest, the forebrain, olfactory placodes, 

heart region, pronephros, and tip of the tail (Fig. III.lE). At st. 33/ 34 staining in 

the tip of the tail was almost gone, and at later stages completely lost; the rest of 
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these regions continued to be positive. By st. 33/34, a third, more medially 

confined stripe was clearly visible rostral to the other two in the hindbrain, as 

was staining in the dorsal hindbrain caudal to the two original stripes. In the 

rostral brain staining was present in two regions-one at the rostral end in the 

telencephalon, the other in the diencephalon or rostral midbrain (data not 

shown). At st. 42, the three stripes in the hindbrain continued to be prominent; 

the rostral one was clearly localized to the dorsomedial part of the first 

rhombomere. Staining continued in a more restricted pattern in the rostral brain; 

the olfactory placodes continued to be prominently marked. A positive region 

was visible caudal to the bulk of the gut that might correspond to the caudal end 

of the mesonephros. The heart region was only weakly stained (Fig. III.lD). 

Ephrin-AS-Fc 

Ephrin-AS-Fc bound to the tectal neuropil, dorsal diencephalon, and the 

telencephalon caudal and medial to the rostral tip. In the hindbrain it stained the 

rostral edge and the dorsal hindbrain strongly, but the transverse stripes only 

weakly (Fig. III.lC). At st. 47 the heart itself and the truncus arteriosus were 

negative, but the aortic arches were positive, as was the transverse muscle band 

that lies across them. Staining was also seen at the rostral edge of the gill 

apparatus (Fig. III.lF). 
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A 

ephrin-A4-Fc, st 49, dorsolateral ephrin-A4-Fc, st 50, dorsolateral ephrin-A5-Fc, st 45, dorsal 

ephrin-A4-Fc, st 42, rostrola teral ephrin-A4-Fc, st 32, lateral ephrin-A5-Fc, st 47, ventral 

Figure 111.1: Receptors detected by ephrin-A-Fc ligand reagents. Xenopus 

tadpoles with the heads dissected open to expose the brain (except those prior to 

stage 40, which were left intact) were processed with the indicated reagent 

Anterior is to the left and dorsal to the top, as appropriate. All animals are wild­

type unless specified as albino, and all controls are the same stage, orientation, 

and genotype as the corresponding experimental animal unless noted otherwise. 

Boundaries and other landmarks have been indicated in purple. All scalebars in 

this chapter are 0.2 mm. 

(A) ephrin-A4-Fc, st. 49, slightly dorsolateral view. For negative control, see Fig. 

ITI.3E. Staining is seen in the telencephalon (tel), tectal neuropil (tn), cerebellum 

(cer), dorsal hindbrain (dhb), and two rhomborneres (r) in the hindbrain 
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consistent with r3 and rS. Note the bifurcation in each rhombomere. The 

position of the telencephalon/ diencephalon boundary is indicated. 

(B) ephrin-A4-Fc, st. 50, slightly dorsolateral view. For negative control, see Fig. 

III.3E. Staining is seen in the olfactory nerves (oln) and nerve fiber layer (nfl) . 

The rest of the telencephalon (tel) is also positive, more strongly so caudal to the 

olfactory bulb (ob). The cerebellum (cer) and dorsal hindbrain are still positive, 

but much less staining is seen in the rhombomeres, and none in the tectal 

neuropil. The positions of the telencephalon/ diencephalon (t / d) and 

midbrain/ hindbrain (m/h) boundaries are noted. 

(C) ephrin-AS-Fc, st. 45, dorsal view. For negative control, see Fig. ill.2D. Very 

strong staining is seen along the dorsal hindbrain, but the staining within the 

rhombomere stripes (r) is weaker than that of ephrin-A4-Fc. The tectal neuropil 

(tn) is also positive, as are parts of the dorsal diencephalon or rostral midbrain. 

There is strong staining in the caudal telencephalon and extending in a 

circumferential ring from caudolateral to rostromedial. 

(D) ephrin-A4-Fc, st. 42, slightly rostrolateral view. Staining is seen in the round 

rings of the olfactory placodes (olp). Staining is seen in circumferential rings in 

the telencephalon (tel) and in parts of the dorsal diencephalon and/ or rostral 

midbrain. The medial cerebellum (cer) and stripes in the rhombomeres (r) are 

strongly stained. The structure caudal to the gut is probably the mesonephros 

(mn). 

(E) ephrin-A4-Fc, st. 32, lateral view. The skin of the head has been left intact. 

Staining is visible in the olfactory placode (olp), forebrain (fb), two rhombomeres 

(r), a region ventral to the caudal one that would be consistent with migrating 
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neural crest cells (nc), the pronephros (pn), the region of the heart (h), and the tip 

of the tail (t). 

(F) ephrin-AS-Fc, st. 47 albino, ventral view. Distinct staining is present in the 

three aortic arches on each side, as well as in the short transverse band of muscle 

(m) that lies across them. Lighter staining can also be seen in some of the smaller 

arteries as they continue on, but the heart itself (h) and the truncus arteriosus (ta) 

are negative. The pronephroi (pn) can be seen dorsolateral to the gut. There is 

also staining at the rostral edge of the gill structure (g). 

Discussion: ephrin-A-Fc reagents 

EphA4 mRNA is expressed prominently in the hindbrain in the cerebellum, r3, 

and rS in stripes highly reminiscent of the ones we saw with ephrin-A4-Fc (see 

mRNA Expression Patterns). Not only are they similar in their number and 

placement, they also share the bifurcated appearance. The EphA4 mRNA 

sections suggest that the split appearance is due to the fact that the expression 

domain surrounds a deep furrow, and that it is strongest not immediately at the 

ventricular surface but a short distance beneath it. 

It is interesting that only the ephrin-A4-Fc reagent yielded strong staining in 

these transverse stripes. Ephrin-A2, which we did not use as an Fe reagent, is the 

only ephrin-A known to have a relatively low affinity for EphA4 (see Table I.l 

for dissociation constants and references); ephrin-Al and -AS have both been 

reported to have subnanomolar dissociation constants. This discrepancy may be 
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a result of drift in the relative affinities between the Xenopus and mammalian 

proteins (see above). 

EphA2 is expressed strongly in the olfactory pits, and may be responsible for the 

staining seen early in the olfactory placodes and later in the olfactory nerve and 

nerve fiber layer of the bulb. EphA2 and EphA4 are both widely expressed in the 

telencephalon. The protein staining in the dorsal diencephalon is more similar to 

that of EphA4. The protein staining in the tectal neuropil would be consistent 

with the presence of EphA receptors on retinal ganglion cell axons-either 

EphA4, mRNA for which was present at low levels in these cells, and/ or 

additional, as-yet-uncloned frog EphA receptor(s) such as EphA3, which is 

present in mouse and chick retinal ganglion cells (Cheng et al., 1995; Connor et 

al., 1998). 

Receptors detected by ephrin-B-Fc ligand reagents 

Ephrin-Bl-Fc 

Ephrin-B1-Fc staining was strongest in the midbrain and/ or thalamus, where it 

was present in an interesting, complex pattern (Fig. 111.2A). Within this region 

the strongest signal was in the caudolateral tectum, with strong staining 

extending along the entire caudal edge of the midbrain, including both tectum 

and tegmentum. Strong staining also extended along the dorsal diencephalon 

and/ or anterior midbrain. Finally, the tectal neuropil was distinctly outlined; the 

bulk of it was positive, with the strongest staining being found along the 
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margins. The ventrolateral diencephalon was positive in a region consistent with 

optic tract, and there was light staining of the dorsal hindbrain. The optic nerve 

was positive as well (Fig. III.2C). 

Ephrin-B2-Fc 

Ephrin-82-Fc binding (Fig. ill.2B) was very similar to that of ephrin-Bl-Fc. The 

outlining of the optic tract and neuropil was even more marked, if anything. The 

strong dorsal anterior staining included a "V" at the midline suggestive of 

roofplate (not shown). 

ephr in-Bl-Fc, st 47 ephrin-B2-Fc, st 48 ephrin-Bl-Fc, st 47 

E 

control, st 4 7 control, st 48 control, s t 49 

Figure 111.2: Receptors detected by ephrin-B-Fc ligand reagents. See Figure ill.l 

for key. 
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(A) ephrin-B1-Fc, st. 47, dorsal view of an albino. Staining is evident within the 

midbrain, especially in the tectal neuropil (tn) and around its rim. The 

midbrain/ hindbrain (m/ h) boundary is marked. 

(B) ephrin-B2-Fc, st. 48, lateral view. Strong staining is present along the 

posterior edge of the midbrain, as well as around the edge of the tectal neuropil 

and the rostral midbrain or diencephalon. Distinct staining is seen in the region 

of the optic tract (otr). 

(C) ephrin-B1-Fc, st. 47, dorsal view. The brain has been removed to expose the 

optic nerve (on). 

(D, E, F) Negative controls for (A), (B), and (C) respectively, processed with 

secondary antibody only. (E) dorsal view. (F) st. 49 

Discussion: ephrin-B-Fc reagents 

All of the known EphB receptors except EphBS bind to ephrin-B2 with high 

affinity (Table 1.1). Ephrin-B1 is a bit choosier; it exhibits high-affinity binding 

only to EphB1, B2, and B3. In addition, both ligands show appreciable binding to 

EphA4, and ephrin-B1 to EphB6. Most of these distinctions, however, are not 

subtle; sub-nanomolar dissociation constants have been reported for those listed 

as having high-affinity binding, whereas complete lack of binding or constants 

greater than 100 nM have been reported for those not mentioned. It thus seems 

reasonable to assume, at least provisionally, that even though these constants 

were measured for non-Xenopus proteins the same basic selectivity extends to the 

Xenopus proteins as well. 
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Of the high-affinity partners, EphB2 is the only one cloned in Xenopus thus far 

which is expressed at high levels in the retinal ganglion cell layer. Furthermore, 

its staining is strongest at the ciliary margin, consistent with the tectal neuropil 

signal being strongest at the edges. It thus seems probably that it is responsible 

for the staining we observe along the entire path of the retinal ganglion axons, 

from optic nerve to optic tract to tectal neuropil. Other possible agents include 

EphA4, whose mRNA is expressed in the retinal ganglion cell layer of the eye. It 

is not the best of candidates, however, since its level of expression in retinal 

ganglion cells is quite low compared to its expression elsewhere and its affinity 

for ephrin-B2 only moderate. 

All four EphB receptor mRNA's are expressed in the caudal tecturn-EphBl, -B2, 

and -B3 strongly so, whereas we judged EphB4 mRNA staining to be much 

lighter. However, comparisons between different nucleic acid probes are by no 

means quantitative, so any or all of these could be responsible for the protein 

reagent binding to caudal tectum. In addition, the staining in the tectal neuropil 

could well have a contribution from-or even be attributable solely to-protein 

on dendritic processes of tectal cells. It would be quite surprising, in fact, if there 

were not such a contribution, given the mRNA expression in and protein 

staining on the cell bodies involved. These genes are also widely expressed in 

the dorsal anterior midbrain and dorsal diencephalon, so any and all of them 

might be responsible for protein staining seen in these regions. The staining in 

the midbrain roofplate region might be due to EphB3, which is expressed 

strongly not in the roofplate p er se but immediately beneath it. 
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Ligands detected by EphA-Fc receptor reagents 

EphA2-Fc 

EphA2-Fc binds strongly to the posterior tectum (Fig. 111.3A, B). The staining 

sometimes shows some banding, especially at later stages; this may be due to the 

laminar structure (data not shown). In addition to the posterior margin of the 

tectum, a more caudal, straighter transverse stripe of expression is seen in the 

region of the dorsal midbrain/ hindbrain boundary (Fig. 111.3A. At st. 45 the 

tectal staining is strongest caudolaterally (Fig. 111.38). Finally. there is light 

staining with some periodicity in the dorsal surface of the hindbrain, perhaps in 

the choroid plexus (Fig. 111.3A and data not shown). 

At st. 45 there is light staining in the dorsal central (rostrocaudal) telencephalon 

(data not shown). At st. 49 there is marked staining in the lateral olfactory bulb 

and light staining in the olfactory nerve ( oln) and other cranial nerves (en) 

EphA4-Fc 

EphA4-Fc stains the caudal tectum and tegmentum, the dorsal surface of the 

hindbrain, and possibly the dorsolateral shoulder of the thalamus (data not 

shown). 
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EphA5-Fc 

EphAS-Fc binds very strongly to the cellular region of the tectum caudal to and 

medial to the neuropil; within this region it is strongest laterally (Fig. ID.C). 

There is strong staining adjacent in a straight transverse stripe near the dorsal 

midbrain/hindbrain boundary, and in the hypothalamus. Finally, there is a 

positive region in the dorsal anterior brain, probably in the thalamus (data not 

shown). 

EphA2-Fc, st 49 EphA2-Fc, st 45 EphA5-Fc, s t 45 

control, st 49 control, s t 4 7 control, st 47 albino 

Figure 111.3: Ligands detected by EphA-Fc receptor reagents. See Figure TILl for 

key. 

(A) EphA2-Fc, st. 49, dorsal view. Staining is present in the posterior optic 

tectum (ot) and the lateral olfactory bulb (ob). Signal is also seen in the olfactory 

nerve (oln) and other cranial nerves (en). The position of the 

midbrain/ hindbrain boundary (m/ h) is indicated. 
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(B) EphA2-Fc, st. 4S, dorsolateral view. 

(C) EphAS-Fc, st. 4S, dorsolateral view. Note the sharp boundary in the tectum 

compared with (B) (Eph-A2-Fc). The tectal neuropil (tn) is negative. 

(D, E, F) Negative controls for (A), (B), and (C) respectively, processed with 

secondary antibody only. (E) Albino, st. 47. (F) St. 47. 

Discussion: EphA-Fc reagents 

One of our major questions going into this project was whether Xenopus 

ephrin-A proteins are expressed in the tectum, and if so whether their expression 

is differential, as it is for their counterparts in mouse, chick, and zebrafish 

ephrin-A2 and -AS (Brennan et al., 1997; Cheng et al., 199S; Connor et al., 1998; 

Drescher et al., 199S; Feldheim et al., 2000; Monschau et al., 1997; Picker et al., 

1999). At the time only a single ephrin-A receptor had been cloned in Xenopus, 

and our initial mRNA in situs did not show significant expression in the tectum, 

although we later found it to be expressed there at low levels. It was thus 

encouraging to see not only that the EphA protein reagent did bind to the 

tectum, but also that it appeared to do so more strongly caudally. Subsequently 

the ephrin-A3 EST sequence was posted in Genbank, and we found this gene to 

be expressed in a pattern similar to that of the EphA-Fc protein staining. The 

protein staining is thus consistent with either or both of the ephrin-A1 and 

ephrin-A3 genes. It is also possible that other ephrins, such as ephrin-A2 and -

AS, are also present but have not yet been cloned. 
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EphAS-Fc in particular, and the other proteins to some extent, stained the tectal 

cell mass caudomedial to the tectal neuropil, with a sharp boundary at the edge 

of the neuropil. This suggests that the protein(s) it is detecting may have a role 

in preventing retinal ganglion cell axons from overshooting the neuropil; as has 

been suggested for ephrin-AS both in zebrafish, based on expression pattern and 

on in vitro activity (Brennan et al., 1997); and in mouse, based on expression 

pattern and on overshooting axons seen in mice lacking ephrin-AS (Frisen et al., 

1998). 

These proteins tended to stain not just rounded edge of the posterior tectum but 

also a straight transverse stripe more caudal to it. Such a stripe was not generally 

seen in our mRNA patterns, and it is possible that it represents protein localized 

to a commissure or to other processes distal from the cell bodies. Sections should 

help answer this question. It is intriguing that it seems to mark the 

midbrain/ hindbrain boundary, since these proteins have been suggested to play 

a role in boundary formation and regionalization early in development (Cooke et 

al., 2001; Mellitzer et al., 1999; Xu et al., 1995; Xu et al., 1996). 

Ligands detected by EphB-Fc receptor reagents 

EphBl-Fc 

Little or no signal was detected with the EphB1-Fc reagent (data not shown). 
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EphB2-Fc 

EphB2-Fc staining was prominent in the telencephalon, where it was strongest in 

the dorsomedial olfactory bulb (Fig. 111.4A, B). The olfactory pits were positive, 

and the olfactory nerve and nerve fiber layer in the bulb were very strongly 

stained (Fig 111.4A). There was light staining of the hindbrain surface, and 

possibly of the furrows in the ventricular zone; the leptomeninges were 

prominently stained as well (Fig. 111.4A). The cerebellum was strongly positive 

at st. 45 (Fig ill.4B). 

B 

EphB2-Fc, st 49 

D 

control, st 48 

m/h 

EphB2-Fc, st 45 

. . 
• . . 

. . . . · .; . 

control, st 48 

Figure 111.4: Ligands detected by EphB2-Fc receptor reagents. See Figure ill.l 

for key. 

(A) EphB2-Fc, st 49, lateral view. Fragments of leptomeninges (men) clinging to 

the brain are visible here because this reagent binds them. Staining is also seen 

in the olfactory pit (op), olfactory nerve (oln), olfactory nerve fiber layer (nfl), 
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and throughout the telencephalon (tel). Periodic staining in the hindbrain (hb) 

may correspond to rhombomeric furrows. The telencephalon/ diencephalon 

(t/ d) and midbrain/hindbrain (m/h) boundaries are indicated. 

(B) EphB2-Fc, st 45, dorsal view. Strong staining is seen in the telencephalon; 

fragments of meninges are positive as well. Staining is also seen in the 

cerebellum (cer). 

(C, D) Negative controls for (A) and (B) respectively, processed with secondary 

antibody only. Both are st. 48. 

Discussion: EphB-Fc reagents. 

The strong protein staining in the telencephalon is not surprising, given the 

strong expression of all three ephrin-B genes there. The same is true of the 

olfactory pits, cerebellum, and rhombomeric furrows. The protein binding to the 

leptomeninges is probably due to ephrin-Bl gene expression. 

CONCLUSION 

On the whole, we did not detect prominent binding of any of the protein 

reagents that could not be attributed to at least one of the mRNA expression 

patterns we observed. However, we did not perform as in-depth a study with 

the former as with the latter. 
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The affinity staining method provides a powerful counterpart to the mRNA in 

situ hybridization studies, and it would be useful to extend these studies further. 

It would be particularly beneficial to perform protein studies on tissue sections to 

achieve cellular resolution, as well as to detect proteins in the eye (as staining in 

the eye is not visible in wholemounts due to the pigmented epithelium, and is 

not reliable in wholemounts in any event due to reagent penetration issues; data 

not shown). 

MATERIALS AND METHODS 

Animals and animal protocols were as described in Chapter IV, except that 

embryos and tadpoles were reared without gentamycin or phenylthiourea. 

Chimeric proteins consisting of the extracellular domain of a mouse or human 

ephrin fused to a human immunoglobulin Fe domain were a gift from Dr. 

Nicholas Gale at Regeneron Corp. (Gale et al., 1996b). The ephrin-Al, -A4, -Bl, 

EphA2, -AS, -Bl, and -B2 fusion proteins were expressed in a baculovirus system 

and affinity-purified via their Fe domain; they were used at S J.lg / ml. The 

ephrin-A2, -AS, -B2, and EphA4 fusions were expressed in COS cells and the 

crude supernatant used at full strength. 

Staining was performed as follows based on the protocol of (Gale et al., 1996b), 

with the addition of blocking proteins to various steps to prevent sticking: 

Animals were anaesthetized in 200 J.lg/ml tricaine methanesulfonate in 

Steinberg's solution. The skin and dura mater (and the leptomeninges if 
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possible) were dissected away from the brain using sharp forceps and a 

microscalpel, and the roof of the hindbrain was pierced. The cement glands were 

ablated; they were found to cause the tissues to stick at later steps. Specimens 

were collected on ice in 2X Block, 1X Block consisting of 5% goat serum and 1% 

BSA in PBS. From this point on 0.02% sodium azide was added to all solutions 

and incubations were performed at 4° C, unless specified otherwise. Samples 

were preincubated at for 1 hr in 2X Block with gentle rolling, and then incubated 

overnight either in 5 pg/ ml of purified fusion protein in 1X Block, or in full­

strength COS cell supematant containing the fusion protein. Specimens were 

then rinsed 2X and washed 5X for 1 hr each in Block and fixed in 4% PFA in PBS 

plus Tween-20 (Sigma) for 5 hr to 0 / N. 

After fixation they were washed 3X for 15 min. each at RT in Block, heat­

inactivated at 70° C for 60 min. in Block without azide to destroy endogenous 

phosphatase activity, and rinsed once more in Block. The Block and other inert 

protein solutions used from this point until after the color reaction were similarly 

heat-inactivated; this was done before the addition of any detergent or azide. 

The samples were preincubated for 1 hr to 0 / N in antibody buffer, which 

consisted of Block plus 0.1% Triton-X100 (Sigma), and then incubated 0 / N in 

antibody buffer plus 1:1000 AP-conjugated goat anti-human-IgG antibody 

(Promega). After secondary antibody binding they were rinsed 2X and washed 

5X for 1 hr each in TBS containing 0.1% Triton-X100, 5% goat serum, and 1% 

BSA. They were then transferred to glass vials and washed for 15 min at RT in 

AP Buffer (100 mM Tris Cl pH 9.5, 100 mM NaCl, 5 mM MgC12, 5% goat serum, 

and 1% BSA; no azide). AP Buffer containing NBT and BCIP was then added 
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and the color developed at RT to the desired point (usually taking 15-60 min.). 

The reaction was stopped by washing 2X for 5 min. in Block plus Triton-X100, 

and the samples postfixed for 3 hr to 0/N in PFA containing 0.1% Tween-20. 

They were then washed 2X for 15 min each at RT in Block. 

Specimens were photographed with transillumination and / or epi-illumination 

on an agarose dish with a Roche high-resolution color video camera mounted on 

a dissecting microscope, and images were processed using Photoshop software 

(Adobe). 

Abbreviations: AP =alkaline phosphatase; BSA =bovine serum albumin; 0 / N = 

overnight; PBS = phosphate-buffered saline; PFA = paraformaldehyde; RT = 

room temperature; TBS = Tris-buffered saline; X = times. 



BACKGROUND 

177 

Chapter IV 

IN VIVO PERTURBATION ASSAYS 

Once the effects of candidate molecules for axonal guidance (or any other process 

of interest, for that matter) have been characterized in vitro-in isolation from 

other influences-it becomes important to ask what their effects are in vivo-in 

the context of the many other interacting factors present in an intact organism. 

This involves by some method specifically targeting the action of that molecule. 

There are a wide variety of successful strategies that have been used to 

accomplish this, each with its own advantages and disadvantages. 

One approach is via pharmacology-drugs and toxins. There are a wealth of 

these available, with more appearing every day. They are often commercially 

available, relatively cheap, and supported by a rich literature, and the best of 

them (for present purposes) combine these advantages with high specificity and 

a known mechanism of action. If there is a drug available that affects the process 

of interest, it can thus be a powerful tool. However, there are a much wider 

variety of targets to be studied (such as individual proteins, pathways, or 

processes) than there are drugs with which to study them, so in general only a 

small subset of problems will be amenable to this approach-certainly until the 

state of the art in rational drug design is much further advanced. 
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Another approach is via genetics-the study of naturally occurring or artificial 

mutations involving the gene of interest. This encompasses a wide range of 

possibilities, including complete and partial loss of function mutations, gain of 

function mutations overexpressing or ectopically expressing a gene, and 

dominant negative mutations expressing an altered protein that interferes with 

the normal process or pathway. The ability to target expression spatially with 

specific promoters and temporally with temperature-sensitive alleles or 

conditional mutations inducible or repressible by drugs, heat shock, or 

recombination add to the flexibility and power of this approach, because they 

allow the study of mutations at later times in development or adulthood that 

would otherwise be lethal early in embryogenesis if globally expressed. 

However, these approaches are only available in a limited number of organisms. 

One limitation is technological; techniques for genetic manipulation have not yet 

been developed in many organisms. But even once this barrier is overcome, 

another limitation is inherent in the long generation time of many organisms of 

interest-such as Xenopus, for example, which is a favorite of embryologists but 

takes a minimum of six months to reach reproductive age (Nieuwkoop and 

Faber, 1994). 

An alternative approach, especially in organisms with readily accessible embryos 

such as frogs, fish, or birds, is to introduce genes not into the germline but into 

the somatic cells, thus circumventing the generation time problem-the tradeoff 

being that it must be done anew for each individual. Included in this category 

are not only the expression of transgenes but also the partial or complete 
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inactivation of endogenous genes by strategies such as phosphorothioate 

antisense oligonucleotides or double-stranded RNA interference (RNAi). RNAi 

in particular results in long-lasting, essentially complete, and specific inactivation 

of genes in several species (Fire et al., 1998; Hammond et al., 2001). Injections of 

mRNA into blastomeres of frog and fish embryos have long been a simple and 

powerful tool for the study of embryogenesis in these animals. However, a 

drawback of injecting mRNA rather than DNA is the loss of control at the 

transcriptional level; injection can be targeted to single blastomeres, but aside 

from that is generally indiscriminate. It is thus difficult to study the action of 

genes later in development if they have significant phenotypes in the early 

embryo. Injection of DNA, while it adds more flexibility concerning when and 

where genes are activated, can be hampered a failure of them to be activated at 

all-either because an effective promoter for the species and cell type is not 

known, the DNA it is not transported into the nucleus, or it is inactivated by 

methylation (Asano and Shiokawa, 1993). Viral transfection, lipofection, and 

more recently electroporation have been successful tools for the introduction of 

DNA into later embryos of chick, frog, and other species (Atkins et al., 2000; 

Dwarki et al., 1993; Momose et al., 1999). One limitation of many approaches, 

however, including both injection and transfection, is that the expression thus 

achieved is transient; as the mRNA is degraded or the DNA is diluted or 

inactivated, expression is lost. An exception is retroviral vectors, which can be 

used to achieve stable transfection (Cepko et al., 2000; Iba, 2000). One drawback 

to viral transfection methods, however, is that they are generally limited by the 

relatively small length of DNA that can be delivered and by the host range of the 

vector. Another factor to b e considered with many of these procedures, 
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especially the injection of DNA, is that the expression achieved is mosaic, which 

is advantageous for some studies but disadvantageous for others. 

A fourth possible approach is the local application of the protein itself. This is 

perhaps the most generally applicable method, requiring only that the region be 

accessible to injection, infusion, or some other means of delivery and that the 

protein be available and stable enough for handling and delivery. It does require 

a sufficient supply of the protein, obtained either through biochemical 

purification or heterologous expression; it is thus more expensive and involved 

than some of the other approaches. On the other hand, it is not limited to cloned 

genes; biochemical fractions or crude extracts can be assayed for a desired 

activity. Like transient transfection, it is limited by the lifetime of the reagent in 

vivo; however, the reagent can be applied repeatedly or continuously and affects 

all cells it reaches. 

INTRODUCTION 

We wanted to study the effect of Eph-ephrin interactions on the development of 

retinotectal topography. This process occurs in post-embryonic life, starting at 

around st. 39 (Holt and Harris, 1983; O'Rourke and Fraser, 1990; Sakaguchi and 

Murphey, 1985). These proteins, however, have been shown-generally via 

abnormal phenotypes obtained by blastomere injection-to play many important 

roles in earlier development in either Xenopus or zebrafish: axis formation 

(Tanaka et al., 1998), cell adhesion in the blastula (Winning et al., 1996), 

gastrulation movements (Oates et al., 1999), regionalization of the forebrain (Xu 
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et al., 1996) and hindbrain (Xu et al., 1995), and cranial neural crest migration 

(Helbling et al., 1998; Smith et al., 1997). Our studies were thus a less than 

optimal candidate for blastomere injection methods, as even if the resulting 

animals survived we would not have known whether their later visual systems 

were normal. One possible approach was viral transfection, and we conducted 

some preliminary experiments along those lines, but without much success. 

We thus focused our main attention on the fourth method, application of the 

proteins themselves. This approach had proven successful in our laboratory for 

perturbation experiments applying Eph and ephrin family proteins to a different 

model system, namely trunk neural crest migration, where they were found to 

disrupt the normal segmental migration pattern through the rostral halves of the 

somites (Krull et al., 1997). It had also proven successful for perturbation 

experiments applying different proteins, namely neurotrophins, to the frog 

retinotectal model system; in those experiments BDNF was found to increase the 

branching and complexity of individual arbors during the time period when they 

are searching out appropriate connection sites in the tectum (Cohen-Cory and 

Fraser, 1995). We reasoned that if ephrins were involved in retinotectal 

mapping, ubiquitous presence of soluble forms of these proteins would interfere 

with the formation of proper topography. Furthermore, we believed that any 

alterations in the dynamics of axonal behavior while the axons were establishing 

appropriate connections were likely to provide important clues concerning the 

nature of the process-clues that would be difficult to glean from either in vitro 

assays, where the axons are not interacting with the full set of cues in their 



182 

natural environment, or static studies that require sacrificing the animal at a 

given timepoint. 

We assessed the effect of exogenous ephrins on retinotectal topography via the in 

vivo imaging paradigm diagrammed in Figure IV.1 (O'Rourke and Fraser, 1990). 

While our ultimate goal was to characterize differences between experimental 

and control groups via timelapse videomicroscopy of retinal ganglion cell 

behavior, the results of these timelapses were inconclusive. Since only one 

timelapse can be performed per day per laser scanning confocal microscope, we 

also needed a simpler assay that could be used for pilot experiments on a larger 

number of animals to hopefully detect the existence of some effect and 

characterize its nature. We therefore chose to compare two timepoints for each 

animal, separated by one day. 
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(A) Day 1: Label 

/ 
(B) Day 2: Screen 

(C) Day 2: Inject protein 

/ 
_ (D) Day 2.5: Boost protein 

(E) Day 3: Reimage 

Figure IV.l: Experimental paradigm for in vivo perturbation experiments. (A) 

On Day 1, small focal injection of a lipophilic tracer (Dil or DiD) is made in one 

side of the retina. (B) On Day 2, after the tracer has diffused down the length of 

the retinal ganglion cell axons, animals are screened under a microscope for 

fluorescent retinal ganglion cell terminal arbors in the tectum. Those that show 

good labelling of one or a small number of easily distinguished arbors are 
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selected for further use, and their terminal arbor images recorded. (C) These are 

split into experimental and control groups. The experimental group receives an 

injection into the brain of the heterologously expressed ephrin-Fc fusion 

protein(s) being tested, while the control group receives an inactive substance. 

The proteins are injected in each animal both subdurally and intraventricularly. 

The former deposits a high concentration of material at the pial surface, precisely 

where incoming retinal ganglion cell axons are navigating, while the latter places 

a reservoir of material in the large volume of the cerebral ventricles, greatly 

increasing the total amount that can be injected into the brain. (D) Additional 

injections of protein are given at twelve hour intervals; usually our experiments 

covered twenty-four hours, requiring one such booster injection. (E) On Day 3 

the animals are once again imaged. The starting point images from Day 2 and 

the endpoint images from Day 3 for each animal are then compared to one 

another. 

RESULTS AND DISCUSSION 

We performed the above experiments, including both startpoint/endpoint assays 

and timelapse videos, under a variety of experimental conditions. The main 

variables were as follows: 

• Temporal vs. nasal retina. For most experiments we chose the temporal retina. 

Since temporal retinal ganglion cells in other species express higher 

concentrations of the receptor (Cheng et al., 1995; Connor et al., 1998; Marcus et 
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al., 1996) and are more sensitive to repulsion by ephrins (Brennan et al., 1997; 

Drescher et al., 1995; Monschau et al., 1997), we expected that they would be 

more likely to yield a detectable phenotype. However, nasal retina was also 

explored in some experiments. 

• Protein injected. We focused our main attention on the A subclass, since these 

are the proteins that have been implicated in nasotemporal map formation via 

repulsive guidance in other species (see references and discussion in Chapter I). 

B-subclass proteins, however, are also expressed prominently in the visual 

system (see Chapter II). In order to fully explore the possibilities, we also 

included these in some of our experiments. 

In principle, either exogenous receptor or exogenous ligand could be expected to 

yield a phenotype. In practice, however, exogenous ligand has sometimes been 

more successful (Krull et al., 1997), possibly because it is more difficult to 

sequester all of the endogenous ligand molecules with the exogenous receptor 

(especially given that adaptation to altered baseline levels of ligand may be 

occurring in the signal transduction pathway) than to swamp the endogenous 

ligand signal with excess ligand. We therefore used ephrin-Fe fusion proteins in 

these experiments. 

• Multimeric state. The applied reagent may function as either an agonist, 

binding to and activating the receptor, or as a competitive antagonist, binding to 

the receptor but not capable of activating it. Which of these occurs will in 

general depend upon the multimeric state of the ligand: monomer, dimer, or 
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tetramer. Because signalling it thought to require crosslinking of at least two 

receptor molecules, allowing them to phosphorylate each other, a monomeric 

soluble ligand is expected to act as an antagonist, blocking binding by 

endogenous molecules, while a dimer is expected to act as an agonist, causing 

ubiquitous signalling. Furthermore, the tetramer can have additional signalling 

capabilities over the dimer, for reasons that are not entirely clear but may 

involving recruitment of additional proteins to the tetrameric complex (see 

Chapter I). 

In neural crest studies both monomeric and dimeric ligands caused migrating 

cells to inappropriately enter the caudal sclerotome, but the cells that did migrate 

through the rostral sclerotome behaved differently with monomeric vs. dimeric 

perturbant (Krull, 1998). In the presence of monomeric ligand, cells in the rostral 

sclerotome migrated with normal trajectories, while those in the caudal migrated 

very erratically. This set of behaviors was interpreted as consistent with action 

as an antagonist. In the presence of dimeric ligand, on the other hand, cell 

trajectories in both rostral and caudal sclerotome were highly erratic, a behavior 

interpreted as consistent with action as an agonist. 
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Figure IV.2: Multimerization of Fe protein reagents. Ephrin-Fc polypeptide 

monomers spontaneously homodimerize v ia their Fe moieties. Each dimer binds 

two Eph receptor monomers, activating them by bringing them together and 

allowing their intracellular kinase domains to phosphorylate each other. A 

higher-order tetrameric complex can be formed by incubating the ephrin-Fe 

protein with an anti-Fc antibody. 

We experimented with both dim eric (Fe fusion) and tetrameric (crosslinked Fe 

fusion) forms. We expected either of these to act as agonists, which would likely 

result in retinal ganglion cell axons experiencing spurious repulsive signalling. 

This might be expected to cause them to stop more rostrally than they otherwise 

would. In order to assess this possibility quantitatively, w e measured the change 
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in maximum caudal extent between starting timepoint and ending, as 

diagrammed in Figure IV.2. However, we were not able to detect such a 

phenotype-or any other-under any of the conditions we tried. 
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Figure IV.3: Measuring change in maximum caudal extent of an arbor. Images 

from the starting point and endpoint of the experiment are aligned using a 

fiducial point at the rostral end of the tectum-usually the rostralmost 

branchpoint of the arbor, which was never seen to undergo remodelling in this 

set of experiments. The distance x = b - a is then measured. 

Results for an experiment designed to maximize our chances of producing 

signalling in temporal axons are shown in Figures IV.3 and IV.4 and Table IV.l. 

Focal injections large enough to label several fibers were made into the right 

temporal retina. The experimental group was then injected with a cocktail of 

ephrin-Al-, -A4-, and -AS-Fc that was clustered into tetramers by preincubation 
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with anti-Fc antibody. The control group was injected with anti-Fc antibody 

alone. Endpoint images were collected at 14 hrs. after protein injection, since we 

thought it possible that there was an early effect that might be lost after the 24 

hrs., the duration of previous experiments. Figure IV.3 shows starting (t=O) and 

ending point (t=14 hr) images for two typical animals, one experimental and one 

control. Table 1 shows the statistics collected from this experiment; the 

difference between experimental and control groups was not statistically 

significant (two-tailed Student's t test). 

Mean 

Std. deviation 

N 

Experimental 

23.4 }liD 

36 }liD 

8 

Control 

5.0 }liD 

26 }liD 

6 

Table IV.l: Effect of ephrin-A-Fc protein injections on arbors. Change in 

caudal-most extent was measured in microns for each animal. Statistics are 

given for experimental and control groups for the experiment described in the 

text. N is the number of animals in each group. 
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Figure IV.4: Changes in retinal ganglion cell arbors, predustered ephrin-A-Fc 

treatment. Top views of the left tectum; anterior is to the left. Each fluorescence 

image was collected with a laser scanning confocal microscope as a stack of 

optical sections, allowing the reconstruction seen here of a three dimensional 

picture of the arbor. Each fluorescence image is presented here as a stereo pair of 

projections. The left and right images can be viewed individually or can be fused 
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into a single 3D image by crossing one's eyes. Several labelled axons in each 

animal can be seen coursing up the optic tract (otr) from the lower left and 

spreading over the tecta! neuropil (tn), which is located towards the anterior of 

the optic tectum (ot). (A) Fluorescence stereo pair image at t=O; "exp" indicates 

the experimental (ephrin-A) treatment. (B) The same at t=14 hr. (C) 

Fluorescence image overlaid on a brightfield image of the tectum at t=14 hr. This 

is not a stereo pair, but rather the same flat image repeated twice for the 

convenience of the cross-eyed in viewing the stereo pairs above. The tecta! 

ventricle (tv), tecta! neuropil (tn), dorsal third ventricle (3v), and melanocytes 

(mel) are labelled. 
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Figure IV.S: Changes in retinal ganglion cell arbors, negative control 

treatment. Animal was injected with secondary antibody only, indicated by 

"ctl." Arrangement and key are the same as Figure IV.3. 
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As might be expected based on the standard deviations seen in Table 1, a wide 

variety of retinal ganglion cell behaviors were observed. Some fibers were 

simple, unbranched ones that were just reaching the tectum, while others were 

more complex arbors that were undergoing remodelling. Most grew onto the 

central region of the tectal neuropil, while others (presumably from the ventral 

retina) took a distinct pathway along its medial edge. Because the number of 

individual arbors studied in each experiment was relatively small, we wanted a 

different way to visualize large numbers of them. This would allow us both to 

get a more accurate portrait of the range of normal paths and to detect any 

differences between experimental and control animals that might be visible when 

large numbers of arbors were massed together, or any defects affecting only a 

small percentage of fibers in any given animal. For these purposes we made 

larger injections of Dil covering about a quadrant of the eye. These experimental 

animals were treated with a preclustered cocktail containing both ephrin-A-Fc's 

and ephrin-B-Fc's (Al, A4, AS, Bl, and B2). The negative control animals were 

treated with secondary antibody plus untransfected COS cell supernatant. 

Typical results are shown in Figures IV.S (experimental) and IV.6 (control). We 

did not observe any significant differences between experimental and control 

animals. However, these injections were indeed quite useful in displaying the 

range of normal axonal behaviors. In particular, it can be seen in the negative 

control (Fig. IV.6) that a small number of axons take a more medial path than the 

majority; these were occasionally seen with the focal dye injections, but with the 

smaller injection size it was not clear whether or not they were aberrant. 
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Figure IV.6: Large dye injection, ephrin-A+B-Fc cocktail treatment. Dil was 

injected into the retina covering approximately the temporal quadrant. See text 

for details. Images were taken of fluorescently labelled retinal ganglion cell 

axons in the tectum as described in Fig. N .3. 
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Figure IV.7: Large dye injection, negative control. See Figure IV.S and text for 

details. 

One possible explanation for the lack of effect was that the proteins were not 

reaching the right part of the tissue or were not remaining there long enough. To 

rule out this possibility, we performed histochemistry to detect fusion protein 

complexes in animals sacrificed at various times after protein injection. This was 

done by using an alkaline phosphatase conjugated secondary antibody to 

crosslink the ephrin-Fc's and then processing with alkaline phosphate 

chromogenic substrate. No signal was seen in a mock-injected animal (Fig. 

IV.7 A). One hour after injection of ephrin-A-Fc protein, it was present not only 
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throughout the thickness of the cerebral wall, but also in tissues throughout the 

entire tadpole (Fig. IV.7B). At twelve hours after injection even more protein had 

diffused into the tissue (Fig. IV.7C). At eighteen hours substantial amounts of 

protein were still remaining (Fig. IV.7D). We concluded that our protocol, in 

which animals were boosted with protein injections at twelve-hour intervals for 

the course of each experiment, was more than adequate. 

brain { . . 

NoFc 

12 hr after 
injection 

·CJ 
A 

c 

1 hr after 
injection 

18 hr after ., 
injection 

Figure IV.8: Perturbant Detection. Purple reaction product indicates the 

presence of fusion protein/ antibody complex in the tissues at the indicated 

timepoint after protein injection (see text and Materials and Methods). 

B 

D 
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CONCLUSIONS 

Why didn't we see a phenotype in these perturbation experiments? One possible 

explanation is trivial: the proteins injected did not retain activity during the 

course of storage, handling, or in the tissue, or did not bind to their xenospecific 

counterparts in frog. We were able to detect the Fe moiety in the brain after the 

perturbation injections via immunohistochemistry, which gives us confidence 

that intact protein was present. However, it is possible that the Fe domain was 

more stable than the ephrin. It is also possible that the ephrin was cleaved from 

the Fe domain, as we later saw with our Xenopus ephrin-A1-Fc protein (see In 

vitro Assays). Finally, it is possible that the mammalian ephrin proteins we used 

did not bind well to Xenopus Eph's. Because we were able to use these same 

proteins successfully as affinity staining reagents in Xenopus (see Protein 

Expression Pattems), we think this class of explanations unlikely, but it cannot be 

entirely excluded. 

Another possible explanation is that an effect was present, but it was too subtle 

to be obvious by inspection. The effect of BDNF mentioned above, for example 

(Cohen-Cory and Fraser, 1995), was definitively established only by a more 

sophisticated statistical analysis of arbor complexity on a large number of 

timelapse datasets. However, the effect itself was qualitatively evident, which is 

what motivated the statis tical analysis. One can always hypothesize an effect 

that was too subtle to be detected, but operationally we classify such 

explanations with a complete lack of effect. What our experiments clearly rule 
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out is a large class of a priori possible phenotypes, such as failing to enter the 

tectum, failing to proceed a reasonably normal distance into it, failing to arborize 

in a reasonably normal fashion, and overshooting the caudal border of the 

tectum. 

A more interesting possibility is that we were not looking at the right time 

during development. Our endpoint imaging was carried out at about st. 45-46. 

At this time in normal development individual arbors are still spread out over a 

large portion of the tectum in the rostrocaudal dimension (O'Rourke and Fraser, 

1990). Although there is some evidence that very early in development, at st. 37-

39, the unbranched termini of early-arriving fibers project to topographically 

correct rostrocaudallocations (Holt and Harris, 1983; Sakaguchi and Murphey, 

1985), it is clear that at the stages we were examining there is little more than a 

subtle bias in the extent of arborization in the correct half of the tectum, and that 

topographic order is then gradually established as the tectum grows while the 

average arbor size remains relatively constant (O'Rourke and Fraser, 1990). It is 

possible that had we continued the experiment we would have seen a defect in 

the emerging topographic order, although other mechanisms such as electrical­

activity-dependent refinement might be able to compensate. It is also possible 

that had we looked much earlier, at around st. 39, we would have seen a defect 

in the early targeting. This early targeting seems quite likely to depend upon 

chemoaffinity-based mechanisms, as it is defectiv e in heterochronic transplant 

experiments in which retinal ganglion cell axons precociously innervate 

immature tecta (Chien et al., 1995). 
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Finally, it is possible that differential Eph-ephrin interactions do not play a role 

in establishing retinotectal topography in Xenopus, or-more likely-that other 

cues are able to compensate when they are disrupted. 

MATERIALS AND METHODS 

Animals 

Adult wild-type or albino Xenopus laevis were obtained from U.S. commercial 

suppliers (Xenopus I, Ft. Atkinson, WI and Nasco, Ann Arbor, Ml), and a colony 

were maintained at 18° C on a 12 hour light/ dark cycle. Females were induced 

to spawn by injection of human chorionic gonadotropin, and eggs fertilized in 

vitro using minced tissue from testes. Embryos and tadpoles were raised in a 

modified rearing solution consisting of 20% Steinberg's solution, 10 pg/ml 

gentamycin, and 0.3% phenylthiourea to inhibit pigment formation in the retinal 

pigmented epithelium and melanocytes (facilitating injections and imaging, 

respectively). They were staged according to (Nieuwkoop and Faber, 1994), and 

were anaesthetized using 125 pg/ml tricaine methanesulfonate (MS-222). 

Injections 

For visualizing individual arbors, st. 39-41 tadpoles were anaesthetized and a 

focal injection of 0.5% Dil C18(3) ("Dil") or Dil C18(5) ("DiD") (Molecular Probes) 

in 95% ethanol was made into the nasal or temporal retina via pressure injection 

with a sharp electrode or via iontophoresis. In some cases, animals were double 

labelled with Dil in the nasal retina and DiD in the temporal. For visualizing 
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quadrants the Dil or DiD solution was diluted 1:100 in 300mM sucrose and a 

larger pressure injection was made. 

Chimeric proteins consisting of the extracellular domain of a mouse or human 

ephrin fused to a human immunoglobulin Fe domain were a gift from Dr. 

Nicholas Gale at Regeneron Corp. (Gale et al., 1996b). The ephrin-A1-Fc, -A4-Fc, 

and -B1-Fc were expressed in a baculovirus system and affinity-purified via their 

Fe domain; they were used at 340, 84, and 500 pg/ml, respectively. The 

ephrin-AS-Fc and -B3-Fc were expressed in COS cells and the crude supernatant 

used directly. All of the above were injected into brains at full strength. When 

cocktails were used the purified proteins were mixed at 1:1 molar ratios and COS 

supernatants were added at a ratio of approximately 20 pl of COS supernatant 

per 1 pg of each purified protein. Proteins were crosslinked by preincubating 

with anti-human H+L IgG (Promega) at a 7:1 molar ratio of antibody to fusion 

protein at room temperature for 1 hr (Wang and Anderson, 1997). The control 

group received an injection of vehicle, secondary antibody, and/ or untransfected 

COS cell supernatant as appropriate (control proteins consisting of only the Fe 

domain were not available at the time). Phenol red was added to the protein 

solutions in order to be able to see the injections. Injections were repeated at -12 

hr intervals. 

Imaging 

For imaging on an inverted microscope (either short-term viewing or timelapse), 

tadpoles were placed upside-down in a small amount of rearing solution 
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containing anaesthetic in a porthole dish. The dish was constructed by drilling a 

-1.5 em hole out of the center a plastic petri and covering the hole with a 

coverslip held in place by melted paraffin. A fine nylon mesh was draped over 

the animal to hold it in place, and the dish was covered and kept humidified. 

For imaging on an upright microscope (short-term viewing only) the animal was 

mounted right-side-up in the porthole dish and covered with a second coverslip. 

Images were collected on a BioRad MRC-600, Zeiss 310, or Zeiss 410 laser 

scanning confocal microscope or on a custom-built two-photon microscope 

(Potter et al., 1996). Serial optical sections of fluorescence in the tectum (usually 

-10 sections total per tectum) were collected at 5 pm intervals with a 40X/ 0.75 

N .A . Plan NeoFluar objective. A brightfield image was also collected. For 

timelapse imaging one such Z-series was collected per hour for -12 hr. Images 

were processed with NIH Image and Adobe Photoshop software. 

Perturbant detection 

An alkaline phosphatase conjugated antibody was used to crosslink the 

ephrin-Fc fusion proteins as above. Negative control animals were sacrificed 

after mock injection without antibody. Experimental animals were sacrificed at 

timepoints of 1 hr., 12 hr., and 18 hr. They were reacted with NBT / BCIP alkaline 

phosphate substrate, and then embedded in O.C.T embedding m edium (Tissue­

Tek) and 20 pm sections cut on a cryostat. Slides were photographed under 

brightfield optics using a 5X objective on a Zeiss Axioplan microscope equipped 
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with a high-resolution color video camera (Roche). Images were processed with 

Photoshop software (Adobe). 

Abbreviations: Dil = 1,1 '-Dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine 

perchlorate; NBT = nitro blue tetrazolium; BCIP = 5-bromo-4-chloro-3-indolyl 

phosphate; N.A. = numerical aperture; 
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ChapterV 

IN VITRO AXONAL GUIDANCE ASSAYS 

INTRODUCTION 

Stripe choice assays, developed by Dr. Friederich Bonhoeffer and colleagues 

(Vielmetter et al., 1990; Walter et al., 1987), have been widely used for the in vitro 

study of axonal guidance and other cell migration behaviors (e.g ., Drescher et al., 

1995; Krull et al., 1997; Monschau et al., 1997). In these assays, two substances 

are applied in narrow alternating stripes on a tissue culture substrate. Neurons 

(or other cells of interest) are then grown on this substrate, presenting the growth 

cones at the tips of growing neurites with a choice between the two substances. 

If one of the substances either repels or attracts the neurites, a striped pattern of 

outgrowth is seen; if the neurites display no preference, the outgrowth is 

random. Using this assay, cellular responses to the multitude of guidance cues 

present in vivo can be dissected apart. Ideally the understanding gained in such 

an analytic model system will then yield predictions that can be tested in vivo or 

in some other way contribute to further synthetic work, increasing our 

comprehension of the biological system as a whole. 

The stripes are formed by a silicone mold (Fig. V.1A); it is applied to the 

substrate and filled with a solution containing three things: a) the protein (or 

other substance) of interest, b) an appropriate permissive substrate such as 
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polylysine and laminin, and c) a fluorescent or other type of label (Fig. V.lB). 

These substances adsorb to the surface where and only where the channels of the 

mold allow contact. The mold is then removed, leaving behind a striped pattern. 

A second solution containing just the permissive substrate is overlaid over the 

entire surface. It binds primarily to the interstripes, most of the adsorptive sites 

in the stripes having already been occupied by the first protein solution. (Figure 

V.lB illustrates an additional overlay used in the indirect method of applying 

proteins; see below.) 

The stripe assays were originally developed for studies of the retinotectal 

projection. In these studies, the contributions of substances that might contribute 

to the development of the correct retinotopic ordering were assayed via their 

differential effects on nasal versus temporal retinal ganglion cell axons. This can 

be done using retinal explants consisting of narrow strips of embryonic chick 

retina running from the nasal to temporal edges, which are placed on the 

substrate at right angles to the stripes. The axons of the retinal ganglion cells 

then grow out onto the striped substrate and render their verdict. 
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Figure V.l: Stripe assay protocol. (A) A schematic of the silicone molds used for 

creating striped substrates. A solution containing the substances to be deposited 

is injected via a short piece of tubing into the inlet and allowed to adsorb to the 

surface of the dish. Not to scale. (B) A cartoon illustrating the indirect protocol 

(see below) for laying down substances on a substrate using a mold. See text for 

description. 

RESULTS AND DISCUSSION 

We performed stripe assays using embryonic chick retina explants as described 

above. In all cases, the choice presented was between permissive substrate in the 

interstripe and permissive substrate plus fusion protein in the stripe. The genes 

for the proteins used here were of mammalian origin, but the strong sequence 

conservation among species (Helbling et al., 1999; Scales et al., 1995) and the 

many existing reports of functional activity across species (e.g., Xu et al., 1995; 

Oates et al., 1995) gives us confidence that these proteins will be active in this 

system. Ephrin-A1-Fc and ephrin-A4-Fc were both available as purified 

proteins; a cocktail combining the two was used in most experiments. The work 

reported below also includes data from 2 dishes containing ephrin-A2-Fc alone 

and one dish each containing respectively ephrin-A1-Fc alone, ephrin-A4-Fc 

alone, or ephrin-A5-Fc alone. We also tried a Xenopus ephrin-A1-Fc, but the 

results of those experiments are not included in this data analysis. Only a weak 

response was seen, and upon examination of the protein stock by gel 

electrophoresis it was found that the ephrin domain had been quantitatively 
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cleaved from the Fe domain and degraded into two fragments (data not shown). 

It is now known that repulsive signalling by ephrins requires that the bound 

ephrin be cleaved from the presenting cell by a metalloprotease upon binding 

(Galko and Tessier-Lavigne, 2000; Hattori et al., 2000); we might speculate that 

the protease(s) responsible for this cleavage were able to attack the ephrin fusion 

protein. 

Axonal response was scored on a scale from -5 to 5 as follows, with negative 

values indicating avoidance and positive indicating attraction: 

0 no visible response 

0.5 questionable or very slight response 

1 slight response; bias clearly detectable 

2 some response; some fibers guided, some not 

3 substantial response; a majority of fibers guided 

4 strong response; occasional fibers violating 

5 complete response; few or no fibers violating 

Each dish was divided roughly into nasal, central, and temporal thirds, and each 

sector that contained outgrowth scored separately. An overall score was then 

calculated for each dish by averaging the three subscores. The mean of these 

overall scores for various experimental conditions is shown in Table V.l and 

Figure V.2 under "Net," indicating the net tendency of the axonal behavior. (The 

data in Figure V.3 are identical to those in Table V.l, presented in graphical form 

for greater clarity.) 
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No. Dataset Protein(s} Net Abs Range N 

0 All 
ephrin-A-Fc -0.24 1.71 -4,4 19 
Fc-only 0.25 0.25 0, 1 6 

Nitrocellulose 
ephrin-A-Fc -3.50 3.50 -4,-3 2 

1 
Fc-only 0.25 0.25 0, 0.5 2 

APTES 
ephrin-A-Fc 0.15 1.50 -3,4 17 
Fc-only 0.25 0.25 0, 1 4 

5X cone difference 
ephrin-A-Fc -1.11 2.11 -4,3 9 

2 Fc-only 0.13 0.13 0, 0.5 4 

2X cone difference ephrin-A-Fc 0.55 1.35 -2,4 10 
Fc-only 0.50 0.50 0, 1 2 

Direct application ephrin-A-Fc -1.00 2.40 -3,3 5 

3 Fc-only 0.00 0.00 0, 0 2 

Indirect application ephrin-A-Fc 0.04 1.46 -4,4 14 
Fc-only 0.38 0.38 0,1 4 

Dish preincubated ephrin-A-Fc -0.29 1.83 -4,3 12 

4 Fc-only 0.10 0.10 0, 0.5 5 

Used immediately ephrin-A-Fc -0.14 1.50 -2,4 7 
Fc-only 1.00 1.00 1, 1 1 

Nasal ephrin-A-Fc -0.08 1.24 -4,3 19 
Fc-only 0.25 0.25 0,1 6 

5 Central ephrin-A-Fc -0.56 1.56 -4,4 17 
Fc-only 0.25 0.25 0, 1 6 

Temporal ephrin-A-Fc -0.24 1.32 -4,3 17 
Fc-only 0.25 0.25 0,1 6 

Table V.l: Axon guidance score statistics for ephrin-A-Fc's. The top pair of 

lines (No. 0) show results for the full dataset consisting of all ephrin-A-Fc-

containing dishes and all Fc-only dishes respectively. Subsequent sets of lines 

show various partitions of this dataset by other variables discussed below. "Net" 

is the mean of the overall score (an average of nasal, central, and temporal) for 

each d ish (except for the bottom three lines, where it is the mean of the 

individual score for the indicated sector). "Abs" is the mean of the absolute 

value of the maximum score seen in each dish. "Range" is the range of 

individual subscores seen (minimum,maximum), and "N" is the number of 

dishes. "No." corresponds to the numbered section in the text below. 
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Figure V.2: Axon guidance score graph. This chart presents some of the data 

from Table V.l in a graphical format. See text and Table 1 for definitions. Labels: 

ephrin = ephrin-Al-Fc; Fe = Fe domain only; NC =nitrocellulose; SX or 2X = SX 

or 2X concentration differential respectively; Direct= direct application; Indir = 

indirect application; Preinc = dish preincubated; Immed = dish used 

immediately; N = nasal; C = central; T = temporal. 
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Surprisingly, both attraction and avoidance were frequently seen-sometimes in 

neighboring areas of the same dish-when axons were given a choice between 

permissive substrate alone or permissive substrate plus ephrin-A-Fc's (Fig. V.3). 

Also surprisingly, no significant differences were observed across nasal, central, 

and temporal sectors. In contrast, little response of any kind was observed in 

negative control experiments with a choice between permissive substrate alone 

or permissive substrate plus an unfused Fe domain (Fig. V.3C; Table V.1 / Fig. 

V.2). 

In order to assess in the broadest possible sense whether there was any cell 

biological response to the proteins, the maximum absolute value seen in each 

dish was taken as the figure of merit; its mean for various sets of dishes is shown 

under "Abs" in Table V.1 / Figure V.2. The difference between the Abs values of 

ephrin-A-Fc's and control Fe's for the full data set (Table V.1, Pair 0) is 

statistically significant at the 0.025level (1-tailed Student's t test). There are two 

caveats to this statistical analysis. First, the researcher assigning scores was not 

blind to the experimental conditions while doing so. Second, these are arbitrary 

semi-quantitative measures; the conclusion will be accurate only to the extent 

that these numbers scale linearly with some true physical variable. These 

problems could both be overcome if desired, but in light of our analysis below 

we feel it would be more fruitful at this point to gather additional data than to 

try to get more mileage out of this preliminary dataset. 
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Figure V.3: Photomicrographs showing examples of axonal behaviors. The phase 

contrast image is shown in gray; the fluorescence image showing the stripes in red, 

which mark the presence of the fusion protein, is overlaid. (A,B) Two different regions 

of the same dish, treated with direct application of SX ephrin-A2-Fc onto APTES (see 

text below). In Panel A, taken from far temporal end of the explant, axons and fascicles 

are growing preferentially on the stripes containing the ephrin-A2-Fc; in Panel B, taken 

from the center, they are growing preferentially on the interstripes. Because A is more 

proximal to the filter than B there is more cellular debris and extracellular matrix 

(speckling) present on the surface. However, we did not in general observe any 

correlation between the effect seen (attraction vs. repulsion) and the distance from the 

explant (data not shown). (C) A negative control dish from the same set of experiments 

treated with direct application of SX Fe domain onto nitrocellulose. No guidance is 

apparent. The advantage in optical clarity of the APTES (A,B) over the nitrocellulose 

(C) is apparent; however, the greater amount of label on the nitrocellulose in this 

experiment is also apparent. (The raw difference in fluorescence intensity is actually 

greater than that shown here; all overlays have been adjusted in brightness to allow the 

phase contrast image to show through well.) The edge of the explant (white) and the 

filter strip supporting it (black) appear at the top in A and C. The subtle white 

concentric banding is an optical artifact. 
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Various protocols were tried for applying the substrate proteins to the dish. The 

main variables were as follows: 

1. Nitrocellulose vs. aminopropyltriethoxysilane (APTES) for adhesion to the 

surface (Table V.1, No. 1). Nitrocellulose is used to coat plastic tissue culture 

dishes, whereas APTES is used to derivatize glass cover slips. The proteins are 

then adsorbed onto these surfaces. The APTES method has the advantage of 

optical clarity for imaging purposes. In pilot experiments approximately equal 

amounts of protein were bound to both substrates, so APTES was used. 

However, in later experiments it was found that the nitrocellulose generally 

bound greater amounts of protein (data not shown) and was more effective at 

obtaining axonal responses. 

2. Concentration differential between the solutions applied to stripes and 

interstripes (Table V.1, No. 2). Because the solution applied in the mold is 

present in much smaller volumes and is less free to mix during the incubation 

than the bulk solution applied after mold removal, smaller total amounts of 

protein are deposited on the stripes than the interstripes if equal protein 

concentrations are used in the two solutions. It is thus necessary to use a higher 

concentration in the first solution in order to obtain roughly equal amounts of 

permissive substrate. This concentration differential is determined empirically; 

various values have been used in the literature, ranging from two-fold (2X; Wang 

and Anderson, 1997) to five-fold (SX; Vielmetter et al., 1990). We initially used 

2X, but in subsequent optimization trials SX was found to give a more uniform 
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substrate judged by fluorescence intensity of an inert marker (data not shown), 

as well as a stronger axonal response. 

3. Direct vs. indirect application of the ephrins (Table V.1, No. 3). In direct 

application the ephrin-Fc fusion protein itself is injected into the stripe mold, 

whereas in indirect application an anti-Fc antibody is injected into the mold and 

then the ephrin is applied in an overlay after mold removal. The latter approach 

has been used with good effect (Krull et al., 1997; Wang and Anderson, 1997). Its 

main advantage is that any spurious activities present due to other constituents 

of the ephrin-containing solution will be distributed equally over stripes and 

interstripes; only the Fe fusion protein will be preferentially localized to the 

stripes. This is particularly important when crude cell culture supernatants are 

used as the source of ephrins, as was the case in some of our experiments. (In 

other cases, including all of the data presented here, purified proteins were 

available). However, there are also pitfalls to the indirect application approach. 

In particular, results may be confounded by nonspecific binding of ephrins to 

any unblocked sites on the substrate surface. 

The ephrin-Fc fusion protein, which is dimerized via its Fe moiety, can be further 

crosslinked into a tetramer by binding of one dimer to each arm of an anti-Fc 

antibody. There is reason to believe that the tetrameric form may be more 

effective than the dimeric at inducing certain responses (Stein et al., 1998b); (see 

discussion in Chapter 1). This was another reason for preferring the indirect 

binding method. Empirically, however, we found direct application to give the 

stronger response. In future experiments it may prove even more effective to 
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crosslink the dimers into tetramers by preincubating them with anti-Fc antibody 

before applying them to the dish. 

4. Preincubation of the substrates overnight in explant culture medium (Table 

V.1, No. 4). This was found to yield more robust neurite outgrowth, presumably 

due to permissive serum proteins from the medium coating the substrate. The 

guidance of axons by the stripes was not substantially affected, although there 

was slightly more response after preincubation, probably reflecting the greater 

scoreable outgrowth. 

Both ephrin-A2 and ephrin-A5 have previously been found to repel temporal 

retinal ganglion cell axons; ephrin-A5 also repels nasal ones, although to a lesser 

degree (Drescher et al., 1995; Hornberger et al., 1999; Monschau et al., 1997; 

Nakamoto et al., 1996; Rosentreter et al., 1998). Most of our present data, 

however, was collected with ephrin-A1-Fc plus ephrin-A4-Fc, those being the 

proteins we had on hand. We wanted to know whether the difference in 

behavior reflected different responses to different family members or whether 

some other factor was at work. We thus obtained some ephrin-A2-Fc and 

ephrin-A5-Fc (a kind gift of Dr. Uwe Drescher) and tested them in the stripe 

assay. 

Much to our surprise, we again found a mix of attraction and repulsion. When 

axons were given a choice between lanes with and lanes without the ephrin, they 

sometimes grew preferentially on the ephrin and sometimes avoided it. In fact, 

the ephrin-A2-Fc dish yielded one of the clearest examples of both behaviors in 
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one dish: there were temporal regions that showed substantial attraction (Fig. 

V.2A) and central ones that showed substantial repulsion (Fig. V.2B). Slight 

repulsion was also seen in some nasal regions. This effect appears to be a specific 

response to the ephrins, because-as has consistently been the case in these 

experiments-the control dish having a choice between lanes with and lanes 

without Fe domain alone showed only the slightest trace of responsiveness to the 

stripes (Fig. V.2C) 

No. Dataset Protein(s} Net Abs Range N 

1 NC + 5X + direct ephrin-A-Fc -3.00 -3.00 -3,-3 1 
Fc-only 0.00 0.00 0, 0 1 

2 NC + 5X + indirect 
ephrin-A-Fc -4.00 -4.00 -4,-4 1 
Fc-only 0.00 0.00 0, 0 1 

3 2 of 3 factors ephrin-A-Fe -1.50 2.67 -4,3 6 
Fc-only 0.17 0.17 0, 0.5 3 

Table V.2: Selected axon guidance statistics. Columns are as identified in Table 

V .1. See text above for discussion. 

Stripe assay results must in general be interpreted with caution; we (data not 

shown) and others (Hornberger et al., 1999) have found them susceptible to false 

positives. One known problem is that any residue left behind by the mold or any 

sort of alteration in the substrate may create mechanical cues that the axons 

follow. Axons are exquisitely sensitive to physical cues, and will follow grooves 

as shallow as 14 nm scratched in a smooth surface (Rajnicek et al., 1997). 
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However, any such mechanism should have affected the negative control dishes 

equally with the experimental. 

A drawback of this method for constructing stripes is that, judging from the 

fluorescence intensity of the tracer, the amount of protein laid down is quite 

variable (data not shown). One possible explanation for our results is that retinal 

ganglion cell response to ephrin-A's is biphasic, with them being attracted at low 

concentrations but repelled at high. The sensitivity of any given axon would 

presumably vary depending upon its expression level of EphA receptors. The 

variable behavior we observe would thus depend on whether the local protein 

concentration in a given area is above or below the threshold value for the axons 

growing on it. And if the variation in protein concentration between regions of 

the dish were large compared to the natural range encountered by axons, that 

would explain our failure to observe differential effects on nasal vs. temporal 

axons. 

In support of this possibility, we find that in the experiments in which we believe 

we deposited the most protein on the surface, the behavior was more 

consistently avoidant. Judging by the jump in responsiveness as measured by 

the difference in absolute value means (Abs, Table V .l), the most important 

variable was nitrocellulose vs. APTES, with a jump of 2.00 (1.50 for APTES vs. 

3.50 for nitrocellulose). The next most important was direct vs. indirect 

application, with a jump of 0.94, followed by 5X vs. 2X concentration, with a 

jump of 0.76. The one sample that had all three of these variables working in its 

favor had an overall score of -3, indicating substantial repulsion (Table V.2, No. 
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1). The highest absolute value score in any dish, -4 overall, was in a dish that had 

two of the three factors, namely nitrocellulose and SX concentration (Table V.2, 

No. 2). Finally, looking at the six dishes that had any two of the three variables 

in its favor, we obtain a net mean score of -1.50 (Table V.2, No. 3), indicating a 

bias towards repulsion stronger that that seen for any one variable alone in Table 

1, with the exception of nitrocellulose vs. APTES, which-based on this less-than­

imposing sample size of 2-had quite a dominant effect. 

We thus suggest that the low amounts of protein deposited in our initial 

experiments has in fact worked in our favor, allowing us to discover a previously 

unrecognized attractive influence of low levels of ephrins on retinal ganglion cell 

axons. Such a role for ephrin-A's is by no means without precedent in other 

regions or tissues; ephrin-A1 attracts endothelial cells in vitro (Pandey et al., 

1995b), and ephrin-AS, which is expressed in one of the layers of the mammalian 

neocortex, mediates sprouting of neurites from EphAS-expressing neurons that 

normally send neurites into that layer (Castellani et al., 1998). Further 

experiments, including better quantitation of the protein substrate, will of course 

be necessary to confirm or refute this hypothesis. 

If ephrins can indeed play an attractive role in retinotectal guidance, that raises 

the formal possibility that they could in and of themselves implement retinotopic 

mapping in the tectum, without the need to posit additional attractiv e or 

competitive cues. An intriguing correlation in this regard is that the attractive 

clues that allow retinal ganglion cells to grow onto the tectum have been shown 

in Xenopus to require tyrosine kinase activity. When such activity is blocked by 
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broad -spectrum inhibitors of receptor and cytoplasmic protein tyrosine kinases, 

most axons stall at the entrance to the optic tract (Worley and Holt, 1996). That 

Eph-ephrin interactions could be the sole determinant of retinotectal topography 

is surely not a realistic scenario. Many other cues, by no means mutually 

incompatible, are known or hypothesized to be involved in retinotectal mapping 

(Fraser and Perkel, 1990). As in many biological systems, there is likely a great 

deal of redundancy, so these mechanisms are by no means mutually exclusive. 

However, a biphasic response to ephrins, such that a retinal ganglion cell axon 

expressing a given Eph receptor concentration has an inherent optimal ephrin 

concentration it prefers, could be used to explain certain classical results. For 

example, Roger Sperry found that in an adult goldfish that has had its optic 

nerve severed and the temporal half of its retina ablated, regenerating nasal 

retinal ganglion cell axons will initially bypass a perfectly good rostral 

hemitectum and connect instead to their topographically appropriate sites in the 

caudal tectum (Attardi and Sperry, 1963). This result implies not only that there 

is a positive influence attracting retinal ganglion cell axons to the tectum, but also 

that this influence is differential in nature. If ephrins do indeed play this 

attractive role in fish, it will be interesting to trace the relative importance of this 

mechanism throughout vertebrate evolution. One interesting hypothesis is that 

Eph/ ephrin interactions are an ancient cue governing the retinotectal projection, 

and that newer mechanisms have been layered on top of them. Activity­

dependent refinement clearly plays a role in refining the regenerating goldfish 

retinotectal projection, because depriving the fish of normal visual experience 

prevents proper refinement (Schmidt and Eisele, 1985), so it is certainly not the 

case that teleost fish have preserved some mythical ancestral state possessing one 
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and only one mechanism. Nevertheless, it is possible that such refinement plays 

less of a role in fish than in tetrapods, especially given that the development of 

normal projection during zebrafish embryogenesis is not disrupted by blocking 

electrical activity (Stuermer et al., 1990). It is in any event likely that fish 

represent an important piece of the puzzle concerning the evolution of these 

developmental mechanisms. 

MATERIALS AND METHODS 

Substrate preparation 

The stripe assay protocol was based on (Vielmetter et al., 1990). 35 mm diameter 

plastic tissue culture dishes were coated with nitrocellulose using 300 }.lm of a 

solution prepared from 5 cm2 of filter membrane (Amersham) in 20 ml of 

methanol and allowed to dry. Glass coverslips were coated with APTES (Sigma) 

as follows: A 2% solution was prepared in 95% ethanol and allowed to hydrolyze 

for 5 min. Coverslips were placed in a rack and immersed in the solution for 10 

min., then rinsed 4X in 95% ethanolS min. ea. They were then air-dried, cured at 

100° 15 min., and stored at RT. 

Silicone molds (Vielmetter et al., 1990) with straight channels 50 pm across or 

zigzag channels 125 pm across were kindly provided by Dr. F. Bonhoeffer, and 

were fitted with a small piece of polyethylene tubing (0.61 mm O.D.; PE10, 

Becton Dickinson). Molds were cleaned using a piece of Scotch tape to remove 

dirt from the surface and then with a laboratory detergent solution (7X, ICN). 
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They were rinsed thoroughly in water and sterilized by rinsing in 70% ethanol, 

including flushing fluid through the passages with a syringe. Excess ethanol was 

removed from the passages via vacuum, and the mold was air-dried and UV­

irradiated for 10 min in a tissue culture hood. The mold was then gently pressed 

onto the coverslip or plastic surface. The position of the stripe grid was marked 

on the bottom of the culture dish, or in the case of a coverslip marked on its 

bottom with four tiny dots from a blue Sharpie lab marker (Sanford). Solutions 

were introduced into the tubing with a 30g needle. 

For indirect application of fusion proteins with SX concentration differential in 

the permissive substrate, Solution I, consisting of 200 pg/ml PLL (MW 70-150 

Kd, Sigma), 50 pg/ ml laminin (Sigma; Drescher et al., 1995), 100 pg/ml LRD 

(Molecular Probes), and 250 pg/ml goat anti-human-Fc antibody Gackson 

Immunoresearch) in PBS, was injected into the mold and incubated at RT for 1 

hr. The mold was then flushed gently with PBS, removed, and the dish rinsed 

with PBS. (To remove the mold from a coverslip, it is necessary to peel it away 

by bending the mold itself while keeping the coverslip flat against the bottom of 

this dish, being careful not to put undue pressure on the striped region of the 

mold.) 150 pi of Solution IT, consisting of 100 pg/ ml PLL, 10 pg/ mllaminin, and 

20 pg/ ml LFD (Molecular Probes), was then applied to the grid area of the 

surface and incubated humidified at RT for 1 hr. This solution was removed and 

the surface rinsed with PBS. Finally, 150 pi of fusion protein solution, consisting 

either of crude cell culture supernatant used undiluted or of purified protein(s) 

used at 5 pg/ ml in PBS, was applied and incubated at RT for 2 hr. This solution 

was removed, the dish rinsed with PBS, 4 ml of explant medium added, and the 
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dish either used immediately or stored 0/N humidified at 4°. Explant medium 

consisted of 88% DMEM (Irvine Scientific), 10% heat inactivated fetal calf serum 

(Gibco), 2% chicken serum (Irvine Scientific), 2mM L-glutamine, 10 U / ml 

penicillin, 10 }lg/ml streptomycin, and 0.4% methylcellulose (4000 cpoise, 

Sigma). A methylcellulose stock solution was prepared according to (Freshney, 

1994), p.408. 

For a 2X concentration differential, Solution I contained instead 200 }lg/ml PLL, 

20 }lg/ ml laminin, 40 }lg/ ml LRD, and 100 }lg/ ml anti-Fc antibody. For a 

negative control substrate containing fusion proteins in both stripes and 

interstripes, 50 }lg/ml anti-Fc antibody was added to Solution II. For direct 

application, purified fusion proteins were added to Solution I at 25 }lg/ml and 

the later fusion protein solution was omitted. 

Chick retina explants 

Fertile chicken eggs (White Leghorn or Rhode Island Red) were obtained from a 

local supplier and stored at 4° C <1 week before use. Sterile black nitrocellulose 

plus cellulose acetate filters (0.8 }lm pore size, Millipore) were pretreated by 

soaking in 20 }lg/ mllaminin in PBS for 2 hr. at 37° C and then washed 3X for 1 

hr each in PBS at RT (Drescher et al., 1995). 

Neural retinae from E6 or E7 embryos were dissected free of vitreous and 

pigmented epithelium with sharp forceps in HBSS on ice in a sterile hood. They 

were flattened with one cut at the ventral fissure and one or two at the dorsal 
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edge, and mounted on the nitrocellulose filter by poking them down onto the 

filter around the perimeter with the forceps. (The retina was positioned 

asymmetrically on the filter in order to later differentiate the nasal end of each 

strip from the temporal.) The filter was lifted horizontally out of the solution 

and placed briefly on a piece of sterile 3MM filter paper (Whatman) to wick dry, 

binding the retina firmly. It was then placed on a motorized Mcilwain tissue 

chopper (Mickle Laboratory Engineering Co., Surrey, UK), rewet sparingly with 

HBSS, positioned with the nasotemporal axis aligned with the blade and an 

overhanging end of the filter protruding beyond the blade, and chopped into 300 

pm strips. The filter was picked up by the intact overhanging end and returned 

to the dissection dish tissue-side down. 

Continuous strips of tissue from the central retina (typically six from an E6 eye, 

ten from an E7) were selected, and two strips transferred to each culture dish. 

There they were positioned across the grid perpendicular to the stripes, tissue­

side down, and weighted in place with rectangular 1/ 8" x 1/ 8" x 1/ 2" stainless 

steel weights at both ends. Care was taken to ensure that each strip was in good 

contact with the substrate throughout its length. To condition the medium, half 

of a tectum from the embryo was also floated in each dish. Explants were 

incubated at 37° in a humidified 6% C02 atmosphere. When good axonal 

outgrowth was present, typically at 48-72 hr, they were photographed with 

phase contrast optics on a BioRad MRC-600 laser scanning confocal microscope 

using Zeiss lOX Plan-NeoFluar or 32X Achrostigmat objectives. Phase contrast 

and fluorescence images were overlaid and processed using Adobe Photoshop 

software. 



224 

Proteins 

Chimeric proteins consisting of the extracellular domain of an ephrin fused to a 

human immunoglobulin Fe domain, and also a control protein containing only 

the Fe domain, were expressed in a baculovirus system and affinity-purified via 

their Fe domain. Ephrin-A1-Fc and -A4-Fc were a gift from Dr. Nicholas Gale at 

Regeneron Corp (Gale et al., 1996b), ephrin-A2-Fc and -AS-Fc from Dr. Uwe 

Drescher (Monschau et al., 1997); these ephrin genes were of mammalian origin. 

A Xenopus ephrin-A1 (Weinstein et al., 1996) Fe fusion protein was also produced 

locally. 

Abbreviations: APTES = aminopropyltriethoxysilane; PLL = poly-L-lysine, LRD = 

lysinated rhodamine dextran; LFD = lysinated fluorescein dextran; RT =room 

temperature; PBS = phosphate-buffered saline; 0 / N = overnight; DMEM = 

Dulbecco's modified Eagle's medium; HBSS =Hanks' balanced salts solution; X 

= times; E = embryonic day; O.D. = outer diameter. 
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Chapter VI 

CONCLUSION 

Expression of the Eph' s and ephrins in Xenopus is widespread. In many cases the 

distinction between regions is a quantitative rather than a qualitative one. This is 

consistent with the hypothesis that cells are able to discriminate different levels 

of these proteins in their environment, rather than simple presence or absence. 

This discrimination may depend upon adaptation mechanisms in the signal 

transduction pathways that allow cells to adjust to a baseline level and respond 

to deviations from it. Eph-family signaling is thought to require oligomerization 

of molecules in the plane of the membrane, which because of the cooperativity 

inherent in multimolecular assembly could in principle produce a sensitive 

dependence on absolute levels of the proteins. However, adaptation events such 

as phosphorylation or dephosphorylation, changes in protein expression levels, 

or modulation by additional regulatory proteins, may be used to change the 

effective concentrations of signal transduction proteins or their affinities for their 

binding partners, thus influencing the critical concentration at which clustering 

occurs (reviewed in Houslay, 1997; Jindrova, 1998). 

Eph-family signaling could thus have a flexible repertoire of possible behaviors, 

ranging from complete dependence on absolute levels to complete adaptation to 

baseline concentrations changing over several orders of magnitude. This 
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flexibility might be relevant to certain puzzling discrepancies in the 

establishment of retinotectal topography among different experimental systems. 

For example, in the regenerating goldfish retinotectal projection studied by 

Sperry, axons from a nasal hemiretina will bypass the empty rostral tectum to 

form connections with their appropriate targets in the caudal tectum (Attardi 

and Sperry, 1963). By contrast, the initial projection in embryonic rodents is 

almost totally lacking in topographic specificity (Simon and O'Leary, 1992). Eph­

family signalling is surely not the only process affecting (or effecting) retinotectal 

topography. Many other mechanisms, such as guidance by other proteins 

(immobilized or diffusible), competition among retinal fibers, or activity­

dependent refinement, have been shown or hypothesized to play a role in 

retinotectal topography, and this is not in any way intended to gainsay their 

importance (Fraser and Perkel, 1990). But a single, common 

mechanism-repulsive guidance by Eph-family proteins-could in principle 

produce both types of behavior. 

Future directions 

The present work leaves open many questions. The possibility of an attractive 

effect of ephrins on chick retinal ganglion cell axons in the stripe assay is one that 

particularly deserves further pursuit. When that has been better characterized 

the stripe assay can be used to look at Xenopus retinal ganglion cells, addressing 

some of our original questions concerning the roles of these proteins in frog. 
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Looking at the bigger picture, major problems in biology are clearly coming up 

against the limits of what can be accomplished with reductionist approaches. 

This is not to say that all analytical data that might prove useful is already in 

hand; far from it. But it is increasingly clear that understanding the parts-while 

a sine qua non-does not necessarily mean we understand the system as a 

whole. The signal transduction networks involved in axonal guidance are an 

excellent example. Many individual proteins have been characterized. In some 

cases their nearest neighbor relationships in the signal transduction network 

have been characterized via biochemical, molecular biological, or genetic 

approaches; for example, what ligand binds to receptor X? What intracellular 

SH2- or PTB-domain-containing proteins bind to tyrosine Y when it is 

phosphorylated? In some cases it is possible to trace out a hypothetical 

network-for example, the route from an Eph receptor to the actin cytoskeleton 

(Holland et al., 1997). In better-understood cases a core pathway is fairly well 

understood and has been characterized in detail. But the more we learn, the 

more clear it becomes that there is rampant crosstalk among various canonical 

pathways, and the system cannot be truly understood without treating it as a 

whole (Bray, 1990). A fundamental question almost always arises: when there 

are competing influences, what is the net outcome? 

Systems dynamics analyses of intracellular protein networks are beginning to be 

applied to well-characterized systems, such as bacterial chemotaxis (Abouhamad 

et al., 1998; Alon et al., 1999), the cell cycle (Borisuk and Tyson, 1998; Novak et 

al., 2001), and signal transduction pathways (Asthagiri and Lauffenburger, 2001; 

Levchenko et al., 2000). Comparatively speaking, our knowledge of the 
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intracellular pathways downstream of the Eph family proteins is still in its 

infancy; much more experimental data will be necessary before such modelling is 

feasible. The extracellular receptor-ligand interactions in this family, however, 

are much better characterized: almost all of the key players seem to be identified, 

binding constants have been measured for many of their interactions (Table 1.1), 

and spatial expression pattern data is available in many systems. As more data 

becomes available on the intracellular side, this family may become a prime 

candidate for a modelling approach. 

The evolution of developmental mechanisms presents some fascinating and 

fundamental questions in biology. The large size of and strong amino acid 

sequence conservations of the Eph and ephrin families affords the opportunity to 

glean much useful information about their interactions and the evolution thereof 

via molecular phylogenetic analysis. For example, since protein folding 

structures are known for the extracellular portion of the receptor, including the 

ligand-binding domain (Himanen et al., 1998), it should be possible to map the 

sequences of the other family members onto the backbone of this fold. A 

sequence alignment can be used to determine which amino acid residues have 

been highly conserved among family members and which have mutated. 

Pinpointing these residues on the three-dimensional structure may yield insights 

concerning the functional consequences of these similarities and differences, 

telling us not only what features are likely to be essential for all family members 

but also what differentiates them from one another. This information can then be 

correlated with the known affinity constants for the ligands. Such an analysis 

may not only shed light on the Eph family itself, but also serve as a case study for 
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more general questions of how protein families evolve and diversify over time 

and how they coevolve with their upstream ligands and downstream targets. 
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APPENDIX 

Table A.l (following page): Species orthologs of Eph's and ephrins. The 

standardized name (Eph Nomenclature Committee, 1997) is given at the left, and 

any other names under which an apparent ortholog of that protein had been 

published are listed under each species. Pseudoalleles (Xenopus) or more 

divergent multiple orthologs (zebrafish) are separated by a semicolon. Proteins 

of uncertain affiliation are listed at the bottom. 
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