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Abstract

Logic for reasoning about programs must proceed from the programming language se-
mantics. It is our thesis that programs be considered as mathematical objects that can
be reasoned about directly, rather than as linguistic expressions whose meanings are
embedded in an intermediate formalism.

Since the semantics of many programming language features (including recursion,
type-free application, infinite structures, self-reference, and reflection) require models
that are constructed as limits of partial objects, a logic for dealing with partial objects
is required.

Using the Do model of the A-calculus, alogic (called continuous logic) for reasoning
about partial objects is presented. In continuous logic, the logical operations (negation,
implication, and quantification) are defined for each of the finite levels and then extended
to the limit, giving us a model of type-free logic.

The triples of Hoare Logic are interpreted as partial assertions over the domain
of partial states, and contradictions arising from rules for function definitions are ana-
lyzed. Recursive procedures and recursive functions are both proved using mathematical
induction. ’

A domain of infinite lists is constructed as a model for languages with lazy evalu-
ation and it is compared to an ordinal-heirarchic construction. A model of objects and
multiple inheritance is constructed where objects are self-referential states and multiple
inheritance is defined using the notion of product of classes. The reflective processor for
a language with environment and continuation reflection is constructed as the projective

limit of partial reflective processors of finite height.
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Chapter 1

Introduction

Logic for reasoning about programs must proceed from the programming language se-
mantics. It is our thesis that programs be considered as mathematical objects that can
be reasoned about directly, rather than as linguistic expressions whose properties are
embedded in an intermediate formalism. To achieve this, a clear semantics must be
given of the programming language. Once the semantics is given, the logic for programs
becomes the informal logic of everyday mathematics.

In this thesis, we explore the relationship of logic to programming language se-
mantics by first showing how a model of the type-free A-calculus can be a model of a
type-free logic. Then, using this model as our guide, we can interprete the axioms and
inference rules of a proof system for an imperative programming language and resolve
contradictions that arise from the introduction of inference rules for functions. Next,
the semantics of three high-level programming languages are given by constructing their
semantic domains.

Three themes underlie this work:
1. Programs are mathematical objects satisfying their defining equations.
2. A logic of programs requires a logic of partial objects.

3. Semantic domains of high-level programming languages with infinitary prop-

erties can be constructed using the projective limit.

Our approach to semantics of programming language is known as denotational
semantics, where the meaning of a program, its denotation, is the composition of the

meanings of its parts, and the denotation is given as some object in some semantic



domain. The construction of appropriate semantic domains is crucial, and, for unusual
programming languages, can be quite non-trivial.

In the development of denotational semantics of programming languages, partial
objects play a fundamental role. A logic for dealing with partial objects in their full gen-
erality as encountered in denotational semantics will allow us to reason about programs
in an equational way.

In object oriented languages, the state becomes denotable and manipulable, join-
ing the other data types as first class citizens. In higher-order applicative languages, all
functions are first class citizens. In procedural reflection, even the current environment
and continuation are made accessible to the program. The models for these types of pro-
gramming languages require projective limit construction to handle the self-referential

aspects.

In this Introduction, we survey very informally the different types of programming
languages and consider a logic for one class of languages. The limitations of such a logic
are discussed.

In conclusion, an overview of the thesis is presented.

1. Programming Languages and Logics

Programming languages express computation. Logic captures the principles of reason-

ing. In the following, we consider programming languages and their logics.

Languages

Programming languages have developed significantly since the advent of the digital
computer. Currently one can identify several distinct styles of programming languages.
These include the imperative languages where the state is a data structure that is
created and changed, the applicative or functional languages where the desired result
is constructed from other structures, the logic programming style where a set of first-
order formulas specify the constraints that are used to obtain the desired result. In
addition, objects and class definitions combine the data and procedural abstraction, the
lazy evaluation mechanism allows the manipulation of potentially infinite structures,
and finally, the reflection construct makes the program’s current environment and other

internal entities visible and a part of the manipulable domain.



The development of programming languages seems to move toward the implementa-
tion of more sophisticated mechanisms and giving first class status to entities that were
previously implicit. The latter has also been termed the reactive principle (Kay [69]).
The development of logic programming languages demonstrate the first trend while the
object oriented languages and the reflective languages demonstrate the other. Undoubt-

edly, new language constructs will be created and new styles will continue to develop.

Logics

Along with the design of programming languages is the issue of reasoning about pro-
grams. The need for rigorous methods of reasoning about programs has led to devel-
opments in what is called “logics of programs.” These logics have been formal systems
based on the syntactic structure of the programming language. Due to their syntactic
nature, they cannot easily deal with the increasingly sophisticated features of modern
high-level programming languages.

One such logic, known as Hoare Logic, is a formal deductive systems based on the
partial correctness assertions of Floyd [67] and Hoare [69]. It is designed for reasoning
about programs written in imperative assignment based programming languages. Even
for this class of languages, the logic is inadequate to deal with complex constructs.

One of the most developed of these logics is the specification logic of Reynolds [82], a
deductive system for most of the features of an idealized Algol. (A practical introduction
may be found in Reynolds [81].)

Limitations

One crucial deficiency of the partial assertions method is its inability to handle recur-

sively defined functions. We quote from Reynolds [82], p. 122:

This limitation is an inevitable (though regrettable) consequence of using the
predicate calculus for assertions, along with the vital assumption that any ex-
pression of the programming language can occur as a term in such assertions.
Recursive definition of expressions or function procedures would impose a do-
main structure upon their meanings that would be incompatible with the free
use of quantifiers, because of their lack of continuity. In other words, we can-
not deal with nonterminating expressions and function procedures because we

cannot deal with nonterminating assertions.



The language of assertions is usually the predicate calculus, and so any assertion
is assumed to be well defined. Allowing recursively defined functions means that these
functions must be allowed to appear in the assertions, resulting in nonterminating as-
sertions. It is not immediately clear how to provide a suitable semantics for these types

of assertions.

One way of getting around this limitation is to systematically translate a recursive
function into a state transforming procedure with the same functional behavior, as was
done in de Bakker et al. [81]. Further limitation comes from the fact that assertions are

implicitly about the underlying state.

The lack of continuity for quantifiers probably comes from models where true and
false are ordered, and where lattice join and meet are used to model logical conjunction
and disjunction. In this thesis we present a way of dealing with nonterminating asser-
tions in the framework of what we have called continuous logic. Once assertions are

allowed to be non-terminating, they require a semantics just as programming languages.

Another deficiency is that since the logic is implicitly about the value of the vari-
ables in the state, it cannot deal with applicative languages or with object-oriented

languages where local states are distributed among the objects.

Semantics

Rather than develop logics based on the syntactic structure of a programming language,
we propose to reason directly with the objects that make up the meaning of a program.
At the semantic level the analysis of different types of programming languages can be

handled in a uniform manner.

The first step in the semantic analysis of programs is formulating a clean semantics
of the programming language. Not only should the semantics deal with all the features
of the programming language but also it must be robust and manipulable. The second
step is to formalize the properties of the semantic objects. This will give the proper
logic.

As pointed out by Lehmann [76], the fixed point semantics allows us to treat re-
cursive definitions as equations to be used in reasoning about programs. We view a

programming language as a linguistic tool for representing the objects and functions of

our domain of discourse.



2. Overview of Thesis

The mathematical notions and tools that underlie the semantics of programming lan-
guages are presented in Chapter 2. These are lattices, semilattices and continuous func-
tions, categories and functors, the projective limit construction, and the construction of
semantic domains.

In Chapter 3, the A-calculus is presented along with its extensional model D.
Logical connectives are defined on the model to give us a type-free logical calculus,
called Continuous Logic, based on the A-calculus. Using this logical calculus we analyze
and resolve couple of classic paradoxes.

Chapter 4 deals with the semantics of imperative programming languages with
partial states. Using the framework of continuous logic, we examine the proof rules for
recursive functions in a Hoare-style logic that lead to contradictions.

In Chapter 5, a domain of infinite lists is constructed using the projective limit
of spaces of finite partial lists. We show that this domain contains more lists than a
domain of lists constructed using the ordinal hierarchy.

Chapter 6 presents the construction of the semantic domain for object oriented
programming languages that contains objects that are self-referencing. Semantics of
multiple inheritance is given by using the notion of product of classes.

In Chapter 7, we describe an operational definition of procedural reflection imple-
mented in a version of Lisp. We construct a reflective processor as the limit of reflective

processors of finite levels.



Chapter 2

Mathematical Foundations

Wherein the necessary mathematical notions are introduced and the foundation laid for

the denotational semantics of programming languages of different flavors.

The notion of “approximation” lies at the heart of the mathematical foundation for
denotational semantics. The difference between programs and their denotations is that
programs are usually recursively defined, while their denotations are essentially the
“unwound” analogs. The approximation relation is a partial ordering, and so it is treated
in the framework of lattices and continuous functions over them. For programming
language semantics, a slightly weaker notion of semilattices turns out to be more useful.

Semantic domains are defined to be semilattices in which all objects can be defined
as limits of “finite” approximations, the algebraic and the continuous semilattices.

For constructing models of programming languages with high-level features such as
self-application and self-reference, a powerful technique known as the projective limit
(also known as the inverse limit) is presented. The projective limit provides a way of
extending finite properties to the limit. It is a way of completing or compactifying a

space.

1. Lattices and Continuous Functions

The fundamental notion is that of a partial ordering. To it are added notions of direct-
edness and completeness. Basic notions are introduced. For further reading, the first

chapter of Gierz et al. [80] provides a comprehensive set of definitions.



Definition. A partially ordered set, or poset for short, is a set P with a binary relation
C, which is

(i) reflexive: for allz € P, z C z,
(ii) antisymmetric: if z C y and y C «, then z = y,
(iii) transitive: if z C y and y C 2, then z C z.

A set with a binary relation that is only reflexive and transitive is called a preorder.
A least upper bound or supremum of a subset X of a poset, written || X or sup X, if it
exists, is the smallest element that is larger than all the elements in X. A poset P is
directed if for any z, y € P, there exists a z € P such that  C z and y C z; i.e., any
finite number of elements from P has a supremum. The dual notions are greatest lower

bound or infimum, written inf X, and filtered subsets.

Notation. For directed {z;}, the following abbreviations shall be used:

o0

U{xi} = L_l{xi} = U{xi} = U z;.

1=0

Definition. A function f:S — T between two posets is called order preserving or

monotonic if z C y always implies f(z) C f(y). We say that f preserves
(i) finite sups, or (ii) arbitrary sups, or (iii) directed sups

if whenever X C S is
(1) finite, or (ii) arbitrary, or (iii) directed,

and sup X exists in S, then sup f(X) exists in T and equals f(sup X). A continuous

funetion is one that preserves directed sups.

Definition. A semailattice is a poset S in which every nonempty finite subset has an
inf. A sup-semilattice is a poset S in which every nonempty finite subset has a sup. A
poset that is both a semilattice and a sup-semilattice is called a lattice. The empty inf
(which, if it exists, is the same as sup S, the maximum element of S) is called the top
element of S and is written as T. The empty sup (which, if it exists, is the same as

inf S, the minimum element of S) is called the bottom element of S and is written as L.

Definition. A poset is said to be complete with respect to directed sets (shorter: up-
complete) if every directed set has a sup. A complete semilattice is a poset in which
every nonempty(!) subset has an inf and every directed subset has a sup. A complete

lattice is a poset in which every subset has a sup and an inf.



Next, we introduce an additional relation on lattices that enables us to capture the

notion of “finiteness” of elements.

Definition. Let L be a complete lattice. We say that z s way below y, written z < y,
if for directed subset D C L the relation y C sup D always implies the existence of a
d € D with £ C d. An element satisfying z < z is said to be isolated from below,

compact or finite.

Definition. A lattice L is algebraic if it is complete and for all d € L, the set
Sq¢={z|zC d and z is compact}

is directed and d = sup S;. If the set of compact elements is countable, then L is

w-algebraic.
Since for us, we only deal with w-algebraic lattices, they just be called algebraic.

Definition. A lattice is called a continuous lattice if L is complete and satisfies the

axiom of approximation:

(A) z=sup{u€ L|u<K z}.

Remark. By definition, an algebraic lattice is a continuous lattice. Also, the criteria

for algebraic and continuous can be applied to semilattices.

We state without proof an essential property of complete lattices, the fixed-point
theorem of Tarski [55].

Theorem. Let f: L — L be a monotone self-map on a complete lattice L. Then the
set M={z € L:z= f(z)} of fized points of f forms a complete lattice in itself.

A consequence of the fixed-point theorem is that for any monotone self-map f, the
least fixed-point of f is given by f*(_L) for some ordinal o, where composition into the
transfinite is done in the usual way. For continuous self-maps, the least fixed-point is
reached at f“(L), where w is the first infinite ordinal.

Clearly, the fixed-point theorem also works for complete semilattices.

Notation. Since our interest is with semilattices, from this point on, when we use
the term “lattice” informally, we shall mean both lattices and semilattices in the strict

sense.



2. Categories

The notion of categories is introduced to define the appropriate mathematical structures
that will serve as our semantic domains. The categorial concepts introduced here have
been taken from Barr and Wells [85] and Mac Lane [71].

Definition of Category

A category C consists of two collections, Ob C, whose elements are the objects of C,
and ArC, the arrows (or morphisms or maps) of C. To each arrow is assigned a pair
of objects, called the domain and the codomain of the arrow. The notation f :a — b
means that f is an arrow with domain a and codomain b. If f : @ = band g : b — c are
two arrows, there is an arrow g o f : a — ¢ called the composite of f and g. For each
object a, there is an arrow 1, (or just 1, depending on the context), called the identity
of a, whose domain and codomain are both a. These data are subject to the following

axioms:
(i) For f:a — b,
f01a=1a0f:f;

(ii) For f:a—b,g:b—c,and h:c— d,

ho(gof)=(hog)of.

Examples. The prime example of a category is Set, whose objects are ordinary sets
and whose arrows are set functions. A poset is also a category where the objects are the
elements of the poset and there exits exactly one arrow f:z — y if and only if < y
in the partial order. The axioms are satisfied since the partial order is reflexive and
transitive. Notice that since the symmetric property of the partial order is not used,

any pre-order can be regarded as a category.

Definition. An arrow f:a — b in a category is an isomorphism if it has an inverse,

namely, an arrow g : b — a for which fog=1,and go f = 1,.

Examples. In a group considered as a category, every arrow is invertible, whereas in
a poset regarded as a category, the only invertible arrows are the identity arrows (which

are invertible in any category).
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Definition. If C is a category, then we define C°? to be a category with the same
objects and arrows as C, but an arrow f : @ — b in C is regarded as an arrow from b to

a in C°. C°P is called the opposite category of C.

Example. Let w be the free category generated by the graph
0—-1—-2—3—-.--

(i.e., closed under the identity arrow and composition of arrows); then the opposite

category w?? is the free category generated by the graph

Oer1 e 263 ...

Definition. An object s is an initial object of a category if for any other object z in
the category there is a unique arrow ! : s — z. The dual notion is a terminal object t,
where for any object z, there exists a unique arrow !: z — t. These unique arrows are

usually written !.

Functors

Like other mathematical structures, categories also have a notion of morphism. It is
natural to define a morphism of categories to be a map that takes objects to objects,

arrows to arrows, and preserves domain, codomain, identities and composition.

Definition. If C and D are categories, a functor F : C — D is a map for which
(i) If f:a — bis an arrow of C, then Ff : Fa — Fb is an arrow of D;
(i) F1,s = 1p,; and
(iii) f g : b — ¢, then F(go f)= Fgo Ff.
Examples. The monotone maps between posets are functors between posets regarded

as categories. There is a large class of forgetful functors that “forget” some of the

properties of a category, such as a group becoming a set, or a ring becoming a group.

Natural Transformations

A functor F : C — D can be thought of as embedding a “picture” of category C inside
category D. A natural transformation can be thought of as transforming one “picture”

into another.
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Definition. If F:C — D and G : C — D are two functors, A : F — G is a natural
transformation from F to G if X is a collection of arrows Ac: Fec — Ge, one for each
object c of C, such that for each arrow g : ¢ — ¢’ of C the following diagram commutes:

Fc——’—\fch

A !
Fd =5 Gf

The arrows Ac are called the components of A\. The natural transformation X is a natural

equivalence if each component of A is an isomorphism in D.

3. Projective Limits

Projective limits (also known as inverse limits) provide a way of constructing infinite
objects that are a “natural” extension of finite ones. They play a crucial role in the con-
struction of semantic domains for programming languages where infinitary properties,
such as self-application or infinite lists, enter.

The following is from Dugundji [66].

Definition. Let A be a pre-ordered set and {Y, | @ € A} be a family of spaces indexed
by A. For each pair of indices «, 3 satisfying o C 3, assume there is a continuous map
Map : Yg — Y, and that these maps satisfy the following condition: If « C 3 C v, then
Bya = Hge © Hqyg. Then the family {Yy; pga} is called a projective spectrum (or inverse

spectrum) over A with spaces Y, and connecting maps pgq.
Each projective spectrum yields a limit space:

Definition. Let {Y,;upa} be a projective spectrum over A. Form

[I{ve [ac 4},
and for each o, let p, be its projection onto the ath factor. The subspace
{ve[lYalVa,f:[aC Bl = [paly) = npa o ps(y)]}
o

is called the projective limit (or inverse limit) space of the spectrum and is denoted by

Yo or I:i_mYa.
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According to this definition, a point y = (y,) € [] Y. belongs to Y, whenever its
coordinates “match” in the sense that if o T 8, then yo = pgs(yp). This is known as
the consistency condition.

For more detail on the topological aspects of the projective (or inverse) limit con-
struction, good references are Dugundji [66] and Nagata [85].

The abstract categorical definition is given below.

Definition. Let C and J be categories. The diagonal functor
A:C—cC’

sends each object ¢ to the constant functor Ac, the functor that has the value ¢ at each
object ¢+ € J and the value 1, at each arrow of J. A limit for a functor F:J — C
consists of an object r of C, usually written r = I:l_m F = F, and called the limit object
(or “inverse limit” or “projective limit”) of the functor F', together with a natural trans-
formation v : Ac = F, which is universal among natural transformations r: Ac - F,
for objects ¢ of C.

Since Ac : J — C is the functor constantly ¢, this natural transformation 7 consists
of one arrow t; : ¢ — F; of C for each object 1 of J such that for every arrow u :¢ — j
of J one has 7; = Fuor;. Wecall 7:¢c - F a cone to the base F from the vertex c.

The universal property of v says that
(i) It is a cone to the base F from the vertex Fo;

(ii) For any cone 7 to F from an object c, there is a unique arrow ¢ : ¢ — F,, such
that 7; = v; ot for all ¢. The situation may be pictured as

t
¢ —— Fyo

F;

It means that the limit F, is the “smallest” object that can be the vertex of a cone
with the base F.

Definition. The dual notion to limit is co-limit, where all the arrows in the previous

definition are reversed.
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4. Semantic Domains

In this section we introduce the notions of semantic domains, the mathematical struc-
tures for the denotation of programs. The choice of semantic domain depends on the
type of characteristic one needs for the particular programming language as well as the

mathematical properties one wants for the semantics.

Categories of Semantic Domains

Semantic domains will be defined and constructed using simpler domains of similar type.
It is convenient to think of them as forming categories in which the domain equations

defining a specific semantic domain will be solved.

Definition. By a semantic domain we will mean any algebraic or continuous semilat-
tice or lattice. The category of these lattices with continuous functions as arrows will
be denoted: ASem, ALat, CSem, or CLat.

In this thesis, the semantic domains will turn out to be algebraic, and most of the
time the extra lattice property of having a top element is unnecessary. We will also
refer to “semantic domains” as just “domains.” The context should make clear whether

a semantic domain or the domain of a function is meant.

Example. The simplest and yet the most important example of an ASem object is
the domain of truth values, T, which looks like
t f
N S
4
where the arrows indicate the partial ordering.

In general, algebraic semilattices can be constructed from sets by adjoining the

undefined element as the bottom element, and making them into a “flat” semilattice.
Example. The domain of natural numbers is an algebraic semilattice where all the

natural numbers are greater than |, and all the numbers are mutually incomparable.

Notation. In the computer science literature complete semilattices are known as com-

plete partial orders.
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Constructions of Semantic Domains

Given semantic domains, we can construct new ones in a variety of ways.

Definition. Let D and E be domains. The function space domain, [D — E], consists
of all continuous functions from D to E with the ordering defined componentwise; i.e.,
for f,g € [D — E|,

fEg if VYzeDf(z)Cyg(z)

The product domain, written D X E, of two domains is a domain consisting of all
pairs (d,e) with d € D and e € E with the componentwise ordering.

The sum or coproduct, is a domain
D+ E={l,(d,0),(e,1)|de D and e € E}

with L C (d,0) and L C (e,1) and the ordering of each injection determined by the

separate summands, and two elements from different summands are incomparable.

It is easy to show that the categories of complete lattices and complete semilattices
are closed under the constructions described above. It is a little more involved to
show that algebraic and continuous lattices and semilattices are also closed under these
construction.

Let CLat be the category of continuous lattices and ALat the category of algebraic
lattices. The following result is from Gierz et al. [80], Theorem 2.8 of Chapter II.

Theorem. The functor [ — -] maps CLat? x CLat into CLat and ALat’” x ALat
into ALat. In particular, [S — T] is a continuous (respectively, algebraic) lattice if S

and T are.

The proof is in Gierz et al. [80]. A more revealing proof that can be easily modified
for semilattices can be found in Scott [72].

5. Notation

The substitution operation will be a postfix operator, and N[z/y] will denote the term

N with all free occurrences of z replaced by y. In mathematical logic this is usually
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written [y/z]N in prefix notation. Barendregt [81] uses the notation N[z := y| which is
the clearest to programmers, but is a little too long.

For any function f, let f[z : €] denote the function that is identical to f in all
arguments, except that at z its value is e.

In general, we shall use square brackets to denote postfix functions.
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Chapter 3

Continuous Logic

Wherein the A-calculus is presented and a model constructed, motivating a logic for

partially defined objects, thus allowing us to resolve certain paradozes of type-free logic.

Logic is an attempt to formalize ways of reasoning about objects in a certain domain.
In dealing with denotations of programs, we encounter objects that are partially defined
or are given as limits of partially defined objects. For these partially defined objects,
the notion of equality is not clear and becomes quite unintuitive when higher order
functions over complex domains are involved.

This chapter begins with a short discussion on logic of partial objects and then leads
to a quick introduction to the syntax and semantics of Church’s A-calculus (Church [41]).
The construction of the model, D, due to Scott, is presented using the projective limit
construction.

Next, logical connectives are defined over the base domain Dy, and then extended
inductively over all D,,. Continuous quantifiers are defined by introducing the notion
of proper elements in a semantic domain. These logical operations are shown to satisfy
the consistency condition, meaning that they are valid operations over Dy. This gives
us a model of a type-free logical calculus. Using this model, we present resolutions to

paradoxes due to Curry and to Russell.

1. Logic of Partial Objects

Classical logic cannot deal with undefined or partially defined objects. There have
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been logics developed to specifically handle the notion of undefinedness. Scott [79]
formulates a logic where existence can be tested by a predicate. Beeson [85] proposes
a different logic of partial objects where the notion of definedness is introduced as a
formula constructor with the meaning that a term is defined. In Barringer, Cheng and
Jones [84], a natural deduction style of logic for dealing with undefinedness in program
proofs is presented. These approaches all assume domains where objects are either
defined or not defined.

Goldblatt [79] describes a similar approach where two functions are defined to be
equal if they have the same domain of definition and they agree on all the elements of
their domain.

These approaches are sufficient for typed objects or functions, but when the domain
and codomain of a function may contain partial objects of higher order, like in the A-

calculus, it is not clear how to determine what the domain of definition should be.

The Undefined Object

The undefined object was introduced so that a function undefined at an argument may
be given some special value that represents undefinedness. In programming language
semantics, the undefined object is used to represent lack of information that may come
about by non-termination. In denoting infinite objects as the limit of a sequence of
partially defined finite objects, the undefined object represents incomplete information
at a certain point which may become more defined at a later stage.

Computationally, we think of the undefined object as representing non-termination.
Therefore, the test to see whether two non-terminating programs are the same should
also be non-terminating, that is, undefined. In a later section, these ideas about unde-

finedness form the basis for logical connectives that are continuous.

The Overdefined Object

The overdefined object plays no essential role in the semantics of programming lan-
guages, though it may be useful in modeling inconsistency. It was introduced as part of
the lattice structure of semantic domains, where it is the inf of the empty set of elements,
larger than any other. In Stoy [77] a theorem is proved that says that the overdefined
object cannot appear in the semantics of a program unless it is explicitly introduced.
Therefore, in this thesis, all the semantics is done with complete semilattices. We will

point out any definitions and constructions that are significantly different for lattices.
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2. The X-Calculus

Church’s A-calculus was developed in order to provide a foundation for mathematics with
the function, as a rule for computing the value given an argument, as the fundamental
notion. Two key ideas in A-calculus are abstraction and application. These give the
calculus its ability to model the intuitive notion of computation.

In this section we briefly introduce the syntax and semantics of A-calculus. The
construction of the model provides insights into construction of other programming
language features. For further exposition, Scott [71] presents the original motivation
and construction of a model, Stoy [77] contains a concise presentation of the syntax and

semantics, while Barendregt’s [81] is an encyclopedic treatment of many topics.

Syntax

The terms of A-calculus are generated inductively. Let M and N be metavariables

ranging over A-terms.

Definition. The language of the A-calculus consists of variables (z, y, ...) and special
symbols: A and the left and right parentheses.
A A-term is inductively defined by:

(a) A variable is a A-term;

(b) If = is a variable and M is a A-term, then (AzM) is a term (called a A-

abstraction);

(c) If M and N are terms, then (M N) is a term (called an application).

The standard convention of left association in the application and the Peano dot
are adopted to eliminate unreadable parentheses. For example, ABC = ((AB)C) and
Az.zy = Az(zy). The usual notions of bound and free variables are assumed with respect

to the A-abstraction.

Conversion Rules

Terms embody information. Terms may be converted to others according to the follow-

ing rules. These conversion rules represent computation.

Definition. A conversion rule specifies how one A-term may be transformed to an-

other. There are three rules reduction rules:
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() Az.M by Ay.M[z/y] provided y is not free in M;
(6) (Az.M)N vs Mlz/N];
(n) Az.Mz >, M if z is not free in M.

These reductions are called, respectively, o, 8, and n-reduction, and the left hand
side of the above rules are called, respectively, «, B, and 7-redezes. The reflexive,
symmetric, and transitive closure of the above reductions will be denoted by =, and

two terms that are related by = are called interconvertible.

Definition. A A-term is said to be in normal form (n.f.) if it does not contain a 8 or
n-redex as a subterm. A term is said to have a normal form, if there is a sequence of

reductions from that term to a term in normal form.

Church originally considered any term not having a normal form to be mean-
ingless. In the Al-calculus, where abstraction is allowed only for free variables in a
term, this interpretation is reasonable, but for the more general A K-calculus, interpre-
tation of all terms not having normal forms to be meaningless is actually contradictory
(Wadsworth [76]). Wadsworth [76] introduced a weaker notion known as head nor-

mal form. An equivalent notion known as solvability was independently introduced by
Barendregt [81].

Definition. A A-term is in head normal form (h.n.f.) if it is of the form
AzZ129 - .2 X1 Xg o+ - X, (n>0,m>0),

with 2 a variable and X; are arbitrary terms. The variable z is known as the head
variable and X; as its 1th argument.

Terms that do not have a h.n.f. reduce to the following form
Az1zg - T (A2 M)N) X1 X2+« X, (n>0,m >0),

where ((Az.M)N) is known as the head redez. All terms of this form are said to be not
in head normal form.

Terms without h.n.f. will be considered meaningless since no amount of 8-reduction

will produce a head variable.

Example. Let A = (Az.zz). Then

M=AA pg AA pg +--



20

does not have a h.n.f. since it always has a head redex AA.

Example. On the other hand, let Y = Af.(Az.f(zz))(Az.f(zz)). Then

Y b ALS(Y) pp AL F(F(Y)) g -

has a h.n.f. with head variable f. This A-term turns out to be very meaningful as an

example of a fixed point combinator. Given any term M,
YM = (Af.(Az.f(zz))(Az.f(z2))) M = M(Y M),

its fixed point under =.

Construction of D,

The unique character of the A-calculus that kept it from being taken too seriously in
the past was its type-freeness — that any term could be applied to any other term,

including itself. This was a major stumbling block in coming up with an extensional

- model.

What is needed is a model in which an object can be treated both as an argument
and as a function that is defined for all objects. Specifically, a domain that is isomorphic

to its own function space, one that satisfies the following domain equation:
(%) D =[D - D].

Scott [71] first constructed such a domain using the projective limit of a spectrum of
finite domains and projection functions between them.

The following has been gleaned from Scott [71], Wadsworth [76], and Rudin [81].
Note that unlike in Scott [71], we use the three element semilattice without the top
element. Except for this difference, everything else follows through without any modi-
fication.

The construction proceeds in two stages. First, the finite domains are constructed

inductively, followed by the projective maps.

Definition. Let Dy =T, the semilattice of truth values, and let
Dn+1 = [Dn —3 Dn],

the function space of continuous functions over D,,.
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Next, define a pair of mappings (¢, ¥n), with
¢n:Dp— Dpy1 and  9Yn: Dpyy — Dy,

forn=0,1,2,....
Inductively define the following.
QSO(:C) = )\y € Do.x (23 & Do)
‘(,bo(:l:') = x'(_Lo) (.’13' € Dy, Lo =inf Do)

Snt+1(z) = Ppnozoth, (z € Dp+1)
Yr+1(2') = Ypoz o gy, (' € Dyy9)

1/’11 1[)n.+1

A n ¢ Dpyy = Dpya ——
¢
— D ' Dy BB D, —

The function ¢ embeds any element into the constant function with that value,
while ) gives us the minimum value of the (monotonic) function z', which is its best
approximation. For the inductive cases, an element z in D, is made into an element
of Dpyy by first projecting its argument down one level so that z can be applied to
it, then it is injected back up to give it an answer at the right level. Similarly for the
projection, the argument is injected up a level, then the function is applied, and then

projected down a level.

Definition. The set {D,; ¥} is a projective spectrum and its limit is D, which can

be represented as

Doo = {{zn)nio | £n = Yn(Znt1),2n € Dy}

The selection criterion, =, = ¥n(zn+1), is known as the consistency condition.

The consistency condition singles out unique sequences for each limit. Without the
consistency condition there would be many sequences with the same limit and many
sequences without any limits at all.

In categorial terms, Dy is a limit for the functor D : w°? — CSem defined by
D(n)=Dpand D(!:n+1— n)= v,
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Notation. Let ¥, and ¢, be identity functions on D,. Then ¢y, : Dy, — D,, and
@mn : Dy — Dy, for n > m, are inductively defined by

Yrtin = Yn,

Prnt1 = Pn,

and, for k> 1,

¢n+lc+1n = ¢n+kn © ¢n+k>

<;Snn-f—lc-{'l = ¢n+k o ¢nn+k'

Each element of D, defines a function over D, by the following operation.

Definition. Let z = (2,)2, and y = (yp)n = 0 be elements of D,. The application
z(y) is defined by

x(y)n = IO_OI ¢mn(zm+l(ym))'

m=n

We will denote by ®(z) the function defined by the element z. This provides an injection

®: Do — [Doo — Doo].

It turns out that just taking z(y)n = Zn+1(yn) is not sufficient, for this sequence

may fail to satisfy the consistency condition for D,.

Next, we define the injection and projection functions connecting the limit, Dy,
with each D,,.

Definition. Let ¢poo : Dp — Do and oon : Do — Dy be defined inductively by the

following.
For n = 0:
Booo (Z0) = (20, bo(20), bo2(z0), - . ., bon(z0), .. .)
¢w0(x) = T, = <xn>zozo;
and, for n + 1,
¢n+1oo($n+1) = Proo © Tn+1 © Yoons ZTni1 € Dpyta,

¢oon+1(x) = ¢oon 54 @(x) ° ¢noo; z € Dy.

Having constructed Dy, the limit of all the finite D,’s, the question remains of

whether we need to continue and construct

Doot1 = [Doo — Doo]?
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It turns out that these functions are already represented in D, because they are con-

tinuous.

Definition. For f € [Do — D), its representation is an element u in Dy, defined
by,
0 = Yoo0(f (Pooo(-L0))),

Untl = Yoon © f © Proo-

This operation, denoted ¥(f), provides an injection

VU : Dy — Do) = Deo.

Semantics

The semantics of the A-calculus is given by the following meaning function from the free

algebra of terms to a domain satisfying the domain equation ().

Syntactic Categories:

I € lde the usual variables
E € Exp A-expressions
Value Domains: .
e€ D=[D — D] values of expressions
p €U = [lde — D] environments
Semantic Function: ¢ : Exp — [U — D]
E[1]p = o]

E[ALE]p = Xe.£[E](p[I : €])
E[FoBilp = (E1Bolo) (€ [ i)

Semantics of the A-Calculus
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To deal with the A-calculus with atoms, the construction is similar, except that
the domain of atoms should be summed with D,, in the inductive definitions, and the

projections should preserve atoms between levels.

3. Continuous Logical Connectives

The notion of monotonic logical connectives is not new (Stoy [77] calls them doubly ad-
ditive). They have been used in a logic for dealing with undefinedness in Barrenger [84].
In this section we define the logical connectives and the equality as functions over

the truth lattice 7,
t f

N
L

using the conditional.

The new direction that is pursued in the following sections is the extension of these
functions to Dy,. They are defined inductively for all D,, and then shown to satisfy

the consistency condition.

Definition. The continuous conditional extends the standard conditional in the min-

imal manner and is defined by the following:

TXxTxT-—T

v, iftC zand fZ z;
(z—y,2) =X 2, iftZzand fC z;
yNz, ftZzandfZ z.

This definition is the same as the one given in Scott [71] except that it is defined

over the three element truth semilattice, not the four element lattice with a top.

Definition. The continuous conjunction (A) is defined using the continuous condi-
tional to be

zAy=(z — y,f)

with its truth table:
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The truth table should be read as giving the value of the operation whose first argument
is the value inside [-|, and the second value is the location on the table with the value
located at that location. For example, in the above, the value of t Af is the right value
of the left table.

Proposition. The continuous conjunction is commutative and associative.

Proof: Commutativity is shown by examination of the truth table. Associativity is by

exhaustive checking of the different possibilities.
(A-A) zA(yAz) = (zAy)Az

Clearly, (A-A) holds when: (1) all three values are t, since then both sides are equal
to t; (2) if any one of them is f, in which case both sides are f. The remaining case is
when none is f. This means at least one is L. In this case both sides of (A-A) are L,

and so we are done.  []

Note that once the four values for t and f have been defined, the other values are
forced by continuity considerations. For example, in the left diamond, we begin with
tAt =t and tAf = f. This requires us to make tA L less than either t or f, since
1L =tuUf, namely 1.

Definition. The continuous disjunction (V) is defined
zVy=(z—t,y)

with truth table:

Proposition. The continuous disjunction is commutative and associative

Proof: By examination of the truth table, and by exhaustive case analysis. []

Proposition. The continuous disjunction and conjunction satisfy the following dis-
tributive laws:

(A-D) cA(yvz) = (zAy)V(zAz)
(v-D) gV(yAz) = (zVy)A(zV2)
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Proof: The equations hold when the three values are either tor f, since they are then
the same as for standard connectives. When one or more of them are undefined, we

need to check them separately.
(1) If z = L, then both sides of (A-D) equal L and both sides of (V-D) equal
(yAz2).

(2) If y = L, then both sides of (A-D) equal z A z and both sides of (V-D) equal
z. By symmetry, same holds for z = 1. [

Definition. The continuous implication is defined
z=>y=(z— y,t)
with truth table:
t ] f ot [1] L ot [f] t
N S N S NS
L L t
For continuous implication, we assert that false implying anything is always true,

whether that object is total or not, whereas when true implies something, the outcome

is very much dependent on the second argument.

Definition. Just as in intuitionistic logic, continuous negation () is defined in terms

of implication as

Srz=z=>f or Sz=(z—fit)

with truth table:
f t
N o
1

Note that the negation of undefined is undefined.

Proposition. The continuous conjunction, disjunction, and negation satisfy De Mor-

gan’s Laws:
(M1) S(zAy)=SzVvhy
(M2) 41($\7y):—‘-:x/\—3y

Proof: By checking all the cases. If z and y are both defined or undefined, the equations
are satisfied.
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For (M1), suppose z = L. If y = t, then both sides are | ; if y = f, then both sides
are t.

For (M2), suppose z = L. If y = t, then both sides are f; if y = f, then both sides
are L. []

Equality

In the literature on logic of partial objects, there are usually two notions of equality. One
1s monotonic on both its arguments, usually called equality; the other is not monotonic,
producing the value true when both sides are undefined. The monotonic equality is the
equality of the object language, while the non-monotonic equality is what we use in the

metalanguage when dealing with the elements of the semantic domains.

Definition. The continuous equality over the lattice of truth values is defined to be

z=y=z— (y—t,f),(y—ft),

or,
t, fz=y=torz=y=H,
:c:-'—yz{f, if(z=tand y=f) or (x="fand y =t),
1, otherwise.

and its truth table is given below.

Proposition. The continuous equality is associative, symmetric and transitive, but

not reflerive.

Proof: Associativity holds when all three values are defined. When any one of them is
not defined, then both sides are undefined.

Since L =1 = 1, reflexitivity fails. By the truth table, continuous equality is
symmetric.

Assume z=y and y=2z. If z = t, then y = t, which implies 2 = t. Similarly, for

z="f []

In this section, we presented the logical connectives and the equality over T, and

showed that they satisfy the usual algebraic properties, namely, the conjunction and
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disjunction are commutative and associative, and they distribute over each other, and

with negation, they satisfy de Morgan’s laws.

4. Extension to D

This section presents our new work in the definition of logical connectives over D

With the logical connectives defined over Dy, we want to extend it for all D,’s,
and eventually to Dy. Like almost everything else in this thesis, this will be done

inductively. For brevity, let ® represent any one of A, V, or =.

For all elements 2o and yo in Do, ®p was defined such that zo ®g yo 1s in Dy and

it is continuous in both arguments. Inductively we extend the logical connectives to all

Dy,.

Definition. Assume that ®, has been defined over D,,, and z,4+1 and y,41 are ele-
ments of Dy,y1. For all n,

Tn+1 Ontl Yntl = Ad e Dn.zn+1(d) On yn+1(d)-

For this definition to be useful, z,,+1 ®p+1yn+1 should again be an element of Dy
and the connective should be continuous in both of its arguments.

Lemma. For each n,
(i) if zn and y, are elements of Dy, then so is z, Op, Yn, and

(ii) the logical connectives, ®y : Dy, X Dy, — D,,, are continuous in both arguments.

Proof: The proof will be by mutual induction on n.

For n = 0, (i) and (ii) are both true by definition of the connectives.

For n + 1, to prove (i) we need to show that if z,,; and y,.; are in Dy 41, then
Zn+1On+1Yn+1 is a continuous function over D,,. Assume that @ is continuous over D,,.

Let {d'} be a chain in D,,. First we show that Tp+1 On+1 Yn+1 15 a continuous function
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over D,.

[Zr+1 Ont1 Yn+1]( l_l &)= mn+1(|_] @) On Ynt1( |__| &)

= Uzn-i—l(d‘) On Uyn-*-l(d‘)

{by contmulty of z,41 and ypi1}
= U[xw{'l(di) On yn+1(di)]
t

{by hypothesis of continuity of ®,}
= U[$n+1 On+1 Yn+1)(d).

Next, for (ii), assume that Zn41 Ont1 Ynt1 is in Dpyq. Let {2%,;} be a chain and
Yn+1 be an element of D,4;. Then

|l zht1 Ont1 ¥ns1 = Ad € D[ | 2h41](d) On Ynt1(d)
- .

{by ;leﬁnition of On+1}
=M€ D,. L_l:c’,;ﬂ(d) On Ynt+1(d)
{by :ieﬁnition of supremum}
= A € Dy.| |[zh41(d) O ynt1(d)]
i

{by hypotheses of continuity of ®,}
= | JI\d € Dn.[2511(d) On yns1(d)]]

i

{by continuity of abstraction}
= U[ziz-i-l On+1 yn+1]' O

i
Next, we extend the connectives to Do,. We write (z,) to mean (z,)%,
Definition. Let z = (z,) and y = (y,,) be elements of Dy,. Define
TOY = (Zn On Yn)neo -
From the previous Lemma, each component is in the correct domain, but is the

whole thing in D? To show that it is, we need to show that the consistency condition
holds: Zp, On Yn = Yr(Tnt1 © Ynt1)-

Theorem. Ifx andy arein D, then so is zOy. Equivalently, for all n, the following

diagram commautes:
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Dn+1 X Dpy1 —— -Dn+1

J"'/)nX‘pn l%bn

D, x D, °~, p,

Proof: For n = 0:
Yo(z1 ©191) = [71 O1 91](Lo)

= z1(Lo) ®o y1(Lo)
= vo(z1) Oo Yo(y1)-

For n+ 1, assume the diagram commutes for n:

1/)rl,-(~1(5'3rt+2 On+2 yn+2) =po0 [xn+2 On+2 yn+2] ° ¢p
{by definition of ¥,+1}

= Ad € Dy.[thn © [Zn+2 Ont2 Yn+2] © $n](d)
{by n-abstraction}
= A € Dn-Yn([Zn+2 Ont2 Yn+2)($n(d)))
= A € Dp.Yn(2n+2($n(d)) On+1 Ynr2(dn(d)))
{by definition of ®p+2}
= A € Dn.tn(Zn+2(dn(d))) Ont1 ¥n(Ynt2(dn(d)))
{by induction hypothesis}
= Ad € Dy.[¢hp 0 Zpi2 © $n](d) On [¥n © Yn12 © ¢n)(d)
= [¥n © Tnt2 © $n] Ont1 [¥n © Ynt2 © $n]
{by definition of ®p41}
= Yn+1(Tnt2) Ont1 Yrt1(Yn2). [
The key point is that z, ©® y, is an element of D,, for each n, and therefore the

projections, %y, are defined for them. The componentwise definition is what makes the

consistency condition simple to verify.

Proposition. The logical connectives over D, satisfy the same algebraic properties

as the ones defined over Dy.

Proof: By the propositions in the previous section, the logical connectives over Dq

satisfy the algebraic properties.
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For the inductive case, we demonstrate the proof using the distributive law. Let z,

y, and z be elements of D,,; 1. Then
zA(yV z) = Ad € Dy,.z(d) A(y(d) v z(d))
= Ad € Dy,.(z(d) Ay(d)) V(z(d) A 2(d))
= (zAy)V(zAz).

Similarly for all the other properties. [J

5. Continuous Quantification

So far we have defined the connectives for each level, and then shown the extension to

Dy to be well defined. Next, we tackle quantification.

The standard definition of quantifiers, where the bound variable ranges over all
the elements of a set, is not very meaningful when applied to a domain containing
partially defined objects. It ignores the approximation relation between objects, and
the undefined element will tend to dominate in assigning the value of the quantifier.

The key idea in continuous quantification over a domain is that since predicates
are continuous, the value of a predicate at a partial object should be an approximation
of the value of the predicate at some “proper” object. Then, the quantifiers can be
defined so that the bound variable ranges over only “proper” objects, for some notion
of “proper.”

In the truth lattice, T, it is clear that the proper elements are the constants t and
f, and the only improper element is L. For functions over domains, the most natural

definition would be that a function is proper if it maps proper values to proper values.

Definition. For a domain D, let 7D denote the set of proper elements. We set
7T = {t,f}. In general, for any flat semilattice, the proper elements are the defined
elements.

The proper elements of constructed domains are given below.

Definition. For domains D and E:
(1) 7(DXx E)=#D x nE;
(2) #(D+ E)=#D + rE;
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(8) n[D— E]={f€[D — E]|z € nD implies f(z) € nE}.
Continuous quantification is defined for each D, inductively. By considering a
predicate as a function of one variable (Currying if there are many arguments),
pe[A— B,
quantification is defined as operators of type

Vv,3:[[A — B] - B].

Definition. Let pp4+1 be in Dyyq.

(1) The universal quantification of pny1 is given by
VY Pn+1 = A{Pnt1(¥n) | € 7D,
Le., the continuous conjunction of all the ppt+1(yn), yn € 7 D,,.
(2) The ezistential quantification of p,y1 is given by
3pnt1 = V{pnr1(yn) | yn € 7DL};
Le., the continuous disjunction of all the pp+1(yn), yn € 7 Dy,.

Next, the notion of proper element for D, is defined that allows us to define

quantification over Doo.

Definition. An element, z = (z,), in D is said to be proper, written z € 7 Dy, if
(1) for some k, z, is proper for all n > k, or
(2) it is maximal among all non-finitary elements under the product ordering.

The elements satisfying criterion (1) are known as the finitary proper elements.

The elements where each z, is improper, are like the partial functions whose limit

is a total function.

Note. The above definition is for semilattices. For lattices, an element is proper if
it is maximal among all potentially proper lists. A list is potentially proper if each

component is less than some proper element.
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Notation. At this point we need to show that this definition is consistent with the
ones for each D,. We shall use > and < to mean “strictly greater” and “strictly less

than” in the lattice ordering.
Proposition. If x and y are proper in Dy, then z(y) is also proper in Do.

Proof: Suppose z(y) is not proper. Then there exists a proper u, such that u > z(y);
i.e., for some k, u, > z(y)n, for all n > k. Let

tn+1 = Az.(z = Yn —* Un, x(y)n)’

an element that behaves like z for all arguments, except that at y, it gives u as its value.

Since (t,) may not satisfy the consistency condition, define z', where
o0
T, = U Yon(tm)-
m=n

Then, z' does satisfy the consistency condition, and furthermore, is strictly greater than

z, contradicting our assumption that it is proper. []

Next, we extend the definition of properness to functions over D, and show that

the representation in D, remains proper.

Definition. A function in [Dy, — D] is said to be proper if its restriction to proper

elements of D, gives proper elements.

Proposition. If f is a proper function over Do, then its representation, (un), tn Dy,

given by
0 = Yoo0(f (Bo00(-L0))),

Unt1l = Yoon © f © Preo

s proper.

Proof: The element u was constructed so that, for all z in Do, f(z) = u(z), and, since
f is proper, so is u(z), for all proper z.

Assume that u is not proper in Do,. Then there exists a u' such that u' > u; i.e.,
for some k, u;, > up, for all n > k. This means that for some z in Do, (), > u(z)p,

contradicting the assumption that u(z) is proper. [J
We are now ready to define quantification over D,.

Definition. Let p = ()32, be in Dyo.
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(1) The universal quantification of p over Do, is given by

Vo= A{p(¥) | v € Do} = (A\{Pn+1(yn) | ¥ € 7 Do )0

(2) The ezistential quantification of p over D, is given by

3p=V{p(W) | v € 7Do} = (\/{Pn+1(4n) | ¥ € 7D }) 0.

We prove that the sequences so defined satisfy the consistency condition.

Proposition. Let p be in Dy,. For all n,

1:["n((\"/P)M-I) = (VP)n and ¢n((3p)n+1) = (Ep)n

Proof: By straight forward calculation:

“/’n((\./P)nJrl) = ¢n(/\{Pn+2(yn+1) |y € 7Dy })
= A{¥n(Pr+2(yn+1)) | ¥y € 7Doo}
= A{¥nt+1Pnt2(¥n¥n+1) | ¥ € 7Doo}
= /\{pn+1(yn) |y € Do}
= (\;’p)n.

The proof for the existential quantifier is identical. []

In Scott [79], quantification is defined to be only over objects that satisfy the

existence predicate. What we have done is defined the existence predicate for D.,.

The value of the predicates as well as everything else are all elements of Do, giving

us type-free quantification.

6. A Type-Free Logical Calculus

Having defined operations over D, that correspond to the logical connectives and quan-

tification, we are now in a position to provide the semantics for a type-free logical cal-

culus based on the A-calculus with the terms extended by allowing logical connectives

and quantification.
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Syntax

We first define the new terms of this logic, and then define the semantic function for

them.

Definition. Continuous Logic is A-calculus with new rules for generating terms:
(d) ¥ X and Y are terms, then so are X =Y, X = Y and —X.
(e) If P is a term, then so are VP and 3P.

Semantics

The semantics of all the formulas are inductively given below for some environment p.

E[X=Y]p=E[X]p=¢[Y]p

E[X=>Y]p=E[X]p=>EY]p
E[-X]p==E[X]p
E[vPlp =V E[P]p
E[3P]p = 3€]P)p

Semantics of Continuous Logic

In the sequel, we shall simply write [M] for & [M]p.

Validity

Having defined the denotation of the terms and formulas of the type-free A-calculus,
the next issue is that of validity. Classically, a formula is valid for a model if its
interpretation in that model is true, i.e., the denotation is the truth value “true.” As
long as the denotations of the formulas are either “true” or “false,” this is fine, but
for the type-free theory with terms denoting partial elements of D, there are weaker
notions that deserve to be considered. These give us a notion of partial validity.

The strong notion of validity, close to the classical one, has formulas valid if they

denote t. Under this notion, formulas whose denotations are less than t in the lattice
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ordering can be considered to be “partially valid,” their validity dependent on how close
they are to t. Similarly, formulas denoting f are totally false, and those whose deno-
tations are less than f are “partially invalid.” In this framework, the totally undefined

element 1, is the only element that is both partially valid and invalid.
Definition. A formula M is strongly valid, written =7 M, if [M] =t.

Under strong validity, only formulas that in some way already incorporate the
constants t or f can be be valid. Since we are dealing with a domain of partial elements,
we consider another notion of validity that uses the identity function over Dy as a

measure of truth.

First, let I be the identity function over D, and define
tr=I1=1.

Then, this element tr is a value that says an element is true in so far as it is defined
in Do, For example, we have that t;(L) = L, t;(t) =t, and t;(t;) = t;.

Definition. A formula M is partially valid, written = M, if [M] 3 t;.

Partial validity allows formulas containing finite elements to be valid. But so far
only finitary elements can be valid. Since there are non-finite elements that have been
defined to be proper, we would like a notion that allows formulas containing these
elements also to be valid.

Since the non-finite proper elements are less than t; componentwise, we weaken the
requirement to allow formulas that become progressively more “true.” This is done by
injecting the finite components of t; into higher spaces and comparing them with the
components of the formula.

Definition. The formula M is valid in the limit (or limit valid), written =, M, if

for all n, there is a k > n, such that [M]; 3 ¢nx((tr),). Here the subscripts denote the
components.

Clearly, strong and partial validity imply limit validity.

7. Paradoxes of Russell and Curry

The quest for a type-free logical calculus ran into a quagmire of paradoxes. As soon

as logical notions were defined for the A-calculus, a paradox appeared. Attempts were
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made to prevent paradoxes either by weakening the logic, or by syntactic restrictions to
prevent paradoxical formulas from being written. These methods have not been very
satisfactory.

In this section we present the kinds of paradoxes that appear when logical connec-

tives are added to the equational theory of the A-calculus.

Equational Theory of the A-Calculus

As the framework for Russell’s [02] and Curry’s paradox (Hindley et al. [72]), we need
to formulate an equational theory for the A-calculus.

The equational theory of the A-calculus consists of the A-terms and the following
equations. Let M, N and L be A-terms.

(p)

(6)

(r)

M=N

For all contexts C[ |, where C[ ] is a term except for one missing subterm,
M=N

S ituti e

(Substitution) CIM] = C[M].

For the three conversions, the equality is defined for interconvertible terms:

(e) Az.M = Ay.M[z/y]

(8" (Az.M)N = M(z/N]

(n") Az.Mz =M

where in (o'), y & FV(M); and in o', z & FV (M).

For any A-term X, we may assert the validity of X, written |~ X, if it is axiomati-
cally true or may be derived according to rules of inference.
(Equality Rule) Z(_Z_'%_':}_

We shall abbreviate
FALALLA A,

X

by
Ay,..., A, |- X.
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To the A-terms we adjoin two new term formation rules:
If X and Y are terms, then so are X = Y and —-X.

These represent implication and negation, respectively. By allowing such terms, we

are quickly led into paradoxes.

Russell’s Paradox

This is the same set theoretic antimony formulated functionally. Define
F(f) =~1(5).

Then immediately we have that
F(F) = ~F(F),

and inconsistency.

We claim that the term F(F) must be given the value L. Then, since in continuous
logic, negation of | is still 1, there is no contradiction.

Let M = F(F). Then M = =M, a recursive equation. The standard way of solving
for such is by taking the limit of partial applications of the functional defined by the
recursive equation.

where

Therefore, [M] = L.
Another way of looking at this is by considering the notion of head normal form
for A-terms introduced by Wadsworth [76]. Since we have extended the language with

the logical connectives, we need to know when —A is in h.n.f. We propose the following
Definition. A term —Aisin h.nfif A isin h.n.f.

Then, with this definition we have the next
Proposition. F(F) does not have an h.n.f.

Proof: Since F(F) bg —F(F) bg =~F(F) >g -, so it cannot have an h.nf. []
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In the metalanguage we can know when a program will not terminate by analyzing

its structure. For example,
‘while true do z := z + 1 od"

will not terminate, since the constant true will never change. Similarly,
"(Az.zz)(Az.22)’

has no head normal form, since S-reductions cannot change its intension. This prompts
further rules:

(1) If Ais a term with one f-redex and A bg A and A is not in h.n.f., then A has

no h.n.f.

(2) f A bg ~A and Ais not in h.nf, then A has no h.n.f.

Curry’s Paradox
Curry’s paradox begins with the term
(1) Z = dz(22 = (22 = X)),
where X is any A-term not containing z as a free variable. Next let
(2) M=2zZ.
Then by B-reduction we get that
M=2ZZ
= (A2 (22 = (22 = X)))Z

=2Z = (ZZ = X)
=M= (M= X).

(3)

We use the following axiom from propositional logic

(%) (A= (A= B))= (A= B)
and the standard modus ponens

(MP) X, X=Y Y
Replacing X by M and Y by X in the axiom (%), we get

(4) (M= (M= X))= (M= X).
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But (M = (M = X)) = M by (3). Then using the Equation Rule we get
(5) M= (M= X).

From (5) and (4) and modus ponens we have

(6) - M= X,

and by (5) and (3) we get

(7) - M.

Finally, by modus ponens we have
- X.

So we have derived X, an arbitrary term occurring in the definition of Z above. The

logic is inconsistent.

Resolution of Curry’s Paradox

Consider the term M. It turns out to be the fixed point of the function H = Aa.(a =
(a = X)); ie., M =Y H, since

YH=(Af.(Az.f(zz))(Az.f(2z2))) H
= (Az.H(zz))(\z.H(zz))
= (Az.(zz = (zz = X))(Az.(zz = (zz = X))

=7Z7Z=M.

What is the value of M? Since it is the fixed point of H, we can represent it as the
limit

o0

[M] = U r*

k=0

where
0= A,

=" ("= X1
= (L = (L = [X])),
rktl = (Tk = (rk = [X])

are the approximations.
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The 7%’s are the partial approximations introduced by Wadsworth [76,78] to give
values to terms that do not possess a normal form but do possess a head normal form.
The 7*’s form a chain approximating the value of M.

If we interpret the implication as continuous implication, then the value of

A= {J_, if [X]is L or f;
Tt if[X]ist.
By induction, for all k,
k= {_L, if [X] %s L orf,
t, if[X]ist.
Therefore, the value of M will be the same as 7%, which depends on the value of X.

Just as for Rudin [81], our resolution to the paradox depends on the value of the
terms being used. We claim that the axiom (*) can be used only when the appropriate
substitution instance evaluates to t. This can happen when either the value of B is t,
or when both A and B are proper values. Since the value of M is already t when X is
already t, deriving X in this case is not inconsistent. When X is not t, then the value
of M is L, and the formula in the axiom (*) evaluates to L.

A formula that is always true, is only conditionally true in continuous logic. The

axiom (*) must be rewritten as two axioms:
Bl (A= (A= B))= (A= B)
AV-A,BV-B|- (A= (A= B))=> (A= B),

and read as saying that if the left hand sides are true, then so are the right hand sides.
The disjunctions indicate that the values are proper.

The modification necessary for the above axiom illustrates the general difference
between classical logic and continuous logic. In continuous logic we may not conclude
that something that is not true must be false. Due to this, it is intuitionistic in that
objects must be shown to exist, but once that has been done, the logical operators act

quite classically.

8. Summary

Continuous logic was defined with the principle of keeping all operations continuous.
This was so that all expressions in continuous logic would have fixed point, and therefore
would be computationally meaningful.

In this section we compare continuous logic with Rudin’s A-logic, which also has
Dy as its model.
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Comparison with Rudin’s A-Logic

Rudin [81] defined a type-free logic, called A-logic, based on the A-calculus. He showed
that Do, was a complete relatively pseudocomplemented lattice—better known as a
complete Heyting algebra—and therefore, a model for A-logic. Conjunction was inter-
preted as lattice meet, disjunction as lattice join, and most significantly, implication
was interpreted as relative pseudocomplement. The constants “true” and “false” were
interpreted using the top and the bottom elements of D, respectively.

By considering the semantics, Rudin resolved the paradoxes of Russell and Curry
by showing that abstraction is meaningful only when done over continuous objects, that
is, over elements of D, and that the paradoxes arose in the attempt to get the least
fixed point of non-continuous functions. In the paradoxes considered, the heart of the
difficulty lay in the fact that implication, interpreted as relative pseudocomplementation,
is continuous in the second argument but not in the first.

In continuous logic, we defined all the logical connectives, including implication, to
be continuous in all arguments. Therefore, discontinuity could be used as a criterion to
resolve the paradoxes. As in Rudin’s investigation, our resolution to the paradoxes was
also achieved by considering the semantics of the terms.

Unlike Rudin, we could not rule out the term Z as invalid on the ground that it
was abstracting over a non-continuous object. Our method for resolving the paradoxes
was to show that certain formulas (or terms, since we are in a type-free universe) that

were thought to be valid were not.

Limitations of Continuous Logic

Barringer [84] presents a logic for dealing with undefinedness in program proofs. Their
definition of the logical connectives is the same as ours over T'. They list a set of axioms
and inference rules that they claim are sound and complete for the three valued truth
values. Their proof system uses both monotonic and non-monotonic equality as well as
the non-monotonic definedness predicate. The difference is that they only deal with flat

lattices and typed functions.

Having defined a logic where all the operations are continuous, the question remains
of its significance and applicability. Because of the continuity assumption, it is a weaker
system than classical, or even intuitionistic logics. We don’t even have A = A, for all
A.

Continuous logic as it stands models the logic we intuitively use when confronted

with programs and other mathematical objects that we have defined but are not sure
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whether they exist. Until there is some proof, one way or another, any proposition we
have about such an object must be conditional. So, in so far as the A-calculus models
what we can construct, continuous logic models the logic we use intuitively.

As to its applicability, continuous logic is a logic of denotations in their extension.
When we regard a computer program, however, we know more than its extension, we
are able to prove a great deal by analyzing its structure, i.e., its intension. Therefore,
it is quite reasonable to add to continuous logic non-continuous operators such as an
existence predicate or a properness predicate, as we have done in our meta-language in
order to define continuous operators.

The next step would be to try and formalize how we deal with intensions. Some
work by Moschovakis [86] indicates possible directions, with the formalization of algo-
rithms as higher order functionals. The difficulty comes in trying to decide when two

algorithms are the same.



44

Chapter 4

Imperative Programs

Wherein a formal system for reasoning about imperative programming languages is in-
troduced and found wanting, motivating an analysis in continuous logic using partial

states and predicates.

Imperative programming languages represent computations by defining a state and then
specifying a sequence of state transformations, using the assignment statement and
various control structures. One approach to formal reasoning of imperative programs is
collectively known as Hoare Logic (Floyd [67] and Hoare [69]). We begin this chapter by
introducing the axioms and inference rules of Hoare Logic for simple programs, and then
present one of its limitations, pointed out by O’Donnell [82], when the programming
language is extended by recursive function definitions.

Next, we present a new semantics of Hoare Logic using the ideas of Continuous
Logic. We introduce the notion of partial state structures and partial predicates over
them. Using this framework, we analyze the axioms and inference rules of Hoare Logic,
and resolve contradictions in proofs of recursive functions.

We conclude the chapter with several examples of reasoning about programs.

1. Hoare Logic and Its Limitations

Hoare Logic, also known as “axiomatic semantics,” is a logic for dealing with programs
in a syntax-directed, compositional way. The axioms describe the primitive elements of

the language, and the inference rules describe the compositions.
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Axioms and Inference Rules for while-programs

Assume we have a first-order language as the specification language and an imperative
programming language. For definiteness, let the specification language be the standard
predicate calculus language, and the programming language be Algol 68 (Lindsey and

Meulen [80]) with modifications in the syntax when convenient.

Definition. A Hoare triple is an expression of the form {A} P {B}, where A and B
are formulas of a specification language and P is a well-formed program. The triple is

to be interpreted as saying:

If A is true of a state before the execution of the program P and P terminates,

then B will be true of the resulting state.

Because of the assumption regarding the termination of P, the Hoare triples are

known as partial correctness assertions.

The axioms and inference rules of Hoare Logic for while-programs are listed below.
They are presented in the natural deduction style whereby the formula below the line
can be derived in one step, given the formulas above the line. The inferences without
any formulas above the line are the axioms.

These are the rules for a simple fragment of an imperative programming language.
There are no rules for functions or procedures. Procedures can be accommodated
in an expanded framework where induction rules are added for recursive procedures.
Reynolds [81,82] presents such a logic called specification logic. The attempt to include
rules for recursive functions has been problematic because of the potentially undefinedess

of the function, as we shall see below.

Function Rules

In O’Donnell’s critique [82] of Hoare logic, the rules above are used to show that these
rules are not inferentially sound. That is, by adding correct new axioms it is possible
to derive contradictions.

Add to the above set of rules an inference rule to deal with the occurrence of defined

functions in the assertions. This rule is from Clint and Hoare [72].

_ {4} P {B}
(Function-1) Vz(A = Bly/f(z)])
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(Empty)

{4} {4}
(Null) {AY null {4}
(Fail) {4} fail {B}
(Assignment) {Alz/E|} = := E {A}
N {4} P {B}, {B} Q {C}
(Composition) {A} P;Q {C}
B {AAB} P{C}, {AA-B}Q {C}

(Conditional) {A} if B then P else Q fi {C}

_ {AA B} P {A}
(While) {AY while B do P od {=B A A}

A=B,{B}P{C},C=>D
(Consequence) {A} P {C}
Hoare Logic Axioms and Inference Rules

where

f = proc(z): local zy,...,2,. P; return(y) end.

Given these rules, O’Donnell proceeds to derive a contradiction. First define the

function
(*) f = proc(z): fail; return(y) end.

Then we get the following derivation.

(1) {true} fail {false} Fail
(2) Vz.true = false Function-1, (1)
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(3) false

O’Donnell remarks that this contradiction is due to the function rule assuming the
existence of all the variables occurring in its predicates. To get around this, he introduces
a variation, Function-2, introduced by Musser (referenced in O’Donnell [82]), that forces

the existence by having it bound by a quantifier.

dy(Alz/E] = Blz/E]) {A} P {B}
Alz/E| = Blz/E,y/{(x)]

Using this function rule, it takes us two derivations to get a contradiction.

(Function-2)

(1) {true} fail {y =0} Fail

(2) Jy(true = y = 0) predicate calculus

(3) true = f(0) =0 Function-2, (1), (2)
(4) f(0)=0 predicate calculus, (3)
(1) {true} fail {y # 0} Fail

(2) Jy(true = y # 0) predicate calculus

(3) true = f(0) #0 Function-2, (1), (2)
(4) f(0)#0 predicate calculus, (3)

O’Donnell states that “It is weakly consistent only because of the peculiar restric-
tion that Function-2 may be applied to each function for only one choice of A and B.”
Then he presents a strongly consistent rule by forcing the function to be used in an

assignment rule so that, should it be undefined, then the rule will be vacuously valid.

(Function-3)

{4} P {B}
{Al=/E]} z == G[f(E)] {Blz/E,y/f(E)]} forz¢& FV(E).

Even this rule, however, is not consistent if non-strict functions are allowed to occur

in G. So then, even more involved rules, one for each of the statements in the language,
are provided to keep the proof system consistent. We list the more involved rules, one
for each of the constructs (assignment, conditional, and while-loop), with the function
f defined as in the Function-1 rule above.

(Function-assignment)

{4} P {B}
{Ale/E] A (Blz/E,y/ f(E)] = Clz/G[f(E)])} 2 == G[f(E)] {C}




43

(Function-conditional)

{4} P {B}, {CAGIf(E)] A Bly/f(E)]} Q {D},

{C A -G[f(E)] A Bly/f(E)]} R {D}
{A[z/E| A C} if G[f(E)] then Q else R fi {D}

(Function-while)

{4} P {B}, {CAG[f(E)]} Q {C}
{AJz/E] A CY} while G[f(E)] do Q od {C A —G[f(E)[}

O’Donnell then concludes,

The soundness of rules for function definitions is a slippery issue when func-
tion bodies fail, since the normal interpretation of the predicate calculus does
not allow for partial functions. So, we consider a predicate calculus formula
containing a program-defined function f to be true when it is true for all total
functions f consistent with the values computed by the definition of f (Consta-
ble and O’Donnell [78]). If the definition fails to halt, then every total function
is consistent with all the computed values (there are none), so only assertions
that hold for all functions, such as Vzf(z) = f(z), are true for f. The as-
sertion f(0) = O is only true when the definition of f actually computes the
output value O on input 0. Under such an interpretation and assuming that
all primitive functions are strict, it is conjectured that Function-assignment,
Function-conditional, and Function-while are inferentially sound. These rules
are so inelegant that the proof of soundness is of much less interest than Cook’s

[78] proof of soundness for the system of Sec. 4 (Emphasis added).

The contradictions occur because the rule for the “Fail” and the rule for the
“While,” when the loop does not terminate, are invalid. Semantically, “Fail” denotes
non-termination and the state resulting “after” the execution of “Fail” must therefore
be undefined. Therefore, we cannot say that an arbitrary predicate holds on the resul-
tant state. A similar argument can be made for the while rule; the rule can be validly

applied only when termination is assured.

2. Reasoning with Recursive Definitions

Consider a program where a recursive function has been declared. In the proof rule for

the assignment statement we have that any expression occurring on the right hand side
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of the assignment statement is incorporated into the assertions. The assignment rule

says: For all assertion P, variable z, and expression E with consistent type,
{Plz/E]} z:= E {P},

where P[z/E] denotes a new assertion with all occurrences of z replaced with expression
E.

Another example. Suppose fact is defined recursively. Then we would want to

assert something like the following:
{fact(3) =6 Ay =3} z:= fact(y) {zx=6Ay=3}

The problem, as Reynolds points out, is that a recursive definition may not be totally
defined. So that if fact(3) is not defined, then what is the meaning of this assertion?

Our approach is to allow states to be partial in the sense that variables may be
undefined, and therefore, predicates about a state will also be partial in reflecting that.
The state and the predicates must be continuous so that states and predicates may be
defined as limits of partial ones.

In the example above, if

fact = l__lr",

where 7 is the defining functional for the factorial function, then

{P} == fact(y) {Q} = | {P*} =z :=*(y) {@"},

are partial functions, P*¥ and QF are partial predicates, and

{P*} 2= r*(y) {Q"}

are partial assertions for each k.

where r*

In the following are new formulations of state and assignment statement to make
the above precise. First, a notion of state will be presented that can have undefined
values, the assignment statement will be defined as state functions, and predicates will

be defined as functions from states to the truth lattice.

3. States

In imperative programming languages, the fundamental object that a program manip-

ulates through the assignment statement is the state. All the other constructs, such
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as control mechanisms or declarations, serve to aid in the modification of the state. A
clear understanding of the state is critical for reasoning about the meaning of imperative
programs.

A state can be considered to be a heterogeneous data structure where the identifiers
play the role of selectors and the declarations the role of constructors. The assignment
statement can then be considered an operator that takes an identifier and a value,
modifies the implicitly given state, and gives a new state as its resuls.

In the literature on the semantics of the state, a distinction is usually made between
the store and the environment. The store carries the binding between internal locations
and values, while the environment binds identifiers to internal locations. This model
can handle aliasing but has limitations. It cannot handle pointers or references since
pointers are internal locations whose values are again internal locations. Nor can it
handle constant declarations.

We will generalize the above model of the state by using a function with heteroge-

neous domain and codomain, which subsumes the two notions of store and environment.

Let V' be a semantic domain that includes the integers, the Booleans, the reals, the
functions over them, as well as any other data structures one would like. We shall be
more specific later. Let lde be a set of identifiers, such as z, y, and fact etc. Let Loc
be a flat domain of objects called locations. By an abuse of notation, we shall use z, y,
etc. to be metavariables ranging over identifiers and locations, as well as values. The

context should make clear its usage as a program identifier or as a metavariable.

Definition. A state structure, o, is a continuous function of type
(Ide + Loc — V + Loc],

with the ordering
o1 Eoy iff Vz.oi(z) C oa(z).

We quickly show that the state structures behave nicely.

Proposition. The collection of state structures forms a semantic domain with the

pointwise ordering induced by its codomain.

Proof: Since the codomain of a state structure is a semantic domain, the supremum of
a chain of state structures is the state structure that has the supremum of each of its

chain of coordinates. []
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Since the locations are accessible only if they are bound to some identifier by a
chain of locations, we do not want to distinguish state structures that differ at unbound

locations.

Definition. A location [ is bound in state structure o if there is an identifier z such
that | = ¢™(z), for some natural number n, where ¢” denotes n fold composition of .
A location that is not bound will be called free.

The free locations cannot be modified and they cannot affect the computation of
a program, so states differing only on their free locations are equivalent as far as the
programmer is concerned. Using this notion of equivalence, we can define for each
equivalence class of states the minimal state under the ordering given above. Rather
than defining all these concepts and then proving the following assertion, we make it
into a definition.

Definition. A state structure is minimal if the value at each free location is undefined.
For any state structure o, let mino denote the minimal state structure that agrees with

o at all identifiers and bound locations.

This minimalization operation usually goes by a more colorful name of “garbage
collection”

Definition. A state is a minimal state structure. The domain of all states will be
denoted by X.

This definition of state is sufficient for the semantics of languages like Algol 68,
where the structuring of data is done in the domain of values, but is not for languages
where the internal locations are used to create data structures, such as in LISP. To
accommodate structures such as S-expressions, we need to change the codomain of the

state to include pairs of locations:
o :lde+ Loc — V + Loc + Loc x Loc.

Since we are restricting our language to Algol 68, in the following, we shall use the

simpler definition.

Example. A simple state, o, with z an integer variable and y bound to the constant
5, can be pictured by
z

z—[+— 3
o=}l 3] or ,

yr— 5
yr—o
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where [ is a location and everything else is undefined.

To access elements of the value domains, we need names for some of the elements.
We will assume that a subset of the identifiers is already bound to certain values. These
are the constants of the language. For example, the identifier “3” is always bound
to the number 3 and “+” to the integer addition function. In most programming lan-
guages certain identifiers are overloaded so that they denote different objects in different
contexts. For example, the identifier “+” is used to denote the addition function for
integers as well as for reals. For simplicity, we shall assume that different uses of the
same identifier are merely syntactic sugar that can be distinguished and replaced by
distinct identifiers if necessary.

By putting restrictions on the state, we obtain the more traditional semantic struc-

tures.

Definition. An environment is a state where the identifiers are bound to values but

all locations are undefined. A store is a state where none of the identifiers are defined.

Clearly, our notion of state is the join, in the lattice order, of an environment and
a store, while, given a state, we can extract the environment and store from it. The
reason for the more general notion of state is our view that all the constructs in an
imperative language are functions or functionals on the state. The functionals include
the control structures such as conditionals and loops, while the functions include the

declaration and the block constructor as well as the assignment statement.

4. The Assignment Statement

The assignment statement transforms a state to a new state. To give precise semantics
to it, we first need a few auxiliary notions.

The first notion we need is that of the value of an expression in a state. This is
defined inductively on the level of the identifier, where the level indicates the distance
to the values.

The second notion is that of replacing the value of the state at an argument by a

new value. This combined with the minimalization will give us assignment.

Definition. For each defined identifier z, let the level of the identifier be the number

of internal locations that lie between the identifier and a value.
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Example. If o contains z + [y — [3 — 2, then the level of z is 2.

Definition. Let E be an expression and o a state. The value of the expression E in

state o, written o°*(E), is inductively defined below. Examples following the definitions

are written in Algol 68.

(a)

(b)

E = ¢, where ¢ is a constant, then

o*(c) = o(ec)-

In most programming languages identifiers such as “1” and “2.34” denote the
integer 1 and the real number 2.34, respectively. Also, the standard mathe-

matical functions such as “+” are also given their usual meaning.

E = k, where k is an identifier of level 0, i.e., a constant declaration, then
*(k) = a(k) = o(c),
where ¢ is the constant. Example: int k = ¢, a constant declaration.
E = z, with z of level n, then
o*(z) = o™ (z).

The usual variables are of level 1. Higher level variables are known as pointers
or reference variables. In Algol 68 a variable is declared by "int z := €', which

is an abbreviation for
r - _ a . — "
refint z = int loc: z:=¢’,

where "int loc’ is a function returning the first free location and e is an integer

expression.

E = f(E,..., E,), with E;’s expressions and f a function, then
o*(E) =" (f)(o*(EL),...,0°(E,)).
For E=v+3,if 6°(v) = 2, then

o*(E) = 0*(v) + 0°(3) = 2+ 3.

Analogously, we define an operation that returns the location of a variable.

Definition. For each variable z of level n > 0,

°(z) = o™ (z).
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0° returns the last location that points to a value.
Next, we define functions that modify the state.

Definition. A state transformer is a function of type
(Ide + Loc) x (V + Loc) — [Z — X,

and is written o(a : b), where a and b are from the domain and codomain of o, re-

spectively, and o(a : b) is a new state that differs from o only in that it maps a to
b.

A state transformer may modify a state to produce a state structure that is not

minimal. So, we define a new function, which always minimalizes.

Definition. A state function, written o[a : b], is the composition of a state transformer

followed by the minimalization,

ola : b] = min(o(a : b)).

Using the state function we illustrate different types of state-modifying operations.

[zHllH?)}
y—la—5 .

xr—»llH?»]

Example. Let

il

o

Then we have

oly:o(z)]=0oly:l1] = [yH11H3

where y is aliased to be the same as z;
> l{— 3
olo(y):o(z)]=olla: l1] = ,

yr—lg—1;—3
where y is made to be a pointer;

olo°(y) : 0* ()] = olly : 3] = [

z— 13
y 3]’

where we have the standard assignment operation.
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Definition. If z is a variable and E is an expression of the appropriate type, then the

assignment statement is defined to be
[z .= E] = do.olo(z) : 0*(E)],

and is written as a postfix operator: o[z := E].

Clearly, for identifiers of higher level, one can introduce suitable functions to de-

reference a pointer variable.

Having defined state structures and assignment statement as state functions, it
seems appropriate at this point to compare what we have with the applicative state
transition (AST) systems of Backus [78]. AST systems are an attempt to combine the
history of states with the cleaner semantics of applicative programming. What Backus
does is construct state-like structures using the data-types of his functional programming
language (FP) by adding the ability to name objects. Then, the programs written in
the formal FP (FFP) are able to model environments and states.

What we have done is model states (and environments) using mathematical struc-
tures, and made imperative programs behave like applicative programs over the domain
of states. If new constructs are introduced into imperative languages to allow larger
scale modification of states, then the two approach will be semantically alike. Our pur-
pose, however, has been to analyze the semantics of imperative languages, rather than

try to combine the two approaches.

5. Control Structures and Declaration

These notions will be treated very briefly here. We assume that the standard denota-

tional semantics can be defined for whatever we need.

Definition. The conditional will be written in a variety of ways, depending on the

context. It is defined using the continuous conditional
o[if(B,S1,82)] = (¢(B) — o[S1],0[S2]),

where B is a Boolean expression and S; and S; are imperative statements.
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Another way of writing the conditional is in a more two-dimensional form representing

the flow of control. For Boolean B and statements S; and S;,

does the obvious.

Clearly, the conditional satisfies the following equation:
if(B, S1,S2) = if(B,if(B, S1, S2),if(B, S1, S2)).
The while-loop, can be defined to be the least fixed-point of a functional,

[while] = fiz[Ag.AB.AS.if(B, S;9(B,S), )]
=,
where
=1

1 = AB.ASIf(B,S; (B, S), ).

Here, fix is the fixed-point operator and the semicolon denotes composition from left to

right.

Declaration

In dealing with declarations, we will take the simplest approach and assume that we
can do « conversion and rewrite each program so that each variable is unique. If a
program uses a variable that has not been declared we will consider it to be a syntax
error detectable at compile time.

For later examples, however, we consider the semantics of a declaration to consist
of two functions. The declarer initializes the state so that the variable is bound to a
location of the correct type, the undeclarer binds the variable to some standard location

indicating that it is free.

Procedures

We consider procedures to be state functions, once their arguments have been given.
The parameter passing protocols will depend on the declaration of the parameters. If
they are by value, then the function will take the values, if they are by reference, then

the appropriate location will be passed.
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Adding procedures adds new terms to V' in the defining semantic equation for state

structures. An example of a new term looks like
[N X Loc — [ — X]],

which denotes the domain of procedures with two arguments, the first is an integer

value, the second is by reference.

6. Semantics of Hoare Logic

In this section we present an analysis of Hoare Logic axioms and inference rules using
continuous states that have been defined. First, the meaning of predicates over states

is given inductively.

Predicates over States

A predicate is a function from states to the truth lattice. It expresses properties about a
state primarily be relating the values of different variables. Though no explicit notation
is employed, we assume that program variables can be distinguished from the variables
of the specification language.

Definition. The meaning of a predicate A(ty,...,t,), where the t; are program iden-

tifiers, over a state o is defined inductively as follows.

(a) For an atomic formula A(ty,...,t,),

Aty - -5tn)(0) = [A](0° (1), - -, 0" (tn)),

where [A] is the denotation of A. As a special case
"ty =t (0%) = o*(t1) =0 (t2).
(b) For compound formula A ® B, where @ is any logical connective,

(40 B)(0) = A(¢) © B(0).

(¢) For quantified formula Qz A, where Q is existential or universal quantifier,

(QzA4)(0) = Qz(A(0)).
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Example. Let A="a=1Ab=23". Then

Alo)="a=1Ab=3"(0) =o(a)=1Ac(b)=3.

Interpretation of Hoare Triples

The continuous interpretation is one where the Hoare triple is interpreted as an impli-

cation with the quantification over all proper states:

{A} P {B} =Vo.A4(0) = B(c[P]).

Under this interpretation, the Empty, Null, Composition, Conditional and Conse-

quence inference rules remain valid, while the others fail in general.

Fail Rule

Under this interpretation, the fail rule is not valid. We have
{A} fail {B} =Vo.A(0) = B(o][fail])
=Vo.A(0) = B(L),

which is true if A = false or if B = true. Therefore, the paradoxes that arose by

using fail in the body of functions are avoided.

Assignment Rule
The Assignment axiom has the following form:
{Alz/E]} z .= E {A} = Vo.A[z/E](0) = A(o]z := E]).

This is valid if either E is proper, or the value of A is independent of z, either because

z is not free in A, or else it occurs in a non-strict context.

While Rule

{AAB} P{A}

(While) {A} while B do P od {—-B A A}

[Vo.[AA Bl(o) > A(0)] = [Vo.A(0) = [~B A A](o]while B do P od])]
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In the case of the While rule, if the condition B = true, then the post condition will be
false and, since no state can satisfy the postcondition, the rule is not valid. When B is
not identically true, the validity depends on the computation of the while-loop. Like for

the Assignment rule, the postcondition may hold, even if the loop does not terminate.

7. Inductive Proofs of the Factorial Programs

For representing programs we shall use Algol 68 syntax and semantics with modifications
as desired.

In this section we illustrate the correctness of two programs for computing the
factorial, one an applicative version, the other an imperative. We will show the two
proofs of correctness to be virtually isomorphic when the state is made explicit for the

imperative program.

Applicative Factorial
The factorial function can be defined recursively as
proc fact = (int n) int: if n = O then 1 else n x fact(n — 1) fi.

A recursive definition specifies a continuous functional over the function space. The
fixed point axiom asserts the existence of the least fixed point, a function, also named
fact. Given the existence of the least fixed point, the definition asserts the equality of
the two sides. That equals may be replaced by equals is the key to the simplicity of the
proof below.

The proof that the factorial definition is correct requires us to show that the function
given is defined for all non-negative integers. This we do by a simple mathematical

induction on n. The induction predicate is simply

P(n) = fact(n) = n!,
where n ranges over the nonnegative integers and ! is the mathematical factorial.
First, we show P(0):

fact(0) = [An.if n =0 then 1 else n X fact(n — 1) fi](0)
=if 0 =0 then 1 else n X fact(0 — 1) fi
=1
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= 0!
Next, we show that for n > 0, P(n — 1) = P(n):
fact(n) = [An.if n =0 then 1 else n X fact(n — 1) fi](n)
= if n = 0 then 1 else n X fact(n — 1) fi
=n X fact(n — 1)
=nX(n-1)! {by the induction hypothesis}
= n!
In the above proof we have used the equational interpretation of the definition

and the non-strictness of the if function. Otherwise, we have a very straightforward

verification of the factorial definition.

Next we shall verify an imperative version of the same algorithm.

Imperative Factorial

The definition of the imperative factorial program is
proc fact = (int m, ref int f) :
if m =0 then f:=1 else fact(m — 1, f); f := m x ffi.
The verification will require that for any nonnegative value of n in a state, after the
execution of the program the value of f will be the factorial of the value of n. Formally,
the predicate is

P(n) = n = o(m) = o[ fact(m, f)}(f) = o(m)!,

where m and f are program variables.

The proof proceeds as before.
First, show P(0):
o[fact(m, f)](f)
= ofif m =0 then f:=1else fact(m —1,f); f := m x f fi](f)
= if o(m) = 0 then of :=1]
else ofact(m — 1, f); f :==m x f] fi(f)
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Next, show P(n — 1) = P(n):
offact(m, £)I(/)
= ofif m =0 then f := 1 else fact(m — 1, f); f := m x f fi](f)
= if o(m) = 0 then o[f := 1]
else offact(m — 1, f); f :=m x f] fi(f)
= olfact(m — 1, 1); = m x £1(f)
= olfact(m — 1, DL = m x 11(7)
= olfact(m — 1, N(f) x o(rm)
= (o(m) — 1)! x o(m)
= o(m)!

Here we have also used the easily verifiable fact that the value of m is unaffected by the

factorial program.

8. Inductive Proofs of Procedures

The equational interpretation of definitions allows us to treat the representation of pro-
grams as if they were the denotations providing us with suitable abstraction at the
semantic level. In this section we apply this methodology to procedures and compare

1t with Martin’s proof rules for procedures using weakest predicate transformers (Mar-
tin [83]).

Example 1

Given

Tproc tncl = (int z, ref int y): y .=z + 17,
find the weakest A such that
{A} inci(a,a) {a = ap + 1}.
In our method, we want a predicate A such that

A(o) = "a = ag+ 1'(o]inci(a,a)]).



62

That is, we want the weakest precondition such that after the execution of the procedure,
a = ag + 1 holds on the new state. To find A, we solve for o on the right-hand side of

the implication:
'a = ag+ 1'(o[incl(a,a)]) <> Ta=ag+ 1'(cfa:=a+1])
<= ofa:=a+1](a) =0cfa:=a+1](ac+ 1)
<= ofa)+1=ap+1
<= o(a) = ao,

so we have A = a = qq.

Example 2
For the procedure incl defined above, find A such that
{A} inc1(a,b) {b =3 x a}.

We need to find A such that
Alo) => ob:=a+1](5) =3 x ob:=a+1](a)
<= o(a)+1=3x0c(a)
<= 1=2xo(a),

sowe have A=2xa=1".

Example 3

Given
proc swap = (ref int z, y): z,y ==y, "

>

determine A such that for any predicate Q(a, b),

{A}swap(a,0){Q(a,b)}.
Let 6 = ofa,b := b,a], then
Q(a,0)(6) <= Q(8(a),5(b))
> Q(0(b),0(a)),
so we have A = Q(b,a).
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Example 4
Given
‘proc p = (refint 2): z := 17,

show that there is no precondition A such that

{4} p(c) {c =2}
Again we try to solve the state equation for the post condition:
¢ =2"(ofc:=1]) <> ofc:=1](c) =2
> 1=2,

obtaining a contradiction. Therefore, no precondition A can exist.

Example 5

Given McCarthy’s 91 function in imperative form,
. z>100 - y:=2—10
proc p = (int z, ref int y): {int z; if fi},
£ <100 — p(z + 11, 2);p(z, y)
we want to show that for all values of o(z),
) (2 9)](0) _f[a(z)> 100-~>0'(:z:)——10}f_
* olp(z,y)](y) =i i
o(z) <100 — 91

Let d, = [intz], and d} be the undeclarer.

From the definition and the fixed point axiom, p satisfies

o{z) > 100 — od,[ly := = — 10]|d*

(+%) o[p(z,y)] = if[ (z) Iy [d; * :lf.
o(z) < 100 — od,[p(z + 11, 2)][p(z, v)] %

The proof proceeds by induction on the value of z in . The ordering for the induction

looks like:
101

102 <100 <99 <.--<1<0.

For o(z) > 100 (o(z) < 100), the base cases, by (**) we have

ooz, v)}(y) = od.[y := = — 10]d}(y)
= o(z) — 10.
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Next, assume (*) holds for o(z) > n (o(z) < n). For o(z) = n < 100,
o[p(=z,9)1(v)
i [a(x) > 100 — od, [y := = — 10]d;(y) ]f'
— |o(e) <100 = ody[p(z + 11, 2)] [p(z, v)]d3 ()

= od,[p(z + 11, 2)][p(2, v)| 5 (v)

{let 6 = od,[p(z + 11, 2)] from this point on}

é(z) > 100 — é(z) — 10
if fi
&(2) < 100 — 91

{by induction hypothesis, since o(z) + 11 > o(z)}

[o(z) + 11> 100 — o(z) + 1]
if fi > 100 — &(z) — 10
| o(z) + 11 < 100 — 91
[o(z) + 11> 100 — o(z) + 1]

if fi < 100 — 91
| o(z) +11 < 100 — 91

[o(z) 4+ 11 > 100 Ao (z) +1 > 100 — 6(z) — 10
o(z) + 11 > 100 Ao (z) + 1 < 100 — 91
o(z) + 11 < 100 A91 > 100 — &(z) — 10

| o(z) + 11 < 100 A 91 < 100 — 91
=91.

The only nontrivial case is the first condition of the last if. From our assumption,
o(z) < 100, and from the condition of the if, o(z) + 1 > 100, the only possible value for

o(z) is 100. For that value, 6(2) — 10 = 91, and so we are done.

9. Summary

Denotational semantics allows us to treat definitions as equations. This principle was
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used to prove properties of programs in an equational way.

The logics of programs like Hoare Logic implicitly deal with states. What we have
done is made that reference explicit. The appeal of Hoare-like Logics is that they hide
unnecessary details about programs, especially about the state. This is fine for simple
while-programs without pointers and functions, but as the complexity of the language
increases and the parameter passing protocols for procedures gets more involved, it
becomes necessary to make more and more of the state explicit.

Sokolowski [84] introduces terms as the pre- and post-conditions, with the interpre-
tation that the value of the pre-condition term equals the value of the post-condition
term after the execution of the program.

Sieber [85] uses a function “cont” which returns the value of the variable at a certain
state. This is the same as our use of the value at a state, 0*. However, “cont” assumes
a simple model of the state where all variables are of level 1.

Tennent [85] uses notions form categorial logic and Kripke semantics to provide
a model for Reynolds’ specification logic. The crucial difference in his approach is on
dealing with false as the bottom element of an Heyting algebra.

As the expressiveness of programming languages increases, it seems inevitable that
purely syntactic characterization of program behavior will become more difficult and

semantic properties must be used directly.
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Chapter 5

Infinite Lists

Wherein a semantic domain for infinite lists of arbitrary high order is constructed and
meaning giwen to non-terminating programs, thereby enabling equational reasoning about

them.

1. Introduction

Infinite lists arise when we want to give meaning to non-terminating, yet answer-
producing, programs. In applicative languages lazy evaluation enables infinite objects
to be progressively computed. Precise formulation of infinite lists is necessary for formal
reasoning of such programs.

As a start, we might define infinite lists by specifying each element of the list, by,
say, a function from the set of natural numbers to the set of elements. Unfortunately,
this method is inadequate if we want lists whose elements are again infinite lists. Next,
consider defining lists by levels. First, we have infinite lists of order one, the elements of
which are atoms. Next, the infinite lists of order n + 1 are obtained by allowing infinite
lists of order n or less as elements. Even this construction does not capture all definable
infinite lists.

Consider an infinite list whose first element is an infinite list of order one, second
element is a list of order two, etc. Clearly, this list is not of any finite order. We shall

say a list like this has order w. The interesting point here is that such lists can actually
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be generated in a programming language that allows lazy evaluation. Once we have a
list of order w, we can use it to define a list of order w - 2 and so on (up to €p).

Infinite objects can be computed only as a limit of finite ones. The notion of a limit
presupposes some kind of a topology, or at least an ordering. The ordering we use is
that of definedness. By generating a sequence of finite lists that become more and more
defined, we can specify an infinite list.

We construct a domain of infinite lists by taking the projective limit of the chain
of finite lists ordered by projection and indicate how the meaning of non-terminating
programs can be defined. We show that set-theoretic constructions cannot generate all

definable lists by appealing to the Axiom of Foundation.

2. Finite Lists

Given a set of atoms A, make it into a flat semilattice by the usual technique of adjoining
a bottom element, | 4, which is less than all the defined elements of A. We indicate the
empty list by ¢, and the undefined list by L.

Definition. The finite lists of length n, Ly, are defined inductively:

Lo = {<>, _L}
L1£(AU Lo) X Lo U Lg
Ln+1 = (AU Ln) X Ln U Ln.

The set of all finite lists, F, is the union of all the L,’s. The pair (a,!) is written
a:l using the pairing operator, which is assumed to be right associative. For example,
a:b:e=a:(b:c).

The ordering on F', and therefore for each L, is defined as follows:
(1) LCz forallzePF,

(2) z:yCuv fzCuand yCo.

In other words, an element of L,y is either an element of L,, or a pair of ele-
ments where the first component is either an atom or an element of L,, and the second

component is an element of L,,.
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Next, we define the projection mapping from L,4+1 to L,. This mapping acts as
the identity on the lists of L,; that already belong to L,, while for the other lists its

value is the list in L,, that best approximates the argument.

Definition. The projection functions, ¥ : Lpt1 — Ly, are defined inductively:

¢0(x)5{<> if z =<,

1 otherwise.

Ty ifz:y € Ly;
Yn(z:y) = { z:pn—1(y) if z € A;
tn-1(z) :¢¥n—1(y) otherwise.

Examples. L3 contains L, ¢, 1:0, (¢):L, 14, 1:2: 1, (1:L):(L):L, L4:1, etc.
Ls contains all the elements of Lz as well as 1:2:3:1,(1:2:1):(1:$):($): L, ete.

Examples of the ordering and projection functions:
1LEQ, Llia:lC1l:lCl:2:L, (1:1):0C(1:9):0,

P2(1:2:0) =1:2:$,  h((1:2:L):(1:L):(L):L) = (X:L):(L): L.

3. Infinite Lists

Infinite lists will be constructed as sequences of finite lists where the nth element comes
from L,. Each element of the sequence will be the 1-projection of the next. This is the

consistency condition necessary for the projective limit construction.

Definition. The set of infinite lists, Loy, is the limit of the projective spectrum

{Ln;%¥n}, and can be represented as

Lo = {{3p)2| forall n, s, € L, and s, = Yn(sn+1)}-

There are projections and injections to and from each L, and L.

Definition. For each n, the projection function toon : Loo — Ly, is

Yoon(l) =1ln, where = (I,)3,.
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Notation. Let %, be the identity on L,. For n > m, let

¢nm5¢m°"'o¢n—lo¢n7

the composition of the projection functions.

Definition. For each n, the injection function dpeo : Lp — Lo is

¢noo (ln) = ('l/)nO(ln), ¢n1(ln): ¢n2(ln): ey ¢nn—1(ln),lna lns .. )

Next, make L., into a partial order by defining the order coordinatewise on the

sequence.

Definition. Let [; = (s,) and l; = (t,) be infinite lists. The ordering on infinite lists
is defined by:

LT iff for all n, s, C t,.

4. Complete Semilattices

Once infinite lists are given with a partial ordering, the next step is to look at a chain
of lists. We want each chain to have a supremum, which is again an infinite list, that

is, a member of L.
Definition. A set of lists {I;}{2, is called a chain if [; C l;4, for all 4.

In order to show that L is a complete semilattice, we first prove that each L, is.
Lemma. FEach L, is a complete semilattice.

Proof: We show that the least upper bound exists for every chain by showing that
a chain in L, can have only a finite number of distinct elements, and therefore, the
maximum of the chain is the least upper bound.

We define the rank of a list to be the total number of occurrences of the pairing
operator (:), the empty list ($), and defined elements of A. We claim that

(a) For each L,, the maximum rank is bounded, and

(b) If Iy is strictly less defined than [z, then the rank of /] is less than the rank of
ls.
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(a) is proved by induction on the rank of lists. The max of the rank in Ly is 1. A
list in L, consists of a finite number of lists of lower order. (b) is true because the only
way to make a list strictly more defined is by either replacing L by <& or z: 1 for some
z, or replacing L 4 by a defined element of A, all of which increases the rank by one.

Therefore, since the rank is bounded, every chain must be finite. []

Next, we prove the main theorem that L., is a complete semilattice by explicitly

constructing a list that is the supremum of a chain, and showing that it is a member of
L.

Theorem. L., is a complete semilattice.

Proof: Let {l;} be a chain with I; = {{;;)%,. Construct a new list as follows:
J/3=0

1= (sn)22, where Sp = U lin.
=0

From the previous Lemma, the supremum, s,, exists for each n, so ! is well defined.
By definition, each s, is in L,. To show that ! belongs to L, we need to show that
8p = Yn(Sp+1), for all n. This is shown by:

"»bn(sn-i-l) = 'd)n(D lin-{—l)

=0

"l)n (li n+1)

8

ii
o

Il
‘s
P

I
o

i
2]
S

The first, third and last equalities are by definitions. The second equality follows from
the monotonicity of 1, and the fact that every chain is finite.
So, I is an upper bound since each component is the supremum, and it is the least

because it is the least element componentwise. []

5. Application to Program Semantics

With L, proved to be a complete semilattice, we can use it for the fixed point approach
to program semantics. The following programs are defined using an applicative language
with lazy evaluation like Turner’s KRC [82].
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Example 1

A program to generate an infinite list of 1’s can be defined by:

f=r[f] where r{fl=1:f.

The meaning of f is the supremum of the partial lists defined by the 7;’s:
e o]
][fﬂ = U Tis
=0

where the 7;’s are given inductively by:
=l and rpp =T =1:7,.
By considering a finite list 7; to be both a member of L; as well as its corresponding
injection in L, the first few terms can be given by:
o= 1
n=rn=1l:np=1:1
1 1:1

PELGIE

nETRg]=1iny=1:-:1:1
and therefore

[[f]] = (Ti>?io,

which is the object representing an infinite list of 1’s.

Example 2

Recall that a list whose nth element is a list of order n is a list of order w. A program
to generate a list of order w can be defined in two stages. First, define a program that

generates lists of all finite order by using a parameter:
f0=1:f0
fln+1)=fn: f(n+1).

Next, we diagonalize to get higher-order elements:

Fn=r[Fln where r[F|ln=fn:F(n+1).
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If we write o™ = [fn] for each n, then

o%=1:1:1:.-.,

9
Il
Q
3
Q

Q
i
Q
Q
Q

and
[Fo] =[fo] : [£1] : [f2] : ---
=0:0t:0?: ...

Though the meaning of FO is precisely given, this is not quite satisfactory since, in
practice, an infinite list, %, cannot be completely given before giving . What we want
is to produce finite approximations of all infinite lists so that eventually each infinite list
will be given to an arbitrary level of accuracy. To do this we need projection functions
from infinite lists to their finite approximations.

Then the meaning of FO can be given as:

(oo}

[Fo] = [ | no,

t=0

where the finite lists are defined inductively by:

k=1 and muk=rlrR)k= zl)oon(ak) tta(k+1) for all k.
More explicitly:

700 = L

710 = 7[10]0 = to00(0°) t 0l =09 : L = (L) : L

720 = 7[11]0 = $001(6°) : 111 = ¥01(0°) : Yooo(0?) : 02 =09 : 0} : L

7,0 = 1,()00,,_1(00) : '(,boon-z(al) Dees s ¢ooo(an—1) : Ton.

The projection functions ensure that each 7,0 is an element of L,,. At each stage,
not only does the length of the list grow, but each component of the list becomes more
and more defined and of higher order, so that in the limit we have a list of order w.

Clearly, this process of diagonalization can be iterated an arbitrary number of times

to produce lists of higher order.

Example 3

Let fib(n) be the nth Fibonacci number. A program to generate all the Fibonacci
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numbers can be defined by

fab=a:fb(a+b).

Since we have defined a semantic domain of infinite lists, we can use the prin-
ciple that program definitions are equations, to show that f11 generates the infinite

sequences of Fibonacci numbers.

F11=1:f12=1:1:f23=1:1:2:f35="---

6. Comparison with Ordinal-Hierarchic Construction

In this section we explore an ordinal-hierarchic construction of infinite lists recursively
over the transfinite ordinals and show why this method cannot produce all the lists that

are definable in a programming language with lazy evaluation.

Definition. For any set A, let L(A) be the set of all finite and (countably) infinite
lists whose elements are from A:

L(A)= Ay ] Al
n=0

where AZ denotes the set of all set-theoretic functions from B to A, [n] the set of natural

numbers less than n, and w the first infinite ordinal.

Next, we construct a hierarchy of sets over the ordinals of lists, where at each stage

we use the lists in the previous construction as elements of the new lists.

Definition. The set of infinite lists over the set of atoms A is

Kpi1 = Kn U L(Ky)
K,= ] K,
a<w

Kuy1= K, U L(K,)

where w is a limit ordinal.
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How do these sets of lists compare with the lists in the projective limit Lo,? Did
we really need to use the projective limit construction? It turns out that no matter how
high we go up the ordinal hierarchy, we do not exhaust the lists in Lo,. Furthermore,
there is a list in Lo, that is not in any of the K, ’s.

Since K,’s contain functions with finite and infinite domains, while Lo, contains
infinite sequences of finite (partial) lists, a direct comparison is not possible. Instead, we
show that there exists an injection from one to the other where the injection associates an
infinite ordinal-hierarchic list with an infinite sequences of finite lists which approaches
it in the limit.

Theorem. For all ordinal o, there is an injection 1o : Ko — Loo.

Proof: The proof is by induction on the a’s. Let the nth element of { be [,,.
For a =0, let | € Ky = L(A), and define

Lo(l)E <_L,101J_,10211:_L,loil]_212!.]_,...)
if { is an infinite list, and
w(l) = (Lo Llo:lic L, o)l ilpy 10, Dot ilp—1:0, .00 ),

if [ is a list of length k. To show that iy is injective we observe that if two lists are
different, then they will differ at some kth element, and they will define infinite sequences
differing at the k + 1st place.

For the successor ordinal & + 1, assume there exists an injection
to : Ky — Lo,
and let [ be in K,413. Define
tat1(l) = (L, Yoo1(ta(lo) : L), Yooz (ta(lo) :tallr) : 1),
Yoos(ta(lo) ita(lt) ta(lz): 1),...),

where the toon’s are the projection functions from Lo to Ly, defined previously.

If two lists / and I' in K4 differ, then for some n, I, differs from {!,. By induction

Therefore, 1441 1s injective.
For B3, a limit ordinal, let [ be in Kgz. By definition, each [, is in K,,, for some

ordinal oy, less than #. In this case, we define

"ﬁ(l) = (-L’ 1/)001("110 (10) :—L)’ "/)002 ("ao (lo)zl’al(ll):LL
Yoo3(tao(lo) ttay (1) itas (I2) 1 L), ... ).
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Again, by induction hypothesis and the same reasoning as for the successor case, iz is

injective. [J

The next theorem shows that the projective limit captures lists that are not well-

founded set-theoretically.
Theorem. There exists a list in Lo not in any K,.

Proof: Let a be a list satisfying the following program definition:
a=a:< .

We claim that this list has no corresponding element in any K,. Its representation in
Lo looks like:

a=(L,L:0,(L:0):0,((L:0):4):0,...).

This means that if there were a list I € K, for some ¢, then the first element of I, lo,
1s a list isomorphic to I, which means the first element of lo, oo, is again isomorphic to
[, and this must continue without bound. This violates the Axiom of Foundation (see
Enderton [77]),

AP =>3z(z€ AANzN A=10),

a consequence of which says that there cannot be an infinite descending chain of sets

that are elements of the previous set. Therefore, no set theoretic list maps onto a. []

In programming languages with lazy evaluation, and certainly in the A-calculus,
infinite lists can be defined, and approximations to an arbitrary degree can be obtained

as long as one is willing to wait long enough.

7. Summary

In order to construct w and higher-order infinite lists, we used the projective limit
construction technique from topology. This seems to be a very general technique for
going from the finite to the infinite. Our construction of the L,’s was chosen because of
its simplicity, and so may be less intuitive than other choices, although they all lead to
1somorphic limits. The only nontrivial part of this chapter is in showing that the least
upper bound belongs to the constructed domain of infinite lists. Here we used the fact

that for finite chains a monotonic function can be moved inside the limit.
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de Bakker and Zucker [83] modeled concurrent processes using infinite trees that
were constructed by first defining a distance metric between finite trees, and then, by
using the standard completion technique, obtaining the infinite trees as limits of Cauchy
sequences of finite ones. By using the projective limit, we were able to construct the
infinite lists directly without introducing an arbitrary metric.

The projective limit construction was used by Scott [71] to model the type-free
A-calculus. Infinite lists can be represented as certain terms in the A-calculus, and
therefore, from a theoretical point of view, the standard semantics using D, is sufficient.
From a practical and pedagogical point of view, however, a more direct construction

using finite lists gives clearer motivation.
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Chapter 6

Objects and Multiple Inheritance

Wherein a semantic domain for objects that can refer to themselves is constructed, and

maultiple tnheritance defined as operations over objects.

With object-oriented languages, the reification of implicit structures continues. States
and environments are now made first class citizens and henceforth renamed “objects”.
Objects make up the fundamental stuff of computation by being manipulable, and they
can be passed to and returned from functions. Objects are created through “classes,”
which define the type of an object. One of the principles of object-oriented languages is
that everything is an object. Also, every object can refer to itself. This circularity and
self-reference makes the semantics of objects and classes non-trivial.

This chapter begins with an informal introduction to objects and classes based on
the language Smalltalk (Goldberg and Robson [83], Kay [69]). Then we construct a
semantic domain of objects and classes using the projective limit construction. The
projective limit construction is needed to deal with the self-referential capability of each
object.

The power of object-oriented languages derives from the abstraction mechanism of
classes and the factoring out of common descriptions using inheritance. The semantics

of multiple inheritance is given by introducing the notion of the product of two classes.

1. Objects and Classes

Informally, as exemplified in a language like Smalltalk, an object-oriented language is
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made up of the following notions.

(1) An object consists of some local memory and a set of operations called methods.

Methods are procedures local to an object.

(2) A message is a request for an object to carry out one of its operations. The

set of messages to which an object can respond is called its interface.

(3) A class describes the implementation of a set of objects that all represent the
same kind of system component. The individual objects described by a class

are called its instances.

(4) A mechanism whereby a new class definition is given using another class def-
inition, is known as inheritance. The new class is called the subclass of the

older class, while the older class is called its superclass.

The messages in the interface are public, while the local memory and the methods
are private to each object.
In addition there are two guiding principles that underlie the design and implemen-

tation of a language like Smalltalk.
(A) Every object is an instance of some class.
(B) Classes are represented by objects.

In order to abide by these two principles, Smalltalk also has the notion of metaclass,
instances of which are classes. Of course, metaclasses themselves have to be instances
of some class, and so we have a circularity in the subclass and instance hierarchies.

In this chapter, we shall present a very simplified version, exhibiting only the es-

sentials of classes and objects, handling the circularity by allowing self-application.

2. Semantic Domain of Objects

Objects will be modeled as state with self-reference; i.e., there is an identifier self in
the domain of the state whose value in that state is isomorphic to itself. In general,
objects will have identifiers pointing to other objects, as well as local procedures, making
their semantic equation somewhat more involved than for the states of an imperative

language.

Notation. In this chapter, “object” will have the meaning used in object-oriented

programming languages, and not the general meaning of “entity” or “element.”
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Let lde be a set of identifiers containing self, Loc be a set of locations, and V be a
sum of all the other domains of data types and functions over them.

Intuitively, what we want is a domain satisfying

O 2 [lde+ Loc — Loc+V +0+ [0 — O]],

such that for each o in O,

o(self) = o,
and, for all zy,...,z in lde, if o(z1) ... (z;) is an object, then
o(z1) ... (zk)(self) = o(z1) ... (zk)-

In other words, each object has an identifier, called self, that points to something iso-

morphic to itself; and, if there are any internal objects, then they are all that way
too.

Domains of Partial Objects

The way we construct such a domain is through the projective limit of domains of partial
objects with projection functions. Because of extra conditions that need to be imposed,

we first define intermediate domains of pre-objects.

Definition. The domains of partial pre-objects are defined inductively.

(a) For the base case:
Py = [lde + Loc — Loc+ V],

where for each p in Py, p(self) = Lo, the undefined element of the codomain.

(b) For the induction case, given Pj:
Ppt1 = [lde+Loc — Loc+V + P, + [P, — P,]].

Connecting the domains are the projections, whose value at a partial object is the

best approximation in the domain below.

Definition. Let us call the elements of lde + Loc that map into P, or [P, — P,], the
object variables. The projection functions, ¢, : Pp+1 — P,, are defined by:

(a) ¥o(p1) = po, where po agrees with p1, except that for all object variables z,

po(z) = Lo.
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(b) Yn+1(Pr+2) = Pn+1, Where p,.1 agrees with p,y2, except that for all object
variables z,

Pr+1(z) = Yn(pnsz(z)).

Essentially, what the ¢,’s do is prune the leaves and replace them with undefined,

if the leaves are Py objects. This is the best approximation in the next lower domain.

Domain of Objects

The limit of the projective spectrum, I;,i_m{Pn; ¥n}, contains many elements that do not
correspond to any objects. What we need is to restrict the eligible elements at each

stage to those that are as self-referential as possible.

Definition. The domains of partial objects, O,,, are constructed inductively as follows:

(a) For the base case:

Op = [lde + Loc —> Loc+ V],

where for each o in Og, o(self) = L, the undefined element of the codomain.

(b) For the induction case, given O,:

Opt1 ={o€[lde + Loc — Loc+V + O, + [0, — O,]] | ofself) = ,(0)}.
(c) The projections, 9, are the restrictions of ¢y, : Ppy1 — Py, to Opyq’s.

Definition. The domain of objects is the projective limit of the projective spectrum

{On; ":bn}:

Oco = {{0n)nro | for all n, 0, € Oy, 0n = P (0n+1) and o,41(self) = on)}

Example. Using the notation for state structures, an object with one local variable ¢
(set to 5) looks like:

0= (071)1?1.0:05

i1l —5 i—l;—5
0p = and opt1 = )
self — L self = o,

where
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Notation. Since all objects have the identifier self bound to its ¢-projection, we shall

omit displaying the binding of self and picture the above object simply by

[iHliH5].

3. Semantics of Classes

Classes are objects that return an instance of that class when they are sent the message
new. Since classes themselves are objects, they are created by sending to a metaclass
object, called “Class,” a declaration of that class.

Declarations specify the type and value of each of the components of a class in an
intensional way. We present an informal account of declarations, adopting the Algol 68

notation with a few modifications.

Declarations
Simple declarations bind identifiers to internal structures. For example,
real z = real loc’

binds the identifier z to an internal location for a real number in the current state. This
is usually shortened to just real 2.

Usually, a declaration also initializes the variable, as in fint ¢+ := 5". This will be
considered syntactic sugar for "int ¢ = int loc; 7 := 5".

Declarations also bind identifiers to more complex entities such as composite data

structures, procedures, and functions. For example,
proc p = (int n) int: n x n’

binds p to the integer squaring function.

In addition to all the standard data types of a language like Algol 68, we introduce
two new types, method and object. The method type is to distinguish procedures in
the interface from the private procedures, and the object is for declaration of internal
objects.

Definition. A declaration is a pair d = (I,¢€), usually written "l = €', where ! is an

identifier declaration and e is an expression of the appropriate type.
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Definition. An object expression is a set of declarations, written [dy,...,dy]|, where
the d;’s are declarations. The internal variable self is always declared to be pointing to

itself and so need not be specified.

Intentionally, we are using the square brackets both for displaying objects and for
defining them by object expressions. There can be no confusion, since a displayed object
will always have a binding of identifier to some object, while object expressions contain

declarations.

Example. The following is an object with three components, a variable ¢ that is local,

the method add, and an object point that has two real numbers as components.
[int 7 :=5,
method add = (int n) int: s :=¢+ 1,
object point = [ real z, real y]

]

Given an object declaration, we need a function that will produce the object.

Definition. Let Dec be the set of declarations. The function obj : Dec — O, is de-
fined inductively on the construction of the declarations. Let p denote the standard

environment.

(a) For simple declaration, d = (I,€), not an object declaration,

obj([d))p = [z - > [el),

where z is the identifier in [, the number of internal locations in the dots
depends on the type of z, and the value is the value of e in the current envi-

ronment.

(b) For multiple declarations, d = [d, .. .,dx], where all the identifiers are assumed

distinct,
Obj([dl, e ,dk]) = Ob]([dl]) Lfe--Ld Ob]([dk]),
the lattice join in Oy.

(c) For object declaration, d = "object o = [dy(0),...,dk(0)]", where d;(0) may con-
tain the identifier o in a recursive definition. Let d{0) denote [d1(0),. .., dx(0)].

What we want is the solution to the following equation:

0bj(d)p = [0 — obj(d{0))plo : obj(d)p(0)] ].
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Like any other recursive definition, the solution is obtained as the limit of finite

approximations:

0bj(d)p = (pn)aZom;
where
po=[o— L]
Pr+1 = [0+ toon(0b (d(0))p[o : pn]) |

For the multiple declaration, since all the identifiers are distinct, the only non-
trivial thing to check is whether self of the join of several objects is the join of several

self’s.

Proposition. Let [dy,...,dx| be a multiple declaration. Then if each obj([d;]) s an
object, then so is obj([dy,...,dk]) = obj([di]) L+ -1 0bj([dy]).

Proof: Without loss of generality, we prove the proposition for k = 2. To show that
the join of two objects is again an object, we need to prove that the join satisfies the
consistency condition and that self is well behaved.

The consistency condition is trivial, since v,, are continuous.

Next, let o = obj([d1]) and p = 0bj([dz]). Then

0= <On>;1.°=0 and p= <pn>;z.°=0a

where at each n

On = "/)n(on+1) and p,= ¢n(pn+1)'

and

ont+i1(self) = o0, and ppy1(self) = pn.
We need to show that for each n
[on L pr(self) = op(self) L pp(self).

Forn=0,

[oo LI po](self) = L = L LI L = op(self) L po(self).

Assume n,

[on+1 U pri1](self) = opti(self) U pryi(self) = o, Lip,. [
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In this section we defined object expressions that define objects and a function that
returns the appropriate object as its value. The object expression can be very general,

allowing for recursive definitions of objects.

Classes

Given object expressions as first class citizens, we may now construct objects that return
other objects.

Intuitively, a class is an object that returns an instance of a class when it is given
the message new. Since a class is again an instance of another class, an object that
returns the class given its definition.

Using object expressions and abstraction over objects, the above concepts can easily

be formalized.
Let o be an object with definition d. Then an object ¢ that returns o when given
the message new can be defined

object ¢ = [ method new =d |,
and the displayed object looks like

¢ = [new — obj(d)p ].

Metaclasses

Metaclasses are objects that return a class when given a declaration of an object.
If we have an object expression d, then we can obtain the class for 0 as an instance

of the following metaclass class definition,

object class = [ method new = (dec D) object: [ method new = D | ]

)

which looks like
class = [new — Ad.[new — o0bj(d)p] |,

where d is of type dec.
Then we have

¢ = class.new(d),

and

0 = c.nhew.
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Multiple Inheritance

One of the most useful technique in programming with classes is the modularity that
can be achieved by abstracting command procedures and data structures into separate
classes and then using the inheritance mechanism to build upon what is already there
in a clearly defined manner.

As soon as the idea of inheritance has been accepted, the next question is to inherit
from more than one class.

We propose to deal with multiple inheritance by defining the product of classes to be
a class having all the attributes of each of the components. Then, multiple inheritance

reduces to single inheritance.

Definition. Let c; and ¢y be classes, i.e. there exit declarations d; and dy such that
c1 = class.new(d;) and ¢ = class.new(ds).
The product of classes ¢1 and cg, written c¢1 X ¢g, is defined by
1 X c2 = class.new(d; x dy),

where dy X d3 is just the union of the declarations.

If the union of two object expressions results in an identifier being defined in two

different ways, there are a number of ways to resolve the conflict.

1. The strictest way is to take the lattice meet of the two entities. This means
that for methods, they both must be defined and be the same before it becomes
meaningful.

2. The most generous is to take the lattice join of the two entities. This corre-

sponds to parallel execution.

3. Another possibility is to let one take precedence over the other, as determined

by some kind of ordering.

4. Summary

In this chapter we constructed a domain of objects as a projective limit of domains of

partial objects. Previous work in formulating a semantics of multiple inheritance is by
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Cardelli [84], where objects are defined to be sets possessing attributes, like record types
of Pascal, and inheritance is then the union of these attributes.

What we have done is provide models of objects that are self-referential in that
they have internal identifiers pointing to themselves. In an operational framework,
self-referencing can easily be achieved by pointers back to oneself, but in denotational
semantics such circularity cannot be modeled. Instead, what we have done is to have
the self-referencing identifiers be bound to objects that are isomorphic to oneself. Of
course, this is where the projective limit construction was needed.

By making intensional declarations first class objects, we defined a meaning function
that returns an object for each object expression. Using object expressions, it becomes
a simple matter to define higher order objects like classes and metaclasses, as well as
define a notion of product of two object expressions in order to get multiple inheritance
via the notion of product of classes.
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Chapter 7

Procedural Reflection

Wherein a powerful mechanism that allows a program to reflect on its own environment

ts described, and a model is constructed using projective limit.

Procedural reflection is a mechanism that allows a program both to refer to its own
current environment and other semantic features of the implementation and to modify
them in a reasonable manner.

Our source for procedural reflection is Smith [84], who implemented procedural
reflection in a version of Lisp called 3-Lisp. 3-Lisp is a language whose data types and
functions include computational analogs of notions from language implementations and
semantics. One demonstration of 3-Lisp’s power is in defining its operational semantics
by a meta-circular processor written in 3-Lisp itself.

This chapter presents an overview of the language 3-Lisp, constructs a model of
the 3-Lisp processor as a projective limit, and gives examples of reasoning about 3-Lisp

programs with the model.

1. An Overview of 3-Lisp

This section is a condensation of the salient parts from Smith [84]. First, a word about
terminology. Smith adopts a precise convention to prevent ambiguity.
What exists inside a computer (in an abstract way) are structures. The way the

outside world and a computer communicate is through notations that can be typed in
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or displayed. Notations are the text of programs that are given to an interpreter which
produces internal structures the text “notates.” Structures have unique designations
(which they “designate”); that is, they are representing not only external entities, like
numbers and trees, but also other internal structures. This designation function is
denoted ®, and the ® of a structure is referred to as its declarative import. Structures
are manipulated by the language processor, denoted ¥, which normalizes or does some
other operation. The ¥ of a structure is called its procedural consequence.

Let s; and sz be structures such that ¥(s;) = s3. Then we will say that s; is
self-referential if ®(s1) = s1, that U de-references sy if s; = ®(s1), and that ¥ is
designation-preserving (at s;) when ®(s1) = P(s2).

Definition. A structure is said to be in normal form if

(1) It is context independent, in the sense of having the same declarative (®) and

procedural (¥) import, independent of context of use;

(2) It is side-effect free, implying that the processing of the structure will have no

effect on the structural field, processor state, or external world, and

(3) It is stable, meaning that it must normalize to itself in all contexts, so that ¥
will be idempotent.

The Elements of 3-Lisp.

There are seven structure types. Let a; range over structure notations.

(1) The numerals (notated as usual) and (2) the two boolean constants (notated
$T and $F) are unique, atomic, normal-form designators of numbers and truth-

values, respectively.
(3) Rails (notated [ay ag ... ai]) designate sequences.

(4) Atoms are used as variables (i.e.., as context-dependent names); as a conse-
quence, no atom is normal-form, and no atom will will ever be returned as the

result of processing a structure.

(5) Pairs (also called redezes, and notated (a1.az)) designate the value of the func-
tion designated by a; applied to the arguments designated by a;. By taking
the notational form (a1 a3z ... ax) to abbreviate {aj.faz ... ax]) instead of
(a1.(az.(- - -(ak.NIL)- -+ ))), the standard look of Lisp is preserved while main-
taining category alignment. (In 3-Lisp there is no distinguished atom NIL, and

() is a notational error, corresponding to the empty field element.)
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(6) Closures (notated {closure: ... }) are normal-form function designators, but
they are not canonical, since it is in general undecidable whether two structures

designate the same function.

(7) Finally, handles are unique normal-form designators of all structures: they are
notated with a leading single quote mark (thus ‘a notates the handle of the

atom notated a).

The functions of 3-Lisp include the standard arithmetic primitives. Identity (sig-
nified with = is computable over all the semantic domain except functions. 1st, and
rest are the car/cdr analogs on both rails and sequences. The pair constructor is called
pcons (letting = to mean “normalizes to,” we have (pcons ‘a 'b) == ‘(a . b)); the cor-
responding constructors for atoms, rails, and closures are called acons, rcons, and cons.
There are eleven primitive characteristic predicates, seven for the internal structural
types (atom, pair, rail, boolean, numeral, closure, and handle) and four for the external

types (number, truth-value, sequence, and function).

The control structures if and cond are defined as usual; block executes a sequence
sequentially. body, pattern, and environment are the three selector functions on closures.
Functions are defined with structures of the form (lambda simple args body), where
the keyword simple indicates a standard function as opposed to reflect for reflective
functions. (lambda simple [x] (+ x x)) returns a closure that designates a function that

doubles numbers.

3-Lisp is higher order and therefore lexically (statically) scoped like the A-calculus.
It is also meta-structural, providing an explicit ability to name internal structures. Two
primitive procedures, called up and down (usually notated with the arrows 1 and |) help
to mediated between this metastructural hierarchy. Otherwise, there is no way to add
or remove quotes — ‘2 will normalize to ‘2, never to 2. Specifically, 1struc designates
the normal-form designator of the designation of struc; i.e., Tstruc designates what struc
normalizes to (therefore 7(+ 2 3) == '5). Thus,

(lambda simple [x] x) designates a function
‘(lambda simple [x] x) designates a pair or redex, and

T(lambda simple [x] x) designates a closure.

Similarly, |struc designates the designation of the designation of struc, providing the
designation of struc is in normal-form (therefore, |'2 == 2). |tstrucis always equivalent

to struc, in terms of both designation and result; so is 1|struc when it is defined.
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The Meta-Circular Processor

While traditional Lisps have eval and apply as names for the primitive processor proce-
dures, the 3-Lisp analogs are normalize and reduce. (normalize ‘(+ 2 3)) designates the
normal-form structure to which (+ 2 3) normalizes, and therefore returns the handle

‘5. Similarly,

(normalize ‘(car ‘(a . b)) = “a
(normalize (pcons ‘= [2 3])) = '$F
(reduce ‘1st ‘[10 20 30]) = ‘10.

In any computational formalism able to model its own syntax and structures, it
is possible to construct what are commonly known as meta-circular processors (or in-
terpreters). They are “meta” because they operate on other formal structures, and
“circular” because they are not proper definitions since they assume one knows the
behavior of the processor beforehand.

The top level loop for the 3-Lisp meta-circular processor is given in the following

box.

(define read-normalize-print
(lambda simple [level env stream]
(normalize (prompt&read level stream) env
(lambda simple [result]
(block (prompt&reply result level stream)

(read-normalize-print level env stream))))))

3-Lisp Top Level Loop

It is uses explicit continuations to indicate flow of control. The top level consists
of a read-normalize-print loop which calls prompt&read with continuation that first does
prompt&reply and then calls itself recursively.

The function normalize tests the structure of the input and depending on its type,
does accordingly. For example, if it is already in normal form, then it just sends it to
the continuation. If it is a pair, it is sent to reduce for reduction.

The function normalize-rail does just that, by picking out the first element and

processing it and then joining that value with the recursive result of the rest of the rail.
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(define normalize
(lambda simple [struc env cont]
(cond [(normal struc) (cont struc)]
[(atom struc) (cont (binding struc env))]
[(rail struc) (normalize-rail struc env cont)]

[(pair struc) (reduce (car struc) (cdr struc) env cont)])))

(define reduce
(tambda simple [proc args env cont]
(normalize proc env
(lambda simple [proc!]
(if (reflective proc!)
(1 (de-reflect proc!) args env cont)
(normalize args env
(lambda simple [args!]
(if (primitive proc!)
(cont t(lproc! . |args!))
(normalize (body proc!)

(bind (pattern proc!) args! (environment proc!))

cont)))))))))

(define normalize-rail
(lambda simple [rail env cont]
(if (empty rail)
(cont (rcons))
(normalize (1st rail) env
(lambda simple [first!]
(normalize-rail (rest rail) env

(lambda simple [rest!]
(cont (prep first! rest!))}))))))

3-Lisp Meta-Circular Processor

The heart of the meta-circular processor is the function reduce. It takes the pro-
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cedure and arguments and first normalizes the procedure body (9). If it is a simple
procedure (not reflective), it normalizes the arguments (13) and then tests whether
the procedure is primitive, if so then it is executed directly (16), otherwise, the body
of the procedure is normalized with the environment augmented by having the formal
parameters bound to the actual arguments (18).

If the procedure is reflective (12), then it is made simple, and then executed with
the current environment env and continuation cont, as well as its arguments. One way
to imagine this is to think of the reflective procedure as being copied into this processor

definition and having the procedure be executed by another processor.

2. Semantics of 3-Lisp

The semantic domain contains all the entities designated by 3-Lisp structures. These
include the internal structures such as pairs, numerals and boolean constants, as well as
the external values such as numbers, sequences and functions. Because 3-Lisp can model

itself, we must be very careful in distinguishing a name from what a name designates.

Domain of Structures

There are four types of external entities: the natural numbers (N), the truth values
(T), sequences (S(-), and functions (|- — -]). The internal structures that name these
entities are: the numerals (num), the boolean constants (bool), rails (R(-)), and closures
(C), respectively.

The functions that mediate between semantic levels are up (1) and down (]). For
example, |$T = the truth value true, and 15 = ‘5, where 5 is a numeral.

There are three additional internal structure types are: the set of atoms which are
used to name internal structures, A, the set P() of pairs of structures, R(-), the rail of

structures, and H(:), the handle of structures.

Definition. The lattice of internal structures, Q, is the smallest set containing the
numerals, the boolean constants and closures, and closed under pairs, rails, and handles

made into a flat lattice:

Q = num + bool + C + P(Q) + R(Q) + H(Q).
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The semantic domain of structures, S, satisfies the following domain equation:

S=Q+N+T+P(S)+R(S)+H(S)+[S — S].

Semantics of Functions

Due to the clean semantic structure of 3-Lisp, once the semantic domain of structures has
been given, the semantics of the standard functions mentioned in the previous section is
straight forward. The formal semantic function merely echos in the metalanguage the
informal definitions.

The only functions that need a little care are T and |. For handles or internal struc-
tures, | returns the internal structure. For numerals, Boolean constants and function
closures, however, | acts like a semantic function in returning the abstract entity, like

an environment.

Semantics of the Meta-Circular Processor

The crux of the difficulty in defining the semantics of the 3-Lisp meta-circular processor
is in dealing with the semantic level crossing that occurs on line (12). The current
environment and continuation, which are usually semantic entities, are presented to a
procedure as additional arguments. Therefore, there has to be another processor with
its own environment and continuation that has to deal with procedure.

In Smith [84], a non-reflective language called 2-Lisp, which is like 3-Lisp except
for the reflection mechanism, is used to visualize the 3-Lisp processor. The 3-Lisp
processor is thought of as the limit of a tower of 2-Lisp processors each interpreting the
one below it, until the bottom one interprets a 3-Lisp procedure. Then, each time a
reflective procedure is encountered, the next level processor takes over in interpreting
the procedure.

What we do is formalize the above notion by taking the projective limit of an
ordered sequence of processor, where the nth processor is able to handle reflection up
to depth n — 1.

Definition. A structure will be called reflective, if it is a pair that contains a reflective

procedure as the first element.

Intuitively, the 3-Lisp processor, p, satisfies the following equation:

p(s,e,c), if s is not reflective;
p(s,e,c¢) = ) ) e .
p(de-reflect s, elenv : e,cont : ¢],¢), if s is reflective,
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where de-reflect is a function that takes a reflective function structure and returns the
same function that is not reflective.

The way we solve this equation and construct a solution is by first defining a pro-
cessor for non-reflective structures, then use that as the base for a recursive application

of the regular processor definition.

Notation. Let N and NR be the definitions of the normalize and the normalize-rail

procedures.

Definition. Let RO be the reduce procedure with line 12 modified so that it is unde-
fined for reflective procedures. Then, let ng, ro, and ¢qo be the solution of the mutual
recursion defined by the three procedure definitions N, RO, and NR in the standard

environment with all the function identifiers bound to appropriate functions.

Since RO is undefined for reflective procedures, ng is a processor for non-reflective

structures s.

Definition. Let n,r, and ¢ be the denotations of N', R’, and NR’, where N’ is N with
reduce and normalize-rail abstracted out, R" and NR' are RO and NR with normalize

abstracted out.

Therefore, we have
ng = n|ro, go]

ro = r[ng]
qo = Q[nO])

where the square brackets indicate the application.
Finally, we are ready to define the sequence of reflective processors.

Definition. The inductive definition of the reflective processor is given by

po(s,e,c) = no(s, e, c), ff s ls not reflectlve;
4, if s is reflective;

(s,e 0= ni(s, e, c), if s is not reflective;
Pk+118,€,¢) = ni(de-reflect s,e',c), if s is reflective ,
where

nk = nfr[pk], ¢lpe]],
and

¢ =elenv: e, cont : cl.
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Next, we define an ordering on the processors.

Definition. For two processors, p and p', define the ordering componentwise:

pCp < forall z, p(z) C p'(z).

Each py is well-defined for non-reflective procedures and for k levels of reflection.

By taking the limit, we have the full 3-Lisp processor.

Definition. Let {pi} be the chain of processors, then the limit,
pP= Upks
k
is the 3-Lisp reflective processor.

If we consider the category of processors with the approxiamtion relation as arrows,

the limit is again the projective limit in the category.

3. Examples

Consider the following reflective function:

(define THREE
(lambda reflect [[] env cont]

(cont '3)))

It explicitly returns the numeral ‘3. Let e be the standard environment, and ¢ be

the initial continuation, which could be the identity function. Then

p(THREE, ¢, ¢) = p(de-reflect THREE, e[env:e, cont:c], ¢)
= p(cont '3, e[env:e,cont:c],c)
=¢('3)
= 3.

The following reflective procedure tests whether a variable is bound in the current

environment.
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(define BOUND
(lambda reflect [[var] env cont]
(cont T(bound-in-env var env))))
And the evaluation of the term (let [[x 3]] (BOUND x)) proceeds as follows:

p((let [[x 3]] (BOUND x)),e,c) = p(BOUND, e, c)
{where e; = e[z:3]}
= p(de-reflect BOUND, €, c)
{where €' = e;[env:e,,cont:c]}
= p(cont T(bound-in-env var env), ¢, c)
= p(cont, ¢, c)(p(1(bound-in-env var env), €', c))
= ¢(18T)
= $§T.

We have supressed all the intermediate evaluation that takes place inside the
normalize and reduce procedures. The key point to notice is the way the processor
binds the current environment and continuation to the current environment, making it
available to the procedure.

Using the reflection mechanism, many programming functions that modify current
state or control in a dynamic way, such as dynamic debuggers, can be defined in a clean
and semantically sound manner.

Finally, the way we reason about programs and processes is equational, using what-

ever information is contained in our definitions to deduce properties of programs.
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