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Abstract 

In a probabilistic assessment of the performance of structures subjected to uncertain environ­

mental loads such as earthquakes, an important problem is to determine the probability that the 

structural response exceeds some specified limits within a given duration of interest. This problem 

is known as the first excursion problem, and it has been a challenging problem in the theory of 

stochastic dynamics and reliability analysis. In spite of the enormous amount of attention the prob­

lem has received, there is no procedure available for its general solution, especially for engineering 

problems of interest where the complexity of the system is large and the failure probability is small. 

The application of simulation methods to solving the first excursion problem is investigated in 

this dissertation, with the objective of assessing the probabilistic performance of structures subjected 

to uncertain earthquake excitations modeled by stochastic processes. From a simulation perspective, 

the major difficulty in the first excursion problem comes from the large number of uncertain param­

eters often encountered in the stochastic description of the excitation. Existing simulation tools are 

examined, with special regard to their applicability in problems with a large number of uncertain 

parameters. Two efficient simulation methods are developed to solve the first excursion problem. 

The first method is developed specifically for linear dynamical systems, and it is found to be ex­

tremely efficient compared to existing techniques. The second method is more robust to the type of 

problem, and it is applicable to general dynamical systems. It is efficient for estimating small failure 

probabilities because the computational effort grows at a much slower rate with decreasing failure 

probability than standard Monte Carlo simulation. The simulation methods are applied to assess 

the probabilistic performance of structures subjected to uncertain earthquake excitation. Failure 

analysis is also carried out using the samples generated during simulation, which provide insight 

into the probable scenarios that will occur given that a structure fails. 
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Chapter 1 Introduction 

The proper assessment of the performance of engineering structures is an important component 

in a modern performance-based engineering framework (SEAOC 1995 2000; Wen 2000; Cornell 

1996). This includes realistic modeling of material constitutive behavior, structural components, 

loading conditions, mechanism of deterioration, etc., that are anticipated during the working life of 

a structure. Due to incomplete information, uncertainty always exists in the loading conditions as 

well as the structural behavior. Uncertainty in structural behavior arises because no mathematical 

model is a perfect description of a physical structure, and even so, the parametric properties that 

should be used in the mathematical model representing the physical structure may not be known 

precisely. The uncertainty in loading arises because structures are expected to function in a variety 

of loading conditions in their daily operation and the actual loading conditions are not precisely 

known. 

Whenever feasible, uncertainties may be reduced by means of quality control or system iden­

tification (Mottershead and Friswell 1993; Aktan et al. 1997; Beck and Katafygiotis 1998), for 

example. In many cases, it is more cost-effective to accept and deal with uncertainties rather than 

trying to eliminate them (Freudenthal 1947; Hausner and Jennings 1982). In any case, it is not 

possible in many situations to gain the information necessary to remove the uncertainties. This calls 

for a rational and scientific approach for quantifying uncertainties and modeling the mechanism by 

which plausible reasoning is made in decision making. Probability theory is well-known to provide 

a rational and consistent framework for treating uncertainties and plausible reasoning (Cox 1961; 

Papoulis 1965; Jaynes 1983; Jaynes 1978). A probabilistic approach allows scientific and engineering 

predictions to be made with different degrees of confidence reflecting one's incomplete information. 

A sound application of probability theory to engineering problems requires a proper choice of prob­

ability models to reflect one's uncertainty on the mathematical model for making predictions about 

the physical system, in addition to those efforts needed for modeling a physical phenomenon. 

Application of probability concepts to structural safety was initiated in the mid 40's, due to the 

work of Freudenthal and his co-workers (Freudenthal 1947; Freudenthal 1956; Freudenthal et al. 

1966). Structural reliability is concerned with the probability that a structure will not reach some 

specified state of failure. For structures subjected to dynamic loading such as due to earthquake, 

wind or ocean waves, the exceedence of some output response magnitude beyond some threshold 

limit within the response duration is of paramount importance. This leads to the 'first excursion 

problem,' the focus of this dissertation, which is to determine the 'first excursion probability' that 

any one of the output response states of interest exceeds in magnitude some specified threshold level 
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within a given time duration. 

The first excursion problem is one of the most challenging problems in structural reliability and 

stochastic dynamics (Lin 1967; Soong and Grigoriu 1993; Schueller et al. 1993; Lutes and Sarkani 

1997). In spite of the enormous amount of attention the problem has received, there is no procedure 

available for its general solution, especially for engineering problems of interest where the number of 

output states is large and the failure probability is small. Most existing work focuses on the 'classical' 

case where the uncertainty comes only from the excitation which is modeled by a given stochastic 

process. Pioneered by Rice, early work on the first excursion problem was focused on out-crossing 

theory to give an analytical approximation (Rice 1944; Rice 1945; Crandall et al. 1966; Yang and 

Shinozuka 1971; Vanmarcke 1975; Mason and Iwan 1983; Langley 1988; Naess 1990). While the 

analytical solutions from out-crossing theory offer important insights into the problem, they are 

nevertheless approximate and applicable only for a single output state. A class of numerical solution 

methods involves solving the backward Kolmogorov equation for the reliability function (Roberts 

1976; Bergman and Heinrich 1981; Spencer and Bergman 1993). These numerical solutions are 

limited in application to systems of small size since their complexity increases at least exponentially 

with the state-space dimension of the system (Lin and Cai 1995; Schueller et al. 1993). 

Monte Carlo simulation methods (Hammersley and Handscomb 1964; Rubinstein 1981; Fishman 

1996) offer a feasible alternative for the numerical solution of first excursion problems and, in general, 

any structural reliability problem, regardless of the complexity of the problem. In this approach, 

random realizations, or samples, of the uncertain parameters in the problem are generated according 

to their probability distributions specified in the problem. The failure probability is then estimated 

as the fraction of the number of samples that leads to failure. Checking whether the structure has 

failed for each sample often requires a structural analysis. As is well known, Monte Carlo simulation 

is not computationally efficient for estimating small failure probabilities, since the number of samples 

required to achieve a given accuracy is inversely proportional to the failure probability when the 

failure probability is small. Essentially, estimating small probabilities requires information from 

rare samples which lead to failure, and on average it requires many samples before one such failure 

sample occurs. In view of this, the importance sampling method (Rubinstein 1981; Schueller and 

Stix 1987) has been introduced, which basically chooses an importance sampling distribution to 

generate samples that lead to failure more frequently so as to gain more information about failure 

for better failure probability estimation. The efficiency of the method relies on a proper choice 

of the importance sampling distribution, which inevitably requires some knowledge about failure. 

Importance sampling has been successfully applied to time-invariant or static reliability problems 

where the number of uncertain parameters in the problem is not too large (Schueller and Stix 

1987; Melchers 1989; Papadimitriou et al. 1997; Der Kiureghian and Dakessian 1998; Au et al. 

1999; Bucher 1988; Karamchandani et al. 1989; Ang et al. 1992; Au and Beck 1999). For the first 
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excursion problem, which is characterized by a large number of uncertain parameters with complexity 

arising from its dynamic nature, the application of importance sampling is much more difficult. One 

class of simulation techniques that shows promise for solving the classical first excursion problem 

is called Controlled Monte Carlo simulation (Pradlwarter et al. 1994; Pradlwarter and Schueller 

1997a; Pradlwarter and Schueller 1997b; Pradlwarter and Schueller 1999), in which the basic idea 

is to generate samples to populate uniformly both the large and low failure probability regions, 

which provide information for improving the accuracy of the failure probability estimate. Generally 

speaking, efficient and robust simulation methods for solving the first excursion problem are still at 

their early exploration stage. 

1.1 Outline of this work 

This dissertation is motivated by the need to assess the failure probability of structures with 

respect to first excursion failures in an uncertain seismic environment, which plays an important role 

in a performance-based earthquake engineering design framework. In this work, the development 

and use of simulation methods for solving the first excursion problem will be investigated. The 

next section gives a definition of the problem which is the focus of this dissertation. A brief review 

of standard Monte Carlo simulation then follows, which provides a baseline procedure for every 

simulation method to compare in terms of efficiency and robustness. 

Chapter 2 investigates the application of importance sampling to solving reliability problems, 

with particular attention to the case when the number of uncertain parameters is large, which is a 

characteristic of first excursion problems. Conditions for applicability in high dimensions using some 

common choices of importance sampling densities will be provided and proved. Chapter 3 discusses 

a powerful technique called Markov chain Monte Carlo simulation for simulating samples according 

to the conditional distribution of uncertain parameters given that failure occurs. This technique 

has great potential for application to reliability problems. Applicability issues in high dimensions 

with the original algorithms are investigated. The study shows that the original algorithms are 

inapplicable in problems with a large number of uncertain parameters. A modified algorithm is 

proposed which is applicable to high dimensional simulation problems. 

Two efficient simulation methods are developed in Chapters 4 and 5 to solve the first excursion 

problem. Chapter 4 focuses on the first excursion problem for deterministic linear dynamical systems 

subjected to Gaussian white noise excitation. The characteristics of the failure region are investigated 

first. Using the information from this study, an importance sampling distribution is proposed, which 

results in a very efficient importance sampling procedure for estimating the first excursion failure 

probability. In Chapter 5, a method called subset simulation is developed to solve the first excursion 

problem in general, with no assumption on the structure and the modeling of excitation. The method 
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is based on expressing small failure probabilities as a product of larger conditional probabilities, 

where the latter are estimated using the modified Markov chain Monte Carlo simulation method 

proposed in Chapter 3. 

In Chapter 6, the subset simulation methodology developed in Chapter 5 is applied to proba­

bilistic performance assessment of structures subjected to uncertain earthquake excitation modeled 

by a stochastic process with uncertain stochastic model parameters. The application is focused on 

efficient estimation of failure probabilities as well as failure analysis using the samples generated 

during subset simulation. These samples provide insight into the probable scenarios that will occur 

when the structure fails. This dissertation is concluded in Chapter 7. 

1.2 Problem definition 

The first excursion problem to be solved by simulation is posed in general as a reliability problem. 

Parametric uncertainties, such as uncertain parameters in the structural model, are modeled by 

random variables. Uncertain-valued functions, such as time-varying excitations, are modeled by 

stochastic processes, which are specified by some stochastic excitation model parameters. For digital 

simulation purposes, a discrete-representation for a stochastic process is used, if necessary, in terms 

of a sequence of 'additive' excitation parameters (Lin 1967). In this setting, all uncertainties in the 

problem are parametric, referred to as the uncertain parameters and denoted by 8 = (lh, ... , On), 

where n is their number. The symbol P(n) is used to denote a set of n-dimensional joint probability 

density functions (PDF). With little loss of generality, it is assumed that all uncertain parameters are 

continuous-valued, with joint PDF denoted by q E P(n). The PDF q will be called the 'parameter 

PDF' for the uncertain parameters 9. It is assumed that the parameter PDF q is specified from 

standard class of probability distributions (Ross 1972) for which efficient methods for evaluating 

the value of q(8) at a given 8, as well as for generating independent random samples according to 

8, are available. This distinguishes the reliability problems considered in this dissertation from the 

Bayeisan reliability updating problems (Beck and Katafygiotis 1991; Katafygiotis and Beck 1998; 

Beck and Au 2000; Papadimitriou et al. 2001), where the probability distributions of the uncertain 

parameters given some measurement data can only be evaluated up to a normalizing constant and 

the generation of random samples of the uncertain parameters according to the updated probability 

distributions given the measurement data is a highly non-trivial problem. 

The statement that defines a failure criterion describes a failure event when true, and is denoted 

by F. For example, F = {X > b} is a failure event, where X is an uncertain response and b is a 

given value. It is assumed that the failure statement can be determined as either true or false by 

knowing the value of 8; that is, the failure state is completely specified by the uncertain parameters. 

The same symbol is used to denote the 'failure region' corresponding to the failure event F, which is 
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defined as the region in the n-dimensional uncertain parameter space such that all states in the region 

correspond to a failure event. For example, in the previous example, F = { (} E ~n : X ( 0) > b} C ~n 

is the failure region. 

In terms of the probability density function q(O) and the failure region F, the failure probability 

can be written in a generic way as 

Pp =I Ifp(O) q(O) dO (1.1) 

where lip(·) : Rn 1-t {0, 1} is called the indicator function, which is equal to 1 when 0 E F and zero 

otherwise. Unless otherwise mentioned, all integrals are to be interpreted as the integral over the 

whole parameter space of the parameter to be integrated. 

The symbol P(-) is reserved for the probability of a statement or probability content of a region 

given in the argument. The symbol p(·) is reserved for the probability density evaluated at its 

argument. For convenience, we use the same symbol to denote an uncertain quantity (random 

variable or vector) as well as a value that the uncertain quantity may assume, where the uncertain 

nature of the quantity will be mentioned in the former. For example, in 'P(O E F),' 0 denotes a 

random vector, while in 'q(O),' 0 denotes a vector value at which q is evaluated. The notation EJ[·] 

denotes the mathematical expectation of the uncertain quantity in the argument, whose probability 

distribution is specified in the subscript f. For example, if X is a function of 0, then Ej[X(O)] = 

J X(O) f(O) dO. When the distribution is clearly implied in the discussion, the subscript for the 

distribution will be dropped. 
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1.3 Standard Monte Carlo simulation 

The standard Monte Carlo simulation method (MCS) for estimating failure probabilities is briefly 

reviewed here, since it is the most basic method in simulation. In standard MCS, the failure prob­

ability for a given failure event F is estimated as the average of the indicator function lip(·) over 

samples { 81, ... , 8 N} simulated independently and identically (i.i.d.) according to the parameter 

PDF q: 

(1.2) 

The estimator Pp converges to the failure probability Pp with probability 1 (Strong Law of Large 

Numbers), and is asymptotically Normally distributed as the number of samples N-+ oo (Central 

Limit Theorem). It is unbiased, i.e., E[Pp] = Pp. The efficiency of the MCS procedure, and in 

general the efficiency of a simulation-based reliability method, can be measured by the coefficient 

of variation ( c.o. v.) of the estimator, which is defined as the ratio of its standard deviation to its 

expectation. Since {8k: k = 1, ... , N} are i.i.d., Var[PF) = Var[lip(8)]/N. On the other hand, ll:p(8} 

is a Bernoulli random variable equal to 1 and 0 with probabilities Pp and 1- Pp, respectively, so 

Var[lip(8)] = Pp(l- Pp ). Using these results yields the coefficient of variation o as: 

(1.3) 

Note that the expression for the c.o.v. depends only on the failure probability and the number of 

samples N. The c.o.v. o can thus be estimated in a simulation run using the above equation with 

Pp replaced by its estimate Pp. 

Implicit in the MCS procedure is that an efficient method is available for simulating samples 

according to the parameter PDF. This is often feasible in common applications when the parameter 

PDF q is chosen based on prior information and from some standard family of distributions (e.g., 

Normal, Lognormal, Exponential) for which simulation methods for generating samples are well 

established. Other than this requirement, the MCS procedure is quite robust to the type of appli­

cation. As far as the problem of structural reliability is concerned, MCS is applicable for all types 

of structures, types of excitation models, types of parameter PDFs, number of uncertain parame­

ters, etc. Apart from the simulation of samples, these specifications of the problem enter the MCS 

procedure through only the indicator function lip, whose value is determined by a system analysis. 

Not only the applicability, but also the efficiency of MCS, is independent of the specification of 

the problem for a given failure probability. The expression for c.o.v. in (1.3) is applicable irrespective 

of the specifications of the problem. The only drawback of MCS, as is well-known, is that MCS is 

not efficient for dealing with mre events, defined as those events that occur with small probability. 
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In terms of the number of samples N0 required to achieve a given c.o.v. of J, from (1.3), 

1- PF 1 . 
No = Ppd2 "" Ppd2 when PF 1s small (1.4) 

which is inversely proportional to the probability of failure Pp when Pp is small. For example, to 

compute a failure probability of Pp = 10-3 with a c.o.v. of 30%, it requires 11,100 samples. As 

a rule of thumb, to achieve a target failure probability of Pp with a c.o.v. of 30%, it requires on 

average 10/ Pp samples, or 10 failed samples. 

In our context, standard Monte Carlo simulation presents the most robust method for failure 

probability estimation. Any simulation method other than standard Monte Carlo simulation is 

expected to be less robust to the type of applications. The efficiency of standard Monte Carlo 

simulation provides a baseline for comparison. Judging on efficiency and robustness, any simulation 

method that requires more computational effort to compute a given failure probability is not worth­

pursuing. 
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Chapter 2 Importance Sampling Simulation 

In view of the small fraction of simulated samples lying in the failure region in standard Monte 

Carlo simulation when the failure probability is small, a natural attempt is to develop a method that 

generates more samples in the failure region. This will utilize more information there to possibly 

yield a better estimate. This is the essential idea of importance sampling simulation (Hammersley 

and Handscomb 1964; Rubinstein 1981; Schueller and Stix 1987; Engelund and Rackwitz 1993; 

Hohenbichler and Rackwitz 1988). In importance sampling simulation, an importance sampling 

density (ISD) f(8) E 'Pis first chosen. Samples are then generated from this importance sampling 

density rather than from the parameter PDF q. The estimator based on these samples is different 

from the one used in standard Monte Carlo simulation, to account for the fact that the samples are 

not simulated from the parameter PDF q. It can be derived as follows. First note that 

where 

R(8) = q(O) 
!(8) 

(2.1) 

(2.2) 

is called the importance sampling quotient. Since the theoretical mean in (2.1) can be estimated by 

a sample mean, the failure probability PF is estimated by: 

where { B~e : k = 1, ... , N} are i.i.d. samples simulated according to f instead of from q. 

The variability of the failure probability estimate is measured by its c.o.v., Dis, given by 

Ars 
0JS = y'N 

(2.3) 

(2.4) 

where il1s is called the 'unit c.o.v.' of the importance sampling estimator, defined as the c.o.v. of 

the importance sampling estimator with N = 1 on the R.H.S. of (2.3): 

(2.5) 
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and it has been assumed in the above expression that the importance sampling estimator is unbiased, 

so that EJ[liF(O)R(O)] = Pp. 

For suitable choice of the ISD f, the importance sampling estimator converges with probability 

1 (Strong Law of Large Numbers) to Pp and is Normally distributed asymptotically as N -+ oo 

(Central Limit Theorem). Essentially, the chosen ISD has to have a support region S 1 = { 0 E JRn : 

f(O) > 0} which covers the failure region, i.e., F C s,. It should also have a tail which decays 

at a slower rate than the parameter PDF q, so that the c.o.v. of Pp is finite. These conditions 

ensure that the contributions from all parts of the failure region in the uncertain parameter space 

can be accounted for, provided one uses a sufficiently large number of samples, so that the resulting 

estimate is not biased. Although these conditions are sometimes difficult to check either analytically 

or numerically in practical applications, careful investigation often suffices to make sure that the 

convergence problem is not severe. Throughout this chapter, the first property, that is, F C s,, 
will be assumed, so that the integral of any quantity multiplied with the indicator function over the 

support S 1 of f is equal to the integral over lRn. 

Under the approach of importance sampling, the main problem in applications is how to choose 

the ISD that results in small variability in the failure probability estimate (61s in (2.4)) and hence 

leads to an efficient simulation procedure. Many schemes for constructing the ISD have appeared in 

the engineering reliability literature. Most schemes involve first finding the important parts of the 

failure region which give significant contribution to the failure probability, and then constructing an 

ISD based on information about such important failure regions. For example, a popular strategy is to 

construct the ISD as a mixture distribution among one or more design point(s) o; (i = 1, ... , m) that 

have the highest probability density, at least locally, among all other points in their neighborhood 

within the failure region (Harbitz 1986; Schueller and Stix 1987; Papadimitriou et al. 1997; Liu 

and Der Kiureghian 1991; Melchers 1989; Der Kiureghian and Dakessian 1998; Au et al. 1999). 

Another popular strategy, called adaptive importance sampling, is to construct the ISD as a mixture 

distribution among some 'pre-samples' which are generated in the failure region by some pre-designed 

stochastic algorithm (Bucher 1988; Karamchandani et al. 1989; Melchers 1990; Ang et al. 1992; 

Au and Beck 1999). Generally speaking, importance sampling has been successfully applied to 

static problems of small to medium sized structures. Applications to large scale structures or to 

dynamic problems where the stochastic excitation is explicitly represented are still at the early stage 

of exploration (Schueller et al. 1993). The general difficulty encountered is due to the large number 

of uncertain parameters involved in the problem, where the construction of a good ISD seems to 

require a huge amount of information that cannot be gained numerically in an efficient way. 

In this chapter, some aspects of importance sampling are investigated analytically, with the aim of 

providing a quantitative understanding of how the efficiency of an importance sampling procedure 

is influenced by the choice of the ISD. Particular attention is given to application of importance 
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sampling to problems with a large number of uncertain parameters, which is motivated by the need 

to compute failure probabilities of large scale dynamical systems. The main theme is to relate the 

c.o.v. of the importance sampling estimator to the relative entropy of the chosen ISD to the optimal 

lSD. This provides new results and the basic insights for the applicability of importance sampling in 

problems with a large number of uncertain parameters, for which it appears that no formal account 

has been reported in the literature. 

2.1 Optimal lSD and its implications 

In terms of the variance of the importance sampling estimator, the optimal ISD can be defined 

as the PDF among the class of PDFs P for which the variance is minimized. That is, 

. lip(O)q(O) 
fopt(O) = arg J~t Yar,( f(O) ] (2.6) 

According to this criterion, the optimal lSD is simply the conditional PDF given failure occurs: 

fopt(O) = q(OIF) = Hp(O) q(O) 
Pp 

(2.7) 

which is basically the parameter PDF q(O) confined to the failure region F, normalized by the 

failure probability Pp. The optimality of !opt can be easily verified by noting that it leads to zero 

variance in the importance sampling estimator when substituted into (2.5). Although the optimal 

lSD can be written in a simple way, its use is not feasible, due to two basic reasons. The first is 

that its evaluation involves knowledge of the failure probability Pp, which is the quantity to be 

computed in the reliability problem. The second reason is that an efficient method for simulating 

samples according to !opt is often not available. This may not be obvious from first glance, since 

fopt is just proportional to the parameter PDF q for which an efficient method is assumed to be 

available for generating samples. The difficulty comes from the indicator function l[p, which gives a 

conditioning on the original distribution q that causes the samples distributed according to fopt to 

be very different from q, especially when PF is small. To understand this, consider one simple, but 

not efficient, way of generating samples according to !opt as follows: generate a sample 0 according 

to q, then accept it if 0 E F (i.e., lip(O) = 1); otherwise, generate another sample until the condition 

is met. The reason why this 'acceptance-rejection' method works is obvious (Rubinstein 1981). It 

is not efficient, however, since to generate one sample according to !opt, on average it requires 1/ Pp 

samples simulated according to q as well as 1/ Pp checks on the indicator function. The problem 

comes from the evaluation of the indicator function, since each evaluation involves one analysis ofthe 

system to determine if failure occurs. Thus, when PF is small, the conditioning induced by failure 

is so significant that the conditional samples are very different in distribution from the original 
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samples. Philosophically, efficient simulation of samples according to the conditional distribution is 

the main challenge in a simulation-based reliability method. 

2.2 Basic trade-off 

Since an optimal choice of the ISD is not feasible, it is important to understand how the variability 

of the failure probability estimate is affected by the choice of a sub-optimal ISD. A form for the 

variance of the unit c.o.v. of the IS estimator is derived here, which formalizes the basic trade-off 

involved in the choice of ISD as commonly exercised in applications. 

Proposition 2.1. The unit coefficient of variation of the importance sampling estimator can be 

expressed as 

(2.8) 

where 

Qp = 1 JI.p(8) /(8) d8 (2.9) 

is the probability that a sample simulated according to the ISD f lies in the failure region F, and 

VarJ[R(8)lF) 
EJ[R(8)1FJ2 

(2.10) 

is the coefficient of variation of the importance sampling quotient R(8) = q(8)/ /(8) given that 8 

distributed according to the ISD f lies in F. 

Proof. For convenience, we will drop the dependence of 8 in lip(8) and R(8). First note that, 

Now 

Var/[IIFR] = E1[II~R2]- EJ[IIFR]2 

= EJ[IIFR2
]- Pj. 

E,[,ltpR2
) =I lip(8)R(8? f(8)d8 

= Qp jR(8)2liF(8)f(8) d8 
Qp 

= Qp I R(8)2 f(81F)d8 

= QpE,[R2 IF] 

(2.11) 

(2.12) 
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Further, 

(2.13) 

since 

E [RIFJ =I q(9) f(9) HF(9) d9 = _2_ I (9) n (9) d9 = PF 
f f(9) QF QF q F QF 

(2.14) 

Substituting (2.13) into (2.12) gives 

(2.15) 

Substituting (2.15) into (2.11) yields 

(2.16) 

which gives (2.8) when divided by Pj. and using (2.14). 0 

Equation (2.8) says that the unit c.o.v. of the importance sampling estimator comes from two 

sources. The first source, in the first term, comes from the fact that not all samples generated 

according to the lSD flies in the failure region F, but only with probability QF. When all samples 

lie in F, Q F = 1 and the first term vanishes. The second source comes from the variability of the 

importance sampling quotient given that 9 generated from f lies in the failure region F. It arises 

as a result of the difference in the variation between the chosen lSD f and the parameter PDF q 

in the failure region. In terms of efficiency of the importance sampling estimator, there are thus 

two challenges in choosing a suitable lSD, namely, to choose the lSD so that the samples generated 

from f lie frequently in the failure region and so that the ratio of the parameter PDF to the lSD 

has small variability in the failure region. These two requirements may often be conflicting, since 

the first says that the lSD should be focused on the failure region, and often times choosing the 

ISD with different variation from the parameter PDF is inevitable, which conflicts with the second 

requirement that the lSD and the parameter PDF be similar. Note that the effect of having an 

lSD that results in a large value of QF is quite significant compared to one with a small value of 

QF, since tl.1s is dominated by 1/QF when QF is small. That is, a significant improvement over 

standard MCS can be readily achieved by shifting the lSD towards the failure region. Most of the 

work in the literature has thus focused on the first requirement, e.g., by shifting the lSD towards 

design points. The second requirement seems to have been overlooked because there is little problem 

associated with it when the number of uncertain parameters is not large. It could become a severe 

problem when the number of uncertain parameters is large, however, although no formal account has 
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been given in the literature. This issue has an important impact on the applicability of importance 

sampling to solving the first excursion problem for dynamical systems or static reliability problems 

of systems with a large number of uncertain parameters. This aspect of importance sampling will 

be expounded in a later section when we investigate the applicability of importance sampling in 

problems with a large number of uncertain parameters. 

2.3 Variance of importance sampling estimator and relative 

entropy 

We first derive two forms for the unit c.o.v. of the importance sampling estimator which will be 

used frequently for analysis in later sections. 

(2.17) 

where R(O) = q(O)/f(O) is the importance sampling quotient. Also, from the second line in (2.17), 

.tt_2 =I q(O)Kp(O)/PF q(O)b(O) dO- 1 
IS f(O) l'p 

=I q(OIF) q(OIF) dO -1 
f(O) 
q(OIF) 

= EqiF( f(O) ]- 1 

The concept of 'relative entropy' is introduced in the following: 

Definition 2.1. The relative entropy of a JPDF P2 {relative) to a JPDF p 1 is defined as: 

(2.18) 

(2.19) 

The relative entropy H(p1,P2) is a useful measure for the difference between two PDFs (Kullback 

1959; Renyi 1970; Jumarie 1990). It is always non-negative, and is equal to zero if and only if p 1 = P2· 

To see the non-negativity, first note that log(x) ~ x- 1 for any positive number x (equality holds 
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if and only if x = 1), and so with x = P2(0)/p1(0), 

P2(0) P2(0) 
log P1 ( 0) ~ Pl ( 0) - 1 

Multiplying both sides by P1 (0) and integrate with respect to 0, 

and hence the non-negativity follows by noting that the L.H.S. of (2.21) is just -H(p1,P2)· 

(2.20) 

(2.21) 

Applying the concept of relative entropy to the choice of ISD, one can expect that if the relative 

entropy of the ISD f(O) to q(OjF) (the optimal ISD) is small, then the unit c.o.v. A1s will also be 

small, and vice versa. In particular, the relative entropy is zero if and only if A1s is zero, since both 

statements require f(O) = q(OjF). These statements are indeed true and quite intuitive. It should 

be noted that relative entropy is not a proper metric, however. In particular, it is not symmetric 

with respect to its arguments, i.e., H(p17 P2) f. H(P2,p1) in general. 

The following proposition relates the variance of the importance sampling estimator to the rela­

tive entropy of the ISD f(O) to the conditional density q(OjF). 

Proposition 2.2. 

where 

A~s ~ exp[H(q(·jF), f)]- 1 

q(OIF) I q(OIF) 
H(q(·IF), f) = EqiF~og f(O) ] = q(OIF) log f(O) dO~ 0 

is the relative entropy of the ISD f(O) to the conditional density q(OIF). 

(2.22) 

(2.23) 

Proof. The proposition follows immediately from application of Jensen's inequality (Rudin 1974) to 

(2.18), by noting the convexity of the exponential function: 

2 q(OIF) 
Ais = Eq!F[ f(O) ]- 1 

q(OIF) 
= Eq!F exp~og f(O) ]- 1 

q(OIF) 
~ exp[EqiF log f(O) ]- 1 

= exp[H(q(·jF), f)]- 1 (2.24) 

D 



15 

2.4 Importance sampling in high dimensions 

The applicability of importance sampling in high dimensional problems for reliability analysis 

is examined in this section. For importance sampling to be efficient, one requires the c.o.v. of the 

importance sampling estimator to be small, which, according to (2.8), depends on two factors. The 

first factor is whether the ISD can generate samples that lie frequently in the failure region, thus 

making the first term in (2.8) small. The second factor is whether the ISD is chosen such that the 

variability of the importance sampling quotient R(8) = q(8)/ !(8) is small, when 8 is distributed 

as f(8jF). When the dimension n is not large, one often concentrates on the first factor, and as a 

result a common strategy is to construct the lSD as a distribution centered among design point(s). 

Reported cases in the literature reveal that the variability in R( 8) in this case is not very large, 

and so the second factor is often ignored in the construction of lSD. When the dimension n is large, 

however, there is a question of whether the variability of R(O):U:F(O) will increase in a somewhat 

systematic way as the number of uncertain parameters n increases, rendering importance sampling 

inapplicable. From Proposition 2.2, we note that: 

Proposition 2.3. A necessary condition for importance sampling to be applicable in problems with 

a large number of uncertain parameters is 

H(q(·IF), f) < oo as n-+ oo (2.25) 

This proposition is evident from Proposition 2.2, and roughly says that the lSD f should be 

reasonably close to the parameter PDF q. 

The basic problems of concern that may occur when n is large arise from the probabilistic property 

of the importance sampling quotient, which can be readily illustrated in terms of relative entropy. 

Consider the i.i.d. case when q(8jF) = q(8) = TI~=1 q1(9i) and !(8) = TI~= 1 JI(9i), where q1 and 

!I are the one-dimensional PDF for each component 9i of 8 = [91 , .•• , 9n] distributed according to 

q(8) and f(8), respectively. Not~ that 

(2.26) 

and so 

(2.27) 

where H(qi,fi) is the relative entropy of !I to q1. This means that, unless H(q17 JI) is at most of 

the order of 1/n, H(q, f) will grow with n. Consequently, according to (2.22), the unit c.o.v . .6.18 

will grow exponentially with n, and importance sampling is not applicable. In fact, if fi i= q1 and 
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the choice of h does not depend on n, then when 6 is distributed as j(O) = fl~1 Jt(fh), by the 

Strong Law of Large Numbers, 

(2.28) 

with probability 1, since {log[ql (Oi)/ /1 (Oi)) : i = 1, ... , n} are i.i.d .. Consequently, with probability 

1, 

q(O) 
f(O) -+ exp(-nH(ft,ql)) as n-+ oo (2.29) 

and hence the importance sampling quotient is exponentially small as n -+ oo. By noting that, 

theoretically, 

q(o) r q(o) r 
EJ[f(O)] = Js, f(O) f(O)dO = }

81 
q(O)dO (2.30) 

and hence is 0(1), one can perceive that when n is large, the importance sampling quotient is 

exponentially small for most of the time, but on some rare occasions, it assumes extremely large 

values, so that its theoretical mean is maintained. This phenomenon stems from the difference 

between the one-dimensional J>DFs q1 and ft, which is amplified exponentially in the unit c.o.v. 

l11s as the dimension n increases. When this phenomenon occurs, it is unlikely that importance 

sampling will be successful, since the importance sampling estimate is likely to be biased in practice 

as well as having large variability. 

The question now is whether it is feasible in practice to choose an ISD that remains close to the 

parameter PDF, in the sense that H(q, f) remains bounded or H(q1, ft) = 0(1/n) for this example, 

as n-+ oo. Specifically, suppose q(O) = TI7=1 ¢(0i) is the standard Normal PDF with independent 

components, where 

(2.31) 

is the (one-dimensional) standard Normal PDF. Let the ISD be a Normal PDF with independent 

components centered at a single design point o· = (8i' ... '8~), that is, J(9) = n~=l ¢(9i - 9i). 

Then ql (Oi) = ¢(0i), f1 (Oi) = ¢(0i- Oi) and 

(2.32) 
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and so in the i-th component, the relative entropy is 

(2.33) 

since Eq1 [8i] = 0. To determine if Hi(JI,qt) is 0(1/n), we note that 110''11, the Euclidean norm of 

0*, is intimately related to the failure probability. For example, if F is a half-space defined by a 

hyperplane with the design point 0*, then the failure probability is Pp = ~(-110*11), where 

(2.34) 

is the standard Normal cumulative distribution function. Assuming that we are investigating similar 

problems, then when the number of uncertain parameters n increases, the failure probability Pp 

should remain nonzero and hence IIO*II should remain finite as n-+ oo. Since 119* 11 2 = L:~1 Bi 2 = 

0(1), this implies Bt 2 = 0(1/n), and from (2.33), Hi(!I, q1) = 0(1/n). As a result, 

(2.35) 

is bounded as n-+ oo. Importance sampling is thus applicable in high dimensions in this case. 

This example suggests that importance sampling using design points may still be applicable in 

high dimensions, as the design point automatically adjusts itself so that the lSD f remains close 

to the parameter PDF q as the dimension n increases. In general, however, this comes with some 

conditions and may not be taken for granted. One counter example for this is the case when !I in 

the last example has fixed standard deviation 8 '# 1, that is, fi(Oi) = exp(-(Oi- 8;)2 j282 )/V'iii8. 

One can easily show that in this case, 

(2.36) 

The first term in (2.36) comes from the fact that a standard deviation 8 '# 1 is used in the lSD, 

while the second term is due to the shift ofiSD from the origin to the design point 0*. Note that 

the first term is equal to the relative entropy of !I to q1 if o; = 0, which can be easily verified by 

setting e; = 0 in (2.36). It is non-negative and is equal to zero if and only if 8 = 1. Obviously, for 

fixed 8 '# 1, the first term is 0(1). The second term is 0(1/n) as in the last example. This means 

Hi(QI, !I)= 0(1) and 

n 1 1 
H(q,f) = -( 2 + logs2 -1) + -

2
IIO"W 

2 8 
(2.37) 

grows in a linear fashion with n, that is, importance sampling is not applicable as long as s is fixed and 
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not equal to unity. Thus, although the shift of ISD to the design point does not render importance 

sampling inapplicable in high dimensions, the use of standard deviation s different from that of the 

original PDF (equal to unity) does. Intuitively, one may expect that importance sampling is not 

applicable when 8 < 1 even when n is not large, since then the lSD decays faster than the parameter 

PDF at its 'tail' where the importance sampling quotient R(O) = q(O)/ f(O) grows without bound. 

Also, in this case the spread of the lSD is not large enough to cover the support of the parameter 

PDF that can cause potential bias in the failure probability estimate. The surprising observation 

from this example is that, although importance sampling with 8 > 1 is applicable when n is not 

large, the same is not true in high dimensions. 

2.4.1 Definition of applicability in high dimensions 

To address formally the issue of whether importance sampling is applicable in high dimensional 

problems, we need to define what we mean by 'applicable in high dimensions'. For the question 

of applicability to be meaningful, assume that we have a generic reliability problem with n un­

certain parameters, n E z+, from which a sequence of similar problems of increasing number of 

uncertain parameters can be induced by increasing n by some admissible increments. For example, 

consider computing the failure probability of a deterministic SDOF oscillator subjected to Gaus­

sian white noise discretized in the time domain by n i.i.d. standard Gaussian random variables. 

Then a legitimate sequence of problems with increasing dimension n can be generated by refining 

the discretization in the time-domain. In particular, if each refinement corresponds to subdividing 

each existing time interval by half, then an admissible increment of dimension n may be taken as 

n (assuming the first point ofthe time horizon is not represented). Starting with n1 discrete time 

instants (and hence uncertain parameters), the sequence of dimensions associated with this sequence 

of reliability problems will beN= {n~.:: k = 1,2, ... } = {n1 ,2nb4nl>···}· For example, when 

n1 = 1000, then N = { 1000, 2000, 4000, ... } . 

Let a reliability problem with n uncertain parameters be defined by the ordered pair 'R(qn, Fn), 

where qn is the joint PDF for the uncertain parameters and Fn C Rn is the failure region. For a 

given sequence of admissible dimensions N = {nk : k = 1, 2, ... }, consider a sequence of reliability 

problems {'R(qn•• Fn.): k = 1, 2, ... }. For the k-th problem in the sequence, let fn.(O) E 'Pzs(n~,;) 

be the lSD chosen for computing the failure probability by importance sampling: 

(2.38) 

where {Or: r = 1, ... ,N} are i.i.d. samples simulated according to the lSD fn•· Let ~n. be the 
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unit c.o.v. of the importance sampling estimator P(Fn~o ), that is, according to (2.17), 

(2.39) 

where Rn~o = qn~o ( 0) / f n~o ( 0) is the importance sampling quotient in the k-th problem of the sequence. 

Then we will say that 

Definition 2.2. Importance sampling is applicable in high dimensions with ISD chosen from the 

class of PDFs Pxs(n) for the reliability problem 'R(qn, Fn), if 

(2.40) 

for any increasing sequence N = {nk E z+: k = 1, 2, ... } of admissible dimensions with nk-+ oo. 

In our context, 'applicability' does not imply 'efficiency,' that is, if according to Definition 2.2, 

importance sampling is found to be applicable in high dimensions, it is not necessary that the 

importance sampling procedure will be efficient. This is because the unit c.o.v. of the failure 

probability estimate may be large even if it remains bounded as the dimension increases. Also, 

the study of applicability does not offer an explicit answer as to whether the importance sampling 

estimate is biased or not. Rather, it is assumed that the estimate is unbiased in the analysis. The 

issue of bias is related to whether the ISD has accounted for the parts in the failure region which 

give the major contribution to the failure probability. It depends on which particular member from 

the class of ISDs Pzs(n) is chosen, rather than on what general properties Pzs(n) should possess. 

In short, the concern with 'applicability' is whether it is possible to apply importance sampling at 

all, leaving aside the issues of how to gain information about the failure region to avoid bias or 

whether the resulting ISD will lead to an efficient estimate. Applicability is the first concern when 

one applies importance sampling to high dimensional problems, however, since if the chosen class of 

ISDs already implies that the variability of the failure probability estimate will generally increase 

without bound as n increases, the effort spent on searching for a suitable ISD from Pzs(n) will be 

in vain. 

In what follows, we will investigate the conditions under which importance sampling is applicable 

in high dimensions. For convenience in analysis, we assume that the reliability problem 'R,(qn, Fn) 

is defined for every n E z+, so that we take the sequence of admissible dimensions as N = {nk : 

k = 1, 2, ... } = {1, 2, ... }. Since the subscript k now becomes redundant, it will be dropped in 

our analysis. We will also drop the dependence of quantities on the dimension n, with the implicit 

understanding that all quantities under consideration are specific to a simulation problem with n 

uncertain parameters. For example, fn(O) will be abbreviated to f(O), and Fn to F. 

It will be assumed that for every n E z+, P(Fn) > e for some fixed e > 0 independent of n. 
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This implies that P(Fn) does not vanish as n -+ oo, and essentially reflects that we are studying 

problems of non-vanishing failure probabilities. 

Ideally, the question of applicability can be answered if we know either analytically or numerically 

how !l1s behaves with increasing n. The analysis of !lis, given by either (2.17) or (2.18) or otherwise, 

is difficult in general, due to the fact that the expression of the importance sampling quotient could be 

complicated depending on the form of ISD used. Also, the failure region is not known in advance or 

it has complicated structure. The evaluation of ll1s by simulation is not computationally favorable, 

since it involves evaluating the indicator function JIF( 0) during the averaging process which requires 

system analyses. Realizing that the applicability problem basically arises due to the variability of 

the importance sampling quotient R(O) = q(O)/ f(O), one is interested to see whether the behavior 

of !l1s can be inferred from that of llR. If the answer is positive, then the applicability problem may 

be solved at least numerically in an efficient manner, since then one can estimate ~R = Eq[R]- 1 

by simulation, which involves evaluation of R(O) and so does not require any system analysis, and 

then deduce the behavior of fl1s from that of llR. The following proposition says that half of the 

answer to the above question is positive. 

Proposition 2.4. As n -+ oo, if flR < oo, then ll1s < oo also. 

Proof. First note that, using (2.17) with F = IRn, 

From (2.17), 

~1 = Eq[R(O)]- 1 

/l2 _ Eq[R(O)JIF(O)] 
IS- p2 -1 

F 

< Eq[R(O)] _ 
1 - P'j.. 

llh + 1 = p2 -1 
F 

/l2 1 
= p~ + p2 -1 

F F 

Since PF does not vru1ish as n-+ oo, the boundedness of ~R implies that of Ills· 

(2.41) 

(2.42) 

0 

The proposition says that llR < oo provides a sufficient condition for ll1s as n -t oo. Thus, if 

we know for certain problems and under certain conditions on the ISD that llR will remain bounded 

as n increases, then we <~lUl conclude that ll1s will also be bounded, and hence importance sampling 

is applicable in high ditmmsions in the given situation. However, it is also important to examine the 

other half of the question, that is, whether llR < oo is a necessary condition for ll1s < oo, since the 

sufficient condition could be so restrictive that it excludes a large class of ISDs which are applicable. 
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This is what motivates the logic throughout the analysis to follow, where an attempt will be made 

to investigate the relationship between A1s and AR, or equivalently, between Eq[RJIF] and Eq[R]. 

The focus will be placed on the case where the uncertain parameters are i.i.d. standard Normal, 

that is, for a given n E z+, 

(2.43) 

which is a common PDF used in applications. The independent assumption does not introduce any 

loss of generality, since dependent random variables can be generated by a suitable transformation 

of independent ones; in fact, this seems to be the only way when numerical simulation of dependent 

variables is done. 

2.4.2 ISD with a single point 

The applicability aspects of ISDs chosen from the class of Normal PDFs centered at a single 

point iJ and with a positive definite covariance matrix C is investigated first. That is, 

(2.44) 

where r/>n(·; 0, C) denotes then-dimensional joint Normal PDF with independent components, whose 

mean and covariance matrix is given by iJ and C, respectively. The notation 'C > 0' denotes that 

C is positive definite, that is, xTCx > 0 for all x E lRn\{0}. An lSD f(6) chosen from the class 

'Pzs(n) will then be given by: 

!(6) = (27r)-n12 vfjC-1 j exp[-~ (6- otc-1(6- 0)] 
2 

(2.45) 

For the purpose of analysis, some properties of the positive definite covariance matrix C are 

recalled. First, the eigenvalues of C, denoted by {s] : j = I, ... , n }, are all positive. The inverse 

of the covariance matrix, c-1 , is also positive-definite, with corresponding eigenvalues {1/ s] : j = 
1, ... , n}. There exists an orthonormal basis of eigenvectors {.,Pi E lRn : j = 1, ... , n} of C and c-1 , 

which satisfies the orthogonality conditions: 

~'·?'c-1·'· = djk d .,.r ·'· ~ '~'3 't'k 8~ an '~'i "Yk = 0 ik 
J 

(2.46) 

where djk is the Kronecker delta function: djk = 1 if j = k and djk = 0 otherwise. The eigenmatrix 

of c and c-1 will be denoted by '11 = [¢1' ... 'tPn] E JRnXn. Note that w-1 ='liT. 

We will analyze A1s based on (2.17), which necessitates the study of R(6) liF(6) when 6 is 

distributed as q(6). For this purpose, we start with an expression for the importance sampling 
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quotient R(9) that facilitates analysis later. 

Proposition 2.5. Let the parameter PDF q be a standard Normal PDF given by (2.43) and the 

ISD f be a Normal PDF centered at 9 with covariance matrix C, as given by (2.45). 

If 9 is distributed as q, then the importance sampling quotient R = q(9)f /(9) can be represented 

as 

- - - T-where {s~: i = 1, ... , n} are the eigenvalues ofC, e = [6, ... , enJT = 'l1 9, and e = [6, ... ,en]T = 
'liT 9 is a standard Normal vector. 

Proof. From (2.43) and (2.45), 

R 9 = q(9) = (211")-n/2 exp(-~ 9T9) 
( ) f(9) (27r)-n/2 ..jic-ljexp[-~ (9- fJ)TC-1(9- B)] 

= c:ft Si) exp(-~9T9 + ~9TC-19- fJT c-19 + ~fJT c-1fJ) 
i=1 

(2.48) 

since IC-11 = 1/ n~1 8~ (the determinant of a matrix is equal to the product of its eigenvalues). 

By rotational symmetry of standard Normal vectors, 9 distributed as q(9) = ¢(9) has the following 

representation with respect to the orthonormal basis { tPi : i = 1, ... 'n} for c-1: 

n 

9 = L"'iei (2.49) 
i=1 

where e =[ell ... , enJT = w-19 ='liT 9 is a standard Normal vector. Using this representation and 

the orthonormal conditions in (2.46), 

n n n d 

9Tc-1 9 _ ~~(~'·Tc-1~'·) c.c. _ ~ ~ - L...t L...t '~' i '~' j '-3 '-3 - L...t s'l: 
i=l j=l i=l • 

(2.50) 

and 

n n n 
9T9 = L:L:c.,pf .,pj)eiej = L:er (2.51) 

i=1 j=1 i=1 

Similarly, using the following representation for 9: 

n 

e = 2:: "'iei (2.52) 
i=1 
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we have 

(2.53) 

and 

(2.54) 

Substituting (2.50), (2.51), (2.53) and (2.54) into (2.48) and simplifying gives the required proposi­

fua 0 

Proposition 2.6. Let the parameter PDF q be a standard Normal PDF given by (2.43) and the ISD 

f be a Normal PDF centered at lJ with covariance matrixC, as given by (2.45). Let {8~ : i = 1, ... ,n} 

be the eigenvalues of C and R(9) = q(9)/ f(9) be the importance sampling quotient. 

Then, if 8i > 1/../2 for all i = 1, ... , n, 

(2.55) 

where 

(2.56) 

is the probability that the vector w(A8Z -e) lies in the failure region F, where Z is ann-dimensional 

standard Normal vector; 'Ill is the eigenmatrix of C; e = [ €1. ... , €nJT, where 

(2.57) 

and A8 E anxn is a diagonal matrix with the i-th diagonal element equal to Si given by 

(2.58) 

Proof. Using (2.47}, 

Eq[R(9) ][F(9)] = E¢(R(we) ][F(we)J 

n lne2 nll f =<II 8i) exp(2 I: 8~) E"'[exp{L[2C 8~ - 1)~;- C 8; )~i]}] ][F(we) (2.59) 
i=l i=l ' i=l ' ' 

where the subscript</> in E¢(·] denotes that the expectation is taken with~ distributed as</>, that is, 
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with 6, ... , en being i.i.d. standard Normal. It remains to evaluate the expectation Eq,[·] in (2.59). 

(2.60) 

By completing the square in the exponent inside the integral and bring the constant terms outside 

the integral, we have 

(2.61) 

where ei = -f.i/(2sr -1) and Bi = Si/ ..j2sr -1. By a change of integration variable Zi = (ei -ei)/si, 

i = 1, ... , n, the first integral in (2.61) is just equal to Q(fJ, C, F) given by (2.56). Replacing the first 

integral in (2.61) by Q(fJ, C, F) and substituting the resulting expression into (2.59), one obtains 

(2.55) after simplifications. 0 

The situation is less determinate if si :::; 1/ .,fi for some j E {1, ... , n }. In this case, Eq[RJIF] 

may not be bounded, depending on the structure of the failure region F. In the special case when 

F = llin, Eq[RliF] = Eq[R] is always unbounded when there exists si :::; 1/.,fi for some j E {1, ... , n}. 

In general, the situation depends on the structure ofF in the direction of .,Pi, that is, the j-th eigen­

direction of C for which si :::; 1/.,fi, although it can be argued that Eq[RliF] is generally unbounded 

except for some special F. This information about F is usually not available when importance 

sampling is applied, and therefore choosing some si :::; 1/.,fi may render Eq[RliF] and hence tl1s 

unbounded, even for finite n. This case is thus of little practical interest, and we will focus on the 

case when Si > 1/.,fi for all i = 1, ... , n. 
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Corollary 2.1. In the context of Proposition 2.6, if Si > 1/-../2 for all i = 1, ... , n, then 

(2.62) 

Otherwise, Eq [R] is unbounded for every n E Z +. 

Proof. If St > 1/ V2 for all i = 1, ... , n, then the corollary follows from Proposition 2.6 with F = lRn 

where Q(O,C,F) = 1. Otherwise, if Sj ~ 1/../2 for some j E {1, ... ,n}, the integrand in (2.60) 

grows exponentially large at either +oo or -oo in the eigen-direction where Sj ~ 1/../2, and hence 

Eq[R] = Eq[Rlfp] (for F = JRn) is unbounded for every n. 0 

Corollary 2.2. In the context of Proposition 2.6, if Si > 1/-../2 for all i = 1, ... , n, then 

Eq[R(9) llp(9)] = Q(O, C, F) Eq[R( 9)] (2.63) 

Proposition 2.7. Let the parameter PDF q be a standard Normal PDF given by (2.43) and the ISD 

f be a Normal PDF centered at 0 with covariance matrix C, as given by (2.45). Let { sr : i = 1, ... , n} 

be the eigenvalues of C. 

Assume Si > 1/-../2 for all i = 1, ... , n. Then for A1s < oo as n -+ oo, it is necessary and 

sufficient that 

or, equivalently, 

Proof. According to (2.17) 

Eq[R] < oo as n -+ oo 

A}s = Eq[R(~2lfp(9)] -1 
F 

(2.64) 

(2.65) 

(2.66) 

and so A}s < oo if and only if Eq[R(9) lfp(O)) < oo, since Pp does not vanish as n-+ oo. If si > 1/../2 

for all i = 1, ... , n, then Corollary 2.2 follows, and so Eq[Rlfp] < oo if and only if Eq[R] < oo since 

Q(O, C, F) does not vanish as n-+ oo. The L.H.S. of (2.65) is just the logarithm of Eq[R], and hence 

is equivalent to (2.64). 0 

Proposition 2.8. Let the parameter PDF q be a standard Normal PDF given by (2.43) and the ISD 

/ be a Normal PDF centered at 0 with covariance matrix C, as given by (2.45). Let { sr : i = 1, ... , n} 

be the eigenvalues of C. 
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Assume Si > 11../2 for all i = 1, ... ,n, and the choice of Si is independent of n. Then for 

Eq[R] < oo as n-+ oo, it is necessary and sufficient that 

1. Bi "1- 1 for at most a finite number of indexes i E z+ and 

2. IIBII < oo. 

Proof. We first prove the backward part of the statement, which is straightforward. By hypothesis, 

conditions (1) and (2) hold. Let I 2 (n) = {i : Bi -:f:. 1,1 ::::; i ::::; n} be the set of indexes for which 

Bi "1- 1. By noting that for Bi > 1 I ../2, srI .j2s~ - 1 = 1 if and only if Bi = 1, and writing 

(2.67) 

equation (2.62) gives 

(2.68) 

which is bounded since the number of indexes in I2(n) is finite by condition (1) and L~=l e; = 

IIBII2 < oo by condition (2). 

For the forward part, assume Eq[R] < oo as n -+ oo. We will prove condition (1) holds by 

showing that if it does not, Eq[R] will be unbounded as n-+ oo, leading to a contradiction. Thus, 

assume condition (1) is not true, that is, there is an infinite number of indexes i E z+ for which 

Bi -:f:-1. Let l1(n) = {i: Bi = 1,1$ i::::; n} and I 2 (n) = {i: Bi # 1,1 $i::::; n}. For Bi > 11../2, 

1 (sr -1)2 > 1 
+ 2(sr - 112) -

(2.69) 

with equality holds if and only if Bi = 1. Thus, the first term of the product in (2.62) for Eq[R] 

becomes 

n 2 2 II si = II si 

i=l .j2sr -1 iEI2(n) .j2sr -1 
(2.70) 

which is unbounded as n -+ oo since the product has infinitely many terms and each term is greater 

than unity. On the other hand, the second term of the product in (2.62) is always greater than unity, 

since the sum in the exponent of the term is always positive for Bi > 11../2 for all i E {1, ... , n}. As 

a result, Eq[R] is unbounded as n-+ oo, leading to a contradiction. This shows that condition (1) 

must hold when !:::.Is< oo. 

To show condition (2) holds, note that when Bi > 11 .j2 for all i = 1, ... , n, the first term in the 

product of (2.62) is always greater than unity and hence does not vanish as n -+ oo. When !:::..n < oo, 
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the second term in the product of (2.62) must then be bounded, and is given by the exponential 

term in (2.68). Since condition (1) holds as we have just shown, the second sum in the exponent of 

(2.68) consists of only a finite number of terms and is thus finite. Consequently, I lOW = I:~=l ~; 

must be bounded, which completes the proof. 0 

Proposition 2.9. Let the parameter PDF q be a standard Normal PDF given by (2.43) and the ISD 

f be a Normal PDF centered at 0 with covariance matrixC, as given by (2.45). Let {s1: i = 1, ... ,n} 

be the eigenvalues of C. 

Assume Si > 1/-/2 for all i = 1, ... , n. Then the following statements are equivalent. 

1. D..1s < oo 

9. Eq[R] < oo 

In addition, if the choice of Si does not depend on n, then each of the above statements is 

equivalent to 

5. Si # 1 for at most a finite number of i E z+, and 11011 < oo as n -too 

Proof. Statement (1) is equivalent to (2) by (2.17). Statement (2) is equivalent to (3) by Corol­

lary 2.2. Statement (3) is equivalent to (4) since D..R = Eq[R]- 1. Thus, statements (1) to (4) are 

equivalent. 

H the choice of Si does not depend on n, then Proposition 2.8 applies, which completes the 

proof. 0 

Corollary 2.3. Importance sampling with ISD chosen from the class 

'Pxs(n) = {¢>nh 0, C): 0 E lRn; C E lRnxn, C > 0, with fixed eigenvalues> 1/2} (2.71) 

for the reliability problem 'R(¢>n, Fn) is applicable in high dimensions if and only if 

1. there is at most a finite number of eigenvalues of C not equal to unity as n -t oo 

2. 11011 < oo as n -too 

Practically, this corollary says that, to implement importance sampling with ISD constructed 

with a single point, one can only choose a very small number of the principal standard deviations 

Si # 1. Note that when 0 is a design point, 11011 is equal to the reliability index associated with the 

design point, and so condition (2) holds. The exponent in (2.62) for Eq[R] is then bounded, and the 
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Relative entropy 
H(q(·IF),f) < 00 

~~ Prop.2.2 

Eqn. (2.17) 

Unit c.o.v. of IS estimator <=> Eq[RliF] < oo 
l:J.1s < oo n Prop. 2.4 n Cor. 2.2 

Eqn. (2.41) 

Unit c.o.v. of IS quotient R <=> Eq[R] < oo 
!:J.R < 00 

Figure 2.1: Summary of propositions for the case of a single design point 

behavior of the c.o. v. !:J.R is governed by the first term in the product, which grows exponentially with 

the number of indexes where Bi '#1. The detrimental effect of using principal standard deviation 

different from unity in some principal directions thus grows exponentially fast with the number of 

these directions. This effect remains regardless of dimension and will not become vanishingly small 

even when n ~ oo. Indeed, we note in the proof of Proposition 2.8 that Eq [R] is not bounded even 

if the number of indexes for which Bi '#1 is o(n) but still infinite, because the product in (2. 70) will 

grow without bound as long as the number of indexes in ! 2 is infinite, no matter of what small order 

compared to n. 

The propositions for the applicability of importance sampling in high dimensions are summarized 

in Figure 2.1 for Bi > 1/-/2 for all i = 1, ... , n. 

2.4.3 ISD with multiple points 

The study is next extended to the case of ISDs constructed with multiple points. Due to the 

mathematical difficulties in analyzing l:J.1s, most of the results here are sufficient conditions that 

guarantee applicability in high dimensions. This means that it is possible for importance sampling 

with multiple points to be applicable in high dimensions under more general conditions than the 

derived sufficient conditions, although necessary and sufficient conditions are not yet known. Here, 

the number of points from which the lSD is constructed, mn, can possibly depend on the dimension 

n, which is the case frequently encountered in high dimensional simulation problems. 



29 

Proposition 2.10. Let H(q(·IF), fi) be the relative entropy of the ISD fi to the conditional PDF 

q(·!F), i = 1, ... ,mn; and H(q(·jF),f) be the relative entropy of the mixture distribution f = 
:E:i Wi fi to q(·!F), where each Wi ~ 0 and r::,n1 Wi = 1. Then 

ffln 

H(q(·\F), f)$ L Wi H(q(·lF), h) (2.72) 
i=l 

Proof. By viewing the weights { Wi : i = 1, ... , mn} as discrete probabilities and noting that the 

function log(l/·) is convex, Jensen's inequality gives 

q(OIF) q(OIF) mn q(OIF) 
log f(O) =log l:~n . f-(O) $ L Wi log f·(O) (2.73) 

1=1 w, ' i=l ' 

The proposition follows after taking expectation EqiF[·] on both sides of the inequality. 0 

The following proposition shows a similar relationship for the unit c.o.v. D..1s 

Proposition 2.11. Let D..i be the unit c.o.v. of importance sampling estimator when the ISD fi is 

used, i =I, ... ,mn; and D..1s be the unit c.o.v. of importance sampling estimator when the mixture 

distribution f = :z::,n1 Wi h is used as the ISD. Then 

ffln 

D..Js $ L Wi D..i (2.74) 
i=l 

Proof. By viewing the weights { Wi : i = 1, ... , mn} as discrete probabilities and noting that the 

function 1/- is convex, Jensen's inequality gives 

(2.75) 

The proposition follows after taking expectation EqiF[·] on both sides of the inequality and noting 

from (2.18) that D..i = EqiF[q(OIF)/ fi(O)] - 1 and D..Js = EqiF[q(OjF)f f(O)] - 1. 0 

Corollary 2.4. Let D..R; be the unit c.o.v. of the importance sampling quotient Ri(O) = q(O)f fi(O) 

when the ISD fi is used, i = 1, ... , mn; and D..R be the unit c.o.v. of importance sampling quotient 

R(O) = q(O)/f(O) when the mixture distribution f = :E:i Wi fi is used as the ISD. Then 

ffln 

D..1 $ L Wi D..1i (2.76) 
i=l 

Proof. Take F = IRn in Proposition 2.11. 0 

Proposition 2.11 and Corollary 2.4 says that importance sampling is applicable in high dimensions 

if the R.H.S. of either (2.74) or (2.76) is bounded as n 4- oo. From a practical point of view, the 
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latter is easier to check than the former, since the unit c.o.v. of the importance sampling quotient can 

be readily estimated by simulation, but the same is not true for the importance sampling estimator. 

When mn = m does not depend on n, it is sufficient to have LlR, < oo as n --+ oo for every 

i = 1, ... , m in order that importance sampling be applicable in high dimensions. 

We next focus on the case when the ISD is constructed as a mixture distribution with Normal 

kernels using the points 01 , •.. , Om .. , where the covariance matrix associated with each Normal 

kernel is taken as the identity matrix, that is, 

m ... 

f(O) = Lwi¢(0;0i,I) 
i=l 

(2.77) 

In this case, using Proposition 2.4 and equation (2.62), we note that a sufficient condition for 

importance sampling to be applicable in high dimensions is: 

m ... 

L Wi exp(liOiW) < oo as n--+ oo (2.78) 
i=l 

Note that for ( 2. 78) to hold, it is not sufficient to have II 0 iII < oo for every i = 1, ... , mn, unless mn 

does not depend on n. In fact, (2.78) imposes a restriction on the choice of the weights {wi : i = 
1, ... , mn}· For example, suppose mn = n and liOn II is non-vanishing as n increases. Then (2.78) 

says that the weights have to decrease for large n in order that the L.H.S. of (2. 78) be bounded. We 

next derive a less restrictive sufficient condition on the weights. 

Proposition 2.12. Let the parameter PDF q be a standard Normal PDF given by (2.43) and the 

ISD f be a mixture distribution with Normal kernels using the points 01 , ••• , Om,., mn ~ 1 with unit 

covariance matrix, given by (2.77). 

Then 

m,. 

Eq[R(O)] S exp(L Wi IIOiW) (2.79) 
i=l 

Proof. First note that, 

since the arithematic mean of a set of positive numbers is greater than or equal to the geometric 
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mean. Substituting q(9) = ¢(9) into (2.80) and simplifying, we have, for every i = 1, ... , mn, 

(2.81) 

and so (2.80) becomes 

1m,. m,. 

R(9) ~ exp(2 L Wi IIOiW) exp( -('E Wi Oi. 9}) 
i=l i=l 

(2.82) 

When 9 is distributed as q(9) = ¢(9), i.e., a standard Normal vector, the second term in (2.82) is 

Lognormally distributed with mean given by 

m,. 
1 

m,. 

Eq[exp{ -(L': Wi lh 9))] = exp(211 L: Wj oiW) 
i=l i=l 

Thus, taking expectation Eq[·] on both sides of (2.82) gives 

1m,. m,. 

Eq[R(9)] ~ exp(2 L Wi IIOiW) Eq[exp(-(L Wi oi, 9))] 
i=l i=l 

1m,. 1 m,. 
= exp(2 L Wi IIOiW) exp(211 L Wi Oill 2

) 

~1 ~1 

Now 

m,.. mn mn 

II L Wi Oill2 = (L Wi lJi, L Wj lJj) 
i=l i=l j=l 

m. mn 

= L L Wi Wj (0;, Oj) 
i=l j=l 

mn mn 

~ L L Wi Wj lllJilllllJill 
i=l j=l 

m,. 

= c:L: wi uoi11? 
i=l 

m,. 

~ L Wi IJ0ill2 

i=l 

by Jensen's inequality, since (·)2 is convex. Combining (2.84) and (2.85) gives (2.79) 

Corollary 2.5. In the context of Proposition 2.12, flrs < oo as n --t oo if 

m,. 

L Wi lllJiW < oo as n --too 
~1 

(2.83) 

(2.84) 

(2.85) 

0 

(2.86) 
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Proof. Under the hypothesis, D.h = Eq[R]- 1 < oo as n --+ oo by Proposition 2.12, which implies 

6.1s < oo by Proposition 2.4. D 

Note that, by Jensen's inequality, 

ffin mn 

:Lexp(wdiOiW) :$ L Wi exp(IIOiW) (2.87) 
i=l i=l 

and hence (2.86) holds whenever (2. 78) holds, showing that the condition in the former is less 

restrictive than the latter. 

Proposition 2.13. Importance sampling with ISD chosen from the class 

mn mn 

Pzs(n) = {LWirPn(·;Oi,I): oi E Rn;wi ~ o,:Lwi = 1} (2.88) 
i=l i=l 

for the reliability problem 'R.(rf>n, Fn) is applicable in high dimensions if (2.86) holds. 

ISD with random pre-samples 

When the ISD is constructed using design points, it is often true that IIOill < oo for every 

i = 1, ... , mn and n, although it is possible that I IBm,. II becomes unbounded as n --+ oo. In this 

case, the condition in (2.86) can often be achieved by properly choosing the weights, for example, to 

decay with i such that the L.H.S. of (2.86) remains bounded as n--+ oo. However, the same may not 

be true for ISDs constructed using pre-samples simulated by some prescribed procedure intended to 

populate the important parts of the failure region, that is, 

m,. 

f(9) = L Wi ¢>(9; ih Ci) 
i=l 

=I: wi{27r)-n12 JICi1 1 exp[-~ (9- Bi)TCj1 (8- Bi)] 
i=l 

(2.89) 

where { 8i : i = 1, ... , mn} are the random pre-samples. The reason is that in this case the Euclidean 

norm of the pre-samples may grow with the dimension n, even if the design point of the failure 

region remains bounded. For example, in the case where the failure region is a half-space defined by 

a hyperplane with the design point 9*, a random vector 8 distributed according to the conditional 

distribution q(9jF) can be represented as (see (4.19) in Chapter 4) 

B=Z+(a-(Z,u*))u* (2.90) 

where u• = 9* /119* II is a unit vector in the direction of the design point 9*, Z is a standard Normal 

vector and a is standard Normally distributed conditional on a> f3 = 119*11· Consider the expected 
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value of II OW' 

E[IIOjj 2
] = E[IIZII 2

] + 2E(a- {Z, u*)){Z, u*) + E(a- {Z, u*)) 2 jju*jj2 (2.91) 

To simplify, first note that l\u*jj = 1 and EjjZj\2 = I:~=l EZ[ = n. Also, (Z, u*) = L~=l Ziui 

is a sum of Normal random variables, and hence is also Normally distributed. Since E{Z, u*) = 
2::?=1 (EZi)ui = 0 and E{Z, u*) 2 = I:?,i u;'ujEZiZi = 2::~1 u;' 2 = 1, (Z, u*) is standard Normally 

distributed, and is independent of a. Thus 

and 

E(a- (Z,u*)){Z,u*) = Ea(Z,u*)- E(Z,u*)2 

= Ea E(Z, u*) - E(Z, u*)2 

=-1 

E(a- (Z, u*)? = Ea2 + E(Z, u*)2 - 2Ea E(Z, u*) 

= Ea2 + 1 

Substituting (2.92) and (2.93) into (2.91), we have 

(2.92) 

(2.93) 

(2.94) 

It can thus be expected that 11011 = 0( y'n) probabilistically, which is unbounded as n -+ oo. 

Condition (2) of Proposition 2.8 is then violated when the ISD given in (2.89) with only one pre­

sample (mn = 1) is used. The implication of this is that importance sampling using only one pre­

sample simulated according to the conditional distribution q(OjF), which was supposed to be the 

optimal way of generating pre-samples (Ang et al. 1992; Au and Beck 1999), will not be applicable 

in high dimensions. The remaining question is whether importance sampling is applicable in high 

dimensions when the ISD is constructed using more than one pre-sample, which is the usual case of 

interest. Note that violation of Condition (2) does not immediately imply importance sampling using 

ISD constructed with multiple pre-samples (mn ~ 1) will not be applicable in high dimensions, since 

Conditions (1) and (2) are only sufficient conditions in the case of ISD with multiple points. The 

unknown factor here is whether the 'interaction' arising from the pre-samples can help prevent 6.1s 

from growing without bound as n increases. To answer this question, one needs to study A1s and 

hence the variability of R(O) lip(O) when 8 is distributed as f = I:~i wdi· Due to the structure of 

the ISD, such an analytical study has not been possible. Rather, the variability of the reciprocal of 

R(O), i.e., L(O) = 1/R(O), will be studied. This could give insight on the variability of R, assuming 
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that if R(O) has finite variance, then so does its reciprocal L(O) = 1/R(O). The next proposition 

shows that the variability of L(O) increases exponentially with the order of the Euclidean norm 

of the pre-samples, which suggests that importance sampling using ISD constructed from random 

pre-samples is not applicable in high dimensions. 

Proposition 2.14. Let the parameter PDF q be a standard Normal PDF given by (2.43) and the 

ISD f be a mixture distribution with Normal kernels using the points fh, ... , Om,., mn 2:: 1 with unit 

covariance matrix: 

m,. 

f(O) = Lwi¢(0;0i,I) 
i=l 

(2.95) 

Let L(O) = f(O)fq(O) be the reciprocal of the importance sampling quotient. 

Then the unit c.o.v. ilL of L(O) when 0 is distributed as f is O(exp(p2 /2)), where p is some 

representative scale among IIOill, i = 1, ... , mn. 

Proof. 

L(O) = ~ . ¢(0- Bi) 
{;;;{ w, ¢(0) (2.96) 

Since 0 is distributed as f, it can be be represented as 0 = Z + 9 I, where Z = [ Z1 , ... , Zn] is a 

standard Normal vector and I is a random index independent of Z and discretely distributed on 

{1, ... ,mn} with corresponding probabilities {w1, ... ,wm,.}· Let Li = ¢(0- Oi)/¢(0). Then 

= exp{ -~ I)-9i(j))[2Zi + 2BI(j) - Oi(j))} 
j=l 

= exp[:t Oi(j) Zj + :t Oi(j) OI(j)- ~ :t Oi(j)2
] 

j=l j=l j=l ' 

= exp(- IIO~II 2 } exp( (Oi, Z)) exp( (Oi, iJ I)) (2.97) 

In the above expression, the first term is a fixed quantity. The second term is Lognormally distributed 

with mean exp(IIOill2 /2) and variance exp(IIOill 2)[exp(IIBill2
) - 1]. The third term is a discrete 

random variable with inean L,j=1 Wj exp((Oh Oj)) and second moment L,j=1 Wj exp(2(0i, 0;)). Since 

the three terms are independent, the expectation of Li is just the product of the expectation of the 
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individual terms: 

(2.98) 

Substituting the expression for the individual expectations and simplifying the resulting expression 

gives 

n 

E,[Li] = Lwiexp((Bi,8j)) (2.99) 
i=l 

The expectation of L = 2:;~1 Wi Li is thus given by 

n 

e,[LJ = I: WiWj exp((ei,ej>) (2.100) 
i,j=l 

To compute the second moment of L, first note from (2.97) that 

(2.101) 

The first term is a fixed quantity. The second term is Lognormally distributed with mean exp(IIBi 11
2 
/2+ 

11Bill
2 
/2 + (Bi,lJi)). The third term is a discrete random variable with mean 

n 

E,[exp((Bi + 9i,lh))) = L Wi exp((Oi + Bj, Ok)) 
k=l 

n 

= L Wk exp( (Oi,i}k) + (Oj, Ok)) (2.102) 
k=l 

Using these results and simplifying the resulting expression for EJ[LiLj], 

n 

E[LiLj] = L Wk exp( (Bi, Oj) +{Oil Ok} + (Oi, Ok)) (2.103) 
k=l 

So 

n 

E,[L2
] = L WiWjE[LiLj] 

i,j=l 
n 

= L WiWjWkexp((Oi!Oi} + {Oi,Ok} + (Oi,O,.:)) (2.104) 
i,j,k=l 

To assess the order of magnitude of the first and second moment of L and hence its c.o.v., first 

note that the sets of numbers {wiwi: i,j = 1, ... ,n} and {wiWjWk: i,j,k = 1, ... ,n} are both 

non-negative and sum up to unity, and hence they can be viewed as a discrete set of probabilities. 
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Thus E[L] can be viewed as the expectation of exp((Or,OJ)) over random index pairs (I,J) with 

corresponding discrete probabilities {wiwi : i,j = 1, ... ,n}. Similarly, E[£2] can be viewed as 

as the expectation of exp((Or,OJ) + (OJ,OK) + (Or,OK)) over random index triples (I,J,K) with 

corresponding probabilities {wiwiwi : i,j,k = 1, ... ,n}. Note that I{Oi,Oi)l :$ IIOiiiiiOJII with 

equality holding fori= j, so J(Oi,Oj)l = O(p2 ) where pis some representative scale among ]IOi]l, 

i = 1, .. . ,mn· Thus, E[L] = O(exp(p2)) and E[£2] = O(exp(3p2)). Consequently, for the unit c.o.v. 

ofL, 

(2.105) 

and hence t:.L = O(exp(,r /2)). D 

2.4.4 Assessment of c.o.v. of importance sampling estimator 

Using the expression for Eq[RJIF] given by (2.63), we can assess f:.1s and hence the performance 

of importance sampling based on a single design point. As a first order approximation, assume the 

failure region is a half space defined by a hyperplane with the design point 9*. First, we note that 

PF = tl>( -/3}, where {3 = 119*11 is the reliability index. To evaluate Q(9*, C,F), note that, according 

~· to (2.56), it is the probability that a standard Normal vector Z lies in the region F' = {'lt(A1Z+e ) E 

F}, where r = [~i •... ,~:JT with~;= -e;/(2sr -1) and e· = [f.i, ... ,e:v = 'IJIT9*. Since the 

transformation between 9 and Z is linear and invertible, the region F' is still a half-space defined 

by a hyperplane in the standard Normal space of Z. To find the design point associated with F', 

note that the design point associated with F is given by 9*, and so the design point z* associated 

with F' will satisfy 'lt(A1z* + E'") = 9*, which gives 

(2.106) 

since 9* =we*. In terms of the components of z*' 

(2.107) 
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and so 

(2.108) 

since Bi = Bi/ J2sr- 1 by (2.58). Thus, Q(9*, C, F) can be evaluated using standard results for the 

failure probability for a half-space in the standard Normal space: 

(2.109) 

When Bi = 1 for all i = 1, ... ,n, we have llz*ll = 2119*11 = 2/3, where (3 is the reliability index, so 

Q(9*,C,F) = <P(-2(3) (2.110) 

Also, using (2.62), 

(2.111) 

Substituting (2.110) and (2.111) into (2.63), and using (2.17), we have 

.6. - <P( -2/3) exp(/32) 1 
IS - <P( -(3)2 - (2.112) 

For large (3 (e.g., (3 > 3), <P( -(3) "' 4>(!3)/ (3 and <P( -2/3) "' ¢(2/3)/2(3. Applying these asymptotic 

relationships to (2.112) gives 

(3 
A1s "' - - 1 as (3 ~ oo 

2 
(2.113) 

and so the computational effort required by importance sampling grows linearly with increasing (3, or 

roughly in a logarithmic fashion with decreasing failure probability PF. This, of course, excludes the 

computational effort for the search of the design point and is meaningful only when the failure region 

can be well characterized by a design point such that the importance sampling estimate is unbiased. 

Finally, assuming a target c.o.v. 6 of 30%, the computational effort required for importance sampling 

in this case (excluding that needed for the search of design point) is N0 = .6.';8/~ "'6(3, which is 

indeed quite small. Extrapolating this conclusion to the general case, it may explain why the 
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computational effort in the sampling part of importance sampling is often negligible compared to 

that needed for searching the design point(s). 

2.4.5 Diagnosis for applicability in high dimensions 

The foregoing analysis focuses on the case of Normal PDF q(8) and ISD constructed from Normal 

PDFs. It provides guidelines for how the ISD should be chosen in the cases considered. In general, 

it is desirable in a particular application to check whether importance sampling using an ISD from 

a chosen class of ISDs is applicable or not, before the actual simulation is started. Theoretically, 

one can estimate Ars for the sequence of reliability problems in increasing dimensions and check if 

it grows without bound with the dimension n. However, this is not computationally favorable, since 

the estimation of A1s involves estimating the variability of RliF and hence the evaluation of the 

indicator function liF, which requires system analyses. A better strategy is to estimate AR, which 

only involves estimating the variability of the importance sampling quotient and not the indicator 

function. Then, if AR remains bounded as n increases, it can be guaranteed by Proposition 2.4 

that A1s is bounded too, and hence importance sampling is applicable in high dimensions for the 

particular problem. On the other hand, if AR is unbounded as n increases, then it is likely that 

A1s is unbounded too, although the answer is not definite. In this case, one may try to implement 

importance sampling in high dimensions, and stop the process if A1s estimated during the simulation 

process is large. In the latter case, however, one is cautioned that the importance sampling quotient 

is likely to be exponentially small. The resulting failure probability estimate may be practically 

biased, whose large variability may not be detected when the sample size is not sufficiently large. 

The advice here is that one should pay extra caution when it is found that AR is unbounded as n 

increases. 

Regarding the estimation of AR, it is noted that it is better to use AR = Eq[R]-1 in (2.62) by 

estimating Eq[R] with samples {81, ..• , 8N} simulated according to q, that is, 

(2.114) 

rather than to use AR = E1[R2]- 1 by estimating Et[R2
] with samples simulated according to j, 

although the latter is often adopted. It is because when R has large vari.ability, the variance of the 

estimate for Eq[R] and hence Ah is given by 

(2.115) 
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Table 2.1: Four cases of covariance matrix C 

Case 
1 
2 
3 

4 

while in the latter case, the variance is 

Covariance matrix C 
Bi = 1, i = 1, ... , n 

Bi = 0.9,i = 1, ... ,n 
Bi=1.l,i=1, ... ,n 

Bi = 0.9, i = 1, ... , [n/2]; 
Bi = 1.1, i = [n/2] + 1, ... , n 

(2.116) 

This means that the variance in the latter could be an order of magnitude greater than the former. 

The intuitive reason for this reduction of estimation error when D..R is obtained by estimating Eq[R] is 

that in this case the samples are simulated from q, and populate in the region where R = qf I assumes 

large values that give the major contribution to Eq[R]. In contrast, when Et[R2] is estimated, the 

samples are simulated from I which are concentrated in the region where R is small. In fact, when 

the variability of R is really large, this could give a practically biased estimate for its variance. 

2.4.6 Example 1 

This example demonstrates the preceding propositions for the case of an ISD constructed with a 

single point. The parameter PDF q(9) is standard Normal, and the failure region F is a half space 

defined by a design point (}*: . 

(2.117) 

where the design point 9* is given by 

(}* = Jn[1, ... '1] (2.118) 

The exact failure probability is Pp = (>( -/3), regardless of the number of uncertain parameters n. 

The lSD is a Normal PDF centered at the design point with covariance matrix C, given by (2.45). 

The covariance matrix is assumed to be diagonal with diagonal elements { s~ : i = 1, ... , n} which 

are also its eigenvalues. Four cases, corresponding to different choice of C are considered, and are 

shown in Table 2.1. 

The formulae for D..R and D..1s are first verified using simulation results. The theoretical value of 

D..R is computed using (2.62). For D..1s, (2.63) is used, where Q(9*, C, F) is obtained from (2.109). 
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On the other hand, using simulation, the estimate for b.R is obtained by estimating Eti(R) based on 

(2.114) using 10,000 samples simulated according to q. To obtain b.1s by simulation, we note that it 

is possible in the current example to generate conditional samples according to q(fJ\F), using (2.90). 

Thus, we estimate EqjF[R] with 10,000 samples simulated according to q(OIF) and then obtain an 

estimate for b.1s using (2.18). 

Figures 2.2 to 2.5 show the results for AR for Cases 1 to 4. The corresponding results for b.1s 

are shown in Figures 2.6 to 2.9. These figures show that the trends of the estimates for AR and A1s 

agree with the theoretical results given by (2.62) and (2.63). Also, the boundedness of b.R can be 

consistently checked based on (2.114). 

Next, the variation of b.R and b.1s with the dimension n is compared for different cases, as shown 

in Figures 2.10 to 2.13, where only the theoretical values are plotted. Except for Case 1, both b.R 

and A1s increase exponentially with n, indicating that importance sampling is not applicable in 

high dimensions in these cases. This conclusion is precisely what is predicted by Proposition 2.8. 

On the other hand, for given n, although AR increases exponentially with /3, the same is not true· 

for b.Js. The plots of b.1s for different values of /3 are very close to each other. In fact, according to 

Section 2.8, A1s increases only linear with /3. In general, the values of AR are seen to be orders of 

magnitude greater than those of A1s, which indicates that the magnitude of A1s cannot be inferred 

from that of AR. Nevertheless, the trend of A1s and AR with n are similar; A1s remains bounded 

as n increases whenever AR does (Case 1), and A1s grows exponentially with n whenever AR does 

(Cases 2 to 4). This shows that the behavior of AR with n can be used for concluding the behavior 

of A1s, and hence for diagnosing applicability in high dimensions. 

2.4. 7 Example 2 

This example investigates the applicability in high dimensions of importance sampling with an 

lSD constructed from multiple design points. The failure region in this case is the union of three 

half-space regions: 

(2.119) 
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Figure 2.3: Variation of L\R with n for 
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Figure 2.5: Variation of AR with n for 
Case 4 of Example 1 (si = 0.9, i = 
1, ... , [n/2]; Bi = 1.1, i = [n/2] + 1, ... , n) 

o;: = Jn[1, ... ,1] 

o;(i) = {/30/f k = 1, ... ,n/2 

k = n/2 + 1, ... , n 

{

0 k = 1, ... ,n/2 
o;(i) = /3 [in2 

y n k = n/2 + 1, ... , n 
(2.120) 

are the design points corresponding to the failure boundaries. Note that ll6i'll = /3, and so the 

three failure regions have the same probability content, given by~( -/3). However, the probability 

content ofF, i.e., Pp = P(F), is not equal to the sum of the probability contents of the three failure 
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Figure 2.7: Variation of D.rs with n for 
Case 2 of Example 1 (si = 0.9, i = 
1, ... ,n) 
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Figure 2.9: Variation of !:J.1s with n for 
Case 4 of Example 1 (si = 0.9, i = 
1, ... , [n/2]; Si = 1.1, i = [n/2] + 1, ... , n) 

regions because of the intersections among these failure regions. The ISD is constructed as a mixture 

distribution with Normal kernels centered among the three design points and with covariance matrix 

C, with the same weighting for all the design points, equal to 1/3: 

3 1 
J(O) = :E 3¢(8; o;, c) 

i=l 

(2.121) 

The four cases corresponding to different choice of C as in the last example are considered (see 

Table 2.1). In this example, t:J.R is estimated based on (2.114) using 10,000 samples simulated from 

q, as in the last example. As is common in most applications, it is not possible in this example to 

generate efficiently conditional samples according to q(8IF), and so D.rs is estimated using 10,000 

samples generated from the ISD. 

Figures 2.14 to 2.17 show the estimates for t:J.R and D.rs for increasing dimensions n. Except 
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Figure 2.11: Variation of tlR and ll1s with 
n for Case 2 of Example 1 (si = 0.9, i = 
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Figure 2.13: Variation of tlR and ll1s with 
n for Case 4 of Example 1 (si = 0.9, i = 
1, ... , [n/2]; Si = 1.1, i = [n/2] + 1, ... , n) 

for Case 1, both tlR and ll1s grow exponentially with n, indicating importance sampling is not 

applicable in Cases 2 to 4. Also, the variation of ll1s with n is similar to the variation of tlR; fl1s 

remains bounded as n increases whenever tlR does (Case 1), and 6.1s grows exponentially with n 

whenever tlR does (Cases 2 to 4). This suggests that, in this example, the boundedness of tlR as 

n -too could be a necessary and sufficient condition for the boundedness of 6.1s, although only the 

sufficiency part has been proven in Section 2.4.3. 

2.5 Summary of this chapter 

The variability of importance sampling estimators has been analyzed from different perspectives 

to gain insight into the factors governing the choice of an importance sampling density. The lower­

bound for the unit coefficient of variation of importance sampling estimators in terms of relative 
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entropy provides the basic insight into the factors that render importance sampling inapplicable 

in problems with a large number of uncertain parameters. The new results on the applicability 

of importance sampling in high dimensions should provide important guidelines for applications 

to simulation problems involving a large number of uncertain parameters, such as first excursion 

problems where a stochastic process is used for modeling the excitation, or reliability problems with 

uncertain structures having a large number of uncertain model parameters. 
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Chapter 3 Markov Chain Monte Carlo Simulation 

Markov Chain Monte Carlo Simulation (MCMC) is a class of powerful simulation techniques for 

generating samples according to any given probability distribution, at least in the asymptotic sense as 

the number of samples increases. It originates from the Metropolis method developed by Metropolis 

and his co-workers for applications in statistical physics (Metropolis et al. 1953; Wood and Parker 

1957; Alder and Wainwright 1959; Abraham 1986; Duane et al. 1987). The Metropolis method 

was later applied to solving global optimization problems, resulting in a well-known technique called 

'simulated annealing' (Kirkpatrick et al. 1983; Hajek 1988; Bertsimas and Tsitsiklis 1993). A 

major generalization of the Metropolis method was due to Hastings for applications in Bayesian 

statistics (Hastings 1970; Bhanot 1988; Besag and Green 1993; Tierney 1994). Other applications of 

MCMC include image processing (Geman and Geman 1984) and econometrics (Chib and Greenberg 

1994; Chib et al. 1998). See Fishman (1996) for a comprehensive discussion of MCMC. Applications 

to reliability calculations and Bayesian system identification in civil engineering include Au and Beck 

{1999) and Beck and Au (2000). 

In MCMC, successive samples are generated from a specially designed Markov chain whose 

limiting stationary distribution tends to the target PDF 1r(8) as the length of the Markov chain 

increases. Let {91>92 , ••• } be the Markov chain samples, then if the initial sample 91 is distributed 

exactly as 1r(8), the subsequent samples {92 , 93 , ••• } are distributed as 1r(8). If the initial sample is 

not distributed as 1r(8), under mild regularity conditions, the distribution of the subsequent samples 

tends to 1r(8), that is, p(9N) "'-t 1r(8N) as N -too. Since the samples are generated from a Markov 

chain, they are dependent, and in general when the initial sample is not distributed as the target 

PDF, they are not identically distributed. In spite of the fact that the Markov chain samples are 

not i.i.d., they can still be used for statistical averaging as if they were i.i.d., to yield estimates of 

the expectation of quantities of interest, by virtue of the laws of large numbers. 

The significance of MCMC to solving reliability problems is that it provides a versatile way for 

generating samples according to the conditional PDF q(91F) given failure occurs, which has been 

the main challenge in a simulation-based reliability method. The Markov chain samples explore and 

gain information about the failure region as the Markov chain develops. Proper utilization of these 

samples can lead to better estimates for the failure probability. Moreover, in a MCMC procedure, 

only the ratio of the target PDF at different states is evaluated, which means that the target PDF 

need only be known up to a scaling constant. It is thus possible to generate sa.'Il.ples according to 

the conditional PDF q(9jF) = q(9)lip(9)/PF even when the scaling factor Pp is unknown. These 

features make MCMC a favorable tool for generating samples conditional on the failure region for 
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reliability analysis. 

The classical scheme of MCMC, i.e., the Metropolis-Hastings algorithm, will be presented first, 

followed by a comparison of MCMC with importance sampling. We will then discuss the potential 

problems that will be encountered when the scheme is applied to problems with a large number of 

uncertain parameters. A modified MCMC scheme will then be developed, which will form a major 

component in the subset simulation method developed in Chapter 5 for solving the first excursion 

problem for general nonlinear systems. 

3.1 Metropolis-Hastings algorithm 

The Metropolis-Hastings algorithm for generating Markov chain samples {l;h, 62 , ••• } with lim­

iting stationary distribution equal to the target PDF 1r(6) is described as follows. Let p*(el6), 

called the 'proposal PDF,' be a chosen n-dimensional joint PDF for e that depends on 6. In 

general, let the current Markov chain sample be 6k (k = 1, 2, ... ). To generate the next Markov 

chain sample 6k+t, first generate ek according to the proposal PDF p*(·i6k)· Compute the ratio 

rk = 7r(ek)p*(6kiek)/7r(6k)P*(eki6k)· Set 6k+t = ek with probability min{1,rk} and set 6k+t = 6k 

with the remaining probability 1- min{1,rk}· 

For our purpose, the Metropolis-Hastings algorithm is presented in the following when the target 

PDF is equal to the conditional PDF, that is, 1r(6) = q(6IF) = q(6)ll.F(6)/PF. Here, the first 

Markov chain sample 61 is assumed to lie in the failure region F, but it need not be distributed as 

q(6IF). 

Metropolis-Hastings algorithm 

Repeat for k = 1, 2, ... : 

1. Generate a 'candidate state' Ok+t: 

(a) Simulate a 'pre-candidate state' ek+t according to p*(ek+1 i6k)· 

(b) Compute the acceptance ratio: 

(3.1) 

(c) Set Ok+t = ek+t with probability min{1,rk+t} and set Ok+t = 6k with the remaining 

probability 1- min{1,rk+l} 

2. Accept/reject Ok+l according to F: 

If Ok+1 = 6k, increment k by 1 and go to Step 1. Otherwise, check the location of Ok+t· If 
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Ok+l E F, accept it as the next sample, i.e., 9k+l = Ok+l; otherwise reject it and take the 

current sample as the next sample, i.e., 9k+l = 9k, then increment k by 1 and go to Step 1. 

Note that Step 2 could have been omitted if the acceptance ratio in Step 1 is multiplied with 

the term lip(ek+l ). The algorithm is presented in two steps for discussion purposes. In the first 

step, a candidate state iJk+1 is generated, whose distribution is related to the proposal distribution 

p*(·l9k)· The second step ensures that the next sample lies in the failure region F. In other words, 

to generate the next Markov chain sample from the current one, we first generate a candidate state, 

and then take either the candidate state or the current sample as the next sample according to 

whether the candidate state lies in the failure region or not. Note that the Markov chain samples 

{9~, 82, ... } are not all distinct, since it is possible that some of them are 'repeated.' This occurs 

when the candidate state is equal to the current state due to rejection of the pre-candidate state 

in Step 1, or when the candidate state does not lie in the failure region and hence is rejected in 

Step 2. As we will see later, this 'repeating' aspect of the Metropolis-Hastings algorithm is the key 

mechanism that maintains the distribution of the next sample to be equal to that of the current 

state when the current sample is distributed as the target PDF. 

Proof of stationarity 

We now show that the next Markov chain sample is distributed as the target PDF when the 

current one is, and hence the target PDF is the stationary distribution of the Markov chain. Although 

the proof can be done for general target PDF 1r(8), we focus on the case of conditional PDF, 

i.e., 1r(8) = q(9IF), since the latter provides more insight into the algorithm with respect to the 

conditioning aspect of the failure region F in the reliability problem. The proof and the techniques 

involved for the general case are very similar to this special case, which are quite standard and can 

be readily found in the MCMC literature (see, e.g., Fishman 1996). 

The goal is to show that p(9kH) = q(9jF) when p(9k) = q(91F). Note that all the Markov 

chain samples lie in the failure region F, as enforced by Step 2. It is thus sufficient to consider the 

transition between the states in F, which is governed by Step 1. 

First, consider the case of distinct states, i.e., 9k+l =f. 9k. According to Step 1, the transition 

PDF to the next state given the current state 9k is given by 

(3.2) 

Since 9k and 9k+l lie in F and q(9) differs from q(91F) by a multiplicative constant, the above is 

equivalent to 

(3.3) 
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and so 

(3.4) 

Using the following identity for positive real numbers a, b: 

min{l, ~} b = min{l, ~}a (3.5) 

equation (3.4) becomes 

(3.6) 

and so 

(3.7) 

The above equation is commonly known as the 'reversibility condition' or 'detailed balance' in the 

theory of Markov chains. Essentially, it says that the 'transition rate' from (}k to 8Hl is equal 

to the transition rate from 8k+1 to (}k· Note that the reversibility condition holds trivially when 

8k+1 = 8k, and hence it holds for all cases of (}k and (}k+l· The reversibility condition forms the 

skeleton of the proof, since then: 

p(8Ht) =I p(8k+li8k) p(8k) d(}k 

= 1 p(8k+li8k) q(8kiF) d(}k 

=I p(8ki8Ht) q(8k+dF) d(}k by (3. 7) 

= q(8k+liF) I p(8ki8Hl) d(}k 

= q(8k+liF) (3.8) 

since J p(8kl8k+l) d8k = 1. Thus, when the current sample 8k is distributed as the target PDF, 

q(OIF), the next sample (}k+l• and hence all subsequent samples {8k+2• 8H3 , ••• } will also be 

distributed as q(8IF). 

In the general case when the initial sample 81 is not distributed as the target PDF, it can 

be shown that the distribution of the subsequent samples will still tend to the target PDF, under 

some mild regularity conditions. The conditions for convergence essentially ensure that the resulting 

Markov chain is 'ergodic,' which roughly means that the Markov chain samples can visit any state in 

the support of the target PDF, or equivalently, the failure region F, when the length of the Markov 



49 

chain is sufficiently large. With a finite number of Markov chain samples, the issue of ergodicity in 

practice is whether the generated Markov chain samples can visit sufficiently well the failure region. 

This determines whether the estimate for the expectation of the quantity of interest obtained by 

averaging over the Markov chain samples is unbiased. 

Conditioning mechanism 

The conditioning by the failure region F on the Markov chain samples does not play a significant 

role in the proof of the stationarity of the Markov chain samples, as it has been assumed that all 

the Markov chain samples lie in the failure region. The acceptance procedure in Step 1 of the M-H 

algorithm, which generates the candidate state ok+l by acceptance/rejection of the pre-candidate 

state ek+l generated from the proposal PDF p•, is thus responsible for ensuring that the distribution 

of the Markov chain samples is equal, or converges, to the parameter PDF q(fJ). This can be verified 

by taking F = JRn in Step 2 and then noting that p(Ok+I) = q(fJHI) in (3.8). Step 2 is very 

similar to the standard (inefficient) Monte Carlo simulation (MCS) procedure to simulate samples 

conditional on F, and hence according to q(6JF) by the acceptance/rejection method (Rubinstein 

1981): simulate a sample e from the parameter PDF q(O), if e lies in F, then take e as the sample; 

otherwise repeat the process until acceptance. However, in the standard MCS procedure, one may 

need to iterate many times before one sample lying in F can be obtained, especially when the 

probability of failure is small. On average, it requires 1/ PF iterations to obtain one sample lying 

in F. Since determining whether the sample lies in F requires a system analysis, it means that the 

standard MCS procedure for obtaining conditional samples will be computationally expensive. On 

the contrary, the 'acceptance rate' of the Markov chain samples generated according to the M-H 

algorithm can be expected to be significantly higher than the MCS samples, since the candidate 

state can be generated in the neighborhood of the current sample (which already lies in F), achieved 

by a suitable choice of the proposal PDF to be discussed later. Of course, this is achieved at the 

expense of introducing dependence among the samples, and consequently the information provided 

by the samples is less than if they were independent. 

3.2 MCMC estimator 

Using the Markov chain samples { 61, ... , 6 N} generated by the M-H algorithm with target PDF 

equal to 11"(8), the expectation of some quantity of interest, h(6), say, when 8 is distributed as 11"(8) 

can be estimated by simulation as 

I 
1 N 

I1r = Etr[h(O)] = h(O) 11"(8) dO~ l1r = N L h(O.~:) 
k=l 

(3.9) 
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When 1r(O) = q(OIF), then I1r is the conditional expectation of h(O) given that failure occurs. 

For example, if h is the repair cost of the structure for a given 0 and F is the event that the 

peak interstory drift exceeds some specified serviceability limit, then I1r will be the expected repair 

cost given that the serviceability limit is exceeded. This indicates a straightforward application of 

MCMC to failure analysis using the Markov chain samples. In contrast, the application of MCMC 

for estimating the failure probability is not as trivial, which will be discussed in Chapter 5. 

H the Markov chain is started with the initial sample distributed as the target PDF, the Markov 

chain is stationary and all the Markov chain samples are exactly distributed as the target PDF. In 

this case, ltr is unbiased, as is obvious by taking expectation on 171: in (3.9). In the general case when 

the initial sample is not distributed as the target PDF, the Markov chain is not stationary, and l1r 

is biased for every N, although it is asymptotically unbiased as N 4- oo. 

In spite of the dependence among the Markov chain samples, the MCMC estimator ltr still 

have the usual convergence properties of estimators using independent samples (Fishman 1996). 

For example, ltr converges almost surely to I1r (Strong Law of Large Numbers), and, under similar 

conditions for MCS estimators, it is Normally distributed as N 4- oo (Central Limit Theorem). 

Assuming that the Markov chain is stationary, it can be shown that the coefficient of variation 

of I.,. is given by 

(3.10) 

where 6.h is the c.o.v. of h(O) when 9 is distributed as the target distribution 1r(O), 

N-1 k 
'Y = 2 2: (1- N)p(k) 

k=l 

(3.11) 

is a correlation factor and p(k) is the correlation coefficient between the values of h evaluated at 

Markov chain samples at lag k apart: 

1 
p(k) = 6.2 E.,.[h(Ol)- I.,.] [h(OI+k)- I1r] 

h 

(3.12) 

Note that the term t:J.VN in (3.10) is the c.o.v. for 171: if the Markov chain samples were 

independent. The c.o.v. for MCMC estimators still decays with 1/.fN as in the case of MCS 

estimators. The term (1 + 'Y) arises from the correlation among the Markov chain samples. In the 

usual case when 'Y > 0, the efficiency of the estimator using dependent samples of a Markov chain 

is reduced compared to the case when the samples are independent ("! = 0). Thus, smaller values 

of 'Y imply higher efficiency. The efficiency of the MCMC procedure for estimating I.,., measured 

in terms of 6 i,., is thus governed by the correlation among Markov chain samples. The correlation 

among the Markov chain samples is strongly affected by the proposal PDF, which will be discussed 
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next. 

3.3 Proposal PDF 

Successful applications of MCMC rely on a proper choice of the proposal PDF, which affects the 

distribution of the candidate state given the current state, and consequently the convergence rate of 

the MCMC estimator. Two major types of the proposal PDF are discussed here, which reveals the 

mechanism by which the MCMC procedure works. 

Chain-adaptive symmetric (Metropolis) proposal PDF 

One common type for the proposal PDF is a symmetric distribution centered at the current sam­

ple, that is, p*(el9) = p*(91~"). Using this type of proposal PDF, the Metropolis-Hastings algorithm 

reduces to the original Metropolis algorithm (Metropolis et al. 1953). Since the distribution of the 

candidate state depends on the current Markov chain sample, the proposal PDF is in this sense 

'chain-adaptive'. Experience shows that in this case the form of the proposal PDF is not important 

in affecting the convergence rate of the estimator, and so those PDFs that are easy to operate are 

often chosen. For example, the n-dimensional uniform distribution centered at the current sample 9k 

with maximum step lengths {lJ: j = 1, ... ,n}, say, is a common choice. The maximum step lengths 

{lj : j = 1, ... , n} govern the maximum allowable distance that the next sample can depart from 

the current one, and consequently affect the size of the region that can be covered by the Markov 

chain samples within a given number of steps. In general, the larger the maximum step lengths, 

the larger the region covered by the Markov chain samples. Small values of maximum step lengths 

tend to increase the correlation among the Markov chain samples, slowing down the convergence of 

the MCMC estimator. On the other hand, excessively large values of l; will increase the number 

of repeated samples and thus slow down the convergence of the MCMC estimator. The reason is 

that when the maximum step lengths are large, the candidate state will often be generated far away 

from the current sample, and so the candidate state may not have a high probability of lying in F, 

and hence be rejected frequently. Thus, the choice of the maximum step lengths, or in general the 

'spread' of the proposal PDF, is a trade off between correlation effects arising from proximity and 

repeated samples from rejection. 

Non-adaptive proposal PDF 

At the other extreme, the proposal PDF can be 'non-adaptive,' which does not depend on the 

current sample, that is, p* ( e; 9) = f (e). The construction of the proposal PDF in this case is 

often based on prior knowledge about the target PDF. Under this choice, the proposal PDF should 

be chosen as close to the conditional PDF q(9jF) as possible. To see this, consider the case when 
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p"(~) = q(~IF). In Step 1, the acceptance ratio is given by r = q(~)q(O\F)/q(O)q(~\F) = 1, since q(·) 

and q(·IF) differ only by a multiplicative factor. The pre-candidate state e will then be taken as the 

candidate state 0 with probability min{l, r} = 1. In Step 2, since fJ = ~ E F as ~ is simulated from 

q(eiF), the candidate state lJ will always be accepted as the next state. In this case, all the Markov 

chain samples will be distinct, independent and identically distributed as the target PDF, equal to 

q(OIF). The MCMC procedure then reduces to a standard Monte Carlo procedure. Of course, this 

choice of proposal PDF is not feasible in practice, for the same reason that the optimal choice of 

importance sampling density is not possible in importance sampling. Nevertheless, this observation 

shows that in general the non-adaptive proposal PDF should be chosen as close as possible to the 

target PDF. The proposal PDF here plays a similar role as the importance sampling density f(O) in 

an importance sampling procedure. The next section establishes the connection between importance 

sampling and MCMC with a non-adaptive proposal PDF. The choice of proposal PDF will be further 

explored in Chapter 5 with specific regard to solving the first excursion problem. 

3.4 MCMC and importance sampling 

Let f be the ISD used in an importance sampling procedure and R(O) = q(O)/ f(O) be the 

importance sampling quotient. Then the importance sampling estimator for failure probability can 

be written as the average of the importance sampling quotient R( 0) and the indicator function .ITp( 0) 

over i.i.d. samples { e1 , ••. , eN} simulated according to the ISD f: 

1 N 
Pp = Ej[liF(o)R(O)J ~ N .L:b<ek)RCek) 

k=l 

(3.13) 

On the other hand, a MCMC procedure with a non-adaptive proposal PDF equal to j, i.e., p"'(eiO) = 
J(e) can be considered as first generating a pre-candidate state ek from f and then accepting it as 

the next Markov chain sample with probability 

(3.14) 

By comparing (3.13) and (3.14), it can be seen that importance sampling involves averaging.[p(O)R(O) 

over samples generated by j, while MCMC involves comparing .[p(O)R(O) over samples generated by 

f. In importance sampling, the samples used in the failure probability estimator are distributed as 

j, while in MCMC, although the pre-candidate states are all i.i.d. according to j, the Markov chain 

samples {Oil ... , 0 N} are at least asymptotically distributed according to the target conditional 

PDF q(OjF). Note that averaging using directly the Markov chain samples yields the conditional 

expectation of the quantity of interest given F. The efficiency of importance sampling and MCMC 

depends on the variability of .ITp( O)R( 9), which depends on whether the samples generated according 
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to f lie frequently in the failure region or not, as well as the variability of R(O) given that 8 lies in F. 

It can be expected that, whenever the importance sampling procedure with ISD f is efficient (due 

to small variability ofliF(O)R(O)), the MCMC procedure with a non-adaptive proposal PDF p• = f 
for generating Markov chain samples with target PDF q(OjF) will also be efficient, and vice versa. 

One should notice, however, when a chain-adaptive proposal PDF (e.g., the Metropolis proposal 

PDF) is used in the MCMC procedure, it could happen that the MCMC procedure is efficient, but 

a good ISD is not available. Since the Markov chain using an adaptive proposal PDF can still adapt 

as the chain develops even if a good lSD is not available, MCMC is a more robust procedure than 

importance sampling. 

Whenever one performs importance sampling to compute the failure probability based on (3.13), 

one can always obtain Markov chain samples which are at least asymptotically distributed as q(9jF). 

Basically, to generate the k-th Markov chain sample (k = 2, ... , N), use the k-th sample ek generated 

from j, and take it as the k-th Markov chain sample with probability 

where 9k-1 is the (k- 1)-th Markov chain sample, with 81 = e1 assumed to lie in F. It can be 

readily seen that this procedure is just a MCMC procedure with a non-adaptive proposal PDF equal 

to f and with target PDF equal to q(9jF). 

In the general case when lfF(9) is replaced by some quantity of interest h(9), then the quan­

tity computed by importance sampling will give an estimate for Et[h(9) R(9)] = Eq[h(9)]. Cor­

respondingly, the Markov chain samples generated will be at least asymptotically distributed as 

1r(8) = ch(9)q(9) for some normalizing constant c. Note that when h(9) = P(F\9), i.e., the con­

ditional failure probability given 9, then the target PDF is still the conditional failure probability, 

since then 1r(8) = cP(FI9)q(9) = q(9jF) by Bayes' Theorem. 

3.5 High dimensional aspects of MCMC 

The efficiency of a MCMC procedure depends on the correlation among the MCMC samples, 

according to (3.10). Given that the spread of the proposal PDF is not too small, the correlation 

is often governed by how frequent the pre-candidate state ~ is rejected. If the pre-candidate state 

is rejected frequently, the Markov chain will consist of many repeated samples, and the correlation 

among the Markov chain samples will be large. According to the Metropolis-Hastings algorithm, 

assuming the Markov chain is stationary, the 'rejection probability' PR, i.e., the probability that the 



54 

pre-candidate state will be rejected in a Markov step, is given by 

PR = 1- /min{1 p*(Oie)q(eiF)}p*(~lO)q(OIF)lledO 
'p*(~\O)q(O\F) 

(3.15) 

The rejection probability PR is intimately related to the statistical properties of the acceptance ratio: 

(3.16) 

when e and 6 are jointly distributed as p*(eiO)q(OjF). In general, if r is probabilistically small, PR 

will be close to 1, and the correlation among the MCMC samples will be high. The concern that 

arises when MCMC is applied to simulating samples of high dimensions is whether the rejection 

probability will become close to 1 in a systematic manner as n-+ oo. This concern is similar to the 

one considered in the applicability of importance sampling in high dimensions (Chapter 2). 

An example is given next which indicates that the rejection probability in the Metropolis algo­

rithm will tend to 1 as n -+ oo, and hence the algorithm may not be applicable in high dimensions. 

It will be seen that the mechanism by which the Metropolis algorithm becomes inapplicable in 

high dimensions is in some respect similar to that by which importance sampling is not applicable 

in high dimensions, namely, that the quotient of PDFs evaluated at random arguments becomes 

exponentially small as the dimension n increases. 

Metropolis algorithm 

Assume F = JRn and consider the i.i.d. case where q(O) = llj=1 q1 (8j), and q1 (8j) is the one­

dimensional parameter PDF for the component (Ji (j = 1, ... , n). As a common choice, assume that 

p*(eiO) = TI.i=lPi(ejiOj), where pi(ejiBj) denotes the one-dimensional PDF for ej centered at (Jj 

with the symmetric property Pi(eiiBi) = Pi(Bilei), then r = Tij=1 Q1(ei)/q1(8i)· Let u be uniformly 

distributed on (0,1], independent of everything else. According to the Metropolis algorithm, the 

event {r < 1} and an independent failed Bernoulli trial with probability (1- r) imply that the 

pre-candidate state e will be rejected and hence the next state will be equal to the current state. 

Thus, 

PR~P(r<l,u>r) 

= P(u > rlr < 1)P(r < 1) 

= E[l- rlr < 1]P(r < 1) 

= {1- E(rlr < 1)}P(r < 1) (3.17) 
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To assess the quantities appearing in (3.17), first note that, since {(~J>(;Ij) : j = 1, ... ,n} are 

independently and identically distributed as pr (~j IBi )ql (Bj ), we have, with probability 1, 

(3.18) 

by the Strong Law of Large Numbers, where~ and 8 in (3.18) are jointly distributed as pr (~j8)q1 (B). 

Now 

=-H. (3.19) 

where 

(3.20) 

is the relative entropy of the joint density Pi(8j~)q1 (~) to the joint density Pi(~jB)ql (8). Note that 

H. is strictly positive, since if H. = 0, then Pi (~18) q1 (8) =Pi (81~) q1 (~), i.e., ql (9) = ql (~) for all ~ 

and 8, which is impossible. Combining (3.19) with (3.18) implies, with probability 1, 

r--+ exp(-nH,.) as n--+ oo (3.21) 

and hence r is exponentially small when the dimension n of the uncertain parameter space is large. 

It can be expected that E[rlr < 1]--+ 0, P(r < 1)--+ 1 and so PR--+ 1 as n--+ oo. Thus, it is unlikely 

that the Metropolis chain will transit to any other new distinct state when the dimension n is large, 

in which case nearly all the Markov chain samples will be equal. We call this a 'zero-acceptance' 

phenomenon. 

Although it has not been demonstrated analytically, numerical simulations show that zero­

acceptance phenomenon occurs in more general situations, for example, when F C JR.n or when 

the components 8j are not all identically distributed. 

Metropolis-Hastings algorithm 

In the case of Metropolis-Hastings algorithm with a non-adaptive proposal PDF, let p* (e) = f (e). 

Note that Step 2 of the algorithm can be absorbed into Step 1 by having an acceptance ratio r that 
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includes the indicator function, that is, 

(3.22) 

Since q(·IF) = q(·)TI.F(·)/PF, and the current Markov chain sample(} lies in F, r can be written as 

q(elF) f(O) 
r = !(e) X q(OIF) 

(3.23) 

Taking logarithm on both sides yields 

q(elF) q(OlF) 
logr=log f(e) -log !(B) (3.24) 

where 0 and e are distributed according to q( OjF) and f(e), respectively. Unlike the case of adaptive 

proposal PDF, 0 and e are independent. The expectation of logr is given by 

q(e!F) q(OIF) 
E[logr] = EJ[log f(f.) ] - EqiF[ f(O) ] = -[H(f,q(·IF)) +H(q(·jF),f)] (3.25) 

and so if either H(f,q(·IF)) or H(q(·IF), f) are large, the acceptance ratio r may assume small 

values probabilistically and hence the rejection probability is large. 

Focus now on the case studied for the Metropolis algorithm, where F = JR.n and q(O) = 
TI~1 ql (B;). Assume f(O) = TI~=1 !I (Bi)· Using a similar procedure as before, we can conclude 

that if /I does not depend on n, then with probability 1, 

r-+ exp [-n (H(fi,PI) + H(p1, !I))] as n-+ oo (3.26) 

where H(p1,!I) and H(fi,pi) are the relative entropy of !I to P1 and of p1 to JI, respectively. 

In this case, it may be possible to choose the non-adaptive proposal PDF so that H(p1 ,/I) and 

H(fi,pi) are both at most 0(1/n), so that the rejection probability may not tend to 1. Otherwise, 

by a similar argument as before, the acceptance probability in the Metropolis-Hastings algorithm 

will tend to zero as the dimension increases, and hence the zero-acceptance phenomenon occurs. 

3.6 Modified MCMC 

The last section shows that the original Metropolis scheme is not applicable in high dimensions. 

Similar problems may occur for the Metropolis-Hastings scheme, depending on the choice of the 

proposal PDFs. The breakdown of the Metropolis algorithm in simulating random vectors of inde­

pendent components is basically due to the zero-acceptance phenomenon, where the acceptance ratio 

becomes exponentially small as the dimension n increases. A modified MCMC scheme is developed 
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in this work which is applicable in high dimensions. The basic idea is to suppress the zero-acceptance 

phenomenon by generating the candidate state component by component, so that the associated ac­

ceptance ratios of the individual components of the pre-candidate state remain non-vanishing as the 

dimension increases. The modified MCMC scheme for g~nerating samples with limiting stationary 

PDF equal to q(OIF) is presented as follows. 

Let I = { I1, ... , Ina}, where na is the number of groups, be some grouping (or partition) of 

the indexes {1, ... ,n} corresponding to the uncertain parameters {81 , ... ,8n}· Without loss of 

generality, assume that the ordering of the indexes is not affected by grouping. For example, a valid 

grouping of {1, ... , 6} is {{1, 2}, {3}, { 4, 5, 6}}, for which I 1 = {1, 2}, I 2 = {3}, I3 = { 4, 5, 6} and 

na = 3. Let ni be the number of members in the j-th group (j = 1, ... , na). The whole set of 

uncertain parameters 0 consists of members from all the groups, that is, 0 = (lJCl), ... , O(na)] E 

Rn. The nrdimensional vector of uncertain paremeters for the j-th group will be denoted by 

O(i) = {Os : s E Ii}· For each group j, let Pj(e(i)ilJ(i)) : R,n; x R,n; H- (0,=) be a chosen 

proposal PDF for generating a random 'pre-candidate component' e(i) E Rn; based on the vector 

e(i) E R.n;. To generate the next Markov chain sample 81c+1 = [Ow1, ... , ei:~)] from the current 

sample 9~c = [Oi1), ... , eina)]: 

Modified Metropolis-Hastings algorithm 

. - -(1) -(na) 
1. Generate a candsdate state 81c+1 = [Ok+1, ... , Ok+l ]: 

For each group j = 1, ... , na, 

(a) Generate a pre-candidate component e~21 from pj(·l9~)) 

(b) Compute the acceptance ratio: 

(c) Set the j-th component of O~c+ 1 according to 

e(j) - {e~21 with probability min(1,r~21> 
lc+l- e(i) () 

k with probability 1 - min(1, r/+1) 

2. Accept/reject 0: 

(3.27) 

(3.28) 

If Olc+1 = 9~c, set 9k+l = O~c. Otherwise, check the location of Olc+l· If Ok+l E F, accept it as 

the next state, i.e., set elc+l = ek+l j otherwise reject it and take the current state as the next 

one, i.e., set ek+l = ek· 
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Proof of stationarity 

Note from the algorithm that the distribution of the next sample Ok+l depends only on the 

current sample 0,., and hence the samples {01 ,02 , • •• } form a Markov chain. We next show that 

if e,. is distributed as the target PDF q(OIF), then so is 6~:+11 and hence q(OIF) is the limiting 

stationary distribution of the Markov chain, based on ergodicity assumptions. Since all the Markov 

chain samples lie in F as enforced by Step 2, it suffices to consider the transition between the 

states in F, which is governed by Step 1. First, consider the transition between distinct states in 

F, i.e., 0,. =/:. 6~;+1 and 6~;,0~;+1 E F. According to Step 1, the transition of the individual groups 

are independent, so the transition PDF of the Markov chain between any two states in F can be 

expressed as a product of the group transition PDFs: 

no 

p(Ok+tiO.r.:) = liPi(0~2110~)) (3.29) 
i=l 

where Pi is the transition PDF for the j-th component 0~) of O~c, given by 

(3.30) 

Using (3.27) and (3.30), together with the identity min{l,a/b}b = min{l,b/a}a for any positive 

numbers a and b, it is straightforward to show that Pi satisfies the following 'reversibility condition' 

with respect to qi for every group j = I, ... , nG: 

(3.31) 

Note that the equality in (3.31) is trivial when 0~21 = 0~). Combining (3.29) and (3.31), and the 

fact that all states lie in F, the transition PDF for the whole state O~c also satisfies the following 

reversibility condition with respect to q(·jF): 

Thus, if the current sample 0,. is distributed as q(·IF), then 

p(Ok+l) =I p(8k+ll8,.)q(O~;IF)d6~c 
=I p(O~;!Ok+l) q(Ok+IIF) d8~c by (3.32) 

= q(Ok+IIF) I p(8~cl0k+I) dO~c 
= q(OJ:+dF) 

(3.32) 

(3.33) 



59 

since f p(9.,!9k+l)d9k = 1. This shows that the next Markov chain sample 9n+l will also be 

distributed as q(·IF), and so the latter is indeed the stationary distribution for the generated Markov 

chain. 

3.7 Comparison of the modified and original scheme 

The basic difference between the modified and the original MCMC scheme lies in the way the 

candidate state is generated in Step 1 of the algorithm; Step 2 of the algorithm that involves the 

conditioning by the failure region F is the same in both the modified and the original scheme. In the 

original MCMC scheme, the pre-candidate state is generated from ann-dimensional proposal PDF 

and then accepted as the candidate state based on an acceptance ratio that is a quotient between two 

n-dimensional joint densities. In the modified MCMC scheme, although the candidate state can still 

be considered as being generated directly by then-dimensional proposal PDF Tij=1 pj(·l9~\ its 

components are independently accepted/rejected based on the acceptance ratio rW (j = 1, ... , no) 

that is a quotient between two nrdimensional joint densities, where nJ is the number of members 

in the j-th group. The candidate state is finally generated by combining all the components that 

have passed through the acceptance/rejection process individually. This 'component-wise' updat­

ing feature of the MCMC algorithm is the key modification that suppresses the zero-acceptance 

phenomenon and makes the algorithm applicable in high dimensions, because the acceptance ratios 

{r(j) : j = 1, ... , no} involved in the individual groups are only a quotient of two nrdimensional 

joint densities which can be of much smaller dimension than n. In the particular case where each 

uncertain parameter is grouped as just one component so that there are n components, the accep­

tance ratios involved are quotients of two one-dimensional densities, and hence their probabilistic 

behavior will not be systematically affected by n. The applicability of the modified MCMC scheme 

in high dimensions is next illustrated in terms of the rejection probability of the algorithm. 

Applicability of modified MCMC scheme in high dimensions 

Let r(j) (j = 1, ... , no) be the acceptance ratio given by (3.27), and let { UJ : j = 1, ... , no} be 

independent and uniformly distributed on [0, 1], independent of everything else. For the modified 

Metropolis-Hastings algorithm, the next state is equal to the current state either when all the pre­

candidate components { e(j) : j = 1, ... 'no} are rejected so that the candidate state 6 is equal to 

the current state 9.,, or when the candidate state 6 does not lie in F and hence is rejected in Step 2. 
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So, the rejection probability is given by 

no 

PR = P({n rCil < l,uj > r(j)} U 0 f/. F) 
i=l 

no 

:::; P(n r(j) < l,uj > rCil) +P(Orf_ F) 
j=l 

na 

=II P(r(j) < 1, Uj > rCil) + P(O fj_ F) 
j=l 

na 

=IT P(ui > rCillr(j) < 1)P(rCil < 1) + P(O f/_ F) 
j=l 

no 

= II {1- E[r(i) lrCil < 1]}P(rCil < 1) + P(O f/- F) 
j=l 

(3.34) 

Since the factors in the first product are always less than 1, the first term tends to vanish as na 

increases. In this case, combining (3.34) with the fact that PR 2: P(O ¢F), it can be argued that 

PR -t P(O f/- F) as na -t oo. This result can be expected intuitively, since when na is large, it 

is unlikely that the candidate state is equal to the current state, as this requires all the na pre­

candidate components { e(i) : j = 1, ... , na} be rejected in Step 1 of the modified algorithm. The 

event that the next state is equal to the current state then nearly corresponds to the event where 

the candidate state is rejected for not lying in F. Consequently, when the number of groups na and 

hence the dimension n is large, PR can be expected not to increase systematically with n, and hence 

the modified Metropolis-Hastings algorithm is applicable even when the dimension is large. 

Regarding the choice of the proposal PDFs, the rules that are used in the original MCMC scheme 

can be applied for the modified scheme, except that the choice in the latter should be done group 

by group, rather than for the whole state 6. The choice of the proposal PDF for applications to 

solving the first excursion problem will be discussed in Chapter 5. 

3.8 Summary of this chapter 

Markov chain Monte Carlo simulation is a versatile tool for simulating random samples according 

to an arbitrary target distribution, and provides great promise for applications in reliability analysis. 

The basic algorithms of Markov chain Monte Carlo simulation, namely, the Metropolis algorithm and 

the Metropolis-Hastings algorithm, have been discussed in this chapter. Applicability issues in high 

dimensions have also been examined, which shows that the zero-acceptance phenomenon is likely to 

occur for these algorithms, due to similar mechanisms that render importance sampling inapplicable 

in high dimensions. A modified algorithm has been proposed which suppresses the zero-acceptance 

phenomenon. It will form an important component in the method proposed in Chapter 5, called 

subset simulation, which is applicable for reliability analysis of general systems. 
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Chapter 4 Linear Systems and Importance 

Sampling using Elementary Events 

In this chapter, the first excursion problem for linear dynamical systems subjected to additive 

Gaussian white noise excitation is investigated, which is an important problem due to the widespread 

use of linear dynamical systems for modeling physical phenomena. In this case, a lot of vital 

information about the failure characteristics can be obtained analytically based on linear system 

and random vibration theory. The random vibration aspects of linear dynamical systems have been 

studied extensively in the literature (Lin 1967; Soong and Grigoriu 1993; Lin and Cai 1995; Lutes 

and Sarkani 1997). In particular, for Gaussian excitations, the response at multiple time instants 

are jointly Gaussian, and their joint probability distribution can be described based on unit impulse 

response functions. In the context of simulation where a discrete approximation of the excitation is 

used, the failure region corresponding to the failure of a particular output response at a particular 

time instant is a half space defined by a hyperplane in the load space. This 'elementary failure 

region' is completely described by a local design point, which can be obtained from unit impulse 

response functions. This fact has been appreciated in some recent work (e.g., Der Kiureghian 2000; 

Vijalapura et al. 2000). Recognition of this fact, however, only offers the solution for the failure 

probability that a particular response at a particular time exceeds (in magnitude) a given threshold 

level. The information that is still missing for evaluating the first excursion probability, which is 

the probability that any one of the output responses of interest exceeds (in magnitude) the given 

threshold level at any time instant within the duration of study, is rooted in the interaction of the 

elementary failure regions corresponding to each of the output responses at each time instant within 

the time duration of interest. 

We investigate analytically the failure region of the first excursion problem for linear systems 

under Gaussian white-noise excitation with a view to constructing an efficient ISD. Based on in­

formation from this study, we propose an ISD which is shown to be very efficient compared to 

conventional ISDs constructed using information numerically obtained from the integrand function. 

This ISD has captured the complexity in the dynamics of the first excursion problem, and results 

in a very efficient importance sampling procedure, showing that the analytical investigation of the 

failure region is highly rewarding. 
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4.1 Discrete-time linear systems 

We first describe the linear systems considered in the first excursion problem. By linear systems 

we mean that the relationship between the input excitation and the output response quantity of 

interest is linear. For convenience in notation, we will use braced quantities to denote the set of 

quantities inside the brace generated by running the subscripted index (or indexes) of the brace 

from 1 to the superscripted index (or indexes). For example, {Zj(k)}~i = {Zj(1), ... , Zi(nt)} and 

{Zi(k)}~·.~· = {Z1 (1), ... ,ZJ(1), ... ,Z!(nt), ... ,ZJ(nt)}. 

Let W1(t), ... , W,(t) and Yi(t), ... , Ym(t) be respectively the l input (excitation) and m output 

(response) time histories of a continuous-time linear system. Without loss of generality, the outputs 

are assumed to start from zero initial conditions at timet= 0. The input-output relationship can 

be generally written as, for i = 1, ... , m, 

l t 

Yi(t) = L l hu(t,r)Wj(r)dr 
i=l 0 

(4.1) 

where hij(t, r) is the unit impulse response function (or Green's function) for the i-th output at time 

t due to a unit impulse applied at the j-th input at timer. As a result of linearity, the response is a 

sum of the contributions from the individual input Wj. Causality has been assumed for the impulse 

response functions, namely, hij(t, r) = 0 fort< r, so that the integration limit is from 0 tot instead 

of 0 to oo. The representation in (4.1) is applicable for any linear system, including time-varying 

systems. 

In practical applications, the output response is often solved at discrete time steps by some 

numerical integration scheme (Dokainish and Subbaraj 1989; Subbaraj and Dokainish 1989) using 

the values of the input at the sampled time instants. Let the sampling be uniform at time spacing 

t!..t = T / ( nt - 1) where T is the duration of study and nt is the number of time instants, so that the 

sampling times are t~; = (k- 1)Llt, k = 1, ... , nt. The excitation {Wig in discrete-time is assumed 

to be band-limited Gaussian white noise: 

(4.2) 

where Si is the spectral intensity and {Zj(k)}~·.~· are i.i.d. Gaussian random variables. In the 

discrete-time system, {Zj(k)}~:~· are considered as the input random variables, from which a real­

ization of the excitation can be generated for simulation purposes. The vector Z = [Z1 (1), ... , 

Z1(1), ... , Zl(nt), ... ,Z1(nt)] collecting all the input random variables is thus_ ann= nt x l-
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dimensional standard Gaussian vector with independent components and so has joint PDF 

p(z) = cp(z) ~ (27r)-"12 exp( -~ t z~) (4.3) 

where z = (z1, .•. , zn) is a state of the input random vector Z. Although the excitation is assumed 

to be stationary white noise in (4.2), the formulation is applicable for more general excitation by 

redefining the system. For example, if the excitation is a filtered white noise modulated by an 

envelope function, then hii will be equal to the convolution of the impulse response function of the 

original system and the filter, multiplied by the envelope function. 

Using the representation of the excitation in (4.2), the discrete-time analog of the input-output 

relationship in (4.1) can be written in terms of the input random variables {Z;(s)}~·.~:. 

l k 

Yi(k) = L L9i;(k, s)Z;(s)J27rS;Llt (4.4) 
j=ls=l 

where {Yi(k)}r are the outputs at time step k and Uij(k, s) is the discrete-time unit impulse response 

of the i-th output at time step k due to a unit impulse Z;(s) = 1 applied at the j-th input at time 

steps. The relationship between Uii and hii depends on the numerical integration scheme used. The 

discrete-time impulse response 9ii can often be obtained numerically from dynamic analysis using 

finite element programs, for example. In particular, for time-invariant systems, hii (t, r) = hi;(t- r) 

and Ui;(k,s) = gij(k- s + 1), so the set of impulse response functions {Yii}r corresponding to the 

j-th input excitation can be obtained in one dynamic analysis. Consequently, it requires l dynamic 

analyses to obtain the whole set of impulse response functions {Ui;}f:/ which completely describe 

the input-output relationship. 

As a fact that will be used later, it is noted that the discrete impulse response will tend to its 

continuous-time counterpart as the sampling interval At tends to zero: 

(4.5) 

provided that the numerical scheme used to compute the response is convergent (i.e., consistent and 

stable) (Hughes 1987). In practical applications where the numerical scheme is sufficiently accurate, 

it may be assumed that the discrete-time and continuous-time impulse responses are equal at the 

sampled time instants. 
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4.2 Analysis of the failure region 

In terms of the discrete-time system, the failure event F of interest is defined as the exceedence 

of the absolute response of any one of the outputs beyond a given threshold level at any time step 

between 1 and nt: 

m n, m n, 

F = U U {lli(k)l > bi(k)} = U U Fik (4.6) 
i=l k=l i=l k=l 

where bi(k) is the threshold level for the i-th output at time step k, and Fik is the 'elementary failure 

event' that the absolute response of the i-th output at time step k exceeds bi(k), that is, 

(4.7) 

Since F is the union of the elementary failure events { Fik} ":k"' , a study of the latter may help 

understand the former. We will thus begin by studying the elementary failure event Fik for given i 

and k. 

4.2.1 Elementary failure region 

The elementary failure event Fik is the union of the up-crossing and down-crossing events, Fit = 
{}i(k) > bi(k)} and Fik = {Yi(k) < -bi(k)}, respectively, which are mutually exclusive. Since Fik 

can be written as { -}i(k) > bi(k)}, that is, the up-crossing event of -li at time step k, and the 

two processes Yi and -li are probabilistically identical, it suffices to consider the up-crossing event 

Jiit. Using (4.4), Fit is the semi-infinite region {z : I:~=l 2:==1 9ii(k, s)zi(s)J211"Si~t > bi(k)} 

in the standard n-dimensional Gaussian space of the input variables z where n = nt l. The failure 

boundary is given by 8Fit = {z: I:j=1 E!=l 9ii(k, s)zj(s)J21i"Sj~t = bi(k)}, which is a hyperplane 

in then-dimensional space of z. Note that 8Fit imposes a constraint only on Zj(s) for all s :$ k, as 

a result of causality. 

Design point: The point in Fit which has the highest probability density among other points in 

Fit, called the design point for Fit in reliability terminology, is of particular importance. As the 

PDF ¢(z) for Z decays radially from the origin, the design point lies on the failure boundary 8Fj;. 

The design point maximizes the joint PDF ¢(z) under the linear constraint 

I k 

L L9ii(k, s)zj(s)J211"Sj~t = bi(k) 
j=l s=l 

Since ¢(z) is a decreasing function of only the distance of z from the origin, which is equal to the 

Euclidean norm of z, the design point is just the point on 8Jiit with the smallest Euclidean norm. 
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Let z;k = {zik,3 (s)}j·,~' E JR.'' be the design point of the elementary failure event Fj;, where zik,j(s) 

is the value of the j-th input at time step s corresponding to the design point. Direct constraint 

minimization yields: 

(4.8) 

where U(·) is the unit step function: U(x) = 1 if x ~ 0 and zero otherwise, and 

l k 

ark = Var(Yi(k)) = 2)'2: Yii(k, s)2)21rSjD..t (4.9) 
j=l s=l 

is the variance of Yi(k), which can be readily obtained by direct analysis of (4.4). As a consequence 

of causality, z;k,i ( 8) = 0 for 8 > k. It is interesting to note that the variance a;k of the i-th output 

at time step k is equal to the sum of all the 'energy' of the corresponding impulse responses from 

all inputs accumulated up to time step k. By (4.5), 9ii(k,8)--+ hij(tk,ts) as D..t--+ 0, so we have 

(4.10) 

= variance of output i at time tk of continuous-time system 

and so aik varies 'continuously' with k as the sampling is refined. 

The excitation Wik,j at the j-th input that corresponds to the design point z;k,j is 

W* (t ) - J21rSi * (8)- U(k ) Yii(k, 8) b (k) 
ik,i s - iftzik,j - - 8 "z "k . (k )2 A i 

. L.....r=l L.....s=l g,r '8 ut 
(4.11) 

and so 

W~ ·(t ) --+ U(t - t )b·(k) hii(tk, t.) as D..t--+ 0 
,k,1 s k s ' "z rt ( )2 

L.....r=l Jo hir tk, T dr 
(4.12) 

Reliability index and probability content: The Euclidean norm f3ik of the design point z;k, 

often called the 'reliability index,' is given by: 

(4.13) 

Since the components of z are i.i.d. standard Gaussian, the probability content of F:t is given 

by 

(4.14) 
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where (}(-) is the cumulative distribution function of the standard Gaussian distribution. Equa­

tion (4.14) can be obtained directly by noting that the i-th output has Gaussian distribution with 

mean zero and standard deviation O'ik for a linear system under zero mean Gaussian excitation. 

Note that in the present case where the failure boundary is a hyperplane, the probability content of 

the failure region FJ is completely determined by the reliability index f3ik· 

Conditional distribution of input random variables: The conditional distribution of the 

input random vector Z given that it lies in the elementary failure region Fit is just the original PDF 

l/>(z) confined to F;t and normalized by the probability content of Fit: 

(4.15) 

Since the failure boundary 8F;t is a hyperplane, by the rotational symmetry of standard Gaussian 

vectors with independent components, the conditional vector Ztk distributed as p(ziFJ) can be 

represented as 

where 

Z+- .. z.L i.k- auik + ik (4.16) 

(4.17) 

is a unit vector in the direction of the design point z;k (perpendicular to the hyperplane 8Fit); 

a is a standard Gaussian random variable conditional on {a > /3ik}, that is, p(a) = ¢(a)U(a­

/3ik)/«}( -f3ik)i Z:/k is a standard Gaussian vector orthogonal to u;k (parallel to the hyperplane 8Fik)· 

It can be easily verified that zfk can be represented in the following form which allows for efficient 

simulation: 

(4.18) 

where Z is a n-dimensional standard Gaussian vector with independent components. Substituting 

(4.18) into (4.16), Ztk can be represented as 

(4.19) 

The foregoing results are applicable to the down-crossing event Fik, except that the design point 

for Fik is the negative of the design point for F;t. Also, a random vector Zik distributed as p(z!Fi'k) 

is identically distributed as -Ztk. 
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For the out-crossing event Fik = Fit U Fik, since Fit and Fik are disjoint, Fik has two design 

points corresponding to those from Fit and F;1,. The probability content of Fik is simply the sum 

of those of Fit and Fik' so P(Fik) = 2<1>( -!1ik)· The input random vector Zik distributed according 

to p(zjF;k) is distributed as zt;. with probability 1/2 and as Zik with probability 1/2. 

4.2.2 Interaction of elementary failure regions 

The results in the last section indicate that the failure regions corresponding to the elementary 

failure events can be described in a simple way. Their probabilistic properties are completely de­

termined by their design points, which are known and can be computed readily from deterministic 

dynamic analysis. The complexity of the first excursion problem, however, lies in the interaction of 

the elementary failure events Fik in forming the first excursion failure event F = U~1 U~!:1 Fik· 

Figure 4.1: Neighboring design points 

(\g(k) ~ ............... k v ""7 <oo:::::7 

k 

\.__!:__ = b/ak 

-----------------k 

Figure 4.2: Variation with time of reliabil­
ity index f3 k, response standard deviation 
ak and impulse response g(k) 

Two types of interaction between the elementary failure events can be distinguished. The first 

one involves interaction of the first excursion events {U~!:1 F;k}i among the different outputs i = 

1, ... , m. The second type is the interaction of the elementary failure events at different failure time 

steps k for a given output i. The first type depends on the relationship between the outputs of the 

system, and would be different for different types of systems and definition of output states. This 

type of interaction should be studied for a particular type of system, and will not be pursued here. 

The second type of interaction between the failure events at different failure time steps k, however, 

can be studied in general, since it depends on the relationship of the response at different instants 

for a given output, and consequently it is governed by more general properties such as the continuity 

of the impulse response functions of the system. In this study, we will focus on the second type 

of interaction. For this purpose, we will examine the simple case of a single-input single-output 

time-invariant linear system with constant threshold level and excited by stationary white noise, 
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that is, l = m = 1 and bi(k) = b1(k) = b is constant. The failure event will be F = U~~1 F,., where 

F,. = {jY(k)j > b} and we have dropped the index on the output for simplicity in notation. 

The set of elementary failure events {Fk : k = 1, ... , nt} corresponds to the failure of the 

output response at the consecutive time steps t 1 , ••• , tn,. These elementary failure events evolve 

approximately in a continuous fashion ask varies. Let g(k, s) = g(k-s+ 1) and h(t, r) = h(t-r) be 

respectively the impulse response for the discrete- and continuous-time systems. The design point 

ofF~; is then given by z'k(s) = U(k- s).../2rrSfltg(k- s + l)bfa~. For smallflt, g(k- s + 1) "' 

h(t~o-t8), so zk(s) ,.... U(t~;-t8)V2rrSflt h(tk -t8)bfa~ and correspondingly w;(ts) = 'l/2rrSf flt z'k(s) 

"' 2rrS U(tk - t 8 )h(tk - t8 )bja~, which evolves smoothly with k when h is continuous. This is 

illustrated in Figure 4.1, where design points z'k
1 

and z'k
2 

corresponding to two different failure 

times k1 and k2 are shown. The design points corresponding to two consecutive failure times will 

be very close, and their distance tends to zero as flt ~ 0. The distance of the design point from 

the origin, given by /3~; = bfa~;, decreases gradually with increasing k accordingly as a~e increases 

with k, as shown in Figure 4.2. Due to causality, only the first k components of the design point 

zZ are nonzero, so ask increases by 1, the design point has one more nonzero component in a new 

dimension. Thus, as k increases, the set of design points {z'k}~' 'spiral' towards the origin in the 

nt-dimensional input variable space which form a continuous path as flt ~ 0. This path ends when 

k is largest, that is, k = nt, at the 'global design point' z"' = z~,, defined as the design point with 

the smallest Euclidean norm, or equivalently, reliability index, among all other design points. Note 

that in the general case of multiple-input multiple-output systems, the failure time of the global 

design point is not necessarily equal toT, for example, when bi(k) is not constant or the excitation 

is modulated by an envelope function. 

In the case of a continuous-time single-input-single-output time-invariant system considered for 

a duration ofT, the excitation corresponding to the global design point is a continuous function of 

time, given by w"'(t) = 2nSU(T-t)h(T-t)bfa}, which has been obtained by Drenick as the 'critical 

excitation' for aseismic design (Drenick 1970). It was noted as the 'smallest energy' (in the sense 

of Euclidean norm) excitation which pushes the response at time T to the threshold level b. Since 

w"' (t) is the excitation with the smallest energy which pushes the response at T to the threshold, 

and it requires more energy to fail at earlier times, it was concluded that if the structure is designed 

so that it will not fail when the excitation is w*(t), then it will not fail over time interval [O,TJ for 

any excitation with energy less than that of w*(t). Finally, the reader is referred to Appendix A for 

some additional observations on the failure region for SDOF causal time-invariant linear systems. 
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4.3 Development of importance sampling density 

The analysis of the failure region F in the last section provides valuable information for con­

structing an efficient ISD to compute the first excursion probability. In particular, the elementary 

failure events are completely characterized by their design point which can be computed readily by 

deterministic dynamic analysis. It is thus natural to construct the ISD based on the design points 

to account for the contributions from the elementary failure regions. Since there are ntm design 

points, one is concerned with how many and which design points to use. Using more design points 

may potentially increase the computational effort, and it is often sufficient to use only those that are 

'important'. The importance of an elementary failure event Fik may be measured by the conditional 

probability P(Fi.~:IF), as the latter gives the plausibility that the failure F is due to Frk· Since the 

ratio of the conditional probabilities of two elementary failure events Fik and Fjs is 

P(Fi.~:IF) P(Fik n F)/ P(F) P(Fiic) 

P(FisiF) = P(Fis nF)/P(F) = P(Fis) 
(4.20) 

and hence equal to the ratio of their unconditional probabilities, the relative importance of a given 

design point zi~; may be quantified based on the (unconditional) probability of the corresponding 

elementary failure event Fik: 

(4.21) 

The larger the Pik> the more important the design point zi~;· 

Since the global design point z* is by definition the one with the smallest f3ik and hence largest 

Pi~;, it is natural to center the ISD at it. However, as noted before, the design points that are 

neighbors of the global design point z* are very close to z* (see Figure 4.1). Their reliability index 

and hence the probability content of the corresponding elementary failure region are also very close 

to those of z*. As illustrated in Figure 4.2, the reliability index drops dramatically for small k and 

then settles for moderate values of k when the impulse response function has decayed considerably. 

So it is only in the case when the duration T is sufficiently small that the global design point assumes 

significantly more importance than all other design points. In the usual case when the duration T is 

large compared to the time when the impulse response has decayed sufficiently, the design points in 

the neighborhood of the global design point are also important, and should therefore be included to 

construct the ISD. Since f3il• settles quickly with k, the number of design points per each output state 

i that should be included is of the order of the total number of time steps. Thus, as a result of the 

interaction between the elementary failure events for different failure times, a much larger number 

of design points in addition to the global design point are important and have to be included in 

constructing the ISD. For the sake of discussion here, we will assume that all the ntm design points 
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are used for constructing the ISD. 

Regarding the choice of the functional form for the ISD, the fundamental criteria are as follows: 

(1) the value of the ISD can be evaluated readily; and (2) there exists a method to efficiently sim­

ulate samples distributed according to the ISD. These criteria are fundamental since the evaluation 

of the ISD and the simulation of its samples have to be carried out repeatedly during simula­

tion. In constructing an ISD which should account for the contributions from the neighborhood of 

multiple design points, one important observation is that if one can simulate a sample according 

to the individual PDF fik(z), which is designed to account for the contribution from the design 

point zik, then one can also simulate a sample according to a weighted sum of the fiks, that is, 

f(z) = :E:1 :E~~1 Wikli~e(z), where Wik ;;:: 0 and :E:1 :E~~1 Wik = 1. This is because a sample 

distributed as f can be obtained by first drawing a random ordered pair (I,K) from {(i, k)}~t· with 

corresponding probabilities {wik}~,t·, and then drawing a sample from /Ix(z). For this reason, a 

conventional choice for an ISD using the ntm design points is a weighted sum of Gaussian PDFs 

among the design points (Schueller and Stix 1987; Melchers 1989; Au, Papadimitriou, and Beck 

1999), that is, 

m n, 

f(z) = l: L w;kt/>(z- zi~e) (4.22) 
i=l k=l 

The failure probability will then be estimated by 

(4.23) 

where {Z~}~ are i.i.d. samples simulated from f. To investigate the feasibility of using this ISD, 

first note that the denominator in the sum of ( 4.23) should not be evaluated directly, since the 

individual terms 

(4.24) 

are too small to compute within computer precision when ntm is large. To seek a better form for 

computation, note that 

t/>(~~;~~ik) = exp( -~liZ~- zikW + ~~~Z~II2 ) 
=exp(-~!lzikW + {Z~,zik)) 

= exp(- ~.Bik) exp( (Z~, zik)) (4.25) 
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Thus, a better strategy is to compute ( 4.23) via 

(4.26) 

so that the interim computation of small numbers is avoided, since it can be easily argued that 

the magnitude of (Z~,zik) does not grow systematically with ntm. Given the form in (4.26) is 

employed for computation, the ISD in ( 4.22) should be applicable in high dimensions, which will 

be demonstrated in the examples. Nevertheless, evaluation of the sum in (4.26) requires O(n;ml) 

operations of addition and multiplication and ntm numerical evaluations of exponential functions, 

which imposes a computational burden on the importance sampling procedure, since the number of 

time steps ntis often large and the number of outputs m may be large even for medium size systems. 

4.3.1 Proposed ISD 

The drawback of the ISD in (4.22) stems from the fact that the variation of the original PDF 

t/>(z) with respect to z is different from that of the individual PDFs tj>(z - z;k), otherwise the 

variation will be canceled out in the importance sampling quotient t/>0/f(·). This drawback may 

be avoided by choosing the ISD as a weighted sum of PDFs which follow the variation of tj>(z) 

and whose samples can be simulated. At this point, it is noted that the conditional PDF of the 

elementary event Fik, p(z!Fik) = t/>(z)ITF,,(z)/P(Fik), has this desirable property, since ITF,,(z) is 

constant within Fik· Also, using the representation for the conditional sample in (4.16), the samples 

distributed as p(zjF;k) can be simulated. It is thus proposed to construct the ISD as a weighted 

sum of the conditional PDFs p(z!Fik) = t/>(z)ITF,,(z)f P(Fik), that is, 

(4.27) 

where {wik}~k"' ~ 0 and 2:::,1 2::~:!: 1 Wik = 1 are the chosen weights associated with the elementary 

failure event Fik. The weight Wik controls the relative frequency of samples simulated from p(z IFik), 

and may be chosen to reflect the relative importance of the elementary failure event in contributing 

to PF. In this study, the weights are chosen to be proportional to the probability content of Fik: 

(4.28) 

Substituting ( 4.28) into ( 4.27), the proposed ISD f is then given by 

(4.29) 
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Using I in ( 4.29) as .the importance sampling density, the first excursion probability Pp can be 

expressed as 

(4.30) 

where 

m n, m n, 

Fp = LLPilc = 2LL ~(-f3ilc) (4.31) 
i=l k=l i=l k=l 

and the subscript I on the expectation in (4.30) indicates that the expectation is taken with Z 

distributed according to I instead of c/J. Also, the fact that ][p(Z) = 1 for every sample Z simulated 

according to I has been used in the third equality in ( 4.30). The first excursion probability PF may 

therefore be estimated by simulation as 

(4.32) 

where { Z r }~ are i.i.d. samples simulated according to I. 

4.3.2 Properties of proposed lSD and failure probability estimator 

Support region of ISD 

Except for the term involving the sum of indicator functions, the variation of the ISD l(z) in 

(4.29) follows exactly that of the original density cjJ(z). Since the weight Wik = Pi~;/""£1=1 ""£;:!:1 PiB 

in ( 4.28) associated with the elementary failure region Fik is nonzero if the latter has nonzero 

probability content Pik• the support region of I, that is, the region in the space of z where l(z) > 0, 

is ur,;1 U~!,1 F;~; =F. Thus, all samples simulated according to I will lie in F, while at the same 

time the whole failure region F is covered by the support region of the lSD and hence the samples 

generated from it. The latter implies that the contribution from all parts of the failure region will 

be accounted for in the estimator. Thus, the estimator Pp will be an unbiased estimator of the 

failure probability Pp. This can be seen directly by taking the expectation of Pp defined in (4.32) 

and then using (4.30) to show that Ej[PF] = Pp. 
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Interpretation of importance sampling estimator 

The estimator PF in (4.32) is a product of PF and the average over N samples of the importance 

sampling quotient R, which is given by 

1 
R(Z) = "m "n' (Z) 

L..d=l L....\:=1 ][Fa 
(4.33) 

To compute PF, only the average of R(Z) needs to be computed by simulation. For each sample, 

the evaluation of R(Z) does not involve the evaluation of probability densities, in contrast with the 

case when the ISD in (4.22) is used. Note that the denominator of R, 2::::,1 2:::~~ 1 lf.F;~o(Z), is just the 

number of time steps . with absolute response lying above the threshold level, and can be obtained 

easily from the simulated response by a simple counting procedure. 

Bounds for importance sampling estimator 

(4.34) 

This result imposes bounds on the random quantity PF, which depends on the simulated samples 

{Zr }~,and is a stronger result than bounds on the expectation of PF, that is, PF/ntm ~ PF ~ PF. 
The bounded property of the estimator PF is a desirable one, since it implies that PF will not jump 

to a significantly large value during simulation. This property is not shared by importance sampling 

estimators using a conventional choice of ISD, since it is often not possible to put explicit bounds 

on the importance sampling quotient R. 

Optimality of ISD for mutually exclusive elementary failure events 

When {Fi.~:}~t' are mutually exclusive, liF;~o(Z) = 1 for one and only one (i, k), and liF;.(Z) = 0 

for j # i or s # k. This is true for every sample Z, and so 1/ 2:;~1 EZ~1 liF;~o(Z) = 1. This means 

(4.35) 

and hence the ISD f is equal to the optimal ISD that leads to zero variance in the failure probability 

estimator when the elementary failure events are mutually exclusive. It can be expected that when 

the failure events {Fi.~:}~t· are close to being mutually exclusive, the importance sampling quotient 
' 

R will be close to unity, which leads to smaller variation in PF and hence faster convergence to PF. 
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Failure probability and sojourne time 

The use of the proposal PDF leads to an interesting relationship between the first excursion 

problem to the 'sojourne time', commonly defined as the duration over which the response spends 

above threshold level. From (4.30), 

where n = :2:::1 :2:~!:: 1 llF;.~.(Z)6.t is a discrete approximation to the sum of the sojourne times of 

all the output responses above the threshold. On the other hand, 

m ~ m ru m ~ 

E.p[Tb] = E.p[LLllF;,(Z)6.t] = 2:2:E.p[liF;Io(Z)]6.t= LLPik6.t (4.37) 
i=l k=l i=l k=l i=l k=l 

and so 

(4.38) 

which relates the failure probability Pp to the statistics of the sojourne time. 

The c.o. v. of importance sampling estimator and sojourne time 

The coefficient of variation (c.o.v.) 8 of the failure probability estimator PF, defined as the ratio 

of the standard deviation to the mean of PF, is given by 

(4.39) 

where 6. is the unit c.o.v. of the importance sampling quotient: 

A 1 v [t/>(Z)llp(Z)] 
u = Pp ar f(Z) (4.40) 

Using (2.18), 

( 4.41) 
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which relates the unit c.o.v. of the importance sampling estimator to the statistics of the sojourne 

time Tb. Note that n is zero when failure does not occur, and so by the Theorem of Total Probability, 

Thus, (4.41) becomes, 

Eq,[Tb] = Eq,IF[n]PF + Ect>IF[Tb](1- PF) 

= E<PIF[Tb]PF 

which shows some similarity with (4.38). 

( 4.42) 

( 4.43) 

4.4 Summary of proposed importance sampling procedure 

1. Perform dynamic analysis to obtain impulse response functions {9iJ ( k, 8)} ':J.'k~; ,n, which define 

the input-output relationship of the system. For time-invariant systems, 9iJ ( k, 8) = 9iJ ( k-8+ 1) 

and only l (the number of inputs) dynamic analyses are required. 

2. Compute the output response standard deviations {ai~c}':,t' by (4.9), the elementary reliability 

indexes {.Bi~c}':,t' by (4.13), the elementary failure probabilities {Pi~c}':t' by (4.21), the upper 

bound Fp for failure probability by (4.31), and the weights {wi~c}':t' by (4.28). 

3. Compute the failure probability estimate PF by ( 4.32), where { Zr : r = 1, ... , N} are i.i.d. 

samples generated from the proposed ISD given by ( 4.29). 

To simulate a sample Z r (r = 1, ... , N) according to the proposed ISD given by ( 4.29): 

(a) Draw a random ordered pair (I, K) ofindexes from the set {(i, k)}':t' with corresponding 

probabilities {Wile} r;:t•. 
(b) Simulate Z as an-dimensional standard Gaussian vector with independent components, 

and U1 and U2 as uniform variables on (0, 1]. Compute 

(4.44) 

and set 

(4.45) 

where ujK = zjK/f3IK and zjK is defined by (4.8). 
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It is worth noting that once the unit impulse response functions are computed in Step 1, the 

response of the structure can be computed by convoluting them with the excitation to evaluate each 

liF;~o(Zr) (r = 1, ... ,N). This can be done efficiently using the FFT algorithm and its inverse. This 

approach may save computational effort, since the setup of structural matrices in the finite element 

model, for example, can be avoided in the repeated computations of structural response for different 

excitations during simulation. 

4.5 Generalization to non-causal systems 

The foregoing discussions have focused on causal linear systems, for the sake of illustrating the 

dynamics behind the design points and their relationship with the unit impulse response functions 

of the system. Although non-causal systems are generally not physically realizable, there are cases 

where they have been used in stochastic modeling. One common example is the generation of 

stochastic ground motions compatible with a target response spectrum by modifying the spectrum 

of a modulated white noise sequence (Clough and Penzien 1975). In particular, the stochastic ground 

motion model considered in Chapter 6 is also non-causal. This motivates the generalization of the 

proposed method to the case of non-causal systems, which is quite straightforward. In this case, 

the upper limit in the Duhamel's integral representation of the input-output relationship in (4.1) 

theoretically tends to infinity: 

l 100 Yi(t) = 2:: hij(t,r)Wj(r)dr 
j=l 0 

(4.46) 

since now the excitation applied in the future also contributes to the current response. Note that the 

lower limit in the integral remains as zero, since it is assumed that the excitation starts from time 

zero. For computational purposes, it is useful to note that the upper limit can often be replaced by 

some duration T: 

(4.47) 

where T is the time when the contribution from future excitation is sufficiently small to be neglected. 

For example, if the white noise excitation is modulated by an envelope function e(t), then h(t, r) = 
hs(t,r)e(t) where hs is the unit impulse response function of the structure; in this case, T can be 

taken as the time after which the envelope function e(t) decays to a sufficiently small value (or zero). 
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The counterpart of (4.4) for non-causal systems is given by the discrete analogue of (4.47): 

I n, 

Yi(k) = L L9ij(k, 8)Zj(8)J2rrSp~.t ( 4.48) 
j=ls=l 

where nt = T / !:::.t + 1. The only difference between ( 4.48) and ( 4.4) is that the sum in the former 

goes from 1 to the final time instant nt instead offrom 1 to the current time instant k. The resulting 

response variance has a similar modification: 

I n, 

aik = Var[Yi(k)] = 2)2:9ij(k,8)2 ]2rrSit::.t ( 4.49) 
i=l s=l 

The expression for the design point zik corresponding to the failure at time tk of the i-th output 

response is similar to (4.8) for causal systems, except that it does not involve the Unit step function 

and hence may assume non-zero value for 8 > t: 

* ( ) ...; S 9ii(k,8) ( ) zik.i 8 =2rr it::.t 2 b; k 
(J'ik 

(4.50) 

In brief, the results for causal systems apply as well for non-causal systems, with a change in 

the upper limit of summation in the corresponding results. The proposed importance sampling 

procedure presented in the last section can thus be applied to non-causal systems, provided that 

(4.9) and (4.8) are replaced by (4.49) and (4.50), respectively. 

4.6 Illustrative examples 

4.6.1 Example 1: SDOF oscillator 

Consider a single-degree-of-freedom (SDOF) oscillator with natural frequency w = 2rr rad/s (i.e., 

1Hz) and damping ratio ( = 2% subjected to white noise excitation: 

Y(t) + 2(wY(t) + w2Y(t) = W(t) (4.51) 

where W(t) is a Gaussian white noise process with spectral intensity S = 1. The sampling interval 

is assumed to be !:::.t = 0.05 s and the duration of study is T = 15 s. The total number of time 

points, and hence the number of input random variables is thus nt = T J !:::.t + 1 = 15/0.05 + 1 = 301. 

Failure is defined as the absolute displacement response exceeding a threshold level b, that is, F = 
U~!:diY(t~c)l > b} where tk = (k -1)t::.t, k = 1, ... ,nt. The impulse response function h(t) of the 
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e-<wt 
h(t) = -- sinwd t 

Wd 
(4.52) 

where Wd = wv'1=(2 is the damped natural frequency. Figure 4.3 shows the variation of h(t) 

within the duration of study. The variance of Y(t) is given by integrating the square of h(r) up to 

timet: 

(4.53) 

The standard deviation a(t) is shown in Figure 4.4. Note that a(t) is increasing with t and its wavy 

character is due to the oscillatory behavior of the impulse response function h(t). 

0.2 

0.1 

........ 0 ..... ......... 

..c:: 
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-0.2Q 
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Figure 4.3: Impulse response function h(t) 

0.6,---.----=========1 

5 10 
t(s) 

15 

Figure 4.4: Standard deviation of response, a(t) 

The first excursion probability PF for a given threshold level b is computed by importance 

sampling using the following three choices of ISD: (1) ISD centered at the global design point with 

unit covariance matrix; (2) ISD centered among all the nt design points with unit covariance matrix, 

as given in (4.22); (3) the proposed ISD in (4.29). The weights used in (4.22) for Choice (2) are 

given by ( 4.28). Figure 4.5 shows the variation of the weights with time t for b = 3, 4, 5 x a(T), 

where a(T) is the standard deviation of the response at time T = 15 s, being the largest within 
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Figure 4.5: Weight w(t) 

the duration of study. Note that, although Figures 4.3-4.5 plot the quantities h(t), a(t) and w(t) 

as a continuous function of time t, only the values at the discrete time instants tk = (k- 1)~t, 

k = 1, ... , nt, are evaluated and used in the actual computations. 

The failure probability estimates for the three threshold levels are shown in Figure 4.6 for different 

sample sizes N. The results computed with lSD using Choices (1), (2) and (3) are shown with dotted, 

dashed and solid lines, respectively. For comparison, the results computed by standard Monte Carlo 

simulation (MCS) with 106 samples are shown as asterisks in the figure. 
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Figure 4.6: Failure probability estimates for different threshold levels band number of samples N. 
Choice (1): dotted lines; Choice (2): dashed lines; Choice (3): solid lines; MCS with 106 ,samples: 
asterisks 

From Figure 4.6, it can be seen that results computed by Choice (1) are practically biased within 

the number of samples considered, showing that it is not suitable for computing the first excursion 

probability. In particular, the failure probability estimates corresponding to Choice (1) are smaller 

than the exact failure probabilities by orders of magnitude. Note that this is not due to most of 

the samples generated by the lSD of Choice (1) lying in the safe region. In fact, the percentages 

of the 500 samples generated by the lSD of Choice (1) that lie in the failure region are 63%,57% 

and 53%, showing that more than half of the samples lie in the failure region. Rather, the practical 
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Table 4.1: The unit c.o.v. A of importance sampling quotients for failure probability 

bja(T) PF 

3 6.01 x 10-2 

4 1.79 x w-3 

5 1.97 x w-5 

Choice (1) 

28.9 
63.1 
69.3 

.6. 
Choice (2) 

1.80 
3.19 
4.36 

Choice (3) 
(Proposed) 

1.24 
0.93 
0.80 

MCS 

3.95 
23.6 
226 

bias observed in Choice (1) is due to the fact that the importance sampling quotient in Choice (1) 

takes on values which are orders of magnitude smaller than the probability of failure for most of 

the generated samples. The sudden 'jumps' in the simulation history offailure probability estimates 

of Choice (1) correspond to those rare occasions where the importance sampling quotient is much 

larger than the rest of the samples. At this point, it is worth noting that Corollary 2.3 in Chapter 2 

deduces that Choice (1) is applicable in high dimensions. The large variability in the unit c.o.v. 

for Choice (1) arises from the small failure probability levels considered, but not from the large 

dimension nt. This provides an example demonstrating that applicability in high dimensions does 

not imply the importance sampling estimate is practically unbiased, which has been noted in the 

definition of applicability in Section 2.4.1. 

The results computed using Choices (2) and (3) have similar variability, although the latter has 

even smaller variability. The results for both Choices (2) and (3) converge to the target failure 

probability when N increases. To assess quantitatively the variability of the estimates and hence 

the efficiency of the importance sampling procedure using the different choices, the unit c.o.v. of 

the importance sampling estimators defined by (4.40) for the three choices are estimated from the 

500 simulated samples. Note that the c.o.v. J of the failure probability estimate using N samples 

is given by (4.39). For Choice (1), the values of A are estimated using 100,000 samples, since the 

estimates for failure probability and hence c.o.v. using 500 samples are biased. The results are 

shown in Table 4.1. Using the c.o.v. for the importance sampling quotient, the number of samples 

required to achieve a c.o.v. of a in the failure probability estimate, given by Nc = A2 /o2
, is also 

computed. For the results shown in Table 4.2, J = 30% has been used, which represents a moderate 

level of accuracy in the failure probability estimate. 

Table 4.1 shows that the unit c.o.v.s A for Choice (1) are much larger than those of Choices (2) 

and (3). Also, for higher values of Pp, even standard MCS is more efficient than using Choice (1). 

The corresponding number of samples N 0 in Table 4.2 for Choice (1) are larger by orders of magnitude 

than those for Choices (2) and (3). The unit c.o.v.s for Choice (3) are smaller than those for 

Choice (2). As the failure probability decreases, the unit c.o.v. for Choice (2) increases steadily, 

while the unit c.o.v. for Choice (3) decreases. The number of samples for Choice (3) required to 
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Table 4.2: Number of samples N0 to achieve a c.o.v. of 15 = 30% in PF 

bfa(T) PF No (8 = 30%) 
Choice (1) Choice (2) Choice (3) MCS 

(Proposed) 
3 6.01 X 10 2 9302 37 18 174 
4 1.79 X 10-3 44,233 114 10 6206 
5 1.97 X 10-5 53,400 212 8 565,558 

achieve a c.o.v. of 8 = 30% is remarkably small ( < 20) compared with those commonly reported 

in the importance sampling literature, implying that the proposed ISD leads to a very efficient 

importance sampling strategy. This superior efficiency is made possible through the use of analytical 

results on the first excursion problem specifically for linear systems. 

4.6.2 Example 2: Seismic response of moment-resisting steel frame 

Consider a six-story moment-resisting steel frame as shown in Figure 4. 7 with member sections 

given in Table 4.3. For each floor, the same section is used for all girders. The structure is modeled 

as a two-dimensional linear frame with beam elements connecting the joints of the frame. Masses 

are lumped at the nodes of the frame, which include the contributions from the dead load of the 

floors and the frame members. They are tabulated in Table 4.4. The natural frequencies of the first 

two modes are computed to be 0.552 Hz and 1.56 Hz, respectively. Rayleigh damping is assumed so 

that the first two modes have 5% of critical damping. 
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Figure 4. 7: Moment-resisting frame structure 

The structure is subjected to a stochastic ground acceleration a(t) modeled by filtered white 
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noise with a Clough-Penzien spectrum and modulated by an envelope function e(t): 

ii(t) + 2(s2Ws2a(t) + w;2a(t) = 2(siWsial(t) + w;1 a1 (t) 

ii1(t) + 2(8 IWs!ai(t) +w;1a1(t) = e(t)W(t) 

(4.54) 

(4.55) 

where W 8 1 = 15.7 radfs (2.5 Hz) and w82 = 1.57 rad/s (0.25 Hz) are the dominant and lower-cutoff 

frequency of the spectrum; ( 81 = 0.6 and ( 82 = 0.8 are the damping parameters associated with the 

dominant and lower-cutoff frequency, respectively. The envelope function e(t) is assumed to vary 

quadratically as (t/4)2 for the first 4 seconds, then settle at unity for 10 seconds, and finally decay 

as exp[-(t -14)2 /2] starting from t = 14 s. In ( 4.55), W(t) is the Gaussian white noise with spectral 

intensity S = 1 x 10-3m2 f s3 • 

Story 
1,2 
3,4 
5,6 

Table 4.3: Sections (AISC) for frame members 

Exterior Column 
Cl: W14 X 159 
C2: W14 X 132 
C3: Wl4 X 99 

Interior Column 
C4: W27 X 161 
C5: W27 X 114 
C6: W24 X 84 

Table 4.4: Point masses 

Girder 
G1: W24 X 94 
G2: W24 X 76 
G3: W24 X 55 

Floor Exterior Column 
(xl03 kg) 

Interior Column 
(x103 kg) 

2 
3 
4 
5 
6 

Roof 

60.4 
53.3 
51.9 
51.7 
50.1 
44.6 

81.0 
78.1 
76.0 
75.8 
73.5 
63.1 

The input-output relationship between the input W(t) and the output }i(t) is 

Yi(t) =lot hi(t- r)e(r)W(r)dr (4.56) 

where hi(r) is the impulse response of the augmented system which include the dynamics of the 

frame structure and the soil layers represented by the Clough-Penzien spectrum. The variance of 

Yi(t) is given by 

(4.57) 
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Table 4.5: The unit c.o.v . .6. of proposed importance sampling quotient for failure probability for 
peak interstory drift ratio 

b (%) 
0.5 
0.75 

1 

Pp (N = 200) 
6.41 X 10 2 

2.79 X 10-4 

1.23 X IQ-7 

.6. No (6 = 30%) 
1.34 20 
1.15 15 
1.09 13 

Note that both the response Yi(t) and its variance o}(t) can be obtained by convolution. A duration 

ofT = 30 s and a time interval of .6.t = 0.02 s are used in computing the response of the structure, 

leading to nt = T f .6.t + 1 = 30/0.02 + 1 = 1501 input random variables in the discrete approximation 

for W(t). 

Peak Interstory drift ratio 

Consider the failure probability that the peak interstory drift ratio over all stories of the structure 

exceeds a threshold level b. The outputs {Yi : i = 1, ... , m} consist of the interstory drift ratio of 

all columns connecting two consecutive floors. There are thus m = 24 outputs, which can be 

expressed as a linear transformation of the state variables of the structure. The impulse response 

for the interstory drift ratios of the exterior columns at every floor are shown in the first column of 

Figure 4.8. These are obtained from one dynamic analysis of the structure. Although not shown in 

the figure, it is noted that the impulse response for the interior columns are close to those for the 

corresponding exterior columns. 

Figure 4.8: Impulse response hi(t), standard deviation ai(t) and elementary failure probability Pi(t) 
for interstory drift ratios 

The standard deviations ai(t) (i = 1, ... , 6) computed based on (4.57) by numerical convolution 
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Figure 4.9: Failure probability estimates for peak interstory drift ratio for different threshold levels 
b and number of samples N. MCS estimates with 10,000 samples are shown with circles. 

Table 4.6: Failure probability estimates for peak interstory drift ratio with N = 20 samples 

b (%) Pp (N = 200) Run Pp (N = 20) 
0.5 6.41 X 10 2 1 4.54 X 10 2 

2 4.29 x w-2 

3 7.28 x w-2 

0.75 2.79 X 10 4 1 1.77 X 10 4 

2 3.14 x w-4 

3 2.55 X 10-4 

1 1.23 X 10 7 1 1.21 X 10 7 

2 1.43 x w-7 

3 1.22 x w-7 

are shown in the second column in Figure 4.8. The elementary failure probability for the i-th 

interstory drift ratio, Pi(t) = P(IYi(t)l > b) = 2~( -bfai(t)), are also computed with b = 1% 

and shown in the third column in Figure 4.8. Although the quantities in Figure 4.8 are shown 

as a continuous function oft, only the values at the discrete time instants tk = (k- 1)At, k = 
1, ... , nt, are evaluated in the actual computations. It is seen in Figure 4.8 that the variation of the 

response standard deviation ai(t) with t follows approximately that of the envelope function e(t). 

In particular, the maximum standard deviation for each response over the duration of study occurs 

at t = 14 s, which coincides with the time when the envelope function starts to decay. The variation 

of the elementary failure probabilities with time is sharper than that of the corresponding response 

standard deviations. According to (4.37), the area under the curve of each Pi(t) gives the expected 

time that the absolute response for the i-th story spends above the threshold level. The ratio of 

the area under the elementary failure probability Pi(t) between different stories i gives an idea of 

the relative importance of the responses in contributing to the first excursion failure. Thus, from 

Figure 4.8, it can be expected that the second to fifth story should give the main contribution to 
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the failure probability. 

The failure probability estimates PF for the threshold levels b = 0.5%,0.75% and 1% are shown 

in Figure 4.9 for different number of samples N. The estimates by standard Monte Carlo simulation 

with 10,000 samples are also computed and shown with circles in the figure. Note that the Monte 

Carlo estimate for b = 1% is not shown in the figure, since the sample size is not large enough to 

provide a sufficiently accurate estimate for the failure probability corresponding to this threshold 

level. From Figure 4.9, it can be seen that the failure probability estimates computed using the 

proposed lSD converge quickly to the target probability of failure. 

To investigate quantitatively the variability of the failure probability estimates, the unit c.o.v. 

6. of the importance sampling quotient is computed using 200 samples and shown in Table 4.5. The 

number of samples required to achieve a c.o.v. of o = 30% in the failure probability estimate are 

shown in the last column of the table. In general, the unit c.o.v. 6. for the importance sampling 

quotient is quite small, and consequently only a small number of samples N0 is required to achieve 

a c.o.v. of o = 30% in the failure probability estimates. The values of N0 show that a sufficiently 

good failure probability estimate can be obtained with a small sample size of, say, N = 20. To 

demonstrate this, independent simulation runs are carried out with N = 20 samples to compute 

the failure probability estimates. The results are shown in Table 4.6, which demonstrate that the 

variability of the failure probability estimates among independent runs is indeed small. 

Peak floor acceleration 

Finally, consider the failure probability that the (absolute horizontal) peak floor acceleration 

over all stories of the structure exceeds (in magnitude) a threshold level b (in %g). As the horizontal 

displacement along the beam elements for the girders are linearly interpolated, this probability is 

equal to the failure probability that the horizontal absolute acceleration at any one of the nodes of the 

frame exceeds the threshold level b. There are thus m = 24 outputs, corresponding to the absolute 

horizontal acceleration at the 24 nodes of the frame. The results are shown in Figures 4.10 and 4.11 

and Tables 4.7 and 4.8, in analogy with the results for the peak interstory drift in Figures 4.8 and 4.9 

and Tables 4.5 and 4.6, respectively. Similar to the case of peak interstory drifts, these results show 

that fast convergence is achieved in the failure probability estimates. In particular, Table 4. 7 shows 

that less than 20 samples are needed to achieve a c.o.v. of o = 30% in all the failure probability 

estimates, which is verified in Table 4.8. 

4. 7 Efficiency of proposed importance sampling method 

The results from the two examples in the last section suggest that the proposed importance 

sampling method tends to be more efficient when applied to estimating small failure probabilities. 

A conjecture that explains this observation is the following: as the failure probability becomes 
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Figure 4.10: Impulse response hi(t), standard deviation O'i(t) and elementary failure probability 
Pi(t) for floor accelerations 

Table 4.7: The c.o.v. ~ of proposed importance sampling quotient for failure probability for peak 
floor acceleration 

b (g) 
0.2 
0.3 
0.4 

3.87 X 10 2 

2.24 x lo-s 
6.36 x w-10 

~ No (o = 30%) 
1.05 12 
0.70 5 
0.83 8 

smaller, the elementary failure events become more close to being mutually exclusive, and hence 

the proposed ISD is more close to being optimal, since it has been shown in Section 4.3.2 that the 

proposed lSD is the optimal choice (that leads to zero variance in the estimate) when the elementary 

failure events are mutually exclusive. In the spirit of this argument, it may also be conjectured that 

the proposed importance sampling method is more efficient as the damping of the system increases, 

because damping tends to reduce correlation among excursions. Further investigation of the SDOF 

system in Example 1 has been carried out to substantiate these claims. In particular, for several 

scenarios with different probability levels and damping ratios, the unit c.o.v. ~ of the importance 

sampling quotient 1/ 2::~~1 1£p,.(Z) is estimated using 500 samples, from which the number of samples 

N0 required to achieve a c.o.v. d of 30% can be calculated as N0 = ~2/82 • While other parameters 

remain the same as in Example 1, the scenarios correspond to threshold levels of b = 3, 4, 5, 6 x u(T), 

and damping ratios of ( = 1%, 5%, 10% and 30%. 

Tables 4.9, 4.10 and 4.11 show the probability levels, unit c.o.v. ~ and number of samples N0 , 

respectively for different scenarios. Table 4.11 indicates that the number of samples to achieve a 

given c.o.v. of 8 = 30% in the importance sampling estimate decreases with decreasing probability 
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b = 0.2 g 

b.:= 0.3 g 

b = 0.4 g 
0 

0 50 100 150 200 
Number of samples N 

Figure 4.11: Failure probability estimates for peak floor acceleration for different threshold levels b 
and number of samples N. MCS estimates with 10, 000 samples are shown with circles. 

Table 4.8: Failure probability estimates for peak floor acceleration with N = 20 samples 

b (g) Pp (N = 200) Run Pp (N = 20) 
0.2 3.87 X 10 2 1 2.31 X 10 2 

2 4.34 x 10-2 

3 3.10 x 10-2 

0.3 2.24 X 10 5 1 2.43 X 10 5 

2 2.76 x lo-s 
3 3.04 X 10-5 

0.4 6.36 X 10 10 1 6.34 X 10 IO 

2 s.22 x 10-10 

3 5.48 x 10-10 

level or increasing damping ratios, which shows that the conjectures are quite plausible. 

4.8 Summary of this chapter 

The complexity of the first excursion problem stems from the structure of the union of the 

elementary failure regions in the high-dimensional excitation space, although these regions are simple 

to describe. One important consequence of such structure is that, in addition to the global design 

point, a large number of neighboring design points are important in accounting for the failure 

probability, and hence have to be considered in constructing an ISD (importance sampling density). 

A new ISD is proposed which takes into account the contributions of all the elementary failure 

regions. It is built upon the following three important observations: 

1. Appreciation of the fact that, for time linear invariant systems, the design points correspond­

ing to failure at different time steps can be obtained simply from the unit impulse response 

function. 
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Table 4.9: Probability levels for different scenarios 

b/a(T) ( (%) 
1 5 10 30 

3 3 X 10 2 1.37 X 10 I 2.03 X 10 2.71 X 10 
4 1.01 x w-3 4.81 x w-3 7.55 x w-3 9.25 X 10-3 

5 9.51 x w-6 5.83 x w-s 8.53 x Io-5 1.00 x w-4 

6 3.21 X 10-8 2.39 x w-7 3.32 x w-7 3.89 x w-7 

Table 4.10: The unit c.o.v . .6. of importance sampling quotient in Example 1 

b/a(T) ( (%) 
1 5 10 30 

3 1.32 1.04 0.85 0.69 
4 1.09 0.80 0.61 0.53 
5 0.90 0.60 0.48 0.47 
6 0.75 0.48 0.41 0.40 

Table 4.11: Number of samples N.s required to achieve a c.o.v. of o = 30% in the failure probability 
estimate in Example 1 

bja(T) ( (%) 
1 5 10 30 

3 20 13 9 6 
4 14 8 5 4 
5 10 5 3 3 
6 7 3 2 2 
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2. Appreciation of the fact that, instead of only the global design point, a large number of design 

points are important in contributing to the failure probability. 

3. The novel concept of constructing the ISD as a weighted sum of conditional PDFs rather than 

just Gaussian PDFs centered at the design points (as is commonly done) so that the original 

PDF is cancelled out in the importance sampling quotient. This makes the method extremely 

efficient, regardless of the size of the problem in terms of the number of time steps, the number 

of inputs and the number of outputs. 

Whereas conventional choices for constructing the ISD using the design points are found to be 

inefficient, numerical examples show that the proposed ISD leads to very fast convergence in the 

first excursion failure probability estimates. Examples have shown that no more than 20 samples 

are required to achieve a c.o.v. of 30% in the failure probability estimates over a range of several 

orders of magnitude in the failure probabilities. This remarkable efficiency is achieved because vital 

information on the first excursion problem that is gained from an analytical study of the failure 

region for linear systems is utilized in constructing the proposed importance sampling density. 
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Chapter 5 General Systems and Subset 

Simulation Method 

Analytical investigation of the dynamic aspects of the first excursion problem plays an important 

role in Chapter 4, where the focus was on linear systems. A similar exercise may not be feasible for 

general nonlinear systems, whose dynamic behavior is far more complex than linear systems. For 

example, analytical solution for the design point excitation, that is, the most probable excitation 

that leads to failure of a given output response at a given time, is not available for general nonlinear 

systems. On the other hand, the search for design point excitations by numerical optimization 

may not be feasible due to the high dimensionality of the problem. Also, there is a large number 

of design points to be searched for, which could mean that the computational effort invested in 

searching for the design points already exceeds the effort required in other techniques, e.g., standard 

Monte Carlo simulation. The presence of uncertainties in the structural model parameters as well as 

in the stochastic excitation model parameters worsen the situation. These considerations discourage 

the use of importance sampling for solving the first excursion problem in general. 

This chapter presents a method for solving the first excursion problem for general systems with 

special regard to computing small failure probabilities and to applicability in high dimensions. The 

method is based on the observation that a small failure probability can be expressed as a product 

of larger conditional failure probabilities, which indicates the possibility of turning a rare failure 

event simulation problem (as in standard Monte Carlo) into several problems which only involve the 

conditional simulation of more frequent events. This idea is implemented using the Markov chain 

Monte Carlo simulation method discussed in Chapter 3 to efficiently generate samples conditional 

on failure events, which is otherwise a non-trivial task. 

As we will see, subset simulation method is developed with no special regard to any characteristics 

of the system, which means that it is applicable to general reliability problems. It provides an efficient 

tool for solving general first excursion problems where the stochastic model parameters are possibly 

uncertain, in addition to uncertain additive excitation. Such an application will be discussed in 

Chapter 6. 

5.1 Basic idea of subset simulation 

Given a failure event F, let F1 ~ F2 ~ · · · ~ Fm = F be a decreasing sequence of failure events 

so that F~; = nf=1 Fi, k = 1, ... , m. For example, if failure of a system is defined as the exceedence 
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of an uncertain demand D over a given capacity C, that is, F = {D > C}, then a sequence of 

decreasing failure events can simply be defined as Fi = {D > Ci}, where C1 < C2 < · · · < Cm =C. 

By definition of conditional probability, we have 

Pp = P(Fm) = P(n~1 Fi) 

= P(Fml nZ!:11 Fi)P(nZ!:11 Fi) 

= P(FmiFm-x)P(nZ!:11 Fi) = ... 
m-1 

= P(FI) II P(Fi+IIFi) 
i=l 

(5.1) 

Equation (5.1) expresses the failure probability as a product of a sequence of conditional probabilities 

{P(Fi+IIFi) : i = 1, ... , m -1} and P(FI)· The idea of subset simulation is to estimate the failure 

probability Pp by estimating these quantities. When the probability of failure is estimated by means 

of simulation, the difficulty often increases with decreasing failure probability. Basically, the smaller 

the Pp, the more rare the failure event is, and the more the number of samples required to realize 

failure events for estimating Pp. Observe that, although PF is small, by choosing the intermediate 

failure events {Fi : i = 1, ... ,m- 1} appropriately, the conditional probabilities involved in (5.1) 

can be made sufficiently large so that they can be evaluated efficiently by simulation procedures. 

For example, suppose P(F1 ), P(FiHIFi) '"""' 0.1, i = 1, 2, 3, then Pp "' 10-4 which is too small 

for efficient estimation by MCS. However, the conditional probabilities, which are of the order of 

0.1, may be evaluated efficiently by simulation because the failure events are more frequent. The 

problem of simulating rare events in the original probability space is thus replaced by a sequence of 

simulations of more frequent events in the conditional probability spaces. 

To compute Pp based on (5.1), one needs to compute the probabilities P(FI), {P(Fi+tiFi): i = 
1, ... , m - 1 }. P(Ft) can be readily estimated by MCS. It is natural to compute the conditional 

failure probabilities based on an estimator similar to (5.2), which necessitates the simulation of 

samples according to the conditional distribution of 8 given that it lies in Fi, that is, q(OIFi) = 
q(9)ITF;(9)/P(Fi)· Although one can follow a 'direct' MCS approach and obtain such samples as 

those simulated from q which lie in the failure region Fi, it is not efficient to do so since on average 

it takes 1/ P(Fi) samples before one such sample occurs. In general, the task of efficiently simulating 

conditional samples is not trivial. Nevertheless, it is noted that the use of the MCMC algorithm fits 

nicely into the problem of computing conditional failure probabilities by using Markov chain samples 

with limiting stationary distribution equal to q(·IFi) (i = 1, ... , m- 1). The whole procedure is 

summarized in the next section. 
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5.2 Subset simulation procedure 

Utilizing the modified Metropolis-Hastings method developed in Chapter 3, subset simulation 

proceeds as follows. First, we aimulate samples { 01, ... , 0 N} by direct MCS to compute an estimate 

P1 for P(Fl) by 

(5.2) 

where { ek : k = 1, ... , N} are independent and identically distributed (i.i.d.) samples simulated 

according to PDF q. From these MCS samples, we can readily obtain some samples distributed 

as q(·IFI), simply as those which lie in F1 . Starting from each of these samples, we can simulate 

Markov chain samples using the modified Metropolis method. These samples will also be distributed 

as q(·IF1 ). They can be used to estimate P(F21Fd using an estimator P2 similar to (5.2). Observe 

that the Markov chain samples which lie in F2 are distributed as q(·IF2 ) and thus they provide 

'seeds' for simulating more samples according to q(·IF2 ) to estimate P(Fa!F2). Repeating this 

process, we can compute the conditional probabilities of the higher conditional levels until the 

failure event of interest, F (= Fm), has been reached. At the i-th conditional level, 1 5 i 5 m -1, 

let {Oii) : k = 1, ... ,N} be the Markov chain samples with distribution q(·!Fi), possibly coming 

from different chains generated by different 'seeds'. Then 

N 

P(Fi+IIFi) ~ Pi+I = ~ 'L:liF,+l<e1i)) 
k=l 

Finally, combining (5.1), (5.2) and (5.3), the failure probability estimator is 

m 

PF =IT Pi 
i=l 

5.3 Choice of intermediate failure events 

(5.3) 

(5.4) 

The choice of the intermediate failure events { Fi : i = 1, ... , m -1} plays a key role in the subset 

simulation procedure. Two issues are basic to the choice of the intermediate failure events. The first 

is the parameterization of the target failure event F which allows the generation of intermediate 

failure events by varying the value of the defined parameter. The second is the choice of the specific 

sequence of values of the defined parameter, which affects the values of the conditional probabilities 

{ P(Fi+dFi) : i = 1, ... , m- 1} and hence the efficiency of the subset simulation procedure. 
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Generic representation of failure event 

Many failure events encountered in engineering applications can be defined using a combination 

of union and intersection of some component failure events. In particular, consider a failure event 

F of the following form: 

L Li 

F = U n {Dj~c(O) > Cj~c(O)} (5.5) 
j=l lc=l 

where Dj~c(O) and CjJc (6) may be viewed as the demand and capacity variables of the (j, k) compo­

nent of the system. The failure event F in (5.5) can be considered as the failure of a system with L 

sub-systems connected in series, where the j-th sub-system consists of Lj components connected in 

parallel. 

In order to apply subset simulation to compute the failure probability PF, it is desirable to 

parameterize F with a single parameter so that the sequence of intermediate failure events { Fi : i = 

1, ... , m - 1} can be generated by varying the parameter. This ca.1. be accomplished as follows. For 

the failure event in (5.5), define the 'critical demand-to-capacity ratio' (CDCR) Y as 

D·~c(O) 
Y ( 0) = . max min -=::-1--:-:::--

J=l, ... ,L Jc=l, ... ,Lj CjJc(O) 
(5.6) 

Then it can be easily verified that 

F = {Y(O) > 1} (5.7) 

and so the sequence of intermediate failure events can be generated as 

Fi = {Y(O) > Yi} (5.8) 

where 0 < y1 < · · · < Ym = 1 is a sequence of (normalized) intermediate threshold values. 

Similarly, consider a failure event F of the form: 

L Li 

F = n U {DJ~c(O) > Cj~c(O)} (5.9) 
j=lk=l 

which can be considered as the failure of a system with L sub-systems connected in parallel with 

the j-th sub-system consisting of Lj components connected in series. One can easily verify that the 

definition 

Y((}) . Dj~c(O) 
= rmn max 

j=l, ... ,L Jc=l, ... ,L; CjJc(O) 
(5.10) 
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satisfies (5.7) and hence the sequence of failure events can again be generated based on (5.8). 

The foregoing discussion can be generalized to failure events consisting of multiple stacks of union 

and intersection. Essentially, Y is defined using 'max' and 'min' in the same order corresponding to 

each occurrence of union (U) and intersection (n) in F, respectively. As another example, consider 

the first excursion failure of the interstory drift in any one story of a n 8 -story building beyond a 

given threshold level b. Let the interstory drift response {X;(t; 0) : j = 1, ... , n8 } be computed at 

the nt time instants t1 , ••. , tn, within the duration of interest. Then 

n. nt 

F = u U{IX;(t,.;O)I > b} = {Y(O) > 1} (5.11) 
j=1 k=l 

where 

Y(O) = . max max IXi(t,.)l 
J=l, ... ,n. A:=l, ... ,n, b 

(5.12) 

Choice of intermediate threshold levels 

The choice of the sequence of intermediate threshold values {y11 ••• ,ym} appearing in the pa­

rameterization of intermediate failure events affects the values of the conditional probabilities and 

hence the efficiency of the subset simulation procedure. H the sequence increases slowly, then the 

conditional probabilities will be large, and so their estimation requires less samples N. A slow se­

quence, however, requires more simulation levels m to reach the target failure event, increasing the 

total number of samples Nr = m N in the whole procedure. Conversely, if the sequence increases 

too rapidly that the conditional failure events become rare, it will require more samples N to obtain 

an accurate estimate of the conditional failure probabilities in each simulation level, which again 

increases the total number of samples. It can thus be seen that the choice of the intermediate 

threshold values is a trade-off between the number of samples required in each simulation level and 

the number of simulation levels required to reach the target failure event. 

The choice of the intermediate threshold values {Yi : i = 1, ... , m - 1} deserves a detailed study 

which is left for future work. One strategy is to choose the Yi a priori, but then it is difficult to control 

values of the conditional probabilities P(FiiFi-1). In this work, the Yi are chosen 'adaptively' so that 

the estimated conditional probabilities are equal to a fixed value Po E (0, 1). This is accomplished by 

choosing the intermediate threshold level 1/i (i = 1, ... , m -1) as the (1-Po)N-th largest value (i.e., 

an order statistic) among the CDC& {Y(Oii-1
)) : k = 1, ... ,N} where the oii-1

) are the Markov 

chain samples generated at the (i - 1)-th conditional level for i = 2, ... , m - 1, and the oio) are 

the samples from the initial Monte Carlo simulation. Here, Po is assumed to be chosen so that PoN 

and hence (1 - Po)N are positive integers, although this is not strictly necessary. This choice of the 

intermediate threshold levels implies that they are dependent on the conditional samples and will 
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vary in different simulation runs. For a target probability level of 10-3 to 10-6 , choosing Po = 0.1 

is found to yield good efficiency. 

Using this adaptive choice of the proposal PDF, the subset simulation procedure is illustrated in 

Figure 5.1 for simulation Levels 0 (Monte Carlo) and 1 (Markov Chain Monte Carlo). 
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(d) Levell: Adaptive selection of second intermediate threshold level 

Figure 5.1: illustration of subset simulation procedure 
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5.4 Choice of proposal PDF 

The choice of the proposal PDF plays an important role in an MCMC procedure. It affects 

the distribution and the acceptance rate of the candidate state. These in turn affect the correlation 

among the Markov chain samples and consequently the efficiency of the subset simulation procedure. 

The choice of the proposal PDF is the major channel through which prior knowledge about a 

particular problem can be used to improve the efficiency of MCMC. A careful choice of the proposal 

PDF is thus worth examining. This section will discuss this choice with regard to solving the first 

excursion problem. In particular, we consider the choice of the proposal PDF pj for each group j 

(j = 1, ... ,no) to be used at the i-th simulation level (i = 1, ... ,m -1). 

Ideally, the proposal PDF should be chosen as a non-adaptive one equal to the conditional PDF 

q(81Fi) (with all uncertain parameters collected in one group), in which case all states generated by 

the proposal PDF will be i.i.d. and accepted. Of course, this choice is not feasible, for the same 

reason as in importance sampling. The art of choosing the proposal PDF thus lies in how it can be 

chosen so that the candidate state has a distribution close to the conditional PDF in order that the 

simulation process is still efficient (with small correlation among Markov chain samples). Realizing 

that choosing ann-dimensional proposal PDF (i.e., with only one group of n uncertain parameters) 

will generally lead to zero acceptance rate when n is large, grouping of the uncertain parameters is 

inevitable. 

For the modified MCMC scheme proposed in Chapter 3, the following two issues related to the 

choice of the proposal PDF are important: (1) how to group the uncertain parameters, and (2) what 

proposal PDF should be chosen for each group. To address the first issue, first note that the compo­

nents of the candidate state corresponding to different groups are generated independently in Step 1. 

This is the key mechanism which suppresses zero-acceptance phenomenon in high dimensions, but at 

the expense of implicitly enforcing independence among the uncertain parameters of different groups 

in the generation of the candidate state. If some uncertain parameters belonging to different groups 

are strongly correlated when conditional on the failure region, the distribution of the candidate state 

will not be close to the conditional PDF, at least in terms of the correlation structure among the 

uncertain parameters. Consequently, the acceptance rate with respect to the conditioning by Fi for 

the candidate state will be small. Thus, uncertain parameters that are strongly correlated to each 

other when conditional on Fi should be grouped together. In any case, the number of uncertain 

parameters in a group should be kept small to avoid zero acceptance phenomenon. 

Deciding what type of proposal PDF for a particular group depends on the role that the group 

of uncertain parameters has in affecting failure and on the information available for constructing the 

proposal PDF. Three types of groups are discussed in the following. 
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Insensitive parameters 

If failure is insensitive to a particular group of uncertain parameters, then the proposal PDF 

should be chosen as the original parameter PDF, so that the pre-candidate component e<i) generated 

by the proposal PDF is always accepted into the candidate state in Step 1. 

A small number of influential uncertain parameters 

Consider the case where failure is sensitive to the uncertain parameters of a particular group. If 

there is some information about the failure region Fi so that a PDF can be constructed which is 

similar to the conditional PDF with respect to the uncertain parameters of this group, then such 

PDF may be used as the proposal PDF, assuming that an efficient method is available for evaluating 

its value and for generating random samples according to it. The proposal PDF in this case is non­

adaptive, and its role is the same as the role of an importance sampling density with respect to 

the group of uncertain parameters. Similar methods to those for constructing ISDs can be used for 

constructing the proposal PDF. Regarding the information available for constructing the proposal 

PDF, it should be noted that the Markov chain samples from the last simulation level that lie in the 

failure region Fi are distributed as q(BIFi), and hence provide information about the failure region 

Fi. In fact, these samples are used as the initial samples for starting individual Markov chains for 

the current simulation level. One way of utilizing these samples is to construct the proposal PDF 

as a Normal PDF with mean and covariance matrix estimated from the samples. Another strategy 

is to construct the proposal PDF as a kernel sampling density using the samples (Silverman 1986; 

Ang et al. 1992; Au and Beck 1999). Since the information from the last simulation level is utilized 

to construct the proposal PDF at the current level, this choice is 'level-adaptive,' although it is not 

chain-adaptive. It should be noted, however, that successful use of a level-adaptive proposal PDF is 

based on the premise that the conditional PDF with respect to the group of uncertain parameters 

can be approximated by the chosen type of PDF. Also, they should be used only when the number 

of uncertain parameters in the group is not large, for otherwise zero acceptance phenomenon may 

occur as the number of members ni in the group increases. 

A large number of i.i.d. uncertain parameters 

When there is a large number of uncertain parameters which play a similar role in affecting 

failure, it often happens that these uncertain parameters as a whole affect failure significantly, 

but not individually. One common example is the set of i.i.d standard Normal parameters in the 

discrete-time representation of Gaussian white noise in the first excursion problem. In this case, 

each of these uncertain parameters should be grouped individually, to avoid the zero-acceptance 

phenomenon. For each uncertain parameter, one can choose a one-dimensional adaptive symmetric 

(Metropolis) proposal PDF. The advantage of this choice is that a reasonable acceptance rate of 
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Table 5.1: Different types of proposal PDFs 

Type Description Advantage Disadvantage _Suitable for 

Parameter PDF, 
lOOJ?'o acceptance in !::itep 1; pre- Does not improve acceptance Insensitive param-I candidate component ~Ul does with respect to conditioning by non-adaptive not depend on current sample F; in Step 2 eters 

Uncertam param-
1-D chain- Good acceptance rate of candi- Correlation between current eters which are 

II adaptive symmet- date state without prior infor- sample and candidate state abundant and 
ric (Metropolis) mation on F; may be high influential as a 

group 

n;-D Metropolis-
High acceptance rate possible 
if uncertain parameters are in- A small group of 

III Hastings, chain- fluential, and conditional PDF Only for a small number of un- influential non-adaptive, certain parameters param-

level-adaptive well approximated by proposal eters 
PDF 

the candidate state can often be guaranteed when the spread of the proposal PDF is not too large, 

since then the corresponding components of the candidate state are generated in the neighborhood 

of those of the current sample. The correlation structure among the uncertain parameters with 

respect to the conditioning by Fi will be adapted in Step 2 of the modified Metropolis-Hastings 

algorithm. This choice of the proposal PDF will also cause the components of the candidate state to 

be positively correlated with those of current sample, thereby slowing convergence of the conditional 

failure probability estimate for the level, although this seems to be the best one can do in the absence 

of further prior knowledge about the failure region and to suppress the zero acceptance phenomenon 

in high dimensions. Table 5.1 gives a summary of the different types of proposal PDFs. 

5.4.1 Choice of proposal PDF for first excursion problems 

For applications to solving the first excursion problem, it is useful to group the uncertain param­

eters in the excitation model into two categories: 

1. additive excitation parameters (} z 

2. stochastic excitation model parameters (} E 

The first category includes the additive excitation parameters (} z in the discrete representation 

of the stochastic excitation. The number of uncertain parameters in this category can be very 

large. For example, discretizing Gaussain white-noise excitation in the time-domain of duration 

Td = 30 sec. and sampling time At = 0.02 sec. requires Td/ At + 1 = 1501 i.i.d. standard 

Normal random variables, assuming the time instants at time zero and 30 sec. are also represented. 

These uncertain parameters are often influential as a group, but they are insensitive individually, 

because the dynamic response is affected by the 'integral' (in continuous-time) or 'summation' (in 

discrete-time) effect of these parameters, and the effect of each individual uncertain parameter on 

the response is infinitesimally small (e.g., O(At) in discrete-time). For this category of uncertain 
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Table 5.2: Recommended types of proposal PDFs for different parameters 

Uncertain parameters Type of proposal PDF for 
in the problem Bz ()E 

fJz II 
fJz,fJE I/II III/II 

parameters, it is recommended that they be treated individually using Type I proposal PDF (1-D 

Metropolis). 

The second category includes the stochastic excitation model parameters OE involved in the 

characterization of the stochastic model for the excitation, which often have a multiplicative effect on 

the response. Examples are the spectral intensity of white-noise excitation or the moment magnitude 

and epicentral distance in a stochastic ground motion point-source model. Due to their multiplicative 

effect and their large assumed variability in applications, these uncertain parameters often have a 

dominant effect on the uncertain response, rendering other uncertain parameters, such as those in 

Oz, less sensitive. Since these uncertain parameters control failure, their conditional distribution 

q(O(i)IFi) is often significantly different from their original PDF q(O(j)). Capturing the conditional 

distribution of these uncertain parameters can lead to significant improvement in the efficiency of the 

simulation procedure, and hence a Type III proposal PDF is recommended, with the requirement 

that the number of uncertain parameters in the group should be kept small to suppress the zero 

acceptance phenomenon. Table 5.2 summarizes the types of proposal PDFs recommended for the 

uncertain parameters of different categories. 

5.5 Statistical properties of the estimators 

In this section, we present results on the statistical properties of the estimators Pi and PF. They 

are derived assuming that the Markov chain generated according to the modified Metropolis method 

is (theoretically) ergodic, that is, its stationary distribution is unique and independent of the initial 

state of the chain. A discussion on ergodicity will follow after this section. It is assumed in this section 

that the intermediate failure events are chosen a priori. In the case where the intermediate threshold 

levels are chosen dependent on the conditional samples and hence vary in different simulation runs, 

as is the case in the examples presented in this paper, the derived results should hold approximately, 

provided such variation is not significant. Nevertheless, this approximate analysis is justified since 

the objective is to have an assessment of the quality of the probability estimate based on information 

available in one simulation run. 
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5.5.1 MCS estimator P1 

As well-known, the MCS estimator F1 in (5.2) computed using the i.i.d. samples {Ol, ... ,ON} 

converges almost surely to P1 (Strong Law of Large Numbers), is unbiased, consistent, and Normally 

distributed as N -+ oo (Central Limit Theorem). The coefficient of variation (c.o.v.) of F1 , 81 , 

defined as the ratio of the standard deviation to the mean of P1 , is given by 

(5.13) 

5.5.2 Conditional probability estimator Pi (2 Sis m) 

Since the Markov chains generated at each conditional level are started with samples (selected 

from the previous simulation level) distributed as the corresponding target conditional PDF, the 

Markov chain samples used for computing the conditional probability estimators based on (5.3) are 

identically distributed as the target conditional PDF. Using this result and taking expectation on 

both side of (5.3) shows that the conditional estimators Pi (i = 2, ... , m) are unbiased. On the 

other hand, the Markov chain samples are dependent. In spite of this dependence, all the estimators 

Pi still have the usual convergence properties of estimators using independent samples (Doob 1953). 

For example, Pi converges almost surely to P(FiiFi-I) (Strong Law of Large Numbers), is consistent, 

and Normally distributed as N-+ oo (Central Limit Theorem). 

An expression for the c.o.v. for Pi is next derived. At the (i- 1)-th conditional level, suppose 

that the number of Markov chains {each with a possibly different starting point) is Nc, and N/Nc 

samples have been simulated from each of these chains, so that the total number of Markov chain 

samples is N. Although the samples generated by different chains are in general dependent because 

the 'seeds' for each chain may be dependent, it is assumed for simplicity in analysis that they are 

uncorrelated through the indicator function liF,(·), i.e., E[liF;(O)liF,(O')]- P(FiiFi-l? = 0 if 0 and 

O' are from different chains. Let o)2 be the k-th sample in the j-th Markov chain at simulation level 

i. For simplicity in notation, let 1]~ = liF,(OJ~-l)) and Pi = P(Fil.Fi-d, i = 2, ... , m. Then 

N. N/N. 

E[Pi- Pi]2 = E[~ L L (1]2- PiW 
j=l k=l 

Nc NJN. 

= ~2 LE[L (rj2 -PiW 
j=l k=l 

(5.14) 

For the j-th chain, 

N/Nc NJN. NfN. 

E[ 2: (Ij~ - Pi)]2 = 2: E(I)2 - Pi)(Ij;> -Pi) = L Ri(k -l) (5.15) 
k=l k,l=l k,!=l 
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where 

(5.16) 

is the covariance between 1]:) and IJ:{+k' for any l = 1, ... , N/Nc, and it is independent of l due 

to stationarity. It is also independent of the chain index j since all chains are probabilistically 

equivalent. Evaluating the sum in (5.15) with respect to k -l, 

(5.17) 

Substituting (5.17) into (5.14) yields 

(5.18) 

where 

Pi(k) = [4(k)JR;(O) (5.19) 

is the correlation coefficient at lag k of the stationary sequence {JI)2 : k = 1, ... , N /Nc}· Finally, 

since IJ2 is a Bemouli random variable, 14(0) = Var[Ij2J = Pi(1- Pi}, and so the variance ofF; is 

given by 

(5.20) 

where 

N/N.-1 kN 
'Yi == 2 L (1- Nc)Pi(k) (5.21) 

k=l 

The c.o.v. Oi of Pi is thus given by 

(5.22) 

The covariance sequence {Ri(k): i = 0, ... ,NfNc -1} can be estimated using the Markov chain 
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samples {OJ~-l): j = 1, ... ,Nc; k = 1, ... ,NfNc} at the (i -1)-th conditional level by: 

(5.23) 

from which the correlation sequence {p;(k) : k = 1, ... , N fNc -1} and hence the correlation factor 'Yi 

in (5.21) can also be estimated. Consequently, the c.o.v. c5; for the conditional probability estimator 

P; can be estimated by (5.22), where P; is approximated by P; using (5.3). 

The factor (1- P;)/P;N in (5.22) is the familiar one for the square of the c.o.v. of the MCS 

estimators with N independent samples. The c.o.v. of A can thus be considered as the one in MCS 

with an effective number of independent samples N /(1 + 7;). The efficiency of the estimator using 

dependent samples of a Markov chain ('Yi > 0) is therefore reduced compared to the case when the 

samples are independent ('Y; = 0), and smaller values of 'Yi imply higher efficiency. The value of 'Yi 

depends on the choice of the spread of the proposal PDFs. 

5.5.3 Failure probability estimator Pp 

Since P1 -+ P(Ft) and P; -+ P(F;!F;-1) (2 ~ i ~ m) almost surely as N -+ oo, PF -+ 

P(F1) n:,-;:1 P(Fi+liF;) = PF almost surely also. Due to the correlation between the conditional 

estimators {F;}, PF is biased for every N, but it is asymptotically unbiased. This correlation is due 

to the fact that the samples used for computing A which lie in F; are used to start the Markov chains 

to compute Pi+1 • The results concerning the mean and c.o.v. of the failure probability estimator 

PF are summarized in the following two propositions. 

Proposition 5.1. PF is biased for every N. The fractional bias is bounded above by 

(5.24) 

PF is thus asymptotically unbiased and the bias is 0(1/N). 

Proof. Define Z; = (P; - P;)/u;, then it is clear that E[Z;] = 0 and E[zt] = 1, and P; = P; + u;Z;. 

m 

= Il(1 + t5;Z;) -1 
i=l 

m m 

= L:);Z; + Lt5it5jZiZi + L t5;t5jt5kZiZjZk + ... +II t5;Z; (5.25) 
i=1 i>j i>i>k i=l 
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Taking expectation and using E[Z;] = 0, 

(5.26) 

If {Z; : i = 1, ... ,m} are uncorrelated, E[Z;Zj] , E[Z;ZjZk], ... , are all zero, and hence PF will 

be unbiased. In general, however 1 { Z; : i = 1, ... 1 m} are correlated, so PF is biased for every N. 

On the other hand, since O; is 0(1/.JN) from (5.22) 1 the first term in (5.26) is 0(1/N) while the 

remaining sums of higher products of the o;'s are o(1/N). Taking absolute value on both sides of 

(5.26), using Cauchy-Schwarz inequality to obtain IE[Z;ZiJI $ y'E[ZlJE[ZJ] = 1 and applying it to 

the R.H.S. of (5.26) proves the required proposition. 0 

Proposition 5.2. The c.o.v. o of PF is bounded above by 

(5.27) 

PF is thus a consistent estimator and its c.o.v. o is 0(1/..fN). 

Proof. From (5.25) 1 

Pp - PF 2 ~ " rrm 2 E[ p ) = E[.L..J o;Z; + L.J o;OjZ;Zi + · · · + o;Z;] 
F i=l i>i i=l 

m 

= L o;CjE[Z;Zj] + o(1/N) 
i,j=l 

m 

$ 2:: o;oi + o(l/N) = 0(1/N) (5.28) 
i,j=l 

0 

Note that the c.o.v. c5 in (5.27) is defined through the expected deviation about the target 

failure probability Pp instead of E[PF] so that the effects of bias are accounted for. The upper 

bound corresponds to the case when the conditional probability estimators { P; : i = 2, ... , m} are 

fully correlated. The actual c.o.v. depends on the correlation between the P;s. If all the Pis were 

uncorrelated1 then 

(5.29) 

Although the P;s are generally correlated, simulations show that 02 may be well approximated by 

(5.29). This will be illustrated in the examples. 
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To get an idea of the number of samples required to achieve a given accuracy in PF, consider 

the case where P(F1) = P(Fi+dFi) =Po· Assume c5i = (1 + -y)(1- Po)/PoN to be the same for 

all levels. Using (5.22) and (5.28), and noting that the number of simulation levels to achieve the 

target failure probability ism= logPF/logPo, we conclude that to achieve a given c.o.v. of c5 in 

the estimate PF, the total number of samples required is roughly 

r (1 + -y)(l -Po) 
NT~ mN = llogPFI x I I 82 Po logPo r 

(5.30) 

where r :::; 3 depends on the actual correlation of the As. Thus, for a fixed Po and c5, NT <X I log PFr· 

Compared with MCS, where NT <X 1/ PF, this implies a substantial improvement in efficiency when 

estimating small probabilities. 

5.6 Ergodicity of subset simulation procedure 

The foregoing discussion assumes that the Markov chain generated according to the Metropolis 

method is ergodic, which guarantees that the conditional probability estimate based on the Markov 

chain samples from a single chain will tend to the corresponding theoretical conditional probability 

as N -t oo. Theoretically, ergodicity can be always achieved by choosing a sufficiently large spread 

in the proposal PDFs. Practically, with a finite number of Markov chain samples, ergodicity often 

becomes an issue of whether the Markov chain samples used to estimate the conditional probabilities 

populate sufficiently well the important regions of the failure domain, where the main contributions 

to the failure probability come from. Intuitively, if there are some parts of the failure region of 

significant probability content that are not well visited by the Markov chain samples, the contribution 

of the probability mass from such regions will not be reflected in the estimator, and the conditional 

probability estimate will be significantly biased. 

First of all, the use of a Type I proposal PDF will not cause any ergodicity problem, since then 

the pre-candidate state is generated from the parameter PDF. For a Type III proposal PDF, the 

problem of ergodicity is associated with whether the samples from the last level for constructing the 

level-adaptive proposal PDF have populated sufficiently well the parts in the failure region that give 

significant contribution to the failure probability. It is thus required that the number of samples for 

constructing the level-adaptive proposal PDF be sufficiently large to be representative of the whole 

failure region. 

The case of using a Type I proposal PDF requires some consideration of the transitions between 

Markov chain samples. For a Markov chain started at a single point, ergodicity problems may arise 

due to the existence of disconnected failure regions that are separated by safe regions whose size is 

large compared to the spread of the proposal PDFs. To see this, recall that to go from the current 
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Markov state to the next, a candidate state is generated in the neighborhood of the current state 

according to the proposal PDFs. To transit from one failure region to another, the candidate state 

has to lie in the second failure region, but this is unlikely to happen if the spread of the proposal PDF 

is small compared to the safe region between the two failure regions. (Any candidate state that falls 

in the safe region is rejected by the Metropolis algorithm.) So, the safe region prohibits transition 

of the Markov chain between disconnected failure regions, resulting in ergodicity problems. The 

situation of disconnected failure regions may arise, for example, in failure problems for systems with 

components connected in series. 

By using the samples from multiple Markov chains with different initial states obtained from 

previous conditional levels, as in the present methodology, ergodicity problems due to disconnected 

failure regions may be resolved. To see this, first note that the subset simulation procedure begins 

with MCS, which produces independent samples distributed in the whole parameter space. The MCS 

samples which lie in F1 populate the different regions of F1 according to the relative importance 

(probability content) of the regions. We can expect these samples to populate F1 sufficiently well, 

since otherwise the c.o.v. of F1 will be large and subsequently the c.o.v. of PF will not be acceptable 

as the errors accumulate through subsequent conditional simulation levels. For the next conditional 

level, we simulate multiple Markov chains, starting at the conditional MCS samples distributed 

among different regions in F1. This allows us to have 'seeds' in the different regions of F1, which 

could possibly be disconnected. The Markov chain initiated in each disconnected region will populate 

it at least locally, and so the combined Markov chains correctly account for the contributions from the 

regions to the conditional probability estimate. In this manner, the contribution from disconnected 

failure regions in higher conditional levels can also be accounted for as the Markov chain samples 

in these regions propagate through higher conditional levels. This argument holds, of course, as 

long as unimportant failure regions (i.e., those with negligible contribution) at lower conditional 

levels remain unimportant at higher conditional levels, since otherwise there may not be enough 

seeds (if any) at lower conditional levels to develop more Markov chain samples to account for their 

importance at higher levels. In conclusion, even though a Markov chain started from a single state 

may have ergodicity problems with disconnected failure regions, using Markov chain samples from 

multiple chains, as in the proposed method, can be expected to achieve practical ergodicity in spite 

of the existence of disconnected failure regions. 

The foregoing argument suggests that the subset simulation procedure is likely to produce an 

ergodic estimator for failure probability; nevertheless it offers no guarantee for practical ergodicity. 

Whether ergodicity problems become an issue depends on the particular application and the choice 

of the proposal PDFs. It is worth noting that similar issues related to ergodicity are expected to 

arise in any simulation method which tries to conclude 'global' information from some known 'local' 

information, assuming implicitly that the known local information dominates the problem. For 
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example, importance sampling using design point(s) implicitly assumes that the main contribution 

of failure probability comes from the neighborhood of the known design points and there are no 

other design points of significant contribution. Thus, in situations such as when the failure region 

is highly concave or there are other unknown design points, the importance sampling estimator is 

biased and has an ergodicity problem. In view of this, one should appreciate the ergodic property 

of standard Monte Carlo simulation, since it is a totally global procedure in the sense that it does 

not accumulate information about the failure region developed from local states only. 

5. 7 Summary of this chapter 

Subset simulation is based on (I) the representation of small failure probabilities as a product of 

larger conditional failure probabilities and (2) Markov chain Monte Carlo simulation to efficiently 

generate samples conditional on intermediate failure regions. During subset simulation, samples are 

gradually adapted to failure regions of small failure probabilities. Expressions for the variability of 

the failure probability estimates have been derived, which allow the assessment of the estimation 

error in a single simulation run. The applicability and efficiency of subset simulation method to 

probabilistic assessment of seismic performance will be investigated in Chapter 6. 
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Chapter 6 Applications to Probabilistic 

Assessment of Seismic Performance 

The application of subset simulation to seismic risk analysis is illustrated in this chapter. The 

major goal is to demonstrate that subset simulation can be efficiently applied to compute the failure 

probability of a structure given an earthquake of uncertain magnitude and location occurs in a region 

of interest around the site where the structure is situated. This information can be used to assess 

the lifetime reliability, or equivalently, the lifetime failure probability of a structure in an uncertain 

seismic environment. Failure analysis is also carried out using the samples generated during subset 

simulation, which provide insight into the probable scenario that will happen when failure occurs. 

6.1 Lifetime reliability 

The lifetime failure probability of a structure is intimately related to the failure probability of a 

structure given an earthquake occurs. In particular, assuming that the occurrence of earthquakes 

follows a Poisson process and the failure event of the structure in different seismic events are in­

dependent with the same failure probability, then the lifetime failure probability P(Fhre) is given 

by 

P(Fnre) = 1- exp[->.1iire P(FlEQ)] (6.1) 

where >. is the mean number of earthquakes per annum and P(FIEQ) is the failure probability given 

that an earthquake event of uncertain magnitude and location occurs in the region of interest. For 

small lifetime failure probability, exp( ->.Thre P(FIEQ)) ,.... 1- >.1iife P(FIEQ), and so 

P(Flire),... >.1!iraP(FIEQ) (6.2) 

which is equal to the mean number of earthquakes >.7lire expected during the lifetime of the structure 

multiplied by the failure probability of the structure in a seismic event. Note that P(FIEQ) is the 

channel through which structure-specific information is reflected in the seismic risk problem. 
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6.2 Stochastic ground motion model 

The seismic risk problem is formulated using a stochastic ground motion model to describe the 

uncertainty associated with the ground motion at the site in a seismic event of given magnitude and 

earthquake source location. In this work, the stochastic ground motion model developed by Atkinson 

and Silva (2000) is adopted, which belongs to the class of point-source models characterized by the 

moment magnitude M and epicentral distance r (Brune 1971b; Brune 1971a; Hanks and McGuire 

1981; Boore 1983). For easy reference, we will call this the A-S model. To generate a suite of 

time histories for the ground acceleration for given moment magnitude M and epicentral distance 

r, a discrete-time white noise sequence {Wj = J27r I 6.t Zj : j = 1, ... 'nt}, where zl' ... 'Zn, 

are i.i.d. standard Normally distributed, is first generated and then modulated by an envelope 

function e(t; M, r) at the discrete time instants. A discrete Fourier transform is then applied to the 

modulated white noise sequence. The resulting spectrum is multiplied with the 'radiation spectrum' 

A(f; M, r), after which the discrete inverse Fourier transform is applied to transform the sequence 

back to the time domain to yield a sample for the ground acceleration time history. The synthetic 

ground motion a(t; Z, M, r) generated from the A-S model is a function of the additive excitation 

parameters Z = [Z1, ... , Zn,] and the stochastic excitation model parameters M and r. Note that, 

for given M and r, the transformation from Z to a(t; Z,M,r) is linear. 

Radiation Spectrum 

The A-S model is characterized by the radiation spectrum A(f; M, r) and the envelope function 

e(t; M, r). The radiation spectrum A(f; M, r) consists of several factors which account for the 

spectral effects from the source as well as propagation through the earth crust. It is given by 

1 
A(f; M, r) = A0(!) V(f) R exp( -7(!) R) exp( -1r f K) (6.3) 

In (6.3), Ao is the 'equivalent point-source spectrum' based on two corner frequencies, given by 

2 [ 1-e e ] 
Ao(f) = C Mo (27r f) 1 + (f I fa)2 + 1 + (f I fb)2 (6.4) 

where M 0 is the seismic moment (in dyn-cm) given by (Kanamori 1977; Hanks and Kanamori 1979) 

Mo = 101.5 (M+10.7) (6.5) 

and C = CR Cp Cpsf(47rp(33
); CR = 0.55 is the average radiation pattern coefficient (over all 

azimuths) for shear waves; Cp = 1IV2 is a coefficient to account for the partition of waves into two 

horizontal components; Cps= 2 is the free surface amplification; p and (3 are the density and shear-
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wave velocity in the vicinity of the earthquake source, respectively, assumed to be 2.8 gfcm3 and 

3.5 kmfs. In (6.4), fa and /b are the lower and upper corner frequencies (in Hz) for the equivalent 

point-source spectrum, respectively, given by 

fa = 102.18-0.496 M 

/b = 102.41-0.408 M 

The parameter e is a weighting parameter given by 

e = 10o.605-0.255 M 

(6.6) 

(6.7} 

(6.8) 

In (6.3), V(f) describes the amplification through the crustal velocity gradient as well as soil 

layer. Without detailed specification of the soil properties at the site, it is assumed that V(f) = 2, 

which lies in the range of values for NEHRP class C (corresponding to a mix of rock and soil sites) 

for frequencies between 0.4 Hz and 4 Hz (Boore and Joyner 1997). The term 1/ R is the geometric 

spreading factor, where R = ../h2 + r2 is the radial distance from the earthquake source to the site, 

r is the epicentral distance (in km), and h is the nominal depth of fault (in km). It is assumed 

that h = lo-0 ·05+0 ·15 M, which ranges from about 5 km at M = 5 to 14 km at M = 8. The term 

exp( -"((/) R) in (6.3) accounts for anelastic attenuation, where 7(/) = 1r f fQ (3 and Q = 180/0
.4

5 

is a regional quality factor. The term exp( -1r f tt) accounts for the near surface attenuation of high 

frequency amplitudes, where tt is assumed to be 0.04. 

Figure 6.1 illustrates the dependence of the radiation spectrum on the moment magnitude for 

a nominal epicentral distance of r = 20 km. Figure 6.2 illustrates the dependence of the radiation 

spectrum on the epicentral distance for a nominal moment magnitude of M = 7. From Figure 6.1, it 
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can be seen that as the moment magnitude increases, the spectral amplitude in general increases at 

all frequencies, with a shift of dominant frequency content towards the lower frequency regime. On 

the other hand, from Figure 6.2, the spectral amplitude decreases at all frequencies as the epicentral 

distance r increases, and there is no significant dependence of frequency content on r. It should 

be noted that, roughly speaking, both M and r has a multiplicative effect on the synthetic ground 

acceleration a(t; Z,M,r) and hence on the structural response. 

Envelope function 

The envelope function e(t; M, r) is the major factor affecting the duration of simulated ground 

motions for given M and r. It is assumed to be (Boore 1983) 

e(t; M, r) = c3 tc1 exp( -c2 t) U(t) 

where U(t) is the unit-step function, 

etlogc:2 
Ct = - ----'7.-=.....::...--,-

1 + e1 (loge1 -1) 
c1 

C2=--
e1Tw 

and c3 is a normalizing factor, chosen to be 

('2c2)2c1+l 

r(2cl + 1) 

(6.9) 

(6.10) 

(6.11) 

(6.12) 

so that the envelope function has unit energy, in the sense that f0
00 e(t;M,r)2 dt = 1. Here, r(-) is 

the Gamma function, and T w = 1/ fa + 0.1R is related to the duration of the envelope function. The 

parameters e1 and e2 are defined such that the peak of the envelope function occurs at a fraction 

e1 of Tw and the amplitude at time Tw is reduced to a fraction of c:2 of the maximum amplitude. 

These parameters are taken to be e1 = 0.2 and e2 = 0.05 (Boore 1983). 

The envelope function e(t; M, r) is shown in Figures 6.3 and Figure 6.4 for different magnitudes 

and epicentral· distances, repectively. From Figure 6.3, it can be seen that increasing the moment 

magnitude generally increases the duration of the envelope function (Figure 6.3), while from Fig­

ure 6.4, the effect of r on the envelope function is not significant. 

Figure 6.5 shows the typical ground motions generated at different moment magnitudes and 

epicentral distances. 
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Figure 6.5: Typical ground accelerations generated according to A-S model for different (M, r) 

Distribution of stochastic excitation model parameters 

Using the A-S model, a synthetic ground acceleration a(t; Z, M, r) for given M and r can be 

generated, where Z = [Z1 , .•• , Zn,] is a standard Normal vector and nt is the number of time 

instants. When the seismic hazard aspect is to be addressed, the uncertainty in M and r has to be 

considered. In this study, the uncertainty in the moment magnitude is modeled by the Gutenberg­

Richter relationship, truncated on the interval [Mmin, Mmaz] (Gutenberg and Richter 1958; Kramer 

1996): 

/3' exp( -/3' M) 
q(M) = p(MiEQ) = exp( -/3' Mmin) _ exp(-/3' Mmaz)' Mmin :$ M :$ Mmax (6.13) 

where /3' = b loge (10) and b is the coefficient appearing in the annual relative frequency (AM) 

description of the number of earthquakes with magnitude up to M: AM = 1oa-b M. It is assumed 
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Table 6.1: Two cases of uncertain situations considered in each example 

Case Uncertain parameters 
1 z 
2 Z, (M,r) 

that Mmin = 5, Mmax = 8, b = 1. 

The earthquakes of magnitude between Mmin and Mmax are assumed to occur equally likely in 

a circular area of radius rmax = 50 km centered at the site where the structure is situated. This 

leads to a triangular distribution for the epicentral distance r confined to the interval [O,rmax]: 

{

2r/r2 

p(riEQ) = 0 max 
r E [O,rmax] 

(6.14) 
otherwise 

6.3 Illustrative examples 

Three examples are considered to illustrate the application of subset simulation for computing 

failure probabilities of structures subjected to earthquake risk. Uncertain ground motion is modeled 

using the A-S stochastic model described in the last section. The sampling time and duration of 

study are taken to be 0.02 sec. and 30 sec., respectively, for both the simulation of ground motions 

and dynamic structural analysis. The number of additive excitation parameters involved in the 

generation of ground motion for a given stochastic model is thus nt = 30/0.02 + 1 = 1501, where 

the time instants at t = 0 and t = 30 are also represented. 

In each example, two cases corresponding to different uncertain situations as shown in Table 6.1 

are considered. In Case 1, only the additive excitation parameters Z = [Z1, ... , Zn,] for generating 

the ground motion a(t; Z, M, r) are assumed to be uncertain; the moment magnitude M and epicen­

tral distance r, which are the stochastic model parameters in the problem, are fixed at their nominal 

values: M = 7 and r = 20 km. This case corresponds to the classical first excursion problem with a 

given stochastic model defined by fixed M and r. In Case 2, in addition to the additive excitations, 

the moment magnitude and epicentral distance are also considered to be uncertain, with probability 

distributions given by (6.13) and (6.14), respectively. This corresponds to a seismic risk problem 

where the uncertainty in M and r is addressed. 

In the application of subset simulation, the conditional failure regions are chosen such that a 

conditional failure probability of Po = 0.1 is attained at all simulation levels. This is done by 

choosing an approximate threshold adaptively during the simulation, as described in Chapter 5. At 

each simulation level, N = 500 samples are simulated. Failure probabilities ranging from IQ-3 to 1 

will be estimated, or in other words, the response level corresponding to failure probabilities as small 
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Table 6.2: Choice of proposal PDF for different uncertain parameters 

Uncertain parameter Proposal PDF 

z 1-D symmetric (Metropolis) uniform with maxi-
mum step length equal to 1 

(M,r) 
2-D Kernel sampling density estimated using sam-
pies from the last simulation level 

as 10-3 will be estimated. The total number of samples required to produce the failure probability 

versus threshold level curve is thus NT= 500 + 450 + 450 = 1400, because 50 failure events from a 

level are used to start the next level and so only a further 450 samples are required for that level. 

The choice of the proposal PDFs used for different uncertain parameters is shown in Table 6.2. 

For the additive excitation Z = [Z1, ... , Zn,], each Zi is grouped as a single component, for which 

the proposal PDF is chosen as a one-dimensional (chain-adaptive) symmetric uniform distribution 

with maximum step length li = 1, that is, p*(~il6i) = 1/2 if l~i -Gil~ 1 and zero otherwise. For the 

stochastic model parameters, M and r, a level-adaptive proposal PDF is used, which is constructed 

as a kernel sampling density using the Markov chain samples from the last simulation level. This 

choice is used forM and r since it is expected that they control failure. Also, the zero-acceptance 

phenomenon due to high dimensions is unlikely to happen because the kernel sampling density is 

constructed as a two-dimensional joint PDF. 

6.3.1 Example 1: Linear SDOF oscillator 

Consider a single-degree-of-freedom (SDOF) oscillator with natural frequency ft = 1 Hz and 

damping ratio (t = 2% subjected to the ground acceleration a(t; Z, M, r): 

Y(t) + 2(t (27r ft)Y(t) + (27r ft) 2Y(t) = -a(t; Z, M, r) (6.15) 

Failure is defined as the exceedence of the displacement response magnitude over the threshold level 

b within the duration of study Td = 30 sec., that is, the failure event is: 

F = { max IY(tk)l > b} 
k=l, ... ,n, 

(6.16) 

where tk = (k -1)..6.t, k = 1, ... , nt (nt = 1501) are time instants where the response is computed. 

Failure probability estimation 

Figures 6.6 and 6.7 show the estimates of failure probability for different threshold levels b for 

Cases 1 and 2, respectively. Note that a total of NT = 1400 samples, i.e., dynamic structural 
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analyses, are performed to compute the results (solid line) in each figure. The results computed by 

standard Monte Carlo simulation (MCS) with 10,000 samples (so that the c.o.v. at a failure prob­

ability of 10-3 is about 30%) is also shown in the figures for comparison. These figures give an idea 

of how the results computed using subset simulation in a single run approximate the 'exact' failure 

probabilities (of MCS). To assess quantitatively the statistical properties of the failure probability 

estimates produced by subset simulation, 50 independent runs of subset simulation (with different 

seeds used in the random number generator) have been carried out. From the 50 runs, the sample 

mean and sample c.o.v. of the failure probability estimates are computed. The results for the sam­

ple mean for Cases 1 and 2 are shown in Figures 6.8 and 6.9, respectively. These figures show that 

the sample mean of the failure probability estimates are generally close to the results computed by 

standard Monte Carlo simulation, except for small failure probabilities near w-3 where the results 

by MCS are inaccurate due to the number of samples used. It can be concluded from the figures 

that the failure probability estimates by subset simulation are practically unbiased. 

The sample c.o.v. for the failure probability estimates are shown in Figures 6.10 and 6.11. The 

results are plotted versus different failure probability levels. The average results for the estimates 

of c.o.v. based on (5.29) and (5.27) are also shown in the figures. Recall that (5.29) assumes the 

conditional failure probabilities at different simulation levels are independent, while (5.27) assumes 

they are fully correlated. From Figures 6.10 and 6.11, it can be seen that the trend in the actual 

c.o.v estimated from the 50 runs is reasonably captured by the estimates based on (5.29) and (5.27), 

showing that these formulae can be used to assess the c.o.v. of the failure probability estimate in a 

single run. 

The computational efficiency of subset simulation is next compared with that of standard Monte 

Carlo simulation in terms of the c.o.v. of failure probability estimates computed based on the same 

number of samples. Note that the number of samples required by subset simulation at the probability 

levels PF = w-1
' 10-2

' w-3 are Nr = 500,950,1400, respectively. Using 0 = .J(1- PF )/ PFNT, 

the c.o.v. of the Monte Carlo estimator using the same number of samples at probability levels 

w-1 , 10-2 and 10-3 are computed to be 0.13, 0.32 and 0.84, respectively, which are also shown as 

squares in Figures 6.10 and 6.11. These figures show that as the failure probability decreases, the 

c.o.v. of the Monte Carlo estimator increases rapidly, while the c.o.v. of subset simulation increases 

at a much slower rate. This shows that subset simulation can lead to a substantial improvement in 

efficiency over standard Monte Carlo simulation, especially for estimating small failure probabilities. 

Failure analysis using conditional samples 

The Markov chain samples at the different failure levels simulated in a single run of subset 

simulation are next examined for the purpose of failure analysis. Figure 6.12 shows the typical 

samples of ground acceleration a(t; Z, M, r) that correspond to different levels of failure with failure 



116 

probabilities 10-1 , 10-2 and 10-3 for Case 1. Note that only the additive excitation parameters Z 

are uncertain in this case. The response corresponding to these ground excitations are shown in 

Figure 6.14. Since samples of acceleration time histories are generated for given moment magnitude 

M = 7 and epicentral distance r = 20 km, there is not much difference in their duration as well 

as mean square values. In terms of peak acceleration, they do not differ significantly, either. The 

major difference among these samples of ground acceleration that leads to different levels of failure 

lies in the frequency content. Figure 6.16 shows the average spectrum (power spectral density) of 

the additive excitation parameters Z corresponding to the samples of acceleration time histories at 

different levels of failure. Here, Level 0 refers to the initial phase of subset simulation where samples 

are generated from their parameter PDF, i.e., standard Monte Carlo simulation. The spectrum of 

the additive excitation Z that generate the ground acceleration a(t; Z, M, r) is studied rather than 

a(t; Z, M, r) itself, because the spectrum of the sequence Z at Level 0 (MCS) is theoretically flat 

(constant with frequency), which provides an easy reference for comparison. Note that the spectrum 

of the 500 samples of the additive excitation Z simulated according to its parameter PDF during 

the first phase of subset simulation (i.e., MCS) are averaged to produce the average spectrum shown 

in the top plot of Figure 6.16 for Level 0 (MCS). Similarly, the spectrum of the 500 samples of 

additive excitation corresponding to the 500 Markov chain samples generated at simulation level 1 

(conditional on the first failure level) are averaged to produce the average spectrum shown in the 

middle plot of Figure 6.16 for Level 1. 

The spectrum at Level 0 (top plot of Figure 6.16) is almost flat, because there is no conditioning 

on the samples at this level and therefore the spectrum theoretically corresponds to that of white 

noise, which is flat up to the Nyquist frequency, being 1j2t::.t = 25 Hz. As the simulation level 

increases, the spectrum develops a peak near 1 Hz, which is the natural frequency of the structure. 

This illustrates an important statistical feature of the additive excitations that lead to failure in the 

classical first excursion problem (with fixed structure and stochastic excitation model): the additive 

excitation tends to 'tune' itself to the natural frequency of the structure to cause first excursion fail­

ure. In other words, when the stochastic excitation model parameters are fixed, the probable cause 

of failure for the SDOF structure is due to resonance effects, especially when the threshold level 

is high. This phenomenon can be e..xplained as follows. The probability of a particular excitation 

decreases exponentially with the square ofits Euclidean norm (energy). When the stochastic exci­

tation model and hence the excitation intensity is fixed, it is not probable that the excitation will 

have a significantly large energy (e.g., in terms of root mean square value) when failure occurs, since 

this will mean that the vector of additive excitation parameters Z will have an Euclidean norm in 

the nt-dimensional standard Normal space significantly larger than other 'typical' configurations. 

Rather, a more probable configuration for Z to cause failure is to have its components 'tuned' so 

that they have a frequency content near the natural frequency of the structure to create a resonance 
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effect, while the Euclidean norm of the whole vector Z still remains more or less the same. 

The situation is different when the stochastic excitation model parameters, i.e., ~f and r, are 

uncertain, in addition to the additive excitation parameters Z. Figures 6.13 to 6.17 show the 

conditional samples and the average spectra at different simulation levels for Case 2, where Z, M and 

rare considered uncertain in the problem. Figure 6.13 shows that in this case the excitation intensity 

and duration of the ground acceleration is significantly different at different simulation levels. The 

excitation intensity generally increases as the simulation level increases. From Figure 6.17, it can 

be seen that the spectral peak at 1 Hz for Levels 2 and 3 is not as significant as observed in 

Case 1 (Figure 6.16). This indicates that the frequency content of the additive excitation Z when 

failure occurs is not significantly different from its original spectrum (fiat), although this does not 

imply that the frequency content of the ground acceleration will be the same irrespective of whether 

failure occurs, since the radiation spectrum A(!; M, r) could be different because of the change in 

the distribution of M and r when failure occurs. 

When the moment magnitude M and the epicentral distance r are uncertain, they are the 

parameters that control failure. Figure 6.18 shows the histograms of M and r at different simulation 

levels. The histograms are normalized so that they show the fraction of samples (rather than the 

number of samples) out of the total500 samples falling in the different bins. The parameter PDF for 

M and r, given by (6.13) and (6.14), respectively, are shown (with suitable scaling) as a dashed line 

in each figure for comparison. Note that the samples of M and rat Level 0 are simulated according 

to their parameter PDF, and so their histograms should compare well with the parameter PDF, as 

shown in the top plots of Figure 6.18. For Levels 1 and 2, it is noted that the distributions of M and 

rare quite different from the corresponding parameter PDF. As the level increases, the distribution 

of M shifts towards the large magnitude regime, while the distribution of r shifts towards the small 

distance regime. Figure 6.19 shows the scattering of samples of (M, r) at different levels. Since 

the Markov chain samples are not all distinct, some of the locations shown in the figure contain 

repeated samples. To show the population of the samples consistently, the dots are shown with area 

proportional to the number of points situated at the particular location. Figure 6.19 clearly indicates 

that as the simulation level increases, that is, when failure becomes more severe, the samples of (lv1, r) 

shift towards the 'large magnitude, small distance' regime, which agrees with intuition. 
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Figure 6.12: Ground motions for Exam­
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6.3.2 Example 2: Linear moment-resisting steel frame 

The structure considered in this example is the moment-resisting steel frame considered in Exam­

ple 2 of Chapter 4, but the stochastic ground motion model is the A-S model described in Section 6.2. 

As before, failure is defined as the exceedence of interstory drift ratio at any one of the columns 

within the duration of study. 

Failure probability estimation 

Figures 6.20 and 6.21 show the estimates of failure probability for different threshold levels b for 

Cases 1 and 2, respectively (see Table 6.1). The sample mean of failure probability estimates over 50 

independent simulation runs for Cases 1 and 2 are shown in Figures 6.22 and 6.23, respectively. These 

figures show that the failure probability estimates by subset simulation are practically unbiased. The 

sample c.o. v. for the failure probability estimates computed using 50 independent simulation runs are 

shown in Figures 6.24 and 6.25. In general, it is observed that the performance of subset simulation 

in the current example for a multi-degree-of freedom linear structure is similar to Example 1 for a 

single-degree-of-freedom linear structure, showing that subset simulation is robust to the number of 

degrees of freedom of the structural model assumed in the analysis. 

Failure analysis using conditional samples 

Figure 6.26 shows the typical samples of ground acceleration that correspond to different levels of 

failure with failure probabilities 10-1 , 10-2 and 10-3 for Case 1, where only the additive excitations 

Z are uncertain. The interstory drift ratios of the columns at different floors corresponding to these 

ground excitations are shown in Figure 6.28. Figure 6.30 shows the average spectrum of the additive 

excitation Z at different levels of failure in Case 1. Similar to Example 1, as the simulation level 

increases, the spectrum develops a peak near the natural frequency of the structure (0.56 Hz). 

The system behavior for Case 2 of Example 2 is essentially similar to that of Example 1, as 

shown in Figures 6.27, 6.29, 6.31, 6.32 and 6.33. 
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Figure 6.27: Ground motions for Exam­
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6.3.3 Example 3: Nonlinear concrete portal frame 

The structural model in this example is a nonlinear concrete portal frame. It corresponds to 

Example 3 of the illustrative examples for the nonlinear finite element software OpenSees developed 

under PEER (Pacific Earthquake Engineering Research) Center. The finite element model of the 

structure and its detailed description can be obtained from the website: 

http://opensees.berkeley.edu/OpenSees/examples.html 

The general properties of the structural model are briefly described here. The frame is 3.66 m high 

by 9.15 wide. An elastic beam element is used to model the beam connecting the two columns. 

The reinforced concrete section of the columns are modeled using steel and concrete fibers. The 

section of each column is 61 em (24 in) by 38 em (15 in) wide, with its strong axis perpendicular 

to the frame, that is, the columns deform in their strong direction during in-plane motion. The 

section is divided into confined and unconfined concrete regions, for which the fibers are discretized 

separately. The unconfined concrete region corresponds to a concrete cover of 3.8 em (1.5 in) thick, 

with a compressive strength of 34 MPa (5 ksi) at a strain of 0.2% and zero crushing strength at a 

strain of 0.6%. It is discretized with 10 fibers along the depth of the section. The confined concrete 

region corresponds to the core of the section, with a compressive strength of 41 MPa (6 ksi) at a 

strain of 0.4% and a crushing strength of 34 MPa (5 ksi) at a strain of 1.4%. It is discretized with 

10 fibers along the depth of the section. The Kent-Scott-Park model (Kent and Park 1971) is used 

for modeling the concrete material, with degraded linear unloading/reloading according to the work 

of Karson and Jirsa (1969). Reinforcing steel bars are placed around the interface boundary of the 

confined and unconfined concrete regions. The reinforcing steel is modeled as a bilinear material 

with kinematic hardening. The Young's modulus and hardening ratio of steel are assumed to be 

207 GPa (30,000 ksi) and 1%, respectively. 

The gravity load consists of two point loads of 801 kN (180 kips) at each of the columns, which 

correspond to approximately 10% of the axial load capacity of the columns. Figure 6.35 shows a 

pushover curve of the structure. The small-amplitude natural frequency of the structure is 2.6 Hz. 

Viscous damping is assumed so that the damping ratio for the first mode of vibration at small 

amplitudes is approximately 0.5%. Additional hysteretic damping develops in the structure during 

vibration at higher amplitudes. 

Failure probability estimation 

Figures 6.36 and 6.37 show the estimates of failure probability for different threshold levels b for 

Cases 1 and 2, respectively (see Table 6.1). The sample mean offailure probability estimates over 50 

independent simulation runs for Cases 1 and 2 are shown in Figures 6.38 and 6.39, respectively. These 
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figures show that the failure probability estimates by subset simulation are practically unbiased. The 

sample c.o.v. for the failure probability estimates computed using 50 independent simulation runs 

are shown in Figures 6.40 and 6.41. In general, it is observed that the performance of subset · 

simulation in the current example for a nonlinear structure is similar to Example 1 for a linear 

structure, showing that subset simulation is robust to the type of structural model assumed in the 

analysis. 

The trend of the failure probability versus threshold level b shown in Figure 6.39 for Example 3 

is qualitatively different from that in Figure 6.9 for Example 1. In particular, in Example 3 (Fig­

ure 6.39), the decay rate of failure probability with increasing threshold level b increases at around 

b = 0.5%. This is due to the hysteretic damping effect that starts to become significant at an inter­

story drift ratio of 0.5% where significant yielding occurs (see Figure 6.35). The stiffness-softening of 

the structure in Example 3 starts to become dominant and outweighs the hysteretic damping effect 

at a drift ratio of around 1%, at which the decay rate decreases. It should be noted that P-~ effect 
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has not been accounted for in this example, which means that the interstory drift ratios could have 

been larger, especially at large drift levels, in addition to the possibility of collapse. 

Failure analysis using conditional samples 

Figure 6.42 shows the typical samples of ground acceleration that correspond to different levels of 

failure with failure probabilities 10-1 ,10-2 and 10-3 for Case 1, where only the additive excitations 

Z are uncertain. The interstory drift ratio of the left column (which is essentially the same as that 

of the right column) corresponding to these ground excitations are shown in Figure 6.44. Figure 6.46 

shows the average spectrum of the additive excitation Z at different levels of failure. As the simu­

lation level increases, .the spectrum develops a peak near 2 Hz, which is near the natural frequency 

of the structure (2.6 Hz). These observation are similar to those in Example 1. Nevertheless, the 

spectral peak in this case is less distinct and does not occur at the small-amplitude natural frequency 

of the structure. This is possibly due to the softening behavior of the structure at large amplitudes 

of vibration, which results in an apparently smaller 'resonance frequency' adapted by the Markov 

chain samples of the additive excitation. 

The system behavior for Case 2 of Example 3 is essentially similar to that of Example 1, as 

shown in Figures 6.43, 6.45, 6.47, 6.48 and 6.49. 

6.4 Summary of this chapter 

The applicability and efficiency of subset simulation to computing the failure probability of struc­

tures with uncertainty in the additive excitation and possibly in the stochastic excitation parameters 

have been demonstrated with applications to the probabilistic assessment of seismic performance. 

Failure analysis has been carried out using the samples generated during subset simulation to gain 

insight into the system behavior when failure occurs. The analysis shows that when only the addi­

tive excitation parameters are uncertain, the rare failure scenarios correspond to resonance of the 

excitation with the structure. On the other hand, when the stochastic excitation parameters are 

also uncertain, they tend to control failure, due to their multiplicative effects on the response. The 

conditional distribution of the stochastic excitation model parameters given that failure occurs is 

significantly different from the parameters PDF originally assumed. 

It should be noted that the observations from the system analysis, such as the distribution of 

the moment magnitudes and epicentral distance when failure occurs, are based on the assumed 

probability models for the excitation. The results should be interpreted bearing in mind the in­

herent limitations of the probability models. For example, the distribution of ( M, r) in the large 

magnitude and small distance regime should be viewed bearing in mind that the A-S model is a 

point-source model which does not directly account for the geometry of the fault and the charac-
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teristics of near-source ground motions. In view of this, the failure analysis results either provide 

channels for calibrating the stochastic excitation models, or otherwise should be interpreted care­

fully. Nevertheless, on the premise that the quality of stochastic ground motion models will improve, 

subset simulation provides an efficient tool for estimation offailure probabilities and failure analysis. 
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Chapter 7 Conclusion 

7.1 Conclusions 

The use of simulation methods to solve first excursion problems with application to the proba­

bilistic assessment of the seismic performance of structures has been investigated in this dissertation. 

Two simulation methods have been proposed for solving the first excursion problem with different 

efficiency and generality. 

A pioneering effort has been attempted to address the applicability of importance sampling 

to problems with a large number of uncertain parameters, which has an important bearing on 

the potential use of importance sampling for solving first excursion problems as well as reliability 

problems of structures with a large number of structural model parameters. The results show that 

importance sampling using some common choices of the importance sampling density is applicable 

in high dimensions, provided that certain conditions derived in this work are met. 

An analytical study of the failure region for the first excursion failure of linear dynamical systems 

subjected to Gaussian white noise excitation has been carried out. By viewing the failure event as a 

union of elementary failure events, the analysis shows that each elementary failure event is completely 

characterized by a design point, which can be computed using impulse response functions of the 

system. The complexity of the first excursion problem stems from the structure of the union of 

the elementary failure events. An important consequence of this structure is that, in addition to 

the global design point, a large number of neighboring design points are important in accounting 

for the failure probability. Using information from the study of the failure region, an importance 

sampling density has been proposed as a weighted sum of conditional distributions to account for the 

contributions from all the elementary failure regions. The proposed importance sampling density 

is optimal if the elementary failure events are mutually exclusive. Numerical results show that the 

proposed importance sampling density leads to a very efficient simulation procedure. The efficiency 

tends to be higher for smaller failure probability or larger damping in the system, which may be 

explained by the conjecture that in these cases the elementary failure events are closer to being 

mutually exclusive. Further investigation is needed to substantiate these claims. 

The subset simulation method has been developed to solve the first excursion problem for general 

systems. It is based on expressing a small failure probability as a product of larger conditional 

failure probabilities, thus turning a simulation problem of rare failure events into several simulation 

problems of more frequent failure events. The estimation of the conditional failure probabilities is 

a nontrivial problem, but a modified Markov chain Monte Carlo simulation method is developed 
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to estimate them efficiently. In addition to estimating failure probabilities, subset simulation also 

provides an efficient tool for failure analysis, using the Markov chain samples generated during the 

simulation. 

Comparison of the two methods developed in this work, and in general with the methods de­

veloped in the literature, reveals that there is a trade-off between efficiency and robustness of a 

simulation method. The importance sampling method using elementary failure events is very effi­

cient, and only requires about 20 samples for estimating a failure probability with a c.o.v. of 30%, 

regardless of the failure probability level. It is only applicable to linear systems subjected to Gaus­

sian white noise excitation, however, and therefore it is not robust to the nonlinearity and types of 

uncertainties in the system. On the other hand, subset simulation can be applied in general, re­

gardless of the type of system and the type of uncertainties, and hence it is quite robust. Numerical 

results show that on average it requires about 2000 samples to compute a failure probability of lo-s 

or w-4 with a c.o.v. of 30%, and so it is not as efficient as importance sampling using elementary 

events for linear systems. 

The proposed simulation methods have been applied to compute failure probabilities of structures 

subjected to uncertain earthquake excitations. Failure analysis has been carried out using the Markov 

chain samples simulated during subset simulation. The analysis shows that when the stochastic 

excitation model is fixed, the probable scenario of a rare failure event corresponds to resonance 

of the excitation with the structure. When the stochastic model parameters are uncertain in the 

problem, they tend to control failure, and their conditional distributions given that failure occurs 

are significantly different from their unconditional distributions. The conclusions from the failure 

analysis should be interpreted bearing in mind the inherent assumptions and limitations of the 

probability models used. 

7.2 Future work 

Regarding the development of simulation methods for solving first excursion problems, several 

directions may be pursued. The idea of importance sampling using elementary events is applicable 

for any linear system with additive Gaussian uncertainties. This includes excitation uncertainties 

modeled by Gaussian processes, as well as structural or material uncertainties modeled by random 

fields. In these cases, important sampling densities similar to the one proposed in this work can 

be formulated, where the main effort is to derive analytically the design points in terms of Green's 

functions. For example, an importance sampling density can be formulated for the case when the 

stochastic excitation is represented in the frequency domain, which will be useful for problems 

where the excitation is modeled with a target spectrum. Another important task is to investigate 

the choice of proposal distributions for subset simulation, since they govern the efficiency of the 
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method. The failure analysis results on the distribution of stochastic excitation model parameters, 

such as the moment magnitude and epicentral distance of a point-source model, may be used to 

calibrate stochastic ground motion models as well as the distributions of the model parameters. 

From a global perspective, the 'science' of simulation methods, especially for problems with 

a large number of uncertain parameters, is not well-explored. There are many issues yet to be 

addressed that have an important bearing on what simulation methods have to offer. For example, 

is it possible to construct a simulation method that has the same robustness as standard Monte Carlo 

simulation but that is substantially more efficient? A formal treatment on the limits in robustness 

and efficiency of simulation methods should give important insights on how we should proceed 

in developing efficient simulation methods for complex systems with a large number of uncertain 

parameters. To this. end, an information-theoretic approach seems to be a promising direction. 
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Appendix A Some Additional Observations on 

the Failure Region of SDOF Time-invariant Linear 

Systems 

In this appendix, we present some additional observations on the failure region of SDOF time­

invariant linear systems subjected to filtered white noise excitation. The conclusions are expected 

to hold, however, in more general situations, such as for MDOF systems or filtered white noise 

excitation, since the essential property underlying these characteristics is the continuity of the unit 

impulse response function of the system. The discussion is based on continuous-time systems, for the 

sake of mathematical convenience in analysis, but analogous results hold for discrete-time systems. 

We will denote the excitation on the interval [0, T] by w(t), which is assumed to be square­

integrable on [0, T], that is, w E L2 [0, T]. The system response corresponding to the excitation w 

will be denoted by y(t; w): 

y(t;w) =lot h(t- r)w(r)dr (A. I) 

where h is the unit impulse response function. The failure region will then be F = { w E L2 [0, T] : 

jy{t; w)l > b for some t E [0, T]}. 

A.l Neighborhood of points in the failure region 

Proposition A. I. Except for points on the failure boundary, every point w in the failure region has 

a neighborhood of radius p( w) lying entirely inside the failure region where 

ly(r;w)l- b 
p(w) = sup llhll 

TE[O,Tj T 

(A.2) 

and 

(A.3) 

is the Euclidean norm of the unit impulse function h on the interval [0, r]. In other words, if w is an 

interior point ofF, then w + Aw is also an interior point ofF for all Aw(t) with IIAwllr < p(w). 

Proof. Let w be an interior point of F. Then 3r E [O,T] such that jy(r;w)l- b > 0. At such r, for 
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any Aw with IIAwllr < (ly(r;w)l- b]/llhlln 

That is, 

Now, 

!y(r; Aw)l S fo.,.!h(r- s)Aw(s)!ds 

r-----
< fo.,. h(r- s)2ds fa.,. Aw(s)2ds 

== llhll-ri!Aw!l.,. 

5 llhii.,-I!Awllr 

ll
hll jy(r;w)l- b 

< 'T" llhiiT 

== ly(r; w)l- b 

jy(r;w)j-jy(r; Aw)l > b 

!y(r; w + Aw)l == jy(r; w) + y(r; Aw)l by linearity 

~ jy(r; w)j-jy(r; Aw)l > b 

(A.4) 

(A.5) 

(A.6) 

and sow+Aw is an interior point of F. In general, choosingr from 'JI'(w) = {r E [0, T]: !y(r;w)l > b} 

to maximize [ly(r; w)!- b]/llhll.,., we conclude for any Aw: 

!y(r;w)l- b 
I!Awllr < sup. llhll => w + Aw is an interior point ofF (A.7) 

TET(w) T 

Finally, since for all s E {[0, T]- 'lr(w)}, [ly(s; w)l - b]/llhlls =5 0 < supTET(w)[jy(r; w)l- b]/llhiiT, 

the value of the supremum in (A.7) is unaffected by taking over all r E [0, T). We thus have 

!y(r;w)l- b 
liAwllr < p(w) = sup llhll => w + Aw is an interior point ofF (A.8) 

TE[O,Tj T 

and hence the proof. 0 

A.2 Proximity of neighboring design points 

Proposition A.2. The (Euclidean) distance between neighboring design points corresponding to 

consecutive up~crossing (down~crossing) failure times separated by sufficiently small At is O(At). 

Proof. Let { wt( r) : r E [0, T]} be the design point corresponding to the elementary up-crossing 
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failure event at timet: Ft = {y(t) > b}. We start by studying the difference w;+t.t(T)- w;(T) on 

(0, T). First note that w; (T) ::: 0 forT > t and wt+t.t(T) ::: 0 forT> t+.6.t. Thus, forTE (t+ .6.t, TJ, 

(A.9) 

and for T E (t, t + .6.t), 

(A.lO) 

ForTE (O,t), we approximate wt+t.t(T)- w;(T) with a first order Taylor expansion with respect to 

t for small .6.t: 

,. ( } *( ) aw;(T) A 
Wt+t.t T - Wt T "' 8t u.t (A.ll) 

Since T E (O,t), w;(T) is given by 

w;(T) = h(t- T) ~~~~~F (A.12) 

which gives, upon partial differentiation with respect tot, 

8wt'(T) = b [h'(t- T) _ h(t- T)h(t)2] 
at llhllr llhllt 

(A.13) 

Thus, the square of the Euclidean distance between wt'+t.t and w; is given by 

llwt+t.t- will~= loT lwt+t.t(T)- wt(TW dT 

1
t+.6.t . 

= 
0 

lwt+t.t(T)- wi(TWdT by (A.9) 

=lot lwt+t.t(T)- wi(T)I2 dT + [t+t.t lwt+t.t(T)l2 dT by (A.lO) (A.l4) 

Using (A.ll), the first term on the R.H.S. of (A.14) is approximated by 

,. ,. 2 Wt T 2 1t 1t ( 8 .. ( ) ) 2 

0 
lwt+t.tCT)- Wt (T)I dT"" 

0 
8t .6.t dT = 0(.6-t ) (A.l5) 

On the other hand, the second term on the R.H.S. of (A.l4) is approximated by 

r+t.t' .. 12 .. c )2A h(t+.6.t-t)2 b2 A ocA 3> 
lt Wt+t.t(T) dT"" Wt+t.t t ut = llhllt+t.t ut = ut (A.16) 
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since h(.6.t)2 = 0(.6.t2). So, using (A.14), (A.15) and (A.16), to the leading order of .6.t2, 

II * -w*ll2"" rt (aw;(r))2 dTtl.t2 
Wt+~t t T Jo at 

Now for T E (0, t), using (A.13), 

(
aw;(T) ) 2 _ 2 [h'(t- T)2 _ h'(t- T)h(t- T)h(t) 2 h(t- r)2h(t)4

] 

at - b llhllt 2 llhll~ + llhll~ 

Integrating (A.18) with respect toT from 0 tot, and noting that 

we have 

rt 1 lo h1(t- T)h(t- T)dT = 2h(t)2 

ft (aw;(T))
2 

dT = b21lh'll] 
lo at llhllt 

Finally, using (A.17) and (A.22), we have 

and hence the proof. 

A.3 Overshooting of design point response 

(A.17) 

(A.l8) 

(A.19) 

(A.20) 

(A.21) 

(A.22) 

(A.23) 

D 

Proposition A.3. For continuous time systems, the response corresponding to the design point 

at up-crossing {down-crossing) failure timet will over-shoot the level b after time t. However, the 

duration of overshoot (over which the response has exceeded the level b) is O(h(t?/llh'IIF) and the 

maximum amount of overshoot is O(h(t)4 /llhll;llh'll;), and are thus very small for stable systems 

at sufficiently large t. 

This proposition is somewhat counter-intuitive. One may expect from intuition that the maxi­

mum value of the response y( r; w;) corresponding to the excitation w; occurs at time t, since w; is 



148 

by definition the excitation with the smallest 'energy' that drives the response to the level b at time 

t and so should not 'waste' any additional amount of energy to drive the response above b. The 

proposition says that such a 'waste' of energy is unavoidable, although the amount is very small in 

common situations when the failure time t is sufficiently large that the unit impulse response has 

decayed sufficiently compared to llhllt or l!h'llt· Indeed, for discrete-time systems, overshooting may 

not be apparent, due to discretization error and the fact that the overshoot duration is so small that 

it may not be captured with the available sampling interval used in numerical integration. 

Proof. We first obtain a second order Taylor expansion for the response y( r; wt) near time t. For 

8 > 0, 

1t+s h(t- T) 
y(t+8;w;)= 

0 
h(t+s-r) llhllr U(t-r)bdr 

When 8 is small, 

= ~ ft h(t- r + s)h(t- r)dr since U(t- r) = 0 forT> t 
llhllt lo 

b 1t = llhm O h(T + 8)h(T) dT 

Substituting (A.25) into (A.24), integrating and simplifying, we have 

y(t + 8; w;) "' b + ~~k~~; 8 + 2 ll~ll~ [h' (t)h(t) -llh'll;] 8
2 

(A.24) 

(A.25) 

(A.26) 

Since the first order term with respect to 8 is always positive, we see that there is always overshooting. 

However, the time derivative of the response when it crosses b could be very small for stable systems 

at large failure timet, since then either h(t) -+ 0 as t-+ oo for strongly stable systems, or h(t) < oo, 

llhllt-+ oo as t-+ oo for marginally stable systems. 

The duration of overshoot is equal to the time t after t when the response crosses the level b 

again (and goes below b afterwards). It is approximated by solving y(t + 8;wt) = b for s, which 

yields 

A h(t)2 h(t)2 

t = llh'll~ - h'(t)h(t) "" llh'llr for large t (A.27) 

since h'(t)h(t) is small compared to llh'llr for stable systems at large t. 

With the quadratic approximation of y(t + 8j wt) in (A.26} for small s > 0, the time s after tat 
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which the overshoot is maximum is simply given by 

- t 
8 =-

2 (A.28) 

Finally, the maximum amount of overshoot 8ma.x is approximated using (A.26) with 8 = 8 in (A.28): 

Jma.x = y(t + 8; w;) - b 

= ~~~~~; [llh'lii- h'(t)h(t)] -l 

bh(t)4 h(t)4 

"" 8\\hm\\h'm = O( \lhm\lh'\lr) for large t 

A.4 A reciprocal relationship of design point responses 

The following proposition holds for time-variant systems as well. 

Proposition A.4. For all s, t ~ 0, 

2 (t· *) - 2 ( • *) asy ,ws - aty s,wt 

where a;= 27rS\Ihllr is the response variance at timet. 

Proof. Result is trivial when t = s. Consider t > s, 

a;y(t;w;) =a; ht h(t,r)w;(r)dr 

= 21rS lot h(t, r)h(s, r)U(s - r)dr 

= 21rS 18 

h(t, r)h(s, r)dr 

since h(s,r) = 0 for s < r <.t. On the other hand, when t < s, 

Equations (A.31) and (A.32) imply, for all s, t ~ 0, 

rmin(t,s) 

a;y(t; w;) = 27rS lo h(t, r)h(s, r)dr 

The proof then follows from the symmetry of the above expression with respect to s and t. 

(A.29) 

0 

(A.30) 

(A.31) 

(A.32) 

(A.33) 

0 
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A.5 Simulation formula for Zf 
We show here that the random vector zf given by (4.18) is orthogonal to the unit vector uj 

and has independent Gaussian components with respect to the basis in the orthogonal complement 

of u;. 
Since Zf given by (4.18) is a Normal vector, it is sufficient to prove that (1) Zf is orthogonal 

to zi and (2) it has uncorrelated components in the (n-1)-dimensional orthogonal complement V/ 
of the one-dimensional subspace spanned by uj. 

First, 

{Zf, uj} = (Z- (Z, uj)uj, ui} = {Z, ui)- {Z, u1}{uj, ui} = 0 (A.34) 

since (u;, ui) = lluiW = 1. 

To show the second claim, first note that zf has zero mean, since Z does: E[Zf] = E[Z]­

{E[Z], uj, u)i = 0. By the first claim, Zf is orthogonal to uj and hence lies in Vj.l., so it has the 

following Fourier series representation: 

n-1 

Zf = Z- (Z, ui)uj = L: Aivi (A.35) 
j=l 

where {vi : j = 1, ... , n -1} is an orthonormal basis in Vj.l. and {Aih are the Fourier coefficients 

given by 

Ai = {Zf,vi) = (Z, Vj}- (Z, uj)(uj, Vj} = (Z,vi} (A.36) 

since (uj, vi)= 0 for v1 E Vj.l.. It remains to show that the coefficients {A1}; are uncorrelated. For 

j, k = 1, ... , n - 1, 

E[AJAk] = E[(vj, Z)(Z, vk)] 

= E[vJzzTvk] 

= vJE[zzT]v~; 

= v j v k since E [ Z zT] = Identity matrix 

= c5;~; (A.37) 

where c5jk is the Kronecker delta: c5;~; = 1 if j = k and c5jk = 0 otherwise. Thus { Aj }J are 

uncorrelated, and the proof is completed. 


