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Abstract

In a probabilistic assessment of the performance of structures subjected to uncertain environ-
mental loads such as earthquakes, an important problem is to determine the probability that the
structural response exceeds some specified limits within a given duration of interest. This problem
is known as the first excursion problem, and it has been a challenging problem in the theory of
stochastic dynamics and reliability analysis. In spite of the enormous amount of attention the prob-
lem has received, there is no procedure available for its general solution, especially for engineering
problems of interest where the complexity of the system is large and the failure probability is small.

The application of simulation methods to solving the first excursion problem is investigated in
this dissertation, with the objective of assessing the probabilistic performance of structures subjected
to uncertain earthquake excitations modeled by stochastic processes. From a simulation perspective,
the major difficulty in the first excursion problem comes from the large number of uncertain param-
eters often encountered in the stochastic description of the excitation. Existing simulation tools are
examined, with special regard to their applicability in problems with a large number of uncertain
parameters. Two efficient simulation methods are developed to solve the first excursion problem.
The first method is developed specifically for linear dynamical systems, and it is found to be ex-
tremely efficient compared to existing techniques. The second method is more robust to the type of
problem, and it is applicable to general dynamical systems. It is efficient for estimating small failure
probabilities because the computational effort grows at a much slower rate with decreasing failure
probability than standard Monte Carlo simulation. The simulation methods are applied to assess
the probabilistic performance of structures subjected to uncertain earthquake excitation. Failure
analysis i3 also carried out using the samples generated during simulation, which provide insight

into the probable scenarios that will occur given that a structure fails.
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Chapter 1 Introduction

The proper assessment of the performance of engineering structures is an important component
in a modern performance-based engineering framework (SEAOC 1995 2000; Wen 2000; Cornell
1996). This includes realistic modeling of material constitutive behavior, structural components,
loading conditions, mechanism of deterioration, etc., that are anticipated during the working life of
a structure. Due to incomplete information, uncertainty always exists in the loading conditions as
well as the structural behavior. Uncertainty in structural behavior arises because no mathematical
model is a perfect description of a physical structure, and even so, the parametric properties that
should be used in the mathematical model representing the physical structure may not be known
precisely. The uncertainty in loading arises because structures are expected to function in a variety
of loading conditions in their daily operation and the actual loading conditions are not precisely
known.

Whenever feasible, uncertainties may be reduced by means of quality control or system iden-
tification (Mottershead and Friswell 1993; Aktan et al. 1997; Beck and Katafygiotis 1998), for
example. In many cases, it is more cost-effective to accept and deal with uncertainties rather than
trying to eliminate them (Freudenthal 1947; Housner and Jennings 1982). In any case, it is not
possible in many situations to gain the information necessary to remove the uncertainties. This calls
for a rational and scientific approach for quantifying uncertainties and modeling the mechanism by
which plausible reasoning is made in decision making. Probability theory is well-known to provide
a rational and consistent framework for treating uncertainties and plausible reasoning (Cox 1961;
Papoulis 1965; Jaynes 1983; Jaynes 1978). A probabilistic approach allows scientific and engineering
predictions to be made with different degrees of confidence reflecting one’s incomplete information.
A sound application of probability theory to engineering problems requires a proper choice of prob-
ability models to reflect one’s uncertainty on the mathematical model for making predictions about
the physical system, in addition to those efforts needed for modeling a physical phenomenon.

Application of probability concepts to structural safety was initiated in the mid 40’s, due to the
work of Freudenthal and his co-workers (Freudenthal 1947; Freudenthal 1956; Freudenthal et al.
1966). Structural reliability is concerned with the probability that a structure will not reach some
specified state of failure. For structures subjected to dynamic loading such as due to earthquake,
wind or ocean waves, the exceedence of some output response magnitude beyond some threshold
limit within the response duration is of paramount importance. This leads to the ‘first excursion
problem,’ the focus of this dissertation, which is to determine the ‘first excursion probability’ that

any one of the output response states of interest exceeds in magnitude some specified threshold level



within a given time duration.

The first excursion problem is one of the most challenging problems in structural reliability and
stochastic dynamics (Lin 1967; Soong and Grigoriu 1993; Schuéller et al. 1993; Lutes and Sarkani
1997). In spite of the enormous amount of attention the problem has received, there is no procedure
available for its general solution, especially for engineering problems of interest where the number of
output states is large and the failure probability is small. Most existing work focuses on the ‘classical’
case where the uncertainty comes only from the excitation which is modeled by a given stochastic
process. Pioneered by Rice, early work on the first excursion problem was focused on out-crossing
theory to give an analytical approximation (Rice 1944; Rice 1945; Crandall et al. 1966; Yang and
Shinozuka 1971; Vanmarcke 1975; Mason and Iwan 1983; Langley 1988; Naess 1990). While the
analytical solutions from out-crossing theory offer important insights into the problem, they are
nevertheless approximate and applicable only for a single output state. A class of numerical solution
methods involves solving the backward Kolmogorov equation for the reliability function (Roberts
1976; Bergman and Heinrich 1981; Spencer and Bergman 1993). These numerical solutions are
limited in application to systems of small size since their complexity increases at least exponentially
with the state-space dimension of the system (Lin and Cai 1995; Schuéller et al. 1993).

Monte Carlo simulation methods (Hammersley and Handscomb 1964; Rubinstein 1981; Fishman
1996) offer a feasible alternative for the numerical solution of first excursion problems and, in general,
any structural reliability problem, regardless of the complexity of the problem. In this approach,
random realizations, or samples, of the uncertain parameters in the problem are generated according
to their probability distributions specified in the problem. The failure probability is then estimated
as the fraction of the number of samples that leads to failure. Checking whether the structure has
failed for each sample often requires a structural analysis. As is well known, Monte Carlo simulation

| is not computationally efficient for estimating small failure probabilities, since the number of samples
required to achieve a given accuracy is inversely proportional to the failure probability when the
failure probability is small. Essentially, estimating small probabilities requires information from
rare samples which lead to failure, and on average it requires many samples before one such failure
sample occurs. In view of this, the importance sampling method (Rubinstein 1981; Schuéller and
Stix 1987) has been introduced, which basically chooses an importance sampling distribution to
generate samples that lead to failure more frequently so as to gain more information about failure
for better failure probability estimation. The efficiency of the method relies on a proper choice
of the importance sampling distribution, which inevitably requires some knowledge about failure.
Importance sampling has been successfully applied to time-invariant or static reliability problems
where the number of uncertain parameters in the problem is not too large (Schuéller and Stix
1987; Melchers 1989; Papadimitriou et al. 1997; Der Kiureghian and Dakessian 1998; Au et al.
1999; Bucher 1988; Karamchandani et al. 1989; Ang et al. 1992; Au and Beck 1999). For the first



3
excursion problem, which is characterized by a large number of uncertain parameters with complexity
arising from its dynamic nature, the application of importance sampling is much more difficult. One
class of simulation techniques that shows promise for solving the classical first excursion problem
is called Controlled Monte Carlo simulation (Pradlwarter et al. 1994; Pradlwarter and Schuéller
1997a; Pradlwarter and Schuéller 1997b; Pradlwarter and Schuéller 1999), in which the basic idea
is to generate samples to populate uniformly both the large and low failure probability regions,
which provide information for improving the accuracy of the failure probability estimate. Generally
speaking, efficient and robust simulation methods for solving the first excursion problem are still at

their early exploration stage.

1.1 Outline of this work

This dissertation is motivated by the need to assess the failure probability of structures with
respect to first excursion failures in an uncertain seismic environment, which plays an important role
in a performance-based earthquake engineering design framework. In this work, the development
and use of simulation methods for solving the first excursion problem will be investigated. The
next section gives a definition of the problem which is the focus of this dissertation. A brief review
of standard Monte Carlo simulation then follows, which provides a baseline procedure for every
simulation method to compare in terms of efficiency and robustness. -

Chapter 2 investigates the application of importance sampling to solving reliability problems,
with particular attention to the case when the number of uncertain parameters is large, which is a
characteristic of first excursion problems. Conditions for applicability in high dimensions using some
common choices of importance sampling densities will be provided and proved. Chapter 3 discusses
a powerful technique called Markov chain Monte Carlo simulation for simulating samples according
to the conditional distribution of uncertain parameters given that failure occurs. This technique
has great potential for application to reliability problems. Applicability issues in high dimensions
with the original algorithms are investigated. The study shows that the original algorithms are
inapplicable in problems with a large number of uncertain parameters. A modified algorithm is
proposed which is applicable to high dimensional simulation problems.

Two efficient simulation methods are developed in Chapters 4 and 5 to solve the first excursion
problem. Chapter 4 focuses on the first excursion problem for deterministic linear dynamical systems
subjected to Gaussian white noise excitation. The characteristics of the failure region are investigated
first. Using the information from this study, an importance sampling distribution is proposed, which
results in a very efficient importance sampling procedure for estimating the first excursion failure
probability. In Chapter 5, a method called subset simulation is developed to solve the first excursion

problem in general, with no assumption on the structure and the modeling of excitation. The method
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is based on expressing small failure probabilities as a product of larger conditional probabilities,
where the latter are estimated using the modified Markov chain Monte Carlo simulation method
proposed in Chapter 3.

In Chapter 6, the subset simulation methodology developed in Chapter 5 is applied to proba-
bilistic performance assessment of structures subjected to uncertain earthquake excitation modeled
by a stochastic process with uncertain stochastic model parameters. The application is focused on
efficient estimation of failure probabilities as well as failure analysis using the samples generated
during subset simulation. These samples provide insight into the probable scenarios that will occur

when the structure fails. This dissertation is concluded in Chapter 7.

1.2 Problem definition

The first excursion problem to be solved by sirulation is posed in general as a reliability problem.
Parametric uncertainties, such as uncertain parameters in the structural model, are modeled by
random variables. Uncertain-valued functions, such as time-varying excitations, are modeled by
stochastic processes, which are specified by some stochastic excitation inodel parameters. For digital
simulation purposes, a discrete-representation for a stochastic process is used, if necessary, in terms
of a sequence of ‘additive’ excitation parameters (Lin 1967). In this setting, all uncertainties in the
problem are parametric, referred to as the uncertain parameters and denoted by 6 = [6,,...,60,),
where 7 is their number. The symbol P(n) is used to denote a set of n-dimensional joint probability
density functions (PDF). With little loss of generality, it is assumed that all uncertain parameters are
continuous-valued, with joint PDF denoted by ¢ € P(n). The PDF g will be called the ‘parameter
PDF’ for the uncertain parameters 0. It is assumed that the parameter PDF ¢ is specified from
standard class of probability distributions (Ross 1972) for which efficient methods for evaluating
the value of ¢(8) at a given 8, as well as for generating independent random samples according to
6, are available. This distinguishes the reliability problems considered in this dissertation from the
Bayeisan reliability updating problems (Beck and Katafygiotis 1991; Katafygiotis and Beck 1998;
Beck and Au 2000; Papadimitriou et al. 2001), where the probability distributions of the uncertain
parameters given some measurement data can only be evaluated up to a normalizing constant and
the generation of random samples of the uncertain parameters according to the updated probability
distributions given the measurement data is a highly non-trivial problem.

The statement that defines a failure criterion describes a failure event when true, and is denoted
by F. For example, F = {X > b} is a failure event, where X is an uncertain response and b is a
given value. It is assumed that the failure statement can be determined as either true or false by
knowing the value of 0; that is, the failure state is completely specified by the uncertain parameters.

The same symbol is used to denote the ‘failure region’ corresponding to the failure event F, which is
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defined as the region in the n-dimensional uncertain parameter space such that all states in the region
correspond to a failure event. For example, in the previous example, F = {8 € R* : X (0) > b} C R”
is the failure region.
In terms of the probability density function g(@) and the failure region F', the failure probability

can be written in a generic way as

Pp= / 1£(6) q(6) dO (L1

where Iz(-) : R* — {0,1} is called the indicator function, which is equal to 1 when 8 € F and zero
otherwise. Unless otherwise mentioned, all integrals are to be interpreted as the integral over the
whole parameter space of the parameter to be integrated.

The symbol P(-) is reserved for the probability of a statement or probability content of a region
given in the argument. The symbol p(-) is reserved for the probability density evaluated at its
argument. For convenience, we use the same symbol to denote an uncertain quantity (random
variable or vector) as well as a value that the uncertain quantity may assume, where the uncertain
nature of the quantity will be mentioned in the former. For example, in ‘P(@ € F),’ 6 denotes a
random vector, while in ‘q(8),” @ denotes a vector value at which ¢ is evaluated. The notation E¢[:]
denotes the mathematical expectation of the uncertain quantity in the argument, whose probability
distribution is specified in the subscript f. For example, if X is a function of 8, then Ef[X ()] =
[ X(0) f(6)dB. When the distribution is clearly implied in the discussion, the subscript for the
distribution will be dropped.
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1.3 Standard Monte Carlo simulation

The standard Monte Carlo simulation method (MCS) for estimating failure probabilities is briefly
reviewed here, since it is the most basic method in simulation. In standard MCS, the failure prob-
ability for a given failure event F is estimated as the average of the indicator function Ip(-) over

samples {6,...,0n} simulated independently and identically (i.i.d.) according to the parameter
PDF ¢:

N
= 1
Pr ~ Pp = N Zﬂp(ak) (1.2)
k=1

The estimator Py converges to the failure probability Pr with probability 1 (Strong Law of Large
Numbers), and is asymptotically Normally distributed as the number of samples N — oo (Central
Limit Theorem). It is unbiased, i.e., E[Pr] = Pp. The efficiency of the MCS procedure, and in
general the efficiency of a simulation-based reliability method, can be measured by the coefficient
of variation (c.0.v.) of the estimator, which is defined as the ratio of its standard deviation to its
expectation. Since {6} : k =1,...,N} arei.id., Var[Pp] = Var[L p(6)]/N. On the other hand, [5(6)
is a Bernoulli random variable equal to 1 and 0 with probabilities Pr and 1 — Pr, respectively, so
Var[I(6)] = Pr(1 — Pr). Using these results yields the coefficient of variation § as:
Var|[Pr) _1-Fp

24 o 1.3
E[Pr2  PrN (1.3)

Note that the expression for the c.o.v. depends only on the failure probability and the number of
samples N. The c.o.v. § can thus be estimated in a simulation run using the above equation with
Pr replaced by its estimate Pp.

Implicit in the MCS procedure is that an efficient method is available for simulating samples
according to the parameter PDF. This is often feasible in common applications when the parameter
PDF g is chosen based on prior information and from some standard family of distributions (e.g.,
Normal, Lognormal, Exponential) for which simulation methods for generating samples are well
established. Other than this requirement, the MCS procedure is quite robust to the type of appli-
cation. As far as the problem of structural reliability is concerned, MCS is applicable for all types
of structures, types of excitation models, types of parameter PDFs, number of uncertain parame-
ters, etc. Apart from the simulation of samples, these specifications of the problem enter the MCS
procedure through only the indicator function I, whose value is determined by a system analysis.

Not only the applicability, but also the efficiency of MCS, is independent of the specification of
the problem for a, given failure probability. The expression for c.o.v. in (1.3) is applicable irrespective
of the specifications of the problem. The only drawback of MCS, as is well-known, is that MCS is

not efficient for dealing with rare events, defined as those events that occur with small probability.
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In terms of the number of samples N; required to achieve a given c.o.v. of 8, from (1.3),

N = lP—_Ff;f— ~ # when Pr is small (1.4)
which is inversely proportional to the probability of failure Pr when Py is small. For example, to
compute a failure probability of Pr = 10~3 with a c.o.v. of 30%, it requires 11,100 samples. As
a rule of thumb, to achieve a target failure probability of Pr with a c.0.v. of 30%, it requires on
average 10/ Pp samples, or 10 failed samples.

In our context, standard Monte Carlo simulation presents the most robust method for failure
probability estimation. Any simulation method other than standard Monte Carlo simulation is
expected to be less robusﬁ to the type of applications. The efficiency of standard Monte Carlo
simulation provides a baseline for comparison. Judging on efficiency and robustness, any simulation
method that requires more computational effort to compute a given failure probability is not worth-

pursuing.



Chapter 2 Importance Sampling Simulation

In view of the small fraction of simulated samples lying in the failure region in standard Monte
Carlo simulation when the failure probability is small, a natural attempt is to develop a method that
generates more samples in the failure region. This will utilize more information there to possibly
yield a better estimate. This is the essential idea of importance sampling simulation (Hammersley
and Handscomb 1964; Rubinstein 1981; Schuéller and Stix 1987; Engelund and Rackwitz 1993;
Hohenbichler and Rackwitz 1988). In importance sampling simulation, an importance sampling
density (ISD) f(8) € P is first chosen. Samples are then generated from this importance sampling
density rather than from the parameter PDF ¢. The estimator based on these samples is different
from the one used in standard Monte Carlo simulation, to account for the fact that the samples are

not simulated from the parameter PDF q. It can be derived as follows. First note that

[ 1x(8)g(6) _
Pr= / L)~ 16)8 = E{[L(O)R(O)] 2.1)
where
R(6) = ‘I((‘;)) (2.2)

is called the importance sampling quotient. Since the theoretical mean in (2.1) can be estimated by
a sample mean, the failure probability Pr is estimated by:

2

~ Pr = Z (8x)R(6) (2.3)
k:
where {0 : k =1,...,N} are i.i.d. samples simulated according to f instead of from gq.

The variability of the failure probability estimate is measured by its c.o.v., dr5, given by
(2.4)

where Ajg is called the ‘unit c.0.v.” of the importance sampling estimator, defined as the c.o.v. of

the importance sampling estimator with N = 1 on the R.H.S. of (2.3):

_ Varf [I[F(B)R(H)]
E¢[Ir(6)R(0)]?
_ Vars[Lr(6)R(6)]
P2

AI.S'

(2.5)
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and it has been assumed in the above expression that the importance sampling estimator is unbiased,
so that E¢[I(8)R(0)] = Pr.

For suitable choice of the ISD f, the importance sampling estimator converges with probability
1 (Strong Law of Large Numbers) to Pr and is Normally distributed asymptotically as N — o
(Central Limit Theorem). Essentially, the chosen ISD has to have a support region Sy = {f € R" :
f(8) > 0} which covers the failure region, i.e., F C Sy. It should also have a tail which decays
at a slower rate than the parameter PDF g, so that the c.o.v. of Py is finite. These conditions
ensure that the contributions from all parts of the failure region in the uncertain parameter space
can be accounted for, provided one uses a sufficiently large number of samples, so that the resulting
estimate is not biased. Although these conditions are sometimes difficult to check either analytically
or numerically in practical applications, careful investigation often suffices to make sure that the
convergence problem is not severe. Throughout this chapter, the first property, that is, F' C Sy,
will be assumed, so that the integral of any quantity multiplied with the indicator function over the
support Sy of f is equal to the integral over R”.

Under the approach of importance sampling, the main problem in applications is how to choose
the ISD that results in small variability in the failure probability estimate (675 in (2.4)) and hence
leads to an efficient simulation procedure. Many schemes for constructing the ISD have appeared in
the engineering reliability literature. Most schemes involve first finding the important parts of the
failure region which give significant contribution to the failure probability, and then constructing an
ISD based on information about such important failure regions. For example, a popular strategy is to
construct the ISD as a mixture distribution among one or more design point(s) 8; (i = 1,...,m) that
have the highest probability density, at least locally, among all other points in their neighborhood
within the failure region (Harbitz 1986; Schuéller and Stix 1987; Papadimitriou et al. 1997; Liu
and Der Kiureghian 1991; Melchers 1989; Der Kiureghian and Dakessian 1998; Au et al. 1999).
Another popular strategy, called adaptive importance sampling, is to construct the ISD as a mixture
distribution among some ‘pre-samples’ which are generated in the failure region by some pre-designed
stochastic algorithm (Bucher 1988; Karamchandani et al. 1989; Melchers 1990; Ang et al. 1992;
Au and Beck 1999). Generally speaking, importance sampling has been successfully applied to
static problems of small to medium sized structures. Applications to large scale structures or to
dynamic problems where the stochastic excitation is explicitly represented are still at the early stage
of exploration (Schuéller et al. 1993). The general difficulty encountered is due to the large number
of uncertain parameters involved in the problem, where the construction of a good ISD seems to
require a huge amount of information that cannot be gained numerically in an efficient way.

In this chapter, some aspects of importance sampling are investigated analytically, with the aim of
providing a quantitative understanding of how the efficiency of an importance sampling procedure

is influenced by the choice of the ISD. Particular attention is given to application of importance



10
sampling to problems with a large number of uncertain parameters, which is motivated by the need
to compute failure probabilities of large scale dynamical systems. The main theme is to relate the
c.o.v. of the importance sampling estimator to the relative entropy of the chosen ISD to the optimal
ISD. This provides new results and the basic insights for the applicability of importance sampling in
problems with a large number of uncertain parameters, for which it appears that no formal account

has been reported in the literature.

2.1 Optimal ISD and its implications

In terms of the variance of the importance sampling estimator, the optimal ISD can be defined

as the PDF among the class of PDFs P for which the variance is minimized. That is,

1¢(6)q(6)

(2.6)

According to this criterion, the optimal ISD is simply the conditional PDF given failure occurs:

() ¢(6)

fopt(e) = Q(HIF) = Pr

(2.7)

which is basically the parameter PDF ¢(8) confined to the failure region F, normalized by the
failure probability Pr. The optimality of fopy can be easily verified by noting that it leads to zero
variance in the importance sampling estimator when substituted into (2.5). Although the optimal
ISD can be written in a simple way, its use is not feasible, due to two basic reasons. The first is
that its evaluation involves knowledge of the failure probability Pr, which is the quantity to be
computed in the reliability problem. The second reason is that an efficient method for simulating
samples according to fopt is often not available. This may not be obvious from first glance, since
Jopt 18 just proportional to the parameter PDF ¢ for which an efficient method is assumed to be
available for generating samples. The difficulty comes from the indicator function I, which gives a
conditioning on the original distribution ¢ that causes the samples distributed according to fopt to
be very different from ¢, especially when Pp is small. To understand this, consider one simple, but
not efficient, way of generating samples according to fopt as follows: generate a sample 8 according
t0 g, then accept it if 8 € F (i.e., Ir(6) = 1); otherwise, generate another saraple until the condition
is met. The reason why this ‘acceptance-rejection’ method works is obvﬁous (Rubinstein 1981). It
is not efficient, however, since to generate one sample according to fopt, on average it requires 1/Pp
samples simulated according to ¢ as well as 1/Pr checks on the indicator function. The problem
comes from the evaluation of the indicator function, since each evaluation involves one analysis of the
system to determine if failure occurs. Thus, when Pr is small, the conditioning induced by failure

is so significant that the conditional samples are very different in distribution from the original
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samples. Philosophically, efficient simulation of samples according to the conditional distribution is

the main challenge in a simulation-based reliability method.

2.2 Basic trade-off

Since an optimal choice of the ISD is not feasible, it is important to understand how the variability
of the failure probability estimate is affected by the choice of a sub-optimal ISD. A form for the
variance of the unit c.o.v. of the IS estimator is derived here, which formalizes the basic trade-off

involved in the choice of ISD as commonly exercised in applications.

Proposition 2.1. The unit coefficient of variation of the importance sampling estimator can be

expressed as

. Al
a2, 2 Yarllr(O)R(6)] []IFI(D?R(B)] = (Ql_p ~-1)+ QR:? (2.8)
where
Qr = / 1x(8) £(6)d8 (2.9)

is the probability that a sample simulated according to the ISD f lies in the failure region F, and

Vars[R(6))|F]

AriF =\ [R@)FP (2.10)

is the coefficient of variation of the importance sampling quotient R(6) = q(8)/f(6) given that 8
distributed according to the ISD f lies in F.

Proof. For convenience, we will drop the dependence of 8 in Ir(8) and R(8). First note that,

Vars[L¢R] = Ef[I+R?] — E;[LpR]?
=E/[lrR?) - P} (2.11)

Now

E;[IrR% = / Lr(0)R(6)* f (8)d6

=ar [ R(o)ﬁn———-—‘“"(g)j ©) 4

= Qr / R(6)*f(B|F)do

= QrE¢[R*|F] (2.12)
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Further,
E¢[R*|F] = Vars[R|F] + Ef[R|F]® = Vars[R|F] + gaé (2.13)
since
_ [46) f(8)IrB) ., 1 _Pr
E/[RIF] = / o e = o / (6)1x(6) d6 = - (2.14)

Substituting (2.13) into (2.12) gives

E4[Ir B?) = Var[RIF] Qr + g—i‘ (2.15)

Substituting (2.15) into (2.11) yields
1

which gives (2.8) when divided by P2 and using (2.14). O

Equation (2.8) says that the unit c.0.v. of the importance sampling estimator comes from two
sources. The first source, in the first term, comes from the fact that not all samples generated
according to the ISD f lies in the failure region F, but only with probability @r. When all samples
liein F, QF = 1 and the first term vanishes. The second source comes from the variability of the
importance sampling quotient given that 8 generated from f lies in the failure region F. It arises
as a result of the difference in the variation between the chosen ISD f and the parameter PDF ¢
in the failure region. In terms of efficiency of the importance sampling estimator, there are thus
two challenges in choosing a suitable ISD, namely, to choose the ISD so that the samples generated
from f lie frequently in the failure region and so that the ratio of the parameter PDF to the ISD
has small variability in the failure region. These two requirements may often be conflicting, since
the first says that the ISD should be focused on the failure region, and often times choosing the
ISD with different variation from the parameter PDF is inevitable, which conflicts with the second
requirement that the ISD and the parameter PDF be similar. Note that the effect of having an
ISD that results in a large value of Qr is quite significant compared to one with a small value of
QF, since Ays is dominated by 1/QF when Qr is small. That is, a signiﬁcant improvement over
standard MCS can be readily achieved by shifting the ISD towards the failure region. Most of the
work in the literature has thus focused on the first requirement, e.g., by shifting the ISD towards
design points. The second requirement seems to have been overlooked because there is little problem
associated with it when the number of uncertain parameters is not large. It could become a severe

problem when the number of uncertain parameters is large, however, although no formal account has
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been given in the literature. This issue has an important impact on the applicability of importance
sampling to solving the first excursion problem for dynamical systems or static reliability problems
of systems with a large number of uncertain parameters. This aspect of importance sampling will
be expounded in a later section when we investigate the applicability of importance sampling in

problems with a large number of uncertain parameters.

2.3 Variance of importance sampling estimator and relative
entropy

We first derive two forms for the unit c.o.v. of the importance sampling estimator which will be

used frequently for analysis in later sections.

a2, _ EAR(OPLHO)?

P2 -1
1 [aOPIHO? g
_P§~/ g 1(@)do -1
1 [0
f(g)n #(6)q(6)df — 1
Plz JAR(O)1£(6)] - (2.17)

where R(0) = ¢(0)/f(0) is the importance sampling quotient. Also, from the second line in (2.17),

_ [ 9(8)r(8)/Pr q(0)Lr(0)
ais= [ 75 Br P71
";0(”; ) g(61F)do -1
g(0|F)
= Egr(Lrt OREE (2.18)

The concept of ‘relative entropy’ is introduced in the following:

Definition 2.1. The relative entropy of a PDF p, (relative) to a PDF p, is defined as:

Hup) = [2106) log”‘§9§ a8 (2.19)

The relative entropy H (p1, p2) is a useful measure for the difference between two PDFs (Kullback
1959; Renyi 1970; Jumarie 1990). It is always non-negative, and is equal to zero if and only if p; = po

To see the non-negativity, first note that log(z) < = — 1 for any positive number z (equality holds



14
if and only if z = 1), and so with z = p;(8)/p:1(89),

P(8) _ 72(6) _
% 5:(6) = p(8) ~ (2.20)

Multiplying both sides by p; (8) and integrate with respect to 0,

/ £1(6) log 22 (e) ) 4p < / @) 229 (0) ) 4 — / 1 (8)d6 =0 (2.21)

and hence the non-negativity follows by noting that the L.H.S. of (2.21) is just —H (p1, p2).

Applying the concept of relative entropy to the choice of ISD, one can expect that if the relative
entropy of the ISD f(8) to ¢(8|F) (the optimal ISD) is small, then the unit c.o.v. Arg will also be
small, and vice versa. In particular, the relative entropy is zero if and only if Ag is zero, since both
statements require f(6) = ¢(6|F). These statements are indeed true and quite intuitive. It should
be noted that relative entropy is not a proper metric, however. In particular, it is not symmetric
with respect to its arguments, i.e., H(p;,p2) # H(p2, ) in general.

The following proposition relates the variance of the importance sampling estimator to the rela-

tive entropy of the ISD f(8) to the conditional density g(@|F).

Proposition 2.2.

Afs > exp[H(g(|F), )] -1 (2.22)
where
£ o L6IF) a(6IF)
H@(IF), f) = Eqrlos L7501 = [ at01m)10g L5000 > 0 (223)

is the relative entropy of the ISD f(8) to the conditional density q(B|F).

Proof. The proposition follows immediately from application of Jensen’s inequality (Rudin 1974) to
(2.18), by noting the convexity of the exponential function:

aOlF),

f(6)
6|F
EqF expllog q;(lo))] -1
g(0|F), _
ORE

= exp[H(q(-|F), f)] - 1 (2.24)

A%S = quF[

> exp[E r log
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2.4 Importance sampling in high dimensions

The applicability of importance sampling in high dimensional problems for reliability analysis
is examined in this section. For importance sampling to be efficient, one requires the c.o.v. of the
importance sampling estimator to be small, which, according to (2.8), depends on two factors. The
first factor is whether the ISD can generate samples that lie frequently in the failure region, thus
making the first term in (2.8) small. The second factor is whether the ISD is chosen such that the
variability of the importance sampling quotient R(8) = ¢(8)/f(0) is small, when @ is distributed
as f(@|F). When the dimension n is not large, one often concentrates on the first factor, and as a
result a common strategy is to construct the ISD as a distribution centered among design point(s).
Reported cases in the literature reveal that the variability in R(0) in this case is not very large,
and so the second factor is often ignored in the construction of ISD. When the dimension n is large,
however, there is a question of whether the variability of R(6)Ir(8) will increase in a somewhat
systematic way as the number of uncertain parameters n increases, rendering importance sampling

inapplicable. From Proposition 2.2, we note that:

Proposition 2.3. A necessary condition for importance sampling to be applicable in problems with

a large number of uncertain parameters is
H(g(:|F),f) <o asn— o0 (2.25)

This proposition is evident from Proposition 2.2, and roughly says that the ISD f should be
reasonably close to the parameter PDF gq.

The basic problems of concern that may occur when n is large arise from the probabilistic property
of the importance sampling qﬁotient, which can be readily illustrated in terms of relative entropy.
Consider the i.i.d. case when ¢(8|F) = ¢(6) = [}, ¢1(6;) and £(8) = [[. f1(6:), where ¢ and
f1 are the one-dimensional PDF for each component 8; of 8 = [6,,...,8,] distributed according to

q(@) and f(8), respectively. Note that

a0 &, a6
log 75y = 218 7,3, (2.26)
and so
H(q, f) = Eqllog ;q,((%’)] = nE,,[log ;",—g—g] = nH(g, f1) (2.27)

where H(qy, f1) is the relative entropy of f; to gi. This means that, unless H(qy, f1) is at most of
the order of 1/n, H(q, f) will grow with n. Consequently, according to (2.22), the unit c.o.v. Arg

will grow exponentially with n, and importance sampling is not applicable. In fact, if f; # ¢ and
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the choice of f, does not depend on n, then when 6 is distributed ag f® =11, A1 (6:), by the
Strong Law of Large Numbers,

(/]
Q() _Z f1(9)_>Ef1[ (0)]— -H(fi,q1) asn—=+ o (2.28)

with probability 1, since {log[g:(6:)/f1(6:)] : i = 1,...,n} are i.i.d.. Consequently, with probability
1,

;((0)) - exp[-n H(fi,q1)] asn— o (2.29)

and hence the importance sampling quotient is exponentially small as n — co. By noting that,

theoretically,

£,(29), _ [ 40

@ =1 e @e= / (8)do (2.30)

and hence is O(1), one can perceive that when n is large, the importance sampling quotient is
exponentially small for most of the time, but on some rare occasions, it assumes extremely large
values, so that its theoretical mean is maintained. This phenomenon stems from the difference
between the one-dimensional PDFs ¢; and f;, which is amplified exponentially in the unit c.o.v.
Ajgs as the dimension n increases. When this phenomenon occurs, it is unlikely that importance
sampling will be successful, since the importance sampling estimate is likely to be biased in practice
as well as having large variability.

The question now is whether it is feasible in practice to choose an ISD that remains close to the
parameter PDF, in the sense that H (g, f) remains bounded or H(q1, f1) = O(1/n) for this example,
as n — 00. Specifically, suppose g(68) = [],—, ¢(8:) is the standard Normal PDF with independent

components, where

exp(—-gz-) (2.31)

is the (one-dimensional) standard Normal PDF. Let the ISD be a Normal PDF with independent
components centered at a single design point 6* = [8},...,68%), that is, f(8) = [T, ¢(6; — 67).
Then :(6:) = $(6:), f1(6:) = $(6; — 6;) and |

q1(6:) $6:) o 1o
tog f1 (8:) =log o(0: — 0 —8:0; + 201' (2.32)
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and so in the i-th component, the relative entropy is

q1(6;)

1 .2
AGHEY (233

Hi(q1, f1) = Eg [log 3

since Eg, [6;] = 0. To determine if H;(f1,q1) is O(1/n), we note that ||8"]|, the Euclidean norm of
6%, is intimately related to the failure probability. For example, if F is a half-space defined by a
hyperplane with the design point 6, then the failure probability is Pr = ®(—[|8"||), where

&(r) = ‘[—z d(z)dz (2.34)

is the standard Normal cumulative distribution function. Assuming that we are investigating similar
problems, then when the number of uncertain parameters n increases, the failure probability Pr
should remain nonzero and hence [|*|] should remain finite as n — co. Since ||*||2 = 31, 8% =

O(1), this implies §;% = O(1/n), and from (2.33), H;(f1,q1) = O(1/n). As a result,

H(g, f) = Eqllog (")1—ZH(f1,q1>— 20*2 el (2.35)

is bounded as n — oo. Importance sampling is thus applicable in high dimensions in this case.
This example suggests that importance sampling using design points may still be applicable in
high dimensions, as the design point automatically adjusts itself so that the ISD f remains close
to the parameter PDF ¢ as the dimension n increases. In general, however, this comes with some
conditions and may not be taken for granted. One counter example for this is the case when f; in
the last example has fixed standard deviation s # 1, that is, f1(6;) = exp(—(6; — 67)%/2s%)/V2ns.

One can easily show that in this case,

1

Hi(q, i) = (—2 +logs® —1)+ = 9"2 (2.36)

N =

The first term in (2.36) comes from the fact that a standard deviation s # 1 is used in the ISD,
while the second term is due to the shift of ISD from the origin to the design point 8*. Note that
the first term is equal to the relative entropy of fi to ¢ if 8] = 0, which can be easily verified by
setting #; = 0 in (2.36). It is non-negative and is equal to zero if and only if s = 1. Obviously, for
fixed s # 1, the first term is O(1). The second term is O(1/n) as in the last example. This means
Hi(q, f1) = O(1) and

H(q,f)—-—(—+logs -1)+5 IIH*H2 (2.37)

grows in a linear fashion with n, that is, importance sampling is not applicable as long as s is fixed and
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not equal to unity. Thus, although the shift of ISD to the design point does not render importance
sampling inapplicable in high dimensions, the use of standard deviation s different from that of the
original PDF (equal to unity) does. Intuitively, one may expect that importance sampling is not
applicable when s < 1 even when n is not large, since then the ISD decays faster than the parameter
PDF at its ‘tail’ where the importance sampling quotient R(8) = ¢(8)/f (6) grows without bound.
Also, in this case the spread of the ISD is not large enough to cover the support of the parameter
PDF that can cause potential bias in the failure probability estimate. The surprising observation
from this example is that, although importance sampling with s > 1 is applicable when n is not

large, the same is not true in high dimensions.

2.4.1 Definition of applicability in high dimensions

To address formally the issue of whether importance sampling is applicable in high dimensional
problenis, we need to define what we mean by ‘applicable in high dimensions’. For the question
of applicability to be meaningful, assume that we have a generic reliability problem with n un-
certain parameters, n € Z™*, from which a sequence of similar problems of increasing number of
uncertain parameters can be induced by increasing n by some admissible increments. For example,
consider computing the failure probability of a deterministic SDOF oscillator subjected to Gaus-
sian white noise discretized in the time domain by n i.i.d. standard Gaussian random variables.
Then a legitimate sequence of problems with increasing dimension n can be generated by refining
the discretization in the time-domain. In particalar, if each refinement corresponds to subdividing
each existing time interval by half, then an admissible increment of dimension n may be taken as
n (assuming the first point of the time horizon is not represented). Starting with n; discrete time
instants (and hence uncertain parameters), the sequence of dimensions associated with this sequence
of reliability problems will be N = {ny : k = 1,2,...} = {n1,2n3,4n1,...}. For example, when
n3 = 1000, then A" = {1000, 2000, 4000,...}.

Let a reliability problem with n uncertain parameters be defined by the ordered pair R(q,, F),
where g, is the joint PDF for the uncertain parameters and F,, C R" is the failure region. For a
given sequence of admissible dimensions N' = {nt : k = 1,2,...}, consider a sequence of reliability
problems {R(¢n,,Fn,) : k =1,2,...}. For the k-th problem in the sequence, let fr,(0) € Pzs(nx)
be the ISD chosen for computing the failure probability by importance sampling:

P(Fy) % B(Fu) = Z‘HZ)) Ir,, 6,) (239)

where {6, : r = 1,...,N} are i.i.d. samples simulated according to the ISD f,,. Let Ap, be the
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unit c.0.v. of the importance sampling estimator P(Fy,, ), that is, according to (2.17),

AL, = ;@(Tlmszqn,. [Rn.(8)IF, (8)] — 1 (2.39)

where Ry, = gn, (0)/fr.(8) is the importance sampling quotient in the k-th problem of the sequence.
Then we will say that

Definition 2.2. Importance sampling is applicable in high dimensions with ISD chosen from the
class of PDFs Pzs(n) for the reliability problem R(qyn, Fy), if

Ap, <0 ask— o0 (2.40)

for any increasing sequence N' = {ny € Z+ : k =1,2,...} of admissible dimensions with nx — oo.

In our context, ‘applicability’ does not imply ‘efficiency,” that is, if according to Definition 2.2,
importance sampling is found to be applicable in high dimensions, it is not necessary that the
importance sampling procedure will be efficient. This is because the unit c.o.v. of the failure
probability estimate may be large even if it remains bounded as the dimension increases. Also,
the study of applicability does not offer an explicit answer as to whether the importance sampling
estimate is biased or not. Rather, it is assumed that the estimate is unbiased in the analysis. The
issue of bias is related to whether the ISD has accounted for the parts in the failure region which
give the major contribution to the failure probability. It depends on which particular member from
the class of ISDs Pzs(n) is chosen, rather than on what general properties Pzs(n) should possess.
In short, the concern with ‘applicability’ is whether it is possible to apply importance sampling at
all, leaving aside the issues of how to gain information about the failure region to avoid bias or
whether the resulting ISD will lead to an efficient estimate. Applicability is the first concern when
one applies importance sampling to high dimensional problems, however, since if the chosen class of
ISDs already implies that the variability of the failure probability estimate will generally increase
without bound as n increases, the effort spent on searching for a suitable ISD from Pzs(n) will be
in vain.

In what follows, we will investigate the conditions under which importance sampling is applicable
in high dimensions. For convenience in analysis, we assume that the rel'}ability problem R{gn, Fy)
is defined for every n € Z¥, so that we take the sequence of admissible dimensions as N = {np :
k=1,2,...} = {1,2,...}. Since the subscript k¥ now becomes redundant, it will be dropped in
our analysis. We will also drop the dependence of quantities on the dimension n, with the implicit
understanding that all quantities under consideration are specific to a simulation problem with n
uncertain parameters. For example, f,(6) will be abbreviated to f(8), and F, to F.

It will be assumed that for every n € Z*, P(F,) > ¢ for some fixed £ > 0 independent of n.
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This implies that P(F,) does not vanish as n — oo, and essentially reflects that we are studying
problems of non-vanishing failure probabilities.

Ideally, the question of applicability can be answered if we know either analytically or numerically
how Ajg behaves with increasing n. The analysis of Ays, given by either (2.17) or (2.18) or otherwise,
is difficult in general, due to the fact that the expression of the importance sampling quotient could be
complicated depending on the form of ISD used. Also, the failure region is not known in advance or
it has complicated structure. The evaluation of Ars by simulation is not computationally favorable,
since it involves evaluating the indicator function I (@) during the averaging process which requires
system analyses. Realizing that the applicability problem basically arises due to the variability of
the importance sampling quotient R(6) = ¢(8)/f(6), one is interested to see whether the behavior
of Afg can be inferred from that of Ag. If the answer is positive, then the applicability problem may
be solved at least numerically in an efficient manner, since then one can estimate Ar = E[R] —1
by simulation, which involves evaluation of R(6) and so does not require any system analysis, and
then deduce the behavior of Ars from that of Ag. The following proposition says that half of the

answer to the above question is positive.
Proposition 2.4. Asn — o0, if Ap < 00, then Ars < 00 also.

Proof. First note that, using (2.17) with F = R",
AL = Ey[R(9)] - 1 (2.41)

From (2.17),
Az, = Eq[R(gp(o)]
- EdlR(0)]

e

-1

5z~ 1 (2.42)

Since Pr does not vanish as n - oo, the boundedness of A implies that of Azs. O

The proposition says that Ag < oo provides a sufficient condition for Ars as n — co. Thus, if
we know for certain problems and under certain conditions on the ISD that Ag will remain bounded
as n increases, then we can conclude that Arg will also be bounded, and hence importance sampling
is applicable in high dimensions in the given situation. However, it is also important to examine the
other half of the question, that is, whether Ag < 00 is a necessary condition for Ag < 0o, since the

sufficient condition could be so restrictive that it excludes a large class of ISDs which are applicable.
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This is what motivates the logic throughout the analysis to follow, where an attempt will be made
to investigate the relationship between Ays and Ag, or equivalently, between E;[RIr] and E [R].
The focus will be placed on the case where the uncertain parameters are i.i.d. standard Normal,

that is, for a given n € Z T,
1
a(6) = $(0) = (2r) ™"/ exp(~ 3 676) (243)

which is a common PDF used in applications. The independent assumption does not introduce any
loss of generality, since dependent random variables can be generated by a suitable transformation
of independent ones; in fact, this seems to be the only way when numerical simulation of dependent

variables is done.

2.4.2 1ISD with a single point

The applicability aspects of ISDs chosen from the class of Normal PDFs centered at a single

point @ and with a positive definite covariance matrix C is investigated first. That is,
Pzs(n) = {#n(0,C) : 6 € R*; C € R**",C > 0} (2.44)

where ¢, (-; 8, C) denotes the n-dimensional joint Normal PDF with independent components, whose
mean and covariance matrix is given by 6 and C, respectively. The notation ‘C > 0’ denotes that
C is positive definite, that is, x7Cx > 0 for all x € R*\{0}. An ISD f(8) chosen from the class
Pzs(n) will then be given by:

£(6) = (2m)™/2/[CT [ expl 1 (8 - )7 C(0 - B)] (245)

For the purpose of analysis, some properties of the positive definite covariance matrix C are
recalled. First, the eigenvalues of C, denoted by {s? :j =1,...,n}, are all positive. The inverse
of the covariance matrix, C™*, is also positive-definite, with corresponding eigenvalues {1/s3 : j =
1,...,n}. There exists an orthonormal basis of eigenvectors {¢»; € R* : j =1,...,n} of C and C~1,
which satisfies the orthogonality conditions:

8 ’ '
yIC iy, = SL; and 9Ty, =& (2.46)

J

where d;;, is the Kronecker delta function: d;x =1 if j = k and d;x = 0 otherwise. The eigenmatrix
of C and C~! will be denoted by ¥ = [¢4,,...,1,] € R**". Note that ¥~ = ¥T,
We will analyze A;s based on (2.17), which necessitates the study of R(6)Ir(6) when @ is

distributed as ¢(@). For this purpose, we start with an expression for the importance sampling
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quotient R(@) that facilitates analysis later.

Proposition 2.5. Let the parameter PDF q be a standard Normal PDF given by (2.43) and the
ISD £ be a Normal PDF centered at 8 with covariance matriz C, as given by (2.45).
If 0 is distributed as g, then the importance sampling quotient R = q(8)/f(8) can be represented

as

R(9) = R(¥¢) = (H 8;) exp(5 Z & ) EXP{Z %

1
2
:—1 i

e )gz "( )Ez]} (2.47)

where {s? :i=1,...,n} are the eigenvalues of C, £ = [£1,...,&,]T =T, and £ = [&1,...,6,]T =

¥TO is a standard Normal vector.

Proof. From (2.43) and (2.45),

re) = 16) _ (2r)~"/2 exp(—1 676)
f(6)  (2m)—/2\/|C |exp[-} (8 — B)TC-1(8 - 6)]
Es,)exp(——BT9+ 267C0-87C0 + 567Ch) (2.48)

since |C~!| = 1/]]L, s? (the determinant of a matrix is equal to the product of its eigenvalues).
By rotational symmetry of standard Normal vectors, @ distributed as ¢(@) = ¢(8) has the following

representation with respect to the orthonormal basis {¢,:1=1,...,n} for C!:
n
0= E P, & (2.49)
=1

where £ = [£1,...,&,]T = ¥~19 = ¥79 is a standard Normal vector. Using this representation and
the orthonormal conditions in (2.46),

2
67C10= 3" S (WIC ) 616 = Zf (2.50)
i=1 j=1 =1 8
and
876 = ZZ(¢, Y)EE =D & (2.51)
i=1 j=1 i=1

Similarly, using the following representation for 8:

6=3 v& (2.52)
=1
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we have
Clo= 25’2 (2.53)
i=1 ‘
and
LI}
Z% (2.54)

Substituting (2.50), (2.51), (2.53) and (2.54) into (2.48) and simplifying gives the required proposi-
tion. O

Proposition 2.6. Let the parameter PDF q be a standard Normal PDF given by {2.43) and the ISD
f be a Normal PDF centered at 6 with covariance matriz C, as given by (2.45). Let{s?:i=1,...,n}
be the eigenvalues of C and R(8) = q(8)/f(0) be the importance sampling quotient.

Then, if s; > 1/v/2 for alli=1,...,n,

E,[R(6) L#(6)] = Q(8,C, F) (1_1 \/_r_) [Z 232"2_ 1] (2.55)
where
Q@,C, F) = [ 8(2) Ip(¥(Asz + &) dz (2.56)

is the probability that the vector ¥ (A;Z — &) lies in the failure region F, where Z is an n-dimensional

standard Normal vector; W is the eigenmatriz of C; € = [Al, .en ,én]T, where

: _ &
&= 357 -1 (2.57)
and A; € R**" {5 g diagonal matriz with the i-th diagonal element equal to §; given by
" 33
= ——— 2.58
= T (258)

Proof. Using (2.47),

Eo[R(8) Ir(B)] = E4[R(TE) Ir(¥E)]

— (T e zi)m p{z (—— )52—( SEIeEe) (259

i=1 i=1

where the subscript ¢ in E4[] denotes that the expectation is taken with £ distributed as ¢, that is,
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with £1,...,&, being i.i.d. standard Normal. It remains to evaluate the expectation Eg[] in (2.59).

exp{Z 1)¢2 - (5‘ &} Lr(e)]
-/ exp{Z 2(—— e -( Eil}h(wox(2n>-"/2exp(——Zé,>ds
= (2m)™"/2 / exp{—— [2“’ )¢+ 2% s,]}np(mds (2.60)

By completing the square in the exponent inside the integral and bring the constant terms outside

the integral, we have
~ll e (&
Eslen{d [5 (7 — DEf - ()6} In(2e)]
i=1 i

=m) [V o [ 32 (25 )(s ;_ ” Ir(®E) de

i=1 81

X 1]1: [Z 232(23 - 1)]
= (2vr)~"/2(f1 )7 e { 2> (5’ 5’) ] Tr(28) dt

i=1

H \/—2——— [Z 27 _1)] (2.61)

where §; = —£;/(2s2—1) and 3; = 8i/+/2s7 — 1. By a change of integration variable z; = (§; —&)/3i,
i=1,...,n, the first integral in (2.61) is just equal to Q(6, C, F) given by (2.56). Replacing the first
integral in (2.61) by Q(8,C, F) and sﬁbstit.uting the resulting expression into (2.59), one obtains
(2.55) after simplifications. a

The situation is less determinate if s; < 1/+/2 for some j € {1,...,n}. In this case, E,[RLF]
may not be bounded, depending on the structure of the failure region F. In the special case when
F =R", E;[RIF] = E,[R] is always unbounded when there exists s; < 1/+/2 for some j € {1,...,n}.
In general, the situation depends on the structure of F' in the direction of 1, that is, the j-th eigen-
direction of C for which s; < 1/+/2, although it can be argued that E;[RIF] is generally unbounded
except for some special F. This information about F is usually not available when importance
sampling is applied, and therefore choosing some s; < 1/ v/2 may render E;[RIF] a,nd‘ hence Arg
unbounded, even for finite n. This case is thus of little practical interest, and we will focus on the

case when 8; > 1/v/2foralli=1,...,n
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Caorollary 2.1. In the context of Proposition 2.6, if s; > 1/\/5 foralli=1,...,n, then

n s? n £2
E,[R(6)] = (1;! ﬁ) exp (Z; 2—8129_—:[) (2.62)

Otherwise, Eq[R] is unbounded for everyn € Z+.

Proof. If s; > 1/+/2for all i = 1,...,n, then the corollary follows from Proposition 2.6 with F = R*
where Q(8,C,F) = 1. Otherwise, if 8j < 1//2 for some j € {1,...,n}, the integrand in (2.60)
grows exponentially large at either +00 or —oo in the eigen-direction where s; < 1/ V2, and hence
E;[R] = Eq[RIp] (for F = R™) is unbounded for every n. O

Corollary 2.2. In the context of Proposition 2.6, if s; > 1/\/5 foralli=1,...,n, then
Eo[R(6) Lr(8)] = Q(,C, F) E,[R(6)] (2.83)

Proposition 2.7. Let the parameter PDF q be a standard Normal PDF given by (2.43) and the ISD
f be a Normal PDF centered at 8 with covariance matriz C, as given by (2.45). Let{s?:i=1,...,n}
be the eigenvalues of C.

Assume 8; > 1/v/2 for all i = 1,...,n. Then for Ars < 00 as n — oo, it is necessary and
sufficient that

EjJR] <0 asn— o (2.64)
or, equivalently,
noo82 82
1 l k3
,-§=1[23? — *log 287 — 11 <00 a3n— oo (2.65)

Proof. According to (2.17)

a2, = BROLO)]

2 o (2.66)

and so A}g < oo if and only if E,[R(8) 1 r(8)] < oo, since Pr does not vanish asn — co. I 3; > 1/+/2
for all i = 1,...,n, then Corollary 2.2 follows, and so E[RIs] < co if and only if E;[R] < oo since
Q(8, C, F) does not vanish as n — co. The L.H.S. of (2.65) is just the logarithm of E,[R)}, and hence
is equivalent to (2.64). O

Proposition 2.8. Let the parameter PDF q be a standard Normal PDF given by (2.43) and the ISD
£ be a Normal PDF centered at @ with covariance matriz C, as given by (2.45). Let {s?:i=1,...,n}

be the eigenvalues of C.
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Assume s; > 1/V2 for all i = 1,....n, and the choice of s; is independent of n. Then for

E,[R] < 00 as n — o0, it is necessary and sufficient that
1. 8; #1 for at most a finite number of indezes i € Z+ and
2. 18] < oo.

Proof. We first prove the backward part of the statement, which is straightforward. By hypothesis,
conditions (1) and (2) hold. Let Ir(n) = {i: s; # 1,1 < i < n} be the set of indexes for which
8; # 1. By noting that for s; > 1/\/5, s?/\/zs? —1=1if and only if s; = 1, and writing

2282 _Z g- v @ 1}2 (2.67)

i=1 icly (n) ’

equation (2.62) gives

E,[R] = (H \/552 ) !Zf, > & 2 | (2.68)

icly i=1 i€l (n) .

which is bounded since the number of indexes in I>(n) is finite by condition (1) and Z?=1 £ =
[|18]> < oo by condition (2).

For the forward part, assume E,[R] < oo as n — co. We will prove condition (1) holds by
showing that if it does not, E;[R] will be unbounded as n —+ oo, leading to a contradiction. Thus,
assume condition (1) is not true, that is, there is an infinite number of indexes i € Z* for which
si#l. Let i(n)={i:8,=1,1<i<n}and L(n)={i:s; #1,1<i<n}. Fors; >1/v?2,

s _ (s -1)°

1+

L B Rl SN | 2.69
257 — 1 2(s?-1/2) ~ (2.69)

with equality holds if and only if s; = 1. Thus, the first term of the product in (2.62) for Ey[R]

becomes

H \/—,-T 1;‘[(") \/és—-‘ (2.70)
which is unbounded as n = oo since the product has infinitely many terms and each term is greater
than unity. On the other hand, the second term of the product in (2.62) is always greater than unity,
since the sum in the exponent of the term is always positive for s; > 1/v/2 foralli € {1,...,n}. As
a result, E;[R)] is unbounded as n — o0, leading to a contradiction. This shows that condition (1)
must hold when Arg < o0.

To show condition (2) holds, note that when s; > 1/v/2 for all i = 1,...,n, the first term in the

product of (2.62) is always greater than unity and hence does not vanish as n — co. When Ag < oo,
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the second term in the product of (2.62) must then be bounded, and is given by the exponential
term in (2.68). Since condition (1) holds as we have just shown, the second sum in the exponent of
(2.68) consists of only a finite number of terms and is thus finite. Consequently, ||8]|> = Xr, &

must be bounded, which completes the proof. O

Proposition 2.9. Let the parameter PDF q be a standard Normal PDF given by (2.43) and the ISD
£ be a Normal PDF centered at 8 with covariance matriz C, as given by (2.45). Let{s?:i=1,...,n}
be the eigenvalues of C.

Assume 8; > 1/+/2 for all i = 1,...,n. Then the following statements are equivalent.
1. Apg < oo

2. Ej[RIF] < 00

3. E4[R] < 00

4. Ap <0

In addition, if the choice of s; does not depend on n, then each of the above statements is

equivalent to
5. 8; # 1 for at most a finite number of i € Z+, and ||8]] < 00 as n ~ 00

Proof. Statement (1) is equivalent to (2) by (2.17). Statement (2) is equivalent to (3) by Corol-
lary 2.2. Statement (3) is equivalent to (4) since Ap = E,[R] — 1. Thus, statements (1) to (4) are
equivalent.

If the choice of s; does not depend on n, then Proposition 2.8 applies, which completes the
proof. 0

Corollary 2.3. Importance sampling with ISD chosen from the class
Prs(n) = {¢n(;;8,C) : 8 € R*;C € R"*",C > 0, with fized eigenvalues > 1/2} (2.71)

Jor the reliability problem R(¢n, F,) is applicable in high dimensions if and only if
1. there is at most a finite number of eigenvalues of C not equal to unity as n — oo
2. 18]l < 0 asn =

Practically, this corollary says that, to implement importance sampling with ISD constructed
with a single point, one can only choose a very small number of the principal standard deviations
3; # 1. Note that when 8 is a design point, ||8]| is equal to the reliability index associated with the
design point, and so condition (2) holds. The exponent in (2.62) for Ej[R] is then bounded, and the
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Relative entropy
H(q(‘|F),f) < oo

Prop. 2.2
Eqn. (2.17)
Unit c.0.v. of IS estimator @ E,[RIF} < o0
Ars < 00
Prop. 24 Cor. 2.2
Eqn. (2.41)

Unit c.o.v. of IS quotient R @ B[R] < 00
Ap <o

Figure 2.1: Summary of propositions for the case of a éingle design point

behavior of the c.0.v. Ag is governed by the first term in the product, which grows exponentially with
the number of indexes where 8; # 1. The detrimental effect of using principal standard deviation
different from unity in some principal directions thus grows exponentially fast with the number of
these directions. This effect remains regardless of dimension and will not become vanishingly small
even when 1 — co. Indeed, we note in the proof of Proposition 2.8 that E4[R] is not bounded even
if the number of indexes for which s; # 1 is o(n) but still infinite, because the product in (2.70) will
grow without bound as long as the number of indexes in I is infinite, no matter of what small order

compared to n.

The propositions for the applicability of importance sampling in high dimensions are summarized
in Figure 2.1 for s; > 1/v2 foralli=1,...,n.

2.4.3 ISD with multiple points

The study is next extended to the case of ISDs constructed with multiple points. Due to the
mathematical difficulties in analyzing Arg, most of the results here aré sufficient conditions that
guarantee applicability in high dimensions. This means that it is possible for importance sampling
with multiple points to be applicable in high dimensions under more general conditions than the
derived sufficient conditions, although necessary and sufficient conditions are not yet known. Here,
the number of points from which the ISD is constructed, my,, can possibly depend on the dimension

n, which is the case frequently encountered in high dimensional simulation problems.
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Proposition 2.10. Let H(q(-|F), fi) be the relative entropy of the ISD f; to the conditional PDF
q(|F), i = 1,...,my; and H(q(:|F),f) be the relative entropy of the mizture distribution f =
S w; fi to q( |F), where each w; > 0 and Y 1oy w; = 1. Then

H@UF), ) < S wi HGCF), f2) (2.72)

=1

Proof. By viewing the weights {w; : ¢ = 1,...,m,} as discrete probabilities and noting that the

function log(1/-) is convex, Jensen’s inequality gives

g(6|F) q(6|F) «— a(61F)
lo =lo < w; log 2.73
50 = BT w @ S 2 8 e (2.73)
The proposition follows after taking expectation Egjr[] on both sides of the inequality. O

The following proposition shows a similar relationship for the unit c.o.v. Ajg

Proposition 2.11. Let A; be the unit c.o.v. of importance sampling estimator when the ISD f; is

used, i=1,...,my; and Arg be the unit c.0.v. of importance sampling estimator when the mixture
distribution f = Y w; fi is used as the ISD. Then

Mn
Als <D wi A (2.74)
i=1
Proof. By viewing the weights {w; : ¢ = 1,...,m,} as discrete probabilities and noting that the

function 1/- is convex, Jensen’s inequality gives

g®0lF) _ _ a(6|F) <Zw 9(8|1F)

O T X wi fi(6) Fi(6) (2.75)

The proposition follows after taking expectation Egr[-] on both sides of the inequality and noting
from (2.18) that A? = Egr[q(6]F)/fi(8)] — 1 and Alg = Eqr[q(6]F)/f(0)] - 1. O

Corollary 2.4. Let A, be the unit c.0.v. of the importance sampling quotient R;(6) = ¢(8)/f:(0)
when the ISD f; is used, i = 1,...,my; and Ag be the unit c.0.v. of importance sampling quotient
R(0) = q(8)/ f(8) when the mizture distribution f = 3 "7 w; f; is used as the ISD. Then

My
AR <> w AR, (2.76)
i=1
Proof. Take F = R"™ in Proposition 2.11. O

Proposition 2.11 and Corollary 2.4 says that importance sampling is applicable in high dimensions

if the R.H.S. of either (2.74) or (2.76) is bounded as n — oco. From a practical point of view, the
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latter is easier to check than the former, since the unit c.0.v. of the importance sampling quotient can
be readily estimated by simulation, but the same is not true for the importance sampling estimator.
When m, = m does not depend on n, it is sufficient to have Agr, < o0 as n — oo for every
i=1,...,m in order that importance sampling be applicable in high dimensions.
We next focus on the case when the ISD is constructed as a mixture distribution with Normal
kernels using the points é,...,8,,,, where the covariance matrix associated with each Normal

kernel is taken as the identity matrix, that is,

10) =S wi 4(8;8:,T)

i=1

M 1 - _
=) w;(2m)~"/2 expl—7 (8 - 8:)7(8 - 8,)] (2.77)
i=1
In this case, using Proposition 2.4 and equation {2.62), we note that a sufficient condition for

importance sampling to be applicable in high dimensions is:

Min

Zw,- exp(|8i|]>) < o0 asn— oo (2.78)

i=1
Note that for (2.78) to hold, it is not sufficient to have |Ié,-” < oo foreveryi=1,...,my, unless m,,
does not depend on n. In fact, (2.78) imposes a restriction on the choice of the weights {w; : i =
1,...,my}. For example, suppose m, = n and ||@,|| is non-vanishing as n increases. Then (2.78)
says that the weights have to decrease for large n in order that the L.H.S. of (2.78) be bounded. We

next derive a less restrictive sufficient condition on the weights.

Proposition 2.12. Let the parameter PDF q be a standard Normal PDF given by (2.43) and the
ISD f be a mizture distribution with Normal kernels using the points 64,. .., ém", my > 1 with unit

covariance matriz, given by (2.77).

Then
E,[R(8)] < wp(?__? w; 116:1) (2.79)
Proof. First note that,
R(8) = 1) < a(6) = ﬁ[—ﬁ@_—]w‘ (2.80)

E::; w; ¢(9; éi) I) - H::‘l ¢'(91 éz")]:)wi - i=1 ¢(9’ éial)

since the arithematic mean of a set of positive numbers is greater than or equal to the geometric
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mean. Substituting ¢(8) = ¢(8) into (2.80) and simplifying, we have, for every i = 1,.

q(0)

— en( L11BL12 A,
20.8:0 exp(5[16:l1") exp(—(6:,6))

and so (2.80) becomes

R(O) < exp Y wi1BiP) exp(—(3 wiB:,6))

i=1

voyMn,

(2.81)

(2.82)

When 8 is distributed as q(8) = ¢(8), i.e., a standard Normal vector, the second term in (2.82) is

Lognormally distributed with mean given by

Ealexp(~(Y i 85,6)] = exp(51| S wi BlP)

i=1

Thus, taking expectation E,[] on both sides of (2.82) gives

EL[R(O)] < exp(y S wi 31 Eglexp(~(Y wi B:,6))]

i=1 i=1

1A - 1, & -
= exp(§ Zwi 118:11%) exp(gllzwf 8:l1*)

i=1 i=1

Now

MNin - Mn . Ma .
1> wibill? = O wib:, > w; 6;)
i=1 i=1 j=1
Mp My

= Z Z wi wj (6, b:i)
i=1 j=1

<D0 wiw; [18:]]1165]]

=1 j=1

= (S wi1Bill)?

i=1

My
<D w 16y

i=1

by Jensen’s inequality, since (-)? is convex. Combining (2.84) and (2.85) gives (2.79)

Corollary 2.5. In the context of Proposition 2.12, Ajs < o0 asn —+ o0 if

Mn
Zw,- 185> <0 asn— oo

i=1

(2.83)

(2.84)

(2.85)

(2.86)
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Proof. Under the hypothesis, A} = E;[R] — 1 < oo as n = 0o by Proposition 2.12, which implies
Ajrs < oo by Propacsition 2.4. O

Note that, by Jensen’s inequality,

S exp(us 187 < S ws exp((1B112) (2.87)
i=1 i=1

and hence (2.86) holds whenever (2.78) holds, showing that the condition in the former is less

restrictive than the latter.

Proposition 2.13. Importance sampling with ISD chosen from the class

Prs(n) = {D_wi¢a(:8:,1) : 8; € R ;w; 2 0,) w; =1} (2.88)
=1 i=1

for the reliability problem R(¢y, Fy) is applicable in high dimensions if (2.86) holds.

ISD with random pre-samples

When the ISD is constructed using design points, it is often true that ||8;]| < oo for every
i=1,...,my, and n, although it is possible that ”ém,.” becomes unbounded as n — oo. In this
case, the condition in (2.86) can often be achieved by properly choosing the Weights, for example, to
decay with ¢ such that the L.H.S. of (2.86) remains bounded as n — co. However, the same may not
be true for ISDs constructed using pre-samples simulated by some prescribed procedure intended to

populate the important parts of the failure region, that is,

5(6) = iw,- 4(6:8;,Cy)

=1
o L. )
= wi (2m) ™/ /|C7 | expl—5 (6 ~ B:)TCF (0 - )] (2.89)
i=1
where {é; :i=1,...,my} are the random pre-samples. The reason is that in this case the Euclidean

norm of the pre-samples may grow with the dimension n, even if the design point of the failure
region remains bounded. For example, in the case where the failure region is a half-space defined by
a hyperplane with the design point 8%, a random vector P distributed according to the conditional
distribution g(8|F) can be represented as (see (4.19) in Chapter 4)

0=2Z+(a—-{Z,u")u* (2.90)

where u* = 6 /||8"|| is a unit vector in the direction of the design point 6%, Z is a standard Normal
vector and « is standard Normally distributed conditional on & > 8 = ||8*||. Consider the expected
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value of ||8]|2,

E[I1611] = E[I|Z]1*] + 2E(a = {Z,u"){Z, u*) + E(a — (Z,u"))*|lu*|]? (2.91)

To simplify, first note that ||u*}| = 1 and E||Z||* = T EZ? = n. Also, (Z,u”) = Y I, Zu}
is a sum of Normal random variables, and hence is also Normally distributed. Since E{(Z,u*) =
Yie1(EZi)uf = 0and E(Z,u*)® = 30 wjujEZ;Z; = 37
distributed, and is independent of a. Thus

»,ui? =1, (Z,u") is standard Normally

E(@—(Z,u"))(Z,u") = Ea(Z,u*) - E(Z,u")?
=EaE(Z,u*) - E(Z,u*)?

=~1 (2.92)

E(a—(Z,u"))? = Ec? + E{(Z,u*)? — 2EaE(Z,u*)

=Ea® +1 (2.93)
Substituting (2.92) and (2.93) into (2.91), we have
E|I9|>=n—1+Ea? (2.94)

It can thus be expected that ||8]] = O(y/n) probabilistically, which is unbounded as n — oo.
Condition (2) of Proposition 2.8 is then violated when the ISD given in (2.89) with only one pre-
sample (m, = 1) is used. The implication of this is that importance sampling using only one pre-
sample simulated according to the conditional distribution ¢(8|F), which was supposed to be the
optimal way of generating pre-samples (Ang et al. 1992; Au and Beck 1999), will not be applicable
in high dimensions. The remaining question is whether importance sampling is applicable in high
dimensions when the ISD is constructed using more than one pre-sample, which is the usual case of
interest. Note that violation of Condition (2) does not immediately imply importance sampling using
ISD constructed with multiple pre-samples (m, > 1) will not be applicable in high dimensions, since
Conditions (1} and (2) are only sufficient conditions in the case of ISD with multiple points. The
unknown factor here is whether the ‘interaction’ arising from the pre-samples can help prevent Ass
from growing without bound as n increases. To answer this question, one needs to study Ays and
hence the variability of R(8)Iz(6) when @ is distributed as f = Y>3 w; f;. Due to the structure of
the ISD, such an analytical study has not been possible. Rather, the variability of the reciprocal of

R(8), i.e., L(8) = 1/R(8), will be studied. This could give insight on the variability of R, assuming
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that if R(@) has finite variance, then so does its reciprocal L(8) = 1/R(8). The next proposition
shows that the variability of L(@) increases exponentially with the order of the Euclidean norm
of the pre-samples, which suggests that importance sampling using ISD constructed from random

pre-samples is not applicable in high dimensions.

Proposition 2.14. Let the paremeter PDF q be a standard Normal PDF given by (2.43) and the
ISD f be a mizture distribution with Normal kernels using the points 6,..., ém,. , My > 1 with unit

covariance matriz:

F0) = wid(6;8:,1)

i=1

= 3w (2m) /2 expl~ (6 ~ )76 ~ B3] (2.95)
i=1
Let L(8) = f(6)/q(6) be the reciprocal of the importance sampling quotient.
Then the unit c.o.v. Ay, of L(8) when @ is distributed as f is O(exp(p?/2)), where p is some

representative scale among (|8:]}, i =1,...,my.

Proof.
. 4(8-8)
L) = ;:1 w; o0 ) (2.96)

Since 6 is distributed as f, it can be be represented as 8 = Z + 8, where Z = [Z1,...,2,) is a
standard Normal vector and I is a random index independent of Z and discretely distributed on

{1,...,m,} with corresponding probabilities {w1,...,Wn, }. Let L; = ¢(f — 9,-) [/#(8). Then

L= ¢(Z+é; —9.-)

¢(Z +6r)
= exp{——;- é{zj +61(5) = B - [Z; + 6:()°}
- J}::;[-—éi(j)]pzj +261() - B )]}
- exp[z: 6.) 2+ ,Zf}‘*‘” 01 - 3 jz:éi(j)Z]
= e:cp(-M;—]E)exp((én 7)) exp({B;,81)) (2.97)

In the above expression, the first term is a fixed quantity. The second term is Lognormally distributed
with mean exp(||8;]|2/2) and variance exp(||8;]|*)[exp(]|6:][*) — 1]. The third term is a discrete
random variable with mean 377_, w; exp((8;, 8;)) and second moment e Wi exp(2(8;,8;)). Since

the three terms are independent, the expectation of L; is just the product of the expectation of the
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individual terms:

Es(24] = exp(~ 1210 exp( (B, 2))E exp((B:, 61) (298)

Substituting the expression for the individual expectations and simplifying the resulting expression

gives
n -~ -~
Ef[Li] = ) wj exp((8;,8;)) (2.99)
j=1
The expectation of L = Y ;_, w; L; is thus given by
n ~ -
Ef{L] = Z w;w; exp((8;,6;)) (2.100)
i,j=1

To compute the second moment of L, first note from (2.97) that
1, - - . S
L;L; = exp[~ 5 (I18:l]* + |18;1")] exp ({8 + 85, Z)) exp((8: + 65, 61)) (2.101)

The first term is a fixed quantity. The second term is Lognormally distributed with mean exp(]|6;| |2 [2+

”5_,-”2 /2 + (8:,8;)). The third term is a discrete random variable with mean

Eflexp((B: + 8;,8:0)) = > wi exp((B; + 8;,8x))
k=1

= 2": wy, exp((8:, Ox) + (85, 64)) (2.102)
k=1

Using these results and simplifying the resulting expression for E¢[L;L;],
n -~ -~ ~ -~ - -
E[L:Lj] =) wxexp((8i,8;) + (B;,8%) + (8:,8x)) (2.103)
k=1
So
n
Ef[L%] = ) wiw;E[L;:L;]
i,j=1

n
= Y wywjwyexp((8:,8;) + (B;,0x) + (8:,84)) (2.104)
i,5,k=1
To assess the order of magnitude of the first and second moment of L and hence its c.0.v., first
note that the sets of numbers {w;w; : 4, = 1,...,n} and {wsw;wg : 4,5,k = 1,...,n} are both

non-negative and sum up to unity, and hence they can be viewed as a discrete set of probabilities.
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Thus E[L] can be viewed as the expectation of exp({fs,8s)) over random index pairs (I, J) with
corresponding discrete probabilities {w;w; : 4,5 = 1,...,n}. Similarly, E[L?] can be viewed as
as the expectation of exp((87,87) + (8s,0k) + (81,0k)) over random index triples (I, J, K) with
corresponding probabilities {w;w;w; : i,5,k = 1,...,n}. Note that |(8;,8;) < ||6:]ll|8;] with
equality holding for i = j, so |(8;,0 )] = O(p*) where p is some representative scale among 11831,
i=1,...,my. Thus, E[L] = O(exp(p?)) and E[L?] = O(exp(3p?)). Consequently, for the unit c.o.v.
of L,

2 _ Ef(L?]
8 =gy
exp(3p%)
~O ( exp(p)? )
= O (exp(p?)) (2.105)
and hence Ay = O(exp(p?/2)). O

2.4.4 Assessment of c.o.v. of importance sampling estimator

Using the expression for E;[RIF] given by (2.63), we can assess Ars and hence the performance
of importance sampling baéed on a single design point. As a first order approximation, assume the
failure region is a half space defined by a hyperplane with the design point 6*. First, we note that
Pr = ®(—p), where § = [|8"|| is the reliability index. To evaluate Q(8*,C, F), note that, according
to (2.56), it is the probability that a standard Normal vector Z lies in the region F' = {¥(A;Z+€ *) €
F}, where & = [£},...,&3)7 with & = —¢£/(2s — 1) and &* = [¢],...,&3]T = ¥T@*. Since the
transformation between @ and Z is linear and invertible, the region F” is still a half-space defined
by a hyperplane in the standard Normal space of Z. To find the design point associated with F',
note that the design point associated with F is given i)y #*, and so the design point z* associated
with F’ will satisfy ¥(A;2* + & ) = 6*, which gives

20 = A (BT =)= Ay (8 =€) (2.106)

since 8* = ¥£*. In terms of the components of 2*,

td

& -&) (2.107)

N
I
2|

4
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and so

n

171 = 3 & - &

1—1

- Z .«2 (61 232 )

r—l ]

(2.108)

since §; = 8;/1/2s% — 1 by (2.58). Thus, Q(8", C, F') can be evaluated using standard results for the
failure probability for a half-space in the standard Normal space:

Q(6",C, F) = o(—||z*|)) ‘I’(—\J Z( )67 (2.109)
When s; =1 for all i = 1,...,n, we have ||2*]] = 2||6"|| = 28, where 8 is the reliability index, so

Q(6°,C, F) = &(-25) (2.110)

Also, using (2.62),

Eq[R] = exp(8?) (2.111)

Substituting (2.110) and (2.111) into (2.63), and using (2.17), we have

A, = 228 exp(6)

s L (2.112)

For large 8 (e.g., 8 > 3), ®(—5) ~ #(B)/B and ®(-28) ~ ¢(28)/28. Applying these asymptotic
relationships to (2.112) gives

A15~-§—1 as B = (2.113)

and so the computational effort required by importance sampling grows linearly with increasing 8, or
roughly in a logarithmic fashion with decreasing failure probability Pr. This, of course, excludes the
computational effort for the search of the design point and is meaningful only when the failure region
can be well characterized by a design point such that the importance sampling estimate is unbiased.
Finally, assuming a target c.o.v. & of 30%, the computational effort required for importance sampling
in this case (excluding that needed for the search of design point) is N5 = A2¢/6% ~ 68, which is

indeed quite small. Extrapolating this conclusion to the general case, it may explain why the
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computational effort in the sampling part of importance sampling is often negligible compared to

that needed for searching the design point(s).

2.4.5 Diagnosis for applicability in high dimensions

The foregoing analysis focuses on the case of Normal PDF ¢(8) and ISD constructed from Normal
PDFs. It provides guidelines for how the ISD should be chosen in the cases considered. In general,
it is desirable in a particular application to check whether importance sampling using an ISD from
a chosen class of ISDs is applicable or not, before the actual simulation is started. Theoretically,
one can estimate Ars for the sequence of reliability problems in increasing dimensions and check if
it grows without bound with the dimension n. However, this is not computationally favorable, since
the estimation of Ars involves estimating the variability of RIr and hence the evaluation of the
indicator function Iy, which requires system analyses. A better strategy is to estimate Ag, which
only involves estimating the variability of the importance sampling quotient and not the indicator
function. Then, if Ar remains bounded as n increases, it can be guaranteed by Proposition 2.4
that Arg is bounded too, and hence importance sampling is applicable in high dimensions for the
particular problem. On the other hand, if Ag is unbounded as n increases, then it is likely that
Ars is unbounded too, although the answer is not definite. In this case, one may try to implement
importance sampling in high dimensions, and stop the process if A g estimated during the simulation
process is large. In the latter case, however, one is cautioned that the importance sampling quotient
is likely to be exponentially small. The resulting failure probability estimate may be practically
biased, whose large variability may not be detected when the sample size is not sufficiently large.
The advice here is that one should pay extra caution when it is found that A g is unbounded as n
increases.

Regarding the estimation of Ap, it is noted that it is better to use Ar = E;[R] — 1 in (2.62) by

estimating E,[R] with samples {8, ...,0n} simulated according to g, that is,

N .
1
BB = kz—:x R(6%) (2.114)
rather than to use Ag = E;[R?] — 1 by estimating E¢[R?] with samples simulated according to f,
although the latter is often adopted. It is because when R has large variability, the variance of the

estimate for E;[R] and hence A% is given by

Eq[R?] — E,[R]®

~ = O(E4[R?) (2.115)
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Table 2.1: Four cases of covariance matrix C

Case Covariance matrix C
1 si=lLi=1,...,n
2 3,=09,i=1,...,n
3 si=11,i=1,...,n
4 8;=09,i=1,...,[n/2};

8;=11,i=[n/2]+1,...,n

while in the latter case, the variance is

Ef[R"];, Eq[R]? — Eq[Ra]]:rl-:-q[R]2 = O(E,[R?)) (2.116)

This means that the variance in the latter could be an order of magnitude greater than the former.
The intuitive reason for this reduction of estimation error when Ap, is obtained by estimating E,[R] is
that in this case the samples are simulated from g, and populate in the region where R = ¢/ f assumnes
large values that give the major contribution to E,[R]. In contrast, when E¢[R?] is estimated, the
samples are simulated from f which are concentrated in the region where R is small. In fact, when

the variability of R is really large, this could give a practically biased estimate for its variance.

2.4.6 Example 1

This example demonstrates the preceding propositions for the case of an ISD constructed with a
single point. The parameter PDF ¢(0) is standard Normal, and the failure region F' is a half space
defined by a design point 8*:

F={(6,6"> £} (2.117)
where the design point 8" is given by
o =Ln,. 1 (2.118)
ﬁ b} ?

The exact failure probability is Pr = &(—3), regardless of the number of uncertain parameters n.
The ISD is a Normal PDF centered at the design point with covariance matrix C, given by (2.45).
The covariance matrix is assumed to be diagonal with diagonal elements {s? : ¢ = 1,...,n} which
are also its eigenvalues. Four cases, corresponding to different choice of C are considered, and are
shown in Table 2.1.

The formulae for Ar and Ajg are first verified using simulation results. The theoretical value of

AR is computed using (2.62). For Asg, (2.63) is used, where Q(8", C, F) is obtained from (2.109).
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On the other hand, using simulation, the estimate for A is obtained by estimating E,{R] based on
(2.114) using 10, 000 samples simulated according to g. To obtain Ays by simulation, we note that it
is possible in the current example to generate conditional samples according to g(8|F), using (2.90).
Thus, we estimate Egjr[R] with 10,000 samples simulated according to ¢(6|F') and then obtain an
estimate for Arg using (2.18). '

Figures 2.2 to 2.5 show the results for Ap for Cases 1 to 4. The corresponding results for A;g
are shown in Figures 2.6 to 2.9. These figures show that the trends of the estimates for Ap and Ayg
agree with the theoretical results given by (2.62) and (2.63). Also, the boundedness of Ag can be
consistently checked based on (2.114).

Next, the variation of Ag and Arg with the dimension 7 is compared for different cases, as shown
in Figures 2.10 to 2.13, where only the theoretical values are plotted. Except for Case 1, both Ap
and Ajg increase exponentially with n, indicating that importance sampling is not applicable in
high dimensions in these cases. This conclusion is precisely what is predicted by Proposition 2.8.
On the other hand, for given n, although Ap increases exponentially with 3, the same is not true-
for Ars. The plots of Ayg for different values of § are very close to each other. In fact, according to
Section 2.8, Afs increases only linear with 4. In general, the values of Ag are seen to be orders of
magnitude greater than those of Ayg, which indicates that the magnitude of Arg cannot be inferred
from that of Ag. Nevertheless, the trend of Arg and A with n are similar; Ars remains bounded
as n increases whenever Ay does (Case 1), and A;s grows exponentially with n whenever Ay does
(Cases 2 to 4). This shows that the behavior of Ag with n can be used for concluding the behavior

of Ays, and hence for diagnosing applicability in high dimensions.

2.4.7 Example 2

This example investigates the applicability in high dimensions of importance sampling with an
ISD constructed from multiple design points. The failure region in this case is the union of three

half-space regions:

F=U,{(0,65) > 6%} (2.119)
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Figure 2.4: Variation of Ag with n for Figure 2.5: Variation of Agp with n for
Case 3 of Example 1 (s; = 1.1,i = Case 4 of Example 1 (¢; = 09,7 =
1,...,n) 1,...,[n/2};8: =1.1,i =[n/2] + 1,...,n)
where
«_ B
67 = —[1,...
1 \/’E[l’ ’1]
. B % k=1,...,n/2
05(i) = \/—
0 k=n/2+1,...,n
. 0 k=1,...,n/2
65(i) = (2.120)
B\/E E=n/2+1,...,n
are the design points corresponding to the failure boundaries. Note that ||8}|| = 8, and so the

three failure regions have the same probability content, given by ®(—23). However, the probability
content of F, i.e., Pr = P(F), i3 not equal to the sum of the probability contents of the three failure
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regions because of the intersections among these failure regions. The ISD is constructed as a mixture
distribution with Normal kernels centered among the three design points and with covariance matrix

C, with the same weighting for all the design points, equal to 1/3:

3

76) =" 34(0:6;,C) (2121)

i=1

The four cases corresponding to different choice of C as in the last exé.mple are considered (see
Table 2.1). In this example, Ay is estimated based on {2.114) using 10,000 samples simulated from
¢, as in the last example. As is common in most applications, it is not possible in this example to
generate efficiently conditional samples according to ¢(8|F), and so Ars is estimated using 10,000
samples generated from the ISD.

Figures 2.14 to 2.17 show the estimates for Ag and Ayg for increasing dimensions n. Except
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Figure 2.11: Variation of A and A;s with
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for Case 1, both Agr and A;s grow exponentially with n, indicating importance sampling is not
applicable in Cases 2 to 4. Also, the variation of Ayg with 7 is similar to the variation of Ag; Ass
remains bounded as n increases whenever Ag does (Case 1), and Ays grows exponentially with n
whenever Ap does (Cases 2 to 4). This suggests that, in this example, the boundedness of Ag as
n —» 0o could be a necessary and sufficient condition for the boundedness of Ag, although only the

sufficiency part has been proven in Section 2.4.3.

2.5 Summary of this chapter

The variability of importance sampling estimators has been analyzed from different perspectives
to gain insight into the factors governing the choice of an importance sampling density. The lower-

bound for the unit coefficient of variation of importance sampling estimators in terms of relative
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entropy provides the basic insight into the factors that render importance sampling inapplicable

in problems with a large number of uncertain parameters. The new results on the applicability

of importance sampling in high dimensions should provide important guidelines for applications

to simulation problems involving a large number of uncertain parameters, such as first excursion

problems where a stochastic process is used for modeling the excitation, or reliability problems with

uncertain structures having a large number of uncertain model parameters.
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Chapter 3 Markov Chain Monte Cario Simulation

Markov Chain Monte Carlo Simulation (MCMC) is a class of powerful simulation techniques for
generating samples according to any given probability distribution, at least in the asymptotic sense as
the number of samples increases. It originates from the Metropolis method developed by Metropolis
and his co-workers for applications in statistical physics (Metropolis et al. 1853; Wood and Parker
1957; Alder and Wainwright 1959; Abraham 1986; Duane et al. 1987). The Metropolis method
was later applied to solving global optimization problems, resulting in a well-known technique called
‘simulated annealing’ (Kirkpatrick et al. 1983; Hajek 1988; Bertsimas and Tsitsiklis 1693). A
major generalization of the Metropolis method was due to Hastings for applications in Bayesian
statistics (Hastings 1970; Bhanot 1988; Besag and Green 1993; Tierney 1994). Other applications of
MCMC include image processing (Geman and Geman 1984) and econometrics (Chib and Greenberg
1994; Chib et al. 1998). See Fishman (1996) for a comprehensive discussion of MCMC. Applications
to reliability calculations and Bayesian system identification in civil engineering include Au and Beck
(1999) and Beck and Au (2000).

In MCMC, successive samples are generated from a specially designed Markov chain whose
limiting stationary distribution tends to the target PDF = (8) as the length of the Markov chain
increases. Let {61,63,...} be the Markov chain samples, then if the initial sample 8, is distributed
exactly as 7(8), the subsequent samples {83,83, ...} are distributed as #(@). If the initial sample is
not distributed as n(8), under mild regularity conditions, the distribution of the subsequent samples
tends to w(8), that is, p(fn) < w(On) as N — oco. Since the samples are generated from a Markov
chain, they are dependent, and in general when the initial sample is not distributed as the target
PDF, they are not identically distributed. In spite of the fact that the Markov chain samples are
not i.i.d., they can still be used for statistical averaging as if they were i.i.d., to yield estimates of
the expectation of quantities of interest, by virtue of the laws of large numbers.

The significance of MCMC to solving reliability problems is that it provides a versatile way for
generating samples according to the conditional PDF ¢{8|F) given failure occurs, which has been
the main challenge in a simulation-based reliability method. The Markov chain samples explore and
gain information about the failure region as the Markov chain develops. Proper utilization of these
samples can lead to better estimates for the failure probability. Moreover, in a MCMC procedure,
only the ratio of the target PDF at different states is evaluated, which means that the target PDF
need only be known up to a scaling constant. It is thus possible to generate samples according to
the conditional PDF ¢(8|F) = q(8)Ir(8)/Pr even when the scaling factor Pr is unknown. These

features make MCMC a favorable tool for generating samples conditional on the failure region for
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reliability analysis.

The classical scheme of MCMC, i.e., the Metropolis-Hastings algorithm, will be presented first,
followed by a comparison of MCMC with importance sampling. We will then discuss the potential
problems that will be encountered when the scheme is applied to problems with a large number of
uncertain parameters. A modified MCMC scheme will then be developed, which will form a major
component in the subset simulation method developed in Chapter 5 for solving the first excursion

problem for general nonlinear systems.

3.1 Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm for generating Markov chain samples {6, 82,. ..} with lim-
iting stationary distribution equal to the target PDF #(0) is described as follows. Let p*(£|6),
called the ‘proposal PDF,” be a chosen n-dimensional joint PDF for £ that depends on 8. In
general, let the current Markov chain sample be 6; (k = 1,2,...). To generate the next Markov
chain sample 6, first generate £, according to the proposal PDF p*(-|0x). Compute the ratio
= (€)D" (Bk)&:)/m(Ok)p" (€416k). Set Ory1 = &, with probability min{1,7;} and set 8541 = 6%
with the remaining probability 1 — min{1,74}.

For our purpose, the Metropolis-Hastings algorithm is presented in the following when the target
PDF is equal to the conditional PDF, that is, 7(8) = q(0|F) = ¢(8)Ir(0)/Pr. Here, the first
Markov chain sample 6, is assumed to lie in the failure region F, but it need not be distributed as
q(8|F).

Metropolis-Hastings algorithm

Repeat for k=1,2,...:

1. Generate a ‘candidate state’ O 1:

(a) Simulate a ‘pre-candidate state’ £, according to p*(&;.1|0x).

(b) Compute the acceptance ratio:

TP Oulr)
M (00 p* (Erra165)

(3.1)

(c) Set Bxy1 = &, +1 With probability min{1,7x,,} and set Br4+1 = O with the remaining

probability 1 — min{1,rx41}

2. Accept/reject 041 according to F:
If §k+1 = O, increment k by 1 and go to Step 1. Otherwise, check the location of 9k+1. If
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ék—i—l € F, accept it as the next sample, ie., Op4 = ék+1; otherwise reject it and take the

current sample as the next sample, i.e., G411 = B, then increment k by 1 and go to Step 1.

Note that Step 2 could have been omitted if the acceptance ratio in Step 1 is multiplied with
the term Ir(§;,,). The algorithm is presented in two steps for discussion purposes. In the first
step, a candidate state 8y, is generated, whose distribution is related to the proposal distribution
D*(-|8x). The second step ensures that the next sample lies in the failure region F. In other words,
to generate the next Markov chain sample from the current one, we first generate a candidate state,
and then take either the candidate state or the current sample as the next sample according to
whether the candidate state lies in the failure region or not. Note that the Markov chain samples
{6:,83,...} are not all distinct, since it is possible that some of them are ‘repeated.” This occurs
when the candidate state is equal to the current state due to rejection of the pre-candidate state
in Step 1, or when the candidate state does not lie in the failure region and hence is rejected in
Step 2. As we will see later, this ‘repeating’ aspect of the Metropolis-Hastings algorithm is the key
mechanism that maintains the distribution of the next sample to be equal to that of the current

state when the current sample is distributed as the target PDF.

Proof of stationarity

We now show that the next Markov chain sample is distributed as the target PDF when the
current one is, and hence the target PDF is the stationary distribution of the Markov chain. Although
the proof can be done for general target PDF #(8), we focus on the case of conditional PDF,
i.e., m(#) = ¢(8|F), since the latter provides more insight into the algorithm with respect to the
conditioning aspect of the failure region F in the reliability problem. The proof and the techniques
involved for the general case are very similar to this special case, which are quite standard and can
be readily found in the MCMC literature (see, e.g., Fishman 1996).

The goal is to show that p(8x+1) = ¢(0|F) when p(8) = q(B|F). Note that all the Markov
chain samples lie in the failure region F, as enforced by Step 2. It is thus sufficient to consider the
transition between the states in F', which is governed by Step 1.

First, consider the case of distinct states, i.e., Ox+1 # 0. According to Step 1, the transition

PDF to the next state given the current state 8 is given by

D" (0k|0k+1) ¢(Or+1) }
D*(Bk+116k) ¢(Ox)

P(6k+1[0x) = p"(05+1|8%) min{1, (3.2)
Since 6y and B4, lie in F and ¢(0) differs from ¢(8|F) by a multiplicative constant, the above is
équivalent to

D" (0k10k+1) 9(Ok-11| F)

P(Ok+1|6k) = p* (02+1|6x) min{1, D*(0k+1|0%) 9(6k|F)

} (3.3)
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and so

(001100 a(041F) = minfy, EOOe )00t oo 0y gt0nlr) 0

Using the following identity for positive real numbers a, b:
. a ) b '
min{1, —5}b = mm{l,;}a (3.5)

equation {3.4) becomes

D" (Or+110%) q(0x|F)

P(0k+16k) g(0k|F) = min{ p*(0k16141) @Ok 41| F

) } 2" (6x]6k+1) @(Ok+1|F) (3.6)

and so

D(0x+116k) ¢(0k|F) = p(Bk|Ox+1) (0411 F) (3.7)

The above equation is commonly known as the ‘reversibility condi