THE STEADY-STATE RESPONSE OF
MULTIDEGREE-OF-FREEDOM SYSTEMS WITH A

SPATIALLY LOCALIZED NONLINEARITY

Thesis by

Richard Keith Miller

In Partial Fulfillment of the Requirements
for the Degree of

Doctor of Philosophy

California Institute of Technology
Pasadena, California

1976

{Submitted on October 1, 1975)



_ii-
ACKNOWLEDGMENTS

The author would like to express his gratitude to Professor
W. D. Iwan for his invaluable guidance and encouragement through-
out this investigation. The assistance of the Faculty of Applied
Mechanics is also gratefully acknowledgéd.

The author would like to express his appreciation to the
California Institute of Technology and the National Science
Foundation for financial support during his years of graduate study.
The partial support of this work under a grant from the National
Science Foundation is also acknowledged.

Sincere thanks are due to Miss Sharon Vedrode for her
patient and skillful typing of this manuscript.

The author also wishes to express his gratitude to his wife,

Beth, for her warm encouragement and constant understanding and

patience.



~iii-
ABSTRACT

This thesis is concerned with the dynamic response of a
general multidegree-of-freedom linear system with a one dimen-
sional nonlinear constraint attached between two points. The non-
linear constraint is assumed to consist of rate-independent con-
servative and hysteretic nonlinearities and may contain a viscous
dissipation element. The dynamic equations for general spatial and
temporal load distributions are derived for both continuous and
discrete systems. The method of equivalent linearization is used
to develop equations which govern the approximate steady-state
response to generally distributed loads with harmonic time
dependence.

The qualitative response behavior of a class of undamped
chainlike structures with a nonlinear terminal constraint is
investigated. It is shown that the hardening or softening behavior
of every resonance curve is similar and is determined by the
properties of the constraint, Also examined are the number and
location of resonance curves, the boundedness of the forced
response, the loci of response extrema, and other characteristics
of the response. Particular consideration is given to the
dependence of the response characteristics on the properties of the
linear system, the nonlinear constraint, and the load distribution.

Numerical examples of the approximate steady-state response
of three structural systems are presented. These examples

illustrate the application of the formulation and qualitative theory.
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It is shown that discomnected response curves and response curves
which cross are obtained for base excitation of a uniform shear
beam with a cubic spring foundation. Disconnected response curves
are also gbtained for the steady-state r'esponse to a concentrated
load of a chainlike structure with a hardening hysteretic constraint.

The accuracy of the approximate response curves is investigated.
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I. Introduction

In order to describe the response of structures to damaging
excitations, consideration must be given to nonlinear structural
behavior. Such nonlinear behavior occurs whenever stresses and
deformations exceed the elastic limits of any member of the struc-
tural system., In the most general case, nonlinear structural
behavior occurs simultaneously in many locations throughout the
structure. However, in many important applications the nonlinear
behavior occurs primarily at a single location, either by intentional
design or prevailing circumstances.

Such spatially localized nonlinear behavior frequently occurs
in those parts of the structure where sizable discontinuities exist
in structural properties. For example, many existing multi-story
buildings have a first story which is considerably more flexible than
any of the upper stories. In such structures, the first story is
typically left ''open' (i.e., no shear walls are provided) in order to
accommodate a ground-level parking facility or to provide additional
window space for architectural reasons. Observations of the earth-
quake response of such buildings [1-4] clearly indicate that the
nonlinear structural behavior occurs primarily in the first story.
An example of such behavior may be observed in Figure 1.1,

Other structures which display localized nonlinear response to
strong shaking include many types of mechanical and electrical
equipment which frequently sustain damage to structural mountings

and isolation systems.



-

-2

193ye

‘(6] 1,61 ‘6 Aaeniqeq jo aenbyjsey opuruIag ueg au3
I9jusn) TEIIPOIN MITA DAI[O 2U} Jo I00T1 3IsITq Syl 03 98eweqg 1

T

313




o

It has long been recognized that a degree of vibration isola-
tion may be provided to a structure which is mounted on flexible
supports. Clearly, such a concept forms the basis for the design
of most vehicle suspension systenﬁs and vibration isolation systems.
A proposal to mount an entire building on an intentionally flexib:le
or ''soft" first story has been discussed for many years [6-8] but
has not received wide acceptance because of problems introduced
by large relative story displacements [2, 18]. However, there have
been many recent proposals [9-15] to substitute various nonlinear
foundation systems for the soft first story in order to achieve a
degree of earthquake protection. Such intentionally nonlinear
foundations are currently used to control low-level vibrations of
some full-scale buildings [16-17].

Recent attempts to predict the dynamic response of systems
with a localized nonlinearity have employed numerical or simulation
methods [18,9, 11]. While such methods are very useful for pro-
viding detailed information on the response of a specific system to
a specific excitation, they are not well suited to more general
studies. Numerical methods also tend to be expensive, and as a
result they frequently enter the design process only as a check on
the final configuration.

Due to the complexities involved, analytical methods for
determining the dynamic response of such systems have received
much less attention. When applicable, such methods are far more
useful for design and theoretical studies. They contribute to the

general understanding of the hehavior of many systems by providing
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direct relationships between the observed response characteristics
and the system properties which cause them. Such cause and
effect relationships are of primary concern in this study, and con-
sequently an analytical method is empldyed.

Among the existing analytical methods, none are found which
directly apply to problems with transient excitation. The most
widely used techniques apply to problems with steady-state harmonic
and stationary stochastic excitation. Of these two classes of
problems, those with steady-state harmonic excitation are by far
the easiest to analyze and are considered in detail in this investi-
gation.

The steady-state response of structures to harmonic excitation
is of both direct and indirect importance. Such response is of
obvious importance to problems which involve rotating machinery
or other sources of steady harmonic excitation. However, it is also
important for less obvious reasons to problems involving transient
excitation. For instance, it has been observed that the displacement
response of many large structures during earthquakes displays
nearly harmonic behavior. Furthermore, knowledge of the large
amplitude harmonic response is also sometimes used for estimating
and interpreting the nonlinear transient response of structures. For
instance, the object of many full-scale tests is to determine from
harmonic response data the ''effective'' natural frequencies, damping
ratios, and mode shapes for use in estimating the response to
earthquake excitation, The concept of effective natural frequencies,

damping ratios, and mode shapes has also been used by many
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authors [19-26] to interpret the nonlinear response of structures to
earthquake and other excitations.

The primary objective of this investigation is to analytically
determine the characteristics of the steady-state harmonic response
of a general class of systems with a spatially localized nonlinearity.
Both the qualifative and quantitative properties of the response are
investigated, with particular consideration given to cause and effect
relationships which exist. I is intended that this study will pro-
vide a basis for further work which will contribute to a better
general understanding of the dynamic response of multidegree-~of-
freedom nonlinear systems.

In Chapter Il the dynamic response problem is formulated for
a general linear system with a single nonlinear constraint attached
between two arbitrarily chosen points. The dynamic equations for
general spatial and temporal load distributions are developed. The
approximate method of equivalent linearization is used to develop
the governing dynamic equations for the steady-state harmonic
response of systems with general hysteretic nonlinearities.

In Chapter III the qualitative harmonic response characteristics
of linear chainlike systems with a nonlinear terminal constraint are
examined in detail. Several theorems are presented which specify
the dependence of certain response characteristics on the properties
of the linear system, nonlinear constraint, and spatial load distribu-
tion. Consideration is given to the response of both conservative

and dissipative systems to free and forced oscillations,
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In Chapter IV numerical examples of the harmonic response
of three different systems are analyzed. The examples include
continuous and discrete linear systems, conservative, viscous, and
hysteretic nonlinearities, and two load distribﬁtions, with primary
consideration given to base excitation. A new model for ''softening-
hardening' hysteresis is presented. Consideration is also given to

the accuracy of the approximate steady-state solutions.
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II. Formulation and Governing Equations

2.1 Formulation

Depicted in Figure 2.1 is a general structural system with a
spatially localized nonlinearity. The system is assembled from
two distinct components: (1) an entirely linear structural system
(indicated schematically as an irregularly shaped linear solid), and
{2} a nonlinear structural element (indicated schematically as a
nonlinear spring) which is attached to the linear system at the two
points P and Q. The magnitude of relative displacement between
these points, labeled 'x', represents a measure of deformation in
the nonlinear element. The generalized excitations Zy» Zyy Zgpees
may represent any compatible combination of prescribed body
forces, surface tractions, or displacements applied to the linear
system either at discrete points or, in the case of continuous sys-
tems, distributed over any portion of the body.

The linear system may represent any continuous or discrete
linear structural system for which the principle of superposition is
applicable, and for which the standard convolution techniques may
be applied. In particular, the linear system may be composed of
lumped masses, springs, and dashpots, or it may contain continuous
elements such as linear elastic or viscoelastic rods, beams, or
plates.

Boundary conditions for the linear system may be provided by
regarding the generalized excitations as being composed of two
distinct sets., A set of active excitations, {zl, Zoy Bgr s .}, composed

of prescribed time-varying generalized forces and displacements,



Figure 2.1 - Schematic of a Structural System with a
Spatially Localized Nonlinearity

Fee— Flx,x) p——F 7,

Figure 2.2 - Freebody Diagrams
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provides forcing to the system. A set of "null excitations,"

[zl*, zz*, z3*, +++ }, composed of prescribed null forces and dis-
placements, formally provides the boundary conditions to the system.
It will hereafter be assumed that the boundargr conditions (or null
excitations) and the details of the linear system are prescribed
together in any given application (e.g., a cantilevered beam, a
simply supported plate, etc.). Thus, consideration is given only

to active excitations in the following analysis.

The nonlinear structural element may represent any massless,
one-dimensional nonlinear strucfural assemblage whose restoring
force magnitude, F, depends only on x and its time derivative %,
and satisfies certain broad assumptions. These assurriptions, which
are presented later in detail, permit the analysis of the most
common engineering models for mnonlinear structural behavior,
including all rate-independent hysteretic and all conservative
hardening and softening nonlinearities. Excluded from consideration
are nonlinearities which provide stiffness degrading or other fatigue

behavior, and those which contain explicit dependence on the rate

% (except for a viscous damping term},

2.2 Governing Dynamic Equations for Gemneral Excitation

2.2.1 Equations of Motion

Let ¢ be a unit vector directed along the line of action of the
nonlinear restoring force for the systerﬁ of Figure 2.1 in its initial
state. Assume that displacements within the linear system remain

sufficiently small during the ensuing dynamic response that e does
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not change orientation. Then e becomes a convenient direction
along which to measure the forces and displacements of the system.

Depicted in Figure 2.2 is a free body diagram of the attach-
ment points P and Q, where all forces and displacements are in
the e direction. Let Yy represent the displacement of point Q and
y, represent the displacement of point P in same direction, as

shown. Then
X =y, =Y, (2. 1)

Let F(x,x) be the magnitude of the restoring force developé.d in the
nonlinear element due to the deformation x. Let Fy be the magni-
tude of the force developed in the linear system at Q due to the
displacements Yy and Yoo and the generalized excitations
ZyrZyy By Let 3, be the magnitude of the similar force
developed in the linear system at P. Balancing forces at points
B wni O |

F = Flxx)

(2.2)
3, = -F(x, x)

2,2.2 Linear System Force Decomposition

Clearly by specifying y, and Yp» and the generalized excita-
tions z;,2,, Z3, 4+, all forces and displacements within the linear
system, and in particular 31 and 32, are completely determined.
In this sense, 31 and 32 may be considered functionally dependent

upon y,, Yy, and Zys 25, 2 Thus

310--
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;}i = 3i(y1, Yo' By Zgs e 4 iml,2 (2. 3)

where 31(-) may be interpreted as a linear integral-differential
operator.

Applying the principle of superposition to the linear system,
the force in equation (2.3) may be decomposed into three com-

ponent forces as follows
3i(yl, Vo321 2y z3., ees) = ;}i(yl, 00,0, 0:55:) 31(0, Yo 0,0, 0454 )

¥ 31(0; 0;zlnzziz3"" ); i= 112 (2"4)

where, for instance

(1) 31(3;‘1, 0;0,0,0,... ) represents the magnitude of force
developed in the linear system at Q in response to the prescribed
displacement time-history Y1 applied at Q, while maintaining null
displacements at P (i.e., P is rigidly constrained in the e direc-
tion) and null excitations ZysBysZgy e (Note that if the generalized
excitations involve prescribed displacements, the requirement that
%, =2, =+++ = 0 introduces additional fixity or displacement boundary
conditions on the linear system, )

(2) 31 (0, Vs 0,0,0,...) represents the magnitude of force
developed in the linear system at Q in response to the prescribed
displacement time-history y, applied at P, while maintaining null
displacement at Q (i.e., Q is rigidly constrained in the e direction),

and null! excitations Zyy Ty Bgsens
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(3) 31(0, 0; Z10 25 Zogreos ) represents the magnitude of force
developed in the linear system at Q in response to the prescribed
generalized excitations Zys Zyr Bgree s while maintaining null dis-
placements at both P and Q (i.e., both P and Q are rigidly con-
strained in the e direction).

Thus, the first two terms on the right in (2.4) represent
"impedance-like' forces which may be determined directly from
Y1 and Vo and the details of the linear system, without regard to
any particular arrangement of generalized excitations. The last
term on the right in (2.4) represents an "excitation-like' force
which is dependent upon the particular spatial distribution and time-
history of the generalized excitations Zyy Zoy Zgrenes but which is
independent of the motions 12! and y, at points P and Q.

To simplify the notation, consider the definitions

gi}.(.) 35.(-’0;0’0’.-‘)
; i=1;2 (2. 5)

3y 05 < 50 Qs }

IH

and noting that, for a given spatial distribution and time-history of
excitations zl{t), zz(t), z3(t), .., the term 31(0, 0; Ziys Zos Bigsees ) may
be evaluated to obtain a known deterministic function of 't', con-

sider the additional definition
fiEX(t) = gi(o! O;Zl(t).l zz(t)QZ?’(t)"‘“ ) (2‘6’

Combining equations (2.2)-(2.6), the equations of force

balance may now be written as follows
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F ) + Fplyy) + fip (8) = Fx k)
(2.7)
Fa1lry) + Fpplyp) + Hpylt) = -Flo %)

Note from (2.1) that Y5 = Y3 + x. Thus, y, may be eliminated

from (2.7) by another application of the principle of superposition
Equations (2.1), (2.7), and (2.8) may be used to ob_tain

F ) + F,0) + Fy0vy) 3,00 + F,,) F 3F,E)

T Ex®) + Lpy ()]
(2. 9)

= [f1px® - HEe®)] J

Applying the ''general reciprocal relation for elastokinetics"

[27] to the linear system, it can be shown that

313'(" = 3ji(-); v it (2.10)

2.2.3 Governing Eguations

Combining equations (2.9) and (2.10), the governing equations

for general excitation are found to be

Frplvy) +23,0y;) +35,0yy) = -[F,,(x) + F;, )] - ({15, () +1,._(t)]

(2.11)

Ty (7)) - By vg) + By, () - B, ) + 2F (e, %) = [£, 0 (¢) - £, (¢)]
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Note that in any given application, equations (2.11) may represent
two coupled integral-differential equations which govern x and ¥y-

Two interesting observations may be made concerning (2.11).
First, observe that since the 3ij(-) repi-esent linear operators, the
first of (2.11) is entirely linear. Thus, there exists some convo-
lution representation of ¥y in terms of x and the known functions
flEx(t) and fZEx(t)’ and in principle y, may therefore be eliminated
from the second of (2.11) to obtain a single nonlinear dynamic
equation for =x.

Secondly, if there exists symmetry in the linear system to

the extent that

then from (2.11) the second equation uncouples from the first
yielding a single nonlinear differential equation for x which is
entirely independent of y;e In such a case, it is found that the
motion of the system is composed of two linearly independent con-
tributions: one which represents 'pure rigid body motion" of the
nonlinear element, and one which represents 'pure deformation' of
the nonlinear element. These two component motions are excited
independently by combinations of flEX(t) and fZEX(t). For example,
if (2.12) holds and if the load distributions and time-histories are

such that

Sl = Lo B3 w3 (2. 13)
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then it can be shown that only pure rigid body motions of the non-

linear element are possible. Also, if (2.12) holds and if
flEx(t} = —fZEx(t); vt (2. 14)

then it can be shown that only pure deformations of the nonlinear

element are possible.

2.2.4 General Approach for Solution

If (2.11) are solved for the time histories x(t) and yl(t), then
yz(t) may be determined from (2.1). With ylft) and yz(t) both
known, the problem of determining the detailed response of all
points within the linear system becomes a straightforward applica-
tion of the techniques of linear elastokinetics. Since this investi-
gation is concerned primarily with the effects of the nonlinearity on
the response, and since the techniques of linear elastokinetics for
determining the response within the linear system are relatively
well understood, consideration will hereafter be limited to

determining the time-history x(t) from (2.11),

2.3 Governing Dynamic Equations for Harmonic Excitation

2.3.1 General Remarks

The problem of determining the response of structures to
harmonic excitation arises frequently in engineering applications.
Most mechanical equipment involves rotating machinery which pro-
vides harmonic excitation of various amplitudes. Typical mechani-
cally excited structures of engineering interest are structures and

foundations which support large turbine power-generating units,
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high-rise buildings which support large roof-mounted air condi-
tioning units, and numerous stationary and portable mechanical units
ranging from industrial plant installations to oil exploration equip-
ment., In such systems, nonlinear struétural elements are fre-
quently mounted between the source of excitation and the supporting
structure in a 'vibration isolation system,' whose function is to
reduce the dynamic forces transmitted by the source.

Harmonic excitation (or near harmonic excitation) also occurs
in nature in the form of resonant motion of various kinds.
Engineering structures with this type of harmonic excitation include
buildings and bridges excited by aero- and hydrodynamic vortex
shedding, and structures mounted atop an oscillating massive sub-
structure. In such situations, interest in nonlinear response arises
because of the high amplitude forces and displacements which may
occur.

Another motivation for studying the nonlinear harmonic
response of structures is to gain insight into the response to more
complicated earthquake and blast excitations. Such inherently tran-
sient and nonlinear response is of obvious engineering importance,
However, as yet there exists no straightforward analytical method
for interpreting and predicting the nonlinear earthquake response of
multidegree-of-freedom structures. All practical analysis is
currently accomplished by numerical techniques from which it is
difficult to generalize. Considerable insight into such complex
response is provided, however, by analytically determining the

large-amplitude nonlinear response to harmonic excitation. From



the harmonic response, it is possible to determine the amplitude
dependence of the effective natural frequencies, damping ratios, and
mode shapes, all of which are parameters of known importance in
the understanding of the earthquake response of linear structures.
It is also possible to determine the dependence of the amplitude of
response on the amplitude of excitation. Such information has been
used by many authors [20-26,38,41] to interpret the response of both
single- and multidegree-of-freedom nonlinear structures in terms
of an ''equivalent linear! system. Such practice has gained wide
acceptance and is included in many textbooks on vibrations [42, 437.
Furthermore, it has been suggested that, for single-degree-of-free-
dom systems, such equivalent linear parameters may be used

directly to obtain estimates of the earthquake response of the non-

~ linear system [19].

2.3.2 Generalized Harmonic Excitation

An important class of harmonic excitations is obtained when
each of the generalized excitations zl(t), zz(t), z3(t), ... has the

same harmonic time dependence, z(t)
zi(t) = ¢ z(t) ; 154,23 wee (2.15)

where {ci; i=1,2,3,...} is a set of real constants and =z(t) is

harmonic in t with amplitude zy and circular frequency w:

alt) = zycoswt = zoﬂe{eiwt} (2. 16)



-18-

Then clearly, recalling the definitions in (2.6) and using the
properties of linear systems, there exists some transfer function
relationship between ijx(t) G=1,2) and z(t). Thus, let Gj(iw)

(j = 1,2) be the complex frequency transfer function defined such
that
s m ) _ o iwt
ijX(t) = Gj(lw)z(t) 3 zft) = e (2. 17)
From (2.17) and (2.6) it is seen that Gj(iw) represents the steady-
state force developed in the linear system at Q if j=1 or at P if
j =2, in response to the generalized excitations with unit harmonic

Wt, while maintaining null displacements at both

time dependence ei
P and Q. Thus, Gl(iw} and G, (iw) may both be obtained by solving
a single problem in linear elastokinetics using standard techniques
for linear systems.,

In order to express the relationship (2.17) in a form more

convenient for later application, consider the definitions

fe) = Pj@)2t) + q)z) s z@) = (2. 18)

where pj(w) and qj(w) (j = 1,2) are real valued transfer functions and
where it is noted that z(t) = iWwz{t). It is easily shown that (2.18)
remains valid for all harmonic z(t) given by (2.16) and that pj(m),

qj(w), and Gj(iw) are related as follows

Pj W) = &e{GJ'(iw )}
; (2.19)
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Returning to the governing equations (2.11), it is seen that the
two forcing terms are linear combinations of flEx(t) and fZEx(t).
Therefore, assuming that z(t) is given by (2.16), consider defining
viw), u{w), y(), and s(w) for convenience such that

[flEx(t) - £2Ex(t)] = v(w)cos [wt - y(w)]

(2.20)

‘[flEx(t) + fZEx(t)] = uw) cos [wt - y(W) - s(w)]

Thus, v(w) represents the amplitude of the forcing term in the
second of (2.11) with y(v) representing the phase lag relative to
z(t), while u(y) represents the amplitude of the forcing term in the
first of (2.11) with (w) representing the phase lag relative to the
first term in (2.20).

Then v(®), u(w), yw), and s{w) are related to pl(w), ql(w),

pz(w), qz(w), and the amplitude of generalized excitations, zg a8

follows
vw) = z4{lp;@) - p,@1% + vl @) - q,)1%)F |
u) = zy{[p, W) + 'pz(uv)jl2 + wz[ql(w) + qz(w)lz}%
oF 'w[ql(w) = qz(w)] F(Z‘ 21)
vl =t N T @) - B, ] :
-1 2wlq, wlp, @) - q,Wlp, ®)]
BlBf = A,y 2 T2 ) J
[piW) - py{w)] + w'[qiW) - q;)]

Substituting (2.20) into (2.11) one finds that the governing

equations for the general harmonic response are given by
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Fpvy) + 23,07,) + F,5,(0)

= -[3,,(x) +3,,&)] + u)cos [wt - y(W) - 5(w)] (2.22)
Fpp (V) - Fp(y)) + 3, &) - 3, (%) + 2F(x, %) = viw)cos [wt -y ()]

Since steady-state solutions to (2.22) are of primary concern,
only relative measures of time and phase are of importance.
Therefore, it will be convenient to shift t in (2.22) such that

t - t-y(w)/w. Then (2.16) becomes

alt) = z,cos [wt-y)] = zyfe {ei[wt . ‘“‘”)J} (2. 23)
and (2.22) becomes
Fpplyy) +28,0) + F,,(04)
~[3,,(x) +F,x)] + uw) cos [wt - 3(w)] (2.24)
Fop(yy) - F(v)) +3,,&) - ), &) +2F(x, %) = viw)cos (ut)

2.3.3 Approximate Solution by Way of Equivalent Linearization

It is desired to determine the steady-state periodic solutions
of the two coupled nonlinear dynamic equations given in (2.24).
Such steady-state solutions correspond to steady, forced oscillations
of the class of systems shown schematically in Figure 2. 1.

In all but the simplest of applications, the linear operators
313.(-} and the nonlinear restoring force F(x, X) take on a sufficiently
complex form that, using known techniques, no exact analytical

solutions of {2.24) are obtainable. All "exact'' solutions must
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currently be found by numerically solving the initial value problem
obtained by specifying appropriate initial conditions with (2.24).
Since steady-state periodic solutions are desired, such techniques
are usually very expensive, making a complete study of the response
of many systems impractical.

Therefore, one must resort to approximate analytical techni-
ques for most applications. Besides reducing the expense incurred
in obtaining a soiution, such techniques have the addeci advantage
that, by expressing the solution in an analytic form, the qualitative
dependence of the solution upon various properties of the linear
system and the nonlinear restoring force may be studied directly,
without actually solving any equations. Such qualitative information
is particularly useful in understanding the nature of response of an
entire class of systems, for both design and theoretical purposes,
and is the primary concern of the following chapter.

There exist several approximate analytical techniques which
may be applied to (2.24). One of the oldest of these techniques is
the perturbation method. Although numerous variations exist, the
method is based on the classical perturbation theory of Poincaréd
[28]. Since this method is not designed to accommodate hysteretic
nonlinearities, it is not suitable for the purposes of this investiga-
tion.

Other techniques which have been well developed for single-
degree-of -freedom systems are the method of slowly varying para-
meters [29] and the general asymptotic method [30]. These

techniques are applicable to systems with hysteretic nomnlinearities,
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and they are capable of determining the stability and transient
behavior, as well as the steady-state response. However, these
techniques contain an inherent dependence on the form of the
governing differential equations and have been developed for general
application to single-degree-of-freedom systems only. Although it
is generally possible (depending upon the complexity of the linear
operators gij(' ), which may involve partial and integral equations)
to extend these techniques for application to (2.24), the required
modifications will depend on the particular form of the operators
3ij(-) for any given system. Thus, these techniques are not
suitable for the general study of the steady-state harmonic response
of all systems governed by dynamic equations of the general form of
(2.24).

The techniques of equivalent linearization [317, harmonic
balance and energy balance [327 each are applicable to systems
with hysteretic nonlinearities. Furthermore, they are all based on
averaging methods which are not dependent on the detailed form of
the governing dynamic equations. Hence, any of these techniques
are suitable for direct application to (2.24). Of these three
techniques, the method of equivalent linearization offers the
advantages of being directly applicable to the problem of deter-
mining the stationary stochastic response. Although such response
is not considered in this investigation, the method of equivalent
linearization will be used in order to facilitate the future investi-

gation of such response.
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With the choice of an approximate method for the solution of
(2.24), consideration of the accuracy of the approximate solution is
of primary importance. Unfortunately, there currently are no
methods for analytically generating useful bounds on the error in
the approximate solutions generated by any of the previously men-
tioned techniques. The problem of determining such bounds has
been considered [33, 347, but there is much need for work in this
area. Thus, in any given application, the accuracy of the approxi-
mate analytical solution must in general be inferred by comparison
with a few ''exact' numerical solutions. While this appears to be
a major disadvantage to the use of such techniques, it has been
found in many applications [35-40] that the approximate solutions
generated by any of the last five methods are usually quite
accurate, even for relatively large excitations of highly nonlinear
systems. It is found that the error in the approximate solution
generally increases with increasing levels of nonlinearity in the
restoring force, and that it varies with the type and nature of the
nonlinearity, but that errors less than 1-3 percent are typical, and
rarely does the error exceed 12-15 percent for problems of
engineering interest. However, most of the checks on the accuracy
of such approximate solutions have been carried out for single-
degree-of -ireedom systems. Therefore, it is one of the goals of
this investigation to determine, within practical limitations, the
accuracy of the approximate solution for several multidegree-of~

freedorn nonlinear systems.
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In the method of equivalent linearization [31], the nonlinear
dynamic equations are replaced with a set of equivalent linear
dynamic equations which are then solved by standard techniques.
The equivalent linear equations are obtained from the nonlinear
equations by replacing each nonlinear term with an equivalent linear
term in such a way that the average of the difference between the
linear and nonlinear equations is minimized. This minimization
takes place over the class of solutions to the linear egquations, and
generally results in equivalent linear parameters which are
dependent upon the solution. Thus, the solution is usually obtained
in the form of a transcendental algebraic equation which must be
solved iteratively.

Application of this technique to equations (2.24) begins by
defining the equivalent linear dynamic equations. Replacing the
nonlinear restoring force F(x,%) by the linear restoring force

kx +c%, one obtains
Fy10ry) +28,07;) +3,,(y;)

= -[322(::) + 312(::)3 + uw) cos [wt ~ g(w)] (2.25)
Fyp(yy) - &F(yy) + &y (%) - 3y, (x) + 2(kx +cX) = v(w)cos (wt)

In order to minimize the mean square equation difference between

(2.24) and (2.25), the linear parameters k and ¢ must be chosen

such that
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K = Alx.F(x, %)]
. 2
Alx7]

_ ALlx.F(x,%)]
A[:':Zj

(2. 26)

where A[ .] is an appropriate averaging operator defined for all

x, X within the class of solutions to the linear equations (2.25).

By well known properties of linear systems, all steady-state

solutions of (2.25} are harmonic with frequency w.

x = Acos (Wt -¢) = Acosg

so that

X = -pA sin (Wt - ¢) = -wA sin @

Note that x and % are periodic in § with period 2m.

appropriate averaging function for use in (2.26) is

2T

AT-7 = E}Ef (+)de
0

Substituting (2.27)-(2.29) into (2.26) one finds

k_C]A)
T A

_ _S5(A)
- WA

where

Hence, let

(2.27)

(2. 28)

Thus, an

(2.29)

(2.30)
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2t
C{A) = -rl_rf F({A cos g, ~WA sin 9) cos g dg
0 ]
(2.31)
2
S(A) = ~Tl; f F(A cos g, -wA sin p) sin g dg
0

Thus, the linear parameters k and c are dependent on the unknown
approximate solution x, as expected. |

Now that the equivalent linear system has been defined, it is
appropriate to consider in detail the behavior of the linear opera-
tors 3jk(.) for harmonic arguments. Again using well-known
properties of linear systems, there exists some transfer function
relationship between each 3jk(-) and its harmonic argument., Thus,
let ij(iw) (i, k = 1,2) be the complex frequency transfer function

defined such that
Fplr®)] = Hylohr@);  r@) = ot (2.32)

Therefore, recalling the discussion in Section Z2.2.2, Hll(iw)
[sz(iw)} represents the magnitude of the steady-state force
developed in the linear system at Q (at P) in response to the pre-
scribed displacement time-history e'*° applied at Q {at P), while
maintaining null displacements at P (at Q). Similarly, le(iw)
[which equals HZl(iw) by the reciprocal theorem for elastokinetics]

represents the magnitude of the steady-state force developed at Q

in response to the prescribed displacement time-history gt
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applied at P, while maintaining null displacements at Q (or vice

versa),

In order to express the relationship (2.32) in a form more

convenient for application, consider the definitions
> iwt
Ejk[r(t)] = ujk(w_)r(t) + 'vjk(w)r(t); rit) = e (2.33)

where_ ,,ij(w) and 'vjk(w) (Jbk=1,2) are real-valued transfer functions.
It is easily shown that (2.33) remains valid for all harmonic r(t)
with arbitrary amplitude and phase and that ”jk(w)’ ’vjk(w) and ij(w)
are related as follows

nil) = RelHy (0)]
(2.34)

VJk(w) = %Jm{HJk(lw)}

Thus, substituting equations (2.30) and (2.33) into (2.25), the

following equations are found to govern the approximate steady-state

solution
~
[% 11(w) +2K 12(w)+ﬂ.22(w)]yl + [:Y]. l(w.) +2Y12(w) +Y22(w)]§fl
= '[}LZZ(UJ)"'K 12(w):]x = [sz(w)+\‘12(w)]3.§ + ufw)cos [wt - )]
: (2. 35)
D @) = )15, + D%, =¥y 19, + By fo) - w0
+ [Yzz(w) - 'le{w)]:': +2 CE—)X -2 Sﬁfﬁ)k = v(w) cos (wt) )

where x and y; are harmonic, with x given in (2.27).
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2.3.4 Assumed Behavior of the Nonlinear Structural Element

Before attempting to obtain solutions to (2.35), it is appro-
priate to consider conditions on the behavior of the nonlinear
restoring force under Which steady-state solutions are plausible.

In any structure experiencing periodic motion, the time-
histories of all displacements and forces must, by definition, exhibit
periodic behavior. Therefore, the dynamic force-displacement
relationship for each element of the system (obtained simply by
plotting the force time-history as a function of the displacement
time-history, with time as a parameter) must exhibit some éteady-
state configuration which does not change from cycle to cycle. It
is this steady-state configuration which determines C(A) and S(A)
in equations (2.31).

Not all nonlinearities produce steady-state force-displacement
configurations, and therefore must be eliminated from consideration.
For example, nonlinearities which model cyclic structural deterio-
rization or other fatigue-like behavior fall under this category and
are not considered further. It is observed that, for such non-
linearities, F(x,x%x) is not periodic even though x is periodic. Thus,
in this case, the definitions of C(A) and S(A) in (2.31) are
not defined.

For yielding structural elements, the steady-state configura-
tions are commonly called '"hysteresis loops' and are frequently
determined experimentally. Often such empifical information must
be used in place of an accurate analytical representation for F(x, X)

in practical applications. It is observed, however, that such
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information is suitable for the determination of C{A) and S{A) in
(2.31) so that analysis of such practical systems causes no unusual
difficulty.

There exists a wide variety of possible steady-state configura-
tions, or hysteresis loops, which may be produced by structural
nonlinearities. Such configurations may or may not be single-
valued, they are usually symmetric about the.origin, and are at
least piecewise continuous. @ will be convenient for later reference
to make several formal assumptions on the behavior of the steady-
state force-displacement configuration. For example, most experi-
mentally determined hysteresis loops for real structures are found
to be independent of the cyclic rate of stress reversal. The
following assumption formally limits consideration of nonlinearities

to those which display this rate-independence.

Assumption 1 (Al): (Rate-Independent Hysteresis)

It is assumed that the nonlinear restoring force, Fi{x, x),
produces only steady-state force-displacement configurations which
are independent of the cyclic rate of stress reversal.

(Assumption 1 notwithstanding, consideration is later given to
nonlinearities which contain rate dependence in the form of a
viscous dissipation term.)

Most of the commeonly used analytical models for nonlinear
structural behavior (e.g., bilinear hysteresis, Ramberg-Osgood
models, distributed element models, etc.) produce hysteresis loops

which are uniquely determined by the amplitude of deformation, A.
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Assumption 2 limits consideration to such nonlinearities, and in so
doing eliminates models which display ''stiffness degrading"

characteristics [447.

Assumption 2 (AZ2): (Uniqueness of Amplitude Dependence)

It is assuméd that the nonlinear restoring force, F(x, %),
produces only steady-state forée—displacement configurations which
are uniquely dependent on the amplitude of deformation.

Finally, it is found that most nonlinear structural models
produce hysteresis loops which display a continuous dependence on
changes in the amplitude of deformation. Assumption 3 limits con-

sideration to such nonlinearities.

Assumption 3 (A3): (Continuity of Amplitude Dependence)

It is assumed that the nonlinear restaring force, F(x, X),
produces only steady-state force-displacement configurations with
the property that small variations in the amplitude of deformation
cause at most correspondingly small variations in the steady-state
force-displacement configuration.

More detailed consideration of the properties of the nonlinear

restoring force is presented later as it is needed in the analysis.

2.3.5 Governing Equations

Returning to equations (2,35), it is noted that the first equa-
tion contains no dependence on the unknown solution. Therefore, ¥y
may be determined explicitly as a function of x and the forcing

term. Specifically, y; may be expressed as
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Yl(t) = UI(W)}((t} + QZ{W)J.{(t) T gllwﬁi[w» t) * pz (w)"é{w’ t)
where

u(w,t) = ufw)cos (Wt - sw)]

(2.36)

(2. 37)

Substituting (2. 36), (2.37) into (2.35), the following relations for

Q,i(w), ﬁi(w) in terms of the nij(w), 'Yij(w) are found [where, for

il

brevity, the abbreviations Hij = ”'ij(w) and Yij

2

e ~L06 55t g )by g+ 20y 5w ) FOT0 5 VMY 27051 Y55)]
= 52 3
(gt 2nptaoo) w2y,

"
ol = boyp tuy )Yy 1 +2Y5F zz’ (V5 + ¥y 0y #2254 %50)
A 2
(11+2%1 +u22) +w ('Y +2V12+v22)
H
bt = () 3+ 2% ot 00)
W= z .2
(n11+2n12+u22) + W ('V +z's/12 2‘2)
5w - -(v11+2v 2+v22)
2 (11+2n 12 ) + uJ ('v +2Y12+v )
Let
Kw) = RZZ(LU} = Kll(w)

K(w)

i

%2210 - %)

T@) = v, ) - ¥,,@)

Yij (W) are used]

> -(2.38)

? (2.39)
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Substituting (2.36), (2.37), and (2.39) into the second of (2.35), one

obtains the following single equation in x

[Ew) + 0y @K@) - 0P @)rw) + 2 SAL ],

-+

[az(w)K(w) +TW) +o,Wre) -2 Swﬁ)]"‘

(V) - u@)[p, @KW) - wPp, @)r©)] cos 5@)
(2. 40)

wa(@)(B, (W) K(w) + By (@)rw)] sin gw)} cos wt

+

{wu(w)[ﬁz(w)K{w) + Py (W)IT(w)] cos alw)

u(w)l[p; WKW) - wzﬁz(w)r‘(w)] sin 3(w)} sin vt J

Substituting from (2.27) and (2.28) for x and % into (2.40), the
following pair of equations in the amplitude, A, and the phase, g,

are obtained:
A cos@[k—(w) + aI(w)K(w) = wzaz(w)r‘(w) + 2 %&]

+ WA sin cp{az(w)K(w) + T(w) + ul(w)l“(w) -2 Sw(il]

(V) - u@)B WKW - 0B, w)rw)] cos s(w) > (2. 41)

walw)[ B, (W) K(w) + B (w)Tw)] sin sw)}
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A sing [R‘(w) + o WEK(@) - ula,w)re) + 2 Efl]

- WA cos ep[ozz(w)K(w) + r(w) + Qll(w)r'(w) - 2 %%)_} > (2.41 cont.)

1t

fou()lp, @} K{w) + B, wirw)] cos s(w)

(@) , @) Kw) - o°B,w)rw)] sin s()) )

Finally, squaring and adding the two equations in (2.4l), one obtains
the following nonlinear algebraic equation which governs the approxi-
mate amplitude-frequency behavior of forced oscillations of general

systems with a spatially localized nonlinearity

2
a? [K(“’) + o @KW - o, @)rw) + 2 %&1 )

A) 2
+ uszAz[ag(‘”)K(w) + Tlw) + o @ir) - 2 Swi :l

[vw) - a@)B, @) Kw) - w'p, w)r )] cos 5(w) > (2.42)

walw) B, W)K@w) + B, (w)riw)] sin )}

+

{ou@)[p, (W) Kw) + By w)r@)l cos a(w)

u@)lB, W)K(w) - wzﬁz(w)r(wﬂ sin @(w)}2 ' /

Thus, for purposes of determining the steady-state response,
the effect of the linear system enters only through its transfer

functions nij(w) and Yij(w), the effect of the load distribution enters

only through the transfer fﬁnctions pi(w) and qi(w), and the effect
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of the localized nonlinearity enters only through the functions C(A)
and S{A).

It is interesting to compare (2.42) with the analogous equation
for a single-degree-of-freedom nonlinear oscillator (a special case
of the system analyzed herein). Let the equation of motion for

such an oscillator be
£+ 20w % + wix + F(o%) = rcos (ut) (2. 43)

Then, applying the method of equivalent linearization to (2.43), and
using the definitions in (2.27) and (2.31), the steady-state ampli-
tude -frequency equation is found to be

AP [wz - w® o+ 9@-’—]2 + wPa® [ZCw - S—‘(él]z g #e  (2.44)

n A n wA :

Hence, comparing (2.42) with (2,44), it is seen that the basic form
of the equations is the same, with the addition of several frequency-
dependent terms to each side of (2.44) being the apparent effect of
the multidegree-of-freedom system and the spatially distributed
loading. This similarity in basic form is capitalized upon in the
following chapter to produce some interesting general statements

about the response of an important subclass of systems,
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III. Qualitative Harmonic Response Behavior of Systems with a
Nonlinear Terminal Constraint

3.1 Introduction

Systems with nonlinear terminal constraints are frequently
encountered in engineering applica.tions in such areas as vibration
isolation, vehicle suspensions, and various rotating machinery
problems. The terminal rconstraint may be intentionally nonlinear
to achieve some desired performance, such as the limiting of
motion or force in the case of vibration control systems, or it may
become nonlinear due to localized large deformations and forces as
a result of a particular sttem configuration. Frequently these
localized nonlinearities occur at the attachment points or supports
of the system. The dynamic response of such systems has been
studied by various authors [9, 18,45-50], but only in reference to
specific applications,

Interest in harmonic response arises frequently when rotating
machinery is present, or when forcing is provided by harmonic
motion of the supports due, for instance, to resonant motion of a
massive substructure, Previous work on harmonic response has
concentrated on continuous beams with a supporting cubic spring
[45-48). In an effort to better understand the harmonic response of
more general linear structures with a broad class of nonlinear con-
straints, the qualitative steady-state response behavior of the entire
class of systems represented in Fig. 3.1 is investigated in this
chapter. Specifically, general theorems are developed which, for

certain structures and load distributions, allow the frequency
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Linear Structural Sysftem

Figure 3.1 - Schematic of a System with a
Nonlinear Terminal Constraint
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response curve to be sketched qualitatively, without actually solving
the governing nonlinear algebraic equation. The effects of rate-
independent hysteresis are included, as well as the qualitative
effects of viscous damping.

A system with a nonlinear terminal constraint is obtained
from the formulation of Chapter IL by requiring that y, = 0. The
resulting system, shown schematically in Fig. 3.1, forms the basis

for the analysis in this chapter.

3,2 Steady-State Equations

In order that ¥y = 0 at all excitation frequencies, let
nll(u}) - o for Iall w. Such would be the case if within the linear
system there existed an infinite lumped mass at attachment point Q
of Fig. 2.1. Thus, from equations (2.38), (2.39) for large ull(w)

one finds

'[”'22.(‘”) + xlz(w)] _ -[Yzz(w) + le(w)] k&
H a’z(u}) ~ nll(w}

of L %@

-[Yll(w) + Zle(w) + Yzsz)] L (3.1)

1 .
51(w) e W 3 pz((ﬂ) Kz (w)
11

K{w) ~ ~u;4(w) y

Substituting (3.1) into (2.42) and using (2.21) to simplify the result

leads to

. 2
[%él & ""22(“”]2 + o [sz(w) . %%1]2 5 [Pg(wszqg(w)}(%g) (3.2)
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For the case in which the linear system is a simple rigid

body of mass M, it is easily shown that

2 Z 2 2
noolw) = =Mu™ 5 Yoolw) = 05 po(w) +waylw) =1
in which case (3.2) reduces to

2 2 By 2
c@) z] z[sgAg:’ ) (_o)
[A Muw + W e = =
which is analogous to the frequency equation of a nonlinear single
degree of freedom oscillator, as reported by Iwan [50].

Solving equation (3.2) for ”’22(“")' one obtains

gplw) = S+ L rp2e) +wfel Wiz - [wv,, WA - 54 (.3)

Equation (3.3) is the amplitude-frequency equation for a
general linear system with a nonlinear terminal constraint, as
shown in Fig. 3.1. Note that the effect of the passive linear sys-
tem is completely specified by uzz(w) and Yzz(w), the previously
defined effective stiffness and damping frequency transfer functions.
The effect of the loading distribution is specified by P, (w) and qz(w),
the previously defined frequency dependent load distribution functions.
The effect of the nonlinear constraint is specified by the C(A) and
S(A) functions, which are related by their definitions to the equiva-
lent linear stiffness and damping, respectively [527. Recall that the
constant z, represents the amplitude of generalized harmonic

excitation,
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3.3 Qualitative Properties of Stiffnhess and Damping Functions

3.3.1 General Remarks

The purpose of the remainder of this chapter is to determine
the qualitative behavior of the steady-state response A(y} as deter-
mined by equation (3.3). Clearly the details of A(y) depend on the
qualitative behavior of the stiffness and damping functions C(A),
S{A), uzz(w) and vzz(w), as well as the load distribution functions
pz(w) and qz(w). Thus, consideration is given here to the qualitative
behavior of the stiffness and damping functions for structural sys-
tems, while in Section 3.4 consideration is given to the qualitative
behavior of the load distribution functions.

In order to maximize the generality of nonlinear restoring
force for which the results apply, very few restrictions on C(A)
and S(A) are imposed. These restrictions affect only sign definite-
ness, continuity and limiting behavior as A - 0. However, in order
to make specific statements about the behavior of A(y), considera-
tion of linear systems is restricted to a class of one-dimensional
shear structures. In particular, the detailed behavior of nzz(w) and

yzz(w) for a class of linear chainlike structures is investigated.

3.3.2 Properties of C{A) and S(A)

From their definitions in equations (2.31), it is observed that
C(A) and S{A) are weighted integrals of F(x, %) for a harmonic func-
tion having amplitude A and frequency ®w. The integration ranges

over a complete cycle of the steady-state configuration in the x, F
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plane, so that the configuration corresponding to amplitude A is
used to evaluate C(A) and S(A).

By assumption (Al), the steady-state configuration in the x, F
plane is independent of the rate at which a cycle is traversed, and
therefore is independent of w. Hence, C{A) and S(A) are indeed
functions of A only, even though w appears in the second argument
of ¥ in each of the integrands of equations (2.31).

By assumption (A2), the steady-state configurations in the x, F
plane are uniquely dependent upon A. Thus, C(A) and S(A) are
single-valued functions of A.

By assumption (A3), a small variation in amplitude A produces
at most a correspondingly small variation in the steady-state con-
figuration. This is interpreted here to mean that the average of
the ascending and descending branches of, and the area enclosed by,
the steady-state configuration are both continuous functions of A.

It can be shown [53] that S(A) is proportional to the enclosed area
and that C{A) is a weighted integral of the average of ascending
and descending branches over one cycle. Therefore, C(A) and S(A)

are both continuous functions of A.

Assumption 4 (A4): (Infinitesimal Elasticity)

Consideration of nonlinearities F(x, Xx) will be limited to
include only those for which S(0) = 0. Such will be the case if

F(x,%) is elastic for infinitesimal deformations x.

Assumption 5 (A5): (Passivity of the Nonlinear Restoring Force)

_The additional restriction is introduced here that F(x,Xx) is
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capable only of dissipating a finite amount of energy per cycle of
oscillation when driven in the steady-state at finite amplitude and
frequency.

Thus, if EF is the energy dissipated by F(x, %) per cycle of

oscillation

EF =2 0 (3.4)

Under the assumption of harmonic displacement x = Acos (ut), it can

be shown, using (2.31), that

E. = -TAS(A) (3. 5)

Thus, (3.4) and (3.5) require that
S(A) = 0 v+ A = 0 (3.6)

In summary, the following properties are assumed to hold
throughout the remainder of this thesis:

(1) C(A) and S{A) are single-valued, real continuous

functions of A

(2) S(A) = 0% A 2 0

(3) S(0) = 0.

It should be noted here that if a viscous damping term ck is
added to the nonlinear restoring force, the only resulting modifica-
tion is that a frequency dependent term -WcA must be added to S(A)

in the above development.
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3.3.3 General Properties of njj(m) and 'ij(&l

Recall from equation (2.33) that ij (w) and ij(w) are the
effective stiffness and damping of the restoring force produced by
the passive linear system when excited at attachment point P by a
harmonic displacement of frequency w. Since the system which
.generates the restoring force is linear, it follows that njj{w) and

y.j(w) are single-valued functions of w.

Assumption 6 (Ab):

M.j(w) and yjj(w) are at least piecewise continuous functions of

Most linear systems of engineering interest satisfy assump-
tion (A6), as will be discussed later in this section. In addition,
it can be shown that ij(w) and vjj(w) are even functions of w, using
their definitions in terms of Hjj (iw) in equation (2.34), and noting
that Hjj(iw) represents the Fourier transform of the impulse
response of the linear system, which is always a real-valued func-

tion of time for physical systems.

Assumption 7 (A7): (Passivity of the Linear System)

The restoring force ;}jj(x) is capable only of dissipating finite
energy per cycle of oscillation when driven in the steady state at
finite amplitude and frequency.

Thus, if E3 is the energy dissipated by “Jjj{x) per cycle of

oscillation, it is required that

E3 2 0 (3.7)
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Using (2.33).£or x = Acos (wt), it can be shown that

2
E; = Trwyjj(w)A (3. 8)

Thus, (3.7) and (3. 8) together require that

ij(w) 2 0% w=20 {3.9)

Definition 1 (D1): (Nondissipative Linear Systems)

All linear systems for which yjj(w) = 0% w are said to be

nondissipative.

Definition 2 (D2): (Strictly Dissipative Linear Systems)

All linear systems for which ‘vjj(w)> 0% W are said to be

strictly dissipative.

Note that all undamped linear systems are nondissipative,
while all real structural systems are strictly dissipative.
Summarizing the general properties of njj(w) and ij(uu} which

will henceforth be assumed:

(1) xjj(uu) and ij(w) are real, single-valued, and at least
piecewise continuous functions of w
(2) njj(w) and \f}j(u’) are even functions of w

(3) 'vjj(w) > 0w w

Definition 3 (D3): [Zeros of Hjj(iw)]
The set of all frequencies {wzklkz 1,2,...1 such that

]Hjj(iwzk)] = 0 for nontrivial displacements ¥ is defined as the set

of zeros of,H_,j.(iw}.
J
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Definition 4 (D4): [Poles of Hy, w)]

The set of all frequencies {u}Pk|k= 1,2,...} such that

Hjj(iwpk)| is unbounded for bounded ¥ is defined as the set

poles of H..(iw).
3

Definition 5 (D5): (Unconstrained Linear System)

The linear system obtained by setting to zero all generalized
excitations and by requiring that attachment point P (see Fig. 3.1)

be force-free is defined as the unconstrained linear system.

Definition 6 (D6): (Rigidly Constrained Linear System)

The linear system obtained by setting to zero all generalized
excitations and by requiring that attachment point P be fixed against

motion is defined as the rigidly constrained linear system.

Note from equation (2.32) that the zeros of Hjj(iUJ) must
correspond to the frequencies of free vibration of the unconstrained
linear system. Note similarly that the poles of Hjj(iw) must corres-
pond to frequencies of free vibration of the rigidly constrained
linear system.

Since free vibrations cannot exist at any frequency for strictly
dissipative linear systems, the complex frequency transfer function
for such systems can have no real poles or zeros. Therefore,
“jj(w) and N:_jj(w) are bounded for all frequencies, and do not simul-

taneously vanish for such systems.

Since '\Sj(w) = 0 % w for all nondissipative linear systems, the
poles and zeros of Hjj(iw) and njj(w) are identical for this case.
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Form of 55 (w) and \fij (w) for Continuous and Discrete Linear Systems

The dynamic behavior of the most general continuous (distri-
buted parameter) linear system is determined by a general linear
partial differential operator involving several spatial variables and
time, and containing time and spatially dependent coefficients. For
such general systems, it is not generally possible to obtain a closed
form analytic representation for the transfer function Hjj(iUJ). In
fact, if the system is unbounded in at least one spatial variable, or
if the operator contains cross derivatives involving both space and
time, then it is possible that, in addition to poles, I—Ijj(iw will con-
tain essential singularities in the finite iw plane. Thus, for general
continuous linear systems, very little can be said about the general
form of Hjj(iw), and hence also ij(m) and vjj(m).

However, engineering applications are frequently concerned
with finite continuous linear systems whose partial differential
operators involve only one spatial variable and contain only con-
stant coefficients, For a general class of such systems, it can be
shown [54 7] that the only singularities of I—Ijj(iw) in the finite iw
plane are poles [i.e., Hjj(iw) is a "meramorphic' functionl], and
that Hjj(iw) may be represented as the ratio of two functions, each
of which is analytic in the finite i% plane (i.e., ratio of two
"entire'' functions). Thus, Hjj(iw)’ and hence also njj(w) and ij(w),
may be expressed as the ratio of two power series in w, each of
which is convergent everywhere in the finite iw plane.

The dynamic behavior of the most general discrete (lumped

parameter) linear systems is determined by a general kth order
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linear ordinary differential operator involving k system coordinates
and time, and containing time dependent coefficients. As in the
case of continuous systems, it is not generally possible to obtain a
closed-form analytic representation for I—Ijj{iw), and very little can
be said about its general form.

However, engineering applications are frequently concerned
with discrete linear systems whose differential operators involve
only real constant coefficients. It can be shown [55] that the trans-
fer function Hjj(iw) for such systems always admits a closed form
representation as a ratio of polynomial functions of ¢.. Furthermore
the denominator polynomial in i® has only real coefficients and is
the kth order characteristic polynomial of the rigidly constrained
linear system. Since the numerator polynomial in i also has only
real coefficients, it is seen that %jj(w) and 'ij(w) each admit a
closed-form representation as a ratio of real polynomial functions

of w, whose roots are either purely imaginary or occur in pairs with

real parts of opposite sign.

3.3.4 Properties of ujj(w) and vjj(w) for Undamped Linear Chainlike

Structures
One of the frequently encountered mechanical models for
structural systems is that of the ''undamped linear chainlike
structure,” an example of which is shown in Fig. 3.2, The struc-
ture is composed alternately of lumped masses and linear springs
which are connected only to the néarest element on either side, and

the motion is confined to be unidirectional. The number of elements
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Figure 3.2 - Schematic of an Undamped n-Mass
Linear Chainlike Structure

Knt

Figure 3,3 - Schematic of a Chainlike System with
Attachment Point P Located at Mass

m

1



-48 -

is arbitrary as long as the chainlike structure is maintained. This
simplified system has been used to model the dynamic behavior of
such structures as tall buildings of frame construction, various
pieces of mechanical equipment, and as a discretized model for
one-dimensional motion in a continuum.

The structure may be terminated at either end with a spring
(as shown) or a mass (accomplished by setting kl = 0 and/or
kn+1 = 0). The attachment point P is shown at the ith mass, where
1<isn, and n is the total number of masses in the system. Note
that P may be specified anywhere within the chainlike structure by
choosing "i" appropriately and by allowing m, = 0.

Since the system contains no viscous damping elements, it is

nondissipative. Hence,

ij(w) = 0 v w | (3.10)

and njj (w] and Hjj(iw) are identical.

Clearly the behavior of s (w) depends on the location of
attachment point P within the structure. It is convenient to consid-
er first the case in which P is located at one end of the structure
{i.e., P is attached to mass m, or mn).' Without loss of
generality, assume that P is located at mass m,, as shown in
Fig. 3. 3.

njj(w) is the amplitude of force :;jj(x} required to maintain
unit harmonic motion x = eiwt at attachment point P. That is

L o S st :
i ) nJJ(w)e | £3,11)
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According to the previous discussion on discrete linear systems

with constant coefficients, "jj(m) admits representation as a ratio of

real polynomials pN(w) and pp (w)

P ()
u..((.U) N

= 3.12
3 Ppw) pe]

But it is well known that any polynomial function may be written as

a product of terms as follows

n
p(®) = c Il (w-wy) {3:13)
1=1
where ¢ is a real constant, {wE] =1,2,...,n} is the set of roots of

p(w) = 0, and n is the order of the polynomial. Hence, ujj(w) admits

the following representation

2
i[=11 -w,5)

{w) = (3. 14)
"ji 0

JI;[]. (LU - ij)

where "o is a real constant, {wzi‘izl,l, ...,2} is the set of roots
of the fth order polynomial pN(w), and {ij|j= 1,2,...,m} is the
set of roots of the mth order 'p'olynornial PD(w_)' Note that njj(m) is
therefore completely specified by determining %o £, m,

i=1’2,.0.1 a-nd w.lzl,Z,o.-,mc
| sk w0l {3 }

{05
As previously noted, the poles and zeros of ”’jj(m, may be

determined by considering the free vibrations of the system in
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Fig. 3.3 with appropriate constraints on attachment point P.
Specifically, the poles of njj(w) are the natural frequencies of the
rigidly constrained linear system, and the zeros of njj(w) are the
natural frequencies of the unconstrained linear system.

Writing the equations of motion for the rigidly constrained '

linear system, one finds that the poles of njj(w) are those frequen-

cies w such that

det]n; -0’1 = 0 (3. 15)
where
(k2+k3) -k3
I
2 (m2m3) (0]
-k3 (k3+k4)
=
(m,m_)? g
Q® = 3 i (3. 16)
P _.__?1_1
12
(mn—Imn)
0
_kn (kn+kn+1)
L
= m
(mn__lmn)B n

Since the ({a=Lly{n-L] saabrix Q; is symmetric and positive definite,
well-known theorems in matrix theory guarantee that all eigenvalues
of QZ are real and positive. Hence, there are (2n-2) poles of njj(w)
which occur in (n-1) pairs of real, nonzero frequencies with

opposite sign.
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Writing the equations of motion for the unconstrained linear

system, one finds that the zeros of njj{w) are those frequencies w

such that
det|Q’ - w’1| = 0 (3.17)
where
(ky+k,) -k,
| (m,m_)? 0
1772
~k2 (k2+k3)
2 (mlng s
0° = -k (3.18)
Z n
== meevn e
2
(mn lmn)
0
‘kn (kn+kn+1)
] m
(mn-lmn) n
I f—

Since the nxn matrix Qg is symmetric and positive definite (semi-

definite if kn = 0 and kl = 0), well-known theorems in matrix

+1
theory guarantee that all eigenvalues of 02 are real and positive
(non-negative). Hence, there are 2n zeros of ujj(w) which occur in
n pairs of real frequencies with opposite sign.

From the above discussion, it is seen that njj(w) admits the

representation



n
2 2
1131 {w™ - wzi)
n..(w) = A (30 19)
JJ 0 m-1) 5
1[:]1 (™ - wpi)

The constant ng may be determined by noting from (3.19)

that
(W) ~ x wZ as W (3.20)
i 0 '
Considering once again the system shown in Fig. 3.3 and the defi-
nition of ujj(u;) as the amplitude of force Ejj(w) required to maintain

unit harmonic motion of mass m, it is observed on physical

grounds that

njj(w) ~ -mlwz as U s (3.21)

Comparing equations (3.20) and (3.21), it is clear that

Kg = My (3.22)

Thus, combining equations (3.19) and (3. 22), ujj(w) may be

expressed as

= 2
11;11 (W~ - wzi)
njj(w) = -m, : (3.23)
n-
{ (w2 - w? )
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Using the tribanded structure of each of Q; and Qz, and the
fact that kj, k3, o .,kn are always nonzero, it is shown in Appendix
A by applying techniques in matrix theory that

2 z 2 2 2
1] .v s w . 24
w' < w < < T S Uy (3.24)
K is further shown that for all positive (negative) W, njj(w) is a
strictly decreasing (increasing) function of w which ranges from
”jj(o) > 0 to -» for w ¢ [0, wpl)’ and from += to -« for

The resulting quali-

W hess,W g (W

p2’ p3
tative behavior of ”jj(w) is sketched in Fig. 3.4.

w e (wpl’wp?-)’ w e (w p,n-l’m)'

Clearly 1I:he form of ij(w) presented in (3.23) is intended to
apply only when m, # 0. The case in which m, = 0 is handled in a
manner completely analogous to the above, with the only modification
being that the matrix Qi of equation (3.18) now becomes an
(n-1) X (n-1) matrix which does not involve m,. The resulting form

for njj(w} in this case is

2

(-1) % - wl)
an(U') = (kl +k2} [;[ o S (3.25)
i=l (W -~w )
'pl
where it is shown in Appendix A that
2 2 2 .
Wy < wpl <SW , <-v<wo g <-mpn_l (3.26)

In this case, the qualitative behavior of “jj(w) is similar to that
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shown in Fig. 3.4, except that as W = %=, ”jj(w) - (k1 +k2) rather

than -o.

In order to determine the qualitative properties of njj(w) for
the case in which attachment point P is located at mass m, internal
to the chainlike structure, it is convenient to consider the freebody
diagram of Fig. 3.5, which isolates mass m, from the remainder of

the structure. The resulting equilibrium equation is

Fi0) = mx o+ ff(x) + £ (x) (3.27)

where f, and fr are the forces transmitted from those portions of
the structure to the left and right of mass m,, respectively, as
shown in Fig. ‘3., 6.

Letting x = eiwt in (3.27) and defining nﬂ(w) and nr(w) as

follows

iwt iwt
£,") = x (e’
(3.28)
iwt, iwt
£(e77) = n (e
one obtains
2
ujj(w) = -0'm, + uﬂ(w) + u (@) (3.29)

Clearly the properties of njj(w} in this case depend on the
behavior of nﬂ(w) and "r(w)' However, by their definition in equa-
tion (3.28) and Fig. 3.6, it is noted that nﬂ(w) and ur(w) are each

analogous to ”jj(w) in the previously discussed case in which
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attachment point P is massless and located at one end of a chain-

like structure. Thus

w
Y @* - w? )
nplw) = kI
j=1 (v~ - wﬂpj)
\ (3. 30)
{n-i) (LUZ 2 miz.}
(w) = k, n ——
*y i+l §=1 (wZ B uJ2 )
rpj
J

where ki and ki-}— are the spring stiffnesses shown in Fig. 3.6,

1
and all poles and zeros are determined as in the previous dis-
cussiaon.

Since “g(w)’ n,.r(w), and -U)Zmi are each strictly decreasing
functions for positive ®, it may be concluded that “jj(w) remains a
strictly decreasing function for positive ® in the case where attach-
ment point P is located within the chainlike structure.

Consider the set A consisting of the union of poles of x,(®)
and » (W)

e MIE e o : o W .
£ o= Lb\)‘epjgj—l.&,...,l 11 § 1_L1)rpj§.]-l,2,...,n i} (3 31

Then, clearly there exists two distinct possibilities: (1) each of
the elements of p is distinct, (2) there exists one or more pairs
of identical elements in A.

If all the elements of )\ are distinct, then “jj(w) will have
(n-1) poles on the positive w-axis; one corresponding to each of

the distinct poles of nﬂ(w) and "‘r(m)' It can be shown that such



-59-

will be the case if attachment point P does not correspond to a
nodal point at any frequency for the free vibrations of the uncon-
strained linear system.

However, if there exists f identiqa.l pairs of elements in },
then ujj(w) will have exactly (n-£-1) poles on the positive w-axis,
one corresponding to each of the (n-f{-1) distinct elements of A. It
can be shown that such will be the case if attachment point P
corresponds to a nodal point at exactly f frequencies of free vibra-
tion of the unconstrained linear system.

Except for the possibility of the exclusion of some poles due
to the placement of P at an interior node, the qualitative properties
of ”“jj(w) for P located within the chainlike structure are the same
as those for P located at one end of the structure.

Thus, the important properties of ij(w) may be summarized
as follows:

(1) If the chainlike structure has (n-1) masses excluding
attachment point P, and if there exists { natural fre-
guencies of the unconstrained linear system for which
P corresponds to a nodal point, then "jj(w) has (n-£-1)
distinct positive poles which divide the positive w-axis
into (n-f) regibns in which ujj(w) is a continuous single-
valued, strictly-decreasing function of w,

(2) ujj(w) ranges from:

(a) "’jj(o) = 0 to -» for ® ¢ {O,wpl)

- =t Ww » g 009y
{(b) +o to -o for € (wpl wpz) (wp,n-ﬂnz’wp,n—ﬁ-l)
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(¢) += to -= for w ¢ (wp l,m) if m, #0

,n-f-

(d) +o to (ki+ ki-i—l) for w ¢ (wp,n-ﬂ-—l’“” if m, = 0.

With a2 minor qualification, it is easily shown that the above
transfer function properties are also obtained in the case of a
uniform continuous shear beam, which is the continuous analogy of
a uniform chainlike structure. The qualification is simply that con-
ditions {2c) and {2d) must be disregarded in the continuous case
since there are an infinite number of transfer function poles.

Although it is not easily proven, a strong argument can be
made that similar transfer function properties should hold for non-

uniform continuous shear beams provided that the nonuniformity is

sufficiently well behaved.

3.3.5 Properties of xj;(w) and \f_jj(w) for Lightly Damped Linear
J

Chainlike Structures

Since all structural systems are dissipative, it is of interest
to determine the effect on njj(w) and 'ij(w) of the addition of a
small amount of viscous damping.

Commonly in structural engineering practice, linear structural
systems are initially modeled as being nondissipative in order to
determine the resonant frequencies, corresponding mode shapes,
and uncoupled generalized coordinates (each of which is governed
by the equation of a simple undamped oscillator). Then, to account
for small structural dissipation, a small viscous damping term is
added independently to each of thé uncoupled equations for the

generalized coordinates. In order to determine the effect of such a
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procedure on “jj(w) and vjj(w), a different transfer function repre-
sentation than that of the previous section is required.

Consider once again the system shown in Fig. 3.2. Let x4
and x represent the displacements of masses m, , and m, ,

respectively (positive to the right). Then, from Fig. 3.6

fﬂ (x) = ki[x - xﬂ(x)]
(3.32)
fr(x) = ki_[_l[x - xr(x)]

where it is noted that xﬂ(x) and xr(x) are considered as system
responses to the input motion x.

Substituting (3.32) into (3.27), one obtains

3jj(x) = mx + (k +k, ko, (x) - k (x) (3.33)

FI* i+1%r

Note from Fig. 3.6 that xy{x) is determined from the left portion of
the chainlike structure, which has (i-1) masses, and that xr(x) is
determined from the right portion of the chainlike structure, which
has (n-i) masses. Since each portion of the structure is undamped,
there exists (i-1) normal modes and generalized coordinates which
contribute to the response xj(x), and there exists (n-i) normal modes
and coordinates which contribute to the response Xr(x). Thus,

xi(x) and xr(x) may each be expanded in terms of their respective
generalized coordinates {zﬂj (t)l i=1,2,...,i-1} and

{_'zrj(t)| j=1,2,...,n-i}, as follows



i-1
xﬂ(t) = Z aszﬂj(t}
j=1
(3. 34)
n-i
x (&) = E arjzrj(t)
j=1
where, for the undamped struc.ture,
() +UJ 3 (t) = bﬂjx(t); § 2 LoZs e wydel
' (3. 35)
. 2 _ . = 3
zrj(t) + wrpjzrj(t) = brjx(t) ; j= 1,2, ...,0=1

and where {w |J—1 2,40.,1i-1} and {w |j=1,2,.,.,n-i} are the
elements of the set A in equation (3.31) which determine the poles
of ”jj(w)' Furthermore, it can be shown by using properties of the
mode shapes derived from the results of Appendix A, that all of the
real constants aﬂj’ bﬂj G=1,2,...,i-1) and arj’ brj G=1,2,...,n-1)
are nonzero.

At this point viscous damping may be added to the system by

including a small independent damping term in each of (3.35) to

obtain
. ; 2 _ . -
zﬂj(t) + zcﬂjwﬂpjzﬂj(ﬂ + wﬂpjzﬂj(t) = bﬂ_jx(t) T T S 1__1
(3. 36)
2 ; .
o)+ 26,0, B (6 H WL ) = b k() j=1,2,...,0m

where {cﬂjljzl,z,...,i-l} and {;rj!j=l, 2,...,n-i} are small



=63~

damping coefficients which individually prescribe the fraction of
critical damping in the respective modes of the left and right por-
tions of the chainlike structure.

To obtain a representgtion for Hjj(iw), let x = eiwt in (3.33),

and define ij (iw) and er{iw) as follows

. iwt 2 ;
. = {iw . = — -
ZEJ (t) Zﬁj(l e i j=1,2, ,i-1
{3.37)
_ : iwt | . .
zrj(t) = er(lw)e : 3= 2, cnu, 0l
Thus, from (2.32), (3.33), (3.34), and (3.37) one obtains
i- n-i
a iw) = v & = . . i .
Hj3(1 )=k, +k,_; > E a,.Z, (1w) k1 Z arerJ(lw) (3.38)
j=1

Substituting x = ettt into (3.36) the following expressions for Zﬂj(iw)

and er(iw) are obtained

2 ™
(w )+ iw2g W
; ﬂpl 4] ﬂ. pi . ;
Z .(iw) = -b,. S I [ R o |
I 4§ W2 - ) +4c2 22
Yepj
?(3.39)
2 2
{w - W, ) + iw2 erwrpj :
Z_.(w) = -b_, - 5 52 Ll wagtied
r) rj (wZ ) +4CZ 2 2 |
rPJ S

Substituting (3.39) into (3.38), the following representation is

obtained for Hjj (iw)
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1 (w = )+ iw2E,.w
2 L 1 2;%4pj
H..(iw) = k, + k, - wom, +k a
JJ( ) i i-1 Z £j JZJ ( 2 )2 +4C2wzw2
j=1 “1pj 5 tpj

(w - w ) +i ZCerrpl .
1+1 Zl rJ rj ( ) +4g2 waZ
=

rpj

From (3.40), ”jj(iw) and yjj(w) are readily identified

2 2
k-_ ( -wﬂ‘pj)
u(w) ReH(mJ) —k—!-k -mm-!— a ;
[ : Z 4 EJ (U) - 2 .)2+4g2.w2w2 :
Ypj 15" “Apj
2
(w = o
k. a_.b . “rpj
itl Z Ty rj (wZ ] ) +4C2 waZ .
= TPl
\ (3. 41)
i-1 L psp s a,.b
1 . - 11 ﬂm 293 ﬂ]
v.. ) = = gm[H, (in)] = 2k, E 3 77
3 ¢ 3 - +4CL 0 s
j=1 18 ) 3 “tpj
nE 1‘1er1 r1br1
1+ 4 ) +4c2 2. 2 .

From (3.41) it can be shown that for sufficiently small
{cfjlj =1,2,...,i-1} and {g |J =1,2,...,n-i}, n (w) and Y (w) are
arbitrarily close to the unda.rnped transfer fu.nctlons for all fre—
quencies which are not near the undamped poles specified by fhe
distinct elements of p iIn (3.31). Thus, the addition of small modal

damping does not change the qualitative properties of ujj(w) and
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ij(w) in those frequency ranges which are not close to the undamped
oles of »..(w).
P "JJ( )

In order to investigate the behavior of njj(w} and \flJ (w) near
the undamped poles, it is convenient to rewrite (3.41) in terms of
the distinct elements of 5 in (3.31). Recall that ) contains (n-£-1)
distinct elements [which are the undamped positive poles of ij(m)j

. where £ is the number of identical pairs in the sets
r ; 2 3 "
A3 = Ly 2y vae s =13 B0d Ji=1,2,...,n-i1. Let
{w1P3|J } {wrPJ|J ’ }
{W;J“ =1,2,...,0n~1-1} be the set of distinct elements of A\, Then

(3. 41} may be written as follows

'\
5 n-4-1 ((,u2 = w;i)
ujj(w) = U F ey =~ W Z % (w2 tuz )2+4C2mzwz
j=1 Pj i~ P
&(3.42)
| Cipi
v..(w) = 2 g, =57
B Zl J (w?‘—wz.)2+4c.w w_ .
J= PJ J PJ )
where ¢ £#0 (j=1,2,...,n-4-1) are linear combinations of 25 sz,_

arj’ brj’ ki’ and ki-:—l’ and where {ijj =1,2,...,n-£-1} is the set
of small damping coefficients obtained from {Czj'j = 1,2,000,i=1}
and {;rj[j =1,2,...,n-i} by adding terms when appropriate.

Near the undamped poles, “jj(w} and '\{_}j(w) may be written as

follows, for sufficiently small damping coefficients



.

W™~ Whi) tkrk e+ 3 e
w -w ¥ ww J= P P
pi 41 Ypk j#k
(3.43)
Ckw_pk . n-{-1 1 81
(W=t + 45 Upie =1 “pk”“pj

j#k

for wewpk, (k =1,2,...,n-£-1). Note in (3.43) that only the first
term in each expression contains a dependence on w, while the
remaining terms sum to a constant. Furthermore, it is seen that
the w-dependent terms take the form respectively of »(w) and vY(w)
transfer functions for a single-degree-of-freedom damped oscillator.
From (3.43) and the above discussion, the qualitative effects
on u,.j(w) and v(w) of adding a small amount of viscous damping are
demonstrated in Fig. 3.7, which shoﬁvs typical undamped and cor-

responding lightly damped transfer functions.

3.4 Qualitative Properties of Load Distribution Functions

E_zgw!.and 92@
3.4.1 General Properties of p,(w) and qz_@)

Recall from equation’ (2.18) that pZ(LU) and qz(w) are the in-
phase and quadrature components of the reaction force ‘£2Ex(t)
developed at attachment point P, when P is fixed against motion
(relative to point Q in Fig. 3.1) and the generalized loads Zyr Zos
Zgy+++, €ach with harmonic time dependence z(t), are applied as

indicated in Fig. 3.8. Since the system which generates the
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~Wp2 ~Whot / WpH Wp2

Undamped Transfer Function
Lightly Damped Transfer Function

!
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e @

Figure 3.7 - Ty?ical Undamped and Lightly Damped
Transfer Functions for Linear Chainlike
Structures
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Linear Structural System

Figure 3.8 - System Configuration for the Determination of
Load Distribution Functions pz(w) and qz(w)
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reaction force is linear, it follows that pZ(UJ) and qz(w) are single~

valued functions of w.

Assumption 8 (A8):

pz(w) and qz(w) are at least piecewise continuous functions of

Most linear systems of engineering interest satisfy assump-
tion (A8), as will be discussed later in this section. In addition,
it can be shown that pz(u}) and qz(w) are even functions of ®w, using
their definitions in terms of Gz(iw) in equation (2.17) and noﬁng
that G, (iw) represents the Fourier transform of the impulse
response of the linear system, which is always a real valued func-

tion of time for physical systems.

Definition 5 (D5): [ Zeros of Gz(iw)]

The set {szlk =1,2,...} of all frequencies such that
]Gz(iw)| = 0 for the forced system with nonzero loads is defined as
the set of zeros of Gz_(i_w_l. .

Note that the zeros of Gz(iw) correspond to the frequencies of
forced vibration of the linear system for which attachment point P
corresponds to a nodal point, since at these irequencies no reac-

tion force fz is required to maintain zero displacement at P,

Ex
Generally, the set of zeros of Gz{iw) is highly dependent upon the

particular load distribution,
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Definition 8 (D8): [Poles of Gz(iw)]

The set {)gpk’k =1,2,...} of all frequencies such that ]GZ{iw)!
is unbounded is defined as the set of poles of G, (i%).

Note that the set of poles of Gz(iw) must correspond to fre-
quencies of free vibration of the rigidly constrained linear system.

For strictly dissipative linear systems, free vibrations cannot
exist at any frequency. Hence, for such systems, Gz(iw) can have
no real poles. Therefore, -pz(w) and qz(w) remain bounded at all

frequencies.

For nondissipative systems, the motion of all points within
the linear system is exactly in-phase with z(t) {or exactly 180° out

of phase), Thus, for nondissipative systems,
q,®) = 0 v w (3. 44)

and the poles and zeros of G, (iw) and pz(w) are identical.
The comments in Section 3.3.3 on the form of ij(w) and

y.j(lD) for continuous and discrete linear systems also apply to

P (w) and qz (w).

3.4.2 22(‘”) and_qz(w) for a Single Concentrated Load Applied at

Attachment Point P

The simplest possible loading configuration for the determina-
tion of pz(w) and qz(w) is that in which a single concentrated load is
applied at attachment point P, with no other loading applied to the

system. Such a configuration may prove to be a convenient
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experimental arrangement for the identification of an unknown non-
linear restoring force F(x, X).

In this case, it is clear that

1 v w

1

pz(m)
(3. 45)

It
o

q, W) v ow

3.4.3 Properties of P, (v) and 9, {w) for Undamped Linear Chain-

Like Structures with Base Excitation

A discussion of undamped linear chainlike structures is con-
tained in Section 3. 3.4, and an example is shown in Fig. 3.2.

In the case of base excitation, the generalized harmonic
loading, =z(t), is the displacement of the base of the structure with
respect to an inertial reference frame. In order to determine the
load distribution functions pz(w) and qz(w) for base excitation,
attachment point P is required to move with the base so that there
is no relative motion between P and the base, and the reaction
force fZEx(t) thereby develolﬁed at point P is determined. Fig. 3.9
shows such a configuration for an undamped linear chainlike struc-
ture.

Since the system in Fig, 3.9 is linear, the feaction force
f.ZEX(t) admits representation as the superposition of two forces
322(2) and ﬁzEx{z), which are determined from the systems and

loading shown in Figs. 3.10(a) and (b), respectively. Thus,

£,0.06) = Fpo[26)] + & [#(t)] (3.46)



.

z(t) z(t), fop, (Z(1) z (1)

Figure 3.9 -~ Base Excitation of an Undamped Linear Chainlike
Structure with Fixed Attachment Point P
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(a)
z(t) Foeyg(z(h) z (1)
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Figure 3.10 - Decomposition of Base Excitation of an
Undamped Linear Chainlike Structure
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By comparing Figs. 3.2 and 3.10(a) it is clear that

iut : iwt
322(31 ) = HZZ(IU‘-)E

where sz(iw} has the properties discussed in Section 3. 3.4.

Define E‘.Z(im) such that

wt (3. 47)

~ iwe, oA o
;}ZEX(e ) e Gz(lw)e

Then, from (3.46) one obtains
(3.48)

Gz(iw) = sz(im) - Gz(iw)

Since the system contains no viscous damping elements, it is

nondissipative. Hence
w = w = )
qz( } 0 and YZZ( ) = O w» & (3.49)
and if ﬁz(w) and éjz(w) are defined such that
ﬁl(w) = Re{éz{iw)}
{3.50)
i ~
qz(w) > E Jm{GZ(lUJ)}
then
G,w) = 0 » w (3.51)

Combining (3.48), (3.49), and (3.51) one finds that
{3.52)

Pz(w) = Rzz(w) + ﬁz(w)
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From Fig. 3.10(b) it is clear that §,; [z(t)] = 0 for all

z{t) [and thus also 'ﬁz(w) = 0], if kl =0 and kn+ & s

1

Definition 9 (D9): (Mass-Terminated Chainlike Structure)

Any undamped linear chainlike structure which has the

= = i i " : d
property that k1 =0 and kn+1 = 0 is defined as a mass-terminate

chainlike structure.

Hence, for base excitation of all mass-terminated chainlike

structures

G,(iw) = Hy,(w) v
(3. 53)

Py @) = uyy(w) v w
The properties of nzz(w) for undamped linear chainlike structures

are discussed in Section 3. 3. 4.

Consider now the properties of ﬁz(w). Clearly ﬁz(w) admits

representation as a ratio of real polynomials f)N(w) and I’SD(UJ)

By )

By(w) = (3. 54)
Bpw)

But it is well known that any polynomial function may be written as

a product of terms indicated in equation (3.13). Hence, p,{Ww) admits
P q Py

the following representation



s

1
.nl (w"'p‘zi)
=
Byl) = By ————— b

j[=11 (w -Hpj)
where ﬁo is a real constant, {pzi|i e Ls iy ., 1} is the set of roots
of the fth order polynomial fiN(w) and {].xpjlj = By Bans spini} is the set
of roots of the mth order polynomial ﬁD(w).

By considering Fig. 3.10(b) and the discussion in Section 3.3.4,
it is clear that the poles of -fiz(w) must correspond to the natural
frequencies of the rigidly constrained linear system, and thus
{}.L;j|j =1,2,...] is a subset of the set | of equation (3.31)., There-
fore, the poles of ﬁz(w) are derived from the same set p as those
of uzz(w). Thus, from (3.52), it is seen that pz(w) can have at most
the same number of poles as ”'22.(“)) and can have no poles which

are different from those of uzz(w).

3.4.4 Properties of ‘pz(w) and qz(ua) for Lightly Damped Mass-~

Terminated Chainlike Structures with Base Excitation

Since all structural systems are dissipative, it is of interest
to determine the effect on'pz(w) and g, (®) of the addition of a small
amount of viscous damping. Note from equation (3.48) and definition
(D9) that for all mass-terminated chainlike structures with base

excitation
Gz(iw) = sz(iw) (3. 56)

Thus, it may be concluded that
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(3.57)

qz{w) = YZZ(_w) oW

Therefore, the results of Section 3. 3.5 apply directly to pz(ur)

and qz(w) for mass-terminated chainlike structures with base exci-

tation.

3.5 Qualitative Harmonic Response Behavior

3.5.1 Free Oscillations of Conservative Systems

By free oscillations it is meant that the amplitude of all

generalized excitations is identically zero. That is
z, = 0 (3. 58)

Substituting (3.58) into (3.3), one obtains the following amplitude-

frequency equation for free oscillations

1
iy (w) = S g KJ-[wYZZ(w)A-S(A)]Z (3.59)

Since all variables in (3.59) are strictly real-valued, (3.59)
can have solutions only if
wvzz(w)A = S(A) (3.60)

Note from {3.6) and (3.9) that (3.60) may be satisfied for nontrivial

response amplitudes A only if
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wvzzwn =0
(3.61)

S(A) = 0

Clearly equations (3.61) are satisfied for nondissipative linear sys-
tems and conservative structural nonlinearities.

Substituting (3.60) into (3.59) one obtains

iy ) = SR (3. 62)
Thus, equation (3.62) is the resulting amplitude-frequency equation
which governs free oscillations.

By way of verification of (3.62), note that if there is no non-
linear constraint present, then C(A) = 0 v A and (3.62) then requires
that the free oscillations occur at the zeros of “zz(w)’ independent
of amplitude, as required. On the other hand, if the constraint is
rigid, then C(A) =» = ¥ A and (3.62) requires that the free vibrations
occur at the poles of nzz(w), independent of amplitude, as required.
It should be recalled, though, that the poles and zeros of nzz(w) do
not include those frequencies of free vibration for which attachment
point P corresponds to a x}odal peint. Clearly those frequencies are

not affected by the presence of the nonlinear constraint since motion

at those frequencies cannot contribute to the motion of point P.

Definition 10 (D10): [Backbone Curve(s)]

The backbone curve(s) are defined in the A,w plane as the loci

of all solutions A{w) of equation (3.62).
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A nonlinear system is said to be ''softening'' if the backbone
curve leans to the left in the A,w plane (i.e., if the natural fre-
quency decreases for increasing amplitude), and is said to be
"hardening' if the backbone_ curve leans to the right (i.e., if the
natural frequency increases for increasing amplitude). Theorem 1
states that for all undamped linear chainlike structures, each of the

backbone curves exhibits the same hardening or softening behavior.

Theorem 1: (Hardening or Softening Behavior)
If (1) uzz(w) is the transfer function of an undamped linear
chainlike structure
(2) CA)A € cl[0,w)
then every backbone curve has the same hardening or softening

behavior, which is determined by the algebraic sign of
d_ [_(_C A_z]
dal A

proof:
Differentiating (3.62) with respect to A and solving for dw/dA

one finds
d_ [c A)]
dw _ dAL A
dA dn,, W)
T T dw
By hypothesis (1), d"“zz(w)/d‘” exists and is negative for all positive
w [except at the poles of “22"”)' which cannot belong to any back-

bone curves]. Hence, the sign of dw/dA is the same as the sign
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of d—dA— [C(A)/A], independent of w, Thus, it is consluded that:

d [C(A ' 3 .
A [—-—%——)—] > 0 = hardening behavior

%[%&] < 0 = softening behavior

for all backbone curves. Q.E.D.
In the special case of the single-degree-of-freedom oscillator,
it is well known that there exists only one backbone curve, which
represents the amplitude dependence of the frequency of free vibra-
tion. However, in the more general multidegree-of-freedom case,
there exists many such backbone curves in the A, w plane. Knowing
how many such curves exist and their approximate location is of
prime importance in engineering applications. Theorem 2 provides
this information for the £requentiy encountered class of chainlike

structures.

Theorem 2: (Number and Location of Backbone Curves)
If (1) “22(‘”) is the transfer function of an undamped linear
chainlike structure with poles at [0 < wpl Lo wpz
LUp,n-l:?-l}
(2) C(A)/JA = 0 for all A > 0

< aen

then: (a) if attachment point P has nonzero mass, there exists
exactly (n-f) distinct backbone curves in the A,y plane,
which are separated by the (n-f£-1) poles of %zz“”)'

(b) if attachment point P is massless, there exists exactly
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{n-£-1) distinct backbone curves in the A,y plane, one

contained in each of the intervals (0, U’pl)’ (wpl,wpz), o §

1

[wp, gi-f27 ,n-f-1

prooi:
Observe in (3.62) that for any fixed value of A > 0, the right

hand side is a fixed non-negative constant.
By hypothesis (1) it is known that “zz(‘”} is a strictly decreasing
function of y for all w = 0. Furthermore, "22(‘”) ranges from +o
t0o -» in each of the (n-f£-2) intervals (wpl,wpz)’ o8 R (w'p. n-f-2°
wp,n-i-l)' Hence, in each of these intervals, there exists exactly
one frequency w corresponding to each fixed amplitude A in (3.62).
Thus, each of these intervals contains exactly one backbone curve.
In the interval [0, wpl), uzz(w) ranges from “22(0) > 0 to -e,
and is strictly decreasing. Thus, by hypothesis (2), there exists
exactly one frequency w corresponding to each fixed amplitude A in
(3.62). Hence, there exists exactly one backbone curve in this
interval as well,

In the interval {wp @), there exist two possibilities

,n=-f-1’
depending on the mass at attachment point P, If the attachment
point has nonzero mass, then "22("0) ranges from +w to -« in this
interval and is strictly decreasing. Hence, in this case, there is
exactly one backbone curve in this interval.

However, if the attachment point is massless, then nzz(w)

ranges from +e to (ki+ki ) > 0. Thus, in this case, -nzz(m) < 0

+1
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and by hypothesis (2) there does not exist a backbone curve in this

interwval. Q. E. D.

Theorems 1 and 2 thus provide sufficient qualitative informa-
tion to sketch the free vibration backbone curves for a nondissipa-
tive linear chainlike structure with a conservative nonlinear con-
straint. The number and general location of backbone or resonance
curves is determined by the natural frequencies of the rigidly comn-
strained linear system, and the location of the attachment point.
The hardening or softening behavior is determined by the C(A)
function for the nonlinearity., In Fig. 3.1l1, typical backbone curves
for such a system with a hardening elastic constraint are sketched.

It should be noted that the major results of theorems 1 and 2
hold for any linear system whose transfer function “zz("’) has
distinct poles and is strictly decreasing for all positive w. Since
the uniform shear beam has these transfer function properties, the
theorems also apply in that case, with minor modification. The
modification is simply that there are an infinite number of transfer
function poles, with each consecutive pair enclosing exactly one

backbone curve.

3.5.2 Forced Oscillations of Conservative Systems with a (Possibly)

Dissipative Constraint

In this section, the forced oscillations of a nondissipative
linear system with a general nonlinear terminal constraint are
considered. The nonlinear constraint may be conservative or it

may be viscously and hysteretically dissipative.
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Figure 3.11 - Typical Backbone Curves for a Nondissipative
Chainlike Structure with a Hardening Elastic
Constraint
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Recall that for nondissipative linear systems it follows that

yzz(w) and qz(w) are identically zero. Thus, equation {3.3) becomes
_ C{A) 1 2 2 L2 (
HoolW) = = ry p, (W)z - S7(A) (3, 63)

Recall that if the nonlinear restoring force F(x, %) contains a vis-
cous dissipation term cx, then a frequency dependent term -wcA
must be added to S(A) throughout.

The similarity of the general form of (3.63) with that of the
analogous equation for a single-degree-of-freedom oscillator has
already been pointed out. In the single-degree-of-freedom case, it
has been shown [56] that there exist certain conditions on the non-
linear restoring force and the excitation which govern the qualitative
nature of the response Af{w). Thus, the form of (3.63) suggests that
similar conditions may exist for the present multidegree-of-freedom
case.

For example, it is well known that by sufficiently increasing
the level of excitation, unbounded response is produced in a class
of undamped hysteretic single-degree-of-freedom oscillators. This
class of oscillators includes the commeonly used bilinear hystefetic
oscillator, and the dependence of the critical excitation level on the
parameters of the hysteresis loop are well known [357.

In the following theorem it is shown that an analogous result
holds in the multidegree-of-freedom case. The effects of the addi-
tional degrees of freedom are to introduce a dependence of the

critical level of excitation on the loading distribution and to
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introduce the possibility of unbounded response at more than one 2

excitation frequency.

Theorem 3: (Conditions for Unbounded Response)
If {1) ”zz(w) ranges from +eo to -o for finite w = 0

(2) lim S{(A) = M where |M| <
A e

(3) Iim Q_E_L). = ku where Ikml < ®
Ao

(4) {'ﬁii]i =1,2,3,...} is the set of all frequencies such
that: _”ZZ(J):'L) = km
then, there exists unbounded response amplitude A at one or more

- et Ja
of the frequencies w. whenever z. 2 z* where:

0~ %o
zg = min {z,2%,,...} and & = [M/p, @) ; i=1,23,...
proof:

For w such that pz(w) is bounded, it is seen that there are
two steady-~state solution loci, one determined from each of the

equations

@ = SR L L p2w)d - sPa)

Consider the limiting behavior of the above equations as A - o,

Assuming that the system and excitation are such that pg{w)z(z) =

2 ) 5 ;
M-, the two solution loci converge since the difference between the
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above equations vanishes as A -~ ». Thus, the frequencies

o !i =1,2,...} at which unbounded resonance occurs are deter -

By hypothesis (1) there always exists at least one frequency
w which satisfies the first condition. By hypothesis (3), this fre-
quency does not correspond to a pole of uzz(w) or 'pz(w).

Note that corresponding to each E’i there exists a z, suificient-
ly large that the second condition is also satisfied unless pZ@i) =

0.

*

Therefore, the minimum level of excitation z. at which

o

unbounded resonance occurs is determined by

R : G - L
= min {ZOI,ZOZ,...} where Zog = IM/pZ(tTJi)I ¥ 1L L Sase
Q. E.D.
Note that if the nonlinear restoring force contains viscous

damping, M| - » in Theorem 3, for all w > 0. Thus, all response

amplitudes for finite excitation levels are bounded in this case.

The limited slip nonlinearity, introduced by Iwan [587], is use-
ful in models of riveted and bolted structural connections. For this
nonlinearity, |M| = 0 in Theorem 3. (It can be shown th_at any
hysteretic nonlinearity has this property if the area enclosed by the
hysteresis loop is bounded by A" as A » », where m < 1.) Thus,
unbounded response exists for all excitation levels and load distribu-

tions such that at least one '51.1 does not correspond to a zero of P, (w).
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Of considerable practical interest in problems of the forced
harmonic response of structures is the location of amplitude
extrema in the A, w plane. It is generally desirable to be aware of
the excitation frequencies at which amplitude peaks occur in order
to avoid structural damage caused by forced resonance. Except
for zeros of response associated with pz(w) = 0, the local response
extrema occur on the locus of horizontal tangency. It is well known
that in the case of undamped hysteretic single-degree-of-freedom
oscillators, the response extrema occur on the backbone curve.
Thus, the locus of horizontal tangency and the backbone curve
coincide in that case.

It is shown below that for multidegree-of-freedom systems,
the above statement is no longer true in general. The effect of the
additional degrees of freedom is to introduce a dependence on the
load distribution which may cause the response extrema to occur
on either side of the backbone curves,

Differentiating (3.63) with respect to w and requiring that

dA/dw = 0, one finds that the locus of horizontal tangency is given

by
Jc A (zo)z dp, ()/dw )
npn@ = S8 - (2) 0 (gl gra 3.64)

By comparing (3.64) and (3.62), it is clear that the locus of hori-
zontal tangency does not coincide with any of the backbone curves
unless the last term on the right in (3.64) is identically zero.

Furthermore, since the algebraic sign of this term may be either
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positive or negative depending on pz(w), the local response extrema
may occur on either side of the backbone curves. However, it is
seen that for large amplitudes A the magnitude of this term is
small, so that the local response extrema occur very nearly on the
backbone curves.

Using (3.64) together with (3.63), it can be shown that the
local response extrema occur at the intersections of the loci of

horizontal tangency and the loci of solutions of

2
z dp, (w)/dw
ngg("”[l - (:&Q) (d’nz'z_(‘z w)/_dw) ] - s*(a) ~ PepBa)

Note that for large amplitudes, (3.65a) becomes asymptotic to
zops () = S7(A) (3. 65b)

Thus, an approximate method for estimating the location of large
amplitude response extrema consists of determining the simultaneous
solutions of the backbone .curves é.nd the loci of solutions of (3.65b).
[It should be noted from (3.63) that steady-state solutions may exist
only within the region defined by: zgpi(w) > SZ(A), so that (3.65b)
represents the boundary of this region.] Clearly, these approximate
extrema will yield lower bounds on all amplitude maxima and upper
bounds on all amplitude minima. The corresponding estimated fre-
guencies will either be upper or lower bounds depending upon the

location of the loci of horizontal tangency. Since the approximate
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extrema also represent the locations at which the solutions of (3.63)
cross the backbone curves, it is seen that if there are no inter-
sections, then unbounded response exists.

Furthermore, another approximate method for estimating the
response extrema is sometimes useful. This method consists of
determining the simultaneous solutions {when they exist) of the loci
of horizontal tangency and the loci of solutions of (3.65b). By
providing an upper bound on response maxima and a lower bound on
response minima, the estimated amplitude extrema obtained by this
method complement the estimates obtained by the previous method.
However, no simple general relationship exists between the corres-
ponding estimated and exact frequencies.

The usefulness of both of these approximate methods is limited
by their simplicity and accuracy. In many applications, it is much
easier to determine the required solution loci of the less compli-
cated equations involved in the approximate methods than it is to
find the solution loci of (3.63). The accuracy of the estimates
depends upon two factors: (‘1) the proximity of loci of horizontal
‘tangency and the backbone curves in the neighborhood of the
extrema, and (2) the ‘slope of the curves determined by (3.65b) in
the neighborhood of the intersections with the baci(bone curves,
Clearly if the loci of horizontal tangency and the backbone curves
are well separated, or if the slope of curves determined by (3.65b)
is very steep in the neighborhood of the intersections with the
backbone curves, then the apprloxirnate methods may yield bo@ds

which are not useful,
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If the nonlinear restoring force F(x,X) contains a viscous
damping term cxX, then the equivalent of equations (3.64) and (3.65a)
become considerably more complicated. In particular, the loci of

horizontal tangency are then determined by

2
_c@) (%o dp,()/dw ) wer cS(A)
npp W = T - (I) Pz(w)(duzz{w)/dw * @, 7a0) ~ Kdx, {0/ du)

{3.66)

However, the approximate methods may still provide useful bounds if
(3.66) is used in place of (3.64) and if a viscous damping term
~-wcA is added to S(A) in (3.65b). The previous comments con-
cerning the accuracy of the estimates remain applicable, but it will
be noted that since (3.66) is more complicated than (3.64), some of
the advantages of simplicity have been lost.

In the theory of vibration isolation in linear structures, it is
well known that for excitation frequencies which coincide with a
resonant frequency of a single component within a complex struc-
ture, the resonant component acts as a vibration absorber for the
remainder of the structure. This 'vibration absorber effect'' is
frequently used in the design of practical vibration isolation sys-
tems. Since the linear system considered here is undamped, a
vibration absorber effect exists and is the subject of the following

theorem.
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Theorem 4: (Vibration Absorber Effect)
I (L) nzz(w) has first order poles at the frequencies

[wpl’ pr’ von }

(2) pz(w) has first order poles at the frequencies

§]

{wpl,wpz, «e.} where » i=1,2,... there exists a

]

w .
Pj

(3) C(A) and S{(A) remain bounded ¥ non-negative A

j=1,2;«s» such that wpi

then, as w - wpi, i=12,..., the response amplitude A(w) as deter~
mined by (3.63) approaches a bounded comnstant value, independent of

C(A) and S(A). In particular, as w — wpi.

A -» 0, lf wpi é {wpl, wpz, a0 }

Pz(w i) | L o
A_,__._E._z,ifw,e{wl,w s w }
xg2(pi)| e Bt " TPl p2

proof:
Multiplying both sides of (3.63) by A one obtains

Auyy) = CA) £ [plwel- sta) (3.67)

Consider the above equation as W - wpi’ i=1,2,... Two distinct
possibilities exist: either ”zz(‘”’ becomes unbounded while pz(w)
remains bounded, or both nzz{w) and pz(w) simultaneously become
unbounded.

Ko i (@17 Byps e} then as w'..'wpi the right hand side of

(3.67) remains bounded, while uzz(w) becomes unbounded. Clearly,
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there exists a solution A(w) in this case only if the left hand side
simultaneously remains bounded. Thus, it must be that A - 0 as
U = wpi in this case.

If € € {Epl,'(ﬂpz, .++), then as w = wpi, (3.67) becomes

-Auy, W) = 2]p, )iz,

Or, noting that A must be non-negative,

P, (wEi)

A =
”22(""131’

Z

0

where pz(wpi)/nzz(wpi) is bounded, by hypotheses (1) and (2). o B

As previously discussed, the load distribution function pz(w)
will have zeros at each frequency for which the attachment point
corresponds to a node. These zeros of pz{w) are highly dependent
upon the details of the spatial distribution of the generalized loads,
~and may occur in general at any non-negative frequency other than
the poles of pz(w). Theorem 5 states that for excitation frequencies
corresponding to one of these zeros, the response amplitude must
vanish, or lie on one of the backbone curves (for conservative non-

linearities).

Theorem 5: [Response at Zeros of p,(w)]
If p,(@) = 0 for some W, then as W - @ either A(W) - 0 or

A@) » A where A is determined by

Hyy @) = %‘il and S(@E) = 0



..

proof:

Eliminating the radical term in (3.63) and solving for

pg(w)z(z), one finds
‘ 2
2 chz} 2 2B

Then, since p,(®) = 0, A(W) is determined by

2
Az(w)[uzziw) g LA ] + SZEA@)] = 0

A (@)
Thus,
stA@)] = o0
and either
AM) = 0 or =,,[® = %ﬂ

Recalling that S5(0) = 0, it follows that A@) =0 or AW) = A where

SE) = 0 and -, (@) = c@a) Q. E.D.

A
A more detailed description of the response. is not easily
obtained without restriction to some special applications, In par-
ticular, by requiring the load distribution function P, (W) to be con-
stant for all w, the effects on the response of the linear system and
nonlinear constraint are easily separated from those of the load

distribution.,
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In Section 3.4.2 it was shown that pz(w) = 1 for all w if the
loading consists only of a single concentrated load applied at the
attachment point. Due to the special results which are available
in this case, this loading condition may prove to be a convenient
experimental arrangement for the identification of an unknown non-
linear constraint force F(x, x). -

Substituting ‘pz(w) =1 v w into (3.63), one finds

~uyp (W) = 9—%1 s 5 [25-s%a) (3.68)

where it is noted that the left hand side is independent of amplitude

A, while the right hand side is independent of frequency w. Using

this observation it is possible to prove several special results.
From equation (3.65) in this special case, it is clear that the

extrema of admissible amplitudes A are determined by

= s%(a) (3.69)

Z2.
0

independent of frequency and of the linear system. For each

response extremum A* determined from (3.69), the corresponding

frequencies w* are determined by the backbone curve frequencies

2
0

supremum exists, then there exists unbounded forced response at

corresponding to amplitude A%, (If z; > sup[Sz(A)], when such
each backbone curve.)

Also, since equation (3.69) is identical to the analogous equa-
tion for a single-degree-of-freedom nonlinear oscillator [577, it

can be shown that the condition for the existence of disconnected
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response curves is also unchanged. In particular, there exists
disconnected response behavior centered on each backbone curve of
a chainlike system if SZ(A) exhibits at least one relative maximum.
{SZ(A) exhibits exactly one relative maximum in the case of the
limited slip nonlinearity [567. }

For the case in which pZ(uJ)E 1, several specific statements
can be made concerning the qualitative behavior of the entire
response curve A{w). In the following theorem, sufficient informa-

tion is developed to sketch such a curve.

Theorem 6: [Qualitative Response Behavior for p, () = 1]
If (1) nzz(w) is the transfer function of an undamped linear
chainlike structure with poles at {wpl’ pr" s "wpn)
(2) Attachment point P has non-zero mass
2
BGlpylw) =1vuw

(4) C(A)/JA 2 0 v+ A 2 0, and lim C(A)/A exists
Ao

(5} A is restricted to those regions where zg > SZ(A}
(i.e., excluding amplitude extrema)
then (a) there exists exactly two frequencies W in each of the n
intervals (wpll'wpz)’ e (wpn,w) which satisfy (3.68) for a
given amplitude A

“(b) in the interval [0, w there exists exactly two frequencies

Pl),
w which satisfy (3.68) for each amplitude A such that

2
AZ[%‘H + ,,,22(0)] + @) = zg
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and exactly one frequency w for each amplitude A such
that

2
Al [-C—%l 4 KZZ(O)] + S%(a) < z(z)

(c) within any of the above frequency intervals, each pair of
frequencies corresponding to the same amplitude A are
separated by the backbone curve frequency at that ampli-

tude.

proof:
By hypothesis (5) and (3.68), the steady-state response is

determined by the loci of all solutions A(w) of each of the equations

1 2
“H5 (W) A A « %o~

1 2 2
nyy ) = S T /zO-S(A)

By hypotheses (1) and (2), the left hand side of each of (3.70) is

H
9
b=

+

s(a)
(3. 70)

1
Q
p=

a strictly increasing function of w, ranging from - to +« in each
of the n intervals (wpl’wpz)’ ey {wpn,m). Hence, in each of these
intervals there exists exactly one frequency satisfying each of
(3.70) for a given amplitude A. Furthermore, by comparing (3.62)
with (3.70) and using the property that the left hand side of each
is strictly increasing, it is seen that within each interval, each

pair of frequencies w satisfying (3.70) for a given amplitude A are



i

distinct and separated by the backbone curve frequency satisiying
(3.62) for the same amplitude A.

In the interval [0, wpl)’ the left hand side of each of (3.53) is
strictly increasing, ranging from "“22(0) to +«, by hypothesis (1).
Thus, by hypothesis (4), there exists exacﬂy one frequency w
satisfying the first of (3.70) for any non-negative amplitude A
which satisfies hypothesis (5). However, there exists exactly one

frequency W satisfying the second of {3.70) only for those amplitudes

A such that
Ca) - L [zl-sf@a) 2 min [, )]
pl
or
2
2fca 2 2
A2[Sa) 4 0] 4 sPa) 2 2R (3.71)

and such that hypothesis (5) is satisfied. Note by solving (3.68)

for z2 that equality in (3.71) represents the condition for 'static"

0
solutions, [It should be recalled that (3.68) and hence (3.71) are

subject to the approximations discussed in Chapter II, so that static
solutions determined from (3.71) are only approximate.] Clearly
as A - 0, the inequality in (3.71) is violated, so that there always
exists a region of amplitudes for which the second of (3.70) poses
no solution for we [0, wpl).

Finally, for wE[O,wpl) and for amplitudes A such that there

exists a unique frequency satisfying each of (3.70), these two
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frequencies are distinct and separated by the backbone curve fre-
quency satisfying (3.62) for the same amplitude A, by hypothesis
(1). Q. E. D,

It can be shown graphically that increasing (decreasing) Zg in
(3.69) can only increase (decrease) the response extrema which
correspond to maxima and decrease (increase) those extrema which
correspond to minima. Similarly, it can be shown for fixed ampli-
tude A that increasing (decreasing) zg in (3.68) can only increase
(decrease) the width of the response curves about the locus of
horizontal tangency. Based on these results and the previous
theorems, sufficient information has been developed at this point
to sketch the qualitative behavior of A(w) for various excitation
levels. Figure 3,12 shows a typical response curve A(W) for a
chainlike system with loading such that pz(w) =1 for all w.

The previous theorems provide useful information on certain
general features of the response A(w), and on the way in which
these features may be affected by various alterations in the linear
system, nonlinear constraint, and loading distribution. M particular,
it was shown that in the A,®w plane, the response is separated by
the poles of Kzz(w) into distinct regions which contain a single
backbone curve. The backbone curves represent undamped free
vibrations (for conservative systems) and have similar hardening
and softening behavior (for chainlike systems). The number and
general location of backbone curves was shown to be determined by

the passive linear system, with the hardening or softening behavior
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determined by the nonlinear constraint force F{x,%). The loading
distribution has no effect on this basic structure of the response
diagram A(W).

It was also shown that as the excitation frequency makes the
transition from one of these distinct regions to another, the response
Aw) is single-valued and passes through a bounded constant whose
value is determined by the passive linear system and the loading
distribution, independent of the nonlinear constraint. It was also
shown that unbounded forced response may occur only in special
circumstances depending on all three factors, and that for strictly
dissipative nonlinearities the response A(w) vanishes at the zeros
of the load distribution function.

Finally, it was also shown that depending on the load distri-
bution, the local response extrema may occur on either side of the
backbone curves, and approximate methods for estimating the location

of response extrema were presented.

3.5.3 Forced Oscillations of Generally Dissipative Systems

In this section, consideration is given to the forced oscillations
of a strictly dissipative linear system with a general nonlinear ter-
minal constraint. Consideration of strictly dissipative linear sys-
tems is important, since all real structures are strictly dissipative.
Thé nonlinear constraint may be conservative, or it may be vis-
cously and hysteretically dissipative.

Recall that for strictly dissipative linear systems, vzz(w) is

strictly positive for all non-zero w. Thus, the amplitude response
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A() is determined by equation (3.3) with this restriction on
Y5 @)

Since (3.3) applies to a rather broad class of systems, non-
linearities, and load distributions, relatively few similarities in the
details of the response can reasonably be anticipated. Thus, it is
difficult to make general statements concerning the qualitative
behavior of the response, as evidenced by the complexity of equa-
tion (3. 3). However, the restriction of Yoo (w) to positive values is
sufficient to provide the following boundedness theorem. In addition,
by neglecting the energy dissipated in the nonlinear constraint, the
theorem provides a bound on the maximum amplitude which is

independent of the nonlinearity.

Theorem 7: (Boundedness of Damped Response)
If the linear system is strictly dissipative, then all steady
state response amplitudes A(W) are bounded from above by

[ngw) + wzqg(wJ]%zolw Yy, ), ¥ w > 0.

proof:
Observe that the left hand side of (3.3) is a real valued

function of w. Note that the right hand side is also real valued

only for those values of A and w such that

[po(0) + w’qs@)lzg = [wy,,@A - s(a)° (3. 72)

Hence, (3.72) represents a restricted region in the A,w plane out-

side of which solutions A{w) to (3.3) cannot exist. Clearly the
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boundaries of this region (which represent extrema of admissible
response at any given frequency) are determined by equality in

(3.72)

2 2 2 2 2
[pz(u)) + w qz(w)]zo = [wvzz(w)A - S(AN {(3.73)
But since F(x,%) is passive, equation (3.6) requires that
UJ'YZZ(w)LA - S{A) = wvzz(w)A 2 0 »» A, =20 (3. 74)

so that an upper bound A*{(w) on the response maximum is obtained

from (3.73) by using (3.74) to obtain

S
[Pg(w) + wzqg(w)fzo

‘”ng(‘”) [3.75)

A¥x(w) =

As noted in Section 3.4.1, pz(w) and qz(m) are bounded ¥ w for
strictly dissipative systems, so that A%(W) is bounded v w > 0.
Therefore, since A¥(w) is bounded for all & > 0, all response
amplitudes A(w) determined from (3.3) are also bounded for strictly
dissipative systems. Q.E.D.
Since a considerable variation in response behavior is
expected when comparing the damped response of different systems,
it is more reasonable to compare the damped and undamped
response of the same system. In particular, for base excitation of
mass-terminated chainlike structures with light viscous damping,
the transfer function properties given in Sections 3.3.5 and 3.4.3

help to provide some insight into the effect of damping on the
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response. In such a case, the effect on the response of both the
load distribution and the linear system are determined by “zz("”
and Yzz(w). As previously shown, the transfer functions "-zz(‘”)

and 'vzz(w) for lightly damped systems are very closely approxi-
mated by the corresponding undamped transfer functions for all
frequencies which are not near the undamped poles of "'zz(w)' Thus,
the lightly damped response will generally be closely approximated
by the undamped response for all such frequencies, However, for
excitation frequencies which are near the undamped poles of ”‘22(&)’
the damped transfer functions “ZZ(UU) and 'Yzz(w) differ markedly
from the undamped functions, as shown in Figure 3.7. It is there-
fore expected that major qualitative differences between the damped
and undamped response may occur near these undamped poles.
Unfortunately, it is difficult to predict the nature of these qualitative
differences without restricting consideration to a particular non-
linearity.

For the single-degree-of-freedom nonlinear oscillator, it has
been shown [567 that the effects of increasing the level of viscous
damping are: (1) to decrease the value of all response maxima,

(2) to increase the valﬁe of all response minima, and (3) for
fixed response amplitude, to cause the corresponding excitation fre-
quency to move nearer to the frequency corresponding to the same
fixed amplitude on the locus of horizontal tangency. Although it is
not easily proven, similar results are expected for increasing

levels of viscous damping in the multidegree-of-freedom case,
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IV. Numerical Examples of Harmonic Response of Systems with
a Nonlinear Terminal Constraint

4,1 General Remarks

Presented in this chapter are quantitative examples of the
harmonic response of three different structural systems. These
examples demonstrate the application of the general formulation of
Chapter II to both continuous and discrete linear systems, with
different generalized excitations, and with nonlinearities ranging
from conservative hardening and softening to hysteretic.

In addition to providing examples of the general theory of the
previous chapters, the present investigation includes consideration of
a model for nonlinear structural behavior which has not been pre-
viously presented. The structural model, which is assembled from
linear elastic springs and a Coulomb friction slider, produces
hysteresis loops whose limiting behavior approaches that of the
elastoplastic, the bilinear hysteretic, or the so-called 'limited slip"
f58] models for various parameter values.

Consideration is also given to the accuracy of the approximate
solution. A comparison is made between the approximate and exact
solutions (obtained by numerical integration of the equations of
motion) for three different systems and various excitation fre-

_quencies.
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4,2 Steady-State Response to Harmonic Base Excitation of a

Uniform Shear Beam with a Cubic Spring Terminal Constraint

4,2.1 Application of General Formulation

Depicted in Figure 4.1 is an idealized model for the physical
system under consideration. The system consists of a uniform
shear beam (shown vertically erect) with one end stress free and
the other constrained by a one-dimensional nonlinear structural
element. Exci.tation is provided by an impressed harmonic dis-
placement of the rigid base of the system, to which one end of the
nonlinear element is attached. In this case, x (which represents
the deformation in the nonlinear element) measures the relative
displacement between the end of the shear beam and the base of
the system. Such a system might be used to model the behavior
of a tall building mounted on a nonlinear foundation, or a soil
profile bonded nonlinearly to a rigid substructure.

The nonlinear structural element is assumed to have a

restoring force given by
. 2 .
Fix,%x) = kx({(l +ex ) + cx (4. 1)

where k is a linear spring constant, ¢ is a viscous damping coeffi-
cient, and ¢ is a (small) nonlinearity parameter, which produces

hardening behavior when positive and softening behavior when nega-
tive. Thus, the nonlinear structural element consists of a parallel
combination of a linear spring, a cubic spring, and a viscous dash-

pot.
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Uniform Shear 'Beom \

Zo cos (wt)
el

L
Qf—-‘ Fx,x) | L

Rigid Base

L T T T T T . N . . T T . .

Figure 4.1 - Base Excitation of a Uniform Shear Beam
with a Nonlinear Terminal Constraint
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Substituting (4. 1) into (2.31), and using (2.27), one finds that
the "equivalent linear stiffness'' of such a nonlinearity is given by
SA) - ko + 3% (4.2)
and that the 'equivalent linear damping coefficient" is simply the
viscous damping coefficient, c. Thus,

-%=c (4. 3}

The linear system takes the form of a uniform free-free
shear beam, with attachment point P taken at one end, The com-
plex frequency transfer function sz(iw) is the force developed in
the shear beam at P, in response to an impressed displacement
time-history g applied at P. The force is positive when in the
same direction as positive displacement.

If £ is the length of the shear beam, a is the cross-sectional
shear area, G is the shear modulus of the material, and p is the

mass density, then one finds that

sz(iw) = -(gﬂ—a—) (%@) tan (-u—.if—) (4. 4)

=

where
i
V= (G/pP {4.5)

is the velocity of shear waves in the beam. Thus, from (2.34),

one finds that
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(§) (%) = (%)

v,,) = 0

uzz(iw)
(4.6)

It is easily verified that nzz(w) is strictly decreasing for all
positive w and ranges monotonically from +* to -® for all w
between consecutive poles of tan u‘)r_ﬂ . Hence, the behavior of
nzz(w) is qualitatively identical to that of a linear chainlike struc-
ture, as discussed in Section 3. 3.4, excebt that there exist infinitely
many poles and zeros.

Since the linear system corresponds to a shear beam with
both ends free, it is analogous to a mass-terminated linear chain-
like structure, as described in definition (D9). Therefore, equations

(3. 53) remain valid, so that

rate) = - () (%) == ()

q,Ww) = 0

B

4.7)

Thus, pz(w) and nzz(w) are identical and share the same poles and
ZEros.,

For convenience, let

Ga _ 2
£ 0w
(4. 8)
L _
% P

Then, it is easily shown that the poles of nzz(w) and pz(w} occur at
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w=13,5... and that the zeros occur at w=20,2,4,6,...

Furthermore, let
k = —G’—?'— = E ' (4- 9)
m
Substituting (4.2), (4.3), (4.6)-(4.9) into (3.3) and (3.62), it

is found that the approximate steady-state solutions for forced

oscillations are governed by the transcendental equation

w tan (T—T-zul) = %(1 +%eA2) + % ngwztanz (E%) - ouz‘czA‘2 (4.10)

The backbone curves (which represent the approximate steady-state

solution for free oscillations) are governed by
w tan (ﬂ”—) = 201+ 5% (4.11)

Equations (4. 10) and (4.11) were solved iteratively by digital
computation, and the resulting loci of solutions are shown in Figs.
4,2-5. The solid lines represent the approximate solution for
forced oscillations, as determined by (4.10), the broken lines
represent the approximate solution for free oscillations (for ¢ = 0),
as determined by (4.11), and the data points represent ''exact"
solutions, which are discussed at the end of this chapter,

Depicted in Figure 4.2 are the loci of approximate steady-
state solutions for the first five "modes'" of the system with no

viscous dissipation (i.e., ¢ = 0). The nonlinearity parameter is
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quite large (e = +0,25) and represents a cubic hardening spring.
The level of excitation is zg = 1.

Shown in Figure 4.3 are similar solutions for a cubic
softening system, with e¢ = -0,25. The system is again nondissipa-
tive {c = 0), and the level of excitation is again zg = 1.

Shown in Figure 4.4 are the approximate steady-state solu-
tions for the first three modes of the system, for three different
excitation levels: zg = 0.5, 1.0, 2.0. The system is hardening
(¢ = +-.25) and dissipative (c = 0.142). Shown in Figure 4.5 are
similar solutions for a system with more viscous dissipation

(c = 0.260). All other parameters are the same as in Figure 4. 4.

4,2.,2 Discussion of Free Oscillations

The approximate solutions for steady-state free oscillations
are best studied in Figures 4.2 and 4.3, where they are shown as
broken lines. It is observed from Figure 4.2 that, for the cubic
hardening system, each backbone curve exhibits similar hardening
behavior. Similarly, it is observed from Figure 4.3 that, for the
cubic softening system, each backbone curve exhibits similar
softening behavior. These observations agree with the predictions
in Theorem 1 of Chapter III, since, for C(A)/A as given in (4.2),
the derivative a%—[C(A)/A] is positive for positive ¢ and negative
for negative e,

It is further observed that, in each of Figures 4.2 and 4,3,
exactly one backbone curve exists in each of the frequency intervals

[0,1), (1,3), (3,5), etc., where it will be recalled that the odd
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positive integers are poles of uzz(w), as given in (4.6) and (4.8).
These observations agree with the predictions in Theorem 2 of
Chapter IIL

Referring to Figure 4.2, it is seen that, for small amplitude
oscillations, the backbone curve frequencies approach the natural
frequencies of the system with linear spring constraint only.
However, as the amplitude increases, the nonlinear constraint
monotonically becomes stiffer, until, as the amplitude becomes
unbounded, the constraint becomes effectively rigid., Such an inter-
pretation is justified by examining equation (4.2), which determines
the effective stiffness of the nonlinear constraint. Thus, for large
amplitude oscillations, each of the backbone curves assymptotically
approaches one of the natural frequencies of the rigidly constrained
system [i.e., the poles of uzz(w)].

Clearly, the effect of increasing (decreasing) the linear spring
constant k in (4.1) is to increase (decrease) each of the backbone
curve frequencies corresponding to small amplitude oscillations.
Such variations have a negligible effect on the large amplitude
oscillations. It is also found that the effect of increasing
(decreasing) the mégnitude of the nonlinearity parameter, ¢ is to
increase (decrease) the extent to which the backbone curves lean
in Figure 4, 2.

Referring to Figure 4.3 it is seen that a more complicated
situation exists. Although all backbone curves are softening and
exhibit the expected small amplitude behavior, the first backbone

curve clearly differs from the rest in that it terminates at a finite
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amplitude. This unusual behavior results from the fact that, for
the cubic softening nonlinearity, there exists a critical amplitude
Ac above which the effective stiffness of the constraint becomes
negative. This critical amplitude is found by equating to zero the
effective stiffness, C(A)/A, in equation (4.2). For the parameters

corresponding to Figure 4.3, one finds

£ o= owE (4.12)

Clearly, as the amplitude of oscillation approaches Acr’ the effec-
tive stiffness of the constraint approaches zero, causing the back-
bone curve frequencies to approach the natural frequencies of the
unconstrained system [i.e., the zeros of uzz(w):l. This phenomenon
is demonstrated in Figure 4.3, where it is noted that the uncon-
strained natural frequencies are w = 0, 2, 4, 6, etc.

For oscillation amplitudes larger than Acr’ the nonlinear
restoring force is negative over most of eaéh cycle of oscillation,
which results in a negative effective constraint stiffness. Such
negative stiffness characteristics might, for example, be encountered
in models which include the 'destabilizing effects of gravity for
large displacements (e.,g., the '"P-A' effect).

Referring to Figure 4.3, it is observed that large amplitude
(i.e., A= Acr} free oscillations represented by the first backbone
curve occur at vanishingly small excitation frequencies. At such

low frequencies, the shear beam moves essentially as a rigid body.
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An analysis of the single-degree-of-freedom system which results
by modeling the shear beam as a rigid body has been performed
[59]. In that study, the existence of such a critical amplitude was
also reported. For low frequency motions with amplitude larger
than Acr’ the destabilizing effect of the negative restoring force
prevents any oscillations by driving the motion increasingly in one
direction (i.e.,, x = *®),

Oscillations with amplitude larger than Acr do exist, however,
and are represented by the second and successive backbone curves.
At these higher frequencies the motion is no longer ''quasi-static,'
and significant deformation in the shear beam is required to pro-
duce such oscillations. It is noted from equation (4.2) that as the
amplitude of response increases without bound, the effective con-
straint stiffness approaches negative infinity., Thus, for large
oscillations each backbone curve asymptotically approaches the
next lower natural frequency of the rigidly constrained system.

The effects of varying the linear spring stiffness, k, and the
nonlinearity parameter, ¢, are the same as described for the

hardening system.

4,2,3 Discussion of Forced Oscillations without Viscous Dissipation

The approximate solutions for steady-state forced oscillations
of the system with no viscous dissipation (i.e., ¢ = 0) are shown as
solid lines in Figures 4.2 and 4.3. It is observed in each figure
that the response is separated by the poles of uzz(w) into distinct

regions, each of which contains a single backbone curve and two
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separate branches of the solution loci. It is found that the phase
lag, ¢ [defined in equation (2.27)], corresponding to each branch of
the solution loci is either zero or w. Furthermore, starting from
the origin in each figure and proceeding in the direction of
increasing frequency, it is found that, for each successively
encountered solution branch, the corresponding phase lag alternates
between zero and w, in that order. These observations are in
agreement with the predictions given in Chapter IIl concerning the
general structure of the response diagram,

Careful examination of the response reveals that the steady-
state amplitude passes through the value A =1 as the excitation
frequency passes through the values w = 1,3, 5, etc., which corres-
pond to the poles of nzz(w). Such behavior is in agreement with
the predictions in Theorem 4 of Chapter III regarding the vibration
absorber effect. Applying the theorem to the systems discussed in
this section, it is found that as the excitation frequency approaches
one of the poles of nzz(w), the corresponding response amplitude
must approach the level of excitation, which in this case is zZg = 1.
Furthermore, the theorem states that this result is independent of
the nonlinearity and is fherefore independent of k, ¢, and c.

Referring to Figure 4.2, it is observed that the response
arni:olitude passes through the value A = 0 as the excitation frequency
passes through each of the values w = 0, 2, 4, 6, etc., which corres-
pond to the zeros of pz(w). Identical observations are noted in
Figure 4.3. Such behavior is in agreement with the predictions in

Theorem 5 of Chapter III concerning the response near the zeros



-119-

of pz(l.u). Furthermore, the theorem predicts that such behavior
is independent of the nonlinearity and is therefore independent of
k, € and c.

Referring to Figure 4.3, the branches of the solution loci are
observed to cross, while for the hardening system in Figure 4.2
they remain separated. More careful examination of the response
reveals that the intersection of each pair of crossing branches lies
on a backbone curve at the common amplitude A = Acr’ as given in
(4.12). Furthermore, the frequency at which intersection occurs is
one of the values w = 0, 2, 4, 6, etc., which cdrrespond to the zeros
of pz(w). Such behavior again is also in agreement with the pre-
dictions in Theorem 5 of Chapter III. In this case, the theorem
predicts that as the excitation frequency approaches one of the
zeros of pz(w}, the corresponding response must approach the back-
bone curve at the amplitude corresponding to such zeros (i.e.,
A = Acr}' An alternate interpretation is that as w approaches
one of the zeros of P, (w), the effective amplitude of excitation
vanishes, so that the only possible response is either that of free
oscillations or no motion at all, both of which are observed in
Figure 4. 3.

It is possible to extend the proof of Theorem 3 in Chapter III

to the case of a cubic nonlinearity [i.e., lim 9—%’- is unbounded],
A= @

Applying the theorem one then finds that unbounded oscillations
occur at each pole of nzz(w), in the case of either the hardening or

softening systems. Thus, as the response amplitude becomes
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unbounded, each pair of solution branches in Figures 4.2 and 4.3
must converge onto the backbone curve which separates them.
Furthermore, this behavior occurs for all excitation levels, as

expected for conservative systems.

4,2.4 Discussion of Forced Oscillations with Viscous Dissipation

Forced oscillations of the cubic hardening system for three
different values of excitation are shown in each of Figures 4.4 and
4.5, for respectively different values of viscous dissipation. As
predicted in Theorem 4 of Chapter III, it is observed for each
curve in each figure that the response amplitude approaches the
value A =z, as the excitation frequency approaches each pole of
nzz{w}. These observations are in agreement with the predictions
that this feature of the response is independent of the level of
viscous dissipation. Furthermore, it is also observed for each
curve in each figure that the response amplitude approaches the
value A = 0 as the excitation frequency approaches each zero of
pz(w). These observations are in agreement with the predictions
in Theorem 5 of Chapter IiI, that this feature of the response is
not only independent of the level of viscous dissipation, but is also
independent of the level of excitation.

Referring to Figure 4.4, it is observed that near the first
backbone curve the response for each excitation level is similar
in that there are two separate solution branches which continuously
converge on the backbone curve as the response amplitude increases.

Near the second backbone curve, it is seen that the response for the
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two largest excitation levels is qualitatively unchanged, but that for
the smallest excitation level the response takes the form of a
single solution branch which crosses the backbone curve and dis-
plays a peak slightly to the right.

Near the third backbone curve the response is quite interesting.
It is seen that for the largest excitation level the response is again
qualitatively unchanged, and for the lowest excitation lewvel the
response is also qualitatively unchanged, except that the response
peak is lower in amplitude and occurs farther to the right of the
backbone curve. However, for the intermediate excitation level, it
is seen that there exists two disjoint solution branches which each
cross the backbone curve. The lower branch displays a peak
slightly to the right of the backbone curve, while the upper branch
displays a minimum, also to the right. It is the upper branch of
this response which is interesting., It can be shown that this
branch extends up to unbounded amplitudes. Furthermore, it can
be shown that unbounded response exists near each backbone curve
for any nonzero excitation level, even though the constraint con-
tains a viscous dissipation element. Such a result is peculiar to
this system and ié a consequence of the fact that the shear beam
is undamped and that the effective stiffness becomes unbounded for
large amplitudes. Hence, there also exists a disjoint upper branch
corresponding to the response for the lowest excitation level near

each of the second and third backbone curves. However, these



-122-

branches exist only for amplitudes larger than A = 5, and thus they
do not appear in Figure 4,4,

Further examining Figure 4.4, it is observed for the lowest
excitation level that the response peaks decrease in amplitude as
the excitation frequency is increased. I is also found that the
response minima of the corresponding upper branches follow an
opposite trend, increasing in amplitude as the excitation frequency
is increased. Furthermore, for each level of excitation and viscous
dissipation, there exists a critical excitation frequency beyond which
only disjoint solution branches which display this behavior are
observed. This basic behavior of the response near successive
backbone curves is found to characterize the system for all levels
of excitation and viscous dissipation.

The effect of varying the level of excitation is readily observed
in Figure 4.4. As the level of excitation is increased, it is clear
that the level of response increases at all frequencies except the
zeros of pz(w). By increasing the level of excitation, it is observed
that each response maximum is increased and each response mini-
mum is decreased. Furthermore, for increasing excitation levels,
the separation increases between each pair of solution branches
which straddle a backbone curve. Finally, increasing the level of
excitation causes the critical excitation frequency to increase, so
that near any given backbone curve, the disjoint response will

become connected for sufficiently large excitation.
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Referring to Figure 4.5, which shows the response for a
larger level of viscous dissipation, the previous comments con-
cerning the general behavior of the response also apply. Further-
more, by comparing Figures 4.4 and 4.5, the effects of varying
the level of viscous dissipation are apparent. A careful comparison
reveals that, for a fixed level of excitation, the effect of increasing
the level of viscous dissipation is to decrease the amplitude of all
response peaks and to increase the amplitude of all response
minima. In particular, it is observed for the lowest level of exci-
tation that the response peaks near the second and third backbone
curves are decreased in amplitude. For the intermediate level of
excitation, it is observed that the response peak near the third
backbone curve is decreased in amplitude, and that the response
minimum of the corresponding upper branch is increased sufficiently
that this branch no longer appears in the figure. Furthermore,
near the second backbone curve, it is observed that the response
now takes the form of two disjoint solution branches; an upper
branch and a lower branch. Thus, by increasing the level of viscous
dissipation, the critical excitation frequency (beyond which only
disjoint solutions éxist) is decreased. For the largest level of
excitation in the figure, it is seen that the separation is decreased
between each pair of solution branches which straddle a backbone
curve. Thus, it is observed that near any given backbone curve,
the connected response will separate into two disjoint branches for

sufficiently large viscous dissipation.
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It is observed in both figures that each local response
extremum occurs near, but slightly to the right of, a backbone
curve. Furthermore, it is observed in Figure 4.5 that the response
near the third backbone curve, for the largest level of excitation,
appears to '"meck down'' toward the right of the backbone curve,
even though it remains connected. This behavior is primarily the
result of the particular choice of load distribution (e.g., base
excitation), although it is also dependent upon the levels of excita-
tion and viscous dissipation. By studying the loci of horizontal
tangency [as determined by equation (3.66)] for fixed level of exci-
tation, it can be shown that the effect of increasing the level of
viscous dissipation is to lower all frequencies at which response
extrema occur for amplitudes larger than A = zg and to increase

such frequencies for lower amplitudes.

Local Response Extrema

Since the existence of local maxima and minima are promi-
nent features of the response from an engineering point of view, it
is of practical interest to obtain estimates of these values directly,
without having to obtain the entire steady-state solution curve.
Applying the approximate methods discussed in Chapter III, lower
and upper bounds on the amplitude of each local response extremum
in Figures 4.4 and 4.5 are obtained, as well as estimates of the
corresponding frequencies. Results of these calculations are shown
in Table 4.1 for comparison with the actual amplitudes and fre-

quencies of response extrema.
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It is seen that in most cases the estimates provide use-
ful bounds on the amplitude extrema, even for relatively small
amplitude response. I is also observed that the variation in the
corresponding frequency estimates is smaller for the larger ampli-
tude extrema. This occurs because the loci of horizontal tangency
approach the backbone curves as the amplitude of response increases.
Finally, it is noted that no estimates of amplitude or frequency are
obtained for two cases shown in Table 4.1. In these particular
cases, the estimates are not obtainable because the loci of horizon-
tal tangency and the loci of solutions of (3.65b) do not intersect.
As noted in the discussion in Chapter III, such intersections do not

always exist,

4.3 Steady-State Response to Harmonic Base Excitation of a

Uniform Ten-Mass Chainlike Structure with a Bilinear

Softening Terminal Constraint

4.3.1 Application of General Formulation

Depicted in Figure 4.6 is an idealized model for the physical
system under consideration. The system consists of a uniform
ten-mass chainlike structure with one end stress free and the other
constrained by a one-dimensional nonlinear structural element.
Excitation is provided by an impressed harmonic displacement of
the rigid base of the system, to which one end of the nonlinear
element is attached. In this case, x measures the relative dis-

placement between the first mass of the chainlike structure and the
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Figure 4.6 - Base Excitation of a Uniform Ten-Mass Chainlike
Structure with a Nonlinear Terminal Constraint
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Figure 4.7 - Behavior of the Conservative Bilinear
Restoring Force, fBL(x)
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base of the system. Such a system might be used to model the
behavior of a ten-story building with a soft first story.
The nonlinear structural element is assumed to have a

restoring force given by
Fix, %) = fBL(x) + pk (4. 13)

where ¢ is a viscous damping coefficient and fBL(x) is the symmet-~
ric bilinear restoring force shown in Figure 4.7, The restoring

force may be expressed mathematically as

k¥x 1+cr(1 +-6—) : x < -8
x /]

e

fp ) k*x ; |x| = 6 (4. 14)

K 1+r:1:(1--5—)T i x> 8
xd

where k* is a linear spring constant, & is the yield displacement,

and @ is a (small) nonlinearity parameter, which produces hardening

behavior when positive and softening behavior when negative.
Substituting (4.13), (4.14) into (2.31) and using (2.27), one

finds that the ''equivalent linear stiffness'' in this case is given by

k#* A s b

C(A)
AT B ik 4 (4. 15)
k*[1+af;r-(9“‘-%-si.nza )]; A > 8
where
gai o A '
B = gos (K) (4. 16)
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The ''equivalent linear damping coefficient'' is simply the viscous
damping coefficient, c. Thus,

-%(%)-= c (4.17)

The linear system takes the form of a uniform mass-
terminated linear chainlike structure, with attachment point P taken
at one end, The complex frequency transfer function H,, (iw) is the
force developed in the chainlike structure at P, in response to an
impressed displacement time history SHt applied at P. The force
is positive when in the same direction as positive displacement.

If each element of the chainlike structure has mass m and

gstiffness k, then one finds that

10
I1 (wz— hy 2 2)
21 zj n
H (iw) = -Im !k (4. 18)
22 T "
w - A, W
o1 ( 2
where
.
2 _ k
Yh T m
Agy = 0.0 ?\Pl = 0.027277
A, = 0.097887 hpz = 0.24105
A . = 0.38197 A . = 0,64544 [ (4.19)
z3 p3
Ay = 0.82443 Ap4 = 1.1966
A = 1.3820 APS = 1.8348
A,e = 2.0000 AP6 = 2.4910
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X = 2.6180 A = 3,0939
=l p7
Az8 = 3,1756 )\.PB = 3,5783 \ (4.19, cont. )
= 5 = 3.8
Azg 3.6180 Ap‘) 916
Ao = 3-9021 )
Thus, from (2.34), one finds that
10
. I1 (wz— A .wz)
21 zin
wo fw) = -m -L
22 T 5 2
I (w -2x_w 4,20
T ) (4.20)
Y, w) = 0

Since the linear system in this case is a mass-terminated
linear chainlike structure, and since the generalized loading consists
of base excitation only, equations (3.53) may be applied directly to

obtain

2 2
p,Ww) = -m
2 9 2 2
k]:"l1 (w” - pkwn) (4.21)
g,w) = 0

Thus, pz(w) and nzz(w) are identical and share the same poles
and zeros,

Let

Bl

= 43,67 (4.22)
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then the poles and zeros of uzz(w) are readily determined from

(4.18) and (4.19) to be

w 4 = 0.0 wpl = 1.0914 )
w, o, = 2,0675 pr = 3,2445
w3 = 4, 0842 wp3 = 5.3091
g = 6. 0002 Wog = 7.2288
W = 7. 7687 pr = 8.9513 , (4. .
Wz = 9. 3456 wp6 = 10.430
w, - = 10.692 wp7 = 11.624
w g = 11. 776 wps = 12.501
Wog = 12. 570 Who = 13. 036
w10 = 13. 054 y

Substituting (4. 15)-(4.17), (4.19)-(4.22) into (3.3) and (3.62),
it is found that the approximate steady-state solutions for forced
and free oscillations are governed by two complicated transcendental
equations. These equations were solved iteratively by digital com-
putation, and the resulting loci of solutions are shown in Figure
4.8, The solid lines represent the approximate solution for forced
oscillations, and the broken lines represent the approximate solution
for free oscillations (i.e., ¢ = 0), The data points represent ''exact"
solutions and are discussed at the end of this chapter.

Shown in Figure 4.8 are the approximate steady-state solu-
tions for the first three modes of the system, for three different
levels of excitation: z, = 0.5, 1.0, 2.0. The system is strongly

softening with @ = -0.70 and is viscously dissipative (c = 0.06). The
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yield displacement is & = 1, and the small amplitude constraint

stiffness is k¥ = 2/m, The elemental mass of the chainlike system

is m = 0. 1458,

4.3.2 Discussion of Free Oscillations

The approximate steady-state solutions for free oscillations
are shown in Figure 4.8-as broken lines. It is observed that each
of the three backbone curves exhibits similar behavior. Careful
examination of Figure 4.8 reveals that for amplitudes smaller than
8 each backbone curve is vertical, and for amplitudes larger than &
each backbone curve leans to the left and asymptotically approaches
a vertical line. These observations agree with the predictions in
Theorem 1 of Chapter III, since, for %& as given in (4. 15), the
derivative ;ng [C(A)/A] is zero for A< $ and, for A>6 and o < 0,
the derivative is negative but increasing toward zero for large
amplitudes.

It is further observed that exactly one backbone curve exists
in each of the frequency intervals [0, wpl), (wpl,wpz}, and pr' wps),
where the wpi are the poles of nzz(w) as given in equations (4.23).
Although Figure 4,8 displays only the first three backbone curves,
it can be shown that there exists an additional seven such curves,
one in each of the frequency intervals {wP3, wp4), (wp4, wps), -
(wpg,“’). These observations agree with the predictions in Theorem
2 of Chapter IIL

Since the constraint stiffness for small amplitudes (A < §) is

constant (k*), the backbone curve frequencies for small amplitudes
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approach the natural frequencies of the system with a linear spring
constraint of stiffness k%, Furthermore, it can be shown that for
large amplitude response (A >> §) the equivalent linear constraint
stiffness is k¥(1 + o) and that the corresponding backbone frequen-
cies approach the natural frequencies of the system with a linear
spring constraint of stiffness k¥*(l + o). Thus, the effect of increas-
ing (decreasing) the parameter k* is to increase (decrease) each
of the backbone curve frequencies at each response amplitude. It
can also be shown that the effect of increasing (decreasing) the
magnitude of the nonlinearity parameter o is to increase (decrease)
the separation between the frequency asymptotes for large and
small amplitude response of each backbone curve. Clearly, the
effect of increasing (decreasing) the yield level & is to increase
(decrease) the amplitude at which each backbone curve first begins

to lean.

4.3.3 Discussion of Forced Oscillations with Viscous Dissipation

Forced oscillations of the system with viscous dissipation for
three different excitation levels are shown in Figure 4.,8. Careful
examination of the figure reveals that for each response curve the
amplitude approaches the value A = zy as the excitation frequency
approaches each pole of uzz(w). These observations are in agree-
ment with the predictions in Theorem 4 of Chapter III. Further-
more, combined with the observations previously noted for the 8ys-

tem with cubic nonlinearity, it is seen that these observations are
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also in agreement with the predictions that this characteristic of the
response is independent of the properties of the nonlinear constraint.

It is further observed that for each response curve the ampli-
tude approaches the value A = 0 as the excitation frequency
approaches each zero of p,(w). These observations are in agree-
ment with the predictions in Theorem 5 of Chapter IIL

Applying Theorem 3 of Chapter III to this system (noting that
M — @ in this case, since the nonlinearity contains viscous dissipa-
tion), it is concluded that the response amplitude is bounded for all
frequencies and levels of excitation. Thus, each curve in Figure
4.8 has a finite amplitude peak, even though some are too large to
appear in the figure. It is observed from the figure that for a fixed
excitation level, the amplitude of peak response decreases for peaks
near successive backbone curves., This trend is found to charac-
terize the response for all levels of excitation and viscous dissipa-
tion. Further examining the amplitude peaks in Figure 4,8, it is
observed that each peak occurs slightly to the right of a backbone
curve, indicating that the loci of horizontal tangency once again lie
to the right of the backbone curves. As previously discussed, this
behavior is primarily the result of the choice of load distribution
(e.g., base excitation), although it is also affected by the level of
excitation and of viscous dissipation.

The approximate methods for estimating the locations of
response extrema were not applied to this system, primarily
because the functions nzz(w) and C{A)/A are sufficiently complex in

this case that very little computational savings is obtained over that
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required for an exact solution. However, from the figure it is clear
that at least the lower bound estimates, which are located at the
intersections of the response curves with the backbone curves, agree
very well with the actual response extrema.

The effect of varying the level of excitation is clearly shown
in Figure 4.8. By increasing (decreasing) the level of excitation,
the amplitude of response is increased (decreased) at all frequencies
except the zeros of pz(w). It is also observed that for response of
fixed amplitude near any backbone curve, the effect of increasing
(decreasing) the level of excitation is to increase (decrease) the

width of the response curve about the locus of horizontal tangency.

4,4 Steady-State Response to a Harmonic Concentrated Load of a

Uniform Ten-Mass Chainlike Structure with a Terminal

Constraint Exhibiting a Form of Limited Slip

4.4, 1 Application of General Formulation

Depicted in Figure 4.9 is an idealized model for the physical
system under consideration. The system consists of a uniform
ten-mass chainlike structure with one end stress free and the other
constrained by a one-dimensional nonlinear structural element.
Excitation is provided by a single concentrated harmonic force of
amplitude z applied to the first mass of the chainlike structure,
which is attached to one end of the nonlinear element. In this case,
x measures the absolute displacement of the first mass of the chain-

like structure. Such a model might, for example, be used to



137~

Force = z, cos (wt)
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Figure 4.9 - Concentrated Load Excitation of a Uniform
Ten-Mass Chainlike Structure with a
Nonlinear Terminal Constraint
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represent the behavior of a nine-story building mounted on a non-
linear foundation.

The nonlinear structural element is assumed to have a

restoring force given by
Fix. %) = :ESH(X,X) + cx (4. 24)

where c is a viscous damping coefficient and fSH(x,i:) is the
restoring force developed by the structural assemblage shown in
Figure 4.10. It can be shown that the restoring force is charac-
terized by the rate-independent hysteresis loop shown in Figure
4,.11.

Such a structural nonlinearity displays several important
features and has not been previously investigated. From Figure
4,11, it is observed that there are three distinct types of response
behavior produced by the structural assemblage for different ampli-
tudes of deformation. For small deformation amplitudes (A =< §),
the response is linear elastic with stiffness kE‘ For moderate
amplitudes (6 < A< 6 +g), the response is softening, with the familiar
elastoplastic behavior. For large amplitudes (A > 8 +g), the response
again becomes hardening, but remains hysteretic. Such softening-
hardening hysteresis loops are frequently encountered in applications
involving the large deformations of composite structural systems,
where secondary structural elements (e.g., architectural elements)
contribute to the structural response only after the primary struc-
tural elements have yielded or slipped at the connections. Such

composite structural behavior in various forms has also been
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considered [60] as a mechanism for intentional energy absorption
in structural systems, including entire building structures.

Softening -hardening hysteresis loops are also encountered in certain
concrete and steel assemblages [61,62].

The nonlinearity presented herein represents the simplest
structural model currently available for modeling both the transient
and steady-state response of such systems. Since the nonlinear
restoring force is derived from a physical model, no arbitrary
mathematical assumptions are required to determine its transient
behavior.

By varying the Ustiffness ratio,'" «, and ''slip level,' g, three
familiar types of structural response may be obtained. By letting
@ = 0 or g = 0, the model produces the familiar elastoplastic
behavior. By letting g = 0, the model produces bilinear hysteretic
behavior, and by letting @ = 0, the model produces limited slip
behavior [58]. In fact, the model may be viewed as a generaliza-
tion of the limited slip model obtained by inserting barriers with
finite stiffness kB to limit the slipping behavior in a less abrupt
fashion.

Substituting (4.24) into (2.31), and using (2.27) and the
properties of the hysteresis loops in Figure 4.11, it can be shown
that the ''equivalent linear stiffness'' of such a nonlinearity is a
combination of two terms whose proportion is determined by a.

In particular, C(A)/A may be expressed as

ca) 1 CppW®) « Crst)
A T (t+e) " A T 1A

(4.25)
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where CEP{A.)/A is the equivalent stiffness of an elastoplastic non-
linearity and CLS(A)/A is the equivalent stiffness of a limited slip

nonlinearity. The terms CEP(A)/A and CI.S(A)/A may be expressed

as
-
kE; A=< b
C A) k
_EP” B 53 el .
X = Tr[91 Esmzel:l, A>6
91 = cos_l {1 - gAi} .
r
k_; Asxs > (4.26)
E,
kE
C. (A) —F[Gl-%—smzelj; b < A<é+g
LS _<
& i k
—ﬂ_—‘E-[-:r+(e2 --21—sin292)—(93-%sin293)]; A>6+g

6, =cos! (1 -é-b-); By B COS"l(g-;&); 6, = cos—l(-g-ié-)
L1 AT T2

J
Similarly, it is found that the 'equivalent linear damping coefficient"
is composed of the viscous damping coefficient, ¢, and a similar

weighted average of two contributions. In particular, -S(A)/wA may

be expressed as

sa) 1 Sgpl) « Spg®)

wA T T (0¥a) T wA T (I+x) wA

(4.27)

where -SEP(A)/wA is the equivalent damping coefficient of an elasto-

plastic system and —SLS(A)/wA is the equivalent damping coefficient



-142-

of a limited slip system. The terms -SEP(A)/wA and -SLS(A)/LUA

may be expressed as

0 ; A< 8
SEP(A)_
== = K .
4 "E 8§ ]
o et o i ‘ 8
S 2E)(l-7) ;. A
0; As5b }(4.28)
S. o(A) k
s JafE 8, 8
< g Fw(A)(l A)’ § s As b+g
4kE6g J
;‘T > A>5+g

The linear system takes the form of a uniform mass-termi-
nated linear chainlike structure, with attachment point P taken at one
end. For convenience, all parameters of the linear system are
chosen to be identical to those used for the chainlike structure con-
sidered in the previous section. Thus, nzz(w) and yzz(w) are again
given by equations (4.20), with the poles and zeros of nzz(w)
specified by (4.23).

Since the excitation in this case consists of a single concen-
trated load applied to the mass which moves rigidly with attachment

point P, equations (3.45) may be applied directly to obtain

It
[y

p, (W)
(4.29)

i
<

q, ()
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Substituting (4.25)-(4.29) into (3.3) and (3.62), it is found that
the approximate steady-state solutions for forced and free oscilla-
tions are governed by two complicated transcendental equations.
These equations were solved iteratively by digital computation, and
the resulting loci of solutions are shown in Figures 4.12 and 4.13.
The solid lines represent the approximate solution for forced
oscillations, and the broken lines represent the backbone curves.

Shown in Figure 4,12 are the approximate steady-state solu-
tions for the first three modes of the undamped system (i.e., c = 0),
for three different levels of excitation: zg = 0. 70, 0.75, 0,80. The
system is strongly nonlinear with slip level g = 1.5 and stiffness
ratio @ = 4/3. The yield displacement is 8 = 1, and the small
amplitude constraint stiffness is kp = 1. The elemental mass of
the chainlike system is m = 0, 1458.

Shown in Figure 4.13 are the approximate steady-state solu-
tions for the first three modes of the system with fixed excitation
level (z0 = 0.75), for three different levels of viscous dissipation:
¢ =0, 0.0081, 0,036, All other parameters are the same as those

given for Figure 4. 12,

4,4,2 Discussion of Backbone Curves

The approximate steady-state solutions for the backbone curves
are shown as broken lines in Figure 4.12. I should be noted that
since the nonlinearity is hysteretic, the system is strictly dissipa-
tive for response amplitudes larger than A = §, even though theré
is no viscous dissipation present (i.e., ¢ = 0). Therefore, steady

free oscillations do not exist for amplitudes larger than A = 8.
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However, the backbone curves remain worthy of discussion since
they also represent the loci of horizontal tangency in this applica-
tion, due to the particular load distribution involved. This can be
verified by substituting (4.29) into (3.64) and comparing with (3.62).

It is observed from Figure 4.12 that each of the three back-
bone curves exhibits similar behavior. For amplitudes smaller
than 8, each backbone curve is vertical since the system response
is linear in this range. For amplitudes between § and & +g, each
backbone curve leans to the left., In this range the response is
elastoplastic, For amplitudes larger than § +g, each backbone curve
leans slightly to the right, indicating hardening behavior. It can be
shown that these observations agree with the predictions in Theorem
1 of Chapter III by carrying out the required differentiation of
C(A)/A as given in (4.25), (4. 26).

It is further observed that exactly one backbone curve exists
in each of the frequency intervals [0, wpl), (wpl,uupz), and (wpz, wp3),
where the w ; are the poles of "22(“’) as given in equations (4.23).
Although Figure 4. 12 displays only the first three backbone curves,
it can be shown that there exists an additional seven such curves,
one in each of the frequency intervals (wp3, wp4), (wp4, wps}, ey
(wpg,“). These observations agree with the predictions in Theorem
2 of Chapter IIL

As in the case of the system discussed in the previous
example, the backbone curve frequencies for small amplitudes
approach the natural frequencies of the system with a linear spring

constraint of stiffness kE. Furthermore, it can be shown that for
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very large response amplitudes (A >> 6 +g), the equivalent linear
constraint stiffness is kEoz/(l +a@) and that the corresponding back-
bone curve frequencies asymptotically approach vertical lines which
represent the natural frequencies of the system with linear spring
constraint of stiffness kEa/{l +a). For response amplitudes between
these extremes, the parameters 8 and g affect the response.
Clearly, the effect of increasing (decreasing) the yield level & is to
increase (decrease) the amplitude at which each backbope curve
first begins to lean. Similarly, the effect of increasing (decreasing)
the slip level g is to increase (decrease) the interval in response
amplitudes (8 to & +g) for which softening behavior is observed. It
is also clear that the effect of increasing (decreasing) the stiffness

k.. is to shift each entire backbone curve to the right (left) along

E
the frequency axis. Finally, the effect of varying the stiffness

ratio o clearly affects only the large amplitude (A > 6 +g) response
behavior. K can be shown that the effect of increasing (decreasing}
o is to increase {decrease) the frequency of each large amplitude

asymptote and fo increase (decrease) the rate at which each back-

bone curve approaches its asymptote.

4.4.3 Discussion of Forced Oscillations without Viscous Dissipation

The approximate solutions for steady-state forced oscillations
of the system with no viscous dissipation (i.e., ¢ = 0) for three
different excitation levels are shown as solid lines in Figure 4. 12,
It is observed for each curve that the response amplitude approaches

the value A = 0 (rather than A = z, as in previous examples) as the

1
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excitation frequency approaches each pole of uzz(w). This behavior
is due to the particular load distribution involved and illustrates
one of the changes in response which are produced by changes in
the load distribution. It can be shown that these observations are
in agreement with Theorem 4 of Chapter III, which concerns the
vibration absorber effect.

Careful examination of Figure 4.12 reveals that the response
displays several interesting characteristics. For example, it is
observed for each curve with fixed excitation level that the response
extrema occur at the intersections with the backbone curves.
Furthermore, the values of each local amplitude maximum and
minimum are observed to be identical for response near successive
backbone curves, This behavior is observed to be independent of
the level of excitation and is not coincidental. Each of these obser-
vations is in agreement with the predictions given in Chapter III
for systems with load distribution such that p,(®) = 1. It can also
be shown that the qualitative behavior of the response curves for all
excitation frequencies is in agreement with the predictions of
Theorem 6 in Chapter IIL

Another interesting characteristic of the response is the
existence of disconnected response behavior for certain excitation
levels. Such behavior is primarily the result of the properties of
the nonlinear terminal constraint, As previously discussed, the
equivalent linear stiffness and damping coefficients for the nonlinear
constraint may be expressed as a weighted average of the corres-

ponding coefficients for an elastoplastic system and a limited slip
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system. In particular, as o = 0 the behavior of the nonlinearity
approaches that of an elastoplastic system, and as o = « the
behavior approaches that of a limited slip system. Thus, the
response of the present system displays certain features of the
response of each component system. For example, it is well known
that for an elastoplastic system there exists a critical excitation

level Zpp given by

- 4
= = kgb (4. 30)

a E

EP

such that for all excitation levels smaller than Zpp the response is
strictly bounded and for all larger excitation levels unbounded
response exists. Furthermore, no disconnected response exists at
any excitation level for an elastoplastic system. I is also well
known [58] that for a limited slip system there exists unbounded
response for all nonzero excitation levels and that disconnected

response exists for all excitation levels smaller than Z1g where
b B [l (4.31)
T E ) .

For the present system, it can be shown by applying Theorem 3 of

Chapter III that unbounded response exists for all excitation levels

larger than 2oy where

- 4 1
Zer T 7 kE6 (1+a) (4.32)

Evaluating - for the parameters used in Figure 4,12, one finds
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that z_ . = 0.546, Therefore, the large amplitude response branches
of each curve in Figure 4.12 extend up to unbounded amplitudes.
Furthermore, it can be shown that disconnected response
exists for the present system only if two conditions are met. First,
the excitation level must be smaller than Z15 and, second, the stiff-

ness ratio @ must be larger than 8/g. Thus, there exists a critical

slip ratio @, where

B (4. 33)
cr g
such that for o >cvf‘:r there will exist disconnected respomnse for
excitation levels between B s and Zyg For o .. there does
not exist disconnected response for any excitation level. Evaluating

- - and z for the parameters used in Figure 4, 12, one finds that

.S

s = 0.667 and that =z = 0,764. Therefore, there exists discon-

LS
nected response for the two smallest excitation levels and connected
response for the largest excitation level, as verified by observation.
Other effects of varying the excitation level are shown in

Figure 4,12. It is observed that by increasing the excitation level
the response maxima are increased and the response minima are
simultaneously decreased. For excitation levels equal to Z1 .5 the
response maxima and minima coincide, and for larger excitation
levels the response becomes connected. It is also observed that as

the excitation level is increased (decreased), the width of the

response near each backbone curve is also increased (decreased).
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Finally, it can be shown that the approximate methods pre-
sented in Chapter III for obtaining upper and lower bounds on the
response extrema yield identical estimates in every case. Further-
more, these estimates coincide with the response extrema of the

approximate steady-state solutions shown in the figure.

4.4,4 Discussion of Forced Oscillations with Viscous Dissipation

Forced oscillations of the system with fixed excitation level
and three different levels of viscous dissipation are shown in
Figure 4,13, By comparing curves in the figure, the primary
effects of varying the level of viscous dissipation are apparent,

It is clear that the changes in response due to viscous dissipation
are concentrated near the backbone curves., In particular, it is
observed that as the level of viscous dissipation is increased
(decreased), the value of each response maximum is decreased
{(increased), Furthermore, it is observed that for fixed level of
viscous dissipation, the attenuation of response maxima increases
for response near each successive backbone curve,

The response minima are observed to display precisely the
opposite trend. As the level of viscous dissipation is increased
(decreased), the value of each response minimum is observed to
increase (decrease). Furthermore, this effect becomes more
prominent for response near each successive backbone curve.

Careful examination of Figure 4.13 reveals that for fixed
levels of excitation and viscous dissipation, disconnected response

curves do not exist near the third backbone curve for either of the
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nonzero levels of viscous dissipation. Furthermore, it can be
shown that for each curve there exists a critical frequency W,
beyond which disconnected response does not exist. From the
figure it is observed that as the level of viscous dissipation is
increased (decreased), W is simultaneously decreased (increased).
It can also be shown that as the level of viscous dissipation tends
to zero, W, . tends to infinity, and conversely,

Applying Theorem 3 of Chapter III to this system (noting that
M. — = in this case, since the nonlinearity contains viscous dissipa-
tion), it is concluded that the response amplitude is bounded for all
frequencies and excitation levels. Thus, the disconnected response
curves corresponding to ¢ = 0.0081 and c = 0.0360 in Figure 4,13
each take the form of a closed loop with a finite maximum ampli-
tude, even though one of these maxima is too large to appear in the
figure.

The approximate methods for estimating the locations of
response extrema were not applied to this system, because of the
complexity of the equations involved. However, from the figure it
is clear that at least the lower bound estimates, which are located
at the intersections of the r.esponse curves and the backbone curves,

agree very well with the actual response extrema.

4.5 Comparison of Exact and Approximate Steady-State Solutions

4.5.1 Accuracy of the Approximate Solution for the Continuous System

For the continuous system discussed in Section 4,2, the

accuracy of the approximate steady-state solution may be inferred by
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comparing exact and approximate solutions at several points in the
A, w plane, 'Exact' solution points are generated by using numeri-
cal methods to solve the initial value problem obtained by
specializing equations (2.24) and specifying appropriate initial con-
ditions.

By applying a modal analysis technique to the uniform shear
beam, a representation for the operator 322(-) (which is the only
such operator involved in the specialized equations) as a superposi-
tion of an infinite number of independent modal contributions is
obtained. For practical considerations, however, the representation
is truncated to include only a finite number of modal contributions.
The resulting finite system of coupled ordinary differential equations
are then solved by numerical integration after initial conditions are
computed from the approximate steady-state solution.

Shown as data points in Figures 4.4 and 4.5 are the resulting
Vexact' solutions computed for an excitation level of zqg = 1 and for
a ten-mode representation of the shear beam. Relatively few data
points are shown because of the excessive computing costs involved
in finding the numerical steady-state solutions of the required
twenty-two order system of ordinary differez_ltial equations. It can
be seen from the figures that the exact and approximate solutions
agree very well for each data point that is shown. In each of
Figures 4.4 and 4.5 thére is a difference of less than 5% in ampli-
tude and 5% in frequency between the exact solution points and the

approximate steady-state solutions.
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The effect on the exact solution points of varying the number
of modes used to represent the shear beam was investigated for a
few of the points shown in the figures. Solution points were com-
puted at a given excitation frequency for equations representing
five, ten, and twenty mode approximations of the shear beam. Upon
comparing the solution points thus obtained, it was found in each
case that the change in steady-state amplitude of the solution points
due to increasing the number of modes was smaller than 2%
Furthermore, it was found in each case that as the number of
modes was increased, the corresponding solution point amplitudes
monotonically approached an amplitude which is in better agree-
ment with the approximate solutions than the solution points shown

in the figures.

4,5.2 Accuracy of the Approximate Solution for the Discrete System

For the discrete system discussed in Section 4.3, the accuracy
of the steady-state solution may be inferred by comparing exact
and approximate solutions at several points in the A, w plane.
"Exact'' solution points are generated by using numerical methods
to solve the initial value problem consisting of the equations of
- motion of the ten masses and a set of appropriate initial conditions
computed from the approximate steady-state solutions,

Shown as data points in Figure 4.8 are the resulting ''exact”
solutions computed for an excitation level of zy = 1. It can be seen
from the figure that the exact and approximate solutions are in

excellent agreement for each data point near the second and third
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backbone curves., Noticeably poorer agreement is observed for
points near the first backbone curve, but the overall agreement is
still good. For points near the second and third backbone curves,
there is a difference of less than 1% in both amplitude and fre-
guency between the exact and approximate solutions. For points
near the first backbone curve, there is a difference of less than 9%
in amplitude and 6% in frequency between the exact and approximate
solutions. I is suspected that the apparent increase in accuracy
with increasing frequency is associated with the corresponding
increase in magnitude of the viscous damping force relative to the
nonlinear force in the constraint. Clearly, as the contribution of
the viscous damping force grows relative to that of the nonlinear
force, the equivalent linearization approximation becomes more

accurate.
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V. Summary and Conclusions

Considered- in Chapter II is the dynamic response of a general
linear system with a one-dimensional nonlinear constraint attached
between two arbitrarily chosen points. The dynamic equations for
general spatial and temporal load distributions are developed in an
operator notation which is valid for both continuous and discrete
systems. Symmetry conditions on loading and system configurations
are presented under which the nonlinear constraint (1) moves as a
rigid body without deformation about the mass center and (2) the
mass center remains stationary with all motion occurring as ''pure'
deformation. In general, however, the. response consists both of
rigid body motion and pure deformation.

The method of equivalent linearization is used to develop
equations which govern the approximate steady-state response to
loads with harmonic time dependence. The nonlinear constraint is
assumed to consist of rate-independent conservative or hysteretic
nonlinearities and may contain a viscous dissipation term.

Considered in detail in Chapter IIl is the approximate steady-
state response of systems with a nonlinear terminal constraint.
Several theorems are déveldped concerning the qualitative response
characteristics of a class of undamped linear chainlike structures
with a nonlinear terminal constraint, Concerning the free oscilla-
tions of such systems, the following conclusions are drawn:

1. Each backbone or resonance curve displays similar

"hardening' and/or 'softening! behavior which is
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determined exclusively by the properties of the
nonlinear constraint. (Theorem 1)

There exists exactly one backbone curve contained
in each non-negative frequency interval which has

as an end point at least one member of the set

5= {wp.l

the natural frequencies of the rigidly constrained

|i=1,23,...3. The set A consists of

linear system, but excludes those frequencies for
which the attachment point corresponds to a node.

(Theorem 2)

Concerning the forced oscillations of undamped linear chain-

like structures with a nonlinear terminal constraint, the following

conclusions are drawn:

1.

If the constraint contains no viscous dissipation,
then for sufficiently large excitation levels there
may exist unbounded response at one or more
frequencies depending upon the properties of the
nonlinear constraint and the load distribution.
Such unbounded response always occurs on a
backbone curve. (Theorem 3)

Besides being dependent upon the properties of
the linear system and nonlinear constraint, the
loci of response extrema are shown to be
dependent upon the load distribution. It is
shown that the loci of response extrema and

the backbone curves do not generally coincide.
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Methods for estimating the location of response
extrema are presented.

At each excitation frequency which is a member of
the set A, the linear system acts as a ''vibration
absorber." At such frequencies the amplitude of
deformation in the nonlinear constraint is inde-
pendent of the properties of the nonlinear con-
straint. (Theorem 4)

Depending upon the load distribution and linear
system, there may exist excitation frequencies

for which the '"effective excitation level'' vanishes.
At such frequencies it is shown that the amplitude
of deformation of the nonlinear constraint either
vanishes or lies on a backbone curve.

(Theorem 5)

Special results are obtained for the case in which
the load distribution consists of a single concen-
trated load applied at the point of attachment
between the nonlinear constraint and the linear
system. It is shown that in the absence of wviscous
dissipation the loci of response extrema and the
backbone curves coincide. Furthermore, the values
of the response peaks (and minima) are identical
in each "mode.'"'" Properties of the nonlinear con-

straint which determine the existence of disconnected
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response curves are presented. Qualitative
properties of the entire response curve are
presented in Theorem 6.

Of particular interest in engineering applications is the con-
clusion that the loci of response extrema are at least partially
dependent upon the load distribution. Full-scale tests of structures
frequently involve the determination of the response to harmonic
excitation in order to identify the 'effective natural frequencies'' of
the system. The results of this investigation indicate that parti-
cular attention should be given to the load distribution during such
tests since, in general, different estimates of the natural frequen-
cies might result from different load distributions.

Presented in Chapter IV are numerical examples of the
harmonic response of three structural systems. These examples
illustrate the application of the formulation and theorems to various
combinations of linear system, nonlinear constraint, and load dis-
tribution. The qualitative effects on the response of'varying the
properties of the system and excitation are studied in each

example.

Considered first is the response to harmonic base excitation
of a uniform shear beam mounted on a linear-plus-cubic foundation
spring. Free and forced oscillations are considered for both
hardening and softening systems, with and without viscous dissipa-
tion., For the undamped cubic softening system it is shown that
there exists a critical amplitude at which each pair of branches of

the forced steady-state response intersect and cross on successive
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backbone curves. The critical amplitude is that amplitude at which
the equivalent linear stiffness of the softening constraint passes
through zero., This interesting behavior is shown to be in agree-
ment with the theorems presented in Chapter IIL

Forced oscillations of the cubic hardening system with viscous
dissipation also display interesting behavior. It is shown that dis-
connected response curves exist for sufficiently high excitation fre-
quency, for all nonzero levels of viscous dissipation. It is also
shown that unbounded response exists at each successive backbone
curve, even though the constraint contains a viscous dissipation
element. This behavior is a result of the particular properties of
the nonlinear constraint and load distribution in this example. The
approximate methods are used to estimate the location of the
response extrema, and a comparison is made between the estimated
and actual extrema as determined by the approximate steady-state
response,

Also considered in Chapter IV is the response to harmonic
base excitation of an undamped uniform ten-mass chainlike struc-
ture with a bilinear softening foundation containing viscous dissi-
pation. Forced oscillations are studied for various levels of
excitation, and it is shown that all response amplitudes are bounded
and connected. Furthermore, it is shown that the value of the
response peaks decreases for response in successively higher
'""modes.,"

The final example considered in Chapter IV is the response

to a harmonic concentrated load of a uniform ten-mass chainlike
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structure with a nonlinear hysteretic foundation. The model for the
hysteretic foundation behavior produces rate-independent hysteresis
loops which display softening behavior for small amplitudes and
hardening behavior for large amplitudes. This model is useful for
modeling the large deformations of composite structural systems,
where secondary structural elements {(e.g., architectural elements)
contribute to the response only after the primary structural
elements have yielded or slipped at the comnections.

The steady-state solution is shown to be characterized by
disconnected and unbounded response curves for certain ranges of
system parameters and excitation level. When no viscous dissipa-
tion is present, it is shown that the values of the response extrema
are identical in each mode. ZFurthermore, the response extrema
are shown to occur on the backbone curves. When viscous dissi-
pation is added to the nonlinear foﬁndation, it is shown that all
response is bounded and that the disconnected response no longer
exists for response in sufficiently high modes. ZFurthermore, the
values of the response peaks decrease for response in successively
higher meodes.

Also considered in Chapter IV is the accuracy of the approxi-
mate steady-state solutions. In several of the examples ''exact"
solutions are computed by numerical integration of the equations of
motion, and a comparison is made between exact and approximate
solutions. In most cases it is found that the approximate solutions
differ from the exact solutions by less than 5% in both amplitude

and frequency. It is also found that excessive computational costs
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are involved in determining the exact steady-state response. Thus,
the approximate solution technique presented herein provides an
attractive and practical method for determining the steady-state

response in many engineering applications.
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Appendix A

Transfer Function Characteristics of Undamped Linear

Chainltike Structures

The purpose of this appendix is to provide the proof of the

claimed characteristics of the transfer function nzz(w) for undamped

linear chainlike structures. As shown in the text, nzz{w) may be

expressed as

n
,I]l (LU = wzzi)
i=
Moo lw) = -my (Al)
w-dd 5 3
I W -w_.)
i=1 p1

if attachment point P (see Figure 3.3) has nonzero mass,

Alternately, Mzz(w) may be expressed as

-1} 5 5
i£[1 (w- - mzi)
) (a2)

nzz(w) = (k

if attachment point P is massless. In both cases, the set

{w;i[i =1,2,.,.,0-1} is the set of (n-1) eigenvalues of the matrix

2
(i, where
o
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[~ —
(e, +ie,) -k,
1
2 vl
2 (m2m3) 0
—-k3 (k3+k4)
1
m.m., )° M3
0% = L -k (A3)
n
P -  Z
(mn-»lrnn):3
0
s (kn+ kn+1)
T
(m__m ) My
- -

However, for nonzero attachment point mass, the set

Jz.li =1,2,...,0} is the set of n eigenvalues of the matrix 4 _,
i

where
r(k1+k2) -k2 _
my (mlmz ¥ 0
--k2 (k2+k3)
T
_2 (mym, ¥ i |
0 ) = —kn {A4)
T i
=)
(mn-lmn)
0 -
kn (kn+ kn+1)
T
= m
(mn-lmn) 2

For massless attachment point, the set [wii[i =1,2,...,n-1} is the

set of (h-1) eigenvalues of the matrix Qi, where
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% ol
(k2+k3) k3
m < 0
2 (mZmSF
-k3 _ (k3+k4)
(. P i
a2 = 48 k_ (45)
o
(m_.m )}
n-1"n
0
“*n ey tlenpy)
T
-3 m
(mn—lmn) - J
and where
k.k
.. 1B
k' = Tk (A6)

In Part I, the special properties of the matrices QIZ‘;, ﬁz,

and Qi are used to show that

—2 2 =2 2 —2

et = UJpl = W S < u'}pn-l < %n ()
and that

2 2 2 2 2

w1 < S LM <w. 1< wpn-l (A8)

Additionally, it is shown that attachment point P cannot correspond

to a node for excitation frequencies which correspond to any pole

of uzz(w).
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In Part II, the form of uzz(w) given in (Al) and (A2), and the
inequalities (A7) and (A8) are used to show that uzz(w) is strictly

decreasing (increasing) for all positive (negative) w between poles.

Part I - Relations Between Poles and Zeros of KZZM

Note from (A3), (A4), and (A5) that each of the matrices

QZ, ﬁz, and Qi is a real symmetric tridiagonal matrix whose off-

P
diagonal band elements are nonzero. As shown in the following
two theorems, these properties are sufficient to guarantee that the

resulting eigenvalues are distinct and that every eigenvector has

nonzero first and last components.

Theorem Al: (Distinct Eigenvalues)

Every real symmetric tridiagonal matrix with nonzero off-

diagonal band elements has distinct real eigenvalues.

Eroof:

Let B be any real symmetric tridiagonal matrix with nonzero

off-diagonal band elements. Then
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- —
P11 ®12
b b °
o 12 22 ; where bij FO0M¥if] (A9}
0 bn-l,n
i bn-l,n bml —

Since B is real and symmetric, it must be diagonalizable.
Hence, B must have a full complement of ordinary eigenvectors.
In particular, if B has an eigenval_ue with multiplicity o, then
corresponding to this eigenvalue there are exactly o linearly
independent eigenvectors.

Let B be any eigenvalue of B, and let x be an associated

eigenvector. Then

Bx = Bx
or, in component form
By t by = Pxy
Bia¥1 * byp®; t byaxy = fx, 107
bn-l,nxn—l + bnnxn = Pen

The first (n-1) of eqs. (Al0) may be solved for the xi‘s to obtain

E._1,B)
5, = (l‘(;h‘#‘)——-l—xl; i=2,3,...,n (All)
i-1 .

N b

jo1 it
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where EJ.({S) is defined as the (jxj) principle submatrix of (BI- B).

That is
B,(B) = (B-b)
by, (B-byy)
ete.

Hence, from {All} and the fact that [EJ.(B)[ is
tion of B, it is clear that every eigenvector x

eigenvalue  admits the representation

fl w
e, (B)
E - H<e3(5) >
fn(ﬁ))
where
E. .(B)
e.(8) = —l—J—'l—l; i=2,3,...
J (G-1)
U P

and p is an arbitrary nonzero scalar constant.

|

a single-valued func-

associated with the

- (A12)

s 12

Thus, every eigenvector x corresponding to P is a scalar

multiple of every other eigenvector corresponding to the same f.
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Therefore, there exists only one linearly independent eigenvector
corresponding to each eigenvalue of B.

But since B must have n linearly independent eigenvectors, it
is clear that the multiplicity of each eigenvalue must be identically
one. Therefore, every eigenvalue is distinct. Every eigenvalue is
also real by well-known theorems, since B is real and

symmetric, _ Q.E.D.

Theorem A2: (Properties of eigenvectors)

If x is an eigenvector of any real symmetric (nxn) tridiagonal
matrix with nonzero off-diagonal band elements, then its first

component, Xy and last component, x_, are nonzero.
n

proof:

Let B be any real symmetric tridiagonal matrix with nonzero
off -diagonal band elements, as given in (A9). Let B be an eigen-

value of B, and let x be any associated eigenvector. Then
Bx = Px (A13)

where, by definition of an eigenvector, x # 0. Writing out (Al3)
in component form, one obtains (Al10). As shown in Theorem Al,
each eigenvector x determined from (Al3) admits the representation
given in (All).

Now, assume that Xy = 0. From {All) it is found that x=0
then results, which contradicts the assumption that x is an eigen-

vector. Thus, x, # 0.
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Clearly, a representation similar to (All) may be developed
which yields x in terms of X the last component of x. The

above argument may then be repeated to show that x_ # 0.
o Q.E.D.

Note that Theorem A2 guarantees that attachment point P
cannot correspond to a node for any excitation frequency which
coincides with any pole wpi of nzz(w). Thus, uzz(w} has an isolated

singularity at each of the (n-1) poles {w;i[i 3 T .. 1 3

Relations Beiween Poles and Zeros for Systems with Massless

Attachment Point

Equation (A8) is established by the following two theorems,
which make use of the well-known Courant-Fischer mini-max
theorem, and a fundamental theorem of algebraic equations,

respectively.

Theorem (A3): (Frequency Inequality)

If {w;ili =1,2,...,n-1} is the set of eigenvalues of the
matrix O; given in (A3), and if {wzi]i =1,2,...,n-1} is the set of

eigenvalues of the matrix Qi given in (A5), then

2
wzswpswzsw £ soe < W £ 0 (Al4)

proof:
Note from (A3) and (A5) that

Q- = Q° + A (A15)
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where

1 0]
0 0
A & 52 )( ke (A16)
CoAmy/\k;tky /|l
0 - 0]

Note also that since kl, kz, and m, are each non-negative, A is

2

positive semidefinite.

Applying the Courant-Fischer mini-max theorem to Q;, one

finds
2 (x, 0%x) |
w.. = max min — B (A1T)
B k k .k &, x)
y »y)=1 &,y)=0
e Loy b B2 legisl
Using (Al5) in (Al7), one obtains
2 x,0 %) (x,8%)
w_. = max min + (A18)
(xHy)=1 & y)=0
k=161 k=1lue, i1
But since A is positive semidefinite
x,Ax)
o 0 7E s

Hence, (Al8) and (Al9) require that
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& 0%%) (&, Ax) x, 0x)
s > ; i A20
mﬁn ) I ") R x,x) i
x,y)=0 =,y)
e ey =1 k= Lywws 54
Thus, {(Al8) and (A20) require that
2
2 ; (E’QZE) 2
w i = kmix mkm ——w = Wy
¥ ,vy)=1 (x,y)=0
"I e U S ST S . |
or
2 2 .
wpi = W, i i=12,..., (n-1) Q. E. D,

Theorem (A4): (Distinct poles and zeros)

I¥ mz‘ is any eigenvalue of the matrix Q; given in (A3), and if

wz is any eigenvalue of the matrix Qi given in {A5), then

wz # w? (AZ21)

proof:
Let QP be the eigenvector of Q; correspoﬁding to w;, and

let p Dbe the eigenvector of Qi corresponding to wi. Then

2 2
Q = W
pZp T “p¥p
(A22)
2 g

Let ¢ be any (n-1) vector. Then
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1
k k
z 2 2 2 0
e - Qe = (mz)(k1+k2)°"1 : .
0
Let
t=e -g, (A24)
then
2 2
Q = + 8
plp = Tpl Y
2 2
= 0 + 278
PEP‘z P
1
k k 0
2 2 Z 2
= Q + @ . + Q76
z 2z (mz) (k1+k2) zl . P
0
or, using {A22),
1
k k 0
5. B 2 2 2
Wp¥p © Wp2p * (mz)(k1+k2) % & 'Qpi (AZ5)
0
Now, assume that
e =t o= e (A26)
P z

then (A25) and {A26) imply that
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o =
[g¥]

k k
2 2 2
w"8 = ( ) P + Q-8
e m, (k1+k2) zl P

O asae

or

Pt

(A27)

| e |
&
(o %]
[ o]
1
@)
)
| IR |
| e
1l
P
3| &
I L
—
’E
1—u+ N"—
=
™~
-8
W]
—
.« O

Note that the vector on the right hand side of (A27) is non-
trivial, since P.1 is nonzero by Theorem A2. Note also that, by
hypothesis, wz is an eigenvalue of the matrix Q; on the left hand
side of (A27). Thus, the coefficient matrix is singular, and hence
there does not exist a unique vector & which satisfies (A27).
Furthermore, it can be shown that the vector on the right hand
side of (A27) is linearly independent of the (n-1) column vectors of
the coefficient matrix. Hence, by a fundamental theorem of
algebraic equations, there is no vector § which satisfies (A27).
This result is clearly a contradiction of (A24) which defines 6§
uniquely in terms of the eigenvectors gp and 2,

Thus,

2 2

w, £ wp Q. E,.D,
Hence, (Al4) and (A21) together yield (A8), and the desired

relation between poles and zeros of nzz(w) has been established for

the case in which the attachment point is massless.
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Relations Between Poles and Zeros for Systems with Nonzero

Attachment Point Mass

The following two theorems establish equation (A7) by using an
eigenvalue '"inclusion principle' which is derived from the Courant-
Fischer mini-max theorem, and by using a fundamental theorem

of algebraic equations.

Theorem (A5): (Frequency Inequality)

14 {wgi)i =1,2,...,n-1} is the set of (n-1) eigenvalues of sz
given in (A3), and if {Gzzi]i =1,2,...,n} is the set of n eigenvalues

of ﬁ'i given in (A4}, then

o 2 ~2 2 -
Wy s wpi < wzz E - = wpn-l < W (A28)

proof:

The proof proceeds by direct a.pplica;tion of the "inclusion
principle,' [63] where it is noted that Q; is the (n-1)x (n-1) matrix
which remains after deleting the first row and first column of the
nxn matrix 52. Equation (A28) results directly from application of

the referenced theorem. Q. E.D.

Theorem (A6): (Distinct Poles and Zeros)

If w; is any eigenvalue of the matrix Qg given in (A3), and if

W is any eigenvalue of the matrix ﬁi given in (A4), then

o
w, Fa (A29)
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proof:
Let ip be the eigenvector of Q; corresponding to w;, and let

@, be the eigenvector of ﬁi corresponding to wi. Then

2 2
Q = w
pfp T “pEp
(A30)
=2 _ =2
8, = WP,
Let 5; be the nXn matrix formed from Q; as follows
0 I O LR S O
- -
g2 = |oj (A31)
P £ I QZ'
0 P
and let ip be the n vector formed from g_p as follows
0
p = i A32
Ep ( )

Let ¢ be any n vector. Then, using (A31), (A3), and (A4),

52
z

=2
@ = QPE + @y

where



Let

e

Then,

]
sl
t
el

(A33)

(A34)

(A35)

(A36)

(A37)
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Thus, (A30), (A35), (A36), and (A37) require that

1
k 0
P 2— 2 ==
= W - . + Q78 (A38)
wZEZ PEP (mlmz)% CPPI : [ AR
0
Now, assume that
=2 _ wZ N wZ (A39)
z P
Then, (A38), (A39), and (A34) imply that
1
k 0
[wzx-nz]_a_ = -2 . (A40)
(m.,m, 2 P .
172
0

Note that the vector on the right hand side of (A40) is nontrivial,
since q)pl is nonzero by Theorem A2. Note also that, by hypothe-
sis, wz is an eigenvalue of ﬁi, so that the coefficient matrix on
the left hand side of (A40) is singular. Thus, there does not exist
a unique vector § such that (A40) holds. Furthermore, it can be
shown that the vector on the right hand side of (A40) is linearly
independent of the (n-1) column vectors of the coefficient matrix.
Hence, by a fundamental theorem of algebraic equations, there

is no vector E which satisfies (A40) under the assumption (A39).
This result is clearly a contradiction of (A34) which defines E
uniquely in terms of the eigenvectors B and iz. ‘Therefore, it

must be concluded that assumption (A39) cannot be valid. Thus



# w; ' Q. E. D,

Equations (A28) and (A29) taken together yield (A7), the
desired relation between poles and zeros of uzz(w) for the case in

which the attachment point has nonzero mass.

Part II - Resulting Properties of ”ZZM

For systems with massless attachment point, the following
theorem uses (A2) and (A8) to show that nzz(w) is strictly

decreasing for positive w.

Theorem (A7)

If nzz(u)) is the transfer function of an undamped linear chain-
like structure with massless attachment point, then:
{a) For all positive (negative) w, nzz(w) is a strictly decreasing
(increasing) function.
(b) nzz(@) ranges from nZZ(O) 2 0to ~-» for w € [0, wpl)
{c) n,,{w) ranges from += to -= for w € {wpi—l’wpi);
15 2,3 cueptinl

(d) nzz(w) ranges from +« to (kl+k2} for w € (w )

pn-1’ 2

proof:
Regarding (a): Differentiating (A2) with respect to w, one

finds
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(n-1) 1 (n-1) 1 - :
Zwuzz(w) Z —TwT) - Z Y ,w#wzj, ot M N
z1’

i=1 (w i=1 (w -wpi) (A41)

Equation (A8) together with (A4l) require that

dnzz(w)

* > ] = -
T < 0; ¥ w ., 0, = 1,2y 0 eepslk (A42)

z)

wzj

j pj’
i=1.2,...,n-1, equation (A4l) implies that dnzz(w)/dw = 0 if and

Note that for all positive w # w,:»j=1,2...,n-1,and w fw

only if:
il g, —— A43
2 2 2 Z
=1 Weey) i ey

for some w.
It will now be shown that (A8) is sufficient to guarantee that

(A43) cannot hold for any w.

Let
x,; (@) = Lo j=1,2,...,n-1
(w 'wzj)
(A44)
1
£ A 8 —mrar—1 15 52 e mal
PJ (u)z_wzzpj)
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Using (A44), the condition (A43) now becomes

n-1 n-1
E xzi(w} = E xpi(w) (A45)
i=1 i=1

Consider the following exhaustive cases:

2 2 . 2 z :
1. w € [O,wzl), or w € (wpn-l’ ). Then (A8), (A44) imply

0 > xpn_l(w) > xzn_l(w) > e > xpl(w) > le(w);
0 < x ;) < xpl(w) < see < x, W) < xpn_l(w)
Thus,
n-1 n-1
Z xzj(uu) < Z xpj(w) for all such w.
=1 j=1
2 2 2 8 . 2 2 2 5.
2. w € (wzj,ij), 1= Lisessn=ls oF & € (ij’wzjﬂ)’ j= Lessi=2,

Then {A8), (A44) imply

(w)

xzj(w) > ij-—l(w) > xzj_l(w) > cee > xpl{w) > le(w) >0 > xpn-l

> xzn_l(w) > eee > ij+1(w) > xpj(w);

xpj(w} > xzj(w) .

pj-l‘w) > e > xpl(w) > le{w) = 0 xpn_l(w)

5 xzn”l(w) > eee > xpj+1(w) > xzj+1(w)

Thus,
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n-1 n-1 n-1 n-1 .
Y, Syl B 3 sl on F mgle) = 3, =@
j=1 j=1 j=1 j=1

for all such w.

Therefore, since (A43) cannot hold for any such w, it is con-
cluded that dnzz(w)/dw cannot change sign in those frequency regions

separated by the poles {wpi[i =1,2,...,n=-1}. However, since

dr
du?z < 0 for all positive wzj’ and from (AB8), it is concluded that

w_.
Z}

dnzz

dw

<0 ¥w>0 and w€ {w.|li=12,...,n-1}

pi
Therefore, ‘nzz(w) is a strictly decreasing function for all positive
w. Furthermore, since nzz(w) is an even functiom, dnzzldw >0
vw<0andw¢ [-wpi[i = 1, 25 s we s Bk Is

Regarding (b): From (A2),

1 W) = (& fle) = (‘”m)z :
im # w) = + I1 —— >
w0 22 T2h o\

and #,, (W) = = as w = w;i. Since #,,(w) is continuous and strictly
decreasing for w € [0, wpl), the statement is proved.

Regarding (c): From (A2) and (A8), nzz(w)-' +oo as w = w;i,
i=12,...,n~-1, and nzz(w)-' -® as W - wpi, i=1,2,...,n-1, Since

nzz(w) is continuous and strictly decreasing for w € (wpi-l’wpi)’

i=2,3,...,n-1, the statement is proved.
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1 ; - @ +
Regarding (d): From (A2) and (AS8), nzz(w) +* as w— wpn-l'

Furthermore, nzz(w)-' (k1+k2) as w= *®, Since nzz(w) is continuous
and strictly decreasing for w € (wpn-l’m)' the statement is proved.
Q. E. Do
The following theorem uses (Al) and (A7) to prove similar

results for systems with non-zero attachment point mass.

Theorem (AS8)

If u,,(w) is the transfer function of an undamped linear chain-
like structure with nonzero attachment point mass, then:
(a) For all positive (negative) w, nzz(w) is a strictly
decreasing (increasing) function
(b) #,5(w) ranges from nZZ(O) 2 0to -» for @y € [O,w_,)

5

pl
{c) nzz(w) ranges from +% to -® for y € (wpi-l’wpi

izz,.ll,n-l

(d) uzz(w) ranges from +® to -® for w € (wP _1,°°)

n

proof:
Regarding (a): Differentiating (Al) with respect to w, one

finds
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#
n
2 _2
il;ll ({Ezj_wzl)
s AF _
-mlzwz_j n-1 5 5 ;W zj’ i=L2,.n
il M @2-o)
dw 521 2z P
n 1 n'l 1 _
s Ll P e rig M ol Llol® s
= S Y T (A46)
"

Equation (A7) together with (A46) requires that

dnzz(w)

——— + > i =
i < 0; %’-wzj 0, 32 1, 24544;0 (A47)

w_ .
z)

Note that for all positive w # Ezj’ j=1,2,40e,n, and 0 # ij,

j=1,2,...,0n-1, equation (A46) implies that duzz(w)/dw = 0 if and

only if

n-1

n
Z (A48)
= 1 ((D = wp )

(=8

for some w.
It will now be shown that (A7) is sufficient to guarantee that

(A48) cannot hold for any w. Let

1

X.w)s —s—3—; j=12,i..,n
(A49)
1
x-(LU) E—_'_; j=1,2,... n-l
pJ (wz-wz.) ’

Pl
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Using (A49), the condition {A48) now becomes

n n

Z x,; W) = Z xpi(w) (A50)

i=1 i=1

Consider the following exhaustive cases:

or w2 € {(w

L ®}, Then (A7), (A49) imply

2 Z s
L. w” € [0,wp,);

g > Ezn(w) > xpn_l(w} > eee > xpl(w) > Ezl(w) ;

0 < le(w) < xpl(w) < e < xpn_l(w) < xzn(w)
Thus,
n-1 n n-1 n
Z xpi(w) > Z x .); or Z xpi(w) % Z: X, ;) for all such w.
i=1 i=1 i=1 i=1
T ol B . _ Botn B .
2. w € (wzj,ij), )& Lssssti-l; oOrw € (ij'wzj+l)’ J = L wws Bele

Then (A7), (A49) imply:
Ezj(w) > xpj_l(w) > fzj_l(w) > eae > xpl(w) > %_;w)>0> x (W)

xpn_l(w) LR xzj+1(w) - xpj(w);

xpj(w) > ij(w) > xpj__l(w) = oRae xpl(w) o- le(w) > 0> xzn(w)
- xpn_l(w) > e > xpj+1{w) ¢ fzj_l_l(w)

Thus,
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n n-1 n-1 n

X . > Aw) . > x .
D T > Y xpylek or BT mp) > )0 Xy
je1 = =1 =1

for all such w.

Therefore, since (A48) cannot hold for any such w, it is con-
cluded that dnzz(w)/dw cannot change sign in those frequency regions
separated by the poles {wpili =1,..0,n-1}, However, since
d

H
diz < 0 for all positive Ezj‘ and from (A7), it is concluded that

2]

dnzz(w)

dg— < 0 ¥ positive ¢ {w

Pi[i & Is g di=l}

Therefore, nzz(w) is a strictly decreasing function for all positive w.
Furthermore, since nzz(w) is an even function, dnzz(w)/dw > 0 for all
negative w ¢ {—wpili 2 Lol vy oxti-1Fs

Regarding (b): From (Al),

n
n -
; 2 s
lim uzz(w) = m; =5 > 0
w=0 I wz
pi

and nzziw) - -® ag y - wI;i. Since #,,(w) is continuous and strictly
decreasing for w € [0, wpl), the statement is proved.
Regarding (c}: From (Al) and (A7), uzz(w)-' +® as w - m;i,
i=1,2,...,n-1, and u,, W)= ~®*as w-w ., i=1,2,.,..,n-1. Since
22 pi

nzz(w) is continuous and strictly decreasing for w € (wpi—l’wpi)’

i=2,3,...,n-1, the statement is proved.
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. s 23
Regarding (d): From (Al) and (A7), xzz(w) - +® as @ = wpn-l

and uzz(w) g -mlw2 as w= +», Therefore, nzz(w) - -® ag () = +=,

Since nzz(w) is continuous and strictly decreasing for w € (w ®),

pn-1’
the statement is proved. Q. E. D,



