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Abstract 

In this work, the development of a probabilistic approach to robust control is mo­

tivated by structural control applications in civil engineering. Often in civil struc­

tural applications, a system's performance is specified in terms of its reliability. In 

addition, the model and input uncertainty for the system may be described most 

appropriately using probabilistic or "soft" bounds on the model and input sets. The 

probabilistic robust control methodology contrasts with existing 1£00 / p robust con­

trol methodologies that do not use probability information for the model and input 

uncertainty sets, yielding only the guaranteed (i.e., "worst-case") system perfor­

mance, and no information about the system's probable performance which would 

be of interest to civil engineers. 

The design objective for the probabilistic robust controller is to maximize there­

liability of the uncertain structure/ controller system for a probabilistically-described 

uncertain excitation. The robust performance is computed for a set of possible mod­

els by weighting the conditional performance probability for a particular model by 

the probability of that model, then integrating over the set of possible models. This 

integration is accomplished efficiently using an asymptotic approximation. The 

probable performance can be optimized numerically over the class of allowable con­

trollers to find the optimal controller. Also, if structural response data becomes 

available from a controlled structure, its probable performance can easily be up­

dated using Bayes's Theorem to update the probability distribution over the set of 

possible models. An updated optimal controller can then be produced, if desired, 

by following the original procedure. Thus, the probabilistic framework integrates 

system identification and robust control in a natural manner. 

The probabilistic robust control methodology is applied to two systems in this 

thesis. The first is a high-fidelity computer model of a benchmark structural control 

laboratory experiment. For this application, uncertainty in the input model only 

is considered. The probabilistic control design minimizes the failure probability 

of the benchmark system while remaining robust with respect to the input model 

uncertainty. The performance of an optimal low-order controller compares favorably 
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with higher-order controllers for the same benchmark system which are based on 

other approaches. The second application is to the Caltech Flexible Structure, which 

is a light-weight aluminum truss structure actuated by three voice coil actuators. 

A controller is designed to minimize the failure probability for a nominal model of 

this system. Furthermore, the method for updating the model-based performance 

calculation given new response data from the system is illustrated. 
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Chapter 1 

Introduction 

1.1 Objective 

A useful question to ask when analyzing the performance of a civil engineering 

structure is 

What is the probable performance of the structure? 

Civil engineers, building owners, and insurance companies often define the perfor­

mance of a particular structure using its reliability, which is the probability that 

the response of the structure remains within a specified "safe" region over a time 

interval of interest (typically the desired lifetime of the building). The reliability 

of a structure is used throughout this thesis to evaluate the performance of civil 

engineering systems. 

The uncertainties that are inherent in the models developed for the structural 

system and its disturbance should be addressed in a probabilistic manner in or­

der to achieve an estimate of the structure's probable performance. The structural 

model can be constructed using traditional analysis tools. However, this model is 

necessarily uncertain, as it is a simplified, finite-order mathematical representation 

of a complex physical system. Through application of Bayesian system identifica­

tion techniques, first-principles modeling, or other methods, a probability model can 

be assigned to this model uncertainty, so the relative probabilities of the uncertain 

models can be considered when evaluating the performance. 
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The environmental disturbances that may act on the structure during its lifetime 

are also uncertain. The disturbances are often described by stochastic processes, 

where the probability models for the processes are assigned using a combination of 

statistical data and first-principles modeling of the underlying causes of the pro­

cesses. 

Once the probable performance of a system has been determined, a second ques­

tion that can be asked is 

For this structural system, how can its performance be improved given a 

set of allowable improvements that could be made to the system? 

This is the prototypical question of control system design, and requires optimizing a 

measure of the system performance over the class of permissible controllers. In this 

case, the performance measure is the probable performance of the uncertain system, 

and the controller class is the set of possible improvements that could be made to the 

structure. Examples of the types of improvements that could be considered include 

optimizing the structural design, selecting the dimensions and material properties 

of passive energy dissipating elements, and designing a feedback control loop for an 

active element in the system. 

The above questions, and hence the objective, are different from the typical 

questions asked in control analysis and synthesis, and are the appropriate questions 

to ask for structural engineering applications. The objective of the probabilistic 

robust control research is to answer these questions by 

developing a consistent probability-based approach for the analysis and 

design of controllers for uncertain structural systems. 

The analysis methods that are developed in this thesis can be used to estimate 

the failure probability for an uncertain system. This failure probability can then be 

used as a control-design objective function, and probability-based controller design 

requires minimizing the calculated failure probability. After illustrating the concepts 

using a simple system, the controller design method is applied to two structural 
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control problems. The first is a "benchmark" computer model of a laboratory 

system, and the second is a flexible laboratory structure. 

The method that is developed for probabilistic robust control will be seen to have 

certain advantages over existing techniques. For one, obtaining the probable robust 

performance of the system adds an "extra dimension" to the robust analysis of un­

certain systems, as probability information about the uncertainties can be included 

in the analyses. Second, probabilistic performance measures, such as the system's 

failure probability, can be used, which are often of interest in civil engineering ap­

plications. Finally, descriptions of the probabilities of the uncertain models in the 

performance analysis and controller design can be updated in a simple fashion. This 

allows for updating the performance analysis and the control design in the presence 

of new data from the system, hence combining system identification and robust 

control under this probabilistic formulation. 

1.2 Motivation and background 

1.2.1 Structural control 

Passive, semi-active, and active methods of vibration control in civil engineering 

structures are currently receiving much interest (Hausner et al. 1994; Soong 1990), 

as evidenced by the increasing number of conference sessions, workshops (Hausner 

and Masri 1993; Hausner 1992; Hausner and Masri 1990), special journal issues 

(Hausner et al. 1997; Spencer 1997), and even an entire conference (Hausner et al. 

1994) devoted to the topic of structural control. These control methods seek to 

reduce the vibration response of a structure to dynamic loading events such as 

earthquakes or high winds. 

Structural control objectives can be divided into serviceability and life safety 

categories. The serviceability objective is to minimize the disruption in service of 

a structure during a dynamic loading event. In this case, either the disturbance is 

sufficiently large, the structure is sufficiently flexible, or the equipment housed in the 

structure is sufficiently sensitive to render the structure unusable for (at least) the 
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duration of the event. In general, when determining a structure's serviceability, the 

disturbances that are considered are not so large that the integrity of the structure 

or the safety of the occupants are threatened. One application where serviceability 

might not be met would be in a flexible high-rise structure where the occupants 

experience discomfort during episodes of high wind. In addition, measures of a 

structure's overall economic performance are often included in the serviceability 

objective. For the economic performance, determining damage to non-structural 

components such as building cladding and interior components is of interest. Dam­

age to non-structural components during a dynamic loading event can be equally 

as expensive as structural damage, and hence also undesirable from an owner's or 

insurer's perspective. 

The life-safety objective is to minimize the threat of physical harm to a struc­

ture's occupants by preventing collapse, while perhaps allowing a significant level of 

damage to the structure's load-bearing members as well as its non-structural com­

ponents. Life safety can be threatened by extreme dynamic disturbances such as 

large earthquakes or very high winds. 

Under earthquake excitations, where the events are infrequent, unpredictable, 

and of relatively short duration, the control design objectives could include improv­

ing life safety for the occupants by reducing the risk of structural collapse during 

severe earthquakes, and reducing the level of structural and non-structural damage 

during more moderate events. 

The application of active control to structures under earthquake excitation is 

considered for structural control examples throughout this thesis. The objective that 

is used will be to reduce the level of structural damage to improve the structure's 

performance during an earthquake, consequently improving life safety. 

1.2.2 Uncertainty in modeling 

Engineers construct parameterized models of physical systems in order to predict 

and describe their behavior. In civil engineering, these models are typically finite­

order ordinary differential equations, although they may be linear or nonlinear, and 
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have two or three spatial dimensions. The models can be created from first-principles 

modeling, such as from finite element modeling (Cook et al. 1989) or matrix struc­

tural analysis methods (Sack 1989), or from system identification techniques (Beck 

1996; Soderstrom and Stoica 1989). The goal of any modeling method is to choose a 

model from within a model class that is being used to model the system, where that 

model minimizes some measure of fit between the measured and predicted response 

of the system. 

Regardless of their origins in theory, the model is at some level an approxima­

tion of the physical system's performance. Many of the model parameters used to 

describe the system are uncertain. Non-parametric modeling error exists as well, 

which accounts for the differences between any model within the assumed model 

class and the physical system that the models represent. When the modeling errors 

are significant (or the performance demands of the system are very stringent), the 

model uncertainty should be addressed when attempting to analyze the physical 

system's behavior. 

For control of structures during earthquakes, the response of the structure is dif­

ficult to model accurately for several reasons. The structural response levels due to 

forced or ambient vibration field tests, which are used to calibrate a mathematical 

model of the structure, are orders of magnitude smaller than the vibration levels en­

countered during even a moderate earthquake. The natural periods of the building 

(and hence its stiffness) are typically observed to decrease quite significantly with 

increasing input amplitude, although linear models of the building response are gen­

erally appropriate at both excitation levels (provided the excitation is not so large 

that the structural members begin to yield). As a further complication, at the high 

vibration levels caused by major earthquakes, the building response evidences signif­

icant nonlinear behavior as the structural members yield and eventually deteriorate 

in an often unpredictable manner. The presence of significant uncertainty in the 

building models presents a compelling argument for including the model uncertainty 

in the analysis and control design methods that are used. 
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1.2.3 Norm-bounded robust control 

With current linear robust analysis methods, such as 1£00 and p, analysis techniques 

(Zhou et al. 1996), uncertainty sets and inputs that are bounded by operator norms 

are considered. These analysis methods yield the "worst-case" performance of a 

particular system. This worst-case performance is usually realized only by a single 

member of the uncertain model set, as well as by the particular input signal that 

yields the most pessimistic value of the performance measure. No information results 

from the p,-analysis methods regarding the likelihood that this worst-case model will 

describe the system's "true" performance, or the likelihood that the worst-case input 

will ever occur in practice. 

Modern norm-bounded robust control methods have two limitations when ap­

plied to determining the performance of a structure. The first is that the robust 

analysis yields only the worst-case performance of the system, with no information 

as to the probability that this will be the actual system performance. Hence, the 

worst-case may be overly conservative for most of the models in the uncertainty 

set. The second limitation is that the model uncertainty may be more naturally de­

scribed using "soft" (or probabilistic) bounds, rather than the "hard" bounds that 

result from using the operator norms. One large advantage of the norm-bounded 

approach is that it is well established and is generally computationally efficient. 

In addition, recent advances in robust-1£2 analysis (Paganini 1996) allow for a less 

conservative class of inputs to be considered, where the input signals must satisfy 

a statistical test for white noise, rather than the single-frequency 1£00 worst-case 

input (Doyle et al. 1992). This technique might be promising for robust analysis of 

civil engineering systems, where white noise, which is perhaps colored by a linear 

filter, is often used to model the input. 

Several examples exist of the application of robust control methods to control of 

large structures under earthquake excitations. See Yang et al. (1994) for 1£00 and 

sliding mode control for a laboratory test structure, Smith and Chase (1994) for 1£00 

control of structures with time-varying uncertainties, and Yoshida and Watanabe 

(1994) for 1{00 and p,-synthesis control design for a building model. 
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1.2.4 Probabilistic robust control 

A probabilistic approach to the robust analysis of an uncertain system is able to 

address the probable system performance, rather than the worst case, while still 

considering model uncertainty and allowing the use of soft bounds on the model 

uncertainty sets, if desired. By computing the probable performance of the system, 

the highly unlikely members of the uncertain model class that indicate bad perfor­

mance will not dominate the overall calculated performance. However, if the bad 

models that do exist have significant probability associated with them, they would 

have a strong influence on the probable performance. 

In addition, a probabilistic interpretation of the model uncertainty class can be 

used to provide an "added dimension" (a probabilistic one) to the model uncertainty 

class and for the interpretation of the calculated performance. In this manner, mod­

els within the class of possible models that are more likely to predict the behavior 

of the system receive more weight in the performance calculation, and models that 

are quite unlikely receive less weight. 

Finally, a probabilistic approach to robust control permits the incorporation of 

data obtained from the system in order to update the probability over the model 

uncertainty set. For example, the original probability distributions for the uncer­

tain model class can be quantified using first-principles modeling and engineering 

judgment. Then, Bayesian system identification (system ID) techniques can be ap­

plied to response data from the system to update the probabilistic description of 

the uncertain models (Beck 1996; Beck and Katafygiotis 1998). 

The probabilistic stability of an uncertain system has been investigated pre­

viously by Stengel and Ray (1991), using Monte Carlo methods to estimate the 

probability of instability given parametric uncertainty in a system. Marrison and 

Stengel (1995) then developed a method for controller synthesis design based on 

numerical optimization of the performance that is estimated from the Monte Carlo 

methods. 

Spencer et al. (1994) and Field et al. (1995) have investigated methods to com­

pute the reliability of an uncertain system. In addition, controller design methods 
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that use this reliability as an objective function have been investigated by Spencer 

and Kaspari {1994a) and Spencer and Kaspari (1994b). 

1.3 Thesis organization 

The current chapter has introduced and motivated the probabilistic robust control 

problem. In addition, some of the current work in structural control, norm-bounded 

robust control, and probabilistic approaches to robust control have been highlighted. 

The second chapter introduces the analysis theory for determining the probable 

performance of an uncertain structural system, which is then used as the objective 

function for control design in Chapter 3. A simple example is used throughout the 

chapter to highlight the various points of the theory. 

In Chapter 3, the controller design optimization problem is presented. The 

simple example is continued here to illustrate the design methodology. Also included 

in this chapter is a method for updating the performance calculation (and hence the 

controller design) using response data from the system. In addition, an alternative 

formulation of the performance calculation in discrete time is developed, which 

provides another method for computing the reliability of the system and allows for 

the design of controllers with dynamics. 

The fourth chapter describes the application of the probabilistic robust control 

methodology to a benchmark structural control problem. The chapter describes the 

benchmark problem and the controllers that are designed for the system. 

Chapter 5 focuses on the application of the control methodology to the Caltech 

flexible structure. A detailed description of the laboratory structure and the system 

identification used to develop a model for the system are presented. Controllers are 

designed for this system using the probable robust performance objective function. 

The final chapter provides conclusions, analysis of the impact of the work, and 

several suggested directions for further research of the probabilistic robust control 

methodology. 
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Chapter 2 

Probabilistic robust analysis theory 

2.1 Introduction and preliminary material 

2.1.1 Chapter overview 

This chapter outlines the basic elements of the theory that has been developed for the 

probabilistic robust analysis portion of the probabilistic robust control methodology. 

The elements of the theory that are discussed in the following four sections are 

• the probabilistic performance objective, 

• the description of the model uncertainty, 

• the calculation of the probabilistic performance for an uncertain system. 

Chapter 3 will discuss how to optimize this performance over the class of controllers 

that might be considered for the system. The primary performance measure used 

in this chapter and the next is the system reliability. In addition, 1£2 and 1£00 

performance measures, which are the measures most commonly used in the controls 

community, are also considered and are shown for comparison with the reliability­

based performance measure. 

2.1.2 Illustrative example 

A simple example will be used in this chapter and the next to illustrate the basic 

principles of probabilistic robust control theory. This example is a finite element 
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model of a two-story special-moment-resisting-frame (SMRF) building that is "de­

signed" to satisfy the lateral drift guidelines under earthquake loads found in the 

1994 Uniform Building Code (UBC). The design drift level is 0.03/ Rw = 0.0025, 

where Rw = 12 for a SMRF building. A schematic of a single bay of this two­

story steel-frame structure is shown in Figure 2.1. A summary of the model used 

to approximate this example building is given in this chapter, while a more detailed 

explanation of the design procedure is located in Appendix A. 

w = 3595lb/' 

he= 12' 

w = 3595lb/' 

he= 12' 

Figure 2.1 Two-story steel frame building. 

In summary, the design procedure requires first estimating the vertical load on 

the building from its own weight and assuming typical loading conditions, then es­

timating the lateral forces that might occur during a "typical" earthquake, next 

approximating the distribution of moments in the beams and columns at the con­

nections using a simple analysis technique such as the portal method. Finally, the 

beam and column moments of inertia necessary to provide adequate inter-story 
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drift performance can be selected. A subsequent analysis is then performed to en­

sure that the selected moments of inertia satisfy the lateral drift requirement, and 

the design is repeated if necessary. The steps followed in this procedure are detailed 

in Appendix A. The beam and column moments of inertia are shown in Table 2.1, 

along with the inter-story drift ratio under the design static lateral load. Note that 

the inter-story drift ratios are identical for the two stories, which was the goal of 

the design procedure. This was done so the drift response in each story would be 

comparable, which leads to a more interesting performance analysis. 

Table 2.1 Beam and column moments-of-inertia for two-story example. 

Floor h Ic cp 

(in4) (in4) (drift ratio) 
1 1347 754 1.12x10-:1 

2 1306 1219 1.12x10 ·:1 

A schematic representation of the 2DOF model corresponding to this two-story 

structure is pictured in Figure 2.2. Linear viscous damping at two percent of critical 

for each mode is chosen to approximate the damping, and so the model response can 

be expressed using classical normal modes (Caughey and O'Kelly 1965). This value 

is chosen as a typical value for the damping ratio that is used for modeling steel­

frame buildings, which tend to be lightly damped. The mass, damping, and stiffness 

matrices for the reduced-order model of the example are provided in Appendix A, 

and the periods, damping ratios, and modeshape components are given in Table 2.2. 

Note that later in this chapter these model parameters will be considered uncertain, 

but for now they are considered known and treated as "nominal" parameters. 

2.1.3 Representation of linear systems 

This section describes some of the notation that is used throughout the thesis to 

describe dynamical systems in general and linear systems in particular. The input­

output relationships of a dynamical system are often represented with a block dia-



ft(t) 

XI (t) 
r--'-----, 

12 

h(t) 

X2(t) 
,....---'-----, 

Figure 2.2 Representation of 2DOF system. 

Table 2.2 Modal properties for two-story example. 

Mode 
Period Frequency Damping Modeshapea 

(sec.) (Hz) (%) cp~r) cp~r) 

1 0.542 1.84 2.0 0.448 0.894 
2 0.153 6.56 2.0 0.894 -0.448 

aqfl represents the ith component of the rth modeshape vector. 

gram such as the one shown in Figure 2.3, where the inputs to the system are given 

by the vector wand the system outputs are given by y. 

To simplify notation throughout this thesis, no distinction will be made between 

the time domain representation of a stable linear system and its Laplace or frequency 

domain representation. For example, in the time domain, let G represent the state­

space system given by the first-order linear differential equation 

(2.1) G := [~] = { x =Ax+ Bw } 

o/ y=Cx+Dw. 

where w is an exogenous disturbance and y is the vector of output variables. In the 
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y w 

Figure 2.3 Linear system representation. 

Laplace domain, G is the transfer function given by 

(2.2) 

Given this notation, w and y will typically represent members of the Lebesgue 

space £2(0, oo) in their time-domain incarnation, or members of the Hardy space 

1£2 in the frequency domain1 (1£2 is the space of functions that are bounded in the 

square integrable sense on the imaginary axis, with analytic continuation into the 

right half plane). 

2.2 Performance measure 

2.2.1 Definition of "performance" 

The performance of a civil engineering structure is a measure of that structure's 

effectiveness in satisfying its design objectives, where the performance is quantified 

using the system's predicted response quantities. Numerous performance measures 

are possible, such as estimates of the system's maximum response to a set of specified 

inputs or its mean-square response to random excitation. The response quantities 

that are generally used to calculate the performance of a structure are the relative 

drift ratios between stories, the absolute acceleration at different points in the struc­

ture, and the magnitude of the base shear between the structure and its foundation. 

1This convention is also adopted in Doyle et al. (1989) and other locations in the modern robust 
control literature. 
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Structural engineers interested in the behavior of buildings during earthquakes 

are typically interested in whether the structure will collapse, cause harm to the 

occupants, or experience significant economic loss due to an earthquake. Hence, 

performance variables are selected that can be used to quantify the existence or 

extent of these types of damage. Under seismic excitation, excessive inter-story 

drift has been observed to correlate strongly with damage in structures, and this 

is the response quantity that is used in the performance analyses contained in this 

thesis. 

The performance can be defined as the probability that the system does not 

exceed a specified level of response when subjected to random excitation. This 

performance measure is termed the structural reliability. While difficult to compute, 

the reliability of a structure is of great interest to structural engineers (and others). 

The reliability calculation (or its complement, the failure probability) is the main 

focus of this section, although some of the other performance measures mentioned 

above will be examined as well. 

2.2.2 Reliability-based performance measures 

The system's performance can be measured probabilistically by considering its re­

liability. The reliability of a system is defined as the probability that the system 

response will remain satisfactory when the system is subject to excitation(s) from 

a class of possible excitations. 

For a building subject to dynamic excitation, satisfactory performance occurs 

when the response level of the building does not exceed the failure level for any 

failure mode. A failure mode is defined as the level of response that indicates that 

the building has suffered significant damage, perhaps caused harm to the occupants, 

or even collapsed. The probability that the response of the system does not exceed 

these maximum levels over a time period of interest is the reliability. Note that in 

this thesis, the complement of the reliability, termed the failure probability, will be 

used as the performance measure. This is done to simplify the representation of the 

performance, as small failure probabilities can be displayed using scientific notation, 
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while high reliabilities (i.e., reliability very close to one) require many decimal places 

for representation. 

A response variable that correlates strongly with structural damage is the inter­

story drift ratio. In general, significant structural damage occurs when the inter­

story drift ratio exceeds 2-3% of the story height. The reliability calculation re­

quires computing the probability that this inter-story drift ratio remains less than 

its maximum value. Other potential failure modes in buildings include exceeding 

the maximum allowable base shear and exceeding acceptable absolute acceleration 

levels. 

Failure modes that are defined in terms of mean-square response quantities are 

typically fatigue-related, and are hence a function of the total energy absorbed by the 

building. These failure modes are of primary interest when the building is subjected 

to wind, traffic, or other forms of persistent excitation. Fatigue-related failure modes 

are generally less of a problem for (relatively) short-duration earthquake excitations 

than the other possibilities for failure. 

The region in response variable space where failure is defined to occur is the 

failure region, the complement of this region is the safe region, and the boundary be­

tween these two regions is the failure surface. An illustration of a three-dimensional 

failure surface is shown in Figure 2.4, which corresponds to the oo-norm on Zi, where 

Zi represents the response quantities used to monitor the system performance for 

failure mode i. The f3i's represent the failure threshold for each of the N1 failure 

modes i E {1, 2, ... , N1 }. The safe region is defined by 

(2.3) S := { mfLX(Izi(t)l) :::; /3i, i E {1, ... , N1} fortE [0, Tj} . 
Calculating the reliability requires determining the probability that the response 

variables are in the safe region. The reliability is denoted by 

(2.4) PR := P(SIE>), 

where the probability that the response is in the safe region is conditional on a 
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Figure 2.4 Safe region in response-variable space. 

particular model or class of models for the system. The model or class of possible 

models chosen for the system is represented symbolically by E>, and the conditioning 

of the reliability on the model(s) is represented by PR(·IE>). Note that the failure 

probability is given by 

(2.5) PF := 1 - PR. 

2.2.3 Reliability for first-passage type failures 

A particular class of failures, termed "first-passage" failures, arises when calculating 

the probability that the dynamic response of the system remains within a "safe" 
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region over a specified interval. The reliability of such a system is denoted by 

(2.6) PR(SIE>) := P {x(t) E S, V t E (0, T]IE>}, 

and its failure probability is given by one minus the reliability. Under the simplifying 

assumptions that the process is stationary and Gaussian, and that the displacement 

of the process is independent of its velocity, a simple expression can be found to 

approximate this reliability. 

In general, the classic "first-passage" problem has no known exact solution for a 

dynamic system subject to random excitation (Lin 1976; Lin and Cai 1995). Hence, 

an approximate solution must be used. The approximation chosen is based on 

threshold-crossing theory, developed originally by Rice (1944), and also explained 

in Lin (1976) for scalar processes and Veneziano et al. (1977) for vector-valued 

processes crossing a polyhedral region. The threshold-crossing rate, termed the 

"out-crossing rate," estimates the mean rate at which a random process crosses a 

specified boundary in the outward direction. 

The failure probability approximation from the out-crossing rate requires treat­

ing the failures as independent arrivals of a Poisson process, which is a reasonable 

assumption under broad-band excitation when the out-crossing rate is small. Un­

der the Poisson approximation, P(FIE>) is the probability that at least one failure 

occurs during the time interval (0, T], assuming an unfailed system initially, so 

(2.7) P(FIO) := 1- exp [-loT v13(8, t)dt] , 

where v13(8, t) is the mean out-crossing rate of the threshold level (3. The notation of 

a lowercase 8 is used to denote probabilities conditional on a particular model, while 

8 will be used when a class of possible models is considered to describe the system 

(this distinction is significant when the performance over the uncertain model set is 

considered). 

For the applications in this thesis, the random process of interest for the relia­

bility calculation is the response of a structure to an uncertain input. By using a 
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linear model to represent the structural system, modeling the input as a stationary 

Gaussian process, and considering the stationary response of the system, (2. 7) can 

be greatly simplified. Then, v(3(8, t) = v13(8) is independent of time and the failure 

probability is approximated by 

(2.8) P(FIO) ~ 1- exp [-v13(8)T], 

which, for v f3 ( ()) T « 1, yields 

(2.9) 

To compute the out-crossing rate, the additional assumption is made that the 

displacement and velocity of the response quantity of interest are independent. This 

assumption can be shown to be satisfied for the linear systems of interest in the 

absence of dynamic feedback control, but it may be violated in the general case of 

dynamic compensation. So, for a scalar-valued Gaussian process where the random 

variable X(t) and its derivative X(t) are independently and normally distributed 

with means of zero and variances of ax and ax, respectively, the average number of 

outward crossings per unit time of the threshold f3 is (Rice 1944; Lin 1976) 

Vf3 = rXJ xfxx(f3,x)dx + !O xfxx(-{3,x)dx 
lo -oo 

(2.10) =2 fooo xfxx(f3,x)dx, 

where 

(2.11) 

for the independent variables x and x. Evaluating the integral, 

(2.12) 

where the dependence on () is implicit. For vector processes, the out-crossing rate 
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can be obtained by integrating the joint probability density function of the vector 

response evaluated at each failure surface for all velocities with components pointing 

outward from that surface, then summing this quantity over all the failure surfaces. 

See Veneziano et al. (1977) for a more detailed explanation of how this can be 

done for polyhedral failure surfaces in IRN and an uncorrelated Gaussian process. 

Unfortunately, when the response variables are correlated, this vector out-crossing 

requires a difficult integration even for low-dimensional failure surfaces. To simplify 

the calculation, an upper bound on the composite failure probability, which adds 

the probabilities for each failure mode together and neglects the correlation between 

the failure modes, is used herein. 

2.2.4 Norm-based performance measures 

Many computational techniques have been developed for analysis of linear systems 

using the induced 1i2 and 1{00 norms on transfer functions (Zhou et al. 1996; Doyle 

et al. 1992). When considering linear systems, these methods can be used as an 

alternative to the probabilistic performance measures described above. 

The first norm-bounded performance measure considered is the 1i2 norm, which 

is a measure of the expected output variance of a linear system excited by "white" 

input. The 1{2 norm is defined in the frequency domain for a stable transfer function 

G(s) as 

(2.13) ( 
1 100 ) 1/2 IIGII1-l2 := 

2
11' -oo Tr [G*(jw)G(jw)] dw , 

where Tr[·] denotes the trace of a matrix and(·)* its complex conjugate transpose. 

The 1{2 performance is easily computed for a linear, time-invariant system 

G(s) = C(sl- A)-1B from the solution of a standard Lyapunov equation (Doyle 

et al. 1989) 

(2.14) AR+RA' + Q = 0, 

so IIGII1-l2 = (Tr[CRC']) 112 . Note that R := E[z(t)z(t)'] is the stationary covariance 



20 

matrix of the state variable z(t) for a unit-magnitude white-noise input w(t). 

The second performance measure is the 1£00 norm of the system transfer function, 

which measures the worst possible output variance of the system given an input of 

bounded variance or bounded energy. Note that this is a different class of inputs 

than the one used for the failure-probability and 1£2 performance measures, so the 

analysis results should be treated differently. For single-input single-output systems, 

the 1{00 norm can be shown to be the peak of the transfer function in the frequency 

domain (Doyle et al. 1992). In the multi-input multi-output case, this generalizes 

to 

(2.15) IIGII1too := SUPO"max [G(jw)], 
w 

where D"max[·] is the maximum singular value of the argument. If w, z are signals in 

.C2(0, oo), the 1£00 norm of G is given by 

(2.16) IIGII1too := sup IIGwll2· 
llwll2=l 

This norm is somewhat more difficult to compute than the 1-lz norm. Bounds on the 

1{00 norm of the system are computed using the Hamiltonian matrix H associated 

with the system G, where His given by 

(2.17) H := [ A ~-2BB']. 
-C'C -A' 

According to a theorem given in (Doyle et al. 1992; Zhou et al. 1996), IIGIIHoo < 1 

if and only if H has no jw-axis eigenvalues. So, an iterative procedure to compute 

IIGIIHoo proceeds by assuming a 1, testing whether H has any jw-axis eigenvalues 

for that 1, then scaling 1 until a strictly imaginary eigenvalue is found. Estimates 

of the 1{00 norm of a system can thus be obtained to an arbitrary precision (Doyle 

et al. 1992; Zhou et al. 1996; Balas et al. 1994). 

The above norms are the typical ones used in classical (e.g., 1£2, LQR/LQG) and 

modern (e.g., 1{00 , p) control theory. Analysis techniques have also been developed 
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based on the £1 or lt norms, where 

(2.18) IIGJI.c1 = sup IIGulloo 
llulloo=l 

and lt is the 1-norm of a response sequence in discrete time. At present, these are 

not as widely used due to difficulties in computing the induced transfer function 

norms. 

2.3 Performance of "nominal" example structure 

2.3.1 Overview 

The performance of the two-story structural example is calculated using the perfor­

mance measures described above and the nominal system parameters that are given 

in Section 2.1.2 and Appendix A. The first performance measure is the reliability 

of the system with respect to the inter-story drift failure mode. The reliability is 

estimated using the out-crossing rate approximation, and failure is defined to occur 

when the maximum inter-story drift exceeds 2% of the story height. The second 

measure computes the expected variance of the interstory-drift ratio in each floor 

via the 1-£2 norm. Finally, the so-called "worst-case" performance is calculated for 

this system using the 1-£00 norm. 

For illustration, plotted in Figure 2.5 is the simulated response of the first-story 

inter-story drift ratio of the model, when the model is subject to computer-generated 

Gaussian-white input (0.01 second time step). The input has zero mean and a 

variance of 20% g (g is the gravitational acceleration constant, 386.4 in/sec2 ), and 

has a flat spectrum. The 20% g level is a typical ground acceleration level that 

would be used to model a moderate-sized far-field earthquake, although in practice 

the frequency content would not be uniform, and the 10 second duration of the input 

is also representative for the strong shaking portion the earthquake. The simulation 

was run for 10 seconds prior to the record that is displayed in order to allow the 

transient response to die out. The dashed lines in the figure represent the failure 
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level for the inter-story drift ratio, noting that failure can occur in either direction. 
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Figure 2.5 Simulated response of 2DOF example to white noise. 

2.3.2 Nominal reliability-based performance 

The reliability of the system with respect to the inter-story drift failure mode is 

defined as the probability that the computed inter-story drift ratios in both the 1st 

or 2nd stories of the building model do not exceed the failure levels at any point 

during the time interval of interest. The uncertain excitation for the system is 

modeled as Gaussian white noise with zero mean and standard deviation of 20% g, 

as discussed previously. 

The reliability is computed on the basis of the out-crossing rate approximation 

(2.7) and (2.12) over a 10 second interval. The failure level for the inter-story drift 

ratio is (3 = 2.0%. For (2.12), the standard deviations of the inter-story displace­

ments and velocities are needed, and these can be obtained from the solution of 
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the Lyapunov equation (2.14), where A is the state matrix given by (A.13) and 

Q = BWB', where W is (0.2 g)2 . The variance ofthe performance variables can be 

determined through a judicious choice for C in (A.12), such that the output vari­

ables are the inter-story drifts and their velocities, as in (A.14). Then, the quantities 

of interest are found by CRC', where R := E[z(t)z(t)'] is the solution to (2.14). For 

the model parameters given here and in Appendix A, the nominal failure probability 

for this system is found to be 7.4% (and hence its reliability is 92.6%). 

The failure surface in this example is two-dimensional, since the response for 

each of the two performance variables must be considered (i.e., the inter-story drift 

ratio in each floor). Although these variables are correlated, the failure probability 

is added for each failure mode to simplify the calculation. Hence, this simplification 

provides an upper bound on the estimate of the failure probability. 

2.3.3 1i2 performance 

For the 1i2 performance of the system, the 1i2 norm is calculated for the inter-story 

drifts. The 1{2 norm of the linear system G is given by (2.13), where R is the solution 

to the standard time-invariant Lyapunov equation given by (2.14), Q = BWB', and 

W = (0.2 g) 2 for this system. Since the 1{2 performance is defined only in terms of 

the drift ratios (and not their velocities), C in this case is given by 

(2.19) c--1 [ 1 
hc -1 

as contrasted to C from (A.14). 

For the nominal parameters defined for this system (i.e., the model parameters 

described above and in Appendix A), the 1i2 norm of the drift ratio is 0.76% of the 

story height. 

2.3.4 Nominal1i00 performance 

The 1{00 norm of the inter-story drifts is also computed for this example problem. 

The 1{00 drift level performance is found to be 1.60% of the story height, which 
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corresponds to the "worst" possible 2-norm of the inter-story drift ratio given an 

input w in £2(0, oo) with llwll2 ~ 0.2 g. The specific input that causes the 1{00 

bound to be realized is a pure sinusoidal input at a frequency equal to the dominant 

resonant mode of the system (the frequency is the damped natural frequency of 

the first mode). The value of 1.60% for 1i00-norm of the the inter-story drift ratio 

indicates that, for this 2-norm bounded input and failure level of 2% for the inter­

story drift, the system is guaranteed to never fail. Note that this input class is clearly 

much different than the one used for the failure probability and 1{2 performance 

calculations. The 1i00 results are provided merely for comparison. 

2.4 Model uncertainty description 

2.4.1 Sources of model uncertainty 

Overview 

Models of physical systems can never be certain in the sense that they cannot 

perfectly predict the future behavior of the system. The sources of discrepancy 

between the measured and predicted response (termed the "prediction error" -see 

Soderstrom and Stoica 1989) of a physical system generally can be sorted into two 

categories, 

• model uncertainty, 

• modeling error. 

The model uncertainty relates to errors and uncertainty in selecting the "best" 

model from within the class of possible models used to describe the system. When 

selecting a model for a physical system from a class of possible models, the model 

that best agrees with the engineer's present state of knowledge of the system is 

selected. That model and the parameters associated with it, however, typically are 

uncertain, as the engineer's knowledge is often incomplete. 

The modeling error is the inherent error in approximating a real system with a 

simplified mathematical representation of that system, and accounts for the remain-
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ing difference between the "best" model within the model class and the observed 

behavior of the physical system. These two sources of error are described in the 

following sections, along with the uncertainty associated with the input. 

Parametric model uncertainty 

The class of possible models considered herein for structural engineering applica­

tions are finite-order ordinary differential equations, where the system can be ap­

proximated with (possibly nonlinear) springs, masses, and dissipative elements (e.g., 

linearly-viscous dashpots). The parameters for the models in this class typically are 

determined either through finite-element models that are composed of mechanics-of­

materials models of the individual members (beams, columns, etc.) of the structure 

(Sack 1989; Cook et al. 1989), or through a modal identification procedure, such 

as the one described by Beck (1996) and Beck (1978), which distills the measured 

dynamical response of the building into the responses from each of several classical 

normal modes of vibration (Caughey and O'Kelly 1965). 

Sources of parametric uncertainty in the construction of finite-element models 

for buildings are the material properties that are assumed in the creation of the 

structural model, as these properties may vary from member to member in the 

structure, or the damping ratio that is chosen to represent linear viscous damping 

in the structure. In addition, the connectivity conditions between members may 

be uncertain, as well as the interaction between the structure and its foundation. 

In general, the greatest source of uncertainty is in modeling the damping of the 

structure. 

If the model class is the class of linear modal models of the system, such as in 

Beck (1996), the modal parameters that are identified (modal frequencies, damping 

ratios, and modeshape components) can be viewed as the most probable parameters, 

and the covariance of these parameter estimates can be obtained to describe their 

uncertainty. 
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Modeling (non-parametric) uncertainty 

In a prediction-error setting, the non-parametric modeling error accounts for the 

difference between the predicted output from a parameterized model of a system 

and that system's actual output. Hence, the modeling error includes unmodeled 

dynamics and unmodeled nonlinearities in the system as well as sensor noise. Clearly 

this term is linked to the parametric model error of the previous section, as the 

most accurate models within a specific class lead to the smallest error between the 

measured and predicted outputs, and hence the smallest modeling error. 

Typically, all modeling error is described by a "sensor noise" term in the modeled 

equations of motion. This may be misleading, since often in structural engineering 

applications, the actual modeling error is much more significant than the sensor noise 

in the instruments that are used to measure the structure's response. Instruments 

with 12-bit or even 16-bit precision are quite common for measuring vibrations in 

civil engineering structures, yielding root-mean-square sensor noise levels of « 1%, 

while the difference between the measured output and the predicted output is typ­

ically on the order of several percent of the measured response. The unmodeled 

dynamics of the system typically include non-structural components, variations in 

the details of beam-column connections, and soil-structure interaction. These com­

ponents often behave very non-linearly under earthquake excitation, even if the 

structural members do not yield. 

Uncertainty in inputs 

For civil engineering structures, the excitation is usually more uncertain than the 

model. For example in earthquake applications, the magnitude, duration, and fre­

quency content of the ground motion are difficult quantities to model, and are hence 

quite uncertain. They can be parameterized to some extent by modeling the local 

site conditions, such as the proximity of the structure to a fault, local soil conditions, 

and general seismicity of the region. Any description of the performance should take 

the potential variations in the input into account. 

For earthquake applications, in order to simulate the response of the system 
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to an earthquake, the stationary portion of the strong motion of an earthquake is 

typically described by a Kanai-Tajimi stochastic model (Kanai 1957; Tajimi 1960; 

Clough and Penzien 1975). The stationary model for the input is fairly standard in 

earthquake engineering applications, and represents the most intense and damaging 

portion of the ground motion, which is typically fairly uniform in frequency content 

and magnitude. For the Kanai-Tajimi model, a Gaussian white noise process is 

passed through a second-order linear filter. The filter parameters, as well as the 

magnitude of the Gaussian input, can be taken as uncertain variables. 

More realistic ground motion models can also be developed that include nonsta­

tionarities in the amplitude and frequency content (see, for example, Papadimitriou 

1990). However, that lies beyond the scope of this thesis. Herein, only the sta­

tionary response of the system to the stationary input filter is considered for the 

performance analysis and control design. 

2.4.2 Modeling model uncertainty 

Probabilistic model uncertainty 

The calculation of the probable performance of an uncertain system requires com­

puting the performance over the class of possible models for the system. This 

measures the system's probable performance for the set of possible models, termed 

the performance over models. In order to consider the uncertainty described in 

the previous section when computing the performance, the uncertainty should be 

modeled as well. This is accomplished by specifying probabilities of the uncertain 

models. 

The probability distributions assigned to the set of possible models for the system 

are used to quantify the relative plausibility of each model, where the plausibility 

of a model is determined by its ability to predict the future response of the system. 

These probabilities are specified based on the modeler's present state of knowledge 

of the system (Beck 1996; Jeffreys 1961). The knowledge can be a combination 

of theoretical modeling, system identification using previous response data, and 

"engineering judgment." 
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Selection of model probabilities 

The selection of the probabilistic models for the model uncertainty can be addressed 

in a variety of fashions. One approach is for the modeler to assume a priori prob­

ability distributions on the model parameters. A second possibility is to invoke 

maximum entropy principles (Jaynes 1978) in order to select a probability distri­

bution that maximizes the engineers uncertainty in the model. In other words, if 

the engineer constructs the best possible model of the system, then the remain­

ing uncertainty should be maximized in some sense. Otherwise a model with less 

uncertainty could have been created. 

For modal models constructed from system identification of the dynamic re­

sponse data, the mean and variance of the modal parameters can be calculated 

from the data (Beck 1996). A probability model, such as Gaussian-distributed pa­

rameter uncertainty, can then be fit to the mean and variance of the parameters 

that are identified to obtain the probabilities for the models within the model class. 

Furthermore, the output error (model error) can be modeled as a random pro­

cess with an associated probability distribution, and this probability distribution 

can then be parameterized with parameters which are themselves uncertain, hence 

returning to the parameterized uncertainty problem. For example, the prediction 

error is typically modeled as a Gaussian process, and the mean and variance of that 

process are parameters which are assigned a priori based on engineering judgment, 

estimated from response data, or are themselves assigned probability distributions 

(Box and Tiao 1973). 

2.4.3 Model uncertainty for the two-story example 

Uncertainty in the model of the two-story system can be treated with two methods, 

depending on whether a finite element model or a modal model is used for the 

example. For the finite element model, the mass, stiffness, and damping parameters 

used to construct the M, K, and C matrices of the building model (A. 7) are allowed 

to vary, and for the modal model (A.ll), the frequencies Wi, damping ratios (i, and 

modeshape vectors q;(i) are considered uncertain. 
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Each modeling method has its advantages and disadvantages. Uncertainty at 

the finite-element-model level has a more physical interpretation, as variations in 

the member properties can be considered explicitly. Uncertainty at the modal model 

level is easier to consider when using response data to identify modal parameters or 

to update their estimates using Bayesian system identification techniques. 

Consider uncertainty in the modal model parameters of the two-story exam­

ple that were given in Table 2.2. To illustrate the model uncertainty, the natural 

frequencies and damping ratios are now allowed to vary, so 

(2.20a) 

(2.20b) 

Wi = Wi(1 + Ww;Ow;) 

Ci = (i(1 + w,io,;), 

while the modeshapes are assumed to remain certain in order to simplify the calcula­

tions. The nominal parameter values are given in Table 2.2 for Wi and (i, i E {1, 2}, 

while wi, (i represent the uncertain values. The factors Ww;, W(; are weights on 

the standardized random variables Ow;, O(;. For this example, the o's are chosen 

to be zero-mean Gaussian-distributed random variables. The probability density 

functions (PDFs) for WI, w2 and C1, C2 are shown in Figure 2.6. Note that using 

Gaussian variables allows a finite probability that the frequency and damping could 

be negative, but the probability is negligible for the parameters in this example and 

is ignored. All the Ww; 's and W(; 's are equal to 0.1 in this case. The natural frequen­

cies are assigned the same coefficient of variation, and the two damping ratios are 

assumed to have the same mean and variance, which is why their PDFs are identical 

in the figure. 

As a next step in the modeling of the uncertainty, beyond the scope of this simple 

demonstration (and this thesis), variations in the modeshape components could be 

considered as well. For an additional level of complexity, the uncertainty could also 

be treated at the physical model level, where the stiffness and damping parameters 

for the model are uncertain, so these quantities would then have a direct physical 

interpretation in terms of the components of the structure. 
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Figure 2.6 Uncertain parameter PDFs for 2DOF system. 

The next section discusses how the probabilistic performance of a system with 

uncertainty can be estimated. 

2.5 Probabilistic robust analysis 

2.5.1 Robust performance as probability-over-models 

The idea of probabilistic robust analysis is to compute the probable performance of 

the physical system over the set of possible inputs and the class of possible models 

that could be used to describe the system. Contrast this with the current robust 

analysis paradigm (Zhou, Glover, and Doyle 1996), which defines robust analysis as 

the worst-case performance over the sets of possible system models and inputs. This 

"worst" model used as the basis for the robust analysis may be a highly unlikely 

member of the set of possible models, so the analysis result may be unnecessarily 

conservative and hence misleading. 

This section explains how the "performance" of the uncertain system is deter-

mined probabilistically by calculating the performance over the possible model set. 
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2.5.2 Robust reliability 

The total failure probability, as implied by the total probability theorem2 , is given 

by integrating the probability of failure which is conditional on a particular model 

weighted by the probability assigned to that model, over all the possible models, 

(2.21) P(.FI8) := r P(.FI6)p(6l8)d6, 18 

where 8 represents the class of possible models considered for the system and 6 E 8 

represents a particular model within the class of possible models. The quantity 

p(6l8) is the probability of the particular model parameterized by 6, given the set 

of all possible models 8 and the modeler's present knowledge of the system. 

This total probability integral typically cannot be solved analytically, so numer-

ical approximations are necessary. In addition, an efficient approximate solution 

method for this integral (2.21) is necessary if numerous uncertain parameters are 

considered. Furthermore, the analysis result from (2.21) is needed for each itera­

tion of the controller design optimization (see Chapter 3 for the controller design 

procedure), so the solution to (2.21) must also be obtained efficiently to enable this 

optimization. 

2.5.3 Probable 1i2 performance 

Similar to the robust reliability calculation discussed above, the "probable robust 

1{2" performance can also be solved through application of the total probability 

theorem. First, let Q(6) represent the 1-£2 performance of the system described by 

the parameters 6, then 

(2.22) Q(8) := { Q(6)p(618)d6, 18 

which, recognizing (2.22) as the expected value of Q(6) (Papoulis 1965), can be 

thought of as the "expected 1£2 performance" over the uncertain model set 8. 

2 This theorem is easily derived from the axioms of probability, (Papoulis 1965; Beck 1996). 
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2.5.4 Computing the probable robust performance 

Space-gridding numerical integration techniques 

A variety of numerical integration techniques exist that require gridding the domain 

of integration along each dimension of the integrand. The integration techniques, 

such as those based on the trapezoidal rule, Simpson's rule, or Gaussian quadrature, 

are generally simple to implement and reliable, provided sufficient divisions of the 

domain are taken for each dimension of the integrand. See Press et al. (1992), 

for example, for an overview of these techniques. The computation time required 

to evaluate the integral grows exponentially with the dimension of the integrand 

by these methods (i.e., exponentially with the number of uncertain parameters in 

the model), which is unacceptable for high-dimensional integrands and a difficult 

obstacle even for low-order ones when the controller optimization is performed. 

Asymptotic approximation 

The method of asymptotic approximation to classical reliability integrals has been 

studied extensively by Breitung (1989, 1991). An asymptotic approximation has 

also been applied recently to dynamic linear systems under stochastic excitation 

by Papadimitriou et al. (1997). This method is used herein for the evaluations of 

the total failure probability. The method fits a second order surface to the log of 

the integrand, in the region of the integrand with the greatest contribution to the 

probability integral (Papadimitriou et al. 1997). Hence, the method requires an 

optimization over the uncertain parameter space to find the "design point(s)," or 

maximum (maxima) of the integrand. Multiple maxima may be considered if several 

regions of the integrand have a large contribution to the integral. Unfortunately, 

the surface over which the optimization is performed to find the design point(s) is 

nonlinear and (possibly) non-convex. The asymptotic approximation is based on 

Laplace's method (Breitung 1994) for integrals of the form 

(2.23) 
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and involves fitting a Gaussian-type surface to the "design point," or maximum, of 

the integrand in (2.21). In this application, an l(O) of the form 

(2.24) l(8) = log'P(Fj8) + logp(8J8), 

can be chosen. Then, the integral (2.21) can be approximated by 

(2.25) P(FJS) ~ (21rt;2 P(Fj8*)p(8*j8) 
J det L( 8*) ' 

where 8* maximizes (2.24) (and so the integrand of (2.21) ), and L(8*) is the Hessian 

of l ( 8) evaluated at 8*. See Papadimitriou et al. (1997) for the details of this 

derivation, and for an explanation of how it could be applied to the case when 

multiple maxima exist in (2.24). 

Since the asymptotic approximation requires an optimization to find the maxi­

mum of the integrand of (2.21), denoted by 8*, the computation time required for 

the approximation has an upper bound that grows exponentially with the number 

of uncertain parameters. The method appears to be efficient, however, for the civil 

engineering applications examined herein, indicating that the optimization for these 

systems is well behaved. An investigation into the behavior of the optimization for 

a larger class of civil engineering applications would be a good subject for further 

study of this method. 

Monte Carlo integration 

One advantage of the Monte Carlo method for approximating (2.21) is that the 

required solution time depends only on the desired accuracy of the solution, and 

not on the dimension of the integral. Of course, civil engineering systems typically 

have a high reliability (since that is the design goal), so many samples may be 

required for an accurate approximation from the Monte Carlo method. A variance 

reduction technique, such as importance sampling, could improve the efficiency of 

the Monte Carlo method significantly in this case (Press et al. 1992; Papadimitriou 

et al. 1997), although this requires either some prior knowledge of the distribution 
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of the integrand of (2.21), or an optimization to find the maximum (or maxima) of 

the integrand (as per the asymptotic expansion method). 

2.5.5 Comments on norm-bounded robust analysis methods 

An extensive framework exists for evaluating the performance of uncertain linear 

systems using modern robust analysis techniques based on the 1{00 norm of the 

system and the structured singular value "p" (Zhou et al. 1996; Balas et al. 1994). 

These hard-bounded approaches3 describe only the performance of the "worst" model 

and input within the set of possible models and inputs, and hence could be quite 

conservative with respect to the performance of the actual system. At the present 

time, no probabilistic information on the model uncertainty can be incorporated 

into the analysis by these methods, and the robust analysis result does not have a 

natural probabilistic or reliability interpretation. 

2.5.6 Robust analysis of the 2DOF example 

The total probability of failure for the 2DOF example is obtained by synthesizing 

the methods of the Sections 2.2 and 2.4. Based on the total probability theorem 

(2.21), an integral of the failure probability for a particular model (from Section 2.2), 

weighted by the probability of that model (from Section 2.4), over the set of all 

possible models yields the total failure probability. This probability is conditional 

on the class of possible models, e. 
The primary method used to calculate the total reliability integral (2.21) for 

the 2DOF example is through an asymptotic expansion about the region of the 

integrand with the greatest contribution to the probability integral (Papadimitriou 

et al. 1997), then applying (2.25) to find the total reliability. The maximum of 

the integrand, (}*, is found using the Neider and Mead nonlinear simplex method 

(Press et al. 1992; The MathWorks, Inc. 1994a). This optimization method is 

not particularly efficient, but it does not require knowledge of the derivative of the 

3 Hard-bounded because hard bounds are placed on both the limits of the uncertain model sets 
and the level of the input. 
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objective function, and the MATLAB routine generally performed well. Monte Carlo 

integration is also considered to provide an independent check of the analysis results. 

The asymptotic approximation to (2.21) yields a probabilistic failure probability 

of 21.1%, requiring approximately 2 minutes of CPU time4 . For the Monte Carlo 

integration, using 5000 samples the estimated failure probability is found to be 

21.3%. The Monte Carlo estimate has a standard deviation in the failure probability 

estimate of 0.5%, and also requires about 2 minutes of CPU time. The total failure 

probability for the uncertain system differs so significantly from that for the nominal 

system (which is 7.4%) because the failure probability from (2.7) depends strongly 

on the value of the damping ratio. This can be seen in Figure 2.7, where the failure 

probability is plotted against ( for the 2DOF system with (I = (2 = ( and the 

nominal-model values of the frequencies. This strong dependence is a concern when 

using the inter-story drift reliability as a performance measure, because the damping 

ratio is typically the most uncertain quantity, so in all cases using the inter-story 

drift reliability as the performance measure, the computed performance will depend 

strongly on a parameter that is quite uncertain. This nonlinear dependence of the 

failure probability on the damping parameter, for the inter-story drift failure mode 

and a white input, indicates either that the failure probability (or its complement 

the reliability) may not be the best performance measure for this case, or that the 

uncertainty in ( should be handled differently, perhaps by providing performance 

levels for various values of the damping ratio. 

The expected 1£2 performance can also be computed for the uncertain system 

through application of (2.22). The expected 1£2 performance (i.e., the standard 

deviation of the inter-story drift ratios) is found to be 0. 78% using the asymptotic 

approximation method and 0.79% with standard deviation of 4x10-3% using 5000 

samples for the Monte Carlo integration. In Figure 2.8, the 1£2 norm of the system 

is plotted against the damping ratio (. As is evident from this figure, the 1£2 

performance is less sensitive to ( than the failure-probability-based performance. 

The "expected" 1£00 performance is computed by again applying the total prob-

4The CPU time is provided as a gauge of the computational effort, and is measured using 
MATLAB to perform the required computations on a DEC/ Alpha 3000 Workstation. 
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ability theorem to obtain the expected performance of the uncertain system. This 

is provided as an analogy to 1i00 based performance analysis methods, and for com­

parison with the results of the failure-probability and 1i2 analysis methods. The 

expected 1ioo performance is calculated to be 1.64% using the asymptotic approx­

imation method and 1.68% from the Monte Carlo approximation (with a standard 

deviation on the result of 1.2x10-2%). Again, the 1{,00 performance measure as­

sumes a different input class than the failure probability and 'Hz measures. Here, 

the expected 1i00 peformance "guarantees" that the system will not fail, but this is 

for 2-norm bounded input, rather than a Gaussian input whose variance is specified. 

The results for the various performance measures that are computed for the 

2DOF example system are summarized in Table 2.3. 
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Table 2.3 Performance measure summary for two-story example. 

Nominal Probabilistic Robust Performance 
Performance Asymptotic Monte Carlo 

Failure probability (%) 7.4 21.1 21.3 
1iz performance (% drift) 0.62 0.78 0.79 

1i00 performance (% drift) 1.20 1.64 1.68 
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Chapter 3 

Controller design for probabilistic 

performance objectives 

3.1 Controller design 

3.1.1 General concepts and methodology 

Once the probable performance of an uncertain structural system has been deter­

mined from the methods of Chapter 2, the next step in the probabilistic robust 

control methodology is to attempt to improve this performance through feedback 

control. Structural control can use passive, semi-active, or fully active systems in 

order to improve the performance of a structure (Soong 1990; Housner et al. 1997). 

The choice of the particular control device and the sensor configuration determines 

the controller class that is to be considered for the system. 

In this chapter, the controller design methodology is developed for an active 

structural control system. This design procedure uses the performance measures 

that are defined in the previous chapter as objectives for the design. The method 

can easily be applied to passive or semi-active structural control systems as well, 

although that is not explored herein. 

The goal of the controller optimization is to find the optimal controller, </>*, out of 

the class of possible controllers, cp, that minimizes the cost function J( </>, 8). Here, 

8 again represents the set of possible models for the system, and the cost function 
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represents the performance of the composite structure and actuator system. Hence, 

(3.1) 

where 

(3.2) 

J(¢*, 8) = min J(¢, 8), 
t/JEif! 

J(¢, 8) := P(FI¢, 8, 'D) 

may be determined by including the controller parameters in the evaluation of (2.21). 

In general, the optimal solution¢* requires a nonlinear optimization over if!, which 

can be conducted using a variety of existing numerical methods (see Pierre 1986 

or Press et al. 1992, for example). The solution techniques that are used for 

the applications in this thesis are the unconstrained optimization algorithms that 

exist in MATLAB (The MathWorks, Inc. 1994a), such as the Neider and Mead 

(Press et al. 1992) nonlinear simplex algorithm (MATLAB function fmins()) for the 

multi-variable optimizations and a combined golden-section-search and parabolic 

interpolation (Press et al. 1992) for single-variable optimizations (MATLAB function 

fmin()). 

The optimization performed for (3.1) is subject to constraints on the controller, 

such as a limit on the available actuator effort or a penalty on the expected energy 

used by the controller. These constraints can either be imposed as boundaries on 

the possible controller set or as a penalty function incorporated into the design ob­

jective of (3.1). The latter approach allows for the use of unconstrained optimization 

methods and is adopted for the controller optimizations performed in this thesis. 

One comment on the controller class is that any parameterized controller could 

be considered for the control design problem, such as an output-feedback controller 

with a state estimator or a nonlinear controller. A practical limit exists on the 

controller class that depends on the speed of the computer and number of uncertain 

parameters used to describe the system. In addition, the efficiency of the opti­

mization routines that are used for both the search for the "design point" in the 

asymptotic approximation to (2.21) as well as the controller optimization for (3.1) 



39 

influence the feasible problem size. Note that for the probabilistic robust control 

design, the integration to determine "total performance" from Section 2.5 must be 

performed for each function evaluation in the optimization. Hence, the solution 

time has an upper bound that grows exponentially with the product of the number 

of uncertain parameters and the number of parameters in the control law. 

3.1.2 More linear system representation 

The generalized equations of motion for a linear system given by (2.1) can be aug­

mented such that the inputs are the exogenous disturbance, sensor noise, and mod­

eling error, which are all grouped into w, and the control input, u, 

(3.3) 

X ~ Ax + [ Bu Bw] {:} 

{:} ~ [~:] x+ [:,. D:]{ J 
which is presented in block-diagram form in Figure 3.1. Here, the system output 

has been partitioned into the measured outputs y and the performance variables 

z. In (3.3), the assumption of no direct feed-through of w --+ z and u --+ y has 

been made (i.e., Dzw and Dyu are zero, as shown). This is not a very restrictive 

assumption, as the controller takes the measured output y as input, so feedback of 

u to the controller can be performed internally for the controller. In addition, direct 

feed-through of the disturbance w to z would cause the variance of the performance 

variables to be unbounded. If the performance variables are to include the modeling 

error by modeling the prediction error as a Gaussian process, their influence should 

be filtered using a frequency weighting function that rolls off at higher frequencies 

(Doyle et al. 1992). 

For output-feedback control, u is a function of the measured output variable 

y and the disturbance input w. If the control law is linear, the controller can be 
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0 Dyw 

Dzu 0 
{:} 

Figure 3.1 Linear system representation with control input u, distur­
bance w, measured outputs y, and performance variables z. 

represented by 

(3.4) 

where Xc is the controller state, which contains the "memory" of the controller1 . In 

block-diagram form, this linear control system is shown in Figure 3.2. 

u y 

Figure 3.2 Representation of linear control system. 

These two systems can be inter-connected to form the closed-loop system, where 

the measured outputs from the structural system become the inputs to the con­

troller, and the outputs from the controller are input to the structure. This closed­

loop system is shown in Figure 3.3, where the direction of the input-output arrows 

on the controller block have been reversed from the sense of Figure 3.2 to simplify 

the diagram. 

The equations of motion for the closed loop system can be obtained for the 

1 A controller with state dimension of zero is called "memory-less." 
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Figure 3.3 Closed-loop system. 

system interconnection of Figure 3.3 from solving (3.3) and (3.4), and are given by 

(3.5) 
{ 
~ } = [A+ BuDcCy BuCcl { x } + [Bw + BuDcDyw] w 

Xc BcCy Ac Xc BcDyw 

z ~ [c, + n,.n,c, n,.c,] { :J + [n,.n,n""] w 

In order to have finite variance of the response, either DzuDcDyw = 0 or w must 

be band-limited. For the examples worked out later in this chapter, the Gaussian 

input w will be passed through a low-pass linear filter. The state equations in (3.5) 

can easily be augmented to include this filter, but that is not presented here. 

3.1.3 Performance measures 

The reliability-based controller design seeks to minimize the failure probability of 

the composite structure/actuator system. As mentioned previously in Chapter 2, 

structural failure occurs when the inter-story drift in any story exceeds a specified 

fraction of the story height. In addition, the probability of actuator failure is incor­

porated into the performance objective, and the actuator is considered to have failed 

when the required actuator effort exceeds its allowable maximum. The controller 
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design procedure then searches over the set of possible controller parameter values 

to minimize this composite failure probability. 

The failure probability can be computed on the basis of a single model of the 

system, termed the nominal performance, or for a whole set of possible models, 

termed the robust performance. The nominal performance is computed on the basis 

of (2.7), and the robust performance is determined by evaluating the total failure 

probability for the system, (2.21). 

In addition, the 1i2-performance of the system is considered for the control 

design. The design seeks to minimize the 1i2-norm of the system, either for a 

nominal system, or for an uncertain one using (2.22) to compute the expected 1i2 

performance. 

3.2 Example control design for two-story building model 

3.2.1 Controller class( es) 

The probabilistic robust control design methodology is illustrated using the 2DOF 

system representing the two-story steel-frame building described in Appendix A. 

The sensor location is assumed to be the roof of the structure, allowing either the 

displacement, x2(t), velocity, ±2(t), or acceleration, x2(t), to be used as the measured 

output that is input to the controller, depending on the type of sensor that is used. 

The actuator is also located at the roof level, and provides the control force u2(t). 

In practice, this roof-level actuator could be implemented with an active-mass­

driver (AMD) actuator, which is commonly used for structural control investigations 

(Spencer et al. 1997a; Soong 1990; Chung et al. 1989). Three controller classes are 

chosen to provide a comprehensive illustration of the probabilistic robust control 

design. These classes are chosen because they are each representative of controller 

classes that are common in classical control theory. 

First, the simplest controller class is considered, which is the class of constant­

gain output-feedback controllers. The control law consists of a single gain multiply­

ing the measured output. This simple controller class permits graphical display of 
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the variation in performance with the feedback control gain. 

A second class of controllers that is considered is the class of state-feedback 

controllers with constant gains, where the entire state of the system is assumed to 

be available as the controller input. In practice, the entire state may not be mea­

surable, so a state estimator would be constructed. Note that in classical1i2 /LQG 

control theory (Franklin et al. 1994), the state estimator and state-feedback control 

design are separable for the optimal control design, and so they can be performed 

independently. For probabilistic robust control, however, separation of the estima­

tor design and state-feedback design may lead to a sub-optimal controller. The 

estimator design problem is addressed further in Section 3.3. 

The final class of controllers that is considered is the class of observer-based 

controllers. For this class, an optimal observer is designed to estimate the state 

using the measured output and the most probable model for the system. Then, the 

performance objectives that are based on the failure probability and the 1i2-norm 

of the system are used for the controller optimization using the estimated-state for 

feedback. 

3.2.2 Constant-gain output feedback 

For this example, as in the probabilistic robust analysis from Chapter 2, the inter­

story drift ratios remain the performance variables of interest. The maximum allow­

able interstory drift, as in Chapter 2, is again chosen to be 2% of the story height 

for the reliability-based controller design. 

In the controller design optimization, some constraint or penalty is needed to 

limit the control effort and allow a solution. For the results presented herein, the 

"failure" probability of the actuator is included. In reality, the actuator "failure" 

corresponds to actuator saturation, at which point the linear control law breaks 

down. Actuator saturation is not necessarily detrimental to the performance of 

the system, particularly when the required actuator force exceeds the limiting force 

only rarely, as is the case for this example. In addition, various schemes have 

been proposed that optimize the performance of control systems in the presence of 
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actuator saturation. Explicit treatment of the actuator saturation is beyond the 

scope of the current work. So, to provide a constraint on the controller effort during 

the design optimization, u2 is limited to 5% of the seismically effective weight of the 

building. This actuator force limit is chosen to be representative of the forces that 

are achieved by existing structural control applications. For example, the active 

mass driver for the laboratory structure constructed by Spencer et al. (1997a) can 

generate a maximum force of nearly 10% of the building mass, and in a large-scale 

experimental study (Soong 1990), up to 5% of the structure's mass is considered 

the maximum control force. 

Note that the matrices Cz and Dzu from (3.3) are scaled by dividing each perfor­

mance variable (i.e., the inter-story drifts d1 and d2 and the actuator force u) by its 

corresponding failure level. Then, for the failure probability calculations, llzlloo ~ 1 

implies satisfactory performance given E[ww'] = 1. For the 1£2 performance anal­

ysis, the components of z are now dimensionless and weighted appropriately (i.e., 

the identity matrix can be used as the weighting matrix for the 1£2 control design). 

Since the output feedback controller in this section is memory-less and contains 

no states, the control force u is given by 

(3.6) 

which is a constant gain multiplying the measured output. The closed-loop inter­

connection of (3.5) for this system can be represented with Gclp, where the per­

formance variables include the inter-story drifts, drift velocities, and control input 

u 

(3.7) I 
A+BuKaJCy 

Gclp := Cz + DzuKoJCy 

KafCy 

Bw + BuKojDyw I 
Dzw + DzuKojDyw · 

K 0 JDyw 

Note that u is also needed to calculate the out-crossing rate for the reliability ap­

proximation (see (2.12)). It can be estimated from u using a linear filter with the 
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45 

s 
GdiJJ(s) = -sj..,..w_d_+_l 

to approximate the derivative. This filter approximates the derivative of its input 

at frequencies well below the cut-off frequency wd. 

Velocity output-feedback controllers are designed using several of the perfor­

mance measures defined in Section 2.5. The controller design seeks the value for 

the controller parameter Kof that minimizes the performance objective, that is, the 

composite structure/actuator failure probability (Sections 2.2.3 and 2.5.2), or the 

expected 1/.2 response of the system (Sections 2.2.4 and 2.5.3). The probable robust 

performance is calculated using the asymptotic approximation method (Section 2.5). 

The controller optimization is performed using the uncertain models described in 

Section 2.4.3. For comparison, a "nominal" model controller design is performed 

using the most probable parameters from the model uncertainty set. The controller 

parameters and the corresponding performance measures for the closed loop systems 

are displayed in Table 3.1. 

Shown in Figure 3.4 is the relationship between the controller gain Kof and the 

performance for both the failure probability and 1/.2 performance measures. The 

solid lines represent the robust performance measures for the uncertain models, 

while the dashed lines represent the performance values calculated for the nominal 

(most-probable) model. In both figures, the effect of the controller constraint on the 

performance measure can clearly be seen. For the failure probability controller, the 

actuator failure has a rather sudden affect on the performance due to the nonlinearity 

in the performance measure, and the optimal controller gain is very sensitive to 

the specified failure level. This sensitivity indicates that the specification of the 

composite performance objective should be studied in greater detail, as a future 

project. 

For further comparison, position feedback and acceleration feedback control are 

considered, and the resulting controller designs and performance measures are given 
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Table 3.1 Velocity output feedback controller design for 2DOF example. 

N aminal-model Uncertain-model 
Controller Controller 

I 
Control Kpfnom I K1£2nom Kpfrob I K11.2rob 

Gain o.4769 1 o.3263 o.5519 1 0.3286 

I nominal Pf (%) I 0.0290 I 0.1401 o.1oo2 1 o.1363 1 

I robust Pf (%) I 0.4699 I 1.5143 o.322o 1 1.4868 

I nominal1i2 1 o.34o3 1 0.3348 o.3463 1 0.3348 

I robust 1£2 1 o.343o 1 0.3376 o.3488 1 0.3376 

0.4.---~-~--~-~---, 0.42.---~-~--~-~------. 

0.35 

0.3 

,;0.25 
[ 
~ 0.2 
.a 
:.ao.t5 

0.1 

' 

0.2 0.4 0.6 0.8 
gain 

(a) Failure probability (b) 1/.2 performance 

Figure 3.4 Failure probability and 1-£2 performance with velocity output 
feedback for the nominal (dashed) and uncertain (solid) 2DOF system. 

' ' 

in Table 3.2 for position feedback control and in Table 3.3 for acceleration feedback 

control. In addition, the performance of these systems is plotted as a function 

of the controller gain for position feedback (Figure 3.5) and acceleration feedback 

(Figure 3.6). 

The impact of the type of control can be understood intuitively by considering a 

second-order system. Direct velocity feedback increases the damping of the system, 

position feedback increases the stiffness, and acceleration feedback affects the effec­

tive inertia of the system. Velocity feedback has the most influence on the system 

performance, both for the failure probability and 1£2 performance measures. This is 



47 

due to a combination of factors: the existing damping ratio is small and can easily 

be increased with moderate control forces, and also because the response of the 

system is inversely proportional to the damping ratio. Both position-feedback con­

trol and acceleration-feedback control generate large control forces for comparable 

levels of vibration reduction, so they are not as effective, particularly the position­

feedback controller, which achieves almost no reduction in response as compared to 

the uncontrolled system (Table 3.2). 

Table 3.2 Position output feedback controller design for 2DOF example. 

Nominal-model Uncertain-model 
Controller Controller 

I 
Control Kpfnom I K1-£2nom Kpfrob K1-l2rob 

Gain 4.2338 1 0.1891 3.6554 0.1953 

I nominal Pf (%) 6.2416 1 7.3616 6.3469 7.3597 
I robust Pf (%) 19.6723 1 20.9497 19.1197 20.9462 

I nominal1£2 o.4311 1 0.3806 0.4184 0.3806 

I robust 1£2 o.4356 1 0.3847 0.4228 0.3847 

0.25,.--~--~-~--~----, 0.48,.--~--~-~--~----, 

0.2r-------/ 0.46 
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N 
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4 

Figure 3.5 Failure probability and 1i2 performance with position output 
feedback for the nominal (dashed) and uncertain (solid) 2DOF system. 

5 
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Table 3.3 Acceleration output feedback controller design for 2DOF ex­
ample. 

Nominal-model Uncertain-model 
Controller Controller 

Control Kpfnom K1i2nom Kpfrob K7i2rob 

Gain -3.47x10-2 -2.40x10-5 -3.42x10-2 __:2.58 x 10-5 

nominal Pt (%) 5.5794 7.2696 5.5829 7.2586 
robust Pt (%) 18.2824 20.7744 18.1546 20.7542 

nominal 1-£2 0.4289 0.3804 0.4275 0.3804 
robust 1-£2 0.4338 0.3845 0.4323 0.3845 

3.2.3 Constant-gain state feedback 

The position and velocity at each floor can be fed back to the controller to provide 

full-state feedback, soy= x, where x is the vector of nodal coordinates. Note that 

the nodal variables differ by a linear transformation from the "modal variables" that 

are used to form the state equations, (A.13), for the system described in Appendix A. 

To perform actual state feedback, the measured outputs are multiplied by the inverse 

of the modeshape matrix, as in (A.lO). 

The resulting controller gains for the nominal-model and uncertain-model con­

troller designs using both the failure probability and 1-£2 performance objectives are 

displayed in Table 3.4, where the gains as shown in the table multiply the measured 

nodal response of the system, rather than the modal state variables. The order of 

the gains in the table is that Kxu Kx2 , Kxu and Kx2 multiply XI, x2, ±I, and 

±2 , in order. In the table, on the left, the feedback gains are subscripted by these 

values for easy reference. For each optimization, the initial guess that is used for 

the feedback-control gain vector is the controller resulting from a standard linear 

quadratic regulator design (Franklin et al. 1994; The MathWorks, Inc. 1995). 

For the nominal-model design based on an 1-£2 performance objective, the state­

feedback problem is simply the linear quadratic regulator (LQR) design problem, 

which has a well-known analytic solution (Doyle et al. 1989; Franklin et al. 1994; 

The MathWorks, Inc. 1995). For the failure-probability-based performance objec­

tive for the nominal model design as well as for the probabilistic robust perfor-
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Figure 3.6 Failure probability and 1-l2 performance with acceleration 
output feedback for the nominal (dashed) and uncertain (solid) 2DOF 
system. 

mance measures, the controller optimization is carried out numerically. Note that 

the full-state feedback achieves only marginally better performance than the veloc­

ity output-feedback case. This is not surprising, as the position-feedback control in 

Table 3.2 has very little effect on the performance. Essentially, all that is gained in 

the full-state feedback case over the single-output velocity feedback is the freedom 

to choose the second velocity-feedback gain parameter, so the effective damping ra­

tios of the two modes can be adjusted independently to minimize the performance 

objective. 

3.3 Controllers with dynamics 

3.3.1 Theory 

In practice, the entire state may not be measurable, so a state estimator must be 

used, then the state-feedback controller in Section 3.2.3 can be used along with the 

state estimate. In classical linear control theory (Franklin et al. 1994), the state 

estimator and state feedback design problems are separable in the sense that the 

1-£2-optimal (dynamic) output-feedback controller is a combination of the optimal 
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Table 3.4 Full-state feedback controller design for 2DOF example. 

Nominal-model Uncertain-model 
Controller Controller 

Kpfnom K1i2nom Kpfrob K1i2rob 

r·1 0.0545 0.0471 0.0533 0.0483 

Con~rol Kx2 0.2842 0.1705 0.2505 0.1765 
Gams K:h 0.1550 0.1194 0.1808 0.1177 

Kx2 0.4025 0.2699 0.4663 0.2731 

nominal Pt (%) 0.0279 0.1344 0.0974 0.1306 
robust Pt (%) 0.4540 1.4687 0.3101 1.4406 

nominal 1-£2 0.3398 0.3344 0.3458 0.3344 
robust 1-£2 0.3425 0.3372 0.3483 0.3372 

state estimator and the optimal state-feedback controller. In general, for proba­

bilistic robust control, the optimal dynamic output-feedback controller will not be 

a combination of an independently-designed state estimator and (constant-gain) 

state-feedback controller. However, a sub-optimal dynamic-feedback controller can 

be constructed that uses an 1-£2-optimal estimator to estimate the state on the basis 

of the (most-probable) nominal system. Then, any of the previously-defined objec­

tive functions can be used for the control optimization, where the controller class is 

the set of gains multiplying the estimated state. 

Consider the equations of motion for a linear system, 

(3.9) 

(3.10) 

(3.11) 

X = A X + Bu U + Bw W + Bv V 

y = Cyx + DywW + DyvV 

where x is the state of the system, y is the vector of measured outputs, z is the 

vector of performance variables, u represents the control inputs, w represents the 

external disturbances to the system and v is a combination of the sensor noise and 

modeling error. As shown, the performance variables z have a direct feed-through 

of the sensor noise/modeling error, v (henceforth simply called "noise"). In order 

to provide bounded signals for z when the noise is modeled as a Gaussian process, 
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v is low-pass filtered in practice. 

Let A= Ao + 6-A (and similarly for the other matrices in (3.3.1)), where Ao is 

defined in terms of the most-probable parameter values, and the uncertainty in A is 

included in 6-A. The state estimator is designed on the basis of the most probable 

model of the system, 

(3.12) 

y = Cox + Duou, 

where xis the estimated state, Ao, Buo, Co, and Duo are the most-probable-model 

system matrices, u = - K x is the control force, and L is the 1£2-optimal/Kalman 

estimator gain. 

As an extension of the estimator design, on-line identification of the parameters 

could be considered. In this case, the state of the estimator is augmented to include 

the model parameters as well as the states, using a nonlinear extended Kalman 

filter. This suggests a technique for adaptive (and probabilistic robust) control, and 

would be interesting topic for future work. 

3.3.2 Application to 2DOF example 

The estimator design based on the most probable model of the 2DOF example sys­

tem is performed assuming 6-A = 0, 6-C = 0, 6-Bu = 0, Dyw = Dzw = tJwl, 

Dyv = Dzv = tJvl. The control optimization is then performed for the failure prob­

ability and 1£2 performance objectives to find the optimal gains that multiply the 

estimated states. The controllers that are found and their calculated performance 

are given in Table 3.5. The controller gains multiply the estimated states, which are 

in terms of the modal coordinates. So, the gains Kx1 , Kx2 , K!;;
1

, and K!;;
2 

multiply 

x1, x2, &:1, and &:2, respectively, where the tilde is used to denote the modal state 

variables (i.e., so x1 is the modal displacement for the first mode). 

In order to compare their values to the full-state feedback from Table 3.4, the 

gains in Table 3.4 should be multiplied by the inverse of the modeshape transfor­

mation matrix, as is done for Table 3.6. As seen in Table 3.6, the controller gains 
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that are found for the full-state feedback are quite similar to those that use the 

state estimator for most of the controller designs, as would be expected. However, 

the state-estimator (SE) controller found using the robust failure probability perfor­

mance objective differs significantly in most of the feedback parameters from that 

found for the full-state (FS) feedback case. However, the controller gain K[i;
1

, which 

multiplies the modal velocity of the first mode, ~h, is quite similar for the SE and 

FS controllers when they are designed using the same objective function. This is ex­

pected, as this feedback gain directly increases the damping of the first mode, which 

is the mode that dominates the displacement and velocity response of the system. 

Although not presented here, a brief numerical investigation into the sensitivity of 

the performance with respect to the different controller parameters has been done to 

demonstrate that the performance is not very sensitive to the other feedback gains. 

The differences in their values can largely be attributed to numerical inaccuracies 

from the controller optimization. 

Table 3.5 Estimated-state feedback controller design for 2DOF exam­
ple. 

N aminal-model Uncertain-model 
Controller Controller 

Kpfnom K1i2nom Kpfrob K1i2rob 

C' } 
0.3781 0.1730 2.2352 0.1747 

Control Kx2 -0.0207 -0.0364 -0.0086 -0.0372 

Gains K[i; 1 
0.4891 0.2933 0.5005 0.2961 

K~ -0.0304 -0.0275 0.0523 -0.0273 X2 

nominal Pf (%) 0.0403 0.2491 0.0901 0.2399 
robust Pf (%) 0.5799 2.0411 0.4270 1.9902 

nominal1l2 0.0269 0.0261 II 0.0276 0.0261 
robust 1l2 0.0271 0.0264 II 0.0279 0.0264 

3.4 Pre- vs. Post-data controller 

One major advantage of the probabilistic robust control methodology over existing 

robust control techniques is that it allows updating of the uncertainty description of 
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Table 3.6 Comparison between full-state (FS) feedback controller pa­
rameters and state-estimator (SE) controller parameters. 

Control Gains 

Kx1 Kx2 K!i, Kfi, 
I FS Kpfnom I 0.2785 -0.0808 0.4293 -0.0451 

I SE Kpfnom 0.3781 -0.0207 0.4891 -0.0304 

I FS KH.2nom 0.1739 -0.0344 0.2956 -0.0145 

I SE KH.2nom 0.1730 -0.0364 0.2933 -0.0275 

I FS Kpfrob 0.2478 -0.0665 0.4979 -0.0512 

I SE Kpfrob 2.2352 -0.0086 0.5005 0.0523 

I FSKn2rob II 0.1794 -0.0371 0.2977 -0.0173 
I SE Kn2rob 0.1747 -0.0372 0.2961 -0.0273 

the system by incorporating response data. The probabilistic robust performance 

calculation that is described in Section 2.5 can be updated easily to incorporate new 

knowledge of the system. Then, if desired, the controller designs from Section 3.1 

can be updated as well. 

The a priori probability distribution p(6l8) for the models within the set of 

possible models for the system can be updated when response data is available 

through the application of Bayes's theorem (Beck 1996; Beck 1989; Papoulis 1965). 

This yields the updated probability density for 6 that is then conditional on the 

data D as well as the model class 8, 

(3.13) (618 D)= p(DI6, 8)p(6l8) 
P ' p(VI8) ' 

where the denominator p(VI8) serves to normalize (3.13) such that 

(3.14) r p(6l8, D) = 1. 18 

This updated PDF for p(618, D) then becomes the integrand in the probabilistic 

robust performance calculation, (2.21) or (2.22). This procedure is illustrated in 

Chapter 5 using a pre- and post-data model for the Caltech flexible structure. 

In general, the a priori probability distribution p(6j8) is likely to be fairly 
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broad, reflecting a lack of precise knowledge about the system. When response 

data becomes available, the PDF for (} can be updated, and the peak of the PDF 

corresponds to the most probable values for the parameters inp(fJj8, 'D). The local 

curvature of the PDF is related to the uncertainty in the parameter estimate, and 

is determined by sensor noise and model error, together with the sensitivity of the 

model response to changes in the model parameters. 

When large amounts of data that pin down the model parameters precisely is 

available, the PDF p(fJIE>, 'D) becomes very peaked about its most-probable values 

(Beck 1996; Beck 1989). When this occurs, both the accuracy and the efficiency of 

the asymptotic approximation to the total probability integrals, (2.21) and (2.22), 

are improved significantly, as the peak of the integrand is then close to the peak of 

p(fJIE>, 'D), which is relatively easy to find. 

3.5 Reliability of a linear system in discrete time 

3.5.1 Introduction 

In this section, bounds for the failure probability of a linear system excited by 

Gaussian-white noise are derived in discrete time, as an alternative to the continuous­

time failure probability approximation shown in Section 2.2.3. The advantage of the 

discrete-time formulation is that bounds are obtained rather than an approxima­

tion for the failure probability. Furthermore, the discrete time formulation allows 

a simple method for introducing "memory" (i.e., dynamics) into the controller by 

multiplying delayed versions of the output by controller gains, in addition to the 

current output. Memory could be introduced similarly for a continuous-time system 

through the use of simple integrators taken from a Youla parameterization of the 

stabilizing controllers, but that is not examined here. 

Failure is defined to occur when the system response exits a specified "safe" 

region in response-variable space for the first time. This represents a formulation 

of the "first-passage" problem in discrete time. The performance variables, i.e., the 

variables that determine the failure probability of the system, are linear combina-
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tions of the state and controller variables. The system is assumed to be excited by 

a Gaussian-white random process, and the state-variable response is modeled as a 

Markov process. 

3.5.2 System definition 

Discrete-time system representation 

Consider the state equations for a linear system in discrete time with linear output­

feedback control, 

(3.15) 

where Un E !Rnu is the feedback control force, 

(3.16) 
m 

Un = - L KiYn-i· 
i=O 

In addition, 

n E {0, ... , N} is the sequence of time indices of interest, 

Xn E IRn"' is the state vector (at time n), 

is the excitation vector, 

is the measured output vector, 

is the output-error/measurement noise vector, and 

is the performance variable vector. 

The matrix A E !Rn.,®n, is the state-transition matrix, Bu E !Rn,®nu and Bw E 

!Rn,l/9nw determine the influence of the control input and the external excitation, 

Cy E !Rny®nx is the output matrix, Ki E !Rnu®ny is the ith control gain, multiplying 

the ith output, and m is the total number of delays used by the controller. The 
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matrix Dyv scales the measurement noise, and is typically represented by a diagonal 

matrix. As is done for the continuous-time systems described in Section 3.1.2, 

no direct feed-through from the noise term, Vn, to the performance variables, Zn, 

is permitted. However, the noise can be filtered with a low-pass filter, and the 

filter states are then included in Xn. The performance variables are scaled using 

Cz E !Rnz@nx, Dzu E !Rnz@nu such that lznl = 1 indicates a limit state has been 

attained at time step n, where I · I denotes the oo-norm of the vector. 

Inputs 

The stochastic processes { wn} and { vn} are assumed to be zero-mean (and uncor­

related) Gaussian-white processes, with 

(3.17) 

(3.18) 

(3.19) 

Initial conditions 

E[wnw:nJ = Wndmn 

E[vnv:nJ = Vndmn 

E[wnv:nJ = 0. 

The initial state x 0 is assumed to be a zero-mean normally-distributed vector, with 

(3.20) Ro := E[xox~]. 

Generalized representation of the linear system 

First, consider the example of the memory-less controller. Let Ao :=A- BuKoCy, 

Bo := [Bw -BuKoDyv J, Cz0 := Cz- DzuKoCy, and Dzo := [o -DzuKoDyv J. 
Then the state-space representation of the system with the memory-less controller 
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is 

(3.21) 

Xn+I ~ Aoxn +Eo { :~} 

Zn ~ C.,xn +D., { ::} 

The system with controller memory can be placed in a simpler form analogous 

to the memory-less case by wrapping the control feedback terms back into the state 

equation. Consider an augmented state vector Xn and excitation vector Wn, 

(3.22) 
Xn-1 

W- ·-n .- Vn-1 

Xn-m 
Vn-m 

where m is the number of delays present for the control feedback term. Then 

(3.23) 
Xn+l = Axn + Bwn 

Zn = Cxn + Dwn 



where 

A-·-.-

B- ·-.-

1 

0 

0 

0 

0 

0 

0 

0 

1 

0 
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0 

0 

The input covariance matrix for this system is 

Wn 0 

Wn := E[wnw~] = 
0 Vn 

0 0 

0 

0 

1 

0 

0 

Vn-m 

0 

0 

0 

0 

0 

In general, to simplify the notation, the system matrices can be redefined, e.g., 

A := A (or Ao), etc. So the following general form of the equations of motion for 

the closed-loop linear system can be used, 

(3.24) 
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3.5.3 Performance specification 

Define 

(3.25) llznlloo = max lznl, 
nE{O,N} 

where lznl denotes the oo-norm of the vector Zn. Then the performance criterion 

for the system is 

(3.26) 

which states that the performance variables in (3.24), which have been scaled ap­

propriately by C and D, must be less than one for the entire time interval of interest 

in order for the system to achieve satisfactory performance. 

The reliability of the system is the probability that the performance criterion 

will be satisfied, 

(3.27) Psaje(N) := P{llznlloo::; liM}, 

where the model class M is used to represent the assumptions for the system de­

scribed above (i.e., the probability is conditional on the models used to describe the 

system and its input). Often, the reliability is quite close to one, so for numerical 

reasons, the failure probability is preferred, which is related to the reliability by 

(3.28) Pjail(N) := 1- Psaje(N) = P{llznlloo > liM}. 

The remainder of this section describes how this quantity can be calculated, and 

also several computationally efficient techniques are developed that can bound Pfail· 

Then, in Section 3.6, the discrete-time failure probability is used to design a con­

troller (with memory) for the 2DOF example problem. 
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3.5.4 Response probability density function 

The reliability of the system evaluated at time step N is the probability that the 

system has not failed at any of the time steps up to and including N, 

(3.29) Psafe(N) = P { n lzn;l ~ 1}, 
nE{O, ... N} 
iE{O, ... ,nz} 

where Zn; denotes the ith component of Zn, and the conditioning on the model class 

M is assumed to be understood. In order to calculate this probability, the joint 

probability density function for the response variables {zo, z1, ... , ZN} (henceforth 

abbreviated using {zn} to represent the set of Zn's from n = 0 to N) is needed, 

which can then be integrated to determine Psafe(N). 

Since the system is linear and its inputs and initial state have zero-mean and are 

Gaussian distributed, the joint PDFs of { xn} and { Zn} are also zero-mean Gaussian 

processes. So, if the covariance matrices can be found for { Xn} and { Zn}, their 

PDFs are known. At a particular time step n, the covariance matrices that define 

the distributions require solution of the Lyapunov equation solution associated with 

the system in (3.24), 

(3.30) 

where Rn,n := E [xnx~]. This equation can be solved iteratively for Rn,n given 

Ro := Ro,o = E[xoxb] (as in (3.20)). If the system is stable and the stationary 

response is desired, the time-invariant discrete Lyapunov equation solution can be 

used, i.e., 

(3.31) R=ARA'+BWB'. 

Now, note that Rm,n can be solved iteratively for general nand musing the following 
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identities, 

(3.32) 

(3.33) 

Let 

(3.34) 

Also necessary for the joint probability density function of the response variables 

are the cross-correlation terms, given form> n by 

Qm,n := E [zmz~] 

(3.35) = CA(m-n) R C' + CAm-n-l BW: D' n,n n , 

which can be found using repeated application of (3.32) and (3.33). For m < n, 

(3.36) Q = Q' = CR A'(n-m)c' + DW: B'A'(n-m-l)C'. m,n n,m m,m m 

Now let QN represent the correlation matrix for {zn}, 

Ql,l Ql,2 Ql,N 

(3.37) QN= 
Qi,2 Q2,2 Q2,N 

Qi,N Q~,N QN,N 
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Hence, the PDF is found using the standard expression for the Gaussian PDF, 

p(zo, Z1, ... , ZN) = 

zo 

(3.38) 

where I· I denotes "determinant" when the argument is a matrix. 

3.5.5 Reliability calculation 

The reliability calculation requires a multi-dimensional integration of the joint PDF 

for the performance variables {zn} from -1 to 1 (recall that lznl ~ 1 implies safety 

at time n), 

(3.39) Psafe(N) = /
1 

···/

1 

p(zo,z1,··· ,ZN)dzo1 ••• dzonzdzh ... dZNnz' 
-1 -1 

This is a difficult integration to perform, as the dimension of the integral may be 

quite high (N x nz dimensions). Hence, an efficient and accurate approximation is 

desirable. Several bounding techniques and approximate methods for solving (3.39) 

are investigated in the remainder of this section. In general, the failure probability 

is the quantity that should be computed, which is the complement of (3.39). 

These solution methods are illustrated using a single-degree-of-freedom (SDOF) 

oscillator excited by white noise, whose continuous-time state equations are given 

by 

x = Ax+Bw 
(3.40) 

z=Cx, 
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where 

A= [_:~ -2~wJ B = [~], 
and 

c=[1 o]. 

The input is assumed to be stationary Gaussian white noise, so its variance is given 

by E [w(t)w(t + Ts)'] = w o(rs)· Following the example in Soong and Grigoriu 

(1993), the natural frequency wo is chosen to be 2 rad/sec, and the damping ratio 

( is 0.02. Failure is defined to occur whenever the measured output (in this case, 

oscillator displacement) exceeds 3a, where a is defined to be the stationary variance 

of the response of the continuous system to white noise, a 2 = 7rW/(4(wg). For 

the transformation to discrete time, using a zero-order hold with time-step size Ts, 

Ad = exp [ArsJ, Bd = exp [Ars] Br8 , Cd = C, and 

(3.41) 

Note that E [wnw~J = (Wjr8 )dnm· The variance of the response is computed as­

suming the system response is stationary, so E[z5J = E[z;,], which is constant with 

respect to n. 

3.5.6 Bounds on failure probability 

First-order bounds 

The failure probability of the discrete-time system can be found by considering 

the failure probability of a series system (Madsen et al. 1986), since a failure 

at any one time step indicates failure of the entire system. Let PF be the over-

all failure probability for the system (i.e., PF = 1- P {nnE{O, ... ,N} lzn;l ~ 1} = 
iE{O, ... ,nz} 
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'P {unE{O, ... ,N} izni I > 1}), and let Pni = 1 - 'P {lznJ :::; 1}. Then, as shown by 
iE{O, ... ,nz} 

Madsen et al. (1986), to first order2 the bounds are 

N nz 

(3.42) max Pni:::; Pp:::; LLPni· 
nE{O, ... ,N} . 
. {O } n=O z=l zE , ... ,nz 

Since the failure boundaries of this problem are symmetric about zero, the failure 

probability at the nth time step for the ith performance variable is 

(3.43) 

Pni = P{lzni j > 1} = <P( -1, Qni,nJ + (1 - <P(1, Qn;,n;)) 

= 2<P( -1, Qni,nJ, 

where <P((3, p) represents the Gaussian cumulative distribution function (CDF) eval­

uated at level (3 for a variance of p. Here, Qn;,n; is the (i, i)th entry in the covariance 

matrix for Zn, given by (3.34), and is used to scale the distance to the failure surface. 

Under the assumption of stationary response, Qni,ni and Pn; are independent of n 

(but not of i). 

Second-order bounds 

Tighter second-order bounds on the failure probability can be formed by considering 

the joint failure probabilities. To simplify the notation, let p = i+n·nz, q = j +m·nz, 

so Zp indicates the ith component of Zn and Zq indicates the lh component of Zm, 

such that i,j E {1, ... , (N + 1) · nz}. The second-order bounds consider the joint 

probability of failure between Zp and Zq. See Madsen et al. (1986) for a derivation 

of the following: 

(3.44) P1 +~max {Pp- I:Ppq,O}:::; Pp:::; ~ Pp-~ maxPpq, q<p 
p=2 q=l p=l p=2 

2 "First order" implies ignoring the joint probabilities. 
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where the Pp's are arranged such that P1 2:: P2 2:: ... 2:: PN·nz, and Ppq is the joint 

probability 

(3.45) 

which can be calculated numerically, or it may also be approximated by bounds. 

Note that for the single performance variable case (i.e., Zn E IR 1) and stationary 

response, the Pq 's are all equal. 

The exact joint failure probability for a single-sided failure mode and a two­

variable random process can be expressed by the following integral (Madsen et al. 

1986), 

(3.46) 

where Ppq is the correlation coefficient and (3p, (3q represent distances to failure 

boundaries p and q in a unit-variant standard normal space, and 

For the double-sided failure modes of the SDOF example, the Pp term is identical 

to the first order case, and the joint probability terms are given by 

(3.47) 

Ppq = p { Zp > 1, Zq > 1} + p { Zp < -1' Zq > 1} + 

P{zp < -1,zq < -1}+P{zp > 1,zq < -1} 

where the "," is used to denote the logical "and." This two-sided failure surface is 

shown in Figure 3.7. In terms of Gaussian CDFs, 

(3.48) 

Ppq = 2 ( <P( -(3p)<P( -(3q) + foppq ¢( -(3p, -(3q; z)dz) + 

2 (<.P( -(3p)<P( -(3q)- ! 0 

¢( -(3p, -(3q; z)dz) . 
-ppq 
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Zq 

Figure 3. 7 Safe region in two dimensions of performance-variable space. 

As an alternative to numerically evaluating this integral, for a single-sided failure 

surface, bounds can be computed for Ppq such that, for Ppq > 0, 

(3.49) 

max {<I>( -,Bp)<I>( -,Bqjp), <I>( -,Bq)<I>( -,6pjq)} ~ Ppq 

~ <I>( -,Bp)<I>( -,Bqjp) +<I>( -,Bq)<I>( -,6pjq)· 

For ppq < 0, the bounds are 
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The distances ,6plq and ,6qlp are given in Madsen et al. (1986) as 

(3.51a) 

(3.51b) 

f3 - (3p - Ppq(3q 
plq- J 2 

1- Ppq 

a = (3q- Ppq(3p 
tJqlp J 2 . 

1- Ppq 

Since, in (3.44), the contribution of Ppq is negative to the lower bound of Pp, the 

upper bound on Ppq must be used in this case. Since Ppq 's contribution is negative 

to Pp 's upper bound, the lower bound on Ppq must be used. For the symmetric 

double failure surfaces at each time step (as in Figure 3.7), these bounds should be 

multiplied by 4. 

Note that for the stationary single output case (i.e., nz = 1), (3.51a) and (3.51b) 

are equal, so 

(3.52) 

Results for 1st_ and 2nd-order bounds 

The resulting bounds for the approximations given by (3.42) and (3.44) are calcu­

lated as a function of the duration of the time interval of interest and the sampling 

rate and are displayed in Figures 3.8-3.10. The sampling rates chosen for these 

figures are Ts = 0.1 sec, Ts = 0.05 sec, and Ts = 0.02 sec, and the number of points 

is determined by N = Tt/T8 • The first-order bounds are given by the dashed lines 

and the second-order bounds by the solid lines. The dotted line in the figure is 

the continuous-time out-crossing rate approximation (Lin 1976), and the dash-dot 

line shows the result of a Monte Carlo integration of the failure probability (see 

Section 3.5.7). Note that the lower bounds for both the first-order and second-order 

approximations are coincident, as { Pn - 2::~-:!-1 Pnm} from (3.44) is less than zero 

for this example. In these figures, the upper bounds grow larger as the sampling 

rate increases, which makes sense, since there are more sampling points and the gap 
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between the bound and the true value of the failure probability gets added for each 

sampling point. 

2nd order 
1st order 
Continuous 
Monte Carlo 

-·-

.. ···· 
..... ············ 

..... ········· 

-·--·--·-

I0-3L-~~~~~--------~----~--~~~--~~~~ 
10° 101 

Total time interval (sec) 

Figure 3.8 Bounds on failure probability, T 8 = 0.1 sec. 

3.5.7 Monte Carlo approximation to failure probability integral 

Monte Carlo integration is an effective alternative method to approximate (3.39). 

The method is simple, as random points are generated using the PDF that is the 

integrand of (3.39), and the reliability is approximated as the number of points that 

are found to lie within the failure region divided by the total number of points. 

In practice a transformation to standard normal deviates will be required, since 

independent unit-variant random variables can easily be generated with a random 

number generator (such as MATLAB's built-in randn() function, or the routine de­

scribed by Press et al. 1992). So, let Vn represent the standard normal variables and 

Zn, n E {1, N}, the random variables of interest that appear in (3.39). As before, 



(3.53) 

Then 

(3.54) 

2nd order 
1st order 
Continuous 
Monte Carlo 
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Total time interval (sec) 

Figure 3.9 Bounds on failure probability, T 8 = 0.05 sec. 

1 N 
Psafe ~ N Lqn. 

n=l 

The Monte Carlo integration of (3.39) is given by the dash-dot lines in Fig­

ures 3.8-3.10. The results are obtained using 10,000 samples in the Monte Carlo 

simulation. Note that the Monte Carlo results have no perceptible trend with the 

time-step size, as would be expected, since the "true" reliability does not depend 

on the discretization of the system (provided the probability that the system ex-
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10~~~~~~~--------~----~----~~--~~~~ 
10° 101 

Total time interval (sec) 

Figure 3.10 Bounds on failure probability, T 8 = 0.02 sec. 

its and re-enters the safe region during a time-step is negligible). As can be seen 

in the figures, the discrete-time Monte Carlo failure probabilities do differ signifi­

cantly (approximately a factor of four) from the continuous-time outcrossing-rate 

approximation results. This discrepancy may be due to the continuous-time approx­

imation providing an upper bound on the failure probability by adding the failure 

probabilities for each failure mode, while the discrete-time Monte Carlo approach 

approximates the desired integral and not this upper bound. Future research could 

investigate the similarities and differences between the two methods more fully. 

3.6 Example using discrete time controller design 

This section presents the results of a controller that is designed for the discretized 

version of the 2DOF example. The control design seeks to minimize the second-
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order upper bound to the discrete-time failure probability that is given by (3.44) in 

Section 3.5.6. The continuous-time representation of the 2DOF example is converted 

to discrete time using a zero-order hold, based on the sample time Ts, so 

(3.55) 

The outputs from the 2DOF system are the inter-story drifts of each floor and 

the controller force, and the performance goals are again to minimize the probability 

that the inter-story drifts exceed their 2% limit and the probability that the control 

force exceeds its limit of 5% of the structure's seismically-effective weight. In this 

section, the controller design is performed only for the nominal most-probable model 

of the system. The extension to the failure probability calculations for the uncertain 

model follows closely the continuous case using the total probability of failure, (2.21), 

but it is not presented here. 

Using direct velocity-feedback control measured from the 2nd mass, the failure 

probability of the system can be calculated both in discrete-time using the 2nd_ 

order bounds, (3.44), and in continuous-time using the out-crossing rate approx­

imation, (2.7). This is shown in Figure 3.11, where the solid line represents the 

discrete-time failure probability approximation using the discrete-time representa­

tion of the system, and the dashed line is the out-crossing rate approximation using 

the continuous-time system. The two curves differ by roughly a factor of two, which, 

as discussed previously, is partially attributed to the out-crossing rate approxima­

tion providing an upper bound on the composite failure probability for the system 

by adding together the probabilities for each failure mode. Note that the shape of 

the performance curves is quite similar between the two methods, and the optimum 

values for k are close, as would be expected. 

In addition, controller dynamics can be introduced as in (3.16) by gains mul­

tiplying delayed versions of the measured output. The controller parameters and 

closed-loop system performance as a function of the number of feedback delays m are 

calculated and presented in Table 3. 7, based on a sampling time T 8 of 0.05 sec and a 
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Figure 3.11 Failure probability in continuous and discrete time vs. the 
output-feedback controller gain. 
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total time interval of Tt = 1 sec. This Tt was chosen due to memory limitations en­

countered when computing the 2nd-order upper bound on the discrete-time failure 

probability. In addition, for small failure probabilities and under the assumption of 

stationarity, the failure probability is roughly proportional to Tt, so the actual value 

for Tt is not as important as the relative sizes of the calculated failure probabilities 

for the various controllers that are considered. 

For illustrative purposes, the failure probability is plotted as a function of the 

number of delays (up to five delays) in Figure 3.12. One interesting item to note in 

Table 3. 7 is that only small variations are seen in the lower-delay terms after several 

delays have been added, and after four delays, very little change is observed at all 

in k1, k2, k3, and k4. This is attributed to two reasons, that an effective damping is 

reducing the importance of the feedback terms multiplying the longer delays, and 

also that the four delays would correspond to the state-feedback case for the four­

state discrete-time system. This second point can be easily demonstrated using the 

Cayley-Hamilton theorem. 

Table 3. 7 Discrete-time controller parameters and performance for var­
ious numbers of delays of the measured output, T 8 = 0.05 sec, 
T1 = 1 sec. 

Number of measured-output delays 
0 1 2 3 4 5 

Ko 0.4712 0.6238 0.6096 0.5844 0.5950 0.5945 

K1 0 -0.2002 -0.1746 -0.3085 -0.3245 -0.3249 

K2 0 0 -0.0171 0.2632 0.2834 0.2833 
K3 0 0 0 -0.2019 -0.2219 -0.2218 

K4 0 0 0 0 0.0136 0.0142 

K5 0 0 0 0 0 -0.0014 

discrete Pt (%), 
1.32 1.20 1.20 1.13 1.13 1.13 xl0-3 
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Figure 3.12 Failure probability vs. number of delays used by discrete­
time controller, Ts = 0.05 sec, TJ = 1 sec. 
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Chapter 4 

Application to Benchmark structural model 

4.1 Benchmark structural control problem 

The "benchmark" structural control model is a high-fidelity computer model of the 

laboratory structure located in the Earthquake Engineering/Structural Dynamics 

and Control Laboratory at the University of Notre Dame. A detailed description of 

the laboratory system can be found in Spencer et al. (1997a), Dyke et al. (1994), 

Dyke et al. (1996), and Dyke et al. (1995). A high-fidelity computer model of this 

structure has been proposed (Spencer et al. 1997a) as a test-bed for structural con­

trol algorithms so that comparisons can be made between the various methodologies. 

This model is available from the World Wide Web at http:/ /www.nd.edu(quake. 

The benchmark structural model is provided as a SIMULINK (1994b) block diagram 

that includes a linear model of the structure and actuator and incorporates many 

of the features of the laboratory system, such as the actuator saturation and analog 

to digital conversion. 

In this chapter, the probabilistic robust control methodology that is developed 

in Chapters 2 and 3 is applied to the design of controllers for the benchmark model. 
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4.2 Benchmark system description 

4.2.1 Laboratory system 

A schematic of the Notre Dame laboratory structure that is the basis for the bench­

mark computer model is shown in Figure 4.1. The laboratory system, which is 

a model of a three-story braced-steel-frame building, is mounted on a single-axis 

shaking table. An active mass driver (AMD) hydraulic actuator is mounted on the 

top level of the structure to impart inertial forces to the structure for control pur­

poses. The benchmark structure is mounted on a single axis shaking table that can 

provide inputs in the frequency range from 0-50 Hz. Accelerometers are mounted 

at each floor in the structure, as well as on the base and on the AMD actuator. 

Furthermore, a LVDT (linear variable differential transformer) is mounted between 

the actuator and its roof support to measure the relative displacement between the 

actuator and the roof. This LVDT is provided to stabilize the hydraulic control 

actuator as well as to provide displacement measurements for output. 

The laboratory structure is 158 em tall with a total mass of 227 kg that is 

evenly distributed among the three floors. The natural frequencies of the structure 

are 5.81 Hz, 17.68 Hz, and 28.53 Hz for the first three modes of vibration, with 

corresponding damping ratios of 0.33%, 0.23%, and 0.30%, respectively. 

The Notre Dame laboratory structure is intended to be a scale model of the 

SUNY Buffalo prototype structural control experiment that is described in Chung 

et al. (1989) and Chung et al. (1988). The ratio of natural frequencies between 

the Notre Dame structure and the SUNY Buffalo prototype is approximately 5:1, so 

the time scaling factor for the benchmark structure is 5, and earthquake input time 

histories are scaled in the time domain by that amount. Furthermore, to provide 

appropriate amplitude scaling, the earthquake input magnitudes are scaled by a 

factor of 4. 

The AMD actuator for the Notre Dame structure consists of a hydraulic actuator 

rod with masses attached to its ends, and the moving mass of the AMD is 5.2 kg. 

The total mass of the structure and AMD actuator is 309 kg, so the AMD represents 
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Figure 4.1 Schematic of Notre Dame "Benchmark" structure. 

1. 7% of the total mass. 

The data acquisition hardware for the benchmark structure is sufficient to main­

tain a sampling and control rate of 1 kHz for each input and output channel. A 

computation delay of 200 p,sec is required for the calculation of the control action 

and the AID and D I A conversions. The AID and D I A converters have 12 bit pre­

cision, with a span of ±3 V. The root-mean-square (rms) noise level on the data 

channels is approximately 0.01 V, which is 0.15% of the span of the AID converters. 

4.2.2 Benchmark SIMULINK model 

The benchmark system is a SIMULINK (The Math Works, Inc. 1994b) model of the 

Notre Dame laboratory system. The SIMULINK model is created by inter-connecting 

the controller with the high-fidelity "evaluation model" of the structure described 

in Section 4.2.3. The SIMULINK model, which is pictured in Figure 4.2, incorporates 

several of the nonlinear features of the laboratory system, such as actuator and 
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sensor saturation, sensor noise, time delays, and discretization of time signals. The 

system response is modeled through numerical integration of the equations of motion 

represented in the SIMULINK model. To reduce integration errors, the integration is 

performed at a time-step of 0.0001 sec using a 4th order Runge Kutta integration 

scheme (The Math Works, Inc. 1994b; Press et al. 1992). The system inputs and the 

controller are updated every 0.001 sec. The closed-loop system response is simulated 

and the performance is calculated for a variety of performance measures that were 

defined in Spencer et al. (1997a), so the controller designs can be compared with 

controllers synthesized for the same system using other methods. 

Some of the practical limitations on the controller that exist in the laboratory 

system and are implemented in the SIMULINK model pictured in Figure 4.2 are listed 

below: 

• The controller is digitally implemented with a sampling time of T8 = 0.001 sec. 

• A computational delay of 200 psec exists in the controller implementation 

(implemented as the block named Unit Delay). 

• The A/D and D /A converters for the digital controller have a 12-bit preci­

sion and a span of ±3 V (implemented as the blocks named Quantizer and 

Saturation). 

• Due to limited computational resources on the physical system, the controller 

(represented in the block labelled Discrete Controller) has a maximum of 12 

states. 

• Sensor noise with an rms level of 0.01 V is implemented in each channel as a 

Gaussian rectangular pulse process with zero mean, variance of 0.01 V, and 

width of 0.001 sec (implemented in the block named Sensor Noises). Actually, 

this "sensor noise" should be thought of as a combination of noise on the 

measurement sensors and modeling error between the SIMULINK benchmark 

model and the laboratory structure. 
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• The performance is evaluated using the 28-state "evaluation" model described 

in Section 4.2.3 (this model is represented by the Evaluation Model block). 

• An integration step size of 0.0001 seconds is used for the 4th-order Runge­

Kutta integration to reduce integration errors. 

4.2.3 Actuator-structure linear model 

A high-fidelity linear model of the system that includes the vibrational modes of the 

structure as well as the dynamics of the actuator is provided with the benchmark 

system model. This "evaluation" model, used to evaluate the performance of the sys­

tem, was developed using frequency-domain system identification techniques, which 

are described in Dyke et al. (1994), Dyke et al. (1995), and Dyke et al. (1996). The 

system identification method involved fitting parameterized curves in the frequency­

domain to the transfer functions that were obtained experimentally. In this manner, 

a 28-state linear model was obtained for the system that accurately models its be­

havior in the frequency range from 0-100 Hz (Spencer et al. 1997a). This model is 

available from the benchmark problem web site (http:/ jwww.nd.edu(quake). 

The high-fidelity linear actuator-structure model can be represented with the 

following state equations (Spencer et al. 1997a), 

(4.1) 

X=Ax+ [B E o] ~~ l 
{~} = [~}+ [~: ~ v,~,I•] [ ~ )· 

In (4.1), x is the state vector, x9 is the ground acceleration, u is the single control 

input, 

(4.2) Y = { Xm Xal Xa2 Xa3 Xam Xg }' 



81 

is the measured-output vector, 

is the vector of response quantities that can be regulated, and v is the vector of 

"measurement" noise, which in practice is a combination of sensor noise and mod­

eling error. In (4.2) and (4.3), the quantities x1, x2, X3, and Xm represent the 

displacement of the structure at floors 1, 2, and 3, and the actuator displacement, 

respectively, :it, ±2, x3, and Xm are the velocities at these locations, Xal, Xa2, Xa3, 

and Xam are the absolute accelerations, and x9 is the ground acceleration. The 

accelerometers on the structure allow direct measurement of the accelerations Xal, 

Xa2, Xa3, and Xam, and the relative position of the actuator, Xm, is measured di­

rectly by the LVDT mounted between the top floor and the actuator piston rod. 

The system matrices A, B, E, Cy, Cz, Dy, Dz, Fy, and Fz are available from 

http://www.nd.edu(quake. 

Note that z in (4.1) represents the response of the linear actuator-structure 

model, while the actual performance is simulated using the benchmark system. The 

discrepancy between these quantities, due to modeling error, which could also be 

described probabilistically, is assumed to be sufficiently small in the benchmark 

study that it can be safely neglected. 

4.2.4 Reduced-order model for controller design 

Standard model reduction techniques can be used to create a reduced-order "design" 

model that is more tractable for controller design purposes than the high order 

"evaluation" one. A 10-state reduced-order design model was also provided with 

the SIMULINK benchmark model. This reduced-order design model corresponds 

closely to the full-order one in the frequency range from 0 to 30 Hz, as can be 

seen in Figure 4.3. This frequency range includes the three fundamental structural 

modes that are the primary contributors to the inter-story drifts. In this figure, the 

frequency-response function from the ground input, x9 , to the first story drift, d1 , is 
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plotted using a solid line for the full-order model and a dashed line for the 10-state 

reduced-order model. 

Alternative model reduction methods are also considered herein, such as model 

reduction through truncation of a balanced realization for the system, or by Hankel 

norm minimization (Zhou et al. 1996). The other model reduction methods are 

studied to verify the accuracy of the reduced-order model designed by Spencer et al. 

(1997a), because the model reduction method they used is is not described in their 

paper. The 10-state reduced-order models obtained through these methods are 

compared with the 10-state design model1 and the full-order one in Figure 4.4. 

The transfer functions from x9 to the third floor displacement (Tx
9
-+x3 ) and the 

third floor acceleration (Tx
9
-+xa3 ) are shown. The balanced-truncation and Hankel­

norm minimization methods appear to yield quite similar models. These models 

resemble the full-order model more closely than the "design" model for the transfer 

function Tx
9
-+x3 , but not as well for the transfer function Tx

9
-+xa 3 • The 10-state 

"design" model that was distributed with the benchmark model data appears to be 

as accurate as the reduced-order models from the other model reduction schemes, 

and it will be used throughout this chapter as the basis for controller design. The 

simulations to measure the system's performance are always performed using the 

28-state evaluation model and the SIMULINK block diagram. 

The system matrices Ar, Br, Er, Cyr, Czr, Dyr, Dzr, Fyr, and Fzr associated with 

the reduced order "design" system are also provided with the SIMULINK benchmark 

model. The equations of motion for the reduced order system, which are similar to 

1 "Design model" will be used exclusively to refer to the reduced-order model that was distributed 
with the benchmark problem description. 
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Figure 4.3 Transfer functions from x9 to d1 for full and reduced order 
models. 

(4.1), are given by 

(4.4) 

X = ~X+ [ B, E, 0 ]I~ l 
{:} = [~] x+ [~: ;: ~~·JI ~ l 

Note that Vr represents the sensor noise and modeling error for the reduced-order 

linear model of the benchmark system. This term has a different modeling error 

component than the sensor noise/modeling error v for the full order model, (4.1). 

In general, (J"r ~ Vrms, as the reduced-order model has more modeling error than the 

full-order one. The standard deviations Vrms and (J"r, for v and Vr, respectively, can 

be obtained by comparing the response of the benchmark system with the simulated 

response using the evaluation and design linear models, in turn. In this manner, 
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Figure 4.4 Full versus reduced order model transfer functions for several 
model reduction methods. 
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the non-parametric modeling error is modeled as a Gaussian process, and can be 

included in the performance analysis for the system. 

4.3 Performance calculation for design 

The performance variables included in the design objective are the inter-story drifts 

and drift velocities, as well as the relative position and absolute acceleration of 

the actuator. The variables needed to compute the failure probabilities for these 

performance variables are denoted by 

where di := (xi - Xi-1) is the interstory drift for story i, di is its velocity, and 

Xm, Xm, and Xam are the position, velocity, and acceleration of the actuator mass, 

respectively. The quantity ·£am is an estimate of the derivative of the actuator's 

acceleration, which is required for the failure probability calculation in (2.8) and 

(2.12), and is obtained using a filter that mimics a differentiator at frequencies 

below 30 Hz. The differentiator's transfer function is given by 

(4.6) 

with Wdf = 601r ~ 188.5 radjsec and (df = 1/v"i. Let the system Gz denote the 

relationship between z and Zp such that Zp := Gzz. 

In addition, the control law is constructed using the acceleration feedback from 

the accelerometers mounted on each floor, which is a subset of the entire output 

vector y. Hence, Yc = Lyy, where Yc = { Xal Xa2 Xa3 }'. 

The controller objective is evaluated on the basis of the theoretical stationary 

system response to a filtered white-noise excitation, where the filter is the well­

known Kanai-Tajimi filter (Clough and Penzien 1975), such that the spectrum of 

the filter output mimics that of the stationary portion of a "typical" earthquake. 
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The power spectral density function for this filter is 

(4.7) 

which can be represented in the time domain with the following state equations 

(4.8) 
Xf = AJXJ + BJW 

x9 = CJxf 

where w is zero-mean Gaussian white noise with unit variance, 

(4.9) 

and 

(4.10) 

Also, So is specified by Spencer et al. (1997a) such that the input variance is uniform 

for all w9 and (9 , so 

(4.11) ·- 2 0.03(g 2 
So.- aw 1rwg(4(g + l) g ·sec. 

The constant aw is used to scale the input variance for different levels of excitation, 

and O"w = 1 implies O"fig = 0.12 g. The factor of 0.03 arises from 0.03 :::::: 2 * 0.0122 , 

which is found by solving for the spectral intensity of the filter ( 4. 7) given input 

filter with spectral intensity of unity. 

As before, let G represent the linear system given by the state-space equations 

of motion x =Ax+ Bw, y = Cx + Dw. Using this notation, let Gdes represent the 

state equations for the linear "design" model, G 1 the Kanai-Tajimi filter of ( 4.8), 

and Gc the state equations for the controller, which is described in Section 4.6. 

A block diagram of the system interconnection for the design model is shown in 
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Figure 4.5. 

Yc u 

y 

Gdes w 

v 

Figure 4.5 Closed-loop interconnection for controller design. 

4.4 Model uncertainty 

Uncertainty exists in the model parameters for the Kanai-Tajimi filter (4.7), where 

w9 denotes the natural frequency of the input filter, (9 the damping ratio. The input 

variance for the filter is given by aw, which scales So in (4.11). The parameters 

describing the system model are assumed to be accurate, and hence "certain," for 

evaluating the system performance in the frequency range from 0-30 Hz. The non­

parametric modeling error, along with the measurement noise, is modeled as a 

Gaussian process with standard deviation Vrms = 0.01 V for the evaluation model, 

and by O"r ~ 0.04 V for the reduced-order design model. This value for the reduced­

order design model was obtained by comparing the simulated displacement response 

of the uncontrolled, linear, reduced-order model to the response of the SIMULINK 

system. The probability density functions (PDFs) chosen to model the uncertain 

input parameters are shown in Figure 4.6, and are described as follows: 
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• w9 is log-normally distributed with mean 50 radjsec and O"togw
9 

= 0.2, 

• ( 9 is log-normally distributed with mean 0.5 and O"[og(
9 

= 0.2, and 

• O"w is log-normally distributed with mean 1.0 and O"[ogaw = 0.2. 

The log-normal PDFs are chosen for these parameters because, by applying the 

principle of maximum entropy to uncertain, strictly positive parameters, the log­

normal distribution maximizes the uncertainty in these parameters (Jaynes 1978). 

The total failure probability does not, however, depend strongly on the form of the 

probability models, because the value of the integral in (2.21) is determined largely 

by the integrand's behavior at its peak. So, provided the choices for the probability 

models have the same most-probable values and similar shapes to their distributions 

about that point, little variation occurs in the calculated total failure probability. 

Although other probability models could be considered for the parametric uncer­

tainty, such as the normal distribution or the x2 distribution, their PDFs would 

appear similar in the region of greatest contribution to (2.21), and hence would 

yield nearly identical probabilistic performance levels. 

Spencer et al. (1997a) specify a range of uncertainty for w9 and (9 , given by 

20 radjsec :s; w9 :s; 120 radjsec and 0.30 :s; (9 :s; 0. 75. The probability distribu­

tions that are used to describe these parameters are selected such that the specified 

parameter ranges correspond (approximately) to the 5% and 95% probabilities for 

the cumulative distribution functions for the parameter uncertainties. In addition, 

O"w is allowed to vary to represent the uncertainty in the earthquake intensity. For 

example, for the two earthquake records provided, O"w is 1.4 for the El Centro record 

and 1.2 for the Hachinohe record, where the variance is calculated using the entire 

duration of the records. In practice, with a careful study of soil conditions of a site, 

proximity to major faults, and other factors, the PDFs for these ground-motion 

parameters could be refined to reflect the local site conditions. The log-normal 

distributions are chosen to represent the parameter uncertainty because this distri­

bution corresponds to the maximum entropy distribution for these parameters with 

single-sided uncertainty. The calculated performance of the system appears to be 
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very sensitive to the shape of these distributions for the reliability-based performance 

measure, so further investigation into the selection of the probability distributions 

that model the uncertainty is a good topic for further research. The variables are 

assumed to be stochastically independent, so the joint PDF is the product of these 

PDFs. 

4.5 Performance measures 

The performance measure used for the control design procedure is the reliability 

as estimated by the out-crossing rate approximation from (2. 7) in Chapter 2. For 

the "nominal" controller design, this performance is calculated for the system that 

uses the most-probable parameter values for the uncertain parameters defined in 

Section 4.4. For the "robust" control design, parameter uncertainty is considered, 

and the total system reliability is calculated according to (2.21). 

To calculate the reliability of the system, failure is defined to occur when any of 

the following occur: 

• the drift in any story exceeds 1.5 em (approximately 3% of the story height), 

• the actuator stroke exceeds its limit of 9 em, or 

• the actuator acceleration exceeds 6 g. 

As discussed previously in Chapter 3, choosing these actuator limits forces the 

controller to behave strictly linearly and could lead to overly conservative controller 

designs. For this example, however, the controllers that are designed appear to be 

effective while still avoiding saturation. 

While the probabilistic controller is designed to minimize the closed-loop sys­

tem's failure probability, in order to compare this design with other control method­

ologies, its "performance" is assessed using the ten evaluation criteria Jt -Jto pro­

posed by Spencer et al. (1997a), which represent measures of a variety of re­

sponse quantities. Evaluation criteria J1 through Js represent root-mean-square 
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(rms) response quantities for the controlled system, normalized by the rms re­

sponse of the uncontrolled system, for the "worst-case" Kanai-Tajimi filter pa­

rameters w9 = 36.4 radjsec and (9 = 0.3, with O"w = 1. These response ratios 

are the inters tory drift ( J1), absolute acceleration (h), actuator displacement rel­

ative to the third story (J3), relative actuator velocity (J4), and absolute actuator 

acceleration (Js). The quantities J1 and J3 are normalized by the rms relative 

displacement of the third floor with respect to the base for the uncontrolled sys­

tem with w9 = 37.3 rad/sec, (9 = 0.3, o-w = 1, where the rms displacement is 

o-x3 o = 1.31 em. Criterion J4 is normalized by the third floor rms relative velocity, 

o-x3 o = 47.9 em/sec, and J2 and Js are normalized by the rms absolute acceleration 

of the third floor, o-xa3o = 1.79 g. Due to nonlinear components of the SIMULINK 

model, the rms response quantities for the controlled system are obtained by aver­

aging the response to computer-generated random noise for 200 seconds. 

Evaluation criteria J6 through J10 represent the peak values of the same response 

quantities for the deterministic response of the closed-loop system to two scaled 

earthquake inputs, the north-south component of the 1940 El Centro Earthquake, 

and the north-south component of the 1968 Hachinohe Earthquake. These criteria 

are normalized by the peak response quantities of the uncontrolled system for each 

earthquake. For the El Centro response, J6 and Js are normalized by X3 0 = 3.37 em, 

Jg by X3 0 = 131 em/sec, and h and J10 by Xa3o = 5.05 g. For the Hachinohe 

response, J6 and Js are normalized by X3 0 = 1.66 em, Jg by X3 0 = 58.3 em/sec, and 

h and J10 by Xa3o = 2.58 g. 

4.6 Controller design 

4.6.1 Failure probability calculation 

The controller design seeks to minimize the failure probability of the system. As 

shown in (2.12), the out-crossing rate of a scalar stochastic process is simply a 

function of the variance of the response and its derivative. The variances of the 

response quantities are obtained by solving the Lyapunov Equation associated with 
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the closed-loop system pictured in Figure 4.5. These are substituted into (2.12), 

then the approximate failure probability for each model is obtained from (2.8). For 

the "uncertain-model" controller, the total failure probability given by (2.21) is then 

evaluated using an asymptotic expression (Papadimitriou et al. 1997). 

Let Gclp, with inputs w and v and output zp, be the system formed by the 

closed-loop inter-connection of Figure 4.5, so Gclp has the following form, where the 

system matrices can be derived from (4.1), (4.8), and (4.17), 

(4.12) 

Let Xclp = { x~ x~ xj }' represent the state of the closed-loop system, and recall 

that Zp is its output. The covariance matrix of the performance variables is 

(4.13) 

where "E" denotes expected value, and 

(4.14) 

is the solution to the standard Lyapunov Equation 

(4.15) 

where w and v from (4.12) are independent zero-mean Gaussian white-noise pro-

cesses with unit variance. 

The failure possibilities considered for this example include the interstory drifts, 

and "failure" occurs when the drift in any one story exceeds the drift limit (3, where 

the limit is chosen to be 1.5 em, or approximately 3% ofthe story height. In practice, 

assuming the purpose of the structural control system is to reduce the earthquake 
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damage to the structure, the limiting value for the inter-story drift should correspond 

to the displacement level that would cause structural damage. Attaining a drift ratio 

of 3% during an earthquake would indicate that some damage has likely occurred in 

a moment-resisting steel frame (similar to the laboratory structure). Note, however, 

that this simplified approach ignores the nonlinear response of the system and the 

ductility of the steel frame structure. Additional failure possibilities for the AMD 

benchmark model are that the actuator exceeds the limits of its stroke and its 

maximum allowable acceleration. Hence, for the AMD actuator, failure is defined 

to occur when the required actuator displacement, Xm, exceeds its stroke of ±6 = 

9 em, or when the required actuator acceleration, Xam, exceeds ±6 = 6 g. 

Other failure possibilities could be considered for the control design for the 

structure, such as exceeding the maximum allowable base shear force, exceeding 

comfortable acceleration levels in the structure, or for the actuator, exceeding the 

actuator power or force limits. The control objective can easily be re-defined to 

represent a different combination of these possible failures. 

An illustration of a three-dimensional projection of the failure surface is shown 

in Figure 4.7 (note that the true failure surface is five-dimensional for this problem). 

The three dimensions pictured are the drifts for the first two stories (d1 and d2), 

and the actuator displacement (xm)· The complete "safe" region is defined by 

(4.16) S:= { 
max(ldi(t)l, ld2(t)l, ld3(t)l) :S (3, 

lxm(t)l :S 6, lxaml :S 6 

where T = 10 sec. The failure surface boundary, aS, is defined by (3 = 1.5 em, 

6 = 9 em, and 6 = 6 g. 

4.6.2 Controller class 

The following state equations are used to describe the linear control system Gc, 

(4.17) 
Xc = AcXc + BcYc 

U = CcXc 
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Figure 4. 7 Safe region in response-variable space. 

where Xc represents the states of the controller, which are the states of the frequency­

weighting low-pass filter, and Be represents the output-feedback gains. 

Output-feedback controllers are considered for the control design optimization, 

where the measured absolute acceleration of each floor of the model is fed back to 

the controller. Since the primary contribution to the inter-story drift for earthquake 

excitations is expected to come from the flexible modes of the structure, which all 

occur below 30 Hz for the uncontrolled system, a frequency-dependent weighting 

function is included in the controller that seeks to minimize the structural response 

in this lower frequency range and to reduce the control effort in the range of the 

higher frequency noise and modeling error. The roll-off frequency for the low-pass 

weighting function, when specified a priori rather than included in the controller 
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design, is Wb = 601r = 188.5 rad/sec, and the low-pass filter is a second-order 

Butterworth filter. Therefore, the controller has a state of dimension 2, and easily 

satisfies the controller dimension limit of 12 specified for the benchmark problem 

(Spencer et al. 1997a). The controller parameters that are free to vary for the 

optimization are the three proportional-feedback gains, K = { k1 k2 k3 }, that 

multiply the accelerations from the sensors at floors 1, 2, and 3 of the structure, 

respectively, and wb, when this is considered as a design parameter. 

In this section, the results of four controllers that are designed for the AMD 

benchmark model are presented. The first two, termed the "nominal-model con­

trollers," are designed using the reduced-order "design" model to minimize the fail­

ure probability for a particular Kanai-Tajimi excitation model. This model uses the 

parameter values w9 = 50.0 rad/sec, ( 9 = 0.5, and CYw = 1, which correspond to the 

mean values of the parameters (and are close to the most probable ones) for the 

PDFs given in Figure 4.6. The second two controllers, termed the "uncertain-model 

controllers," are again designed using the reduced-order design model to minimize 

the total failure probability. These controllers explicitly incorporate the uncertainty 

of the excitation model parameters w9 , ( 9 , and CYw· The initial guess during the op­

timization for the uncertain-model control-feedback gains is taken from the result 

from the nominal-model controller optimization. For each case (nominal model and 

uncertain model), one controller is designed for the three output-feedback gains 

using a roll-off frequency of Wb = 207r radjsec for the low-pass filter. The other 

controllers include this roll-off frequency as a design parameter for the controller 

optimization. 

Direct output-feedback without the use of a dynamic compensator is also con­

sidered (see Section 4.8). However, satisfactory performance is not attainable in 

this case because the actuator acceleration is too large due to the higher-frequency 

sensor noise and modeling error. A study of the affect of the roll-off frequency for 

the low-pass filter on the performance of the nominal-model controller is conducted 

in Section 4.8, and lower roll-off frequencies are observed to reduce the acceleration 

requirements for the AMD actuator that constrain the probabilistic performance. 
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Concurrently, the AMD displacements increase, but they do not begin to constrain 

the performance until the required AMD acceleration and displacement levels are 

comparable. 

4.7 Results 

4.7.1 Controller design for most probable model 

For Controller 1, the nominal-model controller designed using wb = 188.5 radjsec for 

the roll-off frequency of the controller low-pass filter, and ground-motion parameters 

w9 = 50 rad/sec, (g = 0.50, has the optimal acceleration-feedback gains K 1 = 

{ 0.0339 0.0538 0.0958} {see Table 4.3 for a summary of the various controller 

designs considered in this section). The ten performance criteria h-J10 are listed 

for this model in Table 4.1. The criteria J1-J5 are evaluated by simulating the 

response of the closed-loop system in SIMULINK to a stationary computer-generated 

"white" signal with variance CTxg = 0.12 g for 200 seconds duration, then computing 

the variances of the relevant response variables. The simulated response of the 

system controlled using Controller 1 is shown in Figure 4.8 for the north-south {NS) 

component of the 1940 El Centro Earthquake input and in Figure 4.10 for the NS 

component of the 1968 Hachinohe Earthquake input. For comparison, the El Centro 

Record, as well as the response of the uncontrolled system to that input, are shown 

in Figure 4.12. 

For Controller 2, wb is allowed to vary as a controller design parameter, and 

the gains K2 = { 0.354 0.320 0.237} are found along with Wb = 33.4 radjsec. 

Note from Table 4.1 that this controller has significantly better performance than 

Controller 1, particularly for the failure probability performance measure. Recall 

that the failure probability is a nonlinear (exponential) function of the mean-square 

response quantities, so this large quantitative difference is not surprising for much 

smaller relative differences in the mean square response quantities (i.e., performance 

criteria J 1 through Js). The improved performance when wb is taken as a controller 

design parameter can be understood by examining the effect of the low-pass fil-
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ter when wb is less than the frequency of the first structural mode. When this 

occurs, the low-pass filter actually serves as an integrator, so now rather than 

acceleration-feedback control, (pseudo-) velocity feedback control is being used. 

Through velocity-feedback control, the effective damping of the structure can be 

directly increased, reducing the level of structural response significantly, and hence 

the better performance for this controller. 

The simulated response to the NS El Centro Earthquake record for the system 

controlled by Controller 2 is displayed in Figure 4.9. Its response to the NS com­

ponent of the 1968 Hachinohe Earthquake is shown in Figure 4.11. The Fourier 

amplitude spectra of the first-story drift response of the controlled system with 

Controller 2 and the uncontrolled system to the El Centro input are shown in Fig­

ure 4.13, where the attenuation of the first two modes of vibration by the controller 

action is apparent. 

These nominal-model controllers are both successful in reducing the inter-story 

drifts, and hence the failure probabilities. For Controller 2, which achieved the 

lowest response levels and failure probabilities, the maximum drift calculated for 

the controlled system during the El Centro earthquake is 1.17 em (compared to 

2.09 em for the uncontrolled system), and only 0.631 em of drift is achieved dur­

ing the Hachinohe earthquake (versus 0.958 em for the uncontrolled system). The 

maximum actuator displacements that are found for these inputs are 4.46 em and 

2.69 em, and the maximum accelerations are 4.22 g and 2.39 g. For the earthquake 

inputs, the maximum response ratios J6-Jw given in Table 4.1 occur during the 

Hachinohe earthquake. The maximum actuator displacements, accelerations, and 

input voltages, as well as the rms values of these quantities, all satisfy the con­

straints for the AMD benchmark actuator (Spencer et al. 1997a) for Controller 2 

(note that the maximum actuator acceleration of 6 g is exceeded for Controller 1). 

4. 7.2 Robust controller design for uncertain model 

In contrast to the nominal model controllers in the previous section, Controllers 3 

and 4 are designed for the uncertain model in order to explicitly provide robustness 
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Table 4.1 Controller performance for various evaluation criteria (nor­
malized by uncontrolled response). 

Controller Number 
Nominal Robust 

Performance 1 2 3 4 
Measure Fixed Wb Optimal Wb Fixedwb Optimal wb 

J1 (ad) 0.322 0.208 0.299 0.207 
h (a:r) 0.525 0.348 0.487 0.348 

Mean J3 (axm) 0.606 0.836 0.675 0.846 

Square J4 (axm) 0.602 0.817 0.668 0.826 
Js (axm) 0.995 0.666 1.027 0.673 

Response llxm(t)ll2 (em) 0.79 1.10 0.88 1.11 
llxam(t)lb (g) 1.78 1.19 1.84 1.21 
llu( t) ll2 (V) 0.16 0.29 0.18 0.30 

J6 (lldlloo) 0.423 0.347 0.401 0.345 
h (llxlloo) 0.687 0.536 0.671 0.535 

Maximum Js (llxmlloo) 0.659 1.324 0.772 1.341 

El Centro Jg (llxmlloo) 0.634 1.186 0.722 1.200 

Response J10 (llxmlloo) 1.239 0.836 1.298 0.859 
llxm(t)lloo (em) 2.22 4.46 2.60 4.52 
llxam(t)lloo (g) 6.26 4.22 6.56 4.34 
llu(t) lloo (V) 0.51 1.25 0.62 1.26 

J6 (lldlloo) 0.483 0.380 0.467 0.380 
h (llxlloo) 0.785 0.687 0.733 0.684 

Maximum Js (llxmlloo) 0.729 1.618 0.858 1.644 
Hachi- Jg (llxmlloo) 0.755 1.524 0.895 1.558 
no he ho (llxmlloo) 1.225 0.928 1.308 0.936 
Response llxm(t)lloo (em) 1.21 2.69 1.42 2.73 

llxam(t)lloo (g) 3.16 2.39 3.37 2.41 
llu(t)lloo (V) 0.31 0.75 0.36 0.76 

Robust Pt (%) 17.9 0.067 16.5 0.067 
Nominal Pt (%) 1.81 2.18x10 -l! 2.15 2.18x10 ·ll 
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with respect to parameter variations in the excitation model, where the PDFs for 

the uncertain variables are shown in Figure 4.6. Given a particular controller, 

the total failure probability is obtained through an asymptotic approximation to 

(2.21). This result is minimized over the space of acceleration output-feedback 

controller parameters, with Wb = 188.5 rad/sec for Controller 3 and wb free to vary 

for Controller 4. 

The feedback gains for Controller 3 are K3 = { 0.0454 0.0576 0.126} and for 

Controller 4, with Wb = 33.1, K4 = { 0.431 0.291 0.235 }· The ten performance 

criteria J1-J10 are again shown in Table 4.1. The response of the closed-loop system 

for Controller 3, whose response appears quite similar to that shown for Controller 

1 in Figures 4.8 and 4.10, is shown in Figure 4.14 for the response to the El Centro 

Earthquake and in Figure 4.16 for response to the Hachinohe Earthquake. Controller 

4's response appears quite similar to that shown for Controller 2 in Figures 4.9 and 

4.11, and is shown in Figure 4.15 for the response to the El Centro Earthquake and 

in Figure 4.17 for response to the Hachinohe Earthquake. Again, the maximum 

actuator displacements, accelerations, and input voltages, as well as the rms values 

of these quantities, all satisfy the constraints for the AMD benchmark actuator 

(Spencer et al. 1997a) for Controller 4, but the maximum actuator acceleration is 

exceeded for Controller 3 under the El Centro earthquake. 

The total failure probabilities, (2.21), can be calculated for the uncertain model 

controllers and the nominal model controllers using the PDFs for the parametric 

uncertainty shown in Figure 4.6. The total failure probabilities are listed at the 

bottom of Table 4.1 as the "robust Pt ,'' and the failure probabilities for the nominal 

system are included as "nominal Pt." The duration of the time interval for the 

failure probability calculation is taken to be 10 seconds, yielding a failure probability 

of Ph = 17.9% for Controller 1, Ph = 0.067% for Controller 2, Ph = 16.5% 

for Controller 3, and Pt4 = 0.067% for Controller 4. For comparison, the total 

failure probability for the uncontrolled system is found to be nearly 100% for this 

example. Recall from Section 2.2.3 that these are likely to be over-estimates of the 

"true" failure probabilities, as they are upper bounds given by the sum of the failure 
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probabilities for each failure possibility. 

The optimal gains for Controllers 2 and 4 are nearly identical, indicating that, 

for the input-model uncertainty considered for this system, the control gains that 

minimize the nominal failure probability also minimize the total failure probability. 
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Figure 4.14 Response to scaled NS component of the 1940 El Centro 
Earthquake, Controller 3. 

In Table 4.2, the performance of the second controller (Controller 2) is compared 

with the performance of other controllers that were designed for the benchmark 

system. Descriptions of these controllers and their design methods can be found in 

the Proceedings of the 1997 Structures Congress (Kempner and Brown 1997). All of 

the controllers that are listed in Table 4.2 have a state dimension of twelve, except 

for the probabilistic robust controller ("PRC"), which, as mentioned previously, has 

a state dimension of two. As is apparent from the table, the performance of the 

PRC controller is comparable or even better than most of the other controller designs 

listed in the table, validating its use for this application. Presumably, using a higher­

order dynamic controller, the PRC controller performance would be improved even 

further. This could be investigated in future research. 
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Figure 4.15 Response to scaled NS component of the 1940 El Centro 
Earthquake, Controller 4. 
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Figure 4.16 Response to scaled NS component of the 1968 Hachinohe 
Earthquake, Controller 3. 
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Figure 4.17 Response to scaled NS component of the 1968 Hachinohe 
Earthquake, Controller 4. 

Table 4.2 Performance comparison for several controllers designed for 
the benchmark control problem. 

Mean square response 
Jl J2 Jg J4 
ad ax axm axm 

PRC (May and Beck 1997) 0.207 0.348 0.846 0.826 
1i2 (Spencer et al. 1997a) 0.283 0.440 0.510 0.513 

Covariance (Lu and Skelton 1997) 0.209 0.316 0.376 0.380 
p, (Balas 1997) 0.146 0.223 0.617 0.623 

1i00 (Smith et al. 1997) 0.256 0.403 0.554 0.554 
Maximum response 

J6 h Js Jg 
lldlloo llxlloo llxmlloo ll±mlloo 

PRC (May and Beck 1997) 0.380 0.684 1.644 1.558 
1i2(Spencer et al. 1997a) 0.456 0.711 0.670 0.775 

Covariance (Lu and Skelton 1997) 0.442 0.658 0.723 0.891 
p, (Balas 1997) 0.378 0.679 1.429 1.537 

1£00 (Smith et al. 1997) 0.406 0.749 0.835 0.878 

Js 
a·· Xm 

0.673 
0.628 
0.521 
0.600 
0.637 

Jw 
llxmlloo 
0.936 
1.340 
1.277 
1.237 
0.967 
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4. 7.3 Simulated performance of specific controllers 

This section describes the results for simulations of the closed-loop system for the 

four controller designs discussed in the previous section. The design of these con­

trollers are summarized here. 

• Controller 1: nominal-model controller with fixed Butterworth filter roll-off 

frequency, Wb = 601r radfsec, and w9 = 50.0 rad/sec, (9 = 0.50, Wdf = 
601r radjsec. 

• Controller 2: nominal-model controller with Butterworth filter roll-off fre­

quency as a control design parameter, and w9 = 50.0 radfsec, (9 = 0.50, 

Wdf = 601r radjsec. 

• Controller 3: uncertain-model controller with fixed Butterworth filter roll­

off frequency, Wb = 601r rad/sec, and w2 = 50.0 radfsec, (2 = 0.50, and 

Wdf = 601r radfsec. 

• Controller 4: uncertain-model controller with Butterworth filter roll-off fre­

quency as a control design parameter, and w2 = 50.0 radjsec, (2 = 0.50, 

O"~ = 1.0, and Wdf = 601r radjsec. 
g 

The gains for these controllers are summarized in Table 4.3. The performance 

levels of the four controllers are calculated using the response of the SIMULINK 

benchmark system (Spencer et al. 1997a), and are listed in Table 4.1, along with 

their "robust" failure probability performance levels. 

Table 4.3 Controller parameters used for performance evaluations. 

Name 

Controller 1 188.5 0.0339 0.0538 0.0958 
Controller 2 33.4 0.354 0.320 0.237 
Controller 3 188.5 0.0454 0.0576 0.126 
Controller 4 33.1 0.431 0.291 0.235 
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4.8 Nominal-model controller design sensitivity 

4.8.1 Overview of probabilistic controller design process 

One question that might be asked about the controllers that have been found to 

minimize the failure probability of the nominal model is how the controller design 

differs if certain of the modeling parameters vary. This section analyzes the sensi­

tivity of the controller design and performance measures to variations in the model 

and controller design parameters. In this first subsection, the calculated probability 

of failure, Pt, corresponds to the "nominal" case described in the previous section. 

In addition to the system parameters described by Spencer et al. (1997a), anum­

ber of additional parameters are used in the controller design to describe filters, 

limit states, and other variables specific to the probabilistic control design for this 

application. The nominal-model controller design makes use of the following linear 

systems: 

• a reduced-order linear model of the benchmark system that is distributed 

on the Notre Dame Benchmark Structure Internet home page along with a 

higher-order linear model that accurately represents the dynamic response of 

the laboratory system in the frequency range 0-100 Hz, 

• a second-order filter (i.e., linear oscillator) to model the ground input, and 

• a differentiating filter to approximate the derivatives of the actuator acceler­

ation performance variable. 

The sensitivity of the controller design and the system performance to the parame­

ters describing these systems is the subject of this section (and the next one, which 

discusses the robust or uncertain-model controller design). In addition, for some of 

the control design schemes, the following are used: 

• a low-pass Butterworth filter as a frequency weight for the design, 

• an integrating filter to estimate the velocities from the feedback accelerations. 
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To review, the first three natural frequencies for the uncontrolled model (cor­

responding to the three structural modes for the physical model) are 5.81 Hz 

(36.5 radfsec), 17.68 Hz (111 rad/sec), and 28.53 Hz (179 rad/sec). The damp­

ing ratios associated with these modes are 0.33%, 0.23%, and 0.30%-clearly the 

structure's performance would benefit from an increase in the damping. For refer­

ence, a bode plot of the 10-state reduced-order "design" model for the uncontrolled 

system is shown in Figure 4.18. 
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Figure 4.18 Bode plot for 3rd-story drift for uncontrolled system. 

4.8.2 Acceleration output feedback with Butterworth filter 

Initial design 

For this design, a Butterworth filter is included in the controller to reduce the 

response of the controller to higher frequency disturbances that are more likely to 

be due to sensor noise than building motion and hence control should be avoided in 
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this region. This filter helps to reduce the peak acceleration level of the actuator, 

and hence lower the probability that the actuator exceeds its maximum allowable 

acceleration. The second-order Butterworth filter roll-off frequency is chosen to be 

wb = 10 Hz. The Kanai-Tajimi model parameters used to estimate the performance 

for this design are the worst-case input-filter parameters for the uncontrolled system, 

i.e., w9 = 37.3 rad/sec, (9 = 0.3. The failure modes that are considered are the three 

inter-story drifts (d1, d2, and d3), the actuator displacement (xm), and the actuator 

acceleration (xam)· The failure levels for these quantities are displayed in Table 4.4. 

Recall that the derivatives of these quantities are also necessary in order to use the 

out-crossing rate approximation for the failure probability. While the inter-story 

drift velocities and the actuator velocity are available directly as outputs from the 

design model, the derivative of the actuator acceleration is needed to compute the 

actuator acceleration failure probability. This filter is given by ( 4.6), re-written here 

as the transfer function 

(4.18) 

where Wdf = 10 Hz is the roll-off frequency and (df = 1/ V2. The Bode plot for this 

differentiator is shown in Figure 4.19. 

Table 4.4 Failure levels for performance variables. 

Max. Inter-story Drift Max. Actuator Displ. Max. Actuator Accel. 
(in.) (in.) (g) 
1.50 9.00 6.00 

The optimal acceleration-feedback controller gains and the performance (i.e., 

failure probability approximation) of the controlled system are shown in Table 4.5. 

For comparison, the performance function for the uncontrolled system using the 

same Kanai-Tajimi parameters is approximately Pt ::::: 1. Note that the out-crossing 

rate approximation may not be very good for large out-crossing rates; however, 

regardless of the accuracy of the estimate, the uncontrolled system appears to have 

a large failure probability, and the system's reliability improves greatly with the 
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Figure 4.19 Bode plot for derivative filter, (4.18). 

implementation of a controller. 

Table 4.5 Original controller design. 

Model parameters Controller parameters 

I Pf I 
Wg I 

(radjsec) (g I Wb 
(radjsec) kl 

I 
k2 k3 

l.OlxlO 5 II 37.3 0.30 62.8 11 o.o195 o.222 0.0895 

Sensitivity to variations in the Kanai-Tajimi input model 

This section explores differences in the design of the nominal-model controller due 

to variations in the parameters describing the Kanai-Tajimi input filter. These 

results are summarized in Table 4.6 for the Butterworth filter roll-off frequency 

wb = 201r radjsec and in Table 4.7 for wb = 601r radjsec. As seen from these tables, 

the values of the acceleration feedback gains are not particularly sensitive to the 
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damping coefficient ( 9 of the Kanai-Tajimi filter, but they do demonstrate some 

variation with w9 . Also, note the large changes in the performance objective P1 

for the different choices of input filter parameters. The wide range in the failure 

probabilities is primarily due to the filter parameters rather than the controller 

parameters. 

Table 4.6 Nominal controller design for variations in Kanai-Tajimi filter 
parameters, Wb = 20n radfsec. 

Model parameters Controller parameters 

Pt 
Wg 

(g 
Wb 

kl kz k3 
(rad/sec) (radjsec) 

3.33x10-10 20.0 0.30 62.8 0.0200 0.143 0.104 
4.08x10 -l~ 20.0 0.40 62.8 0.0465 0.141 0.0918 
5.56x10 -w 20.0 0.50 62.8 0.0471 0.148 0.0914 

3.97x10-~ 37.3 0.30 62.8 0.0195 0.222 0.0895 
3.48x10 -a 37.3 0.40 62.8 0.0325 0.196 0.0901 
3.20x10-4 37.3 0.50 62.8 0.0413 0.178 0.0918 

1.33x1o-4 50.0 0.30 62.8 0.0528 0.162 0.0952 
4.25x10 -b 50.0 0.40 62.8 0.0523 0.160 0.0957 
6.89x10-o 50.0 0.50 62.8 0.0545 0.155 0.0966 

8.60xl0-13 80.0 0.30 62.8 0.0695 0.133 0.110 
7.94x10 -u 80.0 0.40 62.8 0.0711 0.133 0.110 
7.30x10 -l~ 80.0 0.50 62.8 0.0719 0.133 0.110 

The set of possible Kanai-Tajimi filter parameters is specified in Spencer et al. 

(1997a). The range of possible w9 is 20 rad/sec to 120 radjsec, and the range 

of possible damping ratios ( 9 runs from 0.3 to 0. 75. The following values for the 

natural frequency of the input filter are the ones most often used in the analyses in 

this chapter: 

• w9 = 37.3 radjsec, which causes the maximum mean-square response among 

the performance variables for the uncontrolled system, and 

• w9 = 50.0 radjsec, which is the most probable value for w9 in the probability 

distributions that describe the Kanai-Tajimi filter frequency and are consid­

ered in the uncertain-system controller design. 
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Table 4. 7 Nominal controller design for variations in Kanai-Tajimi filter 
parameters, Wb = 601r radfsec. 

Model parameters Controller parameters 

Pf 
Wg 

(g 
Wb 

kl k2 k3 (rad/sec) (rad/sec) 

5.36 x 1o-~ 20.0 0.30 188.5 0.0234 0.0468 0.0670 
1.01x 10 -o 20.0 0.40 188.5 0.0250 0.0503 0.0741 
1.41 X 10 -4 20.0 0.50 188.5 0.0273 0.0516 0.0796 

9.39x 10 -l 37.3 0.30 188.5 0.0827 0.103 0.165 
4.43x 10 -l 37.3 0.40 188.5 0.0448 0.0742 0.111 
1.46x 10-l 37.3 0.50 188.5 0.0380 0.0638 0.102 

9.28x 10 -2 50.0 0.30 188.5 0.0380 0.0632 0.0981 
5.03x10 -2 50.0 0.40 188.5 0.0359 0.0588 0.0976 
1.81 x 10-2 50.0 0.50 188.5 0.0339 0.0538 0.0958 

4.81x1o-7 80.0 0.30 188.5 0.0215 0.0369 0.0789 
1.62x10 -o 80.0 0.40 188.5 0.0233 0.0361 0.0816 
1.44x1o-6 80.0 0.50 188.5 0.0243 0.0347 0.0824 

For the damping ratios of the input filter: 

• ( = 0.30 yields the maximum response, and 

• ( = 0.50 is selected as the most probable in the uncertainty models. 

Comparison between static and dynamic controller 

This section explores the impact of the roll-off filter on the performance of the 

system, and substantiates its usefulness. This is best demonstrated using frequency­

response plots and the 1-£2 norm of the controlled systems from specific inputs to 

specific outputs. 

The controller design for the comparisons in this section use the following model 

parameters: 

• w9 =50 radjsec, (9 = 0.50 are the Kanai-Tajimi filter parameters, 

• both Wb = 601r rad/sec and wb = 207r rad/sec are considered for the Butter­

worth filter roll-off frequency, 
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• Wdf = 601r rad/sec is the differentiating filter roll-off frequency used to estimate 

X am· 

Five controllers are used to study the impact of the Butterworth filter on the 

controller response, a static-output feedback controller, two dynamic controllers 

that include the Butterworth filter, and two static controllers that use the same 

output-feedback gains as the dynamic ones, but without the dynamic filter. The 

static acceleration-output feedback controller minimizes the failure probability of 

the closed loop system without a controller filter, yielding 

(4.19) Ks = { 0.00815 0.0158 0.0232} · 

The dynamic controllers include the Butterworth roll-off filter with the two different 

frequencies that are considered, and minimizes the failure probability of the closed 

loop system including the filter. For wb = 207r rad/sec, 

(4.20) Kd1 = { 0.0565 0.151 0.0976}, 

and for wb = 601r rad/sec, 

(4.21) Kd2 = { 0.0324 0.0491 0.0917} . 

Displayed in Tables 4.8 and 4.9 are the failure probabilities and 1i2-norms, de­

noted by IITp--tqll2 for the 1i2-norm from input p to output q, from various inputs 

to various outputs of the controlled systems. In this table, v3 is used to represent 

the third component of the sensor noise. To further illustrate the static versus dy­

namic compensator comparison, the magnitude plots of the transfer functions are 

shown in Figures 4.20 and 4.21. In the figures, the controllers with the Butterworth 

filter are shown by the solid lines, the static-feedback controller with gain K 8 is 

shown by the dashed lines, and the static feedback controllers using the feedback 

gains Kd1 and Kd2 are shown by the dotted lines. Clearly, the static-feedback con-
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trol cases exhibit significant sensitivity to higher-frequency noise2 , particularly for 

the actuator acceleration term. Hence, rolling off the sensitivity of the controller 

to this high-frequency noise is desirable, largely to reduce the required actuator 

acceleration. 

Table 4.8 Comparison between static and dynamic controllers, Wb = 
207!". 

Measure II Dynamic Kdl Static Ks Static Kd1 

overall pfa 4.29x10-2 1.0 1.0 
Pt, x9 --+ d1 3.24x1o-o 4.44x1o-T 1.62x1o-4 

Pf, xg --+ Xam 8.87x10-3 2.62x10-1 1.53x1o-1 

Pf, V3 --+ X am ob 3.72x10-14 1.00 

I!Tx0 -+dtll2 0.309 0.461 0.344 

IITxa-+Xm ll2 0.512 0.421 0.607 

11Tx9 -+Xam ll2 1.41 1.73 1.65 

IITv3-+Xm ll2 6.35x10-3 ooc 00 

IITv3-+Xam 1!2 0.241 00 00 

aRecall the total failure probability is approximated (and over-estimated) by adding the failure 
probability for each mode, and large values of P1 are usually poorer approximations. 

bValue of 0 due to the finite precision of the computer. 
cThe 1£2 norm is unbounded due to direct feed-through of noise. 

Sensitivity to Butterworth filter roll-off frequency. 

Another parameter to study is the roll-off (or "corner") frequency of the Butterworth 

filter selected for the controller. Note that this is included as a controller parameter 

in Section 4.7, and the controller optimization could attempt to determine its opti­

mal value (in addition to the optimal acceleration-feedback gains). However, in this 

section, the roll-off frequency Wb is specified a priori, and the three acceleration­

feedback gains are determined from the optimization. The results of variations in 

the controller design and performance for two choices of the input parameters are 

displayed in Table 4.10. 

2 Recall that the noise is represented by Gaussian white noise with variance given by Vrms = 
0.01 Volts. 
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Table 4.9 Comparison between static and dynamic controllers, wb = 
607r. 

Measure II Dynamic Kd2 Static Ks Static Kd2 

overall pia 8.77x10-8 1.00 1.00 
Pf, x9 ~ d1 7.62x1o-s 4.44x1o-1 1.62x1o-4 

Pf, x9 ~ Xam 7.04x10-o .62xl0-1 1.53x1o-1 

Pf, V3 ~ Xam ob 3. 72 x w-=l4 1.00 

IIT:ia--+d1ll2 0.231 0.461 ooc 

IITxa--+Xm ll2 0.421 0.478 00 

IITxq--+Xam ll2 1.04 1.73 00 

IITvg--+Xm l12 1.52x1o-2 ood 00 

IITvg--+Xam ll2 5.69xlo-:l 00 00 

aRecall the total failure is approximated (and over-estimated) by adding the failure probability 
for each mode. 

bValue of 0 due to the finite precision of the computer. 
cThis system proved to be unstable. 
dThe 1l2 norm is unbounded due to direct feed-through of noise. 

Sensitivity to differentiating filter parameters 

A differentiator is necessary in order to obtain the derivative of the actuator ac­

celeration, which is used in the out-crossing rate approximation to determine the 

probability that the actuator acceleration will exceed its maximum level of 6 g. The 

transfer function for this system is given by (4.18). For the study of this section, 

the roll-off frequency for the filter, Wdf, is allowed to vary, while (df is held fixed at 

1/-/2. 
When designing the filter, Wdf should be larger than the maximum frequency of 

interest to provide a good estimate of the derivatives of the variables of interest. 

Each of the controller designs in Table 4.11 incorporated a second-order Butterworth 

filter into the controller with a roll-off frequency at 2011" rad/sec. 

4.8.3 Velocity output feedback with fixed Butterworth filter 

The output-feedback controller can be designed on the basis of velocity feedback, 

too, assuming an integrating filter is used to estimate the velocities at the measure­

ment locations from their acceleration values. The transfer function for the filter 
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Table 4.10 Nominal controller design for variations in corner frequency 
of Butterworth filter. 

Model parameters Controller parameters 

Pt 
Wg 

(g 
Wb 

kl k2 k3 (rad/sec) (rad/sec) 

1.27x 10-4 37.3 0.30 30.0 0.776 0.282 0.232 
2.91x10 -4 37.3 0.30 40.0 0.111 0.356 0.137 
4.51x10 -i:l 37.3 0.30 50.0 0.0182 0.304 0.0814 
4.30x10 -~ 37.3 0.30 62.8 0.0195 0.222 0.0895 
1.35x10-1 37.3 0.30 75.0 0.0256 0.171 0.109 
4.07x10 ·l 37.3 0.30 100.0 0.0141 0.133 0.131 
6.68x1o-1 37.3 0.30 125.0 0.0347 0.118 0.130 

5.88x1o-u 50.0 0.50 30.0 0.562 0.319 0.314 
2.07x 10 -w 50.0 0.50 40.0 0.156 0.300 0.137 
6.80x10-ll 50.0 0.50 50.0 0.0678 0.226 0.0866 
8.51x10 -() 50.0 0.50 62.8 0.0545 0.155 0.0966 
9.61x10-5 50.0 0.50 75.0 0.0550 0.106 0.120 
8.07x10 ·4 50.0 0.50 100.0 0.0221 0.0848 0.124 
3.63x10-i:l 50.0 0.50 125.0 0.0259 0.0765 0.109 

Table 4.11 Nominal controller design for variations in the differentiating 
filter. 

Model parameters Controller parameters 

Pt 
Wg 

(g 
Wdf kl k2 k3 (radjsec) (rad/sec) 

2.77x1o-:.l 37.3 0.30 30.0 0.00965 0.241 0.0864 
3.47x10 -~ 37.3 0.30 50.0 0.00944 0.236 0.0832 
3.70x1o-2 37.3 0.30 62.8 0.0114 0.233 0.0839 
3.85x10-2 37.3 0.30 75.0 0.0137 0.229 0.0852 
4.04x10 -~ 37.3 0.30 100.0 0.0192 0.221 0.0882 

4.73x1o-() 50.0 0.50 30.0 0.0529 0.158 0.0962 
6.14x10 -() 50.0 0.50 50.0 0.0527 0.157 0.0955 
6.69x1o-() 50.0 0.50 62.8 0.0531 0.157 0.0957 
7.07x10 -() 50.0 0.50 75.0 0.0535 0.156 0.0959 
7.61x1o-() 50.0 0.50 100.0 0.0543 0.154 0.0964 
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that is used is 

( 4.22) 
s 

G~--(s) = 2 , 
xx s2 + 2(vjWvjS + wvf 

which is the filter that was given in Spencer et al. (1997a) with Wvf = (27r)-1 radjsec 

and (vf = ( J2) - 1
. The bode plot for this transfer function can be seen in Fig­

ure 4.22. The results for different velocity feedback controller designs are given in 

Table 4.12. As seen in Table 4.12, the nominal failure probability is lower using 

velocity feedback than the acceleration feedback case when Wb is large, but much 

worse when Wb is small. This is due to the roll-off filter behaving like a differentiator 

at frequencies above the roll-off frequency. When this roll-off frequency frequency 

falls below the frequency range of interest, the feedback approximates the measured 

displacements, and as was seen in Chapter 3, position-feedback control is not always 

very effective. The other effect the roll-off filter has is that it distorts the phase, 

which is the cause of the performance degradation that is seen in the table. 

Table 4.12 Controller design for (pseudo)-velocity feedback. 

Model parameters Controller parameters 

Pt 
Wg 

(g 
Wb 

k1 k2 k3 (radjsec) (radjsec) 

1.0 37.3 0.30 62.8 7.01 -2.52 9.77 
3.45x 10-1 50.0 0.50 62.8 13.1 -7.47 12.9 
6.08x10 ·3 37.3 0.30 188.5 -0.510 11.36 5.22 
3.08x10 -::l 50.0 0.50 188.5 0.241 9.11 4.39 

4.8.4 Acceleration output feedback with addition of Butterworth 

filter roll-off frequency as a controller parameter 

In this section, the Butterworth filter that has been included in the controller design 

previously as a frequency-dependent weighting function is now included as a design 

parameter in the optimization. The controller class for the optimization now in­

cludes the three acceleration-feedback gains k1, k2, and k3 and the roll-off frequency 
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Figure 4.22 Bode plot for velocity-estimate filter G!ix· 

Wb for the Butterworth filter that is incorporated into the controller to reduce its 

sensitivity to high-frequency noise. A Bode plot of the transfer function of a typical 

second-order Butterworth filter is shown in Figure 4.23. The value roll-off frequency 

Wdf for the differentiating-filter (4.18) is 601r rad/sec for the results in this section. 

The controllers that are designed are displayed in Table 4.13 for two cases of the 

ground motion parameters: w9 = 37.3 rad/sec, (9 = 0.30, and w9 = 50.0 rad/sec, 

(g = 0.50. The latter case corresponds to Controller 2 in Section 4.7.1. 

Table 4.13 Acceleration feedback control design with additional But­
terworth filter roll-off frequency parameter. 

Model parameters Controller parameters 

I Pf Wg I 
(rad/sec) (g Wb I 

(rad/sec) 
kl I k2 k3 

I 9.03x10 ·o 37.3 1 0.30 33.o 1 0.447 1 o.274 0.257 
I 2.38x10 ·ll 5o.o I 0.50 33.4 1 o.354 1 o.32o 0.237 
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Figure 4.23 Bode plot for Butterworth frequency-weighting filter. 

4.9 Studies of robust-model controller design 

4.9.1 Overview 

The robust-controller design developed in Chapter 3 explicitly considers the un­

certainty in the models of the benchmark system in the selection of the "optimal" 

controller. The probability models for the parametric uncertainty of the input filter 

are used to compute the probable robust performance that serves as the controller 

objective function. Often, the calculated performance is not very sensitive to the 

particular form of the probability distributions for the uncertain parameters, pro­

vided the distributions exhibit the same general behavior, i.e., provided the most 

probable values and the local shape of the distribution about that peak are similar 

among the distributions under consideration. However, the performance does de­

pend on the most probable value of the parameter and its variance. The sensitivity 

of the controller design to the probability models and their parameters is the subject 
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of Section 4.9.2. 

4.9.2 Robust controller design for acceleration feedback 

Sensitivity to peak values for uncertain-variable probability density func­

tions. 

The variations in the optimal uncertain-model control design with the value for the 

most-probable parameters are explored in this section. The probability models for 

the uncertain parameters are chosen to be log-normal distributions for the Kanai­

Tajimi filter frequency, damping ratio, and input magnitude, as discussed previously 

in Section 4.4. A standard log-normal distribution (Benjamin and Cornell1970) is 

scaled by the most-probable values of each parameter, and this standard distribution 

is described by 

( 4.23) ((}) 
1 1 log (} - /-Llog o 

[ ( )2] p - exp --
- (}(Jlogov'2if 2 ()logO ' 

where /-Llog o represents the mean of the natural logarithm of(} and ()logo is the log of 

the variance of(}, termed the "log-variance." Throughout this section, each of the 

parameter probability distributions has a log-variance of 0.2. 

The variations in the optimal controller gains with respect to the most probable 

values for the uncertain parameters are summarized in Table 4.14 (using wb = 

307r rad/sec). In this table, the most-probable parameter values are indicated with 

a "0" superscript, while the parameter values that serve as the design points for 

the asymptotic approximation to (2.21) (see Section 2.5.4) are indicated with an 

"*·" The set of values for wg is, in radjsec, {37.3, 50.0, 75.0, 100.0}, (9 is chosen 

from {0.30, 0.50, 0.60}, and (Jx
9 

is kept constant at 0.12 g. For each pair of rows 

in the table, the first row displays the most-probable parameter values, while the 

second row contains the parameter values found as the "design points," that is, the 

parameters that maximize the integrand of (2.21). 

The robust performance is also calculated for the uncontrolled system for the 

various most-probable parameter values described above. The results of this study 
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are shown in Table 4.15. For the robust performance calculations in Table 4.15, 

recall that failure probability performance measure is an approximation to the failure 

probability of the system, and is obtained by summing the failure probabilities for 

each failure possibility. 

One comment on the robust controller optimization is that the failure probability 

performance for the robust example is often quite flat with respect to the controller 

parameters. This sometimes leads to difficulties in the optimization, requiring a 

large number of iterations for convergence. This behavior is also seen in the figures 

in Chapter 3, which plot the failure probability as a function of a single controller 

gain. The flatness in the objective function with respect to the controller gains is 

a consequence of the nonlinear failure-probability-based objective function. Since 

most of the controllers in this range achieve nearly equal performance, any one that 

provides satisfactory performance could be used. 

Sensitivity to form of probability models 

Alternative probability models could be considered for the parameter uncertainty 

besides log-normally distributed uncertainty. Other popular models would include 

the x2-distributionor a normal (or truncated normal) one. For each PDF considered, 

the probability distribution parameters can be selected so the different distributions 

exhibit very similar behavior around their most probable values. For example, 

in Figure 4.24 the PDFs and CDFs of a normal (solid line), log-normal (dashed 

line), and x2 (dotted line) distribution appear quite similar when the distribution 

parameters are chosen appropriately. Hence, since the asymptotic approximation 

depends largely on the shape of the probability density function at its maximum 

point (as this peak typically determines the maximum of the integrand from the total 

probable performance), the effects at the tails from the different distributions are 

assumed to be negligible, at least compared within the accuracy of the asymptotic 

approximation to evaluate the performance. 
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Table 4.14 Performance, "design" point for asymptotic integration, 
and controller parameters for uncertain-model controller, wb = 
207r radfsec and Wdf = 601r radfsec. 

Model parameters Controller parameters 
CPU time ,u * a~ a~ 

robust Pf 
w

9
, w

9 (g, (; Xgl Xg kt k2 k3 
(sec) (radjsec) (g) 

1.68x103 1.17x1o-1 37.3 0.300 0.120 
0.110 0.225 0.103 

36.7 0.261 0.145 

1.67x 103 2.56x1o-2 37.3 0.500 0.120 
0.0914 0.144 0.134 

36.5 0.409 0.166 

1.97x 103 1.30x 10-2 37.3 0.600 0.120 II o.o924 0.144 0.134 
36.2 0.480 0.174 

1.10x103 5.47x1o-2 50.0 0.300 0.120 
0.103 0.210 0.1031 39.7 0.260 0.149 

2.07x103 1.29x1o-2 50.0 0.500 0.120 
0.0826 0.155 0.127 

40.8 0.408 0.168 

1.95x103 6.54x1o-3 50.0 0.600 0.120 
0.0809 0.149 0.130 

41.1 0.479 0.176 

1.83x103 1.79x1o-3 75.0 0.300 0.120 
0.107 0.156 0.110 

45.0 0.271 0.163 

1.80x 103 8.76x1o-4 75.0 0.500 0.120 
0.0857 0.145 0.125 

49.4 0.429 0.183 

2.43x103 5.21x10-4 75.0 0.600 0.120 
0.0774 0.147 0.120 

50.8 0.500 0.191 

2.65x103 6.28x1o-5 100.0 0.300 0.120 
0.0669 0.157 0.115 

53.4 0.292 0.186 

2.37x103 7.77x1o-5 100.0 0.500 0.120 
0.0849 0.134 0.125 

63.7 0.462 0.209 

1.74x103 5.77x1o-5 100.0 0.600 0.120 
0.0895 0.130 0.127 

66.9 0.534 0.215 
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Table 4.15 Robust performance and "design" point for asymptotic in-
tegration for uncontrolled system. 

Model parameters 

I "PJ'' I 
w~, w; I (o (* I O"¥u' O"~g 

(rad/sec) 9 ' 9 (g) 

8.98x10-1 37.3 0.300 I 0.120 
36.5 0.124 0.278 

1.0 
37.3 0.500 I 0.120 
35.9 0.117 0.477 

7.95x10-1 

I 
37.3 0.600 I 0.120 
35.8 0.572 0.117 

7.60x1o-1 

II 
50.0 0.300 0.120 
42.8 0.280 0.127 

6.96x1o-1 

II 
50.0 0.500 0.120 
47.3 0.477 0.118 

5.58x 10-1 

II 
50.0 0.600 0.120 
46.8 0.565 0.120 

2.15x10-1 

II 
75.0 0.300 0.120 
61.6 0.293 0.131 

2.24x1o-1 

II 
75.0 0.120 I 
63.1 0.133 

75.0 0.120 I 
63.0 0.136 

5.53x10-2 100.0 
75.0 

6.67x10-2 100.0 
77.8 

5.76x10-2 100.0 
77.8 
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4.9.3 Robust control design including roll-off frequency as a con­

troller parameter 

Similarly to the nominal-model controller design approach, the roll-off frequency of 

the frequency-weighting filter is included as a controller parameter. The results of 

the controller optimization including this parameter are shown in Table 4.16. 

4.10 Comments on the Benchmark application 

The controllers that are designed for the AMD benchmark model achieve reductions 

of almost two orders of magnitude in the failure probability of the controlled systems 

relative to the uncontrolled one, where the failure probability is found from the 

inter-story drifts and the AMD actuator stroke and acceleration for this example. 

Controllers 2 and 4 achieve similar performance levels (as do Controllers 1 and 3), 
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Table 4.16 Acceleration-feedback robust control design with additional 
roll-off frequency parameter. 

Model parameters Controller parameters 
,u * (j!! (j~ Wb 

Robust Pt 
Wg, Wg c2, c; Xg' Xg kl k2 

(radjsec) (g) (radjsec) 

6.83x1o-4 50.0 0.50 0.12 
32.2 0.347 0.315 

40.2 0.380 0.195 

2.52x10-5 75.0 0.50 0.12 
32.3 0.455 0.407 

45.7 0.396 0.207 

k3 

0.297 

0.163 

which is due to the limited flexibility of the controller class which is considered and 

the consideration of uncertainty only in the model of the input. All of the benchmark 

controller constraints, on actuator command signal, acceleration, and displacement, 

are satisfied for Controllers 2 and 4, although the maximum actuator acceleration 

constraint is (slightly) violated under the El Centro input for Controllers 1 and 3. A 

more complicated controller class, such as one containing a state estimator, would 

be expected to show a greater difference in performance between the nominal-model 

and uncertain-model controllers. This is a topic for further research. 

As a further comment, during the revisions of the thesis, an error was discovered 

in the out-crossing rate. Initially, in incorrect value for the numerical coefficient in 

(2.12) was used, 1/-/2ii, rather than the correct value of 1/7r. This error was iden­

tified during the revisions, and the failure probabilities that are presented herein 

reflect the correct values. The difference is small and only quantitative, the quali­

tative nature of the results are unchanged. New optimizations were not performed 

for the controller design, as the previous optima that were found are quite close to 

what the new ones would be. 
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Chapter 5 

Application to flexible laboratory structure 

5.1 Overview 

The Caltech Flexible Structure was originally designed to study control design and 

system identification issues for lightweight space trusses. For this research, however, 

it will be used as an analog to a civil engineering structure to demonstrate the 

probabilistic robust control analysis methodology that is developed in Chapters 2 

and 3. The Caltech Flexible Structure, pictured in Figure 5.1, is a three-story 

lightweight aluminum truss with a triangular floor plan. The structure is quite 

flexible, with a natural frequency for the fundamental (pendulum) mode of the 

structure of 0.9 Hz, and the natural frequencies for the 9 dominant structural modes 

range from 0.9 Hz to 6.3 Hz. This frequency range is similar to that typically found 

in tall (10 to 20 story) steel-frame buildings. In addition, the majority of the energy 

associated with earthquake excitations is generally contained in this frequency range. 

In this chapter, the flexible structure is used primarily to demonstrate the pre­

data and post-data analysis method for the probabilistic robust control methodol­

ogy. In addition, controllers are designed for the nominal models of the structure to 

attempt to optimize the structure's performance. The pre-data and post-data anal­

ysis techniques are applied to uncertain models of the uncontrolled and controlled 

system. The purpose of this analysis is to show how the probable performance of the 

system changes when new information is available in the form of vibration response 

data. 
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Two models are considered, a pre-data model that is identified from "old" re­

sponse data from the structure, and a post-data model that uses new response data 

to update the model description. The pre-data model serves as a "prior" when up­

dating the performance with new data through the application of Bayes's Theorem. 

The model uncertainty for the two models is described probabilistically. Typically, 

to account for the modeling error, the probability distributions for pre-data model 

parameters are more broad than the distributions for the post-data model parame­

ters. 

Controllers are designed for the system using standard 1-l2 control design tech­

niques and using the reliability-based performance objective described in Chapters 2 

and 3. Due to constraints on available computation-time, the controller designs are 

based only on the "nominal" most-probable models of the pre-data and post-data 

systems. The probable performance of the uncertain systems are analyzed using the 

methods of Section 2.5. 

The Caltech Flexible Structure has been studied previously by Moser {1992) 

{also in Moser and Caughey 1991), and Balas {1990) for experimental validation of 

structural control for flexible space structures. The primary analysis and controller 

design methods that they used were 1-l00 and p,-synthesis techniques. Furthermore, 

Moser {1992) applied several system identification techniques to identify a modal 

model for the flexible structure that is pictured in Figure 5.1. In this work, the 

previous studies were used primarily for reference on the modeling and description 

of the laboratory system. 

5.2 Description of the laboratory system 

5.2.1 Light-weight truss 

The truss structure pictured in Figure 5.1 is suspended from an aluminum plate 

bolted to a rigid steel frame {rigid relative to the light-weight aluminum truss), so 

as a civil engineering model it could be considered as an "upside-down" building 

with rigid floor diaphragms. This structure is suspended so it can be made very 
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Figure 5.1 Schematic of Caltech flexible structure. 
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flexible, similar to light-weight space trusses, without concern for the compressive 

strength of the members or the stability of the structure. The structure has a total 

height of 2.32 mandan equilateral triangular cross section with each side 0.406 min 

length. The vertical members of the structure are thin aluminum rods. Aluminum 

platforms separate the adjacent stories of the structure and serve as "floors." The 

upper floor is a solid aluminum plate of 9.53 mm thickness, and the lower two 

floors have a triangular cut-out, with side length measuring 0.356 m, in the center, 

and are 6.40 mm thick. The cut-outs in the lower two floors serve to lighten the 

structure and to bring the natural frequencies of the torsional and bending modes 

close together, leading to a more challenging control analysis and design problem. 

5.2.2 Voice coil actuators 

Three voice coil actuators (VCAs, singular is VCA) are connected with diagonal 

members between the top floor of the structure and the stiff aluminum connecting 

plate. These actuators are rated at ±13.5 N at ±5 V and have a bandwidth of 

60 Hz. The VCAs are analogous to active tendons or braces (Spencer et al. 1997b; 

Soong 1990; Chung et al. 1989), which are a common actuator studied for civil 

engineering structural control applications. 

5.2.3 Proof mass actuators 

Three proof mass actuators (PMAs) are also attached to the bottom of the structure. 

The PMAs are not controlled in this study, but a description of their properties is 

provided herein for reference. 

The PMAs are not in the load path, and hence can only impart inertial forces 

to the structure. They can provide ±6.5 N of force given a command signal of ±5 V 

(the saturation level of the D/ A converter). The PMAs have a bandwidth of 5Hz, 

although they are ineffective at low frequencies as large displacements are required 

in order to provide significant forces. In their present state, these actuators are 

attached to the structure, but they are not active. To minimize their contribution 

to the dynamics of the overall structure, the proof masses are held stationary by 
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foam pads. 

5.2.4 Accelerometers 

Six accelerometers are installed to monitor the structure. These are uniaxial Sun­

strand QA 700 accelerometers that are mounted in the center of each of the triangular 

sides of the lower two platforms. The directional sense of each accelerometer is par­

allel to the side on which it is mounted. The frequency response of these sensors 

is flat and has very low noise between 0 and 200 Hz. The output signals are con­

ditioned by a four pole Butterworth filter with a 100 Hz cutoff frequency before 

being fed into the data acquisition and control system. The scaling factor for these 

accelerometers is 63 V /g. Three accelerometers are mounted on the bottom level of 

the structure and three on the second level, as shown in Figure 5.1. 

5.2.5 Data acquisition and actuator command 

Data is acquired and the actuator command outputs are specified through a 66 MHz 

PC. The analog input signals are discretized using a CIO-DDA06 analog-to-digital 

(A/D) computer board (Computer Boards, Inc. 1991), while the command signals 

are converted from digital-to-analog (D /A) and written to the actuators through 

a CIO-DAS16/330 computer board (Computer Boards, Inc. 1994). The A/D and 

D fA conversions have 12 bit precision. The voltage range for the devices is ±5 V, 

and hence the discretization interval is (10 V)/(212 divisions) = 2.44x10-3 Volts 

per division. For the feedback control, the necessary state-space computations are 

performed in discrete time by the PC. 

5.2.6 Software 

The software that is used to control the flexible structure calls the real-time kernel 

Sparrow (Murray et al. 1995) to capture data from the accelerometers, load tra­

jectory files, perform on-line calculations of control forces, and specify the outputs 

to the actuators. A sampling rate of 100 Hz is chosen for this application, which 

is sufficiently high above the frequency range of interest for the structure ( approxi-
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mately 0-10 Hz) to avoid aliasing. This sampling rate can be achieved easily by the 

software running on a 486/66 MHz computer, allowing sufficient time between the 

time steps for the state-space calculations that are necessary to compute the control 

force. 

5.3 Identification of modal model for the structure 

5.3.1 Introduction 

System identification is used to develop a mathematical model for the flexible struc­

ture that can be used for performance analysis and controller design. The model 

that is identified on the basis of the response data from the structure should ac­

curately predict its response in the frequency range of interest. With an accurate 

model, the performance of the physical system can be inferred from the performance 

of the model. The structure is modeled as a linear system, which simplifies both the 

system identification and the controller design. This section describes the procedure 

for obtaining an accurate linear model of the flexible structure. 

5.3.2 System identification input 

The input that is used for the system identification of the structure is designed 

to distribute the input energy evenly among the modal frequencies. This input is 

pictured in both the time domain and frequency domain in Figure 5.2, where the 

Fourier amplitude spectrum of the input appears completely flat in the frequency 

range of interest. The "random" phase of the input has been selected such that the 

amplitude in the time domain remains small, so the actuator does not saturate and 

the response behaves linearly. 

To reduce the impact of the system's transient response, the input excitation 

shown in Figure 5.2 is repeated four times for the identification. Only the response 

data from the last loop over the input signal is used for system identification. A 

separate identification is performed for each VCA. 
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5.3.3 Data sets 

Modal models are identified for two different sets of response data from the structure. 

The two data sets are chosen to illustrate the methods of Section 3.4 for updating the 

performance description of the system using new response data. The first data set 

was taken from an early vibration test of the structure, and the second was taken 

over a year later, following the relocation of the structure to a new laboratory. 

Although the structure was reassembled in the same configuration it had prior to 

the move, its identified natural frequencies are up to 5% different than those for the 

pre-move model, and the damping ratios are found to differ by up to 100% from 

the pre-move modal model. The pre-data and post-data analysis of the flexible 

structure is discussed in detail in Section 5.4. 

The differences between the models are most likely largely due to the following 

sources: 

• changes in the distribution of masses due to minor hardware changes, 

• changes in the contributions to damping from loose wires, 

• inadvertent inter-changing of some of the structural members (they were not 

individually labeled for the move), 

• different end conditions for the connections between the members and the 

rigid mounting plate. 

5.3.4 Time-domain system identification 

A time-domain system identification algorithm is used to construct a modal model 

for the structure. This algorithm is implemented in the computer program Mode-ID 

(Beck 1990), developed by Beck (1978). 

Mode-ID extracts the natural frequencies, damping ratios, and modeshape com­

ponents of a linear model with classical normal modes (Caughey and O'Kelly 1965) 

that best fits the response data in a least squares sense. The algorithm seeks to min­

imize the square of the 2-norm of the prediction error (normalized by the magnitude 
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of the measured output), which is defined by 

n 

(5.1) J(8) := L IIYi- qi(f, 8)11 2 

i=l 

where (J is the vector of modal parameters, Yi, qi E !Rno are the measured and pre­

dicted model responses at time i (i E {1, ... , n} ), respectively, no is the number of 

output channels, fi is the measured input at time i, n is the number of sampled 

data points, and II · II is the Euclidean norm on !Rno. The model response, { qi}, is 

calculated from the model with modal parameters (J using the given inputs {fi}. 

In the procedure, J is minimized with respect to (J using a "modal-sweep" method, 

which involves a combination of successive relaxation and a modified method of 

steepest descent. Beck {1989) has shown that within a Bayesian probability frame­

work, the modal parameters that are estimated by Mode-ID can be viewed as the 

most probable values based on the given data (in addition, see Beck 1996). 

Previously, Mode-ID has been applied to modal identification from measured 

seismic or forced-vibration response of several civil engineering structures, including 

high-rise buildings (Beck and Jennings 1980; Nisar et al. 1992), a highway overpass 

(Werner et al. 1987), an off-shore oil platform (Mason et al. 1989), and several other 

structures. Under ambient excitation conditions, Mode-ID has also been applied to 

modal identification of a 9-story reinforced-concrete building (Becket al. 1994) and 

an 11-story steel-frame building (Beck et al. 1995). 

5.3.5 Modal identification of structure 

A modal model of the structure is obtained using Mode-ID for the system response 

to the input to each VCA that is described in Section 5.3.3. From each data set 

and input, a modal model of the system is identified that includes the 9 structural 

modes. These modes can be recognized as either flexural modes or torsional modes 

of the structure. The flexural modes occur in pairs, as their motion corresponds 

to bending in two (roughly) orthogonal directions. The modes are, in order of 

increasing frequency, the first flexural modes (both approximately 0.9 Hz), first tor-
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sional (about 1.6 Hz), second flexural (both approximately 2.2 Hz), second torsional 

(about 3.7 Hz), third flexural (both around 3.8 Hz), and third torsional (approxi­

mately 6.3 Hz). The identified damping ratios range from 0.4-5%. For the pre-move 

data sets that are collected from the excitation of the first VCA (VCA 1), the modal 

frequencies (in Hertz) and damping ratios (percent) identified from the different ex­

citations are summarized in Table 5.1. The results from the excitation of VCA 2 

and VCA 3, in turn, are shown in Tables 5.2 and 5.3. The results of the system 

identification of the modal model for the post-move system are shown in Table 5.4, 

Table 5.5, and Table 5.6. In Tables 5.1 through 5.6, Wr and (r denote the natural 

frequency and damping ratio for mode r (r E {1, ... , 9} ), ¢ir) is the modeshape 

component at accelerometer i (i E {1, 2, 3} ), and '1/JY) is the participation factor of 

the rth mode due to the lh VCA input. 

Due to the symmetry of the structure, the modeshape components for the flex­

ural modes of the structure are more difficult to extract than the frequencies and 

damping ratios. For these closely-spaced flexural modes, an infinite number of po­

tential modeshape vectors exist. Hence, although "modeshape components" can be 

found that enable successful prediction of the system response, the modeshape com­

ponents do vary from test to test, which makes the construction of a comprehensive 

modal model difficult. This is accomplished in the next section by appending to­

gether modal models that are identified for a specific actuator, which increases the 

number of modes used for the modal model of the system. 

5.3.6 Modal model of structure 

The final step in the construction of a modal model for the system is to combine 

the modal identification results from the tests for each actuator into a 3-input/3-

output model of the system. This can be accomplished by appending together three 

modal models, where each of the modal models is identified from the measured 

response of the structure to a single actuator in turn. Standard model reduction 

techniques could be used to reduce this system to the 9 structural (i.e., 18 states) 

of the structure, although the neat arrangement of the modal system matrices as 
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Table 5.1 "Pre-move" modal property data identified using input 
VCA 1. 

Mode 
Wr (r ¢lr) cp~r) ¢¥) '1/J~r) 

(Hz) % 
FLX 1 0.872 0.878 -0.168 -0.623 0.764 0.041 
FLX 1 0.893 1.327 0.778 -0.607 -0.159 -0.137 
TOR 1 1.590 0.884 0.573 0.605 0.552 -0.144 

FLX 2 2.250 2.845 0.708 -0.683 -0.181 0.303 
FLX 2 2.292 3.001 -0.258 0.913 -0.316 0.145 
TOR2 3.858 5.248 -0.299 -0.709 -0.639 0.070 

FLX 3 3.598 1.212 0.676 -0.533 -0.508 0.102 
FLX 3 3.613 1.800 -0.024 0.733 0.680 0.325 
TOR3 5.993 1.590 0.587 0.588 0.556 -0.078 

Table 5.2 "Pre-move" modal property data identified using input 
VCA 2. 

Mode 
Wr (r ¢lr) cp~r) cp~r) '1/J~r) 

(Hz) % 
FLX 1 0.869 0.669 -0.120 -0.622 0.774 -0.088 
FLX 1 0.900 1.193 0.802 -0.531 -0.274 -0.087 
TOR 1 1.586 0.780 0.595 0.592 0.544 0.174 

FLX 2 2.257 3.148 0.672 -0.731 -0.120 0.303 
FLX 2 2.303 2.786 -0.723 0.133 0.678 0.165 
TOR2 3.763 3.924 -0.587 -0.809 0.020 -0.080 

FLX 3 3.625 2.252 -0.327 -0.663 -0.674 0.615 
FLX 3 3.630 2.313 -0.031 0.750 0.661 0.368 
TOR3 5.977 1.700 0.585 0.565 0.582 0.086 
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Table 5.3 "Pre-move" modal property data identified using input 
VCA 3. 

Mode 
Wr (r </Ar) </J~) </J~r) 1/J~r) 

(Hz) % 
FLX 1 0.871 0.625 -0.260 -0.842 0.472 0.420 
FLX 1 0.871 0.657 0.237 0.925 -0.300 0.334 
TOR 1 1.587 0.765 0.593 0.614 0.521 0.145 

FLX 2 2.294 2.164 0.755 -0.585 -0.296 0.099 
FLX 2 2.302 2.097 0.026 0.695 -0.718 0.209 
TOR2 3.626 2.309 -0.309 -0.688 -0.657 0.642 

FLX 3 3.731 2.426 -0.254 -0.009 -0.967 -0.130 
FLX 3 3.632 2.458 -0.006 0.751 0.661 0.379 
TOR3 5.990 1.764 0.582 0.656 0.480 0.083 

Table 5.4 "Post-move" modal property data identified using input 
VCA 1. 

Mode 
Wr (r </J~r) </J~r) </J~) 1/J~r) 

(Hz) % 
FLX 1 0.877 0.867 -0.926 0.034 0.375 -0.215 
FLX 1 0.876 0.753 0.633 0.443 -0.634 -0.233 
TOR 1 1.634 0.671 0.576 0.555 0.600 -0.146 

FLX 2 2.199 2.785 -0.006 0.758 -0.653 0.199 
FLX 2 2.300 2.121 -0.907 0.229 0.354 0.094 
TOR2 3.673 2.646 0.589 0.436 0.681 0.546 

FLX 3 3.733 4.232 -0.596 -0.245 -0.765 0.390 
FLX 3 3.893 1.885 0.511 -0.604 0.611 0.128 
TOR3 6.334 1.027 0.547 0.572 0.612 -0.077 
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Table 5.5 "Post-move" modal property data identified using input 
VCA 2. 

Mode 
Wr (r ¢lr) ¢~r) ¢~r) 'lj;~r) 

(Hz) % 
FLX 1 0.879 0.806 -0.047 -0.679 0.733 0.181 
FLX 1 0.884 0.370 -0.583 -0.782 -0.220 0.076 
TOR1 1.633 0.640 0.573 0.568 0.591 0.137 

FLX 2 2.204 2.836 0.151 0.681 -0.716 0.212 
FLX 2 2.299 2.244 0.877 -0.468 -0.113 0.074 
TOR2 3.661 1.644 0.801 0.586 0.127 -0.372 

FLX 3 3.661 1.613 0.787 0.340 -0.515 0.191 
FLX 3 3.924 1.570 0.319 0.270 -0.908 -0.072 
TOR3 6.330 1.023 0.542 0.567 0.621 0.080 

Table 5.6 "Post-move" modal property data identified using input 
VCA 3. 

Mode 
Wr (r ¢ir) ¢~r) ¢~r) 'lj;~r) 

(Hz) % 
FLX 1 0.881 0.496 0.792 0.165 0.589 0.052 
FLX 1 0.882 0.458 0.549 -0.441 -0.710 0.132 
TOR1 1.632 0.565 0.569 0.564 0.598 0.185 

FLX 2 2.278 2.133 0.704 0.469 -0.533 -0.329 
FLX 2 2.281 1.968 0.065 0.872 -0.485 0.235 
TOR2 3.659 1.464 0.469 0.366 0.804 -0.373 

FLX3 3.658 1.496 0.247 -0.093 0.965 0.157 
FLX3 3.952 1.355 0.985 -0.022 -0.171 0.082 
TOR3 6.326 1.052 0.553 0.569 0.609 0.079 
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sub-components of the state matrices is lost in the reduction. For the modal model 

that is constructed in this section, no model reduction is performed, and the model 

that is used is created by appending the modal model that predicts the acceleration 

response to input at VCA 1 to the modal model created using VCA 2 as input, 

yielding a 36-state system. For the experiments discussed in this chapter, VCA 1 

is used exclusively to provide the system excitation, and VCA 2 is used exclusively 

for control purposes. Note that the simplest method would be to excite all three 

actuators at once, in order to simultaneously identify the participation factors for 

each mode. However, this was not performed prior to the relocation of the structure, 

so this method could not be used (at least for the pre-move model). 

The modal equations for the identified model can be used for control design 

purposes. Consider the modal system excited by the pth input VCA and controlled 

by the qth VCA, 

(5.2) 

where A= diag (wt,W2, ... ,wg) is the diagonal matrix of modal frequencies, e = 

diag (2(twl, 2(2w2, ... , 2(gwg) is the linear viscous damping matrix, and '1/Jp and '1/Jq 

are the pth and qth columns of the modal participation factor matrix, which has one 

column for each VCA input. The input ground motion, which is translated into a 

force from the pth VCA that acts on the structure, is given by w9(t) E IR, and the 

feedback control force acting through the qth VCA is given by u(t) E IR. The input 

ground motion used for the controller design is a Kanai-Tajimi linear filter (Clough 

and Penzien 1975) with natural frequency of 50 rad/sec and a damping ratio of 50%, 

similar to the one described in Section 4.3. 

The state equation for the uncontrolled modal model based on the rth VCA 
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input is 

(5.3) 

where Yr(t) E 1R3 represents the measured acceleration outputs and zr(t) E 1R6 are 

the performance variables for VCA input r. The matrices A, 8, and \1! from (5.2) are 

subscripted with an r as well to indicate the modal model identified using excitation 

from a particular actuator. The matrix of partial modeshape factors is given by 

<I> r E 1R9 x 3 . For the experimental studies performed throughout this chapter, the 1st 

VCA provides the system excitation, and the 2nd VCA is used for feedback control. 

The 3rd VCA is not used. 

The modal models that are identified for the two VCA inputs are used to model 

the response of the laboratory structure for controller analysis and design. Similar to 

the benchmark structure application (Chapter 4), a high-fidelity SIMULINK (1994b) 

model is used to accurately describe the laboratory system. The first ten seconds 

of the simulated acceleration response of the system to the identification input 

from Section 5.3.2, which is acting through VCA 1, is shown in Figure 5.3, and 

the SIMULINK (1994b) block diagram is pictured in Figure 5.4. The fast Fourier 

transforms (FFTs) of the simulated and measured response are shown in Figure 5.5, 

where the simulated response (solid line) and measured response (dashed line) nearly 

coincide for most of the modes of the structure (except for the first flexural mode). 

For the first flexural mode, the peak of model response is much smaller than the 

one found from FFT of the response data. This could result from several factors. 

The first is that the area under this peak is small, so the resulting best-fit model 

from MODE-ID may not be very sensitive to this first flexural mode peak. In 

addition, significant ambient vibrations could exist that the structure's response 
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to this "unmeasured" input is comparable to the forced response in this frequency 

range, which would cause noise in the modal properties that are identified for this 

mode. 

The final state equations that are used for control design are 

{5.4) 

where y(t) E IR3 represents the measured outputs as before, v(t) E IR3 is the measure­

ment noise and modeling error term, and z(t) E IR7 the performance outputs, which 

are the relative displacements and velocities at the measured locations as well as 

the actuator command signal, u(t) E IR. Note that the control effort is weighted by 

"fu, and the measurement noise/modeling error v(t) is scaled by Vrms· Furthermore, 

the measured outputs for the controller design have no feed-through of the input or 

control force, as is standard in controller design. 

5.4 Pre-data and post-data analysis 

5.4.1 System descriptions 

The purpose of re-analyzing a system when new data becomes available is to improve 

the accuracy of the performance description. This can be accomplished using the 

method outlined in Section 3.4. In this section, the goal is to assess the performance 

of the post-move structure. This performance is analyzed using two descriptions of 



143 

0.5 ..------.-------.----...,.-------,,...-----, 

-0.5c__ ___ ....L._ ___ ___L_ _ _;__-.J. ___ ---!.L__ __ _ 

0 2 4 6 8 10 

0.5..----..,-----..,.----;r----,------,------, 

-0.5 0.__ ___ 2..___.___--L..L4 ___ ___,_6 __ ....:....___c8'-------'10 

0.5.----.--~--.-~--.----.-----, 

2 4 6 8 10 
time (sec) 

Figure 5.3 Simulated response (solid) using post-move model and mea­
sured post-move response (dashed) of structure to flat-spectrum input 
through VCA 1. 
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Figure 5.5 FFT of the simulated response of the post-move model 
(solid) and measured response of the post-move structure (dashed) 
to the flat-spectrum input through VCA 1. 
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the system. The first is based on the frequencies and damping ratios identified from 

the pre-move response data, and is called the "pre-data" model. The second, the 

"post-data" model, makes use of an updated description of the model uncertainty, 

and is based on the response data taken after the structure was moved. 

The pre-data model contains a combination of the modal properties that are 

identified from the pre-move and post-move response data sets. The natural fre­

quencies and damping coefficients are taken from the pre-move data set, while the 

modeshape components and modal participation factors are taken from the post­

move response data. Although using the same modeshape components for both 

the pre-data and post-data models and considering those components to be accu­

rate is not very realistic, consistent identification of the modeshape components is 

difficult. This simplifying assumption is made, however, in order to illustrate the 

post-data analysis method. Further exploration of the uncertainty in the modeshape 

components in future work would be helpful. 

The normalized 2-norms of the prediction errors for both models are displayed 

in Table 5.7, where the prediction errors have been normalized by dividing them 

by the 2-norm of the measured post-move response. These norms are computed 

from taking the square root of (5.1), and they compare the post-move response data 

with the response predicted by the modal models for the system. As expected, the 

post-data prediction error is smaller for each VCA input than the pre-data error, 

since the post-data model as identified by Mode-ID is the one that minimizes the 

2-norm of the prediction error. The pre-data models described above do not appear 

to fit the data very well, with errors on the order of the magnitude of the signal. 

The large modeling error can be explained for the pre-data model by the narrowness 

of the peaks of the system transfer function, as small variations in frequency can 

cause the peaks to no longer coincide. In addition, the predicted response is a 

strong function of the damping ratios, and these vary substantially between the 

pre-move and post-move tests for certain modes (primarily the flexural modes). For 

reference, the transfer functions from the input of VCA 1 and VCA 2 to the three 

accelerometers for the pre-data and post-data models are displayed in Figure 5.6. In 
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this figure, the peaks of the post-data model are (in general) higher than those for 

the pre-data model, due to the lower damping ratios that were identified for most 

of the modes of this model. 

Table 5. 7 Measures-of-fit for pre-data and post-data models, relative to 
measured post-data response. 

Input IIY- q(8)112/IIYII2 
pre-data post-data 

VCA 1 1.05 0.203 
VCA2 1.08 0.187 
VCA 3 1.04 0.178 

5.4.2 Model uncertainty 

As discussed previously in Chapter 2, the modeling error is used to account for the 

discrepancy between the actual and the predicted response of the system. This mod-

eling error is a combination of parametric model uncertainty and the non-parametric 

prediction error. The probabilistic robust analysis is able to explicitly consider these 

uncertainties. 

For the probabilistic robust analysis of the flexible structure, probability dis­

tributions are assigned to the uncertain pre-data and post-data models. For the 

pre-data model, the distributions are based largely on engineering judgment. A 

lognormal distribution is used to model the frequency and damping parameter un­

certainty. For the post-data model the parameter covariance matrix, as obtained 

by analysis of the curvature of the measure-of-fit from (5.1) (Beck 1996; Beck and 

Katafygiotis 1998), is used to determine the probability distribution for the uncer­

tain parameters. This distribution has been shown to be asymptotically correct as 

the amount of measured data from the system becomes large (Beck 1996; Beck and 

Katafygiotis 1998). 

The most probable values for the natural frequencies and damping ratios of the 

pre-data model were identified using Mode-ID (Beck 1990), and these parameter 

values become the most probable parameters for the pre-data model uncertainty 
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transfer functions. 
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description. The post-move system would be expected to show significant variation 

from these most-probable parameter values, so, according to engineering judgment, 

the assigned variances for the PDFs of these uncertain parameters are relatively 

large. The natural frequencies are each given a coefficient of variation of 10%, and 

the damping ratios a coefficient of variation of 25%. The pre-data model probabil­

ity distributions for these uncertain parameters becomes the a priori PDF for the 

updating of the uncertainty description using Bayes's Theorem (see Section 3.4). 

Hence, using 8 = {w1 ( 1 . . . w9 ( 9}' to represent the vector of uncertain modal 

parameters, the prior PDF is 

(5.5) 

where the CJ8; 's are the coefficients of variation of the uncertain parameters, and Bo 

represents the most probable parameters for the pre-data model. 

The probability model for the post-data system can be determined from (3.13) 

and by the methods described in Beck (1996) and Beck and Katafygiotis (1998). The 

expression for p(VI8, E>) can be found by expanding the probability distribution for 

the prediction error about the most probable parameter values. The most probable 

parameters will minimize the prediction error and maximize its "white-ness." The 

prediction error, en, at each time step n, n E {1, ... , N}, is given by 

(5.6) 

where Yn is the measured output and qn(8) is the output predicted by the model 

(and the known input). The probability of the data given the model follows the 

Gaussian probability distribution of the prediction errors. Hence, 

(5.7) 



150 

where N 0 is the number of measured outputs, E = diag[crt] is the diagonal matrix 

of prediction error variances for each channel. The natural logarithm of p(Vj8, E>) 

can be expanded about {j, the most probable parameter values, to yield 

(5.8) 

where 

(5.9) 

and 

(5.10) 
A ( A )-NNo/2 p(Vj8, E>) = 21reJ(8) . 

The above expression is evaluated to determine p(Vj8, E>) for the post-data system 

using a finite difference approach, then Bayes's Theorem (3.13) can be used to 

determine p(OjE>, 'D) = cp(VI8, E>)p(OIE>), where cis a constant chosen such that 

fe p(8jE>, V)d8 = 1. However, when the amount of response data from the system is 

large, the parameter estimates are quite precise, and [An], which is O(N), dominates 

the diag[crfj:] matrix from the prior PDF p(OIE>) when calculating p(OjE>, V). For 

this application, the contribution of the prior PDF to the covariance matrix for 8 

is negligible, and it is ignored for the post-data calculations. 

The sensor noise and modeling error of the system, which account for the remain­

ing prediction error of the system, can be modeled as a Gaussian-white process. This 

process is parameterized by its mean and variance, where the parameters describing 

the prediction-error process could be considered uncertain variables themselves. For 

this study, however, the mean of the prediction error is assumed to be zero and its 

standard deviation (square root of the variance) is assumed to be constant, and is 

chosen to be 1.0 for the pre-data model and 0.2 for the less uncertain post-data 
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case. These values correspond to the 2-norms of the prediction errors as given in 

Table 5.7. 

5.4.3 Pre-data and post-data performance analysis of uncontrolled 

systems 

The results of the pre-data and post-data analysis of the uncontrolled models for 

the structure are shown in Table 5.8. The total failure probability and the probable 

11.2 performance are computed using the uncertain pre-data and post-data models 

described above. Also included in the table are the failure probabilities and 11.2 

performance of the nominal systems. 

The failure levels that are used for the failure probability calculations are 3 em for 

the computed displacement at the accelerometers and 0.1 N for the required actuator 

effort. The choice of these particular failure levels is somewhat arbitrary for this 

structure, as they do not correspond to the levels that would indicate "failure" of 

the laboratory system. The displacement failure level that was chosen corresponds 

to nearly 1.5% of the overall height of the laboratory structure, while the actuator 

"failure" level of0.1 N represents approximately 0.01% of the weight of the structure. 

A study of the scaling relationship between the laboratory structure and a typical 

civil engineering structure could be performed to determine how the quantities relate 

between the laboratory model and an actual structure. 

For the calculated failure probabilities, the nominal pre-data model and the "ro­

bust" pre-data model performances differ by many orders of magnitude, indicating 

that this performance measure is very sensitive to uncertainties in the model. The 

post-data failure probability is close for both the nominal and robust cases, because 

the parameters for this system are much less uncertain, according to the post-data 

analysis method described above. The pre-data model performance still appears to 

be significantly better than the performance for the post-data model, but in this 

case, the probability model for the pre-data model uncertainty does not appear to 

adequately capture the uncertainty in the parameters. Future work could focus on 

the pre-data model uncertainty description. 
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For the 1-l2 performance calculations, the pre-data model again shows significant 

differences between the nominal and robust cases, while the post-data calculations 

indicate the robust performance is quite close to the performance of the nominal 

(and most probable) model. Again, this is due to the larger uncertainty associated 

with the pre-data model than with the post-data model. 

Table 5.8 Probable performance of pre-data and post-data models for 
the uncontrolled system. 

Nominal Robust Nominal Expected 
Pt (%) Pt (%) 1-£2 1-£2 

I Pre-data model I 3.37x10 7 0.018 1.95 0.770 
I Post-data model I 0.993 1.46 2.18 2.20 

5.5 Nominal-model controller design 

5.5.1 Overview 

Two performance objectives are considered for controller design for the structure, 

the 1-£2 performance and the failure probability of the system. These performance 

measures are both discussed in detail in Chapter 2. Controllers are designed that 

minimize these performance objectives for both the pre-data and post-data models of 

the system. The controllers are designed using only the nominal model information, 

then their probable robust performance is computed using the methods described 

in Section 5.5.4. 

5.5.2 1£2-optimal control 

An 1-£2-optimal controller (Doyle et al. 1989) is designed for the flexible structure. 

The 1-£2-optimal controller uses acceleration feedback and a state estimator to min­

imize the weighted 1-£2-norm of the control effort and the performance variables by 

the control synthesis method described in Doyle et al. (1989). The performance 

variables are the computed displacements and velocities of the structure. 

For these experimental studies, the first VCA is used for excitation, and the 
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second VCA for the feedback control force. All three accelerometers on the lower 

level of the structure are used for sensing. The input time history for the structure 

on which the controllers are tested is the scaled 1940 El Centro NS Record, where 

the El Centro Record is the same input that is used in Chapter 4. For the flexible 

structure, the record has been lengthened by a factor of 5 in the time domain from 

the time history shown in Figure 4.12, which is the inverse of the time-scaling factor 

that is used to create the Benchmark input record. Then the ratio for the time 

scaling of the flexible structure input to the actual earthquake record is 1:1, which 

is desirable because the natural frequencies of the flexible structure are similar to 

those found for steel high-rise buildings. 

Controllers are designed for both the pre-data and post-data nominal models 

of the system. Several performance weights were considered when designing the 

controllers, although only one controller designed for each model is displayed here. 

The displacement time history of the system controlled by the pre-data controller 

is shown in Figure 5. 7, along with the Fourier transform of the measured accel­

erations. The displacements are obtained by integrating the acceleration response 

twice, detrending the data before each integration to reduce the displacement and 

drift errors from the integration. The displacement time history and acceleration 

FFT for the structure that is controlled by the post-data controller can be seen in 

Figure 5.8. 

The performance of the 1{2 controller that is designed for the post-data model of 

the structure is much better than that for the pre-data model for the response of the 

flexural modes. Both controllers appear to attenuate the torsional response of the 

system effectively, as is evident in the reduction of the second peak (corresponding 

to the torsion mode) on the Fourier amplitude spectrum of the response. The con­

trollers' effectiveness against the torsional modes is probably due to a combination 

of factors. For the torsional response, the actuator has a lot of control authority 

over the modeshape, so it is an effective energy dissipater. In addition, the model of 

the torsional modes of the structure is more accurate for the torsional modes than 

the flexural ones, and it changes little between the pre-data and post-data systems, 
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so less model uncertainty exists in the torsional modes to degrade the response. As 

is evident from the figures, the controllers are able to achieve only a small reduction 

in the response of the flexural modes of the system, particularly for the pre-data 

controller. One reason that the controller is not very effective against the flexural 

modes is that with only one actuator used for control, the controller has very little 

control authority in a direction perpendicular to the side containing the actuator 

(and this direction is close to the motion that is created by the excitation of the 

other VCA). In addition, the model uncertainty in the system is likely to reduce the 

controller effectiveness, and the parameters describing the flexural modes are more 

uncertain than those describing the torsional modes. As a final note, the controller 

designs could probably be improved if more time is spent refining the system model 

and the actual control design, which would both be good topics for further research. 

5.5.3 Failure-probability-based controllers 

In addition to the 1-£2-optimal controller designs, controllers are designed for the 

pre-data and post-data models of the structure that minimize the probability of 

failure for the nominal model of the system, where failure is defined to occur when 

the computed displacements at the accelerometer locations on the bottom level 

exceed 3 em. The probability of actuator failure is also included in the performance 

objective, where actuator failure is defined to occur when the actuator effort exceeds 

its saturation level of 0.1 V. 

The responses of the closed-loop system that is controlled by the controllers that 

minimize the nominal failure probability of the system (i.e., the "Ptail controllers") 

are shown in Figure 5.9 for the pre-data controller and in Figure 5.10 for the post­

data controller, where the system has been excited by the El Centro Record. As is 

apparent from these responses, the controller design for the post-data model is able 

to achieve much greater attenuation of the displacement response than the controller 

for the pre-data model. In addition, when compared with the performance of the 

1-£2 controllers, the displacement response for the Pfail post-data controller appears 

smaller than that for the 1-£2 post-data controller. The comments on the effectiveness 
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of the controller design from the 1lz controller design section are also appropriate 

here. 

5.5.4 Robust performance analysis of controlled systems 

For the four controllers described above (pre and post-data 1l2 , pre and post-data 

Pfaid, the probabilistic performance measures are calculated on the basis of the post­

data model. The results of the performance calculations are shown in Table 5.9. 

As would be expected, the post-data 1lz controller yields the best 1lz performance 

as determined by the post-data model, and the post-data Pfail controller yields the 

lowest failure probabilities on the post-data system. The pre-data controllers ex­

hibit significantly worse performance on the post-data system than the post-data 

controllers do. This is not surprising, as the controllers are designed without consid­

ering the model uncertainties. Note that the pre-data Pfail controller's performance 

is computed to be even worse than the performance of the uncontrolled system. 

Table 5.9 Probable performance of various controllers as computed for 
the post-data model of the system. 

Nominal Robust Nominal Expected 
Pf (%) Pf (%) 1lz 1lz 

1lz pre-data controller 0.702 0.711 2.51 2.51 
1lz post-data controller 0.068 0.069 1.88 1.89 
Pfail pre-data controller 4.51 4.82 2.74 2.75 
Pfail post-data controller 0.00143 0.00795 2.15 2.16 

Uncontrolled post-data model 0.993 1.462 2.18 2.20 
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Chapter 6 

Conclusions and future work 

6.1 Conclusions 

The material in this thesis yields a framework for a probabilistic approach to robust 

control and develops the method for applications to civil engineering structures. 

This approach directly addresses several issues in structural analysis that are fore­

most in the mind of civil engineers, namely the uncertainty in the model used for 

control analysis and design and determining the reliability of the structural system. 

Specifically, the main contributions of this work to the field of structural control are 

• A probabilistic robust analysis method that incorporates the probabilities of 

the models from the set of possible models, 

• A method to determine the "total" robust reliability /failure probability of an 

uncertain system, 

• Direct use of the reliability /failure probability as the performance objective 

for control design, and 

• A method to incorporate new information to update the calculated perfor­

mance for an uncertain system through a simple application of Bayes's theo­

rem. 

The probabilistic robust analysis method that is developed in Chapter 2 deter­

mines the probable performance of an uncertain system and allows the probability 
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of the uncertain models to be included in the robust analysis. This is an advantage 

over current norm-bounded robust control methods, which yield only the worst-case 

performance of the uncertain system as the answer to the robust analysis question, 

with no information as to how likely the worst case is to occur in practice. Hence, 

the probability-based approach adds an "extra dimension" to the robust analysis, 

where the extra dimension is the probability over the uncertain model set and the 

probable (rather than worst-case) performance measure. 

A disadvantage of the probabilistic robust analysis method is that the total prob­

ability integral over the uncertain model set must be performed, which can be very 

expensive computationally. An efficient asymptotic expansion method is used to 

approximate the integral that appears to work well for the problems that have been 

studied. The method is particularly effective for the problems studied in this work 

because the peak of the integrand is generally close to the most-probable model of 

the system, so the most-probable model is a good initial guess for the search for 

the maximum of the integrand, which is required for the asymptotic expansion. In 

Chapter 5, the asymptotic approximation is applied to the probabilistic robust anal­

ysis of a system with 18 uncertain parameters (9 uncertain modal frequencies and 

damping ratios), and the computation time required is approximately an hour (run 

using MATLAB on a DEC/ Alpha workstation). This computation time is reasonable 

for an analysis problem of this size, but it does preclude optimizing the performance 

for robust control design. 

The total reliability (or failure probability) of an uncertain system can be deter­

mined from the methods outlined in Chapter 2, then used in the controller design 

discussed in Chapter 3. Using the structural reliability as a performance objective 

for the controller design is desirable from a structural engineering perspective, as the 

system's reliability is often the quantity used to measure structural performance. 

In Chapter 3, the post-data analysis technique that uses Bayes's theorem to up­

date the probabilities of the models in the uncertain model set is useful for modifying 

the description of a system's performance in the presence of new information from 

the system. This is important in earthquake engineering, as the actual behavior of 
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a structure during an earthquake is often quite different from that predicted by an 

initial finite element model of the system. The initial probabilities for the model 

uncertainty class are generally not sharply peaked near the most probable model of 

the system (which corresponds to the best pre-data model). Earthquake response 

data from a structure can be used to modify the "best" model and to make the 

probability distribution for the uncertain model class more highly peaked around 

the most-probable (post-data) model. 

The post-data analysis of the probable robust performance is applied to the 

Caltech Flexible Structure in Chapter 5, where large differences are observed in 

the performance of the controllers designed for the post-data model relative to the 

pre-data model. The poor performance of the controllers designed for the pre-data 

model would presumably be improved with robust controller design. Unfortunately, 

the probabilistic robust control optimization described in Chapter 3 is intractable 

for this system. Furthermore, the performance differences between the pre-data and 

post-data controllers provide a strong argument for updating the controller design 

when new data is available from the system. 

6.2 Future work 

This thesis has laid out the framework for a probabilistic approach to control of 

uncertain civil engineering structures. Several directions exist for possible future 

work on the probabilistic robust analysis and control design methodology. 

The first is to consider application of the control design approach to passive 

or semi-active systems for vibration control. The analysis methodology remains 

the same, and all that would be required is to choose a controller class that corre­

sponds to the particular application, then optimize over the design parameters for 

the passive or semi-active system. 

In addition, alternative performance measures could be considered for the struc­

ture, rather than the inter-story drift failure probability. For example, probability 

of instability for the uncertain system is of particular interest, as a controller design 
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that could lead to instability would be unacceptable. 

One shortcoming of the approach that is presented herein is that the computa­

tion time required to solve the design problem for the uncertain-model controller 

is considerable. An area for further research is to explore whether an alternative 

formulation of the probabilistic analysis problem or other probability-based per­

formance objectives and uncertainty descriptions can be found that would lead to 

more efficient solutions for both the analysis and control design. As experience is 

gained with the probabilistic robust analysis approach, computational procedures 

that exploit the structure of particular problems are likely to be developed. 

For the Caltech Flexible Structure, several analysis and control design issues 

could be explored more fully under the probabilistic robust control framework. The 

first is to improve the modal identification method to obtain better models for the 

system. One idea is to use a modal identification algorithm that incorporates a 

physical basis for the modeshape components and modal participation factors for 

the closely spaced flexural modes. Then, uncertainty in the modeshape components 

and modal participation factors could be included more easily. Also, the effect of 

uncertainty in the model for the Gaussian process used to describe the modeling 

error and sensor noise should be studied for the structure and for other systems. 

Another interesting task for the flexible structure would be to use the proof-mass 

actuators for control. These actuators are analogous to active mass driver actuators, 

which are common in civil engineering structural control applications. The proof 

mass actuators have more internal dynamics in the frequency range of the structural 

modes than do the voice coil actuators, which would provide additional control 

design challenges. A final task for the flexible structure (and other complicated 

systems) is to explore methods for making the probabilistic robust control design 

more tractable. 
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Appendix A 

Two-story steel-frame building example 

A.l Overview 

This appendix relates some of the details of the design procedure used to create 

the mathematical model of the illustrative example used in Chapters 2 and 3. The 

example is a model of a two-story special-moment-resisting-frame (SMRF) building, 

which was "designed" to satisfy the lateral drift requirements detailed in the 1994 

Uniform Building Code (UBC), as well as the required capacity with respect to 

vertical loads. A schematic drawing of the two-story frame is shown in Figure 2.1. 

The goal for the example problem is to construct a low-order modal model of 

the system that is consistent with a higher-fidelity model of a two-story building. 

The modal model is obtained for this system through the simplifying assumption 

that the axial deformations of the members are negligible and hence the horizontal 

displacements at the building joints are the same at each level. A Guyan static re­

duction (Cook et al. 1989; Guyan 1965) of the degrees offreedom of the higher-order 

model is also used to remove the rotational degrees of freedom from the equations 

of motion. 

A.2 Selection of model parameters 

The building is designed to satisfy the UBC lateral drift requirements for earthquake 

design, as described in Sections 2330-2334 of the UBC (1994), as well as standard 
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strength requirements for vertical loads found in both the UBC and the LRFD Steel 

Design Manual (1986). The design procedure requires first estimating the weight of 

the building, assuming typical building components and loading conditions. Then, 

the lateral forces on the building are estimated for the "design" earthquake. Next, 

the distribution of moments in the beams and columns at the connections is ap­

proximated using a simple analysis technique such as the portal method. Finally, 

the necessary beam and column moments of inertia are selected to provide adequate 

inter-story drift performance. A subsequent analysis is then performed to ensure 

that the selected moments of inertia satisfy the lateral drift requirement. 

The design base shear for the structure is given by the relationship (UBC 1994)1 

(A.1) 

where 

V is the design base shear 

Z is the seismic zone factor (Z = 0.4 for zone 4) 

I is the building's importance factor (I= 1.0) 

C is a numerical coefficient, (A.2) 

Rw is the "reduction factor" (12 for SMRF buildings) 

W is the total seismic dead load of the structure (Table A.1). 

The coefficient C is given by 

(A.2) 
0 1.258 

C = mm( T 2/ 3 , 2.75) 

where S is the site coefficient, which depends on the soil type at the site and is taken 

to be 1.0 in this example, and T is the period of the building's fundamental mode of 

vibration. The fundamental period is initially approximated using the relationship 

(A.3) 

1 Note that for this section only, the notation convention convention of Chapter 1 is not used so 
that the variable names in this section can match those found in the UBC (1994). 
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where Ct = 0.035 for a SMRF, and hn is the height in feet to the nth (i.e., top) floor. 

After the initial design is determined using this period value, the period estimate 

for the fundamental-mode can be updated. 

The weight of the various building components are shown in Table A.1, and 

these weights are used to estimate the seismically effective dead load W. Referring 

to Figure 2.1, the heights of the columns he are 12ft., and the beams span lb =30ft. 

The tributary length per bay of the structure is also 30ft. 

Table A.l Load estimates for typical building components 

Component Weight 
floor slab 40 psfa 

floor deck 5 psf 
partition walls 20 psf 
miscellaneous 20 psf 
floor beams 75 plf0 

girders 100 plf 
columns 200 plf 

total weight per 
,...., 120 psf I tributary area 

apsf = "pounds per square foot" 
bplf = "pounds per linear foot" 

The lateral design load for the example is found by distributing the base shear 

force among the building stories according to Section 2334 of the UBC, 

(A.4) 

where 

V is the design base shear, (A.1) 

wi is the seismically effective weight for floor i 

hi is the total height of floor i 
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and Ft is given by 

(A.5) 
{

min(0.07TV, 0.25V), if T > 0.7, 
Ft= 

0, if T :S 0.7. 

The moment in each column and beam member is estimated using the portal method 

of analysis, and the member moments of inertia are designed based on the maximum 

inter-story drift ratio requirement. For a SMRF such as the example building, 

Rw = 12 is appropriate. The maximum inter-story drift ratio (i.e., ratio of inter­

story displacement to story height) for a SMRF is <p = 0.03/ Rw = 0.0025. To 

calculate the required moment of inertia, the bending moments at the connections 

are initially assumed to be distributed between the column and the beam such that 

the beam carries 70% of the moment and the columns 30% (Vance 1996). So, 

(A.6a) 

(A.6b) 

where 

h = Mb;lb 

6E(0.7<p) 

I - Me;he 
e- 6E(0.3<p)' 

Mb; is the moment in the beam at floor i 

Me; is the moment in the columns at floor i 

lb is the length of the beam 

he is the height of the column 

E is the modulus of elasticity 

<p is the inter-story drift ratio requirement. 

Taking the minimum drift limit specified by the code as the only design criteria 

yields a design which is far too flexible; the fundamental period in this case for 

the two story structure is close to 0. 7 sec. In addition, using wide-flange shapes 

from the LRFD manual (1986) whose moments of inertia corresponded to those 

calculated from Equations A.6a and A.6b and performing a static analysis, the 

moment capacities for the beams from this design are found to be exceeded when 
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the beams are subject to the estimated dead loads plus the lateral design loads from 

the earthquake. Consequently, the beam and column moments of inertia (MOis) 

are increased by a factor of 2. The resulting MOis are displayed in Table 2.1. Also 

shown in Table 2.1 are the drift ratios in each floor calculated for the design lateral 

load on the 2DOF model. 

A.3 2DOF modal model of building 

A mathematical model of the structure is created on the basis of these beam and col­

umn MOis using standard methods of structural analysis (Sack 1989) and reduced 

using standard methods of finite element analysis (Cook et al. 1989; Guyan 1965) to 

yield a two-degree-of-freedom (2DOF) model of the system. In the assembly of the 

stiffness and lumped-mass matrices for this example, a few simplifying assumptions 

are made in order to reduce the number of degrees of freedom (DOFs). Axial defor­

mations of the members are neglected, and hence so are the vertical DOFs. Since 

no externally generated moments are considered, the rotational DOFs of the joints 

were removed from the relevant equations of motion using Guyan reduction. Hence, 

the remaining DOFs are the horizontal displacements of the floors. A schematic 

representation of the 2DOF model corresponding to this two-story structure is pic­

tured in Figure A.l. Linear viscous damping at two percent of critical is used to 

approximate the damping, and so the model can be transformed to classical normal 

modes (Caughey and O'Kelly 1965). The model parameters for the reduced-order 

model of the two-story example are shown in Table A.2, and the periods, damping 

ratios, and modeshape components are given in Table A.3, which is also shown in 

Chapter 2 as Table 2.2. 

The equations of motion used to represent this second-order 2DOF system are 

(A.7) Mi+Dz+Kz=f, 

where z(t), f(t) E IR 2 , z(t) = { z1 (t) z2 (t) }' is the nodal displacement of each floor, 

and f = -Mix9 , where x9 is the ground acceleration due to an earthquake, and I 
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c2 

h(t) 

X2(t) 
....-----'---...., 

Figure A.l A typical 2DOF system. 

Table A.2 Model parameters for two-story example. 

Mass Matrix M - [3~3 3~3] lb/g -

Damping Matrix D [ 392 -134] lb-sec/in = -134 201 

Stiffness Matrix K [ 3.70 -1.67] x105 lb/in = -1.67 1.19 

is a vector of 1 's. The mass, damping, and stiffness matrices are 

(A.8a) M = [m1 0] 
0 m2 

(A.8b) D = [CI + c2 -c2] 
-C2 C2 + C3 

(A.8c) 

are all given in Table A.2. Note that the D representing the damping matrix in the 

above equation should not be confused with the "D" matrix used elsewhere in the 
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Table A.3 Modal properties for two-story example. 

Mode 
Period Frequency Damping Modeshapea 

(sec.) (Hz) (%) </J~r) </J~r) 
1 0.542 1.84 2.0 0.448 0.894 
2 0.153 6.56 2.0 0.894 -0.448 

a¢J}r) represents the ith component of the rth modeshape vector. 

description of a linear system in state space. 

Classical normal modes are enforced through proper selection of c1, c2, and q 

in D, so (A.7) can be transformed to modal coordinates. Let 

(A.9a) 

(A.9b) 

(A.9c) 

and let 

(A.10) 

<I?'<I? =I (the identity matrix), 

<I?' M-1 K<I? =A= diag(wf), 

<I?' M-1 D<I? = 8 = diag(2(iwi), 

v =<I?' z 

be the vector of modal coordinates. Then (A.7) becomes 

(A.ll) Iv + ev + Av = <I?' M-1 f = -<I?'Li:9 • 

This equation can be expressed in state space. Let x = { v' v' }',where x(t) E 

IR 4 , represent the state variable, so 

x=Ax+Bw 
(A.12) 

y=Cx, 

where y(t) E IRnp is the vector of np output variables and C represents the trans­

formation from the state variables to the output variables. The output variables 
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contain both the variables used to compute the system performance and the mea­

sured outputs that can be fed back to the controller. When the input is ground 

motion due to an earthquake, the excitation is given by w = -Li:9 , where I is a 

4 x 1 vector of 1 's. For this example, y contains the inter-story drift ratios of the 

model, and may also represent the drift velocities as well, since the velocities are 

needed for the out-crossing rate calculation (see {2.12) in Chapter 2). The state 

matrices for the system are given by 

(A.13) 

where C performs the appropriate scaling and transformation to yield the output 

variable vector y. 

To obtain the inter-story drift ratios and their velocities as the performance 

variables, C is of the form 

(A.14) 

1 0 0 0 

c = _!_ -1 1 

he 0 0 

0 

1 

0 

0 

0 0 -1 1 

[:]' 
where he is the height of each story. This expression leads to the inter-story drift 

performance variables 

(A.15) 

In the text, C may differ from (A.14), depending on the particular application. 
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Appendix B 

Notation conventions 

The following (fairly standard) symbols are used in this thesis: 

• IR represents the real numbers. 

• C represents the complex numbers. 

• IRN represents a real Euclidean space of dimension N. 

• eN represents a complex Euclidean space of dimension N. 

• IN represents the natural (counting) numbers, i.e., {1, 2, ... }. 

In addition, the following notation conventions are used throughout this thesis: 

• The natural numbers are typically represented with the lower-case math-italic 

i, j, n, m r, and sometimes with an upper-case N, typically used to specify 

the dimension of a space. 

• Scalars are represented with Greek letters (w, (), or sometimes by lower-case 

math italic letters with a descriptive subscript. 

• Vectors are represented as both lowercase math-italic letters (x, y) and bold­

faced lower-case Greek letters ( (}, ~). 

• Elements of a vector are represented as subscripted math-italic letters (xi, Yj) 

or subscripted bold-faced lower-case Greek letters (8i)· 
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• Matrices are represented as uppercase math-italic letters (M, A), although G 

is reserved to describe linear systems, as is described next, and N is used as 

described above. 

• Linear systems are represented with a math-italic G, often subscripted with a 

descriptive label (Gozp, Gctp)· 

• Uppercase Greek letters also represent matrices (8, q,). 

• (Abstract) sets are represented with either bold-faced upper-case Greek letters 

(8, cp) or caligraphic upper-case letters (V, M). 
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