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ABSTRACT

A gas-cooled, cylindrical, nuclear reactor is used as the
basis in the theoretical derivation of the coolant's enthalpy increase
and pressure loss acrose the reactor. Turbulent flow is assumed in |
the coolant passages of the reactor, and the Reynolds analogy is
used as the basis for corvelating the heat transfer coefficient and
the friction coefficient.

The general equations are derived and two examples, a
nuclear-hydrogen rocket and a ramjet, are given to demonstrate
applications of the general results.



SUMMARY

The development of auclear reactors has led to a new class of heat
transfer problems., Heat is produced within a solid fuel at a rate that
is almost independent of the coolant flow rate, at least for gas-cooled
reactors, The power density varies with position in general, although
it can be made nearly uniform with the introduction of appropriate ve-
flectors and with variation of fuel concentration. However, these
measures are not degirable, particularly if there are weight resiric-
tions for the reflector and cost restrictions on fuel elements.

Aside from considerations of weight and cosi, the most important
characteristic of a reactor is the ratio of pumping work to the increase
of thermodynamic availability of the coolant passing through the re-
actor., For any single coolant passage through the reactor, this ratio
can be determined readily from the Reynolds analogy, for any speci-
fied power distribution along the length of the channel, and a given
coolant flow rate through the channel or a given pressure drop over the
reactor. The limitation on the solid fuel temperature will fix the
reinimum pressure drop or flow rate. 1If the power density is the same
for all channels, the results are simply summed over the reactor
crossg-section.

When the power densit*} varies from channel to channel, therve is
no simple way of calculating pressure drop or temp@méure rise
through the reactor. The pressure drop for all channels must be the
same, but the flow rate and temperature rise will vary from channel to
channel. Apparently the calculations of temperature and flow rate dis-
tributions over the reactor have been done by numerical computation

in the past. An iterative procedure is developed in this theels for



determination of the overall reactor performance in analytical form.
The sole restriction on the procedure is that the Mach number of the
flow entering any coolant channel be appreciably less than unity. This
rastriction is not a serious one becanse the pressure drop resulting
from higher entering Mach numbers would be generally unacceptable.

The principal objective of this thesis is the development of the
method of calculating reactor performance for any sspecifi@d poweyr den-
gity distribution. In final form the method gives the pressure drop,
the temperature distribation and mass flow rate distzibution in the
coolant leaving the reactor, as well as maximum wall temperatures,
where porosity, coelant channel geometry, and power density distribu-
tion are prescribed. The temperature of the coolant leaving the re-
actor can be made uniform over the reactor cross-section by iﬁtmﬂucing
appropriate restrictions in the individual coolant channels. This pro-
cedure increases the average temperature rise through the reactor for
2 given maximum wall temperature, but does so at the cost of in-
creased pressure drop, Whether restriction of the coolant flow channels
in this way iz advantageous oz not will depend upon the particular ap-
plication. The method of analysis developed here can be used to deter-
mine the optimum restriction of the flow channels for any specific
example.

To illustrate the application of the method for calculating reactor
mrfermame. the nuclear rocket and nuclear ramjet were chossn as
examples., The specific impulse for the rocket is found to be higher
when the coolant passages are restricted to give a uniform coolant out-
let temperature than for no restriction. The thrust coefficient of the

ramjet ie not improved appreciably by restricting the flow rate,
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SYMBOLS

Coolant passage cross-sectional area
Radius of reactor

Friction coefficient

Heat transfer coefficient (Stanton number)
Specific heat at constant pressure

Axial power distribution function

Radial power distribution function
Conductivity

Coolant passage length

Total mass flow rate through reactor
Mass flow rate per unit area

Coolant passage wetted perimeter

Gas presgure (static)

Power density in reactor; heat produced per unit volume
Maximum power density in reactor

Gas constant

Cas temperature (static, averaged over coolant passage
crogs-section)

Gas velocity {averaged over coolant pagsage Cross-
section)

Porosity; void volume /total volume

Shgé- » hezat transfer parameior

C¢ ps, friction parameter
< R

ria , dimensionless radius from centerline of reactoy

- Viscosity

Kinematic vigscosity

z/l , dimensionless digtance from coolant passage
entrance



Subscripts:

SYMBOLS

Gas density {averaged over coolant passage cross-
section)

Prandtl snumber

Entrance to coolant passage
Exit from coolant paseage
Wall of coolant passage
Total



I INTRODUCTION

The power distribution in a nucleay reactor is proportional to
the neutron density which, in a barve cylindrical reactor, is highest in
the center and decreases both axially and radially away from the cen-
ter. When the reactor is used as a source of heat, the variation in
power denasity distribution results in an uneven heat supply to the
coolant, | |

The neutron density can be made more uniform by enclosing the
reactor with a reflector which ¢causes some of the leaking neutrons to
diffuse back into the core, or by varying the fuel loading so that the
fuel concentration is higher towards the edges than in the center.
However, both of these methods have disadvaniages. The reflector
material is usually quite bulky and relatively heavy. As a result, in
several applications of nuclear reactors as a source of power, spe-
cifically, for airborne propulsive applications; it is necessary to
restrict the amount of reflector material that might normally be used.
Fuel concentration variation is undesirable since reactors are usually
constructed by assembling many small lamina, or raode, to obtsin the
final configuration. For manufacturing ease and interchangeability,
it is more desirable to have uniformity of the fuel elements.

The uneven power density distribution of the nuclear reactor
results in the coolant having termaperature gradients in the exhaust if
the mass flow in each of the coclant chamnels is the same. The cool-
ant in the channel through the center of the core will be heated the
most, whereas the flow in the outer channels will be much cooler due
to the lower heat generation at the reactor extremities. Flow of this
type is usually undesirable, since the surface temperature of the chan-
nel walle in the outer channels is much lower than the maximurn
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allowable, and thus the overall efficiency of the power plant is reduced,
In addition, the temperature gradients of the exhaust of this type flow
lead to mixing losses in the nosale.

Theoretically, these exhaust gas temperature gradients can be
eliminated by restricting the mass flow in the cuter channels so that
the mases flow in every channel is proportional to the heat release in
that channel., The result is that the outer channels, where the heat
release is less, are cooled to a lesser degree so that each channel
operates at its maximum allowable wall surface temperature, and the
temperature of the exhaust gases from thé reactor is uniform. This
MAss ﬁmv restriction can be accomplished by varying the flow channel
cyoas-sectional arcas continuously acyross the reactor core so that for
the same overall pressure drop across the channel the maes flow ia
smaller. The same effect can be obtained by installing orifices in the
channels to induce a pressure drop so that agsin the mass flow is pro~
portional to the heat release of the particular channel. Of these two
methods, the former is preferable since it utilizes all the available
pressure drop to improve the heat transfer coefficient. However, it
would not usually be practical to assemble a reactor in this manner,
and so the orificing technique is considered to be movre practical.
Elimination of the exit temperature gradients and increasing the wall
surface temperatures of all channels to the maximum allowable by
either of these methods increases the overall preassure drop across
the reactor and reduces the overall mass flow, in addition to increas-
ing the average temperature rise per unit mass flow. Because of the
increased pressure losses and the reduction in mass flow, the over-

all performance of the reactor must be evaluated to determine the
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performance gain, if any, by orificing t¢ ascertain if the increased
degign and assembly mm;an«mtiam are warranted.

W. B. Hall {1) has worked out an example of the restricted flow
reactor configuration. The basic reactor assumptions made by Hall
and those of this thesis are similayr. However, the analysis here is
more g@mkﬁ. including allowance for higher pressure drop and
higher velocities in the coolant channsls, and a procedure for finding
overall performance when the coslant outlet temperature varies
‘radially., These imggw&mam in the analysis ave needed for appli-
cation to reactors for propulsion.

In order to keep the general discussion of heat transfey and
pressure drop in g,mwmmf! veactors for propulsive applications with-
in reasonable limits, simplifying assumptions are required. For
this report, the reactor was taken as cylindrical, with radial aym-
metry in fusl loading and coolant passage distribution. The coolant
passages were assumed to be of uniform size, and the cross-sectional
area was assumed constant over the lengih of the reactor. The power
density of the reactor was assumed to vary axially aad radially ac-
cording to simple algebraic laws. Since the analyeis was made pri-
mavily to investigaie the result of using a reactor a8 & type of heat
exchanger, or source of heal, reactor physics as such was not con-
sidered, and no account was taken of the power distribution shift
during operation, etc. The porosity of the yeactor was not assgumed
constant in the derivation of the general equations, but was assumed.
congtant in specific examples worked out 10 demonstrate the use of
the results.
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The evaluation of the overall performance of a propulsion
system inveolves determining the overall enthalpy rise of the working
fiuid and the losnes of the gystem. For a reactor of given design,
the controlling factor in operating power ig normally some maximum
sllowable temperature in the system. This limit may be set by the
phase stability of the fuel elements, or the moderator, by the allow-
able thermal stresses in the fuel or some other part of the system, by
the influence of temperature on corrosion, or some other particular
thermal effect. For a given design and this limiting temperature,
the temperaiure distribution in the reactor core can be determined,
and from this, the maximum allowable coolant wall temperature
subject to the limiting mmwrmﬁm of the particulay configuration.
Since this report was intended to be quite general, the controlling
factor for veactor operation was selected as the mamimum allowable
coolant wall temperature which can be determined vf.w}h@n given a par-
ticuiar génfiguraxma with type of fuel, concentration, ete. Thus the
problem to be solved involves calculating the overall enthalpy rise
and pressure losses for a given maximure wall temperature and given
initial conditions.

The high power requirements of today's rochets and yamjets
and the expanding technology in the nuclear reactor fleld make the pos~
aibility of using the gas-cooled reactor as a source of propulsive
power for these vehicles a distinet reality. Applications for rockei
@mgim# hold promise, since the effective sxhaust velocity is propor-
tional to the inverse of the square root of the molecular weight, which
suggests the possibility of uslng low molecular weight gases such as



“Be
hydrogen for the working fluid, For ramjet applications, the nuclear
reactor offers the posuibility of relatively unlimited range or endur-
ance at low as well as high altitudes.

in this thesis, the general equations are dervived; and two exam-~
ples, a rocket using hydrogen ar the working fluid and a ramjet, are
given. The resulte of these examples show 2 distinet advantage in ori-
ficing to increase the specific impulse of & rocket, but the advantages
for a ramjet are so slight that it is doubtful if the additionsl complexity

in veactor construction arising from orificing is warranted.



3 .
IL° AHALYSIS AND GENERAL SOLUTION

2,1 Reynolds Analogy

In most nucleayr reactors the flow of the coolant through the
cooling passages is turbulent. For this recason the motion of the fluid
cannot be defined sxactly, 80 exact analytical solution of flow and heat
transfer problems is impoesible. However, using the equations of
motion, where the laminayr transport properties are replaced by ef~
fective values which account for the effects of turbulence snd which
mugt e determined experimentally, we are able to wl%m these prob-
lemas,

The Reynolds analogy, first posiulased by Osborne Reynolds in
1890 and verified by experiment, states that momenturmn and energy
are transferred in the same way in turbulent shear flow. This anal-
ogy can be expressed guantitatively by the equation:

% L %

P P ATy p du/dy

{2. 1}

where 4, is the heat flow rate per unit area normal to the surface
and T, is the shear stress at the wall, For fully developed turbu-
lent flow, the velocity profile normal to the surface is nearly flai;
hence, integrating between the wall where u is merc and a station
where u and | can be considered to be mean values

G T

—

fcp("f—ma put (2. 2)

o

N i (2. 3)



wheve Clx and Ci ave the heat transfer coefficient (Stanton number)
and friction coefficient vespectively.

If we further write the equations of momentum and energy,
averaged with respect to time, for mean flow pavallel to a surface we
find:

C,=~FI'F +/*°‘%uj (2. 4)

i

-p < T+ k dT4,

%o

(2. 5)

‘wham H is the viscosity and k Is the conductivity, and upon re<

arrangement to better show the simdilazity:
T, = p (-’ -,)) du

du/dy dy
— 2,
9o = pCpl(-T¥" + »)dT 26
dTay o 12y

where 2=/ is the kinematic viscosity and ¢~ =/%% is the Prandtl
namber. Thus, it ¢can be seen that if the Reynolds analogy holds for
the turbulent properties, and if 7 = 1, Equation 2. 3 holds through-
out turbulent and laminay yegions.

Fog most gases ¢ — 0.7 - 1.9, so the Reynolds analogy can
be assumed to hold reasonably well. The analysis and examples be-
low aye restricted to gas-cooled reactors with tnybulent flow in the
coolant channels, |
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2, 2 Temperature Distribution

Due to non-uniformity of the heat generation in the core of the
reactor, the average temperature rise of the coolant through the
reactor core must be determined to find the overall enthalpy rise
through the reactor. The temperature rise in the individual channels
must be found first. Integration of each coolant channel temperature
rise over the reactor cross-section gives the total enthalpy rise.

The heat balance for a length of coolant paseage, dx = [df, at

a given radial station, )7 » 18 given by:
mepAdT = g ALE(S) P ag (2.7)

where rm is the mass {flow rate per unit ares, cP is the specific

heat at constant pressure, A is the cross-sectional area of the
coolant passage, T ig the atatic temperature of the coolant, q o is
the power density at the point of maximum heat generation in the
reactor core (usually at the center of the core), £ = gﬁ ig the dimen-
sionless coolant passage length measured from the channel entrance,

Yl = éis the dimensionless radius of the core measured from the cen-
ter, f{£)is the power distribution function in the axial direction, g{ n }
is the {unction in the radial direction, and X is the porosity, or void
fraction, defined as the ratio of the total coolant passage cross-ssction-
al area to the total cross-sectional area. In general, X could be a
fanction of 7 .

Rewrite Equation 2. 7 as:

%{% - AT F(5) (2. 7a)
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where A= Pj):if‘ 8:” is a dimensionless parameter. Since rh
P ‘o

is constant for a given coclant passage, Equation 2. 7Ta can be integrated

tos

T=T°{t +/\(q)§§%(€)d§3 {2. 8)

The heat balance between the wall and the coolant is given by

the relation:
MCPAdT’—'Ch‘:U‘-CP(Tw"T) Pldg {2.9)

where Gh is the Stanton number and depends chiefly upon the Rey-
nolds number for gases with Prandtl number close to unity; p is the
coolant density, u is the velocity of the coulanﬁ, T is the channel
surface temperature, and P is the wetted perimeter.

An empirical relation uaed in flow through pipes of circular
cross-gection is: '

Ch T Tz e ' {2.10)
a

where R e is the Reynolds number. The Reynoldz number is de-

fined as:

R = 4 % (2 11)
where 4A/P = Dy » the hydraulic diameter. Since R, for a constant
area channel varies only with Jor which in turn depends only on the
temperature and is approximately proportional to the three-fourths
power of the absolute temperature, the variation of C‘h {and of Gf '
the {riction coefficient) along the passage will ba quite amall, partic-
ularly for turbulent flow.
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Since m = pu, Equation 2.9 can be written as:
aT -
il (g(Tw T) {2. 12}

where f = Ch% y i& constant, and is a dimensionless parameter
proportional to the heat transfer coefficient, C, . Hence, the wall

temperature is given by:

Yy
=T+ s % (2. 13)
ox, from Equation 2. §:
( $
Tw = G ”\T-{—{;Hg) + fnC(E)dE?S (2. 14)

The maximum wall temperature is given by the condition, %?z = 0,

i.e.,

i&g L&‘.(g)] + g Fi5) =0 (2. 14a)

From this equation, the value of £ for the maximum wall temperature

can be found, and substituting into Equation 2. 14 Ty » the maximum
m
wall temperature,can be obtained.

2.3 Pressure Distribution
The coolant will underge a pressure drop as it flows through

the channels., This pressure drop arises from two facters; the ac-
celoration of the coolant as it passes through the channels, and the
friction drag opposing the {low of the coolant through the passages.
The acceleration of the flow results from decreasing density of the
coolant, which in turn results {rom increasing temperature and de-
creasing pressure. The friction drag cannot be avolded since the

Heynolds analogy holds.
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The pressure drop along an individual channel can be determined
by applying the equations of momentum and continuity. The momentum

balance for an element of length of the coolant passage ls given by:

d d Pl
—;\%-??u.:f% +—é—c&-f& a =° {2. 15)
where p is¢ the static pressure of the coolant and Cf is an empiri-

cal friction coefficient. From the continuity and perfect gas relations:

du _ md (Ll=m R4 = efl-Ldl T dp (216
I’é‘mgg(f) m dg( ) Co &g (_P A P""Jg‘] i )
where R is the gas constant and subscripts, ©, refer to the entrance
station of the coolant channel. Substituting Equation 2. 16 nee Equa«

tion & 15 and rearranging:

Sut Td cut =
[P.._aé_u:\_o_z_P_ a‘%* RET,:L _* +@T1 ) (2.17)

where §3£ {;r 'K" y a dimensionless pa.ra.memr proportional to *:.‘.f
the friction coefficient.

The second term in the coefficient of dp/df in Equation 2. 17
is a result of the acceleration due to the pxa#aum drop in the channel.
in many applications this term can be neglected and then Equation 2 17
can be integrated exacily; however, in flow through & reactor for pro-
pulsion applications, the pressure drop may be guite large, 8o this
term must be retained, The term containing dT/4f is a result of
acceleration due to the heat input to the coolant as it flows through
the passage, and will be quite large for nuclear reactors. Equation

2.17 i3 an exact equation for the pressure drop, but it cannot be

integrated in closed form. However, the equation can be integrated



by an iteration process if the Mach number is low.

2. 3.1 Iteration Procedure

Introduce a dimensionless parameter, € , defined as:
L2 2
e =(m) RT, _ (F u,,) RT. = Yo

Pt Grny: - we €

The subscripts, o, refer to the channel entrance, and since the
product RT  1is proportional to the square of the local speed of
sound for perfect gases, € is seen to be VM?‘. and thus propor-
tional to the Mach number at the channel mu:aﬁm. It will be as-

sumed that “" ( ) lie «<| aswell,

Equation 2.. 17 bwmm. upon substitution of € ,

B (2. 18}

T/r..] 4

€ L= =2 A

Pe B/pa dg\“& *’5 °(~— +ﬁ¢ )_
Let p be expanded in a power series in < :
F: Po + €F‘M"‘ &‘F(Z)'* (2. 19)

Substituting this series into Equation 2, 18, we obtain:
(] ) (a)
_r;__T_) e T L d (B )4 J 2. 20
[‘J'e(Po T " J[dg('gl)+€d€(£“)+ (520
A aT _
¥ T,(Eg * @:T) =©

and, um collecting _mers of €, the differential equation for pu)

ia found as:

£ (E) (£ pem
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and integrating Equation 2. 21,
ny 13
Tl s

-]

For the second apprmimmim’z, the equation for p(m ias

jg(ﬁ“> (P” jf)dg(*ﬂ)’O {2. 23)
and intesgrating Equation 2. 23:
(a) E ™
. =—§0% Tlds 545 (2. 24)

Define the static pressure loss as:

Ap=be = (por epl v &P )

where F(: ' is the firet approximation for p at station 1, the reac~
tor exit, and ;;\z ' is the second approximation at this station. There-

fore, the pressure loss ratio may be expressed as:

Ap . —e,}ai'i-e_f_‘j’m....u

Pa
=+eng( . BeT)dE (2. 25)
‘e i—:&(zlg"'k { (e ctemuasmerfag
+ LR
o L2
.é,l?. = & F‘ + & Ty o+ ~
-Pa (2- &6)

These functions, i‘-"g and ¥ g ¢ may be expressed in a more con-

venient form by integration and rearrangement fo the following:
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" +)\[L'H§)d§ « G j;'(t—s)nﬁ(%)d?]
(2. 27}
L nnn) e g LT - (534

o

+ 3 [ T d 2 ! 8 , 2 25
ﬂ*{zJT(TE) §+1%L§“T{§T joigls;,dgjdg { }

2.4 First Ordey Approximation
The function, f{{£), has been defined as the axial power density

distribution. Hence, ¥ ] may be written as:

7 = B +A[B o+ f(B.-8)] (2. 29)

where B o and By are defined as:
B.= [ F(5)1d§ = consr (2. 30)
B‘ = Eg#(g)dg = const (2. 31)

I we further require that {(£) be symmetrical about the center of
the reactor, § = §, integration of B, shows that B = iB_ . There-

fore, F, undey these assumptions becomes:

Fo= s e ABL(Lt L) (2.32)

{

In order to integrate Equation 2. 22 to find the first order ap-
proximation to the static pressure loss across the reactoy, Equation
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2. 7 can be rewritten as:

%%=A1¥(§)=K713—£{21——\[l? () (2. 33)

%;Q((”Q

where K is defined as; K = —
¥ p.VRT,

and the parameter, N\ , becomes:

I
A= KA

The exit temperature of the working fluid as a function of radial
position can be determined by integrating Equation 2. 33, since the
integration ig in the axial direction only:

) -T. = KT 41 ! = R, {2. 34)
T -T. = KT, gl =
Using theses results, Equation 2. 26 for the first approximation to the

pressure loss can be expressed in either of the following equations:

Ap - € F
A "

= fp v KEWB () e (B3

or, alternatively, using the relation of Equation 2, 34:

_A};E-z e ﬁ; + T'(fl)T‘T'('*ﬁF/,_)é LNRRLE (2. 36}

Neithey of the two Equations 2. 35 and 2. 36 is in a convenient form

for integration. However, without cmngmg the value of the squation,
we may sdd and subtract the texrm, e j%zi—( (+34¢/), from the
right side of ﬁw equation. j—‘—-;_—E- ie at present unknown and is
te be determined. Performing this operation, Equation 2. 35 becomes:

Ag - G[FF + i:'.il-&{{f{h/z)] +(1+ ﬂ&/‘_)(KB,,é@-—i%}é] (2. 37)
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For a given reactor under glven flow conditions, j:—‘-_-rﬂ:?—- will be &
constant. Further, when integrated over the radial m;a of the reac~
tor, T, and T, will net differ to a great degree, #o the second
term on the right side of Equation 2. 37 will now be very small when
compared to eithar of the other two ferms.

For convenience, rewrite Equation 2. 37 as:

A%E - E(v@)+ [cvE - D (ve |

{2. 38}
oz, reavranging in teyrms of \[é‘ H
F R LS . AP/PG
(B [V -R(RY[ - T =0 gy
where: = e * I=% -;T“ (+Be4)
{2, 40}

E
C = (|+/%44)KB,~3;.({1)
D o= (14 ) Bt E-G

Bince the middle term in Equation 2. 39 has been purposely made
very small in comparison with the other two terms, this equation can
now be solved by successive approxdimations. Write Equsation 2. 39 as:

(m = < - D L -7
e e e S I

and asgume & solution of the form:

e - [im Qo(' + b3 +b 87+ ):[ (2. 42)
331

After substituting this assumed solution into Equation 2. 41, col-
lecting similay powers of B , and taking the limit ag J —» |, We
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obtain:

_ [Ap/p. A e D}
& - LS Sy — — e e A
\/7—‘ \/ E {l 2 [ f EAP/;Q » E

2z

C scb >
+-L - + 3/ B\ 4.
B[EA%O EVE bep, <5ﬂ 2

It is mozre compact to leave Equation 2. 43 in terme of C, D, and E,
since they are defined in Equation 2.40. For integration in the radial
direction, it can be seen that C containe the variable of integration,
gl w-\ }» For the first approximation, use the first term (which does
not contain C or D); similarly, for the second approximation to (€
terma linear in C and D only are required. Highey order requires
higher powers.

2, 5 Average Temperature Rise Through Reactor

The total emhal;ﬁ rate of increase, AQ, in the exhausting gases
is; :
AQ = M cp (T -To)

it

[}

<o -1 2mar {7 d (2. 44)

[}

i

<p (T -T) zﬂazf‘a\/—éf (;4 Ve V‘dﬁfl

where m is defined as the total mass flow rate found by integrating
the individual coolant mass flow rates over the cross-section of the
reactor, the integrated average value of C;p is used, and a is the
radius of the reactor.

Howsever, AC may be found directly as:
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AC’Q; 2 Ta’ Cp L‘Yk(q}[ﬂ(q)—t]qdn

{2. 45}

= ZTTaf'cb,Q B, Jola ("}) T)d")

Therefore, by equating Equations 2. 44 and 2. 45 we may solve for the
average temperature rise through the reactor:
- e 2. B-s ( ) d
'T| -T; = _3 - '(0'5 ‘7 \'7 ‘7_,_____—
o BVRT ("o () VE(ql

KT B, a7y (248

f<Op ety gy

The exit termperature at the centerline of the reactor is found

by putting r? equal io zero in Equation 2. 34:

Tie-T. = KT_4(2 _' . R,
[e\v- T, = o) (2 47)
= Aoy T, B,

{2. 478)

Hence, dividing Equation Z 47 by 2. 46, the vatio between the center-
line exit temperature of the reactor and the average exil temperature

is: '
T, () =T, g (o) f;o“/zqdn'

T -T. <[ (gm) 4y

(2. 48)

It is not convenlent to express the relation between the maximum

wall temperature and the average temperature increase across the



reactor in general. However, if () and g(n ) are known functions,
this relation can be found quite readily as will be shown in the following

examples.
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Il EXAMPLES

3.1 Reactor Caleulation Using Specific Power Distribution Functions
Thus far in this thesis the general equations for determining the

overall %mparamré rise and pressure drop through the reactor have
been obtained while leaving the specific power distribuiion as general
functions. An example will now be given showing how the results ob-
tained in the general derivation might be applied to a given reactor.
The general solutions for the neuiron density distribution in &
cylindeical nuclear reactor ave given in terms of trigonometric and
Bessel functions. Howewver, for converdsnce, & parabolic neutron
density was assumed since the integrated area under a parabols dif-
fers but slightly from the more generally accepted solutions of Besgel
functions or trigonometric functions. For this example, assume a
right-cireular cylindrical veactor having parabolic normalized power

distribution chmm:eri&tics FY

f(g) =1 -4e(5-% : {3.1)
q(n) = EEAE (3. 2)

Further, assume the porosity is uniform across the reactor. The
power distribution parameters to be perturbated will be 6 and 4§,
which determine the yelative 'flatness® of the axial and radial power
input of the reactor. Thege parameters are primarily a function of
the amount of reflector material used in the reactor design if homo-
genecus fuel loading is assumed.
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With these functions, B o 18 found from Equation 2. 30 to be:

= '['F(g)dg =1 - 8/3 (3. 3)

Using Equation 2. 48 and working out the integrals indicated to
the second approximation in /€ and with:
8,(0 = | -
4, [
JVE©) = Vop/k, (1= %) é: *

L (efel,) (1= 4)

(3. 4)
L “d’/)[ﬂc + T' iy ('*54/ )| 7=
we find, after simplification, that;
T,
T -T. . { A R )
= _L- = - {3. 58}
T % Ll L T )G - )

To find the maximum wall temperature, which will oecur on the
centerline of the reactor, use Equation 2. 148 to determine the value

of £ toput in Equation 2. 14, From Equation 2. 14a, T, occurs

. rsd
when —
= .,'_.. — L + ‘L‘__ + L
S 2 (5 /—f—ﬂ—‘ 486

and hence, from Equation 2. 14

TnTo A(o)[—i—(f:“'a‘-)(/%ji‘?';) Tyt M%] (2. 6)

and using Equation 2, 47a;

TM——.T. - ——~+' -2
Tw(o\-T ) l-e/s 3(“' 3 (\/P 49 1—3@ Z] (3.7)
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Hence, given a maximum wall temperature limitation in the
reactor, the relation {(as a function of 0, ¢, 8, amiﬁf) between the
average tempafumm increase of the gas flowing through the reactor
may be found by multiplying Equatione 3.7 and 3. 5:*

Tem-To By + ST O+ fyg) [ es
RS ATy ewr AL

- {3.8)
e R

It is simpler to leave Equation 3.8 in this form; bowever, for given
values of the parameters of the equation, it reduces to a simple

L= for a given Twem = To

o o

quadratic to determine
I all wetted surfaceg of the channel are heat transfey surfaces,
and from the Reynolds analogy, it is reasémable to asswne that § = ﬁf
ior fully developed turbulent flow. Furthermore, it iz assumed that
& = 8 for comparison purposes, though neither of these assumptions
are requirements of the analysis. The resulis obtained from using
Equation 3,8 sre shown in Table 1. This table shows the maximum
wall temperature required to obtain a temperature increase of
1000°R and 1500°R for an initial gas temperature of 1000°R for var-
fous values of fand ¢. The table was prepared on the assumption
that d= B and P = §£ . The required temperature increases were
selected quite arbitrarily, but they furnish an indication of the trend
in mavirmum wall temperature versus average mmperaium increase
through the reactor. From Table I, it can be seen that the maximum
wall ternperature required for a given temperature increase of the
working gas is markedly increased as the power distribution varies
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away from a linear relation { ¢ equals gero) oy when the coefficient

of heat, B , gets very low,

3.1.1 No-orifice Condition

The etatic pressure loss mey be found by using Equations 2. 44

and 2, 45 B
T (T -T)

AR

2matp, (RY, K];Bofj(ﬂ)’]d"l

{3.9)

o _Yi\: (;Tu = fo /RT; K(|_s/3)((— ¢/‘_)

But, from the simplification procedure {not shown) used in deter-
mining Equation 3, 5, it was found that

:(:I—Tn \/ AP/P@ o
- Be + _‘_T”_‘_:I-__T_e_(u—/?f/L)

K = —=

(1-%)-%) T

Therefore, Equation 3. 9 ¢an be expressed as:

— . R ——
Ap T -Ta " my _Ris
Pu /g.F + To (l + (g/a.) (o(-(—rml-) FOL {3. lg)
Howeves M- iz just the mass {low rate u v channel
' o lwa- ' * PV TRLE Plyr PR *
a0 Equation 3. 10 can be zreduced further to:
- T -T o
A L
7% - {/@+ i ﬁ%)f < (3. 10a)

Figure 1 shows the varintion in static pressure loss with
NE {which is proportional ¢o the mass flow) for various values of

'faf for an assumed temperature rise ratio of unity acroes the reactor.
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3. 1. 2 Artificial Flow Restriction (Orifices)

For installed orifices scaled ao that the mass flow in the outey
chaunels ia yestricted to the correct value to give a uniform tempera-
ture rise across the reactor, the average exit tempexatuye will be
identical with the exit temperature from the center channel of the un-
restricted reactor. Thevefore, from Equation 3.7

LS o [( R A —%] (3. 1)

'reﬁ."T:;

U the orifices restrict the flow cowrectly, the pressure decre-
ment they provide will make all channel pressure losses identical
with the pressure loss in the centerline channel, which s unrestrict-
ed, Theyefore, the first spproximation to the pressure loss ratio
can be determined from Equation 3. 4 by assigning a valve to JEC)
under given reactor conditions.

The other change that will result from artificially restricting
the channel entrances will be the total mass flow. This total mass
flow can be determined directly using Equation 3. 11. Since the
average temperature of the gases is the exit temperature, a constant
across the reactor, by using Equation 2. 34 we are able to determine
rn if it is reealled that it is a factor in the parameter, V€ . Hence,

integrating, the total mase {low is:
m = 27Ta fo(m qd7 s 2Ta” J %# —————31— (~4>71)’]d1?

(reS
T, X
. {3.12)
m = Tral_%f’_g. —_ (- S5) (v~ &)
CPT° ‘T;"’S.— 'y

Ta
However, since || res 18 the exit temperature of the centerline chan-
nel, Equation 3. 12 can be rewritten by using Equation 2. 47 and the



A
factthat m = —E—f
m o= &mat ﬁfé(’;(t 4’/ (3. 13)

3.2 Rocket Example
Using the assumed reactor power distribution characteristics
of Equations 3. ! and 3. 2, a rocket engine using molecular hydrogen

as the worklng fluld was analyzed. No digsociation effects were con-
gidered. The fusl was assumed to be liguified in the propellant tanks;
however, due to cooling requirements of the neszle and reactor reflec-
tor, the hydrogen was assumed to have veached a gaseous state beiore
entering the pumps of the "’aémizezzstim chamber", |

Account was taken of the power yequived to drive the pumps by
using a portion of the gaz fyom the reactor exit to drive a turbine
which fuynished power for the pumps, The tempersiure of the gases
as they were bled from the reactor exit was reduced to acceptable
turbine operating temperatures by mixing it with the required amount
" of coolant hydrogen to lower the turbine gas inlet tempexature to an

assumed value of zaaa"a. Turbine
I
/‘OPC//M\ ///4////" ~———]
7o e ecTor
[~ l . //////////
(o) ( () (2) ?Z)) (4)

Schematic Drawing of Rocker
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For this example, define the following parameters:
Me  mass flow rate of pump
My mass flow rate of nomzle

9 bleed fraction to drive auxiliary turbine, therefore,
Ihp = rh‘F (l +4 )

e wveactor exit-entry total pressure ratlo = par /p,.

Tm  assumed exii-entry total pressure ratio due to mixing
loss from exit temperature gradient = ps. /o2 e

n neozzls exit-entry total pressure ratic (asswumed 1. 0)

The thruet, F, of a rocket is given by the equation:

F=meug + As (pa - pa) {3. 14)

where p, ie the ambient pressure and subscript 4 refors to exit

station. The specific impulse, 1, is found by the equation:
F

= e— = U4 + A4/At
L me ¢ g 9 ™A,

Cpa = ba) {3. 15)

Using the defined parameters, the nozule mass flow rate, th,,
can be found using the continuity equation and the perfect gas relations
for a choked throat as:

g+
me _ b Tl T, /X ‘ (Z )“""

—_—1 = R''m

A, T = \/'F;T &+ (3. 16)

If the expansion ratlo, P2v/p, | is specified, the nozzle-exit
ratio can be determined from the following equation if isentropic

flow {8 asswmed in the nogzle:;



2T

T

A EETE
A ( P%,r)%{ | -(%j“"ﬁ * (3. 17)

where T/ = Tm Panh, | Equatien 2. 17 uniquely defines the
area ratio and subsequently the exit Mach number from the relation:

L+

RV

Hencs, M 4 iz now knowa.
Since M 4 has now been determined, the exit velocity, Uy can
be foand £ T 4 is known.

To= T (05
y = Tar - T,
But, T“T =Ty, T v+ 1______TTITT)
. To (1445 M3) -ﬂr]
Tl"‘ [l + T
Therefore; ) T, -T NV (3. 19)
T o T **“f‘)('* )

:‘:2. '—Tn

Tl
tiem 3.8, T ) is sssumed equal to Ty . since the entering Mach num-
T

where iz the static temperature increase found from Equa-

ber will be very small, and M, was determined from Fig. 6, Dailey
and Wood (2}, modified to account for the {riction in the coolant pas-
sages. '

Knowing T, , T, is now known, and the exit velocity, u,, is:

T

W, = a,M, = VIR M, (3. 20)
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The total presgure ratic scross the reactor is found in a similay

manner using the pevfect gas relations: §
Apr 5-1 )8!
S — - (1-te)fis B )
M= | P ( a) 2 ° (3. 21)

wheye ‘%ﬁ is the static pressure ratio across the reactor as deter-

\

mined from Equation 3. 10a by assigning various values of €. Afier
having determined v, . the statlc pressure of the exhaust is given by
the relation:

k
- e
s = P4-r(‘ + 82‘ M:)

__x
¥~

A %
= P\rTrP-’le{t + K?_ M4)

(3. 22)

The total mass flow yate that must be pumped by the pumps is
known if < is assigned, since from Equations 3. 10 and 3. 10a;

mp X BT
oz 3 JERT (3. 23)

In oxdar to pump the required total amount of mass flow, the pumps

expentd power which was assumed to be supplied by the turbine. Equa-
ting the turbine power output to the required pumping power:

P(-r mp _ e AT‘:‘“"’- rh‘turb.
——————————— —

P e (3. 24)

Therefore, assuming that the mixture of bled gas and coolant gas
enters the turbine at 2000°R and exits at the reactor entrance tem-
perature, the amount of bled gas from the veactor exit is given by:

. Pir mp MNe.
S me = 7;; o (3. 25)



In working out the example, a “yubber" engine was assumed,
i.e., the rocket was assumed to be corvectly designed for each vari-
atimn in the parameters. A graphitic reactor is used as the basis for
assuming the bigh maximum wall termaperature (Ref. 3) since it was
visualized that & rocket engine would not have a leng operating life,
No account was taken of any possible mass addition to the flow from
the reactor material itaelf,

Asgumed conditions

P 7 50 atmospherey
Py * 0. 1 atmospheres { 53, 060 feet)
T = 5500°R
® = 0. 90 for no-orifice condition
1. 00 for orvifice condition

X = 0.5
T, 500°R
Pafp= 50

¥ = 1.3%

€. = 3.8Bu/lb°R
Using these conditions, the exit-throat area ratio ig 5. 53 and the
exit Mach number is 3. 17. |

Figure Z shows the specific impulse versus § obtained from the
calculations for ¢ = 0 = 0. 5. A linear power distribution {é = zero)
is also shown for comparison. No attempt is made to distinguish
between the values of mass flow used at sach £, since their effect on
the apecific impulses was negligible, although their valuas do affect
the presaure loss across the reactor. From these results, the spe-

cific impulse appears to be primarily a function of the temperature
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rise imparted to the gas in passing through the reactor. Therefove,
to get high specific impulses in a rocket, it would seem preferable to
attampt fo increase the temperature of the coolant gas by inereasing
the heat transfer coefficient, although this lowers the allowable mass
flow rate to preclude very high pressure losses, or choked flow, in
the coolant passages due to the higher heat input to the gases. Foy
this same reason, orificing appears to be advantageocus in increasing
the speciflie impulses.

3.3 Ramjet Example
In the ramjet example, the conventional burner is veplaced by &

nuclear reactor having the poweyr distribution characteristics of Equa~
fions 3.1 and 3. 2. This analysis was based on standayd ICAO condi-
tions at 1000 feet altitude.

In working out the example, a "rubber' engine was assumed and
the nossle was assumed to be degigned to expand to atmospheric pres-
sure waless the throat static presaure was lower than ambient. In
such a case, no expansion was conaidered, and ths nozzle was assumed

to be terminated at the throat,

. v/ 7

777777 v

——

| | | ]

(0 (1) 2) (3 (8" (4) (s)
(t)

Schemaric Drawmg of Kum jet
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For this analysis, defive the following parametersa;
Th  ratio of free-atream total pressure te static = Por/pa
Ty ratio of total pressure across diffuser = P2t o
Me ratic of total pressure across Reactor = Pir/p, .
Tm watio of total pressures due to assumed mixing loss
in non-restricied case = pa/| /Py {Assumed | for
restricted case. ) T

Tn ratic of nosle total pressurcs (sssumed 1)

The thrust, ¥, of a ramjet is given by

F= mu, (%f ——() + Rgps (il - P'Vf?s) {3. 26)

Due to the fact that ramjet engines must operste for long peri-
ods of thme, and in an oxidizing atmoesphbere, a diffevent type reuactor
material must be used in a ramjet than in a rocket. Because of this,
the materials suitable for ramjet applications can withstand a much
lower maximuwmn wall temperature than those for a vocket engine, The
heat input to the coolant gases will be much less, and consequently the
acceleration of the gaves in the coolant passages will be less. There-
fore, in this example, it was assumed that the static temperature
rise and the static pressure loss across the resctor were approximately
equal to their total, respectively.

Usj, canbe found by finding the ratios of exit Mach aumber to
the free stream Mach numbeyr and exit total temperaturs to the initial

total temperaiure.
2

(u.;)a: (as_ Mg)z ) T (1 + Ly VO M5>

a a, M, Tor (U + = M) M, (3. 27}

o
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But: X
5~

(

_—i‘—“'
s = { + E.:.!M: ¥- = QTrdTr TrM(‘ + k—;‘! M:) (3' zg}
Fr PS‘( 2 R

and frovn this we obtaim:

-1

2 —_ -1 LS
. . 54 M l |
M, Ps K;' M M:
Also:
Tsr o Tse |, AT
Tor Tor Vo, {3. 30}

AT ] —-( — s - A
where ""r; = .T__%_T_. of the general reactor analysis.

Therefore, the exit velocity can be expressed ag:

ey

u LT : - ‘ |
Tlf i /(‘ * T°r) {‘ ’ 5Mg i‘ ("%3 ”d"a"mu%‘s (31
s

Since it wae assumed that the static pressure loss and total

pressure loss are approximately equal, L is found by using Equa-
tion 3. 102 to deterwmine Ap/p for various values of €.

T = | — &b, | (3. 32)

Knowing vp. the thyoat pressure can be found from:
]
&~
F‘%’u = ( z ) T Ty T Ty (3. 33)

S+t

If this ratio ie lees than unity, no further expansion was assumed;

if the ratlo was greatey than unity, ideal expansion to ambient pressure

was assumed,
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Figures 3 and 4 show the results obiained fox Cp, (based on the
reactor cross-gectional area), the thrust coefficient, versus Mach
numbey for various values of B 2t an assumed maximum yeactor wall
temperatuse of 29060°R. C., is defined as the total thrust divided by
the free stream dynamie pressure and the e¢ross-sectional area of the

reactor. Values of w, used in the example were:

M, A
{§ — 2§ 0.8s
2.5 — 3.% o7
3.5 — 4.5 °.6S

w ¢ the agaumed mixing loss, was arbitrarily sssigned a value of
{1, 90 for the non~-vestricied example and unity for the ovificed exam-
ple. Resulis shown are for an assumed veactor porvosity of 0. 5,

The curves shown are for € = 0,03, but other mags flow
rates give similar curves. The one shown is about optimum, singe
it was found that further increase in mass flow rate increased the
pressure loss across the reagtor to a point where the overall thrust
ig reduced, While it should be streassed that the initial conditions and
reactor configuration chosen were arbitrary and this example was
worked to demonstrate the methods, still, the trend of the results
should be realistic, if not their absolute magnitudes. From these
two figures at the arbitrarily chosen configuration, optimum per-
formance {8 obtained at p of approximately 3-5% at 3 Mach number of
about 3. Figure 4 shows that while Cp at the optimum Mach number
is slightly inereased by orificing, the vehicle performance drops
movre sharply away from the optimum Mach number, so it is deubtﬁﬂ
that there is much &&?ant&ge to orificing for a ramjet.
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TABLE 1

Maxdmum Wall Temperature Required to Obtain Given Average -
Temperature Increase of
Coolant Gas (Initial ges temperature assumed to be 1000°R)

AT = 1000 AT = 1500
p=pg T, {0) T T,0) | T
£ 1 wm i W
20 3430 3440 4870 4880
10 3460 | 3470 4930 4940
=10
5 3520 3625 5040 5250
1 3860 7000 5600 | 10, 630
20 2790 2818 3710 3820
10 2801 2868 3810 3910
b =.75 5 2828 | 2981 3840 4080
1 2950 4760 4030 6850
20 2418 2518 3160 3310
| 10 2420 2533 3170 3340
¢ =.50 5 2430 2620 3190 3440
1 2480 3720 3260 5170
20 2173 2450 2771 3190
10 2175 2452 2772 3190
&=, a5
5 2177 2490 2779 3250
1 2193 31990 2801 4315




TABLE 1
{continued)
AT = 1000 AT = 1560
53 = ﬁf Tl(a) Twm Tliﬁ} T’w

m

20 2000 2000 2500 2500

10 2000 2000 2500 2500

¢=.0 5 2000 2000 2500 2500

1 2000 2000 2500 2500




«37-
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FIG. | — STATIC PRESSURE LOSS VS. DIMENSIONLESS
MASS FLOW RATE FOR UNRESTRIGTED GOOLANT

PASSAGES
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FIG.2 — SPECIFIC IMPULSE VS. HEAT COEFFIGIENT FOR
NUCLEAR - HYDROGEN ROCKET EXAMPLE
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