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Abstract

Curve samplers are sampling algorithms that proceed by viewing the domain as a vector

space over a finite field, and randomly picking a low-degree curve in it as the sample. Curve

samplers exhibit a nice property besides the sampling property: the restriction of low-degree

polynomials over the domain to the sampled curve is still low-degree. This property is often

used in combination with the sampling property and has found many applications, including

PCP constructions, local decoding of codes, and algebraic PRG constructions.

The randomness complexity of curve samplers is a crucial parameter for its applications.

It is known that (non-explicit) curve samplers using O(logN + log(1/δ)) random bits exist,

where N is the domain size and δ is the confidence error. The question of explicitly con-

structing randomness-efficient curve samplers was first raised in [TSU06] where they obtained

curve samplers with near-optimal randomness complexity.

In this thesis, we present an explicit construction of low-degree curve samplers with

optimal randomness complexity (up to a constant factor) that sample curves of degree(
m logq(1/δ)

)O(1)
in Fmq . Our construction is a delicate combination of several components,

including extractor machinery, limited independence, iterated sampling, and list-recoverable

codes.
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Chapter 1

Introduction

Overview

Randomness has numerous uses in computer science, and sampling is one of its most classical

applications: Suppose we are interested in the size of a particular subset A lying in a large

domain D. Instead of counting the size of A directly by enumeration, one can randomly

draw a small sample from D and calculate the density of A in the sample. The approximated

density is guaranteed to be close to the true density (measured by a parameter ε, the accuracy

error) with probability 1 − δ where δ is very small, known as the confidence error. This

sampling technique is extremely useful both in practice and in theory.

One class of sampling algorithms, known as curve samplers, proceed by viewing the

domain as a vector space over a finite field, and picking a random low-degree curve in

it. Curve samplers exhibit the following nice property besides the sampling property: the

restriction of low-degree polynomials over the domain to the sampled curve is still low-degree.

This special property, combined with the sampling property, turns out to be useful in many

settings, e.g local decoding of Reed-Muller codes and hardness amplification [STV01], PCP

constructions [AS98, ALM+98, MR08], algebraic constructions of pseudorandom-generators

[SU05, Uma03], extractor constructions [SU05, TSU06], and some pure complexity results

(e.g. [SU06]).

The problem of explicitly constructing low-degree curve samplers was raised in [TSU06].

Typically, we are looking for low-degree curve samplers with small sample complexity (poly-

logrithmic in the domain size) and confidence error (polynomially small in the domain size),

and we focus on minimizing the randomness complexity. The simplest way is picking a com-

pletely random low-degree curve whose sampling properties are guaranteed by tail bounds for

limited independence. The randomness complexity of this method, however, is far from be-

ing optimal. The probabilistic method guarantees the existence of (non-explicit) low-degree

curve samplers using O(logN + log(1/δ)) random bits where N is the domain size and δ is
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the confidence error. The real difficulty, however, is to find an explicit construction matching

this bound.

Previous work

Randomness-efficient samplers (without the requirement that the sample points form a curve)

are constructed in [CG89, Gil98, BR94, Zuc97]. In particular, [Zuc97] obtains explicit sam-

plers with optimal randomness complexity (up to a 1 + γ factor for arbitrary small γ > 0)

using the connection between samplers and extractors. See [Gol11] for a survey of samplers.

Degree-1 curve samplers are also called line samplers. Explicit randomness-efficient line

samplers are constructed in the PCP literature [BSSVW03, MR08], motivated by the goal

of constructing almost linear sized PCPs. In [BSSVW03] line samplers are derandomized

by picking a random point and a direction sampled from an ε-biased set, instead of two

random points. An alternative way is suggested in [MR08] where directions are picked from

a subfield. It is not clear, however, how to apply these techniques to higher degree curves.

In [TSU06] it was shown how to explicitly construct derandomized curve samplers with

near-optimal parameters by employing an iterated sampling technique. Formally they ob-

tained

• curve samplers picking curves of degree (log logN + log(1/δ))O(log logN) using random-

ness O(logN + log(1/δ) log logN), and

• curve samplers picking curves of degree (log(1/δ))O(1) using randomness O(logN +

log(1/δ)(log logN)1+γ) for any constant γ > 0

for domain size N , field size q ≥ (logN)Θ(1) and confidence error δ = N−Θ(1). Their work left

the problem of explicitly constructing low-degree curve samplers (ideally picking curves of

degree O(logq(1/δ))) with essentially optimal O(logN+log(1/δ)) random bits as a prominent

open problem.

Main results

It is known that curve samplers in Fmq must have sample complexity Ω
(

log(ε/δ)
ε2

)
and ran-

domness complexity (m− 1) log q + log (1/ε) + log (1/δ)−O(1) [RTS00]. It is also not hard

to show that the degree of the sampled curves has to be Ω
(
logq(1/δ)

)
(c.f. Theorem 3.3.3).

We construct explicit curve samplers with parameters that match or are close to these lower

bounds. In particular, we show how to sample degree-
(
m logq(1/δ)

)O(1)
curves in Fmq using

O(logN + log(1/δ)) random bits for domain size N = |Fmq | and confidence error δ = N−Θ(1).
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Before stating our main theorem, we first present the formal definition of samplers and curve

samplers.

Samplers. Given a finite setM as the domain, the density of a subset A ⊆M is µ(A)
def
=

|A|
|M| . For a collection of elements T = {ti : i ∈ I} ∈ MI indexed by set I, the density of A

in T is µT (A)
def
= |A∩T |

|T | = Pri∈I [ti ∈ A].

Definition 1.0.1 (sampler). A sampler is a function S : N × D → M where |D| is its

sample complexity and M is its domain. We say S samples A ⊆ M with accuracy error ε

and confidence error δ if

Pr
x∈N

[|µS(x)(A)− µ(A)| > ε] ≤ δ

where S(x)
def
= {S(x, y) : y ∈ D}. We say S is an (ε, δ) sampler if it samples all subsets

A ⊆ M with accuracy error ε and confidence error δ. The randomness complexity of S is

log(|N |).

Lines, curves, and manifolds. To define curve sampler, we first define curves, lines, and

more generally manifolds. Let f : Fdq → FDq be a map. We may view f as D individual

functions fi : Fdq → Fq describing its operation on each output coordinate, i.e., f(x) =

(f1(x), . . . , fD(x)) for all x ∈ Fdq .

Definition 1.0.2 (manifold). A manifold in FDq is a function C : Fdq → FDq where C1, . . . , CD
are d-variate polynomials over Fq. We call d the dimension of C. We say a manifold C has

degree t if each polynomial Ci has degree t. An 1-dimensional manifold is also called a curve.

A curve of degree 1 is also called a line.

Now we are ready to define curve samplers, the central objects studied in this thesis.

Definition 1.0.3 (curve/line sampler). LetM = FDq and D = Fq. The sampler S : N×D →
M is a degree-t curve sampler if for all x ∈ N , the function S(x, ·) : D → M is a curve of

degree at most t over Fq. When t = 1, S is also called a line sampler.

The main result of this thesis is as follows.

Theorem 1.0.1 (main). For any ε, δ > 0, integer m ≥ 1, and sufficiently large prime

power q ≥
(
m log(1/δ)

ε

)Θ(1)

, there exists an explicit degree-t curve sampler for the domain Fmq
with t =

(
m logq(1/δ)

)O(1)
, accuracy error ε, confidence error δ, sample complexity q, and

randomness complexity O (m log q + log(1/δ)) = O(logN + log(1/δ)) where N = qm is the

domain size. Moreover, the curve sampler itself has degree
(
m logq(1/δ)

)O(1)
as a polynomial

map.
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Theorem 1.0.1 has better degree bound and randomness complexity compared with the

constructions in [TSU06]. The degree bound, being
(
m logq(1/δ)

)O(1)
, is still sub-optimal

compared with the lower bound logq(1/δ). However, we remark that in typical settings it is

satisfying to to achieve such a degree bound.

As an example, consider the following setting of parameters: domain size N = qm, field

size q = (logN)Θ(1), confidence error δ = N−Θ(1), and accuracy error ε = (logN)−Θ(1).

Note that this is the typical setting in PCP and other literature [ALM+98, AS98, STV01,

SU05]. In this setting, we have the following corollary in which the randomness complexity

is logarithmic and the degree is polylogarithmic.

Corollary 1.0.1. Given domain size N = |Fmq |, accuracy error ε = (logN)−Θ(1), confidence

error δ = N−Θ(1), and large enough field size q = (logN)Θ(1), there exists an explicit degree-t

curve sampler for the domain Fmq with accuracy error ε, confidence error δ, randomness com-

plexity O(logN), sample complexity q, and t ≤ (logN)c for some constant c > 0 independent

of the field size q.

It remains an open problem to explicitly construct curve samplers that have optimal

randomness complexity O(logN + log(1/δ)) (up to a constant factor), and sample curves

with optimal degree bound O(logq(1/δ)). It is also an interesting problem to achieve the

optimal randomness complexity up to a 1+γ factor for any constant γ > 0 (rather than just

an O(1) factor), as achieved by [Zuc97] for general samplers. The standard techniques in

[Zuc97] are not directly applicable as they increase the dimension of samples and only yield

O(1)-dimensional manifold samplers.

Techniques

Extractor machinery. It was shown in [Zuc97] that samplers are equivalent to extrac-

tors, objects that convert weakly random distributions into almost uniform distributions.

Therefore the techniques of constructing extractors are extremely useful in constructing

curve samplers. Our construction employs the technique of block source extraction [NZ96,

Zuc97, SZ99]. In addition, we also use the techniques appeared in [GUV09], especially their

constructions of condensers.

Limited independence. It is well known that points on a random degree-(t − 1) curve

are t-wise independent. So we may simply pick a random curve and use tail inequalities to

bound the confidence error. However, the sample complexity is too high, and hence we need

to use the technique of iterated sampling to reduce the number of sample points.
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Iterated sampling. Iterated sampling is a useful technique for explicitly constructing

randomness-efficient samplers [BR94, TSU06]. The idea is first picking a large sample from

the domain and then draw a sub-sample from the previous sample. The drawback of iter-

ated sampling, however, is that it invests randomness twice while the confidence error does

not shrink correspondingly. To remedy this problem, we add another ingredient into our

construction, namely the technique of error reduction.

Error reduction via list-recoverable codes. We will use explicit list-recoverable codes

(a strengthening of list-decodable codes [GI01]). More specifically, we will employ the list-

recoverability from (folded) Reed-Solomon codes [GR08, GUV09]. List-recoverable codes

provide a way of obtaining samplers with very small confidence error from those with mildly

small confidence error. We refer to this transformation as error reduction, which plays a key

role in our construction.

Sketch of the construction

Our curve sampler is the composition of two samplers which we call the outer sampler and

the inner sampler respectively. The outer sampler picks manifolds of dimension O(logm)

from the domainM = Fmq . The outer sampler has near-optimal randomness complexity but

the sample complexity is large. To fix this problem, we employ the idea of iterated sampling.

Namely we regard the manifold picked by the outer sampler as the new domain M′, and

then construct an inner sampler picking a curve from M′ with small sample complexity.

The outer sampler is obtained by constructing an extractor and then using the extractor-

sampler connection [Zuc97]. We follow the approach in [NZ96, Zuc97, SZ99]: Given an

arbitrary random source with enough min-entropy, we will first use a block source converter

to convert it into a block source, and then feed it to a block source extractor. In addition, we

need to construct these components carefully so as to maintain the low-degree-ness. The way

we construct the block source converter is different from those in [NZ96, Zuc97, SZ99] (as

they are not in the form of low-degree polynomial maps), and is based on the Reed-Solomon

condenser proposed in [GUV09]: To obtain one block, we simply feed the random source

and a fresh new seed into the condenser, and let the output be the block. We show that this

indeed gives a block source.

The inner sampler is constructed using techniques of iterated sampling and error re-

duction. We start with the basic curve samplers picking totally random curves, and then

apply the error reduction as well as iterated sampling techniques repeatedly to obtain the

desired inner sampler. Either of the two operations improves one parameter while worsening

some other one: Iterated sampling reduces sample complexity but increases the randomness
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complexity, whereas error reduction reduces the confidence error but increases the sample

complexity. Our construction applies the two techniques alternately such that (1) we keep

the invariant that the confidence error is always exponentially small in the randomness com-

plexity, and (2) the sample complexity is finally brought down to q. We remark that the

idea of sandwiching several operations to get the desired parameters without spoiling other

ones is reminiscent of Reingold’s proof that SL = L [Rei08] and Dinur’s proof of the PCP

theorem [Din07].

Outline

The organization of this thesis is as follows: In Chapter 2 we introduce the preliminary

definitions and notions as well as some basic facts that will be used later. In Chapter 3

we present some basic results about samplers and curve samplers. Chapter 4 is devoted to

the main result of this thesis which describes an explicit construction of curve samplers. We

divide this construction into two parts, the outer sampler (Section 4.1) and the inner sampler

(Section 4.2). We then put it together and finish the construction of the curve samplers in

Section 4.3. We present an alternative and simpler construction of outer samplers in Section

4.4.
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Chapter 2

Preliminaries

Notations and basic definitions

We denote the set of numbers {1, 2, . . . , n} by [n]. Given a prime power q, write Fq for the

finite field of size q. Write US for the uniform distribution over a finite set S, Un,q for the

uniform distribution over Fnq , and Un for the uniform distribution over {0, 1}n. Logarithms

are taken with base 2 unless the base is explicitly specified.

Random variables and distributions are represented by upper-case letters whereas their

specific values are represented by lower-case letters. Write x← X if x is sampled according

to X. Write X ⊂ S if X is a distribution over a set S. The support of a distribution X ⊂ S

is supp(X)
def
= {x ∈ S : Pr[X = x] > 0}. We use the statistical distance ∆(·, ·) to measure

the closeness of two distributions. The statistical distance between X, Y ⊂ S is defined as

∆(X, Y ) = max
T⊆S
|Pr[X ∈ T ]− Pr[Y ∈ T ]|.

Then ∆(·, ·) defines a metric. We say X is ε-close to Y if ∆(X, Y ) ≤ ε.

Fact 1. The statistical distance is half the `1 distance, i.e., for X, Y ⊂ S, we have

∆(X, Y ) =
1

2

∑
x∈S

|Pr[X = x]− Pr[Y = x]|.

For an event A, let I[A] be the indicator variable that evaluates to 1 if A occurs and 0

otherwise. For a distribution X and an event A that occurs with nonzero probability, define

the conditional distribution X|A by Pr[X|A = x] = Pr[(X=x)∧A]
Pr[A]

.

We use forms like {tx : x ∈ I} ∈ SI to denote a collection of elements indexed by I

with each element in the set S. Alternatively, we view {tx : x ∈ I} as the function from

I to S that maps x to tx. We also slightly abuse the notation and use {tx : x ∈ I} for an
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(unordered) multi-set.

Indeterminates are written as upper-case letters. E.g., we use F[X1, . . . , Xn] to denote

the polynomial ring over the field F with indeterminates X1, . . . , Xn. We say a polynomial

p(X1, . . . , Xn) has degree t if the sum of the individual degrees
∑n

i=1 ai is at most t for all

monomial
∏n

i=1X
ai
i of p.

Facts about curves and manifolds

The following facts will be useful:

Fact 2. For any distinct x1, . . . , xt+1 ∈ Fq and any y1, . . . , yt+1 ∈ Fnq , there exists a unique

curve C : Fq → Fnq of degree t such that C(xi) = yi for all i ∈ [t+ 1]. Indeed, Ci’s are given

by the Lagrange polynomials:

Ci(X) =
t+1∑
j=1

yj,i
∏

k∈[t+1]\{j}

X − xk
xj − xk

where yj,i is the i-th coordinate of yj, i ∈ [n].

Fact 3. Let f1 : Fd1q → Fd0q be a manifold of degree t1 and f2 : Fd2q → Fd1q a manifold of

degree t2. Then f1 ◦ f2 : Fd2q → Fd0q is a manifold of degree t1t2.

We also need the following lemma, generalizing the one in [TSU06]:

Lemma 2.0.1. A manifold f :
(
FqD
)n → (

FqD
)m

of degree t, when viewed as a function

f :
(
FDq
)n → (

FDq
)m

, is also of degree t.

Proof. Write f = (f1, . . . , fm). By symmetry we just show f1, when viewed as a function

f1 :
(
FDq
)n → FDq , has degree t. Suppose

f1(x1, . . . , xn) =
∑

d=(d1,...,dn)∑
di≤t

cd

n∏
i=1

xi
di .

Let (e1, . . . , eD) be the standard basis of FDq over Fq. Writing the i-th variable xi ∈ FqD as∑D
j=1 xi,jej ∈ FDq with xi,j ∈ Fq, and each coefficient cd ∈ FqD as

∑D
j=1 cd,jej with cd,j ∈ Fq,

we obtain

f1(x1, . . . , xn) =
∑

d=(d1,...,dn)∑
di≤t

(
D∑
j=1

cd,jej

)
n∏
i=1

(
D∑
j=1

xi,jej

)di

.

After multiplying out, each monomial has degree at most maxd
∑

i di ≤ t, and their co-

efficients are polynomials in the ei elements. Rewriting each of these values in the basis
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(e1, . . . , eD) and gathering the coefficients on ei, we obtain the i-th coordinate function of f1

that has degree at most d for all 1 ≤ i ≤ D. Therefore f1 :
(
FDq
)n → FDq is a manifold of

degree t, and so is f :
(
FDq
)n → (

FDq
)m

.

Tail probability bounds

We say random variables X1, . . . , Xn are independent if for any specific values x1, . . . , xn, it

holds that

Pr

[
n∧
i=1

Xi = xi

]
=

n∏
i=1

Pr[Xi = xi].

We say X1, . . . , Xn are pairwise independent if for any specific values x1, x2 and any distinct

i1, i2 ∈ [n], it holds that

Pr [Xi1 = x1 ∧Xi2 = x2] = Pr[Xi1 = x1] Pr[Xi2 = x2].

In general, for an integer t > 1, we say X1, . . . , Xn are t-wise independent if for any specific

values x1, . . . , xt and any distinct i1, . . . , it ∈ [n], it holds that

Pr

[
t∧

j=1

Xij = xj

]
=

t∏
j=1

Pr[Xij = xj].

We consider the behaviour of a fully random curve C of degree t over Fq, i.e., write

C = (C1, . . . , Cn), then each Ci is a degree-t univariate polynomial whose t + 1 coefficients

are chosen uniformly at random from Fq, and all Ci’s are chosen independently. It is known

that the points on C are (t+ 1)-wise independent.

Lemma 2.0.2. Let C : Fq → Fnq be a random curve of degree t over Fq. Then the random

variables C(x)’s are (t+ 1)-wise independent where x ranges over Fq.

Proof. First note that each C(x) is uniformly distributed. By Fact 2, for any distinct

y1, . . . , yt+1 ∈ Fq and any z1, . . . , zt+1 ∈ Fnq , there is a unique degree-t curve, out of all

q(t+1)n curves, that passes zi at yi for all i ∈ [t+ 1]. So we have

Pr

[
t+1∧
i=1

C(yi) = zi

]
=

1

q(t+1)n
=

t+1∏
i=1

Pr[C(yi) = zi].

By definition, the random variables C(x)’s with x ranging over Fq are (t+ 1)-wise indepen-

dent.
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We need the Chernoff bound of the following form:

Lemma 2.0.3. Suppose X1, . . . , Xn ⊂ [0, 1] are independent random variables. Let X =∑n
i=1 Xi and µ = E[X], and let R ≥ 6µ. Then

Pr[X ≥ R] ≤ 2−R.

The following bound follows from Chebyshev’s inequality:

Lemma 2.0.4. Suppose X1, . . . , Xn are pairwise independent random variables. Let X =∑n
i=1Xi and µ = E[X], and let A > 0. Then

Pr[|X − µ| ≥ A] ≤
∑n

i=1 Var[Xi]

A2
.

We will also use the following tail bound for t-wise independent random variables:

Lemma 2.0.5 ([BR94]). Let t ≥ 4 be an even integer. Suppose X1, . . . , Xn ⊂ [0, 1] are

t-wise independent random variables. Let X =
∑n

i=1Xi and µ = E[X], and let A > 0. Then

Pr[|X − µ| ≥ A] = O

((
tµ+ t2

A2

)t/2)
.

Basic line/curve samplers

The simplest line samplers are those picking completely random lines, as defined below. We

call them as basic line samplers.

Definition 2.0.4 (basic line sampler). For m ≥ 1 and prime power q, let Linem,q : F2m
q ×Fq →

Fmq be the line sampler that picks a uniformly random line in Fmq . Formally,

Linem,q((a, b), y)
def
= (a1y + b1, . . . , amy + bm)

for a = (a1, . . . , am), b = (b1, . . . , bm) ∈ Fmq and y ∈ Fq.

Remark 1. Note that although Linem,q(x, ·) is a line (i.e., a degree-1 curve) for x ∈ F2m
q , the

function Linem,q itself is a degree-2 manifold.

The basic line samplers are indeed good samplers:

Lemma 2.0.6. For ε > 0, m ≥ 1 and prime power q, Linem,q is an
(
ε, 1

ε2q

)
line sampler.
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Proof. Let A be an arbitrary subset of Fmq . Note that Linem,q picks a line uniformly at

random. By Lemma 2.0.2, the random variables Linem,q(U2m,q, y) with y ranging over Fq are

pairwise independent. So the indicator variables I[Linem,q(U2m,q, y) ∈ A] with y ranging over

Fq are also pairwise independent. Applying Lemma 2.0.4, we get

Pr
x←U2m,q

[∣∣µLinem,q(x,·)(A)− µ(A)
∣∣ > ε

]
= Pr

∣∣∣∣∣∣
∑
y∈Fq

I[Linem,q(U2m,q, y) ∈ A]− E

∑
y∈Fq

I[Linem,q(U2m,q, y) ∈ A]

∣∣∣∣∣∣ > εq


≤
∑

y∈Fq
Var

[
I[Linem,q(U2m,q, y) ∈ A]

]
ε2q2

≤ 1

ε2q
.

By definition, Linem,q is an
(
ε, 1

ε2q

)
line sampler.

Similarly we consider the simplest low-degree curve samplers that pick completely random

curves. We call them basic curve samplers.

Definition 2.0.5 (basic curve sampler). For m ≥ 1, t ≥ 4 and prime power q, let Curvem,t,q :

Ftmq ×Fq → Fmq be the curve sampler that picks a uniformly random curve of degree t− 1 in

Fmq . Formally,

Curvem,t,q((c0, . . . , ct−1), y)
def
=

(
t−1∑
i=0

ci,1y
i, . . . ,

t−1∑
i=0

ci,my
i

)

for each c0 = (c0,1, . . . , c0,m), . . . , ct−1 = (ct−1,1, . . . , ct−1,m) and y ∈ Fq.

Remark 2. Note that Curvem,t,q is a manifold of degree t.

The basic curve samplers are indeed good samplers:

Lemma 2.0.7. For ε > 0, m ≥ 1, t ≥ 4 and sufficiently large prime power q = (t/ε)O(1),

Curvem,t,q is an
(
ε, q−t/4

)
sampler.

Proof. Let A be an arbitrary subset of Fmq . Note that Curvem,t,q(x, ·) picks a degree-(t − 1)

curve uniformly at random. By Lemma 2.0.2, the random variables Curvem,t,q(Utm,q, y) with y

ranging over Fq are t-wise independent. So the indicator variables I[Curvem,t,q(Utm,q, y) ∈ A]
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with y ranging over Fq are also t-wise independent. Applying Lemma 2.0.5, we get

Pr
[∣∣µCurvem,t,q(Utm,q ,·)(A)− µ(A)

∣∣ > ε
]

= Pr

∣∣∣∣∣∣
∑
y∈Fq

I[Curvem,t,q(Utm,q, y) ∈ A]− E

∑
y∈Fq

I[Curvem,t,q(Utm,q, y) ∈ A]

∣∣∣∣∣∣ > εq


= O

((
tqµ(A) + t2

ε2q2

)t/2)
= q−t/4

provided that q = (t/ε)O(1) is sufficiently large. By definition, Curvem,t,q is an
(
ε, q−t/4

)
sampler.

Extractors and condensers

A (seeded) extractor is an object that takes an imperfect random variable (i.e., a random

variable that contains some randomness but is not uniformly distributed) called the (weakly)

random source, invests a small amount of randomness called the seed, and produces an output

whose distribution is very close to the uniform distribution.

We introduce the following notion to measure the amount of randomness contained in a

random source.

Definition 2.0.6 (min-entropy). We say a random variable X over a set S has min-entropy

k and entropy deficiency log |S| − k if for any x ∈ S, it holds that Pr[X = x] ≤ 2−k. The

min-entropy of X is at most log |S|, and it achieves log |S| iff X = US.

We say X has q-ary min-entropy k if for any x ∈ S, it holds that Pr[X = x] ≤ q−k (or

equivalently, X has min-entropy k log q).

Lemma 2.0.8 (chain rule for min-entropy). Let (X, Y ) be a joint distribution where X ⊂ F`q
and Y has q-ary min-entropy k. We have

Pr
x←X

[
Y |X=x has q-ary min-entropy k − `− logq (1/ε)

]
≥ 1− ε.

Proof. We say x ∈ supp(X) is good if Pr[X = x] ≥ εq−` and bad otherwise. Then

Prx←X [x is bad] ≤ supp(X)εq−` ≤ ε. Consider arbitrary good x. For any specific value

y for Y , we have Pr[Y |X=x = y] = Pr[(Y=y)∧(X=x)]
Pr[X=x]

≤ Pr[Y=y]
εq−` ≤ q−(k−`−logq(1/ε)). By definition,

Y |X=x has q-ary min-entropy k − ` − logq (1/ε) when X = x is good, which occurs with

probability at least 1− ε.

12



Before giving the formal definition of extractors, we first consider a kind of objects called

condensers that can be seen as a relaxation of extractors. A condenser is weaker than an

extractor in the sense that the output is only required to be close to a distribution with a

large amount of min-entropy, rather than close to the uniform distribution.

Definition 2.0.7 (condenser). Given a function C : Fnq×Fdq → Fmq , we say C is an (n, k1)→ε,q

(m, k2) condenser if for every distribution X with q-ary min-entropy k1, C(X,Ud,q) is ε-close

to a distribution with q-ary min-entropy k2. The second argument of C is its seed. The

quantities n log q, d log q and m log q are called the input length, seed length and output

length of C respectively. We call k1 log q the min-entropy threshold of C and ε the error of

C.

Next we define extractors as the strengthening of condensers.

Definition 2.0.8 (extractor). The function E : Fnq ×Fdq → Fmq is a (k, ε, q) extractor if it is a

(n, k)→ε,q (m,m) condenser. The seed, input length, seed length, output length, min-entropy

threshold, and error of the extractor E are the same as the corresponding parameters of E

as a condenser.

We say a condenser/extractor f : Fnq × Fdq → Fmq has degree t if f has degree t as a

manifold in Fn+d
q .

A random source X is called a flat source if it is uniformly distributed over its support,

i.e.,

Pr[X = a] =

 1
|supp(X)| a ∈ supp(X),

0 otherwise.

The following basic fact will be useful:

Fact 4. A random source X of min-entropy k is a convex combination of flat sources of

min-entropy k.

Write X =
∑

i∈I ciXi as such a convex combination. Then we have

∆(X, Y ) = ∆

(∑
i∈I

ciXi,
∑
i∈I

ciY

)
≤
∑
i∈I

ci∆(Xi, Y ) ≤ sup
i∈I

(∆(Xi, Y )) .

Thus, we may assume that the input is always a flat source of min-entropy k when proving

the extractor or condenser property for min-entropy threshold k.

13



Block source extraction

One important class of random sources is the class of block sources, first introduced in [CG88].

A block source is a random source with the property that conditioning on any prefix of blocks,

the remaining blocks still have some min-entropy.

Definition 2.0.9 (block source [CG88]). A random source X = (X1, . . . , Xs) ⊂ Fn1
q ×

· · · × Fns
q with each Xi ⊂ Fni

q is a (k1, . . . , ks) q-ary block source if for any i ∈ [s] and

(x1, . . . , xi−1) ∈ supp(X1, . . . , Xi−1), the conditional distribution Xi|X1=x1,...,Xi−1=xi−1
has q-

ary min-entropy ki. Each Xi is called a block.

We consider the problem of extracting randomness from block sources:

Definition 2.0.10 (block source extractor). A function E : (Fn1
q × · · · × Fns

q ) × Fdq → Fmq
is called a ((k1, . . . , ks), ε, q) block source extractor if for any (k1, . . . , ks) q-ary block source

(X1, . . . , Xs) ⊂ Fn1
q × · · · × Fns

q , E((X1, . . . , Xs), Ud,q) is ε-close to Um,q.

One nice property of block sources is that their special structures allow us to compose

several extractors and get a block source extractor with only a small amount of randomness

invested.

Definition 2.0.11 (block source extraction by composition). Let s ≥ 1 be an integer and

for each i ∈ [s], let Ei : Fni
q × Fdiq → Fmi

q be a map. Suppose that mi ≥ di−1 for all i ∈ [s],

where we define d0 = 0. Define E = BlkExt(E1, . . . , Es) as follows:

E : (Fn1
q × · · · × Fns

q )× Fdsq → (Fm1−d0
q × · · · × Fms−ds−1

q )

((x1, . . . , xs), ys) 7→ (z1, . . . , zs)

where for i = s, . . . , 1, we iteratively define (yi−1, zi) to be a partition of Ei(xi, yi) into the

prefix yi−1 ∈ Fdi−1
q and the suffix zi ∈ Fmi−di−1

q .

See Figure 2.1 for an illustration of the above definition.

Lemma 2.0.9. Let s ≥ 1 be an integer and for each i ∈ [s], let Ei : Fni
q × Fdiq → Fmi

q be

a (ki, εi, q) extractor of degree ti ≥ 1. Then E = BlkExt(E1, . . . , Es) is a ((k1, . . . , ks), ε, q)

block source extractor of degree t where ε =
∑s

i=1 εi and t =
∏s

i=1 ti.

Proof. Induct on s. When s = 1 the claim follows from the extractor property of E1.

When s > 1, assume the claim holds for all s′ < s. Define E ′ = BlkExt(E2, . . . , Es). By

the induction hypothesis, E ′ is a ((k2, . . . , ks), ε
′, q) block source extractor where ε′ =

∑s
i=2 εi

and t′ =
∏s

i=2 ti.
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Es Es−1 · · ·

· · ·

· · ·

E2 E1

Ys

Xs Xs−1 X2 X1

Zs Zs−1 Z2 Z1

Ys−1 Ys−2 Y2 Y1

BlkExt(E1, . . . , Es)

Figure 2.1: The composed block source extractor BlkExt(E1, . . . , Es)

Let (X1, . . . , Xs) ⊂ Fn1
q × · · · × Fns

q be an arbitrary (k1, . . . , ks) q-ary block source. Let

(Yi−1, Zi) ⊂ Fdi−1
q × Fmi−di−1

q be the output of Ei and (Z1, . . . , Zs) be the the output of

E when (X1, . . . , Xs) is fed into E as the input and an independent uniform distribution

Ys = Uds,q is used as the seed (c.f. Figure 2.1). The output of E ′ is then (Y1, Z2, . . . , Zs).

Fix x ∈ supp(X1). By the definition of block sources, the distribution (X2, . . . , Xs)|X1=x

is a (k2, . . . , ks) q-ary block source. Also note that Ys|X1=s = Ys is an independent uniform

distribution. By the induction hypothesis, the distribution

(Y1, Z2, . . . , Zs)|X1=x = E ′((X2, . . . , Xs), Ys)|X1=x

is ε′-close to (Ud1,q, Um2−d1,q, . . . , Ums−ds−1,q). As this holds for all x ∈ supp(X1), the distribu-

tion (X1, Y1, Z2, . . . , Zs) is ε′-close to (X1, Ud1,q, Um2−d1,q, . . . , Ums−ds−1,q). So the distribution

E((X1, . . . , Xs), Ys) = (E1(X1, Y1), Z2, . . . , Zs)

is ε′-close to (E1(X1, Ud1,q), Um2−d1,q, . . . , Ums−ds−1,q). Then we know that it is also ε-close to

(Um1−d0,q, Um2−d1,q, . . . , Ums−ds−1,q) since E1 is a (k1, ε1, q) extractor.

Finally, to see that E has degree t, note that E ′((X2, . . . , Xs), Ys) = (Y1, Z2, . . . , Zs)

has degree t′ in its variables X2, . . . , Xs and Ys by the induction hypothesis and hence

Y1, Z2, . . . , Zs have degree t′ in these variables. Then Z1 = E1(X1, Y1) has degree t1 ·
max{1, t′} = t in X1, . . . , Xs and Ys. So E((X1, . . . , Xs), Ys) = (Z1, . . . , Zs) has degree t

in X1, . . . , Xs and Ys.
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Chapter 3

Basic results

3.1 Extractor vs. sampler connection

Our construction of curve samplers relies on the following observation by [Zuc97] which

shows the equivalence between extractors and samplers.

Theorem 3.1.1 ([Zuc97], restated). Given a map f : Fnq ×Fdq → Fmq , we have the following:

(1) If f is a (k, ε, q) extractor, then it is also an (ε, δ) sampler where δ = 2qk−n.

(2) If f is an (ε/2, δ) sampler where δ = εqk−n, then it is also a (k, ε, q) extractor.

Proof. (Extractor to sampler) Assume to the contrary that f is not an (ε, δ) sampler. Then

there exists a subset A ⊆ Fmq with Prx[|µf(x)(A)−µ(A)| > ε] > δ. Then either Prx[µf(x)(A)−
µ(A) > ε] > δ/2 or Prx[µf(x)(A)−µ(A) < −ε] > δ/2. Assume Prx[µf(x)(A)−µ(A) > ε] > δ/2

(the other case is symmetric). Let X be the uniform distribution over the set of x such that

µf(x)(A) − µ(A) > ε, i.e., Pry[f(x, y) ∈ A] − Prx[x ∈ A] > ε. Then |f(X,Ud,q) − Um,q| > ε.

But the q-ary min-entropy of X is at least logq((δ/2)qn) ≥ k, contradicting the extractor

property of f .

(Sampler to extractor) Assume to the contrary that f is not a (k, ε, q) extractor. Then

there exists a subset A ⊆ Fmq and a random source X of q-ary min-entropy k satisfying the

property that |Pr[f(X,Ud,q) ∈ A] − µ(A)| > ε. We may assume X is a flat source (i.e.

uniformly distributed over its support) since a general source with q-ary min-entropy k is a

convex combination of flat sources with q-ary min-entropy k. Note that |supp(X)| ≥ qk. By

the averaging argument, for at least an ε-fraction of x ∈ supp(X), we have |Pr[f(x, Ud,q) ∈
A] − µ(A)| > ε/2. But it implies that for x uniformly chosen from Fnq , with probability at

least εµ(supp(X)) = δ we have |µf(x)(A)−µ(A)| > ε/2, contradicting the sampling property

of f .
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Table 3.1 shows the rough correspondences between the parameters of extractors and

those of samplers.

extractor sampler

error ε accuracy error ε
entropy deficiency (n− k) log q confidence error δ

seed length d log q sample complexity qd

input length n log q randomness complexity n log q
output length m log q domain size qm

Table 3.1: The correspondences between the parameters of extractors and samplers

3.2 Existence of a good curve sampler

In this section, we prove the existence of a (non-explicit) low-degree curve sampler with low

randomness complexity and a small number of sample points.

Theorem 3.2.1. For any m ≥ 1, ε, δ > 0 and sufficiently large q ≥
(

log(1/δ)
ε

)Θ(1)

, there

exists a (non-explicit) (ε, δ) degree-t curve sampler S : D × Fq → Fmq with randomness

complexity log |D| = m log q+ log (1/δ) +O(1), sample complexity q, and t = O
(
logq (1/δ)

)
.

Proof. We use the probabilistic method. Choose the curve sampler S by choosing the degree-

t curve S(x, ·) : Fq → Fmq independently at random for each x ∈ D.

Let A be an arbitrary subset of Fmq . Fix x ∈ D. By Lemma 2.0.2, the random vari-

ables S(x, y) with y ranging over Fq are (t + 1)-wise independent. So the indicator vari-

ables I[S(x, y) ∈ A] with y ranging over Fq are also (t + 1)-wise independent. Applying

Lemma 2.0.5, we get

Pr
[∣∣µS(x,·)(A)− µ(A)

∣∣ > ε
]

= Pr

∣∣∣∣∣∣
∑
y∈Fq

I[S(x, y) ∈ A]− E

∑
y∈Fq

I[S(x, y) ∈ A]

∣∣∣∣∣∣ > εq


= O

((
(t+ 1)qµ(A) + (t+ 1)2

ε2q2

)(t+1)/2
)
≤ δ

6

for sufficiently large β. Let B(x) be the event that
∣∣µS(x,·)(A)− µ(A)

∣∣ > ε. Then 0 ≤
Pr [I[B(x)] = 1] ≤ δ

6
and hence E [

∑
x I[B(x)]] ≤ δ|D|

6
. The indicator variables I[B(x)] with

x ranging over D are independent. Applying Lemma 2.0.3, we obtain

Pr

[∑
x

I[B(x)] ≥ δ|D|

]
≤ 2−δ|D|.
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There are 2q
m

possible A ⊆ Fmq . So with probability at least 1−2q
m

2−δ|D| > 0 (for sufficiently

large log |D| = m log q+log (1/δ)+O(1)), the events
∑

x I[B(x)] ≤ δ|D| for all A ⊆ Fmq occur

by the union bound. Take the curve sampler S that makes all these events occur. Then S

is an (ε, δ) degree-t curve sampler by definition.

The most interesting case is when the domain size qm and the confidence error δ are

polynomially related, while the field size q and the degree t are kept small:

Corollary 3.2.1. Given the domain size N = |Fmq | = qm, accuracy error ε = (logN)−O(1),

confidence error δ = N−O(1), and large enough field size q = (logN)Θ(1), there exists a

(non-explicit) (ε, δ) degree-t curve sampler S : D × Fq → Fmq with randomness complexity

log |D| = O(logN), sample complexity q, and t = Θ
(

logN
log logN

)
.

3.3 Lower bounds

We will use the following optimal lower bound for extractors:

Theorem 3.3.1 ([RTS00], restated). Let E : Fnq × Fdq → Fmq be a (k, ε, q) extractor. Then

(a) if ε < 1/2 and qd ≤ qm/2, then qd = Ω
(

(n−k) log q
ε2

)
, and

(b) if qd ≤ qm/4, then qd+k−m = Ω(1/ε2).

Theorem 3.3.2. Let S : Fnq ×Fq → Fmq be an (ε, δ) curve sampler where ε < 1/2 and m ≥ 2.

Then

(a) the sample complexity q = Ω
(

log(2ε/δ)
ε2

)
, and

(b) the randomness complexity n log q ≥ (m− 1) log q + log(1/ε) + log(1/δ)−O(1).

Proof. By Theorem 3.1.1, S is a (k, 2ε, q) extractor where k = n− logq(2ε/δ). The first claim

then follows from Theorem 3.3.1 (a). Applying Theorem 3.3.1 (b), we get (1+k−m) log q ≥
Ω(log(1/ε))−O(1). Therefore

n log q = k log q + log(2ε/δ) ≥ (m− 1) log q + log(1/δ) + Ω(log(1/ε))−O(1).

In particular, as log(1/ε) = O(log q), the randomness complexity n log q is at least

Ω(logN + log(1/δ)) when the domain size N = qm ≥ N0 for some constant N0. There-

fore the randomness complexity in Theorem 1.0.1 is optimal up to a constant factor.

We also present the following lower bound on the degree of curves sampled by a curve

sampler:
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Theorem 3.3.3. Let S : N × Fq → Fmq be an (ε, δ) degree-t curve sampler where m ≥ 2,

ε < 1/2 and δ < 1. Then t = Ω
(
logq(1/δ) + 1

)
.

Proof. Clearly t ≥ 1. Suppose S = (S1, . . . , Sm) and define S ′ = (S1, S2). Let C be the set

of curves of degree at most t in F2
q. Then |C| = q2(t+1). Consider the map τ : N → C that

sends x to S ′(x, ·). We can pick k = bq/2c curves C1, . . . , Ck ∈ C such that the union of their

preimages

B
def
=

k⋃
i=1

τ−1(Ci) =
k⋃
i=1

{x : S ′(x, ·) = Ci}

has size at least k|N |
|C| = k|N |

q2(t+1) .

Define A ⊆ Fmq by

A
def
= {Ci(y) : i ∈ [k], y ∈ Fq} × Fm−2

q ,

i.e., let A be the set of points in Fmq whose first two coordinates are on at least one curve

Ci. We have |A| ≤ kqm−1 and hence µ(A) ≤ k/q ≤ 1/2 < 1 − ε. On the other hand, it

follows from the definition of A that we have S(x, y) ∈ A for all x ∈ B and y ∈ Fq. So

µS(x)(A) = 1 for all x ∈ B. Then δ ≥ Pr
[
|µS(x)(A)− µ(A)| > ε

]
≥ |B|
|N | ≥

k
q2(t+1) and hence

t ≥ max
{

1, 1
2

logq(k/δ)− 1
}

= Ω
(
logq(1/δ) + 1

)
.

We remark that the condition m ≥ 2 is necessary in Theorem 3.3.3 since when m = 1,

the sampler S with S(x, y) = y for all x ∈ N and y ∈ Fq is a (0, 0) degree-1 curve sampler.
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Chapter 4

Explicit constructions

4.1 Outer sampler

In this section we construct an O(log k)-dimensional manifold sampler, which we called the

“outer sampler”, with the optimal randomness complexity where k = n − logq (1/δ). In

the language of extractors, we construct an extractor with the seed in FO(log k)
q for random

sources of q-ary min-entropy k.

4.1.1 Block source conversion

Definition 4.1.1 (block source converter [NZ96]). A function C : Fnq×Fdq → (Fm1
q ×· · ·×Fms

q )

is called a (k, (k1, . . . , ks), ε, q) block source converter if for any random source X ⊆ Fnq of

q-ary min-entropy k, the output C(X,Ud,q) ⊂ Fm1
q ×· · ·×Fms

q is ε-close to a (k1, . . . , ks) q-ary

block source. In addition, we say C has degree t if C has degree t as a manifold in Fn+d
q .

It was shown in [NZ96] that one can obtain a block by choosing a pseudorandom subset of

bits of the random source. Yet the proof is pretty delicate and cumbersome. Furthermore the

resulting extractor does not have a nice algebraic structure. Here we make the observation

that the following condenser from Reed-Solomon codes in [GUV09] can be used to obtain

blocks and is a low-degree manifold.

Definition 4.1.2 (condenser from Reed-Solomon codes [GUV09]). Let ζ ∈ Fq be a generator

of the multiplicative group F×q . Define RSConn,m,q : Fnq × Fq → Fmq for n,m ≥ 1 and prime

power q:

RSConn,m,q(x, y) =
(
y, fx(y), fx(ζy), . . . , fx(ζ

m−2y)
)

where fx(Y ) =
∑n−1

i=0 xiY
i for x = (x0, x1, . . . , xn−1) ∈ Fnq .
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Theorem 4.1.1 ([GUV09]). For any h ≥ 1, n ≥ m ≥ 1, prime power q and ε > 0,

RSConn,m,q is an
(
n, logq

(
H
ε

))
→2ε,q

(
m, logq

(
L
2ε

))
condenser, where H = (h− 1) q

m−1−1
q−1

and

L = (εq − (n − 1)(h − 1)(m − 1)) · hm−1 − 1. In particular, for large enough q ≥ (n/ε)O(1),

RSConn,m,q is a m→ε,q 0.99m condenser.

Remark 3. The condenser RSConn,m,q(x, y) is a degree-n manifold, as each monomial in any

of its coordinate is of the form y or xi(ζ
jy)i where i ≤ n− 1.

Remark 4. The reason we use the condenser from Reed-Solomon codes rather than the

ones from Parvaresh-Vardy codes [GUV09, TSU12] is that we need the condenser to be a

low-degree manifold in both the seed and the random source. The known condensers from

Parvaresh-Vardy codes are low-degree in the seed, yet we have no good bound on the degree

in the random source.

We apply the above condenser on the random source with an independent seed to obtain

a new block each time. Formally:

Definition 4.1.3 (block source converter via condensing). For integers n,m1, . . . ,ms ≥ 1

and prime power q, define the function BlkCnvtn,(m1,...,ms),q : Fnq × Fsq → Fm1+···+ms
q by

BlkCnvtn,(m1,...,ms),q(x, y) = (RSConn,m1,q(x, y1), . . . ,RSConn,ms,q(x, ys))

for x ∈ Fnq and y = (y1, . . . , ys) ∈ Fsq.

The function BlkCnvtn,(m1,...,ms),q is indeed a block source converter, as we show below.

The intuition is that conditioning on the values of the previous blocks, the random source X

still has enough min-entropy, and hence we may apply the condenser to get the next block.

We need the following technical lemmas:

Lemma 4.1.1. Let P,Q ⊂ I be two distributions with ∆(P,Q) ≤ ε. Let {Xi : i ∈ supp(P )}
and {Yi : i ∈ supp(Q)} be two collections of distributions over the same domain S such

that ∆(Xi, Yi) ≤ ε′ for any i ∈ supp(P ) ∩ supp(Q). Then X
def
=
∑

i∈supp(P ) Pr[P = i] ·Xi is

(2ε+ ε′)-close to Y
def
=
∑

i∈supp(Q) Pr[Q = i] · Yi.

Proof. Let T be an arbitrary subset of S and we will prove that |Pr[X ∈ T ]−Pr[Y ∈ T ]| ≤
2ε+ ε′.

Note that we can add dummy distributions Xi for i ∈ I \ supp(P ) and Yj for j ∈
I\supp(Q) such that ∆(Xi, Yi) ≤ ε′ for all i ∈ I, and it still holds thatX =

∑
i∈I Pr[P = i]·Xi
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and Y =
∑

i∈I Pr[Q = i] · Yi. Then we have

|Pr[X ∈ T ]− Pr[Y ∈ T ]|

=

∣∣∣∣∣∑
i∈I

Pr[P = i] Pr[Xi ∈ T ]−
∑
i∈I

Pr[Q = i] Pr[Yi ∈ T ]

∣∣∣∣∣
≤
∑
i∈I

|Pr[P = i] Pr[Xi ∈ T ]− Pr[Q = i] Pr[Yi ∈ T ]|

≤
∑
i∈I

|(Pr[P = i]− Pr[Q = i]) Pr[Xi ∈ T ] + Pr[Q = i](Pr[Xi ∈ T ]− Pr[Yi ∈ T ])|

≤

(∑
i∈I

|Pr[P = i]− Pr[Q = i]|

)
+ ε′

(∑
i∈I

Pr[Q = i]

)
≤ 2ε+ ε′

Lemma 4.1.2. Let X = (X1, . . . , Xs) ⊂ Fn1
q ×· · ·×Fns

q be a distribution such that for any i ∈
[s] and (x1, . . . , xi−1) ∈ supp(X1, . . . , Xi−1), the conditional distribution Xi|X1=x1,...,Xi−1=xi−1

is ε-close to a distribution X̃i(x1, . . . , xi−1) with q-ary min-entropy ki. Then X is 2sε-close

to a (k1, . . . , ks) q-ary block source.

Proof. Define X ′ = (X ′1, . . . , X
′
s) as the unique distribution such that for any i ∈ [s] and any

(x1, . . . , xi−1) ∈ supp(X ′1, . . . , X
′
i−1), the conditional distribution X ′i|X′1=x1,...,X′i−1=xi−1

equals

X̃i(x1, . . . , xi−1) if (x1, . . . , xi−1) ∈ supp(X1, . . . , Xi−1)1 and otherwise equals Uni,q.

For any i ∈ [s] and (x1, . . . , xi−1) ∈ supp(X ′1, . . . , X
′
i−1), we known X ′i|X′1=x1,...,X′i−1=xi−1

is either X̃i(x1, . . . , xi−1) or Uni,q. And in either case it has min-entropy ki. So X ′ is a

(k1, . . . , ks) q-ary block source.

We will then prove that for any i ∈ [s] and any (x1, . . . , xi−1) ∈ supp(X1, . . . , Xi−1) ∩
supp(X ′1, . . . , X

′
i−1), the conditional distribution X|X1=x1,...,Xi−1=xi−1

is 2(s− i+ 1)ε-close to

X ′|X′1=x1,...,X′i−1=xi−1
. Setting i = 1 proves the lemma.

Induct on i. For i = s the claim holds by the definition of X ′. For i < s, assume

the claim holds for i + 1 and we will prove that it holds for i as well. Consider any

(x1, . . . , xi−1) ∈ supp(X1, . . . , Xi−1) ∩ supp(X ′1, . . . , X
′
i−1). Let A = Xi|X1=x1,...,Xi−1=xi−1

and

B = X ′i|X′1=x1,...,X′i−1=xi−1
. We have

X|X1=x1,...,Xi−1=xi−1
=

∑
xi∈supp(A)

Pr[A = xi] ·X|X1=x1,...,Xi=xi

1(x1, . . . , xi−1) ∈ supp(X1, . . . , Xi−1) always holds if i = 1.
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and

X ′|X′1=x1,...,X′i−1=xi−1
=

∑
xi∈supp(B)

Pr[B = xi] ·X ′|X′1=x1,...,X′i=xi
.

By the induction hypothesis, we have

∆
(
X|X1=x1,...,Xi=xi , X

′|X′1=x1,...,X′i=xi

)
≤ 2(s− i)ε

for xi ∈ supp(A) ∩ supp(B). Also note that B is identical to X̃i(x1, . . . , xi−1) and is ε-close

to A by definition. The claim then follows from Lemma 4.1.1.

Now we are ready to prove the following theorem.

Theorem 4.1.2. For ε > 0, integers s, n,m1, . . . ,ms ≥ 1 and sufficiently large prime power

q = (n/ε)O(1), the function BlkCnvtn,(m1,...,ms),q is a (k, (k1, . . . , ks), 3sε, q) block source con-

verter of degree n where k =
∑s

i=1mi + logq(1/ε) and each ki = 0.99mi.

Proof. The degree of BlkCnvtn,(m1,...,ms),q is n since RSConn,m,q has degree n. Let X be a

random source that has q-ary min-entropy k. Let Y1, . . . , Ys be independent seeds uniformly

distributed over Fq. Let Z = (Z1, . . . , Zs) = BlkCnvtn,(m1,...,ms),q(X, (Y1, . . . , Ys)) where each

Zi = RSConn,mi,q(X, Yi) is distributed over Fmi
q . Define

B =

{
(z1, . . . , zi) :

i ∈ [s], (z1, . . . , zi) ∈ supp(Z1, . . . , Zi), X|Z1=z1,...,Zi=zi does not

have q-ary min-entropy k − (m1 + · · ·+mi)− logq(1/ε)

}
.

Define a new distribution Z ′ = (Z ′1, . . . , Z
′
s) as follows: Sample z = (z1, . . . , zs)← Z and

independently u = (u1, . . . , us)← Um1+...,+ms,q. If there exist i ∈ [s] such that (z1, . . . , zi−1) ∈
B, then pick the smallest such i and let z′ = (z1, . . . , zi−1, ui, . . . , us). Otherwise let z′ = z.

Let Z ′ be the distribution of z′.

For any i ∈ [s] and (z1, . . . , zi−1) ∈ supp(Z ′1, . . . , Z
′
i), if some prefix of (z1, . . . , zi−1) is in

B then Z ′i|Z′1=z1,...,Z′i−1=zi−1
is the uniform distribution Umi,q, otherwise Z ′i|Z′1=z1,...,Z′i−1=zi−1

=

Zi|Z1=z1,...,Zi−1=zi−1
. In the second case, X|Z1=z1,...,Zi−1=zi−1

has min-entropy k − (m1 + · · · +
mi−1)− logq(1/ε) ≥ mi since (z1, . . . , zi−1) 6∈ B. In this case, Z ′i|Z′1=z1,...,Z′i−1=zi−1

is ε-close to

a distribution of min-entropy ki by Theorem 4.1.1 and the fact

Z ′i|Z′1=z1,...,Z′i−1=zi−1
= Zi|Z1=z1,...,Zi−1=zi−1

= RSConn,mi,q(X|Z1=z1,...,Zi−1=zi−1
, Yi).

In either cases Z ′i|Z′1=z1,...,Z′i−1=zi−1
is ε-close to a distribution of min-entropy ki. By

Lemma 4.1.2, Z ′ is 2sε-close to a (k1, . . . , ks) q-ary block source.

It remains to prove that Z is sε-close to Z ′, which implies that it is 3sε-close to a

(k1, . . . , ks) q-ary block source. By Lemma 2.0.8, for any i ∈ [s], we have Pr[(Z1, . . . , Zi−1) ∈
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B] ≤ ε. So the probability that (Z1, . . . , Zi−1) ∈ B for some i ∈ [s] is bounded by sε.

Note that the distribution Z ′ is obtained from Z by redistributing the weights of (z1, . . . , zs)

satisfying (z1, . . . , zi−1) ∈ B for some i. We conclude that ∆(Z,Z ′) ≤ sε, as desired.

4.1.2 Block source extraction

We will employ Lemma 2.0.9 and compose some “basic” extractors to get a block source

extractor. These basic extractors are given by the basic line samplers Linem,q (see Defini-

tion 2.0.4).

Lemma 4.1.3. For ε > 0, m ≥ 1 and prime power q, Linem,q is a (k, ε, q) extractor of degree

2 where k = 2m− 1 + 3 logq (1/ε).

Proof. Apply Lemma 2.0.6 and Theorem 3.1.1.

Suppose FQ is an extension field of Fq with [FQ : Fq] = d, i.e., Q = qd. By Lemma 2.0.1,

Linem,Q : F2m
Q × FQ → FmQ , as a degree-2 manifold over FQ, can also be viewed as a degree-2

manifold over Fq: Linem,Q : F2md
q × Fdq → Fmdq .

Now we are ready to state the main result of this section. We first compose the basic

line samplers to get a block source extractor. It is then applied to a block source obtained

from the block source converter.

Definition 4.1.4 (Outer Sampler). For δ > 0, m = 2s and prime power q, let n = 4m +⌈
logq(2/δ)

⌉
, d = s+ 1, and di = 2s−i for i ∈ [s]. For i ∈ [s], view Line2,qdi : F4

qdi
×Fqdi → F2

qdi

as a manifold over Fq: Line2,qdi : F4di
q × Fdiq → F2di

q . Composing these line samplers Line2,qdi

for i ∈ [s] gives the function BlkExt(Line2,qd1 , . . . , Line2,qds ) : F4d1+···+4ds
q × Fq → Fmq . Finally,

define OuterSampm,δ,q : Fnq × Fdq → Fmq :

OuterSampm,δ,q(x, (y, y
′))

def
= BlkExt(Line2,qd1 , . . . , Line2,qds )

(
BlkCnvtn,(4d1,...,4ds),q(x, y), y′

)
for x ∈ Fnq , y ∈ Fsq and y′ ∈ Fq.

See Figure 4.1 for an illustration of the above definition.

Theorem 4.1.3. For any ε, δ > 0, integer m ≥ 1, and sufficiently large prime power

q ≥ (n/ε)O(1), OuterSampm,δ,q is an (ε, δ) sampler of degree t where d = O(logm), n =

O
(
m+ logq(1/δ)

)
and t = O

(
m2 +m logq(1/δ)

)
.

Proof. We first show that OuterSampm,δ,q is a (4m, ε, q) extractor. Consider any random

source X over Fnq with q-ary min-entropy 4m. Let s, di be as in Definition 4.1.4. Let

ki = 4 · 0.99 · di for i ∈ [s]. Let ε0 = ε
4s

.
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RSConn,ds,q RSConn,ds−1,q · · ·

· · ·

RSConn,d1,q

X

Ys

Ys−1

...

Y1

BlkCnvtn,(4d1,...,4ds),q

Line2,qds Line2,qds−1 Line2,qd1· · ·

· · ·X ′s X ′s−1 X ′1

Y ′ = Y ′s

Z

Y ′s−1 Y ′s−2 Y ′1

BlkExt
(
Line2,qd1 , . . . , Line2,qds

)

OuterExtn,k,q

Figure 4.1: The extractor OuterExtn,k,q that takes the random source X together with the
seed (Y1, . . . , Ys, Y

′) and then outputs Z.

We have (
∑s

i=1 4di) + logq(1/ε0) ≤ 4m for sufficiently large q ≥ (n/ε)O(1). So by Theo-

rem 4.1.2, BlkCnvtn,(4d1,...,4ds),q is a (4m, (k1, . . . , ks), 3sε0, q) block source converter. Therefore

the distribution BlkCnvtn,(4d1,...,4ds),q(X,Us,q) is 3sε0-close to a (k1, . . . , ks) q-ary block source

X ′. Then OuterSampm,δ,q(X,Ud,q) is 3sε0-close to BlkExt(Line2,qd1 , . . . , Line2,qds )(X ′, U1,q).

By Lemma 4.1.3, Line2,qdi is a
(
ki/di, ε0, q

di
)

extractor for i ∈ [s] since 3+3 logqdi (1/ε0) ≤
4 · 0.99 = ki/di. Equivalently it is a (ki, ε0, q) extractor.

By Lemma 2.0.9, BlkExt(Line2,qd1 , . . . , Line2,qds ) is a ((k1, . . . , ks), sε0, q) block source ex-

tractor. Therefore BlkExt(Line2,qd1 , . . . , Line2,qds )(X ′, U1,q) is sε0-close to Um,q, which by the

previous paragraph, implies that OuterSampm,δ,q(X,Ud,q) is 4sε0-close to Um,q. By definition,

OuterSampm,δ,q is a (4m, ε, q) extractor. By Theorem 3.1.1, it is also an (ε, δ) sampler.

We have d = s+1 = O(logm) and n = O
(
m+ logq(1/δ)

)
. By Lemma 2.0.1, each Line2,qdi

has degree 2 as a manifold over Fq. Therefore by Lemma 2.0.9, BlkExt(Line2,qd1 , . . . , Line2,qds )
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has degree 2s. By Theorem 4.1.2, BlkCnvtn,(4d1,...,4ds),q has degree n. Therefore OuterSampm,δ,q
has degree n2s = O

(
m2 +m logq(1/δ)

)
.

Remark 5. We assume m is a power of 2 above. For general m, simply pick m′ = 2dlogme and

let OuterSampm,δ,q be the composition of OuterSampm′,δ,q with the projection π : Fm′q → Fmq
onto the first m coordinates. It yields an (ε, δ) sampler of degree t for Fmq since π is linear,

and approximating the density of a subset A in Fmq is equivalent to approximating the density

of π−1(A) in Fm′q .

Remark 6. The most important properties of the extractors Line2,qdi used here are (1) they

work for a certain constant min-entropy rate, and (2) the seed is shorter than the output by

a constant factor. As the reader can check, besides the basic line samplers, we may also use

the randomness-efficient line samplers given by [MR06], or the (strong) extractors from the

universal family of hash functions {ha,b : x 7→ ax+ b} [CW79] (operations are performed in

a finite field) together with the leftover hash lemma [ILL89], etc.

The sampler OuterSampm,δ,q has optimal randomness complexity O (m log q + log (1/δ)),

yet the sample complexity is sub-optimal, being qd = qO(logm) instead of q. We will fix this

problem by composing it with an “inner sampler” that has the optimal sample complexity.

4.2 Inner sampler

We will construct a curve sampler of low degree in this section, or what we called the “inner

sampler”. It might be viewed as an extractor with optimal seed length, even though it only

extracts a tiny fraction of min-entropy from the random source. The construction will be

based on two techniques called error reduction and iterated sampling.

4.2.1 Error reduction

Condensers are at the core of many extractor constructions [RSW06, TSUZ07, GUV09,

TSU12]. In the language of samplers, the use of condensers can be regarded as an error

reduction technique, as we shall see below.

Given a function f : Fnq ×Fdq → Fmq , define LISTf (T, ε)
def
=
{
x ∈ Fnq : Pry[f(x, y) ∈ T ] > ε

}
for any T ⊆ Fmq and ε > 0. We are interesting in functions f exhibiting a “list-recoverability”

property that the size of LISTf (T, ε) is kept small when T is not too large.

Definition 4.2.1. A function f : Fnq ×Fq → Fmq is (ε, L,H) list-recoverable if |LISTf (T, ε)| ≤
H for all T ⊆ Fmq of size at most L.
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Remark 7. The above definition is justified as an extension of list-recoverable codes [GI01]: A

code C ⊆ Fnq is called (ρ, L,H) list recoverable if for any sets S1, . . . , Sn ⊆ Fq of size at most

L, there are at most H codewords x = (x1, . . . , xn) ∈ C such that Pri∈[n][xi ∈ Si] > 1−ρ. Let

f : Fnq × Fq → Fmq be an (ε,H, L) list-recoverable function. Assume f = (f1, . . . , fm) has the

extra property that f1(x, y) = y for all x ∈ Fnq and y ∈ Fq (in particular, the Reed-Solomon

condenser in Definition 4.1.2 has this property). Define code Cf ⊆
(
Fm−1
q

)q
as follows:

Cf =
{

(f2(x, y1), . . . , fm(x, yq)) : x ∈ Fnq
}

where y1, . . . , yq are the q distinct elements of Fq (in any order). Then Cf is (1−ε,H, L/q) list-

recoverable: For any S1, . . . , Sq ⊆ Fm−1
q of size at most L/q, let T =

⋃q
i=1 ({yi} × Si) ⊆ Fmq be

their union that has size at most L. By definition, every codeword (f2(x, y1), . . . , fm(x, yq))

satisfying Pri∈[n][xi ∈ Si] > ε corresponds to an element x ∈ |LISTf (T, ε)|. Therefore the

number of such codewords is upper bounded by |LISTf (T, ε)| ≤ H.

The following lemma shows that the condenser property implies the list-recoverability

property.

Lemma 4.2.1 ([GUV09]). Suppose f : Fnq × Fdq → Fmq is an (n, logqH) →ε,q

(
m, logq

(
L
ε

))
condenser. Then it holds that |LISTf (T, 2ε)| ≤ H for any T ⊆ Fmq of size at most L, and

hence f is (2ε, L,H) list-recoverable.

We then define an operation ? as follows.

Definition 4.2.2. For functions f : Fnq × Fdq → Fmq and S : Fmq × Fd′q → Fm′q , define

S ? f : Fnq × (Fdq × Fd′q )→ Fm′q as follows:

S ? f(x, (y, y′))
def
= S(f(x, y), y′).

See Figure 4.2 for an illustration of the above definition.

The following lemma states that a sampler with mildly small confidence error, when

composed with a list-recoverable function via the ? operation, gives a sampler with very

small confidence error.

Lemma 4.2.2. Suppose f : Fnq × Fdq → Fmq is (ε1, L,H) list-recoverable, and S : Fmq × Fd′q →
Fm′q is an (ε2, δ) sampler where δ = L

qm
. Then S ? f is an

(
ε1 + ε2,

H
qn

)
sampler.

Proof. Let A be an arbitrary subset of Fm′q . Let B = {y : |µS(y,·) − µ(A)| > ε2}. By the

sampler property of S, we have |B| ≤ δqm = L and hence |LISTf (B, ε1)| ≤ H. Therefore it

suffices to show that for any x ∈ Fnq \LISTf (B, ε1), it holds that |µS?f(x,·)(A)−µ(A)| ≤ ε1+ε2.
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f

S

X

Y

Y ′

Z

Figure 4.2: The function S ? f . The output is denoted by Z.

Fix x ∈ Fnq \ LISTf (B, ε1). We have

µS?f(x,·)(A) = Pr
y,y′

[S ? f(x, (y, y′)) ∈ A] = Pr
y,y′

[S(f(x, y), y′) ∈ A] = Ey
[
µS(f(x,y),·)(A)

]
.

Therefore

|µS?f(x,·)(A)− µ(A)| =
∣∣Ey [µS(f(x,y),·)(A)

]
− µ(A)

∣∣
≤ Ey|µS(f(x,y),·)(A)− µ(A)|
≤ Pr

y
[f(x, y) ∈ B] + ε2 Pr

y
[f(x, y) 6∈ B]

≤ ε1 + ε2.

To see the last two steps, note that |µS(y,·)(A) − µ(A)| ≤ ε2 for y 6∈ B by definition, and

Pry[f(x, y) ∈ B] ≤ ε1 since x 6∈ LISTf (B, ε1).

Combining Lemma 4.2.1 and Lemma 4.2.2, we obtain:

Corollary 4.2.1. Suppose f : Fnq × Fdq → Fmq is an (n, k1) →ε,q (m, k2) condenser, and

S : Fmq × Fd′q → Fm′q is an
(
ε′, εqk2−m

)
sampler. Then S ? f is an

(
2ε+ ε′, qk1−n

)
sampler.

Proof. Lemma 4.2.1 implies |LISTf (T, 2ε)| ≤ qk1 for T of size at most εqk2 . Set H = qk1 ,

L = εqk2 , ε1 = 2ε, ε2 = ε′ and apply Lemma 4.2.2.

Remark 8. It also possible to prove Corollary 4.2.1 using the connection between extractors

and samplers (c.f. Theorem 3.1.1), except that some parameters are slightly different, e.g.

the resulting accuracy error is ε+2ε′ which has poorer dependence on ε′, due to the averaging

argument used in the proof of Theorem 3.1.1.

We state Corollary 4.2.1 because it offers a way of reducing the confidence error of

samplers using condensers in a black-box manner. Nevertheless, for the best known con-

densers, the condenser properties are actually derived from the list-recoverability properties
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[GUV09, TSU12], not the other way around. So we choose to use the list-recoverability

properties directly, together with Lemma 4.2.2.

The condenser RSConn,m,q from Reed-Solomon codes (see Definition 4.1.2) enjoys the

following list-recoverability property:

Theorem 4.2.1 ([GUV09]). For any h ≥ 1, n ≥ m ≥ 1, prime power q and ε > 0,

RSConn,m,q is (ε, L,H) list-recoverable where H = (h− 1) q
m−1−1
q−1

and L = (εq − (n− 1)(h−
1)(m − 1)) · hm−1 − 1. In pariticular, for sufficiently large q ≥ (n/ε)O(1), RSConn,m,q is

(ε, q0.99m, qm) list-recoverable.

Corollary 4.2.2. For any n ≥ m ≥ 1, ε, ε′ > 0 and sufficiently large prime power q =

(n/ε)O(1), suppose S : Fmq ×Fdq → Fm′q is an (ε′, q−0.01m) sampler of degree t, then S?RSConn,m,q
is an (ε+ ε′, qm−n) sampler of degree nt.

Proof. Apply Lemma 4.2.2 and Theorem 4.2.1. Note that RSConn,m,q has degree n. There-

fore (S ? RSConn,m,q) (X, (Y, Y ′)) = S(RSConn,m,q(X, Y ), Y ′) has degree nt in its variables

X, Y, Y ′.

4.2.2 Iterated sampling

We introduce the operation ◦ performed on samplers.

Definition 4.2.3. (composed sampler). Given functions S1 : Fn1
q × Fd1q → Fd0q and S2 :

Fn2
q × Fd2q → Fd1q , define S1 ◦ S2 : (Fn1

q × Fn2
q )× Fd2q → Fd0q such that

S1 ◦ S2((x1, x2), y)
def
= S1(x1, S2(x2, y))

for all x1 ∈ Fn1
q , x2 ∈ Fn2

q and y ∈ Fd2q .

See Figure 4.3 for an illustration of the above definition.

S2 S1
Y

X2 X1

Z

Y ′

Figure 4.3: The function S1 ◦ S2. The output is denoted by Z.

Think of S1 and S2 as samplers. Then S1 ◦ S2 is the composed sampler that first uses

its randomness x1 to get the sample S1(x1, ·), and then uses its randomness x2 to get the
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subsample S2(x1, S2(x2, ·)) ⊆ S1(x1, ·). Intuitively, if S1 and S2 are good samplers then so is

S1 ◦ S2. This is indeed shown by [BR94, TSU06] and we formalize it as follows:

Lemma 4.2.3. Let S1 : Fn1
q × Fd1q → Fd0q be an (ε1, δ1) manifold sampler of degree t1.

And let S2 : Fn2
q × Fd2q → Fd1q be an (ε2, δ2) manifold sampler of degree t2. Then S1 ◦ S2 :

(Fn1
q × Fn2

q )× Fd2q → Fd0q is an (ε1 + ε2, δ1 + δ2) manifold sampler of degree t1t2.

Proof. Consider an arbitrary subset A ⊆ Fd0q . Define B(x) =
{
z ∈ Fd2q : S1(x, z) ∈ A

}
for

each x ∈ Fn1
q . Pick x1 ← Un1,q and x2 ← Un2,q. If

∣∣µS1◦S2((x1,x2),·)(A)− µ(A)
∣∣ > ε1 + ε2

occurs, then either |µS1(x1,·)(A)−µ(A)| > ε1, or |µS1◦S2((x1,x2),·)(A)−µS1(x1,·)(A)| > ε2 occurs.

Call the two events E1 and E2 respectively.

Note that E1 occurs with probability at most δ1 by the sampler property of S1. Also

note that

µS1◦S2((x1,x2),·)(A) = Pr
y

[S1(x1, S2(x2, y)) ∈ A] = Pr
y

[S2(x2, y) ∈ B(x1)] = µS2(x2,·)(B(x1))

whereas

µS1(x1,·)(A) = Pr
y

[S1(x1, y) ∈ A] = Pr
y

[y ∈ B(x1)] = µ(B(x1)).

So the probability that E2 occurs is Prx1,x2 [|µS2(x2,·)(B(x1)) − µ(B(x1))| > ε2] which is

bounded by δ2 by the sampler property of S2. By the union bound, the event∣∣µS1◦S2((x1,x2),·)(A)− µ(A)
∣∣ > ε1 + ε2

occurs with probability at most δ1 + δ2, as desired.

Finally, we have S1 ◦ S2((X1, X2), Y )) = S1(X1, S2(X2, Y )) which is a manifold of degree

t1t2 in its variables X1, X2, Y since S1 and S2 are manifolds of degree t1 and t2 respectively.

A simple induction implies the following generalization of Lemma 4.2.3:

Corollary 4.2.3. Let Si : Fni
q ×Fdiq → Fdi−1

q be an (εi, δi) sampler that is a manifold of degree

ti for i = 1, . . . , s. Then S1 ◦ · · · ◦Ss :
(
Fn1
q × · · · × Fns

q

)
×Fdsq → Fd0q 2 is an (

∑s
i=1 εi,

∑s
i=1 δi)

sampler that is a manifold of degree
∏s

i=1 ti.

Remark 9. The readers may notice that the composed sampler S1 ◦ S2 has the same form

as the composed block source extractor BlkExt(S1, S2) (see Definition 2.0.11), and more

generally S1 ◦ · · · ◦ Ss has the same form as BlkExt(S1, . . . , Ss) (with the outputs Zs, . . . , Z2

being empty strings, c.f. Figure 2.1). This is not a coincidence. Using the connection between

2It is easy to check that ◦ is associative, and hence we can write S1 ◦ · · · ◦ Ss with no ambiguity.
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extractors and samplers, we see the composed sampler S1 ◦ · · · ◦Ss is indeed an extractor for

random sources with q-ary min-entropy n1+· · ·+ns−∆ where ∆ ≈ logq (1/δ1 + · · ·+ δs), and

each Si is an extractor for random sources with q-ary entropy ni−∆i where ∆i ≈ logq (1/δi).

Assume each ∆i ≈ ∆ for simplicity. It is shown in [GUV09, Lemma 5.8 and Corollary 5.9]

that a random source distributed over Fn1+···+ns
q with q-ary min-entropy n1 + · · · + ns − ∆

is automatically a (k1, . . . , ks) q-ary block source where ki ≈ ni −∆. Then each Si serves as

an extractor for q-ary min-entropy ki and hence the block source extraction may proceed.

Therefore, Lemma 4.2.3 and Corollary 4.2.3 offer an alternative3, and arguably cleaner view

of the extraction of very dense random sources via block source extraction.

4.2.3 Recursive inner sampler

By Lemma 2.0.7, for ε > 0, m ≥ 1, t ≥ 4 and sufficiently large prime power q = (t/ε)O(1),

the basic curve sampler Curvem,t,q is an
(
ε, q−t/4

)
sampler. Let δ = q−t/4 is the confidence

error of Curvem,t,q. And suppose m = O(1). Then the randomness complexity of Curvem,t,q
is tm log q = O(log δ) which is optimal up to an O(1) factor. So the basic curve samplers

sampling O(1)-dimensional vector space are randomness-optimal, and we will use them as

the building blocks of the inner sampler.

We will recursively construct an inner curve sampler with the optimal sample complexity.

The natural idea is applying the technique of iterated sampling to reduce the sample com-

plexity. More specifically, we use the basic curve samplers to reduce the sample complexity

polynomially each time. However, sub-sampling increases the randomness complexity while

the confidence error does not shrink accordingly. To fix this problem, we also apply the

technique of error reduction. Note that error reduction is applicable only when the original

confidence error is already exponentially small in the number of random bits invested (cf.

Corollary 4.2.2). So we would like to maintain this invariant in the recursive construction.

In order to do so, we apply error reduction at each level so that the confidence error shrinks

polynomially (except the last step where the confidence error is brought down directly to

δ). In summary, we use the basic curve samplers as the building blocks and apply the er-

ror reduction as well as iterated sampling techniques repeatedly to obtain the desired inner

sampler. The formal construction is as follows:

Definition 4.2.4 (inner sampler). For m ≥ 1, δ > 0 and prime power q, pick s = dlogme
3It is certainly not an exact equivalence since the parameters of extractors and samplers are slightly

worsen when they are translated to each other, c.f. Theorem 3.1.1.
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and let di = 2s−i for 0 ≤ i ≤ s. Also let

ni =

16i 0 ≤ i ≤ s− 1,

max
{

16s, 20
⌈
logq (1/δ)

⌉}
i = s.

Define Si : Fnidi
q × Fdiq → Fmq for i ∈ [s] as follows:

• S0 : Fq × Fd0q → Fmq projects (x, y) onto the first m coordinates of y.

• Si
def
=
(
Si−1 ? RSConni/4,2ni−1,qdi

)
◦ Curve3,ni/4,qdi

for i = 1, . . . , s.

Finally, let InnerSampm,δ,q
def
= Ss.

Figure 4.4 shows how Si is obtained from Si−1.

Si−1

RSConni
4 ,2ni−1,qdi

Curve3,ni
4 ,q

di

Yi

Xi,1 Xi,2

Xi−1

Z

Yi−1

Si

Figure 4.4: The recursive construction of Si. Here Xi = (Xi,1, Xi,2) (resp. Xi−1) and Yi
(resp. Yi−1) are the two arguments of Si (resp. Si−1). And Z is the common output of Si
and Si−1.

Remark 10. We can check that all Si’s are well-defined. For S0 this is obvious. For i > 1,

note that ni/4 is an integer. The function RSConni/4,2ni−1,qdi
: Fni/4

qdi
× Fqdi → F2ni−1

qdi
may be

viewed over Fq:
RSConni/4,2ni−1,qdi

: Fnidi/4
q × Fdiq → F2ni−1di

q .

Given Si−1 : F2ni−1di
q × F2di

q → Fmq (note di−1 = 2di), we have the function

Si−1 ? RSConni/4,2ni−1,qdi
: Fnidi/4

q × F3di
q → Fmq .
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The function Curve3,ni/4,qdi
: F3ni/4

qdi
× Fqdi → F3

qdi
may also be viewed over Fq:

Curve3,ni/4,qdi
: F3nidi/4

q × Fdiq → F3di
q .

Note that Si =
(
Si−1 ? RSConni/4,2ni−1,qdi

)
◦ Curve3,ni/4,qdi

. So we have

Si : Fnidi
q × Fdiq → Fmq

as claimed.

We then have the following theorem:

Theorem 4.2.2. For any ε, δ > 0, integer m ≥ 1 and sufficiently large prime power q ≥(
m log(1/δ)

ε

)O(1)

, let ε′ = ε
2s

and di, ni, Si be as in Definition 4.2.4. Then for each 0 ≤ i ≤ s,

the function Si : Fnidi
q ×Fdiq → Fmq is an (εi, δi) manifold sampler of degree ti where εi = 2iε′,

δi = q−nidi/20, and ti =
∏i

j=1 (nj/4)2.

In particular, the function InnerSampm,δ,q : Fnq × Fq → Fmq is an (ε, δ) curve sampler of

degree t where n ≤ mO(1) + 20 logq (1/δ) and t = O
(
mO(logm) log2

q (1/δ)
)
.

Proof. Induct on i. The claim is trivially true when i = 0. Now consider the case i > 0 and

assume the claim holds for all i′ < i.

By the induction hypothesis, Si−1 is an (εi−1, δi−1) manifold sampler of degree ti−1. Then

by Corollary 4.2.2, Si−1 ? RSConni/4,2ni−1,qdi
is an

(
εi−1 + ε′, q(2ni−1−ni/4)di

)
manifold sampler

of degree (ni/4) · ti−1.

By Lemma 2.0.7, Curve3,ni/4,qdi
is an

(
ε′, q−nidi/16

)
curve sampler of degree ni/4. Then by

Lemma 4.2.3, the function

Si =
(
Si−1 ? RSConni/4,2ni−1,qdi

)
◦ Curve3,ni/4,qdi

is an
(
εi−1 + 2ε′, q(2ni−1−ni/4)di + q−nidi/16

)
manifold sampler of degree (ni/4)2 · ti−1. It is then

just a routine to check the following facts:

εi−1 + 2ε′ = 2iε′ = εi,

q(2ni−1−ni/4)di + q−nidi/16 ≤ q−nidi/20 = δi,

(ni/4)2 · ti−1 =
i∏

j=1

(nj/4)2 = ti.

Finally, note that InnerSampm,δ,q = Ss, ε = εs and δ ≥ δs. So InnerSampm,δ,q : Fnq × Fq → Fmq
is an (ε, δ) curve sampler of degree t where n = nsds ≤ mO(1) + 20 logq (1/δ) and t = ts =

O
(
mO(logm) log2

q (1/δ)
)
.

33



4.3 Putting it together

The final curve sampler is simply the composition of the outer sampler and the inner sampler.

Definition 4.3.1. For m ≥ 1, δ > 0 and prime power q, we have the outer sampler

OuterSampm,δ/2,q : Fn1
q × Fdq → Fmq

and the inner sampler

InnerSampd,δ/2,q : Fn2
q × Fq → Fdq .

See Definition 4.1.4 and Definition 4.2.4 for their constructions. Then define

Sampm,δ,q
def
= OuterSampm,δ/2,q ◦ InnerSampd,δ/2,q.

Theorem 4.3.1 (Theorem 1.0.1 restated). For any ε, δ > 0, integer m ≥ 1 and sufficiently

large prime power q ≥
(
m log(1/δ)

ε

)O(1)

, the function Sampm,δ,q : Fnq × Fq → Fmq is an (ε, δ)

curve sampler of degree t where n ≤ O(m) + 21 logq (1/δ) and t =
(
m logq (1/δ)

)O(1)
.

Proof. Let n1, n2 and d be as in Definition 4.3.1. By Theorem 4.1.3, OuterSampm,δ/2,q :

Fn1
q × Fdq → Fmq is an (ε/2, δ/2) manifold sampler of degree t1 where d = O(logm), n1 =

8m+
⌈
logq

(
4
δ

)⌉
and t1 = O

(
m2 +m logq (1/δ)

)
.

By Theorem 4.2.2, InnerSampd,δ/2,q : Fn2
q × Fq → Fdq is an (ε/2, δ/2) curve sampler of

degree t2 where n2 ≤ (logm)O(1) + 20 logq (1/δ) and t2 = O
(

(logm)O(log logm) log2
q (1/δ)

)
.

Finally, by Lemma 4.2.3, Sampm,δ,q : Fnq × Fq → Fmq is an (ε, δ) curve sampler of degree t

where n = n1 + n2 ≤ O(m) + 21 logq (1/δ) and t = t1t2 =
(
m logq (1/δ)

)O(1)
.

We also obtain an explicit construction of extractors that have low degree and optimal

parameters (up to constant factors).

Definition 4.3.2. For k ≤ n and prime power q, pick δ = q−k/50 and sufficiently small

m = Θ(k)4 such that we have the function

Sampm,δ,q : Fn′q × Fq → Fmq

with n′ ≤ O(m)+21 logq (1/δ) ≤ k−1 (c.f. Theorem 4.3.1). Then define Extn,k,q : Fnq ×F2
q →

Fmq as follows:

Extn,k,q
def
= RSConn,n′,q ? Sampm,δ,q.

4Actually we need k ≥ c for some positive constant c here, but otherwise just let the extractor output
the seed.
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Theorem 4.3.2. For k ≤ n, ε > 0 and sufficiently large prime power q ≥ (n/ε)O(1),

Extn,k,q : Fnq × F2
q → Fmq is a (k, ε, q) extractor of degree t where m = Θ(k) and t = nkO(1).

Proof. Note that δ = q−k/50 ≤ q−α(k−1) ≤ q−αn
′
. By Theorem 4.3.1, Sampm,δ,q is an(

ε/4, q−αn
′)

curve sampler of degree
(
n′ logq (1/δ)

)O(1)
= kO(1).

Note that qn
′−n ≤ qk−n−1 ≤ εqk−n. By Corollary 4.2.2, Extn,k,q = RSConn,n′,q ? Sampm,δ,q

is an
(
ε/2, qn

′−n) manifold sampler, and hence an
(
ε/2, εqk−n

)
manifold sampler. And it has

degree nkO(1).

Finally, by Theorem 3.1.1, Extn,k,q is also a (k, ε, q) extractor of degree nkO(1).

4.4 An alternative outer sampler

We present an alternative outer sampler in this section based on the techniques of error

reduction and iterated sampling. It matches the outer sampler that uses the block source

extraction in all the parameters except the degree. We do not have a good bound on its

degree, though.

We make the observation that the list-recoverability property of the condenser RSCon in

Theorem 4.2.1 holds for large subsets if the underlying field is large.

Lemma 4.4.1. For any n ≥ m ≥ 1, ε, α > 0, integer r ≥ 1 and sufficiently large prime

power q ≥ (n/ε)O(1/α), let Q = qr and then the function RSConn,m,Q : FnQ × FQ → FmQ is(
ε, Q(1−α/r)m, Qm

)
list-recoverable.

Proof. Choose h = qr−α and let H = (h−1)Q
m−1−1
Q−1

, L = (εQ−(n−1)(h−1)(m−1))·hm−1−1.

Note that εQ− (n−1)(h−1)(m−1) ≥ qr−α+1 = h+1 for sufficiently large q = (n/ε)O(1/α),

and hence

L ≥ (h+ 1)hm−1 − 1 ≥ hm = q(r−α)m = Q(1−α/r)m.

Also note that H ≤ Qm. The lemma then follows from Theorem 4.2.1.

From now on we fix α > 0 as a sufficiently small constant and suppress 1/α in the

O(·) notation. Note that now we can handle sets of size Q(1−α/r)m (which is Q(1−o(1))m for

r = ω(1)) in the domain of size Qm. It should be compared with Theorem 4.2.1 where we

can only handle sets of size q0.99m in the domain of size qm. This stronger list-recoverability

property can then be used for error-reduction which is applicable to samplers with relatively

large confidence error.

Lemma 4.4.2. For integers r ≥ 1, n ≥ m ≥ 1 multiples of r, ε, ε′ > 0 and sufficiently large

prime power q ≥ (n/ε)O(1), let Q = qr and suppose S : Fmq × Fdq → Fm′q is an (ε′, q−αm/r)

sampler. Then S ? RSConn/r,m/r,Q : Fnq × Fr+dq → Fm′q is an (ε+ ε′, qm−n) sampler.
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Remark 11. Note that RSConn/r,m/r,Q : Fn/rQ × FQ → Fm/rQ may be viewed over Fq:

RSConn/r,m/r,Q : Fnq × Fq → Fmq

and hence S ? RSConn/r,m/r,Q is well-defined.

Proof. Apply Lemma 4.2.2 and Lemma 4.4.1.

Now we are ready to present the construction of the alternative outer sampler. The

idea is using iterated sampling for logm levels with the basic curve samplers as the building

blocks. At level i we deal with a domain of size qm/2
i−1

and use a basic curve sampler to

halve its dimension. Its randomness complexity would be O
(

log
(
qm/2

i−1
)

+ log (1/δ)
)

=

O
(

m
2i−1 log q + log (1/δ)

)
. And the total randomness complexity would be

O

(
logm∑
i=1

( m

2i−1
log q + log (1/δ)

))
= O (m log q + logm log (1/δ))

which is sub-optimal since we expect O (m log q + log (1/δ)) here. To fix this problem, we just

set the confidence error to be a relatively large value δ′ such that log (1/δ′) ≈ log (1/δ) / logm,

and then apply error reduction to bring it down to δ. The formal construction is as follows.

Definition 4.4.1. For m = 2s ≥ 15 and prime power q, pick the following parameters:

• m′ = 2s ·
⌈∑s

i=1 max
{⌈

2i

s

⌉
, 4
}

2s−i/s
⌉
,

• n = s ·
⌈(
m′ + logq (1/δ)

)
/s
⌉
,

• di = 2s−i for i ∈ [s],

• ti = max
{⌈

2i

s

⌉
, 4
}

for i ∈ [s− 1],

• ts = m′/2−
∑s−1

i=1 tidi ≥ max
{⌈

2s

s

⌉
, 4
}

.

Then define OuterSamp2m,δ,q : Fnq × Fdq → Fmq :

OuterSamp2m,δ,q
def
=
(
Curve2,t1,qd1 ◦ · · · ◦ Curve2,ts,qds

)
? RSConn/s,m′/s,qs .

Figure 4.5 illustrates the structure of OuterSamp2m,δ,q.

5We assume m is a power of 2 for simplicity. Otherwise pick a projection π : Fm′q → Fmq where m′ is a

power of 2. Construct a sampler with domain Fm′q and compose it with π.
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Curve2,ts,qds Curve2,ts−1,q
ds−1 · · · Curve2,t1,qd1

· · ·

· · ·

RSConn
s ,

m′
s ,qs

Y2

Y1

Z

X

OuterSamp2m,δ,q

Figure 4.5: The alternative outer sampler OuterSamp2m,δ,q with X, Y = (Y1, Y2) and Z being
its two arguments and output respectively.

Remark 12. To see that OuterSamp2m,δ,q is well-defined, note that we may view each curve

sampler Curve2,ti,qdi
over Fq:

Curve2,ti,qdi
: F2tidi

q × Fdiq → F2di
q .

Note that 2di = di−1. So we have the composition of these curve samplers

Curve2,t1,qd1 ◦ · · · ◦ Curve2,ts,qds : Fm′q × Fq → Fmq

where we use the facts that m′ =
∑s

i=1 2tidi, ds = 1 and 2d1 = m. Note that both n and m′

are multiples of s. And RSConn/s,m′/s,qs may be viewed over Fq:

RSConn/s,m′/s,qs : Fnq × Fsq → Fm′q

So we have the function OuterSamp2m,δ,q =
(
Curve2,t1,qd1 ◦ · · · ◦ Curve2,ts,qds

)
?RSConn/s,m′/s,qs

OuterSamp2m,δ,q : Fnq × Fdq → Fmq

where d = s+ 1, as claimed.

Theorem 4.4.1. For any ε, δ > 0, integer m ≥ 1 and sufficiently large prime power q ≥(
m log(1/δ)

ε

)O(1)

, the function OuterSamp2m,δ,q : Fnq × Fdq → Fmq is an (ε, δ) sampler where

d = O(logm) and n = O
(
m+ logq (1/δ)

)
.

Proof. Let s,m′, di, ti be as in Definition 4.4.1. Let ε0 = ε
s+1

.
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By Lemma 2.0.7, for each i ∈ [s], Curve2,ti,qdi
is an

(
ε0, q

−tidi/4
)

sampler and hence an(
ε0, q

−2s−2/s
)

sampler.

By Lemma 4.2.3, Curve2,t1,qd1 ◦ · · · ◦ Curve2,ts,qds : Fm′q × Fq → Fmq is a
(
sε0, sq

−2s−2/s
)

sampler.

Note that

m′ = 2s ·

⌈
s∑
i=1

max

{⌈
2i

s

⌉
, 4

}
2s−i/s

⌉

≤ 2s+ 2
s∑
i=1

max

{⌈
2i

s

⌉
, 4

}
2s−i

≤ 2s+ 2
s∑
i=1

⌈
2i

s

⌉
2s−i + 8

s∑
i=1

·2s−i

≤ 2s+ 2
s∑
i=1

2s

s
+ 10 ·

s∑
i=1

2s−i

≤ 2s+ 12 · 2s

≤ 2s+4.

Therefore sq−2s−2/s ≤ q−αm
′/s. So

OuterSamp2m,δ,q =
(
Curve2,t1,qd1 ◦ · · · ◦ Curve2,ts,qds

)
? RSConn/s,m′/s,qs

is an
(
(s+ 1)ε0, q

m′−n) sampler by Lemma 4.4.2, and hence an (ε, δ) sampler.

Finally, note that n = s ·
⌈(
m′ + logq (1/δ)

)
/s
⌉

= O
(
m+ logq (1/δ)

)
and d = s + 1 =

O(logm), as desired.
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