Fine Grain Concurrent Computations

Thesis by

William C. Athas

In Partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy

California Institute of Technology

Pasadena, California

1987

(Submitted May 1, 1987)

ii

Copyright © 1987
William C. Athas
All Rights Reserved

iii

Acknowledgments

Thanks, Chuck

iv

Abstract

This thesis develops a computational model, a programming notation, and a set of
programming principles to further and to demonstrate the practicality of programming
fine grain concurrent computers.

Programs are expressed in the computational model as a collection of definitions of
autonomous computing agents called objects. In the execution of a program, the objects
communicate data and synchronize their actions exclusively by message-passing. An
object executes its definition only in response to receiving a message, and its actions may
include sending messages, creating new objects, and modifying its own internal state.
The number of actions that occur in response to a message is finite; Turing computability
is achieved not within a single object, but through the interaction of objects.

A new concurrent programming notation Cantor is used to demonstrate the cognitive
process of writing programs using the object model. Programs for numerical sieves,
sorting, the eight queens problem, and Gaussian elimination are fully described. Each
of these programs involve up to thousands of objects in their exectuion. The general
programming strategy is to first partition objects by their overall behavior and then to
program the behaviors to be self-organizing,.

The semantics of Cantor are made precise through the definition of a formal semantics
for Cantor and the object model. Objects are modelled as finite automata. The formal
semantics is useful for proving program properties and for building frameworks to capture
specific properties of object programs. The mathematical frameworks are constructed
for building object graphs independently of program execution and for systematically
removing objects that are irrelevant to program execution (garbage collection).

The formal semantics are complemented by experiments that allow one to study
the dynamics of the execution of Cantor programs on fine grain concurrent computers.
The clean semantics of Cantor suggests simple metrics for evaluating the execution of
concurrent programs for an ideal, abstract implementation. Program performance is also
evaluated for environments where computing resources are limited. From the results of
these experiments, hardware and software architectures for organizing fine grain message-

passing computations is proposed, including support for fault tolerance and for garbage
collection.

Contents

Acknowledgments
Abstract

...................................
..

....................................

1 Introduction
1.1 Objects e
1.2 Object Computations
1.3 Thesis Flow

.............................

...................................

2 Programming with Concurrent Objects
2.1 The Programming Model
22 Cantor e
2.3 Three Useful Library Objects

2.3.1 Stacks
2.3.2 Queues
233 Vectors
2.4 Some Interesting Programs
2.4.1 Perfect Numbers

...........................

.........................

..................................

.................................

...........................

............................

242 PrimeSieve,
243 MergeSort
244 PEight Queens
245 Gaussian Elimination
25 Summary e e e e,

3 Computational Model and the Frameworks for Flow Analysis

3.1 The Computational Model
32 ExecutionRules
33 APrimitive Notation
33.1 Assignment
332 Expressions
333 Sequence
334 Message Passing
3.4 Cantor — Primitive Notation
341 Message Flow
342 ControlFlow

343 Assignment e

16
16
18
21
24
24
26
32
36
41
49

vi

344 Expressions
3.5 Flow Analysis of Cantor Programs
351 Layer1Flow Analysis
35.2 Layer2Flow Analysis
353 Layer3Flow Analysis
3.6 Reclaiming Irrelevant Objects
36.1 A Two Color Strategy vuuene.. ...
4 The Behavior of Concurrent Programs
4.1 Program Behavior for Soft Computers
4.1.1 Perfect Numbers
412 PrimeSieves
413 MergeSort
414 Eight Queens
4.1.5 Gaussian Elimination
4.2 Program Behavior for Fixed Size Ensembles
4.3 Program Behavior for Limited Message Throughput
44 Locality
4.4.1 Logical Neighborhoods
4.4.2 Compiler-Assisted Placement
4.5 Summary e e e e e
5 The Object Model Directed Architecture
5.1 Message and Object Dualism
5.2 Generic Node Architecture.
5.3 Multiple Objectsper Node
5.4 Multiple Object Enginesper Node
55 TheCantorEngine
56 Fault Tolerance
5.7 Garbage Collection
6 Epilogue
6.1 What Has Been Learned
6.2 Beyond Cantor,

Bibliography

71
73
74
74
75
75
75
84
95
103
111
126
132

133
133
135
138
139
142
143
149

153
153
155

158

vii

List of Figures

1.1

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
211
2.12
213
2.14
2.15
2.16
2.17
2.18
2.19
2.20

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12

Snapshots of an Object Computation 4
BNF Description for Cantor 9
List Object for Sorted List 15
Stack Object 17
Queue Object 20
Linear Sparse Vector Object 22
Tree Sparse Vector Object 23
Perfect Numbers Program 25
Object Graph for Prime Sieve 28
Wheel Driven Prime Sieve 29
Demand Driven Prime Sieve 31
Initialization and Recursion for Merge Sort 34
List Object for Merge Sort 35
Solution to the Eight Queens Program 38
Concurrent Eight Queens 39
Printer and Main Objects for Queue Object 40
Matrix Data Structure for Gaussian Elimination 42
Row List Element for Gaussian Elimination 45
List Head Object for Gaussian Elimination 46
Compare and Gauss Objects for Gaussian Elimination 47
Initialization and Output for Gaussian Elimination 48
Object Count for Perfect Numbers 3,000 (N =0c0) 7
Concurrency Index for Perfect Numbers 3,000 (N =o00) 77
Message Load for Perfect Numbers 3,000 (N =o00) 78
Object Count for Wheel Driven Prime Sieve (N =o00) 79
Concurrency Index for Wheel Driven Prime Sieve (N =o00) 79
Object Count for Demand Driven Prime Sieve (N =o00) 80
Concurrency Index for Demand Driven Prime Sieve (N =o00) 80
Object Count for Merge Sort (N =00) 81
Concurrency Index for Merge Sort (N=00) 81
Object Count for Concurrent Eight Queens (N =00) 82
Concurrency Index for Concurrent Eight Queens (N =00) 82

Object Count for Gaussian Elimination 64,64 (N =o00) 83

4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24
4.25
4.26
4.27
4.28
4.29
4.30
4.31
4.32
4.33
4.34
4.35
4.36
4.37
4.38
4.39
4.40
4.41
4.42
4.43
4.44
4.45
4.46
4.47
4.48
4.49
4.50
4.51
4.52
4.53
4.54
4.55
4.56

viii

Concurrency Index for Gaussian Elimination 64,64 (N =00) 83
Object Count for Merge Sort (N =64) 86
Concurrency Index for Merge Sort (N =64) 86
Object Count for Eight Queens (N =64) 87
Concurrency Index for Eight Queens (N =64) 87
Speedup Comparison for Perfect Numbers 89
Speedup Comparison for Wheel Driven Prime Sieve 90
Speedup Comparison for Demand Driven Prime Sieve 91
Speedup Comparison for Merge Sort 92
Speedup Comparison for Eight Queens 93
Speedup Comparison for Gaussian Elimination 94
Limited Message Throughput for Perfect Numbers 97
Limited Message Throughput for Wheel Driven Prime Sieve 98
Limited Message Throughput for Demand Driven Prime Sieve 99
Limited Message Throughput for Merge Sort 100
Limited Message Throughput for Eight Queens 101
Limited Message Throughput for Gaussian Elimination 102
Perfect Numbers (N =256) 105
Perfect Numbers (N =256) 105
Wheel Driven Prime Sieve (N =256) 106
Wheel Driven Prime Sieve (N =256) 106
Demand Driven Prime Sieve (N =256) 107
Demand Driven Prime Sieve (N =256) 107
Merge Sort (N =256) ennn.. 108
Merge Sort (N =256), 108
Eight Queens (N =256) 109
Eight Queens (N =256) 109
Gaussian Elimination (N =256) 110
Gaussian Elimination (N =256) 110
Two-Dimensional Torus 113
Average Distance Comparison for Perfect Numbers 114
Speedup with Locality for Perfect Numbers 115
Average Distance Comparison for Wheel Driven Prime Sieve 116
Speedup with Locality for Wheel Driven Prime Sieve 117
Average Distance Comparison for Demand Driven Prime Sieve 118
Speedup with Locality for Demand Driven Prime Sieve 119
Average Distance Comparison for Merge Sort 120
Merge Sort 121
Average Distance Comparison for Eight Queens 122
Speedup with Locality for Eight Queens 123
Average Distance Comparison for Gaussian Elimination 124
Speedup with Locality for Gaussian Elimination 125

Average Distance with Compiler-Assisted Placement for Merge Sort . . . 128
Speedup with Compiler-Assisted Placement for Merge Sort 129

ix

4.57 Average Distance with Compiler-Assisted Placement for Gaussian Elimi-
nation e 130

4.58 Speedup with Compiler-Assisted Placement for Gaussian Elimination . . . 131

5.1 Ensemble Machine for Object Programs 134
5.2 Generic Node Architecture for Single Object 137
5.3 Multiple Object Enginesper Node 140
5.4 Global Queue and Input Queues 141
55 TheCantor Engine 144

5.6 Fault Tolerant Node Organization

Chapter 1

Introduction

Concurrent computers are able to exploit concurrent behavior in computer programs
over a wide range of size, or granularity, of the concurrent parts. Concurrency occurring
at the sub-part level is difficult to exploit except for concurrency intrinsic to the com-
puting elements, e.g., bit-wise parallelism. Therefore, from the perspective of exploiting
concurrency, there is a strong impetus to keep the size of the program parts small.

There are also no fundamental difficulties in building fine grain concurrent comput-
ers. The high-tech world of the last quarter of the 20th century abounds with small
computers, i.e., instruction processors with only small amounts of storage. These small
computers occur in such diverse places as wristwatches, automotive engines, microwave
ovens, and childrens’ dolls. By and large, these computers do not have any direct inter-
action with other computers; at best, these small computers are loosely coupled. Due
to recent developments in high performance, message-passing interconnection networks,
automata-based routing mechanisms have been designed whose whose performance in
delivering message packets between computers rivals the rate at which the instruction
processors inside the small computers can execute instructions [12].

The fundamental problem with fine grain concurrent computers is the gap in the
body of knowledge about how to organize computations for these machines. Program-
ming techniques for organizing sequential programs at the level of storage locations and
logical/arithmetic operations are copious. Programming techniques for organizing con-
current programs as collections of processes where each process is a sequential program
are also well understood, though not to the same degree of maturity as the sequential
program. In both cases the infinite, or “unbounded” character of the computation is
separately encapsulated into the program space of each process. For example, with re-
cursive functions, the depth of the recursion is not a specification of the function because
the depth may be data dependent. The assumption is that the recursion depth is infinite.

Organizing programs as collections of processes where one or more processes reside
on each small computer or processing node is flawed because the illusion of an infinite
program space per process cannot be realized. The storage space per node is quite small.
However, because the nodes are small, the number of nodes available is large. The
solution is obvious: shift the unbounded character of computations from the internal
behavior of each process to between the processes. In other words, have each process
occupy finite space and require only a finite amount of time to process a message, but

let an unbounded number of processes be applied to a computation.

1.1 Objects

Processes that have these properties will be called objects. The only actions permit-
ted of an object are: changing the state of the object, sending messages, and creating
new objects. Objects are message-driven in that they are normally at rest, waiting for a
message to arrive. An object can process only one message at a time, and the number
of messages sent and number of objects created in response to receiving a single message
is finite.

The action of modifying the state of an object has the conventional interpretation
found in programming languages: namely, executing assignment statements on the vari-
ables private to the object, performing logical/arithmetic operations on the private vari-
ables, and making simple control flow decisions. Neither indefinite iteration nor un-
bounded recursion is allowed inside an object because of the requirement that an object
processes a message in a bounded amount of time.

Because communication is not instantaneous, the action of sending a message from
an object is only a promise that the message will be sent. The message is guaranteed
to be delivered eventually to its destination, and messages sent between two objects in
direct communication will have message order preserved.

The action of creating a new object is like the send action in that it is only a promise
to eventually create a new object. Completion of the new action immediately yields a
reference to the new object, although the instance of the new object may not yet exist.
The reference value, however, may be computed on and be shared with other objects.

The three types of actions: send, new, and update state, are sufficient to express any
program, not with a single object, of course, but by a collection of interacting objects.
For example, a recursive function can be expressed as a collection of objects that behave
as a stack, thereby providing a mechanism to implement the recursion.

This object model is related to the actor model of computation. The fundamental
difference between the two is that actors [6] [10] [38] [2] are recursive constructions;
hence, an individual actor can exhibit infinite internal behavior. The object model used
here is comprised only of objects with finite internal behavior. The behavior of objects
is a proper subset of the behavior of actors. The primary advantage of the actor model
over the object model is its power of abstraction. On the other hand, the object model
has a simpler analytical formulation.

1.2 Object Computations

The internal behavior of objects is constrained to be sequential because the internal
state can be modified over time. When an object processes a message, the object is
guaranteed to generate only a finite number of messages, to produce a finite number of
new objects, and then to prepare itself to receive another message. Because the response
to a single message is finite, the interval between receiving the message and readying to
receive another message is considered indivisible. To illustrate, Figure 1.1 depicts the

first three states of a sample object computation. The picture of Figure 1.1(a) shows a
message travelling from object O; to object O,. The objects are depicted as circles and
the message as a triangle. The arrows denote that the object or message at the tail of
the arrow has a reference to the object at the head of the arrow. A reference allows one
object to send another object a message. Each message contains a special reference to
its destination object. This special reference is drawn on one vertex of the triangle.

The response of Oy after receiving M; is shown in Figure 1.1(b). Oz produces two
new objects O3 and Oy, and sends messages to both of these new objects. The interval
between O receiving message M) and readying itself for another message cannot be
observed. The state of the computation is well defined only before and after the message
is received, not during. The object graph of Figure 1.1(b) shows concurrency since both
Os and Oy can process their messages concurrently.

Figure 1.1(c) depicts the computation after M; is received by O4. Notice that one of
the state modifying operations inside of Oy resulted in the reference to O, being removed.
There is no possible way for O to receive a message unless some other object were able
to forge a reference to O3. The possibility of forging references in effect allows any object
to send any other object a message, in contrast to having the set of acquaintances of an
object limited to the transitive closure of the set of objects to which it can send messages.
Forging references is not allowed in the object model because it makes the set of objects
completely interconnected.

The object model has the required characteristic of placing the burden of expanding
the computation at the level of interaction between objects instead of inside of objects.
From the viewpoint of a fine grain computer, the problem of dynamic growth during a
computation becomes one of prudently assigning objects to the nodes of the concurrent
computer. The assignment task is complicated by myriad details about the fine grain
computer, i.e., interconnection topology and message channel characteristics. Evidence
is presented in this thesis that programmers of fine grain computers do not need to be
aware of the assignment task since automatic mechanisms work virtually as well.

An important feature of the object model is the treatment of futures, where the
word “futures” is used in the commodities trading sense. The use of futures has been
proposed [30] as a mechanism to moderate the concurrency derived from a program by
explicitly qualifying the futures as either “lazy” or “eager” when a program is written.
This approach to futures places premature restrictions on the use of futures. The full
potential of futures is to view them from the perspective of creating new objects, as
described earlier. In the object model, a reference to an object can exist before the
instance of the corresponding objects exists. The only way to be sure that an object has
been created is to receive a message from it. References without objects are futures. The
runtime system supporting the object model has a great deal of latitude in the assignment
process since only the instance of an object is necessarily assigned to a processing node.
The future can be an independent quantity. The manipulation of futures independently
of the computation is called future flow to distinguish it from the computation or program

flow.

O]_ M, 1 02
(a)
O 4 04 05
M, M,
O O:
01 02
M3
M;
O3
O3
(b) ()

Figure 1.1: Snapshots of an Object Computation

1.3 Thesis Flow

As might be expected, writing programs in the object model is substantially differ-
ent from writing conventional programs for sequential computers. One approach to the
object model is to view it as a compilation target in which high level concurrent pro~
gramming notations are compiled into a set of object definitions that are then used to
build up the object computation. A second approach is to program directly at the level
of the object model. This second approach is the one taken in this thesis, since all of the
capabilities and limitations of the object model can then be explored.

A compact programming notation called Cantor is presented in Chapter 2. The
semantics of Cantor are discussed informally, and several small programs are presented to
demonstrate the various syntactic constructs. The feasibility of writing programs directly
at the abstraction level of the object model is demonstrated by presenting Cantor object
definition to implement conventional data structures such as queues and arrays. Six
complete medium-size programs are then discussed in detail to demonstrate the cognitive
process of writing Cantor programs starting with only a definition of the program task.

The semantics presented informally in Chapter 2 are made precise in Chapter 3 by
introducing a formal model for the semantics of the object model. Objects are mod-
elled as finite automata whose state graphs and transition rules have special properties.
A primitive notation for expressing object programs is defined in terms of the formal
model. Interpretation rules expressed in the primitive notation are then defined for
each of the syntactic constructs of Cantor. The objects of Cantor are therefore given a
precise meaning by first translating the Cantor object into the primitive notation and
then expanding each of the constructs of the primitive notation into an equivalent finite
automaton representation.

The formal definition for Cantor provides a framework for program flow that is useful
for proving program properties. A framework for future flow is derived from the program
flow framework and is used to compute futures at compile time. The basis for future flow
at the compilation stage is shown to be a special case of the task of constant propagation
found in optimizing compilers. The results of future flow can be applied to the assignment
task to make a speculative placement of future objects to processing nodes.

The complement to future flow is after flow or “garbage collection.” The task of after
flow is to determine the set of objects that have become irrelevant to the computation
proper without disturbing the computation. The resources held by these objects may
be recycled without affecting program semantics. The after flow framework is a simpli-
fication of the program flow framework. The only operation relevant to the after flow
framework is transitive closure over object references. The execution rules for Cantor
objects combined with the after flow framework permit uncomplicated garbage collection
algorithms to be used effectively.

The analytical approach to object program behavior in Chapter 3 is useful for un-
derstanding the internal behavior of objects and also for inferring general properties of
object programs. The behavior for complex programs consisting of thousands of ob-
Jects is beyond the scope of the analytical approach. Chapter 4 defines an idealized,
abstract implementation for Cantor programs to quantitatively measure the behavior of
the programs introduced in Chapter 2. The program quantities measured include the

amount of concurrency and the amount of message traffic extant in the programs under
ideal conditions. The ideal conditions are then incrementally removed to experiment
with the effects of limiting computing resources and applying different automatic assign-
ment strategies. The results from Chapter 4 show that simple, automated assignment
strategies perform virtually as well as the ideal strategies.

From the abstract implementations developed in Chapter 4, software and hardware
architectures for Cantor and the object model are proposed in Chapter 5. Organizations
for node computers suitable for ensemble machine architectures [35] [33] [34] are explored.
These organizations include hosting multiple objects per processing node and also placing
multiple Cantor engines on each node. The multiple Cantor engine per node organiza-
tion is effectively a shared memory organization. The possibility of multiple nodes and
multiple Cantor engines suggests methods for allowing object computations to proceed
in the presence of faults. Hardware and software mechanisms for handling faults are dis-
cussed. Many of these mechanisms are also suitable for the garbage collection algorithms
of Chapter 3.

Chapter 2

Programming with Concurrent Objects

Computations expressed in the object model require new modes of expression. To
represent these new modes in existing programming notations is awkward because of
the substantial difference between the object model and the programming models used
for sequential computers. The existing programming models implicitly assume that
program behavior is sequential and any provisions for concurrency must be explicitly
stated. The object model assumes that program behavior is inherently concurrent; to
express sequential behavior requires deliberate effort.

This chapter introduces the programming notation Cantor, a concrete realization of
a programming model based upon the object model. Cantor and its semantics are the
basis for the program experiments and analysis performed in this thesis. Essentially, the
properties of the object model become the semantics of Cantor’s syntactic constructs.
This chapter details the differences between the Cantor programming model and the
object model, provides a cursory overview of Cantor’s syntax, and then uses Cantor to
express some object programs.

2.1 The Programming Model

The Cantor programming model closely follows the object model but also imposes
additional constraints that do not contradict the object model, but rather limit the range
of expression of the computations. The limitations arise when a framework is chosen to
bridge the gap between the representation of programs, i.., syntactic constructs and
program semantics.

The overall structure for a program is a collection of object definitions. The Cantor
definition is akin to the class concept found in object-oriented languages except that
there is no inheritance of attributes between object definitions. Each definition has a
unique name and a template that is used to build new objects. The template specifies
a set of private variables for new object. These variables are assigned values when the
object is created. The template also specifies a set of one or more descriptions that
define the response of an object to a message. The description contains a set of message
variables that define the expected contents of the next message to be received and a list
of actions to be performed in response to the message.

When an object is created, the object is assigned an initial set of values for its private

variables and an initial description to process the first message that will be received for
the object. After the first message is received, the object can send messages, create new
objects, and change its internal state. The internal state change consists of modifying the
private variables and possibly switching to a different description to use for processing
the next message. The set of descriptions that an object can switch is determined when
the object definition is compiled.

The object model does not address the genesis of object computations. The pro-
gramming model and its implementation assume that in the beginning there is only a
single message and a single primordial object from which all other messages and objects
are descendant. The destination of the first message is the primordial object. This
first message imports the initial set of external references for the set of external objects
that will be used by the object program to communicate with the outside world. If the
computation is to expand, then the primordial object must create new objects. If the
computation is to become concurrent, then multiple messages must be sent to different
destinations. The termination condition for a program occurs when there are no mes-
sages left to be processed anywhere. Programs that exhibit cycles of object references
with messages perpetually flowing around the cycle never terminate.

2.2 Cantor

This section provides a cursory explanation of the syntax and semantics of Cantor, the
object language that has been designed and implemented for the investigations reported
in this thesis. The expository style is to progress gradually through the BNF description
of Cantor depicted in Figure 2.1. For a more thorough and gentler introduction, the
reader is encouraged to study Chapter 2 of the Cantor User Report [5].

A program is textually described by a set of definitions. This structure is captured
in the first three rules of the BNF specification:

(program) = (object definition)* (description)
(object definition) == (object name) (persistent list) : : {description)
(description) => (*[][) (body)]

For the (program) rule, the single (description) following the list of (object definition)s
specifies the behavior for the primordial object. This object is by convention called the
main object. A simple but complete Cantor program that uses only this primordial object
is:

[(console) send (“Hello World”) to console]

The effect of running this program is to print “Hello World” on the user’s output device.
The matching pair of square brackets denotes a description. To understand the meaning
of the description, the BNF rule for (body) needs to be expanded:

(body) => (sequence) | (case) | (description)™
(sequence) => (message list) (statement)*
(case) => case ((name)) of {casebody)t

(program)

(object definition)

(description)
(body)
(sequence)
(case)

(case entry)
(statement)
(if)

(let)

(send)
(assign)
(control)
(persistent list)
(message list)
(name list)
(expression)
(exprl)
(expr2)
(expr3)
(exprd)
(primitive)

(selector)
(reference)
(list)
(symbol)
(logical)

(name)

o A O O A A N

(object definition)* (description)

(object name) (persistent list) : : (description)
(*01[) (body)]

(sequence) | (case) | (description)*t

(message list) (statement)*

case ((variable name)) of (case entry)*

(selector) : (sequence)

(if) | {let) | (send) | (assign) | (control) | {description)
if {expression) then (statement)* { else (statement)* } fi
let (variable name) = (expression)

send (list) to (expression)

(name) := (expression)

exit | repeat | become (expression)

(name list)

(name list)

O | ((name) { , (name) }*)

(expri) { (o | xor) (exprl) }*

(expr2) { and (expr2) }*

(exprs) { (=] < | <| > | <= | >=) {exprs) }*
(exprd) { (+ | -) (exprd) }*

(primitive) { (% | / | mod) (primitive) }*
(variable name) | (selector) | (reference) | (real) |
abs (primitive) | not (primitive) | ({expression))
(integer) | (logical) | (symbol)

self | (object name) (list)

O | ({expression) { , (expression) }*)

" (char)* "

true | false

(ident)

Figure 2.1: BNF Description for Cantor

10

The body of an object definition is either a message list followed by a sequence of
zero or more statements, a case construct, or a series of nested descriptions. For the
main object of the “Hello World” program, the body is an instance of the (sequence)
rule: comprised of a message list containing a single component named console followed
by a send statement. The first message sent to the primordial object main is expected
to contain a reference to an external object capable of printing messages.

The general interpretation of a (description) is this: Whenever an executing object
encounters an open square bracket followed by message list, viz. a new description,
execution of the object stops until a new message arrives for it. Initially an object
starts executing at the outermost left bracket, and is therefore initially waiting for a
message. When a message arrives, it is copied into the message list of the body of
the description. The object then executes statements until the outermost close square
bracket is encountered, or until another description is reached.

For the main object, the message list contains references to external objects that are
passed into the Cantor program by the runtime system hosting the program. For the
“Hello World” program, the message from the outside contains a reference to an object
internally named console. A message sent to the reference contained in console will cause
the message contents to be displayed on some output device.

The statements of Cantor correspond to the list of actions that an object can perform.
A statement can change the value of an internal variable, alter the control flow within
the object, or cause an external effect by sending a message or creating a new object.
The entire set of possible statements is given by the BNF for a (statement):

(statement) == (if) | (let) | (send) | (assign) | (control) | (description)

The main object of the “Hello World” program contains only a single statement, a
send statement. The syntax for the send statement is the following:

(send) => send (list) to (expression)
(expression) => ... (primitive) ...

(primitive) = (variable name) | (reference) ...
(reference) = self | (object name) (list)

The meaning of the send statement is to copy the contents of (list) into a message and
then send the message to the object whose reference is the value of (expression).
Lists have the following syntax:

(list) == | ((expression) { , (expression) }*)

Expressions in Cantor can take on a variety of forms as directed by the precedence
structure of the arithmetic and logical operators built into Cantor. However, all expres-
sions must evaluate to one of the five primitive data types that are built into Cantor.
The five types of primitive values are:

e reference, the address of another object.

11

e integer, e.g., 42.

e real number, e.g., 3.14159265.

e symbol, e.g., “Hello World”.

e logical (boolean), viz. true or false

All Cantor values are tagged with type information. When the contents of a list are
copied into a message, each expression is evaluated to yield a value, and these values,
each tagged with its type, make up the contents of the message.

For the (send) rule, the destination of the message is denoted by an (expression)
that must evaluate to a reference value. Any other value type is a programming error.
For the “Hello World” program, console is a reference, “Hello World” is a literal symbol,
and the effect of the single send statement is to dispatch this message to console. The
message is interpreted by the external object referred to as console as a list containing
one symbol, and this symbol is printed.

Referring again to the BNF, a reference value can in general be the value associated
with a variable name, e.g., a component of the persistent list for the object, or a com-
ponent of the message list for the current description, or can be introduced by the rule
for (reference). This rule states that a reference can be produced by the keyword self,
which produces a reference value for the object where the keyword self occurs, or can be
manufactured by composing the name of an object definition with a list. The effect of
this composition is to create a new instance of the object and to “install” the list into
the persistent list of the new object.

To illustrate the process of objects creating new objects, consider the following pro-
gram to compute the factorial function:

factorial(reply, n)::
[0
if n<2
then send (1) to reply
se_send () to factorial(self , n-1)
[(m) send (n*m) to reply]

‘.2.13

|

j=h

[(console) send () to factorial(console, 6)]

The main object receives the console message, creates a new object from the factorial
definition, and then sends the new object an empty message. The expression:

factorial(console, 6)

yields a new object with two private variables; the value of console is assigned to reply
and the value of 6 is assigned to n. Because the private variables contain all the necessary
information, i.e., a value of n and a reply link, the empty message sent to the factorial

12

object is used only to make the object perform the sequence of statements inside the
description.

The definition of the factorial object follows almost directly from the recursive def-
inition. If n is O or 1, the value 1 is replied immediately to the caller which contains
the value of console. For values of n greater than 1, the recursive step is taken. A new
factorial object is created with a reply link of self and a value of n - 1. The keyword self
denotes the reference value of the current object. The object must then rendezvous with
the reply from the new object. This rendezvous is performed by nesting a description
inside of the current description. The BNF allows this recursive action because one of
the possibilities for the (statement) rule is the (description) rule.

After the rendezvous, the received integer value and the value of n are multipled
together and sent to reply. The object then reaches the outermost square bracket. At
this point, because the object has no description to use next, the object self-destructs.
An object can be directed to reuse a description by beginning the description with *[
instead of [, or by using the repeat command. In a complementary fashion, the exit
command is used to override a *[and causes the current description to be exited.

For nested descriptions, Cantor supports lexical scoping on variables. The factorial
program could equally have been written:

* factorial()::
[(reply. n)
if n<2
then send (1) to reply
else send (self, n-1) to factorial()

r—

(m) send (n*m) to reply]

[(console) send (console, 6) to factorial()]

Cantor also allows local variables to be declared inside of descriptions via the (let)
statement. The factorial program could also be written:

factorial() ::
[(reply. n)
if n<2
then send (1) to reply
else send (self . n-1) to factorial()
[(m) send (n*m) to reply]

[(console)

13

let

f
send

= factorial()
(console, 6) to f

The statement:

let f = factorial()

allocates a new variable f and assigns to f the reference value of the new factorial object.
The assignment of the reference value to f suggests a potential problem for the three
factorial programs. Suppose that the main object is rewritten as:

[(console)
let f = factorial()
send (console, 6) to f
send (console, 7) to f

]

Message order is preserved for messages sent between two objects in direct commu-
nication. After the factorial object processes the first message, it then waits for the
rendezvous from the recursion; however, the (console, 7) message may very well arrive
next. The factorial object is expecting a message containing a single integer but receives
a message containing a reference and an integer. A second problem is that the factorial
object is expecting two messages but receives 3. After the second message is received,
the object self-destructs because no replacement description is specified.

The problem can be solved by factoring out the nested description used for the

rendezvous and multiply step within a separate object called mult. Consider the following
factorial program:

multiply(reply. n) :: [(m) send (n*m) to reply]

factorial():: [(reply. n)
if n<2
then send (1) to reply
else_let m = multiply(reply. n)
send (m, n-1) to self

[(console)
let f = factorial()
send (console, 6) to f
send (console, 7) to f

14

This program uses only a single factorial object that is shared for all of the factorial
requests generated by the two initial requests of 6 and 7. The *[form of description
is used so that the same description is reused. For n greater than 1, the recursive step
involves creating a new multiply to hold the value of reply and n. A message is then sent
to self with a reply link of the new multiply object.

The final construct to be covered is the case construct. The case construct is an
alternate form of the description. The chief reason for the inclusion of the case construct
is to facilitate the tagging of messages. The use of the tag provides a mechanism to
vary the interpretation of the contents of a message based upon the value of the first
component of the message. The tag also serves the role of the “method” or “attribute”
selector used in object-oriented programming. The tag of the message is used to invoke
an attribute of an object by dispatching on the tag to one of the case entries. Each
entry corresponds to a method of the object. The first variable of the message is the
method selector. The (selector) is enclosed in parentheses and follows the case keyword.
The value of (selector) must be either a symbol, integer, or logical. This value is used
to select which of the case entries that will be executed in response to the message. If
none of the selectors match the value of the first message variable, then the message is
discarded. If a selector matches the value of the first message variable, then the message
list and sequence of statements following the selector are executed. Thus the message list
for the case construct is separated into two parts. The first message variable is enclosed
in parentheses following the case keyword while the remainder of the message list follows
the selector and has the same syntax as the (sequence).

A simple example that uses the case construct is the task of maintaining a sorted
list of integers using a linked list of objects. For the sorted list there are two commands:
insert integer and check if integer is in list. The test command requires that a value
of true or false be sent to the caller. The insert command requires that the value be
inserted. The case construct allows the first component of a message to be examined
before the rest of the message list is interpreted. The object definition of Figure 2.2 uses
the case construct for the sorted list.

The first component of a message received by a slist object is interpreted as cmd. The
value of cmd must be integer, boolean, or a symbol. For the slist object, two symbols
are used for the possible selectors: “insert” and “check”. If value of the cmd selector is
“insert”, the second component of the message is interpreted as v, the integer value to
be inserted. If the value of the cmd selector is “check”, then the message is expected to
have two more components: v and caller.

15

slist(n, next) ::
[case (cmd) of

“insert” :

“check” :

(v)
ifv<n
then next := list(n, next)
ni=v
then if next = “nil”
then next := slist(v, “nil")
else send (“insert”,v) to next
i

fi
fi
(v. caller)
ifv=n

then send (true) to caller
else ifv<n
then send (false) to caller
else if next = “nil”
then send (false) to caller
else_send (“check” v,caller) to next

=

Figure 2.2: List Object for Sorted List

16

2.3 Three Useful Library Objects

Although the internal behavior for an object is described by the object definition
that was used to create the object, the external behavior of an object can be completely
described by its input and output behavior. The input to an object is always a message
and the output is the response of the object to the message, i.e., the messages sent and
objects created. Defining the behavior of an object by its input and output behavior
is an abstraction over the internal details of the object’s implementation. With this
abstraction, objects can be created and manipulated without knowing their internal
workings. The object definition can thus be expressed in Cantor, or in a representation
that is preferred for the implementation.

This flexibility allows the semantics of Cantor to be obviated within an object defini-
tion, but still requires that the semantics be observed at the level of interaction between
objects. The motivation for the alternate representations, called custom objects, is spe-
cial efficiency for particular runtime environments. For example, efficient concurrent data
structures, such as the balanced cube [11] which exploit interconnection topology infor-
mation of ensemble machine implementations, can be accessed from Cantor as custom
objects. Thus, objects expressed in Cantor and custom objects can be freely interposed
in the same computation.

Object definitions that can be cleanly and succinctly defined by their input and
output behavior are excellent candidates for library objects. For example, the class of
objects that always produce the same output for the same input message is functional
or history-insensitive and they can be used freely as library objects. The application
of history-insensitive objects to object libraries is straightforward. For history-sensitive
objects, succinctly defining the external behavior is complicated by the object’s capability
to change its current behavior based upon the messages the object has received. This
section documents three object definitions that result in history-sensitive objects. The
changes to the internal state for these objects are, however, well-defined.

2.3.1 Stacks

The object definition shown in Figure 2.3 behaves as an element for a stack. Two
assumptions about the stack object are that each object is created containing a value
and, secondly, that there will never be more pops than pushes. The stack object has two
“modes” of operation. The “full” mode occurs when the stack object contains a value
for the stack. For each “push” message received in the full mode, a new stack object is
created containing the current stack value and next link. The current stack value then
becomes the argument of the “push” message.

When the first "pop” message is received, the stack object sends the value of content
to caller and then enters the “empty” mode of operation. All “pop” messages received
by a stack object that is in the empty mode are forwarded to next. If next contains the
value “nil”, then the symbol “empty” is replied to caller. The symbol “empty” will be
sent only if more “pop” messages are sent to the stack than “push” messages.

When a “push” message is received by a stack object that is in the empty mode, the
content of the message is assigned to content and the stack object returns to the full
mode.

17

stack (content, next)
*[case (cmd) of
"push" : (val)
if next = "nil"
then next := stack(content, "nil")
else send ("push",content) to next
fi
content := val
"pop" : (caller)
send (content) to caller
*[case (cmd) of
"push" : (val)
content := val
exit
"pop" : (caller)
if next = "nil®
then send ("empty") to caller
else send ("pop", caller) to next
fi

Figure 2.3: Stack Object

This formulation for a stack has two attractive properties. Multiple messages can
be sent to the stack without having to synchronize with reply messages. For example, a
series of “push” messages followed by a series of “pop” messages will behave correctly,
independent of message delays.

A second property is that an interleaved series of “pop” and “push” messages will
only involve the “top of stack” object. The first “pop” message will put the top of stack
object into the empty mode. The following “push” message will place the top of stack
object back into the full mode. For this formulation, the number of objects involved in
a push or pop operation is limited to the difference between the number of “push” and
“pop” messages processed by the stack.

One possible refinement to the stack object is to have the objects self-destruct if
their value is popped and the value of next is “nil”. The difficulty with this refinement
is that the top of stack object has to be treated differently; otherwise, the entire stack
will self-destruct.

18

2.3.2 Queues

Figure 2.4 depicts one formulation for expressing a queue in Cantor. The two oper-
ations performed on the queue object are advance queue front which returns the value
at the head of the queue, and insert a new value at the tail of the queue. The stack
object requires only a single reference to the “top of stack” object, but queues require
two references, one for the head of the queue and a second for the tail of the queue. To
properly maintain the two references, the queue is partitioned into two different kinds
of objects: queue_cell objects and queue_master objects. The queue_cell objects are used
to form a linked list of the values stored in the queue. The queue_master object is used
to control access to the linked list of queue_cell objects. The queue of Figure 2.4 permits
concurrent writes into the queue, but only a single reader.

An enqueue operation is accomplished by sending the queue_master an “insert” mes-
sage with a single argument of the value to be inserted. No reply message is sent in
response to the “insert” message. A dequeue operation is accomplished by sending the
queue_master object an “"advance” message. The argument to the “advance” message is
a reference value designating the object that is to receive the value stored at the front
of the queue.

Multiple “insert” messages may be concurrently sent, but before an “advance” mes-
sage is sent, the reply value for the previous “advance” must have been sent, excluding
of course the very first “advance” message. The set of objects that communicate with
the queue_master object must conform to this domain constraint.

The behavior of the queue_master object is divided into three modes: an empty queue,
a queue with one value, and a queue with multiple values. The outer case construct
reflects the mode where the queue is completely empty. If an “"advance” message arrives
first, then by the domain constraint, the next message must be an “insert” message. For
this case, the queue_master object waits for the “insert” message and then replies the
value of the “insert” message to the value of caller of the previous “advance” message

Once the number of “insert” messages received exceeds the number of “advance”
messages received, a queue_cell object is allocated and assigned to the local variables hd
and tl. The second case construct is then used to process subsequent messages. The
receipt of an “insert” message results in a new queue_cell object. This new object is to
be added at the tail of the current queue. A “link” message containing the value of the
new tail object is sent to the old tail object, and the variable tl is assigned the reference
value of the new queue_cell object.

When a “advance” message is received, care has to be taken to check if the queue
contains only a single value or not. To test if the queue contains only a single value, hd
is compared with tl. If the two variables have equal values, then the queue has reference
to only a single queue_cell object. The action for this case is to send the queue_cell object
an “fget” message. The queue_master object then returns to the empty mode, i.e., the
outermost case construct, because the “fget” message will cause the queue_cell object to
reply directly to the object that sent the “advance” message.

If the queue contains more than one value, the front of the queue must be retrieved
and the front of the queue advanced. Fetching the value at the front of the queue and
the value for the new queue front is accomplished by sending a “get” message to hd.

19

From this point, two types of messages can be received: additional “insert” messages
and the reply from hd. A third case construct is used to handle the two types of possible
messages. The case for “insert” performs as before. The case for “hd reply” sends the
value at the queue front to the object that sent the “advance” message and assigns the
new queue front value to hd. The receipt of the “hd reply” messages returns control to
the second case construct. If the value of the head of the queue is “nil”, then the queue
is empty, and control returns to the outer case construct.

20

queue_cell(value, next)
*[case (cmd) of

"link" : (new_next) next := new_next
"get" : (caller) send ("hd reply",next,value) to caller
exit *
"fget" : (caller) send (value) to caller
]
queue_master()
*[case (cmd) of
"advance" : (caller) % wait for "insert" message
[(discard, v) send (v) to caller]
"insert" : (v)
let hd = queue_cell(v,"nil")
let t1 = hd
*[case (cmd) of
"insert" : (v)

let nt = queue_cell(v,"nil") % new tail
send ("1link",nt) to tl1

tl := nt
"advance" : (caller)
if hd = t1 then send ("fget",caller) to hd
exit
fi

send ("get",self) to hd

[case (cmd) of

"insert" : (v)
let nt = queue_cell(v,"nil")
send ("link",nt) to tl
tl := nt
repeat

"hd reply" : (new_head,v)
send (v) to caller
hd := new_head

]

if hd = "nil" then exit fi

Figure 2.4: Queue Object

21

2.3.3 Vectors

To manipulate vector data in Cantor, the data must be placed into objects. The
objects are then organized into some form of linked data structure that is capable of
mimicking the indexing operations. The cost of this mimicking is that the indexing op-
eration of a true vector is a unit time operation, but in Cantor must be performed as
a series of message-passing operations. Thus, the vector object is a prime candidate to
be made into a custom object for implementations where large amounts of contiguous
storage are available. To offset this advantage, the Cantor representations are concur-

rently accessible and because of their organization, amenable to sparseness, i.e., missing
elements.

The least complicated formulation is to organize the vector as a list of objects. The
object definition of Figure 2.5 implements a sparse representation for a vector. The vector
object processes “put” and “get” messages using the case construct. The “put” message
contains two arguments, the vector index i and the value to be stored at index i. If the
value of i is equal to the value of index for the object, the value of the “put” message is
stored inside the object. If i is greater than index, the “put” message is forwarded to the
next vector object in the list. If the current object is the last object in the list, a new
vector object is created whose index and value are the arguments of the “put” message.
If the value i is less than the current index, the current contents of the object are copied
into a new object which is linked in as next and the contents of the “put” message become
the contents of the object.

The processing of “get” messages is similar to the processing of “put” messages. If
the value of i equals the index of the object, the value stored as the content of the object
is sent to caller. If i is greater than the local index and a next object exists, the “get”
message is forwarded the next link. If there is no next object or i is less than the current
index, a value of zero is replied. Because this object definition implements a sparse
representation, the default value for elements of the vector that are not instantiated as
objects is integer zero.

For a vector of length N, if the indices sent to the vector are random, the average
number of messages sent per indexing operation is %L This number is excessive unless
the vector can be used in a pipelined fashion, which effectively defeats the purpose of
the random access mode. A second formulation for the sparse vector object is shown in
Figure 2.6. The elements of the vector are organized as a binary tree instead of a linear
list. The maximum number of messages to access an element of the vector is log, N.
This worst case number is a tremendous improvement over the average case number for
the linear list.

The initialization of the tree vector object is different from the linear list vector
because the tree needs to be kept balanced. The initial message sent to the vector object
contains the minimum and maximum index for the the vector. The object calculates
the mid-point between the minimum and maximum and then enters the case construct
which discriminates between the incoming “put” and “get” messages, as was done for
the linear list version.

The formats of the “put” and “get” messages are identical to the formats for the
linear list version. When the object receives a “put” message, the index of the “put”

22

vector (index, content, next)
*[case (cmd) of
"put" : (i, val)
if index = i
then content := val
else if i > index
then if next <> "nil"
then send ("put",i,val) to next
else next := vector(i,val,"nil")
fi
else next := vector(index,content,"nil")
index := i
content := val
fi
fi
"get" : (i, caller)
if index = i
then send (content) to caller
else if i > index
then if next <> "nil"
then send ("get",i,caller) to next
else send (0) to caller
fi
else send (0) to caller
fi
fi

Figure 2.5: Linear Sparse Vector Object

message is compared to the index of the object. If the two indices are equal, the value of
the message is stored as the local value. If the object index is greater than the message
index, the message is forwarded to the left sub-tree; otherwise, the message is forwarded
to the right sub-tree. Before the “put” message is forwarded, the appropriate sub-tree
is checked to make sure it exists. If not, a new vector object is allocated and sent an
initialization message followed by the forwarded message.

The response of the vector object to a “get” message is similar to its response to
“put” messages. If the message index matches the object index, the local value is replied
to caller; otherwise the “put” message is forwarded to one of the two sub-trees. If the
appropriate sub-tree does not exist, the object corresponding to the index value of the
“get” message is not a member of the tree. Because the vector is sparse, all vector
elements not represented by objects are assumed to be of value zero. Integer zero is
therefore sent to caller.

vector (content)
[(low,high)

23

let index = low + (high-low+1) / 2
let left = "nil®
let right = "nil®
*[case (cmd) of
"put" : (i, val)
if i < index
then if left = "nil®
then left := vector(content)
send (low,index-1) to left
fi
send ("put",i, val) to left
else if i > index
then if right = "nil"
then right := vector(content)
send (index+1,high) to right
fi
send ("put",i, val) to right
else content := val
fi
fi
"get" : (i, caller)
if i < index
then if left <> "niln
then send ("get",i,caller) to left
else send (0) to caller
i
else if i > index
then if right <> "nil"
then send ("get",i,caller) to right
else send (0) to caller
fi
else send (content) to caller
fi
fi
]
]

Figure 2.6: Tree Sparse Vector Object

24

2.4 Some Interesting Programs

To explore the cognitive process of turning English descriptions of programs into
Cantor programs, six complete programs are presented in this section. The programs
were chosen not for their cleverness nor execution efficiency per se, but rather for their
clarity in demonstrating useful paradigms for writing Cantor programs.

2.4.1 Perfect Numbers

Perfect numbers are defined as positive integers whose divisors when summed equal
the number. For example, the numbers 6 and 28 are perfect:

divisors of 6 are 1,2,3 and 1+2+3=6
divisors of 28 are 1,24,714 and 1+2-+4+T7+14 =28

To test a number for perfectness the divisors are computed and then summed. For a
test number N, the simplest procedure is to enumerate the integers between 1 and /N
and keep a running total of the divisors plus their quotients whose remainders are zero.
For the division and summing to be performed concurrently, the test divisors must be
enumerated concurrently. A simple strategy is to build a binary tree in which for test
divisor k, the sub-trees have test divisors of 2k and 2k + 1. The program of Figure
2.7 contains an object definition called divisor which uses this algorithm. The object
definition is used in the program to find all perfect number less than or equal to 10,000.
The persistent variables of divisor are the test number N and the object that is to receive
the result, caller. The test divisor is received as the message variable k. If the test divisor
is greater than v/N, then zero is replied to caller. If the test divisor is less than or equal
to v/N and the remainder of the dividend N and the test divisor is zero, then the quotient
and test divisor are summed and stored in a new add1 object. The value of caller is also
stored in the add1 object, and the reference value of the add1 object becomes the value
of caller.

Providing that the test divisor is not greater than v N , the next step is to concurrently
perform the testing of 2k and 2k + 1. Two new divisor objects are created and sent
messages containing 2k and 2k + 1. An adder object is also created to synchronize the
two replies from the two new divisor objects. After the adder object synchronizes with
the two replies, the sum of the two replies is sent to caller.

The object definition iter performs the iteration to test all integers between 1 and
10,000 inclusively. Each iter object initially waits for a test number and then initiates
a test for perfectness on the received number by sending the number to a new divisor
object. The iter object then creates a new iter object and sends the new object the current
test number plus one, provided the test number is not greater than 10,000. After the iter
object initiates the checking of the next test number, it waits for a reply to the message
it sent to the divisor object. The reply contains the sum of the divisors. If the reply
equals the test number, then the test number tagged with the symbol “perfect” is sent
to caller which always is set to the value of console obtained from the main object.

Concurrency for this program is twofold. The search for divisors for a single test
number is applied concurrently, and the summation of the test divisors for a test number
is also performed concurrently. The second source of concurrency is in the iter object

25

addl (caller, ansi) :: [(ans2) send (ansi+ans2) to caller]
adder(caller) :: [(ans1) [(ans2) send (ansi+ans2) to caller]]

divisor (N, caller)
[(¥
if k*k > N
then send (0) to caller
else if (N mod k) = O then caller := addi(caller, k + N/k) fi
let m = adder(caller)
send (2*k) to divisor(N, m)
send (2%k+1) to divisor(N, m)
fi
]
iter(MAX,output)
[(1) send (1) to divisor(i, add1(self,-i))

if i < MAX then send (i+1) to iter(MAX,output) fi
[(reply) if i = reply then send ("perfect",reply) to output fi]

]

[(console) send (1) to iter (10000,console)]

Figure 2.7: Perfect Numbers Program

where the testing of numbers is decoupled from the generation of divisors. Each iter
object initiates the test for perfectness on its test number and also initiates the test for
perfectness on the next test number.

26

2.4.2 Prime Sieve

The second form of concurrency in the program for finding perfect numbers was
effectively to unroll the “iteration” by instantiating the objects sequentially, but not
requiring the first object to terminate before the second object becomes active. The
generalization to this paradigm is to allow the objects to persist indefinitely so that
objects can be reused in a pipelined fashion. A simple demonstration of this technique
is the construction of a prime sieve to generate all the prime numbers up to a predefined
limit. The task of the sieve is to filter out all non-prime numbers. The technique is
devoid of tantalizing number-theoretic tricks but uses Cantor objects to form a simple
but elegant pipeline. The program is partitioned into two parts: the sieve and the number
generator that feeds the sieve. The requirements of the number generator are that it
must emit a stream of integers such that the stream contains all the prime numbers
and that the integers are emitted in strictly increasing order. The simplest such stream
would be the natural numbers starting with 2.

The sieve can be described by a linear chain of objects with each object containing
a single prime number. Each sieve object receives potential primes numbers to test for
divisibility. If the test number divides evenly, it is discarded; otherwise the test number
is relatively prime and is sent to the next sieve element. Whenever a test number reaches
the end of the sieve, the number must be a prime and is made into a new sieve object
at the end of the chain.

The number generator could be a simple counter and emit the natural numbers
starting with 2. Naturally this would be wasteful, for all even numbers except for 2 are
not prime. A first improvement would be to omit all multiples of two, i.e., emit only
the odd numbers. Further improvements would be to omit multiples of 2,3,5,7,11, etc..
A number generator of this type is called a “wheel” [19]. The wheel is composed of an
“addendum” and “spokes”. The addendum is the product of the prime numbers from 2
up to some finite limit. The spokes are the integers relatively prime to the addendum.
The wheel operates by maintaining an accumulator that is a multiple of the addendum.
The accumulator is added to each spoke and then sent to the sieve for primality testing.
After each spoke has sent a number to the sieve, the accumulator is advanced to the
next multiple of the addendum:.

For example, consider the addendum of: 1-2-3 = 6. This addendum would result
in a two spoke wheel of 1 and 5, and would generate the sequence:

0+1,0+5,6+1,6+5,12+1,12+5,18+1,18+5,... = 1,5,7,11,13, 17, 19, 23...

Every integer in this sequence is relatively prime to 2 and 3, and the first non-prime
generated is 25. The number of spokes for a wheel is determined by calculating Euler’s
Function for the addendum.

The program of Figure 2.9 uses the combination of a predetermined object structure
and a computed object structure. The wheel is the predetermined object structure,
consisting of 8 spokes initialized with the values of 1,7,11,13,17,19,23, and 29. The
addendum for the wheel has the value: 1-2-3-5 = 30. The computed object structure
is the sieve. A snapshot of the object graph during the execution of this program is
shown in Figure 2.8. In this graph, circles represent objects and the edges represent

27

the references between objects. The program of Figure 2.9 requires only three types of
objects.

The sieve objects make up the linear chain of objects that comprise the sieve. The
wheel is comprised of 8 spoke objects and a single idler object. The 8 spoke objects and
the idler object are linked together inside of the main object as a ring. Initially, a single
message is inserted into the ring at spoke3. Thereafter, a message will circulate through
the 9 objects that comprise the wheel. For each complete revolution, each spoke object
will insert a test number into the sieve. The idler object will then advance the current
value of the accumulator by the value of the addendum. This cycling action will continue
until the accumulator reaches 10,000, at which point the wheel is shut down, followed
by the sieve emptying out.

The sieve object performs as described previously. Each sieve object independently
sends prime number messages to console, so it is quite possible that prime numbers will
arrive at the external object in non-ascending order.

28

Figure 2.8: Object Graph for Prime Sieve

29

spoke (v,hub,next)
*[(k) send (v+k) to hub
send (k) to next]

sieve (v, next, console) ::
*[(p) if ((p mod v) <> 0)
then if next = "nil"
then send (p) to console
next := sieve(p, "nil", console)
else send (p) to next
fi
i

]

idler (delta, mext) ::
*[(k) if k < 10000 then send (delta+k) to next fi]

[(console)
let hub = sieve (7,"nil",console)

let spokel = spoke(1,hub,spoke2) let spoke2 = spoke(7,hub, spoke3)

let spoke3 = spoke(11,hub,spoke4) let spoked spoke (13 ,hub, spokeb)

let spokeb = spoke(17,hub,spoke8) let spoke6 = spoke(19,hub, spoke7)

let spoke7 = spoke(23,hub,spoke8) 1let spoke8 = spoke(29,hub,idler1)
=

let idlerl = idler(30,spokel)

f

send (0) to spoke3

Figure 2.9: Wheel Driven Prime Sieve

30

A major problem with the program of Figure 2.9 is that the production of messages
flowing into the sieve is not regulated to the consumption rate of the sieve. Therefore,
a message bottleneck may form between the spokes of the wheel and hub. A solution to
the bottleneck between the sieve and the wheel that does not change the basic character
of the algorithm is to alter the message production so that the “supply” of test numbers
never exceeds the “demand” for test numbers. Stated slightly differently, prime numbers
will be “pulled” out from the end of the sieve instead of having test numbers “pushed”
into the first stage of the sieve.

A program that uses the new strategy is shown in Figure 2.10. Each sieve object
employs the case construct to distinguish between two types of incoming messages, “re-
quest” and “answer”. The sieve objects are created containing a prime number p and
are initially waiting for a number N to test for primality. For each “answer” message
received, the sieve object will immediately request another test number and then test the
number received for primality. If the number is relatively prime, the number is sent to
next which is initially set to the value of the external object console. A new sieve object
is then created and assigned to the next acquaintance variable.

After the next acquaintance variable contains a reference value to a new sieve object,
the original sieve object can be in one of two modes; either the object contains a test
number that is relatively prime and is waiting for a “request” message from the next
sieve element, or it has received a “request” message from the next sieve element and
is waiting for a test number from the previous stage of the sieve. Notice that the sieve
object sends an initial “request” message to self to compensate for the missing “request”
message from the new sieve object.

The overall strategy for the sieve objects is to internally “buffer” one number that is
relatively prime to the number stored inside the sieve object. When a “request” message
is received, the sieve object will repeatedly send "request” messages to the previous sieve
element until a relatively prime number is received. The number is then sent onto the
next stage of the sieve. If the “answer” message is received first and the number N
received is relatively prime, the object waits for the “request” message and then sends
the saved value of N to the next stage of the sieve.

The first sieve object is connected to a new object called axle which serves as the
interface between the wheel and the sieve. Each “request” message received by the axle
object will cause the wheel to advance one notch. Thus the speed at which the wheel
“rotates” is directly controlled by how fast the first sieve object can accept test numbers,
and indirectly by the rate at which prime numbers are stored into new sieve objects at
the end of the sieve.

31

sieve (next, back, p)
*[(emd, N)
send ("request") to back
if Nmod p = 0
then send ("request") to back
else send (N) to next
next := sieve(next, self, N)
send ("request") to self
*[case (cmd) of
"request" : () *[(cmd, N)
send ("request") to back
if N mod p <> 0
then send ("answer", N) to next
exit
fi]
"answer® : (N)
if Nmod p=0
then send ("request") to back
else let N_save = N
[(cmd) send ("answer", N_save) to mext]
send ("request") to back
fi]
fi]

axle (next_spoke, start, acc)
*[(discard)
send (acc) to next_spoke
[(v, k, ns) send ("answer", v + k) to start
acc = k
next_spoke := ns]]

spoke (v, hub, next) :: *[(k) send (v, k, next) to hub]

idler (delta, next)
*[(k) if (k < 10000) then send (delta+k) to next fi 1

[(console)
let hub = axle(spoke3, sieve(console, hub, 7), 0)
let spokel = spoke(1,hub,spoke2) let spoke2 = spoke(7 ,hub, spoke3)
let spoke3 = spoke(11,hub,spoked) let spoked = spoke (13 ,hub, spoke5)
let spokeb = spoke(17,hub,spoke6) 1let spoke6 = spoke (19, hub, spokeT7)
let spoke7 = spoke(23,hub,spoke8) let spoke8 = spoke(29,hub,idler1)
let idlerl = idler(30,spokel)
send ("request") to hub]

]

Figure 2.10: Demand Driven Prime Sieve

32

2.4.3 Merge Sort

The merge sort algorithm for sorting values by pairwise comparison is both an elegant
recursive algorithm and also an inherently concurrent algorithm. The unconditioned
input data is represented as a linked list of values. The list is recursively halved until
the resulting lists consists of one or two values. For lists of two values, the values are
compared and then interchanged if necessary. The next step is to merge the results by
combining the lists of one or two elements into progressively larger lists until the original
list has been completely reassembled.

The program of Figures 2.11 and 2.12 builds a list of 1,000 integers in descending
order and then sorts the integers in situ into ascending order. The object definition
make._list builds the initial list and sends a reference to the first object of the list to main.
The merge sort algorithm starts by sending the mergesort object a message containing a
reference to the first element of the list and the length of the list. The mergesort object
is merely a front end for the msort object. The length of the list is examined by msort.
If the length is 1, then the list is sent a “get3” message which returns three values: a
reference to the first element of the list, the first value stored in the list, and a reference
to the second element of the list. If the list length is greater than 1, the list is halved by
sending the list a “split” message. The msort object waits for the reply from the “split”
message. The reply contains the reference to the second half of the list. The list is now
split, and the concurrent recursive step is applied by creating two new msort objects and
sending the two new objects onehalf of the original list. The return from the recursion
is handled by creating a join object which merges the two sorted list halves. The join
object then replies the merged list to the caller of msort.

The join object expects messages of the “get3” form, that is, references to the first
and second elements of the list and the value stored in the first list element. After the
Join object receives two such messages, the two separate lists are merged. The value of
the first element of the first list is compared to the value of the first element of the second
list. If the first is less than the second, then the second list is merged into the first list;
otherwise, the second list is merged into the first list. The merge step is performed by
sending the list object a “merge” message. The reply from the “"message” indicates that
the merge operation has completed. The join object then sends the merged list to caller,
which is the caller of msort.

Most of the interesting behavior for the merge sort program occurs in the list object.
The “split”, “get”, “get3”, and “print” cases are straightforward. The “merge” case,
however, is subtle because it uses one level of look ahead. The “merge” message does
not merge the local value, but rather merges the value of the next list element. The
argument of the “merge” message is of the “get3” form with the addition of caller which
is a reference value. The list contained in the message is to be merged into the tail of the
current list. If the tail is “nil”, then the list received becomes the new tail, and caller is
acknowledged that the merge step is finished. If the tail of the current list is a reference
to a list object, then a “get” message is sent to tl. The reply from the “get2” message
contains the value stored in the next object and the value of tl for the next object. The
list object now holds the value stored in the first element of the other list and the value
stored in the tail of the current list. These two values are compared. If the value of the

33

other list is smaller, then the other list is sent a “merge” message containing the tail of
the current list and the other list becomes the tail of the current list. If the value of the
other list is equal to or greater than the value stored in the tail of the current list, then
no change is made to tl and the “merge” message is forwarded to tl.

Assuming that all of the concurrency can be exploited in this program, the number
of steps required to sort a list of length n is proportional to n. The halving of the list
requires § for the first split, % for the second split; thus, the splitting time is proportional
to: n n n

3 + 1 + 3 +...<n
The merge step begins with lists of length 1 and progressively combines the lists until a
list of length n is reached. The growth pattern is the complement of the halving step,
however; to split a list of length n can be done in 2 steps, but to combine two lists of
length 3 into a list of length n requires at most n steps. Therefore the time complexity
is still linear in n, but the constant factor will be larger. The time to completion for this
concurrent program is O(n) in comparison to O(nlogn) for sequential merge sort [3].

The space requirements for this program are quite small. The linked list requires n
list objects, and the number of join objects used to merge the single list elements into
large lists will be n — 1. The number of join objects can be deduced by viewing the list
objects as the leaf nodes of a binary tree and the join objects as the branch nodes of the
tree. For a complete binary tree with n leaves, there are n — 1 branch nodes.

34

mergesort(caller)
[(1,n) send (1,n) to msort(self) [(11, a, x) send (11) to caller]]

msort (caller)
[(1,n)
if n = 1 then send ("get3",1,caller) to 1
else send ("split",self,n/2) to 1
[(12)
let j = join(caller)
send (1, n/2) to msort(j)
send (12, n/2 + n mod 2) to msort(j)
]
fi
]

join (caller)
[(11,a,x)
[(12,b,y)
if a < b then send ("merge",12, b, y, self) to 11
[O send ("get3", 11, caller) to 11]
else send ('"merge",l1,a,x,self) to 12
[O send ("get3", 12, caller) to 12]
fi
]
]

serializer (output)
*[(v, caller) send (v) to output
send () to caller]

make_list(n, caller, 1)
[(i) if i = n then send (list(i, 1)) to caller

else send (i+1) to make_list(n, caller, list(i, 1))
fi]

[(console)
let n = 1000
send (1) to make_list(n,self,"nil")
[(1) send (1,n) to mergesort(self)
[(s1) send ("print", serializer(console)) to sl
send ("done") to console

]

Figure 2.11: Initialization and Recursion for Merge Sort

list (hd, t1)

35

#[case (cmd) of

"merge" :

"split"

"getz]
"get3"
"Print "

fi

(1, a, x, caller)
if t1 = "nil"

then t1 := 1
send () to caller

else send ("get2", self) to tl
[(b, v

if a <= b then send ("merge",tl,b,y,caller) to 1

t1 := 1

else send ("merge",l,a,x,caller) to tl

i
]
fi
(caller, n)
if n = 1 then send (t1) to caller
t1l := "nil"
else send ("split", caller, n-1) to tl

(caller) send (hd, tl1) to caller
(1,caller) send (1,hd, tl) to caller
(output)

send (hd,self) to output

[O

if t1 <> "nil" then send ("print", output) to tl1 fi]

exit

Figure 2.12: List Object for Merge Sort

36

2.4.4 Eight Queens

The eight queens problem is a showcase problem often cited in the literature of
computer programming. The task is to place eight queen pieces on an 8 by 8 chessboard
so that no queen is in jeopardy of capture. The queen game piece captures any other
piece that lies along the same row, column, or diagonal. There are 92 solutions to the
eight queens problem [9]. Figure 2.13 shows one solution that was generated from the
program of Figures 2.14 and 2.15.

The search for solutions to the eight queens problem is massively concurrent. From
the capture rule, there will be only one queen per row and column. A concurrent search
can therefore be organized either by row or by column. Assuming a column by column
search, a queen is placed in a row of column 1. The rows of column 2 are then searched to
find a safe position for the second queen. After a safe position has been found, the rows
of column 3 are searched to find a safe position for the third queen. Each subsequent
column search involves checking the previous row and column pairs to be sure that the
new position is safe. For the case where no safe row can be found, the partial solution
is discarded.

A sequential search would involve backtracking once an impossible configuration is
exposed. The backtracking step systematically removes the current emplacements of
queens and then continues with a new placement. For the concurrent search, backtrack-
ing is not necessary because all solutions are equally pursued. The only action taken in
response to a detected impossible configuration is to discard the configuration.

The program of Figure 2.14 begins with the make_q object definition which create
eight queen objects each with a separate qlist object. The qlist objects are initialized
with the same column number, but each qlist object is assigned a different row number.
The qlist objects are used to keep track of the partial chessboard configuration. Each
queen object is sent a message containing the first row number to be tested for the second
column.

The queen object receives test row numbers and then sends a “check” message con-
taining its column number and the test row number to the first element of its qlist to see
if the test position results in a capture or not. When the glist object receives the “check”
message, the object checks the test position for capture with the row and diagonal of the
qlist object. If the coordinates of the glist object captures the coordinates of the “check”
message, then the boolean value false is sent to the requesting queen object. If the test
coordinates are safe from capture, the “check” message is forwarded to the next qlist
object unless the end of the list has been reached. When a “check” message reaches the
end of the list of positions, the test position is safe for the partial list. The boolean value
true is replied to the requesting queen object.

After sending a “check” message, the queen object waits for the reply from the glist
object. A reply of true will cause the partial list to be copied and augmented with the
new pair of coordinates. The list is copied by sending a “copy” message to the first
element of the list. The reply from the “copy” request is a reference to the first element
of the new list. A new glist object is created to hold the new coordinates and is linked
onto the front of the new list. If the column number is less than 8 a new queen object is
created to test the new qlist object against the rows of the next column. If the column

37

number is 8, then a complete solution has been found. The reference to the first qlist
object of the complete solution is sent to a queue_master object. The queue_master is a
library object and is described in Section 2.3.2.

After processing the reply from the “check” message, the queen object sends itself a
new row number to test providing the current test row number is less than 8.

The queue of Section 2.3.2 is used to assemble the lists of solutions from the breadth-
first search. The printer object of Figure 2.15 is used as an exchanger between the glist
objects and the queue_master object. Initially the main object creates a printer object
which contains reference to a queue_master object and to chessboard. The main object
for this program expects two external reference values to be sent to the program, a
reference to the console object as before, and a second special object called chessboard.
This second external object is used to generate the chessboard display of Figure 2.13. The
print queue is primed by sending the queue_master object an “advance” message. The
first qlist solution that is sent to queue_master from a queen object will be immediately
forwarded to the printer object.

The printer object waits for a message containing a reference to a qlist object. The
printer object then sends each row and column pair to the chessboard object. After
the solution has been serially sent to the chessboard object, the printer object sends an
“advance” message to the queue_master object to request the next solution.

38

Figure 2.13: Solution to the Eight Queens Program

39

qlist (row,col,next)
*[case (cmd) of
"check" : (rn,cn,caller)
if rn = row or (cn - col) = abs (rn -row)
then send (false) to caller
else if next = "nil®
then send (true) to caller
else send ("check",rn,cn,caller) to next
fi
fi
"copy" : (caller)
if next = "niln
then send (qlist(row,col,"nil")) to caller
else send ("copy",self) to next
[(1) send (qlist(row,col,1)) to caller]

fi
"get" : (caller) send (row,col,next) to caller
1
queen (ql,cn,out)
% ql --- list of valid queen positions
% ecn --- column number
*[(rn)

send ("check",rn,cn,self) to ql
[(reply) if reply
then send ("copy",self) to ql

[(nql)
nql := qlist(rn,cn,nql)
if cn =8

then send ("insert",nql) to out
else send (1) to queen(nql, cn+l, out)
fi]
fi
]

if rn < 8 then send (rn+1) to self else exit fi

make_q(out)
*[(i) send (1) to queen(qlist(i,1,"nil"),2,out)
if i < 8 then send (i+1) to self else exit fi]

Figure 2.14: Concurrent Eight Queens

40

printer (output, print_queue)
*[(1) send ("get", self) to 1
*[(r,c,1)
send (c,r) to output
if 1 <> "nil" then send ("get",self) to 1
else exit
i
]
send () to output
send ("advance",self) to print_queue

1

[(console, chessboard)
let qm = queue_master()
let ptr = printer(chessboard,qm)
send ("advance",ptr) to qm
send (1) to make_q(qm)

Figure 2.15: Printer and Main Objects for Queue Object

41

2.4.5 Gaussian Elimination

Numerical analysis problems present a special challenge when programmed in Can-
tor. Programs used in numerical analysis are often formulated in terms of matrices and
described as sequences of actions performed over the indexed elements of the matrices.
These representations provide an efficient compromise between the domain of mathemat-
ical objects used by numerical analysts and the representation of matrices as segments
of contiguous storage in sequential computers. Cantor does not provide for contiguous
arrays of storage elements as one of the basic types of values. Instead, matrices are built
out of individual objects that behave collectively as a matrix.

An algorithm that uses a matrix representation extensively is Gaussian elimination.
For concurrent applications the algorithm has been expressed in a myriad of ways in-
cluding a functional version written in LISP [26] and also in a concurrent extension to
the object-oriented language Simula [25]. The algorithm is used to solve sets of m linear
equations with n unknowns by representing the equations as an m by n matrix. To solve
for the unknowns, the matrix is placed into reduced row-echelon form and then back
substitution is used to output the computed values for the unknowns. The program
shown in Figures 2.17 through 2.20 performs the row reduction phase, with pivoting
included to minimize round-off error. The procedure consists of the following steps, with
J ranging from 1 to m:

1. Find pivot row for column j.
Move pivot row to the top of the matrix.
Adjust pivot row so that value in column Jis 1.

Add multiples of the top row to the rows beneath it so column J is zero.

AN T o

Cover top row, increment j and repeat.

For a sequential application of this procedure, the number of arithmetic operations is
O(m?n). For concurrent applications, step 4 can be performed concurrently, reducing
the time to completion by a constant factor of m. Thus, the total time to completion
would be O(mn).

Crucial to the formulation of Gaussian elimination in Cantor is the choice of the
data structure to represent the matrix. Step 2 of the algorithm requires that two rows
of the matrix be interchanged. This requirement suggests that the matrix may best be
formulated in row major form, that is, each row of the matrix be represented as a linked
list and accessed by a row header object. This representation is efficient for interchanging
two rows because only the reference values for the first two elements of each row have
to be swapped. The object graph of Figure 2.16 depicts each row as a linked list of list
objects. The first element of each row is referenced by a list_head. The list_head objects
in turn are organized as a linked list. To access an element of the matrix at random,
the list_head objects must be traversed to reach the proper row. The list objects for the
row are then traversed to reach the proper element. This organization is inefficient for
randomly accessing elements of the matrix. The organization is, however, efficient for
the access patterns required by the Gaussian elimination algorithm.

42

row list head
= list = list = list R
Y
row list head
= list = list = list -
|
row list head
I list = list = list R

'

Figure 2.16: Matrix Data Structure for Gaussian Elimination

The first step is to build the matrix. The two objects definitions used to build the
matrix are shown in Figure 2.20 along with the main object. Construction of the matrix
begins with a message sent from main to a build_matrix object. The build_matrix object
begins construction of the linked list of list objects for the list head and also initiates
construction of the next row, providing the row count has not been reached. The row list
is built by sending a message to a build_list object. The build_object object will generate
a linked list of n list objects with each object initialized to ai; = 1.0/(f — 5+ 0.5). After
the linked list is built, a “list” message containing a reference to the first element of the
list is sent to the build_matrix object that requested the row to be built.

The build_matrix waits for completion messages from the row list and next list_head
object that it initiated building. Because the replies can arrive in arbitrary order, a
case construct is used to process the two replies. Once the two replies are received,
the list_head object is created and a reference to the new object is replied to the object
that created the build_matrix object. The arrival of the reply message at the main object
indicates that the entire matrix has been constructed. The next step is to create a gauss

43

object and send the reference to the first list_head object to the new object.

After the gauss object receives a reference to a list_head object, it checks the size of
the matrix to see if the current matrix contains no equations or no unknowns. For either
case, the original matrix is output by sending a “print” message to the first list_head
object of the original matrix. If the matrix contains one or more equations or unknowns,
then a compare object is created. A reference to the new object is sent to the the first
list_head object of the current matrix as the argument of a “find piv” message. The “find
piv" message will result in the current matrix being reduced by one row and one column,
i.e., the top row and first column. The size of the matrix is reduced accordingly by
decrementing m and n.

Most of the interesting behavior for the Gaussian elimination program occurs in the
list and list_head object definitions. The list_head object initially waits for either a “print”
or “find piv’ message. The “print” message should only occur before or after the matrix
has been reduced. The “find piv" message is used to select the pivot row of step 1. The
response of the “list_head object to the “find piv” is to forward the message to the next
list_head object in the linked list and also to get the value stored in the first element of
the row list. This value is relayed to the compare object, along with a reference to the
list_head object for the row.

The compare object accumulates the replies from the list_head objects and keeps track
of the row with the maximum absolute value. After all of the replies have arrived, the
row with the maximum value is interchanged with the top row, by sending the top row
of the matrix a “swap” message with a reference to the list_head object containing the
maximum value.

After the list_head objects send their row values to the compare object, they wait for
a message from either the compare object or another list_head object. If the list_head
object receives a “swap” message, then it sends a “set low” message to the list_head
object containing its row list. If the list_head object receives a “set_low” message, then it
is the pivot row. A reference value for its row list is sent to the top row list_head object,
and the list object reference value contained in the message is assigned as the reference
value for the local row list.

After the top row list_head object receives the reference value for the pivot row list,
the reference value is stored as the local row list value, and the compare object is sent a
message containing a reference to the row list and a reference to the next list_head object
in the linked list.

When the compare object receives the reply from the top row list_head object, step
2 has been completed. Step 3 is performed by sending the pivot row list a “divide”
message with an argument of the value stored in the first element of the pivot row list.
The processing of the “divide” message by the list object is straightforward. When the
list object completes the divide operation, an empty message is replied to the compare
object.

When the compare object receives the empty message from the pivot row list, step
3 has been completed. step 4 is performed concurrently by sending the second list_head
object in the linked list of list_head objects a “set mf” message containing a reference
to the pivot row list. When the list_head object receives the “set mf” message, it will
forward the message to the next list_head object in the linked list. The list_head object

44

also sends a “mpy” message to the top row list, containing a reference to its own row
list. The list_head object then advances the front of the row list by one to reduce the
number of columns in the current matrix by one.

The list objects accomplish step 4 using a sequence of “mpy” and “sub” messages
that are sent between the top row list and each of the lists beneath the top row. The
sequence is started by the list_head object, which sends a “mpy” message to the top
row list containing a reference to its own row list and the value stored in the first list
object of its row list. The first list object of the top row then sends a “sub” message
to the first list object of the lower row list containing the value stored in the top row
and the next link for the top row object. When the lower row list receives the “sub”
message, it multiplies the value stored in the top row element by the value stored in the
first object of its row and then subtracts this value from the value stored locally. The
operation is then repeated by sending a “mpy” message to the next link of the top row
list. This cross-stitching pattern of message-passing continues until the end of the two
lists is reached. An empty message is then sent to the compare object.

The compare object counts the number of completion messages received from the list
objects. When the count equals the number of rows in the current matrix, Step 4 has
been completed. The compare object then sends a reference value to the list_head object
of the reduced matrix, i.e., the matrix that is one row and one column smaller than the
current matrix, to the gauss matrix.

list (hd, t1)
*[case (cmd)

"mpy "

" Sub "

45

of
(mf, add_col, done)
send ("sub", mf, hd, tl, done) to add_col

(mf, val, ntc, done)

hd := hd - mf * val

"divide" :

"get pr" :

" Pr i nt "

if ntc = "nil" then send () to done
else send ("mpy", mf, tl, done) to ntc fi

(val, reply_to)
hd := hd / val
if tl = "nil" then send () to reply_to
else send ("divide",val, reply_to) to tl fi

(caller) send (hd, tl1) to caller
(output, caller)
send (hd) to output

if tl = "nil" then send () to caller
else send ("print",output, caller) to tl fi

Figure 2.17: Row List Element for Gaussian Elimination

46

list_head (11,1,next)
*[case (cmd) of
"print" : (output)
send ("print", output, self) to 1
[O send () to output
if next <> "nil" then send ("print",output) to next fi

1

"find piv" : (caller)
if next <> "nil" then send ("find piv",caller) to next fi
send ("get pr",self) to 1
[(hd, t1) send (hd, self) to caller

[case (cmd) of
"swap" : (max_row, done)
if max_row <> self
then send ("set low",hd,1,self) to max_row
[(new_.1) 1 := new_1]
fi
send (next,l) to done

"set low" : (new_l, reply_to) send (1) to reply_to
hd := new_hd
1 := new_1
repeat

"set mf" : (done, tr)
if next <> ™miln
then send ("set mf", done, tr) to next fi
send ("mpy", hd, 1, done) to tr
1 := %1

Figure 2.18: List Head Object for Gaussian Elimination

47

compare(count, matrix, gauss)
[(max_val, max_row)
let rc = count

if rce >0
then =*[(test_val, test_row)
rc :=rc - 1
if abs max_val < abs test_val then max_val := test_val
max_row := test_row
fi
if rc = 0 then exit fi
]
fi

% exchange top row with max row
send ("swap", max_row, self) to matrix

% divide max_row by value in first column

[(next, ml)
send ("divide", max_val, self) to ml
[O

if count > O
then % do multiply and subtract steps concurrently
send ("set mf", self, ml) to next
% count replies from multiply and subtract steps
*[() count := count - 1
if count = O then exit fi]
fi
]
% repeat on smaller matrix
send (next) to gauss

gauss (orig_matrix, m, n, output)
*[(matrix)
if m = 0 or n = 1 then send ("print",output) to orig_matrix
else let cmp = compare(m-1, matrix, self)
send ("find piv",cmp) to matrix
m:=m-1
n:=n-1
fi]

Figure 2.19: Compare and Gauss Objects for Gaussian Elimination

48

build_list(i, 1, caller)
*[()
1 :=1ist(1.0 / (i-j+0.5), 1)
if j = 1 then send ("list", 1) to caller
exit
else send (j-1) to self
fi

build_matrix (m, n)
[(i,caller)
send (n) to build_list(i, "nil", self)
iti=nm
then [(discard, 1) send ("matrix",list_head(1,1,"nil")) to caller]
else send (i+1, self) to build_matrix(m, n)
[case (reply) of
"list" : (1)
[(discard, next)

send ("matrix",list_head(1l,1,next)) to caller]
"matrix" : (next)

[(discard, 1)
send ("matrix",list_head(l,1,next)) to caller]

fi

[(console)
let m = 84 % number of rows
let n = m+1 % number of columns
send (1,self) to build_matrix(m, n)
[(discard, matrix) send (matrix) to gauss(matrix, m, n, console)]

1

Figure 2.20: Initialization and Output for Gaussian Elimination

49

2.5 Summary

In contrasting the six Cantor programs to sequential programs that perform the same
computational task, the difference in expression is remarkable. Each object used in these
programs is, by itself, quite simple. The intricacies of the Cantor formulations are found
entirely in the interactions between objects.

The complexity is therefore controlled by organizing the programs so that the depen-
dencies between objects are well understood. For the most general case in which every
object can communicate with every other object, the possible set of pairwise interactions
would increase quadratically in the number of objects. However, the semantics of Cantor
enforce a principle of locality in which the reference to an object can be acquired only
by message-passing or by object creation. This locality of reference is used to limit the
possible set of messages that an object can receive. The new message received is not
always assured to be the message that would be most convenient for the object to receive
next. Thus the object must be prepared either to receive messages in an unknown order,
e.g., the case construct, or rely upon sequencing dependencies in the communication.

Locality of reference is introduced by the programming paradigm, e.g., the divide and
conquer strategy of the perfect numbers and eight queens programs, or is introduced by
careful choice of data structure, e.g., the Gaussian elimination program. As is the case for
structured programming, proper choice of control flow and data structures is paramount.
For programming in Cantor, the plan for message flow and the organization of the objects
is crucial.

50

Chapter 3

Computational Model and the
Frameworks for Flow Analysis

The necessity of providing formal definitions for programming notations has perhaps
been best summarized by Wirth and Weber [41]. Two objectives defined by Wirth and
Weber are to provide users of a notation or “language” with a precise meaning for the
language, and secondly, to ensure that the meaning of programs is preserved when the
language is implemented on a computer. The strategy proposed by Wirth and Weber to
accomplish these objectives is to redefine the “high-level” language into a second language
that has simpler structure than the first. This procedure is continually reapplied until a
final, primitive language is reached in which further redefinitions would only produce a
new language whose structure would be no simpler than the primitive language.

The semantics of Cantor are defined using this approach. First, the model of compu-
tation is formally described in terms of functions whose domains and ranges are either
primitive values or finite automata. Next, a set of four execution rules are stated to
express how computations are interpreted in the formalized object model.

A primitive notation consisting of ten operations, called “instructions,” is presented.
For each instruction of the primitive notation, a corresponding action is defined over
the formal model. The primitive notation captures the basic components of a Cantor
program. For each syntactic construct in Cantor, an interpretation rule is defined in
terms of the primitive instructions.

Cantor programs are translated into the primitive notation, which in turn has an
interpretation in the formal model. The expression of the program in terms of the
formal model satisfies the two objectives for a formal definition proposed by Wirth and
Weber. The formal model also provides a framework, called the program flow framework,
for reasoning about the execution of programs in the object model. Two additional
frameworks, called future flow and after flow, are developed by replacing the formal
model with a simpler model to capture particular aspects of a computation. Interpreting
Cantor programs using the future flow or after flow frameworks provides information
that approximates the information contained in the actual computation. This partial
information is used to manage objects before and during program execution.

51

3.1 The Computational Model

The state of a computation expressed in the object model can be concisely deter-
mined by two pieces of information: the state of each object that is taking part in the
computation, and the messages that are queued for each of the objects. Both objects
and messages are organized by reference values. Each object has a reference value that
uniquely identifies the object, and each message has a reference value that uniquely
identifies the destination object for the message. The set R denotes the set of countably
infinite reference values. For example, the set of reference values could be represented
as the natural numbers. The requirement that R be infinite in size is only necessary for
certain non-terminating computations, e.g., the prime sieve programs of Chapter 2.

The domain of primitive values includes R and also includes literals, in which the
value of a literal is the literal. Examples of literals include integers, real numbers, and the
logical values true and false. Formally, the set of primitive values for Cantor is written:

V = R |YJ integers | reals s boolean |} symbols

The set operator |¢J denotes the disjoint union of the component sets,
The state of a computation is represented by two functions that describe the state
of the queues and the objects respectively:

4 : R — K*where K=V*
x : R —~ O

The function 4 € M maps the reference values into zero or more k-tuples of V', written
as K. Each k-tuple from V represents the contents of a message. Thus u(r) for an object
with reference value r represents the contents of the queue for object r. The set M is the
set of all possible queueing functions u. The function 7 € II maps reference values into
O, the set of all possible objects. The set II is the set of all possible mappings between
reference values and objects. Initially for a computation, every reference value is mapped
to the undefined object definition. Messages cannot be sent to objects that are undefined
objects.

The representation of an object is partitioned into two parts called the reactive part
and the persistent part. The persistent part defines the state preserving capabilities for
the object. The reactive part defines the transformations that the object can perform
upon message objects. The reactive part is formally described by a finite state machine.
The persistent part is defined by a set of storage locations that the state machine has
exclusive access to and by the current state for the state machine. Formally, an object
0 € O is described by an 8-tuple: o = (S, I, 50, L, C, 8, M, An) where:

= set of states (finite)

set of input states, I C S

initial state, so € I

set of locations (finite)

set of functions ¢, where ¢: L — V
i SXxCxMm~SxC

M : SXCxM—-M

An : SxIIw-1II

il

il

il

S
I
So
L
C
6

52

Modelling the persistent part of an object is accomplished using a finite set of locations
L and a storage function ¢ that maps locations into their contents. The set C is the set of
all possible mappings between locations and their contents for a single object. Initially,
every object starts with the same ¢ function that maps all locations into the undefined
value. This approach for representing storage is used in the modelling of random accessed
stored program machines (RASP) [18]. In the RASP model, the set L is often treated
as infinite, and thus the set C is also possibly infinite. For the objects of O, the set
of locations is finite. The set V' is, however, possibly infinite, because V contains R.
Therefore, C is infinite if the computation requires an infinite number of objects and
finite otherwise. Since objects are always created with the same co function, there are
only a finite number of descriptions for new objects.

The reactive part of an object is divided between internal changes to the object and
the external influence of the object upon other objects. Both internal change and external
influence can only occur in response to a message. Both internal and external effects
occur by transition functions over S, the finite set of states of the object. The subset I
of S defines the set of states in which the object is capable of accepting or inputing a
new message. The initial state sg is always an input state.

The internal change of an object is controlled by the state transition function 6. The
function 6 defines the next state and next store mapping for an object from the current
state, the current mapping of locations to values, and the current message the object is
working on.

The external influence of an object consists of two functions, Av and Aq, to express
the sending of new messages and creation of new objects, respectively. These two output
functions share the same domain as the state transition function §.

The functions ¢, Ay, and Aq, as defined above allow behaviors that are clearly im-
possible from the standpoint of object programs studied in this thesis. For example, the
function Arr cannot change the mapping of any object, only that of objects that have not
yet been defined. To impose additional structure on the sets, queueing functions and
rules for object creation are defined. To ensure that local optimizations on objects are
not precluded, the ¢ functions are left unrestricted.

The types of queueing actions allowed follow the construction for queues used in the

Karp-Miller program schema [22]. Three actions of insert k-tuple (ins), access front of
queue (acc), and advance queue front (adv) are defined as:

for object with reference value r € R,
let pu(r) = ki, ks,...,kn, the contents of the message queue for object r,

ins(u(r),k) = ki, ka,...,kn,k
adv(u(r)) = ka,ks,...,kn
acc(u(r)) = k

From these three queueing operations, the types of transitions capable of objects can
be more clearly expressed:

For object with reference value r € R,

53

5 i 8§ xCxace(u(r)) —» SxC
AM 1 S x Cxacc(u(r)) — { ;’?jg‘(zl)),)k) or
An @ SxII — (r',0') where x(r') = o

The specification of acc(u(r)) for K denotes that the message k-tuple is not any k-tuple,
but the k-tuple current at the front of the queue for the object. The Ay function denotes
that the only types of changes allowed on 4 are to insert a single message into a queue
for an object, or to remove the message currently at the front of the queue for the object.
The second definition for Ay captures the property that changes to 7 occur one at a
time, but does not describe how the reference values are selected from R. Clearly one
requirement is that ' be an undefined object before the transition.

3.2 Execution Rules

The state of a computation is completely specified by the configuration pair (p,r)
where 4 € M and x € II. To complete the formal definition of the computational
model, execution rules are required to describe how a computation progresses from one
configuration to another.

1. Object r is active (can undergo a state change) only when the input queue for r is
not empty.

Vi€ I:|u(r)] >0 <= §(i,c,acc(u(r)) = (¢,¢)

2. The queue front for an object r is only advanced when the object enters an input
state.

6(s,c,acc(u(r)) = (1,c) <> Am(s, c,acc(u(r))) = adv(u(r))

3. Every cycle in the state transition graph must contain an input state.

Vsi, 85 € S,Y¢;,¢4,0 € C,
6(si, ciacc(u(r)) — ... — 8(s;, ¢5,acc(u(r)) = (siyex) =>s; €1

4. New reference values can be introduced only by creating a new object.

(a) &(s,crace(u(r)) = (¢',¢)
vy € ¢(L) or,
where Vv, € /(L) st. v, E R= { v, € acc(pu(r)) or,
vr = r' where An(s, cace(u(r)) = (', 0)

(b) Am(s, cacc(u(r)) = ins(u(r'), k)

where er € k s.t. v, & R = v, € C(L) or,

acc(u(r))

54

The first rule partitions the objects used in a computation into the sets of active
and inactive objects. The set of active objects are those objects that have one or more
messages queued for them. If the object is active and is currently in an input state, then
the object can transit from the input state and access the message at the front of its
queue as the current message.

The second rule guarantees that the message at the front of the queue for an object is
always discarded when the object enters an input state. The third rule guarantees that
an object will never create an infinite number of new objects or send an infinite number
of messages in response to a single message. In other words, the response of an object to
a message is finite. Infinite behavior can only be achieved at the configuration or system
level, not at the object level.

The last rule clarifies the semantics of creating a new object by imposing a locality
constraint on references. The transition functions § and AM, the next state and message
functions, can only preserve reference. The function Ap, however, can introduce a new
reference into a computation by introducing a new object into the computation. Part
(a) of rule 4 shows that from a state transition, references contained in the new map of
locations to values can only come from one of three sources: the reference was contained
in the old map of locations to values, the reference is contained in the message at the
front of the queue, or the reference was created by the A function.

Whereas part (a) controls how reference is preserved inside an object, part (b) controls
how reference is propagated between objects. Part (b) shows that the contents of a
message added to a queue for an object can only contain references that were either
contained in the message at the front of the queue of the sending object, or were the
contents of some location in the store of the sending object.

3.3 A Primitive Notation

Each syntactic construct of Cantor could be defined as instances of the functions
of ¢, §, Am, and Aq;. However, this approach would produce an extremely complicated
interpretation scheme. To control the complication, the constructs of Cantor programs
can be related to more elementary constructs. Each action of the elementary notation
requires only a simple interpretation scheme achieved by associating with each state of
S a primitive action and by expressing the primitive actions in terms of the functions ¢,
8, AM, and Af.

3.3.1 Assignment

The action of assignment is the mechanism for modifying the persistent part of an
object. Each location I € L denotes a variable whose content can change on a state
transition. In the primitive notation assignment is written:

Sasg : var «— F

where $,4 € S is the state where the assignment occurs. The variable “var” corresponds
to a location ly,r € L. The letter E denotes an expression whose value is a member of
V. The effect of the assignment is modelled by the § function:

55

[=lyor

5(sasg,0,k) = (S,C,, k) where C'(l) = { ;3](1) { # lvar

3.3.2 Expressions
An expression E as used in the assignment statement can be one of the following:
e a literal

o the content of a variable (E € c(l))

the component of a message (E € acc(u(r))

a simple expression

a list expression
® a new expression

Arithmetic and logical operators such as addition and equality testing are introduced
into the primitive notation by simple expressions. A simple expression consists of a result
variable, an operator, and two operands. The operands of a simple expression can be
literals, variables, or the components of a message. The effect of the simple expression is
to perform the operation on the operands and store the result in the destination variable.
Thus, a simple expression consists of a functional operation followed by an assignment
action.
A list expression is written:

t — list n

and returns an ordered set of n unused locations from L. Lists are used exclusively for

sending messages, since k-tuples of V are always inserted into the queue of an object.

The k-tuples are allocated as a list, and the contents of the list are indexed by square

brackets, e.g., t[1] « E. The size and number of lists used in an object is fixed when the

definition for the object is compiled; thus, lists do not require L to be of arbitrary size.
A new expression is written:

Snew : t «— new obj

and returns a reference value r' for the new object obj. The reference value is assigned
into t with the corresponding Ay transition of:

/\H(sneWsc, k) = (";Obj)

The new instruction is the only way new reference values can be introduced into a
computation. Whereas the requirements for lists can be satisfiled when the definition
for the object is compiled, the requirements for the new instruction cannot always be
precomputed.

56

3.3.3 Sequence

For assignment, and for the new and list Instructions, the state where the action
occurred was labelled by an element of S. For syntactic convenience, the default next
state for an instruction is the instruction that lexically follows the current instruction.
For cases in which the control flow changes from the next instruction to some other
instruction, a label is used to designate the state corresponding to the other instruction.
Thus, labels are used to identify a subset of the states for which the number of predecessor
states is greater than 1.

Two instructions are included in the primitive notation to alter the control flow of a

sequence of instructions. The instruction that changes the control flow unconditionally
is:

sy, : branch label

where label designates the destination state. The effect of the branch instruction is
modelled by the § function:

(s, ¢, k) = (label, c, k)
The conditional branch instruction is written:
8ir : iffalse E label

where E is an expression that is evaluated to produce a logical (boolean) value. If the
value is false, then the branch is taken. Otherwise the natural successor of sy, written
Snat, I8 the next statement executed. The effect of the conditional branch instruction is
modelled by the § function:

' _ (Snahc3 k) if B
5(31f’c’k) - { (label,C,k) if ~F

3.3.4 Message Passing
The external influence of an object is captured in part by the new instruction and
by the send instruction. The send instruction is written:
8snd : send E; Ey

where Ej must be a list expression and E; must evaluate to a reference value. The effect
of the send action is modelled by the AMm function:

AM(8snd, ¢, k) = ins(u(Ey), Ey)

The complement of the send instruction is the switch instruction, which advances
the message queue for an object and places the object in an input state. The switch
instruction is written:

Sace © switch label

The branch and switch instruction have the same syntax and also have the same behavior
except that label for switch must be an input state, and that the Ap function for the 8acc
state is defined as:

MM (Saces ¢ ace(p(r)) = adv(p(r))

57

3.4 Cantor — Primitive Notation

Each syntactic construct of Cantor presented in the BNF description of Chapter
2 has a corresponding interpretation rule composed of instructions from the primitive
notation. A reduction technique is used to define constructs as compositions of elemen-
tary instructions. The reduction technique often involves recursively defining both the
statements and expressions found in Cantor programs.

The mapping between program variables used inside the definition of a Cantor object
and the set of locations L for an object of O is defined by the environment of the object.
The environment for an object is comprised of the persistent variables, the message
variables, temporary variables introduced by let statements, and temporary locations
introduced by the list instruction.

The list of persistent variables defines the base set of I which is augmented by the use
of lists and let statements. The number of additional locations needed for list instructions
and let statements is fixed when the definition is compiled. The management of these
temporary locations is managed by the compiler.

The list of message variables corresponds to the contents of acc(u(r)), which is by
construction a k-tuple of values. By considering the locations used for let variables
and list instructions as part of the persistent list, only two lists are needed to identify a
variables name with the corresponding location in L or the corresponding component of a
message k-tuple. The two lists are called the persistent list and message list, respectively.

3.4.1 Message Flow

In Cantor programs, the pair of brackets: “l]” always denotes a state graph where
the first state is an input state. Object descriptions of the form:

[(message list) S |
where S is a grouping of one or more statements translated into the primitive notation
as:

label L
statement(persistent list, message list, S)
switch Lg

The state denoted by L; is an input state. The label Lo denotes a special input state that
has no successor states. A message sent to an object in the Lg state is a programming
error.

The inclusion of asterisk in front of an open bracket:

*[(message list) S |
is translated into the primitive notation as:

label Ly
statement(persistent list, message list, S)
switch 14

58

Once the statements in S have been executed, the object will use the same sequence of
statements to process the next message.

The interpretation of the keywords exit and repeat are straightforward:

[(message list) S repeat | = *[(message list) S |
*[(message list) Sexit] = | (message list) S]

The nesting of descriptions is handled by changing the message list of the environ-
ment. For example, a program with a nested structure of:

*[(message list 1) S; [(message list 2) Sz | Ss]
is interpreted as:

label L;

statement(persistent list, message list 1, S1)
switch Lg

label L,

statement(persistent list, message list 2, S3)
statement(persistent list, message list 1, Ss)
switch L

The scoping rules of Cantor treat nested descriptions in the same manner that nested
blocks are treated in block structured languages. The statements of S; are evaluated
in the context of both message lists. If the same variable name appears in both the
inner and outer description, then the message variable of the inner description will be
the variable accessed. The statements of S3 are evaluated in the context of the first
message list since the inner message list was discarded once the close bracket for the
inner description was reached.

3.4.2 Control Flow

Aside from nesting descriptions, there are only two mechanisms for controlling the
execution of statements inside an object. The first is sequential execution. Statements
are sequenced left to right, top to bottom, and are compiled in the order they occur. For
example, two statements such as:

S1 Sz
are compiled from left to right:

statement(persistent list, message list, S1)
statement(persistent list, message list, S2)

The second mechanism is the if statement, which allows the sequencing of statements
to be altered based upon the logical value of an expression. An if statement of the form:

if E then S; else S, fi

18 interpreted using the iffalse instruction:

59

iffalse E L,

statement(persistent list, message list, Sy)
branchL;

label L,

statement(persistent list, message list, Sy)
label Ly

3.4.3 Assignment

The interpretation of assignment has a one-to-one correspondence with the assign-
ment instruction of the primitive notation. The interpretation of let statements is also
a one-to-one correspondence with a new location added to the set L.

3.4.4 Expressions

The expressions recognized by Cantor are the same as the expressions of the primi-
tive notation, except that simple expressions are replaced with more general compound
expressions. A compound expression may consist of multiple operators and multiple
subexpressions that are evaluated using the precedence structure presented in the BNF
description of Chapter 2. The construction of simple expressions from a compound ex-
pression often requires introducing temporary variables. For example, an expression of
the form:

var ;= x * 7+ y % 4
is interpreted by introducing two temporary variables:

Tld——x*7
Tog—yx*4d
var «+ Ty + Ty

Temporary variables are treated like let variables, except that the variables are introduced
by the compiler instead of the programimer.

List expressions occur in conjunction with sending a message or creating a new object.
New expressions occur only when a new object is created. A send statement is of the
form:

send (ey,ez,...,e,) to E

The expressions e; through e, must evaluate to a literal or a reference value. The ex-

pression E must evaluate to a reference value. The interpretation for the send statement
is:

T1 — 1_l§§ n
Ty {1] — €1
T1 [2] Al €9

Ty [n] — e,
send T, FE

60

New expressions occur when an object is created. In Cantor, creating an object
requires allocating the reference using a new instruction and sending the new object an
initial message containing the initial values for the persistent variables of the object. For
example, a declaration for a new instance of an object of the form:

var := f (e1, ea, ..., €,)

is interpreted as:

Ty — list n
T1 [1] et €1
T1 {2] Al €2
T1[n] — €n
var — new f

send T var

The initial persistent message sent to an object must be distinguished from ordinary
messages sent by a send instruction. The primitive notation does not include a mecha-
nism to distinguish the initial persistent message, since there are many ways to define an
interpretation rule to distinguish a message. For example, the initial persistent message
1s sent first and explicitly acknowledged before allowing additional messages to be sent
to the object. Another interpretation would be to add a component to every message
k-tuple to tag the message as either an initial persistent list or an ordinary message.

3.5 Flow Analysis of Cantor Programs

Cantor is a dynamically typed notation where, in the most general case, any vari-
able may become bound to any value. The computing system that supports a Cantor
implementation must provide type checking wherever necessary. For example, applying
values to arithmetic and logical operators requires checking that the operator is defined
over the types of the operand values. Another example is checking that the destination
of a send command is of type reference.

In addition to type checking, because the destination of a send command can poten-
tially be any reference value, the computing system must also provide message delivery
from any object to any other object. '

If the data type for a variable could be inferred for the program points where the
variable is accessed, then the type check could be performed when the object definition is
compiled, and the type check at runtime eliminated. Likewise, if all the reference values
used by an object could be inferred at runtime, the object would not need the capability
to send a message to any other object, only a subset of the objects.

The task of inferring data type is an instance of the more general problem of prop-
agating constants through a program. Bach value in a Cantor program can be thought
of as comprised of two or three parts:

[tag | item 7 or l ref [def-type [instance #7

61

The tag field denotes the data type. The data type identifies the set from which the
value is taken. For example, the type boolean is a set comprised of only two elements:
the literals true and false. All values denotable in Cantor can be represented by these
two fields. The item field for type reference is, however, further partitioned into two
more fields: the def-type and instance number. The def-type is the object definition that
was used to create the object via the new instruction. The instance number identifies
the reference value as the nth instance of the object definition.

This representation for values is only one of many possible schemes. For example,
the distinction between reference and def-type could be replaced by representing each
object definition as a new data type. The above representation was selected because it
fits well with the organization for the program flow analysis.

The flow analysis is first organized by object definition. The first layer is to propagate
constant tags through each variable for each program point of the object definition.
The benefit of Layer 1 analysis is the removal of unnecessary type checking during
program execution. Layer 2 flow analysis augments Layer 1 by propagating constant
def-types for variables whose tags are references. The results of Layer 2 analysis can
be used to refine the results of the Layer 1 analysis and are potentially useful for the
dynamic placement of new objects. Layer 3 analysis augments Layer 1 and 2 analysis by
propagating constant values;, i.e., both tag and item are constant, through the variables
for each object definition. By identifying constant reference values prior to program
execution, the assignment of objects to processing nodes can be performed in part,
possibly completely, before the program is started, thereby simplifying or eliminating
the task of placing objects during program execution.

The propagation of constant values where the tags are integer, real, boolean, or
symbol is straightforward. For example, consider the assignment statement:

Xi=y+2

where y is inferred to be the constant 40. The add operation can then be performed
at compile time and x is replaced by the constant 42. Reference values can also be
propagated at compile time if the ‘new instructions can be performed at compile time.
For example:

y := 40

generates the integer 40 at compile time and binds it to the variable y. Likewise, the
statement:

z .= f(x.y)

generates an instance of the object f and binds it to the variable z. Whether f(x.y) can
be treated as a constant value depends upon how f is defined. The crucial property of all
the built-in data types, e.g., integers and booleans, is that they are history-insensitive.
An integer value of 40 generated in one object is identical in behavior to an integer value
of 40 generated elsewhere. The meaning of a program is preserved whether a history-
insensitive object exists as a shareable single object, or as multiple instances of the same
def-type.

62

Object definitions that are history-insensitive and independent of any data depen-
dencies can be instantiated at compile time. The compiler or program performing flow
analysis has a great deal of latitude in managing these objects. For example, one instance
of each history-insensitive object def-type could be created, and each new instruction that
creates an object of the same def-type would be replaced by the single constant. Such an
approach is attractive for sequential implementations since some objects can be statically
allocated, but is unsuitable for concurrent implementations since the single instance of
the object is both a potential bottleneck with respect to message traffic, and an unnec-
essary serializer with respect to concurrent execution. For concurrent implementations,
a first improvement would be to generate constant, history-insensitive objects on a per
definition basis rather than a per program basis.

For objects which persist only for the duration of processing a single message and
for which only one instance will ever exist, all new objects created by the object can be
generated at compile time and propagated as constant values. For this case, the flow
analysis equates the single instance characteristic of the object with the single definition
for the object. The generalization is to propagate constants on a per object instance basis
instead of an object definition basis. Flow analysis based upon propagating constants
over object instances, called future flow, is tantamount to symbolically executing the
program.

The advantages and limitations of future flow can possibly be best understood by
explaining the procedure for propagating constants on a per definition basis and then
generalizing to the per instance basis. The sources for values are:

e Message Variables
e Persistent Variables

Let Variables

Temporary Variables

Expressions

Values received from external objects as a message by the main object are presumed to
be known when the program is flow analyzed.

3.5.1 Layer 1 Flow Analysis

The goal of constant propagation is to establish a set of properties for each program
point where a variable is used. A simple property lattice [29] corresponding to a Layer
1 analysis is the following:

63

any

Int Real Sym Bool Ref

The elements of the property lattice gﬁlggﬁa?netdthe values used by Cantor programs.
Initially, every variable at every program point is assigned the undefined property. For
each instruction of the primitive notation, a transformation over the property set is

applied. The transformations on the elements of the property set are defined in terms
of commutative meet (|) operations:

1. undefined | tag — tag where tag is Int, Real, Sym, Bool, or Ref.
2. tag | tag — tag where tag is Int, Real, Sym, Bool, or Ref.
3. tag; | tagy — any where tag, # tags.

4. any | tag — any where tag is Int, Real, Sym, Bool, R:: 0y, or undefined.

In a sense, each object definition is ezecuted over the simplified domain of the property
set. Each primitive instruction needs to be modified at most twice. The number of
times the properties of the instruction are examined depends upon how many different
instruction paths merge upon the instruction. Since values are only propagated within
a definition, all of the persistent and message variables must be treated as possessing
property any.

3.5.2 Layer 2 Flow Analysis

By performing a Layer 2 analysis, the types of persistent and message variables can
be inferred by examining the interaction between object definitions. The overall flow of
values through variables between object types is shown by the following picture:

[—> Msg Variables

\

» et Variables

send

(—> Pst Variables new j

64

Value types for persistent variables are generated from new instructions, and the types
for message variables are generated from send instructions. The types generated by these
instructions in turn feed back to define the types for the other kinds of variables used
inside of the object definitions.

For the Layer 2 analysis, an additional layer needs to be added to the property lattice.
The flow analysis needs to keep track of the def-types as an added property of the type
reference. The exact shape of the lattice is now program dependent, since the number
of def-types is determined by the number of object definitions inside of the program. As
an example, a partial property lattice for the eight queens program is:

any
Int Real Sym Bool Ref
qlist queen make_q
undefined

The goal of the Layer 2 inference analysis is to determine on a definition by definition
basis what objects can create other objects: the new graph, and what objects can send
to other objects: the send graph. The new graph is the easier of the two to build since
the new instruction has the def-type embedded in the instruction. The type of each
persistent variable for an object type is determined by meeting each component of the
persistent list for the definition type with all the def-types that can create the object
type.

The send graph is more difficult to build since the def-type is embedded in the
reference value and not the send instruction. Also, the definition for an object may have
many different message lists specified for it, e.g., the case construct, whereas there is
only one persistent list. For the case of the multiple message lists for a definition, the
message lists are combined into a single, composite list.

The construction of the send graph is coincident with the inference procedure. As
each destination reference value for a send command is inferred, an edge is added to the
send graph, and the meeting operation described for the new graph is applied. For the
Layer 2 analysis, meet rules for def-types must be included:

¢ Ref | def-type — Ref.
o def-type | def-type — def-type.
¢ def-type; | def-types — Ref where def-type; # def-type,.

For each definition, a modified def-use (MDU) graph [28] is built to express the
dependencies between variables and also between def-types. Each vertex of an MDU

65

graph denotes either a segment of straight line code (SLC) from the primitive notation
or an object definition. For each object definition, there is a single MDU graph. A
directed edge from one SLC vertex to a second SLC vertex denotes that one of the
variables defined by the vertex at the tail of the edge is used by the vertex at the head of
the edge. An SLC vertex may also have an edge pointing to an object definition vertex.
These edges are tagged as either new or send and indicate that the SLC vertex can create
a new object of the def-type pointed to, or can send a message to the def-type pointed
to, respectively.

The inference algorithm propagates properties through the MDU graphs until no
variables change properties. Each object definition vertex is represented by a template
comprised of an MDU graph, a list for the properties of the persistent list, and a list for
the properties of the message list. Each component of each list is initially set to undefined,
except possibly for the message list of the main template. The main template is the only
object definition initially scheduled for propagation. Starting with the persistent and
message list, the properties are propagated through the MDU graph. For each SLC
vertex containing a new instruction, the persistent list of the template for the new
object is meeted with the old persistent list of the template. If the result of applying the
component-wise meet operation changes any of the properties of the template, then the
template is scheduled for propagation.

For each SLC vertex containing a send instruction, if the destination is of known
def-type, then the message list of the send instruction is meeted with the message list
of the destination template. Otherwise, all object definition templates are meeted with
the message list. If any of the properties of a template changes as a result of the meet,
then the template is scheduled for propagation.

The algorithm is guaranteed to terminate, because the total number of vertices for
all of the MDU graphs is finite, and because the property set is a finite lattice. If all of
the variables contained in the union of the MDU graphs are considered to be elements
of one large set V', then for each complete propagation of types through all of the MDU
graphs, at least one variable must change, else a steady state has been reached. Each
variable defined can be changed at most three times, once for def-type, then ref, then
any. Thus, the number of complete propagations is bounded by V3.

3.5.3 Layer 3 Flow Analysis

For the Layer 3 analysis, an additional layer in the lattice is added for the types
integer, real, symbol, and boolean. This new layer contains value instances of the type.
For example, consider the property lattice for the 8-queens program where type integer
has been augmented with instances of integers:

66

any

Int Real Sym Bool Ref

undefined

The meet rules are once again expanded to include:
* (tag,item) | (tag,item) ~— (tag,item).
o (tag,item;) | (tag,item;) — tag if item; # items.

If the tag and item match exactly, then both are propagated as a constant value, and
all calculations that exclusively use constants can be performed when the program is
compiled and replaced with a constant. If the tags match but not the items, then the
type can be propagated, and all calculations that exclusively use values of constant type
can be type checked when the program is compiled, with the resulting type known. As
an aside, if for example the operation is equality testing and the tags do not match, then
the calculation for the resulting value can also be done at compile time.

To propagate instances of def-type as constant values, the meet rule for the Layer
3 analysis is refined to include the possibility of equal def-types, but not equal instance
numbers:

o (ref,def-type,instance) | (ref, def-type,instance) (vef,def-type,instance)

o (ref,def-type,instance;) | (ref,def-type,instances) (ref,def-type)
where instance; # instance,

The value of propagating object constants, a.k.a. futures, by this technique is of limited
value, because at most one future per program point can be assigned at compile time.
If two different futures meet at a program point, then the property of the variable at
the program point becomes either (ref,def-type) or simply ref if the futures were not
generated by the same template.

To remove the limitation of one future per program point, the flow analysis can be
performed on a per instance, or per future, basis rather than a per object definition basis.
With respect to the inference algorithm, the only change is to replace the templates with
futures. The algorithm is no longer guaranteed to terminate, since an infinite number
of futures may be generated. Thus, both the property lattices and MDU graphs can
potentially be infinite. The advantage is that the objects and their connectivity can be
inferred at compile time.

Under future flow analysis, at one extreme the property lattice contains all of the
values of Cantor’s value domain, and consequently, the meet rules ezactly interpret the

qlist queen make q

67

primitive instruction set. Under these conditions, futures are instances of objects, and
the inference algorithm is executing the program in toto. At the other extreme, the
property lattice contains only futures. The MDU graphs for future-only inference are
quite small, consisting mostly of send and new instructions. Propagating futures over
the MDU graph concurrently with executing the object may prove to be advantageous,
since the runtime system can look ahead to find the connectivity of a new object with
other objects before the corresponding new instruction is executed.

A myriad of property lattices can be defined between these two extremes. For exam-
ples, if some of the data types, e.g., reals and symbols, are excluded from the property
lattice, then futures are partially instantiated objects. A framework excluding reals and
symbols could be used to do the equivalent of unrolling DO loops as is performed in
optimizing FORTRAN compilers [4].

3.6 Reclaiming Irrelevant Objects

After flow is the framework for recovering lost or irrelevant objects during the course
of a computation. The framework is unique to Cantor and the object model, but the
algorithms are refinements of the techniques for garbage collection done by Dijksta,
Lamport, Martin, Scholten, Steffens [16], and by Hewitt and Baker [7]. An initial working
definition for the set of irrelevant objects is those objects that can never receive a message.
This set is calculated by first determining the set of objects that are capable of receiving
messages, either directly or indirectly, and then removing this set of relevant objects
from the total set of objects used by the computation. These calculations require that
either the set of all possible references values be finite, or that there exist auxiliary
mechanisms to keep track of all the reference values used in a computation. While the
former is preferable for the equations that follow, the latter is presumed to be favored
for implementation.

For the task of reclaiming objects, a computation is approximated by the pair (h, R,)
where:

R is the set of all reference values.

R,CR
h:R— R*

The = function of the computational model’s formal definition maps reference values
into object tuples. Each object tuple contains a set of a locations L and a a mapping
function C. The relation A is derived from 7, L, and C by taking only those values from
the range of C that are reference values. The set:

h(r) = {Vl € L s.t. C(l) is a reference value | C()}

defines the set of objects that can be sent messages from the object r. The set R,
contains all of the reference values that are contained in messages not yet delivered. Let
the set Ry be the set of reference values that are the destinations for the set of messages
not yet delivered. For each tuple of values in p(r), all of the values that are reference
values must be included as possible destinations for new messages. This is the safe

68

approximation to be made, since the fate of the reference value cannot be determined
without first delivering the message. In summary, the set R, is the union of the set Ry
with the set of reference values contained in the undelivered messages.

3.6.1 A Two Color Strategy

Using the pair (h, Rn), computing the set of reference values that can directly or
indirectly receive messages is the union of the transitive closures (TC) of the h relation
for each reference value in the set R,,, written TChr(Ry). The transitive closure can be
computed by message-passing and can be performed concurrently to the computation
proper.

Computing the transitive closure by message-passing involves sending messages to
mark the objects that belong to a closure. For the moment, consider only the problem
of marking the relevant objects after the computation has been stopped. To differentiate
marked objects from unmarked ones, marked objects are assigned the color black and
unmarked ones are assigned the color white. Initially, all objects are white. When a
message is delivered to a white object, the object clearly belongs to the transitive closure
and is colored black. The next step is to propagate the marking phase to all of the
objects reachable from the current object. The propagate messages are sent to all of the
reference values contained in the message received and to all of the reference values that
are contained in the persistent storage locations of the object. These additional messages
contain no reference values other than their destination and are solely used to color the
objects reachable from the current object.

A message received by a black object results in messages sent only to the reference
values contained in the message, excluding the destination reference value.

This strategy will eventually mark all of the reachable objects. The marking phase
terminates when all messages have been delivered. To prove termination, let the initial
set of messages be assigned the color white and let the set of messages used for coloring
the objects reachable from the current object be assigned the color gray. Gray messages
contain no reference values other than their destination. Initially, all objects and all
messages are white. The supply of white messages will monotonically decrease since all
of the white messages are guaranteed to be eventually delivered, and because no white
messages are ever emitted. Once all of the white messages have been delivered, the
objects denoted by the set R; will have been colored black.

Gray messages are generated when:

1. A white message is received by a white object.
2. A white message is received by a black object.

3. A gray message is received by a white object.

The number of gray messages generated by 1 and 2 is finite, because the supply of white
messages is finite. For case 3, a gray message received by a white object will change the
color of the object to black.

Once the supply of white messages is depleted, the system will contain only gray
messages, and white and black objects. Gray messages delivered to black objects result
In no new messages sent; thus, the count of gray messages decreases by 1.

69

Gray messages delivered to white objects can increase the number of gray messages
since each reference value stored inside of the object will be sent a gray message. To prove
that the quantity of gray messages will eventually be depleted, the set of gray messages
is partitioned into two subsets, those destined for white objects and those destined for
black objects. The set of gray messages destined for black objects will not affect the
color of any object, nor will they cause any additional messages to be generated.

The set of gray messages destined for white objects can be reduced in size by re-
placing multiple messages destined for a common object with a single message. This
transformation is valid, because the first message delivered will change the color of the
object to black. The remaining set of messages then belongs to the set of gray messages
sent to black objects. The size of the set once the transformation has been applied is
bounded by the number of white objects.

When a gray message is delivered to a white object, the number of gray messages may
increase, because gray messages are sent to the reference values stored in the contents
of the storage locations private to the object. However, the color of the receiving object
changes to black. By performing the partition and reduction steps, the maximum size
of the set of gray messages sent to white objects is guaranteed to decrease by at least
1, because there is one less white object. Thus, the maximum size of the set of gray
messages sent to white objects is guaranteed to monotonically decrease.

When the maximum size of the set of gray messages sent to white objects reaches
zero, all of the remaining messages must be in the other subset. These messages are
guaranteed to be consumed without producing any additional messages. Therefore, the
supply of gray messages will eventually be depleted.

The depletion of gray messages implies that all of the objects that could receive
messages, either directly or indirectly, have been colored as black. Any remaining white
objects are unreachable and can be reclaimed as irrelevant.

To allow the computation proper to proceed concurrently with the computation of
the transitive closure, the termination condition that all messages be delivered must be
modified. If the computation proper is to proceed, new messages and new objects are to
be generated. Producing new objects poses no difficulty, provided that the new objects
are created as black objects. Producing new messages presents a difficulty, since basing
termination upon waiting for all messages to be delivered requires that the computation
proper terminate. This condition is too strong. The solution is to add a third color for
messages. A message sent from a black object that pertains to the computation proper
is a black message. The new termination condition is that all white and gray messages
have been delivered.

When a white object receives a white message, gray messages are sent as before and
the object is colored black. The object will then send black messages and create black
objects in response to the computation proper.

A black message will never be sent to a white object if message order is preserved
between objects in direct communication. The proof is by contradiction, assume a black
message is received by a white object. The source of the black message was a black
object. Before a white object is marked as a black object, all of the reference values
contained in the message and contained in the object are sent gray messages. For a
black message to be received by a white object, the black message must have overtaken

70

the gray message. However, this violates message order preservation.

Since a black message is never received by a white message, and the supply of gray and
white messages is guaranteed to eventually be depleted, then once the system contains
exclusively black messages, no messages can ever be delivered to any remaining white
objects. These white objects can be reclaimed.

An attractive feature of this algorithm is that once all white and gray messages have
been delivered and all remaining white objects removed, the system contains only black
references. The algorithm can now be executed again by exchanging the roles of white
and black colors. Thus, the game remains the same but the roles are interchanged.

In summary, the algorithm for garbage collection presented in this section is simple
for two reasons. First, garbage collection is performed only on objects and not on smaller
atoms such as the CONS cells of a LISP system. Secondly, objects are marked either
before or after assignment operations are performed, but not during. Thus, the granu-
larity of interleaving the coloring of objects with the computation proper is performed
at the level of processing messages as opposed to the tremendously more difficult level
of processing instructions.

71

Chapter 4

The Behavior of Concurrent Programs

Program behavior is the observable interaction between a computer program and the
environment where the program is interpreted or executed. The interaction between the
program and its runtime environment consists primarily of demands for resources made
by the program during its execution. For programming models in which most of the
resources are allocated prior to running the program, e.g., FORTRAN and OCCAM,
program behavior is relatively tame. For programming notations such as LISP and
Cantor, the resources demanded by a program become known only during the course of
the computation, and program behavior is therefore quite dynamic.

Cantor places three types of resource demands upon its host environment:

1. Message-passing
2. Message processing
3. Object creation

For message-passing ensemble machines, message-passing and object creation require
that communication channels be allocated to transfer a message between two nodes.
Message-passing and object creation also require that storage be allocated. Message
processing requires that an instruction processor be dedicated to processing the contents
of a message.

Assuming that each object is stationed to a single node, that messages travel from
the sending object to the destination object, and that an object only processes messages
on the node where it is stationed, then management of the three resources is controlled
exclusively by the assignment of objects to nodes. The object of the assignment or
placement task is to maximize progress. The efficiency of the placement strategy with
respect to maximizing progress is measured in terms of load balancing and preserving
locality. Load balancing is the task of placing objects so as to avoid excessive competition
for shared resources in some nodes while other nodes remain idle. For programs where
the level of concurrent behavior is less than the number of nodes, some of the nodes
will always be idle. Preserving locality is the task of placing objects so that objects that
communicate frequently are kept in a close proximity to each other. Locality can be
maximized by placing all of the objects for a program on a single node. This placement
strategy is the worst for load balancing unless the program is sequential. In general, load
balancing and preserving locality are opposing constraints.

72

The task of assigning objects to nodes can be conducted at three separate levels:
e Programmer directed

e Compiler directed

¢ Runtime directed

Permitting the programmer to direct the assignment of objects to nodes is flawed for
several reasons. First, the programmer may use library objects written by other pro-
grammers. Because the programmer does not necessarily know the internal workings of
the library objects, the interaction between the placement of the programmer’s objects
with the placement of the library objects may be detrimental. Secondly, if the nodes are
time-shared, i.e., multiple programs per node, then the interaction between the different
programs may be detrimental. These two arguments are not new. The same arguments
were made over a decade ago in support of virtual memory [14].

For the programmer to make decisions about placement, the decisions must be made
when the program is written. Likewise, the compiler must make placement decisions
when the program is compiled. The difficulty with making the assignment early is
that the interconnection topology and number of nodes dedicated to the program may
change before and during the execution of the program. The topology may change due
to constraints such as fault tolerance, or space-sharing, in which the user is assigned an
exclusive subset of nodes for a program. For either case, by presuming one topology and
directing the assignment task accordingly, the resulting program may perform poorly if
the realization is not close to the expectation,

Compiler directed placement has two advantages. The first advantage is that it can
resolve the library object problem by examining the internal workings of all the objects.
However, the compiler cannot for all programs construct the object graph envisioned
by the programmer. For example, object graphs that are data dependent cannot be
constructed without executing the program. Compiler directed placement has the ad-
vantage of access to global information about the interaction between the component
objects, but is unable in the general case to construct the object graph that the pro-
grammer has planned for. The second advantage of compiler directed placement is that
the compiler can access information about the interconnection topology of the target net-
work. This information combined with the predicted object graph enables the compiler
to make an initial placement of objects to nodes.

Runtime directed placement solves the above problems by making the assignment
during program execution. Data dependencies, interconnection topology, and the num-
ber of nodes dedicated to the program are all known, as are the number of objects and
messages resident on each node. Unfortunately, for ensemble machines at least, data
about the state of the computation is localized to each node and possibly the set of
neighboring nodes. Each node must make decisions about placing objects based on lim-
ited and perhaps stale information about the state of the other nodes in the ensemble.
The amount of immediately available information is limited to the node itself and per-
haps the set of neighboring nodes. Obtaining accurate global information about the
state of the computation is not practical.

73

The interactions between the program and runtime system are therefore quite com-
plex. There are two facets to load balancing and preserving locality: making prudent
initial choices and migrating objects to improve load balancing and locality. The experi-
ments presented in this chapter address only the first facet. The approach is to provide a
case study of the six programs presented in Chapter 2. The programs are first examined
under an ideal set of conditions to understand their dynamic characteristics, in partic-
ular, to establish a best case performance. The ideal conditions are then incrementally
removed and replaced with more realistic conditions. Under these altered conditions,
different load balancing and locality strategies are evaluated.

4.1 Program Behavior for Soft Computers

To establish a base case for program behavior where the effects of the hosting environ-
ment are minimized, a hypothetical idealized ensemble machine called a soft computer
is defined. The soft computer consists of a variable number of computing sites. The
number of computing sites adapts to the number of concurrent objects extant in the ob-
Ject program. Thus, there is a one-to-one mapping between the set of concurrent objects
and the set of computing sites. Every opportunity for concurrency is exploited, and load
balancing is optimal.

Message delivery between two computing sites in the soft computer model is instan-
taneous, and the bandwidth of the message-passing network is infinite; thus, locality is
inconsequential. After a message is delivered to a computing site, the message is pro-
cessed in a single time quantum. This time quantum is the same for all messages and
objects. For purposes of exposition, the processing of messages are synchronized over
all the computing sites. Computations are organized into sweeps. For each sweep, every
computing site (object) that has one or more messages enqueued is allowed to process one
message. All of the messages sent in response to processing a message are immediately
delivered. Likewise, all new objects are immediately instantiated.

The execution of an object program consists of a number of sweeps. For each sweep
the following data is tabulated:

e total number of messages

¢ total number of active objects

¢ total number of objects

e number of messages delivered this sweep

An active object is defined as an object that has one or messages queued for it. The
total number of active objects is called the concurrency indez (CI). The ratio of the
total number of messages to the concurrency index is called the message load (ML). The
message load value is useful when developing programs to determine how heavily the
objects used in the program are overloaded. The optimal value for the message load is
one, and all six test programs except for the perfect numbers program have constant
message load values of one. Therefore, all ML, graphs except the one for perfect numbers
are omitted.

74

4.1.1 Perfect Numbers

The perfect numbers program is profiled in Figures 4.1 and 4.2. The program was
truncated to find perfect numbers up to and including 3,000 instead of 10,000. Figure
4.1 shows the number of objects in use by the program as a function of the sweep count.
Figure 4.2 shows the number of concurrent objects per sweep. The number of objects
grows linearly until the 3,000 test number is reached. The iterative behavior of the
iter object is terminated, and the number of objects rapidly drops to zero. The growth
rate for the CI graph shows a parabolic tapering as the number of objects involved in
the computation steadily increases. An attractive feature of both graphs is that the
total sweep count is 3,026 for testing 3,000 numbers. The sweep count is indicative of a
pipelined behavior inside the program.

The message load graph of Figure 4.3 displays the message load value fluctuating
between 1.00 and 1.25. This fluctuation is due to the adder object that receives two
messages, adds their contents, and then sends one messages. For the cases where the
two input messages arrive during the same sweep, the message load value exceeds 1.00.
The occurrence of these cases is dependent upon the distribution of divisors for a test
number.

4.1.2 Prime Sieves

Figures 4.4 and 4.5 show the number of objects and concurrency index as a function
of the sweep count for the wheel driven prime sieve of Section 2.4.2. The source program
used to make the two graphs is identical to the program of Figure 2.9, except that the
message send to output in the sieve object was removed. The number of sweeps necessary
to compute all primes less than 10,000 is 4,241. This is the absolute minimum for this
program, assuming that every opportunity for concurrency is exploited. The number
of objects grows at a steady, monotonically increasing rate, reflecting the growth of the
sieve.

The concurrency index also grows steadily, since concurrent behavior is achieved by
the stages of the sieve working concurrently. The concurrency index continues to increase
until the number generator that provides input to the sieve is shut down. The sieve then
begins to empty out with the concurrency index monotonically decreasing.

The plots for the object count and concurrency index are shown in Figures 4.6 and
4.7. Like the plots for the wheel driven version, the message send to console inside of sieve
was removed. The number of sweeps to completion is 12,269, which is about a factor of
3 greater than the wheel driven version. The overall shape of the two object graphs and
concurrency index graphs are the same. The concurrency index graph for the demand
driven prime sieve is “bumpier” than the wheel driven version. The factor of 3 difference
in number of sweeps and the bumpiness is due to the handshaking between the stages
of the sieve. For the wheel driven version, each transmission of an integer between sieve
objects requires 1 message to be processed. For the demand driven version, 3 messages
are processed: request integer, answer integer, and accept reply.

75

4.1.3 Merge Sort

The object count and concurrency index graphs for the merge sort program are shown
in Figures 4.8 and 4.9. Because the interesting concurrent behavior for merge sort occurs
over a narrow sweep range, the concurrency index graph is plotted using a logarithmic
scale. The first 1,000 sweeps of the merge sort program are used exclusively by the
make_list object to build the list of 1,000 integers. The program is sequential for these
1,000 sweeps, and the object count linearly increases to 1,000. The split objects then
start halving the list, with the concurrency index doubling each time the list is halved.
After the original list is separated into lists of single elements, the lists are merged. The
concurrency index now keeps decreasing by a factor of two each time the length of the
list is doubled. Because only half of each list is accessed to split a list, but to merge two
lists often requires that every element of both lists be accessed, the number of sweeps
to merge two lists is roughly twice the number of sweeps needed to halve the lists. The
object count and concurrency index graphs show the symmetry of the two operations:
splitting and merging; and also show that merging requires twice the number of sweeps
of splitting.

4.1.4 Eight Queens

The object count and concurrency index graphs for the eight queens programs are
shown in Figures 4.10 and 4.11. The output phase of the program was inhibited by
commenting out the line: “send (“advance”, console) to qm”. The program exhibits
a colossal amount of concurrency and finds all 92 solution in less than 300 sweeps, or
roughly a solution every 3 sweeps. The cost for this performance is an immodest number
of objects, peaking out at slightly over 5,000. Most of these objects however are purely
transitory. The final object count is 830, which includes the 92 solutions requiring 9
objects per solution plus the printer and queue_master object.

4.1.5 Gaussian Elimination

The plots for the object count and concurrency index for the Gaussian elimination
program are shown in Figures 4.12 and 4.13. The “send ("print” output) to orig_matrix”
statement inside the compare object was commented out to defeat the 4,096 sequential
print messages that are used to output the reduced the matrix at the end of the com-
putation. The object count graph is not interesting; build_matrix and build_list objects
cause the number of objects to grow to approximately 4096, i.e., a 64 by 64 array of list
objects. The object count remains at this level for the duration of the program. The
growth rate is greater than linear because the matrix is built concurrently.

The concurrency index is quite interesting. For the find pivot, move pivot row, and
adjust pivot row steps, there is no concurrency. The initial build matrix phase and the
the add multiples of top row to rows beneath top row step are concurrent. For the add
multiples of top row step, the concurrency index equals the number of rows left in the
matrix.

By the iterative nature of the program, as the matrix becomes one row and one col-
umn smaller, the concurrency index decreases by one. Likewise, the interval between the

76

concurrent “phases” is also decreasing by 1. Therefore, as the computation progresses,
the concurrency per phase monotonically decreases, and the interval between concurrent
actions also decreases monotonically.

This type of concurrent behavior can be expected from a large class of concurrent
programs. In contrast to the divide and conquer nature of the perfect numbers and
eight queens, or the pipelined behavior of the prime sieves, the behavior for Gaussian
elimination is a sequential search, i.e., find pivot row, followed by a concurrent application
of the result of the search to the components of the data base, i.e., the elements of the
matrix.

Der O oo

600

500

400

300

200

100

77

Object Count for Perfect Numbers

500 1000 1500 2000 2500 3000 3500

sweep

Figure 4.1: Object Count for Perfect Numbers 3,000 (N = o0)

250

200

150

100

50

Concurrency Index for Perfect Numbers

500 1000 1500 2000 2500 3000 3500

sweep

Figure 4.2: Concurrency Index for Perfect Numbers 3,000 (N = o)

-

1.30

1.25

1.20

1.15

1.10

1.05

1.00

78

Message Load for Perfect Numbers

0 500 1000 1500 2000 2500 3000 3500

sweep

Figure 4.3: Message Load for Perfect Numbers 3,000 (N = o0)

her oo

79

Object Count for Wheel Driven Prime Sieve

1400
1200
1000
800
600
400
200

0 1000 2000 3000 4000 5000

sweep

Figure 4.4: Object Count for Wheel Driven Prime Sieve (N = o0)

Concurrency Index for Wheel Driven Prime Sieve

350
300
250
200

150
100
50

0 1000 2000 3000 4000 5000

sweep

Figure 4.5: Concurrency Index for Wheel Driven Prime Sieve (N = o0)

e o -

80

Object Count for Demand Driven Prime Sieve

1400
1200
1000
800
600
400
200

0 2000 4000 6000 8000 10000 14000

sweep

Figure 4.6: Object Count for Demand Driven Prime Sieve (N = o0)

Concurrency Index for Demand Driven Prime Sieve

250

200

150

100

50

0 2000 4000 6000 8000 10000 14000

sweep

Figure 4.7: Concurrency Index for Demand Driven Prime Sieve (N = o0)

Bern o—orQ

2500

2000

1500

1000

500

1000
500

100
50

81

Object Count for Merge Sort

0 1000 2000 3000 4000 5000 6000

sweep

Figure 4.8: Object Count for Merge Sort (N = oo)

Concurrency Index for Merge Sort

0 1000 2000 3000 4000 5000 6000

sweep

Figure 4.9: Concurrency Index for Merge Sort (N = o)

“werao—o

82

Object Count for Concurrent Eight Queens
6000]

5000

4000

3000

2000

1000

0 50 100 150 200 250 300

sweep

Figure 4.10: Object Count for Concurrent Eight Queens (N = oo)

Concurrency Index for Concurrent Eight Queens

800
600
400
200
0
0 50 100 150 200 250 300
sweep

Figure 4.11: Concurrency Index for Concurrent Eight Queens (N = o)

e o=

83

Object Count for Gaussian Elimination

5000

4000

3000

2000

1000

0 2000 4000 6000 8000 10000 12000

sweep

Figure 4.12: Object Count for Gaussian Elimination 64,64 (N = oo)

Concurrency Index for Gaussian Elimination

70

50
40
30
20

w0

I W%\

L I i H i

0 2000 4000 6000 8000 10000 12000

sweep

Figure 4.13: Concurrency Index for Gaussian Elimination 64,64 (N = co)

84

4.2 Program Behavior for Fixed Size Ensembles

The simulation results of the six test programs under the assumptions of the soft
computer represent a best case for the execution of the suite of sample programs. All
concurrency extant in the programs is exploited in execution. Although no proof exists,
the conjecture is that programs which behave poorly under the soft computer conditions
will perform poorly under any achievable set of real conditions. Assuming that the
six test programs represent programs that perform well under the soft conditions, the
next step is to challenge the soft assumptions. The first assumption to challenge is the
amorphous computing sites of the soft computer. Clearly a physical ensemble machine
will have a fixed number of processing nodes.

The introduction of a fixed processing surface mandates that an assignment procedure
be used to assign objects to nodes. This requirement did not exist for the soft computer
because the mapping is always one-to-one. The two factors to consider are speedup and
node utilization. For the case where the number of nodes is greater than the number
of objects, the best strategy, ignoring utilization and locality, is to place one object per
node. For the case where the the number of objects is greater than the number of nodes,
the best strategy for speedup is not clear unless the semantics of the program are known.

Two possible global strategies that do not use program semantics are to optimize
object and message loads. For optimizing object load, the number of objects on each
node is totalled, and the node with the lowest count is selected. Optimization of object
load attempts to equalize the amount of storage used over all of the nodes. For optimizing
message load, the number of messages not yet processed by each node is counted and
the node with the lowest count is selected. Optimization of message load attempts to
equalize the workload over all the nodes, because each node can process only process
one message per sweep. A myriad of other optimizations are possible, including using a
weighted average of message and object loads.

The effects of limiting the number of nodes to 64 and using the object load placement
strategy are shown in Figures 4.14 through 4.17 for the merge sort and eight queens
program respectively. Both programs exhibit clipping; that is, the concurrency index
limits at the number of nodes. This clipping is the desired response, because it indicates
that all of the nodes dedicated to the program are in use.

Although the peak concurrency index for merge sort is over 500 in Figure 4.9, the
time to completion is not appreciably lengthened by limiting the number of nodes to 64.
Peak concurrency is therefore not an accurate indicator for the amount of concurrency
that can be exploited. The area under the concurrency index curve determines the
amount of work to be done, and also the portion of the workload that can be performed
concurrently. Because the merge sort program only exhibits high levels of concurrency
for a short interval of sweeps, reducing the number of nodes does not appreciably impact
the time to completion. In contrast, the eight queens program exhibits high levels of
concurrency over many sweeps. By limiting the number of nodes to 64, the time to
completion is increased by a factor of 6, indicating that the average level of concurrency
1s approximately 384 active objects per sweep.

The area under the concurrency index curve is not an absolute indicator, because
of the possible non-determinism in message arrival. For some programs, the number of

85

objects created and number of messages sent may vary if messages are processed in the
less than the optimal order. This order may be affected by the assignment of objects to
nodes.

Figures 4.18 through 4.23 are graphs of the sweep counts versus number of nodes for
the six test programs. These graphs define the achievable speedup for a fixed number of
nodes and placement strategy. The overall shape of the speedup curves can be calculated
using Ware’s formula [40]:

sweep count = m(k + (1 - k))

where m is the total number of messages delivered, k is the fraction of the computation
that must be performed sequentially because of message dependencies, and N is the
number of nodes. The value of k can be calculated from the sweep counts for the soft
computer experiments. For these experiments, every opportunity for concurrency is
exploited, and the value of N is effectively infinity. With & equal to infinity, the sweep
count is limited to the longest chain of messages that must be delivered in sequence.

Speedup graphs such as Figure 4.22 clearly show that the sweep count for a fixed
size ensemble asymptotically approaches the sweep count for the soft computer. That
latter sweep count is drawn as a dashed line across each of the graphs. For example, the
sequential fraction of the eight queens computation is quite small (k = 0.00293), and
the speedup is near-perfect until the node count reaches 256. For node counts between
1 and 256, the speedup increases close to a factor of 4 each time the number of nodes is
quadrupled. Because the speedup graphs are log-log plots, the line between the sweep
count for 1 node and 256 nodes is nearly a straight line. For node counts beyond 256, the
sequential part of the computation begin to dominate Ware’s formula, i.e., 1/N becomes
comparable to k, and the return on applying additional nodes to the computation begins
to diminish. For 4096 nodes, there is virtually no benefit for applying additional nodes
to the computation.

Each speedup curve is compared with the sweep count of the corresponding soft exper-
iment. Three placement strategies were used: optimal message load, optimal object load,
and random placement. Random placement was implemented using the non-linear ad-
ditive feedback pseudo-random number generator found in the the UNIXTM library[39).
The most striking aspect of the six curves is the performance of random placement com-
pared to the two placement strategies that required global, instantaneous data from all
of the other nodes in the ensemble.

The three divide and conquer programs of perfect numbers, merge sort and eight
queens were quite insensitive to placement strategy. The speedup curves of Figures 4.18,
4.21, and 4.22 indicate near perfect halving of the number of sweeps to completion for
each doubling of the number of nodes. The two pipelined sieves worked best under object
load balancing and worst under message load balancing. Intuitively, message load should
be a good indicator, because it defines the workload for each node, i.e., the number of
messages that each node has to process. However, balancing the message load performs
poorly for the prime sieves because initially the first few stages of the sieve are able to
keep up with the influx of messages. The objects comprising the first few stages of the
sieve are thus assigned to the same node. Placing the first few stages on the same node
is a poor placement strategy because the stages cannot process messages concurrently.

86

Object Count for Merge Sort (N=64)

2500

2000

1500

1000

500

0 1000 2000 3000 4000 5000 6000

sweep

Figure 4.14: Object Count for Merge Sort (N = 64)

Concurrency Index for Merge Sort (N=64)

70
60
50
40
30
20
10

0 1000 2000 3000 4000 5000 6000

sweep

Figure 4.15: Concurrency Index for Merge Sort (N = 64)

87

Object Count for Eight Queens (N=64)

5000

4000

3000

2000

1000

0 500 1000 1500 2000

sweep

Figure 4.16: Object Count for Eight Queens (N = 64)

Concurrency Index for Eight Queens (N=64)

70
60
50
40
30
20
10

0 500 1000 1500 2000

sweep

Figure 4.17: Concurrency Index for Eight Queens (N = 64)

88

These objects form a bottleneck and restrict the achievable concurrency in the later
stages of the sieve. The bottleneck is especially pronounced for the wheel driven sieve.
This program was previously noted as having a potential bottleneck between the output
of the number generator and the Input to the sieve, if the two sets of objects were not
properly speed matched.

For the Gaussian elimination program, the performance of the object load and ran-
dom placement were not substantially different, but object load was appreciably worse,
over a factor of two slower for 16 nodes. The poor performance of the message load
strategy is difficult to evaluate without examining in detail the assignment of the objects
of the matrix to the nodes.

In conclusion, neither the message load or object load balancing strategies proved to
be universally better for the six programs. In contrast, the random placement strategy
was shown to be, in general, a good strategy for load balancing. Furthermore, there is no
overhead for random placement, while message and object load balancing require global
tables that must be instantaneously updated. The effectiveness of random placement can
be understood by considering the two cases of many more active objects than processing
nodes and many more Processing nodes that active objects. For the case in which the
number of active objects is much smaller than the number of nodes, the probability that
two or more objects are assigned to the same node is small. For the case in which the
number of active objects is much greater than the number of nodes, then by the weak law
of large numbers, the probability that a node will be assigned an active object increases
with the number of assignments made.

T3S 0MN wTooETW

89

Comparison of Message, Object, and Random

500000

100000

50000

10000

5000

1000 { _J 1 i 1 |
20 22 24 26 28 210 212

Number of Nodes

Figure 4.18: Speedup Comparison for Perfect Numbers

TS E0N woosSW

90

Comparison of Message, Object, and Random

10¢

500000

100000

50000

10000

5000

1000 I { |] i] |
20 22 24 26 28 210 212

Number of Nodes

Figure 4.19: Speedup Comparison for Wheel Driven Prime Sieve

91

Comparison of Message, Object, and Random

5.108

108

500000

*3C0N woosW

100000

50000

10000

Number of Nodes

Figure 4.20: Speedup Comparison for Demand Driven Prime Sieve

30000

20000

10000

9000

8000

7000

6000

5000

92

Comparison of Message, Object, and Random

20 22 24 26 28 210 212

Number of Nodes

Figure 4.21: Speedup Comparison for Merge Sort

TI3ISO0N weo W

100000

50000

10000

5000

1000

500

100

93

Comparison of Message. Object, and Random

| | | |] |

20 22 24 26 28 210 212

Number of Nodes

Figure 4.22: Speedup Comparison for Eight Queens

30N woo s

94

Comparison of Message, Object, and Random
500000

100000

50000

10000

Number of Nodes

Figure 4.23: Speedup Comparison for Gaussian Elimination

95

4.3 Program Behavior for Limited Message Throughput

The two important properties of the soft computer are its capability to dynamically
change the number of computing sites and its capability to deliver all messages generated
during a sweep before the beginning of the next sweep. The negative effects of reducing
the number of nodes was shown to be minimal; near-perfect node utilization was possible
using the simple assignment strategy of random placement. The second property to be
considered is message throughput. For the soft computer, the message-passing network
must be capable of an infinite amount of bandwidth between the computing sites, and
must also be capable of delivering all messages in the interval of a single sweep. For
fixed sized ensembles where the number of active objects is greater than the number of
nodes, the effects of message latency are negated, because each node cannot process all
of the outstanding messages in one sweep. The messages that are not processed within
a sweep are held over to the next sweep. These held over messages remain in the input
queue and ensure that the node has a message to process for the subsequent sweep.

For the case of more active objects than nodes, the input queues and output queues
for each of the nodes will tend to be non-empty. If the input queues are non-empty,
then the node has insufficient message throughput to process the messages as they are
delivered. This configuration is desirable because if the input queues are empty, but the
output queues are non-empty, then the message-passing network becomes a bottleneck.
The nodes then become idle, and the speedup of a program is reduced irrespective of
the number of nodes. The message throughput required of the message routing network

is determined by the semantics of the object programs.

To measure the impact of limiting message throughput for fixed size ensembles, a set
of simulations were performed using the random placement strategy. For each simulation,
the number of messages delivered from each node per sweep was limited to 1,24, or 8.
Nodes are assumed to have limited message bandwidth into the message routing network,
but unlimited message bandwidth out of the network. This asymmetry is unrealistic
because it allows every node to send a message to a single node in a single sweep, but
one node sending a message to k other nodes requires k sweeps. The bias is offset by the
use of random placement.

Figures 4.24 through 4.25 contain the speedup curves for the six test programs.
All six programs exhibited degradation when the message delivery rate was limited to
one message per node. This degradation is to be expected, because to increase the
concurrency index requires two sweeps instead of one. For concurrency to be introduced
into a computation, an object must send two or more messages for each message processed
by the object. Because the concurrency can only grow at a linear rate, the two prime
sieves were the least sensitive to restricted message throughput. The pipelined behavior
of these two programs permits most of the concurrency to be exploited with only one
message sent per node. The Gaussian elimination program also did not show much
performance loss. The concurrency in the Gaussian elimination program is only piecewise
and not very large, i.e., a maximum concurrency index of 64. Thus, restricting the
message throughput does not greatly change program behavior.

The three divide and conquer programs, however, were significantly affected by re-
stricted message throughput. This sensitivity to message throughput can be understood

96

in part by examining the individual programs. For the perfect numbers program, the
divisor object requires that three new objects, an adder object and two additional divisor
objects, and two messages be sent in response to receiving a single test number. The
three new objects and two messages result in five messages sent in response to receiving
a single message. Thus, for message delivery rates less than five messages per sweep, the
messages generated during a single sweep must be sent in two or more sweeps.

The merge sort program has a similar requirement inside of the msort definition
in which two messages are sent and three new objects are created. The eight queens
program which is the least sensitive of the three programs requires only a maximum of
two messages sent and a single new object created. This case occurs inside of the queen
object definition.

The six speedup curves indicate that sensitivity to message throughput increases
as the number of nodes increase. Furthermore, for the perfect numbers and merge
sort programs, the speedup curves suggest that the speedup becomes asymptotic for
each of the four delivery rates. This result shows that the semantics of the object
programs require minimum levels of message throughput on a per node basis instead of
a per network basis. Although the number of messages delivered per sweep increased
proportionately by increasing the number of nodes, the two programs did not benefit
from the increase. In conclusion, both number of nodes and the message throughput of
the message-passing network become the limiting factors for speedup.

TS0 woosW

500000

100000

50000

10000

5000

1000

Figure 4.24: Limited Message Throughput for Perfect Numbers

97

Speedup for % =124, and 8
!
- :)
L | | ! I ! |
20 22 24 26 28 210 212

Number of Nodes

~380MN DWoosWw

98

Speedup for & =124, and 8

108

500000

100000

50000

10000

5000

1000 1.]] | |] !
20 22 24 26 28 210 212

Number of Nodes

Figure 4.25: Limited Message Throughput for Wheel Driven Prime Sieve

99

Speedup for % =124 and 8

5-10

108

500000

320N Voo sW

100000

50000

1 0000 | { 1 | | !

Number of Nodes

Figure 4.26: Limited Message Throughput for Demand Driven Prime Sieve

30000

20000

10000

9000

8000

7000

6000

5000

100

Speedup for # =124, and 8

I

Number of Nodes

Figure 4.27: Limited Message Throughput for Merge Sort

T3S0 woo W

100000

50000

10000

5000

1000

500

100

101

Speedup for % =124, and 8

LL] i | | | |

20 22 24 26 28 210 212

Number of Nodes

Figure 4.28: Limited Message Throughput for Eight Queens

*~3I=E0N wWoosEW

500000

102

Speedup for];—[=124 and 8

100000

50000

10000

Figure 4.29

Number of Nodes

: Limited Message Throughput for Gaussian Elimination

103

4.4 Locality

There are two methods for increasing the available message throughput of a message-
passing network: increase the bandwidth of the network and introduce locality. Increas-
ing the bandwidth of the network requires that the message transfer time be decreased,
or the width of the paths that messages travel over be increased. Either approach to in-
creasing the bandwidth involves a physical cost and is subject to a myriad of constraints,
such as interconnection topology, packaging, power dissipation, etc. The assumption is
that the architect will always build the highest performance network for a given cost
and set of constraints. Introducing locality, however, is performed at the programmer,
compiler and runtime system levels. The impetus for locality is straightforward; by re-
ducing the physical distance that messages must travel, more messages may be resident
in the network at a given time. The available message throughput is therefore used more
efficiently.

General locality, i.e., locality that is topology independent, can be used by program-
mer in many ways. Possibly the simplest example is the sending of messages to self.
A more elaborate technique is to conserve the use of reference values. For example, if
reference values are never sent as the contents of a message, then reference values for
new objects must be contained exclusively by the object that created the new object.
This restriction ensures that the locality of reference is always contained to a fixed set
of neighboring objects. In general, sending a reference value as part of the contents of a
message destroys locality.

Locality introduced by the compiler and runtime system is controlled by the assign-
ment of objects to nodes. One definition for a cost criterion of the distance between two
nodes is to consider objects as placed on two-dimensional processing surface. Each node
has an (z,y) coordinate pair and the distance between nodes n; and n3 is simply:

|z2 — z1] + |yz — v1

This distance criterion calculates the Manhattan distance between the two nodes. This
distance is the minimal number of steps needed to travel from ny to ny on a two-
dimensional mesh.

For a k by k mesh, the average distance over all possible pairs of nodes is calculated
by the formula:

s 2 1

d, = §(k - E)
From this formula the expected distance for messages sent between two communicating
objects can be calculated. The actual average distance can also be calculated by summing
the Manhattan distances for all messages delivered during a sweep and dividing this
number by the number of messages delivered. Figures 4.30 through 4.41 show the number
of messages delivered per sweep and the average distance for all of the messages delivered
during each sweep for a 256 node (k = 16) ensemble using the random placement strategy.
The calculated average distance from the formula for a 16 by 16 mesh is 10.6, and the six
average distance graphs display only small deviations from this calculated value. This

observation is confirmed by calculating the mean, median, and standard deviations for
each of the simulations averaged over all of the sweeps. These calculations are shown in

104

Program mean | median | std. dev,
Eight Queens 9.2 9.3 1.76
Gaussian Elimination 10.7 10.7 2.8
Merge Sort 10.6 10.7 4.4
Perfect Numbers 10.6 10.6 0.9
Demand Driven Primes | 10.5 10.5 0.9
Wheel Driven Primes 10.5 10.5 0.9

Table 4.1: Mean, Median and Standard Deviations

Table 4.1. Both average and median values are close to the calculated average distance
from the formula except, for the eight queens program. The eight queens program
has a smaller than expected average distance value because a large portion of the send
statements are messages sent to self. The programs with the largest deviation from the
expected distance are Gaussian elimination and merge sort. These two programs have
the lowest levels of concurrency of the six test programs. Because the concurrency levels
are small, the number of messages processed in a sweep is small and thus the sample
set for calculating the average distance per sweep is also small. These small sample
sets result in a large variance on a per sweep basis, but the effects of averaging the
distances over all of the sweeps shows the average values to be close to the expected
value of the formula. This effect can clearly be seen in the message throughput and
average proximity graphs for merge sort (Figures 4.36 and 4.37). The average proximity
shows large amounts of deviation until the concurrency sharply rises; the proximity then
quickly stabilizes. Once the concurrency decreases sharply, the proximity then again
shows large deviations.

The six message throughput graphs show the total number of messages that must
be delivered per sweep to prevent the computations from becoming sensitive to message
throughput, i.e., to maintain the illusion of infinite bandwidth. For the two prime sieves
and Gaussian elimination, the number of messages delivered per sweep is less than half
the number of nodes. These three programs were also the least sensitive to message
throughput. The three divide and conquer programs required message delivery rates
equal to or greater than the number of nodes. These three programs were the most
sensitive to message throughput.

Assuming that the cost of sending a message is proportional to the distance that the
message must travel, then by the average distance formula, the cost is the same for all
messages. By scaling the message throughput graphs by dy, the graphs demonstrate the
amount of message resources that have to be available per sweep to keep the computation
insensitive to message throughput. The message throughput graphs are a function of
program behavior and cannot be changed without modifying the source program or
altering the size of the ensemble.

400

300

200

-

100

25

20

15

>

10

105

Message Throughput

0

0

—
I W h @# T
1000 2000 3000 4000 5000
sweep
Figure 4.30: Perfect Numbers (N = 256)
Average Message Proximity
1000 2000 3000 4000 5000

sweep

Figure 4.31: Perfect Numbers (N = 256)

100

80

60

-

40

20

25

20

u>

15

10

106

Message Throughput
| v’vWWMM

0 2000 4000 6000 8000 10000 14000

sweep

Figure 4.32: Wheel Driven Prime Sieve (N = 256)

Average Message Proximity

0 2000 4000 6000 8000 10000 14000

sweep

Figure 4.33: Wheel Driven Prime Sieve (N = 258)

-

o>

120

100

80

60

40

20

25

20

15

10

107

Message Throughput

_ m W I WWWWI

0 5000 10000 15000 20000 25000

sweep

Figure 4.34: Demand Driven Prime Sieve (N = 256)

Average Message Proximity

0 5000 10000 15000 20000 25000

sweep

Figure 4.35: Demand Driven Prime Sieve (N = 256)

-<

o>

400
350
300
250
200
150
100

50

30

25

20

15

10

=]

108

Message Throughput

y

i | H Il 1

1000 2000 3000 4000 5000

sweep

Figure 4.36: Merge Sort (N = 256)

Average Message Proximity

6000

1000 2000 3000 4000 5000

sweep

Figure 4.37: Merge Sort (N = 256)

6000

-

>

109

Message Throughput

300

250

200

150

100

50

0 100 200 300 400 500 600 700

sweep

Figure 4.38: Eight Queens (N = 256)

Average Message Proximity

25

15

10

0 100 200 300 400 500 600 700

sweep

Figure 4.39: Eight Queens (N = 256)

-

v>

110

Message Throughput

100 |
80
60
40

20T

1

0 2000 4000 6000 8000 10000 14000

sweep

Figure 4.40: Gaussian Elimination (N = 256)

Average Message Proximity

25

15

10

0 2000 4000 6000 8000 10000 14000

sweep

Figure 4.41: Gaussian Elimination (N = 256)

111

4.4.1 Logical Neighborhoods

The average distance between communicating objects can be decreased for many
programs by using a placement strategy that has a built-in locality metric. The locality
metric is defined so as to minimize the Manhattan distance for the assignment of new
objects to nodes. A straightforward locality metric is to assign to each node a set of
neighboring logical nodes and limit the assignment of new objects to the logical neighbors.
The logical subsets are selected so that the Manhattan distance between the object and
the object that is being created is minimized.

The possible methods for selecting the logical neighborhoods are myriad. A straight-
forward approach is to view the nodes as vertices on a undirected graph called the logical
graph. The mapping between nodes and vertices is one-to-one and the vertices adjacent
to a vertex correspond to the set of logical neighbors for a node. The mapping of nodes
to vertices is performed so as to minimize the Manhattan distance between neighboring
logical nodes. For the general case, finding the optimal assignment of nodes to vertices is
an N P-complete problem. The Manhattan distance metric by its definition is, however,
equivalent to placing the nodes on a two-dimensional mesh. By carefully selecting the
logical graph, the optimal embedding of the logical graph onto the mesh can be derived
analytically.

The three carefully chosen logical graphs are a binary n-cube, and a two- and three-
dimensional torus referred to as torus and cube, respectively. The optimal embedding
of the torus into the mesh is shown in Figure 4.42. Assuming that message traffic is
uniformly distributed within the logical subset of nodes, the average distance between
two logical neighbors asymptotically approachs two. This average distance value holds
also for the less ingenious strategy of assigning /N —1 logical connections of Manhattan
distance 1 and a single Manhattan distance of v/N for the wrap around.

The embedding of the cube is accomplished by first tesselating the plane with a set
of N3 tori and then linking the two-dimensional tori into the three-dimensional torus.
The embedding of the n-cube follows a recursive construction in which the binary valued
dimensions are grouped into pairs and each pair is assigned a Manhattan distance that
is a power of 2 from the origin. Using these constructions and assuming that message
traffic is uniform among the neighbors, the average distance for the torus, cube and
n-cube are:

I, = 2(1-N-%) (4.1)
L= S00- N+ N (42)
- 2 1

d, = o ¥ VE-1) (4.3)

Each of the three logical graphs trade off locality for dispersion or load balancing. The
torus and cube are the most conservative for locality, limiting the set of neighboring nodes
to four and six, respectively. In contrast, the n-cube graph logarithmically increases the
size of the logical neighborhood as the number of nodes is increased. The effects of these
three strategies upon locality and load balancing are shown in Figures 4.43 through 4.54.
The strategy for picking a neighbor within a logical subset is to choose the neighbor with

112

the lowest object count. Message load, random selection, or a composite scheme could
equally have been tried. For the case of multiple logical neighbors having equal object
counts, ties are broken in favor of the node with the smallest Manhattan distance. For
reference purposes, all three strategies were compared against random placement.

The average distance curves and speedup curves, when compared side by side, es-
tablish the trade-offs between imposing locality and disturbing the load balancing. The
two prime sieves showed the most improvement using the new placement strategies. The
average distance between communicating objects decreased by over a factor of five for

Locality of reference is also quite strong in the perfect numbers programs, and Figures
4.43 and 4.44 reflect this strength. Excluding cube placement, for average distance, the
larger the logical subset, the larger the average distance. For speedup, the random, cube,
and n-cube strategies were not appreciably different. The torus placement strategy,
however, performed consistently worse for ensembles larger than 64 nodes. The reasons
for this difference cannot be explained without examining in detail the assignment of
divisor objects.

The speedup and average distance graphs for the merge sort program also display
anomalous behavior for the torus and cube placement strategies. For the merge sort
program, random placement did appreciably better for speedup. The torus placement
strategy performed poorly until the number of nodes increased to 1,024. This dramatic
change in performance suggests that since the list to be sorted is comprised of 1000
objects, when the number of nodes reaches 1,024, the assignment task becomes trivial
with one object per node. For average distance, n-cube produced consistently better
average values up to 1,024 nodes, although the size of the logical neighborhood was the
largest. The average distance for the cube strategy was close to the n-cube strategy until
the ensemble size increased to 1,024, once again indicating some fundamental interaction
between the number of list objects and the number of nodes.

The eight queens and Gaussian elimination programs performed most closely to the
predicted results, namely that torus would be worst for load balancing, followed by cube,
and then n-cube. This behavior is shown clearly in the Gaussian elimination speedup
graph (Figure 4.54). For the eight queens program however, the performance of n-
cube placement was not appreciably different from random placement. In contrast, the
average distance curves show n-cube placement superior to random placement, as well as
the other smaller subset strategies. Overall though, the two average distance graphs for
Gaussian elimination and eight queens demonstrate that locality is not being exploited.
This lack of locality is in the programs since both programs frequently send reference
values as the component of a message, and is also in the placement algorithms since they
do not lock onto the object graphs that each of the programs build.

In summary, the n-cube placement strategy did surprising well. The dispersive quali-
ties of the n-cube, namely that it contains all periodic graphs of lower dimension, proved

S

~
L,
il
~d
1))
g,
]

iy

JBF

N,
EARYEANy
—8 T ™
(’l.,’l.
LSl N
BnSnsen
Ringsing
i

o
A
Nl
4B
e
Naw
£
.‘ﬁt
ws

NN

Figure 4.42: Two-Dimensional Torus

to be efficient for both load balancing and locality. In contrast to random placement
which always assumes maximum dispersion, n-cube placement incrementally introduces

dispersion by selecting destination nodes from minimum to maximum Manhattan dis-
tance.

ORY -~ <D

COB Ve -]

114

Comparison of Random, Cube, Torus, and n-Cube
50

—

0 I ! ! i | i

20 22 24 26 28 210 212

Number of Nodes

Figure 4.43: Average Distance Comparison for Perfect Numbers

30N TooEWw

115

Comparison of Random. Torus, Cube, and n-Cube

500000

T
100000
50000
10000
5000
1000 | } I I 1 {
20 22 24 26 28 210 212

Figure 4.44

Number of Nodes

: Speedup with Locality for Perfect Numbers

ORE~0d <

®OSNer -

116

Comparison of Random, Torus, Cube, and n-Cube

50[—~ -

20 22 24 26 28 210 212

Number of Nodes

Figure 4.45: Average Distance Comparison for Wheel Driven Prime Sieve

T~TICO0OMN wWoo W

117

Comparison of Random, Torus, Cube, and n-Cube

108

500000

100000

50000

10000

5000

1000 ‘-

]

| | | | | |

Figure 4.46

22 24 26 28 210 212

Number of Nodes

: Speedup with Locality for Wheel Driven Prime Sieve

O~ <>

O -

50

118

Comparison of Random, Torus, Cube, and n-Cube

-

{ |]]] I

20

Figure 4.47

22 24 26 28 210 212

Number of Nodes

: Average Distance Comparison for Demand Driven Prime Sieve

119

Comparison of Random, Torus, Cube, and n-Cube
5-10 N

108

500000

*~3EC0MN wWoosw

100000

50000

10000

Number of Nodes

Figure 4.48: Speedup with Locality for Demand Driven Prime Sieve

ORL ~Dd<D

OO -

50

120

Comparison of Random, Torus, Cube, and n-Cube

I] | ! { I

20 22 24 26 28 210 212

Number of Nodes

Figure 4.49: Average Distance Comparison for Merge Sort

30N woosSW

121

Comparison of Random, Torus, Cube, and n-Cube
30000

—

20000

10000

9000

8000

7000

6000

5000

20 22 24 26 28 210 212

Number of Nodes

Figure 4.50: Merge Sort

oM~ <>

®OIVern-

122

Comparision of Random, Torus, Cube, and n-Cube

40

Number of Nodes

Figure 4.51: Average Distance Comparison for Eight Queens

TIS0ON oW

100000

50000

10000

5000

1000

500

100

123

Comparison of Random, Torus, Cube, and n-Cube

-

L ! I | ! ! |
20 22 24 26 28 210 212
Number of Nodes

Figure 4.52: Speedup with Locality for Eight Queens

OROU -~ <D

DOB V-

124

Comparison of Random, Torus, Cube. and n-Cube

50(— —

0 | [| | x |
20 22 24 26 28 210 212

Number of Nodes

Figure 4.53: Average Distance Comparison for Gaussian Elimination

~3=E0M WooTW

500000

100000

50000

125

Comparison of Random, Torus, Cube, and n-Cube

Number of Nodes

Figure 4.54: Speedup with Locality for Gaussian Elimination

126

4.4.2 Compiler-Assisted Placement

The results of the neighborhood placement strategies demonstrated the superiority
of the n-cube placement strategy for both load balancing and locality for all of the test
programs, except Gaussian elimination and merge sort. For these two programs, load
balancing and locality behaved purely as opposing constraints. For the other four pro-
grams, large logical neighborhoods were unnecessary and thus were wasteful of message
resources. Efficient placement strategies, therefore, should only increase the Manhattan
distance for the placement of new objects when necessary. This approach is inherent
in the n-cube placement strategy because, by construction, the logical neighbors are
partitioned pairwise into groups that are powers of two apart in distance.

If program behavior could be predicted before executing the program, then the best
placement strategy could be selected. For example, if the program was known to exhibit
behavior similar to the two prime sieve programs, then torus placement strategy would
be selected. Unfortunately, program behavior is dependent upon many diverse factors.
However, information can be gathered during compilation and used heuristically to assist
with the placement of new objects during runtime. The information to be gathered during
compilation is the maximum fanout for each object definition, i.e., the maximum number
of messages sent and new objects created in response to receiving a single message, and
the propensity for an object to generate more messages and new objects.

The first two quantities are called the send factor (SF) and new factor (NF) for the
object. The third quantity is called the ezecute factor (EF). All three quantities are
calculated at compile time by statically analyzing the source program text. The send
factor is a count of the maximum number of sends that can occur inside a description
and likewise for the new factor. The execute factor is the number of times the object
can execute; usually this number is 1 or oo.

The send, new, and execute factors are available to the runtime system on a per
object basis. These three factors can be used to make heuristic decisions about which
placement strategy to use for creating new objects. Unfortunately, whether a new object
will be used concurrently or not cannot be determined from these three factors. For
example, an object with a send factor of one will not generate concurrency. The object,
however, can be used indefinitely to sustain concurrency. Therefore, when creating a
new object, the new object can be determined to be capable of either:

¢ Generating concurrency: SF > 1.
e Sustaining concurrency: SF = 1.
® Reducing concurrency: SF < EF.

An example of an object that reduces concurrency is the adder object of the perfect
numbers program. An example of an object that sustains concurrency is the idler object
of the wheel driven prime sieve program. From the three factors, numerous program
properties can be proved. For example, a program is purely sequential if each object
definition used by the program has a send factor < 1.

The three factors are tabulated for the merge sort program in Table 4.2. The list and
join are capable of sustaining concurrency, but the msort object is capable of generating

127

object definition | SF | NF | EF
main 1 1 3
mergesort 1 1 2
msort 2 3 2
join 1 0 3
serializer 2 0 | o
list 1 0 | o
make list 1 2 | o

Table 4.2: Send, New, and Execute Factors for Merge Sort

concurrency. A placement strategy that uses random placement for new objects that
generate concurrency, and the n-cube strategy for new objects that sustain concurrency
was applied to the merge sort program. The speedup and average distance graphs
are displayed in Figures 4.56 and 4.55. The speedup and average distance curves are
compared with pure random and n-cube placement. The two graphs show the desired
result of improved locality over the random strategy and better load balancing than the
n-cube strategy.

The same placement strategy was repeated on the Gaussian elimination program.
The three factors are tabulated in Table 4.3 and the speedup and average distance
graphs are shown in Figures 4.58 and 4.57. The results are comparable to the merge

sort program: the load balancing is improved over the n-cube strategy and locality is
improved over the random strategy.

object definition | SF | NF | EF
main 1 1 1

list 1 0 | oo
list_head 2 3 | o
compare 1 0 | oo
gauss 1 1 | oo
build list 1 0 1

build_matrix 3 2 |

Table 4.3: Send, New, and Execute Factors for Gaussian Elimination

128

Comparison of Random, n-Cube, and Random/n-cube (b)

50(\\\\‘

DAY~ <D

®O I Ve

20 22 24 26

28 210 212

Number of Nodes

Figure 4.55: Average Distance with Compiler-

Assisted Placement for Merge Sort

320N wDoosW

129

Comparison of Random, n-cube, and Random /n-cube (b)

30000

20000

10000

9000

8000

7000

6000

5000

|

Number of

Figure 4.56: Speedup with Compiler-

Nodes

Assisted Placement for Merge Sort

130

Comparison of Random, n-Cube, and Random/n-cube (b)

SOh‘MN__

RO~ <D

LRI N N |

Number of Nodes

Figure 4.57: Average Distance with Compiler-Assisted Placement for Gaussian Elimina-
tion

131

Comparison of Random, n-cube, and Random/n-cube (b)

500000 ——— \W

S
W 100000
€
e
p
C
[+
u
n 50000
t
10000

Number of Nodes

Figure 4.58: Speedup with Compiler-Assisted Placement for Gaussian Elimination

132

4.5 Summary

For programming environments where locality can be ignored, e.g., shared-memory
computers or ensemble machines where the message throughput message-passing network
is sufficiently larger than the rate at which the nodes can process messages, random
placement is a promising load balancing strategy for assigning objects to nodes. For
environments where the cost of message-passing is not negligible, strategies such as the
logical neighborhood approach can be used to increase locality. These locality imposing
strategies, however, can reduce the exploitable concurrency for some types of object
programs, namely, for object definitions that have large send and new factors, and object
programs where locality of reference is not used extensively. For these programs, the
composite approach of using a global placement strategy for the high fanout objects and
a local placement strategy for the relatively docile objects can be used to improve load
balancing and locality. The gains are marginal, however, because the lack of locality in
reference is embedded in the semantics of the program.

Compiler-assisted placement is one form of resource allocation that ig performed
when the source pProgram is compiled. The larger strategy is to uge the future flow
framework of Chapter 3 to construct an object graph at compile time and then apply a
graph embedding technique such as simulated annealing [36] or a heuristic algorithm (8]
[23] to embed the object graph onto the ensemble. The advantage of this approach is that
the best placement is known before the program is loaded. The primary disadvantage
of this approach is that data dependencies and non-determinism in message-passing can

to lengthy compile time analysis.
In practice, a combination of the two approaches will most likely be used. The

133

Chapter 5

The Object Model Directed
Architecture

This chapter presents architectures for the node computer of an ensemble machine
and also for shared-memory computers. Both architectures are organized upon a common
data structure used to represent both messages and objects. Fault tolerant techniques
for host object programs on large scale ensembles and the hardware support necessary
for garbage collection are also presented.

5.1 Message and Object Dualism

An object model directed architecture, whether cast in software or hardware, must
support substantial levels of dynamic storage management. This requirement stems from

134

MESSAGE-PASSING NETWORK

C'o Cl Cz CN—I

_ ~ y

N nominally identical
processing nodes

Figure 5.1: Ensemble Machine for Object Programs

The storage management problem is simplified by considering messages and objects to
be semantic duals. Objects are stationary, reactive, and relatively persistent. Messages
are mobile, inert, and relatively transitory. The behaviors of messages and objects are
therefore complementary; however, their representations need not necessarily be differ-
ent.

The following data structure conveys all the information necessary to represent either
objects or messages and to distinguish between them:

destination
length
code pointer
value #1
value #2

The first three components of the data structure convey the “header” information nec-
essary to describe the message or object. The remaining components are the message
or persistent variables. The destination field identifies the object that is to receive the
message. Length is a count of the number of data values contained in the message.
Length is non-essential, but is useful for detecting programming errors if the object ex-
pects more data than is contained in a message. With these two components, messages
can be represented. Objects require a third component, named the code pointer, to refer

135

to the code sequence for the object. This third component can be regarded as a special
persistent variable. A switch instruction will cause the code pointer to be modified.

The code pointer determines whether the message is to become an object when the
message reaches its destination. By convention, all messages have the same code pointer,
called NIL, and this code pointer is distinguished from any valid reference to a code
sequence. The transformation between objects and messages is a one step operation. A
new object is constructed as a message, but its code pointer is non-NIL.

Code pointers are examined on message delivery. If the code pointer is NIL, then
the message is delivered as a normal message. If the code pointer is non-NIL, then the
message becomes a local object. The message variables become the persistent variables
for the object.

5.2 Generic Node Architecture

Central to the development of hardware architectures for object programs is the par-
tition between message processing and message management. In the formal sernantics,
the management of messages is hidden by the use of sets, mapping functions, and k-tuples
of values. For a hardware architecture, the effect of these mathematical objects must be
explicitly supported by data structures and hardware mechanisms. The possible organi-
zations for the node computers are endless. However, the hypothetical organization of
Figure 5.2 captures the general data flow.

The control of the node computer resources is split between the Object Manager and
Object Engine. The Object Manager is responsible for message management and the
engine is responsible for message processing. Messages are input to the node from the
Network Interface and are enqueued into the Receive Queue. The Object Manager moves
messages from the front of the Receive Queue into the Backing Store. Before a message
is moved, the code pointer of the message is inspected. Assuming only one object per
node, if the code pointer is non-NIL, then the message becomes the object local to the
node. The only step required to transform the message into an object is to record the
pointer to the message as an object pointer. If the code pointer is NIL, then the message
pointer is placed into the Input Queue.

From the semantics of the object model, the possibility exists that a message may
arrive for an object before the node contains the object. For this case, the messages are
queued for the object in the order in which they arrive. After the message arrives that
contains the new object, the queued messages are moved into the Input Queue. The
Input Queue and Output Queue are nominally not separate hardware structures but are
data structures maintained in the Backing Store. Messages that have not been processed
by the Object Engine are kept in the Input Queue. Because every message that is placed
into the Input Queue will be processed regardless of its contents, the Input Queue serves
a dual purpose; it keeps track of the unprocessed messages, and also determines their
scheduling sequence for the Object Engine.

The Object Engine operates concurrently with the Object Manager and interprets
an instruction stream similar to the primitive notation developed in Chapter 3. Upon
interpreting a switch instruction, the front of the Input Queue is advanced and the
message pointer at the new queue front is loaded into the Object Engine. Execution

136

Program lines of code | min. | max.
Circuit Simulation 88 0 5
Eight Queens 106 0 4
Floyd’s Shortest Path 472 0 12
Gaussian Elimination 136 0 8
Merge Sort, 113 0 7
Perfect Numbers 24 1 3
Primes 45 1 4

Table 5.1: Minimum and Maximum Number of Variables Per Message

continues for the object at the instruction address contained in the switch instruction.

When the Input Queue front is advanced, the message pointed to by the old queue
front is deallocated. Likewise, when a message has been completely absorbed into the
message system from the Send Queue, the message contents are discarded. Incoming
messages enqueued into the Receive Queue, and new messages and objects generated by
the Object Engine, require new messages to be allocated.

These four operations require a high performance storage allocator. Traditional
strategies such as the buddy-system [24] can be used. The simplest and fastest sys-
tem, however, is to maintain a single list of free message buffers. The maximum size
over all the objects and messages can be determined when a program is compiled. This
maximum size becomes the size of each buffer on the free buffer list. Each message
received by the Network Interface will fit into one buffer. Each new message or object
generated by the Object Engine will also fit into one buffer. The allocation operation
is one step: unlink buffer from the free list. Likewise, the deallocation operation is also
one step: link buffer onto the free list.

This simple strategy is fast, but may be inefficient in the use of storage, if there is a
large variation in the number of data values per messages. In practice, the variation is
small. For example, the minimum and maximum number of variables per message for a
sample set of programs is tabulated in Table 5.1. A promising variation on this strategy
is to have the Object Manager pick a buffer size and format the free list accordingly.
For the Message Interface, if an incoming message overflows a buffer, then a second
buffer is used to contain the overflow. A single message becomes a multiple of message
buffers. For the Object Engine, new messages and objects must be constructed out of
multiple buffers when necessary. If the compiler is given the buffer size before a program
is compiled, the compiler can generate code that treats each message and object as being
distributed across multiple buffers. Each multiple buffer message is assigned a display
[32] that contains a list of pointers to each of the buffers that comprise the message.

The primary advantage to this scheme is that the Object Manager can choose the
buffer size independently of the compiler requirements. A second advantage is that
messages received by the node never have to be reassembled, and both the Network
Interface and Object Engine work on messages as groups of buffers.

137

Receive Queue Input Queue

Object
Network Object]

Enei
Interface Send Queue Manager Output Queue neine

[Storage Bus

Backing
Store

Figure 5.2: Generic Node Architecture for Single Object

138

5.3 Multiple Objects per Node

The assumption that each node computer hosts a single object is difficult to achieve
in practice. For example, the Gaussian Elimination program of Chapter 2 will deter-
ministically generate over 4,000 objects that persist for the duration of the computation.
The obvious solution is to assign multiple objects per node, sacrificing concurrency if
there are more concurrent objects than nodes, but potentially improving utilization of
each of the nodes.

To manage messages for multiple objects, a table called the Object Table is added
to the Object Manager. The Object Table maps reference values into message buffer
pointers. A message at the front of the Receive Queue that has a non-NIL code pointer
becomes an object local to the node by writing a pointer to the message buffer into
Object Table. If the message is a normal message, then the destination reference value
is used as an index into the table to locate the destination object for the message. This
object pointer and the message pointer are enqueued as a pair into the Input Queue.

The operation of the Object Engine must also be modified, because the Object Engine
is now shared among multiple objects. The code pointer must be saved when the Object
Engine interprets a switch instruction. The code reference embedded in the switch
instruction is stored as the code pointer for the object. After the code pointer is saved,
the message pointer at the front of the Input Queue is deallocated, and the front of the
Input Queue is advanced. The message and object pointer pair at the front of the queue
are then loaded into the Object Engine. The Object Engine accesses the code pointer of
the object to find the instruction location where execution is to begin.

Objects can be coded for self-destruction by embedding the NIL code pointer refer-
ence into the switch instruction. After the code pointer is saved, the two pointers at the
front of the Input Queue have their code pointers checked. For each code pointer that
is NIL, the associated message buffer is deallocated.

An available optimization to the Object Manager is to check the destination for
messages in the Output Queue and immediately requeue messages into the Input Queue
if their destination is local. This shortcut accomplishes the message passing action by
moving the message pointer between the two queues.

An assumption built into this node organization for the ensemble machine is that the
code for the objects is present wherever needed. The obvious way to accommodate this
assumption is to place the code for all of the object definitions on all of the nodes. For
fine grain ensembles, this approach will not be practical. One solution is to fetch code
segments for objects on demand. When an object is to be installed on a node, a check
is made by the Object Manager to see if the code segment is present. If not, a request
message is sent to the other nodes to find a copy of the code segment. The code segment
is then sent from another node as the reply to the request.

This strategy is sufficient, but has the undesirable property that creating a new object
is delayed if the code is not present. An alternate scheme is to place the code for object
definitions on subsets of nodes. The result is that code is zoned by object definition and
node number. When a new object is created, the object definition for the new object
is known. The object definition is used to consult a directory that gives a list of nodes
where the code for the object definition is resident. The assignment for the new object

139

is limited to the list of nodes in the proper zone.

The degenerate case for the ensemble machine is when there is a single node in the
ensemble, i.e., the sequential computer. For this case, the shorting out of messages whose
destination is the local node will ensure that the Network Interface is never used. An
equivalent solution is to connect the Output, Send, and Receive Queue into a single
queue. The check that the destination of the message is local can then be eliminated.

5.4 Multiple Object Engines per Node

For shared-memory computers all messages are local to the node, and the transferring
of the message buffer pointers from the Output Queue back to the Input Queue is the
mechanism for delivering messages. Figure 5.3 depicts one possible configuration for
using a shared-memory computer. Each Object Engine represents one of the instruction
processors that share the common memory or Backing Store via the Storage Bus. Each
Object Engine has its own Input and Output Queue, and the operation of the Object
Engines remains unchanged. The main advantage to this organization is that message-
passing involves only moving a pointer between queues. The main disadvantage is the
competition among the Object Engines and Object Manager for access to the Backing
Store.

The shared-memory organization obviates the need for the Network Interface and
the message-passing network. The problems of load balancing are not solved, however,
by using shared memory. The operation of the Object Manager is complicated because it
now has to map incoming messages and objects onto multiple Object Engines. The goal of
this mapping is to minimize the contention for Object Engines among the objects hosted
on the node. Ideally, every Object Engine is processing a message and has a non-empty
Input Queue, indicating 100% current utilization and 100% immediate future utilization,
respectively. Clearly if the number of concurrent objects is less than the number of Object
Engines, then complete utilization is impossible. However, the situation may arise that
the Input Queue for an Object Engine contains multiple entries, but the Input Queues
for the other Object Engines are empty.

This situation does not necessarily indicate that the Object Manager has performed
a poor choice of assigning message and object pointer pairs to Object Engines. The
semantics of the object model defines the contents of the persistent variables of an object
as a critical section. An object cannot be assigned to multiple Object Engines, because
the contents of the object may be updated concurrently. A second problem is that
message order cannot be preserved if an object is assigned to more than one Input
Queue.

The message order restriction does not apply if the object is history-insensitive. From
the results of Chapter 3, if each invocation of the object is assigned a separate area for
temporary calculations, the object can be assigned to multiple Input Queues.

The enqueueing of a pointer pair into an Input Queue represents an assignment of
the object to an Object Engine. The Object Manager must keep track of the mapping
between objects and Object Engines, and ensure that the same object does not get
mapped onto more than one Object Engine. The enqueueing and subsequent processing
of the pointer pair by the Object Engine indicates an interval during which the assignment

140

Queue Bus
i A A [}
Y Y
]
Object i) i
Manager 1]
Object Object Object
Engine Engine o0 Engine
)

|] Y]] |

Storage Bus

Backing
Store

Figure 5.3: Multiple Object Engines per Node

141

Input Queue 2
Object
- ————s= Engine
Input Queue 1
Object
IEI S—— —————= Engine
Global Queue 5
T
0
E
U ®
E °
B
U [
S
Input Queue N
Object
_— ———m= Engine
N

Figure 5.4: Global Queue and Input Queues

142

of the object is “locked” to the Object Engine. Enqueuing of additional pointer pairs for
an object already locked to an Object Engine extends the interval, but eliminates both the
synchronization with the unlocking of the assignment and the subsequent reassignment
step.

The problem of assigning objects to Object Engines is comparable to the problem of
assigning objects to processing nodes in the ensemble machine, except that locality is
not an issue. The random placement strategy coupled with assuming that objects are
permanently locked to an Object engine should be efficient for load balancing.

An alternative is to replace all of the Input Queues with a single Global Queue and to
perform the assignment of objects to Object Engines on demand. After a message is pro-
cessed by an Object Engine, the message and object pair at the front of the Global Queue
are loaded into the Object Engine. This scheme is satisfactory for history-insensitive ob-
Jects, but for history-sensitive objects, the message and object pair cannot be assigned to
an Object Engine unless the object is currently not assigned to another Object Engine,
Le., the object is locked. For this case, the Global Input Queue must be searched from
front to back to find a unlocked object pointer.

The searching of the Global Queue may impact Object Engine utilization, because
access to the Global Queue must be inside a critical section. Multiple requests for
message and object pointer pairs from the front of the Global Queue must be serialized.
While an Object Engine waits for its turn to access the Global Queue, the engine remains
idle.

The advantage of making an early, permanent assignment of objects to Object En-
gines is that message delivery and message processing can be overlapped. The potential
drawback of this scheme is that some Object Engines can become idle due to a poor
choice in the assignment. The advantage of message processing on demand is that the
poor assignment problem cannot occur. Message delivery and the processing of messages
cannot however be overlapped; i.e., an Object Engine is idle while it waits for its turn
to access the front of the Global Queue. Multiple Object Engines attempting to access
the Global Queue simultaneously can cause lengthy idle periods.

The minimum requirements for complete overlap of message delivery and message
processing are dependent upon the relative speeds between message delivery time and
message processing time. For example, assuming that the time to deliver a message
1s equal to or less than the time to process a message, complete overlap is obtained if
each Input Queue always contains one or more messages. If the relative speeds can be
determined, the best solution is to use a combination of the two strategies. The Global
Queue can be used to feed the individual Input Queues as shown in Figure 5.4. Object
and message pairs are transferred to the individual Input Queues by the Object Manager
so that the minimum queue depth for complete overlap is maintained on a per queue
basis.

5.5 The Cantor Engine

The Cantor Engine and the Mosaic C processor are two VLSI architecture experi-
ments for fine grain ensemble machines. The Mosaic C is a general-purpose two-sequence
processor. Once sequence handles Object Manager responsibilities while the other han-

143

dles Object Engine tasks. The two sequences are interleaved on demand of the message-
passing network. The Cantor Engine is a VLSI architecture for an Object Engine that
directly implements the semantics of Cantor programs. The engine is partitioned into
the Instruction Processor and the Bus Manager as shown in Figure 5.5. Because the
Backing Store is shared by the Object Manager and one or more Cantor Engines, the
data bus for the engine is expected to exhibit high latency. The Cantor Engine is there-
fore a Harvard architecture with separate instruction and data streams. Instructions
and data constants are fetched from the Instruction Store which is local to each Cantor
Engine and is read only.

To minimize the effects of latency when accessing the Backing Store, the Cantor
Engine uses hardware futures. Each register of the Data Register File can be marked
as a future. When the Instruction Processor executes a load or store instruction, the
register for the instruction is marked as a future. The register number; effective address;
and if the instruction is a store instruction, the data value in the register are enqueued
into the Load/Store Queue. The Bus Manager dequeues load/store requests from the
queue and then requests the use of the Storage Bus. After the load or store operation is
completed, the Bus Manager uses the register number for the instruction to access the
Data Register File and change the future register back into a normal register.

Instruction sequences that consist of a sequence of load instructions followed by a
sequence of arithmetic operations and concluded by a store instruction will benefit from
hardware futures by allowing data to be loaded while other data is computed on. The
actual performance advantage will depend upon the latency of the Storage Bus relative
to instruction execution time, and upon the success of the compiler at arranging the
instruction code.

The Cantor Engine is a queue-based architecture in contrast to a stack-based archi-
tecture. The Instruction Processor uses five address registers: T,M,P,Q, and F for all
address calculations. The T address register points to a scratchpad area in the Backing
Store for saving temporary calculations that do not fit inside of the Data Register File.
The M address register points directly into the Input Queue to access the contents of
a message. The pointer stored in the M register is advanced when a switch instruction
1s executed. The P address register points to the buffer that contains the persistent
variables of the object. The Q register points into the Output Queue and is advanced
upon a send instruction. For the Cantor Engine, the Q register serves a dual purpose.
The Q register points to the end of the Output Queue but also points to the front of the
free message buffer list. The Object Manager initializes the Q register with a pointer to
the free buffer list by the Object Manager. The Cantor Engine writes messages directly
into the buffer at the front of the free list. After the message is completely written, the
Cantor Engine advances the pointer stored in the Q register. The Object Manager can
send all messages between the front of the Output Queue and the pointer stored in the

Q register. The Object Manager can also add more free buffers to the end of the free
list.

5.6 Fault Tolerance

For a given node architecture, the probability that a node computer will fail increases

144

Instruction
Processor

Load/Store Queue

——

Data
Register

4

Instruction
Store

Figure 5.5: The Cantor Engine

Bus
Manager

|

e ®mE O

145

Channels and Network Interface | 12,500
Datapath 7,000
Microcontroller 2,500
RAM (4T design) 512,000

Table 5.2: Transistor Count (approximate) Breakdown for Mosaic C with 16KB

at least linearly with the number of nodes used by the object program. For applications
where faults cannot be tolerated, or where the mean time between failures becomes
impractically small, steps must be taken either to improve the reliability of the nodes
or to find methods for allowing computations to continue in the presence of faults. All
methods for fault tolerance require adding redundancy at some level in the system. The
redundancy can be introduced over a wide range of levels, from machine words to objects
and messages. An example of redundancy at the level of machine words is the use of
error correcting codes to detect and correct bit errors in storage chips.

Adding redundancy at the message and object grain size is dependent upon where
faults are expected to occur. In the block diagram of Figure 5.2, errors can be expected
to occur in the message-passing network, Object Manager, Object Engine, and Backing
Store. Table 5.2 shows the approximate transistor counts for the Mosaic C single chip
computer. If the probability of failure is uniform over all the active devices, Table 5.2
clearly shows that most failures will occur in the RAM, i.e. the Backing Store. However,
mechanical failures such as bad connector contacts have a much higher probability than
transistor failures.

For single chip nodes, connector failures will primarily affect the message system.
There are three types of errors that stem from the message system:

e The message is received at the wrong destination.
e The contents of the message are corrupted.
e The message is destroyed in transmission.

A message received at the wrong destination cannot simply be forwarded to the correct
destination because the property of message order could be violated. The one exception
is when the destination is a history-insensitive object. For the general case, a sequence
number included with each message can be used to reconstruct message order at the
node level. The sequence numbers are assigned in a monotonically increasing order so
that each node can calculate the expected next sequence number from every other node.
Two tables are maintained by the Object Manager: a receive table and a send table.
Before a message is sent, the destination node number for the message is used as an
index into the send table. The result of the table look-up is the sequence number. This
number is stamped onto the message, and the next sequence number is written back into
the send table.

When the message is received, the node number of the sender is used as an index
into the receive table. If the sequence number of the received message matches the
sequence number stored in the receive table, then the message is delivered and the next

146

sequence number is written back into the receive table. If the sequence numbers do not
match, then the message was delivered out of the expected order. The destination Object
Manager must place all out of sequence messages from a node into a special queue. These
messages cannot be delivered until the missing messages are delivered.

If the Object Manager receives a message for a node other than itself, the wayward
message is forwarded to the correct destination. Although the message may arrive out of
sequence at its correct destination, the messages that are out of sequence will be placed
in their proper order when they reach their destination.

The send and receive tables can be organized by object reference value instead of
node number. This organization is complicated by the vacillating nature of the reference
connectivity between objects. The connectivity of the nodes is static; thus, the set of
possible senders and receivers for messages is limited to the set of nodes. To organize
the ordering of messages by object, the send and receive tables are each replaced by a
list and there is a send and receive list for each object reference value. When a message
is sent by an object, the send list is searched for the appropriate sequence number. If
the destination reference value is not in the list, then an entry is added to the list for
the new destination. Likewise, when a message is received, the receive list is searched. If
the sender reference value is not in the list, the sender is added to the receive list. The
very first sequence number must be a global constnat so that all objects can recognize
the first sequence number from a previously unknown object.

If each reference value has its own send and receive list, then the reference values can
be recycled without affecting the sequence numbers. In principle, each reference value
could have a send and receive table with a table entry for each of the possible reference
values. In practice, these tables are too large, so a spare representation, viz. lists, are
used and are incrementally updated to include additional entries.

The second type of message system failure is when a message arrives at the correct
destination but the contents of the message have been corrupted. The first step is
to detect that the message is corrupted. This step can be accomplished using either
horizontal parity: adding check bits for each value in the message, or vertical parity:
adding check bits for the entire message. Horizontal parity can be expanded so that the
values in the message become codewords of an error correcting code. The codewords are
decoded and corrected inside the message. Likewise, vertical parity can be expanded to
include additional values for the message contents. For this scheme, the values contained
in the message are the components of a codeword for an error correcting code, for
example, Reed-Solomon codes [31]. The message is decoded and corrected in place.

If the message does not contain sufficient redundancy to correct an error, the nec-
essary redundancy must be introduced by sending additional messages. One simple
scheme is to acknowledge every message received. The sending node does not discard
the original message contents until the acknowledge is received for the message. If a
message is corrupted, a retransmit request message is replied instead of an acknowledge
message. The sender must then send the message again and wait for the acknowledge.
The acknowledge and retransmit messages are short, potentially only two bits long.

If the message received does not contain sufficient redundancy to detect an error,
multiple copies of the message must be sent to increase the probability that the message
is error free. This strategy is by far the simplest. Each message is sent n times and

&

147

the contents of the n copies are compared. For n = 2, errors can be detected and for
n = 3, a majority vote can be taken to decide upon the correct contents of the message.
Many other schemes are possible by using encoded messages and multiple copies of the
message to calculate a best guess for the message contents.

The third type of error is when a message is lost, never to be heard from again.
This type of error is the most difficult since message passing is asynchronous in the
object model. Because messages can be completely absorbed into the message-passing
network, no node can claim ownership of the message until it exits the network. The
probability of losing a message can be reduced by sending each message n times. The
receiver expects to receive n copies of the message. After the first copy is received, the
message is processed and all subsequent copies are discarded.

By explicitly acknowledging each message sent, the destination node for a message
can request a second copy of a message. The sender can adopt a similar strategy for
initiating the sending of duplicate copies of a message it suspects to have been lost. If the
sending node does not receive an acknowledge or retransmit request for a message after a
reasonable period of time, the sender retransmits. The destination node can also initiate
a retransmit if a message arrives out of sequence. In either case, the destination node
must be prepared to receive two copies of the same message, one copy from the original
wayward message and the second from the retransmission. For messages that are truly
lost, the first message will never arrive, but the nodes cannot determine this condition,
unless all of the nodes involved in the computation are queried and the message-passing
network is quiescent.

Faults inside of the Backing Store can potentially cause faults inside of the Object
Manager and Object Engine. Assuming that a fault in the Backing Store can be detected,
the Object Manager must rebuild the computation prior to the fault and then continue
the computation. Rebuilding the computation state requires keeping duplicate copies of
messages and objects.

A property of the object model is that an object will use finite resources to process
a message. The maximum number of instructions executed, messages sent, and new
objects created in response to processing a message is known before the message is
processed. The node organization of Figure 5.6 exploits this property by providing the
Object Engine with its own private Object Store. For an object to process a message, the
contents of the message and object are copied into the Object Store. After the message
has been processed, the new messages and the modified object are copied out of the
Object Store and into the Backing Store.

If the Object Engine encounters a fault and the Object Manager can detect the failure,
no harm is done to the computation state, because the object and message are copied
into the Object Store prior to execution. If the Object Engine experiences a transient
fault, the message and object contents are reloaded into the Object Store, and the Object
Engine can attempt to process the message again. If the Object Engine is permanently
broken, all of the objects and messages local to the node have to be relocated. Each
object local to the node is relocated to another node. The location for each of the
relocated objects is stored in the Object Table so that future messages are forwarded to
the new destinations. To preserve message order, the messages local to the node must
be first forwarded to their new destinations followed by all messages that subsequently

148

arrive. If the indirection through the Object Table is circumvented, then message order
cannot be preserved.

An Object Engine that fails to execute a switch instruction, e.g., the Object Engine
is in an infinite loop, can be detected because the maximum number of instructions that
an object interprets to process a message is bounded. The Object Manager monitors the
number of instructions executed by the Object Engine and aborts the execution if the
maximum number is exceeded.

If the Backing Store encounters a fault, and the Object Manager can detect the
failure, and if the fault was transient or the node can continue in the presence of the
fault, the Backing Store must have its contents restored. For the Backing Store to be
rebuilt, the objects and messages of the computation must be systematically duplicated
for every message processed. After a message is processed by an object, a copy of each
message produced is sent to a different node. The contents of the modified object is
also sent to another node as a back-up copy. After acknowledge messages are received
confirming that the copy of the modified object has been saved and that the copies of
the new messages have also been saved, the original message and old object contents are
discarded. Two delete messages are sent to discard the non-local copies of the old object
and original message.

To rebuild the state of the Backing Store, messages are sent to the nodes containing
the back-up copies of the local objects. These messages request that the back-up copies
be sent to the originating node. After all of the the back-up copies have been received and
the message copies have been reordered, the computation can continue. If the Backing
Store is permanently broken and the Object Manager cannot operate in the presence
of the fault, the objects and messages have to be moved to other nodes. The nodes
containing the back-up copies of the local objects are sent special messages requesting
that the copies of the objects be changed into instances of the objects. The location of
each relocated object must be stored in the Object Table of the originating node. The
nodes that contain copies of the messages are sent messages requesting that the message
copies be changed into messages and sent to the new destinations. Because message order
is not preserved for this case, the Object Manager must support message reordering. A
caveat is that the Object Table as well as the tables used to keep track of the back-up
copies for the objects and messages must be kept in a highly reliable storage area that
is separate from the Backing Store.

If the Backing Store or Object Engine faults and the Object Manager does not detect
the error, or if the Object Manager faults, pandemonium may result. Faults in the Object
Manager can be catastrophic. An Object Manager running amok can destroy objects and
messages, forge reference values, and wantonly send messages. For environments where
these types of faults can occur, the duplication of the state of the messages and objects
is insufficient. The processing of the messages by the objects must also be duplicated.

The general idea is to duplicate the computation several times and compare the
results. For example, three concurrent computers start with the same object program if
two of the three computers agree on the result, then the disagreeing machine is considered
to be faulty. This principle can be applied to the node computers at the granularity of
objects and messages, providing there is a reliable agent that can compare the results of
processing a message and render a judgement. For example, assume that the comparison

149

is performed upon message delivery. The object program is performed in triplicate with
each object having two identical counterparts in the two other program copies. Reference
values are triple references so that each message is sent to three objects, one object per
program copy.

Messages are tagged with sequence number, sender ID, and also the number of the
program copy of the sender. Before a message is processed by an object, two of the three
copies must be received. If the contents of the two messages agree, then the message can
be processed and the third message is discarded when it arrives. If the two messages do
not agree, then the third message is used to decide which of the two earlier messages is
correct.

The treatment for new objects is identical, except that the comparison operation is
performed by the Object Manager when it attempts to install the message as a new
object. The overhead in redundancy for this scheme is that each message and object
1s replicated three times. The error correction capability covers the loss or corruption
of a single message per object and the loss or corruption of a single object. The error
correction capability can be expanded by using a more complex comparison operation so
that a best guess for a message or object can be made when no two of the three message
copies exactly agree.

Correcting faults on the fly when the object program has been triplicated and the
three program copies are running concurrently is less complicated than the case where
the object program has been triplicated but only one copy is running. Both cases require
comparable amounts of storage, and the latter is less demanding on computational re-
sources. The former, however, as is often the case with concurrent programs, has a less
complicated formulation.

5.7 Garbage Collection

Hardware or software support for garbage collection must be included in the object
model directed architecture. The primary difficulty with garbage collection is related
to the problem of detecting messages that have been lost in transmission. From the
algorithms of Section 3.6, the Object Manager on each node must be able to collectively
determine when the number of white or black messages used by a program has reached
zero. If the message system is capable of completely absorbing messages then, like lost
messages, the presence or absence of messages cannot be determined exclusively by the
nodes. For example, assume the system contains a single white message. After the
message is placed into the message system, the sending node reports that its local white
message count has reached zero. Meanwhile, the destination node also reports a zero
white count. Until the white message arrives at the destination node, all of the nodes
report that there are no white messages remaining.

The source of the problem is that the state of a computation is comprised of two parts:
the state of the objects and the set of undelivered messages. If undelivered messages can
be competely hidden inside the message system, then no guarantee can be made about
the global state of the computation.

A software solution to this problem is to layer the network interface software with a
request/acknowledge protocol. With this protocol, every message injected into the mes-

Network
Interface

Receive Queue

150

Send Queue

Input Queue

Object

Manager

Output Queue

Object

Engine

Object
Store

Storage Bus

Backing

Store

Figure 5.6: Fault Tolerant Node Organization

151

sage system is accounted for. The solution proposed is an adaptation of an algorithm for
termination detection by E.W. Dijkstra and C.S. Scholten [17]. The following discussion
applies equally to white and black messages. Messages are of two types: normal data
messages and acknowledge messages. Each node maintains a count of the number of
data messages sent but not yet acknowledged. Initially, all nodes have message counts
of zero and are waiting for their very first message.

Receipt of the first data message by a node is not acknowledged; rather, the sender
node number of the first message is kept in a special storage location. For each subse-
quent data message received by the node, the sender is immediately sent an acknowledge
message. For each data message sent by the node, the local message count is incremented.
For each acknowledge message received by the node, the message count is decremented.
When the message count reaches zero and the node has no additional messages of the
color to process, the acknowledge message is sent to the sender of the very first data
message.

Initially the nodes are idle, waiting for their very first message. The environment
external to the nodes initiates an object computation by sending a message to one of the
nodes. The node that receives the message from the environment stores the environment
ID as its very first sender. If the node does not send any messages, then an acknowledge
message is sent to the environment; otherwise, the message count is positive and other
nodes are sent their very first message. These nodes in turn save the sender ID, i.e., the
node number that received the message from the environment. Once the production of
messages is stopped, i.e., the computation terminates or the color of new messages and
new objects is changed, the message counts will strictly decrease. When a message count
for a node reaches zero, the node has accounted for all of the messages it has sent for the
old color, and all of the nodes that it has engaged also have message counts of zero for
the old color. The node can then send an acknowledge message to its very first sender.

Initially, the nodes and the environment must agree on the first color. After the
environment sends the first data message to a node, the environment can broadcast a
change of color message. When the acknowledge message is received by the environment,
all messages for the previous color have been accounted for. The environment then
broadcasts the reclamation message to each of the Object Managers to reclaim all of the
unreachable objects.

If the message system could be probed to check for the presence of black or white
messages, then the state of the computation relevant to garbage collection would no
longer be hidden by the message system. For ensemble machines where each node con-
tains a routing automaton to route messages through the node, the routing automaton
must be able to interpret header information for the messages. Message color can be
embedded in the message header.

A hardware solution that does not require the above software layering is to share
a global wire between the routing automata and node computers. The wire is used
to compute the “wired-AND” function. The wire is passively pulled high but actively
pulled low. Each node pulls the wire low if the number of messages present on the node
is greater than zero. Each routing automaton pulls the wire low while it is routing a
message through the node.

The garbage collection algorithm requires two global wires: one for white messages

152

and one for black messages. Both the nodes and routing automata can pull either wire
low. The white wire is pulled low by a node if the white count is greater than zero, and
the black wire is pulled low if the black count is greater than zero. For each routing
automaton, the white wire is pulled low if a white message is being routed, and the black
wire is pulled low if a black message is being routed. The environment senses the output
of the two wires. When one of the wires becomes high, the environment broadcasts the
reclamation message.

The use of the wired-AND function was originally proposed for use in ensemble
machines by Dick Lang [25] for termination detection of the marking phase of his mark
and sweep garbage collector.

153

Chapter 6

Epilogue

The chapters of this thesis have been organized to support the claim that fine grain
ensemble machines can be used as general purpose computing engines. The thesis starts
with an informal description of a new programming notation, Cantor, and a collection
of six complete programs that employ up to thousands of fine grain objects. A for-
mal semantics of Cantor is then developed to provide a rigorous basis for the object
programs. The semantics provide formal definitions for the internal behavior and inter-
action of objects. The internal behavior of an object is represented by a finite automaton.
The semantics of message-passing and object creation are made precise. The stepwise
interpretation of object programs using the formal semantics is presented. From the
interpretation, the pre-computing of object graphs via futures and garbage collection are
explained.

The dynamics of the concurrent programs are revealed under several simulated en-
vironments. The results of the experiments show remarkable resilience of the programs
under realistic constraints of finite resources. The positive results of the simulations,
combined with the formal semantics, form a basis for proposing several machine archi-
tectures for supporting object programs. The properties of the computational model are
used advantageously to reduce the complexity of the architectures for program execution,
fault tolerance, and garbage collection.

6.1 What Has Been Learned

The scientific challenge to using fine grain ensemble machines for general purpose
computing is in writing programs that are organized into small objects that use only
uncomplicated sequences of message-passing. Cantor represents one such approach. For
better or for worse, Cantor carefully draws a fine line between the responsibilities of the
program writer and the responsibilities of the compiler and runtime systemn. Placement
of objects to minimize contention among resources, i.e., load balancing and locality, are
the purview of the compiler and runtime system. The implication for the programmer
1s that once the program is written, the programming task is completed.

Cantor programs are chameleons that can be hosted on a myriad of machine organi-
zations. The compiler and runtime system cooperate to provide a good match between
the program and the target machine. The compiler generates machine code, gathers

154

ancillary information about object behavior, and also builds object graphs. Building
accurate object graphs is a hopeless task in the general case; however, speculation on
the shape of the object graph can be done efficiently and is harmless.

The experiments with program behavior under simulated conditions show that for
load balancing, random placement is an excellent strategy. Centralized schedulers that
support assignment of work loads to processors on demand, as would be used in a shared
memory computer, are unnecessary provided the number of concurrent objects is much
larger than the number of nodes, or is much smaller than the number of nodes. Opti-
mizing object placement for load balancing is unnecessary and could increase program
execution time because of the overhead of using an elaborate placement algorithm.

The results for locality are less decisive. The n-cube placement strategy of assigning
objects to nodes in order of increasing geometric distances performs best overall for
locality with minimal impact on load balancing. The compiler-assisted approach that
uses both random and n-cube placement achieves better load balancing than n-cube
placement, and achieves more locality than random placement.

The conclusion is that the object programs exhibit remarkable resilience to the limita-
tion of both processor and message resources. For load balancing, the simple assignment
strategy of random placement is efficient. The use of complex algorithms for load balanc-
ing is not justified and could lengthen program execution time because of the overhead
for placement. Whether the complex algorithms are useful depends upon the perfor-
mance of the message-passing networks. The importance of locality increases as the
message-passing resources become scarcer relative to the number of nodes, or if the cost
of using the message-passing resources is substantial relative to the compute time of the
objects.

Once a program is expressed as a collection of fine grain objects, the exploitation of
the concurrency is straightforward. The cognitive process of expressing a program as a
collection of fine grain objects is less than straightforward and, unfortunately, is often
obstructed by Cantor. The deficiencies of Cantor are addressable at three separate levels:
the programming model, the programming notation, and the programming system.

Starting with the programming model, the inability of objects to exercise discretion
in receiving messages often introduces complicated message flow. For example, the
interpretation of functional or procedural abstraction as a sequence of message-passing
actions is lacking. Viewing a procedure call as sending a message to a new object
is acceptable. However, waiting for the reply from the called object is complicated
because there is no assurance that the next message received by the object will be the
value replied from the called object. The calling object cannot focus upon receiving a
particular message unless the calling object buffers all the messages that are received out
of sequence.

A second solution is to place a queue object between the calling object and all of
the objects that can send messages to the calling object. The calling object sends and
receives messages exclusively from the queue, and the queue object is responsible for
buffering messages that are received in the wrong order. Both solutions introduce explicit
queueing that would otherwise have to be included in the runtime system. The present
runtime system only needs to introduce queueing in the case of messages arriving for an
object faster than the object can process the messages. The decision to keep the buffering

155

explicit was part of an experiment to determine whether a thorough understanding of the
message flow could always be applied to solve the buffering problem more elegantly and
efficiently than using a generalized buffering mechanism. For the six test programs, by
cleverness or good fortune, a better way was always found, but the toll on the programmer
was often severe.

As a programming notation, Cantor suffers mainly from deficiencies in control flow.
The first deficiency is that objects cannot be created running; rather, each object is
created waiting for a message. The problem is solved by immediately sending the new
object a message. The second deficiency is that messages are only received at the be-
ginning of a description. This problem is related to the first and often challenges the
program writer to find a method for expressing the description without sending redun-
dant messages. Interestingly, the lack of an iteration construct in the notation did not
create much difficulty except for the case of interleaving iteration with receiving other
messages.

Cantor as a programming system desperately needs a set of external objects for input
and output. The two external objects of console and chessboard are only a beginning.
The Gaussian elimination program slyly initialized the matrix as it built the matrix.
In real life, the matrix would be loaded with real numbers read in from a file. Files,
terminals, windows, etc. can be interpreted as custom objects. All of these objects do
not have to be sent to the main object when the program is started; rather, only one
special object reference need be included. This object is used as a gateway to introduce
all additional external object references by allowing the gateway object to send messages
to the internal objects.

6.2 Beyond Cantor

Since program writing is the key to fine grain concurrent computing, the next set
of experiments should center on writing large scale programs. Some of the program-
ming projects that have been proposed are a Cantor compiler, text editor, and a circuit
simulator fashioned after the program Concise [27]. The starting point for these pro-
gramming projects is Cantor and the rudimentary programming techniques developed in
this thesis. The mettle of Cantor can be tested from these program experiments and its
fate decided, namely whether Cantor should emerge as a programming system or should
become submerged as the runtime kernel of another programming system. The latter
approach is underway with the development of the Reactive Kernel, a small, layered
operating system for the second generation “cubes.”

A proof theory for reasoning formally about object programs and proving their cor-
rectness is paramount. The development of a proof theory is challenging because of
the non-determinism that is intrinsic to the message-passing actions. Proving proper-
ties about the internal behavior of objects borders on the trivial because of the finite
automata representation. The interesting dynamics of object programs occur in the in-
teraction between objects. This interaction is subject to the non-determinism of the
message-passing semantics.

The current strategy for reasoning about program correctness is to trace through all
possible sequences of message delivery and show that all cases are properly accounted

156

for. This approach is not systematic, and because the interaction complexity increases
combinatorically with the number of objects, it is prone to oversight.

The simulation environments of Chapter 4 proved to be helpful during program de-
velopment by profiling program execution. Future simulation tools of this type that can
be used on both sequential and concurrent computers will most likely be mandatory for
developing programs. The key observation is that the multi-dimensional dynamics of
concurrent programs require that runtime resources be evaluated quantitatively so that
unsuspected bottlenecks can be discovered. The application of a program profiler that
identifies all available concurrency will also uncover the bottlenecks that limit concur-
rency.

In addition to program development, there are many more system ideas that can be
tested on the object programs. This thesis experimented with simple placement strategies
and the effects of limiting message throughput. A myriad of other experiments are
ready to be conducted including experiments to measure the effects of different message
latencies and experiments to use adaptive routing algorithms for delivering messages.

For improving program performance, the frameworks for flow analysis presented in
Chapter 3 should prove useful for developing advanced compilers. The drawback to these
high performance compilers is the necessity of the closed world assumption. For interac-
tive programs where the input to the program is unknown, the compiler must assume the
worst about the input. From the property lattices, these worst case assumptions tend
to propagate through all of the program code. For applications where the closed world
assumption can be made, viz. the program input is available at compile time, then the
object definitions can be compiled down to finite state machines and the compiler can
partially execute the programs to build an accurate object graph. This type of compile
time analysis is undoubtedly costly. However, to spend one week compiling a program
to achieve a 20% decrease in runtime is worthwhile if the program is expected to run for
more than a month.

To improve program performance where locality of reference is important, more re-
search into placement strategies is justified. The first step is to devise fast and efficient
algorithms for embedding the static object graphs built by the compiler onto the target
ensembles. For the general case, this problem is N P-complete. Embeddings within 20%
of optimal, however, will probably be acceptable. Furthermore, the graphs that are being
embedded are not random graphs. The compiler generated graphs will have some regular
structure and the target ensemble will most likely have a completely regular structure.

Further experimentation with dynamic placement strategies should include using
both compile time and runtime information to place new objects, and possibly the re-
location of objects to improve locality. The overhead of the placement strategy should
always be analyzed because all objects are not created equal. The priority or importance
of an object is dependent upon program semantics; using a costly placement strategy for
a sequential object that receives a single message and then self-destructs is difficult to
Justify. The application of a quick placement algorithm followed by optimization of the
placement of objects that prove to be important is conjectured to be a basis for many
efficient strategies.

Finally, the node architectures of Chapter 5 require a great deal more thought. The
semantics of object programs requires both message processing and message manage-

157

ment. The partition between processing and management is blurred in the semantics,
but must be carefully defined when the semantics are cast into hardware. The program
semantics provide only a vague definition for the object manager, namely that it must
manage the flow of messages between the message-passing network and the object en-
gine. Speed matching between the object engines and message-passing networks requires
further research into the organization of the object managers.

If the large programming projects are successful, the need for fault tolerant node
architectures will increase. Fortunately, the semantics of object programs simplify the
requirements to support fault tolerance. The fault tolerant architecture proposed in
Chapter 5 exploited the advantages of the program semantics. However, the proposal is
far from a complete solution.

In conclusion, this thesis has investigated fine grain concurrent computing as the
basis for a model of computation that meshes well with the future of ensemble machines.
The experimental results show that non-trivial programs can be written as collections of
small objects and that once the programs are written, exploiting the concurrency is not
difficult. Exotic hardware to manage the concurrency is therefore not justified. Further
research into fine grain concurrent computing should concentrate on the methods for
expressing programs. The presence of application programs will motivate and be useful
for evaluating the other research topics related to fine grain ensemble machines.

158

Bibliography

[1] H. Abelson and G. J. Sussuman, Structure and Interpretation of Com.-
puter Programs, The MIT Press, Cambridge, Mass., 1985.

[2] G. A. Agha, Actors: A Model of Concurrent Computation in Distributed
Systems, MIT Artificial Intelligence Laboratory, Technical Report 844,
June 1985.

[3] A. V. Aho, J. E. Hopcroft, & J. D. Ullman, The Design and Analysis of
Computer Algorithms, Addison-Wesley, Mass., 1974.

[4] A. V. Aho & J. D. Ullman, Principles of Compiler Design, Addison-
Wesley, Mass., 1977.

(5] W.C. Athas & C. L. Seitz, The Cantor User Report, Version 2.0, Dept. of
Computer Science, California Institute of Technology, Technical Report
5232, Jan. 1987.

[6] H. G. Baker, Actor Systems for Real-Time Computation, MIT Artificial
Intelligence Laboratory, Technical Report 197, March 1978.

[7] H. G. Baker, Jr., List Processing in Real Time on a Serial Computer,
Communications of the ACM, Vol. 21, No. 4, pp. 280-293, Apr. 1978.

(8] E. R. Barnes, An Algorithm for Partitioning the Nodes of a Graph,
SIAM Journal of Alg. Disc. Meth., Vol. 3, No. 4, pp. 541-550, Dec. 1982,

[9] C. Berge, The Theory of Graphs and its Applications, John Wiley &
Sons, New York, 1962.

(10] W. D. Clinger, Foundations of Actor Semantics, MIT Artificial Intelli-
gence Laboratory, Technical Report 633, May 1981.

(11] W. J. Dally & C. L. Seitz, The Balanced Cube: A Concurrent Data
Structure, Dept. of Computer Science, California Institute of Technol-
ogy, Technical Report 5174, May 1985.

[12] W. J. Dally & C. L. Seitz, The Torus Routing Chip, Journal of Dis-
tributed Computing, Vol. 1, No. 4, 19886.

[13]
[14]
[15]

[16]

[17]

[18]

[19]

[24]

[25]

[26]

[27]

159

A. J .T. Davie and R. Morrison, Recursive Descent Compiling, Ellis
Horwood Limited, Chichester, 1982.

P. J. Denning, Virtual Memory, Computing Surveys, Vol. 2, No. 3, PP
153-189, Sept. 1970.

E. W. Dijkstra, A Discipline of Programming, Prentice-Hall Inc., Engle-
wood Cliffs, N.J., 1976.

E. W. Dijkstra, L. Lamport, A. J. Martin, C. S. Scholten, & E. F. M.
Steffens, On-The-Fly Garbage Collection: An Exercise in Cooperation,
Communications of the ACM, Vol. 21, No. 11, pp. 967-975, Nov. 1978.

E. W. Dijkstra and C. S. Scholten, Termination Detection for Diffus-
ing Computations, Philips Research Laboratories, EWD687, Eindhoven,
The Netherlands, Oct. 1978.

C. C. Elgot and A. Robinson, Random Access Stored Program Machines,
Journal of the ACM, Vol. 11, No. 4, pp. 365-399, 1964.

R. K. Guy, How to Factor a Number, Proceedings of the Fifth Manitoba
Conference on Numerical Mathematics, Utilitas Mathematics Publishing
Inc., Winnipeg, Oct. 1975.

Intel Scientific Computers, iPSC User’s Guide, Order No. 175455-001,
15201 N.W. Greenbrier Parkway, Beaverton, Oregon, Aug. 1985.

K. Jensen and N. Wirth, Pascal User Manual and Report, Springer-
Verlag, New York, 1974.

R. M. Karp and R. E. Miller, Parallel Program Schemata, Journal of
Computer System System Sciences, Vol. 3, No. 2, pp. 143-147, 1965.

B. W. Kernighan & S. Lin, An Efficient Heuristic Procedure for Parti-

tioning Graphs, The Bell System Technical Journal, February, 1970, pp.
291-307.

D. E. Knuth, The Art of Computer Programming: Fundamental Algo-
rithms, Volume 1, Addison-Wesley, Mass., 1969.

C. R. Lang, Jr. The Extension of Object-Oriented Languages to a Ho-
mogeneous, Concurrent Architecture, Dept. of Computer Science, Cali-
fornia Institute of Technology, Technical Report 5014, May 1982.

B. R. Locanthi, The Homogeneous Machine, Dept. of Computer Science,
California Institute of Technology, Technical Report 3759, Jan. 1980.

S. Mattison, Concise, a Concurrent Circuit Simulator, Dept. of Applied
Electronics, University of Lund, Aug. 1986.

(28]

[29]

[38]

[39]

[41]

160

S. S. Muchnick & N. D. Jones, Program Flow Analysis: Theory and
Applications, Prentice-Hall, N. J. 1981.

S. S. Muchnick & N. D. Jones, A Flexible Approach to Interprocedural
Data Flow Analysis and Programs with Recursive Data Structures, 9th

Annual Symposium on the Principles of Programming Languages, pp.
66-74, Jan. 1982.

R. H. Halstead., Jr. Multilisp: A Language for Concurrent Symbolic
Computation, MIT Laboratory for Computer Science, Cambridge, Mass.,
July 1985.

R.J. McEliece, The Theory of Information and Coding, Addison-Wesley,
Mass. 1977.

E. L. Organick, Computer System Organization: The B5700/6700, The
Academic Press, San Francisco, 1973.

C. L. Seitz, Concurrent VLSI Architectures, IEEE Transactions on Com-
puters, Vol. C-33, No. 12, pp. 1247 1265, Dec. 1985.

C. L. Seitz, The Cosmic Cube, Communications of the ACM, Vol. 28,
No. 1, pp. 22-33, Jan. 1985.

C. L. Seitz, Experiments with VLSI Ensemble Machines, Dept. of Com-
puter Science, California Institute of Technology, Technical Report 5102,
Oct. 1983.

C. 8. Steele, Placement of Communicating Processes on Multiprocessor
Networks, Dept. of Computer Science, California Institute of Technology,
Technical Report 5184, Apr. 1985.

W-K. Su, R. Faucette and C. L. Seitz, The C Programmer’s Guide to
the Cosmic Cube, Dept. of Computer Science, California Institute of
Technology, Technical Report 5203, Sept. 1985.

D. G. Theriault, Issues in the Design and Implementation of Act2, MIT
Artificial Intelligence Laboratory, Technical Report 728, June 1983.

UNIX Programmer’s Manual, Computer Science Division, Dept. of
Electrical Engineering and Computer Sceience, University of California,
Berkeley, Calif. , Aug. 1983.

W. W. Ware, The Ultimate Computer, IEEE Spectrum, pp. 84-91, Mar.
1972.

N. Wirth & H. Weber, EULER: A Generalization of ALGOL, and its
Formal Definition: Part I, Communications of the ACM, Vol. 9, No. 1,
pp. 13-25, Jan. 1966.

