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ABSTRACT 

The low-thrust guidance problem is defined as the minimum 

terminal variance (MTV) control of a space vehicl e subjected to random 

perturbations of its trajectory . To accomplish this control task, 

only boundedfurust level and thrust angle deviations are allowed, and 

these must be calculated based sol e ly on the information gained from 

noisy , partial observations of the state. In order to establish the 

validity of various approximations, the problem is first investigated 

under the idealized conditions of perfect state information and negli

gible dynamic errors . To check each approximate model , an algorithm 

is devel oped to facilitate the computation of the open loop trajec

tories for the nonlinear bang-bang system. Using the results of this 

phase in conjunction with the Ornstein-Uhlenbeck process as a model for 

the random inputs to the system , the MTV guidance problem is reformu

lated asastochastic , bang-bang, optimal control problem. Since a 

complete analytic solution seems to be unattainable, asymptotic 

solutions are developed by numerical methods. However, it is shown 

analytically that a Kalman filter in cascade with an appropriate non

linear MTV contr oller is an optimal configuration . The resulting 

system is simulated using the Monte Carlo technique and is compared 

to other guidance schemes of current interest. 
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I. INTRODUCTION AND PROBL~1 FORMULATION 

1.1 General Discussion 

In response to a relentless curiosity, man has accepted the chal-

lenge of space exploration. The space journeys already ventured seem 

almost fictional in character--yet the future holds endless possibili-

ties. Many of the futur e challenges will become feasible conquests 

through the use of advanced propulsion systems. For this reason, the 

application of ion engines to space missions is currently under intense 

theoretical and experimental evaluation. 

The low-thrust ion engine will probably find its most important 

application in missions to the outer planets where the retarding effect 

of the sun's gravity will require a large space vehicle energy. Up to 

the present, all the energy has been provided by the launch vehicle. 

For high energy missions, such as those to the outer planets, it seems 

desirablem use high impulse low-thrust engines to augment the energy 

• 
supplied by the boost vehicle. These low-thrust devices would operate 

during the long flight times bet1·reen launch and encounter, supplying a 

higher specific impulse than that available from present chemical 

boosters. 

The principal components of an ion engine are illustrated in 

Figure l. Basically, the generation of thrust involves two distinct 

phases. During the first phase the propellant is fed into the ioniza-

tion chamber and converted into charged particles, called ions. Then, 

in the second phase, the p a rticles are accelerated by the electric 

field and expelled through openings in the grid structure. The power 

./ 
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required to produce and accelerate the ions is supplied externally, and 

is derived perhaps from solar cells, or possibly from a nuclear reac -

tor. 

Ion engines have the ability to accelerate propellant to 

extremely high exhaust velocities. In contras t the exhaust velocities 

achieved by chemical rockets are limited by the inherent properties of 

the chemical reaction. The significance of this observation can best 

be illustrated by considering the equation r e lating the change in space 

vehicle velocity v(t) - v(t ) 
0 

to the engine exhaust velocity 

free · space): 

M(t ) 
v(t) - v(t

0
) = c tn M(t~ 

c (in 

(1.1) 

where M(t) is the instantaneous space vehicle mass. Thus, for a fixed 

expenditure of fuel, the change in v is directly proportional to the 

exhaust velocity c , which explains the dramatic gain in the payload 

fraction* attained using i on-propulsion over that using chemical thrust-

ing, (1),(38). 

Low thrust level is the primary disadvantage of ion engines. 

This characteristic results from the povrer limitation of the thruster 

systems. Assuming, hmrever, that the propulsion is applied over the 

long flight time vrhen a conventional vehicle vrould be coasting, then a 

considerable velocity increment can be obtained. Hence ion propulsion 

is well suited to long duration space voyages. 

* The r atio of useful payload vreight t o inj ected weight. 



-4-

l. 2 The Lol·r-Thrust Guidance Problem 

Prior to the initiation of an interplanetary flight, a nominal 

or desired trajectory is determi n ed , and is specified in terms of the 

injection conditions and the nominal thrust progrrun. Ideally, the 

nominal thrust program is optimized so that maximwn payload is deli v

ered to the vicinity of the target planet. The optimization is 

subject to constraints, and the final orbit selection will compromise 

many conflicting factors such as launch energy required, arrival date, 

telemetering and tracking considerations, etc. The design of nominal, 

or open loop trajectories has received c onsiderable attention in the 

literature ( 2-10). For our purposes here, it is i·rell to assume that 

this trajectory has been decided. 

Because of launch energy dispersion and r andom effects in flight, 

the spacecraft will inevitably be perturbed from its standard path. 

Ideal behavior is further deteriorated vhen the state of the vehicle 

becomes uncertain. As nearly as possible, the guidance system should 

eradicate the effect of these disturbances and insure that the vehicle 

approaches the destination in the intended fashion. The guidance 

problem for a low-thrust vehicle has been approached in a variety of 

ioTays ( 11-24) and discussion of some relevant literature is the topic 

of the next section. 

1. 3 Discussion of the Literatur e on Lovr-Thrust Guidance 

1.3.1. Second variation technique. One guidance technique that 

has attracted much attention recently is the method of neighboring 

optimal traj ectories , otherwise knovrn as the second variation tech

nique (ll-13). The application of this scheme y i elds a linear feedback 
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equalizer vhose control outputs guide the vehicle along a lternative 

n omina l trajectories . Within a certain neighborhood of the standard 

orbit , the method is akin to continuous l y recomputing the reference 

path . Kelley (14) and Breakwell (15) have applied the second variation 

technique to low-thrust guidance problems. 

Several authors have inves t igated potential modifications of the 

second variation approach . Kell ey (16) has suggested the fol l m-ring 

improvements: 

(i) higher order terms in the control law approximation 

(ii) the method of transverse state comparison in comput i ng 

state deviations. 

Evidently the second refinement provides a worth,·rhi le increase in 

guidance accuracy. Kelley and Denham (17) have considered the simpli

fication of making p o l ynomi a l approximations to both t he nominal 

trajectory and the feedback gain functions. Since the "best" poly-

nomial coefficients vill vary as the initial state changes , uniqueness 

is retained by optimizing over the stat istics of the initial conditions. 

1.3. 2 . A-Matrix technique . Similar to second variation sys-

terns , the A- matrix control scheme (18) yi e lds a l inear feedback control 

lav. In t he course of p r oviding trajectory corrections , the A-matrix 

controller minimizes the mean square deviati ons of the control varia-

bles f r om ~heir nominal values . The method has been applied by 

Friedlander (19) who extends the method to include the statistical 

aspects of low-thrust guidance . In a lucid presentation, Friedlander 

reveals some aspects of this controller which will be of interest 

presently. 
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1.3.3. Minimum effort control. Another guidance scheme is the 

minimum effort control method (20), an approach which selects the 

optimal linear controller that minimizes ihe expected value of the 

average absolute control deviation. It is assumed that the variance 

of one terminal component is specified, and that control mechanization 

errors are negligible. When the method is used to control several 

terminal components (21), there is apparently some difficulty in com

puting the variable feedback gains. Minimum effort techniques have 

been applied by Breakwell, Tung, and Smith (22). 

1.3.4. Other methods. Tung (23) has applied linear control 

theory to interplanetary guidance and compared his results with minimum 

effort control. Jordan (24) has investigated low-thrust interplanetary 

guidance using the stochastic calculus of variations, a technique 

formalized by Kushner (25-28). Using this method, he computes the 

stochastic open loop control function, and shows that this differs, in 

general, from the deterministic open loop function. This phenomenon 

is a result of the biasing effects of noise when it forces a nonlinear, 

dynamic system. Meditch (29) h as considered the problem of nulling the 

state deviations while expending a minimum amount of absolut e thrust 

control. The controller for this problem turns out to be bang-bang. 

1.4 Critique of the Existing Methods 

1.4.1. Second variation. When a space vehicle deviates from the 

nominal trajectory, any guidance scheme which corrects the path will 

produce a change in the nominal pe rformance i ndex . For the determinis 

tic case, the first order change will be independent of the guidance 

/ 
/ 
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law by virtue of the Euler equations. The objective of the second 

variation technique is to minimize the second order effect. It is an 

effective approach when the system is truly deterministic. Care must 

be exercised, though, when applying this method to a stochastic system. 

To be specific, Breakwell and Rauch (15) have realized that noisy 

system actuators cause random first order effects* on the performance 

index, and this presumably explains ·the exclusion of dynamic noise in 

their model. Indeed, the second variation controller would seem to 

offer little advantage in minimizing deterministic second order changes 

when there will be random first order changes. Because of process noise 

in the form of thrust level and attitude variations, a low-thrust 

vehicle would encounter perturbations resulting from dynamic noise. 

A second aspect of the neighboring optimal guidance technique 

deserves consideration; namely, the fact that the control variables are 

the same in both the nominal trajectory and guidance sub-systems. To 

see the significance of this observation, consider a low-thrust vehicle 

on a minimum time, interplanetary trajectory. The properties of this 

trajectory dictate the use of maximum thrust throughout the entire orbit 

transfer maneuver . Hence the neighboring optimal guidance system 

effectively has no engine throttling capability, and the velocity errors 

which ensue aremt immediately correctable. For this reason, deviations 

will continue to build up until the final portion of the mission. Then, 

in a summary effort to correct the accumulated errors, the engine cutoff 

* See Appe ndix D. 

/ 
.~·. 
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time will be used as a control input, and varied from its nominal value. 

The disadvantage of this strategy is indicated by comparison with 

a ballistic space flight, and the familiar midcourse guidance maneuver. 

Generally speaking, the impulsive velocity corrections are applied as 

early in the mission as practical. Doing this gives the injection 

errors a minimum amount of time to propagate and also permits a larger 

influence to be exercised on the spacecraft trajectory. When applied 

to a low-thrust flight, the above philosophy suggests that both thrust 

level and thrust angle control be made available to a continuous time 

guidance system. This capability is necessitated not only by the injec

tion errors, but also by the continuous in-flight anomalies associated 

with low-thrust missions. As explained above, this auxiliary thrust 

control will not be incorporated by the neighboring optimal guidance 

system and a logical rapport between guidance requirements and nominal 

trajectory design is not achieved using this method. The resolution of 

this discrepancy is one objective of this study. 

1.4.2. A-Matrix control. Friedlander (19) has pointed out that 

A-matrix control will provide maximum terminal accuracy in spite of 

persistent disturbances and imperfectly known state. The truth of this 

stateme nt is associated with the infinite terminal gain that a A-matrix 

system will often require. This singularity produces a major control 

effort toward the end of a mission, and will almost always involve 

large control deviations. Such a characteristic is not peculiar to 

A-mat rix control, but crops up, in general, when the t erminal state and 

terminal time are fixed, and the control force is l eft unconstrained. 

/ 
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This difficulty c an be side-stepped by employing various artifi ces. For 

instance , Tung (23) proposes to specify the desired terminal variances 

and obtain the optimal linear regulator which satisfies these require

ments. Proper choice of the terminal conditions will keep the gains 

finite, but there are still no restrictions on the control magnitude 

required at any particular time. 

l. 4. 3. Minimum effort . The main dravbacks of this technique are 

as follows: 

(i) the exclusion of mechanization errors 

(ii) the restriction to linea r controllers 

(i ii) the difficulty of controlling more than one terminal 

component 

( i v) the absence of magnitude constraints on the control forces . 

One furthe r criticism could be made concerning the performance 

index; namely , the expected integral of the absolute control deviation 

does not seem to be simply related to fuel consumpti on , as claimed, 

b ecause negative thrust devi ations correspond to a fuel saving. There

fore, they should retain the ir negative value i n a fuel consumption 

performance index. 

1.4.4. Discussion . In general, many of the proposed schemes 

seem to tailor a performance index t o fit the problem. Often there is 

no clear justification for vrhat is defined to be the "performance." 

For exampl e, the idea of associ ating a least squares performance index 

with a guidance system does not seem to have any specific physical or 

practical motivation, except that it yields a linear control law. Such 

a goal is of questionable merit , though , vrhen the resulting implement a -
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tion requirements are compared 1-Ti th those of a bang- bang type control-

ler . To be sure, there are practical problems w·here a qua dratic 

performance index is extremely meaningful; see , for instance , Reference 

( 62 ). 

Another consideration l·rhich has been somevhat disregarded in the 

conception of guidance schemes is the boundedness o f t he control vari-

abl es . In practi ce the engi ne 1vould certai nly have a limited thro t -

tling capabi l i ty , and thi s f act should be reflected in the .prob l em 

formulation . If the control variables are bounded , then precise 

s atisfaction of t he termi n a l boundary conditions can n o l onger b e 

guaranteed . I n this situation the degree of terminal a ccuracy 1vould 

become a meaningful criterion by vhich t o judge the application of con-

trol efforts . Such a design vievrpoint is consistent vri th the primary 

motivation fo r employing a space vehicle guidance system. Therefore 

at t ention vill be focused on the synthesis of the minimwn t erminal 

variance (MTV) controller subject to control variable l imitations . 

l. 5 Formulation of the l·l!inimwn Terminal Variance Control Problem 

The formulation of the MTV control problem is made in three 

dimensions , where the coordinate frames of interest are illustrat ed i n 

Figure 2 . The ~ (meaning [;i]) coordinate frame is assumed to have 

1\ 
its origi n fixed at the sun . An auxiliary coordinate frame z is body 

fixed and used to define the thrust vector angles a and Y Us i ng 

Nelolton ' s law , the differential equations describing body motion i n t he 

z coordinate frame can be •rri tten as 
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SUN 

Fi gure 2. Coordinate frame definitions 
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z = v ' 

(l. 2) 

where 

(i) v is the three-dimensional velocity vector 

(ii) £ is the three-dimensional vector function representing 

gravitational accelerations and other deterministi c 

accelerations (e.g., from solar pressure) 

(iii) ~2 and ~3 are stochastic processes accounting for 

attitude control vari at ions , and thrust vector pointing 

inaccuracies 

(iv) ~l is the stochastic process a ccounting for random thrust 

accelerati on variations 

( v) .t is the stochastic process accounting for othe r r a ndom 

a cce lera tions (e. g . ' . from micrometeorites) 

(vi) Rl and R2 a re rotation matrices defined as fol l ows: 

[ cos ( 
0

) 

sin ( • ) 0 

] R ( • ) 
/). 

-sin~ · ) cos ( • ) 0 
1 

0 1 

[ cos ( 
0

) 
0 sin~ · ) ] 

R ( • ) 
/). 

-sin~ · ) 
1 

2 
0 cos( • ) (l. 3) 

(vii) l ~ [g] 

Note that the time var iation of the thrus t acce leration includes the 

known vari ati ons of both the vehicle mass and the power availability. 
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The state of the system 

[-
-vz ] i s observed via nonlinear, noisy 

measurements which could o riginate either from earth or from the space-

craft itself . Some candidates for these measurement s might be 

(i) earth-b ase d doppler and r ange measurements 

(ii) on-board optical s i ghtings 

(iii) on-board gyro and accelerometer measurements. 

I n general, it is assumed that m observations L are avai lable 

and can be r epresented in the f orm 

= Q.(~,;:_,t) + n(t) (1. 4) 

where h is the m-dimensional observati on vector function and n is 

the m-dimensional measurement error. 

The MTV controller seeks to minimize the following performance 

functional 

3 
E[ L 

i=l 

2 2 k.(v.(t )-v. (t )) + t .(z .(t )-z. (t )) ] 
1 1 e 1n e 1 1 e 1n e 

where k. and £. . are weighting factors, E is the statist i c a l 
l l 

(1. 5) 

expectati on over the ~l' ~2 , ~3 ,! and ~ stochastic processes, and 

t is the nominal time of planet encounter. If pos i tion deviati ons 
e 

are t h e only concern, it is a simple matter to set the ki equa l to 

zero . The subscript n will always represent the nomi nal value of 

the indicated quantity. The control variables f or this probl em are 

t aken to be the quanti ties a , Y and u , which are instantaneously 

constrained in accordance with their physical limitations . 
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In the course of this investigation, a bang-b ang controller will 

often appear as the optimal solution . This type of controller requires 

only discrete levels of control action and does not seek a continuous 

range of values. Hence the bounded control problem is dealt with in a 

very natural way. Indeed, the optimality of bang-bang control systems 

for certain performance indices is one of the most interesting and 

valuable consequences of optimal control theory . The problem was ori-

ginally studied by Bellman, Gamkrelidze, Krasovskii and LaSalle. 

l. 6 Summary of Principal Results 

1.6.1 . Results of Chapter II. The low-thrust guidance problem is 

define d as the minimum terminal variance contro l of a space vehicle 

subjected to random perturbations of its trajectory. In the general 

formulation, only noisy, nonlinear obser vations of t h e state vector a re 

available. To accomplish this control task, only bounded thrust leve l 

and thrust angle deviations are allowed. 

The first phase of the study is the consideration of the deter-

ministic guidance problem ( 40),(41) . It is assumed in this part that 

p erfect knowledge of the state (y = ~l) is attainable, and also that 

no dynamic errors are incurred ( i;
1 

= t;,
2 

= t;,
3 

:: _t = 0). The analysis of 

the deterministic system is performed primarily to give insight into 

the accuracy of various approximations. 

The deterministic problem admits a multitude of zero terminal 

error solutions. As a r esult, the requirement for a uniquely defined 

controller implies that additional performance i ndices are needed. 

/ .. /· 
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Using the minimum fuel and minimum time criteria for this purpose, a 

hierarchy of approximate control laws are derived, and substantial 

credence is given to their validity when they are checked against an 

exact open loop solution. An algorithm is developed to facilitate the 

computation of the open loop trajectories for the nonlinear, bang-bang 

system. 

1.6.2. Results of Chapter III. The stochastic problem with 

perfect state information is the first topic considered in Chapter III. 

The Ornstein-Uhlenbeck (30) process is used to model the stochastic 

input s to the system. Calling on the approximations which were success-

ful in the deterministic part , it is possibl e to reformulate the 

minimum terminal variance (MTV) problem as a stochastic bang-bang 

problem. Asymptotic solutions are developed by numerical methods 

since a complete analytic solution seems to be unattainable. (However 

analytical methods are applied to the case when the stochasti c dis-

turbances are white noise, and partial results are obtained<.) The MTV 

controller is then analyzed with regard to the following items: 

(i) a comparison to the stochastic minimum time controller , 

which is obtained by using the approximation-in-policy

space algorithm; a comparison to the stochastic bang-bang 

controller obtained by \vonham' s (55) approach; and a 

c ompari son to the analytic solution of the stea dy state 

Fokker-Planck equation 

(ii) a discussion of the fuel consumption and implementation 

requirements 

( iii) a comparison behreen the ~lTV controller and linear control 

designs reported in the literature--specifically, A.-matrix 

/ 
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and second variation systems , including a Monte Carlo 

simulation of the MTV and A - matrix systems . 

The comparison in i te rn (iii) indicates both the feasibility of the HTV 

controller and the validity of the approximations used in its derivation. 

The stochastic problem with state estimat ion is the t opic of t he 

next section. It is shovrn that if the noisy, nonlinear observations can 

be approximated by noisy, linear observat i ons , then the HTV guidance 

system consists of a Kalman (31) estimator in cascade with a bang-bang 

controller. In general, this bang-bang controller can be obtained by 

the same me thod used in deriving the known state solution. It is pointed 

out, however, that the "separat ion" · p roperty of linear, stochastic 

systems is not applicable to this controller since the switching law 

will depend on the type and accuracy of the observations. The separation 

property refe rs to the interest ing consequence that if an optimal 

stochastic sys tem is completely linear , then it consists o f a Kalman 

e stimator driving t he deterministic optimal controller. 

The final consideratio n of this chapter is the conceptual treat

ment of the full nonlinear probl em. Seve ral difficulties in obtaining 

the exact solution are disclose d, but it is made clear that the bang

bang property is stil l r etained. 

1.6. 3 . Conclusion . The study is concl uded with summary remarks 

and an examin ation of the p otential extensions of the methods into other 

areas of application . 

/ 
/ 
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II. THE DETERMINISTIC PROBLEM 

2.1 Introduction 

This chapter is concerned with the deterministic phase of the low

thrust guidance problem. Study of this aspect is motivated largely by 

questions concerning the validity of certain approximations and assump

tions, and is earmarked for obtaining a solution which provides a 

reasonable compromise between mathematical tractability and solution 

accuracy. Later, in connection with the stochastic problem, the results 

of this chapter will be of fundamental importance. 

The deterministic formulation is constructed upon certain ideali

zations. Namely, it is assumed that perfect knowledge of the state is 

attainable, and also that dynamic errors are negligible. Therefore, 

Equation 1.2 is modified by setting ~l = ~2 = ~3 = ~ = 0 

z = v 

(2.1) 

When these assumptions are valid, guidance is nece ssary only to correct 

injection errors which, in spite of control variable limitations, can 

be totally nullified by employing any one of a l a rge number of diffe rent 

controllers. A unique controller is then obtained only by defining a 

performance index which is auxiliary to the MTV criterion. To meet this 

need, the minimum fuel and minimum time criteria are chosen as meaning

ful, although somewhat arbitrary, performance indices . 

/ 
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2 .2 Linearization and Transformation of Plant Equations: The First 

Approximation 

2 . 2 . 1 . Mathematical deve lopment . If the actual spacecraft 

traj ectory remains suffici e ntly clos e to the nominal path; the n linear 

pertur bation of the plant equ ations prov ides a goo d approximation to 

the dynamical behavior of the state deviat i ons . Hm-rever, this as sump-

tion does n ot i mply tha t the uncontrolled s t ate errors are tolerable 

from the standpoint of guidance requirements . Linear perturbation o f 

the dynamic equations is equivalent to making a f irs t order Taylor 

series expansion on both sides , and cancelling the zeroth o rder terms . 

The expansions are centered on the nominal traj ectory and thus yield a 

syst em o f time varyi ng linear differential equations : 

6z = ov 

R
1
- l ( f3 ( z ) ) u 

-n n u 
n 

1 oa 

(2. 2) 

where 

(i) 6 i n dicates a small deviation from the nominal value 

(ii) T R1 (f3(~ )) R2 ( E(~) ) R1 (a n) R2 (Yn ) 

(i ii ) the s ubscript z 
-n 

indicates the J acobi an mat r ix of the 

subscripted vector : e . g .• [~]. 
-n l.j 

= 
agi 

; i ,j E {1, 2 , 3 } az . 
J 



(iv) 

[

-sin a 

= -cos
0

a: 

=[-sin 
0 

Yn 

-cos Y 
n 
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cos a 
n 

-sin a 
n 

0 

0 

0 

0 

cos 
0 

Yyn] 

-sin 
n 

At this point the following transformation is introduced: 

X = T oz 

Differentiating these equations twice with respect to time yields 

where 

( i) 0 is 

!!. 
(ii) T .. 

~J 

the null 

dT .. 
-..2.J... 

dt 

matrix 

T .. 
~J 

of order three 
2 

!!. d Tij 

dt
2 

Defining the six dimensional state vector 

X= [ ~ l 
and making use of Equation 2. 2, Equation 2.4 then b ecomes 

/ 
/ 

(2.3) 

(2.4) 
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where 

( i) D -

( ii) I is the identity matrix of order three 

(iii) 

Noting that 

which implies 

control variables: u
1 

~ ou; u ~ u oa· u = u oY 
2 n ' 3 n 

X 

then E~uation 2.5 becomes 

(2.5) 

(2.6) 

(2.7) 

E~uation 2.7 displays the state dynamics in a form convenient for 

studying particular approximations. In connection with this study, a 

little foresight into the fo rm of t he control solution will be helpful . 

Since the plant is linear , a minimum time or, in this case, a minimum 
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fuel criterion will yield a bang- bang control law. Unfortunately it 

is impossible to determine analytic , cl osed- loop, bang- bang cont r ol-

lers for systems of fourth order or higher (32). No hope can be held, 

therefore , for obtaining the closed form soluti on of the sixth order 

bang-bang probl em under consideration here. A sol ution 1-rill only be 

possible if somehow the dimension of the state of the system can be 

reduced . 

Fortunately a form of state reduction is possible if the follow-

ing approximations are adopted: (i) The first approximation concerns 

the elements of the matrix D which are proportional to changes in the 

gravity vector ~ and the angles S and £ over a region in space 

near the nominal trajectory . Evaluating these elements for the case o f 

heliocentric (~=sun's gravity only), planar (z
3 

= 0) flight yields: 

2 GM + u z 3GM z
1 -~s __ :=.n....;l::o:n:=-,-,- + s n 

( 2 2 )3/2 ( 2 + 2 )5/2 
zln + z2n zln z2n 

3GM z2 z1 s n n 

( 2 + 2 )5 /2 
2
ln 

2
2n 

2 2 GM (2z
2 

- z
1 

) 
s n n 

( 2 + 2 ) 5/2 
2 ln 2 2n 

3GM z
1 

z2 s n n 

( 2 + 2 )5/2 
zln z2n 

u (2z21 + z22 ) 
+ n n n 

( 2 + 2 )3/2 2
ln 

2
2n 

( 2 2 )3/2 
2 ln + 2 2n 

0 
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where G is the constant of gravitation and M 
s 

is the mass of the 

sun. For typical injection conditions, these ~uantities are of the 

-12 -2 order of 10 seconds , and will therefore be neglected . This approxi-

mation becomes less accurate as the sun-vehicle distance decreases . 

(ii) Secondly, it is observed that the matrices 
.. 

and T are related 

to the rotation rates of both the vehicle about the sun and also t he 

thrust vector about the sun-vehicle line. Generally these rates are 

. ·-1 
very slow. Typical values for the elements of TT and 

-14 -2 
are of the order of 10 seconds and can therefore be neglected with 

small error. The validity of this approximation is compromised when 

the thrust vector goes through rapidly t~ning[~~tluations. (iii) Finally 

it will be assumed that the ~uantit[~~ls 2TT-l ~~ are ne gl i gible with 

respect to the control variables :~ Repres e ntative values for 

-1 -5 2 the components of these vectors would be 10 and 10 meters/second , 

respectively. This last assumption is expected to yield the largest 

over-all error. 

Employing these approximations greatly simplifies the original 

problem and results in the following system of e~uations : 

:ic6 = u . 3 (2.8) 

These e~uations represent three, de coup led, pure ly inertial systems 

which can b e discussed independently . Optimal control of an inert ial 

plant h as b een s tudied for a n umber of p erf ormance indi ces ( 34),( 35 ). 

Minimum fue l i s the first criterion of interest h ere . 
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2.2 . 2 . Minimum fuel criterion. Consider the integral of the 

nominal thrust + control thrust, un + u
1

, over the time interval [O,t]: 

t 

= I u dt 

0 

t 

= I 
0 

M(O) 
~c dt = c in M(t) (2.9) 

where M is the space vehicle mass , and c is the constant exhaust 

velocity. Fuel consumpti on is now seen to be directly related to the 

integral of u . This fact suggests the following formulation for the 

minimum fuel guidance problem (note that only one inertial plant need 

be considered) : 

PLANT: 

INITIAL CONDITIONS: 

PERFORMANCE INDEX: 

(2 .10) 

where the assumption has been made that tf will always occur before 

the planet encounter time t 
e 

In order to illustrate some tools of optimal control theory, the 

problem will be worked out in some detail . First, the Hamiltonian is 

specified and is, by defini t ion 



(2.11 ) 

where Al and A
2 

are Lagrange multipliers. A necessary condition 

for optimality is that the extremal control minimizes the Hamiltonian 

at each instant of time . This is the celebra ted maximum principle of 

Pontryagin (35) and implies that the optimal control satisfies 

(2. 12 ) 

w·he re k is the maximum attainable value of the control vari ab l e u
1 

. 

This equation displays the bang- bang property of the optimal control ler. 

Substitution of Equation 2.12 into Equation 2.11 yiel ds the extremal 

Hamil tonian 

(2 . 13) 

Applying further necessary conditions yields the following canonic 

equations: 

xl = 

x4 = 

aH* 

aAl 

aH* 
ClA 2 

aH* 

axl 

aH* 

= 

= 

= 

--= 
ax4 

with bounda ry conditions 

x4 

- k sgn(l + A2 ) 

0 

- A . l 
(2 . 14 ) 
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The last condition Hi<· ( t ) == 0 
f 

is termed the transversality condition. 

Solution of Equation 2.14 with conditions 2.15 yields the optimal con-

trol function u*(t) 
1 

In general it is very difficult to solve two 

point boundary value problems of this type. 

However, in the case of a lovr dimensional bang-bang problem, 

there is an alternative approach which considerably simplifies the 

analysis. From Equation 2.14, the Lagrange multipliers have the follow-

ing solutions: 

( 2. 16) 

Equations 2.16 imply that a maximum of one control switching is possible 

on any given trajectory. Solving the and equations for con-

stant u
1 

yields 

Eliminating t i mplies 

(2. 17) 

Equation 2. 17 shovrs that the vehicle will follovr a parabolic trajectory 

in the (x
1

,x
4

) plane for constant u
1 

. Coupling this fact with the 

fact that only one switching is optimal, the "svritching boundary" is 

obt a ined and is illustrated in Figure 3 . 

It should be noted that the deviation of the fuel consumption is 

constant for any controller which nulls the state errors . This 

/ 
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x4 (x1(o),x4 (o)) 

OPT I MAL PATH 

. SWITCHING 
BOUNDARY 

Figure 3 . Definition of the " switching boundary " 
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s t atement is valid to the accuracy of the approximations used above . To 

see this, consider the integral of the x4 equation given in Equation 

2.10 

since x 4(tf) = 0 . Hence fuel deviation is not a meaningful perform

ance index for this problem. 

2 . 2.3 . Minimum time criterion . Selection of a minimum time 

criterion reflects the desire to null the injection errors as quickly as 

possible, and therefore g ives these errors a minimum amount of time to 

propagate . It will be shown in this section that this criterion yields 

exactly the same controller as the mini mum fuel criterion . The perform-

ance index for the minimum time problem is 

(2 . 18 ) 

which results in the follmving Hamiltonian : 

Minimizing the Hamilt onian with respect to u 1 yields 

H* (2. 20) 

The canonic e quations become 
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xl = x4 

*4 = -k sgn A2 

Al = 0 

A2 = - Al (2.21) 

Solving the Lagrange multiplier e~uations gives 

Once again only one control switching is optimal, and once again the 

same controller is obtained. 

2.3 Control Variables: The Problems of Level Variation and Implemen

t~i~ 

2 .3.1. The problem of control level variations . In the fore-

going discussion it has been implicitly assumed that the maximum control 

magnitude is constant throughout the mission. Realistically, such is 

not the case since these values would actually vary with the nomina l 

acceleration level. A more reasonable assumption is that guidance 

maneuvers are completed rapidly with respect to the slowly varying con-

trol level magnitudes. 

The usefulness o f this assumption can be revealed by examinin g 

the Bellma n-Hamilton-Jacobi e~uation for the optimization problem. For 

the minimum time criterion this equation can be written as follows: 

(2. 22) 

/ 
/ 



-29-

where V is the value funct i on defined by 

tf 

t::l V(t f..) 
tJ. 

min J dT with X( t) ~(tf) = = c; = 0 
u

1 
( T) 

t 
t ~ T ~ t 

f 

Performing the indicated minimization in Equation 2 . 22 yiel ds 

av + 1 av ( ) I av I __ 0 at + x4 axl - k t ax4 ( 2 .23) 

where k(t ) is the maximum value of the control a t time t . I n 

accordance with the discussion above , k(t) i s assumed to be slowly 

varying and~ therefore written in the form 

k(t) = k(t ) + £(t - t ) 
0 0 

(2.24) 

where t i s an appropriately chosen i nit ial time , and £ is the 
0 

(small ) slope o f the control magnitude at time 

2 .24 in Equation 2.23 yields 

t 
0 

Using Equation 

av -+ 
at 

1 + x 4 av ( k ( t ) + £ ( t - t ) ) I ~v I = o 
axl - 0 0 ox4 

(2.25) 

A solution o f Equation 2 . 25 i s sought in the form of t he general per-

turbation expansion 

V( t ,£., £) I v n v + £V
1 

+ o(£) (2 . 26 ) = £ = 
n=O 

n 0 

where lim 
o(£) 

= 0 
£ -+ 0 £ 
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Substitution of E~uation 2.26 into E~uation 2.25 yields 

av 
0 

-- + e: 
at 

av + l+x4(:vo + e: ~vl)-(k(t )+e:(t-t )) 
at xl ox4 0 0 

(2.27) 

Letting e: + 0 in E~uation 2.27 yields the Hamilton-Jacobi e~uation for 

the zeroth approximation: 

k(t ) laval = o 
0 ax4 

(2.28) 

E~uation 2.28 represents the Hamilton-Jacobi e~uation for a constant 

control leve l, and the solution is identical to that given in the pre-

vious section when t is identified as the current time. 
0 

If the second term of the expansion v
1 

is desired, then the 

following expression must be noted 

lA + e:BI = ((A+ e:B)
2

)
1

/
2 = (A

2
+ 2e:AB + e:

2
B)

1
/

2 

= IAI (1 + 2e:B/A + o(e:)) 112 = IAI (1+ e:B) + o(e:) 
A 

IAI + e:B(sgn A) + o(e:) 

(2.29) 

Using E~uat ion 2.29 in E~uation 2.27 and collecting terms of 

order e: yields ihe desired e~uation for V 1 
This function may be 

difficult to obtain, however, bec ause of the behavior of the derivatives 

of V 
0 



-31-

As was stated to begin with, the rate of guidance corrections 

is assumed greater than the magnitude of E • Hence it is reasonable 

to approximate the true solution with the fundamental solution obtained 

from Equation 2.28, and this approximation will be adopted in this 

study. 

2.3.2. Control variable implementation requirements. A few 

comments are warranted concerning the engineering aspects of controller 

implementation. The requirement of bang-bang thrust level control 

could be met by on- off throttle valve action. This control would be 

facilit ated by employing the auxiliary thruster modules required by 

reliability needs (36),(39). At constant specific impulse, variable 

thrust will sometimes require the use of reserve power. The constraint 

on guidance acceleration is then implicit in the engineering design, 

power availability, and reliability considerations. 

Discrete thrust angle commands could be implemented in a variety 

of ways. Among these are the following: 

(i) electronically deflecting the ion beam 

(ii) engine rotation 

(iii) vehicle rotation. 

The first method is very attractive, since it effectively allows zero 

inertia switching. Success in so deflecting ion beams has been reported 

by Hughes Research Laboratories (37). The second method is achieved by 

conventional engine gimbal techniques , and the third is effected by sun 

sensor biasing. Since large variations of the engine angles are not 

desirable on a continuous basis, such control action will be limited to 

small deviations from the nominal angle program. 
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2.4 Experimental Results Using the First Approximation 

One practical and meaningful l·ray to check the validity of t he 

results is by digital computer simulation. For this purpose , the fol-

lowing assurr.ptions are made : . 

(i) the space vehicle is in heliocentric planar f light 

(ii) a== 90° during the i nitial phase of the mission 

(iii) vehicle weight == 10,000 pounds (4535 ki l ograms ) 

(iv) constant initial accelerat i on == 10-3 meters/second2 

( ) -4 2 
v maximum control accelerations taken a t 10 meters/second 

(vi) injection errors : velocity == 11 . 2 meters/second; 

position = 3350 kilometers (three days of v e locity error 

propagat i on) . 

Referring to Figure 4 it can be seen that the accuracy of the 

controller is very good . The inaccuracies of i gnoring the 2±T- l [:il 
terms--when integrated over five days of init i al error reduction--

results in a small miss at the terminal time . This small error is 

easi ly e liminated by reapplication of the origin al control action. 

These results lend mot i vation for applying this approximate dynamic 

characterization to the MTV guidance system to be considered in Chapter 

III where , in a loose sense , the disregarded informat i on can be consid-

ered to be included in the r andom forces 1-rhich disturb the plant . 

2 . 5 The Second Approximation 

As could be expected , the accuracy achieved by the first approxi -

mation can be improved if digital computer capabilities a.re made· 

available to the guidance system . In this section a set of four , 
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simultaneous, tra nscende ntal equations are de r ived , requiring on- line 

solution by the digital computer. For this de rivation the following 

assumptions are made 

( i) the vehi cle is in heliocentric planar flight 

( i i ) the matrix D of Equation 2. 5 is n egligibl e 

(iii) the maximum control level i s either slowl y varying or 

constant. 

Hence , ignoring motion i n the z
3 

direction, Equation 2 . 2 b e comes 

(2 . 30) 

where ~(t) = a(t) + S ( z ) . Using the minimum time criterion, the -n 

mult i plier equations are given by* 

t 
0 I 0 l 

- - - -: - -
I I 0 

(2 . 31) 

which have the s o l utions 

( 2. 32) 

The optimal controls are there fo r e g i ven by 

* A r evi ew o f the l i near minimum time p roblem is g i ven i n Appen dix A. 
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(2.33) 

Some possible realizat ions of the arguments of the above sgn functions 

. are illustrated in Figure 5. (Note that ~ is not expected to excee d 

90 degrees before nominal trajectory acquisition.) These realizations 

suggest that each control would have a maximum of two s"ri t chings. 

NOiv , given the initial conditions on Equation 2 . 30 ' the explic -

it solution for r::J can be represented in the follmring form (where 

tf is the nominal trajectory acquisition time) : 

. [oz(O)] tf [ 0 ( )J - J cos )1 t 
<I>(tf , O) ov(O) + tl> (tf,t) . 0 dt 

- 0 s1n p (t) 

+ (2 . 34 ) 

Here <I>(t
2
,t

1
) is the fundamental matrix which satisfies the matrix 

differential equation 

(2 . 35) 
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t 

sinfL(t) 

cos fL ( t ) 

->-.3 (O)t + >-.4 (0) 

(->-.3 (0) t + >-.4 (O))sin fL ( t) 

SUM 

Figure 5. Arguments of the switching function 
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where ~(t 1 ,t 1 ) = I . The solution of Equation 2.35 is 

l (t2-tl) 0 0 

0 l 0 0 
~(t2,tl) = 

0 0 l (t2- tl) 

0 0 0 l (2 . 36) 

Since the absolute values of u
1 

and are constant, only the 

sign of these quantities is needed inside the integrals of Equation 

2.34. If u
1

(o) and u
2

(o) are designated as the initial values of 

ul and u2 ' tl and t2 as the switching times of ul ' and t3 and 

t4 as the switching times of u2 ' 
then Equation 2.34 becomes 

(2.37) 

The integrals of Equation 2 . 34 can be explicitly evaluated if the 

assumption is made that fl varies at a constant rate. This is a good 

approximation for the trajectories of interest . Hence let 

fl ( t ) wt w = constant • fl 

Now defining 
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1 1 j { 2t 3cos wt
3 

2 sin wt
3 

2t4cos wt4 
+ 2 cos wt - -- u ( 0 - + + 

f' 2 2 w 2 w 
w w w 

2 sin wt 4 tfcos wt f' 
sin w;tf J 

2 
+ 

w 
w 

u
1 

(a{; sin wt
1 

-
2 1 wt~- u 2 (o{- 2 

I2 ::: - sin wt
2 

+ - sin -cos wt
3 w w w 

2 
wt 4 - 1 

wtf + ~] +- cos - cos 
w w 

[-2t1 cos wt
1 

2 s i n wt
1 

2t
2

cos wt
2 

2 s i n wt2 
I3 ::: u 1 (0) w + + 

2 w 2 
w w 

tfcos wt f sin wt£'1 [ 2t 3 + 2 + u 2 ( o) w sin wt
3 w 

w 

2 . t 2t4 . t 2 cos wt 4 tf's i n wt f' 1 t 1 J 
+ 2 Sln W 3- ~ Sln W 4- 2 + W + 2 COS W f - 2 

w w w w . 

[

- 2 cos wt
1 2 

~ (0) --w-----=- + -;;;- cos 

2 . t 1 . 
- -;;;- Sln W 4 + -;;; Sln 

then Equation 2 . 37 becomes 
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(2.38) 

Equations 2. 38 are four equations in five unknowns. Since it is desired 

that 

the problem is now to find the minimum value of tf for which Equations 

2.38 are satisfied. Fortunately these equations can be solved by the 

Newton-Raphson technique, and such analysis indicates the minimum value 

of tf is achieved either when tf = t 2 or tf = t 4 Hence one con-

trol lvill have one switching and the other will have two swi tchings • 

. It is fairly ea.sy to determine the correct u
1 

( 0) and u
2 

( 0 ), and 

thereby Equations 2. 8 can be solved for the rninimum value of tf and 

for the switching times of the control variables. 

2 . 6 Experimer"ta.l Res~lts Using the Second Approximation 

The computer simulation of the second approximate solution indi-

cates that there is a need to account for second-order effects in the 

control variables. Hence, for the case when tf = t 4, Equation 2.37 

can be modified as follows: 

] t 
t3 

[ ~(tf)] " •(tf,O) [ ~(O) + u
1 

(0) ( FAC 1 (- FAC 1 f ov(tf) ov(O) O 
tl 

t2 n u 2(o)(FAC 

t3 

I: l - FAC 2 J + FAC 2 + 3 f - FAC 4 

t3 t2 0 
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vhere FAC l, FAC 2, FAC 3, and FAC 4 are the factors that account for 

the second-order effects. Introducing these refinements adds little 

analytical difficulty , and the solution can again be found by using the 

Nevton-Raphson technique . 

The performance achieved by using this modifie d solution is illus-

trated in Figure 6. A comparison with Figure 1, indicates that the 

second solution (l) requires about 24 hours less time to acquire the 

nominal trajectory and (2) requires three fever commands , or svitchings, 

to be sent to the vehicle for the initial deviations considered. It is 

-4 2 also found that smaller values (i.e., . 25 x 10 meters/second ) of u
1 

and could be used with no loss of accuracy (see Re ference (40)). 

It is probable that the second solution represents a close approxi-

mation to the exact opt i mal solution. This conjecture can be partially 

verified by actual comparison v i th a computed open loop trajectory. In 

the next section the problem of finding such a trajectory is undertaken . 

2.7 The Open Loop Problem--An Al gorithm for Determining Minimum Fuel 

and Minimum Time Trajectories 

Numeri cal solut i ons for optimal bang-bang control systems h av e long 

been a topic of interest to control engineers. Much of the literature 

(32), (42), (43) deals with time optimal control of time i n variant 

linear plants . At best, f inding t he optimal trajectories is a very dif-

ficult t ask , and unfortunate ly the powerful quasilinearization method is 

inappl icable to bang-bang systems since the associated d i fferentia l 

equati ons possess discontinuit ies . 
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For the present gui dance problem the difficulties become even 

greater . In addition to the nonlinear time varying differential equa-

tions , there is also the probl em that the minimization of the Hamilto-

ni a n with respect to control cannot be obtained in closed form. These 

circumstances preclude the direct application of the methods cited 

above. For this reason the algorithm described in this section is 

proposed as a means of overcoming these difficulties. 

In compact notation the differential equations for the deviations 

of the state vector from nominal values are defined as follmrs: 

[ 
:·.vz ] {;£ u Q_(t ,~,ov ,u1 , oa) (2.39) 

For convenience the case of heliocentric planar flight has been 

assumed. The performance indices being considered are the follow·ing : 

(a) 

tf 

(b) J dt 

0 

where the initial conditions [ oz(O)] = c are given. 
ov(O) -

The Hamiltonians for the tvro problems become 

(a) H = u +( l.Q.) (b) H (2.40) 

The optimal control minimizes the Hamiltonian at each instant of 

time . In particular , it minimizes a + B(z )): 
n -n 
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= 

+ 
A4 (z1cos(~n+ oa) + 

2 2 l/2 
(zl + z2) 

(2.4la) 

(b) 

+ 
(un+ u1 ) A4 (z1cos(~n+ oa) + z2sin(~n+ oa)) 

2 2)1/2 
(zl + z2 

( 2. 4lb) 

Since the minimization functions cannot be written in compact form, the 

following symboli c functions are defined to meet this need: 

u* E U 
1 

minimizes M 

(2.42) 

Note that ~l and ~2 are discontinuous functions whose partial deri

vatives are zero with r e spect to all arguments (except at discontinui-

ties). Also ~l and ~2 are not explicitly known funct i ons, but can 

easily be calculated on the computer since only nine combinat ions o f 

ul and oa need to be checked. Substituting Equation 2.42 into 

Equati on 2 .40 yields 



(a) 

(b) (2.43) 

The canonic equations are 

H* A 

H* (2.44) 

[::] 
and the transversality condition gives 

The motivation for the a lgorithm which follows is the Newton-

Raphson technique for solving nonlinear equations. The basic idea is 

to determine how the end conditions on [ :: ] and H* vary as functions 

of tf and the initial conditions on A . Such behavior could normally 

be approximated by first linearizing the nonlinear equations, and then 

using linear differential equation techniques. This approach is applied 

in the quasilinearization method, but fails here owing to the discon-

tinuity of ~l and ~2 · 

Proceeding directly , the followin g quantities are defined 
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(2.46) 

Let C(n) be the nth estimate of C Then in general 

The problem is to find such that 

Expanding this equation to first order about C(n) yields 

This implies 

!lC(n) (2.47) 

Equation 2.47 would yield llC(n) except for the fact that an explicit 

expression for ~ is not avai lable. This matrix is approxi mated in t he 

algorithm by a perturbation technique. In summary the a lgorithm sug-

gested is the following: 

( i) guess 

44 ,.. (1) -- :§.(~(1)) (ii) integrate Equations 2. to obt ain ~ 
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(iii) perturb 
(1) 

_g_ by an amount 
(1) 

f_g_ where the scalar f << l 

(iv) compute E =c according to the f ollowing approximate 

formula : 

E (C(l)+ 
1-

fC ( l ) ) - E ( C ( l ) ) 
- 1-

E ( C ( l ) + fC ( l ) ) - E 
1- 1 

(_g_(l)) 

fC(l) 
1 

fC(l) 
5 

E = =c 
E (c(1 )+ 

5 -
fC(l)_ E (C(l)) 
- 5-

E (C(l)+ fC(l)) -
5 - -

E (C(l)) 
5 -

fC (l) 
1 

fC(l) 
5 

( v) calculate 
-1 
~ and obtain t;C ( 1) from Equation 2.47 

(vi) repeat this p rocess until the solut i on converges . 

The computer results for both the minimum fuel and minimum time 

problems are shown in Figure 7. For purposes of comparison the trajec-

t ories obtained by using t he closed l oop controller derived i n the second 

approximation are included. It is noted that the differences bet"l·reen the 

trajectories for the nonlinear minimum fuel and minimum time problems are 

smal l , and this s upports the analysis given in Section 2 . 2. Also i t is 

seen that the linearized controlle r gives a very good approximation to 

the e x a ct optimal solution. One aspect of the extremal trajectories 

that ' . .J"as lost by linearization, hovrever, is the time interval during 

which oa = 0 But it is interesting to note that this " coast 

period" has little effect on the performance index, vrhich suggests that 

the rather negligible degradati on i n system performance r e sulting from 

linearization is more than compensated for by the comparative simplic ity 
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of controller implementation. 

2.8 Conclusion of the Deterministic Problem 

There have been several interesting consequences resulting 

directly from the study of the deterministic lmv-thrust guidance 

problem. For instance it was found that a surprisingly close approxi

mation to the optimal controller could be obtained by merely solving a 

set of nonlinear equations, and that the difficult and time-consuming 

solution of the two point boundary value problem was, for all practical 

purposes, unnecessary. 

In addition the first approximation showed that the system 

dynamics could be approximated quite well by three, decoupled, purely 

inertial plants. This important result provides a l arge step toward 

the solution of the stochastic problem, which is the next topic of 

interest. 
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III. THE S'rOCHASTIC PROBLEM 

3 .1 Int roduction 

One of the truly uniq_ue features of the lmr-thrust guidance prob

lem is the manner in vhich random disturbances act to produce i n-flight 

errors vhich are comparable in severity to i njection errors . 

Undoubtedly the number of independent disturbances is great, but the 

ones of significant magnitude can be categorized as f o l lmrs : 

(i) attitude control variations and thrust vector pointing 

inaccuracies 

( i i) thrust acceleration variations . 

The less influential noi se effects are considered to be lumped into the 

above processes . In this chapter the guidance system is sought ~orhich 

most accurately corrects the effect of these stochastic errors vhen 

constrained by control v a r iable limitations. This minimum termina l 

variance (MTV) control problem is a stochastic optimizat ion problem 

vhose solution is more difficult to obtain, even approximately, than 

the deterministic cases treated in the last chapter . 

3. 2 'rhe Noise Model 

In making a statistical analysis it is necessary to model the 

noises acting on the system . Since a complete characterization of a 

random process i s v irtual ly impossible, there vill i nvariably be a 

certain amount of arbi trarines s in its representation. vlhat is usually 

done is to select a model <-Thich contains features of physical s i gnifi-

cance , but vrhich also r etains properties conducive to mathematical anal ysis . 



-52-

To obtain an approximation which is accurate to second order , the follow-

ing essential features should be included in the stochastic model: 

(i) the mean value (u) 

( ii) the range of variation, or standard deviation ( o) 

(iii) the rate at which the process varies, or the correlation 

time (l/f3) 

A stochastic model which retains all of these features as parameters is 

the Ornstein-Uhlenbeck (30) (OU) process*. If these parameters are not 

available from preflight test data, then an adaptive procedure (61),(63) 

of estimating them in flight is conceivable. 

Mathemat ically, the OU process z can be represented as follows 

z = u + n(t) (3.1) 

where n is a Gaussian, exponentially correlated process having zero 

mean , variance o
2 

and correlation time l/f3 . If a suitable inter-

pretation is given to the solution of a stochastic differential 

equation, then it can be shown that the n(t) process satisfies the 

following Langevin equation 

n = - f3n + I; ( t ) (3.2) 

1-rhere 1; is a zero mean, Gaussian, white noise process ·with variance 

2 2f3o . A typical sample function for the z process is illustrated in 

Figure 8. 

*Jordan (24) has already applied this model to low-thrust guidance 

problems. 
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3.3 The Minimum Terminal Vari ance (MTV) Guidance 

Using the motivation gathered from the previous deterministic 

cases , the procedure detailed in Section 2.2 is used to linearize , 

transform, and simplifY the plant equations 1 . 2 , only this time the 

~l' ~2 , a nd ~ 3 stochastic processes are retained (as explained in 

Section 3.1 , the ! process is lumped with these terms.) The result 

of carrying out these operations is the followi ng set of plant equa-

tions: 

~here the coordi nates X . 
l 

(3.3) 

are identical to those expressed in Equa-

tion 2 . 8. Once again th.ree , independent , purely inertial systems are 

obtained which can be studied individually . If now the noise terms 

~l' un~2 , and un~3 are identified with the OU process as defined in 

Equation 3.2, then the following formulation can be made for the MTV 

control problem: 

PLANT: 

INITIAL CONDITIONS : 

x
1

(o) "' N(O,cr ) 
xlO 

x4 (0) "' N(O,cr ) 
x4o (3. 4) 

~1(0) "' N(0,/2i3 cr) 
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PERFORMANCE INDEX: 

where 
h 

(i) N(m,o) indicates the normal distribution with mean m 
"2 and variance o 

(ii) k
1 

and t
1 

are weighting factors as used in Equation 1.5 

(iii) E is the statistical expectation over n(t), x
1

(o), and 

x4(o) • 

Note that a similar formul ation would apply to the other two of the 

three inertial systems. At firs t glance the above stochastic problem 

may seem quite innocuous, but to date no analytic solution has been 

found. 

To illustrate the difficulties, consider a dynamic programming 

approach to the problem and let the following value function be defined 

V(t,~) ~ ~n E[k1xi(te) + 
l 

with c (3.5) 

Associated with this function is the stochastic Bellman-Hamilton-

Jacobi equat ion (44) which it satis f ies: 

(3.6) 
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Performing the indicated minimization yields 

-k(t) sgn(~V ) 
aX4 

(3.7) 

where k (t) is the ma ximum value of the control Eq_uations 3.6 

and 3. 7 represent a stoch a stic bang-bang control problem as 1vell as the 

stopping point for eleg ant analysis. However a few important obs er-

vations can be made regarding q_ualitative aspects of the optimal 

system. Specifically the bang-ba ng control policy implies that full 

control effort should be applied whenever it becomes available, and 

should not be delayed until the final part of a mission. In this 

manner the auxiliary control reserves referred to in Secti on 1.2 are 

incorporated in a very natural way. Several authors h a ve already 

studied stochastic bang-bang systems , and a brief review is warranted 

here. 

3.4 Literature Review of Stochastic Bang-Bang Control (44)-(55) 

Much of the e ffort in this area has been directed t oward singu-

l a r perturbation expansions of the stocha stic Bellman-Hamilton-Jacobi 

eq_uation. Such an approach was first taken by Stratonovich (45), then 

extended by Lim (46), and fur the r applied by Dorato (47), Hsieh (48), 

and Robins on (49). In making this e xpansion it is assumed that the 

noise covariance s is sufficiently small so that the e xpansion can 

b e made in p owers of E This procedure l eads t o utili zing the deter-

ministi c solution as t he zeroth order term. 

There a r e s eve r a l a s pects of t hi s approach whi ch might a f fect 

the accuracy of t he r esults . (i) F i rst, the de te rministic value 
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fUnction for a b ang- b a ng p roblem is usually badly b eh ave d in that dis

continuous and even unbounded partial derivati ves a re frequently 

e ncountered . Unfortunately these deri vatives are requi red f or the 

second and higher o rder t erms of the perturbation expansion , a nd their 

behavior mi ght overshadow the smallness of the parameter £ • 

(ii) Second , a singula r perturbation exp a ns ion normally requires the 

addition of botmdar y layer terms in order to insure that all boundary 

conditions are satisfied. As pointed out by the above authors, hmrever , 

these terms are ignored in their expansions and t he omission e vidently 

causes difficulty in some of the examp l es given (46). 

Even if t hese items cause small errors J the method cann o t be 

appl ied here since the MTV guidance problem h as no deterministic 

analog . In fact it is eas ily shown that the deterministic minimum 

terminal error problem is singular* . This property makes it necessary 

to define the auxiliary performance indices in the deterministic case . 

Aoki (50) has applied dynamic programming and approximation-in 

policy-space to solve stochastic minimum time problems . The numeri cal 

method is s traightforward and effective for systems up to order three 

and possibly four . ~vo authors, Robinson (49) and Novosel' tsev (51), 

have found fault ·with Aoki 's approach. Both criticisms seem unjustified. 

Robinson , o n the one hand , has err oneously i nterpreted Aoki's dynamic 

programmi ng equation (Equation 3) a s a statement of the s t ochastic 

Hami l ton-Jacobi equation. Novos e l' tsev, on the other hand , has tried 

*i. e. , the Hamiltonian is independent o f the control. See Appendi x B 

for this derivation. 
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in his paper to derive the stochastic Hamilton-Jacobi equation , but has 

failed to include the diffusion terms i n his analysis (Equation 14 ). 

The resul t is the deterministic Hamilton-Jacob i equation for the mean 

state of the system and , of course , this error lea ds to results qui te 

different from Aoki ' s . A stochastic minimum t i me problem is cons i d 

ered later in thi s study (Section 3. 6 ) and the qualitative aspects o f 

the solution agree vith those noticed by Aoki . 

There has been work (52) , (53) on the direct numer ical solution 

of the stochastic Hami l ton- Jacobi equation . This approach i s appealing 

but i s computationa lly burdensome and needs perfecting for systems of 

order higher than one . One difficulty is finding enough boundary con

ditions to allow the applicati on of knovm numerical algorithms for 

solving partial differential equations . In Reference (53) the approach 

o f a rb i trarily specifying the solution on a selected p erimeter seems 

very artificial. 

Van Me l laert (54) has done work related to the inclusion 

probability of a stochastic syst e m (i.e. , the probability of remaining 

in a given region of the state space ove r a specified time interval) . 

The MTV control program 1o10uld be s imi l ar to maximizing the inclusion 

probability in a neighborhood of the origin over the interplanetary 

flight time . 

Hanham (55 ) suggests an interesting approach to the minimum mean 

square error probl e m, and bases hi s a n alysis on Booton ' s (56 ) stat i s

ti cal linearization . More will be said about this idea i n Secti on 

3. 6.2 . 
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In sum...rnary , there have been a host of approaches to stochastic 

optimizatio n p roblems but none offers a c ool(-book soluti on to each and 

every example. It c an safely b e s a id that the approach must be selected 

vrhi ch best suits the probl em of interest . In the following section a n 

algori thm is des igned to solve the MTV gui dance problem. 

3 . 5 An Algorithm for Determining the HTV Gui dance System 

I n this section a method is proposed for obtaining the control 

l aw associated Hith Equation 3. 6. Fundamentally the algorithm involves 

three stages : 

(i) the svrit ching curve is paramet eri zed using a finite s et 

o f p arameters a 

(ii) for each control law the steady state proba-

bility density function of the state deviations is computed 

(iii) the parruneters are optimized so that the performance index , 

Equation 3 . 4 , is minimi zed. 

Special attention is required t o success f u l ly execute the most 

difficult phase of the a.lgorithm; i.e ., step (ii). In order to f ind the 

stationary probability density function it is assumed that the control 

is discretized . I n other words , over small intervals of time o f 

length t:, , l et the control input u
1 

be equal to the constant val ue 

determined by the state of the system at the beginning of each t i rrce 

interval, and the value of' the control fun ction u
1 
(~,~ , k ) a t that 

state . Actually discreti zaticn is advantageous here since it l imits 

the maximum switching rate of the control variables and thus p roh ib:lts 
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the chattering sometimes encountered in stochastic bang-bang systems. 

In computing the stationary density it is implicitly assumed that 

the system is either time invariant or else slovrly varying; in the 

latter case , the same perturbation argument used in Section 2 . 3 is 

again invoked here . An asymptotic solutio n is used primarily to 

eliminate the time dependence of the control lai·T 1-rhich results from a 

finite (although large) orbit transfer time t e 

Hhen the control is constant, then the transition probabi l -

ity density function associated vrith Equations 3.4 is obtained in a 

straightfonrard fashion from the Fokker-Planck equation* . This func-

tion is a Gaussian density 1-rhich is totally characterized by its mean 

~ a nd covariance M , and is u se d to compute successive probability 

distributions of the state at intervals of !':. seconds , asswn:ing an 

arbitrary initial distribution . The sequence of distributions approaches 

the steady state in a manner suggesting geometric c onvergence . Using 

this te chnique to obtai n the stea dy state density, the parameter set a 

is then optimized to yield the minimum value of the performance index . 

In the present problem, ti-ro simple parameteri zations are given 

for the svritching curve: 

(i) parabolic with mul tiplicative parameter a ( see Figure 9); 

i.e., u
1 

-k sgn {x4+ a 12klx;f sgn (x1 )} 

(ii) same as (i) 1-rith a zero , or resting, control region ( see 

F i gure 10) . 

For easier implementation the S'.-ritching l avr is made inde pendent of 

* See Appendix C. 
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Figure 9. First parameterization of the switching curve 

o=l 

0=.5 

o=O o=O 

o=.5 

o=l 

'j 

Figure 10. Second Parameterization of the switching curve 
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~1 (t) and is chosen parabolic based on the results of the stochastic 

minimum time investigation (see Section 3.6). Clearly the motivation 

for these choices is heuristic and there is no conceptual di fficulty 

in choosing more complicated parameterizations if desired . 

The results for case (i) are plotted in Figures 11-12 for two 

different transition probability density functi ons M
1 

and M
2 

which 

correspond to small and l arge noise processes , respectively. In 

addition to the performance index , the steady state probability density 

function also yields the following information: 

(l) the probability of being in a part i cular control state 

(2) the probability of a transition from one control state to 

another, at each ~-interval 

(3) the total probability of a control switching every ~ seconds. 

Quantities (1) and (3) are plotted in Figure 13. In order to gain 

insight into the nature of the steady state density function, the results 

for covariance M
1 

with a= l and a= .5 are shown in Figures 17 

and 18, respectively. 

It is seen from Figure 11 that fo r small noise the performance 

index (with t = 0) is minimized for a= .6 
1 

example, the minimum point occurs at a= . 25 

For the larger noise 

This counterclockwise 

swing of the switching curve (for increasing noise)agrees with the 

results of Aoki (50) and Wonham (55), and is consistent with the results 

of Secti on 3. 6. A l oose i nterpret ation of rate- gain i ncrease can be 

associated with this phenomenon. It is interesting to observe , 

though, that the optimum value of the parameter a i s relatively 
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Figures 11 and 12. Steady state covariances vs. parameter 'a' for the 

first parameteriz~tion (k = . 25 x 10-
4
m/sec

2
): 0 = E[x~] , 

6 = E[ x
1 

x
4
], D = E[x~] ; Figure 11, small noise, 

M = [
180 ·

0 
· 251 1; Figure 12, large noise, M2= [ 935· 0 

l . 251 . 000416 l. 98 
l. 98] 

.0047'7. 
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Figure 13. Total switching probabilities vs . param~ter 'a' 

for the first parameterization (k = • 25 x l0- 4m/sec2 ) : 

Small noise (M
1

) andla r ge noise (M
2

) are as defined 

in Figures ll and 12 . 
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insensitive to large variations of process noise levels. 

The r e sults for case (ii) are shown in Figures 14-16, and 

indicate the responses to both small and l arge noise. Introducing the 

zero control region violates the bang-bang requirement, but is appeal

ing from the standpoint of reducing the total number of control 

switchings. It is not difficult to imagine other control configura

tions which could offer specific advantages, and which couldbe easily 

tested using the above algorithm. 

The magnitude of ~ represents a trade-off in control system 

design. As ~ is decreased, better guidance accuracy is obtained, but 

mechanization simplicity is sacrificed because the expected number of 

control switchings increases. Hence there will be a best value of ~ 

according to design specifications. Also there is no reason why ~ 

must remain a constant throughout the entire mission, and it is likely 

that there 'lvould be advantages in allowing it to vary. 

It would be of at least theoretical interest to find the result 

of letting ~ approach zero. At best, the procedure described above 

will provide a rough answer by extrapolation. Figures 18-20 show the 

stationary density function as ~ is decreased and, as expected, the 

probability distribution become s concentrated around the origin as ~ 

becomes small. In Figure 21 the standard deviations of the states cor

responding to ~ = 0 are found by extrapolating the curve through the 

v e rtical axis. As ~ vanishes the expected number o f control switch

ings is seen to increase without bound. 
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Fig.l4 : 

r0 201';-
I 

0 0 

X X 

---- 3 15 15N""' u 
Q) u 
(,f) Q) 

"I'-
(,f) 

E 
(\J ........ 

2 10 10 E 
(] 0 

5 

0 
0 

0 

Fig.l5 
.5 

.4 r0 
I 

0 

u X 
Q) N (,f) .3 

........ u 
C\J Q) 

E 
(,f) 

........ 
(] (\J 

.2 E 
0 

.I 

0 
0 .5 1.0 

a 

Figures 14 and 15 . Steady state covari ances vs . parameter 'a' for the 
. -4 2 2 
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x
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0~ .5 

a 
1.0 

Figur e 16. Switching probabilities vs . p arameter 'a ' for t h e second 

( -4 2 Q p aramet eriz a tion k = . 25 x 10 m/sec ) : • = total switch-

ing probabi l ity every 6 seconds, ~ = probability o f remaining 

in zero control region every 6 seconds·, IJ = probability of 

being i n zero control region ; small noise (M
1

) a nd large 

noise (M2 ) are as defined in Figures 14 and 15 . 
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u1 =-k 

.0074 
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-.05'------------'-------------L------------L--~ 
7.81 15.62 23.43 l'.l 

m 

Figures 19 and 20. Steady state probability density functions 

for small noise and a= .5: Figure 19, ~ = 500 seconds; 

Figure 20, ~ = 250 seconds. 
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The deviation in fuel consumption from nominal is found by 

integrating the differential equation for x 4 given in Equation 3.3: 

t 
e 

I *4 dt 

0 

(3.8) 

If the final velocity deviations are zero (or approximately zero as in 

the MTV controller) then 

t e 

J ~l dt - v(O) 

0 

(3.9) 

Hence, to the accuracy of the approximations employed , any controller 

which damps out the velocity errors will have the same total fuel 

consumption . At most, differences will be of second order . 

In summary then, a controller has been found whi ch provides 

maximum guidance accuracy subject to bounds on the control variables 

when noisy disturbances enter the system. To support these results 

it would be profi table to compare them to other stochastic bang-bang 

.controllers . In the next section three such controllers are investi-

gated. 

3.6 Investigation of Other Stochastic Bang- Bang Controllers 

3.6.1 . The stochastic minimum t i me controller . The perform-

ance index to be minimized is the average time required to bring the 

state of the system into a specified neighborhood of the origin 

Corresponding to this criterion, the following value function is 

defined: 

N 
0 
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v (-r ,f.) " min { Y dt 1)£( T) " ~ ] 
ul (t) T 

(3.10) 

T~t:'ft 
f 

A set o f target points is necessary since there is zero probabi lity of 

hitting a single point in a stochastic system with bounde d control. 

Following Aoki (50) the solution is sought by the method of dynamic pro

gramming (58) and the right side of Equation 3.10 is expanded a s follows: 

min 
u

1
(t) 

= t1 + min 

ul 

[ tl+ E[V(T + tl, ~(T+tl) I ~(T) 

J p(~(-r+t~) j~(T) = Q) V(T+tl, !_(T+tl))~ + O(t~2 ) 
X 

(3.ll) 

where p (!_( T+tl) j !_(-r) = £) is the probability density of the state vec

tor at time T+tl given that !_(-r) = £; i.e.,the transition probability 

density f'unction. 

Special attent ion is required to find p . In principle the 

Fokker-Planck equation associated with the system described in Equation 

3.4 could be solved for this function, while in reality this solution 

is not available (57) since u1 (~,t) is bang- bang. However, if at any 

given time the state of the system is in one control region (for 

instance, the st ate is above the switching curve in Figure 3), then over 

t1 seconds it looks to the s yst em a s though u
1 
(~, t) is actua lly a 

constant function. There is a natural temptation, then, to use the 
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solution of the Fokker- Planck equation for a constant control input* . 

Of course, the approximation will become less accurate as the state of 

the system nears the switching curve. 

Vli th p now in hand the solution o f Equation 3.11 is sought by 

means of the approximation-in-policy-space a lgorithm (59). This method 

can be broken down into the following steps: 

( i) guess an initial value funct i on V (T,C) 
0 -

( ii) compute V (T,C) = 
n -

b. + mi:o E[Vn_1 (T+b. ,!(T+b.)) I !h) J and 

ul 

store u
1 

at each grid point; n~2,3 , ··· 

(iii) iterate until the solution converges . 

For completeness a few details of the numerical solution wi ll be 

discussed. A convenient initial guess for the value function is given 

by the deterministic solution of the minimum time problem. And again, 

for simplicity, the switching curve is assumed to be independent of 

~1 . The target neighborhood N 
0 

is defined as a r ectangular area 

with boundaries at ± 40 meters in the x
1 

direction, and ± .05 

meters/second in the x 4 direction, while grid points are spaced 10 

meters apart in the x
1 

direction and . 025 meters/second apart in the 

x 4 direction . In deference to considerations of c omputing time, the 

area of inte rest is Jimi ted to ±. 1 kilometer by 2:. • 25 meters/second, 

and even though solutions in larger regions could be obtained, the 

general soluti on characteristics are evidenced by the results in the 

area that was considered. In al l cases b. was taken as 1000 seconds . 

* See Appendix C . 
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The results appear in Figure 22 for various noise cases . As 

the noise gets large, it is interesting to note that the switching 

curve is found to opt imi ze nearer to the x
1 

axis. This effect is the 

same as that noticed by Aoki (50) and Ylonham (55) for similar problems , 

and was also encountered in Section 3. 5 of this chapter. 

3. 6. 2 . Vlonham ' s approach to stochastic bang-bang control. Vlon-

h am ' s (55) technique is geared to finding stationary, or steady state, 

solutions associ ated with integral quadratic performance indices ; but 

here an attempt is made to extend it to the nonstationary MTV guidance 

problem. 

The Bellman-Hamilton- Jacobi equation vhich must be solved is the 

folloving: 

V(t ) 
e 

XT(t ) YIX(t ) 
- e - e 

2YIX ( t ) 
- e (3 . 12) 

,.,here X is the n-dimensional state deviation vector , u is the 

m-dimensional control deviation vector , and A and b are the 

Jacobian matri ces~ the plant dynamics with respect to nominal state 

and nominal control , respectively . In addit ion 

v(g_,T) /::, min E [ ~T(te) ~(te) I ~(T) = g_] (3.13) 
u 

Performing the indicated minimization in Equati on 3.12 yields 

T 
u = - K sgn(b VX) (3 .14) 



X
4 m

/s
ec

 
.2

 

-.
3

 
I 

-.35
t 

-.
4

 

TA
R

G
ET

 S
E

T 

3
0

0
 

ul
 =

 -k
 

4
0

0
 

5
0

0
 

x 1, 
m

et
er

s 

6
0

0
 

7
0

0
 

8
0

0
 

9
0

0
 

10
00

 
I 

I 
I 

I 
!P

. 

D
 I -.

1
 

~
~
=
=
=
=
=
=
-
-
-
C
 Y' 

~
~
~
;
:
:
:
:
:
=
:
:
=
=
=
8
 

u, 
=+

k 
A

 

F
ig

u
re

 2
2.

 
S

w
it

ch
in

g
 c

u
rv

es
 

fo
r 

st
o

c
h

a
st

ic
 m

in
im

um
 t

im
e 

c
o

n
tr

o
ll

e
r:

 
(A

) 
d

e
te

rm
in

is
ti

c
 c

as
e;

 

(B
) 

tr
a
n

si
ti

o
n

 c
o

v
ar

ia
n

ce
 

[ 

87
8 

M
 -

2
.0

2 

2
.0

2
] 

.0
05

6 
' 

[ 
65

7 
(C

) 
M

 =
 

. 6
1 

.6
1

 
] 

.0
0

2
1

 
' 

(D
) 

M
 =

 

. 
.. 

-
-

-
·-

-·-
-

-
-

[ 

2
0

2
2

0
 

46
.4

6 

46
.4

6]
 

.1
16

 



-76-

,...-here 

K = 

where k. 
l 

represents the bound on the control u .• 
l 

\-lanham ' s approach 

relies heavi ly on the statistical linearization techni~ue o f Booton 

(56) to conve rt the n onlinea r problem into a tractabl e linear problem. 

The object of Booton 's method is to find an e~uivalent gain matrix C 

whi ch h as columns C. that minimize 
l 

J ( 3 .15) 

Here p i s the probability dens ity of t h e state deviati ons . This den-

sity is assumed to be approximately Gau ssian with zero mean and 

covariance M . \·lanham's final assumption is that t he value f unct i on 

V is approximately ~uadratic , i.e') 

V = XT P X + r (3 .16) 

Under these assumptions the mini mi z at ion indicated in E~uation 3 . 15 c an 

be determined for the control law in E~uation 3.14 

C. - - k. (2/n)1 / 2 { (b~ PM Pb .) } -l / 2 Pb. 
l l l l l 

( 3 .l7) 

whe re b. i s the ith column of b 
l 

By s ubstitutin g E~uation 3 .16 

i nto E~uation 3 . 12 and using 3.17 we get the follovring differential 

e~uations for P and r : 



0 

r + tr(QP) = 0 

Finally, the covaria nce matrix M must satisfY 

M M(O ) = M 
0 

(3.18) 

(3.19) 

Equations 3.18 and 3.19 represent a two-point boundary value problem 

whose solution approximates the optimal , stochastic , bang- bang con-

troller. 

The solution of these equations was first attempted using the 

simplified dynamics (i.e., three decoupl ed , inertial plants) derived 

in Section 3 .3. It was found that the divisor in Equation 3 .17 almost 

invariably went to zero on any given iteration. The reason for this 

can be explained by examining the steady state solution of Equation 

3.19 . First, C can be obtained from Equation 3.17 as 

(3.20) 

while the steady state solution of Equation 3 .19 is given by (assuming 

vrhi te noise disturbances ) : 

Hence 



which implies 

Therefore 

Solving these equations for 
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0 

[). 
m

11
. yields (p22 p) 

where G = (n/2) 1 /
2 

/ 2k . Now, defining 

[). 
p - r = x 

Equation 3.22 becomes 

(3.21) 

(3 . 22) 
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(3 . 23) 

If now it is desired to minimize m
11 

vri th respect to p --lvhich is 

the same as minimization >vith respect to x --then standard analysis 

yi e lds 

X = 2r3 

2 
2r + r 

Substituting Equation 3.24 into Equation 3 . 23 yields 

4 
- 0 1T = 
64 k 2 

(3.24) 

(3. 25 ) 

Equation 3.25 shows that the optimal . m
11 

should be negative; this is, 

of course, an impossibility. Evidently this result is linked to the 

difficulty of so.l ving the nonstationary problem referred to earlier, 

and unfortunately renders \'lanham's method inapplicable to the MTV 

guidance problem. 

3 . 6. 3 . The MTV controller and the steady state Fokker- Planck 

equation . It vrould be of interest to consider an analytical approach 

to the MTV control problem. If ~ l is interpreted as a white noise 

process vith variance 2 o , then the follovring steady state Fokker-

Planck equation is associated with Equation 3 . 4 (setting b 

..,2 " 
b ~_E_ - y ~ 

ay2 ax 
a (u(x,y)p) = 0 
ay (3 . 26) 
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The MTV control problem can now be cast as follmrs: (i) find the 

solution of E~uation 3.26 for arbitrary switching curves associated 

with u(x,y), and (ii) choose the curve which minimizes the performance 

index given in E~uation 3.4. 

The first problem is approached by expanding the solution about 

the x axis (on which the solution is parameterized by unknown constants), 

and extending the expansion throughout the region where u(x,y) is 

constant. Then various switching-boundary conditions are used to solve 

for the unknown constants. 

To be specific, assume that the following ~uantities are known 

p(x,O) = ¢(x) 

p (x,O) = 1jJ (x) , 
y 

X~ 0 

. X ~ 0 

and also assume that the switching boundary is below the x axis for 

positive v a lues of x . In order to find the partial derivatives along 

the x axis, E~uation 3.26 is used to obtain 

::: 

:: 

y_ dP + 2:!_ dP 
b dX b dY 

X ~ 0 , y :: 0 

In addition, the t hird partial derivative is obtained from this e~ua-

tion 

::: 

::: 



Similarly it is found that 

The solution is then given by 

00 

p(x,y) = I 
n=O 

n 
y 
IiT 

which can be written in the form 
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ao ~:, 
~ = p(x,O) = ¢(x) 
ay 

p(x,y) = ¢ ( X ) + 1jJ ( X ) g ( y ) + ¢ ( X ) fl ( y ) + 1)! ( X ) gl ( Y ) 
0 X X 

where 

+ ¢ ( X ) f
2 

( y ) + 1jJ ( X ) g
2 

( Y ) + • • • 
XX XX 

l Y....(Y...) 4 4T b b y 
+ ... 

(3.27) 

(3.28) 

+ ••• 

To obtain the conditions which must be satisfied a t the switching 

boundary, let the boundary be defined by y = h ( x) for positive x • 

Symmetry and continuity imply tha t 
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p(x,h(x )) = p( - x ,-h (x) ) ( 3 . 29 ) 

while , in addit i on , · the differential e quationmust be satisfied on 

the boundary , i . e ., 

b ~I -[ u _££.. + y ~ + 2u o(x,h(x) )pJ 1 (3 . 30) 2 - ay ax 
ay (x ,h(x )) (x,h(x)) 

where 0 represents the Dirac delta function. This equation implies 

that 

_6_ 2u 
o(x ,h(x)) p = 

ay2 b 

or 

~ (-X>-h (X) ) = ~U p (X, h (X) ) - ~~ (X , h (X) ) (3 . 31) 

Since u = 0 on the boundar y (the result ~orhen the step function is 

interpreted a s the l imit o f symmetric, continuous f unctions) Equation 

3 . 30 also implies 

~~ (x,h(x)) = 0 (3. 32) 

Hence Equat ions 3.29 , 3.31 and 3 . 32 are three conditions •rhich must be 

satis fied at every boundary point. 

In order to find the optimal switching curve , the following numeri-

cal method is suggested. First write ¢(x) and ~(x) in their Taylor 

series expansions about the origi n 

¢(x) 
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lji(x) 

These series are truncated after ~~ (M integer ) terms which means t hat 

there are a total of 6M unknown constants . If 2M svitching boundary 

points are selected, then Equations 3. 29, 3 . 31 and 3 . 32 i-rill yield 6M 

boundary conditions--the number required to solve for the constants . 

Note that the f. ' s and g . 's in Equation 3.28 are known functions 
1 ]. 

and can be computed to any degree of accuracy. Finally, the switching 

curve is parameterized, and the optimum parameter set is found by a 

search t e chnique such as steepest descent . 

To put the MTV controller in the proper perspective it is 

necessary to relate it to other control schemes of current interest. 

In the next section, certain aspects of the second variation and 

A-matrix controllers are considered. 

3. 7 Characteristics of Linear Least Squares Controllers 

3.7 .1. General characteristics. It is significant that both 

the second variation and the A-matrix controllers fall into the 

general category of linear regulators. In both of these cases , as in 

the MTV controller, the plant equations are obtained by linearization 

about a predetermined nominal trajectory: 

. 
X = 

where 

X + H* 
Au n-n 

u (3.33) 
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(i) H represents the prehamiltonian of the original problem; 

X and u a r e the n omi n a l s tate and control s ; and X 
-n -n 

( ii) 

and u are the deviations of s t a te and control 

A is the Lag r ange multiplier vector 
-n 

(iii) the * indicates that a quant ity is to be evaluated a l ong 

the n ominal trajectory . 

In the usual notation, A(t) = H* X 
ln-n 

and b ( t) = H* X • 
ln-n 

The 

per formanc e indices for both contro l schemes are of the least squares 

type: 

t 
e 

I II ~ II ~ + I I ·~ II ~ + II X u II w dt 

0 

where in the second variation case 

R = H*u u ; 
-n-n Q = H*x X 

-n-n 

and in the A-matrix case 

W = H* 
ux 
11-n 

(3.34) 

R arbitrary positive definite .matrix 

\-lith the specification of the appropriate t erminal boundary conditions , 

the solution to problems of this type is well known and is completely 

specifi ed in terms o f a gain matrix vhich satisfies a Riccati dif-

ferential equation. 

There are several cha ract eristics of controllers of this class 

which would be appropriate to d i scuss at this point. It will be 

attempted to structure the problem with a general framevrork, a.nd for 



/ 
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that reason it is necessary to make some rather gross approximations . 

First it is assumed that the veighting matrices in Equation 

3.34 act in such a way that u and X are penalized vith approxi-

mately equal value for a g iven percentage change in nominal values. 

That is, if the optimal path lies in a field of neighboring optimal 

trajectories, then small changes in the state X are caused by propor-

tionately small changes in the control u . It will therefore be 

assumed that the veighting matrices can be approximated by constants 

vrhose values tend to produce the effect described above . Of course 

an exact anal ysis ~vould be totally dependent on the individual problem, 

and justificatio n depends on comparison with particular cases. 

Since Equation 3. 33 simply represents the linearized plant equa-

tions , it is reasonably accurate to use the rotated equations , 3.4 . 

Also, in keeping vri th the discussi on above, the follOi-ling performance 

index is defined 

(3.35) 

~.;here the constants cl 
2 

are chosen such that z 
1 

( 0) , 

. 2( ) d u2(0)/C22 c
1

v
1 

0 , an are all of equal value . 

of the linear regulator problem , the optimal control 

From the theory 

u* 
l 

is given by 

(3.36) 

1·There the matrix P satisfi es the differential equation 
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( 3. 37) 

Here 

b R = 

and the boundary conditions on Equation 3.37 depend on the transvers -

ality condition of the particular optimization problem. Since for all 

space missions the value of the terminal time t e is very large , the 

matrix P would assume its stationary or asymptotic value through most 

of the flight. Therefore Equation 3.37 is solved as an algebraic 

equation by setting P = 0, and doing this yields the following control 

law 

= -C X -2 1 

Therefore ihe spacecraft state deviations will obey the following dif-

ferential equations: 

0 

-C 2 

(3.38) 

It is now possible to analyze the performance of this system in 

the presence of noise . Using the same noise model described in Section 

3.2, the following Langevin equations serve as the appropriate dynamic 

model : 
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.xl 0 1 0 x l l 0 

x4 = - C -)2c2+ c1c~ 1 x4 + 0 (3 . 39 ) 2 

J ~1 0 0 -13 1;1 n 

vrhere the new state ~;1 is the Ornstein-Uhlenbeck process , and n is 

a zero mean , Ga ussi an white noise pro cess with variance 213o2 . Accord-

ing to Fokker- Planck theory , the state of the system described b y 

Equation 3.39 is completely represented by a Gaussian density function 

whose covariance matrix M satisfies the following qifferential equa-

tion: 

(3 . 40) 

where 

1 

D = 

and the boundary condition is the prespecified initial covariance 

matrix M(O) . Since the time necessary for the space flight is very 

large, the matrix M will necessarily converge to its asymptot i c 

value . Therefore Equation 3.40 is solved by setting M = 0 and this 

yields 
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l V2c2+ c1c; J2c2+ c1c; 
(- + ) M22 0 M22 c2 13c

2 13 

M = 0 M22 j2c2+ 
2 

clc2 M22 

l2c2+ c 1c; 

M22 V2C2+ 
2 2 

c1c2 M22 a 
13 

where 

2 
a 

The values of M
11 

and M
22 

which represent the variances of 

the spacecraft position deviations and velocity deviations,respectively , 

are plotted in Figure 23 as a function of the correlation time of the 

~l process. Examination of the results reveals that significant steady 

state deviations build up when using these guidance strategies. An 

intuitive picture of the mechanism which causes this effect is fai r l y 

easy to construct. Namely , when the spacecraft deviates from the nomi-

nal trajectory, the new optimal thrust program assumes a form such that 

the cour se of the vehicle is corrected in a relatively gradual fashion. 

This is a logical strategy in a deterministic system where there is no 

noise p resent to produce any further deviations . In the stochastic 

system of interest here, though, the policy of slowly correcting the 

course of the space vehicle only gives the noise more time to build up 
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larger deviations. This effect builds upon itself until the steady 

state deviations are attained. 

The value of finding these steady state deviations is related 

to an important property of a linear r egulator with a fixed terminal 

boundary condition. It is the ch ar acteristic of such systems to delay 

the major control effort until near the terminal time, so as to insure 

that the terminal conditions are s atisfied. The magnitude of this 

effort will be directly related to the errors near the terminal time, 

which in turn are indicated by the steady state deviations found above. 

Hence , the larger the steady state errors, then the larger will be the 

average terminal control variable deviations which are necessary to 

correct these inaccuracies. Indeed , there are cases when the control 

variables will almost always be unbounded at the terminal time; see, for 

instance, Reference (65). 

In contrast the MTV controller must guard against the eventu

ality of building up large errors which, because of the bounded control 

levels, it has no chance to eliminate . In that system , intuition 

agrees with mathematics in calling on all the available control all of 

the time in order to combat the noise inputs to the system. Specific 

examples will now be given which illustrat e the phenomena discussed 

ab ove. 

3.7.2. Analysis of the neighboring optimal guidance system 

accuracy for a constant acceleration, minimum time Mars rendezvous 

mission. In t his section the covariance o f the st at e deviations is 

determi ned numerically for a gui dance system obta ined by means of the 
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second variation optimization technique. The first step is to obtain 

the nominal, or open loop trajectory , and for that purpose a constant 

acceleration leve l of .18 x 10-3 meters/second
2 

is assumed , which 

corresponds to a 3 ounce thrust applied to a 2500 pound space vehicle. 

Since the minimum time Mars rendezvous is a free terminal time problem, 

it is convenient t o use the analytical artifice of normalized time to 

convert the free terminal time problem into the more usual fixed time 

problem. This is done by defining 

t = t T e T £ (0,1) (3.41) 

where t is the true time and T is the normalized time . Here t 
e 

represents the unknown terminal time which is treated as a state 

variable by adjoining its dynamical equation 

It is easily seen that 

. 
t = 0 

e 

= t 
dx dx 

dT e dt 

and thus it is possible to consider the following equivalent dynamical 

system (dots indicate derivatives with respect to 

2 
fl 

u = (:y:_ - 2- a sin a) t 
r e 

r 
A 

~+ v = (- a cos a) t 
r e 

r = ut 
e 

vt 
g e 

= 
r 
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t = 0 e 

where , referring to Figure 2, 

[ 
u] [ cos s 
v = - sin S 

sin 

cos 

/z~ 2 
r = + z2 

g = s 

a = a ...; rr/2 

J.l = GM 
s 

Forming the Hamiltonian of the optimization problem , and carrying out 

its minimization with respect to a results in the canonic differential 

equations for the system state variables and Lagrange multipliers: 

2 aA
1 u v J.l t = --r 2 

jA~ + A2 
e r 

2 

( - uv 
aA

2 ) t v = r 
JA~ + A2 

e 

2 

:r = ut 
e 

vt 
g e = r 

t = 0 e 

. A2vte 
Al = - A t r 3 e 
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The given boundary conditions and the transversal ity conditions asso-

ciated with the optimization problem yield the boundary value s 

necessary fo r the solution of E~uation 3.42: 

u(O) = 0 

u(l) = 0 

v(O) = v 
earth 

v(l) = v mars 

r(O) = r earth 

r(l) = r mars 

G(O) = G ( 0) 
earth 

G(l) = 9mars(l) 

\5(0) = 0 

\5 (1) = -\4(1) G (3 . 43) 
mars 
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Using the quasilinearization method, a solution of Equation 3 . 42 is 

determined which satisfies the required boundary conditions. 

The second variation (or neighboring optimal)guidance system i s 

no1v considered. This method is equivalent t o linearizing Equations 

3 . 42 and using these to approximate the behavior of the system. 

Therefore suppose that at time T there are known state variable 

deviations equal to COl (ou(T), OV(T), or(T), OQ(T)) , and that it is 

desired to determine the manner in which these e rrors are nulled in 

the optimum system. From the theory of linear differential equa-

tions, the fol l owing relationship must hold 

OU(T) 0 

ov(T) 0 

or(T) 0 

oQ(T ) G ot e (l) mars 

ot ( T) ot e (1) 
4>(l,T) 

e = 
oA.

1
(T) oA-1(1) 

OA2 ( T) oA-
2

(1) 

o.A
3

(T) 

j 
o.A

3
(l) 

o.A
4

(T) o.A
4
(l) 

. 
oA.

5
(T) -o.A 4(l) g 

(3. 44) mars 

where 4> is the (10 x 10) fundamental mat rix of the linearized equa-

tions lvhich satisfi es 

4> (0) = I 
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Here A is the Jacobian matrix of Equations 3 . 42, eval uated a l ong the 

nominal state and Lagrange multiplier vectors . Since Equations 3.44 

are 10 linear equations in 10 unknmms, it is straightforw·ard to dete r-

mine the unknown initial values in the following form 

ot (,) l e 
ou 

o>-.
1
(, ) 

ov 
o>-.

2
(,) = B(T) 

or 
o>-.3(T) 

oG 
o>-.

4
(,) 

where B(T) is a 5 x 4 matrix (note that o>-.
5
(,) = 0). Hence 

ou ou 

ov ov 
(3.45) 

or or 

oG 

where A( l) is defined to be the fi rst f our terms of the f i rst four 

rows of the A matrix, and A(2) r epresents the fifth through the 

ninth terms of the first four rows of the A matrix. Equation 3 .45 

therefore represents the differential equation s atis fi ed by the state 

var iable deviati ons . 

In order to complete the analysis, the noise terms represent-

ing the attitude and thrust level variations must be adjoined to the 

system. The result is analogous to Equation 3 . 4: 
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X = AX + G (3.46) 

where X~ col [ ou, ov, or, o9, t;
1

, t;
2

] 

A 

cos a -sin a 

sin a cos a 

0 0 

0 0 
A = 

0 0 0 0 - f3 
1 

0 

0 0 0 0 0 -f3 2 

0 0 

0 0 

0 0 
G = 

0 0 

v2s
1 

a
1 

o 

0 J 2f3
2

a 2 

and and are independent, zero mean, Gaussian, whit e noise 

processes with unit variances. The covariance matrix M of the state 

deviations at time T can be shown to satisfY the following differential 

equation: 

M = M(O) = M 
0 

(3 . 47) 

The state deviation time histories can be obtained, in· prin-

ciple, using Equation 3.47 . However , it h a s been found tha t the matrix 
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B of Equation 3.46 has badly behaved elements at two points along the 

trajectory under study, and for this reason the complete history of the 

covariance matrix cannot be obtained using this method. But since it 

is of primary interest to see how the errors build up , it 1vould be of 

value to compute the covariances up to the f irst singularity (about 25% 

into the mission) . For that purpose four cas es were considered: 

Case I. cr1 = cr2 = .0013 meters/second2 = 1% u ; all cases 

velocity error = .027 meters/second 

position error = 165 kilometers 

Case II. 

velocity error = . 21 meters/second 

position error = 1350 kilometers 

Case III . 

velocity error = 1.5 meters/second 

position error = 10000 kilometers 

Case IV . (100 - 1 
f3 = f32 = hours) 
1 

ve locity error = 21 mete rs/s econd 

position error = 135000 kilometers 

·These results verify the build- up of errors which was predicted by the 

rough analys is give n in the l ast secti on . I n the follovling discus sion 

the MTV controller i s actually compared to a realization of the A-matrix 

cont rol scheme . 
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3. 7. 3 Comparison of /..-matrix control 1vi th minimum terminal 

vari ance control. As discussed in previous sections , the /.. - matrix 

control scheme yields a linear feedback control law. In the process of 

making trajectory corrections , the /..-matrix controller minimizes the 

mean square deviations of the control variations from their nominal 

values. 

In order to derive the control gains it is necessary that the 

plant equations be linearized to yield a differential system in the 

form (i.e., Equation 3.19) 

X = A(t) X + b(t) u (3.48) 

where X is an n-dimensional state deviation vector , and u is an m-

dimensional control deviation vector. For the deterministic low-thrust 

guidance problem, n = 6 and m = 3 . The performance index to be 

minimized is of the form 

t 
e I UT R u dt 

0 

(3.49) 

with given initial conditions ~(0) = C and give n terminal conditions 

X(t ) = 0 
- e 

The control function for this problem can be shown to 

satisfy 

u = (3 . 50 ) 

1vhe r e G is an n x n ma t r ix which is the s olution of 



. 
G = 

Note that the gain matrix 
-1 

G 
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G(t ) = 0 
e 

is unbounded at the terminal time 

(3.51) 

t 
e 

3.7.4. Monte Carlo simulation of the MTV and A-matrix control 

systems. In order to compare the A-matrix controller to the MTV con-

troller, the Mars minimum time rendezvous trajectory described in 

Section 3.7.2 is used as a trial mission. Since the MTV controller is 

decidedly nonlinear, it is very difficult to obtain the covariance 

equati ons for the state devi at i ons , which are easily found in the case 

of linear systems such as second variation or A-matrix systems. For 

this reason it is necessary - to use the Monte Carlo" simulation technique. 

The noise model for the thrust acceleration and thrust angle disturbance 

processes is taken as a sequence of 10000 independent, Gaussian random 

variables with zero mean and. variances set at 3% of acceleration and 30 

milliradians of control angle. This process approximates an OU noise 

process with the same variance and a correlation time of b seconds, 

where b is chosen so that each control variable has 10,000 switching 

opportunities. Errors at inj ect ion are assumed to be 8.4 meters/second 

in velocity, and 2700 kilometers in position. 

Based on the optimization studies in Section 3.5, the MTV con-

troller is chosen to have no zero control region and a switching curve 

const ant a equal to .25 Three control configurations are to be 

( -3 2) investigated, namely u = .78 x 10 meters/second : 



( i) 

(ii) 

(iii) 

[ (

t - . 8t ) 
ui ( t ) E - • 0 5 u e t e 

u. ( t ) E [- • 02u, . 02u] 
l 

[ ( 

t - . 8t 
ui (t) E - . 02u e te 

-100-

( 
t - . 8t ) ] 

. 05 u e t e ; 

i = 1,2 

( 
t - . 8t )] 

. 02u e te i = 1 ,2 

Hence , i n the fi rst and third cases , the control levels are time vary-

ing . Als o note that in the third case the magnitude of the process 

noise is more than seven times l arger than the control force at the 

encounter time t 
e The simulation r e sults are presented in Figures 

24-31. In case (i) , Figures 24-25, it is seen that the injection 

errors are nul led r apidly and sta te deviations are kept small over 

the entire trajectory , thus shm·ring that the varying control level has 

little effect in this instance . For case (ii), Figures 26- 27 , there is 

slmrer damping of injection errors because of the reduced control 

force , and the approximation errors resulting from the rapid turning 

of the thrust vector at mid-trajectory are evident. However, the 

mission accuracy is still very high . Under the extreme conditions 

hypothesized in case (i ii), Figures 28- 29 , it is found that remarkable 

accuracy is achieved in spite of the overpowering magnitude of the 

noise in comparison with the available control. 

For each case the number of control variable switchings is given 

in the appropriate figures . The decrease in this number as control 

l evel decreases is indicati ve of the loss of control " tightness ," and 
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Fig. 25 
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Figures 24 a nd 25 . Velocity (24) and position (25) deviat i ons for 

MTV guidance system with control configuration (i): 

u
1 

switchings = 3187; oa switchings = 3320 . 



Fig.26 

0 ., 
"' ' E 
z 
0 

~ 
~ 
0 

-102-
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-1~--------------------~u_------------------------~ 
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Fig.27 

E 
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TIME, days 

Figures 26 and 27. Velocity (26 ) and position (27) deviations for 

MTV guidance system -vrith control c onfiguration (ii) : 

u
1 

switchings = 2721 ; 6a switchings ; 2850 • 
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6,---------------------------------------------------------~ 

- IL-------------------------_l_L __________________________ __j 

3600~~--------------------------------------------------------------, 

Fig.29 

E 
-"" 
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0 

-750o~---------------------------------------------------------_j211 
TIME, days 

Figures 28 and 29 . Velocity (28) and position ( 29 ) deviations for 

MTV guidance system with control configuration (iii): 

u
1 

switchings = 1832; 6a switchings = 1967. 
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16500 r-------~~~~--------------------------------------------------, 

Fig.31 

TIME, -days 

Figures 30 and 31 . Veloci ty ( 30 ) and position (31) deviations for 

\-matrix guidance system. 
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is in good agreement lvi th the computed switching probabilities shmm in 

Figure 13 . 

Figures 30-31 indicate that the A-matrix controller allovrs the 

state deviations to ~Vander much more freely than does the .MTV control-

ler . In addition the A.- matrix controller demands a 30% maximum thrust 

deviation and a 14° maxi mum angle deviation near the final time , l·rhich 

amounts to a relatively l a rge control effort . These effects occur j ust 

as predi cted by the analysis in Section 3. 7 .1. 

Since the MTV controller has b ounded control v a riables, it has 

t he tendency to keep the state deviations as low as possible at a l l 

times. In effect the controller anticipates that the re 1vill n ot be a 

large control capability near the fin a l time and takes appropria te 

action to accomplish guidance maneuvers wheneve r control b ecomes avai l-

able . 

In the following sectio n t he technique of MTV control "lvill be 

extended to the case when the s t ate of the system is not k novrn exactly , 

but must be estimated. 

3. 8 Minimum Te rminal Variance Control with State Est imation 

In this section the l'4TV controller will be discussed f or the 

general case o f linear plant and l i near observation equat ions . The 

pl~nt equations are therefore represented by 

. 
X = A(t) X+ b(t) u + ~ (3 . 52) 

Hhere X is the n- dimensional state deviation vector , .!::!:_ is the in-

dimens i onal contro l deviation vector, and ~ is the Gaussian Hhite 
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noise disturbance vector. Owing to the disturbance processes, the 

state X may contain variables which augment the deterministic state 

vector. This occurs, for example, when the Ornstein-Uhlenbeck process 

is used as a stochastic model. 

Linearization about the nominal trajectory is assumed to yield 

an adequate approximation to the observation equations, which then 

become 

L = H(t) X + ~ (3.53) 

where L is the p-dimensional observation vector, and ~ is the 

Gaussian w·hite noise error vector . The following covariance matrices 

are assumed to be known: 

T R (t) 0 (T-t) E[ ~(T) ~(t) ) = 

E[ s_(T) ~T(t)) S(t) 0 ( T-t) 

E[ s_(T) s_T(t) ) = Q(t) 0 h-t) (3.54) 

The problem is to choose a control law k which is a function of past 

observations and past control inputs;i.e. , 

£ ( t ) = !.[ y ( s ) ' 0 !: s !: t u( s) , 0 £ s < t] ; 

(3.55) 

and this control law must minimize 

E[ I w.x~(t )] 
i l l e 

(3.56) 

where E i s t he expectation over both the 5._ and ~ processes. 
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Since ~( s) , 0 ~ s < t , is known, the information in brackets in 

Equation 3.55 can be summarized by the Kalman estimate ~ and error 

covariance r , which satisfY the following differential equations 

1-1 

r (3.57) 

Thus ~ is a sufficient statistic for the posterior density of X 

which means that Equation 3.55 becomes 

~(t) = £(t,~(t)) (3.58) 

Hence 
. 
X = ~ + b£ ( t .~) + I (3.59) 

Following Wonham (60), the error proces s z is de fined a s 

(3 . 60) 

Using Equation 3. 59, the z process is f ound to satisfY 

z = (A - KH) z + ~ (3 . 61 ) 

where 

(3.62) 
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Also the follo,ving equation is readily established 

(3 . 63 ) 

By direct calculation 

T 
E [Q.Q.] = Loh-t) 

(3 . 64) 

where 

If p(t,~,~; s ,~,£; ~) is defined to be the transition probabil

ity density function of the [ : J process with control l aw ~(}:!_, t) , 

it can be shmm ( 60) that 

(3 .66) 

where q_ satisfies 

~ = 
as 

2 
l LO ~ - ( (A-KH) ~' ¥-v ) - [tr(A - KH) ]p 
2 av2 0 

(3 . 67) 

and q_ satisfi es 

2- - ak(s ,r ) 
~ = ~(KRKT) o a~ - (AE.. + b~(s,E._),~)- (tr A+ b 0 - ar-) q_ 

ar -

(3 . 68 ) 
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Equati on 3.56 can no1v be expande d as follows 

c 0 

] (W b. 

w 
n 

E[ I 
i 

2 b. T 
w.x. (t )] E[!_ wx_ t ] = 

1 1 e 
T 

E[ (E_ + x) W(E_ + x_)] 
e 

= J J 
r v 

(3 . 69) 

The second term in Equation 3 . 69 is zer o because the mean of the error 

process is always zero. Also , t h e third ter m is fixed and independent 

of the control l avr k . Hence the minimization depends only on the 

first integral ivhich in turn depends solely o n q . The stochastic 

different i a l equation descri bed by Equation 3.68 can be deduced to be 

the follovri ng 

(3.70) 

where 

T 
KRK 8 (-r-t) 

Thi s equation is equivalent t o t he Kalman estimati on equation if the 

forc ing term associated with the observati ons is viewed as a n equiva

l ent white noise p r ocess vri th covari ance KRKT . Hence the problem is 

n o1v i n the same form as the known state case , except that the noi se 

term has a diff eren t covariance; and therefore the same techniques can 
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be appl ied to solve this probl em. However it mus t be r ealized that 

" s e paration" does not hold fo r the MTV system, e ven though a Kalman 

f ilter may be us e d in the control l oop . This is because the control 

law will depend on and v ill change with the type of obse rvations used. 

To illustrate the e ffect of observations , consider the plot in 

Figure 32 of the di s tribution of the uncontrolled t ermina l variance 

between E[l!.T(t ) W)l(t )] and tr [Hr(t )] a s a funct i on of the "good-
e - e e 

n es s " of the observat i ons . The measure of the "goodness" of the 

observation s is rather arbitrary since it ~-Till be inherently dependent 

on the number, type , and accuracy of the observations made . However , 

in this case "goodness " i s chos e n to be a linear function of t r[Hr( t ) ] 
e 

wher e perfect observations nullify this error, and no observations 

maximize it. From Equation 3 . 69 it is found that 

E(X (t )T~ X(t )) = 
- e - e 

E[,T(t ) 1-1 ll(t ) ] + tr [ Wr ( t )] = e - e e 
(3 . 71) 

Hence the sum of the uncontrolled estimate a nd the error covari a nces 

must be constant . 

Now referring to Figure 32 , it is seen that perfect observations 

result in t he l argest value o f E [ )l (t ) W)l (t )], and hence the lar gest - e - e 

e quivalent noise on Equation 3 . 70 . In a sense , this means that the case 

of known state represents the h ardest eventual ity for the ~TV control-

l er . The dotted curves in Figure 32 are used to indicate the 

potential reductions in the terminal vari a nces using HTV control acti on. 
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Si nce the control does not affect tr [Wf(t ) ], this quantity represents 
e 

the upper bound on terminal accuracy . Note that in general a bounded 

controll er will not b e able to completely n u l li fy i n 

a noisy (observed) s ystem. It wi ll be r ecall ed t hat thi s fact vas 

used to justi fy the MTV criterion from the outset . 

The design and optimizat i on of the observati ons could constitute 

a study i n itself , and thus onl y the limiting case of perfect observa-

t ions i s cons i dered . Ho1-rev er t his case repr esents t he greatest 

chal lenge from the MTV controller point of view . The composite MTV 

control system is illustrated in Fi gure 33. 

In the f i nal part of this chapter, the full non linear MTV problem 

is investigated , and the difficul ties still e xist ing in stochastic 

optimization problems are i llustrated. 

3 . 9 Combined Navigation and Guidance of the Interplanetary Vehicl e 

In th i s sect i on , the state vector~ repr esents both the deviati on 

of the position and velocity components from their nominal values , 

and also the OU process models for the dynamic noise . The differential 

equations f o r the state deviations can be written in the general form 

X = f(~.~.t) + L Fik ~k 
k 

(3 . 72) 

'.fhere the s tate X is an n-dimensional state deviat i on vector , u is 

an m-di mensional control deviation vector, and I is a vector-valued 

Gaussian 1-rhi te noise d i sturbance process with independent components . 

The p observations L are given by 
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"L = Q_(~,t) + _!]_(t) (3.73) 

where h is the p-dimensional observation function, and ~ is a 

vector- valued Gaussian vhite noise process. If the symbol P(a,t It) 

is us ed to represent the conditional probability density function of 

the state a at time t based on the observations up to time t , 

then this function can be shown (66) to satisfY a stochastic, partial 

differential, integral, functional equation of the form: 

n 
P(§:_,t+dtlt+dt)- P(a,tlt) = dV(~,t)- I (dfi(§:_,E_,t) 

i=l 
P(§:_, tit)) a. 

l. 

1 n 
+- \ (Q' .. (a) · P(a ,tlt)) dt 

2 L l.J - - a. a. 
i,j=l l. J 

(3.74) 

where 

Q = Q - FSR-1 (FS)T 

I T -1 ( dV(§:_,t) = P(~,t t) ("Ldt -EtQ_(§:_,t)dt) R (Q_(§:_,t) - Et Q_(~,t)) 

T 
E [nn ] = R ; t -- . 

and Et represents the conditional expectation using P(a,tlt) . 

Indeed, Equation 3.74 is equivalent to Equations 3.57 when the plant 

and observations are linear. 

The control problem is to find the optimal feedback controller , 

E_(t,P( a ,tlt)), such that 
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2 t ] ~ k 
(3.75) 

is minimi zed subject to control vari able limitations. Here E repre-

sents the expectation over the observation process and the tk are 

suitable weighting factors . 

Following Detchmendy (67) , the value function is defined as 

V [ m
1 

( t ) ,m
2 

( t ) , · · · ; t ] = min 
u 

where the m. are the moments of P(~,tlt) . Note that for dimensions 
l 

greater than one , the m. 
l 

will be multivariate. Using the principle 

optimality, Equation 3.76 is expanded as follows: 

A 

V[m
1

(t),m
2

(t) ·· · ;t] = min E[V(m
1

(t+t-) ,m
2

(t+ll),··; t+E>] 
u 

= min E[V(m1 (t) ,m2 (t ) · · · ;t) + ~~ t- + I ~:. (~(t+E>) - mi (t)) 
u i l 

+ l I I a
2

v (m.(t+t-)-m. (t))(m.(t+E>) - m.(t))+O(t-2)] (3.77) 
2 . . am. am. l l J J 

l J l J 

Letting t- -r dt and cancelling the common v yields 

A A 

[av + 
av E( dmi) 

l I I a2v E(dm. dm.) J 
0 = min I ------ + l J (3.78) 

at am. dt 2 .. am. am . dt 
u i l l J l J 

If now the expectation operator E is applied to a few terms , certain 

qualitat ive information about the solution can be obtained. For exampl~ 

keeping terms up to order dt , the following express i ons are obtained: 
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- T T-
Et [ f. (a. -m

1
.) ] dt + Et [ (a. -m

1
. ) f.] dt 

~ J J ~ ~ J 

[ ) T -1 = Et a .-m
1

. h ] R Et [h(a. -m
1

. )] dt 
~ ~ - - J J 

T T 
[ Eta. a .h - Eth Eta. aj 

~ J- - ~ 

· T 1 
- 2m1i{Et~ (aj - mj)}] R- Et [~(~-mlk)] dt 

(3 . 79 ) 

Thus the cross product terms do not involve the control u .... 
~ ... R 

independent of the se vari ab les. Since f is l inear i n the t hrust 

control , the minimiza tion i ndi cated in Equation 3.78 will yield a 

bang- b ang solution f or this control variabl e , impl ying that thi s 

situation has not ch ange d significantly from the previous cases con-

i s 

sidered. However, minimi zat ion over the thrust angle control vari ables 

oa and oY will not yield bang-bang variables since t hese quantities 

enter nonlinearly i nto f . It is not until the differential equations 

are lineari zed tha t these cont rol variables turn out to be bang-bang. 
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There is considerable difficulty in finding s olutions to equa

tions such as Equation 3.78. Even in the case when the plant and 

observations are linearized , the bang-bang nature of the problem seems 

to make the~act solution unattainable . Indeed, the Hamilton-Jacobi 

equation for deterministic bang-bang problems has rarely been solved 

for third order problems, and never for fourth order. As pointed out 

by Wonham (55), it is doubtful that an exact solution of the stochastic 

Hamilton-Jacobi equation is worth att empt ing. At best only modest 

improvements in system performance could be expected over suboptimal 

design techniques. With present day computers, this modest improvement 

would materialize at the expense of at least an order of magnitude jump 

in computational effort. 

3.10 Conclusion of the Stochastic Problems 

In thi s chapter the realization of the min imum terminal variance 

guidance system is consummated through the development of a number of 

straightforward design techniques. These methods are not only easy to 

apply, but also provide a design vehicle by which a simple, accurate 

and practical control system can be synthesized. In particular, there 

are two aspects of the results which are very appealing with regard to 

state-of-the-art engineering practice: 

(i) the s implicity of relay control systems 

(ii) the applicability o f Kalman filtering. 

Both the power and versatility of the results are dramatically empha

sized by the Monte Carlo simulation of the MTV system. 
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IV. CONCLUSIONS 

4.1 The Gap Between Theory and Practice: The Digital Computer 

The underlying purpose of this investigation has been to map 

existing theoretical concepts into synthesis techniques, computational 

algorithms,and slight theoretical extensions which apply to the solu

tion of a specific engineering problem. The author feels that the 

greatest advantage of this approach has been that even though the 

results are supported by a theoretical foundation, they are at the same 

time grounded to practical engineering reality. Consequently the diffi

culties encountered have been the traditional ones which separate theory 

from practice. 

One of the primary difficulties in appl ying optimization theory 

to engineering problems is the specification of the system performance 

criterion. Often the final engineering design should represent the 

best compromise among a myriad of conflicting goals, but it is usually 

difficult to interpret and properly weight all the factors in terms of 

a mathematical expression of performance. For example , it is often ar

gued that a guidance system must consume a minimum amount of fuel. But 

considering the fact that the Mariner midcourse guidance systems have 

typically carried on-board five times the fuel required to correct the 

maxi mum expected initial velocity de vi at i on, it would appear that efforts 

to minimize only the guidance fuel consumption would be somewhat wasted. 

Other considerations such as system accuracy, simplicity, and imple

mentation should certainly be stressed in the specification of the final 

design. 



-119-

The first attempt in t h is study has been to make the problem 

formulation as real istic as possible , and only then to s eek a solution. 

Th ere has been virtually no attempt to force the problem into a form in 

whi ch there already exists an analytic solution, and then turn about 

and try to justify the desired formul ation . Indeed , the solutions and 

synthesis techniques p resented in this study have t ime and again re

lied heavily on the u se of one o f the most poHerful design tools in 

modern technology, the digital computer . There can be l ittle doubt 

t hat the computer allows the solution of problems which •vould other

wise be deemed i mpos sible . Yet while it i s very short sighted to ig

nore i ts capabil ities in favor of gross s i mplifi cations and approxi

mations , it is equally undesirable to allow the computer to inspire 

laziness and poorl y conceived solution a l gorithms . I n the MTV gui

dance problem the computer has been employed to the maximRm possible 

advantage , but only after the mathematical deve l opment has been carried 

out as far as possible. 

4.2 Stochastic Optimal Control 

It is popular nowadays to w-rite off stochastic optimi zat ion 

t h eory a s a somewhat futile endeavor . The mai nstream of discontent 

apparently comes from the immense difficult ies involved in solving 

even \.,rhat s eem to be the easiest examples . There are also those vTho 

claim that the differences between a deterministic design and a sto

chastic design v i ll not usuall y be very g r eat , and therefore the extra 

des i gn effort vill hardly be •-mrth it. 'rhese a r guments may be vTell 

taken in many instances but their general verac i ty cannot be asserted 
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without becoming rather arbitrary about the scope of problems being 

considered. For instance, it has been made clear that the MTV gui

dance problem has no deterministic analog; therefore a stochastic de

sign is essential. And even though the exact solution has no·t been 

attained, it has been seen that the approximate stochastic system has 

a great deal to offer. In this way, the results establish at least 

one concre te example of the practical benefits of stochastic optimal 

control. 

4.3 Extensions and Future Efforts 

It is usually quite t empting to try to extend a once successful 

idea beyond its original point of application. While this is essen

tially a very good idea, it is also tempting to claim far more gen

erality than is varranted . For the present problem there are tva 

areas vhere the results vould appear to have clear application. The 

first is the more general class of powered flight guidance problems; 

e . g ., booster guidance . These other targeting guidance problems would 

possess essential similarities to low-thrust, interplanetary gui-

dance in the aspects of bounded control levels, stochastic disturbance 

inputs , and similar dynamic behavior. The second area is the space 

vehicle attitude-stabilization problem in vhich it is desired to min

imize the total nunilier of stepper-motor actions , or reaction-j et firings, 

on any given mission . The solution of this problem vould seem to be 

straightforvard in view of the identical dynamic response (i.e., purely 

inertial), and also the built-in capability of the M'l'V guidance method 

to yield the svi tching probabilities for each control configuration. 
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Future effort in this area could certainly branch into many 

different direct i ons . In each instance there is really no way of telli ng 

initially to ~-rhat extent any given idea wi ll be significant. It :ls 

the contention of the author that rather than document a l ong list o f 

alternative pathways , it is perhaps more effective to l eave the reader 

unbiased in choosing new and interesting branches to explore . 
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Appendix A 

SOLUTION OF THE MINIMUM TIME PROBLD4 

Consider the dynamical equations 

. 
X = AX+ b(t)u 1~1 !{ k (A.l) 

where X is an n-vector, b is an n x m matrix , and k and u are 

m-vectors. Also 

X(t ) = X 
- 0 ~ 

(tf is minimum) 

The Hamiltonian for this problem is 

The optimal u minimizes the Hamiltonian . Hence 

u* = K(-sgn(bT(t)l)) K = 

0 

where the sgn function is defined as 

sgn(y) ~{ +l 
-1 

0 

• k 
m 

y > 0 

y < 0 

(A. 2) 
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Applied to a vector , the sgn function acts on each component . Thus 

The equations of motion are 

X = = AX - b(t) K sgn(bT(t)~) 

:\ = (A. 3 ) 

The transversality condition yields 

(A. 4) 

Equations A. 3, with conditions A. 2 and A.4, yield a two-point b oundary 

value problem that must be s olved in order to obtain the optimal con-

trol. 
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APPENDIX B 

THE DETEffi~INISTIC MINIMUM TEfu~INAL ERROR PROBLEM 

Given (re f e r to Appe ndix A) 

. 
X = AX + bu ,~, ~ k (B.l) 

the problem is to minimize 

tf free (B.2) 

Forming the Hamiltonian yields 

(B . 3) 

and the maximum principle y i elds 

u* = K(-sgn(bT1.)) (B .4 ) 

where K is defined in Appendix A. The transversality condition y i elds 

(B.5) 

Since tf is free and the plant deterministic , it will normally be 

possible to drive the s tate variables to zero e ven though the control 

levels are bounded. Hence 

(B. 6) 

and s ince 

(B . 7) 
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it is found that 

~(t) 0 

Therefore t h e argument of the sgn function in E~uation B.3 is zero 

which makes the control indeterminate. This is the same as saying t hat 

the optimization problem is singular. 
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APPENDIX C 

THE FOKKER-PLANCK EQUATION 

Doob (64) has shown that the solution of Equation 3.4 will be 

a Harkov process which can be defined by its transit i on probability 

density function 

p(O,X ; t,X) -o - (C.l) 

which is the probability density that !_( t) = !_ given X(O ) = X 
- -o 

In addition, it can be shown that this probability density funct ion 

satisfies the Fokker- Planck equat i on associated with Equation 3.4 

f. 2 b. b. b. 
(b - f3 cr ; x2 = x4 ; x

3 
= ~l; u = u1 ) : 

In order to solve Equation C.2, the assumption has been made in 

Sections 3. 5 and 3. 6 that u should be regarded as a constant . 

The boundary condition on Equation C. 2 is 

lim 
t -+ 0 

p ( 0 ,X ; t ,X) 
0 

Equat i on C. 2 is now solved using the Fourier transform technique . 

Transforming first in x1 yields 

+ 

(C.2) 

(C . 3) 
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0 (C.4) 

Defining 

implies 

~-at b 0 

(C.5) 

Transforming Equation C.5 in x
2 

and defining 

yields 

a II 
~-b 

at 
an II ap II 

ik
1 

..:....:__ (i) + u ik p 11 + x
3
ik

2
p 11 

- Sp" - Sx -- = 0 
ak

2 
2 3 ax

3 

(c.6) 

Fina lly, de fining 

implies 
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*-b( i k3)
2 A 

- k ~+ ~ -
,.. 

" p 
l 3k2 

iuk2p + i k2(i) 
3k3 

Bp+ f3p 

+ 
2£_ 

:: 0 8k3 3k 
3 

which b ecomes 

1E. _ k ~+ ( i3k3- k2) ~ + (bk~ + iuk2 ) p :: 0 (C.7 ) at l 3k2 3k3 

Equation C.7 is a linear first order partial differential equation 

which has the characteristic equations 

.dt l 
dkl 

0 
dk2 

- k -:: -- :: -- :: 

ds ds ds l 

dk3 
Sk

3 
- k 2 

.9:£. :: (bk
2 

+ iuk2) --:: - p 
ds ds 3 

These equations have the solutions (subscript o indicates initial 

values) 

t = s 

(c.8) 

A 

p = p (O) e:xp 
k 1 ) 2 

+ 20 (l-e Ss ) 

13 

(c. 9) 

Performing the integration i n Equat ion C.9 and collecting t erms yi elds 
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A 

p = p(O) exp 
[ ( ( 

3 
b k2 s + s 

- 10 3132 (34 -

(C.lO) 

Now imposing the boundary conditi ons implies 

= 

But 

Therefore , 
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Iff 
(C.ll) 

Using E~uation C.ll and solving E~uations C. 8 f or s, k
10

, k
20

, and k
30

; 

E~uation C.lO becomes 

( 
- 2tel3t e213t ) 

X +- .!._ + 
2 3 - 133 

13 13 

(C.l2) 

Simplifying E~uation C.l2 and collecting terms yie lds 
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[ 
2 ( bt 

3 
bt 

2 
b t - t b ( l e -

2
13t ) ) p = exp - k -- - -- + 4 ( l - 2e ) +- - - -"-----

1 3132 133 13 135 2 2 

2 ( b t b ( -13t e-
2

l3t)) + 2 ( £__ _ be-
2

13t ) 
+ k2 \ 132 + 133 - 3/2 + 2e - 2 k3 213 2 

+ k k ( bt 
2 

+ bt ( _ 2 + 2e - 13t) + b 
4 

( 1 + e - 213t _ 2e- Bt ) ·) 
l 2 132 133 13 

(C . l3 ) 

This expression can be recognized as the characteristic funct i on of a 

Gaussian density with mean values 

( - St 
L+ ; ) + 

ut2 
xl = xlO + x20t + x30 e

13
2 -

132 2 

( - 13t ) 
x2 = x20 + x l - _e___ + ut 

30 13 13 

and covariance matrix , M 
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= E[ (x - x )2] = 2 ( bt + E_ (- 3/2 + 2e- St - e -: St ) ) 
2 2 s2 s3 

Since the switching curves in Sections 3.5 a nd 3.6 are a ssumed 

to be independent of x
3 

(and therefore x
30

), these quantities are 

integrated out of the above equa tions. The result is 

x2 :: x20 + ut 

m11 
:: 2i 

[ e-St + 1. t 3 _ 1. t 2 + !__ _ 

s4 6 s 2 s2 s3 ~4] 
2 

= 2o [ -St - 1 + St] m22 -- e 
s2 

2 

m12 = !!__ [ 1 - St + !( St ) 2 - e-St ] 
s3 2 



/ 
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APPENDIX D 

ON RANDOM FIRST ORDER COST CHANGES IN AN OPTIMAL CONTROL SYSTEM 

Cons ider the dynamic system 

X = f(t ,!.~) (D.l) 

and assume that an optimal trajectory and control, denoted x* and u* 

have been determined such that the following performance functional is 

minimized: 

J(f_,.r) = min 
u 

!(0) = c 
T 

It is now desired to compute the first order loss when the state 

(D. 2) 

deviates from the optimal path under the assumption that random process 

noise ~ enters additively into the dynamic equations D.l. The first 

order l oss is given by 
tf 

OJ = J 
( *T gx ox + *T 

gu o~) dt (D. 3) 

T 

where the asterisk indicates the quantity is evaluated on the nominal 

trajectory. 

Using the optimal ity conditions 

* f*T >-* 0 gu + = 
-u 

~* * f*T >-* (D . 4) = -g_x -X 
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Equation D.3 becomes 

OJ= ]f [(- i*T_ A*T f~) OX- (l*T r:) Ou] dt 

T 

Simplification yields 

OJ = y [ - i_*T OX - l*T(fi_ OX + r*u Ou) ] dt 

T 

But the first order dynamics are described by 

Hence 

. 
ox = f* ox + f* ou + ~ 

-X -u- ~ 

oJ = y [ - i*T ox - ;..*T ox+ ;..*T 

T 

tf 

+ l*T~] = I [ _L ( - /.. *T oX) dt -
T 

~ ] dt 

(D. 5 ) 

(D.6) 

(D. 7 ) 

(D. 8 ) 

Now assuming initial deviations equal to oX( T) and fixed terminal 

boundary conditions, Equation D.8 b ecomes 

tf 

oJ = ~*T ( T ) oX (T) + J t..*T £_ dt 

T 

(D. 9 ) 

The f irst order contribution of the process noise is clearly evident 

in Equation D. 9 . 
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