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ABSTRACT

The low-thrust guidance problem is defined as the minimum
terminal variance (MTV) control of a space vehicle subjected to random
perturbations of its trajectory. To accomplish this control task,
only bounded thrust level and thrust angle deviations are allowed, and
these must be calculated based solely on the information gained from
noisy, partial observations of the state. 1In order to establish the
validity of various approximations, the probleﬁ is first investigated
under the idealized conditions of perfect state information and negli-
gible dynamic errors. To check each approximate model, an algorithm
is devéloped to facilitate the computation of the open loop trajec-
tories for the nonlinear bang-bang system. Using the results of this
phase in conjunction with the Ornstein-Uhlenbeck process as a model for
the random inputs to the system, the MTV guidance problem is reformu-
lated asastochastic, bang-bang, optimal control problem. Since a
complete analytic solution seems to be unattainable, asymptotic
solutions are developed by numerical methods. However, it is shown
analytically that a Kalman filter in cascade with an appropriate non-
linear MTV controller is an optimal configuration. The resulting
sysfem is simulated using the Monte Carlo technique and is compared

to other guidance schemes of current interest.
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I. INTRODUCTION AND PROBLEM FORMULATION

1.1 General Discussion

In response to a relentless curiosity, man has accepted the chal-
lenge of space exploration. The space Journeys already ventured seem
almost fictional in character--yet the future holds endless possibili-
ties. Many of the future challenges will become feasible conquests
through the use of advanced propulsion systems. For this reason, the
application of ilon engines to space missions is currently under intense
theoretical and experimental evaluation.

The low-thrust ion engine will probably find its most important
application in missions to the outer planets where the retardiﬂgreffect
of the sun's gravity will require a large space vehicle energy. Up to
- the present, all the energy has been provided by the launch vehicle.
For high energy missions, such as those to the outer planets, it seems
desirable o use hiéh impulse low-thrust engines to augment the energy
supplied by the boost wvehicle. These low—thrugt devices would operate
during the long flight times between launch and encounter, supplying a
higher specific impulse than that available from present chemical
boosters.

The principal components of an ion engine are illustrated in
Figure 1. Basically, the generation of thrust involves two distinct
phases. During the first phase the propellant is fed into the ioniza-
tion chamber and converted into charged particles, called ions. Then,
in the second phase, the particles are accelerated by the electric

field and expelled through openings in the grid structure. The power
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required to produce and accelerate the ions is supplied externally, and
is derived perhaps from solar cells, or possibly from & nuclear reac-

tor.

Ton engines have the ability to accelerate propellant to
extremely high exhaust velocities. In contrast the exhaust velocities
achieved by chemical rockets are limited by the inherent properties of
the chemical reaction. The significance of this observation can best
be illustrated by considering the equation relating the change in space
vehicle velocity v(t) - v(to) to the engine exhaust velocity ¢ (in

free space):
M(t )

- s -k '

v(t) = v(to) = ¢ fn %) (1.1)
where M(t) is the instantaneous space vehicle mass. Thus, for a fixed
expenditure of fuel, the change in v is directly proportional to the
exhaust velocity c¢ , which explains the dramatic gain in the paylocad

*

fraction™ attained using ion-propulsion over that using chemical thrust-

ing, (1),(38).

Low thrust level is the primary disadvantage of ion engines.
This characteristic results from the power limitation of the thrustor
systems. Assuming, however, that the propulsion is applied over the
long flight time when a conventional vehicle would be coasting, then a
considerable velocity increment can be obtained. Hence ion propulsion

is well suited to long duration space voyages.

¥ The ratio of useful payload weight to injected weight.
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1.2 The Low-Thrust Guidance Problem

Prior to the initiation of an interplanetary flight, a nominal
or desired trajectory is determined, and is specified in terms of the
injection conditions and the nominal thrust program. Ideally, the
nominal thrust program is optimized so that maximum payload is deliv-
ered to the vieinity of the target planet. The optimization is
subject to constraints, and the final orbit selectioﬁ will compromise
many conflicting factors such as launch energy required, arrival date,
telemetering and tracking considerations, etc. The design of nominal,
or open loop trajectories has received considerable attention in the
literature (2-10). For our purposes here, it is well to assume that
this trajectory has been decided.

Because of launch energy dispersion and random effects in flight,
the spacecraft will inevitably be perturbed from its standard path.
Ideal behavior‘is further deteriorated when the state of the vehicle
becomes uncertain. As nearly as possible, the guidance system should
eradicate the effect of these disturbances and insure that the vehicle
approaches the destination in the intended fashion. The guidance
problem for a low-thrust vehicle has been approached in a variety of
ways (11-2h4) and discussion of some relevant literature is the topic
of the next section.

1.3 Discussion of the Literature on Low-Thrust Guidance

1.3.1. BSecond variation technigue. One guidance technique that

has attracted much attention recently is the method of neighboring
optimal trajectories, otherwise known as the second variation tech-

nigue (11-13). The application of this scheme yields a linear feedback
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equalizer whose control outputs guide the vehicle along alternative
nominal trajectories. Within a certain neighborhood of the standard
orbit, the methcd is akin to continuously recomputing the reference
path. Kelley (14) and Breakwell (15) have applied the second variation
technique to low-thrust guidance problems.

Several authors have investigated potential modifications of the
second variation approach. Kelley (16) has suggested the following
improvements:

(i) higher order terms in the control law approximation

(ii) the method of transverse state comparison in computing

state deviations.
Evidently the second refinement provides a worthwhile increase in
guidance accuracy. Kelley and Denham (17) have considered the simpli-
fication of making polynomial approximations to both the nominal
trajectory and the feedback gain functions. Since the "best" poly-
nomial coefficients will vary as the initial state changes, unigueness
is retained by optimizing over the statistics of the initial conditions.

1.3.2. A-Matrix technique. Similar to second variation sys-

tems, the A-matrix control scheme (18) yields a linear feedback control
law. In the course of providing trajectory corrections, the A-matrix
controller minimizes the mean square deviations of the control varia-
ples from their nominal values. The method has been applied by
Friedlander (19) who extends the method to ineclude the statistical
aspects of low-thrust guidance. In a lucid presentation, Friedlander
reveals some aspects of this controller which will be of interest

presently.
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1.3.3. Minimum effort control. Another guidance scheme is the

minimum effort control method (20), an approach which selects the
optimal linear controller that minimizes the expected value of the
average absolute control deviation. It is assumed that the variance
of one terminal component is specified, and that control mechanization
errors are negligible. When the method is used to control several
terminal components (21), there is apparently some difficulty in com-
puting the variable feedback gains. Minimum effort techniques have
been applied by Breakwell, Tung, and Smith (22).

1.3.4. Other methods. Tung (23) has applied linear control

theory to interplanetary guidance and compared his results with minimum
effort control. Jordan (24) has investigated low-thrust interplanetary
guidance using the stochastic calculus of variations, a technique
formalized by Kushner (25-28). Using this method, he computes the
stochastic open loop control function, and shows that this differs, in
general, from the deterministic open loop function. This phenomenon

is a result of the biasing effects of ncise when it forces a nonlinear,
dynamic system. Meditch (29) has considered the problem of nulling the
state deviations while expending a minimum amount of absolute thrust

control. The controller for this problem turns out to be bang-bang.

1.4 Critique of the Existing Methods

1.4.1. Second variation. When a space vehicle deviates from the

nominal trajectory, any guidance scheme which corrects the path will
produce a change in the nominal performance index. For the determinis-

tic case, the first order change will be independent of the guidance



law by virtuve of the Euler equations. The objective of the second
variation technique is to minimize the second order effect. It is an
effective approach when the system is truly deterministic. Care must
be exercised, though, when applying this method to a stochastic systemn.
To be specific, Breakwell and Rauch (15) have realized that noisy
system actuators cause random first order effects¥* on the performance
index, and this presumably explains the exclusion of dynamic noise in
their model. Indeed, the second variation controller would seem to
offer little advantage in minimizing deterministic second order changes
when there will be random first order changes. Because of process noise
in the form of thrust level and attitude variations, a low-thrust
vehicle would encounter perturbations resulting from dynamic noise.

A second aspect of the neighboring optimal guidance technique
deserves consideration; namely, the fact that the control variables are
the same in both the nominal trajectory and guidance sub-systems. To
see the significance of this observation, consider a low-thrust vehicle
on a minimum time, interplanetary trajectory. The properties of this
trajectory dictate the use of maximum thrust throughout the entire orbit
transfer maneuver. Hence the neighboring optimal guidance system
effectively has no engine throttling capability, and the velocity errors
which ensue are mt immediately correctable. For this reason, deviations
will continue to build up until the final portion of the mission. Then,

in a summary effort to correct the accumulated errors, the engine cutoff

¥ See Appendix D.



time will be uséd as a control input, and varied from its nominal value.

The disadvantage of this strategy is indicated by comparison with
a ballistic space flight, and the familiar midcourse guidance maneuver.
Generally speaking, the impulsive wvelocity corrections are applied as
early in the mission as practical. Doing this gives the injection
errors a minimum amount of time to propagate and also permits a larger
influence to be exercised on the spacecraft trajectory. When applied
to a low-thrust flight, the above philoscophy suggests that both thrust
level and thrust angle control be made available to a continuous time
guidance system. This capability is necessitated not only by the injec-
fion errors, but also by the continuous in-flight anomalies associated
with low-thrust missions. As explained above, this guxiliary thrﬁst
control will not be incorporated by the neighboring optimal guidance
system and a logical rapport between guidance requirements and nominal
trajectory design is not achieved using this method. The resolution of
this discrepancy is one cobjective of this study.

1.4.2. A-Matrix control. Friedlander (19) has pointed out that

A-matrix control will provide maximum terminal accuracy in spite of
persistent disturbances and imperfectly known state. The truth of this
statement is associated with the infinite terminal gain that a A-matrix
system will often require. This singularity produces a major control
effort toward the end of a mission, and will almost always involve
large control deviations. Such a characteristic is not peculiar to
~A-matrix control, but crops up, in general, when the terminal state and

terminal time are fixed, and the control force is left unconstrained.



This difficulty can be side-stepped by employing various artifices. For
instance, Tung (23) proposes to specify the desired terminal variances
and obtain the optimal linear regulator which satisfies these require-
ments. Proper choice of the terminal conditions will keep the gains
finite, but there are still no restrictions on the control magnitude
required at any particular time.

1.4.3. Minimum effort. The main drawbacks of this technique are

as follows:
(i) the exclusion of mechanization errors
(ii) the restriction to linear controllers

(iii) the difficulty of controlling more than one terminal

component

(iv) the absence of magnitude constraints on the control forces.

One furthgr criticism could be made concerning the performance
index; namely, the expected integral of the absolute control deviation
does not seem to be simply related to fuel consumption, as claimed,
because negative thrust deviations correspond to a fuel saving. There-
fore; they should retain their negative value in a fuel consumption
performance index.

1.4.4. Discussion. In general, many of the proposed schemes

seém to tailor a performance index to fit the problem. Often there is
no clear justification for what is defined to be the "performance."

For example, the idea of associating a least squares performance index
with a guidance system does not seem to have any specific physical or
practical motivation, except that it yields a linear control law. Such

a goal 1s of gquestionable meriﬁ, though, when the resulting implementa-
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tion requirements are compared with those of a bang-bang type control-
ler. To be sure, there are practical problems where a quadratic
pérformance index is extremely meaningful; see, for instance, Reference
(62).

Another consideration which has been somewhat disregarded in the
conception of guidance schemes is the boundedness of the control vari-
ables. In practice the engine would certainly have a limited throt-
tling capability, and this fact should be reflected in the .problem
formulation. If the control variables are bounded, then precise
satisfaction of the terminal boundary conditions can no longer be
guaranteed. In this situation the degree of terminal accuracy would
become a meaningful criterion by which to judge the application of con-
trol efforts. BSuch a design viewpoint is consistent with the primary
motivation for employing a space vehicle guidance system. Therefore
attention will be focused on the synthesis of the minimum terminal

variance (MTV) controller subject to control variable limitations.

1.5 Formulation of the Minimum Terminal Variance Control Problem

The formulation of the MTV control problem is made in three
dimensions, where the coordinate frames of interest are illustrated in
Z
1
Figure 2. The 2z (meaning |z,|) coordinate frame is assumed to have
"3
. A .
its origin fixed at the sun. An auxiliary coordinate frame 3z 1is body
fixed and used to define the thrust vector angles o and Y. Using

Newton's law, the differential equations describing body motion in the

z coordinate frame can be written as
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where
(i)
(ii)

{i44)

(iv)

(v)

(vi)

(vii)

LB,

= X N

Il

Blz,) + Ry (¥(8) + £5(8)) RN (alt) + £,(8)) B3 (e(2))

x R;l(ﬁ(g)) [ult) + £, (£)] L + o(t) (1.2)

v is the three-dimensional velocity vector

g 1is the three-dimensional vector function representing

gravitational accelerations and other deterministic

accelerations (e.g., from solar pressure)

52 and 53 are stochastic processes accounting for
attitude control variations, and thrust vector pointing

inaccuracies

El is the stochastic process accounting‘for random thrust

acceleration variations

¢ 1is the stochastic process accounting for other random

accelerations (e.g., from micrometeorites)

Rl and R2 are rotation matrices defined as follows:
~ cos(+) sin(*) 0
R (1) & | -sin(+)  cos() 0
L 0 0 4,
- cos(*) 0 sin(*)
Re(') : 0 1 0
[ -sin(-) 0 cos () (1.3)
1.
1= 10
0

Note that the time variation of the thrust acceleration includes the

known variations of both the vehicle mass and the power availability.
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The state of the system is observed via nonlinear, noisy
v

measurements which could originate either from earth or from the space-
craft itself. Some candidates for these measurements might be
(i) earth-based doppler and range measurements
(ii) on-board optical sightings

(iii) on-board gyro and accelercmeter measurements.

In general, it is assumed that m observations y are available

and can be represented in the form

v = h(z,v,t) + n(t) (1.4)

where h 1s the m-dimensional observation vector function and n is
the m-dimensional measurement error.

The MTV controller seeks to minimize the following performance
functional

B[ f k. (v, () -v, (t ))2'+ 2. (z, (t ) -z, (t_))2] (1.5)
21 1 1e in' e itTite in' e

where ki and Ei are weighting factors, E is the statistical
expectation over the El, 52, 53,'3 and n stochastic processes, and
te is the nominal time of planet encounter. If position deviations
are the only concern, it is a simple matter to set the -ki equal to
zero. The subscript =n will always represent the nominal value of
the indicated quantity. The control variables for this problem are
taken to be the quantities a, Y and u , which are instantaneously

constrained in accordance with their physical limitations.
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In the course of this investigation, a bang-bang controller will
often appear as the optimal solution. This type of controller requires
only discrete levels of control action and does not seek a continuous
range of values. Hence the bounded control problem is dealt with in a
very natural way. Indeed, the optimality of bang-bang control systems
for certain performance indices is one of the most interesting and
valuable consequences of optimal control theory. The problem was ori-

ginally studied by Bellman, Gamkrelidze, Krasovskii and LaSalle.

1.6 Summary of Principal Results

1.6.1. Results of Chapter II. The low-thrust guidance problem is

defined as the minimum terminal variance control of a space vehicle
subjected to random perturbations of its trajectory. In the general
formulation, only noisy, nonlinear observations of the state vector are
available; To accomplish this control task, only bounded thrust level
and thrust angle deviations are allowed.

The first phase of the study is the consideration of the deter-

ministic guidance problem (L0O),(L41). It is assumed in this part that

|

perfect knowledge of the state (y = } is attainable, and also that

]

v
by B

no dynamic errors are incurred (il gLEO). The analysis of

®3
the deterministic system is performed primarily to give insight into
the accuracy of various approximations.

The deterministic problem admits a multitude of zero terminal

error solutions. As a result, the requirement for a uniquely defined

controller implies that additional performance indices are needed.
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Using the minimum fuel and minimum time criteria for this purpose, a
hierarchy of approximate control laws are derived, and substantial
-credence is given to their validity when they are checked against an
exact open loop solution. An algorithm is developed to facilitate the
computation of the open loop trajectories for the nonlinear, bang—bang
system.

1.6.2. Results of Chapter III. The stochastic problem with

perfect state information is the first topic considered in Chapter III.
The Ornstein-Uhlenbeck (30) process is used to model the stdchastic
inputs to the system. Calling on the approximations which were success-
ful in the deterministic part, it is possible to reformulate the
minimum terminal variance (MTV) problem as a stochastic bang-bang
problem. Asymptotic solutions are developed by numerical methods

since a complete analytic solution seems to be unattainable. (However
analytical methods are applied to the case when the stochastic dis-
turbances are white noise, and partial results are obtained..) The MTV
controller is then analyzed with regard to the following items:

(i) a comparison to the stochastic minimum time controller,
which is obtained by using the approximation-in-policy-
space algorithmj; a comparison to the stochastic bang-bang
controller obtained by Wonham's (55) approach; and a
comparison to the analytic solution of the steady state

Fokker-Planck eguation

(ii) a discussion of the fuel consumption and implementation

requirements

(iii) a comparison between the MTV controller and linear control

designs reported in the literature--specifically, A-matrix
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and second variation systems, including a Monte Carlo

simulation of the MTV and A -matrix systems.

The comparison in item (iii) indicates both the feasibility of the MIV
controller and the validity of the approximations used in its derivation.

The stochastic problem with state estimation is the topic of the
next section. It is shown that if the noisy, nonlinear cbservations can
be approximated by noisy, linear observations, then the MTV guidance
system consists of a Kalman (31) estimator in cascade with a bang-bang
controller. In general, this bang-bang controller can be obtained by
the same method used in deriving the known state solution. It is pointed
out , however, that the "separation" property of linear, stochastic
systems is not applicable to this controller since the switching iaw
will depend on the type and accuracy of the observations. The separation
property refers to the interesting consequence that if an optimal
stochastic system is completely linear, then it consists of a Kalman

estimator driving the deterministic optimal controller.

The final consideration of this chapter is the conceptual treat-
ment of the full nonlinear problem. Several difficulties in obtaining
the exact solution are disclosed, but it is made clear that the bang-
bang property is still retained.

1.6.3. Conclusion. The study is concluded with summary remarks

and an examination of the potential extensions of the methods into other

areas of application.
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IT. THE DETERMINISTIC PROBLEM

2.1 Introduction

This chapter is concerned with the deterministic phase of the low-
thrust guidance problem. Study of this aspect is motivated largely by
questions concerning the validity of certain approximations and assump-
tions, and is earmarked for obtaining a solution which provides a
reasonable compromise between mathematical tractability and solution
accuracy. Later, in connection with the stochastic problem, the results
of this chapter will be of fundamental importance.

The deterministic formulation is constructed upon certain ideali-
zations. Namely, it is assumed that perfect knowledge of the state is
attainable, and also that dynamic errors are negligible. Therefore,

Equation 1.2 is modified by setting

gl:ges%zgso

zZ =V

3= gzt + RSNr(6)) BjNal)) BpN(e(2)) RIN(B(2)) u(s) 1 (2.1)
When these assumptions are valid, guidance is necessary only to correct
injection errors which, in spite of control variable limitations, can
be totally nullified by employing any one of a large number of different
controllers. A unique controller is then obtained only by defining a
performance index which is auxiliary to the MTV criterion. To meet this
need, the minimum fuel and minimum time criteria are chosen as meaning-

ful, although somewhat arbitrary, performance indices.
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2.2 Linearization and Transformation of Plant Equations: The First

Approximation

2.2.1, Mathematical development. If the actual spacecraft

trajectory remains sufficiently close to the nominal path, then linear
perturbation of the plant equations provides a good approximation to
the dynamical behavior of the state deviations. However, this assump-
tion does not imply that the uncontrolled state errors are tolerable
from the standpoint of guidance requirements. Linear perturbation of
the dynamic equations 1s equivalent to making a first order Taylor
series expansion on both sides, and cancelling the zeroth order terms.
The expansions are centered on the nominal trajectory and thus yield a

system of time varying linear differential equations:

fz = By

Su = g, + [T, 11, ¥ sy () FilGe,) Fp(els,)

Ril(B(Zﬂl))un 168y + R;l(Yn)Rii‘n(an) Rgl(f:(gn)) Ril(B(gn)) i A de

+ T‘l du 1 (2.2)

where

(i) ¢ indicates a small deviation from the nominal value
(ii) T = Rl(B(En)) RQ(E(En)) Rl(an) RE(Yn)
(iii) the subsecript z, indicates the Jacobian matrix of the

08,
subscripted vector: e.g.,[éz ] = 521—; L] 8 1152:3)
B o5 K| J
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(iv) [-sin « cos o 0
n n
Rlu (an) =| -cos o -sin a 0
n
L o 0 0
[(-sin ¥ 0 cos Y
n n
Royp (Yn) = 0 0 0
n
_-cos Y 0 -sin Y
n n

At this point the following transformation is introduced:

é_ = T 3=z (2.3)

Differentiating these equations twice with respect to time yields

X T o0qrse T .0 Sz,
I TR EDTE P o i eg see (2.4)
X T : 0 sv o7 ! T 8V

where

(i) 0 is the null matrix of order three

2
aT, |, 5 o

(11) ¢ 23, g &1
i e 1 T 42

Defining the six dimensional.state vector

|%< >

X

end making use of Equation 2.2, Equation 2.L then becomes



—~20-

. T : 0 T : 0 0 : I &z 0 ul
T (VRIS (% DR SUIN, | I S, # st | (2.5)
2 o . ¢ I v T 2
T ! © 2T .+ 0 D' o0 = u
where
5 — -1
(i) D = g, *+ [T u ljz
o =l
(i1) I 4is the identity matrix of order three
(iii) control variables: uy g Su; u, e unéa; uy = unﬁY
Noting that
T 1 0
l Sz
§= -__r__- [ ]
il | T ﬁf_
which implies
sz & ¢ g
[ ]= ----- o s =], B (2.6)
L O i I e '
then Equation 2.5 becomes
|
. 0 ' i 0
n = ——— = = = = = = = -+ - - == b ! (R u (2-7)
=, I = = 2
w3 T T w ol
T~ D-2T T 7T~ @2F T T ug

Fquation 2.7 displays the state dynamies in a form convenient for
studying particular approximations. In connection with this study, a
little foresight into the form of the control solution will be helpful.

Since the plant is linear, a minimum time or, in this case, a minimum
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fuel criterion will yield a bang-bang control law. Unfortunately it
is impossible to determine analytic, closed-loop, bang-bang control-
lers for systems of fourth order or higher (32). No hope can be held,
therefore, for obtaining the closed form solution of the sixth order
bang-bang problem under consideration here. A solution will only be
possible if SOmeh5W the dimension of the state of the system can be
reduced.

Fortunately a form of state reduction is possible if the follow-
ing approximations are adopted: (i) The first approximation concerns
the elements of the matrix D which are proportional to changes in the
gravity vector g and the angles B and e over a region in space
near the nominal trajectory. Evaluating these elements for the case of

heliocentric (g = sun's gravity only), planar (z, = 0) flight yields:

3
GM + u z 3GM 22
D _ s n ln % s 1n
BT T 2 2 +3/2 2 2 542
(Zln'PZ2n) (Zln'+z2n)
u 22 3GM =z z
D = n 1n & s 1n 2n
12T T .8 2 \3/2 2 2 \5/2
(2], *25,) (200 * 22,)
2 2
D _ BGMS “on %1n un(ezln-+22n)
21 ~ 2 2 ,5/2 2 2 ,3/2
(Zln-+22n) (Zln-+22n)
2 2
D = GMS(QZQn'_Zln) Yn®on *in
o9 = 2 B (Bfd . B 2 32
(235 * %op) (23, * 25)
D =D =D =D =D = 0

13 23 31 32 33
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where G 1s the constant of gravitation and MS is the mass of the

sun. For typical injection conditions, these quantities are of the

order of 10_12 seconds_g, and will therefore be neglected. This approxi-
mation becomes less accurate as the sun-vehicle distance decreases.

(ii) Secondly, it is observed that the matrices T and T are related
to the rotation rates of both the vehicle about the sun and also the
thrust wvector about the sun-vehicle line. Generally these rates are
very slow. Typical values for the elements of TT_l and QTT—lTT—l

are of the order of lO_lhseconds_z and can therefore be neglected with

small error. The validity of this approximation is compromised when

the thrust vector goes through rapidly turning situations. (iii) Finally

8 . X
it will be assumed that the quantities 2TT 1 X5 are negligible with
u
1 *6
respect to the control variables Us . Representative values for
u
3
i

the components of these vectors would be 10 ' and 10—5 meters/second?,
respectively. This last assumption is expected to yield the largest
over-all error.

Employing these approximations greatly simplifies the original

problem and results in the following system of equations:

¥ =% . = x . = m
L 6

= (2.8)

Xll» ul K- = W %

\n
no
bde
o)}
1

These equations represent three, decoupled, purely inertial systems
which can be discussed independently. Optimal control of an Inertial
plant has been studied for a number of performance indices (34),(35).

Minimum fuel is the first criterion of interest here.
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2.2.2., Minimum fuel criterion. Consider the integral of the

nominal thrust + control thrust, u + u;, over the time interval 10,£ )=

l’
t % t Mc M(O)
f (un+ ul)dt = J u dt = J Ef-dt = ¢ &n o) (2.9)
0 0 0

where M 1is the space vehicle mass, and c¢ 1is the constant exhaust

velocity. Fuel consumption is now seen to be directly related to the
integral of u . This fact suggests the following formulation for the
minimum fuel guidance problem (note that only one inertial plant need

be considered):
PLANT: X = x),
%), = u

INITIAL CONDITIONS:

x,(0) = x,
%,(0) = x4
PERFORMANCE INDEX:
te
I (un+ ul) dt; xl(tf) = xh(tf) = 0; t, free (2.10)
0

where the assumption has been made that t will always occur before

f
the planet encounter time te
In order to illustrate some tools of optimal control theory, the

problem will be worked out in some detail. First, the Hamiltonian is

specified and is, by definition
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H = wtou, o+ Alxh +_>\2ul 7 (2.11)

where _kl and A2 are Lagrange multipliers. A necessary condition
for optimality is that the extremal control minimizes the Hamiltonian
at each instant of time. This is the celebrated maximum principle of

Pontryagin (35) and implies that the optimal control satisfies

* = -
ad k sgn(l + Ae) (2.12)

where k 1s the maximum attainable value of the control variable u, .
This equation displays the bang-bang property of the optimal controller.
Substitution of Equation 2.12 into Equation 2.11 yields the extremal

Hamiltonian

BE* = un + Alxh - sgn(l*—k2) k sgn(l + 12) (2.13)

Applying further necessary conditions yields the following canonic

equations:

1 ay L
- BH*
= — = - +
x), oy k sgn(l A2)
- QH*
A, = = <=—= 0
i axl
. JH* :
e R 2.1hL
Ay o, Ny ( )

with boundary conditions

xl(O) = X 43 xh(O) 5 &yl xl(tf) = xh(tf) = 3 H*(tf) =0 (2.15{
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The last condition H*(tf) = 0 is termed the transversality condition.
Solution of Equation 2.1L with conditions 2.15 yields the optimal con-
trol function ui(t) . In general it is wvery difficult to solve two
point boundary value problems of this type.

However, in the case of a low dimensional bang-bang problem,
there is an alternative approach which considerably simplifies the

analysis. From Equation 2.1L4, the Lagrange multipliers have the follow-

ing solutions:

Al(t) & Al(O) Ae(t) = ~Al(0)t + Ag(o) (2.16)

Equations 2.16 imply that a maximum of one control switching is possible

on any given trajectory. Solving the x and xh equations for con-

1
stant uy yields
= 132 :

xl(t) = S kt% 4 x b+ x 0

Xh(t) =& *ho
Eliminating t implies

= 2 _
2k(xl— xlo) = (xhw Xuo) + QXMO(XA Xho) (2.17)

Equation 2.17 shows that the vehicle will follow a parabolic trajectory

in the (Xl’xh) plane for constant u Coupling this fact with the

1
fact that only one switching is optimal, the "switching boundary” is
obtained and is illustrated in Figure 3.

It should be noted that the deviation of the fuel consumption is

constant for any controller which nulls the state errors. This
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x4 (x1(0), %4(0))
OPTIMAL PATH
L] .2
2k|x4 U=k e
]
SWITCH—  / Tx
£
Ul=+k
- SWITCHING
BOUNDARY

Figure 3. Definition of the "switching boundary"
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statement is valid to the accuracy of the approximations used above. To

see this, consider the integral of the kh equation given in Equation

2. 10
tf tf
%), dt = xh(O) = J u, dt
0 0
since Xh(tf) = 0 . Hence fuel deviation is not a meaningful perform-

ance index for this problem.

2.2.3. Minimum time criterion. Selection of a minimum time

criterion reflects the desire to null the injection errors as quickly as
possible, and therefore gives these errors a minimum amount of time to
propagate. It will be shown in this section that this criterion yilelds
exactly the same controller as the minimum fuel criterion. The perform-
ance index for the minimum time problem is

tf

dt (2.18)
0

which results in the following Hamiltonian:
w1 + :
H=1 Alxh Agul (2.19)
Minimizing the Hamiltonian with respect to uy yields

u¥ = -k sgn A

. 2

sgn A (2.20)

*
H >

[t}

1 + Alxh - kA2

The canonic equations become
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o= o B (2.21)

Solving the Lagrange multiplier equations gives
A (8) = 2, (0) Ay (t) = -Al(o)t + 1,(0)

Once again only one control switching is optimal, and once again the

same controller is obtained.

2.3 Control Variables: The Problems of Level Variation and Implemen-

tation

2.3.1. The problem of control level variations. In the fore-

going discussion it has been implicitly assumed that the maximum control
magnitude is constant throughout the mission. Realistically, such is
not the case since these values would actually vary with the nominal
acceleration level. A more reasonable assumption is that guidancel
maneuvers are completed rapidly with respect to the slowly varying con-
trol level magnitudes.

The usefulness of this assumption can be revealed by examining
the Bellman-Hamilton-Jacobi equation for the optimization problem. For
the minimum time criterion this equation can be written as follows:

§X~+ min [1 + x), g%—- uy g%z

= 0 2.22
v (2.22)
L
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where V 1is the value function defined by

tf Xl
vt C) £ min J at with X(t) = { } =c; X(t,.) =0
ul(T) i Py - o
L&y & te

Performing the indicated minimization in Equation 2.22 yields

@L“xu___kc)] 0 (2.23)

ot

where k(t) is the maximum value of the control u at time t . In
accordance with the discussion above, k(t) is assumed to be slowly

varying and is therefore written in the form

K(t) = k(t ) + et -'to) (2.24)

where to is an appropriately chosen initial time, and € is the
(small) slope of the control magnitude at time to . Using Equation

2.24 in Equation 2.23 yields

v 3V w |
Tl 5;1-— (k(to)i-e(t-to)) (gzz- = O (2{25)

A solution of Equation 2.25 is sought in the form of the general per-

turbation expansion

vit.C.e)l = ) Vg =T, v el o(e) (2.26)

where lim
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Substitution of Equation 2.26 into Equation 2.25 yields

avo - avo avl
R T Al e e MRl R
avo avl
X l—m+ g ——| =0 (2.27)
Bxh Bxh

Letting € »~ 0 in Equation 2.27 yields the Hamilton-Jacobi equation for

the zeroth approximation:

BVO BVD ov
St It - k) 5

= 0 (2.28)

Equation 2.28 represents the Hamilton-Jaccbi equation for a constant
control level, and the sclution is identical to that given in the pre-

vious section when to is identified as the current time.

If the second term of the expansion V is desired, then the

1

following expression must be noted

1/2

1]

1/2
A+ eB| = ((a+eB)2)'" = (A%+ 2eaB + £°B)

|A] (1 + 2eB/A + o(e))l/g

1}

= [A] (145D + o(e) (2.29)
= |A] + eB(sgn A) + ole)

Using Equation 2.29 in Equation 2.2T7 and collecting terms of
order € yields the desired equation for Vl . This function may be
difficult to obtain, however, because of the behavior of the derivatives

of V. s
o
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As wasvstated to begin with, the rate of guidance corrections
is assumed greater than the magnitude of € . Hence it is reasonable
to approximate the true solution with the fundamental solution obtained
from Equation 2.28, and this approximation will be adopted in this
study.

2.3.2. Control variable implementation requirements. A few

comments are warranted concerning the engineering aspects of controller
impiementation.- The requirement of bang-bang thrust level control
could be met by on-off throttle valve action. This control would be
facilitated by employing the auxiliary thrustor modules required by
reliability needs (36),(39). At constant specific impulse, variable
thrust will sometimes require the use of reserve power. The constraint
on guidance acceleration is then implicit in the engineering design,
power availability, and reliability considerations.
Discrete thrust angle commands could be implemented in a variety
of ways. Among these are the following:
(i) electronically deflecting the ion beam
(ii) engine rotation
(iii) vehicle rotation.
The first method is very attractive, since it effectively allows zero
inertia switching. Success in so deflecting ion beams has been reported
by Hughes Research Laboratories (37). The second method is achieved by
conventional engine gimbal techniques, and the third is effected by sun
sensor biasing. Since large variations of the engine angles are not
desirable on a continuous basis, such control action will be limited to

small deviations from the nominal angle program.
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2.4 Experimental Results Using the First Approximation

One practical and meaningful way to check the validity of the
results is by digital computer simulation. For this purpose, the fol-
lowing assumptions are made:

(i) the space vehicle is in heliocentric planar flight
(i) o = 90° during the initial phase of the mission
(iii) vehicle weight = 10,000 pounds (4535 kilograms)
(iv) constant initial acceleration = 10_3 meters/seconde
(v) maximum control accelerations taken at 10_h meters/second2

(vi) injection errors: velocity = 11.2 meters/second;
position = 3350 kilometers (three days of velocity error

propagation).

Referring to Figure 4 it can be seen that the accuracy of the
X

il
)
X6

controller is very good. The inaccuracies of ignoring the 27T
terms--when intégrated over five days of initial error reduction--
results in a small miss at the terminal time. This small error is
easily eliminated by reapplication of the original control action.
These results lend motivation for applying this approximate dynamic
characterization tc the MTV guidance system to be considered in Chapter
III where, in a loose sense, the disregarded information can be consid-

ered to be included in the random forces which disturb the plant.

2.5 The Second Approximation

As could be expected, the accuracy achieved by the first approxi-
mation can be improved if digital computer capabilities are made’

available to the guidance system. In this section a set of four,
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simultaneous, transcendental equations are derived, requiring on-line
solution by the digital computer. For this derivation the following

assumptions are made

(i) the vehicle is in heliocentric planar flight
(ii) the matrix D of Eguation 2.5 is negligible

(iii) the maximum control level is either slowly varying or

constant.

Hence, ignoring motion in the =z direction, Equation 2.2 becomes

3
8z 0 I ][sz 0 0
o= £ Py # [T Y e (2.30)
v 0 + 0 v .
e sin u cos |
where u(%) = alt) + B(Eﬁ) . Using the minimum time criterion, the
multiplier equations are given by*
. 0O + 0
2\_:_ [___'____,il 2\— (2-31)
I ¢+ 0
which have the solutions
A (E) =2, (0) Ap(t) = =2, (0)t + 2,(0)
AB(t) = A3(0) A, () = —A3(O)t + 2 (0) (2.32)

The optimal controls are therefore given by

*
A review of the linear minimum time problem is given in Appendix A.
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u;(t) -k sgn[(—hl(o)t%flg(O)) cos u(t)-+(-k3(0)t+ Ah(o)) sin u(t)]

1]

u;(t) ~k sgnl (-2, (0)t +2,(0)) (=sin u(t)) + (-2;(0)t + ) (0))cos u(t)]

3

(2.33)

Some possible realizations of the arguments of the above sgn functions
are illustrated in Figure 5. (Note that p is not expected to exceed
90 degrees before nominal trajectory acquisition.) These realizations
suggest that each control would have a maximum of two switchings.

Now, given the initial conditions on Eguation 2.30, the explic-

8z
it solution for [ ] can be represented in the following form (where
Sv
tf is the nominal trajectory acquisition time):
i 0
§z(t §z (0 f
Ba f) . 850} cos u(t)
S = @(ti,,o) - + rb(tf,t) 0 dt
E N =2 0 sin u(t)
e o) |
-sin u(t
® , .3
+ f (t..t) 5 u, (t)at (2.34)
0 cos u(t)

Here ¢(t2,tl) is the fundamental matrix which satisfies the matrix
differential equation

01 0O
0000
0001
0000

é(tz,tl) = o(t,,t,) (2.55)
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sin p(t)

cos p (t)
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/4 ~X3(0)t+ X4 (0)
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/4
/!>//—(—X3(O)!+>\4(O))sinp. (1)
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A
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Figure 5. Arguments of the switching funection
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where @(tl,tl) = T . The solution of Equation 2.35 is

i |
1 (tg—tl) 0 0
0 1 0 0
o(t,,t.) =
2P
0 0 1 (tg— tl)
| o 0 0 1 (2.36)

Since the absolute values of uy and u, are constant, only the

sign of these quantities is needed inside the integrals of Equation

2.34, 1If ul(O) and uQ(O) are designated as the initial values of

vy and u; tl and t2 as the switching times of Uy

th as the switching times of u

, and t3 and

, then Equation 2.34 becomes

2
sz(t,) §2(0)" B B B riy Ty te
o0 |50 [ ] J] -]
ézﬁtf) ) 0 t £ 0 0 t
X Y
(2.37)

The integrals of Equation 2.3L4 can be explicitly evaluated if the
assumption is made that u varies at a constant rate. This is a godd

approximation for the trajectories of interest. Hence let

olls
.

u(t) = wt w = constant

Now defining
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2t 2t i i
I. = u, (0) ~—l'sin wt 4-£L'cos wt, - 2 sin wt,. - cees e = + thIn wtf
1 1 w 1 2 1 w 2 2 i
w w
. ;E-cos . lﬁ.ﬁ (0 q_2t3cos wt3 . 2 sin mt3 . Ethcos mth
2 whe 2 2 w g T w
w W w
) 2 sin wth tfcos wtf . sin wtf
2 B w 2
w w
2 . 2 . i S 2
= = - — 4+ - o — —
L ul(O)[w sin wtl —~ sin wty = sin wt%] u2(0)[ = cos wt3
2 1 1
+ - cos wth - = cos wtf + w]
o o la) —2tlcos mtl . 2 sin wtl . 2t2cos wt2 ) 2 sin wt2
37 1 w 2 w 2
w ®
) tfcos mtf . sin wtf v 2. (0) 2t3 I
w 2 2 w 3
w
NERR Eth i wh o 2 cos wth . thln wtf R 1
2 3 L 2 ) 2 f 2
™ w w w
-2 cos wtl 5
Ih = ul(O) = + = cos wte - = cos wtf + B~+ u2(0) o sin wt3

2 - . Lo s
- 5-51n mth + : sin wtf}

then Equation 2.37 becomes

]

ézl(tf) 621(0) + 1t avl(o) = T. + %£.T

f 1 2

i

5v1(t )

f le(O) g 1

2
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GZe(tf) szz(o) +t_v.(0) - I_ + thh

£ 2 3

5v2(tf) = 5v2(o) + 1) (2.38)

Equations 2.38 are four equations in five unknowns. Since it is desired
that
8z(t ;)

= B
sv(ty)

the problem is now to find the minimum wvalue of tf for which Eguations
2.38 are satisfied. Fortunately these equations can be solved by the
NewfonﬂRaphson technique, and such analysis indicates the minimum value
of tf is achieved either when tf = t2 or tf = th . Hence one con-
trol will have one switching and the other will have two switchings.

It is fairly easy to determine the correct ul(O) and u2(0), and
thereby Equations 2.8 can be sclved for the minimum value of t and

T

for the switching times of the control variables.

2.6 Experimental Results Using the Second Approximation

The computer simulation of the second approximate solution indi-
cates that there is a need to account for second-order effects in the
control variables. Hence, for the case when tf = th’ Equation 2.37

can be modified as follows:

6a(t ) 82(0) Y ©3
= ¢(tf,o) + ul(O) FAC 1 J ~ FAC 1 J
§xﬂtf) 8v(0) o B
t2 tf ' t3 tf \
- FAC 2 J + FAC 2 J + u2(O) FAC 3 J - FAC 4 f )
tg t, 0 t3
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where FAC 1, FAC 2, FAC 3, and FAC 4 are the factors that account for
the second-order effects. Introducing these refinements adds little
analytical difficulty, and the solution can again be found by using the
Newton-Raphson technique.

The performance achieved by using this modified solution is illus-
trated in Figure 6. A comparison with Figure 4 indicates that the
second solution (1) requires about 24 hours less time to acquire the
nominal trajectory and (2) requires three fewer commands, or switchings,
to be sent to the vehicle for the initial deviations congidered. It is
also found that smaller wvalues (i.e.,.25 X lO_h meters/secondg) of u

1
and u, could be used with no loss of accuracy (see Reference (L0)).

It is probable that the second solution represents a close approxi-
mation to the exact optimal solution. This conjecture can be partially

verified by actual comparison with a computed open loop trajectory. In

the next section the problem of finding such a trajectory is undertaken.

2.7 The Open Loop Problem--An Algorithm for Determining Minimum Fuel

and Minimum Time Trajectories

Numerical solutions for optimal bang-bang control systems have long
been a topic of interest to control engineers. Much of the literature
(32), (Lh2), (43) deals with time optimal control of time invariant
linear plants. At best, finding the optimal trajectories is a very dif-
ficult task, and unfortunately the powerful quasilinearization method is
inapplicable to bang-bang systems since the associated differential

equations possess discontinuities.
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For the present guidance problem the difficulties become even
greater. In addition to the nonlinear +time varying differential equa-
tions, there is also the problem that the minimization of the Hamilto-
nian with respect to control cannot be obtained in closed form. These
circumstances preclude the direct application of the methods cited
above. For this reason the algorithm described in this section is
proposed as a means of overcoming these difficulties.

In compact notation the differential equations for the deviations

of the state vector from nominal values are defined as follows:

li>

G(t,52,8v,u. ,8a) (2.39)

l’

For convenience +the case of heliocentric planar flight has been

assumed. The performance indices being considered are the following:

Ty e a(t )
(a) j u dt (b) J dt  t, free, =0
0 0 B lts)

= ¢ are given.

8z(0)
where the initial conditions [ }
Sv(0)

The Hamiltonians for the two problems become

(a) H=u+¢{ 1,06 ) () H=1+(1,0) (2.%0)

The optimal control minimizes the Hamiltonian at each instant of

A

. . X N A e :
time. In particular, it minimizes (un a B(én))
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. §
(a) M(ul: aszlszg_:Agyhu)

1- Ag(zecos(un+ Sa )+ zlsin(un+ Sa))

= (u+u )[
n 1
, 2 2,1/2
(zl + z,5)

. (2.h1a)

Ah(zlcos(un+ Sa) + z251n(un+6a) ]
2 _2,1/2
(zl + 22)

(un+ u, W (z cos(un+ Sa)t z sin(un+6a))

1

_ 1/ a e
(b) M(uy,60,2y,2,5,05,1),) = 1 - 2 2.1/2
(zl E 2 Z2)

. (un+ ul) Ah(zlcos(un+ Sa) + zesin(un+ Sa)) ey
(22 + 2)1/2
Ay, Bg

Since the minimization functions cannot be written in compact form, the

following symbolic functions are defined to meet this need:

I - R —
@l(zl,zg,lg,ku) u¥ e U 1 kl’o’kl} u¥ minimizes M

= *® - ' i . *® CO I
¢2(21’Z2’A2’Ah) Sa* ¢ A = {-k 0,k2} do* minimizes M (2.42)

25

Note that ¢l and @2 are discontinuous functions whose partial deri-

vatives are zero with respect to all arguments (except at discontinui-

ties). Also @1 and @2 are not explicitly known functions, but can

easily be calculated on the computer since only nine combinations of

uy and ©&a need to be checked. Substituting Equation 2.42 into

Equation 2.40 yields
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(a) H*

1]

o, +(A,6(t,82,8v,%,,8,))

(b) Bf = 1 +(2,0(t,82,8v,0,,0,)) (2.43)

The canonic equaticns are
¥4
= H*
8v
A = - B (2.4h)
8z
v

and the transversality condition gives

|>

H*(tf) = B

The motivation for the algorithm which follows is the Newton-

Raphson technique for solving nonlinear equations. The basic idea is
Sz

to determine how the end conditions on [ } and H* wvary as functions

Sv
of t. eand the initial conditions on A . Such behavior could normally
be approximated by first linearizing the nonlinear equations, and then
using linear differential equation techniques. This approach is applied
in the quasilinearization method, but fails here owing to the discon-
tinuity of @l and @2 .

Proceeding directly, the following quantities are defined

2(0)
o

>

£
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Sz(t.)
Svlt,) | = E(a(0),t,) = E(C) (2.46)
"
H (tf)
Let gﬂn) be the nth estimate of C . Then in general
Ec™) £ 0 or
2(ct) = ) 20
The problem is to find _A_C_(n) such that
gc™ + ™) = o
Expanding this equation to first order about gfn) yields
(n) (n) _
,E_.(_(_:. ) E E.g_ﬂ_c. - 9_
This implies
st =gt ) (2.17)
Equation 2.L47 would yield égﬁn) except for the fact that an explicit

expression for EC is not available. This matrix is approximated in the

algorithm by a perturbation technique. In summary the algorithm sug-

gested is the following:

(1)

(1) guess C

(ii) integrate Equations 2.4L to obtain




~h6-

(1) (1)

(iii) perturb C by an amount fC where the scalar f << 1

(iv) compute E_, according to the following approximate

_C

formula:

E1(9(1)+ fg(l))—El(Q(l)) El(g(l)Jr fg(l))_El(Q_(l))

(1) (1)
fCl ) fC5
Bg < g
b c®r 65 6@ m e ) 5 (c™)
— > (l) (l) -

fCl fC5

(v) calculate E.' and obtain ég‘l)

By from Equation 2.47T

(vi) repeat this process until the solution converges.

The computer results for both the minimum fuel and minimum time
problems are shown in Figure 7. For purposes of comparison the trajec-
tories obtained by using the closed loop controller derived in the second
approximation are inecluded. It is noted that the differences between the
trajectories for the nonlinear minimum fuel and minimum time problems are
small,and this supports the analysis given in Section 2.2. Also it is
seen that the linearized controller gives a very good approximation to
the exact optimal solution. One aspect of the extremal trajectories
that was lost by linearization, however, is the time interval during
which &a = 0 . But it is interesting to note that this "coast
pericd" has little effect on the performance index, which suggests that
the rather negligible degradation in system performance resulting from

linearization is more than compensated for by the comparative simplicity
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of controller implementation.

2.8 Conclusion of the Deterministic Problem

There have been several interesting consequences resulting
directly from the study of the deterministic low-thrust guidance
problem. For instance it was found that a surprisingly close approxi-
mation to the optimal controller could be obtained by merely solving a
set of nonlinear equations, and that the difficult and time-consuming
solution of the two point boundary wvalue problem was, for all practical
purposes, unnecessary.

In éddition the first approximation showed that the system
dynamiecs could be approximated quite well by three, decoupled, purely
inertial plants. This important result provides a large step toward
the solution of the stochastic problem, which is the next topic of

interest.
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ITT. THE STOCHASTIC PROBLEM

3.1 Introduction

One of the truly unique features of the low-thrust guidance prob-
lem is the manner in which random disturbances act to produce in-flight
errors which are comparable in severity to injection errors.
Undoubtedly the number of independent disturbances is great, but the
ones of significant magnitude can be categorized as follows:

(i) attitude control variations and thrust vector pointing

inaccuracies

(ii) +thrust acceleration variations.

The less influential noise effects are considered to be lumped into the
above processes. In this chapter the guidance system is sought which
most accurately corrects the effect of these stechastic errors when
constrained byvcontrol variable limitations. This minimum terminal
variance (MTV) control problem is a stochastic optimization problem
whose solution is more difficult to obtain, even approximately, than

the deterministic cases treated in the last chapter.

3.2 The Noise Model

In making a statistical analysis it is necessary to model the
noises acting on the system. Since a complete characterization of a
random process is virtually impossible, there will invariably be a
certain amount of arbitrariness in i1ts representation. What is usually
done is to select a model which contains features of physical signifi-

cance, but which also retains properties conducive to mathematical analysis.
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To obtain an approximation which is accurate to second order, the follow-

ing essential features should be included in the stochastic model:

(i) the mean value (u)
(ii) the range of variation, or standard deviation (o)
(iii) +the rate at which the process varies, or the correlation
time (1/B)

A stochastic model which retains all of these features as parameters is
the Ornstein-Uhlenbeck (30) (OU) process*. If these parameters are not
available from preflight test data, then an adaptive procedure (61),(63)
of estimating them in flight is conceivable. *

Mathematically, the OU process 2z can be represented as follows
z = u+ n(t) (3.1)

where n 1is a Gaussian, exponentially correlated process having zero
mean, variance 02 and correlation time 1/8 . If a suitable inter-
pretation is given to the solution of a stochastic differential
equation, then it can be shown that the n(t) process satisfies the

following Langevin equation

n = - Bn + E(t) (3.2)

where £ 1is a zero mean, Gaussian, white noise process with variance
2802. A typical sample function for the z process is illustrated in

Figure 8.

*Jordan (24) has already applied this model to low-thrust guidance

problems.
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3.3 The Minimum Terminal Variance (MTV) Guidance

Using the motivation gathered from the previous deterministiec
cases, the procedure detailed in Section 2.2 is used to linearize,
transform, and simplify the plant equations 1.2, only this time the
gl, gz, and 53 stochastic processes are retained (as explained in
Section 3.1, the ¢ process is lumped with these terms.) The result

of carrying out these operations is the following set of plant equa-

tions:
il = x), X, = x5 x3 = xs
kh - ul+ El k5 - u2+ unEE *6 = u3+ un53 (3.3)

where the coordinates x, are identical to those expressed in Equa-
tion 2.8. Once again three, independent, purely inertial systems are
cbtained which can be studied individually. If now the noise terms
El’ un£2, and unE3 are identified with the OU process as defined in
Equation 3.2, then the following formulation can be made for the MTV

control problem:

PLANT: xl = Xh
), =W 5
il = -B&l +n

INITIAL CONDITIONS:
x.(0) ~ W(0,0_ )
L xlO

(0) ~ w(o, )
L Oxho (3.4)

g,(0) ~ (0,728 o)
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PERFORMANCE INDEX:

4 2
E[klxl(te) + Rlxu(te)]

where

(1) N(m,o) indicates the normal distribution with mean m

o

and variance g
(i1) Ky and Rl are weighting factors as used in Equation 1.5

(iii) E 4is the statistical expectation over n(t), Xl(O), and

xu(O) .

Note that a similar formulation would apply to the other two of the
three inertial systems. At first glance the above stochastic problem
may seem gquite innocuous, but to date no analytic solution has been
found.

To illustrate the difficulties, consider a dynamic programming
approach to the problem and let the following value function be defined

A . > o,
V(t,C) = mt; E[klxl(te) + leh(te)]

x, (t)
with X(t) = Xh(t) = C £3.5)
El(t)

Associated with this function is the stochastic Bellman-Hamilton-

Jacobi equation (UL4) which it satisfies:

2 2%

2
8&1

_ |y 3V av W oV
b= mln{ 3t | Xy 9%, Ll axh & 8x), Bgl EEl + po (3:6)
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Performing the indicated minimization yields
w(x; %, ,E; ,t) = ~k(t) sgn(3) (3.7)
1717k e 8%,

where k(t) is the maximum value of the control Uy Equations 3.6
and 3.7 represent a stochastic bang-bang control problem as well as the
stopping point for elegant analysis. However a few important obser-
vations can be made regarding qualitative aspects of the optimal
system. Specifically the bang-bang control policy implies that full
control effort should be applied whenever it becomes available, and
should not be delayed until the final part of a mission. In this
manner the auxiliary control reserves referred to in Section 1.2 are
incorporated in a very natural way. Several authors have already
studied stochastic bang-bang systems, and a brief review is warranted

here.

3.4 Litersture Review of Stochastic Bang-Bang Control (Ll4)-(55)

Much of the effort in this area has been directed toward singu-
lar perturbation expansions of the stochastic Bellman-Hamilton-Jacobi
equation. Such an approach was first taken by Stratonovich (45), then
extended by Lim (46), and further applied by Dorato (47), Hsieh (48),
and Robinson (L49). 1In making this expansion it is assumed that the
noise covariance € 1is sufficiently small so that the expansion can
be made in powers of € . This procedure leads to utilizing the deter-
ministic solution as the zeroth order term.

There are several aspects of this approach which might affect

the accuracy of the results. (i) First, the deterministic value
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function for a bang-bang problem is usually badly behaved in that dis-
continuous and even unbounded partial derivatives are frequently
encountered. Unfortunately these derivatives are required for the
second and higher order terms of the perturbation expansion, and their
behavior might overshadow the smallness of the parameter € .

(ii) Second, a singular perturbation expansion normally requires the
addition of boundary layer terms in order to insure that all boundary
conditions are satisfied. As pointed out by the above authors, however,
these terms are ignored in their expansions and the omission evidently
causes difficulty in some of the examples given (L6).

Even if these items cause small errors, the method cannot be
applied here since the MTV guidance problem has no deterministic
analog. In fact it is easily shown that the deterministic minimum
terminal error problem is singular®*. This property makes it necessary
to define the auxiliary performance indices in the deterministic case.

Acki (50) has applied dynamic programming and approximation-in-
policy-space to solve stochastic minimum time problems. The numerical
method is straightforward and effective for systems up to order three
and possibly four. Two authors, Robinson (49) and Novosel'tsev (51),
have found fault with Acki's approach. Both criticisms seem unjustified.
Robinson, on the one hand, has erroneously interpreted Aoki's dynamic
programming equation (Equation 3) as a statement of the stochastic

Hamilton-Jacobl equation. Novosel'tsev, on the other hand, has tried

*i.e., the Hamiltonian is independent of the control. See Appendix B

for this derivation.
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in his paper to derive the stochastic Hamilton-Jacobi equation, but has
failed to include the diffusion terms in his analysis (Equation 1k4),
The result is the deterministic Hamilton-Jacobi equation for the mean
state of the system and, of course, this error leads to results quite
different from Aoki's. A stochastic minimum time problem is consid-
ered later in this study (Section 3.6) and the qualitative aspects of
the solution agree with those noticed by Aoki.

There has been work (52),(53) on the direct numerical solution
of the stochastic Hamilton-Jacobi equation. This approach is appealing
but is computationally burdensome and needs perfecting for systems of
order higher than one. One difficulty is finding enough boundary con-
ditions to allow the application of known numerical algorithms for
solving partial differential equations. In Reference (53) the approach
of arbitrarily specifying the solution on a selected perimeter seems
very artificiél.

Van Mellaert (54) has done work related to the inclusion
probability of a stochastic system (i.e., the probability of remaining
in a given region of the state space over a specified time interval).
The MTV control program would be similar to maximizing the inclusion
probability in a neighborhood of the origin over the interplanetary

flight time.

Wonham (55) suggests an interesting approach to theminimum mean
square error problem, and bases his analysis on Booton's (56) statis-

tical linearization. More will be said about this idea in Section

B 62 s
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In summary, there have been a host of approaches to stochastic
optimization problems but none offers a cook-book solution to each and
every example. It can safely be salid that the approach must be selected
which best suits the problem of interest. In the following section an

algorithm is designed to solve the MTV guidance problem.

3.5 An Algorithm for Determining the MTV Guidance System

In this section a method is proposed for obtaining the control
law associated with Equation 3.6. Fundamentally the algorithm involves
three stages:

(i) the switching curve is parameterized using a finite set

of parameters a

(ii) for each control law ul(ﬁﬁg(l),k) the steady state proba-

bility density function of the state deviations is computed

(iii) the parameters are optimized so that the performance index,

Equation 3.4, is minimized.

Special attention 1s required to successfully execute the most
difficult phase of the slgorithm; i.e., step (ii). In order to find the
stationary probability density function it is assumed that the control
is discretized. In other words, over small intervals of time of
length A , let the control input uy be eqﬁal to the constant value
determined by the state of the system at the beginning of each tire
interval, and the value of the control function ul(zﬁé,k) at that

state. Actually discretizaticn is advantagecus here since it limits

the maximum switching rate of the control variables and thus prohibits
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the chattering sometimes encountered in stochastic bang-bang systems.
In computing the stationary density it is implicitly assumed that

the system is either time invariant or else slowly varying; in the
latter case, the same perturbation argument used in Section 2.3 is
again invoked here. An asymptotic solution is used primarily to
eliminate the time dependence of the control law which results from a
finite (although large) orbit transfer time te .

When the control u

1 is constant, then the transition probabil-

ity density function associated with Equations 3.4 is obtained in a
straightforward fashion from the Fokker-Planck equation¥*. This func-
tion is a Gaussian density which is totally characterized by its mean
u and covariance M , and is used to compute successive probability
distributions of the state at intervals of A seconds, assuming an
arbitrary initial distribution. The sequence of distributions approaches
the steady state in a manner suggesting gecmetric convergence. Using
this technique to obtain the steady state density, the parameter set a
is then optimized to yield the minimum value of the performance index.
In the present problem, two simple parameterizations are given
for the switching curve:
(i) oparabolic with multiplicative parameter a (see Figure 9);
i.e., u = -k san {Xu+ a /EET;ITjsgn(xl)}
(ii)‘ same as (i) with a zero, or resting, control region (see
Figure 10).

For easier implementation the switching law is made independent of

*
See Appendix C.
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Figure 9. First parameterization of the switching curve
U|='-k
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a=0
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U|=-+k

Figure 10. Second Parameterization of the switching curve
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gl(t) and is chosen parabolic based on the results of the stochastic
minimum time investigation (see Section 3.6). Clearly the motivation
for these choices is heuristic and there is no conceptual difficulty
in choosing more complicated parameterizations if desired.

The results for case (i) are plotted in Figures 11-12 for two
different transition probability density functions Ml aﬁd M2 which
correspond to small and large noise processes, respectively. In
addition to the performance index, the steady state probability density
function also yields the following information:

(1) the probability of being in a particular control state

(2) the probability of a transition from one control state to

another, at each A-interval

(3) the total probability of a control switching every A seconds.

Quantities (1) and (3) are plotted in Figure 13. 1In order to gain
insight into the nature of the steady state density function, the results
for covariance Ml with a =1 and a = .5 are shown in Figures 17T
and 18, respectively.

It is seen from Figure 11 that for small noise the performance
indéx (with by = 0) is minimized for a = .6 . For the larger noise
example, the minimum point occcurs at a = .25 . This counterclockwise
swing of the switching curve (for increasing noise) agrees with the
results of Acki (50) and Wonham (55), and is consistent with the results
of Section 3.6. A loose interpretation of rate-gain increase can be

associated with this phenomenon. It is interesting to observe,

though, that the optimum value of the parameter a is relatively
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insensitive to large variations of process noise levels.

The results for case (ii) are shown in Figures 14-16, and
indicate the responses to both small and large noise. Introducing the
Zzero control region violates the bang-bang requirement, but is appeal-
ing from the standpoint of reducing the total number of control
switchings. It is not difficult to imagine other control configura-
tions which could offer specific advantages, and which could pe easily
tested using the above algorithm.

The magnitude of A represents a trade-off in control system
design. As A 1is decreased, better guidance accuracy is obtained, but
mechanization simplicity is sacrificed because the expected number of
control switchings increases. Hence there will be a best value of A
according to design specifications. Also there is no reason why A
must remain a constant throughout the entire mission, and it is likely
that there would be advantages in allowing it to vary.

It would be of at least theoretical interest to find the result
of letting A approach zero. At best, the procedure described above
will provide a rough answer by extrapolation. Figures 18-20 show the
stationary density function as A 1s decreased and, as expected, the
probability distribution becomes concentrated around the origin as A
becomes small. In Figure 21 the standard deviations of the states cor-
responding to A = 0 are found by extrapolating the curve through the
vertical axis. As A vanishes the expected number of control switch-

ings 1s seen to increase without bound.
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The deviation in fuel consumption from nominal is found by

integrating the differential equation for kh given in Equation 3.3:

t t

e &

J X, dt = J (ul+ gl) at {3:8)
0 0

If the final velocity deviations are zero (or approximately zero as in

the MIV controller) then

t t

e e

J wdt = - J g, dt - v(0) (3.9)
0 0

Hence, to the accuracy of the approximations.employed, any controller
which damps out the velocity errors will have the same total fuel
consumption. At most, differences will be of second order.

In summary then, a controller has been found which provides
maximum guidance accuracy subject to bounds on the control variables
when noisy disturbances enter the system. To support these results
it would be profitable to compare them to other stochastic bang-bang
-éontrollers. In the next section three such controllers are investi-
gated.

3.6 Investigation of Other Stochastic Bang-Bang Controllers

3.6.1. The stochastic minimum time controller. The perform-

ance index to be minimized is the average time required to bring the
state of the system into a specified neighborhood of the origin NO s
Corresponding to this criterion, the following value function is

defined:



TR

e
v(t,C) = min El: J dtlg(r) = g_] 3 X(t,) e N (5.106)
u, (t) =
Tététf

A set of target points is necessary since there is zero probability of
hitting a single point in a stochastic system with bounded control.
Following Aoki (50) the solution is sought by the method of dynamic pro-

gramming (58) and the right side of Equation 3.10 is expanded as follows:

V(t,C) = min [A-l- E[V(t+a, X(t+A) | X(1) = C] + O(Az)]
u, ()

Tt < 7+A

= s+ min [ pE(ea)E() = ©) Viera, Zrea))ax + 0007)  (3.11)
nox

where p(X(t+A)|X(t) = C) is the probability density of the state vec-

tor at time 1+A given that gfr) = C 3 i.e., the transition probability

density function.

Special attention is required to find p . In principle the
Fokker-Planck equation associated with the system described in Equation
3.4 could be solved for ﬁhis function, while in reality this solution
is not available (5T7) since ul(gﬁt) is bang-bang. However, if at any
given time the state of the system is in one control region (for
instance, the state is above the switching curve in Figure 3),then over
A seconds it locks to the system as though ul(zﬁt) is actually a

constant function. There is a natural temptation, then, to use the
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solution of the Fokker-Planck equation for a constant control input#*.
Of course, the approximation will become less accurate as the state of
the system nears the switching curve.

With p now in hand the solution of Equation 3.11 is sought by
means of the approximation-in-policy-space algorithm (59). This method
can be broken downlinto the following steps:

(i) guess an initial value function VO(T,Q)

(ii) compute Vn(r,g) = A + min E[Vn_l(T+A,§jT+A)) |§fr)] and

hie 1

store u at each grid point; n=2,3,-°"

a

(iii) diterate until the solution converges.

For completeness a few details of the numerical solution will be
discussed. A convenient initial guess for the value function is given
by the deterministic solution of the minimum time problem. And again,
for simplicity, the switching curve is assumed to be independent of
51 The target neighborhood No is defined as a rectangular area
with boundaries at + 40 meters in the Xy direction, and + .05
meters/second in the x), direction, while grid points are spaced 10
meters apart in the Xy direction and .025 meters/second apart in the
x), direction. In deference to considerations of computing time, the
area of interest is limited to + 1 kilometer by + .25 meters/second,
and even though solutions in larger regions could be obtalned, the

general solution characteristics are evidenced by the results in the

area that was considered. In all cases A was taken as 1000 seconds.

E3
See Appendix C.
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The results appear in Figure 22 for various noise cases. As
the noise gets large, it is interesting to note that the switching
curve is found to optimize nearer to the Xl axis. This effect is the
same as that noticed by Acki (50) and Wonham (55) for similar problems,

and was also encountered in Section 3.5 of this chapter.

3.6.2. Wonham's approach to stochastic bang-bang control. Won-

ham's (55) technique is geared to finding stationary, or steady state,
solutions associated with integral quadratic performance indices; but

here an attempt is made to extend it to the nonstationary‘MTV guidance
problem.

The Bellman-Hamilton-Jacobi equation which must be solved is the

following:
v : 1 ”
— & m;n<(A§ + bu), V§> + 5 tr(QVy,) =0
- x7I i s
vit) = X(t) Wh(t)) 5 v(t)) = 2wx(t)) (3.12)

where X is the n-dimensional state deviation vector, u is the
m—-dimensional control deviation vector, and A and b are the
Jacobian matrices o the plant dynamics with respect to nominal state

and nominal control, respectively. In addition

v(c,1) & min E[X (t ) WK(t_) |X(1) = ¢ ] (3.13)
u

Performing the indicated minimization in Equation 3.12 yields

u=-K sgn(bTVX) (3.14)
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where

where ki represents the bound on the control u, . Wonham's approach
relies heavily on the statistical linearization technique of Booton
(56) to convert the nonlinear problem into a tractable linear problem.
The object of Booton's method is to find an equivalent gain matri# C

which has columns Ci that minimize

J [u, (%) - Cfg(_]g p(X,t) ax (3.15)
g2
Here p 1s the probability density of the state deviations. This den-
sity is assumed to be approximately Gaussian with zero mean and

covariance M . Wonham's final assumption is that the value function

V is approximately quadratic, i.e.,
T .
V= X"PX+r (3.15)

Under these assumptions the minimization indicated in Equation 3.15 can

be determined for the control law in Equation 3.14

-1/2

_ 1.5 P '
@, = = k.l(2/1r) {(b, P M Pbi) } Pbi €3.37)

i i

where b, 1s the ith column of b . By substituting Equation 3.16
into Equation 3.12 and using 3.17 we get the following differential

equations for P and x :
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P+ (a+nch) 2P+ 2P(arbc’) = 0 5 B(b,) = W

r + tr(QP) = 0 ; r(tf) = 0 (3.18)
Finally, the covariance matrix M must satisfy

. T LN

M = (A+DbC )M+ MA+DBCT)” + Q ;3 M(0) = Mo (3.19)

Equations 3.18 and 3.19 represent a two-point boundary value problem
whose solution approximates the optimal, stochastic, bang-bang con-
troller.

The solution of these equations was first attempted using the
simplified dynamics (i.e., three decoupled, inertial plants) derived
in Section 3.3. It was found that the divisor in Equation 3.17 almost
invariably went to zero on any given iteration. The reason for this
can be explained by examining the steady state solution of Equation

3.19. First, C can be obtained from Equation 3.1T as

Cl k(g- 1/2 1
= T
.20
C (m,.+ 2m.,.p.. +m p2 )1/2 P R
2 11 12522 22722 22

while the steady state solution of Equation 3.19 is given by (assuming

white noise disturbances):

Hence



2m12 = 0
Wy * Cyyy * Gallyp = O
2(C.m,, + C.m )+02-0
1712 2 22
which implies
Uiy =
_ 2
Dy = = © /2 02
m, . = 02/2 G.C. = =it JC
11 271 22’1
Therefore
- 2 )1/2
A - M-~ 1y
22 " 2 2
Pas
2
o (my, + my5055)
m. . = (3.21)
$, 2k2
Pap
Solving these equations for m yields (p L p)
1] - 22
*e2 (uatelp? + 2(p - 20%62) o26%p)
m = (3.22)
11 (p - 20%6%)2

1/2

where @ = (w/2) / 2k . Now, defining

lic>
N
N

20 O

Equation 3.22 becomes
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2 3
6.k 2r°+r  r
mll = g0 1+ r + = +'7§ (3.23)

]

If now it is desired to minimize m 4 with respect to p --which is

the same as minimization with respect to x --then standard analysis

yields

3
x = er- (3.24)

2r2+ r

Substituting Equation 3.24 into Equation 3.23 yields

o : -06Qu - cun ’ (3.25)
L hr 6h %2 '

Equation 3.25 shows that the optimal m should be negative; this is,

11
of course, an impossibility. Evidently this result is linked to the
difficulty of solving the nonstationary problem referred to earlier,
and unfortunately renders Wonham's method inapplicable to the MIV

gulidance problem.

3.6.3. The MTV controller and the steady state Fokker-Planck

equation. It would be of interest to consider an analytical approach
to the MTV control problem. If El is interpreted as a white noise
process with variance 02, then the following steady state Fokker-
Planck equation is associated with Equation 3.4 (setting b = 02/2 3
REEI =% ne ul):

9P P
¥ =3

o %;—(u(x,y)p) =0 (3.26)



_80-

The MTV control problem can now bé cast as follows: (i) find the
solution of Equation 3.26 far arbitrary switching curves associated
with u(x,y), and (ii) choose the curve which minimizes the performance
index given in Equation 3.L.

The first problem is approached by expanding the solution about
the x axis (on which the solution is parameterized by unknown constants),
and extending the expansion throughout the region where ulx,y) is
constant. Then various switching-boundary conditions are used to solve
for the unknown constants.

To be specific, assume that the following gquantities are known

1%
(@]

p(x,0) = g(x) , s

1%
(@]

py(x,o) =9 (x) , " X

and also assume that the switching boundary is below the x axis for
positive values of x . In order to find the partial derivatives along

the x axis, Equation 3.26 is used to obtain

o _ yop, udp
8y2 b 9x b 3y
u
=%¢X+gw s xéO,y=0

In addition, the third partial derivative is cbtained from this equa-

tion
A 2 2
’p _ y3p L1l u3dp
b 9xoy b 9x b 2
oy oy

1 u u,u
= Ly + (G+rp@N o, + 5@ v



-

Similarly it is found that

¥

kR %) w;%{%ﬁ-{%)) g, + L) g+, and so on.

The solution is then given by

2 n n o]

plxyy) = ) LR ¥ o 2B o0) = p(x) (3.27)
n=0 oy ) oy
which can be written in the form
p(x,y) = B(x) + v(x) g (y) + 8 (x) £,(y) + v (x) & (v)
+ 8 (x) £,(y) + W V2D BulF) # v (3.28)

where
W1
go(y) =y+§%+§—!‘(%)2+%7(%)h+'-
oy 2,1 1 uyyy 3. 1 ul uyyy kb .
£0) =gy TG TG e vt

g, (¥) =L Lyd s Hei® Dt

£.fr) =X + o

To obtain the conditions which must be satisfied at the switéhing
boundary, let the boundary be defined by y = h(x) for positive x .

Symmetry and continuity imply that



_82-

p(x,h(x)) = pl-x,-h(x)) (3.29)

while, in addition, the differential equation must be satisfied on

the boundary, i.e.,

2
b -2 - [u Ry B 4 oy 6(x,h(x))pJ (3.30)
oy~ | (x,h(x)) woT = (e b))

where & represents the Dirac delta function. This equation implies

that
32 21
-—% = 2 6(x,n(x)) p
Ay
or
E (=x,-h(x) = Pplxn(x)) - x,n(x)) (3.31)

Since u = 0 on the boundary (the result when the step function is
interpreted as the limit of symmetric, continuous functions) Equation

3.30 also implies

%fg (x,h(x)) = 0 (3.32)

Hence Equations 3.29, 3.31 and 3.32 are three conditions which must be
satisfied at every boundary point.

In order to find the optimal switching curve, the following numeri-
cal method is suggested. First write @(x) and ¢(x) in their Taylor
series expansions about the origin
2 % x3

3
B ¥ TE]

¢2x

+

@(x) = ¢O +gox +
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TEE S
b) =y, + vy x o+ 2t S

+ ..

These series are truncated after 3M (M integer) terms which means that
there are a total of 6M unknown constants. If 2M switching boundary
points are selected, then Equations 3.29, 3.31 and 3.32 will yield 6M
boundary ccnditlons--~the number required to solve for the constants.
Note that the fi's and gi's in Equation 3.28 are known functions
and can be computed to any degree of accuracy. Finally, the switching
curve is parameterized, and the optimum parameter set is found by a

gsearch technique such as steepest descent.

To put the MTV controller in the proper perspective it is
necessary to relate it to other control schemes of current interest.
In the next section, certain aspects of the second variation and

A-matrix controllers are considered.

3.7 Characteristics of Linear Least Squares Controllers

3.7.1. General characteristics. It is significant that both

the second variation and the A-matrix controllers fall into the
general category of linear regulators. In both of these cases, as in
the MIV controller, the plant equations are obtained by linearization

about a predetermined nominal trajectory:

X & B, u (3.33)

where
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(i) H represents the prehamiltonian of the original problem;
X and u are the nominal state and controls; and X
=11 -n =
and u are the deviations of state and control

(ii) A is the Lagrange multiplier vector
(iii) the ¥ indicates that a quantity is to be evaluated along

the nominal trajectory.

In the usual notation, A(t) = H*, x and Bit) = Hf y . The
Xn=n An*=n

performance indices for both control schemes are of the least squares

type:
t

e
[Halig+ el +lxa lly e (3.34)
0

where in the second variation case

= * . = * . - %
R H'EhEn’ Q H X X 3 W H

and in the A-matrix case

Q =W=0 3 R = arbitrary positive definite matrix

With the specification of the appropriate terminal boundary conditionms,
the solution to problems of this type is well known and is completely
specified in terms of a gain matrix which satisfies a Riccati girf-
ferential equation.

There are several characteristics of controllers of this class
which would be appropriate to discuss at this point. It will be

attempted to structure the problem with a general framework, and for
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that reason it is necessary to make some rather gross approximations.
First it is assumed that the weighting matrices in Equation
3.34 act in such a way that u and X are penalized with approxi-
mately equal value for a given percentage change in nominal values.
That is, if the optimal path lies in a field of neighboring optimal
trajectories, then small changes in the state X are caused by propor-
tionately small changes in the control u . It will therefore be
rassumed that the weighting matrices can be approximated by constants
whose values tend to produce the effect described above. Of course
an exact analysis would be totally dependent on the individual problem,
and justification depends on comparison with particular cases.
Since Equation 3.33 simply represents the linearized plant equa-
tions, it is reasonably accurate to use the rotated equations, 3.k.
Also, in keeping with the discussion above, the following performance

index is defined

te ) 5

> iy 1% L x u
(SEERIRE T
5 L i 02 :

2
where the constants C, and ¢, are chosen such that z l(O),

Civi(o), and uE(O)/CS are all of equal value. From the theory

of the linear regulator problem, the optimal control ui is given by

*1
u* = - l.R—l bTP (3~36)
1 2 xLl

where the matrix P satisfies the differential equation
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P+ PA+AD - %—PbR*l bTP + 2Q = 0 (3.37)
Here
& I 0 q 1 0
= [ 3 b= 3 R = > s Q =
0 0 i 5 0 0

and the boundary conditions on Equation 3.37 depend on the transvers-
ality condition of the particular optimization problem. Since for all
space missions the value of the terminal time te is very large, the
matrix P would assume its stationary or asymptotic value through most
of the flight. Therefore Equation 3.37 is solved as an algebraic
equation by setting P = 0, and doing this yields the following control
law

' * 2

ul = _CEX1 - 202 + ClC2 x),

Therefore the spacecraft state deviations will obey the following dif-

ferential equations:

xl 0] 1 xl

= (3.38)
. [ 2 _
x), —02 - 202+ 0102 x)

It is now possible to analyze the performance of this system in
the presence of noise. Using the same noise model described in Section

3.2, the following Langevin equations serve as the appropriate dynamic

model:
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xl 0 IS 0 xl 0

/ 2
%), = | =8, ~f2C,+ C,C, 1 x), + 0 (3.39)
El 0 0 -B El J n

where the new state ¢§ is the Ornstein-Uhlenbeck process, and n is

1
a zero mean, Gaussian white noise process with variance 2802 . Accord-
ing to Fokker-Planck theory, the state of the system described by

Equation 3.39 is completely represented by a Gaussian density function

whose covariance matrix M satisfies the following differential equa-

tion:

M= DM+ MD  + GG : (3.40)
where
0 § 0 0
D = -C ~fec + © ceb 1 i G = 0
3 Rl e 3

0 0 -B V2B o

and the boundary condition is the prespecified initial covariance
matrix M(0). Since the time necessary for the space flight is very
large, the matrix M will necessarily converge to its asymptotic
value. Therefore Equation 3.40 is solved by éetting ﬁ = 0 and this

yields
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i o o R foro®
1 2C2+ ClC2 202+ ClC2
(s —2 12y 0 T2 LB
2 gC 8 e

2

/ 2
M= 0
M22 2C2+ C1C2 M22

— 5
vJac + c.c
s e B © Ve +ClCSM oF

g 22 2 22

where

s g
Mop = 5
¢ .V2Ee + C.C
2 2 172 2 2
; + 2C2+ ClCE + B‘/202+ 0102

The values of Mll and M which represent the variances of

22
the spacecraft position deviations and velocity deviations, respectively,
are plotted in Figure 23 as a function of the correlation time of the

El process. Examination of the results reveals that significant steady
state deviations build up when using these guidance strategies. An
intuitive picture of the mechanism which causes this effect is fairly
easy to construct. Namely, when the spacecraft deviates from the nomi-
nal trajectory, the new optimal thrust program assumes a form such that
the course of the vehicle is corrected in a relatively gradual fashion.
This is a logical strategy in a deterministic system where there is no
noise present to produce any further deviations. 1In the stochastic
system of interest here, though, the policy of slowly correcting the

course of the space vehicle only gives the noise more time to build up
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larger deviations. This effect builds upon itself until the steady
state deviations are attained.

The value of finding these steady state deviations is related
to an important property of a linear regulator with a fixed terminal
boundary condition. It is the characteristic of such systems to delay
the major control effort until near the terminal time, so as to insure
that the terminal conditions are satisfied. The magnitude of this
effort will be directly related to the errors near the terminal time,
which in turn are indicated by the steady state deviations found above.
Hence, the larger the steady state errors, then the larger will be the
average terminal control variable deviations which are necessary to
correct these inaccuracies. Indeed, there are cases when the control
variables will almost always be unbounded at the terminal time; see, for
instance, Reference (65).

In contrast the MIV controller must guard against the eventu-
ality of building up large errors which, because of the bounded control
levels, it has no chance to eliminate. In that system, intuition
agrees with mathematics in calling on all the available control all of
the time in order to combat the noise inputs to the system. Specific
examples will now be given which illustrate the phenomena discussed
above.

3.7.2. Analysis of the neighboring optimal guidance system

accuracy for a constant acceleration, minimum time Mars rendezvous

mission. In this section the covariance of the state deviations is

determined numerically for a guidance system obtained by means of the
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second variation optimization technique. The first step is to obtain
the nominal, or open loop trajectory, and for that purpose a constant
acceleration level of .78 x 10"3 meters/second2 is assumed, which
corresponds toc a 3 ounce thrust applied to a 2500 pound space vehicle.
Since the minimum time Mars rendezvous is a free terminal time problem,
it is convenient to use the analytical artifice of normalized time to
convert the free terminal time problem into the more usual fixed time

problem. This is done by defining

t o=t T T e [0,1] (3.41)

where t 1is the true time and 1t is the normalized time. Here t
represents the unknown terminal time which is treated as a state

“ variable by adjoining its dynamical equation

It is easily seen that

and thus it is possible to consider the following equivalent dynamical

system (dots indicate derivatives with respect to 1):

2 &
how [ B o & st a) t
¥ 2 e
r
v= (- X+ acos a) t
T e
w = b
e
e
6= —=
r
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where, referring to Figure 2,

l:u:|= [cosB sin BJ [vl}
v -sin B cos B v

2
r = zi + zg
g = B
& =g = /2
= GM

Forming the Hamiltonian of the optimization problem, and carrying out

its minimization with respect to a results in the canonic differential

equations for the system state variables and Lagrange multipliers:

) v2 . all )
u = —_— - = - g
b 2 e
r A2 " A2
i 2
ali
o
Az + AE
i 2
T = ut
e
- Vte
0= —
T
t = 0
e
A vk
i = By &



=G s

. 1 1 2 2
A, = - - +
3 r2 r3 r2 r2
Ah = 0
2 By
" LA | S S
Ag = -1 - Al( 5 )
10 /AE 4 A2
1 2
ai AV
_;\2(__111 2 )_;\u__._._l; (3.42)

The given boundary conditions and the transversality conditions asso-
ciated with the optimization problem yield the boundary wvalues

-necessary for the solution of Equation 3.L2:

u(0) = o0

u(l) = 0

o) = Vo

v(1) = Vmars

#0) = P

I‘(l) = rmars

B(0) = B

e(1) = Qmars(l)

kS(O) = 0

Ag(1) = -2, (1) 8 - (3.43)
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Using the quasilinearization method, a solution of Equation 3.k42 is
determined which satisfies the required boundary conditions.

The second variation (or neighboring optimal) guidance system is
now considered. This method is equivalent to linearizing Equations
3.42 and using these to approximate the behavior of the system.
Therefore suppose that at time 1 there are known state variable
deviations equal to col{éu(t), év(t), 6r(t), 80(t)], and that it is
desired to determine the manner in which these errors are nulled in
the optimum system. From the theory of linear differential equa-

tions, the following relationship must hold

- = —

[ su(r) 0
sv(t) 0
Sr(t) 0
89(t) émarSCSte 1)
oL,0) st (1) ) 6t_ (1)
8x, (1) 82, (1)
8, (1) 83, (1)
624(7) 514(1)
6Ah(r) 6Ah(1)
|| Bghe =8, (1) Spars | (3.44)

where ® 1is the (10 x 10) fundamental matrix of the linearized equa-

tions which satisfies

= Alt) ® gtE) = I
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Here A is the Jacobian matrix of Equations 3.42, evaluated along the
nominal state and Lagrange multiplier vectors. Since Equations 3.4bL
are 10 linear equations in 10 unknowns, it is straightforward to deter-

mine the unknown initial values in the following form

= B ~
st (1) B
= su
Sx. (1)
1 Sv
GAE(T) = B{r)
Sr
Sx,(t)
3 86
;_éku(r) ] i i}

where B(tr) is a 5 x 4 matrix (note that GAS(T) = 0). Hence

—~ B (— i
Su Su
sv Sv
. = a0y + 4@ 1,0y B(0)] (3.45)
ér sr ’
_ 66 ' L 60 |

(1)

is defined to be the first four terms of the first four

(2)

where A
rows of the A matrix, and A represents the fifth through the
ninth terms of the first four rows of the A matrix. Equation 3.45
fherefore represents the differential equation satisfied by the state
variable deviations.

In order to complete the analysis, the nocise terms represent-

ing the attitude and thrust level variations must be adjoined to the

system. The result is analogous to Equation 3.bh:
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X = AX +G (3.46)

where g_é col[8u, &v, ér, &0, £1» 52]

B cos @ -sin a )
sin a cos o
A1) 4 4(2) g
0 0
% 0 0
A =
0 0 0 0 —Bl 0
L 0 0 0 0 0 —82 4
~ 0 0 A
0 0
0 0
& =
0 0
v 2By 04 0
0 V28,0
s 22 J
and ny and n, are independent, zero mean, Gaussian, white noise

processes with unit variances. The covariance matrix M of the state
deviations at time t can be shown to satisfy the following differential
equation:

M = AM + MAT + ggl M(0) = M_ (3.47)

The state deviation time histories can be obtained, in prin-

ciple, using Equation 3.47. However, it has been found that the matrix
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B of Equation 3.L46 has badly behaved elements at two points along the
trajectory under study, and for this reason the complete history of the
covariance matrix cannot be obtained using this method. But since it
is of primary interest to see how the errors build up, it would be of
value to compute the covariances up to the first singularity (about 25%

into the mission). For that purpose four cases were considered:

Case I. o, = o, = .0013 metei‘s/second2 = 1% u ; all cases
B. = 8. = (.5 second)™*
1 2
velocity error = .027 meters/second
position error = 165 kilometers
Case II. Bl - = (30 seconds)—l
velocity error = .21 meters/second
position error = 1350 kilometers
Case IIT. B, = B, = (30 minutes )™t
veloecity error = 1.5 meters/second
position error = 10000 kilometers
Case IV. B = B, = (100 hours)—l

velocity error 21 meters/second

Il

position error 135000 kilcometers

- These results verify the build-up of errors which was predicted by the
rough analysis given in the last section. In the following discussion
the MTV controller is actually compared to a realization of the A-matrix

control scheme.
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3.7.3 Comparison of A-matrix control with minimum terminal

variance control. As discussed in previous sections, the A-matrix

control scheme yields a linear feedback control law. In the process of
making trajectory corrections, the A-matrix controller minimizes the
mean square deviations of the control variations from their nominal
values.

In order to derive the control gains 1it is necessary that the
plant equations be linearized to yield a differential system in the

form (i.e., Equation 3.19)

X = A(t) X +b(t) u (3.18)

where X 1is an n-dimensional state deviation vector, and u 1is an m-
dimensional control deviation vector. PFor the deterministic low-thrust
 guidance problem, n = 6 and m = 3 . The performance index to be
minimized is of the form

t

&
J ul R u dt (3.%49)
0

with given initial conditions X(0) = C and given terminal conditions

zﬂte) = 0 . The control function for this problem can be shown to

u= - %-R_l b G E (3.50)

wvhere G is an n *x n matrix which is the solution of
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G = GA +AG—--]é‘—b R % : G(te)=0 [3.5%]

Note that the gain matrix G—l is unbounded at the terminal time te .

3.7.4. Monte Carlo simulation of the MTV and A-matrix control

systems. In order to compare the A-matrix controller to the MTV con-
troller, the Mars minimum time rendezvous trajectory described in
Section 3.7.2 1is used as a trial mission. Since the MTV controller is
decidedly nonlinear, it is very difficult to obtain the covariance
equations for the state deviations, which are easily found in the case
of linear systems such as second variation or A-matrix systems. For
this reason it is necessary-to use the Monte Carlo simulation technique.
The nolse model for the thrust acceleration and thrust angle disturbance
processes is taken as a sequence of 10000 independent, Gaus;ian random
variables with zero mean and vériances set at 3% of acceleration and 30
milliradians of control angle. This process approximates an OU noise
process with the same variance and a correlation time of A seconds,
where A 1s chosen so that each control variable has 10,000 switching
opportunities. Errors at injection are assumed to be 8.4 meters/second
in velocity, and 2700 kilometers in position.

Based on the optimization studies in Section 3.5, the MIV con-
troller is chosen to have no zero control region and a switching curve
constant a equal to .25 . Three control configurations are to be

- 2
investigated, namely (u = .78 x 10 3 meters/second” ):
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. b .8t t - .8t
(i) ui(t)s[— .05 uﬁ—*zg~—) 5 _'OSU(—*_EQ—_)}; i

= 1,2
(i1) ui(t) e [~ .02u, .02u] ; i = 142
te— .8t t - .8t
{141 ) ui(t) E[; .OEU.(-*—;;:*‘) s, w024 (*Ez—ﬂ*-mJ} 2 o A= I
e

Hence, in the first and third cases, the control levels are time vary-
ing. Also note that in the third case the magnitude of the process
noise is more than seven times larger than the control force at the
encounter time te . The simulation results are presented in Figures
24-31. 1In case (i), Figures 2L-25, it is seen that the injection
errors are nulled rapidly and state deviations are kept small over
the entire trajectory, thus showing that the varying control level has
little effect in this instance. For case (ii), Figures 26-27, there is
slower damping of injection errors because of the reduced control
force, and the approximation errors resulting from the rapid turning
of the thrust vector at mid-trajectory are evident. However, the
mission accuracy is still very high. Under the extreme conditions
hypothesized in case (iii), Figures 28-29, it is found that remarkable
accuracy is achieved in spite of the overpowering magnitude of the
noise in comparison with the available control. |

For each case the number of control variasble switchings is given
in the appropriate figures. The decrease in this number as control

level decreases is indicative of the loss of control "tightness," and
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Figures 24 and 25. Velocity (2L4) and position (25) deviations for
MTV guidance system with control configuration (i):

uy switchings = 3187; 6a switchings = 3320 .
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Figures 28 and 29. Velocity (28) and position (29) deviations for
MTV guidance system with control configuration (11ii):

uy switchings = 1832; 6a switchings = 1967.
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Figures 30 and 31. Velocity (30) and position (31) deviations for

A-matrix guidance system.
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is in good agreement with the computed switching probabilities shown in
Figure 13.

Figures 30-31 indicate that the A-matrix controller allows the
state deviations to wander much more freely than does the MTV control-
ler. In addition the A-matrix controller demands a 30% maximum thrust
deviation and a 1L4° maximum angle deviation near the final time, which
amounts to a relatively large control effort. These effects ocecur just
as predicted by the analysis in Section 3.T7.1.

Since the MTV controller has bounded control variables, it has
the tendency to keep the state deviations as low as possible at all
times. In effect the controller anticipates that there will not be a
large control capability near the final time and takes appropriate
action to accomplish guidance maneuvers whenever control becomes avail-

able.
In the following section the technique of MTV control will be

extended to the case when the state of the system is not known exactly,

but must be estimated.

3.8 Minimum Terminal Variance Control with State Estimation

In this section the MTV controller will be discussed for the
general case of linear plant and linear observation equations. The

plant equations are therefore represented by
X = A(t) X +b(t) u+ & (3.52)

where X 1is the n-dimensional state deviation vector, u is the m-

dimensional control deviation vector, and & 1is the Gaussian white
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noise disturbance vector. Owing to the disturbance processes, the
state X may contain variables which augment the deterministic state
vector. This occurs, for example, when the Ornstein-Uhlenbeck process
is used as a stochastic model.

Linearization about the nominal trajectory is assumed to yield
an adequate approximation to the observation equations, which then

become

y = H{) X +n (3.53)

where y 1is the p-dimensional observation vector, and n is the
Gaussian white noise error vector. The following covariance matrices

are assumed to be known:

Bl oir) el = Bl sle=t)
E[ &(1) _T(t)] = 8(t) 8(r=t)
Bl £(t) £°(t)] = Q(t) 8(t=t) (3.54)

The problem is to choose a control law k which is a function of past

observations and past control inputs;i.e.,

u(t) = kly(s), 0£s £t ; uls), 0=s <t]; O = E Y

and this control law must minimize

B § wxi(t,)] (3.56)
1

where E 1is the expectation over both the £ and n processes.
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Since wu(s), 0 £ s <t , is known, the information in brackets in
Equation 3.55 can be summarized by the Kalman estimate VK and error

covariance T , which satisfy the following differential equations

(A - SRH - THIR T Yy gt

=
]

H) ¥ + bu(t) + (SR~ ) (EX + n)

- rHTR“l

L 1)
1]

Hr + (A-sRTH)r + ©(aT- 5RYsT) + (q- sr™1sT) (3.57)

Thus u 1is a sufficient statistic for the posterior density of X

which means that Equation 3.55 becomes

u(t) = k(t,u(t)) | (3.58)
Hence
X = AX + bk (t,p) + £ (3.59)
= (8 -85 = FHTR_lH)E_+ bk(t,u)
i T

+ (SR + I'H R"l)(H§_+ n)

Following Wonham (60), the error process z is defined as
z= X-u (3.60)

Using Equation 3.59, the 2z process is found to satisfy

Il

z=(A-KH) z +p (3.61)

where

p=E-Kn (3.62)
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Also the following equation is readily established

L= Au + KHz + bk(t,u) + Kn

(3.63)

By direct calculation

Elp po] = Lé&(t-t)

T

E[p(Kn)7]1= J6&(t-t) (3.6L4)
where

Ti = Q) == sptsT + IR LHT

J=-EK (3.65)

If p(t,z,u; s,v,r; k) is defined to be the transition probabil-
. _Z_ “
ity density function of the [

J process with control law k(u,t) ,
b

it can be shown (60) that

Blt,zss 8:7,25 E) = glt,z; 8,¥) alt,ns 5.0 k) (3.66)
where g satisfies
3q - 3p.
= 6 - { (a- . . '
= = L - ( (A-KH) z, - Y- [tr(a - KH)Ip (3.67)

and E satisfies

83 _ Ling®) o 20 o e
s, ] o - (@) et A
= S{KRK') © 2 {Ar + bg(s,g),az) (tr A+ b o ) q

(3.68)
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Equation 3.56 can now be expanded as follows
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The second term in Equation 3.69 is zero because the mean of the error
process is always zero. Also, the third term is fixed and independent
of the control law Xk . Hence the minimization depends only on the
first integral which in turn depends solely on a-. The stochastic
differential eéuation described by Equation 3.68 can be deduced to be

the following

L= Ay bk(t,u) + £ (3.70)

where
T

2 il
E[g(t) £ (t)] = KRK 6&(1-t)
This equaticn is equivalent to the Kalman estimation equation if the
forcing term associated with the observations is viewed as an equiva-
lent white noise process with covariance KRKT. Hence +the problem is
now in the same form as the known state case, except that the noise

term has a different covariance; and therefore the same techniques can
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be applied to solve this problem. However it must be realized that
"separation" does not hold for the MTV system, even though a Kalman
filter may be used in the control loop. This is because the control
law will depend on and will change with the type of observations used.
To illustrate the effect of observations, consider the plot in
Figure 32 of the distribution of the uncontrolled terminal variance
between E[M?(te)wgﬁte)] and tr[WF(te)] as a function of the "good-
ness" of the observations. The measure of the "goodness" of the
observations is rather érbitrary since it will be inherently dependent
on the number, type, and accuracy of the observations made. However,
in this case "goodness'" is chosen to be a linear function of tr[WP(te)]
where perfect observations nullify this error, and no observations

maximize it. From Equation 3.69 it is found that
i B i
BlX(t )W X(e )] = Blu (e ) Wule )] + trlwr(e,)] (3.71)

Hence the sum of the uncontrolled estimate and the error covariances
must be constant.

Now referring to Figure 32, it is seen that perfect observations
result in the largest value of E[Eﬂte) Wgﬂte)], and hence the largest
equivalent noise on Equation 3.70. 1In a sense, this means that the case
of known state represents the hardest eventuality for the MTV control-
ler. The dotted curves in Figure 32 are used to indicate the

potential reductions in the terminal variances using MTV control action.
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Since the control does not affect tr[WF(te)], this quantity represents
the upper bound on terminal accuracy. DNote that in general a bounded
controller will not be able to completely nullify E[Ejte) Wgﬂte)] in
a noisy (observed) system. It will be recalled that this fact was
used to justify the MTV criterion from the outset.

The design and optimization of the observations could constitute
a study in itself, and thus only the limiting case of perfect observa-
tions 1s considered. However +this case represents the greatest
challenge from the MTV controller point of view. The composite MTIV
control system is illustrated in Figure 33.

In the final part of this chapter, the full nonlinear MTV problem
is investigated, and the difficulties still existing in stochastic

optimization problems are illustrated.

3.9 Combined Navigation and Guidance of the Interplanetary Vehicle

In this section, the state vector X represents both the deviation
of the position and velocity components from their nominal values,
and also the OU process models for the dynamic noise, The differential

equations for the state deviations can be written in the general form
X = glx.ut)+ FF,. E (3.72)
= e K ik ’k

where the state X 1is an n-dimensional state deviation vector, u is
an m-dimensional control deviation vector, and £ 1is a vector-valued
Gaussian white noise disturbance process with independent components.

The p observations y are given by
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¥ = h(X,t) + n(t) (3.73)

where h 1is the p-dimensional observation function, and n is a

vector-valued Gaussian white noise process. If the symbol P(a,t]|t)
is used to represent the conditional probability density function of
the state a at time t based on the observations up to time <t ,

then this function can be shown (66) to satisfy a stochastic, partial

differential, integral, functional equation of the form:

12
P(a,t+at [t+at) - P(a,t]t) = aV(a,t) - ] (df, (a,m,t) Pla,tt))
i=1 = i
1% =
3 1 () - plast]e)),  at (3.74)
i,J=1 i
where
@F(a,u,t) = £(a,u,t) at + FSR *(y-h(a,t)) at

Q - FSR L (rs)T

]

Q
T~
av(a,t) = P(a,t|t) (yat-En(a,t)dat) R (h(a,t)- E (h(a,t))
L
Q=FF ; Elinl=R; BElé&n
and Et represents the conditional expectation using P(a,tlt) .
Indeed, Equation 3.Thk is equivalent to Equations 3.57 when the plant
and observations are linear.
The control problem is to find the optimal feedback controller,

u(t,P(a,t|t)), such that
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is minimized subject to control variable limitations. Here E repre-
sents the expectation over the observation process and the Qk are

suitable weighting factors.

Following Detchmendy (67), the value function is defined as

u e

v[ml(t),mz(t),...;t] = min ﬁEt [ E zkxilml(t),mz(t) ...}(3.76)

where the m, are the moments of P(a,t|t) . Note that for dimensions
greater than one, the m, will be multivariate. Using the principle

optimality, Equation 3.76 is expanded as follows:

Vim (£),m,(t) --+5t] = min ﬁ[V(ml(t+A),m2(t+K),'°; t+A]
= min B[V0n (6)amy(e) +5e) + 570+ [ (m (648) = my (5))
u

2
+ 31 ] g (g (640) =y (8)) m, (648) = my (£)) + 0(8P)] (3.77)
i3 1 J

Letting A =+ dt and cancelling the common V yields

ﬁ(dm.) 2 w(dn, &, )
= mita [gy_+z = A L _J J (3.78)

1 3"V
A et d RS at
i i 1, 9 i3
If now the expectation operator E 1is applied to a few terms, certaln

qualitative information about the solution can be cobtained. For example,

keeping terms up to order dt, the following expressions are obtained:
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f;[du[nl]:.L o - Casmeh] dk

s B = T i
E[dlma,]i‘j = Et[fi(aj~mlj) ] at + Et[(ai—mli) fj] at

+ Q- (B, (a,-m )n"] R B (s -m )] at

. - T, -1
E[dmlidmlj] = E [a;-m . )h’] R Et[g(aj—mlj)] dat

= 1% _ T _ T -1
E[dm21j 2kl] [Etaiajg_ Etg_Etaiaj em, , {E.h (aj—mlj)}] R

x [E aah-EhEaa -2n, {Eh(a- m,, )} at

E _ i T
E[deiJ lk] [Eanh E b Etaiaj

- 2mli{Et§?(aj~mj)}] R-lEt[gﬁak—mlk)] dt
{3.79)

Thus the cross product terms do not involve the control u if R 1is
independent of these variables. Since E is linear in the thrust
control, the minimization indicated in Equation 3.78 will yield a
bang-bang solution for this control variable, implying that this
situation has not changed significantly from the previous cases con-
sidered. However, minimization over the thrust angle control variables
oo and &Y will not yield bang-bang variables since these quantities
enter nonlinearly into f . It is not until the differential equations

are linearized that these control variables turn out to be bang-bang.
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There is considerable difficulty in finding solutions to equa-
tions such as Equation 3.78. Even in fhe case when the plant and
observations are linearized, the bang-bang nature of the problem seems
to make the exact solution unattainable. TIndeed, the Hamilton-Jacobi
equation for deterministic bang-bang problems has rarely been solved
for third order problems, and never for fourth order. As pointed out
by Wonham (55); it is doubtful that an exact solution of the stochastic
Hamilton-Jacobi equation is worth attempting. At best only modest
improvements in system performance could be expected over suboptimal
design techniques. With present day computers, this modest improvement
would materialize at the expense of at least an order of magnitude jump

in computational effort.

3.10 Conclusion of the Stochastic Problems

In this chapter the realization of the minimum terminal variance
guidance system is consummated through the development of a number of
straightforward design techniques. These methods are not only easy to
apply, but also provide a design vehicle by which a simple, accurate
and practical control system can be synthesized. In particular, there
are two aspects of the results which are very appealing with regard to
state—-of-the-art engineering practice:

| (i) the simplicity of relay control systems
(ii)- the applicability of Kalman filtering.
Both the power and versatility of the results are dramatically empha-

sized by the Monte Carlo simulation of the MTV system.
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IV. CONCLUSIONS

4.1 The Gap Between Theory and Practice: The Digital Computer

The underlying purpose of this investigation has been to map
existing theoretical concepts into synthesis techniques, computational
algorithms ,and slight theoretical extensions which apply to the solu-
tion of a specific engineering problem. The author feels that the
greatest advanfage of this approach has been that even though the
results are supported by a theoretical foundation, they are at the same
time grounded to practical engineering reality. Consequently the diffi-
cuities encountered have been the traditional ones which separate theory
from practice.

One of the primary difficulties in applying optimization theory
to engineering problems is the specification of the system performance
criterion. Often the final engineering design should represent the
best compromise among a myriad of conflicting goals, but it is usually
difficult to interpret and properly weight all the factors in terms of
a mathematical expression of performance. For example, it is often ar-
gued that a guidance system must consume a minimum amount of fuel. But
considering the fact that the Mariner midcourse guidance systems have.
typically carried on-board five times the fuel required to correct the
maximum expected initial velocity deviation, it would appear that efforts
to minimize only the guidance fuel consumption would be somewhat wasted.
Other considerations such as system accuracy, simplicity, and imple-
mentation should certainly be stressed in the specification of the final

design.
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The first attempt in this study has been to make the problem
formulation as realistic as possible, and only then to seek a solution.
There has been virtually no attempt to force the problem into a form in
which there already exists an analytic solution, and then turn about
and try to justify the desired formulation. Indeed, the solutions and
synthesis techniques presented in this study have time and again re-
lied heavily on the use of one of the most powerful design tools in
modern technology, theAdigital computer. There can be little doubt
that the computer allows the solution of problems which would other-
wise be deemed impossible. Yet while it is very shortsighted to ig-
nore its capabilities in favor of gross simplifications and approxi-
mations, it is equally undesirable to allow the computer to inspire
laziness and poorly conceived solution algorithms. In the MTV gui-
dance problem the computer has been employed to the maximum possible
advantage, but oniy after the mathematical development has been carried
out as far as possible.

4.2 Stochastic Optimal Control

It is popular nowadays to write off stochastic optimization
theory as a somewhat futile endeavor. The mainstream of discontent
apparently comes from the immense difficulties involved in solving
even what seem to be the easiest examples. There are also those who
claim that the differences between a deterministic design and a sto-
chastic design will not usually be very great, and therefore the extra
design effort will hardly be worth it. These arguments may be well

taken in many instances but their general veracity cannot be asserted
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without becoming rather arbitrary about the scope of problems being
considered. TFor instance, it has been made clear that the MTV gui-
dance problem has no deterministic analog; therefore a stochastic de-
sign 1s essential. And even though the exact solution has not been
attained, it has been seen that the approximate stochastic system has
a great deal to offer. In this way, the results establish at least
one concrete example of the practical benefits of stochastic optimal
control.

4,3 Extensions and Future Efforts

It is usually quite tempting to try to extend a once successful
idea beyond its original point of application. While this is essen-
tially a very good idea, it is also tempting to claim far more gen-
erality than is warranted. For the present problem there are two
areas where the results would appear to have clear application. The
first is the more general class of powered flight guidance problems,
Enife g booster-guidance. These other targeting gulidance problems would
possess essential similarities to low-thrust, interplanetary gui-
dance in the aspects of bounded control levels, stochastic disturbance
inputs, and similar dynamic behavior. The second area is the space
vehicle attitude-stabilization problem in which it is desired to min-
imize the total ﬂummer of stepper-motor actions, or reaction-jet firings,
on any given mission. The solution of this problem would seem to be
straightforward in view of the identical dynamic response (i.e., purely
inertial), and alsc the built-in capability of the MTV guidance method

to yield the switching probabilities for each control configuration.
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Future effort in this area could certainly branch into many
different directions. In each instance there is really no way of telling
initially to what extent any given idea will be significant. It is
the contention of the author that rather than document a long list of
alternative pathways, it is perhaps more effective to leave the reader

unbiased in choosing new and interesting branches to explore.
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Appendix A
SOLUTION OF THE MINIMUM TIME PROBLEM

Consider the dynamical equations

X = AX + b(t)u ln] £ x (A.1)

where X 1is an n-vector, b is an n xm matrix, and k and u are

m-vectors. Also

x(s) = %,

Kﬂtf) ] (tf is minimum) (A.2)
The Hamiltonian for this problem is

H(t S_X_!E_!A_) = <L’A'X'._> * < .}L’b(t )E‘->

The optimal u minimizes the Hamiltonian. Hence

u* = K(-sgn(d (£)1)) , K=

where the sgn function is defined as

+1 y >0
A
sgn(y) ={
-1 y <0



-123~

Applied to a vector, the sgn function acts on each component. Thus

H(t,X,4) = (A,8%) + {A,b(t)(-K sgn(pT(£)1)))

The equations of motion are

|4
1]
f=»]
1]

AX - b(t) K sgn(d (£)A)

g = ATL ' (A.3)

>
[}

The transversality condition yields
Kalen), vlee) = 1 (A.4)

Equations A.3, with conditions A.2 and A.4, yield a two-point boundary
value problem that must be solved in order to obtain the optimal con-

trol.
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APPENDIX B

THE DETERMINISTIC MINIMUM TERMINAL ERROR PROBLEM

Given (refer to Appendix A)
X = AX +bu lul £k (B.1)
the problem is to minimize

E?(tf) X 5 t, free (B.2)

Forming the Hamiltonian yields
H= (2,AX) + (A,bu) (B.3)

and the maximum principle yields

u* = K(-sgn(bTa)) - (B.Y4)
where K 1is defined in Appendix A. The transversality condition yields

AMt,) = 2X(t,) (8.5)

Since tf is free and the plant deterministic, it will normally be

possible to drive the state variables to zero even though the control

levels are bounded. Hence

1>

(t,) = o0 (B.6)

and since
A o= =87 (B.7)
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it is found that

alt)

i
|o
o
IN
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ct

Therefore the argument of the sgn function in Equation B.3 is zero
which makes the control indeterminate. This is the same as saying that

the optimization problem is singular.
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APPENDIX C

THE FOKKER-PLANCK EQUATION

Doob (6L4) has shown that the solution of Equation 3.4 will be

a Markov process which can be defined by its transition probability

density function

p(0,X ; t,X) (c.1)

which is the probability demsity that X(t) = X given X(0) = X
In addition, it can be shown that this probability density function
satisfies the Fokker-Planck equation associated with Equation 3.k

4,2, L. & . . B :
(b 2 g™ Xy = X3 X3 S g3 w = ul).

2
B8Ry 2, _ . W L, p_
= = = p + Bx (c.2)
ot axg 2 0%y 9%, 3 9%, 3 ax3

In order to solve Equation C.2, the assumption has been made in
Sections 3.5 and 3.6 that u should be regarded as a constant.

The boundary condition on Egquation C.2 is

tliéo p(O,XO; ) & G(Xl—xlo) 6(x2~x20) 6(x3~x30) (c.3)

Equation C.2 is now solved using the Fourier transform technique.

Transforming first in x yields

-ik.x 2 -ik._x -ik.x
J ap L ( - W 1Xm+ J ap g



= ey

-ik_x ik_x -ik_x
op 13 p i i 1 i 1
+ J ug-—e dxl + J x3 =B dxl B I pe dxl
2 2
-ik.x
e} 1 i

- B [ %q Bx3 e dx, = 0 (c.b)

Defining
-ik_x
b o A
J pe d}Cl =3 (tskl>X2:X3)
implies
ap' 829' i ap’! op' ap'
-— — ' —_ b
at - T 0 3 TARXRT tu ot Xy 5 - B - BXy 5y .
8x3 2 2 3
(C.5)

Transforming Equation C.5 in X, and defining

-ik . x

2 2 A 1t
L4 =
J‘ p e dX2 i b (takl>k2 :XB)

(c.6)

implies
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~ A

%E-_ b(ik3)2 p - Ky %E;-+ iukgﬁ + ik, (i) %E;'— B + BD
+ 5k3 %g— = 0
3
which becomes
_g%__ Ky %é__+ (Bl k) —gﬁ:——-x- (bkg + iuk,) p = 0 (c.7)

2 | 3
Equation C.T7 is a linear first order partial differential equation

which has the characteristic equations

i e me B
ds ? ds 2 ds 1
dak - :
—3 = - A - - N OTL - S .
G- g =By & 5 (bky + 1uky) p

These equations have the solutions (subscript o indicates initial

values)
BER G ok mky b Ky ® uKgs % Ky d
Bs
k. s k k k
k3 = eBSk30 _ 10 » ]2.0 + 102 " 20 (l" eBS) ; (0-8)
B B B B
s Bs'
“ “ i k__s'! k k e k2 :
p = p(0) exp - I b(eBs By s e e v 22 (1P
30 2 2
5 B B B B
£l 1 ' i
+ iuf klos + k20) ds (c.9)

Performing the integration in Equation C.9 and collecting terms yields
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. = 3 Bs 2 2Bs
2 s s 2se S e 1
= p(0) exp b{k — + = - + 2=+ ..——-)
100562 gt e
il fp, oB e, 3 )+ L Ea ) K, k
20} 42 - B3 253 30| 28 28 10720
(_ _s__?_+ ose®® 2™ 1 2 ePPe) e % 25e85+e265_;_)
g2 g3 Su Bh g3 Bh 10730 g2 g3 g3
Bs 2Bs 2
2e Xk e ius .
+ k20k30( il )}— 5 klo + iu keos (c.10)
B B B
Now imposing the boundary conditions implies
p(0,X 3 8,%)5%,5%3)
T ik, X ik X
1 A3 & 1071 2072 3073
() ”J p(s,kygokyg0kay) @ % & k1 o8k
But
(053 5aXp05%a03 053 ga%p0sXg0) = 8(xy =%y ) 8(xy-x,50) 8(xy=x54)
ik, X Tl o g [ P

_ pda3 - 10710 20720 30730
= (57 ”J p(0,ky 5kp0sk30) € & & dky %03

Therefore,
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-ik_ _.x -ik_ x -ik_ x
: 1071 2072 3073 -
[JJ G(Xl—xlo) 5(X2—X20) S(XB—XBO) e e e dxldxzdx3 —
-ik. x -ik __x -ik_ x
- _ 10710 20720 30 30
= p(O,klO,keo,kBO) = e e (c.11)
Using Equation C.1l and solving Equations C.8 for s, klO’ k20’ and k3o;
Equation C.10 becomes
-Bt
. [ ke k) e_Btke k k.t
p = exp -|ik x + i(k + k.t) x . + i -—= - + — + —
110 2 b 20 B2 B2 8 8 8
Bt sled & P g8 TBR 4
+ k38 X3O + b kl ——é' + —)4 - L + —E + 5 = —5-
38 B B B 28 2B
-Bt -8t
ol ¢ 2Bt EeBt 3 kle kl 2 k2 k2
+(k2+ klt) o e ekl B ¥ b = g $ow
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Simplifying Equation C.12 and collecting terms yields
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This expression can be recognized as the characteristic function of a

Gaussian density with mean values

-Bt 2
- 1 t ut
Kz = Feo T oMb F X e i R e ] e
0
1 1 20 30 B2 B2 B 2
_Bt
— 1 e
XE = x20 x30 g 8 ) + ut
- _ -Bt
¥3 = ¢ X3

and covariance matrix, M
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Since the switching curves in Sections 3.5 and 3.6 are assumed

to be independent of x, (and therefore x these guantities are

B 30)’

integrated out of the above equations. The result is
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APPENDIX D

ON RANDOM FIRST ORDER COST CHANGES IN AN OPTIMAL CONTROL SYSTEM

Consider the dynamic system

X = #it.X8) ‘ (D.1)

and assume that an optimal trajectory and control, denoted E? and u¥
have been determined such that the following performance functional is
minimized:

t

£
J(C,t) = min J g(t,X,u) at;  Xx(0) = C (D.2)
u
= %

It is now desired to compute the first order loss when the state
deviates from the optimal path under the assumption that random process

noise £ enters additively into the dynamic equations D.1l. The first

order loss is given by
tf
_ %T *T
GJ—J (g& <5§+g_Ll

T

§u) dt (D.3)

where the asterisk indicates the quantity is evaluated on the nominal
trajectory.

Using the optimality conditions
f*T ).* - _O_

*
H =g =

e a
MY = gy - X (D.4)
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Equation D.3 becomes

BT = J [(— i?T— A?T f§) X - (&fT §i) gg] dt (D.5)

83 = [ {—_i_*T 8% - A(ef s+ £F sw) ] at (D.6)

But the first order dynamics are described by

su + & (D.T)

*
x &L, 0u

Hence

3
[_d__ (__-}-\-*T _6_)_2) 5 _A_*T_F,_] (D.8)

Now assuming initial deviations equal to §X(t) and fixed terminal

boundary conditions, Equation D.8 becomes

e

& = ;fT(T) sX(t) + J AT £ at | (D.9)

T

The first order contribution of the process noise is clearly evident

in Equation D.9.
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