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ABSTRACT 

Part A 

A problem restricting the development of the CuCl laser has 

been the decrease in output power with increases of tube temperature 

above 400°C. At that temperature the CuCl vapor pressure is about 

. 1 torr. This is a small fraction of the buffer gas pressure (He at 

10 torr). 

The aim of the project was to measure the peak radiation tem

perature (assumed related to the mean energy of electrons) in the 

laser discharge as a function of the tube temperature. A 24 gHz gated 

rni crm'lave radiometer was used. 

It was found that at the tube temperatures at which the output 

power began to deteriorate, the electron radiation temperature showed 

a sharp increase (compared with radiation temperature in pure buffer). 

Using the above result, we have postulated that this sudden in

crease is a result of Penning ionization of the Cu atoms. As a conse

quence of this process the number of Cu atoms available for lasing 

decrease. 

Part B 

The aim of the project was to study the dissociation of co2 in 

the glow discharge of flowing co 2 lasers. 

A ™on microwave (3 gHz) cavity was used to meas ure the radially 

averaged electron density ne and the electron:-neutral collision frequen

cy in the laser discharge. An estimate of the electric field is made 

from these two measurements. A gas chromatograph was used to measure 
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the chemical composition of the gases after going through the dis

charge . This instrument was checked against a mass spectrometer for 

accuracy and sensitivity. 

Several typical laser mixtures were .used: co2-N2-He (1,3,16), 

(1.3,0), (1,0,16), (1,2,10), (1,2,0), (1,0,10), (2,3,15), (2,3,0), 

(2,0,15), (1 ,3, 16)+ H2o and pure co2. Results show that for the con

ditions studied the dissociation as a function of the electron density 

is uniquely determined by the STP partial flow rate of co2, re0ardless 

of the amount of N2 and/or He present. The presence of water vapor in 

the discharge decreased the degree of dissociation. 

A simple theoretical model was developed using thermodynamic 

equilibrium. The electrons \'/ere replaced in the calculations by a dis

tributed heat source. 

The results are analyzed with a simple kinetic model. 
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PART A 

MEASUREMENT OF ELECTRON RADIATION TEMPERATURE IN 

DOUBLE-PULSED COPPER CHLORIDE LASERS 
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I. INTRODUCTION TO COPPER VAPOR LASERS 

Interest in the copper vapor laser stems from the need to de

velop efficient lasers in the visible part of the spectrum. These 

1 asers are representative of the "self-terminating" type in which the 

transition involved terminates in a metastable level. Its duration 

is limited by the properties of the transition itself. Stimulated 

emission lasts only until the populations of the b '/0 levels become 

equal. Pulsed operation with high practical efficiencies (1%) have 

been achieved with this type of laser. 

In this introductory chapter, the general characteristics of the 

pure copper and the copper chloride lasers are discussed. In particu

lar, the unexpected decay in power output of the copper chloride laser 

with increasing oven temperature (above 400°C) is to be emphasized. 

If the cause of this limitation were to be removed, higher volumetric 

efficiencies would then be possible; the present limit is about 35 ~J 

per cubic centimeter of active medium. The primary reason for under

taking the experimental work to be described here has been to under

stand better the reasons for the lower power output above 400°C. 

1.1 Lasers Operating in the Visible 

In the vi sible part of the spectrum many types of lasers are 

known. Table 1.1 is a summary of the principal characteristics of some 

of the most common CW lasers and the ruby laser. In lasers where a 

metastable i s involved in populating the upper state population,such 

as for the He-Ne and He-Cd lasers, little or no increase in peak power 
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TABLE 1.1 Commonly used lasers operating in the visible 

portion of the spectrum 

type wavelength avg. power efficiency 

Ruby 6943~ @ 7rK pulsed .02% 

He-Ne 6328~ 50 mW .1 % 

He-Cd 4416 & 3250~ 75 & 15 mW .01 & .005% 

Ar+ 5287 to 3336~ 5 l~ .02% 
(several 1 i nes) 

Kr+ 8588 to 3335~ 2 w .01% 
(several lines) 
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can be obtained by pulsing . That type of laser can be usually 

operated at highest efficiency under CW conditions. The efficien

cies of those lasers is usually very small, 0.1% or less. This is 

due mainly to the lm'l quantum efficiency n of the lasing transition; 

n is defined as the fraction of the energy of the upper laser level 

which is utilized in the laser action. 

A second class of lasers exists which uses a different transi

tion scheme to be studied here. Lasers of this type include lead, 

copper, mercury, manganese and nitrogen among others; see Ref. l .1 for 

an early and useful review. In atomic systems based on this mechanism 

the major part of the excitation energy is normally expended in the 

excitation of the first resonance level. The first resonance level 

usually has the largest electron-impact cross section. Therefore, 

it would be desirable to use the first resonance level as the upper 

laser level. The utilization of a metastable level as the lower 

laser level then makes it possible to attain efficient population 

inversion under pulsed conditions (until the lasing action builds up 

the metastable popul at ion). Electron-impact excitation of the for

bidden transitions are us ually much smaller than those of the allowed 

transitions . This type of transition is called "self terminating" 

because the lifetime of the lower level is considerably lon ger than 

the upper level. Thus the inversion lasts only until the popula

tions of the two laser levels become equal. (Part of the upper level 

population is therefore unused in this type of transition.) Excita

tion may be provided by e lectron--atom collisions, \Aihile inelastic 
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atom-atom collisions relax the lm,Jer levels. If the requirement is 

dropped that the excitation and relaxation proceed simultaneously, 

then a class of efficient pulsed lasers becomes possible which is 

cyclic in operation (Ref. 1.2). Collisional excitation and relaxa-

ti on occur sequentially rather than simultaneously. Therefore each 

process may be considered separately and optimized virtually i ndepen

dently of each other. Copper chloride lasers, as opposed to copper 

vapor lasers, need two additional steps in the cycle: dissociation 

and recombination of copper chloride. Thus a typical cycle in the 

copper chloride laser would consist of dissociation of copper chloride 
. -

into ~opper ~nd chlorine; excitation of the copper atoms to the upper 

laser level; lasing transition of the excited copper to the lower 

metastable level; and finally, recombination of copper and chlorine 

to form copper ch 1 ori de . 

Calculation of the quantum efficiency of these lasers place an 

upper limit of 38% in the case of copper atoms. This efficiency is 

more than two orders of magnitude larger than the lasers shm'ln in 

Table 1.1. Of course this is only a theoretical maximum, but never-

theless suggests the potential of this type of laser. 

1.2 Copperlasers 

The energy levels for the copper atom are shown in Figure l .1. 
2 Copper has two closely spaced resonance levels P112 (3.79 eV) and 

2 P
312 

(3.82 eV). Population inversion may be expected for three 
2 2 2 2 transitions to metastable levels o312 and o512 , but P312 + o312 
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transition is not observed. The transition 2P312 + 
2o

512 
emits at 

5105.54R, while the 2P112 + 
2o312 at 5782.13R. 

This type of three-level structure lends itself to the effi-

cient production of a transient population inversion in a high volt-

age discharge. Copper has the further advantage of having no energy 

levels other than the upper and lower laser levels beb1een the ground 

state to 1 eV above the upper laser level . This contributes to high 

practical efficiencies by minimizing the number of competing parallel 

paths for energy loss. 

In the design of practical systems to take full advantage of 

these transitions t~1o things are particularly important: (1) a rapidly 

rising discharge current pulse. This requirement arises from the 

need to populate the upper laser level faster than its relaxation 

rate. This creates an overall increase in the population inversion 

(i.e., lasing transitions). This process continues only up to the 

point at which no more copper atoms are available for pumping in the 

ground state. (2) A sufficient number of copper atoms must be present 

in the discharge medium. In a pure copper laser, this is accomplished 

by heating copper metal to a very high temperature, so that sufficient 

number of copper atoms vaporize. Sputtering of electrodes and explod-

ing wires give a less control l ed source. The use of a copper compound 

v-1ith a higher vapor pressure than coppe r alone permits operation at 

lower temperatures, but a means to dissociate the compound must be 

provided. 
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Laser emission corresponding to the transitions shown in Figure 

1. l was achieved (Refs. 1.2 and 1.3) in pure copper vapor lasers. 

Copper was deposited in a tube made of alumina, and the tube was 

filled with a buffer gas, helium, at l to 3 torr. The tube was then 

heated to about l500°C by an external heater. This temperature cor-

res ponds to a copper vapor pressure of .4 torr and a copper atom con-

cent ration of 15 -3 2 x 10 em . In a tube 80 em long, 5 em I. D., the peak 
0 

pmver of the 5106A line exceeded 40 K\~ for pulses 16 nsec in duration 

(Ref. 1.4). The efficiency was calculated to exceed 1%. At 1 kHz 

repetition rate, the average power was .5 \'Jatt. 

Isaev et al (Ref. 1.5) used a copper vapor laser of similar con-

struction. However, the heating was done by the discharge itself. 

Repetition rates of up to 20 kHz were used. At 18 kHz with the dis

charge capacitor at 18 KV, peak power of 170 Kvi and efficiency of 1% 

was obtained. The temperature was estimated to be around 1500°C. 

Copper "'as vaporized from small samples in the cavity. Helium pres-

sure was several dozen torr. 

Other ~elf heating copper (Refs. 1.6 and 1.7) and lead (Ref. 

1. 8) lasers have been described. Although simpler to design, the high 

operating temperatures make them cumbersome to work v1i th. The effects 

of the partial pressure of copper atoms and the discharge current 

cannot be isolated because the current itself influences the vaporiza-

tion of the metallic copper. 

A different method of introducing the copper atoms in the 

optical cavity has been described {Ref. 1.9). It consists of an 
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exploding copper wire scheme. Pumping is accomplished with a 20 KV 

pulsed discharge. The main advantages of this method are operation 

at room temperature and wider pulses (65 nsec); however, an elaborate 

focusing arrangement and low pressures (l0-5torr) are needed; low 

power output is obtained (30 watts peak@ 5106~) and only single shot 

operation is possible. 

A method developed at the Jet Propulsion Laboratory (Ref. 1.10) 

is based on introducing copper in the form of a halide, copper 

chloride. The relatively high vapor pressure of this compound made 

operation at less than 400 °C possible. A more detailed description 

of the double pulsed laser used in the present work will be given in 

later discussion of the experimental work (§3.1 and 3.2). 

Briefly, copper ch 1 ori de is deposited in the 1 aser tube. It is 

appropriate to note here that the choice of material for the tube is 

not as 1 imi ted as in the case with pure copper vapor ·1 asers; although 

quartz is preferred, pyrex can also be used as tube material. The 

laser tube is enclosed in an oven and heated, typically to 400°C. 

The vapor pressure of copper chloride at this temperature has been 

calculated to be about .2 torr, yielding a copper atom density of 

1.5 x 1o15cm-3. Both helium and neon at 10 torr have been used as 

buffer gases. 

At least two discharge pulses (20 KV, 300 amp peak) are needed 

for operation. Th e first pulse dissociates the copper chloride, and 

the second pumps copper atoms from the ground state to the upper 

las e r l evel. Lase r emission takes place at the beginning of the 

second current pulse and lasts for about 15 nsec. The output energy 
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density per pulse is 30 vJ/cm-3 at a repetition rate of 17Hz. 

It is possible to have a continuous train of pulses in which 

each pulse acts as a pumping and dissociating pulse. As in the case 

of self heating copper (pure) lasers, the active medium is heated by 

the discharge itself. In a tube 30 em long, with an inside diameter 

of l em, the best performance was obtained with the 51062 line, at 

20 kHz. The average efficiency was 1% and the energy and power den

sity per pulse vJere 35 vJ/cm- 3 and l. 7 kW/cm-3, respectively. The 

laser pulse width was 20 nsec. The buffer gas used vJas helium at 

10 torr. 

Copper iodide has been used in a similar fashion (Ref. 1.12). 

Since the vapor pressure of this compound is higher, the operating 

temperatures are also correspondingly higher (600°C); repetition rates 

of 8kHz have been achieved, with an output energy density per pulse 

of 9 ~J/cm-3 . Transverse excitation has been demonstrated (Ref. 1.13) 

with copper iodide. 

Although it appears that the continuously pulsed laser is the 

type with the most potential applications (due to its higher efficien

cies and average power), many of its opera~ing parameters are coupled. 

Thus the simpler operation of the double pulsed copper chloride laser 

makes it attractive for the study of the lasing mechanism. 

1.3 Characteristics of the Copper Chloride Laser 

Copper chloride at the operating temperature of the laser (400°C) 

is largely in the solid phase. The vapor in equilibrium at this tem

perature is composed of a monomer CuCl and a trimer Cu3c1 3 with no 
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dimer present. At 1000°K the monomer comprises only 1.4 x 10-3% 

of the vapor (Ref. l. 14). Since typical operating temperatures of 

the 1 aser are be 1 ow this 1 eve 1, the amount of monomer present in 

the laser medium is assumed negligible. The vapor pressure of cop

per chloride in equilibrium with its solid phase can be calculated 

from data provided by Brewer (Ref. 1. 14) and the Clausius Clapeyron 

equation. The calculated vapor pressure as a function of temperature 

is given by 

~n(P) = c1;T + c~ ~n( T) + c3 ~~ in torr 
in OK 

cl = -2.254 * 10
4 

c2 = -7.892 

c3 == 81.414 

With the vapor pressure of copper chloride it is then possible 

to calculate the number density of copper atoms available if all the 

copper chloride atoms were dissociated. A graph of copper atom den- . 

sity versus temperature is shown in Figure 1.2, taken from Ref. 1.16. 

Buffer gases used to date include helium, neon and argon. 

Partial pressures range from 5 to 40 torr, the optimum based on power 

output being in the vicinity of 10 torr. 

Buffer gas flow serves mainly as a mechanism to remove gaseous 

impurities released by the copper chloride powder after heating. 

Sealed off operation has been demonstrated to be possible if pre-

cautions are taken to remove all impuriti es from the laser tube 
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before sealing (Ref. 1.15). Performance is comparable to flowing 

double pulsed lasers. However, degradation in performance has been 

observed after a few weeks of operation. 

The copper chloride laser in the double pulsed mode requires 

tv1o disc~arge pulses separated by some fixed delay. Th e pulses are 

generated by discharging capacitors across the laser tube with fast 

high voltage switches (thyratrons). Since the initial charge of the 

capacitors and their capacitance value is known, and if losses in the 

circuit are ignored, the input energy per pulse is easily calculable 

as l/2 CV2 . The delay betdeen pulses is generated by delaying the 

trigger signal to the high voltage switches with star.dard digital 

circuits. Typically this delay has been found to be of the order 

30 ~sec to 100 ~sec, depending on the tube diamete r. Figure 1.3 shows 

the laser output vs delay between pulses of a 30 em by 2.5 em 1.0. 

laser tube. 

Both minimum and maximum delays have been explained by absorp

tion measurements (Ref. 1.16). After the first pulse the copper 

chloride is almost completely dissociated. However, a large number 

of metastable copper atoms in the lower levels of the lasing transi

tion are also created at this time. The metastable population decays 

at a faster rate than the recombination of copper and chlorine atoms, 

so after a few microseconds a state of potential inversion is pos-

sible if all the ground state copper atoms were to be pumped to the 

upper laser level. This finite lifetime of the metastable population 

determines the existence of a minimum delay before a pumping pulse can 
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be applied. This minimum delay is sharply defined and depends on 

the diameter of the tube. The metastables decay at a f aster rate 

in smaller diameter tubes. This dependence is attributed to diffu-

s ion phenomena. 

It is the lifetime of the lower metastable level which puts 

an upper limit to the repetition rate in continuously pulsed lasers 

using pure copper, copper chloride or copper iodide. It is necessary 

to allow the metastables created by the lasing action to decay back 

to the ground state before a pumping pulse may be applied again . 

Although not as sharply defined, there exists a maximum delay 

for the pumping pulse, beyond which no lasing action is observed. 

This is attributed to the removal of available copper atoms by recom-

bination with chlorine. 

1.4 Behavior of the Double Pulsed Copper Chloride Laser as a Function 
of Temperature 

Figure 1.4 shows the peak output power of a copper chloride laser 

versus temperature. The increase in output power with temperature 

has been attributed to the similar increase in number density of copper 

atoms shown in Figure 1.2. It was expected that as the temperature 

was increased further, the accompanying increase in copper chloride 

vapor pressure 1t10ul d result in an increase in total output power for 

the same active volume, due to the higher copper atom density avail

able (Figure 1.2) . However this is not the case; after a temperature 

of about 400°C the output pm,te r decreases with increasing temperature. 

No satisfactory explanation for this phenomenon has been advanced to 

date. 
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The excitation of the copper atoms after dissociation by the 

first pulse is accomplished by direct electron impact excitation. 

Simple calculations of excitation rates (Ref. 1.17), assuming t•laxwel

lian electron distribution and cross sections calculated by classical 

methods (Ref . 1. 18), indicate that the upper level excitation rate is 

highly dependent on the average electron energy. 

A study of electron temperatures during the pumping pulse in 

the double pulsed laser might clarify the phenomenon of decreasing 

power with increasing temperature. If this limitation could be re

moved, the power density per unit of active volume would increase. 

This \vould result in more powerful lasers. 

1. 5 Present Measurements of Electron Temoerature 

To measure the electron average energy, a gated microwave radiom

eter method was chosen, as this was the most reliable for the condi

tions encountered in a double pulsed copper chloride laser. 

A radiometer measures the radiation intensity coming from a 

body. If the assumption is made that the emission is produced by a 

black-body, it is then possible to calculate the temperature of such 

a body from Planck's law. The radiometer system incorporated boxcar 

averaging techniques in order to improve the signal-to-noise ratio. 

The rise time of the system is estimated to be 20 nsec. 

Broadly, the results found in the present work are the follow

ing. If the laser tube is operated normally in all respects except 

with no copper chloride present, a plot of peak radiation temperature 



-17-

(during the second or pumping pulse) versus tube temperature 

exhibits the monotonically decreasing behavior to be expected. 

If copper chloride is th en placed in th e tube , similar results 

are obtained for laser temperatures below 400°C, but for tempera

tures above that the behavior is markedly _different. Above 400°C 

the electron radiation temperature increases with increasing laser 

temperature giving a 11 U11 shaped curve, more pronounced for helium 

than for neon buffer . 

This strong influence of copper chloride on the electron 

radiation temperature has been attributed to Penning ionization 

(Ref. 1. 19) of copper atoms by metastable helium or neon atoms 

created by the dissociation (first) current pulse. Since copper 

atoms are thus ionized, fewer are then available for lasing. This 

mechanism provides a possible reason for the decrease in laser 

output above certain lase r tube temperature. 
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II. METHODS OF MEASURING AVERAGE ELECTRON ENERGY 

Many of the useful characteristics of plasmas are due to the 

interaction of the electrons with the other particles in the plasma. 

For instance, the electron-neutral collisions are the main excitement 

mechanism in many gas lasers. 

Except in very special systems, a complete theoretical descrip

tion of the plasma parameters such as electron density, collision 

frequency, electron energy distribution or average energy is not pos

sible. It is therefore necessary to rely on experimental techniques 

to provide the required information for the characterization of the 

plasma. 

In this chapter three methods for measuring electron tempera

tures are briefly reviewed: Langmuir probes; spectroscopic observation 

of visible· radiation; and micrm'iave rad·iometry. It has been found that 

for transient phenomena in medium pressure gases (10 to 40 torr) 

micrmvave radiometry is the most accurate method. Since radiometer 

measurements are based on the assumption of partial equilibrium, the 

thermalization time must be substantially less than the time scale for 

the desired measurements. 

2.1 t'1easurement of the Average Electron Energy 

In the absence of an electric field, a swarm of electrons in a 

gas attains thermal equilibrium with the gas molecules. When an elec

tric field i s applied and the S\'iarm drifts along E at the drift velocity, 

the electrons acquire energy from the field at a rate whi ch can gre~tly 
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exceed the rate of loss determined by the elastic and inelastic col

li sions. The mean energy thus increases until the rate of loss 

balances the rate of gain. 

Only in the case when elastic collisions predominate (low E/P, 

the ratio of electric field and pressure) can the mean energy be 

easily calculated (Ref. 2. l) 

<E: > = ( 2. l ) 

where the symbols are defined as 

E electric field 

e electron charge 

P gas pressure 

£ 1 mean free path at 1 torr 

~ mean fracti onal loss per collision (elas tic) 

In all other cases it is necessary to obtain the mean energy 

experimentally. The most commonly used methods include electrical 

probes, spectroscopy, and microwave radiometry. 

2.2 Electrical Probes 

By a probe we mean a smal l metallic electrode, which is im

mersed in a plasma. Generally the probe is connected across a paten-

tial source to a reference el ectrode, which in many cases serves 

simultaneously as the cathode or the anode of a di scharge tube. The 

current fl m'li ng to the probe is measured as a function of the applied 

voltage. The resulting relation between the probe current and the 
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probe voltage is called the "characteristic". Under the most 

favorable conditions, the potential and the velocity distribution 

of electrons of the undisturbed plasma in the immediate neighbor

hood of the probe can be derived from characteristics. Compared 

with many other diagnostic tools the probe is distinguished by the 

possibility of direct local measurement of plasma parameters. This 

advantage of probes, however, is closely connected to their main 

shortcomings. The local measurement requires the probe to be in

serted into the plasma being inve~tigated by means of a probe 

holder whose surface area in most cases is many times larger than 

the probe itself. The probe system forms a "wall" in addition to 

the already existing plasma boundaries and at least in its close 

proximity the plasma parameters may deviate seriously from those in 

the absence of the probe. 

Since the original work by Langmuir (Ref. 2 . 2) and later by 

Druyvesteyn (Ref. 2.3) on the theory of the single probe, the experi

mental techniques and the theory of probes has been refined by many 

workers. A significant development was the invention of the double 

probe technique by Johnson and Malter (Ref. 2.4). This method is 

useful when the space potential is not well defined (e.g., high

frequency discharges, afterglows, and the upper atmosphere). 

The range of applicability of simple probe theory is limited 

to cases in which the mean free path of the electrons is much greater 

than the probe dimensions and the Debye shielding length. The first 

limitation implies gas pressures belov1 one torr while the second 
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guarantees that the quasi-neutrality of the plasma will not be sig-

nificantly disturbed by the probe. The Debye len gth is given by 

h = em. 
T [=] °K e 

-3 em 
(2.2) 

in which the temperature is expressed in °K, and ne is the electron 
-3 density, em 

Systems deviating significantly from these limits can still be 

studied with probes by taking into consideration all the other phenom

ena \oJhi ch v-1ere neglected in the simple probe theory. Results obtai ned 

with probes in the high pressure range (A~ rprobe) have been subject 

to questioning. 

2.2. l Time Resolution of Probes 

In order to study transient phenomena it is necessary to record 

the probe characteristic in a time shorter than the time scale of 

changes in the plasma. However, there exists a limit to the rate at 

which this can be done. This limit is set by the finite time re-

quired by the ions for their redistribution within the sheath. Prac-

tical time resolutions are of the order of one microsecond. Some 

improvement can be obtained by pu l sing, sampling, and averaging tech

niques. As one tries to improve the time resolut ion, the hardware 

aspect of the experiment becomes crucial, the capacitance impedance 

of the probe plasma system becomes significant and masks the true 

characteristics . 
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In conclusion it can be said that electrical probes are most 

useful in studying low pressure plasmas of characteristic times 

greater than about microsecond. 

2. 2.2 Probes in the Copper Chloride Laser 

The use of probes to study the characteristics of laser plasmas 

is well established. Probes are particularly well suited for CW gas 

lasers, carbon dioxide (Refs. 2.5, 2.6, 2.7} for instance. Although 

these lasers operate outside the low pressure limit of the simple 

probe theory, due to the stable nature of the plasma, it is possible 

to modify the theory to account for any departures from the ideal. 

In the case of copper chloride lasers, the plasma is also out

side the low pressure limit (pressure greater than 1 torr), however, 

more serious difficulties preventing the use of probes are: 

The time resolution required (better than 100 nsec) is out

side the practical limit of probes. 

The laser tube is operated well below the boiling point of 

copper chloride, as a result copper chloride is likely to form deposits 

in the cooler parts of the tube. Due to higher heat conductivity, 

metal probes and their electrical connections which act as radiators 

are more likely to be cooler than surrounding glass. Any amount of 

deposits will mask the true nature of the probe response. Since the 

amount of deposits is uncontrollable, its effect on the probe response 

is unpredictable. 
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2.3 Spectroscopic Measurements of the Electron Temperature 

Another method of obtaining the plasma parameters is based on 

the observed characteristics of the spectral lines or bands, or con

tinuous radiation. 

One such method consists in measuring the relative intensity of 

two lines of the same atom. From these the electron temperature can 

be derived, provided the electron excitation functions for both lines 

are known and are markedly different from each other. This method 

assumes that all the excitation transitions occur by electron impact 

from the ground state. Helium or neon lines cannot be used with this 

method since excitation by electrons may not be only from the ground 

state, but also from metastable states. This rules out this method 

for copper chloride lasers, since they use either helium or neon. In 

theory the time resolution of this system should be limited only by 

the detector and the time constant of the excitation process. 

The second order Stark effect of lines from an isolated upper 

level can also be used to evaluate Te. The ratio of shift to width 

of a spectral line is a strong function of Te. The method is adequate 

for temperatures below 12 eV (94,200°K). The time resolution of this 

method is limited by the speed and accuracy at which a line spectrum 

may be obtai ned. 

The very noisy, both electrically and optically, environment of 

the laser system suggests that it would be more difficult to use spec

troscopic techniques in the copper chloride laser plasma. Many prob

lems are anticipated in trying to measure s uch small optical signals. 
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2.4 t·licrowave Radiometry 

It is a consequence of the 1 a~vs of thermodynamics that the 

radiation of a perfect black body is a function of temperature and 

wavelength only. Planck's formula is the quantitative expression 

of this law. From the diagnostic point of view, the me asurement of 

thermal (incoherent) radiation provides information on the electron 

temperature of the plasma (Ref. 2.8). 

The radiation temperature of a plasma is defined as (Ref. 2.9}: 

kT = r 

J 
n (p) af(p) 

W dE 

(2.3) 

where n (p) is the differential rate at which eDergy is emitted spon
w 

taneo~sly per unit solid angle per unit band'.'lidth by an electron with 

momentum p and p + 6p, f(p) is the electron distribution function, 

E the electron energy, k is the Boltzmann constant, and w is the fre-

quency in radians, at which the observation is made. This radiation 

temperature i s related to the intensity received at the radiometer by 

the source function S (Ref. 2.9). w 

s w 

2 
w 
2 2 kTr 

8 7T c 

The formulas (2.3) and (2.4) are derived in Appendix A. 

(2.4) 

If the source is in equilibrium it is theoretically possible to 

determine T from intensity measurements directly. In practice it i s 

us ually more convenient to use a reference source at the same 
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frequency and of known temperature to calibrate the radiometer. 

The radiation temperature of a plasma is related to the elec

tron temperature (average energy) only 1·1hen the electron distribution 

is Maxwellian and/or when n (p) varies as p2 (see Appendix A) as in w 

the case of helium for electron energies greater than l eV . Although 

very few cases satisfy exactly either of the above two conditions~ in 

practice they approach them close enough that significant information 

can be gained from the radiation temperature (Refs. 2.10 and 2. 11). 

A significant advantag~ of radiometry over electrical probes 

is that the plasma is not disturbed by the probing sys tem. Addition

ally, there is no fundamental limitation on the values the plasma 

pressure could have. 

2.4. 1 Radiometer Desion 

A radiometer is a receiver used in the detection of noise-like 

signals spread over a relatively large band of frequencies {micro

waves in the case of plasmas). The design of a suitable radiometer 

is governed by the expected frequency spectrum, amplitude and tem-

poral structure of the signal. For relatively narrow bandwidths~ the 

thermal emission of a plasma can be considered constant: the ampli-

tude is approximately independent of frequency. In t heory, it waul d 

then be favorable to make the bandwidth of the receiver very w·ide to 

pass as much power to the detector as possible. However, this in

crease in band\'lidth also increases the minimum detectable signal, 

thereby reducing the signal quality and the signal-to-noi se ratio. 

Only in the case of very strong emission can this method be used. 
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The signal levels expected (lo-15 watts) in glow discharges 

render direct detection of the emission impractical. To bring the 

signal to detectable levels, amplification in excess of one hundred 

decibels is necessary. The noise figure of the amplifier (or ampli

fiers) required for this purpose exceeds this signal level by several 

orders of magnitude. 

The Dicke radiometer (Ref. 2.12) solves this problem by period

; cally switching between a known source (T ) and an unknown (T ) . By r x 
then synchronously detecting the amplified signal, noise reduction is 

at a maximum when the reference and the unknown signal are of equal 

amplitude (on the average). Thus the usual arrangement (Fig. 2. 1) 

consists of two input branches: one for the unknown source and the 

other for a reference source in series with a calibrated attenuator. 

A switch then alternatively connects the two branches to the radiometer 

(at a repetition rate f). The attenuator is adjusted until the Fourier 

component, at frequency f, of the resulting signal is zero. At this 

point the signal received from the two input branches is of the same 

magnitude. It is then straightforward to calculate the unknown tern-

perature Tx from the reference Tr and the attenuation factor a : 

= a T r 

With this system, sensitivities of a few degrees are possible. 

2 . 4.2 Time-Resolved Measurements 

The Dicke radiometer is very useful v1hen studying steady phenomena 

s uch as D.C. glow di s charges with characteristic times longer th an the 
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integration time of the radiometer which is of the order of minutes. 

In pulsed systems, the radiation emission changes rapidly and the 

Dicke instrument is of little use. 

A modification of the Dicke radiometer can be made with only a 

modest loss in sensitivity, which allm~s time-resolved measurements 

in repetitive phenomena. A gate signal of very short duration (com

pared with the times involved in the experiment) is used to sample 

and hold (until the next sample is acquired) alternatively a refer

ence source and the transient plasma emission. If the gate signal is 

synchronized with the plasma event it is then possible to obtain a 

point by point comparison of the transient signal to the reference 

source. The transient signal can then be reconstructed. This method 

was used in Refs. 2.13 and 2.14, and with some modifications is the 

method used in the present study . 

The boxcar averager is an instrument ideally suited to accom

plish all these signal processing functions. The boxcar averager 

operates in the following manner. A repetitive v1a,veform and a syn

chronous trigger are presented to the boxcar averager. At precisely 

the selected moment an electronic gate opens for a very short selected 

time period and then closes. The balance of the vJaveform is ignored. 

Since many repetitions of the waveform are sampled, the output of the 

boxcar averager will be proportional to the average level of the 

input signal during sampling. However, the noise which accompanies 

the waveform is attenuated, since the average value of random noise 

is zero. If more than one point on the waveform is to be examined, 
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or if the entire waveform is of interest, the gate is scanned across 

the entire ~'/aveform. 

Although the use of microv1ave radiometry in the study of 

pulsed discharges has been established in the past few years (Refs. 

2.13, 2.14, 2.15), the time resolution of the measurements has been 

rather limited, of the order of 10 ]JSec typically. In pulsed lasers 

the time region of interest is usually the time while t he current is 

flowing through the plasma. Of particular interest in metal vapor 

lasers is the leading edge of the current pulse, since it is during 

that period that lasing takes place. All these events occur in less 

than .2 ]JSec, so it was necessary in the present work to develop a 

radiometer system capable of resolving events in that time scale. 

Transient measurements of radiation temperature are based on 

the assumption that the electron distribution r apidly t'elaxes to the 

equil i bri urn MaX'rvell ian di stri buti on. The time constant T for enerqy ee -

relaxation by electron-electron interaction is a rough measure of the 

relaxation time . This time constant is given by (Ref. 2.16) 

[U (eV) ]312 
--'e:;____-; ,---..,----:;-- sec -5 . -1 
7.7xl0 [ne(cc )] 

(2.6) 

As a typical examp l e , for an electron temperature of 10 eV and elec

tron density ne; 1014cm- 3 , the time constant is 4.1 nsec. This is 

a factor of ten l ess than the shortest characteristic time in the ex-

periment. We therefore assumed t hat radiation coming from t he laser 

tube is generated by a nearly Maxwelli an plasma. 
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According to equation (2.6), as the measured radiation tempera-

ture increases (related to the average electron energy) the time 

required to approach equilibrium also increases. This behavior in

troduces some uncertainty in the results due to the larger departure 

from the Maxwellian distribution. 
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III. APPARATUS AND INSTRUMENTATION 

This chapter describes the apparatus used in the experiments. 

Attention is drawn to the laser tube design. Sealed-off operation was 

possible but lack of reproducibility prevented its use. A flow system 

that flov1s only through the ends of the tube (2 inlet and 2 outlet 

ports) and not through the active region was used . 

A low inductance double-pulsed power supply capable of repetition 

rates up to 18 Hz is described, and also the radiometer system with 

associated calibrations. 

3.1 Laser Tube, Gas and Vacuum System 

The 1 aser tube was made of quartz with ground glass taper joints 

at each end. The tubes were sealed for low pressure operation by 

means of end pieces constructed with matching taper joints. Fused 

silica windows were fused to the end pieces at the Brewster angle . 

Each end piece was made with both a gas inlet and an exhaust port. 

Figure 3.1 is a diagram of a laser tube. The laser was usually operated 

v1ith a continuous flov1 of buffer gas through the end pieces but ~'lith no 

net flow of gas through the tube. This design was found to provide the 

most uniform density of copper chloride in the active medium. The main 

function of the buffer gas flow is to carry away any gaseous impurities 

generated by the copper chloride pov1der. Unless extreme care is taken 

to prevent contamination, sea~ed~off performance degrades after about 

half an hour to an hour of operation. It has been found that the flow 

rate is not critical to the short term oper ation of the laser. 
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The gases used as buffers were helium (99.95%) and neon (99.7%). 

The active region of the laser was enclosed in a 12 inch Mellen heater. 

The end caps \'Jith the windows which Here outside the oven were heated 

separately with heating tape. The power supplied tci the heaters was 

controlled manually with autotransformers (VARIAC). 

The temperature in the tube was monitored \vith t\'io iron-constan

tan thermocouples. One was placed next to the reservoir of copper 

chloride while the other monitored the temperature of the tube in the 

active region of the laser. The temperature reported as the tube tem

perature in these experiments is the arithmetic average of these tv10 

readings (the hottest and coolest part). This is, of course, not pre

cisely the temperature of the medium in the laser. The error is esti

mated to remain constant, yielding relative values of temperature with 

an accuracy of about l-3% 

3.2 Power Supply 

A double-pulse power supply designed and built at the Jet Propul

sion Laboratory was used. Figure 3.2 shows a simplified circuit diagram 

of the supply. Reduced to the bare essentials, the circuit consists of 

a charging system (25 KV, 25 rna), a capacitor (being charged continu

ously) and a high voltage fast switch for each of the two pulses. The 

capacitor c1 is charged to a set voltage; when that vo~tage is reached 

the control circuit discharges the capacitor through the laser tube. 

Then after a short delay (10-200 ~sec) the second capacitor {C2),also 

fully charged by its own charging circuit, at this time is discharged. 
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This produces two current pulses of about 200 nsec in d~ration (more 

or less, depending on the value of capacitance) separated hy an ad

justable delay. The maximum repetition rate of these double pulses 

is limited by the time required to fully charge the capacitors (on 

the order of milliseconds) before the control circuits can activate 

the discharge mechanism. To allow the use of a wide range of capaci

tance values the repetition rate was limited to 17 Hz. To minimize 

the effects of stray inductances, the capacitors and high voltage 

sv1i tches ( thyratrons) were asserrb 1 ed around the 1 aser oven. The term 

"saddle power supply" will be used when referring to this power sup

ply. Current rise times of about 7.5xl09amperes/sec we1~e obtained. 

The l aser had tungsten pin electrodes located in branches of 

the main tube. The active region (the region of the discharge 

located within the optical cavity) v-1as approximately 25 em long and 

8 mm I.D. 

3.3 Radiometer System 

A schematic diagram of the radiometer system is shown in Figure 

3.3. The characteristics of the components are summarized in Appendix 

B. In order to detect the microwave emission from the laser tube it 

is necessary to match the discharge tube to the K-band waveguide (the 

radiometer used operated in this band). This is accomplished with a 

brass fitting (Fig . 3.4) in which a waveguide section crosses the axis 

of the laser tube at a ten degree angle. It is as s umed that the 

microwave radiation in the cavity is in equilibrium with the plasma 

radi ation and that th e measured radiation leaking into the wavegu ide 
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is a true sample of radiation in the plasma tube. Due to the high 

operating temperatures it v1as necessary to nickel-plate the brass fit

ting in order to prevent corrosion. 

The signal emitted by the plasma and coupled to the waveguide is 

fed to a mixer v1hich shifts it in frequency to a 20 t11Hz band, centered 

at 60 t·1Hz . The signal is then further amplified and then rectified by 

a diode detector. A boxcar averager (P.A.R. 162 with P.A.R. 164 plug

in) samples this signal -synchronously. The sampled signal is averaged 

internally and its resultant value displayed in the vertical axis of 

an X-Y plotter. A ramp signal which is synchronized with the trigger 

and sampling pulse provides a horizontal axis for the reconstruction 

of an average signal. The entire instrumentation was enclosed in a 

grounded copper screen room to prevent any R. F. interference. 

The entire system had a bandwidth of 12 MHz, which is equivalent 

to a time resolution or response time of 28 nsec. This bandwidth was 

determined by noting that all other instruments in the sys tern had wider 

bandwidths than that of the preamplifier in the microwave mixer which 

was 12 MHz. The sampling gate of the boxcar averager was set to 30 nsec. 

3.4 Calibration of the Instruments 

The following calibrations of the instruments are required. 

1. The correlation betv.Jeen the radiation t emperature and stren9th 

of the output signal. The laser discharge tube is operated in D.C. mode 

with pure helium gas; the discharge current and gas pressure are known. 

The radiation temperature under this condition is well established 

both by theoretical prediction (Ref. 3.1) and experimental verification 
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(Ref. 3. 1). The output signal is measured. Thus the strength of the 

output signal can be correlated with the radiation temperature under 

the same geometrical and electronic conditions. The calibration has 

also been checked with a neon standard noise source. The agreement 

between the two calibrations is satisfactory. 

2. The signal delay time in the electronic circuit. Because 

the time scale in the present measurement and the signal delay time in 

· the electronic circuit are of the same order, the correction of the 

time measurement for the signal d~lay time is required. The signal 

delay time in the circuit between the input of the microwave mixer to 

the input of the boxcar averager is measured by using the scheme de

picted in Figure 3.5. The high voltage pulses break down the discharge 

tube , causing the electron density in the tube to increase rapidly. The 

transmission of microwaves across the tube is cut off abruptly when the 

electron number density reaches the cut-off point. This cut-off point 

is observed simultaneously with a dual beam oscilloscope, TektroniX 

7844 with 7Al9 and 7A24 vertical amplifiers. This instrument is capable 

of res olving events down to 1 nsec. Since the delay introduced by a 

foot of coaxial cable is 1.5 nsec, care was taken to compensate for the 

different lengths of cable used. Thus the signal de lay time in the 

electronic circuit is obtained. 
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IV. EXPERIMENTAL RESULTS 

To insure reproducibility of the results a weekly schedule ~'las 

established. This schedule is described along with the graphs of peak 

radiation temperature (during the second pulse) versus laser tube tem

perature for helium and neon, with and without copper chloride in the 

system. The data obtained show a definite effect on the radiation 

temperature by the presence of copper chloride vapor in the system. 

4.1 Experimental Procedures 

The data acquisition was adjusted to the following schedule. On 

Friday the laser tube was disassembled and cleaned with nitric acid. It 

was then washed, dried, and loaded with new copper chloride powder. The 

laser tube was then reassembled, heated to 250°C and pumped continuously 

until t~onday. It is believed that with this procedure all the impuri

ties were driven off the copper chloride powder, since the use of dis

tilled copper chloride (as opposed to that commercially available) 

yielded no appreciable difference in the behavior of the laser. On 

t~onday a buffer gas was supplied to the laser and the temperature of 

the laser was slm'lly increased. With the power supply operating, radiom

eter readings were taken of the radiation temperature during the second 

pulse (the first pulse dissociates the copper chloride, the second ex

cites the dissociated copper atoms). It was thus possible to obtain a 

set of curves of radiation temperature vs time (Fig. 4.1). 

A curve was plotted for each temperature interval of about 30°C · 

behveen 300°C to 500°C. In order to avoid any transient effects the 
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temperature v1as changed very slowly; as a result only one set of 

curves was taken per day. A load of copper chloride usually lasted 

for over a week of daily operation (if the operating time above 450°C 

was limited). Howevel", in this study the operation \"tas limited to four 

· days (~1onday to Thursday). Data were taken on the first three days, 

while the fourth day was dedicated to testing the instruments and 

apparatus. 

The de 1 ay time from the first to the second pulse \.'tas set at 

33 ~sec for helium and 55 ~sec for neon. This delay was chosen as the 

optimum delay in each case (see Figure 1.3). The power supply settings 

were the s arne in both cases: a 3600 pF capacitor "''as c~arged to 20 KV 

for the second pulse. 

4.2 Dependence of Radiation Temperature on the Temperature of the 
Laser Tube 

The peak of the radiation temperature, shown in Figure 4.1, 

roughly coincides \'lith the laser emiss ion under all conditions. Figure 

4.1 also shows that the initial rise in radiation temperature precedes 

the steep current pulse rise by about 60 nsec. The peak current value 

was around 300 amperes . A more careful observation of the current 

pulse (Ref. 4.1) has shown that there is a small current (of the order 

of amperes) not observed within the resolution of our system, flowing 

for about 40 nsec before the steep r·i se in current. 

Peak radiation temperatures as a function of the laser tube tern-

perature for pure helium (no copper chloride present) and neon are 

shown in Figures 4.2 and 4.3. Despite the scatter in the experimental 
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data, there is a definite decrease in radiation temperature with in-

creasing 1 aser temperature. These trends agree with theoretical ca 1-

culations for these gases (Ref. 4.2). 

The maximum radiation temperature as a function of the laser 

tube temperature for mixtures of copper ch loride and buffer gases 

helium or neon i s shown in Figures 4.4 and 4.5, respectively. It can 

be seen that at the lower laser tube temperatures the des cending por

tion of the r adiation temperature curves agree in trend with the theory 

advanced by Von Engel (Ref. 4.2), while the ascending portion of the 

electron temperature is contrary to theory. Both curves exhibit a 

minimum electron temperature at the laser temperature of about 400°C, 

which is also the optimum temperature for maximum l aser output for the 

experimental arrangement used. 

4.3 Observations 

It is worthwhile noting three qualitative observations: 

(a) Hhen the delay bet\veen the f irst and second pulse was varied 

from 20 to 200 J-1Sec, the peak radiation temperature seemed unaffected. 

(b) t~easurements of the electron density in the afterglow of the 

first pulse indicate that the el ectron density remains high 

(n > 1014cc-1) throughout the interval between the first and second e 
pulse, for delays up to 60 J-1Sec. 

(c) Emi ssion from the laser takes place after 10 nsec of the 

start of the current pulse under all conditions studied. This corre

sponds to approximately the peak of the microwave emission (radiation 

t emperature, Fig. 5.1). This max i mum, howeve r, is not as we ll defined. 
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V. DISCUSSION OF THE RESULTS 

The behavior of the peak radiation temperature vs gas tempera

ture in the copper chloride laser is discussed. The lack of lasing 

action at high oven temperatures is evidently related to the rise in 

radiation temperatures. Penning ionization is proposed as a possible 

reason for this rise; however, only qualitative arguments can be pre-

sented at this time. 

5.1 The Possible Causes of Electron Temperature Increase 

From Figures 4.2, 4.3, 4.4 and 4.5 it is apparent that the in-

crease of the electron temperature at higher laser tube temperatures 

is due to the interaction of buffer bases (He orNe) and the lasing 

medium in the tube. The detailed mechanism of the interaction, at 

this time, is not known. Possible causes may be Penning ionization 

and charge exchange ionization of the copper and/or chloride atoms. 

The reactions can be represented as 

He metastable Penning ionization 

Charge exchange ionization 

+ + * + He + X ->- (X ) + He -+ X + He + L1E2 · · · (5.2) 

\'ihere X stands for Cu or Cl. Simi 1 a r reactions may be written with 

Ne replacing He. In reaction (5.1) a He atom in the metastab le state 
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having excitation energy of about 20.3 eV, collides with the copper 

(chlorine) atom which has an ionization potential of 7.7 eV (13 eV). 

The collision results in a ground state He atom, a highly excited 

copper ion having an excitation energy of 6E1 = 12.6 eV (20 . 3- 7.7 eV), 

and a low energy electron. The excitation energy 6E1 is then re

leased V.Jhen the ion is de-excited. In reaction (5.2) the He ion ex

changes charge with the copper (chlorine) atom, yielding a ground 

state He atom and a highly excited Cu (Cl) ion. The excitation energy 

in the Cu ion is 6E2 = 16.8 eV which is equal to the difference between 

the ionization potential of He (24.5 eV) and that of Cu (7.7 eV). For 

chlorine, 6E2 is 11.5 eV. The Cu (Cl) ion excitation energy is re

leased through de-excitation. The energy of the metastable level of 

neon is 16.6 eV; therefore the excess energy 6E1 in relation (5.1) is 

approximately 4 eV less than in the case of helium. Evidence of the 

above l~eactions has been demonstrated by a previous study of the Cu+ 

laser (Ref. 5.1) . The energies (6E1 and 6E2) are then transferred to 

the electron gas and ultimately radiated by collisional processes (Ref. 

5.2). 

There are no experimental or theoretical . data known to the 

author for the rates of the reactions expressed in (5. 1) and (5.2) for 

copper or chlorine in the literature. However, the published cross 

sections for Penning ionization of the metastable state for He with 

various target species listed in Ref. 5.3 are higher than l0-15cm2 

(with the exception of H2) . The cross section for Penning ionization 
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of the metastable state for Ne is about 50% less than that of He . 

The charge exchange cross sect ion can only be inferred from the data 

for the other elements (Ref. 5.4) to be about lo-16cm2. The numbers 

quoted here are uncertain and are used only for a qualitative illus-

tration. The reaction characteristic time Tp and Tc for the Penning 

and charge exchange ionization, respectively, can be estimated by 

using the quoted numbers with the expression 

T = 1 
qnv (5.3) 

.( -1 5 2 -16 where q is the ionization cross section 10 em for Tp' 10 for 

T
0
); n is the number density of He metastable states or ions (esti

mated to be 3 x 1016 , roughly 10% of the He atom density); and v is 

the thermal speed of the reactants (2 x l05cm/sec). 

Thus 

Tp _ 80 nsec 

Tp is within the time scal e of the present experiment. Thus, Penning 

ionization may be the dominant process in this present experiment. 

In comparing Figs. 4.2, 4.3, 4.4, and 4.5 it can be seen that 

when the tube temperature is increased from 400°C to 500°C the in-

creases of electron temperature due to the interaction between the 

copper and the buffer gases are 18 eV for He and 8 eV for Ne. The 

magnitude of the increase in electron temperature for a given meta-

stable number dens ·j ty is proportion a 1 to the product of the cross 

section for Penning ionization and the difference between the energy 
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of the metastable level and the ionization level of Cu (or Cl). For 

Ne, the energy of the metastable level (16 .6 eV) is sma ller than 

that for He (20.3 eV), and the Penning ionization cross section for 

Ne is probably less than that for He. The measured increases of 

electron temperature, assumed due to Penning ionization, for the two 

buffer gases have qualitatively borne out this assumption. As the 

tube temperature is increased, the electron temperature rises more 

when hel i urn is used as the buffer gas because more energy is lost to 

the electron gas in the process described by reaction (5. 1). 

5.2 Explanation of Laser Output as a Function of Laser Tube Temperature 

The typical 1 aser output as a function of 1 aser tube temperature 

is shown in Figure 1.4. From the results discussed in the preceding 

section, the characteristic of the . copper laser represented by the 

curve in Figure 1.4 can be explained as follows. At lovter laser tube 

temperature (in the vicinity of 300°C) the copper number density is 

low (5.5 x l012cm-3). The lack of copper atom number density explains 

the lower laser output in this range of laser tube temperatures. At 

higher laser tube temperatures (in the vicinity of 500°C) the number 

density of copper is 6xl015 following the dissociation of copper 

chloride. 

For the elevated electron temperatures (with He, 25 eV and 

with Ne, l3 eV) according to Figures 4.4 and 4.5 the copper should 

be fully ionized, depleting the density of copper atoms. To support 

this argument, the ionization characteristic times for ionization of 
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copper atoms are estimated. The experimental value of the ionization 

rate of copper atoms by electron collisions is not available. How-

ever, the ionization rate by electron collision as a function of elec-

tron temperature may be calculated by using the Gryzinski classical 

formulation (Ref. 5.5) with a Nax\'lellian electron velocity distribu-

tion. The electron temperatures are 25 and 13 eV for He and Ne buffer 

gases, respectively. The characteristic times for ionization of cop

per atoms is given by 

T = ·--
kn e 

(5.4) 

where k is the ionization rate constant and ne is the electron number 

density. The results derived in Ref. 5.6 for a Maxwellian distribu-

tion with average energy 25 eV and 13 eV give as the rate constant k, 

10 -7 -8 3 and 3xl0 em /sec respectively. If we assume an electron den-

sity of at least l015cm- 3, the characteristic times would then be 

33 nsec for neon and 10 nsec for helium. These are in the range of 

characteristic times for the experiments. Thus, with these high 

average electron energies, it is quite possible that a large fraction 

of the copper atoms will indeed be ionized on the time scale at which 

the pulsed laser is operated. 

The optimum laser power is obtained in the laser tube at a 

temperature of about 400°C. The corresponding electron temperatures, 

as shown in Figs. 4.4 and 4.5, are about 6 to 7 eV. At these electron 

energies the ionization rate (ionization characteristic time is about 

l0-6sec) is not high enough to deplete the copper atom number density 

and cause deterioration of the laser output. 
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CHAPTER VI 

INTRODUCTION TO CHARACTERISTICS OF THE CARBON DIOX IDE LASER 

In the present chapter a short review of the co2 laser and its 

characteristics is given. Particular attention is paid to influence • 

of additives to the gas mixture in the laser. Also discussed are the 

plasma characteristics of the glow discharge and ·dissociation processes 

occurring in the laser tube. 

6.1 Th e Carbon Dioxide Molecule and the Mechanism of Operation for 
Carbon Dioxide Lasers 

Several types of carbon dioxide lasers exist: glow discharge, 

transversely excited atmospheric (TEA), waveguide and gas dynamic; in 

the present study we viill be concerned only with the operation of CW 

carbon dioxide lasers with flowing mixtures and pumped by a DC glow dis

charge. At the typical operating pressures ( ~ 12 t orr) the positive 

column of the glow discharge comprises most of the lasing volume. 

6.1.1 Vibrational States of the co2 Molecule 

The co2 molecule is a linear symmetric triatomic mol ecule. It has 

three fundamental modes of vibration. The symmetrical bending (o,v2 ,o), 

the symmetrical stretch (v1,o,o) and the asymmetrical stretch (O,o,v3). 

In the ti me scale of interest, these modes can be considered uncoupled. 

Each l evel is split into fine rotational sublevels of angular momentum 

J. Th e interaction among the rotational level s is much stronger th an 

among the vibrational level s, thus rapid "thermali zation" of the ro ta-

t i onal levels is accomplished within each vibrational level. All the 
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relevant levels of the co2, CO and N2 molecules are shown in Figtire 

6. 1. 

6. 1.2 The Carbon Dioxide Laser 

Stimulated emission is possible in carbon dioxide molecules with 

either transition (1) at around 10.6~ or transition (2) at around 9.4~. 

The gain coefficient a of such transitions of frequency y
0 

has been 

calculated by Patel (Ref. 6. 1) as 

hv~ I 
( 6. 1) 

where N is the number density of the appt~opriate ·level, v and v ' denote 

the upper and lov~er vibrational, J and J' the upper and lm'ier rotational, 

gJ and gJ' the degeneracy of the respective levels; and 6v0 the Doppler 

linewidth, c the speed of light, A21 the spontaneous emission coeffici

ent. 

If lasing is to occur, the gain given by equation (6.1) must be 

a positive quantity. With that restriction the following threshold 

condition may be derived (Ref. 6.2): 

Er(J)- Er(J') 

E(v') - E(v) 
(6.2) 

Tr and Tv are the rotational and vibrational temperatures respectively. 
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The transition in terms of the rotational level J may be of 

three kinds, referred to as P, Q, and R branches (the primed quantities 

refer to the lower laser level): 

P Branch 

Q Branch 

R Branch 

J = J' - l 

J = J' (forbidden in C02 ) 

J = J'+l 

For the P branch transition we have E (J') = E (J+l) > E (J), and r r · r 

since E(v) > E(v'), both the numerator and the denominator in the right 

hand side of the relation (6.2) are negative. This implies that it is 

possible to satisfy the threshold conditions 111ith some positive tempera

ture Tv (Tr is approximately the equal of the gas temperature). Thus it 

is possible to have amplification without having negative temperatures 

(i.e., popul ation inversion) . This pmcess favo r·s t he operation of th e 

co2 laser in the P branch, unless some frequency selective element is in

troduced in the resonator. 

The above equations give a criterion to estimate the gain and 

probable emitting line. They do not give any information as to how the 

levels actually become populated . 

If the energy levels of the co2 molecule are to be used for the 

las ing operation, a likely medium in which co2 molecules could be made 

to las e i s an el ectric discharge. In the discharge the electrons with 

typical average energi es in the order of l eV, could excite the co2 
vi brational l eve ls through several pat~ s : direct excitation colli s ions ; 

di ssociating colli s ions with s ubs equent recombination to form an excited 
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molecule; indirect excitation through a previously excited nitrogen 

atom. Nitrogen has a near resonant level with the upper laser level. 

Due to its large electron excitation cross section, N2 is more easily 

vibrationally excited than co2 by electron impacts. 

The first laser to make use of vibrational/rotational transitions 

was invented by Patel in 1964 (Ref. 6.1), using pure co2. With no 

other gases present, the carbon dioxide laser produces relatively low 

power. Patel also discovered (Refs. 6.3 and 6.4) that the power is 

greatly increased with the addition of nitrogen. A further increase 

of pm'l'er is achieved by the addition of helium, a fact reported inde

pendently by Patel, Tien and McFee (Ref. 6.5) and by Moeller and 

Rigden (Ref. 6.6). Other additives have been tried, notably water 

vapor and xenon, but the most dramatic effects occur 1•1i th nitrogen and 

helium. t1ost conventional carbon dioxide lasers operate with CO/N2/He , 

a typical mixture ratio being l/3/16 moles, so carbon dioxide is the 

minor constituent. The ideal quantum efficiency for the C02 laser, 

the energy of the transition divided by the energy from ground state 

to the upper level, is 41 percent. With appropriate gas mixtures, 

operating efficiencies, defined as power-out divided by electrical 

pm'l'er-in, as high as 30 percent have been achieved. 

Even though from the initial report (Ref. 6.1) it was evident 

that significant amounts of co2 dissociation took place in the dis

charge , this fact was often ignored in the calculations and perform

ance analysis. Potentially important effects of C02 dissociation 

were overlooked: (i) depletes the number of C02 mol ecules; ( i i) adds 

new s pecies (CO and 02 , mainly) which may affect the excitation 
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process. The first vibrational level of CO and N2 shown in Figure 6.1 

are nearly resonant with the upper laser level (100). Therefore the 

same resonant energy transfer from N2 to C02 can be expected to oper

ate with CO to co2. Since all experimental evidence shows that 

species other than co2 are generated in the electrical discharge, the 

pure co2 laser is not so pure. Although the case is not by any means 

closed, it appears that those other species, particularly carbon monox

ide and atomic oxygen, may in fact be necessary to the functioning of 

a laser which is operated initi~lly with carbon dioxide and no other 

additives. 

Patel (Ref. 6. 1) observed sidel ight emission from an electronic 

transition of carbon monoxide, as well as the voltage and curre~t for 

the discharge, and the output of stimulated emission. He found that 

while the first three occurred approximately together when the laser · 

was puls~d, the output appeared as much as 300 ~sec later. Because it 

is unlikely that such a long delay would arise if the population inver

sion 't'Jere produced directly by collisions of electrons with co2 mole

cules, another mechanism must be found. Patel suggested, and later 

work by Chen (Ref. 6.7) supported the idea, that the _reformation 

process is dominant. 

There has been relatively little interest in the co2 laser with

out additives, mainly because the output is so low compared with those 

using gas mixtures. However, the mechanism causing the population 

inversion is an interesting problem which has not yet been satisfac

torily resolved. The authors of another work (Ref. 6.8) cite evidence 
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that direct excitation, by electron impacts, produces the population 

inversion. The time lag bet'tteen the current pulse and laser output 

was found in Ref. 6.8 to be less than 2 ~sec, and only weakly dependent 

on the initial pressure of CO?; the radiation at 10.6~ occurred later 
l.. 

than that at 9.5~. the delay varying from about 8 sec at 1 torr to 

1 ~sec at 3 torr. The performance was unusual in that below 2.5 torr 

the intensity of the radiation at 9.5~ was greater than that at 10.6~. 

Owing to the short time delays, the authors conclude that inelastic 

electron collisions are responsible for the inversion; their descrip-

tion of the operation of the laser is therefore cast in the framework 

appropriate to a gas discharge. 

Water vapor has been used as an additive for co2 laser mixtures 

both sealed and flowing. Witteman,(Refs. 6.9, 6.10) found that by add-

ing a small quantity of water vapor to a sealed off C02 laser, its 

lifetime could be made practically unlimited with also an increase in 

output pm'ier. In flm~ing systems Smith and Austin (Ref. 6.11) found 

increased amounts of output power from the laser rlith the addition of 

small amounts of water (.4 torr in a 9 torr mixture). They also found 

reduced dissociation of co2 when water was present. 

It has been generally supposed that water vapor prevents the dis-

sociation of carbon dioxide molecules, although measurements confirming 

this are somewhat lacking. A second function of water vapor seems to 

be to increase the relaxation rate of the lower laser level, thus. im-

proving the population inversion. Water and its effects on the co2 
laser will be discussed more fully in Sections 6.2 and 6.3. 
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f·1ixture composition is seen to play an important role in the 

operation of the laser. The dissociation of co2 molecules may drasti 

cally ch ange the mixture composition. It deserves a closer study. The 

addition of H20 molecules to the mixture seems to change the steady 

state level of dissociation reached. In the mixtures used in typical 

lasers, only co2 (and H20 when present) appear to be chemically active . 

This is probab1y due to the lov-1 dissociation energy of these molecules 

compared with N2 which is the only other candidate that caul d be chem

ically active. The dissociation energies of co2, H20 and N2 are, re

spectively, 5.5 eV, 5.2 eV and 9.8 eV. 

6.2 Influence of Additives on the Performance of co2 Lasers 

The degree of inversion existing in the laser is dependent on 

the population of the upper and lower lasing level and their pumping 

rates. Ideally it would be desirable to maximize the pumping of the 

upper level while at the same time increasing the rate of relaxation 

of the lower level. One possible way to accomplish this is the addi

tion of molecules other than co2 which would favor the effects men

tioned above. Not all additives are favorable, and others might be 

by-products of unavoidable chemical react ions in the laser me dium, for 

instance, the dissociation of C02 into CO and 0. 

Gases present in the co2 laser mi xtures could have various effects 

on the operation of the laser. As is the case with N2 and very likely 

CO, a gas could act as an intermediary by resonant energy trans fer from 

the e 1 ectrons to th e C02 mo 1 ecul e. The 1 m·J direct excitation cross 

section of the co2 molecule makes almost unavoidabl e the presence of 
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such a collision partner if one is to have efficient l as ing. In 

pure co2 1 asers the creation of CO by di ssoci ati on seems to be a 

major requirement before lasing can be observed (in most cases). 

An additive could also have the opposite effect; it could introduce 

a path for increased collisional relaxation of the upper laser level. 

The energy path waul d be in direct competition with the lasing tran

sition so its occurrence is to be avoided. Water, hydrogen and 

carbon dioxide mo l ecu les show this effect. 

The rate of relaxation of the lower laser level is also strongly 

influenced by the mixture composition. Helium and water have been 

shown to have very favorable influences on this relaxation rate. Helium 

has the additional advantage that its high heat conductivity helps 

keep the laser operating at lower temperatures and therefore at higher 

gain (Ref. 6. 12). 

6.2.1 Nitrogen 

Nitrogen was the first additive used (Patel, Ref. 6.3). It has 

been noted by Sobolev and Sokovikov (Ref. 6. 13) that up to the fourth 

vibrational level the difference between pairs of N2 and co2 (vi) is 

less than kT, the typi cal thermal energy of the molecules in the dis

charge. Radiative decay of the vibrational l evels of N2 is strictly 

forbidden, making the transfer of energy from vibrationally excited 

N
2 

to the ground state co2 most efficient . Its effect on the relaxa

tion of the lower lasing levels seems to be minor compared with other 

gases such as helium (Ref. 6.14). Analysi s up to a sens itivity of .01 

torr by Smith and Austin (Ref. 6. 11) failed to reveal any of its oxides. 



-70-

6.2.2 Helium 

The influence of helium is particularly marked in decreasing 

the kinetic temperatures of the laser. This has been attributed to 

its high thermal conductivity. In Ref. (6.15) the authors found that 

for the same current density the temperature rise in mixtures con-

taining helium 'r/as considerably lower than without it. Lademan and 

Byron (Ref . 6.16), in a more detailed analysis, calculated the heat 

conductivity of a co2-N2-He as a function of helium mole fraction, 

and found the expected increase. 

6.2.3 Carbon Monoxide 

Carbon monoxide needs to be considered because it is always 

present to some degree, due to the dissociation of co2 molecules. Its 

vibrational level structure is similar to N2 and, as such, it can 

pump theupper l aser level resonantly (Ref . 6.17). It has also been 

proposed that it increases the relaxation rat~ of the lower lasing 

level (Refs. 6.14 and 6. 18) 

6.2.4 Oxygen 

Oxygen is present in the discharge mostly due to dissociation. 

· Its influence on the re laxation of the upper laser l evel has been 

studied by fluorescence techniques (Refs . 6.19 and 6.20). A sample 

of carbon dioxide and other molecules was irradiated with a short 

pulse of 10.6~ radiation. Then by observing the fluorescent emission 

at certain \•Javel engths, information about the relaxation rate of the 

upper laser level could be monitored. They concluded that oxygen 
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decreased the population of the upper laser level, although not by 

dramatic factors. 

6.2.5 Xenon 

This is another common additive in carbon dioxide lasers. Due 

to its low ionization energy, xenon distorts the electron energy dis-

tribution by decreasing the number of high energy electrons (Ref. 6.21 

and 6.22). It reduces the average electron energy and increases the 

electron density (Ref. 6. 15). 

6.2.6 Water Vapor 

When present in small amounts, water vapor increases the relaxa-

tion rat~ of the lower laser level (Refs. 6.14 and 6.20) and improves 

the gain of the laser (Ref. 6. ll). A reason one would expect H20 to 

affect the gain of the laser is the proximity of the (010) level of 

-1 0 ) H20 (1595.0 em ) and the (10 0 and (01°0) levels of C02 (1388.3 em - 1 

-1 ) and 1285.5 em , respectively . In sealed tubes the lifetime of the 

tubes is prolonged almost indefinitely (Refs. 6.23, 6.24 and 6.25); 

the reasons are believed to be chemical , mainly the prevention of carbon 

dioxide dissociation. 

6.3 Characteristics of the Discharge in an Electrically Excited Carbon 
Dioxide Laser 

CW carbon dioxide lasers use glow discharges as active medium. At 

the pressures and currents normally used, the positive column makes up 

most of the active lasing region. 
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The positive column in its steady state provides an environ

ment which is in many respects very close to, and in other respects 

very far from equilibrium. It is possible to treat the positive 

column as composed of two almost independent groups of particl es: 

molecular mixture and the electron gas. Each can be characterized 

by an average energy (temperature) which might be very different. 

For instance , (Ref. 6.21), the mean electron energy in typical co
2 

lasers is about 1.2 eV (approximately l0000°K). The molecular mixture 

is close to room temperature at about 350°K (Ref. 6.16). 

In characterizing the positive column it will be useful to do 

so by analyzing certain parameters: electron mean energy, electron 

distribution function (in energy), electron collision frequency, elec 

tron density, electric field, current and voltage across the discharge, 

and pressure of the molecular mixture. The measurement of some of 

these parameters is difficult and unreliable. Therefore, attempts have 

been made to determine these quantities theoretically by calculating 

the electron distribution function. 

6.3. l Electron Energy in the Glow Discharge 

The electrons in a glow discharge can be uniquely characterized 

by an energy distribution function (assuming no space anisotropies). 

From this function it is in theory possible to calculate most of the 

excitation rates in the plasma; again, we assume that we know the ap

propriate cross sections. 

Experimentally, the more direct method of measuring the distri

bution function involves the use of Langmuir probes. At the normal 
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operating pressures of the co2 laser (about 12 torr) simple probe 

theory does not apply, so it is necessary either to modify the theory 

or to lovver the pressure to the range ("-' 1 torr) where the theory may 

still be applicable. In practice both tactics have been used (Refs. 

6.22, 6.26, 6.27, 6.28, 6.29). In general the distribution function 

is found to be non-Maxwellian with average energy between 1 and 3 eV. 

The mixture composition has been found to have a strong influence on 

the distribution, especially at the higher energies~ The authors of 

Ref. (6.27) obtained different distributions in flowing and non-flow

ing lasers . In light of the known difference in dissociation charac

teristics of sealed and flowing lasers, this effect is attributed to 

the different resulting mixtures. In Refs. (6.22) and (6.30) lasing 

action has also been observed to have an effect on the distribution 

function; lasing apparently reduces somewhat the number of high energy 

electrons . Time resolved measurements using multiple probes have been 

reported by Chen (6.7). 

The mean electron energy is a more easily measured quantity. A 

microwave radiometer of the type discussed in Section 2.4 was used in 

Refs . (6.13), (6.21) and (6.32). Their results agree with each other 

in magnitude (.8-1.8 eV). 

As previously mentioned, there is evidence (Refs. 6 .22, 6.28, 

6.30, 6~33, 6.34, 6.35, 6.36, 6.37) indicating that the plasma charac

teristics (el ectron distribution, discharge impedance) change when 

laser radiation is present. This is apparently due to coupling betv1een 

low energy electrons and the vibrational states of nitrogen, carbon 
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monoxide and carbon dioxide. It has also been found that the side

light emission ch anges (Refs . 6.33, 6.34, 6.35). 

A theoretical approach to the plasma analysis is poss ible by 

solving the Boltzmann transport equation for the electron distribution. 

Knowledge of the appropriate cross sections i s assumed. In a series 

of papers (Refs. 6.38, 6.39, 6.40, 6.41, 6.42) Nighan et al solved 

Boltzmann's equation numerically for the electron distribution in co2 
laser plasmas under a numbe r of conditions. The distri butions thus 

calculated were used to estimate the different excitation processes in 

the laser. All the theoretical background necessary for the calcyla

tions has been described in Ref. (6.39). Essentially, the same 

approach was used by Judd (Ref. 6.43) in his kinetic calculations of 

the co2 laser. Th e qualitative agreement of the calculations vvith 

publi shed reports is fairly good, so the model may be taken as the 

starting point for a number of cal cul ati ons. The tvw major drawbacks 

are: the complicated numerical calculations and manipulations required, 

and the need for accurate cross sections for the processes involved. 

6.3.2 Electron Density and Collision Frequency 

The average e lectron density and collision frequency can be mea

sured si mply by a microwave cavity method (Refs. 6.27, 6.44, 6.45). 

This is the method used in the present study and is described more 

fully in Chapter VII and Appendix C. Other me thods of obtaining the 

electron density include microwave interferometry and el ectrical 

probes. Both microwave methods are conceptually s imi 1 ar, s i nee they 

are based on the dependence of the plasma index of refraction on the 
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electron density. The cavity method is more suited for steady state 

phenomena. Probes have the same limitations (lm•J pressure) discussed 

in Section 6.3. 1; nevertheless, they have been used in co
2 

lasers 

(Ref. 6. 29) . 

The micraNave method of measuring electron density also gives 

the value of the electron-neutral collision frequency; t hus it can be 

used to calculate drift velocities and thereby the electric field to a 

first approximation. Although this calculation is not very accurate, 

in cases in which no other means of measuring the electric field are 

available it could be of significant value. A further advantage of 

mi crm·1ave techniques is the fact that they are independent of the 

pressure and composition of the plasma. 

6.4 Review of Observations of Dissociation and Chemical Composition 
in co2 Lasers 

From early reports of co2 laser operation, it was found that pure 

undissociated co2 cannot provide appreciable power generation, for in 

this case the power is limited by the slow rate of direct pumping of the 

upper laser level, and the slow rate of relaxation of the lower laser 

level. Brinkschulte (Ref. 6.17) reports that until a certain minimum 

ratio of CO to co2 is formed, no lasing is observed. 

In a glmv discharge, chemical reactions occur predominantly in 

the region of the cathode fall and in the positive column. The 

highest rate of reaction per unit volume is observed in the cathode 

fall region vJhere there is a high field strength and consequently a 

greater number of high energy electrons. However, since the cathode 
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fall region represents only a small fraction of the total reaction 

volume, the overall reaction rate is controlled by the positive 

column. Thus it appears justified in the case of flowing systems to 

analyze the chemical kinetics of the plasma by studying the positive 

column only. In sealed-off lasers this assumption is no longer valid . 

Carbon dioxide 1 aser mixtures commonly used have nitrogen and 

helium as additives. Also used are xenon and v>~ater vapor (in small 

quantities). Of these only carbon dioxide and water (when present) 

seem to be chemically active to a significant degree (Ref. 6. 11). 

6.4.1 Carbon Dioxide Dissociation in Flm..,ing co2 Lasers 

Published reports in the area of C02 dissociation in glow dis

charges have been similar in nature, for the most part consisting of 

parametric plots of dissociation versus flow rate with pressure and/or 

current as parameters . l~ ith one exception (Ref. 6.29) none of the 

reports measured the electron density in the discharge while making 

the dissociation measurements. Dissociation has been observed to vary 

from 5 to 85 percent. 

Smith and Austin (Ref. 6.46) and Smith (Refs. 6.47 and 6. 11) 

studied flm'ling mixtures of co2-N2-He (6,12,82), (1,2,0), and pure 

co
2

. It appears that they took some measurements of dissociation with 

\'later present in the mixture; however, they do not quote any numbers 

and state only that the dissociation is lower when water is present. 

They presented a simple kinetic model which will be the basis for the 

analysis in Chapter X of the present work. 
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Ivanov et al (Ref. 6.29) studied the dissociation in a discharge 

of pure C02 at 2 torr and current densities of .6 to 12 ma/cm2 . With 

the aid of electrical probes they were able to study the electron den

sity. No other mixture was studied. 

In Ref. (6.48) the authors studied flowing mixtures of co2 -N2-He 

having the compositions (l ,3,6) and (1,0,9). They displayed their re-

sults as dissociation versus flow rate and used current as a parameter. 

In Ref. (6.49) some of the same autho}'S report on the dissociation of a 

(2,1,18) mixture. 

Limited dissociation results are presented by Wiegand etal (Ref.6.50) 

with a mixture (1,2,10) in a 3.8 em diameter tube. With the tube at 

10.6 torr and a current density of 11.5 ma/cm2 , they measured the dis

sociation as a function of flow rate. 

In general, published reports show qualitative similar dependences 

(i.e., with respect to current density, flow rate, pressure and mixture 

composition). The chemical equation co2 ~ CO + 1 02 was satisfied in 

all cases except in Ref. (6.11). However, the same author, Smith, in a 

later report (Ref. 6.46), apparently using the same apparatus, used the 

above equation to analyze the data. We assume that the first report 

contained a calibration error. 

6.4.2 Carbon Dioxide Dissociation in Sealed-Off Tubes 

The chemistry of the sealed-off laser is far more complex than 

that of flm'ling systems, s o in spite of the number of reports on the 

subject, it is very difficult to make any general statements. Unlike 

the case of flowing systems, the dissociation is ve ry dependent on the 
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experimental conditions used (Ref . . 6.51). Sometimes even the material 

of the electrode affects the dissociation behavior (Refs. 6.49 and 

6.52); different electrodes gave different results. 

Of particular interest is the role of water vapor in the disso

ciation. It has been established that the presence of water reduces 

the degree of dissociation of co2 molecules (Refs. 6.53 and 6.54) and 

increases the lifetime of the laser. 

6.5 Present Measurements of Electrical Characteristics and Chemical 

Composition 

In the works previously mentioned, the main electrical parameter 

was the current through the discharge. It is likely that a more ap

propriate parameter is the electron density an,d possibly the collision 

frequency (for electron/neutral collisions) since they are directly 

tied to the energy transfer mechanism. 

The purpose of the present measurements was to measure carefully 

the dissociation of carbon dioxide as a function of electron density 

in an operating co2 laser (flowing, DC excited). Several initial mix

tures were studied: co2-N2-He (1,3,16), (1,2,10) and (2,3,15); co2-N2 
(1,3), (1,2) and (2.3); co2-He (1,16), (1,2) and (2,3); and pure co2. 

The effect of water was studied with mixture (1,3,16). The parameters 

varied were total STP flow rate (volume flow rate at standard condi

t ions ) and total pressure in the discharge. 

The electron density and collision frequency in the laser have 

been measured with a micrO\'Jave (3 gHz) cavity. From these values an 

estimate of the electric fi eld in the tube may be made. A gas chromat

ograph was used to measure the composition. Only the concentrations 
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of carbon monoxide , nitrogen and oxygen could be measured and no 

short-lived species could be detected. 

An analysis of the results shows that for all the mixtures and 

conditions studied, in which no water is present, the degree of dis

sociation as a function of the electron density depends only on the 

partial STP fl ov1 rate of carbon dioxide regardless of total pressure 

or mixture composition. It has also been shown that the degree of 

di ssoci ati on decreases s i gni fi cantly (order 50%) when water vapor is 

present in the discharge. 

Two simple models of the dissociation mechanism vtere developed. 

In Chapter IX the model is based on the assumption of thermodynamic 

equilibrium in the discharge. The electrons are replaced by a distri

buted heat source and the resulting equilibrium composition was calcu

lated. In Chapter X a simple kinetic model is derived. 
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Chapter VII 

APPARATUS, I NSTRUP~ENTATION AND t~EASUREf·1ENTS 

In this chapter we will describe the experimental apparatus . Th e 

system consisted of a flo~tling DC excited low pressure co
2 

laser. This 

tube was specially built to accommodate a coaxial microwave cavity in 

order to allm'l measurements of electron density and collision frequency. 

The flow system of the laser allowed the working mixture of the laser to 

be changed. A gas chromatograph was used to analyze the chemical compo

sition of the gases after passing through the discharge. 

7.1 Laser Tube, Gas Supply and Power Supply 

7.1.1 Laser Tube 

The bulk of the measurements reported in the present work \•Jas made 

on a flovling, water cooled carbon dioxide laser. {!,diagram of the t ube 

is shown in Figure 7.1. The active region ~'/as 65 em long. The tube was 

made of quartz (in consideration of the low absorption of this material 

at microwave frequencies) and had an inside diameter of one centimeter 

with sodium chloride end windows mounted at the Brewster angle. A sec

tion of about 20 em was exposed (no water jacket) in order to accommodate 

the microwave cavity. This section was forced air cooled. The tube had 

solid molybdenum electrodes mounted in side branches of the main tube. A 

limited set of experiments were carried out in a 1.4 em I.D. tube of 

similar design. The dependence of the dissociation of carbon dioxide on 

electron density seemed to be nearly independent of diameter. Difficul

ties with the mi crm,Jave cavity (a different one from the one used with 
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the smaller tube) and the air cooling of the larger tube prevented 

a more complete set of experiments on this tube. 

Under optimum conditions, with the current density 10 ma/cm2 , the 

laser \vould produce 1.5 v1atts C\<J output. Ho\'/ever, since stimulated 

emission caused no change in the dissociation characteristics or the 

microwave measurements (\'/i thin the sensi ti vi ty of our i nstr:uments). no 

attempt was made to keep the laser oscillating at all times. 

7. 1.2 Gas Handling and Vacuum System 

Figure 7. 2 shows a diagram of the flow sys tern used. The working 

mixture for the laser was prepared by adding the appropriate quantiti-es 

of gases. To prepare mixtures of three gases, the procedure was to 

add calibrated amounts of pure carbon dioxide to a ready-made mixture 

(molar) (1:3:16) of co2 -N2 ~He. In this manner mixtures in the propor

tion (1:2:10) and(2:3:15) by volume (molar) were prepared. All mixing 

was done at low pressures (~ 54 torr) to prevent any back flow and 

contamination of the gas supplies. The flowmeters after each gas supply 

were calibrated but, due to large variations in their accuracy, they were 

\'Jere used as reference only. Gas flow was measured each time a new gas 

flow was set or a new mixture tried. The fl mv was measured at the exit 

of the sampling loop of the gas chromqtograph, by measuring the speed 

of displacement of a soap diaphram along a graduated column. Records 

of the ambient temperature and pressure v1ere maintained to compensate 

for any variation in the flm'l rate measured this \'lay. 

The pressure in the laser cavity was constantly monitored v1ith a 

Wallace and Tiernan vacuum gauge (model FAR 160). This gauge was 
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calibrated daily with a Todd Scientific Co . Mcloud gauge. 

A second vacuum pump was connected in parallel with the first in 

order to be able to reach low operating pressures at high flow rates. 

The exhaust of the first pump was fed to the gas chromatograph for 

analysis of the resulting mixture. 

7.1.3 Method of Adding Water Vapor to the Mixture 

A slight modification of the flm'i system \•las made so that cali-

brated amounts of water vapor could be introduced. The modification 

is shown in Figure 7.3. Briefly, the gas mixture flm'l was allowed to 

11bubble" through distilled water in a closed container before con-

tinuing its path to the mixing chamber. Since the pressure and tern-

perature of the V.Jater chamber were known, the amount of water vapor 

present can then be calculated from the knm'in vapor pressure of water 

at that temperature an d the assumption that the gas mi xture becomes 

saturated. The percentage of \"later (by volume) in a gas mixture flo>'/-

ing through this device as a function of PH 0 , the water vapor pressure, 
2 

and Ptank' the chamber pressure, is given by: 

PH 0 
% H 0 = 

2 * 100 2 p tank 
( 7. 1 ) 

The validity of the above analysis was checked indirectly by measuring 

the amount of nitrogen. Since the percentage of an element in a mix

ture decreases if another element is added, by measuring what percentage 

of the mixture nitrogen contributes before and after the addition, the 

amount of water can be found . 
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% N2(before) 

- 91-
% N2(after) 

100 - % H 0 
2 

* 100 

= 1 _ o 2(after) * 100 
[ 

% N ] 

% N2 (before) 

( 7. 2) 

(7.3) 

As an example of the agreement between the two methods, the following 

is a typical case: 

Ptank = 780.9 torr 

PH O = 19.6 torr @ T = 295°K 
2 

Thus, assuming saturation, the amount of vvater vapor present is 

On the other hand, measurement of the amount of nitrogen present 

gave: 

% N2(before) 15 · 3% 

% N2(after) = 14· 9% 

Hence, according to (7.3) 

% H20 = (1 - ~~:~) * 100 = 2.6% 

The agreement within 4% is satisfactory for the purposes he re. 

7. 1.4 High Vol taqe D.C. Source 

The laser discharge was D.C. excited in the present measurements. 

A block diagram of the entire system i s given in Figure 7. 4 . A D.C. 
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pov1er supply model l-1020 made by Carl Holmes Co. capable of up to 

500 rna at 200 KVolts was filtered and then connected to the laser tube 

in series with a 120 K ballast resistor and a current r egulator. Most 

of the regulation of voltage and current was accomplished by the power 

supply, the filter and the ballast resistor (about 2-3%). Further 

regulation was obtained with the current regulator (home built). The 

regulator kept the current constant by dynamically varying its imped-

ance. Referring to Figure 7.5, its operation can be briefly described. 

If we assume very small leakage currents in the transistor (collector 

to base) and the amplifiers used, the voltage at point a (V = R • - a a 

I 1 aser) will be proporti anal to the current through the 1 aser. A differ-

ential amplifier (DA) amplifies the difference bet~'ieen reference voltage 

The difference signal (appropriately biased) is applied to 

the base of the transistor (T) making it conduct more if V < V or · a r 

less if Va > Vr. Thus the system will maintain Va = Vr (i.e., keep 

!laser constant). By varying the reference voltage the current could 

be set to any fixed value {in our case 3-25 ma). The complete system 

had less than .5% variation in current . 

7.2 t·1icrowave Measurements for Electron Density and Collision Frequency 

The use of a microwave cavity to measure the electron density and 

collision frequency in a glow discharge has been established for many 

years (Ref. 7.1) and used by many authors (Refs. 7.2, 7.3, 7.4, 7.5, 

for example). A good review of the subject is given by Ingraham and 

B rovm (Ref. 7. 6). 
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7.2.1 Relationship between the r,1icrowave Cavity Characteristics and 

the Plasma Parameters 

A microwave cavity can be characterized by an infinite set of 

electromagnetic resonant modes. Each mode has a center frequency f 

and a quality factor Q. Any arbitrary field inside the cavity can be 

then described as a linear combination of those modes. 

If a material of index of refraction ~2 is placed inside such 

a cavity, the cavity's modes change both in frequency and in Q. The 

change is given to a first order perturbation (Ref. 7.6 and Appendix 

c) , 
J(i)I Ea·Eo dV 

ll( l) 1 1 -= Q- Qo -Q 
J E0 ·E0 dV 

( 7. 3) 

f - f -J[(i) - 1] E ·E dV 
llf -

R 0 0 
0 = fa - fo f E0 ·E0 dV 

(7 . 4) 

Subscripts "a" refer to the empty (no plasma) cavity values. The index 

of refraction of an electron plasma is given by (Ref. 7.6 and Appendix 

c): 

2 
l1 = 1 ( 1 + (7 .5) 

vm is the electron collision frequency, wp is the plasma frequency, w 

is the microwave frequency in radians per second. The electron density 

in the discharge is assumed to follow a Bessel function distribution 

radially (Ref. 7. 7): 
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Solving for v and n° m e 

v = w 6(1/Q) 
m 2(6f/f ) . . 0 

( 7. 6) 

2 2w m £ 
(6f)[l + {6 (1/Q) }2] no e o = 

11 e2 e f
0 

2(6f/f
0

) 
( 7. 7) 

11 is a dimensionless form factor dependent on the cavity dimensions and 

the resonant frequency used. For the ™on cylindrical mode and the 

cavity used in . this study, the value of 11 was measured (Ref. 7.8) to 

be 11 = .0096. This was verified by the numerical calculation described 

in Appendix C. 

7.2.2 Instruments Used in the Microwave Measurements 

The microwave system used in the present work ¥/as developed ori-

ginally by Dr. A. Ravimohan and Dr. Fred Shair (Ref. 7. 8) and was used 

without change. Figure 7.6 shows the components of the system, and 

Figure 7. 7 shows details of the microwave cavity. 

of the cavity was used exclusively (3043 MHz). 

The TM011 mode 

The main function of the mi crm'lave system was to obtain resonance 

curves (RF output vs frequency) of the cavity under different plasma con-

ditions. Figure 7.8 shows a typical resonance curve. Since the reson-

ant frequency and Q of the empty cavity were known, any shift due to the 

plasma could be easily measured. In order to reduce errors, a reference 

curve was traced for each set of conditions studied (for example, a set 
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of six different current values) for the same initial composition, 

flow rate and pressure . 

7.3 Estimates of the Electron Energy and Average Electric Field 

The microwave measurements do not give a direct measure of either 

the electric field or the average energy of the electrons. By making 

some simplifying assumptions, it is possible to obtain both. There-

sulting accuracy is estimated to be low, and only information as to 

order of magnitude and trends can be expected. The electric field 

calculated in this manner was used later as a parameter in the thermo-

dynamic equilibrium calculations described in Chapter IX. 

7. 3.1 Estimate of the Electric Field in the Discharge 

The time betv1een collisions for an electron is given by (1/vn), 

the inverse of the collision frequency. If we fu r ther assume that 

during this time the electron is acted upon by the electric field E, 

then the velocity of this electron at the end of the period betv1een 

collisions will be given by 

v (E·e).(l/v ) (acceleration)·(time) 
me n 

(7.8) 

or 
m v 

E = (~)v 
e 

(7.9) 

The current through the laser can be written as 

I =n·v·A·e 1 aser e d 
(7.10) 
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(7.11) 

where ne is the mean electron density, vd is the drift velocity of 

electrons, A is the cross sectional area of the tube, and e is the 

charge of an electron. 

Averaging over all directions (Ref. 7.9, p. 36) 

v = £ v = 
d 3 

2 E·e 
3m ·v 

e n 

and combining {7. ll) and (7. 12) gives 

E 

7.3.2 Average Electron Ener~ 

(7. 12) 

(7 . 13) 

If A is the fraction of en ergy each elect ron loses per colli s ion, 

the following equation for conservation of energy can be written: 

(7. 14) 

where <s> is the el ectron average energy; use of (7.12) and (7.13) 

leads to 

<s> (7.15) 

Unfortunately, the value of A in (7.15) is not easily calculated or 

measured. In the case of purely elastic collisions, ).. would be equal 

to tv1ice the mass ratio of electrons to heavy particles in the plasma. 
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For example, a pure carbon dioxide plasma would give a value of ~ 

(elastic collision only) = 2 x 10-5. If we take the results of Ref. 

( . ) -2 7.10 <E> = 1 eV , then ~ ~ 10 to account for the observed average 

energy. 

7.4 t~easurements of Chemical Composition 

The composition of the laser mixture was calculated entirely 

from the oxygen concentration, assuming the process co2 !:; CO+~ 02" 

This assumption ~vas deemed valid within the sensitivity of the chromato

graph and was later confirmed by analysis with a mass spectrometer on 

two occasions. 

7.4. 1 Description of the Gas Chromatograph 

A gas chromatograph based on measurement of thermal conductivity 

consists of three basic elements: a supply of reference or cal~rier gas 

(helium in our case); a column which has different diffusion character-

istics with different gases; and a thermal conductivity detector. A 

slm-1 flow of the reference gas is established through the column and 

detector. The detector constantly monitors the thermal conductivity 

of the flowing gas. If a small sample of gases is inserted into the 

reference flow before it enters the column, each of the gases will come 

out of the column at different times due to the different diffusivity 

of the various gases. The detector senses the presence of a gas other 

than the carrier by noting the change in thermal conductivity of the 

gases flowing through it. 
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The gas chromatograph used in the present experiment was a CARLE 

BASIC@. Its column was packed with 13X molecular sieve, allowing 

detection of carbon monoxide, nitrogen and helium. It was baked and 

purged with helium and checked for linearity every three months. The 

error in the oxygen concentration measurements is estimated to be .2%; 

error in the carbon monoxide measurement is about 1%. 

Since the chromatograph could only detect the three aforementioned 

gases, it was felt necessary to check for any other gases not detected, 

such as oxides of nitrogen or any other undetermined substance. The 

chemical analysis was made at the Jet Propulsion Laboratory with a 

Consolidated Electrodynamics Corp. model 21-l03C mass spectrometer, 

having a sensitivity of .01 %. In addition to the dissociation products 

of carbon dioxide (CO and o2) no contaminants were found nor oxides of 

nitrogen. 
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Chapter VI II 

EXPERIMENTAL RESULTS 

In this chapter we describe the experimental procedures and 

results of the present experiment. Results for the dissociation of 

carbon dioxide and the plasma paramete~s were obtained for twelve dif

ferent initial gas compositions. If the dissociationwasmeasured for 

a constant STP flow rate, we found no dependence on the pressure. The 

electron density was found to vary somewhat with composition. 

By describing the experimental results in terms of a rate con

stant Kit was possible to represent all the experimental points for 

compositions not containing water vapor in a single graph of K vs co2 
partial flow rate (at STP). The presence of small amounts of water 

vapor causes a marked reduction of K. 

Inasmuch as t hey can be compared~ the results agree with previ-

ously published results. 

8.1 Experimental Procedures and Ranqes of Independent Variables 

8.1.1 Gas Mixtures Used 

In the present experiment three basic mixtures of co2-N2-He were 

studied; other mixtures of either co2-N2 or co2He were derived from the 

original three. They were in molar or volume proportions: 

SET A: (1,3,16); (1,3,0); (1,0,16) 

SET B: (1,2,10); (1 ,2,0); (1,0,10) 

SET C: (2,3, 15); (2.3,0); (2,0,15) 

Also, pure co2 was studied, and the volume proportion (1,3,1 6) wjth 

.5 H2o or 1.1 H2o added. The mixtures were selected because they are 
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typical for flowing low pressure lasers (Ref. 8. l) or (Ref. 8.2), for 

example. 

The pressure of the discharge was set at values typical of simi

lar mixtures (Ref. 8.2), with usually additional data taken at 

pressures above and below that point. For example, mixtures of three 

gases (co2-N2-He) with or without water added were usually run at 

points between 8 and 16 torr. Mixtures of co2-N2 at 2 to 4 torr~ 

co2-He at 6 to 11 torr, and pure co2 at .9 to 2.0 torr. 

8.1.2 Gas Flow Rate: STP Flow 

There is no unique way of specifying a gas flow rate. Reports 

on co2 lasers have mostly used either STP flow rates (Ref. 8.1) or 

volume flow rate in the discharge tube (Ref. 8.3), for example. Both 

measurements are related and it is possible to obtain one from the 

other, but the latter is the most widely used. 

STP flow rate is the volume flow rate at atmospheric pressure 

and 300°K. In the present work all flow rates are reported as STP 

flow rates. Conversion formulas to obtain different parameters, 

volume flow rate, Qlaser' flow speed, vlaser• and mass fl01<1 rate m , 

are given below: 

Qlaser = QSTP/Plaser (atm) 

vlaser (~~c ) 
3 

QSTP(cm /sec) 
2 

Plaser(atm) +A (em ) 

QSTP(cm
3
;sec) 

m (em/sec) = ----- • ~1W 
22.4 X 103 

( 8 . 1 ) 

(8.2) 

(8.3) 
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Plaser is the pressure in the laser expressed in atmospheres (1 torr= 

.001316 atm), A is the cross sectional area of the laser tube, t~ \t/ is 

the molecular weight of the gas. In the case of mixtures of n gases, 

the mo 1 ecul ar weight (r.1t•/) is computed from the concentration of each 

of the components by volume (Ci) and their respective molecular weights 

U'lltli) as follows: 

n 
= I c. 

i=l 1 (8.4) 

n 
~~1~~ = I C.·(r1W.) 

i=l 1 1 
(8.5) 

8.1.3 Summary of Conditions Studied 

Table 8.1 lists all the conditions studied in the present work. 

The entries are 1 i sted by data set ID number and each corresponds to 

3 a specific initial composition, a given STP flow rate QSTP(cm /sec), 

a total laser pressure, and the calculated average electric field E. 

The field was calculated using equation (7 . 13). 

Table 8.2 shows the information collected in a typical data set 

(#147). The results were generated as tables of average electron den

sity, electron collision frequency, voltage drop across the discharge 

tube, calculated electric field in the positive column, dissociation 

percentage, all as functions of the current. As already mentioned, 

the initial gas composition, the STP volume flow rate, and the total 

pressure were kept constant while taking these measurements. 

In general, flow rates for all mi xtures (and pure C02) were chosen 

in such a way that the partial STP flow rate of co2 would be in the 
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range from .1 to 1.0 ccjsec . 

The usual laboratory procedure consisted of selecting a mixture 

and STP flow rate (QSTP); then by varying the pressure different data 

sets corresponding to these different pressures would be generated. 

8.2 Dependence of Electron Density on Experimental Variables 

From simple calculations, assuming that the electrons carry all 

the current in the discharge, the following equation for the average 

e 1 ectron density ne can be written 

n = _;L_ ~ (constant) j e vde - (8.6) 

In the above equation, j is the average current density (current/cross 

sectional area), vd is the drift velocity, and e is the charge of an 

electron. 

For most of the experimental conditions studied in the present 

work, the average e lectron density ne could be closely approximated 

by a linear function of j. The flow rate and pressure seemed to have 

only a small influence on the plots of ne vs j, as can be seen in 

Figure 8.1. t·1easurements of electron density plotted against current 

density for the different co2-N2-He compositions studied, are shown 

in the following: 

Figure 8.2: (1 ,3, 16); (1,0,1 6); (1,3,0); 100% C02 

Figure 8.3: (1,2,10); (1,0,10); (1,2,0); 100% C02 

Figure 8.4: (2,3, 15); (2,0,15); (2,3,0); 100% C02 

Figure 8.5: 1 . (1 ,3, 16) + 2" H20, ( 1 , 3,16) + 1. 1 H20 
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In general terms, the behavior of the electron density shows a direct 

dependence on current density. The proportion a 1 ity factor is, how-

ever, dependent on the composition. At the same current density, 

mixtures of co2-He have higher electron densities than co2-N2-He mix

tures, the latter are higher than co2-N2, and they in turn are higher 

than pure co2. 

8.3 Dissociation of Carbon Dioxide as a Function of Average Electron 

Density 

In this section the main results of the experiments are presented. 

It was found that for a given mixture only the STP flow rate and elec-

tron density is required to determine the dissociation. 

Figures 8.6 through 8.17 show plots of dissociation vs electron 

density for various STP flow rates and different pressures. The ini-

tial mixtures were co2-N2-He : 

Figure 8.6: (1,3,16) 

8.7: (1,3,0) SET A 

8.8: (1,0,16) 

Figure 8.9: (1,3,16) + .5 H20 

Figure 8.10: (1,3,16) + 1.1 H20 

Figure 8.11: (1,2,10) l 8.12: (1,2,0) SET B 

8. 13: (1,0,10) 

Figure 8.14: (2,3,15) 

8.15 (2,3,0) SET C 

8.16 (2,0,15) 

Figure 8.17: 100% C02 
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In general, dissociation vs ne was found to be a function of both the 

STP flow rate and the mixture composition. It \vas almost independent 

of pressure. The addition of water vapor decreased dissociation mar-

kedly. 

8.3. 1 Effect of Pressure and STP Flow 

In the experiments for a given initial mixture composition and 

STP flow rate data were taken at several pressure levels. Within the 

accuracy of the instruments no dependence on pressure was found for 

variations of pressure up to a factor of 2. In Figures 8. 6 through 

8.17, except Figure 8.12, the data points for dissociation are identi-

fied according to the pressure at which they were taken. Theories of 

the type used by (Ref. 8.4) predict as strong a dependence on pressure 

as on flow rate, contrary to the behavior found here. For example, if 

we refer specifically to Figure 8.6, we observe that the dissociation 

curve at 3.2 cm3;sec is almost 50% hiqher than at 7.1 cm3;sec. On the 

other hand, in the same figure, variations in pressure 8 to 16 torr do 

not seem to change the dissociation very much. Similar behavior was 

encountered throughout the experimental data. 

8.3.2 The Effect of the Initial Mixture Composition 

Although it is a bit more difficult to visualize from the figures 

presented, the following statement holds true: For a given total STP 

flow rate the dissociation (% D) as a function of electron density ne: 

% D (1,3,16) >% D (1,2,10) > % D (2,3,15) 

% D (1,3,0) > ~~ D (l ,2,0) > % D (2,3,0) 

% D (1,0,16) >% D (1,0,10) >% D (2,0,15) 
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It vlill be shown later that an even more significant parameter in 

specifying dissoci at ion is the co2 partial flov1 rate at STP conditions. 

Dissociation will be described as a single valued functi on of the co
2 

partial flow rate. 

8.3.3 Effect of Water Vapor 

Limited experiments were conducted with the mixture (1~3,16) with 

and without water added. It was found that the dissociation of co2 was 

significantly reduced when the water was added to the system. The re-

duction was greater when more water was added up to the largest amount 

used here. 

Figure 8.9 shows plots of dissociation vs electron density for a 

mixture of co2-N2-He-H20 of (1,3,16,.5). As previously discussed 

(Sec. 8.3.1) in regard to dissociation in mixtures without water vapor~ 

the dissociation was independent of the total pressure in the tube; and 

it was inversely dependent on the STP flow rate. 

Figure 8.10 shows dissociation vs ne for a mixture co2-N2-He-H20 

(1,3,16,1. 1). The degree of dissociation is even lower than for the 

similar flow rate shovm in Figure 8.9. 

8.3.4 Characteri zing the Dissociation: Dissociation Constant K 

To facilitate analysis of the information collected, i t is conven-

i ent to define a constant K given by the equation: 

D = l - e 
-Kn e (8. 7) 

where D is the dissociation fraction of carbon dioxide molecules 



D (8.8) 

dt (8.9) 

(8. 10) 

k1 is the rate constant to first order in ne for dissociation by e l ec

tron collision, T is the residence time of the gases in the discharge. 

Equation 8. 10 does not take int6 consideration any recombination reac

tion or higher order rate constants . Equation 8 .7 i s discussed more 

fully in Chapter X. 

In order to make a more quantitative anal ysis of the dissociation 

information collected, the experimental data points (for a given ini

tial mixture and STP flow rate) \-tere fitted (least squares fit) to 

equation (8.7) . The resu lts are tabulated in Table 8.3. The table is 

organized under initial compos i t i on heading with li stings of STP flow 

rates and corresponding calcul ated K's. The partial flow rate of co2 
is al so listed (QCO ). The values of K t hus calculated give a more 

2 
direct measure of the relative degree of dissociation. 

F·igures 8. 18 to 8 . 21 show a plot of K as a funct i on of carbon di

oxide partial flow rate {QSTP) for the following mixtures: C02 

Figure 8.18 SET A: (1,3,16), (1, 3,0), (1 , 0, 16) 

(1,3,16) + .5 H20, (1 ,3,16) + 1. 1 H20 

Figure 8. 19 SET B: (1,2,10), (1, 2,0) , (1,0,10) 

Fi gure 8.20 SET C: (2,3,15), (2.3,0), (2,0,15) 
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Pure co2 

In reference to the above figures the follovling observations can be 

readily made: 

1) Except when wate r is present, the dissociation constant K as a func-

tion of the STP partial flow rate of co2 and defined by equation 

(8.7) appears to be independent of the initial mixture composition. 

2) The general form of the dependence is close to K ~ 1/Qco . As a 
2 

guide, a line with such a dependence was drawn in each of the 

graphs (8. 18 to 8.21). 

3) When water is added the degree of dissociation decreases substanti-

ally (Fig. 8. 18). 

8.4 Summary of Observed Behavior 

8.4.1 Electron Density 

In most cases studied~ the electron density was found to have a 

linear dependence on the current density (!laser/tube area). The propor

tionality constant was dependent on the gas mixture and to a far lesser 

degree on the gas pressure. The flow rate did not appear to affect it. 

These measurements support our conclusion that the current. density is not 

a consistent parameter with which to describe the dissociati on in the 

laser. 

Comparison vJith previously published reports is somewhat difficult 

due to the different methods of measurement and varying parameters. 

Clark and Smith (Ref. 8.5), using a microwave cavity method, measured 

n ; .4 · 1o10cm- 3. If we use Figure 8.4 at thei~ current densities we 
e 
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- . 10 -3 get ne = .38 · 10 em . In the work of Ref. 8.6 for pure co2 at 

2 torr, the electron density was inferred by two methods (using probes): 

by integrating a measured distribution function of electrons; and by 

measuring the ion current. Our results for similar conditions lie 

between their two measurements. For ecample, for j = 2.76 ma/cm2 they 

S ed 1 - l0- 10( - 3) < Ll5 · n ; .2. · 1010cm-3 . mea u r _ . < n · em . . ; 1 n our case e e 

A more complete measurement of electron densities v1as done by 

Novgorodov et al. (Ref. 8. 7). They used the micro\'Jave cavity technique 

used presently (they used Tt-10n0). Their results of ne vs current den

sity, although agreeing qualitatively with ours, differ in absolute 

magnitude. For the same current density, their results are about l/3 

below ours. Since no details of the measurement were given in the 

paper, it is very hard to establish the reason for the discrepancy. 

8.4.2 Results for the Dissociati on ~co2 

The most significant results found were: 

1) There is no pressure dependence in the dissociation vs electron 

density (ne) if the data are taken at constant STP flow rate. This 

appears to hold for all the mixtures studied. 

2) Under similar conditions the presence of water vapor (2.5% to 5%) 

reduces the dissociation by as much as 50%. 

3) The dissociation constant K, defined by equation (8.7) and discussed 

in Chapter X, showed a unique dependence on the partial flow rate 

of co2. This dependence was not affected by the presence or absence 

of other gases (He and/or N2). 
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Direct comparison of our results for dissociation with those 

of others authors is indirect and therefore approximate. With one 

exception (Ref. 8.6) the results for dissociation quoted in the liter

ature are not accomp anied by measurements of the electron density. The 

current is assumed to give an indication of the behavior of the elec

tron density. In light of the variations encountered here . in the 

values of the electron density in the laser discharge, the published 

results of dissociation with current as a parameter have to be cor-

rected. 

The present author is aware of only one instance in which the 

dissociation in a co2 glow discharge was studied as a function of the 

electron density. Ivanov et al. {Ref. 8.6) studied the dissociation 

in a discharge of pure co2 at 2 torr and current densities of .6 to 

12 ma/cm2 . Agreement with our measured values is satisfactory: for 

a residence time of . 1 sec and rie = .48 · 1010cm- 3, they measured 16% 

dissociation. In our experiment for a residence time (-r) = .12 sec, 

p= 1.8 torr, and ne = .48 x 1010cm-3, we measure 10% dissociation. The 

electron densities calculated by Ivanov were obtained from probe meas-

urements. 

More extensive analysis of the dissociation in co2 has been re

ported by Soviet {Refs. 8.8 and 8 . 9) and British (Ref. 8.3 and 8.4) 

authors. The authors of Ref. 8.8 report the dissociation as a function 

of flow rate through the laser; they used current as a parameter and 

studied two compositions co2-N2-He (1,3,6) and (1,0~9). They used a 

water cooled laser tube 60 em x 2.2 em dia. In order to compare their 
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results with the present experiments, it is necessary to transform 

their current values (current densities) into electron densities. 

Figure 8.4 is used for that purpose. The following table compares 

results obtained in that way: 

(1,3,6),QSTP= 7.3(cm3;sec) 

(Fig. 3, Ref. 8. 8) 

j(ma/cm2) % D 

2.6 

5.3 
7.9 

ll % 
20% 
28% 

(2,3,15),QSTP= 7.0(cm3;sec) 

(Fig. 8.14, Present ~'lark) 

n;(j) % D 

.24 

.53 

. 79 

8% 
15% 

20% 

ne is calculated from the current density (Fig. 8.4). 

Our results are somewhat lower than their measured values, but 

the general behavior seems to be the same. The differences may be at-

tributed to the different experimental conditions . Qualitatively the 

agreement is fairly close. In Ref. 8.9 some of the same workers 

analyzed a flowing co2-N2-He (2,1,18) mixture. Their results for dis

sociation are presented in terms of a reaction constant related to the 

K we defined in equation (8.7). Again, they use the current through 

the laser as the main parameter so direct comparison is difficult. For 
- . -1 2 example, they- measure (K ne/T) = .3 sec at 8 torr and j = 5.25 (rna/em); 

- 10 -3 comparing this to our experimental results we estimate ne = .5 · 10 em , 

Oco;; .3 (cm3;sec) gives T = .33 sec, and K .4. Therefore in our case 
2 

for similar conditions we obtain (K n/T) = .6 . Discrepancies may 

again be attributed to the different experimental conditions and models 

used. 
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Smith and Austin (Refs. 8.3 and 8.4) report on various paramet-

ric dependences of dissociation in co2 lasers. The mixtures they 

studied were co2 -N2-He (6,12,82), (1,2,0) and pure co
2

. Although it 

appears that they took some measurements of dissociation as a function 

of water vapor pressure, unfortunately they only reported qualitative 

results. Their results agree \'lith ours in general behavior and order 

of magnitude. For example, they obtain 52% dissociation for a 

{6,12,82) mixture at 9 torr, j= 14 ma/cm2 , and 5 (cm3;sec) STP flo~t/. 

Our experiments for conditions close to those give 42% dissociation. 

· In Ref. 8.4 the same authors report similar results; in addition they 

construct a kinetic model for the dissociation process based on the 

electric current through the laser. 

Limited dissociation results are reported in Ref . 8.10 using a 

co2- N2-He (1 , 2,10) mixture in a 3.8 em diameter tube . Hith the mixture 

at 10.6 torr, STP flow of 5 (cm3;sec) and j = 11.5 (ma/cm2), they meas-

ured approximately 65% dissociation. Our results yield about 40%. The 

wide difference in diameters (ours is 1 em) might be the cause of the 

discrepancy in this case. 

In conclusion it is felt that the results for the dissociat ion of 

carbon dioxide reported here may be taken as typical of ope rating C02 

las e rs and as such the model to be derived from them would be a fair 

representation of the las e r. 
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Table 8.1 SU~1MARY OF CONDITIONS STUDIED 

% % % STP (C02 , N2 ,He ) Data Set C02 N2 He Flow Rate p <E> 
I D No. (cc/sec) torr I de a 1 volts/ em 

4 100 . 163 1.0 100% 11.07 
5 100 . 163 2. 0 100% 15.4 
6 10.3 13.5 76 . 2 3. 73 10.0 (2:3:15) 33.2 
7 10 . 3 13.5 76 . 2 3.67 11.0 (2:3:15) 32.7 
8 10.3 13 . 5 76.2 3.67 12.0 (2:3:15) 31.7 
9 11.4 13. 3 75 . 3 3. 21 13.0 (2:3:15) 44.1 

11 10 . 1 13.6 76 . 3 3. 70 15.0 (2:3:15) 30.1 
12 10. 1 13.6 76.3 3.68 16.0 (2:3:15) 46.8 
13 9.9 13.6 76.5 3. 68 17.0 (2:3:15) 44.3 

15 100 . 18 1.0 100% 27 . 7 
16 100 • 18 2. 0 100% 21.6 

17 10.6 13.4 76.0 3. 13 16.0 (2:3:15) 43 . 3 
18 10.3 13 .5 76 . 2 3.30 10.0 (2:3 : 15) 32 . 85 

19 10.3 13.5 76.2 3. 17 14.0 (2 : 3:15) 33.4 

20 10.5 13.5 76 . 0 3. 15 9.0 (2:3:15) 34.1 

21 9.3 13.6 77.1 3.05 9. 0 (2:3:15) 34.5 . 

22 7.6 13 . 9 78.5 3.19 10.0 (1:2:10) 37.2 

23 7.6 13.9 78. 5 3.19 11.0 (1:2 : 10) 34.97 

24 7.6 13.9 78.5 3. 19 12.0 (1 : 2:10) 38.5 

25 7. 6 13.9 78.5 3.19 13.0 ( 1:2:10) 40.8 

26 7.6 13.9 78.5 3. 19 15.0 (1 :2: 10) 41. 1 

27 7.6 13.9 78.5 3.19 17.0 (1:2 : 10) 48 . 1 

28 5.2 14.3 80. 5 3.21 9. 1 (1:3:16 ) 33. 1 

29 5.2 14.3 80.5 3. 21 11 . 0 (1 : 3:16 ) 33.45 

30 5.2 14.3 80.5 3.21 13.0 (1:3:16) 37.7 

32 5.2 14.3 80.5 3.21 15.0 (1:3:16) 40.6 

33 5.2 14.3 80.5 3.21 17. 0 (1:3:16) 43.8 

34 5.2 14.3 80.5 4.47 12.0 (1:3:16) 42.0 

35 5. 2 14.3 80.5 4.17 9.0 (1:3:16) 33.4 
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Table 8. l (continued) 

Data Set % % % STP (C02 ,N2 ,He) 
C02 N2 He Flow Rate p <E> ID No. (cc/sec) torr I deal volts/em 

36 5.2 14.3 80.5 4.17 14.0 (1:3:16) 47.3 
37 5.2 14. 3 80.5 5.0 8.0 (1:3:16) 33. 1 
38 5.2 14.3 80.5 5.0 12.0 (1:3:16) 37.4 
39 5.2 14.3 80.5 5.0 16.0 (1:3 : 16) 45.9 
40 5.2 14.3 80.5 6.25 8.0 (1:3:16) 30.7 
41 5.2 14. 3 80.5 6.25 12.0 (1:3 : 16) 38.9 
42 5.2 14.3 80.5 6.25 16.0 (1:3:16) 41.0 
43 7. 7 14.9 77.4 4.92 8.0 (1:2:10) 39.5 
44 7.7 14.9 77.4 4.92 12.0 (1:2:10) 38.2 
45 7.7 14.9 77.4 4. 92 16.0 (1:2:10) 47.5 
46 8. 1 14.8 77.0 5.02 8.0 (1:2:10) 38.4 
47 7.6 14.9 77.4 6.00 8.0 (1:2:10) 35.5 
48 7.6 14.9 77.4 6.00 12.0 (1:2:10) 36.8 
49 7.6 14 .9 77.4 6.00 16.0 (1 : 2:10) 44 . 4 
50 . 7.6 14.9 77.5 7.0 8.0 (1:2:10) 35.1 
51 7.6 14.9 77.5 7.0 12.0 (1:2:10) 42.3 
52 7.6 14.9 77.5 7.0 16.0 (l :2:10) 46.3 
53 10.6 14.4 74.9 5.0 8.0 (2:3:15) 34.2 
54 10.6 14.4 74.9 5.0 12.0 (2:3:15) 41. 2 
55 10.6 14.4 74.9 5.0 16.0 (2 :3 :15) 47 . 5 

56 10.4 14.5 75. 1 6. 1 8.0 (2:3: 15 ) 31.9 
57 10.4 14.5 75. l 6. 1 12.0 (2:3:1 5) 35 . 5 

58 10.4 . 14.5 75. l 6. l 16.0 (2:3:15) 44.3 

59 10.5 14.5 75.0 7.04 8.0 (2:3:15 ) 37. 0 

60 10.5 14.5 75 .0 7.04 12.0 (2:3:15) 38.9 

61 10.5 14.5 75.0 7.04 16.0 (2:3:1 5) 45.2 

62 5.3 15. 3 79.4 7.10 8.0 (1:3:16) 39.0 

63 5.3 15.3 79.4 7.04 12.0 (1:3:16) 38.19 

64 5.3 15.3 79. 4 7.1 16.0 (1:3:16) 39.0 



- 12 !-

Table 8.1 (continued) 

% % % STP (C02 ,N2,He) Data Set F1 ov1 Rate p <E> 
I D No . C02 N2 He ( cc/sec) torr Idea l volts/em 

66 10. 6 14. 5 75.0 5.0 12.0 (2 : 3 :1 5) 3().4 

67 10. 6 14.5 75 . 0 5.0 14.0 (2: 3: 15) 45.8 
68 10.6 14.5 75.0 5.0 16. 0 (2:3: 15) 54.6 

69 10 . 6 14.5 75 . 0 5. 0 . 8.0 (2:3 :15) 47.6 

70 7.5 15.0 77.5 5.0 8.0 (1:2:10) 28.6 

71 7. 5 15.0 77 . 5 5.0 12.0 (1:2:10) 46.8 
72 7.5 15.0 77.5 5.0 16.0 (1: 2:10) 56 . 8 

73 7. 5 15. 0 77.5 5. 0 8.0 (1:2: 10) 34. 2 

74 5.3 15.3 79.4 5.0 8.0 n=3 :1 6 ) 50 . 8 

75 5.3 15. 3 79.4 5. 0 12.0 (1:3:16 ) 54.2 

76 5.3 15.3 79 . 4 5.0 16.0 (1: 3:16) 62.0 

82 5.6 94·.4 10 .10 10. 1 (1:-:16) 26.25 

83 100 1.05 1.8 100% 22.37 

84 100 . 75 1.4 100% 37.6 

85 100 . 529 1.3 100% 20.2 

86 100 .529 3. 0 100% 22 . 35 

87 100 . 373 0.9 100% 18. 45 

89 100 . 262 0.8 100% 14.9 

90 26 . 0 74.0 2.05 2 . 8 (1:3:0) 35 . 4 

91 25 . 6 74.4 1. 404 2.5 (1: 3:0 ) 27.26 

92 25.6 74.4 1. 462 2.3 (1:3:0) 29.07 

93 34. 0 66.0 2.2 2 . 2 (1:2: 0) 32.8 

94 33 . 7 66.3 2.2 2.7 (1 :2:0 ) 29.7 

95 42.0 58.0 2.4 2.3 (2:3:0 ) 31.1 

96 33 . 6 66 . 4 2.4 3.0 ( 1 :2:0) 35.33 

97 33 . 6 66.4 1. 2 2 . 0 (1: 2:0) 22.6 

98 42 .0 58. 0 1. 2 3.0 (2:3:0) 25 . 0 

99 34.0 66 . 0 l. l 1. 8 (1:2:0) 27 . l 

100 33. 3 66 . 7 1. 1 2.7 (1 :2:0) 27.9 
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Table 8.1 (continued) 

% % % STP (C02 ,N
2

,He) Data Set Flm•J Rate p <E> 
ID No. C02 N2 He (cc/sec) torr I deal volts/em 

101 25.0 75.0 l.O 1.6 (l :3:0) 29.0 
102 25.0 75.0 l.O 2.5 (1:3:0) 31.4 
103 42.2 57.8 1.7 2.8 (2:3:0) 36.2 
104 33.3 66.7 1.5 2.7 (1 :2:0) 36.73 
105 33.3 66.7 l .5 3. 6 • 1 · 2 ·o) \ I • • 33.85 

110 12.0 88.0 8.6 7.3 (2:0:15) 29.15 

111 12.0 88.0 8.6 10 . 3 (2:0:15) 30.22 
112 9.0 91.0 8.3 7.2 (1:0:10) 27.74 

113 9.0 91.0 8.3 10.2 (1 :0:10) 30.89 
116 6.0 94.0 8.3 7.3 (1:0:16) 26.3 

117 6.0 94.0 8.3 10.2 (1:0 :1 6) 29.7 

118 9.0 91.0 6.0 6.8 (1 :0:10) 28.9 

119 9.0 91.0 6.0 10.2 (1:0:10) 33.2 

120 12.0 88 .0 4.4 6.8 (2:0:15) 21.0 

121 12. 0 88.0 4.4 10.3 (2:0:15) 27. 1 

122 9.0 91.0 4.2 6.8 (1 :0:10) 24.3 

123 9.0 91.0 4.2 10.2 (l :0:10) 29.6 

124 6.2 93.8 4.2 6.8 (1:0:16) 22.0 

125 6.2 93.8 4.2 10.2 (1:0:16) 22.7 

131 5.3 15.3 79.4 13~ 2 10.0 (1:3:16) 55.6 

132 5.3 15 . 3 79.4 13.2 12.0 (1 :3:16) 39.9 

133 5.3 15.3 79.4 8.3 8. 1 (1 :3:16 ) 45.2 

134 5.3 15.3 79.4 8.3 12.0 (1 : 3:16) 48.9 

135 5.2 14.9 77.2 5.0 8.0 (1:3:16) 29.0 

136 5.2 14.9 77.2 5.0 12.0 {1 :3:16) 44.0 

137 5.2 14.9 77.2 5.0 16.0 (1:3:16) 68.0 

138 5.2 14.9 77.5 10.0 8.0 . (l :3:16) 49.25 

139 5.2 14.9 77.5 10.0 12.0 (1:3:16) 52.0 

140 5.2 14.9 77.5 10.0 16.0 (1:3:16) 62.0 
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Tab 1 e 8. 1 (continued) 

% % % STP (C02 ,N2 ,He) 
Data Set C02 N2 He Flow Rate p <E> 

ID No. (cc/sec) torr Ide al volts/em 

141 5 .2 14 .9 77.3 7.14 8.0 (1:3:16) 42.0 

142 5. 2 14.9 77.3 7.14 12.0 (1 :3: 16) 57.0 
143 5.2 14.9 77.3 7.14 16.0 (1:3:16) 61.0 

144 5.3 15.3 79.4 7. 14 16.0 (1 : 3:16) . 50.8 

145 5.3 15.3 79.4 7.14 12.0 (1:3:16) 42.0 
146 5.3 15.3 79.4 7.14 8.0 (1 :3:16) 38.5 
147 5.3 15.3 79.4 10.0 16.0 (1:3:16) 53.8 

148 5.3 15 . 3 79.4 10.0 12 .0 (1:3:16) 51.0 

149 5.3 15.3 79.4 10.0 8.0 (1:3:16) 44.2 

150 5.3 15.3 79.4 5. 0 16.0 (1:3:16) 43.1 

151 5.3 15.3 79.4 5.0 12.0 (1:3:16) 46.1 

152 5.3 15.3 79.4 5.0 8.0 (1:3:16) 37. 2 

153 5.0 14.5 75.1 4.9 16.0 (1 :3:1 6) 61.6 

154 5.0 14.5 75. 1 4.9 12.0 (1:3 :16 ) 54.4 

155 5.0 14.5 75. 1 4.9 8.0 (1:3:1 6) 46.6 
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TABLE 8.3.- Least square fit of experimental results to equation 8.7 • 
All compositions are given in molar fractions(volume) C02-N2-He .Qtot 
is the total flmv rate and Qco2 is the partial flow rate of C02. Both 
flow rates are volume flov rates measured at STP conditions and are 
given in (cm3/sec) • K is in units of (lo-lOcm3). 

(figure 8.18) 

0(1,3,16) 
Qtot QC02 K 

3.2 .16 .72 
4.2 .21 .51 
5.0 .25 .50 
6.3 • 31 .43 
7 .l .36 .40 
8.3 .42 .38 

10.0 .50 .32 
13.2 .66 .33 

.. (1,3,16) + ~ H20 
Qtot Qco2 K 

5.0 .24 .20 
7.1 .35 .15 
10.0 .49 .13 

(figure 8.19) 

0(1,2,10) 
Qtot QCOz K 

3.2 .25 .57 
4.9 .38 .37 
5.0 .38 .38 
6.0 .46 .33 
7.0 .54 .28 

(figure 8.20) 

0(2,3,15) 
Qtot Qcoz K 

3.2 . 32 .47 
3.6 .36 .43 
5.0 .50 .25 
6.1 .61 .23 
7.0 • 70 .23 

0(1,3,0) 
Qtot Qco2 K 

1.0 .25 .46 
1.5 .38 .35 
2.1 .53 .22 

~(1,3,16) + 1.1 HzO 
Qtot Qcoz K 

5.0 .24 .14 

0 (1,2,0) 
Qtot Qco2 K 

l.l .37 .35 
1.5 .50 . 32 
2.3 .77 • 21 

0(2,3,0) 
Qtot Qcoz K 

1.2 .48 .29 
1.7 .68 .26 
2.4 .96 .19 

6(1,0,16) 
Qtot QCOz K 

4.2 .25 .69 
8.3 .49 .21 

10.0 .59 .12 

6(1,0,10) 
Qtot Qco2 K 

4.2 .38 .32 
6.0 .55 .24 
8.3 .75 .14 

6(2,0,15) 
Qtot Qcoz K 

4.4 .52 .24 
8.6 1.01 .10 
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TABLE 8.3.- (cont.) 

(figure 8.21) 

Pure C02 (Qtot=QcOz ) 
Qco2 K 

• 16 . 86 
.18 1.08 
. 38 . 35 
. 53 . 31 
• 56 . 25 
• 7 5 • 23 

1.05 .15 
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FIG8.1/·CARBON DIOXIDE DISSOCIATION VS. 
ELECTRON DENSITY (~:N2:He) =-(' : 2 : 10) 
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Chapter IX 

CALCULATIONS OF THE DISSOCIATION OF CARBON DIOXIDE BASED ON 
THERMODYNAMIC EQUILIBRIUM 

Calculations of the degree of dissociation in the co2 las er dis

charge are discussed. The model used is constructed to make use of an 

existing computer program. based on the minimization of free energy to 

define chemical equilibrium calculations. No allowance is made for 

nonequilibrium conditions other than to account for the influence of 

the electric field on the electrons. This is represented as an initial 

energy (heat) input to the system. The energy input is calculated from 

the electrical power dissipated by the discharge. 

As a first approximation this calculation yields reasonable re

sults. In particular the \IJeak dependence of dissociation on the pres

sure of the mixture observed in the experiments is predicted. No 

information on the vibl~ational level population of the molecules is 

obtai ned. 

9.1 Calculations for Chemical Equilibrium 

Chemical reactions occurring in mixtures of reacting substances 

l ead ultimately to the establishment of a state of equilibri um in which 

the quantity of each substance taking part in the reaction remains con

stant. This case of thermodynamic equilibrium is called chemical 

equilibrium. The subject of thermodynamics. as applied to a chemical 

reaction, is the study of chemical equilibrium only and not to the re

actions lea~ing to it . 
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It is essential to note that the state of chemical equilibrium 

does not depend upon the way (i.e., under what conditions) the reaction 

occurred; it depends only on the condition of the mixture of the re-

agents in the actual state of chemical equi librium. Hence to deduce 

conditions for chemical equi librium, one can make any assumptions at 

all as to the v1ay the reaction took place . 

The condition of chemical equilibrium, given an initial mixture, 

may be stated in terms of any of several thermodyn amic functions such 

as the minimizations of the Gibbs or Helmholtz free energy or the 

maximization of entropy. If one wishes to use temperature and pressure 

to characterize a thermodynamic state, the Gibbs free energy is most 

easily minimized, inas much as temperature and pressure are its natural 

variabl es . Similarly, the Helmholtz free energy is most eas ily mini

mized if the thermodynamic state is char·acteri zed by temperature a.nd 

volume or density. 

9.1.1 tvlinimization of the Gibbs Free En ergy. Enthalpy and Pressure 

Fixed 

For a mixture of n species the Gibbs free energy per unit mass of 

mixture is given by 

n 
g = I 

j=l 
ll .n . 

J J 
(9 .1) 

where the chemical potential per mole of species j is defined to be 

(9.2) 

and n. is the molar concentration of compound j. 
J 
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The minimization of the free energy g, equation (9.1), will 

determine the equilibrium composition of the mixture. This minimiz a-

tion is subject to the following constraints: 

a) Conservation of mass 

n 
I 

j=l 
a .. n. 
1J J 

i==l ,··. , Q, (9.3) 

where a .. is the number of i atoms in the j molecule, and b? is the 
1 J 1 

initial number of i atoms in the reactants mixture (£ different atoms). 

b) Pressure 

The pressure is specified and . constant. 

c) Enthalpy of the system 

The total enthalpy of the system is conserved: 
n 
I 

j= l 
n .h . 

J J 
(9.4) 

With the above information, it is possible in theory to calcu-

late the composition, the values of the nj' 

reached. 

when equilibrium is 

A complete review of this type of problem can be found in 

Ref. 9.1. 

9. 1.2 Chemical Equilibrium Calculations (CEC72) Program 

Considerable numerical calculations are necessary to obtain 

equilibrium compositions for complex chemical systems. This has re

sulted in a number of digital computer programs to do the calculati ons. 

References 9.2 and 9.3 contain discussions of the mathematical 
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procedures and give references to programs. 

One such program has been used to carry out the calculations 

di scussed in this section. It ~vas vJritten at NASA Lewis Research 

Center and is designated CEC72. A complete desc ription of the program 

and its background can be found in Ref. 9.4. 

The program calculates the equilibrium compositions by minimizing 

the appropriate thermodynamic potential . It assumes all gases to be 

ideal and that interaction among phases may be neglected. Condensed 

species are assumed to occupy a negligible volume and exert negligible 

pressure compared with the gaseous species. 

The program (CEC72) is capable of obtaining equilibrium composi-

tions for assigned thermodynamic states. The thermodynamic states may 

be specified by assigning of two thermodynamic state functions: 

a) Temperature and pressure (TP); 

b) Enthalpy and pressure (HP); 

c) Entropy and pressure (SP); 

d) Temperature and volume or density (TV); 

e) Internal energy and volume or density (UV); 

f) Entropy and volume or density (SV). 

9.2 A Model for Calculations of Chemical Equilibrium in t he C02 Laser 

In order to make meaningful estimates of the equilibrium composi-

tion in the co2 laser discharge, it is necessary to take into consider

ation the effect the electrons will have on the final equilibrium 

composition. Although the concentration of electrons i s very small 

compared with the other constituents of the plasma (ne ~ l0-10cm-3), 
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their average energy is fairly high (of the order of 1.5 eV). 

The laser discharge temperature, Tg' is of the order of 300°K 

(Ref. 9.5) under conditions similar to those used here. Clearly the 

wide difference in the temperature of electrons and gases (T /T ; 40) 
e g 

prevents the consideration of the electrons as just another component 

of the mixture, as could be done in the problem of equilibrium ioniza-

tion. Since the electrons are the main path of energy transfer in the 

discharge, the model used here replaces the electrons by a distributed 

heat source supplying the power Pin to the discharge: 

P. = I·V = I·E·L (watts) 1n (9.5) 

Here I is the total current through the discharge tube, V is the volt

age d1·op across the active region (volume where reactions take place), 

E(V/cm) is the electric field, and L is the length of the active 

_region (65 em). 

The computer program CEC72 can calculate the equilibrium com

position of a mixture if the following are given: initial mixture, 

temperature, pressure and enthalpy of the system. The last two items 

are kept fixed as constraints in the minimization of the Gibbs free 

energy (Sec. 9.1.2(f)). 

The calculations carried out by the CEC72 program are equivalent 

to analyzing the composition of a mixture in a closed reaction box 

after an initial mixture and initial enthalpy (or energy input) are 

given and the pressure of the system is kept constant. 

In the carbon dioxide laser it is necessary to calculate the 

enthalpy input from the electrical parameters and the flov-1 rate of 
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gases. If the volume flow rate under STP conditions is known, QSTP, 

the mo l ar flow rate can be easily calculated: 

QSTP(cm
3
;sec) 

M (moles/sec) 
22400 ( cm3 jmo 1 e) 

The enthalpy input per unit mole (energy/mole) is: 

or using (9.5): 

H. 
ln 

H. = 1n 
Pi n (\'I at ts ) 

M (moles/sec) 
(Joules/mole) 

= I (rna) · E (VI em) · L (em) · 2 2. 4 (Joules/mole) . 3 
QSTP (em ;sec) 

(9.6) 

(9. 7) 

(9. 8) 

As an example, for I = 10 am, E = 35 V/cm , L = 65 em and QSTP = 3 cm3; 

sec, equation (9.8) gives: 

H. = 1.7 · l05(Joules /mole) = 4·104 (calories/mole) 1n . 

The initial temperature of the mixture was taken to be 300°K 

in all cases. A comparison of our experimental conditions and results 

published by Laderman and Byron (Ref. 9.5) indicate that the tempera

ture rise (from inlet to outlet port of discharge) is 40 °K at most. 

To facilitate comparison 1-Jith the experimental resu1ts, it is 

convenient to rewrite equation (9.8) as 

(9.9) 

The calculat ion carried out by the program computes the frac-

tional dissociation of carbon dioxide as a function of enthalpy input 
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(Hin) or, as expressed by equation (9.9), as a function of the current 

I. For a given composition and a given flow rate, the electric f ie ld 

does not vary much, therefore the quantity in parentheses in (9.9) has · 

a constant value. In this case Hin becomes a linear function of the 

current I. 

Of course this simple analysis does not take into consideration 

the fact that not all the energy being dissipated in the discharge goes 

into the dissociation process. Some of i t is obviously lost to the 

walls of the tube, some more lost as sidelight emission and lasing. If 

all the losses are taken into consideration, the true dependence of Hin 

with current might look something like that sketched below: 

_,. assumed 

actual 

current I 

It is possible to modify equat ion (9.9) further to compensate for many 

of these effects, but since their exact nature is not well understood, 

it appeared that to do so would mean losing the basic simplicity of the 

model without gaining a better understanding of the problem. 

9.3 Results of Calculations fo r Equilibrium 

The initial mixtures examined were chosen to correspond to condi 

tions studied in the dissociation experiments (Chapter VIII) . All the 

mixtures were generated from three basic mixtures of co2-N2-He: 
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(l ,3, 16) Fig. 9. l 

(a) (l ,3,0) Fig. 9.2 
(l ,0, 16) Fig. 9.3 

(2,3,15) Fig. 9.5 
(b) (2,3,0) Fig. 9.6 

(2,0,15) Fig. 9.7 

(1,2,10) Fig. 9.8 

(c) (1,2,0) Fig. 9.9 
(1,0,10) Fig. 9.10 

The results for pure co2 are shown in Fig. 9.11. The effect of water 

in a mixture is shown in Fig. 9.4. In each case a set of initial 

enthalpies were assigned. The C.E.C. program would then compute the 

resulting equilibrium composition, in particular the dissociation of 

carbon dioxide. Thus, for each initial mixture a curve, dissociation 

of carbon dioxide vs enthalpy input, could be constructed. 

In order to make a prediction or a comparison with experimental 

results, it is necessary to transform the variable enthalpy input 

(H. ) into a more easily measurable quantity. ~lith the aid of equa
ln 

tion ~9.9) and selection of the appropriate experimental conditions, 

the curve of dissociation vs enthalpy can be transformed into curves 

of dissociation vs current. 

It ~vas our purpose to compare the experimentally measured values 

of dissociation vs those calculated for equilibrium. Thus. the electric 

field E, needed in equation (9.9),was calculated from experimental data 

using equation (7.13) for similar initial conditions. The values of 

the field, according to these estimates, vari ed from 21 to 44 volts/em. 

The length of the tube L was 65 em, in all cases. 
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Figures 9.1 to 9.11 show the results of the calculations. Also 

plotted are the experimentally measured dissociation for the same ini

tial conditions. Both curves are plotted as functions of the current 

through the laser tube. In one case, Figure 9.4, t~tJo i nitial condi

tions are plotted : the mixture (1,3,16) with and 1t1ithout ~tJater added. 

In all cases the enthalpy input to the mixture (needed by the CEC72 

program) was calcul ated as a function of the current, according to 

equation (9.9). 

As previously mentioned, the chemical equilibrium model is only 

an approximation to the real system, and as such it can obviously give 

on-ly approximate results. In general they agree qualitatively with 

the experiments in the following respects: 

(1) For a given mass (S.T.P. volume ) flow rate the dissociation 

is very weakly dependent on the pressure of the mixture . For example, 

for the mixture (l ,3, 16) and 7 x 104Kjoule/Kg-mole enthalpy input the 

following res ults are calculated: 

P (torr) 8 10 12 16 

%dissociation 50.9 49.6 48.5 46.8 

(2) As observed experimentally, the results of the calculations 

indicate that very small amounts of species other than carbon monoxide 

and oxygen are formed (les s than .05% in most instances ). 

(3) Qualitatively, the curves calculated with the equi librium 

model compared fairly well with curves obtained experimentally. The 
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calculated curves show a higher degree of dissociation in Figure 9.1 

than in Figure 9.2. The same relationship holds true for the measured 

curves. Figure 9.3, however, which completes the set of mixtures (a) 

listed above, shows a lower calculated dissociation curve than the other 

gases of the set, contrary to measured results The curves for the mix

ture set (b) shm'm in Figures 9.5, 9.6 and 9.7, agree qualitatively in 

their degree of dissociation both calculated and measured. The degree 

of dissociation is higher in Figure 9.5 than in Figure 9.7, and Figure 

9.7 shows higher dissociation than Figure 9.6. A similar pattern is 

found with the third set of curves for the set of mixtures (c), shown 

in Figures 9.8, 9.9 and 9. 10. The degree of dissociation, calculated 

and measured, is higher in Figure 9.8 than in Figure 9.10, and this in 

turn is higher than that shown in Figure 9.9. 

In conclusion, in the calculations the mixtures of three elements 

co2;N2/He showed a higher degree of dissociation than the same mixture 

with either helium or nitrogen removed. Mixtures containing onlyC0
2
;He 

had a higher degree of dissociation than those containJng co2;N2, 

with the exception of the mixtures (1 ,3,0), (1,0,16) which showed the 

opposite. 

(4) As can be seen in Figure 9.4, the role of ~vater vapor in in

hibiting the dissociation of carbon dioxide molecules is qualitatively 

predicted. The calculation predicts a 25% less dissociation when water 

is pr·esent. The experimental results indicate roughly a 50% reduction. 
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9.3.1 Some Comments on the Discrepancies with the Experiments 

The results of the equilibrium calculations show marked depar-. 

tures from the experimental results at both high and low currents 

(enthalpy input). 

At high current values, it is believed that less and less energy 

goes into the system as the current is increased further. The fact 

that the actual laser is not a closed system and can exchange energy 

with the exterior, gives a different dependence of the enthalpy input 

with current than that shown in equation (9.9). The consequence of 

this effect would be to expand the dissociation curve calculated in 

the higher current region (see Fig. 9.1, for example), moving it closer 

to the measured curve. The curve would remain unchanged in the lower 

current region (left half). For example, if at 8 rna only half of the 

energy dissipated goes i nto the dissociation process, then the real 
5 . 

enthalpy input is approximately .65 x 10 (Kjoule/Kg-mole) and not the 

1.3 x 105 shown. The corresponding calculated dissociation would also 

be smaller (40% instead of the almost 100% shown). 

At the low current region the departure from the experiments is 

hard to account for within the equilibrium model. The microscopic 

nature of the dissociation, the electrons with their high energies and 

collision cross-sections, evidently dominate the purely thermal effects 

assumed under thermodynamic equilibrium. That is, the energy dissi-

pated in the discharge is not distributed according to the principle 

of equipartition of energy. Rather, a significantly greater proportion 

is consumed in dissociation of the carbon dioxide molecules. It has 
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been found in all cases that the experimentally observed dissociation 

is enormously greater than that calculated with the model of thermo

dynamic equilibrium. 



- /60-
References 

9.1 K. Denbigh, The Principles of Chemica l Equili brium, 3rd Edition 

(Cambridge University Press, 1971). 

9.2 F. J. Zeleznik and S. Gordon, "Calculation of Comp1ex Chemical 

Equilibria", Ind. Eng. Chern. 60, 27 (1968). 

9.3 F. van Zeggeren, and S. H. Storey, The Computation of Chemica l 

Equilibria (Cambridge University Press, 1970). 

9 . 4 S. Gordon and B. J. t~cBride, "Computer Program for Calculation 

of Complex Chemical Equilibrium Compositions, Rocket Performance, 

Incident and Reflected Shocks, and Chapman-J.ouguet Detonations", 

NASA SP-273 (1971). 

9.5 A. J. Laderman and S. R. Byron, 111femperature Rise and Radial 

Profiles in co2 Lase rs", J. Appl. Phys. 42, 3138 (1971). 



-5
 (

 
K

J
 

) 
:_~

_f!±
 h

a 
IF

?~
 -~

 1
0 

K
G

. M
O

L
E

 

0 
5 

1.
0 

1.
5 

0 
. 

--
10

0.
 

,_..
 ... (

]' 

0 
C

a
lc

u
la

te
d

 
0 

,. 
I I I p 

80
. 

D
 

M
ea

su
re

d 

(C
0 2

, 
N

2
, 
H

e)
 

%
 

[co
] 

60
. 

I I I 
3

/ 
I 

S
. T

. P
. 

Fl
ow

: 
3.

2c
m

 1
se

c
. p

 
<

E
):

 3
3

.5
 V

ol
 fs

/c
m

 
/ 

[co
] +

[co
2J

 
40

. 

20
. 

I ,'
 

,. 

l I I I I 9 I 
I I I 

I I 

0 
_.

()
 

o 
2.

 
4.

 
6.

 
a. 

/0
. 

· 
9 

M
 

I 
(rn

a)
 .

 
. 

. 
(1

 3
16

) M
. 

F
ig

 ..
 1-

C
a

lc
u

la
te

d
 

an
d 

e
a

su
re

d
 

D
1s

so
cJ

at
1o

n.
 

: 
: 

1x
tu

re
. 

-~ -



E
nt

ha
 I p

y 
x 

10
5 

( 
KG

.K
~O

LE
) 

10
00

 
0

.5
 

1.
0 

1.
5 

2
.0

 
2.

~ 
. 

-
_3

.0
 

8
0

 

%
 

[c
o]

 
6

0
 

-
[co

]+
[co

2l 4
0

 

2
0

 

00
 

0 
C

a
lc

u
la

te
d

 

0 
M

ea
su

re
d

 

(1
:3

:0
) 

S,
 T

. P
. 

F
lo

w
: 

1.
5 

cm
3 

/s
ec

. 

<
E

):
 

2
9

 V
ol

ts
/e

m
 

,(
)"

' 
.... 

--
/ 
,/

 J 
/ 

2 
4 

I 

91
 

I 
I I / 

p/
 

.-" 
/ 

/
/
/
 

/ 

6 

I 
(m

a)
 

/ 

0"
' 

"' 
/
"
 

/ 
"" 

.... 
..-

" 
,.,

. 

8 
10

 

F
ig

 9
.2

: C
a

lc
u

la
te

d
 

an
d 

M
e

a
su

re
d

 
D

is
so

ci
a

tio
n

. 

I -0\ I\
) I 

12
 



E
n

th
a

lp
y 

--
~ 

( 
K

J
 

) 
X

 1
0 

. K
G

. 
M

O
L

E
 

10
0°

 
0

.2
 

0
.4

 
0

.6
 

0
.8

 .. .a
---

---
-

0 
C

al
cu

la
te

d
 

,. .
... 

; .. 
"' / 

0 
M

ea
su

re
d

 
/ 

8
0
~
 

" " .. 
(1

:0
:1

6
) 

/ 
/ 

/ 
I 

%
 

I 
/ 

S.
T

.P
. 

Fl
ow

: 
4

.2
cm

3
/s

ec
 

/ p 
[c

o]
 

6
0

 
(E

):
 

2
2

 V
ol

ts
/e

m
 

I -0\ 
I 

w
 

[c
o]
+[
co
~ 

I I 
I 

I 
I 

4
0

r 
I 

I 
I 

I 
I 

/ 
/ 

/ 
/ 

" / 

/ 

~
0
 ... 

; 
; 

.,...
 

--.....
. 

2 
4 

6 
8 

10
 

12
 

I 
(m

a)
 ·

 
F

ig
. 

9
.3

 
; 

C
a

lc
u

la
te

d
 a

nd
 m

ea
su

re
d 

D
is

so
ci

at
io

n
. 



-5
 

( 
K

J
 

) 
E

nt
ha

 I p
y

 
X

 1
0 

K
G

. 
M

O
L

E
 

lo
o?

 
. 21

5 
.s

p 
.?r

 
Llo

 ..
.. -·

-·-
·c

).-
.fl

?-
.::

.--
--

_.1
=i

fiv
l 

0
.,...

 
· .... ~

 .... 

8
0

 

0 
Ce

1l
cu

 la
!e

d}
 (

 1: 
3

: 
1 6

) 
+

.S
 H

20 

0 
M

ea
su

re
d 

S
ec

/s
ec

 (
 S.

T
. P

.) 
rf

 
/ 

/ I 

--·
 

.0
' ~

 
... 

_.,
.. 

"' ,. ,..C
f .. 

.. --_. 
/
' 

/
'
 

0 
C

al
.c

ul
at

ed
l {

 1: 
3

: 
16

) 
cf

 
,.

/ 

%
 

[c
o]

 
6

0
 

6 
M

ea
su

re
d 

J 5
 c

cj
sr

<1
c 

( S
,T

. P
.) 

I 
I 

, , 
I 

,. 
I 

I 
I 

[c
o]

+[
co

2]
 4

0
 

(E
):

 
4

4
 V
ol

~s
/c

m 

0 
!..

?:
--

=
'::

""
: 

L 
0 

-0
:-

-•
t:

"'
f<

 
I 

2 
4 

/ 
d 

9 
/ 

I 
/ 

• 
I 

I 
I 

./
¢

 

I 6 

I 
(m

a)
 

d ,. 

I 8 

F
ig

. 
9

.4
 

: 
C

al
cu

la
te

d
 a

nd
 M

ea
su

re
d 

D
is

so
ci

at
io

n
, 

I 
I 

10
 

12
 

- 0\ ~ I 



-5
 

( 
K

J
 

) 
E

nt
hq

lp
y 

X
 1

0 
K

G
 

M
O

L
E

 

10
0°

 
0

·5 
1.

0 
---

0 
C

a 
le

u 
Ia 

le
d 

8
0

 
0 

M
ea

su
re

d
 

(2
:3

:1
5

) 
y:

/ 
%

 
/ 

/ 
/ 

/ 

/ 

,
/
 

/'
 

0 
.....

. -
-

[c
o]

 
6

0
 

S.
T.

P.
 

Fl
ow

: 
3

.3
 c

m
3/

se
c 

(E
) 

: 
3

2
.8

 V
ol

ls
jc

m
 

I 
I I 

I 

d 
~0

]+
~0

2]
 4

0
 

2
0

 

p 
_, .

.. 

I 
I 

I 
/ p 

,/
 

/ 

/ 
I I 0 

I 

~
" 

I 
0 

V
 

l 
...

. -
-
a
-
~
 

I 
I 

I 
I 

0 
2 

4 
6 

8 
10

 
12

 

I 
(m

a)
 

F
ig

. 
9

.5
 

: 
C

al
cu

la
te

d 
an

d 
H

ea
su

re
d 

D
is

so
ci

at
io

n
. 

-0\ <.1
1 



5 
( 

K
J
 

) 
E

n
th

a
lp

y 
x 

16
 

K
G

. M
O

L
E

 

10
00

 
0

.5
 

1.
0 

1.
5 

2
.0

 

0 
C

al
cu

la
lG

d 

8
0

j-
0 

M
ea

su
re

d 

(2
: 

3
:0

) 
%

 
[c

o]
 

eo
 

[c
o]

+[
co

~ 4
0

 

S.
T

. R
 F

lo
w

: 
2

.4
 c
m7
'~
ec
 

(E
):

 3
1.1

 V
ol

h/
cm

 

.....
.... .,. .

.. 
.,. ..

. 
.,. ..

. 
;::

;"'
 

,"
' 

_,.
"' 

2
0

 
.JJ

"'"
"'"

' 
""

 
. 

...
o-

--
--

--

0
~
 

IO
 

-
-

--
1

--
--

:t
J
 

I 
I 

I 
I 

0 
2 

4 
6 

8 
10

 
12

 

I 
(m

a)
 

F
ig

, 
9

.6
 

: 
C

al
cu

la
te

d
 a

nd
 

M
ea

su
re

d 
D

is
so

ci
at

io
n

. 

I -()\ 0
\ l 



E
nt

ha
lp

y 
X

 1
05 

(K
G~

 ~O
LE
) 

10
0~
 

~
-
-
-
-
-
-
-
-
-
-
-
~
·
~
2
5
~
-
-
-
-
-
-
-
-
~
.
5
~
0
L
_
 _

_
_

_
_

_
_

_
_

_
 ~
J
~
5
-
-
,
 

0 
C

a
lc

u
la

te
d

 

B
O

t-
D

 
M

ea
su

re
d

 

( 2
: o

: 1
5)

 

%
 

[c
o]

 
6

0
 

[c
o]

+~
o~

 4
0

 

S
,T

, P
. 

F
lo

w
: 

4
.4

 c
m

3 /.
se

c 

(E
):

 2
1 

V
ol

ls
/c

m
 

2 
4 

,.. .
... 

---
6 

I 
(m

a)
 

"' 
, ...

. 
..-"

" 
,.. ..

.. 
"" 

.... "
"""

 
"' 8 

,."
" 

,.o
" 

F
ig

. 
9

.7
 

: 
C

al
cu

la
te

d
 a

nd
 

M
ea

su
re

d 
D

is
so

ci
at

io
n

. 

"' ,.""
' 

,."
" 

10
 

,."
" 

"' 

_,"
' 

,."
" 

,."
" 

12
 

-0\ "\
) I 



-5
 

( 
K

J
 

) 
E

nt
ha

lp
y 

X
 1

0 
K

G
. 

M
O

L
E

 

0 
0

.5
 

1.
0 

10
0 

.--
-..

o·
---

-

8
0

 

%
 

[c
o]

 
60

 

[c
o]

+~
O~

 4
0

 

2
0

 

0 
Cc
xl
cu
la
l~
d 

o 
M~

a3
~r

~d
 

(I:
 2

: 
10

) 
0 I I 

S
. T

. P
. 

Fl
ow

: 
3

. 2
 c
m3

/3
~c

 
/ 

(E
):

 3
5

 V
ol

ts
/~

m 
,9 I I 0 I 

I I 
I 0 

~
 

/ 
,;

 
/ 

/ 
/ 

2 
4 

/ 
I I I 6 

0
' 

, 

I 
(m

a)
 

/ 

..-
/ 

/ 

8 

1.
5 

F
ig

. 
9

.8
 

: 
C

al
cu

la
te

d 
an

d 
M

ea
su

re
d 

D
is

so
ci

at
io

n
. 

-0\ Cb
 I 

10
 

12
 



-5
 

( 
K

J
 

) 
E

nt
ha

 I p
y

 
x 

10
 

K
G

. 
M

O
L

E
 

10
0 0 

0.
5 

1.
0 

1.
5 

2
.0

 
2.

5 

8
0

 

%
 

[c
o]

 
6

0
 

[c
o]

+ 
~o
~ 4

0
 

2
0

 

0 
C

al
cu

la
te

d
 

0 
M

ea
su

re
d 

(1
: 

2
: 

o)
 

S.
T

.P
. 

F
lo

w
: 

2
.4

 c
m

3/
se

c 

(E
):

 
35

.3
 V

ol
ls

jc
m

 

0
,..,

." 
.....

.. 
.....

... 

.,."
' 

/ 

,"
' 

" 

/
/
 /
"
/
 

/
"
 

/ 

/ 

;:
l 

" 
. 

/
/
"
'/

 

"
/
 

" 
·""

 
/ 

/
/
)
)
 

ov
:: 

0 
2 

4 
6 

8 
10

 
12

 

I 
(m

a)
 

F
ig

. 
9

.9
 

: 
C

al
cu

la
te

d
 a

nd
 M

ea
su

re
d 

D
is

so
ci

at
io

n
 

• 

-0\ \{
) I 



-5
 

( 
K

J
 

) 
E

n
th

a
lp

y 
X

 1
0 

K
G

. 
M

O
L

E
 

0 
0

.2
 

0
.4

 
0.

6 
0

.8
 

1.
0 

10
0 

.---
--o

--
--

8
0

 

%
 

[c
o]

 
6

0
 

-
-
-

[co
]+

 ~
o~
 4

0
 

2
0

 

00
 

0 
C

al
cu

la
te

d
 

0 
M

ea
su

re
d

 

(1
: 

o:
 1

0)
 

S.
T

.P
. 

F
lo

w
: 

4
.2

 c
m

3/
se

c 

(E
):

 2
9

.6
 V

ol
fs

/c
m

 

/ 
/ 

..
. "' 

.....
... 

__
__

 .,
, ..

..-
d 

/
/
 

7 
/ 

I 
I 

d / 
I 

I I 
I 

2 
4 

6 

I 
(m

a)
 

I 
I 

I 
I 

I 

I 
I 

I 

·o
 

/
/
 

I 

8 

/ 

/ 
/ 

/ 
,...

-
__.

 

F
ig

. 
9

. 
10

 
: 

C
al

cu
la

te
d

 a
nd

 M
ea

su
re

d 
D

is
so

ci
at

io
n

. 

10
 

L2
 

- "\! 0 I 

12
 



E
nt

ha
lp

y 
x 

16
5 

( 
KG

~~
OL

E 
) 

0 
0.

5 
1.

0 
1.

5 
2

.0
 

2
.5

 
3

.0
 

3
.5

 
I
O
O
r
-
-
-
-
-
~
-
-
-
-
~
-
-
-
-
-
.
-
-
-
-
-
-
.
-
-
-
-
-
.
-
-
-
-
-
-
.
-
-
-
-
-
.
-
,
 

%
 

[c
o]

 

[c
o]

+~
O~

 

0 
C

al
cu

la
te

d
 

8
0

1
-

0 
M

ea
su

re
d

 

IO
O<

J'o
 

C
02

 

6
0

 
S.

T
.P

. 
Fl

ow
: 

1.
05

 c
m

3j
se

c 

(E
):

 
2

2
.4

 V
ol

ls/
cm

 

4
0

 

2
0

 

0
., .

.... 
, .. 

_ .. 
.D

/ 
" 

,0
"'"

 

,..
D 

.a
/ 

0 
'-

=
=

'"
=

 
-

0 
2 

4 
6 

8 
10

. 
12

 

I 
(m

a)
 

F
ig

. 
9

.1
1

 
:

C
al

c
u

la
te

d
 a

nd
 

M
ea

su
re

d 
D

is
so

ci
at

io
n

. 

- '\1 -



-172-

Chapter X 

SIMPLE KINETIC MODEL 

In the present chapter a simple kinetic model will be developed. 

It will account for the major trends observed in ·the experimental re

sults described in Chapter VIII and also by other authors. 

Recapitulating, it was found that the dissociation of carbon 

dioxide molecules as function of average electron dens·ity was indepen

dent of the total laser pressure (for the range studied,8 to 17 torr). 

It depended only on the initial composition of the mixture and the total 

mass flm'l rate (equivalent to the volume flow rate at standard condi

tions STP). 

10.1 Plasma Kinetic Model 

The number of reactions that must be considered in a model of 

the glow discharge in carbon dioxide lasers can be reduced considerably 

in the case of pulsed and flm-1ing systems. In a flm'ling laser discharge 

many of the reactions can be eliminated due to the short residence time 

(T · .01 - .33 sec) the dissociated or previously excited molecules 

do not have time to interact further with the e 1 ectrons. Corbin and 

Corrigan (Ref. 10.1) and Buser and Sullivan (Ref. 10.2), after studying 

lm'i pressure carbon dioxide discharges, concluded that the initial 

process responsible for the dissociation was given by: 

C0
2 

+ e -+ CO~ + e -+ CO + 0 + e (10.1) 

Corvin and Corrigan (Ref. 10. 1) estimated from their results that the 
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coefficient of dissociation was two orders of magnitude greater than 

the i oni zati on coefficient. From this they concluded that the di sso-

ciation must take place by v;ay of uncharged species. It should also 

be noted that the ionization energy for carbon dioxide is 13.8 eV, 

while the dissociation energy is 5.4 eV. As mentioned previously, due 

to short residence times only initial processes are important because 

the gases would be outside the discharge by the time the secondary ef

fects appear. 

Reactions of the type (10.1) are called first order reactions, 

as they result from a single electron collision. Reactions of second 

or~er, that is, the molecule must collide twice with an e·lectron before 

the dissociation would take place. were studied in Ref. 10.3. The 

sequence 

C02 + e -+ CO~ + e 

co~ + e -r co + 0 + e 

(10.2) 

was shown to have small influence up to current densities of at least 

12 ma/cm2 for pure carbon dioxide at 2 mm Hg. For the present experi

mental results. due to both the observed dissociation and the relatively 

short residence times, the process (10.2) is assumed to be small com

pared with the first order reaction (10.1). 

Taking reaction (10. 1) as the dominant one in the glow discharge 

of a flowirig carbon dioxide laser. we may write the following equation 

governing the carbon dioxide concentration "co : 
2 

dnco 
d/ = -k, nenco2 (10.3) 
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direct electron impact and ne is the average electron density. 

rate constant k1 is defined by: 
00 

J 0(€) IE f(€) ds 
0 (10.4) 

with 0(€) the cross section for carbon dioxide excitation and subse

quent dissociation by electron collision. The electron energy distri

bution function is denoted f(€). 

The model implicitly described by equations (10.3) and (10.4) is 

based on examining the co2-electron collisions in an element of gas as 

it moves through the laser tube. The co2 molecules are assumed sta

tionary compared with the electrons. In this model diffusion, surface 

reaction, recombination, and all other rate processes except single col-

lision dissociation (eq. 10.3) are neglected. 

Integrating equation (10.3) for the characteristic time of the 

discharge, the residence time .T, we find: 

nco ( t) 
2 

nco (o) 
2 

-k n T 
e 1 e (10.5) 

From the present experiments (Chapter VIII) and from previous 

work (Refs. 10.1, 10,3, 10.4, 10.5, for example) the dissociation of 

co2 in the discharge may be represented by the reaction C02 ~ CO+~ 02. 

Therefore, 
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nco ( o) 
2 

nco ( o) 
2 

= 
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= nco (t) + nco(t) 
2 

-"K n T 
e 1 e 

The dissociation fraction of carbon dioxide D, is defined as 

with (10.6), this definition gives 

or 

-k n T 
l - D e 1 e 

-k n T 
D=l-e le 

(10.6) 

(10. 7) 

(10.8) 

(10.9) 

(10.10) 

Equation (10.10) relates the reaction constant k1, the electron average 

density and the characteristic timeT to the degree of dissociation of 

the carbon dioxide molecules in the glow discharge. This same equation 

was used in Ref. 10.4 to analyze dissociation results in flowing and 

pulsed lasers. However, because the electron density was not measured 

directly, its dependence on current and other variables rested on ad-

ditional assumptions. Those assumptions are not required if the elec-

tron density in the dissociation process is measured. The result should 

be a more accurate description of the gas discharge. 

10.2 Application of the Kinetic Model to the Present Work 

The residence time T as a function of the pressure P (in atm) of 

the plasma can be calculated from the volume flow rate at STP conditions 
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(sec) = 
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3 VL(cm) P(atm) 
3 

QSTP(cm /sec) 
(10.11) 

VL is the volume of the active region of the plasma, in our case 

51.4 cm3 (65 em by 1 em I.D.), QSTP is the total volume flow rate at 

STP conditions (300°K and 1 atm). Substitution of (10.11) in equation 

( 10. 10) gives: 

(10. 12) 

therefore the constant K first defined in equation (8.7) is given by 

(10.13) 

10.2.1 First Order Approximations 

The rate constant k1 given by equation (10.4) is not easily cal

culated except in simple cases. For example, for the hard sphere model 

(o = o (£) = constant) and with a Maxwell-ian distribution gives 
0 

k1 ': l<s> . In general, the form of these two functions f(s) and o(E) 

cannot be measured or calculated simpJy. 

If as an approximation we take o(E) a: IE then equation (10.4) 

waul d give 

(10. 14) 

where c1 is a proportionality constant . This very crude approximation 
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of the cross section can be tolerated if we remember that the real 

cross section must also increase with energy . The dis sociation 

process requires a minimum amount of energy ( di ssoci ati on energy = 

5.4 eV) in order to occur. Thus the dissociation cross section must go 

from 0 below but close to the dissociation energy l evel up to some 

local maximum value at above that level. Our assumption can thus be 

made to approximate this portion of the a (E) curve. Expe rimental 

(Ref. 10.6) and theoretical (Ref. 10.7) evidence indicate that f(E) 

in co2 lasers drops in value at least exponentially (usually faster) 

with energy values above the mean energy. For a typical laser 

<E> = 1 eV, thus at the energies at which the assumed a(E) starts to 

depart significantly from the real cross section, th e product 

a(E)/€ f(E) contributes less and less to the integral in equation 

(10.4) compensating for the error introduced in assuming such cross 

section dependence on energy (a (E) ~ /€). 

The average energy <E> of the electrons in a glow discharge has 

been calculated by von Engel (Ref. 10.8, p.244) to be a universal 

function 

·<E> = F(c·P·R) (10.15) 

Here cis a constant characteristiG of each particular gas, Pis the 

pressure in the discharge, and R is the radius of the tube. The 

agreement of this theory with experiments is quite good. Bekefi and 

Brm-Jn (Ref. 10.9) found that for helium and neon the agreement was 

good for the range .2 < P·R < 30 (mmHg·cm). In the case of carbon 

dioxide laser mixtures, radiation temperature measurements by Tyte and 
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Sage (Ref. 10.10) and numerical calculations by Judd (Ref. 10.11) 

show that there is an inverse dependence of radiation temperature 

(average energy) with pressure and/or radius of the tube. Thus in 

the case of carbon dioxide laser discharges, the mean electron energy 

can be taken as inversely proportional to the product of gas pressure 

and the radius of the tube. For a given tube, equation (10. 14) is 

taken as: 

c2 is a constant for a given mixture composition. Equations (10. 13), 

(10. 15), and (10. 12) combine to give 

-K*n 
D = 1 - e e (10.17) 

where 

(10 . 18) 

Under the assumptions described in this section, the dissociation 

of carbon dioxide molecules versus average electron density vwuld be 

independent of the total pressure and would only depend on the volume 

flow rate at STP conditions. 

10 . 2.2 Comparison of Theory with Experimental Results 

The qualitative implications of equation (10.17), mainly the in

verse dependence of K with the total flow rate QSTP, are fulfilled in 

the experimental results discussed in Section 8. 3.1 and shown in Table 

8.3. 

A more striking relationship was found (Section 8.3.4 and Figs . 

8.18 to 8.21) when the dissociation constant K was displayed as a 
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function of the co2 partial flow rate at STP . The resulting curve 

seemed to be the same under all conditions studied in which water 

vapor was not present. The resulting implications are far more com-

plex to account for in our simple model. Assuming ~he gases to be 

ide a l 

p -
QSTP -

then equation (10. 11) becomes 

T = 
Oco 

2 

and K given by equation (10.13) 

K = 

(10.19) 

(10.20) 

(10.21) 

Using equation (10.14), with its implicit approximation in (10.21), 

gives 

K = (10.22) 

If this model were to predict the experimental results, the following 

relationship must hold: 

(10.23) 

where c3 would be a constant independent of the mixture composition. 

Using this relationship in (10.22) gives 
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K = (10.24) 

Again the limi ted experi menta l evidence on the subject seems to support 

this assumption. Tyte and Sage (Ref. 10.10), using a microwave radiom-

eter, found the fo llowing results for the electron radi ation temperature 

(T r) for the fo 11 mvi ng mixtures at 20.5 torr: 

C02-N2-He T (eV) P CO (torr) r 2 

( 1 '4' 36) 1. 15 . 5 

(3,4,34) .92 1.5 

(5,4, 32) . 87 2.5 

( 7' 4 '30) .78 3.5 

i .e ., the tempe ratures decrease when the partial pressure of co2 is 

increased. 

In conclusion, the foregoing argument~ al though very rough ap-

pro ximations of physical processes in the plasma, give plausible 

qualitative expl anations for the dissociation behavior encounte red in 

the experi ments. Rather than saying the final \vord on the subject, 

they suggest future areas of explorat ion both theoretical and experi-

menta 1. 
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CHAPTER XI 

SUW~.L\RY OF THE C02 DISSOCIATION RESULTS 

The most significant result of the 2 laser dissociation ex

periments is that the degree of dissociation measured as a function 

of the electron density, depends only on the STP partial flow rate 

of co2. This hypothesis was satisfied under a variety of conditions 

in several mixtures (with no water present). The carbon dioxide con

tent ranged from 5% to 100%, thus the generalization appears justi

fied. Since only one tube was used in the experiment (1 em dia.). no 

generalizations to different diameter tubes can be made at this time. 

Partial flow rates of co2 ranged from . 1 to 1.0 cm3;sec at STP con

ditions. 

The kinetic model developed in Chapter X to accou~t for the 

experimental behavior generates new questions as to the characteris

tics of the electron distribution function. ~1any peculiar dependences 

of the distribution function (in the form of the average energy <e>) 

with mixture composition are taken as approximations of real behavior. 

Both theoretical and experimental investigations should be arrived at 

analyzing those dependences more closely. A ~uggested theoretical ap

proach could be to solve the electron Boltzmann•s transpor t equation 

with the carbon dioxide concentration in a mixture as a parameter. The 

function thus calculated could then be used to calculate the dissocia-

tion rate, assuming the dissociation cross section is known, or simply 

to calculate the dependence of the average energy with mixture com

position to check wi th the assumptions made in Chapter X (equations 
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(10. 16) and (10.23)) regarding the inverse dependence of average 

energy <E:> with pressure. 

The wide variations in electron density for the same current 

density but different mixtures underscores to a lesser degree the 

pressure inaccuracies introduced when dissociation results are re

ported ~" i th current density as a parameter. The probable cause far 

the variations in electron density is assumed to be the different 

ionization rates of the various gases. This point should be explored 

more fully in the future. 
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APPENDIX A . 

A. 1 EINSTEIN COEFFICIENTS FOR SPONTANEOUS AND STH1ULATED 01ISSION 

AND ABSORPTION 

The purpose of this appendix is to review the derivation of the 

important result (2 .3). The discussion here is based on Ref. A. 1. 

It 1>1as show~ by Einstein (Ref. A.2) that three types of radiative 

processes may take place by which a photon of energy hw and momentum 
-+ 

hk can be emitted or absorbed: spontaneous emission, and stimulated 

emission and absorption. As a result of these processes, t~e particle 

that participates in the reaction changes from a state defined by 

energy and momentum (s ', p') to another, lower or higher state (s, p). 

The electrons of a plasma are its most mobile constituents and 

therefore also the principal source of continuum radiation. Let 

/(jp ,r,s) be the differential rate at which energy is emitted spon

taneously, per unit solid angle and in unit frequency intervals by an 

electron with momentum in the range (p', d3p• ). Then with f(p) the 

distribution function in momentum space, 

j = f T) cp·) f(p·) d3p· w w 

is the total emission coefficient per unit volume . 

(A. 1) 

Let n (p', r,s) be ws 
-+ 

the differential rate of emission by an electron of momentum p' per 

unit intensity of incident radiation, per unit solid angle and per 

unit frequency interval. Then the coefficient for stimulated emission 

is defined by: 
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a. = J n (pi ) f(pl ) d3p I ws ws (A.2) 

Finally, let nwA(p,r,s) be the differential rate of absorption per 

unit intensity of incident radiation. Then the absorption coefficient 

is given by: 

(A.3) 

Note that this is not the ab?orption coefficient (a dimensionless quan

tity) that waul d be measured in the 1 aboratory, which is given by 

(A.4) 

By the principle of detailed balancing the following relation is 

obtai ned : 

The scalar quantity I is known as the specific intensity w 

of radiation (or simply the intensity). In ~1KS it has the units of 

watts per square meter per steradian per radian frequency interval dw. 

Relation (A.5) is valid in general since no specific as~umption has 

been made regarding the distribution function f(p 1
) or the various 

rate coefficients. 

Let us consider now the case of a plasma contained in an adia-

batic shield of temperature T, and in a state of complete equilibrium. 

Then several of the plasma characteristics are known, namely: 
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-- The electrons are in their most random state and have a fv1ax-

wellian distribution 

f(p) a: e -E:/kT 

-- The . radiation intensity I = B(w,T) = n2 B0(w,T) is that of a w r 

black body; where nr is the "ray refractive index" and B
0

(w,T) is 

the black-body radiation in vacuum. B0 (w,T) is a universal func

tion that depends only on the frequency and temperature, and is 

given by Planck's formula. 

By noting that f(p)/f(p') = e~w/kT we can write equation 

(A.5) as 

wh i ch gi ves B ( w, T) , 

B{w~T) (A. 7) 

From Bose statistics for photons, 

B(w,T) l 
[ iiw/kT J 
e - 1 

(A. 8) 

and comparison of (A.?) and (A.8) gives 



r\/P') 

llws (p' ) 

n2 -h 3 r w 

8 
3 2 

'IT c 

= 1 
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(A.9) 

(A. 10) 

Equations (A.9) and (A. 10) are independent of the distribution func-

tion and are assumed to be valid in general even when equilibrium 

does not prevail. 

Using the above relations, the observed absorption cqefficient 

(A.4) becomes: 

The source function is defined as 

jw s = ---;:---
w 2 

n a . r w 

and combination of equations (A. 11) and (A. 12)gives 

~w3 J nw(p') f(p') d3p' 

s = ----------------------------w 

(A.ll) 

(A.l2) 

(A.l3) 

Expression (A.l3) is the radiation intensity at frequency w , 

emanating from the plasma. It is clear that, as the distribution 

function f(p) approaches a Maxwellian form, the source functionS 
w 

approaches the black-body Planck distribution. 
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A.2 RADIATION TEMPERATURE 

Assume that the plasma is emitting at frequency w , with in-

tensity S 
w 

It is then possible to define a radiation temperature 

Tr' as th e temperature of a black body which ~-1ould emit with intensity 

S at the same frequency and bandwidth. 
w 

the result to (A. 13) 

-1 

(A. 14) 

With the relations (A.9), (A. 10) and definitions (A.2 and (A.3) thi s 

becomes 

In the classical limit tlw « kT (Rayleigh-Jeans) 

f(p'); f(p) +1'\wlf+ oE 

Substituting this in denominator of {A.l3) we find: 

s = w 

-w2 J nw(p) f(p) d3p 

3 2 J + af 3+ 8n c nw(p) oE d P 

(A.l5) 

(A. 16) 

(A. 17) 

In equilibrium for the Rayleigh-Jeans limit of the Planck radia-

tion function: 
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8n3c2 J nw(p) f(p) d3p 

kTr s = (A. 18) 2 w 

J 
w nw(p) 2i d3p 

dE: 

If f(p) is a Maxwellian distribution, then T will be the true r 

electron temperature. If we 

the integrals in (A. 18): 

J 
2 f(p) d3p p 

kT = r 

f f(p) d3p-+ 2m 

assume that n varies as p
2 and evaluate w 

= kT 
2m e 

(A. 19) 

The radiation temperature is found to be equal to the electron temper

ature if either of the two conditions is fulfilled. For instance 

(Ref. A. 1) n for helium varies as p2 for electron energies greater 
w 

than 1 eV. 
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APPENDIX B 

CHARACTERISTICS OF THE INSTRUMENTS USED IN THE MICROWAVE RADIOMETER 

The problem of measuring low power microwave signals emitted 

by a pulsed discharge is a complicated one. It is necessary to amp

lify the micrmvave signal while at the same time shielding the 

instrumentation from the radi ofrequency interference generated by 

the discharge and other associated circuits. 

In order to isolate the instrumentation from the discharge, an 

enclosure made of copper mesh was built. Inside this enclosure all 

the instrumentation was located. The microwave emission from the 

laser was carried into the enclosure by standard waveguide (EIA-WR42) 

sections for a length of about six meters. A similar length of 50n 

coaxial cable carried the synthronizing signal from the control cir

cuitry of the pov1er supply . This signal 'tlas used to synchronize both 

the oscilloscope and the boxcar averager (for proper signal process

ing). Initially an optical isolator was used at the enclosure to 

coaxial interface but, since no difference could be detected, this 

circuit was removed from the system. 

A block diagram of the system (Fig. 3.3) shows the major com

ponents of the system: 

MIXER-PREAMPLIFIER 

VARIAN KCH-760-10-50 SN 3539A 

Crystals IN 26CMR 

3 db Band Pass 12 mHz 

Power gain 22 db 
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Intermediate frequency 60 mHz 

R. F. V. S~IR 

(2) HP AMPLIFIERS 

HP 461A 

Frequency Response± l db, l kHz-150 mHz 

Gain 

Noise level 

(1) ATTENUATOR HP355C 

Frequency Range 

Attenuation 

(1) DIODE DETECTOR 

HP 8471A 

Frequency Range 

20 db ± 1 db or 40 db ± . 5 db · 

-75 dbm (32 x 10-12~~) 

dc-1 gHz 

0-12 db, 1 db steps 

100kHz- 1.2 gHz 

Although each element in the system was checked for accuracy, 

it was believed necessary to calibrate the system as a whole. With 

the instruments at our disposal, we could not check the microwave 

section and we had to rely on the factory calibration of the mixer

preamplifier (VARIAN KCH-7-60-10-50). The rest of the system was 

checked using a calibrated variable signal source at 60 mHz. It turned 

out that our diode detector was operating in a region between the 

linear and square law regiiT.Jes, so calibration turves for different 

amplifier settings were drawn and were used in interpreting the data. 

The microwave section was tested with a calibrated noise 

source: 



AIRBORNE INSTRUMENTS LABORATORY 

TYPE 71 NOISE GENERATOR 

Power Supply 07111 
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This noise source had the equivalent temperature of 1.582 eV. 
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APPENDIX C 

C. 1 Theory of r~i crow ave Measurements 

A plane electromagnetic wave of frequency w and propagation 

vector k can be described by 

-~ -+ E = E ei{wt-k·r) 
0 

(C.l) 

The equation of motion of an electron that is acted upon by this 

wave and also undergoes collisions with the surrounding gas atoms is, 

according to Newton's second law 

-+ -+ 
-+ ei(wt-k·r) = -e E

0 
(C.2) 

where me is the electron mass, vm is the collision frequency with gas 

atoms and e i s the el ectron charge. 

If the amplitude of the electron's resulting oscillatory motion 

is small compared with the wave, or if the wave is of transverse polar

ization (k perpendicular to E
0
), the steady state solution is 

(C.3) 

The current density then becomes 

(C.4) 

From Maxwell's equations, the wave equation for the electric vector 

is 
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+ + aJ 1 a2E 
1/ X ( 1/ X E) = -1-1 - - - ~ 

o at c2 atL 

Substitution of (c. 1 ) and (C . 4) into (C.5) 

2 . 
2 + 2+ n e 1w1-1 

k E = - e o E+!:L.E 
me(iw+vm) 2 c 

+ 
Then for nonzero E the 't/ave number must be 

2 
2 w2 w \! 

k = - 2 { 1 - __,.........JP"--= ( 1 + i ~)} 
C 

2 + 2 w vm w 

The plasma frequency wp is given by 

2 

gives 

2 n e 5c 4 -3) 
wp = _e~ = ~ Iii"""" Hz (n in em 

meso 2n e e 

(C.5) 

(C.6) 

(C. 7) 

(C. B) 

and the square of the complex index of refraction of the plasma is 

(C.9) 

To first approximation (Ref. C.1) the change in Q of a cavity 

into which a medium of index of refraction 1-1 is introduced is 

Then v1ith (C.9)s 

1 1 _ (vm/w) 
Q - Qo - - w2+ v~ 

f 
2 + + 

w E •E dV 
p 0 0 

I E ·E dV 
0 0 

(C. 10) 
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Similar·ly {Ref. C.l) the fractional shift in resonant frequency is 

or 

J [(~
2 )R - 1] E

0
·E

0 
dV 

!.lf - 1 
f 0 - - 2 J 

E
0

·E
0 

dV 

J w~ E0 ·E0 dV 

J E0 ·E0 dV 

From (C.8) write the plasma frequency as 

where wpo is the plasma frequency corresponding to n
0

• 

Now define the form factor n 

r n ( r) 
= j ~0 E0 ·E0 dV 

n 

and after using (C.l2), equations (C. 10) and (C. 11) become 

These may be solved for vm and w to give po 

(C.ll) 

(C.l2) 

(C.13) 

(C.l4) 

(C. 15) 

(C.l6) 
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(C. 17) 

after using (C.8), 

2w2m s 2 
e o (6ff) {l + [6(1/Q) ] } no = -----;;2,.......:;- 2(6f/f ) 

ne o 
(C. 18) 

C.2 Evaluation of the Form Factor- (Eg. C.l3) 

The microwave cavity is taken to be cylindrical~ of radius R and 
0 

length L. The plasma (glow discharge) is assumed to be contained in an 

infinite cylinder coaxial with the cavity and of smaller radius R 

( R/R
0 

~ • 10) 

The electron density in the plasma is assumed to be distributed as a 

Bessel function of zeroth order (von Engel, Ref. C.2) 

x01 = 2.40482 (C.l9) 

where x01 is the first zero of the Bessel function. Note that the aver

age density is 

(C.20) 

The assumptions used to derive relations (C.l6) and (C.l5) limit us 

to conditions in which the electric field in the cavity is not very dif

ferent from the value with no plasma present. In practice this limits 

the value of R/R
0 

to less than 0.2. 
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c.2.1 TM011 Mode 

From Ref. C.3, for the TN011 mode in a cylindrical cavity of radius 

R
0 

and length L, 

(C.21) 

and J
0

(x01 ) = 0. Using (C.l9) and (C.21) in (C. 13) gives 

R R 2 
fJo(xOl ~) J~(xOl ~ ) + (Lx

0
°

1
) J~(xOl ~ ) 

0 0 0 

r dr 

(c. 22) 

In Figure C. l are shown the results of the numerical integration 

of equation (C.22) for a cavity of length L = 7.81 em. The form factor 

n011 is shown as a function of R/R
0

. 
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Fig. C-1 : Calculated value of Tl for the 

TM 0" mode of a cylindrical cavity. of 

length L = 7.81 em. 
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APPENDIX 0 

D. l Numerical Sol uti on of Boltzmann • s Trans port Eguati on for Electrons 

in the Glow Discharge 

The electrons in a gas discharge can be fully described by the 

Boltzmann equation. However, the solution for the most general problem 
+ + 

is too complex to do exactly. The distribution function f(t,r,v) is 

found by solving the following differential equation: 

('Sf) 
at collisions 

(D-l) 

where Vv is the gradient operator in velocity space and (~ft) gives 
" call 

the changes in the distribution function due to collisions. 

Equation (D-1) can be reduced to a more manageable size if the 

following assumptions are made: 

(1) The plasma is steady, isotropic and boundless. Thus, the distribu-

tion function depends on the velocity only, with no dependence on time. 

(2) The Lorentz approximation is applicable (Ref. D-1): 

+ 

f(v) ~ f 0 (v) + l~l (D-2) 

i.e., the distribution function f can be expressed by an isotropic part 
+ 

f
0

(v) and by a small perturbation I~! · f 1(v) .. dependent on the velocity 

direction. This approximation implies that the collision frequency for 

momentum transfer is much larger than the collision frequency for exci-

tation, and therefore for dissociation as well. 
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(3) Ionization is low, thus we can neglect e-e and e-ion interactions. 

With the above assumptions, Boltzmann's transport equation, in the 
-+ 

presence of an electric field E, becomes: 

-+ 

(- ~ . llv) f = est) 
m ot call 

(D-3) 

Hith the Lorentz approximation (2), equation (D-3) gives the U'/0 equa-

;. 

of 
(-0) 
ot call 

The collision tenn in equation (D-5) is given by . 

of 
1 (-) 

0 t coll 
I N.Q~e) v f 1(v) 
j J J 

(D-4) 

(D-5) 

(D-6) 

where q(e) is the elastic cross section of the jth element. If we change 
J 

variables to energy, u = mi/2e, and substitute (D-6) into (D-5), this 

produces 

(D-7) 

Equations (D-4) and (D-7) may now be combined to give 



The 

E2 8 
- 3 au {I 

j 

i ne 1 as tic collision 

of 
~-0) 
v ot call 
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(lf of u ___Q_ } = ~·-0) 
N .Q~e) au v 0 t co 11 

J J 

(D-8) 

term is given by 

( D-9) 

where o}~)(u) is the electron cross section for excitation (or de

excitation) of the kth level of the jth species with a corresponding 

energy loss (or gain) ll jk" The first integral of (D-8) is (Ref. D-1) 

N . 
\'/here oj = f· If 'tie now define the functions ELAST(u), INTEG(u) and 

constant B, 

ELAST(u) I o .Q\e) (u) 
J J J 

u+D. .k 
INTEG(u) = r ~ ~j JJ x f(x) Qjk(x) dx 

J u 

E 2 1 
B = ( N) X 3 

then equation (D- 10) can be integrated f ormally to give: 

( D-11 ) 

(D-12) 

( 0-13) 



f(u) 
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J
uo ELAST(u) x INTEG(u) du 

B * u 
u 

(D-14) 

FO r given N, oj, E, 0Je)(u), oj~)(u) and 6jk' the function f(u) in equa 

tion (D-14) can be calculated (at least in principl e ) by numerical 

techniques. A procedure suggested by Judd (Ref. 0-2) starts with a 

boundary condition f(u
0

) = F at some high value of energy 

(0-14) is then integrated in s mall steps to lower energies. 

u >> u . 
o e' 

Judd found 

that if u
0 

is sufficiently high, uofue"' 40, the solution converges to 

the same form independent of the boundary condition chosen at u
0

. 

D-2 Dissociation Processes and Boltzmann's Equation 

In the event dissociation takes place, the number density of par-

ti cl es N is no 1 anger fi xed and vd 11 vary a a:ordi ng to the degree of 

dissociation. Thus, suppose that the degree of dissociation is gi ven 

by equation (10.5): 

where 

-k n T 
= N(O) e 1 e 

C02 

and Qd(u) is the dissociation cross section. 

(0-15) 

(D-16) 

Ass uming that the process co2 t CO+ ~02 takes place, we can 

calculate the number densities of CO and 02: 

-k n -r 
N CO (T) = N ( 0) ( 1 - e 1 e ) 

C02 
( 0-17) 



N
0 

( T) 
2 

and (D-18), we find: 

N(O) -205-
C0

2 
-k n T 

-2- {l - e 1 e } 

N 

N(O) 
co 

N(O) + __ 2 (1 
2 

-k n 1-
e 1 e ) 

(D-18) 

(D-19) 

If the dissociation cross section were known accurately it would then be 

possible to obtain the degree of dissociation for any initial mixture by 

solving (D-14) with (D-15, D-17, D-18 and D-19) as additional con-

straints. 

0-3 Calculation of the Dissociation Cross Section from Boltzmann's 
Equation and Experimental Results 

Since the values of the dissociation cross section are not known 

accurately, the reverse problem of the one discussed in Section D-2 m 

might be of more practical importance. Namely, it should be possible 

to calculate the dissociation cross section by comparing the experimen-

tally observed dissociation with the calculated distribution function 

through equation (D-16). 

If v1e assume that \•le experimentally study "q" different condi-

ti ons, then we would have "q" different va 1 ues for k1 

{k } = {k(l) k( 2) k( 3) k( 4) .... k(q)} 
1 1 'l '1 '1' 'l 

Since the degree of dissociation would be different in each case, vie 

should also have "q" different distribution functions 
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{f} = {f(l),f( 2),f( 3), .... ,f(q)} 

Therefore the following set of integral equations could be generated 

co 

{k1} J 2
: u Qd(u) {f} du (D-20) 

0 

Thus it is possible, although it might not be simply done, to solve 

(D-20) for the dissociation cross section Qd(u). 
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