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ABSTRACT

Propagation and radiation of electromagnetic waves in a lossless, reciprocal,
chiral medium is studied in this thesis. Such a medium is described electromagneti-
cally by the constitutive relations D = ¢E + tyB and H = {yE + (1/¢)B. The con-
stants €, 4, are real and have values that are fixed by the size, shape, and the spatial
distribution of the elements that collectively compose the medium. The plane wave
propagation in an unbounded chiral medium is considered. The propagation con-
stants are obtained and the polarization properties of electromagnetic waves in such
a medium are discussed in detail. The problem of reflection from, and transmission
through a semi-infinite chiral medium is solved by obtaining the Fresnel equations.
The conditions for the total internal reflection of the incident wave from the inter-
face, and the existance of the Brewster angle are obtained. The effects of the chiral-
ity on the polarization and intensity of the reflected wave from the chiral half-space
are discussed and illustrated by employing the Stokes parameters. The propagation
of electromagnetic waves through an infinite slab of chiral medium is formulated
for oblique incidence and solved analytically for the case of normal incidence. The
radiation emitted by an oscillating dipole in an unbounded, lossless, chiral medium
is calculated. From the constitutive relations and from the time-harmonic Maxwell
equations VX E = 1wB and VxH = J —1wD, it is seen that the wave equation for
such a medium is given by VX VXE—w?ueE—2wuyV xE = swuJ where the source
term J is the current density of the oscillating dipole and where E is the electric

vector of the radiated field. The desired solution of this wave equation is found by
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the dyadic Green’s function method, that is, by first constructing the dyadic Green’s
function T and then evaluating the expression E = iwp [ T'(r,r’) - J(r') dV'. The
dyadic Green’s function T' and the components of the radiated electric field E are
obtained in closed form. The components of the radiated B, D, and H fields can be
derived from knowledge of E by using the Maxwell equation B = (1/iw)V x E and
the constitutive relations. The wave impedance of the medium and the radiation
resistance of the dipole are also obtained. The effects of the chiral medium on the

polarization and intensity of the dipole radiation are discussed.
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CHAPTER 1

INTRODUCTION

This report is a theoretical investigation of electromagnetic wave propagation
and radiation in chiral media. The motivation for this study, beside its theoretical
importance, is provided by its applicability to the vegetation layer problem in remote
sensing. Since certain types of terrestrial vegetation layers can be thought of as
chiral media, the analytical results of this work provide the necessary tools for

analyzing the experimental data.

A chiral medium is a macroscopically continuous medium composed of equiv-
alent chiral objects, uniformly distributed and randomly oriented. A chiral object
is a three dimensional body that cannot be brought into congruence with its mir-
ror image by translation and rotation. An object of this sort has the property of
handedness and must be either left-handed or right-handed. An object that is not
chiral is said to be achiral. Thus all objects are either chiral or achiral. Some chiral
objects occur naturally in two versions related to each other as a chiral object and
its mirror image. Objects so related are said to be enantiomorphs of each other. If
a chiral object is left-handed, its enantiomorph is right-handed, and vice versa. An
example of a chiral object is the wire helix; other simple examples are the Mobius

strip and the irregular tetrahedron.

When a linearly polarized wave falls normally on a slab of chiral medium two
waves are generated in the medium; one is a left-circularly polarized wave and the
other, a right-circularly polarized wave of different phase velocity. Behind the slab

the two waves combine to yield a linearly polarized wave whose plane of polarization
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is rotated with respect to the plane of polarization of the incident wave. The
amount of rotation depends on the distance travelled in the medium, and this
implies that the optical activity occurs not at the surfaces of the slab but throughout
the medium. Optical activity in a chiral medium differs from the phenomenon of
Faraday rotation in, say, a magnetically biased plasma, by the fact that the former
is independent of the direction of propagation whereas the latter is not. The optical
activity is invariant under time reversal and the Faraday rotation is invariant under

spatial inversion.

The phenomenon of optical activity was first discovered by D. F. Arago [1]
in 1811. He found that crystals of quartz rotate the plane of polarization of lin-
early polarized light which is transmitted in the direction of its optical axis. The
experiments of J. B. Biot [2]-[4], dating from 1812 to 1838, on plates of quartz
established (i) the dependence of optical activity on the thickness of the plate, (ii)
unequal rotation of the plane of polarization of light of different wavelenghts, (iii)
the absence of any optical activity when two plates of quartz of the same thickness
but opposite handedness were used. In 1815 Biot [5] discovered that optical activity
is not restricted to crystalline solids but appears as well in other media such as oils
of turpentine, laurel and aqueous solutions of tartaric acid. It was A. Fresnel [6] in
1822 who showed that a ray of light travelling along the axis of a crystal of quartz is
resolved into two circularly polarized rays of opposite handedness which travel with
unequal phase velocities. He argued that the difference in the two wave velocities
is the cause of optical activity. In 1848 L. Pasteur [7] postulated that molecules are
three-dimensional figures and that the optical activity of a medium is caused by the
chirality of its molecules. More recently, in 1920 and 1922, K. F. Lindman [8], [9]
and W. H. Pickering [10] in 1945, devised a macroscopic model for the phenomenon

by using microwaves instead of light, and wire spirals instead of chiral molecules.
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They illustrated the molecular process responsible for optical activity using this
model. Many other experiments were performed, and a very thorough account of

them is contained in a book by T. M. Lowry [11].

By the end of the nineteenth century exprimental and empirical facts on optical
activity were well established, and physicists had started to develop theories in order
to explain the interaction of electromagnetic waves with chiral media. About 1915,
M. Born [12], C. W. Oseen [13], and Gray [14] put forward independently and
almost simultaneously the explanation of optical activity for a particular molecular
model. The molecular model used was that of a spatial distribution of coupled
oscillators. W. Kuhn [15] also contributed greatly to the problem by considering
the most simple case of the coupled oscillator model to show optical activity. In
1937 E. U. Condon, Altar, and H. Eyring [16] showed that it is possible to explain
optical activity by considering a single oscillator moving in a dissymmetric field.
A detailed account of these microscopic theories is contained in Condon’s paper
[17]. Recently, the macroscopic treatment of the subject, which is the theoretical
counterpart of Lindman’s experiments, was given by C. H. Papas, D. L. Jaggard, and
A. R. Mickelson [18]. In their report, the interaction of electromagnetic waves with
a collection of randomly oriented short metallic helices of the same handedness were
studied, and the optical activity in such media was placed in evidence. The present
work is a systematic treatment of Maxwell’s equations subject to the constitutive

relations for chiral media.

This thesis is divided into five chapters. Chapter II contains the derivation of

the constitutive relations for lossless, reciprocal chiral media.

In chapter III, after discussing the plane wave propagation in unbounded chiral
media, the interface problem is considered in two parts. First, the problem of

reflection from, and transmission through semi-infinite chiral media is solved by
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obtaining the Fresnel equations. Also the conditions for total internal reflection,
and the Brewster angle are obtained. Then the problem of electromagnetic wave
propagation through an infinite slab of chiral medium is formulated for oblique

incidene, and solved analytically for the case of normal incidence.

Chapter IV contains the derivation of the dyadic Green’s function for chiral
media. Dipole radiation is then considered and the components of the radiated
electric field, the wave impedance of the medium and the radiation resistance of
the dipole are obtained. The effects of the chiral medium on the polarization and
intensity of the dipole radiation are also discussed. Chapter V concludes this work

with a review of the results obtained and the practical implications of these results.



CHAPTER 11

CONSTITUTIVE RELATIONS

2.1 Introduction

To recapitulate, a chiral medium is a macroscopically continuous medium com-
posed of equivalent chiral objects, uniformly distributed and randomly oriented. By
definition a chiral object does not posses either a center or a plane of symmetry.
The simplest of these objects is the idealized wire helix. It consists of a circular
loop of wire whose two ends are extended perpendicular to the plane of the loop in
opposite directions. According to [18], when an incident electromagnetic wave falls
on the helix it induces both electric and magnetic dipole moments. These dipole
moments are directed parallel to the axis of the helix. The incident electric field
induces currents in the straight portion of the helix, and by continuity must also
flow in the circular portion of the helix. The current in the straight portion con-
tributes to the electric dipole moment of the object and the current in the circular
portion contributes to its magnetic dipole moment. In a complementary manner,
the incident magnetic field induces currents in the circular portion and by continu-
ity in the straight portion. Thus, also the magnetic field contributes to the electric
and magnetic dipole moments of the object. From the heuristic argument above,
the constitutive relations for the chiral media, for time-harmonic fields (e ~*“*) must

have the form

P = x.¢,E +~.B (2.1)

M= _'7mE + Xm(l/“o)B ’ (22)
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where P and M are the polarization and magnetization of the medium, and x.,
Xm are the electric and magnetic self-susceptibilities, and ~,.,v,, are the cross-
susceptibilities. The permittivity and permeability of the free space are denoted by

€os Mo- The polarization vectors [19] are defined by the equations

P=D—-¢E (2.3)

M = (1/p,)B—H. (2.4)

Substituting for P and M in (2.3) and (2.4) from (2.1) and (2.2) it can be shown
that

D= ‘GE + ’YeB (2.5)

H=7,E+(1/4)B (2.6)

where € = €,(1 + x¢) and g = po/(1 — Xm), and €, ,7¢, ¥m can be complex quan-

tities.
2.2 Lossless Chiral Media

The source free Maxwell’s equations for time-harmonic fields are

V x E = iwB (2.7)

V xH=—iwD. (2.8)

Upon scalarly multiplying equation (2.7) by H*, and scalarly multiplying the com-
plex conjugate of equation (2.8) by E and then subtracting the resulting equations

from one another, it is found that
H*-VXE-E-VxH'=iw(H*'-B-E-D*). (2.9)
Using the identity

V. (UxV)=V.(VxU)-U.(VxV), (2.10)
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and equation (2.9) it can be shown that
V. (ExH*)=iw(H*-B-E- D). (2.11)
The complex Poynting vector S [20] is defined by the equation
1 .
S=-2-E><H . (2.12)
Using (2.12) in (2.11), one obtains
iw * *
—V-Sz?(E-D - H*-B). (2.13)

If the medium is lossless, then the total time-averaged power entering an infinitesmal

volume around a point must be zero, 1. e., —Re(V - S) = 0. Hence
tw
Re{—z—(E-D* -H*"-B)}=0. (2.14)

Using the constitutive relations (2.5) and (2.6) in (2.14), it follows that when € and

u are real and v, = —~],, then the chiral medium is lossless.
2.3 Reciprocal Chiral Media

Let E;, H; be the electromagnetic field radiated by a current J; occupying a
finite volume V; and let Ez, Hy be the electromagnetic field radiated by a current
J2 occupying another finite volume V,. The two source currents oscillate monochro-
matically at the same frequency and the medium occupying the space outside of
Vi and V; is chiral and may be inhomogeneous. Clearly E, , H; are related to
J1, and E;, H; are related to J, by the equations V x H; = J; — swD; and
V x Hy = J5 — twD; . Upon scalar multiplication of the first equation by E, and

the second one by E;, and subtraction of the resulting equations, one obtains

Ez'vXHI—E1°VXH2=E2'J1—E1'J2

+ iW(EI . Dz - Eg . Dl) . (215)
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Scalarly multiplying VxE; = 1wB;j and VXE,; = swB, by H, and H,, respectively

and subtracting the resulting equations, it is found that
H2°VXE1—H1'VXE2=iw(B1-H2—B2'H1). (2.16)

By first adding (2.15) and (2.16), and then applying identity (2.10) to the sum, it

can be shown that

V'(ElXHz—EgXH1)=E2'J1-—E1'Jz

+ iw[(E1 Dy —~ E» 'Dl) + (B1 ‘Hy; — B, - H1)] . (2.17)
Substituting for D, and H,,, where p = 1,2, from the constitutive relations

D, = ¢E, +7.B, (2.18)

H, = vmE, +(1/p)B, (2.19)
in the right hand side of (2.17), one obtains

V(El XHQ_E2XH1)=E2'J1_E1‘J2

+1w(Ye — V) (E1 - B2 — E3 - By) . (2.20)

Integrating equation (2.20) throughout all space and converting the left side of the
resulting equation to a surface integral using the divergence theorem, the following
is obtained

/(E1XH2-—E2XH1)'ndS=/.
S

E,-J,dV; —/ E,-J,dV,
Vi

Vs

+ iW(’Yg - 'Tm) / (E1 . B2 - E2 . Bl) av (2.21)
1

where V' is the volume containing the sources, S is the surface enclosing V and n is
the unit vector directed along the outward normal to S. It is assumed that sources

are confined within a sphere of finite radius. Now, suppose that S is the surface of
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a sphere which is concentric with the sphere enclosing the sources but whose radius

R tends to infinity. The quantities E; X H; and E; x H; will eventually tend to

zero as R~2 while the area of the surface increases as R2. Hence
/(El XH2~E2 le)-ndS
S

will remain bounded as radius R tends to infinity. However, as the radius increases
the fields over any finite part of S must approach more and more nearly a configura-
tion appropriate to outwardly directed plane waves. In a straightforward manner,
the plane wave solutions of Maxwell’s equations subject to constitutive relations
(2.5) and (2.6) can be obtained. Substituting the fields associated with these plane
wave solutions into the left hand side of equation (2.21), and using the usual defi-
nition of reciprocity [20], which is

E2 'Jl dVl = / E1 'J2 dV2 5 (2.22)

Vi Va

it can be shown that when 7, = 7,, = 1y (7 real) the chiral media is reciprocal.
2.4 Conclusions

From the preceeding discussions, it can be deduced that in the case of a chiral
medium composed of lossless, reciprocal, short wire helices, all of the same hand-

edness, the constitutive relations for time-harmonic fields have the form

D =¢E +11B (2.23)
H={4E+ (1/u)B (2.24)
where €, p, « are real quantities. Moreover, it has been conjectured [18] that (2.23)

and (2.24) apply not only to chiral media composed of helicies but also to lossless,

reciprocal, isotropic, chiral media composed of chiral objects of arbitrary shape.
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Since D and E are polar vectors and B and H are axial vectors, it follows that ¢

and p are true scalars and v is a pseudo-scalar.

This means that when the axes of a right-handed Cartesian coordinate system
are reversed to form a left-handed cartesian coordinate system, ~ changes in sign
whereas € and g remain unchanged. Thus the handedness of the medium is mani-
fested by the quantity 4. When 4 > 0, the medium is right-handed and the sense of
polarization is right-handed; when ~ < 0, the medium is left-handed and the sense
of polarization is left-handed; and when vy = 0, the medium is simple and there is

no optical activity.

Upon substituting B by (1/iw)V X E in (2.25), it is evident that the value of
D at any given point in space depends not only on the value of E at that particular
point but also on the behavior of E in the vicinity of this point; that is to say,
D depends also on the derivatives of E [21]. This non-local spatial relationship
between D and E is called spatial dispersion. Therefore, the medium described by
the constitutive relations (2.23), (2.24) is a spatially dispersive, isotropic, lossless,

reciprocal, chiral medium.
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CHAPTER III

PLANE WAVES IN CHIRAL MEDIA

3.1 Introduction

In this chapter the plane wave solutions of Maxwell’s equations in a source-
free homogeneous chiral medium will be examined. Plane waves are not only good
approximations to waves at large distances from their sources, but they can also
be used to represent complicated waves by utilizing the Fourier integral. More-
over, the concepts of plane wave propagation, reflection, and refraction have many

applications in optics, remote sensing and other wave propagation problems.

3.2 Unbounded Chiral Media

Maxwell’s equations for source-free regions are

V xE =iwB (3.1)
VxH=—-iwD (3.2)
V-D=0 (3.3)
V.-B=0. (3.4)

Upon substituting in equation (3.2) for H and D from the constitutive relations

D=¢E+11WB (3.5)

H =i7E + (1/u)B, (3.6)

and then taking the curl of the resulting equation and recalling equation (3.1), the
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following differential equation for the electric field is obtained
VXxVXE—-k?E - 2wurVxE=0, (3.7)

where k? = w?ue and €, p are the permittivity and permeability of the chiral
medium, respectively. Using the vector identity Vx VX E = VV -E — V2E and

noting that V - E = 0, equation (3.7) is reduced to

V2E 4+ k’E 4+ 2wpuyV X E =0. (3.8)

Since the chiral medium is isotropic, there is no preferred direction of propaga-
tion. Without loss of generality, it is assumed that a plane monochromatic wave is
propagating along the positive z-axis of a Cartesian coordinate system (z,y, z). The
unit vectors of this coordinate system are denoted by e, e,, and e;. By definition

the electric vector of such a plane monochromatic wave has the form
E=E_"* = (Eozex + Eoyey + E'oze,,)e:"hz (3.9)

where E,, is a complex-constant amplitude vector, h is the propagation constant,
and z is measured along the z-axis. Using equation (3.9) and the fact that V-E =0,
it can be shown that E,. = 0. Upon substituting equation (3.9) into (3.8) and noting
that E,, = 0, the following two homogeneous equations with the two unknowns E,,

and E,,, are obtained

k? - WY\E,, —ahE,, =0 3.10
oy

ah Eoz + (k* — h%)E,, =0 (3.11)
where a = 2twu~y. This system of equations has a non-trivial solution if and only if

(k% — h?%)* + o®h% = 0. (3.12)
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The values of h that satisfy (3.12) are the possible propagation constants. They are

h = twpy + Vw?u242 + k2. (3.13)

Since the plane waves are assumed to propagate along the positive z-axis, the per-

missible values of h are

hy = wuy + Vw2u242 + k2 (3.14)
hy = —wpy + Vw?u242 + k2, (3.15)

Therefore, there are two modes of propagation, one being a wave of phase velocity
w/h1, and the other a wave of phase velocity w/ha. For 4 > 0 the former is the
slower mode whereas for 4 < 0 the latter is the slower mode. The electric fields

corresponding to these modes are

E; = E,i(ex + fey)e'P1? (3.16)
which is a right-circularly polarized wave, and

E; = Eo(ex — tey)e™?? (3.17)

which is a left-circularly polarized wave. The total electric field E, which is given
by

E =E; + E; = {E,i(ex +1iey)e™'* + Ejp(ex — tey)e™7}, (3.18)

is an elliptically polarized wave. The complex-constant amplitudes E,;, F,2 can be
written as E,; = p;€*?! and E,, = p,e*®3, where their moduli and phases p; and
©; (7 = 1,2) are real numbers. The length of semi-major axis of the polarization
ellipse is (p; + p2), and that of the semi-minor axis is |p; — p2|. The orientation

angle 1 of the ellipse is given by

hy — h - -
_(h2—hi) (o2 sol)z_wMHm p1

2 2 2

YE (3.19)
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The magnetic field is obtained by substituting for E from (3.18) into
H=E+ (1/p)B=1yE+ (1/twp)V X E, (3.20)
and it is found to be
H = —i/72 + (/1) {Eor(ex + iey)e™* — Egz(ex — iey)e*#} . (3.21)

The orientation angle ¢ for the magnetic field is given by

P2 — P1
2

_ (hz*h1)z+ (2 — ©1)

Yy > 2

T - —wpyzt ul (3.22)
5 = Wk 5 :

The polarization ellipse of H is similar and oriented perpendicularly to the polar-
ization ellipse of E. That is, the polarization ellipses of E and H are perpendicular
to each other and have the same sense of rotation. The sense of rotation being that

of the circularly polarized wave of the larger modulus.

Using the notation E(t) = Re(Ee™*“!) and H(t) = Re(He™*“?), it is seen from
(3.18) and (3.21) that at any point (z,y,2) and at any time ¢ the vectors E(t) and
H(t) are perpendicular to each other and to the direction of propagation. Hence,
the monochromatic plane waves in a chiral medium are transverse electromagnetic

waves. Specifically,
1

VY2 + (€/n)

It follows from this relation that the wave impedance Z of the medium is given by

e, x E(t) = H(t) . (3.23)

_fE_ 1
Z_\/:W' (3.24)

Therefore, the wave impedance decreases as the medium becomes more chiral.

The time-averaged power density P [20] carried by the plane waves, is given
by
1
P = Re{S} = ~2-Re{E x H*}. (3.25)
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Upon substituting into (3.25) for E and H, from (3.18) and (3.21), it is found that

P =2+ (e/u) {|Eai|’ + |Ex2|’} e . (3.26)

This shows that as the medium becomes more chiral, the time-averaged power

density increases.
3.3 The Laws of Reflection and Refraction

When a plane wave falls upon a boundary between a dielectric and a chiral
medium it splits into two transmitted waves proceeding into the chiral medium,
and a reflected wave propagating back into the dielectric. To mathematically for-
mulate the problem of reflection from and transmission through a semi-infinite chiral
medium, a Cartesian coordinate system (z,y,2) is introduced. As shown in figure
3.1, the zy-plane is the plane of interface of a homogeneous dielectric with permit-
tivity €; and permeability p;, and a homogeneous chiral medium described by the

constitutive relations (3.5) and (3.6).

It is assumed that a monochromatic plane wave falls obliquely upon the in-
terface. The complex-constant amplitude vectors of the incident, reflected, and
transmitted plane waves always lie on planes perpendicular to the directions of
their propagation. Therefore, it is always possible to decompose any one of these
amplitudes into a component normal to the plane of incidence, and a second com-
ponent lying in the plane of incidence (zz-plane), as shown in figure 3.1. The plane
of incidence is the plane containing the normal to the interface and the wave vector

of the incident wave.

From the boundary conditions, that is, the continuity of tangential electric field

and tangential magnetic field at the interface, it can be shown that

k;ixe,=k,xe,=h; xe,=hy xXe, (3.27)
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4 X
DIELECTRIC CHIRAL MEDIUM
(819“’1) (E,H,'Y)

Figure 3.1 Orientation of the wave vectors of the incident, the reflected, and the
transmitted waves at an oblique incidence on a semi-infinite chiral medium.
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where k;,k,,h;, and h, are the wave vectors of the incident, reflected, and the
two transmitted waves, respectively [22]. Upon taking the magnitude of the vector

equation (3.27), it is found that
,C,' sin 0,‘ = k,- sin 0,- = hl sin 91 = h2 sin 02 (328)

since k; = k., then 8; = 8,. Using equation (3.28), the angles §; and 6, correspond-

ing to the two transmitted waves (see fig. 3.1) are found to be

k; sin §;
6, = arcsin(——— 3.29
1 ( hy ) ( )
0; = arcsin(k" 2 6".) (3.30)
ha

where 0; is the angle of incidence, k; = w\/u1€, and hy, hy are given by (3.14),

(3.15). When « = 0, the angle of the transmitted wave is given by

k,' sin 0,'
)

0, = arcsin( (3.31)

where 6, is the refraction angle of a dielectric-dielectric inteface. Therefore, as
v — 0, angles #; and 0, approach 6; . As ¥ — oo, angles §; and #, approach
0 and %, respectively. That is, the hy-wave will become evanescent and only the
hi-wave will propagate and its direction of propagation is along the positive z-axis.
As 4 — —oo, angles 6, and 6 approach % and 0, respectively. In this case the
hi-wave will become evanescent, and the hp-wave will propagate along the positive

z-axis.
3.4 Total Internal Reflection

In general, there can be two propagating transmitted waves inside the chiral
medium, namely the h;-wave and the hy-wave. When neither of these waves propa-

gate inside the chiral medium, the phenomena of total internal reflection occur. By
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letting 0; and @5 be equal to £ in equations (3.29) and (3.30), the critical angles of

incidence 6,; and 8., can be found. They are
wY + V22 + ue)
VH1€1
—BY + Vit + ue)
VH1€L

When v > 0 and hy < h; < k;, then 8., is always greater than 6.2. There are

0.1 = arcsin( (3.32)

0.2 = arcsin( (3.33)

three possibilities:

(i) If ; < 6,5 < 0,1, then both h; and hy-waves will propagate. Their

direction of propagation is given by (3.29) and (3.30).

(i) If 6, < 6; < By, then only hy-wave will propagate and hy-wave will
become evanescent. The direction of propagation for h;-wave is given by

equation (3.29).

(iii) If 0,2 < 8.1 < 0;, then neither of the waves will propagate and there will

be total internal reflection of the two waves into the dielectric.

When v < 0 and hy < hy < k;, then 8., is always less than 6,,. There are

three possibilities:

(i) If 6; < 0,1 < 0.2, then both hy and ha-waves will propagate. The direction

of propagation of these waves is given by (3.29) and (3.30).

(ii) If 6.y < 0; < 0,2, then only hy-wave will propagate and h,-wave will
become evanescent. The direction of propagation for h,-wave is given by

equation (3.30).

(iii) If 8.1 < 0.2 < 0;, then none of the waves will propagate and the phenomena

of total internal reflection occur.

Hence, depending on the incidence angle, one, both or none of the transmitted
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waves will propagate inside the chiral medium.

3.5 The Fresnel Equations

In order to study the power carried by the reflected and the transmitted waves,
and also the polarization properties of these waves, it is necessary to determine the
complex-constant amplitude vectors associated with these waves. This is done by

matching the fields at the interface using the boundary conditions [20]

(Epi + Eop) x e, = (Eop + Ep2) X ey (3.34)

(Hm' + Ho,-) X eg = (Hol -+ Hog) X ey, (3.35)

where E,;, E, are the complex-constant amplitudes of the incident and the re-
flected electric fields, respectively. Similarly, E,; and E, are the amplitudes of the
electric fields associated with the right-circularly and the left-circularly polarized
transmitted waves, respectively. The incident electric and magnetic fields can be

written as (see fig. 3.1)

Ei — Em_eik;(zcos 0;—z sin 0;) (3.36)
Hi = Hm_eik.'(z cos 8; —z sin ;) (3.37)
where
E, =FE;je;, + E,-”(cos 0;ex + sin 9,‘6,) (3.38)
H,; = nl'l [E,-”ey — E;j (cosb;ex + sin 0,-e,)] , (3.39)

and n; = y/u;/€;. The reflected fields may be written as (see fig. 3.1)

Er — Eore—ik.-(z cos 0;+x 8in ;) (340)

Hr — Hme—ikg(z cos 8+ 8in 6;) (341)
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where

Eor = E, ey + E,|(cos 6;e, —sinb;e,) (3.42)

H, =n! [~E, ey + Er1 (cos f;ex — sin b:e,)] . (3.43)

The subscript “1”refers to the amplitude of the field component perpendicular to
the plane of incidence, and the subscript “|| ”refers to the amplitude of the field
component which lies in the plane of incidence. Since the two transmitted waves

are circularly polarized, they can be written as

Et — Eoleihl(z cos 03—z 8in 01) + Eozeihg(z cos 83—z sin 03) (3.44)
Ht = Holeihl(z cos ) —x 8in 01) + Hozeihz (zcos 03—z 5in 63) (3.45)

where
E,; = E,;(cosbex +sinf; e, + tey) (3.46)
H, = —iZ7'E, (cosf1ex +sinbe, + iey), (3.47)

and

Eo2 = Egz(cos fze, + sin Oze, — tey) (3.48)
H,,=:Z"'E_, (cos fzex +sinbqe, — tey ), (3.49)

and the wave impedance of the medium Z, is defined by equation (3.24).

It is assumed that the amplitude, polarization, direction of propagation, and
frequency of the incident field is known. To find the complex-constant amplitude
vectors of the reflected and transmitted waves, the boundary conditions at the
interface must be applied to the z- and y-components of the electric and magnetic
fields. Upon substituting into (3.34) and (3.35) from (3.36)-(3.48), a system of

four non-homogeneous equations with the four unknowns E, |, E,|, Eo1, and E,,
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is obtained. The expressions for these quantities in terms of the components of the

incident wave can be written as

E,y ( Rix  Rie ( E; )
= 3.50
( E.| ) R21 Ra2 ) \ Ey (3.50)
where the 2 X 2 matrix is the reflection coefficient matrix, and its entries are

P 0;(1 — g?)(cos 8; + cos 83) + 2g(cos? 8; — cos 8, cos 85) (3.51)
1= cos 6:(1 + g2)(cos 8y + cos 82) + 2g(cos? 8; + cos 8; cos b2) )

—2igcosf;(cos by — cosb,)

Bz = cos 0;(1 + g2)(cos 8y + cos 82) + 2g(cos? 8; + cos 4 cos 02) (3.52)

Ror — —2igcosf;(cos by — cos 5) (3.53)
217 Cos 0:(1 + g2)(cos 8, + cos 05) + 2g(cos? 8; + cos 0, cos 62) ’

Ry, — cos0;(1 — g%)(cos 8y + cos 6,) — 2g(cos? 8; — cos 8 cos 85) (3.54)

cos 0;(1 + g2)(cos 8y + cos 02) + 2g(cos? 8; + cos 0, cos 8,)

where ¢ = 7,Z7! = \/(u1/e1)7? + (p1€/€e1n). Comparing (3.52) with (3.53) it
is evident that the cross-reflection coefficient Ry and R,, are equal. This is a
consequence of the reciprocity principle. When the incident wave falls normally on

the interface, that is, 8; = 0, expressions (3.51)—(3.54) reduce to

1-¢
Ry = Ryg = —= 5
w=Fn=1 (3.55)
Rz =Ry =0. (3.56)

Similarly, the results for the amplitudes of the transmitted wave can be expressed

E,, Tyr Ti2 E;
= 3.5
(Eoz> (Tzl Tzz) <Ei||) (3.57)

where the 2 x 2 matrix is the transmission coefficient matrix, and its entries are

as
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—21 cos 0;(g cos 8; + cos 62)

= .58
Tu cos 8;(1 + g?)(cos 8, + cos 02) + 2g(cos? 6; + cos 8; cos 02) (3.58)
T 2 cos 0;(cos b; + gcos 62) (3.59)
127 cos0;(1 + g2)(cos 8, + cos b) + 2g(cos? 8; + cos 8; cos 63) '
T = 21 cos 0;(g cos 0; + cos 81) (3.60)
217 cos 0;(1 + g2)(cos 0, + cos 82) + 2g(cos? 8; + cos b, cos 8,) |
o 2 cos 0;(cos b; + gcos fy) (3.61)

~ cos 8:(1 + g2)(cos 8; + cos 82) + 2g(cos? 8; + cos B cos )

When 8; = 0, the incident wave is normal to the interface, and the expressions

(3.58)—(3.61) reduce to

Tiy = —1 = .62

11 1122 179 (3.62)
1

Tio=1 = — .63

12 = 119 T+9g (3.63)

3.6 The Brewster Angle

Under a certain condition a monochromatic plane wave upon reflection from
a chiral medium becomes a linearly polarized wave. The angle of incidence which

satisfies this condition is called the Brewster angle.

The plane containing the electric field vector and the direction of propagation
is called the plane of polarization. For a linearly polarized wave, the angle between
the plane of polarization and the plane of incidence is called the azimuthal angle.
This angle lies in the range —7/2 and #/2. It is defined to be positive, whenever
the sense of rotation of the plane of polarization toward the plane of incidence, and
the direction of wave propagation form a right-handed screw. Let a; and «, be the

azimuthal angles of the incident and the reflected waves respectively. From (3.38),
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(3.42), (3.46), and (3.48) it is evident that

E;,

tano; = —— (3.64)
Ey
Er_l_

tana, = . (3.65)
Ey

The amplitudes of the perpendicular and the parallel components of the incident
and the reflected waves are related by the matrix equation (3.50). Using (3.64),
(3.65) and (3.50), it can be shown that

Rz + Ry tan ey
tana, = . 3.66
n & R3o + Ry; tan o; ( )

If the incident wave falls on the interface at Brewster’s angle 5, then the reflected
wave must be linearly polarized. Therfore, a, must be a constant for all a;, at this
angle [23]. Upon differentiating equation (3.66) with respect to «;, the following

condition is obtained

Rii1Roes — R1oR51 = 0. (3.67)
Under this condition equation (3.66) becomes

Riz _ By

tan a, = = .
" Ry; Ry

(3.68)
Upon substituting in (3.67) from (3.51)—(3.54), the following equation is obtained
(1- g2)2cos20,-(cos 0, + cos 05)% = 492 (cos?0; — cos?8,)(cos®0; — cos6,) (3.69)

where 6, and 65 can be written in term of 6;, using equations (3.29) and (3.30).
The incidence angle that satisfies the transcendental equation (3.69) is the Brewster

angle, and it can be solved for, by using standard numerical techniques.
3.7 The Stokes Parameters

A plane monochromatic TEM wave of the form

E= (E_Le_;_ + E”e“)eik-re—iwt (3.70)
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is by its very nature, elliptically polarized. The Stokes parameters [20], which are

defined by

So = ELE} + E\E} (3.711)
S, =ELE} — E\E} (3.72)
S, = 2Re{E, Ej}} (3.73)
Ss = 2Im{E, E}, (3.74)

describe completely the state of polarization of the wave. The power carried by the
wave is proportional to Sp, and the orientation angle 1 of the polarization ellipse,

shown in figure 3.2, is given by
tan 2y = — o<y <) (3.75)

and the ellipticity angle x, is given by (see fig. 3.2)

(S3/S0) _
1+ 4/1—(Ss/50)°

The numerical value of tan x yields the reciprocal of the axial ratio a,/b, of the

tan x = (—7/4 < x < 7/4) (3.76)

ellipse, where a, and b, are the semi-major and semi-minor axes of the ellipse,
respectively. The sign of x differentiates the two senses of polarization, e.g., for left-

handed polarization 0 < x < /4 and for right-handed polarization —7 /4 < x < 0.

The power carried by the reflected wave can be found by substituting into
(3.71), the expressions for E,; and E,|- These expresions can be found using
equations (3.50)—(3.54). Since the analytical expression for the power involves many
parameters and is not very informative, only the graphs of the reflected power
versus the angle of incidence are given. If the incident electric field is in the plane
of incidence, then the normalized reflected power is denoted by Py, and if it is

perpendicular to the plane of incidence, then the normalized reflected power is
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POLARIZATION ELLIPSE

1l

Figure 3.2 Polarization ellipse for right-handed polarized wave having orientation
angle y and ellipticity angle x.
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denoted by P;. The normalization is with respect to the power carried by the
corresponding component of the incident wave. In figure 3.3 normalized power is
graphed versus the angle of incidence, as «y varies, for two different cases (a) and

(b). The following conclusions can be drawn from the figure.

(a) € < €y, the dielectric is denser than the chiral medium. In this case, there is a
Brewster angle for small values of , the power is almost totally reflected when ~ is
large and the incident electric field is in the plane of incidence, and as v increases

the reflected power increases.

(b) € > €1, the chiral medium is denser than the dielectric. In this case, there is
a Brewster angle when the incident electric field is in the plane of incidence. As vy
increases the Brewster’s angle disappears, and P|| becomes almost equal to unity,

that is, most of the incident power is reflected back into the dielectric.

Polarization characteristics of the reflected wave can be obtained from (3.75)
and (3.76). Upon substituting the expressions for E,; and E, in (7.73), it may be

shown that S; = 0. Hence
1 S
v=>3 arctan(Ej—) =0, (3.77)

that is, the major and minor axes of the polarization ellipse are along e; and
e|, respectively. The fatness (b,/a,) of the ellipse can be found from (3.76), and is
plotted versus the angle of incidence, for different values of . If the incident electric
field is in the plane of incidence, then the ellipse fatness is denoted by (b,/a,) ), and
if the incident electric field is perpendicular to the plane of incidence, then the
ellipse fatness is denoted by (b,/ao) 1. Figure 3.4 shows the ellipse fatness, for the
two separate cases (a) and (b). The following conclusions can be drawn from the

figure.

(a) € < €1, the dielectric is denser than the chiral medium. In this case, for small
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Figure 3.3 Normalized reflected power as a function of the incident angle, 6;. For
case (a), €, = 9¢,, € = €, and for case (b), €1 = €,, € = 9¢,. The values of v are
shown on each plot. For both cases it is assumed that u; = u = pu,,.



- 928 —

~, there is a right-handed circularly polarized reflected wave if the incident electric
field is polarized perpendicular to the plane of incidence. The fatnesses (b,/a,)) and
(bo/ao) 1 of the left-handed and right-handed elliptically polarized reflected waves,

respectively, get thinner as v increases.

(b) € > €3, the chiral medium is denser than the dielectric. In this case, there is a
change of handedness as §; passes through the Brewster angle. As ~ increases the
fatnesses (bo/as)) and (bo/a,)1 become almost equal to zero, that is, the polariza-
tion ellipse becomes very thin. Therefore, in this case, the reflected wave is almost

linearly polarized.
3.8 The Infinite Chiral Slab

In this section the problem of the plane wave propagation through an infinite
chiral slab of thickness d is considered. The slab (e,u,) is confined between two
infinitely extended planes, 2 = 0 and z = d and lies between two dielectrics with
the same constitutive parameters (€;,u1), as shown in figure 3.5. A plane wave
is incident at an angle 6; on the chiral slab, from the dielectric which borders the
slab at z = 0. The aim of the following analysis is to find the amplitudes of the
reflected, and the transmitted waves outside the slab. The incident electric and

magnetic fields can be written as (see fig. 3.5)

E; = Em.et'k.-(z cos 8; ~z sin 6;) (378)
Hi — Hm_es'k;(z cos 0, —x 8in 6;) (3.79)

where
Em- =Lk ey -+ E,'”(COS aiex + sin 0,’9.) (3'80)

H, = 77;1 [E,-”ey —E; (COS 0;e, + sin H;e,)] R (3.81)
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Figure 3.4 Ellipse fatness of the reflected wave as a function of the incident angle,
6;. For case (a), €; = 9¢,, € = €,, and for case (b), €; = €,, € = 9¢,. The values of
v are shown on each plot. For both cases it is assumed that u; = p = p,.
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and ny = \/p1/€1. The reflected fields may be written as (see Fig. 3.5)

Er — Eore—ik.-(z cos 8+ sin 6;) (3.82)
Hr — Hm_e-—-ikg(z cos 6;+z sin 6;) (383)
where
Eor = E, ey + E,||(cos b;ex — sin b;e,) (3.84)
H, = 171“1 [—E,”ey + E,, (cos b;e, — sin Oie.)] . (3.85)

As before, the subscript “1”refers to the amplitude of the field component perpen-
dicular to the plane of incidence, and the subscript || ” refers to the amplitude of
the field component which lies in the plane of incidence. In the chiral slab, it is
assumed that, there will be four total waves, two propagating toward the interface
z = d, and the other two propagating toward the interface z = 0 (see fig. 3.5). The
electric and magnetic fields of the two waves propagating inside the chiral medium

toward the interface 2 = d, can be written as

E:— — E:l eihl(z cos @1~z sin 61) + E;i—zeihz (2 cos #3~xsin 03) (386)
H;}- - Hz-let'hl(z cos 8; —z 8in 8;) + H;Q-Zeihg (zco8 83—z sin 83) (3.87)
where
E}, = E} (cosfiex +sinb e, + ie,) (3.88)
H:l = —iZ-lE:l (COS 01ex + sin 0195 + iey) , (3.89)
and
E}, = EX,(cos 6ze, + sin bze, — te,) (3.90)

H;"z = z'Z"lE';;(cos 02e, +sinfse, —iey) . (3.91)
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The electric and magnetic fields of the other two total waves propagating inside the

chiral medium toward the interface z = 0, may be written as

E- = E—le—ihl(z cos 01 +z sin 01) + E—ze—ihz(z cos O3+ 8in 63) (3 92)
[+] o o) .
H- = H"le—ihx(z cos 8y +2 sin 61) + H—ze—ihz(z cos 83+ 8in 03) (3 93)
[+ Q O .
where
E,, = E_(sinf,e; — cosf1e, + tey) (3.94)
H;, = —iZ 'E_ (sinf,e, — cos b ex + ie,), (3.95)
and
E_, = E_,(sinf2e, — cos e, — iey) (3.96)
~ =1Z 'E_,(sin 8ze, — cos f,ex — ie,), (3.97)

and the wave impedance Z, of the chiral medium, is defined by equation (3.24).
Outside the slab, in the dielectric which borders the slab at z = d, the total trans-

mitted wave, can be written as

E, = Eoteikt (# cos 8¢ —x 8in 6¢) (3.98)
H, = Hoteikg (2 cos @ —z sin 0¢) (3'99)
where
Eot = Eiiey + E't“(cos Giex + sin b;e,) (3.100)
H, =n;! [Et“ey — E;) (cosbe, + sin 0te,)] (3.101)

where k; = k; and 6; = 0,.

To find the complex-constant amplitude vectors of the reflected and transmitted

waves in the two dielectrics, and those of the waves inside the slab, the boundary
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Figure 3.5 Oblique incidence on an infinite slab of chiral medium. The dielectrics
occupying the regions z < 0 and z > d have the same constitutive parameters.
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conditions at the two interfaces 2 = 0 and z = d must be applied to the z- and

y-components of the electric and magnetic fields. Upon doing this, a system of eight

non-homogeneous equations with the eight unknowns E,  , E,, EN.EL E;,ES,

E;,, and E, is obtained. This system of equations can be written in the following

matrix form

Eq

E} E;
+ .

Ea | —q-1. L;;” (3.102)
?_1
o2 0

E., 0

\ Ey / \ o

where Q is the following matrix

o -1 R, R, —Ry —R, 0 0 ‘\
-1 0 ) -1 ) —1 0 0
1 0 igRl -—ing —igRl ing 0 0
Q= 0 1 g g g g 0 0
o 0 0 R,e*r Rye%s —Rie " _Ryemifa 0 —etdi
0 ©° et —ie*ds te*h —1e~ 403 —e%
0 O —igRie* igRye*® igRie™*t —igRye %2 ¢4 0
K 0 0 gew1 ge'®s ge 0 ge~i% 0 —e"‘s"}

where R, = cosf;/cosf;, R, = cosby/cosb;, 6, = hydcosb,, 65 = hydcosf,, and

5.' = k;dcos 0,‘.

Since the analytical solution of this system of eight non-homogeneous equations,
leads to very involved expressions for the field amplitudes, it is, therefore, best to
use numerical techniques to invert the matrix equation (3.102). However, it is very
interesting and important to obtain the analytical solution of this system when a
linearly polarized incident wave falls normally upon the interface. Without loss of

generality, it is assumed that the incident electric field is directed along the positive
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z~axis. This field can be written as

E; = E; e, e*Fi*, (3.103)

By setting 8; and E; | to zero in the matrix equation (3.102), and then solving
the resulting matrix equation, the reflected and transmitted electric fields can be

found. The reflected field can be written as
E, = E, e, e"*ki= (3.104)

where
14¢ [1 - e"(51+62)]

=0 s o) - e

E.=E;( (3.105)
Therefore, the polarization of the reflected wave is the same as that of the
incident wave, that is, the chiral slab behaves as an ordinary dielectric as far as the

reflected wave is concerned. The transmitted wave can be written as

E,=E, (ex + t,a,n(62 ; o )e,) etkiz (3.106)

where
2 [¢5(61-8) 4 ¢i2-0)]

E; 5 - :
(=9 [[(1+9)/(1 - g)] — eitorees)]

E, =

(3.107)

Since tan[(62 —61)/ 2] is real, the transmitted wave is linearly polarized, and the

ratio of its z- and y-components

E.,
Et:z

by — 64

= tan( ) = tan(—wpu~d) (3.108)

shows that, the plane of polarization of the transmitted wave is rotated by an angle
of —wp~yd with respect to the positive z-axis. If v is positive, then the rotation
is toward the negative y-axis; and if v is negative, then the rotation is toward the

positive y-axis.
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3.9 Conclusions

In this chapter three cases of plane wave propagation in an unbounded, semi-
infinite and an infinite slab of, chiral medium were discussed in detail. By solving the
source-free Maxwell equations in an unbounded chiral medium, the possible wave
vectors were obtained, and the polarization properties of the electric and magnetic
fields were placed in evidence. The problem of reflection from, and transmission
through semi-infinite chiral medium was solved by obtaining the Fresnel equations.
Also the conditions for total internal reflection, and the Brewster angle were ob-
tained. By using the Stokes parameters, the power carried by, and the polarization
of, the reflected wave was studied. The problem of electromagnetic wave propaga-
tion through an infinite slab of chiral medium was formulated for oblique incidence,
and was solved analytically for the case of normal incidence. It was shown that, in
this case, the plane of polarization of the transmitted wave was rotated with respect
to that of the incident wave, and the plane of polarization of the reflected wave was

unchanged with respect to that of the incident wave.
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CHAPTER IV

RADIATION IN CHIRAL MEDIA

4.1 Introduction

In this chapter the basic problem of determining the electromagnetic fields
generated by a given distribution of sources in a chiral medium will be considered.
The method that will be used, is the Green’s function method. In this method the
electric field is written as a volume integral directly in terms of the source current
distribution. These two vectors are related via a dyadic called dyadic Green’s
function. Knowledge of this dyadic enables one to find the fields corresponding to
any distribution of currents, on the condition that the volume integration over the

source region is doable.
4.2 Dyadic Green’s Function

The Maxwell equations in a region with an external source can be written as

V X E =1wB (4.1)
VxH=J-1wD. (4.2)
It is desired to calculate the radiation emitted by a monochromatic dipole antenna

surrounded by an unbounded chiral medium [24]. Proceeding from the constitutive

relations

D =¢E +1vB (4.3)

H=E+ (1/u)B, (4.4)
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and the Maxwell equations, the differential equation for the emitted electric field E

is found to be

V xV XE —k%E — 2upyV x E = swud (4.5)

where J denotes the current density of the antenna and k? = w2ue. Since this

equation is linear, the desired solution can be expressed as the volume integral
E(r) = iwg / I(r,r') - 3(r')dV" (4.6)

where I'(r,r’) is the dyadic Green’s function. Thus, to carry out the calculations,

T must first be determined and then integral (4.6) be evaluated.

To find the Green’s function a procedure that was used in the case of simple
media and in the case of magnetically biased plasma [20] will be followed. Upon

substituting (4.6) into (4.5) it is seen that T' must satisfy the differential equation

(V2 + E*)D(r,r') + 2wpaV x T(r,x') = —(u + %VV)&(r —r') (4.7)

where u is the unit dyadic and 6(r — r') is the Dirac delta function. to solve this

equation, it is assumed that I'(r,r’) can be written as a Fourier integral, viz.

[+ o]

Tir,r) = — [ A(p)e®—gp (4.8)

T 873
87° J_ o

where p is the position vector and dp the volume element in p-space, and where

A(p) is a dyadic function of p. Also the Dirac delta function can be expressed as

Br-1)= 5 [ ePCap. (4.9)

It follows from (4.7), (4.8), and (4.9) that the dyadic A(p) must satisfy the algebraic
equation

. 1
(k% — p?)A + 2iwuyp x A = —(u — Ez—pp) . (4.10)
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By dyadic algebra it is found from (4.10) that

A= (k2 — p2)% + a?p® (zzpP-u)
1 o?
+ (k% = p2)2 + o2p? (ap xu - ﬁpp) (4.11)

where « = 2iwp~y and p? = p - p. Upon substituting (4.11) into (4.8) the following
expression is obtained for the dyadic Green'’s function in terms of three-dimensional

integrals in p-space:

1 o k? — p? ip-(r—r')
I'(r,r’) —-g——[ u+t o VV) [_m o dp]
1 '~’ * 1 '
— P (r-r)
TS [ / (k2 —p2)2 + a2p2 dp]
1 1 : ’
o ip-(r—r')
= [ / NGRS azpze dp)] . (4.12)

To reduce the three-dimensional integrals to one-dimensional integrals, the
spherical coordinates (p,7,£) in p-space with polar axis along R(= r — r') are

introduced. In these coordinates each of the integrals in (4.12) has the form

= / f(p)e'® Bdp (4.13)
where f(p) is an even function of P. That is,
o0 ” 2x
I= / p*f(p)dp / ePResnginndy | de (4.14)
0 0 0

where R = v/R -R. Clearly, this three-dimensional integral reduces to the one-

dimensional integral

47

I= "l pf(p)sinpR dp
0

which, since f(p) is an even function, can be written as

27

I= il pf (p)sinpR dp

27

=/ pf(p)e”’de (4.15)
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From (4.13) and (4.15) it follows that

/ f(P)e“"de=;2.-I7% _ pf(p)edp. (4.16)

Using (4.16) equation (4.12) can be written as

1 1 *® _ p(k?~p?)
%R (u+ k2 vv) /_oo (k% — p2)Z + o2p?

I(r,r')=— e"Rdp

L 2oy / ” P ePRg
4n2iR k2 oo (K2 = p%)2 1 0%p? P

- p ipR
B 47r2RV X (u/ oo (k2 — p2)2 + azpze ? dp) . (4.17)

The integrals in this expression are one-dimensional and can be evaluated by contour

integration.
4.3 Radiation Condition

To evaluate the integrals in (4.17) by contour integration (theorem of residues)

it is noted that p = t+h;,p = tho are the roots of
(k* - p?)* +a®p* =0. (4.18)

Since a = 2iwp~, it is seen from (4.18) that

hy = wuy + Vw?u242 + k2
he = —wpy + Vw?2u?y? + k2

Accordingly, the poles of the integrands in (4.17) lie along the real axis of the

(4.19)

complex p-plane at +h;, and +h,. Expressions (4.19) show that for v > 0, h; >
k > hy > 0 and that for v <0, hy > k > h; > 0.

The path of integration for 4 > 0 is shown in figure 4.1. The contour integration

consists of an integration along the real axis of tha complex p-plane, with upward
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AimP
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Figure 4.1 Path of integration in complex p-plane for right-handed (v > 0) chiral
medium.
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indentation at the poles p = —h2, p = —h; and downward indentation at the poles
p = ha, p = hy, and of an integration along the semicircle at infinity. The factor
exp(ipR) makes the contribution of the integration along the semicircle disappear.
The value of T', as given by (4.17), is undetermined unless the manner of going
around the poles is specified. Here, the chosen path yields a description of T in
terms of only outgoing waves and thus makes I' satisfy the physically required

radiation condition.

According to the theorem of residues, the integrals in (4.17) are equal to 277
multiplied by the sum of residues at the poles p = h;, p = ho. With the aid of this
theorem the following equations are obtained

/°° pk®-p%) R

oo (2= p2)2 + a2p2©

dp

o BENR (e (4.20)
- 2(hi® — ha?) '
oo ihiR _ ihsR
p iRy _ o € —¢
/_oo E— )2t azpze dp = 23 [ 2(n? — had) ] . (4.21)

Finally, by substituting (4.20) and (4.21) into (4.17) it is found that the desired

Green’s function is given by

. 1 1 2 2 ghR a2 eih3R
IL(r,r) = ho? — hy2 {(“+ kzvv) [(k M) g k) 47rR]
) a2 eith e“.hﬁR
- (——zau xV+ Fvv) [ 4TR  4nR ] } ’ (4.22)

This is the solution of (4.7) that satisfies the radiation condition and is valid for
all v (positive and negative). It involves two modes of propagation, one being an
outgoing wave of phase velocity w/h;, and the other an outgoing wave of phase
velocity w/hgy. For 4 > 0 the former is the slower mode whereas for 4 < 0 the latter

is the slower mode.
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4.4 Dipole Radiation

Now consider an oscillating dipole antenna, of length ¢, located in the chiral
medium. It is assumed that the antenna lies at the origin of a Cartesian coordinate
system (z,y, 2) and is directed parallel to the z-axis. It is convenient to introduce
a spherical coordinate system (r,0,¢) where z = rsinfcos¢, y = rsinfsing, z =
r cos 0, because, as will be seen later, the field of the antenna is composed of spherical

waves. See figure 4.2.

The current density of the antenna is assumed to be
J =e,1,6(z)6(y)6(z) = ezl L6(r) (4.23)
where e, is the unit vector in the z-direction and I is the antenna current. Sub-

stituting this expression into (4.6) it is seen that the electric field emitted by the

antenna can be obtained from
E(r) = twul,T(r,0) - e, (4.24)

where I'(r,0) is given by (4.22) with R replaced by r. It follows from (4.22) and

(4.24) that the far-zone or radiation field is given by

) h12 — k2 ) ) eth1r
E = —zquo{m(eo + ze¢) siné -
k2 — h22 ) ] ethar
+ m(eo - zed,) sin 8 4rR } (4.25)

where ey is the unit vector in the 8 direction and e, is the unit vector in the ¢

direction.
4.5 Polarization and Wave Impedance

Using (4.25) the electric field vector E of the dipole antenna’s radiation field

can be written as

—twul,sin @ . ; . ;
E= —-35"—;‘7;5-‘“— [a(ea + teg)e™" + blep — :ed,)e‘h"} (4.26)
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Figure 4.2 Cartesian and spherical coordinate systems. Dipole antenna (not
shown) is located at the origin and is directed parallel to the z-axis.
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where
b ®—k? k2 — ho?

TRTRT TThIORE 2)

Taking (—swul,sin@/4nr) as a normalization factor, the quantity in the square
brackets is considered to be descriptive of the state of polarization (the polarization
ellipse) of the electric field. The first term in the square brackets describes a right-
handed circularly polarized wave of amplitude e and phase velocity w/h;; and the
second term describes a left-handed circularly polarized wave of amplitude b and
phase velocity w/hz. From (4.19) and (4.27) it is clear that @ = b = 1/2 when

~ = 0; that a = 0, b = 1 when v — —o0; and that a = 1, 5 = 0 when v — oo.

From figure 4.3, which shows a sketch of a and b versus 4, it is seen that a > b
when v > 0 and that b > a when 7 < 0. This means that the polarization ellipse
of E has a right-handed sense of rotation when 4 > 0 and a left-handed sense of
rotation when v < 0, and that the twist of the major axis of the ellipse is to the
left when 4 > 0 and to the right when 4 < 0. The lengths of the semi-major and
semi-minor axes of the ellipse are given by (a+5) and |a — b| respectively. Recalling

(4.19) it is seen from (4.27) that

length of semi — major axis=a+b=1 (4.28)

wplr|
\ /(.()2}1,2’72 + k2

As 7 — 0, the ellipse gets thin and the polarization becomes linear; as |y| — oo,

length of semi — minor axis = |a — b =

(4.29)

the ellipse gets thick and the polarization becomes circular. The orientation angle

¥ of the ellipse is given by

ha—hy

YE 2

r = —wpr. (4.30)

The magnetic vector H of the dipole’s radiation field can be obtained by sub-

stituting (4.26) into

H=1{yE+ (1/u)B = 11E + (1/iwp)V x E,
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Figure 4.3 Sketch of amplitudes a and b versus v, where a is amplitude of right-
handed circularly polarized wave and b is amplitude of left-handed circularly polar-
ized wave, and where v is the measure of chirality.
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and retaining only terms in 1/r. Thus this field can be written as

) sin 0
H=—wul, V2 + (e/u)

4rr
- {a(ep + ieg)e™17e3/2 4 bep — deg)eaTe ™2} (4.31)

The orientation angle ¢ for the magnetic field is given by
Yp=———r——=—wuyr — —. (4.32)

The polarization ellipse of H is similar and perpendicularly oriented to the polar-
ization ellipse of E. That is, the polarization ellipses of E and H are perpendicular

to each other and have the same sense of rotation, as shown in figure 4.4.

Using the notation E(t) = Re(Ee™*“!) and H(t) = Re(He *“?), it is seen
from (4.26) and (4.31) that at any point (r,0,4) and at any time t the vectors
E(t) and H(t) are perpendicular to each other and to the direction of propagation.

Specifically,
1

V2 + (e/u)

It follows from this relation that the wave impedance Z of the medium is given by

e, xE(t) = H(t). (4.33)

_ [B 1
e s

In a straightforward manner one can also find from (4.22) and (4.24) the in-
duction part of E which decreases with distance as (1/r2), and the near-zone part

of E which decreases as (1/r3). The complete electric field can be written as
E=E(q/) +Eus + E(1/r3) (4.35)

where

—1ZI¢
87r

E/r) = {h1 (eo + tey)e™ ™ + hy(ep — ie¢)e"""} sinf, (4.36)
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Figure 4.4 Polarization ellipses for E and H fields.
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Eqfery = SZWIrﬁ [{(eo +1ie4)e1” + (eg — ieg)e™ " } sin
+2cos8{ ™ + e, | (4.37)
and
tZI¢ es’hlr eihgr .
E(1/r) = Py— { e + T )(sin @ e + 2cos8e,-)} . (4.38)

4.6 Radiated Power

From Maxwell’s equations and the divergence theorem, the poynting theorem

can be written as
1 *
ERe/n-(ExH ) ds
1 * 1 . * *
=——2-Re/J -EdV+§Re[zw/(B-H -D-E)av|.  (139)

The volume integration are taken throughout a region boundedby a far-zone sphere
centered on the antenna. The surface integration is taken over the far-zone sphere
whose outward normal vector is n. From the constitutive relations (4.3) and (4.4)
it follows that the integrand B - H* — D* - E is purely real and hence the second
term on the right is zero. The first term on the right side, by definition, is the
time-average radiated power input. Consequently the time-average radiated power

P is expressed by the quantity on the left side. That is,
P = %Re/n -(ExH*)dS (4.40)

substituting (4.26) and (4.31) into (4.40) it is found that the radiated power is given

by
W2u?I20%2 2~ + (e/p)

2 VA E ()

Defining the radiation resistance R by P = (1/2)IR, it is seen from (4.41) that

W22 242 + (¢/p)

o VP

P=

(4.41)

R =

(4.42)
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This shows that the radiation resistance increases as v or as the medium becomes

more chiral.
4.7 Conclusions

In this chapter the dyadic Green’s function for a source of finite spatial extend in
an unbounded chiral medium described by the constitutive relations (4.3) and (4.4)
was found to be given by (4.22). The Green’s function involves two spherical waves
exp|(th1R)]/47 R and exp|(thoR)]/47 R which place in evidence that the medium
supports double-mode propagation when + # 0 and single-mode propagation when

~4=0.

For a right-handed (4 > 0) medium the former wave is “slow” and the latter
wave is “fast”; and for a left-handed (y < 0) medium the converse is true. These
waves are considered slow and fast in comparison to the velocity they have when
~ = 0, t.e., when the medium is achiral and the double-mode propagation is reduced

to single-mode propagation.

From (4.22) it is also seen that the Green’s function is reciprocal; that is,
I'(r,r') = [T(r',r)]7 where the subscript T denotes the transpose of the dyadic.
This reciprocity implies that the transmitting and receiving patterns of an antenna

in the medium would be the same.

In the case of dipole antenna, it was found that the chirality of the ambient
medium decreases the wave impedance of the medium, increases the radiation re-
sistance of the dipole, but has no effect on the directivity of the radiation. The
dominant effect of the chirality is the change it produces in the state of polarization
of the dipole’s field. However, although the directivity of a dipole is not changed
by chirality, it cannot be concluded that the directivity of an antenna that is not

small compared to the wavelenghts 27/h, and 27 /h, is not changed by chirality.
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For example, if a two-element array is placed in a chiral medium, the directivity of

the array would change with the chirality of the medium.

Due to mode-multiplicity, it appears that chirality could play an important role

in the design of sizable antennas in general and antenna arrays in particular.
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CHAPTER V

CONCLUSIONS

This thesis describes a theoretical investigation of electromagnetic wave prop-
agation and radiation in chiral media. The source-free Maxwell equations were
solved subject to the constitutive relations for a lossless, reciprocal, unbounded
chiral medium, and the plane wave solutions were obtained. It was shown that
the medium supports double-mode propagation and that the plane of polarization
of the electric field rotates as the wave propagates. It was also shown that the
time-averaged power density carried by the plane waves increases as the medium
becomes more chiral. The problem of reflection from and transmission through a
semi-infinite chiral medium was solved by obtaining the Fresnel equations. It was
found that, as a consequence of the reciprocity principle, the cross-reflection coeffi-
cients are equal. It was also shown that the phenomena of total internal reflection
can occur and that the Brewster angle can exist. By means of the Stokes parameters
the polarization and intensity of the reflected wave were discussed. It was found
that the reflected power increases as the chirality of the medium increases and that
when the chiral medium is denser than the dielectric, the reflected wave is almost
always linearly polarized. The plane wave propagation through an infinite chiral
slab was formulated for oblique incidence and solved analytically for the case of
normal incidence. It was shown that for a linearly polarized wave normally incident
on the slab, the plane of polarization of the reflected wave was unchanged with re-
spect to that of the incident wave, and the plane of polarization of the transmitted

wave was rotated with respect to that of the incident wave.
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In chapter IV the dyadic Green’s function for a finite source in an unbounded
lossless, reciprocal, chiral medium was obtained, and it was found to be reciprocal.
This reciprocity implies the transmitting and receiving patterns of an antenna in
the medium would be the same. In the case of dipole antenna, it was found that as
the chirality of the medium increases the wave impedance of the medium decreases,
and the radiation resistance of the dipole increases, but the directivity of radiation
remains unchanged. The dominant effect of the chirality is the change it produces

in the state of polarization of the dipole’s field.

However, although the directivity of a dipole is not changed by chirality, it
cannot be concluded that the directivity of an antenna that is not small compared
to the wavelenghts 27 /h; and 27 /h, is not changed by chirality. For example, if a
two-element array is placed in a chiral medium, the directivity of the array would
change with the chirality of the medium. Due to mode-multiplicity, it appears that
chirality could play an important role in the design of sizable antennas in general

and antenna arrays in particular.

One of the important areas of applied electromagnetics that can benefit from
the above results is remote sensing. Since certain types of vegetation layers can be
thought of as chiral media the analytical results of this thesis can be applied to the
exprimental data in order to identify these vegetation layers. Another application
could be the determination of the constitutive parameters (e, ,v) of any unkown
chiral medium, for example, the medium may be a chiral chemical compound or a

random collection of wire helicies.

Undertaking a program of study, in order to find a set of rules that relates the
chirality of a macroscopic medium to the geometrical characteristics and dimen-
sions of the composing chiral objects, would be of great theoretical and practical

importance. Since it will then be possible to design and construct new devices using
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artificial chiral media. In one such study [18], and as far as the authur knows the
only one, the chirality of a collection of identical short wire helicies were found in
terms of the geometrical dimensions of one the helicies (see addendum A). A very
interesting and important chiral medium, that can be used to continue this course

of study, is a medium composed of equivalent irregular tetrahedrons.
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ADDENDUM A

A Lower Bound on Chirality

In this addendum, a lower bound on the magnitude of the chirality ~, of a
medium composed of randomly oriented equivalent short wire helicies will be found.

A typical short wire helix is shown in figure A.1.

From {18}, it can be shown that the parameters X, Xm» Ye, 2nd ¥, present in

equations (2.1) and (2.2), are given by

Xe = Neg'e2C (A.1)
xm = —Npo(ra®/2)° L™} (A.2)
Ye = Ym = N (£/2)(7a®)wC (A.3)

where N is the number of short wire helicies per unit volume, C and L are re-
spectively the capacitance and inductance of the body, and 2£ and 2a represent the
length and the width of the short helix (see fig. A.1). The constraint LC = w™? is

placed upon the inductance and capacitance of the helix.

The constitutive relations for a reciprocal chiral medium composed of equiva-
lent lossless, short wire helicies, all of the same handedness was shown to have the

form (see chapter II)
D=¢E+17B (A.4)
H =:E + (1/4)B (A.5).
From the results of section 2.1 and (A.1)-(A.3) it can be shown that

€= ¢, + N3C (A.6)
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THE SHORT HELIX

2b 2b
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fe— 20 ] j— 20—
LEF T-HANDED RIGHT-HANDED

Figure A.1 Idealized short wire helix. The plane of the loop is perpendicular to
the axis of the straight portion of the wire.
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1/u = (1/po) + N(ra2/2)° L1 (A7)
v = N(£/2)(ma*)wC . (A.8)

A lower bound on the capacitance C is given by 18]

C > e (4m)2/3(3V3,) /2 (4.9)
where Vi, (= 27b%(£ + ma)) is the volume occupied by the short wire helix and b is
the wire radius.

Substituting for C from (A.9) into (A.8), the following lower bound on the
magnitude of 4 can be obtained
ly| > 4M/67°/3 I—?—Nz\"l(%rlaz) (3Vi)Y/2. (4.10)
This bound is proportional to the product of the third root of the volume V}, of the
wire helix and the cylindrical volume (= 2¢7a?) containing the helix.

As a numerical example, one can assume that: @ = 1 [em], b = .2 [em], £ =
1.35[em], A = 10[cm], and N = .3 [#/cm?®]. From (A.10) the lower bound is found
to be |y| > .01 [271).



[1]

10]
[11]
12)
13]
14]
[15]
16]

17]

- 857 -

REFERENCES

D. F. Arago, Mém. Inst., 1, 93 (1811)

J. B. Biot, Mém. Inst., 1, 1 (1812)

J. B. Biot, Mém. Acad. Sci., 2, 41 (1817)

J. B. Biot, Mém. Acad. Sci., 13, 93 (1838)

J. B. Biot, Bull. Soc. Philomat., 190 (1815)

A. Fresnel, Oeuvres, 1, 738 (1822)

L. Pasteur, Ann. de Chim. et de Phy., 24, 442 (1848)

K. F. Lindman, Ann. d. Phy., 63, 621 (1920)

K. F. Lindman, Ann. d. Phy., 69, 270 (1922)

W. H. Pickering, Experiment performed at Caltech (1945)

T. M. Lowry, Optical Rotatory Power, Dover Edition, New York (1964)
M. Born, Physik. Zeits., 16, 251 (1915)

C. W. Oseen, Ann. d. Physik, 48, 1 (1915)

Gray, Phys. rev., 7, 472 (1916)

W. Kuhn, Zeits. f. Physik. Chemie, B4, 14 (1929)

E. U. Condon, Altar and H. Eyring, J. Chem. Phys., 5, 753 (1937)

E. U. Condon, Theories of Optical Rotatory power, Rev. of Modern Phys., 9,
432 (1937)



[18]

[19]

[20]

21]
22
23

[24]

- 58 —

D. L. Jaggard, A. R. Mickelson and C. H. Papas, On Electromagnetic Waves
in Chiral Media, Appl. Phys., 18, 211 (1978)

J. A. Stratton, Electromagnetic Theory, McGraw-Hill, New York (1941)

C. H. Papas, Theory of Electromagnetic Wave Propagation, McGraw-Hill, New
York (1965)

A. Sommerfeld, Optics, Academic Press, New York (1954)
M. Born, E. Wolf, Principles of Optics, Pergamon Press, New York (1980)
H. C. Chen, Theory of Electromagnetic Waves, McGraw-Hill, New York (1983)

S. Bassiri, N. Engheta, and C. H. Papas, Dyadic Green’s Function and Dipole
Radiation in Chiral Media, Alta Frequenza, LV - N. 2, 83 (1986)



