
Control of Dynamical Systems with Temporal

Logic Specifications

Thesis by

Eric M. Wolff

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2014

(Defended May 12, 2014)

ii

© 2014

Eric M. Wolff

All Rights Reserved

iii

To Mom, Dad, Ryan, Shawn, and Erin.

iv

Acknowledgements

I extend my deepest thanks to my committee: Richard Murray, Joel Burdick, Ufuk

Topcu, and K. Mani Chandy. They have helped and inspired me throughout my

research. I am especially grateful to have had Richard as my advisor. His boundless

energy, cheerful encouragement, and insightful advice helped me develop as a re-

searcher. It has been an honor to work with him. I am also thankful to have worked

closely with Ufuk throughout my PhD. His generous support and mentorship helped

me tremendously as I started my research. I also thank Joel and Mani for insightful

discussions, especially Joel’s uncanny ability to always recommend a neat article.

I would also like to thank my friends and colleagues, especially those in the Murray

and Burdick groups. It has been fun doing everything with them from discussing

subtle points about Lie groups, to imagining the future of robotics, to skiing. I

would also like to thank Laura Humphrey for hosting me at AFRL for an amazing

internship. Finally, I am thankful for the financial support that I have received

from an NSF Graduate Research Fellowship, an NDSEG Fellowship, and the Boeing

Corporation.

v

Abstract

This thesis is motivated by safety-critical applications involving autonomous air,

ground, and space vehicles carrying out complex tasks in uncertain and adversar-

ial environments. We use temporal logic as a language to formally specify complex

tasks and system properties. Temporal logic specifications generalize the classical

notions of stability and reachability that are studied in the control and hybrid sys-

tems communities. Given a system model and a formal task specification, the goal

is to automatically synthesize a control policy for the system that ensures that the

system satisfies the specification. This thesis presents novel control policy synthesis

algorithms for optimal and robust control of dynamical systems with temporal logic

specifications. Furthermore, it introduces algorithms that are efficient and extend to

high-dimensional dynamical systems.

The first contribution of this thesis is the generalization of a classical linear tem-

poral logic (LTL) control synthesis approach to optimal and robust control. We show

how we can extend automata-based synthesis techniques for discrete abstractions of

dynamical systems to create optimal and robust controllers that are guaranteed to

satisfy an LTL specification. Such optimal and robust controllers can be computed

at little extra computational cost compared to computing a feasible controller.

The second contribution of this thesis addresses the scalability of control synthe-

sis with LTL specifications. A major limitation of the standard automaton-based

approach for control with LTL specifications is that the automaton might be doubly-

exponential in the size of the LTL specification. We introduce a fragment of LTL

for which one can compute feasible control policies in time polynomial in the size of

the system and specification. Additionally, we show how to compute optimal control

vi

policies for a variety of cost functions, and identify interesting cases when this can

be done in polynomial time. These techniques are particularly relevant for online

control, as one can guarantee that a feasible solution can be found quickly, and then

iteratively improve on the quality as time permits.

The final contribution of this thesis is a set of algorithms for computing feasible

trajectories for high-dimensional, nonlinear systems with LTL specifications. These

algorithms avoid a potentially computationally-expensive process of computing a dis-

crete abstraction, and instead compute directly on the system’s continuous state

space. The first method uses an automaton representing the specification to directly

encode a series of constrained-reachability subproblems, which can be solved in a

modular fashion by using standard techniques. The second method encodes an LTL

formula as mixed-integer linear programming constraints on the dynamical system.

We demonstrate these approaches with numerical experiments on temporal logic mo-

tion planning problems with high-dimensional (10+ states) continuous systems.

vii

Contents

Acknowledgements iv

Abstract v

1 Introduction 1

1.1 Thesis Overview and Main Contributions 2

2 Background 6

2.1 Formal Verification and Synthesis . 6

2.2 Notation . 8

2.3 Linear Temporal Logic . 9

2.4 Graph Theory . 12

3 Optimal Control with Weighted Average Costs and Temporal Logic

Specifications 13

3.1 Introduction . 13

3.2 Weighted Transition Systems . 14

3.3 Problem Statement . 16

3.4 Reformulation of the Problem . 18

3.4.1 Product Automaton . 19

3.4.2 Prefix-Suffix Form . 20

3.5 Solution Approach . 24

3.5.1 Computing Finite-Memory Runs 24

3.5.1.1 Minimum Mean Cycle 25

viii

3.5.1.2 Minimum Cycle Ratio 26

3.5.2 Computing Infinite-Memory Runs 27

3.5.3 Complexity . 28

3.6 Examples . 29

3.7 Conclusions . 32

4 Robust Control of Uncertain Markov Decision Processes with Tem-

poral Logic Specifications 33

4.1 Introduction . 33

4.2 Uncertain Markov Decision Processes . 35

4.3 Problem Statement . 37

4.4 The Product MDP . 38

4.4.1 Forming the Product MDP . 38

4.4.2 Reachability in the Product MDP 39

4.4.3 Stochastic Shortest Path Form of Product MDP 40

4.5 Robust Dynamic Programming . 42

4.5.1 Dynamic Programming . 42

4.5.2 Uncertainty Set Representations 47

4.6 Computing an Optimal Control Policy 49

4.7 Example . 51

4.8 Conclusions . 54

5 Efficient and Optimal Reactive Controller Synthesis for a Fragment

of Temporal Logic 55

5.1 Introduction . 56

5.2 Preliminaries . 56

5.2.1 System Model . 56

5.2.2 A Fragment of Temporal Logic 58

5.3 Problem Statement . 61

5.4 The Value Function and Reachability . 61

5.5 Feasible Control Policies for Deterministic Transition Systems 64

ix

5.6 Feasible Control Policies for Non-Deterministic Systems 66

5.7 Optimal Control Policies for Non-Deterministic Transition Systems . . 70

5.7.1 The Task Graph . 70

5.7.2 Average Cost-Per-Task-Cycle . 72

5.7.3 Minimax (Bottleneck) Costs . 74

5.7.4 Average Costs . 75

5.8 A Note on Markov Decision Processes 76

5.8.1 Reachability . 77

5.8.2 Control Policy . 78

5.8.3 Optimal Control . 78

5.9 Complexity . 78

5.10 Examples . 79

5.10.1 Deterministic Transition System 80

5.10.2 Non-Deterministic Transition System 81

5.11 Extensions . 81

5.11.1 Guarantee and Obligation . 81

5.11.2 Disjunctions of Specifications . 82

5.12 Conclusions . 83

6 Automaton-Guided Controller Synthesis for Nonlinear Systems with

Temporal Logic 84

6.1 Introduction . 84

6.1.1 Problem Statement . 86

6.2 The Abstract Model . 88

6.2.1 Existential Abstraction . 88

6.2.2 Product Automaton . 89

6.3 Concretizing an Abstract Plan . 90

6.3.1 Set-to-Set Constrained Reachability 90

6.3.2 Concretization of Abstract Plans 91

6.4 Solution . 92

x

6.4.1 The Solution Algorithm . 92

6.4.2 Tradeoffs . 94

6.5 Complexity . 96

6.6 An Application to Nonlinear Systems in Polygonal Environments . . . 96

6.6.1 A Mixed-integer Formulation of Constrained Reachability . . . 96

6.6.2 System Dynamics . 97

6.6.3 Computing Sets of Feasible Initial States 99

6.7 Examples . 99

6.7.1 Chain of Integrators . 100

6.7.2 Quadrotor . 101

6.7.3 Nonlinear Car . 103

6.7.4 Discussion . 103

6.8 Conclusions . 104

7 Optimization-Based Trajectory Generation with Linear Temporal

Logic Specifications 105

7.1 Introduction . 105

7.2 Problem Statement . 107

7.3 Solution . 109

7.3.1 Representing the Labels . 110

7.3.2 A Mixed-integer Encoding . 112

7.3.3 Complexity . 116

7.4 Examples . 117

7.5 A Fragment of Temporal Logic . 120

7.6 A Mixed-Integer Linear Formulation for the Fragment 124

7.6.1 Relating the Dynamics and Propositions 124

7.6.2 The Mixed-Integer Linear Constraints 126

7.7 More Examples . 129

7.8 Conclusions . 131

xi

8 Conclusions and Future Work 132

8.1 Summary . 132

8.2 Future Work . 133

1

Chapter 1

Introduction

The responsibilities we give to robots, autonomous vehicles, and other cyberphysical

systems outpace our ability to reason about the correctness of their behavior. While

we may tolerate unanticipated behavior and crashes from our personal computers and

cell phones, the incorrect operation of autonomous vehicles could lead to significant

loss of life and property. The increasingly tight integration of computation and control

in complex systems (e.g., self-driving cars, unmanned aerial vehicles, human-robot

collaborative teams, and embedded medical devices) often creates non-trivial failure

modes. Thus, there is a growing need for formal methods to specify, design, and

verify desired system behavior.

Due to the consequences of unexpected behaviors in many cyberphysical systems,

it is important to concisely and unambiguously specify the desired system behavior.

Additionally, it is desirable to automatically synthesize a controller that provably

implements this behavior. However, current methods for the specification, design,

and verification of such hybrid (discrete and continuous state) dynamical systems

are ad hoc, and may lead to unexpected failures. This thesis draws on ideas from

optimization, hybrid systems, and model checking to develop formal methods that

guarantee the correct behavior of such systems.

This thesis focuses on the specification and design of controllers that guarantee

correct and efficient behaviors of robots, autonomous vehicles, and other cyberphys-

ical systems. These systems need to accomplish complex tasks, e.g., follow the rules

of the road, perform surveillance in a dynamic environment, help a human assemble

2

a part, or regulate a physiological process. Temporal logic is an expressive language

that can be used to specify these types of complex tasks and properties. These tasks

generalize classical point-to-point motion planning. Temporal logic is promising for

specifying the combined digital and physical behavior of autonomous systems, in part

due to its widespread use in software verification. Many of the results in this thesis

will focus on using linear temporal logic (LTL) as a task-specification language.

Formal methods for the specification and verification of software have enjoyed

enormous success in both academia and industry. However, formal synthesis of high-

performance controllers for hybrid systems carrying out complex tasks in uncertain

and adversarial environments remains an open problem. This lack of progress for

hybrid systems compared to discrete systems (e.g., software) is largely due to the

interaction of the non-convex state constraints arising from the specifications with

the continuous dynamics of the system. Uncertainties in the system model and the

desire for optimal solutions further complicate the issue. Major problems include

the computation of robust controllers, the scalable and optimal synthesis of discrete

supervisory controllers, and the computation of controllers (both feasible and optimal)

for high-dimensional, nonlinear systems. We have developed new techniques that

help overcome these problems. The contributions of this thesis include techniques

for optimal and robust control, expressive task specification languages that are also

computationally efficient, and algorithms that scale to dynamical systems with more

than ten continuous states.

1.1 Thesis Overview and Main Contributions

This thesis presents algorithms for the specification and design of controllers that

guarantee correct and efficient behaviors of robots, autonomous vehicles, and other

cyberphysical systems. This section gives an overview of the major results of this

thesis, focusing on optimal control, robust control, with an emphasis on computational

efficient algorithms for high-dimensional dynamical systems.

3

Optimal and Robust Control

Our first contributions are the extension of a classical control synthesis approach for

systems with LTL specifications to optimal control in Chapter 3, and robust control in

Chapter 4. These algorithms extend automata-based synthesis techniques for discrete

abstractions of dynamical systems to include notions of optimality and robustness.

A weighted average cost function is used as a measure of optimality for the optimal

control chapter, as it is a natural generalization of an average cost, and it gives the

designer more flexibility. An uncertain Markov decision process system model is used

in the robust control chapter, as it allows one to model uncertain system dynamics

in a natural manner. Surprisingly, synthesizing a control policy that is optimal or

robust incurs little computational expense compared to simply computing a feasible

controller. The work in these chapters is based on the author’s work in [101] and [100],

respectively.

Efficient and Optimal Reactive Control

The second contribution of this thesis is the identification of a task specification

language that is both expressive and computationally efficient for reactive controller

synthesis. A controller that guarantees the correct operation of a system in the pres-

ence of a non-deterministic or stochastic environment is said to be reactive. Reactive

controller synthesis is known to be intractable for LTL specifications [83]. The fol-

lowing questions are answered in Chapter 5:

• Is there a class of specifications for which one can efficiently compute reactive

controllers?

• How can one compute optimal controllers?

Standard automaton-based approaches for reactive controller synthesis scale poorly

with problem size, due to the need to construct a deterministic Rabin automaton for

the LTL specification [9]. We introduce a class of specifications for which controllers

can be synthesized in time linear, instead of doubly-exponential, in the length of

4

the specification. This class is also expressive, and includes specifications such as

safe navigation, response to the environment, stability, and surveillance. Specifically,

one can compute reactive control policies for non-deterministic transition systems

and Markov decision processes in time polynomial in the size of the system and

specification. These algorithms are computationally efficient in theory and practice.

In this same setting, we also show how to compute optimal control policies for a

variety of relevant cost functions. We identify several important cases when optimal

policies (for average and minimax cost functions) can be computed in time polynomial

in the size of the system and specification. These algorithms are particularly relevant

for online control, as one can guarantee that a feasible solution can be found quickly

and then iteratively improve on the quality as time permits. The work in this chapter

is based on the author’s work in [105] and [102].

Control of High-Dimensional and Nonlinear Systems

The final contribution of this thesis is a pair of methods for computing trajectories for

high-dimensional, nonlinear systems with LTL specifications. Standard approaches

are based on the process of computing a discrete abstraction, which is computationally

expensive for high-dimensional and nonlinear systems. Typically, the computation

of a discrete abstraction is only feasible for a system with fewer than six continu-

ous dimensions, due to the curse-of-dimensionality associated with such techniques.

However, many important systems require more than ten continuous states (e.g.,

quadrotors and simple aircraft models). The following question is answered in Chap-

ter 5: Can one compute controllers without the expensive computation of a discrete

abstraction?

The first method uses the automaton representing a specification to guide the

computation of a feasible controller for discrete-time nonlinear systems. This method

automatically decomposes reasoning about a complex task into a sequence of simpler

constrained reachability problems. Thus, one can create controllers for any system

for which solutions to constrained reachability problems can be computed, e.g., using

tools from robotic motion planning and model predictive control. This approach

5

avoids the expensive computation of a discrete abstraction, and is easy to parallelize.

Using this method lets us design controllers for nonlinear and high-dimensional (more

than ten continuous state) systems with temporal logic specifications, something that

was previously not possible. This method is presented in Chapter 6, and is based on

the author’s work in [106].

The second method is based on encoding temporal logic specifications as mixed-

integer linear constraints on a dynamical system. This generalizes previous Boolean

satisfiability encodings of temporal logic specifications for finite, discrete systems.

This approach directly encodes a linear temporal logic specification as mixed-integer

linear constraints on the continuous system variables. Numerical experiments show

that this approach scales to previously intractable temporal logic planning problems

involving quadrotor and aircraft models. This work is covered in Chapter 7, and is

based on the author’s work in [99, 103].

6

Chapter 2

Background

This chapter begins with a brief overview of standard methods for control policy

synthesis for systems with temporal logic. We defer the details of related work to

the introduction of each chapter. Then, we present basics on linear temporal logic

(LTL), a powerful task-specification language that will be used frequently throughout

the thesis. This chapter concludes with a brief overview of relevant graph theory.

2.1 Formal Verification and Synthesis

Formal methods are rigorous mathematical techniques specifying and verifying hard-

ware and software systems [9]. A widely used formal method is called model checking.

Model checking takes as input a formal mathematical description of a system and a

specification. Model checking techniques efficiently explore the entire state space

of the system, and determine whether any behavior of the system can violate the

specification. Any violation is returned as a counterexample—a trace of the sys-

tem’s behavior that explicitly shows how the system fails to satisfy the specification.

The theory of model checking for discrete systems is well developed, both in the-

ory [9, 27, 74, 84, 95] and in practice [49, 25, 63].

A widely-used specification language is LTL [84]. LTL allows one to reason about

how system properties change over time, and thus specify a wide variety of tasks, such

as safety (always avoid B), response (if A, then B), persistence (eventually always stay

in A), and recurrence (repeatedly visit A). We will use LTL throughout this thesis

7

Figure 2.1: High-level view of the control synthesis algorithms presented in this thesis.

due to its prevalence in the formal methods literature, and its ability to express a

wide range of useful properties for robotics and cyberphysical systems applications.

Instead of verifying that a pre-built control policy restricts a system’s behaviors

so that it satisfies a given specification, we will automatically compute such a satisfy-

ing control policy (if it exists). Figure 2.1 outlines our approach. Broadly speaking,

the different chapters in this thesis consider different combinations of “Task Specifi-

cations” and “System Models,” and the results are appropriate “Control Synthesis”

algorithms.

Formal methods have recently been used in the robotics and control communities

to specify desired behaviors for robots and hybrid systems (see Figure 2.2). A common

approach is to abstract the original continuous system as a finite discrete system,

such as a (non-deterministic) transition system or a Markov decision process (MDP).

Sampling-based motion planning techniques can be used for nonlinear systems to

create a deterministic transition system that approximates the system, for which a

satisfying control policy can be computed [15, 53, 81]. A framework for abstracting a

linear system as a discrete transition system, and then constructing a control policy

that guarantees that the original system satisfies an LTL specification, is presented in

Kloetzer and Belta [61]. Reactive control policies are synthesized for linear systems

in the presence of a non-deterministic environment in Kress-Gazit et al. [62], and

a receding horizon framework is used in Wongpiromsarn et al. [108] to handle the

resulting blow-up in system size. Finally, control policies are created for Markov

8

Figure 2.2: Sketch of a system trajectory that satisfies the temporal logic specification
ϕ =◇A ∧ ◻◇B ∧ ◻◇C ∧ ◻S. Informally, this LTL specification enforces the system
to visit A, visit B and C repeatedly, and always remain in the safe region S.

decision processes that represent robots with noisy actuators for both linear temporal

logic [34] and probabilistic computational tree logic [66].

While these approaches all generate feasible control policies that satisfy a temporal

logic specification, only limited notions of optimality [56, 90] or robustness [72, 93] can

be imposed. Furthermore, the complexity of synthesizing a control policy that satisfies

an LTL formula is doubly-exponential in the formula length for both non-deterministic

and probabilistic systems [30, 83]. Additionally, the creation of a discrete abstraction

is typically computationally expensive for high-dimensional continuous systems, due

to the curse-of-dimensionality. These limitations are addressed in this thesis.

2.2 Notation

An atomic proposition is a statement that is either True or False. A propositional

formula is composed of only atomic propositions and propositional connectives, i.e.,

∧ (and), ∨ (or), and ¬ (not). The cardinality of a set X is denoted by ∣X ∣. Through-

out, (in)equality is component-wise for vectors and matrices. Finally, we write 1 for

a vector of ones of appropriate dimension.

9

2.3 Linear Temporal Logic

We use LTL to concisely and unambiguously specify the desired system behavior.

LTL allows one to generalize the safety and stability properties typically used in

controls, hybrid systems, and robotics. We only touch on key aspects of LTL, and

defer the reader to [9] for a comprehensive treatment.

Syntax: LTL is built from (a) a set of atomic propositions AP , (b) Boolean operators:

∧ (and), ∨ (or), and ¬ (not), and (c) temporal operators: # (next) and U (until).

An LTL formula is defined by the following grammar in Backus-Naur Form:

ϕ ∶∶= p ∣ ¬ϕ ∣ ϕ1 ∧ ϕ2 ∣ #ϕ ∣ ϕ1 U ϕ2,

where p ∈ AP is an atomic proposition.

The standard Boolean operators Ô⇒ (implies) and ⇐⇒ (equivalent) can be

defined as p Ô⇒ q = ¬p ∨ q and p ⇐⇒ q = (p Ô⇒ q) ∧ (q Ô⇒ p), respectively.

Commonly-used abbreviations for LTL formulas are the derived temporal operators

◇ψ = True U ψ (eventually), ◻ψ = ¬ ◇ ¬ψ (always), ◻◇ ψ (always eventually), and

◇◻ ψ (eventually always).

Semantics: To define the semantics of LTL, we must first define an abstract system

model. Let T be a system with a (possibly infinite) set of states S. A labeling function

L ∶ S → 2AP maps each state to a set of atomic propositions from AP that are True.

A run of T is an infinite sequence of states σ = s0s1s2 . . ., where si ∈ S for i = 0,1,

Let σi = sisi+1si+2 . . . denote the run σ from position i. A run σ induces a word the

word L(σ) = L(s0)L(s1)L(s2) The semantics of LTL are defined inductively as

10

follows:

σi ⊧ p if and only if p ∈ L(si)

σi ⊧ ¬ϕ if and only if σi /⊧ ϕ

σi ⊧ ϕ1 ∨ ϕ2 if and only if σi ⊧ ϕ1 ∨ σi ⊧ ϕ2

σi ⊧ ϕ1 ∧ ϕ2 if and only if σi ⊧ ϕ1 ∧ σi ⊧ ϕ2

σi ⊧ #ϕ if and only if σi+1 ⊧ ϕ

σi ⊧ ϕ1 U ϕ2 if and only if ∃j ≥ i s.t. σj ⊧ ϕ2 and σn ⊧ ϕ1∀i ≤ n < j

Informally, the notation #ϕ means that ϕ is true at the next step, ◻ϕ means that

ϕ is always true, ◇ϕ means that ϕ is eventually true, ◻ ◇ ϕ means that ϕ is true

infinitely often, and ◇◻ϕ means that ϕ is eventually always true [9]. More formally,

◻ϕ holds at position i if and only if ϕ holds at every position in σ starting at position

i, ◇ϕ holds at position i if and only if ϕ holds at some position j ≥ i in σ, ◻◇ϕ holds

at position i if and only if ϕ holds at infinitely many positions j ≥ i in σ, and ◇◻ ϕ
holds at position i if and only if there exists some position j ≥ i such that ϕ holds at

every position in σ starting at position j.

Definition 2.1. A run σ = s0s1s2 . . . satisfies ϕ, denoted by σ ⊧ ϕ, if σ0 ⊧ ϕ.

A propositional formula ψ is composed of only atomic propositions and proposi-

tional connectives. We denote the set of states where ψ holds by [[ψ]].

An Automaton Perspective

LTL is an ω-regular language, which is a regular language extended to allow infinite

repetition (denoted by ω). Non-deterministic Büchi automata (hereafter called Büchi

automata) accept the class of languages equivalent to ω-regular languages. Since LTL

is a subset of ω-regular languages, any LTL formula ϕ can be automatically translated

into a corresponding Büchi automaton Aϕ [9]. Figure 2.3 shows an example of a Büchi

automaton.

11

Figure 2.3: A (simplified) Büchi automaton corresponding to the LTL formula ϕ =
◇A ∧ ◻◇B ∧ ◻◇C ∧ ◻S. Informally, the system must visit A, repeatedly visit B
and C, and always remain in S. Here Q = {q0, q1, q2, q3}, Σ = {A,B,C,S}, Q0 = {q0},
F = {q3}, and transitions are represented by labeled arrows.

Definition 2.2. A Büchi automaton is a tuple A = (Q,Σ, δ,Q0, F) consisting of (i) a

finite set of states Q, (ii) a finite alphabet Σ, (iii) a transition relation δ ⊆ Q×Σ×Q,

(iv) a set of initial states Q0 ⊆ Q, (v) and a set of accepting states F ⊆ Q.

Let Σω be the set of infinite words over Σ. A word L(σ) = Σ0Σ1Σ2 . . . ∈ Σω induces

an infinite sequence q0q1q2 . . . of states in A such that q0 ∈ Q0 and (qi,Σi, qi+1) ∈ δ for

i ≥ 0. Run q0q1q2 . . . is accepting (accepted) if qi ∈ F for infinitely many indices i ∈ N
appearing in the run.

Intuitively, a run is accepted by a Büchi automaton if an accepting state, i.e., a

state in F , is visited infinitely often.

The length of an LTL formula ϕ is the number of symbols, and is denoted by

∣ϕ∣. A corresponding Büchi automaton Aϕ has size 2O(∣ϕ∣) in the worst-case, but this

behavior is rarely encountered in practice.

We use the definition of an accepting run in a Büchi automaton and the fact that

every LTL formula ϕ can be represented by an equivalent Büchi automaton Aϕ to

define satisfaction of an LTL formula ϕ.

Definition 2.3. Let Aϕ be a Büchi automaton corresponding to the LTL formula ϕ.

A run σ = s0s1s2 . . . of T satisfies ϕ, denoted by σ ⊧ ϕ, if the word L(σ) is accepted

by Aϕ.

For non-deterministic or stochastic systems, it is necessary to represent an LTL

12

formula as an automaton with deterministic transitions. A deterministic Rabin au-

tomaton is therefore used instead of a Büchi automaton. Any LTL formula ϕ can

be automatically translated into a deterministic Rabin automaton of size at most

22O(∣ϕ∣) [9].

Definition 2.4. A deterministic Rabin automaton is a tupleA = (Q,Σ, δ, q0, F) where

Q is a finite set of states, Σ is an alphabet, δ ∶ Q ×Σ → Q is the transition function,

q0 ∈ Q is the initial state, and accepting state pairs F ⊆ 2Q × 2Q.

Let Σω be the set of infinite words over Σ. A word L(σ) = Σ0Σ1Σ2 . . . ∈ Σω denotes

an infinite sequence q0q1q2 . . . of states in A such that qi+1 = δ(qi,Σi) for i ≥ 0. The

run q0q1q2 . . . is accepting if there exists a pair (J,K) ∈ F and an n ≥ 0, such that for

all m ≥ n we have qm ∉ J , and there exist infinitely many indices k such that qk ∈K.

Intuitively, a run is accepted by a deterministic Rabin automaton if the set of

states J is visited finitely often, and the set of states K is visited infinitely often.

2.4 Graph Theory

This section lists basic definitions for graphs that will be used throughout this thesis.

Let G = (V,E) be a directed graph (digraph) with ∣V ∣ vertices and ∣E∣ edges. Let

e = (u, v) ∈ E denote an edge from vertex u to vertex v. A walk is a finite edge

sequence e0, e1, . . . , ep, and a cycle is a walk in which the initial vertex is equal to the

final vertex. A path is a walk with no repeated vertices, and a simple cycle is a path

in which the initial vertex is equal to the final vertex.

A digraph G = (V,E) is strongly connected if there exists a path between each

pair of vertices s, t ∈ V . A digraph G′ = (V ′,E′) is a subgraph of G = (V,E) if V ′ ⊆ V
and E′ ⊆ E. The subgraph of G restricted to states V ′ ⊆ V is denoted by G∣V ′ . A

digraph G′ ⊆ G is a strongly connected component if it is a maximal strongly connected

subgraph of G.

13

Chapter 3

Optimal Control with Weighted
Average Costs and Temporal Logic
Specifications

This chapter concerns optimal control for a system subject to temporal logic con-

straints. We minimize a weighted average cost function that generalizes the commonly

used average cost function from discrete-time optimal control. Dynamic programming

algorithms are used to construct an optimal trajectory for the system that minimizes

the cost function while satisfying a temporal logic specification. Constructing an

optimal trajectory takes only polynomially more time than constructing a feasible

trajectory. We demonstrate our methods on simulations of autonomous driving and

robotic surveillance tasks. This chapter is based on results from [101].

3.1 Introduction

Often, there are numerous control policies for a system that satisfy a given temporal

logic specification, so it is desirable to select one that is optimal with respect to some

cost function, e.g., time or fuel consumption. Since temporal logic specifications in-

clude properties that must be satisfied over infinite state sequences, it is important

that the form of the cost function is also well-defined over infinite sequences. We

consider an average cost, which is bounded under certain mild assumptions discussed

in Section 3.3. Additionally, it may be desired to give varying weights to different

14

behaviors, i.e., repeatedly visit a set of regions, but visit a high-weight region more

often than others. Thus, we minimize a weighted average cost function over system

trajectories subject to the constraint that a given temporal logic specification is satis-

fied. This cost function generalizes the average cost-per-stage cost function commonly

studied in discrete-time optimal control [13].

Optimality has been considered in the related area of vehicle routing [94]. Ve-

hicle routing problems generalize the traveling salesman problem, and are thus NP-

complete. A different approach to control with LTL specifications converts the con-

troller design problem into a mixed-integer linear program [55, 99, 103]. We discuss

such formulations in detail in Chapter 7. Chatterjee et al. [22] create control policies

that minimize an average cost function in the presence of an adversary. The approach

in Smith et al. [90] is the most closely related to our work. Motivated by surveillance

tasks, they minimize the maximum cost between visiting specific regions. Our work is

complementary to [90] in that we instead minimize a weighted average cost function.

The main contribution of this chapter is a solution to the problem of creating a

system trajectory that minimizes a weighted average cost function subject to temporal

logic constraints. We solve this problem for weighted transition systems by search-

ing for system trajectories in the product automaton, a lifted space that contains

only behaviors that are valid for the transition system and also satisfy the tempo-

ral logic specification. An optimal system trajectory corresponds to a cycle in the

product automaton, which is related to the well-studied cost-to-time ratio problem

in operations research [31, 32, 48, 57, 58]. We give computationally efficient dynamic

programming algorithms for finding the optimal system trajectory. In fact, it takes

only polynomially more effort to calculate an optimal solution than is required for a

feasible solution, i.e., one that just satisfies the specification.

3.2 Weighted Transition Systems

We use finite transition systems to model the system behavior. In robotics, however,

one is usually concerned with continuous systems that may have complex dynamic

15

constraints. This gap is partially bridged by constructive procedures for abstracting

relevant classes of continuous systems, including unicycle models, as finite transition

systems [11, 10, 47]. Additionally, sampling-based methods, such as rapidly-exploring

random trees [67] and probabilistic roadmaps [59], gradually build a finite transition

system that approximates a continuous system, and have been studied in this con-

text [53, 81]. Examples of how one can abstract continuous dynamics by discrete

transition systems are given in [10, 11, 47, 53, 81].

Definition 3.1. A weighted (finite) transition system is a tuple T = (S,R, s0,AP,L, c,w)
consisting of (i) a finite set of states S, (ii) a transition relation R ⊆ S × S, (iii) an

initial state s0 ∈ S, (iv) a set of atomic propositions AP , (v) a labeling function

L ∶ S → 2AP , (vi) a cost function c ∶ R → R, (vii) and a weight function w ∶ R → R≥0.

We assume that the transition system is non-blocking, so for each state s ∈ S,

there exists a state t ∈ S such that (s, t) ∈ R.

A run of the transition system is an infinite sequence of its states, σ = s0s1s2 . . .

where si ∈ S is the state of the system at index i, and (si, si+1) ∈ R for i = 0,1, A

word is an infinite sequence of labels L(σ) = L(s0)L(s1)L(s2) . . . where σ = s0s1s2 . . .

is a run.

Let S+k be the set of all runs up to index k. An infinite-memory control policy is

denoted by π = (µ0, µ1, . . .) where µk ∶ S+k → R maps a partial run s0s1 . . . sk ∈ S+k to a

new transition. A policy π = (µ,µ, . . .) is finite-memory if µ ∶ S ×M → R ×M , where

the finite set M is called the memory.

For the deterministic transition system models we consider, the run of a transition

system implicitly encodes the control policy. An infinite-memory run is a run that

can be implemented by an infinite-memory policy. A finite-memory run is a run that

can be implemented by a finite-memory policy.

When possible, we abuse notation and refer to the cost c(t) of a state t ∈ S,

instead of a transition between states. In this case, we enforce that c(s, t) = c(t)
for all transitions (s, t) ∈ R, i.e., the cost of the state is mapped to all incoming

transitions. Similar notational simplification is used for weights, and should be clear

16

from context.

The cost function c can be viewed concretely as a physical cost of a transition

between states, such as time or fuel. This cost can be negative for some transitions,

which could, for example, correspond to refueling if the cost is fuel consumption.

The weight function w can be viewed as the importance of each transition, which

is a flexible design parameter. In the sequel, we will create a run with the minimal

weighted average cost. Thus, the designer can give a higher weight to transitions that

she thinks are preferable. As an example, consider an autonomous car that is supposed

to visit different locations in a city while obeying the rules-of-the-road. In this case,

a task specification would encode the locations that should be visited, along with

the rules-of-the-road. Costs might be the time required to traverse different roads.

Weights might encode preferences, such as visiting certain landmarks. An example

scenario is discussed in detail in Section 3.6.

3.3 Problem Statement

In this section, we formally state the main problem of this chapter, and give an

overview of our solution approach. Let T = (S,R, s0,AP,L, c,w) be a weighted tran-

sition system, and ϕ be an LTL specification defined over AP .

Definition 3.2. Let σ = s0s1 . . . be a run of T where si is the state at the i-th index

of σ. The weighted average cost of run σ is

J(σ) ∶= lim sup
n→∞

∑n
i=0 c(si, si+1)

∑n
i=0w(si, si+1)

, (3.1)

where J maps runs of T to R ∪∞.

Since LTL specifications are typically defined over infinite sequences of states, we

consider the (weighted) average cost function in (3.1) to ensure that the cost function

is bounded. This cost function is well-defined when (i) c(si, si+1) <∞ for all i ≥ 0, and

(ii) there exists a j ∈ N such that w(si, si+1) > 0 for infinitely many i ≥ j, which we

17

assume is true for the sequel. Assumption (ii) enforces that a run does not eventually

visit only those states with zero weights.

To better understand the weighted average cost function J , consider the case

where w(s, t) = 1 for all transitions (s, t) ∈ R. Let a cost c(s, t) be arbitrarily fixed for

each transition (s, t) ∈ R. Then, J(σ) is the average cost per transition between states

(or average cost-per-stage). If w(s, t) = 1 for states in s, t ∈ S′ ⊂ S and w(s, t) = 0 for

states in S − S′, then J(σ) is the mean time per transition between states in S′.

As an example, consider σ = (s0s1)ω, where s0s1 repeats indefinitely. Let c(s0, s1) =
1, c(s1, s0) = 2, w(s0, s1) = 1, and w(s1, s0) = 1. Then, J(σ) = 1.5 is the average cost

per transition. Now, let w(s1, s0) = 0. Then, J(σ) = 3 is the average cost per transi-

tion from s0 to s1.

The weighted average cost function is more natural than the minimax cost function

of Smith et al. [90] in some applications. For example, consider an autonomous vehicle

repeatedly picking people up and delivering them to a destination. It takes a certain

amount of fuel to travel between discrete states, and each discrete state has a fixed

number of people that need to be picked up. A natural problem formulation is to

minimize the fuel consumption per person picked up, which is a weighted average cost

where fuel is the cost, and the number of people is the weight. The cost function in

Smith et al. [90] cannot adequately capture this task.

Definition 3.3. An optimal satisfying finite-memory run of T is a run σ∗ such that

J(σ∗) = inf {J(σ) ∣ σ is a finite-memory run of T and σ ⊧ ϕ} , (3.2)

i.e., run σ∗ achieves the infimum in (3.2).

An optimal satisfying infinite-memory run is defined similarly for infinite-memory

runs of T .

Although we show in Section 3.5.2 that infinite-memory runs are generally neces-

sary to achieve the infimum in equation (3.2), we focus on finite-memory runs, as these

are more practical than their infinite-memory counterparts. However, finding an opti-

mal satisfying finite-memory run is potentially ill-posed, as the infimum might not be

18

achieved due to the constraint that the run must also satisfy ϕ. This happens when

it is possible to reduce the cost of a satisfying run by including an arbitrarily long,

low weighted average cost subsequence. For instance, consider the run σ = (s0s0s1)ω.

Let c(s0, s0) = 1, c(s1, s0) = c(s0, s1) = 2, and the weights equal 1 for each transition.

Assume that a specification is satisfied if s1 is visited infinitely often. Then, J(σ) can

be reduced by including an arbitrarily large number of self transitions from s0 to s0

in σ, even though these do not affect satisfaction of the specification. Intuitively, one

should restrict these repetitions to make finding an optimal satisfying finite-memory

run well-posed. We will show that one can always compute an ε-suboptimal finite-

memory run by restricting the length of these repetitions. The details are deferred to

Section 3.4, when we will have developed the necessary technical machinery.

Problem 3.1. Given a weighted transition system T and an LTL specification ϕ,

compute an optimal satisfying finite-memory run σ∗ of T if one exists.

Remark 3.1. For the sake of completeness, we show how to compute optimal satis-

fying infinite-memory runs in Section 3.5.2. These runs achieve the minimal weighted

average cost, but do so by adding arbitrarily long progressions of states that do not

change whether or not the specification is satisfied.

3.4 Reformulation of the Problem

We solve Problem 3.1 by first creating a product automaton that represents runs

that are allowed by the transition system T , and also satisfy the LTL specification

ϕ. We can limit our search for finite-memory runs, without loss of generality, to

runs in the product automaton that are of the form σP = σpre(σsuf)ω. Here, σpre is

a finite walk, and σsuf is a finite cycle that is repeated infinitely often. Runs with

this structure are said to be in prefix-suffix form. As the weighted average cost only

depends on σsuf, which reduces the problem to searching for a cycle σsuf in the product

automaton. This search can be done using dynamic programming techniques. The

optimal accepting run σ∗P is then projected back on T as σ∗, which solves Problem 3.1.

19

3.4.1 Product Automaton

We use the standard product automaton construction, due to Vardi and Wolper [95],

to represent runs that are allowed by the transition system and also satisfy the LTL

specification.

Definition 3.4. Let T = (S,R, s0,AP,L, c,w) be a weighted transition system, and

A = (Q,2AP , δ,Q0, F) be a Büchi automaton. The product automaton P = T ×A is

the tuple P ∶= (SP , δP , FP , sP,0,APP , LP , cP ,wP), consisting of

(i) a finite set of states SP = S ×Q,

(ii) a transition relation δP ⊆ SP × SP , where ((s, q), (s′, q′)) ∈ δP if and only if

(s, s′) ∈ R and (q,L(s), q′) ∈ δ,

(iii) a set of accepting states FP = S × F ,

(iv) a set of initial states SP,0, with (s0, q0) ∈ SP,0 if q0 ∈ Q0,

(v) a set of atomic propositions APP = Q,

(vi) a labeling function LP ∶ S ×Q→ 2Q,

(vii) a cost function cP ∶ δP → R, where cP((s, q), (s′, q′)) = c(s, s′) for all

((s, q), (s′, q′)) ∈ δP , and

(viii) a weight function wP ∶ δP → R≥0, where wP((s, q), (s′, q′)) = w(s, s′) for all

((s, q), (s′, q′)) ∈ δP .

A run σP = (s0, q0)(s1, q1) . . . is accepting if (si, qi) ∈ FP for infinitely many indices

i ∈ N.

The projection of a run σP = (s0, q0)(s1, q1) . . . in the product automaton P is the

run σ = s0s1 . . . in the transition system T . The projection of a finite-memory run in

P is a finite-memory run in T [9].

The following proposition relates accepting runs in T and P, and is due to Vardi

and Wolper [95].

20

Proposition 3.1. (Vardi and Wolper [95]) Let Aϕ be a Büchi automaton correspond-

ing to the LTL formula ϕ. For any accepting run σP = (s0, q0)(s1, q1) . . . in the product

automaton P = T ×Aϕ, its projection σ = s0s1 . . . in the transition system T satisfies

ϕ. Conversely, for any run σ = s0s1 . . . in T that satisfies ϕ, there exists an accepting

run σP = (s0, q0)(s1, q1) . . . in the product automaton.

Lemma 3.1. For any accepting run σP in P and its projection σ in T , J(σP) = J(σ).

Conversely, for any σ in T that satisfies ϕ, there exists an accepting run σP in P
with J(σP) = J(σ).

Proof. Consider a run σP = (s0, q0)(s1, q1) . . . in P. By definition, for states

(si, qi), (si+1, qi+1) ∈ SP and si, si+1 ∈ ST , the cost cP((si, qi), (si+1, qi+1)) = c(si, si+1),
and the weight wP((si, qi), (si+1, qi+1)) = w(si, si+1) for all i ≥ 0, so J(σP) = J(σ).
Now, consider a run σ = s0s1 . . . in T that satisfies ϕ. Proposition 3.1 gives the

existence of an accepting run σP = (s0, q0)(s1, q1) . . . in P, and so J(σP) = J(σ).

By Lemma 3.1, an accepting run σ∗P with minimal weighted average cost in the

product automaton has a projection in the transition system σ∗ that is a satisfying

run with minimal weighted average cost.

3.4.2 Prefix-Suffix Form

We show that Problem 3.1 is equivalent to finding a run of the form σP = σpre(σsuf)ω,

in the product automaton P that minimizes the weighted average cost function (3.1).

We equivalently treat the product automaton as a graph when convenient (see Sec-

tion 2.4). Our analysis and notation in this section is similar to that of [90]; we

optimize a different cost function on the Vardi and Wolper [95] product automaton

construction.

Definition 3.5. Let σpre be a finite walk in P, and σsuf be a finite cycle in P. A run

σP is in prefix-suffix form if it is of the form σP = σpre(σsuf)ω.

It is well-known that if there exists an accepting run in P for an LTL formula ϕ,

then there exists an accepting run in prefix-suffix form for ϕ [9]. This can be seen

21

since the product automaton P is finite, but an accepting run is infinite, and visits

an accepting state infinitely often. Thus, at least one accepting state must be visited

infinitely often, and this can correspond to a repeated cycle including the accepting

state. For an accepting run σP , the suffix σsuf is a cycle in the product automaton P
that satisfies the acceptance condition, i.e., it includes an accepting state. The prefix

σpre is a finite run from an initial state sP,0 to a state on an accepting cycle.

The following lemma shows that a minimum weighted average cost finite-memory

run can be found searching over finite-memory runs of the form σP = σpre(σsuf)ω.

Lemma 3.2. For any accepting finite-memory run σP of P with cost J , there exists

an accepting finite-memory run in prefix-suffix form with cost at most J .

Proof. Let σgen be an accepting finite-memory run in P that is not in prefix-suffix

form and has weighted average cost J(σgen). Since σgen is accepting, it must visit an

accepting state sacc ∈ SP infinitely often. Let the finite walk σpre be from an initial

state sP,0 to the first visit of sacc. Now, consider the set of walks between successive

visits to sacc. Each walk starts and ends at sacc (so it is a cycle), is finite with

bounded length, and has a weighted average cost associated with it. For each cycle

τ , compute the weighted average cost J(τω). Let σsuf be the finite cycle with the

minimum weighted average cost over all τ . Then, J(σP) = J(σpre(σsuf)ω) ≤ J(σgen).
Since σgen was arbitrary, the claim follows.

The next proposition shows that the weighted average cost of a run does not

depend on any finite prefix of the run.

Proposition 3.2. Let σ = s0s1 . . . be a run (in T or P), and σk = sksk+1 . . . be the

run σ starting at index k ∈ N. Then, their weighted average costs are equal, i.e.,

J(σ) = J(σk).

Proof. From Definition 3.1, costs and weights depend only on the transition—not

the index. Also, from the assumptions that directly follow equation (3.1), transitions

22

with positive weight occur infinitely often. Thus,

J(σ) ∶= lim sup
n→∞

∑n
i=0 c(si, si+1)

∑n
i=0w(si, si+1)

= lim sup
n→∞

∑k−1
i=0 c(si, si+1) +∑n

i=k c(si, si+1)
∑k−1
i=0 w(si, si+1) +∑n

i=kw(si, si+1)

= lim sup
n→∞

∑n
i=k c(si, si+1)

∑n
i=kw(si, si+1)

= J(σk).

From Proposition 3.2, finite prefixes do not contribute to the weighted average

cost function, so J(σpre(σsuf)ω) = J((σsuf)ω). Thus, one can optimize over the suffix

σsuf, which corresponds to an accepting cycle in the product automaton. Given an

optimal accepting cycle σ∗suf, one then computes a walk from an initial state to σ∗suf.

We now define a weighted average cost function for finite walks in the product

automaton that is analogous to (3.1).

Definition 3.6. The weighted average cost of a finite walk σP = (s0, q0)(s1, q1) . . . (sm, qm)
in the product automaton is

J̃(σP) ∶=
∑m
i=0 cP(si, si+1)

∑m
i=0wP(si, si+1)

, (3.3)

with similar assumptions on c and w as for equation (3.1).

Problem 3.2. Let acc(P) be the set of all accepting cycles in the product automaton

P reachable from an initial state. Find a suffix σ∗suf where J̃(σ∗suf) = infσP∈acc(P) J̃(σP)
if it exists.

Proposition 3.3. Let σ∗P = σpre(σ∗suf)ω be a solution to Problem 3.2. The projection

to the transition system of any optimal accepting run σ∗P is a solution to Problem 3.1.

Proof. From Lemma 3.2, there exists an accepting run σP = σpre(σsuf)ω that minimizes

J . From Proposition 3.2 and equation (3.5), J(σP) = J((σsuf)ω) = J̃(σsuf).

We now pause to give a high-level overview of our approach to solving Problem 3.1,

using its reformulation as Problem 3.2. The major steps are outlined in Algorithm 1.

23

First, a Büchi automaton Aϕ corresponding to the LTL formula ϕ is created. Then,

we create the product automaton P = T ×Aϕ. Reachability analysis on P determines,

in time linear in the size of P, all states that can be reached from an initial state,

and thus guarantees existence of a finite prefix σpre to all remaining states. Next,

we compute the strongly connected components (SCCs) of P, since two states can

be on the same cycle only if they are in the same strongly connected component.

This partitions the original product automaton into sub-graphs, each of which can be

searched independently for optimal cycles.

For each strongly connected component of P, we compute the cycle σsuf with the

minimum weighted average cost, regardless of whether or not it is accepting (see

Section 3.5.2). This is the infimum of the minimum weighted average cost over all

accepting cycles. If this cycle is accepting, then the infimum is achieved by a finite-

memory run. If not, then the infimum is not achieved by a finite-memory run, and

thus, we must further constrain the form of the suffix σsuf to make the optimization

well-posed.

A natural choice is finite-memory policies, which correspond to bounding the

length of σsuf. We can solve for an optimal accepting σsuf subject to this additional

constraint using dynamic programming techniques. The optimal accepting σsuf over

all strongly connected components is σ∗suf. Given σ∗suf, we compute a finite walk σpre

from an initial state to any state on σ∗suf. The finite walk σpre is guaranteed to exist due

to the initial reachability computation. The optimal run in the product automaton

is then σ∗P = σpre(σ∗suf)ω. The projection of σ∗P to the transition system as σ∗ solves

Problem 3.1, given the additional constraint that σsuf has bounded length.

Remark 3.2. In Section 3.5, we treat the product automaton as a graph GP =
(VP ,EP), with the natural bijections between states SP and vertices VP , and between

edges (u, v) ∈ EP and transitions in δP . We further assume that a reachability com-

putation has been done, so that GP only includes states reachable from an initial

state sP,0. We assume that GP is strongly connected. If not, the strongly connected

components of the P can be found in O(∣VP ∣ + ∣EP ∣) time with Tarjan’s algorithm

[29]. To compute the optimal cycle for the entire graph, one finds the optimal cycle

24

Algorithm 1 Overview of Optimal Controller Synthesis

Input: Weighted transition system T and LTL formula ϕ
Output: Run σ∗, a solution to Problem 3.1
1: Create Büchi automaton Aϕ
2: Create product automaton P = T ×Aϕ
3: Compute states in P reachable from an initial state
4: Calculate strongly connected components (SCCs) of P
5: for scc ∈ P do
6: Let σ∗suf = arg inf {J̃(σ) ∣ σ is cycle in P}
7: if σ∗suf is an accepting cycle then
8: break {finite-memory run achieves infimum}
9: end if
10: Find best bounded-length accepting σ∗suf over all sacc ∈ SCCs (Section 3.5)
11: end for
12: Take optimal σ∗suf over all SCCs
13: Compute finite prefix σpre from initial state to σ∗suf

14: Project run σ∗P = σpre(σ∗suf)ω to T as σ∗

in each strongly connected component, and then selects the optimal over all strongly

connected components. We denote each strongly connected component of GP by

G = (V,E), where n = ∣V ∣ and m = ∣E∣.

3.5 Solution Approach

In this section, we give algorithms for computing optimal finite-memory and infinite-

memory runs. We assume that G = (V,E) is a strongly connected component of the

product automaton P and has at least one accepting state. The techniques we adapt

were originally developed for the minimum cost-to-time ratio problem [31, 32, 48, 57,

58].

3.5.1 Computing Finite-Memory Runs

We present two related algorithms (that find an optimal accepting cycle σ∗suf) in in-

creasing levels of generality. While the algorithm in Section 3.5.1.2 subsumes the

algorithm in Section 3.5.1.1, the latter is more intuitive. It is also more computation-

ally efficient when the weight function is constant.

25

3.5.1.1 Minimum Mean Cycle

We first investigate the case where w(e) = 1 for all e ∈ E, so the total weight of a walk

is equivalent to the number of transitions. This is similar to the problem investigated

by Karp [57], with the additional constraint that the cycle must be accepting. This

additional constraint prevents a direct application of Karp’s theorem [57], but our

approach is similar. The intuition is that, conditional on the weight of a walk, the

minimum cost walk gives the minimum average cost walk.

Let s ∈ V be an accepting vertex (i.e., accepting state). For every v ∈ V , let

Fk(v) be the minimum cost of a walk of length k ∈ N from s to v. Thus, Fk(s) is

the minimum cost cycle of length k, which we note is accepting by construction. We

compute Fk(v) for all v ∈ V and k = 1, . . . , n by the recurrence

Fk(v) = min
(u,v)∈E

[Fk−1(u) + c(u, v)] , (3.4)

where F0(s) = 0 and F0(v) =∞ for v ≠ s.
It follows from equation (3.4) that Fk(v) can be computed for all v ∈ V in O(∣V ∣∣E∣)

operations. To find the minimum mean cycle cost with fewer than M transitions (i.e.,

bounded-length suffix), simply compute minFk(s)/k for all k = 1, . . . ,M . If there are

multiple cycles with the optimal cost, pick the cycle corresponding to the minimum

k.

We repeat the above procedure for each accepting vertex s ∈ V . The minimum

mean cycle value is the minimum of these values. We record the optimal vertex s∗,

and the corresponding integer k∗. To determine the optimal cycle corresponding to s∗

and k∗, we simply determine the corresponding transitions from (3.4) for Fk∗(s∗) from

vertex s∗. The repeated application of recurrence (3.4) takes O(na∣V ∣∣E∣) operations,

where na is the number of accepting vertices, which is typically significantly smaller

than ∣V ∣.

26

3.5.1.2 Minimum Cycle Ratio

We now discuss a more general case, which subsumes the discussion in Section 3.5.1.1.

This approach is based on that of Hartmann and Orlin [48], who consider the uncon-

strained case.

Let the possible weights be in the integer set Val = {1, . . . ,wmax}, where wmax is

a positive integer. Let E′ ⊆ E, and define weights as

w(e) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x ∈ Val if e ∈ E′

0 if e ∈ E −E′.

The setup in Section 3.5.1.1 is when E′ = E and Val = {1}.

Let Tu ∶= max(u,v)∈E w(u, v) for each vertex u ∈ V . Then, T ∶= ∑u∈V Tu is the

maximum weight of a path.

Let s ∈ V be an accepting state. For each v ∈ V , let Gk(v) be the minimum cost

walk from s to v that has total weight equal to k. This definition is similar to Fk(v) in

Section 3.5.1.1, except that now k is the total weight w of the edges, which is no longer

simply the number of edges. Let G′
k(v) be the minimum cost walk from s to v that

has total weight equal to k, with the last edge of the walk in E′. Finally, let d(u, v)
be the minimum cost of a path from u to v in G consisting solely of edges of E −E′.

The costs d(u, v) are pre-computed using an all-pairs shortest paths algorithm, which

assumes there are no negative-cost cycles in E −E′ [29].

The values Gk(v) can be computed for all v ∈ V and k = 1, . . . , T by the recurrence:

G′
k(v) = min

(u,v)∈E′
[Gk−w(u,v)(u) + c(u, v)] (3.5)

Gk(v) = min
u∈V

[G′
k(u) + d(u, v)]

where G0(v) = d(s, v).
The optimal cycle cost and the corresponding cycle are recovered in a similar

manner to that described in Section 3.5.1.1, and are accepting by construction. The

recurrence in (3.5) requires O(naT ∣V ∣2) operations, where na is the number of ac-

27

cepting vertices. This algorithm runs in pseudo-polynomial time, as T is an integer,

and so its binary description length is O(log(T)) [29]. The recurrence for Gk can

be computed more efficiently if the edge costs are assumed to be non-negative. This

gives the overall complexity of the recurrence as O(naT (∣E∣ + ∣V ∣log∣V ∣)) time [48].

Remark 3.3. Consider the special case where weights are restricted to be 0 or 1.

Then, the total weight T is O(∣V ∣), and the above algorithm has polynomial time

complexity O(na∣V ∣3) or O(na(∣V ∣∣E∣ + ∣V ∣2log∣V ∣) if edge costs are assumed to be

non-negative.

Remark 3.4. Although finite prefixes do not affect the cost (cf. Proposition 3.2),

it may be desired to create a “good” finite prefix. The techniques described in Sec-

tion 3.5.1.2 (and similarly Section 3.5.1.1) can be adapted to create these finite pre-

fixes. After computing the optimal accepting cycle C∗, one can compute the values

Gk(v), and corresponding walk defined with respect to the initial state s0 for all states

v ∈ C∗.

3.5.2 Computing Infinite-Memory Runs

Infinite-memory runs achieve the minimum weighted average cost J∗. However, their

practical use is limited, as they achieve J∗ by increasingly visiting states that do

not affect whether or not the specification is satisfied. This is unlikely the designer’s

intent, so we only briefly discuss these runs for the sake of completeness. A related dis-

cussion on infinite-memory runs, but in the adversarial environment context, appears

in [22].

Let σopt be the (possibly non-accepting) cycle, with the minimum weighted average

cost J(σωopt) over all cycles in G. Clearly, the restriction that a cycle is accepting can

only increase the weighted average cost. Let σacc be a cycle that contains both an

accepting state and a state in σopt. Let σacc,i denote the ith state in σacc. For symbols

α and β, let (αβk)ω for k = 1,2, . . . denote the sequence αβαββαβββ

Proposition 3.4. Let σP = (σaccσkopt)ω, where k = 1,2, Then, σP is accepting,

and achieves the minimum weighted average cost (3.1).

28

Proof. Run σP is accepting because it repeats σacc infinitely often. Let

αc = ∑p
i=0 c(σacc,i, σacc,i+1) and αw = ∑p

i=0w(σacc,i, σacc,i+1), where integer p is the length

of σacc. Define βc and βw similarly for σopt. Then,

J(σ) ∶= lim sup
n→∞

∑n
k=1(αc + kβc)

∑n
k=1(αw + kβw)

= lim sup
n→∞

nαc + βc∑n
k=1 k

nαw + βw∑n
k=1 k

= lim sup
n→∞

βc
βw

= J((σopt)ω).

A direct application of a minimum cost-to-time ratio algorithm, e.g., [48], can be

used to compute σopt, since there is no constraint specifying that it must include an

accepting state. Also, given σopt, σacc always exists, as there is an accepting state in

the same strongly connected component as σopt by construction.

The next proposition shows that finite-memory runs can be arbitrarily close to

the optimal weighted average cost J∗.

Proposition 3.5. Given any ε > 0, a finite-memory run σP exists with J((σP)ω) <
J((σopt)ω) + ε = J∗ + ε.

Proof. Construct a finite-memory run of the form σP = σpre(σsuf)ω, where σsuf has

fixed length. In particular, let σsuf = σacc(σopt)M for a large (fixed) integer M . By

picking M large enough, the error between J((σsuf)ω) and J((σopt)ω) can be made

arbitrarily small.

Thus, finite-memory runs can approximate the performance of infinite-memory

runs arbitrarily closely. This allows a designer to tradeoff between runs with low

weighted average cost and runs with short lengths.

3.5.3 Complexity

We now discuss the complexity of the entire procedure, i.e., Algorithm 1. The number

of states and transitions in the transition system is nT and mT , respectively. The ω-

29

regular specification is given by a Büchi automaton Aϕ. In practice, an LTL formula

ϕ will typically be used to automatically generate a corresponding Büchi automaton

Aϕ. The product automaton has nP = nT × ∣Aϕ∣ states and mP edges. For finite-

memory runs, the dynamic programming algorithms described in Section 3.5.1 take

O(nanPmP) and O(naT (mP + nP lognP)) operations, assuming non-negative edge

weights for the latter bound. Here, na is the number of accepting states in the product

automaton. Usually, na is significantly smaller than nP . For infinite-memory runs,

there is no accepting state constraint for the cycles, so standard techniques [48, 57]

can be used that take O(nPmP) and O(T (mP+nP lognP)) operations, again assuming

non-negative edge weights for the latter bound. The algorithms in Section 3.5 are

easily parallelizable, both between strongly connected components of P and for each

accepting state.

3.6 Examples

The following examples demonstrate the techniques developed in Section 3.5 in the

context of autonomous driving and surveillance. Each cell in Figures 3.1 and 3.2

corresponds to a state, and each state has transitions to its four neighbors. Costs

and weights are specified over states, as discussed in Section 3.2. Tasks are specified

formally by LTL formulas, and informally in English.

The first example is motivated by autonomous driving. The weighted transition

system represents an abstracted car that can transition between neighboring cells in

the grid (Figure 3.1). The car’s task is to repeatedly visit the states labeled a, b, and c,

while always avoiding states labeled x. Formally, ϕ = ◻◇a ∧ ◻◇b ∧ ◻◇c ∧ ◻¬x. Costs

are defined over states to reward driving in the proper lane (the outer boundary), and

penalize leaving it. Weights are zero for all states except states labeled a, b, and c,

which each have weight of one.

The second example, Figure 3.2, is motivated by surveillance. The robot’s task is

to repeatedly visit states labeled either a, b, c or d, e, f . States labeled x should always

be avoided. Formally, ϕ = ((◻◇a ∧ ◻◇b ∧ ◻◇c) ∨ (◻◇d ∧ ◻◇e ∧ ◻◇f)) ∧ ◻¬x.

30

Figure 3.1: Driving task, with optimal run (blue) and feasible run (red).

Costs vary with the state, as described in Figure 3.2, and describe the time to navigate

different terrain. The weight is zero at each state, except states a and f , where the

weight is one.

Numerical results are in Table 3.1. Computation times for optimal and feasible

runs are given by topt and tfeas, respectively. The number of states and transitions

are listed for the transition system T , the Büchi automaton Aϕ, the entire product

automaton P and the reachable portion of the product automaton Preach. Also listed

are the number of strongly connected components (SCC), the number of accepting

states, and the costs for optimal Jopt and feasible Jfeas runs. All computations were

done using Python on a Linux desktop with a dual-core processor and 2 GB of mem-

ory. The feasible satisfying runs were generated with depth-first search. The optimal

satisfying runs were generated with the algorithm from Section 3.5.1.2. Since it was

possible to decrease the weighted average cost by increasing the length of the cycle

(i.e., the infimum was not achieved by a finite-memory satisfying run), we used the

shortest cycle such that J(σopt) < ∞. Thus, the optimal values J(σopt) are conser-

vative. The improvement of the optimal runs over a feasible run is evident from

Figures 3.1 and 3.2. In Figure 3.1, the optimal run immediately heads back to its

lane to reduce costs, while the feasible run does not. In Figure 3.2, the optimal run

avoids visiting high-cost regions.

31

Figure 3.2: Surveillance task, with optimal run (blue) and feasible run (red).

Table 3.1: Numerical Results for Examples
Example T (states/trans.) Aϕ P Preach SCC (#)
Driving 300 / 1120 4 / 13 1200 / 3516 709 / 2396 1
Surveillance 400 / 1520 9 / 34 3600 / 14917 2355 / 8835 2

Example acc. states (#) Jopt (units) Jfeas (units) topt (sec) tfeas (sec)
Driving 1 49.3 71.3 2.49 0.68
Surveillance 2 340.9 566.3 21.9 1.94

32

3.7 Conclusions

This chapter presented algorithms for computing optimal runs of a weighted transition

system that minimized a weighted average cost function subject to ω-regular language

constraints. These constraints include the well-studied linear temporal logic as a

subset. Optimal system runs correspond to cycles in a lifted product space, which

includes behaviors that are valid for the system and also satisfy the temporal logic

specification. Dynamic programming techniques were used to solve for an optimal

cycle in this product space.

33

Chapter 4

Robust Control of Uncertain
Markov Decision Processes with
Temporal Logic Specifications

This chapter describes a method for designing a robust control policy for an uncer-

tain system subject to temporal logic specifications. The system is modeled as a

finite Markov decision process (MDP) whose transition probabilities are not exactly

known, but are known to belong to a given uncertainty set. A robust control policy

is generated for the MDP that maximizes the worst-case probability of satisfying the

specification over all transition probabilities in this uncertainty set. To this end, we

use a procedure from probabilistic model checking to combine the system model with

an automaton representing the specification. This new MDP is then transformed into

an equivalent form that satisfies assumptions for stochastic shortest path dynamic

programming. A robust version of dynamic programming solves for a ε-suboptimal

robust control policy, with time complexity O(log 1/ε) times that for the non-robust

case. This chapter is based on results from [100].

4.1 Introduction

As autonomous systems often operate in uncertain environments, it is important

that the system performance is robust to environmental disturbances. Furthermore,

system models are only approximations of reality, which makes robustness to modeling

34

errors desirable.

We model the system as a Markov decision process (MDP). MDPs provide a gen-

eral framework for modeling non-determinism and probabilistic behaviors that are

present in many real-world systems. MDPs are also amenable to formal verification

techniques for temporal logic properties [9], which can be alternatively used to cre-

ate control policies. These techniques generate a control policy for the MDP that

maximizes the probability of satisfying a given LTL specification. However, these

techniques assume that the state transition probabilities of the MDP are known ex-

actly, which is often unrealistic. We relax this assumption by allowing the transition

probabilities of the MDP to lie in uncertainty sets. We generate a control policy that

maximizes the worst-case probability of a run of the system satisfying a given LTL

specification over all admissible transition probabilities in the uncertainty set.

Considering uncertainty in the system model is important to capture unmodeled

dynamics and parametric uncertainty, as real systems are only approximated by math-

ematical models. Additionally, while we consider discrete-state systems here, we are

motivated by controlling continuous stochastic systems so that they satisfy temporal

logic specifications. Constructive techniques for finite, discrete abstractions of contin-

uous stochastic systems exist (see [2, 7]), but exact abstraction is generally difficult.

Even if exact finite-state abstraction techniques are available for a dynamical sys-

tem model, the resulting MDP abstraction will only represent the real system to the

extent that the dynamical system model does. Moreover, if abstraction techniques

approximate the dynamical system model, the MDP abstraction will be a further

approximation of the real system.

Robustness of control policies for MDPs with respect to uncertain transition

probabilities has been studied in the contexts of operations research, formal veri-

fication, and hybrid systems. Our approach most closely follows that of Nilim and El

Ghaoui [79], who consider general uncertainty models and discounted rewards, but

not temporal logic specifications. Related work includes [8, 44, 87]. Formal verifica-

tion of temporal logic specifications is well-developed for MDPs with exact transition

matrices [9, 33] and standard software tools exist [63]. Work in verification of uncer-

35

tain MDPs primarily considers simple interval uncertainty models for the transition

probabilities [20, 23, 109], which we include in our work as a special case. Recent

work in hybrid systems that creates control policies for stochastic systems [34, 65]

does not consider robustness. Robustness of non-probabilistic discrete-state systems

to disturbances is explored in [72].

The main contribution of this chapter is an algorithm for creating an optimal

robust control policy π∗ that maximizes the worst-case probability of satisfying an

LTL specification for a system represented as a finite labeled MDP with transition

matrices in an uncertainty set P. The uncertainty set P can be non-convex, and

includes interval uncertainty sets as a special case. This freedom allows more sta-

tistically accurate and less conservative results than can be achieved using interval

uncertainty sets.

4.2 Uncertain Markov Decision Processes

We use uncertain Markov decision processes (uncertain MDPs) as the system model.

Definition 4.1. A labeled finite MDP M is the tupleM = (S,A,P, s0,AP,L), where

S is a finite set of states, A is a finite set of actions, P ∶ S ×A × S → [0,1] is the

transition probability function, s0 is the initial state, AP is a finite set of atomic

propositions, and L ∶ S → 2AP is a labeling function. Let A(s) denote the set of

available actions at state s. Let ∑s′∈S P (s, a, s′) = 1 if a ∈ A(s) and P (s, a, s′) = 0

otherwise.

We assume, for notational convenience, that the available actions A(s) are the

same for every s ∈ S. We use P a
ij as shorthand for the transition probability from

state i to state j when using action a. We call P a ∈ Rn×n a transition matrix, where

the (i, j)-th entry of P a is P a
ij. Where it is clear from context, we refer to the row

vector P a
i as p.

Definition 4.2. A control policy for an MDPM is a sequence π = {µ0, µ1, . . .}, where

µk ∶ S → A such that µk(s) ∈ A(s) for state s ∈ S and k = 0,1, A control policy is

36

stationary if π = {µ,µ, . . .}. Let Π be the set of all control policies, and Πs be the set

of all stationary control policies.

A run of the MDP is an infinite sequence of its states, σ = s0s1s2 . . . where si ∈ S
is the state of the system at index i, and P (si, a, si+1) > 0 for some a ∈ A(si). A run

is induced by a control policy.

Uncertainty Model

To model uncertainty in the system model, we specify uncertainty sets for the tran-

sition matrices.

Definition 4.3. Let the transition matrix uncertainty set be defined as P where every

P ∈ P is a transition matrix. An uncertain labeled finite MDP M = (S,A,P, s0,AP,L)
is a family of labeled finite MDPs such that for every P ∈ P,M′ = (S,A,P, s0,AP,L)
is an MDP.

Let Pas be the uncertainty set corresponding to state s ∈ S and action a ∈ A(s).

Definition 4.4. An environment policy for an (uncertain) MDP M is a sequence

τ = {ν0, ν1, . . .}, where νk ∶ S ×A → P such that νk(s, a) ∈ Pas for state s ∈ S, action

a ∈ A(s) and k = 0,1, An environment policy is stationary if τ = {ν, ν, . . .}. Let T
be the set of all environment policies, and Ts be the set of all stationary environment

policies.

A run of the uncertain MDP is an infinite sequence of its states, σ = s0s1s2 . . .

where si ∈ S is the state of the system at index i, and P (si, a, si+1) > 0 for some

a ∈ A(si) and P ∈ Pasi . A run is induced by an environment policy and a control

policy.

We associate a reward with each state-action pair in M through the function

r(s, a) ∶ S ×A → R. This (possibly negative) reward is incurred at each stage k over

the horizon of length N , where the total expected reward is

V πτ(s) ∶= lim
N→∞

Eπτ [
N−1

∑
k=0

r(sk, µk(sk)) ∣ s0 = s] ,

37

and the expectation Eπτ depends on both the control and environment policies.

The optimal worst-case total expected reward starting from state s ∈ S is

V ∗(s) ∶= max
π∈Π

min
τ∈T

V πτ(s). (4.1)

4.3 Problem Statement

We now provide a formal statement of the main problem of this chapter, and an

overview of our approach.

Definition 4.5. LetM be an uncertain MDP with initial state s0 and atomic propo-

sitions AP . Let ϕ be an LTL formula over AP . Then, Pπτ(s0 ⊧ ϕ) is the expected

satisfaction probability of ϕ byM, under control policy π and environment policy τ .

Definition 4.6. An optimal robust control policy π∗ for uncertain MDP M is

π∗ = arg max
π∈Π

min
τ∈T

Pπτ(s0 ⊧ ϕ).

Problem 4.1. Given an uncertain labeled finite MDPM and an LTL formula ϕ over

AP , create an optimal robust control policy π∗.

We solve Problem 4.1 by first creating the product MDPMp, which contains only

valid system trajectories that also satisfy the LTL specification. We modify Mp so

that all policies for it are proper (i.e., a terminal zero-reward state will be reached),

and thus, it satisfies stochastic shortest path assumptions. Maximizing the worst-case

probability of satisfying the specification is equivalent to creating a control policy that

maximizes the worst-case probability of reaching a certain set of states in Mp. We

solve for this policy using robust dynamic programming. Finally, we map the robust

control policy back to M.

38

4.4 The Product MDP

In this section, we create a product MDP Mp that contains behaviors that satisfy

both the system MDP M and the LTL specification ϕ. We transform Mp into an

equivalent formMssp, where all stationary control policies are proper, in preparation

for computing optimal robust control policy in Section 4.6.

4.4.1 Forming the Product MDP

The product MDP Mp restricts behaviors to those that satisfy both the system

transitions and a deterministic Rabin automaton Aϕ that represents the LTL formula

ϕ.

Definition 4.7. For a labeled finite MDP M = (S,A,P, s0,AP,L) and a deter-

ministic Rabin automaton Aϕ = (Q,2AP , δ, q0, F), the product MDP is given by

Mp = (Sp,A,Pp, s0p,Q,Lp) with Sp = S ×Q,

• Pp((s, q), α, (s′, q′)) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

P (s,α, s′) if q′ = δ(q,L(s′))

0 otherwise,

• s0p = (s0, q) such that q = δ(q0, L(s0)),

• and Lp((s, q)) = {q}.

The accepting product state pairs Fp = {(Jp1 ,K
p
1), . . . , (J

p
k ,K

p
k)} are lifted directly

from F . Formally, for every (Ji,Ki) ∈ F , state (s, q) ∈ Sp is in Jpi if q ∈ Ji, and

(s, q) ∈Kp
i if q ∈Ki.

There is a one-to-one correspondence between the paths on Mp and M, which

induces a one-to-one correspondence for policies on Mp and M. Given a policy

πp = {µp0, µ
p
1, . . .} on Mp, one can induce a policy π = {µ0, µ1, . . .} on M by setting

µi(si) = µpi ((si, qi)) for every stage i = 0,1, This policy always exists, since Mp

and M have the same action set A. If πp is stationary, then π is finite-memory [9].

39

4.4.2 Reachability in the Product MDP

We now show how to use the product MDPMp to determine a robust control policy

that maximizes the worst-case probability that a given LTL specification is satisfied.

Given a control and environment policy, the probability of satisfying an LTL formula

is equivalent to the probability of reaching an accepting maximal end component [9].

We call this probability the reachability probability. Informally, accepting maximal

end components are sets of states that the system can remain in forever and where

the acceptance condition of the deterministic Rabin automaton is satisfied, and thus,

the corresponding LTL formula is satisfied. The following definitions follow [9].

Definition 4.8. A sub-MDP of an MDP is a pair of states and action sets (C,D)
where: (1) C ⊆ S is non-empty and the map D ∶ C → 2A is a function such that

D(s) ⊆ A(s) is non-empty for all states s ∈ C, and (2) s ∈ C and a ∈ D(s) implies

Post(s, a) = {t ∈ S∣P a
st > 0} ⊆ C.

Definition 4.9. An end component is a sub-MDP (C,D) such that the digraph

G(C,D) induced by (C,D) is strongly connected.

An end component (C,D) is maximal if there is no end component (C ′,D′) such

that (C,D) ≠ (C ′,D′) and C ⊆ C ′ and D(s) ⊆ D′(s) for all s ∈ C. Furthermore,

(C,D) is accepting for the deterministic Rabin automaton A if for some (J,K) ∈ F ,

J ∩C = ∅ and K ∩C ≠ ∅.

Given the accepting maximal end components ofMp, one can determine a control

policy that maximizes the worst-case probability of reaching an accepting maximal

end component from the initial state. Without considering transition probability

uncertainty, a non-robust policy can be computed using either linear or dynamic

programming methods [9].

From the preceding discussion, it is clear that the LTL formula satisfaction prob-

ability depends on the connectivity of the product MDP Mp. Thus, we will require

that the uncertainty sets for the transition matrices of the system MDP M do not

change this connectivity. Let F a denote the nominal transition matrix for action a.

40

Assumption 4.1. F a
ij = 0 if and only if P a

ij = 0 for all P a ∈ Pa and for all i, j ∈ S.

Assumption 4.1 says that if a nominal transition is zero (non-zero) if and only if

it is zero (non-zero) for all transition matrices in the uncertainty set.

4.4.3 Stochastic Shortest Path Form of Product MDP

We now transform the product MDP Mp into an equivalent form Mssp where all

stationary control policies µ are proper, as will be needed for Lemma 4.2 in Section 4.5.

Note thatMp andMssp are equivalent only in terms of the probability of reaching an

accepting maximal end component—both the states and the transition probabilities

may change.

Let MDPM have a finite set of states S = {1,2, . . . , n, t} and actions a ∈ A(s) for

all s ∈ S. Let t be a special terminal state, which is absorbing (P a
tt = 1) and incurs

zero reward (r(t, a) = 0) for all a ∈ A(t) and all P ∈ Pat [13].

Definition 4.10. A stationary control policy µ is proper if, under that policy, there is

positive probability that the terminal state will be reached after at most n transitions,

regardless of the initial state and transition matrices; that is, if

ρµτ ∶= max
s=1,...,n

max
τ∈T

Pµτ(sn ≠ t∣s0 = s) < 1. (4.2)

In the remainder of this section, we use the simplified notationMp = (S,A,P) to

describe the states, actions, and transition matrices of the product MDP. We refer to

a state (s, q) of Mp as s when clear from context.

Partition the states S of Mp into three disjoint sets: B, S0, and Sr. Let set

B be the union of all accepting maximal end components in Mp. By definition,

every state s ∈ B has reachability probability of 1. Let S0 be the set of states that

have zero probability of reaching B. Set S0 can be computed efficiently by graph

algorithms [9]. Finally, let set Sr = S − (B ∪ S0) contain states not in an accepting

maximal end component, but with non-zero maximum reachability probability. It is

easy to see that B, S0, and Sr form a partition of S.

41

In Algorithm 2, we augment S with a terminal state t that is absorbing and

incurs zero reward. Algorithm 2 does not change the probability of reaching an

accepting maximal end component for any state s ∈ S under any choice of control and

environment policies.

Algorithm 2 Appending the terminal state

Require: Mp = (S,A,P) and Sr, S0,B
S ∶= S ∪ {t} and A(t) ∶= {u} and r(t, u) ∶= 0;
A(s) ∶= A(s) ∪ {u} and P u

st ∶= 1 for all s ∈ B ∪ S0.

We eliminate the k maximal end components in Sr and replace them with new

states ŝi for i = 1, . . . , k in Algorithm 3. This procedure is from Section 3.3 of [33],

where it is proven (Theorem 3.8 in de Alfaro [33]) that the reachability probability is

unchanged by this procedure. The intuition behind this result is that one can move

between any two states r and s in a maximal end component in Sr with probability

one.

Algorithm 3 End component elimination (de Alfaro [33])

Require: MDP Mp = (S,A,P) and Sr, S0,B

Ensure: MDP Mssp = (Ŝ, Â, P̂)
{(C1,D1), . . . , (Ck,Dk)} max end components in Sr
Ŝ0 ∶= S0 and B̂ ∶= B;
Ŝ ∶= S ∪ {ŝ1, . . . , ŝk} − ∪ki=1Ci;

Ŝr ∶= Sr ∪ {ŝ1, . . . , ŝk} − ∪ki=1Ci;

Â(s) ∶= {(s, a) ∣ a ∈ A(s)} for s ∈ S − ∪ki=1Ci;

Â(ŝi) ∶= {(s, a) ∣ s ∈ Ci ∧ a ∈ A(s) −D(s)} for 1 ≤ i ≤ k;

For s ∈ Ŝ, t ∈ S − ∪ki=1Ci and (u, a) ∈ Â(s), P̂ (u,a)
st ∶= P a

ut and P̂
(u,a)
sŝi

∶= ∑t∈Ci P
a
ut.

After applying Algorithms 2 and 3, we call the resulting MDP Mssp. Note that

Ŝr, B̂, and Ŝ0 form a disjoint partition of Ŝ. All stationary control policies for Mssp

are proper, i.e., they will almost surely reach the terminal state t.

Theorem 4.1. All stationary control policies for Mssp are proper.

Proof. Suppose instead that there exists a stationary control policy µ such that the

system starting in state s0 ∈ Ŝr has zero probability of having reached the terminal

42

state t after n stages. This implies that under µ, there is zero probability of reaching

any state s ∈ B̂ ∪ Ŝ0 from s0 ∈ Ŝr. Then, under policy µ, there exists a set U ⊆ Ŝr such

that if state sk ∈ U for some finite integer k, then sk ∈ U for all k. Let U ′ ⊆ U be the

largest set where each state is visited infinitely often. Set U ′ is an end component

in Ŝr, which is a contradiction. Note that one only needs to consider s0 ∈ Ŝr, as all

s ∈ B̂ ∪ Ŝ0 deterministically transition to t.

MDPMssp is equivalent in terms of reachability probabilities to the original prod-

uct MDP Mp, and all stationary control policies are proper.

4.5 Robust Dynamic Programming

We now prove results on robust dynamic programming that will be used in Section 4.6

to compute an optimal robust control policy. The results in this section apply to

uncertain MDPs that satisfy Assumption 4.1. A specific reward function will be used

in Section 4.6 so that the probability of the system satisfying an LTL formula from a

given state is equal to the value function at that state.

4.5.1 Dynamic Programming

For technical reasons, we require control policies to be proper, i.e., they almost surely

reach the terminal state t for all transition matrices in the uncertainty set (see Sec-

tion 4.4.3).

Assumption 4.2. All stationary control policies are proper.

Remark 4.1. This assumption implies that the terminal state will eventually be

reached under any stationary policy. This assumption allows us to make statements

regarding convergence rates. While this assumption is usually a rather strong condi-

tion, it is not restrictive for Problem 4.1 (see Theorem 4.1).

In preparation for the main result of this section, we give the following classical

theorem [78].

43

Theorem 4.2 (Contraction Mapping Theorem). Let (M,d) be a complete metric

space, and let f ∶M →M be a contraction, i.e., there is a real number β, 0 ≤ β < 1,

such that d(f(x), f(y)) ≤ βd(x, y) for all x and y in M. Then, there exists a unique

point x∗ in M such that f(x∗) = x∗. Additionally, if x is any point in M, then

limk→∞ fk(x) = x∗, where fk is the composition of f with itself k times.

We now define mappings that play an important role in the rest of this section.

The value V (s) is the total expected reward starting at state s ∈ S. The shorthand

V represents the value function for all s ∈ S/t, and can be considered a vector in Rn.

Since the reward is zero at the terminal state t, we do not include it. The T and

Tµν operators are mappings from Rn to Rn. For each state s ∈ S/t, define the s-th

component of TV and TµνV respectively as

(TV)(s) ∶= max
a∈A(s)

[r(s, a) +min
p∈Pas

pTV], (4.3)

(TµνV)(s) ∶= r(s, µ(s)) + ν(s, µ(s))TV. (4.4)

In the following two lemmas, we show that these mappings are monotonic and con-

tractive. We prove these for (4.3); the proofs for (4.4) follow by limiting the actions

and transition probabilities at each state s to µ(s) and ν(s, µ(s)) respectively. T k is

the composition of T with itself k times.

Lemma 4.1 (Monotonicity). For any vectors u, v ∈ Rn, such that u ≤ v, we have that

T ku ≤ T kv for k = 1,2,

Proof. Immediate from equation (4.3) since Pas is in the probability simplex.

Definition 4.11. The weighted maximum norm ∥ ⋅ ∥w of a vector u ∈ Rn is defined

by ∥ u ∥w= maxi=1,...,n ∣u(i)∣/w(i), where vector w ∈ Rn and w > 0.

Lemma 4.2 (Contraction). If all stationary control policies are proper, then there

exists a vector w > 0 and a scalar γ ∈ [0,1) such that ∥ Tu − Tv ∥w ≤ γ ∥ u − v ∥w for

all u, v ∈ Rn.

44

Proof. The proof of Lemma 4.2 closely follows that in Bertsekas [13], (Vol. II, Sec-

tion 2.4) where the environment policy is fixed. More specifically, the proof in Bert-

sekas [13] is modified to allow minimization over environment policies. This modifi-

cation holds due to Assumptions 4.1 and 4.2.

First, partition the state space S = {1,2, . . . , n, t}. Let S1 = {t} and for k = 2,3, . . .,

define

Sk = {i∣i ∉ S1 ∪⋯ ∪ Sk−1 and min
a∈A(i)

max
j∈S1∪⋯∪Sk−1

min
P ∈Pai

P a
ij > 0}.

Set Sk is the set of states that have a positive probability of reaching state t in k − 1,

but no fewer, steps. Let m be the largest integer such that Sm is nonempty. Because

of Assumptions 4.1 and 4.2, ∪mk=1Sk = S.

Choose a vector w > 0 so that T is a contraction with respect to ∥ ⋅ ∥w. Take

the ith component wi to be the same for states i in the same set Sk. Choose the

components wi of the vector w by wi = yk if i ∈ Sk, where y1, . . . , ym are appropriately

chosen scalars satisfying 1 = y1 < y2 < ⋯ < ym. We will show how to choose these

values shortly.

Let

ε ∶= min
k=2,...,m

min
a∈A

min
i∈Sk

min
Pai ∈P

a
i

∑
j∈S1∪⋯∪Sk−1

P a
ij.

The value ε is the minimum probability of transitioning from a state in set Sk to

a state in a set that is closer to state t, i.e., a state in sets S1, . . . , Sk−1. Note that

0 < ε ≤ 1. We will choose y2, . . . , ym so that for some β < 1, ym
yk

(1 − ε) + yk−1
yk
ε ≤ β < 1

for k = 2, . . . ,m and later show that such a choice exists.

For all vectors u, v ∈ Rn, select a control policy µ ∈ Πs such that Tµv = Tv, where

45

Tµ indicates that only the system policy is fixed. Then, for all i,

(Tv)(i) − (Tu)(i) = (Tµv)(i) − (Tu)(i)

≤ (Tµv)(i) − (Tµu)(i)

=
n

∑
j=1

V
µ(i)
ij v(j) −Uµ(i)

ij u(j)

≤
n

∑
j=1

P
µ(i)
ij (v(j) − u(j)),

where U
µ(i)
i = arg min

p∈Pµ(i)i
pTu and V

µ(i)
i = arg min

p∈Pµ(i)i
pTv, and

P
µ(i)
ij ∶= arg max{Uµ(i)

ij (v(j) − u(j)), V µ(i)
ij (v(j) − u(j))} over U

µ(i)
ij and V

µ(i)
ij for each

j. The notation U
µ(i)
ij denotes the jth component of vector U

µ(i)
i . Likewise, V

µ(i)
ij

denotes the jth component of vector V
µ(i)
i .

Let k(j) denote that state j belongs to the set Sk. Then, for any constant c,

∥ v − u ∥w≤ c Ô⇒ v(j) − u(j) ≤ cyk(j), j = 1, . . . , n, by definition of the weighted max

norm. Thus for all i,

(Tv)(i) − (Tu)(i)
cyk(i)

≤ 1

yk(i)

n

∑
j=1

P
µ(i)
ij yk(j)

≤
yk(i)−1

yk(i)
∑

j∈S1∪⋯∪Sk(i)−1
P
µ(i)
ij + ym

yk(i)
∑

j∈Sk(i)∪⋯∪Sm
P
µ(i)
ij

= (
yk(i)−1

yk(i)
− ym
yk(i)

) ∑
j∈S1∪⋯∪Sk(i)−1

P
µ(i)
ij + ym

yk(i)

≤ (
yk(i)−1

yk(i)
− ym
yk(i)

) ε + ym
yk(i)

= ym
yk(i)

(1 − ε) +
yk(i)−1

yk(i)

≤ β,

where the last inequality is due to the earlier choice of y values. Then, (Tv)(i)−(Tu)(i)
wi

≤
cβ, i = 1, . . . , n, which taking the max over i = 1,2, . . . , n, gives ∥ Tv − Tu ∥w≤ cβ
for all u, v ∈ Rn with ∥ u − v ∥w≤ c. Thus, T is a contraction under the ∥ ⋅ ∥w norm.

We now show that scalars y1, y2, . . . , ym exist such that the above assumptions

46

hold. Let y0 = 0, y1 = 1, and suppose that y1, y2, . . . , yk have been chosen. If ε = 1,

we choose yk+1 = yk + 1. If ε < 1, we choose yk+1 to be yk+1 = 1
2(yk +Mk) where

Mk = min1≤i≤k {yi + ε
1−ε(yi − yi−1)}.

Since Mk+1 = min{Mk, yk+1 + ε
1−ε(yk+1 − yk)}, by induction we have that for all k,

yk < yk+1 <Mk+1, and thus, one can construct the required sequence.

We now prove the main result of this section. We remind the reader that the

function V ∗ ∶ S → R (equivalently a vector in Rn), defined in equation (4.1), is the

optimal worst-case total expected reward starting from state s ∈ S.

Theorem 4.3 (Robust Dynamic Programming). Under the assumption that all sta-

tionary control policies µ are proper for a finite MDP M with transition matrices in

the uncertainty set Pa for a ∈ A, the following statements hold:

(a) The optimal worst-case value function V ∗ is the unique fixed-point of T ,

V ∗ = TV ∗. (4.5)

(b) The optimal worst-case value function V ∗ is given by,

V ∗ = lim
k→∞

T kV, (4.6)

for all V ∈ Rn. This limit is unique.

(c) A stationary control policy µ and a stationary environment policy ν are optimal

if and only if

TµνV
∗ = TV ∗. (4.7)

Proof. Parts (a) and (b) follow immediately from Theorem 4.2 and Lemma 4.2.

Part (c): First, assume that TµνV ∗ = TV ∗. Then, TµνV ∗ = TV ∗ = V ∗ from

equation (4.5) and V µν = V ∗ from the uniqueness of the fixed-point. Thus, µ and ν

are optimal policies. Now, assume that µ and ν are optimal policies so that V µν = V ∗.

Then, TµνV ∗ = TµνV µν = V µν = V ∗.

47

Corollary 4.1. Given the optimal worst-case value function V ∗, the optimal control

actions a∗ satisfy

a∗(s) ∈ arg max
a∈A(s)

[r(s, a) +min
p∈Pas

pTV ∗], s ∈ S. (4.8)

and, with some abuse of notation, the optimal transition vectors (for the environment)

are

P ∗a
s ∈ arg min

p∈Pas
pTV ∗, s ∈ S, a ∈ A(s). (4.9)

Proof. Follows from Part (c) in Theorem 4.3 and equation (4.3).

To recap, we showed that T is monotone, and a contraction with respect to a

weighted max norm. This lets us prove in Theorem 4.3 that T has a unique fixed-

point that can be found by an iterative procedure (i.e., value iteration). We gave

conditions on the optimality of stationary policies, and showed how to determine

optimal actions for the system and the environment.

4.5.2 Uncertainty Set Representations

Referring back to the operator T defined in equation (4.3), we see that it is com-

posed of two nested optimization problems—the outer maximization problem for the

system, and the inner minimization problem for the environment. To be clear, the

environment optimization problem for a given state s ∈ S and control action a ∈ A(s)
refers to minp∈Pas p

TV .

The tractability of the environment optimization problem depends on the struc-

ture of the uncertainty set Pas . In the remainder of this section, we investigate interval

and likelihood uncertainty sets, as these are both statistically meaningful and com-

putationally efficient. Due to lack of space, we do not discuss maximum a priori,

entropy, scenario, or ellipsoidal uncertainty models, even though these are included

in this framework. The reader should refer to Nilim and El Ghaoui for details [79].

We assume that the uncertainty sets of the MDP factor by state and action for

the environmental optimization [79].

48

Assumption 4.3. Pa can be factored as the Cartesian product of its rows, so its

rows are uncorrelated. Formally, for every a ∈ A , Pa = Pa1 × . . . ×Pan where each Pai is

a subset of the probability simplex in Rn.

Interval Models

A common description of uncertainty for transition matrices corresponding to action

a ∈ A is by intervals Pa = {P a ∣ P a ≤ P a ≤ P a
, P a1 = 1}, where P a and P

a
are nonneg-

ative matrices P a ≤ P a
. This representation is motivated by statistical estimates of

confidence intervals on the individual components of the transition matrix [69]. The

environmental optimization problem can be solved in O(nlogn) time using a bisection

method [79].

Likelihood Models

The likelihood uncertainty model is motivated by determining the transition proba-

bilities between states through experiments. We denote the experimentally measured

transition probability matrix corresponding to action a by F a and the optimal log-

likelihood by βmax.

Uncertainty in the transition matrix for each action a ∈ A is described by the

likelihood region [69]

Pa = {P a ∈ Rn×n∣P a ≥ 0, P a1 = 1,∑
i,j

F a
ijlogP a

ij ≥ βa}, (4.10)

where βa < βamax and can be estimated for a desired confidence level by using a large

sample Gaussian approximation [79]. As described in Assumption 4.1, we enforce

that F a
ij = 0 if and only if P a

ij = 0 for all i, j ∈ S and all a ∈ A.

Since the likelihood region in (4.10) does not satisfy Assumption 4.3, it must

be projected onto each row of the transition matrix. Even with the approximation,

likelihood regions are more accurate representations than intervals, which are further

approximations of the likelihood region. A bisection algorithm can approximate the

environment optimization problem to within an accuracy δ in O(log(Vmax/δ)) time,

49

where Vmax is the maximum value of the value function [79].

4.6 Computing an Optimal Control Policy

We now find a robust control policy that maximizes the probability of satisfying ϕ

over all transitions in an uncertainty set. We use robust value iteration as described

in Section 4.5 on the transformed product MDPMssp created in Section 4.4. Finally,

we project this control policy to a policy for M.

The dynamic programming approach is formulated in terms of total expected

reward maximization, we define the total expected reward as the reachability proba-

bility, which is equivalent to the probability of satisfying the LTL formula. Thus, for

all a ∈ Â, the appropriate rewards are r(s, a) = 1 for all s ∈ B̂, and r(s, a) = 0 for all

s ∈ Ŝ0. For the remaining states, s ∈ Ŝr, we initialize the rewards arbitrarily in [0,1],
and compute the optimal worst-case value function using the iteration presented in

Theorem 4.3. The resulting value function V ∗
ssp gives the satisfaction probability for

each state in Mssp.

The value function V ∗
p forMp is determined from V ∗

ssp. For sp ∈ Sp, determine the

corresponding state sssp ∈ Ŝ, and let V ∗
p (sp) = V ∗

ssp(sssp). This mapping is surjective,

as there is at least one sp for each sssp.

Given the optimal worst-case value function V ∗
p for the original product MDPMp,

the optimal actions a∗(s) ∈ A(s) for each s ∈ Sr can be computed. We do not consider

actions for states in S0∪B at this time. However, one cannot simply use the approach

for selecting actions given by (4.8), because not all stationary control policies onMp

are proper. For states in a maximal end component in Sr, there may be multiple

actions that satisfy (4.8). Arbitrarily selecting actions can lead to situations where

the stationary control policy stays in the maximal end component forever, and thus

never satisfies the specification. We avoid this situation by only selecting an action if

it is both optimal, i.e., satisfies (4.8), and it has a non-zero probability of transitioning

to a state that is not in a maximal end component in Sr. Algorithm 4 selects the

action with the highest probability of transitioning to a state not in a maximal end

50

component in Sr.

Algorithm 4 Product MDP Control Policy

Require: V ∗
p ∈ Rn, Mp = (S,A,P), Sr, S0, B

Ensure: Robust control policy µ
visited ∶= S0 ∪B;
possAct(s) ∶= {a ∈ A(s)∣(TaV ∗

p)(s) = V ∗
p (s)};

for s ∈ Sr do
if ∣possAct(s)∣ = 1 then
µ(s) ∶= possAct(s)
visited ∶= visited ∪ {s};

end if
end for
while visited ≠ S do

for s ∈ Sr/visited do
maxLeaveProb ∶= 0;
leaveProb ∶= maxa∈possAct(s)∑t∈visitedP

a
st;

if leaveProb >maxLeaveProb then
optAct ∶= a
optState ∶= s;

end if
end for
µ(s) ∶= optAct
visited ∶= visited ∪ {optState};

end while

Theorem 4.4. Algorithm 4 returns a robust control policy µ that satisfies V µν
p = V ∗

p

for the worst-case environmental policy ν.

Proof. For each state s ∈ Sr, only actions a ∈ A(s) that satisfy (TaV ∗
p)(s) = V ∗

p (s) need

to be considered, as all other actions cannot be optimal. We call these possible actions.

Every state has at least one possible action by construction. A state s ∈ visited if a

possible action has been selected for it that also has a positive probability of leaving Sr.

Thus, states in visited are not in an end component in Sr. Initialize visited = S0 ∪B.

For every state with only one possible action, select that action and add the state

to visited. For states with multiple possible actions, only select an action if it has a

non-zero probability of reaching visited, and thus, leaving Sr. It is always possible

to choose an action in this manner from the definition of Sr. Select actions this way

51

until visited = S, and return the corresponding policy µ. By construction, µ satisfies

TµνV ∗
p = V ∗

p , and is proper.

The optimal control policy for satisfying the LTL specification ϕ consists of two

parts: a stationary deterministic policy for reaching an accepting maximal end com-

ponent, and a finite-memory deterministic policy for staying there. The former policy

is given by Algorithm 4, and is denoted by µreach. The latter policy is a finite-memory

policy πB that selects actions in a round-robin fashion to ensure that the system stays

inside the accepting maximal end component forever and satisfies ϕ [9]. The overall

optimal policy is π∗p = µreach if s ∉ B, and π∗p = πB if s ∈ B. We induce an optimal

policy π∗ on M from π∗p , as described in Section 4.4.1.

Complexity

The (worst-case) size of the deterministic Rabin automaton Aϕ is doubly-exponential

in the length of the LTL formula ϕ [30]. Experimental work has shown that determin-

istic Rabin automaton sizes are often exponential or lower for many common types

of LTL formulae [60] . Also, there are fragments of LTL, which include all safety and

guarantee properties, that generate a deterministic Rabin automaton whose size is

singly-exponential in the length of the formula [3].

The size of the product MDP Mp is equal to the size of M times the size of Aϕ.

Mp has n states and m transitions. Maximal end components can be found in O(n2)
time. Since T is a contraction, an ε-suboptimal control policy can be computed in

O(n2m log(1/ε)) time without uncertainty sets [13] and O(n2m log(1/ε)2) when using

likelihood transition uncertainty sets. Thus, the computational cost for incorporating

robustness is O(log(1/ε)) times the non-robust case.

4.7 Example

We demonstrate our robust control approach on a discrete-time point-mass robot

model. The system model is xk+1 = xk + (uk + dk)∆t, with state x ∈ X ⊂ R2, control

52

u ∈ U ⊂ R2, disturbance d ∈ D ⊂ R2, and time interval ∆t = tk+1 − tk for k = 0,1,

The disturbance d ∼ N (0,Σ) where Σ = diag(0.2252,0.2252) and d has support on D.

The control set U = [−0.3,0.3]2 and the disturbance set D = [−0.225,0.225]2.

The task for the robot is to sequentially visit three regions of interest, while always

remaining safe. Once the robot has visited the regions, it should return to the start

and remain there. The atomic propositions are {home,unsafe,R1,R2,R3}. The LTL

formula for this task is ϕ = home ∧ ◇◻home ∧ ◻¬unsafe ∧ ◇(R1 ∧ ◇(R2 ∧ ◇R3)).
We used Monte Carlo simulation (75 samples) to create a finite MDP abstraction

M of our system model, where each state of M is a square region [0,1]2. The

actions at each state include transitioning to one of four neighbors (up, left, down,

right) or not moving (which guarantees that the robot remains in its current state).

Due to symmetry of the regions and robot, we only calculated transitions for one

region. The transition probabilities corresponding to action “up” are (up, left, down,

right, self, error) = (0.8133, 0.0267, 0.000, 0.0133, 0.120, 0.0267), with other actions

defined similarly. The error state is entered if the robot accidentally transitions across

multiple states. We used large sample approximations to estimate βa in (4.10) for

each uncertainty level [79].

All computations were run on an 2.4 GHz dual-core desktop with 2 GB of RAM.

The deterministic Rabin automaton representing ϕ has 8 states. The product MDP

has 437 states and 8671 transitions. It took 1.8 seconds to compute Mssp. It took

5.7, 4.7, and 0.47 seconds to generate an ε-suboptimal control policy with likelihood,

interval, and no (nominal) uncertainty sets. In all cases, ε = 10−6.

We calculated the worst-case satisfaction probabilities for the optimal nominal

and robust (likelihood and interval) policies by letting the environment pick transition

matrices given a fixed control policy. Transitions were assumed to be exact if they did

not lead to an “unsafe” cell. The robust likelihood policy outperformed the nominal

and interval, as shown in Figure 4.2. Figure 4.1 shows sample trajectories of the robot

using the robust likelihood and nominal control policies.

53

Figure 4.1: Sample trajectories of the robot using the nominal (dotted black) and
robust likelihood (solid blue) control policies. Cells that are “unsafe” are in black.

Figure 4.2: Ratio of worst-case satisfaction probability of ϕ for nominal and robust
(likelihood and interval) control policies to the satisfaction probability for the nominal
control policy with no uncertainty. Larger ratios are better.

54

4.8 Conclusions

This chapter presented a method for creating robust control policies for finite MDPs

with temporal logic specifications. Robustness is useful when the model is not exact

or comes from a finite abstraction of a continuous system. Designing an ε-suboptimal

robust control policy increases the time complexity only by a factor of O(log(1/ε))
compared to the non-robust policy for statistically relevant uncertainty sets.

Potential future work involves extending these results to other temporal logics,

such as probabilistic computational tree logic (PCTL). It would also be useful to

weaken the assumptions on the transition matrix uncertainty sets to allow for cor-

relation. Finally, this framework appears useful for a unified analysis of adversarial

and stochastic environments.

55

Chapter 5

Efficient and Optimal Reactive
Controller Synthesis for a
Fragment of Temporal Logic

This chapter develops a framework for control policy synthesis for both non-deterministic

transition systems and Markov decision processes that are subject to temporal logic

task specifications. We introduce a fragment of linear temporal logic that can be

used to specify common motion planning tasks such as safe navigation, response to

the environment, persistent coverage, and surveillance. By restricting specifications

to this fragment, we avoid a potentially doubly-exponential automaton construction.

We compute feasible control policies in time polynomial in the size of the system

and specification. We also compute optimal control policies for average, minimax

(bottleneck), and average cost-per-task-cycle cost functions. We highlight several in-

teresting cases when optimal policies can be computed in time polynomial in the size

of the system and specification. Additionally, we make connections between comput-

ing optimal control policies for an average cost-per-task-cycle cost function and the

generalized traveling salesman problem. We give simulation results for representa-

tive motion planning tasks, and compare to generalized reactivity(1). This chapter is

based on results from [105, 102].

56

5.1 Introduction

Due to the high computational complexity of control synthesis for non-deterministic

systems with LTL [83], there has been much interest in determining fragments of

LTL that are computationally efficient to reason about. Fragments of LTL that have

exponential complexity for control policy synthesis were analyzed in Alur and La

Torre [3]. In the context of timed automata, certain fragments of LTL have been used

for efficient control policy synthesis [73]. The generalized reactivity(1), i.e., GR(1),

fragment can express many tasks, and control policies can be synthesized in time

polynomial in the size of the system [19]. This fragment is extended to generalized

Rabin(1), which is the largest such fragment of specifications for which control policy

synthesis can be done efficiently [36].

The main contribution of this chapter is an expressive fragment of LTL for efficient

control policy synthesis for non-deterministic transition systems and Markov decision

processes. A unified approach for control policy synthesis is presented that covers

representative tasks and modeling frameworks. The algorithms used are simple, and

do not require detailed understanding of automata theory. The fragment used is

effectively a Rabin acceptance condition, which allows us to compute directly on the

system.

5.2 Preliminaries

5.2.1 System Model

We use non-deterministic finite transition systems and MDPs to model the system

behavior. Relevant definitions for MDPs will be introduced in Section 5.8.

Definition 5.1. A non-deterministic (finite) transition system (NTS) is a tuple T =
(S,A,R, s0,AP,L, c) consisting of a finite set of states S, a finite set of actions A, a

transition function R ∶ S ×A→ 2S, an initial state s0 ∈ S, a set of atomic propositions

AP , a labeling function L ∶ S → 2AP , and a non-negative cost function c ∶ S×A×S → R.

57

Let A(s) denote the set of available actions at state s. Denote the parents of the

states in the set S′ ⊆ S by Parents(S′) ∶= {s ∈ S ∣ ∃a ∈ A(s) and R(s, a) ∩ S′ ≠ ∅}.

The set Parents(S′) includes all states in S that can (possibly) reach S′ in a single

transition. We assume that the transition system is non-blocking, i.e., ∣R(s, a)∣ ≥ 1

for each state s ∈ S and action a ∈ A(s). A deterministic transition system (DTS)

is a non-deterministic transition system where ∣R(s, a)∣ = 1 for each state s ∈ S and

action a ∈ A(s).
A memoryless control policy for a non-deterministic transition system T is a map

µ ∶ S → A, where µ(s) ∈ A(s) for state s ∈ S. A finite-memory control policy is a map

µ ∶ S×M → A×M where the finite set M is called the memory, and µ(s,m) ∈ A(s)×M
for state s ∈ S and mode m ∈ M . An infinite-memory control policy is a map

µ ∶ S+ → A, where S+ is a finite sequence of states ending in state s and µ(s) ∈ A(s).
Given a state s ∈ S and action a ∈ A(s), there may be multiple possible successor

states in the set R(s, a), i.e., ∣R(s, a)∣ > 1. A single successor state t ∈ R(s, a) is non-

deterministically selected. We interpret this selection (or action) as an uncontrolled,

adversarial environment resolving the non-determinism. A different interpretation of

the environment will be given for MDPs in Section 5.8.

A run σ = s0s1s2 . . . of T is an infinite sequence of its states, where si ∈ S is the

state of the system at index i and for each i = 0,1, . . ., there exists a ∈ A(si) such that

si+1 ∈ R(si, a). A word is an infinite sequence of labels L(σ) = L(s0)L(s1)L(s2) . . .
where σ = s0s1s2 . . . is a run. The set of runs of T with initial state s ∈ S induced by

a control policy µ is denoted by T µ(s).

Graph Theory

We will often consider a non-deterministic transition system as a graph with the

natural bijection between the states and transitions of the transition system and the

vertices and edges of the graph. Let G = (S,R) be a directed graph (digraph) with

vertices S and edges R. There is an edge e from vertex s to vertex t if and only

if t ∈ R(s, a) for some a ∈ A(s). A walk w is a finite edge sequence w = e0e1 . . . ep.

58

Denote the set of all nodes visited along walk w by Vis(w). A digraph G = (S,R)
is strongly connected if there exists a path between each pair of vertices s, t ∈ S, no

matter how the non-determinism is resolved.

5.2.2 A Fragment of Temporal Logic

We use a fragment of temporal logic to specify tasks such as safe navigation, im-

mediate response to the environment, persistent coverage, and surveillance. For a

propositional formula ϕ, the notation #ϕ means that ϕ is true at the next step, ◻ϕ
means that ϕ is always true, ◇ϕ means that ϕ is eventually true, ◻◇ ϕ means that

ϕ is true infinitely often, and ◇◻ ϕ means that ϕ is eventually always true [9].

Syntax

We consider formulas of the form

ϕ = ϕsafe ∧ ϕresp ∧ ϕss
resp ∧ ϕper ∧ ϕtask, (5.1)

where

ϕsafe ∶= ◻ψs,

ϕresp ∶= ⋀
j∈Ir

◻(ψr,j Ô⇒ #φr,j),

ϕss
resp ∶= ⋀

j∈Isr
◇◻ (ψsr,j Ô⇒ #φsr,j),

ϕper ∶=◇◻ ψp,

ϕtask ∶= ⋀
j∈It

◻◇ ψt,j.

Note that ◻ψs = ◻⋀j∈Is ψs,j = ⋀j∈Is ◻ψs,j and ◇◻ ψp = ◇◻⋀j∈Ip ψp,j = ⋀j∈Ip◇◻ ψp,j.
In the above definitions, Is, Ir, Isr, Ip, and It are finite index sets, and ψi,j and φi,j

are propositional formulas for any i and j.

We refer to each ψt,j in ϕtask as a recurrent task.

59

Remark 5.1. Guarantee and obligation, i.e., ◇p and ◻(p Ô⇒ ◇q) respectively

(where p and q are propositional formulas), are not included in equation (5.1). We

show how to include these specifications in Section 5.11.1. It is also natural to consider

specifications that are disjunctions of formulas of the form (5.1). We give conditions

for this extension in Section 5.11.2.

Remark 5.2. The fragment in formula (5.1) is clearly a strict subset of LTL. This

fragment is incomparable to other commonly-used temporal logics, such as compu-

tational tree logic (CTL and PCTL), and GR(1). The fragment that we consider

allows persistence (◇◻) to be specified, which cannot be specified in either CTL or

GR(1). However, it cannot express existential path quantification as in CTL, or allow

disjunctions of formulas as in GR(1) [9, 19]. The fragment is part of the generalized

Rabin(1) logic [36] and the µ-calculus of alternation depth two [38].

Remark 5.3. The results in this chapter easily extend to include a fixed order for

some or all of the tasks in ϕtask, as well as ordered tasks with different state constraints

between the tasks.

Semantics

We use set operations between a run σ of T = (S,A,R, s0,AP,L, c) and subsets of

S where particular propositional formulas hold to define satisfaction of a temporal

logic formula [46]. We denote the set of states where propositional formula ψ holds

by [[ψ]]. A run σ satisfies the temporal logic formula ϕ, denoted by σ ⊧ ϕ, if and

only if certain set operations hold.

Let σ be a run of the system T , Inf(σ) denote the set of states visited infinitely

often in σ, and Vis(σ) denote the set of states visited at least once in σ. Given

propositional formulas ψ and φ, we relate satisfaction of a temporal logic formula of

the form (5.1) with set operations as follows:

• σ ⊧ ◻ψ if and only if Vis(σ) ⊆ [[ψ]],

• σ ⊧◇◻ ψ if and only if Inf(σ) ⊆ [[ψ]],

60

Figure 5.1: Example of a non-deterministic transition system

• σ ⊧ ◻◇ ψ if and only if Inf(σ) ∩ [[ψ]] ≠ ∅,

• σ ⊧ ◻(ψ Ô⇒ #φ) if and only if si ∉ [[ψ]] or si+1 ∈ [[φ]] for all i,

• σ ⊧ ◇◻ (ψ Ô⇒ #φ) if and only if there exists an index j such that si ∉ [[ψ]]
or si+1 ∈ [[φ]] for all i ≥ j.

A run σ satisfies a conjunction of temporal logic formulas ϕ = ⋀mi=1ϕi if and only if

the set operations for each temporal logic formula ϕi holds.

The set T µ(s) might include many possible runs because of the non-determinism.

A system T under control policy µ satisfies the formula ϕ at state s ∈ S, denoted

T µ(s) ⊧ ϕ, if and only if σ ⊧ ϕ for all σ ∈ T µ(s). Given a system T , state s ∈ S is

winning (for the system over the environment) for ϕ if there exists a control policy µ

such that T µ(s) ⊧ ϕ. Let W ⊆ S denote the set of winning states.

An example illustrating the acceptance conditions is given in Figure 5.1. The non-

deterministic transition system T has states S = {s1, s2, s3, s4}; labels L(s1) = {a},

L(s2) = {c}, L(s3) = {b}, L(s4) = {b, c}; a single action a0; and transitions R(s1, a0) =
{s2, s3}, R(s2, a0) = {s2}, R(s3, a0) = {s4}, R(s4, a0) = {s4}. From the acceptance con-

ditions, it follows that W = {s2, s4} for formula ◻(a ∨ c), W = {s2, s3, s4} for formula

◻(aÔ⇒ #b), W = {s1, s2, s3, s4} for formula ◇◻ (a Ô⇒ #b), W = {s1, s2, s3, s4} for

formula ◻◇ c, and W = {s3, s4} for formula ◇◻ b. State s4 is winning for all of the

above formulas.

61

5.3 Problem Statement

We now formally state the two main problems of this chapter, and give an overview

of our solution approach.

Problem 5.1. Given a non-deterministic transition system T and a temporal logic

formula ϕ of the form (5.1), determine whether there exists a control policy µ such

that T µ(s0) ⊧ ϕ. Return the control policy µ if it exists.

We introduce a generic cost function J to distinguish among solutions to Prob-

lem 5.1. Let J map a set of runs T µ(s0), and the corresponding control policy µ to

R ∪∞.

Problem 5.2. Given a non-deterministic transition system T and a temporal logic

formula ϕ of the form (5.1), determine whether there exists an optimal control policy

µ∗ such that T µ∗(s0) ⊧ ϕ and J(T µ∗(s0)) ≤ J(T µ(s0)) for all feasible µ. Return the

control policy µ∗ if it exists.

We begin by defining the value function in Section 5.4, which is a key component

of all later algorithms. Then, we detail a sound (but not complete) algorithm for

computing feasible control policies (i.e., solve Problem 5.1) in Section 5.6. Then,

we introduce average cost-per-task-cycle, minimax (bottleneck), and average cost

functions in Sections 5.7.2, 5.7.3, and 5.7.4, respectively. We discuss sound procedures

for computing optimal control policies for these cost functions in Section 5.7. We solve

analogous problems for MDPs in Section 5.8.

Remark 5.4. The restriction to the fragment in (5.1) is critical for tractability.

Problem 5.1 is intractable in for the full LTL, as determining if there exists a control

policy takes time doubly-exponential in the length of ϕ [83].

5.4 The Value Function and Reachability

We now introduce standard dynamic programming notions [13], as applied to non-

deterministic systems. We consider the case where the controller selects an action,

62

and then the environment selects the next state. Our results easily extend to the

case, used in GR(1) [19], where the environment first resolves the non-determinism

(selects an action), and then the controller selects its action.

We define controlled reachability in a non-deterministic transition system T with

a value function. Let B ⊆ S be a set of states that the controller wants the system

to reach. Let the controlled value function for system T and target set B be a map

V c
B,T ∶ S → R∪∞, whose value V c

B,T (s) at state s ∈ S is the minimum (over all possible

control policies) cost needed to reach the set B, under the worst-case resolution of the

non-determinism. If the value V c
B,T (s) = ∞, then the non-determinism can prevent

the system from reaching set B from state s ∈ S. For example, consider the system

in Figure 5.1 with unit cost on edges and B = {s4}. Then, V c
B(s1) =∞, V c

B(s2) =∞,

V c
B(s3) = 1, and V c

B(s4) = 0. The system cannot guarantee reaching set B from states

s1 or s2.

The value function satisfies the optimality condition

V c
B,T (s) = min

a∈A(s)
max
t∈R(s,a)

V c
B,T (t) + c(s, a, t),

for all s ∈ S.

An optimal control policy µB for reaching the set B is memoryless [13], and can

be computed at each state s ∈ S as

µB(s) = arg min
a∈A(s)

max
t∈R(s,a)

V c
B,T (t) + c(s, a, t).

If multiple actions achieve the minimum, select an action in this set with a minimal

number of transitions to reach B.

We use the value function to define the controllable predecessor set, CPre∞T (B), for

a given system T with target set B ⊆ S. Let CPre∞T (B) ∶= {s ∈ S ∣ V c
B,T (s) <∞} be the

set of all states that can reach a state in B for any resolution of the non-determinism.

We define forced reachability similarly. Let the forced value function for system

T and target set B be a map V f
B,T ∶ S → R ∪∞, whose value V f

B,T (s) at state s ∈ S

63

is the maximum (over all possible control policies) cost of reaching the set B. The

forced value function satisfies the optimality condition

V f
B,T (s) = max

a∈A(s)
max
t∈R(s,a)

V f
B,T (t) + c(s, a, t).

For a given system T with target set B ⊆ S, the forced predecessor set FPre∞T (B) ∶=
{s ∈ S ∣ V f

B,T (s) <∞}, is the set of all states from which no control policy can avoid

reaching a state in B.

Remark 5.5. It is not necessary to compute the exact value function at each state

when computing the predecessor sets; it is only necessary to compute whether it is

finite or infinite.

Computing the Value Function

Algorithm 5 computes the controlled value function as defined previously. This algo-

rithm is a minor extension of Dijkstra’s algorithm [29] to non-deterministic transition

systems. Similar reasoning applies to the forced value function. Set Q is a priority

queue with standard operations ExtractMin (extracts an element with minimal

value) and DecreaseKey (updates an element’s value).

Algorithm 5 Value function (controlled)

Require: NTS T , set B ⊆ S
Ensure: The controlled value function V c

B,T (herein V)
V (s)←∞ for all s ∈ S −B
V (s)← 0 for all s ∈ B
Q← S
while Q ≠ ∅ do
u← ExtractMin(Q)
if V (u) =∞ then

return V
for s ∈ Parents(u) ∩Q do

tmp←mina∈A(s) maxt∈R(s,a) V (t) + c(s, a, t)
if tmp < V (s) then
V (s)← tmp
DecreaseKey(Q,s, V (s))

return V

64

Theorem 5.1. Algorithm 5 computes the controlled value function for all states in

T in O(∣S∣log∣S∣ + ∣R∣) time.

Proof. The proof follows that of Dijkstra’s algorithm (see Ch. 24.3 in [29]), modified

to account for non-determinism. Let V ∗(s) denote the optimal cost of reaching set

B from state s ∈ S, and V (s) denote the current upper bound. We show that

V (u) = V ∗(u) whenever a state u is added to S−Q, i.e., u← ExtractMin(Q). This

is trivially true initially. To establish a contradiction, assume state u is the first state

added to S −Q, with V (u) > V ∗(u). Thus, V ∗(u) < ∞, and there exists a policy to

reachB from u. Consider such a policy that reaches a state y ∈ Q that can reach subset

X ⊆ S−Q in a single step, i.e., there exists a ∈ A(y),R(y, a) ⊆X. Such a state y exists,

since B is reachable from u. Since all states in X have optimal costs, V (y) = V ∗(y).
The non-negativity of edge weights then implies that V (y) = V ∗(y) ≤ V ∗(u) ≤ V (u).
The contradiction is that V (u) ≤ V (y). The algorithm runs in O(∣S∣log∣S∣ + ∣R∣)
time, since ExtractMin and DecreaseKey are called at most ∣S∣ and ∣R∣ times,

respectively.

5.5 Feasible Control Policies for Deterministic Tran-

sition Systems

We first create control policies for deterministic transition systems. We will compute

the winning set W ⊆ S for each specification separately, and then combine them in

Algorithm 6. Recall that T is originally non-blocking.

First, remove all actions from T that do not satisfy the next-step response specifi-

cation ϕresp = ⋀j∈Ir ◻(ψr,j Ô⇒ #φr,j). For each j ∈ Ir, remove an action a ∈ A(s) from

a state s ∈ S if s ∈ [[ψr,j]] and R(s, a) /⊆ [[φr,j]]. Let B ⊆ S contain all states that are

blocking (due to the removal of an action). Create the subgraph Tresp ∶= T ∣S−FPre∞T (B).

Proposition 5.1. A state is in Tresp if and only if it is winning for ϕresp.

Proof. An action is removed from T if and only if it directly violates the acceptance

condition for ϕresp. All blocking states, i.e., those in B ⊆ S, must use an action that

65

was removed. Thus, the set FPre∞T (B) contains all and only states that violate the

acceptance condition for ϕresp. Tresp is non-blocking, so any run of the system satisfies

ϕresp.

Next, remove the states that violate the safety specification ϕsafe = ◻ψs by creating

the subgraph Tsafe ∶= T ∣S−FPre∞T (S−[[ψs]]).

Proposition 5.2. A state is in Tsafe if and only if it is winning for ϕsafe.

Proof. The acceptance condition for ϕsafe is Vis(σ) ⊆ [[ψs]]. The set FPre∞T (S −
[[ψs]])) contains a state if and only if it either is not in [[ψs]] or cannot avoid visiting

a state not in [[ψs]]. Tsafe is non-blocking, so any run of the system satisfies ϕsafe.

Incorporate the persistence specification ϕper = ◇ ◻ ψp by creating the subgraph

Tper ∶= T ∣S−FPre∞T (S−[[ψp]]). The winning set is CPre∞T (Sper), where Sper is the set of

states in Tper.

Proposition 5.3. A state is in Tper if it is winning for ϕper.

Proof. As in Proposition 5.2, but with acceptance condition Inf(σ) ⊆ [[ψp]].

We now compute the winning set for the recurrence specification ϕtask = ⋀j∈It ◻◇
ψt,j by computing the sets of states that can be visited infinitely often.

Proposition 5.4. Let σ be a run of T . If states s, t ∈ Inf(σ), then they must be in

the same strongly connected component.

Proof. By definition of Inf(σ), states s and t are visited infinitely often. Thus, there

must exist a walk starting at s and ending at t, and vice versa. Thus, s and t are in

the same strongly connected component.

The strongly connected components of T can be computed in O(∣S∣ + ∣R∣) time

using Tarjan’s algorithm [29]. Let SCC(Tper) be the set of all strongly connected

components of Tper that have at least one transition between states in the component.

A strongly connected component C ∈ SCC(Tper) is accepting if C ∩ [[ψt,j]] ≠ ∅ for

all j ∈ It. Let A be the set of all accepting strongly connected components, and

66

SA ∶= {s ∈ S ∣ s ∈ C for some C ∈ A}. Every state in an accepting strongly connected

component is in the winning set W ∶= CPre∞T (SA).

Proposition 5.5. A state is in SA if it is winning for ϕtask.

Proof. The relevant acceptance condition is Inf(σ) ∩ [[ψt,j]] ≠ ∅ for all j ∈ It. By

definition, every state in C ∈ A can be visited infinitely often. Since C ∩ [[ψt,j]] ≠ ∅
for all j ∈ It, the result follows.

We now give an overview of our approach for control policy synthesis for deter-

ministic transition systems in Algorithm 6. Optionally, remove all states from T that

cannot be reached from the initial state s0 in O(∣S∣ + ∣R∣) time using breadth-first

search from s0 [29]. Compute the set of states W that are winning for ϕ (lines 1-5).

If the initial state s0 ∉W , then no control policy exists (lines 6-8). If s0 ∈W , compute

a walk on Tsafe from s0 to a state t ∈ C for some accepting strongly connected compo-

nent C ∈ A and where t ∈ ⋃j∈It[[ψt,j]] (lines 9-10). Compute a walk σsuf starting and

ending at state t such that Vis(σsuf) ∩ [[ψt,j]] ≠ ∅ for all j ∈ It and Vis(σsuf) ⊆ C (line

11). The control policy is implicit in the (deterministic) run σ = σpre(σsuf)ω, where ω

denotes infinite repetition. The total complexity of the algorithm is O(∣Ir∣(∣S∣+ ∣R∣))
to check feasibility and O((∣Ir∣ + ∣It∣)(∣S∣ + ∣R∣)) to compute a control policy, where

the extra term is for computing σsuf. Note that any policy that visits every state in C

infinitely often (e.g., randomized or round-robin) could be used to avoid computing

σsuf.

5.6 Feasible Control Policies for Non-Deterministic

Systems

We now give a sound, but not complete, solution to Problem 5.1 by creating feasible

control policies for non-deterministic transition systems that must satisfy a temporal

logic formula of the form (5.1). Algorithm 8 summarizes the main results.

Effectively, the formulas aside from ϕtask restrict states that can be visited, or

transitions that can be taken. Safety, ϕsafe, limits certain states from ever being

67

Algorithm 6 Feasible Controller Synthesis for Deterministic Transition Systems

Require: Deterministic transition system T with s0 ∈ S, formula ϕ of the form (5.1)
Ensure: Run σ
1: Compute Tact

2: Tsafe ← Tact∣S−FPre∞Tact(S−[[ψs]])
3: Tper ← Tsafe∣S−FPre∞Tsafe(S−[[ψp]])
4: A ∶= {C ∈ SCC (Tper) ∣ C ∩ [[ψt,j]] ≠ ∅ ∀j ∈ It}
5: SA ∶= {s ∈ S ∣ s ∈ C for some C ∈ A}
6: if s0 ∉W ∶= CPre∞Tsafe(SA) then
7: return “no satisfying control policy exists”
8: end if
9: Pick state t ∈ C for some C ∈ A and t ∈ ⋂j∈It[[ψt,j]]
10: Compute walk σpre from s0 to t s.t. Vis(σpre) ⊆W
11: Compute walk σsuf from t to t, s.t. Vis(σsuf) ⊆ C ⊆ W and Vis(σsuf) ∩ [[ψt,j]] ≠

∅ ∀j ∈ It
12: return σ = σpre(σsuf)ω

visited, next-step response, ϕresp, limits certain transitions from ever being taken,

persistence, ϕper, limits certain states from being visited infinitely often, and steady-

state, next-step response, ϕss
resp, limits certain transitions from being taken infinitely

often. The remaining formula is recurrence, ϕtask, which constrains certain states

to be visited infinitely often. One creates the subgraph that enforces all constraints

except for ϕtask, and then computes a finite-memory control policy that repeatedly

visits all ϕtask constraints. Then, one relaxes the constraints that only have to be

satisfied over infinite time, and computes all states that can reach the states that are

part of this policy. A feasible control policy exists for all and only the states in this

set. Details are in Algorithm 8.

We now discuss control policy construction for non-deterministic transition sys-

tems, which subsumes the development in Section 5.5. Our approach here differs

primarily in the form of the control policy and how to determine the set of states that

satisfy the persistence and recurrence formulas.

We address formulas for ϕact and ϕsafe in a similar manner to that in Section 5.5,

because both the set FPre∞ and the subgraph operation are already defined for

non-deterministic transition systems.

Next, consider the recurrence specification ϕtask = ⋀j∈It ◻ ◇ ψt,j. An approach

68

similar to the strongly connected component decomposition in Section 5.5 could be

used, but it is less efficient to compute due to the non-determinism. Büchi (and the

more general parity) acceptance conditions have been extensively studied [19, 46].

The key insight is that the ordering of tasks does not affect feasibility, which is

not the case for optimality (see Section 5.7).

Proposition 5.6. Algorithm 7 computes a subset of the winning set for ϕtask.

Proof. To satisfy the acceptance condition Inf(σ)∩[[ψt,j]] ≠ ∅ for all j ∈ It, there must

exist non-empty sets Fj ⊆ [[ψt,j]] such that Fi ⊆ CPre∞T (Fj) holds for all i, j ∈ It, i.e.,

all tasks are completed infinitely often. Algorithm 7 selects an arbitrary order on the

tasks, e.g., Fi+1 ⊆ CPre∞T (Fi) for all i = 1,2, . . . , ∣It∣− 1 and F1 ⊆ CPre∞T (F∣It∣), without

loss of generality, since tasks are completed infinitely often and the graph does not

change. Starting with sets Fj ∶= [[ψt,j]] for all j ∈ It, all and only the states in each

Fj that do not satisfy the constraints are iteratively removed. At each iteration, at

least one state in F1 is removed, or the algorithm terminates. At termination, each

Fj is the largest subset of [[ψt,j]] from which ϕtask can be satisfied.

The outer while loop runs at most ∣F1∣ iterations. During each iteration, CPre∞T

is computed ∣It∣ times, which dominates the time required to compute the set inter-

sections (when using a hash table). Thus, the total complexity of Algorithm 7 is

O(∣It∣Fmin(∣S∣ + ∣R∣)), where Fmin = minj∈It ∣Fj ∣.
Feasible control policy synthesis is detailed in Algorithm 8. Compute the set W

of states that are winning for ϕ (lines 1-7). If the initial state s0 ∉W , then no control

policy exists. If s0 ∈W , compute the memoryless control policy µSA , which reaches the

set SA. Use µSA until a state in SA is reached. Then, compute the memoryless control

policies µj induced from V c
Fj ,Tsafe for all j ∈ It (line 11, also see Algorithm 7). The

finite-memory control policy µ is defined as follows by switching between memoryless

policies depending on the current task. Let j ∈ It denote the current task set Fj. The

system uses µj until a state in Fj is visited. Then, the system updates its task to

k = (j + 1, mod ∣It∣) + 1 and uses control policy µk until a state in Fk is visited, and

69

Algorithm 7 Buchi (T , {[[ψt,j]] for j ∈ It})
Require: Non-deterministic transition system T , Fj ∶= [[ψt,j]] ⊆ S for j ∈ It
Ensure: Winning set W ⊆ S
1: while True do
2: for i = 1,2,3, . . . , ∣It∣ − 1 do
3: Fi+1 ← Fi+1 ∩CPre∞T (Fi)
4: if Fi+1 = ∅ then
5: return W ← ∅, Fj ← ∅ for all j ∈ It
6: end if
7: end for
8: if F1 ⊆ CPre∞T (F∣It∣) then
9: return W ← CPre∞T (F∣It∣), Fj for all j ∈ It
10: end if
11: F1 ← F1 ∩CPre∞T (F∣It∣)
12: end while

so on. The total complexity of the algorithm is O((∣Ir∣ + ∣Isr∣ + ∣It∣∣Fmin∣)(∣S∣ + ∣R∣)),
which is polynomial in the size of the system and specification.

Algorithm 8 Feasible Controller Synthesis for Non-Deterministic Transition Systems

Require: Non-deterministic transition system T and formula ϕ
Ensure: Control policy µ
1: Compute Tresp on T
2: Tsafe ← Tresp∣S−FPre∞(S−[[ψs]])
3: Tper ← Tsafe∣S−FPre∞(S−[[ψp]])
4: Compute T ss

resp on Tper

5: Ψ ∶= {[[ψt,j]] for all j ∈ It}
6: SA, F ∶= {F1, . . . , F∣It∣}← Buchi(T ss

resp,Ψ)
7: W ∶= CPre∞Tsafe(SA)
8: if s0 ∉W then
9: return “no control policy exists”
10: end if
11: µSA ← control policy induced by V c

SA,Tsafe
12: µj ← control policy induced by V c

Fj ,Tsafe for all j ∈ It
13: return Control policies µSA and µj for all j ∈ It

70

5.7 Optimal Control Policies for Non-Deterministic

Transition Systems

We now give a sound, but not complete, solution to Problem 5.2 by computing control

policies for non-deterministic transitions systems that satisfy a temporal logic formula

of the form (5.1) and also minimize a cost function. We consider average cost-per-

task-cycle, minimax, and average cost functions. The last two admit polynomial time

solutions for deterministic and special cases of non-deterministic transition systems.

However, we begin with the average cost-per-task-cycle cost function, as it is quite

natural in applications.

The values these cost functions take are independent of any finite sequence of

states, as they depend only on the long-term behavior of the system. Thus, we

optimize the infinite behavior of the system, which corresponds to completing tasks

specified by ϕtask on a subgraph of T as constructed in Section 5.6. We assume that

we are given T ss
resp (denoted hereafter by Tinf) and the task sets Fj ⊆ S returned by

Algorithm 7 (see Algorithm 8). Note that Tinf is the largest subgraph of T where

all constraints from ϕsafe, ϕresp, ϕper, and ϕss
resp hold. Each Fj is the largest set of

states for the jth task that are part of a feasible control policy. The problem is now

to compute a feasible (winning) control policy that also minimizes the relevant cost

function.

5.7.1 The Task Graph

Since only the recurrent tasks in ϕtask on Tinf will matter for optimization, we construct

a new graph that encodes the cost of moving between all tasks. A task graph G′ =
(V ′,E′) encodes the cost of optimal control policies between all tasks in ϕtask (see

Figure 5.2). Let V ′ be partitioned as V ′ = ⋃j∈It V ′
j , where V ′

i ∩V ′
j = ∅ for all i ≠ j. Let

Fj ⊆ S denote the set of states that correspond to the jth task in ϕtask, as returned

from Algorithm 7. Create a state v ∈ V ′
j for each of the 2∣Fj ∣ − 1 non-empty subsets

of Fj that are reachable from the initial state. Define the map τ ∶ V ′ → 2S from each

71

Figure 5.2: A non-deterministic transition system and its task graph (right).

state in V ′ to subsets of states in S. For each state v ∈ V ′, compute the controlled

value function V c
τ(v),Tinf

on Tinf. For all states u ∈ V ′
i and v ∈ V ′

j where i ≠ j, define an

edge euv ∈ E′. Assign a cost to edge euv as cuv ∶= maxs∈τ(u) V
c
τ(v),Tinf

(s). The cost cuv is

the maximum worst-case cost of reaching a state t ∈ τ(v) from a state s ∈ τ(u), when

using an optimal control policy.

It is necessary to consider all subsets of states, as the cost of reaching each subset

may differ due to the non-determinism. For deterministic systems, one can simply

create a state in V ′
j for each state in Fj. This is because the cost of all subsets of Fj

can be determined by the costs to reach the individual states in Fj.

It may be costly to compute the task graph in its entirety. By incrementally

constructing the task graph, one can tradeoff between computation time and conser-

vatism. For example, one can create a task graph with ∣It∣ states, where each state

corresponds to the set Fj. This gives a control policy that leads to an upper bound

on the cost of an optimal policy. Additionally, by defining edges in the task graph as

the minimum worst-case cost mins∈τ(u) V
c
τ(v),Tinf

(s) between tasks, one can compute

a lower bound on the cost of an optimal policy. One can use the current control

policy and improve performance in an anytime manner by adding more states to the

subgraph corresponding to subsets of each Fj.

72

Algorithm 9 Optimal Controller Synthesis for Non-Deterministic Transition Systems

Require: NTS T , formula ϕ, cost function J
Ensure: Optimal control policy µ∗

1: Compute T ss
resp, SA, and Fj for all j ∈ It (see Alg. 8)

2: Compute F ∗
j ⊆ Fj for all j ∈ It and optimal task order

3: µ∗F ∗ ← control policy from V c
F ∗,Tsafe where F ∗ = ∪j∈ItF ∗

j

4: µ∗j ← control policy from V c
F ∗j ,Tsafe

for all j ∈ It
5: return µ∗F ∗ , µ

∗
j for all j ∈ It and optimal task order

5.7.2 Average Cost-Per-Task-Cycle

Recall that for ϕtask = ⋀j∈It ◻◇ ψt,j, the propositional formula ψt,j is the jth task. A

run σ of system T completes the jth task at time t if and only if σt ∈ [[ψt,j]]. A task

cycle is a sequence of states that completes each task at least once, i.e., it intersects

[[ψt,j]] for each j = 1, . . . ,m at least once. Similarly to [24], we minimize the average

cost-per-task-cycle, or equivalently the maximum cost of a task cycle in the limit.

For a deterministic system, this corresponds to finding a cycle of minimal cost that

completes every task.

We define the cost function over a run σ. Let σ be a run of T under control policy

µ, µ(σ) be the corresponding control input sequence, and ITC(t) = 1 indicate that

the system completes a task cycle at time t and ITC(t) = 0 otherwise. The average

cost per task cycle of run σ is

J ′TC(σ,µ(σ)) ∶= lim sup
n→∞

∑n
t=0 c(st, µ(st), st+1)
∑n
t=0 ITC(t)

,

which maps runs and control inputs of T to R ∪∞. This map is well-defined when

(i) c(σt, µ(σt), σt+1) is bounded for all t ≥ 0, and (ii) there exists a t′ ∈ N such that

ITC(t) = 1 for infinitely many t ≥ t′. We assume that (i) is true in the sequel, and

note that (ii) holds for every run that satisfies a formula ϕ with at least one task.

We define the average per-task-cycle cost function

JTC(T µ(s)) ∶= max
σ∈T µ(s)

J ′TC(σ,µ(σ)) (5.2)

73

over the set of runs of system T starting from initial state s under control policy

µ. The cost function (5.2) does not depend on any finite behavior of the system,

intuitively because any short-term costs are averaged out in the limit.

We next show that Problem 5.2 with cost function JTC is at least as hard as the

NP-hard generalized traveling salesman problem [80].

Generalized traveling salesman problem [80]: Let G = (V,E) be a digraph

with vertices V , edges E, and a non-negative cost cij on each edge (i, j) ∈ E. Set V is

the disjoint union of p vertex sets, i.e., V = V1 ∪ . . .∪Vp, where Vi ∩Vj = ∅ for all i ≠ j.
There are no edges between states in the same vertex set. The generalized traveling

salesman problem, GTSP = ⟨(V,E), c⟩, is to find a minimum cost cycle that includes

a single state from each Vi for all i = 1, . . . , p.

Theorem 5.2. Any instance of the generalized traveling salesman problem can be

reduced (in polynomial time) to an equivalent instance of Problem 5.2 with the cost

function JTC.

Proof. The proof is by construction. Given an instance of the GTSP ⟨(V,E), c⟩, we

solve Problem 5.2 on a deterministic transition system T = (S,A,R, s0,AP,L, c) and

formula ϕ. Let S = V ∪ {s0}. Define the transitions as R(u, av) = v, with action

av ∈ A(u), and costs c(u, av, v) = cuv for each edge euv ∈ E. Label all states in vertex

set Vi with atomic proposition Li and let ϕ = ⋀i∈p◻◇Li. Finally, add transitions from

s0 to every other state s ∈ S. Although Problem 5.2 does not require that each task

is only completed once per cycle, an optimal solution always exists, which completes

each task once per cycle.

Recall that It is the index set of all recurrent tasks. We can fix an arbitrary

task ordering, denoted It = 1, . . . , ∣It∣ (with some abuse of notation), without loss of

generality for feasible control policies. However, the order that we visit tasks matters

for optimal control policies. Additionally, we can select this task order ahead of

time, or update it during execution. We now (potentially conservatively) assume

that we will select the task order ahead of time. This assumption is not necessary in

Sections 5.7.3 or 5.7.4.

74

We will optimize the task order over all permutations of fixed task orders. This

optimization is a generalized traveling salesman problem on the task graph. While

this is an NP-hard problem, practical methods exist for computing exact and ap-

proximate solutions [80]. Once the optimal ordering of tasks is computed, the finite-

memory control policy switches between these tasks in a similar manner described in

Section 5.6.

5.7.3 Minimax (Bottleneck) Costs

We now consider a minimax (bottleneck) cost function, which minimizes the maxi-

mum accumulated cost between completion of tasks. The notation loosely follows [90],

which considers a generalization of this cost function for deterministic transition sys-

tems with LTL. Let Ttask(σ, i) be the accumulated cost at the ith completion of a

task in ϕtask along a run σ. The minimax cost of run σ is

J ′bot(σ,µ(σ)) ∶= lim sup
i→∞

(Ttask(i + 1) −Ttask(i)), (5.3)

which maps runs and control inputs of T to R ∪∞.

Define the worst-case minimax cost function as

Jbot(T µ(s)) ∶= max
σ∈T µ(s)

J ′bot(σ,µ(σ)) (5.4)

over the set of runs of system T starting from initial state s under control policy µ.

We now solve Problem 5.2 for the cost function Jbot. First, compute the task

graph as in Section 5.7. The edges in the task graph correspond to the maximum cost

accumulated between completion of tasks, assuming that the system uses an optimal

strategy. Thus, a minimal value of Jbot can be found by minimizing the maximum

edge in the task graph, subject to the constraint that a vertex corresponding to each

task can be reached. Select an estimate of Jbot, and remove all edges in the task graph

that are greater than this value. If there exists a strongly connected component of

the task graph that contains a state corresponding to each task and is reachable from

75

the initial state, then we have an upper bound on Jbot. If not, we have a lower

bound. This observation leads to a simple procedure where one selects an estimate

of Jbot as the median of edge costs that satisfy the previously computed bounds,

removes all edges with costs greater than this estimate, determines if the subgraph is

strongly connected (with respect to the tasks), and then updates the bounds. Each

iteration requires the computation of strongly connected components and the median

of edge costs, which can be done in linear time [29]. It is easy to see that this

procedure terminates with the correct value of Jbot in O(log∣E′∣) iterations. Thus,

the total complexity is O(log∣E′∣(∣V ′∣ + ∣E′∣)), giving a polynomial time algorithm

for deterministic transition systems and non-deterministic transition systems with a

single state per task, i.e., ∣Fj ∣ = 1 for all j ∈ It.

5.7.4 Average Costs

The average cost of run σ is

J ′avg(σ,µ(σ)) ∶= lim sup
n→∞

∑n
t=0 c(st, µ(st), st+1)

n
,

which maps runs and control inputs of T to R ∪∞.

We now define the worst-case average cost function,

Javg(T µ(s)) ∶= sup
σ∈T µ(s0)

J ′avg(σ,µ(σ)) (5.5)

over the set of runs of system T starting from initial state s under control policy µ.

Note that this cost function corresponds to JTC when ϕtask = ◻◇True, but without

additional tasks.

For non-deterministic transition systems, Problem 5.2 reduces to solving a mean-

payoff parity game on Tinf [22]. An optimal control policy will typically require infinite

memory, as opposed to the finite-memory control policies that we have considered.

Such a policy alternates between a feasible control policy and an unconstrained min-

imum cost control policy, spending an increasing amount of time using the uncon-

76

strained minimum cost control policy. Given the subgraph Tinf and the feasible task

sets Fj ⊆ S (see Algorithm 8), one can compute an optimal control policy using the re-

sults of Chatterjee et al. [22]. For deterministic systems, extensions to a more general

weighted average cost function can be found in Chapter 3.

5.8 A Note on Markov Decision Processes

We now consider the Markov decision process (MDP) model. MDPs provide a general

framework for modeling non-determinism (e.g., system actions) and probabilistic (e.g.,

environment actions) behaviors that are present in many real-world systems. We

interpret the environment differently than in previous sections; it acts probabilistically

through a transition probability, function instead of non-deterministically. We sketch

an approach for control policy synthesis for formulas of the form ϕ = ϕsafe ∧ ϕper ∧ ϕrec

using techniques from probabilistic model checking [9]. We recall definitions from

Section 4.2 for convenience.

Definition 5.2. A (finite) labeled MDP M is the tupleM = (S,A,P, s0,AP,L), con-

sisting of a finite set of states S, a finite set of actions A, a transition probability

function P ∶ S ×A × S → [0,1], an initial state s0, a finite set of atomic propositions

AP , and a labeling function L ∶ S → 2AP . Let A(s) denote the set of available actions

at state s. Let ∑s′∈S P (s, a, s′) = 1 if a ∈ A(s), and P (s, a, s′) = 0 otherwise. We

assume, for notational convenience, that the available actions A(s) are the same for

every s ∈ S.

A run of the MDP is an infinite sequence of its states, σ = s0s1s2 . . . where si ∈ S
is the state of the system at index i, and P (si, a, si+1) > 0 for some a ∈ A(si). The

set of runs of M with initial state s induced by a control policy µ (as defined in

Section 5.2.1) is denoted by Mµ(s). There is a probability measure over the runs in

Mµ(s) [9].

Given a run of M, the syntax and semantics of LTL are identical to a non-

deterministic system. However, satisfaction for an MDP M under a control policy µ

77

is now defined probabilistically [9]. Let P(Mµ(s) ⊧ ϕ) denote the expected satisfaction

probability of LTL formula ϕ by Mµ(s).

Problem 5.3. Given an MDPM with initial state s0 and an LTL formula ϕ, compute

the control policy µ∗ = arg maxµ P(Mµ(s0) ⊧ ϕ), over all possible finite-memory,

deterministic policies.

The value function at a state now has the interpretation as the maximum prob-

ability of the system satisfying the specification from that state. Let B ⊆ S be a set

from which the system can satisfy the specification almost surely. The value VB,M(s)
of a state s ∈ S is the probability that the MDP M will reach set B ⊆ S when using

an optimal control policy starting from state s ∈ S.

First compute the winning set W ⊆ S for the LTL formula ϕ = ϕsafe ∧ ϕper ∧ ϕrec.

The probability of satisfying ϕ is equivalent to the probability of reaching an accepting

maximal end component [9]. Informally, accepting maximal end components are sets

of states that the system can remain in forever, and where the acceptance condition

of ϕ is satisfied almost surely. These sets can be computed in O(∣S∣∣R∣) time using

graph search [9]. The winning set W ⊆ S is the union of all states that are in some

accepting maximal end component.

5.8.1 Reachability

Given the winning set W ⊆ S, where the system can satisfy the specification ϕ almost

surely, it remains compute a control policy to reach W from the initial state s0.

Let Msafe be the sub-MDP (see [9]) where all states satisfy ϕsafe. The set S1 =
CPre∞(W) contains all states that can satisfy ϕ almost surely. Let Sr be the set of

states that have positive probability of reaching W , which can be computed by graph

search [9]. The remaining states S0 = S − (S1 ∪ Sr) cannot reach W , and thus have

zero probability of satisfying ϕ. Initialize V c
B(s) = 1 for all s ∈ S1, V c

B(s) = 0 for all

s ∈ S0, and V c
B(s) ∈ (0,1) for all s ∈ Sr. It remains to compute the value function, i.e.

the maximum probability of satisfying the specification, for each state in Sr. This

78

computation boils down to a standard reachability problem that can be solved by

linear programming or value iteration [9, 13].

5.8.2 Control Policy

The control policy for maximizing the probability of satisfying the LTL formula ϕ

consists of two parts: a memoryless deterministic policy for reaching an accepting

maximal end component, and a finite-memory deterministic policy for staying there.

The former policy is computed from V c
B,M and denoted µreach. The latter policy is a

finite-memory policy µB that selects actions to ensure that the system stays inside

the accepting maximal end component forever, and satisfies ϕ by visiting every state

infinitely often [9]. The control policy µ∗ is µ∗ = µreach if s ∉ B and µ∗ = µB if s ∈ B.

5.8.3 Optimal Control

A similar task graph construction to Section 5.7.1 can be used to compute optimal

control policies. A task graph is computed for each accepting maximal end compo-

nent. Then, one can maximize the probability of reaching the union of all states in

accepting maximal end components that meet a user-specified cost threshold.

5.9 Complexity

We summarize our complexity results for feasible control policy synthesis, and com-

pare with LTL and GR(1) [19]. We assume that set membership is determined in

constant time with a hash function [29], and that the transition system T is repre-

sented as a game graph [46]. We denote the length of a temporal logic formula by ∣ϕ∣.
Let ∣ϕ∣ = ∣Ir∣+ ∣Isr∣+ ∣It∣ for the fragment in (5.1), ∣ϕ∣ =mn for a GR(1) formula with m

assumptions and n guarantees, and ∣ϕ∣ be the formula length for LTL [9]. Recall that

Fmin = minj∈It ∣[[ψt,j]]∣. For typical motion planning specifications, Fmin ≪ ∣S∣ and ∣ϕ∣
is small. We use the non-symbolic complexity results for GR(1) in Bloem et al. [19].

Results are summarized in Table 5.1.

79

Table 5.1: Complexity of feasible policy synthesis

Language DTS NTS MDP
Frag. in (5.1) O(∣ϕ∣(∣S∣ + ∣R∣)) O(∣ϕ∣Fmin(∣S∣ + ∣R∣)) O(LP(∣T ∣))
GR(1) O(∣ϕ∣∣S∣∣R∣) O(∣ϕ∣∣S∣∣R∣) N/A

LTL O(2(∣ϕ∣)(∣S∣ + ∣R∣)) O(22(∣ϕ∣)(∣S∣ + ∣R∣)) O(LP(∣T ∣)22(∣ϕ∣))

We now summarize the complexity of optimal control policy synthesis. The task

graph G′ = (V ′,E′) has O(∑i∈It 2∣Fi∣−1) states, and can be computed in O((∑i∈It 2∣Fi∣−
1)(∣S∣log∣S∣+∣R∣)) time. Computing an optimal control policy for JTC requires solving

an NP-hard generalized traveling salesman problem on G′. Computing an optimal

control policy for Jbot requires O(log∣E′∣(∣V ′∣+∣E′∣) time. An optimal control policy for

Javg can be computed in pseudo-polynomial time [22]. For deterministic systems, the

task graph has O(∑i∈It ∣Fi∣) states, and can be computed in O((∑i∈It ∣Fi∣)(∣S∣log∣S∣ +
∣R∣)) time. An optimal control policy for Javg can be computed in O(∣S∣∣R∣) time.

Thus, we can compute optimal control policies for deterministic transition systems

with cost functions Jbot and Javg in time polynomial in the size of the system and

specification. Additionally, for non-deterministic transition systems where ∣Fj ∣ = 1 for

all j ∈ It, we can compute optimal control policies for Jbot in time polynomial in the

size of the system and specification.

Remark 5.6. The fragment in (5.1) is not handled well by standard approaches.

Using ltl2dstar [60], we created Rabin automaton for formulas of the form ϕresp. The

computation time and automaton size both increased exponentially with the number

of conjunctions in ϕresp.

5.10 Examples

The following examples (based on those in Wolff et al. [105]) demonstrate the tech-

niques developed in Sections 5.6 and 5.7 for tasks motivated by robot motion planning

in a planar environment (see Figure 5.3). All computations were done in Python on

a dual-core Linux desktop with 2 GB of memory. All computation times were av-

80

Figure 5.3: Left: Diagram of deterministic setup (n = 10). Only white cells are
labeled “stockroom.” Right: Diagram of non-deterministic setup (n = 10). A dynamic
obstacle (obs) moves within the shaded region.

eraged over five arbitrarily-generated problem instances, and include construction of

the transition system.

5.10.1 Deterministic Transition System

Consider an environment where a robot occupies a single cell at a time, and can choose

to either remain in its current cell or move to one of four adjacent cells at each step. We

consider square grids with static obstacle densities of 20 percent. The robot’s task is to

eventually remain in the stockroom while repeatedly visiting a pickup location P and

multiple dropoff locations D0,D1,D2, and D3. The robot must never collide with a

static obstacle. The set of atomic propositions is {P,D0,D1,D2,D3, stockroom,obs}.

This task is formalized by ϕ = ◇ ◻ stockroom ∧ ◻ ◇ P ∧ ⋀j∈It ◻ ◇ Dj ∧ ◻¬obs.

In all following results, Dj holds at a single state in the transition system. Results

for optimal control policy synthesis are shown in Figure 5.4 for n × n grids where

n ∈ {200,300,400}.

81

Figure 5.4: Control policy synthesis times for deterministic (left) and non-
deterministic (right) grids.

5.10.2 Non-Deterministic Transition System

We now consider a similar setup with a dynamically moving obstacle. The state of

the system is the product of the robot’s location and the obstacle’s location, both of

which can move as previously described for the robot. The robot selects an action,

and then the obstacle non-deterministically moves. The robot’s task is similar to

before, and is formalized as ϕ = ◻◇ P ∧ ⋀j∈It ◻◇Dj ∧ ◻¬obs. Results for optimal

control policy synthesis are shown in Figure 5.4 for n×n grids where n ∈ {10,14,18}.

5.11 Extensions

We discuss two natural extensions to the fragment in formula (5.1). The first includes

guarantee and obligation properties, and the second includes disjunctions of formulas.

5.11.1 Guarantee and Obligation

While guarantee and obligation, i.e., ◇p and ◻(p Ô⇒ ◇q) respectively (where p

and q are propositional formulas), specifications are not explicitly included in (5.1),

they can be incorporated by introducing new system variables, which exponentially

increases the system size [108]. Even including conjunctions of guarantee formulas is

82

NP-complete [89].

Another approach is to use the stricter specifications ◻ ◇ p for guarantee and

◻¬p ∨ ◻ ◇ q for obligation. The ◻◇ formulas are part of the fragment in (5.1),

and disjunctions can be included in some cases (see Section 5.11.2). If the transition

system is strongly connected, then these stricter formulas are feasible if and only if the

original formulas are. Strong connectivity is a natural assumption in many robotics

applications. For example, an autonomous car can typically drive around the block

to revisit a location.

5.11.2 Disjunctions of Specifications

We now consider an extension to specifications that are disjunctions of formulas of

the form (5.1).

For a deterministic transition system, a control policy for a formula given by

disjunctions of formulas of the form (5.1) can be computed by independently solving

each individual subformula using the algorithms given earlier in this section.

Proposition 5.7. Let ϕ = ϕ1 ∨ ϕ2 ∨ . . . ∨ ϕn, where ϕi is a formula of the form (5.1)

for i = 1, . . . , n. Then, there exists a control policy µ such that T µ(s) ⊧ ϕ if and only

if there exists a control policy µ such that T µ(s) ⊧ ϕi for some i = 1, . . . , n.

Proof. Sufficiency is obvious. For necessity, assume that there exists a control policy

µ such that T µ(s) satisfies ϕ. The set T µ(s) contains a single run σ, since T is

deterministic. Thus, σ satisfies ϕi for some i = 1, . . . , n.

For non-deterministic transition systems, necessity in Proposition 5.7 no longer

holds because the non-determinism may be resolved in multiple ways, and thus, in-

dependently evaluating each subformula may not work.

Algorithm 10 is a sound, but not complete, procedure for synthesizing a control

policy for a non-deterministic transition system with a specification given by disjunc-

tions of formulas of the form (5.1). Arbitrary disjunctions of this form are intractable

to solve exactly, as this extension subsumes Rabin games, which are NP-complete [37].

83

Algorithm 10 computes winning sets Wi ⊆ S for each subformula ϕi and checks

whether the initial state can reach their unionW ∶= ⋃ni=1Wi. The control policy µreach

is used until a state s ∈Wi is reached for some i, after which µi is used.

Algorithm 10 DISJUNCTION

Require: NTS T , formula ϕi, i = 1, . . . , n
Ensure: Winning set W ⊆ S and control policy µ
Wi ⊆ S and µi ← winning states and control policy for ϕi
W ← ⋃ni=1Wi

if s0 ∉ CPre∞T (W) then
return µ = ∅

µreach ← control policy induced by V c
W,T

return µreach and µi for all i

5.12 Conclusions

We presented a framework for control policy synthesis for both non-deterministic

transition systems and Markov decision processes that are subject to temporal logic

task specifications. Our approach for control policy synthesis is straightforward and

efficient, both theoretically and according to our preliminary experimental results.

Additionally, we presented a framework for optimal control policy synthesis for non-

deterministic transition systems with specifications from a fragment of temporal logic.

Our approach is simple, and makes explicit connections with dynamic programming

through our extensive use of value functions. Additionally, optimal policies can be

computed in polynomial time for certain combinations of cost functions and system

restrictions.

Future work includes investigating the incremental computation of the value func-

tion and exploring the underlying automata structure of this fragment of temporal

logic. Detailed experimental analysis would also be useful for better comparing em-

pirical performance to GR(1) and automata-based methods.

84

Chapter 6

Automaton-Guided Controller
Synthesis for Nonlinear Systems
with Temporal Logic

This chapter describes a method for the control of discrete-time nonlinear systems

subject to temporal logic specifications. Our approach uses a coarse abstraction of the

system and an automaton representing the temporal logic specification to guide the

search for a feasible trajectory. This decomposes the search for a feasible trajectory

into a series of constrained reachability problems. Thus, one can create controllers

for any system for which techniques exist to compute (approximate) solutions to con-

strained reachability problems. Representative techniques include sampling-based

methods for motion planning, reachable set computations for linear systems, and

graph search for finite discrete systems. Our approach avoids the expensive com-

putation of a discrete abstraction, and its implementation is amenable to parallel

computing. We demonstrate our approach with numerical experiments on tempo-

ral logic motion planning problems with high-dimensional (more than 10 continuous

state) dynamical systems. This chapter is based on results from [106].

6.1 Introduction

Common approaches to temporal logic motion planning construct a finite discrete

abstraction of the dynamical system [15, 53, 61]. An abstraction of a system is

85

a partition of the continuous state space into a finite number of abstract states,

i.e., sets of system states, with transitions between abstract states that represent

possible system behaviors. Finite abstractions are typically expensive to compute,

conservative, and not guided by the underlying specification (see [4, 10, 15, 47, 53,

61, 108]).

Instead of blindly doing expensive reachability computations to construct an ab-

straction of a dynamical system, we use a coarse abstraction of the system and perform

constrained reachability checks as needed for the task. We first create an existential

abstraction, which is a finite abstraction of the system where transitions between

abstract states are assumed to exist, but have yet not been verified, e.g., through

reachability computations, to exist in the system. We then create a product automa-

ton from the finite-state abstraction, and an automaton representing the underlying

specification. The product automaton guides reasoning about complicated temporal

logic properties as a sequence of simple temporal properties that can be analyzed

using constrained reachability techniques. This sequence of constrained reachability

problems is called an abstract plan. However, the system might not be able to follow

a given abstract plan, since dynamic constraints were not considered in the existen-

tial abstraction. Thus, we check the abstract plan with the continuous dynamics by

solving a sequence of constrained reachability problems. If this sequence is infeasible,

the product automaton is updated, and a new abstract plan is generated.

This approach lets one take advantage of the significant work in computing con-

strained reachability relations over continuous state spaces. The related literature in-

cludes robotic motion planning [68], optimization-based methods for trajectory gener-

ation [14, 77, 86], and PDE-based methods [92]. Exactness in computing constrained

reachability is not critical; we will only require a sound technique.

The main contribution of this chapter is a general framework for synthesizing

controllers for nonlinear dynamical systems subject to temporal logic specifications.

Our approach is independent of the specific techniques used to compute constrained

reachability, and is amenable to parallel computation. Despite the framework’s gener-

ality, it is also computationally powerful, as we show with examples that improve on

86

state-of-the-art techniques for temporal logic motion planning for high-dimensional

dynamical systems with more than 10 continuous states.

This work is part of the counterexample-guided abstraction refinement (CEGAR)

framework [26, 5, 91]. Here, an abstract model of the system is checked to see if

the specification holds. If the check fails, then the abstraction is refined based on a

counterexample (e.g. a system trajectory) generated during the check. Our approach

differs in that we associate weights with the abstraction, and use them to update a

ranking of promising abstract plans.

This approach is also related to that on combining task and motion planning [15,

21, 52, 81, 82, 96, 98]. These approaches first compute an abstract plan, and then use

sampling-based motion planning techniques to check whether the plan satisfies the

dynamic constraints. This idea is applied to co-safe linear temporal logic specifications

in [15, 81, 82]. Our framework is agnostic to the method used to check constrained

reachability, and applies to a wider class of specifications.

This work is also related to the specification-guided work in Gol et al. [45], where

they compute feedback controllers. We consider more general systems and specifica-

tions. Finally, coarse bisimulations of discrete-time piecewise-affine systems based on

temporal logic specifications are computed inYordanov et al. [110]. Our approach fo-

cuses on controller synthesis, and does not require the exact computation of reachable

sets for the system.

6.1.1 Problem Statement

We consider discrete-time nonlinear systems of the form

xt+1 = f(xt, ut), t = 0,1, . . . , (6.1)

where x ∈ X ⊆ (Rnc × {0,1}nl) are the continuous and binary states, u ∈ U ⊆ (Rmc ×
{0,1}ml) are the inputs, and x0 ∈ X is the initial state. The system is called the

concrete system to distinguish it from its abstraction, which will be introduced in

Section 6.2.1.

87

Figure 6.1: A (simplified) Büchi automaton corresponding to the LTL formula ϕ =
◇A ∧ ◻◇B ∧ ◻◇C ∧ ◻S (stated without definition). Informally, the system must
visit A, repeatedly visit B and C, and always remain in S. Here Q = {q0, q1, q2, q3},
Σ = {A,B,C,S}, Q0 = {q0}, F = {q3}, and transitions are represented by labeled
arrows.

Let AP be a finite set of atomic propositions. The labeling function L ∶ X → 2AP

maps the continuous part of each state to the set of atomic propositions that are

True. The set of states where atomic proposition p holds is denoted by [[p]].
A run (trajectory) x = x0x1x2 . . . of system (6.1) is an infinite sequence of its

states, where xt ∈ X is the state of the system at index t and for each t = 0,1, . . .,

there exists a control input ut ∈ U such that xt+1 = f(xt, ut). A word is an infinite

sequence of labels L(x) = L(x0)L(x1)L(x2) . . . where x = x0x1x2 . . . is a run. Given

an initial state x0 and a control input sequence u, the resulting run x(x0,u) is unique.

We now formally state the main problem of this chapter, and give an overview of

our solution approach.

Problem 6.1. Given a dynamical system of the form (6.1) with initial state x0 ∈ X
and a Büchi automaton A representing the specification, determine whether there

exists a control input sequence u such that the word L(x(x0,u)) is accepted by A.

Return the control u if it exists.

Problem 6.1 is undecidable in general due to the dynamics over a continuous state

space [4]. Thus, we consider sound, but not complete, solutions. Our approach is to

create an existential finite abstraction T of the system that does not necessarily check

constrained reachability between states in T . Then, we create a product automaton

88

by combining T with a Büchi automaton A. An accepting run in the product au-

tomaton is an abstract plan. However, an abstract plan may be infeasible due to

dynamic constraints. We check the corresponding sequence of constrained reachabil-

ity problems to see if it is dynamically feasible (see Section 6.3). If a trajectory is

not found, we update the product automaton and search for a new abstract plan.

This process is repeated until a feasible trajectory is found, or no more abstract plans

exist.

Remark 6.1. Our general automaton-guided approach may be extended to feedback

control of systems with disturbances either by 1) assuming that the disturbances do

not change the word, i.e., the sequence of labels, or 2) using an appropriate deter-

ministic automaton.

6.2 The Abstract Model

We now describe an existential finite abstraction T . This abstract model over-

approximates reachability of the concrete system, i.e., it might produce behaviors

that the concrete system cannot execute. This abstract model of the system will late

be combined with the Büchi automaton representing the specification.

6.2.1 Existential Abstraction

We use a transition system to represent the existential abstraction of a concrete

system.

Definition 6.1. A deterministic (finite) transition system is a tuple T = (S,R, s0,AP,L)
consisting of a finite set of states S, a transition relation R ⊆ S × S, an initial state

s0 ∈ S, a set of atomic propositions AP , and a labeling function L ∶ S → 22AP .

We use the finite transition system model to define an existential abstraction T
for the concrete system as follows. We partition the concrete system’s state space

into equivalence classes of states, and associate an abstract state s ∈ S with each

89

equivalence class. The concretization map C ∶ S → X ⊆ X maps each abstract state

to a subset of the concrete system’s state space.

The abstraction T is existential in the sense that there is an abstract transition

(s, t) ∈ R if there exists a control input such that the system evolves from some con-

crete state in C(s) to some concrete state in C(t) in finite time. Thus, the existential

abstraction T is an over-approximation of the concrete system in the sense that it

contains more behaviors, i.e., a series of transitions might exist for the abstraction

that does not exist for the concrete system.

Remark 6.2. A partition is proposition preserving if, for every abstract state s ∈ S
and every atomic proposition p ∈ AP , p ∈ L(u) if and only if p ∈ L(v) for all concrete

states u, v ∈ C(s) [4]. We do not require that the abstract states used in creating

the existential abstraction T are proposition preserving, which necessitates the non-

standard definition of the labeling function.

6.2.2 Product Automaton

We use a slight modification of the product automaton construction [95] to represent

runs that are allowed by the transition system and satisfy the specification.

Definition 6.2. Let T = (S,R, s0,AP,L) be a transition system, and

A = (Q,2AP , δ,Q0, F) be a Büchi automaton. The weighted product automaton

P = T ×A is the tuple P = (SP , δP , FP , sP,0,APP , LP ,wP), consisting of

(i) a finite set of states SP = S ×Q,

(ii) a transition relation δP ⊆ SP × SP , where ((s, q), (s′, q′)) ∈ δP if and only if

(s, s′) ∈ R and there exists an L ∈ L(s) such that (q,L, q′) ∈ δ,

(iii) a set of accepting states FP = S × F ,

(iv) a set of initial states SP,0, with (s0, q0) ∈ SP,0 if q0 ∈ Q0,

(v) a set of atomic propositions APP = Q,

90

(vi) a labeling function LP ∶ S ×Q→ 2Q, and

(vii) a non-negative valued weight function wP ∶ δP → R.

A run σP = (s0, q0)(s1, q1) . . . is accepting if (si, qi) ∈ FP for infinitely many indices

i ∈ N. The projection of a run σP = (s0, q0)(s1, q1) . . . in the product automaton P is

the run σ = s0s1 . . . in the transition system T .

We will often consider an automaton as a graph with the natural bijection between

the states and transitions of the automaton and the vertices and edges of the graph.

Let G = (S,R) be a directed graph with vertices S and edges R. There exists an edge

e from vertex s to vertex t if and only if t ∈ δ(s, a) for some a ∈ Σ. A walk w is a

finite edge sequence w = e0e1 . . . ep. A cycle is a walk where e0 = ep.
It is well-known that if there exists an accepting run in P, then there exists an

accepting run of the form σP = σpre(σsuf)ω, where σpre is a finite walk in P, and

σsuf is a finite cycle in P [9]. For an accepting run σP , the suffix σsuf is a cycle in

the product automaton P that satisfies the acceptance condition, i.e., it includes an

accepting state. The prefix σpre is a finite run from an initial state sP,0 to a state on

an accepting cycle. We call σP an abstract plan.

6.3 Concretizing an Abstract Plan

Given an abstract plan, it is necessary to check whether it is feasible for the concrete

system. We first define the constrained reachability problem, and then show how to

compose these problems to check the feasibility of an abstract plan.

6.3.1 Set-to-Set Constrained Reachability

We now define the set-to-set constrained reachability problem, which is a key compo-

nent of our solution approach.

Definition 6.3. Consider a concrete system of the form (6.1) with given sets X1,X2 ⊆
X , a non-negative integer horizon length N , and a control input sequence u. Set X2

91

is constrained reachable (under control u) through set X1, denoted by X1 ↝X1 X2, if

there exist x1, . . . , xN−1 ∈X1, xN ∈X2 such that xt+1 = f(xt, ut) for t = 1, . . . ,N − 1.

Constrained reachability problem: Given a system of the form (6.1) and sets X1,X2 ⊆
X , find a control input sequence u and a non-negative integer horizon length N such

that X1 ↝X1 X2. Return control u if it exists.

Solving a constrained reachability problem is generally undecidable [4]. How-

ever, there exist numerous sound algorithms that compute solutions to constrained

reachability problems. Sampling-based algorithms are probabilistically or resolution

complete [68]. Optimization-based methods are used for state constrained trajectory

generation for nonlinear [14, 77] and linear [86] systems. Computationally expensive

PDE-based methods are generally applicable [92]. Finally, for a discrete transition

system, computing constrained reachability is simply graph search [9].

We make the standing assumption that there exists an oracle for computing a

sound solution to a constrained reachability problem for the system. We denote this

method by CstReach(X1,X2,N), with constraint set X1, reach set X2, and horizon

length N ∈ N. For a given query, CstReach returns Yes or No. Yes returns a

control input, and No means that a control input does not exist.

Algorithm 11 CstReach(X1,X2,N)

Require: Sets X1,X2 ⊆ X , and horizon N ∈ N
Ensure: Yes and control input u, No

Note that the CstReach oracle is sound, but not complete. If it does not return

a solution after a given amount of computation time, nothing about the constrained

reachability problem can be inferred: the problem could be infeasible, or feasible but

require more computation time.

6.3.2 Concretization of Abstract Plans

The concrete plan is the set of constrained reachability problems corresponding to the

transitions along an abstract plan σ = σpre(σsuf)ω. Each transition ((s, q), (s′, q′)) ∈ δP
encodes a constrained reachability problem (see Section 6.3.1) for the concrete system.

92

We enforce that the system remains in state (s, q) until it eventually reaches state

(s′, q′). Let L1 ∈ L(s) correspond to the set of atomic propositions so that (q,L1, q) ∈
δ, and L2 ∈ L(s) correspond to the set of atomic propositions so that (q,L2, q′) ∈ δ.
Let X1 = [[L1]] if there exists the transition ((s, q), (s, q)) ∈ δP or else X1 = ∅, and

X2 = C(s′)∩ [[L2]]. Then, the existence of a concrete transition corresponding to the

abstract transition ((s, q), (s′, q′)) can be checked by solving CstReach(X1,X2,N),

for a given horizon length N . These CstReach problems are concatenated along the

abstract plan in the obvious manner, with a loop closure constraint for the repeated

suffix.

We demonstrate the concatenation of CstReach problems on the example in

Figure 6.1. We assume that there is a single abstract state s in the existential ab-

straction, and thus consider transitions (q, q′) instead of ((s, q), (s′, q′)). An abstract

plan is given by q0(q1q2q3)ω where σpre = q0 and σsuf = q1q2q3. Let xijk denote the kth

continuous state along the transition from state qi to qj. The sequence of states for this

abstract plan is x01
1 , . . . , x

01
N , x

12
1 , . . . , x

12
N , x

23
1 , . . . , x

23
N , x

31
1 , . . . , x

31
N , where x12

1 = f(x31
N , u)

for some u ∈ U is the loop closure constraint. The corresponding state constraints

for the sequence of CstReach problems are x01
1 , . . . , x

01
N−1 ∈ [[S]], x01

N ∈ [[A ∧ S]],
x12

1 , . . . , x
12
N−1 ∈ [[S]], x12

N ∈ [[B ∧ S]], x23
1 , . . . , x

23
N−1 ∈ [[S]], x23

N ∈ [[C ∧ S]], and

x31
1 , . . . , x

31
N−1 ∈ [[∅]], x31

N ∈ [[S]].

6.4 Solution

We outline our solution to Problem 6.1, and discuss tradeoffs regarding the levels of

granularity of the existential abstraction. Note that if the specification is given as an

LTL formula ϕ, a corresponding Büchi automaton A can be automatically computed

using standard software [42].

6.4.1 The Solution Algorithm

We now overview our solution approach, as detailed in Algorithm 12. First, create

an existential abstraction T of the concrete system, as described in Section 6.2.1. We

93

discuss tradeoffs on this construction in Section 6.4.2. Then, construct the product

automaton P = T ×A.

The problem is now to find an abstract plan in P that is implementable by the

concrete system. Compute a minimal weight abstract plan in P, e.g., using Dijkstra’s

algorithm. As there are an exponential number of paths in P, it is important to only

select the most promising plans. We do this with heuristic weights on transitions in P.

The weights wP represent the likelihood that the corresponding abstract transition in

P corresponds to a concrete transition, i.e., that CstReach returns a feasible control

input. For example, these weights could be the expected necessary horizon length for

the CstReach problem, or the size of the corresponding constraint sets. Using

weights contrasts with most methods in the literature (with notable exceptions [15,

82]), which perform expensive reachability computations ahead of time to ensure that

all transitions in the product automaton can be executed by the concrete system.

Given an abstract plan, it must be checked with respect to the system dynamics.

Each abstract plan corresponds to a sequence of constrained reachability problems,

as detailed in Section 6.3. If the concrete plan if feasible, then a control input is

returned. Otherwise, mark the path as infeasible, and update the weights in P. A

simple approach is to increase the weight of each edge along the infeasible path by a

constant. Additionally, one may compute constrained reachability along a subpath of

the infeasible path in an attempt to determine a specific transition that is the cause.

There might not be a single transition that invalidates a path, though. Invalidated

paths are stored in a set so that they are not repeated. The algorithm then computes

another abstract plan until either a feasible control input is found, or every path in

P is checked.

A benefit of this simple approach is that it is easy to parallelize. A central process

can search for abstract plans in the product automaton, and then worker processes

can check constrained reachability on them. The workers report their results to the

central process, which then modifies its search accordingly. There are interesting

tradeoffs between searching for accepting plans and checking individual transitions in

P, and they are the subject of future work.

94

Algorithm 12 Automaton-Guided Solution Overview

Require: Dynamical system, Büchi aut. A, pathLimit ∈ N
Ensure: Feasible control input u
1: Compute existential abstraction T of concrete system
2: Create product automaton P = T ×A
3: Assign heuristic weights to transitions of P
4: checkedPaths = ∅; paths = 0
5: while paths < pathLimit do
6: paths + = 1
7: Compute σP = σpre(σsuf)ω, the current minimum weight abstract plan not in

checkedPaths
8: Check constrained reachability problem CstReach corresponding to abstract

plan
9: if CstReach returns Yes then
10: return control input u
11: else
12: Add plan σP to checkedPaths
13: (Optional) Check CstReach of sub-paths σP
14: Increase weights on transitions along σP
15: end if
16: end while

6.4.2 Tradeoffs

We now discuss some tradeoffs between different levels of granularity in the existential

abstraction. Contrary to the counterexample-guided abstraction refinement frame-

work [28], we assume that the number of states in the abstraction is fixed. Instead,

we use information from constrained reachability computations to update a ranking

over abstract plans.

We will consider varying levels of abstraction in which there is: a single state, a

state for each atomic proposition, a state for each polytope in a polytopic partition of

the state space, or a state for a given set of discrete points. A natural question is when

to use a fine or coarse abstraction. Informally, a coarse abstraction requires solving

a small number of large constrained reachability problems, while a fine abstraction

requires solving a large number of small constrained reachability problems. Addition-

ally, it may be easier to compose solutions to constrained reachability problems on

a fine abstraction than a coarse abstraction, as the initial and final sets are smaller.

95

Selecting the appropriate level of abstraction is directly related to the difficulty of

solving constrained reachability problems of different sizes.

The coarsest abstraction of the system contains only a single state with a self tran-

sition. It is labeled with every label that corresponds to a concrete state. Thus, the

product automaton is the Büchi automaton. This case is conceptually appealing, as it

imposes no discretization of the system, and results in a minimal number of abstract

plans that must be checked by constrained reachability. A predicate abstraction is

the next coarsest abstraction. This abstraction maps every set of atomic propositions

to an abstract state [5]. Thus, the abstraction only depends on the system’s labels.

A polytopic abstraction assumes that the state space has been partitioned into poly-

topes. The finest level is when a set of concrete states are abstract states, as in Liu

et al. [70] and sampling-based methods [15, 81, 55].

The above discussion can be viewed as a continuum of abstractions that depend on

the largest volume of the state space corresponding to an abstract state. Intuitively,

it should become easier to concatenate solutions of constrained reachability problems

as the size of state space corresponding to each abstract state shrinks. In the limit,

when each abstract state maps to a single concrete state, all constrained reachability

problems can be concatenated.

This continuum of abstractions leads to a novel way of thinking about abstraction

refinement. First consider an abstraction where each abstract state maps to a single

concrete state, as in sampling-based motion planning. If a feasible solution cannot be

found with this abstraction, one can iteratively expand each abstract state to include

a larger set of concrete states until a feasible control input can be found. In the limit,

the abstract states would partition the state space. This is in contrast to typical

counterexample-guided abstraction refinement approaches [28], since the abstraction

becomes coarser instead of finer.

96

6.5 Complexity

Given an existential abstraction T with state set S and a Büchi automaton A, the

product automaton P has O(∣S∣∣A∣) states. There may be an exponential number

of accepting runs (i.e., abstract plans) in P that must be checked via constrained

reachability computations. The complexity of checking a constrained reachability

problem depends on the system under consideration.

Proposition 6.1. Algorithm 12 is complete in the sense that it will return every

accepting run in P.

As there may be an exponential number of accepting runs, completeness is mostly

a theoretical curiosity. Our approach depends on having good heuristic weights on

the product automaton transitions.

6.6 An Application to Nonlinear Systems in Polyg-

onal Environments

We now discuss an application of our framework to nonlinear systems with atomic

propositions that can be represented as the unions of polyhedra. We will solve the

constrained reachability problems using mixed-integer linear programming. Mixed-

integer linear constraints let one specify that the system is in a certain non-convex

region (union of polyhedra) at each time step.

6.6.1 A Mixed-integer Formulation of Constrained Reacha-

bility

We assume that each propositional formula ψ is represented by a union of polyhedra.

The finite index set Iψ lists the polyhedra where ψ is True. The i-th polyhedron is

{x ∈ X ∣ Hψix ≤Kψi}, where i ∈ Iψ. Thus, the set of states where atomic proposition

ψ is True is given by [[ψ]] = {x ∈ X ∣Hψix ≤Kψi for some i ∈ Iψ}. This set is the finite

union of polyhedra (finite conjunctions of halfspaces), and it may be non-convex.

97

For propositional formula ψ and time t, introduce binary variables zψit ∈ {0,1} for

all i ∈ Iψ. Let M be a vector of sufficiently large constants. The big-M formulation

Hψixt ≤Kψi +M(1 − zψit), ∀i ∈ Iψ

∑
i∈Iψ

zψit = 1

enforces the constraint that xt ∈ [[ψ]].
The constrained reachability problem CstReach(ψ1, ψ2,N) can then be encoded

with the big-M formulation so that xt ∈ [[ψ1]] for t = 1, . . . ,N −1 and xN ∈ [[ψ2]]. One

can specify a fixed horizon length, N , for each set of constrained reachability problems,

or can leave the horizon length as a free variable. Additionally, one can decompose

the problem by first computing an accepting loop and then computing a prefix that

reaches this loop from the initial state, instead of computing both simultaneously.

In both cases, the former approach is computationally more efficient, but can miss

feasible solutions.

6.6.2 System Dynamics

The mixed-integer constraints in Section 6.6.1 are over a sequence of continuous

states; they are independent of the specific system dynamics. Dynamic constraints

on the sequence of states can also be enforced by standard transcription methods [14].

However, the resulting optimization problem may then be a mixed-integer nonlinear

program due to the dynamics. We highlight two useful classes of nonlinear systems

where the dynamics can be encoded using mixed-integer linear constraints.

Mixed Logical Dynamical Systems

Mixed logical dynamical (MLD) systems have both continuous and discrete-valued

states, and allow one to model nonlinearities, logic, and constraints [12]. These

systems include constrained linear systems, linear hybrid automata, and piecewise

98

affine systems. An MLD system is of the form

xt+1 = Axt +B1ut +B2δt +B3zt

subject to E2δt +E3zt ≤ E1ut +E4xt +E5, (6.2)

where t = 0,1, . . ., x ∈ X ⊆ (Rnc × {0,1}nl) are the continuous and binary states,

u ∈ U ⊆ (Rmc × {0,1}ml) are the inputs, and δ ∈ {0,1}rl and z ∈ Rrl are auxiliary

binary and continuous variables, respectively. The system matrices A, B1, B2, B3,

E1, E2, E3, E4, and E5 are of appropriate dimension. We assume that the system is

deterministic and well-posed (see Definition 1 in Bemporad and Morari [12]). Thus,

for an initial condition x0 and a control input sequence u = u0u1u2 . . ., there is a

unique run x = x0x1x2 . . . that satisfies the constraints in (6.2).

Differentially Flat Systems

A system is differentially flat if there exists a set of outputs such that all states

and control inputs can be determined from these outputs without integration. If a

system has states x ∈ Rn and control inputs u ∈ Rm, then it is flat if one can find

outputs y ∈ Rm of the form y = y(x,u, u̇, . . . , u(p)) such that x = x(y, ẏ, . . . , y(q)) and

u = u(y, ẏ, . . . , y(q)). Thus, one can plan trajectories in output space, and then map

these to control inputs [68].

Differentially flat systems may be encoded using mixed integer linear constraints

in certain cases, e.g., the flat output is constrained by mixed integer linear constraints.

This condition holds for relevant classes of robotic systems, including quadrotors and

car-like robots. However, control input constraints are typically non-convex in the flat

output. Common approaches to satisfy control constraints are to plan a sufficiently

smooth trajectory or slow down along a trajectory [76].

99

6.6.3 Computing Sets of Feasible Initial States

Our framework can be extended to compute a set of initial states from which there

exists a satisfying control input. This is possible (when all labels are unions of poly-

topes) by performing a projection on a lifted polytope. The key insight is that a

satisfying system trajectory has a corresponding sequence of polytopes. One can con-

struct a lifted polytope in the initial state x0 and control input u, and then project

on x0 to compute a set of feasible initial conditions. We defer to Section V-B in

Wongpiromsarn et al. [108] for details on this construction.

6.7 Examples

We demonstrate our techniques on a variety of motion planning problems. The first

example is a chain of integrators parameterized by dimension. Our second example

is a quadrotor model that was previously considered in Webb and van den Berg [97].

Our final example is a nonlinear car-like vehicle with drift. All computations were

done on a laptop with a 2.4 GHz dual-core processor and 4 GB of memory using

CPLEX [1] with YALMIP [71].

The environment and task are motivated by a delivery scenario. All properties

should be understood to be with respect to regions in the plane (see Figure 6.2). Let

D1, D2, D3, and D4 be regions where supplies must be delivered. The robot must

stay in the safe region S (in white). Formally, we consider task specifications of the

form specF(n) = ⋀ni=1◇Di ∧ ◻S and specGF(n) = ⋀ni=1◻◇Di ∧ ◻S for single and

repeated deliveries, respectively.

In the remainder of this section, we consider this temporal logic motion planning

problem for different system models. All continuous-time models are discretized using

a first-order hold and time-step of 0.5 seconds. We use a fixed horizon N = 20 for

each constrained reachability problem. These CstReach problems are concatenated

between two to six times for an abstract path, resulting in between 40 to 120 time

steps (see Figure 6.2). At each time step, approximately 8 binary variables are used to

100

Figure 6.2: Illustration of the environment. The goals are labeled D1, D2, D3,
and D4. Dark regions are obstacles. A representative trajectory for the quadro-
tor is shown with the five concatenated CstReach problems, i.e., ([[S]], [[D4 ∧
S]],20), ([[S]], [[D2 ∧ S]],20), ([[S]], [[D3 ∧ S]],20), ([[S]], [[D1 ∧ S]],20), and
([[S]], [[S]],20) in varied colors and shapes.

represent the current label. A computation limit of 60 seconds is enforced for checking

reachability of each abstract path, and up to three abstract paths are checked for each

trial. Finally, all results are averaged over 20 randomly generated environments.

We use the coarsest possible abstraction of the dynamical system, a single abstract

state as described in Section 6.4.2. This abstraction is not proposition-preserving, and

effectively means that we directly use the Büchi automaton to guide the constrained

reachability problems that we solve.

6.7.1 Chain of Integrators

The first system is a chain of orthogonal integrators in the x and y directions. The

k-th derivative of the x and y positions are controlled, i.e., x(k) = ux and y(k) = uy,
subject to the constraints ∣ux∣ ≤ 0.5 and ∣uy ∣ ≤ 0.5. The state constraints are ∣x(i)∣ ≤ 1

and ∣y(i)∣ ≤ 1 for i = 1, . . . , k − 1. Results are given in Figures 6.3, 6.4, and 6.5 under

“chain-2,” “chain-6,” and “chain-10,” where “chain-k” is a 2k-dimensional system

101

Figure 6.3: Solver time (mean ± standard error) to compute a control input for various
system models for specF(n).

where the k-th derivative in both the x and y positions is controlled.

6.7.2 Quadrotor

We now consider the quadrotor model used in Webb and van den Berg [97] for point-

to-point motion planning, to which we refer the reader for a complete description of

the model. The state x = (p, v, r,w) is 10-dimensional, consisting of position p ∈ R3,

velocity v ∈ R3, orientation r ∈ R2, and angular velocity w ∈ R2. This model is the

linearization of a nonlinear model about hover with the yaw constrained to be zero.

The control input u ∈ R3 is the total, roll, and pitch thrust. Results are given in

Figures 6.3, 6.4, and 6.5 under “quadrotor,” and a sample trajectory is shown in

Figure 6.2.

102

Figure 6.4: Total time (mean ± standard error) to compute a control input for various
system models for specF(n).

Figure 6.5: Solver time (mean ± standard error) to compute a control input for various
system models for specGF(n). Total time is not shown.

103

6.7.3 Nonlinear Car

Consider a nonlinear car-like vehicle with state x = (px, py, θ) and dynamics ẋ =
(v cos(θ), v sin(θ), u). The variables px, py are position (m), and θ is orientation (rad).

The vehicle’s speed v is fixed at 0.5 (m/s), and its control input is constrained as

∣u∣ ≤ 2.5. We form a hybrid MLD model by linearizing the system about different

orientations θ̂i for i = 1,2,3. The dynamics are governed by the closest linearization

to the current θ. Results are given in Figures 6.3, 6.4, and 6.5 under “car.”

6.7.4 Discussion

We are able to generate satisfying trajectories for 20-dimensional constrained linear

systems, which is not possible with finite abstraction approaches such as [61] or [108]

or the specification-guided approach of [45]. For the 10-dimensional quadrotor model,

feasible solutions are returned in a matter of seconds. The nonlinear car model re-

quired additional binary variables to describe the hybrid modes, which led to larger

mixed-integer optimization problems, and thus its poor relative performance. Our

results appear particularly promising for situations where the environment is dynam-

ically changing, and a finite abstraction must be repeatedly computed.

Typically, few abstract paths needed to be checked to determine a feasible solution.

This is because the ordering between visits to the different labeled regions did not

usually affect the problem’s feasibility. The intuition is that the robot can (almost)

move to any state in the safe region S from any other state.

Finally, the total time (e.g., Figure 6.3) is typically an order of magnitude more

than the solver time (e.g., Figure 6.4). The main component of the total time is the

translation of the YALMIP model to the input for the CPLEX optimizer, which could

be avoided by interfacing directly with CPLEX. Thus, we believe that the solver time

is more indicative of performance than total time.

104

6.8 Conclusions

In this chapter, we developed a framework for computing controllers for discrete-time

nonlinear systems with temporal logic specifications. Our approach uses a coarse

approximation of the system along with the logical specification to guide the compu-

tation of constrained reachability problems as needed for the task. Notably, we do

not require any discretization of the original system, and our method lends itself to

a parallel implementation.

There are multiple directions for future work, including investigating tradeoffs

between checking an entire sequence of constrained reachability problems or only a

subsequence, choosing the appropriate abstraction level given a system and a specifi-

cation, and applying PDE-based methods [92] for the computation of the constrained

reachability problems

105

Chapter 7

Optimization-Based Trajectory
Generation with Linear Temporal
Logic Specifications

In this chapter, we present a mathematical programming-based method for optimal

control of discrete-time dynamical systems subject to temporal logic task specifica-

tions. We use linear temporal logic (LTL) to specify a wide range of properties and

tasks, such as safety, progress, response, surveillance, repeated assembly, and environ-

mental monitoring. Our method directly encodes an LTL formula as mixed-integer

linear constraints on the continuous system variables, avoiding the computationally

expensive processes of creating a finite abstraction of the system and a Büchi automa-

ton for the specification. In numerical experiments, we solve temporal logic motion

planning tasks for high-dimensional (10+ continuous state) dynamical systems. This

chapter is based on results from [99, 103].

7.1 Introduction

Standard methods for motion planning with LTL task specifications first create a finite

abstraction of the original dynamical system (see [4, 10, 61, 108]). This abstraction

can informally be viewed as a labeled graph that represents possible behaviors of the

system. Given a finite abstraction of a dynamical system and an LTL specification,

controllers can be automatically constructed using an automata-based approach [9,

106

15, 39, 61]. The main drawbacks of this approach are: 1) it is expensive to compute a

finite abstraction, 2) the size of the automaton may be exponential in the length of the

specification, and 3) optimality may only be with respect to the discrete abstraction’s

level of refinement.

Instead of the automata-based approach, we directly encode an LTL formula as

mixed-integer linear constraints on the original dynamical system. We enforce that an

infinite sequence of system states satisfies the specification by using a finite number

of constraints on a trajectory parameterization of bounded length. This is possible by

enforcing that the system’s trajectory is eventually periodic, i.e., it contains a loop.

The loop assumption is motivated by the use of “lassos” in LTL model checking

of finite, discrete systems [9]. This direct encoding of the LTL formula avoids the

potentially expensive computations of a finite abstraction of the system and a Büchi

automaton for the specification.

Our approach applies to any deterministic system model that is amenable to finite-

dimensional optimization, as the temporal logic constraints are independent of any

particular system dynamics or cost functions. Of particular interest are mixed logical

dynamical (MLD) systems [12] and certain differentially flat systems [68], whose dy-

namics can be encoded with mixed-integer linear constraints. MLD systems include

constrained linear systems, linear hybrid automata, and piecewise affine systems. Dif-

ferentially flat systems include quadrotors [75] and car-like robots (see Section 6.6.2).

Our work extends the bounded model checking paradigm for finite, discrete sys-

tems [16] to continuous dynamical systems. In bounded model checking, one searches

for counterexamples (i.e., trajectories) of a fixed length by transforming the problem

into a Boolean satisfiability (SAT) problem. This approach was extended to hybrid

systems in Giorgetti et al. [43] by first computing a finite abstraction of the system,

and then using a SAT solver for the resulting discrete problem. Hybrid systems are

also considered in [6, 40], where SAT solvers are extended to reason about linear in-

equalities. In contrast, we consider a larger class of dynamics and use mixed-integer

linear programming techniques.

It is well-known that mixed-integer linear programming can be used for rea-

107

soning about propositional logic [18, 50], generating state-constrained trajectories

[35, 85, 96], and modeling vehicle routing problems [54, 94]. Mixed-integer linear

programming has been used for trajectory generation for continuous systems with

finite-horizon LTL specifications in Karaman et al. [55] and Kwon and Agha [64].

However, finite-horizon properties are too restrictive to model a large class of inter-

esting robotics problems, including surveillance, repeated assembly, periodic motion,

and environmental monitoring. We generalize these results by encoding all LTL prop-

erties using mixed-integer linear constraints.

The main contribution of this chapter is a novel method for encoding LTL spec-

ifications as mixed-integer linear constraints on a dynamical system. This encoding

generalizes previous Boolean satisfiability encodings of LTL formulas for finite, dis-

crete systems. Our mixed-integer encoding works for any LTL formula, as opposed

to previous approaches that only consider finite-horizon properties or fragments. Our

encoding is also efficient; it requires a number of variables linear in the length of the

trajectory, instead of quadratic as in previous approaches [55]. We demonstrate how

our mixed-integer programming formulation can be used with off-the-shelf optimiza-

tion solvers (e.g. CPLEX [1]) to compute both feasible and optimal controllers for

high-dimensional (more than 10 continuous state) dynamical systems with temporal

logic specifications.

7.2 Problem Statement

As in Section 6.1.1, we consider discrete-time nonlinear systems of the form

xt+1 = f(xt, ut), (7.1)

where t = 0,1, . . . are the time indices, x ∈ X ⊆ (Rnc × {0,1}nl) are the continuous and

binary states, u ∈ U ⊆ (Rmc × {0,1}ml) are the control inputs, and x0 ∈ X is the initial

state.

In this chapter, we will assume that an LTL formula is given in positive normal

108

form. An LTL formula in positive normal form (negation normal form) is defined by

the following grammar:

ϕ ∶∶= p ∣ ¬p ∣ ϕ1 ∧ ϕ2 ∣ ϕ1 ∨ ϕ2 ∣ #ϕ ∣ ϕ1 U ϕ2 ∣ ϕ1 R ϕ2,

where p ∈ AP is an atomic proposition, and R (release) is a temporal operator with

semantics defined as follows

σi ⊧ ϕ1 R ϕ2 if and only if ∀j ≥ i ∶ σj ⊧ ϕ2 or σn ⊧ ϕ1∃i ≤ n < j.

Every LTL formula can be rewritten in positive normal form, where all negations

only appear in front of atomic propositions [9]. The following rules transform a given

LTL formula into an equivalent LTL formula in positive normal form: ¬True = False,

¬¬ϕ = ϕ, ¬(ϕ1 ∧ ϕ2) = ¬ϕ1 ∨ ¬ϕ2, ¬# ϕ = #¬ϕ, and ¬(ϕ1 U ϕ2) = ¬ϕ1 R ¬ϕ2. An

LTL formula ϕ of size ∣ϕ∣ can always be rewritten as a formula ϕ′ in positive normal

form of size ∣ϕ′∣ = O(∣ϕ∣) [9].

We now formally state both a feasibility and an optimization problem, and give

an overview of our solution approach. Let ϕ be an LTL formula defined over AP .

Problem 7.1. Given a system of the form (7.1) and an LTL formula ϕ, compute a

control input sequence u such that x(x0,u) ⊧ ϕ.

To distinguish among all trajectories that satisfy Problem 7.1, we introduce a

generic cost function J(x,u) that maps trajectories and control inputs to R ∪∞.

Problem 7.2. Given a system of the form (7.1) and an LTL formula ϕ, compute a

control input sequence u such that x(x0,u) ⊧ ϕ and J(x(x0,u),u) is minimized.

We now briefly overview our solution approach. We represent the system trajec-

tory as a finite sequence of states. Infinite executions of the system are captured

by enforcing that a loop occurs in this sequence, making the trajectory eventually

periodic. We then encode an LTL formula as mixed-integer linear constraints on

this finite trajectory parameterization in Section 7.3.2. Additionally, both dynamic

109

Figure 7.1: Illustration of a problem instance. The task is to repeatedly visit regions
P , D1, and D2, where dark regions are obstacles that must be avoided. Representa-
tive trajectories for a quadrotor (left) and nonlinear car (right) are shown with the
prefix (blue) and suffix (black).

constraints (see Section 7.3.2) and a cost function can also be included as part of

the mixed-integer optimization problem. For mixed logical dynamical (or piecewise

affine) and certain differentially flat systems, Problems 7.1 and 7.2 (with linear costs)

can thus be solved using a mixed-integer linear program (MILP) solver. While even

checking feasibility of a MILP is NP-hard, modern solvers using branch and bound

methods routinely solve large problems [1]. We give results on systems with more

than 10 continuous states in Section 7.4.

Remark 7.1. We only consider open-loop trajectory generation, which is already a

challenging problem due to the LTL specifications and continuous dynamics. Incor-

porating disturbances during trajectory generation is the subject of future work.

7.3 Solution

This section builds on the work in bounded model checking of finite, discrete sys-

tems [16], and extend it to dynamical systems using mixed-integer programming.

Our presentation and notation follows that of [17].

We will search for a trajectory of length k that satisfies ϕ. Although a satisfying

110

trajectory for an LTL formula describes an infinite sequence of states, an infinite

sequence can be captured by a finite trajectory that has a loop. Note that this

approach is conservative for systems of the form (7.1) due to both the bounded

trajectory length k and the assumption that the trajectory is eventually periodic.

This is in contrast to finite systems, where the assumption that the trajectory is

eventually periodic is without loss of generality.

Definition 7.1. A run x is a (k, l)-loop if x = (x0x1 . . . xl−1)(xl . . . xk)ω such that

0 < l ≤ k and xl−1 = xk, where ω denotes infinite repetition.

Definition 7.2. Given a run x and a bound k ∈ N, x ⊧k ϕ iff x is a (k, l)-loop for

some 0 < l ≤ k and x0 ⊧ ϕ.

For a bounded trajectory length k, Problems 7.1 and 7.2, with x ⊧ ϕ replaced by

x ⊧k ϕ, can be represented as a finite-dimensional mixed-integer program. We will

build a set [[M,ϕ, k]] of mixed-integer constraints that is satisfiable if and only if a

trajectory of length k exists for system M that satisfies ϕ. The satisfiability of these

constraints can then be checked with a mixed-integer programming solver. In the

following sections, we will describe the construction of the loop constraints, the LTL

constraints, and the system constraints. However, we first detail how to relate the

continuous state to the set of valid atomic propositions.

Remark 7.2. The results in this chapter can be extended to the bounded semantics

for LTL, i.e., the no-loop case, as detailed in Biere et al. [17].

7.3.1 Representing the Labels

We now relate the state of a system to the set of atomic propositions that are True at

each time instance. We assume that each propositional formula ψ is described by the

Boolean combination of a finite number of halfspaces. Our approach here is standard,

see e.g., [12, 55].

111

Halfspace Representation

We now give a necessary and sufficient condition on a state xt being in a halfspace

H = {x ∈ X ∣ hTx ≤ k} at time t. This constraint can be extended to unions of

polyhedra using conjunctions and disjunction, as detailed in Section 7.3.1.

First, introduce binary variables zt ∈ {0,1} for time indices t = 0, . . . , k. Then,

enforce that zt = 1 if and only if hTxt ≤ k with the following constraints

hTxt ≤ k +Mt(1 − zt),

hTxt > k −Mtzt + ε,

where Mt are large positive numbers, and ε is a small positive number. Note that

zt = 1 if and only if the state is in the halfspace H at time t (with precision ε on the

boundary).

Boolean Operations

In this section, we encode ¬ (not), ∧ (and), and ∨ (or) of propositions using mixed-

integer linear constraints. We assume that each proposition p has a corresponding

variable (binary or continuous) P p
t which equals 1 if p is True at time t, and equals 0

otherwise. We will use new continuous variables Pψ
t ∈ [0,1] to represent the resulting

propositions. In each case, Pψ
t = 1 if ψ holds at time t, and Pψ

t = 0 otherwise.

The negation of proposition p, i.e., ψ = ¬p, is modeled for t = 0, . . . , k as

Pψ
t = 1 − P p

t .

The conjunction of propositions pi for i = 1, . . . ,m, i.e., ψ = ∧mi=1pi, is modeled for

t = 0, . . . , k as

Pψ
t ≤ P pi

t , i = 1, . . . ,m,

Pψ
t ≥ 1 −m +

m

∑
i=1

P pi
t

112

The disjunction of propositions pi for i = 1, . . . ,m, i.e., ψ = ∨mi=1pi, is modeled for

t = 0, . . . , k as

Pψ
t ≥ P pi

t , i = 1, . . . ,m,

Pψ
t ≤

m

∑
i=1

P pi
t .

7.3.2 A Mixed-integer Encoding

We now encode Problem 7.1 as a set [[M,ϕ, k]] of mixed-integer constraints, which

includes loop constraints, LTL constraints, and system constraints. Note that while

the loop and LTL constraints are always mixed-integer linear constraints, the system

constraints will depend on the dynamic model used. Problem 7.2 uses the same

constraint set [[M,ϕ, k]], with the addition of a cost function defined over the (k, l)-
loop.

Loop Constraints

The loop constraints are used to determine where a loop is formed in the system

trajectory. We introduce k binary variables l1, . . . , lk, which determine where the

trajectory loops. These are constrained so that only one loop selector variable is

allowed to be True, and if lj is True, then xj−1 = xk. These constraints are enforced

by ∑k
i=1 li = 1 and

xk ≤ xj−1 +Mj(1 − lj), j = 1, . . . , k,

xk ≥ xj−1 −Mj(1 − lj), j = 1, . . . , k,

where Mj are sufficiently large positive numbers.

LTL Constraints

Given a formula ϕ, we denote the satisfaction of ϕ at position i by [[ϕ]]i. The variable

[[ϕ]]i ∈ {0,1} corresponds to an appropriate set of mixed-integer linear constraints so

113

that [[ϕ]]i = 1 if and only if ϕ holds at position i. We recursively generate the

mixed-integer linear constraints corresponding to [[ϕ]]0 to determine whether or not

a formula ϕ holds in the initial state, i.e., if [[ϕ]]0 = 1. In this section, we use the

encoding of the U and R temporal operators from [17] for Boolean satisfiability.

Our contribution here is linking this satisfiability encoding to the continuous system

state through the mixed-integer linear constraints described in Section 7.3.1. This

encoding first computes an under-approximation for U and an over-approximation

for R with the auxiliary encoding ⟨⟨⋅⟩⟩. The under-approximation of ϕ1 U ϕ2 assumes

that ϕ2 does not hold in the successor of state xk. The over-approximation of ϕ1 R ϕ2

assumes that ϕ2 holds in the successor of state xk. These approximations are then

refined to exact values by [[⋅]]. The encoding is recursively defined over an LTL

formula, where there is a case for each logical and temporal connective.

The reader might wonder why an auxiliary encoding is necessary. A seemingly

straightforward approach for U is to use the textbook identity (see [9]) [[ψ1 U ψ2]]i =
[[ψ2]]i ∨ ([[ψ1]]i ∧ [[ψ1 U ψ2]]i+1) for i = 0, . . . , k, where index k + 1 is replaced by

an appropriate index to form a loop. However, this approach can lead to circu-

lar reasoning. Consider a trajectory consisting of a single state with a self loop,

and the LTL formula True U ψ, i.e., ◇ψ (eventually). The corresponding encoding

is [[True U ψ]]0 = [[ψ]]0 ∨ [[True U ψ]]0. This can be trivially satisfied by setting

[[True U ψ]]0 equal to 1, regardless of whether or not ψ is visited. The auxiliary

encoding prevents this circular reasoning, as detailed in Biere et al. [17].

We first define the encoding of propositional formulas as

[[ψ]]i = Pψ
i ,

[[¬ψ]]i = P ¬ψ
i ,

[[ψ1 ∧ ψ2]]i = [[ψ1]]i ∧ [[ψ2]]i,

[[ψ1 ∨ ψ2]]i = [[ψ1]]i ∨ [[ψ2]]i,

for i = 0, . . . , k, where these operations were defined in Section 7.3.1 using mixed-

integer linear constraints.

114

Next, we define the auxiliary encodings of U and R . The until (release) formulas

at k use the auxiliary encoding ⟨⟨ψ1 U ψ2⟩⟩j (⟨⟨ψ1 R ψ2⟩⟩j) at the index j where the

loop is formed, i.e., where lj holds. The auxiliary encoding of the temporal operators

is

⟨⟨ψ1 U ψ2⟩⟩i = [[ψ2]]i ∨ ([[ψ1]]i ∧ ⟨⟨ψ1 U ψ2⟩⟩i+1),

⟨⟨ψ1 R ψ2⟩⟩i = [[ψ2]]i ∧ ([[ψ1]]i ∨ ⟨⟨ψ1 R ψ2⟩⟩i+1),

for i = 1, . . . , k − 1, and is

⟨⟨ψ1 U ψ2⟩⟩i = [[ψ2]]i,

⟨⟨ψ1 R ψ2⟩⟩i = [[ψ2]]i,

for i = k.

Finally, we define the encoding of the temporal operators as

[[#ψ]]i = [[ψ]]i+1,

[[ψ1 U ψ2]]i = [[ψ2]]i ∨ ([[ψ1]]i ∧ [[ψ1 U ψ2]]i+1),

[[ψ1 R ψ2]]i = [[ψ2]]i ∧ ([[ψ1]]i ∨ [[ψ1 R ψ2]]i+1),

for i = 0, . . . , k − 1, and as

[[#ψ]]i =
k

⋁
j=1

(lj ∧ [[ψ]]j),

[[ψ1 U ψ2]]i = [[ψ2]]i ∨ ([[ψ1]]i ∧ (
k

⋁
j=1

(lj ∧ ⟨⟨ψ1 U ψ2⟩⟩j))),

[[ψ1 R ψ2]]i = [[ψ2]]i ∧ ([[ψ1]]i ∨ (
k

⋁
j=1

(lj ∧ ⟨⟨ψ1 R ψ2⟩⟩j))),

for i = k.

We also explicitly give the encodings for safety, persistence, and liveness formu-

las. These formulas frequently appear in specifications, and can be encoded more

115

efficiently than the general approach just described.

A safety formula ◻ψ can be encoded as

[[◻ψ]]i = [[ψ]]i ∧ [[◻ψ]]i+1, i = 0, . . . , k − 1

[[◻ψ]]k = [[ψ]]k.

An auxiliary encoding is not necessary here, as noted in Biere et al. [17].

Due to the loop structure of the trajectory, both persistence and liveness properties

either hold at all indices or no indices. We encode a persistence ◇◻ ψ and liveness

◻◇ ψ formulas as

[[◇◻ ψ]] =
k

⋁
i=1

(li ∧
k

⋀
j=i

[[ψ]]j) ,

[[◻◇ ψ]] =
k

⋁
i=1

(li ∧
k

⋁
j=i

[[ψ]]j) ,

for i = 0, . . . , k. Although the encodings for persistence and liveness appear to require

a number of variables that are quadratic in k, one can share subformulas to make this

linear in k [16].

System Constraints

The system constraints encode valid trajectories of length k for a system of the

form (7.1), i.e., they hold if and only if trajectory x(x0,u) satisfies the constraints in

equation (7.1) for t = 0,1, . . . , k.

System constraints, e.g., the dynamics in equation (7.1), can be encoded on the

sequence of states using standard transcription methods [14]. However, the resulting

optimization problem may then be a mixed-integer nonlinear program due to the

dynamics. A useful class of nonlinear systems where the dynamics can be encoded

using mixed-integer linear constraints are mixed logical dynamical (MLD) systems

and certain differentially flat systems (see Section 6.6.2).

The intersection of the LTL constraints, the system constraints, and the loop

constraints gives the full mixed-integer linear encoding of the bounded model checking

116

problem, i.e., [[M,ϕ, k]]. Problem 7.1 is solved by checking the feasibility of this set

using a MILP solver (assuming the dynamics are mixed logical dynamical). Similarly,

Problem 7.2 is solved by optimizing over this set using a MILP solver (assuming the

cost function is linear). More general dynamics and cost functions can be included by

using an appropriate mixed-integer solver, potentially at the expense of completeness.

7.3.3 Complexity

The main source of complexity of this approach comes from the number of binary

variables needed to relate the satisfaction of an atomic proposition to the continuous

state of the system. A binary variable is introduced at each time index for each

halfspace. If nh halfspaces are used to represent the atomic propositions used in the

LTL formula at each time index, then O(k ⋅nh) binary variables are introduced, where

k is the number of time indices.

Continuous variables are used to represent the propositions introduced during the

encoding of the LTL formula. The number of continuous variables used is O(k ⋅ ∣ϕ∣),
where k is the number of time indices, and ∣ϕ∣ is the length of the formula. This linear

dependence on k improves on the quadratic dependence on k in [55]. Finally, although

the loop constraints introduce k additional binary variables, they are constrained such

that only one is active. In summary, our mixed-integer linear encoding of an LTL

formula ϕ requires the use of O(k ⋅ nh) binary variables and O(k ⋅ ∣ϕ∣) continuous

variables. Note that the complexity of solving a mixed-integer linear program is

worst-case exponential in the number of binary variables [1].

We do not give bounds on the number of constraints, as they depend heavily on

the details of a given specification, and are not the major factor in the complexity of

solving a mixed-integer linear program.

Remark 7.3. Our solution approaches for Problems 7.1 and 7.2 are only complete

with respect to a given bound of k. If a solution is not found for a given value of k,

there may exist a solution for a larger value. Future work will identify cases when an

upper bound on k can be computed a priori, similar to the notion of a completeness

117

Figure 7.2: Illustration of the environment for the reach-avoid scenario. The goal is
labeled G, and dark regions are obstacles. The light regions around the obstacles give
a safety margin so that the continuous evolution of the system does not intersect an
obstacle, which would otherwise be possible, since constraints are enforced at discrete
time steps. A representative trajectory for the “chain-6” model is shown, where we
additionally minimized an additive cost function with cost c(xt, ut) = ∣ut∣ accrued at
each time index.

threshold [17].

7.4 Examples

We consider two LTL motion planning problems for different system models. We

demonstrate our techniques on the models from Section 6.7: a chain of integrators

model, a quadrotor model, and nonlinear car-like model with v fixed at 1 (m/s). All

computations are done on a laptop with a 2.4 GHz dual-core processor and 4 GB

of memory using CPLEX [1] through Yalmip [71]. All continuous-time models are

discretized with a 0.35 second sample time.

Our first example is a simple reach-avoid motion planning scenario (see Figure 7.2),

which we use to directly compare our encoding of the until operator (U) with that

118

Figure 7.3: Illustration of the environment for the surveillance scenario. The goals
are labeled A, B, C, and D. Dark regions are obstacles. A representative trajectory
for the quadrotor model is shown, where we additionally minimized an additive cost
function with cost c(xt, ut) = ∣ut∣ accrued at each time index. The system starts in
region D, and repeatedly visits regions A and C.

119

given in Karaman et al. [55]. The task here is to remain in the safe region S until the

goal region G is reached. The corresponding LTL formula is ϕ = S U G. This formula

is a key component for building more complex LTL formulas, and thus performance of

this encoding is important. We show that our formulation scales better with respect

to the trajectory length k. This is anticipated, as our encoding of U requires a

number of variables linear in k, while the encoding in Karaman et al. [55] requires a

number of variables quadratic in k. For this example, all results are averaged over

ten randomly generated environments where 75 percent of the area is safe (labeled

S), i.e., the remaining regions are obstacles.

The second example is motivated by a surveillance mission. Let A, B, C, and D

describe regions of interest in a planar planning space that must be repeatedly visited

(see Figure 7.3). The robot must remain in the safe region S (in white) and either

visit regions A and B repeatedly, or visit regions C and D repeatedly. Formally, the

task specification is ϕ = ◻S ∧ ((◻◇A ∧ ◻◇B) ∨ (◻◇C ∧ ◻◇D)). This formula

is recursively parsed and encoded as mixed-integer linear constraints, as described in

Section 7.3.2. For this example, all results are averaged over five randomly-generated

environments where 85 percent of the area is safe, i.e., the remaining regions are

obstacles. The length of the trajectory is k = 25, corresponding to 8.75 seconds.

The results for the first example are presented in Figure 7.4, where we used the

“chain-2” and “chain-6” models. Our encoding of the key U temporal operator scaled

significantly better than a previous approach, likely due to the fact that our encoding

is linear in the trajectory length k, while the previous encoding was quadratic in k.

The results for the surveillance example are presented in Figure 7.5. Due to the

periodic nature of these tasks, the approaches presented in Karaman et al. [55] and

Kwon and Agha [64] are not applicable. We were able to quickly compute trajectories

that satisfied periodic temporal tasks for systems with more than 10 continuous states.

The total time was dominated by preprocessing in YALMIP, and we expect that this

can be reduced close to the solver time with a dedicated implementation.

We also compared our approach to reachability-based algorithms that compute

a finite abstraction [61, 107]. We used the method in Wongpiromsarn et al. [107]

120

20 30 40
0

5

10

15

20

25

30

35

40

k

S
o

lv
e

r
ti
m

e
 (

se
c

)

chain−2 − our method
chain−6 − our method
chain−2 − method in [14]
chain−6 − method in [14]

Figure 7.4: Solver time (mean ± standard error) to compute a feasible control input
for the reach-avoid example, with our approach and the approach in Karaman et
al. [55].

to compute a discrete abstraction for a two dimensional system in 22 seconds, and

Kloetzer and Belta [61] report abstracting a four dimensional system in just over a

minute. This contrasts with our mixed-integer approach that can routinely find solu-

tions to such problems in seconds, although we do not compute a feedback controller.

Our results appear particularly promising for situations where the environment is

dynamically changing, and a finite abstraction must be repeatedly computed.

7.5 A Fragment of Temporal Logic

We also develop an improved encoding for a useful library of temporal operators for

robotic tasks such as safe navigation, surveillance, persistent coverage, response to

the environment, and visiting goals. The improvement is due to the fact that one

only needs a single binary variable to represent the system being inside a polytope,

instead of a binary variable for each halfspace. In the following definitions, ψ, φ,

121

1 2
0

5

10

15

20

25

30

35

40

45

50

C
o

m
p

u
ta

ti
o

n
 t

im
e

 (
se

c
)

chain−2
chain−6
chain−10
quadrotor
car−4

Figure 7.5: Solver (1) and total (2) time (mean ± standard error) to compute a
feasible control input for various systems for the surveillance example. Each example
used an average of 570 binary variables and 4,800 constraints.

and ψj (for a finite number of indices j) are propositional formulas. To simplify the

presentation, we split these into three groups: core Φcore, response Φresp, and fairness

Φfair. We first define the syntax of the temporal operators, and then their semantics.

Syntax:

The core operators, Φcore ∶= {ϕsafe, ϕgoal, ϕper, ϕlive, ϕuntil}, specify fundamental prop-

erties such as safety, guarantee, persistence, liveness (recurrence), and until. These

operators are:

ϕsafe ∶= ◻ψ, ϕgoal ∶=◇ψ, ϕper ∶=◇◻ ψ, ϕlive ∶= ◻◇ ψ, ϕuntil ∶= ψ U φ,

where ϕsafe specifies safety, i.e., a property should invariantly hold, ϕgoal specifies goal

visitation, i.e., a property should eventually hold, ϕper specifies persistence, i.e., a

property should eventually hold invariantly, and ϕlive specifies liveness (recurrence),

i.e., a property should hold repeatedly, as in surveillance, and ϕuntil specifies until,

122

i.e., a property ψ should hold until another property φ holds.

The response operators, Φresp ∶= {ϕ1
resp, ϕ

2
resp, ϕ

3
resp, ϕ

4
resp}, specify how the system

responds to the environment. These operators are:

ϕ1
resp ∶= ◻(ψ Ô⇒ #φ), ϕ2

resp ∶= ◻(ψ Ô⇒ ◇φ),

ϕ3
resp ∶=◇◻ (ψ Ô⇒ #φ), ϕ4

resp ∶=◇◻ (ψ Ô⇒ ◇φ),

where ϕ1
resp specifies next-step response to the environment, ϕ2

resp specifies eventual

response to the environment, ϕ3
resp specifies steady-state next-step response to the

environment, and ϕ4
resp specifies steady-state eventual response to the environment.

Finally, the fairness operators, Φfair ∶= {ϕ1
fair, ϕ

2
fair, ϕ

3
fair}, allow one to specify con-

ditional tasks. These operators are:

ϕ1
fair ∶=◇ψ Ô⇒

m

⋀
j=1

◇φj, ϕ2
fair ∶=◇ψ Ô⇒

m

⋀
j=1

◻◇ φj,

ϕ3
fair ∶= ◻◇ ψ Ô⇒

m

⋀
j=1

◻◇ φj,

where ϕ1
fair specifies conditional goal visitation, and ϕ2

fair and ϕ3
fair specify conditional

repeated goal visitation.

The fragment of LTL that we consider is built from the temporal operators defined

above, as follows:

ϕ ∶∶= ϕcore ∣ ϕresp ∣ ϕfair ∣ ϕ1 ∧ ϕ2, (7.2)

where ϕcore ∈ Φcore, ϕresp ∈ Φresp, and ϕfair ∈ Φfair.

Remark 7.4. To include disjunctions (e.g., ϕ1 ∨ ϕ2), one can rewrite a formula in

disjunctive normal form, where each clause is of the form (7.2). In what follows, each

clause can then be considered separately, as the system (7.1) is deterministic.

123

Semantics:

We use set operations between a trajectory (run) x = x(x0,u) and subsets of X
where particular propositional formulas hold to define satisfaction of a temporal logic

formula [9]. We denote the set of states where propositional formula ψ holds by [[ψ]].
A run x satisfies the temporal logic formula ϕ, denoted by x ⊧ ϕ, if and only if certain

set operations hold. Given propositional formulas ψ and φ, we relate satisfaction of

(a partial list of) formulas of the form (7.2), with set operations as follows:

• x ⊧ ◻ψ if and only if xi ∈ [[ψ]] for all i,

• x ⊧◇◻ ψ if and only if there exists an index j such that xi ∈ [[ψ]] for all i ≥ j,

• x ⊧◇ψ if and only if xi ∈ [[ψ]] for some i,

• x ⊧ ◻◇ ψ if and only if xi ∈ [[ψ]] for infinitely many i,

• x ⊧ ψ U φ if and only if there exists an index j such that xj ∈ [[φ]] and xi ∈ [[ψ]]
for all i < j,

• x ⊧ ◻(ψ Ô⇒ #φ) if and only if xi ∉ [[ψ]] or xi+1 ∈ [[φ]] for all i,

• x ⊧ ◻(ψ Ô⇒ ◇φ) if and only if xi ∉ [[ψ]] or xk ∈ [[φ]] for some k ≥ i for all i,

• x ⊧ ◇◻ (ψ Ô⇒ #φ) if and only if there exists an index j such that xi ∉ [[ψ]]
or xi+1 ∈ [[φ]] for all i ≥ j,

• x ⊧ ◇◻ (ψ Ô⇒ ◇φ) if and only if there exists an index j such that xi ∉ [[ψ]]
or xk ∈ [[φ]] for some k ≥ i for all i ≥ j.

A run x satisfies a conjunction of temporal logic formulas ϕ = ⋀mi=1ϕi if and only

if the set operations for each temporal logic formula ϕi holds. The LTL formula ϕ

is satisfiable by a system at state x0 ∈ X if and only if there exists a control input

sequence u such that x(x0,u) ⊧ ϕ.

124

7.6 A Mixed-Integer Linear Formulation for the

Fragment

We will encode the temporal operators as mixed-integer constraints on xpre and

xsuf. Let xcat ∶= xprexsuf denote the concatenation of xpre and xsuf, and assign

time indices to xcat as Tcat ∶= {0,1, . . . , Ts, . . . , T}. Let Tpre ∶= {0,1, . . . , Ts − 1} and

Tsuf ∶= {Ts, . . . , T}, where Ts is the first time instance on the suffix. The infinite rep-

etition of xsuf is enforced by the constraint xcat(Ts) = f(xcat(T), u) for some u ∈ U .

We often identify xpre(0)⋯σpre(Tpre) with xcat(0)⋯xcat(Ts −1) and xsuf(0)⋯σsuf(Tsuf)
with xcat(Ts)⋯xcat(T) in the obvious manner.

7.6.1 Relating the Dynamics and Propositions

We now relate the state of a system to the set of atomic propositions that are True at

each time instance. We assume that each propositional formula ψ is described at time

t by the union of a finite number of polytopes, indexed by the finite index set Iψt . Let

[[ψ]](t) ∶= {x ∈ X ∣Hψi
t x ≤Kψi

t for some i ∈ Iψt } represent the set of states that satisfy

propositional formula ψ at time t. We assume that these have been constructed as

necessary from the system’s original atomic propositions. We note that a proposition

preserving partition [4] is not necessary or even desired.

For each propositional formula ψ, introduce binary variables zψit ∈ {0,1} for all

i ∈ Iψt and for all t ∈ T . Let xt be the state of the system at time t, and M be a vector

of sufficiently large constants. The big-M formulation

Hψi
t xt ≤Kψi

t +M(1 − zψit), ∀i ∈ Iψt

∑
i∈Iψt

zψit = 1 (7.3)

enforces the constraint that xt ∈ [[ψ]](t) at time t. Define Pψ
t ∶= ∑i∈Iψt

zψit . If Pψ
t = 1,

then xt ∈ [[ψ]](t). If Pψ
t = 0, then nothing can be inferred.

The big-M formulation may give poor continuous relaxations of the binary vari-

125

ables, i.e., zψit ∈ [0,1], which may lead to poor performance during optimization [1].

Such relaxations are frequently used during the solution of mixed-integer linear pro-

grams [1]. Thus, we introduce an alternate representation whose continuous relax-

ation is the convex hull of the original set [[ψ]](t). This formulation is well-known in

the optimization community [51], but does not appear in the trajectory generation

literature ([35, 85, 96] and references therein). As such, this formulation may be of

independent interest for trajectory planning with obstacles.

The convex hull formulation

Hψi
t x

i
t ≤Kψi

t z
ψi
t , ∀i ∈ Iψt

∑
i∈Iψt

zψit = 1,

∑
i∈Iψt

xit = xt (7.4)

represents the same set as the big-M formulation (7.3). While the convex hull for-

mulation introduces more continuous variables, it gives the tightest linear relaxation

of the disjunction of the polytopes, and reduces the need to select the M parame-

ters [51]. Note that we will only use the convex hull formulation (7.4) for safety and

persistence formulas (i.e., ϕsafe and ϕper) in Section 7.6.2, as Pψ
t = 0 enforces x = 0.

Regardless of whether one uses the big-M or convex hull formulation, only one

binary variable is needed for each polyhedron (i.e., finite conjunction of halfspaces).

This compares favorably with our previous approach (see also Karaman et al. [55]),

where a binary variable is introduced for each halfspace. Additionally, the auxiliary

continuous variables and mixed-integer constraints previously used are not needed

because we use implication. For simple tasks such as ϕ = ◇ψ, our method can use

significantly fewer binary variables than previously needed, depending on the number

of halfspaces and polytopes needed to describe [[ψ]].
For every temporal operator described in the following section, the constraints

in (7.3) or (7.4) should be understood to be implicitly applied to the corresponding

propositional formulas so that Pψ
t = 1 implies that the system satisfies ψ at time

126

t. Also, note that we use different binary variables for each formula—even when

representing the same set.

7.6.2 The Mixed-Integer Linear Constraints

In this section, the trajectory parameterization x has been a priori split into a prefix

xpre and a suffix xsuf. This assumption can be relaxed, so that the size of xpre and

xsuf are optimization variables (see [104] for details).

In the following, the correctness of the constraints applied to xpre and xsuf comes

directly from the temporal logic semantics given in Section 7.5 and the form of the

trajectory x = xpre(xsuf)ω. The most important factors are whether a property can

be verified over finite- or infinite-horizons. All infinite-horizon (liveness) properties

must be satisfied on the suffix xsuf.

We begin with the fundamental temporal operators Φcore. Safety and persistence

require a mixed-integer linear constraint for each time step, while guarantee and

liveness only require a single mixed-integer linear constraint.

Safety, ϕsafe = ◻ψ, is satisfied by the constraints

Pψ
t = 1, ∀t ∈ Tpre,

Pψ
t = 1, ∀t ∈ Tsuf,

which ensure that the system is always in a [[ψ]] region. Similarly, persistence,

ϕper =◇◻ ψ, is enforced by

Pψ
t = 1, ∀t ∈ Tsuf,

which ensures that the system eventually remains in a [[ψ]] region.

Guarantee, ϕgoal =◇ψ, is satisfied by the constraints

∑
t∈Tpre

Pψ
t + ∑

t∈Tsuf
Pψ
t = 1,

127

which ensures that the system eventually visits a [[ψ]] region. Similarly, liveness

ϕlive = ◻◇ ψ is enforced by

∑
t∈Tsuf

Pψ
t = 1,

which ensures that the system repeatedly visits a [[ψ]] region.

Until, ϕuntil = ψ U φ, is enforced by

P φ
0 = s0,

P φ
t = st − st−1, t = 1, . . . , T

Pψ
t = 1 − st, ∀t ∈ T ,

where we use auxiliary binary variables st ∈ {0,1} for all t ∈ T such that st ≤ st+1 for

t = 0, . . . , T − 1 and sT = 1.

Now, consider the response temporal operators Φresp. For these formulas, the

definition of implication is used to convert each inner formula into a disjunction

between a property that holds at a state and a property that holds at some point in

the future. The response formulas require a mixed-integer linear constraint for each

time step.

For next-step response, ϕ1
resp = ◻(ψ Ô⇒ #φ) = ◻(¬ψ ∨ #φ), the additional

constraints are

P ¬ψ
t + P φ

t+1 = 1, t = 0, . . . , Ts, . . . , T − 1,

P ¬ψ
T + P φ

Ts
= 1,

Similarly, steady-state next-step response, ϕ3
resp =◇◻(ψ Ô⇒ #φ) =◇◻(¬ψ ∨ #φ),

is satisfied by

P ¬ψ
t + P φ

t+1 = 1, t = Ts, . . . , T − 1,

P ¬ψ
T + P φ

Ts
= 1,

128

Eventual response, ϕ2
resp = ◻(ψ Ô⇒ ◇φ) = ◻(¬ψ ∨ ◇φ), requires the following

constraints

P ¬ψ
t +

T

∑
τ=t
P φ
τ = 1, ∀t ∈ Tpre,

P ¬ψ
t + ∑

t∈Tsuf
P φ
t = 1, ∀t ∈ Tsuf.

Similarly, for steady-state eventual response, ϕ4
resp = ◇◻ (ψ Ô⇒ ◇φ) = ◇◻ (¬ψ ∨

◇φ), the additional constraints are

P ¬ψ
t + ∑

t∈Tsuf
P φ
t = 1, ∀t ∈ Tsuf.

Now, consider the fairness temporal operators Φfair. In the following, the definition

of implication is used to rewrite the inner formula as disjunction between a single

safety (persistence) property and a conjunction of guarantee (liveness) properties.

These formulas require a mixed-integer linear constraint for each conjunction in the

response, and each time step.

Conditional goal visitation, ϕ1
fair = ◇ψ Ô⇒ ⋀mj=1◇φj = ◻¬ψ ∨ ⋀mj=1◇φj, is

specified by

P ¬ψ
t +∑

t∈T
P
φj
t = 1, ∀j = 1, . . . ,m,∀t ∈ T .

Conditional repeated goal visitation, ϕ2
fair =◇ψ Ô⇒ ⋀mj=1◻◇φj = ◻¬ψ ∨ ⋀mj=1◻◇

φj, is enforced as

P ¬ψ
t + ∑

t∈Tsuf
P
φj
t = 1, ∀j = 1, . . . ,m,∀t ∈ T .

Similarly, ϕ3
fair = ◻◇ ψ Ô⇒ ⋀mj=1◻◇ φj =◇◻¬ψ ∨ ⋀mj=1◻◇ φj, is represented by

P ¬ψ
t + ∑

t∈Tsuf
P
φj
t = 1, ∀j = 1, . . . ,m, ∀t ∈ Tsuf.

We have encoded the temporal logic specifications on the system variables using

129

mixed-integer linear constraints. Note that the equality constraints on the binary

variables dramatically reduce search space. In Section 7.3.2, we discuss adding dy-

namics to further constrain the possible behaviors of the system.

7.7 More Examples

We demonstrate our techniques on a variety of motion planning problems. The first

example is a chain of integrators parameterized by dimension. Our second example

is a quadrotor model from [97]. Our final example is a nonlinear car-like vehicle with

drift. All computations were done on a laptop with a 2.4 GHz dual-core processor

and 4 GB of memory using CPLEX [1] with YALMIP [71].

The environment and task is motivated by a pickup-and-delivery scenario. All

properties should be understood to be with respect to regions in the plane (see Fig-

ure 7.1). Let P be a region where supplies can be picked up, and D1 and D2 be

regions where supplies must be delivered. The robot must remain in the safe region

S (in white). Formally, the task specification is ϕ = ◻S ∧ ◻◇P ∧ ◻◇D1 ∧ ◻◇D2.

Additionally, we minimize an additive cost function where c(xt, ut) = ∣ut∣ penalizes

the control input.

In the remainder of this section, we consider this temporal logic motion planning

problem for different system models. We use the simultaneous (sim.) approach

described in Section 7.6.2, and also a sequential (seq.) approach from [104] that

first computes the suffix and then the prefix. A trajectory of length 60 (split evenly

between the prefix and suffix) is used in all cases, and all results are averaged over

20 randomly-generated environments. The simultaneous approach uses between 300

and 469 binary variables, with a mean of 394. Finally, all continuous-time models are

discretized with a 0.5 second sample time.

We use the quadrotor model previously defined in (6.7.2). Also, we use the fact

that the quadrotor is differentially flat [76] to generate trajectories for the nonlinear

model (with fixed yaw). We parameterize the flat output p ∈ R3 with eight piecewise

polynomials of degree three, and then optimize over their coefficients to compute a

130

Feasible soln. (sec) Num. solved
Model Dim. Sim. Seq. Sim. Seq.
chain-2 4 1.10 ± .09 0.64 ± .06 20 20
chain-6 12 4.70 ± .48 2.23 ± .15 20 20
chain-10 20 9.38 ± 1.6 3.74 ± .29 20 19
quadrotor 10 4.20 ± .66 1.80 ± .15 20 20
quadrotor-flat 10 2.26 ± .36 1.99 ± 1.0 20 20
car-3 3 43.9 ± .77 10.7 ± 2.0 4 20
car-4 3 42.4 ± 1.7 18.7 ± 3.1 2 18
car-flat 3 15.8 ± 3.8 14.0 ± 4.4 12 14

Table 7.1: Time until a feasible solution was found (mean ± standard error) and
number of problems (out of 20) solved in 45 seconds using the big-M formulation (7.3)
with M = 10.

Feasible soln. (sec) Num. solved
Model Dim. Sim. Seq. Sim. Seq.
chain-2 4 1.94 ± .23 0.94 ± .11 20 20
chain-6 12 12.4 ± 2.7 2.89 ± .32 20 20
chain-10 20 16.9 ± 3.0 7.28 ± 1.2 17 15
quadrotor 10 18.9 ± 3.8 2.80 ± .35 16 20
car-3 3 37.3 ± 3.1 13.3 ± 1.6 8 20

Table 7.2: Time until a feasible solution was found (mean ± standard error) and
number of problems (out of 20) solved in 45 seconds using the convex hull formula-
tion (7.4).

smooth trajectory. Afterwards, we check that the trajectory does not violate the

control input constraints. Results are given in Table 7.1 under “quadrotor-flat.”

We use the nonlinear car-like model introduced in (6.7.3), but with v fixed at 1

(m/s). Additionally, we use the flat output (x, y) ∈ R2 to generate trajectories for the

nonlinear car-like model in a similar manner as for the quadrotor model. Results are

given in Table 7.1 under “car-flat.”

We compare to the finite-horizon mixed-integer formulation given in Karaman

et al. [55]. Consider the task ϕ = ◇ψ, where [[ψ]] is a convex polytope defined

by m halfspaces. Our method uses one binary variable at each time step, while

their approach uses m. Additionally, while we encode eventually (◇) using a single

constraint, their approach uses a number of constraints quadratic in the the trajectory

length.

131

Finally, the convex hull formulation performed poorly in our examples. There is

an empirical tradeoff between having tighter continuous relaxations and the number

of continuous variables in the formulation. We hypothesize that the convex hull

formulation will be most useful in cases when 1) the number of binary variables is

large, or 2) the cost function is minimized near the boundary of the region.

7.8 Conclusions

In this chapter, we presented a mixed-integer programming-based method for optimal

control of nonlinear systems subject to linear temporal logic task specifications. We

directly encoded an LTL formula as mixed-integer linear constraints on continuous

system variables, which avoided the computationally expensive processes of creating a

finite abstraction of the system and creating a Büchi automaton for the specification.

We solved LTL motion planning tasks for dynamical systems with more than 10

continuous states, and showed that our encoding of the until operator theoretically

and empirically improves on previous work.

Possible future work includes incorporating reactive environments and receding

horizon control approaches. It would also be useful to directly encode metric and

past operators, exploit incremental computation for varying bounds k, and perform

a more detailed comparison of mixed-integer linear programming solvers with SMT

solvers [41].

132

Chapter 8

Conclusions and Future Work

8.1 Summary

This thesis presented novel algorithms for the specification and design of controllers

that guarantee correct and efficient behaviors of robots, autonomous vehicles, and

other cyberphysical systems. Temporal logic was used as a language to formally

specify complex tasks and system properties. We developed control synthesis al-

gorithms for optimal control and robust control of dynamical systems with linear

temporal logic (LTL) specifications. These algorithms are efficient and some extend

to high-dimensional dynamical systems.

The first contribution of this thesis was the extension of a classical control syn-

thesis approach for systems with LTL specifications to optimal and robust control,

respectively. We showed how to extend automata-based synthesis techniques for dis-

crete abstractions of dynamical systems to include notions of optimality or robustness.

Importantly, optimal or robust controllers can be synthesized at little extra compu-

tational cost compared to synthesizing a feasible controller.

The second contribution of this thesis addressed the scalability of control synthesis

with linear temporal logic (LTL) specifications. We introduced a fragment of LTL

for which one can compute feasible control policies in time polynomial in the size

of the system and specification, as opposed to doubly-exponential in the size of the

specification for the full LTL. Additionally, we showed how to compute optimal control

policies for a variety of cost functions, and identify interesting cases in which this

133

can be done in polynomial time. These methods are particularly relevant in an

online control setting, as one is guaranteed that a feasible solution will be found in a

predictable amount of time.

The final contribution of this thesis was the development of algorithms for com-

puting feasible trajectories for high-dimensional, nonlinear systems with LTL spec-

ifications. These algorithms avoid a potentially computationally expensive process

of computing a discrete abstraction, and instead compute directly on the system’s

continuous state space. We first showed how an automaton representing the specifi-

cation can be used to directly encode a series of constrained-reachability subproblems,

which can be solved with standard methods. We also gave a complete encoding of

LTL as mixed-integer linear programming constraints. We demonstrated these ap-

proaches with numerical experiments on temporal logic motion planning problems

with high-dimensional dynamical systems with more than 10 continuous states.

8.2 Future Work

There are many directions for future research towards developing the theoretical foun-

dations and computational tools for the systematic specification, design, and verifi-

cation of complex embedded systems. A fundamental challenge is the development

of a scalable framework for design and verification that mirrors the way that we

build complex systems: component-by-component, with interfaces that help decouple

subsystems. Another promising area is the use of temporal logic as a language for

human-robot collaboration. There are also opportunities in bridging the gap between

how industry currently designs systems (simulate and test) and a formal, model-based

approach. Finally, the experimental application of these techniques to aerospace and

robotics systems has the potential to make a large impact.

Decoupling Task and Motion Planning

A major obstacle to scalable controller synthesis for robots and cyberphysical sys-

tems is the coupling between the constraints imposed by the task and those imposed

134

by the dynamics. Identifying conditions when these constraints can be decoupled

will be critical for solving large, real-world problems. While the creation of a dis-

crete abstraction theoretically lets one decouple these constraints, abstractions are

computationally expensive to compute many high-dimensional problems.

Our work on automaton-guided control design (see Chapter 6) is a preliminary

step towards decoupling these constraints. By using control-theoretic notions such

as small-time local controllability, one can begin to give conditions under which a

sequence of tasks (corresponding to regions of the state space) is dynamically feasible.

Additionally, one can potentially use the automaton to guide the construction of a

library of appropriate motion primitives to complete the task.

Human-Robot Teaming

A benefit of using linear temporal logic to specify tasks is that it is similar to human

language—at least compared to other common logics. There is great potential in the

use of formal methods to reduce mistakes and increase the supervisory capability of

human operators overseeing groups of robots and unmanned vehicles. It also seems

promising to explore the use of temporal logic as a task-specification language for

human-robot collaborative assembly tasks.

Learning Specifications from Simulations

The process of formalizing a set of logical requirements can be a significant undertak-

ing for a complex system. On the other hand, it is relatively easy to say whether or

not a given system simulation is good or bad, and use machine learning techniques

to train classifiers. The combination of formal specifications and learning-based clas-

sifiers appears to be a promising new approach for the specification and design of

large-scale dynamical systems. Initial work in this area (e.g., Seshia [88]) as already

started to show the power of combining machine learning with formal methods.

135

Bibliography

[1] User’s Manual for CPLEX V12.4. IBM, 2011. URL http://pic.dhe.ibm.

com/infocenter/cosinfoc/v12r4/topic/ilog.odms.studio.help/pdf/

usrcplex.pdf.

[2] A. Abate, A. D’Innocenzo, and M. D. Di Benedetto. Approximate abstractions

of stochastic hybrid systems. IEEE Trans. on Automatic Control, 56:2688–2694,

2011.

[3] Rajeev Alur and Salvatore La Torre. Deterministic generators and games for

LTL fragments. ACM Trans. Comput. Logic, 5(1):1–25, 2004.

[4] Rajeev Alur, Thomas A. Henzinger, Gerardo Lafferriere, and George J. Pappas.

Discrete abstractions of hybrid systems. Proc. IEEE, 88(7):971–984, 2000.

[5] Rajeev Alur, Thao Dang, and Franjo Ivancic. Counterexample-guided predicate

abstraction of hybrid systems. In Proc. of TACAS, 2003.

[6] G. Audemard, M. Bozzano, A. Cimatti, and R. Sebastiani. Verifying indus-

trial hybrid systems with MathSAT. Electronic Notes in Theoretical Computer

Science, 119:17–32, 2005.

[7] S. Azuma and G. J. Pappas. Discrete abstraction of stochastic nonlinear sys-

tems: A bisimulation function approach. In Proc. of American Control Confer-

ence, 2010.

[8] J. Andrew Bagnell, Andrew Y. Ng, and Jeff G. Schneider. Solving uncertain

Markov decision processes. Technical report, Carnegie Mellon University, 2001.

http://pic.dhe.ibm.com/infocenter/cosinfoc/v12r4/topic/ilog.odms.studio.help/pdf/usrcplex.pdf
http://pic.dhe.ibm.com/infocenter/cosinfoc/v12r4/topic/ilog.odms.studio.help/pdf/usrcplex.pdf
http://pic.dhe.ibm.com/infocenter/cosinfoc/v12r4/topic/ilog.odms.studio.help/pdf/usrcplex.pdf

136

[9] C. Baier and J-P. Katoen. Principles of Model Checking. MIT Press, 2008.

[10] C. Belta and L. C. G. J. M. Habets. Controlling of a class of nonlinear systems

on rectangles. IEEE Trans. on Automatic Control, 51:1749–1759, 2006.

[11] C. Belta, V. Isler, and G. J. Pappas. Discrete abstractions for robot motion

planning and control in polygonal environments. IEEE Trans. on Robotics, 21:

864–874, 2005.

[12] A. Bemporad and M. Morari. Control of systems integrating logic, dynamics,

and constraints. Automatica, 35:407–427, 1999.

[13] D. P. Bertsekas. Dynamic Programming and Optimal Control (Vol. I and II).

Athena Scientific, 2001.

[14] John T. Betts. Practical Methods for Optimal Control and Estimation Using

Nonlinear Programming, 2nd edition. SIAM, 2000.

[15] A. Bhatia, M. R. Maly, L. E. Kavraki, and M. Y. Vardi. Motion planning with

complex goals. IEEE Robotics and Automation Magazine, 18:55–64, 2011.

[16] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking without

BDDs. In Proc. of TACAS, 1999.

[17] Armin Biere, Kejo Heljanko, Tommi Junttila, Timo Latvala, and Viktor Schup-

pan. Linear encodings of bounded LTL model checking. Logical Methods in

Computer Science, 2:1–64, 2006.

[18] C. E. Blair, R. G. Jeroslow, and J. K. Lowe. Some results and experiments

in programming techniques for propositional logic. Computers and Operations

Research, 13:633–645, 1986.

[19] R. Bloem, B. Jobstmann, N. Piterman, A. Pnueli, and Y. Sa’ar. Synthesis of

Reactive(1) designs. J. of Computer and System Sciences, 78:911–938, 2012.

137

[20] O. Buffet. Reachability analysis for uncertain ssps. In Proc. of the IEEE Int.

Conf. on Tools with Artificial Intelligence, 2005.

[21] Stephane Cambon, Rachid Alami, and Fabien Gravot. A hybrid approach to

intricate motion, manipulation and task planning. Int. J. of Robotics Research,

28:104–126, 2009.

[22] K. Chatterjee, T. A. Henzinger, and M. Jurdzinski. Mean-payoff parity games.

In Annual Symposium on Logic in Computer Science (LICS), 2005.

[23] Krishnendu Chatterjee, Koushik Sen, and Tom Henzinger. Model-checking

omega-regular properties of interval Markov chains. In Foundations of Soft-

ware Science and Computation Structure (FoSSaCS), pages 302–317, 2008.

[24] Y. Chen, J. Tumova, and C. Belta. LTL robot motion control based on automata

learning of environmental dynamics. In Proc. of Int. Conf. on Robotics and

Automation, 2012.

[25] A. Cimatti, E. M. Clarke, F. Giunchiglia, and M. Roveri. NuSMV: a new

Symbolic Model Verifier. In CAV, number 1633 in Lecture Notes in Computer

Science, pages 495–499, 1999.

[26] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.

Counterexample-guided abstraction refinement. In Proc. of CAV. Springer,

2000.

[27] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking.

The MIT Press, 1999.

[28] Edmund M. Clarke, Ansgar Fehnker, Bruce H. Krogh, Joel Ouaknine, Olaf

Stursberg, and Michael Theobald. Abstraction and counterexample-guided re-

finement in model checking of hybrid systems. Int. J. of Foundations of Com-

puter Science, 14:583–604, 2003.

138

[29] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to

Algorithms: 2nd ed. MIT Press, 2001.

[30] Costas Courcoubetis and Mihalis Yannakakis. The complexity of probabilistic

verification. J. of the ACM, 42:857–907, 1995.

[31] G. B. Dantzig, W. O. Blattner, and M. R. Rao. Finding a cycle in a graph

with minimum cost to time ratio with application to a ship routing problem.

In P. Rosenstiehl, editor, Theory of Graphs, pages 77–84. Dunod, Paris and

Gordon and Breach, New York, 1967.

[32] A. Dasdan and R. K. Gupta. Faster maximum and minimum mean cycle al-

gorithms for system performance analysis. IEEE Trans. on Computer-Aided

Design of Integrated Circuits and Systems, 17:889–899, 1998.

[33] Luca de Alfaro. Formal Verification of Probabilistic Systems. PhD thesis, Stan-

ford University, 1997.

[34] Xu Chu Ding, Stephen L. Smith, Calin Belta, and Daniela Rus. LTL control in

uncertain environments with probabilistic satisfaction guarantees. In Proc. of

18th IFAC World Congress, 2011.

[35] M. G. Earl and R. D’Andrea. Iterative MILP methods for vehicle-control prob-

lems. IEEE Trans. on Robotics, 21:1158–1167, 2005.

[36] R. Ehlers. Generalized Rabin(1) synthesis with applications to robust system

synthesis. In NASA Formal Methods. Springer, 2011.

[37] E. Emerson and C. Jutla. The complexity of tree automata and logic of pro-

grams. In Proc. of FOCS, 1988.

[38] E. Allen Emerson. Handbook of theoretical computer science (vol. B). In Jan

van Leeuwen, editor, Temporal and Modal Logic, chapter Temporal and modal

logic, pages 995–1072. MIT Press, 1990.

139

[39] G. E. Fainekos, A. Girard, H. Kress-Gazit, and G. J. Pappas. Temporal logic

motion planning for dynamic robots. Automatica, 45:343–352, 2009.

[40] M. Fränzle and C. Herde. Efficient proof engines for bounded model checking

of hybrid systems. Electronic Notes in Theoretical Computer Science, 133:119–

137, 2005.

[41] Martin Fränzle and Christian Herde. HySAT: an efficient proof engine for

bounded model checking of hybrid systems. Formal Methods in System Design,

30:179–198, 2007.

[42] P. Gastin and D. Oddoux. Fast LTL to Büchi automata translation. In Proc.

of CAV, 2001.

[43] Nicolo Giorgetti, G. J. Pappas, and A. Bemporad. Bounded model checking of

hybrid dynamical systems. In Proc. of IEEE Conf. on Decision and Control,

2005.

[44] Robert Givan, Sonia Leach, and Thomas Dean. Bounded-parameter Markov

decision processes. Artificial Intelligence, 122:71–109, 2000.

[45] Ebru Aydin Gol, Mircea Lazar, and Calin Belta. Language-guided controller

synthesis for discrete-time linear systems. In Proc. of Hybrid Systems: Compu-

tation and Control, 2012.

[46] Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors. Automata, Logics,

and Infinite Games: A Guide to Current Research. Springer-Verlag New York,

Inc., 2002.

[47] L. Habets, P. J. Collins, and J. H. van Schuppen. Reachability and control

synthesis for piecewise-affine hybrid systems on simplices. IEEE Trans. on

Automatic Control, 51:938–948, 2006.

[48] M. Hartmann and J. B. Orlin. Finding mimimum cost to time ratio cycles with

small integral transit times. Networks, 23:567–574, 1993.

140

[49] Gerard Holzmann. Spin Model Checker, The Primer and Reference Manual.

Addison-Wesley Professional, 2003.

[50] J. N. Hooker and C. Fedjki. Branch-and-cut solution of inference problems

in propositional logic. Annals of Mathematics and Artificial Intelligence, 1:

123–139, 1990.

[51] Robert G. Jeroslow. Representability in mixed integer programming, I: Char-

acterization results. Discrete Applied Mathematics, 17:223–243, 1987.

[52] Leslie P. Kaelbling and Tomas Lozano-Perez. Hierarchical task and motion

planning in the now. In Proc. of IEEE Int. Conf. on Robotics and Automaton,

2011.

[53] S. Karaman and E. Frazzoli. Sampling-based motion planning with determinis-

tic µ-calculus specifications. In Proc. of IEEE Conf. on Decision and Control,

2009.

[54] S. Karaman and E. Frazzoli. Linear temporal logic vehicle routing with applica-

tions to multi-UAV mission planning. Int. J. of Robust and Nonlinear Control,

21:1372–1395, 2011.

[55] S. Karaman, R. G. Sanfelice, and E. Frazzoli. Optimal control of mixed logical

dynamical systems with linear temporal logic specifications. In Proc. of IEEE

Conf. on Decision and Control, pages 2117–2122, 2008.

[56] Sertac Karaman and Emilio Frazzoli. Sampling-based algorithms for optimal

motion planning with deterministic µ-calculus specifications. In Proc. of Amer-

ican Control Conf., 2012.

[57] R. M. Karp. A characterization of the minimum cycle mean in a digraph.

Discrete Mathematics, 23:309–311, 1978.

[58] R. M. Karp and J. B. Orlin. Parametric shortest path algorithms with an

application to cyclic staffing. Discrete and Applied Mathematics, 3:37–45, 1981.

141

[59] L. E. Kavraki, P. Svestka, J. C. Latombe, and M. H. Overmars. Probabilistic

roadmaps for path planning in high-dimensional configuration spaces. IEEE

Trans. Robot. Autom., 12:566–580, 1996.

[60] J. Klein and C. Baier. Experiments with deterministic omega-automata for

formulas of linear temporal logic. Theoretical Computer Science, 363:182–195,

2006.

[61] M. Kloetzer and C. Belta. A fully automated framework for control of linear

systems from temporal logic specifications. IEEE Trans. on Automatic Control,

53(1):287–297, 2008.

[62] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas. Temporal logic-based reactive

mission and motion planning. IEEE Trans. on Robotics, 25:1370–1381, 2009.

[63] M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: verification of prob-

abilistic real-time systems. In Proc. of 23rd Int. Conf. on Computer Aided

Verification, 2011.

[64] Y. Kwon and G. Agha. LTLC: Linear temporal logic for control. In Proc. of

HSCC, pages 316–329, 2008.

[65] M. Lahijanian, S. B. Andersson, and C. Belta. Control of Markov decision

processes from PCTL specifications. In Proceedings of the American Control

Conference, 2011.

[66] M. Lahijanian, S. B. Andersson, and C. Belta. Temporal logic motion planning

and control with probabilistic satisfaction guarantees. IEEE Trans. on Robotics,

28:396–409, 2012.

[67] S. LaValle and J. J. Kuffner. Randomized kinodynamic planning. Int. J. of

Robotics Research, 20:378–400, 2001.

[68] S. M. LaValle. Planning Algorithms. Cambridge Univ. Press, 2006.

142

[69] E. L. Lehmann and Joseph P. Romano. Testing Statistical Hypotheses. Springer,

2005.

[70] J. Liu, U. Topcu, N. Ozay, and R. M. Murray. Synthesis of reactive control

protocols for differentially flat systems. In Proc. of IEEE Conf. on Decision

and Control, 2012.

[71] J. Löfberg. YALMIP : A toolbox for modeling and optimization in MATLAB.

In Proc. of the CACSD Conference, Taipei, Taiwan, 2004. Software available

at http://control.ee.ethz.ch/∼joloef/yalmip.php.

[72] Rupak Majumdar, Elaine Render, and Paulo Tabuada. Robust discrete syn-

thesis against unspecified disturbances. In Proc. Hybrid Systems: Computation

and Control, pages 211–220, 2011.

[73] O. Maler, A. Pnueli, and J. Sifakis. On the synthesis of discrete controllers for

timed systems. In STACS 95, volume 900, pages 229–242. Springer, 1995.

[74] Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive and Concurrent

Systems. Springer-Verlag, 1992. ISBN 0-387-97664-7.

[75] Daniel Mellinger and Vijay Kumar. Minimum snap trajectory generation and

control for quadrotors. In Proc. of Int. Conf. on Robotics and Automaton, 2011.

[76] Daniel Mellinger, Alex Kushleyev, and Vijay Kumar. Mixed-integer quadratic

program trajectory generation for heterogeneous quadrotor teams. In Proc. of

Int. Conf. on Robotics and Automation, 2012.

[77] Mark B. Milam, Ryan Franz, J. E. Hauser, and Richard M. Murray. Reced-

ing horizon control of vectored thrust flight experiment. IEEE Proc., Control

Theory Appl., 152:340–348, 2005.

[78] Arch W. Naylor and George R. Sell. Linear Operator Theory in Engineering

and Science. Springer-Verlag, 1982.

143

[79] Arnab Nilim and Laurent El Ghaoui. Robust control of Markov decision pro-

cesses with uncertain transition matrices. Operations Research, 53:780–798,

2005.

[80] Charles E. Noon and James C. Bean. An efficient transformation of the gener-

alized traveling salesman problem. INFOR, 31:39–44, 1993.

[81] E. Plaku, L. E. Kavraki, and M. Y. Vardi. Motion planning with dynamics by

a synergistic combination of layers of planning. IEEE Trans. on Robotics, 26:

469–482, 2010.

[82] Erion Plaku and Gregory D. Hager. Sampling-based motion and symbolic action

planning with geometric and differential constraints. In Proc. of IEEE Int. Conf.

on Robotics and Automaton, 2010.

[83] A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Proc. Symp.

on Princp. of Prog. Lang., pages 179–190, 1989.

[84] Amir Pnueli. The temporal logic of programs. In Proc. of the 18th Annual

Symposium on the Foundations of Computer Science, pages 46–57. IEEE, 1977.

[85] A. Richards and J. P. How. Aircraft trajectory planning with collision avoidance

using mixed integer linear programming. In American Control Conference, 2002.

[86] A. G. Richards, T. Schouwenaars, J. P. How, and E. Feron. Spacecraft trajectory

planning with avoidance constraints using mixed-integer linear programming.

AIAA J. of Guidance, Control, and Dynamics, 25:755–764, 2002.

[87] Jay K. Satia and Roy E. Lave Jr. Markovian decision processes with uncertain

transition probabilities. Operations Research, 21(3):pp. 728–740, 1973.

[88] Sanjit A. Seshia. Sciduction: Combining induction, deduction, and structure for

verification and synthesis. In Proceedings of the Design Automation Conference

(DAC), pages 356–365, 2012.

144

[89] A. Sistla and E. Clarke. The complexity of propositional linear temporal logics.

J. of the ACM, 32:733–749, 1985.

[90] S. L. Smith, J. Tumova, C. Belta, and D. Rus. Optimal path planning for

surveillance with temporal-logic constraints. Int. J. of Robotics Research, 30:

1695–1708, 2011.

[91] Olaf Stursberg. Synthesis of supervisory controllers for hybrid systems using

abstraction refinement. In Proc. of the 16th IFAC World Congress, 2005.

[92] Claire J. Tomlin, Ian M. Mitchell, Alexandre M. Bayen, and Meeko Oishi.

Computational techniques for the verification of hybrid systems. Proc. IEEE,

91:986–1001, 2003.

[93] U. Topcu, N. Ozay, and J. Liu. On synthesizing robust discrete controllers

under modeling uncertainty. In International Conference on Hybrid Systems:

Computation and Control, 2012.

[94] P. Toth and D. Vigo, editors. The Vehicle Routing Problem. Philadelphia, PA:

SIAM, 2001.

[95] M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic

program verification. In Logic in Computer Science, pages 322–331, 1986.

[96] M. P. Vitus, V. Pradeep, J. Hoffmann, S. L. Waslander, and C. J. Tomlin.

Tunnel-MILP: path planning with sequential convex polytopes. In Proc. of

AIAA Guidance, Navigation, and Control Conference, 2008.

[97] Dustin J. Webb and Jur van den Berg. Kinodynamic RRT*: Asymptotically

optimal motion planning for robots with linear dynamics. In Proc. of IEEE Int.

Conf. on Robotics and Automation, 2013.

[98] Jason Wolfe, Bhaskara Marthi, and Stuart Russell. Combined task and motion

planning for mobile manipulation. In Proc. of ICAPS, 2010.

145

[99] E. M. Wolff and R. M. Murray. Optimal control of nonlinear systems with

temporal logic specifications. In Proc. of Int. Symposium on Robotics Research,

2013.

[100] E. M. Wolff, U. Topcu, and R. M. Murray. Robust control of uncertain Markov

decision processes with temporal logic specifications. In Proc. of IEEE Confer-

ence on Decision and Control, 2012.

[101] E. M. Wolff, U. Topcu, and R. M. Murray. Optimal control with weighted

average costs and temporal logic specifications. In Proc. of Robotics: Science

and Systems, 2012.

[102] E. M. Wolff, U. Topcu, and R. M. Murray. Optimal control of non-deterministic

systems for a computationally efficient fragment of temporal logic. In Proc. of

IEEE Conf. on Decision and Control, 2013.

[103] E. M. Wolff, U. Topcu, and R. M. Murray. Optimization-based control of

nonlinear systems with linear temporal logic specifications. In Proc. of Int.

Conf. on Robotics and Automation, 2014.

[104] Eric M. Wolff and Richard M. Murray. Optimal control of mixed logical dy-

namical systems with long-term temporal logic specifications. Technical report,

California Institute of Technology, 2013. URL http://resolver.caltech.

edu/CaltechCDSTR:2013.001.

[105] Eric M. Wolff, Ufuk Topcu, and Richard M. Murray. Efficient reactive controller

synthesis for a fragment of linear temporal logic. In Proc. of Int. Conf. on

Robotics and Automation, 2013.

[106] Eric M. Wolff, Ufuk Topcu, and Richard M. Murray. Automaton-guided con-

troller synthesis for nonlinear systems with temporal logic. In Proc. of Int.

Conf. on Intelligent Robots and Systems, 2013.

[107] T. Wongpiromsarn, U. Topcu, N. Ozay, H. Xu, and R. M. Murray. TuLiP:

A software toolbox for receding horizon temporal logic planning. In Proc. of

http://resolver.caltech.edu/CaltechCDSTR:2013.001
http://resolver.caltech.edu/CaltechCDSTR:2013.001

146

Int. Conf. on Hybrid Systems: Computation and Control, 2011. http://tulip-

control.sf.net.

[108] T. Wongpiromsarn, U. Topcu, and R. M. Murray. Receding horizon temporal

logic planning. IEEE Trans. on Automatic Control, 2012.

[109] Di Wu and Xenofon Koutsoukos. Reachability analysis of uncertain systems

using bounded-parameter Markov decision processes. Artificial Intelligence,

172:945–954, 2008.

[110] Boyan Yordanov, Jana Tumova, Ivana Cerna, Jiri Barnat, and Calin Belta.

Formal analysis of piecewise affine systems through formula-guided refinement.

Automatica, 49:261–266, 2013.

	Acknowledgements
	Abstract
	Introduction
	Thesis Overview and Main Contributions

	Background
	Formal Verification and Synthesis
	Notation
	Linear Temporal Logic
	Graph Theory

	Optimal Control with Weighted Average Costs and Temporal Logic Specifications
	Introduction
	Weighted Transition Systems
	Problem Statement
	Reformulation of the Problem
	Product Automaton
	Prefix-Suffix Form

	Solution Approach
	Computing Finite-Memory Runs
	Minimum Mean Cycle
	Minimum Cycle Ratio

	Computing Infinite-Memory Runs
	Complexity

	Examples
	Conclusions

	Robust Control of Uncertain Markov Decision Processes with Temporal Logic Specifications
	Introduction
	Uncertain Markov Decision Processes
	Problem Statement
	The Product MDP
	Forming the Product MDP
	Reachability in the Product MDP
	Stochastic Shortest Path Form of Product MDP

	Robust Dynamic Programming
	Dynamic Programming
	Uncertainty Set Representations

	Computing an Optimal Control Policy
	Example
	Conclusions

	Efficient and Optimal Reactive Controller Synthesis for a Fragment of Temporal Logic
	Introduction
	Preliminaries
	System Model
	A Fragment of Temporal Logic

	Problem Statement
	The Value Function and Reachability
	Feasible Control Policies for Deterministic Transition Systems
	Feasible Control Policies for Non-Deterministic Systems
	Optimal Control Policies for Non-Deterministic Transition Systems
	The Task Graph
	Average Cost-Per-Task-Cycle
	Minimax (Bottleneck) Costs
	Average Costs

	A Note on Markov Decision Processes
	Reachability
	Control Policy
	Optimal Control

	Complexity
	Examples
	Deterministic Transition System
	Non-Deterministic Transition System

	Extensions
	Guarantee and Obligation
	Disjunctions of Specifications

	Conclusions

	Automaton-Guided Controller Synthesis for Nonlinear Systems with Temporal Logic
	Introduction
	Problem Statement

	The Abstract Model
	Existential Abstraction
	Product Automaton

	Concretizing an Abstract Plan
	Set-to-Set Constrained Reachability
	Concretization of Abstract Plans

	Solution
	The Solution Algorithm
	Tradeoffs

	Complexity
	An Application to Nonlinear Systems in Polygonal Environments
	A Mixed-integer Formulation of Constrained Reachability
	System Dynamics
	Computing Sets of Feasible Initial States

	Examples
	Chain of Integrators
	Quadrotor
	Nonlinear Car
	Discussion

	Conclusions

	Optimization-Based Trajectory Generation with Linear Temporal Logic Specifications
	Introduction
	Problem Statement
	Solution
	Representing the Labels
	A Mixed-integer Encoding
	Complexity

	Examples
	A Fragment of Temporal Logic
	A Mixed-Integer Linear Formulation for the Fragment
	Relating the Dynamics and Propositions
	The Mixed-Integer Linear Constraints

	More Examples
	Conclusions

	Conclusions and Future Work
	Summary
	Future Work

